Oxidative Stress Biomarkers in Dementia

By

Stuart James Bennett

A thesis submitted to the School of Sport and Exercise Sciences The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY

> School of Sport and Exercise Sciences The University of Birmingham United Kingdom October 2010

UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disorder which is thought to affect 26.6 million individuals worldwide. There is growing concern over a worldwide dementia epidemic that is predicted to develop over the coming decades. The evidence thus far suggests that increased levels of oxidative stress and vascular risk factors are two major contributors, amongst others, to AD development.

The thesis aimed to investigate markers of oxidative stress in AD plasma. Moreover, the oxidative status of specific proteins was investigated using both hypothesis driven and proteomic approaches. Results presented in this thesis suggest that global plasma protein oxidation levels are not different when AD and control subjects are compared, but that individual plasma proteins are specific targets for oxidative modification in AD. The thesis explores different methodologies to assess oxidative changes in AD. In addition it demonstrates that emerging novel and powerful mass spectrometry techniques can be employed successfully to identify several proteins modified by oxidation, providing an initial starting point for further investigation.

Acknowledgements

I would like to begin my acknowledgements by thanking my Mum, Dad, brother Paul and family, whom without their constant love and support I would not have been in the privileged position to undertake and complete my PhD research, as well as achieve what I have so far in my life.

To my supervisors Sarah and Mel, the last three years have been a challenging but enjoyable learning experience for me and I thank you for your expert advice, guidance and help during this time.

I would also like to thank my fellow PhD students and friends especially Andrew Cooke, Leigh Breen, James Turner, Pete Rouse, Mark Holland and the Birmingham University Triathlon Club members who made this period of study most enjoyable. Also my thanks go to Dr Andrew Creese and Mr Andrew Jones for their technical assistance on some of the studies.

List of publications

Published original articles (Thesis)

Bennett,S., Grant,M.M., and Aldred,S. (2009). Oxidative Stress in Vascular Dementia and Alzheimer's Disease: A Common Pathology. J. Alzheimers Dis. Jun; 17(2):245-57.

Aldred,S., **Bennett,S.**, and Mecocci,P. (2010). Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease. Clin. Biochem. Feb;43(3):267-71.

Conference proceedings

Aldred,S., **Bennett,S.**, and Mecocci,P. Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease. Biochemical Society Focussed Meeting: Bioanalysis of Oxidative Stress.

Bennett,S., and Aldred,S. Plasma proteins are specifically oxidized in Alzheimer's disease. The 3rd International Symposium of Nutrition, Oxygen Biology and Medicine, Paris, France.

List of Abbreviations

μg	microgram/s
μl	micro litre/s
μmol	micromole/s
1-DE	One dimensional gel electrophoresis
2-DE	Two dimensional gel electrophoresis
2-DG	Two dimensional gel
AAPH	azo-bis dihydrochloride
AD	Alzheimer's disease
ATP	Adenosine triphosphate
BCA	Bicinchoninic acid
BSA	Bovine serum albumin
ddH ₂ O	Double distilled water
DNA	Deoxyribonucleic acid
DNP	Dinitrophenyl
DNPH	Dinitrophenylhydrazine
DTT	Dithiothreitol
ECL	Enhanced chemiluminescence
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme linked immunosorbent assay
FRAP	Ferric reducing ability of plasma
HPLC	High performance liquid chromatography
HRP	Horseradish peroxidase
IEF	Isoelectric focusing
IgG	Immunoglobulin G
IP	Immunoprecipitation
IPG	Immobilized pH gradient
LC	Liquid chromatography
mA	milliamp
mg	milligram/s
ml	milli litre/s

mmol	millimole/s
MnSOD	Manganese Superoxide Dismutase
MS	Mass spectrometry
MS/MS	Tandem mass spectrometry
n	number of participants
nmol	nanomole/s
NED	N-(1-naphthyl) ethylendiamine dihydrochloride
OPD	O-phenylenediamine
OSA	octanesulfonic acid
PAGE	Polyacrylamide gel electrophoresis
PVDF	Polyvinylidene fluoride
RNA	Ribonucleic acid
RPM	Revolutions per minute
SCX	Strong cation chromatography
SD	Standard deviation
SDS	Sodium dodecyl sulfate
TAC	Total antioxidant capacity
TBS	Tris buffed saline
TBST	Tris buffed saline with Tween 20
TCA	Trichloroacetic acid
TG	Tris-glycine
TGS	Tris-glycine SDS
TPZ	Tris (2-pyridyl)-S-triazine
V	Voltage

Table of Contents

Abstract

Acknowledgements List of Publications List of Abbreviations Table of Contents List of Tables List of Figures

Chapter 1 – General Introduction 1		
1.1	Alzheimer's disease	2
1.2	Neuropathological hallmarks of AD	2
1.3	Reactive Oxygen Species (ROS), Antioxidants	5
	and Oxidative stress	
1.4	General indices of oxidative stress	6
	1.4.1 Protein oxidation	6
	1.4.2 Protein nitration	7
	1.4.3 Lipid peroxidation	8
	1.4.4 Antioxidants	9
1.5	Ageing and Oxidative stress	9
1.6	Oxidative stress is increased in AD	10
1.7	Oxidative stress is an early event in AD development	12
1.8	$A\beta$ is central feature of oxidative stress in AD	13
1.9	Vascular nature of AD	14
	1.9.1 Nitric oxide is instrumental to vascular changes	14

		1.9.2	Specific oxidative vascular changes in AD	15
	1.10	Peripl	neral oxidative stress may contribute to AD biomarkers	17
		1.10.1	Broad markers	19
			1.10.1.1 Protein oxidation	19
			1.10.1.2 Protein nitration	22
			1.10.1.3 Antioxidant status	22
			1.10.1.4 Lipid oxidation	23
	1.11	Metho	odologies used to identify specific plasma proteins	23
		modif	ied by oxidation	
		1.11.1	2-DE and Western blotting	24
		1.11.2	Mass Spectrometry	24
	1.12 S	pecific	markers using redox proteomics	28
	1.13 A	ims an	d Overview of thesis	31
Chap	oter 2 ·	– Gene	eral Methods	33
	2.1 M	aterials		34
		2.1.1 0	Chemicals and reagents	34
		2.1.2 F	Plasma samples	34
	2.2 M	ethods		37
		2.2.1 H	Bicinchoninic acid assay	37
		2.2.2 N	Measurement of Protein oxidation using ELISA	37
			2.2.2.1 Preparing BSA standards	37
			2.2.2.2 Protein carbonyl ELISA	38
		2.2.3 7	Fotal antioxidant capacity	39
		2.2.4 I	Lipid peroxide assay	39

2.2.5 One dimensional gel electrophoresis (1-DE)	40
2.2.6 Two dimensional gel electrophoresis (2-DE)	41
2.2.6.1 Isoelectric focussing	41
2.2.6.2 Gel electrophoresis	41
2.2.7 Western blotting	41
2.2.8 Silver staining	42
2.2.9. Identification of plasma protein bands and spots	43
2.2.9.1 In-gel digestion	43
2.2.9.2 LC-MS	44
2.2.9.3 Data dependent CID	44
2.2.9.4 Data analysis	45
2.2.10 General statistics	45

Chapter 3 – Increased LDL oxidation, but not total protein 46

oxidation in AD

3.1 Abstract	47
3.2 Introduction	48
3.3 Methods	50
3.3.1 Sample population	50
3.3.2 BCA assay	50
3.3.3 Isolation of LDL	50
3.3.4 Protein carbonyl ELISA, FRAP and lipid peroxide assay	50
3.3.5 Statistics	51
3.4 Results	52

	3.4.1 Subject Information	52
	3.4.2 Protein oxidation	53
	3.4.3 LDL oxidation	53
	3.4.4 Total antioxidant capacity	55
	3.4.5 Lipid peroxide levels	56
3.5 E	Discussion	57

Chapter 4 – Development of 3-nitrotyrosine ELISA	
4.1 Abstract	62
4.2 Introduction	63
4.3 Methods	66
4.3.1 Sample Population	66
4.3.2 BCA assay	66
4.3.3 HPLC-ECD	66
4.3.3.1 Detection and quantification of 3-nitrotyrosine	67
4.3.4 Preparation of nitrated BSA using various reagents	69
4.3.4.1 Sodium nitrite	69
4.3.4.2 Peroxynitrite	69
4.3.5 1-DE, silver staining and Western blotting	69
4.3.6 3-nitrotyrosine ELISA	70
4.3.6.1 Preparation of 3-nitrotyrosine standards	70
4.3.6.2 ELISA	70
4.3.7 In solution digestion	70

4.4 Results	72
4.4.1 Measurement of 3-nitrotyrosine using HPLC-ECD	72
4.4.2 Measurement of 3-nitrotyrosine using ELISA	74
4.4.2.1 Preparation of nitrated standards using	74
sodium nitrite	
4.4.2.2 Western blotting to assess antibody binding	75
4.4.2.3 Preparation of nitrated standards	76
using peroxynitrite	
4.4.2.4 Confirmation of BSA nitration using ONOO	77
4.4.2.5 Construction of five point 3-nitrotyrosine	78
standard curve	
4.4.2.6 Levels of 3-nitrotyrosine in AD and age matched	80
control plasma	
4.4.2.6.1 Pooled samples	80
4.4.2.6.2 Individual samples	81
4.4.2.7 Increasing detectable levels of 3-nitrotyrosine	83
by trypsin digestion	
4.5 Discussion	85
Chapter 5 – Nitrative and Oxidative stress in AD	89
5.1 Abstract	90
5.2 Introduction	91
5.3 Methods	93

5.3.1 Declaration of ownership

5.3.2 Sample Population	93
5.3.3 BCA assay	93
5.3.4 Measurement of total nitrite and nitrate levels in plasma	93
5.3.4.1 Principle of Griess Assay	93
5.3.4.2 Measurement of NO_x using the Griess Assay	94
5.3.5 Measurement of protein nitration	96
5.3.6 Broad measures of oxidative stress	96
5.3.7 Mass Spectrometry analysis	96
5.3.8 Statistics	96
5.4 Results	97
5.4.1 Nitric oxide metabolites	97
5.4.2 Plasma protein nitration	98
5.4.2.1 Optimization of antibody conditions	98
5.4.2.2 Specificity of peroxidase conjugated goat	99
anti-mouse IgG antibody	
5.4.3 Plasma protein nitration	101
5.4.3.1 Protein band exhibits increased nitration in	103
AD plasma	
5.4.3.2 Identification of excised plasma protein band	104
5.4.4 Protein oxidation	108
5.4.5 Total antioxidant capacity	109
5.4.6 Lipid peroxide levels	110
5.5 Discussion	111

Chapter 6 – Gel based redox Proteomics for the study of	
Alzheimer's disease	
6.1 Abstract	117
6.2 Introduction	118
6.3 Methods	121
6.3.1 Declaration of ownership	121
6.3.2 Sample selection	121
6.3.3 Desalting plasma samples	121
6.3.4 2-DE and Western blotting	121
6.3.5 Plasma protein oxidation analysis and statistics	s 122
6.3.6 Immunoprecipitation of oxidized proteins	122
6.3.7 Mass spectrometry analysis	123
6.4 Results	124
6.4.1 Two dimensional gel electrophoresis and West	tern blotting 124
for protein oxidation	
6.4.2 Matching oxidized plasma proteins between gr	roups 125
6.4.3 Oxidation differences between AD and control	l subjects 126
6.4.4 The use of immunoprecipitation and verification	on of 128
antibody suitability	
6.4.5 IP of oxidized proteins	130
6.4.5.1 Optimal antigen concentration	130
6.4.5.2 IP of oxidized plasma proteins	131
6.4.6 Excision of protein spot from single and multip	ple 2D gels 132
6.4.7 Identification of a highly abundant plasma prot	tein 134

6.4.8 Protein ide	entification by pooling multiple spots	136
from nar	row range gels	
6.5 Discussion		139
Chapter 7 – Non-gel base	d proteomics for the study of	144
Alzheimer's	disease	
7.1 Abstract		145
7.2 Introduction		146
7.3 Methods		151
7.3.1 Declaratio	n of ownership	151
7.3.2 Sample set	ection	151
7.3.3 Albumin d	epletion	151
7.3.4 iTRAQ lab	pelling	151
7.3.5 Strong cat	on HPLC	153
7.3.6 LC-MS/M	S	154
7.3.7 Data-depe	ndent MS/MS	154
7.3.8 Data analy	sis	155
7.3.9 Quantifica	tion of protein expression differences	157
between g	roups	
7.3.10 Western	plot analysis and statistics	157
7.4 Results		158
7.4.1 Albumin d	epletion	158
7.4.2 Fractionat	on of peptides by SCX-HPLC	159

7.4.3 Protein expression differences between AD and Control	161
7.4.4 Validation of protein expression data	165
7.4.4.1 α-2-Macroglobulin	165
7.4.4.2 Complement 4a protein	167
7.4.5 Modified peptides in AD and control plasma	168
7.5 Discussion	182
Chapter 8 – General Discussion	188
8.1 Introduction	189
8.2 Main findings	190
8.3 Findings in context of existing literature	194
8.3.1 Equivalent plasma protein oxidation	194
8.3.2 Complementing gel based proteomics	195
with non-gel based proteomics	
8.3.3 Measurement of plasma 3-nitrotyrosine in AD	195
8.4 Future directions	196
8.4.1 Oxidative stress in vascular dementia	196
8.4.2 Exercise as a therapeutic intervention for AD	197
8.5 Conclusions	200
Chapter 9 – References	201
APPENDIX I APPENDIX II	

List of tables

Table 1.1	Markers of oxidative stress in AD peripheral tissues	20-21
Table 1.2	Proteomic studies in AD subjects	29-30
Table 2.1	Subject characteristics for first group of samples	36
Table 2.2	Subject characteristics for second group of samples	36
Table 2.3	Reagent mix used for lipid peroxide assay	40
Table 2.4	Outline of Western blotting protocol	42
Table 4.1	Measurement of plasma 3-nitrotyrosine by ELISA	65
Table 5.1	Protein identification for excised protein band using OSSMA	104
Table 6.1	Data for protein identification from LC-MS/MS for	133
	excision of two spots	
Table 6.2	Protein identification for oxidized plasma protein spot	138
Table 7.1	Differential plasma protein expression between AD and	162-164
	age-matched control subjects	
Table 7.2	Levels of peptides containing oxidatively modified	169-170
	residues in AD and age-matched control plasma.	

List of figures

Figure 1.1	Proteolytic processing of APP	4
Figure 1.2	Nomenclature for peptide bond fragmentation	26
Figure 1.3	Peptide sequencing from MS/MS spectra	27
Figure 3.1	Total plasma protein carbonyl levels	53
Figure 3.2	LDL carbonylation levels	54
Figure 3.3	Total antioxidant capacity	55
Figure 3.4	Lipid peroxide levels	56
Figure 4.1	Chromatogram of 3-nitrotyrosine synthetic standards	68
Figure 4.2	Plasma levels of 3-nitrotyrosine from AD and controls	73
	using HPLC-ECD	
Figure 4.3	ELISA to assess nitration to BSA using sodium nitrite	74
Figure 4.4	BSA nitration using sodium nitrite	75
Figure 4.5	BSA nitration using peroxynitrite	77
Figure 4.6	3-nitrotyrosine standard curve	79
Figure 4.7	Pooled plasma 3-nitrotyrosine levels	80
Figure 4.8	Plasma levels of 3-nitrotyrosine in AD and control samples	82
Figure 4.9	In-solution trypsin digestion of BSA and BSA-ONOO ⁻ samples	84
Figure 5.1	Determination of total nitrite and nitrate levels in plasma	95
Figure 5.2	Total nitric oxide metabolite levels	97
Figure 5.3	Optimizing antibody conditions	98
Figure 5.4	Assessing non-specificity of secondary antibody	100
Figure 5.5	Quantification of protein expression and protein nitration	102
Figure 5.6	Increased nitration for unknown plasma protein band at ~170kDa	103

Figure 5.7	Peptide coverage for α -2 macroglobulin (P01023/112911)	105
Figure 5.8	Mass spectra of top three peptide hits for α -2M sequence	107
Figure 5.9	Total protein oxidation.	108
Figure 5.10	Total Antioxidant Capacity	109
Figure 5.11	Lipid peroxide levels	110
Figure 6.1	Protein oxidation in Pooled AD and Pooled Control sample	124
Figure 6.2	Protein spot matching using PD Quest software TM	125
Figure 6.3	Plasma protein exhibiting increased oxidation in AD compared	127
	to control	
Figure 6.4	Characteristics of primary antibodies used for	129
	immunoprecipitation using 2-DE	
Figure 6.5	Optimization of amount of bead-antibody complex and antigen,	130
	using oxidized BSA	
Figure 6.6	Comparison of oxidized plasma proteins and precipitated oxidized	131
	plasma proteins by silver staining	
Figure 6.7	Excision of single plasma protein spot from a representative silver	132
	stained gel	
Figure 6.8	Excision and identification of highly abundant protein	135
Figure 6.9	Representative narrow range gel of pooled AD plasma sample	137
Figure 7.1	iTRAQ labelling and mass spectrometry	150
Figure 7.2	Overview of iTRAQ experiment	156
Figure 7.3	Albumin depletion of Pooled plasma samples	158
Figure 7.4	SCX chromatogram for iTRAQ labelled sample	160
Figure 7.5	α -2M protein expression in control and AD subjects	166

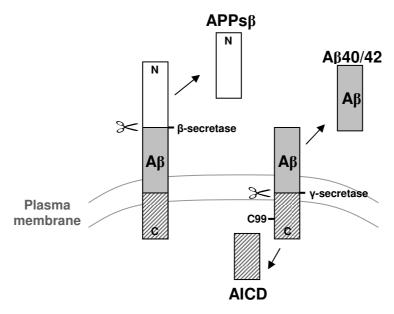
Figure 7.6	C4a protein expression in control and AD subjects	167
Figure 7.7	Nitrated tryptophan and tyrosine residues	168
Figure 7.8	Raw MS sequencing data for oxidative modifications	171-181

Chapter 1

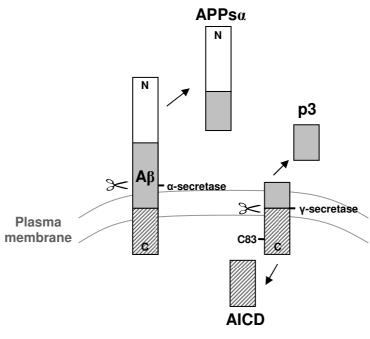
General Introduction

1.1 Alzheimer's disease

The most common form of dementia is Alzheimer's disease (AD): a devastating neurodegenerative disorder which affects the brain. This devastating disease typically leaves sufferers exhibiting severe memory deficits and having difficulty performing everyday tasks. As people are living longer, and the population is becoming more elderly, the prevalence of AD is predicted to increase dramatically, thus causing an increased burden to society. Alarmingly, in 2006 it was reported that 26.6 million individuals were suffering from AD worldwide, and predicted that this figure would increase to 106.2 million by 2050 worldwide (Brookmeyer et al., 2007).


1.2 Neuropathological hallmarks of AD

It has been over 100 years since the first case of AD was reported in 1907 (Alzheimer, 1907; Alzheimer et al., 1995; Burns et al., 2002), yet it still remains true that definitive AD diagnosis is only possible by assessing the neuropathological hallmarks post-mortem. Extracellular senile plaques, which comprise mainly amyloid- β (A β) peptide, and intracellular hyper-phosphorylated tau (τ) are the two major brain pathologies associated with AD (Katzman and Saitoh, 1991; Selkoe, 2001). In general, A β is considered to play an important role in the development of AD and this is mainly based on early genetic experiments which pointed to abnormal mutations in the amyloid precursor protein (APP) as being responsible for the increased deposition of A β in AD brain (Hardy and Selkoe, 2002; Butterfield et al., 2001).


The toxic A β peptide evident in AD is generated during the abnormal proteolytic processing of the APP; this is commonly referred to as the amyloidogenic pathway (see figure 1.1) and

two major forms of the peptide are produced, A β 40 and A β 42, the latter being the most toxic form (Cole and Vassar, 2008). During this process APP is cleaved by the β -secretase enzyme (BACE1) to produce a N terminal A β fragment, APPs β and a C terminal fragment named C99 (Cole and Vassar, 2008). Cleavage of this C99 fragment by the γ -secretase enzyme produces an APP intracellular domain (AICD) and A β peptides of various lengths, which include A β 40 and A β 42. On the other hand, APP processing can follow a non-amyloidogenic pathway (see figure 1.1) where it is cleaved by the enzyme α -secretase to produce an APPs α and C terminal fragment of 83 residues, as subsequent γ -secretase processing generates a p3 fragment and an AICD (Cole and Vassar, 2008). It is likely that A β serves an important physiological role under normal conditions, given that the peptide is produced by various cell types and is conserved between species (Moreira et al., 2007). Indeed, secreted forms of APP (APPs) have been shown to promote neuronal cell survival, aid the migration and differentiation of neurons, and protect neurons against oxidative challenges (Araki et al., 1991; Goodman and Mattson, 1994; Mattson, 1997).

The second characteristic neuropathology associated with AD is the presence of paired helical filaments which are formed mainly of the hyperphosphorylated form of the microtubule associated protein τ , and commonly referred to as neurofibrillary tangles. Early work revealed levels of abnormally phosphorylated τ to be elevated in AD brain tissue compared to normally aged controls (Khatoon et al., 1992), with this increase being a likely cause of microtubule breakdown evident in AD (Alonso et al., 1994) leading to this 'tangle' like pathology. The microtubule system is an important network along which material can be transported within nerve cells, impairment or damage to this system can ultimately lead to cell death.

Amyloidogenic Processing

Non-amyloidogenic Processing

Figure 1.1. Proteolytic processing of APP. Diagram is based on that of Mattson (2004) and Cole and Vassar (2008) and describes the amyloidogenic (top) and non-amyloidogenic (bottom) pathways of APP processing.

Several hypotheses have been proposed to contribute to AD and these include the amyloid (Hardy and Selkoe, 2002), vascular (de la Torre, 2002), inflammatory (Akiyama et al., 2000) and oxidative stress hypotheses (Markesbery, 1997). The oxidative stress hypothesis will be the focus of this thesis.

1.3 Reactive Oxygen Species (ROS), Antioxidants and Oxidative stress

Free radicals (FR) are molecules which possess at least one unpaired electron in their outer shell, and therefore they are highly reactive as they desire further electrons from other molecules for their stability. Reactive oxygen species (ROS) is a term used to describe reactive forms of oxygen, as well as FR which are derived from oxygen. Examples of ROS include the superoxide anion (O_2^{\bullet}) , hydroxyl radical (OH^{\bullet}) , peroxynitrite $(ONOO^{-})$ and hydrogen peroxide (H_2O_2) . H_2O_2 is classed as a reactive form of oxygen and not a FR as it does not possess an unpaired electron (Finaud et al., 2006).

Production of ROS occurs during energy metabolism reactions which routinely take place in the cell. Specific sites for ROS generation include the mitochondria and peroxisomes (Beckman and Ames, 1998). In addition they are produced by neutrophils and macrophages as a protective mechanism against foreign material, which is commonly referred to as the respiratory or oxidative burst (Bedard and Krause, 2007). Historically, these unstable and highly reactive biological molecules were believed to have a detrimental effect on cellular components. However, it has become apparent that they also have an important role in cell signalling as they can induce various biological processes (e.g., cell growth and cell apoptosis) by acting as secondary messengers and through stimulation of protein phosphorylation and transcription factors (Suzuki et al., 1997). Antioxidants were elegantly defined by Barry Halliwell and John Gutteridge, as 'a substance, that when present at low concentrations compared to those of an oxidizable substrate, significantly delays, or prevents oxidation of that substrate' (Halliwell and Gutteridge, 1989). The body has an extensive and complex enzymatic antioxidant defence system in place to neutralise ROS. The enzymatic antioxidant system includes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). These proteins provide a means of breaking down radical species into less harmful products. SOD promotes the dismutation of the superoxide radical to hydrogen peroxide which can then be converted to water by either CAT or GPx (Finkel and Holbrook, 2000). In addition to this, non-enzymatic antioxidants derived from fruit and vegetables can add to these defences (Sies, 1997; Beckman and Ames, 1998). They are able to scavenge free radicals and can be divided into lipid soluble (e.g., α tocopherol, carotenoids and flavonoids) and water soluble based molecules (e.g., glutathione, uric acid and ascorbic acid). In situations where these antioxidant defences become depleted or overwhelmed by ROS a state of 'oxidative stress' can occur (Sies, 1997), and if prolonged and sustained, oxidative damage to proteins, lipids and DNA can ensue.

1.4 General indices of oxidative stress

1.4.1 Protein oxidation

Proteins are highly susceptible to free radical insults, and such events can lead to irreversible oxidative modification. However, mildly oxidized proteins are degraded and removed from cells via the proteasome, and enzymes (e.g., methionine sulfoxide reductases, thioredoxin and glutathione reductases) have evolved which reduce oxidized methionine and cysteine returning them to their native state (Berlett and Stadtman, 1997). Free radicals can oxidize a protein's backbone and the side chains of particular amino acids (e.g., lysine, arginine,

proline, tyrosine, tryptophan and threonine), as well as induce protein fragmentation. In all of these instances carbonyl groups (C=O) may be introduced into the protein's structure. In addition the reaction of proteins with aldehyde compounds produced by lipid peroxidation (e.g., 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA)) can lead to carbonyl formation (Berlett and Stadtman, 1997). As a consequence protein carbonyl groups are considered to be an index of protein oxidation. Since Levine and colleagues (1994) demonstrated that protein carbonyl groups could be derivatized with 2, 4-dinitrophenylhydrazine (2, 4-DNPH) to form a 2,4-dinitrophenyl group, which could be detected by the use of a specific antibody (i.e. anti-DNP), enzyme-linked immunosorbent assay (ELISA) and Western blotting has been used to provide a quantitative and qualitative measurement of protein oxidation respectively (Shacter et al., 1994; Aldred et al., 2004).

1.4.2 Protein nitration

Peroxynitrite (ONOO⁻) is a highly potent reactive nitrogen species (RNS) formed during the reaction between nitric oxide (NO[•]) and O_2^{\bullet} . In addition to oxidizing proteins ONOO⁻ has the ability to nitrate proteins: a nitro group (-NO₂) replaces a hydrogen atom at the 3' position of a tyrosine residue, forming a 3-nitrotyrosine adduct (Souza et al., 2008). This post translational modification can impact protein function; in renal allografts the enzyme MnSOD exhibits increased nitration in parallel with a reduction in its activity (Millan-Crow et al., 1996). Additionally, the presence of 3-nitrotyrosine on tyrosine residues prevents their phosphorylation by tyrosine kinases. This has an impact on signalling pathways mediated by tyrosine kinases, such as brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) resulting in possible cell apoptosis (Berlett and Stadtman, 1997; Mangialasche et al., 2009). Quantification of this modification is typically measured using high performance

liquid chromatography with electrochemical detection (HPLC-ECD), although ELISA and Western blotting using a 3-nitrotyrosine antibody is also frequently used (Duncan, 2003).

1.4.3 Lipid peroxidation

Polyunsaturated fatty acids (PUFA) are components of cell membranes which are highly susceptible to oxidative damage by free radicals: such damage is referred to as free radicalmediated lipid peroxidation (LPO) (Buettner, 1993; Niki, 2009). The initial step of LPO involves the free radical-mediated abstraction of hydrogen atoms from PUFA to form lipid radicals which react with molecular oxygen to form the highly reactive peroxyl radical. This extremely unstable species can further oxidize lipids to produce new lipid radicals and thereby propagate a chain reaction (Buettner, 1993; Niki, 2009). LPO can be terminated if lipid radicals (e.g., lipid peroxides) react with themselves to form stable lipid peroxide products, or if lipid-soluble antioxidants (e.g., vitamin E) are available to reduce peroxyl radicals to lipid hydroperoxides, albeit these can be cleaved by reduced metals to form harmful alkoxyl radical species which may initiate further lipid peroxidation reactions (Buettner, 1993).

MDA, 4-HNE and F₂-isoprostanes are three products which are routinely used as an index of lipid peroxidation. In a recent study, Spickett and co-workers (2010) assessed the reproducibility of these measures in fifteen different laboratories, from plasma samples exposed to varying degrees of UVA irradiation. The authors reported that the measurement of MDA by HPLC was the most sensitive and reproducible measure of the three lipid peroxidation products (Breusing et al., 2010). In addition, a widely used index of lipid peroxidation is the thiobarbituric acid reactive substances assay (TBARS) which measures

the reaction between MDA, the breakdown product of lipid peroxides, and thiobarbituric acid (TBA) (Esterbauer et al., 1991; Sayre et al., 2001). A simple spectrophotometric method has been described by El-Saadani et al. (1989) which measures total lipid peroxide levels in tissues, such as plasma.

1.4.4 Antioxidants

Measurement of endogenous and exogenous antioxidants such as various vitamins, polyphenols and carotenoids, activities of enzymatic antioxidants and total antioxidant capacity (TAC) of biological samples are routinely used as an index of the body's antioxidant defences. The Ferric Reducing Ability in Plasma (FRAP), as a measure of antioxidant power, is a common measure of TAC which includes all endogenous and exogenous antioxidants. In addition, the balance between levels of the small antioxidant molecule glutathione (GSH), and its oxidized counterpart (GSSG), provide an indication of cellular levels of oxidative stress. Under oxidative stress GSH levels are reduced and GSSG levels are increased (Sies, 1999; Bermejo et al., 2008).

1.5 Ageing and Oxidative stress

In 1956, Harman published The Free Radical Theory of Ageing. He suggested that free radical species, formed predominately as a by-product of cellular redox reactions, could contribute to oxidative damage to bio-molecules and accelerate ageing (Harman, 1956). A decade ago Beckman and Ames (1998) comprehensively reviewed the free radical theory and highlighted that ROS indeed play a role in the functional changes characteristic of ageing. However, they suggested that the theory should be broadened to encompass

oxidative stress as a phenomenon not just involved in events concerning determination of lifespan but associated with the whole process of ageing.

Later studies in animals and humans are in agreement with these theories. For example liver and brain tissue from aged Fisher male rat exhibited increased oxidative damage to proteins when compared to young rats. Furthermore, some antioxidant activities show an age dependent decrease (Tian et al., 1998) and in human plasma it has been reported that there is a linear increase in oxidative markers with respect to age and a decline in antioxidant defences after 45 years of age (Jones et al., 2002). Levels of plasma MDA and protein carbonyls have also been observed as increased in elderly compared to young subjects in parallel with a decrease in antioxidant capacity (Mutlu-Turkoglu et al., 2003). Moreover, in transgenic *Drosophila melanogaster* fruit flies which over express genes encoding for cytosolic and mitochondrial SOD, lifespan has been shown to be increased (Parkes et al., 1998; Sun et al., 2002). Taken together these data provide evidence to suggest oxidative stress should be considered as a contributor of ageing.

1.6 Oxidative stress is increased in AD

AD is an age-related disease and extensive data comprehensively show that there are increased levels of oxidative damage in brain tissue from AD sufferers (Markesbery, 1997; Aksenov et al., 2001), above that of healthily aged individuals, and thus it is now considered that increased levels of oxidative stress are associated with AD. These increased levels appear to be brain region specific; for example an early study revealed no differences in protein oxidation between AD and age matched controls in the frontal and occipital lobe brain regions (Smith et al., 1991). Lyras and colleagues (1997) comprehensively investigated

oxidative damage to proteins, lipids and DNA in various brain regions. They found a tentative increase in protein oxidation in several brain regions and a significant increase in protein and DNA oxidation in the parietal lobe brain region in AD compared to controls. In contrast they found no change in lipid peroxidation levels. Aksenov et al. (2001) later demonstrated that protein oxidation was increased in the hippocampus and superior temporal middle gyrus brain regions in AD compared to age matched controls, but not in the cerebellum. Interestingly, increased levels of protein oxidation were reported in AD brain regions dense in A β plaques, such as the hippocampus and inferior parietal lobule, when compared to the cerebellum, a region virtually devoid of this pathology (Hensley et al., 1995). Similarly, protein nitration is increased in AD and is region specific with the hippocampus, inferior parietal lobule (IPL) and superior/middle temporal gyri most affected, while the cerebellum and cerebral cortex remain unaffected (Smith et al., 1997b; Hensley et al., 1998). Furthermore, 4HNE, an aldehyde product of lipid peroxidation, is increased in the amygala, hippocampus and parahippocampal gyrus regions of AD brain compared to controls (Markesbery and Lovell, 1998).

It has also emerged that specific proteins in AD brain tissue are targets for oxidative modification. In the IPL brain region, cytoskeletal proteins, such as β -actin, and proteins involved in energy metabolism and proteolytic degradation, such as α -enolase and ubiquitin carboxyl-terminal hydrolase L-1 respectively, are targets of oxidation and nitration in AD (Castegna et al., 2002a; Castegna et al., 2002b; Castegna et al., 2003). Pamplona and colleagues (2005) have also shown that a small number of cytoskeletal proteins in the brain cortex and proteins involved in energy metabolism exhibit increased lipoxidation. Furthermore, in the entorhinal cortex, a brain region involved in the earliest stages of AD,

the α -mitochondrial ATP synthase subunit is modified by 4-HNE concurrent with a decrease in its activity (Terni et al., 2009). These specific oxidative alterations may have a detrimental impact on protein function, for example in the hippocampus, Pin1, a protein which regulates phosphorylation and dephosphorylation of tau, exhibits increased oxidation in parallel with reduced activity in AD (Sultana et al., 2006a). Pin1 has been shown to be downregulated in AD and could be crucial in neurofibrillary tangle formation (Sultana et al., 2006a).

1.7 Oxidative stress is an early event in AD development

It is thought that oxidative stress is an early event in AD, and this was elegantly demonstrated in a study undertaken by Nunomura and colleagues (2001) which set out to determine the stage of AD at which oxidative damage occurs. The study assessed neuronal oxidative damage from subjects who had suffered with AD for various durations, with their primary outcome measurement of oxidative damage being modifications to RNA. The authors suggested that this modification does not accumulate as seen with modifications to proteins, and as such, provides a better measure of the steady state balance of oxidative damage (Nunomura et al., 2001). The authors reported that levels of oxidative damage were inversely correlated to both disease duration and deposition of A β , and thus concluded that oxidative damage is an early event in AD (Nunomura et al., 2001). Later studies have assessed markers of oxidative damage in mild cognitive impairment (MCI). MCI is considered a transitional disease state which occurs between normal healthy aging and mild dementia. In 10-15% of cases, individuals affected by MCI will convert to AD, which is in contrast to the normally aged population which progress to AD at a 1-2% rate (Petersen et al., 2001). Studies in MCI brain demonstrate increased protein carbonylation, lipid

peroxidation and 3-nitrotyrosine (Keller et al., 2005; Butterfield et al., 2007) and are in agreement with the concept that oxidative stress is an early event in this disease.

1.8 A β is central feature of oxidative stress in AD

It is commonly perceived that $A\beta$ has pro-oxidant properties which contribute to the elevated levels of oxidative stress evident in AD. For example, Mattson and co-workers (1997) reported that in hippocampal neurons $A\beta$ induced the production of 4-HNE which led to their degeneration. However, studies have shown that $A\beta$ has antioxidant capacity. Within its sequence, a methionine residue exists at position 35, and as well as being responsible for reducing transition metals to their highly active form and thus increasing radical production, it also functions as a free radical scavenger (Kontush, 2001; Moreira et al., 2007).

It appears that $A\beta$ is anti-oxidant in diffuse plaques, then as $A\beta$ becomes more fibrillar it becomes pro-oxidant. For example Nunomura et al. (1999) reported reduced oxidative damage in the brain cortex in parallel with the deposition of early diffuse $A\beta$ plaques, which indicates that the presence of these early diffuse plaques maybe a compensatory response to reduce oxidative damage (Moreira et al., 2007). For $A\beta$ to be a pro-oxidant a high concentration of fibrillar $A\beta$, the presence of transition metals and a methionine at residue 35 are required (Moreira et al., 2007). Due to the observed antioxidant nature of $A\beta$ it has been suggested that it may become a pro-oxidant from an antioxidant if the aforementioned conditions are satisfied (Kontush, 2001). Further evidence is supplied by Tamagno and colleagues who have demonstrated that oxidative stressors promoted the amyloidogenic processing of the amyloid precursor protein leading to increased $A\beta$ production (Tamagno et al., 2002; Tamagno et al., 2003).

1.9 Vascular nature of AD

There are several data, from population based studies, which associate an increased incidence of AD with various vascular risk factors, suggesting that AD may not just be a disease confined to the brain. The report that AD is associated with atherosclerosis (Hofman et al., 1997), further substantiated by a recent follow-up study (van et al., 2007) is suggestive of this. Furthermore, diabetes and peripheral vascular disease (Ott et al., 1996; Newman et al., 2005) have also been associated with AD. Moreover, in a review, Launer (2002) discussed existing data which links vascular disease with AD and concluded from this commentary that there are clinical, experimental and epidemiological data supporting a role for vascular risk factors in AD. More recently Dede and colleagues (2007) reported that endothelial function was impaired in AD patients when compared to healthy controls, providing further evidence that vascular factors have a role in the pathogenesis of AD. It has also been suggested that over 30% of AD cases exhibit cerebrovascular pathology, and that cerebrovascular disease worsens cognitive function in the early stages of AD subjects (Esiri et al., 1999; Kalaria and Ballard, 1999), where levels of oxidative stress are thought to be increased. In addition clinically diagnosed AD patients at post-mortem examination have significant lesion formation present in the main artery to brain (Roher et al., 2003).

1.9.1 Nitric oxide is instrumental to vascular changes

The free radical nitric oxide (NO[•]) is synthesised by the enzyme nitric oxide synthase (NOS), of which three isoforms have been identified and these include neuronal (nNOS) inducible (iNOS) and endothelial (eNOS). In AD brain, altered NO[•] regulation is evident with increased NOS activity being demonstrated in brain micro vessels compared to control subjects (Dorheim et al., 1994). Changes to NO[•] status may also in part contribute to elevated

levels of oxidative stress present in AD brain tissue. Lűth and colleagues (2002) reported that iNOS and eNOS are highly expressed in astrocytes and that nNOS was co-localised with 3nitrotyrosine in pyramidal cells in AD. The authors suggested that increased expression of all NOS isoforms in astrocytes and neurons contribute to peroxyntitrite synthesis and likely 3nitrotyrosine formation.

In blood vessels NO[•] impacts on vascular disease such as atherosclerosis, a risk factor for AD (Hofman et al., 1997). In endothelial and smooth muscle cells, NO[•] is produced at relatively low levels and acts in response to various stimuli to maintain blood vessel architecture and homeostasis. It possesses anti-atherosclerotic properties which are attributed to its ability to reduce intracellular levels of oxidative stress and prevent signalling processes integral to atherosclerosis development (Maxwell, 2002). It is well recognized that high blood pressure or hypertension increases the vascular production of ROS, which can result in the loss of endothelium-derived NO[•] by reaction with radicals (e.g., superoxide anion) and thus ROS in the vasculature are firmly established as initiators of atherosclerosis and cardiovascular disease (Taniyama and Griendling, 2003; Landmesser et al., 2003). In general reported plasma and serum levels of NO[•] in AD are reduced compared with control subjects (Selley, 2003; Corzo et al., 2007).

1.9.2 Specific oxidative vascular changes in AD

It is hardly surprising that increased oxidative damage is evident in AD brain tissue if oxidative stress is indeed part of AD pathology. However peripheral tissue oxidative changes have also been identified in AD. These changes may reflect processes which occur in the brain, but equally they could represent whole body changes which accompany, or contribute to, this disease. Given the strong link between vascular risk factors and AD these whole body changes seen in the AD periphery are highly likely to involve vascular pathology.

For example, the oxidative modification of alpha 1-antitrypsin (α 1-AT) in the vasculature may contribute to AD. α 1-AT is a protease inhibitor responsible for preventing tissue damage by inactivating proteinases released during inflammation, and in its oxidized form (Ox α 1-AT) has been shown to activate primary monocytes and induce pro-inflammatory cytokine expression (Moraga and Janciauskiene, 2000). It is also considered a marker of oxidative stress (Ueda et al., 2002). Increased levels of plasma Ox α 1-AT have been reported in AD (Choi et al., 2002; Yu et al., 2003) and hence such modifications may contribute to inflammatory processes associated with this neurodegenerative disease (Akiyama et al., 2000). Indeed, a role for α 1-AT in AD has been previously suggested given that elevated levels are found localised to neuropathologies associated with AD (Gollin et al., 1992).

A further finding reported by Choi et al. (2002) was the increased oxidation to fibrinogen in AD subjects compared to controls. The authors suggested that this modification may result in increased activation of plasminogen and therefore contribute to fibrinolysis and proteolysis at sites of inflammation (Choi et al., 2002). Several molecules of the coagulation and fibrinolysis system have been detected in AD brain and A β plaques. The observation that heparin enhances the actions of these proteins, coupled to the presence of heparin sulphate glycoprotein in A β plaques and neurofibrillary tangles has led to the suggestion that these proteins maybe actively involved in AD neuroinflammation (Strohmeyer and Rogers, 2001). The observed increase in fibrinogen oxidation in AD is also interesting from the viewpoint

that the oxidized form of fibrinogen has been shown in particular to play an important role in the development of atherosclerosis (Azizova et al., 2007).

A further example of an oxidative vascular pathology associated with AD is low density lipoprotein (LDL) oxidation. LDL is responsible for the transport of triglycerides and cholesterol from the blood and surrounding tissues to the liver and is highly susceptible to oxidation (Steinberg et al., 1989). In this oxidized state, LDL has been shown to facilitate the loading of cholesterol into macrophages and promote smooth muscle cell proliferation, platelet adhesion and foam cell formation (Holvoet et al., 2001; Parthasarathy et al., 1989; Witztum and Steinberg, 1991), indicative of early atherosclerosis. The demonstration that LDL susceptibility to oxidation is increased in cerebrospinal fluid (CSF) and plasma from AD subjects, in parallel with reduced levels of antioxidants, further indicates a role for LDL oxidation in AD (Schippling et al., 2000). More recently $A\beta$ (peptides $A\beta40$ and $A\beta42$) has also been shown to bind modified forms of LDL *in vitro*, including oxidized LDL, and increase foam cell formation in vascular lesions (Schulz et al., 2007).

1.10 Peripheral oxidative stress may contribute to AD biomarkers

Vascular oxidative changes may represent a potential cause of AD and therefore assessing such changes enables greater understanding of underlying vascular pathologies which may contribute to this dementia. On the other hand, such changes may also be present in peripheral tissue as a consequence of AD itself, and hence could be viewed as potential biomarkers. There is an increased urgency to develop a biomarker, or series of biomarkers for AD given that the only definitive way to diagnose AD at present is at post-mortem (Mattson, 2004). The challenge remains to be able to diagnose AD at a much earlier stage,

ideally earlier than the onset of clinical symptoms so that treatment, therapies or interventions can be deployed and consequently symptoms can be alleviated or delayed.

A consensus report published in 1998 by the Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group recommended that a biomarker for AD should be characteristic of AD pathology, reliable, cheap, non-invasive and simple to undertake and analyse (1998). Additionally, in a recent review by Aluise at al. (2008) the authors described a biomarker as a change or abnormal signal that occurs in tissue or fluid excreted or secreted in the body which is distinguishable in a patient population.

The two bodily fluids used for biomarker discovery in AD are cerebrospinal fluid (CSF) and plasma. CSF is acquired via lumbar puncture which is an invasive process, nonetheless it provides an ideal bodily fluid to assess changes which occur in the brain as it is in direct contact with the brain extracellular space (Davidsson et al., 2002; Davidsson and Sjogren, 2006). Plasma on the other hand provides a less invasive, accessible route to investigate processes which take place in the body. It is often regarded as the 'dustbin' for the human body, and as such, hallmarks of processes and reactions which take place in the body, such as the brain, can be exported in the plasma. Plasma contains proteins from the periphery that may affect the brain (Aluise et al., 2008), and it has been suggested that approximately half a litre of CSF is absorbed into plasma on a daily basis (Hye et al., 2006).

1.10.1 Broad markers

1.10.1.1 Protein oxidation

Existing studies assessing the extent of plasma protein carbonylation in AD continue to present an unclear picture (see Table 1.1). For example, no change in plasma protein oxidation between AD and age matched controls subjects has been reported when analysing a specific product of protein oxidation in plasma (Pulido et al., 2005), which is in contrast to work by Conrad and colleagues (2000) and Bermejo et al. (2008) who showed that plasma protein oxidation was increased in AD by Western blotting and a spectrophotometric assay respectively. There is the potential possibility that the disease time course may influence plasma protein oxidation levels as oxidative stress is most prevalent in the earliest stages of the disease (Nunomura et al., 2001). Indeed, Greilberger et al. (2008) reported increased protein oxidation in a patient group consisting of both MCI and AD subjects and Bermejo et al. (2008) revealed a severity dependent increase in plasma protein oxidation. However no differences were reported in mild to moderate, and advanced AD (Zafrilla et al., 2006) or in mild AD patients (Baldeiras et al., 2008) in two separate studies. Evidently further investigation into CSF and plasma protein oxidation levels is warranted.

Authors	Participants	Parameters measures	Changes compared to control	Comments
Padurarin <i>et al.</i> (2009)	15AD, 15MCI and 15 Controls	MDA SOD GPx	↑ AD, ↑ MCI (p<0.0005) ↓ AD, ↓ MCI (p<0.0004) ↓ AD, ↓ MCI (p<0.0001)	Show correlation between AOX defences and ↑ MDA, Similar changes between AD and MCI
Martin-Aragón <i>et al.</i> (2009)	Martin-Aragón <i>et al.</i> (2009) 45 AD, 34 MCI and 28 Controls	MDA Total GPx activity GR activity	$\uparrow AD (p<0.05), \leftrightarrow MCI \\ \leftrightarrow AD, \leftrightarrow MCI \\ \leftrightarrow AD, \leftrightarrow MCI$	Levels of MDA increased in MCI but fail to reach statistical significance
Greilberger <i>et al.</i> (2008)	16 NDD and 15 Controls	Protein oxidation MDA Oxidized Human Albumin	↑ (p<0.05) ↑ (p<0.05) ↑ (p<0.05)	Authors suggest these are useful markers for neurodegenerative diseases
Bermejo <i>et al.</i> (2008)	45 AD, 34 MCI and 28 Controls	Protein oxidation GSH/GSSG levels in erythrocytes GPx activity GR activity	$ \begin{array}{c} \uparrow \text{AD} (p{\sim}0.05) \text{,} \uparrow \text{MCI} (p{\sim}0.05) \\ \downarrow \text{AD} (p{\sim}0.05) \text{,} \downarrow \text{MCI} (p{\sim}0.05) \\ \downarrow \text{AD} (p{\sim}0.05) \text{,} \leftrightarrow \text{MCI} \\ \leftrightarrow \text{AD} \text{,} \leftrightarrow \text{MCI} \end{array} $	Increased oxidation not just restricted to the brain in these diseases
Balderias <i>et al.</i> (2008)	42 mild AD, 85 MCI and 37 Controls	Plasma; protein oxidation, MDA, TAS, GSH, GSSG. Erythrocytes; MDA,GSH, GSSG	$\begin{array}{l} \mbox{Plasma: Protein oxidation, MDA, GSH;} \\ \leftrightarrow \mbox{Mild AD,} \leftrightarrow \mbox{MCI. GSSG: } \uparrow \mbox{AD} (p{\sim}0.005), \\ \uparrow \mbox{MCI} (p{\sim}0.05). \mbox{Erythrocytes:} \\ \mbox{GSH, GSSG, GPx and GR;} \leftrightarrow \mbox{AD}, \leftrightarrow \mbox{MCI. MDA:} \\ \uparrow \mbox{AD} (p{\sim}0.05), \\ \uparrow \mbox{MCI} (p{\sim}0.05) \end{array}$	The majority of oxidative changes in mild AD are already present in MCI
Zafrilla <i>et al.</i> (2006)	36 Moderate AD, 30 Advanced AD and 27 Controls	Protein oxidation TBARS TAS	↔ Mod AD, ↔ Adv AD ↑ Mod AD, ↑ Adv AD (p<0.05) ↔ Mod AD, ↓ Adv AD (p<0.05)	TAS reduced in moderate AD but not significant. No differences between severity of disease for protein and lipid oxidation
Calabrese <i>et al.</i> (2006)	18 AD and 18 Controls	Protein Oxidation 3-nitrotyrosine 4-HNE	← ← ←	All parameters were assessed by Western blotting. No statistical data provided.
Table 1.1 Marlan	Tabla 1.1. Maulzane af avidativo etuace in AD nominhamal tiecuae	A D nominhonal ficence		

Table 1.1. Markers of oxidative stress in AD peripheral tissues.

Pullideret al. (2005)20AD and 22 ControlProtein Oxidiation \leftrightarrow 2-AAS product measured areas used areas usedMiglioreret al. (2005)20AD. I.SMC1 and 15 healthy controlsDNA strand breaks \uparrow AD (p=0.001), \uparrow MCI (p=0.001)Drefideral level in AD therplacal level in AD and PC controlDNA strand breaks \uparrow AD (p=0.001), \uparrow MCI (p=0.001)Drividiare dunger is present therplacal level in AD deplacal levelMiglioreret al. (2005)(63AD, 25MCI and 56 ControlPhasma antercidants \uparrow AD (p=0.001), \uparrow MCI (p=0.001)Drividiare dunger is present therplacal level in AD deplacal levelMecocciad. (2002)(63AD, 25MCI and 56 ControlPhasma antercidants \downarrow ControlDrividiare and ScontrolDrividiare and ScontrolDrividiare and ScontrolDrividiare and ScontrolDrividiare and ScontrolDrividiare and ScontrolMecocciad. (2002)(3AD, 25MCI and 36 ControlRometoriants \downarrow ScontrolProtein Oxidiare to Phasma \downarrow AD (p=0.001)Drividiare and ScontrolMecocciad. (2002)(3AD, 25MCI and 36 ControlProtein Oxidiare to Phasma \downarrow Phasma \downarrow Phasma \downarrow ControlDrividiare and ScontrolMecocciad. (2002)20AD and 46 ControlProtein Oxidiare to Phasma \downarrow Phasma \downarrow (p=0.001)Drividiare and ScontrolMecocciad. (2001)20AD and 46 ControlProtein Oxidiare to Phasma \downarrow (p=0.001)Drividiare arcs involved in to PhasmaMecocciad. (2001)20AD and 23 ControlProtein Oxidiare ADA \downarrow (p=0.00	Authors	Participants	Parameters measures	Changes compared to control	Comments
20AD, 15MC1 and 15 healthy controls DNA strand breaks ↑ AD (p<0.001), ↑ MC1 (p<0.001)	Pulido <i>et al.</i> (2005)		Protein Oxidation TAC	ţţ	2-AAS product measured for protein oxidation. FRAP and ABTS+ assay used
63AD, 25MCI and 56 ControlPlasma antioxidants SOD GPx SOD RBCLeveral antioxidants (p<0.001) ↔ lycopene and β-correne in AD SOD RBC40AD and 39 Control8-OHdG in lymphocytes↑ (p<0.001) (p<0.001)		20AD, 15MCI and 15 healthy controls	DNA strand breaks DNA oxidized pyrimidines DNA oxidized purines	↑ AD (p<0.001), ↑ MCI (p<0.001) ↑ AD (p<0.002), ↑ MCI (p<0.002) ↑ AD (p<0.001), ↑ MCI (p<0.001)	Oxidative damage is present at the peripheral level in AD
40AD and 39 Control8-OHdG in lymphocytes Antioxidants in plasma $(p=0.001)$ $(p=0.001)$ 29AD and 46ControlProtein Oxidation MDA 4-HNE $(p=0.001)$ $(p=0.001)$ 20AD and 23 ControlAntioxidants, enzyme activity and MDA in plasma and erythrocytes $(p=0.0014)$ $(p=0.036)$ 18 Probable AD and 18 ControlTAC Terr-butyl hydroperoxide-initiated $(24\% (p=0.036)$ $f=0.006)$ chemiluminescence	Rinaldi <i>et al.</i> (2003)	63AD, 25MCI and 56 Control	Plasma antioxidants SOD GPx SOD RBC	↓ several antioxidants (p<0.001) ↔ lycopene and β-carotene in AD ↓ SOD, GPx and SOD RBC in AD	Peripheral antioxidant levels are depleted in AD
29AD and 46ControlProtein Oxidation \leftrightarrow MDA 4-HNE \leftrightarrow $(p<0.001)$ 20AD and 23 ControlAntioxidants, enzyme activity and MDA in plasma and erythrocytes1 plasma α -tocopherol and retinol (p<0.014)	Mecocci <i>et al.</i> (2002)	40AD and 39 Control	8-OHdG in lymphocytes Antioxidants in plasma	↑ (p<0.001) ↓ (p<0.001)	↓Vitamins A, C, E, carotenoids. Only lutein was same between AD and control
20AD and 23 ControlAntioxidants, enzyme activity and MDA in plasma and erythrocytes↓ plasma atocopherol and retinol (p<0.014)18 Probable AD and 18 ControlTAC↓24% (p=0.036) ↑56% (p=0.006) chemiluminescence	M ^c Grath <i>et al.</i> (2001)	29AD and 46Control	Protein Oxidation MDA 4-HNE	↔ ↔ \uparrow (p<0.001)	Oxidative stress involved in AD
18 Probable AD and 18 Control TAC $\downarrow 24\%$ (p=0.036) <i>Terr</i> -butyl hydroperoxide-initiated $\uparrow 56\%$ (p=0.006) chemiluminescence	Bourdel-Marchasson <i>et al.</i> (2001)	20AD and 23 Control	Antioxidants, enzyme activity and MDA in plasma and erythrocytes	↓ plasma α-tocopherol and retinol (p<0.014) ↑ MDA in plasma (p=0.036)	Antioxidants consumed as increased free radical production
	Repetto et al. (1999)	18 Probable AD and 18 Control	TAC <i>Tert</i> -butyl hydroperoxide-initiated chemiluminescence	↓24% (p=0.036) ↑ 56% (p=0.006)	Increased oxidative stress in blood from AD patients

1.10.1.2 Protein nitration

From the limited studies which investigate CSF protein nitration levels in AD it is apparent that generally levels are increased in AD subjects compared to controls, with two groups reporting this finding. However Ryberg et al. (2004) have shown there is no difference in Free 3-nitrotyrosine levels between AD and control subjects. Studies of protein nitration in plasma are extremely limited. One study used Western blotting to show an increase in plasma protein nitration, but the authors did not include any statistical analysis (Calabrese et al., 2006). A more recent comprehensive study by Korolainen and Pirttilä (2009) revealed no differences in plasma protein nitration nitration between AD and control subjects. Further investigations into peripheral protein nitration levels are therefore required.

1.10.1.3 Antioxidant status

In general, measurements of antioxidant defences are reduced in AD patient populations compared with control groups. TAC, as measured by FRAP, has been reported to be reduced in AD (Sekler et al., 2008). Further, a 24% decrease in TAC in plasma from probable AD compared to controls (Repetto et al., 1999) has been reported using *tert*-butyl hydroperoxide chemiluminescence. It has been suggested that reduction of antioxidant defences occurs in only the most advanced cases of AD as these reductions are evident in severe, but not in moderate cases (Zafrilla et al., 2006; Sekler et al., 2008). In contrast to these studies other groups have reported no differences (Sinclair et al., 1998; Pulido et al., 2005; Baldeiras et al., 2008). Additional antioxidant defence measures are in support of antioxidants being reduced in AD: one study showed that the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were reduced in plasma (Rinaldi et al., 2003). Furthermore, studies which assessed levels of specific antioxidants in AD plasma revealed a depletion in several

compounds compared to control, these include: vitamins A, C and E; Zeaxanthin; β -Cryptoxanthin; Lycopene; and α and β -carotene (Mecocci et al., 2002; Polidori et al., 2004; Rinaldi et al., 2003).

1.10.1.4 Lipid oxidation

Studies assessing oxidative damage to lipids in plasma suggest that there is increased damage in AD compared to control subjects. One study reports comparable levels of lipid peroxidation, from AD and control plasma, and a further study supports these findings, albeit 4-HNE is shown to be increased (McGrath et al., 2001; Polidori et al., 2004). In contrast, studies have reported increased plasma levels of MDA in light to moderate cases of AD, and in AD (Greilberger et al., 2008; Martin-Aragon et al., 2009; Zafrilla et al., 2006). MDA is also found to be increased in red blood cells in AD compared to control subjects (Baldeiras et al., 2008).

1.11 Methodologies used to identify specific plasma proteins modified by oxidation

There are a number of ways to assess the oxidation status of specific proteins. For example a protein of interest can be isolated (e.g., immunoprecipitation) and then assessed for a particular oxidative adducts for example by Western blotting or ELISA. This approach allows hypothesis driven research. In contrast, 2-DE is commonly used to assess the whole proteome of a particular biological sample at a given moment in time. It may then be coupled to Western blotting and mass spectrometry (MS) in order to identify which proteins are oxidized.

1.11.1 2-DE and Western blotting

During 2-DE proteins are initially separated according to their charge by isoelectric focussing and then based on their mass by polyacrylamide gel electrophoresis (Aldred et al., 2004). Separated proteins are then either stained (e.g., Coomassie staining and silver staining) and their expression assessed, or they are transferred to membrane (e.g., PVDF or nitrocellulose) where Western blotting can then be employed to identify specific proteins which contain oxidation adducts. Proteins whose degree of expression or oxidation is significantly altered are then excised from 2-DG gels and identified by MS.

1.11.2 Mass Spectrometry

Mass spectrometry is an analytical technique which is typically used to determine the molecular mass of proteins within a particular sample. Protein samples are firstly digested into peptides enzymatically using trypsin, a serine protease which cleaves peptides at the carboxyl end of arginine and lysine amino acid residues. They are then ionised, separated according to their mass to charge (m/z) ratio in a MS analyzer and detected. The m/z ratios for all detected ions are represented in the form of a mass spectrum.

MS using multiple analyzers is referred to as tandem mass spectrometry (MS/MS) and allows for the generation of structural information from a particular biological sample. It is therefore used for protein identification purposes (Wysocki et al., 2005). During MS/MS specific precursor ions (e.g., the most abundant) from initial MS are selected and fragmented to form product ions which are analysed by a separate analyzer. As shown in figure 1.2 there are several sites along the peptide backbone which are cleaved during fragmentation. The major site of cleavage is at the peptide bond (CO-NH), and this gives rise to either 'b' or 'y'

ions, which is dependent on whether charge is retained on the amino or carboxyl fragment respectively. Further fragment ions can also be formed by cleavage at the CH-CO (e.g., 'a' and 'x') and NH-CH (e.g., 'c' and 'z') bond. This information is particularly useful as the mass difference between adjacent 'b' or 'y' ions can be used to deduce the amino acid sequence of a particular peptide (see figure 1.3), and in theory these ion fragmentation patterns can therefore be assembled to form an original peptide sequence (Wysocki et al., 2005).

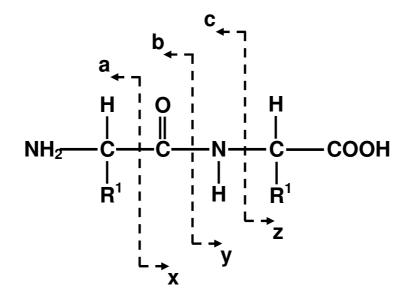


Figure 1.2 Nomenclature for peptide backbone fragmentation. Peptide backbone fragmentation typically occurs at the peptide bond to produces 'b' and 'y' ions. If the charge remains at the amino (NH_2) end 'b' ions are produced and if the charge remains at the carboxyl end (COOH) 'y' ions are produced. Other ions can also be observed during fragmentation and these include a, c, x and z ions.

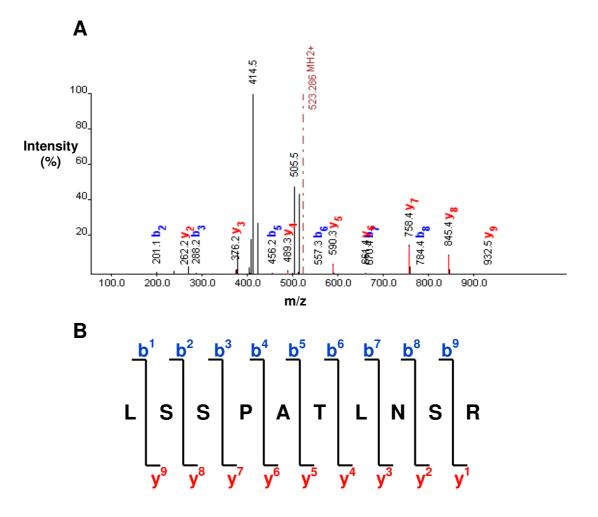


Figure 1.3. Peptide sequencing from MS/MS spectra. Most abundant precursor ions generated from a survey MS scan are taken forward for CID fragmentation. (A) Example of spectra for peptide LSSPATLNSR, produced from fragmentation of one selected precursor ion. (B) The mass difference between adjacent fragments of a series can be calculated to deduce a peptide sequence, for example b^7 - $b^6 = 670.4 - 557.3 = 113.10Da$ corresponds to the amino acid residue Leucine (L) and y^7 - $y^6 = 758.4 - 661.4 = 97Da$ corresponds to the amino acid residue Proline (P). This peptide sequence covers part of the amino acid sequence for trypsin precursor protein P00761/136429.

1.12 Specific markers using redox proteomics

The use of 2-DE coupled to Western blotting to enable the identification of specific proteins modified by oxidation was termed 'redox' proteomics by Butterfield and colleagues (Butterfield et al., 2006). This group and others have used this approach extensively (Korolainen et al., 2002; Pamplona et al., 2005; see table 1.2) to identify proteins that are specific targets of oxidation in AD brain and thus the group has increased knowledge of the possible molecular mechanisms underlying AD development and progression. For example, as the brain is a metabolically active tissue, with glucose being its primary fuel source, disturbances or problems with metabolizing glucose may lead to cognitive decline associated with AD (Costantini et al., 2008). Enolase is an enzyme responsible for the interconversion of 2-phosphoglycerate and phosphoenolpyruvate in the glycolytic pathway and consists of α , β and γ subunits. It has been shown that the α -subunit is oxidized and nitrated, and the γ subunit lipoxidized in AD brain (Castegna et al., 2002b; Castegna et al., 2003; Pamplona et al., 2005). In light of these observations impairment of glycolytic enzymes maybe linked to the decreased glucose metabolism seen in AD (Castegna et al., 2002b; Costantini et al., 2008).

In peripheral tissue such studies are limited (see table 1.2). In a recent pilot study Korolainen et al. (2007) demonstrated that the CSF protein λ chain precursor and an unidentified CSF protein exhibited increased oxidation in AD compared to control patients. In plasma Choi and colleagues (2002) identified two oxidized proteins: fibrinogen γ -chain precursor protein and α -1-antitrypsin precursor protein. The authors suggested that in their oxidized state these two proteins may contribute to increased inflammation in AD (Choi et al., 2002). Increased oxidation to the proteins transferrin and hemopexin has also been reported, with both being

Authors	Participants	Parameters measures	Changes compared to control	Comments
Perez-Gracia <i>et al.</i> (2009)	27AD brain tissue from CP at various stages of the disease	CEL adducts CML adducts	 CEL; tyrosine 3/tryptophan 5-monooxygenase activation protein, zeta polypeptide and tropomyosin 3 isoform 2 in advanced AD. CML; apolipoprotein A-II with advanced stages of AD. 	Specific proteins are oxidized during the advanced stages of AD in the CP, this may alter protein interactions and folding
Terni <i>et al.</i> (2009)	6 early stage AD and 6 Control from entorhinal cortex brain tissue	4-HNE adducts	\uparrow α -subunit of mitochondria ATP-synthase	Entorhinal cortex is area of brain first affected by NFT pathology
Korolainen <i>et al.</i> (2007)	 probable AD and 8 control lumbar CSF early stage samples 	Carbonyl adducts	↑ λ. chain precursor (p<0.05) ↓ unidentified protein (p<0.05)	Further studies are required in CSF measuring carbonylated proteins
Sultana <i>et al.</i> (2006a)	Hippocampus brain samples from 6 AD and 6 age -matched control subjects	Carbonyl adducts	† Pinl	Oxidative modification reduces Pin1 activity and maybe an initial event in tangle formation evident in AD
Sultana <i>et al.</i> (2006b)	Hippocampus brain samples from 6 AD and 6 age -matched control subjects	Carbonyl adducts	↑ phosphoglycerate mutase 1, ubiquitin carboxyl terminal hydrolase 1, DRP-2, carbonic anhydrase II, triose phosphate isomerase, α -enolase and γ-SNAP	Similar proteins are specifically oxidized in hippocampus brain tissue in comparison with IPL region.
Pamplona <i>et al.</i> (2005)	8 AD and 5 Control from brain cortex tissue	MDAL	↑ cytoskeletal proteins (i.e. Neurofilament triplet L) . ↑ proteins involved in energy metabolism (i.e. ATP synthase)	Lipoxidative damage to specific proteins involved in energy metabolism have a pathogenic role in AD
Yu <i>et al.</i> (2003)	Plasma from control (n=9) and AD (n=10)	Carbonyl adducts	1 human transferrin and hemopexin	Possible to detect specific glycoproteins which are targets for oxidation in AD plasma

Table 1.2. Proteomic studies in AD subjects

Authors	Participants	Parameters measures	Changes compared to control	Comments
Castegna et al. (2003)	5 AD and 5 Control samples from IPL brain tissue	3-nitrotyrosine	$\uparrow \alpha$ -enolase, triosephosphate isomerase and neuropolypeptide h3.	Specific proteins are targets for nitration in IPL
Castegna <i>et al.</i> (2002a)	5 AD and 5 Control samples from Inferior parietal lobule brain tissue	Carbonyl adducts	†Creatine kinase BB, Glutamine synthase, Ubiquitin carboxyl-terminal hydrolase L-1	
Castegna <i>et al.</i> (2002b)	5 AD and 5 Control samples from Inferior parietal lobule brain tissue	Carbonyl adducts	Dihydropyrimidinase related protein-2, α- enolase and heat shock cognate-71	Specific oxidation events occur to proteins in IPL from AD subjects
Choi <i>et al.</i> (2002)	9 AD and 9 Control plasma samples	Carbonyl adducts	Carbonyl adducts \uparrow fibrinogen γ -chain precursor protein and α -1- Possible to detect specific proteins which antitrypsin precursor protein are targets for oxidation in AD plasma	 Possible to detect specific proteins which are targets for oxidation in AD plasma
Abbreviations: AD, Alzheimer's disease; MDAL, m Ncarboxyethyl-lysine; CML, carboxymethyl-lysine;	Abbreviations: AD, Alzheimer's disease; MDAL, malonaldehyde lysine; ATP, adenosine triphosphate; CP, choroid plexus; IPL, inferior parietal lobule; CEL, Ncarboxyethyl-lysine; CML, carboxymethyl-lysine; 4-HNE, 4-hydroylnonenal.	TP , adenosine tripl nal.	osphate; CP , choroid plexus; IPL , inferic	or parietal lobule; CEL,

involved in iron/redox homeostasis (Yu et al., 2003). Peripheral redox proteomics remains in its infancy in AD research, but warrants further investigation in order for the role of oxidative metabolism in AD to be further understood.

1.13 Aims and Overview of thesis

The main aims of this thesis were to measure peripheral oxidative and nitrative stress of AD and more specifically identify plasma proteins which are specific targets for oxidative modification in AD. Broad measures of oxidative and nitrative stress were assessed and subjective and non-subjective experimental approaches used to determine the oxidative status of specific plasma proteins in AD.

The value and importance of this work are as follows 1) existing studies which have assessed plasma protein carbonylation levels in AD present an unclear picture. Several studies report levels to be increased in AD compared to control subjects in contrast to others which observe no change. Therefore further studies are required to clarify plasma protein oxidation levels in these groups; 2) at the time of undertaking the work for this thesis investigation of plasma protein nitration in peripheral tissue was extremely limited. One study had assessed protein nitration levels in AD by Western blotting and reported an increase compared to controls. However, the data presented was minimal and no statistical analysis was provided for this reported finding. For this reason, studies which compare plasma protein nitration in AD and control subjects were required. The work in this thesis will firstly clarify protein nitration levels between disease and control and secondly further current understanding of peripheral nitrative stress in AD; and 3) only two studies have employed redox proteomics to investigate oxidized plasma proteins in AD. Therefore further investigation is required to add

to, and build on these studies to determine whether these particular proteins and others are oxidized in a different cohort of AD samples.

Given the association of cardiovascular disease and atherosclerosis with AD, low density lipoprotein was a specifically chosen plasma protein whose oxidation status was determined. Additionally total levels of plasma protein oxidation and total antioxidant capacity were measured by ELISA and spectrophotometric assay respectively. This is described in **Chapter 3**. In light of the limited studies which have assessed nitrative stress in AD, a further outcome of this thesis was to develop and provide a quantitative measure for 3-nitrotyrosine. The attempted use of HPLC-ECD and development of an in-house 3-nitrotyrosine ELISA is described in **Chapter 4**. The validation of the Griess Assay to measure nitric oxide metabolites and the use of SDS-PAGE and Western blotting to provide a measure of total protein nitration, in addition to the identification of plasma proteins altered by nitration is the focus of **Chapter 5**. Gel based redox proteomics was undertaken in **Chapter 6** to assess specific plasma proteins modified by oxidation in AD. The use of a non-gel based proteomic method, which utilized isobaric labelling, was employed to explore plasma proteins modified by oxidation and nitration and is presented in **Chapter 7**.

Chapter 2

General Methods

2.1 Materials

2.1.1 Chemicals and reagents

Electrode wicks, Mineral oil, ReadyStripTM IPG strips, bio-lytes (100x), micro-spin[®] 6 chromatography columns, Pre-cast Criterion[™] gels, Kaleidoscope® pre-stained standards, ReadyprepTM TBP reducing agent, TGS, TG, thin blot filter paper and AurumTM Affi-Gel® Blue columns was purchased from BioRad, UK. DestreakTM rehydration solution, HybondTM- P PVDF membrane, ECL + Western blotting detection system, AmershamTM tracker tape, and High performance chemiluminescent film Amersham hyperfilmTM was purchased from GE Healthcare, Amersham, UK. HPLC grade methanol, acetonitrile, acetone, ethanol, OSA acid, EDTA, sulphuric acid, sodium hydrogen carbonate was purchased from Fisher Scientific, UK. Dialysis membrane was purchased from Medicell International Limited, UK. Sequencing grade trypsin was purchased from Promega, USA. Rat anti-mouse IgE conjugated horseradish peroxidase antibody was purchased from AdB Serotec, UK. Goat anti-mouse IgG conjugated horseradish peroxidase was purchased from Cell Signalling, UK. Pronase from Streptomyces griseus was purchased from Biochemika. C18 ZipTipTM and mouse monoclonal anti-nitrotyrosine IgG antibody was purchased from Millipore, UK and mouse monoclonal a-2 macroglobulin and Complement 4A IgG antibodies waspurchased from AbCam Limited, Cambridge, UK. Film developer and fixer were purchased from Ilford, UK. All other chemicals and reagents were purchased from Sigma Aldrich, UK.

2.1.2 Plasma samples

Samples collected for this thesis are part of an ongoing collaboration between Professor Patrizia Mecocci at the University hospital Perugia, Italy and Dr Sarah Aldred. Patients attended the dementia clinic of the department of gerontology and geriatrics, University hospital Perugia, Italy in a fasted state and blood samples were collected. Ethical approval for sample collection and processing is held in Italy.

All samples acquired conformed to the principles outlined in the Declaration of Helsinki. Patients with diagnosis of dementia made on the basis of scores obtained to a full battery of cognitive, functional and behavioural tests were divided into two groups according to NINDS-AIREN (Wetterling et al., 1996) and NINCDS-ADRDA (1985) criteria as follows: Neuropsychological and functional assessment tests were administered by a trained physician, who was blind to the operative procedure, in a quiet environment in the hospital. The battery of tests included the mini mental state examination (MMSE) as measure of global cognitive function and tests evaluating the following cognitive domains: a) memory: Babcock Story Recall test and Rey's Auditory Verbal Learning test immediate (Rey-IR) and delayed recall (Rey-DR) to assess episodic memory, and verbal fluency with semantic cues (Category Naming Test, CNT) to estimate semantic abilities; b) attention and executive functions: Trail-Making test part A (TMT-A) and B (TMT-B) to evaluate selective and divided attention, respectively, and Controlled Oral Word Association test (COWA) to estimate executive functioning; c) visuospatial and constructional abilities: Copy Drawing test (CD). Details on administration procedures and Italian normative data for score adjustment for age and education, and normality cut-off scores (95% of the lower tolerance limit of the normal population distribution) were used for each test. Patients diagnosed as having AD were compared to healthy controls. After obtaining informed consent from subjects or their relatives, patients and controls underwent blood drawing. Blood was immediately centrifuged and plasma stored frozen at -80°C until analysis.

In this thesis it was necessary to use two separate sample sets of Alzheimer's disease (AD) and age matched control plasma to investigate oxidative stress biomarkers in dementia. Plasma from an initial sample set, which consisted of 144 plasma samples (72 AD and 72 aged matched controls), was used in chapters 3, 4 and 6 (see table 2.1).

Subject Group	Age (yrs)	MMSE (mean ± SD)
Alzheimer's disease	80 ± 4	19 ± 4
Control	75 ± 6	27 ± 2

Table 2.1. Subject characteristics for first group of samples.

A separate sample set of plasma was obtained (25 AD and 25 aged matched controls) and analysed in chapters 5 and 7 (see table 2.2).

Subject Group	Age (yrs)	MMSE (mean ± SD)
Alzheimer's disease	74 ± 4	13 ± 10*
Control	74 ± 6	28 ± 2**

Table 2.2. Subject characteristics for second group of samples. *MMSE scores available for 17 out of 25 samples. **MMSE scores available for 18 out of 25 samples

2.2 Methods

2.2.1 Bicinchoninic acid assay

The bicinchoninic acid (BCA) assay based on method described by Smith et al. (1985) was used to assess plasma protein concentration. A stock solution of 1mg/ml Bovine Serum Albumin (BSA) was prepared and diluted to form a six point standard curve. Standards were kept at -80°C until required. BCA working solution was prepared by adding 250 μ l of copper sulphate solution (4% w/v) to 12.5 ml BCA solution (Sigma, UK). Standard (10 μ l) or sample (10 μ l) was added to 96 well microtitre plates and BCA working solution (200 μ l) was added to each well for 30 minutes at 37°C. Absorbance values were measured at 490 nm (Lab system Multiskan MS). Samples were assayed in triplicate and protein concentration expressed as mg/ml.

2.2.2 Measurement of Protein oxidation using ELISA

2.2.2.1 Preparing BSA standards

Dialysis membrane was boiled in sodium bicarbonate (2%) and EDTA (1 mM, pH 8), washed thoroughly in distilled water and boiled for a further 10 minutes in EDTA (1 mM, pH 8). After cooling to room temperature, tubing was stored in ethanol at 4°C. Before use, tubing was washed thoroughly in distilled water.

Reduced and oxidized BSA was prepared as described by Carty et al. (2000). BSA, (10 mg/ml) dissolved in TBS (Tris-HCl 6 g/l, 9 g/l NaCl, pH 7.4), was reduced with sodium borohydride (1 g) overnight at 4°C. Excess foam was removed by the drop wise addition of 100% acetone and the solution adjusted to a neutral pH using concentrated hydrochloric acid. BSA (10 mg/ml) was oxidized by exposure to 2, 2'-Azobis (2-methylpropionamidine)

dihydrochloride (AAPH, 500 mM) for one hour at 37°C, in a water bath. To remove residual oxidizing and reducing agents solutions were dialyzed against TBS, over a 24 hour period with six buffer changes. Reduced and oxidized BSA were adjusted to 2 mg/ml (Carty et al., 2000), mixed at different oxidized ratios (0-100%) and stored at -80°C until further use.

The method used by Carty et al. (2000) to quantify the degree of protein oxidation to known BSA standards was undertaken. Standards (500 µl) were mixed with 2, 4 – DNPH (500 µl) and left at room temperature for one hour with gentle agitation. TCA (20% w/v; 500 µl) was added to each to precipitate protein solution and thoroughly mixed. Solutions were centrifuged for 3 minutes at 13,000 xg and protein pellets were washed vigorously three times with ethanol: ethyl acetate (ratio 1:1) and redissolved in 6 M guanidine hydrochloride (1 ml) for 30 minutes at 37°C. Solutions were centrifuged at 13,000 xg for a further minute, the supernatant was removed and the absorbance of solutions was measured at 360 nm. Molarity of solutions was determined using a molar co-efficient value ($\epsilon_{360} = 22000 \text{ M}^{-1} \text{ cm}^{-1}$). Protein carbonylation levels were expressed as nmol/ per milligram of protein.

2.2.2.2 Protein carbonyl ELISA

Protein carbonyl ELISA was undertaken in accordance with Carty et al. (2000). Samples (50 µl) diluted in coating buffer (50mM Sodium carbonate, pH 9.2) to a final concentration of 0.05 mg/ml were applied to 96 well NUNC microtitre plates, for one hour at 37°C. To each well 50µl of 2, 4-dinitrophenylhydrazine (DNPH) in 2 M HCl was added and left for one hour at room temperature. Wells were blocked with TBST (Tween 20, 0.1%) for 1 hour at 37°C and monoclonal mouse anti-DNP antibody diluted at 1:1000 was added for two hours at 37°C. Wells were incubated with peroxidase conjugated rat anti-mouse IgE conjugated

HRP diluted at 1:5000 for 1 hour at 37°C. Between each step wells were washed four times with TBS-Tween 20 (0.05%). Substrate (0.5 M Citrate phosphate buffer (10 mls), hydrogen peroxide (8 μ l) and OPD tablet (2 mg); 50 μ l) was added to each well and the reaction was stopped after fifteen minutes with 2 M sulphuric acid. Absorbance values were measured at 490 nm (Multiscan MS, Labsystems, Finland).

2.2.3 Total antioxidant capacity

Total antioxidant capacity was measured using a slight modification to the FRAP assay described by Benzie and Strain (1999) and McAnulty et al. (2005). Freshly prepared FRAP reagent (300 μ l; 300 mM sodium acetate, pH 3.6, 10 mM 2, 4, 6-tris (2-pyridyl)-S-triazine in 40 mM HCl and 20mM Ferric Chloride (FeCl₃) in ddH₂O in ratio 10:1:1) was added to plasma (10 μ l) or standard samples (10 μ l) in triplicate at room temperature. The absorbance was then measured at 650nm after an eight minute reaction period and FRAP values were expressed as FRAP (μ M) as determined by linear regression using a range of ascorbic acid standards (0-1000 μ M). An ascorbic acid standard of 1000 μ M is equivalent to 2000 μ M of antioxidant power as measured by FRAP. This is because the direct reaction of ascorbic acid gives a change in absorbance double that of Fe (II) (Benzie and Strain, 1999).

2.2.4 Lipid peroxide assay

A spectrophotometric assay based on that described by el-Saadani et al. (1989) was used for the measurement of lipid peroxide levels in plasma. Samples and a blank standard (10 μ l) were assayed in duplicate or triplicate and added to a 96 well microtitre plate. Each well was incubated with 100 μ l of reagent mix (see table 2.3) for 30 minutes at 25°C and protected from light. The plate was read at 340 nm (Multiscan MS, Labsystems, Finland).

Reagent mix	Concentration
Potassium Phosphate	0.2 M, pH 6.2
Potassium Iodide	0.12 M
Sodium Azide	0.15 μΜ
Triton X	2 g/l
Alkylbenzyldimethylammonium Chloride	0.1 g/ml
Ammonium Molybdate	10 µM

Table 2.3. Reagent mix used for lipid peroxide assay

The concentration of lipid peroxides in plasma was determined using the Beer- Lambert Law (extinction co-efficient $\varepsilon_{340} = 24600 \text{ M}^{-1} \text{ cm}^{-1}$). Values were expressed as μ mol/l.

2.2.5 One dimensional gel electrophoresis (1-DE)

Plasma was added to an equal volume of Laemmli buffer (4% SDS, 20% glycerol, 10% 2mercaptoethanol, 0.004% bromophenol blue and 0.125 Tris HCl, pH 6.8) and boiled for 5 minutes at 100°C. For separation, Pre-cast CriterionTM 4-15% gradient Tris-HCl gels and running buffer (25 mM Tris, 192 mM glycine and 0.1% SDS (w/v)) were used and plasma protein were run at 150 V (unlimited amps) for 85 minutes, or until dye front reached the bottom of the gel. Samples were assayed in duplicate or triplicate. Subsequently gels were Western blotted or silver stained.

2.2.6 Two dimensional gel electrophoresis (2-DE)

2.2.6.1 Isoelectric focussing

Electrode wicks were soaked in an ample amount of ddH₂O, blotted to remove excess liquid and then placed over electrode wires in an 11 cm IEF Protean tray (BioRad). Rehydration buffer and bio-lytes (0.5%) were added to plasma samples (100-150 μ g). Samples (200 μ l) were then applied to individual wells of IEF tray and 11 cm IPG ReadyStripTM strips inserted. The strips were covered with 2-3 mls mineral oil prior to isoelectric focussing to prevent dehydration during separation. Gels were focussed using a Protean IEF cell (BioRad) and were passively rehydrated for 12 hours at 20 °C, they were subsequently run at 250 V for 15 minutes, followed by linear ramp 250-8000 V for 3500 Vh and maintained at 8000 V for 90 kVh. Gels were held at 500 V to prevent over focussing until stopped and stored at -20°C.

2.2.6.2 Gel electrophoresis

Gels were equilibrated for 20 minutes in equilibration buffer (6 M Urea, 375 mM Tris HCl pH 8.8, 2% SDS, 20% Glycerol, Tributyl Phosphine (2mM) and a spatula tip of bromophenol blue) on a rotary mixer at room temperature prior to use. Individual IPG strips were inserted into wells of Pre-cast CriterionTM 4-15 % Tris-HCl gels and overlaid with hot agarose (1 %) to prevent movement when running. Once set the system was run at 150 V (unlimited amps) for 85 minutes, or until dye front reached the bottom of the gel.

2.2.7 Western blotting

Hybond-P[™] membrane was equilibrated in 100% methanol for two minutes followed by transfer buffer (25 mM Tris, 192 mM glycine and 20% v/v methanol) for 10 minutes. Proteins were transferred from electrophoresis gels to Hybond-P[™] membrane by applying

170 mA with unlimited voltage for two hours. After transfer of proteins Western blotting was undertaken as described in table 2.4. After the final washing step, signal was visualised using an ECL+ detection system and captured on ECL plus hyper film at various exposure times. Film was developed using film developer and fixer. Blots were scanned using a GS-800 densitometer (BioRad).

Step	Solution	Time
Washing	TBST (0.05%)	Three ten minute washes
Blocking	Non fat milk (5%) in TBST (0.1%)	Overnight at 4°C
Washing	TBST (0.05%)	Three ten minute washes
Antibody incubation	Primary antibody in TBST (0.1%)	Two hours at room temperature
Washing	TBST (0.05%)	Three ten minute washes
Antibody incubation	Secondary antibody in TBST (0.1%)	One hour at room temperature
Washing	TBST (0.05%)	Two ten minute washes
Washing	TBS with no Tween 20	Two ten minute washes

Table 2.4. Outline of Western blotting protocol.

2.2.8 Silver staining

Silver staining was undertaken based on a method described by Yan et al. (2000). Gels were washed in acetic acid (10% v/w), methanol (40% v/w) for 15 minutes twice to fix proteins, and sensitized with methanol (30% v/w), sodium thiosulphate (0.2% v/w) and 0.83 M sodium acetate for 30 minutes. After three, five minute washes with HPLC grade water, gels were incubated for 20 minutes with silver nitrate (0.25% v/w). Gels were washed a further two times for five minutes and developed in freshly made sodium carbonate (0.24 M) and formaldehyde (0.04% v/v). To arrest reactions, gels were incubated with EDTA (0.05 M) for

ten minutes and then washed in HPLC grade water. Gels were scanned using a GS-800 densitometer (BioRad).

2.2.9. Identification of plasma protein bands and spots

2.2.9.1 In-gel digestion

Destaining of samples was undertaken according to the method described by Gharahdaghi et al. (1999). Silver stained gel pieces of interest proteins were thawed and destained using potassium ferricyanide (30 mM) and sodium thiosulphate (100 mM) at a 1:1 ratio and rinsed three times with double distilled water (ddH₂O). Destained gel pieces were then washed in ammonium bicarbonate (200 mM) for 20 minutes, rinsed with 3 changes of ddH₂O and dehydrated repeatedly with acetonitrile. In gel digestion of samples was performed based on methods described by Rosenfield et al. (1992) and Hellman et al. (1995). Acetonitrile dehydrated gel pieces were rehydrated in a vacuum centrifuge for 5 minutes. The gel pieces were rehydrated with 10 mM DTT in 25 mM ammonium bicarbonate and incubated at 56°C, for 45 minutes. DDT was removed and replaced with 55 mM iodoacetamide in 25 mM ammonium bicarbonate for 45 minutes at room temperature, samples were protected from light. The liquid was removed and gel pieces were incubated with shaking for 10 minutes in ammonium bicarbonate (25 mM) and twice with 50% acetonitrile in ammonium bicarbonate (25 mM). Destained gel pieces were then dehydrated in a vacuum centrifuge for 5 minutes. Gel pieces were covered with 12.5 ng/µl of trypsin in 25 mM ammonium bicarbonate, and rehydrated on ice for 10 minutes. Excess trypsin was removed, and gel pieces were covered in 25 mM ammonium bicarbonate and incubated at 37°C overnight (~ 18 hours). Digest solutions were transferred to a fresh eppendorf tube (1.5 ml) and gel pieces covered with 50% acetonitrile and 5% formic acid and vortexed for 30 minutes, this was repeated twice.

All digest solutions were pooled together and stored at -80°C. Samples were desalted using a Michrom MacroTrap C₈ cartridge and dried to 10 μ l by vacuum centrifugation.

2.2.9.2 LC-MS

On-line liquid chromatography was performed by use of a Micro AS autosampler and Surveyor MS pump (Thermo Fisher Scientific, Bremen, Germany). Peptides were loaded onto a 75 μ m (internal diameter) Integrafrit (New Objective) C₈ resolving column (length, 10 cm) and separated over a 40 min gradient from 0 to 40% acetonitrile (J. T. Baker Inc.). Peptides eluted directly (~350 nl/min) via a Triversa nanospray source (Advion Biosciences) into a 7 Tesla LTQ FT mass spectrometer (Thermo Fisher Scientific) where they were subjected to data-dependent CID.

2.2.9.3 Data-dependent CID

The mass spectrometer alternated between a full FT-MS scan (m/z 400-1600) and subsequent CID MS/MS scans of the five most abundant ions above a threshold of 40,000. Survey scans were acquired in the ICR cell with a resolution of 100,000 at m/z 400. Precursor ions were isolated and subjected to CID in the linear ion trap in parallel with the completion of the full FT-MS scan. The width of the precursor isolation window was m/z 3. Only multiple charged precursor ions were selected for MS/MS. CID was performed with helium gas at a normalized collision energy of 35%. Automated gain control was used to accumulate sufficient precursor ions (target value, 5×10^4 ; maximum fill time, 0.2 s). Precursor ions were activated for 30 ms. Data acquisition was controlled by Xcalibur 2.0 and Tune 2.2 software (Thermo Fisher Scientific).

2.2.9.4 Data Analysis

DTA (data) files were created from the raw data using Bioworks 3.3.1 (Thermo Fisher Scientific). The DTA files were searched directly using OMSSA Browser 2.1.1 against the human subset of the IPI database. N-terminus acetylation, Cysteine, Phenylalanine, Histidine, Methionine, Proline, Tryptophan and Tyrosine oxidation were specified as variable modifications, with carboxymethylation of cysteine as a static modification. The data were searched with a peptide m/z tolerance of \pm 0.02 and a MS/MS m/z tolerance of \pm 0.8. The search results were scored and filtered with an E-value cut-off, so that the searches could be repeated exactly in the future (E-value cut-off is statistical confidence generated from the OSSMA algorithm when completing the search, and the value used is the suggested threshold). A probability score (*p*-Score) was generated (any *p*-Score > 0 was rejected) and OMSSA results were filtered to allow only the top scoring identification per DTA.

2.2.10 General statistics

For comparison of values between AD and control subjects, data from each group was checked for normality using the Shapiro-Wilk statistical test, and if this assumption was violated, log transformation was applied. A parametric independent samples t-test, or a non parametric Mann Whitney U statistical test, was subsequently used on normally and non-normally distributed data respectively. Significance was accepted if p < 0.05.

Chapter 3

Increased LDL oxidation, but not total plasma oxidation in AD

3.1 Abstract

It is becoming increasingly clear that oxidative stress and vascular risk factors (e.g., atherosclerosis) play an important part in Alzheimer's disease (AD) pathology. The established link between increased LDL oxidation and atherosclerosis, coupled to the demonstration, in AD peripheral tissue, that the rate of LDL oxidation is increased, may suggest a role for oxidized LDL in this neurodegenerative disease. This study assessed oxidative damage in total plasma proteins, and isolated LDL in AD patients and age matched controls. In addition total antioxidant capacity (TAC) and lipid peroxide levels were measured. Significantly higher LDL protein carbonylation was observed in AD compared to age matched controls (Control: 3.85 ± 0.86 Vs. AD: 4.17 ± 0.73 nmol/mg LDL; p = 0.05, 2 tailed Mann-Whitney), in addition reduced TAC was found (Control: 1078.536 ± 252.633 Vs. AD: 924.708 \pm 174.429µM FRAP; p = 0.001, 2 tailed Mann-Whitney). No differences were seen in total plasma protein carbonyl content (Control: 3.98 ± 0.48 Vs. AD: $3.88 \pm$ 0.31nmol/mg protein, 2 tailed Mann-Whitney) or lipid peroxide levels (Control: 15.51 ± 19.41 Vs. AD: 14.21 ± 15.06 nmol/mg protein, independent samples t-test). These data further support the view that oxidation events in AD may be specific in nature, and represent functional changes to proteins, rather than random global events.

3.2 Introduction

In recent years it has become clear that there are considerable overlaps between AD and vascular pathologies. Vascular dementia (VaD) is caused by damage to the vascular system leading to reduced supply of blood to the brain and loss of cognitive function (Roman, 2003). The role that vascular diseases, and indeed that may play in AD has received an increasing amount of attention. VaD and AD have been considered two separate diseases, but it is now becoming increasingly clear that vascular factors are an important part of AD (Launer, 2002). A possible mechanism believed to contribute to both vascular pathologies and AD involves oxidative stress (for review see Bennett et al., 2009). Oxidative stress has been implicated in a number of diseases including Alzheimer's disease, vascular dementia, cardiovascular disease, rheumatoid arthritis and diabetes (Telci et al., 2000; Markesbery, 1997; Harrison et al., 2003; Casado et al., 2008; Taysi et al., 2002).

ROS can increase to high levels in some disease processes or where there is antioxidant deficiency, and may react with cellular constituents to cause damage, disruption of function, or degradation. An increase in oxidation products has been identified in Alzheimer's pathology including DNA damage seen as an increase in 8-oxo-dG in cortical tissue and lymphocytes (Mecocci et al., 2002). Markers of protein oxidation including protein carbonyl formation have been identified in AD brain tissue (Korolainen et al., 2002) and plasma proteins of Alzheimer's sufferers have been identified as altered (Korolainen et al., 2007).

Unfavourable lipoprotein profiles are associated with chronic vascular disease including heart disease and atherosclerosis, and are often associated with ageing. Decreased levels of high density lipoprotein (HDL) cholesterol and increased levels of low density lipoprotein (LDL) cholesterol are strong markers for risk of disease (Fuster et al., 1992; Poulter, 2003). LDL transports cholesterol from the liver to the circulation, and is susceptible to oxidation by ROS. In addition, oxidative damage to LDL by ROS is a contributing factor in atherosclerosis (Raitakari et al., 1997). In LDL oxidation, damage is seen both to the lipid and to the protein moiety. A number of studies have suggested that protein oxidation of the lipoprotein molecule can occur as a direct result of free radical action and as a secondary result of the free radical cascade brought about by initial lipid peroxidation (Berlett and Stadtman, 1997). Although the majority of lipoprotein oxidation research has been done on the lipid moiety, protein oxidation has a number of functional consequences as Apolipoprotein B oxidation (the protein moiety associated with LDL) is pivotal to the modulation of LDL uptake and accumulation. Elevated levels of circulating oxidized LDL are reported in individuals suffering from cardiovascular disease (Holvoet et al., 2001; Kita et al., 2001), and, as previously mentioned, oxidative damage to LDL is a contributing factor in atherosclerosis (Raitakari et al., 1997). Atherosclerosis has also been linked to an increased incidence of AD and VaD (Hofman et al., 1997; van et al., 2007) and therefore risk factors for atherosclerosis may also represent risk factors for AD and VaD. Indeed, increased levels of LDL in AD serum (Kuo et al., 1998), in addition to an increased rate of lipoprotein oxidation in AD cerebrospinal fluid and plasma has been reported (Bassett et al., 1999; Schippling et al., 2000), which may suggest increased LDL oxidation is present in circulation of AD sufferers. However none of these studies actually assess levels of oxidized LDL in vivo. The primary aim of this study, therefore, was to identify increased oxidative damage to key plasma proteins in AD when compared to age matched controls; specifically LDL protein.

3.3 Methods

3.3.1 Sample population

AD samples and age matched control samples were obtained as described in general methods **section 2.1.4.** In total, 144 patients and control volunteers were recruited into the study (72 in each group), dependent on availability of blood samples, and the success of LDL preparation subsets were used for endpoint analysis.

3.3.2 BCA assay

Total protein concentration was determined by the BCA assay as described in general methods section 2.2.1.

3.3.3 Isolation of LDL

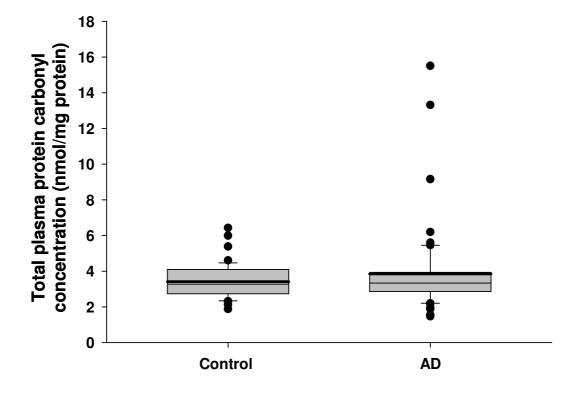
LDL from all plasma samples was isolated by density gradient centrifugation in a Beckman TL-100 based on the method of Chung et al. (1980). Each plasma sample (1 ml) was adjusted to a three-step gradient using Sodium Chloride (0.04, 0.08 and 0.32 g/ml) and overlaid with isotonic saline (0.9% NaCl, B Braun, Sheffield, UK). Adjusted plasma was centrifuged for 4 hours, at 100,000 xg using a Beckman TL-100 ultracentrifuge and LDL was obtained and kept at -80°C until required.

3.3.4 Protein carbonyl ELISA, FRAP and lipid peroxide assay

Protein carbonyl ELISA, FRAP and lipid peroxide assays were undertaken as described in general methods **section 2.2.2.2, 2.2.3 and 2.2.4.** A subset of 50 AD and 59 control samples were used for lipid peroxide analysis and a subset of 47 AD and 56 control samples were used for FRAP analysis, this was based on sample availability.

3.3.5 Statistics

Statistical analysis was undertaken as described in general methods section 2.2.10. Significance was accepted if $p \le 0.05$.


3.4 Results

3.4.1 Subject Information

The age ranges for both AD and control groups can be seen in table 2.1 (general methods), along with the average MMSE score for each group. At the time of this analysis, the mean time since diagnosis was 1.3 yrs +/- 0.8 in the AD group. Table 2.1 summarizes patient characteristics for the samples. They are not significantly different from each other in terms of age.

3.4.2 Protein oxidation

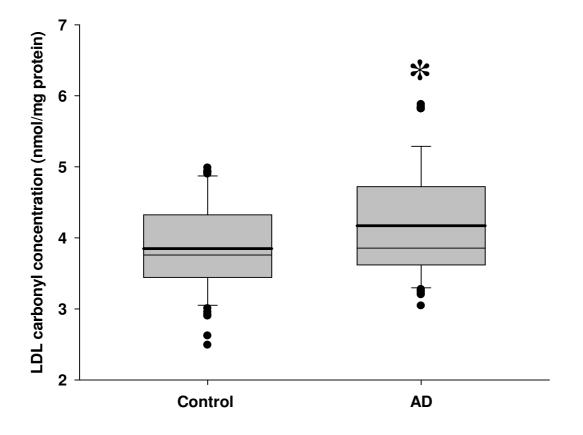

As shown in figure 3.1, there was no observed difference in total plasma protein oxidation between the control and AD groups (Control 3.98 \pm 0.48 nmol/mg Vs. AD: 3.88 \pm 0.31 nmol/mg; p = 0.197, 2 tailed Mann-Whitney). It is interesting to note that the spread of AD values compared to that of the controls is much greater.

Figure 3.1. Total plasma protein carbonyl levels. Protein oxidation was measured by carbonyl ELISA. Data (Control n = 72 and AD n = 72) are presented as a box plot. Percentiles are represented by the box (25^{th} and 75^{th}) and whisker (10^{th} and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. Filled circles represent outliers.

3.4.3 LDL oxidation

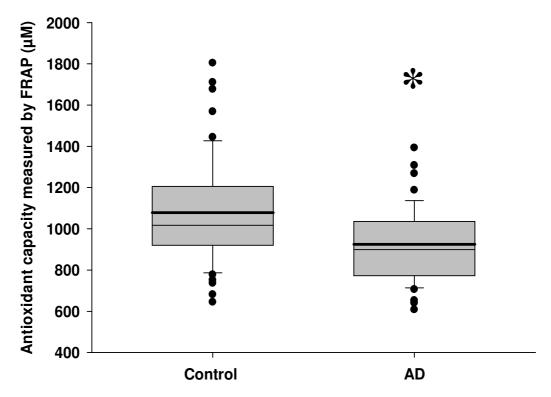

A significantly greater level of LDL oxidation was evident in AD compared to control subjects (Control 3.85 ± 0.86 nmol/mg Vs. AD: 4.17 ± 0.73 nmol/mg LDL; p = 0.05, 2 tailed Mann-Whitney), as shown in figure 3.2.

Figure 3.2. LDL carbonylation levels. LDL oxidation was measured by carbonyl ELISA. Data (Control n = 70 and AD n = 69) are presented as a box plot. Percentiles are represented by the box (25^{th} and 75^{th}) and whisker (10^{th} and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. *Significant difference between the control and AD group (*p = 0.05). Filled circles represent outliers.

3.4.4 Total antioxidant capacity

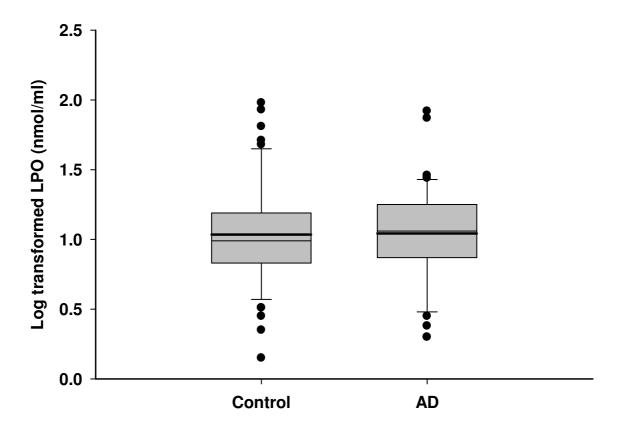

As evident in figure 3.3, there was a significant decrease in total antioxidant capacity, as measured by FRAP (section 3.3.4), in the AD group compared to the control group (Control: 1078.536 \pm 252. 633 Vs. AD: 924.708 \pm 174.429 μ M FRAP; p = 0.001, 2 tailed Mann-Whitney).

Figure 3.3. Total antioxidant capacity. TAC was measured by FRAP. Data (Control n = 59 and AD = 50) are presented as a box plot. Percentiles are represented by the box (25^{th}) and (75^{th}) and whisker (10^{th}) and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. *Significant difference between the control and AD group (*p = 0.001). Filled circles represent outliers.

3.4.5 Plasma lipid peroxide levels

One AD sample and 4 control samples were omitted from analysis as their lipid peroxide levels were below the limit of detection of this assay (1nmol/ml). As shown in figure 3.4, there was no change in levels of lipid peroxides between the control and AD group subjects (Control 15.51 \pm 19.41 Vs. AD: 14.21 \pm 15.06 nmol/ml lipid peroxides, p > 0.05; independent samples t-test).

Figure 3.4. Lipid peroxide levels. Lipid peroxide levels were measured by lipid peroxide assay. Data (control n = 56 and AD n = 47) are presented as a box plot. Percentiles are represented by the box (25th and 75th) and whisker (10th and 90th) with thick and thin lines corresponding to mean and median values respectively. Filled circles represent outliers.

3.5 Discussion

The study demonstrated increased LDL protein carbonylation in patients with AD. Studies suggest that levels of oxidative stress are elevated during the earliest stages of AD (Nunomura et al., 2001). The demonstration in this work that LDL undergoes oxidation in AD, coupled to existing studies which have demonstrated that the rate of LDL oxidation increases with age and that this susceptibility to oxidation is elevated further in AD (Khalil et al., 1996; Schippling et al., 2000), may indicate that vascular change should considered as a relatively early event in AD pathology. Indeed LDL oxidation is a pathological hallmark of atherosclerosis and atherosclerosis is an associated risk factor for AD.

In contrast to LDL carbonylation, there was no difference in total plasma protein carbonylation between the AD and control groups. Existing studies assessing plasma protein oxidation in Alzheimer's disease are equivocal, with several studies reporting no change but with others reporting increased levels in AD. For example, Greilberger et al. (2008) and Bermejo and colleagues (2008), in separate studies reported increased plasma protein oxidation in a group consisting of mild cognitive impairment (MCI) and AD patients. These studies are in contrast to no differences reported in mild to moderate and advanced AD (Zafrilla et al., 2006), or in mild AD patients (Baldeiras et al., 2008). All of the studies use similar spectrophotometric methodology to assess plasma protein oxidation so differences in methodology are unlikely to account for the disparity between studies. It is possible that the severity of the disease would influence protein oxidation levels, as it has been suggested oxidative stress is prevalent in the earliest stages of the disease (Nunomura et al., 2001); however, the studies mentioned above measure plasma protein oxidation in both MCI and early AD sufferers and in advanced AD. There was also an appreciable variation in the degree of protein oxidation within the AD group of the present study. An explanation for the discrepancy in reported protein carbonylation and the observed range of values is the multi factorial nature of AD. For example, the rate of cognitive decline between individuals suffering from AD varies considerably. In some patients cognition deteriorates rapidly, where as in others very little change or no decline is experienced (Holmes and Lovestone, 2003). Differences in the rate of cognitive decline has been shown to influence peripheral proteins levels in AD subjects (Guntert et al., 2010). These subject characteristics may therefore contribute to the individual variation in protein oxidation levels seen in this study. Other subject characteristics (e.g., physical activity pattern, diet and vitamin use) may have also influenced some of the indices measured in this study. However these were not known, and as such are an acknowledged limitation of the presented work.

Additionally, the absence of an increased plasma protein oxidation in AD in the current study may add to the evidence that suggests that oxidation events within AD are specific and critical events which take place to alter the function of certain proteins, and this may contribute to the pathology of AD, rather than oxidative damage occurring in a non specific and random manner. Previous studies assessing oxidative changes in AD brain have found similar specific protein oxidation events (Castegna et al., 2002a; Castegna et al., 2002b).

In this study we observed a significant reduction in total antioxidant TAC in an AD group compared to a control group, as measured by FRAP. Various methodologies (e.g., and total antioxidant status (TAS)) have been employed to measure total antioxidant capacity (TAC) in AD compared to control plasma. Although these methods are not identical to each other, they all provide a quantitative indication of the levels of total antioxidant components over time, or at a given time point in plasma. The results presented here are in agreement to a recent study by Sekler et al. (2008) who used the same methodology to measure TAC and reported a significant reduction of FRAP in an AD group compared to a control group, albeit only in the most severe cases (the authors also suggested that the stage of the disease may influence TAC). Indeed, further studies have demonstrated a significant decrease of total antioxidant status (TAS) in advanced AD, but not in moderate AD (Zafrilla et al., 2006) as well as a trend for decreased TAS in MCI and AD (Baldeiras et al., 2008). In addition, a 24% decrease in TAC in plasma from probable AD compared to controls (Repetto et al., 1999) has been reported. Studies which assess levels of individual antioxidants in plasma from AD subjects report a depletion of several vitamins compared to control subjects (Bourdel-Marchasson et al., 2001; Rinaldi et al., 2003) and a reduction in an extensive range of vitamins and carotenoids has more recently been reported in AD and VaD patients (Polidori et al., 2004). It maybe that the vascular or degenerative severity of the disease accounts for the depletion of particular antioxidants, and thus contributes to the varied data reported by different groups regarding total antioxidant capacity in AD.

The physiological levels of lipid peroxides reported in this work are in agreement with other studies. For example in normal healthy individuals, levels are of low micromolar concentrations (Ferretti et al., 2008) and in patients with non-insulin dependent diabetes mellitus and metabolic disorders levels are increased to approximately 8 nmol/ml (Sodergren et al., 1998). However, no change in lipid peroxide levels was observed between control and AD subjects; this finding is in accordance with other groups who have reported no differences in MDA levels between these two groups (Polidori et al., 2004; Baldeiras et al.,

2008). On the other hand, MDA and TBARS have been reported to be increased in AD serum and plasma (Zafrilla et al., 2006; Martin-Aragon et al., 2009; Padurariu et al., 2009).

It is becoming increasingly accepted that patients with AD, more often than not, will have a vascular element to their disease pathology (Launer, 2002). The observed higher LDL oxidation level in this study concurs with this perception. Almost all healthy elderly individuals will have atherosclerotic plaque formation, and associated increased circulating oxidized LDL, if compared to younger controls (Khalil et al., 1996). However, this study presented healthy aged individuals as controls, and thus the finding that LDL oxidation was significantly higher in AD, when compared to age matched controls, goes some way to demonstrating increased LDL oxidation is part of AD pathology.

Chapter 4

Development of a 3-nitrotyrosine ELISA

4.1 Abstract

The increased production of reactive oxygen and nitrogen species contributes to oxidative stress. The reaction between nitric oxide (NO^{\bullet}) and superoxide (O₂^{\bullet}) leads to the production of peroxynitrite (ONOO⁻), a highly reactive molecule which has the ability to oxidize and nitrate proteins. Protein nitration is important as it can impact protein function, and is therefore of particular interest in diseases associated with increased levels oxidative stress, such as Alzheimer's disease (AD). NO' is clearly involved in vascular function and it is sensible to suggest that there may potential link between NO[•] and 3-nitrotyrosine levels in AD, given the reaction NO' and O_2^{\bullet} to form ONOO⁻. Plasma NO' levels have been successfully measured in AD. In contrast, although a wide range of studies have assessed protein nitration in AD brain tissue, limited studies exist which assess levels in plasma. There is a need to develop a high throughput method to measure 3-nitrotyrosine in AD plasma, to enable the potential link between NO[•] and 3-nitrotyrosine levels to be investigated in this disease. ELISA is one method which has been successfully employed to measure plasma 3-nitrotyrosine levels in individuals suffering from Diabetes Mellitus and Behçet disease, conditions both associated with increased oxidative stress. In contrast, at the time of undertaking this work, no study had previously reported the use of ELISA to measure plasma 3-nitrotyrosine levels in AD. In the study presented here, attempts were made to develop an ELISA for the high throughput measurement of 3-nitrotyrosine in AD plasma, in order to investigate the potential link between NO' and 3-nitrotyrosine levels. Levels of 3nitrotyrosine levels could only be detected in a minority of plasma samples when employing ELISA, suggesting that currently ELISA is not sensitive enough to detect 3-nitrotyrosine in all AD and control plasma samples.

4.2 Introduction

The increased production of reactive oxygen and nitrogen species (ROS/RNS) is a contributory factor of oxidative stress. Peroxynitrite (ONOO⁻), a RNS produced during the reaction between NO⁺ and O_2^{+} nitrates proteins in *vivo*. Protein nitration occurs when a nitro group (-NO₂) is substituted for a hydrogen atom on the aromatic ring of a tyrosine residue at the 3 prime position; the adduct formed is named 3-nitrotyrosine (Souza et al., 2008). At physiological pH ONOO⁻ is rapidly protonated to form peroxynitrous acid (ONOOH), which can be homolytically cleaved to form nitrogen dioxide (NO₂⁺) and OH⁺. ONOOH may also react with CO₂ to form NO₂⁺ and the carbonate radical (CO₃⁺) (Halliwell, 2006; Souza et al., 2008), with NO₂⁺ possessing the ability to react with and nitrate tyrosine residues. Additional nitrating agents which account for *in vivo* nitration include haemoperoxidases such as myeloperoxidase and eosinophil peroxidase (Souza et al., 2008). The predominant source of protein nitration *in vivo* is from ONOO⁺, and as such 3-nitrotyrosine is considered by many as an indirect marker for ONOO⁻ (Beckman and Koppenol, 1996; Oldreive and Rice-Evans, 2001).

Increased protein nitration is associated with AD brain pathology (Smith et al., 1997b; Hensley et al., 1998) and in addition, specific brain proteins have been shown to be nitrated in early AD and AD (Castegna et al., 2003; Reed et al., 2008). In contrast, limited studies have measured nitration in AD plasma. Calabrese and colleagues (2006) demonstrated that plasma proteins exhibited increased nitration in AD, however they only provided evidence for a minority of subjects using Western blotting and no statistical information was reported, hence further investigation is required. Limited information on nitration status is somewhat surprising as a global measure of 3-nitrotyrosine in AD would be desirable for a number of reasons: firstly the current understanding of the role oxidative stress in the disease pathology would be furthered. For example there may be an additional link to vascular pathology (e.g., NO[•] is clearly involved in vascular function and hence it is sensible to suggest that NO[•] and $O_2^{••}$ may react); and secondly such studies would contribute to biomarker discovery.

To date several methods have been used to quantify 3-nitrotyrosine levels in healthy human plasma. A number of methodologies have been mass spectrometry based, including GC-tandem MS, GC-MS and LC-tandem MS. Non-mass spectrometry based techniques include various high performance liquid chromatography (HPLC) methods and ELISA (Tsikas and Caidahl, 2005). Reported levels of 3-nitrotyrosine from mass spectrometry based, and HPLC methods, range from approximately 1-60 nM (Tsikas and Caidahl, 2005). In addition, groups have attempted to develop a robust, reproducible and reliable 3-nitrotyrosine ELISA (see table 4.1), with the premise that it has a higher throughput, does not require specialist equipment and is less time consuming than other established techniques (i.e. GC-tandem MS, GC-MS and LC tandem MS and HPLC-ECD). There are a wide range of reported values from such assays, levels range between undetectable to 0.1 μ M for healthy subjects, and are increased further in diseased subjects. These data also suggest that when assessing 3-nitrotyrosine levels in plasma by ELISA, from diseased subjects, levels are elevated and typically of high nM or low μ M concentrations.

At the time of commencing this work, no studies had measured 3-nitrotyrosine in AD plasma, therefore the primary aim of this work was to attempt to develop an ELISA in order to measure total levels of 3-nitrotyrosine in AD.

Authors	Participants	ELISA	Plasma levels
Khan <i>et al.</i> (1998)	4 healthy non-smoking subjects	Competitive ELISA	0.12 ± 0.02μM
Ter Steege <i>et al.</i> (1998)	12 Control and 19 Celiac disease subjects	In house sandwich ELISA	Control s: undetectable Celiac disease:1.27 ± 1.03μM
Ceriello <i>et al.</i> (2001)	40 type II diabetics and 35 control subjects	Indirect ELISA	Controls: undetectable Diabetic Type II: 0.251 \pm 0.141µM
Sun <i>et al.</i> (2007)	70 healthy individuals and subjects with various inflammatory conditions	In house sandwich ELISA	Males: 8.3 ± 8.6nM Females: 7.5 ± 5.3nM
Sakano <i>et al.</i> (2009)	68 healthy subjects	Commercially available ELISA	Controls: 93.3 ± 3.2nM In individuals who exercised ≥ 6 times a week levels elevated to 460 ± 207.4nM
able 4.1. Measurement of	Table 4.1. Measurement of plasma 3-nitrotyrosine by ELISA		

4.3 Methods

4.3.1 Sample Population

Pooled AD and age matched control plasma from a subset of samples were obtained as described in general methods **section 2.1.4**, **table 2.1**. Individual AD and age matched control samples from a second subset of samples were obtained as described in general methods **section 2.1.4**, **table 2.2**.

4.3.2 BCA assay

Total protein concentration was determined by the BCA assay as described in general methods section 2.2.1.

4.3.3 HPLC-ECD

4.3.3.1 Sample Preparation

For measurement of total 3-nitrotyrosine samples were diluted to 1 mg/ml in Calcium Chloride (10 mM) and hydrolysed with Pronase (20 μ g/ml) at 37°C overnight and analysed by HPLC-ECD. For measurement of bound 3-nitrotyrosine samples (1 mg/ml) containing Pronase (20 μ g/ml) and Calcium Chloride (10 mM) were incubated at 37°C overnight. Samples were washed with ice cold methanol (300 μ l), mixed thoroughly and centrifuged at 3,500 xg for 10 minutes. The supernatant was discarded and this procedure was repeated. The resultant protein pellet was re-suspended in mobile phase (100 μ l) and analysed by HPLC-ECD. Samples were assayed in duplicate or triplicate.

4.3.3.1 Detection and quantification of 3-nitrotyrosine

A modified high performance liquid chromatography with electrochemical detection (HPLC-ECD) method, from that described by Maruyama et al. (1996) was undertaken for the detection of plasma 3-nitrotyrosine and nitrated BSA. Synthetic 3-nitrotyrosine was used to calibrate the HPLC and produce a series of known standards for subsequent sample analysis (see figure 4.1). Samples were spiked with a known concentration of synthetic 3nitrotyrosine (10 μ M) and loaded (10 μ l) onto the column (Phenomenex, Luna 3 μ M, C18 (2) 100_A, 150 x 4.60 mm). Mobile phase (Phosphoric Acid (50 mM), Citric Acid (50 mM, pH 5.0), EDTA (40 mg/l), Octane Sulphonic Acid (100 mg/l) and methanol (5%)) was set at a flow rate of 1.5 ml/min. An applied voltage was set at 990 mV as optimized from preliminary experiments (See Appendix I). Standard curves were constructed on a regular basis, and the limit of detection for this technique was consistently 1 μ M. Levels of 3nitrotyrosine were calculated from a standard curve of peak areas (mV*min) from known concentrations of 3-nitrotyrosine using linear regression. The peak area of 3-nitrotyrosine (10 μ M) was taken away from peak areas measured for spiked samples prior to this calculation.

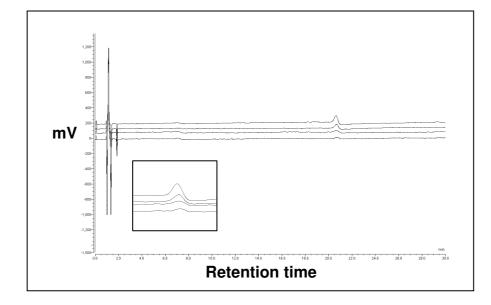


Figure 4.1. Chromatogram of 3-nitrotyrosine synthetic standards. Peaks from top to bottom correspond to $20 \,\mu$ M, $10 \,\mu$ M, $5 \,\mu$ M, $2.5 \,\mu$ M and $1.25 \,\mu$ M. Area of chromatogram where 3-nitrotyrosine peaks reside is enlarged in boxed area.

4.3.4 Preparation of nitrated BSA using various reagents

4.3.4.1 Sodium nitrite

BSA (5 mg/ml) was dissolved in ddH_2O and adjusted to pH 3.5 with glacial acetic acid. Sodium nitrite (200 mM) was then added to a final concentration of 1 mM (ter Steege et al., 1998).

4.3.4.2 Peroxynitrite

Synthesis of peroxynitrite was based on a method described by Packer and Murphy (1994). Acidified hydrogen peroxide (0.6 M HCl + 0.7 M hydrogen peroxide) and sodium nitrite (0.6M) were mixed thoroughly and dropped into rapidly stirred sodium hydroxide (2 M) to arrest the reaction. Solutions of synthesised peroxynitrite were quantified using a molar absorbance co-efficient value ($\varepsilon_{302 nm} = 1670 \text{ M}^{-1} \text{ cm}^{-1}$ (Packer and Murphy, 1994)) and were used immediately to nitrate BSA. BSA (1mg/ml) was dissolved in phosphate buffer (250 mM K₂HPO₄-KH₂PO₄, pH 7.4) and exposed to peroxynitrite (1 mM). The solution was incubated for one hour in a water bath set at 37°C and dialyzed against double distilled water for 24 hours, with six changes, to remove any nitrate or nitrate produced from peroxynitrite decomposition (Whiteman and Halliwell, 1999).

4.3.5 1-DE, silver staining and Western blotting

Nitrated BSA (5µg) was separated on a 1D gel, silver stained and blotted for 3-nitrotyrosine as described in general methods **section 2.2.5, 2.2.7** and **2.2.8**. For Western blotting, mouse monoclonal anti-nitrotyrosine antibody was used at 1:500 with an appropriate horseradish peroxidase conjugated secondary antibody (1: 2,000).

4.3.6 3-nitrotyrosine ELISA

4.3.6.1 Preparation of 3-nitrotyrosine standards

To prepare 3-nitrotyrosine standards for use in ELISA, serial dilutions of a known concentration of nitrated BSA stock (12.2 M) in coating buffer (50 mM Sodium carbonate, pH 9.2) was undertaken.

4.3.6.2 ELISA

A modified indirect ELISA protocol, based on that described by Ceriello et al. (2001) was undertaken. Samples (50 µl) diluted in coating buffer (50 mM Sodium carbonate, pH 9.2) were applied to a microtitre plate, for one hour at 37°C. Wells were blocked overnight at 4°C with 1% BSA in PBST (0.1%), incubated for 2 hours at 37°C with mouse monoclonal antinitrotyrosine antibody (1:500) and incubated with a horseradish peroxidase conjugated goat anti-mouse IgG secondary antibody (1:4000). The horseradish peroxidase reaction product was produced using citrate phosphate buffer 0.15 M (pH 5), O-phenylenediamine (2 mg) and hydrogen peroxide (1:125). The reaction was arrested with 2M H₂SO₄ and absorbance measured at 490nm using a microtitre plate reader. Background was accounted for by taking away blank absorbance values from all wells. The concentrations of nitrated proteins present in samples were compared to the standard curve nitrated BSA standards of known concentrations. They were expressed as μ M BSA equivalents (i.e. an equivalent concentration of nitrotyrosine in BSA).

4.3.7 In-solution digestion

An in-solution digestion protocol based on that described by Kinter and Sherman (2000) was used to digest samples. Bovine serum albumin (BSA) was evaporated and re-suspended in 6M urea, 100mM Tris buffer to a concentration of 10mg/ml. Standards (100µl containing 1mg of protein) were diluted with 775µl ddH₂O (to reduce concentration of urea and retain trypsin activity). Trypsin (20 ng/µl) was added to digested standards (1:100 substrate to protease ratio), and ddH₂O was used as a substitute for controls, all standards were incubated overnight at 37°C. Reactions were stopped by adjusting pH to < 6 with concentrated acetic acid. Standards were concentrated to approximately 100µl and total protein levels were determined using the BCA assay. Zip tips were used to remove urea from standards. They were prepared by wetting with 50% HPLC grade acetonitrile twice and then equilibrated with 0.1% trifluoroacetic acid twice. Digests were prepared by adding 1µl of 1% trifluoroacetic acid to 10µl of the digest. Once peptides were bound to the zip tip, they were washed with 0.1% trifluoroacetic acid twice and then eluted into 5µl of 50% acetonitrile solution. Acetonitrile was subsequently removed by vacuum centrifugation. Peptides were then resuspended in appropriate buffer for downstream applications.

4.4 Results

4.4.1 Measurement of 3-nitrotyrosine using HPLC-ECD

Quantification of plasma levels of 3-nitrotyrosine was undertaken in a small group of AD (n=4) and age-matched control plasma (n=3) in order to establish whether, 3-nitrotyrosine levels were detectable, and whether these levels were distinguishable between AD and control subjects. As shown in figure 4.2, levels of 3-nitrotyrosine in half of the samples analyzed are negligible and fall on or below the limit of detection. However, in three subjects 3-nitrotyrosine was detected in the micromolar range (3 to 8 μ M). Based on these results, in order to detect significant differences in 3-nitrotyrosine between AD and control samples, assessment of a large cohort would be necessary (sample size calculation estimated > 300). HPLC is an extremely time consuming and expensive technique and in order to assess 3-nitrotyrosine in a large cohort of AD and age-matched control samples, ELISA was attempted.

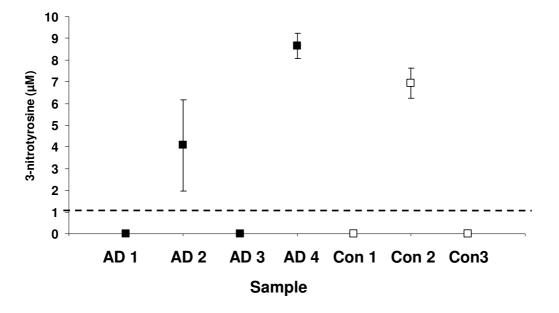
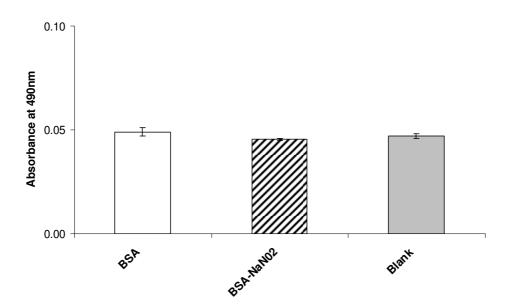



Figure 4.2. Plasma levels of 3-nitrotyrosine from AD and controls using HPLC-ECD. Plasma from AD (n=4) and age-matched control subjects (n=3) was analysed for 3-nitrotyrosine using HPLC-ECD. Error bars represented as standard error of the mean and samples were assayed in duplicate. Limit of detection (1 μ M) shown by dotted line.

4.4.2 Measurement of 3-nitrotyrosine using ELISA

4.4.2.1 Preparation of nitrated standards using sodium nitrite

For preparation of nitrated standards, BSA was nitrated with sodium nitrite (BSA-NaNO₂). A noticeable colour change from colourless to yellow was observed after BSA solutions were incubated with sodium nitrite. This colour change may account for synthesis of ONOO⁻, but is likely to indicate the presence of 3-nitrotyrosine (ter Steege et al., 1998). Levels of nitrated BSA were calculated as $8.87 \pm 1.95 \mu$ M by HPLC-ECD. However, as shown in figure 4.3, when levels of nitrated BSA were assessed by ELISA no signal was evident.

Figure 4.3. ELISA to assess nitration to BSA using sodium nitrite. Samples (5 mg/ml) were assessed for nitration by ELISA (see section 4.3.4). Error bars are displayed as SEM. Samples were run in triplicate.

4.4.2.2 Western blotting to assess antibody binding

The results of the ELISA suggested that nitration of BSA was unsuccessful. To confirm this Western blotting was undertaken. In addition, to confirm presence of BSA, 1-DE and silver staining was run in parallel. As shown in figure 4.4a (lanes 1 and 2), BSA and BSA-NaNO₂ are present on a 1D gel as evidenced by distinct bands at approximately 70 kDa. In contrast, no band is present in the region of 70 kDa on a Western blot for nitrated BSA (Figure 4.4b, lane 2).

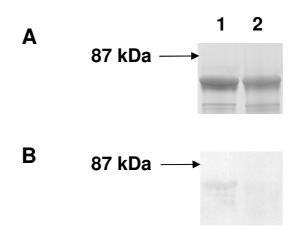
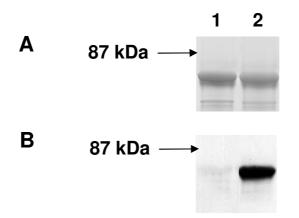


Figure 4.4. BSA nitration using sodium nitrite. Lane 1, BSA (5 μ g); Lane 2, BSA treated with NaNO₂ (5 μ g). A) Silver stained 1D gel B) Western blot for 3-nitrotyrosine.


To explain these disparities between quantification of 3-nitrotyrosine, using HPLC-ECD, and validation with 3-nitrotyrosine antibody, bound 3-nitrotyrosine was measured using HPLC-ECD. Levels of 'bound' 3-nitrotyrosine were below the detection limit, and hence it was considered that free 3-nitrotyrosine was formed. Together these data suggested that nitration of BSA using this particular nitrating agent was ineffective.

4.4.2.3 Preparation of nitrated standards using peroxynitrite

Peroxynitrite is a further agent commonly used to nitrate proteins. As a consequence peroxynitrite was employed as a nitrating agent as a consequence of the ineffective nitration of BSA using sodium nitrite. The concentration of prepared peroxynitrite solutions ranged between 20-30mM. BSA treated with ONOO⁻ was assayed for bound and total 3-nitrotyrosine levels by HPLC-ECD. Levels were found to be 2.56 ± 0.22 nmol/mg and 12.14 ± 0.77 µM respectively. From these data bound 3-nitrotyrosine is evident; suggesting that BSA nitration using peroxynitrite had been successful.

4.4.2.4 Confirmation of BSA nitration using ONOO⁻

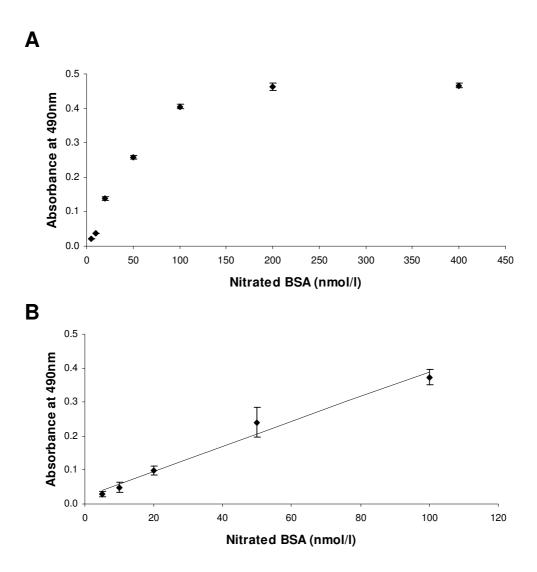

To confirm that BSA had been successfully nitrated, Western blotting was undertaken. In addition, to confirm presence of BSA, 1-DE and silver staining was run in parallel. As shown in figure 4.5a (lanes 1 and 2), BSA and BSA-ONOO⁻ are present on a 1D gel as evidenced by distinct bands at approximately 70 kDa. In addition, the Western blot presented in figure 4.5b demonstrates the successful nitration of BSA using peroxynitrite. This is demonstrated by the presence of a distinct band present at approximately 70 kDa for BSA treated with ONOO⁻, but not for BSA (Figure 4.5b, lanes 1 and 2).

Figure 4.5. BSA nitration using peroxynitrite. Lane 1, BSA (5 μ g); Lane 2, BSA treated with ONOO⁻ (5 μ g). A) Silver stained 1D gel B) Western blot for 3-nitrotyrosine.

4.4.2.5 Construction of five point 3-nitrotyrosine standard curve for ELISA

A standard curve of known nitrated BSA concentrations was constructed and assessed using ELISA (see methods section 4.3.6.1). As shown in Figure 4.6a, nitrated BSA concentrations ranging between 5 and 400 nM are detectable with the linear region of the standard curve evident between 5 and 100 nM nitrated BSA equivalents. A plateau at concentrations greater than approximately 150 nM nitrated BSA equivalents was observed. Figure 4.6b shows a 5 point standard curve, for the linear region of the standard curve, for three separate experiments.

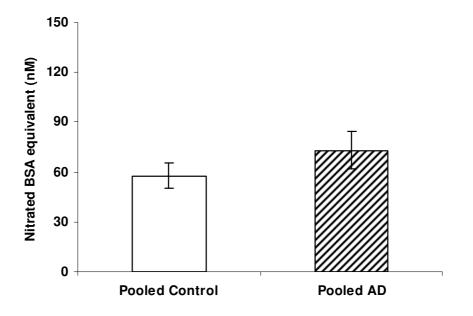


Figure 4.6. 3-nitrotyrosine standard curve. A) Levels of 3-nitrotyrosine plateau at approximately 150-200 nmol/l nitrated BSA B) A linear 5 point standard curve ranging from 5 (lowest detectable nitrated BSA standard) to 100 nmol/l nitrated BSA (n=3). Error bars displayed as SEM.

4.4.2.6 Levels of 3-nitrotyrosine in AD and age matched control plasma

4.4.2.6.1 Pooled samples

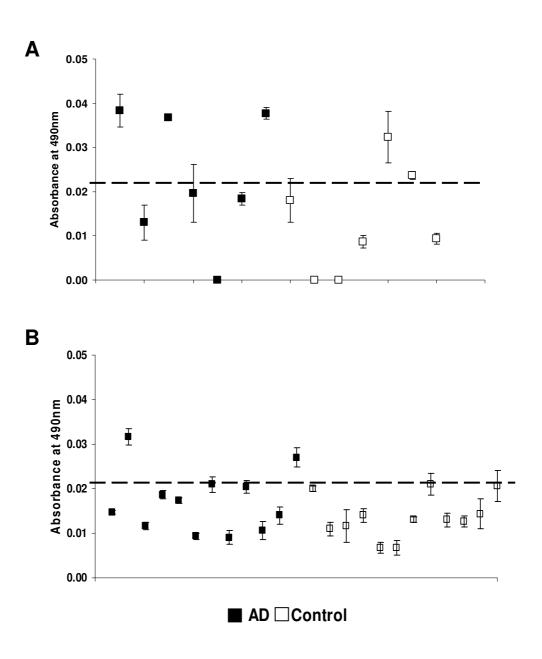

Due to the availability of AD and control plasma, initial experiments assessed 3-nitrotyrosine levels using pooled samples (n=3). Figure 4.7 shows that detectable levels of 3-nitrotyrosine were present in these pooled sample sets.

Figure 4.7. Pooled plasma 3-nitrotyrosine levels. Level of nitration expressed as nitrated BSA equivalents calculated by linear regression Pooled samples diluted 1 in 5 and error bars displayed as SEM.

4.4.2.6.2 Individual samples

A small subset of samples (7 AD and 7 age matched control) from a second cohort were assayed for 3-nitrotyrosine at a 1 in 5 dilution. This was to confirm further that 3-nitrotyrosine is detectable in individual plasma samples from this population, and to determine whether a difference is detectable using this methodology. As shown in figure 4.8a, detectable levels of nitration were variable between individual samples, with some samples above but others below the lowest detectable nitrotyrosine standard (5 nM nitrated BSA equivalent). Hence a larger subset of individual samples (12 AD and 12 control subjects) was assessed at a greater concentration. Samples were diluted 1 in 2. In agreement with the previous experiment, figure 4.8b demonstrates that a minority of samples are above the lowest detectable nitrotyrosine standard (5 nM nitrated BSA equivalent) with most below this point.

Figure 4.8. Plasma levels of 3-nitrotyrosine in AD and control samples. Levels 3-nitrotyrosine as determined by ELISA. A) Subset of 7 AD and 7 control plasma samples diluted 1 in 5. B) Subset of 12 AD and 12 control plasma samples diluted 1 in 2. The lowest detectable nitrated BSA standard for this assay was 5 nM (Indicated by dotted line). Error bars represented as SEM and samples were assayed in triplicate.

4.4.2.7 Increasing detectable levels of 3-nitrotyrosine by trypsin digestion

In order to improve the sensitivity of the ELISA, tryptic digestion of nitrated BSA to peptides was attempted. It was hypothesised that by cleaving proteins into smaller peptides nitrated tyrosine residues, that preferentially reside in the interior of proteins, would be exposed, and that this would allow binding of an antibody specific for the 3-nitrotyrosine adduct.

BSA and BSA-ONOO⁻ were compared to BSA and BSA-ONOO⁻ digests using indirect ELISA. All samples were plated as the same protein concentration to ensure nitration levels were comparable. As shown in Figure 4.9, an expected increase in signal for BSA-ONOO⁻ compared to BSA is apparent. Surprisingly, the BSA-ONOO⁻ digest exhibits lower signal compared to BSA-ONOO⁻, and the same observation is evident for the BSA digest compared to BSA. These data showed that detectable levels of nitration are reduced using this approach. One possible reason for this observation may be that peptides do not adhere to, or are less likely to adhere to the microtitre plate when compared with proteins. The stringent washing steps employed during ELISA may also remove peptides from the surface of the microtitre plate. Peptides containing a 3-nitrotyrosine adduct may not therefore be recognized by an antibody specific for the 3-nitrotyrosine epitope.

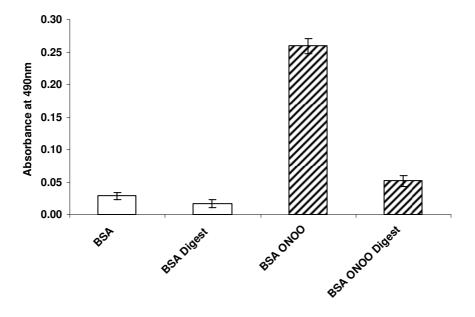


Figure 4.9. In-solution trypsin digestion of BSA and BSA-ONOOsamples. Comparison of nitration levels between digested and nondigested BSA samples and BSA-ONOO⁻. All samples plated at the same protein concentration (2.5 μ g/ml), assayed in duplicate and values are represented as mean ± SEM.

4.5 Discussion

It is firmly established that heightened levels of oxidative stress contribute to development and progression of Alzheimer's disease (AD) (Markesbery, 1997). In regions of the brain most affected by AD pathologies increased levels of protein nitration are evident, suggesting a link between increased protein nitration and AD (Smith et al., 1997b; Hensley et al., 1998). Moreover, specific proteins in the IPL are targets of nitration and this modification may potentially alter their normal function, in AD (Castegna et al., 2003). Although markers of oxidative stress in plasma are increasingly being assessed for their application as a biomarker, and to contribute to current understanding as to their role in AD (Zafrilla et al., 2006; Baldeiras et al., 2008), few studies have assessed global levels of protein nitration in peripheral tissues in AD (Calabrese et al., 2006; Korolainen and Pirttila, 2009).

This work attempted to measure total levels of protein nitration in AD plasma. HPLC-ECD was initially used to measure 3-nitrotyrosine in AD plasma as it is considered one of the most sensitive and specific methods for 3-nitrotyrosine measurement in biological fluids (Hensley et al., 1999; Duncan, 2003). After establishing the optimal applied voltage to use (see Appendix I), a detection limit of 1 μ M was observed. In a small subset of AD and age matched control subjects analysed, levels of 3-nitrotyrosine were on or below the limit of detection. Hence, in order to gain a valid measure of 3-nitrotyrosine it was evident that a large sample set would be necessary. Thus attempts were made to develop an in-house ELISA.

In order to prepare a series of known nitrated standards for use in ELISA initial experiments used sodium nitrite to nitrate BSA. Sodium nitrite was used as work by Onshima and

85

colleagues (1990) had previously demonstrated that approximately 2nmol of 3-nitroytrosine are produced per milligram of protein when exposed to this agent under acidic conditions. The phenolic hydroxyl group of protein bound tyrosine residues has a pK_a of 10-10.3. Upon nitration this is lowered by three pH units to 7.2-7.5 and causes the phenolate ion to be formed at a lower pH (Souza et al., 2008). The phenolate ion produces an intense yellow colour indicating 3-nitrotyrosine formation (ter Steege et al., 1998). After initially observing a notable colour change in BSA treated with NaNO₂ and detecting levels of total 3nitrotyrosine by HPLC, no signal was evident using ELISA or Western blotting. Having shown that levels of bound 3-nitrotyrosine were below the limit of detection it was considered that free 3-nitrotyrosine was potentially formed in solution when synthesising the nitrated protein.

However, ONOO⁻ is relatively stable in alkaline solution, but rapidly decomposes under acidic conditions (Beckman et al., 1994), and hence it was not known in this work whether ONOO⁻ was actually formed during the sodium nitrite treatment. Additionally, it was not known whether Pronase successfully cleaved protein at every possible site, which may account for levels not being able to be detected. A further possibility is that other modifications to the may have occurred. For example, the modification 3-chlorotyrosine produces a peak at the same retention time as 3-nitrotyrosine using HPLC-ECD (Hensley et al., 1999). Although these two modifications are distinguishable by their electrical potential, in the work presented this was not investigated, and so this may have contributed to the peaks seen on chromatograms. Consequently peroxynitrite was used to nitrate BSA for preparation of standards for ELISA. This was successful and confirmed by HPLC-ECD and

Western blotting, Approximately 2.5nmol 3-nitrotyrosine per milligram of protein was found to be nitrated which is comparable to a study by Whiteman and Halliwell (1999).

The resulting ELISA was able to detect 5nM BSA 3-nitrotyrosine (the lowest standard), with saturation of antibody binding at concentrations greater then approximately 150nM BSA 3-nitrotyrosine. These observations are in agreement with other 3-nitrotyrosine ELISA's presented in existing literature: Ceriello and colleagues (2001) reported that the limit of detection of their assay was 10 nM and that there was an evident flattening of the standard curve at concentrations greater than 400 nM. In addition, Sun et al. (2007) reported saturation of antibody binding at 3-nitrotyrosine concentrations exceeding 200 nM using a commercial competitive ELISA.

Using a subset of pooled samples initial results suggested that a detectable difference in 3nitrotyrosine levels was evident between AD and control. However, when individual samples were assayed the majority fell below, or were near the limit of detection. These observations indicate that only a minority of plasma samples exhibit measurable levels of 3-nitrotyrosine when assessed by ELISA. The detectable levels evident in pooled samples presented in this study can be explained by at least one individual sample present in the pool having detectable levels of 3-nitrotyrosine, and substantiate this assumption. Moreover, these data are comparable to those reported in a recent study which used commercial ELISA to assess total levels of 3-nitrotyrosine in plasma from 17AD and 18 control subjects. Within this data set only three AD, and four control samples had measurable levels of 3-nitrotyrosine (above detection limit of the assay: 2 nM) (Korolainen and Pirttila, 2009). It was hypothesised that the signal in these plasma samples could be increased by digesting plasma proteins into peptides. The rationale being that 3-nitrotyrosine adducts within the protein structure would be exposed and be recognized by an anti-nitrotyrosine antibody which would otherwise not be able to be detected. It was observed that detectable signal was markedly reduced in standard samples which had been digested with trypsin. Potential reasons for these observations maybe that non-specific binding sites are removed, or peptides adhere less well to the microtitre surface as they are too small to bind sufficiently. Consequently peptides with the 3-nitrotyrosine adduct would not then be recognized by an antibody specific for this particular epitope.

In conclusion, these data suggest that, the measurement of 3-nitrotyrosine in order to distinguish detectable differences between AD and age matched control is difficult using HPLC-ECD. It was observed that concentrations of 3-nitrotyrosine in AD samples were on the limit of detection of the HPLC-ECD system. Secondly the measurement of 3-nitrotyrosine using an indirect ELISA was found to be equally challenging. Increasing the sample size did not improve the ability to detect differences in 3-nitrotyrosine between AD and age matched controls. Although measurement of 3-nitrotyrosine using ELISA in this population is in its infancy, one may speculate that the current sensitivity of ELISA cannot cope with the individual variation of 3-nitrotyrosine levels within this sample population. Thirdly, the hypothesis that 3-nitrotyrosine signal could be increased by digesting proteins into peptides, thereby exposing 3-nitrotyrosine adducts and increasing antibody binding, is unproven.

Chapter 5

Peripheral markers of nitrative and oxidative stress in Alzheimer's disease

5.1 Abstract

It is well established that increased levels of oxidative and nitrative stress, in the brain, are part of Alzheimer's disease (AD) pathology. In contrast, levels require further clarification in plasma. To extend previous work presented in Chapter 3, analysis of markers of oxidative stress were undertaken in a further AD (n=25) and control plasma (n=25) sample set. In addition, further measures to assess protein nitration and nitric oxide metabolites (NO_x) were employed. No differences in total protein oxidation and antioxidant capacity (p > 0.05) were found. In contrast, plasma NO₂⁻⁷/NO₃⁻ levels were significantly reduced (p < 0.001) and one plasma protein of approximately 170 kDa exhibited increased nitration in the AD group (p = 0.001). When assessed by 1-DE, Western blotting and mass spectrometry (MS) this plasma protein was identified as alpha-2-macroglobulin (α -2M).

5.2 Introduction

It is widely considered that increased oxidative stress, in the brain, is part of AD pathology. This view is based on extensive studies in brain tissue which have reported increased protein oxidation, lipid oxidation and protein nitration in AD (Smith et al., 1997b; Markesbery and Lovell, 1998; Aksenov et al., 2001; Butterfield et al., 2007). In contrast, levels of plasma protein nitration have been reported in only two studies involving AD sufferers (Calabrese et al., 2006; Korolainen and Pirttila, 2009), and levels of protein oxidation remain unclear in this tissue.

Central to protein nitration *in vivo* is the nitrating agent peroxynitrite (ONOO⁻) (Souza et al., 2008), produced during the reaction between nitric oxide (NO^{*}) and superoxide (O_2^{*}) (Souza et al., 2008). Therefore, NO^{*} and O_2^{*-} can be considered as important molecules involved in the process of protein nitration. NO^{*} possesses several important functions in the body. It is a potent vasodilator and regulates blood pressure, inhibits platelet and leukocyte adhesion, and thus has anti-atherosclerosis properties (Maxwell, 2002). *In vivo* NO^{*} production is typically assessed by measurement of the stable end products of NO^{*}, nitrite (NO₂⁻) and nitrate (NO₃⁻) (Moshage et al., 1995; Zahedi et al., 2008). NO^{*} and O₂^{*-} are produced by several cells in the body and these include endothelial cells, macrophages and leukocytes, hence ONOO⁻ production can occur within close proximity to these sites (Oldreive and Rice-Evans, 2001).

In one study, plasma protein nitration levels were shown to be increased in AD by Western blotting (Calabrese et al., 2006). However, only one Western blot representing a few plasma samples was shown, and no protein band analysis or statistical data was reported. In studies where it has been assessed, NO[•] levels are reduced in AD serum and plasma (Selley, 2003;

Corzo et al., 2007). Given these observations, coupled to AD being a condition associated with increased oxidative stress, measurement of plasma protein nitration in AD is needed. Moreover, the relationship between plasma levels of NO[•] and protein nitration requires investigation in this disease.

Plasma protein oxidation levels in AD compared to control patients have been investigated more extensively than protein nitration, but still require further clarification. The work presented in Chapter 3 of this thesis showed that plasma protein oxidation levels were comparable between AD and age-matched controls. These data are in agreement with some existing studies (Polidori et al., 2004; Zafrilla et al., 2006), but not with others (Greilberger et al., 2008; Baldeiras et al., 2008).

Given the extremely limited studies which measure protein nitration in AD, the principle aim of this work was to compare levels of plasma protein nitration between a group of AD and control subjects using Western blotting, as well as investigate the relationship between plasma protein nitration and nitric oxide levels. In addition, a broad range of oxidative indices were measured in a different sample set to that used in Chapter 3. More specifically, levels of plasma protein carbonylation were measured in order to confirm the comparable levels reported between AD and control subjects in Chapter 3.

5.3 Methods

5.3.1 Declaration of ownership

In this Chapter the advice of Mr Andrew Jones was sought in order to undertake LC-MS/MS and CID. Responsibility for the choosing of filtering parameters for data analysis, and decisions on sample preparation were made by the author. The author was also present for the running of this analytical technique and was also responsible for all further data analysis.

5.3.2 Sample Population

AD samples and age matched control samples were obtained as described in general methods **section 2.1.4.** In total, 50 patients and control volunteers were used for this study (25 in each group).

5.3.3 BCA assay

Total protein concentration was determined by the BCA assay as described in general methods section 2.2.1.

5.3.4 Measurement of total nitrite and nitrate levels in plasma

5.3.4.1 Principle of the Griess Assay

The Griess Assay was employed to assess total levels of the metabolites NO_2^- and NO_3^- in AD and control plasma samples. As shown in figure 5.1, plasma samples were deproteinized and the supernatant removed for analysis. Any NO_3^- present in the supernatant was reduced to NO_2^- by the addition of vanadium (III) chloride. Griess Reagent was subsequently added and a colour change which is directly proportional to the level of NO_2^- was observed. This colour change can be measured by a spectrophotometer set at 540 nm and the amount of

nitrite in samples can then be determined by comparison to a standard curve of known nitrite concentrations. Total nitrite and nitrate levels were represented as total nitric oxide metabolites (NO_x) and measurement of NO_x is considered a direct marker of *in vivo* NO^{\bullet} production (Moshage et al., 1995; Miranda et al., 2001).

5.3.4.2 Measurement of NO_x using the Griess Assay

Measurement of NO_x was undertaken as described by Zahedi et al. (2008). Plasma samples (100 μ l) were diluted fourfold with HPLC grade water (375 μ l) and 25 μ l zinc sulphate (300 mg/ml) added to give a final concentration of 15mg/ml (Moshage et al., 1995). Samples were centrifuged at 10,000 g for 10 minutes (Miranda et al., 2001; Zahedi et al., 2008) and supernatants (100 μ l) were applied to a 96 well microtitre plate. To each well 100 μ l vanadium (III) chloride (8mg/ml) was added and then. 50 μ l sulphanilamide (2%) and 50 μ l N-(1-naphthyl) ethylendiamine dihydrochloride (0.1%) was added immediately. Plates were incubated at 37^oC for 30 minutes and absorbance read at 540 nm (Multiscan MS, Labsystems, Finland) (Zahedi et al., 2008). Total nitric oxide metabolites were calculated from the linear standard curve of known nitrite concentrations ranging from 0-100 μ M (Zahedi et al., 2008). All samples were assayed in triplicate.

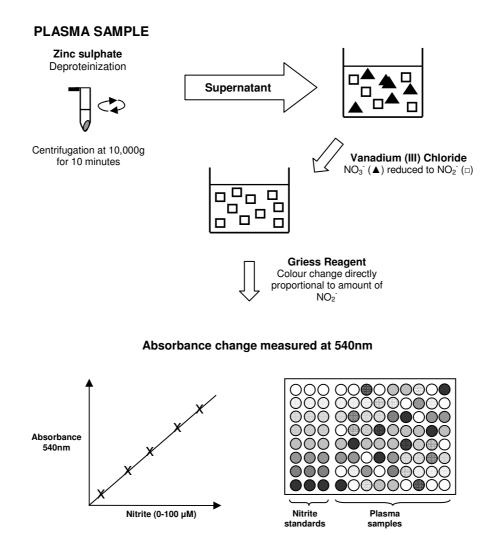


Figure 5.1. Determination of total nitrite and nitrate levels in plasma. Plasma samples are firstly deproteinized by the addition of zinc sulphate and centrifugation at 10,000 g for 10 minutes. The supernatants are then added to wells of a microtitre plate. Vanadium chloride is added to each well to reduce all NO_3^- to NO_2^- and then Griess Reagent is immediately added. A colour change which is directly proportional to the amount of NO_2^- present in the sample is observed after 30 minutes incubation, and can be measured at 540 nm using a spectrophotometer. The amount of nitrite present in the sample can be determined by comparison with a standard curve of known nitrite concentrations. The total amount of nitrite and nitrate levels is represented as total nitric oxide metabolites (NO_x).

5.3.5 Measurement of protein nitration

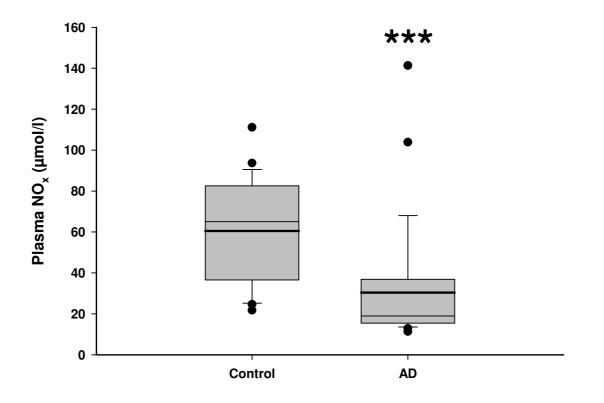
To evaluate nitration to plasma proteins, samples (30 μ g) were separated by 1D electrophoresis and protein expression and nitration were assessed by silver staining and Western blotting as described in general methods **sections 2.2.5, 2.2.7 and 2.2.8**. For Western blotting, mouse monoclonal anti-nitrotyrosine antibody was used at 1:500 with an appropriate horseradish peroxidase conjugated secondary antibody (1: 2,000). The optical densities of bands present on 1D gels and/or Western blots corresponding to nitrated plasma proteins and plasma proteins respectively, were evaluated using Quantity OneTM software (BioRad) by user defined volume integration. An equal number of control and AD samples were assessed on each 1D gels and/or Western blot to ensure that ECL and silver stain development were identical between the two groups. Optical densities for protein nitration values were normalised against optical densities for total protein values. Blots with samples considered of poor quality were repeated. Samples were run in duplicate.

5.3.6 Broad measures of oxidative stress

Plasma protein oxidation, total antioxidant capacity (TAC) and lipid peroxides were carried out as stated in the general methods **sections 2.2.2, 2.2.3 and 2.2.4**.

5.3.7 Mass Spectrometry analysis

Protein band excision, LC-MS/MS, data dependent CID and analysis were undertaken as described in general methods (general methods section 2.2.9.2).


5.3.8 Statistics

Statistical analysis was undertaken as described in general methods section 2.2.10.

5.4 Results

5.4.1 Nitric oxide metabolites

As shown in figure 5.2, plasma NO_x levels as measured by the Griess Assay were significantly reduced in the AD group compared to age matched control subjects (Control: $60.50 \pm 25.00 \,\mu\text{M}$ Vs. AD: $30.34 \pm 29.88 \,\mu\text{M}$; *p* < 0.001, Mann-Whitney U test).

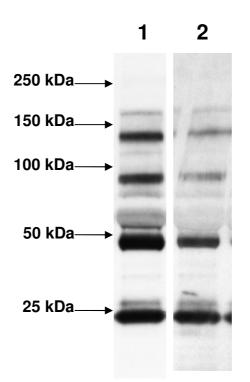


Figure 5.2. Total nitric oxide metabolite levels. Data (n=25; AD and control) are presented as a box plot. Nitric oxide metabolites were measured by Griess Assay (section 5.3.4).Percentiles are represented by the box (25^{th} and 75^{th}) and whisker (10^{th} and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. Outliers are shown as filled circles. ***p < 0.001 Vs Control.

5.4.2 Plasma protein nitration

5.4.2.1 Optimization of antibody conditions

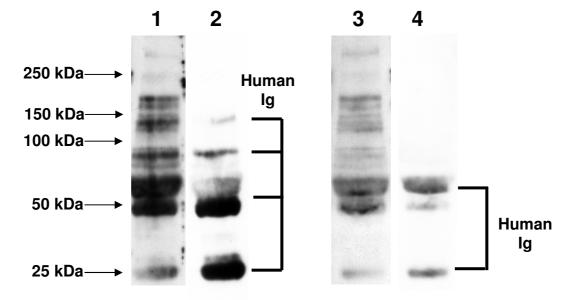

In order to identify nitrated plasma protein bands it was necessary to use relatively concentrated primary and secondary antibody solutions. As shown in Figure 5.3, for plasma proteins (30 μ g) there are a greater amount of visible nitrated protein bands using mouse peroxidase conjugated goat anti-mouse secondary antibody at 1:2000, compared to 1:4000, when using mouse monoclonal anti-nitrotyrosine primary antibody at 1:500.

Figure 5.3. Optimizing antibody conditions. Mouse monoclonal antinitrotyrosine antibody used at 1:500 dilutions with peroxidase conjugated secondary antibody used at 1:2000 (lane 1) and 1:4000 (lane 2).

5.4.2.2 Specificity of peroxidase conjugated goat anti- mouse IgG antibody

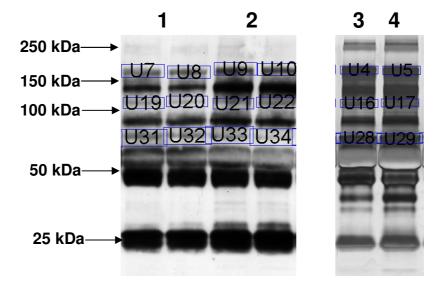

The specificity of secondary antibody for the mouse monoclonal primary antibody was investigated. Due to the high concentration of secondary antibody required in order to detect nitrated plasma protein bands, some non-specific binding was expected and as demonstrated in figure 5.4, a degree of non-specific binding is evident. The non-specificity is likely to be cross reactivity to human immunoglobulin G which comprises of heavy chain (~150,000 Da) and light chains (~50,000 and 22,500 Da). The non-specific binding using the Sigma (A4416) antibody is more severe than the Cell Signalling antibody (#7076), however the intensity of bands which correspond to nitrated proteins are more visible and thus easier to quantify using a densitometer. Several protein bands corresponding to nitrated plasma proteins are present: bands are evident at approximately 250, 170, 120 and 80 kDa.

Figure 5.4. Assessing non-specificity of secondary antibody. Two secondary antibodies were used to assess specificity. Lane 1: Mouse monoclonal antinitrotyrosine antibody (1:500) with peroxidase conjugated goat anti-mouse secondary antibody (Sigma A4416) at 1:2000 dilution; lane 2: Peroxidase conjugated goat anti-mouse secondary antibody (Sigma A4416) at 1:2000 dilution; lane 3: Mouse monoclonal anti-nitrotyrosine antibody (1:500) with peroxidase conjugated goat anti-mouse secondary antibody (Cell Signalling #7076) at 1:2000 dilution; and lane 4: Peroxidase conjugated goat anti-mouse secondary antibody (Cell Signalling #7076) at 1:2000 dilution.

5.4.3 Plasma protein nitration

Bands corresponding to plasma protein nitration and protein expression were quantified by Quantity one software (BioRad) as shown in Figure 5.5. The prominent nitrated bands at approximately 170 kDa and 80 kDa, labelled as U7-10 and U31-34 (U refers to user defined parameters), were detectable and quantifiable in all plasma samples; the very faint nitrated band at approximately 250 kDa although visible to the naked eye, was not accurately quantifiable using a densitometer in all plasma samples; and the nitrated band at approximately 120 kDa was detectable and accurately quantifiable, but only in a minority of plasma samples.

Figure 5.5. Quantification of protein expression and protein nitration. Quantity one® software (BioRad) was used to calculate optical density of three individual bands at approximately 170, 120 and 80 kDa using user defined volume integration (Boxed and labelled accordingly). For equivalent bands (U7-U10, U4 & U5; U19-22, U16 & U17; and U31-34, U28 and U29) analysed on Western blots and silver stained gels, user defined volumes were kept consistent and an equal amount of control and AD samples were assayed: Lane 1, Western blot for control sample assayed in duplicate; Lane 2, Western blot for AD sample assayed in duplicate; Lane 3, silver stained control; and Lane 4, silver stained AD sample.

5.4.3.1 Protein band exhibits increased nitration in AD plasma

As demonstrated in figure 5.6 the band at approximately 170 kDa exhibits significantly greater signal after normalisation against total protein levels (Control: 0.95 ± 0.45 OD units Vs. AD: 1.36 ± 0.62 OD units; p = 0.001, Mann-Whitney U test), suggesting its nitration status is increased in AD compared to control. No difference in signal and thus nitration status was observed for the band at approximately 80 kDa (Control: 0.97 ± 0.38 OD units Vs. AD: 1.12 ± 0.52 OD units; p = 0.27, independent samples t-test).

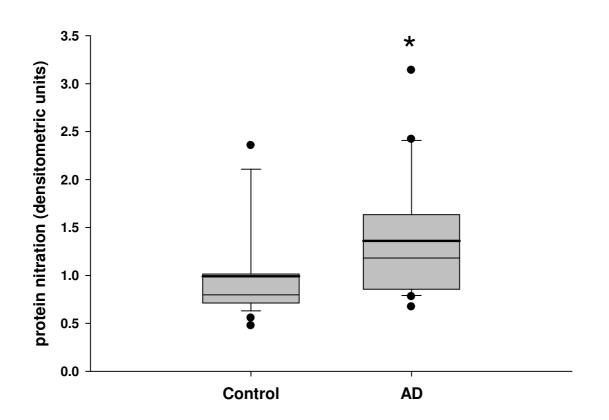


Figure 5.6. Increased nitration for unknown plasma protein band at ~170 kDa. Data (n=25; AD and control) are presented as a box plot. Percentiles are represented by the box (25th and 75th) and whisker (10th and 90th) with thick and thin lines corresponding to mean and median values respectively. Outliers are shown as filled circles. *p = 0.001 Vs. Control.

5.4.3.2 Identification of excised plasma protein band

In an attempt to identify the protein corresponding to the 170 kDa band, the protein band was excised from a silver stained gel. This particular band was very prominent on the Western blot and silver stained gel enabling its accurate excision. The protein band was digested and subjected to LC-MS and data dependent CID (as described in general methods 2.2.9). Data files created from the raw data produced by LC-MS and data-dependent CID for the excised gel band was searched against the human subset of the international protein index (IPI) database. As shown in table 5.1 a confident match for α -2 macroglobulin (α -2M) was obtained. The top match based on protein score had total peptide coverage of 28.29% (see figure 5.7).

Protein Band	Accession number/gi	Protein Score	Coverage (%)	Description	MW
1701-D -	D01022/112011	007 50	28.20		1(2.2
~170kDa	P01023/112911	-837.53	28.29	α-2-macroglobulin	163.3
	Q5R4NB/75054706	-791.50	26.80	α-2-macroglobulin	163.3
	Q5NVH5/75054626	-586.60	45.32	Serum albumin	69.4
	P08603/159517847	-371.29	21.36	Complement Factor H	139.1
	P04264/238054406	-315.40	27.64	Keratin, Type II	66.0
	A5A6M6/215275331	-314.37	26.37	Keratin, Type II	65.5
	Q28522/2492797	-296.91	25.33	Serum albumin	67.9
	A2V9Z4/190358749	-296.58	25.00	Serum albumin	68.9
	P027069/1351907	-286.73	24.55	Serum albumin	69.3
	P01024/119370332	-280.10	10.82	Complement C3	187.1
	***P06238/119370261	-81.01	5.03	α-2-macroglobulin	163.8

Table 5.1. Protein identification for excised protein band using OSSMA. For positive identifications, the peptides are initially scored and filtered with an E-value threshold (this value is the statistical confidence generated from the OMSSA algorithm when running a search), and the value used is the suggested threshold. The peptide scores are then compared according to random chance using a second probability equation, and a Protein Score (*p*-Score) is calculated. Any *p*-Score >0 is discarded as a false identification. The lower the protein score the more confident the protein identification The greatest protein match from IPI database for excised protein band corresponded to α -2-macroglobulin with a highly confident *p*-Score of -837.53. *** A further protein match for α -2-macroglobulin from database search.

1	MG <u>K</u> N <u>K</u> LLHPS	LVLLLLVLLP	TDASVSGKPQ	YMVLVPSLLH
41	TETTE <u>K</u> GCVL	LSYLNETVTV	SASLESV <u>R</u> GN	<u>R</u> SLFTDLEAE
81	NDVLHCVAFA	VP <u>K</u> SSSNEEV	MFLTVQVKGP	TQEF <u>KKR</u> TTV
121	MV <u>K</u> NEDSLVF	VQTD <u>k</u> siykp	GQTV <u>K</u> F <u>R</u> VVS	MDENFHPLNE
161	LIPLVYIQDP	KGNRIAQWQS	FQLEGGL <u>K</u> QF	SFPLSSEPFQ
201	GSY <u>K</u> VVVQ <u>KK</u>	SGG <u>R</u> TEHPFT	VEEFVLP <u>K</u> FE	VQVTVPKIIT
241	ILEEEMNVSV	CGLYTYGKPV	PGHVTVSICR	<u>K</u> YSDASDCHG
281	EDSQAFCE <u>K</u> F	SGQLNSHGCF	YQQV <u>K</u> T <u>K</u> VFQ	L <u>KRK</u> EYEM <u>K</u> L
321	HTEAQIQEEG	TVVELTG <u>R</u> QS	SEIT <u>r</u> TIT <u>k</u> L	SFV <u>K</u> VDSHF <u>R</u>
361	QGIPFFGQVR	LVDG <u>K</u> GVPIP	NKVIFIRGNE	ANYYSNATTD
401	EHGLVQFSIN	TTNVMGTSLT	V <u>R</u> VNY <u>K</u> D <u>R</u> SP	CYGYQWVSEE
441	HEEAHHTAYL	VFSPS <u>K</u> SFVH	LEPMSHELPC	GHTQTVQAHY
481	ILNGGTLLGL	<u>KK</u> LSFYYLIM	AKGGIVRTGT	hgllv <u>k</u> qedm
521	KGHFSISIPV	KSDIAPVARL	LIYAVLPTGD	VIGDSAKYDV
561	ENCLANKVDL	SFSPSQSLPA	SHAHLRVTAA	PQSVCALRAV
601	DQSVLLMKPD	AELSASSVYN	LLPEKDLTGF	PGPLNDQDDE
641	DCIN <u>R</u> HNVYI	NGITYTPVSS	TNE <u>K</u> DMYSFL	edmgl <u>k</u> aftn
681	SKIRKPKMCP	QLQQYEMHGP	EGL <mark>R</mark> VGFYES	DVMGRGHARL
721	VHVEEPHTET	VRKYFPETWI	WDLVVVNSAG	VAEVGVTVPD
761	TITEWKAGAF	CLSEDAGLGI	SSTASLRAFQ	PFFVELTMPY
801	SVIRGEAFTL	KATVLNYLPK	CIRVSVQLEA	SPAFLAVPVE
841	<u>K</u> EQAPHCICA	NG <u>R</u> QTVSWAV	TP <u>K</u> SLGNVNF	TVSAEALESQ
881	ELCGTEVPSV	PEHG <u>RK</u> DTVI	KPLLVEPEGL	EKETTFNSLL
921	CPSGGEVSEE	LSL <u>K</u> LPPNVV	EESARASVSV	LGDILGSAMQ
961	NTQNLLQMPY	GCGEQNMVLF	APNIYVLDYL	NETQQLTPEV
1001	<u>KSK</u> AIGYLNT	GYQ <u>R</u> QLNY <u>K</u> H	YDGSYSTFGE	<u>RYGR</u> NQGNTW
1041	LTAFVL <u>K</u> TFA	QARAYIFIDE	AHITQALIWL	SQ <u>RQK</u> DNGCF
1081	RSSGSLLNNA	IKGGVEDEVT	LSAYITIALL	EIPLTVTHPV
1121	VRNALFCLES	AW <u>K</u> TAQEGDH	GSHVYT <u>K</u> ALL	AYAFALAGNQ
1161	D <u>krk</u> evl <u>k</u> sl	NEEAVKK <mark>D</mark> NS	VHWERPQKPK	APVGHFYEPQ
1201	APSAEVEMTS	YVLLAYLTAQ	PAPTSEDLTS	ATNIVKWITK
1241	QQNAQGGFSS	TQDTVVALHA	LS <u>K</u> YGAATFT	<u>R</u> TGKAAQVTI
1281	QSSGTFSS <u>K</u> F	QVDNNNRLLL	QQVSLPELPG	EYSMKVTGEG
1321	CVYLQTSL <mark>K</mark> Y	NILPEKEEFP	FALGVQTLPQ	TCDEPKAHTS
1361	FQISLSVSYT	GS <u>R</u> SASNMAI	VDV <u>k</u> mvsgfi	PLKPTV <u>K</u> MLE
1401	<u>R</u> SNHVS <u>R</u> TEV	SSNHVLIYLD	KVSNQTLSLF	FTVLQDVPVR
1441	DLKPAIVKVY	DYYETDEFAI	AEYNAPCS <u>K</u> D	LGNA

Figure 5.7. Peptide coverage for α -2-macroglobulin (P01023/112911). The sequence information for α -2-macroglobulin is shown. Matched residues are highlighted in grey. A total peptide coverage of 28.29% (417 out of 1474) for this sequence was observed.

Three further possible matches for, serum albumin, complement and keratin type II proteins are also evident. When the molecular weights of each individual protein are taken into account the likely identity of the excised plasma protein is α -2 macroglobulin (α -2M). Multiple proteins present during 1-DG separation may explain the reason for several identifications. Although the protein was confidently identified as α -2M, no evidence that this plasma protein is actually nitrated was found. As shown in Figure 5.8, LC-MS/MS spectra for the three highest scoring peptide matches for the α -2M sequence demonstrate that no tyrosine residues present are nitrated.

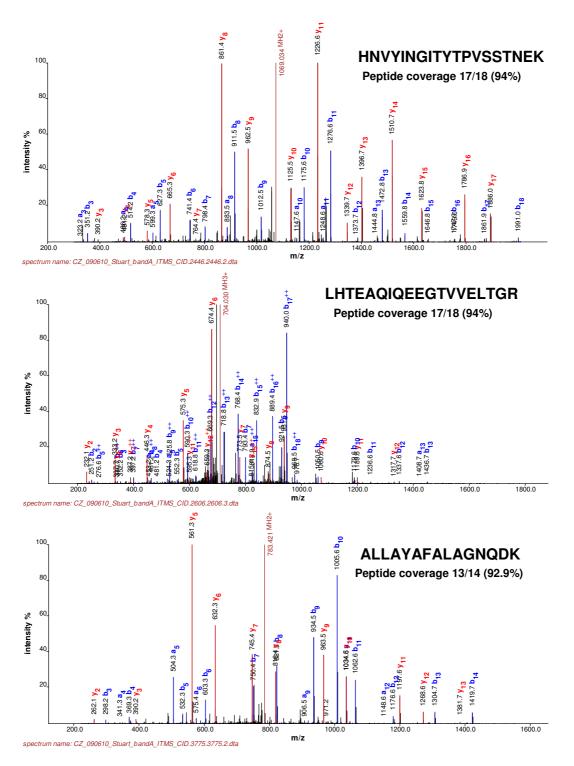
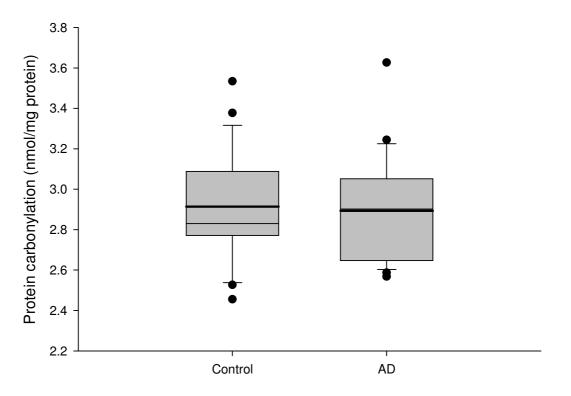



Figure 5.8. Mass spectra of top three peptide hits for α -2M sequence. The top three peptide matches for the α -2M sequence demonstrate that no tyrosine residues present are nitrated. Total amino acid coverage for each peptide is greater than 92.9%.

5.4.4 Protein oxidation

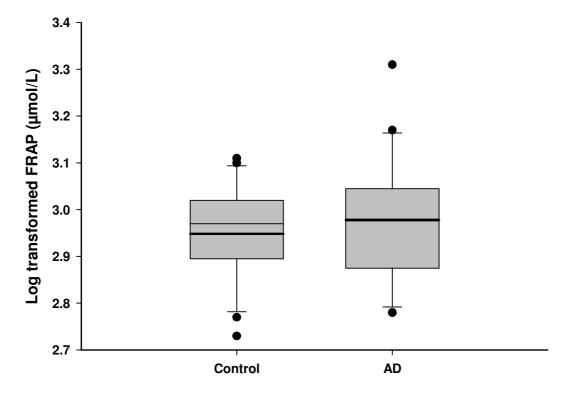

As shown in figure 5.9 no differences in total levels of protein carbonylation between AD and age matched control subjects, from the particular sample set used in this chapter (Control: 2.91 \pm 0.26 nmol/mg Vs. AD: 2.89 \pm 0.26 nmol/mg protein, p = 0.8 independent samples t-test).

Figure 5.9. Total protein oxidation. Protein oxidation was measured by carbonyl ELISA. Data (n=25; AD and control) are presented as a box plot. Percentiles are represented by the box (25^{th} and 75^{th}) and whisker (10^{th} and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. Filled circles represent outliers.

5.4.5 Total antioxidant capacity


No change in total antioxidant capacity was observed (figure 5.10), as measured by FRAP, between AD and age matched control subjects, from the particular sample set used in this chapter (Control: 910.800 \pm 208.927µM Vs. AD: 992.933 \pm 331.012µM, p = 0.4 independent samples t-test).

Figure 5.10. Total Antioxidant Capacity. TAC was measured by FRAP. Data (n=25; AD and control) are presented as a box plot. Percentiles are represented by the box $(25^{th} \text{ and } 75^{th})$ and whisker $(10^{th} \text{ and } 90^{th})$ with thick and thin lines corresponding to mean and median values respectively. Filled circles represent outliers.

5.4.6 Lipid peroxide levels

As shown in figure 5.11 no changes in lipid peroxide levels were observed in AD compared and age matched control samples, from the particular sample set used in this chapter (Control: 6.53 ± 5.23 nmol/ml, Vs. AD: 10.26 ± 14.17 nmol/ml, p = 0.4 independent samples t-test). Six AD and fourteen control samples were below the limit of detection of this assay (1nmol/ml).

Figure 5.11. Lipid peroxide levels. Lipid peroxide levels were measured by lipid peroxide assay. Data (n=25; AD and control) are presented as a box plot. Percentiles are represented by the box (25^{th} and 75^{th}) and whisker (10^{th} and 90^{th}) with thick and thin lines corresponding to mean and median values respectively. Filled circles represent outliers.

5.5 Discussion

In view of the growing evidence supporting a role for nitrative stress in AD, this study aimed to evaluate NO[•] and protein nitration levels in AD plasma in addition to other markers of oxidative stress. NO[•] and levels of 3-nitrotyrosine were assessed as measurements which reflect nitrative stress.

It is widely accepted that levels of plasma NO_2^{-7}/NO_3^{-7} reflect *in vivo* production of NO[•] (Moshage et al., 1995; Zahedi et al., 2008). In this study a remarkable decrease in NO_x levels was observed in AD compared to control subjects, a finding which is in agreement with existing studies in AD patients (Selley, 2003; Corzo et al., 2007). It is appreciated that diet can influence plasma NO_2^{-7} and NO_3^{-7} levels as certain foods (e.g., spinach, kale) are high in these metabolites (Dusse et al., 2005). With this in mind, it has been suggested that subjects should be fasted and their diet restricted two days prior to blood drawing (Dusse et al., 2005), however such measures are difficult to control for in this specific population. Therefore, caution is required when interpreting the results presented in this work.

Although it was not possible to accurately assess total protein nitration by Western blotting due to non-specific antibody binding, one specific plasma protein was successfully found to exhibit increased nitration in the AD group. Given this finding, one may suggest that decreased plasma NO_x levels maybe a result of their reaction and subsequent removal by O_2^{\bullet} . Production of ONOO⁻ may then subsequently nitrate specific plasma proteins. On the other hand, as suggested by Selley (2003) the reduction in NO[•] maybe due to increased levels of homocysteine and asymmetric dimethylarginine and subsequent inhibition of the NO[•] producing enzyme nitric oxide synthase.

In this study no difference in total protein oxidation or lipid peroxides was observed. These data are in agreement with results presented in Chapter 3, which were undertaken on a different set of plasma samples. In contrast, the reduction in TAC reported in AD compared to control subjects in Chapter 3 was not replicated in the sample set analysed in this study. It has been suggested that disease severity (e.g., mild, moderate or severe AD) may affect peripheral levels of antioxidants (Sekler et al., 2008) and hence using samples which include individuals across the full spectrum of AD severity may represent a reason for TAC levels to remain unchanged between the AD and control groups in this study. However, a significant reduction in TAC was demonstrated in Chapter 3 without different stages of the disease being taken into consideration. Moreover, there is also a study which reports of no correlation between the degree of cognitive impairment as quantified by MMSE, and TAC as measured by FRAP, when using large cohorts (Guidi et al., 2006). Interestingly the same study found a slight negative correlation between TAC, as measured by FRAP, and the duration of the disease (Guidi et al., 2006) suggesting that disease duration may affect TAC. The APOE genotype of AD subjects may also have an effect on TAC levels as measured by FRAP. A study undertaken by Pulido and colleagues (2005) reported that only AD subjects classified as APO 4/4 had a significant reduction in antioxidant capacity. A further factor which may contribute to the equivalent TAC demonstrated in this work is the number of subjects that were analysed. As with this study, groups who report no change in TAC between AD and control subjects typically assess a relatively small number of subjects (20 to 25 AD samples) (Sinclair et al., 1998; Pulido et al., 2005). Although not known, subject characteristics such as vitamin use, physical activity pattern and diet may have also influenced this measurement, and hence are a limitation of this work. Taken together these data may suggest that the conflicting TAC data presented in this study, and in Chapter 3,

may be in part due to subject APOE genotype, the duration of disease or the relatively small cohort of samples analysed.

The observation that total protein carbonylation remained unchanged between AD and control subjects is in agreement with other studies (Polidori et al., 2004; Zafrilla et al., 2006). Further, a recent study which assessed total levels of oxidized and nitrated proteins in various peripheral tissues, which included plasma, found no difference in levels between AD and controls (Korolainen and Pirttila, 2009). Based on these data the authors suggest that oxidative metabolism related to AD pathogenesis cannot be detected. One may suggest that as shown with previous studies in AD brain and plasma (Castegna et al., 2002a; Castegna et al., 2002b; Castegna et al., 2003; Choi et al., 2002), specific proteins which may be involved in disease pathology are targets of oxidative modification, rather than these events being a random, more global process.

Indeed, data presented in this chapter identified α -2M as one plasma protein that exhibited increased nitration in AD compared to age matched control subjects. These observations are also in agreement with a study by Mitrogianni et al. (2004); this group used the same methodology to identify specific proteins that exhibited increased plasma protein nitration in haemodialysis patients, a condition also associated with increased oxidative stress. α -2M was identified by its approximate molecular weight on a Western blot and by mass spectrometry and sequence data of the excised protein band.

One limitation of using 1-DE to evaluate plasma protein nitration is that given the vast dynamic range of plasma proteins (i.e. magnitude of different concentrations of proteins)

other proteins of similar molecular weights, which may account for the nitrated protein, may be masked by α -2M as it is highly abundant in plasma. However, nitration is selective and 1 to 10 residues of tyrosine per 100,000 are nitrated in conditions associated with inflammation and cardiovascular disease (Souza et al., 2008). Therefore it is very likely that only nitrated proteins which are highly abundant (e.g. α -2M) will be detected when employing 1-DE and Western blotting.

From the mass spectrometry data there was no evidence that α -2M was actually nitrated. Tyrosine and Tryptophan amino acid residues are targets for nitration by reactive oxygen species (Berlett and Stadtman, 1997; Souza et al., 2008), and of the peptides which accounted for 28.29% of the α -2M protein sequence, none of these residues were found to be nitrated. However, nitration of α -2M cannot be ruled out based on this assumption alone, as a further 72.71% of the protein sequence was not matched and therefore may well have contained nitrated tyrosine and tryptophan residues. Although likely to be modified, from the mass spectrometry data presented here α -2M cannot be confirmed as the nitrated plasma protein.

In AD altered levels of α -2M have been described previously. Its expression is increased in senile plaques and plasma from AD sufferers (Bauer et al., 1991; Hye et al., 2006). There is a selective and specific interaction between α -2M and the A β peptide and α -2M inhibits the fibrillization of A β peptide. Based on these observations it has been suggested α -2M may sequester and bind the A β peptide to provide its clearance from tissues brain (Du et al., 1997; Hughes et al., 1998). Increased nitration to α -2M as tentatively shown in this work may compromise this suggested function and thus result in greater A β load evident in the AD

brain. In addition this interaction may indicate that this particular protein is targeted for oxidative damage, more so than others. Moreover, the balance between proteases and protease inhibitors plays an important role in mediating inflammation associated tissue damage. As previously mentioned, α -2M is a protease inhibitor, and its modification by oxidation or nitration may impact on its function and thus play an important role during the inflammation process. For example, Wu et al. (1998) demonstrated that oxidation to α -2M affects its ability to bind cytokines and growth factors and thus proposed that such modification may act as a switch mechanism to help regulate acute inflammation and tissue repair. Further work by the same group reported that oxidized α -2M is greater in synovial fluid from Rheumatoid Arthritis patients when compared to control plasma, and that the degree of oxidation correlates to the observed reduction in its activity (Wu and Pizzo, 2001). One may speculate that nitration to α -2M would exert a similar effect and thus contribute to inflammatory processes associated with AD (Akiyama et al., 2000).

In summary, this study tentatively identified α -2M as a plasma protein which exhibits increased nitration in AD. Further work is required to definitively show and confirm this finding. In addition, no difference in total plasma protein oxidation between AD and control subjects was observed, providing further evidence that oxidative events in AD are specific, rather than global events. Further studies in a larger cohort of samples are required to further confirm these findings.

Chapter 6

Gel based Redox Proteomics for the study of Alzheimer's disease

6.1 Abstract

The recent emergence of 'redox' proteomics has allowed for the identification of proteins altered by oxidative modifications. Such investigations in Alzheimer's disease (AD) brain have advanced the existing understanding into the oxidative mechanisms which underlie the disease. Plasma is representative of processes and events which occur in the body and coupled to its easy accessibility and practicality provides an ideal source to monitor oxidative changes to proteins which may occur during AD. In this study, non-depleted pooled AD and pooled control plasma (n=25) were subjected to 2-DE with Western blotting for the detection of proteins which were specifically oxidized. One protein was shown to exhibit increased oxidation in AD. The use of narrow range IPG gels and excision of altered plasma proteins from multiple gels was undertaken to overcome encountered difficulties when attempting to obtain protein identification.

6.2 Introduction

Proteomics is the study of a group of proteins expressed at a particular snapshot in time (e.g., a disease state). In addition, proteomics can be used to assess post translational modifications (PTM) to proteins which may include phosphorylation, sulphation and glycosylation. These are important as they can determine activity, turnover and stability of a protein, which governs its function (Pandey and Mann, 2000). It has been assumed that oxidative events are damaging and harmful since early exercise studies in the late 1970's and early 1980's (Dillard et al., 1978; Davies et al., 1982). More recently, the notion that these events may actually be important regulatory PTMs is gaining credibility (Spickett et al., 2006).

Impairment of protein function and reduced activity are recognized consequences of protein oxidation (Friguet, 2006), and therefore proteins which are targets of such events are of particular interest. The emergence of a recent new division of proteomics named 'redox proteomics,' allows the identification of specific proteins modified by oxidation. By using 2-DE coupled with immunoblotting, oxidative modifications to proteins (e.g., oxidation, nitration, advanced glycation end products, advanced lipid end products) can be assessed. This has allowed the molecular mechanisms of diseases associated with oxidative stress, such as AD, to be further understood (Butterfield et al., 2006).

Increasingly, the focus of AD research has been to come up with approaches to slow or prevent the development of AD. As a consequence, recent redox proteomic studies have switched their focus to oxidative modifications that occur as AD progresses, by either comparing brain tissue from mild cognitive impairment (MCI) and early AD subjects, or by examining brain regions, such as the entorhinal cortex, which are affected at the earliest stage of AD (Braak and Braak, 1995; Terni et al., 2009; Sultana et al., 2010). For example, Terni et al (2009) demonstrated that mitochondrial ATP synthase exhibited increased lipooxidation at the first stage of AD, when no clinical symptoms are evident.

Perhaps the largest drawback of such work is that brain tissue can only be obtained post mortem. Even though these aforementioned redox proteomic studies are vitally important in characterising oxidative changes which occur when AD progresses, brain tissue does not reveal specific peripheral oxidative changes that maybe significant in AD, and cannot be used as a biomarker in a living person to monitor interventions or therapies. Although AD originates in the brain, blood plasma does contain brain derived proteins (Aluise et al., 2008); and oxidative changes (e.g., protein carbonylation) in plasma provide a good indication of oxidative status in the body (Veskoukis et al., 2009). Studies which have investigated plasma protein oxidation in AD present an unclear picture, some have demonstrated increased plasma protein oxidation in AD, where as others have reported no change (Bermejo et al., 2008; Zafrilla et al., 2006). In agreement with studies undertaken by Zafrilla et al. (2006) and Balderias et al. (2008), results from Chapter 3 demonstrated that plasma protein oxidation levels are equivalent between AD and controls. However, TAC levels were shown to be reduced, and a specific plasma protein which was oxidized was also identified. These observations may suggest that oxidation to specific plasma proteins are more important than a global oxidative change, when investigating peripheral oxidative stress in AD.

To date, limited 'redox' proteomic AD research has been undertaken in plasma in order to identify proteins altered by oxidation, and only a few oxidized plasma proteins have so far been identified. Conrad et al. (2000) used Western blotting to demonstrate that a 78 kDa plasma protein exhibited increased oxidation in AD compared to control patients. In two later studies specific plasma proteins and glycoproteins were shown to be targets of oxidation in AD (Choi et al., 2002; Yu et al., 2003). In this study 2-DE with Western blotting was undertaken to identify specific plasma proteins which undergo oxidation in AD compared to age-matched controls.

6.3 Methods

6.3.1 Declaration of Ownership

In this Chapter the advice of Mr Andrew Jones was sought in order to undertake LC-MS/MS and CID. Responsibility for the choosing of filtering parameters for data analysis, and decisions on sample preparation were made by the author. The author was also present for the running of this analytical technique and was responsible for all further data analysis.

6.3.2 Sample selection

A subset of 50 samples (25 AD and 25 control patients) were selected from the original 144 sample set (see **section 2.1.4** in general methods) based on the availability of plasma.

6.3.3 Desalting plasma samples

Twenty five control and AD samples were pooled together and desalted using Micro Bio-SpinTM 6 chromatography columns. Total protein concentration of the desalted samples was measured using the BCA assay (see general methods **section 2.2.1**).

6.3.4 IEF, 2-DE, silver staining and derivatization of protein carbonyls,

Desalted pooled plasma samples (100-150 μg) were separated by IEF and 2-DE (see general methods **2.2.6**). Total protein content was visualised by silver staining (general methods **2.2.8**) and protein carbonylation was determined by an anti-DNP Western blot. For anti-DNP Western blots plasma protein transfer was undertaken as described in general methods **section 2.2.7**. Hybond-PTM membrane (GE Healthcare, UK) was subsequently derivatized with 2, 4-DNPH (1mM 2, 4-DNPH in 2M HCl), washed three times in TBST (0.05%) for 10 minutes and then incubated with mouse monoclonal anti-DNP (1:200) for 2 hours at room

temperature. Hybond-PTM membrane (GE Healthcare, UK) was washed a further three times in TBST (0.05%) for 10 minutes, and then incubated with an appropriate horseradish peroxidase conjugated secondary antibody (1: 2,000) for 1 hour at room temperature. Oxidized protein spots were visualized using a chemiluminescent detection system (see general methods **section 2.2.7**). Modified protein spots were excised from silver stained gels under aseptic conditions with a sterile scalpel, placed into clean eppendorf tubes and kept overnight at -20°C.

6.3.5 Plasma protein oxidation analysis and statistics

Pooled AD and control plasma samples were run concurrently to ensure that any detectable differences seen were truly representative of the disease state. Gaussian modelled protein spots were matched and their optical densities assessed using PD Quest image analysis softwareTM (BioRad). As employed in existing proteomic studies protein spots which exhibited a difference in signal intensity of \geq 3-fold, with a *p* value of < 0.05 (independent samples *t*-test) was considered significant (Castegna et al., 2002b; Butterfield et al., 2006b). Protein expression of spots was accounted for by normalisation against total protein content.

6.3.6 Immunoprecipitation of oxidized proteins

Preparation of magnetic Dynabeads® (Invitrogen, UK), Dynabead- antibody binding and immunoprecipitation of target proteins was undertaken as described in the manufacturer's guidelines. Dynabeads® (Invitrogen, UK) were re-suspended by gentle inversion and washed three times with citrate phosphate buffer (pH 5). Mouse monoclonal anti-DNP antibody was diluted in citrate phosphate buffer, added to Dynabeads® at the desired ratio (Dynabeads: Antibody; 75:1) and rotated for 40 minutes, at 4°C. Dynabead®-antibody

complexes were washed three times with citrate phosphate buffer (pH 5). Samples were diluted to desired concentration (Dynabead-Antibody complex: antigen; 1:10) in citrate phosphate buffer (pH 5) and incubated with Dynabead®-antibody complexes for one hour at 4°C. For 2-DE gels immuno-precipitates were resuspended in rehydration buffer, boiled for 5 minutes and kept at -20°C until they were analyzed. Optimal amounts of oxidized plasma proteins to use were deduced from preliminary experiments using oxidized BSA. The amount of plasma proteins used was governed by antibody availability.

6.3.7 Mass Spectrometry analysis

Protein spot excision, LC-MS/MS, data dependent CID and analysis were undertaken as described in general methods (**section 2.2.9.2**).

6.4 Results

6.4.1 Two dimensional gel electrophoresis and Western blotting for protein oxidation

Representative blots of a pooled AD and pooled control plasma sample assayed concurrently are shown in figure 6.1. As visualized on the Western blot there are numerous plasma proteins which are carbonylated within the 4-8 pH range in both the pooled AD and control samples. This is accompanied by minimal background signal.

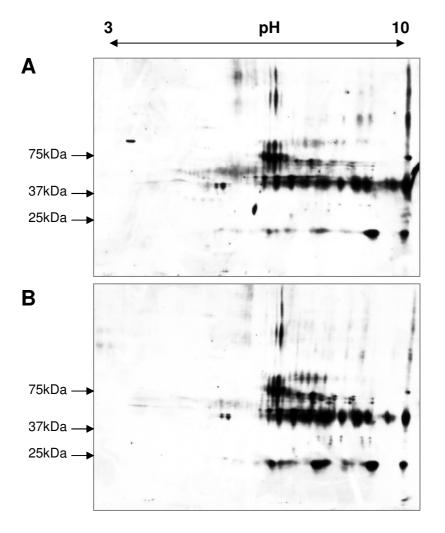


Figure 6.1. Protein oxidation in Pooled AD and Pooled Control sample. Plasma protein oxidation was assessed by an anti-DNP Western blot (see section 6.6.4). A representative blot for a pooled AD and pooled control plasma sample run concurrently is shown. (A) Pooled Control (100 μ g) and (B) Pooled AD (100 μ g).

6.4.2 Matching oxidized plasma proteins between groups

Forty seven carbonylated plasma proteins were successfully matched between all replicate Western blots (Pooled AD and control blots run in triplicate). Figure 6.2 shows an example of protein matching in pooled AD and control samples run in parallel for protein carbonylation using PD Quest[™] software. The triangles represent landmark plasma protein spots which are well resolved and present in all replicate gels. These landmarks are used for gel alignment and accurate protein spot matching.

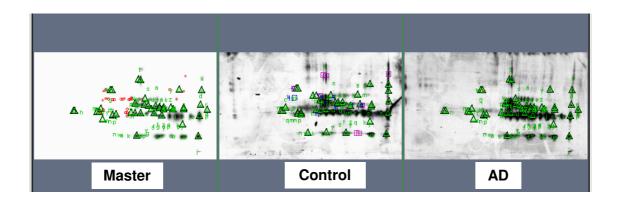


Figure 6.2. Protein spot matching using PD Quest softwareTM. Representative blots for pooled control and pooled AD samples are shown. Blots were assayed in parallel to ensure identical experimental and developmental conditions. A reference blot (master) is created which contains protein spots from all pooled control and pooled AD blots; from this protein spots can be matched between all replicate blots and differences identified between control and AD groups.

6.4.3 Oxidation differences between AD and control subjects

Of all of the matched proteins, only one protein was identified as exhibiting increased oxidation AD compared to control subjects when \geq 3 fold change was applied. Following normalisation for total protein concentration, this difference was still observed (Figure 6.3).

Parallel silver stained gels of the same samples were used for total protein content. Figure 6.3A shows the region of interest on a silver stained gel and Western blot. The protein exhibiting increased oxidation is circled. Figure 6.3B shows the optical densities for total protein content, amount of oxidation and degree of protein oxidation when AD and control samples were compared. The degree of protein oxidation was calculated by dividing the optical density of the amount of oxidation by total protein content.

Western blot		Amount of Amount of oxidation oxidation $aid = 0.0$ $begree of oxidation aid = 0.0 begree of oxidation and aid = 0.0 begree oxid$	Control AD Control AD Control AD Control AD Control AD Control AD Figure 6.3. Plasma protein exhibiting increased oxidation in AD compared to Control. Silver stains run in duplicate (n=2) and anti-DNP Western blot run in triplicate (n=3). (A) Protein expression and degree of oxidation to plasma protein spot as assessed by silver stain and anti-DNP Western blot. (B) Optical density data for protein expression and oxidation of protein spot represented in the form of a bar chart. Optical density (OD) values represent means \pm SEM for replicate silver stained gels and Western blots. The degree of oxidation of the protein spot is the amount of oxidation after normalisation against its expression. * $p < 0.05$ using student t-test.
A Silver stain	AD Control	B Amount of protein 6.0 U nits 0.0 U nits 0.0 10.0 5.0 0.0 10.0	Control AD Figure 6.3. Plasma protein exhibiting Silver stains run in duplicate (n=2) and expression and degree of oxidation to p DNP Western blot. (B) Optical density represented in the form of a bar chart. (replicate silver stained gels and Wester amount of oxidation after normalisation

6.4.4 The use of immunoprecipitation and verification of antibody suitability

Due to the low abundant nature of the oxidized plasma protein it was necessary to undertake immunoprecipitation (IP) in order to try to increase the chances of gaining a protein identity by mass spectrometry. Downstream applications of IP (e.g., SDS-PAGE and 2-DE) can result in co-elution of antibody and target protein due to the use of the reducing agents (e.g., 2-mercapthoethanol and destreakTM). Therefore a preliminary experiment to ensure that the antibody used for IP was not of the same molecular weight and isoelectric point as the plasma protein of interest was undertaken. As shown in figure 6.4B (circled), the pooled AD plasma sample derivatized with 2, 4-DNPH and spiked with rat anti mouse IgE secondary antibody is accompanied with minimal streaking compared to the non-spiked pooled AD plasma sample in the gel region of interest (circled in figure 6.4A).

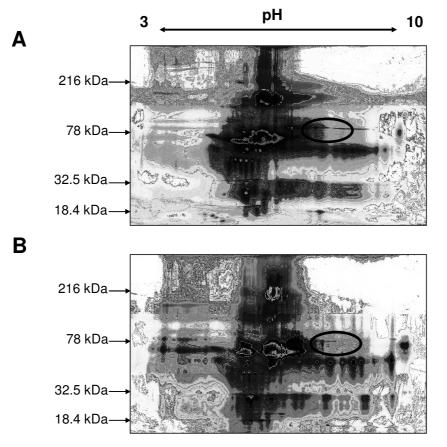
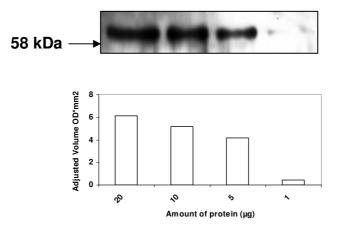



Figure 6.4. Characteristics of primary antibodies used for immunoprecipitation using 2-DE. (A) Silver stain of pooled AD plasma (100 μ g); (B) derivatized with 2, 4 – DNPH and spiked with mouse monoclonal anti-DNP IgE (10 μ g).

6.4.5 IP of oxidized proteins

6.4.5.1 Optimal antigen concentration

To ensure that optimal conditions were employed for IP of oxidized plasma proteins (e.g., Dynabead-antibody complexes were not over saturated with antigen) preliminary experiments were undertaking using oxidized BSA (see methods section for 2.2.2.1 for preparation). Figure 6.5 demonstrates that the optimal amount of antigen added to Dynabead-antibody complexes without over saturation was approximately 10-20 μ g per 150 μ g Dynabead-antibody complexes.

Figure 6.5. Optimization of amount of bead-antibody complex and antigen, using oxidized BSA. Dynabead® protein G, mouse monoclonal anti-DNP and various concentrations of oxidized BSA, derivatized with 2, 4 – DNPH.

6.4.5.2 IP of oxidized plasma proteins

IP of oxidized plasma proteins resulted in reduced background when they were separated by 2-DE and silver stained (figure 6.6A and 6.6B). The resolution of several highly abundant plasma proteins was also improved (See figures 6.6A and 6.6B). However the plasma protein spot of interest was barely visible and could not be detected by densitometry and the resolution was of poorer quality than the non IP sample (Figure 6.6, circled). This technique was considered a non-viable approach and not used further due to the antibody investment and cost.

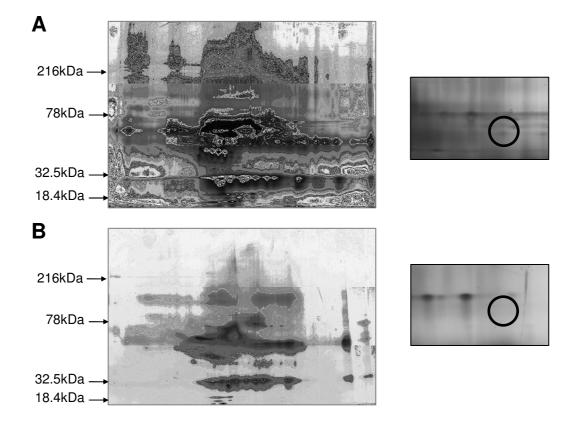


Figure 6.6. Comparison of oxidized plasma proteins and precipitated oxidized plasma proteins by silver staining. (A) Plasma proteins (200 μ g) and (B) oxidized plasma proteins (225 μ g). Part of gel which contains proteins of interest are boxed to the right of the gel.

6.4.6 Excision of protein spot from single and multiple 2D gels

Following unsuccessful use of IP, attempts were made to gain protein identification by simply excising the modified protein spot. LC-MS/MS and data dependent CID was used to gain protein identification. Figure 6.7 shows a representative gel of the plasma protein spot location and its excision.

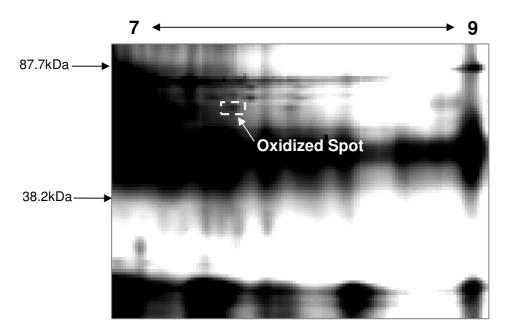
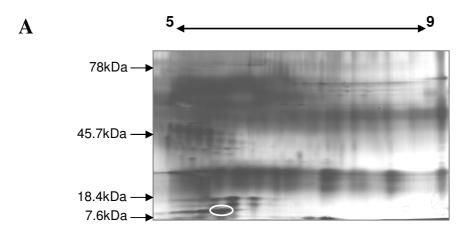


Figure 6.7. Excision of single plasma protein spot from a representative silver stained gel. Plasma proteins (100 μ g) separated by 2DGE; Isoelectric focussing undertaken using pH 3-10 ReadystripsTM, SDS-PAGE was undertaken using 4-15% Tris-HCl criterion gels. Plasma proteins were visualised using silver staining. The oxidized protein is boxed.


Following MS analysis, the top two most confident matches comprised of trypsin and anionic trypsin (see Appendix III for data). Low protein concentration due to low protein abundance was considered the limiting factor of successful protein identification, potentially due to self digestion of trypsin precursor protein. Therefore the plasma protein spot was excised from two gels, in order to gain more protein quantity and pooled together. As shown in Table 6.1 (see Appendix III for full data), trypsin was the most confident match, with the greatest protein score and peptide coverage, for each sample. A further match included actin; however the molecular weight and isoelectric point for actin is not consistent with the region of the 2D gel from which the protein spot was excised.

	Accession number/gi	Protein Score	Coverage (%)	Description	MW	*pI
Unknown	P00761/136429	-129.62	17.32	Trypsin	24.4	7.00
oxidized	P10981/113258	-82.03	11.97	Actin-87E	41.8	5.30
protein	P84183/113258	-82.03	11.97	Actin, cytoplasmic	41.8	5.30

Table 6.1. Data for protein identification from LC-MS/MS for excision of two spots. Top protein hits listed for excised spots from silverstained 2D gels. *pI was predicted using ExPASY proteomics server from protein sequence data.

6.4.7 Identification of a highly abundant plasma protein

In order to confirm that the excision of protein spots and their subsequent identification was possible under these experimental conditions a very abundant protein spot in the neutral region of the 2D gel was excised as a control. The location of this plasma protein spot is displayed in figure 6.8. The protein spot was identified as Transthyretin as there are two hits in the top four matches and of these (see Appendix III for full data), there is a high protein score and high coverage for this particular protein. In addition the isoelectric point and molecular weight of this protein corresponds to the location of the protein spot on a 2D gel. These data confirmed that the excision of protein spots, their digestion and identification had been undertaken successfully, and that previous unsuccessful protein identification was due to low abundance.

B

	Accession number/gi	Protein Score	Coverage (%)	Description	MW	*pI
	P02766/136464	-461.67	48.98	Transthyretin	15.9	5.52
Control	P04264/238054406	-278.59	25.00	Keratin	66.0	8.15
spot	A5A6M6/215275331	-263.85	23.70	Keratin	65.0	7.61
	Q5NVS2/75040810	-211.81	30.00	Transthyretin	15.8	5.38

Figure 6.8. Excision and identification of highly abundant protein. (A) Plasma proteins (100 μ g) separated by 2-DE; Isoelectric focussing undertaken using pH 3-10 Readystrips , SDS-PAGE was undertaken using 4-15% Tris-HCl criterion gels. Plasma proteins were visualised using silver staining. High abundant protein (circled) excised from gel. (B) Top four protein hits listed for excised spot from silver stained gel. *pI was predicted using ExPASY proteomics server from protein sequence data.

6.4.8 Protein identification by pooling multiple spots from narrow range gels

To overcome the low levels of protein which had prevented protein identification in previous experiments application of more plasma protein to the IPG strip was necessary. However, the large range IPG strips previously used, clearly shows congestion and poor resolution of some proteins. The use of narrow range IPG strips allows a greater concentration of protein to be focussed, while maintaining good protein resolution and avoiding excessive spot congestion in the second dimension of separation (Yan et al., 2000) and thus was employed for further experiments. Figure 6.9 illustrates that protein spots were less congested on the gel and were better resolved, more intensely stained and visually more prominent having employed this approach (compare to figure 6.7). In addition this allowed greater accuracy when excising the modified plasma protein.

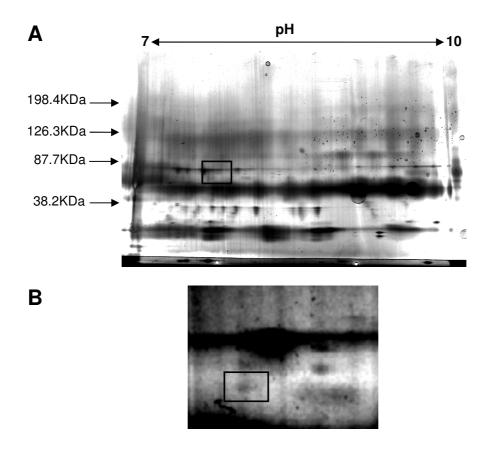


Figure 6.9. Representative narrow range gel of pooled AD plasma sample. Pooled AD plasma proteins (150 μ g) focused in 1st dimension using narrow range pH 7-10 IPG ReadystripTM (BioRad) and separated in 2nd dimension using Tris-HCl Criterion 4-15% gels (BioRad). A) Silver stained gel. B) location of excised spot. Following mass spectrometric analysis of the excised protein from the narrow range IPG strip experiment, protein identification for the plasma protein which exhibited increased oxidation in AD was still unsuccessful. As demonstrated in table 6.2 (see Appendix III) serum albumin precursor proteins accounted for five out of the six top matches for this unknown protein spot, but their isoelectric point and molecular weight was calculated to be approximately 5.9 and 69 kDa respectively, which is evidently inaccurate as the pI of the excised spot was estimated to be nearer 8 from its location on a 2D gel. Therefore serum albumin precursor protein cannot be the true identity of this particular excised spot.

	Accession number/gi	Protein Score	Coverage (%)	Description	MW	*pI
Unknown oxidized protein spot	Q5NVH5/75054626 Q28522/2492797 A2V9Z4/190358749 P08835/71152981 P00761/436129 P49065/44889024	-288.31 -145.26 -145.24 -138.33 -103.18 -49.51	12.81 4.67 4.61 2.14 8.66 1.97	Serum Albumin Serum Albumin Serum Albumin Serum Albumin Trypsin Serum Albumin	69.4 67.9 68.9 69.7 24.4 68.9	5.92 5.85 5.91 6.08 7.00 5.85

Table 6.2. Protein identification for oxidized plasma protein spot. Proteins listed in descending order according to best protein match. *pI was determined using pI/MW prediction software available on ExPASY proteomics server.

6.5 Discussion

Two-dimensional gel electrophoresis coupled to Western blotting highlighted one plasma protein which exhibited increased oxidation in AD compared to age matched control plasma. Numerous attempts, employing different gel techniques, to identify this protein by mass spectrometry failed. Protein identification could not be achieved because the sample was contaminated with albumin and the only hit obtained was to albumin. This identity was incorrect as the molecular weight and isoelectric point did not correspond to the location of the excised spot, as visualised on a 2-DG.

There are a number of gel based proteomic studies which combine 2-DE and Western blotting that have been successfully used to analyse protein modifications in AD brain (Korolainen et al., 2002; Castegna et al., 2002a; Castegna et al., 2002b; Castegna et al., 2003; Pamplona et al., 2005; Terni et al., 2009; Sultana et al., 2010). For example Korolainen and colleagues (2002) demonstrated that protein carbonylation status is altered in several proteins from the frontal cortex region of AD brain tissue and Castegna et al. (2002a) revealed creatine kinase BB, glutamine synthase and ubiquitin carboxy-terminal hydrolase L-1 as proteins, present in the inferior lobule region, which exhibit increased oxidation.

While in brain 2-DE and MS are enough to gain protein identification from an excised gel spot, it appears from data presented in this work and reports by others (Korolainen et al., 2007) that it is not sufficient when attempting to identify the low abundant peripheral proteins. Such proteomic work in AD plasma is very limited; to date only two studies have used this technique. Choi et al. (2002) showed that the fibrinogen γ -chain and α -1-antitrypsin

precursor protein are oxidized in AD plasma and Yu and colleagues (2003) reported a few plasma glycoproteins to be oxidized in AD.

Redox proteomic studies which have investigated protein modifications between AD and controls samples calculate the signal ratio between individual protein spots, and then look at differences above a particular threshold (Choi et al., 2002; Butterfield et al., 2006; Castegna et al., 2002b). In this study the same approach was employed to identify one altered plasma protein; a stringent 3 fold change was applied, and changes with a *p*-value < 0.05 were considered significant. A recognized limitation of this methodology is that the variability of each individual protein is not taken into account as the researcher is only looking at an average change, and hence any differences seen can only be assumed to be representative of a particular population. However, this approach does have a potential role in preliminary analysis, enabling altered proteins to be identified for further investigation (Karp and Lilley, 2007).

Albumin makes up a large proportion of the plasma proteome and has transport functions in human blood plasma, it binds to a wide range of compounds including lipoproteins, cytokines and hormones (Adkins et al., 2002). Its capacity to stick to a variety of compounds in human blood plasma may provide one possible explanation for its identification in the work presented here. Additionally, the presence of a prominent region of proteins representing albumin as visualised on a 2-DG (Anderson and Anderson, 1977), coupled to evidence of streaking, suggested that the identification of serum albumin could be artefactual and not the real identity of the oxidized protein. A large group of human plasma proteins corresponding to fibrinogen γ -chain fragments are located in the gel region where the protein spot was excised from (Anderson and Anderson, 1977), and are therefore more likely to represent the protein spot identity, rather than human serum albumin.

The high abundance of albumin in plasma is a recognized problem in such work, and with this in mind one approach is to deplete plasma of albumin prior to analysis, to uncover the 'deeper' proteome (Righetti et al., 2005). Conversely, interesting proteins that may have been altered due the disease or condition may be depleted or excluded if depletion is employed (Hye et al., 2006), and there is always the possibility that serum albumin may be a disease altered protein. For example, in a recent study by Greilberger and colleagues (2008) the disulphide form of albumin was shown to be increased in plasma from individuals with neurodegenerative disorders; where cysteine 34 residue was oxidized compared to its native form. Additionally, plasma albumin is the predominant target of oxidation in other conditions associated with increased oxidative stress, such as Uraemia (Himmelfarb and McMonagle, 2001).

A further decision faced when employing gel-based proteomics in plasma, is whether to use individual samples or to pool samples together prior to analysis. Each approach has its merits and disadvantages. Availability of material to the researcher, and time and cost which may limit the amount of gels that can be processed, are acknowledged disadvantages of using individual samples (Horgan, 2007). Moreover, the efficiency of protein spot matching is reduced when analysing a large number of individual gels (Voss and Haberl, 2000).

Sample pooling is attractive as it can overcome these aforementioned limitations. The approach also reduces biological variation by forming an average sample (Karp et al., 2005),

which may allow differences and similarities between individual groups to be more easily identified. It may also prevent inaccurate conclusions based on information obtained from a limited number of individual samples. On the other hand, by forming an average protein distribution the pooling process may lead to the loss of information; individual proteins which are not present in all of the sample pool will go undetected (Zolg, 2006). In a recent study Diz et al. (2009) reported that volumes of protein spots in a sample pool matched that of the majority of individual samples for that particular pool. In addition the study found sample pooling led to a reduction in biological variation, thus providing reassuring evidence for some key aspects of the sample pooling approach. The use of multiple individual gels and sample pooling have been successfully implemented in studies which use gel based proteomics for biomarker discovery (Huang et al. 2006; Hye et al. 2006; Taneja et al. 2009). In this study the decision was made to pool individual samples together for proteomic analysis.

IP is a technique that can be used to concentrate a particular target protein from a biological sample. In this work it was initially employed to concentrate plasma proteins modified by oxidation to enhance the chances of obtaining positive protein identification. This was necessary because the modified plasma protein of interest was of low abundance, however this approach provided no improvement compared to a normally processed plasma sample. Initial mass spectrometry data for the excised plasma protein spot from single and multiple gels revealed high protein scores and peptide coverage for trypsin precursor protein. This observation suggested that self digestion of trypsin may have occurred, and hence that it was likely that low plasma protein concentration was a limiting factor. Indeed difficulty in detecting low abundant proteins has previously been reported in a study by Korolainen and

colleagues (2007) who were unable to identify such proteins by pooling spots from several gels. Moreover, at present there is no definitive answer as to how many low abundant protein spots from replicate gels should be pooled together to gain a positive protein identification. The use of narrow range IPG strips allowing for more plasma proteins to be focussed, improved spot clarity and reduced spot congestion in this study, but did not overcome this encountered problem.

In summary, one plasma protein was found to have altered oxidative status in AD compared to control. A positive identification for this protein could not be obtained because the sample was contaminated with albumin. The decision was taken, following unsuccessful use of IP and narrow range IPG strips, not to pursue the identity of this protein using gel based methods. If future studies were to employ 2-DG, a larger sample should be used with narrow range IPG strips to confirm and add to these findings. The use of non-gel based proteomic methods may complement gel based approaches, and may be more successful in identifying proteins altered due to disease.

Chapter 7

Non-gel based proteomics for the study of

Alzheimer's disease

7.1 Abstract

The specific location and nature of oxidative modifications to proteins are of particular importance as they may impact on protein structure and function. The introduction of isobaric tagging for absolute and relative quantification (iTRAQ) has allowed for the comparison of protein expression levels between various sample populations. This technique, coupled to improvements in high resolution mass spectrometry may provide the potential for protein modification analysis. iTRAQ analysis was undertaken and identified eleven peptides which were altered in expression in plasma samples from AD sufferers when compared to control. Five peptides containing a nitration adduct were identified, with four displaying increased expression and one displaying decreased expression in AD compared to control samples. In addition, eleven peptides containing oxidized adducts were identified with ten showing increased expression and one showing decreased expression in AD compared to control samples. Furthermore, eleven plasma proteins were found to be differentially expressed between pooled AD and control plasma samples, which were considered of possible significance. The identity of alpha-2-Macroglobulin (a-2M) and Complement 4a protein (C4a) were validated by Western blotting. The modification data require further investigation but suggest that peptides are differentially oxidized and nitrated between AD and control subjects. Of particular interest are the presence of oxidation adducts to serum transferrin and haptoglobin, given their role in iron homeostasis and ability to sequester haemoglobin respectively and thus prevention of radical generation in plasma.

7.2 Introduction

The importance of oxidative modifications in relation to disease pathology has been elegantly demonstrated in studies assessing AD brain. Sultana and colleagues (2006a) conducted a study in AD and control hippocampus tissue and reported that the chaperone enzyme Pin1 exhibited increased oxidation and was down regulated in parallel with a reduction in habitual activity in AD. The authors suggested that as Pin1 binds to tau, a protein involved in microtubule assembly which is central to the formation of neurofibrillary tangle pathologies, one could speculate that such changes maybe involved in AD development.

Identifying the nature and location of post-translational modifications (PTMs), is potentially more important than assessing the global status of a protein. Oxidation and nitration events may now be thought of as PTMs in their own right (Spickett et al., 2006) and the location of specific oxidative modifications on the protein may aid understanding of how oxidative modifications lead to the altered function of a protein. A study undertaken by Ishii et al. (2003) is supportive of this concept. The group showed that incubation of the enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with HNE, resulted in 60% of amino acid bound HNE being in the form of Michael adducts, which possess carbonyl functionality. This was concurrent with a decrease in enzyme activity due to selective modification of amino acids located at the molecules surface. Moreover, Ji, Neverova and colleagues (2006) reported that in rat, peroxynitrite activation of microsomal glutathione S-transferase 1 is mediated by the nitration of a tyrosine residue located at position 92. From this observation the authors suggested that this activation is an important mechanism for cellular protection against nitrosative stress.

Classically, two dimensional gel electrophoresis (2-DE) based redox proteomic research has been used to identify specific proteins which are modified by oxidation in disease. In AD several proteins have been reported to be modified by oxidation or nitration in the inferior parietal lobule and hippocampus regions of the brain (Castegna et al., 2002a; Castegna et al., 2002b; Castegna et al., 2003; Sultana et al., 2006a). In contrast, very few studies have identified specific plasma proteins modified by oxidation (Choi et al., 2002; Yu et al., 2003), and no study has investigated nitration to specific plasma proteins in AD. In addition to this, in all of these aforementioned studies the location and nature of these oxidative modifications were not reported. One reason may be that more protein sample is required to determine specific sites of modification, rather than just obtaining a protein identity (Pandey and Mann, 2000). Moreover, previous experiments reported in Chapter 5 of this thesis (Bennett et al. unpublished) highlighted the difficulty in obtaining even a protein identity for a low abundant protein when using 2-DE, and in these experiments locating the site of modification was impossible. This limitation has also been reported in a recent study by Korolainen et al. (2007) when the authors attempted to identify modified cerebrospinal fluid (CSF) proteins from AD patients using 2-DE.

An innovative approach using iTRAQ (isobaric tagging for absolute and relative quantification) reagents coupled to mass spectrometry (MS), for quantitative measurement of protein expression levels in complex protein mixtures was first described in *Saccharomyces cerevisiae* by Ross and colleagues (2004). There are eight forms of iTRAQ reagent currently available with each reagent comprising of a reporter group, a balance group and an amine specific peptide reactive group. The reporter groups (114.1, 115.1, 116.1, 117.1, 118.1, 119.1, 120.1 and 121.1 Da) are balanced with a neutral group (31, 30, 29, 28, 27, 26, 25 and

24Da) such that after reacting with primary amino group of peptides they are isobaric (total mass of 145.1Da). When undertaking this methodology samples are labelled with one of the iTRAQ reagents and then mixed before MS analysis. In all samples, identical peptides will be visualised as one distinct peak on a mass spectrum, as they will be labelled with a different isobaric tag, and will therefore have the same mass and be chemically indistinguishable from each other. Upon fragmentation the neutral balance group is lost and the reporter groups can then be detected on the MS/MS spectrum (Ross et al., 2004; Chiappetta et al., 2009). Peptides can be identified by their fragmentation sequence, and the relative abundance of reporter group ions allows for the accurate comparison of a particular peptide between two or more experimental conditions (see figure 7.1). Since this landmark study by Ross and colleagues (2004) the technique has been successfully used to identify protein expression level differences, in peripheral tissue from AD patients (Abdi et al., 2006; Guntert et al., 2010).

More recently Amoresano and co-workers (2009) demonstrated that the iTRAQ labelling strategy could be used for the analysis of PTMs. The group coupled MS analysis with selective labelling of ortho-nitrotyrosine residues using iTRAQ reagents, and reported that the number and position of modified tyrosine residues in plasma from haemodialysis patients could be identified. Furthermore, given the recent introduction of the next generation ion trap Orbitrap instrument described by Olsen et al. (2009), possible improvements to PTM's analysis maybe possible due to greater resolution and accuracy provided by using this system (Olsen et al., 2009; Chiappetta et al., 2009)

In this study, iTRAQ labelling coupled to mass spectrometry using a LTQ Orbitrap Velos system was undertaken in order to identify plasma proteins altered by expression and more importantly proteins which were modified by oxidation or nitration in AD. At the time of undertaking this research, no previous study had investigated specific plasma proteins altered by nitration in AD. Moreover, plasma protein expression and the identification of specific sites of oxidative modifications in AD had not been explored using this non-gel based methodology.

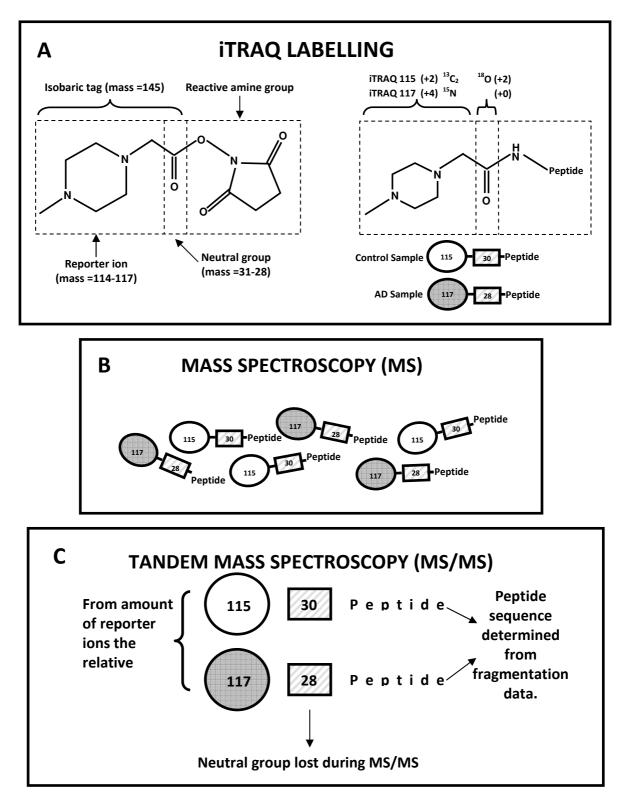


Figure 7.1. iTRAQ labelling and mass spectrometry. Diagram based on that of Ross et al. (2004). A) Isobaric tag consisting of a reporter ion, neutral group and a reactive amine group. Overall mass of reporter ion and balance group kept the same using ¹³C, ¹⁵N and ¹⁸O atoms. AD and control samples are labelled with different iTRAQ tags and mixed. B) AD and control peptides are chemically indistinguishable on mass spectra and are visualised by one peak as have the same m/z. C) During MS/MS labelled peptides are fragmented; peptides are deduced from fragmentation data and relative amount of reporter ions allow the relative amounts of peptides to be determined.

7.3 Methods

7.3.1 Declaration of ownership

In this Chapter the expertise and advice of Dr Andrew Creese was sought in order to undertake the running of SCX chromatography and LC-MS/MS. Responsibility for the choosing of filtering parameters for data analysis, and decisions on pooling of fractionated samples and their depletion were made by the author. The author was also present for the running of these analytical techniques and was responsible for all further data analysis.

7.3.2 Sample selection

Twenty five control and twenty five AD plasma samples were pooled together for the experiment (see general methods **section 2.1.4**).

7.3.3 Albumin depletion

To increase the number of low abundant plasma proteins detected, pooled samples were depleted of the most abundant plasma protein (albumin) with an Aurum Affi-gel blue mini kit. Protein concentrations were determined by BCA assay (see general methods **section 2.2.1**). For assessment of albumin depletion, depleted and non depleted pooled plasma protein samples ($50\mu g$) were separated by 1-DE and visualized by silver staining (see general methods, **section 2.2.5** and **2.2.7**).

7.3.4 iTRAQ labelling

Two pooled samples were digested in parallel with trypsin and used for iTRAQ experiments. Samples (50 μ l, 1 mg/ml) were diluted with ammonium bicarbonate (150 μ l, 200 mM) and dithiothreitol (40 μ l, 50 mM) was added and incubated at 60°C for 45 minutes. The samples were returned to room temperature before iodoacetamide (200 µl, 22 mM) was added and the samples incubated at room temperature for 25 minutes. To consume any remaining iodoacetamide, dithiothreitol (56 µl, 5 mM) was added and samples incubated for 15 minutes. The samples were digested overnight with sequencing grade modified trypsin (2 µg) at 37°C. The samples were vacuum centrifuged to dryness, resuspended in trifluoroacetic acid (TFA, 0.5%, 200 µl) and desalted using a Michrom desalting Macrotrap (Michrom, USA). The trap was wetted using acetonitrile:water (50:50, 300 µl) and washed with TFA (0.1%, 200 µl). The sample was loaded onto the trap and washed with TFA (0.1%, 200 µl) and eluted in acetonitrile:water (70:30, 200 µl). Samples were vacuum centrifuged to dryness.

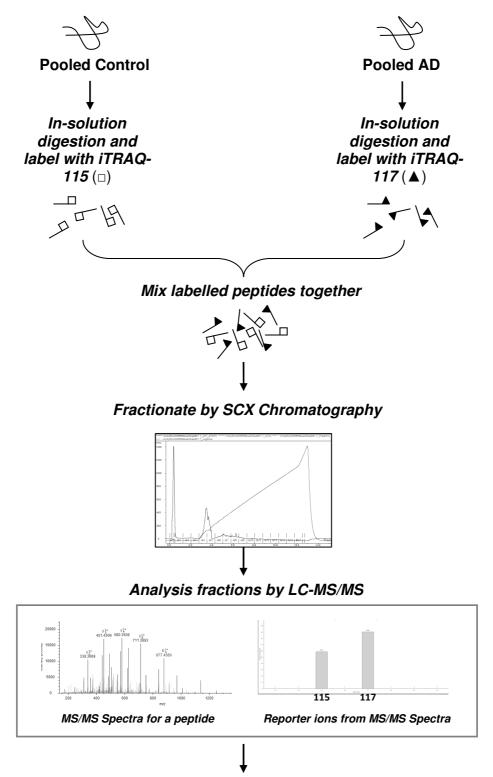
Samples were resuspended in dissolution buffer (0.5 M triethylammonium bicarbonate, 30 μ l). Half the sample was taken forward for labelling and two samples were labelled in total, as follows. The iTRAQ 8-plex labels (Applied Biosystems, USA) were resuspended in isopropanol (50 μ l), added to the 2 samples as below, vortexed for 1 minute and incubated at room temperature for 2 hours. The labels were applied in the following order (condition, sample ID): Control, 115; Alzheimer's disease, 117. The two labelled samples were combined and vacuum centrifuged dry. The pooled sample was desalted as above and resuspended in mobile phase A (see below, 200 μ l).

7.3.5 Strong cation HPLC

The dynamic range of plasma protein concentrations are in the region of nine to ten orders of magnitude, resulting in more abundant proteins masking proteins of lower abundance during proteomic analysis (Righetti et al., 2005). Therefore, the sample was separated using strong cation exchange high performance liquid chromatography (SCX-HPLC) and fractions collected in order to obtain a more detailed proteomic analysis. The chromatography was performed on an Ettan LC (GE Healthcare Life Science, UK) with a Frac-950 fraction collection system. The sample was separated on a polysulfoethyl A column (100 mm x 2.1 mm, 5 µm particle size, 200 Å pore size. PolyLC, USA) with a javelin guard cartridge (10 mm x 2.1 mm, 5 um particle size, 200 Å pore size. PolyLC, USA). Mobile phase A was potassium dihydrogen orthophosphate (10 mM, pH 3) dissolved in water:acetonitrile (80:20). Mobile phase B was potassium dihydrogen orthophosphate (10 mM), potassium chloride (500 mM, pH 3) dissolved in water: acetonitrile (80:20). The LC gradient ran from 0 to 80% mobile phase B over 73 minutes. Half of the sample was loaded into column and eighteen fractions were collected in eppendorf tubes (1.5 ml). Fractions were combined to give a total of 5 fractions (fractions 5, 16 and 17 were combined; 6, 14 and 15 combined; 3, 7 and 13 combined; 4, 8 and 12 combined; 9, 10 and 11 combined). The combinations gave rise to a minimum number of fractions with similar peptide quantities. The five fractions were vacuum centrifuged to dryness and desalted as above. The fractions were resuspended in formic acid (0.1%, 50 µl). Each sample was analysed in triplicate with 5 µl used for mass spectrometric analysis.

7.3.6 LC-MS/MS

On-line liquid chromatography was performed by use of a Dionex Ultimate 3000 autosampler and Surveyor MS pump (Thermo Fisher Scientific, Bremen, Germany). Peptides were loaded onto a 75 μ m (internal diameter) Integrafrit (New Objective, USA) C18 resolving column (length 10 cm) and separated over a 30 minute gradient from 3.2% to 40% acetonitrile (Baker, Holland). Peptides were eluted directly (\approx 350 nL/min) via a Triversa nanospray source (Advion Biosciences, NY, USA) into a LTQ Orbitrap Velos ETD mass spectrometer (Thermo Fisher Scientific), where they were subjected to data-dependent MS/MS.


7.3.7 Data-dependent MS/MS

The mass spectrometer alternated between a full FT-MS scan (m/z 380-1600) and subsequent higher collision dissociation (HCD) and CID MS/MS scans of the three most abundant ions above a threshold of 5,000. HCD was used solely for quantification and CID for identification. Survey scans were acquired in the Orbitrap with a resolution of 60,000 at m/z 400. Precursor ions were subjected to HCD in the HCD collision cell. The width of the precursor isolation window was 3 m/z. Only multiply-charged precursor ions were selected for MS/MS. HCD was performed with nitrogen gas at a normalized collision energy of 55% and activation time 100 ms. Automated gain control was used to accumulate sufficient precursor ions (target value 10×10^5 , maximum fill time 100 ms). Precursor ions were subjected to CID in the linear ion trap. The width of the precursor isolation window was 2 m/z. CID was performed with helium gas at a normalized collision energy of 35%, activation Q 0.25 and activation time 10 ms. Automated gain control was used to accumulate sufficient precursor ions (target value 10×10^5 , maximum fill time 50 ms).

Dynamic exclusion was used with a repeat count of 1 and exclusion duration of 180 s. Data acquisition was controlled by Xcalibur software V2.1.0 (Thermo Fisher Scientific Inc.).

7.3.8 Data analysis

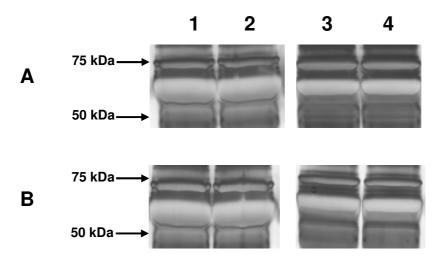
The MS/MS spectra were searched against a concatenated forward and reverse IPI human database v3.72 (173046 entries) using the SEQUEST algorithm in Proteome Discoverer sp 1.0 (Thermo Fisher Scientific). iTRAQ labels, tyrosine and tryptophan nitration and methionine oxidation were specified as variable modifications, with carboxyamidomethylation of cysteine as a static modification. The data were searched with a precursor mass error of 10 ppm and a fragment mass error of 0.5 Da. The search results were filtered using XCorr vs charge state (peptides reporting XCorr values <2.5 for 2+ ions, <3.0 for 3+ ions and <3.5 for 4+ or greater ions are rejected) resulting in a false discovery rate of 2 protein in 49 proteins identified (See figure 7.2 for overview of iTRAQ procedure).

Quantify differences relative to AD group by iTRAQ ratio (A117/ A115)

Figure 7.2. Overview of iTRAQ experiment. Further detail provided in methods section.

7.3.9 Quantification of protein expression differences between groups

Protein quantification was achieved by averaging the iTRAQ ratio of individual peptides for a particular protein; ratios were obtained for individual peptides by dividing the intensity count of the iTRAQ label 117 (Pooled AD sample) by label 115 (Pooled Control sample). After iTRAQ ratios were calculated, normalisation against the mean value of all iTRAQ ratios, when all peptides were considered, was enforced, such that the data was normally distributed with the mean and median values equal to 1. A slight modification to the approach used by Abdi et al. (2006) to define changes in protein expression was employed; changes of more than 50% were considered significant. Changes which were <15% and \geq 15% were defined as having unlikely and uncertain significance respectively.


7.3.10 Western blot analysis and statistics

Western blotting was undertaken as described in **section 2.2.7**. Mouse monoclonal anti- α -2M (AbCam Ltd, Cambridge, UK) was used at 1:10,000 with an appropriate horseradish peroxidase conjugated secondary antibody (1: 50,000). Mouse monoclonal anti-C4a antibody (AbCam Ltd, Cambridge, UK) was used at 1:200 with an appropriate horseradish peroxidase conjugated secondary antibody (1: 2,000). Pooled AD and control samples (10 µg) were assayed in duplicate or triplicate. Optical densities of bands were analysed by user defined volume integration using Quantity One softwareTM (BioRad). Statistical analysis was undertaken as described in section **2.2.10**.

7.4 Results

7.4.1 Albumin depletion

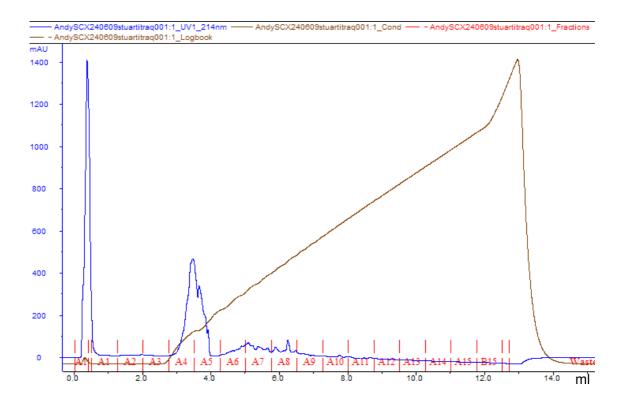

Figure 7.3 shows pooled control and AD plasma samples were successfully depleted of albumin using AurumTM Affi-Gel® Blue columns. A very prominent protein band at approximately 66 kDa is present in non-depleted pooled control plasma as visualised on a silver stained gel (Figure 3a, lanes 1 and 2). This band corresponds to Human Serum Albumin. The intensity and size of this band is decreased in the depleted pooled control plasma sample (Figure 3a, lanes 3 and 4). This difference is also observed between non-depleted and depleted pooled AD plasma (Figure 3b, lanes 1 to 4).

Figure 7.3. Albumin depletion of Pooled plasma samples. A) Non-depleted pooled control sample (lanes 1 and 2) and depleted pooled control sample (lanes 3 and 4). B) Non-depleted pooled AD sample (lanes 1 and 2) and depleted pooled AD sample (lanes 3 and 4). All plasma samples ($20 \mu g$) were loaded in duplicate.

7.4.2 Fractionation of peptides by SCX-HPLC

Figure 7.4 shows the iTRAQ labelled sample was separated into several fractions (A1-B15) using SCX-chromatography. The line with several peaks represents absorption of UV at 214nm for the sample as it passes through the column. The initial peak corresponds to the solvent front, which represents any chemicals which do not bind to the column; subsequent peaks correspond to peptides in the sample. Further peaks correspond to the amount of peptides present; peaks visible later on the chromatogram correspond to peptides which have a higher affinity for the column and bind for longer based on their charge. As demonstrated in figure 7.4 a large quantity of peptides are present in fractions A4 and A5 in contrast to fractions A15 and B15 which have little peptide abundance. Conductance increased linearly as the sample was passed through the column suggesting the gradient had been successful (diagonal line).

Figure 7.4. SCX chromatogram for iTRAQ labelled sample. SCX elution profile of sample: UV absorption at 214nm is represented by line with several peaks, fractions are represented along the x-axis (Labelled A1-B15) and conductance demonstrating a successful linear gradient is shown by the diagonal line running from bottom left to top right of chromatogram.

7.4.3 Protein expression differences between AD and Control

Forty nine proteins present in both AD and control groups were successfully detected using iTRAQ and LC-MS/MS. Of this initial group of proteins two were reverse sequences and six were keratin type precursor proteins. Thirty six of the remaining 41 proteins had > 2 unique peptides and were taken forward for analysis. It was also noted that there was some redundant data. For example 245 peptides were identified for serum albumin precursor protein, of which several different peptides were detected multiple times. As shown in Table 7.1, proteins exhibited variable protein expression between the AD and control group. More specifically no proteins were identified as having significantly altered expression between the two groups. Eleven proteins were found to have altered expression which was considered to be of possible significance; 6 proteins were increased and 5 were decreased in the AD group compared to the control group. Protein expression differences in the remaining twenty five proteins were considered unlikely to be significant.

Protein	#IdI	No. of peptides	No. of peptides Coverage (%)	iTRAQ ratio	SEQUEST Score
Isoform 1 of Serum albumin precursor	00745872.2	245	32.51	1.06 (↔)	2680.81
42 kDa protein	00942787.1	106	26.44	0.93 (↔)	621.52
Serotransferrin	00022463.1	81	23.35	1.03 (↔)	576.59
Alpha-2-macroglobulin	00478003.2	34	6.11	0.89 (↔)	393.51
Ig gamma-3 chain C region	00827754.3	32	14.32	$1.00 (\leftrightarrow)$	289.06
Complement C3 (Fragment)	00783987.2	31	7.10	1.01 (↔)	223.28
Apolipoprotein A1	00853525.1	31	26.12	1.12 (↔)	188.09
Isoform 2 of Fibrinogen alpha chain	00029717.1	24	9.47	(↔) 00.0	170.65
Conserved hypothetical protein	00644497.4	24	10.58	0.77 (Ļ)	156.98
Apolipoprotein A-IV	00304273.2	21	18.94	0.81 (↓)	99.94
Putative uncharacterized protein	0084758.1	21	6.21	(†) 67.0	135.12
cDNA FLJ58075, highly similar to Ceruloplasmin	00947307.1	20	6.45	1.01 (↔)	88.28

Protein	#IdI	No. of peptides	Coverage (%)	iTRAQ ratio	SEQUEST Score
Alpha-1-acid glycoprotein 2	00020091.1	19	13.93	0.86 (↔)	137.41
Hemoglobin subunit beta	IPI00654755.3	18	23.81	1.35 (†)	88.30
Isoform 2 of Alpha-1-antitrypsin	00790784.2	15	7.24	0.78 (Ļ)	199.97
C4A protein	00889723.2	14	2.89	1.15 (†)	80.68
Isoform 1 of Alpha-1-antichymotrypsin	00847635.1	13	8.51	1.06 (↔)	74.78
Fibrinogen beta chain	00298497.3	13	10.59	0.96 (↔)	82.22
Isoform 1 of Gelsolin	00026314.1	13	3.84	1.17 (†)	51.41
Hemopexin	00022488.1	11	6.49	1.16 (†)	84.15
Full-length cDNA clone CS0DD006YL02 of Neuroblastoma of Homo sapiens	00479708.6	10	6.13	1.13 (↔)	62.87
Hemoglobin subunit alpha	00410714.5	6	10.56	1.23 (†)	44.50
Isoform Gamma-A of Fibrinogen gamma chain	00219713.1	8	5.49	0.95 (↔)	50.82
Apolipoprotein B-100	00022229.1	L	0.85	1.08 (↔)	35.42

Protein	#IdI	No. of peptides	Coverage (%)	iTRAQ ratio	SEQUEST Score
25 kDa protein	00940069.1	9	10.68	1.05 (↔)	41.84
Alpha-1B-glycoprotein	00022895.7	6	2.42	0.74 (Ļ)	24.03
IGL@ protein	00829877.1	5	13.36	0.98 (↔)	65.71
Isoform 2 of Vitamin D-binding protein	00954102.1	5	3.43	0.91 (↔)	21.15
Prothrombin (Fragment)	00019568.1	Ŋ	5.14	1.04 (↔)	27.13
Isoform 2 of Nipped-B-like protein	00026466.9	5	0.78	0.97(↔)	23.37
Isoform 1 of Zinc finger CCCH domain-containing protein 13	00329547.3	4	0.42	0.90 (↔)	18.66
SERPINC1 protein	00844156.2	4	8.49	1.19 (†)	20.71
13 kDa protein	00646384.1	4	11.02	0.89 (↔)	12.92
Serum paraoxonase/arylesterase 1	00218732.3	ω	3.10	(↔) 80.0	18.80
Isoform GTBP-alt of DNA mismatch repair protein Msh6	00106847.3	ç	1.03	0.87 (↔)	13.67
CLU	00795633.1	ю	2.68	1.03 (↔)	16.67
			-	•	

changes of more than 50% were considered significant ($\uparrow\uparrow$). Changes which were <15% and $\geq15\%$ were defined as having unlikely (\leftrightarrow) and possible significance (\uparrow) respectively. Only greater than 2 peptides were considered for Table 7.1. Differential plasma protein expression between AD and age-matched control subjects. A slight modification to the approach used by Abdi et al. (2006) to define changes in protein expression was employed; differential protein expression between AD and control groups.

7.4.4 Validation of protein expression data

Plasma proteins α -2M and C4a protein were chosen to validate protein expression data acquired from LC-MS/MS. α -2M was used as a control (i.e. no change in protein expression between groups) and C4a was used as a positive control as it was one of six proteins found to be increased in AD with possible significance.

7.4.4.1 α -2-Macroglobulin

When visualised on a Western blot α -2M forms a band at 173kDa. As shown in figure 7.5, in both pooled AD and control samples there is a distinct band at approximately 170 kDa which corresponds to α -2M. Consistent with LC-MS/MS data (section 7.4.3, table 7.1) there is no difference (Control: 170.76 ± 38.47 OD Vs AD: 188.54 ± 1.79 OD units; p = 0.63, independent samples t-test) in α -2-Macroglobulin levels as assessed by Western blotting.

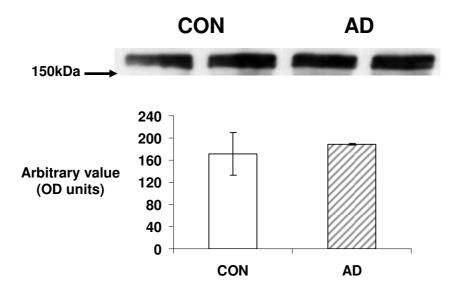


Figure 7.5. α -2M protein expression in control and AD subjects. A band at approximately 170 kDa corresponding to α -2M is evident on a Western blot for control and AD plasma samples. Primary mouse monoclonal anti- α -2M (1:10,000; AbCam, Cambridge, UK) antibody and an appropriate peroxidase conjugated goat anti-mouse secondary (1:50,000; Sigma, UK) were used.

7.4.4.2 Complement 4a protein

Complement 4 is an inflammatory protein which is broken down to form C4a protein which has a molecular weight of 193 kDa. As shown in figure 7.6, a band is present in both pooled AD and control samples at approximately 190 kDa. Consistent with LC-MS/MS data (section 7.4.3, table 7.1) there was a significant increase in C4a protein expression in the pooled AD compared to pooled control sample when assessed by densitometry (Control: 43.78 ± 3.62 OD Vs AD: 69.46 ± 10.21 OD units; p = 0.02, independent samples t-test).

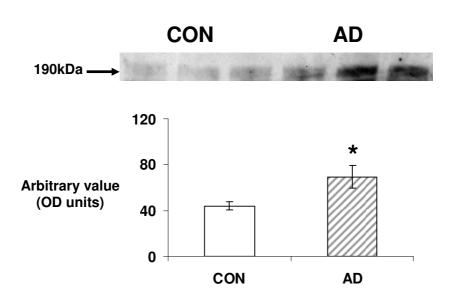
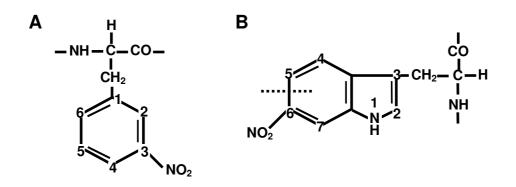



Figure 7.6. C4a protein expression in control and AD subjects. A band at approximately 190 kDa corresponding to C4a protein is evident on a Western blot for control and AD plasma samples. Primary mouse monoclonal anti-C4a (1:250; AbCam, Cambridge, UK) antibody and an appropriate peroxidase conjugated goat anti-mouse secondary (1:2000; Sigma, UK) were used. * p = 0.02.

7.4.5 Modified peptides in AD and control plasma

Forty four peptides were identified as exhibiting an oxidative modification, with twelve of these representing reverse sequences. As shown in Table 7.2, five peptides present in both AD and control plasma were found to contain nitrated tyrosine or tryptophan residues (a schematic diagram of nitrated tyrosine and tryptophan residues are shown in figure 7.7). These peptides correspond to Alkaline Phosphatase, Dynein heavy chain 1 and 11, Glycolipid transfer protein and Thyroid Receptor Interacting Protein 11. In addition, several peptides were shown to be oxidized in both AD and control plasma populations. These peptides are named in Table 7.2, and include Serotransferrin, Fibrinogen β -chain, Isoforms 1, 2 of fibrinogen α -chain, α -2M, Vitronectin, DNA mismatch repair protein, Serum amyloid A-4 protein, serum albumin (Isoforms 1 and 2) and Haptoglobin. They all contained oxidized adducts.

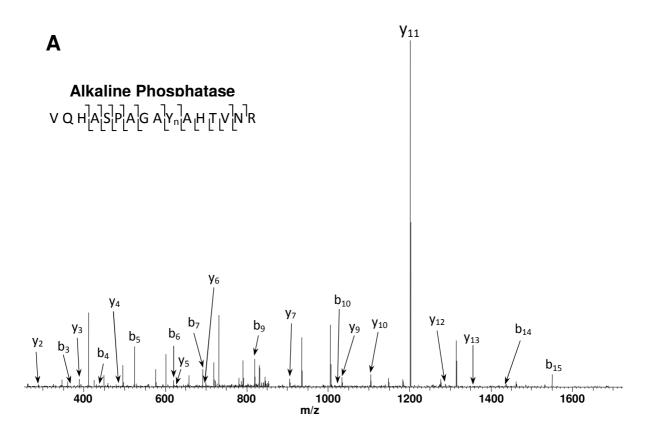
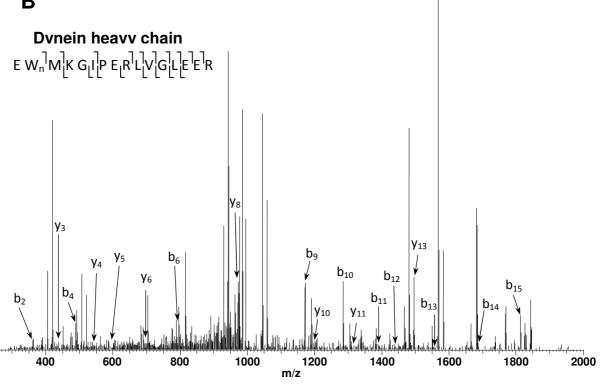
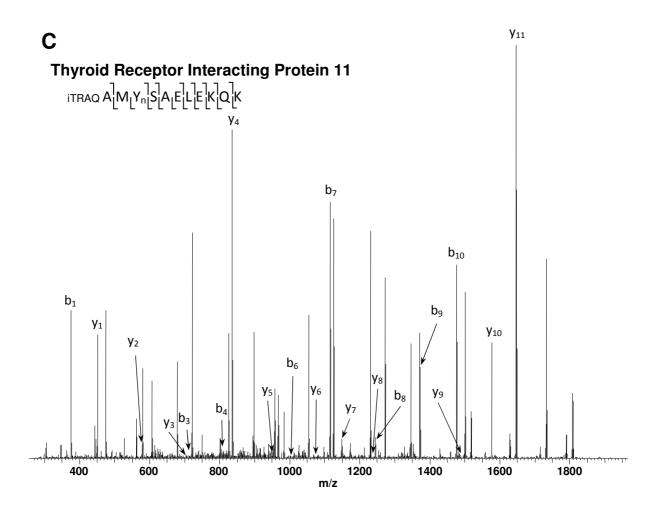


Figure 7.7. Nitrated Tryptophan and Tyrosine residues. 3-nitrotyrosine (A) is formed by the reaction of RNS and tyrosine residues in proteins. Tryptophan has several sites which can be nitrated or oxidized. These include ring positions 2,4,5,7 and the indole imino group (dotted line). $6-NO_2Trp$ (B) is the most abundant nitrated product formed by the reaction of RNS and tryptophan in proteins (B), although $4-NO_2Trp$ and $5-NO_2Trp$ has also been reported (Yamakura and Ikeda, 2006).

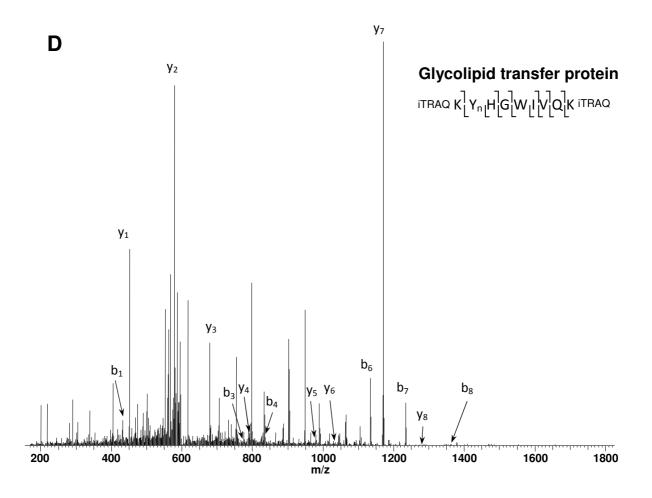
Protein	Amino acid sequence (peptide)	Oxidative Modification	117/115 Ratio	XCorr Score
Alkaline Phosphatase	VQHASPAGAyAHTVNR	Y10 [N]	→	2.55
Dynein heavy chain	EwMKGIPERLVGLEER	W2 [N]	←	2.71
Thyroid receptor interacting protein 11	AMySAELEKQK	Y3[N]	←	2.58
Glycolipid transfer protein	KyHGWIVQK	Y2[N]	←	3.04
Dynein heavy chain 11	ASSITEIwSLNK	W8[N]	←	2.80
Fibrinogen β-chain	IESDVSAQmEYcR	M9[O] C12 [Carbomidomethyl]	←	4.99
α-2-Macroglobulin	VGFYESDVmGR	[0]6W	←	4.57
Serum amyloid A-4 protein	EALQGVGDmGR	[O]6W	←	3.00
Serum Transferrin (Serotransferrin)	KDSGFQmNQLR DSGFQmNQLR	M7[0] M6[0]	←	3.29 3.89
54, 52, 66, 53 kDa protein	YVTSAPmPEPQAPGR	M7[0]	~	3.36
Unknown protein	ILmTVESAK	M3[0]	←	2.72

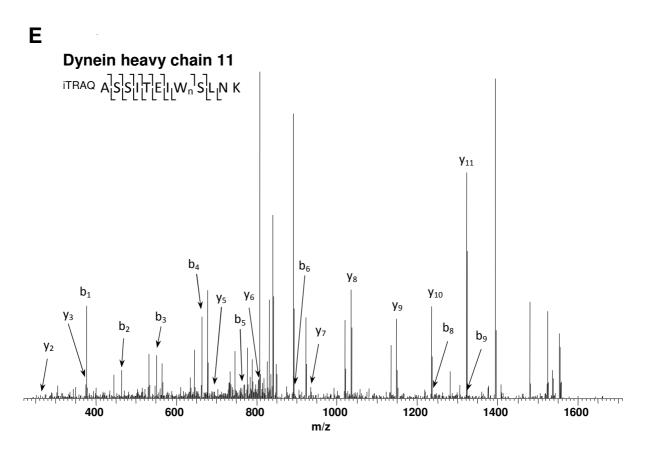

Protein	Amino acid sequence (peptide)	Oxidative Modification	117/115 Ratio	XCorr Score
Vitronectin	DWHGVPGQVDAAmAGR	M13[0]	←	3.09
Fibrinogen α-chain	DSHSLTTNImEILR	M10 [O]	←	3.71
Isoform 1 of serum albumin	ETYGEmADccAK	M6[O], C9,C10[Carbamidomethyl]	←	3.00
Haptoglobin	YVmLPVADQDQcIR	M3[O], C12[Carbamidomethyl]	\rightarrow	5.25
Isoform 2 of serum albumin	AVmDDFAAFVEK	M3[0]	←	3.93
DNA mismatch repair Msh6 protein	RmVTGNGSLKR	M2[0]	←	2.60
Tahla 7.7 I avals of nant	idas containina ovidatival	Tahla 7.3–1 avale of nantidae containing ovidativaly modified recidues in AD and age-matched control plasma. Modified	ra-matchad control n	lasma Modified

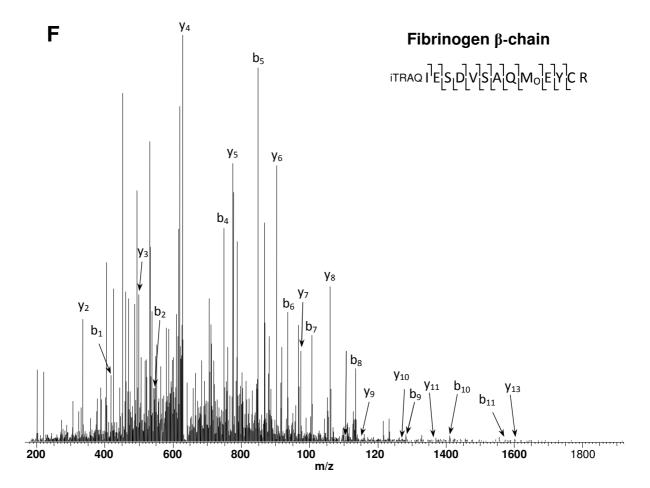
peptides were altered between groups and are indicated by arrows relative to AD. The letters in the modification column refer to the amino acid which is modified and [N] or [O] refers to whether they are modified by nitration or oxidation respectively. Table 7.2. Levels of peptides containing oxidatively modified residues in AD and age-matched control plasma. Modified peptides were present in both AD and control plasma protein, as assessed by iTRAQ and LC-MS/MS. Levels of modified

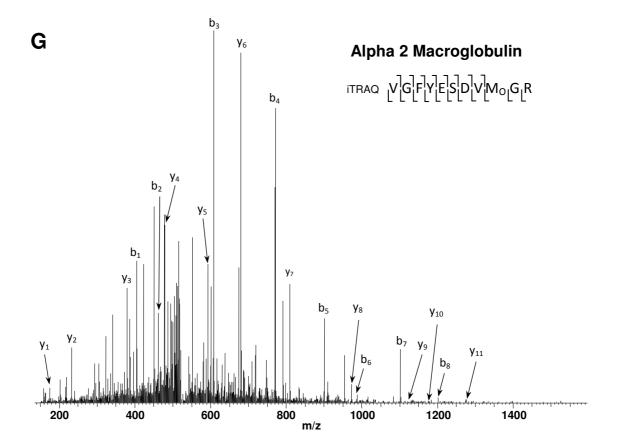


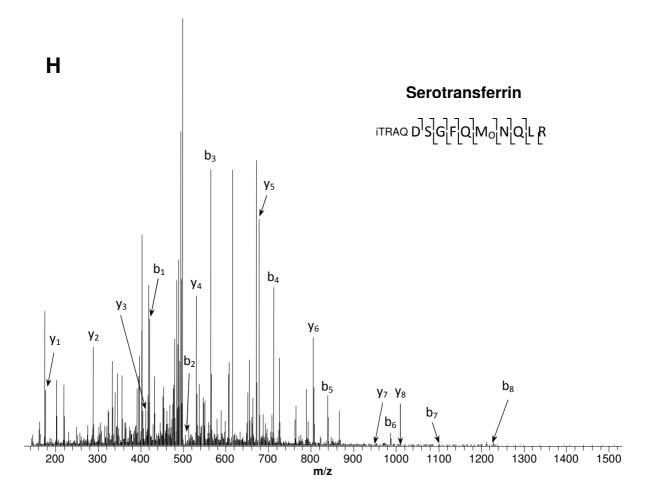
Number	Acid	В [M+H]+		Y [M+H]+		Number
1	V					16
2	Q	228.134		1624.76		15
3	н	365.193	365.18	1496.7		14
4	Α	436.23	436.25	1359.64	1359.56	13
5	S	523.262	523.2	1288.6	1288.64	12
6	Р	620.315	620.31	1201.57	1201.53	11
7	А	691.352	691.38	1104.52	1104.54	10
8	G	748.374		1033.48	1033.39	9
9	А	819.411	819.39	976.46		8
10	Y(Nitration)	1027.46	1027.65	905.422	905.41	7
11	Α	1098.5		697.374	697.85	6
12	Н	1235.56		626.337	626.4	5
13	Т	1336.6		489.278	489.01	4
14	V	1435.67	1435.99	388.23	388.25	3
15	Ν	1549.71	1549.65	289.162	289.36	2
16	R			175.119		1

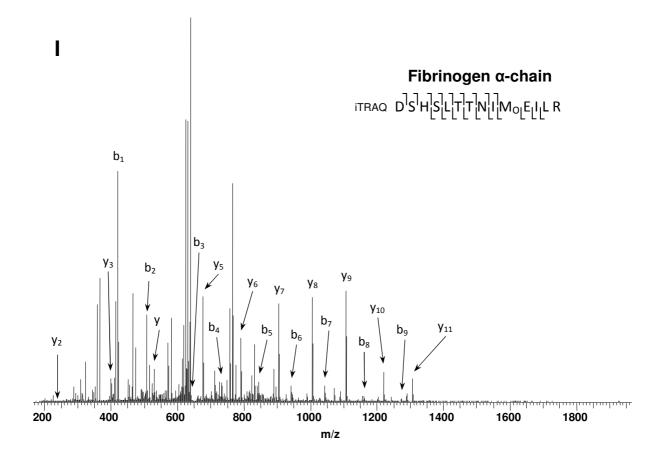

В

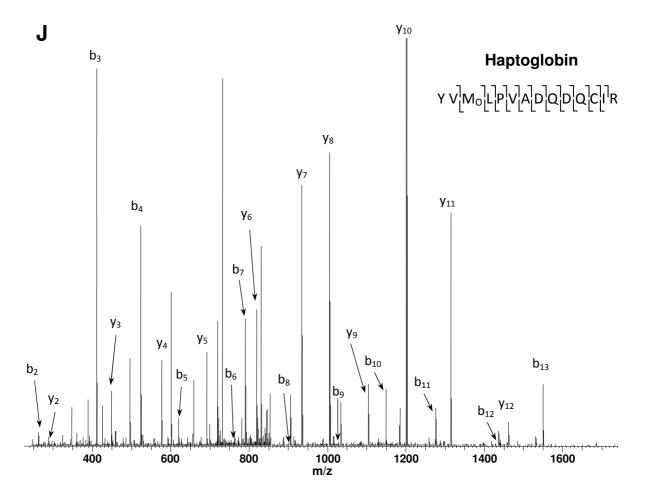

Number	Acid	В [M+H]+		Y [M+H]+		Number
1	E					16
2	– W(Nitration)	361.109	361.28	1857.96		15
3	M	492.15	492.33	1626.9		14
4	К	620.245		1495.86	1495.6	13
5	G	677.266		1367.76		12
6	I	790.35	790.56	1310.74	1310.7	11
7	Р	887.403		1197.66	1197.59	10
8	E	1016.45		1100.61		9
9	R	1172.55	1172.45	971.563	971.9	8
10	L	1285.63	1285.56	815.462		7
11	V	1384.7	1384.7	702.378	702.42	6
12	G	1441.72	1441.62	603.31	603.32	5
13	L	1554.8	1554.87	546.288	546.44	4
14	E	1683.85	1685.72	433.204	433.26	3
15	E	1812.89	1812.85	304.162		2
16	R			175.119		1


Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	Α	376.2497	376.39	1646.836	1646.81	11
2	Μ	507.2902		1575.799	1575.8	10
3	Y(Nitration)	715.3386	715.5	1444.759	1444.86	9
4	S	802.3707	802.53	1236.71	1236.65	8
5	Α	873.4078		1149.678	1149.49	7
6	E	1002.45	1002.45	1078.641	1078.38	6
7	L	1115.534	1115.66	949.5984	949.52	5
8	E	1244.577	1244.71	836.5143	836.51	4
9	K	1372.672	1372.66	707.4717	707.41	3
10	Q	1500.731	1500.68	579.3767	579.41	2
11	K(iTRAQ8plex)			451.3182	451.41	1


Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	ĸ	433.308	432.94	1507.83		9
2	Y(NITRO)	641.356		1379.74	1378.72	8
3	Н	778.415	778.74	1171.69	1171.56	7
4	G	835.436	835.59	1034.63	1034.58	6
5	W	1021.52		977.609	978.5	5
6	I	1134.6	1134.54	791.529	791.45	4
7	V	1233.67	1233.62	678.445	678.49	3
8	Q	1361.73	1362.19	579.377	579.37	2
9	K(iTRAQ8plex)			451.318	451.5	1


Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	Α	376.25	376.34	-		12
2	S	463.28	463.21	1322.66	1322.58	11
3	S	550.31	550.28	1235.63	1235.61	10
4	I	663.4	663.46	1148.59	1148.62	9
5	Т	764.45	764.45	1035.51	1035.55	8
6	E	893.49	893.56	934.46	934.52	7
7	I	1006.57		805.42	805.42	6
8	W(Nitration)	1237.64	1237.63	692.34	692.32	5
9	S	1324.67	1324.52	461.27		4
10	L	1437.75		374.24	374.27	3
11	Ν	1551.8		261.16	261.2	2
12	K	-		147.11		1


Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	I.	418.297	418.44	1603.67	1603.72	13
2	E	547.339	547.35	1490.59		12
3	S	634.371		1361.55	1361.43	11
4	D	749.398	749.45	1274.51	1274.47	10
5	V	848.467	848.5	1159.49	1159.26	9
6	S	935.499	935.49	1060.42	1060.38	8
7	A	1006.54	1006.52	973.387	973.33	7
8	Q	1134.59	1134.53	902.35	902.37	6
9	M(Oxidation)	1281.63	1281.61	774.291	774.34	5
10	E	1410.67	1410.69	627.256	627.29	4
11	Y	1573.74	1573.67	498.213	498.27	3
12	C(Carbamidomethyl)	1733.77		335.15	335.39	2
13	R			175.119		1


Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	V	404.281	404.42	1275.57	1275.81	11
2	G	461.303	461.41	1176.5	1176.65	10
3	F	608.371	608.39	1119.48	1119.77	9
4	Y	771.434	771.3	972.409	972.42	8
5	E	900.477	900.5	809.346	809.37	7
6	S	987.509	987.59	680.303	680.32	6
7	D	1102.54	1102.45	593.271	593.29	5
8	V	1201.6	1201.56	478.244	478.32	4
9	M(Oxidation)	1348.64		379.176	379.38	3
10	G	1405.66		232.14	232.24	2
11	R			175.119	175.15	1

Number	Acid	В [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	D	420.24	420.47	1211.55		10
2	S	507.272	507.41	1096.52		9
3	G	564.293	564.33	1009.49	1009.4	8
4	F	711.362	711.43	952.467	952.64	7
5	Q	839.42	839.46	805.399	805.4	6
6	M(Oxidation)	986.456	986.42	677.34	677.46	5
7	Ν	1100.5	1100.56	530.305	530.36	4
8	Q	1228.56	1228.48	416.262	416.47	3
9	L	1341.64		288.203	288.48	2
10	R			175.119	175.31	1

Number	Acid	B [M+H]+		Y [M+H]+		Number
	iTRAQ8plex					
1	D	420.24	420.54	-		14
2	S	507.28	507.43	1530.79		13
3	Н	644.34	644.49	1443.76		12
4	S	731.37	731.48	1306.7	1306.62	11
5	L	844.45	844.55	1219.67	1219.6	10
6	Т	945.5	945.55	1106.59	1106.57	9
7	Т	1046.55	1046.61	1005.54	1005.54	8
8	Ν	1160.59	1160.56	904.49	904.61	7
9	I	1273.67	1273.58	790.45	790.58	6
10	M(Oxidation)	1420.71		677.37	677.51	5
11	E	1549.75		530.33	530.5	4
12	I	1662.84		401.29	401.73	3
13	L	1775.92		288.2	288.7	2
14	R	-		175.12		1

Number Acid		B [M+H]+		Y [M+H]+		Number	
1	Y					14	
2	V	263.139	263.27	1560.75		13	
3	M(Oxidation)	410.174	410.29	1461.68	1461.59	12	
4	L	523.259	523.2	1314.65	1314.57	11	
5	Р	620.311	620.32	1201.56	1201.53	10	
6	V	719.38	719.4	1104.51	1104.52	9	
7	А	790.417	790.5	1005.44	1005.48	8	
8	D	905.444	905.47	934.405	934.46	7	
9	Q	1033.5	1033.55	819.378	819.43	6	
10	D	1148.53	1148.47	691.319	691.39	5	
11	Q	1276.59	1276.49	576.292	576.31	4	
12	C(Carbamidomethyl)	1436.62	1436.53	448.234	448.31	3	
13	I	1549.7	1549.59	288.203	288.34	2	
14	R			175.119		1	

Figure 7.8. Raw MS sequencing data for oxidative modifications. Representative raw MS spectra are displayed for tryptophan and tyrosine nitration, and oxidized methionine modifications. The peptide sequence and 'b' and 'y' ion fragmentation are shown for each individual chromatogram (relative abundance and m/z values on y and x-axis respectively). Representative raw MS chromatograms for: A) Alkaline phosphatase; C) Thyroid receptor interacting protein 11; and D) Glycolipid transfer protein represent examples of tyrosine nitration. Representative raw MS chromatograms for: B) Dynein heavy chain; and E) Dynein heavy chain 11 represent examples of tryptophan nitration. Representative raw MS chromatograms for: G) Alpha 2-Macroglobulin; H) Serotransferrin; I) Fibrinogen α -chain; and J) Haptoglobin represent examples of methionine oxidation.

7.5 Discussion

The main outcome of this study was the identification of a small number of peptides which were observed to carry either carbonylation or nitration adducts in disease and control samples. In addition several plasma proteins were identified as having altered expression in AD compared to controls. It is not practical to discuss exhaustively all of the altered proteins in detail; thus the discussion will focus on peptides demonstrated to contain oxidized adducts, considered to be particularly interesting in relation to AD. Moreover, discussion of protein expression changes from the presented iTRAQ work will be limited to those proteins validated by Western blotting.

Transition metals have the capacity to undergo reduction and oxidation reactions and as such have the potential to be involved in free radical reactions. The most abundant transition metal in the body is iron (Fe). Fe always exists in a bound state, normally with a protein, and when stored or transported is chelated by the specific iron binding proteins ferritin and transferrin (Tf) respectively (McCord, 2004). In AD brain it has been shown that iron and iron binding proteins are altered, with accumulation of iron in AD hippocampal tissue a source of free radicals which likely contributes towards oxidative damage evident in this disease (Connor et al., 1992; Smith et al., 1997a). In addition it has also been suggested that changes to iron binding protein levels in serum may indicate that these changes manifest themselves as peripheral markers (Smith et al., 1997a).

In this work it was observed that there was a greater amount of individual peptides in AD plasma compared to control subjects corresponding to Serotransferrin (serum Tf) which contained an oxidized methionine. This finding is of particular interest as a previous study by

Yu and colleagues (2003) also identified that serum Tf exhibits increased oxidation in AD compared to control patients. One may speculate that such modifications to serum Tf may alter iron homeostasis and thereby play a role in AD by increasing FR induced bio molecular damage (e.g., lipid peroxidation). However, whether oxidative modification to serum Tf contributes to AD development, or is a secondary event of this disease remains unclear.

A further finding of the work presented in this chapter was the identification of a peptide altered by oxidation which corresponded to Haptoglobin (Hp). Hp is a glycoprotein present in human plasma which functions to sequester free-haemoglobin (Hb) released from erythrocytes into the blood. Due to the oxidative nature of the iron containing heme group present in Free-Hb, free radicals can be readily formed. Consequently, Hp is considered to provide a crucial protective effect against oxidant damage induced by Hb (Kato, 2009). In a recent study Tseng et al. (2004) demonstrated that Hp was a potent antioxidant in LDL oxidation. This result coupled to previous experiments by the group which showed that the antioxidant potency of Hp exceeded that of Probucol (a drug commonly used to treat atherosclerosis), led the authors to suggest that theoretically, at the cellular level, Hp could play an important role as a natural antioxidant in protection against atherosclerosis (Tseng et al., 2004). Protein oxidation can alter how a protein functions; the altered levels of peptides containing oxidation adducts identified in this work may therefore potentially impact on the natural antioxidant function of Hp. Although further investigation is warranted to confirm this finding, altered antioxidant function of Hp may have implications in AD, given its strong association with vascular disease (Hofman et al., 1997; Ott et al., 1996).

The thyroid hormone receptor (TR) belongs to the nuclear receptor superfamily and is a ligand activated transcription factor that controls multiple biological functions. The main ligand for TR is 3, 5, 3'-triiodothyronine (T3), which results from the deiodination of thyroxine (T4) (Flamant et al., 2006). Upon binding, T3 induces a conformational change to TR which results in transcriptional activation of the receptor, by allowing and preventing coactivator and corepressor interactions respectively (Flamant et al., 2006). In this study thyroid receptor interacting protein 11 (TRIP11) was found to contain a nitrated tyrosine residue, of which there was a greater amount present in AD compared to control plasma. Although there appears to be no direct literature concerning TRIP11, the role of a 230 KDa protein named TRIP230, which corresponds to the C-terminal region of TRIP11, has been investigated (Chang et al., 1997). TRIP230 is a coactivator which binds the thyroid receptor in a T3 dependent manner and enhances transcription of the activated receptor (Chang et al., 1997). Although its biological function has yet to be fully elucidated, it has been suggested that it may have coactivator functions related to the cell cycle and be regulated at the posttranslational level (Chen et al., 1999). A link between thyroid hormones and AD neuropathology does exist, with high levels of these demonstrated to regulate gene expression and decrease APP expression in adult mouse brain (O'Barr et al., 2006). One may speculate that the presence of a nitration adduct, as identified here, may have implications for such processes in AD. For example the nitration of TRIP11 may alter its interaction with the TR and prevent transcription of specific target genes.

These specific modifications to the aforementioned plasma proteins provide an initial point of interest that warrants further investigation. First, they require validation by a different technique and secondly functional tests should be employed to determine their biological relevance.

iTRAQ coupled to MS analysis identified several plasma proteins that were differentially expressed between AD and control samples, as assessed by iTRAQ coupled to MS analysis. In order to validate these protein expression data two plasma proteins were selected for Western blotting; α -2M was chosen as its expression, as measured by iTRAQ remained unchanged, and C4a protein was chosen as its expression, as measured by iTRAQ was increased by 15% in the pooled AD sample compared to the pooled control sample. Western blotting studies validated and verified these findings.

This work demonstrated that plasma α -2M levels are equivalent between AD and control samples which is in agreement with a number of previous studies in peripheral tissue (Blennow et al., 2000; Scacchi et al., 2002). The finding is however, in contrast to one recent study by Hye et al. (2006) who reported increased α -2M plasma levels in AD compared to controls patients using 2-DE, which was validated by Western blotting using a separate cohort of samples. A further result of this work was the demonstration that α -2M contained an oxidized adduct in AD and control plasma. It has been shown that oxidation at physiologically relevant concentrations can inactivate α -2M (Wu and Pizzo, 1999). Moreover, in Rheumatoid Arthritis, an inflammatory disease associated with increased tissue destruction, levels of oxidized α -2M are increased (Wu and Pizzo, 2001). The authors of both of these studies suggested that oxidative modification to α -2M may affect its binding affinity for inflammatory proteins and enhance tissue damage during inflammation (Wu and Pizzo, 2001; Wu and Pizzo, 1999).

Although the oxidative modification data for α -2M requires further investigation, in the context of AD this finding is of particular interest. One may speculate that oxidation to this specific plasma protein (e.g., α -2M) in AD may partially contribute to the disease by enhancing tissue damage and stimulating inflammation (Akiyama et al., 2000). In addition, this work builds on that presented in Chapter 5, where α -2M was tentatively shown to be nitrated in AD, validating that nitration was increased and not protein expression.

This study also showed increased C4a protein expression in AD compared to control plasma by LC-MS/MS analysis, which was further validated by Western blotting. C4a acts as a weak mediator of inflammation and is produced on cleavage of Complement 4 protein. Indeed a strong link between inflammation and the functional changes evident in AD has been made, which has been discussed comprehensively in a review by Akiyama et al. (2000). In brain tissue a role for the complement 4 proteins in AD has been suggested. In early studies Complement 4 and its cleavage products were reported to be present in close proximity to senile plaques and neurofibrillary tangles (Eikelenboom and Stam, 1982; McGeer et al., 1989). In addition, the expression of five plasma proteins was shown to be reduced in AD, with these changes being of possible significance. The data presented in this study showed that α -1-glycoprotein plasma protein expression was markedly reduced; interestingly its expression has also been shown to be decreased in CSF from AD patients (Puchades et al., 2003), although its biological function remains unknown.

One important issue that requires discussion is the consideration of sample preparation when undertaking proteomic analysis. In this work the decision was made to use pooled samples instead of individual samples, which may be considered a limitation. This decision was based on two recent studies which suggested that the use of pooled samples, rather than individual samples, was more productive when employing proteomics to analyse the AD CSF proteome (Zhang et al., 2005; Abdi et al., 2006). The main disadvantage of using individual samples is the inability to distinguish whether a change observed in a sample is due to the nature of that particular individual or the disease itself (Zhang et al., 2005; Abdi et al., 2006). The use of pooled samples removes this problem and effectively creates a representative disease sample. A further consideration when undertaking proteomic analysis in plasma is the presence of highly abundant proteins such as albumin. These proteins may cloud or mask the presence of low abundant proteins (Righetti et al., 2005). As a consequence pooled samples were depleted of albumin and then fractionated to enable a more detailed analysis of the AD and control plasma proteomes.

In summary this study successfully used iTRAQ coupled to MS/MS analysis to identify peptides which contained nitration and oxidation adducts in AD and control plasma. These initial data require further investigation by firstly selecting and validating proteins of interest and then determining the effect of oxidative modifications at these particular sites on their function.

Chapter 8

General Discussion

8.1 Introduction

The main aim of the studies presented in this thesis was to evaluate oxidative stress in Alzheimer's disease (AD) plasma and more specifically to assess oxidative modifications to individual plasma proteins. It is widely accepted that oxidative stress increases with ageing, and in recent years it has become apparent that in age-related diseases such as AD, these levels are further increased above what is considered normal healthy ageing (Markesbery, 1997). Oxidative damage to proteins (e.g., carbonylation, nitration) maybe of particular importance as it impacts upon how a protein functions (Friguet, 2006). In AD this may be of particular relevance when considering disease pathology, for example glycolytic enzymes, modified by oxidation, may be linked to the decreased glucose metabolism associated with AD (Castegna et al., 2002b; Costantini et al., 2008). In this work it was hypothesised that specific plasma proteins, likely to be vascular, would be targets for oxidative modification in AD, and that such changes would be potentially important when considering and understanding peripheral oxidative stress in AD.

Within AD research, studies using brain tissue are still of primary importance when assessing disease pathology, however one drawback is that these studies are conducted postmortem. As a consequence, determining oxidative changes during the progression of the disease is near impossible using such methodologies. Further, the monitoring of interventions such as antioxidant supplementation is not possible. Peripheral tissues such as plasma and cerebrospinal fluid (CSF) provide a means of undertaking such work. The acquisition of plasma is less invasive than CSF collection (Hye et al., 2006) and contains proteins reflective of processes which occur in the body (Veskoukis et al., 2009). In addition, 500mls of CSF, which is in direct contact with the brain and is reflective of processes which occur in the brain, is turned over into plasma each day (Davidsson and Sjogren, 2006; Hye et al., 2006). Therefore changes in plasma represent global and vascular changes in oxidative stress which occur in AD, and may also present potential biomarkers for this disease. The results presented here suggest that overall plasma protein oxidation levels are not different when AD and normally aged individuals are compared, and that individual plasma proteins are specific targets for oxidative modification in AD. This thesis explores different methodologies to assess oxidative changes in AD. Importantly, it highlights some of the difficulties encountered when attempting to identify particular modified proteins using classical gel based proteomics. In addition it demonstrates that emerging novel and powerful mass spectrometry techniques can be employed to identify several proteins modified by oxidation, providing an initial starting point for further investigation.

8.2 Main findings

In **Chapter 3** broad based oxidative stress markers were evaluated in addition to the oxidation status of low density lipoprotein (LDL). Due to the strong association between atherosclerosis and AD from population based studies (Hofman et al., 1997), coupled with the demonstration that the susceptibility of LDL to oxidation in plasma and CSF is increased in AD (Bassett et al., 1999; Schippling et al., 2000), it was hypothesised that plasma LDL oxidation would be increased in AD. The results from this study demonstrated that oxidized LDL was increased in AD and confirmed this hypothesis. This observation suggests that vascular changes such as oxidized LDL may partly contribute to AD pathology as the increased levels were significantly higher in AD sufferers, over and above the normal increased levels of oxidized LDL expected with age. Indeed, although patients with cardiovascular disease were excluded from this work, all subjects are still likely to have a

degree of atherosclerosis, given that hardening of arteries is an early event in life which progresses with age. To see levels of oxidized LDL in AD over and above that of controls, suggested that this change was related to disease.

Total levels of plasma lipid peroxides and plasma protein oxidation were unchanged in AD compared to control subjects. These results support the majority of reports in the current literature. One possible argument is that severity of the disease may influence protein oxidation levels (Bermejo et al., 2008; Ansari and Scheff, 2010) and therefore no significant difference in levels may be evident when comparing AD and control subjects which involve sufferers of differing disease severity. Results presented in **Chapter 3** support substantial evidence which suggests that specific plasma proteins are targets of oxidation (e.g., LDL). A global change in protein oxidation may therefore not be the important issue that requires investigation. Moreover, establishing a group of proteins that are altered, in the quest to further understand peripheral oxidative changes and develop a biomarker, is of more importance.

A high throughput measure of protein nitration is of particular interest as it may represent a footprint of the potent peroxynitrite radical (ONOO⁻), and may contribute to further understanding disease pathology. On this premise the main focus of **Chapter 4** was to develop an ELISA for the semi-quantification of total protein nitration. This approach had been previously used successfully in other diseases associated with oxidative stress (Ceriello et al., 2001; Bekpinar et al., 2005). However, the data presented in this thesis suggests that most samples were below the detection limit of HPLC-ECD (1 μ M) and an indirect ELISA (5 nM), and therefore that this approach lacked the sensitivity required for this measurement.

In a comprehensive study recently undertaken by Korolainen and Pirttilä (Korolainen and Pirttila, 2009) 3-nitrotyrosine levels in AD CSF, plasma and serum were assessed by commercial ELISA. In agreement with the findings produced in this thesis, levels of nitration from samples analysed in this aforementioned study were below the detection limit of the assay (2 nmol/l).

Following on from work in **Chapter 4**, a different strategy was employed in **Chapter 5** in an attempt to obtain a semi-quantitative measure of protein nitration. The Griess Assay and 1-DE coupled to Western blotting were employed to measure nitric oxide (NO[•]) levels and plasma protein nitration respectively. Results showed that plasma nitric oxide metabolites (NO_2^{-1}/NO_3^{-1}) were reduced in AD, which is in agreement with several recent studies and adds weight to the observation that endothelial dysfunction is a characteristic of AD pathology (Selley, 2003). From the outset this work aimed to look at the association of nitric oxide levels and total plasma protein nitration, and it was proposed that 3-nitrotyrosine may be increased concurrently with a decrease in nitric oxide levels. This was based on the concept that NO' would react with superoxide anions to form ONOO⁻ and nitration of proteins. However, the results were inconclusive as problems with antibody non-specificity prevented accurate quantification of total nitration levels. That said, several nitrated proteins were observed and one of these, which corresponded to α -2 Macroglobulin (α -2M), was increased in AD compared to control subjects. Although one cannot rule out a change in global levels of nitration from these data, it does demonstrate that a specific protein is a target for oxidative modification (e.g., nitration) which is in agreement with the observations from Chapter 3. Moreover total protein carbonylation levels were consistent between groups confirming initial data from Chapter 3 in a separate cohort of plasma samples.

The use of redox proteomics to identify specific plasma proteins which undergo oxidation was the main focus of **Chapter 6**. One plasma protein was found to undergo oxidation in AD compared to control subjects, although accurate identification of this protein could not be achieved due to low abundance, despite efforts using further techniques to do so. Work in this chapter used non-depleted samples which may be considered a limitation due to presence of high abundant proteins.

Following the inability to gain a protein identity in **Chapter 6**, non-gel based proteomics was employed to assess protein expression and modification in AD compared to control. The use of non-gel based proteomics is emerging as a powerful technique which can be utilized to discovery plasma based biomarkers and complement existing 2-DE based methods. The results presented in **Chapter 7** show several site specific oxidative modifications to proteins in both AD and control plasma. These oxidative modifications presented in both populations warrant further investigation. In addition the altered expression of several plasma proteins which were of possible significance was investigated. The expression of one of these plasma proteins, Complement 4a, was shown to be significantly increased in AD compared to control subjects. In contrast, the expression levels of α -2M were shown to be equivalent between AD and control subjects. Taken together, the results presented in **Chapter 5** and **Chapter 7** suggest that α -2M plasma protein expression remains unchanged, but that its nitration status is increased in AD.

8.3 Findings in context of existing literature

8.3.1 Equivalent plasma protein oxidation

When considering all broad measurements of oxidative stress presented in this thesis, it is apparent that total protein oxidation levels are unchanged in AD compared to control subjects. Despite some conflicting reports, this is in agreement with the majority of recent studies which assess this generic marker of oxidative stress (Baldeiras et al., 2008; Polidori et al., 2004; Pulido et al., 2005; Zafrilla et al., 2006). A potential explanation for equivalent protein oxidation levels is that disease severity may affect oxidative stress levels. There are studies which agree (Bermejo et al., 2008; Ansari and Scheff, 2010) and disagree (Zafrilla et al., 2006) with this idea as previously discussed.

The data from this thesis demonstrate that at least two plasma proteins (i.e. LDL and an unknown plasma protein) exhibit increased oxidation in AD, but that total protein oxidation remains equivalent when assessing total protein carbonylation (Aldred et al., 2009). As the plasma proteome is composed of thousands of proteins at any one given time, the oxidation of a few specific proteins may not be enough to cause a global change. This would support studies in AD brain tissue, where specific proteins have been shown to be oxidized, nitrated and lipoxidized (Castegna et al., 2002b; Castegna et al., 2003; Pamplona et al., 2005). It may well be the case that investigating particular plasma proteins which are targets of oxidative modification may provide more information on disease process, rather than a measurement of oxidative stress in whole plasma in AD.

8.3.2 Complementing gel based proteomics with non-gel based proteomics

Classically gel-based proteomics has been used to assess protein expression changes to the plasma proteome in disease states, and to a lesser extent oxidative modifications which occur. However more recently it appears that proteomics is moving away from classical gelbased methods to non-gel based methods when assessing the plasma proteome for protein expression changes in AD (Abdi et al., 2006; Choe et al., 2007). For example Lovestone and co-workers have used gel based methods to successfully identify plasma proteins which are altered in expression in AD (Hye et al., 2006), but have more recently used iTRAQ labelling coupled to mass spectrometry to complement this early work and discover several more proteins which have altered expression (Guntert et al., 2010). Given the recent improvement of isobaric labelling strategies coupled to mass spectrometry (Chiappetta et al., 2009) a non gel-based redox proteomic approach may also complement gel based redox proteomics. Work presented in this thesis suggests such an approach can be undertaken as non-gel based proteomics was employed to successfully identify specific sites of oxidative modification to plasma proteins in AD and control subjects. Where the technology perhaps still lacks, is in identifying modifications which are unique to the disease process.

8.3.3 Measurement of plasma 3-nitrotyrosine in AD

In this thesis two analytical techniques were employed to analyse 3-nitrotyrosine levels in biological fluids which included HPLC-ECD and antibody based methods. The actual physiological levels of 3-nitrotyrosine in normal and diseased subject's plasma remain open for debate, with conflicting data available in the literature. Basal levels of 3-nitrotyrosine using all of the analytical techniques mentioned are quite varied and range from undetectable to between 1 and 64 nM (Tsikas and Caidahl, 2005). The general consensus is that under

normal conditions, levels of free and bound 3-nitrotyrosine are low, but levels become elevated in conditions associated with increased oxidative stress (Souza et al., 2008).

In this work ELISA with a detection limit of 5 nM was used in order to provide a high throughput semi-quantitative measure of 3-nitrotyrosine in AD and age-matched control plasma. Levels of 3-nitrotyrosine were only detectable in a minority of plasma samples by HPLC-ECD (detection limit 1 μ M) and only two out of 24 plasma samples were detectable by ELISA (detection limit 5 nM). Indeed in a recent study Korolainen and Pirttilä (2009) were unable to detect nitration using a commercial ELISA with a detection limit of 1nM in the majority of large cohort of AD CSF and plasma samples. In AD peripheral tissue 3-nitrotyrosine levels have been reported as 0.44 ± 0.031 nM and 11.4 ± 5.4 nM in studies by two separate groups using HPLC with electrochemical detection and gas chromatography-tandem mass spectrometry (Tohgi et al., 1999; Ryberg et al., 2004). From the data presented in this thesis and the aforementioned studies it is highly likely that plasma levels of 3-nitrotyrosine in AD are in the low nanomolar range. Therefore more sensitive analytical techniques need to be used to detect this analyte and determine whether total levels of free and bound 3-nitrotyrosine are actually altered in AD plasma.

8.4 Future directions

8.4.1 Oxidative stress in vascular dementia

There is a requirement to distinguish between different types of dementia to enable more suitable and directed therapies. Understanding the role of oxidative stress in different types of dementia will enable further characterisation of dementia and may contribute to biomarker discovery. Although several studies have compared markers of oxidative stress between Mild Cognitive Impairment and AD, limited work has focussed on oxidative changes between vascular dementia (VaD) and AD. A link does exist between oxidative stress and VaD given that increased free radical production is associated with cerebral ischemia (Zini et al., 1992), a risk factor for vascular type dementias.

There are studies supporting a role for oxidative stress in VaD, with most to date investigating the lipid peroxidation product MDA. For example, MDA levels have been shown to be increased in AD and VaD patients over the ages of 65 (Casado et al., 2008), and in a very recent study Gustaw-Rothenberg et al. (2010) reported MDA levels to be increased in VaD and AD compared to controls. Interestingly this study highlighted a significant 3.4 fold increase in levels in VaD compared to AD. Notably there are only limited or in fact no measurements of protein carbonylation and nitration in VaD and AD comparison studies (Polidori et al., 2004).

Further investigations which compare a wide range of oxidative stress measurements are warranted in order to clarify the role of oxidative stress in VaD, and more specifically oxidative differences between AD and VaD. An extension of existing studies may be to undertake redox proteomic research to identify specific plasma proteins which are differentially altered between these two types of dementia.

8.4.2 Exercise as a therapeutic intervention for AD

A future direction and an extension of the work presented in this thesis would be to evaluate the effect of exercise on markers of oxidative stress in AD, with plasma being an ideal source due to the non-invasive nature of its collection. The benefits of exercise in AD are well documented: Larson et al. (2006) reported that regular exercise is associated with delayed the onset of Alzheimer's type dementia. Further studies have shown exercise training resulted in improved cognition in fifteen patients with senile dementia (Palleschi et al., 1996); and improved capacity to perform everyday tasks in addition to improving muscle strength and flexibility in AD patients (Santana-Sosa et al., 2008). Given the recent demonstration by Donnelly and co-workers (2008) that cardiovascular fitness is comparable between demented and non-demented patients, in addition to oxidative stress being an early event in AD (Nunomura et al., 2001), a walking exercise test in this elderly population in the earliest stages of this disease is most definitely plausible.

When considering oxidative stress as an AD pathology, then exercise may be used to explore the AD disease process. Oxidative stress and free radical production during exercise has been well studied. Early work by Davies et al. (1982) suggested that exercise may be detrimental as it was demonstrated that free radicals were produced in rat skeletal muscle after running to exhaustion, and more recently increased free radical generation in rat skeletal muscle, after an acute bout of exhaustive exercise, was shown to be accompanied by increased oxidative stress (Bejma and Ji, 1999). However, Vina and co-workers (2000) found that oxidative stress occurred during exercise, but only when it was exhaustive.

Additionally, more recent research has shown exercise induced radical production to be essential for adaptation and signalling processes, thus suggesting that the production of ROS, during moderate intensity exercise, may be beneficial. Work by Navarro et al. (2004) demonstrated that moderate exercise in ageing mice reduced markers of oxidative damage (e.g., protein carbonyls and TBARS) in the sub mitochondrial fractions from organs

198

including the brain. Exercise also increased the activities of antioxidant enzymes (e.g., Mn-SOD, Cu, Zn-SOD and catalase) in these organs (Navarro et al., 2004; Boveris and Navarro, 2008), and this was paralleled with improvements in behavioural tests. A more recent study by Gomez-Cabrera et al. (2005) showed that ROS generated during exercise activates NFkB, which results in increased expression of important antioxidant enzymes such as Mn-SOD and GPx. This study highlights the importance of ROS produced during exercise for their role in cellular adaptations. Such studies have led to a growing opinion amongst exercise physiologists that moderate intensity exercise may itself be an antioxidant (Gomez-Cabrera et al., 2008).

In AD specifically, animal studies have shown that exercise can reduce A β 42 peptide and improve behavioural function in transgenic mice (Um et al., 2008). Moreover, increases in neurotrophins (e.g., BDNF), heat shock protein 70 and antioxidant enzymes (e.g., SOD-1 and catalase) were also observed in exercised compared to sedentary transgenic mice (Um et al., 2008). These data support a role for exercise as a therapeutic strategy for the treatment of AD (Um et al., 2008) and may suggest that an improvement to the antioxidant defence system is one underlying mechanism by which exercise may exert its effect.

8.5 Conclusions

In conclusion, the series of studies conducted throughout this thesis suggest that particular plasma proteins are targets for oxidation, rather than oxidation events being random in nature. When considering LDL, it is likely that it is specifically oxidized in AD plasma as a result of its intimate involvement in the development of atherosclerosis, an established risk factor for this disease, instead of occurring as a consequence of AD. In contrast, other plasma proteins such as α -2M, which was found to exhibit an oxidized adduct, may be specifically targeted for oxidation due to the impact this modification has on their function. It has been proposed that oxidation to α -2M acts as a switch mechanism by down regulating acute inflammation and up-regulating tissue repair by sequestering cytokines and releasing growth factors respectively. This may be relevant in AD, a condition which is strongly linked with inflammation.

In addition, questions still remain as to whether free or bound 3-nitrotyrosine plasma levels are altered in AD, given the difficulties encountered during this thesis when assessing plasma protein nitration. Further experiments are therefore required which use analytical methods sensitive enough to accurately measure global 3-nitrotyrosine in plasma. Finally, the use of gel based and non-gel based proteomics identified plasma proteins which are targets for oxidative modification. This work requires further exploration to identify significant modifications which may be implicit in AD pathology.

Chapter 9

References

Reference List

(1985). Criteria for the clinical diagnosis of Alzheimer's disease. Excerpts from the NINCDS-ADRDA Workgroup report. J. Am. Geriatr. Soc. *33*, 2-3.

(1998). Consensus report of the Working Group on: "Molecular and Biochemical Markers of Alzheimer's Disease". The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol. Aging *19*, 109-116.

Abdi,F., Quinn,J.F., Jankovic,J., McIntosh,M., Leverenz,J.B., Peskind,E., Nixon,R., Nutt,J., Chung,K., Zabetian,C., Samii,A., Lin,M., Hattan,S., Pan,C., Wang,Y., Jin,J., Zhu,D., Li,G.J., Liu,Y., Waichunas,D., Montine,T.J., and Zhang,J. (2006). Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers. Dis. *9*, 293-348.

Adkins, J.N., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H., Smith, R.D., Springer, D.L., and Pounds, J.G. (2002). Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell Proteomics. *1*, 947-955.

Akiyama,H., Barger,S., Barnum,S., Bradt,B., Bauer,J., Cole,G.M., Cooper,N.R., Eikelenboom,P., Emmerling,M., Fiebich,B.L., Finch,C.E., Frautschy,S., Griffin,W.S., Hampel,H., Hull,M., Landreth,G., Lue,L., Mrak,R., Mackenzie,I.R., McGeer,P.L., O'Banion,M.K., Pachter,J., Pasinetti,G., Plata-Salaman,C., Rogers,J., Rydel,R., Shen,Y., Streit,W., Strohmeyer,R., Tooyoma,I., Van Muiswinkel,F.L., Veerhuis,R., Walker,D., Webster,S., Wegrzyniak,B., Wenk,G., and Wyss-Coray,T. (2000). Inflammation and Alzheimer's disease. Neurobiol. Aging *21*, 383-421.

Aksenov, M.Y., Aksenova, M.V., Butterfield, D.A., Geddes, J.W., and Markesbery, W.R. (2001). Protein oxidation in the brain in Alzheimer's disease. Neuroscience *103*, 373-383.

Aldred, S., Bennett, S., and Mecocci, P. (2009). Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease. Clin. Biochem.

Aldred, S., Grant, M.M., and Griffiths, H.R. (2004). The use of proteomics for the assessment of clinical samples in research. Clin. Biochem. *37*, 943-952.

Alonso, A.C., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A *91*, 5562-5566.

Aluise, C.D., Sowell, R.A., and Butterfield, D.A. (2008). Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer's disease. Biochim. Biophys. Acta *1782*, 549-558.

Alzheimer, A. (1907). Uber einen eigenartige Erkranung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-Gerichtisch. Medizin *64*, 146-148.

Alzheimer, A., Stelzmann, R.A., Schnitzlein, H.N., and Murtagh, F.R. (1995). An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin. Anat. *8*, 429-431.

Anderson, L. and Anderson, N.G. (1977). High resolution two-dimensional electrophoresis of human plasma proteins. Proc. Natl. Acad. Sci. U. S. A 74, 5421-5425.

Ansari, M.A. and Scheff, S.W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol. *69*, 155-167.

Araki, W., Kitaguchi, N., Tokushima, Y., Ishii, H., Aratake, S., Shimohama, S., Nakamura, S., and Kimura, J. (1991). Trophic effect of beta-amyloid precursor protein on cerebral cortical neurons in culture. Biochem. Biophys. Res. Commun. *181*, 265-271.

Azizova,O.A., Aseichev,A.V., Piryazev,A.P., Roitman,E.V., and Shcheglovitova,O.N. (2007). Effects of oxidized fibrinogen on the functions of blood cells, blood clotting, and rheology. Bull. Exp. Biol. Med. *144*, 397-407.

Baldeiras, I., Santana, I., Proenca, M.T., Garrucho, M.H., Pascoal, R., Rodrigues, A., Duro, D., and Oliveira, C.R. (2008). Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer's disease. J. Alzheimers Dis. *15*, 117-128.

Bassett,C.N., Neely,M.D., Sidell,K.R., Markesbery,W.R., Swift,L.L., and Montine,T.J. (1999). Cerebrospinal fluid lipoproteins are more vulnerable to oxidation in Alzheimer's disease and are neurotoxic when oxidized ex vivo. Lipids *34*, 1273-1280.

Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Yolk, B., and Berger, M. (1991). Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett. *285*, 111-114.

Beckman, J.S., Chen, J., Ischiropoulos, H., and Crow, J.P. (1994). Oxidative Chemistry of Peroxynitrite. Methods Enzymol. 233, 229-240.

Beckman, J.S. and Koppenol, W.H. (1996). Nitric oxide, superoxide and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol 271, C1424-C1437.

Beckman,K.B. and Ames,B.N. (1998). The free radical theory of aging matures. Physiol Rev. 78, 547-581.

Bedard,K. and Krause,K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 87, 245-313.

Bejma,J. and Ji,L.L. (1999). Aging and acute exercise enhance free radical generation in rat skeletal muscle. J. Appl. Physiol 87, 465-470.

Bekpinar, S., Kilic, N., Unlucerci, Y., kdag-Kose, A., Azizlerli, G., and Ozbek-Kir, Z. (2005). Evaluation of nitrosative and oxidative stress in Behcet disease. J. Eur. Acad. Dermatol. Venereol. *19*, 167-171.

Bennett, S., Grant, M.M., and Aldred, S. (2009). Oxidative Stress in Vascular Dementia and Alzheimer's Disease: A Common Pathology. J. Alzheimers Dis.

Benzie,I.F. and Strain,J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299, 15-27.

Berlett,B.S. and Stadtman,E.R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316.

Bermejo,P., Martin-Aragon,S., Benedi,J., Susin,C., Felici,E., Gil,P., Ribera,J.M., and Villar,A.M. (2008). Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer's disease from Mild Cognitive Impairment. Free Radic. Res. *42*, 162-170.

Blennow,K., Ricksten,A., Prince,J.A., Brookes,A.J., Emahazion,T., Wasslavik,C., Bogdanovic,N., Andreasen,N., Batsman,S., Marcusson,J., Nagga,K., Wallin,A., Regland,B., Olofsson,H., Hesse,C., Davidsson,P., Minthon,L., Jansson,A., Palmqvist,L., and Rymo,L. (2000). No association between the alpha2-macroglobulin (A2M) deletion and Alzheimer's disease, and no change in A2M mRNA, protein, or protein expression. J. Neural Transm. *107*, 1065-1079.

Bourdel-Marchasson, I., mas-Beauvieux, M.C., Peuchant, E., Richard-Harston, S., Decamps, A., Reignier, B., Emeriau, J.P., and Rainfray, M. (2001). Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing *30*, 235-241.

Boveris, A. and Navarro, A. (2008). Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 44, 224-229.

Braak, H. and Braak, E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging *16*, 271-278.

Breusing,N., Grune,T., Andrisic,L., Atalay,M., Bartosz,G., Biasi,F., Borovic,S., Bravo,L., Casals,I., Casillas,R., Dinischiotu,A., Drzewinska,J., Faber,H., Fauzi,N.M., Gajewska,A., Gambini,J., Gradinaru,D., Kokkola,T., Lojek,A., Luczaj,W., Margina,D., Mascia,C., Mateos,R., Meinitzer,A., Mitjavila,M.T., Mrakovcic,L., Munteanu,M.C., Podborska,M., Poli,G., Sicinska,P., Skrzydlewska,E., Vina,J., Wiswedel,I., Zarkovic,N., Zelzer,S., and Spickett,C.M. (2010). An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radic. Res. *44*, 1203-1215.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H.M. (2007). Forecasting the global burden of Alzheimer's disease. Alzheimers & Dementia *3*, 186-191.

Buettner, G.R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. *300*, 535-543.

Burns, A., Byrne, E.J., and Maurer, K. (2002). Alzheimer's disease. Lancet 360, 163-165.

Burns, J.M., Mayo, M.S., Anderson, H.S., Smith, H.J., and Donnelly, J.E. (2008). Cardiorespiratory fitness in early-stage Alzheimer disease. Alzheimer Dis. Assoc. Disord. 22, 39-46.

Butterfield, D.A., Drake, J., Pocernich, C., and Castegna, A. (2001). Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7, 548-554.

Butterfield, D.A., Perluigi, M., and Sultana, R. (2006). Oxidative stress in Alzheimer's disease brain: new insights from redox proteomics. Eur. J. Pharmacol. *545*, 39-50.

Butterfield,D.A., Reed,T.T., Perluigi,M., De,M.C., Coccia,R., Keller,J.N., Markesbery,W.R., and Sultana,R. (2007). Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer's disease. Brain Res. *1148*, 243-248.

Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A.M., and Butterfield, D.A. (2006). Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid. Redox. Signal. *8*, 1975-1986.

Carty,J.L., Bevan,R., Waller,H., Mistry,N., Cooke,M., Lunec,J., and Griffiths,H.R. (2000). The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem. Biophys. Res. Commun. *273*, 729-735.

Casado, A., Encarnacion Lopez-Fernandez, M., Concepcion, C.M., and de La, T.R. (2008). Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. *33*, 450-458.

Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J.B., Pierce, W.M., Booze, R., Markesbery, W.R., and Butterfield, D.A. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med. *33*, 562-571.

Castegna,A., Aksenov,M., Thongboonkerd,V., Klein,J.B., Pierce,W.M., Booze,R., Markesbery,W.R., and Butterfield,D.A. (2002b). Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J. Neurochem. 82, 1524-1532.

Castegna, A., Thongboonkerd, V., Klein, J.B., Lynn, B., Markesbery, W.R., and Butterfield, D.A. (2003). Proteomic identification of nitrated proteins in Alzheimer's disease brain. J. Neurochem. *85*, 1394-1401.

Ceriello,A., Mercuri,F., Quagliaro,L., Assaloni,R., Motz,E., Tonutti,L., and Taboga,C. (2001). Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia *44*, 834-838.

Chang,K.H., Chen,Y., Chen,T.T., Chou,W.H., Chen,P.L., Ma,Y.Y., Yang-Feng,T.L., Leng,X., Tsai,M.J., O'Malley,B.W., and Lee,W.H. (1997). A thyroid hormone receptor

coactivator negatively regulated by the retinoblastoma protein. Proc. Natl. Acad. Sci. U. S. A 94, 9040-9045.

Chen, Y., Chen, P.-L., Chen, C.-F., Sharp, Z.D., and Lee, H.-W. (1999). Thyroid hormone, T3dependent phosphorylation and translocation of Trip230 from the golgi complex to the nucleus. Proc. Natl. Acad. Sci. U. S. A *96*, 4443-4448.

Chiappetta,G., Corbo,C., Palmese,A., Galli,F., Piroddi,M., Marino,G., and Amoresano,A. (2009). Quantitative identification of protein nitration sites. Proteomics. *9*, 1524-1537.

Choe,L., D'Ascenzo,M., Relkin,N.R., Pappin,D., Ross,P., Williamson,B., Guertin,S., Pribil,P., and Lee,K.H. (2007). 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics. 7, 3651-3660.

Choi, J., Malakowsky, C.A., Talent, J.M., Conrad, C.C., and Gracy, R.W. (2002). Identification of oxidized plasma proteins in Alzheimer's disease. Biochem. Biophys. Res. Commun. *293*, 1566-1570.

Chung, B.H., Wilkinson, T., Geer, J.C., and Segrest, J.P. (1980). Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J. Lipid Res. *21*, 284-291.

Cole,S.L. and Vassar,R. (2008). The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. J. Biol. Chem. *283*, 29621-29625.

Connor, J.R., Menzies, S.L., St.Martin, S.M., and Mufson, E.J. (1992). A histochemical study of iron, transferrin, and ferritin in Alzhiemer's diseased brains. J. Neurosci. Res. *31*, 75-83.

Conrad,C.C., Marshall,P.L., Talent,J.M., Malakowsky,C.A., Choi,J., and Gracy,R.W. (2000). Oxidized proteins in Alzheimer's plasma. Biochem. Biophys. Res. Commun. 275, 678-681.

Corzo,L., Zas,R., Rodriguez,S., Fernandez-Novoa,L., and Cacabelos,R. (2007). Decreased levels of serum nitric oxide in different forms of dementia. Neurosci. Lett. *420*, 263-267.

Costantini,L.C., Barr,L.J., Vogel,J.L., and Henderson,S.T. (2008). Hypometabolism as a therapeutic target in Alzheimer's disease. BMC Neuroscience 9(Suppl 2):S16.

Davidsson, P. and Sjogren, M. (2006). Proteome studies of CSF in AD patients. Mech. Ageing Dev. *127*, 133-137.

Davidsson, P., Westman-Brinkmalm, A., Nilsson, C.L., Lindbjer, M., Paulson, L., Andreasen, N., Sjogren, M., and Blennow, K. (2002). Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport *13*, 611-615.

Davies, K.J., Quintanilha, A.T., Brooks, G.A., and Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. *107*, 1198-1205.

de la Torre, J.C. (2002). Alzheimer disease as a vascular disorder: nosological evidence. Stroke *33*, 1152-1162.

Dede,D.S., Yavuz,B., Yavuz,B.B., Cankurtaran,M., Halil,M., Ulger,Z., Cankurtaran,E.S., Aytermir,K., Kabakci,G., and Ariogul,S. (2007). Assessment of Endothelial Function in Alzheimer's Disease:Is Alzheimer's Disease a Vascular Disease? JAGS *55*, 1613-1617.

Dillard,C.J., Litov,R.E., Savin,W.M., Dumelin,E.E., and Tappel,A.L. (1978). Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol *45*, 927-932.

Diz,A.P., Truebano,M., and Skinbinski,D.O.F. (2009). The consequences of sample pooling in proteomics: An empirical study. Electrophoresis *30*, 2967-2975.

Dorheim, M.A., Tracey, W.R., Pollock, J.S., and Grammas, P. (1994). Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease. Biochem. Biophys. Res. Commun. 205, 659-665.

Du,Y., Ni,B., Glinn,M., Dodel,R.C., Bales,K.R., Zhang,Z., Hyslop,P.A., and Paul,S.M. (1997). alpha2-Macroglobulin as a beta-amyloid peptide-binding plasma protein. J. Neurochem. *69*, 299-305.

Duncan, M.W. (2003). A review of approaches to the analysis of 3-nitrotyrosine. Amino. Acids 25, 351-361.

Dusse, L.M., Silva, R.M., Vieira, L.M., and das Gracas, C.M. (2005). Does plasma nitrite determination by the Griess reaction reflect nitric oxide synthesis? Clin. Chim. Acta *362*, 195-197.

Eikelenboom, P. and Stam, F.C. (1982). Immunoglobulins and Complement Factors in Senile Plaques. Acta Neuropathol. *57*, 239-242.

el-Saadani,M., Esterbauer,H., el-Sayed,M., Goher,M., Nassar,A.Y., and Jurgens,G. (1989). A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J. Lipid Res. *30*, 627-630.

Esiri, M.M., Nagy, Z., Smith, M.Z., Barnetson, L., and Smith, A.D. (1999). Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer's disease. Lancet *354*, 919-920.

Esterbauer, H., Schaur, R.J., and Zollner, H. (1991). Chemistry and biochemistry of 4hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. *11*, 81-128.

Ferretti,G., Bacchetti,T., Masciangelo,S., and Pallotta,G. (2008). Lipid peroxidation in hemodialysis patients: effect of vitamin C supplementation. Clin. Biochem. *41*, 381-386.

Finaud, J., Lac, G., and Filaire, E. (2006). Oxidative stress : relationship with exercise and training. Sports Med. *36*, 327-358.

Finkel, T. and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.

Flamant,F., Baxter,J.D., Forrest,D., Refetoff,S., Samuels,H., Scanlan,T.S., Vennström,B., and Samarut,J. (2006). International Uinon of Pharmacology.LIX.The Pharmacology and Classification of the Nuclear Receptor Superfamily:Thyroid Hormone Receptors. Pharmacol Rev *58*, 705-711.

Friguet,B. (2006). Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett. *580*, 2910-2916.

Fuster, V., Badimon, J.J., and Badimon, L. (1992). Clinical-pathological correlations of coronary disease progression and regression. Circulation *86*, III1-11.

Gharahdaghi,F., Weinberg,C.R., Meagher,D.A., Imai,B.S., and Mische,S.M. (1999). Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis *20*, 601-605.

Gollin,P.A., Kalaria,R.N., Eikelenboom,P., Rozemuller,A., and Perry,G. (1992). Alpha 1antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer's disease. Neuroreport *3*, 201-203.

Gomez-Cabrera, M.C., Borras, C., Pallardo, F.V., Sastre, J., Ji, L.L., and Vina, J. (2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J. Physiol *567*, 113-120.

Gomez-Cabrera, M.C., Domenech, E., and Vina, J. (2008). Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med. 44, 126-131.

Goodman, Y. and Mattson, M.P. (1994). Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid-beta-peptide induced oxidative injury. Exp. Neurol. *128*, 1-12.

Greilberger, J., Koidl, C., Greilberger, M., Lamprecht, M., Schroecksnadel, K., Leblhuber, F., Fuchs, D., and Oettl, K. (2008). Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer's disease. Free Radic. Res. *42*, 633-638.

Guidi,I., Galimberti,D., Lonati,S., Novembrino,C., Bamonti,F., Tiriticco,M., Fenoglio,C., Venturelli,E., Baron,P., Bresolin,N., and Scarpini,E. (2006). Oxidative imbalance in patients with mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging *27*, 262-269.

Guntert, A., Campbell, J., Saleem, M., O'Brien, D.P., Thompson, A.J., Byers, H.L., Ward, M.A., and Lovestone, S. (2010). Plasma Gelsolin is Decreased and Correlates with Rate of Decline in Alzheimer's Disease. J. Alzheimers. Dis. *21*(2), 585-596.

Gustaw-Rothenberg, K., Kowalczuk, K., and Stryjecka-Zimmer, M. (2010). Lipids' peroxidation markers in Alzheimer's disease and vascular dementia. Geriatr Gerontol Int *10*, 161-166.

Halliwell,B. (2006). Oxidative stress and neurodegeneration: where are we now? J. Neurochem. *97*, 1634-1658.

Halliwell,B. and Gutteridge,J.M.C. (1989). Free Radicals in Biology and Medicine. Clarendon Press, Oxford, UK).

Hardy, J. and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356.

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol *11*, 298-300.

Harrison, D., Griendling, K.K., Landmesser, U., Hornig, B., and Drexler, H. (2003). Role of oxidative stress in atherosclerosis. Am. J. Cardiol. *91*, 7A-11A.

Hellman,U., Wernstedt,C., Gonez,J., and Heldin,C.H. (1995). Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451-455.

Hensley,K., Hall,N., Subramaniam,R., Cole,P., Harris,M., Aksenov,M., Aksenova,M., Gabbita,S.P., Wu,J.F., Carney,J.M., and . (1995). Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. *65*, 2146-2156.

Hensley, K., Maidt, M.L., Yu, Z., Sang, H., Markesbery, W.R., and Floyd, R.A. (1998). Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci. *18*, 8126-8132.

Hensley,K., Williamson,K.S., Maidt,M.L., Gabbita,S.P., Grammas,P., and Floyd,R.A. (1999). Determination of Biological Oxidative Stress Using High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD). Journal of high resolution chromatography 22, 429-437.

Himmelfarb, J. and McMonagle, E. (2001). Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int. *60*, 358-363.

Hofman,A., Ott,A., Breteler,M.M., Bots,M.L., Slooter,A.J., van,H.F., van Duijn,C.N., Van,B.C., and Grobbee,D.E. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet *349*, 151-154.

Holmes, C. and Lovestone, S. (2003). Long-term cognitive and functional decline in late onset Alzheimer's disease:therapeutic implications. Age Ageing *32*, 200-204.

Holvoet, P., Mertens, A., Verhamme, P., Bogaerts, K., Beyens, G., Verhaeghe, R., Collen, D., Muls, E., and Van de, W.F. (2001). Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 21, 844-848.

Horgan,G.W. (2007). Sample Size and Replication in 2D Gel Electrophoresis Studies. J. Proteome Res *6*, 2884-2887.

Hughes, S.R., Khorkova, O., Goyal, S., Knaeblein, J., Heroux, J., Riedel, N.G., and Sahasrabudhe, S. (1998). Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc. Natl. Acad. Sci. U. S. A *95*, 3275-3280.

Hye,A., Lynham,S., Thambisetty,M., Causevic,M., Campbell,J., Byers,H.L., Hooper,C., Rijsdijk,F., Tabrizi,S.J., Banner,S., Shaw,C.E., Foy,C., Poppe,M., Archer,N., Hamilton,G., Powell,J., Brown,R.G., Sham,P., Ward,M., and Lovestone,S. (2006). Proteome-based plasma biomarkers for Alzheimer's disease. Brain *129*, 3042-3050.

Ishii,T., Tatsuda,E., Kumazawa,S., Nakayama,T., and Uchida,K. (2003). Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry *42*, 3474-3480.

Ji,Y., Neverova,I., Van Eyk,J.E., and Bennett,B.M. (2006). Nitration of tyrosine 92 mediates the activation of rat microsomal glutathione s-transferase by peroxynitrite. J. Biol. Chem. *281*, 1986-1991.

Jones, D.P., Mody, V.C., Jr., Carlson, J.L., Lynn, M.J., and Sternberg, P., Jr. (2002). Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic. Biol. Med. *33*, 1290-1300.

Kalaria, R.N. and Ballard, C. (1999). Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis. Assoc. Disord. *13 Suppl 3*, S115-S123.

Karp,N.A. and Lilley,K.S. (2007). Design and Analysis issues in Quantitative Proteomics Studies. Pract. Proteomics 7, 42-50.

Karp,N.A., Spencer,M., Lindsay,H., O'Dell,K., and Lilley,K.S. (2005). Impact of Replicate Types on Proteomic Expression Analysis. J. Proteome Res *4*, 1867-1871.

Kato,G.J. (2009). Haptoglobin halts hemoglobin's havoc. J. Clin. Invest 119, 2140-2142.

Katzman, R. and Saitoh, T. (1991). Advances in Alzheimer's disease. FASEB J. 5, 278-286.

Keller, J.N., Schmitt, F.A., Scheff, S.W., Ding, Q., Chen, Q., Butterfield, D.A., and Markesbery, W.R. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology *64*, 1152-1156.

Khalil,A., Wagner,R.J., Lacombe,G., Dangoisse,V., and Fülöp Jr,T. (1996). Increased susceptibility of low-density lipoprotein (LDL) to oxidation by γ -radiolysis with age. FEBS Lett. *392*, 45-48.

Khatoon,S., Grundke-Iqbal,I., and Iqbal,K. (1992). Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein. J. Neurochem. *59*, 750-753.

Kita, T., Kume, N., Minami, M., Hayashida, K., Murayama, T., Sano, H., Moriwaki, H., Kataoka, H., Nishi, E., Horiuchi, H., Arai, H., and Yokode, M. (2001). Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. *947*, 199-205.

Kontush,A. (2001). Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease. Free Radic. Biol. Med. *31*, 1120-1131.

Korolainen, M.A., Goldsteins, G., Alafuzoff, I., Koistinaho, J., and Pirttila, T. (2002). Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 23, 3428-3433.

Korolainen, M.A., Nyman, T.A., Nyyssonen, P., Hartikainen, E.S., and Pirttila, T. (2007). Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin. Chem. *53*, 657-665.

Korolainen, M.A. and Pirttila, T. (2009). Cerebrospinal fluid, serum and plasma protein oxidation in Alzheimer's disease. Acta Neurol. Scand. *119*, 32-38.

Kuo, Y.M., Emmerling, M.R., Bisgaier, C.L., Essenburg, A.D., Lampert, H.C., Drumm, D., and Roher, A.E. (1998). Elevated low-density lipoprotein in Alzheimer's disease correlates with brain abeta 1-42 levels. Biochem. Biophys. Res. Commun. *252*, 711-715.

Landmesser, U., Dikalov, S., Price, S.R., McCann, L., Fukai, T., Holland, S.M., Mitch, W.E., and Harrison, D.G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest *111*, 1201-1209.

Larson,E.B., Wang,L., Bowen,J.D., McCormick,W.C., Teri,L., Crane,P., and Kukull,W. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. *144*, 73-81.

Launer, L.J. (2002). Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res. Rev. *1*, 61-77.

Levine, R.L., Williams, J.A., Stadtman, E.R., and Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. *233*, 346-357.

Luth,H.J., Munch,G., and Arendt,T. (2002). Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation. Brain Res. *953*, 135-143.

Lyras,L., Cairns,N.J., Jenner,A., Jenner,P., and Halliwell,B. (1997). An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. J. Neurochem. *68*, 2061-2069.

Mangialasche, F., Polidori, M.C., Monastero, R., Ercolani, S., Camarda, C., Cecchetti, R., and Mecocci, P. (2009). Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res. Rev. *8*, 285-305.

Mark,R.J., Lovell,M.A., Markesbery,W.R., Uchida,K., and Mattson,M.P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem. *68*, 255-264.

Markesbery, W.R. (1997). Oxidative stress hypothesis in Alzheimer's disease. Free Radic. Biol. Med. 23, 134-147.

Markesbery, W.R. and Lovell, M.A. (1998). Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol. Aging *19*, 33-36.

Martin-Aragon, S., Bermejo-Bescos, P., Benedi, J., Felici, E., Gil, P., Ribera, J.M., and Villar, A.M. (2009). Metalloproteinase's activity and oxidative stress in mild cognitive impairment and Alzheimer's disease. Neurochem. Res. *34*, 373-378.

Maruyama, W., Hashizume, Y., Matsubara, K., and Naoi, M. (1996). Identification of 3-nitro-L-tyrosine, a product of nitric oxide and superoxide, as an indicator of oxidative stress in the human brain. J. Chromatogr. B Biomed. Appl. *676*, 153-158.

Mattson, M.P. (1997). Cellular Actions of Beta-Amyloid Precursor Protein and Its Soluble and Fibrillogenic Derivatives. Physiol Rev. 77, 1081-1132.

Mattson, M.P. (2004). Pathways towards and away from Alzheimer's disease. Nature 430, 631-639.

Maxwell,A.J. (2002). Mechanisms of dysfunction of the nitric oxide pathway in vascular diseases. Nitric. Oxide. *6*, 101-124.

McAnulty,S.R., McAnulty,L.S., Nieman,D.C., Morrow,J.D., Utter,A.C., and Dumke,C.L. (2005). Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Radic. Res. *39*, 1219-1224.

McCord, J.M. (2004). Iron, Free Radicals, and Oxidative Injury. J. Nutr. 134, 3171S-3172S.

McGeer, P.L., Akiyama, H., Itagaki, S., and McGeer, E.G. (1989). Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. *107*, 341-346.

McGrath,L.T., McGleenon,B.M., Brennan,S., McColl,D., McILroy,S., and Passmore,A.P. (2001). Increased oxidative stress in Alzheimer's disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM. *94*, 485-490.

Mecocci, P., Polidori, M.C., Cherubini, A., Ingegni, T., Mattioli, P., Catani, M., Rinaldi, P., Cecchetti, R., Stahl, W., Senin, U., and Beal, M.F. (2002). Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch. Neurol. *59*, 794-798.

Michael Kinter and Nicholas E.Sherman (2000). The Preparation of Protein Digests for Mass Spectrometric Sequencing Experiments. In Protein Sequencing and Identification Using Mass Spectrometry, John Wiley & Sons), pp. 160-165.

Migliore,L., Fontana,I., Trippi,F., Colognato,R., Coppede,F., Tognoni,G., Nucciarone,B., and Siciliano,G. (2005). Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol. Aging *26*, 567-573.

Millan-Crow,L.A., Crow,J.P., Kerby,J.D., Beckman,J.S., and Thompson,J.A. (1996). Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc. Natl. Acad. Sci. U. S. A *93*, 11853-11858.

Miranda,K.M., Espey,M.G., and Wink,D.A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric. Oxide. *5*, 62-71.

Mitrogianni,Z., Barbouti,A., Galaris,D., and Siamopoulos,K.C. (2004). Tyrosine nitration in plasma proteins from patients undergoing hemodialysis. Am. J. Kidney Dis. *44*, 286-292.

Moraga, F. and Janciauskiene, S. (2000). Activation of primary human monocytes by the oxidized form of alpha 1-antitrypsin. J. Biol. Chem. 275, 7693-7700.

Moreira,P.I., Akihiko Nunomura, Honda,K., Aliev,G., Casadesus,G., Zhu,X., Smith,M.A., and Perry,G. (2007). The Key Role of Oxidative Stress in Alzheimer's disease. In Oxidative Stress and Neurodegenerative Disorders, G.Ali Qureshi and S.Hassan Parvez, eds. Elsevier), pp. 267-281.

Moshage,H., Kok,B., Huizenga,J.R., and Jansen,P.L. (1995). Nitrite and nitrate determinations in plasma: a critical evaluation. Clin. Chem. *41*, 892-896.

Mutlu-Turkoglu,U., Ilhan,E., Oztezcan,S., Kuru,A., ykac-Toker,G., and Uysal,M. (2003). Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin. Biochem. *36*, 397-400.

Navarro, A., Gomez, C., Lopez-Cepero, J.M., and Boveris, A. (2004). Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am. J. Physiol Regul. Integr. Comp Physiol 286, R505-R511.

Newman,A.B., Fitzpatrick,A.L., Lopez,O., Jackson,S., Lyketsos,C., Jagust,W., Ives,D., Dekosky,S.T., and Kuller,L.H. (2005). Dementia and Alzheimer's disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J. Am. Geriatr. Soc. *53*, 1101-1107.

Niki,E. (2009). Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med. 47, 469-484.

Nunomura,A., Perry,G., Aliev,G., Hirai,K., Takeda,A., Balraj,E.K., Jones,P.K., Ghanbari,H., Wataya,T., Shimohama,S., Chiba,S., Atwood,C.S., Petersen,R.B., and Smith,M.A. (2001). Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. *60*, 759-767.

Nunomura, A., Perry, G., Hirai, K., Aliev, G., Takeda, A., Chiba, S., and Smith, M.A. (1999). Neuronal RNA oxidation in Alzheimer's disease and Down's syndrome. Ann. N. Y. Acad. Sci. 893, 362-364.

O'Barr,S.A., Oh,J.S., Ma,C., Brent,G.A., and Schultz,J.J. (2006). Thyroid hormone regulates endogenous amyloid-beta precursor protein gene expression and processing in both in vitro and in vivo models. Thyroid *16*, 1207-1213.

Ohshima,H., Friesen,M., Brouet,I., and Bartsch,H. (1990). Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem. Toxicol. 28, 647-652.

Oldreive, C. and Rice-Evans, C. (2001). The mechanisms for nitration and nitrotyrosine formation in vitro and in vivo: impact of diet. Free Radic. Res. *35*, 215-231.

Olsen,J.V., Schwartz,J.C., Griep-Raming,J., Nielsen,M.L., Damoc,E., Denisov,E., Lange,O., Remes,P., Taylor,D., Splendore,M., Wouters,E.R., Senko,M., Makarov,A., Mann,M., and Horning,S. (2009). A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell Proteomics. *8*, 2759-2769.

Ott,A., Stolk,R.P., Hofman,A., van,H.F., Grobbee,D.E., and Breteler,M.M. (1996). Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia *39*, 1392-1397.

Packer, M.A. and Murphy, M.P. (1994). Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. FEBS Lett. *345*, 237-240.

Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., and Stefanescu, C. (2009). Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci. Lett.

Palleschi,L., Vetta,F., DeGennaro,E., Idone,G., Sottosanti,G., Gianni,W., and Marigliano,V. (1996). Effect of aerobic training on the cognitive performance of elderly patients with senile dementia of Alzheimer type. Archives of Gerontology and Geriatrics 47-50.

Pamplona,R., Dalfo,E., Ayala,V., Bellmunt,M.J., Prat,J., Ferrer,I., and Portero-Otin,M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 280, 21522-21530.

Pandey, A. and Mann, M. (2000). Proteomics to study genes and genomes. Nature 405, 837-846.

Parkes, T.L., Elia, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P., and Boulianne, G.K. (1998). Extension of *Drosophila* lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. *19*, 171-174.

Parthasarathy,S., Quinn,M.T., Schwenke,D.C., Carew,T.E., and Steinberg,D. (1989). Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis *9*, 398-404.

Perez-Gracia, E., Blanco, R., Carmona, M., Carro, E., and Ferrer, I. (2009). Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer's disease. Acta Neuropathol.

Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., and Winblad, B. (2001). Current concepts in mild cognitive impairment. Arch. Neurol. *58*, 1985-1992.

Polidori,M.C., Mattioli,P., Aldred,S., Cecchetti,R., Stahl,W., Griffiths,H., Senin,U., Sies,H., and Mecocci,P. (2004). Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement. Geriatr. Cogn Disord. *18*, 265-270.

Poulter, N. (2003). Global risk of cardiovascular disease. Heart 89 Suppl 2, ii2-ii5.

Puchades, M., Hansson, S.F., Nilsson, C.L., Andreasen, N., Blennow, K., and Davidsson, P. (2003). Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease. Brain Res. Mol. Brain Res. *118*, 140-146.

Pulido, R., Jimenez-Escrig, A., Orensanz, L., Saura-Calixto, F., and Jimenez-Escrig, A. (2005). Study of plasma antioxidant status in Alzheimer's disease. Eur. J. Neurol. *12*, 531-535.

Raitakari,O.T., Pitkanen,O.P., Lehtimaki,T., Lahdenpera,S., Iida,H., Yla-Herttuala,S., Luoma,J., Mattila,K., Nikkari,T., Taskinen,M.R., Viikari,J.S., and Knuuti,J. (1997). In vivo low density lipoprotein oxidation relates to coronary reactivity in young men. J. Am. Coll. Cardiol. *30*, 97-102.

Reed,T.T., Pierce,W.M., Jr., Turner,D.M., Markesbery,W.R., and Butterfield,D.A. (2008). Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J. Cell Mol. Med.

Repetto, M.G., Reides, C.G., Evelson, P., Kohan, S., de Lustig, E.S., and Llesuy, S.F. (1999). Peripheral markers of oxidative stress in probable Alzheimer patients. Eur. J. Clin. Invest 29, 643-649.

Righetti,P.G., Castagna,A., Antonucci,F., Piubelli,C., Cecconi,D., Campostrini,N., Rustichelli,C., Antonioli,P., Zanusso,G., Monaco,S., Lomas,L., and Boschetti,E. (2005). Proteome analysis in the clinical chemistry laboratory: myth or reality? Clin. Chim. Acta *357*, 123-139.

Rinaldi,P., Polidori,M.C., Metastasio,A., Mariani,E., Mattioli,P., Cherubini,A., Catani,M., Cecchetti,R., Senin,U., and Mecocci,P. (2003). Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol. Aging *24*, 915-919.

Roher, A.E., Esh, C., Kokjohn, T.A., Kalback, W., Luehrs, D.C., Seward, J.D., Sue, L.I., and Beach, T.G. (2003). Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer's disease. Arterioscler. Thromb. Vasc. Biol. *23*, 2055-2062.

Roman,G.C. (2003). Vascular dementia: distinguishing characteristics, treatment, and prevention. J. Am. Geriatr. Soc. *51*, S296-S304.

Rosenfeld, J., Capdevielle, J., Guillemot, J.C., and Ferrara, P. (1992). In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. *203*, 173-179.

Ross,P.L., Huang,Y.N., Marchese,J.N., Williamson,B., Parker,K., Hattan,S., Khainovski,N., Pillai,S., Dey,S., Daniels,S., Purkayastha,S., Juhasz,P., Martin,S., Bartlet-Jones,M., He,F., Jacobson,A., and Pappin,D.J. (2004). Multiplexed protein quantitation in Saccharomyces

cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics. 3, 1154-1169.

Ryberg,H., Soderling,A.S., Davidsson,P., Blennow,K., Caidahl,K., and Persson,L.I. (2004). Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer's disease. Neurochem. Int. *45*, 57-62.

Santana-Sosa, E., Barriopedro, M.I., Lopez-Mojares, L.M., Perez, M., and Lucia, A. (2008). Exercise training is beneficial for Alzheimer's patients. Int. J. Sports Med. *29*, 845-850.

Sayre,L.M., Smith,M.A., and Perry,G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. *8*, 721-738.

Scacchi,R., Ruggeri,M., Gambina,G., Martini,M.C., and Corbo,R.M. (2002). Alpha2macroglobulin deletion polymorphism and plasma levels in late onset Alzheimer's disease. Clin. Chem. Lab Med. *40*, 333-336.

Schippling, S., Kontush, A., Arlt, S., Buhmann, C., Sturenburg, H.J., Mann, U., Muller-Thomsen, T., and Beisiegel, U. (2000). Increased lipoprotein oxidation in Alzheimer's disease. Free Radic. Biol. Med. 28, 351-360.

Schulz,B., Liebisch,G., Grandl,M., Werner,T., Barlage,S., and Schmitz,G. (2007). Betaamyloid (Abeta40, Abeta42) binding to modified LDL accelerates macrophage foam cell formation. Biochim. Biophys. Acta *1771*, 1335-1344.

Sekler, A., Jimenez, J.M., Rojo, L., Pastene, E., Fuentes, P., Slachevsky, A., and Maccioni, R.B. (2008). Cognitive impairment and Alzheimer's disease: Links with oxidative stress and cholesterol metabolism. Neuropsychiatr. Dis. Treat. *4*, 715-722.

Selkoe, D. (2001). Alzheimer's disease: Genes, Proteins, and Therapy. Physiol Rev. 81, 741-766.

Selley,M.L. (2003). Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with Alzheimer's disease. Neurobiol. Aging *24*, 903-907.

Shacter, E., Williams, J.A., Lim, M., and Levine, R.L. (1994). Differential susceptibility of plasma proteins to oxidative modification: examination by western blot immunoassay. Free Radic. Biol. Med. *17*, 429-437.

Sies, H. (1997). Oxidative stress: oxidants and antioxidants. Exp. Physiol 82, 291-295.

Sies, H. (1999). Glutathione and its role in cellular functions. Free Radic. Biol. Med. 27, 916-921.

Sinclair, A.J., Bayer, A.J., Johnston, J., Warner, C., and Maxwell, S.R. (1998). Altered plasma antioxidant status in subjects with Alzheimer's disease and vascular dementia. Int. J. Geriatr. Psychiatry *13*, 840-845.

Smith,C.D., Carney,J.M., Starke-Reed,P.E., Oliver,C.N., Stadtman,E.R., Floyd,R.A., and Markesbery,W.R. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A 88, 10540-10543.

Smith,M.A., Harris,P.L., Sayre,L.M., and Perry,G. (1997a). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. U. S. A *94*, 9866-9868.

Smith,M.A., Richey Harris,P.L., Sayre,L.M., Beckman,J.S., and Perry,G. (1997b). Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. *17*, 2653-2657.

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. *150*, 76-85.

Sodergren,E., Nourooz-Zadeh,J., Berglund,L., and Vessby,B. (1998). Re-evaluation of the ferrous oxidation in xylenol orange assay for the measurement of plasma lipid hydroperoxides. J. Biochem. Biophys. Methods *37*, 137-146.

Souza, J.M., Peluffo, G., and Radi, R. (2008). Protein tyrosine nitration--functional alteration or just a biomarker? Free Radic. Biol. Med. 45, 357-366.

Spickett, C.M., Pitt, A.R., Morrice, N., and Kolch, W. (2006). Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim. Biophys. Acta *1764*, 1823-1841.

Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witztum, J.L. (1989). Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. *320*, 915-924.

Strohmeyer, R. and Rogers, J. (2001). Molecular and cellular mediators of Alzheimer's disease inflammation. J. Alzheimers Dis. *3*, 131-157.

Sultana,R., Boyd-Kimball,D., Poon,H.F., Cai,J., Pierce,W.M., Klein,J.B., Markesbery,W.R., Zhou,X.Z., Lu,K.P., and Butterfield,D.A. (2006a). Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiol. Aging *27*, 918-925.

Sultana,R., Boyd-Kimball,D., Poon,H.F., Cai,J., Pierce,W.M., Klein,J.B., Merchant,M., Markesbery,W.R., and Butterfield,D.A. (2006b). Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging 27, 1564-1576.

Sultana,R., Perluigi,M., Newman,S.F., Pierce,W.M., Cini,C., Coccia,R., and Butterfield,D.A. (2010). Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer's disease. Antioxid. Redox. Signal. *12*, 327-336.

Sun,J., Folk,D., Bradley,T.J., and Tower,J. (2002). Induced over-expression of mitochondrial Mn-superoxide dismutase extends the lifespan of adult *Drosophila melanogaster*. Genetics *161*, 661-672.

Sun, Y.C., Chang, P.Y., Tsao, K.C., Wu, T.L., Sun, C.F., Wu, L.L., and Wu, J.T. (2007). Establishment of a sandwich ELISA using commercial antibody for plasma or serum 3-nitrotyrosine (3NT). Elevation in inflammatory diseases and complementary between 3NT and myeloperoxidase. Clin. Chim. Acta *378*, 175-180.

Suzuki,Y.J., Forman,H.J., and Sevanian,A. (1997). Oxidants as stimulators of signal transduction. Free Radic. Biol. Med. 22, 269-285.

Tamagno, E., Bardini, P., Obbili, A., Vitali, A., Borghi, R., Zaccheo, D., Pronzato, M.A., Danni, O., Smith, M.A., Perry, G., and Tabaton, M. (2002). Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol. Dis. *10*, 279-288.

Tamagno, E., Robino, G., Obbili, A., Bardini, P., Aragno, M., Parola, M., and Danni, O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. *180*, 144-155.

Taniyama, Y. and Griendling, K.K. (2003). Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension *42*, 1075-1081.

Taysi,S., Polat,F., Gul,M., Sari,R.A., and Bakan,E. (2002). Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol. Int. *21*, 200-204.

Telci,A., Cakatay,U., Kayali,R., Erdogan,C., Orhan,Y., Sivas,A., and Akcay,T. (2000). Oxidative protein damage in plasma of type 2 diabetic patients. Horm. Metab Res. *32*, 40-43.

ter Steege, J.C., Koster-Kamphuis, L., van Straaten, E.A., Forget, P.P., and Buurman, W.A. (1998). Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic. Biol. Med. *25*, 953-963.

Terni,B., Boada,J., Portero-Otin,M., Pamplona,R., and Ferrer,I. (2009). Mitochondrial ATP-Synthase in the Entorhinal Cortex Is a Target of Oxidative Stress at Stages I/II of Alzheimer's Disease Pathology. Brain Pathol.

Tian,L., Cai,Q., and Wei,H. (1998). Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med. 24, 1477-1484.

Tohgi,H., Abe,T., Yamazaki,K., Murata,T., Ishizaki,E., and Isobe,C. (1999). Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer's disease. Neurosci. Lett. *269*, 52-54.

Tseng,C.F., Lin,C.C., Huang,H.Y., Liu,H.C., and Mao,S.J.T. (2004). Antioxidant role of human haptoglobin. Proteomics *4*, 2221-2228.

Tsikas, D. and Caidahl, K. (2005). Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. *814*, 1-9.

Ueda,M., Mashiba,S., and Uchida,K. (2002). Evaluation of oxidized alpha-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative α 1-AT monoclonal antibody. Clin. Chim. Acta *317*, 125-131.

Um,H.S., Kang,E.B., Leem,Y.H., Cho,I.H., Yang,C.H., Chae,K.R., Hwang,D.Y., and Cho,J.Y. (2008). Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int. J. Mol. Med. 22, 529-539.

van,O.M., de Jong,F.J., Witteman,J.C., Hofman,A., Koudstaal,P.J., and Breteler,M.M. (2007). Atherosclerosis and risk for dementia. Ann. Neurol. *61*, 403-410.

Veskoukis, A.S., Nikolaidis, M.G., Kyparos, A., and Kouretas, D. (2009). Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radic. Biol. Med. 47, 1371-1374.

Vina,J., Gomez-Cabrera,M.C., Lloret,A., Marquez,R., Minana,J.B., Pallardo,F.V., and Sastre,J. (2000). Free radicals in Exhaustive Physical Exercise:Mechanism of Production, and Protection by Antioxidants. IUBMB Life *50*, 271-277.

Voss, T. and Haberl, P. (2000). Observations on the reproducibility and matching efficiency of two-dimensional electrophoresis gels: Consequences for comprehensive data analysis. Electrophoresis *21*, 3345-3350.

Wetterling, T., Kanitz, R.D., and Borgis, K.J. (1996). Comparison of different diagnostic criteria for vascular dementia (ADDTC, DSM-IV, ICD-10, NINDS-AIREN). Stroke 27, 30-36.

Whiteman,M. and Halliwell,B. (1999). Loss of 3-nitrotyrosine on exposure to hypochlorous acid: implications for the use of 3-nitrotyrosine as a bio-marker in vivo. Biochem. Biophys. Res. Commun. *258*, 168-172.

Witztum, J.L. and Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest 88, 1785-1792.

Wu,S.M., Patel,D.D., and Pizzo,S.V. (1998). Oxidized α_2 -Macroglobulin (α 2M) Differentially Regulates Receptor Binding by Cytokines/Growth Factors:Implications for Tissue Injury and Repair Mechanisms in Inflammation. J. Immunol. *161*, 4356-4365.

Wu,S.M. and Pizzo,S.V. (1999). Mechanism of Hypochlorite-Mediated Inactivation of Proteinase Inhibition by α_2 -Macroglobulin. Biochemistry *38*, 13983-13990.

Wu,S.M. and Pizzo,S.V. (2001). α_2 -Macroglobulin from Rheumatoid Arthritis Synovial Fluid:Functional Analysis Defines a Role for Oxidation in Inflammation. Arch. Biochem. Biophys. *391*, 119-126.

Wysocki, V.H., Resing, K.A., Zhang, Q., and Cheng, G. (2005). Mass spectrometry of peptides and proteins. Methods *35*, 211-222.

Yamakura, F. and Ikeda, K. (2006). Modification of tryptophan and tryptophan residues in proteins by reactive nitrogen species. Nitric Oxide *14*, 152-161.

Yan,J.X., Wait,R., Berkelman,T., Harry,R.A., Westbrook,J.A., Wheeler,C.H., and Dunn,M.J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis *21*, 3666-3672.

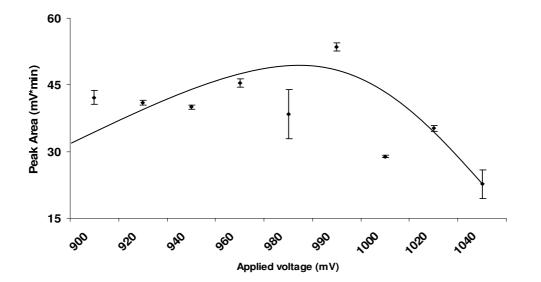
Yu,H.L., Chertkow,H.M., Bergman,H., and Schipper,H.M. (2003). Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics. *3*, 2240-2248.

Zafrilla,P., Mulero,J., Xandri,J.M., Santo,E., Caravaca,G., and Morillas,J.M. (2006). Oxidative stress in Alzheimer patients in different stages of the disease. Curr. Med. Chem. *13*, 1075-1083.

Zahedi,A.S., Ghasemi,A., and Azizi,F. (2008). Serum nitric oxide metabolites in subjects with metabolic syndrome. Clin. Biochem. *41*, 1342-1347.

Zhang, Y.J., Xu, Y.F., Liu, Y.H., Yin, J., and Wang, J.Z. (2005). Nitric oxide induces tau hyperphosphorylation via glycogen synthase kinase-3beta activation. FEBS Lett. *579*, 6230-6236.

Zini,I., Tomasi,A., Grimaldi,R., Vannini,V., and Agnati,L.F. (1992). Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci. Lett. *138*, 279-282.


Zolg, W. (2006). The Proteomic Search for Diagnostic Biomarkers. Mol. Cell Proteomics. *5*, 1720-1726.

Appendix I

APPENDIX I

Optimizing applied voltage for HPLC-ECD; Thesis Chapter 4.

For detection of 3-nitrotyrosine in plasma from Alzheimer's disease (AD) and age-matched control subjects the present study used a modified HPLC-ECD method from that described by Maruyama et al. (1996). Method development was necessary to establish the optimum applied voltage required to provide the greatest 3-nitrotyrosine signal. A known concentration of synthetic 3-nitrotyrosine (10μ M) was manually loaded onto the column and the applied voltage was adjusted by 10mV increments ranging between 900mV and 1040mV. All other conditions were kept standard and each sample was assayed in duplicate. The optimal applied voltage was evident at 990mV.

Appendix II

APPENDIX II

Protein summary from OSSMA Browser for excised gel band; Thesis Chapter 5

2 7	Ma Index ait Occasion Crusters Destrie	toin Coore	of Contourney	WDow	Williams Dow	Destation Description	100	- amodel	300
50 IIIne	E- Value	20010	would all a	_	#mildna Leb.	Protein Description RecName: Full=Alpha-2-macroglobulin; Short=Alpha-2-M; AltName: Full=C3 and PZP-like alpha-2-macroglobulin domain-	A AIAI	Laigu	alhac
-28	-266.03	-837.53	28.29	55	34	containing protein 5; Flags: Precursor	163.3 kDa	1474	933407
-246	-248.38	-791.5	26.8	8	8	RecName: Full=Alpha-2-macroglobulin; Short=Alpha-2-M; Flags: Precursor	163.3 kDa	1474	1365524
-16	-166.79	-586.6	45.32	8	8	RecName: Full=Serum abumin; Flags: Precursor	69.4 kDa	609	771862
÷	-115.08	-371.28	21.36	8	8	RecName: Full=Complement factor H; AttName: Full=H factor 1; Flags: Precursor	139.1 kDa	1231	5379492
φ	-90.59	-315.4	27.64	6	17	Rechame: Full=Keratin, type II cytoskeletal 1; AttName: Full=Cytokeratin-1; Short=CK-1; AttName: Full=Keratin-1; Short=K1; AttName: Full=67 NDa cytokeratin; AttName: Full=Hair alpha protein	66.0 kDa	644	3991702
φ	10.8	-314.37	26.37	17	16	RecName: Full=Keratin, type II cytoskeletal 1, AttName: Full=Cytokeratin-1; Short=CK-1; AttName: Full=Keratin-1; Short=K1	65.5 kDa	637	4654833
ŵ	6.63	-296.91	25.33	17	4	RecName: Full=Serum abumin; Flags: Precursor	67.9 kDa	009	988964
ŵ	-86.63	-296.58	25	17	14	RecName: Full=Serum abumin, Flags: Precursor	68.9 kDa	809	3389340
7	-84.74	-286.73	24.55	17	5	RecName: Full=Serum abumin; AttName: Full=BSA; AttName: Allergen=Bos d 6; Flags: Precursor	69.3 kDa	209	1004954
	-89.48	-280.1	10.82	17	5	Rechame Full-Complement C3, AtName: Full=C3 and P2P-like aphra-2-macroglobulin domain-containing proten 1; Contains: Rechame: Full-Complement C3 tatName: Full=Complement C3 aphra family: Contains: Rechame: Full=C3a anaphylatoxin; Contains: Rechame: Full=Complement C3 aphra chain; Contains: Rechame: Full=C3a anaphylatoxin; Contains: Rechame: Full=Complement C3a garba chain; Contains: Rechame: Full=Complement C3a aphra chain fragment 1; Contains: Rechame: Full=Complement C3a garba chain; Contains: Rechame: Full=Complement C3a regiment; Contains: Rechame: Full=Complement C3a garba chain; Contains: Rechame: Full=Complement C3a regiment; Contains: Rechame: Full=Complement C3a garba regiment; Contains: Rechame: Full=Complement C3a contains: Rechame: Full=Complement C3a garba regiment; Contains: Rechame: Full=Complement C3a contains: Rechame: Full=Complement C3a garba regiment; Contains: Rechame: Full=Complement C3a contains: Rechame: Full=Complement C3a garba regiment; Contains: Rechame: Full=Complement C3a	187.1 kDa	1663	2610664
	-65.74	-223.11	23.16	14	4	RecName: Full=Keratin, type II cytoskeletal 2 epidermat, AttName: Full=Cytokeratin-2e, Short=K2e, Short=K2e, Short=keratin- 2		623	2566968
	-51.35	-186.77	22.77	6	6	Rechame: Full=Keratin, type i cytoskeletal 10, AttName: Full=Cytokeratin-10, Short=CK-10, AttName: Full=Keratin-10, Short=K10	59.5 kDa	283	4658040
	-61.51	-181.35	9.65	15	÷	RecName. Full=Pregnancy zone protein; AltName: Full=C3 and P.IP-like alpha-2-macroglobulin domain-containing protein 6; Flags: Precursor	163.8 kDa	1482	4088341
	-41.08	-147.91	16.05	œ	7	RecName: Full=Keratin, type I cytoskeletal 9, AttName: Full=Cytokeratin-9, Short=CK-9, AttName: Full=Keratin-9, Short=K9	62.1 kDa	623	2676343
	Ŕ	-140.26	22.43	s	4	RecName: Full=Alpha-S'-casein; Contains: RecName: Full=Antioxidant peptide; Flags: Precursor	24.5 kDa	214	738260
	-32.76	-116.17	15.67	7	7	reeovame: Full=Aeratin, type i cytosketeta i u, autwame: Full=Lytokeratin-Tu, Short=LK-Tu, Autwame: Full=Keratin-Tu, Short=K10, Aitwame: Ful=Epithelial keratin-10	57.7 kDa	568	2891359
	-31.65	-110.16	8.88	g	ŝ	RecName: Full=Serum abumin; AttName: Allergen≡Fel d 2; Flags: Precursor	68.7 kDa	808	917585
	-24.1	-99.14	15.42	4	m	RecName: Full=Alpha-S1-casein; Flags: Precursor	24.3 kDa	214	1010640
	-25.4	-86.87	11.79	9	9	RecName: Full=Keratin, type I cytosketata 10; AttName: Full=Cytokeratin-10; Short=CK-10; AttName: Full=Keratin-10; Short=K10: AttName: Full=Cytokeratin-6B; AttName: Full=Cytokeratin VIB	54.8 kDa	526	1023361
	-26.45	-85.51	10.05	9	ω	RecName: Full=Serum abumin; Flags: Precursor	69.2 kDa	209	826943
	-24.63	-83.08	8.57	Ś	5	RecName: Full=Serum abunin; Flags: Precursor	69.7 kDa	607	1324074
	-27.69	-82.4	12.6	00	œ	RecName: Full=Keratin, type II cytoskeletal 1; AttName: Full=Cytokeratin-1; Short=CK-1; AttName: Full=Keratin-1; Short=K1; AttName: Full=Epithelial keratin-1	63.8 kDa	619	1743526
	-26.09	-81.3	6.01	g	v	RecName: Full=Ceruloplasmin; AttName: Full=Ferroxidase; Flags: Precursor	122.2 kDa	1065	826637
	-34.51	-81.01	5.03	£	ŝ	RecName: Full=Alpha-2-macroglobulin; Short=Alpha-2-M; Flags: Precursor	163.8 kDa	1472	1954555
	-22.3	-78.71	3.13	4	m	RecName: Full=Serum abumir; Flags: Precursor	68.9 kDa	809	924112
	27:52- C2:UC-	70.07-	13./9 5.76	. 4	4 4	recreates: ruleg garmes orien or egort, auvenes: rulerteavy orien ossesse protent, auvenes: rulert-bo Reclame: Fullerkendin, type II cytostetetai 1, Athtame: FulleOytokeretin-1; Short=CK-1; Athtame: Fullerkendin-1; Athtame: Athtame: Athtame orient Kvi	41.3 KDa 64.8 kDa	3// 625	8/1346 2971878
	-21.02	-68.52	9.42	S	2	RecName: Full=Keratin, type II cytoskeletal 64; AttName: Full=Cytokeratin-6A; Short=CK 64; AttName: Full=K6a keratin	59.2 kDa	552	1954546
	-20.97	-66.28	8.6	Ś	ŝ	RecName. Full=Serotransferrin; Short=Transferrin; AttName. Full=Siderophilin; AttName. Full=Beta-1 metal-binding globulin; Flags: Precursor	77.1 kDa	869	902357
	-27.89	-65.89	1.93	00	m	RecName: Full=Hornerin	282.4 kDa	2850	1193298
	-15.31	-58.95	4.27	5	2	Rechame: Full=Keratin, type II cytoskeletal 73, Athtame: Full=Cytokeratin-73, Short=CK-73, Athtame: Full=Keratin-73, Short=K73, Athtame: Ful=Type II keratin-36, Athtame: Full=Type II inner root sheath-specific keratin-K6irs3	58.9 kDa	539	1745820
	-15.77	-55.63	5.32	т	e	RecName: Full=Keratin, type II cytoskeletal 5; AttName: Full=Cytokeratin-5; Short=CK-5; AttName: Full=Keratin-5; Short=K5	62.9 kDa	601	1840953
	-16.99	-55.6	6.95	ষ	4	Rechame: Full=Keratin, type II cytoskeletal S, AttName: Full=Cytokeratin-S, Short=CK-S, AttName: Full=Keratin-S, Short=KS, AttName: Full=S8 kDa cytokeratin	62.4 kDa	230	3991701
	-15.41	-54.02	5.07	<i>с</i>	m	RecName: Full=Keratin, type II cytoskeletal 5; AttName: Full=Cytokeratin-5; Short=CK-5; AttName: Full=Keratin-5; Short=K5	62.5 kDa	592	4654861
	-18.46	-53.08	16.1	G	g	RecName: Full=Keratin, type I cytoskeletal 14, AttName: Full=Cytokeratin-14, Short=CK-14, AttName: Full=Keratin-14, Short=K14	51.6 kDa	472	8763417
	-16.47	-49.61	9.26	v	v	RecName: Full=Keratin, type 1 cytoskeletal 17, AttName: Full=Cytokeratin-17, Short=CK-17, AttName: Full=Keratin-17, Short=K17, AttName: Full=S9.1	48.1 kDa	432	749734
	-16.67	-48 45	66.6	v.	vo	Recohame: Full=Keratin, type II cytoskeletal 6A, AttName: Full=Cytokeratin-6A, Short=CK 6A, AttName: Full=K6a keratin, AttName: Full=Cytokeratin-6D: Short=CK 6D: AttName: Allerena-Hum s 5.	60.0 kDa	564	1658689
	07	S.	0			RecName: Full=Keratin, type II cytosketetal 2 epidermat, AttName: Full=Cytokeratin-2e; Short=K2e; Short=K2e; Short=kcaratin-		ŝ	3430474
	-10.43	-46.72	359	n et	n en	z, ∧uuvaine. ruin-epiuriena verauri-ze ReeName: FulleCerulopiasmin: AttName: Full=Ferroxidase: Flaos: Precursor	04.3 kDa	1059	1091287
	00-1-1-	4	200	,	,			2	4

| RecName: Full=Keratin, type II cytoskeletal 5, AtName: Full=Cytokeratin-5, Short=CK-5, AtName: Full=Keratin-5, Short=K5
RecName: Full=Keratin, type II cytoskeletal 5, AtName: Full=Cytokeratin-5, Short=CK-5, AtName: Full=Keratin-5, Short=K5
RecName: Full=Keratin, type II cytoskeletal 5, AtName: Full=Cytokeratin-17, Short=CK-17, AtName: Full=Keratin-17,
Short=K17, AtName: Full=Keratin, type II cytoskeletal 5B, AtName: Full=Cytokeratin-17, Short=CK-17, AtName: Full=Keratin-17,
RecName: Full=Keratin, type II cytoskeletal 5B, AtName: Full=Cytokeratin-BB, Short=CK 6B, AtName: Full=Keratin-17,
RecName: Full=Keratin, type II cytoskeletal 5B, AtName: Full=Cytokeratin-BB, Short=CK 6B, AtName: Full=Keratin
RecName: Full=Keratin, type II cytoskeletal 5B, AtName: Full=Cytokeratin-BB, Short=CK 13, AtName: Full=Keratin-17,
RecName: Full=Keratin, type II cytoskeletal 19, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19,
Short=K19, AtName: Full=CK-19
RecName: Full=Concomported 18, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19,
Short=K19, AtName: Full=Concomported 18, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19,
Short=K19, AtName: Full=Concomported 18, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19,
Short=K10, AtName: Full=Cyt0, Full=Cyt0, Full=Cyt0, Full=Keratin-19, Short=CK-19, AtName: Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=K0, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=K0, Full=Keratin-19, Short=K10, Full=Keratin-19, Short=K10, Full=K0, Full=K0, Full=K0, Full=Keratin-19, Short=K10, | atin-5
i#K6b I
i=K6b I
i=bind | | | 다 | ; Short-
; Short-
in-17;
in-19;
in-19;
rt-H-fai | : Short=F
: Short=F
in-17;
in-17;
ing globu
in-19;
in-14;
in-14;
in-14;
in-14;
in-14;
 | : Short=K.(
: Short=K.(
n-17;
keratin
ing globuli
in-19;
in-19;
in-14;
in-14;
in-14;
in-14;
in-14;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-17;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
in-18;
i | ; Short=KS
; Short=KS
in-17;
ing globulin;
in-19;
in-19;
in-19;
is Short=K8
i, Short=K8
i, Short=K8 | ; Short=IK5
; Short=IK5
n-17;
ing globullin;
in-19;
f=H-factor-li
f=H-factor-li
f=H-factor-li
f Short=IK8
i, Short=IK8

 | ; Short=K5
; Short=K5
n-17;
ing globulin;
in-19;
in-14;
in-14;
t=H-factor-lik
t; Short=K8
i; Short=K8
 | ; Short-KS
; Short-KS
n-17;
ing globulin;
in-19;
in-19;
in-14;
; Short-K8
; Short-K8;
in-14;
 | ; Short=KS
; Short=KS
n-17;
ing globulin;
ing globulin;
in-19;
in-14;
in-14;
in-14;
in-14; | ; Short=KS
; Short=KS
n-17;
keratin
ing globulin;
in-19;
in-19;
t=H-factor-like
t=H-factor-like
t=H-factor-like
t=H-factor-like
t=H-factor-like
t=H-factor-like | ; Short=K5
; Short=K5
n=17;
Reratin
ing globulin;
in=18;
in=14;
f=H-factor-like
t=H-factor-like
in=14;
f Short=K8;
f Short=K8;
f Short=K8;
 | ; Short=KS
; Short=KS
n-17;
Reratin
ing globulin;
in-19;
in-19;
; Short=K8;
i; Short=K8;
i; Short=K8; | : Short=K5
: Short=K5
n-17;
ing globulin;
in-18;
in-14;
fshort=K8;
i; Short=K8;
i: 14;
 | : Short=K5
: Short=K5
r-17;
ng globulin;
ing globulin;
in-19;
thertactor-like
t=H-factor-like
t=H-factor-like
t=H-factor-like | : Short-K5
: Short-K5
eratin
ing globulin;
in-19;
in-14;
t-H-factor-like
t-H-factor-like
t-H-factor-like
t-H-factor-like
t-H-factor-like | : Short=KS
: Short=KS
eratin
ng globulin;
n-19;
n-19;
t-H-factor-like
t, Short=K8
t, Short=K8
t, Short=K8
 | : Short=K5
: Short=K5
in=17;
in=19;
in=19;
in=14;
t=H-factor-like
t=H-factor-like
t=H-factor-like
t=H-factor-like | : Short=K5
; Short=K5
n-17;
ng globulin;
n-14;
f. Short=K8;
i; Short=K8;
i; Short=K8;
i; Short=K8; | : Short=K5
: Short=K5
eratin
ing globulin,
in-14;
in-14;
f: Short=K8;
i; Short=K8;
i; Short=K8;
 | : Short=KS
: Short=KS
eratin
ing globulin;
ing globulin;
in-14;
in-14;
in-14;
in-14;
in-14;
in-14;
in-14; |
|--|--|--|---|---|--
--|--|--
--
--
--
---|--
--|--|--

---	--	--

kame: F AttNam AttNar II=Beta	-tull=Ker ie: Full= i-1 mets ie: Full= ie: Full=	ull=Keratin-5 ie: Full=Keratin-5 ie: Full=K6b ie: Full=Kerati
 | "ull=Keratin-S; Short=K;
e: Full=Keratin-17;
ne: Full=K6b keratin
1 metal-binding globuli
e: Full=Keratin-19;
ne: Full=Keratin-8; Short=K
Full=Keratin-8; Short=K | Rechame: Full=Keratin, type II cytoskeletal 5, AttName: Full=Cytokeratin-5, Short=CK-5, AttName: Full=Keratin-5, Short=K7
Rechame: Full=Keratin, type II cytoskeletal 17, AttName: Full=Cytokeratin-17, Short=CK-17, AttName: Full=Keratin-17,
Short=K7
Rechame: Full=Keratin, type II cytoskeletal BD; AttName: Full=Cytokeratin-BB; Short=CK-6, AttName: Full=Keratin-17,
Rechame: Full=Keratin, type II cytoskeletal BD; AttName: Full=Cytokeratin-BB; Short=CK-6, AttName: Full=Keratin-18,
Rechame: Full=Keratin, type II cytoskeletal BD; AttName: Full=Cytokeratin-BB; Short=CK 66; AttName: Full=Keratin-19,
Rechame: Full=Keratin, type II cytoskeletal 19, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin-19,
Rechame: Full=Unitonon protein 18
Rechame: Full=Unitonon protein 19
Rechame: Full=Unitonon protein 19
Rechame: Full=Unitonon protein 14, AttName: Full=Cytokeratin-14, Short=CK-6, AttName: Full=Keratin-14,
Short=K4, AttName: Full=Cytokeratin-8, Short=CK-8, AttName: Full=Keratin-8, Short=K8
Rechame: Full=Recatin type II cytoskeletal 8, AttName: Full=Cytokeratin-8, Short=CK-8, AttName: Full=Keratin-8, Short=K8
Rechame: Full=Recatin type II cytoskeletal 8, AttName: Full=Cytokeratin-8, Short=CK-8, AttName: Full=Keratin-8, Short=K8
Rechame: Full=Recatin type II cytoskeletal 8, AttName: Full=Cytokeratin-8, Short=CK-8, AttName: Full=Keratin-8, Short=K8 | ull=Keratin-5; Short=K5
e: Full=Keratin-17;
ne: Full=K6b keratin
-1 metal-binding globulin;
e: Full=Keratin-19;
e: Full=Keratin-14;
notein 1; Short=H-factor-II
rotein 1; Short=H-factor-II
rotein 1; Short=H-factor-II

 | -ull=Keratin-S, Short=KS e: Full=Keratin-17; ne: Full=Keratin-19; e: Full=Keratin-19; e: Full=Keratin-14; rotein 1; Short=H-factor-lik Full=Keratin-8; Short=K8; Full=Keratin-8; Short=K8;
 | 'ull=Keratin-5; Short=K5 e: Full=Keratin-17; ne: Full=Keratin-19; e: Full=Keratin-19; e: Full=Keratin-14; rotein 1; Short=H-factor-like Full=Keratin-8; Short=K8; Full=Keratin-8; Short=K8; ne: Full=Keratin-14;
 | :ull=Keratin-5, Short=KS
e. Full=Keratin-17;
ne. Full=Keratin-19;
ue. Full=Keratin-19;
e. Full=Keratin-14;
rotein 1; Short=H-1actor-like
Full=Keratin-8; Short=K8;
Full=Keratin-8; Short=K8;
Full=Keratin-14; | ull=Keratin-5, Short=KS
e: Full=Keratin-17;
ne: Full=Keratin-17;
te: Full=Keratin-19;
e: Full=Keratin-14;
rotein 1; Short=H-factor-like
Full=Keratin-6; Short=K8
Full=Keratin-6; Short=K8;
e. Full=Keratin-14; | ull=Keratin-5, Short=K5
er. Full=Keratin-17,
ne: Full=Keratin-17,
te: Full=Keratin-19,
er. Full=Keratin-14,
rotein 1, Short=H-factor-like
Full=Keratin-6, Short=K8
Full=Keratin-6, Short=K8,
rull=Keratin-6, Short=K8,
rull=Keratin-14, | ull=Keratin-S, Short=KS
e. Full=Keratin-17;
ne. Full=Keratin-17;
te. Full=Keratin-19;
e. Full=Keratin-14;
rotein 1;
Short=H-1actor-ike
Full=Keratin-S, Short=K8;
Full=Keratin-S, Short=K8;
Full=Keratin-3; Short=K8; | 'ull=Keratin-5, Short=K5 Full=Keratin-17; ne: Full=Keratin-19; ie: Full=Keratin-19; ie: Full=Keratin-14; rotein 1; Short=H-factor-like Full=Keratin-8; Short=K6; Full=Keratin-8; Short=K6;
 | ull=Keratin-S, Short=K5
e. Full=Keratin-17;
ne: Full=Keratin-19;
e. Full=Keratin-19;
e. Full=Keratin-14;
rotein 1, Short=H-factor-like
Full=Keratin-8; Short=K8;
Full=Keratin-8; Short=K8; | iull=Keratin-S; Short=KS
e: Full=Keratin-17;
ne: Full=Keratin-19;
e: Full=Keratin-19;
e: Full=Keratin-14;
rotein 1; Short=H-factor-like
rotein 1; Short=H-factor-like
rotein 1; Short=K8
Full=Keratin-8; Short=K8;
Full=Keratin-8; Short=K8; | ull=Keratin-6; Short=KS
ex: Full=Keratin-17;
ne: Full=Keratin-19;
e: Full=Keratin-19;
e: Full=Keratin-14;
rotein 1; Short=H-factor-like
Full=Keratin-6; Short=K8
Full=Keratin-6; Short=K8
 | ull=Keratin-5, Short=KS
e: Full=Keratin-17;
ne: Full=Keratin-19;
e: Full=Keratin-19;
e: Full=Keratin-14;
rotein 1, Short=H-factor-like
Full=Keratin-6; Short=K8
Full=Keratin-6; Short=K8 | ull=Keratin-1;
e. Full=Keratin-1;
he. Full=Keb keratin-1;
te. Full=Keratin-1;
e. Full=Keratin-1;
e. Full=Keratin-1;
full=Keratin-8; Short=K8
Full=Keratin-8; Short=K8
Full=Keratin-1;
e. Full=Keratin-1; | ull=Keratin-1; Short=K5
e: Full=Kekatin-1;
ne: Full=Kekatin-1;
e: Full=Keratin-19;
e: Full=Keratin-19;
hull=Keratin-14;
rotein 1; Short=H166
Full=Keratin-8; Short=K8
Full=Keratin-8; Short=K8
Full=Keratin-14;
 | e: Full=Keratin-17;
he: Full=Keratin-17;
he: Full=Keratin-19;
he: Full=Keratin-19;
he: Full=Keratin-14;
he: Full=Keratin-3; Short=K8;
Full=Keratin-8; Short=K8;
full=Keratin-8; Short=K8;
e: Full=Keratin-14;
he: F |
| | AttName: Full=
; AttName: Full=
all=Beta-1 meta
AttName: Full= | AttName: Full=Kerat
, AttName: Full=K6b
,
altName: Full=Kerat
AttName: Full=Kerat | AttName: Full=K6k ker,
K, AttName: Full=K6k ker,
Ji=Beta-1 metal-binding
AttName: Full=Keratin-1
AttName: Full=Keratin-1 | AttName: Full=Keratin-17,
, AttName: Full=K6b kerati
all=Beta-1 meta-binding gli
AttName: Full=Keratin-19,
AttName: Full=Keratin-14,
AttName: Full=Keratin-14, | Rechame: Full=Keratin, type I cytoskeletal 17; AttName: Full=Cytokeratin-17; Short=CK-17; AttName: Full=Keratin-17;
Short=Kt17
RecName: Full=Keratin, type I cytoskeletal 6B; AttName: Full=Cytokeratin-6B; Short=CK-17; AttName: Full=Keratin
RecName: Full=Sentiansterin; Short=Transferrin; AttName: Full=Cytokeratin-6B; Short=CK-19; AttName: Full=Keratin-19;
RecName: Full=Sentiansterin; Short=Transferrin; AttName: Full=Cytokeratin-19; Short=CK-19; AttName: Full=Keratin-19;
Short=Kt3, AttName: Full=Sentian; Short=Transferrin; AttName: Full=Cytokeratin-19; Short=CK-19; AttName: Full=Keratin-19;
Short=Kt3, AttName: Full=Sentian; Short=Transferrin; AttName: Full=Cytokeratin-19; Short=CK-19; AttName: Full=Keratin-19;
Short=Kt3, AttName: Full=Sentian; Short=Transferrin; AttName: Full=Cytokeratin-19; Short=CK-19; AttName: Full=Keratin-19;
RecName: Full=glapha-1 chain C region
RecName: Full=glapha-1 chain C region
RecName: Full=glapha-1 chain C region
RecName: Full=glapha-1 chain C region
RecName: Full=Gytokeratin_7; AttName: Full=Cytokeratin-14; Short=CK-14; AttName: Full=Keratin-14;
RecName: Full=136; Filgs: Precurson
1; AttName: Full=Complement foul cytoskeletal, AttName: Full=XCK55(56) | AttName: Full=Keratin-17;
, AttName: Full=K6b keratin
al=Beta-1 metal-binding globu
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
or-like protein 1; Short=H-fact
Name: Full=Keratin-8; Short=
 | AttName: Full=Keratin-17;
; AttName: Full=KcB keratin
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
AttName: Full=Keratin-14;
or-like protein 1; Short=H-facto
Name: Full=Keratin-8; Short=K
Name: Full=Keratin-8; Short=K | AttName: Full=K6b keratin-17;
, AttName: Full=K6b keratin
AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
attName: Full=Keratin-6; Short=K8
Name: Full=Keratin-6; Short=K8 | Rechame: Full=Keratin, type I cytosteletal 17; Athame: Full=Cytokeratin-17; Short=CK-17; Athame: Full=Keratin-17; Short=Kr17, Athame: Full=Keratin-17; Short=Kr17, Athame: Full=Keratin-17; Rechame: Full=Keratin, type I cytosteletal 6B; Athame: Full=Cytokeratin-6B; Short=CK 6B, Athame: Full=Keb keratin Rechame: Full=Gytokeratin-18; Short=CK-19; Athame: Full=Keb keratin Rechame: Full=Gytokeratin-19; Short=CK-19; Athame: Full=Keb keratin Rechame: Full=Beta-1 meta-binding globulin; Flags: Precursor Rechame: Full=Cytokeratin-19; Short=CK-19; Athame: Full=Keratin-19; Flags: Precursor Rechame: Full=Cytokeratin, type I cytosteletal 19; Athame: Full=Cytokeratin-19; Short=CK-19; Athame: Full=Keratin-19; Rechame: Full=Uhinown protein 18
Rechame: Full=Uhinown protein 18
Rechame: Full=Uhinown protein 18
Rechame: Full=Banda chain C region
Rechame: Full=Banda chain C region
Rechame: Full=Banda chain C region
Rechame: Full=Strip alpha-1 chain C region
Rechame: Full=Banda chain C region
Rechame: Full=Strip alpha-1 short=CK-8, Athame: Full=Keratin-8, Short=K68

 | AttName: Full=Keratin-17;
, AttName: Full=Kbb keratin
AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
or-like protein 1, Short=H-factor-like
Name: Full=Keratin-8; Short=K8;
Name: Full=Keratin-14;
 | AttName: Full=Keratin-17;
, AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
AttName: Full=Keratin-14;
Short=K8
Name: Full=Keratin-6; Short=K8
Name: Full=Keratin-6; Short=K8
 | AttName: Full=Këratin-17;
, AttName: Full=Këratin-19;
AttName: Full=Këratin-19;
AttName: Full=Këratin-14;
AttName: Full=Këratin-14;
or-like protein 1; Short=H-1actor-like
Name: Full=Këratin-6; Short=K8;
Name: Full=Këratin-6; Short=K8;
uursor | AttName: Full=K6b keratin-17;
, AttName: Full=K6b keratin
all=Beta-1 metal-binding globulin;
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
or-like protein 1; Short=H-factor-like
or-like protein 1; Short=H-factor-like
AttName: Full=Keratin-6; Short=K8;
Name: Full=Keratin-6; Short=K8;
Lursor | AttName: Full=Keratin-17',
', AttName: Full=K6b keratin
AttName: Full=K6ratin-19,
AttName: Full=Keratin-19,
AttName: Full=Keratin-14,
or-like protein 1; Short=Hfactor-like
Name: Full=Keratin-8, Short=K8
Name: Full=Keratin-8, Short=K8
Uursor | AttName: Full=K6b keratin-17;
, AttName: Full=K6b keratin-
dl=Beta-1 metal-binding globulin;
AttName: Full=Keratin-19;
AttName: Full=Keratin-1;
or-like protein 1; Short=H-factor-like
Name: Full=Keratin-6; Short=K8;
Name: Full=Keratin-6; Short=K8;
Lursor Full=Keratin-14;
 | AttName: Full=Keratin-17,
, AttName: Full=Keratin-17,
AttName: Full=Keratin-19,
AttName: Full=Keratin-19,
AttName: Full=Keratin-14,
or-like protein 1; Short=H-1actor-like
Name: Full=Keratin-6; Short=K8
Name: Full=Keratin-6; Short=K8
Dame: Full=Keratin-14,
AttName: Full=Keratin-14,
 | AttName: Full=Keratin-17,
, AttName: Full=Keratin-17,
AttName: Full=Keratin-19,
AttName: Full=Keratin-14,
AttName: Full=Keratin-6, Short=K8
Name: Full=Keratin-6, Short=K8
Name: Full=Keratin-14,
AttName: Full=Keratin-14,
Dursor | AttName: Full=Keratin-17;
, AttName: Full=Keratin-17;
, AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
AttName: Full=Keratin-6; Short=K8
Name: Full=Keratin-6; Short=K8
Name: Full=Keratin-6; Short=K8
Name: Full=Keratin-14;
AttName: Full=Keratin-14;
AttName: Full=Keratin-14; | AttName: Full=Keratin-17',
, AttName: Full=Keratin-18',
AttName: Full=Keratin-19,
AttName: Full=Keratin-19,
AttName: Full=Keratin-19,
artike protein 1, Short=H-factor-like
or like protein 1, Short=H-factor-like
artike protein 1, Short=H-factor-like
Dame: Full=Keratin-8, Short=K8,
Name: Full=Keratin-14,
 | AttName: Full=Keratin-17;
; AttName: Full=Keratin-16b keratin
all=Beta-1 metal-binding globulin;
AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
or-like protein 1; Short=H:factor-like
name: Full=Keratin-8; Short=K8
Name: Full=Keratin-8; Short=K8
utsor | AttName: Full=Keratin-17;
; AttName: Full=Keratin-17;
AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
attName: Full=Keratin-14;
or-like protein 1; Short=H-factor-like
Name: Full=Keratin-8; Short=K8;
Name: Full=Keratin-14;
AttName: Full=Keratin-14; | AttName: Full=Keratin-17;
; AttName: Full=Keratin-15;
AttName: Full=Keratin-19;
AttName: Full=Keratin-19;
AttName: Full=Keratin-14;
or-like protein 1; Short=H-factor-like
Name: Full=Keratin-8; Short=H68;
Name: Full=Keratin-8; Short=H68;
Lul=Keratin-14;
AttName: Full=Keratin-14; | AttName: Full=Keratin-17,
(, AttName: Full=Keratin-19,
all=Beta-1 metal-binding globuliny,
AttName: Full=Keratin-19,
AttName: Full=Keratin-14,
or-like protein 1, Short=Kr8
Name: Full=Keratin-8, Short=Kr8
Name:
Full=Keratin-14,
AttName: Full=Keratin-14,
At |
| 6B; Short=CK 6B;
hilin; AttName: Fu
19, Short=CK-19; | Short=K(17
RecName: Full=Keratin, type II cytoskeletal 6B, AthName: Full=Cytokeratin-6B, Short=CK 6B, AthName: Full=K6b keratin
RecName: Full=gamma-1 chain C region
RecName: Full=gamma-1 chain C region
ResName: Full=Serotransferrin, Short=Transferrin, AthName: Full=Siderophilin, AthName: Full=Beta-1 meta-binding gloi
ResName: Full=Serotransferrin, Short=Transferrin, AthName: Full=Siderophilin, AthName: Full=Beta-1 meta-binding gloi
ResName: Full=Serotransferrin, Short=Transferrin, AthName: Full=Siderophilin, AthName: Full=Beta-1 meta-binding gloi
ResName: Full=Cistransferrin, Short=Transferrin, AthName: Full=Cytokeratin-19, Short=CK-19, AthName: Full=Keratin-19,
Short=K/19, AthName: Full=Cistransferrin, Cregion
ResName: Full=Informovn protein 18
ResName: Full=Informovn protein 18 | 68: Short=CK 68: AttName: Fu | 68, Short=CK 68, Athlame: Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-19, Athlame: Full
14, Short=CK-14, Athlame: Full | 68; Short=CK 68; AttName: Fu
brilin; AttName: Full=Beta-1 Inet
19; Short=CK-14; AttName: Full
14; Short=CK-14; AttName: Full
lame: Full=H factor-like protein | 68: Short=CK 68: AttName: Fu
68: Short=CK 68: AttName: Full
19: Short=CK-19: AttName: Full
14: Short=CK-14: AttName: Full
14: Short=CK-14: AttName: Full | 68, Short=CK 68, Athlame. Fu
billin, Athlame. Full=Beta-1 met
19, Short=CK-19, Athlame. Full
14, Short=CK-14, Athlame. Full
tame. Full=H factor-like protein
tame. Full=H factor-like protein
tshort=CK-8, Athlame. Full=Ke
 | 68, Short=CK 68, Athlane: Fu
brillin, Athlane: Full=Beta-1 met
19, Short=CK-19, Athlane: Full
14, Short=CK-14, Athlane: Full
Iame: Full=H tactor-like protein
Iame: Full=H tactor-like protein
Short=CK-8, Athlane: Full=Ke
; Short=CK-8, Athlane: Full=Ke | 68; Short=CK 68; Athlame: Ful
brillin; Athlame: Full=Beta-1 met
19; Short=CK-14; Athlame: Full
14; Short=CK-14; Athlame: Full
teme: Full=H factor-like protein
is Short=CK-8; Athlame: Full=Ke
; Short=CK-8; Athlame: Full=Ke | 68; Short=CK 68; Athlame: Ful
brillin; Athlame: Full=Beta-1 met
19; Short=CK-14; Athlame: Full
14; Short=CK-14; Athlame: Full
eame: Full=H factor-like protein
is Short=CK-8; Athlame: Full=Ke
; Short=CK-8; Athlame: Full=Ke

 | 68, Short=CK 68, Athlame. Fu
brilin, Athlame. Full=Beta-1 met
19, Short=CK-14, Athlame. Full
14, Short=CK-14, Athlame. Full=K
iame. Full=H factor-like protein
short=CK-8, Athlame. Full=K
; Short=CK-8, Athlame. Full=K
; Short=CK-8, Athlame. Full=K
 | 68, Short=CK 68, Athlame. Fu
brillin, Athlame. Full=Beta-1 met
19, Short=CK-14, Athlame. Full
14, Short=CK-14, Athlame. Full=Ke
is Short=CK-8, Athlame. Full=Ke
; Short=CK-8, Athlame. Full=Ke
is Short=CK-8, Athlame. Full=Ke
is Short=CK-14, Athlame. Full=Ke
 | 68, Short=CK 68, Athlame: Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-14, Athlame: Full
14, Short=CK-14, Athlame: Full
lame: Full=H factor-like protein
is Short=CK-8, Athlame: Full=Ke
5 Short=CK-8, Athlame: Full=Ke
14, Short=CK-8, Athlame: Full=Ke
14, Short=CK-8, Athlame: Full=Ke | 68, Short=CK-68, Athlame: Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-14, Athlame: Full
14, Short=CK-14, Athlame: Full
lame: Full=H factor-like protein
is 5hort=CK-8, Athlame: Full=Ke
5 Short=CK-8, Athlame: Full=Ke
14, Short=CK-14, Athlame: Full=Ke
sor | 68, Short=CK 68, Athlame: Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-14, Athlame: Full
14, Short=CK-14, Athlame: Full
lame: Full=H factor-like protein
lame: Full=H factor-like protein
sor
5 Short=CK-8, Athlame: Full=Ke
5 Short=CK-8, Athlame: Full=Ke
14, Short=CK-14, Athlame: Full=Ke
 | 68, Short=CK-68, Athlame: Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-14, Athlame: Full
lame: Full=H factor-like protein
lame: Full=H factor-like protein
is Short=CK-8, Athlame: Full=Ke
; Short=CK-8, Athlame: Full=Ke
is Short=CK-8, Athlame: Full=Ke
bullin, Flags: Precursor | 68; Short=CK-68; Athlame: Full
68; Short=CK-14; Athlame: Full
19; Short=CK-14; Athlame: Full
14; Short=CK-14; Athlame: Full
14; Short=CK-8; Athlame: Full=Ke
58
58
58
14; Short=CK-8; Athlame: Full=Ke
14; Short=CK-14; Athlame: Full=Ke
14; Short=CK-14; Athlame: Full=Ke
 | 681, Short=CK-16, AthName: Full
19, Short=CK-19, AthName: Full
14, Short=CK-14, AthName: Full
ame: Full=H factor-like protein
ishort=CK-8, AthName: Full=Ke
; Short=CK-8, AthName: Full=Ke
ishort=CK-14, AthName: Full=Ke
bullin; Flags: Precursor | 68; Short=CK 68; AttName: Full
68; Short=CK 19; AttName: Full
19; Short=CK 14; AttName: Full
14; Short=CK 8; AttName: Full=Ke
is Short=CK 8; AttName: Full=Ke
is Short=CK 8; AttName: Full=Ke
is Short=CK 14; AttName: Full=Ke
pCM3 | 68, Short=CK 68, Athlame. Ful
brillin, Athlame: Full=Beta-1 met
19, Short=CK-14, Athlame: Full
iame: Full=H factor-like protein
iame: Full=H factor-like protein
is Short=CK-8, Athlame: Full=Ke
; Short=CK-8, Athlame: Full=Ke
is Short=CK-14, Athlame: Full=Ke
bullin; Flags: Precursor
boulin; Flags: Precursor
 | 68, Short=CK 68, Athlame: Ful
68, Short=CK 68, Athlame: Ful
19, Short=CK-14, Athlame: Ful
14, Short=CK-14, Athlame: Ful
alme: Full=H factor-like protein
alme: Full=Ke
5 Short=CK-8, Athlame: Full=Ke
5 Short=CK-8, Athlame: Full=Ke
14, Short=CK-14, Athlame: Full=Ke
5 Short=CK-14, Athlame: Full=Ke | 68; Short=CK-68; AthName: Full
68; Short=CK-14; AthName: Full
14; Short=CK-14; AthName: Full
tame: Full=H factor-like protein
5: Short=CK-8; AthName: Full=Ke
5: Short=CK-8; AthName: Full=Ke
14; Short=CK-14; AthName: Full=Ke
14; Short=CK-14; AthName: Full=Ke
pCM3 | 681, Short=CK-16, AthName: Full
681, Short=CK-16, AthName: Full
19, Short=CK-14, AthName: Full
14, Short=CK-3, AthName: Full=Ke
i Short=CK-8, AthName: Full=Ke
i Short=CK-8, AthName: Full=Ke
i Short=CK-8, AthName: Full=Ke
Shullin; Flags: Precursor
boulin; Flags: Precursor
 | 68; Short=CK 68; AthName: Full
brillin, AthName: Full=Beta-1 met
19; Short=CK-14; AthName: Full
lame: Full=H factor-like protein
; Short=CK-8; AthName: Full=Ke
; Short=CK-8; AthName: Full=Ke
; Short=CK-8; AthName: Full=Ke
; Short=CK-8; AthName: Full=Ke
pcM3
; Short=CK-7; Short=Keratin 7;
; Short=CK-7; Short=Keratin 7; |
| . : umecytokeraur-oo, snon
M
lame: Full=Siderophilin, Alth
Full=Cytokeratin-19, Short- | . : umecynokeraur-oo, snon
M
lame: Full=Siderophilin, Alth
Full=Cytokeratin-19, Short- | . rumerytokeraun-oo, snon
lame: Full=Siderophilin, Ath
Full=Cytokeratin-19, Short- | . : tuil=cytokeraur-oo, snon
lame. Full=Siderophilin, Alth
Full=cytokeratin-19, Short-
Full=cytokeratin-14, Short-
Cytokeratin VI | r. ruillicytokerauri-bol, snor
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin-14; Short-
Short=FHR-1; AthName: Full
Short=FHR-1; AthName: Full | r. ruillic/yokeraur-od, snor
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin-14; Short-
Short=FHR1; AthName: Full
all=XENCK55(5/5) | r. tull=Cytokeratur-oo, snor
lame: Full=Siderophilin, Ath
Full=Cytokeratin-19, Short-
Cytokeratin VI
Short=FHR-1; Athame: Full
all=Cytokeratin-8; Short=C
 | .: ruille:/ytokeraur.eo, snon
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
Lill=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C | r. rull=Cytokeratur-oo, snon
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin vII
Short=FHR-1; AthName: Full
Short=FHR-1; AthName: Full
LII=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C | r. rull=Cytokeratur-oo, snon
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin vII
Short=FHR-1; AthName: Full
Short=FHR-1; AthName: Full
LII=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C

 | r. rull=Cytokeraur-oo, snor
lame: Full=Cytokeratin-19, Shorth
Full=Cytokeratin-14, Shorth
Cytokeratin VII
Short=FHR-1; AttName: Full
Lill=Cytokeratin-8; Shorth=C
Full=Cytokeratin-8; Shorth=C
Full=Cytokeratin-8; Shorth=C
Full=Cytokeratin-14; Shorth=C
Full=Cytokeratin-14; Shorth=C
 | r. rull=Cytokeraur-oo, snor
lame: Full=Siderophilin; Ath
Full=Cytokeratin-14; Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
Short=CHR-1; AthName: Full
Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
 | . : Tull=Cytokeraur-oo, snor
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
Short=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C | . : full=Cytokeraur-oo, snor
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
Short=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C | Tull=Cytokeraur-oo, snon
lame: Full=Siderophilin; Ath
Full=Cytokeratin-14; Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
Short=FHR-1; AthName: Full
LII=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
 | . : full=Cytokeratur-oo, snon
lame: Full=Cytokeratin-19, Short-
Full=Cytokeratin-14, Short-
Cytokeratin VII
Short=FHR-1, AttName: Full
Short=Cytokeratin-8, Short=C
Full=Cytokeratin-8, Short=C
Full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short- | Tull=Cytokeratin-do, short
lame: Full=Siderophilin; Ath
Full=Cytokeratin-19, Short-
Cytokeratin vII
Short=FHR-1; AthName: Full
Lil=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
 | r. ruine: Full=Siderophilin; Ath
Full=Cytokeratin-19; Short-
Cytokeratin vII
Short=FHR-1; AthName: Full
Short=FHR-1; AthName: Full
Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=
Full=Cytokeratin-14; Short=
C-theratin-14; Short=C | .: Tull=Cytokeratin-19, Short-
lame: Full=Siderophilin; Ath
Full=Cytokeratin-14, Short-
Cytokeratin VII
Short=FHR-1; AthName: Full
all=Cytokeratin-8, Short=C
Full=Cytokeratin-8, Short=C
Full=Cytokeratin-8, Short=C
Full=Cytokeratin-8, Short=C
Full=Cytokeratin-8, Short=C
Full=Cytokeratin-14, Short=C | Tull=Cytokeratin-19, Shorth
Full=Cytokeratin-19, Shorth
Cytokeratin-14, Shorth
Cytokeratin-14, Shorth
Cytokeratin-9, Shorth=Cull
Evolt=FHR-1, AttName: Full
Evolt=Cytokeratin-8, Shorth=C
Full=Cytokeratin-8, Shorth=C
Full=Cytokeratin-8, Shorth=C
Full=Cytokeratin-8, Shorth=C
Full=Cytokeratin-8, Shorth=C
Full=Cytokeratin-8, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
Full=Cytokeratin-14, Shorth=C
 | .: Tull=Cytokeratin-19, Short
Full=Cytokeratin-19, Short
Cytokeratin VII
Short=FHR-1; AttName: Full
Short=FHR-1; AttName: Full
Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytoker | .: Tull=Cytokeratin-do, Short
Full=Cytokeratin-19, Short
Cytokeratin vII
Short=FHR-1; AthName: Full
Cytokeratin-8; Short=C
III=Cytokeratin-8; Short=C
Full=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=C | .: Turier-ytokeratin-do, short-
lame: Full=Siderophilin, Ath
Full=Cytokeratin-14, Short-
Cytokeratin vII
Short=FHR-1; AthName: Full
Short=Cytokeratin-8; Short=C
III=Cytokeratin-8; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
Full=Cytokeratin-14; Short=C
MPCM1 APPCM2APPCM3 | .: Turier-ytokeraum-oo, short
lame: Full=Siderophilin, Ath
Full=Cytokeratin-19, Short-
Cytokeratin-11, Short-
Cytokeratin-8, Short-
Eule-Cytokeratin-8, Short-
full=Cytokeratin-8, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-14, Short-
full=Cytokeratin-7, Short-
Cull=Cytokeratin-7, Short-
Cull=Cytokeratin-7, Short- |
| snort=Alpha-∠mi
jion
Transferrin, AttName: Full=Cyti
etal 19, AttName: Full=Cyti | snorr=Aprins2-M
jion
Transferrin; AttName: Ful
etal 19, AttName: Full=Cyt
an | snorre-Aprie 2-M
ijon
Transferrin; AttName: Full-Cyt
stal 19, AttName: Full-Cyt
on
ns | snorr=Aprea_2-W
gion
Transferriny, AttName, Full=Cyth
an
an
an
an
an
an
an
an
an
an
an
an
an | snorr=Aprins2-M
jion
Transferrin; AttName: Full=Cyti
atal 19; AttName: Full=Cyti
n
n
fisher AttName: Full=Cytotera
fisher Protein 1; Short=FH | snorr=Aprine2-M
jion
Transferrin; AttName: Full=Cyti
atal 19; AttName: Full=Cyt
AttName: Full=Cytoterat
is AttName: Full=Cytoterat
stat: AttName: Full=Cytoterat
stat: AttName: Full=Cytoterat | shorr=Aptine2-M
inansferrin; AttName: Full=Cyti
atal 19, AttName: Full=Cyti
n
n
r
2, AttName: Full=Cytotera
slated protein 1; Short=FH
etal; AttName: Full=Cytotera
slated protein 1; Short=FH
 | snorr=Aprine2-m
inansterrin; AttName: Full=Cyt
attal 19, AttName: Full=Cyt
n
n
n
r
f. AttName: Full=Cytokera
lated protein 1; Short=Ful
etal; AttName: Full=Cyto
etal 8, AttName: Full=Cyto | shorr=Aphres_2-W
gion
Transferriny, AttName: Full=Cyti
atel 19, AttName: Full=Cyti
ns
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn
nn | shorr=Aphres_2-M
gion
Transferrin; AttName: Full=Cyt
atel 19; AttName: Full=Cyt
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

 | shorr=Aphra-2-M
inansterrin; AttName: Full=Cyt
and 19; AttName: Full=Cyt
n
n
n
in
in
in
in
in
in
in
i
 | shorr=Aphra-2-M
inansterrin; AltName: Full=Cyt
and
n
n
n
n
n
n
n
n
n
n
n
n
n
 | shorre-Aphres-2-M
innarsterriny, AttName, Full
n
n
n
n
n
n
n
n
n
n
n
n
n | shorr=Aphane-2-M
gion
Transferriny, AttName, Full=Cyt
atel 19, AttName, Full=Cyt
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns | shorr=Aphane-2-M
inansterrin; AttName: Full=Cyt
attal 19, AttName: Full=Cyt
n
n
n
n
n
n
n
n
n
n
n
n
n
 | shorre-kapne-2-M
gion
Transferriny, AttName: Full=Cyt
atel 19, AttName: Full=Cyt
n
n
n
n
n
n
n
n
n
n
n
n
n
tatNume: Full=Cytoterer
atel 4, AttName: Full=Cyto
etel 8, AttName: Full=Cyto
etel 9, AttName: Full=Cyto
etel 14, AttName: Full
Full=Cyto
etel 14, AttN | shorre-Aphres-2-W
gion
Transferriny, AttName: Full=Cyt
atel 19, AttName: Full=Cyt
n
n
n
n
n
n
n
n
n
n
n
n
n
 | shorre-Aphres-2-M
intensifienting, AttName: Full=Cytic
and
and
and
and
and
and
and
and | shorre-Aphrea-2-M
in ansterrint, AttName: Full
n
n
n
n
n
n
n
n
n
n
n
n
n | shorr=Aphres_2-m
innsterrin; AttName: Full=Cyt
an
n
n
n
n
n
n
n
n
n
n
n
n
n | shorre-Aprine -2-14
in ansterriny, AttName, Full=Cyt
and
na
na
na
na
na
na
na
na
na
na
 | shorre-kipne-2-m
in ansterriny, AttName: Full=Cytu
and
n
n
n
n
n
n
n
n
n
n
n
n
n | shorre-kprine-2-m
gion
i Transferriny, AttName: Full=Cytu
atel 19, AttName: Full=Cytu
ins
ins
ins
ins
AttName: Full=Cytu
etal 8, AttName: Full=Cytu
etal 8, AttName: Full=Cytu
etal 8, AttName: Full=Cytu
etal 8, AttName: Full=Cytu
etal 14, AttName: Full=Cy | shorre-kipne-2-m
gion
i Transferriny, AttName: Full=Cyt
attal 19, AttName: Full=Cyt
ins
ins
ins
ins
instant full=Cytokera
data 4, AttName: Full=Cytokera
data 8, AttName: Full=Cytokera
data 8, AttName: Full=Cyto
etal 8, AttName: Full=Cyto
etal 8, AttName: Full=Cyto
etal 14, AttName: Full=Cyto
etal 17, AttName: Full=Cyto
etal 7, AttName: Full=Cyto
etal 7, AttName: Full=Cyto |
| Ima-1 chain C region
ansferrin, Short-Trans
in type I cytoskeletal 19
Ful=GK-19
wn protein 18 | ma-1 chain C region
ansferrin; Short=Trans
n, type I cytoskeletal 19
Ful=GK-19
ta-1 chain C region
a-1 chain C region | ma-1 chain C region
ansferrin; Short=Trans
LuI=CK-19
wn protein 18
ka-1 chain C region
oda chain C region | ma-1 chain C region
ansferrin; Short=Trans
ru, type I cytoskeletal 19
wn protein 18
a-1 chain C region
a-1 chain C region
da chain C region
oda chain C regions
da chain C regions
turl=Cytokeretal h-7, AftN | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
wn protein 18
a-1 chain C region
ad a chain C region
odd a chain C region
ad a chain C region
Ful=Cytosketetal 14
Ful=Cytosketetal 14
Ful=Cytosketetal 14
Ful=Cytosketetal 14
Ful=Cytosketetal 14
Ful=Cytosketetal 14
Ful=Cytosketetal 14 | ma-1 chain C region
ansferrin; Short=Trans
Ful=GK-19
wn protein 18
a-1 chain C region
a-1 chain C region
bda chain C region
bda chain C region
ada chain C region
Ful=Cytoskefetal 14
Ful=Cytoskefetal 14
Flags: Precursor
, type II cytoskefetal; A | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
wn protein 18
wn protein 18
a-1 chain C region
a-1 chain C region
odd chain C region
odd chain C region
Ddd chain C region
A-1 type I cytosketetal 14
Ful=Cytoteratin-7; AM
Ful=Cytoteratin-7; AM
 | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
wn protein 18
a-1 chain C region
a-1 chain C region
oda chain C region
ada chain C region
1, type I cytoskeletal 8,
1, type II cytoskeletal 8, | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
Ful=CK-19
an protein 18
an chain C region
a-1 chain C region
bia chain C region
bia chain C region
ta-1 chain C region
ta-1 chain C region
bia chain C region
ta-1 chain C region
bia chain chain chain chain chain chain chain
chain chain cha | ma-1 chain C region
ansferrin; Short=Trans
Ful=6K-19
win protein 18
an chain C region
at-1 chain C region
at-1 chain C region
at-1 chain C region
ta-1 chain C region
bias Creation
at-1 chain C region
bias C region
at-1 chain C region
at-1 chain C region
bias C region
at-1 chain C region
at
 | ma-1 chain C region
ansferrin; Short=Trans
Ful=GK-19
wn protein 18
wal chain C region
a-1 chain C region
ada

 | ma-1 chain C region
ansferrin; Short=Trans
Ful=GK-19
wn protein 18
wall-GK-19
wn protein 18
a-1 chain C region
a-1 chain C region
a-1 chain C region
bda chain C region
ada chain C regi | ma-1 chain C region
ansferrin; Short=Trans
Fui=OK-19
tui=PK-19
al: chain C region
al: chain C region
ad: chain C region
ad: chain C region
ta-1 chain C region
ad: ch | ma-1 chain C region
ansferrin; Short=Trans
Fui=OK-19
tu-PK-19
al- chain C region
al- chain C region
ad- chain C region
ad- chain C region
ta-1 chain C region
ad- cha | ma-1 chain C region
ansferrin; Short=Trans
Fui=OK-19
tu-PK-19
al- chain C region
al- chain C region
ad- chain C region
ad-
the chain C region
ad-
the chain C region TEI
ad-
the chain C region TEI
ad-
ad- chain C region TEI
ad-
ad- chain C region TEI
ad-
ad- chain V-III region TEI
2-marcroglobulin-P; Ath | ma-1 chain C region
ansferrin; Short=Trans
Fuil=Ck19
al: chain C region
al: chain C region
al: chain C region
ad: chain C region
bia: chain C region
dat chain C region
ad: chain C region
data chain C region Ho
chain P, the lockosteletal
data chain C region Ho
chain V-III region HC
vy chain V III region HC
data V region HCC
 | ma-1 chain C region
ansferrin; Short=Trans
Fui=CK-19
win protein 18
and chain C region
at-1 chain C region HZ
by the I cytoskeletal 8
ath endo A
ath ath ath o
ath o A
ath o A
a | ma-1 chain C region
ansferrin; Short=Trans
Fui=CK-19
wn protein 18
and chain C region
al-1 chain C region
ada chain C region
ada chain C region
ban
1, type II cytoskeletal 8
ath endo A
ath of C ath a
ath endo A
ath endo A
ath of C ath a
ath endo A
ath endo A
ath of C ath a
ath endo A
ath of C ath of | ma-1 chain C region
ansferrin; Short=Trans
Fula-Citans
Wippel Cytoskeletal 19
Wippel Cregion
a-1 chain C region
a-1 chain C region
Flags: Precursor
A-1 chain C region
Flags: Precursor
A-1 chain C region S
Flags: Precursor
A-1 chain C region S
Flags: Precursor
A-1 chain C region S
Flags: Precursor
A-1 chain V region MOP
V chain V region MPCC
V chain V region MPCC
 | ma-1 chain C region
ansferrin; Short=Trans
Ful=Ck-19
wn protein 18
ma-1 chain C region
a-1 chain C region
add chain C region
A-1 type I cytoskeletal 4
n, type II cytoskeletal 8;
n, type II cytoskeletal 8;
n, type II cytoskeletal 8;
atthement factor H-related
Flags: Precursor
n, type II cytoskeletal 8;
atthement factor H-related
1, type II cytoskeletal 8;
atthement factor 1-1
2 macroglobulin-P; Atth
Nor chain V region MPC
V chain V region NPC
V chain V region NPC
V chain V region NPC
V v v v v v v v v v v v v v v v v v v v | ma-1 chain C region
ansferrin; Short=Trans
Fuil=Ck19
al: chain C region
al: chain C region
al: chain C region
bia chain C region
data chain C region Ho
vitype II cytoskeletal 3
dath endo A
dath o V region HPCO
vy chain V region NU
vy chain V region HPCO
vy chain V region NU
vy cha | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
wn protein 18
an chain C region
ae-1 chain C region
ae-1 chain C region
ad chain C region
Li-Cytokeretal 14
a, type II cytoskeletal 8
a, type II cytoskeletal 14
b, type II cytoskeletal 14
a, type II cytoskeletal 14
a, type II cytoskeletal 14
b, | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
wn protein 18
and chain C region
ae-1 chain C region
da chain C region
ae-1 chain C region
ad chain C region
Li=Cytokeretal 14
a, type II cytoskeletal 8
athende A
athent protein C
athent P I cytoskeletal 8
athende A
athende | ma-1 chain C region
ansferrin; Short=Trans
Ful=CK-19
win protein 18
ai chain C region
ai-1 chain C region
dia chain C region
ai-1 chain C region
hall=Cytokeretian 14
hype II cytoskeletal 8
hype II cytoskeletal 8
hype II cytoskeletal 8
hype II cytoskeletal 8
hit endo A
vitype II cytoskeletal 8
hit endo A
vitype II cytoskeletal 8
hit endo A
edate filament protein C
abumin; AttName: Alle
hytoral V region HPCC
Vy chain V region MPCC
Vy chain V region MPCC |
| Rechama: Full=Alpha and county by second and an and an and and and and and and | Reconstruction: Level of the construction of t | amic Full=Alphotonian (Control of the Control of th | ame: Full=Alpha2-Import
ame: Full=Alpha2-Import
ame: Full=Alpha2-Import
Precorransferrin
ame: Full=Keratin, type Ic
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Ug alpha-I chair
ame: Full=Us alpha2 chair
ame: Full=Keratin, type Ic
ame: Full=Keratin, type Ic
ame: Full=Keratin, type Ic | ame: Full=Alphane: June 1, pro-
ame: Full=Alphane: June 1, pro-
ame: Full=Serotransferrin
- Precursor
- Precursor
- Hul-Unknown prote
ame: Full=g alpha-1 chair
ame: Full=g alpha-1 chair
ame: Full=g alpha-1 chair
ame: Full=g alpha-1 chair
ame: Full=Completent fa
ame: Full=Completent fa
ame: Full=Completent fa | ame: Full=Alphane: Annuality provides and the Alphane Annuality provides and the Alphane Alpha | ame: Full=Alphotent Carbon
ame: Full=Schotanstructuration
ame: Full=Schotansterrin
- Precurson
- ettol: All=Schotansterrin
- ettol: AltName: Full=Cikrita
- ettol: AltName: AltName: Full=Cikrita
- ettol: AltName: Full= | ame: Full=Alphate 2.macrosmic pro-
ame: Full=Alphate 2.macrosmic pro-
ame: Full=Alphate 2.macrosmic
Precisith type I c
= Precisith type I c
= 4(19, AltName: Full=Okc1
= ame: Full=Unknown prote
= ame: Full=Unknown prote
= ame: Full=Unknown prote
= ame: Full=Ompletement fa
= ame: Full=Completement fa
= ame: Full=Completement fa
= ame: Full=Hereatin, type II
= ame: Full=Hereatin, type II
= ame: Full=Hereatin, type II
= ame: Full=Hereatin, type II
= ame: Full=Cytokeratin type II | ame: Full=Alphab 2.macrosmic pro-
ame: Full=Alphab 2.macrosmic pro-
ame: Full=Alphab 2.macrosmic
Prectorsor
Prectorsor
me: Full=Centreor
ente: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Leteratin, type Ic
ame: Full=Completeratin
ame: Full=Completeratin
ame: Full=Completeratin
ame: Full=Completeratin
ame: Full=Completeratin
ame: Full=Completeratin
ame: Full=Completeratin prote
ame: Full=Completeratin and
ame: Full | ame: Full=Alpha 2. macrosmic pro-
ame: Full=Alpha 2. macrosmic pro-
Prectorsor
Prectorsor
in Full=Alpha 2. macrosmic
Prectorsor
in Full=Clarge appha 1.
et al. (2) a that ame: Full=Okr1
ame: Full=Ukrnown prote
ame: Full=Ukrnown prote
ame: Full=Completent fat
ame: Full=Ful

 | ame: Full=Kenternin, type 1
ame: Full=Kenternin
Precursor
Full=Kentin, type 1
etcl:
Full=Kentin, type 1
etcl:
Anne: Full=Kentin, type 1
ame: Full=Ig alpha-1 chair
ame: Full=Ig alpha-1 chair
ame: Full=Ig alpha-1 chair
ame: Full=Kentin, type 1
ame:
 | ame: Full=Kinkuran, type 1,
ame: Full=Kinkuran, type 1,
Precursor
ame: Full=Kerstin, type 1,
ex(19, AttName: Ful=0Kr1
ame: Full=Uktnown prote
ame: Full=Uktnown prote
ame: Full=Uptnown prote
ame: Full=Uptnom: Ful=0x1
ame: Full=Complement fa
ame: Full=Kerstin, type I1
ame: F | ame: Full=Althorm, type 1
ame: Full=Althorm, type 1
Prectransferrin
Prectransferrin
Prectransferrin
Prectransferrin
Prectransferrin
ame: Full=Veratin, type 1
ame: Full=Unktrown prote
ame: Full=Veratin, type 1
ame: Full=Completerrint fa
ame: Full=Completerrint fa
ame: Full=Completerrint fa
ame: Full=Completerrint fa
ame: Full=Veratin, type 11
ame: Full=Veratin, type 12
ame: Full=Veratin, type 12
a | ame: Full=Kinkuran, type 1
ame: Full=Kinkuran, type 1
Precursor
Precursor
ame: Full=Kerstin, type 1
=K18, AttName: Ful=KK-1
ame: Full=Uhktrown prote
ame: Full=Uhktrown prote
ame: Full=Uhktrown prote
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Kerstin, type II
ame: Full=Byteavy chain
ame: Full=Byteavy chain
ame: Full=Byteavy chain | ame: Full=Kinkuran, type 10
ame: Full=Kinkuran, type 10
= Precursor
= Precursor
= Kull=Vereith, type 10
= K(18, AttName: Ful=CKr1
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Completent fa
ame: Full=Completent fa
ame: Full=Completent fa
ame:
Full=Settin, type 11
ame: Full=Keratin, type 11
ame: Full=Conderatin type 11
ame: Full=Conderatin type 11
ame: Full=Keratin, t | ame: Full=Kinkuran, type II
ame: Full=Kinkuran, type II
= Precursor
= Kull=Kerstin, type II
= K(18, AttName: Ful=KK-1
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Gomplerent fa
ame: Full=Gomplerent fa
ame: Full=Gomplerent fa
ame: Full=Somplerent fa
ame: Full=Somplerent fa
ame: Full=Somplerent fa
ame: Full=Somplerent fa
ame: Full=Kerstin, type II
ame: Full=Gpavey chain
ame: Full=Bpavey chain | ame: Full=Kinkuran, type under Erula-Kinkuran
Precision: Full=Kinkuran
Precision: Full=Kinkuran
Precision: Full=Kinkuran
erk(1s, AttName: Full=Cik(1)
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Unknown prote
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Completent fat
ame: Full=Keratin, type II
ame: Full=Graver than
ame: F
 | ame: Full=Sendramstrum
mer: Full=Sendramstrum
Precursor
Precursor
ettel=Sendramstrum
Precursor
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Sendramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stramstrum
ettel=Stram | ame: Full=Sentranspecture
ame: Full=Sentranspecture
Precursor
Precursor
exits, AttName: Full=OK-1
ame: Full=Johtmown prote
ame: Full=Johtmown prot | ame: Full=Structurer, type 1
ame: Full=Structurer, type 1
Precursor
ame: Full=Structurer full=Structurer
ame: Full=Structurer full=Structurer
ame: Full=Juptaner, type 1
ame: Full=Juptaner, type 1
ame: Full=Juptaner, type 1
ame: Full=Structurer fa
ame: Full=Structurer fa | ame: Full=Structured to the
ame: Full=Structured to the
Precursor
ame: Full=Structured to
ext(1), Aththame: Full=Structured
ame: Full=Uhknown prote
ame: Full=Uhknown prote
ame: Full=Upknown prote
ame: Full=Upknown prote
ame: Full=Upknown prote
ame: Full=Upknown prote
ame: Full=Upknown prote
ame: Full=Structured
ame: Full=Structured
ame: Full=Structured
ame: Full=Structured
ame: Full=Structured
ame: Full=Structured
ame: Full=Structured
ame: Full=Strum abumin,
ame: Full=Upkavy chain
ame: Full=Upkavy chain
ame
ame
ame
ame
ame
am | ame: Full=Kinkuran, type I
ame: Full=Kinkuran, type I
Precursor
Precursor
ame: Full=Kerstin, type I
= 4(1s, AttName: Ful=Ckr1
ame: Full=Uhktnown prote
ame: Full=Uhktnown prote
ame: Full=Uhktnown prote
ame: Full=Completent fat
ame: Full=Kerstin, type II
ame: Full=Gpteavy chain
ame: Full=gpteavy | ame: Full=Starterin, type I
ame: Full=Starterin, type I
etcursor. Full=Starterin, type I
etcursor. Full=Gendrams: Full=GK-1
ame: Full=g alpha-1 chair
ame: Full=g alpha-1 chair
the full=g alpha-1 chair
ame: Full=g alpha-1 chair
ame: Full=Gendrams that
ame: Full=Gendrams that
ame: Full=Gendrams that
ame: Full=Chair that
ame: Full=Gendrams that
ame: Full=gheavy chain
ame: Full=gheavy chain
ame full=gheavy chain
ame full=gheavy c | ame: Full=Startman, type II
ame: Full=Startman for the
Precursor
Precursor
ame: Full=Startman for the
eme: Full=Veratin, type II
ame: Full=Uhknown prote
ame: Full=Startman for the
ame: Full=Startman for the
ame: Full=Startman for the
ame: Full=Volderatin, type II
ame: Full=Volderatin, type II
ame: Full=Uhknown of the
ame: Full=Uh
 |
| RecName: Full=10
RecName: Full=5
Flags: Precursor
RecName: Full=K
Short=K19, attive
RecName: Full=10
RecName: Full=10
RecName: Full=10 | RecName: Fu
RecName: Fu
Flags: Precur
RecName: Fu
Short=K19, A
RecName: Fu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
Flags: Precur
RecName: Fu
Short=K19, A
RecName: Fu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
Flags: Precur
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
Flags: Precur
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
 | RecName: Fu
RecName: Eu
Frecus Frecus
RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fullane: Fullane | RecName: Fu
RecName: Fu
Flegs: Precur
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu

 | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Fu
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
RecName: Ful
 | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Ful
RecName: Ful | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
 | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Full
RecName: | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Full
RecName: | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Full
RecName:
 | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu | RecName: Fu
RecName: Fu | RecName: Fu
RecName: Ful
RecName: Ful | RecName: Fu
RecName: Ful
RecName: Ful
 | RecName: Fu
RecName: Fu | RecName: Fu
RecName: Ful
RecName: Ful | RecName: Fu
RecName: Fu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Eu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Fu
RecName: Ful
RecName: Ful | | | |
| | | | | | |
 | | |

 |
 |
 | | |
 | |
 | | |
 | | |
 | |
| ю N т | ω N 4 4 | ω N 4 4 N | ю и 4 4 и и | m u 4 4 0 0 0 | <u>ω υ 4 4 υ υ υ υ</u> υ | ∞ 0 4 4 0 0 0 0 0
 | w u 4 4 u u u u u u | © U 4 4 U U U U U U U U U | ми 44 и и и и и и и ю

 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | w u 4 4 u u u u u u u w w t
 | ми 4 4ииииииииее | w u 4 4 u u u v u v u v u w w t o t t | w u 4 4 u u u v u v u v w w t o t t t
 | w u 4 4 u u u u v u u v u v u | w v 4 4 v v v v v v v w w v + a v v v v v v w w v + a v v + e + e + e + e + e + e + e + e + e +
 | w v 4 4 v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v | w u 4 4 u u u u u u v u w w - w | w v <td>w v 4 4 v
v v <</td> <td>w v 4 4 v v v v v v v v v v v v v v v v</td> <td>w v 4 4 v v v v v v v v v v v v v v v v v v v v</td> <td>w v 4 4 v v v v v v v v v v v v v v v v</td> | w v 4 4 v < | w v 4 4 v v v v v v v v v v v v v v v v | w v 4 4 v v v v v v v v v v v v v v v v v v v v
 | w v 4 4 v v v v v v v v v v v v v v v v |
| 100 | 13.6
13.6 | 13.6
13.6
23.81 | 13.6
13.6
23.81
11.83 | 136
138
138
138
2381
1183
6.06 | 100
13.6
13.6
13.6
23.81
13.6
23.81
11.83
6.06
6.06 | 136
136
138
138
138
138
138
138
138
138
138
138
 | 136
136
136
138
138
138
138
138
138
138
138
138
138 | 136
136
136
136
136
136
136
136
136
138
138
138
138
138
138
138
138
138
138 | 13.6
13.6
13.6
13.6
13.6
13.6
13.6
13.6

 | 136
136
136
138
138
138
138
138
138
138
138
138
138
 | 136
136
136
2381
136
2381
406
4.05
4.05
4.35
4.35
4.35
4.04
4.93
4.93
15.97
 | 136
136
136
136
136
136
138
138
138
138
138
138
138
138
138
138 | 136
136
136
136
136
136
138
138
138
138
138
1583
1319
15.83 | 136
136
136
136
136
136
136
138
1336
1338
1338
 | 136
136
136
136
136
136
138
138
1338
138
138
138
138
1583
1319
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.84
15.83
15.84
15.83
15.84
15.84
15.84
15.84
15.84
15.84
15.83
15.84
15.83
15.84
15.83
15.84
15.83
15.84
15.85
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.83
15.84
15.84
15.83
15.84
15.83
15.84
15.83
15.84
15.84
15.83
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15.84
15. | 13.6
13.6
13.6
13.6
13.6
13.6
13.8
13.8
13.8
13.8
13.8
14.09
4.03
4.35
4.03
4.35
4.03
4.35
4.03
4.35
4.35
4.35
15.87
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.84
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.
 | 13.6
13.6
13.6
13.6
13.6
13.6
13.8
4.09
4.09
4.09
4.03
4.35
4.03
4.95
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15.85
15 | 13.6
13.6
13.8
13.8
13.8
13.8
13.8
4.08
4.08
4.08
4.03
4.03
4.03
4.03
4.03
4.03
15.83
3.19
3.19
15.83
15.83
15.83
15.45
15.45
15.45
15.45 | 136
136
136
136
2381
138
2381
138
4.00
4.05
4.35
4.35
4.35
4.35
4.35
4.35
4.35
15.83
15.83
15.45
15.45
15.45
15.45
15.45
15.45
 | 136
136
136
136
2381
136
2381
4.00
4.03
4.03
4.03
4.04
4.03
4.04
4.93
4.93
4.93
4.93
4.93
15.97
15.83
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45 | 13.6
13.6
13.6
13.6
13.6
13.6
13.8
13.8
13.8
13.8
14.09
4.03
4.35
4.04
4.35
4.03
4.35
4.03
4.35
4.03
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.55 |
13.6
13.6
13.6
13.6
13.6
13.6
13.8
13.8
13.8
14.09
4.09
4.35
4.04
4.35
4.09
4.35
4.04
4.35
4.04
4.35
15.87
15.87
15.87
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
15.45
1 | 136
136
136
136
136
136
136
138
138
138
138
138
138
1409
1535
1535
1533
1545
1545
1545
1545
1545 |
| | -30.14 | -39.14
-39.14
-38.71 | -39.14
-39.14
-38.71
-38.56 | -33.14
-39.14
-38.71
-38.56
-38.56
-37.97 | -33.14
-33.14
-38.71
-38.56
-37.97
-37.79 |
 | | |

 |
 |
 | | |
 | |
 | | |
 | | |
 | |
| | -11.7 | -11.7
-11.7
-9.2 | -11.7
-11.7
-9.2
-9.38 | -11.7
-11.7
-9.2
-9.38
-9.38 | -11./
-11.7
-9.28
-9.38
-10.12
-10.63 | -11.7
-11.7
-9.28
-9.38
-10.12
-10.63
-10.63
 | -11.7
-11.7
-9.38
-9.38
-10.12
-10.63
-10.63 | -11.7
-11.7
-9.38
-9.38
-10.12
-10.63
-10.63
-10.63
-10.63 | -11.7
-11.7
-9.38
-9.38
-10.12
-10.63
-10.63
-10.63
-10.63
-11.91

 | -11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
 | -11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
 | -11.7
-11.7
-9.38
-9.38
-10.83
-10.83
-10.83
-10.83
-10.83
-10.83
-10.83
-11.38
-11.38
-11.38
-11.38
-11.38
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.31
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33
-11.33 | -11.7
-11.7
-9.36
-9.36
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53
-12.53 |
-11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.53
-12.53
-12.53
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55
-13.55 | -11.7
-9.38
-9.38
-10.12
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-12.53
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.6 | -11.7
-11.7
-9.38
-9.28
-10.12
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.53
-12.53
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
 | -11.7
-9.38
-9.28
-10.12
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.6 |
-11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.91
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33 | -11./
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33
-12.33 | -11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-10.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.63
-11.38
-11.38
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23 |
-11.7
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23 | -11./
-11.7
-9.38
-9.38
-10.12
-10.63
-10.63
-10.63
-10.63
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-11.38
-12.33
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23 | -11./
-11.7
-9.38
-9.38
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-10.63
-11.38
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8.23
-8 |
| 022000 | P20758
P01876 | P20758
P01876
P01842 | P20758
P01876
P01842
P05785 | P20758
P01876
P01842
P05785
Q03591 | P20758
P01876
P01842
P01842
P01842
P01878
P16878 | P20758
P01876
P01842
P05785
Q03591
P16878
P16878
 | P20758
P01876
P01842
P05785
Q03591
P16878
P05787
Q10758 | P20758
P01876
P01842
P05785
Q03591
P16678
P16678
P05787
Q10758
Q10758 | P20758
P01876
P01842
P05785
Q03591
P16678
P16678
P05787
P05787
P16520
P18520

 | P20758
P01876
P01842
P05785
P05785
P16378
P16378
P16378
P16378
P16378
P18520
P18520
P18520
 | P20758
P01876
P01842
P05785
Q03591
P16378
P16378
P05787
Q10758
P18520
P18520
P49822
P49822
P49822
 | P20758
P01876
P01842
P05785
Q03591
P16878
P16878
P05787
P16520
P18520
P18520
P18520
P18520
P18520
P18520
P18520
P18520 | P20758
P01876
P01842
P05785
Q03591
P16878
P16878
P05787
P05787
P05787
P05787
P01788
P18520
P49822
P49822
P01786
P01777
Q66-Q11 | P20758
P01876
P01842
P05785
Q03591
P16378
P16378
P05787
P05787
P01788
P18520
P49822
P49822
P49822
P01777
Q66:Q11
P01777
P01788
P01788
 | P20758
P01876
P01875
P05785
Q03591
P16878
P16878
P05787
P05787
P01768
P18520
P18520
P18520
P01768
P01768
P01798
P01794 | P20758
P01876
P01876
P05785
Q03591
P16678
P16678
P05787
P05787
P05787
P01768
P01777
Q650711
P01786
P01786
P01796
 | P20758
P01876
P01876
P05785
Q03581
P16878
P16878
P05787
P05787
P05787
P01768
P01777
P01766
P01775
P01768
P01794
P01794
P01793 | P20758
P01876
P01876
P05785
P05785
P16678
P166787
P05787
P05787
P01786
P18250
P18250
P18250
P18250
P18250
P18250
P01766
P01766
P01766
P01766
P01767
P01767
P01767 | P20758
P01875
P01875
P05785
P05785
P16878
P16878
P16878
P18520
P18520
P18520
P18520
P48822
P48822
P48822
P48822
P48822
P48822
P48822
P48822
P48822
P48822
P498728
P01777
P01778
P01794
P01794
P01794
 | P20758
P01876
P01842
P05785
Q03591
P16378
P16378
P05787
P05787
P01758
P18520
P49822
P49822
P49822
P49822
P49822
P49822
P49822
P01794
P01794
P01794
P01794
P01794
P01794
P01794
P01795 | P20758
P01876
P01876
P05785
Q03591
P16878
P16878
P05787
P05787
P05787
P05787
P18520
P48520
P48520
P48520
P48520
P48622
P01768
P01777
P01796
P01796
P01796
P01796
P01796
P01796
P01796 | P20758
P01876
P01876
P05785
Q03581
P16878
P16878
P05787
P0758
P18520
P48622
P48622
P48622
P48622
P48622
P48622
P48622
P01768
P01776
P01796
P01791
P01795
P01793
P01793
P01793
P01793
P01793
P01793
 | P20758 P01876 P01875 P05785 P05785 Q03591 P16678 Q10758 P165787 P07587 P07587 P07587 P07587 P07587 P0758 P165787 P0758 P0758 P0758 P01777 Q60471 P01795 P01796 P01794 P01794 P01794 P01795 P01795 P01795 P01795 P01795 P01795 P01795 P01795 P01793 P017 |
| 002014 1000 | gij113583
cii113584 | gij113583
gij113584
gij125946 | gil113583
gil113584
gil125946
gil125079 | gil113583
gil113584
gil125946
gil125079
gil218512041 | gil113583
gil113584
gil125946
gil218512041
gil218512041 | gil13583
gil13584
gil135946
gil125079
gil218512041
gil261106
gil90110027
 | gil11583
gil13584
gil125946
gil125079
gil218512041
gil125106
gil90110027
gil90110027 | gil11583
gil13884
gil125946
gil125079
gil126512041
gil126512041
gil12708592
gil1708592
gil124740 | gil11583
gil13884
gil125946
gil125812041
gil218512041
gil12512041
gil12708592
gil124740
gil557408

 | gil115583
gil1155079
gil12512041
gil216512041
gil30110027
gil30110027
gil50757408
gil56757408
 | gil113583
gil13584
gil125946
gil12512041
gil218512041
gil218512041
gil30110027
gil312575408
gil33302628
gil33302628
 | gil115583
gil1155946
gil1255946
gil125512041
gil125512041
gil218512041
gil218512041
gil21854740
gil33302628
gil33302628
gil33302628
gil31884751
gil31884751 | gil115583
gil1155946
gil1255946
gil125512041
gil125512041
gil125512041
gil126552
gil27557408
gil23302628
gil23302628
gil123856
gil123856 | gil113583
gil13584
gil125846
gil125612041
gil12512041
gil12512041
gil218512041
gil21851240
gil23302628
gil33302628
gil33302628
gil33302628
gil33302628
gil123856
gil123856
 | gil13583
gil13584
gil125846
gil125812041
gil218512041
gil218512041
gil00110027
gil0126787408
gil33302628
gil33302628
gil33302628
gil33302628
gil123856
gil123856
gil1238724
gil123874 | gil13583
gil13584
gil125079
gil12512041
gil125106
gil90110027
gil124740
gil124740
gil33302628
gil33302628
gil33302628
gil33302628
gil33302628
gil123856
gil123856
gil123856
gil123856
 | gil13583
gil13584
gil125616
gil218512041
gil218512041
gil218512041
gil125706
gil124740
gil23302628
gil23302628
gil23302628
gil123856
gil123856
gil123856
gil123856
gil123854
gil123856 | gil113583
gil13584
gil125079
gil218512041
gil218512041
gil21657706
gil124740
gil124740
gil124740
gil124740
gil123794
gil128856
gil12884761
gil128794
gil128794
gil123794 | gil113583
gil13584
gil125079
gil218512041
gil218512041
gil20110027
gil20110027
gil12572408
gil124740
gil123794
gil1135856
gil123794
gil123814
gil123814
gil123814
gil123815
gil123813
gil123815
 | gil13583
gil13584
gil125079
gil218512041
gil218512041
gil218512041
gil218512040
gil23302628
gil1237408
gil23302628
gil123794
gil123794
gil1238577
gil123856
gil123814
gil12385772
gil123813
gil123813
gil123795
gil123813
gil123795
gil123795
gil123795
gil123795
gil123795 | gil13583
gil13584
gil125079
gil12512041
gil218512041
gil218512041
gil125706
gil26757408
gil23302628
gil23302628
gil233302628
gil23856
gil123814
gil123814
gil123814
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813 | gil13583
gil13584
gil125675
gil125512041
gil218512041
gil218512041
gil1257408
gil124760
gil124760
gil124761
gil123814
gil123814
gil123814
gil123814
gil123814
gil123814
gil123814
gil123814
gil123813
gil123813
gil123813
gil123810
gil123810
 | gil13583
gil13584
gil125675
gil218512041
gil218512041
gil218512041
gil2185757408
gil23302628
gil23302628
gil23302628
gil23302628
gil23856
gil123814
gil123814
gil123814
gil123814
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil123813
gil12383
gil12383
gil12383
gil12383
gil12383
gil12383
gil12383
gil12383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13383
gil13 |
| 347 | 347
180
326 | 347
180
326
130 | 347
180
326
130
127 | 347
180
326
130
127
127 | 347
180
326
130
130
127
127
190
83 | 347
180
326
130
130
127
190
83
83
 | 347
180
326
130
130
127
127
130
83
83
83
83
83
83 | 347
180
326
130
130
130
83
83
83
83
83
143
136 | 347
180
326
130
130
130
130
131
143
143
136
143

 | 347
180
1326
130
130
130
137
143
143
231
142
231
142
238
 | 347
180
326
1326
127
190
83
83
143
143
136
143
231
136
238
238
238
238
238
238
238
238
238
238
 | 347
180
326
1326
1326
133
143
143
143
143
143
136
136
136
136
136
136
136
136
136
13 | 347
180
1326
1326
127
127
190
83
83
143
143
136
136
136
136
231
301
301
318
318
318
318
318
318
318
318
318
31 | 347
180
1326
1326
127
127
180
136
143
143
143
143
143
136
136
311
136
311
156
311
156
311
156
 | 347
180
1326
1326
127
190
83
83
143
143
143
143
136
136
31
136
316
316
316
316
316
316 | 347
180
180
125
127
127
183
83
83
143
143
136
136
136
136
311
136
136
142
231
136
136
231
136
142
238
231
142
238
231
142
238
231
143
231
143
236
143
236
143
236
143
236
143
143
143
143
143
143
143
143
143
143
 | 347
180
180
1326
127
127
183
83
83
83
143
143
143
143
142
143
142
142
142
142
142
143
301
142
143
143
143
143
143
143
143
143
143
143 | 347
180
180
1326
1326
127
190
193
143
143
143
142
142
142
143
170
170
186
170
170
186
170
170
186
170
170
186
170
170
170
170
170
170
170
170
170
170 | 347
180
1326
1326
127
127
193
143
143
143
142
142
142
142
142
142
142
142
142
142
 | 347
180
1326
127
127
190
83
83
83
143
143
143
143
143
143
142
142
142
238
316
316
316
316
316
144
144
144
144
166
316
316
316
316
316
317
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
316
317
317
317
317
317
317
317
317
317
317 | 347
180
1326
127
127
190
83
83
83
143
143
136
301
136
136
318
144
170
170
165
318
318
144
144
170
165
318
318
165
318
318
144
177
178
186
83
83
83
83
83
83
83
83
83
83
83
83
83 | 347
180
180
1256
127
127
183
83
83
143
143
143
143
143
143
143
143
143
14
 | 347
180
180
127
127
190
83
83
143
143
143
136
301
136
136
316
136
316
136
316
136
316
136
316
136
13 |
| | 326 Ail113684 DM876 .117 .3014 136 4 4 | 3.26 gil115584 F1175 -3914 136 4 4 130 gil125946 P01842 -92 -38.71 23.81 2 2 | 326 gil115584 P01876 -11.7 -3314 13.6 4 4 130 gil125946 P01842 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 | 3.6 gli15584 F137 -39.4 13.6 4 4 130 gli155846 P01642 -9.2 -38.71 23.81 2 2 130 gli125946 P01642 -9.2 -38.71 23.81 2 2 127 gli125079 P05785 -9.36 -38.56 11.83 2 2 190 gli125044 0.03591 -10.12 -37.97 6.06 2 2 | 3.6 gil1558.4 P1376 -11.7 -39.14 13.6 4 4 130 gil155846 P01842 -9.2 -38.71 23.81 2 2 130 gil125946 P01842 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil216512041 G03591 -10.12 -37.97 6.06 2 2 83 gil125106 P16878 -10.63 -37.79 4.08 2 2 | 3.56 gil135844 PD1876 -11.7 -39141 13.6 4 4 130 gil125946 P01876 -11.7 -39141 13.6 4 4 127 gil125046 P01842 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 180 gil12507041 003581 -10.12 -33737 6.06 2 2 83 gil251066 P16678 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2
 | 376 gil15584 F137 -3914 13.6 4 4 130 gil155846 P01642 -9.2 -38.71 23.81 2 2 130 gil125946 P01642 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.36 -38.56 11.83 2 2 190 gil1250794 R03591 -10.12 -37.97 6.06 2 2 190 gil2156106 P16878 -10.63 -37.79 4.09 2 2 83 gil10110027 P05787 -10.63 -37.79 4.06 2 2 143 gil90110027 P05787 -10.63 -37.52 4.355 2 2 231 gil700592 C41063 -10.63 -37.52 4.355 2 2 | 356 gil15584 F1375 -3914 13.6 4 4 130 gil155846 P01642 -9.2 -38.71 23.81 2 2 127 gil125046 P01642 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.36 -38.56 11.83 2 2 190 gil125041 a03591 -10.12 -37.97 6.06 2 2 190 gil251041 a03591 -10.12 -37.79 4.09 2 2 193 gil251067 P16878 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.62 4.355 2 2 231 gil7016027 P05787 -10.63 -37.62 4.355 2 2 231 gil7016027 P05787 -10.63 -37.52 4.355 2 2 231 gil704700 P18520< | 35 gil15844 F1375 -39141 13.6 4 4 130 gil15846 P01642 -9.2 -38.71 23.81 2 2 127 gil125046 P01642 -9.2 -38.56 11.83 2 2 127 gil125049 P05785 -9.36 -38.56 11.83 2 2 190 gil125041 a03591 -10.12 -37.97 6.06 2 2 190 gil2151064 P065785 -10.63 -37.79 4.09 2 2 83 gil2101027 P05787 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.52 4.35 2 2 231 gil124740 P08520 -10.63 -37.52 4.36 2 2 156 gil124740 P18520 -10.63 -37.57 4.04 2 2 164 gil655757408 P48622 </td <td>35 gil15584 F137 -3914 156 4 4 130 gil155845 F01565 -11.7 -3914 156 4 4 170 gil125646 P01642 -9.2 -38.71 23.81 2 2 177 gil125079 P05785 -9.38 -38.56 11.83 2 2 170 gil1250704 805785 -10.10.12 -337.57 6.06 2 2 190 gil125106 P16578 -10.63 -37.79 4.09 2 2 83 gil125106 P165787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.52 4.35 2 2 133 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil74740 P165783 -10.63 -37.57 4.35 2 2 134 gil33302628 P18520<!--</td--><td>3.6 gil15884 F01376 -11.7 -39141 13.6 4 4 130 gil15894 F01376 -9.2 -38.71 23.81 23 2 170 gil125946 P01642 -9.2 -38.71 23.81 2 2 177 gil125079 P05785 -9.38 -38.56 11.83 2 2 170 gil1250794 P05785 -9.38 -38.56 11.83 2 2 183 gil125106 P16578 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil1257</td><td>3.6
gil15684 P01876 -11.7 -3914 13.6 4 4 130 gil15684 P01876 -11.7 -3914 13.6 4 4 127 gil125046 P01642 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil216512041 G0581 -10.12 -37.79 4.06 2 2 83 gil215612041 G05861 -10.63 -37.79 4.06 2 2 83 gil215612041 G0587 -10.63 -37.79 4.06 2 2 83 gil215677046 P05787 -10.63 -37.57 4.04 2 2 136 gil12010027 P05787 -10.63 -37.52 4.356 2 2 143 gil90110027 P05787 -10.63 -37.52 4.356 2 2 158 gil170</td><td>336 gil15684 FILT -3914 13.6 4 4 130 gil15681 FOLT -92 -38.71 23.81 13.6 4 4 127 gil125046 POG785 -9.2 -38.71 23.81 2 2 127 gil125079 PO5785 -9.38 -38.56 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.08 2 2 83 gil125106 P166787 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 231 gil12615041 R05787 -10.63 -37.57 4.09 2 2 143 gil12616740 P1653 -10.63 -37.57 4.04 2 2 143 gil1264740 P18520 -10.63 -37.52 4.356 2 2 142 gil264740</td><td>35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 -38.71 23.81 13.6 4 4 170 gil125646 P01642 -9.2 -38.556 11.83 2 2 170 gil1250104 P05785 -9.38 -38.556 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.06 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 231 gil12671240 R0850 -10.63 -37.57 4.09 2 2 143 gil1201027 P05787 -10.63 -37.57 4.355 2 2 231 gil12067740 P08520 -10.63 -35.57 4.355 2 2 231 gil20</td><td>35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 38.71 23.817 23.81 2 2 173 gil125046 P01642 -9.2 38.556 11.83 2 2 2 173 gil1250104 P05785 -10.63 -38.556 11.83 2 2 2 183 gil125106 P165785 -10.63 -37.79 4.09 2 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 2 143 gil12671241 R08520 -10.63 -37.74 4.355 2 2 2 144 gil12671241 R08520 -10.63 -37.57 4.04 2 2 2 145 gil2677408 P48520 -10.63</td><td>35 gil15584 F13.5 -11.7 -391.4 13.6 4 4 130 gil15584 P01642 -9.2 38.71 23.81 13.6 4 4 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil1250794 P05785 -9.38 -38.56 11.83 2 2 190 gil1250104 R05785 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.04 2 2 143 gil90110027 P05787 -10.63 -36.56 4.35 2 2 144<td>3.6 gil 15864 PIENC -11.7 -3914 15.6 4 4 130 gil 15864 POIS76 -9.2 -38.71 23.81 23 2 170 gil 126073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 12607304 PO5785 -9.38 -38.56 11.83 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 193 gil 251064 P16878 -10.63 -37.74 4.36 2 2 143 gil 251062 P16878 -10.63 -37.57 4.04 2 2 231 gil 2610027 P05787 -10.63 -37.57 4.04 2 2 2142 gil 257408 P1653 -10.63 -37.57 4.04 2 2 218 gil 23662 P0177 -83.63 -35.63 4.36 3 3 218 gil 236</td><td>35 gil 15604 FILT -3914 13.6 4 4 130 gil 156045 FOLTAC -9.2 -38.71 23.81 23.81 2 170 gil 125079 F05785 -9.33 -38.56 11.83 2 2 190 gil 125079 F05785 -9.33 -37.37 6.06 2 2 191 gil 250106 F16678 -10.63 -37.74 4.35 2 2 193 gil 126110027 F05787 -10.63 -37.74 4.35 2 2 143 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 231 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 2131 gil 1010027 F06787 -10.63 -37.57 4.04 2 2 2143 gil 1010027 F06783 -10.63 -37.52 4.35 2 2 2143 gil 1010027</td><td>35 gil15564 F137 -3914 136 4 4 130 gil125079 P05785 -11.7 -3914 13.6 4 4 127 gil125079 P05785 -9.2 -38.71 23.81 23 2 127 gil125079 P05785 -10.12 -38.56 11.83 2 2 180 gil1250108 P165787 -10.63 -37.74 4.08 2 2 190 gil12612041 003581 -10.63 -37.74 4.08 2 2 231 gil1261027 P05787 -10.63 -37.74 4.35 2 2 231 gil12706592 610781 -10.63 -37.57 4.09 2 2 231 gil12706592 610781 -10.63 -37.57 4.35 2 2 231 gil1270659 P01782 -10.63 -37.52 4.35 2 2 231 gil1267103 P4862</td><td>35 gil15684 F13.5 -11.7 -391.4 13.6 4 4 130 gil15684 P01642 -9.2 -38.71 23.81 23.81 2 2 170 gil126079 P05785 -9.38 -38.56 11.83 2 2 190 gil1260794 P05785 -10.63 -37.79 4.09 2 2 191 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 200581 -10.63 -37.74 4.35 2 2 201 gil12612041 200583 -10.63 -37.57 4.35 2 2 213 gil12612041 20058 -10.63 -10.63
 -37.57 4.35 2 2 213 gil2677408 P4822 -11.63 -36.53 4.36 3 3 3</td><td>3.66 gil 1564.4 POLSTS -11.7 -391.4 15.6 4 4 130 gil 1564.4 POLSTS -9.2 -38.71 23.81 23 2 170 gil 125073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 25073 PO5785 -9.38 -10.12 -37.79 4.09 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 143 gil 216710027 PO5787 -10.63 -37.57 4.09 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.63 -35.56 4.36 2 2 238</td><td>3.66 gil 1560.4 FILT -391.4 15.6 4 4 130 gil 126046 FOLTA -9.2 -38.71 23.81 23.81 2 2 170 gil 126073 FOLTA -9.2 -38.71 23.81 2 2 190 gil 126073041 003581 -10.12 -37.79 6.06 2 2 190 gil 250106 FD6787 -10.63 -37.74 4.35 2 2 143 gil 26110027 FD6787 -10.63 -37.74 4.35 2 2 143 gil 2610027 FD6787 -10.63 -37.57 4.04 2 2 143 gil 261057408 FD6787 -10.63 -37.57 4.04 2 2 144 gil 266052 FD1637 -10.63 -37.52 4.94 3 3 3 216 gil 236656 FD177 -83.56 4.35 2 2 2 2 1</td><td>3.66 gil 1564.4 PD167.6 -11.7 -391.4 15.6 4 4 130 gil 126046 PD1676 -9.2 -38.71 23.81 23.81 2 2 147 gil 126073 PD5785 -9.38 -38.56 11.83 2 2 140 gil 12607041 003561 -10.12 -37.79 4.09 2 2 143 gil 216010027 PD5787 -10.63 -37.57 4.09 2 2 143 gil 24740 P18520 -10.63 -37.57 4.04 2 2 136 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.81 -36.58 4.35 2 2 231 gil 24740 P18520 -11.83 -36.58 4.36 2 2 2</td></td></td> | 35 gil15584 F137 -3914 156 4 4 130 gil155845 F01565 -11.7 -3914 156 4 4 170 gil125646 P01642 -9.2 -38.71 23.81 2 2 177 gil125079 P05785 -9.38 -38.56 11.83 2 2 170 gil1250704 805785 -10.10.12 -337.57 6.06 2 2 190 gil125106 P16578 -10.63 -37.79 4.09 2 2 83 gil125106 P165787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.52 4.35 2 2 133 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil74740 P165783 -10.63 -37.57 4.35 2 2 134 gil33302628 P18520 </td <td>3.6 gil15884 F01376 -11.7 -39141 13.6 4 4 130 gil15894 F01376 -9.2 -38.71 23.81 23 2 170 gil125946 P01642 -9.2 -38.71 23.81 2 2 177 gil125079 P05785 -9.38 -38.56 11.83 2 2 170 gil1250794 P05785 -9.38 -38.56 11.83 2 2 183 gil125106 P16578 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil1257</td> <td>3.6 gil15684 P01876 -11.7 -3914 13.6 4 4 130 gil15684 P01876 -11.7 -3914 13.6 4 4 127 gil125046 P01642 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil216512041 G0581 -10.12 -37.79 4.06 2 2 83 gil215612041 G05861 -10.63 -37.79 4.06 2 2 83 gil215612041 G0587 -10.63 -37.79 4.06 2 2 83 gil215677046 P05787 -10.63 -37.57 4.04 2 2 136 gil12010027 P05787 -10.63 -37.52 4.356 2 2 143 gil90110027 P05787 -10.63 -37.52 4.356 2 2 158 gil170</td> <td>336 gil15684 FILT -3914 13.6 4 4 130 gil15681 FOLT -92 -38.71 23.81 13.6 4 4 127 gil125046 POG785 -9.2 -38.71 23.81 2 2 127 gil125079 PO5785 -9.38 -38.56 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.08 2 2 83 gil125106 P166787 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 231 gil12615041 R05787 -10.63 -37.57 4.09 2 2 143 gil12616740 P1653 -10.63 -37.57 4.04 2 2 143 gil1264740 P18520 -10.63 -37.52 4.356 2 2 142 gil264740</td> <td>35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 -38.71 23.81 13.6 4 4 170 gil125646 P01642 -9.2 -38.556 11.83 2 2 170 gil1250104 P05785 -9.38 -38.556 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.06 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 231 gil12671240 R0850 -10.63 -37.57 4.09 2 2 143 gil1201027 P05787 -10.63 -37.57 4.355 2 2 231 gil12067740 P08520 -10.63 -35.57 4.355 2 2 231 gil20</td> <td>35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 38.71 23.817 23.81 2 2 173 gil125046 P01642 -9.2 38.556 11.83 2 2 2 173 gil1250104 P05785 -10.63 -38.556 11.83 2 2 2 183 gil125106 P165785 -10.63 -37.79 4.09 2 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 2 143 gil90110027 P05787 -10.63
 -37.74 4.355 2 2 2 143 gil12671241 R08520 -10.63 -37.74 4.355 2 2 2 144 gil12671241 R08520 -10.63 -37.57 4.04 2 2 2 145 gil2677408 P48520 -10.63</td> <td>35 gil15584 F13.5 -11.7 -391.4 13.6 4 4 130 gil15584 P01642 -9.2 38.71 23.81 13.6 4 4 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil1250794 P05785 -9.38 -38.56 11.83 2 2 190 gil1250104 R05785 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.04 2 2 143 gil90110027 P05787 -10.63 -36.56 4.35 2 2 144<td>3.6 gil 15864 PIENC -11.7 -3914 15.6 4 4 130 gil 15864 POIS76 -9.2 -38.71 23.81 23 2 170 gil 126073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 12607304 PO5785 -9.38 -38.56 11.83 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 193 gil 251064 P16878 -10.63 -37.74 4.36 2 2 143 gil 251062 P16878 -10.63 -37.57 4.04 2 2 231 gil 2610027 P05787 -10.63 -37.57 4.04 2 2 2142 gil 257408 P1653 -10.63 -37.57 4.04 2 2 218 gil 23662 P0177 -83.63 -35.63 4.36 3 3 218 gil 236</td><td>35 gil 15604 FILT -3914 13.6 4 4 130 gil 156045 FOLTAC -9.2 -38.71 23.81 23.81 2 170 gil 125079 F05785 -9.33 -38.56 11.83 2 2 190 gil 125079 F05785 -9.33 -37.37 6.06 2 2 191 gil 250106 F16678 -10.63 -37.74 4.35 2 2 193 gil 126110027 F05787 -10.63 -37.74 4.35 2 2 143 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 231 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 2131 gil 1010027 F06787 -10.63 -37.57 4.04 2 2 2143 gil 1010027 F06783 -10.63 -37.52 4.35 2 2 2143 gil 1010027</td><td>35 gil15564 F137 -3914 136 4 4 130 gil125079 P05785 -11.7 -3914 13.6 4 4 127 gil125079 P05785 -9.2 -38.71 23.81 23 2 127 gil125079 P05785 -10.12 -38.56 11.83 2 2 180 gil1250108 P165787 -10.63 -37.74 4.08 2 2 190 gil12612041 003581 -10.63 -37.74 4.08 2 2 231 gil1261027 P05787 -10.63 -37.74 4.35 2 2 231 gil12706592 610781 -10.63 -37.57 4.09 2 2 231 gil12706592 610781 -10.63 -37.57 4.35 2 2 231 gil1270659 P01782 -10.63 -37.52 4.35 2 2 231 gil1267103 P4862</td><td>35 gil15684 F13.5 -11.7 -391.4 13.6 4 4 130 gil15684 P01642 -9.2 -38.71 23.81 23.81 2 2 170 gil126079 P05785 -9.38 -38.56 11.83 2 2 190 gil1260794 P05785 -10.63 -37.79 4.09 2 2 191 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 200581 -10.63 -37.74 4.35 2 2 201 gil12612041 200583 -10.63 -37.57 4.35 2 2 213 gil12612041 20058 -10.63 -10.63 -37.57 4.35 2 2 213 gil2677408 P4822 -11.63 -36.53 4.36 3 3 3</td><td>3.66 gil 1564.4 POLSTS -11.7 -391.4 15.6 4 4 130 gil 1564.4 POLSTS -9.2 -38.71 23.81 23 2 170 gil 125073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 25073 PO5785 -9.38 -10.12 -37.79 4.09 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 143 gil 216710027 PO5787 -10.63 -37.57 4.09 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.63 -35.56 4.36 2 2 238</td><td>3.66 gil 1560.4 FILT -391.4 15.6 4 4 130 gil 126046 FOLTA -9.2 -38.71 23.81 23.81 2 2 170 gil 126073 FOLTA -9.2 -38.71 23.81 2 2 190 gil 126073041 003581 -10.12 -37.79 6.06 2 2 190 gil 250106 FD6787 -10.63 -37.74 4.35 2 2 143 gil 26110027 FD6787 -10.63 -37.74 4.35 2 2 143 gil 2610027 FD6787 -10.63 -37.57 4.04 2 2 143 gil 261057408 FD6787 -10.63 -37.57 4.04 2 2 144 gil 266052 FD1637 -10.63 -37.52 4.94 3 3 3 216 gil 236656 FD177 -83.56 4.35 2 2 2 2 1</td><td>3.66 gil 1564.4 PD167.6 -11.7 -391.4 15.6 4 4 130 gil 126046 PD1676 -9.2 -38.71 23.81 23.81 2 2 147 gil 126073 PD5785 -9.38 -38.56 11.83 2 2 140 gil 12607041 003561 -10.12 -37.79 4.09 2 2 143 gil 216010027 PD5787 -10.63 -37.57 4.09 2 2 143 gil 24740 P18520 -10.63 -37.57 4.04 2 2 136 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.81 -36.58 4.35 2 2 231 gil 24740 P18520 -11.83 -36.58 4.36 2 2 2</td></td> | 3.6 gil15884 F01376 -11.7 -39141 13.6 4 4 130 gil15894 F01376 -9.2 -38.71 23.81 23 2 170 gil125946 P01642 -9.2 -38.71 23.81 2 2 177 gil125079 P05785 -9.38 -38.56 11.83 2 2 170 gil1250794 P05785 -9.38 -38.56 11.83 2 2 183
gil125106 P16578 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.35 2 2 143 gil1257 | 3.6 gil15684 P01876 -11.7 -3914 13.6 4 4 130 gil15684 P01876 -11.7 -3914 13.6 4 4 127 gil125046 P01642 -9.2 -38.71 23.81 2 2 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil216512041 G0581 -10.12 -37.79 4.06 2 2 83 gil215612041 G05861 -10.63 -37.79 4.06 2 2 83 gil215612041 G0587 -10.63 -37.79 4.06 2 2 83 gil215677046 P05787 -10.63 -37.57 4.04 2 2 136 gil12010027 P05787 -10.63 -37.52 4.356 2 2 143 gil90110027 P05787 -10.63 -37.52 4.356 2 2 158 gil170 | 336 gil15684 FILT -3914 13.6 4 4 130 gil15681 FOLT -92 -38.71 23.81 13.6 4 4 127 gil125046 POG785 -9.2 -38.71 23.81 2 2 127 gil125079 PO5785 -9.38 -38.56 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.08 2 2 83 gil125106 P166787 -10.63 -37.79 4.09 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 231 gil12615041 R05787 -10.63 -37.57 4.09 2 2 143 gil12616740 P1653 -10.63 -37.57 4.04 2 2 143 gil1264740 P18520 -10.63 -37.52 4.356 2 2 142 gil264740 | 35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 -38.71 23.81 13.6 4 4 170 gil125646 P01642 -9.2 -38.556 11.83 2 2 170 gil1250104 P05785 -9.38 -38.556 11.83 2 2 190 gil1250104 R03591 -10.12 -33.779 4.06 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 231 gil12671240 R0850 -10.63 -37.57 4.09 2 2 143 gil1201027 P05787 -10.63 -37.57 4.355 2 2 231 gil12067740 P08520 -10.63 -35.57 4.355 2 2 231 gil20
 | 35 gil15584 F137 -3914 136 4 4 130 gil155845 P01642 -9.2 38.71 23.817 23.81 2 2 173 gil125046 P01642 -9.2 38.556 11.83 2 2 2 173 gil1250104 P05785 -10.63 -38.556 11.83 2 2 2 183 gil125106 P165785 -10.63 -37.79 4.09 2 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 2 143 gil90110027 P05787 -10.63 -37.74 4.355 2 2 2 143 gil12671241 R08520 -10.63 -37.74 4.355 2 2 2 144 gil12671241 R08520 -10.63 -37.57 4.04 2 2 2 145 gil2677408 P48520 -10.63 | 35 gil15584 F13.5 -11.7 -391.4 13.6 4 4 130 gil15584 P01642 -9.2 38.71 23.81 13.6 4 4 127 gil125079 P05785 -9.38 -38.56 11.83 2 2 190 gil1250794 P05785 -9.38 -38.56 11.83 2 2 190 gil1250104 R05785 -10.63 -37.79 4.08 2 2 143 gil90110027 P05787 -10.63 -37.74 4.35 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.09 2 2 143 gil90110027 P05787 -10.63 -37.57 4.04 2 2 143 gil90110027 P05787 -10.63 -36.56 4.35 2 2 144 <td>3.6 gil 15864 PIENC -11.7 -3914 15.6 4 4 130 gil 15864 POIS76 -9.2 -38.71 23.81 23 2 170 gil 126073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 12607304 PO5785 -9.38 -38.56 11.83 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 193 gil 251064 P16878 -10.63 -37.74 4.36 2 2 143 gil 251062 P16878 -10.63 -37.57 4.04 2 2 231 gil 2610027 P05787 -10.63 -37.57 4.04 2 2 2142 gil 257408 P1653 -10.63 -37.57 4.04 2 2 218 gil 23662 P0177 -83.63 -35.63 4.36 3 3 218 gil 236</td> <td>35 gil 15604 FILT -3914 13.6 4 4 130 gil 156045 FOLTAC -9.2 -38.71 23.81 23.81 2 170 gil 125079 F05785 -9.33 -38.56 11.83 2 2 190 gil 125079 F05785 -9.33 -37.37 6.06 2 2 191 gil 250106 F16678 -10.63 -37.74 4.35 2 2 193 gil 126110027 F05787 -10.63 -37.74 4.35 2 2 143 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 231 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 2131 gil 1010027 F06787 -10.63 -37.57 4.04 2 2 2143 gil 1010027 F06783 -10.63 -37.52 4.35 2 2 2143 gil 1010027</td> <td>35 gil15564 F137 -3914 136 4 4 130 gil125079 P05785 -11.7 -3914 13.6 4 4 127 gil125079 P05785 -9.2 -38.71 23.81 23 2 127 gil125079 P05785 -10.12 -38.56 11.83 2 2 180 gil1250108 P165787 -10.63 -37.74 4.08 2 2 190 gil12612041 003581 -10.63 -37.74 4.08 2 2 231 gil1261027 P05787 -10.63 -37.74 4.35 2 2 231 gil12706592 610781 -10.63 -37.57 4.09 2 2 231 gil12706592 610781 -10.63 -37.57 4.35 2 2 231 gil1270659 P01782 -10.63 -37.52 4.35 2 2 231 gil1267103 P4862</td> <td>35 gil15684 F13.5 -11.7 -391.4 13.6 4 4 130 gil15684 P01642 -9.2 -38.71 23.81 23.81 2 2 170 gil126079 P05785 -9.38 -38.56 11.83 2 2 190 gil1260794 P05785 -10.63 -37.79 4.09 2 2 191 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 200581 -10.63 -37.74 4.35 2 2 201 gil12612041 200583 -10.63 -37.57 4.35 2 2 213 gil12612041 20058 -10.63 -10.63 -37.57 4.35 2 2 213 gil2677408 P4822 -11.63 -36.53 4.36 3 3 3</td> <td>3.66 gil 1564.4 POLSTS -11.7 -391.4 15.6 4 4 130 gil 1564.4 POLSTS -9.2 -38.71 23.81 23 2 170 gil 125073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 25073 PO5785 -9.38 -10.12 -37.79 4.09 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 143 gil 216710027 PO5787 -10.63 -37.57 4.09
 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.63 -35.56 4.36 2 2 238</td> <td>3.66 gil 1560.4 FILT -391.4 15.6 4 4 130 gil 126046 FOLTA -9.2 -38.71 23.81 23.81 2 2 170 gil 126073 FOLTA -9.2 -38.71 23.81 2 2 190 gil 126073041 003581 -10.12 -37.79 6.06 2 2 190 gil 250106 FD6787 -10.63 -37.74 4.35 2 2 143 gil 26110027 FD6787 -10.63 -37.74 4.35 2 2 143 gil 2610027 FD6787 -10.63 -37.57 4.04 2 2 143 gil 261057408 FD6787 -10.63 -37.57 4.04 2 2 144 gil 266052 FD1637 -10.63 -37.52 4.94 3 3 3 216 gil 236656 FD177 -83.56 4.35 2 2 2 2 1</td> <td>3.66 gil 1564.4 PD167.6 -11.7 -391.4 15.6 4 4 130 gil 126046 PD1676 -9.2 -38.71 23.81 23.81 2 2 147 gil 126073 PD5785 -9.38 -38.56 11.83 2 2 140 gil 12607041 003561 -10.12 -37.79 4.09 2 2 143 gil 216010027 PD5787 -10.63 -37.57 4.09 2 2 143 gil 24740 P18520 -10.63 -37.57 4.04 2 2 136 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.81 -36.58 4.35 2 2 231 gil 24740 P18520 -11.83 -36.58 4.36 2 2 2</td> | 3.6 gil 15864 PIENC -11.7 -3914 15.6 4 4 130 gil 15864 POIS76 -9.2 -38.71 23.81 23 2 170 gil 126073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 12607304 PO5785 -9.38 -38.56 11.83 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 193 gil 251064 P16878 -10.63 -37.74 4.36 2 2 143 gil 251062 P16878 -10.63 -37.57 4.04 2 2 231 gil 2610027 P05787 -10.63 -37.57 4.04 2 2 2142 gil 257408 P1653 -10.63 -37.57 4.04 2 2 218 gil 23662 P0177 -83.63 -35.63 4.36 3 3 218 gil 236 | 35 gil 15604 FILT -3914 13.6 4 4 130 gil 156045 FOLTAC -9.2 -38.71 23.81 23.81 2 170 gil 125079 F05785 -9.33 -38.56 11.83 2 2 190 gil 125079 F05785 -9.33 -37.37 6.06 2 2 191 gil 250106 F16678 -10.63 -37.74 4.35 2 2 193 gil 126110027 F05787 -10.63 -37.74 4.35 2 2 143 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 231 gil 1010027 F05787 -10.63 -37.57 4.09 2 2 2131 gil 1010027 F06787 -10.63 -37.57 4.04 2 2 2143 gil 1010027 F06783 -10.63 -37.52 4.35 2 2 2143 gil 1010027 | 35 gil15564 F137 -3914 136 4 4 130 gil125079 P05785 -11.7 -3914 13.6 4 4 127 gil125079 P05785 -9.2 -38.71 23.81 23 2 127 gil125079 P05785 -10.12 -38.56 11.83 2 2 180 gil1250108 P165787 -10.63 -37.74 4.08 2 2 190 gil12612041 003581 -10.63 -37.74 4.08 2 2 231 gil1261027 P05787 -10.63 -37.74 4.35 2 2 231 gil12706592 610781 -10.63 -37.57 4.09 2 2 231 gil12706592 610781 -10.63 -37.57 4.35 2 2 231 gil1270659 P01782 -10.63 -37.52 4.35 2 2 231 gil1267103 P4862
 | 35 gil15684 F13.5 -11.7 -391.4 13.6 4 4 130 gil15684 P01642 -9.2 -38.71 23.81 23.81 2 2 170 gil126079 P05785 -9.38 -38.56 11.83 2 2 190 gil1260794 P05785 -10.63 -37.79 4.09 2 2 191 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 203581 -10.63 -37.74 4.35 2 2 193 gil12612041 200581 -10.63 -37.74 4.35 2 2 201 gil12612041 200583 -10.63 -37.57 4.35 2 2 213 gil12612041 20058 -10.63 -10.63 -37.57 4.35 2 2 213 gil2677408 P4822 -11.63 -36.53 4.36 3 3 3 | 3.66 gil 1564.4 POLSTS -11.7 -391.4 15.6 4 4 130 gil 1564.4 POLSTS -9.2 -38.71 23.81 23 2 170 gil 125073 PO5785 -9.2 -38.71 23.81 2 2 190 gil 25073 PO5785 -9.38 -10.12 -37.79 4.09 2 2 190 gil 250704 PO5787 -10.63 -37.74 4.35 2 2 143 gil 216710027 PO5787 -10.63 -37.57 4.09 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.63 -35.56 4.36 2 2 238 | 3.66 gil 1560.4 FILT -391.4 15.6 4 4 130 gil 126046 FOLTA -9.2 -38.71 23.81 23.81 2 2 170 gil 126073 FOLTA -9.2 -38.71 23.81 2 2 190 gil 126073041 003581 -10.12 -37.79 6.06 2 2 190 gil 250106 FD6787 -10.63 -37.74 4.35 2 2 143 gil 26110027 FD6787 -10.63 -37.74 4.35 2 2 143 gil 2610027 FD6787 -10.63 -37.57 4.04 2 2 143 gil 261057408 FD6787 -10.63 -37.57 4.04 2 2 144 gil 266052 FD1637 -10.63 -37.52 4.94 3 3 3 216 gil 236656 FD177 -83.56 4.35 2 2 2 2 1
 | 3.66 gil 1564.4 PD167.6 -11.7 -391.4 15.6 4 4 130 gil 126046 PD1676 -9.2 -38.71 23.81 23.81 2 2 147 gil 126073 PD5785 -9.38 -38.56 11.83 2 2 140 gil 12607041 003561 -10.12 -37.79 4.09 2 2 143 gil 216010027 PD5787 -10.63 -37.57 4.09 2 2 143 gil 24740 P18520 -10.63 -37.57 4.04 2 2 136 gil 24740 P18520 -10.63 -37.57 4.04 2 2 231 gil 24740 P18520 -10.63 -37.57 4.04 2 2 238 gil 24740 P18520 -11.81 -36.58 4.35 2 2 231 gil 24740 P18520 -11.83 -36.58 4.36 2 2 2 |

Lagas:	Da 553 801795	Da 562 934090	267	Da 267 920947		66C 36	80 333	399 608 437	399 608 437 154	399 608 437 154 154	399 608 437 154 154	399 608 437 154 154 154 154	389 608 608 437 154 154 154 154	399 608 437 154 154 154 154 154 154	339 608 437 454 154 154 154 154 154 154 154 241	389 608 437 154 154 154 154 154 154 154 154 154 241	3399 608 437 154 154 154 154 154 154 154 154 154 241 543	339 608 637 437 154 154 154 154 154 154 154 154 154 154	389 608 608 154 154 154 154 154 154 154 154 154 154	3399 608 437 154 154 154 154 154 154 154 154 241 241 1744 1744 1744 327	399 608 637 437 154 154 154 154 154 154 154 154 154 154	389 608 608 154 154 154 154 154 154 154 154 154 154	3393 608 637 154 154 154 154 154 154 154 154 154 241 154 154 1744 1744 1744 1744 1724 1428 1744 1744 1744 1428 1428 1428 1428 1428 1428 1428 14	3399 608 437 154 154 154 154 154 154 154 154 154 154	389 608 608 154 154 154 154 154 154 154 154 154 154	3399 608 154 154 154 154 154 154 154 154 154 154	3399 608 608 154 154 154 154 154 154 154 154 241 744 241 1744 1744 1744 1744 1744 1	3399 608 637 154 154 154 154 154 154 154 154 154 154	3393 608 154 154 154 154 154 154 154 154 154 154	339 608 6154 154 154 154 154 154 154 154 154 154	339 608 608 437 154 154 154 154 154 154 154 154	3399 608 637 154 154 154 154 154 154 154 154 154 154
gli60416436 P50446 -11.27 -34.34 5.97 3 3 gli59798479 G92331 -11.27 -34.8 5.87 3 3 gli59798479 G92331 -11.27 -34.8 5.87 3 3 gli59798479 G92333 -8.47 -34.43 4.49 1 1	59.3 KDa	60.3 kDa			30.0 KI	30.0 K	30.8 KDa 43.9 KDa 68.7 KDa	30.8 KDa 43.9 KDa 68.7 KDa 47.8 KDa	30.8 KDa 43.9 KDa 68.7 KDa 67.8 KDa 47.8 KDa 17.1 KDa	30.8.00a 43.3.00a 68.7.40a 68.7.40a 47.8.40a 17.1.40a 17.0.40a	30.8 kDa 43.9 kDa 68.7 kDa 68.7 kDa 47.8 kDa 17.1 kDa 17.2 kDa	90.8 (09 40.9 (29 87, 80 87, 80 87, 87 80 80 80 17, 1 80 80 17, 2 80 80 17, 2 80 80 17, 2 80 80 17, 2 80 80 17, 2 80 80 80 80 80 80 80 80 80 80 80 80 80	308 K0a 433 K0a 87 K0a 47 8 K0a 171 K0a 172 K0a 172 K0a 172 K0a 172 K0a 172 K0a	90.8.09 43.9.40a 68.7.40a 68.7.40a 17.1.40a 17.2.40a 17.2.40a 17.2.40a 17.2.40a 17.2.40a	30.8.103 4.3.9.109 68.7.109 47.8.109 17.7.109 17.2.103 17.2.103 17.2.103 17.2.103 17.2.103 17.2.103 2.4.7.103 2.4.7.103	90.8.03 43.9.60 68.7.409 68.7.409 47.8.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409 17.2.409																
gli60416436 P50446 -11.27 -34.94 5.87 3 3 gli505786479 082331 -11.27 -34.8 5.87 3 3 gli55404987 P56233 -8.47 -34.43 4.49 1 1	3A, AttName: Full⊨K6a keratin;	B; AttName: Full=K6b keratin;			= Apolipoprotein A-I(1-242); Flags:	⊨Apolipoprotein A⊣(1-242); hiags: 3, AttName: Full=Keratin-19;	=Apolipoprotein A-I(1-242); Hags: 3, AttName: Full=Keratin-19;	=Apolipoprotein A-i(1-242); Flags: }, AltName: Full=Keratin-19, 3; AttName: Full=Keratin-13;	=Apolipoprotein A-I(1 -242); Flags: }, AltName: Full=Keratin-19; 3, AltName: Full=Keratin-13;	=Apolipoprotein A-1(1 - 242); Flagss }, AllName: Full=Keratin-19, 3, AllName: Full=Keratin-13;	=Apolipoprotein A-I(1 - 4-2); Flags: \$ Athteme: Full=Keratin-19; \$ Athteme: Full=Keratin-13;	=Apolipoprotein A⊣(1 -242); Flags: \$ Athtame: Full=Keratin-19; \$ Athtame: Full=Keratin-13;	=Apolipoprotein A-i(1 -242); hags: ; Athtame: Full=Keratin-13; ; Athtame: Full=Keratin-13;	=Apolipoprotein A⊣(1 -442); Flagss i, Athtame: Full=Keratin-19, 3, Athtame: Full=Keratin-13;	=Apolipoprotein A-(1 - 242); 1 lags: ; AitName: Full=Keratin-13; ; AitName: Full=Keratin-13; e; Short=OMPDCase;	=Apolipoprotein A-I(1 -242); 1 lags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; e; Short=OMPDCase; }, AltName: Full=Keratin-20;	=Apolipoprotein A-I(1-242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; e; Short=OMPDCase; 3, AltName: Full=Keratin-20; 5, AltName: Full=Keratin-75;	=Apolipoprotein A-(1 -242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; e; Short=OMPDCase; ; AltName: Full=Keratin-20; 5; AltName: Full=Keratin-75; and PZP-like alpha-2-macroglobulin ns: RecName: Full=Complement C4-	reconser: Full=Apolioporotem A-(1.242); Flags: Recolvane: Full=Apolioporotem A-(1.242); Flags: Brot=sort Stort=K(1) Recolvane: Full=Keratin, type I cytostefetal 19, AttName: Full=Cytoteratin-19, Short=CK-13, AttName: Full=Keratin-19, Short=K(1) Recolvane: Full=Keratin, type I cytostefetal 13, AttName: Full=Cytoteratin-13, Short=CK-13, AttName: Full=Keratin-13, Recolvane: Full=Myoglobin Recolvane: Full=Complement C4, AtName: Full=Complement C4, AtName	=Apolipoprotein A-(1 -242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; e; Short=OMPDCase; ; AltName: Full=Keratin-20; 5; AltName: Full=Complement C4- 5; AltName: Full=Complement C4- De: Contains: RecName: Full=C40- bas, Contains: RecName: Full=C40- bas, Contains: RecName: Full=C40-	= Apolipoprotein A-(1 - 242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; Short=OMPDCase; ; AltName: Full=Keratin-20; 5; AltName: Full=Keratin-20; 5; AltName: Full=Keratin-20; 5; AltName: Full=Complement C4- bat: Contains: RecName: Full=C44- b-3; Contains: RecName: Full=C44- b-4; Contains: RecName: Full=C44- b-4; Contains: RecName: Full=C44- b-4; Contains: RecName: Full=C44-	= Apolipoprotein A-(1 -242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-20; 5; AltName: Full=Keratin-75; and PZP-like alpha-2-macroglobulin ns: RecName: Full=Complement C4- b-B; Contains: RecName: Full=C4d- b-B; Contains: RecName: Full=C4d- b-A; C4d- C4d-b- C4	rechanne: Full=Apoliopprotein A-(1.242); Flags: Rechanne: Full=Apoliopprotein A-(1.242); Flags: Rechanne: Full=Keratin, type I cytosteletal 19, Athhame: Full=Cytoteratin-13, Short=CK-13, Athhame: Full=Keratin-13, Short=K13 = Short=K149 = Short=Xpo-At, Short=CK-13, Short=CK-13, Athhame: Full=Keratin-13, Short=K13, Athhame: Full=Kytosteletal 13, Athhame: Full=Cytoteratin-13, Short=CK-13, Athhame: Full=Kytoteratin-13, Short=K13, Athhame: Full=Kytosteletal 13, Athhame: Full=Cytoteratin-13, Short=CK-13, Athhame: Full=Kytoteratin-13, Short=K13, Photochin Rechanne: Full=Myroglobin Rechanne: Full=Myroglobin Rechanne: Full=Myroglobin Rechanne: Full=Myroglobin Rechanne: Full=Kytoglobin Rechanne: Full	= Apolipoprotein A-(1 -242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-20; 5; AltName: Full=Keratin-75; and P2P-like alpha-2-macrogloulin and P2P-like alpha-2-macrogloulin and P2P-like alpha-2-macrogloulin in: RecName: Full=Complement C4- b-4; Contains: RecName: Full=C44- b-4; C44- C44- C44- C44- C44- C44- C44- C44-	 =Apolipoprotein A-(1 -242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-14; and PZP-like alpha-2-macroglobulin ns: RecName: Full=Cad-b-b-B; Contains: RecName: Full=Cad-b-b-3; Contains: RecName: Full=Cad-b-b-4; Contains: RecName: Full=Cad-b-4; Contains: RecName; Full=Cad-b-4; Contains: RecName; Full=Cad-b-4; Contains: RecName; Full=Cad-b-4; Contains: RecName; Full=Cad-b-4; Cad-b-4; Cad-b-4; Cad-b-4; Cad-b-4; Cad-b-4; Contains; RecName; Full=Cad-b-4; Cad-b-4; Cad-	 =Apolipoprotein A-(1 -242); Flags: = Athlame: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-14; and PZP-like alpha-2-macroglobulin ns: RecName: Full=Complement C44- b-2; Contains: RecName: Full=C44- b-4; Contains: RecName: Full=Keratin-14; ; AltName: Full=Keratin-14; ; AltName: Full=Keratin-42; ; AltName: Full=Keratin-42; 	 = Apolipoprotein A-(1 - 242); Flags: = Apolipoprotein A-(1 - 242); Flags: (AltName: Full=Keratin-13); AltName: Full=Keratin-20, AltName: Full=Keratin-20, AltName: Full=Keratin-20, AltName: Full=Keratin-20, AltName: Full=Keratin-75, and P2P-like alpha-2-macroglobulin ns: RecName: Full=Keratin-75, and P2P-like alpha-2-macroglobulin RecName: Full=Keratin-75, and P2P-like alpha-2-macroglobulin RecName: Full=Keratin-14; AltName: Full=Keratin-14; AltName: Full=Keratin-42; AltName: Full=Keratin-42; 	= Apolipoprotein A-(1 -4-2); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-75; and P.ZP-like alpha-2-macroglobulin ns: RecName: Full=Complement C4- b-4; Contains: RecName: Full=C4d- b-4; Contains: RecName: Full=C4d-b- b-4; Contains: RecName: Full=C4d-b- B-C4d-b- C4d-b-	 = Apolipoprotein A-(1 - 242); Flags: ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-14; ind PZP-like alpha-2-macroglobulin ns: RecName: Full=C44- b-3; Contains: RecName: Full=C44- b-4; Contains: Full=C44- C44-b-4; Full=C44- C4	 = Apolipoprotein A-(1 - 242); Flags: = AltName: Full=Keratin-13; ; AltName: Full=Keratin-13; ; Short=OMPDCase; ; Short=OMPDCase; ; AltName: Full=Keratin-20; ; AltName: Full=Keratin-14; : AltName: Full=Keratin-14; 	 AltName: Full=Keratin-13; AltName: Full=Keratin-13; AltName: Full=Keratin-13; AltName: Full=Keratin-20; AltName: Full=Keratin-20; AltName: Full=Complement C4- Bind P2P-like alpha-2-macroglobulin rs: RecName: Full=Complement C4- ab: Contains: RecName: Full=C4d- b-4; Contains: Full=C4d- B-4; Contains: Full=C4d- B-4; Contains: Full=C4d-	 AthName: Full=Keratin-13; AthName: Full=Keratin-13; AthName: Full=Keratin-13; AthName: Full=Keratin-20; AthName: Full=Keratin-75; AthName: Full=Keratin-74; AthName: Full=Keratin-14; AthNa
Biochrinous Fourture		ull=Cytokeratin-6B; Short=CK 6B; A	poA-l; Flags: Precursor	poA-I; Contains: RecName: Full=Ag		II=Cytokeratin-19, Short=CK-19, AI	II=Cytokeratin-19, Short=CK-19, AI	I⊫Cytokeratin-19, Short=CK-19, Al II=Cytokeratin-13, Short=CK-13, Al	II=Cytokerstin-19, Short=CK-19, Al II=Cytokerstin-13, Short=CK-13, Al	il=Cytokeratin-19, Short=CK-19, AI il=Cytokeratin-13, Short=CK-13, AI	i=Cytokeratin-19, Short=CK-19, Al	il=Cytokeratin-19, Short=CK-19, Al	il=Cytokeratin-19, Short=CK-19, Al	I=Cytokeratin-19, Short=CK-19, Al	II=Cytokeratin-19, Short=CK-13, Al II=Cytokeratin-13, Short=CK-13, Al	I=Cytokeratin-19, Short=CK-19, Al I=Cytokeratin-13, Short=CK-13, Al I=Cytokeratin-13, Short=CK-13, Al	i=Cytokeratin-19, Short=CK-19, Al i=Cytokeratin-13, Short=CK-13, Al vame: Full=OMP decarboxylase, Si i=Cytokeratin-20, Short=CK-26, Al i=Cytokeratin-75, Short=CK-75, A	in-Cytokeratin-19, Short=CK-19, Al II=Cytokeratin-13, Short=CK-13, Al Vame: Full=OMP decarboxylase; Si III=Cytokeratin-20, Short=CK-26, Al III=Cytokeratin-75, Short=CK-75, A Uament C4, Haname: Full=C3 and rytoment C4 beat orbain; Contains: F Reas: Precursor Chans: Plags: Precursor	In-Cytokerstin-19, Short=CK-19, Al In-Cytokerstin-13, Short=CK-13, Al Vame: Full=OMP decarboxylase; Si In-Cytokerstin-20, Short=CK-20, Al In-Cytokerstin-20, Short=CK-75, A Interest C4, AttName: Full=C3 and perment C4, AttName: Full=C3 and perment C4, AttName: Full=C3 and perment C4 AttName: Full=C4b-24, Flass: Precursor	in-Cytokeratin-19, Short=CK-19, Al II-Cytokeratin-13, Short=CK-19, Al Valme: Full=OMP decarboxylase, S III-Cytokeratin-20, Short=CK-20, Al III-Cytokeratin-5, Short=CK-20, Al IIII-Cytokeratin-5, Short=CK-75, A Victual Structure full=C4b-B; Flags: Precursor Victualis: ReoName: Full=C4b-B; Flags: Precursor Victualis: ReoName: Full=C4b-A, Victualis: ReoName: Full=C4b-A,	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vanne: Full=OMP decarboxylase, S In-Cytokeratin-20, Short=CK-20, Al In-Cytokeratin-75, Short=CK-20, Al In-Cytokeratin-75, Short=CK-75, A Unit-CH-Bhair follicle In-Cytokeratin-75, Short=CK-75, A In-Cytokeratin-75, Short=CK-16, Al Piener C4, bat Name: Full=C4b-Al Pienert C4, bat Name: Full=C4b-Al, Shortensor Flags: Precursor Flags: Precursor Flags: Precursor	In-Cytokerstin-19, Short=CK-19, Al In-Cytokerstin-13, Short=CK-13, Al Vame: Full=OMP decerboxylase; S In-Cytokerstin-20, Short=CK-25, Al In-Cytokerstin-25, Short=CK-75, A Interestin-6 hair follice The Contains: Recursor Replement C4, AttName: Full=C4b-B; Replement C4, AttName: Full=C4b-A; Replement C4, AttName: Full=C9DP11, Flags: Pre- tervised attName: Full=CPP11, Flags: Pre- full-Moderatin-14; Short=CK-14; Al	I=Cytokeratin-19, Short=CK-19, Al I=Cytokeratin-13, Short=CK-19, Al Vame: Full=OMP decarboxylase, S I=Cytokeratin-20, Short=CK-75, A I=Cytokeratin-20, Short=CK-75, A I=Cytokeratin-75, Short=CK-75, A I=Cytokeratin-75, Short=CK-75, A I=Cytokeratin-75, Short=CK-75, A I=Cytokeratin-75, Short=CK-19, A Pieceratin-75, Short=CK-19, A Pieceratin-75, Short=CK-19, A Pieceratin-14, Short=CK-14, Al Piegs: Precursor I=Cytokeratin-14, Short=CK-14, Al Piegs: Precursor Protease inhibitor, AthName: Full=C4b-3, Shecursor Protease inhibitor, AthName: Full=C4b-3, Shecursor Protease inhibitor, AthName: Full=C4b-3, Shecursor	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vanne: Full=OMP decarboxylase, S Iii-Cytokeratin-20, Short=CK-20, Al Iii-Cytokeratin-26, Short=CK-20, Al Iii-Cytokeratin-75, Short=CK-75, A United to the fait follicle all=Cytokeratin-75, Short=CK-75, A Iii-Cytokeratin-75, Short=CK-75, A Flags: Precursor Flags: Precursor Contains: ReoName: Full=C4b-A, Flags: Precursor Cytokeratin-14, Short=CK-14, Al Polotease inhibitor, AltName: Full=C4b-A gs: Precursor Streeursor protease inhibitor, AltName: Full=C4b-A	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vame: Full=OMP decarboxylase; Sl In-Cytokeratin-20, Short=CK-75, Al In-Evtokeratin-25, Short=CK-75, Al In-Evtokeratin-75, Short=CK-75, Al In-Evtokeratin-75, Short=CK-75, Al In-Evtokeratin-75, Short=CK-75, Al In-Evtokeratin-75, Short=CK-75, Al Diement C4, AttName: Full=C3 and plement C4, AttName: Full=C4b-At Flags: Precursor in Contains: RecName: Full=C4b-At Flags: Precursor in Contains: RecName: Full=C4b-At Flags: Precursor in Contains: RecName: Full=C4b-At Flags: Precursor in Contains: RecName: Full=C4b-At Flags: Precursor	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vame: Full=OMP decarboxylase; Si III=Cytokeratin-20, Short=CK-75, Al III=Cytokeratin-26, Short=CK-75, Al III=Cytokeratin-75, Short=CK-75, Al III=Cytokeratin-75, Short=CK-75, Al IIII=Cytokeratin-15, Short=CK-75, Al IIII=Cytokeratin-14, Short=CK-14, Al Figgs: Precursor Figgs: Precursor IIIICytokeratin-14, Short=CK-42, Al IIII-Cytokeratin-14, Short=CK-42, Al	In=Cytokeratin-19, Short=CK-19, Al In=Cytokeratin-13, Short=CK-19, Al Vanne: Full=OMP decarboxylase, S In=Cytokeratin-20, Short=CK-75, A In=Cytokeratin-20, Short=CK-75, A In=Cytokeratin-75, Short=CK-75, A In=Cytokeratin-75, Short=CK-75, A In=Cytokeratin-75, Short=CK-75, A In=Cytokeratin-75, Short=CK-75, A In=Cytokeratin-75, Short=CK-75, A All=Certain-7, Althame: Full=C4b-3; Flags: Precursor Pr	In=Cytokeratin-19, Short=CK-19, Al II=Cytokeratin-13, Short=CK-19, Al Vanne: Full=OMP decarboxylase, S II=Cytokeratin-20, Short=CK-20, Al II=Cytokeratin-75, Short=CK-20, Al II=Cytokeratin-75, Short=CK-20, Al II=Cytokeratin-75, Short=CK-20, Al II=Cytokeratin-75, Short=CK-21, Al II=Cytokeratin-75, Short=CK-24, Al II=Cytokeratin-14, Short=CK-44, Al Flags: Precursor Flags: Precursor protease inhibtor, AltName: Full=24 II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-14, Short=CK-42, Al II=Cytokeratin-17, Short=CK-42, Al II=Cytokeratin-17, Short=CK-42, Al III=Cytokeratin-17, Short=CK-42, Al III=Cytokeratin-14, Short=CK-42, Al	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vame: Full=OMP decerboxylase; Si III=Cytokeratin-20, Short=CK-75, A III=Cytokeratin-20, Short=CK-75, A III=Cytokeratin-75, Short=CK-75, A III=Ckrokeratin-75, Short=CK-75, A III=Ckrokeratin-75, Short=CK-75, A III=Ckrokeratin-75, Short=CK-74, A Warmer C4, Attivame: Full=C3 and phement C4, Attivame: Full=C3 and phement C4, Attivame: Full=C3 and phement C4, Attivame: Full=C3 and phement C4, Attivame: Full=C4b-b; 7; Contains: Recolame: Full=C4b-b; 7; Contains: Recolame: Full=C4b-b; 7; Contains: Recolame: Full=C4b-b; 8; Attivame: Full=C4b-b; 7; Contains: Recolame: Full=C4b-b; 8; Attivame: Full=C4b-b; 1=Cytokeratin-14, Short=CK-42, Al III=Keratin-17, A; Short=CK-42, Al IIII=Keratin-17, A; Short=CK-42, Al III=Keratin-17, A; Short=CK-42, Al IIII=Keratin-17, A; Short=CK-42, Al IIIIII=Keratin-17, A; Short=CK-42, Al	In-Cytokeratin-19, Short=CK-19, Al In-Cytokeratin-13, Short=CK-19, Al Vame: Full=OMP decerboxylase; S III=Cytokeratin-20; Short=CK-75, A III=Cytokeratin-55, Short=CK-75, A III=Cytokeratin-55, Short=CK-75, A III=Cytokeratin-55, Short=CK-75, A III=Cytokeratin-64, AthVame: Full=Cab-B; ty Contains: RecName, Full=Cab-B; Specursor Patieneric C4, AthVame: Full=Cab-B; Ty Contains: RecName: Full=Cab-B; Ty Contains: RecName: Full=Cab-A; Specursor Bill=Keratin-17, Short=CK-14, Al Patieneric C4, AthVame: Full=Cab-A; Specursor Bill=Keratin-17, Short=CK-14, Al Protease inhibitor, AthVame: Full=Cab-A; Specursor Bill=Keratin-17, Short=CK-14, Al Protease inhibitor, AthVame: Full=Cab-A; Short=Inter-alpho-1 protease inhibitor, Att Protease inhibitor, AthVame: Full=Cab-A; Short=Inter-alpho-1 protease inhibitor, Ath	In=Cytokeratin-19, Short=CK-19, Al II=Cytokeratin-13, Short=CK-19, Al Vanne: Full=OMP decarboxylase, S II=Cytokeratin-20, Short=CK-75, A II=Cytokeratin-75, Short=CK-75, A III=Cytokeratin-75, Short=CK-75, A III=CAPAB pelment C4, AttNane: Full=C4b-8, Precursor Precursor Precursor Flags: Precursor Protease Inhibtor, AttNane: Full=A Bi-Keratin-17, Protese Inhibtor, AttNane: Full=A Bi-Keratin-17, Protease Inhibtor, AttNane: Full=A Bi-Keratin-17, Protease Inhibtor, AttNane: Full=Serve- description-18, Short=CK-42, Al Bi-Keratin-17, Protease Inhibtor, AttNane: Full=C4b-8, Stort=Inter-alpha-inhibtor, AttNane: Full=Serve- description-18, Short=CK-42, Al	In-Cytokeratin-19, Short-CK-19, Al In-Cytokeratin-13, Short-CK-19, Al Vanne: Fuli-OMP decarboxylasse, S In-Cytokeratin-20, Short-CK-75, A In-Cytokeratin-75, Short-CK-75, A In-Cytokeratin-74, Athame: Fuli-C4b-A, Short-In-CK-4, Athame: Fuli-C4b-A, Flags: Precursor Protease inhibitor, Athame: Fuli-C4b-A, Short-Inter-alpha-inhibitor heavy protease inhibitor, Athame: Fuli-24 In-Cytokeratin-42, Short-CK-42, Al In-Cytokeratin-42, Short-CK-42, Al In-Cytokeratin-42, Short-CK-42, Al In-Cytokeratin-14, Short-CK-42, Al I
gil59786479 0.92331 -11.27 -34.8 5.87 3 3 gil56404887 P68293 -8.47 -34.43 4.49 1 1 autono nonex7 -8.7 -34.43 4.49 1 1		a i cytoskeratal oci, Autvanie, null-cy a; Short=mK6-beta	ein A-I; Short=Apo-AI; Short=ApoA-I	ein A-I; Short=Apo-AI; Short=ApoA-I;		rrecussor RecName: Still=Keratin, type I cytoskeletal 19, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin-19, RecName: Still=Keratin, type I cytoskeletal 19, AttName: Full=Cytokeratin-19,	e I cytoskeletal 19, Athlame: Full=Cyt nin, Flags: Precursor	r recueso: Short=K19: Full=Keratin, type I cytoskieletal 19, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19, Rechame: Full=Serum abumin; Flags: Precursor Rechame: Full=Serum abumin; Flags: Precursor Rechame: Full=Ser Euri-4 X6, AtName: Full=Cytokeratin-13, Short=CK-13, AtName: Full=Keratin-13,	el cytoskeletal 19, Athlame. Full=Cyt int, Flags: Preuzior el cytoskeletal 13, Athlame: Full=Cyt 7 kDa cytokeratin	e I cytoskeletal 19, AitName. Full=Cyt Init, Flags. Precursor el cytoskeletal 13, AitName. Full=Cyt 7 kDa cytokeratin	e I cytoskeletal 19, AitName. Full=Cyt ini, Flags. Precursor el cytoskeletal 13, AitName. Full=Cyt 7 kDa cytokeratin	e I cytoskeletal 19, AitName. Full=Cyt Ini, Flags. Precursor el cytoskeletal 13, AitName. Full=Cyt 7 kDa cytokeratin	e I cytoskeletal 19, AitName. Full=Cyt ini, Flags. Precursor el cytoskeletal 13, AitName. Full=Cyt 7 kDa cytokeratin	a I cytoskeletal 19, Athlame. Full=Cyt inin Flags: Precursor I cytoskeletal 13, Athlame. Full=Cyt 7 kDa cytokeratin	Rechames un Rechames full=(keratin, type I cytoskeletal 19, Athhame. Full=Cytokeratin-19, Short=CK-19, Athhame. Full=(kerat Short=K19 Rechames: Full=Keratin, type I cytoskeletal 13, Athhame. Full=Cytokeratin-13, Short=CK-13, Athhame. Full=Kerat Rechames: Full=Mines. Full=Kytoskeletal 13, Athhame. Full=Cytokeratin-13, Short=CK-13, Athhame. Full=Kerat Rechames: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh Rechame: Full=Minoglobh	r recuents: Eul=Keratin, type I cytoskieletal 19, AltName: Full=Cytokeratin-19, Short=CK-19, AltName: Full=Keratin-19, Short=K19 Skort=K19 RecName: Ful=Keratin, type I cytoskieletal 19, AltName: Full=Cytokeratin-13, Short=CK-13, AltName: Ful=Keratin-13, Short=K13, AltName: Ful=47 Kba cytokeratin RecName: Ful=Myoglobin RecName: Ful=Myoglobin	rrectamer Rectamer Short=K18 Short=K18 Rechamer Rechamer Rechamer Rechamer Rechamer Rechamer Full=Keratin, type I cytoskeletal 13, AttName. Full=Cytokeratin-13, Short=CK-13, AttName. Full=Keratin-13, Rechamer Rechamer Rechamer Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Myoglobin Rechamer Full=Meret Rechamer Full=Keratin, type I cytoskeletal 20, AttName: Full=Cytokeratin-20, Short=K75, AttName: Full=Keratin, type I cytoskeletal 25, AttName: Full=Cytokeratin-26, Short=K75, AttName: Full=Keratin, 75, Rechamer Full=Keratin, type I cytoskeletal 26, Short=K75, AttName: Full=Keratin, 75, Rechamer Full=Keratin, 75, Rechamer Ful	Rechame: Full=Keratin, type I cytoskietetal 19, AltName: Full=Cytokeratin-19, Short=CK-19, AltName: Full=Keratin.type I cytoskietetal 19, AltName: Full=Cytokeratin.type I cytoskietetal 19, AltName: Full=Keratin.type I cytoskietetal 19, AltName: Full=Keratin.type I cytoskietetal 13, AltName: Full=Keratin.type I cytoskietetal 13, AltName: Full=Cytokeratin.type I cytoskietetal 13, AltName: Full=Keratin.type I cytoskietetal 13, AltName: Full=Cytokeratin.type I cytoskietetal 13, AltName: Full=Keratin.type I cytoskietetal 13, AltName: Full=Cytokeratin.type I cytoskietetal 13, AltName: Full=Keratin.type I cytoskietetal 13, AltName: Full=Cytokeratin.13, Short=CK-13, AltName: Full=Kyratin.13, Short=Krlane: Full=Wyroglobh Rechame: Full=Wroglobh Rechame: Full=Warth Stath=Sta	Rechame: Full=Keratin, type I cytosteletal 19, AltName: Full=Cytokeratin-19, Short=CK-19, AltName: Full=Keratin, type I cytosteletal 19, AltName: Full=Cytokeratin-19, Short=CK-13, AltName: Full=Keratin-19, Short=K13, AltName: Full=Keratin, type I cytosteletal 13, AltName: Full=Cytokeratin, type I cytosteletal 13, AltName: Full=Keratin, type I cytosteletal 15, AltName: Full=Keratin, type I cytosteletal 20, AltName: Full=Keratin, type I cytosteletal 20, AltName: Full=Keratin, type I cytosteletal 20, AltName: Full=Keratin, type I cytosteletal 27, AltName: Full=Cytokeratin-20, Short=CK-75, AltName: Full=Keratin-20, Short=CK-75, AltName: Full=Keratin-26, Short=CM-75, AltName: Full=Keratin-75, Short=CK-75, AltName: Full=Keratin-26, Short=CM-75, AltName: Full=Keratin-26, AltName: Full=Complement C4, AltName: Full=Keratin-75, Short=CK-75, AltName: Full=Complement C4, AltName: Full=Keratin-75, Short=CK-75, AltName: Full=Keratin-75,	Rechame: Full=Keratin, type I cytoskeletal 19, AtName: Full=Cytokeratin-19, Short=K19 Short=K19 Rechame: Full=Kestrun abumin; Flags: Precursor Rechame: Full=Kestrun abumin; Flags: Precursor Rechame: Full=Kestrun, type I cytoskeletal 13, AtName: Full=Cytokeratin-13, Short=K13, AtName: Full=Kytola cytokeratin Rechame: Full=Myoglobin Rechame: Full=Complement C4, AtName: Full=Cytokeratin-20, Short=MY5, AtName: Full=Protein Rechame: Full=Complement C4, atName: Full=Cytokeratin-20, Short=MY5, AtName: Full=Protein B alpha chain; Contains: Rechame: Full=Complement C4, AtN domain-contains; proten C4, AtName: Full=Cytokeratin-25, Short=MY5, AtName: Full=Complement C4, atName: Full=Complement C4, AtN domain-contains; proten C4, AtName: Full=Complement C4, AtN contains: Rechame: Full=Complement C4, atName: Full=Complement C4, AtN domain-contains; proten C4, AtName: Full=Complement C4, AtN domain-contains; proten C4, AtName: Full=Contenent C4, AtN domain-contains; proten C4, AtN domain-contains; proten C4, AtName: Full=Contenent C4, AtN domain-contains; proten C4, AtName: Full=Contenent C4, AtN domain-contains; proten C4, AtName: Full=C4, AtName; Full=C4, AtN	re-uns-un Short=K19 Short=K19 RecName: Full=Keratin, type I cytostefetal 19, AttName: Full=Cytoteratin-19, Short=CK-19, AttName: Short=K19 RecName: Full=Keratin, type I cytostefetal 13, AttName: Full=Cytoteratin-13, Short=CK-13, AttName: Short=K13, AttName: Full=Kyton Cytoteratin RecName: Full=Myoglobin RecName: Full=Kyton RecName: Full=Kyton RecName: Full=Kyton RecName: Full=Cyton RecName:	recurant Frechand Erecha	Tecua sou Rechame: Full=Kerratin, type I cytosketetal 19, AttName. Full=Cytokeratin. Stort=K19. Erechame: Full=Kerratin, type I cytosketetal 13, AttName. Full=Cytokeratin. Stort=K13, AttName. Full=Kratin, type I cytosketetal 13, AttName. Full=Cytokeratin. Rechame: Full=Myoglobh Rechame: Full=Complement C4, AttName: Full=Complement C4, a domain-containing proten 3, contains: Rechame: Full=Canoplement C4, a domain-containing proten 3, contains: Rechame: Full=C4 a anaphylatoxin, contains: R domain-containing proten 3, contains: Rechame: Full=Canoplement C4, a domain-containing proten 3, contains: Rechame: Full=Canoplement C4, a domain-containing proten 3, contains: Rechame: Full=Canoplement C4, a domain-containing proten 3, contains: Rechame: Full=C4 a anaphylatoxin, contains: R Rechame: Full=Canoplement C4, AthName: Full=C4 anaphylatoxin, contains: R R 4, a labha chan, con	Rechame: Full=Keratin, type I cytoskeletal 13, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin, 13, Short=Kr-13, AttName: Full=Keratin, 13, Short=Kr-13, AttName: Full=Keratin, 13, Short=Kr-13, Short=Kr-14, Sho	 Full-Keratin, type I cytoskeletal 19, AtName: Full=Cytokeratin-19, Short=CK-19, AtName: Full=Keratin-19, Short=Kill=Serum abumin, Flags Precurson Recklame: Full=Kill=Kill=Kill=Kill=Kill=Kill=Kill=Cytokeratin-13, Short=CK-13, AtName: Full=Keratin-13, Short=Kill=Kill=Kill=Kill=Kill=Kill=Kill=Kil	Rechame: Full=Keratin, type I cytoskeletal 19, AtName: Full=Cytokeratin-19 Short=K19 Short=K19 Short=K19 Short=K19 Short=K13, AtName: Full=Strum atuminy flags: Precurson Rechame: Full=Strum atuminy flags: Precurson Rechame: Full=Myoglobin Rechame: Full=Cytokeratin, type I cytoskeletal 20, AtName: Full=Cytokeratin-75 Short=CoMpdecase Short=K02, AtName: Full=Protein IT Rechame: Full=Cytokeratin, type I cytoskeletal 20, AtName: Full=Cytokeratin-75 Short=K03, AtName: Full=Protein IT Rechame: Full=Condining protein 2, contains: Rechame: Full=Cytokeratin-76 Short=K03, AtName: Full=Protein IT Rechame: Full=Complement C4, atName: Full=Complement C4, atN domain-containing protein 3, contains: Rechame: Full=Cytokeratin-76 alonain-containing protein 3, contains: Rechame: Full=Complement C4, atN domain-containing protein 3, contains: Rechame: Full=Complement C4, atName: Full=Cytokeratin-75 ath contains: Rechame: Full=Complement C4 gamma chain, Flags: Precurson Rechame: Full=Short peotide from AaT, Short=SPAAT, Flags: Precurson Rechame: Full=Short peotide from AAT, Short	recenaria Receloration Stort=K(13) AttName: Full=Keratin, type I cytosteletal 13, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin Stort=K(13) Recolame: Full=Keratin, type I cytosteletal 13, AttName: Full=Cytokeratin-13, Short=CK-13, AttName: Full=Keratin Schame: Full=Myoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Wyoglobh Recolame: Full=Woglobh Recolame: Full=Wyoglobh Recolame: Full=Cytoteratin, type I cytosteletal 20, AttName: Full=Cytoteratin-25, AttName: Full=Cytoteratin-26, AttName: Full=Cytoteratin-25, AttName: Full=Cytoteratin-26, AttName: Full=Cytoter	 Full-Greath, Iype Loydostedal 19, AlName: Full=Cytokerath, 13, Short-CK-13, AlName: Full=Kerath, 14, Short-CK-13, AlName: Full=Kerath, 14, Short-CK-13, AlName: Full=Kerath, 14, Short-CK-13, AlName: Full=Kerath, 20, Short-CK-20, AlName: Full=Kerath, 20, Short-CK-20, AlName: Full=Kerath, 20, Short-CK-20, AlName: Full=Kerath, 20, AlName: Full=Kerath, 20, Short-CK-20, AlName: Full=Kerath, 75, Short-CK-20, AlName: Full=Kerath, 75, Short-CK, 2, AlName: Full=Kerath, 74, Short-CK, 2, AlName: Full=Kerath, 74, Short-C	 Andersen, Full-Kenth, Iype I cytostedela 19, AtName, Full=Cytoteratin-19, Short=CK-19, AtName, Full=Kensth-19, Short=CK-13, AtName, Full=Kensth-13, Rechame, Full=Myogloh, Rechame, Full=Kinho, Short=CK-20, AtName, Full=Kensth-20, Rechame, Full=Myogloh, Rechame, Full=Kinho, Short=CK-23, AtName, Full=Kensth-20, Rechame, Full=Kyogloh, Rechame, Full=Kyogloh, Short=CK-23, AtName, Full=Kensth-20, Short=CK-20, AtName, Full=Kensth-20, Short=CK-20,	 Andersen, Tydarkerschr, Type I Cytoskeletal 19, AttName: Full-Cytokerschr.19, Short-CK-19, AttName: Full-Kerdth.19, Short-CK-13, AttName: Full-Kerdth.13, Rechaine: Full-Kerdth.19, Rechaine: Full-Kerdth.11, Rechaine: Full-Kerdth.12, AttName: Full-Kerdth.12, Short-CK-20, AttName: Full-Kerdth.20, Rechaine: Full-Kerdth.12, Short-CK-20, AttName: Full-Kerdth.20, Short-CK-24, AttName: Full-Kerdth.26, Short-CK-24, AttName: Full-Complement C4, Rechaine: Full-Complement C4, Rechaine: Full-Complement C4, Rechaine: Full-Complement C4, Rechaine: Full-Complement C4, AttName: Full-Cabine: Full-Complement C4, AttName: Full-Cabine, Full-Complement C4, AttName: Full-Cabine: Full-Cabine: Full	 Rechaine Full-Kendin, type I cytosteded 19, Atthane, Full-Cytoterath-19, Short-CK-19, Atthane, Full-Kendin-19, Short-CK-13, Atthane, Full-Kendin-13, Short-CK-13, Atthane, Full-Kendin-13, Short-CK-13, Atthane, Full-Kendin-13, Short-CK-13, Atthane, Full-Kendin-13, Rectiona: Full-Myoglobin Rectiona: Rectionare: Full-Myoglobin Rectiona: Full-Myoglobin Rectiona: Full-Ryotaking Full-Ryo	Recisions: Elakerath, type I cytosteated 13, Athame: Full=Cytoterath-13, Short=CK-13, Athame: Full=Kerath-13, Stort=CK-13, Athame: Full=Kyropion Reckine:
9 9 9 9 3 3 g 56404987 P66293 -847 -34.8 5.87 3 g 56404987 P66293 -847 -34.43 4.49 1 g 13992 P02647 -847 -34.43 4.49 1		RecName: Full=Keratin, type II o AttName: Full=Keratin-6 beta; S	RecName: Full=Apolipoprotein /	RecName: Full=Apolipoprotein / Precursor		RecName: Full=Keratin, type I c Short=K19	RecName: Full=Keratin, type I c Short=K19 RecName: Full=Serum abumin;	Rectvame: Full=Keratin, type I cytoskeletal 19, Al Short=K19 Rectvame: Full=Serum atumin, Flags: Precursor Rectvame: Full=Keratin, type I cytoskeletal 13, Al Short=K13: AttName: Ful-47 k0a cytoskeletal 13, Al	RecName: Full-Keratin, type I cytosteateal 19 Short–R19 RecName: Full-Serum aburnin, Flags: Precur RecName: Full-Keratin, type I cytosteateal 13 Short–R12, Atthane: Full=A7 (b0 cytoteratin RecName: Full=Mycglobin	Rechanne: Full=Keratin, typel to Short=K19 Rechanne: Full=Kerum abumin, Rechanne: Full=Keratin, typel to Rechanne: Full=Myoglobh Rechanne: Full=Myoglobh Rechanne: Full=Myoglobh	Rechanne: Full=Keratin, typel to Rechanne: Full=Kerum abunin, Rechanne: Full=Keratin, typel to Short=K13, AtNanne: Full=Kryglobh Rechanne: Full=Mygglobh Rechanne: Full=Mygglobh Rechanne: Full=Mygglobh	Rechame: Full=Keratin, type I c Rechame: Full=Kerum abumin, Rechame: Full=Keratin, type I c Short=K13, ANName: Full=Kr Rechame: Full=Myoglobh Rechame: Full=Myoglobh Rechame: Full=Myoglobh Rechame: Full=Myoglobh	Rechamic Full=Keratin, typel ic Rechamic Full=Kerum abumin, Rechamic Full=Keratin, typel ic Short=K13, AtNamic Full=Kryolobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin	Rechains: Full=Keratin, type I c Rechains: Full=Keratin, type I c Rechains: Full=Keratin, type I c Short=K13, AhNams: Full=Kr Rechains: Full=Myoglobh Rechains: Full=Myoglobh Rechains: Full=Myoglobh Rechains: Full=Myoglobh Rechains: Full=Myoglobh Rechains: Full=Myoglobh	Rechains: Full=Keratin, type I c Rechains: Full=Keratin, type I c Rechains: Full=Keratin, type I c Rechains: Full=Myoglobh Rechains: Full=Myoglobh	Rechamic Full=Keratin, type I c Rechamic Full=Kerum abumin, Rechamic Full=Kerum abumin, Rechamic Full=Keratin, type I c Short=K13, AMamic Full=Kruglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Myoglobin Rechamic Full=Ortdine 5-pho Rechamic Full=Ortdine 5-pho Rechamic Full=Condine 5-pho Rechamic	Short–Killa Kull-Serum abumin, Flag RecName: Full-Serum abumin, Flag RecName: Full-Serum abumin, Flag RecName: Full-Kortin, type I cytos Short–K13, AttName: Full-Artyoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Myoglobin RecName: Full-Verdam, Type I cytos Short-COX, AttName: Full-Type I Ic	Rechamic Full-Keratin, type I c Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Complement C4 domein-contenting proten 3, co Annet-Complement C4 domein-contenting proten 3, co Annetis Rechamic Full-Complement C4 domein-contenting proten 3, co Rechamic Full-Complement C4 domein-contenting proten 3, co B abha chelin; Rechamic Full-Complement C4	Rechamic Full-Keratin, type I c Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Conditing Full- domeh-containing proten 3, C B alpha chein, Contrains: RecMa Rechamic Full-Complement C4 domeh-containing proten 2, C domain-containing proten 2, C	Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Kentin, type I c Short-K20, AtNamic Full-Ype Rechamic Full-Kentin, type I c Short-K75, AtNamic Full-Ype Rechamic Full-Kentin, type I c Short-K75, AtNamic Full-Complement C4 domain-containing proten 2, co domain-containing proten 2, ch domain-containing proten 2, ch	recylame: Full=Keratin, typel cytosteetal Recylame: Full=Keratin, typel cytosteetal Recylame: Full=Keratin, typel cytosteetal Recylame: Full=Myoglobh Recylame: Full=Completent Stort=CSD, Atthanne: Full=Typel I cytostetetal Stort=CSD, Atthanne: Full=Typel I cytostetetal Stort=CSD, Atthanne: Full=Typel I recylames: Rec Anne: Full=Completent C4-B, Atthanne domain-containing proten 2, Cortains: Rec Anne: Full=Completent C4-B, Atthanne domain-containing proten 2, Cortains: Rec Anne: Full=Stratent, Atthane A gotha chain; Cortains: RecName: Full=Completent C RecName: Full=Stratent Lul=Completent C RecName: Full=Stratent C region RecName: Full=Stratent C region	Stort=K12 kull=Keratin, type I cytosteletal 13, Stort=K13, atthlamer kull=Keratin, type I cytosteletal 13, Rechams: Full=Keratin, type I cytosteletal 13, Rechams: Full=Myoglobin Recham: Full=Keratin, type I cytosteletal 20, Short=MYG-Atthlame: Full=Protein IT Recham: Full=Keratin, type I cytosteletal 25, Short=K75, Atthlame: Full=Complement C4, Short=K76, Atthlame: Full=Complement C4, B glaba chair, Contains: Recham: Full=Complement C4 B glaba chair, Contains: Recham: Full=Complement C4 A contains: Recham: Full=Complement C4 A attha chair. Contains: Recham: Full=Complement C4 Recham: Full=Kull=Ktractin, type I cytosteletal 17, Recham: Full=Ktractin, type I cytosteletal 14, Stort=K175, type I ktractin, type I kt	Rechamie: Full-Keratin, type I c Rechame: Full-Keratin, type I c Rechame: Full-Serum abumin, Rechame: Full-Serum abumin, Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Myoglobh Rechame: Full-Contidine 5-pho Short=X55, AttName: Full-Prote Rechame: Full-Contidine 5-pho Babha Charles: Full-Myoglobh Rechame: Full-Contidine 5-pho Rechame: Full-Contidine 5-pho Rechame: Full-Contidine 5-pho Rechame: Full-Contidine 5-pho Rechame: Full-Contidine 5-pho Rechame: Full-Contidine 7-d Babha Contains: Rechame: Full-Con Rechame: Full-Complement C4- donah-contenent C4- donah-contains: Rechame: Full-Con Rechame: Full-Short periot Rechame: Full-Short periote 7, c Short=Kull-Short Pathyse 1 c Rechame: Full-Short periote 7, c Rechame: Full-Short Periot	Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Kenton, type I c Short-2004 Short-Myolecase Rechamic Full-Kenton, type I c Short-K72, AttNamic Full-Yipe Rechamic Full-Kenton, Type I Rechamic Full-Kenton, Type I Rechamic Full-Complement C4 domain-contenent Full-Kenton, Type I Rechamic Full-Complement C4 domain-containing proten 2, co A alpha chain, Contains: RecNamic Rechamic Full-Stratich, AttNamic Auto- A alpha chain, Contains: RecNamic Rechamic Full-Stratich Rechamic Full-Stratic Rechamic Full-Stratich Rechamic Full-Stratich Recha	Rechamic Full-Keratin, type I c Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Myoglobh Rechamic Full-Orditine 5-pho Rechamic Full-Orditine 5-pho Rechamic Full-Orditine 5-pho Rechamic Full-Orditine 5-pho Rechamic Full-Orditine 5-pho Short=Myoglobh Rechamic Full-Orditine 5-pho Short=Myoglobh Rechamic Full-Orditine 5-pho Short=HZQ, Atthener Full-Orditine 5-pho Short=HZQ, Atthener Full-Orditine 5-pho Short=HZQ, Atthener Full-Orditine 5-pho Short=HZQ, Atthener Full-Orditine 5-pho Atthe 2-phin 5-pho Balpha chain; Contains: Recolantine Rechamic Full-Complement C4 a domain-containing proten 3; Co A domain-containing proten 2; Co Rechamic Full-Keratin, type I C Short=HZA, Athhamic Full-Short pedide th Rechamic Full-Athha - 1-antitry Rechamic Full-Keratin, type I C Short=HZA, Athhamic Full-Keratin,	Rechamic Full-Keratin, type I c Stoot=krtis Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Condining Full- Short=20, full-condi- Short=20, full-condi- tor and the chain, type I c Rechamic Full-Condining proten 3, c domain-containing proten 2, c Rechamic Full-domain, type I Rechamic Full-domain, type I Rec	Stort-skrige Full=Keratin, type I to, Stort-skrige Full=Keratin, type I to, Reckhame: Full=Keratin, type I to, Short-skrig, Atthame: Full=Keratin, type I to, Reckhame: Full=Myoglobin Reckhame: Full=Myoglobin Reckhame: Full=Myoglobin Reckhame: Full=Myoglobin Reckhame: Full=Myoglobin Rechame: Full=Myoglobin Rechame: Full=Myoglobin Rechame: Full=Contistine 5-spho: Short=OMPdecase Rechame: Full=Contistine 5, spho: Rechame: Full=Contistine 8, spho: Rechame: Full=Contistine 8, spho: Rechame: Full=Contistine Recha B, Contains: Rechame: Full=Contistine 8, spho: Rechame: Full=Shott period A sight a contains: Rechame: full=Contisting preten 2, do a slight a contains: Rechame: full=Contisting recent Rechame: Full=Shott period Rechame: Full=Contistine: Rechame: Full=Contisting recent Rechame: Full=Shott period Rechame: Full=Contisting recent Rechame: Ful	Rechamic Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Conglerent C4. domain-containing Rechamic Full-Cong Rechamic Full-Complement C4. domain-containing Rechamic Full-Congenerent C4. Rechamic Full-Kerentin, type I c Rechamic Full-Kere	Rechamic Full-Keratin, type I c Stoot-skrige Full-Keratin, type I c Rechamic Full-Serum abumin, Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Conditing S-pho Short-HZD, Atthamic Full-Prote Rechamic Full-Conditing Full-Cond Short-HZD, Atthamic Full-Conditing Rechamic Full-Conditing Recha Short-HZD, Atthamic Full-Conditing Rechamic Full-Conditing Recha A contains: Rechamic Full-Conditing Rechamic Full-Conditing Recha A contains: Rechamic Full-Conditing Rechamic Full-Conditing Recha A contains: Rechamic Full-Conditing Rechamic Full-Conditing Recha Rechamic Full-Apha-1-antitry Rechamic Full-Apha-1-antitry Rechamic Full-Conditing Recha Rechamic Full-Conditing	Rechamic Full-Keratin, type Ic Short=K13, Athamic Full-Keratin, type Ic Rechamic Full-Serum abumin, Rechamic Full-Myoglobh Rechamic Full-Complement C4- donain-contaling proten 3, C Short=K75, Athamic Full-Complement C4- donain-contaling proten 3, C domain-contaling proten 2, C Rechamic Full-Complement C4- domain-contaling proten 2, C Rechamic Full-Abha 1- antitrype Rechamic	RecName: Full-Keratin, type Lytostel RecName: Full-Keratin, type Lytostel Stont-HCI3, AttName: Full-dynglobh RecName: Full-dynglobh RecNa	Stortekting: Lull-Keratin, type I (c)/ Stort-kt/3, atthleare Full=Keratin, type I (c)/ RecName Full=Keratin, type I (c)/ Short=kt/3, atthleare Full=Myoglobin RecName Full=Complement C4= domain-containing proten 3, Con Short=Kt75, AttName Full=Cambol RecName Full=Cambol Short RecName Full=Kenstin, type I cyf RecName Full=Kenstin, type I cyf RecName Full=Kenstin, type I cyf RecName Full=Kapha-1-antitypes RecName Full=Kaph
gj[58798479 G92331 -11.27 -34.8 5.87 gj[56404967 P66293 -8.47 -34.43 4.49 gj[113992 P02647 -8.47 -34.43 4.49				-			- 7 0																									
gl/56404967 P68293 -6.47 -34.43 - 34.43 - 9/113992 P02647 -6.47 -34.43 - 9/113992 P02728 -9.38 -33.24 - 3/125086 P08728 -9.38 -33.24 - 3/125086 P08728 -9.38 -3/125086 P08728 -9.38 -3/125086 P08728 -9.38 -3/125086 P08728 -9/125086 P08728 -9/1250 -9/125086 P08728 -9/12500 -9/1250 -9/1250 -9/12500 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/1250 -9/125	м		~	~	5		~	- 0	- 0 -	- 0	- 0	- 0	~ ~ ~ ~ ~ ~ ~ ~								m m <td>n n<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	n n <td></td>										
gli544487 P68233 -8.47	5.87		4.49	4.49	2.76	2.14		4.58	4.58 9.74	4.58 9.74 9.74	4.58 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74 11.2 11.2	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74 9.74	4.58 9.74 9.74 9.74 9.74 9.74 9.74 11.2 2.59 2.59 4.05 1.38	4.58 9.74 9.74 9.74 9.74 9.74 11.2 11.2 2.59 11.2 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 1.12 1.12 4.05 1.259 4.05 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 1.2 2.59 1.2 2.59 1.2 2.59 1.38 1.38 1.38 1.38 3.08 3.08	4.58 9.74 9.74 9.74 9.74 9.74 9.74 11.2 1.12 2.59 2.59 1.28 1.38 1.38 1.38 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 11.2 2.59 4.05 4.05 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 11.2 1.38 1.38 1.38 1.38 1.38 1.38 4.05 1.38 1.38 6.94 6.94 6.94	4.88 9.74 9.74 9.74 9.74 9.74 9.74 11.2 11.2 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.88 9.74 9.74 9.74 9.74 9.74 9.74 11.2 11.2 4.05 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 1.12 1.12 4.05 1.38 1.38 1.38 4.95 6.94 6.94 6.94 6.94 6.94 3.67 3.67	4.58 9.74 9.74 9.74 9.74 9.74 9.74 11.2 2.59 11.28 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.3	4.88 9.74 9.74 9.74 9.74 9.74 9.74 11.2 11.2 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.88 9.74 9.74 9.74 9.74 9.74 9.74 11.2 11.2 11.2 1.38 1.138 1.138 1.138 1.1284 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74 1.12 1.12 1.12 1.25 4.05 1.38 1.284 1.38 1.284 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	4.58 9.74 9.74 9.74 9.74 9.74 9.74 9.74 1.12 2.59 4.05 1.138 1.12 2.58 3.08 6.94 6.94 6.94 6.94 6.94 6.94 6.94 6.94
giles15662 PU/7.24 gilt 706568 P02165 gilt 70655784 P02165 gilt 8555784 P02165 gilt 8555784 P02165 gilt 8555785 P02165 gilt 8555785 P02165 gilt 8555765 P02165 gilt 8555765 P02161 gilt 8555765 P02151 gilt 8555742 P02151 gilt 85557785 P02154 gilt 85557785 P02154 gilt 85557785 P02154 gilt 18595778 P02154 gilt 175187 P02154 gilt 175187 P02014 gilt 175187 P0204 gilt 175183 P01000	-34.8 -34.8 -34.43 -34.43 -33.24 -33.24	-34.43 -34.43 -34.43 -33.24 -33.24	-34.43 -33.24	-33.24	20.45	-22.10	33.08	ę	е,	-32.93	-32.93	-32.85	-32.85	-32.81	-32.54	Ŗ	31.13	-31.13	-31.05	-29.29	-28.86	-28.23	-28.15	-28.04	-27.73	-27.63	-27.59	-27.33	-27.23	-27.2	74 20	CL.)2-
gij53789479 gij5178647 gij113992 gij118595784 gij118595784 gij118595784 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595785 gij118595735 gij118595735 gij118595735 gij118595735 gij118595735 gij118595735 gij118595735 gij1170567 gij1170567 gij1170567 gij1170567 gij1170567 gij1170567 gij1170567 gij1121057 gij1170567 gij1170567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij11210567 gij1220452889 gij220462889 gij222462889 gij222462899		-11.27	-8.47	-8.47	6.9	-8.46	-9.34	-7.87	-7.87	-7.87	-7.87	7.87	-7.87	-8.52	8.9	6.9 9	-10.04	-10.04	-9.3	-10.88	-8.58	-8.16	-8.16	-8.41	-8.83	-7	2-	-8.69	6 <u>9</u> .8-	69.8-	8 [.] 89.89	
	P50446	Q9Z331	P68293	P02647	P08728	P07724	P08730	P02166	P02167	P02150	P02168	P02152	P02154	Q3AHU2	P35900		POCOLS	POCOL4	P01861	075882	Q6IFV1	P01009	GSRCWS	Q6IFX2	Q9XT27	P01010	000394	Q61703	P19823	P97279	002668	
	gi 60416436	gi 59798479	gi 56404987	gi 113992	ai125086	gi 5915682	gi 1708588	gi 118595800	gi 118595791	gi 118595784	gi 118595765	gi 116247696	gil118595778	ail109892943	ail547750	gi 122132186	gi 81175167	gi 81175238	gi 121047	gi 13431311	gi 81170667	gi 1703025	gi 68052067	gi 81891691	gi 75075054	gi 112888	gi 68051994	gi 3024068	gi 229462889	gi 3024062	ai 3024050	1
	56	111	171	105	114	131	135	321	320	309	322	315	319	265	6	313	224	150	327	64	250	3	208			11	145	162	287	52	174	

2559818	1801907	1107923	1085991	000100	901700	1579557	2971877	1801923	0110000	0417607	1801924 1801921	1046847	2971875	7474820	6930585	3195141	904312	1616820	1057378	3781067	1121035	1364304	915896	758523	7003521	7005839	2048176	4000444	835497	816428	2047188	2639418	1745652	1548680	
1428	438	180	178	0	RZO	638	526	495	ů,	104	625	524	553	340	8	1170	1170	564	998	570	348	347	346	406	401	400	401	104	357	425	535	551	520	511	
158.1 kDa	47.7 kDa	20.0 kDa	19.9 kDa	04 2 MD	04.3 KUa	65.9 kDa	56.5 kDa	54.7 kDa			50.5 kDa	57.4 kDa	60.4 kDa	36.5 kDa	9.7 kDa	129.4 kDa	129.5 kDa	60.0 kDa	95.0 kDa	57.8 kDa	39.0 kDa	38.5 kDa	38.9 kDa	45.2 kDa	44.6 kDa	44.7 kDa	44.9 kDa	- C1 0 12	38.8 kDa	45.7 kDa	57.7 kDa	59.7 kDa	56.8 kDa	55.9 kDa	
RecName: Full=Attractin; AttName: Full=Protein mahogany; Flags: Precursor	RecName: Full=Keratin, type I cytoskeletial 13, AthName: Full=Cytokeratin-13, Short=CK-13, AthName: Full=Keratin-13, Short=K13, AthName: Full=Type I keratin Ka13	RecName: Full=Beta-lactoriobulin: Short=Beta-LC; Flags: Precursor	Rechame: Full=Beta-Jactholohulin: Short=Beta-LG: AttName: Alleroen=Bos d 5: Flacs: Precursor	rearrance in term averagement of the state of the state in the state of the state of the state of the state of Persidence Fullence entry in the state of the	Recharants: fuence and type in cytocetesta at an anyamic rule-cytocetanne and according to the cytocetanne and a second at the second at t	הפטאמות: רעוודיאל אווין ניקרט וראינטאפונגט בערמן, אנועמות: רעוו≓טאַטאפו בין אוויעדיאל אווידיאל אווידיאליד. רעוו≓לפימנוה-76, Short=1/76	RecName: Full=Keratin, type I cytoskeletal 10, AtName: Full=Cytokeratin-10; Short=CK-10; AtName: Full=Keratin-10; Short=K10; AtName: Full=Type I keratin Ka10	RecName: Full=Keratin, type II cytoskeletal 74; AttName: Full=Keratin-74; Short=K74; AttName: Full=Type II keratin Kb37		structerva, Auroanie, ruser yper karaaturi vazz. Recedenae: Eulefkeraturi yper II cytosketkal 73, AthName: Full=Cytokeratin-73, Short=CK-73, AthName: Full=Keratin-73; Decedenae: Euler: Euler: The Theorem Section 2014, Structure and AthName: Full=Keratin-73;	onorent of management of the menomenous memory present for an operation of the mean reporting menomenous of the Reconstructions full-feature in cynetic fath, attractioner full-cynetic fath School (CA), attractioner full-feat School-6772 - Atthanes Full-free Recent (NG), Atthanes Full-fentronin tyne il kerstin, d	RecName Full=Keratin, type II cytosteletal 71, AttName Full=Cytokeratin-71, Short=CK-71, AttName Full=Keratin-71, Short=K71, AttName Full=Type II keratin-34, AttName Full=Type II inner root sheath-specific keratin-K6iss1; Short=mK6iks1 Mrt2-6q, Short=mK6iks, AttName, Full=Cytokeratin-66; Short=CK 65, AttName, Full=K6a keratin	RecName: Full=Keratin, type II cytoskeletal 73, AttName: Full=Cytokeratin-73, Short=CK-73, AttName: Full=Keratin-73, Short=K73, AttName: Full=Type II keratin-36, AttName: Full=Type II inner root sheath-specific keratin-K6irs3	RecName: Full=Ig alpha-2 chain C region	RecName: Full=Serum albumin	RecName: Full=Thrombospondin-1; Flags: Precursor	RecName: Full=Thrombospondin-1; Flags: Precursor	RecName: Full=Keratin, type II cytoskeletal 6C, AthName: Full=Cytokeratin-6C, Short=CK 6C, AthName: Full=K6c keratin, AthName: Full=Cytokeratin-6E, Short=CK 6E, AthName: Full=Keratin K6h	RecName: Full=Fibrinogen alpha chain; Contains: RecName: Full=Fibrinopeptide A; Flags: Precursor	RecName: Full=Keratin, type I cytoskeletal 10, AttName: Full=Cytokeratin-10, Short=CK-10, AttName: Full=Keratin-10; Short=K10, AttName: Full=56 kDa cytokeratin, AttName: Full=Keratin, type I cytoskeletal 59 kDa	RecName: Full=Haptoglobin-related protein; Flags: Precursor	RecName: Full=Haptoglobin; Contains: RecName: Full=Haptoglobin alpha chain; Contains: RecName: Full=Haptoglobin beta chain; Flags: Precursor	RecName: Full=Haptoglobin-related protein; Flags: Precursor	RecName: Full=Haptoglobin; Contains: RecName: Full=Haptoglobin alpha chain; Contains: RecName: Full=Haptoglobin beta chain; Flags: Precursor	RecName: Full=Haptoglobin; Contains: RecName: Full=Haptoglobin alpha chain; Contains: RecName: Full=Haptoglobin beta chain; Flags: Precursor	RecName: Full=Haptoglobin; Contains: RecName: Full=Haptoglobin alpha chain; Contains: RecName: Full=Haptoglobin beta	RecName. Full-Haptoglobin; Contains: RecName: Full-Haptoglobin alpha chain; Contains: RecName: Full-Haptoglobin beta Chain: Flaos: Freuensor	RecName: Full=Keratin, type II cytosketetal 79, AttName: Full=Cytokeratin-79, Short=CK-79, AttName: Full=Keratin-79;	onortekuis, kuuvante, ruitetype liiketaurtoo RecMame FulleThvunidine kinase	RecName: Full=Keratin, type II cytoskeletal I; AttName: Full=Clone PUF23	RecName: Full=Keratin, type II cytoskeletal 79, AttName: Full=Cytokeratin-79, Short=CK-79, AttName: Full=Keratin-79, Short=K79	RecName: Full=Keratin, type II cytoskeletal 75, AttName: Full=Cytokeratin-75, Short=CK-75, AttName: Full=Keratin-75, Short=K75, AttName: Full=Type II keratin-18, AttName: Full=Type II keratin-K6hf, AttName: Full=Keratin-6 hair follicle, Short=nK6hf	RecName: Full=Keratin, type III cytoskeletal 72, AttName: Full=Cytokeratin-72, Short=CK-72, AttName: Full=Keratin-72, Short=K72, AttName: Full=Type-II keratin-35, AttName: Full=Type II inner root sheath-specific keratin-K6irs2	RecName: Full=Keratin, type II cytoskeletal 72, AttName: Full=Cytokeratin-72, Short=CK-72, AttName: Full=Keratin-72, Short=K72, AttName: Ful=Type-II keratin-35, AttName: Full=Type II inner root sheath-specific keratin-K6irs2	RecName: Full=Keratin,type I cytoskeletal 16, AttName: Full=Cytokeratin-16; Short=CK-16; AttName: Full=Keratin-16;
2	-	m		, c	7	2	m	-		- c	4 .		-	2	2	÷	÷	e	ę	2	-	~	~	÷	÷		-	c	√ -		-	-	~	.	
2	-	m			7	7	т	-			4 .	-	-	2	2	-	-	e	m	2	-	÷	-	-	÷	-			4	-	-	~	.	÷	
2.17	2.51	13.33	13.48	900	00.5	3.61	5.7	2.42	5	17.7	50.0	2.29	2.17	7.94	23.33	0.77	0.77	5.32	4.5	4.39	3.45	3.46	3.47	2.96	2.99	m	2.99	2	7.1	2.82	2.24	2.18	2.31	2.35	
-25.86	-25.35	-25.16	-25.16	20.20	cn:c7-	-24.91	-24.71	-24.34		+0.+2- 0.4 40	-24.15	-24.15	-24.02	-23.97	-23.63	-21.95	-21.89	-21.7	-21.62	-21.61	-21.32	-21.32	-21.21	-20.98	-20.75	-20.74	-20.72	00.05	-19.43	-17.28	-16.86	-16.72	-16.41	-16.34	
-8.63	6.58	-7.51	-7.51	00 1	00'.)-	-7.88	-8.78	-6.48	i.	0-t-0- 1-	 	-6.48	-6.48	-6.76	-6.05	-6.23	-6.23	-8.4	-8.79	-6.87	-5.59	-5.59	-5.59	-5.59	-5.59	5.59	5.59	0	00:0-	4 88	-4.88	-4.87	-4.78	-4.78	
Q9MUE0	Q6FV4	P02755	PD7754	action	074R7P	Q01546	Q6IFW6	Q6IFZ9	ti Lioo	COLUC	CORF76	09R0H5	Q6IG03	P01877	P85295	P07996	Q28178	P48668	P02671	P02535	P00739	QSRSF6	Q28801	P00738	B6E141	H6D985	02TBUD		GOVEU3 PE9185	P04266	Q148H7	Q8BGZ7	Q6IME9	Q14CN4	
gi 13431313	qi 81891678	ail20178290	oit125910	201020102	Jazsene Jib	gi 547752	ail81891690	dil81891697	01010010	01001001010	gir frouddo	ail60390219	gi 81891700	gi 218512088	gi 205371736	gi 117949802	gi 12644428	gi 59803089	gi 1706799	gi 116242600	gi 123510	gi 68565358	ail68565391	gi 123508	gi 226709030	cil226704449	ail1 221 37096		gil123797712	gil125097	qi 122143589	gi 81896062	gi 81891714	gi 166218813	
280	247	177	. 8	3 6	ñ	232	298	251	00	R 8	349	153	297		357		6	237	158	314	185	209	10	4	328	Jac 1		-	₽ ₽	2 28	561	285	243	229	
114	115	116	117		0	119	120	121	8	3 5	124	125	126	127	128	129	130	<u>3</u>	132	5	134	135	136	137	138	130	6	7	4	£	144	145	146	147	

1363079	1801909	1357522	731698	1447861	741484	1596627	919283	6506548	754832	1114697	4613410	731613	871196	871450	4374985	996741	874943	407441	17631	909790	913994	737422	949345	98744	902155	752799	232943	799642	903841	1006713	1411318	991289	33147	724928	902732
523	536	607	607	336	391	469	200	452	411	231	663	371	453	1737	1738	401	236	236	146	236	222	223	223	816	609	525	1224	395	33	1432	310	308	187	80	3206
57.2 kDa	57.7 kDa	68.5 kDa	68.6 kDa	38.8 kDa	43.1 kDa	51.6 kDa	55.2 kDa	49.3 kDa	45.7 kDa	24.4 kDa	70.7 kDa	41.5 kDa	48.8 kDa	192.2 kDa	192.9 kDa	43.8 kDa	25.7 kDa	25.6 kDa	15.6 kDa	25.7 kDa	26.0 kDa	26.3 kDa	26.4 kDa	90.0 kDa	68.9 kDa	59.6 kDa	139.0 kDa	44.4 kDa	37.3 kDa	158.7 kDa	34.7 kDa	34.7 kDa	20.8 kDa	34.9 kDa	364.3 kDa
Short=r/71; AttName: Full=Type II keratin-34; AttName: Full=Type II inner root sheath-specific keratin-KBirs1; Short=Keratin 6 irs; Short=hKBirs; Short=hKBirs1	RecName: Full=Keratin, type II cytoskeletal 4; AthName: Full=Cytokeratin-4; Short=CK-4; Short=Keratin-4; Short=K4; AthName: Full=Type II keratin Kb4	RecName: Full=Serum albumin; Flags: Precursor	RecName: Full=Serum albumin; Althame: Allergen=Equ c 3; Flags: Precursor	RecName: Full=S-adenosyl-L-methionine-dependent methyftransferase mraW	Rechame: Full=Ig mu heavy chain disease protein; AttName: Full=BOT	RecName: Full=Keratin, type I cytoskeletal 16, AttName: Full=Cytokeratin-16, Short=CK-16, AttName: Full=Keratin-16, Short=K16	RecName: Full=Plasma protease C1 inhibitor; Short=C1 inh; Short=C1 inh; AltName: Full=C1 esterase inhibitor; AltName: Full=C1-inhibiting factor; Flags: Precursor	RecName: Full=Ig mu chain C region	RecName: Full=Keratin, type I cytoskeletal 12, AttName: Full=Cytokeratin-12, Short=CK-12, AttName: Full=Keratin-12, Short=K12	RecName: Full=Trypsin; Flags: Precursor	RecName: Full=Zyxin	RecName: Full=Protein adrA	RecName: Full=Keratin, type I cytoskeletal 15, AttName: Full=Cytokeratin-15, Short=CK-15, AttName: Full=Keratin-15, Short=K15	RecName: Full=Complement C4, Contains: RecName. Full=Complement C4 beta chain; Contains: RecName: Full=Complement C4 alpha chain; Contains: RecName: Full=C4a anaphylatoxin, Contains: RecName. Full=Complement C4 gamma chain; Flags: Precursor	RecName: Full=Complement C4-B, Contains: RecName: Full=Complement C4 beta chain; Contains: RecName: Full=Complement C4 alpha chain; Contains: RecName: Full=C4a anaphylatoxin; Contains: RecName: Full=Complement C4 gamma chain; Flags: Precursor	RecName: Full=Keratin, type I cytoskeletal 19, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin-19, Short=K19	RectName: Full=Purine nucleoside phosphorylase deoD-type 2; Short=PNP 2	RecName: Full=Purine nucleoside phosphorylase deoD-type 2; Short=PNP 2	RecName: Full=Protein traM	RecName: Full=Purine nucleoside phosphorylase deoD-type 2; Short=PNP 2	RecName: Full=Alpha-S2-casein; Contains: RecName: Full=Casocidin-1; AttName: Full=Casocidin-I; Flags: Precursor	RecName: Full=Alpha-S2-casein; Flags: Precursor	RecName: Full=Alpha-S2-caseir; Short=Alpha-S2-CN; Flags: Precursor	RecName: Full=Protein grc3	RecName: Full=Serum albumin; Flags: Precursor	RecName: Full=Histictine-rich glycoprotein; AttName: Full=Histictine-proline-rich glycoprotein; Short=HPRG; Flags: Precursor	RecName: Full=Probable serine#hreonine-protein kinase DDB_G0292350	RecName: Full=Uncharacterized 44.4 kDa protein in transposon Tn4556	RecName: Full=Complement factor H-related protein 3, Short=FHR-3; AttName: Full=H factor-like protein 3; AttName: Full=DOWM16; Flags: Precursor	RecName: Full=Attractin; AttName: Full=Protein zitter; Flags: Precursor	RecName: Full=Aspartate carbamoyftransferase; AttName: Full=Aspartate transcarbamylase; Short=ATCase	RectName: Full=Aspartate carbamoyttransferase; AttName: Full=Aspartate transcarbamylase; Short=ATCase	RecName: Full=Translation machinery-associated protein 22	RecName: Full=Aspartate carbamoytransferase; AttName: Full=Aspartate transcarbamylase; Short=ATCase	RecName: Full=Genome polyprotein; Contains: RecName: Full=P1 proteinase; AthName: Full=N-terminal protein; Contains: RecName: Full=B. RecName: Full=Helper component proteinase; Short=HC-pro; Contains: RecName: Full=B. RecName: Full=B. KDa protein 1; Short=BK1; Contains: RecName: Full=Cytoplasmic inclusion protein; Richam: RecName: Full=B. KDa protein 2; Short=BK2; Contains: RecName: Full=Vrial genome-linked protein; AthNem: Full=P9; Contains: RecName: Full=Nucleer inclusion protein A; Short=Na; Ann=C, Font-B2; Contains: RecName: Full=Nucleer inclusion protein A; Short=Na; Ann=Full=Na; AthName: Full=49 (b3 proteinse; Short=49 KDa-Pro; Contains: RecName: Full=Containg, AthName: Full=Nup; AthName: Full=RNu4-directed RNA polymerase; Contains: RecName: Full=Cost protein; Short=Nb; Short=Nb; AthName: Full=RNu4-directed RNA
÷	2	2	2	÷	2	5	7	2	7	2	-	-	2	~	~	2	-	-	÷	-	2	7	7	-	-	2	-	-	~	-	-	٢	-	-	~
~	7	2	2	-	2	5	0	2	2	0	-	-	5	.	~	5	-	-	÷	-	2	7	0	2	2	7	-	-	÷	÷	-	-	-	-	~
2.29	3.73	2.8	2.8	3.57	6.65	4.26	4.4	5.75	3.89	8.66	2.87	3.5	4.64	0.52	0.52	5.24	5.51	5.51	7.53	5.51	9.46	9.42	9.42	2.21	2.79	3.81	6.0	3.8	3.03	1.12	3.55	3.57	11.23	3.57	0.37
-16.31	-16.11	-15.06	-15.02	-14.79	-14.49	-14.3	-14.09	-14.04	-13.63	-13.51	-12.73	-12.57	-12.21	-11.97	-11.94	-11.88	-11.22	-11.19	-11.18	-11.16	-11.07	-10.91	-10.91	-10.85	-10.8	-10.69	-10.38	-10.21	-9.86	-9.82	-9.77	-9.75	-9.73	-9.62	20.8-
-4.78	-5.95	-5.9	-5,9	-4.33	-5.08	-5.41	-5.19	-5.08	-5.1	-4.14	-3.86	-3.69	-4.85	-4.26	-4.26	-4.72	-3.22	-3.22	-3.11	-3.22	-4.15	-4.15	-4.15	-5.01	-4.96	-4.47	-3.73	-3.38	'n	-3.63	-3.14	-3.14	-2.89	-3.14	8. 9.
Q3SY84	Q6(G00	Q5XLE4	P35747	Q4FPN5	P04220	Q9Z2K1	P05155	P01871	Q28706	P00761	A5H447	P0AAP1	077727	P08649	P01029	P51856	Q87G42	Q9KNB2	P71198	Q7MFG6	P02663	P04654	P33049	Q5B4D1	035090	P04196	Q54DC8	P20188	Q02985	099J86	Q5JHM9	Q8U373	Q9P3T4	P77918	P29152
gi 166218815	gi 81891698	gil76363596	gi 543794	gi 88909208	gi 127506	gi 23396632	gi 124096	gi 193806374	gi 3183048	gi 136429	gi 187668015	gi 77416709	gi 75058787	gi 29337194	gi 126302537	gi 1708590	gi 81725314	gi 85681036	gi 2499702	gi 85540976	gi 115654	gij115658	gi 416751	gi 74595791	gi 3121749	gi 123523	gi 74996492	gi 141451	gi 13124752	gi 59797484	gi 62510978	gi 22256985	gi 74638644	gi 2499404	90509
207	248	206	33	220	59	233	104	356	98	8	338	22	62	8	335	132	82	13	m	96	00	24	117	ω	8	35	11	54	92	139	216	129	9	19	δ
149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184

185	307	gi 166229928	A8F062	-3.18	6'8-	4.98	-	-	RecName: Full=Trigger factor; Short=TF	50.8 kDa	442	3320674
186	16	gi 116144	P23013	-2.87	-8.84	3.79	~	~	RecName: Full=Protein cfxQ	35.1 kDa	317	721529
187	188	gi 28558077	Q9XF89	-2.75	-8.79	7.5	÷	.	RecName: Full=Chlorophyll a-b binding protein CP26, chloroplastic; AttName: Full=Light-harvesting complex II protein 5; AttName: Full=LHCB5, AttName: Full=LHCIc; Flags: Precursor	30.2 kDa	280	1122911
8	235	dil74750885	Q8N1A0	-2.8	-8.31	3.05	~	-	RecName: Full=Keratin-Ike protein KRT222; AttName: Full=Keratin-222; AttName: Full=Keratin-222 pseudogene	34.2 kDa	295	1603893
8	99	oil1350848	P47767	4 99	ç	69 0	~	-	RecName: Full=DNA-directed RNA polymerase suburit beta, Short=RNAP subunit beta, AttName: Full=Transcriptase subunit beta: AttName: Full=RNA polymerase subunit beta	146.5 kDa	1302	825847
190	2	gi 20178281	P02747	-2.47	-8.18	6,4	· ~	~	RecName: Full=Complement C1q subcomponent subunit C; Flags: Precursor	25.8 kDa	245	794335
19	246	gil81891699	Q6IG02	.5.01	8- 10-	1.61	-	~	RecName: Full=Keratin, type II cytoskeletal 2 epidermal, AltName: Full=Cytokeratin-2e, Short=K2e, Short=K2e, Short=keratin- 2, AltName: Full=Type II keratin Kb2	н 69.1 kDa	685	1801906
192	210	ail75041620	05R8S9	-28	-7.84	2.25	~	-	RecName: Full=Keratin, type I cytoskeletal 19, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin-19, Short=K19, Short	44 1 kDa	400	1365161
18	+	dil206558253	Q3TD16	-2.94	-7.84	1.85	~	-	RecName: Full=Uncharacterized protein C13orf18 homolog	72.3 kDa	648	6837339
194	-	gi 189043559	A1VK39	-2.32	-7.81	8.25	~	-	RecName: Full=Imidazoleglycerol-phosphate dehydratase; Short=IGPD	22.2 kDa	206	557334
195		gi 464693	P33395	-2.33	-7.66	12.67	~	-	RecName: Full=Protein rrf2	16.7 kDa	150	1105534
196	234	gi 75246487	Q8LPF1	-2.99	-7.62	2.4	-	-	RecName: Full=Pertratricopeptide repeat-contraining protein At5g15980, mitochondriat, Flags: Precursor	75.3 kDa	899	1603116
197	151	gi 2497269	Q99456	-2.76	-7.56	1.82	-	~	RecName: Full=Keratin, type I cytoskeletal 12, AttName: Full=Cytokeratin-12, Short=CK-12, AttName: Full=Keratin-12, Short=K12	53.5 kDa	494	1044884
198	217	gi 82195557	Q5K2P2	-2.76	-7.47	2.04	~	÷	RecName: Full=Keratin, type I cytoskeletal 15, AttName: Full=Cytokeratin-15, Short=CK-15, AttName: Full=Keratin-15, Short=K15	48.9 kDa	441	1413126
199	366	gi 226706245	Q54QG5	-3.76	-7.44	0.17	~	-	RecName: Full=Probable E3 ubiquitin-protein ligase DDB_G0283893	658.2 kDa	5875	8211650
200	266 (gi 123555922	Q311H6	-2.51	-7.27	4	-	~	RecName: Full=Erythronate-4-phosphate dehydrogenase	42.2 kDa	375	2086038
201	-	gi 88942920	P0AA30	-1.96	-6.83	11.01	~	~	RecName: Full=Thioredoxin-1; Short=Trx-1	11.8 kDa	109	2985
202	282	gi 81916943	Q9D1G5	-2.33	-6.79	3.77	-	-	RecName: Full=Leucine-rich repeat-containing protein 57	26.8 kDa	239	2599340
203	223	gi 123728636	Q38W64	-2.38	-6.66	3.79	-	-	RecName: Full=30S ribosomal protein S2	29.9 kDa	264	1487180
204	361	gi 229470721	B6YQ95	-2.79	-6.55	1.85	-	-	RecName: Full=Threonyl-tRNA synthetase; AttName: Full=ThreoninetRNA ligase; Short=ThrRS	75.2 kDa	648	7200454
205	304	gi 81910015	Q5RJ54	-2.62	-6.43	2.79	-	-	RecName: Full=Zinc finger protein 187; AttName: Full=Zinc finger and SCAN domain-contraining protein 26	53.5 kDa	466	3057847
206	200	gi 74610271	Q6FU05	-2.52	-6.41	4.36	~	-	RecName: Full=Ribosome biogenesis protein NSA1	49.4 kDa	436	1298105
207		gi 3024799	Q80910	-2.56	-6.31	3.17	~	~	RecName: Full=Regulatory protein E2	49.7 kDa	441	809480
208	352	gi 226707753	B0BUE2	-1.54	-6.05	26.03	-	-	RecName: Full=LIPF0352	8.0 kDa	73	5675779
209	7	gi 167016716	A3MZV0	-1.54	-6.05	26.03	~	-	RecName: Full=UPF0352 protein APL_0584	7.9 kDa	73	91999
210	35	gi 6686299	Q14525	-2.34	φ	1.73	~	~	RecName: Full=Keratin, type I cuticular Ha3-II; AttName: Full=Hair keratin, type I Ha3-II; AttName: Full=Keratin-33B; Short=K33B	9 46.2 kDa	404	909197
211	88	gi 46397807	076014	-2.34	-5.93	1.56	~	-	RecName: Full=Keratin, type I cuticular Ha7; AttName: Full=Hair keratin, type I Ha7; AttName: Full=Keratin-37; Short=K37	49.7 kDa	449	899973
212	59	gi 3183065	Q62168	-2.34	-5.93	1.72	-	-	RecName: Full=Keratin, type I cuticular Ha2, AttName: Full=Hair keratin, type I Ha2, AttName: Full=Keratin-32, Short=K32	46.4 kDa	407	807100
213	76	gi 125090	P02534	-2.34	-5.84	1.7	-	-	RecName: Full=Keratin, type I microfibrillar 48 kDa, component 8C-1; AttName: Full=Low-sulfur keratin	46.7 kDa	412	859786
214	125	ail57012974	Q9JL16	-2.11	-5.83 	6.67	~		RecName: Full=Interferon-stimulated gene 20 kDa protein; AltName: Full=Promyelocytic leukemia nuclear body-associated protein ISO20: AltName: Full=DnaQL protein	32.5 kDa	800	983676
215	8	gi 125070	P08777	-2.34	-5.66	1.63	~	-	RecName: Full=Keratin, type I cytoskeletal 47 kDa	47.2 kDa	429	894783
216	49	gi 125072	P05781	-2.34	-5.63	1.67	-	-	RecName: Full=Keratin, type I cytoskeletal 47 kDa	45.7 kDa	419	789292
217	87	gi 125083	P05783	-2.34	-5.41	1.63	÷	÷	RecName: Full=Keratin, type I cytoskeletal 18, AttName: Full=Cytokeratin-18, Short=CK-18, AttName: Full=Keratin-18, Short=K18,	48.1 kDa	430	896230
218	85	gij148886614	P05784	-2.34	6 8	1.65	~	~	RecName: Full=Keratin, type I cytoskeletal 18, AttName: Full=Cytokeratin-18, Short=CK-18, AttName: Full=Keratin-18, Short=K18, AttName: Full=Cytokeratin endo B; Short=Keratin D	47.5 kDa	423	894113
219	Ŗ	di 2506872	P02751	-2.77	5.06	0.54	÷	~	RecName: Full=Fibronectin; Short=FiV, AthVame: Full=Cold-insoluble globulin; Short=ClO; Contains: RecName: Full=Ugl-Y1; Contains: RecName: Full=Ugl-Y2; Contains: RecName: Full=Ugl-Y3; Flaqs: Precursor	262.6 kDa	2386	756068
220	365	gi 218512156	P07589	-2.77	-4.99	0.52	-	-	RecName: Full=Fibronectin; Short=FN; Flags: Precursor	272.2 kDa	2478	7474835
221	S	gi 73622062	Q5HMB9	-2.14	-4.97	5.61	~	-	RecName: Full=Tryptophan synthase beta chain	42.9 kDa	392	29863
222	198	gi 38372875	P11276	-2.77	-4.93	0.52	-	-	RecName: Full=Fibronectin; Short=FN; Flags: Precursor	272.5 kDa	2477	1200482
223	149	gi 120178	P04937	-2.77	-4.92	0.52	~	-	RecName: Full=Fibronectin; Short=FN; Flags: Precursor	272.5 kDa	2477	1042187
224		gi 3334344	042816	-2.2	-4.73	3.6	÷	~	RecName: Full=Signal recognition particle 54 kDa protein homolog	60.7 kDa	556	783826
225	348	aj 189046141	A8AYT8	-2.62	-4.59	4.72	7	-	RecName: Full=Segregation and condensation protein A	27.4 kDa	233	5238110

3782228	-	792124	1071523		1063151	1037037	1156056	2388799	+	1975632	2890711	2507778	2048502	-	848011	918179	924279	748293	19750	2504350	1129996	755486	1490818	4455502	855376	827164	1121002	1121436	3109886			893424		+	~
436	657	197	136	329	123	122	837	456	8	8	43	458	441	726	842	395	751	105	196	415	113	153	593	320	1045	387	190	1043	08	1043	222	1153	1154	1125	P CC
48.3 kDa	75.9 kDa	23.2 kDa	14.9 kDa	36.3 kDa	13.3 kDa	13.2 kDa	93.7 kDa	49.2 kDa	11.3 kDa	11.2 kDa	48.1 kDa	49.6 kDa	48.7 kDa	81.8 kDa	97.2 kDa	46.3 kDa	86.4 kDa	11.6 kDa	21.5 kDa	47.0 kDa	12.0 kDa	17.1 kDa	67.6 kDa	35.4 kDa	119.3 kDa	44.1 kDa	21.3 kDa	118.9 kDa	84.2 kDa	118.7 kDa	25.5 kDa	131.1 kDa	131 8 kDa	130.7 kDa	
RecName: Full=SeryI+tRNA synthetase; AttName: Full=SeryI+tRNA(Ser/Sec) synthetase; AttName: Full=Serime-+tRNA ligase; Short=SerRS	RecName: Full=Tyrosine-protein kinase BTK, AltName: Full=Bruton tyrosine kinase	RecName: Full=40S ribosomal protein S9-2	RecName: Full=Kappa-casein	RecName: Full=D-alanineD-alanine ligase; AttName: Full=D-alany/lalanine synthetase; AttName: Full=D-Ala-D-Ala	RecName: Full=Kappa-casein	RecName: Full=Kappa-caseIn	RecName: Full=Phenylalanyl-IRNA synthetase beta chain; AtName: Full=PhenylalanineIRNA ligase beta chain; Short=PheRS	RecName: Fullwkeratin, type I cytoskeletal 15, AttName: FullwCytokeratin-15, ShortwCk-15, AttName: Fullwkeratin-15, Short=k15	RecName: Full=50S ribosomal protein L21	Rechame: Full=50S ribosomal protein L21	RecName: Full=Keratin, type I cytoskeletal 17, Athtame: Full=Cytokeratin-17; Short=CK-17; Athtame: Full=Keratin-17; Short=K17; Athtame: Full=Type I keratin Ka17	RecName: Full=Keratin, type I cytoskeletal 13, AtMane: Full=Cytokeratin-13, Short=CK-13, AtMane: Full=Keratin-13, Short=K13	RecName: Full=Keratin, type I cytoskeletal 17; AttName: Full=Cytokeratin-17; Short=CK-17; AttName: Full=Keratin-17; Short=K17	RecName: Full=Complement C3 alpha chain	RecName: Full=Myosin-Ia; AttName: Full=Brush border myosin ţ Short=BBM-ţ Short=BBMţ, AttName: Full=Myosin I heavy chair; Short=MH/C	RecName: Full=Putative gustatory receptor 58a	RecName: Full=Inhibitor of nuclear factor kappa-B kinase subunit beta; Short=DmiKK-beta; AttName: Full=Immune response deficient protein 5; AttName: Full=IKK-like protein; AttName: Full=Lipopolysacchanide-activated kinase; Short=DLAK; AttName: Full=Cactus kinase IKK	RecName: Full=Putative uncharacterized protein YMR321C	RecName: Full=butative acetyttransferase DDB_C0275507	RecName: Full=Mitogen-activated protein kinase mpkC; Short=MAP kinase C	RecName: Full=UPF0133 protein SYNW0027	RecName: Full=Kappa-casein	RecName: Full=Cyclin-dependent kinase-like 3; AttName: Full=SerineAhreonine protein kinase NKIATRE	RecName: Full=Apocytochrome t; Flags: Precursor	RecName: Full=Myosin-Ia; AltName: Full=Brush border myosin I; Short=BBM-I; Short=BBMf, AltName: Full=Myosin I heavy chain; Short=MIHC	RecName: Full=F-box only protein 4	RecName: Full=Kappa-casein; Contains: RecName: Full=Casoxin-C; Contains: RecName: Full=Casoxin-G; Contains: RecName: Full=Casoxin-A; Contains: RecName: Full=Casoxin-B; Contains: RecName: Full=Casoplatelin; Flags: Precursor	RecName: Full=Myosin-Ia; AttName: Full=Brush border myosin I; Short=BBM-I; Short=BBMI, AttName: Full=Myosin I heavy chairy; Short=MHPC; AttName: Full=Brush border 110 kDa protein	RectName: Full=Phenylalanyl-IRNA synthetase beta chain; AttName: Full=PhenylalanineIRNA ligase beta chain; Short=PheRS	RecName: Full=Myosin-la; AttName: Full=Brush border myosin I; Short=BBM-I; Short=BBM; AttName: Full=Myosin I heavy chain; Short=MHC	RecName: Full=CCA-adding enzyme, AttName: Full=RNA nucleotidythransferase, AttName: Full=RNA adenyyl-Icytidylyl- transferase, AttName: Full=RNA CCA-pyrophosphorylase, AttName: Full=RNA-NT	Rechame: Full=Nthric oxide synthase, inductible, Athame: Full=Inductible NO synthase; Short=Inductible NOS; Short=INOS; Athame: Full=NOS type II: Athame: Full=Hepatocyte NOS; Short=HEP-NOS	RecName: Full=Ntric oxide synthase, inducible, AtName: Full=Inducible NO synthase, Short=Inducible NOS, Short=INOS, AtName Full=NOS twoeil	RecName: Full=Transcription-repair-coupling factor: Short=TRCF. AttName: Full=ATP-dependent helicase mfd	Development Endler in the second s
-	-	-	-	-	-	-	-	-	-	~	-	-	~	-	~	-	÷	-	-	-	-	-	-	~	~	-	~	~	~	-	-	-	-	-	
-	7	-	-	-	-	-	-	-	-	-	-	-	~	~	0	-	~	-	-	~	~	~	-	~	5	~	-	6	~	~	-	-	-	-	
6.19	1.83	8.12	8.09	3.04	8.94	9.02	1.43	2.63	14.14	14.14	е	2.62	2.95	1.65	2.49	2.53	6.1	10.48	10.71	2.41	15.04	7.19	2.87	4.38	2.01	2.33	5.79	2.01	1.75	2.01	4.05	1.39	1 39	133	
-4.46	-4.37	-4.33	-4.31	-4.26	42	-4.2	4.2	-4.05	4	4	-3.98	-3.97	-3.92	-3.82	-3.77	-3.61	-3.56	-3.48	-3.47	-3.39	-3.29	-3.28	-3.23	-3.2	-3.13	-3.1	3.09	-3.06	-3.02	-2.95	-2.94	-2.88	-2.85	-2.79	
-2.08	-3.56	-1,89	-1.19	-1.81	-1.19	-1.19	-2.29	-1.96	-1.51	-1.51	-1.99	-1,96	-1 99	-2.13	-3.75	-1.82	-2.14	-1.15	-1.46	-1.63	-1.04	-1.19	-1.98	-1.62	-3.75	-1.61	-119	-3.75	-2.02	-3.75	-1.54	-2.14	-214	-2.25	
A4SMP6	Q8JH64	Q9FLF0	P42155	A0KK/W8	Q95146	G95147	Q7VBX6	P19012	G601F2	Q4AAK2	QEFUS	P13646	A11595	P12247	Q62774	P58962	Q9VEZ5	Q04898	Q86A05	Q9HG11	Q7UA73	Q28417	Q9JM01	A4GGB9	P47807	Q9UKT5	P02668	P10568	Q2UB3	088329	Q9V302	P35228	667699	051568	
al189083578	gij42558855	gil75309179	alt168777	gi 166198471	gi[2493503	gi[2493504	gi 41018298	ail215274016	dil81680610	gil122064997	gi 81891674	gij6016411	ail160395544	gi 116596	gi 13431670	qi 22095702	gi 48428497	gi 2497229	gi 74860359	gi 148886594	gi 47117453	gi 2493509	gi 82592668	gi 193805956	gi 13432029	gi 60416426	gi 115667	gi 127757	ai 93140695	ail152031641	gil73619730	ail1352513	oil85542913	ail3914012	
316 0	-	50			163	146	196	273 0	\vdash		293	278	264	-	72		107			277 9	194 9	37	225 0	_		8	184	186	305			8		+	t
226	_	228	-	-	_		533	234	-	_	237	238	239	-	241				245	_			249	250	251		253 1	254	255			258		-	-

L	264 GIT 45558451	9451 P48758	-1.48	-2.38	5.42	-	-	RecName: Full=Carbonyl reductase [NADPH] 1; AttName: Full=NADPH-dependent carbonyl reductase 1	30.6 kDa	277	2612683
589	-	713 P67976	-1.19	-2.35	5.56	-	-	RecName: Full=Beta-lactoglobulin-1/B; Short=Beta-LG; Flags: Precursor	19.9 kDa	180	839491
				30 0	5	•	Ŧ	RecName: Full=Inter-alpha-trypsin inhibitor heavy chain H1; Short=Inter-alpha-inhibitor heavy chain 1; Short=ITI heavy chain H1: 5000000000000000000000000000000000000	404.0100	Q	0040030
5 1/7 274 5	51.2 glj1.2214.24.24 4.0 aiit.66080894		90 F	00'7- 00' 0	1.32		-	rtti, Fiags, Fredutsor Re-Mame: Full=50S rihosomal revotain 13	101.2 KDa 16.1 kDa	9 <u>9</u> 6	27502420
_	+	+	071-	07.7-	t?;;;	-	-	Rechame: Full=Keratin, type I cytoskeletal 18, AttName: Full=Cytokeratin-18; Short=CK-18, AttName: Full=Keratin-18;	10.1 804	7	100000
272 2	290 gi 82190152	152 057611	-1.64	-2.27	2.17	-	-	Short=K18	46.8 kDa	415	2816616
273 3	334 gij189028689	3689 A6US67	-1.56	-2.26	4.04	-	-	RecName: Full=Probable molybdenum cofactor biosynthesis protein A	34.1 kDa	297	4303162
274 1	154 gi 125912	ri 2 P02756	-1.19	-2.23	5.56	-	-	RecName: Full=Beta-lactoglobulin; Short=Beta-LG; Flags: Precursor	20.0 kDa	180	1049037
275 3	362 gi 215274954	4954 B3NKZ6	-1.16	-2.2	11.03	-	-	RecName: Full=Protein Turandot E, AttName: Full=Protein Victoria; Flags: Precursor	16.1 kDa	145	7303285
276 3	339 gi 158514297	4297 A4YQD3	-1.58	-2.14	2.3	-	-	Rechame: Full=Ribulose bisphosphate carboxylase large chain 2; Short=RuBisCO large subunit 2	53.3 kDa	479	4617321
	14 gil158513273	3273 A5EF40	-1.58	-2.14	2.3	÷	-	RecName: Full=Ribulose bisphosphate carboxylase large chain 2; Short=RuBisCO large subunit 2	53.3 kDa	479	475071
278 2	269 ail75056016	016 09BGM5	- 53	-2.07	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.	-	ReoName: Full=Keratin, type I cytosketetal 25, AttName: Full=Cytokeratin-25, Short=C/K-25, AttName: Full=Keratin-25, Short=K25, AttName: Ful=Type I inner root sheath-specific keratin-K25rs1; AttName: Full=Type I keratin intermediate filament IRSaf	t 49.3 kDa	450	2174934
				-2.07	0	. .		Recolame: Full=Keratin, type I cytosteletal 25, AtName: Full=Cytokeratin-25, Short=CK-25, AtName: Full=Keratin-25, Short=K25, AtName: Full=Keratin-25, Short=K25, AtName: Full=Keratin 25A,	49.3 kDa	450	2840099
	295 ail75052973	068650	153	-2.07	~		-	RecName: Full=Keratin, type I cytostelatal 25, AltName: Full=Cytokeratin-25, Short=CK-25, AltName: Full=Keratin-25, Short=CX5, AltName: Full=Lype I inner root sheath-specific keratin-K25irs1; AltName; Full=Lype I inner root sh	t 49.4 kDa	450	2944904
			-1.53	-2.07	2	-	~	RecName: Full=Keratin, type I cytosketetal 25, AttName: Full=Cytokeratin-25, Short=CK-25, AttName: Full=Keratin-25, Short=K25, AttName: Full=Type I inner root sheath-specific keratin-K25irs1	49.3 kDa	450	2048273
-	182 gil1352536	536 P48897	-1.06	-2.02	3.01	-	-	RecName: Full=NADH-ubiquinone oxidoreductase chain 1; AttName: Full=NADH dehydrogenase subunit 1	34.4 kDa	299	1114614
283	355 gi 229488129	B129 B3QNZ9	-1.08	7	5.42	-	~	RecName: Full=Phosphopantetheine adentylytransferase, AttName: Full=Pantetheine-phosphate adentylyttransferase; Short=PPA17, AttName: Full=Dephospho-C0A pyrophosphorylase	18.9 kDa	166	6477252
284 2	292 gil74723314	314 Q7Z3Y8	-1.53	-1.39	1.96	-	~	RecName: Full=Keratin, type I cytoskeitetai 27, 4ftName: Full=Cytokeratin-27, Short=CK-27, AftName: Full=Keratin-27, Short=K27, AttName: Full=Type I inner root sheath-specific keratin-K25rs3	49.8 kDa	459	2840120
285 2	296 ail75052972	.972 Q6R649	-153	-196	1.96	.	~	RecName: Full=Keratin, type I cytosketetal 27, AttName: Full=Cytokeratin=27, Short=CK-27, AttName: Full=Keratin=27, Short=K27, AttName: Ful=Type I inner root sheath-specific Keratin-K25ins3, AttName: Full=Type I keratin intermediate ritament C29	t 50.0 KDa	460	2944922
				-1.93	1.94	-	~	RecName: Full=Keratin, type I cytosketetal 28, AttName: Full=Cytokeratin-28, Short=CK-28, AttName: Full=Keratin-28, Short=K28, AttName: Full=Type I inner root sheath-specific keratin-K25rs4	50.8 kDa	464	3444953
287 2	255 gil75536599	599 Q4UM01	-1.37	-1.88	4.9	-	÷	RecName: Full=Tyrosine recombinase xerD	34.8 kDa	306	1929000
288	167 gi 61216729	729 Q9CJH4	-1.57	-1.86	2.36	~	~	RecName: Full≠RNA(lle)-lysidine synthase; AttName: Full≠RNA(lle)-lysidine synthetase; AttName: Full≠tRNA(lle)-2-lysyl- cytidine synthase	49.6 kDa	423	1076738
		72 P26854	-1.55	-1.85	4.09	÷	÷	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.4 kDa	513	768935
290	155 gij1345987	387 P49066	-1.61	-1.85	1.15	~	÷	RecName: Full=Alpha-fetoprotein; AttName: Full=Alpha-1-fetoprotein; AttName: Full=Alpha-fetoglobulin; Flags: Precursor	68.4 kDa	609	1050915
291	27 gi 114407	07 P05495	-1.55	-1.84	4.13	÷	÷	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.2 kDa	509	738741
292	55 gi 55976783	783 P68542	-1.55	-1.84	4.14	-	-	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.1 kDa	507	801111
293 1	121 gi 114403	03 P22201	-1.55	-1.83	4.14	-	-	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.1 kDa	507	966713
294 2	236 gil75054076	076 Q8MJ76	-1.61	-1.81	1.15	~	~	RecName: Full=Alpha-fetoprotein; AttName: Full=Alpha-1-fetoprotein; AttName: Full=Alpha-fetoglobulin; Flags: Precursor	68.6 kDa	610	1613114
295 1	18 gi 114419	19 P12862	-1.55	-1.8	4.13	-	÷	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.3 kDa	509	723537
	122 gil114404			-1.78	4.12	-	-	RecName: Full=ATP synthese subunit alpha, mitochondrial	55.5 kDa	510	968047
_	42 gi 231585			-1.78	4.13	~	÷	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.3 kDa	208	760743
_	115 gi 114408	_		-1.77	4.11	-	-	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.6 kDa	511	939843
_	156 gi 543866		-1.55	-1.77	4.14	-	-	RecName: Full⊨ATP syrthase subunit alpha, mitochondrial	55.0 kDa	202	1051806
300	40 gi 114405	05 P05494	-1.55	-1.76	4.13	~	-	RecName: Full=ATP synthase subunit alpha, mitochondrial	55.2 kDa	208	757017
301 2	260 gil110278951	3951 03SZ57	-1.61	-1.74	1.15	~	÷	RecName: Full=Alpha-tetoprotein; AttName: Full=Alpha-1-1etoprotein; AttName: Full=Alpha-tetoglobulin; Flags: Precursor	68.6 kDa	610	2027266
302	173 gil73619728	728 Q9H95	-1.54	-1.71	2.09	~	~	RecName: Full=CCA-adding enzyme; AthVame: Full=FNNA nucleotidythransferase; AthVame: Full=FNNA adenyty-loytidytyt transferase; AthVame: Full=FRNA CCA-pyrophosphorylase; AthVame: Full=FRNA-NT	49.4 kDa	431	1094423
303	123 gil75054113	113 QBMJU5	-1.61	-1.71	1.15	~	~	RecName: Full=Alpha-fetoprotein; AttName: Full=Alpha-1-fetoprotein; AttName: Full=Alpha-fetoglobulin; Flags: Precursor	68.8 kDa	609	970514
304 1	193 gi 136406	06 P06871	-1.05	-1.69	4.07	-	-	RecName: Full=Cationic trypsin; Flags: Precursor	26.2 kDa	246	1127279

04 859082	11 1059516		39 1135596	63 1045567		-		1528841		25 756170	202 1356499	343 133389	1000 975637	73 1378116	50 1444935	1001199	25 1060724	38 1979605	4223862		t6 4581033				346 4063083	2168525	3446 4762	131814	·-			ł
a 504	a 91		a 139	a 4563				a 139	a 285	a 325				a 573	a 250	a 343	Ja 1025	a 538	a 538			a 526		a 421		Ja 912		a 706	-	-	a 519	-
57.1 kDa	101.4 kDa	23.5 kDa	15.9 kDa	515.6 kDa	44.5 kDa	53.4 kDa	53.8 kDa	16.1 kDa	31.0 kDa	36.7 kDa	22.0 kDa	37.3 kDa	111.1 kDa	61.0 kDa	26.6 kDa	37.4 kDa	111.5 kDa	58.8 kDa	58.8 kDa	54.6 kDa	39.0 kDa	58.9 kDa	39.1 kDa	47.0 kDa	39.3 kDa	101.9 kDa	386.9 kDa	77.6 kDa	53.5 kDa	28.5 kDa	56.8 kDa	
RecName: Full=2, 3'-cyclic-ruclectide 2'-phosphodiesterase	Rectvane: Fullenter-apha-trypsin inhibitor heavy chain H1; Short-inter-apha-inhibitor heavy chain 1; Short-IT heavy chain H1; Athwei: Fullenter-apha-trypsin inhibitor complex component II; AthVane: Full=Serum-derived hyaluronan-associated protein; Short=SH4P; Flags: Precursor	RecName: Full=50S ribosomal protein L3	RecName: Full=Ribonuclease P protein component, Short=RNaseP protein, Short=RNase P protein, AltName: Full=Protein C5	RecName: Full=Apolipoprotein B-100; Short=Apo B-100, Contains: RecName: Full=Apolipoprotein B-48; Short=Apo B-48; Flaas: Precursor	RecName: Full=Histidine-rich glycoprotein; AttName: Full=Histidine-proline-rich glycoprotein; Short=HPRG	RecName: Full=Uncharacterized protein YGR117C	RecName: Full=Alpha,alpha-trehalose-phosphate synthase (LUP-forming), AltName: Full=Alpha,alpha-trehalose-0-phosphate synthase; AltName: Full=LDP-glucose-glucosephosphate glucosyttransferase; AltName: Full=Osmoregulatory trehalose synthesis protein A	RecName: Full=Ribonuclease P protein component, Short=RNaseP protein; Short=RNase P protein; AltName: Full=Protein C5	RecName: Full=UndecaprenyI-diphosphatase; AttName: Full=UndecaprenyI pyrophosphate phosphatase; AttName: Full=Bacitracin resistance protein	RecName: Full=Homocysteine S-methyttransferase 2, AttName: Full=S-methylmethionine:homocysteine methyttransferase 2; Short=SMMtHcy S-methyttransferase 2, AttName: Full=S-adenosylmethionine metabolism protein 4	Rechame: Full=Recombination protein recR	Rechame: Full=Squamosa promoter-binding-like protein 11	RecName: Full=SEC23-interacting protein; AthName: Full=p125	RecName: Full=60 kDa heat shock protein, mtochondrial, AttName: Full=Heat shock protein 60; Short=HSP-60; Short=Hsp60; AttName: Full=60 kDa chaperonin; AttName: Full=Chaperonin 60; Short=CPN60; Flags: Precursor	RecName: Full=Recombination protein recR	RecName: Full=Vancomycin/teicoplanin A-type resistance protein vanà; AthName: Full=VanA ligase; AthName: Full=D-alanine- D-lactate ligase	RecName: Full=Ditrydropyrimidine dehydrogenase [NADP+]; Short=DHPDHase; Short=DPD; AltName: Full=Ditrydrouracil dehydrogenase; AltName: Full=Ditrydrothymine dehydrogenase	RecName: Full=NAD(P)H-quinone oxidoreductase chain 4, AtName: Full=NAD(P)H derydrogenase I, chain 4, AtName: Full=NDH-1, chain 4	RecName: Full=NAD(P)H-quinone oxidoreductase chain 4; AtName: Full=NAD(P)H derydrogenase I, chain 4; AtName: Full=NDH-1, chain 4	RecName: Full=ATP synthrase subunit alpha, AttName: Full=F.ATPase subunit alpha, AttName: Full=ATP synthrase F1 sector subunit alpha	RecName: Full=Flap structure-specific endonuclease	RecName: Full=Histidine-rich glycoprotein; AttName: Full=Histidine-proline-rich glycoprotein; Short=HPRG; Flags: Precursor	Rechame: Full=Flap structure-specific endonuclease	RecName: Full=Olucose-1-phosphate adenylyttransferase; AttName: Full=ADP-glucose synthase, AttName: Full=ADP- glucose pyrophosphorylase; Short=ADPGlc PPase	RecName: Full=Flap structure-specific endonuclease	RecName: Full=Usiquitin carboxyl-terminal hydrolase 3; AttName: Full=Usiquitin thioesterase 3; AttName: Full=Ubiquitin- specific-processing protease 3; AttName: Full=Deubiquitinating enzyme 3	RecName: Full=Myosin-G heavy chain	RecName: Full=Glycytpettide N-tetradecanoyftransferase, AftName: Full=Peptide N-myristoyftransferase; AftName: Full=Mwristoy-LoA, protein N-myristoyftransferase. Short=NMT	RecName: Full=Dihydropyrimidinase 1	RecName: Full=Centromere protein H; Short=CENP-H; AttName: Full=Interphase centromere complex protein 35	RecName: Full=Dihydropyrinidinase, Short=DHPase, Short=DHP, AttName: Full=Dihydropyrinidine amiddhydrolase, AttName: Full=Hvdantoinase	Becklene: Full-Dikudeowninidinese: Chod-DHDese: Chod-DHD: A Mame: Full-Dikudeowninidine emidekudeolese: A Mame
-	7	÷	÷	÷	-	-	-	÷	÷	÷	-	-	۲	~	÷	÷	÷	÷	÷	-	÷	-	÷	÷	-	~	÷	÷	÷	-	÷	
-	7	-	~	.		~	-	-	~	.	-	~	-		. -	-	7	~	÷	÷	-	÷	-	÷	.	~	÷	.	-	~		
1.98	2.41	8.97	10.07	0.31	2.27	3.57	2.32	10.07	6.67	3.38	4.46	2.62	1.2	2.97	3.6	2.33	1.56	2.42	2.42	2.19	2.6	1.71	2.6	5.23	2.6	1.21	0.46	2.41	1.43	4.05	1.35	
-1.61	-1.61	-1.55	-1.47	-1.38	-1.35	-1.35	ب ن	ب ن	-1.28	-1.23	-1.17	-1.14	-1.12	-1.09	-1.04	20.0-	6.0-	98.0-	-0.82	-17.0-	-0.68	-0.64	-0.62	-0.61	-0.61	-0.6	-0.57	-0.48	-0.26	-0.22	0.04	
-1.63	3.02	-1.23	-1.07	-2.41	-1.23	-1.38	-1.43	-1.07	-1.06	-1.15	-1.02	-1.15	-1.58	-1.49	-1.02	-1.17	-3.02	ې د	بر ۲	-1.31	-1.19	-1.23	-1.19	-1.23	-1.19	-1.54	-1.99	-1.39	-1.14	-1.02	41.1-	
083981	P19827	Q6A6M6	Q821V0	P04114	P33433	P53270	A6TB47	Q255T8	A2SEL8	Q08985	Q5Z354	Q653Z5	Q9Y6Y8	GSNVM5	Q4JSL5	P25051	000680	Q46HM4	A2BZX6	Q72E02	A4//NC4	Q28640	Q8ZYN2	Q985P3	A1RSC7	Q01477	Q86AC8	Q4PB56	060085	Q9H3R5	Q63150	
gi 13431984	gi 2851501	gi 81826389	qi 33301608	ail114014	gi 23397341	gi 1723702	gi 205829252	gi 123483805	gi 148841243	gil74583784	gij73621501	gil75114661	gi 55584014	gij71152402	gi 123650055	gi 137441	gi 81861573	di 123620503	gi 193806228	gi 81567070	gi 166973704	gi 2494026	gi 28380018	gi 29336906	gi 166973706	gi 401244	gil74860417	ail74702478	gi 57012654	gil74733576	ail57015267	
75	159	276	195	152	-	-		228		Ŗ	204	-	124	214	219	133	160	259			-	13	108		330	268	7	σ	-	20	202	-
305	306	307	308	80	310	311	312	33.9	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	33	334	335	336	-

<u> </u> 7517	gi 75174149 (Q9LFM6	-1 25						04.0 KU8	3	1001-001
			24	0.11	2.16	-	-	RecName: Full=Pertratricopeptide repeat-contraining protein At5g11310, mitochondrial; Flags: Precursor	68.3 kDa	602	2642665
- 52	gi 1352384	P11598	-1.19	0.18	3.37	-	~	RecName. Full=Protein dsufride-isonnerase A.3, attName: Full=Disutride isonnerase ER-60, AttName. Full=ERp60, AttName: Full=58 KDa microsonal protein, AttName: Full=p58, AttName: Full=ERp57, AttName: Full=HIP-70, AttName: Full=0-2, Flags: Precursor	56.6 kDa	505	1103394
18	~	Q10IR5	-1.28	0.21	1.74	-	£	RecName: Full=UvrABC system protein C; Short=Protein uvrC; AttName: Full=Excinuclease ABC subunit C	75.9 kDa	690	2527581
1 2	gil6225816	004015	-1.25	0.29	1.67	~	.	RecName: Full=Detta-1-pyrroline-5-carboxylate synthetase; Short=PSCS; Includes: RecName: Full=Oktamate 5-kinase; Short=OK, Athtame: Full=Oamma-gutamyl kinase; Includes: RecName: Full=Oamma-gutamyl-phosphate reductase; Short=OFA, Athtame: Full=Oktamate-5-semialdetryde detrydrogenase; Athtame: Full=Oktamyl-gamma-semialdetryde detrydrogenase	77.4 kDa	717	778656
181		Q9ZDW2	-1.25	0.31	2.27	-	÷	RecName: Full=UvrABC system protein B; Short=Protein uvrB; AttName: Full=Excinuclease ABC subunit B	75.9 kDa	662	1121828
LÕ		P75493	-1.35	0.35	2.64	-	-	RecName: Full=Uncharacterized lipoprotein MPN_264; Flags: Precursor	87.2 kDa	794	1041765
ത്		Q9H6R4	-1.34	0.46	1.05	-	-	RecName: Full=Nucleolar protein 6, AltName: Full=Nucleolar RNA-associated protein; Short=Nrap	127.6 kDa	1146	1110821
1 čí		P10961	-1.19	0.47	3.12	-	~	RecName: Full=Heat shock factor protein; Short=HSF; AltName: Full=Heat shock transcription factor; Short=HSTF	93.3 kDa	833	960135
36		Q14624	-1.23	0.62	1.29	~	~	RecoName: Full=Inter-alpha-trypsin inhibitor heavy chain H4, Short=Inter-alpha-inhibitor heavy chain 4, Short=IIT heavy chain H4, AltName: Full=Inter-alpha-trypsin inhibitor family heavy chain-related protein; Short=IHRP, AltName: Full=Pasma kallikrein senstive glycoprotein 120; Short=EK-120; Short=CP120; Contains: RecName: Full=70 k0a inter-alpha-trypsin inhibitor heavy chain H4; Contains: RecName: Full=35 k0a inter-alpha-trypsin inhibitor heavy chain H4; Flags: Precursor	103.4 kDa	830	799573
33	gi 1351266	P16154	-1.71	0.66	0.74	-	÷	RecName: Full=Toxin A	308.1 kDa	2710	964061
313(gi 81305979 (Q4UVY7	-1.15	0.69	1.74	~	÷	RecName: Full=Chaperone protein htpG; AttName: Full=Heat shock protein htpG; AttName: Full=High temperature protein G	70.8 kDa	634	1430030
968	gi 88909155 (Q3BS21	-1.15	0.69	1.74	~	÷	RecName: Full=Chaperone protein htpG; AttName: Full=Heat shock protein htpG; AttName: Full=High temperature protein G	70.9 kDa	634	1484324
238,	gi 23821706	Q8P855	-1.15	0.69	1.74	~	÷	RecName: Full=Chaperone protein htpG; AttName: Full=Heat shock protein htpG; AttName: Full=High temperature protein G	70.8 kDa	634	910954
238(gi 23821708	Q8PJK3	-1.15	0.69	1.74	~	~	RecName: Full=Chaperone protein htpG; AttName: Full=Heat shock protein htpG; AttName: Full=High temperature protein G	70.8 kDa	634	951596
162	gi 116256803	Q2P2U8	-1.15	0.69	1.74	~	.	RecName: Full=Chaperone protein htpG; AttName: Full=Heat shock protein htpG; AttName: Full=High temperature protein G	70.9 kDa	634	1510876
295	gi 229553902 1	B1MTG4	-1.49	0.81	÷	-	÷	RecName: Full=Cingulin	135.6 kDa	1198	6053303
23	gij62906865	P32744	-1.34	0.81	1.18	-	÷	RecName: Full=Protein CLASP-2	112.3 kDa	1020	1357363
44	gi 94730430	P47264	-1.37	0.91	1.16	-	~	RecName: Full=Uncharacterized ATP-dependent helicase MG018	119.7 kDa	1031	2133961
il13	-	P21328	-1.22	1.01	12	-	-	RecName: Full=RNA-directed DNA polymerase from mobile element jockey; AttName: Full=Reverse transcriptase	103.4 kDa	916	739865
Ξ	-	P21329	-1.22	1.04	1.2	-	~	RecName: Full=RNA-directed DNA polymerase from mobile element jockey, AltName: Full=Reverse transcriptase	103.5 kDa	916	929207
7474	_	Q5SY80	-1.08	1.08	2	-	~	RecName: Full⊨Uncharacterized protein C1orf101; Flags: Precursor	109.7 kDa	951	3053168
520	gi 152013456 (Q1MSJ5	-1.33	1.39	0.74	-	~	RecName: Full=Centrosome and spindle pole-associated protein 1	141.8 kDa	1221	5043817
780	gi 78099779	P49194	-1.06	1.4	1.05	~	.	RecName: Full=RetinoLkinding protein 3; AttName: Full=Interphotoreceptor retinoid-binding protein; Short=IRBP; AttName: Full=Interstitial retinoLbinding protein; Flags: Precursor	134.5 kDa	1234	1485871
il13t	gi 136925	P16785	-1.17	2.71	0.54	+	-	RecName: Full=Large tegument protein	253.2 kDa	2241	783152
5640	gi 56404951 (Q9BX84	-1.04	3.3	0.54	~	÷	Rechame: Full=Transient receptor potential cation channel subtamily M member 6, AttName: Full=Channel kinase 2, AttName: Full=Melastatin-related TRP cation channel 6	231.7 kDa	2022	1087818
1340	gi 13431706	Q27991	-1.14	3.41	1.01	.		RecName: Full=Myosin-10; AthName: Full=Myosin heavy chain 10; AthName: Full=Myosin heavy chain, non-muscle IIb; AthName: Full=Non-muscle myosin heavy chain IIb; Short=NMMHC ILA; Short=NMMHC.IIB; AthName: Full=Cellular myosin heavy chain, type B; AthName: Full=Non-muscle myosin heavy chain B; Short=NMMHC-B	229.1 kDa	1976	780878
1826	gi 182637564 (QBNCMB	-1.07	4.81	0.63	.	÷-	RecName: Full=Cytoplasmic dynein 2 heavy chain 1; AttName: Full=Cytoplasmic dynein 2 heavy chain; AttName: Full=Dynein Cytoplasmic heavy chain 2; AttName: Full=Dynein heavy chain isotype 1B; AttName: Full=Dynein heavy chain 11; Short=hDHC11	492.6 kDa	4307	6210494
901,		03ZJ90	-2.34	8.52	0.43	~	-	RecName: Full=DNA-directed RNA polymerase suburit beta", AthName: Full=PEP, AttName: Full=Plastid-encoded RNA polymerase suburit beta". Short=RNA polymerase suburit beta"	400.7 kDa	3462	1368714

Appendix III

APPENDIX III

Protein summary from OSSMA Browser for one excised gel spot from one wide range gel; Thesis Chapter 6

1114697		1UU4954				1616820	1658689	1954546	CERCICE		738260	1689111	2049513	4654833		801795			2639418	2402900		2047188		2966863		10/1665		1110042	996741	2388799		2507778			731698	8763417	0100100
33		198			8	564	564	562	053			3	466	22	644	553	e E	8	55	576	562	535	_	535	592	099 1			401	456	453	458				472	ļ
24.4 kDa	26.0 kDa	69.3 kDa 68.7 kDa	67.9 kDa	68.9 kDa	69.4 kDa	60.0 kDa	60.0 kDa	59.2 kDa	RE A LDo	24.3 kDa	24.5 kDa	57.6 kDa	51.6 kDa	65.5 kDa	66.0 kDa	59.3 kDa	67.9 kDa	61.8 kDa	59.7 kDa	61.8 kDa	60.3 kDa	57.7 kDa	000 KU4	57.8 kDa	62.5 kDa	62.4 KUa 60.4 KUa	24.3 kDa	24.3 kDa	43.8 kDa	49.2 kDa	48.8 kDa	49.6 kDa	51 3 kDa	68.5 kDa	68.6 kDa	51.6 kDa	
RecName: Full=Trypsin, Flags. Precursor Re-Name: Full=Anionic trons n.1: AMName: Full=Anionic tronsin I: AMName: Full=Detronsinonen I: AMName: Full=Serine nortease 1:	постояние на каноне изрон п, канчане на пулноне проли , канчане, нап нопропеден , канчане, нап осное россоо н, Пактими по велия —	kecName: Full=Serum albumm; AitName: Full=BS&; AitName: Allergen=Bos d b; Flags: Precursor RecName: Full=Senim albumin: AitName: Allernen=Fel d 2: Flags: Precursor	RecName: Full=Serum albumin; Flags: Precursor	RecName: Full=Serum alburnin; Flags: Precursor	RecName: Full=Serum alburnir, Flags: Precursor RecName: Full=Keratin, type II cytoskeletal 6C; AttName: Full≕Cytokeratin-6C; Short=CK 6C; AttName: Full=K6c keratin; AttName:	Full=Cytokeratin-GE, Short=CK 6E, AthName: Full=Keratin KGh RecName: Full=Keratin Aveall evtrosteletal F&, AthName: Full=Cytokeratin-EA: Short=CK 6A. AthName: Full=KGa keratin: AthName:	лестание: и интератир, при и сутовление си динание. Попедание с и портаки со со со со станание. Попедание и по Full=Cytokeratine6D; Short=CX6D; AthName: Allegen=Hom s 5	HeoName: Full=Keratin, type II cytoskeletal bA, AttName: Full=Uytokeratin-bA, Short≕UK bA, AttName: Full=Kba keratin	RecName: Full=Keratin, type II cytoskeletal 2 epidermal; AttName: Full=Cytokeratin-2e; Short=CK 2e; Short=K2e; Short=keratin-2	RecName: Full=Alpha-S1-casein; Flags: Precursor	RecName: Full=Alpha-S1-casein, Contains: RecName: Full=Antioxidant peptide, Flags: Precursor RecName: Full=Keratin: twoell cvtoskeletal 79. AttName: Full=Cvtokeratin:79. Short=K7.79. AttName: Full=Keratin:	AltName: Full=Type II keratin:38 DooMonoo: Euli=Type II keratin:38 DooMonoo: Euli=Type II keratin:38		HecName: Ful⊫Keratin, type II cytoskeletal 1; AtiName: Ful⊫Cytokeratin-1; Short=CK-1; AtiName: Ful⊫Keratin-1; Short=K1	RecName: Full=Keratin, type II cytoskeletal 1; AthName: Full=Cytokeratin-1; Short=CK-1; AthName: Full=Keratin-1; Short=K1; AthName: Full=67 kDa cytokeratin; AthName: Full=Hair alpha protein	RecName: Full=Keratin, type II cytoskeletal 6Å; AtName: Full=Cytokeratin-6Å; Short=CK 6Å; AtName: Full=K6a keratin; AtName: Full=Keratin-6 alpha; Short=mK6-alpha	RecName: Full=Keratin, type II cytoskeletal 5, AttName: Full=Cytokeratin-5, Short=CK-5, AttName: Full=Keratin-5, Short=K5	RecName: Full=Keratin, type II cytoskeletal 5, AthName: Full=Cytokeratin5, Short=CK-5, AthName: Full=Keratin-5, Short=K5	RecName. Full=Keratin, type II cytoskeletal 75; AtName. Full=Cytokeratin-75; Short=CK-75; AtName. Full=Keratin-75; Short=A76; AtName. Full=Type II keratin-18; AtName. Full=Type II keratin-KBhr, AtName. Full=Keratin-6 hair folicle, Short=M6hr	RecName: Full=Keratin, type II cytoskeletal 5; AltName: Full=Cytokeratin-5; Short=CK-5; AltName: Full=Keratin-6; Short=K5	RecName: Full=Keratin, type II cytoskeletal 6B; AthName: Full=Cytokeratin-6B, Short=CK 6B, AthName: Full=K6b keratin, AthName: Full=Keratin-6 beta; Short=mK6-beta	RecName: Full=Keratin, type II cytosteletial 79, AtName: Full=Cytokeratin-29, Short=CK-79, AtName: Full=Keratin-29, Short=K79 De Anomenti Control (1990)	rectante: run-velant, type ir yonseteta a courea, vurante: run-tur yonsetanti uoketaan Rechame: Full=frant, type ir yonseteta a ValName: Full=Kyotsetain-93, Short=CK79, AttName: Full=Keratur-79, Short=K79, AttName: Full=Type II keratur-38, AttName: Full=Keratin-6-ike, Short=Keratin-6L	RecName: Full=Keratin, type II cytoskeletal 5; AtMame: Full=Cytokeratin-5; Short=CK-5; AttName: Full=Keratin-5; Short=K5	RecName: Full=Keratin, type II cytoskeletal 5; AtName: Full=Cytokeratin-5; Short=CK-5; AtName: Full=Keratin-5; Short=K5; AtName:	rumeb kua sytokeanin, yake Recklame: Fulli=Keatin, yake li sytoskeletial 75, AtName: Fulli⊂tytokeratin-75, Short=Ck-75, AtName: Fulli=Keatin-75, Short=K75, AtName: Full=Type II keratin-18, AtName: Full=Type II keratin-46hf, AtName: Full=Keratin-5 hair follicle, Short=h46hf	RecName: Full=Alpha-S1-casein; Flags: Precursor	Full=Alpha-S1-casein; Short=Alpha-S1-CN; FI	RecName: Full=Keratin, type I cytoskeletal 19, AttName: Full=Cytokeratin-19, Short=CK-19, AttName: Full=Keratin-19, Short=K19	RecName: Full=Keratin, type I cytoskeletal 15, AtName: Full=Cytokeratin-15, Short=CK-15, AtName: Full=Keratin-15, Short=K15	RecName. Full=Keratin, type1 cytoskeletal 15, AthName: Full=Cytokeratin-15, Short=CK-15, AthName. Full=Keratin-15, Short=K15	RecName: Full=Keratin, type1 cytoskeletal 13; AttName: Full=Cytokeratin-13; Short=CK-13; AttName: Full=Keratin-13; Short=K13	RecName: Full=Keratin, type I cytoskeletal 16; AtIName: Full=Cytokeratin-16; Short=CK-16; AtIName: Full=Keratin-16; Short=K16	Full=Serum albumin; Flags: Precursor	RecName: Full=Serum alburnin, AthName: Allergen=Equ c 3; Flags: Precursor RecName: Full=Keratin, twoel cytoskeletal 14, AthName, Full=Ortokeratin-14: Short=CK-14, AthName; Full=Keratin-14, Short=K14	recording for the many species growing on the manual of a second of the control o	HeoName, Full-Keratin, type I cytoskeletal 42, AttName: Full=Cytoskeratin-42, Short=CK-42, AttName: Full=Keratin-42, Short=K42,
4	- (5	2	7	m	m	2	C	101	0	7	-	-	-	-	-		-	-	-	~ ~	-	-	~			-	-	-	-	-	-		-	-	
ω	m		-	2	17	m	m	2		1 (1	-	7	-	-	-	-	-	-	-	-	-	~ ~	-	-	-			-	-	-	-	-		-	-	-	
328.47 21.65	8.13	5.93 4 11	4.17	4.11	4.11	5.5	5.5 1	3.8	0C 6	10.28	10.28	4.14	2.58	1.88	1.86	2.17	~	2.07	5	2.08	2.14	2.24	41 -7	2.24	2.03	5 ng	4.67	4.67	2.99	2.63	2.65	2.62	2.54	1.65	1.65	2.54	
-328.47	-69.79	-51.Ug	-52.85	-52.81	-52.76	-40.1	-40.1	-39.32	7.95	ş.Θ	-29.41	-27.8	-27.08	-26.96	-26.92	-26.92	-26.91	-26.91	-26.89	-26.88	-26.88	-26.44	-20.44	-26.43	-26.39	/F:97-	-25.96	-25.93	-20:07	-20.01	-19.94	-19.93	-19.86	-19.75	-19.73	-19.69	
														~	20	20	20.	20.7-	70.7-	20.7-	-7.07	96	0	-6.96	-6.96	02.d- 02.d- 00.d0	6.35	-6.35	-5.43	-5.43	-5.43	-5.43	-5.43	5.6	-5.6	-5.43	
-76.14	-16.5	-14.08	-14.08	-14.08	-14.08	-12.4	-12.4	-10.99	10.87	-7.8	-7.8	-8.48	2012-	2012-	20:2-	20.7-	2-	'			1	φ	Ŧ														
P00761 -76.14	P00762 -16.5					P48668 -12.4	P02638 -12.4	Q4FZU2 -10.99	10 87		P02662 -7.8	Q8VED5 -8.48	029S21 -7.07	A5A6M6 -7.0		P50446 -7.			08BGZ	Q6P6Q2	09Z331	0148H7 -6		05XKE5	A5A6M8	P1364/	P04663	P18626	P51856	P19012	077727	P13646	62780q	05XLE4	P35747	P02533	
gil136429 P00761 -76.14 -3	P00762	P49064	Q28522	A2V9Z4	06NVH5	P48668	P02538	Q4FZU2	BUSKOUR	062823		2 Q8VED5 -8.	029S21 -7	A5A6M6	P04264	P50446	OFXONE	0922U2	QBBGZZ	Q6P602	Q9Z331	Q148H7	750560	_	_				gil1708590 P51856								
1 36 gil136429 P00761 -76.14	gi 136409 P00762	P49064	gi[2492797 0.28522	gi 190358749 A2V9Z4	gil75054626 Q5NVH5				AID3003860 D36008	062823	gil115646 P02662	GBVED5 -8.	2-		gi[238054406 P04264		ail75062316 O5X0N5	gil81170668 0922U2	QBBGZZ	Q6P602	Q9Z331		gip49224442 0930022	71 gil74748078 Q5XKE5	gi 218526449	gi[143811411 inaaanaace.		gi 416750		65 gi[215274016 P19012	gil75058787		ai(23503075		gi 543794	84 gi[229463044 P02533	

60.1 kDa 564 2202161 67.2 kDa 598 598 504 67.2 kDa 600 3962396 262296 26.2 kDa 246 1127279 3334 kDa 33.4 kDa 309 2028110
RecName: Full=Keratin, type II cytoskeletal bB; AttName: Full=Cytokeratin-bB; Short=CK bB; AttName: Full=Kbb keratin 60.1 kt RecName: Full=CFD-binding protein lepA 67.2 kt RecName: full=Cationic trypein, Flags: Precursor 52.3 kt RecName: full=Cationic trypein, Flags: Precursor 25.3 kt RecName: Full=Cationic 2, AtName: Full=Caliponin H2, smooth muscle, AtName: Full=Neutral caliponin 33.4 kt
calponin
RecName: Full=GTP-binding protein lepA RecName: Full=Cationic trypsin; Flags: Precursor RecName: Full=Catjonin-2; AttName: Full=Calponin H2, smooth muscle; AttName: Full=Neutral calponin
12, smooth muscle; AltNam
Full=Cationic trypsin, Flags: Precursor Full=Calponin-2; AtName: Full=Calpon
RecName: Full=Cati RecName: Full=Calp
mΝ
6.47 8.48
-10.52 -9.78
-4.98 -3.78
05RFN6 07MPS7
gi 75055290 02 gi 54036231 07
14 gil750 38 gil540
54

Appendix III

Summa	If shere tot on			Fruterri ourninary view fur Oregoon IIIE. oarripie I Oregoon Output. Unit	OUL. UTLA						
Index		Accession	m log E-V.	Accessionm log E-Varotein Scor%Coverag	%Coverage	#reb.	Unique Pe		AW S	Length	Seq ID
20	1 gil136429	HUU/61	/6.62-	-129.69	17.32		- 1	RecName: Full=Trypsin; Flags: Precursor	24.4 KUa	152	111469/
• (r		5 P1U981	-2U./3	97.03 -97.03	76 T		, n	RecName: Full=Actin-6/E	41.8 KUa	9/5	423/
4		J P64183	-20./3	-82.U3	78.11	'n	'n	RecName: Full=Actin, cytoplasmic A4	41.8 KUa	3/b	2008
								RecName: Ful⊨Magor scirr, AINName: Ful⊨Actin-1; AINName: Ful⊨Actin-2, AINName: Ful⊨Actin-2: Sub 1; AINName: Ful⊨Actin-4; AINName: Ful⊨Actin-6; AINName: Ful⊨Actin-7; AINName: Ful⊨Actin-7; AINName: Ful⊨Actin-8; AINName: Ful⊨Actin-1EL1; AINName: Ful⊨Actin-1; AINName: Ful⊨Actin-1; AINName: Ful⊨Actin-11; AINName: Ful⊨Actin-13; AINName: Ful⊨Actin-14; AINName: Ful⊨Actin-15; AINName: Ful⊨Actin-14; AINName: Ful⊨Actin-13; AINName; Ful⊨Actin-14; AINName: Ful⊨Actin-15; AINName: Ful⊨Actin-11; AINName: Ful⊨Actin-13; AINName; Ful⊨Actin-16; AINName: Ful⊨Actin-15; Ful⊨Actin-16; AINName: Ful⊨Actin-19; AINName: Ful⊨Actin-33, AINName: Ful⊨Actin-16; AINName: Ful⊨Actin M6; AINName: Ful⊨Actin-19; AINName: Ful⊨Actin-20; AINName: Ful⊨Actin-16; AINName:			
7	gi 113263	B07830	-20.73	-82.03	11.97	m	m		41.7 kDa	376	27157
œ		6 P49871	-20.73	-82.03	11.97	m	ო	RecName: Full=Actin, muscle	41.8 kDa	376	31148
10		-	-17.07	-69.8	9.5	2	2	RecName: Full⊨Putative actin-23	40.0 kDa	89 99	236560
9			-17.07	-69.63	9.04	2	7	RecName: Full=Actin-3; AltName: Full=Actin-3:sub 1	41.8 kDa	376	231074
2	i12205728	81, Q553U6	-17.07	-69.63	9.04	2	2	RecName: Full=Putative actin-22	41.7 kDa	376	4117
÷			-12.44	-48.31	7.71	2	7	RecName: Full=Actin-10	41.7 kDa	376	232436
9			-12.44	-48.31	7.71	2	7	RecName: Full=Actin-3, muscle-specific	41.8 kDa	376	720380
15			-8.77	-35.93	5.44	-	-	RecName: Full=Actin	37.2 kDa	33	719957
24		39 QBCGP6	89 89	-35.22	14.84	~	-	RecName: Full=Histone H2A type 1-H	14.0 kDa	128	762838
32			-9.33	-35.18	14.62	~	-		14.1 kDa	Ű	867331
9	1124028530	31 DOMOR	сн а	35 18	14 67		~	RecName: Full=Histone H2A type 1-B/E; AttName: Full=H2A/m; AttName: Full=H2A 2; AttName: Full=H2A/a	14 1 kDa	Ę	867088
84			e Ri Ri Ri Ri		14.62		-	RecName: Full=Histone H2A type 1; Short=H2A.1; Short=H2A/p	14.1 kDa	88	933964
40		B P20671	9.33		14.62	-	-	RecName: Full=Histone H2A type 1-D; AltName: Full=H2A.3; AltName: Full=H2A/g	14.1 kDa	130	919712
8		14 Q6GSS7	-9.33	-35.18	14.62	.	-	RecName: Full=Histone H2A type 2.4; Short=H2A.2; AttName: Full=H2a-614; AttName: Full=H2a-615	14.1 kDa	130	869790
27			9.33	-35.18	14.73	~	-	RecName: Full=Histone H2A-III	14.0 kDa	129	790324
Ξ		-	е С	, 35.18 18	14.73	-		RecName: Full=Histone H2A.J; Short=H2a/j	14.0 kDa	23	861362
*1			φ 27	-35.18 	14./3		-		14.U KDa	179	/00052
2			е Бр	99. 19 19 19	14.73			RecName: Full=Histone H2A-IV	13.9 kDa	129	721195
0 4			ņ Ģ	7.02	07.4	-	-	RecName, Full-Actin, lansar muscle, Alivanne, Full-Actin-29D		0/n	10042
n (2	11 100/27/34/	44 FU/020	ç ç	33.66 -33.66	4.21			Kedivame. Full=Aditir-to, Attivame: Full=Aditir-3-subi∠ RenName: Full=Putative actin-25	42.5 KUa 43.7 kDa	8 %	0000 734430
4			-7.67	-32.04	6.49	-	-	RecName: Full=Vimentin	17.2 kDa		946255
3		9 P00762	-7.58	-30.77	8.13 0	7	-	RecName: Full=Anionic trypsin-1; AltName: Full=Anionic trypsin I; AltName: Full=Pretrypsinogen I; AltName: Full=Serine protease 1; Flags: Precursor	26.0 kDa		833996
8			-7.67	-29.84	2.23	. .	-	RecName: Full=Vimentin	51.8 kDa		750274
88		5 PU9654	-/.6/	-29.8 07.00	2.17		-	RecName: Ful⊨Vimentin	53.1 KUa	199 199	892524 007020
8 5			70.7-	02.02-	0 1 C		-	Reconstruct our Primerum Reconstruction of the American	50.7 KD8	8	30702010
6			7 67	-23./0	0 7 1			Recovaria four primerina Do Alanca four four activity and activity activ	001 / KDa	400 400	11110000
3 8			7.67	0/.62-	0 17 71			RecIvante, route-Vitterium DoceNosare fuilt-Ximonetia	53.7 kDa	p g	1114242
318			-7.67	07.02-	2 12			Recreated Full=Vimentin Rechame Full=Vimentin	53.7 kDa	466	4654858
: Æ		_	-7.67	-29.75	2.17		-	RecName: Full=Vimentin	53.3 kDa	<u>6</u>	870302
8			-7.67	-29.74	2.15	-	-	RecName: Full=Vimentin	53.7 kDa	465	1007156
12	2 jij91207094		-6.22		13.33	-	-	RecName: Full=Galectin-1; AltName: Full=Lectin galactoside-binding soluble 1	14.7 kDa	135	1905315
R	gil126177	P11762	-6.22	-26.24	13.33	,	-	RecName: Full=Galectin-1; AltName: Full=Lectin galactoside-binding soluble 1; AltName: Full=Beta-galactoside- binding lectin L-14-1; Short=Lactose-binding lectin 1; AltName: Full=S-Lac lectin 1; AltName: Full=Galaptin; AltName: Full=14 kDa lectin; AltName: Full=RL 14.5	14.9 kDa	135 135	871682
37		7 P48538	-6.22	-26.24	13.33	-	-	RecName: Full=Galectin-1; AttName: Full=Lectin galactoside-binding soluble 1; AttName: Full=Beta-galactoside- binding lectin L-14-1; Short=Lactose-binding lectin 1; AttName: Full=S-Lac lectin 1; AttName: Full=Galaptin; AttName: Full=14 kDa lectin	14.8 kDa	135	897438
2		2 P16045	-6.22	-26.24	13.33	~	~	RecName: Full=Galectin-1; AttName: Full=Lectin galactoside-binding soluble 1; AttName: Full=Beta-galactoside- binding lectin L-14-1; Short=Lactose-binding lectin 1; AttName: Full=S-Lac lectin 1; AttName: Full=Galaptin; AttName: Full=14 kDa lectin	14.9 kDa	135	1031291
71		M P13612	-5.84	-20.45	184	,	-	RecName: Ful⊫Integrin alpha-4; AttName: Ful⊫Integrin alpha-IV, AttName: Ful⊨VLA-4; AttName: Ful⊨CD49 antinen-like familv member D. AttName: CD. antinen=CD494: Flaxe: Presunsor	114 9 kDa	1032	4097733
-			5	01.04	5	-	-		512) fr -		1) - 504

Protein summary from OSSMA Browser for two excised gel spots pooled from two wide range gels; Thesis Chapter 6

4097733	2049513	4654833	3701717	3991702	801795	1954546	1840953	2639418	2402900	934090	1551602	1039159	1004295	1028452	1554875	736387	949293	1365837	1003988	1745820	3989128	734706	723846	2341 725870	905224	964284	751779	783922	381604	3962996	161462
1032	466	637	543	644	553	552	601	551	576	562	534	457	502	483	483	207	432	432	520	539	601	379	376	3/4 376	511	511	511	846	869	09	Ę.
114.9 kDa	51.6 kDa	65.5 kDa	59.0 kDa	66.0 kDa	59.3 kDa	59.2 kDa	62.9 kDa	59.7 kDa	61.8 kDa	60.3 kDa	57.3 kDa	50.7 kDa	55.7 kDa	53.7 kDa	54.0 kDa	55 8 kDa	49.9 kDa	49.9 kDa	57.8 kDa	58.9 kDa	66.4 kDa	42.4 kDa	41.8 kDa	41.6 kDa 41.9 kDa	57.7 kDa	57.7 kDa	57.8 kDa	93.2 kDa	67.2 kDa	67.2 kDa	11.1 KUa
RecName: Ful⊟integrin alpha-4; AttName: Ful⊟integrin alpha-IV; AttName: Full=VLA-4; AttName: Ful⊟CD49 antigen-like family member D; AttName: CD_antigen=CD49d; Flags: Precursor	RecName: Full=Keratin, type II cytoskeletal 7; AttName: Full=Cytokeratin-7; Short=CK-7; Short=Keratin 7; Short=K7	RecName: Full=Keratin, type II cytoskeletal 1; AthName: Full=Cytokeratin-1; Short=CK-1; AthName: Full=Keratin-1; Short=K1	RecName: Full=Keratin, type II cytoskeletal 75, AtName: Full=Cytokeratin-75, Short=CK-75; AtName: Full=Keratin- 75, Short=K75, AttName: Full=Type II keratin-K6hf, AttName: Full=Keratin-6 hair follicle	RecName: Full=Keratin, type II cytoskeletal 1, AltName: Full=Cytokeratin-1; Short=CK-1; AltName: Full=Keratin-1; Short=K1; AltName: Full=67 kDa cytokeratin, AltName: Full=Hair alpha protein	RecName: Full=Keratin, type II cytoskeletal 6A, AttName: Full=Cytokeratin-6A, Short=CK 6A, AttName: Full=K6a keratin, AttName: Full=K6a	RecName: Full=Keratin, type II cytoskeletal 6A; AttName: Full=Cytokeratin-6A; Short=CK 6A; AttName: Full=K6a keratin	RecName: Full=Keratin, type II cytoskeletal 5, AltName: Full=Cytokeratin-5, Short=CK-5, AltName: Full=Keratin-5, Short=K5	RecName: Full=Keratin, type II cytoskeletal 75, AttName: Full=Cytokeratin-75, Short=CK-75, AttName: Full=Keratin- 75, Short=K75, AttName: Full=Type II keratin-18, AttName: Full=Type II keratin-K6hf, AttName: Full=Keratin-6 hair follicle, Short=mK6hf	RecName: Full=Keratin, type II cytoskeletal 5; AthName: Full=Cytokeratin-5; Short=CK-5; AthName: Full=Keratin-5; Short=K5	RecName: Full=Keratin, type II cytoskeletal BB, AthName: Full=Cytokeratin-6B; Short=CK 6B; AthName: Full=K6b keratin, AthName: Full=Keratin-6 beta; Short=mK6-beta	RecName: Full=Keratin, type II cytoskeletal 4; AttName: Full=Cytokeratin-4; Short=CK-4; Short=Keratin-4; Short=K4	RecName: Full=Keratin, type II cytoskeletal 7; AltName: Full=Cytokeratin-7; Short=CK-7; Short=Keratin 7; Short=K7	RecName: Full=Keratin, type II cytoskeletal 8; AthName: Full=Cytokeratin-8; Short=CK-8; AthName: Full=Keratin-8; Short=KB	RecName: Full=Keratin, type II cytoskeletal 8; AthName: Full=Cytokeratin-8; Short=CK-8; AthName: Full=Keratin-8; Short=KB	RecName: Full=Keratin, type II cytoskeletal 8; AltName: Full=Cytokeratin-8; Short=K48; AltName: Full=Keratin-8; Short=K6; AltName: Full=Cytokeratin endo A	RecName: Full=Keratin, type II cuticular Hb5, AltName: Full=Type II hair keratin Hb5, AltName: Full=Keratin-85, Shnrt=K85	RecName: Full=Glial fibrillary acidic protein; Short=GFAP	RecName: Full=Glial fibrillary acidic protein; Short=GFAP	RecName: Full=Intermediate filament protein ON3	RecName: Ful⊨Keratin, type II cytoskeietai 73. AtName: Ful⊫Cytokeratin-73. Short=CK-73. AtName: Ful⊫Keratin- 73, Short=K73, AtName: Ful⊫Type II keratin-36, AtName: Ful⊫Type II inner root sheath-specific keratin-K6irs3	RecName: Full=GTP-binding protein lepA	RecName: Ful⊨Actin, muscle	RecName: Full=Actin-2, muscle-specific	RecName: Full=Actin-11; AttName: Full=Actin-2-sub 2 RecName: Full=Actin muscle4twe A1	RecName: Full=Pancreatic alpha-amylase, Short=PA, AltName: Full=1,4-alpha-D-glucan glucanohydrolase, Flags: Precusor	RecName: Full=Alpha-amylase 2B; AttName: Full=1,4-alpha-D-glucan glucanohydrolase 2B; AttName: Full=Carcinoid alpha-amylase; Flags: Precursor	RecName: Full=Alpha-anylase 1, AttName: Full=1,4-alpha-D.glucan glucanohydrolase 1; AttName: Full=Salivary alpha-anylase; Flaqs: Precursor	RecName: Full=Uncharacterized WD repeat-containing protein C4F8.11	RecName: Full=GTP-binding protein lepA	RecName: Full=GTP-binding protein lepA	RecName: Full=Ubiquith-related modifier 1 1
~	~	-		-	-	-	-		-	-	-	~	-	-	-			-	-		-	-			· -	-	~	-	- ·		-
~	~	-	~	-	~	~	~	-	-	~	~	~	-	~	-	-	-	-	~		-	-	-		-	-	~	-			-
1.84	2.58	1.88	2.21	1.86	2.17	2.17	7	2.18	2.08	2.14	2.06	2.41	2.19	2.28	2.28	2.17	2.55	2.55	2.12	2.04	3.16	2.9	2.93	2.94	э. 13 13	Э.13	Э.13	2.25	3.18	3.17	20.79
-20.45	-18.32	-18.19	-18.19	-18.16	-18.16	-18.16	-18.14	-18.12	-18.11	-18.11	-17.71-	-17.71-	-17.66	-17.61	-17.55	-17.54	-17.54		-17.53	-17.45	-12.88	-12.4	-12.4	-12.35	-10.72	-10.72	-10.68	-7.32	-5.45	-5.41	9.9
-5.84	-5.17	-5.17	-5.17	-5.17	-5.17	-5.17	-5.17	-5.17	-5.17	-5.17	-5.04	-5.04	-5.04	-5.04	-5.04	-5.04	-5.04	-5.04	-5.04	5.04	-4.02	-3.67	-3.67	-3.67	-3.45	-3.45	-3.45	-2.89	-2.42	-2.42	-1.17
P13612	029S21	A5A6M6	Q08D91	P04264	P50446	Q4FZU2	Q5XQN5	Q8BGZ7	Q6P6Q2	Q9Z331	P19013	Q9DCV7	P08776	P05787	Q10758	0977TG	P14136	Q6RA72	P18520	QENXH9	Q2RNY6	Q00214	P45885	065456 P07836	P04746	P19961	P04745	014186	A1ARG8	B3E9R0	U59WK2
i 215274001	i 12213534(-	i 21527533' /	1122132186	i 23805440(ij60416436							i 81906177 (gi 125112	N		ii 48475043		-	gi 124740	ii81892069 (i 12205/408 1 ail113216	gi 113803		gi 1351933				11/45852U9 (
71	64	72	67	2	38		6	99	85	42	8	52	47	49	5		44	5	46	8		2		- ē	. <u> </u>	45			14		
40	41	42	43	44	45	46	47	48	49	5	5	52	2 2	54	55	ų	57	œ	g	8	-	5	<u>г</u> а:	38	99	67	œ	0	2	22	21

			50	vocuverage #rep.	Horigue Fep.			
4 gil/5U54626	CLANYH5	-/4.43	-288.31	12.81	ົດ	RecName: Full=Serum albumin; Flags: Precursor	69.4 KUa	609 //1862
gilz492/9/ «itan359740		00.00	145.30	4.07	V C	Recivame. Full-Corum albumin; Flags: Precursor DooNomo: Full-Corum olloumin: Elono: Direcursor	0/ 3 KUa	1.5
gij 130030743 «174453004		0, 20,	42.041-		7 4	Recivante: Full-Ceruiti albumini, Flags. Precursor Destruction: Full-Pointing Interior Description	00.3 KU3	
gil/ 1135429	PUD761	-23.61	-103 18	+ 99 99 19	2 I Rec	RecName: Full=Trynsin: Flags: Precursor RecName: Full=Trynsin: Flags: Precursor	03.7 kUa 24.4 kDa	_
wild ABBODA	DAGREE	12.05	A0 61	1 07		reconstruction of point insight for the formation	68 0 Mu	_
gi 121039 gi 121039	P01857	-12.03	-47.64	10- 10-	- 2	Recrame: Luin-Serum abumin, naus: Frecurso RecName: Full=lg gamma-1 chain C region	36.1 kDa	4
gi 136409	P00762	-10.62	-44.77	8.13	2 1 Fulls	RecName: Full=Ânióonic trypsin-1; AltName: Full=Anionic trypsin I; AltName: Full=Pretrypsinogen I; AltName: Full=Serine protease 1; Flags: Precursor	26.0 kDa	246 833996
gi 215274002	P13612	-11.99	-42.31	1.84	2 Athor	RecName: Full=Integrin alpha-4; AttName: Full=Integrin alpha-IV, AttName: Full=VL4-4; AttName: Full=CD49 antigen-like family member D, AttName: CD_antigen=CD49d; Flags: Precursor	114.9 kDa	1032 4097733
ail1351907		-10.71	-37.13	11	2	RecName: Full=Serum alburnin, AltName: Full=BSA; AltName: Allergen=Bos d'6; Flags: Precursor	69.3 kDa	607 1004954
gi[77416709	POAP1	-4.25	-15.14	3.5	1 1 Rec	RecName: Full=Protein adrA	41.5 kDa	371 731613
qi 23227	P29627	-2.95	-11.66	20.59	1 Full	RecName: Full=Hernoglobin subunit beta-Z, AltName: Full=Hernoglobin beta-Z chain; AltName: Full=Beta-Z-globin	11.2 kDa	102 769641
81725314	Q87G42	-3.21	-11.18	5.51	1 1 Rec	Name: Full=Purine nucleoside phosphorylase deoD-type 2; Short=PNP 2	25.7 kDa	236 874943
85681036	Q9KNB2	-3.21	-11.15	5.51	1 1 Rec	RecName: Full=Purine nucleoside phosphorylase deoD-type 2; Short=PNP 2	25.6 kDa	236 407441
gi 85540976	Q7MFG6	-3.21	-11.12	5.51	1 1 Rec	2	25.7 kDa	236 909790
gi 37538291	P24547	-3.09	-9.01	2.72	1 Rec 1 AltN	RecName: Full=Ihosine-5'+monophosphate dehydrogenase 2; Short=IMP dehydrogenase 2; AltName: Full=IMPDH.I; AltName: Full=IMPD 2	55.8 kDa	514 1079826
gi 1351908	P49064	-2.76	-6.76	2.47	1 1 Rec	RecName: Full=Serum albumin; AltName: Allergen=Fel d 2; Flags: Precursor	68.7 kDa	608 917585
gil75162308	Q8W3M6	-2.3	-6.23	4.71	1 1 Rec	RecName: Full=Ubiquitin-like domain-containing CTD phosphatase	39.0 kDa	340 1102416
gi 115311702		-1.83	-3.16	3.64	1 1 Rec	RecName: Full=Lariat debranching enzyme	62.3 kDa	
gi 122138783	032LI2	-1.34	-2.91	6.2	1 1 Rec	RecName: Full=Probable inactive trypsin-X3; Flags: Precursor	27.4 kDa	242 2488946
gi 75055290	Q5RFN6	-1.49	-2.73	6.47	1 Full	RecName: Full≓Calponin-∠; AttName: Full=Calponin H∠, smooth muscle; AttName: Full=Neutral calponin	33.7 kDa	309 790280
23 gi 93204556	Q3SYU6	-1.49	-2.73	6.47	1 Full	RecName: Full=Calponin-2, AttName: Full=Calponin H2, smooth muscle; AttName: Full=Neutral calponin	33.4 kDa	309 2028110
gi 584955	Q08094	-1.49	-2.73	6.76	1 Full	RecName: Full=Calponin-2, AltName: Full=Calponin H2, smooth muscle; AltName: Full=Neutral calponin	32.0 kDa	296 798886
gi 122136340	Q29S21	-1.74	-2.53	2.58	1 Sho	RecName: Full=Keratin, type II cytoskeletal 7; AttName: Full=Cytokeratin-7; Short=CK-7; Short=Keratin 7; Short=K7	51.6 kDa	466 2049513
gi 215275331		-1.74		1.88	1 AttN	RecName: Full=Keratin, type II cytoskeletal 1; AltName: Full=Cytokeratin-1; Short=CK-1; AltName: Full=Keratin-1; Short=K1	65.5 kDa	
gi 122132186		-1.74	-2.4	2.21	Athone 1 Full:	RecName: Full=Keratin, type II cytoskeletal 75, AtName: Full=Cytokeratin-75; Short=CK-75; AtName: Full=Keratin-75; Short=K75; AtName: Full=Type II keratin-K6hf, AtName: Full=Keratin-6 hair follicle	59.0 kDa	
gi 238054406	P04264	-1.74	-2.37	1.86	AttN 1 alph	RecName: Full=Keratin, type II cytoskeletal 1; AttName: Full=Cytokeratin-1; Short=CK-1; AttName: Full=Keratin-1; Short=K1; AttName: Full=67 kDa cytokeratin; AttName: Full=Hair alpha protein	66.0 kDa	644 3991702
gi 60416436	P50446	-1.74	-2.37	2.17	1 Ath	RecName: Full=Keratin, type II cytoskeletal 6Å, AltName: Full=Cytokeratin-6Å, Short=CK 6Å, AltName: Full=K6a keratin; AltName: Full=Keratin-6 alpha; Short=mK6-alpha	59.3 kDa	553 801795
gi 123781839	Q4FZU2	-1.74	-2.37	2.17	1 Rec	RecName: Full=Keratin, type II cytoskeletal 6A; AltName: Full=Cytokeratin-6A; Short=CK 6A; AltName: Full=K6a keratin	59.2 kDa	552 1954546
gi 81170668	0922U2	-1.74	-2.35	2.07	1 Ath	RecName: Full=Keratin, type II cytoskeletal 5; AttName: Full=Cytokeratin-5; Short=CK-5; AttName: Full=Keratin-5; Short=K5	61.8 kDa	580 2380372
28 gi 81896062	QBBGZ7	-1.74	-2.33	2.18	AltN 1 kera	RecName: Full=Keratin, type II cytoskeletal 75, AtName: Full=Cytokeratin-75, Short=CK-75, AtName: Full=Keratin-75, Short=K75, AtName: Full=Type II keratin-18, AtName: Full=Type II keratin-K6hf AtName: Full=Keratin-6 hair follicle, Short=mK6hf	59.7 kDa	551 2639418
26 gi 81170669	Q6P6Q2	-1.74	-2.32	2.08	1 Rec	RecName: Full=Keratin, type II cytoskeletal 5, AttName: Full=Cytokeratin-5, Short=CK-5, AttName: Full=Keratin-5, Short=K5	61.8 kDa	576 2402900
gi 59798479	Q9Z331	-1.74	-2.32	2.14	1 1 AttN	RecName: Full=Keratin, type II cytoskeletaI 6B; AltName: Full=Cytokeratin-6B; Short=CK 6B; AltName: Full=K6b keratin; AltName: Full=Keratin-6 beta; Short=mK6-beta	60.3 kDa	562 934090
						DecName: FullEla aamma-3 chain () raaion: AtName: FullEHaawu chain dicease arotein:		

Protein summary from OSSMA Browser for excised gel spots pooled from three narrow range gels; Thesis Chapter 6