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ABSTRACT

Blind source separation of hard-clipped audio mixtures is a challenging problem. This

thesis presents a novel approach to recovering sources from mixtures affected by hard clipping

distortion. This approach relies on making geometric observations about the nature of clipped

mixtures. An assumption of disjointness is key. A strict time-disjointness assumption is made in

the first two methods. In the final method, we relax this assumption such that only a portion of the

time points are time-disjoint. Evaluation experiments demonstrated an increase in source recovery

performance for the proposed method when compared with sequential approaches when at least

partial time-disjointness was present for speech and synthetic sources.
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Chapter One

Introduction

This thesis is composed of a series of published and unpublished works that describe the original

research undertaken by the author. These works have been published by the author under three

different legal names.

This thesis is about blind source separation, which is best explained by the cocktail party

problem.

1.1 The cocktail party problem

Imagine you are at a cocktail party, and there are lots of guests speaking at the same time. Despite

the overlap of the guests’ voices in time, our brains are capable of focusing on and identifying an

individual given voice, or source, at a time. Our brains separate a desired source from the mixture

- the entire cocktail party. This task, however, is challenging for a computer. In signal processing,

this is known as the cocktail party problem; it is more generally known as source separation.

This problem can be extended to any other type of source; these might be medical signals such as

electrocardiograms; musical instruments; video; or astronomical signals.
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Introduction

To help understand blind source separation, we begin by describing the most common set

of mathematical approaches to it, Independent component analysis (ICA).

1.2 Independent component analysis (ICA)

ICA describes a set of techniques and there are many ways to formulate the problem. Gener-

ally, when discussing ICA, we are referring to linear ICA. ICA is a latent variable model, which

means the variables we are interested in cannot be directly observed (Hyvärinen and Oja, 2000b).

The noiseless linear case can be expressed with the equation below: the observed mixtures x are

modelled as linear mixtures of the unknown source signals s, which are achieved by the unknown

mixing matrix A.

x = As (1.1)

The noisy linear case can be expressed by assuming there is an additive constant noise n.

For noisy ICA, we generally assume that the noise is i.i.d. (independent and identically distributed)

Gaussian noise. In the real world, noise is often more complex than a simple additive constant,

however, treating noise this way is a useful simplification for ICA applications, where we are

interested in the sources rather than the noise itself.

x = As + n (1.2)

ICA is an ill-posed problem because it has two unknowns A and s. In order to make

the problem solvable, we have to make some assumptions: the main assumption is the statistical

independence of the sources s. If we think back to the cocktail party problem (Section 1.1) then

it is easy to see this is a reasonable assumption, as each person is stood in a different location and

2
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is speaking at a different loudness. A second assumption is required, that all but one of the source

signals must have non-Gaussian distributions. This is a reasonable assumption: many signals, such

as speech and musical instruments, are non-Gaussian in nature. The reason for this assumption

comes from the central limit theorem (CLT): as we sum source signals to generate a mixture, their

overall distribution will tend towards a Gaussian. For this reason we are unable to distinguish a

Gaussian source from a Gaussian mixture (Hyvärinen and Oja, 2000b). This principle of non-

Gaussianity is fundamental to many ICA algorithms.

Under these two assumptions, the ICA model is identifiable, which means that it is possible

to discern the parameters of the model given sufficient measurements (Hyvärinen, Karhunen, and

Oja, 2001, p. 153). In the determined case where there is the same number of sources s and

mixtures x, it is usually assumed that the matrix A is invertible. Many algorithms deal with the

determined case, such as FastICA, requiring the same number of mixtures x as sources s, making

the mixing matrix A square. In the noiseless linear case, this assumption allows us to invert the

estimated mixing matrix, W = Â−1, and simply recover the estimated sources ŝ by the following

equation:

ŝ =Wx (1.3)

The ICA model cannot recover the scaling or signs of the sources. Since both A and s are

unknowns, scaling factors in either could easily be cancelled by division in the other. A further

indeterminacy evident in Equation 1.1 is that the original permutation of the sources cannot be

recovered either.

Although ICA can work in certain scenarios, it usually requires preprocessing of the data

in order for it to achieve separation of the sources.

3
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1.2.1 Preprocessing

ICA assumes that the sources are statistically independent, linearly mixed and with equal variance.

This might not always be the case, so preprocessing the data can help by removing scaling factors

and mitigating the effects of nonlinear mixing and noise.

Linear mixing can be viewed as a rotation, once scaling factors have been removed. This is

useful because we can rotate the data in order to undo the linear mixing process. This can be seen

in Figure 1.1: a scatter plot of two independent sources is shown in Figure 1.1a and a scatter plot

of the mixtures, after preprocessing to remove scaling factors, is shown in Figure 1.1c. To generate

the mixtures, we used MATLAB’s rand function to generate two example sources, s1 and s2, 1000

points each drawn from a uniform distribution. then multiplied the resulting data by mixing matrix

A (Equation 1.4) to yield mixtures x1 and x2.

A =


0.2 0.3

0.6 0.4

 (1.4)

Two steps are usually involved in the preprocessing for linear ICA: the first, known as

centring, refers to shifting the data to have zero mean in all dimensions. The second, known

as whitening, refers to decorrelating and scaling the data to have identity covariance (Hyvärinen,

Karhunen, and Oja, 2001, p.140). ICA is discussed in more detail in Section 2.1.

1.3 Properties of audio source separation

For the purpose of this thesis we will be focusing on audio source separation, however the tech-

niques in this thesis could be applied to other source types.

Source separation is a broad problem. There are several parameters with which one can

4
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(a) Scatter plot of uniform sources s1 and s2 (b) Scatter plot of mixtures x1 and x2

(c) Scatter plot of centered and whitened mixtures x′1

and x′2

Figure 1.1: Example of a mixture of 2 uniform sources and the sources after preprocessing has

taken place.
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specify a source separation problem and these parameters can be combined, leading to many per-

mutations. The main parameters are listed below and discussed briefly to assess their relevance

and provide context to the problems approached in this thesis.

1.3.1 Linearity

Linearity is an important parameter of mixtures. In the real world, mixtures of audio can be mod-

elled as linear systems. This is also true in music production, although the linear audio mixtures

produced are further processed after mixing, introducing a nonlinearity. Jutten and Karhunen de-

scribed these mixtures as post-nonlinear (PNL) mixtures (Jutten and Karhunen, 2003). This is a

simpler problem than general nonlinear mixtures: provided the nonlinearity is invertible, the prob-

lem can be solved by linear ICA. Moreover, general nonlinear ICA problems are not identifiable

without further constraints and regularisation. For this reason, linear ICA approaches will be most

relevant to the aims of this research.

1.3.2 Noise

In signal processing, noise is unavoidable. Both analogue and digital systems suffer from noise,

which can be introduced at capture, processing, transmission and storage for a variety of reasons.

Some ICA methods handle noise by considering it to be merely another source, while others in-

clude noise separately in the model. Hyvärinen and Oja remarked that the noiseless model was

challenging enough to solve and that, for many applications, appeared to be sufficient (Hyvärinen

and Oja, 2000b).

6
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1.3.3 Determinedness

A source separation problem is determined if there are the same number of source signals as there

are mixtures. Many ICA algorithms, such as FastICA (Hyvärinen and Oja, 2000b) and EMICA

(Welling and Weber, 2001), deal with the determined case. In the determined case the mixing

matrix is square, which simplifies the problem.

Overdetermined problems, with more mixtures than sources, are not relevant to this re-

search: dimensionality reduction techniques such as principal component analysis (PCA) can be

used to convert these into determined problems (Winter, Sawada, and Makino, 2005).

A more challenging, and perhaps realistic, problem is the underdetermined case, where one

has access to fewer mixtures than source signals. Unlike determined and overdetermined problems,

we cannot simply use the inverse or pseudo-inverse of mixing matrix A (Plumbley et al., 2010).

Stereo audio, or two mixtures, is very common, however, music productions usually contain many

more than two source signals. More challenging still is single mixture or single channel source

separation. The single mixture problem, and underdetermined source separation in general, can be

modelled in the spectral domain Section 1.4.

1.3.4 Time independence

While ICA algorithms are built on the notion that the source signals are independent, this is not a

realistic assumption (Hyvärinen, 2013). In musical recordings, especially, there are structures to

be found in time and frequency (Vincent et al., 2014): instruments are correlated due to playing

the same rhythms and melodies in time. Most ICA algorithms treat the time points as identically

distributed (i.i.d.) and work in practice. It is worth considering, however, that the time dependence

of the sources can provide additional insights about the nature of the sources.

7
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1.3.5 Availability of information

The blind source separation problem, which ICA was developed to solve, assumes access to the

mixtures and no further information. In reality, no source separation algorithm is truly blind due

to the assumptions that need to be made about the nature of the sources (Parvaix and Girin, 2011),

the mixing process and the number of sources present. In general, informed or guided source

separation refers to approaches that account for further side information about the mixtures, such as

a musical score or instrument activation times. Since additional information beyond the mixtures

themselves is unavailable in many scenarios, this research will focus on blind source separation

methods. For more challenging problems, however, such as time-varying distortions, informed

source separation methods may prove necessary in order to achieve good results.

1.3.6 Variance over time

A mixture is instantaneous if it contains no echoes or time delays. Convolutive mixtures, which

can contain multiple time delayed instances of the sources, are a more challenging problem. Con-

volution is commonly used in music production to create the impression of space, mimicking the

multiple reflections of sound waves heard in a physical location. Convolutive source separation

algorithms often deal with time-invariant mixtures rather than time-varying mixtures (Kounades-

Bastian et al., 2015), the latter giving the impression of sources moving from one loudspeaker to

another. Convolutive mixtures are less relevant in solving the problems considered by this research

and as such are not a priority. Primarily, instantaneous mixtures will be considered, though future

work could extend this research to convolutive mixtures.

8
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1.3.7 Audio content

Finally, the audio content should be considered. There are methods that are designed to work

exclusively for speech or music, for example. Many informed source separation methods require

a musical score or other musical cues, which makes them suitable only for musical data (Ewert

et al., 2014). Since clipping distortion and dynamic range compression (DRC) are widespread

phenomena, it would be appropriate to focus on general methods that will work for any type of

audio. For more challenging types of distortion, however, approaches that make assumptions based

on the audio content being music or speech would be useful.

1.4 The spectral or time-frequency domain

A plot of the time points of a signal is known as a waveform, however, it is often useful to transform

a signal into the spectral, or time-frequency, domain. Signals may overlap in the time domain, but

this may not be the case in the spectral domain. Sources comprise different frequencies, and

separating these frequencies can help with identifying the sources. These are some of the reasons

the spectral domain is useful for source separation.

1.4.1 Short Time Fourier Transform

Fixed-basis transforms such as the short time Fourier transform (STFT) are easily invertible and

provide unique representations of a signal (Nesbit et al., 2010): as such, they are commonly used

in audio. The equation for the discrete version of STFT is given in Equation 1.5. In the equation,

n is the time point index; t is the window or frame number; f is the frequency; N is the window

size; h is the hop size, or the number of time points by which the window moves each time.

9



Introduction

STFT(t, f ) of yn ≡ Y(t, f ) =
N∑

n=1

wnyn+th exp− j2π f n (1.5)

The STFT works on overlapping segments of a signal at a time by shifting a window w

across the signal y. There are several types of windowing function one could use for w. One of the

most common choices is the Hann window:

wn = 0.5
(
1 − cos

(
2nπ

N + 1

))
, n = 1...N (1.6)

The STFT has a complex-valued output. Converting to polar coordinates gives us a mag-

nitude coefficient and phase angle for the frequency f at each window determined by t. Note that

the time resolution of the time frames t is necessarily coarser than the resolution of the individual

time points n. Since frequency is measured over time, some time resolution is necessarily lost in

this process. A spectrogram can be created by ignoring phase and plotting the squared magnitude

coefficients of the STFT. A chirp signal, which is a signal that increases in frequency over time,

was generated in MATLAB. The first 500 samples of signal, which has a sampling rate of 1000

Hz, starts at zero and crosses 150 Hz when t = 1 s, are plotted in Figure 1.2a. The spectrogram of

this chirp signal is shown in Figure 1.2b.

1.4.2 Wavelet Transform

Another related tool for time-frequency analysis is the wavelet transform.

Like the discrete STFT, it gives an insight into the properties of a signal changing in time

and frequency. Both transforms are useful for time-frequency analysis of signals, and both have

applications in various fields such as signal processing and feature extraction.

The key differences are in resolution and localisation. The wavelet transform offers a more

10
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(a) Waveform of a linear chirp signal. (b) Spectrogram of a linear chirp signal.

Figure 1.2: The connection between time domain and spectral domain, illustrated with a chirp

signal.

flexible approach, using variable resolutions, unlike the STFT. As such, the wavelet transform

is better suited for analysis signals that are non-stationary. Whereas the STFT localises in time-

frequency through windowing, the wavelet transform achieves this through the shifting and scaling

of a mother wavelet function. Wavelets are small, localised oscillatory functions, and a mother

wavelet is a fundamental component in the signal processing technique of wavelet analysis.

There is no direct equation for the discrete version of the wavelet transform, it is instead

typically implemented through filter banks and subsampling.

1.5 Clipping distortion

Source separation becomes even more challenging when the mixtures we observe have been af-

fected by clipping distortion. Clipping distortion occurs when a signal surpasses a threshold and

its amplitude is truncated. There are two types of clipping distortion: hard clipping where the

peaks of the waveform are literally clipped off (Figure 1.3) and soft clipping where the signal is

compressed using a non linear transform. Crain and Van Tasell’s study showed that peak clipping
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increases the speech recognition threshold (SRT) (Crain and Van Tasell, 1994). This effectively

means that peak clipping makes quieter voices harder to recognise.

Figure 1.3: An unclipped sine wave (left) and a clipped sine wave (right)

Clipping distortion alters the existing spectral content of the mixtures by introducing new

harmonic content and other non-linearities, which can make the original sources harder to identify.

This further complicates the problem of source separation. An investigation, by the current author,

into existing ICA techniques made before this thesis discovered that they are not robust to clipping

distortion (Turl, 2015).

1.6 Thesis contributions

To make this problem solvable, at least approximately, we assume time-disjointness of the sources.

We look at both the determined case, where there is the same number of sources as there are

12
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mixtures, and the underdetermined case, where there are more sources than mixtures.

To begin to make source separation of clipped mixtures solvable, at least approximately,

we make the assumption that the sources are disjoint in time. This means that a maximum of one

source signal has a non-zero amplitude value at any given time point. When we plot a scattergram

of the time points of a set of linear mixtures of sources, the sources can be discerned from the

plot as straight lines. This fact was exploited previously for separating more sources than mixtures

(Plumbley et al., 2010). This is the underdetermined case. As we shall see, this particular repre-

sentation of the sources is key to the novel geometric method described within this thesis. In this

approach, there is no need to assume the sources are statistically independent, which is something

required in ICA.

The work in Chapter Three covers the most simplified version of our proposed approach:

the determined case, where there is the same number of sources and mixtures, and where only

one of the two observed mixtures is clipped. The work is included as an inline published paper in

Section 3.4. The methodology is summarised in Section 3.2. Empirical experiments and results

are summarised in Section 3.3.

In Chapter Four, our approach is extended to consider the case where both mixtures are

clipped. We assume two linear mixtures of the sources are observed and that both are clipped.

Additionally, we look at the underdetermined case, where we have more sources than mixtures.

The work is included as an inline published paper in Section 4.3. The methodology is summarised

in Section 4.1. Empirical experiments and results are in Section 4.3.

In Chapter Five we relax our assumption of strict time-disjointness from the preceding

chapters. Our final method recovers and scales an estimated mixing matrix under the assumption

that only a small portion of the sources are disjoint in time. We combine this with knowledge of

the geometry of clipped mixtures to constrain a convex optimisation problem, which we formulate

and solve to recover the sources. Section 5.2 details our methodology. Experiments are covered in
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Section 5.3. Results are in Section 5.4 and the conclusion in Section 5.5.

14



Chapter Two

Literature Review

2.1 Independent Component Analysis (ICA) and Blind Source

Separation (BSS)

2.1.1 ICA model recap

First, we shall briefly recap the ICA model introduced in Section 1.2. Let us remember the ICA

model equation:

x = As (2.1)

Here we observe x, which is an m-dimensional vector, s is an n-dimensional latent random

vector whose components, also known as sources in source separation, are mutually independent,

and A is a constant m x n matrix to be found. Usually we assume that m = n: this is the so-called

determined case, where we have the same number of sources and mixtures.

Note that we also assume non-Gaussianity of the source components. We do this in order
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to make the model identifiable. Moreover, the central limit theorem (CLT) tells us that the sum of

two random variables will be closer to Gaussian than the original variables; this sum will be the

most non-Gaussian when it is equal to one of the independent sources.

We can also formulate the model as:

s =Wx (2.2)

Here, we can think of W as a weight matrix that we aim to learn or estimate. If W is a

square matrix, then its best value is A−1, but of course A is unknown.

2.1.2 ICA by minimisation of mutual information

One approach to ICA is to minimise the mutual information between the source estimates (Hyväri-

nen, 1999). Mutual information is a concept in information theory that measures the degree of

independence of random variables (Hyvärinen and Oja, 2000b), which is useful since indepen-

dence is a key assumption in most ICA approaches. Recall, two random variables are statistically

independent if they convey no information about each other. More precisely, their joint distribu-

tion equals to the product of the individual marginal distributions. First, it will be useful to define

differential entropy, which we can use to define mutual information. The differential entropy H of

a random vector y with density f (.) is defined below:

H(y) = −
∫

f (y) log f (y)dy (2.3)

This can be normalised to get negentropy:
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J(y) = H(ygauss) − H(y) (2.4)

In Equation 2.4, ygauss is a random vector with the same covariance matrix as y. Negen-

tropy can thus be considered to be a measure of non-Gaussianity. One can also define the mutual

information I between the n (scalar) random variables yi, i = 1...n using negentropy as follows.

Denote the components of the vector y = (y1, . . . , yn). Then, expressing mutual information

using negentropy and constraining the variables to be uncorrelated yields the following (Hyvärinen,

1999):

I(y1, y2, ..., yn) = J(y) −
∑

i

J(yi) (2.5)

As defined in (Hyvärinen, 1999), ICA of a random vector x can be defined as an invert-

ible transformation, as seen in Equation 2.2, where the matrix W is determined such that mutual

information of the transformed components si is minimised. Since information is not affected by

multiplicative scalars, we cannot recover the scaling of the latent components si.

Negentropy is invariant for invertible linear transforms (Hyvärinen, Karhunen, and Oja,

2001, p. 113). For this reason, finding an invertible transformation W that minimises mutual in-

formation between the source estimates is equivalent to finding the directions in which negentropy

is maximised.

2.1.3 Contrast functions or non-Gaussianity functions

In order to use the mutual information definition of ICA, we need to use approximations of negen-

tropy, since it is hard to directly compute it (Hyvärinen, Karhunen, and Oja, 2001, Section 5.5).

Some approximations that are commonly used in ICA take the following form:
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J(yi) ≈ c
[
E{G(yi)} − E{G(ν)}]2 (2.6)

In this equation, J(yi) is the negentropy of a random variable yi, which has zero mean and

unit variance, c is an irrelevant constant, ν is a Gaussian variable with zero mean and unit variance

and G is a non-quadratic function.

Let us now take random variable yi to be one mixture in our ICA model, that is yi = wT x

and we get the following:

JG(w) =
[
E{G(wT x)} − E{G(ν)}

]2
(2.7)

At this point, we can use the one-unit contrast function in Equation 2.7 as part of a so-called

deflation approach, that estimates each component one-by-one (Hyvärinen, 1999). Since we are

not interested in estimating each component one-by-one for our proposed method, let us instead

look at how to extend this to the entire weight matrix W.

We recall from Equation 2.5 that minimising mutual information is equivalent to maximis-

ing the negentropy of the components. This makes it trivial to extend this contrast function in

Equation 2.7 to the entire weight matrix W. When we maximise the sum of n one-unit contrast

functions, we get the following:

Maximise
n∑

i=1

JG(wi) wrt wi, i = 1, . . . , n (2.8)

subject to E
{
wT

k x · wT
j x

}
= δ jk, i, k ∈ {1, . . . , n}. (2.9)

where δ jk is the Kronecker delta, i.e. it takes the value 1 if j = k and 0 otherwise. Equa-

tions 2.8-2.9 describe mathematically the FastICA approach to ICA, as a specification of an opti-
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misation problem. We should note, when solving this optimisation problem in practice, the expec-

tation w.r.t. the distribution of x is replaced with empirical average over the time points available

(both in Equation 2.9 and in computing JG(wi)). Solving this constrained optimisation problem

gives us the entire matrix W, since at the maximum, every vector wi gives us one of the rows of

the matrix W and we can then use the ICA transformation in Equation 2.2. Now the question is

what to employ as a contrast function. One such function we could use is kurtosis.

Kurtosis, or the fourth-order cumulant, is a traditional measure of the ‘peakedness’ of a

distribution in statistics and can be used to measure non-Gaussianity (Hyvärinen, Karhunen, and

Oja, 2001). Excess kurtosis is the difference between a kurtosis measurement and the kurtosis of a

Gaussian distribution. Excess kurtosis is, therefore, zero for Gaussian distributions. A distribution

with negative excess kurtosis is sub-Gaussian or platykurtic; a distribution with positive excess

kurtosis is super-Gaussian or leptokurtic. The excess kurtosis of a random variable y is shown in

the following equation (2.10):

kurt(y) = E
{
y4

}
− 3(E

{
y2

}
)2 (2.10)

The absolute value of excess kurtosis has been widely used as a contrast function for ICA,

however, its usage has some drawbacks. The main problem with kurtosis is its sensitivity to outliers

(Huber, 1985; Hyvärinen and Oja, 2000b) and, as such, kurtosis should not be considered a robust

measure of non-Gaussianity (Hyvärinen and Oja, 2000b).

Negentropy approximations

We should select a contrast function that is computationally simple to compute and robust to out-

liers (Hyvärinen, 1999) that approximate negentropy. Two commonly used for ICA (Hyvärinen,

2001) are as follows:
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G1(y) =
1
a1

log cosh a1y (2.11)

G2(y) = − exp(−y2/2) (2.12)

where a1 ∈ [1, 2] is a constant. The corresponding derivatives, which will be needed in the

algorithm in Section 2.1.4, are the following:

g1(y) = tanh(a1y) (2.13)

g2(y) = y exp(−y2/2) (2.14)

Having built up the required concepts, let us discuss the most popular ICA algorithm (Oja

and Yuan, 2006), FastICA.

2.1.4 FastICA

FastICA is based on the maximisation of a contrast function, which contains an approximation of

a non-Gaussianity measure from the preceding Section 2.1.3. Algorithm 1, found in (Hyvärinen,

Karhunen, and Oja, 2001, p. 196), describes a variant of FastICA that uses symmetric orthogo-

nalisation. Orthogonalising the basis vectors w1, ..., wm, which are rows of the matrix W, helps to

prevent any of them from discovering the same source component and it is justified when whitening

was carried out in the preprocessing step, since then we know that the matrix W that we are look-

ing for should be a rotation matrix. The algorithm carries out the constrained optimisation from

Equations 2.8-2.9 numerically using fixed-point iterations, and one can use either of the functions

g from Equations 2.13-2.14. g′ is the derivative of g.

The FastICA algorithm was shown to have good converge properties in theory (under suit-

able assumptions) (Oja and Yuan, 2006).
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Algorithm 1 FastICA with symmetric orthogonalisation
1: procedure FastICA

2: x← x − E{x} ▷ centre the mixtures x to have zero mean

3: Whiten the mixtures to give z.

4: m← number of source signals to estimate.

5: for i := 1 to m do ▷ for each of the m sources

6: wi ← random unit norm vector.

7: end for

8: W← (WWT )−1/2W ▷ orthogonalise the matrix W

9: while not converged do

10: for i := 1 to m do

11: wi ← E{zg(wT
i z)} − E{g′(wT

i z)}w ▷ update rule, g is the chosen contrast function

12: end for

13: W← (WWT )−1/2W ▷ orthogonalise the matrix W

14: end while

15: end procedure
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In practice, however, FastICA is not guaranteed to converge due to a variety of factors,

including poor initialisation, numerical issues and characteristics of the data; or it may get stuck in

a bad local optimum or saddle-point. In this case, we need to run the algorithm again or consider

choosing a different contrast function.

2.1.5 Maximum likelihood ICA

Bell and Sejnowski devised an algorithm based on the principle of maximisation of mutual infor-

mation between the mixtures and the source estimates (Bell and Sejnowski, 1995), which MacKay

showed was equivalent to maximum likelihood estimation (MacKay, 2002). The algorithm, as

summarised by MacKay, is shown in Algorithm 2. It maximises the following log likelihood L

using gradient ascent:

L =
T∑

t=1

log p(xt)

=

T∑

t=1

log p(Ast)

=

T∑

t=1

log det(W) + log p(st)

= T log det(W) +
T∑

t=1

n∑

i=1

fi(wixt) (2.15)

In Equation 2.15, t is time index, i is component index, W = A−1, and fi(·) is the probability

density function of the i-th source. The last equality is due to the statistical independence assump-

tion of the sources. Ideally, the nonlinearity ϕ(·) in the algorithm should have the form f ′i / fi, as we

take small steps in the direction of the negative gradient of the log likelihood. This of course re-

quires knowledge of fi, which is typically not available in practice, however generic nonlinearities

such as the tanh(·) function often work well. Whitening is not necessary for maximum likelihood
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ICA, though it can be helpful.

Algorithm 2 Maximum likelihood ICA
1: procedure MLICA

2: ŝ←Wx ▷ initialise estimated sources ŝ

3: while not converged do

4: for i := 1 to m do ▷ for each of the m sources

5: zi ← ϕ(̂si) ▷ apply nonlinearity ϕ to each row of ŝ to get z

6: end for

7: ∆W← [WT ]−1
+ zxT ▷ calculate the gradient ∆W

8: ŝ←Wx ▷ recalculate estimated sources ŝ

9: W =W + ϵ∆W ▷ update W by small amount determined by ϵ

10: end while

11: end procedure

Like FastICA, Maximum likelihood ICA can also converge to bad local optima or saddle-

point for the same reasons. Moreover, it has been observed to converge slower than FastICA in

practice (Oja and Yuan, 2006). Note that there is also a version of FastICA that uses maximum

likelihood with Newton optimisation updates (Hyvärinen, 1999). In fact, several different ICA

approaches were shown to be essentially equivalent (Lee et al., 2000).

2.1.6 ICA research

ICA remains an active and interesting area of research. Although originally developed for the

signal processing problem of source separation, ICA has proved useful for a wide range of ap-

plications, such as text mining (Bingham, Kabán, and Girolami, 2001), artefact separation for

astronomical images (Funaro, Oja, and Valpola, 2003) and analysing financial time series (Oja,

Kiviluoto, and Malaroiu, 2000). There has also been much work to use ICA to improve other tech-
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niques, such as decision trees (Pajunen and Girolami, 2000) and speech recognition (Zhao et al.,

2012). Despite advances in 2014, source separation remains a challenging problem, especially in

the underdetermined case where there are more sources than mixtures (Richard, 2014).

2.1.7 Performance of ICA

There are several ways to measure ICA performance. A number of methods are discussed and

evaluated in (Vincent, Gribonval, and Fevotte, 2006). A commonly used measure cited in (Vincent,

Gribonval, and Fevotte, 2006) that directly compares estimated sources ŝi to the true sources si is

shown below:

D B min
ϵ=±1

∥∥∥∥
ŝi

∥ŝi∥ − ϵ
si

∥si∥
∥∥∥∥

2

2
(2.16)

The Euclidean norm measures the distance between the true sources si and their estimates ŝi

in a straightforward manner. It benefits from being scale invariant and resistant to sign flips, which

is useful since we cannot recover the scaling of the sources. This is the performance measure we

use in the original contributions of this thesis, since we have access to both the true sources and

their estimates. Since we are not interested in noise or application specific concerns, it is sufficient

for our purposes.

Other methods developed include the Blind Audio Source Separation BASS set of measures,

which is a ratio-based set of measures that compare the estimated sources to different types of

noise present (Vincent, Gribonval, and Fevotte, 2006). Crucially, these do not require knowledge

of the separation method used. They are implemented in a MATLAB toolbox called BASS-dB

(Gribonval, Vincent, and Févotte, 2006). Due to time constraints when running the experiments,

these performance measures were not used in our experiments.
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It should be noted, however, that selecting an appropriate performance measure for ICA is

usually highly dependent on the specific application (Mogi and Kasai, 2012) and often requires

knowledge about the separation method. Many other methods make unrealistic assumptions about

the nature of the sources.

A further study concerning the perceived quality of separations (Emiya et al., 2011) devel-

oped a set of objective performance measures that aimed to predict subjective responses. Their

objective perceptual score (OPS) measure is commonly used, and there is a MATLAB toolkit

implementing these measures called Perceptual Evaluation methods for Audio Source Separation

(PEASS). This toolkit aims to predict subjective evaluation of source separation performance, how-

ever, which is beyond the scope of this thesis.

2.2 Signal reconstruction and declipping

The name given to the process of reconstructing a signal of which portions are known to be clipped

is known as declipping. A broader term is audio inpainting, which describes any audio reconstruc-

tion process whereby one observes a set of audio data of which a portion is missing or severely

degraded (Adler et al., 2012). A technique commonly used for signal reconstruction is compressed

sensing.

2.2.1 Compressed sensing

Compressed sensing is a signal processing technique that offers an efficient solution to feature

extraction and dimensionality reduction. The advantage of compressed sensing is that it allows

efficient acquisition and reconstruction of a signal from a relatively small number of measurements

(Donoho, 2006). It has been used for declipping, and is highly relevant to this thesis. Indeed, a
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paper by Defraene et al. motivated the idea to use a framework like compressed sensing for this

thesis. This paper built upon the framework of compressed sensing to develop a novel declipping

method. Given that compressed sensing requires fewer time point measurements than traditional

techniques, it is well suited to a task such as declipping. Sparse representations are useful for

modelling musical signals, too: by nature, percussive instruments create short impacts and are

sparse in the time domain, whereas melodic instruments produce a set of harmonic frequencies

and are sparse in the frequency domain (Plumbley et al., 2010).

The compressed sensing framework typically involves three components: a signal model,

a measurement process and a reconstruction algorithm. The signal model describes the structure

of the signal you want to recover. We assume that the original signal s ∈ RN (Original Signal) is

sparse or compressible in some way, meaning that most of the components are zero, where N is

the dimensionality of the signal s. The measurement process involves capturing a small number

of linear measurements y of the signal, which are made by applying a measurement matrix Ψ to

the signal, producing y = Ψ · s (Measurement). Finally, the reconstruction algorithm attempts to

reconstruct the original signal, by finding a sparse signal that satisfies the measurements model ŝ

in Equation 2.17. In practice, this can be obtained by solving the following convex optimisation

problem in Equation 2.17, and there are efficient implementations, e.g. the ℓ1-Magic toolbox by

Candès (Candès, Romberg, and Tao, 2006).

ŝ = argmin
x
||x||1 subject to Ψ · x = y (2.17)

There are, however, challenges with compressed sensing. There is no guarantee of a unique

solution, as different solutions may satisfy the time point measurements available; this is because

the optimisation problem in Equation 2.17 is convex but not strictly convex. A bigger problem

is when the signal is not sufficiently sparse, since compressed sensing assumes that a signal can

be represented in a given sparse basis. There is also the problem that compressed sensing is not
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especially robust to noise.

There are various approaches for compressed sensing. Greedy algorithms, for example,

iteratively select components for the signal based on their relevance to the measurements (Blu-

mensath et al., 2012). There are also optimisation-based methods (Qin, 2020), which formulate an

optimisation problem to solve, and also Bayesian methods (Ji, Xue, and Carin, 2008), to name a

few of the approaches.

2.2.2 Compressed sensing for declipping

Defraene et al. built upon the framework of compressed sensing to develop a novel declipping

method (Defraene et al., 2013) that focuses on the audio frequency components that are perceptu-

ally important to the human auditory system. We are not interested in the perceptual side for this

thesis, but let us briefly explain the approach for completeness.

As already mentioned above, compressed sensing requires that a signal s is sparse in some

fixed basis Φ and that we have not directly observed the signal; instead we observe it via some

measurement matrix Ψ. This yields the following equation, where y is our observed signal:

y = Ψs = ΨΦx = Ax (2.18)

In Equation 2.18, s ∈ RN is the original signal, x ∈ RN is its sparse decomposition, Φ ∈
CN×N is the fixed basis, Ψ ∈ RM×N is the measurement matrix, y ∈ RM is the measurement and

A = ΨΦ.

The problem is then solved by the following constrained optimisation problem:
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x̂ = arg min
z
∥z∥p subject to Az = y (2.19)

ŝ = Φx̂ (2.20)

where ∥z∥p= (
∑n

i=1|zi|p)1/p. For compressed sensing declipping, decompositions used for

basis Φ include the Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT)

since they both break a signal down into constituent sinusoids: the DCT has the additional virtue

of only requiring real-valued calculations, and is the basis we use throughout this work to simplify

calculations.

2.2.3 Dictionary learning for sparse representations

Let us introduce the concept of dictionary learning, which plays a crucial role in our discussion

on single mixture separation in Section 2.3.3. Dictionary learning is a relevant signal processing

technique in the context of signal sparsity and compressed sensing, where it can enhance the overall

performance of the framework. To draw a parallel, dictionary learning relates to ICA in its aim to

recover a signal s as in compressed sensing, while simultaneously learning an unknown matrixΦ.

A fundamental difference, however, lies in the origin of the columns of Φ, which are adaptively

learned from the data rather than being predefined (Schnass, 2015).

The goal of sparse representation is to be able to express an n-dimensional signal y as a lin-

ear combination of a small number of elements, known as atoms or basis vectors, from a dictionary

Φ (Tošić and Frossard, 2011). Atoms of the dictionary are typically unit norm functions. Denote

the dictionary as Φ and its atoms as ϕk, k = 1, . . . ,N, where is N is the size of the dictionary Φ. A

dictionary is said to be overcomplete (N > n) when its atoms are linearly dependent and the dic-

tionary covers the entire signal space, i.e. every signal can be represented as a linear combination

of atoms in the dictionary, as shown in the following:
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y = Φs =
N∑

k=1

skϕk (2.21)

The problem with overcomplete dictionaries is that our sparse representation s is not unique.

This is why the sparsity constraint is required. The requirement to find the exact representation is

relaxed and approximations are sought instead. The objective is to find a sparse vector s containing

a small number of non-zero coefficients. This optimisation can be formulated as follows:

min
s
∥y −Φs∥22+λ∥s∥1 (2.22)

Approaches to solving the optimisation in Equation 2.22 include convex relaxation meth-

ods such as basis pursuit denoising (Chen, Donoho, and Saunders, 2001) or least shrinkage and

selection operator (LASSO) (Tibshirani, 1996).

Dictionary learning, however, faces several challenges. One inherent challenge is overfit-

ting. When adapting the dictionary too closely to the training data, there is a risk that the learned

basis functions will not generalise well to unseen data (Xie et al., 2014). Finding a balance between

fitting the training data and ensuring robustness can be a challenging task. A further challenge is

the computational complexity. Especially in high-dimensional data scenarios, such as image pro-

cessing, dictionary learning can become computationally intensive. The sheer dimensionality of

the problem can result in scalability issues, requiring efficient algorithms and techniques. There is

also the challenge that many of the problems dictionary learning is used for are non-convex optimi-

sations, making it challenging to find a global minimum. This necessitates the use of sophisticated

optimisation techniques.

A key advantage, however, is adaptability. Dictionary learning excels at capturing the un-

derlying structure of data, making it a valuable tool in tasks such as denoising and feature extrac-

tion. By adapting the dictionary to the data, it often outperforms traditional fixed dictionaries in
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representing the data effectively. Compared to using fixed dictionaries, which may be suboptimal

for certain types of data, learned dictionaries adapt to the characteristics of the data (Tošić and

Frossard, 2011).

2.2.4 Joint declipping and informed source separation

A paper by Bilen, Ozerov, and Pérez claims and appears to be the first to attempt joint declipping

and source separation (Bilen, Ozerov, and Pérez, 2015b). The authors note that many signals one

may wish to declip are composed of multiple sources and conversely that many source separation

tasks may be clipped due to poorly calibrated audio equipment, proposing both tasks may be

improved by performing them jointly. They use a non-negative tensor factorisation (NTF) for both

the declipping and source separation tasks, but there appears to be no principled justification for

doing so in the paper. A weakness of this approach is that the number of instruments and the times

when each instrument is playing must be known, so this approach is not blind source separation.

There is no temporal alignment of this information with the data, so the usefulness of this method

appears to be limited. Moreover, they use the unrealistic assumption that each source is composed

of exactly five components in order to determine the rank K for the NTF matrices. Parameter

estimation is performed by minimising divergence of the variances of the estimated sources and

the NTF model, but no justification for this approach over others is given.

2.3 Alternative source separation approaches

2.3.1 Informed source separation

Since blind source separation remains a challenging problem, there has been much work on so-

called informed source separation. This involves obtaining prior information about the sources
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such as a musical score or manually adding timing annotations for the instruments. An overview

of methods in this area was written by Ewert et al. (Ewert et al., 2014), who observed that manually

adding annotations to the audio data was laborious and instead focused on musical score informed

source separation. Early on, he notes that while blind source separation methods assume statistical

independence of the sources, musical sources are often highly correlated in both frequency and

time.

Ewert et al. use non-negative matrix factorisation (NMF) source separation to demonstrate

the usefulness of this added knowledge. NMF splits the signal into a template matrix W, repre-

senting sets of frequency components for each instrument, and an activation matrix H, representing

time activations for each instrument component. He observed that fixing parts of both matrices W

and H was necessary to achieve a significant improvement in separation performance. The shape

of the harmonics of a given instrument is known as its spectral envelope. The knowledge of the

notes played by a given instrument along with its spectral envelope can be used to estimate the

columns of W. The spectral envelope can be estimated from examples of similar instruments or

digital emulations of them.

A significant problem for informed source separation is that, for many musical pieces, no

score is available. Another major issue is timing. Quite often, human musical performances will

vary in time and other factors. Moreover, scores often do not specify a specific tempo but instead

a more general semantic descriptor such as ‘quickly’. Ewert et al. described methods of temporal

alignment of the score and the audio data. He notes that chroma-based musical features, which

correspond to the musical notes playing, are useful for this task. Harmonic instruments exhibit

structures in the time domain: once identified, it is trivial to map these structures directly to the

score. The problem of vibrato, where a given frequency oscillates over time, can be ameliorated

by leaving a gap above and below the identified frequency components based on the score. Other

problems remain, though, such as deviation from the score by repeating a chorus, rearranging and

adding additional notes.
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2.3.2 Binary masking for underdetermined separation

The underdetermined approach has been solved using binary masking. This involves using sparse

representations of the mixtures and the sources. Sparse representations been found to be highly

useful in audio signal processing (Plumbley et al., 2010) and can be used to assist various problems,

including blind source separation. Moreover, time-frequency representations of a signal, which are

commonly sparse, are more stable than time domain representations (Grais and Erdogan, 2013).

Musical and speech signals can be made sparse in orthogonal bases such as the wavelet transform

or nonorthogonal transforms such as the STFT (Nesbit et al., 2010). Musical recordings typically

have structures in a time-frequency representation For example, one would expect percussive in-

struments to be sparse in the time direction, and harmonic instruments to be sparse in the frequency

direction (Ewert et al., 2014).

Sparse component analysis describes source separation techniques that assume the sources

can be made sparse in some basis (Plumbley et al., 2010). Let us briefly explain this approach.

It is assumed that the source components sn have a sparse representation using atoms ϕq

from a full rank basis matrix Φ ∈ RQ×T . It is also assumed that Q = T . The coefficients of the

sparse representation are represented each by znq.

sn =

N∑

q=1

znqϕq (2.23)

In matrix form, this can be written as:

s = zΦ (2.24)

Denote u = xΦ−1 as the representation of x in the basis Φ. This is combined with the ICA

model as in the following:
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u = Az (2.25)

Disjointness of the sparse sources s is assumed, that is, z is so sparse that at most one

source coefficient can be non-zero at a given transform index q. The previous equation becomes

the following:

uq = anqznq (2.26)

Each vector uq is a scaled version of one of the columns of the mixing matrix A. When A

is known or discovered, nq can be estimated for each value of q, this is, whichever nq is non-zero,

by finding the mixing matrix column a j that is most correlated with uq. Note that in the following

equation | | represents the absolute value and value ∥ ∥2 represents the ℓ2 norm:

n̂q = arg max
n

|aT
n uq|
∥an∥2 (2.27)

Now a mask is constructed ϵnq = 1 if n = n̂q, otherwise ϵnq = 0. Using this mask the

active sources can be identified, and multiplying Equation 2.26 by aT
nq and rearranging gives the

following:

ẑnq = ϵnq
aT

n uq

∥an∥2 (2.28)

Now the sources can be estimated by calculating estimates for the whole matrix ẑ and using

the following equation.

ŝ = ẑΦ. (2.29)
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At this point, the sources s can be trivially recovered by Equation 2.29. This approach is

called binary masking. When at most one source is active at a given time, the mixing matrix A can

be estimated: a scatter plot of the sparse representations of the mixtures u would show ‘spokes’ or

in the directions of the columns of A.

Further statistical information is required when applying binary masking to single mix-

ture source separation, since there is no longer a direction ai that allows the active source to be

determined.

Deep learning

Deep learning techniques have been used to discover the ‘ideal’ binary mask: that is, the binary

mask that, when applied to a given mixture, achieves the best possible separation of the sources

(Simpson, 2015; Huang et al., 2014; Grais, Sen, and Erdogan, 2014). This approach combines

the masking function with a deep neural network (DNN), which can have many hidden layers, and

optimises both (Huang et al., 2014). With this approach, the mask used need not necessarily be

binary: so called soft masks, which are not restricted to the one source per coefficient rule, can also

be used.

2.3.3 NMF for single mixture separation

NMF has become a successful tool for audio source separation (Grais and Erdogan, 2013; Chien

and Hsieh, 2012; Lefèvre, 2012; Ewert et al., 2014), especially for underdetermined and single

mixture problems. These approaches separate the sources by factorising the time-frequency repre-

sentation of the mixture. Some approaches involve learning source-specific dictionaries (Lefèvre,

2012). Many of these approaches benefit from access to additional information about the sources,

such as time activations for the instruments, which enable certain matrix values to be fixed as zero
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(Ewert et al., 2014; Lefèvre, 2012).

The single mixture separation problem can be modelled as a mixture whose spectrogram is

equivalent to an elementwise sum of the spectrogram of each source (Grais and Erdogan, 2013).

Using Y(t, f ) to refer to the STFT of our single mixture y, where t is the frame index and f is the

frequency, the problem for m sources can be modelled as a linear sum of the STFT coefficients of

the individual sources, S i:

Y(t, f ) =
m∑

i=1

S i(t, f ) (2.30)

Phase angles from the STFT can be ignored: it has been found that the magnitude spec-

trogram is sufficient for source separation tasks (Helén and Virtanen, 2005; Grais and Erdogan,

2013). We can make use of an approximation of the model in Equation 2.30, which considers only

the magnitude spectra and is shown in the equation below:

|Y(t, f )| ≈
m∑

i=1

|S i(t, f )| (2.31)

This can also be written in matrix form, where Y is the observed magnitude spectrogram

of the single mixture and Si is the unknown magnitude spectrogram of the ith source:

Y ≈
m∑

i=1

Si (2.32)

The NMF algorithm factorises the magnitude spectrogram Y, which is nonnegative, into

two nonnegative matrices: a basis matrix B, also called a dictionary, and a gains matrix G, which

represents the amount by which each dictionary atom is active at a given time.
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Y ≈ BG (2.33)

In performing this factorisation, shown in Equation 2.33, the algorithm attempts to min-

imise some divergence cost function. Commonly used cost functions for source separation include

the Kullback-Leibler (KL) and Itakura–Saito (IS) divergences (Grais and Erdogan, 2013). The

NMF result for both divergences can be calculated by alternating multiplicative update rules.

Work by Chien and Yang (Chien and Yang, 2016) takes a variational Bayesian NMF ap-

proach to source separation, in which the reconstruction error was represented by a Poisson distri-

bution and the nonnegative matrices G and B were characterised by exponential priors.

2.4 Criticisms of the literature

2.4.1 Nonrobustness of existing ICA methods for clipping distortion

Prior to this research, this author investigated the robustness of existing ICA methods for mixtures

affected by clipping distortion (Turl, 2015). Experiments were conducted with three popular ICA

algorithms: FastICA (Hyvärinen and Oja, 2000b), the Robust, Accurate, Direct ICA aLgorithm

(RADICAL) (Learned-Miller and Fisher III, 2003) and Kernel Density Independent Component

Analysis (KDICA) (Chen, 2006). All three approaches were found to be nonrobust for both hard

clipped and soft clipped mixtures. A plot of the Overall Perceptual Score (OPS) (Emiya et al.,

2011) against the clipping threshold for hard clipping in Figure 2.1. Note that dBFS refers to

decibels at full scale: 0 dBFS is the maximum, or full scale, value of the system. When the

threshold is at zero, no clipping occurs and the OPS is close to 100, which is the best performance.

Once the clipping threshold has dropped to -1 dBFS, which is a very small amount of clipping, the

OPS score for all three algorithms has dropped to approximately 20.
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Figure 2.1: OPS versus clipping threshold (hard clipping)

Figure 2.2 shows the same plot for soft clipping by a tanh nonlinearity. That existing ICA

algorithms appear more nonrobust at low levels of clipping is not surprising: unlike hard clipping,

soft clipping distorts time points before they reach the clipping threshold.

2.4.2 No model for declipping and blind source separation

It is our hypothesis that solving the problems of source separation and repairing clipped mixtures

jointly will achieve better performance than solving these tasks sequentially by minimising prop-

agation of reconstruction errors. To date, there appears to be no model that jointly considers the

problem of repairing the clipped mixtures, known as declipping, and blind source separation.

A paper by Bilen, Ozerov, and Pérez claims and appears to be the first to attempt to solve

the declipping problem with informed single mixture source separation (Bilen, Ozerov, and Pérez,

2015b). They use a NTF framework for both the declipping and source separation tasks, but there

is no principled justification in the paper for taking this approach over others. The problem is
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Figure 2.2: OPS versus clipping threshold (soft tanh clipping)

treated as partially observed source separation, where the distorted time points are considered to

be missing data and the sources are estimated in the minimum mean square error sense. This

ignores information known about the discarded clipped time points, crucially that we know their

sign and that they should lie beyond the clipping threshold, which is assumed to be known. It is

also assumed that there is no noise.

Bilen, Ozerov, and Pérez’s algorithm can function either sequentially, first declipping the

mixtures and then separating the sources, or jointly performing both tasks. They found better

results from the joint approach compared to the sequential approach for severe clipping, but the

reverse for very light clipping. Their results, however, do not feature any comparison with any ex-

isting source separation approaches. Moreover, their results show no error bars: it appears that their

experiments were not repeated and the only comparisons made were between the joint, sequential

and source separation only variants of their algorithm. Their results are obtained exclusively from

musical mixtures: five different mixtures of three sources were used. In order to determine the

rank, K, of the NTF matrices, it is arbitrarily assumed that there are five components for each

source in the basis matrix. The joint version of this algorithm features an additional restriction that
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each five components are used only by their assigned source.

A further weakness of this approach is that the number of instruments and the precise times

when each instrument is silent must be known, so this approach is not truly blind source separation.

Even if such information was obtainable from a musical score, there is no temporal alignment of

this information with the data: as such, the usefulness of this method appears to be severely limited.

Since the information about when each instrument is silent appears to be crucial to this approach,

it seems likely that it would fail to perform when all of the sources were never or rarely silent.

Moreover, a diagram showing their experimental setup shows that the sources rarely overlap in

time.

Soft clipped mixtures

Declipping usually refers to the process of repairing hard clipped rather than soft clipped signals.

Bilen, Ozerov, and Pérez’s work would not be appropriate in soft clipping scenarios, since it dis-

cards all distorted time points: it is often the case that soft clipping distorts most or all of the time

points. There appears to be no work that seeks to solve soft clipping repair and source separation

jointly.

2.4.3 No model for inverse DRC and source separation

No model appears to exist that jointly solves the problems of reversing DRC and source separation.

This is a much more challenging problem to solve: DRC is a time-varying distortion of the signal

with many parameters that may or may not be relevant depending on the compressor used. Given

their nonrobustness to time-invariant distortions, it is highly unlikely that existing ICA algorithms

would perform well for more complicated time-varying distortions. Mixtures processed by DRC

are ubiquitous in music production, and it is our hypothesis that algorithms that exploit knowledge
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of these nonlinearities would achieve better performance than existing approaches.
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Chapter Three

One Clipped Mixture and One Unclipped

Mixture of Two Sources

3.1 Introduction

First we deal with a simplified problem, which we can later extend. We assume that we observe

two mixtures and that only one suffers from clipping distortion. We also assume that there are the

same number of sources as mixtures, the so-called determined case. The work is given in full by

including a published paper by this author inline in Section 3.4 and below we present the main

ideas.

We make the assumption that the source signals are disjoint in time, meaning at most one

source in s can be non-zero at any given time point. We do this because of an interesting observa-

tion in Plumbley et al., 2010. This observation shows that time disjoint sources appear as straight

lines in a scattergram of linear mixtures. The following Figure 3.1 shows this clearly. In the figure,

s1 and s2 are our two sources, which have been generated to be disjoint in time. The mixtures x1

and x2 are plot in a scattergram, in which we see the straight lines discernible from the plot. We

refer to the clipped version of mixture x1 as x′1.
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Figure 3.1: Effects of clipping on one of two mixtures.

This representation was exploited for separating more sources than mixtures in Plumbley

et al., 2010. As we shall see, this particular representation is key to the novel geometric method

described in the paper in this chapter.

A key benefit of the approach taken is that there is no need to assume that the sources are

statistically independent as required in ICA. Additionally, we can handle the case of increasing the

number of sources and whether or not both mixtures are clipped, which are discussed in Chapter

Four.

We start with a simple approach in this chapter, where only one of our mixtures is clipped

and we have two sources (D = 2).
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3.2 Methodology summary

Throughout this thesis we assume noiseless linear mixtures, as most ICA approaches also assume,

which proves to be sufficient for many source separation problems. We observe F = 2 mixtures of

N time points each, denoted by x ∈ �F×N . Each of these F observations is a linear mixture of D

sources, denoted by s ∈ �D×N , obtained by a mixing matrix A ∈ �F×D, as shown in the ICA model

equation x = As. Since we assume that one of the mixtures is clipped, let us explain clipping

distortion.

Clipping occurs when attempting to represent a signal whose amplitude values saturate a

given maximum amplitude of a system, something ICA algorithms neglect to account for. In a

digital system, input samples whose absolute value exceeds a given clipping threshold θ have an

output limited by this threshold. Formally, let us denote by xi,n the nth sample of the ith mixture

before clipping and x′i,n the equivalent sample after clipping. We see the clipping equation below:

x′i,n =



sgn
(
xi,n

)
θ if |xi,n| > θ,

xi,n if |xi,n| ≤ θ.
(3.1)

Note that this type of clipping is specifically called hard clipping. There are smooth clipping

functions known as soft clipping, which occur in analogue audio hardware, however this is beyond

the scope of this thesis.

Now, let us combine the clipping model and the ICA model to fully describe our problem.

Equations (2.1) (from Chapters One and Two) and (3.1) combined give us Equation 3.2:
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x′i,n =



sgn
(∑D

j=1 Ai, js j,n

)
θ if |

D∑

j=1

Ai, js j,n| > θ,

∑D
j=1 Ai, js j,n if |

D∑

j=1

Ai, js j,n| ≤ θ.
(3.2)

Now our task is to find both s and A, where D denotes the number of sources.

The original approach we put forward develops five sequential steps in order to solve the

problem of estimating latent sources ŝ from clipped mixtures x′ as explained briefly below:

1. Mixing matrix estimation (II-B in the inline paper in Section 3.4).

2. Quantisation of repairable time points (II-C in the inline paper in Section 3.4).

3. Declipping mixtures by ℓ1 minimisation (II-D in the inline paper in Section 3.4).

4. Quantisation of declipped points to the source lines (II-E in the inline paper in Section 3.4).

5. Source estimation (II-F in the inline paper in Section 3.4).

These steps are explained in greater detail in the paper in Section 3.4. In brief, the geometric

observations make retrieving the mixing directions and repairing some of the points trivial, and

enable geometric constraints to be imposed on the ℓ1 minimisation (Equation 13 in the inline paper

in Section 3.4).

We also implement a sequential approach that, rather treats the declipping and source sep-

aration problems sequentially rather than jointly (II-G in the inline paper in Section 3.4. This is

done to test our hypothesis that the joint approach is better due to minimisation of propagation of

errors.
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3.3 Experiment results summary

Experiments are described in III of the inline paper in Section 3.4 along with our hypotheses. III-A

of the inline paper in Section 3.4 describes how we prepared the data. III-B of the inline paper

describes the implementation, and III-C describes how we measured performance, using the D

performance measure from Equation 2.16 in Chapter Two. III-D of the inline paper describes and

analyses our results.

This published paper presented a novel framework for the separation of sources from mix-

tures affected by clipping distortion, which combined ℓ1 minimisation with knowledge about the

geometry of clipped mixtures. An algorithm was developed to recover the sources by solving

a convex optimisation problem, with constraints derived from the clipping geometry under the

assumption that the sources are disjoint in time. Comparative evaluation experiments showed a

significant increase in objective recovery performance of our proposed joint method compared to

sequential approaches for speech and synthetic signals.
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3.4 Paper One

The first published work is reproduced in full after this mostly blank page.
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Abstract—Source separation remains a challenging problem,
made even more challenging when the mixtures are distorted.
We present a novel framework for the source separation from
mixtures affected by clipping distortion. Our method combines
`1 minimisation with knowledge about the geometry of clipped
mixtures when the sources are disjoint in time. Our algorithm
recovers the sources by solving a convex optimisation problem,
which is constrained by the clipping geometry. Comparative
evaluation experiments show a significant increase in objective
recovery performance of our proposed joint method compared
to sequential approaches for speech and synthetic signals.

I. Introduction

Blind source separation (BSS) is the problem of separating
a set of source signals from a set of mixture signals. For
example, these sources may be distinct voices but we observe
microphone recordings of many voices. It is an ill-posed prob-
lem, requiring assumptions to solve it. It becomes even more
challenging when the observed mixtures have been affected by
clipping distortion. Existing independent component analysis
(ICA) techniques are not robust to clipping [1].

To make this problem solvable, at least approximately, we
shall assume that the sources are disjoint in time, meaning a
maximum of one source is non-zero at a given time point.
Time disjoint sources appear as straight lines in a scattergram
of linear mixtures, as previously noted, and this was exploited
for separating more sources than mixtures in [2]. As we shall
see, this particular representation is key to the novel geometric
method described in this paper.

In our approach, there is no need to assume the sources are
statistically independent as required in ICA. In addition we
can handle the case of increasing the number of sources and
whether or not both mixtures are clipped. For simplicity of
exposition, however, this paper details the core, where there
are two sources (D = 2) and only one of the two mixtures is
clipped. Section II describes the methodology, prefaced by a
general overview. Section III provides a comprehensive testing
of our proposed approach on both synthetic and speech data.

II. Methodology

Throughout this work we assume noiseless linear mixtures.
We observe F mixtures of N time points each, denoted by
x ∈ �F×N . Each of these F observations is a linear mixture of

D sources, denoted by s ∈ �D×N , obtained by a mixing matrix
A ∈ �F×D, as shown in the equation below.

x = As (1)

Clipping occurs in practice when attempting to represent
a signal that contains amplitude values that saturate the
maximum amplitude permitted by a system, yet most ICA
algorithms neglect this. In a digital system, input samples
whose absolute value exceeds a given clipping threshold θ
have an output limited by this threshold. Formally, denote by
xi,n the nth sample of the ith mixture before clipping and x′i,n
the equivalent sample after clipping.

x′i,n =


sgn

(
xi,n

)
θ if

∣∣∣xi,n

∣∣∣ > θ,
xi,n if

∣∣∣xi,n

∣∣∣ ≤ θ. (2)

Equations (1) and (2) combined describe the model of the
problem:

x′i,n =


sgn

(∑D
j=1 Ai, js j,n

)
θ if

∣∣∣∑D
j=1 Ai, js j,n

∣∣∣ > θ,
∑D

j=1 Ai, js j,n if
∣∣∣∑D

j=1 Ai, js j,n

∣∣∣ ≤ θ. (3)

Now the task is to find both s and A.

A. Overview of proposed approach

Linear mixtures of time disjoint sources, where at most one
source is non-zero at a given time index, yield straight lines
in a scattergram of such mixtures [2] (Figure 1). We refer to
these lines as source lines. Figure 1 shows an example. The
left column shows the sources before mixing and the right
column shows the effect of clipping the first mixture. Note
that clipping distorts the source lines.

Five sequential steps were developed in order to solve the
problem of estimating latent sources ŝ from clipped mixtures
x′ as follows:

1) Mixing matrix estimation (Section II-B).
• The mixing matrix A is represented by the slopes of

the source lines.
2) Quantisation of repairable time points (Section II-C).

• There are some points which can be trivially re-
paired using knowledge of the clipping geometry.

3) Declipping mixtures by `1 minimisation (Section II-D).



Fig. 1. Effects of clipping on one of two mixtures.

• Declipping by `1 minimisation allows information
about the clipping process and mixture model to
constrain the optimisation problem.

4) Quantisation of declipped points to the source lines
(Section II-E).
• The time points must lie on source lines because

they are disjoint in time.
5) Source estimation (Section II-F).

• The sources are recovered by the equation ŝ = Â−1x̂.

B. Mixing matrix estimation

Since clipping distorts the source lines, first discard all
clipped points, where

∣∣∣x′1,n
∣∣∣ = θ. All remaining time points,∣∣∣x′1,n

∣∣∣ ≤ θ, lie on a source line. Since each source line
passes through the origin, each of the remaining time points
(x′1,n, x

′
2,n)T has enough information to recover one of the

source line slopes, ∇n = (x′2,n − 0)/(x′1,n − 0). We denote by M
the number of unclipped time points, and calculate the slope
of all of these as shown below. The symbol � represents the
elementwise product.

∇M =
(
x′2,1, . . . , x

′
2,M

)
�

(
1

x′1,1
, . . . , 1

x′1,M

)
(4)

The set ∇M contains M elements, some of which may be
duplicates. We define the set ∇s to contain only the D unique
entries of ∇M. We make each value of the second row of the
mixing matrix Â2,1 . . . Â2,D = 1, which means the D elements
in ∇s can be used directly as Â1,1 . . . Â1,D, the first row of
estimated mixing matrix Â. To remove scaling indeterminacy,
we normalise by dividing each element in column i of Â by
its `2-norm, Â1:2,i = Â1:2,i

1
‖Â1:2,i‖2

.

C. Quantisation of repairable time points

Information from the unclipped mixture x′2 can be used to
repair some of the clipped points in x′1. We split the set of
entries of ∇s into positives, denoted ∇+

s , and negatives, denoted

∇−s . Denote by ∇+ the positives in ascending order and by ∇−
the negatives in descending order as follows:

∇+ =

[ x′2,i
x′1,i
∈ ∇+

s :
x′2,i
x′1,i
≤

x′2,i+1

x′1,i+1
∀i = 1...

∣∣∣∇+
s

∣∣∣
]

(5)

∇− =

[ x′2,i
x′1,i
∈ ∇−s :

x′2,i
x′1,i
≥

x′2,i+1

x′1,i+1
∀i = 1...

∣∣∣∇−s
∣∣∣
]

(6)

We define
[∇+

]
i as the ith element of ∇+, the list of positive

slopes in ascending order, and
[∇−]i as the ith element of ∇−,

the list of negative slopes in descending order. Denote by pi

the value of x′2 when the source line with positive slope
[∇+

]
i

intersects the clipping threshold (x′1 = θ). Denote by qi the
same for the source line with negative slope

[∇−]i.

pi =
[∇+

]
iθ (7)

qi =
[∇−]iθ (8)

A time point with index n can be repaired if it satisfies two
conditions:

1) It is clipped in x′1, the first mixture
(∣∣∣x′1,n

∣∣∣ = θ
)
.

2) In x′2, it lies between the intersection points p1 and p2
or q1 and q2 (the two least steep positive slopes and
negative slopes, respectively).

If a time point satisfies both conditions, it must belong to the
least steep source line. Figure 2, which shows the mixtures
before clipping has occurred, shows why this is true. When
we observe clipped data, we know that a point (x′1,n, x

′
2,n)T on

the dashed line between p1 and p2 is repairable. We also know
that the original point (x1,n, x2,n)T was located on a horizontal
straight line, because only the first mixture coordinate x1,n is
unknown (x2,n = x′2,n). The only source line that intersects the
partially bounded region

∣∣∣x1,n
∣∣∣ ≥ θ∧p1 ≤

∣∣∣x2,n
∣∣∣ < p2 is the least

steep, having slope [∇+]1. This region is shaded in Figure 2.

Fig. 2. Possible x2 values for the first source at clipped points.

With knowledge of one coordinate x′2,n, the slope [∇+]1 and
that all source lines pass through the origin, we can calculate
x′1,n geometrically for points in the region

∣∣∣x1,n
∣∣∣ ≥ θ ∧ p1 ≤



Fig. 3. Clipped mixtures after repairing repairable points.

∣∣∣x2,n
∣∣∣ < p2. Note that this also applies to points in the region∣∣∣x1,n
∣∣∣ ≥ θ ∧ q1 ≥

∣∣∣x2,n
∣∣∣ > q2 for reasons of symmetry:

x′′1,n =



x′2,n/[∇+]1 if
∣∣∣x′1,n

∣∣∣ ≥ θ ∧ p1 ≤
∣∣∣x′2,n

∣∣∣ < p2,
x′2,n/[∇−]1 if

∣∣∣x′1,n
∣∣∣ ≥ θ ∧ q1 ≥

∣∣∣x′2,n
∣∣∣ > q2,

x′1,n otherwise.
(9)

x′′2,n = x′2,n (10)

Figure 3 shows the result of this repair for our example.

D. Declipping by `1 minimisation
At this stage, we attempt to reconstruct the clipped points

that were not repairable in Section II-C. Our method uses a
sparse representation of the source signals s. Sparse represen-
tations have increasingly been used in research in the field of
signal processing to solve problems such as declipping [3] and
audio inpainting [4]. There are a number of benefits in using
sparse representations, namely the ability to represent a signal
with a small number of non-zero elements. The flexibility
to choose a basis tailored to the type of signal is another
advantage. We assume that source signals ŝ can be sufficiently
represented by a small number of non-zero coefficients r in
the basis matrix Ψ like so:

ŝ = rTΨT (11)

We choose the Discrete Cosine Transform (DCT) operator
matrix, commonly used in signal processing, as Ψ for our
example. It is likely that a sparser basis could be chosen, how-
ever the DCT will be sufficient to demonstrate our approach.
We then formulate a convex optimisation problem that will
give us a sparse solution with few non-zero elements. We use
`1 minimisation because the number of non-zero elements,
known as the `0 “norm”, is not convex. The task is then
to find a solution for the linear system below, where sparse
representations r ∈ �N×D:

minimize
D∑

i=1

‖ri‖1

subject to ÂrTΨT = x′′.

(12)

Fig. 4. Clipped mixtures after `1 mimimisation repair.

The above optimisation problem is constrained by the mixture
model x′′ = Âŝ = ÂrTΨT . We know, however, that some time
points in x′′1 were unrepairable in Section II-C and should be
ignored by this constraint. We instead use a separate constraint
for x′′1 and unclipped mixture x′′2 . A masking matrix Cu is
constructed, consisting of the IN rows corresponding to indices
of all unclipped and repairable points in x′′1 , which can be used
to isolate these points. Similar masking matrices, C+ and C−,
contain IN rows that correspond, respectively, to the positively
clipped (x′1,n ≥ θ) and negatively clipped (x′1,n ≤ θ) points in
x′′1 . This pair of masking matrices is used to form constraints,
similar to those developed in [3], that ensure the sparse sources
r obey the clipping model in Equation (2). The final form of
the optimisation problem, where Â1 and Â2 refer to the first
and second rows of the matrix Â respectively, is as follows:

minimize
D∑

i=1

‖ri‖1

subject to Â1rTΨT Cu
T = x′′1 Cu

T ,

Â2rTΨT = x′′2 ,

Â1rTΨT C−T ≤ −θ,
Â1rTΨT C+

T ≥ θ.

(13)

After solving the optimisation problem, the following equation
yields an estimate of the declipped mixture x̂1:

x̂1 = Â1rTΨT (14)

To solve the problem in Equation (13) we used CVX, a
package for specifying and solving convex problems [5], [6].
The results are shown in Figure 4.

E. Quantisation of declipped points to the source lines

The mixture points must lie on known source lines, which is
not a guaranteed outcome of the optimisation problem. For this
reason, we need to quantise the points to the source lines. Since
the second mixture x2 was not clipped, we should only adjust
x̂1. In the scattergram, this quantisation translates to horizontal
adjustments of the repaired points. Each repaired point is



Fig. 5. Quantisation of mixtures repaired by `1 mimimisation.

Fig. 6. Sources estimated from clipped mixtures by mixing matrix inverse
Â−1.

quantised to the closest source line i using the following pair
of equations:

ln = arg min
i

∣∣∣∣∣x̂1,n − x2,n

∇si

∣∣∣∣∣ (15)

x̂1,n =
x2,n

∇sln
(16)

The results of quantising in this manner for our example are
shown in Figure 5.

F. Source estimation

The final step is the estimation of the sources ŝ. Since we
have two mixtures, source recovery for two sources is trivial
due the square mixing matrix. The estimated sources ŝ can be
obtained, using the estimated mixtures x̂ and mixing matrix
Â, by the equation below:

ŝ = Â−1x̂ (17)

Figure 6 shows the sources estimated for our example.

G. Sequential approach

In order to test our novel ideas of using knowledge of the
mixture model to quantise repairable points (Section II-C) and
inform the optimisation constraints (Section II-D), we omit the
former step and modify the latter. The simplified approach is
as follows:

1) Mixing matrix estimation (unchanged from Sec-
tion II-B).

2) Declipping mixtures by `1 minimisation.
3) Quantisation of declipped points to the source lines

(unchanged from Section II-E).
4) Source estimation (unchanged from Section II-F).

The optimisation problem to declip the clipped mixture x′′1 is
shown below, where w ∈ �N is a sparse representation of the
first mixture:

minimize ‖w‖1
subject to wTΨT Cu

T = x′′1 Cu
T ,

wTΨT C−T ≤ −θ,
wTΨT C+

T ≥ θ.

(18)

H. Extensions

Our approach can be extended to handle an increasing
number of sources (D > 2). For this case, the optimisation step
(Section II-D) and the source estimation step (Section II-F)
are altered. There exist some points for which we know, from
the geometry, what the source label is not. This information
allows new constraints for the optimisation problem. Source
estimation cannot be performed using Equation (17) because
the mixing matrix is not square. A different approach is
employed, which involves rotating the mixtures to obtain the
sources directly.

We can also handle the more challenging case where
both mixtures are clipped. For this case, the quantisation of
trivial points step (Section II-C) and the optimisation step
(Section II-D) are altered. Points clipped in both mixtures
cannot be trivially repaired. Points clipped in only one mixture
are quantised using information from the unclipped mixture,
similar to Section II-C. If only one source line has a positive
slope, then we know the source label for any clipped point
having a positive slope. The same is true for negative slopes.
This knowledge informs additional constraints in the optimi-
sation problem.

III. Experiments
A series of experiments were designed to evaluate our

proposed method and two others:
1) The joint source separation and declipping algorithm, as

described in Section II.
2) The sequential approach, as described in Section II-G.
3) FastICA [7] - one of the most well known and popular

source separation algorithms.
For FastICA, we first declip the mixtures x′ as in

Equation (18) from Section II-G. The declipped mixtures are
then processed by the FastICA code from [8].

Our hypotheses were that:
1) A larger proportion of clipped samples will lead to worse

performance
• More of the data will need to be approximated by

the convex optimisation, increasing the chance of
errors.



2) The joint algorithm will outperform the sequential ap-
proach in general
• Peforming the source separation and declipping

tasks jointly will avoid the propagation of errors.
3) FastICA will perform worse than our approaches

• Our approaches exploit knowledge of the clipping
geometry and time disjointness assumption, which
FastICA does not.

4) Speech sources will yield worse performance than sine
wave sources
• The DCT basis, which consists of sinusoids, will

enable a sparser representation of sine wave sources
than speech sources.

5) Gaussian sources will yield worse performance than sine
wave sources
• For the same reason given for hypothesis 4.

A. Preparing the data

Three types of source signal are used:

1) Speech
The audio files used are from [9] and available un-
der the Creative Commons Attribution-NonCommercial-
ShareAlike 2.0 (http://creativecommons.org/licenses/
by-nc-sa/2.0/) license. The authors are Hendrik Kayser
and Jorn Anemuller for the original data and Valentin
Emiya for the modifications of each file. No changes
were made.
s1 is the samples from 3900 + 1 to 3900 + N of
‘targetSrc.wav’. s2 is the samples from 3900 + 1 to
3900 + N of ‘interfSrc1.wav’.

2) Synthetic (sine wave mixtures)
s1,n = 3 sin(.02n)+ .8 sin(3.5n)+ .8 sin(4.1n)+ .5 sin(4.5n)
s2,n = 3.4 sin(.03n) + .5 sin(2.2n) + .6 sin(1.4n) +

.2 sin(3.7n)
3) Synthetic (Gaussian noise)

s1,n ∼ N(0, 0.5)
s2,n ∼ N(0, 0.5)

Each source file is made disjoint in time in the following
manner:
s1,n = 0 ∀n = N

2 + 1...N
s2,n = 0 ∀n = 1...N

2
The time-disjoint sources are then normalised:
s1,n = s1,n/max |s1|
s2,n = s2,n/max |s2|

The mixing matrix is generated A iid∼ U(−1, 1). If A is
singular, it is discarded and generated again. The mixing
matrix is scaled A = A/max |A|. The mixtures x are generated
as in Equation 1, clipping only mixture x1, and scaled x1:2,n =

x1:2,n/max |x|. The mixtures x are processed as described by
Equation (2) to give x′. Five clipping thresholds θ are selected,
such that 10%, 20%, 30%, 40% and 50% of the samples of
the sample are clipped each time.

B. Implementation and frame-based processing

The method proposed in Section II was implemented in
MATLAB version 2016b. The length N of the mixtures and
sources was fixed as N = 2048. Each experiment was repeated
50 times. For the optimisation problem in Section II-D, it
is necessary to process the audio in short distinct frames
sequentially and concatenate the results to form the declipped
mixtures x̂, as in [3]. This is because of the short-time
stationarity of audio signals, but has the added advantage
of greatly decreasing processing time by making the basis
matrix Ψ smaller. For our implementation, the mixtures x′′
are split into uniform-windowed non-overlapping frames of
length n = 256.

C. Measuring performance

Recovery performance cannot be measured by evaluating
the estimated mixing matrix A as the estimated sources ŝ are
also dependent on the declipping method used. For this reason,
performance is measured by comparing the sources s and their
estimates ŝ, using the following equation, cited in [10]:

D B min
ε=±1

∥∥∥∥∥
ŝi

‖ŝi‖ − ε
si

‖si‖
∥∥∥∥∥

2

2
(19)

The final problem to solve is the permutation indeterminacy
of the sources. We use the Hungarian algorithm, as imple-
mented for MATLAB in [11]. Each source si is compared
with each source estimate ŝ j and the results are stored in a
D×D matrix. The algorithm processes this matrix to determine
the lowest performance cost and the corresponding estimated
source to true source assignments.

D. Results

The following plots show D performance results for sine
wave sources (Figure 7), Gaussian sources (Figure 8) and
speech sources (Figure 9). Note that smaller is better and the
error bar shows the standard error. The number above the error
bar shows the number of times FastICA did not converge on
a solution.

All of our results showed a trend of worsening performance
as the proportion of clipped samples increased. This trend was
not apparent in the FastICA approach with speech and sine
wave sources. In these cases, however, FastICA performance
was very poor at all clipping levels. Indeed, FastICA yielded
the worst performance of all three methods in general, as
predicted by our hypotheses. Our proposed joint methodology
consistently yielded better performance with sine wave sources
than the other source types, with very good performance
(> 0.1) even when 50% of the data were clipped. This is
likely in part due to our use of DCT as the sparse basis,
which is known to be a good basis for sinusoid-based signals.
Conversely, speech sources yielded worse performance than
other source types. It is likely that this performance would be
improved by repeating the experiments but choosing a basis
better suited to speech signals.

In all of our experiments, our proposed joint approach
yielded better performance than the sequential approach. It



Fig. 7. D performance results for 2 sources, 1 clipped mixture, n = 256,
N = 2048, 50 repetitions (Sine wave sources).

Fig. 8. D performance results for 2 sources, 1 clipped mixture, n = 256,
N = 2048, 50 repetitions (Gaussian sources).

Fig. 9. D performance results for 2 sources, 1 clipped mixture, n = 256,
N = 2048, 50 repetitions (Speech sources).

is likely that performance is improved by our novel idea to
constrain the optimisation problem using knowledge of the
mixing matrix and the clipped mixture geometry. Another
factor is the quantisation of some points as described in
Section II-C, which aids the optimisation problem by reducing
the number of unknown values. The improved performance
is less noticeable only at low clipping levels (10%) with sine
wave sources (Figure 7). This is likely because it is the easiest
case in our experiments: it has the smallest proportion of
unknown values and the advantage that we used the DCT,
in which sinusoids are very sparse, as our basis.

IV. Conclusion

This paper has presented a novel framework for the separa-
tion of sources from mixtures affected by clipping distortion,
which combined `1 minimisation with knowledge about the
geometry of clipped mixtures. An algorithm was developed to
recover the sources by solving a convex optimisation problem,
with constraints derived from the clipping geometry under the
assumption that the sources are disjoint in time. Compara-
tive evaluation experiments showed a significant increase in
objective recovery performance of our proposed joint method
compared to sequential approaches for speech and synthetic
signals.
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Chapter Four

Two Clipped Mixtures of Many Sources

Now we extend the simplified problem from Chapter Three. We still assume that we observe two

mixtures, but that both have a clipping distortion. In addition, we relax the assumption that there

are the same number of sources as mixtures and tackle the so-called underdetermined case, where

there are more sources than mixtures. The work is presented by including a published work by this

author inline in Section 4.3.

Throughout this chapter we still make the assumption that the source signals are disjoint in

time, meaning at most one source in s can be non-zero at any given time point, for the same reason

as in Chapter Three.

4.1 Methodology summary

We still assume noiseless linear mixtures, as most ICA approaches also assume. As in Chapter

Three, we observe F = 2 mixtures of N time points each, denoted by x ∈ �F×N . The key difference

of our model here, as can seen in II of the inline paper in Section 4.3, is that now both mixtures are

clipped. The model is the same as Equation 3.2 in Chapter Three.
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Two Clipped Mixtures of Many Sources

Our task again is to find both s and A.

The five sequential steps developed in Chapter Three are summarised briefly below:

1. Mixing matrix estimation (Unchanged from Chapter Three. II-B in the inline paper in Sec-

tion 4.3).

2. Quantisation of repairable time points (II-C in the inline paper in Section 3.4).

3. Declipping mixtures by ℓ1 minimisation (II-D in the inline paper in Section 3.4).

4. Quantisation of declipped points to the source lines (II-E in the inline paper in Section 3.4).

5. Source estimation (II-F in the inline paper in Section 3.4).

While these sequence of steps are conceptually similar to those we have seen in the previous

chapter, there are added complexity due to both clipping and underdeterminedness. These steps

are explained in greater detail in the paper in Section 4.3. As in Chapter Three, the geometric

observations make retrieving the mixing directions and repairing some of the points trivial. The

more complicated geometry with a greater number of sources, however, requires a greater number

of constraints to be formulated, and finally the problem is solved as an ℓ1 minimisation (Equation

10 in the inline paper in Section 4.3).

As in Chapter Three, we also implement a sequential approach that, rather treats the de-

clipping and source separation problems sequentially rather than jointly (II-F in the inline paper

in Section 4.3. This is done again to test our hypothesis that the joint approach is better due to

minimisation of propagation of errors.
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Two Clipped Mixtures of Many Sources

4.2 Experiment results summary

Experiments are described in full in III of the inline paper in Section 4.3. This section includes

our hypotheses, how we prepared the data, details about the implementation and how we measured

performance, using the D performance measure from Equation 2.16 in Chapter Two. III-A of the

inline paper describes and analyses our results.

This published paper presented a novel framework for underdetermined source separation

from clipped mixtures, which combined ℓ1 minimisation with knowledge about the clipping ge-

ometry. An algorithm was developed to recover the sources by solving a convex optimisation

problem constrained by this knowledge. Comparative evaluation experiments of our proposed

method showed a significant increase in objective recovery performance compared with sequential

approaches for speech and synthetic sources.
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4.3 Paper Two

The second published work is reproduced in full after this mostly blank page.
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Abstract—Underdetermined source separation becomes more
challenging when the observed mixtures are distorted. A novel
framework for source separation from mixtures affected by
clipping distortion is presented. Our method exploits knowledge
about the geometry of clipped mixtures when the sources are
disjoint in time. This knowledge constrains a convex optimisation
problem, which we formulate and solve to recover the sources.
This paper develops work previously published substantially by
implementing novel preprocessing steps inspired by geometric ob-
servations of clipped mixtures of time-disjoint sources. Evaluation
experiments showed a significant increase in objective recovery
performance for the proposed method compared with sequential
approaches for speech and synthetic sources.

Index Terms—underdetermined source separation, declipping,
geometric method, convex optimisation

I. Introduction

The ill-posed problem of blind source separation (BSS)
requires the separation of a set of source signals from a set
of mixture signals. For example, we say that each source is a
guest at a cocktail party and each mixture is a microphone in
the venue, which records each guest at a different level depend-
ing on factors such as their distance from the microphone. The
independent component analysis (ICA) model, which models
the sources as unobserved latent variables in a set of observed
linear mixtures, is well known and can solve this [1]. Typically,
the ICA model is noiseless and has the same number of
latent sources as there are mixtures. The underdetermined
case, discussed in this paper, considers more latent sources
than there are observed mixtures. The underdetermined and
ill-posed nature of this problem shares some of the challenges
frequently encountered in high dimensional data mining.

The problem becomes even more challenging when all
observed mixtures have been affected by clipping distortion.
Existing ICA techniques are not robust to clipping [2]. To
make this problem solvable, at least approximately, we assume
time-disjointness of the sources, meaning a maximum of
one source is non-zero at a given time point. Time disjoint
sources appear as straight lines in a scattergram of linear
mixtures. This fact was exploited for separating more sources
than mixtures in [3]. This representation is key to the novel
geometric methods described in this paper. Initial work on this
topic, which assumed only one of two observed mixtures was
clipped, produced promising results [4]. This work extends our

approach: we assume two linear mixtures of the sources are
observed and that both are clipped.

The model is proposed in Section II, which also details
the novel method for underdetermined source separation (Sec-
tion II-A). Empirical experiments and results are in Section III.
In this approach, there is no need to assume the sources are
statistically independent as required in ICA.

II. Methodology

Throughout this work we assume noiseless linear mixtures.
We observe F mixtures of N time points each, denoted by
x ∈ !F×N . Each of these F observations is a linear mixture of
D sources, denoted by s ∈ !D×N , obtained by a mixing matrix
A ∈ !F×D, as shown in the equation below.

x = As (1)

Clipping occurs in practice when attempting to represent
a signal that contains amplitude values that saturate the
maximum amplitude permitted by a system, yet most ICA
algorithms neglect this. In a digital system, input samples
whose absolute value exceeds a given clipping threshold θ
have an output limited by this threshold. Formally, denote by
xi,n the nth sample of the ith mixture before clipping and x′i,n
the equivalent sample after clipping.

x′i,n =

!""#
""$

sgn
%
xi,n
&
θ if |xi,n| > θ,

xi,n if |xi,n| ≤ θ.
(2)

Equations (1) and (2) combined describe the model of the
problem:

x′i,n =

!""#
""$

sgn
'(D

j=1 Ai, js j,n

)
θ if |(D

j=1 Ai, js j,n| > θ,(D
j=1 Ai, js j,n if |(D

j=1 Ai, js j,n| ≤ θ.
(3)

Now the task is to find both s and A.

A. Overview of the proposed approach
Linear mixtures of time disjoint sources, where at most one
source is non-zero at a given time index, yield straight lines
in a scattergram of such mixtures [3]. We refer to these
lines as source lines, which are visible in Figure 1. The left
column shows the sources before mixing and the right column
shows the effect of clipping both mixtures. Note how clipping
distorts the source lines. Five sequential steps, explained in
Sections II-A to II-E, were developed in order to solve the
problem of estimating latent sources ŝ from clipped mixtures



Fig. 1: Effects of clipping both mixtures of time-disjoint
sources.

x′. We first discard all clipped points, where |x′1,n| = θ.
All remaining time points, |x′1,n| ≤ θ, lie on a source line.
Since each source line passes through the origin, each of the
remaining time points (x′1,n, x

′
2,n)T has enough information to

recover one of the source line slopes, ∇n = (x′2,n−0)/(x′1,n−0).
We denote by M the number of unclipped time points, and
calculate the slope of all points as shown below. The symbol
⊙ represents the elementwise product.

∇M =
!
x′2,1, . . . , x

′
2,M

"
⊙
!
1/x′1,1, . . . , 1/x

′
1,M

"
(4)

The set ∇M contains M elements, some of which may be
duplicates. We define the set ∇s to contain only the D unique
entries of ∇M. We make each value of the first row of the
mixing matrix Â1,1 . . . Â1,D = 1, which means the D elements
in ∇s can be used directly as Â2,1 . . . Â2,D, the second row of
estimated mixing matrix Â. To remove scaling indeterminacy,
we normalise by dividing each element in column i of Â by
its l2-norm, Â1:2,i = Â1:2,i/‖Â1:2,i‖2.

B. Quantisation of repairable time points
Points clipped in both mixtures cannot be repaired. Points

clipped in only one mixture, however, can be repaired using
information from the other mixture. We split the set of entries
of ∇s into four subsets, denoted ∇z1,∇z2,∇z3 and ∇z4, each of
which corresponds to one of four geometric zones, shown in
Figure 2a. These subsets of slopes split into zones are defined
by the equations below.

∇z1 =

# x′2,i
x′1,i
∈ ∇s : |x′2,i| > |x′1,i|,

x′2,i
x′1,i
> 0
$

∇z2 =

# x′2,i
x′1,i
∈ ∇s : |x′2,i| < |x′1,i|,

x′2,i
x′1,i
> 0
$

∇z3 =

# x′2,i
x′1,i
∈ ∇s : |x′2,i| < |x′1,i|,

x′2,i
x′1,i
< 0
$

∇z4 =

# x′2,i
x′1,i
∈ ∇s : |x′2,i| > |x′1,i|,

x′2,i
x′1,i
< 0
$

(5)

Denote by ∇1
z and ∇3

z the entries of ∇z1 and ∇z3, respectively,
in descending order. Similarly, denote by ∇2

z and ∇4
z the

entries of ∇z2 and ∇z4 in ascending order. This ensures slopes

(a) Source lines are grouped by zone (1 to 4)

(b) Shaded region contains only the least steep Zone 2 source line.

Fig. 2: Zone map (top), shaded region used in step 2 and 3
(bottom).

are ordered by proximity to whichever axis forms the zone
boundary. Denote by z1i and z4i the values of x′1 when
the source lines with slopes

*∇1
z
+
i and

*∇4
z
+
i, respectively,

intersect the clipping threshold in the other mixture (x′2 = θ),
calculated by θ/

*∇1
z
+
i and θ/

*∇4
z
+
i. Denote by z2i and z3i the

values of x′2 when the sources lines with slopes
*∇2

z
+
i and*∇3

z
+
i, respectively, intersect the clipping threshold in the other

mixture (x′1 = θ), calculated by
*∇2

z
+
iθ and

*∇3
z
+
iθ. A time point

with index n can be repaired if it satisfies two conditions:

1) It is clipped in x′1, the first mixture
'
|x′1,n| = θ

)
, or x′2, the

second mixture
'
|x′2,n| = θ

)
, but not both.

2) If clipped in x′1, the x′2 coefficient lies between the
intersection points z21 and z22 or z31 and z32 (the
two least steep zone 2 slopes and zone 3 slopes,
respectively). If clipped in x′2, the x′1 coefficient lies



between the intersection points z11 and z12 or z41 and
z42 (the two most steep zone 1 slopes and zone 4 slopes,
respectively).

If a time point satisfies both conditions, it must belong to
the source line nearest to whichever axis forms part of the
zone boundary. Figure 2b, which shows the mixtures before
clipping, illustrates why this is true. All points in the shaded
region |x1,n| ≥ θ∧ |z21| ≤ |x2,n| < |z22|∧ x1,nx2,n > 0 will still lie
between z21 and z22 or −z21 and −z22 in mixture x′2, which
is unclipped for such points. The only line contained in this
region, by definition, is the one with slope

*∇2
z
+
1. Therefore,

all clipped points in the range |x′1,n| = θ∧ |z21| ≤ |x′2,n| < |z22|∧
x′1,nx′2,n > 0 must have belonged to this line. With knowledge
of one coordinate x′2,n, the slope

*∇2
z
+
1 and that all source lines

pass through the origin, we can repair x′1,n geometrically for
points in the range |x′1,n| = θ∧ |z21| ≤ |x′2,n| < |z22|∧x′1,nx′2,n > 0.
For reasons of symmetry, the same applies to zone 3 points
in the range |x′1,n| = θ∧ |z31| ≤ |x′2,n| < |z32|∧ x′1,nx′2,n < 0 using
the slope

*∇3
z
+
1:

x′′1,n =

%&&&&'
&&&&(

x′2,n/
)∇2

z
*
1 if |x′1,n| = θ ∧ |z21| ≤ |x′2,n| < |z22| ∧ x′1,n x′2,n > 0,

x′2,n/
)∇3

z
*
1 if |x′1,n| = θ ∧ |z31| ≤ |x′2,n| < |z32| ∧ x′1,n x′2,n < 0,

x′1,n otherwise.
(6)

The same idea applies to the remaining zones 1 and 4 and,
if one swaps the axes, the symmetry of the zones is apparent.
With knowledge of one coordinate x′1,n and the slope

*∇1
z
+
1,

we can repair x′2,n for points in the range |x′2,n| = θ ∧ |z11| ≤
|x′1,n| < |z12|∧ x′1,nx′2,n > 0. For reasons of symmetry, the same
applies to zone 4 points in the range |x′2,n| = θ∧ |z41| ≤ |x′1,n| <
|z42| ∧ x′1,nx′2,n < 0 using the slope

*∇4
z
+
1:

x′′2,n =

%&&&&'
&&&&(

x′1,n
)∇1

z
*
1 if |x′2,n| = θ ∧ |z11| ≤ |x′1,n| < |z12| ∧ x′1,n x′2,n > 0,

x′1,n
)∇4

z
*
1 if |x′2,n| = θ ∧ |z41| ≤ |x′1,n| < |z42| ∧ x′1,n x′2,n < 0,

x′2,n otherwise.
(7)

C. Declipping mixtures by ℓ1 minimisation

We reconstruct the unrepairable clipped points by assuming
they have a sparse representation. We assume that estimated
sources ŝ can be sufficiently represented by a small number of
non-zero coefficients r in the basis matrix Ψ, as shown below:

ŝ = rTΨT (8)

We use the Discrete Cosine Transform (DCT) operator matrix,
commonly used in signal processing, as Ψ for our example.
It is likely that a sparser basis could be chosen, however
the DCT will be sufficient to demonstrate our approach. We
then formulate a convex optimisation problem that will give
us a sparse solution with few non-zero elements. We use
ℓ1 minimisation because the number of non-zero elements,
known as the ℓ0 “norm”, is not convex. The task is then
to find a solution for the linear system below, where sparse
representations r ∈ !N×D and x′′ is the clipped mixtures x′
with repairable points repaired:

minimize
D,

i=1

‖ri‖1 subject to ÂrTΨT = x′′. (9)

We constrain this by the mixture model x′′ = Âŝ = ÂrTΨT . We
formulate a constraint each for the unclipped and repairable
portions x′′1 and x′′2 . A pair of masking matrices Cu1 and Cu2
are constructed, consisting of the IN rows corresponding to
indices of all unclipped and repairable points in x′′1 and x′′2
respectively. These matrices are used to form the first pair of
constraints in Equation (10) below.

We also add constraints that ensure the clipping model
in Equation (2) is obeyed, similar to those in [5]. Masking
matrices C+1 and C−1 contain IN rows that correspond to the
indices of unrepairable points positively clipped (x′′1,n = θ) and
negatively clipped (x′′1,n = −θ), respectively, in x′′1 . For points
clipped in the second mixture, x′′2 , the equivalent matrices C+2
and C−2 are constructed. These four matrices enable clipped
points to be constrained, forming the second and third pairs
of constraints in Equation (10).

The problem can also be constrained by knowledge about
what the source label is not. It is helpful now to refer back to
Figure 2b in Section II-B. Extending the upper bound of this
region from z22 to z2i encompasses an additional 2− i source
lines, the steepest of which has the slope

*∇2
z
+
i−1. Therefore,*∇2

z
+
i−1 is the steepest slope that points in the range |x′′1,n| =

θ ∧ |z21| ≤ |x′′2,n| < |z2i| ∧ x′′1,nx′′2,n > 0 could have had. At
these points, sources with steeper slopes (>

*∇2
z
+
i−1) must be

zero, as must sources insufficiently steep to belong to zone 2
(<
*∇2

z
+
1). Denote by Bz2i a matrix of ID rows corresponding to

the labels of the source lines too steep (argi Â2,i/Â1,i >
*∇2

z
+
i−1)

or insufficiently steep (argi Â2,i/Â1,i <
*∇2

z
+
1) to belong to zone

2. Denote by Cz2i a matrix of IN rows corresponding to indices
of those zone 2 clipped points in the range |x′′1,n| = θ ∧ |z21| ≤
|x′′2,n| < |z2i| ∧ x′′1,nx′′2,n > 0. There is an exception when i = 1,
in which case these matrices are more general and used to
ensure zone 1, 3 and 4 sources are zero for clipped points in
zone 2. Denote by Bz21 a matrix of ID rows corresponding to
the labels of all source lines not in zone 2. Denote by Cz21 a
matrix of IN rows corresponding to indices of all clipped points
in zone 2. Equivalent matrices created for the other zones are
almost identical, for reasons of symmetry, and a more thorough
explanation is omitted for brevity. These masking matrices
form the third set of constraints in Equation (10), which exploit
this partial knowledge of the source labels.

We can also constrain points clipped in both mixtures. Since
we assume noiseless mixing and time disjoint sources, we
know the sign of the slope of a point will not be altered
by clipping. Each estimated source ŝi which has a positive
slope when mixed (Â2,i/Â1,i > 0) must be zero at those
indices n where the clipped mixtures x′′ yield a negative slope
(x′′2,n/x

′′
1,n < 0). At these indices, we know the slope is negative

from the mixtures, so the sources whose lines have a positive
slope must be zero because of the time disjointness. Denote
by Bp a masking matrix consisting of ID rows that correspond
to the indices of the rows of Â that yield a source line with a
positive slope (Â2,i/Â1,i > 0). An equivalent masking matrix
Bq is constructed to isolate source lines with a negative slope
(Â2,i/Â1,i < 0). We denote by Cbp a masking matrix consisting
of IN rows that correspond to the indices of points clipped in
both x′′1 and x′′2 that have a positive slope (x′′2,n/x

′′
1,n > 0).

An equivalent masking matrix Cbq is constructed to isolate



points clipped in both mixtures that have a negative slope
(x′′2,n/x

′′
1,n < 0). These four masking matrices are used to form

the final pair of constraints in Equation (10). The final form,
where Â1 and Â2 refer to the first and second rows of Â
respectively, is as follows:

minimize
D+

i=1

‖ri‖1

subject to Â1rTΨT Cu1
T = x′′1 Cu1

T ,

Â2rTΨT Cu2
T = x′′2 Cu2

T ,

Â1rTΨT C+1
T ≥ θ,

Â1rTΨT C−1
T ≤ −θ,

Â2rTΨT C+2
T ≥ θ,

Â2rTΨT C−2
T ≤ −θ,

Bz1irTΨTCz1i
T = 0 ∀i=1...|∇z1|,

Bz2irTΨTCz2i
T = 0 ∀i=1...|∇z2|,

Bz3irTΨTCz3i
T = 0 ∀i=1...|∇z3|,

Bz4irTΨTCz4i
T = 0 ∀i=1...|∇z4|,

BprTΨT Cbq
T = 0,

BqrTΨT Cbp
T = 0.

(10)

CVX, a package for specifying and solving convex problems
[6], [7] was used to solve Equation (10). After obtaining r,
declipped mixtures x̂ are estimated as below:

x̂ = ÂrTΨT (11)

D. Quantisation of declipped points
Each point is given a source label by choosing whichever

slope is nearest, as shown in Equation (12). Those points
clipped in only one mixture are quantised to the source line
given by the label l, as shown in Equation (13). Those points
clipped in both mixtures cannot be quantised using information
from either mixture, so they are left unaltered. For the source
estimation step, however, it is not necessary for all points to
lie exactly on a source line.

ln = arg min
i

,,,(x̂2,n/x̂1,n) − ∇si

,,, (12)

x̂1,n = x′2,n/∇sln if |x′1,n| ≥ θ ∧ |x′2,n| < θ
x̂2,n = x′1,n∇sln if |x′2,n| ≥ θ ∧ |x′1,n| < θ

(13)

E. Source estimation

We estimate each coefficient ŝi,n as a weighted sum of
mixture coefficients, x̂1,n +∇si x̂2,n if the known source label ln
from Equation (12) is i. If the label does not match, we set
the coefficient to zero because the sources are disjoint in time.
The equation below shows this method.

ŝi,n =

!""#
""$

x̂1,n + ∇sln x̂2,n if ln = i,
0 otherwise.

(14)

F. Sequential approach

In order to test our novel ideas of using knowledge of the
mixture model to quantise repairable points (Section II-B) and
inform the optimisation constraints (Section II-C), we omit the
former step and modify the latter. The simplified approach is
as follows:

1) Mixing matrix estimation (unchanged from Sec-
tion II-A).

2) Declipping mixtures by ℓ1 minimisation.
3) Quantisation of declipped points to the source lines

(unchanged from Section II-D).
4) Source estimation (unchanged from Section II-E).

The optimisation problem to declip each clipped mixture x′′i
is shown below, where wi ∈ !N is a sparse representation of
the ith mixture:

minimize ‖wi‖1 ∀i = 1...F

subject to wi
TΨT Cui

T =

x′′i Cui
T ,wi

TΨT C−i
T ≤ −θ,wi

TΨT C+i
T ≥ θ.

(15)

III. Experiments

A series of experiments were designed to evaluate our
proposed methods and two others:

1) The joint source separation and declipping algorithm as
described in Section II.

2) The sequential version, described in Section II-F.
3) A state of the art beamformer algorithm [8], [9].

For the beamformer algorithm, we first declip the mixtures x′
as in Equation (15) from Section II-F. The declipped mixtures
are then processed by the MMSEbfm code from [9].

Three types of source signal are used: sine wave mixtures,
Gaussian noise and speech. The mixing matrix is generated
A iid∼U(−1, 1). If A is singular, it is discarded and generated
again. The mixing matrix is scaled A = A/max |A|. The
mixtures x are generated as in Equation 1 and processed as
described by Equation (2) to give x′. Five clipping thresholds
θ are selected, such that 10%, 20%, 30%, 40% and 50% of
the samples of the sample are clipped each time. The length
N of the mixtures and sources was fixed as N = 2048. Each
experiment was repeated 50 times.

For the optimisation in Section II-C, it is necessary to
process the audio sequentially in short frames and concatenate
them to form the declipped mixtures x̂, as in [5]. This greatly
decreases processing time by making the matrix Ψ smaller. For
our implementation, the mixtures x′′ are split into uniform-
windowed non-overlapping frames of length n = 256.

Recovery performance cannot be measured by evaluating
the estimated mixing matrix A as the estimated sources-s are
also dependent on the declipping method used. For this reason,
performance is measured by comparing the sources s and their
estimates-s, using the following equation, cited in [10]:

D ≔ min
!=±1

.....
-si

‖-si‖
− ε si

‖si‖

.....
2

2
(16)

The final problem is the permutation indeterminacy of the
sources. We use the Hungarian algorithm, as implemented in
[11]. Each source si is compared with each source estimate -s j

and the results are stored in a D × D matrix. The algorithm
processes this matrix to determine the lowest performance
cost and the corresponding estimated source to true source
assignments.



A. Results

The following plots show D performance results for sine
wave sources (Figures 3a and 4a), Gaussian sources (Fig-
ures 3b and 4b) and speech sources (Figures 3c and 4c) for
our experiments with 3 sources (Figure 3) and 10 sources
(Figure 4). For D performance, smaller is better. The error bar
shows the standard error. It should be noted that performance
scores cannot be directly compared between 3 and 10 sources
because the D score grows with the number of sources.

Our proposed joint method performed consistently better
than the other two methods, yielding significantly lower perfor-
mance scores in every experiment. Performance was likely im-
proved by the application of clipping geometry knowledge to
constrain the optimisation. The best performance was attained
with sine wave sources, as we expected: in the chosen DCT
basis, which consists of sinusoids, it is likely that a sparser
representation exists for our synthetic sine wave sources than
the other types. In general, speech performed a little better
than the Gaussian noise, however, it is likely that speech
performance could be improved by choosing a different basis
better suited to speech.

The constraints that exploit knowledge about what the
source label is not (in Section II-C) appear to be crucial with
10 sources. Indeed, preliminary experiments omitted these
constraints and performance with 10 sources was similar to the
sequential method. For 3 sources, omitting these constraints
did not appear to affect the results, which still yielded lower
performance for our joint method, indicating that these im-
provements were due to the quantisation of repairable points
(Section II-B). This makes sense: with fewer sources, it is
more likely the angle between the source lines will be large
and, as a result, there will be more repairable points. With
more sources, this becomes less likely and the information
about what the source label is not becomes more important.
Performance in general decreased at higher levels of clipping,
as expected, because more of the data points were missing.

IV. Conclusions

This paper has presented a novel framework for under-
determined source separation from clipped mixtures, which
combined ℓ1 minimisation with knowledge about the clipping
geometry. An algorithm was developed to recover the sources
by solving a convex optimisation problem constrained by
this knowledge. Comparative evaluation experiments of our
proposed method showed a significant increase in objective
recovery performance compared with sequential approaches
for speech and synthetic sources.
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[9] Z. Koldovský, “Udsep.” http://itakura.ite.tul.cz/zbynek/udsep.htm.
[10] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement

in blind audio source separation,” IEEE Transactions on Audio, Speech
and Language Processing, 2006.

[11] Y. Cao, “Hungarian algorithm for linear assignment problems (v2.3),”
2011.



Chapter Five

Two Clipped Mixtures of Many Sources

with some Time-Disjointness

5.1 Introduction

In this chapter, we relax the strict time-disjointness assumption made thus far and assume that only

a small percentage of the time points of the sources are time disjoint rather than all of them. With

this assumption, it turns out we can still estimate the mixing directions. We assume that a sparse

representation of the sources exists in a given basis, formulate a convex optimisation and solve

it. Our novel method exploits knowledge about the geometry of clipped mixtures and the mixing

matrix.

We solve both the determined and underdetermined cases. We assume that two linear mix-

tures of the sources are observed. Our method is outlined and explained in Section 5.2. Section 5.3

provides a comprehensive testing of our proposed approach on both synthetic and speech data. Our

results are shown and discussed in Section 5.4, and our conclusions summarised in Section 5.5.
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

5.2 Methodology

In practice, clipping occurs when representing a signal containing amplitude values that saturate

the maximum amplitude permitted by the system, yet most ICA algorithms neglect this. In a digital

system, input samples whose absolute values exceed a given threshold θ have their output limited

by this threshold. Denote by xi,n the nth sample of the ith mixture before clipping and x′i,n the

equivalent sample after clipping.

x′i,n =



sgn
(
xi,n

)
θ if |xi,n| > θ,

xi,n if |xi,n| ≤ θ.
(5.1)

Equations (3.1) and (3.1) combined describe the model of the problem:

x′i,n =



sgn
(∑D

j=1 Ai, js j,n

)
θ if |

D∑

j=1

Ai, js j,n| > θ,

∑D
j=1 Ai, js j,n if |

D∑

j=1

Ai, js j,n| ≤ θ.
(5.2)

Now the task is to find both s and A.

5.2.1 Overview of the proposed approach

Three sequential steps were developed to solve the model in Equation (3.2) and yield estimates of

latent sources ŝ from clipped mixtures x′:

1. Mixing matrix estimation (Section 5.2.2).

2. Declipping mixtures by ℓ1 minimisation (Section 5.2.3).

3. Source estimation (Section 5.2.4).
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

Figure 5.1: Two speech sources, 50% time disjoint (left); linear mixtures of these sources (middle);

clipped mixtures, 20% clipped (right).

5.2.2 Mixing matrix estimation

First we obtain clipping threshold θ, which is the largest absolute value among all the individual

elements within the vector x′.

θ = max |x′| (5.3)

As discussed in Chapter 3.1, in a scattergram of linear mixtures of time disjoint sources,

the sources can be seen to be straight lines (Plumbley et al., 2010), which represent the mixing

directions of A. If only some of the points are time disjoint, however, it turns out these lines can

still be detected. An example, with sources that are 50% time disjoint to make them visible in the

plot, is shown in Figure 5.1.
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

Since clipping distorts the source lines, we discard all clipped points, where |x′1,n| = θ ∨
|x′2,n| = θ. We denote by M the number of unclipped time points, and calculate the slope of all of

these as shown below. The symbol ⊙ represents the elementwise product.

∇M =
(
x′2,1, . . . , x

′
2,M

)
⊙


1

x′1,1
, . . . ,

1
x′1,M

 (5.4)

The set ∇M contains M entries, some of which may be duplicates as a result our assumption that

a small percentage of the columns of x are time disjoint. We define the set ∇s to contain only the

D most frequent unique entries of ∇M. Denote by ∇1 the first slope, calculated as the mode of ∇M,

and by ∇2 the second slope, which is the second most frequent entry of ∇M. We use these slopes

to construct an estimated mixing matrix Â in the following manner:

Â =


1 1

∇1 ∇2

 (5.5)

In the optimisation step, it is important for each of our sources to have the same relative amplitude

scaling, so we multiply each column i of Â by a scaling factor γi. For each ith source, we use the

slope ∇i to naively demix the clipped mixtures x′ and take the maximum absolute value of the ith

distorted source as our scaling factor γi, as shown below:

γi = max |∇ix′1 − x′2| (5.6)

We then use scaling factor γi to obtain our scaled mixing matrix estimate ˆ̂A:

ˆ̂A =


max |∇1x′1 − x′2| max |∇2x′1 − x′2|
∇1 max |∇1x′1 − x′2| ∇2 max |∇2x′1 − x′2|

 (5.7)

5.2.3 Declipping by ℓ1 minimisation

We reconstruct the clipped points under the assumption they have a sparse representation. We

assume that estimated sources ŝ can be sufficiently represented by a small number of non-zero
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

coefficients r in the basis matrix Ψ, as shown below:

ŝ = rTΨT (5.8)

We use the DCT operator matrix, commonly used in signal processing, as Ψ for our experiments

in Section 5.3. It is likely a sparser basis could be chosen, for example for speech, but the DCT

is sufficient to demonstrate our approach. We formulate a convex optimisation problem that will

yield a sparse solution. We use ℓ1 minimisation because the number of non-zero elements, known

as the ℓ0 “norm”, is not convex. The tasks is to find a solution to the linear system below, where

sparse source representations r ∈ �N×D:

minimize
D∑

i=1

∥ri∥1 subject to ˆ̂ArTΨT = x′. (5.9)

We constrain this problem by the mixture model x′ = ˆ̂Aŝ = ˆ̂ArTΨT . We formulate a constraint

each for the unclipped portions x′1 and x′2. A pair of masking matrices Cu1 and Cu2 are constructed,

consisting of the IN rows corresponding to indices of all unclipped points in x′1 and x′2 respectively.

These matrices are used to form the first pair of constraints in Equation (5.10).

We formulate constraints that ensure the clipping model in Equation (3.1) is obeyed, similar

to those in (Defraene et al., 2013). Masking matrices C+1 and C−1 contain IN rows corresponding

to the indices of positively clipped (x′1,n = θ) and negatively clipped (x′1,n = −θ) points, respectively.

Equivalent masking matrices C+2 and C−2 are constructed for those points clipped positively (x′2,n =

θ) and negatively (x′2,n = −θ) in the second mixture, respectively. These four matrices allow us to

constrain the reconstructed points to obey the clipping model, forming the second and third pairs

of constraints in Equation (5.10).
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

minimize
D∑

i=1

∥ri∥1

subject to ˆ̂A1rTΨT Cu1
T = x′1Cu1

T , ˆ̂A2rTΨT Cu2
T = x′2Cu2

T ,

ˆ̂A1rTΨT C+1
T ≥ θ, ˆ̂A1rTΨT C−1

T ≤ −θ,
ˆ̂A2rTΨT C+2

T ≥ θ, ˆ̂A2rTΨT C−2
T ≤ −θ.

(5.10)

After solving the optimisation problem, the following equation yields an estimate of the declipped

mixture x̂1:

x̂ = ˆ̂ArTΨT (5.11)

To solve the problem in Equation (5.10) we used CVX, a package for specifying and solving

convex problems (Grant and Boyd, 2014; Grant and Boyd, 2008).

5.2.4 Source estimation

The source estimates ŝ by the equation below.

ŝ = ˆ̂A−1x̂ (5.12)

5.2.5 Sequential method

To test our novel ideas of using knowledge of the mixture model and estimated relative source

scaling to constrain the optimisation (Section 5.2.3), we formulate an alternative problem to declip

the mixtures without this information. The mixing matrix estimation (Section 5.2.2) and source

estimation (Section 5.2.4) steps remain the same.

The optimisation problem for declipping each clipped mixture x′i is shown below, where
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Two Clipped Mixtures of Many Sources with some Time-Disjointness

wi ∈ �N is a sparse representation of the ith mixture:

minimize ∥wi∥1 ∀i = 1...F

subject to wi
TΨT Cui

T = x′iCui
T ,

wi
TΨT C−i

T ≤ −θ,

wi
TΨT C+i

T ≥ θ.

(5.13)

5.3 Experiments

A series of experiments were designed to evaluate our proposed method and three other ap-

proaches:

1. The joint source separation and declipping algorithm, described in Section 5.2.

2. The sequential version, described in Section 5.2.5.

3. FastICA (Hyvärinen and Oja, 2000a) - one of the most well known and popular source

separation algorithms. This was used for the determined case.

4. Beamformer (Koldovský et al., 2013) - a popular algorithm for solving the underdetermined

case.

For FastICA and Beamformer, we first declip the mixtures x′ as in Equation (5.13) from

Section 5.2.5. The declipped mixtures are then processed by the FastICA code from (Gävert et al.,

2017).

Each experiment ran for 50 repetitions. The length N of the sources and mixtures was fixed

at 2048 time points. In each case, we varied the number of sources (2, 3, 5 and 10), the window size

(64, 128, 256), the source type (Gaussian, sine, speech) and percentage time-disjointness (0.5%,

1%, 2% and 5%).
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5.3.1 Hypotheses

1. The joint algorithm will yield better performance than the sequential approach in general

• The sources are likely to be sparser than the mixtures, so a sparsity-based declipping

approach that assumes sparseness of the sources s rather than the mixtures x will yield

a result with fewer errors.

2. Speech sources will yield worse performance than sine wave sources

• The DCT basis, which consists of sinusoids, will enable a sparser representation of sine

wave sources than speech sources.

3. FastICA and Beamformer will perform worse than our approaches

• Our approach exploits knowledge of the clipping geometry and partial time disjointness

assumption to estimate mixing matrix ˆ̂A, which FastICA and Beamformer do not.

4. A larger proportion of clipped samples will lead to worse performance

• More of the data will need to be approximated by the optimisation, increasing the

chance of errors.

5. Zero time-disjointness will lead to worse performance

• The time-disjointness is required to estimate the mixing directions.

5.3.2 Preparing the data

There types of source signal were used: synthetic sources constructed from a few sine waves,

synthetic Gaussian sources and speech.
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1. Synthetic (sine wave mixtures)

(a) Determined case

s1,n=3 sin(0.02n)+0.8 sin(3.5n)+0.8 sin(4.1n)+0.5 sin(4.5n)

s2,n=3.4 sin(0.03n)+0.5 sin(2.2n)+0.6 sin(1.4n)+0.2 sin(3.7n)

(b) For the underdetermined case with three sources we added an additional source

s3,n=3.7 sin(0.015n)+0.8 sin(3.6n)+0.3 sin(2.4n)+0.5 sin(2.7n)

(c) For the underdetermined case with ten sources we generated the following sources

s1,n=0.02 sin(0.054n)+0.09 sin(0.031n)

s2,n=0.03 sin(0.029n)+0.07 sin(0.924n)

s3,n=0.08 sin(0.074n)+0.04 sin(0.430n)

s4,n=0.15 sin(0.189n)+0.04 sin(0.185n)

s5,n=0.43 sin(0.687n)+0.03 sin(0.905n)

s6,n=0.16 sin(0.018n)+0.05 sin(0.034n)

s7,n=0.06 sin(0.036n)+0.05 sin(0.025n)

s8,n=0.07 sin(0.062n)+0.08 sin(0.040n)

s9,n=0.06 sin(0.078n)+0.07 sin(0.094n)

s10,n=0.45 sin(0.081n)+0.07 sin(0.092n)

The sources were then normalised:

si,n = si,n/max |si| ∀i = 1...D

2. Gaussian

Gaussian sources were generated using MATLAB’s normrnd function

3. Speech

Ten speech recordings of a feminine voice saying the numbers one to ten were produced.
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These recordings were 2048 samples long and had a sampling rate of 22050Hz at a bit depth

of 16.

At the start of each experiment, the sources s were processed such that a random percentage

ζ of the points were made disjoint in time. This was done by selecting ζ of the points at random

and, for each of those points, making a randomly selected source zero.

The mixing matrix was generated A iid∼U(−1, 1). If A was singular, it was discarded and

generated again. The mixing matrix was scaled A = A/max |A|. The mixtures x were generated as

in Equation (3.1) and processed as described by Equation (3.1) to give x′. Five clipping thresholds

θ were selected, such that 10%, 20%, 30%, 40% and 50% of the samples are clipped each time.

The length N of the mixtures and sources was fixed as N = 2048. Each experiment was repeated

50 times.

5.3.3 Implementation and frame-based processing

For the constrained optimisation in Equation (5.10), it is necessary to process the audio in short

sequential frames and concatenate the results to form the declipped mixtures x̂, as done in (De-

fraene et al., 2013). This greatly decreases processing time by making the basisΨ smaller. For our

experiments, the mixtures x′ were split into uniform-windowed non-overlapping frames of length

n = 64, 128 and 256.

5.3.4 Performance measurement

We cannot measure performance by comparing the estimated mixing matrix ˆ̂A with the true mixing

matrix A, as the Amari index does for ICA, because the accuracy of the estimated sources ŝ depends

on the declipping performance. For this reason, we measured performance by comparing the
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sources s with the estimates ŝ, using the following equation, cited in (Vincent, Gribonval, and

Fevotte, 2006):

D B min
ϵ=±1

∥∥∥∥
ŝi

∥ŝi∥ − ϵ
si

∥si∥
∥∥∥∥

2

2
(5.14)

The final problem to solve is the permutation indeterminacy of the sources. We used the

Hungarian algorithm, as implemented in (Cao, 2011). Each source si is compared with each source

estimate ŝ j and the results are stored in a D × D matrix. The algorithm processes this matrix to

determine the lowest performance cost and corresponding estimated source to true source assign-

ments.

5.4 Results

Our results plot the obtained performance D and smaller values are better. We report average

performances from 50 independent repetitions, and the error bar shows the standard error. The

number above the error bar shows the number of times FastICA did not converge on a solution.

As expected from previous chapters, we find that increasing the percentage of clipped time

points decreases performance. We can see this across the plots in this section. This is in line with

our expectations and hypotheses in Section 5.3.1. When more of the data are missing, more of the

points need to be estimated by the convex optimisation, increasing the chance of errors.

Our proposed joint method, in general, performed better when compared with the sequen-

tial approach and FastICA on the declipped mixtures. The sequential method yielded better per-

formance than the joint method when the window size was 256 samples in length, as we see in

Figure 5.2. This could suggest that 256 is a suboptimal window size for our method, but it might

also be explained by the signal characteristics of the chosen sources. More experimentation would
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Figure 5.2: Sequential method yields better performance than joint method at 256 window size (2

sine sources, 256 window size, 0.5% time-disjointness)

be needed to determine the cause of this anomaly.

It is likely that performance was improved using our joint method by modelling the sources

themselves as having sparse representations rather than the mixture signals, as in the sequential

method. This finding matches our first hypothesis in Section 5.3.1. In preliminary experiments,

we discovered that altering the relative scaling of the estimated mixing matrix columns affected

the performance. By scaling the estimated mixing matrix such that each source had approximately

the same peak amplitude, we attempted to ensure that the sources were equally weighted in the

optimisation in Section 5.2.3 such that no source was prioritised.

As seen in Figure 5.3, sine sources attained better performance than both Gaussian and

speech sources in every case. There appeared to be little difference with this approach when com-

paring Gaussian and speech sources for our approach, which one does not observe using traditional

ICA approaches like FastICA that cannot handle Gaussian sources. Our method for obtaining the
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mixing directions from the partial time-disjointness geometry is likely what facilitates the separa-

tion of Gaussian sources in our approach.

The FastICA approach yielded better performance scores with all source types at zero time-

disjointness, as seen in Figure 5.4. Our approach exploits partial time-disjointness, so when there

is no time-disjointness at all, the mixing directions cannot be estimated accurately. The presence

of some disjointness is essential to our approach. Conversely, FastICA and Beamformer do not

exploit time-disjointness at all, so it is expected that these methods would perform less well with-

out this advantage in comparison with our approach when there is some time-disjointness to be

exploited.

Increasing the number of sources worsens performance, as seen in Figure 5.5. As the

number of sources increases, the maximum angle between the sources decreases, and as such this

makes geometric observations more difficult.

At 0.5% time-disjointness FastICA, the joint and sequential methods yielded similar per-

formance, however, at time-disjointness higher than 0.5% our method yielded better performance

than FastICA with the best performance being at 2% time-disjointness. It is likely that 2% is a

sweet spot, where we have just enough time points to accurately estimate the mixing directions,

but not too many such that the data is not sparse enough for our approach.

Beamformer performed worse than our methods in every experiment regardless of time-

disjointness. From our third and fifth hypotheses in Section 5.3.1, we see this is as expected. In the

presence of clipping distortion, the Beamformer algorithm cannot accurately determine the mixing

directions and fails to separate the sources.
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(a) Gaussian (b) Speech

(c) Sine

Figure 5.3: Sine sources yield better performances than speech and Gaussian (2 sources, 64 win-

dow size, 5% time-disjointness)
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(a) Gaussian (b) Speech

(c) Sine

Figure 5.4: FastICA yields better performs than our approach at 0% time-disjointness (2 sources,

256 window size, 0% time-disjointness)
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(a) 2 sources (b) 5 sources

(c) 10 sources

Figure 5.5: Increasing the number of sources worsens performance (Sine sources, 256 window

size, 2% time-disjointness)
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5.5 Conclusion

In this chapter, we presented our novel source separation method for mixtures affected by clip-

ping distortion and we relax the strict time-disjointness assumption of the previous chapters. Our

method used a scaled estimate of the mixing matrix, combined with knowledge about the geometry

of clipped mixtures, to constrain a convex optimisation problem. Evaluation experiments com-

paring our method with existing approaches showed a significant increase in objective recovery

performance for our proposed method for both speech and synthetic source signals when there was

some time-disjointness, with peak performance indicating a sweet spot of 2% time-disjointness.

Future work would include disjointness in other spaces, rather than only time-disjointness to seek

to improve performance. One key area to investigate is time-frequency disjointness. This is more

realistic because in nature sounds often overlap but they don’t as often overlap in both time and

frequency.
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Chapter Six

Discussions and Conclusions

6.1 Research summary

The research in this thesis sought to solve the problem of source separation for mixtures affected

by clipping distortion. We started with the determined case, two mixtures and two sources, where

only one of the mixtures was affected by clipping distortion. This was then expanded to include

to the underdetermined case where there are more sources than mixtures and where both mixtures

were clipped. These first two chapters (Chapters Three and Four) made an assumption of strict

time-disjointness. Our final experiments in Chapter Five relaxed this assumption to only partial

time-disjointness for both cases of determinedness.

Existing source separation methods are not suitable for solving the combined problem of

source separation and clipping distortion (Turl, 2015).

We devised a series of approaches based on formulating convex optimisation problems

that exploited knowledge discerned from the properties of the geometry of clipped mixtures. The

underdetermined case allowed us to formulate additional constraints based on the geometry of

the clipped mixtures which improved the performance of the method. Finally, we extended our
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approach so that the strict time-disjointness assumption was not required by devising a new method

to discern the mixing matrix.

Our method was tested with linear mixtures of 3 different source types, sine, Gaussian and

speech. In Chapter Three we varied the percentage of the samples that were clipped. Chapter Four

expanded this to vary the number of sources. Then in Chapter Five we also varied the percentage

of time-disjointness and the size of the window. In all experiments, performance was measured by

comparing the sources with the estimates from our method using the D performance metric cited in

(Vincent, Gribonval, and Fevotte, 2006). For the determined case we compared our method to the

performance of FastICA (Hyvärinen and Oja, 2000a), for the underdetermined case our method

was compared to Beamformer (Koldovský et al., 2013).

6.2 Results and conclusions

In all of our experiments our method was shown to outperform FastICA and Beamformer when

there was some time-disjointness. At zero time-disjointness FastICA outperformed our method

but Beamformer did not. These results are expected, as our method is designed to take time-

disjointness into consideration in order to solve clipped source separation whereas neither FastICA

nor Beamformer do this. In Chapter Five, there appeared to be an ideal time-disjointness of 2%. As

expected, increasing the amount of clipping distortion worsened the performance of all methods,

however, in general our method still performed better than the others.

The method within this thesis is the first to explicitly look at the combined problem of clip-

ping and source separation. Our experiments show there is benefit to solving both these problems

together rather than sequentially. In general, solving the problem jointly resulted in better source

recovery than sequentially.
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6.3 Future work

6.3.1 Time-frequency disjointness

Future work would broaden the scope of mixtures that we can tackle to include mixtures that are

disjoint in the time-frequency domain. In nature sounds often overlap but less frequently overlap

in both time and frequency so this would make the problem more realistic. Expanding into this

domain may result in increased performance across a wider range of types of mixtures.

6.3.2 Additional performance measures

In this research the primary performance measure used was D performance (Vincent, Gribonval,

and Fevotte, 2006). It would be interesting to test our methodology using other performance met-

rics. An example of a set of additional metrics that could be used is the Perceptual Evaluation

methods for Audio Source Separation (PEASS) Toolkit (Emiya et al., 2010) which contains a set

of subjective perceptual measures of audio source separation. Another example of performance

measures is Gribonval, Vincent, and Févotte’s MATLAB toolbox called BASS-dB (Gribonval, Vin-

cent, and Févotte, 2006) which contains a set a source separation performance measures.

It would be highly desirable to build on the work of Emiya et al. and devise an application-

agnostic performance metric for ICA. This would be challenging, since each application has differ-

ent priorities when it comes to measuring performance, especially when comparing subjective and

objective measurements. Nonetheless, a rigorous study of state-of-the-art performance measures

would be beneficial in the early stages of this project.

An additional area of performance that could be considered for future work is that of ef-

ficiency. The methods used in this paper could be compared in terms of their time taken to find
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a solution, the processing power required and energy efficiency. Those who have written about

ICA performance have mostly indicated that further work is necessary. (Emiya et al., 2011) hoped

that their study could become the basis for a more sophisticated and standardised subjective testing

protocol in the future. Cabras (2011) noted in his thesis that there were still several unresolved

issues with ICA; one of his recommendations was a further study focusing on the tradeoff between

computational power and ICA performance.

6.3.3 Additional source separation algorithms

We could also compare our method to additional algorithms that solve the problem of source

separation. One potential algorithm that could be tested against is Bilen, Ozerov, and Pérez’s

NMF method. Another is the maximum likelihood ICA algorithm cited in (MacKay, 2002).

6.3.4 Computational learning theory

A more challenging area of future research could be to quantify the conditions required in order

to guarantee separation and the likelihood of separation occurring. Computational learning theory

provides the basis for these investigations. This theory attempts to answer questions such as under

what conditions is learning possible? and under what conditions is learning guaranteed to be

successful? (Mitchell, 1997). Another important question deals with sample complexity, that is,

how many samples do I need in order to learn?.

There has been surprisingly little work done to apply learning theory principles to ICA.

A study by Vempala and Xiao (2014) presented a technique for reducing the sample complexity

of matrix and tensor decomposition algorithms such as those used to perform ICA. Vempala and

Xiao’s study produced a polynomial-time complexity algorithm for standard ICA with nearly linear

sample complexity: a substantial improvement on previous polynomial time algorithms. This was
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achieved using a recursive version of Fourier principal component analysis (PCA). While it is

encouraging to see some work in this area, it demonstrates that there is plenty of room for a deeper

learning theory driven study of ICA.

6.3.5 Problematic mixtures

Perhaps a more interesting problem involves looking at the performance of ICA from the perspec-

tive of the mixtures themselves rather than the results of the algorithms. There does not appear

to have been much work done to identify which particular mixtures prove most problematic for

ICA to decompose into components. Reiss and Uhle (2010) conducted a study to improve source

separation by using infinite impulse response (IIR) filters to remove direct crosstalk: that is, where

the signal from microphone m1 contains a portion of the signal from microphone m2 due to the im-

perfections of audio mixing circuitry. They discovered that separation performance was degraded

by fractional time delays and the directivity of the microphones and the sources.

Another obvious candidate for problematic mixtures would be low bit-rate lossy com-

pressed audio files. Although studies have used ICA to facilitate low bit-rate audio compression

(Ben-Shalom, Werman, and Dubnov, 2003), there do not appear to have been any studies on ICA

applied to such audio files. Since lossy compression tends to discard information considered irrel-

evant (Kuhn, 2005), it would be interesting to discover the extent to which this affects performance

for ICA working on such mixtures.

Convolutive mixtures, could be another option to extend this research into. These mixtures

contain multiple time delayed instances of the sources which is more realistic as it mimics the

multiple reflections of sound waves heard in a physical location.

Other candidates include phonographic recordings affected by wow and flutter: two com-

mon irregularities in analogue audio recordings (Howarth and Wolfe, 2004). Variation in the

84



Discussions and Conclusions

turntable motor speed leads to time irregularities known as flutter; a poorly mounted phonograph

record leads to pitch irregularities known as wow.
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