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ABSTRACT  

Tropical rainforests are important ecosystems that provide numerous benefits to humans and 

are home to a rich diversity of flora and fauna. The Afrotropical rainforests are particularly 

valuable due to their high biodiversity and provision of essential services such as carbon 

sequestration and water regulation. However, these forests are facing unprecedented threats 

from various anthropogenic activities, including habitat loss, fragmentation, degradation, and 

climate change. While studies have focused on the global and regional impacts of these 

activities on tropical forests, small-scale, less intense, human activities like foraging are 

modifying the forest in ways that have not been fully evaluated. This doctoral research project 

aims to address this knowledge gap by exploring the impact of low-intensity anthropogenic 

activities and environmental drivers on the species composition, structure, and biodiversity of 

the Oban rainforest in Nigeria. The project comprises four interconnected research objectives: 

(1) to analyse the impact of human utilization of tree species for food on the diversity, 

composition, and structure of food-producing and non-food producing tree species; (2) to 

assesses how human foraging affects regional-scale tree species biodiversity patterns in Nigeria 

and Cameroon; (3) to evaluate the effect of climate variability on forest phenology (EVI) in 

Oban rainforest between 2002 and 2022 and (4) to provide baseline monitoring data on the 

reproductive phenology (time of budding, flowering and fruiting) of tree species in Oban Forest 

between May 2020 to May April 2022. Findings show that low-intensity human activities such 

as foraging can significantly impact tree species assemblages in tropical forests, particularly for 

edible species, potentially leaving long-lasting footprints. The research highlights the complex 

interplay that environmental, spatial, and human factors have in shaping tree species 

dissimilarity in the Nigeria-Cameroon forest region, providing valuable insights on the need for 

further research to better understand the extent and nature of human impacts on regional forest 
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composition. The remote sensing data shows that precipitation is a as the major driver of 

changes in EVI with up to seven months lagged response. The timing of the peak in EVI showed 

potential implications for the livelihoods of forest-dependent communities who rely on forest 

resources for food and income. The seasonal trend in fruit production, occurred in July and 

August in the first cycle and in July in the second growing season. Continuous production of 

flowering buds and flowers was observed throughout the year without indicating a clear 

seasonal cycle. The results highlight the importance of considering the influence of human 

activities in understanding the dynamics of tropical forests, and further research is needed to 

explore the different possibilities and validate the findings fully. There is a need to address 

some key unknowns and uncertainties in the study, such as the impact of extreme weather 

events and other variables influencing the tropical forest phenological cycle. Collaborating with 

local communities, policymakers, and modellers could help address these limitations and 

provide a more comprehensive understanding of the phenological cycle in the Oban Forest. 

Long-term monitoring of the reproductive phenology of food-producing tree species is an 

essential approach to generating ground-based data to better understand the response of 

phenology to environmental and other factors.  
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1.1. INTRODUCTION 

Tropical rainforests are some of the most important ecosystems on the planet (Rajpar, 2018; He 

et al., 2020; Roberts, Hamilton and Piperno, 2021; Pillay et al., 2022). Their renowned 

ecological significance spans a broad range of functions and services that are essential for life 

on Earth. Beyond serving as carbon sinks, mitigating the impacts of climate change, they also 

play a pivotal role in regulating global weather patterns and local climates (Vauhkonen, 2018; 

Hong and Saizen, 2019). Across the tropical forest regions of Africa, Asia, Latin America, and 

the Caribbean, the rich biodiversity of forest plants, fungi, and animals serves as a vital food 

source, bolstering household food security through ancestral practices (Asprilla-Perea and 

Díaz-Puente, 2019; Friant et al., 2019; McMichael, 2021). The Afrotropical rainforests, found 

mainly in Central and West Africa, globally distinguished for their vibrant biodiversity, are 

home to a myriad of flora and fauna, many of which are yet to be discovered or studied in depth. 

These forests not only serve as gene banks (Roberts, Hamilton and Piperno, 2021; Pillay et al., 

2022) for untapped resources that might be critical for medicine, food, and industry in the future 

but also function as water catchment areas, ensuring clean and regular water supplies for 

millions, biodiversity conservation, and the supply of non-timber forest products (Alamgir et 

al., 2016; Englund, Berndes and Cederberg, 2017; Hong and Saizen, 2019; Mengist and 

Soromessa, 2019; Kothandaraman et al., 2020; Zeppetello et al., 2020). This makes them among 

the most valuable and biologically diverse ecosystems. 

Forest-dependent rural communities often utilize wild foods as primary alternatives to 

conventional sources of animal proteins, cereals, tubers, vegetables, and fruits (Asprilla-Perea 

and Díaz-Puente, 2019; van Loon et al., 2019). In urban areas, they also play a pivotal role in 

supplementing conventional foods, enhancing overall food availability (van Loon et al., 2019; 

Kamga et al., 2013; Asprilla-Perea and Díaz-Puente, 2019). Beyond mere consumption, wild 
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foods also offer economic avenues, with many communities relying on activities like hunting, 

gathering, and cultivation for their subsistence, thereby ensuring food access (Pereira et al., 

2010; Friant et al., 2015; Benítez-López et al., 2019; Ember, 2020). Despite the immense 

significance of tropical forests, they are under increasing threats from high-intensity 

anthropogenic activities such as logging, agriculture, mining, and urbanization leading to 

habitat loss, fragmentation, and degradation (Bush et al., 2015; Clement et al., 2015; Piperno, 

McMichael and Bush, 2015; Levis et al., 2017; Jarzyna and Jetz, 2018; McMichael, 2021; 

Scerri et al., 2022).  

Climate change further exacerbates these threats. The large-scale accelerated loss of tropical 

forest has been linked to increased local warming of the earth surface  (Vargas Zeppetello et 

al., 2020). Climate change poses significant threats to food security, particularly in regions like 

Sub-Saharan Africa (Ofori et al., 2021; Tantoh, 2023). As global temperatures rise, the delicate 

balance of ecosystems is disrupted, leading to a cascade of challenges for agriculture and food 

production. In Sub-Saharan Africa, where over 95% of agriculture is rain dependent 

(Mupangwa et al., 2016; Ofori et al., 2021), the implications of climate change are profound. 

Changes in precipitation patterns, coupled with increased temperatures, can lead to reduced 

growing seasons, impacting crop yields and livestock productivity (Henrietta et al., 2020; Ofori 

et al., 2021). Shifts in precipitation patterns and rising temperatures also modifies species 

composition, ecological interactions, and forest ecosystems services provisioning is being 

transformed (Jarzyna and Jetz, 2016; McMichael, 2021). Furthermore, the depletion of natural 

resources, exacerbated by climate change, affects not only agriculture but also fishing activities, 

wild food, and other vital food sources for many human communities in the region (Jarzyna and 

Jetz, 2018; McMichael, 2021; Ofori et al., 2021). The frequency and intensity of droughts, a 

natural phenomenon in Africa, are expected to increase due to climate change, further straining 
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food resources (Bhaga et al., 2020; Ofori et al., 2021). Such droughts have historically led to 

severe food shortages, affecting millions (Bhaga et al., 2020; Ofori et al., 2021). Additionally, 

climate change can amplify the spread of pests and diseases, further threatening crop yields 

(Ofori et al., 2021; Zacarias, 2020). As Sub-Saharan Africa grapples with these challenges, the 

nexus between water, land, and food resources becomes even more critical, underscoring the 

need for integrated and adaptive strategies to ensure food security in the face of a changing 

climate (Ofori et al., 2021). 

Growing evidence suggests that less intense, more subtle human impacts may also affect 

ecological communities and alter what is considered ‘natural’ ecological and biogeographical 

pattern (Piperno, McMichael and Bush, 2015; Chaturvedi et al., 2017; Levis et al., 2017; 

Roberts, Hamilton and Piperno, 2021; Singh et al., 2022). One such example is the utilisation 

of forests for food by forest-dependent human communities, which in some cases has been 

found to leave lasting impacts on forest ecology and dynamics (Steadman, 1993; Bush et al., 

2015; Socolar et al., 2016). There have been many studies on the global and regional impacts 

of high-intensity anthropogenic activities on tropical forests (McMichael, 2021; Singh et al., 

2022; Chaturvedi et al., 2017). However, despite the potential significance of low-intensity 

human activities like foraging on the forest ecosystem, these impacts have remained 

understudied, due to the difficulties in measuring and quantifying them (Piperno et al., 2015; 

Singh et al., 2022; McMichael, 2021). The existing uncertainty in the impact of local-scale 

phenology-climate relationships in Afrotropical forests (Nakamura et al., 2017) necessitates the 

need for further research. This would aid proper understanding of the complex relationships 

between environmental changes, biodiversity, and low-intensity human activities in tropical 

rainforests, especially the Afrotropical rainforests, to develop effective conservation and 

management strategies. 
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Furthermore, leaf phenology (Bush et al., 2020; Bush, 2018) plays a vital role in the life cycle 

of plants and ecosystem functioning, and it is often synchronised with seasonal changes in 

environmental factors (Adamescu et al., 2018; Cleland et al., 2007; Gray and Ewers, 2021; 

Richardson et al., 2013). Variation in the onset of the rainy season, shifts in temperature, and 

variations in day length can trigger significant phenological events such as when trees flower, 

when fruits ripen, and when animals migrate or breed, all of which have cascading impacts on 

the broader ecosystem (Wagner et al., 2017; Yu et al., 2017; Smith et al., 2020; Muller-Landau 

et al., 2021). Understanding this phenological pattern is vital for many forest-dependent human 

communities in Africa that depend on forests for their livelihoods (Benítez-López et al., 2019; 

Friant et al., 2019; Jansen et al., 2020; Mayes et al., 2017). Whether it is the fruiting of a 

particular tree species that provides food or the flowering of another that offers medicinal value, 

the lives of these communities are intricately intertwined with the pulse of the forest (Jansen et 

al., 2020). 

The Oban Forest, located in the Oban division of Cross River National Park in South-eastern 

Nigeria, covers about 3,000 km2 of the country's land area and is home to a diverse array of tree 

species, many of which are economically important (Olajuyigbe, 2019; Friant et al., 2019). The 

forest has been described as one of Africa's most biologically diverse hotspots, with over 4,000 

plant species, including many endemic species, and numerous fauna such as primates, 

elephants, and birds (Agaldo et al., 2016; Nigerian National Park Service, 2019; Aladesanmi, 

2022; Olajuyigbe, 2019). Oban Forest plays a crucial role in the socio-economic development 

of forest-dependent communities by providing timber and non-timber forest products, 

regulating climate, water, and nutrient cycles, and supporting livelihoods.  

Oban Forest is a fundamental source of cultural dietary needs for 39 forest-dependent 

communities, which rely on them for their livelihoods, such as harvesting non-timber forest 
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products, income generation, and engaging in ecotourism (Ogogo, Asuk and Ikpeme, 2014; 

Agaldo, Gwom and Apeverga, 2016; Asuk and Nchor, 2018; Friant et al., 2019; Nigerian 

National Park Service, 2019). Like other tropical forest, the modification of the physiology, 

composition, and diversity of species in the Oban Forest ecosystems can alter the service 

provisioning capacity of forest ecosystems and directly or indirectly impact the cultural dietary 

needs of these communities (Morin et al., 2018; Santos et al., 2018; Ellis et al., 2021; Naif et 

al., 2020; Montgomery et al., 2020; Bera et al., 2020; Ding et al., 2019). 

The strategic integration of wild foods in food security planning can render such interventions 

more relevant and sustainable. Aligning with ancestral uses of wild foods, policies, programs, 

and projects can tap into deeply rooted cultural practices (van Loon et al., 2019; Piperno et al., 

2015; McMichael, 2021; Levis et al., 2017; Bush et al., 2015). This approach not only ensures 

a seamless transition but also reduces dependency on conventional foods, which might be 

challenging to produce, costly, or culturally resisted. However, while the benefits of wild foods 

in enhancing food security are evident, there are significant challenges that hinder their full 

integration into policies and programs. One primary concern is the potential negative impact on 

biodiversity due to indiscriminate and unplanned extraction practices (van Loon et al., 2019; 

Asprilla-Perea and Díaz-Puente, 2019). Addressing this requires sustainable strategies that can 

assess the wild food populations' abundance and density, project their sustainability, measure 

the extraction's impact, and explore cultivation or breeding possibilities. To navigate this, 

decision-makers must champion systematic, multidisciplinary studies to understand how these 

forest-dependent communities will be impacted. It is therefore essential to study the complex 

relationships between environmental changes, biodiversity, and low-intensity human activities 

in tropical rainforests. This will facilitate the development of sustainable forest management 

practices that maintain forest health, productivity, and the provision of essential services to 
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local communities (Hong and Saizen, 2019; Asuk et al., 2018). The research gaps that informed 

this PhD research, the underlying research aim and objectives, a description of the study area 

and an outline of the thesis structure are described in this chapter. 

1.2. RESEARCH GAPS 

Tropical rainforests rank among the planet's most biologically rich ecosystems, teeming with 

an unparalleled diversity of flora and fauna (Rajpar, 2018; He et al., 2020; Roberts, Hamilton 

and Piperno, 2021; Pillay et al., 2022). These forests play a crucial role in global ecological 

processes, from carbon sequestration to water purification (Vauhkonen, 2018; Hong and 

Saizen, 2019). High-intensity human activities such as deforestation and logging in these forests 

have been well-documented, and their ramifications widely recognized (Lewis, Edwards and 

Galbraith, 2015; Phillips, Newbold and Purvis, 2017; Roberts et al., 2017). Yet, the subtler 

impacts of low-intensity anthropogenic activities, such as localized foraging, traditional 

agriculture, and minor forest produce collection, remain less explored (Lewis, Edwards and 

Galbraith, 2015; Scerri et al., 2022). Both forms of activities, whether large-scale or small-

scale, not only modify the species composition and their life cycles but also impair the broader 

functions of these ecosystems. 

Nigeria's Oban Forest is a prime example of tropical rainforest of significance in Africa. The 

forest is not merely a reservoir of biological diversity but also plays a pivotal role in sustaining 

the socio-economic fabric of 39 forest-dependent communities (Ogogo, Asuk and Ikpeme, 

2014; Agaldo, Gwom and Apeverga, 2016; Asuk and Nchor, 2018; Friant et al., 2019; Nigerian 

National Park Service, 2019). Beyond providing timber and other tangible resources, the Oban 

Forest offers invaluable ecosystem services. It regulates local climate, ensures consistent water 

supply by acting as a watershed, and recycles crucial nutrients that support both flora and fauna 
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(Nigerian National Park Service, 2019), which have implications for understanding broader 

tropical forest landscapes. 

While high-intensity impacts on rainforests from activities like logging are widely recognized, 

the subtle effects of low-intensity human activities, especially those like collecting medicinal 

plants and traditional shifting agriculture practices, could have significant cumulative impacts 

over time (Lewis, Edwards and Galbraith, 2015; Santos, Disney and Chave, 2018; Williams et 

al., 2020; Scerri et al., 2022). Although the Oban Forest presents specific dynamics, 

understanding the intricacies of these activities could provide insights into how similar actions 

affect biodiversity and ecosystem stability in other tropical rainforests. 

There is also an evident gap in understanding local-scale phenology-climate relationships in 

Afrotropical forests, such as the Oban Forest. This could shed light on the interaction between 

changing environments, biodiversity, and human activities. The unique relationship between 

seasonal changes in plant behaviours (phenology) and local climate variations, especially in 

Afrotropical environments like the Oban Forest, is understudied. Understanding these 

interactions can provide more knowledge of how climatic changes might disrupt natural cycles 

and rhythms in tropical forests worldwide (Dunham et al., 2018; Pezzini et al., 2014; Smith et 

al., 2020; Stan et al., 2020). 

Furthermore, while leaf phenology is known to be essential, its deep-seated role in ecosystem 

functioning, especially in connection with forest-dependent communities, requires more 

scrutiny. This is because the timing of leafing, flowering, and fruiting has profound implications 

for different food web tiers within an ecosystem. In the Oban Forest, how these cycles align 

with the needs of herbivores, pollinators, and forest-dependent communities holds a broader 

lesson for understanding ecosystem functionality across tropical forests. 
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Another area that merits exploration is the interplay between shifts in forest physiology and the 

dietary and cultural needs of dependent communities. The forest-dependent communities 

around Oban Forest may have evolved traditional knowledge systems and practices rooted in 

their forest's health (Agaldo, Gwom and Apeverga, 2016). A study into understanding how the 

changing in forest, whether due to pests, diseases, or human interventions, could affect these 

traditions and practices can shed light on the human-nature interdependence prevalent in 

tropical forests globally. 

Lastly, to safeguard the health and productivity of such forests and ensure continued service to 

local communities, there is a pressing need to better grasp and develop sustainable forest 

management practices. The Oban Forest faces challenges like illegal logging, encroachment, 

and habitat fragmentation. Promoting innovative, community-centric sustainable management 

practices in the Oban Forest could pave the way for similar initiatives in other threatened 

tropical forests. 

By addressing these research gaps within the Oban Forest's framework, the study will enrich 

the existing knowledge of tropical rainforests. This knowledge lays the foundation for 

developing conservation strategies and sustainable management practices for tropical forests 

worldwide. Thus, the research areas identified as priorities for the study (see detailed literature 

in Chapters Two to Five). 

1.3. AIMS AND OBJECTIVES 

The general aim of the research is to investigate the factors that affect the biodiversity and 

phenology of trees in Oban Forest, Nigeria. The project comprises four interconnected research 

objectives:  
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(1) to analyse the impact of human utilization of tree species for food on the diversity, 

composition, and structure of food-producing and non-food producing tree species;  

(2) to assess how human foraging affects regional-scale tree species biodiversity patterns in 

Nigeria and Cameroon;  

(3) to evaluate the effect of climate variability on forest leaf phenology (EVI) in Oban rainforest 

between 2002 and 2022, and; 

(4) to provide baseline monitoring data on the reproductive phenology (time of budding, 

flowering and fruiting) of tree species in Oban Forest between May 2020 to May April 2022. 

1.4. STUDY AREA 

1.4.1. Oban Forest, Nigeria 

The study was conducted in an Afrotropical rainforest in the Oban Division of Cross River 

National Park (CRNP), Nigeria (Figure 1.1b,d). The forest is situated between longitude 8°10´ 

and 8°55´ East and latitude 5°00´ and 5°50´ North and covers an estimated area of ~251,345 ha 

(Olajide et al., 2008; Jimoh et al., 2012; Adeyemi, 2016). In the North, South and West, the 

forest is bounded by and has a total of 39 forest-dependent / support zone and small-holder 

agricultural communities, and it is continuous with the Korup National Park and Ejagham 

Forest Reserve of Cameroon in the East (Agaldo et al., 2016; Jimoh et al., 2012; Adeyemi, 

2016; Oluwatosin and Jimoh, 2016).  
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Figure 1.1. The study locations used for the study are shown in the Map. (a) Map of Africa 

showing Nigeria and Cameroon (b) Map of Nigeria showing location of Oban Forest in Cross 

River State (c) Map of Nigeria and Cameroon Showing the locations of the plots used for the 

regional study. Blue circles represent clusters (d) Map of contour map of Oban showing 

location of plots and villages visited during the study.  

The forest vegetation is lowland and submontane moist tropical rainforest with mean annual 

precipitation ranging between 3,000 mm and 3,500 mm, mean monthly temperature range of 

23 °C to 37 °C, rugged terrain and elevation ranging from ~ 100 m to over 1000 m above mean 

sea level (Jimoh et al., 2012; Aigbe and Omokhua, 2015; Agaldo et al., 2016). The forest is the 

last stronghold of pristine tropical forest in Nigeria, part of the “Gulf of Guinea biodiversity 

hotspots of conservation concerns” in West Africa (Agaldo et al., 2016) and known to house 

many endemic flora and fauna species (Oates et al., 2004). This includes most of the 935 tree 

species identified in Nigeria (Lock and Keay, 1991), other herbaceous plant species, and rich 

diversity of butterflies, birds, reptiles, amphibians, and a wide range of mammal species, 
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including ungulates, cats, buffalo, elephants and primates, including the world’s rarest lowland 

gorillas and others plant and animal species (Asuk et al., 2018). Oban Forest was used as the 

study location for all chapters except Chapter Three, which included additional plots from 

Cameroon for the regional analysis. 

1.4.2. Forests in Cameroon 

The study for Chapter Three was carried out using tree data from 66 plots established in the 

tropical forests of Nigeria (Oban Forest) and Cameroon, bordering countries in Africa's West 

and West-Central Africa, respectively (Figure 1.1a,c). The forests of both countries are 

contiguous via their common borders (Enuoh and Ogogo, 2018; Nigerian National Park 

Service, 2019). Species composition data used for the study comprised single census tree-by-

tree samples collected between 2002 and 2019 from five plots established in Nigeria by Asuk 

et al (2022a) and 61 plots established in Nigeria and Cameroon, accessed from the 

forestplots.net database (Lopez-Gonzalez et al., 2011, 2009). 

1.5. THESIS STRUCTURE 

The presented thesis is based on the paper style alternative to thesis format. The outlined aims, 

objectives, and research questions/hypotheses are addressed in Chapters Two to Five of the 

thesis. Each chapter can be regarded as an independent unit and is self-contained however, 

Chapter Three is a regional study that builds on findings from Chapter Two.  

Chapter Two of the thesis explores the influence of human utilization of tree species for food 

on the diversity, composition, and structure of food-producing and non-food-producing tree 

species in Oban Forest, Nigeria. The study utilizes tree diameter distribution, stem density, beta 

diversity patterns, and species abundance distributions (SADs) to assess the effects of human 

foraging on the forest ecology along an elevational gradient. Chapter Three builds on the 
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findings of Chapter Two by evaluating the impact of low-intensity anthropogenic activities on 

the assemblage of tree species communities at a local and regional scale, using an analysis of 

beta diversity. The study utilizes Generalized dissimilarity models (GDMs) and variance 

partitioning on a regional dataset from tropical forests located in Nigeria and Cameroon to 

assess the influence of human presence on the beta diversity of forest trees at a regional scale 

and whether this influence differs between those species used for food and those which are not. 

Chapter Four aims to aid a better understanding of the impact of environmental drivers on Oban 

rainforest phenology by evaluating the response of forest leaf phenology to changes in air 

temperature and precipitation in Oban Forest, Nigeria, between 2002 and 2022. The study 

utilizes the enhanced vegetation index (EVI), as a proxy for phenology, to evaluate the response 

of forest leaf phenology to changes in air temperature and precipitation in Oban Forest. Chapter 

Five provides two years tree phenological monitoring data set for trees in Oban Forest. 

These four chapters contribute to knowledge geared toward understanding the impact of 

anthropogenic activities and environmental drivers on Oban rainforest ecosystems. They will 

develop more effective conservation strategies to ensure tropical forests’ long-term survival 

and ecosystem services.  
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CHAPTER TWO: IMPACT OF HUMAN FORAGING ON TREE DIVERSITY, 

COMPOSITION AND ABUNDANCE IN A TROPICAL RAINFOREST 
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2.1. ABSTRACT 

Tropical forest tree communities are structured by a range of large-scale drivers including 

elevation, certain high-impact anthropogenic activities (e.g., deforestation), and fires. However, 

low-impact human activities such as foraging may also be subtly but notably altering the 

composition of tropical forest tree communities. The study assessed the i) differences in species 

diversity, patterns of relative abundance, and pairwise beta diversity between trees with edible 

and inedible fruits and seeds along an elevation gradient, and ii) impact of human foraging on 

the forest tree communities in Oban Division of Cross River National Park, Nigeria. Fifteen 

permanent 40 by 40 m plots were established along an elevational gradient (120 - 460 m above 

mean sea level). All trees of 10 cm diameter at breast height (dbh) and above were measured, 

identified, and, with the aid of structured questionnaires, classified into those with edible and 

inedible fruits/seeds. A total of 35 edible species with density of 128 stems/hectare and basal 

area of 11.99 m2/hectare, and 109 inedible species with density of 364 stems/hectare and basal 

area of 22.42 m2/hectare were sampled. However, the evenness of edible and inedible species 

was similar at pooled and plot levels. For inedible species, there was a positive relationship 

between pairwise beta-diversity and elevation, and this was driven mainly by turnover. In 

contrast, edible species exhibited a non-significant trend between elevation and beta-diversity. 

Thus, the study showed that human foraging of edible fruits may have subtly influenced patterns 

of species diversity and community structure in this tropical forest. 
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2.2. INTRODUCTION  

Anthropogenic activities leading to large-scale habitat loss are known to have substantially 

impacted forest biodiversity (Steadman, 1993; Helmus, Mahler and Losos, 2014; Bush et al., 

2015; Clement et al., 2015; Piperno, McMichael and Bush, 2015; Stahl, 2015; Levis et al., 

2017). However, there is growing evidence that less intense, more subtle human impacts may 

also affect ecological communities, and in turn alter what is consider to be ‘natural’ ecological 

and biogeographical patterns (Piperno, McMichael and Bush, 2015; Chaturvedi et al., 2017; ; 

Singh et al., 2022).  

For example, the modern floristic composition and structure of some natural forests, like the 

Amazonian Forest, have been linked to past human activities in the forest (Levis et al., 2017). 

These activities, such as cultivation, seed dispersal and propagation, in situ tending of useful 

resources, and hunting of large mammals that aid in seed dispersal have the capacity to both 

extend and reduce the abundance and distribution of tree species (Socolar et al., 2016; Levis et 

al., 2017). However, in contrast to the coarse-scale effects of forest loss and degradation 

(Swenson et al., 2011; Gallardo-Cruz et al., 2009; Alahuhta et al., 2017; Donoso et al., 2017; 

García-Navas et al., 2020), smaller scale impacts of anthropogenic activities on ecological 

patterns in tropical forests are left largely understudied, likely due to the difficulties in 

measuring and quantifying them. Thus, we still lack a comprehensive understanding of the 

magnitude and dynamics of impacts from low intensity anthropogenic activity on natural forest 

ecosystems (Piperno, McMichael and Bush, 2015; Stahl, 2015; Levis et al., 2017). 

One widespread example of low intensity activities is the utilization of forests for food by 

forest-dependent human communities, which in some cases has been found to leave lasting 

impacts on forest ecology and dynamics (Bush et al., 2015; Socolar et al., 2016; Steadman, 
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1993). The most important plant parts found to be utilized for food by human communities in 

tropical countries are underground storage organs, fruits, and leaves (Welcome and Van Wyk, 

2020). Friant et al’s (2019) examination of dietary differences and associated changes in 

agriculture-forest frontiers of Cross River State, Nigeria revealed that in addition to human 

hunting of wild animals, the forest also acts as a source of nuts, seeds and vegetables. These 

plant foods are thought to comprise a significant component of the daily diets of forest-

dependent human communities. Although food-producing tree species have been largely 

identified and documented in many tropical forest regions, very little is known about the effect 

of varying degrees of human foraging on their abundance, and distribution in space. The 

continuous influence of humans on the forest, and at varying intensities, could, in principle, 

lead to a change in the forest community that might be reflected in contrasting distribution and 

abundance patterns between different species (Verberk, 2012). Although it is expected that a 

typical tropical forest ecosystem will comprise a few species with high abundance and many 

species with low abundance (ter Steege et al., 2013), human activities can alter the species 

richness of, and the distribution of abundance between, tree species either through preferential 

planting or conservation of beneficial trees, or through intentionally or inadvertently 

influencing the propagule pool (McGill et al., 2007; Socolar et al., 2016). Thus, it is important 

to understand how less overtly destructive anthropogenic activities, such as foraging, can over 

time influence the species composition, and ultimately function, of the forest. 

The hypothesis that harvesting tree-based food products affects community composition and 

relative abundance can be evaluated through a focus on two commonly studied biogeographical 

patterns: beta diversity and the species abundance distribution (SAD). Beta diversity is the 

dissimilarity in species composition between two or more communities (Pound et al., 2019; 

Anderson et al., 2011), and has been used as an effective indicator for assessing the impact of 
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anthropogenic activities on the composition of species in terrestrial and aquatic ecosystems 

(Dantas de Miranda et al., 2019; Elo et al., 2018; Kessler et al., 2009; Gradstein et al., 2007; 

Silva et al., 2018). Changes in beta diversity along elevational gradients has been a particular 

area of research interest in ecology (Yu et al., 2017; García-Navas et al., 2020; Guerin et al., 

2013; Socolar et al., 2016; Nascimbene and Spitale, 2017). Elevation has also been used as a 

proxy for temperature to assess relationships with plant community diversity (Xu et al., 2017; 

Nascimbene and Spitale, 2017; Swenson et al., 2011; Gallardo-Cruz et al., 2009) and functional 

traits of plant species (Yu et al., 2017).  

The SAD characterizes the abundance of all species found within a defined community 

(Matthews and Whittaker, 2015; McGill et al., 2007). It is an important ecological and 

biogeographical concept because it provides insight on the structure, function, and other less 

visible aspects of ecological communities (Matthews et al., 2014; Verberk, 2012). Two primary 

types of empirical SAD shape are commonly observed in nature: logseries (with a dominance 

of very rare species) and lognormal (dominance of species with intermediate abundance) type 

shapes. Empirical SADs have been used to study the responses of ecological communities to 

anthropogenic disturbances such as land-use change and pollution, by evaluating how the form 

of the SAD changes in response to disturbance (Matthews et al., 2014).  

Human foraging in tropical forest could affect the beta-diversity and SAD patterns of tree 

communities in various ways. For example, during food (seeds and fruits) gathering, forest 

dependent communities cover a wider area of the forest as well as higher elevational gradients 

and in the process, promote the dispersal of edible species (McMichael et al., 2017), which may 

result in increasing their relative abundance and distribution, shifting the SAD from more 

uneven shapes (which are common in tropical tree communities; ter Steege et al., 2013) to more 

even shapes,  and lowering the spatial beta-diversity of edible species. 
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While low-intensity food collection should theoretically leave an imprint on beta diversity and 

the SAD (Adeyemi, 2016; Socolar et al., 2016; Verberk, 2012), higher-intensity activities, such 

as harvest of trees for timber, would also be expected to leave an imprint on stem diameter and 

density distributions of the forest (Adeyemi, 2016). However, high-intensity activities should 

affect species independently of their foraging value to humans, whereas low-intensity foraging 

should specifically alter the patterns of edible species. Analysis of forest structure can thus 

provide complementary insights to help narrow the range of possible causes behind changes in 

beta diversity or SADs. 

The present study analyses a tropical forest elevational gradient and utilizes tree diameter 

distribution, stem density, beta diversity patterns and SADs to assess how the utilization of tree 

species by humans for food influences the community composition and structure of food 

producing (herein ‘edible’) and non-food producing (herein ‘inedible’) tree species in Oban 

Forest of Cross River State, Nigeria. In turn, this enabled us to assess how low-intensity 

anthropogenic activities have influenced the ecological dynamics of the forest along an 

elevational gradient. The following hypothesis were tested: 

1. Human movement of propagules along the elevational gradient will lead to more even 

distribution of abundance of edible species compared to inedible species. 

2. Edible and inedible species will exhibit different turnover patterns along the elevational 

gradient in the forest. 

3. Tree species utilization along elevational gradient will have different effects on tree 

stem density and diameter class distributions of edible and inedible trees.  
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2.3. MATERIALS AND METHODS 

2.3.1. Study location 

The study was carried out in an area of tropical rainforest located in Oban Division of Cross 

River National Park (CRNP), Nigeria (Figure 2.1b). The forest is situated between longitude 

8°10´ and 8°55´ East and latitude 5°00´ and 5°50´ North and covers an estimated area of 

~251,345 ha (Jimoh et al., 2012; Olajide et al., 2008; Adeyemi, 2016). In the North, South and 

West, the forest is bounded by a number of forest-dependent and small-holder agricultural 

communities, and it is continuous with the Korup National Park and Ejagham Forest Reserve 

of Cameroon in the East (Adeyemi, 2016; Jimoh et al., 2012; Oluwatosin and Jimoh, 2016; 

Agaldo et al., 2016).  

The forest vegetation is lowland and submontane moist tropical rainforest with mean annual 

precipitation ranging between 3,000 mm and 3,500 mm, mean monthly temperature range of 

23 °C to 37 °C, rugged terrain and elevation ranging from ~ 100 m to over 1000 m above mean 

sea level (Jimoh et al., 2012; Aigbe and Omokhua, 2015; Agaldo et al., 2016). The forest is the 

last stronghold of pristine tropical forest in Nigeria (Agaldo et al., 2016). The Oban Forest is 

also part of the “Gulf of Guinea biodiversity hotspots of conservation concerns” in West Africa 

(Agaldo et al., 2016). It is known to house a large number of endemic flora and fauna species 

(Oates et al., 2004), including most of the 935 tree species identified in Nigeria (Lock and Keay, 

1991), other herbaceous plant species, and a rich diversity of butterflies, birds, reptiles, 

amphibians, and a wide range of mammal species including ungulates, cats, buffalo, elephants 

and primates, including the world’s rarest lowland gorillas and others plant and animal species 

(Asuk et al., 2018).  
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 Figure 2.1. Topographic map of Oban Division showing the three areas selected for location 

of permanent sample plots and forest dependent communities used for the study (a). Map of 

Nigeria showing the location of Oban Division of Cross River National Park (b). Clusters of 

plot clusters along elevational band withing the three study areas (c, d, e). 
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2.3.2. Plot establishment  

To assess the impact of elevation on species diversity and the impact of humans along these 

elevational gradients, plots were established along an elevational gradient rising from about 100 

m to 500 m above sea level (Jimoh et al., 2012; Aigbe and Omokhua, 2015; Agaldo et al., 2016). 

Plot location was also consistent with some additional considerations (see Appendix 2.6.1, 

section 2.6.1.1 in Appendices from ForestPlots.net (Phillips et al., 2018).  

Between 23rd August 2019 and 9th September 2019, along an elevational band of between 100 

m and 500 m above sea level, five plot clusters were established in three areas of the forest for 

the study (see Appendix 2.6.1, Table 2.6.1): one cluster in Erukut, and two clusters in Aking 

and Osomba each (Figure 1a,c,d,e). Three 40 by 40 m plots with varying elevation were 

established in each of the clusters, making a total of 15 sample plots (Figure 1c,d,e) with a total 

area of 2.4 hectares. Due to the steep topography of Aking and Osomba locations, plots were 

established at closer horizontal intervals based on elevational differences of about 20 m. 

2.3.3. Data collection 

All trees with a minimum of 10 cm dbh in all 15 plots were measured and tagged with a unique 

number. The collected data included plot information (plot number and GPS coordinate of the 

four corners of plots using Garmin eTrex 10 Outdoor Handheld GPS Unit), tree dbh (diameter 

of a tree at 1.30 m from the base) using a diameter tape and LaserAce 1000 rangefinder for 

points of measurement too high for a diameter tape, species name, assigned tag number, and 

species group (edible and inedible species). Measurement of buttress trees, folk trees, leaning 

trees or trees on a slope was completed using the African Tropical Rainforest Observation 

Network (AfriTRON) protocol (Phillips et al., 2018). Trees were identified to species level by 

a field taxonomist and in cases where there was uncertainty in the identification of species, tree 
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locations were noted, and specimens collected and stored in herbarium presses for further 

taxonomic work.  

Information on tree species producing edible fruits, nuts and seeds for humans was collected 

from four out of 39 forest dependent / support zone communities within the Oban Division of 

Cross River National Park (Enuoh and Ogogo, 2018; Ewah, 2013) using structured 

questionnaires (see Appendix 2.6.2 in Supporting Information). Two of the villages, Nsan and 

Aking were selected based on proximity to the plot while Obutong, and Mkpot were selected 

to ensure a spread around the National Park. Mixed method interviews (Friant et al., 2019) 

comprising of group interviews with the council of chiefs, farming / gathering household heads, 

and individual interviews. The respondents were restricted to those above 25 years of age who 

had lived in the area long enough to provide information on forest tree species use. The 

information generated from the interviews was compiled into a comprehensive list and used to 

categorize tree species into those producing edible products and those which only produce 

inedible ones (see supplementary information for further details). The study was reviewed and 

approved by the Humanities and Social Sciences Ethical Review Committee of the University 

of Birmingham. Consent letters on the collection, use and storage of data by research team, 

were read to all participants. Only respondent who consented voluntarily participated in the 

study. 

2.3.4.  Data processing and analysis 

2.3.4.1. Comparing species abundance distributions (SADs) and the evenness of edible and 

inedible tree species along the elevational gradient  

Species abundance distributions were calculated for the different species groups at the 

community level (i.e., all plots combined) using the ‘sads’ and ‘gambin’ R packages (Prado et 
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al., 2018; Matthews et al., 2020). The histogram form of SAD plotting was used (Matthews and 

Whittaker, 2014; Connolly and Dornelas, 2011). As an additional SAD test, the gamma-

binomial (gambin) model was fitted to the SAD data on a histogram of log-transformed octaves 

(Matthews and Whittaker, 2014). To create the abundance octaves, log2 transformation was 

used to double the abundance class of previous octave (Matthews et al., 2014, 2020). Thus, 

beginning from 0, each octave had an interval that was twice the preceding one (octave 0 = "1 

individual", 1 = "2-3", 2 = "4-7", 3 = "8-15", 4 = "16-31", 5 = "32-63") (Prado et al., 2018; 

Verberk, 2012; Matthews et al., 2014, 2020). The gambin model is a flexible SAD model with 

one free parameter (alpha) that provides a metric of SAD shape (Matthews et al., 2014), 

allowing us to compare the shape of edible and inedible species SADs. 95% confidence 

intervals around the alpha values were calculated using bootstrapping. As SAD form is known 

to be affected by sample size, standardized alpha was also calculated by subsampling all 

samples down to the smallest number of individuals in a plot (Matthews et al., 2014). The 

number of individuals in the smallest group was randomly sampled from the groups with larger 

sample size, alpha value calculated and then this process repeated 999 times to generate the 

mean alpha values and standard deviations (Matthews et al., 2020).  

Pielou’s evenness index was used for comparing the evenness between edible and inedible 

species at the plot level and at the combined (pooled) plot level (Pielou, 1966). Pielou’s 

evenness index (Eq. 1) was computed using the vegan package in R (Oksanen et al., 2022), and 

plot level evenness for edible and inedible species were compared using a t-test from the “car” 

package in R (Fox et al., 2022). 

𝐽 =
𝐻

𝑙𝑜𝑔(𝑆)
     Equation 1 

  Where: J = Pielou's evenness index 
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H = Shannon’s diversity index 

S = species richness 

2.3.4.2. Beta diversity and spatial species turnover along the elevational gradient 

Pairwise beta diversity between all plots along the gradient was calculated using Sorensen’s 

dissimilarity index (βsor). We also analyzed the turnover component of βsor, Simpson’s 

dissimilarity index (βsim), which measures the replacement of species between pairs of plots 

independently of richness differences (Baselga, 2010; Aspin et al., 2018; Jarzyna and Jetz, 

2018). The formulas (Eq. 2 and Eq. 3) for the computed indices are shown below (Baselga, 

2010, 2012).  

βsor =
b+c

2a+b+c
         Equation 2 

βsim =
min⁡(b,c)

a+min⁡(b,c)
  Equation 3 

Where: a = number of species common to both locations 

b = number of species present in the first location but absent in the second 

location and  

c = number of species present in the second site but absent in the first location  

The ‘betapart’ R package was used to calculate the dissimilarity indices using a vector of 

species incidence (Baselga et al., 2018). The incidence-based pairwise dissimilarities were 

regressed against elevation using a linear regression model to determine any general trend. Due 

to the non-independence of the data, Mantel correlation tests were undertaken relating the 

dissimilarity matrices to a matrix of elevational differences between plots to generate the 

correlation coefficient (and its significance) and respective confidence intervals, using the 
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‘ecodist’ package in R (Goslee and Urban, 2017). In addition, to remove any possibility of 

spatial autocorrelation, a partial Mantel test (Legendre et al., 2015) was conducted using the 

species dissimilarity metrices, plot elevational matrix and plot distance matrix. This was done 

using the “vegan” R package (Oksanen et al., 2022). These analyses were undertaken for edible 

and inedible species separately. 

Two null models were run to confirm that the trends in tree beta diversity and turnover with 

elevation observed in the edible and inedible species category were not due to chance (see 

details in Appendix 2.6.3). In addition, two sensitivity tests were conducted to check the effect 

of the ground distance between plots in Erukut and those in Aking and Osomba on the βsor and 

βsim trends observed in the edible and inedible species categories (see details in Appendix 

2.6.3). 

2.3.4.3. Stand density, basal area, and diameter size distribution 

The dbh of all trees in the study area were transformed using natural logarithms and visualized 

on a relative density plot using the ggplot2 package in R (Wickham, 2016; RStudio, 2011). 

Stand density per plot was also computed for each species category. The basal area (BA) and 

total BA of each measured tree were calculated from their diameter at breast height (Aigbe and 

Omokhua, 2015; Ojating, 2008). 

Linear regression analysis was used to compare the effect of the elevational gradient, 

and the edible-inedible species category, on tree density (tree per ha) and total basal area (m2 

per ha). Moran’s I test (Moran, 1950) was used to check for spatial autocorrelation in the linear 

regression residuals. This was done with the ‘DHARMa’ R package (Hartig, 2017). To 

determine if the slopes and intercepts of the linear regression lines differed between the species 

categories, for each dependent variable, ANCOVA was used. The ANCOVA models were 
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developed using the “aov” function and type III sums of squares, using the “car” package (Fox 

et al., 2022) in R (see details in Appendix 2.6.4). R (version 4.0.3) was used for all analyses 

(RStudio, 2011). 

  



29 

 

2.4. RESULTS 

2.4.1. Summary of site information 

We sampled 492 tree stems per hectare, with total basal area density of 34.41 m2 per hectare 

across the 15 plots (Table 2.1) (Asuk et al., 2023). The sampled individuals were distributed 

amongst 144 species in 105 genera and 49 families. Species identified as edible from group 

interviews with local villagers are shown in the appendix (see Appendix 2.6.5, Table 2.6.5). 

The total richness in this study was divided into 35 edible species that provided food in the form 

of fruits and seeds for rural communities and 109 inedible species. Among the edible and 

inedible categories, 67.35% of families, 75.24% of the genera, 75.69% of the total species 

richness and 65.15% of the total basal area belonged to the inedible species. The mean BA was 

higher in edible species (0.09 (std: 0.37) m2) due to the presence of larger stems among the 

edible species category compared to inedible species. The fifteen most abundant species had a 

total density of 10 stems per hectare, while the total stem density across all plots was 213 

stem/ha. The 15 most abundant species represented 43.29% of the total tree stand, and 23.37% 

of the total basal area. These prevalent species included 5 edible species making up 26.76% (57 

stem/ha) of the stem density and 10 inedible species making up 73.24% (156 stem/ha) stems 

density. 

2.4.2. SADs and evenness of edible and inedible species 

2.4.2.1. All plots combined 

The SAD of all species combined (Figure 2.2b) showed there were few highly abundant species 

and a higher proportion of rarer species, with the modal octave containing 2-3 individuals 

representing the peak of the distribution. The alpha parameter of the gambin model was 3.1 

(confidence interval of 2.4-4.4). The alpha parameter of the gambin model was slightly lower 
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for inedible (alpha = 3.1 and confidence interval of 2.2-4.4) compared to edible (4.0 and 

confidence interval of 2.1-7.1) species. However, the confidence intervals of the two alpha 

values overlapped. A lower alpha was recorded for inedible category of 1.83 (SD = 0.30 and 

95% CI of 1.37-2.41) after standardizing the population of both categories. At this scale, the 

pooled (all plots combined) evenness index of the edible category was not different from the 

inedible. 

 

Table 2.1. Summary of total species, tree density per hectare and total basal area in the forest 

(std = standard deviation) 

Variable Edible Inedible Total 

Families 16 (32.65%) 33 (67.35%) 49 

Genera 26 (24.76%) 79 (75.24%) 105 

Total species richness 35 (24.31%) 109 (75.69%) 144 

Total stem density (stem/ha) 128 (26.02%) 364 (73.98%) 492 

Total Basal Area (m2/ha) 11.99 (34.85%) 22.42 (65.15%) 34.41 

Mean Basal Area (m2/ha) 0.59 (std: 0.42) 0.39 (std: 0.12)  

Prevalent species count 5 (33.33%) 10 (66.67%) 15 

Prevalent species stem density (stem/ha) 57 (26.76%) 156 (73.24%) 213 

Prevalent species basal area (m2/ha) 2.23 (27.74%) 5.81(72.26%) 8.04 
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Figure 2.2. (a) Boxplot of plot level Pielou’s evenness index for edible, inedible and total 

species categories (pooled evenness Total = 0.887, Edible = 0.871 and Inedible = 0.869) and 

(b) a species abundance distribution octave plot with the fit of the gambin model for edible, 

inedible and all tree species in the forest. (Octaves: 0 = "1 individual", 1 = "2-3", 2 = "4-7", 3 

= "8-15", 4 = "16-31", 5 = "32-63"). Note: the brown bars are overlayed on the blue bars while 

the green bars are overlayed on the brown bars to preserve origin at zero. 

 

2.4.2.2. Individual plots 

At the scale of individual plots, Pielou’s evenness index (Figure 2a) showed that the edible 

species had similar (p value < 0.348) evenness at the plot level compared to the inedible 

category. For edible species, evenness ranged from 0.840 to 0.988 while for inedible species it 

ranged from 0.790 to 0.964. 
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2.4.3. Beta diversity and the turnover of edible and inedible species along the elevation 

gradient 

2.4.3.1. Relationship between beta diversity and elevation in edible and inedible tree species 

Pairwise dissimilarity plots (Figure 3a,d) showed that elevation had a strong positive effect on 

the differences in composition between plots in the study area when all species were considered 

together. There was a significant (p = 0.001) Mantel correlation value of 0.43 between both 

total beta diversity (a) and turnover (b) and elevation, indicating that both pairwise total beta-

diversity and turnover increased with increasing difference in elevation between plots.  

 

 

Figure 2.3. Pairwise dissimilarity trend showing the association between both total beta 

diversity, BSor (a,b,c) and turnover, BSim (d,e,f), and elevation (m) for edible and inedible 

species in Oban Forest. The r values and confidence intervals (CIs) were generated from 

Mantel correlation tests. The solid lines show ordinary least squares regression fits, only for 

significant associations.  
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Both the pairwise total beta diversity and replacement component for edible species (Figure 

2.3b,e) remained constant as the difference in elevation between plots increased. In contrast, 

inedible species exhibited a significant positive correlation between total beta diversity and the 

replacement component, and elevation (Figure 2.3c,f). For both the total beta-diversity and 

turnover plots, the Mantel correlation coefficients for edible and inedible species did not 

overlap, indicating significant differences in the patterns between the two subsets. 

2.4.3.2 Sensitivity test and null model analyses 

The sensitivity test to check the effect of the ground distance between plots on the βsor and βsim 

trends observed (see Appendix 2.6.6, Figure 2.6.1 and 2.6.2), yielded similar trends for both 

species categories, suggesting that the distance between plots in Erukut from those in Aking 

and Osomba were not driving the observed patterns. The p values from the partial Mantel’s test 

which accounted for spatial autocorrelation in the data yielded similar results as the Mantels 

test (see Appendix 2.6.6, Table 2.6.6). The fixed-fixed null model analysis (see Appendix 2.6.6, 

Table 2.6.7) revealed that the Mantel correlations for edible species were not significantly 

different from observed, but the observed correlations (both βsor and βsim) for the inedible 

species were significantly higher than expected. The interspecies randomized null model (see 

Appendix 2.6.6, Table 2.6.6) provided slightly contrasting results. The correlations for the 

edible species, for both βsor and βsim, were found to be significantly lower than expected, given 

the null model. Again, the observed correlations for inedible species were higher than expected, 

although they were not significant. 
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2.4.4. Effect of tree species utilization on diameter size distribution, tree stem density and 

BA along the gradient 

2.4.4.1. Diameter size distribution 

The diameter distribution for all species together, and edible and inedible species separately, 

all show a reverse J-shaped or negative exponential function characteristic of a natural uneven-

aged tropical forest stand (Daniel et al., 2015; Marín et al., 2005), with the number of trees 

stems decreasing as tree dbh increases (Figure 2.4). The nonlinear relationship between dbh 

and stem density shown on the curve further indicated that there was regeneration and upgrowth 

of stems along diameter classes in the forest stand (Daniel et al., 2015; Marín et al., 2005). For 

lots of the dimeter distribution curves within plots (Figure 2.4b), the edible category (red line) 

was above the inedible (blue line) around point 4. 

2.4.4.2 Tree stand and basal area densities along the elevational gradient 

Linear regression models fitted to tree density (tree/hectare) against elevation (m) (Figure 2.5a) 

indicated a significant relationship only for inedible species. The R2 value for edible species 

was 0.02 (intercept = 141.25, slope = -0.05; p value = 0.65), while a significant positive 

association with elevation was observed for inedible species, with an R2 value of 0.34 (intercept 

= 283.50, slope = 0.29; p value = 0.02). Results from the ANCOVA model (see details in 

Appendix 2.6.4) with two covariates (species category and elevation) and with tree density as 

the dependent variable, showed that the slopes of the regression lines differed between the 

edible-inedible categories (interaction term F value = 5.026; p value = 0.034). Results from the 

Moran’s I test of spatial autocorrelation for edible and inedible species categories yielded p-

values that were greater than 0.05 in all cases, thus indicating that there was no spatial 

autocorrelation in the residuals (see details in Appendix 2.6.7, Table 2.6.8). 
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Figure 2.4. Tree diameter size distribution curve showing relative density of tree dbh in Oban 

Forest. (a) Tree diameter size distribution curve of all measured trees grouped into edible and 

inedible categories. (b) Tree diameter size distribution curve of trees measured in each plot 

categorized into edible and inedible. 

 

 

Figure 2.5. Trend in stem density (a) and total basal area per hectare (b) per plot with 

increasing elevation for edible and inedible species were greater than 0.05 in all cases, thus 

indicating that there was no spatial autocorrelation in the residuals (see details in appendix 

2.6.7, Table 2.6.8).  



36 

 

No significant relationships were recorded between total BA and elevation (Figure 5b) for either 

category. ANCOVA with species category and elevation as covariates, and total basal area as 

the dependent variable (see Appendix 2.6.4), showed that the slopes of the regression lines for 

both categories were not significantly different from each other (interaction term F value = 

1.421; p value = 0.244). Moran’s I test yielded a non-significant p-value, indicating that there 

was no spatial autocorrelation in the model’s residuals (Appendix 2.6.7, Table 2.6.8). 
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2.5 DISCUSSIONS 

2.5.1. Potential effect of human activities along the elevational gradient on SADs and 

species evenness 

The SAD plots (Figure 2.2) for the total community indicate that the sampled area of the forest 

exhibited a log-left skewed lognormal distribution type SAD, a pattern commonly observed in 

tropical forests (Song et al., 2020). Pooled species richness was lower for edible species and 

higher for inedible species while the Pielou’s evenness index was similar for both categories at 

pooled and plot levels. However, at the plot level, edible tree species recorded the highest 

evenness while inedible species recorded the lowest. 

Despite the difference in species richness and stand density between both categories, the high 

evenness in edible category at plot and pooled levels might be due to sample size effects 

(Mackey and Currie, 2001) or linked to historical impacts of human influence on the abundance 

of species along the elevational gradient (Wilsey and Potvin, 2000) through tree management, 

deliberate planting, and conservation for food production (see Section 2.4.3).  Conservation 

efforts have concentrated on the present species richness of the forest but previous an 

assessment of species abundances shows how the forest species composition and abundance 

has modified over time (Ellis et al., 2021, 2010; Wilsey and Potvin, 2000). This is further 

evident in the beta diversity results whereby inedible species exhibited more turnover than 

edible species. 

2.5.2. Difference in beta diversity and turnover in edible and inedible species along the 

elevational gradient  

Elevation is an important variable that affects the distribution of trees in tropical rainforests 

(Lan et al., 2011). The pairwise beta diversity trends observed here showed that there was a 
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positive association between beta diversity and differences in elevation. The beta diversity and 

turnover trends of inedible species were similar to that for all species combined. In contrast, the 

beta diversity of edible species exhibited no trend with elevation (Figure 2.3).  

In the absence of human influence, we may expect the constant turnover of species along the 

elevational gradient due to niche filtering (i.e. the changing of abiotic conditions with increasing 

elevation) and/or dispersal limitation (Peters et al., 2019). This will result in increased pairwise 

spatial beta-diversity between plots with increasing elevational distance, which is the pattern 

observed for inedible species. However, edible species did not exhibit a significant relationship 

between elevation and pairwise composition. This could be due to tree propagules being spread 

by humans along the gradient (both purposefully and indirectly), resulting in the spatial 

homogenization of community composition. However, for the spreading of seeds by humans to 

have this effect it must mean that i) niche filtering is not a dominant assembly mechanism and 

instead dispersal limitation is driving tree distributions in this forest (Hubbell, 2001), ii) human-

aided dispersal is occurring at such a rate that mass effects (Shmida and Wilson, 1985) are 

overriding any niche filters, or iii) a combination of the two. Further research is needed to fully 

explore these different possibilities. 

2.5.3. Trends in dbh distribution, tree species density and BA along elevational gradient 

in the forest 

The dbh, BA and stem density distribution shown by certain species categories can indicate the 

type of human footprint in the forest (de Quesada and Kuuluvainen, 2020). Humans tend to 

favor propagation and conservation of certain tree species based on their utilization value. Thus, 

the dbh distribution of edible tree differed from that of inedible trees species (Marín et al., 
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2005). The interventions of humans include selective conservation, enrichment planting and 

seed dispersal of desired species, while undesirable species may be harvested.  

There was consistency of red line (edible) above blue line (inedible) around point 4 (Figure 

2.4), which could be suggestive of a period of disturbance (mortality, gap in the forest that favor 

height growth or slowed diameter growth) in the inedible category not observed in the edible 

species category (Aigbe and Omokhua, 2015). However, the variability observed in individual 

plots of tree dbh also suggests that other variables maybe important. The diameter distribution 

of trees species can be affected by the mortality patterns in the forest (de Quesada and 

Kuuluvainen, 2020) or the distribution of species abundance. A study in an old growth forest 

in Costa Rica, revealed that basal area and density of large trees is expected to increase with 

elevation (Muñoz Mazón et al., 2020). Even though inedible species had three times the species 

diversity, three times the stand density of edible species, they only had twice the total BA and 

a lower mean BA than edible species (see Table 2.1).  

The level of impact that foraging by local communities has on forests is likely to be linked to 

accessibility in some way, although this is not necessarily a simple function of elevation given 

the activity is low intensity and does not require heavy machinery, and thus foragers have the 

capacity to cover a wider spatial range and along varying elevational gradients (Jimoh et al., 

2012). For example, the villagers interviewed stated that they often foraged in the higher 

elevations of our gradient. However, there are additional human activities that may be more 

impactful at different parts of the elevation gradient, which may then influence species 

composition and distribution across the gradient  (Socolar et al., 2016), although these should 

impact edible and inedible species equally. For instance, logging activities might be limited to 

more accessible areas at relatively low elevation. 
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Socolar et al. (Socolar et al., 2016) stated that human activities, taxa, and geographical location 

can determine the impact pattern on tree species composition and diversity. In a forest area, like 

the study location used here, with rough terrain, increasing elevational gradient, inaccessible 

roads, and reasonable distance away from human habitation, forest harvest for timber and/or 

farming at higher elevation might be difficult (Adeyemi, 2016; Jimoh et al., 2012; Aigbe and 

Omokhua, 2015; Olajide et al., 2008; Otu et al., 2012). Therefore, while some activities that 

occurred in the past may have been limited to the lower elevations or unevenly distributed along 

varying elevations, these activities such as harvesting of timber, farming, nomadic nature of 

some indigenous settlements, foraging and others could have affected the distribution of tree 

stand density along the elevational gradient (Adnan et al., 2015; Aigbe and Omokhua, 2015; 

Jimoh et al., 2012; Asuk et al., 2021). In addition, conservation efforts by indigenous people 

would favor trees utilized for their seeds, fruits, and others more than those not used for food 

(Asuk et al., 2021). This would result in trees with food value having bigger girth with greater 

mean BA per hectare (see Table 2.1) and a more even distribution of stand density with 

elevation compared to species that may likely have been harvested prior to the creation of the 

National Park. Furthermore, as humans forage along the elevational gradient, they may be more 

likely to propagate seeds of desirable tree species at lower elevations in a bid to reduce their 

foraging distances. Although it is not possible to make a definitive attribution, the difference in 

BA and stand density trends observed in edible and inedible species for the study area (Figure 

2.5) are therefore consistent with the expected impacts of human intervention. 

However, it is worth highlighting that, alternative explanations may also explain the observed 

patterns, or may be acting in tandem with the effects of human foraging (Adnan et al., 2015; 

Brockerhoff et al., 2017). First, edible, and inedible species may have different trait values, 

especially if traits are linked with edibility (e.g., traits related with tissue density) (Lueder et 
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al., 2022; Waddell et al., 2020). If edibility-related traits also affect dispersal ability or the 

ability of species to cope with the abiotic environment (as in tissue density traits), then the 

edible-inedible comparison may not reflect the effect of humans but that of trait–environment 

interactions. Similarly, edible species might be functionally similar due to phylogenetic 

similarities, which are not accounted for in this study. Second, while we classified species as 

edible based on interviews with local villagers, we cannot discount the role of other animal taxa 

in dispersing the edible species (Teitelbaum and Mueller, 2019). As data on species traits and 

interaction networks in the study area are not available, we recommend conducting further study 

involving abiotic factors and functional traits to validate these findings (Waddell et al., 2020; 

Lueder et al., 2022).  

2.5.4. Implications and additional considerations 

The disparity in the trends observed in edible and inedible species could be due to selective 

dispersal of propagule during foraging, deliberate conservation, and management of desired 

species by humans for food production. These low-impact activities are theorized to potentially 

modify the forest species composition overtime leaving observable footprints. Furthermore, 

large scale disturbance of the forest due to timber harvesting, clear cutting for agriculture, or 

agroforestry practices are some other factors capable of modifying the forest. These human 

interactions, that potentially modified the forest prior to the creation of the National Park, might 

have left some footprints which are still visible in the dbh abundance-size distribution. Even 

though the forest is now protected, low intensity activities of human may continue to modify 

the species composition and structure of the forest. This supports the findings of (Aigbe and 

Omokhua, 2015) (2015) who pointed out that the species composition of the Oban Forest might 

be recovering from past disturbances from tree mortality which occurred prior to acquiring the 

National Park status. Notwithstanding the data indicating human impact, Adeyemi (2016) was 
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of the opinion that the hilly terrain, poor road network and large water bodies adjoining the 

forest may have assisted in reducing pressure on the forest from certain human activities such 

as logging, thus preserving the current species diversity of the forest. But as pointed out by 

Levis et al. (2017), some activities such as food gathering encourages forest dependent 

communities to cover wider ranges thus promoting dispersal of edible species.  

The results of this study, along with information of past disturbances that may have occurred 

in the forest (Adeyemi, 2016; Jimoh et al., 2012; Aigbe and Omokhua, 2015; Olajide et al., 

2008; Otu et al., 2012; Agaldo et al., 2016), suggest that low-intensity human activities have 

influenced the forest species distribution and structure. Earlier research has shown that more 

than 50 % of the global tropical broadleaf forest show evidence of similar low intensity human 

impact (Ellis et al., 2010, 2021). Studies in the Amazon forests (Clement et al., 2015; Bush and 

Flenley, 2007; Piperno et al., 2015) also indicate that low-intensity human activity has modified 

the forest. Furthermore, studies have shown that indigenous human societies have historically 

modified the structure and composition of terrestrial biosphere dating back 12,000 years and 75 

to 95% of these areas might now be in seminatural states (Helmus, Mahler and Losos, 2014; 

Williams et al., 2020; Ellis et al., 2021).  Much focus has rather been placed on high intensity 

activities such as logging and it has been shown that many forests are not natural due to human 

farming, and nomadic settlements in the past. But our result show that even very low intensity 

foraging, which is not visible from remote sensing and field inventories is also possibly 

changing forest dynamics, which throws into question whether any forest can be classified as 

“natural”.  

As a single case study, care is needed in extending these findings elsewhere and further work 

at a broader scale will be needed to assess whether these patterns and interpretations hold true 

more widely across the continent and indeed tropical forests as a whole. In our opinion, the 
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results presented indicate a role of human foraging on the distribution and structure of edible 

tree species.  
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2.6. APPENDICES  

Appendix 2.6.1. Summary of plot information and location criteria 

Table 2.6.1. Mean plot elevation, cumulative plot distances, and clusters located in the three 

study areas. A total of 15 plots were established within five clusters in three areas (Erukut, 

Aking and Osomba). Erukut had one cluster with three plots, Aking and Osomba had two 

clusters with three plots each respectively. 

Area Cluster number Plot ID Mean plot elevation Cumulative plot distance 

Erukut 1 L1P1 131.69 0 

Erukut 1 L1P2 142.77 246.11 

Erukut 1 L1P3 141.34 421.27 

Aking 2 L2P1 196.59 19623.46 

Aking 2 L2P2 183.65 19801.55 

Aking 2 L2P3 202.59 19875.58 

Aking 3 L3P1 246.60 19981.15 

Aking 3 L3P2 265.00 20046.95 

Aking 3 L3P3 286.05 20118.13 

Osomba 4 L4P1 385.78 21531.38 

Osomba 4 L4P2 368.95 21587.33 

Osomba 4 L4P3 340.67 21695.87 

Osomba 5 L5P1 443.86 22072.59 

Osomba 5 L5P2 427.45 22146.89 

Osomba 5 L5P3 396.45 22202.86 
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Appendix 2.6.1.1. Additional consideration for plot location  

Additional consideration for plot location based on ForestPlots.net (Phillips et al., 2018) 

included: 

1. Adequately accessible to facilitate repeated surveys. Due to the rugged terrain of the 

Oban Forest landscape (Jimoh et al., 2012; Aigbe and Omokhua, 2015; Agaldo et al., 

2016), the plots were located in areas of the forest that were between a 15 - 80 minutes’ 

walk from access roads. 

2. Long-term security from deforestation and other anthropogenic activities except the 

collection or gathering of non-timber forest products for food. The plots are situated in 

the forest of CRNP which was created from existing forest reserves in 1991 (Nigerian 

National Park Service, 2019). Each month a team consisting of six CRNP and one 

Wildlife Conservation Society (WCS) staff patrol different areas of the park to ensure 

the protection of flora and fauna of the forest (Nigerian National Park Service, 2019). 

3. Presence of long-term institutional support through a collaborative effort between the 

National Park Service and WCS for the sustained conservation of the National Park 

(Nigerian National Park Service, 2019).  
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Appendix 2.6.2. Qualitative data collection and structured questionnaire used for 

collection of data on forest tree species utilization in Oban Division, Cross River National 

Park  

Ten percent of the 39 forest-dependent enclave/buffer zone communities in the study area were 

purposively selected for the study. Structured questionnaire (see below) was utilized to collect 

data on current utilization of forest tree species for food. Mixed method interviews (Friant et 

al., 2019) were used to purposively administer the questionnaires to respondents based on the 

following criteria:  

1. Individuals involved in the gathering of fruit/seeds/nuts and farmers 

2. Individuals who are at least 30 years and likely to be knowledgeable about forest tree 

species utilization in the area  

3. Individuals who had lived in the area for at least 15 years to give valid information on 

the study  

4. The council of chiefs were interviewed as a group. 

The respondents included individuals of all gender and was dependent on the number of 

individuals who met the criteria above. 

QUESTIONNAIRE USED FOR THE STUDY 

Community Code: _______ Date of interview_________ Interviewers Name: ___________ 

DEMOGRAPHIC DATA 

Q1. Type of interview 

Individual [  ] Group [  ]     Number of Respondent in Group: ________  

Q2. Age group? 

25-34 [  ]  35-44 [  ]  Above 45   [  ] 
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TREE SPECIES UTILIZATION 

Q3. What forest tree species and parts are utilized for food in your community? 

Species name  Species part utilized for food 

Fruit Seed Nut Leaf Flower Others (specify) 
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Appendix 2.6.3. Null model Analysis and sensitivity test  

Appendix 2.6.3.1 Null model analysis 

Two null models were run to confirm that the trends in tree beta diversity and turnover with 

elevation observed in the edible and inedible species category were not due to chance: a fixed-

fixed model and an edible species classification randomization model. We used a fixed-fixed 

model (quasiswap) which keeps the row and column totals (site richness and species incidence) 

in a presence-absence matrix constant while randomising which species are found in each plot 

(Ulrich and Gotelli, 2013, 2010; Ulrich et al., 2007). A null presence-absence matrix was 

simulated, and the above analyses undertaken using these null data; the process was then 

repeated 999 times. We then compared the observed ordinary least square regression and 

Mantel correlation values with the random ones derived from the null models. This was done 

for βsor and βsim in both the edible and inedible species categories.  

A second null model was used to assess similarity in classified species communities relative 

to randomly assembled species classification in the regional species pool. This was generated 

by keeping the total number of edible and inedible species found in the regional species pool 

constant, but randomising which species were classified as edible and inedible. Again, 999 

null communities were generated, and the total beta-diversity and species turnover analyses 

were repeated using these null communities.    
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Appendix 2.6.3.2. Sensitivity analysis  

Two sensitivity tests were conducted to check the effect of the ground distance between plots 

in Erukut and those in Aking and Osomba on the βsor and βsim trends observed in the edible and 

inedible species categories. The elevational component of the pairwise dissimilarity index and 

turnover was replaced with the ground distance of plots from access roads, and the distance 

between plots. This was done to confirm if the beta diversity and species turnover trends 

observed could be attributed to elevation and not other factors such as distance of plots from 

each other or from nearest human settlement. Due to the distance between location “1” and the 

two other locations (2 and 3) (see Figure 1) and to correct distance outliers, the three plots in 

location “1” were omitted from the second sensitivity test (involving the distance between 

plots), leaving twelve plots in total. 
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Appendix 2.6.4. Analysis of covariance (ANCOVA) model  

The first model assessed the effect of elevation on the dependent variables (species density and 

total basal area per ha) while controlling the effect of species categories (edible and inedible) 

without accounting for interactions. The second model assessed the effect of elevation on the 

dependent variables (species density, and total basal area per ha) while controlling the effect of 

species categories (edible and inedible) and the interactions between the covariates (elevation 

and species categories). Model one and model two were then compared to determine if the 

interactions between covariates significantly affected the results. Significant result from the 

comparison indicates that model two (with covariate interactions) was used for the analysis 

while not significant results mean model one will be used (see supporting documents). 
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Appendix 2.6.4.1. Tree density 

Table 2.6.2. Results from ANCOVA with density (trees per ha) as dependent variable and 

elevation and tree category as covariates.  

Elements Sum Square Df F – value P - value 

Intercept 38146  1 19.630 0.000 *** 

Elevation              393   1 0.202 0.657 

Category             19344   1 9.954 0.004** 

Elevation:Category    9766   1 5.026 0.034 * 

Residuals            50526 26   

 

From the ANCOVA results (Table 2.6.2), the covariate, species category was significantly 

related to density (trees per hectare) (F(1,26) = 9.954, p < 0.01). There was no significant effect 

of elevation (m) on density (trees per hectare) after controlling for the effect of species category 

(F(1,26) = 0.202, p = 0.657). There was also a significant interaction effect between elevation 

and species category on tree density (F(1,26) = 5.026, p = 0.034). Thus, density of trees in 

inedible category are more likely to increase along elevational gradient than in edible species.  
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Appendix 2.6.4.2. Basal Area 

Table 2.6.3. Results from ANCOVA with Total BA (m2 per ha) as dependent variable and 

elevation and tree category as covariates.  

Elements Sum Square Df F – value P - value 

Intercept 127.28   1 1.500 0.231 

Elevation              150.81 1 1.778 0.194 

Category             814.82   1 9.605 0.004 ** 

Residuals            2290.45 27   

 

Table 2.6.4. Results from ANCOVA with Total BA (m2 per ha) as dependent variable and 

elevation and tree category as covariates with interaction.  

Elements Sum Square Df F – value P - value 

Intercept 1.62   1 0.019 0.890 

Elevation              268.55  1 3.215 0.085 

Category             414.86   1 4.967 0.035* 

Elevation:Category    118.70   1 1.421 0.244 

Residuals            2171.75 26   

From Table 2.6.4, species category, significantly effect on Total BA (F(1, 27)= 9.605, p = 0.004). 

There was no significant effect of elevation on Total BA after controlling the effect of species 

category (F(1, 27) = 1.778, p = 0.194). The results showed that the regression slope for both 

categories was not significant.   
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Appendix 2.6.5. List of species categorized as edible based on utilization of seeds, nuts, 

and fruits for food 

Table 2.6.5. Tree species categorized into edible and inedible species from focused group 

discussion with local communities 

  Family Genus Species 

1 Anisophylleaceae Poga Poga oleosa 

2 Annonaceae Xylopia Xylopia aethiopica 

3 Annonaceae Xylopia Xylopia quintasii 

4 Burseraceae Canarium Canarium schweinfurthii 

5 Burseraceae Dacryoides Dacryoides edulis 

6 Clusiaceae Allanblackia Allanblackia floribunda 

7 Fabaceae Angylocalyx Angylocalyx oligophyllus 

8 Fabaceae Brachystegia Brachystegia eurycoma 

9 Fabaceae Dialium Dialium guineense 

10 Fabaceae Parkia Parkia bicolor 

11 Fabaceae Pentaclethra Pentaclethra macrophylla 

12 Fabaceae Tetrapleura Tetrapleura tetraptera 

13 Fabaceae Treculia Treculia africana 

14 Guttiferae Garcinia Garcinia mannii 

15 Irvingiaceae Irvingia Irvingia gabonensis 

16 Lamiaceae Vitex Vitex doniana 

17 Malvaceae Cola Cola digitata 

18 Malvaceae Cola Cola hispida 

19 Malvaceae Cola Cola lepidota 

20 Malvaceae Cola Cola rostrata 
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Table 2.6.5 (cont.). Tree species categorized into edible and inedible species from focused 

group discussion with local communities 

  Family Genus Species 

21 Malvaceae Cola Cola verticillata 

22 Myristicaceae Pycnanthus Pycnanthus angolensis 

23 Olacaceae Caula Caula edulis 

24 Olacaceae Olax Olax subscorpioidea 

25 Phyllanthaceae Maesobotrya Maesobotrya barteri 

26 Phyllanthaceae Maesobotrya Maesobotrya dusenii 

27 Phyllanthaceae Uapaca Uapaca heudelotii 

28 Phyllanthaceae Uapaca Uapaca staudtii 

29 Polygalaceae Carpolobia Carpolobia alba 

30 Rutaceae Zanthoxylum Zanthoxylum zanthoxyloides 

31 Sapindaceae Blighia Blighia sapida 

32 Sapotaceae Baillonella Baillonella toxisperma 

33 Sapotaceae Chrysophyllum Chrysophyllum albidum 

34 Sapotaceae Chrysophyllum Chrysophyllum dumbeya 

35 Sapotaceae Chrysophyllum Chrysophyllum welwitschii 
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Appendix 2.6.6. Sensitivity tests and null model analysis to support the effect of human 

foraging along elevational gradient of beta diversity 

 

Figure 2.6.1. Pairwise dissimilarity trend showing total beta diversity (a,b c) and turnover 

(d,e,f) with elevation (m) for edible and inedible species in Oban Forest. Three plots that were 

furthest away were excluded from this analysis. The r values and confidence intervals (CIs) 

were generated from Mantel correlation tests. The line shows an ordinary least squares 

regression for BSor and for BSim for all labelled categories. 
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Figure 2.6.2. Pairwise dissimilarity trend showing total beta diversity (a,b c) and turnover 

(d,e,f) with distance (m) for edible and inedible species in Oban Forest. The r values and 

confidence intervals (CIs) were generated from Mantel correlation tests. The line shows an 

ordinary least squares regression for BSor and for BSim for all labelled categories. 
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Table 2.6.6. Results from partial Mantel’s test accounting for partial autocorrelation  

Category Index Partial Mantel r P-value 

All species βsor 0.423 0.002** 

All species βsim 0.430 0.001*** 

Edible βsor 0.086 0.199ns 

Edible βsim 0.043 0.301ns 

Inedible βsor 0.442 0.001*** 

Inedible βsim 0.446 0.001*** 
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Table 2.6.7. Two null model analyses of pairwise beta diversity dissimilarity and species 

turnover in edible and inedible species (βsor = Sorensen’s dissimilarity index, βsim = Simpson’s 

dissimilarity index (turnover), SES = standardized size effect, r = mantel correlation, ns = not 

significant at 5% probability level, *** = significant at 5% and 1% probability level, ** = 

significant at 5% and 1% probability level, ** = significant at 5% probability level) 

Category Index Observed Null model analysis 

r (confidence interval) P-value Mean SES P-value 

Null model one: Fixed-fixed null model 

Edible βsor 0.04(-0.06-0.15) 0.321ns 0.02 0.21 0.77ns 

βsim -0.00(-0.12-0.14) 0.50ns -0.03 0.20 0.80ns 

Inedible βsor 0.47(0.36-0.55) 0.001*** 0.01 4.82 0.001*** 

βsim 0.45(0.36-0.53) 0.001*** -0.00 4.85 0.001*** 

Null model two: Interspecies randomized null model 

Edible βsor 0.04(-0.06-0.15) 0.32ns 0.26 -2.22 0.029* 

βsim -0.00(-0.12-0.14) 0.50ns 0.26 -2.84 0.004** 

Inedible βsor 0.47(0.36-0.55) 0.001*** 0.35 1.90 0.06ns 

βsim 0.45(0.36-0.53) 0.001*** 0.35 1.90 0.13ns 
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Appendix 2.6.7. Testing for spatial autocorrelation  

Table 2.6.8. Results from Moran’s I test (Moran, 1950; Legendre et al., 2015) of spatial 

autocorrelation using residuals from linear regression model of tree density and elevation, and 

basal area (BA) and elevation. Moran’s I test of spatial autocorrelation was done for edible 

and inedible tree species categories (Hartig, 2017). The P-value was greater than 0.05 for all 

cases thus, the null hypothesis, H0: there is no spatial autocorrelation (Moran’s I = 0), was 

accepted. 

Category Regression Model Observed Expected sd P-value 

Edible Density ~ elevation -0.195193 -0.071429 0.179354 0.4902 

Inedible Density ~ elevation -0.045619 -0.071429 0.181751 0.8871 

Edible BA ~ elevation 0.078606 -0.071429 0.174006 0.3886 

Inedible BA ~ elevation -0.107592 -0.071429 0.179729 0.8405 
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Appendix 2.6.8. Data and R code availability  

Plot data that supports the findings of this study, list of tree species categorized into edible and 

inedible species, R codes used for the data analysis and generating presented results and 

metadata containing description of files and columns are available on DRYAD via the link 

https://datadryad.org/stash/share/1Y6cJQLWgMaaK1Fiy_doMYtwtJ7ljxskGuOPRvOWWpg. 

The file Asuk_et_al_raw_plot_data.csv contains plot data for the tree species inventory. 

Asuk_et_al_dbh_size_distribution.csv contains data on diameter at breast height (DBH) in cm, 

basal area (square meters), plot number (from 1 to 15) and species category (species). 

Asuk_et_al_plot_data_summary.csv contains summarized plot data, and 

Asuk_et_al_Biotropica.R is the R code for generating the results presented in the manuscript. 
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CHAPTER THREE: HUMAN FORAGING AFFECTS REGIONAL SCALE TREE 

SPECIES BIODIVERSITY PATTERNS IN TROPICAL WESTERN AFRICA 
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3.1.  ABSTRACT 

Anthropogenic activities are altering forest biodiversity and functions at local, regional, and 

global scales. However, the effects of low-intensity human activities on tropical forest 

ecosystems are not well understood. In this study, we examined the impact of human presence 

on the beta diversity of forest trees in the Nigeria-Cameroon forest region, focusing on the 

differences between edible and inedible species. We used tree data from five plots in Nigeria 

and 61 plots in Nigeria and Cameroon, collected between 2002 and 2019. We applied 

Generalized Dissimilarity Models (GDMs) to evaluate the pairwise beta diversity between plots 

and the role of selected environmental variables in explaining variation in beta-diversity, 

including the distance of plots to human presence, plot elevation, and stem density. Our analysis 

showed that human influence was a significant driver of beta diversity in the Nigeria-Cameroon 

forest region. The turnover component of total beta diversity accounted for most of the tree 

species dissimilarity. The variables important in driving total beta diversity included 

geographical distance, plot elevation, stem density, the distance of plots to human presence, 

and forest species composition. We also found that forest composition was driving the 

dissimilarity of total beta diversity of edible tree species, which was not seen in inedible species. 

Stem density was an important variable in the edible tree species models, but not the inedible 

species models. In contrast, the effect of elevation was significant in the inedible species models 

but absent in the edible species models. Our findings suggest that human influence is an 

important driver of beta diversity in the Nigeria-Cameroon forest region. The results highlight 

the importance of human presence in shaping tree species assemblages in African tropical 

forests.  
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3.2. INTRODUCTION  

Forest biodiversity and the functions it provides are rapidly changing at local, regional, and 

global scales due to large-scale habitat loss and modification from anthropogenic activities 

(Bush et al., 2015; Clement et al., 2015; Helmus et al., 2014; Jarzyna and Jetz, 2018; McMichael 

et al., 2017; Piperno et al., 2015; Stahl, 2015; Steadman, 1993). Anthropogenic activities such 

as selective harvesting, illegal logging, clear-cutting for agricultural purposes, foraging of 

fruit/seed for food, and conservation modify the species composition and distribution of species 

within the forest (Asuk et al., 2022; Benchimol and Peres, 2013; Elo et al., 2018). However, the 

impact of anthropogenic activities varies depending on the type, intensity and duration of the 

activity, the type of species, and the use of species for food, timber, medicine, and others 

(Adeyemi, 2016; Adnan et al., 2015; Aigbe and Omokhua, 2015; Asuk et al., 2023; Jimoh et 

al., 2012). For instance, forests subjected to clearcutting prior to the attainment of a “protected” 

or “reserve” status might be at different stages of regeneration and dominated by fast-growing 

pioneers (Aigbe and Omokhua, 2015). Also, as nomadic forest human communities migrate 

from place to place, there is often some level of deliberate planting of preferred tree species, 

thus affecting the species composition of the forest (Adnan et al., 2015; Aigbe and Omokhua, 

2015; Jimoh et al., 2012; McMichael et al., 2017). 

Studies of the effects of anthropogenic activities on forest biodiversity have focused primarily 

on the high intensity impacts, such as deforestation, fragmentation, and degradation (Alahuhta 

et al., 2017; Donoso et al., 2017; Gallardo-Cruz et al., 2009; García-Navas et al., 2020; Swenson 

et al., 2011). Growing evidence suggests that low intensity human activities such as foraging 

for food, selective species conservation, dispersal of seeds of desirable species (e.g., species 

with fruits eaten by humans) and enrichment planting may be modifying forest ecosystems 

more than previously thought, and thus potentially affecting the form of different ecological 
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and macroecological patterns (Asuk et al., 2023; Chaturvedi et al., 2017; McMichael et al., 

2017; Piperno et al., 2015; Singh et al., 2022). For example, the modern floristic composition 

and structure of some areas of natural forests in Amazonia have been linked to past low-

intensity human activities (e.g., plant cultivation, seed dispersal and propagation, and incidental 

domestication)  (McMichael et al., 2017). However, the general effects of low intensity 

anthropogenic impacts on spatial ecological patterns in tropical forests are not well understood 

(Jarzyna and Jetz, 2018; Anderson et al., 2011), likely due to the difficulty in measurement and 

quantification of such impacts (Asuk et al., 2023; McMichael et al., 2017; Piperno et al., 2015; 

Stahl, 2015). 

One way in which to assess the impact of low-intensity drivers on tropical forest composition 

is by measuring the effects of human activities such as foraging, preferential planting and 

deliberate conservation on the total beta-diversity of the forest (Asuk et al., 2023; Biswas and 

Mallik, 2011; Bush et al., 2015; Roberts et al., 2021; Singh et al., 2022). Beta diversity, which 

is the dissimilarity in species composition between two or more communities separated in space 

(Anderson et al., 2011; Pound et al., 2019), has been successfully used as an effective indicator 

for analysing changes in species composition along spatial and environmental gradients 

(Anderson et al., 2011; Jarzyna and Jetz, 2018, 2016), including for tropical forest trees 

(Fontana et al., 2020; He et al., 2020; Ruokolainen, 2002).  

While there have been numerous ecological studies of the beta diversity of forest tree species, 

these have mostly focused on identifying high intensity drivers of change in beta diversity at 

global scales, as well as mainly being focused on temperate forests, with less work focused 

purely on tropical forests (Aspin et al., 2018; Barnagaud et al., 2017; Biswas and Mallik, 2010, 

2011; Devictor et al., 2010; Fu et al., 2019; García-Navas et al., 2020; Herault et al., 2010; 
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Jarzyna and Jetz, 2016; Lueder et al., 2022; Swenson et al., 2011; Waddell et al., 2020; 

Zambrano et al., 2020).  

The importance of African Forests cannot be over emphasized; however, these forests remain 

grossly understudied. In this study, we use a beta diversity framework to evaluate the impact of 

low intensity anthropogenic activities on local and regional tree species composition in tropical 

west Africa. A previous local-scale study in Oban Forest, a tropical African rainforest located 

in Nigeria, assessed the impact of low-intensity anthropogenic activities on tree species 

diversity by comparing diversity patterns observed in tree species foraged for food and those 

that were not (Chapter 2)(Asuk et al., 2023). Findings from the study suggested that species 

composition, the species abundance distribution, beta-diversity, and turnover trends varied 

according to species utilization (i.e., those utilized for food by humans and those not utilized 

for food by humans).  This points to a potentially pervasive impact of low intensity human 

foraging practices on tropical forest composition. For example, humans may disperse the seeds 

of edible species across the landscape and conserve those trees by not cutting them down for 

timber (due to the fruits/seeds they produce being highly valued as sources of food). Similarly, 

regarding timber harvest, it has been reported that while trees are cut down, certain trees species 

with food value are left standing within the forest estate or in old, abandoned farm estates (Asuk 

et al., 2023; Ellis et al., 2021; Jansen et al., 2020). However, this study was focused on a single 

national park, and thus whether these effects are more prevalent across tropical ecosystems at 

large scales is unknown. The present chapter will address this research gap.  

Better understanding of the magnitude and dynamics of impacts from low intensity 

anthropogenic activities on beta diversity on a regional scale or how these activities interact 

with other drivers is essential if we are to accurately predict the future impacts of humans on 

tree community composition and dynamics (McMichael et al., 2017; Piperno et al., 2015; Stahl, 
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2015; Wayman et al., 2021). This study analyses beta diversity using a regional dataset of West 

African tropical forests which contains presence/absence information of tree species, 

categorized into edible (produce seeds and fruits eaten by humans) and inedible (not eaten by 

humans) species, to answer the following question: is there an influence of human presence on 

the beta diversity of forest trees at a regional scale and does this influence differ between those 

species used for food and those which are not? It is expected that the impact of humans on the 

distribution and composition of tree species observed at a local scale (see Chapter Two - Asuk 

et al. 2023) should sum up to what can be seen at the regional scale. However, this might vary 

based on the level of access human have to the regional forest.  
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3.3. MATERIALS AND METHODS 

3.3.1. Plot and species composition data 

The study was carried out using tree data from plots established in the tropical forests of Nigeria 

and Cameroon, bordering countries located in the West and West-Central regions of Africa 

respectively (Figure 3.1). The forests of both countries are contiguous via their common borders 

(Nigerian National Park Service, 2019; Enuoh and Ogogo, 2018). Species composition data 

used for the study comprised single census tree-by-tree samples collected between 2002 and 

2019 from five plots established in Nigeria by Asuk et al. (2022) and 61 plots established in 

Nigeria and Cameroon, accessible from the forestplots.net database (Lopez-Gonzalez et al., 

2011, 2009). The selected plots in Cameroon all measured 100m x 100m except for one that 

measured 40m x 100m (see Appendix 3.7.1, Table 3.7.1). The plots in Nigeria were smaller 

than those in Cameroon, measuring 40m x 120m (see Appendix 3.7.1, Table 3.7.1).  

The plots were grouped into four spatial clusters based on their spatial proximity (Fig. 3.1). The 

associated plot metadata also included information on elevation, average plot slope, longitude, 

and latitude, stand density, forest status and forest composition. Elevation was recorded as the 

elevation of plots in meters above mean sea level as recorded during field inventories. Average 

plot slope was the slope of the plot at 20m scale into intervals: flat (0 – 2 degrees), almost flat 

(2 to 5 degrees), slightly sloping (5 to 10 degrees), moderately sloping (10 to 20 degrees) and 

steep (greater than 20-degree slope). Geographic data consisted of information on longitude 

and latitude in meters (UTM) collected during forest inventories (used for generating 

geographic distance between plots). Stand density, which refers to the number of living 

individual tree stems per unit area was generated by counting the total number of stems in each 

plot. To produce forest composition data, the composition of each plot was classified by 



68 

 

forestplots.net as either mixed forest, monodominant, or savanna (see Appendix 3.7.1, Tables 

3.7.2 and 3.7.3). Forest status data contained information about the status of the forest within 

the plots in relation to past or present anthropogenic disturbance as described by forestplots.net 

e.g., old-growth, secondary forest, logged, burned and other mixed classifications (Lopez-

Gonzalez et al., 2011).  

 

 

Figure 3.1. Map of Nigeria and Cameroon showing the location of the 66 plots used for the 

study. The plots were grouped into four spatial clusters (blue broken lined circles), numbered 

1 to 4. 

 

3.3.1.1. Plot selection criteria 

To reduce any area effect on tree composition and thus ensure justifiable pairwise comparison 

of the plot data, differences in plot dimension/area (i.e., plots that were much larger/smaller 

compared to other plots) were reduced. Data from the last tree censuses collected between 2002 
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and 2019 were filtered from the multiple census tree data for the study. We then selected plots 

that fell between the size range of 40 by 100 m and 100 by 100 m with mixed and 

monodominant species composition, in old-growth, and secondary forest ecotones. 

Specifically, for the Nigerian plots, five clusters of three adjacent plots that were below 100 m 

by 100 m were merged into plots of size 40 m by 120 m (see Figure 2.1 in Chapter two for more 

details). This created 66 plots across the whole study region, with an average size of 94.55 m 

(std. 17.38 m) by 101.52 m (std 5.33 m) and containing a total of 28,299 individual trees. All 

other plots that did not meet the above criteria were discarded.  

As outlined above, due to the geographical distances between plots, the 66 plots were further 

grouped into four clusters based on the geographic/natural proximity of plots. Cluster one had 

three plots, cluster two had 25 plots, cluster three had seven plots and cluster four had 31 plots. 

The distinct cluster groups were coded from 1 to 4 (Fig. 3.1) and cluster identity included as a 

variable in the Generalized dissimilarity models (GDMs) to check the effect of cross-cluster 

variation on the models’ outcome. Furthermore, the GDMs were also run with data from each 

of the four cluster groups individually to compare model outcomes. 

3.3.2. Species categorization 

Tree species were categorized into those with fruits, nuts and seeds that are edible and those 

that are inedible for human consumption. The categorization was based on a combination of 

structured questionnaires (see Appendix 3.7.2) administered to four forest dependent / support 

zone communities within Oban Forest in Nigeria (Chapter 2; Asuk et al., 2023), and secondary 

data on tree species utilization collected from online databases. These online databases included 

Useful Tropical Plants database (https://tropical.theferns.info/), PlantUse database 

(https://uses.plantnet-project.org/en/), Royal Botanical Gardens Kew/Plants of the World 
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Online database (https://powo.science.kew.org/), PlantZAfrica (http://pza.sanbi.org/), World 

Agroforestry (https://apps.worldagroforestry.org/usefultrees/), and ebooks and journal 

publications. Only trees species that were identified to produce fruits, nuts and seeds consumed 

by humans were classified as edible. All other trees species were classified as inedible. 

3.3.3. Human influence/presence 

Two variables were used as proxies to assess the impact of humans on the tree species 

composition in the region (see more details in Appendix 3.7.3): 

1. Distance to the nearest anthropogenic edge (DNAE), calculated as the straight-line 

distance from the plot to the nearest anthropogenic edge of the forest at the time of the 

census (see more details in Fig. 3.7.1 and 3.7.2 in Appendix 3.7.3). Information on the 

nearest anthropogenic edge was available for plots in the Oban Division dataset, but few 

other plots in the forestplots.net dataset. For plots without this information, open street 

map and Google Earth were used to measure a straight-line distance from the GPS 

location of the plots to the nearest sign of anthropogenic edge (e.g., farm, settlement, 

other anthropogenic disturbance). DNAE was used as an indicator to measure the 

possible presence of high impact human activity in the region. 

2. Distance to the closest human presence (DCHP) – calculated as the straight-line distance 

from the GPS centre point of the plot to the closest identified footpaths, often used to 

forage for food and for hunting, thus it was used as an indicator for low-impact human 

activities. The human presence measurement was generated from Open Street Map and 

validated on Google Earth. Because we had data from censuses carried out in different 

years, the images on Google Earth were adjusted to coincide with the census year before 

a measurement was taken (see more details in Fig. 3.7.1 and 3.7.2 in Appendix 3.7.3). 
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DCHP generally had shorter distances than DNAE and is arguably a more accurate 

measure of low impact human presence in the forest region. 

3.3.4. Data analysis 

The data analysis involved three main steps: the generation of a presence-absence matrix of tree 

species for each plot, calculation of Sorenson’s pairwise beta-diversity between plots 

(partitioned into nestedness and turnover components), and the use of Generalized Dissimilarity 

Models (GDMs) to identify variables that drive spatial beta diversity. However, the nestedness 

models failed as none of the explanatory variables explained any variation and, therefore, they 

were excluded from further discussion. The data were analysed using R (R Core Team, 2022).  

3.3.4.1. Presence-absence matrix and beta-diversity calculation 

For each plot, a presence-absence matrix was constructed separately for all species, edible 

species, and inedible species. We then computed the pairwise dissimilarity (beta diversity; 

Sorensen index) between each plot and every other plot within the dataset for each presence-

absence matrix. We then partitioned the pairwise dissimilarity into the turnover (which is 

independent of nestedness / richness differences) and nestedness components. All beta-diversity 

components were calculated using the “betapart” package in R (Baselga et al., 2018; R Core 

Team, 2022).  

3.3.4.2. Generalized Dissimilarity Models (GDM) 

GDMs and variance partitioning are useful tools for disentangling what proportion of 

dissimilarity between communities is due purely to the effect of distance between those 

communities, and what proportion is explained uniquely by environmental (including 
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anthropogenic) differences (Buzatti et al., 2019; Guerin et al., 2013, 2021; He et al., 2020; 

Wayman et al., 2021).  

The “gdm” R package (Ferrier et al., 2007; Mokany et al., 2022) was used to fit the GDMs, 

which involves modelling the total pairwise beta diversity and the turnover component against 

the selected environmental variables to assess which predictor variables drive spatial taxonomic 

dissimilarity in tree species community composition between the plots. GDMs utilize the 

pairwise dissimilarity from beta-diversity matrices as the response variable and transform this 

dissimilarity to allow for meaningful comparison with combinations of predictor variables on 

different scales in the form of site pairwise distances (Mokany et al., 2022). A linear 

combination of I-spline basis functions fit using non-negative least squares regression was used 

to transform each predictor variable in the GDM (Mokany et al., 2022). The spline function of 

each predictor variable is relatively flexible in shape. However, because GDMs assume that 

dissimilarity can only increase between two sites that become more different in their predictor 

variables, I-splines are constrained to increase monotonically (Mokany et al., 2022).  

We fitted separate GDM models for both total beta diversity and turnover calculated from each 

of the three presence-absence matrices (all species, edible species only, non-edible species 

only)(Mokany et al., 2022). These models included all the environmental variables, plot level 

variables and a measure of distance between each plot. The direct impact of each variable along 

the dissimilarity gradient was assessed through the application of a permutation and backwards 

selection approach, enabling the calculation of significance and variable importance (applied 

using the function ‘gdm.varImp’ within the ‘gdm’ package (Mokany et al., 2022; Ferrier et al., 

2007)). This approach first fits a model using all the predictor variables unpermuted (model 1). 

The rows are then permuted 100 times and a separate GDM is fitted to each. Deviance between 

the unpermuted and permuted models is then calculated. The process is then repeated for each 
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individual predictor, whilst holding the others constant, to calculate importance scores and 

significance for each one. The least significant predictor is then dropped, and the permutation 

is repeated with the remaining predictors until a model is found where all those remaining are 

significant (p < 0.05; model 1).  

Geographic distance (the Euclidean distance between sites based on the x and y coordinates) 

was included as a predictor to account for the direct or indirect likelihood of distance-induced 

dissimilarity between site-pairs through dispersal limitations (Mokany et al., 2022). However, 

dissimilarity driven by environmental gradients could get suppressed or wrapped up in the 

dissimilarity from distance between sites, leading to the variance explained by each to be 

shared. Therefore, we fitted two more models for each response: one containing only 

geographical distance (model 2) and one with only environmental predictors (model 3). The 

shared variance between the environmental predictors and geographical distance was generated 

using the formula (Ray-Mukherjee et al., 2014) below. 

𝑉𝑠 ⁡= ⁡𝑉𝑓𝑢𝑙𝑙 ⁡− ⁡(𝑉𝑓𝑢𝑙𝑙 ⁡− 𝑉𝑔) ⁡− ⁡(𝑉𝑓𝑢𝑙𝑙 ⁡− 𝑉𝑒)   Equation (1) 

where Vs is the shared variance explained between the environmental and geographic variables, 

Vfull is the total variance explained by the model (model 1), Vg is the variance explained by the 

model containing only geographic variables (model 2), and Ve is the variance explained by the 

environmental model only (model 3).   



74 

 

3.4. RESULTS  

Across the 66 plots, there were a total of 28,299 individual sampled trees. Gamma diversity 

across the study area was 708 species in 316 genera, out of which, from a view of human 

consumption, 208 species were classified as edible, and 500 species were classified as inedible. 

3.4.1. Taxonomic beta diversity of the region partitioned into turnover and nestedness 

components 

An alpha diversity of 236 for edible species and 472 for inedible species with 11097 and 17202 

stems respectively was observed in the Nigerian-Cameroon forest (Table 3.7.4 in Appendix 

3.7.4). The average total pairwise beta diversity between sites was similar (Figure 3.2) for all 

species (0.739 ± 0.125), edible species (0.729 ± 0.142) and inedible species (0.746 ± 0.128). 

The turnover component of beta diversity was the main determinant of the overall beta-

diversity, while nestedness contributed a very small proportion in the region. For all species, 

turnover (0.669 ± 0.148) accounted for 90.5% of total beta diversity while nestedness resultant 

dissimilarity (0.070 ± 0.077) was responsible for 9.5%. For inedible species, turnover (0.672 ± 

0.157) was responsible for 90.1% of total beta diversity while nestedness (0.074 ± 0.085) 

described 9.9% of total beta diversity. Similarly, 89% of total beta diversity for edible species 

was due to turnover (0.649 ± 0.169) and 11% was due to nestedness resultant dissimilarity 

(0.080 ± 0.082).  

3.4.2.  GDM results   

As expected, Model 1 (a combination of geographic distance and environmental variables) had 

the highest variance explained in all, inedible and edible and species groups with 40.9%, 36.8% 

and 31.8% of variance explained in total beta diversity respectively. Similarly, Model 1 also 
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recorded highest percentage of variance explained in turnover (species replacement) inedible, 

all and edible species group with 43.5%, 41.6% and 27.74% (Table 3.1). Model 3 (models run 

with environmental variables only) recorded the second highest variance explained for total 

beta-diversity with 30.9%, 24.8% and 23.1% (all, inedible, and edible species group 

respectively), while Model 2 had the least variance explained in total beta-diversity, between 

18.3%, 17.4%, and 13.2% for all, inedible, and edible species group respectively (see Table 

3.1). A low shared explained variance between geographical distance and environmental 

predictors was observed, with percentages ranging from 8.3%, 5.4% and 4.57% for dissimilarity 

due to total beta diversity and 5.85%, 5.8%, and 4.20% in dissimilarity due to turnover in all, 

inedible, and edible species group respectively (see Table 3.1).  

 

 

Figure 3.2. Boxplots of pairwise spatial dissimilarity of all (a), edible (b) and inedible (c) tree 

species found in the region. Plots display total beta-diversity (Total) as well as the turnover 

(Turn) and nestedness (Nest) components.  
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Table 3.1. Results from the generalized dissimilarity models analysing the spatial dissimilarity 

between forest plots. “Total” refers to total Sorenson’s beta diversity while “Turn” refers to 

the Simpson’s turnover partition of beta diversity. NA values indicate where variables were 

non-significant within models. Shared variance (%) was calculated from the variance 

explained by the full model, the geographic only model, and the environment only model. Model 

1 (all the predictor variables), Model 2 (only geographical distance) and Model 3 (only 

environmental predictors) rows show the percentage deviance explained for the models.  

  

 Groups All Edible Inedible 

  Total Turn Total Turn Total Turn 

GDM Deviance 104.19 127.37 157.09 208.10 120.16 142.20 

Null Deviance 176.20 218.03 230.25 287.99 190.19 251.47 

Intercept 0.66 0.50 0.66 0.42 0.71 0.48 

Model 1 40.87 41.58 31.77 27.74 36.82 43.45 

Model 2 18.26 17.30 13.22 13.19 17.38 15.54 

Model 3 30.89 30.13 23.12 18.75 24.83 33.70 

Shared Variance (%) 8.28 5.85 4.57 4.20 5.39 5.79 

Variable importance       

Geographic (m) 24.38 27.51 27.18 32.36 32.54 22.42 

Elevation 19.83 25.23 NA NA 19.99 26.98 

Stem density (stems/ha) NA NA 19.31 15.04 NA NA 

DNAE (m) NA NA NA 15.24 NA NA 

DCHP (m) 18.35 24.34 14.07 24.01 21.54 26.65 

Forest composition 18.25 NA 26.86 NA NA NA 
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3.4.2.1. Drivers of spatial taxonomic beta diversity across all, edible and inedible species  

A total of six variables (geographic distance, elevation, stem density, DNAE, DCHP, forest 

composition) out of the eight variables imputed in model 1 significantly affected beta-diversity 

at varying levels of importance across all groups (All, Edible and Inedible) (Table 3.1). 

All species models 

In the All species model (All; Table 3.1), geographical distance, elevation, DCHP and forest 

composition were the four significant predictors of total beta diversity in the region. Except for 

turnover in inedible species, geographical distance had the highest variable importance in all 

beta diversity and turnover models (Table 3.1). Geographical distance – which had a similar 

effect on total beta diversity across all the species groups (all, edible, inedible) - had a steeply 

rising trend (as indicated by the I-splines) which gradually reduced close to its peak (between 

200 and 300 km) and then levelled off (Figure 3.3a). In decreasing order of variable importance, 

the effect of elevation was second with a gentle trend that levelled off between 500 m and 700 

m followed by a sharp continuous linear increase (Figure 3.3a), although this increase should 

be interpreted with caution as it is based on a very small number of plots. DCHP was the third 

most important predictor of changes in total beta diversity in the All species model, with a small 

but sudden increase in the first 20 meters followed by a continuous linear increase; however, 

this linear increase was due to only four points (Figure 3.3a). Forest composition was the least 

important significant predictor in the All model and had a gentle linear relationship with total 

beta diversity (Figure 3.3a). The turnover resultant beta diversity model had three significant 

variables: geographical distance, elevation and DCHP, in order of decreasing importance 

(Figure 3.4a). The trends in these variables, as shown by the I-splines, were similar to those 

observed for total beta diversity.  
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Figure 3.3. Plotted I-splines of the three variables with highest importance scores from the 

GDMs analysing the spatial relationship between geographic gradients, environmental 

variables, and tree species composition. Plots on row (a) are the Total Sorensen’s beta-

diversity for the entire region, (b) are the Total Sorensen’s beta-diversity for the edible species 

category, and (c) Total Sorensen’s beta-diversity for the inedible species. Plots are organized 

from left to right in order of increasing importance.  
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Figure 3.4. Plotted I-splines of the three variables with highest importance scores from the 

GDM analysing the spatial relationship between the turnover component of Sorensen’s beta 

diversity and geographic gradients, environmental variables, and tree species composition. 

Plots on row (a) are for all species, (b) are for the edible species category, and (c) for the 

inedible species. Plots are organized from left to right in order of increasing importance.  

 

Edible species 

For edible species, total dissimilarity in community assemblage was significantly influenced by 

geographical distance, forest composition, stem density and DCHP, in order of decreasing 

variable importance (Table 3.1). The I-splines indicated that the relationship between 

geographic distance and total beta diversity had an initial steep linear trend that then plateaued. 

Forest composition exhibited a slight linear trend, while stem density had a steeper linear trend 

(Figure 3.3b). DCHP exhibited a very steep initial rise, followed by a continuous linear increase 

(Figure 3.4b). The turnover resultant beta-diversity of edible species was driven by four 

significant variables: geographical distance (most important variable), DCHP, DNAE and stem 
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density (least important variable) (Table 3.1), although DNAE and stem density had similar 

importance scores. The I-splines indicated that the relationship between geographic distance 

and total beta diversity had an initial steep linear trend that then remained constant at the peak 

just as seen in total beta diversity. Both DCHP and DNAE exhibited positive roughly linear 

relations with beta diversity, however caution should be taken as most of the trend in DCHP 

was driven by four points (Figure 3.4b).  

Inedible species 

The models for total and turnover resultant beta-diversity using the inedible species data 

produced the same three significant predictors of dissimilarity, but with varied importance 

values (Table 3.1). The significant predictors with the highest variable importance for the total 

beta diversity of inedible species were geographic distance, DCHP and elevation, in order of 

decreasing importance. Geographic distance increased (based on the I-splines) with a steep 

linear trend and then remained constant at its peak. DCHP exhibited a very steep initial rise 

followed by a continuous linear increase while elevation showed a gentle trend that leveled off 

at about 600m followed by a sharp continuous increase (Figure 3.3c). Inedible turnover 

resultant beta-diversity models showed that elevation had the highest variable importance, 

followed by DCHP and geographical distance. However, the variable importance values for 

DCHP (26.65) and elevation (26.98) were similar.   

Total beta diversity models for edible and inedible species had two common variables that were 

significant (geographical distance and DCHP). While there were differences in the variable 

importance hierarchy, the maximum I-spline values for these variables were higher when using 

the inedible species data than for the edible data.  
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3.4.2.2. Effects of spatial clusters on the model outcome  

When plot cluster (Table 2.7.5 to 2.7.6 and Figure 3.7.3 to 3.7.4 in Appendix 3.7.5) was 

included as a predictor in the models, there was an increase in the overall GDM deviance and 

a slight decrease in the variance explained for total beta diversity in each model group (all, 

edible and inedible species). When attempting to the run the GDMs for individual clusters, the 

models for cluster one, two and three did not run due to too few data points. In cluster four, 

there was a significant increase in variable importance of human influence variables (DCHP 

and DNAE) as predictors of the total beta diversity of inedible species, while they were less 

important for edible species (Figure 3.7.5 to 3.7.6 in Appendix 3.7.5).  
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3.5. DISCUSSION 

3.5.1. Drivers of West African tropical forest tree beta diversity 

The turnover component of total beta diversity accounted for most of the tree species 

dissimilarity observed in the region, meaning that richness was relatively similar across plots 

and that most of the differences in composition were due to the replacement of species across 

space. This could be attributed to processes such as dispersal limitation, competition, and 

environmental filtering along environment gradients (He et al., 2020; Jiang et al., 2021; Verrico 

et al., 2020). The pool of important variables driving total beta diversity across the region were 

geographical distance, plot elevation, stem density, distance of plots to human presence 

(DCHP), and forest species composition. 

The unique proportion of variance explained in the models by environmental variables alone 

was higher than that explained uniquely by geographical distance, thus highlighting the 

importance of environmental filtering in the tree species community composition of the region. 

Similar studies in the Cuitzeo basin, Mexico, revealed that environmental heterogeneity has 

greater impact on beta-diversity due to niche-based processes than geographical distance (Vega 

et al., 2020). Another study, conducted in Hainan, China, demonstrated that environmental 

variables including temperature, precipitation and evapotranspiration had far more significant 

effects on tree species compositional dissimilarity than geographical distance, due to niche-

based processes rather than dispersal limitation (He et al., 2020). However, He et al. (2020) did 

not include the partitioning of geographical distance from environmental variables, as done in 

this chapter, to control for the possibility of shared effects of both (Mokany et al., 2022). The 

effects of individual groups of variables will now be discussed in turn. 
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3.5.2. The impact of human influence on regional beta-diversity 

Human influence, as indicated by DCHP (distance to closest human presence), was found to be 

one of the important indicators of total and turnover resultant beta diversity across all the 

species categories in the study area, while DNAE was only a significant indicator of turnover 

in edible species (although low compared to other variables). This suggests that the proxy for 

high impact human activities were driving the turnover resultant beta diversity of edible species 

but not inedible species.  

The type and intensity of human activities can have diverse impacts on the abundance and 

distribution of forest tree species, depending on how the species are utilised by humans (Asuk 

et al., 2023; Ellis et al., 2010, 2021). For example, as pointed out by Socolar et al. (2016), some 

human activities such as logging, agriculture, hunting, and foraging for food could have varied 

degrees of direct and indirect impact on the species distribution and abundance dynamics of a 

forest ecosystem (Jara-Guerrero et al., 2021). Humans typically cover relatively shorter 

distances for intense forest utilization activities, such as harvesting timber and converting the 

forest into arable land (Asuk et al., 2023). In contrast, studies have shown that humans can 

cover wider ground distances when foraging for fruits, seeds, and nuts (Asuk et al., 2023; Levis 

et al., 2017; Roberts et al., 2021; Scerri et al., 2022). However, the level and intensity of these 

impacts from anthropogenic activities could be dependent on the region (rural or semi-rural or 

urban), duration of exposure to these activities, level of forest dependence on the forest and 

type of biome (Asuk et al., 2023; Fotang et al., 2021; Williams et al., 2020; Yuan et al., 2022). 

It is worth noting that that there is an interaction between human influence on the forest and 

elevation: human influence tends to be more intense at lower elevations, with a transition to 

low-intensity activities as elevation increases (Asuk et al., 2023; Malizia et al., 2020; Yano et 

al., 2021). This interactive elevation-human impact on the forest could imprint varied effects 
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on elevational patterns of the beta diversity of edible and inedible species alike (Asuk et al., 

2023; Malizia et al., 2020; Yano et al., 2021).  

It is important to note that there are some limitations to consider with regards to using this 

dataset for assessing the impact of human influence on tree species dissimilarity in the Nigeria-

Cameroon forest region. These include the lack of historical data on the forest, which makes it 

difficult to assess the extent of past human impact on the forest. In addition, the dataset is limited 

in terms of the number of plots and the size of the study area, which may not be very 

representative of the entire region. Despite these limitations, and based on what is currently 

possible with the data available, our findings suggest that human influence is an important 

driver of beta diversity in the Nigeria-Cameroon forest region. As pointed out, the type of 

intensity and duration of the different human activities can exert a different response on the beta 

diversity of different species. Taking the results of this chapter with those from Chapter 2 

indicates that these processes are apparent at both local and regional scales in West African 

tropical forests. More broadly, findings from other studies, e.g. those undertaken in the 

Amazon, have suggested that the selection and stewardship of desired tree species by 

indigenous populations over time might leave strong imprints on patterns of forest composition 

(Asuk et al., 2023; Levis et al., 2017; Roberts et al., 2021; Scerri et al., 2022). 

3.5.3. Effect of forest composition and tree density on regional beta diversity 

The forest in the studied region cuts across two composition types: mixed forest and 

monodominant forest characterized by one single species making up more than 60% of the tree 

canopy (ter Steege et al., 2019). According to ter Steege et al. (2019),  the main identified reason 

for monodominance in tropical forest was coppicing and edaphic factors. Coppicing, which can 

be natural or harvest-induced, occurs when a sprout or regrowth is formed at the tree’s base or 
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on its root (ter Steege et al., 2019). Forest composition was driving the dissimilarity due to the 

total beta diversity of edible tree species, an effect not seen in inedible species. This indicates 

that the composition and diversity of edible species might differ between monodominant and 

mixed forests. Multiple factors can influence these differences, including the history and 

frequency of forest disturbance, successional processes, varying distances of plots from high-

intensity and low-intensity human activities, differences in topography, climate and soil 

conditions (Williams et al., 2020; Fotang et al., 2021; Yuan et al., 2022; Asuk et al., 2023). 

Stem density was one of the important variables in the edible tree species models, but not in the 

inedible species models. In theory, high stem density in tropical forests can create more 

complex and heterogeneous microhabitats, such as gaps, understory, and canopy layers, 

supporting different tree species with unique environmental requirements. This could increase 

beta diversity by promoting the coexistence of a greater number of species with different 

ecological niches. For edible species that produce food for humans, the observed effect of stem 

density on total beta may be more pronounced due to the way they are typically managed and 

cultivated. Low tree stem density can translate to a reduction in abundance and diversity, and 

limit dispersal and colonization, leading to a decrease in total beta diversity of edible trees 

species in tropical forests. The intensity of human activities can also exacerbate these effects. 

Conversely, inedible species may have a lower susceptibility to alterations in tree stem density 

and habitat fragmentation since they might have greater adaptability to survive in smaller and 

isolated habitats (Bailey et al., 2010; Fahrig, 2003; de Lima Filho et al., 2021). 

There is a known positive relationship between alpha diversity and stand structural 

heterogeneity (either tree DBH inequality, height inequality, or stand density) (Abbasi et al., 

2023; Godlee et al., 2021; Yano et al., 2021). For example, studies in the Amazon Forest have 
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shown that alpha diversity increases with an increase in stem density (ter Steege et al., 2003). 

However, nestedness was not a significant driver of beta diversity in this study and the stem 

density of trees in the edible species category is markedly lower than those in the inedible 

category. Thus, the relationship between tropical forest tree stem density and beta diversity is 

complex and dependent on various factors (such as intensity of human activities, elevation, 

distance between plots, soil and others), and therefore further in-depth empirical studies might 

be necessary to fully understand the underlying mechanisms linking stem density to beta-

diversity in tropical forests.  

3.5.4. Effects of spatial distance and elevation on the beta diversity of tree species in the 

region 

Although the combined effect of the environmental variables (see model 3 in Table 1) was 

greater than geographical distance (see model 2 in Table 1), in the overall model (model 1), the 

geographical distance between sites exerted a stronger individual effect on the pairwise 

dissimilarity between plots than any other single environmental variable (except for the 

turnover of inedible species, where elevation had the strongest effect). This evidence suggests 

that large geographical distance between plots could act as a biogeographical barrier, inducing 

some level of dispersal limitation in species, driving turnover (Abiem et al., 2022; He et al., 

2020; Wayman et al., 2021; Yang et al., 2015; Zahawi et al., 2021). Spatial distance between 

plots was generally also the most important individual variable driving the pairwise 

dissimilarity of species in plots for edible and inedible species alike (Asuk et al., 2023; Jimoh 

et al., 2012; Socolar et al., 2016).  

Elevation is known to play a crucial part in the composition and spatial distribution of tree 

species in forest ecosystems (Asuk et al., 2023; Malizia et al., 2020; Yano et al., 2021). 
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Elevation was a significant variable in many of the models, which makes sense given the study 

area is generally characterized as having rough terrain with strong elevational gradients. 

Elevation exerts varying niche-based effects on species, due to changes in climate, soil, the 

identity of seed dispersers, and the activities of humans along the elevational gradient (Adnan 

et al., 2015; Asuk et al., 2023; Verrico et al., 2020). These changes result in strong 

environmental filtering and the replacement of species along the gradient (Adeyemi, 2016; 

Aigbe and Omokhua, 2015; Asuk et al., 2023). Although these forests are believed to be intact 

at the point of the census, any past timber harvesting would likely have been restricted to lower 

elevations (Adnan et al., 2015; Asuk et al., 2023; Socolar et al., 2016; Verrico et al., 2020), 

which will have increased the effect of elevation on dissimilarity  (Asuk et al., 2023; Ellis et 

al., 2010)In addition, the aforementioned elevation-human activities interaction (Asuk et al., 

2023; Yano et al., 2021; Malizia et al., 2020) could also result in an uneven distribution of other 

activities along elevational gradients, such as nomadic resettlement of human communities and 

farming, all of which could potentially affect the pairwise turnover between plots (Asuk et al., 

2023; Verrico et al., 2020; Adnan et al., 2015; Aigbe and Omokhua, 2015). However, low 

intensity activities (e.g., foraging for food) may occur across the elevational gradient, leading 

to more similar species composition across the gradient (due to humans spreading the seeds of 

edible species; (Jansen et al., 2020; Williams et al., 2020; Guo et al., 2022; Scerri et al., 2022; 

Asuk et al., 2023) and explaining why elevation was not a significant predictor in the edible 

species models. 
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3.6. CONCLUSION 

This study explored the determinants of the beta diversity of tree species in the Nigeria-

Cameroon forest region, with a particular focus on the impact of human influence. This chapter 

builds on findings from chapter two to test the impact of humans on beta diversity patterns at a 

regional scale. The results revealed that the turnover component of total beta diversity 

accounted for most of the tree species dissimilarity observed in the Nigeria-Cameroon forest 

region, likely driven by processes such as dispersal limitation, competition, and environmental 

filtering. The pool of variables important for driving total beta diversity across the region 

included geographical distance, plot elevation, stem density, distance of plots to human 

presence, and forest species composition, with the proportion of variance explained by 

environmental variables alone being higher than that explained by geographical distance. This 

points to the importance of environmental filtering in the tree species community composition 

of the region.  

Forest composition was driving the total beta diversity of edible tree species but not inedible 

species. Although the combined effect of environmental variables was greater than 

geographical distance, in the overall model, the geographical distance between sites exerted a 

stronger individual effect on the pairwise dissimilarity between plots than any other single 

environmental variable. A difference was also seen in the effect of elevation, which was absent 

in the edible species model, but a significant driver of the dissimilarity of inedible species, 

consistent with the findings of a previous, more geographically limited study in Nigeria 

(Chapter 2; Asuk et al., 2023). The impact of elevation and distance was attributed to niche-

filtering along elevational gradients as well as the confinement of differential impacts of human 

activities along the elevational gradient.  
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This study provides valuable insights into the drivers of tree species dissimilarity in the Nigeria-

Cameroon forest region, highlighting the importance of environmental filtering, forest 

composition, spatial distance, and human influence. We had expected that humans might 

decrease tree species dissimilarity of edible species locally within plots close to human 

settlements by spreading edible species, and this could then increase the dissimilarity between 

plots, particularly those far away from human settlements. However, if this was the case, we 

would expect to see higher dissimilarity for edible than for non-edible species, which was not 

observed, thus pointing to the contribution of other variables to the regional species assemblage 

dynamics.  

However, further research is needed to assess the extent and nature of this impact more 

definitively, such as establishing a link between dissimilarity in species assemblages with tree 

species traits related to early and late successional species (such as wood density or individual 

maximum growth rate) (Donoso et al., 2017; García-Navas et al., 2020; Yang et al., 2015; 

Zambrano et al., 2020). Also, a comparison between logging disturbance and foraging 

disturbance could be very helpful in understanding this relationship. A long-term evaluation of 

the socio-economic importance of harvesting and foraging to the forest dependent human 

communities combined with a measure of the number of trees removed, number and duration 

of foraging visits made to the forest and an assessment of the forest ecosystem would provide 

a more in-depth understanding of human impacts on forest composition.  

Further research should also consider the use of more comprehensive datasets and advanced 

remote sensing technologies, such as LiDAR and high-resolution satellite imagery (which the 

region currently lacks), to assess forest structure, and the impact of human influence more 

accurately. This would provide a more comprehensive understanding of the relationship 

between human activities and tree species dissimilarity, as well as enable the assessment of the 
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impact of other factors such as climate change, and natural disturbances. Additionally, this 

study can inform the development of effective conservation and management strategies focused 

on the sustainable use of resources for forest-dependent livelihoods.   



91 

 

3.7. APPENDICES 

Appendix 3.7.1. Information on the dimension, size, census year of plots establishment 

and plots located in different forest compositions 

Table 3.7.1. Information on tree data from plots used for the study including location of plot 

code, country of location, dimension, and year censused.  

Plot Code Country Minimum 

Dimension (m) 

Maximum 

Dimension (m) 

Ground Area (sq. 

m) 

Year Censused 

AKG-01 Nigeria 40 120 4800 2019 

AKG-02 Nigeria 40 120 4800 2019 

BIS-01 Cameroon 100 100 10000 2013 

BIS-02 Cameroon 100 100 10000 2013 

BIS-03 Cameroon 100 100 10000 2013 

BIS-04 Cameroon 100 100 10000 2013 

BIS-05 Cameroon 100 100 10000 2013 

BIS-06 Cameroon 100 100 10000 2013 

CAM-01 Cameroon 100 100 10000 2012 

CAM-02 Cameroon 100 100 10000 2012 

CAM-03 Cameroon 100 100 10000 2002 

DJK-01 Cameroon 100 100 10000 2019 

DJK-02 Cameroon 100 100 10000 2019 

DJK-03 Cameroon 100 100 10000 2019 

DJK-04 Cameroon 100 100 10000 2019 

DJK-05 Cameroon 100 100 10000 2019 

DJK-06 Cameroon 100 100 10000 2019 

DJL-01 Cameroon 100 100 10000 2016 

DJL-02 Cameroon 100 100 10000 2016 

DJL-03 Cameroon 100 100 10000 2016 

DJL-04 Cameroon 100 100 10000 2016 

DJL-05 Cameroon 100 100 10000 2016 

DJL-06 Cameroon 100 100 10000 2016 

DNG-01 Cameroon 100 100 10000 2016 

DNG-02 Cameroon 100 100 10000 2016 

EJA-04 Cameroon 100 100 10000 2011 

EJA-05 Cameroon 100 100 10000 2011 

ERK-01 Nigeria 40 120 4800 2019 

MDJ-01 Cameroon 100 100 10000 2019 

MDJ-03 Cameroon 100 100 10000 2019 

MDJ-05 Cameroon 100 100 10000 2019 

MDJ-07 Cameroon 100 100 10000 2019 
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Table 3.7.1 (cont.). Information on tree data from plots used for the study including location of 

plot code, country of location, dimension, and year censused.  

Plot Code Country Minimum 

Dimension (m) 

Maximum 

Dimension (m) 

Ground Area 

(sq. m) 

Year 

Censused 

MDJ-10 Cameroon 40 100 4000 2019 

MIT-01 Cameroon 100 100 10000 2011 

NGI-01 Cameroon 100 100 10000 2011 

NGI-02 Cameroon 100 100 10000 2011 

NGI-03 Cameroon 100 100 10000 2013 

NGI-04 Cameroon 100 100 10000 2013 

NGI-05 Cameroon 100 100 10000 2013 

NGI-06 Cameroon 100 100 10000 2013 

NGI-07 Cameroon 100 100 10000 2013 

NGI-08 Cameroon 100 100 10000 2013 

NGI-09 Cameroon 100 100 10000 2013 

NGI-10 Cameroon 100 100 10000 2013 

NGI-11 Cameroon 100 100 10000 2013 

NGI-12 Cameroon 100 100 10000 2013 

NGO-01 Cameroon 100 100 10000 2012 

NGO-02 Cameroon 100 100 10000 2012 

NGO-03 Cameroon 100 100 10000 2012 

NGO-04 Cameroon 100 100 10000 2013 

NGO-05 Cameroon 100 100 10000 2013 

NGO-06 Cameroon 100 100 10000 2013 

OBE-83 Nigeria 100 100 10000 2002 

OBE-84 Nigeria 100 100 10000 2002 

OSB-01 Nigeria 40 120 4800 2019 

OSB-02 Nigeria 40 120 4800 2019 

TNP-06 Cameroon 100 100 10000 2012 

TNP-07 Cameroon 100 100 10000 2012 

TNP-08 Cameroon 100 100 10000 2012 

TNP-09 Cameroon 100 100 10000 2012 

TNP-10 Cameroon 100 100 10000 2012 

TNP-11 Cameroon 100 100 10000 2012 

TNP-12 Cameroon 100 100 10000 2012 

TNP-13 Cameroon 100 100 10000 2012 

TNP-14 Cameroon 100 100 10000 2012 

TNP-15 Cameroon 100 100 10000 2012 
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Table 3.7.2. Distribution of edible and inedible tree species belonging found in mixed and 

monodominant forest plots 

Plots Mixed forest  Monodominant forest 

 edible inedible edible inedible 

AKG-01 111 107 -  -  

AKG-02 118 109 -  -  

BIS-01 -  -  87 260 

BIS-02 208 261 -  -  

BIS-03 -  -  36 293 

BIS-04 155 284 -  -  

BIS-05 -  -  41 286 

BIS-06 206 240 -  -  

CAM-01 95 299 -  -  

CAM-02 119 226 -  -  

CAM-03 112 279 -  -  

DJK-01 -  -  43 264 

DJK-02 185 179 -  -  

DJK-03 -  -  39 301 

DJK-04 244 222 -  -  

DJK-05 -  -  28 332 

DJK-06 192 254 -  -  

DJL-01 -  -  27 322 

DJL-02 159 245 -  -  

DJL-03 -  -  31 401 

DJL-04 202 378 -  -  

DJL-05 -  -  50 259 

DJL-06 189 273 -  -  

DNG-01 328 250 -  -  

DNG-02 255 273 -  -  

EJA-04 385 153 -  -  

EJA-05 330 200 -  -  

ERK-01 131 88 -  -  

MDJ-01 214 348 -  -  

MDJ-03 187 247 -  -  

MDJ-05 221 527 -  -  

MDJ-07 314 146 -  -  

MDJ-10 118 47 -  -  

MIT-01 82 277 -  -  

NGI-01 165 255 -  -  

NGI-02 191 276 -  -  

NGI-03 147 245 -  -  

NGI-04 243 232 -  -  
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Table 3.7.2 (cont.). Distribution of edible and inedible tree species belonging found in mixed 

and monodominant forest plots 

Plots Mixed forest  Monodominant forest 

 edible inedible edible inedible 

NGI-05 252 241 -  -  

NGI-06 229 311 -  -  

NGI-07 219 282 -  -  

NGI-08 192 257 -  -  

NGI-09 286 254 -  -  

NGI-10 237 307 -  -  

NGI-11 301 274 -  -  

NGI-12 228 290 -  -  

NGO-01 75 367 -  -  

NGO-02 158 355 -  -  

NGO-03 152 210 -  -  

NGO-04 -  -  75 333 

NGO-05 -  -  29 373 

NGO-06 -  -  19 354 

OBE-83 45 85 -  -  

OBE-84 43 80 -  -  

OSB-01 138 110 -  -  

OSB-02 98 136 -  -  

TNP-06 225 236 -  -  

TNP-07 268 201 -  -  

TNP-08 199 333 -  -  

TNP-09 243 269 -  -  

TNP-10 174 280 -  -  

TNP-11 195 213 -  -  

TNP-12 172 249 -  -  

TNP-13 220 261 -  -  

TNP-14 231 182 -  -  

TNP-15 217 200 -  -  

Grand Total 10403 12903 505 3778 
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Table 3.7.3. Distribution and descriptive statistics of predictor variables included in the GDMs 

models 

Variables Elements within Variables Count Min Max Mean 

Plots 66  - - - 

Clusters (number of plots) Cluster 1 3    

 Cluster 2 25    

 Cluster 3 7    

 Cluster 4 31    

Total tree stems  28299  - - - 

Edible stems  11097  - - - 

Inedible stems  17202  - - - 

Forest composition Mixed forest plots 54  - - - 

  Mixed forest stems 23975  - - - 

  Monodominant forest plots 12  - - - 

  Monodominant forest stems 4324  - - - 

Slope (number of plots) Almost Flat 33  - - - 

  Flat 17  - - - 

  Moderately Sloping 8  - - - 

  Slightly Sloping 5  - - - 

  Steep 3  - - - 

Elevation (masl) 38 1314 510.8 

Stem density (stems/ha) All species 126 751 452 

  Edible species 19 385 181 

  Inedible species 83 530 271 

DNAE (m) 217 13840 4825.5 

DCHP (m) 22.5 2782 306.5 
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Appendix 3.7.2. Qualitative data collection and structured questionnaire used for 

collection of data on forest tree species utilization in Oban Division, Cross River National 

Park  

Structured questionnaire (see below) on utilization of fruit/seed/nuts from tree species for food 

were purposively administered to ten percent of the 39 forest-dependent enclave/buffer zone 

communities around Oban Division of the Cross River National Park, Nigeria, where all seven 

Nigerian plots are located. The purposive administration of questionnaires was done using a 

mixed method interview (Friant et al., 2019) based on the following criteria:  

5. Individuals involved in the gathering of fruit/seeds/nuts and farmers 

6. Individuals who are at least 30 years and likely to be knowledgeable about forest tree 

species utilization in the area  

7. Individuals who had lived in the area for at least 15 years to give valid information on 

the study  

8. The council of chiefs were interviewed as a group. 

9. All gender who met criteria 1 to 4 above. 

QUESTIONNAIRE USED FOR THE STUDY 

Community Code: _______ Date of interview_________ Interviewers Name: ___________ 

 

Demographic data 

Q1. Type of interview 

Individual [  ] Group [  ]     Number of Respondent in Group: ________  

 

Q2. Age group? 

25-34 [  ] 35-44 [  ] Above 45  [  ] 

 

Tree species utilization  

Q3. What forest tree species and parts are utilized for food in your community? 

Species name Species part utilized for food 

Fruit Seed Nut Leaf Flower Others (specify) 
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Appendix 3.7.3. Methodology for assessing human impact on tree species composition 

using proximity measures 

To evaluate the human influence on tree species composition within the study region, two 

distinct variables were employed as proxy measures. The categorisation and quantification of 

these variables are detailed as follows: 

Distance to the Nearest Anthropogenic Edge (DNAE) 

DNAE was computed as the Euclidean distance from the geographic coordinates of a given 

forest plot to the closest discernible anthropogenic edge at the time of the respective census 

(Figure 3.7.1 and 3.7.2). Anthropogenic edges often manifested as man-made alterations such 

as farms, settlements, or other types of human disturbance.  

For forest plots within the Oban Division dataset, data on the nearest anthropogenic edge was 

readily available (Asuk et al, 2023). In cases where forest plots from the forestplots.net dataset 

did not contain this information, Open Street Map and Google Earth were consulted to measure 

the Euclidean distance from the plot's GPS coordinates to the closest identified anthropogenic 

edge. This metric acted as a gauge for potential high-impact human activities in areas 

surrounding the forest plots. 

Distance to the Closest Human Presence (DCHP) 

DCHP involved measuring the straight-line distance from the GPS centre point of each forest 

plot to the nearest identified human footpaths (Figure 3.7.1 and 3.7.2). These footpaths are often 

used for low-impact activities like foraging and hunting.  

Spatial data for this variable was initially obtained from Open Street Map and subsequently 

validated on Google Earth. To accommodate for censuses conducted in different years, the 

satellite images on Google Earth were adjusted to match the year of each respective census. 

DCHP typically exhibited shorter distances in comparison to DNAE, making it a potentially 

more precise indicator of low-impact human presence in the vicinity of the forest plots. 

Historical images were used on google earth engine to coincide with the year of plot census 

(Figure 3.7.2). 

By utilizing these two proximity measures, this study offered an insight of the varying degrees 

of human impact on the tree species composition in the investigated region. 
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Figure 3.7.1. Open street map showing distance from plot to closes path representing distance 

to closest human presence (DCHP) and distance from plot to human settlement representing 

distance to nearest anthropogenic edge (DNAE). 

 

 

Figure 3.7.2. Map from Google Earth showing how distance from plot was measured based on 

historical images that coincided with date of plot census (see top left bar). 
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Appendix 3.7.4. Summary of alpha diversity and total tree stem count 

Table 3.7.4. Alpha diversity of plots forest categorised as mix and mono dominant forests 

Forest composition Plots Alpha diversity 

  edible inedible Total 

Mixed forest AKG-01 43 44 87 

Mixed forest AKG-02 43 37 80 

Mixed forest BIS-02 47 63 110 

Mixed forest BIS-04 50 67 117 

Mixed forest BIS-06 50 57 107 

Mixed forest CAM-01 31 51 82 

Mixed forest CAM-02 27 56 83 

Mixed forest CAM-03 30 44 74 

Mixed forest DJK-02 41 62 103 

Mixed forest DJK-04 55 70 125 

Mixed forest DJK-06 50 58 108 

Mixed forest DJL-02 35 54 89 

Mixed forest DJL-04 55 58 113 

Mixed forest DJL-06 44 58 102 

Mixed forest DNG-01 41 53 94 

Mixed forest DNG-02 48 50 98 

Mixed forest EJA-04 40 43 83 

Mixed forest EJA-05 37 52 89 

Mixed forest ERK-01 49 37 86 

Mixed forest MDJ-01 22 30 52 

Mixed forest MDJ-03 31 44 75 

Mixed forest MDJ-05 15 28 43 

Mixed forest MDJ-07 39 43 82 

Mixed forest MDJ-10 22 15 37 

Mixed forest MIT-01 21 52 73 

Mixed forest NGI-01 28 55 83 

Mixed forest NGI-02 27 49 76 

Mixed forest NGI-03 27 61 88 

Mixed forest NGI-04 34 64 98 

Mixed forest NGI-05 33 70 103 

Mixed forest NGI-06 42 60 102 

Mixed forest NGI-07 32 48 80 

Mixed forest NGI-08 37 42 79 

Mixed forest NGI-09 37 48 85 

Mixed forest NGI-10 31 37 68 

Mixed forest NGI-11 34 41 75 

Mixed forest NGI-12 32 38 70 

Mixed forest NGO-01 22 43 65 

Mixed forest NGO-02 38 53 91 
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Mixed forest NGO-03 36 42 78 

Mixed forest OBE-83 23 30 53 

Mixed forest OBE-84 20 29 49 

Mixed forest OSB-01 40 42 82 

Mixed forest OSB-02 36 37 73 

Mixed forest TNP-06 43 57 100 

Mixed forest TNP-07 43 60 103 

Mixed forest TNP-08 17 50 67 

Mixed forest TNP-09 22 52 74 

Mixed forest TNP-10 36 65 101 

Mixed forest TNP-11 45 68 113 

Mixed forest TNP-12 37 55 92 

Mixed forest TNP-13 45 69 114 

Mixed forest TNP-14 31 53 84 

Mixed forest TNP-15 33 55 88 

Total Alpha diversity in Mixed 232 469 701 

Monodominant BIS-01 28 46 74 

Monodominant BIS-03 20 33 53 

Monodominant BIS-05 23 20 43 

Monodominant DJK-01 18 19 37 

Monodominant DJK-03 16 17 33 

Monodominant DJK-05 12 26 38 

Monodominant DJL-01 15 27 42 

Monodominant DJL-03 9 17 26 

Monodominant DJL-05 25 32 57 

Monodominant NGO-04 17 16 33 

Monodominant NGO-05 10 13 23 

Monodominant NGO-06 8 15 23 

Total Alpha diversity in Monodominant 76 96 172 

Total Alpha Diversity 236 472 708 

 

The alpha diversity of edible and inedible species was higher in mix forest than in 

monodominant forest. Also, the difference in alpha diversity of edible and inedible trees in all 

plots was widder in mixed forest than in monodominant forest. Gilbertiodendron dewevrei, 

belonging to the inedible species category, was the most dominant species across all plots in 

the monodominant forest. A presence/absence metrics was used for computing the beta 

diversity thus reducing the effect of species dominance, however, stem density of each species 

as well as forest composition were added as variables within the model.  



 

 

Appendix 3.7.5. List of all models run 

Table 3.7.5. Complete summary showing GDM model deviance, variance explained, model intercept, and variable importance for spatial 

taxonomic beta-diversity 

Group Response GDM_dev Null_dev var_exp Intercept Geographic Elevation Stem 

Density 

Nearest 

Anthropogenic 

Edge 

Human 

Presence 

Forest 

Composition 

Ratio 

 

All Total_all 104.19 176.2 40.87 0.66 24.375 19.831 0 0 18.354 18.248 - 

All Total_geo 144.03 176.2 18.26 0.87 0 0 0 0 0 0 - 

All Total_env 121.76 176.2 30.89 0.94 0 0 0 0 0 0 - 

All Turn_all 127.37 218.03 41.58 0.5 27.511 25.228 0 0 24.339 0 - 

All Turn_geo 180.32 218.03 17.3 0.67 0 0 0 0 0 0 - 

All Turn_env 152.34 218.03 30.13 0.78 0 0 0 0 0 0 - 

Edible Total_all 157.09 230.25 31.77 0.66 27.176 0 19.312 0 14.071 26.86 - 

Edible Total_geo 199.8 230.25 13.22 0.85 0 0 0 0 0 0 - 

Edible Total_env 177.01 230.25 23.12 0.98 0 0 0 0 0 0 - 

Edible Turn_all 208.1 287.99 27.74 0.42 32.361 0 15.036 15.236 24.005 0 - 

 

  



 

 

Table 3.7.5 (cont.). Complete summary showing GDM model deviance, variance explained, model intercept, and variable importance for spatial 

taxonomic beta-diversity 

Group Response GDM_dev Null_dev var_exp Intercept Geographic Elevation Stem 

Density 

Nearest 

Anthropogenic 

Edge 

Human 

Presence 

Forest 

Composition 

Ratio 

 

Edible Turn_geo 249.99 287.99 13.19 0.63 0 0 0 0 0 0 - 

Edible Turn_env 233.99 287.99 18.75 0.7 0 0 0 0 0 0 - 

Inedible Total_all 120.16 190.19 36.82 0.71 32.535 19.989 0 0 21.543 0 - 

Inedible Total_geo 157.14 190.19 17.38 0.89 0 0 0 0 0 0 - 

Inedible Total_env 142.98 190.19 24.83 1.04 0 0 0 0 0 0 - 

Inedible Turn_all 142.2 251.47 43.45 0.48 22.417 26.975 0 0 26.645 0 - 

Inedible Turn_geo 212.38 251.47 15.54 0.67 0 0 0 0 0 0 - 

Inedible Turn_env 166.74 251.47 33.7 0.76 0 0 0 0 0 0 - 

 

  



 

 

Table 3.7.6. Complete summary showing results from GDM run with clusters as a variable. The results shown include GDM model deviance, 

variance explained, model intercept, and variable importance for spatial taxonomic beta-diversity 

Group Response GDM_dev Null_dev var_exp Intercept Geographic Elevation 

Stem 

Density 

Human 

Presence 

Forest 

Composition 

All Total_all 127.37 218.03 41.58 0.50 27.52 25.57 0.00 24.42 0.00 

All Total_geo 180.32 218.03 17.30 0.67 0.00 0.00 0.00 0.00 0.00 

All Total_env 152.34 218.03 30.13 0.78 0.00 0.00 0.00 0.00 0.00 

All Turn_all 93.86 176.20 46.73 0.62 19.90 17.30 12.02 16.24 14.82 

All Turn_geo 144.03 176.20 18.26 0.87 0.00 0.00 0.00 0.00 0.00 

All Turn_env 110.25 176.20 37.43 0.87 0.00 0.00 0.00 0.00 0.00 

Edible Total_all 127.37 218.03 41.58 0.50 27.53 25.14 0.00 24.28 0.00 

Edible Total_geo 180.32 218.03 17.30 0.67 0.00 0.00 0.00 0.00 0.00 

Edible Total_env 152.34 218.03 30.13 0.78 0.00 0.00 0.00 0.00 0.00 

Edible Turn_all 93.86 176.20 46.73 0.62 19.90 17.42 12.31 16.33 14.82 

Edible Turn_geo 144.03 176.20 18.26 0.87 0.00 0.00 0.00 0.00 0.00 



 

 

Table 3.7.6 (cont.). Complete summary showing results from GDM run with clusters as a variable. The results shown include GDM model deviance, 

variance explained, model intercept, and variable importance for spatial taxonomic beta-diversity 

Group Response GDM_dev Null_dev var_exp Intercept Geographic Elevation 

Stem 

Density 

Human 

Presence 

Forest 

Composition 

Edible Turn_env 110.25 176.20 37.43 0.87 0.00 0.00 0.00 0.00 0.00 

Inedible Total_all 220.80 287.99 23.33 0.49 49.91 0.00 15.62 26.72 0.00 

Inedible Total_geo 249.99 287.99 13.19 0.63 0.00 0.00 0.00 0.00 0.00 

Inedible Total_env 254.36 287.99 11.68 0.85 0.00 0.00 0.00 0.00 0.00 

Inedible Turn_all 182.01 230.25 20.95 0.81 47.88 0.00 0.00 0.00 36.89 

Inedible Turn_geo 199.80 230.25 13.22 0.85 0.00 0.00 0.00 0.00 0.00 

Inedible Turn_env 205.13 230.25 10.91 1.20 0.00 0.00 0.00 0.00 0.00 



 

 

Except for the edible species group, model 3 recorded 37.43 to 10.91% variance explained 

while model 1 had the least variable explained of 18.26% to 13.19% (see Table 3.7.4 in 

Appendix 3.7.5). There was a reduction in the number of significant variables with the addition 

of clusters from a total of seven to six variables; however, there was a general increase in 

variable importance values, especially for the edible species group. The five variables identified 

by the GDMs model to be significant predictors of beta-diversity in the region were geographic 

distance, elevation, stem density, DCHP, and forest composition (Table 3.7.6 in Appendix 

3.7.4). However, like in the main analysis, except for turnover in inedible species where 

elevation was the predictor with highest variable importance, the predictor with highest variable 

importance in all other models was geographic distance (Table 3.7.7). The only two generated 

predictors of total beta-diversity in the edible species group (see Table 3.7.7 and Figure 3.7.3 

in Appendix 3.7.5) were geographic distance with the highest variable importance (47.88), and 

forest composition (36.89). In order of importance, the three predictors of turnover resultant 

beta-diversity in edible species group (see Figure 3.7.3 in Appendix 3.7.5) were geographic 

distance (49.91), DCHP (26.72) and stem density (15.62). There was no change in the 

significant variables and variable importance values results for inedible species, with the 

inclusion of clusters as an additional variable (see Figure 3.7.3 and 3.7.4 in Appendix 3.7.5). 

Although the models for cluster one, two and three did not run due to few data points, in cluster 

four, there was a significant increase in human influence variables as predictors of total beta 

diversity in inedible species category and less important in edible category (Figure 3.7.5 and 

Figure 3.7.6). 

 

 

  



 

 

Table 3.7.7. The GDM result summary shows model deviance, variance explained, model 

intercept, and variable importance for the spatial taxonomic beta-diversity of the region. 

Figures bold italics indicate overall model with highest variance explained, and other figures 

in bold have highest, second highest, third most important variable. “Total” refers to total 

Sorenson’s beta diversity while “Turn” refers to the Simpson’s turnover partition of beta 

diversity.  

Groups All 
 

Edible 
 

Inedible 
 

  Total Turn Total Turn Total Turn 

GDM Deviance 93.86 127.37 182.01 220.80 120.16 142.20 

Null Deviance 176.20 218.03 230.25 287.99 190.19 251.47 

Intercept 0.62 0.50 0.81 0.49 0.71 0.48 

Model 1 46.73 41.58 20.95 23.33 36.82 43.45 

Model 2 18.26 17.30 13.22 13.19 17.38 15.54 

Model 3 37.43 30.13 10.91 11.68 24.83 33.70 

Shared Variance (%) 8.96 5.85 3.18 1.54 5.39 5.79 

Variable importance       

Geographic distance (m) 19.90 27.53 47.88 49.91 32.54 22.44 

Elevation (masl) 17.42 25.14 NA NA 19.67 26.72 

Stem Density (stems/ha) 12.31 NA NA 15.62 NA NA 

DCHP (m) 16.33 24.28 NA 26.72 21.32 26.51 

Forest Composition 14.82 NA 36.89 NA NA NA 



 

 

 

Figure 3.7.3. Plotted I-splines of the three variables with highest importance scores from the 

GDM analyzing the spatial relationship between geographic gradients, environmental 

variables, and tree species composition. Plots on row (a) are the Total Sorensen’s beta-

diversity for the entire region, (b) are the Total Sorensen’s beta-diversity for the edible species 

category, and (c) Total Sorensen’s beta-diversity for the inedible species. Plots are organized 

from left to right in order of increasing variable importance. 



 

 

 

Figure 3.7.4. Plotted I-splines of the variables with highest importance scores from the GDM 

analysing the spatial relationship between geographic gradients, environmental variables, and 

tree species composition. Plots on row (a) are the Total Simpson’s turnover for the entire 

region, (b) are the Total Simpson’s turnover for the edible species category, and (c) Total 

Simpson’s turnover for the inedible species. Plots are organized from left to right in order of 

increasing importance. 



 

 

 

Figure 3.7.5. Plotted I-splines of the three variables with highest importance scores from the 

GDM analyzing the spatial relationship predictors of total beta diversity in cluster four. Plots 

on row (a) are the Total Sorensen’s beta-diversity for the entire region, (b) are the Total 

Sorensen’s beta-diversity for the edible species category, and (c) Total Sorensen’s beta-

diversity for the inedible species. Plots are organized from left to right in order of increasing 

importance. 



 

 

 

Figure 3.7.6. Plotted I-splines of the variables with highest importance scores from the GDM 

analysing the spatial relationship predictors of total beta diversity in cluster four. Plots on row 

(a) are the Total Simpson’s turnover for the entire region, (b) are the Total Simpson’s turnover 

for the edible species category, and (c) Total Simpson’s turnover for the inedible species. Plots 

are organized from left to right in order of increasing importance.

 



 

 

 

Figure 3.7.7. Plots showing correlation coefficient and non-significant correlations (at p < 

0.05) of variables included in the model  

 

Figure 3.7.8. Distribution of predictor variables used in the study
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Table 3.7.8. Mantel’s correlation of geographical distance matrix generated from plot 

longitude and latitude and other environmental variables. 

Variable Mantel’s correlation 

Elevation 0.23 

Slope -0.02 

Stem Density 0.07 

DNAE 0.14 

DCHP -0.10 

Forest Composition 0.20 

Forest Structure 0.05 
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CHAPTER FOUR: THE EFFECT OF AIR TEMPERATURE AND 

PRECIPITATION ON LEAF PHENOLOGY IN AN AFRO-TROPICAL 

RAINFOREST 
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4.1. ABSTRACT 

Tropical rainforests provide valuable ecological services that are dependent on the phenological 

responses of forest vegetation, which are expected to be influenced by climate change. 

Understanding the temporal dynamics of these responses in the Oban Forest, south-eastern 

Nigeria is crucial for preserving the ecological integrity of this important ecosystem and 

sustaining its economic and cultural importance to the 39 forest-dependent/support zone human 

communities that depend on it. This study investigated the annual and monthly seasonal 

variations in the Enhanced Vegetation Index (EVI) due to precipitation and air temperature 

fluctuations in Oban Forest between 2002 to 2022. EVI was used as an indicator for leaf 

phenology because it is sensitive to changes in leaf chlorophyll, which is linked to flowering 

and fruiting events. The data were subjected to correlation, autocorrelation and generalized 

additive regression Model (GAM) analysis. The results reveal a clear seasonal cycle in EVI, 

with the highest values recorded between March and October. Precipitation was identified as 

the most important climatic factor driving the changes in EVI observed in Oban Forest. The 

EVI cycle identified here provides an important context for the provision of forest services to 

the local communities, many of which are also expected to follow a seasonal cycle. Changes in 

the seasonality and timing of precipitation could be expected to bring about changes in the 

timing of these services, with significant implications for the economic and livelihood 

sustenance of forest-dependent local communities. Accurate models of how forest services 

respond to such climate changes will help support forest-dependent communities in adapting to 

their impacts.  
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4.2.  INTRODUCTION 

Tropical rainforest ecosystems play an essential role in the provision of valued ecological 

services, including a wide range of tangible (such as food and other materials) and intangible 

(such as environmental regulation) services that contribute significantly to the well-being of 

humans (Hong & Saizen, 2019; Vauhkonen, 2018). African tropical rainforests are amongst the 

world's most ecologically valuable and biologically diverse ecosystems (Kothandaraman et al., 

2020; Alamgir et al., 2016). They provide regulating, cultural, supporting and provisioning 

ecosystem services, including providing habitat for numerous species of plants and animals, 

climate regulation, and carbon sequestration. Many of these services are at least partially 

dependent on responses of the forest leaf phenology, which itself is expected to be influenced 

by a warming climate (Englund, Berndes and Cederberg, 2017; Hong and Saizen, 2019; 

Mengist and Soromessa, 2019).  

Many African communities rely on tropical forests for their livelihoods, such as harvesting non-

timber forest products (including foraging for food) or engaging in ecotourism. Modification 

of the physiology, composition and diversity of species in forest ecosystems can directly or 

indirectly affect tropical forests, thus, altering the service provisioning capacity of forest 

ecosystems (Morin et al., 2018; Pau et al., 2018a; Santos, Disney and Chave, 2018; Vauhkonen, 

2018; Ding, Liang and Peng, 2019; Hong and Saizen, 2019; Bera, Saha and Bhattacharjee, 

2020; Montgomery et al., 2020; Naif, Mahmood and Al-Jiboori, 2020; Zambrano et al., 2020; 

Ellis et al., 2021). The production of flower buds and flowers have been linked to the onset of 

rainfall and photoperiod in African forest (Dunham et al., 2018; Venter and Witkowski, 2019; 

Adole et al., 2019).  
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The Oban Forest, which has 39 forest-dependent/support zone communities within and around 

the forest, is a fundamental source of cultural dietary needs for these communities (Asuk et al., 

2023; Friant et al., 2019). Leaf phenology of trees in the tropical forest are synchronized with 

seasonal changes as well as the shifts in time and duration of rainfall, temperature, and light 

intensity which have been reported to range from sub-annual to perennial cycles (Bush et al., 

2017; Adamescu et al., 2018; Richardson et al., 2013; Gray and Ewers, 2021; Cleland et al., 

2007). This change in the leaf phenological cycles due to the seasonality in climate variables 

makes it difficult to predict the availability of these food resources thus ultimately impacting 

the cultural dietary needs of these communities (Friant et al., 2019; Cleland et al., 2007; 

Adamescu et al., 2018). Thus, understanding temporal dynamics in phenological responses of 

the tropical rainforest to temperature and precipitation can help in better comprehending the 

relationships between the forest leaf phenology and how they are affected by environmental 

changes such as climate change and inform sustainable management practices that can maintain 

the health and productivity of these forests while also supporting local communities (Hong & 

Saizen, 2019).  

Satellite-derived indices of forest greenness and productivity have shown excellent prospects 

in the assessment of forest leaf phenology to climatic drivers such as precipitation and 

temperature at regional and global scales (Camps-Valls et al., 2021; Ding et al., 2019; Medlyn 

et al., 2011; Morin et al., 2018). Enhanced vegetation index (EVI) is one of the most researched 

indices used in monitoring, measuring, or assessing the vegetation health forests (Camps-Valls 

et al., 2021; Chaves et al., 2019; Lim et al., 2020; Samasse et al., 2020; Zheng et al., 2019). 

Most vegetation indices have some degree of limitations in compensating for the non-linear 

issues associated with reacting to the presence of green leaves rather than photosynthesis, which 

could result in a misleading estimation of vegetation growth and productivity (Camps-Valls et 
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al., 2021). EVI is used as an indicator in this study because it has been found to minimise these 

non-linearities. EVI is closely linked to vegetation chlorophyll content because it is sensitive to 

changes in chlorophyll which are driven by climatic changes and displays a proportionate 

response of forest vegetation across different ecozones (Abera et al., 2018; Camps-Valls et al., 

2021; Cho et al., 2015; He et al., 2021; Li et al., 2023; Lim et al., 2020). In addition, changes 

in leaf phenology, such as the timing and duration of leaf growth and maturation, can also be 

used as indicators for predicting the subsequent onset of flowering buds and fruiting cycles 

(Bucher and Römermann, 2021). 

Plant leaf phenology in the tropical rainforest can be significantly influenced by the fluctuation, 

intensity, and duration of precipitation, because of its impacts on moisture and nutrient 

availability, which might either promote increased or reduced photosynthesis, growth, and 

productivity (Gou et al., 2022). The degree and duration of extreme and average temperature 

events also provide a first-order control of forest growth and productivity. In some Afrotropical 

forests, it has been hypothesised that phenological events (such as flowering) might not be 

triggered until the temperature drops below a certain threshold value (Bush et al., 2020) - known 

as the critical minimum temperature hypothesis. In tropical rainforests, which are characterised 

by generally high and stable temperatures, the temperature has been found to have minimal 

impact on EVI. However, extreme temperature events such as droughts or heat waves like the 

El Nino events can significantly impact the response of EVI from the vegetation (Samanta et 

al., 2010). 

The effect of temperature and precipitation in triggering significant seasonal phenological 

cycles has shown promise for understanding spatiotemporal trends in vegetation patterns (Yan 

et al., 2019; Szabó et al., 2019). The onset of the rainy season is crucial in determining the 

timing of flowering and fruiting. Higher temperatures during the dry season lead to early leaf 
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fall and shorter fruiting periods (Muller-Landau et al., 2021). The phenology of the tropical 

forest, specifically in tropical forests located in the Amazon, Panama and Costa Rica Forest and 

other seasonally dry tropical forests, has shown some relationship with temperature and 

precipitation, suggesting that the forest was susceptible to climate variability (Smith et al., 2020; 

Wagner et al., 2016).  

There is still much uncertainty in studying the vegetation greenness-climate relationship in 

tropical forests, especially those in Africa where few studies have been carried out (Brown, 

2014; Zhou et al., 2014; Adamescu et al., 2018; Jiang et al., 2019; Bush, Whytock, Bahaa-El-

din, et al., 2020). Most forest greenness and productivity studies focus extensively on global 

and continental forest trends, leaving regional patterns largely understudied (Nakamura et al., 

2017). Climate change is likely to affect the timing of phenological events (green-up and 

senescence) at a local scale, with potentially substantial impacts on the ecosystem and its 

biodiversity. This study focuses on the Oban Forest, in the Oban division of Cross River 

National Park in South-eastern Nigeria. Oban Forest has a total of 39 forest dependent/support 

zone human communities within the National Park, making the ecosystem both economically 

and ecologically important (Adesoye and Akinwunmi, 2016; Agaldo, Gwom and Apeverga, 

2016; Asuk et al., 2023). As a biodiversity hotspot with high levels of precipitation and 

temperature, Oban Forest is ideal for investigating the climate-EVI relationship. Therefore, 

there is an urgent need for further research to understand these dynamics better and develop 

strategies to mitigate the impacts of climate change on Afrotropical rainforests. This could be 

a helpful management tool for guiding conservation strategies and sustainable utilisation of the 

forest ecosystem. The study objective is to evaluate the response of forest leaf phenology (EVI) 

to changes in air temperature and precipitation between 2002 and 2022. The study seeks to 

answer three research questions: 1) What is the phenological cycle present in Oban Forest? 2) 
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What is the relationship of this cycle with air temperature and precipitation? 3) Is there a 

multiannual trend in EVI, air temperature and precipitation? 
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4.3. MATERIAL AND METHODS 

4.3.1. Study Area 

Oban Division of Cross River National Park is between longitude 8o 17.487’ to 8o 54.677’ East 

and latitude 5o 5.607’ and 5o 49.265’ North in Cross River State, Southern Nigeria (Figure 4.1). 

The Division covers an estimated area of ~251,345 ha, has a total of 39 forest dependent/support 

zone human communities within the National Park and is continuous with the Korup National 

Park and Ejagham Forest Reserve of Cameroon (Adeyemi, 2016; Enuoh & Ogogo, 2018). The 

forest is a lowland and submontane moist tropical rainforest with 3,000 mm to 3,500 mm 

average precipitation per annum, 23 °C to 37 °C average monthly temperature, rugged terrain, 

and varying elevation of ~100 m to over 1000 m above sea level (Agaldo et al., 2016; Asuk et 

al., 2023).  

4.3.2. Data collection and processing 

The extensive data on EVI, temperature and precipitation used for the study were collected by 

NASA EOSDIS Land Processes Distributed Active Archive Centre (LP DAAC) (available for 

download at https://lpdaac.usgs.gov) (USGS, 2021; Gorelick et al., 2017). Data were compiled 

and pre-processed using google earth engine (GEE) (USGS, 2021; Gorelick et al., 2017) and 

then exported in .tiff format using the batch export GEE task with tampermonk (Kong, 2017). 

Images from EVI, precipitation and temperature were masked using the forest outline polygon 

of Oban Forest. All daily (CHIRPS) and 16-days (EVI) images were aggregated into monthly 

mean collections. Yearly means were also computed for all variables to assess the possible 

differences in annual EVI, air temperature and precipitation trends. 
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Figure 4.1.  Map describing the location of Oban Forest within Nigeria and Africa. (a) Map of 

Africa showing the location of Nigeria. (b) Map of Nigeria showing Oban Forest. Grid cells 

images for EVI at 250 m resolution (c), air temperature at 11 km resolution (d) and 

precipitation at 5 km resolution (e) 

 

4.3.2.1. Vegetation (EVI) data collection 

EVI data used as a proxy for forest leaf phenology were from the terra (MOD13Q1) and aqua 

(MYD13Q1) moderate resolution imaging spectroradiometer (MODIS) Version 6.1 vegetation 

indices collected at 16 days intervals with 250 m resolution (USGS, 2021; Didan, 2021). The 

high spatial resolution, long time series, availability of multiple vegetation indices, and free and 

open access of MOD13Q1 make it an excellent dataset for leaf phenology studies at a local 

scale (Chakraborty et al., 2018; Szabó et al., 2019; Ghebrezgabher et al., 2020; Lim et al., 2020; 

Norris and Walker, 2020; Seong et al., 2020; Stan et al., 2020). Studies have also successfully 
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combined EVI bands from terra and aqua MODIS products to improve image quality 

(Muhammad and Thapa, 2020; Zhao et al., 2020; Hall et al., 2019; Weiss et al., 2014). In 

addition, MODIS Land Cover Dynamics (MCD12Q2) version 6.1 was used to generate data on 

EVI amplitude, duration of active EVI event, which is the number of days between Greenup 

(days from 01-01-1970 when EVI first crossed 15% of the segment EVI amplitude) and date 

dormancy (days from 01-01-1970 when EVI last crossed 15% of the segment EVI amplitude) 

(Gray et al., 2022). EVI data were parsed in GEE for quality assurance (see Table 4.7.1 in 

Appendix 4.7.1) using the bits from VI quality, VI usefulness, aerosol quantity, adjacent cloud 

detected, atmosphere BRDF correction, mixed clouds, land/water mask, possible snow/ice, and 

possible shadow as described in the user guide (Didan, Munoz, & Huete, 2015).  

Because of the cloud in the EVI images for the area, after parsing for pixel quality, some months 

had no pixels left. To improve the quality of EVI data, we computed the mean of EVI images 

from MODIS terra (passes over each point on the Earth's surface at approximately 10:30 am 

local time) and MODIS aqua (passes over each point on the Earth's surface at approximately 

1:30 pm local time) products, as done in some studies (Muhammad and Thapa, 2020; Zhao et 

al., 2020; Hall et al., 2019; Weiss et al., 2014) which reduced the number of months with no 

data (see Figure 4.2). However, missing values were still present after computing the mean 

pixel values. The ‘na_kalman’ function in the “imputeTS” R package provides a powerful and 

flexible tool for filling in missing values in a time series. This is based on state-space modelling 

and Kalman filtering principles, a statistical model that can estimate missing values in time 

series by describing how the time series would evolve (Moritz and Bartz-Beielstein, 2017; 

Kalman, 1960). The Kalman filter and smoother can efficiently calculate the likelihood of 

hidden variables in a linear state space model based on observed data. These formulas assume 
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that the model's parameters are already known and aim to determine the likelihood of the hidden 

(missing) variables (Kalman, 1960). 

 

Figure 4.2. Heat map plot showing mean pixels for terra EVI from MOD13Q1 (A), aqua EVI 

from MYD131 (B), mean value from combining the terra and aqua EVI images (C) and the 

mean value from combining the terra and aqua EVI images with missing values filled using 

Kalman smoothing (D). 

 

4.3.2.2. Precipitation and air Temperature data collection 

The study utilised 5 km resolution Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS) daily precipitation version 2.0 data to generate monthly precipitation data (Funk et 

al., 2015). CHIRPS precipitation has been found to be reliable for studying precipitation trends 

in tropical Africa (Didi Sacré Regis et al., 2020; Dinku et al., 2018; Gou et al., 2022; Ocampo-

Marulanda et al., 2022; Paredes-Trejo et al., 2020). Air temperature generated in the ERA5-
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Land Monthly Aggregated generated by ECMWF Climate Reanalysis data available at ca. 11 

km resolution (Muñoz-Sabater et al., 2021) was used for the study. This is a monthly average 

air temperature at 2 m above ground (Food and Agriculture Organization (FAO) of the United 

Nations, 2022). No aggregation was done for the monthly temperature data. 

4.3.3. Data Analysis  

Pre-processed data from GEE were analysed in RStudio. The ‘rast’ function in the “terra” 

package (Hijmans et al., 2009) was used to upload all images into RStudio. Then, the ‘global’ 

function was used to calculate the mean, minimum and maximum monthly pixel value from the 

raster images. A combination of packages, including “tibble” (Wickham, Francois, et al., 

2023a), “tidyr” (Hadley et al., 2023) and “ggplot2” (Wickham, 2016), were used to modify and 

generate mat plots from minimum, mean and maximum monthly value for the three studied 

variables. 

4.3.3.1. Normality in the distribution of variables 

The Shapiro-Wilk normality test was applied to assess normality in the distributions of EVI, air 

temperature and precipitation data, with a statistical significance (p-value < 0.05) indicating a 

deviation from normality and a non-significant (p-value > 0.05) indicating that the data tested 

were normally distributed.  Q-Q plots were also used to observe the distance between the data 

distribution points and the normality reference line. Shapiro-Wilk normality test was performed 

using the ‘shapiro.test’ function, and the Q-Q plots were generated with ‘qqnorm’ and ‘qqline’ 

functions in R. This informed our choice of using a non-parametric regression analysis for the 

study. 
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Based on central limit theory (CLT) assumptions, sample sizes of 30 and above are considered 

to have a population that approaches normality (Sawada, 2021; Dunn and Shultis, 2023). 

Although the sample size for this study (n = 252) meets the CLT assumptions, the results from 

the Shapiro-Wilk normality test suggested some caution would then be needed in the 

interpretation of parametric model results. To avoid misinterpretation of the relationship 

between response and predictor variables, a nonparametric regression, the GAM model was 

used for the analysis. 

4.3.3.2. Correlation analysis to assess the relationship between EVI, temperature and 

precipitation  

Spearman rank-order correlation was used to test the relationship between mean EVI, mean air 

temperature and mean precipitation values. The analysis used the ‘chart.Correlation’ function 

in the R package “PerformanceAnalytics” (Brian et al., 2022). The results generated an inter-

comparison between all three variables with a combination of fitted scatter plots, histograms, 

and correlation coefficients. Using the ‘kendall’ function in the “Kendall” package (McLeod, 

2022), the Kendall rank correlation (see equations 1 – 3) was used to confirm further the 

dependence/independence of EVI on temperature and precipitation (McLeod, 2022). This was 

done for monthly and annual aggregates of the studied variables. 

𝜏 = 𝑆 𝐷⁄        Equation 1 

𝑆 = ∑ (sign(x[j] − 𝑥[𝑖]) × 𝑠𝑖𝑔𝑛(𝑦[𝑗] − 𝑦[𝑖]))𝑖<𝑗   Equation 2 

𝐷 = 𝑛(𝑛 − 1)/2      Equation 3 

 Where: τ = Kendall’s rank correlation coefficient, tau 

  S = Score 

  D = denominator 

  x and y are vectors or variables to be tested. 
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4.3.3.3. Times series trend, trend direction and seasonality analysis  

The Mann-Kendall trend test in R package “Kendall” (Brossart et al., 2018; McLeod, 2022) 

was used to calculate the monthly and annual trend and trend direction observed in EVI, 

temperature and precipitation from 2002 to 2022. The function ‘MannKendall’ (with null 

hypothesis stating that there is no trend in the time series) yields a Kendall tau value (either a 

negative or positive) indicating the direction of the trend and a p-value indicating if there is a 

significant observed trend in the time series (p-value < 0.05) or that there is no trend in the 

times series (p-value > 0.05). Furthermore, a seasonally adjusted Mann-Kendall trend test with 

the ‘SeasonalMannKendall’ function was used to detect cumulative monotonic trends in the 

data across the years, producing Kendall’s tau and p-value (McLeod, 2022). A monotonic trend 

is a significant cumulative change (increase or decrease) in the values of variables over time 

without any reversals enough to compensate for the change (Helsel et al., 2020). This gives 

information on the general direction of the time series for the duration of the period considered. 

4.3.3.4. Regression analysis to test the response of EVI to monthly variation in air 

temperature and precipitation 

The generalised additive regression model (GAM) in the “gam” R package (Hastie, 2023) was 

used to assess the relationship between the EVI cycle and predictor variables (annual, monthly, 

and lagged air temperature and precipitation). The ‘gam.check’ function in “mgcv” R package 

(Wood, 2017) was used to validate the model by checking the model’s residuals for signs of 

heteroskedasticity or autocorrelation; and whether the smooth terms in the model are overly or 

insufficiently wiggly (this is tested formally using a p-value for each smooth). In addition, a 

multiple linear regression model (MLRM) was also conducted and compared with the GAM 

using the ‘anova’ function. A parametric and nonparametric test were compared because 
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although the data was not normally distributed and based on central limit theory (CLT) 

assumptions, sample sizes of 30 and above are considered to have a population that approaches 

normality (Sawada, 2021; Dunn and Shultis, 2023). Although the sample size for this study (n 

= 252) met the CLT assumptions, the results from the Shapiro-Wilk normality test suggested 

some caution would then be needed in the interpretation of parametric model results. To avoid 

misinterpretation of the relationship between response and predictor variables, a nonparametric 

regression, the GAM model was used for the analysis. The GAM results outperformed the 

MLRM; thus, the GAM was adopted for the study (see results in Table 4.6.2 and Figure 4.7.1 

in Appendix 4.7.2).  

 𝑔(𝐸(𝑦𝑖)) = 𝛽0 +⁡𝑓1(𝑥𝑖1) + ⋯+ ⁡𝑓(𝑥𝑖2) +⁡Ꜫ𝑖,  Equation 4 

 Where:  some exponential family distribution 

  i = 1, …, N 

   g = link function (identical, logarithmic, or inverse) 

   y = model response variable (EVI) 

   x1, …, xp = the independent variables (air temperature and precipitation) 

  β0 = model intercept 

  f1, …, fp = are unknown smooth functions 

  Ꜫ = is an i.i.d. random error 

Multiple linear regression model was used to test the effect of temperature and precipitation on 

EVI, EVI amplitude and duration of EVI event. This was done to assess the difference in annual 

and monthly response of EVI to air temperature and precipitation. 
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4.3.3.5. Detection of lags in the effect of air temperature and precipitation in EVI 

A combination of autocorrelation (ACF) and partial autocorrelation (PACF) was used to assess 

the correlation between variables and their lagged derivates from month one (lag0) to month 

thirteen (lag12). In addition, lag cross-correlation (CCF) was used to find the lagged correlation 

between EVI and pairs of predictor variables (air temperature and precipitation). ACF and 

PACF analysis and generation of plots were done using a combination of three R packages; 

“tidyverse” (Wickham & RStudio, 2023) and “lubridate” (Wickham, Vaughan, et al., 2023b) 

were used for modifying the data to format, while the “timetk” package (Matt et al., 2023) was 

used to generate plots for ACF, PACF, and CCF using the ‘plot_acf_diagnostics”.  
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4.4. RESULTS 

4.4.1. Seasonal cycles of EVI, temperature and precipitation 

Average, minimum, and maximum precipitation patterns were similar but differed in the value 

ranges (see Figure 4.3 G, H, I and Figure 4.4).  The range of values for average, minimum and 

maximum EVI for Oban Forest were not similar, as also observed in air temperature and 

precipitation (see Figure 4.3 A, B, C and Figure 4.7.2 in Appendix 3.7.3). Peak EVI values were 

observed from March to October for average EVI values and to November for maximum EVI 

values, while minimum EVI values didn’t differ much. The pattern in EVI values suggests a 

combined effect of increased precipitation and reduced temperature on the increase in EVI in 

Oban Forest in the period January to April. 

 

 

Figure 4.3. Boxplots showing annual variability in EVI (A, B, C), air temperature (D, E, F), 

and precipitation (G, H, I) values within each month. Organized left to right, the plots display 

average (A, D, G), minimum (B, E, H), and maximum (C, F, I) values, respectively, assessed 

across year. 
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4.4.2. Trend detection in EVI, air temperature and precipitation at monthly and annual 

scales 

A Kendall monthly seasonality test further revealed that EVI had a significant (p-value = 

0.0009) negative trend (tau = -0.151). Air temperature also had a significant (p-value < 0.001) 

positive trend (tau = 0.305), and precipitation had a significant (p-value = 0.007) negative trend 

(tau = -0.123). A significant negative monotonic trend (tau = -0.098, p-value = 0.021, n=252) 

was observed in EVI (Figure 4.4a). A negative non-significant trend was observed in 

precipitation (Figure 4.4c), while a positive non-significant monotonic trend was observed in 

air temperature (Figure 4.4b). In addition, a significant negative trend was seen in the yearly 

EVI amplitude. As seen in Figure 4.5, there was a negative non-significant (p-value > 0.05) 

annual trend in EVI (tau = -0.053) and precipitation (tau = -0.274), air temperature exhibited a 

positive significant annual trend (tau = 0.411, p-value = 0.012, 20) while there was a non-

significant (p-value > 0.05) annual trend in the duration of EVI events (tau = -0.316). 

 

Figure 4.4. Times series showing extent of monotonic monthly trend observed in EVI (a), air 

temperature (b), precipitation (c), and EVI amplitude (d) across the 21 years in Oban Forest.  
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Figure 4.5. Mean annual trend in EVI values (a), air temperature in degrees Celsius (b), 

precipitation in mm per day (c) and number of durations of annual EVI event in days (d). The 

tua value highlights the degree and direction of the observed trend with p-value to indicate the 

statistical significance of the observed trend. 

4.4.3. Normal distribution of EVI, air temperature and precipitation 

Normal distribution results showed that values for EVI, air temperature and precipitation were 

significantly different (p-value < 0.05) from a normal distribution (Table 4.1). The Q-Q plots 

showed that all variable points were not perfectly aligned to the normality reference line, thus 

suggesting some deviation from normality (see Figure 4.6a,b,c).  

Table 4.1. Result from the Shapiro-Wilk normality test. Weight(w) measures how well the data 

fit the standard normal quantiles with values of 0 and 1, where 1 is a perfect match. 

Variable tested Weight (w) p-value 

EVI 0.96304 0.000 

Air Temperature 0.94869 0.000 

Precipitation  0.95039 0.000 



 

132 

 

 

 

 

Figure 4.6. Quantile-Quantile plot showing the similarity between the distribution of EVI (a), 

air temperature (b) and precipitation (c). The solid lines show the expected values of a normal 

distribution.  

 

4.4.4. Assessment of correlation relationship between response-predictor variable pairs 

Kendall rank correlation results (Table 4.2) between variable pairs revealed that all variable 

pairs (EVI – air temperature, EVI – precipitation, and air temperature – precipitation) tested 

were significantly (p-value < 0.001) dependent on one another. Negative and positive signs 

observed in the Kendall score were identical to Spearman’s correlation results (see Figure 4.7). 

Spearman’s correlation (Figure 4.7) further revealed that there was a significant correlation 

between the predictor variables (air temperature and precipitation) and the response variable 

(EVI). EVI has a significant positive (p-value < 0.001) correlation with precipitation (0.62) and 
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a significant (p-value < 0.001) negative and slightly lower correlation with air temperature (-

0.49) while the air temperature was significantly (p-value < 0.001) negatively correlated to 

precipitation (-0.89). The correlation between annual EVI, air temperature and precipitation 

were non-significant (see Figure 4.7.6 in Appendix 4.7.4). However, the duration of EVI days 

had significant positive correlation with precipitation and maximum EVI while amplitude was 

significantly correlated with maximum EVI and minimum EVI. In addition, the correlation 

between mean, minimum and maximum monthly values of EVI, temperature and precipitation 

were also tested with mean EVI recorded highest correlation relationship (see Figure 4.7.7 in 

Appendix 4.7.4).  

 

Table 4.2. Results from Kendall rank correlation between EVI – air temperature, EVI – 

precipitation, and precipitation – air temperature pairs. Tau value (either a negative or 

positive) indicates the direction of the trend, and the p-value indicates if the time series trend 

is significant. 

Variable combinations in the Kendall model Tau p-value 

EVI and Air Temperature -0.33 0.000 

EVI and Precipitation 0.437 0.000 

Precipitation and Air Temperature -0.692 0.000 
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Figure 4.7. Multiple correlation plots showing the distribution of variable values, spearman 

correlation coefficient and scatter plots showing the relationship between mean EVI, air 

temperature and precipitation 

 

4.4.5. Effect of changes in temperature and precipitation on the overall leaf phenology 

(EVI) of the forest 

The results from GAM analysis (Table 4.3) revealed significant combined effects of 

precipitation and air temperature on the EVI of Oban Forest. The analysis yielded an adjusted 

R-squared value of 0.49; the model explained 50.2% of the deviance and a low GCV value 

(0.0031). The model validation results in Table 4.4 yielded a non-significant p-value, thus 

indicating that the residuals generated from both predictor variables in the model were 

randomly distributed enough to describe the relationship. From the diagnostic plots (Figure 

4.8), it was observed that the data were close to the reference line (top left), the residuals were 

randomly distributed (top right plot), the histogram of residuals exhibited normality (bottom 
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left), and points on the response vs fitted plot had a straight-line trend as well as were between 

0.35 and 0.55 (further supported validation statistics from MLRM which revealed that air 

temperature and precipitation did not have a significant impact on (p-value >0.05) on annual 

EVI, duration of EVI event days and EVI amplitude is shown in Table 4.7.3, Appendix 4.7.4). 

 

Table 4.3. Results from GAM showing a summary of the model outcome for predicting the 

response of EVI to temperature and precipitation  

Sources Effective Degrees 

of Freedom  

Reference Degrees 

of Freedom 

F-statistics P - value 

EVI ~ s(Temperature) + s(Precipitation)    

 Air temperature 4.014 5.002 2.739 0.020 

 Precipitation 2.713 3.402 29.892 0.000 

 Adjusted R-squared = 0.49, Deviance explained = 50.2%   

 Generalized Cross Validation = 0.0031, Scale est. = 0.00297, n = 252 

 

Table 4.4. Results from validation of GAM showing the predictive performance of the model 

for EVI response to temperature and precipitation  

 Expected 

value (K) 

Effective Degrees 

of Freedom  

Predictive 

performance 

(k-index) 

p-value 

EVI ~ s(Temperature) + s(Precipitation)  

 Air temperature 9.00 4.01 1.05 0.77 

 Precipitation 9.00 2.71 1.03 0.69 

 Root Mean Squared Generalized Cross Validation score = 1.23 x 106 
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Figure 4.8. Residual diagnostic plot from the GAM results for EVI response to temperature and 

precipitation. The distribution of residuals compared to a normal distribution is shown in the 

Q-Q plot (top left) and histogram of residuals (bottom left). The residual vs linear predictor 

plot shows the patterns in residual plotted against the model's predictor values (top right). The 

Response vs Fitted Values Plot shows the observed response values plotted against the 

predicted values from the model (bottom right). 

 

4.4.6. Assessment of monthly lags between changes in temperature and precipitation and 

the corresponding change in EVI 

According to the ACF and PACF plot (see Figure 4.9), EVI displayed a significant positive 

correlation with a lag of one month and ten to twelve months while exhibiting a significant 

negative correlation with a lag of three to seven months. Air temperature also exhibited a 

significant positive lagged correlation one month after as well as an eight to twelve months lag. 

In addition, air temperature also showed a negative lagged correlation with a two to five-month 
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lag. Furthermore, precipitation showed a positive one-month and an eleven to twelve months 

lagged correlation, and a significant two to nine-month negative lagged correlation.  

 

 

Figure 4.9. Autocorrelation (ACF) plots showing seasonal cycles in monthly lagged correlation 

in EVI, air temperature and precipitation (above) and partial autocorrelation (PACF) showing 

significant monthly lagged correlation in within EVI, air temperature and precipitation (below) 

 

The EVI – air temperature cross-correlation (see Figure 4.10) further showed that air 

temperature was significantly negatively correlated with EVI at zero months and at one month, 

eight and twelve months (correlations with greater than twelve-month lag showed a seasonal 

cycle similar to the first twelve months). In contrast, there was a two to six months positive 

lagged correlation with EVI. Conversely, precipitation had a one-month, nine to twelve months 

lagged positive correlation with EVI and a three to seven months lagged negative correlation 

with EVI.  
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Results from the GAM regression (Table 4.5) between EVI and lagged predictor variables 

(temperature and precipitation) yielded a significant increase in the adjusted R2 value observed 

in the original model from 0.49 to 0.736 and an increase in deviance explained from 50.2% to 

79.6%. Out of the 11 significant lags in air temperature and ten significant lags in precipitation 

generated from the cross-correlation results, the air temperature was only significant at nine 

months lag. In contrast, precipitation was significant at zero-month lag, three months lag, and 

seven months lag (Table 4.5). The lagged GAM model validation revealed that the residuals 

generated by each variable were randomly distributed (see Table 4.6). 

 

 

Figure 4.10. Plot from lagged cross-correlation analysis between precipitation and EVI (top) 

and air temperature and EVI (bottom) pair. This plot shows seasonal cycles in the aged 

relationship between EVI and each of the response variables (air temperature and 

precipitation) 
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Table 4.5. Results from GAM regression with main and significant lagged effects of temperature 

and precipitation on EVI 

Sources Effective 

Degrees of 

Freedom  

Reference 

Degrees of 

Freedom 

F-statistics P - value 

EVI ~ s(lag(Air Temp, 1,2,3,4,5,6,8,9,10,11,12)) + s(lag(Precip, 1,3,4,5,6,7,9,10,11,12)) 

 Air temperature (lag = 0) 1.000 1.000 1.512 0.2204 

 Air temperature (lag = 9) 1.000 1.000 7.818 0.0057** 

 Precipitation (lag = 0) 5.304 6.410 2.612 0.0141* 

 Precipitation (lag = 3) 6.890 7.906 3.285 0.0018** 

 Precipitation (lag = 7) 4.364 5.369 2.336 0.0383* 

 Adjusted R-squared = 0.736, Deviance explained = 79.6%   

 Generalized Cross Validation = 0.0020, Scale est. = 0.0015, n = 240 
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Table 4.6. Results from validation of GAM for EVI response to temperature, precipitation, and 

their significant lags 

 Expected 

value (K) 

Effective 

Degrees of 

Freedom  

Predictive 

performance 

(k-index) 

p-value 

EVI ~ s(lag(Air Temp, 1,2,3,4,5,6,8,9,10,11,12)) + s(lag(Precip, 1, 3,4,5,6,7,9,10,11,12)) 

 Air temperature (lag = 0) 9.00 1.00 1.06 0.760 

 Air temperature (lag = 9) 9.00 1.0 1.09 0.890 

 Precipitation (lag = 0) 9.00 5.30 1.07 0.820 

 Precipitation (lag = 3) 9.99 6.89 0.98 0.375 

 Precipitation (lag = 7) 9.00 4.36 1.08 0.870 

 Root Mean Squared Generalized Cross Validation score = 6.2 x 109  
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4.5. DISCUSSIONS  

4.5.1. EVI, temperature and precipitation seasonality in Oban Forest 

A clear seasonal cycle in EVI in was identified in Oban Forest, with the highest average monthly 

values recorded between March and October (up to November for maximum values recorded) 

and low values between December and February, (Figures 4.3, 4.4). The seasonal cycle of EVI 

was offset from the seasonal cycles in temperature and precipitation, which suggested a 

combined effect of increased precipitation and reduced temperature on peak EVI values and the 

reverse for lower EVI values in Oban Forest. The positive correlation between monthly EVI 

values and precipitation and the negative correlation between EVI and air temperature 

statistically supported this finding. The anomaly in monthly and annual precipitation was more 

pronounced than seen in temperature. The area is also characterised by a robust seasonal 

precipitation cycle and rainy season of up to eight months (Yan et al., 2019) as seen in Oban 

Forest.  

Seasonal annual phenological cycles have been found to be the most common in similar tropical 

rainforest in in as similar African rainforest in Lope National Park, Gabon (Bush et al., 2017). 

Bush (2017) further submitted new leaf formation were seen to be produced during the dry 

season while peaks in fruiting phenological cycles were mostly reported during the rainy 

season. Precipitation pattern (duration and intensity) has been identified as the major driver of 

tropical rainforest phenology in the second largest rainforest in the Congo Basin (Jiang et al., 

2019). Higher rainfall in tropical forest in Madagascar was seen to significantly influence a 

higher monthly measure of fruiting richness and intensity in a twelve-year dataset with 69 tree 

species which usually precedes the onset of leaves (Dunham et al., 2018). According to Dunham 

et al. (2018) reduced rainfall during dry season and not during the wet season resulted in a 
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significant shift in the timing of EVI peaks. Another study in Kibale National Park, Uganda 

revealed that high temperature significantly constraints the fruiting in trees (Potts et al., 2020), 

which could have been linked to the El Niño Southern Oscillation events (Potts et al., 2020; 

Gray and Ewers, 2021; Bush et al., 2017). In addition, seasonal cycles in forest phenology have 

also been linked to a significant influence of plants functional types and the potential of these 

species to adapt to different climatic scenarios (Ibrahim et al., 2021; Cleland et al., 2007).  

4.5.2. Trends in EVI 

Oban Forest showed a significant (p-value = 0.021) long-term consistent decrease in mean 

monthly EVI values without any reversals in the changing pattern over the studied period as 

well as a significant (p-value = 0.0009) seasonal cyclical trend in mean monthly EVI values 

(Figure 4.4a). Annual mean EVI did not show a significant trend (Figure 4.5a) however, there 

was a significant negative trend in EVI amplitude (Figure 4.4d). Mean EVI in Oban Forest had 

a higher minimum and lower maximum than that which was reported in a similar study in the 

tropical rainforest region of Borneo (Vijith & Dodge-Wan, 2020). Tropical forests are generally 

characterised by a high and sometimes stable temperature, so there might be little need for trees 

to adapt their phenological cycles to it. However, extreme rises in temperature associated with 

droughts and heat stress has been reported to disrupt tree metabolism, leading to decreased EVI 

(Abera et al., 2018; Dunham et al., 2018; Pau et al., 2018a; Potts et al., 2020).  

Oban forest was seen to have a high and somewhat constant temperature (23.12 °C to 29.15 °C) 

with a difference of about 6 °C between the minimum and maximum mean values recorded 

across the 20-year period. Air temperature exhibited a significant seasonal monthly trend (p-

value < 0.0000) and a non-significant monotonic trend (p-value > 0.05) distinct from zero (see 

Figure 4.6). Precipitation had a significant seasonal monthly trend and a non-significant 
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negative monotonic trend in Oban Forest (see Figure 4.6). Despite observing a non-significant 

but positive monotonic trend in precipitation in this study, it agreed with reports from a study 

that investigated the long-term changes in precipitation from the CHIRPS dataset, pointing out 

that there has been an increase in the intensity and reduction in duration of precipitation in West 

Africa (Dinku et al., 2018; Paredes-Trejo et al., 2020; Didi Sacré Regis et al., 2020).  

Although, monthly and annual scale data can provide useful insights into long-term trends and 

patterns in the relationship between phenology and climatic variables, they may mask the 

effects of extreme weather events. This could limit the ability to capture the complexities and 

variability that occur daily that could have significant impact on the forest. Thus, in a study of 

this nature, daily scale EVI and climate data have potential to provide a more detailed and 

accurate understanding of the variability in the response of forest phenological cycles to climate 

change. However, the absence of ground truth data and the limited amount of remotely-sensed 

data, due to a high percentage of cloud cover, make it hard to compare study variables on a 

daily scale.  

In a study assessing how rainfall-vegetation interaction regulates temperature anomalies in the 

Horn of Africa, Abera et al. (2018) pointed out that precipitation trends substantially affected 

EVI more than temperature. This could be attributed to the variation in temperature not being 

enough to cause a significant change in EVI, except in extreme temperatures where trees 

become heat-stressed due to droughts. Results from Oban Forest supports a robust seasonal 

precipitation cycle reported by Yan et al.,  (2019) with a more pronounced variable anomaly in 

monthly and annual precipitation (between positive 440% and negative 80%) compared to air 

temperature (positive 6% to negative 7%).  
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4.5.3. The effect of changes in air temperature and precipitation on overall EVI in Oban 

Forest 

With the increase in precipitation, a decrease in temperature is naturally expected due to the 

inverse relationship between precipitation and air temperature, as proven by several studies 

(Ham et al., 2018). The results from the study revealed that temperature and precipitation had 

a highly negative Spearman correlation coefficient (Figure 4.7). While EVI was negatively 

correlated with the temperature at a lower degree (compared to the air temperature – 

precipitation correlation), a significant (p-value < 0.001) positive correlation with precipitation 

was also observed. However, the EVI – precipitation correlation observed was higher than the 

EVI – air temperature correlation. Results from the Kendall rank correlation test also supported 

that there was a significant (p-value < 0.001) correlation between all three pairs (EVI – air 

temperature, EVI – precipitation, and air temperature - precipitation).  

The lower temperature promoted photosynthesis and the production of new leaves of tree 

species in tropical forests in Central Africa (Bush et al., 2020). This would explain the inverse 

relationship between precipitation and EVI, which could be a proxy for phenological phase of 

leaf green-up and senescence. Some studies suggest that precipitation seems to be the 

significant climate factor driving changes in forest greenness in tropical forests (Abera et al., 

2018; Yan et al., 2019). A finding from a precipitation exclusion study in Africa suggested that 

the amount, frequency, and timing of rainfall strongly affect the structure and functioning of 

the forest greenness (Yan et al., 2019). In addition, Naif, Mahmood and Al-Jiboori  (2020) 

further reported in another study that forest greenness was negatively correlated with air 

temperature and positively correlated with precipitation.  
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The results from GAM regression analysis (adjusted R2 = 0.49 and 50.2% of deviance 

explained) revealed that there was a significant (p-values < 0.001) impact of precipitation and 

air temperature on the overall EVI of Oban Forest. However, precipitation had a higher effect 

on EVI with a lower significance (p-value < 0.001) than temperature (p-value <0.05). This 

supports the finding that precipitation is the most important climatic factor that drives the 

changes in EVI observed in tropical rainforests. According to Gustafson et al. (2017), an 

increase in precipitation will generally increase photosynthetic activity. Normalized difference 

vegetation index (NDVI) and precipitation has shown significant relationships in a range of 

biomes in Africa. In the humid Sudano-Guinean zone in the south, a significant NDVI-

precipitation relationship was observed (Georganos et al., 2017), a negative significant trend in 

normalized difference vegetation index (NDVI) due to precipitation deficit caused by strong El 

Nino was reported in South Africa (Xulu et al., 2018) and in the Horn of Africa results showed 

that vegetation seasonality followed precipitation modality patterns in 81% of the region (Abera 

et al., 2018). In addition to other studies, this explains why precipitation has been characterised 

as the major climatic factor that influences forest greenness compared to temperature  (Abera 

et al., 2018; Bush, Whytock, Bahaa-El-din, et al., 2020; Didi Sacré Regis et al., 2020; 

Georganos et al., 2017; Gou et al., 2022; Naif et al., 2020; Paredes-Trejo et al., 2020; Yan et 

al., 2019).  

4.5.4. Lags in the response of EVI to changes in air temperature and precipitation 

EVI, air temperature and precipitation exhibited a twelve-month self-correlation in the first 

cycle (while EVI up to 24 months, i.e., second cycle as seen in the PACF). The correlation 

coefficient gradually decreased with successive years towards zero (see Figure 4.7.8 in 

Appendix 4.7.5). With the inclusion of lagged months, the air temperature had a nine-month 

lag effect on EVI, while precipitation exhibited a zero-month, three months, and seven months 
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lag effect on EVI. The observed delayed response in the phenology of Oban Forest to climatic 

changes could be due to the functional type of the tree species as well as their growth stage at 

the time of the change (Ibrahim et al., 2021; Cleland et al., 2007). The soil type, topography, 

and drainage conditions could cause an immediate or delayed impact on the soil moisture 

content thus affecting the onset or duration of photosynthesis necessary for forest green-up, 

growth and productivity (O’Connell et al., 2018). In addition, other environmental factors, such 

as light intensity, nutrient availability, and atmospheric CO2 concentrations, may interact with 

each other, further complicating the response of vegetation to environmental changes (Esmaili 

et al., 2020; Gray and Ewers, 2021; Xulu et al., 2018; Di Lucchio et al., 2018). Furthermore, 

the timing and duration of rainfall and dry season could also occur at a dormant period thus 

causing a delay in the onset of forest green-up.  

In a study conducted in a similar African rainforest using monthly CHIRPS precipitation data, 

it was reported by Gou et al. (2022) found that precipitation had the highest correlation with 

vegetation at zero-time lag or at a one-month time lag. In a vegetation study conducted in a 

forest in Namibia, Wingate, Phinn and Kuhn (2019) it was also reported that precipitation had 

the most significant effect on vegetation and zero lag. Another study in the Amazon revealed 

that in dense tropical forests, precipitation could have about 2 to 4 months lag effect on 

photosynthesis from stored with stored rainfall memory (Green et al., 2020). An increase in 

insolation without water limitation has been seen to drive leaf growth (Wagner et al., 2016, 

2017), while other finding has shown that an increase in dry-season length was shown to impact 

the vegetation in the Amazonian Forest negatively (Marengo et al., 2018). Furthermore, in four 

Panamanian forests, CO2 fluxes declined in dry season and peaked in the early wet season 

ahead of peak soil moisture (Cusack et al., 2023). These findings stress the importance of 
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precipitation and, to some extent, daylight intensity in influencing phenology in tropical forests, 

as seen in Oban Forest. 

4.5.5. Implication for the livelihood of forest-dependent communities 

The link observed in EVI and climate cycles in Oban Forest has the potential to impact the 

availability and quality of forest products, particularly those that are important sources of 

nutrition and income for forest-dependent communities. Oban Forest houses 36 forest-

dependent/support zone communities that rely heavily on the forest for their livelihoods, 

including food that might be eaten directly or solely for income and other non-timber forest 

products (Asuk et al., 2023; Friant et al., 2019). Climate change in Nigeria was reported to 

cause a 5 to 20% reduction in agricultural produce (Paeth et al., 2008). While Bush et al. (2020) 

reported that over 32 years, there was an 81% decline in fruit production in a tropical forest in 

Gabon. Changes in the phenological cycle of Oban Forest could directly impact or determine 

the availability and quality of forest resources needed to sustain the livelihoods of forest-

dependent communities. The observed shift in the timing of peak EVI values and the correlation 

with precipitation and air temperature could affect the availability of food resources, such as 

fruits and nuts, which are important sources of nutrition for these communities. There is also a 

potential for these changes in the phenology of the forest to impact the availability and quality 

of plants of ethnobotanical importance used extensively in traditional medicine by these 

communities (Ebu et al., 2021). These could generally impact the collective income of forest-

dependent communities, particularly those involved in collecting and selling non-timber forest 

products or those specialized in ethnobotany as a trade.  
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4.6. CONCLUSION  

The study the Oban Forest in South-eastern Nigeria identified an association between seasonal 

EVI patterns—sensitive to leaf chlorophyll fluctuations during phenological cycles—and 

climatic variables like air temperature and precipitation. Notably, the forest showcases a distinct 

seasonal EVI pattern, with peak values seemingly influenced by a combination of increased 

precipitation and reduced temperature. While the observed correlations between EVI, 

temperature, and precipitation are consistent with patterns seen in other tropical rainforests in 

regions such as the Congo Basin, Madagascar, and other parts of West Africa, it remains 

essential to appreciate the unique attributes of each ecosystem when making broad 

generalizations. 

For the 36 forest-dependent local communities surrounding the Oban Forest, this research 

underscores the critical implications of shifts in the forest's phenological cycle. As these 

communities derive both sustenance and economic value from the forest, alterations in the 

phenological patterns could potentially impact their access to vital resources, like food and 

medicinal plants, and thus their overall well-being. Particularly, changes in the timing of peak 

EVI values, which correlate with climate variables, could disrupt the availability of nutrition 

sources and other non-timber forest products that are integral to these communities. 

However, this study is not without limitations. The lack of ground truth data and challenges 

posed by frequent cloud coverage in remote sensing data necessitate a more rigorous, ground-

based monitoring approach. Such an approach would facilitate the development of accurate 

predictive models correlating EVI with climate variables and tying leaf phenological cycles to 

fruiting patterns. Additionally, addressing variables like light intensity, soil nutrients, 
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atmospheric CO2 concentrations, and tree species traits would offer a more nuanced 

understanding of the forest's response to environmental shifts. 

Future research endeavours would be focused on holistically addressing the complex interplay 

of environmental, social, and economic factors, enabling adaptive strategies for forest-

dependent communities. As the implications of climatic changes on forest phenology become 

more pronounced, fostering collaboration among researchers, local inhabitants, and 

policymakers will be crucial to ensure the sustained health of both the Oban Forest ecosystem 

and its dependent communities. 
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4.7. APPENDICES 

Appendix 4.7.1. Parsing MODIS data for quality assurance  

Table 4.7.1. Detailed image collection criteria used for parsing MODIS data for quality 

assurance. Values in red were excluded from the MODIS images (Didan, Munoz, Solano, et al., 

2015). 

Bits  Parameter Name Value  Description Used 

0-1 VI Quality (MODLAND 

QA Bits) 

00 

01 

10 

11 

VI produced with good quality 

VI produced, but check other QA 

Pixel produced, but most probably cloudy 

Pixel not produced due to other reasons 

than clouds 

00 

01 

2-5 VI Usefulness 0000 

0001 

0010 

0100 

1000 

1001 

1010 

1100 

1101 

1110 

1111 

Highest quality 

Lower quality 

Decreasing quality 

Decreasing quality 

Decreasing quality 

Decreasing quality 

Decreasing quality 

Lowest quality 

Quality so low that it is not useful 

L1B data faulty 

Not useful for any other reason/not 

processed 

0000 

0001 

0010 

0100 

1000 

1001 

1010 

1100 

 

6-7 Aerosol Quantity 00 Climatology 00 
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Table 4.7.1 (cont.). Detailed image collection criteria used for parsing MODIS data for 

quality assurance. Values in red were excluded from the MODIS images (Didan, Munoz, 

Solano, et al., 2015). (continued) 

  01 

10 

11 

Low 

Intermediate 

High 

01 

10 

 

8 Adjacent cloud detected 0 

1 

No 

Yes 

0 

9 Atmosphere BRDF 

Correction 

0 

1 

No 

Yes 

0 

10 Mixed Clouds 0 

1 

No 

Yes 

0 

- 

11-13 Land/Water Mask 000 

001 

010 

011 

100 

101 

110 

111 

Shallow ocean 

Land (Nothing else but land) 

Ocean coastlines and lake shorelines 

Shallow inland water 

Ephemeral water 

Deep inland water 

Moderate or continental ocean 

Deep ocean 

- 

1 

- 

- 

- 

- 

- 

- 

14 Possible snow/ice 0 

1 

No 

Yes 

0 

- 

15 Possible shadow 0 

1 

No 

Yes 

0 

- 



 

152 

 

 

Appendix 4.7.2. Multiple regression analysis 

Table 4.7.2. Multiple linear regression result with EVI as the response variable and 

temperature and precipitation and predictor variables  

Sources Coefficients Estimate Std. Error t value P - value 

Intercept 0.256385   0.149578    1.714  0.0878 

Air temperature  0.005317 0.005520 0.963 0.3364 

Precipitation 0.313445 0.045953 6.821 0.0000*** 

The residual standard error (249 DF): 0.06017 

Multiple R-squared:  0.3819 

Adjusted R-squared:  0.377  

F-statistic: 76.93 (2 and 249 DF) 

p-value: < 2.2e-16 

Difference between expected DV values from a regression on a training set and the actual DV 

values within the training set = 0.04705242 

Correlation between the expected value and actual values = 0.5981798 
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Figure 4.7.1. Diagnostic plot for the effect of precipitation and air temperature on EVI 
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Appendix 4.7.3. Results from Seasonal cycles, anomaly, and trend detection in EVI, air 

temperature and precipitation at monthly and annual scales 

The percentage EVI anomaly shown in Figure 4.7.3 (Appendix 3.7.3) revealed variability in 

the monthly vegetation growth of Oban Forest which was also reflected in the overall annual 

anomaly trend. The largest positive monthly anomaly (exceeding +25%) was observed in 

September 2002 and August 2017, while 2009 and 2011 were at about +20%. Also, the largest 

negative monthly anomaly was observed in August of 2007 and October 2013. In addition, the 

least positive EVI anomaly was observed in 2005, 2021 and 2022.  

The annual and monthly anomaly in air temperature ranged between 6% on the positive side to 

-7% on the negative side (Figure 4.7.4). There was only a little positive-negative monthly 

anomaly variability in air temperature within years. However, the highest positive temperature 

anomaly was observed in 2016 and 2020 then 2010, 2021 and 2022 also exhibited high level of 

positive anomaly. Conversely, the highest negative temperature anomaly was observed in 2012 

and 2011, respectively. 

The monthly and annual anomaly in precipitation (Figure 4.7.5) was exceedingly varied, 

ranging from 440% positive to -80% negative. January of 2009 recorded positive anomaly of 

about 440% making 2009 the year with highest positive anomaly. In addition, other months in 

2007, 2011, 2012, 2013 and 2018 also recorded positive anomalies above 100%. On the 

negative side, the months in 2007, 2008, 2016, 2017, 2020, 2021 and 2022 had the highest 

anomaly of above -80%. 
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Figure 4.7.2. Heat map plot of the statistical minimum pixel values from images for EVI (A) Air 

temperature (D) and precipitation (G). The average pixel values from satellite images for EVI 

(B), air temperature (E) and precipitation (H) and maximum image pixel values for EVI (C), 

air temperature (F) and precipitation (I). Note: Colour scale in each plot may differ based on 

the legend range. 
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Figure 4.7.3. Plot showing annual (above) and monthly (below) percentage anomaly in EVI 

values for Oban Forest. Green colour denotes positive anomaly, red colour indicates the 

negative anomaly while the grey bar represents the 75th and 25th percent quantile range. 

 

 

Figure 4.7.4. Plot showing annual and monthly percentage anomaly in ait temperature values 

for Oban Forest. Red colour denotes positive anomaly, blue colour indicates the negative 

anomaly while the grey bar represents the 75th and 25th percent quantile range. 
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Figure 4.7.5. Plot showing annual and monthly percentage anomaly in precipitation values for 

Oban Forest. Blue colour denotes positive anomaly, red colour indicates the negative anomaly 

while the grey bar represents the 75th and 25th percent quantile range. 
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Appendix 4.7.4. Results from annual data aggregate analysis 

 

Figure 4.7.6. Correlation results from testing relationship annual aggregates of variables 

 

Figure 4.7.7. Correlation results from testing relationship in mean, minimum and maximum 

values of all variables 
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Table 4.7.3. Result from MLRM for the impact of air temperature and precipitation on annual 

EVI generated variables 

Sources Coefficients Estimate Std. Error t value P - value Adj. R2 

EVI ~ Air Temperature + Precipitation    

Intercept  0.149 0.394 0.379 0.710 -0.02 

Air temperature 0.012    0.015 0.785 0.443  

Precipitation -0.004 0.006 -0.611 0.549  

EVI Amplitude ~ Air Temperature + Precipitation    

Intercept  0.563 0.459 1.228 0.236 -0.06 

Air temperature -0.013 0.017 -0.793 0.439  

Precipitation 0.001 0.007 0.193 0.849  

EVI maximum ~ Air Temperature + Precipitation    

Intercept  0.759 0.378 2.007 0.061 -0.10 

Air temperature -0.006 0.014 -0.450 0.658  

Precipitation -0.002 0.006 -0.401 0.694  

EVI_Minimum_~ Air Temperature + Precipitation    

Intercept  0.196 0.389 0.503 0.621 -0.05 

Air temperature 0.007 0.014 0.497 0.625  

Precipitation -0.004 0.006 -0.618 0.545  

Duration days ~ Air Temperature + Precipitation    

Intercept  323.628 282.895 1.144 0.269 0.15 

Air temperature -4.671 10.532 -0.444 0.663  

Precipitation 8.019 4.303 1.864 0.080  
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Appendix 4.7.5. Lags in EVI, air temperature and precipitation from ACF and PACF  

 

Figure 4.7.8. ACF and PACF plots for all EVI, air temperature and precipitation 
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CHAPTER FIVE: MONITORING REPRODUCTIVE PHENOLOGY OF FOOD-

PRODUCING TREES IN A NIGERIAN RAINFOREST 
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5.1. Abstract 

Nigeria's Oban Forest, the most considerable remaining portion of the country's tropical 

rainforest, plays a crucial role in the socio-economic development of forest-dependent 

communities. Reproductive phenology, the timing of flowering and fruiting events in plants, is 

a fundamental aspect of the life cycle of plants and plays a crucial role in plant reproduction, 

seed dispersal, ecosystem functioning, and people’s engagement with these forests for food. 

This study aimed to provide two years of baseline monitoring data on the reproductive 

phenology of food-producing tree species in Oban Forest for two growing seasons (May 2020 

to April 2022). The timing of budding, flowering, and fruiting events in all tree species in fifteen 

40 by 40 meters plots was monitored and recorded environmental variables such as rainfall, and 

temperature. We show that the proportion of tree stems (31.10%) with phenological events in 

the study area compared to the number of tree species (72.72%) represented suggests a variation 

of phenological cycles within species. The peak timing of flower bud and flower production 

was consistent with the onset of the rainy season between March and April, indicating the link 

between the seasonality of climatic variables and phenological events in the forest. However, 

flowering buds and flowers are shown to be produced continually throughout the year with their 

onset at the start of the rainy season suggests that there is a continuous supply of fruits through 

the year, providing the opportunity to support communities in Oban Forest. Long-term 

monitoring of the reproductive phenology of food-producing tree species is essential to 

understand their response to environmental factors. This study provides valuable baseline data 

that can act as a foundation for future research, contributing to a better understanding of the 

reproductive phenology of tree species in Oban Forest and other Afrotropical Forest at large 

and their response to environmental factors. It will also provide critical information to help 
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develop sustainable food systems for forest-dependent communities and aid in forest 

conservation efforts.  
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5.2. INTRODUCTION  

Reproductive phenology, which is the timing of flowering and fruiting events in plants, is a 

fundamental aspect of the life cycle of plants. It plays a crucial role in plant reproduction, seed 

dispersal, and ecosystem functioning. In tropical rainforests, where most tree species range 

from sub-annual (Adamescu et al., 2018) to continuous (Franklin et al., 1987), reproductive 

phenology is often synchronised with seasonal changes in environmental factors such as 

rainfall, temperature, and light intensity (Adamescu et al., 2018; Richardson et al., 2013; Bush 

et al., 2017; Gray and Ewers, 2021; Cleland et al., 2007). However, the timing and duration of 

these events can vary widely among species, making it challenging to predict how 

environmental changes will impact rainforest ecosystems (Cleland et al., 2007; Yu et al., 2017; 

Visser and Both, 2005).  

Tropical rainforests are among the most biodiverse ecosystems on the planet. Although 

covering less than 10% of the Earth's surface area, tropical forests are estimated to contain about 

50% of the world's plant and animal species, some of which are either endemic or at risk of 

extinction (Pillay et al., 2022; Rajpar, 2018). Tropical rainforests provide climate regulatory 

services, habitat for millions of species, and livelihood sustenance through providing food for 

livelihood sustenance amongst forest-dependent human communities, especially during 

agricultural crop failure. However, tropical rainforests are changing due to the variation in 

duration and intensity of impact from anthropogenic activities such as deforestation, logging, 

and climate change (Alamgir et al., 2016; Abbasi et al., 2023; Jara-Guerrero et al., 2021; He et 

al., 2020). These activities can have far-reaching effects on these ecosystems’ functioning by 

modifying the composition and life cycles of the species (Abbasi et al., 2023; Jara-Guerrero et 

al., 2021; Lim et al., 2020; Li et al., 2023; Dunham et al., 2018; Gray and Ewers, 2021).  
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Nigeria's forests cover approximately 7.7% of the country's land area and are home to a diverse 

array of tree species, many of which are economically important (Olajuyigbe, 2019; Friant et 

al., 2019). Oban Forest, in Southwestern Nigeria, is the largest remaining portion of Nigeria’s 

tropical rainforest (Nigerian National Park Service, 2019).  The forest has been described as 

one of Africa's most biologically diverse hotspots, with over 4,000 plant species, including 

many endemic species, and numerous fauna such as primates, elephants, and birds (Agaldo et 

al., 2016; Nigerian National Park Service, 2019; Aladesanmi, 2022; Olajuyigbe, 2019). Oban 

Forest plays a crucial role in the socio-economic development of forest-dependent communities 

by providing timber and non-timber forest products, regulating climate, water, and nutrient 

cycles, and supporting livelihoods. Like other tropical forests, anthropogenic activities and 

changes in the timing and intensity of climate variables such as precipitation and temperature 

can impact the abundance, composition, and timing of reproductive phenology of tree species 

within the forest (Agaldo et al., 2016; Bush et al., 2017; Gray and Ewers, 2021; Cleland et al., 

2007; Dunham et al., 2018; Pezzini et al., 2014).  

Many forest-dependent human communities in Africa rely on forest livelihood sustenance, 

including income generation and food provision (Jansen et al., 2020; Mayes et al., 2017; 

Benítez-López et al., 2019; Friant et al., 2019). Oban Forest has 39 forest-dependent/support 

zone communities that rely on the forest for dietary needs (Friant et al., 2019; Asuk et al., 2023; 

Ogogo et al., 2014). Thus, the provision of food by the forest will depend on the time and 

duration of production/availability of these products. As earlier established, changes in climatic 

drivers can alter the timing, quantity, and availability of food in Oban Forest, altering the 

cultural livelihood of these communities (Cleland et al., 2007; Richardson et al., 2013; Gray 

and Ewers, 2021). 
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There have been limited studies on the reproductive phenology of some African forest tree 

species (Adamescu et al., 2018; Di Lucchio et al., 2018; Adole et al., 2019; Bush et al., 2020; 

Angoboy et al., 2021; Fitchett and Raik, 2021; Ibrahim et al., 2021). Some of these studies have 

focused on single species (Di Lucchio et al., 2018), leaf phenology (Angoboy Ilondea et al., 

2021) or have been on a different kind of forest (Fitchett and Raik, 2021; Ibrahim et al., 2021) 

therefore, these studies might not be applicable to all tropical forests, which are known for their 

rich species diversity with distinct characteristics. A notable study on fruiting phenology with 

long-term data spanning over 32 years was done in Lopé National Park, Gabon (Bush et al., 

2020), 19 years of monitoring of 20 tree species in Ngogo in Kibale National Park, Uganda 

(Potts et al., 2020) and some parts of Central Africa (Adamescu et al., 2018). While these studies 

are in Africa, they represent Central and East African regions, respectively thus, the availability 

of data in North, South and West Africa can aid a better understanding of African forest tree 

phenology.  There has been no study on fruiting phenology of tree species found in Oban Forest. 

Forest-dependent communities thus rely on their historical knowledge of the forest to aid the 

predictions of food availability in the forest. The responses of tropical forest phenology to 

different factors, including climate change, are not fully studied. Understanding the dynamics 

of the change would be beneficial to sustaining the food security of forest-dependent 

communities who rely on the forest for their cultural diets.  

The data that could aid a reliable understanding of the timing and availability of flowering and 

fruiting events is needed across different species in the habitats. The study aims to provide two 

years of baseline monitoring data on the reproductive phenology (time of budding, flowering 

and fruiting) of food-producing tree species in Oban Forest for two growing seasons (May 2020 

to May April 2022). This will provide data for future research to build on, thus, contributing to 
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knowledge gaps geared towards a better understanding of the reproductive phenology of Oban 

Forest tree species.  
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5.3. MATERIALS AND METHODS 

5.3.1. Study location 

Oban Forest is located within the Oban Division of Cross River National Park (CRNP) in 

Nigeria between longitude 8°10´ and 8°55´ East and latitude 5°00´ and 5°50´ North (Figure 

5.1b). Covering an estimated area of ~251,345 ha, the forest is bounded by 39 forest-

dependent/support zone and small-holder agricultural communities to the North, South, and 

West and connected to the Korup National Park and Ejagham Forest Reserve of Cameroon to 

the East(Adeyemi, 2016; Agaldo et al., 2016). The forest vegetation combines the lowland and 

submontane moist tropical rainforest with rugged terrain and elevation ranging from ~ 100 m 

to over 1000 m above mean sea level. The mean annual precipitation ranges between 3,000 mm 

and 3,500 mm, while the mean monthly temperature ranges from 23°C to 37°C (Agaldo et al., 

2016; Aigbe and Omokhua, 2015). 

5.3.2. Plot establishment  

Five plot clusters were selected using consistent plot location the RAINFOR protocol outlined 

by African Tropical Rainforest Observation Network (AfriTRON) (Phillips et al., 2018) and 

based on previous studies (Jimoh et al., 2012; Aigbe and Omokhua, 2015; Agaldo, Gwom and 

Apeverga, 2016). Five clusters were selected in three forest areas, one in Erukut and two in 

Aking and Osomba, respectively (Figure 5.1a, c, d, e). Within each cluster, three 40 by 40 m 

plots were established with the aid of a handheld compass (see Figure 5.2a), resulting in 15 

sample plots with a combined area of 2.4 hectares (Figure 5.1c, d, e).  
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Figure 5.1. Topographic map of Oban Division showing the three areas selected for the 

location of permanent sample plots and forest-dependent communities used for the study (a). 

Map of Nigeria showing the Oban Division of Cross River National Park (b). Clusters of plot 

clusters along elevational bands within the three study areas (c, d, e). 
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All trees with a minimum diameter at breast height (dbh) of 10 cm within the 15 plots were 

tagged with a unique number, identified to species level by a field taxonomist and categorised 

as edible or inedible. All trees were marked with amber oil paint, while tree species identified 

as producing edible seeds, nuts, or fruits for humans (edible) were marked with additional 

orange paint (see Figure 5.2b). GPS coordinate of each plot was recorded using a Garmin eTrex 

10 Outdoor Handheld GPS Unit. In cases where species identification was uncertain, tree 

locations were noted, and specimens collected and stored in herbarium presses for further 

taxonomic work. 

      

Figure 5.2. Image of researcher aligning ranging poles with the aid of a compass during plot 

establishment (a) and a tree in the study area with a tag, yellow and orange paint marks (b) 
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The information used for the categorisation of tree species as producing edible fruits, nuts, and 

seeds for humans (edible category) was obtained from the administration of structured 

questionnaires to four out of 39 forest-dependent/support zone communities within the Oban 

Division of Cross River National Park (Ewah, 2013; Enuoh and Ogogo, 2018). Two villages, 

Nsan and Aking, were selected based on their proximity to the plots, while Obutong and Mkpot 

were chosen to ensure a spread around the National Park (Figure 4.1c,d,e). Respondents, aged 

25 years or older, who had lived in the area long enough to provide information on forest tree 

species used, were interviewed using mixed method interviews, comprising group interviews 

with the council of chiefs, farming/gathering household heads, and individual interviews (Asuk 

et al., 2023; Friant et al., 2019). The collected information was compiled into a comprehensive 

list to categorise tree species into those producing edible products and those only producing 

inedible ones (see Chapter Two). 

5.3.3. Phenological monitoring and data collection 

Phenological monitoring of food-producing tree species was carried out on all fifteen permanent 

sample plots from May 2020 to April 2022, assisted by a team of three field research assistants 

at the University of Calabar – Nigeria. With the aid of binoculars, all trees (marked with both 

yellow and orange paint) in the fifteen plots with 10 cm dbh and above were assessed monthly 

for the seasonal onset of budding, flowering and fruiting for two annual cycles (two-year 

period) as recommended by Morellato et al. (2010). The decision to assess all tree species with 

10 cm dbh and above was because phenological events (budding, flowering and fruiting) do not 

commence until a certain level of maturity and reproductive age (usually determined using girth 

size) is attained. The presence of phenological events, the percentage of the tree canopy covered 

by the event (based on the viewer’s assessment) and additional comments such as fallen, dried 
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or dead bud; fallen, dried or dead flowers; ripe (see Figure 5.3), fallen, dried, dead, or 

germinating fruits were noted and recorded. The presence of an event was marked with a yes 

or no, while the percentage of the canopy covered by the event was recorded in percentage.  

5.3.4.  Data quality control measures 

Data collection for phenological monitoring began during the COVID-19 lockdown, which 

posed challenges due to travel restrictions to the study area. To address this, we constituted a 

research team comprising a staff member from the University of Calabar (serving as the team 

leader), a volunteer postgraduate student, and two residents from a forest-dependent 

community.  

The team underwent training on the data collection protocol and I oversaw their activities to 

ensure adherence to standards. To maintain the quality of the data, during each monthly visit to 

the plots, a digital camera was used to capture two images for every tree exhibiting phenological 

events. The first photograph highlighted the phenological event on the tree, while the second 

focused on the tree tag. The digital camera's functionality, which automatically assigns unique 

numbers to each photograph, proved invaluable. These numbers were meticulously recorded 

against the tree tags on the data collection sheets. 

After data collection for each month, the field team leader cross-referenced the information on 

the sheets for accuracy. The compiled data collection sheets and the associated images were 

subsequently uploaded to Google Drive. This procedure was followed consistently for the 24-

month duration of the phenological monitoring. 
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5.3.5.  Data presentation 

The data collected on tree reproductive phenology monitoring were presented using line graphs 

and boxplots to get an insight into the seasonality of tree phenology in the forest. R (version 

4.2.2) was used for data processing (R Core Team, 2022). 

  

Figure 5.3. Image showing trees species with ripe fruits found in Oban Forest  
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5.4. RESULTS 

Phenological events were observed in a total of 104 species, with a total of 367 tree stems 

representing 73% of total species and 31% of total tree stems enumerated for the two years 

(Table 5.1). Out of the total species and stems with phenological events, 28 species with 104 

stems were of the edible species category, while 76 species with 263 stems were of the inedible 

species category. The list of edible and inedible species with phenological events are shown in 

Table 5.2. 

 

Table 5.1. Stem density and species count between edible and inedible species found during 

initial plot establishment and two years of phenological monitoring of trees  

 All species 

(Number (%)) 

Edible  

(Number (%)) 

Inedible 

(Number (%)) 

Initial enumeration for the entire forest 

Total tree stands 1180 306 874 

Species count 143 32 111 

Phenological monitoring    

Tree stands encountered 367 (31.10) 104 (33.99) 263 (30.09) 

Species count 104 (72.72) 28 (87.50) 76 (68.47) 
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Table 5.2. List of edible and inedible species observed during the two-year monitoring period 

SN Inedible SN Inedible SN Edible 

1 Anonidium mannii 39 Microdesmis puberula 1 Allanblackia floribunda 

2 Antiaris toxicaria 40 Milicia excelsa 2 Angylocalyx oligophyllus 

3 Antidesma vogelianum 41 Millettia grifforniana 3 Baillonella toxisperma 

4 Baphia nitida 42 Millettia zechiana 4 Brachystegia eurycoma 

5 Bridelia ferruginea 43 Musanga cecropioides 5 Caula edulis 

6 Bridelia micrantha 44 Myrianthus arboreus 6 Chrysophyllum albidum 

7 Calpocalyx brevibracteatus 45 Nauclea diderrichii 7 Chrysophyllum dumbeya 

8 Calpocalyx cauliflorus 46 Neoboutonia glabrescens 8 Cola digitata 

9 Carapa procera 47 Octoknema affinis 9 Cola hispida 

10 Cleistopholis patens 48 Omphalocarpum elatum 10 Cola lepidota 

11 Coelocaryon botryoides 49 Ouratea calophylla 11 Cola verticillate 

12 Coelocaryon preussii 50 Panda oleosa 12 Dacryoides edulis 

13 Corynanthe pachyceras 51 Pentadesma butyracea 13 Dialium guineense 

14 Craterispermum cerinanthum 52 Petersianthus macrocarpus 14 Garcinia mannii 

15 Diospyros mespiliformis 53 Piptadeniastrum africanum 15 Irvingia gabonensis 

16 Diospyros suaveolens 54 Pterocarpus osun 16 Maesobotrya barteri 

17 Diospyros zenkeri 55 Pterocarpus soyauxii 17 Maesobotrya dusenii 

18 Distimonanthus 

benthamianus 

56 Pterygota bequaertii 18 Parkia bicolor 

19 Drypetes gossweileri 57 Pterygota macrocarpa 19 Pentaclethra macrophylla 

20 Drypetes staudtii 58 Rauvolfia mannii 20 Poga oleosa 

21 Duboscia macrocarpa 59 Rauvolfia vomitoria 21 Pycnanthus angolensis 

22 Enantia chlorantha 60 Ricinodendron heudelotii 22 Tetrapleura tetraptera 

23 Entandrophragma 

cylindricum 

61 Rothmannia hispida 23 Uapaca heudelotii 

24 Eribroma oblonga 62 Staudtia stipitate 24 Uapaca staudtii 

25 Ficus capensis 63 Sterculia rhinopetala 25 Vitex doniana 

26 Funtumia elastica 64 Sterculia tragacantha 26 Xylopia aethiopica 

27 Garcinia pachycarpa 65 Strombosia grandifolia 27 Xylopia quintasii 

28 Garcinia smeathmannii 66 Strombosia pustulata 28 Zanthoxylum zanthoxyloides 

29 Guarea thompsonii 67 Strombosia schefflera 
  

30 Hannoa klaineana 68 Strombosia zenkeri 
  

31 Hildegardia barteri 69 Tabernaemontana 

pachysiphon 

  

32 Hylodendron gabunense 70 Terminalia ivorensis 
  

33 Hypodaphnis zenkeri 71 Trichilia obovoidea 
  

34 Isolona hexaloba 72 Trilepisium madagascariense 
  

35 Khaya senegalensis 73 Uapaca togoensis 
  

36 Klainedoxa gabonensis  74 Uvariopsis dioica 
  

37 Lophira alata 75 Uvariopsis gigas 
  

38 Lovoa trichilioides 76 Uvariopsis memfinis 
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Continuous production of flowering buds and flowers was observed throughout the year (Figure 

5.4), with peaks around April and May. Production of fruits peaked in June during the first 

cycle and between July and August in the second cycle. The fruiting peak was seen to occur 

just after the peak in budding and flowering.  

 

 

Figure 5.4. The count of tree stems seen in the flower bud production, flowering, and fruiting 

stages of reproductive phenology during the two years monitored period. The bold lines (red, 

green and blue) are the trend line, while the grey part represents the confidence interval at 

0.95. 
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Results on the quantity of bud, flowers and fruits produced in Oban Forest in Figure 5.5 showed 

a seasonal trend in fruit production (Figure 5.5c). Highest mean quantity of fruit production 

was seen to occur in July and august in the first cycle and in July in the second growing season. 

Continuous production of flowering buds and flowers was observed throughout the year with 

no clear indication of a seasonal cycle. 

 

 

Figure 5.5. The quantity of occurrence of each phenological event. The plot shows the 

percentage of tree canopy area covered by each phenological event encountered in the study 

area. The percentage of canopy covered by flower bud encountered during the monitored 

period (A), the percentage of flowers (B) and the percentage of fruits (C). The variance 

expressed within each time period as drawn across the fifteen plots. 
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5.5. DISCUSSION AND IMPLICATIONS  

Long-term monitoring of the reproductive phenology of food-producing tree species is essential 

to understand their response to environmental factors. The continuous production of flowers 

and fruits/seed throughout the year with a seasonal fruit production cycle, as seen in the data, 

could indicate that flowering and fruiting in the forest vary based on tree species. The flowering 

and fruiting of trees in African tropical forests are reported to occur throughout the year, and 

this has been linked to Phylogeny (Bawa et al., 2003). In a more recent study conducted in 

Gabon, the continuous production of flowers and fruits throughout the year was attributed to 

the difference in tree species and their varied adaptation to changes in climate variables (Bush 

et al., 2017). Most species in the tropical forest exhibit an annual phenological cycle, while 

some exhibit other trends range from sub-annual or super-annual cycles (Adamescu et al., 2018; 

Potts et al., 2020) and other trees produce perennial fruits (Franklin et al., 1987).  

It was found that 31.10 % of the total tree stems enumerated and 72.72 % of the constituent tree 

species in the study area were seen to have phenological events. The disparity in the number of 

tree species with phenological activities compared to the number of stems could be attributed 

to several factors. These factors might vary based on climate (Polansky and Boesch, 2013; Pau 

et al., 2018b; Chapman et al., 2018; Parmesan and Yohe, 2003; Bush et al., 2020), the 

environmental niche, including the dominance of a certain species. Despite being of the same 

species, individual trees may occupy different environmental niches within the forest, such as 

differences in soil type, topography, or light availability. These differences can result in 

variations in the timing and intensity of phenological events among trees of the same species, 

leading to a disparity in the number of stems with phenological activities compared to the 

number of tree species. Also, certain tree species may dominate the forest, occupying a larger 
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proportion of the total stem count. These dominant species may exhibit distinct phenological 

patterns that differ from other tree species in the forest, leading to a disparity in the number of 

tree species with phenological activities compared to the number of stems (Shirima et al., 2015; 

de Quesada and Kuuluvainen, 2020). The number of stands belonging to edible tree species 

with phenological events offers food production potential to the 39 rural forest-dependent 

communities in and around Oban Forest. 

The cycle in the count of tree species and the percentage of tree canopy covered with flowering 

buds and flowers indicates that the peak of flower buds and flower production is consistent with 

the onset of the rainy season between March and April (Omogbai, 2017). It has been reported 

from previous studies that environmental factors with annual cycles strongly drive fruiting 

phenology in Afrotropical forests (Bush et al., 2017; Adamescu et al., 2018; Dunham et al., 

2018). It is crucial to note that changes in climatic drivers can alter the timing, quantity, and 

availability of food in Oban Forest, affecting the cultural livelihood of these communities, as 

pointed out in other studies (Polansky and Boesch, 2013; Pau et al., 2018b; Chapman et al., 

2018; Parmesan and Yohe, 2003; Bush et al., 2020). Although Adamescu et al. (2018) 

suggested that triggers from climatic factors are not annually constant, it would be a key 

contribution to understanding the extent to which these changes might affect fruiting phenology 

in the forest.  

Fruit production heavily relies on environmental cues, and there is extensive proof that climate 

change has caused alterations in the timing of plant reproduction in temperate regions (Walther 

et al., 2002; Parmesan and Yohe, 2003). This phenomenon is characteristic of fruiting 

phenology in Afrotropical forests owing to the variation in flowering and fruiting time in 

different tree species (Adamescu et al., 2018; Dunham et al., 2018; Bush et al., 2020).  There 



 

180 

 

 

needs to be more data on the reproductive patterns of tropical plants or their changes over time. 

The specific causes of these changes are not universal and still need to be studied. Therefore, 

monitoring the phenological cycle of trees in Oban Forest is a critical step towards building a 

dataset that could aid in determining the dynamics of phenological events and understanding 

the climate-phenology relationship in Oban Forest.  

However, in the Oban Forest and tropical Africa at large, there has been a persistent issue 

stemming from the lack of comprehensive long-term phenological data on trees. This void has 

imposed significant constraints on researchers keen on conducting phenological studies in this 

region. While the study of tree phenology is still an emerging and evolving area of research in 

tropical Africa, there are additional challenges that exacerbate the problem. Firstly, for those 

researchers who do possess data on tree phenology, it is often either stored in hard copy formats 

or has not been shared as open-source information. This has inevitably made the accessibility 

of this data cumbersome for other researchers, further hindering collaborative and comparative 

studies. 

Secondly, there exists no standardized protocol for collecting data in phenological studies 

within the region. This lack of uniformity not only complicates the process for newcomers but 

also poses challenges in ensuring the consistency and reliability of data gathered across 

different studies. Lastly, the overarching problem compounding these challenges is the 

difficulty in procuring funding for long-term phenological studies in Africa. Financial 

constraints severely limit the potential for initiating and sustaining research projects, thereby 

stalling advancements in this field.  

In essence, while the importance of phenological research is unquestionable, a combination of 

data accessibility issues, lack of standardized methodologies, and funding challenges are 



 

181 

 

 

significant impediments for researchers in the Oban Forest and the broader African region. 

There is also a need to adapt the indigenous knowledge held dearly by forest-dependent 

communities to the potential changing trend and adopt necessary conservation and management 

strategies to accommodate these changes. This study adds to the limited information available 

on the reproductive phenology of African forest tree species. It provides valuable baseline data 

that would act as a foundation for future research to build on, contributing to a better 

understanding of the reproductive phenology of Oban Forest tree species and their response to 

environmental factors. It will also provide critical information to help develop sustainable food 

systems for forest-dependent communities and aid in forest conservation efforts. 
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CHAPTER SIX: KEY RESEARCH FINDINGS, SYNTHESIS AND FUTURE 

DIRECTIONS 
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6.1. INTRODUCTION  

The research provides valuable insights into the impact of human activities and environmental 

factors on the species distribution and structure of Oban Forest in Nigeria. The aim of this 

research was ‘to investigate the factors affecting the biodiversity and phenology of trees in 

Oban Forest, Nigeria, including the impact of low-intensity anthropogenic activities such as 

human foraging, climate variables such as air temperature and precipitation, and to provide two 

years of baseline monitoring data on the tree reproductive phenology in Oban Forest’. Four 

main research gaps were focused on: Chapter Two examined the impact of low-intensity 

anthropogenic activities, such as foraging, on the ecological dynamics of the forest trees along 

an elevational gradient. Chapter Two also evaluated how low-intensity impacts can vary 

depending on the usefulness of the tree species in terms of usage for food or not. Chapter Three 

investigated the magnitude and dynamics of impacts from human-presence indicators on beta 

diversity in a regional forest between Nigeria and Cameroon, and how these indicators interact 

with other geographic and environmental drivers. Chapter Four assessed the temporal dynamics 

in the phenological responses to changes in temperature and precipitation cycle in an 

Afrotropical rainforest and highlighted the impact on the livelihood of many forest-dependent 

communities. Chapter Five provided two years of baseline monitoring data on the reproductive 

phenology of food-producing (edible) and non-food producing (inedible) tree species in Oban 

Forest. This chapter (Chapter 6) presents key research findings, an analysis of the principal 

research discoveries, and a projection of possible future research directions. This research has 

potential implications to affect the availability and quality of forest products, including those 

crucial for the nutrition and livelihood of the 36 forest-dependent communities in Oban Forest. 
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6.2. KEY RESEARCH FINDINGS 

The research presented here is original and distinct in (1) employing the utilization of forest 

tree species for food by forest-dependent communities to assess the impact of low-intensity 

human activities on the composition, abundance, and distribution of tree species. (2) utilizing 

the interaction between human influence indicators with other geographic and environmental 

drivers to investigate the beta diversity of tree species in Nigeria and Cameroon. (3) presenting 

the first evaluation of the impact of climate variables on the phenology (EVI) of the Oban 

Forest. (4) generating the first phenological monitoring data in Oban Forest with the potential 

for continuous monitoring. The primary research findings were as follows: 

1. Low-intensity human activities, such as foraging, may influence the forest species 

distribution and structure, leaving observable footprints. The findings suggest that even 

low-intensity foraging has the potential to change the Oban Forest dynamics. Different 

intensities of human activities along the studied gradient maybe having varying impacts 

on the abundance and evenness of edible and inedible tree species. During foraging for 

food by forest-dependent communities, the dispersal of seeds, in addition to tree 

management, deliberate planting, and conservation for food production, could have 

contributed to this pattern. In contrast, inedible species exhibited increasing pairwise 

spatial beta-diversity with an increase in elevation, suggesting the constant turnover of 

species due to niche filtering and/or dispersal limitation.  

2. Turnover was the primary driver of tree species dissimilarity in the Nigeria-Cameroon 

forest region, with environmental filtering exerting a stronger effect than geographical 

distance. Human activities, as indicated by DCHP, were found to be an important driver 

of beta diversity for edible species but not for inedible species. Forest composition and 

stem density were also found to be important drivers of dissimilarity, with stem density 
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having a greater effect on edible species. Spatial distance between plots and elevation 

were important individual drivers of dissimilarity, with elevation having a stronger 

effect on the turnover of inedible species. From the findings, it was hypothesised that 

the impact of human activities on the beta diversity of tropical forests is complex and 

could depend on various factors, including the type and intensity of activities, elevation, 

the distance between plots, and soil. 

3. Oban Forest showed a clear seasonal cycle in EVI, with the highest average monthly 

values recorded between March and October, and low values between December and 

February. This cycle was offset from the seasonal cycles in temperature and 

precipitation, which suggested a combined effect of increased precipitation and reduced 

temperature on peak EVI values and the reverse for lower EVI values. The seasonal 

cycle of EVI was found to be linked to precipitation patterns, with higher rainfall 

promoting increased photosynthetic activity and leading to higher EVI values with a 

lagged response of up to seven months. Temperature was negatively correlated with 

EVI however the impact on EVI was non-significant. Changes in the phenological cycle 

of Oban Forest could impact the availability and quality of forest resources needed to 

sustain the livelihoods of forest-dependent communities, particularly those involved in 

collecting and selling non-timber forest products or those specialized in ethnobotany as 

a trade. 

4. During the two years of baseline phenological monitoring, phenological events were 

observed in 104 tree species with 367 tree stems, representing 72.72% of the total tree 

species and 31.10% of the tree stems enumerated in Oban Forest. Continuous 

production of flowering buds and flowers was observed throughout the year, with peaks 

around April and May, while fruit production peaked in June during the first cycle and 
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between July and August in the second cycle. The proportion of tree stems (31.10%) 

seen to have phenological events compared to the number of tree species (72.72%) 

represented suggests a variation of phenological cycles within species. The continuous 

production of flowering buds and flowers throughout the year with seasonal fruit 

production trends suggests there are opportunities for food production and consumption 

in Oban Forest. 
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6.3. SYNTHESIS 

6.3.1. Low-intensity human impact on species composition  

The impact of human activities on tree species composition and diversity can be determined by 

factors such as taxa and geographical location. Human activities such as harvesting of timber, 

farming, nomadic nature of some indigenous settlements, foraging, and conservation efforts by 

indigenous people can affect the distribution of tree stand density along the elevational gradient 

(Otu et al., 2012; Jimoh et al., 2012; Asuk et al., 2023; Adeyemi, 2016; Aigbe and Omokhua, 

2015). The results suggest that low-intensity human activities, such as foraging for edible 

species, have the potential to modify the forest and leave visible footprints in the dbh 

abundance-size distribution and composition of tree species. Several studies have hypothesised 

that different intensities of human activities can potentially leave footprints in the forest that 

are visible in the composition and distribution of tree species  (Jansen et al., 2020; Jacobson et 

al., 2019; Asuk et al., 2023; Benítez-López et al., 2019; Waring et al., 2020). The disparity in 

the trends observed in edible and inedible species could be due to the selective dispersal of 

propagules during foraging, deliberate conservation, and management of desired species by 

humans for food production. It has been reported that in populations of a species with limited 

seed dispersal, human disturbances enhance the impact of founder effects, thus agreeing with 

the finding that humans influence the dispersal of propagule in a forest (Silvestrini et al., 2015; 

Waddell et al., 2020; Asuk et al., 2023). Also, humans can cover a wider ground distance when 

foraging for fruits, seeds, and nuts than for other high-intensity activities like logging (Asuk et 

al., 2023; Levis et al., 2017; Roberts et al., 2021; Scerri et al., 2022). Furthermore, large-scale 

forest disturbance due to timber harvesting, clear-cutting for agriculture, or agroforestry 

practices are other factors that can induce large-scale modification of the forest (Seidl et al., 

2017; Belote et al., 2009; Sagar et al., 2003; Jaeger et al., 2022; Jara-Guerrero et al., 2021). 
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In combination with geographical distance, elevation and stem density, low-intensity human 

activities were one of the main drivers of beta diversity in the regional study involving forests 

of Nigeria and Cameroon. The impact of human activities on tree species dissimilarity at a 

regional scale was more significant for inedible species than edible species. The disparity in the 

effects of human activities at a local and regional scale is consistent with the findings of other 

studies that have suggested that selection and stewardship of desired tree species by indigenous 

populations over time might indeed exert different impacts on different species used(Asuk et 

al., 2023; Levis et al., 2017; Roberts et al., 2021; Scerri et al., 2022). Furthermore, the impact 

of elevation at the local-scale studies was attributed to the niche-filtering along elevational 

gradients and the confinement of different intensity human activities to lower or higher 

elevational gradients. However, some studies have pointed out that tree species traits, dispersal 

mechanisms, and climate parameters could also significantly influence the species community 

assemblage (Horbach et al., 2023; Kirk et al., 2021; Buzatti et al., 2019; Fauset et al., 2019). 

Further studies are needed to understand the potential impacts of these factors on forest tree 

community assemblage in the region. 

6.3.2. Drivers of phenological cycle in Oban Forest 

It was observed that the forest is characterized by high and somewhat constant air temperature, 

with a strongly variable seasonal precipitation cycle. It was found that precipitation was the 

primary and most important climatic factor that drives the changes observed in EVI. In the 

tropical rainforest, precipitation could affect EVI from zero-month to seven months past the 

rainfall event. Conversely, the effect of air temperature was negatively correlated with 

precipitation and had little effect on the forest vegetation in the tropical rainforest. These 

findings are consistent with other African studies that have shown the importance of 
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precipitation in driving forest vegetation dynamics (Gou et al., 2022; He et al., 2021; Li et al., 

2023; Naif et al., 2020; Wingate et al., 2019).  

Research in African rainforests has shown that precipitation is indeed a critical factor in shaping 

vegetation dynamics (Abera et al., 2018; Wingate, Phinn and Kuhn, 2019; Yan et al., 2019; 

Gou et al., 2022), with periods of drought leading to decreased growth and increased mortality 

of trees and other plant species (Abera et al., 2018; Dunham et al., 2018; Pau, Detto, et al., 

2018; Naif, Mahmood and Al-Jiboori, 2020; Potts et al., 2020). In Lope National Park in Gabon, 

annual phenological cycle was the most common cycle observed in the African rainforest (Bush 

et al., 2017). Bush et al. (2017) further found that new leaf formation was produced during the 

dry season, while peaks in fruiting phenological cycles were mostly reported during the rainy 

season. Preciin fruiting phenological cycles were mostote, Sanders and Jones, 2009; Seidl et 

al., 2017; Jara-Guerrero et al., 2021; Jaeger et al., 2022). 

In addition, studies in some African Forests have found that temperature, light availability and 

other variables (Esmaili et al., 2020; Gray and Ewers, 2021; Xulu et al., 2018; Di Lucchio et 

al., 2018) can influence vegetation growth, although these factors are generally considered 

secondary to precipitation (Jiang et al., 2019; Dunham et al., 2018). Similarly, research on 

Amazonian rainforests has also highlighted the importance of precipitation in driving forest 

vegetation dynamics (Fauset et al., 2019; Jiang et al., 2019). However, studies have found that 

the timing and intensity of precipitation can be more important than total rainfall in determining 

vegetation responses (Esmaili et al., 2020; Bucher and Römermann, 2021).  

While the phenology-climate relationship study was limited due to a dearth of ground-truthed 

data and remotely sensed images with a high percentage of cloud cover, the findings have 

important implications for conservation and management strategies for Oban Forest and other 
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tropical rainforests in the region. It is crucial to understand the factors that influence forest 

greenness to protect and manage these ecosystems properly, especially for forest-dependent 

human communities who rely on the forest for their livelihood. Further research studies that 

could benefit from better sampling, quality data collection, and improved analytical methods 

are needed. By improving our understanding of the complex interactions between humans, the 

environment, and forest ecosystems, we can develop more effective conservation and 

management strategies to help preserve the ecological integrity of tropical rainforests and 

biodiversity for future generations. 

Additionally, it is essential to note that climate change poses a significant threat to tropical 

rainforests worldwide. According to recent studies, deforestation and other human activities 

account for varying major impacts on the forest (Williams et al., 2020; Ite, 2018; McMichael, 

2021; Santos et al., 2018; Jacobson et al., 2019; Zheng et al., 2019). Climate change is expected 

to increase the frequency and intensity of extreme weather events, such as droughts and floods, 

which can significantly impact the health and productivity of tropical rainforests (Samanta et 

al., 2010; Rowland et al., 2018; Qie et al., 2017; Abera et al., 2018; Didi Sacré Regis et al., 

2020; Chen et al., 2020). Therefore, effective climate change mitigation and adaptation 

strategies must be implemented to ensure the long-term survival of these ecosystems. 

6.3.3. Implications for forest-dependent communities 

Human activities such as foraging and deliberate conservation of certain species have 

potentially modified the forest over time, leaving observable footprints. Past disturbances in the 

forest caused by large-scale human activities like timber harvesting and clear-cutting for 

agriculture are also likely to have influenced the species composition and structure of the forest. 

These findings have broader implications, as studies in other tropical forests have shown 
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evidence of low-intensity human impact on forest ecosystems (Scerri et al., 2022; Guo et al., 

2022; Williams et al., 2020; Santos et al., 2018; Asuk et al., 2023; Popradit et al., 2015; 

Jacobson et al., 2019; Ellis et al., 2021, 2010). 

The results have significant implications for the 39 forest-dependent local communities living 

in and around Oban Forest (Asuk et al., 2023), who rely heavily on the forest for their 

livelihoods (Friant et al., 2019). The phenological cycle of the forest plays a crucial role in 

determining the availability and quality of forest products, such as fruits, nuts, and plants of 

ethnobotanical importance, which are important sources of nutrition and income for these 

communities (Ebu et al., 2021). Changes in the phenological cycle caused by climate change 

and other factors could impact the availability and quality of these resources, thereby affecting 

the income-generating potential of forest-dependent communities (Paeth et al., 2008; Bush et 

al., 2020). 

The increase in mean annual air temperature and decrease in mean annual precipitation 

observed in the study was in light with the data reported for the Nigeria area by Oderinde 

(2022). Although the scope of the study did not include climate variables as factors influencing 

beta-diversity in the Nigeria-Cameroon region, factors like geographic distance and elevation 

that are highlighted can have strong ties to climate-related shifts (Swenson, Anglada-Cordero 

and Barone, 2011; Nascimbene and Spitale, 2017; Fontana et al., 2020; Asuk et al., 2023). 

Determination of the likely changes in forest phenology based on climate change would require 

the integration of this beta-diversity information with climatic data over a significant period. 

This would allow for the discernment of patterns that are directly attributable to climate change 

versus those that are due to other environmental or human factors. 
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6.3.4. Conclusion 

This thesis provided new insight to the drivers of change to the tree species composition, 

distribution, and phenology. It has shed light on the complex relationships between humans, 

the environment, and tropical rainforests in Oban Forest in the Oban division of Cross River 

National Park – Nigeria. The study is the first of its kind conducted in Oban Forest. It presents 

the interactions between human temperature, and precipitation that could impact the forest 

while highlighting the implications to the food security of forest-dependent communities. 

inform decision-making. The findings also highlight the need for continued research to 

understand these interactions better, which have important implications for conservation and 

management strategies and climate change mitigation and adaptation policies.  
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6.4. FUTURE RESEARCH 

The research showed that humans and climate influence the composition, distribution and 

phenology of Oban Forest tree species in the forest. Thus, actions must be taken to protect and 

preserve tropical rainforests, like Oban Forest, for the sake of biodiversity and ecological 

integrity and for the benefit of the people who depend on these forests for their livelihoods. 

Thus, further research projects would focus on 

1. The impact of human activities on tropical forest dynamics and species distribution: 

This would involve plot-based data and interview visits to forest-dependent 

communities to investigate the potential impact of historical and current human 

activities. The research would include a comparison between forest exposed to low-

intensity activities, such as foraging and seed dispersal, and those known to be exposed 

to higher-intensity activities such as logging, farming, and agroforestry practices. This 

research would help to determine the extent to which human activities are altering the 

structure and composition of tropical forests, and how these impacts may vary across 

different forest types and regions. 

2. The role of trait-environment interactions in species distribution: This would involve 

exploring the impact of trait-environment interactions on species distribution, 

particularly in edible and inedible species. This research would require collecting data 

on species traits and interaction networks in tropical forest ecosystems and would help 

to better understand how environmental factors and species traits interact to shape 

species distribution and abundance. 

3. Extend monitoring of phenological cycle in the area along with the collection of ground-

based data on air temperature, and precipitation in Oban Forest to track changes in the 

variables over time and identify any emerging trends or patterns. Ground-based 
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monitoring would allow the development and evaluation of more accurate predictive 

models for the relationships between EVI and climate variables, as well as to link leaf 

phenological cycles to fruiting phenology. 

4. Collaborating with modellers to explore how factors such as light intensity, soil 

nutrients, atmospheric CO2 concentrations, and functional type and traits of the tree 

species could interact with each other and further complicate the response of vegetation 

to environmental changes. 

5. Research on the social and economic impacts of climate change on forest-dependent 

communities to explore ways to support their adaptation and resilience to changes in the 

phenological cycle. This would also explore ways to support forest-dependent 

communities in adapting to the impacts of climate change, including through sustainable 

land use practices, alternative livelihoods, and community-based conservation 

initiatives. 
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