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ABSTRACT 

 

 

This thesis describes the research and development into a range of time-

temperature integrators (TTIs) for the measurement of process values for food 

heat treatments. The TTIs are based on the first order thermal degradation of 

bacterial -amylases. Two new TTIs are described, one for mild pasteurisation 

treatments of a few minutes at 70°C and one for full sterilisation of >3 minutes at 

121.1°C. Examples are given of how these TTIs are applied to a variety of 

industrial thermal processes. These include traditional methods such as canning, 

but also more complex systems such as tubular heat exchangers and batch vessels, 

together with novel systems such as ohmic heating. Some of the industrial 

experiments dealt with processes in which the thermal effects had not been 

previously quantified. 

 

For sterilisation, a highly innovative solution is required. A candidate TTI 

material is identified based on an amylase secreted by the hyperthermophilic 

microorganism Pyrococcus furiosus. This microorganism exists in extreme 

conditions where it metabolises in boiling volcanic pools; with elemental sulphur 

readily available, in water of high salinity, and in a reducing atmosphere. The 

amylase it secretes is naturally thermostable and withstands a full thermal 

sterilisation process.  
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NOMENCLATURE AND ABREVIATIONS 

 

Afinal   final (enzyme) activity after a specific time-temperature history, minutes
-1

 

Ainitial  initial (enzyme) amylase activity, minutes
-1 

BAA  amylase from Bacillus amyloliquefaciens 

BLA  amylase from Bacillus licheniformis 

Bi  Biot number, which is a dimensionless group that compares the heat transfer rates 

resulting from external heat transfer and internal heat conduction 

Cp  material specific heat capacity, J.kg
-1

.K
-1 

C0  colour reading at 600 nm for an unheated control sample of FDP after 0-minutes 

incubation at 92°C 

C05  colour reading at 600 nm for an unheated control sample of FDP after 5-minutes 

incubation at 92°C 

Ct5  colour reading at 600 nm for a heated sample of FDP after 5-minutes incubation at 

92°C 

DT  decimal reduction time of amylase or microorganisms at a fixed temperature (T), 

minutes 

fh  heating factor, defined as the temperature response parameter derived from the 

logarithmic heating curve (IFTPS, 1997), minutes  

F  sterilisation value for microorganism destruction, minutes 

F0  sterilisation value specifically for destruction of C. bot. spores, minutes 

FDP  freeze-dried powder comprising proteins extracted from a Pyrococcus furiosus 

fermentation 

hfp  fluid to particle heat transfer coefficient, W.m
-2

.K
-1

 

IT  initial particle centre temperature, °C  

j  lag factor, defined as a measure of the thermal lag before the can centre temperature 

responds to the changing environment temperature (IFTPS, 1997), dimensionless  

k  proportionality constant for 1
st
 order kinetics, s

-1
 

k  thermal conductivity of a food or silicone particle, W.m
-1

.K
-1

 

L  infinite slab thickness, m  

n  number of terms for series convergence of the analytical solution to conduction heat 

transfer in an infinite slab 

Nfinal  final number of microorganisms after a specific time-temperature history 

Ninitial  initial number of microorganisms  



  

N0  initial (time zero) number of microorganisms per unit mass or volume 

N  final number of microorganisms per unit mass or volume after heating 

RT  retort or constant environment temperature, °C 

P  pasteurisation value, minutes 

t  process time, seconds or minutes 

T  particle centre temperature, also used as the test temperature °C  

T(t)  variable product temperature, which is a function of time (t), °C 

Tref   reference temperature used to calculate the DT value, °C 

TTI  time-temperature integrator 

x  distance from the surface of the infinite slab or the characteristic particle dimension, m 

X0  initial amylase activity, s
-1

 

X  final amylase activity, s
-1

 

z  kinetic factor, which is the temperature change required to effect a ten-fold change in 

the DT value, °C  

 

Greek symbols 

  material thermal diffusivity, m
2
.s

-1
 

  temperature offset from the correct test temperature, °C 

  material density, kg.m
-3 

t  time interval used for time-temperature measurements, minutes 
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CHAPTER 1: INTRODUCTION TO THERMAL PROCESSING AND TO 

TIME-TEMPERATURE INTEGRATORS 

 

 

„Imagination is more important than knowledge‟ 

Albert Einstein, Physicist 

 

 

Executive Summary 

 

This thesis describes the research and development of a range of time-temperature integrators 

(TTIs) that are used to measure process values for thermally processed foods. Process values 

are either for pasteurisation heat treatments (generally < 100°C) or sterilisation (> 3 minutes 

at 121.1°C). All of the TTIs described in this thesis are based on the first order thermal 

degradation of the protein -amylase. 

 

Traditional methods for the estimation of microbiological kill levels in thermal processes use 

temperature sensors followed by a calculation procedure that converts the time and 

temperature measurements to a process value. This value is related to the key information, 

which is the log reduction in microorganism numbers attributed to the process, through the 

use of simple first order models for microorganism death. However, it is not always possible 

to use temperature sensors for food measurements. TTIs are one of the alternative 

measurement tools that are required for foods in which a temperature sensor interferes with 

the food product, its package or the processing system. Applications for TTIs are therefore to 

measure process values in a variety of complex food processes in which temperature sensors 

are not appropriate.  

 

Several types of TTIs are described for measuring a range of pasteurisation processes; one of 

the TTIs is a new TTI. An improved TTI encapsulation system is described that enhances 

methods for applying TTIs to industrial measurements. The new TTI is for measuring mild 

pasteurisation treatments of the order of only a few minutes at 70°C.  These mild 

pasteurisation treatments are commonly used for chilled foods with shelf lives less than 10-
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days. Many of the mild pasteurisation treatments take place in heated vessels or continuous 

ovens in which the movement of the food product prevents the use of temperature sensors. 

Many examples are given in which this new TTI enables these processes to be (i) quantified 

and (ii) optimised. 

 

For sterilisation processes, the challenges are much greater because of the limited number of 

enzyme systems designed to operate above 100°C and at pressures greater than 1 bar. A 

candidate TTI material is identified based on an amylase secreted by a hyperthermophilic 

microorganism. This organism, Pyrococcus furiosus, exists in extreme conditions where it has 

evolved in boiling volcanic pools; with elemental sulphur readily available, in water of high 

salinity, and in a reducing atmosphere. The amylase it secretes is naturally thermostable and is 

found to withstand a full thermal sterilisation time-temperature process. Data within this 

thesis shows the potential of Pyrococcus furiosus amylase as a sterilisation TTI. 

 

Examples are given for how the new and existing TTIs can be applied to a variety of 

industrial thermal food processes. These include traditional methods such as canning, and also 

more complex systems such as tubular heat exchangers and batch vessels, together with novel 

systems such as ohmic heating. Process values are calculated using the difference in amylase 

activity before and after processing. Colorimetric and spectrophometric methods are used to 

measure the residual amylase activities and their relative merits are compared as assay 

methods. The calculation procedures for converting these activities to process values assume 

the first order kinetics for the amylase degradation by heat, as with microorganism death. 

 

Some of the industrial experiments deal with processes in which the thermal effects havenot 

been quantified previously. Considerable over-processing is typical in these situations and so 

the application of TTIs to these food processes results in improvements in the line efficiency 

and on occasion in the food quality. 

 

 

1.1 Thermal Processing of Foods 

 

The application of high temperatures, referred to as thermal processing, is the most commonly 

used method to kill or control the numbers of microorganisms present within high moisture 

foods and on packaging material surfaces. Thermal processing is a general term that describes 
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all forms of heat treatments in which microorganism numbers are controlled by heat. This 

includes heat processed container types such as metal cans, plastic trays, pouches, glass jars 

and even cartons. Canning was the original mode of heat treatment and the terms canning and 

thermal processing are often used for the same purpose. 

 

An interesting history of canning and thermal processing is given by Westler Foods 

(http://www.westlerfoods.com/pdf/canning_process.pdf). The canning process dates back to 

the late 18th century in France when Emperor Napoleon Bonaparte, concerned about keeping 

his armies fed, offered a cash prize to whoever could develop a reliable method of food 

preservation. Nicholas Appert discovered that the application of heat to food in sealed glass 

bottles preserved the food from deterioration. In about 1806, Appert's principles were 

successfully trialled by the French Navy on a wide range of foods including meat, vegetables, 

fruit and even milk.  More than 50 years later, Louis Pasteur provided the explanation for the 

effectiveness of canning when he demonstrated that the growth of microorganisms was the 

cause of food spoilage.  

 

An Englishman, Peter Durand, took the process one step further and developed a method of 

sealing food into unbreakable tin containers.  This was perfected by Bryan Dorkin and John 

Hall, who set up the first commercial canning factory in England in 1813. Tin containers had 

the advantage over glass bottles of being lighter, easier to seal and less prone to breakage 

during transportation and storage. The original food can was made of iron and was coated 

with a fine layer of tin to stop it from rusting. There is little difference in the external 

appearance of the original tin cans to the stainless steel cans of today. It has been stated that 

metal cans have not needed to evolve too much since the 1800s because the original design 

was so good (Pickles, 2006); it was one of the few examples of a design that was almost 

perfect from conception. 

 

It was discovered that if the food was heated at high temperatures and under pressure, the 

required heating and cooling times became significantly shorter. The first pressure retort was 

built in 1851, which allowed steam temperatures greater than 100°C to be used, with the 

benefit of reduced thermal process times which improved the flavour, texture and nutritional 

value of the food. The first automated production lines were introduced in 1897 and produced 

around 6 cans an hour, which compares with today‟s production lines that produce in excess 

of 1,500 cans a minute.  



 4 

 

After the 1920s, canned food lost its military image and became fully accepted as part of the 

national diet. In the UK, the Campden Experimental Factory was opened in 1919 as part of 

the University of Bristol. Its remit was to understand the canning process in greater depth so 

that canned foods could be manufactured to higher quality and with a greater assurance of 

food safety (Gillespy, 1951). Thermal processing is still a key part of (the now) Campden & 

Chorleywood Food Research Association. 

 

Food canning is a long established and well-understood technique, which has served 

consumers well for nearly 200 years. It produces shelf stable products that can be stored at 

ambient temperatures. The basic principles of canning have not changed dramatically since 

Nicholas Appert and Peter Durand developed the process. Heat, at levels sufficient to destroy 

microorganisms, is applied to foods packed into sealed or airtight containers. The amount of 

time needed for processing is different for each food, depending on the presence of 

antimicrobial hurdles (e.g. acidity, preservatives) and the ability to transfer heat to the food 

thermal centre.  

 

The canning process was developed to preserve food safely and for the integrity of the sealed 

cans to last for long periods of time. Manufacture of thermally processed foods is closely 

monitored using a system called Hazard Analysis and Critical Control Point, or HACCP 

(Bauman, 1974). This is a system that identifies areas of potential contamination within the 

food process and builds checkpoints, or critical control points (CCPs), to ensure that the 

product safety is maintained at all times. Validation of a thermal process and the 

determination of CCP levels is a challenging exercise that requires a variety of accurate tools. 

TTIs are one of the tools that can be used to validate the thermal process by measurement of 

integrated process values. 

 

Manufacture of a thermally processed food can be broken down into two basic operations: 

  

(a) The food is heated to reduce the numbers of microorganisms to an acceptably small 

statistical probability of pathogenic and spoilage organisms capable of growth under the 

intended storage conditions (DoH, 1994), and,  

 

(b) The food is sealed within an hermetic package to prevent re-infection.  
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Preservation methods, such as traditional canning, seal the food in its package before the 

application of heat to the packaged food product, whereas in operations such as aseptic filling, 

cook-chill and cook-freeze, the food is heated prior to dispensing into its pack. Either method 

reduces the numbers of microorganisms to commercially accepted levels (DoH, 1994), which 

includes both pathogenic and spoilage microorganisms. 

 

There are millions of types of microorganism that can spoil food products, with just a few that 

can cause damage to our health from the by-products of their metabolism. Several types of 

bacteria need consideration when designing a food packaging and processing line. Of primary 

concern from a public health perspective are those that produce toxins such as Clostridium 

botulinum, Listeria monocytogenes, Salmonella, Escherichia coli, Staphylococcus aureus, 

Bacillus cereus and Camplylobacter (Stumbo, 1965). These can be controlled by the use of 

sterilising solutions and/or heat, with the aim to achieve the condition of commercial sterility 

for the packaged food.  

 

1.1.1  Thermal sterilisation processes 

  

A thermal sterilisation process is required if no preservation hurdle to microbial growth exist 

in the food product; for example high acidity or preservatives. For low-acid foods the most 

heat-resistant pathogen that might survive the thermal process is C. botulinum (Esty and 

Meyer, 1922).  This bacterium can form heat-resistant spores under adverse conditions, which 

will germinate in the absence of oxygen and produce a highly potent toxin that causes a 

potentially lethal condition known as botulism. This can cause death within seven days. UK 

practice is for a commercial sterilisation process to reduce the probability of a single C. 

botulinum spore surviving in a pack of low-acid product to one in one million million (i.e. 1 

in 10
12

). This is called a „botulinum cook‟, and the standard process is to achieve at least 3 

minutes equivalent at 121.1°C, referred to as F0 3 (DoH, 1994).  

 

C. botulinum spores only germinate in anaerobic conditions where there is available moisture 

as well as nutrients, and the acidity levels are low (pH > 4.5).  Thus, food products with pH 

over 4.5 are often referred to as “low acid” foods whereas products with pH of 4.5 and below 

are referred to as “high acid” foods. In the USA, the critical limit between high and low acid 

foods is taken at pH 4.6 (http://vm.cfsan.fda.gov/~comm/lacf-toc.html).  This critical pH limit 
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is an important determinant as to whether heat-preserved foods receive a pasteurisation or 

sterilisation treatment. Pasteurisation often requires foods to be acidified prior to thermal 

treatment (e.g. pickled vegetables). It is also important to ensure that spoilage organisms in a 

high acid food do not cause a shift in pH to the low acid level and thereby allow the potential 

outgrowth of C. botulinum spores. Sterilisation processes are typically operated in the range 

115 to 135°C whereas pasteurisation processes are typically 75-115°C.  

 

In fact, the origin of the F0 3 process relates to thermal death kinetic work carried out by a 

number of researchers between approximately 1921 and 1950. The original death kinetics 

work often quoted is that of Esty and Meyer (1922), who investigated the death kinetics of 

Bacillus botulinus (then name for C. botulinum). The most prominent of their data was that 

published for the maximum heat resistance, referred to as the terminal death time, for B. 

botulinus grown under optimum conditions. They started with an initial population of 60 

billion spores and thermally processed until a negative result was obtained, i.e. all the spores 

were destroyed. Results of maximum resistance to moist heat for the most resistant strain 

were reported as follows: 

 

4  minutes at 120°C  (248°F) 

10  minutes at 115°C  (239°F) 

33  minutes at 110°C  (230°F) 

100  minutes at 105°C  (221°F) 

330  minutes at 100°C  (212°F) 

 

In the original paper, the above data were simply plotted as shown in Figure 1.1 but the data 

can be converted to a logarithmic terminal time axis giving the now more conventional 

approach shown in Figure 1.2 (Townsend et al., 1938). Stumbo (1949) took information from 

the Esty and Meyer (1922) work for the ideal thermal death time data, and used 1,804 spore 

suspensions in his work. These data were summarised as an F value of 2.78 minutes; which 

was the time taken to destroy 60 billion spores at 250°F (121.1°C). This is now the more 

likely basis of the F0 3 value used widely today. 
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Figure 1.1: Maximum heat resistance data for C. botulinum, taken from Esty and Meyer 

(1922).  60 billion spores in a phosphate buffer solution, pH 7.0. 
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Figure 1.2: Maximum heat resistance data for C. botulinum, 

taken from Esty and Meyer (1922). 60 billion spores in a phosphate buffer solution, 

pH 7.0. Data plotted with thermal death time on a logarithmic axis. 
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1.1.2  Thermal pasteurisation processes 

 

All thermal processes target the spores of C. botulinum if no other effective hurdle to its 

growth is present. These are referred to as sterilisation processes. Ideally, C. botulinum will 

grow best in anaerobic conditions such that high oxygen concentrations have the effect of 

reducing or even stopping its growth (Day, 2001). There is now a growing trend to apply 

additional hurdles to microbial growth that allow the food processor to use milder heat 

treatments referred to as pasteurisation; and obtain heat preserved foods of high quality. 

 

For example, growth of most strains of C. botulinum are inhibited at refrigeration 

temperatures, although there are psychrotrophic strains that can grow at low temperatures and 

are relevant for extended life chilled foods. This is of critical concern with sous-vide and 

vacuum packed foods that only receive a mild heat treatment and rely heavily on precise 

control of chill temperatures to prevent out-growth (CCFRA, 1992b). The BLA90 TTI 

(Bacillus licheniformis amylase), described in later chapters of this thesis, was used to 

measure thermal processes where psychrotrophic strains of C. botulinum must be destroyed. 

A process equivalent to 10 minutes at 90°C is designed to achieve at least 6-log reductions in 

numbers of C. botulinum spores (CCFRA, 1992 and 1992b). Many UK pasteurisation 

treatments are designed for a 6-log kill; for example, if the initial loading of psychrotrophic C. 

botulinum spores is 10
2
/g then a 6-log process will reduce this to 10

-4
/g.  This is a very small 

number of surviving spores, which is best described as a probability of a spore surviving the 

process rather than an absolute number. 

 

Other microorganisms are relevant for foods where hurdle technology is used to reduce the 

thermal impact of a process. Listeria species are an aerobic group of bacteria that can survive 

and grow at low temperatures, but are fortunately killed by mild temperature-time treatments. 

The process used to achieve a 6-log reduction in Listeria monocytogenes is 70°C for 2 

minutes, and this is also applicable to Salmonella and E. coli species (CCFRA, 1992). 

However, the log reductions achieved from a 70/2 process with these latter two organisms is 

substantially higher than six because of their lower heat resistance than Listeria. This group of 

bacteria are referred to as aerobic pathogens and exist only as vegetative cells. The BAA70 

TTI, described in Chapter 3 of this thesis, was developed to measure thermal processes for 

which the aerobic pathogen group must be destroyed. 
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Pasteurisation is nowadays used extensively in the production of many different types of food, 

such as fruit products, pickled vegetables, jams and ready meals (CCFRA, 1992). Food may 

be pasteurised in a sealed container, analogous to a canned food, or pasteurised in a 

continuous process, analogous to an aseptic filling operation. It is important to note that 

pasteurised foods are not sterile and must rely on other preservation hurdles to ensure their 

microbiological stability for the desired length of time.  

 

1.1.3  Commercial sterilisation 

 

Although pasteurisation or sterilisation of the food is the desired condition, the food for either 

treatment is referred to as commercially sterile.  By definition, commercial sterility (or 

appertization) of food is „the condition achieved by the application of heat which renders food 

free from viable micro-organisms, including those of known public health significance, 

capable of growing in the food at temperatures at which the food is likely to be held during 

distribution and storage‟ (DoH, 1994).  In practice, however, the food manufacturer makes a 

decision on the level of commercial risk with the applied thermal process because it is not 

possible to kill all of the micro-organisms and produce a saleable product. A pasteurisation 

process usually operates to 6 log reductions of the target organism (CCFRA, 1992), and this 

differs from fully sterilised foods where the intention is to achieve at least 12 log reductions in 

C. botulinum spores. The lower target log reductions for pasteurisation are because of the 

reduced risks associated with the target microbial species when compared with the lethal 

botulinum toxin, and also because of the presence of additional preservation hurdles.  

 

The severity of a thermal process is calculated as an integrated F-value or P-value (Ball and 

Olsen, 1957), using heat resistance data on the likely pathogenic or spoilage organisms 

present. Death of bacteria by moist heat is assumed to be almost logarithmic (Stumbo, 1965), 

i.e. it follows first order reaction kinetics in which the rate of decomposition is directly 

proportional to the concentration. Equation 1.1 describes the rate of change in concentration 

(or numbers N) of microorganisms with time (t), for a first order reaction where (k) is the 

proportionality constant: 

 

kN
dt

dN
        1.1  
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or, 

 dtk
N

dN
.         1.2 

 

Integrating Equation 1.2 between the limits of N0 at time zero and N after a time of heating 

(t), results in Equation 1.3. N0 is the initial (time zero) number of microorganisms per unit 

mass or volume, and N the final number after heating for t minutes. 

 

 
t

NN
k

)/ln( 0
       1.3 

 

This is usually expressed using base ten logarithms (log10), which are referred to in the 

remaining text without the subscript (log). Hence, Equation 1.3 becomes: 

 

 
t

NN
k

)/log(303.2 0
       1.4 

 

The conventional microbiological approach to quantifying thermal processing uses the 

decimal reduction time (DT), which is defined as the time required to destroy 90% of the 

organisms by heating at a single reference temperature (Tref). This is calculated by the time 

required to traverse one log cycle on a microorganism survivor curve, as shown in Figure 1.3. 

 

 

Figure 1.3: Logarithmic survivor curve showing the calculation of decimal reduction 

time (DT), the time required to decrease the number of organisms by a factor of ten. 
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Substituting terminology from microbiological death kinetics into the general equation for the 

straight line shown in Figure 1.3, Equation 1.5 is obtained. 

 

 
TD

t
NN loglog 0        1.5 

or, 

 
N

N
Dt T

0
log.        1.6 

 

By comparing Equations 1.4 and 1.6, the decimal reduction time and proportionality factor 

can be equated. Decimal reduction time is the more convenient term used in thermal 

processing, as given in Equation 1.7. 

 

 
k

DT
303.2

        1.7 

 

Equation 1.6 presents the heating time (t) needed at a constant reference temperature in order 

to reduce the number of microorganisms from their initial population (N0) to a final 

population (N). This heating time is also referred to as a sterilisation or F-value, and 

represents the target number of minutes at temperature (T) to achieve the desired log 

reduction in microorganisms (see Equation 1.8). 

 

 
N

N
.DF T

0
log        1.8 

 

Thus, for a sterilisation process where 12-log reductions are required, the target F-value for an 

organism with D-value of 0.3 minutes at 121.1°C is 3.6 minutes (Gillespy, 1951). The 

conventional approach in the UK (DoH, 1994) uses a D-value of 0.21 minutes at 121.1°C for 

C. botulinum spores, which equates to a minimum F-value of 2.52 minutes. This value is 

rounded up to F0 3. 
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1.2  Thermal process validation 

 

The objective of a process validation study is to prove that the target F-value, as calculated by 

Equation 1.8, is achieved under the conditions used. Conditions for the validation study 

should be chosen to represent those that result in the lowest levels of microbiological kill, so 

that under normal production conditions it is not possible for the process to be less severe.  

 

As the number of food products and their variety increases, food companies are faced with the 

challenge of proving that all products are safely thermally processed. Temperature probes 

offer the most economical method of validating process severity, they also provide the 

greatest flexibility in how the data can be used. Process validation can however sometimes be 

difficult if temperature probes cannot be used in the processes, and so other approaches need 

to be adopted.  

 

The main process categories that introduce these complexities to process validation include: 

 

 Products cooked in continuous ovens or fryers, such as poultry joints, chicken nuggets, 

burgers, bread (Tucker et al., 2005). 

 

 Products with discrete pieces cooked in steam-jacketed agitated batch vessels, such as 

ready meals, soups, cook-in-sauces, fruit preparations (Tucker et al., 2002; Mehauden et 

al., 2007) 

 

 Particle products processed in continuous tubular and scraped surface heat exchangers, 

such as cook-in-sauces, preserves or dressings (Tucker et al., 2002) 

 

If temperature probes cannot be used, a number of approaches to validating microbiological 

process safety are available. To prove that the thermal process has achieved the target process 

value or F-value during manufacture, it is necessary to conduct validation studies using an 

approved method. Various methods can be selected from the list below, and their choice 

depends on factors such as the costs, the expertise of those applying the methods, the nature 

of the food, and the process type.  
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 Microbiological methods can be used whereby cells or spores of a non-pathogenic 

organism, with similar temperature-induced death kinetics to the target pathogen, are 

embedded into an alginate bead (Brown et al., 1984). The beads are made to mimic the 

food pieces in their thermal and physical behaviour and so pass through the process 

with the food. By adding macerated food into the calcium alginate gel, a close 

approximation to the physical and thermal properties of the food is obtained. 

Typically, 30-60 spore beads will be added to a continuous heat exchanger process in 

order to obtain a distribution of process values. Enumeration of the surviving 

organisms allows the log reduction and process values to be calculated. 

 

 Simulated trials are carried out in a pilot plant or laboratory where the heat transfer 

conditions of the process are replicated (CCFRA, 1977; Bee and Park, 1978). This 

used to be a common approach for continuous canning systems, such as hydrostatic 

retorts and reel & spiral cooker-coolers. These cooker-cooler systems involve the cans 

entering a pre-sterilisation zone on a conveyor, then travelling into the steam 

sterilisation zone in which the thermal treatment occurs, before finally exiting from the 

cooling zone. The introduction of self-contained temperature loggers that can travel 

with the cans has reduced the need for retort simulators. However, there are still some 

concerns over interference with the temperature measurements that a stainless steel 

logger must introduce. This is particularly true with the reel and spiral type of cooker-

coolers that rely on frictional forces to induce can rotation. Changes to can density or 

to the centre of gravity might influence the rotational forces. 

 

 No validation is attempted, with the process safety being inferred from temperature 

probing of the bulk product or the environment. Substantial over-processing is 

allowed, in order that the thermal process delivered to the product thermal centre is 

sufficient. End product testing for microbiological activity is usual. This approach is 

typical with the chilled foods industry, for example, with sauces cooked in steam pans 

and hot filled into plastic ready meal trays (CCFRA, 1992). 

 

 Process models can be developed that predict, for example, the temperature-time 

history of the critical food particles as they travel through the heating, holding and 

cooling zones of the process (Heppell, 1985; McKenna & Tucker, 1991). This 
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approach is used with continuous heat exchangers, primarily to ensure that small food 

particles receive an adequate process. For larger particles (greater than 2-3 mm) it is 

usual that the spore bead method described above is employed (Brown et al., 1984). 

 

 Biochemical time-temperature integrators (TTIs) can be applied to gather similar 

process data to that from microbiological methods. This method originated with work 

by Hendrickx et al. (1995) in which various types of bacterial amylases were found to 

show kinetic properties appropriate for estimating microbiological reductions. The 

advantage of the amylase TTIs over many biological systems is that reaction rates for 

amylase degradation by heat are first order, as with microbiological breakdown, and 

the temperature sensitivity of the reaction rates is similar to that for spore destruction. 

 

This thesis focuses on the amylase TTI method.  

 

 

1.3  Time-temperature integrators (TTIs) 

 

A TTI system can be a biological, chemical or physical change that breaks down during 

heating in a reproducible manner. Enzymes such as amylase or peroxidase are suitable for 

TTIs because their structure breakdown is affected by both time and temperature.  Typically, 

with enzymes, breakdown involves the helical structure unwinding as cross-links between 

molecular chains are broken. Many enzyme systems can regenerate after heating, however, an 

enzyme suitable for use as a TTI must exhibit a permanent denaturation.  

 

The kinetics of the temperature-induced denaturation should match those of the death kinetics 

of the target microorganism. Specifically, the decimal reduction time (DT) and the kinetic 

factor (z) are the kinetic parameters used. The kinetic factor (z-value) is a measure of how the 

D-value changes with temperature, and is also calculated using a semi-logarithmic approach 

(Stumbo, 1965). Logarithm of the D-values is plotted against temperature, and the 

temperature change to effect a one-log change in D-value is defined as the z-value. Most 

bacterial spores show z-values close to 10°C. 

 

As described above, thermal processes are designed to reduce microbiological populations by 

large numbers of log reductions, typically between six and twelve (as shown in Equation 1.8). 
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It is unlikely that a TTI system will possess sufficient measurement sensitivity for such high 

log reductions in the measured parameter, whether it is a colour change or enzyme activity. 

Therefore, the decimal reduction time for the TTI should ideally be several times as large as 

that for the target microbial species, otherwise there will be insufficient colour or activity left 

to measure from the processed TTI. As mentioned previously, the other requirement is for the 

z-value to be close to that for the target microbial species. 

 

Table 1.1 presents examples of data for microorganism death kinetics, which highlights the 

relatively low DT values when compared with „chemical‟ systems suitable for use as TTIs 

(Tables extracted from Holdsworth, 1992). Tables 1.2, 1.3 and 1.4 illustrate the wide range of 

DT and z-values with vitamin, enzyme and pigment systems respectively. Each of these 

systems is potentially suitable for use as a TTI. 

 

Many of the chemical systems in Tables 1.2 to 1.4 could be used as a TTI system. However, if 

the TTI system is intended for estimating process values and converting these to log 

reductions of microorganisms in foods, it is essential that the z-value of TTI and 

microorganism are similar. In addition, the DT-value should be sufficiently high that changes 

in the measured property during a thermal process are within the measurement range of 

highest accuracy. This limits the choice of chemical marker, and for these reasons, the TTI 

systems used and developed in this thesis work were based on -amylases. These represent a 

significant advance in the validation methods available for thermal processing because it can 

be seen clearly that very few of the chemical systems in Tables 1.2 to 1.4 show combinations 

of D- and z-value suitable for use in estimating microorganism reductions.  
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Table 1.1:  Kinetic factors for microbial destruction by wet heat. Data was selected 

specifically for microorganisms relevant to full sterilisation processes (data from 

Holdsworth, 1992). All reference temperatures are 121.1°C.  

 

Organism Temperature 

(
o
C) 

 

D121.1 

(s) 

z 

(
o
C) 

Bacillus stearothermophilus 

(Phosphate buffer) 

 

100-140 

100-140 

100-140 

 

149 

170 

226 

 

14.3 

12.3 

11.7 

Bacillus subtilis 

(Phosphate buffer) 

 

127-144 

 

28.8 

 

9.4 

Clostridium botulinum 

(Phosphate buffer) 

(Water) 

(Pureed peas) 

(Meat and vegetables) 

(Sea food) 

(Poultry) 

(Rock lobster) 

 

140-127 

140-127 

104-127 

100-113 

100-113 

100-113 

105-115.5 

 

8.0 

3.1 

5.3 

6.6 

3.0 

3.0 

18.0 

 

9.0 

8.5 

8.3 

9.8 

7.4 

7.4 

10.8 

Clostridium thermosaccharolyticum 

(neutral buffer) 

(Aqueous) 

 

99-127 

115.5-127 

 

51 

4,080 

 

14.7 

11.5 

Clostridium nigrificans 

(baby food) 

(baby food) 

 

121-131 

121-131 

 

1,550 

3,260 

 

6.7 

9.5 

Clostridium sporogenes 

(Phosphate buffer) 

(Strained pea) 

 

100-120 

115.5-143.3 

 

15.0 

60 

 

9.1 

9.8 
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Table 1.2:  Kinetic factors for vitamin destruction (data from Holdsworth, 1992). 

Reference temperatures vary depending on the data reported.  

 

Heat Sensitive Vitamin Temperature 

(
o
C) 

 

DT 

(s) 

z 

(
o
C) 

Vitamin A (beta carotene) 

(beef liver) 

(carrot juice) 

 

103-127 

104-132 

 

D122 = 2,400 

D104 = 23,600 

 

23.0 

25.5 

Vitamin B1 (thiamin) 

(buffer) 

(carrots) 

(spinach) 

(pea puree) 

(lamb puree) 

(pork luncheon meat) 

 

109-150 

109-150 

109-150 

121.1 

109-150 

100-127 

 

D109 = 9,500 

D150 = 830 

D150 = 610 

D121.1 = 10,000 

D122 = 710 

D127 = 6,300 

 

24.0 

22.0 

22.0 

31.3 

25.0 

35.0 

Vitamin B6 (pyridoxine) 

(cauliflower) 

 

106-138 

 

D121 = 24,000 

 

43.0 

Pantothenic acid 

(beef puree pH 5.4) 

(beef puree pH 7.0) 

 

118-143 

118-143 

 

D121.1 = 138,000 

D121.1 = 135,000 

 

35.8 

19.3 

Folic Acid 

(apple juice) 

 

100-140 

 

D140 = 100,000 

 

31.0 

Vitamin C (ascorbic acid) 

(peas) 

(spinach) 

 

110-132 

70-100 

 

D121.1 = 50,000 

D100 = 25,900 

 

18.0 

74.4 

 

 



 18 

Table 1.3:  Kinetic factors for enzyme destruction (data from Holdsworth, 1992).  Much 

of these data were taken by the frozen foods industry for the purposes of estimating 

enzyme breakdown during blanching, hence the lower reference temperatures.  

 

Heat Sensitive Vitamin Temperature 

(
o
C) 

DT 

(s) 

 

z 

(
o
C) 

Peroxidase 

(horseradish) 

(potato puree) 

 

60-160 

100-140 

 

D120 = 830 

D120 = 70 

 

27.8 

35.0 

Catalase 

(spinach) 

 

60 

 

D60 = 60 

 

8.3 

Lipoxygenase 

(pea/soya) 

 

50-80 

 

D77 = 720 

 

3.4 

Pectinesterase 

(guava syrup pH 4.0) 

 

74-95 

 

D96 = 35 

 

16.5 

Polyphenol oxidase 

(potato) 

 

80-110 

 

D89 = 100 

 

7.8 
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Table 1.4:  Kinetic factors for pigment destruction by wet heat. Reference temperatures 

vary depending on the data reported. (data from Holdsworth, 1992) 

 

Heat Sensitive Pigment Temperature 

(
o
C) 

DT 

(s) 

z 

(
o
C) 

 

Green (chlorophylls) 

(green beans) 

(peas) 

 

80-148 

80-148 

 

D121.1 = 1,260 

D121.1 = 1,500 

 

38.8 

39.4 

Red 

(raspberry juice) 

(grapes) 

 

78-108 

76.7-121 

 

D108 = 7,000 

D121 = 7,600 

 

30.4 

54.7 

Browning Reactions 

(chestnut paste darkening) 

(milk, hydromethyl furfural formation) 

 

105-128 

105-160 

 

D121.1 = 141,000 

D130 = 12 

 

24.6 

26.7 

 

 

1.3.1 Previous TTI work 

 

Use of amylase TTIs as an alternative means of process validation, to either temperature or 

indirect microbial systems, has received considerable attention in recent years (such as in 

Hendrickx et al., 1992; De Cordt et al., 1994; Maesmans et al., 1994; Hendrickx et al., 1995; 

Van Loey et al., 1996; Van Loey et al., 1997a; Tucker, 1999; Tucker, 2000; Tucker et al., 

2002).  Reasons for the interest lay with the unique properties that bacterial amylases would 

appear to exhibit, most importantly that they are one of the very few chemical systems that 

can be characterised with a z-value close to that for microorganism destruction. 

 

Typically a spore-forming microorganism will exhibit z-values in the range 9-11°C, with 

vegetative cells showing slightly lower values in the range 6-8°C (CCFRA, 1992). Table 1.1 

presents examples of various spore-forming microorganisms that are important to the 

sterilised food sector. Values for microorganisms critical to pasteurised foods show similar 

ranges for spores and vegetative cells. Amylase TTIs were chosen for use as mimics for 
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destruction of microorganisms because they were reported to exhibit measured z-values in the 

range 9-10°C (Hendrickx et al., 1992; Van Loey et al., 1996).  

 

There are several advantages of using an amylase TTI to estimate process values compared 

with one of the alternative methods such as a microbiological spore techniques. For example, 

preparation of the TTIs and conducting the assays takes minutes not days, transportation from 

the laboratory to a factory requires less caution because of high decimal reduction times at 

ambient or chilled conditions, and unlike spores there are no issues with outgrowth.  

 

 

1.4  Amylase solutions for TTIs used in this thesis 

 

Two of the existing amylase TTI systems are described in this thesis; both were developed by 

Hendrickx and co-workers (Hendrickx et al., 1995; Van Loey et al., 1996 and 1997a). 

Conditions for their use were not changed for data presented in this thesis, other than to 

develop the industrial methods for applying TTIs to measuring pasteurisation values in food 

processes. These TTI systems are based on commercially available amylases from Bacillus 

amyloliquefaciens (BAA) and Bacillus licheniformis amylase (BLA), both at 10 mg/mL 

amylase in a Tris buffer solution. Kinetic data for the two TTIs were measured several times 

over the duration of the work in this thesis. 

 

Two new TTI systems are described in later chapters. A new amylase TTI has been developed 

for mild heat treatments where the objective was for the food to receive at least the equivalent 

of 2 minutes at 70°C, and this is described in Chapter 3. A novel approach for a TTI system 

suitable for surviving the time and temperature extremes of a full sterilisation process, which 

requires at least the equivalent of 3 minutes at 121.1°C, is described in Chapter 5.  

 

With several TTI systems that cover heat treatments from a few minutes at 70°C to many 

minutes at 121.1°C, a nomenclature system was used to help differentiate between the TTI 

types. The first three letters referred to the sources of amylase, for example Bacillus 

licheniformis amylase is BLA. This is followed by numbers that refer to the reference 

temperature of the microorganism that this TTI was designed to mimic, for example 90°C for 

psychrotrophic strains of C. botulinum. Hence this TTI is BLA90. Table 1.5 presents the 

range of amylase TTIs discussed within this thesis. 
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Of the TTIs listed in Table 1.5, the amylase from Bacillus licheniformis was used for two 

different pasteurisation processes. The two pasteurisation treatments appropriate to this TTI 

were for (i) acidic foods stored in ambient conditions and (ii) for low-acid foods stored chilled 

for extended periods of 10-40 days (CCFRA, 1992a). These treatments targeted different 

microorganisms but the integrated thermal effects were within the measurement range of this 

amylase. 

 

 

Table 1.5: Measurement range of amylase TTIs used to measure process values for 

pasteurisation and sterilisation processes. 

 

TTI 

Code 

TTI 

Process 

Description 

 

Organism of 

amylase 

origin 

Target process  

(minutes 

at Tref) 

D-value 

at Tref 

(minutes) 

z-value 

(°C) 

Range 

(minutes 

at Tref) 

BAA70 Cook-chill Bacillus 

amyloliquefaciens 

2 minutes  

at 70°C 

8-10 8.0-9.0 2-25 

BAA85 High acid Bacillus 

amyloliquefaciens 

5 minutes  

at 85°C 

8-10 9.0-9.5 4-30 

BLA90 REPFEDS* 

or sous-vide 

Bacillus 

licheniformis 

10 minutes  

at 90°C 

15-25 9.0-9.5 5-50 

BLA93 Acid Foods Bacillus 

licheniformis 

5 or 10 minutes  

at 93.3°C 

8-12 9.0-9.5 4-30 

PFA121 Sterilisation Pyrococcus 

furiosus 

3 minutes  

at 121.1°C 

21-24 9.0-11.0 3-40 

 

* REPFEDS are Refrigerated Processed Food of Extended Durability 
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1.6  Content of subsequent thesis chapters 

 

The following chapters describe the work required to produce a reliable amylase TTI method 

for validation of thermal processes delivered in complex heating systems.  

 

Chapter 2 provides details of how the TTI systems were manufactured for use in measuring 

thermal process values. This includes the mathematical basis used to estimate the correct size 

and shape of TTI particles where an experimental trial involved pieces of food material. Also 

included are the methods for preparing amylase solutions and for calculations of P-value, 

together with an analysis of error in the calculated P-values. 

 

Chapter 3 contains details of a new TTI referred to as BAA70. This was required to measure 

thermal processes of the order of a few minutes at 70°C. Also included are data from amylase 

assays using a colorimeter which was a portable instrument used to obtain amylase activities 

immediately after an industrial TTI test. Comparisons are made in this chapter between 

spectrophotometer and colorimeter values. Tests on different storage conditions for BAA70 

are described. 

 

Chapter 4 presents information on some of the industrial trials in which the BAA85 and 

BLA93 TTI systems were applied to measure P-values. Industrial applications of these TTI 

systems is of high importance, and to achieve this aim, an extensive testing program was 

embarked upon. All of the examples chosen were for processes in which temperature probes 

could not be used reliably. A variety of process, product and packaging types are shown in 

Chapter 4 so that the application range of these TTIs can be highlighted. All of this work was 

undertaken in one fruit processing factory. 

 

Chapter 5 contains a description of an innovative idea for developing a TTI system suitable 

for use at sterilisation temperatures where several minutes at 121.1°C are required. The idea 

was to identify a microorganism that produced a thermostable amylase which needed to be an 

order of magnitude higher than any commercially available amylases. The hope/theory was 

that there might be an organism that thrives in thermally hostile environments yet has a 

metabolic need to produce amylase. Several such organisms were identified from a literature 

search and research carried out on one, Pyrococcus furiosus, that seemed to be the most 

promising. Data presented in Chapter 5 showed that this approach had considerable merit. 



 23 

Chapter 5 is the main part of this thesis in that it contains genuinely new research that has 

immense industrial application. 

 

The final chapter (6) presents some views on what might lie ahead for TTI research projects 

in the future. In particular, the approaches for obtaining thermostable amylase for use in the 

sterilisation TTI might be best achieved by expressing the amylase-producing gene from 

Pyrococcus furiosus into a microorganism that is easy to culture, such as a yeast cell. Some 

early results are presented on this approach, which indicate considerable promise.
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CHAPTER 2: CONSTRUCTION OF TTI PARTICLES FOR 

P-VALUE MEASUREMENTS IN FOOD PROCESSES 

 

 

„Real knowledge is to know the extent of one‟s ignorance‟ 

Confucius 

 

 

This chapter gives guidance on how to prepare and use TTIs based on -amylase dissolved in 

buffer solutions. The objectives of using TTIs are to obtain data for the measurement of P-

values in real food processes. This requires the TTI solutions to be enclosed in miniature 

containers that prevent the amylase from contacting the food otherwise the first order kinetics 

could be compromised. Several methods have been explored, starting from trapping a bubble 

in a silicone compound that was later injected with amylase solution (Tucker, 1999), but the 

most successful is based on a silicone tube. The latter method is described in this chapter.  

 

Information is also given on how the dimensions of the silicone particles were estimated in 

order that the thermal and physical properties were suitable for use as mimics of actual food 

particles. This procedure utilised the analytical solutions for conduction heat transfer into 

common geometric shapes and compared these solutions with those obtained experimentally 

from heated particles. This method was developed for the canning industry by Ball (1923, 

1927) and was modified here for application to food particles. 

 

Application of a TTI particle for measurement of P-values in industrial food processes 

requires a number of properties of the TTI system: 

 

 The chosen measurement system, in this case amylase, must show kinetics of breakdown 

by heat that are similar to those of the target microbial species. For pasteurisation 

processes these range from a few minutes at 70°C to many minutes at 93.3°C. 

 

 The encapsulation system must ensure the amylase is contained securely. No leakage of 

the amylase solution can occur, either of amylase leaking out into the food or any 
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components of the food leaking into the amylase. It should be a simple task to extract an 

exact aliquot of amylase solution from the TTI particle for purposes of conducting the 

assay. This is done using a 25 L hypodermic syringe. 

 

 Physical and thermal properties of a TTI particle should be close to those of the target 

food particles. Many of the industrial processes where TTIs are used for P-value 

measurement require the TTIs to flow with the food. If the TTI particles behave 

differently to the food then there will be doubts concerning the validity of the P-values 

measured from TTIs. 

 

 All components of the amylase solutions and the materials for constructing the particles 

should be non-toxic (food compatible materials) and should not cause damage to the 

processing equipment. 

 

 TTI particles should be clearly identifiable in the food, to assist recovering of the TTIs. It 

is important that all TTIs introduced to the food are recovered; for the purposes of 

analysing the TTIs but also to avoid a TTI particle entering the food chain. 

 

This chapter will deal with the above issues, and present the solutions that were arrived at to 

make them suitable for application to industrial food processes. 

 

 

2.1  Calculation of process values with TTIs 

 

Enzymes, or more specifically amylase breakdown by heat, shows first order reaction kinetics 

for certain concentrations of amylase in pH-controlled buffer solutions (Hendrickx et al., 

1995). This is highlighted in the example in Figure 2.1; which is for an amylase from Bacillus 

amyloliquefaciens, showing a D-value of 10.1 minutes at 85°C. Analysis of residual amylase 

concentration at each heating time used spectrophotometric techniques to calculate the 

amylase activities. These tests are known as assays. 
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Figure 2.1: Example of a first order reaction curve for an amylase from 

Bacillus amyloliquefaciens, showing D-value of 10.1 minutes at 85°C. 

 

 

Process values or F-values estimated with TTIs are calculated from the initial and final 

amylase activities. Instead of using the initial and final number of surviving microorganisms, 

as in Equation 1.8, the F-value equation uses amylase activities before and after heat 

treatment. This is shown in Equation 2.1. Activity can be measured as a rate of colour 

development when amylase is reacted with a commercially available amylase reagent (such as 

that from Randox Laboratories Ltd). This is a relatively simple chemical test to perform, and 

is described in more detail in section 2.6. 

 

 
final

initial
T

A

A
DF log        2.1 

 

where, Afinal  is the final amylase activity after a specific time-temperature history, minutes
-1

 

 Ainitial is the initial amylase activity, minutes
-1

 

 DT is the amylase decimal reduction time at a fixed temperature (T), minutes 
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Equation 2.1 demonstrates how to calculate a sterilisation (F-value) or pasteurisation (P-

value) based on measurements of enzyme activity. Most amylase TTIs used for validating 

industrial processes (Tucker et al., 2002) have been for the pasteurisation regime and so P-

values are appropriate. Chapter 4, however, presents a novel approach for obtaining an 

amylase suitable for sterilisation processes, but apart from this, all other processes measured 

with TTIs are for pasteurisation. 

 

Decimal reduction time (DT value) is used with the calculation of P-value from amylase 

activity measurements (see Equation 2.1), because this equation estimates log reductions in 

activity, or in other words, the number of decimal reductions. However, if a P-value is 

calculated from temperature measurements, the z-value is used in the calculation (Bigelow et 

al., 1920). In order that an amylase TTI system can be applied to estimate microbiological log 

reductions, it is essential that the z-value for microbiological destruction and for amylase 

structure breakdown are similar. Equation 2.2 presents the lethal rate equation used to 

calculate a P-value, which integrates the time and temperature effect of a thermal process, as 

measured from a temperature probe. 

 

 dtP
z

TreftT
t

)(

0

10        2.2 

        

P-values are specific to a z-value and reference temperature, and can be written with the z-

value as a super-script and Tref as a sub-script. However, for most of the descriptions in this 

thesis the P-value is used in its generic form. In Equation 2.2, the reference temperature is 

shown as Tref, which must be the same as that used in calculating the DT-value. For simplicity, 

the sub-script for the DT-value is shown as T and not Tref. T(t) is the measured food product 

temperature that changes with time (t). Equations 2.1 and 2.2 should provide the same 

measured P-value or F-value providing that the DT-value is quoted at the reference 

temperature (Tref) and the z-value is appropriate to the amylase TTI system. A combination of 

Equations 2.1 and 2.2 results in Equation 2.3. 
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where, T(t) is the product temperature, which is a function of time, °C 

 Tref  is the reference temperature for the DT value, °C 

 t is the process time, minutes 

z, the kinetic factor, is the temperature change required to effect a ten-fold change in 

the DT value, °C 

 

 

2.2  Preparation of silicone TTI tubes 

 

The first step when constructing a TTI particle was to seal a few microlitres of amylase 

solution into a tube. Silicone tubing was found to be effective as a means of enclosing the 

amylase solutions and preventing contact with the food materials. Methods of preparing the 

silicone tubes are described together with how they can be moulded into geometries that 

represent food particles.  

 

Lengths of Altesil high strength silicone tubing (Altec, Alton, UK), of 2.0 mm bore 0.5 mm 

wall, or of 2.5 mm bore 0.5 mm wall, were cut into approximately 10 mm lengths. Figure 2.2 

illustrates examples of silicone tubes before and after they are moulded into different shaped 

particles. Two types of silicone elastomer were used; Sylgard 170 (black) and Sylgard 184 

(transparent), both purchased from VWR International Ltd. Sylgard 170 had the advantage 

that it cured rapidly at 40°C and the black ended TTI tubes showed up easily in foods. Its 

disadvantage when used to simulate particles in flowing food experiments was its high 

density of 1,400 kg.m
-3

 (Dow Corning, 1998) relative to water-based foods. This compared 

with a density of 1,050 kg.m
-3

 for Sylgard 184 (Dow Corning, 1986).  

 

To create a 2-3 mm plugged end, one end of the 10 mm tube was dipped into uncured silicone 

elastomer. Plugged tubes were then heated in a convection oven at 70°C for 30-minutes to 

cure the first end plug. This treatment time was not critical because there was little damage 

that could be done to either the tube or plug before it was filled with amylase solution. 

 

Once the first end plug was cured, a hypodermic syringe was used to inject the tubes with at 

least 20 L of an amylase solution.  The open end of a tube was then sealed by squeezing the 

tube until the amylase solution was forced just proud of the open tube end, and it was then 

dipped in liquid Sylgard (at room temperature) so, when the pressure was released, the 



 29 

Sylgard was drawn into the tube.  This ensured that good contact was made between the 

amylase and Sylgard. Any air bubbles left above the amylase solution could expand and stress 

the TTI tubes on heating.  Filled TTI tubes were heated in a convection oven at 40°C for 30-

minutes to cure the second end plug.  It was important not to heat above 40°C or to extend the 

heating times otherwise there was a danger of both partial thermal inactivation of the amylase, 

or of drying out the TTI tube. 

 

When sealed, the TTI tubes were stable and could be stored immersed in buffer solutions in 

the fridge for up to 21 days or in the freezer for up to 6 months, possibly longer. Reduction in 

initial amylase activity dictated the length of storage time. Typically, it was found that a loss 

in initial activity of up to 50% could be tolerated without affecting the calculated P-value. 

Chapter 3 presents further information on storage conditions for the TTIs used to measure 

mild pasteurisation treatments; however it was considered good practice to apply these 

storage conditions to all of the TTI types. 

 

 

2.3  Preparation of TTI particles 

 

For some applications with food particles, it was necessary to make the TTI tubes into a 

similar shape and size to the food particles. This ensured that the measured P-value from the 

TTI particle was similar to that at the core of the food particle. These are referred to as TTI 

particles. Making the TTI particles required the use of moulds, which were designed for 

different particle dimensions according to the procedures below.   

 

TTI tubes were first prepared as described previously. These were placed into the moulds so 

that there was one TTI tube in the centre of each particle. Figure 2.2 shows an example of a 

mould used for making cylindrical particles of diameter 13 mm and length 25 mm. Silicone 

base and curing agent were mixed to a ratio of 10:1 (for transparent Sylgard 184) and poured 

into the moulds. Sylgard 184 rather than Sylgard 170 (black) was used for making TTI 

particles because it was transparent and this gave the advantage that the TTI tube was visible 

inside the particle. It was difficult to extract amylase solution from an opaque TTI particle. 

 

To cure the TTI particles, the moulds were heated in a 40°C oven for 30 minutes or until the 

Sylgard has started its curing process (Dow Corning data sheet, 1986).  These were left at 
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room temperature for a further 2-3 hours until the curing reactions had progressed to the stage 

whereby the surface tackiness was gone. Particles could then be removed from the mould once 

fully cured and were kept chilled under water or in buffer solution until ready for use. Larger 

TTI particles sometimes required an additional step in which the curing time was extended 

with an overnight period at room temperature.  

 

 

 

Figure 2.2: Example of TTI particle moulds for making cylindrical TTI particles of 

diameter 13 mm and length 25 mm.  

 

 

Positioning of a TTI tube inside of a TTI particle was carefully done so that the amylase 

solution was at the particle centre. For the cylindrical particles shown in Figure 2.2 this 

required the TTI tube to be placed diagonally. Figure 2.3 shows a TTI tube inside of a 

spherical TTI particle. Recover of the amylase solution required the particle to be cut so that a 

hypodermic syringe could be inserted into the now open tube. 
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Figure 2.3: Cross sectional diagram of a spherical TTI particle showing the measuring 

solution at the particle centre. 

 

 

2.4 Calculating dimensions of TTI particles 

 

Food particles are solid bodies that heat by conduction in conventional processes. They are 

often surrounded by a liquid that heats by convection, with the rate of heat transfer from the 

liquid to solid dictated by the fluid-particle heat transfer coefficient (McKenna and Tucker, 

1991). The relative importance of thermal conduction and of surface heat transfer can be 

estimated by the particle Biot number (Bi). This is a dimensionless group that compares the 

heat transfer rates resulting from external heat transfer and internal heat conduction, and is 

defined by Equation 2.4. 

 

 
k

xh
Bi

fp.
        2.4 

 

where, k is the thermal conductivity of particle, W.m
-1

.K
-1 

hfp is the fluid to particle heat transfer coefficient, W.m
-2

.K
-1

 

x is the characteristic particle dimension, m 

 

Amylase solution 

Sylgard 170 ends 

Sylgard 184 particle 
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For example, if the food particle is a sphere, the characteristic dimension is the diameter, 

whereas for other particle types, such as cylinders or rectangular particles, it is the smallest 

dimension. Biot numbers less than 0.1 indicate that the fluid to particle heat transfer 

coefficient is the controlling process, whereas, if the calculated Biot number is greater than 10 

thermal conduction is the controlling process.  Biot numbers between 0.1 and 10 indicate that 

heat transfer is governed by both surface heat transfer and internal conduction (Krieth and 

Bohn, 1986).  Many continuous food processes operate within this mixed region (McKenna 

and Tucker, 1991; Mankad, 1995). 

 

Constructing a TTI particle that heats and cools at the same rates as a food particle requires 

two variables to be matched: 

 

 Thermal diffusivity ( ) – a measure of conduction within the solid. This is the critical 

parameter to match closely. 

 

 Heat transfer coefficient from liquid to solid surface (hfp) – a measure of the effectiveness 

of the liquid in transferring its heat to the surface of the solid. If the TTI particle has 

similar physical properties to those of the food particle then it will flow in a similar 

manner, and the heat transfer coefficient will be similar. 

 

Thermal diffusivity is the variable that „determines the rate at which a non-uniform 

temperature distribution approaches equilibrium conditions‟ (Wong, 1977). This is the 

situation that occurs in a solid food particle as it is immersed in a liquid of different 

temperature. Equation 2.5 presents the definition of thermal diffusivity, , (m
2
.s

-1
) in terms of 

thermal conductivity, density and specific heat capacity. 

 

pC

k

.
        2.5 

 

where, k is the thermal conductivity, W.m
-1

.K
-1 

 is the density, kg.m
-3

 

Cp is the specific heat capacity, J.kg
-1

.K
-1
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Sylgard 184 elastomer has a thermal diffusivity of 1.02 x 10
-7 

m
2
.s

-1 
(Dow Corning, 1986). 

This is almost 25% lower than that of a typical high water content food particle which ranges 

from 1.25 to 1.50 x 10
-7 

m
2
.s

-1 
 (Tucker and McKenna, 1991; Mankad, 1999).  This means that 

if the silicone particles were of the same size as the high water content food particles they 

would heat up and cool down more slowly. The result will be lower temperatures in the TTI 

particles at the end of heating, which will give lower P-values than with the food particles. 

However, this will be compensated to a small extent by the slower rate of cooling in which 

the TTI particles will retain their heat for longer. Calculated P-values from TTI particles will 

be lower for heating but higher for cooling; with the net result almost certainly showing lower 

P-values.  

 

It was therefore important to match the size and shape of the TTI particles to ensure the same 

P-values as the food pieces. In order to match the thermal characteristics of the food, the 

heating factor (fh) of the particles was the term used to calculate „equivalent thermal 

pathways‟. Heating factors originated in the canning industry (Ball, 1923 and 1927) as a 

method for calculating process times for canned foods. By definition, it is the time taken for 

the difference between environment and product temperature to reduce by 90%. Heating 

factors are important terms in thermal process data analysis because they provide information 

on the rate of heating for a container of food. 

 

The heating factor analysis also works for food particles and gives a method for comparing 

heating rates of different size and shape food pieces. Estimating the correct size for a TTI 

particle was achieved using an equation that related the heating factor (fh) to the food thermal 

diffusivity ( ) and its dimensions.    

 

2.4.1 Mathematical equations for heating factors, used for estimating TTI particle size 

 

The derivation given here is for one-dimensional heat transfer to an infinite slab geometry. It 

illustrates how the equations relating heating factor, thermal diffusivity and dimensional terms 

are obtained. The infinite slab was chosen because it is mathematically the most 

straightforward and illustrates the procedure. Relationships for more complex geometries 

requiring two and three dimensions can be calculated using a similar procedure. 
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Several assumptions are made when analytically solving equations for conduction heat transfer 

within solid bodies (Adams and Rogers, 1973). These are: 

 

 Perfect conduction-heating solids. TTI particles and food particles will heat by conduction 

because they are solids. There will be a small degree of convection within the unbound 

liquids in a food particle but this is negligible compared to conduction. 

 

 Instantaneous immersion into an environment at a constant temperature. This is similar to 

immersing a food particle into a water bath or a container of food into a raining water 

tunnel. 

 

 Infinite surface heat transfer coefficient. This assumes the heating environment is well 

stirred if it is a water bath or there is excellent contact between the water droplets and the 

container surface if it is a raining water tunnel. 

 

The bases of the mathematical comparison are the equations (i) for the analytical solutions to 

conduction heat transfer and (ii) from a semi-logarithmic plot of time-temperature data. The 

first step is to simplify the analytical solution so that the terms can be compared with the 

equation from the semi-logarithmic plot. 

 

Fourier (1822) derived partial differential equations for a variety of geometrical shapes to 

describe how quickly the centre temperature responded to a step-change in external 

temperature.  Mathematical solutions to these equations are readily available in textbooks (e.g. 

Adams and Rogers, 1973). Here, only the relevant equation for the infinite slab is used in 

which heat penetration occurs in one dimension only, in this case through the height 

dimension, with the length and width being much greater and thus irrelevant to heat transfer. 

The terminology in Equation 2.6 was adapted for thermal processing to make comparisons 

with equations from the semi-logarithmic plot of time-temperature data (Ball and Olson, 

1957).  

 

For the infinite slab, Equation 2.6 relating temperatures and time was extracted from Adams 

and Rogers (1973). 
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2/L)t(n-

1n

e x/L).sin(n 
n

14

IT - RT

T - RT
    2.6 

 

where,  RT is the retort or constant environment temperature, °C 

T is the particle temperature, °C 

IT is the initial particle temperature, °C 

n is the number of terms for series convergence 

L is the infinite slab thickness, m 

t is the time of heating, s 

x is the distance from the slab surface, m 

 is the thermal diffusivity, m
2
.s

-1
 

 

This equation can be expanded for n from 1 to  to give a series expression (see Equation 

2.7). The exponential terms simplify because sin  = 0, sin /2 = 1 and sin 3 /2 = -1. 
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Equation 2.7 represents the equation from the first part of the analysis; that is the analytical 

solution. Only the first three terms are given because it will be shown later that the magnitude 

of the further terms is insignificant at times of interest. 

 

The second part of the analysis is the derivation of the equation for the semi-logarithmic plot 

shown in Figure 2.4. This method of analysis of time-temperature data for canned foods is 

done by plotting temperature data on a logarithmic axis, as degrees below the processing or 

retort temperature (Ball and Olson, 1957; Stumbo, 1965). Figure 2.4 shows an example of 

such data for a conduction heating meat pack in which the retort temperature was 250°F 

(121.1°C).  
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Figure 2.4: Logarithmic plot of time-temperature data for a meat product to illustrate 

the asymptote to the heating temperature (taken from Stumbo, 1965).  

 

 

The equation for the logarithmic plot (Figure 2.4) is that for the asymptote of the line as the 

container centre temperature approaches the constant heating temperature. This can be 

defined mathematically as in Equation 2.8.  

 

h2.303t/f-e.j
IT - RT

T - RT
       2.8 
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where,  j is the heating lag factor, defined as a measure of the thermal lag before the can 

temperature responds to the changing environment temperature (IFTPS, 1997), 

dimensionless 

fh is the heating factor, defined as the temperature response parameter derived from the 

logarithmic heating curve (IFTPS, 1997), minutes 

 

Equations 2.7 and 2.8 show distinct similarities, and when these equations are compared, the 

pre-exponential and exponential terms are as follows: 

 

4/j         2.9 
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Therefore, the heating lag factor (j) for an infinite slab equates to a single numeric value, 

which is 4/  or 1.273.  

 

Further simplification of Equation 2.10 is required to obtain the equation for the heating 

factor. The assumption is made that the series for the analytical solution (right side of 

Equation 2.10) converges with just the first term.  For a conduction-heating product, as is the 

case for a food particle, this is a valid assumption and can be demonstrated with a simple set 

of data.   

 

Table 2.1 shows values calculated from the exponential series in Equation 2.10; using a slab 

thickness (L) of 2 cm and a thermal diffusivity ( ) of 1.6 x 10
-7

 m
2
s

-1
 (a value appropriate for 

high water content foods; McKenna and Tucker, 1991). Only the n=1 term in Equation 2.10 is 

of significance for times relevant to the heating of food products. The n=3 and all higher order 

exponential terms rapidly diminish to a level in which these terms can be ignored for heating 

times greater than a few seconds. For example for the n=3 term, after 120 seconds of heating, 

the exponential term is 1.4 x 10
-6

. Higher order terms are even smaller in value. Therefore, the 

data in Table 2.1 justifies the assumption that only the first term in Equation 2.10 is required 

for heating times greater than a few seconds. 
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Table 2.1: Terms for the n=1 and n=3 exponential functions in Equation 2.10. Thermal 

diffusivity was 1.6 x 10
-7

 m
2
s

-1
 and slab thickness was 2 cm.   

 

Time, t (seconds) 1st term (n=1) 3rd term (n=3) 

0 1.000 1.000 

120 0.622 1.4 x 10
-6

 

240 0.388 1.0 x 10
-11

 

360 0.241 9.0 x 10
-17

 

 

Eliminating the higher order exponents in Equation 2.10 to leave only the n=1 term results in 

Equation 2.11. This can be further simplified to Equation 2.12 by equating the exponents, 

substituting for  and re-arranging: 

 

 
2

h /L)t(--2.303t/f ee        2.11 

 

2

h
0.233L

f         2.12 

 

Equation 2.12 is significant because it relates the thermal diffusivity of the food directly to the 

heating factor and a dimension term.  Ball and Olson (1957) calculated theoretical values for 

the heating and lag factors for a variety of geometrical shapes using solutions to the respective 

analytical solutions. These were more complex than the solution for the infinite slab presented 

here. Table 2.2 presents the solutions for common geometrical shapes.  

 

Table 2.2: Theoretical lag factors and heating factors for common geometrical shapes 

(extracted from Ball and Olson, 1957). a, b and c are half dimensions. 

 

Geometry Lag factor at centre Heating factor equation 

1D infinite slab 1.273 .fh = 0.933a
2
 

1D sphere 2.000 .fh = 0.233a
2
 

2D cylinder 2.040 .fh = 0.398/(1/a
2
 + 0.427/b

2
) 

3D brick 2.064 .fh = 0.933/(1/a
2
 + 1/b

2
 + 1/c

2
) 
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Heating factor equations for the spherical (1D), cylindrical (2D) and rectangular (3D) 

geometries were used for calculating TTI particle sizes so they matched the thermal pathway 

for food pieces (by matching the fh value). Most food particles can be approximated to one of 

these shapes. 

 

For example, fruit particles approximated by cylinders of equal height and diameter (25 mm) 

can be represented by silicone TTI cylinders of 20.6 mm height and diameter. This calculation 

assumes that the thermal diffusivity for fruit is 1.5 x 10
-7

 m
2
s

-1
 and for the silicone it is 1.02 x 

10
-7

 m
2
s

-1
 (McKenna and Tucker, 1991). Equation 2.10 is used to first calculate the heating 

factor (fh), which is 290 seconds for the example of the 25 mm fruit particle. Note that for a 

cylinder of equal height and diameter (a = b) Equation 2.10 simplifies to Equation 2.11. The 

silicone thermal diffusivity value of 1.02 x 10
-7

 m
2
s

-1
 is used with the heating factor (fh) of 

290 seconds to calculate the cylinder dimension; in this case it is the radius (a).  

 

22

427.01

398.0
.

ba

fh        2.10 

 

 2279.0. afh        2.11 

 

This calculation procedure was used to estimate TTI particle dimensions based on the most 

appropriate food particle shape. The size and shape of TTI and food particles should be 

similar so that the heat transfer conditions experienced by both are also similar. If a silicone 

TTI particle is constructed with significantly different dimensions to a food particle then it is 

likely that the heat transfer coefficient between fluid and particle surface will be different. 

Amylase TTI data measured with such particles will thus not represent the process achieved at 

the core of the food particles. 

 

 

2.5  Preparation of amylase solutions for use in TTI particles 

 

Two existing amylase solutions were used for calculating thermal process values using the 

types of TTI particles described above. These solutions were first reported by Hendrickx et al. 

(1995), and their preparation is described as follows.
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2.5.1  Bacillus amyloliquefaciens α-amylase at 85°C (BAA85) 

 

This TTI was used for high acid products in the pH range 3.7 to 4.2 where the target was to 

exceed 5 minutes at 85°C (CCFRA, 1992a). It was referred to as BAA85 and consisted of 10 

mg/mL BAA amylase in 0.05 M Tris buffer (pH 8.6 at 25°C). To prepare the solution, 20 mg 

-amylase powder from Bacillus amyloliquefaciens (BAA) source (EC 3.2.1.1 Type II-A, 

Sigma A-6380) was dissolved in 2 mL of 0.05M Tris buffer (pH 8.6 at 25°C). 

 

2.5.2  Bacillus licheniformis α-amylase at 90°C (BLA90) or 93.3°C (BLA93) 

 

This TTI was used for acid products (BLA93) with pH between 4.0 and 4.4 where the target 

was to exceed 5 or 10 minutes at 93.3°C or for sous-vide products (BLA90) where the target 

was to exceed 10 minutes at 90°C (CCFRA, 1992b). It consisted of 10 mg/mL BLA amylase 

in 0.05 M Tris buffer (pH 8.6 at 25°C). To prepare the solution, 20 mg of  -amylase solution 

from Bacillus licheniformis (BLA) source (EC 3.2.1.1, Sigma A-4551) was dissolved in 2 mL 

of 0.05 M Tris buffer (pH 8.6 at 25°C). 

 

 

2.6  Procedures for conducting the amylase assays 

 

Stock solutions for the two types of amylase TTIs were prepared as above. Microlitre 

quantities (20-30 L) from these solutions were used directly within the TTI tubes, made 

according to the procedures given earlier in this chapter, section 2.2.  

 

Tris buffer was used with both BLA90/BLA93 and BAA85 TTIs, and was prepared as 

follows (Adams, 1996; Van Loey et al., 1997a): 

 

 Weigh 0.6057 g Trizma base (Sigma T-8524) (tris hydroxymethyl aminomethane) 

 Add 100 mL deionised water  

 Adjust the temperature to 25°C using a water bath 

 Adjust pH to 8.5-8.6 using concentrated hydrochloric acid (Sigma H-7020), under a fume 

hood and using a Pasteur pipette. 
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Amylase assays were conducted using Randox Amylase ethylidene blocked-pNPG7 kit 

(Randox Laboratories Ltd). This was used for all of the amylase assays with the exception of 

the sterilisation TTI. Randox provide a kit containing an amylase substrate and a buffer 

solution. These kits are supplied in quantities for 5 assays or 20 assays. Preparation 

instructions were according to the manufacturer‟s instructions, as follows: 

 

 Allow the kit reagents to equilibrate to room temperature before opening.  

 Reconstitute the contents of one vial of Substrate 2 with the 20 mL of Buffer 1 from the 

kit.   

 Store the reconstituted substrate solution at 2-8°C for a maximum of 2 days otherwise the 

solutions could break down and give false assay readings. 

 Do not use if the solution appears yellow in colour and the absorbance at 405nm exceeds 

0.7 on a spectrophotometer. 

 

The amylase assay procedures for BAA85 and BLA90/BLA93 were the same. These involved 

the following steps: 

 

 Pipette 1 mL of the diluted amylase reagent solution into a cuvette. 

 Dilute 10 L of amylase solution with 290 L of Tris buffer solution. 

 Add 20 L of the diluted amylase/Tris solution to the cuvette containing the 1 mL of 

reagent solution and mix by inversion. 

 Place the cuvette immediately into the spectrophotometer chamber and start logging 

absorbance results. The spectrophotometer should be set at 405nm. 

 

The amylase assay involved a reaction between the amylase solution and the starch-rich 

substrate, with maltose being released to create a yellow coloration of the solution. 

Measurement of the rate at which the yellow colour forms constituted the assay, which can be 

expressed as an activity. The optimum temperature for obtaining the maximum reaction rate 

was at 30°C (Randox). A temperature-controlled cavity at 30°C was connected to the 

spectrophotometer and used to pre-warm the reagent to this temperature before the amylase 

solution was added.  
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The readings from the spectrophotometer were taken over a 1-5 minute period when the 

maltose was being released. This time period varied depending on whether the amylase 

solution was an unheated control or a heated sample. Highly active solutions, as with 

unheated control samples, showed this fastest gradient soon after starting the assay, whereas a 

sample with low activity required several minutes to reach a constant gradient. Thus, the 

region of highest gradient varied depending on the quantity of residual amylase activity.  

 

Amylase activities were calculated from the gradient that represented the fastest reaction rate 

of the absorbance readings with time. Figure 2.5 illustrates a reaction rate curve for a control 

(unheated) amylase sample of BLA90 in which the initial rate is 0.024 s
-1

.  
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Figure 2.5: Sigmoidal reaction rate curve from a BLA90 amylase assay. 

Reaction rate of 0.024 s
-1

 is calculated from the highest value of the gradient. 

 

 

2.7  Measurement and calculation of amylase D-values 

 

Amylase powder was purchased from Sigma in 1 g pots, which was a large quantity sufficient 

to make many thousands of TTI tubes. Kinetic parameters for each new amylase pot were 
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determined in detail using isothermal experiments with the amylase solutions enclosed in 

glass capillary tubes and heated in a well-stirred water bath (Lambourne and Tucker, 2001). 

Once a pot of amylase was characterised in terms of its D- and z-values it was not necessary 

to re-measure these values each time a sample was taken from the pot (Tucker, 1999c). 

 

Subsequent sub-samples taken from the 1 g of amylase powder required a calibration test 

conducted at the reference temperature prior to each individual TTI trial. For example, if the 

D-value of BAA85 was measured as 7 minutes at 85°C, the calibration test involved heating 3 

replicate BAA85 tubes at 85°C for the equivalent time to the D-value, which in this example 

was 7 minutes. Minor differences in measured D-values of the order of 5% were found from 

batch to batch (see data given in Chapter 4 for BAA85 and BLA90 solutions). These were 

thought to be caused by differences in amylase concentration, buffer consistency and variation 

in extracted volumes of amylase from the TTI tubes. This is discussed later in this chapter. 

 

For the purposes of determining D-values at a heating temperature, Equation 1.6 was re-

written using X0 and X as the initial and final amylase activities respectively (see Equation 

2.12). Equation 2.12 was re-arranged into Equation 2.13 so that data from more than one 

heating temperature could be plotted on one graph. 
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An average initial activity (X0) was calculated from the TTI tubes reserved for unheated 

controls. The gradient of a graph of log X/X0 (rate of the heated sample divided by the rate of 

the unheated sample) against time was used to determine the DT-value at each of the heating 

temperatures.  A graph of the log DT-value against temperature was used to determine the z-

value, which is a measure of how sensitive the DT-value is to temperature change. 

 

Example kinetic data presented here illustrates two sets of heat stability data measured from 

BAA and BLA powder. For the BAA85, a decimal reduction time (D-value) of 6.8 minutes at 

85°C was calculated (see Figure 2.6), whilst for the BAA90, the D-value was 8.8 minutes at 
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93°C (see Figure 2.7). The kinetic factors (z-values) were 9.4 C  for the BAA85 and 9.1 C  

for the BAA90 (see Figure 2.8), both values being close to those for the target microbial 

species of 9-10 C  (CCFRA, 1992a and 1992b). This closeness in z-value is essential, as 

significant errors in the calculated process values can otherwise be introduced (Hendrickx et 

al., 1995; Van Loey et al., 1996). All kinetic parameters were determined by linear regression 

analysis from the isothermal experiments.  

 

Knowledge of the D-value was critical for the amylase TTI systems because this was the key 

variable in the calculation step for P-value estimation (see Equation 2.3). Obtaining the 

highest accuracy in measuring D-values required considerable care because of the dilution 

steps outlined above. To minimise changes in D-value between sub-samples of amylase 

solutions taken from the same 1 g pot, the amylase solutions are prepared in sufficient 

quantity for use over many months, or years. This relies on frozen storage of the solutions in 1 

mL vials that contain sufficient volume to prepare 25-40 TTIs for a typical industrial TTI trial 

(see Chapter 4). At the time of writing this thesis, we have a stock of BAA85 solution that is 

over 24-months old, and retains its heat stability properties each time a D-value calibration is 

carried out at 85°C. 

 

Frozen storage of the amylase solutions in 1 mL vials was proven to cause minimal damage to 

the amylase heat stability properties; this is demonstrated in Chapter 3 for a new amylase TTI 

system. Once the amylase solutions were thawed ready for use, a check of the D-value at the 

TTI reference temperature was carried out to confirm that the D-value had not changed. This 

test required heating small volumes of the amylase solution at the reference temperature for a 

time equivalent exactly to its D-value. One log reduction in amylase activity should result 

from this heating. 
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Figure 2.6: Heating time versus logarithm of amylase activity ratio (X/X0), for BAA85 at 

heating temperatures of 76, 79, 82 and 85 °C; resulting in a D85 value of 6.8 minutes. 
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Figure 2.7: Heating time versus logarithm of amylase activity ratio (X/X0), for BLA90 at 

heating temperatures of 88, 90, 93 and 95 °C; resulting in a D93 value of 8.8 minutes. 
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Figure 2.8: Logarithm of the DT values against temperature: 

BAA85 with z = 9.4  0.3°C and BLA90 with z = 9.1  0.3°C. 

 

 

2.7.1  Adjustment of D-values for offset in calibration bath temperature 

 

The D value is calculated from Equation 2.14. 

  

rateD /1         2.14 

 

where, rate is the maximum gradient calculated from a graph similar to that in Figure 2.5, 

minutes
-1

 

 

Adjustment of the D-value was sometimes required because the test (calibration) temperature 

could differ slightly from the bath setpoint temperature. This was likely to be caused by a 

temperature offset with the bath temperature control probe.  
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A further calculation was required to convert the D-value determined from the data at the 

water bath test temperature (TestTemp) to a value at the bath or reference temperature (Tref). 

This conversion is given by Equation 2.15. 

 

z

TrefTestTemp

TestTempTref DD 10)()(                         2.15 

 

A D-value calculated from this calibration test should be close to values measured for other 

sub-samples taken from the same 1 g pot of amylase powder. Small differences up to 15% 

were measured, and were thought to be caused by variation in the following factors: 

 

 weighed quantity of amylase powder and the proportion of amylase within the weighed 

milligram sample (there are high levels of salts in the commercial amylases),  

 concentration of buffer components such as precise pH levels, 

 concentration of Randox solutions (these are prepared by dissolving the substrate powder 

in buffer solution),  

 microlitre volumes of amylase solution extracted from TTI tubes (typical extraction 

volumes are 10 L; a small air bubble within the syringe needle can account for 5% of the 

volume). 

 

Repetition of the D-value test was carried out on the rare occasions that D-value differences 

were found to be greater than 15%. 

 

 

2.8  Measurement and accuracy of P-values using TTI tubes 

 

During development of the TTI particle methods, a series of trials were conducted to assess 

the accuracy of P-values measured using amylase encapsulated into silicone cubes. This was 

necessary to demonstrate that the amylase encapsulation method was of sufficient accuracy to 

be used for measuring thermal process P-values. The tests used 10 mm silicone cubes with 

30-40 L of the BAA85 solution injected into an air bubble carefully set into position at the 

cube centres (at this early stage the encapsulation method used trapped air bubbles in silicone 

and not silicone tubing; Tucker, 1999c).  
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All of the tests were conducted in a vigorously boiling water bath for 3 minutes. Temperature 

data for the bath and at the centre of four silicone particles were recorded at 15 second 

intervals using a Grant Squirrel logger (Grant Instruments, Cambridge). On removal from the 

bath, the cubes were immersed in cold water to quench the amylase degradation reaction. 

Figure 2.9 shows the time-temperature data to the end of the boiling water bath for the four 

silicone cubes containing a thin-wire thermocouple at the centres. 

 

Kinetic data for this BAA85 batch of amylase was represented by a z-value of 9.7  0.3°C 

over the range 74.0 to 83.0°C, with a D80.7 of 18.7 minutes. These measurements were made 

using glass capillary tubes in a glycerol bath. The DT value was quoted at 80.7°C because this 

was the temperature of the glycerol bath at a set point of 80.0°C when it was checked with a 

NAMAS calibrated thermometer accurate to within 1°C. Conversion of D80.7 to D85 used 

Equation 2.15. 
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Figure 2.9: Time-temperature data to the end of the boiling water bath measured in four 

10 mm silicone cubes each containing a thin-wire thermocouple at the centre. 
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TTI P-values from the same test were measured using 43 silicone cubes injected with BAA85. 

Ten cubes were retained as unheated controls, from which the initial amylase activity was 

determined. Mean, maximum and minimum values were compared with those from 0.2 mm 

type K thermocouple measurements at the centres of four cubes. Only four cubes contained 

probes at their centres because probe P-values were expected to be consistent.  

 

P-values presented in Table 2.3 were calculated from the final amylase activities for 35 of the 

43 TTI particles. It was found that 8 of the particles contained insufficient amylase activity to 

measure with sufficient accuracy. It was possible to conclude from a low amylase activity that 

a TTI particle had received a process equivalent to at least three log reductions in the D85-

value. This was the limit of measurement. 

 

 

Table 2.3: P-values measured from 10 mm silicone cubes heated in a boiling water bath 

for 3 minutes; 35 BAA85 TTIs and 4 x thermocouples. z-value for BAA85 was 9.7°C. 

 

 Mean P-value 

(minutes) 

Highest P-value 

(minutes) 

Lowest P-value 

(minutes) 

BAA85 TTIs 15.7 22.8 11.0 

Type K Thermocouples  17.7 20.9 15.3 

 

 

A three log reduction in amylase activity was the measurement limit with a spectrophotometer 

reading to 3 d.p. Typical initial amylase activity for the BAA85 TTI was around 1.000 

units/minute, therefore 3 log reductions in activity reduced this to 0.001 units/minute, which 

was the limit of resolution. High P-values calculated from amylase activities of  0.002 

units/minute were on the limit of the spectrophotometer measuring accuracy. Correlation 

coefficients for the calculated gradients at  0.002 units/minute were below 0.91 whereas for 

values above 0.004 units/minute they were above 0.98.  

 

Replicate measurements of activity were made from the buffer-diluted amylase solutions 

extracted from single TTIs. These were found to be within 2.5% for activities above 0.004 

units/minute. 



 50 

 

The mean TTI P-value was slightly less than that calculated from the thermocouple 

measurements; 15.7 minutes compared with 17.7 minutes. Equation 2.16 shows the 

calculation procedure for P-value from thermocouple measurements. Conduction of heat 

along the thermocouple wires during heating were the likely error source that could result in 

P-values higher than those measured with the TTIs. Figure 2.10 shows the mean TTI P-value 

at 15.7 minutes, with the 95% CI between 14.8 and 16.5 minutes.  

 

t

.

T(t)

dtP
0

79

85

10       2.16 

 

where,  P is the pasteurisation or P-value, minutes 

T(t) is the product temperature, which is a function of time, °C 

 85 is the reference temperature for the DT value, °C 

 t is the process time, minutes 

9.7 is the z-value or kinetic factor, °C 

 

Obtaining an exact match of P-values between TTIs and thermocouples was experimentally 

difficult because of the uncertainty with temperature measurements in particles of small size. 

This is one justification for using TTIs. Errors with wire-based systems can arise due to heat 

conduction, capillary action of the hot water along the thermocouple hole, and in the precise 

location of the measuring junction at the centre. Type K thermocouples were used in these 

trials (chrome - alumel) because they were less prone to thermal conduction than the more 

conventional type T (copper - constantan). However, in a 10 mm cube, the thermocouple 

junction is only 5 mm from the environment temperature, and it is certain that some heat 

conduction must occur. 

 

Conclusions from this 10 mm cube trial were that the TTIs provided P-value results similar to 

those from thermocouples, and were therefore a measurement method with suitable accuracy 

for industrial process work. 
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Figure 2.10: P-value distribution for the 35 BAA85 TTI particles immersed in a boiling 

water bath. Data was not normally distributed because of the influence of high P-values. 

 

 

These P-value data from the 35 BAA85 TTIs presented in Figure 2.10 were prepared using 

one of the standard outputs from the Minitab statistical package. Chapter 4 presents many 

more similar figures of TTI data and so an explanation of the figures is first given here; and is 

not repeated in Chapter 4. Information on the statistical parameters that describe the set of P-

value data are given in the table of numbers to the right of the three plots. Not all of this 

information is used in analysing the data from TTI trials reported here but it is convenient to 

present the graphs in the format prepared by Minitab. In each figure, there are three plots 

presented: 

 

 A frequency distribution of P-values on the abscissa against frequency of occurrence on 

the ordinate axis. A line representing a normal distribution of the data is included. 

 A line plot showing the 1
st
 to 3

rd
 quartile ranges as shaded boxes with the mean P-value 

as a single vertical line. The range between the highest and lowest P-values is shown by 
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the horizontal lines either side of the shaded boxes. Outliers, if present, are shown with an 

asterisk. 

 95% confidence intervals for the mean and median P-values. 

 

2.8.1 Discussion on TTI accuracy 

 

Calculation of error in a measurement system requires estimates to be made for the likely 

error in each of the component measurements. For example, if a temperature sensor is quoted 

as 0.5°C at the reference or test temperature, this can be converted to a % error in terms of 

pasteurisation or sterilisation units. The basis for this calculation is given in Equation 2.17 for 

a sterilisation value (F0) and in Equation 2.18 for a pasteurisation value (P). 
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)()(
100%
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00
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errorF      2.17 
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Perror      2.18 

 

where,  F0 is the sterilisation value specifically for destruction of C. bot. spores, minutes 

 P is the pasteurisation value, minutes 

T is the test temperature, °C 

  is the temperature offset from the correct test temperature, °C 

 

Equations 2.17 and 2.18 can be modified to a general form given in Equation 2.19 by 

substituting Equation 2.2 for each F0 or P term. Equation 2.19 takes the same form whether 

the % error is for F0 or P-value.  

 

zTT

zTTzTT
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refref

Perror
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10

1010
100%     2.19 

 

where,  T is the food temperature, °C 

 Tref is the reference temperature for microorganism destruction or for amylase 

breakdown by heat, °C 
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 z is the kinetic factor for microorganism destruction or for amylase breakdown by 

heat, °C 

 

Figure 2.11 shows how the % error increases for temperature offsets between 0 to 1.0°C from 

the reference temperature of 85°C, for a BAA85 example with z–value of 9.4°C.  Typical 

errors with temperature sensors such as thermocouples can be 0.2-0.4°C, which results in P-

value errors between 5.0 and 10.4%. 

 

Equation 2.19 appears to contain just one variable, the measured food temperature (T), with 

reference temperature (Tref) and z-value being fixed for a microorganism or TTI system. 

Hence, the standard methods to estimate errors based on  errors in the temperature 

measurement provide low % errors for P-values calculated from temperature probes. This 

assumes there are no error in the values of Tref or z used in Equation 2.19. 
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Figure 2.11: Error increase for P-values measured with temperature probes, for 

temperature offsets 0 to 1.0°C. BAA85 z-value was 9.4°C. 
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P-values calculated from TTI activity readings are more complex because they involve an 

amylase activity measurement before and after the time-temperature process. Equation 2.3 

(repeated here as 2.20) shows the calculation of a P-value based on TTI measurements. Figure 

2.12 illustrates how the calculated P-value maximum and P-value minimum can change 

depending on the absolute value of amylase activity, specifically the final activity after a heat 

treatment. Estimated error in activity measurement was taken as 10% on both initial and 

final activity measurements. These estimates are realistic and based on experiences from 

spectrophotometer measurements. Initial activity was fixed at 1.000 units/minute for the error 

calculation. Data for Figure 2.12 was calculated using typical BAA85 data; that is a D85-value 

of 8 minutes and an initial amylase activity of 1.000 minutes
-1

 (as shown in Equation 2.21). 

 

final

initial
T

A

A
DP log        2.20 

 

finalA
P

000.1
log0.8        2.21 

 

It can be seen from Figure 2.12 that the difference between maximum and minimum P-value 

is greatest at higher values for amylase activity. These occur in a heat process when the 

thermal effects are minimal and little change in amylase denaturation occurs. This effect is 

highlighted when these P-value differences are converted to % errors in P-value, as shown in 

Table 2.4. Small reductions in amylase activity can result in the TTI measurements being 

subject to high errors in the calculated P-values. For example, for an initial activity of 1.00 

minutes
-1

 and a final activity of 0.70 minutes
-1

, the calculated P-value of 1.24 can range from 

0.54 to 1.61 minutes. This equates to % errors of –56.3 to +29.5. However, if the change in 

amylase activity from the heat process is significant, then the TTI measurement system is 

more accurate. For example, if the final activity is 0.10 units/minute, the calculated P-value of 

8.00 can range from 7.30 to 8.37 minutes, which equates to % errors of –8.72 to +4.58. Figure 

2.13 illustrates how the % error in TTI P-value reduces as a function of amylase activity 

measurement. 
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Table 2.4: Calculated P-value maximum and minimum heat treatment. Ainitial was 1.000 

units/minute, D85-value 8 minutes. Error in activity measurement was taken as 10%. 

 

Final amylase 

activity 

(units/minute) 

 

P-value 

(minutes) 

P-value 

Maximum 

(minutes) 

P-value 

Minimum 

(minutes) 

 

 

+% error 

 

-% error 

0.70 1.24 1.61 0.54 29.54 -56.26 

0.65 1.50 1.86 0.80 24.46 -46.58 

0.60 1.77 2.14 1.08 20.63 -39.28 

0.55 2.08 2.44 1.38 17.62 -33.57 

0.50 2.41 2.77 1.71 15.20 -28.95 

0.45 2.77 3.14 2.08 13.19 -25.13 

0.40 3.18 3.55 2.49 11.50 -21.90 

0.35 3.65 4.01 2.95 10.04 -19.11 

0.30 4.18 4.55 3.49 8.75 -16.67 

0.25 4.82 5.18 4.12 7.60 -14.48 

0.20 5.59 5.96 4.89 6.55 -12.47 

0.15 6.59 6.96 5.89 5.55 -10.58 

0.10 8.00 8.37 7.30 4.58 -8.72 

0.05 10.41 10.77 9.71 3.52 -6.70 
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Figure 2.12: Calculated P-value maximum and minimum heat treatment. Ainitial was 

1.000 minutes
-1

, D85-value 8 minutes. Error in activity measurement was taken as 10%. 
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Figure 2.13: % errors in P-value as a function of the final amylase activity 

after a heat treatment. Ainitial was 1.000 minutes
-1

, D85-value 8 minutes.  

Error in activity measurement taken as 10%.
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One further comment on the accuracy of P-values calculated from TTI measurements 

concerns the accuracy of gradient calculations with high and low activity values. Figure 2.5 

shows a typical time-absorbance curve measured with an instrument such as a 

spectrophotometer. Amylase activity is calculated from the gradient of the steepest part of the 

reaction curve. High amylase activities tend to occur quickly on this curve, often in the first 

10 to 30 seconds, and so the sample needs to be handled efficiently when placing the cuvette 

into the spectrophotometer. Missed absorbance data can lead to erroneous gradients. At the 

other end of the scale, a low amylase activity will take several minutes for the initial curve to 

become straight, and it is important to leave the test running for enough time to reach a 

consistent gradient. Automation of this procedure is not easy unless each test is allowed to run 

for at least 10 minutes. 

 

At the extremity of the three log measurement range for a Unicam spectrophotometer (as used 

in the work reported in this thesis), activities of 0.001 to 0.003 minutes
-1

 resulted in lower 

accuracy when calculating the gradients. This has implications when converting activities to 

P-values. P-values calculated from activities of 0.001 and 0.003 minutes
-1

 are 24.0 and 20.8 

minutes respectively, using the same D-value of 8 minutes at 85°C as used for the above error 

analysis. As absolute values, these P-values represent a significant difference in P-value for 

only a 0.002 difference in measured activity, and can thus (and falsely) give the impression 

that TTI accuracy is suspect.  

 

It is therefore important that the correct choice of TTI is made for an industrial trial so that the 

target P-value represents around one log reduction in amylase activity. Table 2.4 shows that at 

one log reduction levels for amylase activity (Af 0.1 minutes
-1

) the % errors are only –8.7 to + 

4.6, which are acceptable and within those expected for P-values calculated from temperature 

sensors. Chapter 4 provides further details of industrial TTI trials in which choice of TTI is 

critical. 

 

 

2.9  Selection of TTI storage conditions 

 

One of the advantages of using amylase TTI particles as a process measurement method is 

that the amylase is stable at room temperature for a considerable period of time (Lambourne 



 58 

and Tucker, 2001). This can be shown by calculating a decimal reduction time at 25°C (D25-

value) for BAA85 of 19.3 x 10
6
 minutes, using a Tref of 85°C and assuming a D85-value of 8 

minutes and a z of 9.4 C° (Tucker and Wolf, 2003). Thus, to achieve a one log reduction in 

amylase activity would take 19.3 x 10
6
 minutes or 36.7 years at 25°C.  This does however 

assume that the kinetic data can be extrapolated from 85 down to 25°C, which is unlikely, but 

does illustrate the high degree of stability of these amylase solutions.  

 

In practice, it is recommended to use chilled or frozen storage for amylase TTIs because of 

the potential for microbial growth within the non-sterile solutions that comprise the amylase 

solutions (Lambourne and Tucker, 2001). Microbial growth can change the pH of the buffer 

solutions and in doing so affect the mechanisms by which the amylases breakdown, which in 

turn can change the D and z values. For example, Bacillus licheniformis raises the pH as it 

metabolises (Montville, 1982). Growth of microorganisms such as Bacillus licheniformis can 

also result in natural amylases being released by the metabolising microorganisms, which will 

interfere with the required heat stability properties. It would be inconvenient to prepare the 

buffer solutions and construct the amylase TTI tubes within an aseptic environment, which is 

the level of security required to prevent the ingress of microorganisms. Instead, care needs to 

be taken when storing the amylase TTIs. 

 

Previous industrial work using amylase TTIs has demonstrated that TTI tubes containing 

either BAA85 or BAA90 were best kept chilled in water or frozen (Tucker, 1999c). These two 

TTI types were stable in the silicone tubes and gave repeatable results following storage 

periods of up to 4-weeks chilled. More recent work on the new BAA70 TTI suggested that 

TTI tubes should be stored in their buffer solutions in order that any uncertainty was removed 

with molecular migration through the semi-permeable silicone tubing. Chapter 3 presents data 

and discusses these stability issues in detail for the BAA70 TTI. For consistency with 

different TTIs and to prevent mistakes being made with different storage regimes, it is best to 

store all types of TTI tubes in their buffer solution rather than water. Storage time for filled 

TTI tubes should be a few days under chilled conditions (5 to 8°C) or indefinitely in a freezer 

(-12 to –18°C).  
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2.10  Methods of applying TTIs to food processes 

 

There are numerous methods by which amylase TTIs can be applied to food processes. Table 

2.5 illustrates some of the methods used for trials with industrial processes; some of those 

regarding fruit products are described in more detail in Chapter 4. Issues dealing with 

representative introduction of TTIs to food processes and recovery of all processed TTIs are 

also covered in Chapter 4. 

 

 

Table 2.5: Examples of TTI applications with food products, to illustrate different 

methods of applying TTI tubes and TTI particles. 

 

Process Description 

 

Method for applying TTIs to process 

 

Continuous heating of fruit 

products in tubular, scraped 

surface or ohmic
1
 systems. 

TTI tubes embedded into Sylgard 184 particles that represent 

the thermal characteristics of target particles (Tucker et al., 

2002). 

Surface pasteurisation in 

hot-fill
2
 applications. 

TTI tubes stuck (using non-acetic acid sealant) to the inside 

surfaces of pots, bags, cartons or jars (Tucker and Wolf, 

2003). 

Continuous oven cooking-

cooling of poultry pieces
3
 

TTI tubes inserted through drilled holes into fresh or frozen 

meat (Tucker et al., 2005). 

Spin heating and chilling a 

large bags
4
 of sauce or egg. 

TTI tubes put into liquid egg and allowed to flow with the 

egg, or stuck to the inside surfaces (Tucker et al., 2005). 

Sous-vide processing
5
 of 

ready meals. 

TTI tubes inserted into different parts of the food (Tucker et 

al., 2005). 

Giusti-style of vessel 

processing
6
 of sauces and 

particle mixtures 

TTI tubes and/or TTI particles put into batch prior to heating 

and retrieved after processing from bulk packages or vessel 

(Tucker et al., 2002). 

 

 

1. Ohmic: This is an electrical method of heating in which the food is pumped up a vertical 

column containing a series of electrodes (Skudder, 1988). Current passes through the food 
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and under the correct conditions the components with greatest resistance to electricity heat 

preferentially (De Alwis and Fryer, 1990a). Ideal for high viscosity foods with large particles, 

for example fruits. 

 

2. Hot-fill: Heat from the cooked (and pasteurised) food is used to pasteurise the inner pack 

surfaces, sometimes with a short raining water process to „top-up‟ the pasteurisation. 

Common with acidic foods in glass jars and plastic pots, for example cook-in-sauces. 

 

3. Continuous poultry cooking: Linear or spiral ovens are used to cook poultry products that 

travel through steam and/or hot air sections on mesh belts. Products are typically ready-to-eat 

or frozen for incorporation into ready meals. 

 

4. Spin heating or chilling: This process was designed for high viscosity sauces that are 

difficult to cool. The sauces are cooked in steam jacketed and/or steam injected vessels, then 

filled hot into plastic bags that are sealed at each end by a metal clip. The bags go into a large 

vessel filled with chilled water that rotates and in doing so agitates the bags until the sauce is 

below 3°C. Products are then used as ingredients for chilled ready meals. 

 

5. Sous-vide: This was invented in France for the manufacture of high quality restaurant style 

meals. Foods are vacuum packed and cooked (pasteurised) in water baths, before being 

moved to a chilled water bath until below 3°C. Packs can be single serve to several kilos. 

Examples of products are joints of meat in sauces, ready meals. 

 

6. Giusti: A style of vessel that uses a steam jacket, sometimes direct steam injection as well, 

with scraped surface agitation. Products can contain large particles. 

 

 

2.11  Conclusions 

 

Preparation of an amylase TTI for an industrial trial involved a number of steps. It was found 

that encapsulating the amylase solution in a silicone tube was the most convenient method, 

which resulted in a strong yet flexible cylinder containing the amylase TTI solution. Many of 

the industrial processes where TTIs were used to gather P-value data required the amylase 

TTIs directly in the form of tubes. These could be glued to container surfaces or inserted 
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directly into solid foods. One further advantage of using a tube was that it could be easily 

moulded into silicone food particles whose size was calculated so that the food and TTI 

particles heated at similar rates (McKenna and Tucker, 1991). Equations were derived from 

work in the canning industry that enabled the particle sizes to be calculated that gave 

equivalent process values. Choice of a silicone compound (Sylgard 184 or 170) with similar 

thermal and physical properties to high water content foods allowed the food and moulded 

TTI particles to behave in a similar manner to food pieces. This overcame any concerns with 

differences in the way that food and TTI particles moved in a food carrying liquid, or in 

different rates of heat transfer from carrying liquids to particle surfaces. 
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CHAPTER 3: DEVELOPMENT OF A NEW TIME-TEMPERATURE INTEGRATOR 

FOR MILD PASTEURISATION PROCESSES 

 

 

„Discovery consists of seeing what everybody else has seen and  

thinking what nobody has thought‟ 

Albert Szent Gyorgyi, Nobel Prize Laureate 

 

 

This chapter describes the development of a new TTI for the measurement of mild 

pasteurisation treatments. The objective of mild pasteurisation is to achieve a process of the 

order of a few minutes at 70°C at the core of the food.  Food products that receive these 

treatments are either (i) intended for sale under refrigerated conditions for up to ten days 

storage time, or (ii) are naturally high in acid that allow ambient storage for many months. 

Methods for using this TTI in industrial processes are identical to those described in Chapters 

2 and 4, but the amylase solution is different and there are minor differences in assay 

technique. 

 

Data from kinetic experiments at and around 70°C are described. These used well stirred 

water baths and a circulating silicone oil bath. Despite the high level of temperature control, 

the latter was not ideal because the TTI tubes dried out when heated in oil for extended 

lengths of time. Comparisons of D and z-value are given to demonstrate this drying effect. 

 

To enable P-value measurements immediately after an industrial TTI trial, an alternative assay 

method is described that used a portable colorimeter rather than the lab-based 

spectrophotometer. The colorimeter did not have sample temperature control and so a heating 

effect from the colorimeter bulb was of concern. Issues that are dealt with include the relative 

accuracy between assays with the two instruments, and repeatability with colorimeter assays. 

 

The final part of this chapter presents four industrial experiments that demonstrate 

applications for this new TTI. 
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3.1  Introduction to mild heat treatments 

 

As discussed in Chapter 1, the most heat-resistant pathogen that might survive the thermal 

processing of low-acid foods is the spore-forming organism Clostridium botulinum.  All 

thermal processes target this organism if no other effective hurdle to its growth is present.  

However, there is a growing trend to harness natural antimicrobial hurdles and to apply 

additional hurdles that allow food manufacturers to use milder heat treatments referred to as 

pasteurisation (CCFRA, 1992). 

 

Pasteurisation is nowadays used extensively in the production of many different types of food, 

such as fruit products, pickled vegetables, jams and ready meals (CCFRA, 2006b).  Food may 

be pasteurised in sealed containers (analogous to canned foods), or in continuous processes 

analogous to aseptic filling operations.  It is important to note that pasteurised foods are not 

free from microorganisms and will rely on other preservative mechanisms to ensure their 

extended stability for the desired length of time.  

 

Food products sold chilled with up to 10-days shelf life are currently required to receive a 

pasteurisation treatment at least equivalent to 2 minutes at 70°C at the product thermal centre 

(DoH, 1989). These products include cooked poultry, meat as an ingredient for ready meals, 

the ready meals themselves, plus a wide range of pies, pastries, soups and sauces for the high 

quality end of the market. Microorganisms of concern with this group of foods are the aerobic 

pathogens; this includes Listeria monocytogenes, Salmonella spp. and E. coli. These exist 

only as vegetative cells. 

 

One further group of foods given a mild pasteurisation of around 2 minutes at 70°C are those 

naturally high in acid, such as fruits. Yeasts and moulds are microorganisms that can thrive in 

high acid conditions and therefore spoilage from these fungi is the primary concern for 

commercial production of fruit products. The recommended process for high acid fruit 

products, with pH below 3.7, is to achieve at least 2.1 minutes at 70°C (Put and de Jong, 

1982; CCFRA, 1992a). This achieves six log reductions in ascospores of Saccharomyces 

cerevisiae (D60 22.5 minutes, z 5.5°C), which is the target microorganism. 

 

Data must be obtained by a food manufacturing company that proves that these process levels 

have been delivered. A TTI with heat stability in the range from 2 to 20 minutes at 70°C 
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allows these measurements to be made. As with the other TTI systems, applications for the 

mild pasteurisation TTI are for the types of products or processes that present difficulties with 

temperature probe-based systems. These include heated vessels with scraped surface 

agitation, continuous hot air ovens, water baths and fryers, and pasteurisation at container 

surfaces for hot-filled products. 

 

 

3.2   Potential TTI systems 

 

A number of possible TTI systems, all based on enzymes, showed potential as candidates for 

mild pasteurisation processes (see Table 1.3). However, the large z-values in most enzyme 

systems eliminated them as candidate TTIs because most microorganism death kinetics are 

typified by z values in the range 6 to 12°C (see Table 1.1). Many of these data in Table 1.3 

originated from the frozen foods industry where a blanching step is performed prior to 

freezing. Blanching is intended to inactivate the majority of the enzymes without imposing 

excessive thermal damage to the food, hence it uses relatively mild temperatures (90 to 

100°C) and short heating times (1 to 10 minutes). The renewed enzyme activity that often 

seems to be present in the thawed food after frozen storage is attributed to enzyme 

regeneration. It was important when choosing a suitable enzyme for use as a TTI that 

regeneration did not occur (Adams, 1978).  

 

Enzymes are produced during microbial spoilage of foods and are often involved in the 

breakdown of texture. Many of the microorganisms that secrete enzymes are moulds, 

however, there are bacterial species (e.g. Bacillus subtilis, Bacillus amyloliquefaciens and 

Bacillus licheniformis) that produce heat stable amylases (De Cordt et al., 1992; Hendrickx et 

al., 1995). Amylase enzymes degrade starches, particularly naturally occurring starches, with 

the detrimental effect that the viscosity of the food is reduced as the macromolecular starch 

granules are broken down into their constituent sugars (Hutton, 2004). Other complex 

reactions can occur, for example, Rhizopus species cause softening of canned fruits by 

producing heat-stable pectolytic enzymes that attack the pectins in the fruit. Mucorpiriformis 

and Rhizopus species also cause breakdown of texture in sulphite-treated strawberries as a 

result of similar production of enzymes (Hutton, 2004). Byssochlamys species have been 

considered responsible for the breakdown in texture of canned foods, particularly 
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strawberries, in which they are commonly found. This is a heat-resistant mould that requires 

temperatures in excess of 90 C for several minutes to adequately destroy it (CCFRA, 1992b). 

  

Not all candidates for the mild pasteurisation TTI were based on enzymes, however, those 

that showed ideal characteristics of a high D70-value and similar z-value to that for vegetative 

cells were enzymatic. Some of these are described below. 

 

A novel exogenous time-temperature integrator (TTI) based on an amperometric glucose 

oxidase biosensor was presented by Reyes de Corcuera et al. (2005). The TTI consisted of the 

enzyme entrapped within an electrochemically generated poly(o-phenylenediamine) thin film 

deposited on the interior wall of a platinum (Pt) or a platinized stainless steel (Pt-SS) capsule. 

After thermal treatment, the TTI was mounted in a continuous flow system and connected to a 

potentiostat for continuous amperometric detection of residual enzyme activity. A 

measurement was completed within 10 minutes. Isothermal treatments were carried out 

between 70 and 79.7°C. Thermal inactivation of the immobilized enzyme followed apparent 

first-order kinetics with z values of 6.2 ± 0.6 and 6.6 ± 0.8°C for Pt and Pt-SS capsules, 

respectively.  

 

Another potential TTI system was based on the fluorescence emission of R-phycoerythrin (R-

PE) with specific interests in its use to estimate the degree of inactivation of food pathogens 

such as Salmonella (Vaidya et al., 2003). Isothermal data was taken to determine the kinetic 

parameters based on a general nth order reaction. Several non-isothermal experiments were 

also conducted over the same temperature range of the isothermal study. Very good 

agreement was obtained between theory and experiment at temperatures of 62.8°C and above. 

However, the model slightly under-predicted the extent of fluorescence emission decay at 

60°C. Results indicated that R-PE fluorescence emission decay kinetics were well behaved 

and that the protein was a strong candidate for use as a time-temperature integrator. 

 

Guiavarc'h et al., (2003) extracted, purified and characterized pectinmethylesterases (PME) 

from cucumber and tomato fruits and tested them as candidate TTIs. Thermal stability of 

purified PME was assessed at 55-77°C in the presence of several sugars or polyols, including 

sucrose, trehalose, mannitol, sorbitol and glycerol. Inactivation curves were biphasic and 1st 

order for cucumber-PME and tomato-PME, respectively, and both enzymes were stabilized by 

the presence of glycerol.  Stabilization of tomato-PME by hydroxyl groups was exponentially 
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related to the number of these functional units.  The purified enzymes were further considered 

as time-temperature integrators (TTI) for the assessment of pasteurization processes. 

Although the fruits provided a readily available source of enzymes, the preparation steps and 

natural variability in raw materials were considered excessive for use as a TTI. 

 

The most promising TTI system was an amylase from bacterial origin that could be obtained 

commercially as a pure powder; this was the basis for the new TTI for mild pasteurisation 

treatments. Tomazic and Klibanov (1988) studied a range of Bacillus -amylases with 

irreversible thermal inactivation properties.  One such amylase that was mentioned in the 

paper, but not reported in detail, was from Bacillus amyloliquefaciens in an acetate buffer.  Its 

half-life of 6 minutes at 70°C indicated that the acetate buffering system may allow this TTI 

to be developed with suitable kinetics for measuring thermal processes in the range 2 to 20 

minutes at 70°C.  This TTI system was chosen for estimating levels of mild pasteurisation, as 

encountered with short shelf-life food products. Extensive thermal evaluation was required in 

order that the heat stability was characterised in the range for mild pasteurisation treatments. 

These experiments and the data that resulted rom the experiments are detailed in the following 

sections. 

 

 

3.3  Measurement of D- and z-values for BAA70 

 

As mentioned above, Bacillus amyloliquefaciens α-amylase at low concentration in an acetate 

buffer was the TTI system that showed the most potential for measuring P-values with mild 

heat treatments (Tomazic and Klibanov, 1988). As described in section 3.1, the process target 

was to exceed 2 minutes at 70°C, and to have a measurement range that extended upwards to 

around 20 minutes at 70°C. This time and temperature combination represented the lowest 

level of TTI heat stability described in this thesis.  

 

The TTI for mild pasteurisation processes is referred to as BAA70 and consists of 0.5 mg/mL 

BAA amylase in 10 mM acetate buffer (pH 5 at 25°C). To prepare the solution, 25 mg -

amylase powder from a Bacillus amyloliquefaciens source (EC 3.2.1.1 Type II-A, Sigma A-

6380) is dissolved in 50 mL of acetate buffer containing 1 mM calcium chloride (pH 5 at 

25°C).  
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An amylase concentration of 0.5 mg/mL is lower than for the BAA85 or BLA90 TTIs, which 

are 10 mg/mL. A lower amylase concentration limits the extent which amylase solution can 

be diluted with buffer solution prior to conducting the assays. Typically with BAA85 and 

BLA90 TTIs containing higher concentrations of amylase (e.g. 10 mg/mL) the amylase 

solution inside the TTI tubes is diluted in a 1:30 ratio (Adams, 1996).  This dilution enables 

several replicate assays to be conducted; which is beneficial if there are doubts with the assay 

result. At 0.5 mg/mL amylase concentration, the BAA70 TTI can only be diluted 1:1 with 

acetate buffer, which provides sufficient solution for one assay.  

 

3.3.1  Preparation of the solutions for amylase analysis 

 

Preparation of the acetate buffer is as follows: 

 

 Weigh 0.036 g  0.001g calcium chloride into a 50 mL beaker.  Using a measuring 

cylinder, add 25 mL of solution 1 and adjust pH using glacial acetic acid to pH 5.0. 

 Make up to 350 mL with MilliQ water in a volumetric flask. 

 Store in a fridge for up to 2 weeks 

 

The amylase assay for BAA70 follows a similar set of instructions to those outlined in 

Chapter 1: 

 

 Dilute the Amylase reagent according to instructions. 

 Pipette 1 mL of the reagent solution into a cuvette. 

 Extract the amylase solution from the TTI by cutting one end off the tube and use a 

hypodermic syringe to withdraw the entire sample. This should be at least 15 L. 

 Dilute the amylase solution with an equal volume of acetate buffer. 

 Add 20 L of the diluted amylase solution to the 1 mL cuvette containing the Amylase 

reagent solution and mix by inversion. 

 Place the cuvette immediately into the chamber of the spectrophotometer and start logging 

absorbance results. The spectrophotometer should be set at 405 nm and at 30°C. 
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3.3.2 Kinetic evaluations of BAA70 

 

A series of heating trials were performed to determine the kinetics of destruction of BAA70 

by heat. TTIs were prepared, as described in Chapter 2, and heated in both a well stirred water 

bath and a circulating silicone oil bath for different combinations of times and temperatures 

(see Table 3.1).  Immersion times were chosen to ensure that the final amylase activity was 

within one to two log reductions of the initial activity in order to maximise the accuracy of the 

measurements.  These experiments were conducted separately in a Grant Instruments water 

bath and also in a Heto silicone oil bath. Calibrated type T thermocouples (Labfacility) 

connected to a Grant Squirrel 1200 series datalogger were used in the water bath, and 

calibrated PT1000 probes were used in the silicone oil bath.   

 

TTI tubes were cable-tied to the thermocouples or PT1000 probes respectively to ensure that 

temperatures were recorded at the precise location of the TTIs.  Temperature readings were 

taken every 30 seconds and an average bath temperature calculated from this value, having 

taken into account any offset in temperature from the most recent calibration data.  Two or 

three TTIs were used with each combination of time and temperature, in addition to four 

unheated control TTIs for the initial activity measurement.   

 

 

Table 3.1: Time and temperature combinations used to determine D- and z-values 

in the silicone oil and water bath. 

 

Temperature 

(°C) 

Water bath immersion 

times (minutes) 

 

Silicone oil bath immersion 

times (minutes) 

64 0, 5, 10, 15, 20, 25 5, 10, 15, 20, 25, 30 

67 0, 5, 10, 15, 20, 25 5, 10, 15, 20, 25, 30 

70 2.5, 5.0, 7.5, 10.0 2.5, 5.0, 7.5, 10.0, 12.5, 15.0 

73 1, 2, 4, 6, 8 1, 2, 4, 6, 8, 10 

 

 

Equation 1.6 presented the relationship between heating time (t), decimal reduction time (DT) 

and the initial (N0) and final (N) numbers of microorganisms. For the purposes of determining 
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the D-values at each of the heating temperatures in Table 3.1, Equation 1.6 was re-written 

using X0 and X as the initial and final amylase activities respectively (see Equation 3.1). 

Equation 3.1 was re-arranged into Equation 3.2 to make it easier to plot all the data on one 

graph. 

 

 
X

X
Dt T
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An average initial activity (X0) was calculated from the four TTI tubes reserved for unheated 

controls. The gradient of a graph of log X/X0 (activity of the heated sample divided by the 

activity of the unheated sample) against time was used to determine the DT-value at the four 

different temperatures.  A graph of the log DT-value against temperature was used to 

determine the z-value, which is a measure of how sensitive the DT-value is to temperature 

change. 

 

3.3.3  Results for D70-value and z-value 

 

(a) Water bath experiments 

 

A graph of the heating time versus the logarithm of amylase activity ratio at four temperatures 

is shown in Figure 3.1 and the logarithm of these DT-values at different temperatures is shown 

in Figure 3.2. Error bars are not shown on Figure 3.1 or 3.3 because they would clutter the 

data points. Errors in heating time are estimated to be of the order of 10 seconds, which is a 

measure of the time to extract the TTI tubes from the baths and quench cool them to a 

temperature below that at which the amylase structure breakdown occurs. In Figure 3.1, errors 

in temperature are estimated at 0.5°C maximum, which contains 0.2°C for calibration 

accuracy of the thermocouples and 0.3°C for temperature distribution in the water bath. 
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Figure 3.1: Heating time versus the logarithm of amylase activity ratio (X/X0) for 

BAA70 as determined in a water bath at different temperatures from 63.7 to 73.1°C 
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Figure 3.2: Logarithm of the DT-values at different temperatures 

for BAA70 as determined in a water bath, resulting in a z-value of 8.9 0.3°C 



 71 

 

(b) Silicone oil bath experiments 

 

The water bath experiment was repeated in a silicone oil bath, due (a) to higher accuracy in 

temperature control and (b) to evaluate if there was an effect of the media on amylase activity 

because of concerns with moisture migration through the silicone tubing. A graph of the 

heating time versus the logarithm of amylase activity ratio at four temperatures is shown in 

Figure 3.3 and the logarithm of these DT-values at different temperatures is shown in Figure 

3.4. Errors in heating time are estimated also at 10 seconds, as with the water bath 

experiments. Errors in temperature are estimated at 0.3°C maximum, which contains 0.1°C 

for calibration accuracy of the PT1000 probes and 0.2°C for temperature distribution in the 

water bath. 
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Figure 3.3: Heating time versus the logarithm of amylase activity ratio (X/X0) for 

BAA70 as determined in a silicone oil bath at different temperatures from 64.4 to 73.1°C 
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Figure 3.4: Plot of the logarithm of the DT-values at different temperatures 

for BAA70 as determined in a silicone oil bath, resulting in a z-value of 8.4 0.3°C 

 

 

The DT-values and z-values measured in the water bath and silicone oil bath are summarised 

in Table 3.2.  An estimated error in the DT-values calculated from the gradients in Figures 3.1 

and 3.3 was 10%, obtained from the estimated maximum and minimum gradients for each 

D-value gradient. This is shown on the z-value plots of Figures 3.2 and 3.4. The estimated 

error in z-value was 0.3°C, which was calculated from Figures 3.2 and 3.4 using the 

extremes of error bars on individual D-values. 

 

Equation 3.3 was used to convert the DT-values from the measured bath temperatures (T) to 

the reference temperature (Tref) of 70°C.  A decimal reduction time (D70-value) of 8.4 minutes 

and a z-value of 8.9°C were calculated for BAA70 in the water bath, and a D70-value of 14.4 

minutes and a z-value of 8.4°C for BAA70 in the silicone oil bath. 
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Table 3.2: Summary of the DT-values obtained for BAA70 

when determined in a water bath and a silicone oil bath 

 

Test  

temperature (°C) 

Water bath  

DT-value (minutes) 

Silicone oil bath 

DT-value (minutes) 

 

64 46 5 77 8 

67 20 2 33 3 

70 8.5 1.0 14.0 1.5 

73 4.5 0.5 6.5 1.0 

 

z-value (°C) 

 

8.9 0.3 

 

8.4 0.3 

 

 

Higher DT-values were obtained for experiments in the silicone oil bath in comparison with 

those from the water bath (DT-values of 14.0 1.5 minutes in the silicone oil bath and 8.5 1.0 

minutes in the water bath at 70°C).  This was thought to be a result of the migration of small 

molecules through the semi-permeable silicone tubing, which could occur in several ways: 

 

 In the water bath: Migration of water from the water bath (low concentration region) to 

the amylase and buffer solutions (high concentration region) within the TTI tubes will 

give lower concentrations of amylase in the TTI tubes. This is unlikely because of the low 

concentrations of amylase and buffer solutions, and the effect was not found with BAA85 

and BLA90 TTIs (Tucker and Lambourne, 2001). 

 

 In either water or silicone oil baths: Migration of small acetate molecules from the 

buffering solution (high concentration region) into either the water or the silicone oil (low 

concentration region). This is a potential concern and is investigated in a later section of 

this chapter regarding storage of TTI tubes in water. 

 

 In the silicone oil bath: Migration of water, actually a drying effect, into the silicone oil. 

This is a likely explanation. 
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These effects may result in changes to the solution concentrations within the amylase TTI 

tubes, with possible changes to the values measured for DT and z.  However, water bath 

experiments are likely to be more representative of real food materials, which are typically 

70-95% water.  It is also important that the timescale of the heating bath measurements is 

similar to those used in a TTI trial with food materials. This will help to make any 

concentration changes reflect those that occur during the use of TTI tubes in food materials. A 

D-value calibration at a single temperature, for example 70°C, within the food may be 

worthwhile to give confidence in the method. 

 

As a result of the greater uncertainties over molecular migration within a silicone oil bath 

environment, it was decided that water bath experiments should be used to obtain the D- and 

z-values. A calibration check using the actual food material as the heating media should be 

conducted wherever possible. 

 

 

3.4 Spectrophotometer or colorimeter methods for the amylase assays 

 

The method for analysis of the amylase TTIs in the above experiments is the 

spectrophotometer (Adams and Langley, 1998).  This instrument is temperature controlled 

and plots a reaction rate as the amylase assay progresses towards completion. Reaction rates, 

or activities, calculated with the spectrophotometer have a high instrumental accuracy and are 

repeatable between replicate samples to within 5% (Adams, 1996). 

 

However, there are occasions in which analysis needs to be carried out as part of an industrial 

trial, and to achieve this, an alternative method using a colorimeter was evaluated. The chosen 

instrument was a portable colorimeter. This is a more basic instrument than the 

spectrophotometer that has the advantage of being portable, but does not usually have 

temperature control. Colorimeters are used to compare the colour intensities of unknown test 

solutions to that of a known reference solution. The colorimeter used in these experiments 

was purchased from WPA Ltd (Linton, Cambridge) model CO75 with a 405nm-wavelength 

glass filter. This unit ran either on mains or with a battery.  

 

The following sections describe tests done to compare the accuracy of estimated P-values 

calculated from BAA70 TTIs when the assays were measured with a spectrophotometer and a 
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colorimeter. Rates of increase of absorbance at 405 nm were measured using both a CO75 

colorimeter and a Unicam spectrophotometer. To overcome the lack of temperature control 

with the colorimeter, assays were carried out in a temperature controlled room at 21°C. 

Spectrophotometer assays used a sample temperature of 30°C, as described previously, which 

was chosen because it was close to the optimal value for the assay (Adams, 1996).  

 

With no temperature control in the colorimeter, sample temperature is likely to increase while 

the assay is active because of heat emitted from the bulb. This has the potential to change the 

measured rates of absorbance and so the typical straight lines from which gradients are 

calculated may become curved (see Figure 1.5 for an example of the reaction rate curve). This 

theory was tested in the following sets of experiments. 

 

(a) Does the sample increase in temperature with sequential assays, and does this effect 

the calculated rates? 

 

The first issue to resolve was whether the temperature in the measuring cell increased with 

long periods of use due to heat from the bulb, with a resulting increase in assay rates over time 

of use. An experiment was set up using the colorimeter, to perform five assays in sequence 

with an unheated amylase solution, and without turning off the colorimeter between assays. A 

stock solution of amylase was used for each assay to eliminate the chances of difference rates 

from samples diluted differently. Each assay took about two minutes to complete. The 

temperature of the Randox solution in the cuvette was taken before and after the assay was 

completed (see Table 3.3).  

 

Results in Table 3.3 showed that during continuous use, the temperature of the amylase 

solution in the cuvette increases and this is a likely reason for a small increase in activity rate. 

This increase was of the order of 5-6%. Errors in the calculated rates were of the order of 

10%. 

 



 76 

Table 3.3: Colorimeter readings of absorbance at 405 nm from five assays 

performed in sequence. Minimal time delay occurred between each assay. 

 

 

Time 

(seconds) 

Absorbance readings for 

Sequential Assay Number 

1 2 3 4 5 

0 0.02 0.03 0.05 0.04 0.03 

10 0.09 0.12 0.15 0.13 0.12 

20 0.19 0.22 0.25 0.24 0.23 

30 0.28 0.31 0.34 0.34 0.32 

40 0.37 0.40 0.43 0.44 0.42 

50 0.46 0.49 0.52 0.53 0.51 

60 0.54 0.57 0.61 0.62 0.60 

70 0.62 0.65 0.70 0.71 0.69 

80 0.70 0.73 0.78 0.80 0.77 

90 0.77 0.81 0.86 0.88 0.85 

 

Calculated Rate 

 

0.0087 

 

0.0087 

 

0.0090 

 

0.0094 

 

0.0092 

 

Sample Temp (°C)  

 

23.3 

 

23.3 

 

23.5 

 

24.1 

 

24.3 

          

 

(b) Does a 2 minute break between assays maintain the sample temperature, and are the 

calculated rates more consistent? 

 

The experiment was repeated, but with the colorimeter switched off in-between each assay for 

2 minutes to allow the measuring cell to cool. The same stock solution of amylase was used. 

The results are shown in Table 3.4. Rates remained consistent for each assay, confirming the 

theory that the temperature in the measuring cell influenced the activity rate. Turning off the 

colorimeter for 2 minutes between assays resulted in consistent amylase activity readings. 

 

 



 77 

Table 3.4: Colorimeter readings of absorbance at 405 nm for five assays performed with 

a two minute break between each one. 

 

 

Time 

(seconds) 

Absorbance readings for 

Sequential Assay Number 

1 2 3 4 5 

0 0.04 0.03 0.03 0.03 0.03 

10 0.12 0.11 0.11 0.12 0.11 

20 0.21 0.20 0.20 0.22 0.20 

30 0.30 0.30 0.29 0.31 0.30 

40 0.39 0.39 0.38 0.40 0.39 

50 0.48 0.48 0.47 0.49 0.47 

60 0.56 0.55 0.55 0.57 0.56 

70 0.64 0.63 0.63 0.65 0.64 

80 0.71 0.71 0.70 0.73 0.71 

90 0.79 0.78 0.78 0.81 0.79 

 

Calculated Rate 

 

0.0090 

 

0.00925 

 

0.0090 

 

0.00925 

 

0.0090 

 

Sample Temp (°C) 

 

24.0 

 

24.0 

 

24.1 

 

24.2 

 

24.1 

         

 

(c) Confirmation of the findings from Tables 3.3 and 3.4 

 

The above experiments were repeated to gain confidence in the best method of measuring 

activity rates with the colorimeter. A fresh stock solution of amylase was made for these 

experiments. Table 3.5 presents these data with only the calculated rates given rather than the 

full time-absorbance data of Tables 3.3 and 3.4. Experiment 1 was carried out without turning 

the colorimeter off between assays, whereas the colorimeter was turned off for 2 minutes 

between assays in experiments 2 and 3. As the number of assays increased within experiment 

1, so the rates increased; this was also found in the data from Table 3.3.  
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Table 3.5: Repeatability of colorimeter assays. Experiment 1 without 

turning the colorimeter off between assays. Experiments 2 and 3 with 

the colorimeter off for 2-minutes between assays. 

 

Assay 

Sequence 

Number 

Activity rates for each assay 

Experiment 1 Experiment 2 Experiment 3 

1 0.0076 0.0085 0.0082 

2 0.0078 0.0090 0.0086 

3 0.0080 0.0090 0.0090 

4 0.0080 0.0094 0.0090 

5 0.0084 0.0095 0.0090 

6 0.0086 0.0085 0.0090 

7 0.0086   

8 0.0094   

9 0.0094   

 

 

Experimental procedures were changed (improved) following the colorimeter results 

presented in Tables 3.3 to 3.5. When conducting assays using the colorimeter, the bulb was 

turned off after five assays, for at least five minutes, to allow the bulb to cool down. This was 

less time consuming than turning it off for two minutes after each individual assay, and it 

allowed the assays to be conducted with more efficiency. 

 

Although the preference is still to conduct the assays using the temperature-controlled 

spectrophotometer, there are occasions when it is necessary to measure activities and calculate 

P-values at a factory site, so a protocol for effective use of the colorimeter is required.  

 

 

3.5  Influence of different storage conditions on TTI stability 

 

Experience with the BAA85 and BAA90 TTIs in Tris buffer showed that TTI tubes could be 

stored in water with minimal loss in amylase activity or detriment to the kinetic parameters 
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(Tucker and Wolf, 2003).  Frozen storage is preferred due to the extended workable life this 

offers, however, chilled storage still allows several weeks.  The useable shelf life of the Tris 

buffered TTI tubes is limited by microbial growth within the buffer from microorganisms 

contaminating the solutions during preparation. Tris buffer itself will last for up to four weeks 

when stored in the fridge (Adams, 1998). However, the BAA70 TTI uses an acetate buffer 

that has less inherent protection from microbiological contamination, and will only last for 

two weeks in a fridge (Adams, 1978). Both buffers have a tendency to go cloudy if 

microorganism growth gets out of control. 

 

Storage tests were set up to determine the best method to store filled TTI tubes so that the 

amylase activity was not damaged.  This was important for the stability of TTI tubes both 

before and after use in a thermal process. It is often necessary to transport TTIs to and from 

factory environments, sometimes in different countries. Several days, if not weeks, may 

expire before the amylase solutions can be extracted and the assays performed. The storage 

conditions tested for the TTI tubes included: 

 

 Immersion of the TTI tubes in water or buffer solutions to evaluate whether molecular 

diffusion is an issue 

 Storage temperatures in chilled (3 to 8°C) or frozen (–18 to –12°C) environments 

 Storage times up to 56 days, with detailed testing between 0 and 14 days.  

 

The major issues of concern were (i) the potential for water and/or small molecules to migrate 

through the silicone tubing and (ii) whether microbial spoilage of the amylase solution could 

occur.  Both effects could change the kinetic properties of the amylase TTI by adjusting the 

concentration of amylase and buffering chemicals in the solutions.  It was known that the 

silicone tubing was semi-permeable and allowed drying of the solution if exposed to dry air 

for several hours (Dow Corning, 1986).  Previous TTI work had identified this as a risk 

(Tucker and Wolf, 2003).  
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Three different experiments were conducted: 

 

 Experiment 1: The effect of storing sets of TTI tubes in water for 56 days and testing for 

amylase activity every 14 days: 

- Stored in the fridge
1
 before processing

2
 

- Stored in the freezer
3
 before processing 

- Stored in the fridge after processing 

- Stored in the freezer after processing 

 

 Experiment 2: The effect of storing TTI tubes for up to 14 days before use, testing for 

initial (unheated) amylase activity on days 0, 3, 8, 11, and 14: 

- Stored in acetate buffer in the fridge 

- Stored in acetate buffer in the freezer 

- Stored in water in the fridge 

- Stored in water in the freezer 

 

 Experiment 3: The effect of storing TTI tubes for up to 14 days after processing, testing 

for final (heated) activity on days 0, 3, 7, and 14: 

- Stored in acetate buffer in the fridge 

- Stored in acetate buffer in the freezer 

 

1
 Fridge temperature was set at 3°C but fluctuated between 2 and 5°C. Chilled conditions 

should reduce growth from contamination microorganisms. 

 

2
 Processing refers to a constant temperature test at 70°C for 10 minutes in a well-stirred 

water bath, which equates to a P-value of 10 minutes. This allows approximately a one-log 

reduction in amylase activity, which is the region of greatest accuracy for the colorimeter 

assays (see results from colorimeter experiments above).   

 

3
 Freezer temperature was set at -18°C but fluctuated between –18 and -12°C. Frozen 

conditions should stop molecular migration and growth from contamination microorganisms, 

but might affect the amylase activity or the mechanisms of breakdown. 
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Heating tests for experiment 1 were conducted in the silicone oil bath and for experiments 2 

and 3 in the water bath. Three heated TTI tubes and two unheated TTI tubes were analysed 

for each condition on the different days.   

 

3.5.1   Results from Experiment 1: The effect of storing sets of TTI tubes in water for 56 

days and testing for amylase activity every 14 days 

 

Results of storage tests with TTI tubes in water before and after processing are given in 

Figure 3.5.  Bars on the columns of Figure 3.5 represent the lowest and highest P-values 

obtained during the experiments.  Each heating test to measure P-values used three TTI tubes 

immersed in a 70°C water bath for 10 minutes, therefore the P-values should equal 10 

minutes. Some variation from a calculated P-value of 10 minutes was expected due to minor 

differences in timing of immersion and in cooling. Likely timing error with a 10 minute 

immersion was 20 seconds or 3%, with most of this error in the time for the TTI tubes to 

cool. All P-values quoted were equivalent values at 70°C.  

 

One common finding from the data in experiments 1 and 2 were P-values of around 8 minutes 

instead of the expected P-values of 10 minutes. Errors in TTI results can arise from a number 

of sources, for example, measurement of bath temperature, concentration and dilution of the 

various amylase solutions, acetate buffer pH and ionic concentration, and D-value used for the 

calculations . Since Experiment 1 was conducted in the silicone oil bath and experiment 2 in 

the water bath it was unlikely that temperature measurement or applied D-value were the 

source of error. Differences in concentration of either the amylase or acetate buffer solutions 

were more likely, between those solutions used when determining the D-values (as quoted in 

Table 3.2) and during the tests described here. Experiment 3 used fresh samples of amylase 

solution and of acetate buffer. 

 

TTIs stored in the freezer or fridge before processing gave P-values that decreased from 8.9 

(day 0) to 0.4 minutes (day 56) when stored in a fridge and from 8.9 (day 0) to 2.0 minutes 

(day 56) when stored in a freezer.   

 

TTIs stored in the freezer or fridge after processing were more stable, and gave P values that 

decreased from 8.9 (day 0) to 8.2 minutes (day 56) when stored in the fridge and from 8.9 

(day 0) to 8.7 minutes (day 56) when stored in the freezer. 
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Figure 3.5: Comparison of P-values for BAA70 TTI tubes stored in water 

before and after processing. 

 

 

The results presented in Figure 3.5 suggested that BAA70 TTI tubes should not be stored in 

water because the migration of small molecules such as acetate and water to and from the TTI 

tubes can affect the concentration of the amylase and buffer solutions.  

 

3.5.2   Experiment 2: The effect of storing TTI tubes for up to 14 days before use, 

testing for initial (unheated) amylase activity on days 0, 3, 8, 11, and 14 

 

P-value results for 10 minutes heating at 70°C are given in Figure 3.6, following storage tests 

in both acetate and water for TTI tubes before processing.  

 

For the freezer tests in acetate buffer, the P-value on day 0 was 8.1 minutes and after 14 days 

it was 7.8 minutes. This was within the acceptable accuracy for TTI measurements of 12.5% 

at constant temperature heating (Tucker, 1999) and 20% for variable time-temperature 
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profiles (Bakalis, 2005; Mehauden et al., 2007). P-values were consistent for measurements 

taken after 0, 3, 8, 11, and 14 days of frozen storage. The range of P-values from 7.8 to 9.1 

minutes was acceptable.  

 

For the fridge tests in acetate, the P-value on day 0 was 8.1 minutes and after 14 days was 7.7 

minutes.  However, there was considerable variation in the P-values calculated from some of 

the TTI tubes after 3 days (P 4.4 minutes), 8 days (P 6.1 minutes) and 11 days (6.8 minutes). 

 

BAA70 TTI tubes stored in water before processing, whether in the fridge or freezer, showed 

drastic decreases in P values. These were similar in magnitude to the values measured with 

the previous experiments displayed in Figure 3.5.  After 3 days the P-values decreased from 

8.1 to 2.5 minutes in the fridge and from 8.1 to 3.3 minutes in the freezer. 

 

 

 

Figure 3.6: Comparison of P-values for BAA70 TTI tubes stored 

in water and acetate buffer, in the fridge and freezer before processing 
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These results suggested that the best way to store TTI tubes before processing was in acetate 

buffer in a frozen condition. 

 

3.5.3   Experiment 3: The effect of storing TTI tubes for up to 14 days after processing, 

testing for final (heated) activity on days 0, 3, 7, and 14 

 

The P-value results of storing TTI tubes in acetate buffer after processing for 10 minutes at 

70°C are given in Figure 3.7.  These showed that the TTI tubes were stable in acetate buffer 

over a period of 14 days. P-value on day 0 was 10.8 minutes and after 14 days storage was 

10.9 minutes (in the freezer) and 9.9 minutes (in the fridge).  These results suggested that 

storage in the freezer resulted in marginally more stable results after processing; however, the 

difference between 10.9 and 9.9 minutes was well within the experimental uncertainty. 

 

 

 

Figure 3.7: Comparison of P-values for BAA70 TTI tubes stored 

in acetate, in the fridge and freezer after processing 

 

 

It was concluded from all three storage trials that BAA70 TTI tubes were best stored by 

immersing the tubes in acetate buffer. Frozen storage gave more consistent P-value results 
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than chilled storage; this was for amylase TTI tubes frozen before being exposed to a thermal 

treatment. 

 

 

3.6  Industrial evaluation of the BAA70 TTI 

 

Having completed the kinetic experiments outlined above, the BAA70 TTIs were used in four 

industrial trials.  Each involved measurement of pasteurisation values in the headspace and/or 

on pack surfaces after filling of foods into containers.  This is one situation where the use of 

wire-based probes is troublesome and TTI tubes provide a potential solution. 

 

3.6.1  Pasteurisation of the headspace of a hot-filled soup carton 

 

The aim of this study was to investigate the difference in P-values for a carton headspace 

when cartons went through either a standard hot-fill process or were inverted for two different 

times immediately after filling. Soup was pasteurised in a vessel using direct steam injection 

and a steam heated jacket; a psychrotrophic botulinum process was the target process to 

provide a shelf life under chilled storage in excess of 10 days (CCFRA, 1992b). This process 

target required the soup to be held at 90°C for at least ten minutes in the vessel. Once 

pasteurised, the soup was transferred to a filling vessel in readiness to be hot-filled into 

cartons.   

 

Filled cartons were cooled under a water spray tunnel using a belt speed that gave a residence 

time of around 2 hours in total. A minimum of 70°C for 2 minutes was considered to be the 

safety target for the carton surfaces because of heat resistant strains of Listeria monocytogenes 

that could survive and grow in chilled products such as soups (DoH, 1989; CCFRA, 1992b). 

 

TTI tubes were constructed as described in Chapter 2, with bore 2.0 mm and wall thickness 

0.5 mm, and containing 15-20 L of BAA70.  Twenty TTIs were used in total, excluding 

those reserved for unheated controls.  TTIs were attached with silicone sealant to the inside 

tops of empty gable-top cartons, using the same position in all cartons.  
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Various combinations of conditions were evaluated: 

 

 Five cartons were filled with cold soup and underwent no processing.  These were used as 

controls to ensure that the food did not interfere with the amylase kinetics,  

 

 Five cartons were filled with hot soup at approximately 81°C and left upright for 2 

minutes before the cooling tunnel, 

 

 Five cartons were filled with hot soup at approximately 81°C and inverted for 2 minutes 

before being stood upright and passed through the cooling tunnel,  

 

 Five cartons were filled with hot soup at approximately 81°C and inverted for 5 minutes 

before being stood upright and passed through the cooling tunnel.   

 

Attaching the TTI tubes to the inside surfaces of pre-erected cartons proved easy. A greater 

difficulty was in putting the cartons back into the filler so they could be filled with hot soup. 

This required the filler to be stopped while unfilled cartons were removed and replaced by 

pre-erected cartons containing the TTI tubes. Fillers work best when the belt keeps moving 

and so this operation was not without carton damage; four cartons were damaged when the 

filler nozzle did not detect the cartons as they travelled within the filler and so the cartons 

were filled incorrectly. These cartons were not used for the analysis. Thus, sixteen of the 

twenty cartons containing a TTI tube were filled correctly.  

 

Table 3.6 shows the P-values from the TTI tubes, calculated from the initial and final amylase 

activities according to Equation 1.9. Activities were measured using a colorimeter. Initial rate 

of amylase activity was 0.00463 s
-1

.  Average P-values (in minutes) for the three different 

groups of TTIs were 3.4 for the standard process, 1.9 when inverted for 2 minutes, and 6.6 

when inverted for 5 minutes before cooling. 

 

P-value results from the TTI tubes showed that not all experiments achieved a Listeria kill of 

2 minutes at 70°C.  The process where the TTIs were inverted for 5 minutes gave P-values 

approximately double that of the standard process without inversion.  Cartons inverted for 2 

minutes achieved lower P-values than the standard process; however, this may have been due 
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to a slightly lower fill temperature. Even a few degrees Celsius difference in fill temperature 

can make a big difference in P-value. For example, lethal rate calculations using Equation 2.2 

show that a 0.5°C change from the reference temperature of 70°C results in P-values ranging 

from 1.71 to 2.33 minutes, for a 2 minutes hold time. 

 

 

Table 3.6: P-values for TTI tubes attached to inside surfaces of soup cartons 

and hot-filled with soup. D70 was 8.4 minutes and z was 8.9°C. 

 

 

Process 

Carton 

Number 

P-value 

(minutes) 

 

Standard – no inversion 1 3.2 

Standard – no inversion 2 2.9 

Standard – no inversion 3 2.9 

Standard – no inversion 4 4.4 

   

Invert for 2 minutes 1 0.3 

Invert for 2 minutes 2 0.1 

Invert for 2 minutes 3 5.0 

Invert for 2 minutes 4 2.2 

   

Invert for 5 minutes 1 7.4 

Invert for 5 minutes 2 6.5 

Invert for 5 minutes 3 5.8 

 

 

Results from this trial showed that inversion was important in enabling the headspace and 

carton surfaces to achieve pasteurisation.  Control of fill temperature was also critical, and 

probably explained why two minutes inversion did not result in P-values greater than 2 

minutes at 70°C. It may not always be necessary to carry out headspace P-value work on 

production filling equipment. In the trials reported here, fill temperature was not controlled 

but instead it relied on the hot soup retaining its heat after transfer from the pasteurisation 
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vessel at 90°C.  Experiments to evaluate filling conditions such as fill temperature and 

inversion times can be done in a laboratory situation where fill temperature can be controlled. 

TTI tubes were demonstrated as an ideal measurement system for evaluating P-values on 

surfaces. 

 

3.6.2 Top-up pasteurisation requirements after filling a high acid sauce into plastic 

pots 

 

The aim of this experiment was to investigate if a top-up pasteurisation process was necessary 

after filling and sealing of 100 g plastic pots with a high acid sauce.  The present thermal 

process used a water spray tunnel to provide a top-up pasteurisation for the headspace and pot 

surfaces following a hot fill.  The sauce received its pasteurisation in the cooking vessels 

before being transferred to the filling equipment.   

 

A minimum of 70°C for 2 minutes was considered to be the pot surface target because of heat 

resistant strains of E. coli and Listeria monocytogenes (aerobic pathogens) that could survive 

and grow in low pH products such as these sauces (CCFRA, 1992). Two different types of 

TTIs were used in order to extend the TTI measurement range. BAA70 and BAA85 TTIs 

were prepared as described in Chapter 2 by encapsulating 20 L of amylase inside TTI tubes. 

Kinetics of destruction by heat were represented by decimal reduction times (DT value) for 

BAA85 at 85°C of 8.9 minutes and a z-value of 9.4°C, and for BAA70 a DT value at 70°C of 

8.4 minutes and a z-value of 8.9°C.  BAA85 TTIs were kept chilled in water before and after 

the process, while the BAA70 TTIs were frozen in acetate buffer before and after the process.   

 

P-values on the surfaces of small plastic pots were not easy to measure because of the low 

heat capacity of the 100g filled packs compared with that of datalogger systems designed to 

go in the packs.  TTIs presented an opportunity to measure P-values without interfering with 

the batch-continuous process.  

 

Combinations of hold time after filling, inversion time and cooling time are given in Table 

3.7.  TTIs were stuck in two positions using a silicone sealant: just below the rim (position 

thought to give rise in the lowest P-value) and at the bottom rim of the small 100g plastic pot.  

BAA70 TTI tubes were used at three different fill temperatures (75, 80 and 85°C) and BAA85 
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TTI tubes at only 85°C.  Four different types of inversion were investigated, with all 

experiments done using duplicate TTI tubes. 

 

Experience from the first BAA70 trial, reported above, suggested that control of fill 

temperature needed to improve. Filled pots of sauce were heated up in a water bath to 

simulate the different fill temperatures, so that initial sauce temperature was controlled to the 

values required for the experimental plan and not dictated by production conditions.  When at 

the desired temperature, the pots of sauce were opened and the sauce decanted into the pots 

that already contained the TTI tubes in position.  These pots were put back on the production 

line to be lidded.   

 

Inversion timing started immediately after the pots were lidded. After the inversion time had 

expired, a bucket of cold water was used to cool the pots in a similar way to the continuous 

spray cooler.  Total cooling time was 7 minutes, resulting in cooling for 5 minutes for all the 

pots, except for the BAA85 TTI at 85°C, which received a cooling time of 3 minutes.  The 

pots were opened when cooled below approximately 50°C and the TTIs removed.  

 

 

Table 3.7: Combinations of variables used in setting up the experiment to evaluate 

headspace and surface pasteurisation 

 

 
BAA70 TTI BAA85 TTI 

75°C fill 80°C fill 85°C fill 85°C fill 

Fill, hold 0 s 

Invert, hold 120 s 

75/0 80/0 85/0 85/0 

Fill, hold 30 s 

Invert, hold 90 s 

75/30 80/30 85/30 85/30 

Fill, hold 60s 

Invert, hold 60 s 

75/60 80/60 85/60 85/60 

Fill, hold 120 s 

Invert, hold 120 s 

75/120 80/120 85/120 85/120 
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P-values measured from the TTI tubes are given in Table 3.8.  BAA70 TTIs in pots filled at 

75°C showed almost no change in activity in the amylase, resulting in all P-values less than 

1.1 minutes.  For a 75°C fill, the different inversion processes had minimal effect on the P-

values.  P-value results for the BAA70 TTIs in pots filled at 80°C showed the same pattern, 

with the highest P-value of 0.7 minutes, but most TTIs showed no measurable change in 

activity.  BAA70 TTIs in pots filled at 85°C showed higher P-values on average, with a 

maximum value of 3.3 minutes. BAA85 TTIs filled at 85°C showed very similar results when 

the P-values were converted to a reference temperature of 70°C, with little change in amylase 

activity.  

 

 

Table 3.8: P-values obtained from the TTI trials to evaluate different fill temperatures 

and inversion times for a 100g pot of hot filled sauce 

 

BAA70 Fill at 75°C Top Bottom Top Bottom Top Bottom Top Bottom

Sample 1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.2

Sample 2 0.3 0.0 0.0 0.3 0.0 0.6 0.0 0.0

BAA70 Fill at 80°C Top Bottom Top Bottom Top Bottom Top Bottom

Sample 1 0.0 0.5 0.0 0.2 0.0 0.0 0.4 0.7

Sample 2 0.0 0.0 0.0 - 0.7 0.1 0.4 0.0

BAA70 Fill at 85°C Top Bottom Top Bottom Top Bottom Top Bottom

Sample 1 0.7 1.9 0.1 1.2 1.0 0.1 1.3 1.2

Sample 2 0.8 - 0.0 1.8 2.2 0.0 1.4 3.3

BAA85 Fill at 85°C Top Bottom Top Bottom Top Bottom Top Bottom

Sample 1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 3.8
Sample 2 1.5 0.3 0.0 0.0 - - 0.0 -

P-values from Masterfoods Dolmio Sauces

Hold 2mins, 

invert 2mins, 

3mins cooling

Hold 0mins, 

invert 2mins, 

5mins cooling

Hold 30secs, 

invert 90secs, 

5mins cooling

Hold 1mins, 

invert 1mins, 

5mins cooling

 

 

 

An explanation for these low P-value results may relate to the small volume of sauce in the 

100 g pot when compared with the large surface area (pot diameter is 10 cm). This is likely to 

cause the sauce surface to cool quickly.  The heat capacity of the sauce is not sufficient to 

maintain the high sauce temperature for long enough to pasteurise the lidding material.   
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These results suggested that a fill temperature higher than 85°C was required to obtain P-

values sufficient to avoid the need for a top-up pasteurisation.  It may not be possible for the 

sauce in this small pot to contain sufficient heat to pasteurise the surfaces without a top-up 

pasteurisation if the present fill temperatures are maintained. 

 

Working with controlled fill temperature and inversion conditions made this TTI trial easier to 

manage than the previous one in a production filling environment. Results for P-values were 

equally valid and gave clear indication of what the company needed to do to pasteurise the pot 

lidding material. 

 

3.6.3  Headspace pasteurisation in mini jam jars 

 

Mini jam jars (15g) are used for food service applications, for example in motorway service 

stations and hotels. Issues have arisen in commercial practice whereby surface spoilage of the 

jam had occurred and so a TTI trial was set up to find out whether low cap surface P-values 

were the reason. Heat capacity concerns with the jam and the glass containers were suspected 

of causing low surface temperatures that allowed sporadic outbreaks of spoilage.  

 

The aim of this experiment was to evaluate the surface pasteurisation process following hot-

filling and capping, by measuring P-values in the headspace of small glass jars. 

Thermocouples could not be used and so TTIs provided the opportunity to measure P-values 

without interfering with the capping equipment. A minimum of 70°C for 2.1 minutes was 

considered to be the safety target to achieve a minimum of six log-reductions in the 

ascospores of heat resistant ascospores of Saccharomyces cerevisiae yeast (CCFRA, 2006). 

This microorganism can thrive in high acid foods, particularly fruit products such as jams. 

 

Thirty TTIs were used on strawberry mini jam jars.  TTIs were prepared by encapsulating 20 

L of BAA70 inside TTI tubes, as described in Chapter 2.  TTI tubes were positioned in the 

following locations: 

 

 Ten TTIs were attached to the underside of the caps of ten jars using silicone sealant 

 Ten TTIs were placed in the bottom of the jars 

 Five TTIs were floated on the jam surface after filling 
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 Five TTIs were stuck to the inside rim of the jar so they were half in the jam 

 

The jam temperature in the preparation vessel before filling was 78.7°C on the day of the 

trials, but since it was filled into unheated jars there was potential for it to drop quickly.  The 

jars containing TTIs were filled and capped under production conditions. These included a 

short raining water section immediately post-capping followed by cooling in cold raining 

water, and drying with air jets. Temperature of the raining water was set at 70°C with a 

duration in which the jars were enclosed by the water of less than one minute. 

 

TTI tubes analysed from the bottom of the mini jars showed that no measurable P-value was 

achieved.  It was likely that this was due to the jam being filled into cold jars, which was a 

situation that occurred on occasion, particularly in the mornings during winter.  TTI tubes 

stuck to the underside of the caps showed low P-values, although still less than 2.1 minutes at 

70°C.  This was a slightly increased level from the TTIs at the jar bottom, and likely to have 

been a result of the high temperature of the raining water on the jars after capping.  TTI tubes 

floated on the jam surface and stuck around the rim of the jar showed low P-values.  Table 3.9 

presents the P-values from all of the locations. 

 

These low P-value results explained why sporadic issues can occur with moulds on the 

product surfaces. P-values from the TTI tubes were lower than the target process of 2.1 

minutes at 70°C and therefore there will be survival of yeast and mould ascospores on 

occasion. This occurred for similar reasons to those for the high acid sauce hot-filled into 

plastic pots, in that there was insufficient heat capacity within the product to effect a 

pasteurisation of the surfaces. 

 

This TTI trial proved successful and easy to implement; with all of the TTIs stuck with 

sealant to the lids or floated on the jam surface remaining in position. P-value results showed 

clear reasons why sporadic mould occurred on the jam surfaces. 
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Table 3.9: P-values obtained from the headspace and surfaces of mini jam jars when 

hot-filled with strawberry jam at 78.7°C 

 

 

Process 

Jar 

No. 

P-value 

(minutes) 

 

  

Process 

Jar 

No. 

P-value 

(minutes) 

 

Bottom of the jar 1 0.0  Underside of the cap 1 0.6 

Bottom of the jar 2 0.0  Underside of the cap 2 0.3 

Bottom of the jar 3 0.0  Underside of the cap 3 1.3 

Bottom of the jar 4 0.0  Underside of the cap 4 1.5 

Bottom of the jar 5 0.0  Underside of the cap 5 1.6 

Bottom of the jar 6 0.0  Underside of the cap 6 1.2 

Bottom of the jar 7 0.0  Underside of the cap 7 1.3 

Bottom of the jar 8 0.0  Underside of the cap 8 1.6 

Bottom of the jar 9 0.0  Underside of the cap 9 0.3 

Bottom of the jar 10 0.0  Underside of the cap 10 1.3 

       

Rim of the jar 1 0.3  Surface of the jam 1 1.3 

Rim of the jar 2 0.1  Surface of the jam 2 0.4 

Rim of the jar 3 0.3  Surface of the jam 3 0.0 

Rim of the jar 4 0.0  Surface of the jam 4 0.9 

Rim of the jar 5 0.1  Surface of the jam 5 0.4 

 

  

It is suggested that to prevent mould issues, a number of options were available: 

 

 Cold jars could be heated before filling, as part of the water washing stage, so the 

temperature loss in the jam was reduced 

 Jam could be hot-filled at a higher temperature, although this would take longer to heat up 

and might cause quality problems 

 A top-up pasteurisation tunnel using raining water between 70 and 75°C could be used 
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3.6.4  Pasteurisation in baked mushroom quiches 

 

Taking temperature measurements in a product that changes phase from liquid to solid during 

cooking is a difficult task. This is exacerbated if the process involves a continuous cooking 

operation.  Ready-to-eat quiches are now a popular cooked product sold in chilled cabinets 

with short shelf lives. They are made with liquid egg fillings in an open pastry case, in which 

the egg proteins set during the process and in doing so cause a change of phase from liquid to 

solid.  Positioning temperature probes in the centre of the fillings and holding them in place as 

the quiche travels along the belt of a continuous oven is not possible.  Small TTI tubes, 

however, can be placed in the pastry base and will stay in the correct position throughout the 

process.  This method was used to assess the safety of a new quiche product.  

 

For egg products, there is a risk of Salmonella survival through the thermal process and 

subsequent growth during the shelf life, and so the target process is to exceed 70°C for 2 

minutes (CCFRA, 1992).  

 

The aim of this TTI trial was to measure P-values with the BAA70 TTIs for this complex 

product. Twenty BAA70 TTI tubes were used in ten mushroom quiches, two per quiche.  In 

each quiche, one TTI was placed in the centre of the uncooked quiche and one TTI at the 

edge.  The quiches were put on mesh trays onto the belt of a continuous oven set at 210°C, 

and the quiches were in the oven for approximately 25 minutes.  Once cooked, the quiches 

passed through a cooling tunnel for 10 minutes before the trays were removed by hand and 

placed in a blast chiller for 25 minutes. The TTI tubes were removed from the quiches at 

approximately 26°C when they were cool enough to handle. 

 

Table 3.10 presents the P-values calculated from the TTIs. All of the cooked quiches 

containing TTIs received sufficient pasteurisation to exceed 70°C for 2 minutes.  The centres 

of the quiches had P-values slightly lower than at the edge, which was not surprising because 

the centre was the expected cold spot.   
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Table 3.10: P-values measured in the centre and edge of mushroom quiches. 

D70 was 8.4 minutes and z was 8.9°C. 

 

Quiche 

Number 

Position P-value 

(minutes) 

Position P-value 

(minutes) 

 

1 Centre 4.9 Edge 13.9 

2 Centre 9.8 Edge 13.9 

3 Centre 12.8 Edge 15.4 

4 Centre 10.3 Edge 14.5 

5 Centre 11.1 Edge 13.9 

6 Centre 10.5 Edge 13.6 

7 Centre 16.7 Edge 16.5 

8 Centre 13.2 Edge 18.7 

9 Centre 16.7 Edge 13.8 

10 Centre 16.7 Edge 12.6 

 

 

P-value results from the quiches were all greater than the target of 2 minutes at 70°C, which 

confirmed that the oven process was adequate. The most challenging part of this continuous 

oven trial was to find the quiches in which the TTI tubes were placed. This was achieved by 

sectioning a small quantity of quiches on wire mesh racks that travelled through the oven 

together. Quiche packing density was kept the same as with the rest of the batch otherwise 

there might have been questions about the heat transfer conditions. 

 

 

3.7  Conclusions from mild pasteurisation BAA70 TTI trials 

 

BAA70 at 0.5 mg/mL in acetate buffer provided at TTI system that was ideal for measuring 

P-values with mild pasteurisation processes. A D70-value of 8.4 minutes and a z-value of 

8.9°C were calculated from the kinetic experiments in the water bath.  Slightly different 

values were calculated from silicone oil experiments and this was thought to be due to water 

or acetate migration through the tubing walls. This was an interesting finding that had 
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implications for handling and storage of the other TTI systems based on Tris buffer. D-value 

results from the water bath were used because they represented a medium similar to an actual 

food product containing a high percentage of water.  

 

The upper limit of P-values that could be measured with the BAA70 TTI depended on the 

sensitivity of the amylase assay method. It was possible to measure P-values up to 16 minutes 

at 70°C if a colorimeter was used for the assays, and up to 25 minutes at 70°C if a 

spectrophotometer was used. Most heat treatments for products that were appropriate for 

testing with the BAA70 TTI used a minimum process of 70°C for 2 minutes, but actually 

achieved much more than this. Typical processes were often 6-10 minutes at 70°C, which 

enabled the BAA70 TTI to be operated within the middle of its range, and therefore at the 

highest accuracy levels. 

 

Chilled storage of TTIs for up to 14 days was found acceptable but longer storage time 

enabled microbial growth to occur in the acetate buffer. Storage experiments showed that the 

BAA70 TTI tubes were best stored in the freezer for longest shelf life.  This was found to be 

suitable for either the unprocessed or processed TTI tubes. This information suggested that 

frozen TTI tubes could be transported to and from the site of an industrial trial without either 

(i) the concern of amylase breakdown or (ii) microorganism growth in the buffer solutions. 

This finding was invaluable for enhancing the merit of TTIs as a method for validating 

process values in food manufacturing operations. 

 

Storage of filled TTI tubes in acetate buffer was essential for BAA70 TTIs in order to prevent 

molecular migration through the silicone tubing. This result was also applied to the Tris 

buffered TTIs so that consistency was assured when using a TTI to measure an industrial 

process value. 

 

Results obtained from industry trials showed that the BAA70 TTI could be used with great 

success to evaluate headspace and surface pasteurisation in various containers and products. 

The TTI method is one that a company could adopt easily for QA/QC checks, which are 

common practice with short shelf life food products (DoH, 1989). BAA70 TTI tubes can be 

frozen in small numbers, for example 5-10 tubes, sufficient for such a P-value check. Analysis 

of the amylase activity can be carried with a colorimeter on site or sent back to a laboratory 

for the spectrophotometer assay to be done.
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CHAPTER 4: CASE STUDIES OF TTI APPLICATIONS TO FOOD PROCESSES 

 

 

„Anyone who has never made a mistake has never tried anything new‟ 

Albert Einstein 

 

 

Previous experimental work in this thesis has described TTIs that have been used in relatively 

simple batch processes, such as the measurement of pasteurisation at the surfaces of food 

packaging or in the centre of a food product. Here the work is extended to more complex 

processes in which the food or the package „flows‟ during its thermal treatment. Measurement 

of pasteurisation values (P-values) for flowing foods demands TTIs that can move with the 

food or package without interference with the process or measurements.  

 

The objectives of the work reported in this chapter were to develop and apply the amylase 

TTIs (as described in Chapter 2) to estimate P-values achieved at the centre of moving fruit 

pieces. A temperature sensor is the easiest method by which a P-value calculation can be 

undertaken, however, in each of the case studies described here the use of temperature 

measurements were not possible. Each of the different types of processes presented its own 

challenges for the methods that can be used to obtain validation data. These comprised semi-

batch processes in which fruit products were either (i) heated in a batch vessel and cooled in a 

heat exchanger, or (ii) heated in a continuous flow system and cooled in the packs. The trials 

also included fully continuous flow processes in which both heating and cooling were 

achieved using heat exchangers. Some of the challenges facing the TTI applications are 

described. 

 

1. Fruit pasteurised in a mixing vessel requires agitation to ensure the fruit makes good 

contact with the heated surfaces. Fruit particles follow undefined pathways within the 

vessel and so any measurement must be self-contained within a particle. Monitoring of the 

batch temperature can only be achieved using a hand held probe dipped into the fruit, with 

the agitator off, and moved around until the lowest temperature is measured. Very large 
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temperature differences (up to 30°C) can be measured within these types of vessels if the 

product viscosity is high. 

 

2. A tubular heat exchanger contains many tubes in series that raise the liquid to a set 

temperature, which is followed by a „constant‟ temperature holding section. Food safety 

measurements assume that the thermal treatment of a product occurs within this holding 

tube (CCFRA, 1986 and 2007). Monitoring of the product temperature is achieved with a 

temperature probe at the holding tube exit. It is assumed that under laminar flow 

conditions the fastest moving particle can travel at twice the average speed, and so the 

hold tube length needs to be doubled (from that calculated with the flowrate and tube 

diameter). 

 

3. An ohmic column works in a similar way to a tubular heat exchanger except that the 

heating tube contains a number of electrodes to raise the product temperature by the 

passage of electric current. Ohmic heating is a relatively new technology described later in 

this chapter (section 4.5). Monitoring of the product temperature is achieved with a 

temperature probe at the holding tube entrance because the particles release their energy to 

the liquid along the holding tube and so the exit temperature is nearly always higher than 

the entrance. The same assumptions are applied for laminar flow and so the calculated 

hold tube length is doubled. 

 

4. In a hot-filled Pergal bag, heat from the product must be sufficient to pasteurise the inside 

bag surfaces. Access with temperature probes to the inside is not permitted and so a self-

contained measurement device attached to the surfaces must be used. This is further 

complicated by the long distances required to move a rack of Pergal bags from the filling 

room to the chilled stores and then into despatch when cooled. 

 

 

4.1  Calculation of P-values with TTIs 

 

P-values estimated with TTIs are calculated from the initial and final amylase activities using 

Equation 4.1. These activities are measured from amylase solutions extracted from the TTIs, 

which are diluted with buffer solution and assayed using an amylase reagent such as that from 

Randox. Chapter 3 details the various assay procedures.  
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where, Afinal is the final amylase activity after a specific time-temperature history, s
-1

 

 Ainitial is the initial amylase activity, s
-1

 

 DT is the amylase decimal reduction time at the reference temperature (T), minutes 

 

However, if a P-value is calculated from temperature measurements, the z-value is used in the 

calculation (Bigelow et al., 1920). In order that an amylase TTI system can be applied to 

estimate microbiological log reductions, it is essential that the z-value for microbiological 

destruction and for amylase structure breakdown are similar. Equation 4.2 presents the lethal 

rate equation used to calculate a P-value, which integrates the time and temperature effect of a 

thermal process. 
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where, Tref is the reference temperature that must be the same as that used in calculating the 

DT-value in Equation 4.1, °C 

T(t) is the food product temperature that changes with time (t), °C 

z is the kinetic factor, °C 

 

P-values calculated with Equations 4.1 and 4.2 will be the same providing that first order 

death kinetics are appropriate to both microbiological and amylase breakdown by heat, and 

specifically both systems are typified by the same z-value. 

 

4.1.1  Microbiological process targets 

 

All of the fruit products used for the case studies presented here contained fruit acids, which 

made them inherently acidic. Microorganism such as mesophilic strains of C. botulinum are 

unable to grow below pH values of 4.5 (DoH, 1994) or 4.6 (Stumbo, 1965). Of concern for 

the shelf stability for fruit products are yeast and moulds that are able to thrive in acidic 
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conditions. Some of these can produce heat resistance ascospores that are produced as part of 

the growth cycle but intended to enable the fungi to survive more hostile conditions. Yeast 

ascospores are the target microbial species for fruit products with pH values below 3.7.  

 

A typical thermal process sufficient to reduce the ascospore numbers by six log reductions is 

10 minutes at 85°C (CCFRA, 1992). This was the target process used for all of the fruit case 

studies. It is generally accepted that a six log reduction in microorganisms is acceptable for a 

pasteurisation process because of the presence of a hurdle to preventing growth of 

microorganisms. In these fruit products is the high acid conditions that prevent any surviving 

ascospores from germinating. Equation 4.3 illustrates how the P-value target is calculated. 

 

 
final
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T

N

N
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where, Nfinal is the final number of microorganisms after a specific time-temperature history 

 Ninitial is the initial number of microorganisms 

 DT is the microorganism decimal reduction time at the reference temperature (T), 

minutes 

 

Equations 4.1, 4.2 and 4.3 should provide the same calculated P-value providing that the DT-

values for both amylase and microorganism are quoted at the reference temperature (Tref) and 

the z-value for both amylase and microorganism are the same.  

 

 

4.2  Experimental TTI trials on fruit products 

 

Eight pieces of work are discussed in detail to describe the development and application of the 

TTI method. These took place in sequence over a period of 36 months, using the processing 

facilities at Kerry Aptunion (Fruit Preparations) in Okehampton for each trial. Significant TTI 

method development occurred during this sequence of trials. Each trial presented its own set 

of dificulties. 
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The first three trials worked with batch mixing vessels and were responsible for improving the 

techniques described in Chapter 2 for making TTI particles with sufficient strength to survive 

high shear processes. These trials were: 

 

1. 400 kg batch of diced strawberries processed in a 1,000 kg stirred vessel 

 

2. 500 and 430 kg batches of pineapple & passion fruit processed in a 1,000 kg stirred vessel 

 

3. 325 kg batch of apricot processed in a 1,000 kg stirred vessel 

 

The next five trials worked with continuous heating processes, which required the TTI 

particle densities to match closely those of the fruit particles. Methods for obtaining correct 

TTI particle densities are also described in Chapter 2. Improvements in techniques for 

recovering TTI particles from continuous processes were also investigated. These trials were: 

 

4. 1,000 kg batch of pear & toffee processed in a 22 diameter tubular heat exchanger  

 

5. 250 kg batch of whole strawberries processed in a 75 kW ohmic column 

 

6. 850 kg batch of blackcurrants and 790 kg of diced pineapple processed in a 75 kW ohmic 

column.  

 

7. 400 kg batch of diced strawberries processed in a 75 kW ohmic column. 

 

8. Two 850 kg batches of nectarine & orange processed in a 75 kW ohmic column, hot-filled 

into 8.5 kg plastic bags 

 

First attempts at incorporating TTI particles into a food process, as described in case 1, 

resulted in about 25% of TTI particle break up and about 75% recovery of TTIs at the end of 

the thermal processing step. By the end of the last trials, as described in case 8, TTI break up 

was 0% and recovery at 100% or very close to it (but always with a reason if <100%). 

Individual findings are described with each case study to build up an evolution sequence for 

the improvements of TTI applications. Table 4.1 presents an overview of the key 

experimental criteria for each of these trials.
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Table 4.1: Experimental details for the eight fruit product trials. Key to fruit 

descriptions: DS = Diced Strawberry, P&P = Pineapple and Passion Fruit, A = Apricot, 

P&T = Pear and Toffee, WS = Whole Strawberries, B = Blackcurrants, DP = Diced 

Pineapple, N&O = Nectarine and Orange. Tube* means the TTI tube was inserted 

directly into a whole strawberry. 

 

Trial number 1 2 3 4 5 6 7 8 

Fruit description DS P&P P&P A  P&T WS B DP DS N&O 

Heating type vessel vessel vessel vessel T.H.E ohmic ohmic ohmic ohmic ohmic 

Batch weight (kg) 400 500 430 325 1,000 250 700 650 400 850 

Product pH 

 

3.3-

3.8 

3.2-

3.5 

3.2-

3.5 

3.3-

3.8 

<3.8 3.3-

3.8 

<3.8 <3.8 3.3-

3.8 

3.5 

Fruit particle size 

(mm) 

12 

 

12 12 17 12 - 10 12 12 12 

TTI particle size 

(mm) 

10 10 10 14 10 - 8 10 10 10 

TTI geometry cube cube cube cube cube tube* sphere cube cube cube 

Number of TTIs 

used 

12 75 45 45 70 15 44 43 110 60 

Number of TTIs 

recovered 

10 71 45 43 69 13 29 43 110 59 

Number of P-

values measured 

10 21 45 43 69 12 29 43 110 59 

 

 

All of the food processes described in the following sections contained batch-continuous 

components that hitherto created experimental difficulties in measuring fruit particle P-values. 

Thus, most of these fruit processes in a mixing vessel or flow system could not be measured 

with wire-based systems such as thermocouples or even with self-contained dataloggers. Prior 
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to the use of TTIs to measure P-values for the processes, the process values were achieved 

using temperature sensors that measured the liquid temperature surrounding the fruit particles. 

So that food safety was assured, hold times at these temperatures were deliberately extended 

to 90°C for 5 minutes to account for thermal conduction into the food particles. This resulted 

in fruit products that were thermally processed for longer than was required. 

 

TTI data that represented the pasteurisation given to the core of the food particles provided 

invaluable data for measuring the achieved P-values and for conducting process optimisation 

studies. 

 

4.2.1  Description of the types of processes 

 

All of the fruit processes described in this chapter contained three common parts: 

 

 a batch mixing vessel where the „raw‟ ingredients were prepared before they were ready 

for transfer via a positive displacement pump to the thermal processing step, 

 either heated in the batch mixing vessel or in a continuous flow system, 

 a filling system using either a stainless steel tanks or a plastic bags to contain the cooled 

fruit. 

 

P-value results that were representative of the fruit pieces had to be taken correctly, otherwise 

incorrect conclusions could be drawn on the microbiological condition of the processed fruit. 

Each part of the process system contained its own sets of challenges for the TTI methods, as 

described in the subsequent sections.  

 

4.2.2  Introducing TTI particles into batch mixing vessels 

 

The first challenge was to introduce the TTI particles into the fruit products so that they were 

distributed evenly throughout the batch. This was important because of the differences in fruit 

temperature within the vessel, depending on its relative position to the heated surfaces. By 

achieving a random distribution of TTI particles in the batch it would be expected that the 

distribution of P-values from the TTIs would be representative of that in the actual fruit 

pieces.  
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Figures 4.1 and 4.2 illustrate the system, common to all of the fruit trials, that was used in the 

mixing vessels for preparing the ingredients and introducing the TTI particles to the mixture. 

The 1,000 kg cylindrical vessels (see Figure 4.1) contained a hemispherical base with 

horizontal scraped surface agitation. TTI particles were added to the fruit product in the 

vessels at the stage when the mixing was at its most vigorous (see Figure 4.2). This ensured 

the TTI particles were distributed evenly in the batch. Figure 4.2 shows the surface of an 

apricot mixture showing high agitation, at the time when the TTI particles were added; this 

occurred when the fruit level was below the central agitator shaft. This mixture preparation 

method was also used for the tubular heat exchanger trials in which a the TTI particles were 

required to enter the exchanger randomly and, in doing so, experience the range of minor 

time-temperature fluctuations that is natural for continuous flow systems. 

 

A different system was employed with the ohmic heater trials because of the need to 

investigate a number of process conditions with one fruit batch. Typical factory settings used 

the 75 kW ohmic heater at a throughput of 750 kg.h
-1

. Process optimisation work on the 

ohmic heater required TTI particles to be introduced to the same fruit mixture in four batches. 

Pump throughput and current settings on the ohmic column were both changed for each TTI 

batch so that more than one column operating condition could be tested with one batch of fruit 

mixture. Distributing the TTI particles evenly in the feed tank was not an option because the 

TTIs would enter the ohmic column randomly. A random distribution gave no control over 

how many TTI particles passed through the ohmic heater at each flowrate set-point. Instead, 

the TTI particles were dosed directly into the vessel outlet, immediately prior to the stage at 

which the piston pump drew product from the vessel. This was achieved using a 2” diameter 

dosing tube pushed to the tank outlet and the TTI particles were pushed into the outlet using a 

closely fitting inner tube. This ensured that a group of marked TTI particles entered the ohmic 

heater at approximately the same time and thus experienced the same process conditions. 

Details of the ohmic heating system are described in section 4.5. 
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Figure 4.1: 1,000 kg vessel being filled with an apricot product. TTI particles were 

added after the fruit was in the vessel. 

 

 

 

Figure 4.2: Apricot fruit product in the vessel with scraped surface agitator switched on. 

TTI particles were introduced at this stage by dropping them into the batch.
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4.2.3  Ensuring streamline flow of TTI particles in continuous heating systems 

 

In this part of the fruit processes there was no control over the position of the TTIs within the 

heating, holding and cooling tubes. Relative buoyancy of the TTIs and fruit pieces was the 

controlling factor, but with the assistance of a high carrier liquid viscosity to maintain the 

TTIs in position (i.e. one in which the relative velocity of the two phases was minimised). 

Considerable effort was taken to construct TTI particles with similar densities to the fruit 

pieces which they were intended to represent. Chapter 2 described the methods used to make 

the TTI particles. Most of the fruit pieces reported in this chapter were some 15-30% less 

dense than the carrier liquids because of the relative sugar content of the liquid. Figure 4.3 

illustrates some examples of TTI particles used to represent fruit pieces in these experiments. 

 

 

 

Figure 4.3: Examples of TTI tubes and particles. 10 mm cubes were used in several 

experiments. Ferrous nuts were included as a method to reject TTIs using metal 

detectors. 

 

 

2.5mm TTI tubes 

16mm TTI spheres 
10mm TTI cubes 
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Thermal and physical property calculations for fruit pieces showed that Sylgard 184 elastomer 

was the material most suited for TTI particle construction. Sylgard 184 density was 1,050 

kg.m
-3

 (Dow Corning data sheet, 1986) which was close to that of the fruit pieces. Sylgard 

184 thermal diffusivity was calculated using heating factor (fh) experiments with large blocks 

of the elastomer and found to be 1.02 x 10
-7

 m
2
.s

-1
 at 20°C (McKenna and Tucker, 1992).  The 

method for measuring heating factors and converting the data to thermal diffusivities followed 

that given in Chapter 2, in which Equations 2.10 and 2.11 were used for the conversions. 

Thermal diffusivity values for Sylgard 184 were similar to those for fruit, which were 1.3 to 

1.4 x 10
-7

 m
2
.s

-1
 at 20°C, taken from measurements with a line source heat probe and from 

literature sources such as George (1990).  

 

Equivalent thermal pathway calculations, also using the fh approach of Equations 2.10 and 

2.11, suggested that TTI particles should be 20-30% smaller than the fruit pieces they were 

intended to represent. This was considered to be sufficiently close so that concerns over 

differences in heat transfer coefficients from fluid to particle (hfp), and in flow pathways were 

minimised. Previous work by Tucker (1999a) had demonstrated that a Sylgard 184 particle 

and a carrot cube (of similar physical size) travelled at similar velocities down a transparent 

2” tube containing carboxymethylcellulose solution. 

 

4.2.4 Recovery of TTI particles from the processes, tanks or bags 

 

Recovery of TTI particles from the fruit mixtures created one of the most difficult challenges. 

This required the TTI particles to be recovered either from 250 to 1,000 kg batches of fruit 

products, or directly from a continuous processing system. Capturing all of the TTIs was 

further complicated by the need to ensure that a TTI particle travelling through the processing 

system either at the start or end of the batch was also found and did not end up in the factory 

drains. Therefore, both fruit product diluted with residual water in the clean pipework and the 

flushing starch and/or water used at the end of the batches had to be collected. 

 

Collecting all of the fruit and TTI particles was relatively simple with some of the processes, 

for example with fruit products which were filled into 8.5 kg Pergal bags. Figure 4.4 shows 

the Pergal filling system in which there was manual control of the start and end of the filling 

procedure. Pergal bags were hot filled to avoid particle breakdown that can occur during 

tubular cooling. Bags were then cooled to a temperature at which the fruit could be handled 
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and then cut open with a knife. The contents of the bags were spread onto sorting trays and 

the TTI particles identified by visual differences. The small weight of fruit enabled each 

Pergal bag to be sorted with ease. 

 

However, dark fruit products, such as blackcurrants, caused difficulties because of the 

intensity of the sauce colour. Poor TTI particle recovery was often a problem with these 

products. Despite issues with dark coloured fruits, transparent Sylgard 184 TTI particles 

showed up easily in most fruit products of a lighter colour. For ease of TTI recovery, the 

approach adopted after one particularly difficult blackcurrant trial was to conduct TTI trials, 

where possible, using lighter coloured fruit. 

 

 

 

Figure 4.4: Pergal bag filling system showing one filled 8.5 kg bag per tray. 

 

 

A greater challenge, because of the increased scale, was to find TTI particles from the bulk 

end product tanks (see Figure 4.5). These tanks are filled aseptically and are transferred by 

lorries to companies manufacturing yoghurt and dessert products. The fruit preparations are 

intermediate products that are mixed into yoghurts or kept separate as fruit corners.  
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Figure 4.5: Bulk tanks used to store pasteurised fruit preparations. 

Each of these tanks holds 800 kg of fruit. 

 

 

These end product tanks typically contained either 400 or 800 kg of product, which required 

considerable time to sort through and find the TTI particles. During the first TTI trials, it was 

common to spend 3-4 hours sorting through the batches. However, with practice, and with 

help from the factory fruit sorting team, this could be done in around 1 hour. Figure 4.6 shows 

an example for an apricot product where the fruit was spread into a mono-layer onto the 

sorting tray.  

 

Various more elaborate methods were proposed, and some tried, in attempts to use technology 

to identify TTI particles within the large volume of fruit. None of these were 100% 

successful. These methods included ultra-violet, metal detection, magnets, X-rays and 

luminescence. Metal detection was one method where significant efforts were made to apply 

this on-line. The primary application for metal detection was to recover TTI particles directly 

from a continuous system where the heating process had to be measured but not that in 

cooling. Cooling would otherwise interfere with the analysis process because of its 
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contribution to pasteurisation. One example of a process in which control of cooling time was 

important was in the mixing vessels in which the pasteurisation was delivered within these 

vessels. Pasteurised product could not be released to filling until the thermal processing target 

was achieved. If a TTI particle travelled through the entire system, it would measure the total 

process, which would include the cooling contribution. A system was required that allowed 

the TTI particles to be located or ejected at the end of heating. One such system was metal 

detection linked with automatic rejection of food containing metal.  

 

Metal detection technology was tried for ejecting TTI particles containing pieces of metal 

using on-line metal detectors. This still remains one of the greatest challenges for TTI work 

although the challenge is more with the detection and rejection mechanisms rather than 

construction of a TTI particle containing metal. Figure 4.3 shows several examples of TTI 

particles that were constructed with metal inserts such as 3-4 mm ferrous bearings or small 

ferrous nuts. The size of metal was sufficient to trigger the metal detector but not too large 

that the TTI particle density could not be brought back to the target by using low density 

foams in the particle construction. The TTI particles were tested on fruit products at the 

Okehampton factory but also at different food manufacturing sites with flowing meat products 

such as pie fillings.  

 

Several technical issues were identified with using a metal detection system for locating and 

ejecting TTI particles:  

 

 The first was in using sufficient metal to activate the detection sensors without adversely 

affecting the TTI particle density. The food product reduces the sensitivity of in-line metal 

detectors if the metal is situated in the centre of a pipe and surrounded (insulated) by the 

food. The solutions are either to increase the size of the metal component or to increase 

the detection sensitivity. However, there are some products that cannot operate at high 

levels of sensitivity, for example tomatoes, because of the natural presence of iron 

compounds that activate the sensors too frequently.  

 

 The second was in the setting of the valves so they reject product containing the metal. 

Once a metal detector is activated by the presence of metal in the food, a valve opens after 

a pre-determined time that depends both on (a) the distance between sensor and valve and 

(b) the flowrate. This valve should remain open to allow a quantity of rejected product to 



 111 

go to a collection bin, and the duration should be sufficient that the metal is within this 

product. Both timings must be set correctly. Experiences in factories were that valve 

systems were rarely found to be operating with the correct valve timings for the 

production flowrate. These must be changed each time the plant operates at a different 

flowrate otherwise metal-free product is ejected. 

 

When a metal detection system was set up correctly, it was possible to recover the TTI 

particles by rejection into a collection bin. This provided a much reduced quantity of product 

to sort through, typically 3-5 kg for each rejection. Experience at different factories and with 

different metal detection systems showed that this method could be made to work but took 

time to set up and wasted a volume of product while testing the conditions. Neither time or 

product to test the system were usually available in a factory production situation and so in 

most TTI trials the recovery was done by sorting through products by hand. With practice and 

help from the factory staff, it was possible to sort through a 800 kg batch of fruit product in 

around two hours, with full recovery of TTI particles. Despite the advances in technology, 

hand sorting proved the most reliable method. Recovery of TTI particles by hand improved 

with experience, to the extent that it was rare for a TTI particle to get lost in a trial. 

 

 

 

Figure 4.6: Sorting trays used for spreading fruit products into a mono-layer to aid in 

finding TTI particles. Product shown is an apricot preparation 
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4.3 Application of TTIs to fruit products processed in stirred vessels 

 

4.3.1 Case Study 1: 400 kg batch of diced strawberries processed in a 1,000 kg stirred 

vessel 

 

One of the first commercial tests for the amylase TTI particles was to measure the thermal 

process for a 10-12 mm nominal strawberry fruit preparation containing 40% frozen fruit by 

weight. The target thermal process for high acid fruit products was to achieve at least a 6-log 

reduction in heat resistant mould ascospores and acid-tolerant bacteria. This equated to the 

equivalent process of 5 minutes at 85°C. Chapter 1 contains more details of target 

pasteurisation processes. 

 

The objective of the strawberry trial was to test the integrity of the silicone particles through a 

high shear industrial process and, if successful, to gain a measure of the level of pasteurisation 

achieved. Table 4.2 contains information on the batch sizes and numbers of TTI particles used 

in this and subsequent fruit trials. 

 

Figure 4.7 shows a schematic layout of the fruit processing line at Kerry Aptunion 

(Okehampton). Figures 4.1 and 4.2 are pictures of similar vessels in this factory. Vessel 

capacity was 1,000 kg with a batch size of 400 kg. A small batch was chosen for the TTI trials 

for two reasons; it would heat faster therefore represent „worst case‟, and there was less 

product to sort through when recovering the TTI particles.  

 

The batch was heated from an initial temperature of 15°C to the end temperature of 90°C. The 

steam jacketed vessel (T. Giusti Ltd, Wellingborough) used horizontal scraped surface 

agitation at 15 rpm to minimise fouling. Steam temperature in the jacket was pressure-

regulated at 105°C. Batch heating time was approximately 80 minutes. Once at the 90°C end 

temperature, the batch was held for 5 minutes in the vessel before cooling to 35-45°C in a 5-

pass, 48 mm diameter Tetra Spiraflo (Tetra Pak Processing Components AB, Lund, Sweden). 

Cooling media or the tubular coolers was mains water at 8-12°C. Product flowrate during 

cooling was 1,200 L.h
-1

, resulting in a mean residence time in the cooling tubes of 160 

seconds. Control of fruit product flowrate during cooling was achieved by manual adjustment 

of the speed on a Waukesha circumferential piston pump. This was a positive displacement 

pump with two concave rotors. 
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Figure 4.7: Schematic layout of the fruit processing line used 

for production of two batches of a strawberry fruit product 

 

 

Figure 4.8 (a) shows the heating and holding profile of the carrier liquid, taken by manual 

temperature sampling at the slowest heating positions. These positions were around the 

central shaft where agitation was at a minimum and the distance from the heated surfaces was 

at a maximum. Locating the slowest heating positions was a „hit and miss‟ procedure that 

took several seconds before the appropriate temperature was taken. These temperature 

measurements were done so that the rate of liquid heating could be evaluated and converted to 

a P-value for comparison with P-values measured from TTIs. When fruit batches are 

processed in production conditions, the temperatures are taken less frequently in order to 

minimise heat losses. This enables the vessel lid to be closed for longer times. 
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Figure 4.8: Heating profile of the strawberry carrier liquid, taken by manual 

temperature sampling of the vessel cold spots. (a) time-temperature profile, (b) time-P-

value profile calculated with Tref 85°C and z 9.7°C. Cooling points assumed fruit 

product exited the vessel immediately. 
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The 10 mm amylase particles were retrieved from the 400 kg tank at the end of the process 

using a coarse sieve that allowed the liquid to drain through. 10 of the 12 amylase particles 

were recovered intact at the end of the process, with evidence of particle breakdown found for 

the other two. Amylase solution was extracted from the centre of each of these particles and 

assayed for remaining activity. Results from the assays were converted to P-values using D-

values for reference temperatures of both 80.7 and 85.0°C (see Table 4.2). Two temperatures 

were used because the calibration bath was set at 80.0°C (actually measured at 80.7°C) and 

the reference temperature for destruction of microorganisms for this high acid fruit was 

85.0°C. 

 

 

Table 4.2: P-value results from the amylase trials (in a stirred vessel 

with tubular heat exchanger cooling), for a diced strawberry 

product. Note that the liquid P-value was 111 minutes from Figure 4.8(b). 

 

TTI particle 

number 

Amylase activity 

(min
-1

) 

P-value for D80.7 

(minutes) 

P-value for D85.0 

(minutes) 

 

1 0.003 45.9 17.1 

2 0.011 35.3 13.2 

3 0.011 35.3 13.2 

4 0.007 39.0 14.5 

5 0.005 22.3   8.3 

6 0.054 22.4   8.4 

7 0.003 45.9 17.1 

8 0.003 45.9 17.1 

9 0.002 49.1 18.3 

10 0.003 45.9 17.1 

 

 

Measured particle P-values ranged from 8.3 to 18.3 minutes. A liquid P-value of 111 minutes 

was calculated from the time-temperature information taken at the vessel cold spot and is 

shown in Figure 4.8 (b). Fruit product remaining near the heated walls throughout the process 
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was likely to have received a process considerably greater than at the cold spot. TTI particles 

were free to move within the batch and so will have experienced hot and cold regions during 

the process. Heat transfer efficiency from the vessel wall to the starch-based carrying liquid 

and subsequently to the strawberries cannot be controlled uniformly throughout such batches. 

The end result was a distribution of P-values from 8.3 to 18.3 minutes. This was substantially 

lower than the liquid; this suggests that the particle centres were not at 90°C when steam was 

turned off to the jacket. 

 

The P-value distribution from the TTI particles included a contribution from the continuous 

flow cooling. At the end of the 5 minute hold at 90°C in the vessel, hot product remained in 

the vessel for between 0 and 40 minutes while being pumped through the Tetra Spiraflo 

cooling tubes. Although the product temperature was not maintained at 90°C in the vessel 

during cooling, some product experienced up to 40 minutes extra heating. Batch temperatures 

after the steam was turned off started at 90°C but fell to 70°C in the 40 minutes before the last 

fruit particles entered the cooling tubes. 

 

Two of the silicone particles broke at the join between the two moulded halves and several 

had their corners removed. Improvements to the methods of moulding the particles were made 

following the strawberry trial, to strengthen the silicone particles, and thus recover a greater 

percentage of them intact. This involved a reduction in time between setting of the first part 

silicone in the base of the mould and in pouring the top part. Excess time caused the silicone 

to set too much so the join between parts was a weakness. By allowing the silicone enough 

time for its viscosity to increase sufficiently, but not fully cure, the TTI tube remained in 

position while the top part was poured. This required around 6-8 hours at room temperature or 

2-3 hours at 40°C.  

 

An improved method of encapsulating the amylase solution was developed for all TTI work 

following the strawberry vessel trial. This involved silicone tubes of 2.0 or 2.5 mm diameter 

in which the amylase solution was encapsulated between two elastomer end plugs. This 

formed a high strength TTI tube that could be used as the tube itself or moulded into silicone 

shapes that represented the thermal pathway for a target food particle. Details of this method 

are given in Chapter 2, section 2.3. 
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4.3.2 Case study 2: 500 and 430 kg batches of pineapple & passion fruit processed in a 

1,000 kg stirred vessel 

 

The fruit product for the second TTI trials was a pineapple and passion fruit mixture with 10-

12 mm pineapple cubes. This product was chosen so that the same 10 mm particle moulds 

used a case study 1 could be used but with a greater number of replicate particles. Product 

composition was 26.6 wt% of 10-12 mm pineapple cubes, with various thickeners (0.36 wt% 

pectin, 0.23 wt% LBG, 2.75 wt% starch) and sugar, water, flavourings and colourings. The 

processing method was similar to that for the strawberry fruit preparation. Temperature 

sampling of these batches was not done until they were close to 90°C to avoid losing heat that 

would otherwise increase the batch times.  

 

The objective of the pineapple and passion fruit trials was to use the amylase particle method 

to validate the efficacy of the delivered thermal process. This included contributions in the 

processing vessel during both heating and holding, as well as during cooling in the tubular 

heat exchanger. Batch sizes were chosen to be the lowest that would be run in normal 

production and as such would heat up more rapidly than the typical batches of up to 800 kg. 

Large numbers of amylase particles were chosen so that the distribution of P-values could be 

assessed (see Table 4.1 for number of TTI particles used in the various fruit trials).   

 

To ensure that the TTI P-values represented the worst case values, as required when 

validating the safety of a thermal process (IFTPS, 1995), the cubes were sized to heat more 

slowly than the fruit pieces. This was achieved by calculating the TTI particle dimensions 

using the fh Equations 2.10 and 2.11 and rounding up the fraction to the nearest integer in 

millimetres.  For example, a cube calculated at 9.7 mm was rounded up to 10.0 mm. 

 

In the first pineapple and passion fruit batch, 71 out of 75 TTI particles were recovered intact 

and in the second batch all 45 were recovered. In the first trial, however, the method used for 

sealing the hypodermic entry hole was poor and it was possible to extract 20 L of amylase 

solution from only 21 of the 71 particles. The sealing method was further improved for the 

second batch and all 45 particles retained their amylase solution. Figures 4.9 and 4.10 present 

the distributions of P-values calculated from the reductions in amylase activity with a D85 of 

6.95 minutes. The minimum P-values were 10.1 minutes for the 500 kg batch and 6.0 minutes 

for the 430 kg batch. These compared favourably with the target of 5 minutes at 85°C.  
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Figure 4.9: Distribution of pasteurisation values for the 500 kg batch of 10 mm 

pineapple and passion fruit product, calculated with D85 = 6.95 minutes. 

Sample size 21. Explanation of the graphs is given in Chapter 2 section 2.8. 
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Figure 4.10: Distribution of pasteurisation values for the 430 kg batch of 10 mm 

pineapple and passion fruit product, calculated with D85 = 6.95 minutes. 

Sample size 45. Explanation of the graphs is given in Chapter 2 section 2.8.
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Both P-value distributions showed that the majority of particles were processed to levels of P-

values considerable higher than the target of P 5. Only a small proportion of TTIs resulted in 

P-values towards the lower end of the measured range. When analysed with the Minitab 

statistical package, the two lowest P-values in Figure 4.9 and three lowest in Figure 4.10 were 

identified as outliers from a normally distributed population. However, they are believed to be 

valid measurements of P-values, which may have been caused by the difficulties in mixing 

high viscosity products. It is known that horizontal agitation gives rise to slowest heating 

regions around the central shaft (Mehauden, 2007) and so the three TTIs with low P-values 

may have spent most of their time in these regions. It is likely that just a few TTI particles 

would spend time around one region and so only a few TTI P-values would be expected to be 

low. 

 

Buoyancy was thought to be another of the reasons behind the non-normal distribution and 

particularly responsible for the high P-values. These fruit preparations contained high 

quantities of sugar, which resulted in carrier liquid densities in the range 1,200-1,300 kg.m
-3

 

at 20°C.  Mean TTI particle density was close to 1,050 kg.m
-3

 at 20°C and was unlikely to 

decrease markedly with temperature as with the carrier liquid (because of the reduced thermal 

expansion of the solid silicone materials compared with that of the carrier liquids). Hence, the 

TTI particle buoyancy changed during the process. This change in TTI particle density (and 

buoyancy) was also expected to occur with the fruit pieces, albeit to a lesser extent. Particle 

sedimentation or flotation effects were reduced at low liquid temperatures by the high liquid 

viscosity that restricted particle movement. However, it was likely that many of the TTI 

particles rose towards the surface of the pineapple and passion fruit mixture during the latter 

heating stages in the vessel. If this occurred, these TTI particles would remain in the hot fruit 

for up to 40 minutes while the vessel was emptied, resulting in high P-values for the majority 

of the TTI particles.  Evidence that this did occur was obtained when recovering the TTIs 

from the 800 kg end product tanks. Many of the TTIs were found in the last 50-100 kg of 

fruit, which was filled towards the end of the batch. 

 

4.3.3 Case Study 3: 325 kg batch of apricot processed in a 1,000 kg stirred vessel 

 

Having improved on the method for manufacturing 10 mm amylase particles, a trial was 

conducted to validate the pasteurisation achieved at the centre of a larger fruit piece. The 
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product chosen was an apricot that contained roughly chopped apricot given by the fruit 

suppliers as a nominal 20 mm.  Equation 2.10 was used to calculate an equivalent thermal 

pathway, and so 14 mm TTI particles were construct from the moulds so they heated at a 

similar rate to the 20 mm apricot pieces. 45 TTI particles were added to the batch with five 

retained for unheated controls. 

 

A small batch of 325 kg was used so the rate of heating represented the fastest that was likely 

to occur in normal production; this resulted in the minimum levels of pasteurisation for the 

same end batch temperature of 90°C. Product composition was 44 wt% of 20 mm apricot, 8.9 

wt% of Clearam CH20 starch thickener added as 1:2 slurry:water, sugar, water, flavourings 

and colourings. Temperature sampling of the processing vessel was done at infrequent 

intervals until the temperature was close to 90°C, to avoid unnecessary heat loss. When 

processed, the product was hot filled into 5 kg Pergal bags directly from the vessel and the 

bags cooled rapidly in a forced convection chiller. TTI particles were recovered from the 

Pergal bags once the fruit product had cooled to a temperature that it could be handled. 

 

Recovery percentage for the TTI particles was good, with 44 of 45 amylase particles 

recovered intact, and one other particle found in two halves. Each intact particle had retained 

its amylase solution, which allowed 44 assays to be completed. This was a satisfactory 

outcome from a process that contained much potential for shear damage to the 14 mm 

amylase particles during the heating, pumping and filling stages. One assay test was 

compromised while extracting the amylase from the TTI particle. Figure 4.11 presents the 

distribution of P-values as measured from a reduction in amylase activity and with a measured 

D85 of 6.95 minutes. The minimum P-value was 9.7 minutes, and with the target being to 

exceed 5 minutes, these results confirmed that the target for this product was achieved.  

 

The shape of the P-value distribution for the apricot product was, once again, not normally 

distributed. There were two reasons proposed for this. Firstly, it was likely that the TTI 

particles were more uniformly distributed throughout the product in the vessel than with the 

previous trials. This was because of the closeness in density of the carrier liquid and silicone 

TTI particles. Both densities were measured at 1,100  50 kg.m
-3

. Artificial sweetener was 

used in the low-sugar apricot product and therefore the carrier liquid density was lower than 

the other high-sugar recipes. Secondly, cooling was performed within Pergal bags rather than 
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in a tubular heat exchanger. This may have resulted in more uniform batch cooling since the 

bags were placed in the chiller once all had been filled. 
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Figure 4.11: Distribution of pasteurisation values for the 325 kg batch of 20 mm apricot, 

calculated with D85 = 6.95 minutes. Sample size 43. Explanation of the graphs is given in 

Chapter 2 section 2.8. 

 

 

4.4 Application of TTIs to fruit products processed through a tubular heat exchanger 

 

Previous TTI trials described above had shown that the TTI method provided P-value data 

that represented measurements from the centre of moving fruit pieces. The next challenge for 

developing the TTI method was to determine the pasteurisation levels achieved in the core of 

12 mm pear pieces heated and cooled in a Tetra Spiraflo tubular heat exchanger. This type of 

measurement had not been attempted with this specific equipment and so the range of P-

values expected was unknown. For this reason, both BAA85 and BLA90 TTIs were used, 

which extended the measurement range from a few minutes at 85°C with BAA85 to almost 
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one hundred minutes with BLA90 (see Chapter 1 for details on D and z information). Target 

P-value for this product was 5 minutes at 85°C, the same as for the previous fruit products, 

and measured at the centre of the fruit pieces. Set-point temperature for controlling the 

process was measured in the liquid phase, and so did not represent a temperature at the centre 

of the pear pieces, which was the critical position for food safety. Therefore, the purpose of 

using the TTIs was to prove that the minimum target process was achieved despite the 

exchanger controls being based on liquid temperatures. 

 

4.4.1 Case Study 4: 1,000 kg batch of pear & toffee processed in a 22 mm diameter 

tubular heat exchanger 

 

A high number of TTI tubes were prepared for this trial so that a distribution of P-values was 

obtained. Hence, 80 silicone tubes of length 8 mm and inside diameter 2.5 mm were prepared: 

40 tubes contained BAA85 and 40 contained BLA90. In order to produce TTI particles that 

were of similar heat transfer behaviour to 12 mm pear cubes, 10 mm cubic moulds were used. 

Chapter 2 describes the physics of estimating the TTI particle sizes. 

 

From each set of TTI particles, 5 were put aside and kept as controls from which the initial 

amylase activity was measured. These controls were taken into the factory so that they 

experienced the same environmental conditions as the TTI particles used to measure process 

values. The remaining 70 TTI particles were incorporated randomly into the feed tank. 

 

A 1,000 kg batch of pear and toffee product was prepared in a 1,000 kg mixing vessel and 

pumped to the 2" tubular heat exchanger at 70°C. Flowrate was 850 kg.h
-1

. The system 

included multiple tubes in series; seven steam-heated tubes, seven insulated holding tubes and 

eleven water-cooled tubes, each of which were 6 m in length (see Figure 4.12). Actual hold 

tube length, inclusive of bends, was 47.0 m, which gave a minimum residence time of 180 

seconds assuming laminar flow and a centreline velocity of twice the mean velocity. Note that 

Reynolds numbers in the hold tube were very low because of the high viscosity and therefore 

the flow was laminar. A set-point of 92°C at the exit from the heaters was used to ensure the 

minimum P-value of 5 minutes at 85°C was achieved at the core of the pear pieces. Hold tube 

exit temperature for the divert valve was set at 88°C in order that the hold tube process was 

greater than 88°C for 3 minutes; this actually achieved a P85-value of 6 minutes (Tref 85°C, z 
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10C°). Controlling the product temperature at the hold tube exit was not possible because of 

the thermal lag created by the volume of product in the holding tubes.  

 

When the mixing vessel was emptied of product, a pigging system was used to recover the 

valuable fruit product through 150 metres of exchanger pipework. The pig was a tightly-

fitting, plastic-coated iron sphere that operated at a constant 6 bar air pressure. This pushed 

the product out of the pipework and minimised wastage.  

 

Amylase
particles

To 800 kg
tanks

Feed
tank

Circumferential
piston pump

70°C

7 heating tubes

7 holding tubes

11 cooling tubes

 

 

Figure 4.12: Schematic diagram of the tubular heat exchanger 

used to process the 12 mm pear and toffee product. 

 

 

On completion of the processing, all 70 TTI particles were recovered from the two tanks of 

processed pear & toffee product. This was done by spreading the pear and toffee mixture over 

stainless steel sorting trays. One TTI particle was found cut into two pieces, presumably by 

one of the solenoid on/off valves, so amylase from this TTI was compromised.  

 

Both BAA85 and BLA90 TTIs were assayed for residual activity. BAA85 TTIs had little 

residual amylase activity; the thermal process must have been greater than the upper 

measurement limit for this TTI. No further analysis was done with the BAA85 TTIs. 

However, BLA90 TTIs provided P-values that were within the measurement range. These are 



 124 

displayed in Figure 4.13. P-value calculations used a D-value of 66.6 minutes at the reference 

temperature of 85°C. Highest P-value was 109 minutes and the minimum P-value was 33 

minutes.  

 

The target to achieve commercial sterility for this product was 5 minutes at 85°C, therefore a 

substantial safety margin existed. This degree of safety margin is typical of industrial 

continuous flow processes for products with particles. This is because process control actions 

must act on sensor information from the carrier liquid, however, the critical position for the 

process is at the centre of the moving particles. In order to allow for the lag in heat conducting 

from the hot liquid to the colder particle centre, generous operating margins are allowed. 

These margins also allow for the distribution of residence times experienced by the particles 

as they flow through 150 metres of 2” pipework.  

 

The frequency distribution for TTI-measured P-values in Figure 4.13 showed that most 

particles received thermal processes within the 50 to 65 minutes range (equivalent to 85°C). 

Mean P-value was 59.6 minutes. P-value distribution was not normally distributed.  

 

The high P-value of 109.7 minutes in Figure 4.13 was likely to have been caused by the 

influence of the pigging operation on cooling behaviour. The plastic pig was propelled 

through the tubes by a constant 6 bar air pressure. Towards the end of the pigging operation 

the back pressure caused by frictional resistance of the product in the tubes decreased. This in 

turn caused the flowrate to increase and the cooling to be less effective. Thus, the product in 

the last few tubes received a reduced amount of cooling and entered the finished product tanks 

at an elevated temperature. Any TTI particles found in this hotter product were likely to have 

received higher levels of pasteurisation than those cooled at the normal flowrates. There was 

one TTI particle with a P-value some 20 minutes greater than the next highest (this was the 

high P-value outlier in Figure 4.13), so it would be reasonable to assume this TTI particle was 

in the last product from the vessel. 
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Figure 4.13: Frequency distribution for 10 mm silicone TTI cubes representing 12 mm 

pear pieces in a pear & toffee fruit preparation, processed in a tubular heat exchanger. 

Sample size 34. Explanation of the graphs is given in Chapter 2 section 2.8. 

 

 

4.5  Application of TTIs to fruit products processed through an ohmic heater 

 

Ohmic heating is a relatively new technology that has struggled to find a market in the food 

industry (CCFRA New Technologies bulletin No. 32, 2006). The only current production 

system in use in the UK is now owned by Kerry Aptunion and used for pasteurising fruit 

products. This application is ideal for ohmic heating because there is a high proportion of 

delicate particle matter in the product and it is suspended in a high viscosity carrier liquid. As 

with other continuous heating and cooling systems, it is difficult to validate the levels of 

pasteurisation achieved at the centre of the moving food pieces. This was a new challenge for 

TTIs. 

 

Ohmic heating is the generation of heat by the passage of alternating electrical current (AC) 

through a body such as food, and has been in use since the nineteenth century.  Other names 
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for this technology include resistance heating, direct resistance heating, Joule heating and 

Electroheating
TM

. Ohmic technology relies on the electrical resistance of the food to generate 

heat (De Alwis and Fryer, 1990a), therefore if the electrical resistances of all components of 

the product are constant then the product heats uniformly. The technology is limited by the 

fact that heating is dependant on the electrical conductivity of the food.  As a consequence, 

materials such as fats, oils and distilled water that are not ionically loaded are not suitable. 

 

Claimed advantages of ohmic heating over conventional heat exchangers can be summarised 

as follows: 

 

 Rapid and uniform heating, 

 Particles can reach higher temperatures than the surrounding liquid, 

 High quality products, 

 Reduced fouling on certain products, 

 Greater energy efficiency than with conventional heat exchangers, 

 Instant switch on and off, 

 Reduced maintenance, 

 Quiet (dependent on type of pumps, etc), 

 Environmentally friendly. 

 

Ohmic heating is not a new principle, in fact, several processes were patented for the use of 

electrical currents to heat pumpable liquids in the 19
th

 Century (de Alwis and Fryer, 1990b; 

Ruan et al, 2004) and it was used for milk pasteurisation in the early 20
th

 Century.  APV 

Baker licensed a continuous ohmic heated developed by the Electricity Council of Great 

Britain with improved electrode material in 1988 (Skudder, 1988). 

 

The principle of ohmic heating is based on passing an alternating electrical current (AC) 

through a system, such as a liquid-particle food product, in which the food presents an 

electrical resistance to the current (De Alwis and Fryer, 1990b).  The rate of heating is 

directly proportional to the square of the electric field strength and the electrical conductivity.  

The electrolyte (e.g. salt) content can be altered to improve the effectiveness of heating 

because conductivity is influenced by the ionic strength.  As the temperature increases, so 

usually does the electrical conductivity, meaning that efficiency of ohmic heating increases at 
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higher temperatures.  This can cause potential problems of over heating, therefore 

sophisticated controls are required on the applied voltage to ensure the temperature of the 

product at the column outlet is controlled.  

 

It is estimated that there are at least 18 commercial plants in operation across Europe, US and 

Japan (Ruan et al, 2004). The real success of this technology has been in the area of fruit and 

vegetable processing, and multiphase products. This is because the rate of heating for particles 

and liquid can be controlled so they heat at the same rate. 

 

One of the main concerns with ohmic heating is how to ensure that the desired scheduled 

process has been delivered. As with other thermal processes, the scheduled process needs to 

be validated. Since ohmic heating is a thermal process, temperature and time are the principal 

critical process factors.  With a continuous flow ohmic heater there are several other factors 

that influence the temperature.  These include the electrical conductivity of the different 

phases, the temperature dependence of the electrical conductivity, the heating device design, 

the fluid motion, residence time distribution (RTD, sometimes referred to as passage time 

distribution, PTD), the thermophysical properties of the food, and electric field strength (Kim 

et al., 1996b; US FDA, 2000).  

 

There are two factors that simplify the procedure of validation; these are (1) the possibility of 

faster heating of the particles having lower electrical conductivity than the fluid and (2) a near 

plug flow behaviour of products with high solid content (Kim et al, 1999). Significant 

research has gone into determining the worst-case scenario (Zhang and Fryer 1993; Sastry and 

Salengke 1998), as unlike conventional heating, the worst case may not be associated with a 

static situation or may be in the liquid rather than the particles.  

 

4.5.1  Case Study 5: 250 kg batch of whole strawberries processed in a 75 kW ohmic 

column  

 

Prior to this TTI work, validation of the thermal process achieved in an ohmic heating system 

used microbiological spore methods (Brown et al., 1984). A feasibility trial was set up to 

determine whether the TTI method could be used to measure P-values for fruit products. Case 

study 5 describes this trial, which was of key importance in making improvements to the TTI 

methods for application to ohmic heating. 
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The 75 kW commercial ohmic heater (APV Ltd, Crawley) used four PTFE lined electrodes 

that gave a capacity of 750 kg.h
-1

 (see Figure 4.14). The product was a 250 kg batch of 

strawberry fruit preparation containing whole strawberries in a high viscosity carrier liquid. 

The holding tube was 3" diameter and 16.4 m in length, with a small vertical rise from inlet to 

outlet to prevent trapped gases from collecting at the low point. At 750 kg.h
-1

 the minimum 

holding tube residence time was calculated at 180 seconds. This assumed the centre tube 

velocity was twice that of the mean velocity; this is the worst case situation for laminar flow 

of a Newtonian liquid. Actual measured particle residence times for holding tube flow with 

fruit products have shown that this is not the case (Kim et al., 1996b; Tucker, 1999a). 

However, the commercial practice is to assume worst case. 

 

Cooling was achieved using a series of 2” diameter water-cooled tubular heat exchangers. A 

gelatinised starch solution made up at the same conductivity as the strawberry fruit 

preparation was pumped through the ohmic column to recover as much of the strawberry 

product from the pipework before diverting to drain. Processed product was filled into a 400 

kg finished product tank at temperatures between 25 and 50°C. 

 

Heating of the strawberries took place via volumetric resistance heating and at a faster rate 

than the surrounding carrier liquid. Evidence for this was the increase in holding tube 

temperature of approximately 5-10°C from inlet to outlet as the particles transferred their heat 

to the surrounding liquid. Heating rate of the solid and liquid components was controlled 

using the electrical conductivity of the liquid, which was measured at around 0.24 S.m
-1

 at 

20°C.  
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Figure 4.14: Schematic diagram of the 75 kW ohmic heater, 

a 16.4 m holding tube and 11 passes of 2” tubular heat exchanger. 

 

 

The objective of the trial was to test the amylase TTIs as a validation method suitable for 

measuring process values with the ohmic process. At this stage in TTI method development, 

the BAA85 solution was encapsulated by injection into trapped air bubbles within Sylgard 

184 compound. This method pre-dates that described in Chapter 2 and was found inferior to 

encapsulating amylase solution within sealed silicone tubes; TTI work subsequent to this 

strawberry trial used the TTI tube method rather than the TTI bubbles. 

 

'Amylase strawberries' were constructed from whole frozen strawberries that had been 

allowed to thaw for one hour before insertion of the silicone-encapsulated amylase. 

Approximately 30-40 L of BAA85 solution was injected into 3 mm diameter silicone 

bubbles held within 5 mm silicone cubes. The silicone cubes were inserted through a hole to 

the centre of the strawberries, and sealed with a calcium alginate gel. Water soluble blue dye 

was allowed to soak into the 'amylase strawberries' for one hour in order that they could be 

identified from whole strawberries in the 250 kg batch of fruit. A total of 15 whole 'amylase 

strawberries' were constructed and added to the 250 kg feed batch. 

 

For the purpose of these trials, the target temperature at the holding tube inlet (ohmic column 

outlet) was manually controlled at 90°C by adjustment of the heat capacity value in the 
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control panel. Normal column operating temperature ranged between 92-95°C. This was 

thought to give rise to a level of over-process in the particles that was above the upper 

measurement range of the BAA85 TTI. Residual amylase activities would be low or zero, and 

so conclusions could not be drawn on process levels unless the column temperature was 

reduced. 

 

Confirmation that the strawberries absorbed electrical energy at a faster rate than the carrier 

liquid was supported by the 10°C rise in holding tube temperature from 90°C at the inlet to 

100°C at the outlet. This rise was caused by particles that heated preferentially to the liquid in 

the column and gave up their heat to the liquid as they flowed along the holding tube (Kim et 

al., 1996 a and b). 

 

Calculation of P-value for the carrier liquid was done on-line within the plant software; using 

Equation 1.10 with the kinetic parameters of a reference temperature of 85°C and a z of 10°C.  

In Equation 1.10, the liquid temperature was taken from the sensor placed at the ohmic 

column outlet (hold tube inlet) and residence time was calculated from flowrate. P-values 

calculated from the software were applicable to the destruction of ascospores of yeasts and 

some medium heat resistant bacteria (CCFRA, 1992a). Target P-value was 5 minutes at 85°C, 

which for convenience was scaled up to an equivalent process at 90°C. For a minimum 

temperature of 90°C at the holding tube inlet, the requirement of an equivalent of 90 seconds 

at 90°C was easily achieved during operation. Most product received at least double the 

minimum P-value due to fluctuations in column temperature from 90 to 92°C. 

 

Of the 15 processed 'amylase strawberries', 12 were recovered intact, with 1 found at the 

product/starch interface and 2 TTI bubbles had separated from their strawberries. Figure 4.15 

presents the 12 individual P-values estimated from reduction in amylase activity and with a 

D90 of 123 seconds. The target equivalent process of 90 seconds at 90°C was exceeded by all 

amylase strawberries. Most TTI P-values were at least double the minimum P-value of 90 

seconds at 90°C (equivalent to 5 minutes at 85°C). Error bars of 12.5% were put on the 

individual TTI particle P-values as shown in Figure 4.15. Chapter 2 describes how these error 

estimates were made. 
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Figure 4.15: TTI P-values for a 250 kg batch of diced strawberry heated through a  

75 kW ohmic column. P-values calculated using D90 = 123 seconds. 

 

 

4.5.2  Case Study 6: 850 kg batch of blackcurrants and 790 kg of diced pineapple 

processed in a 75 kW ohmic column. 

 

Encapsulation of the amylase solution within the silicone particles evolved to the improved 

TTI tube system following the above strawberry trial. Silicone tubes capped with Sylgard 

elastomer proved a more robust method than encapsulating amylase within silicone bubbles; 

the improved TTI tube method is described in Chapter 2. These tubes were the basis for the 

silicone particles that were then made up to represent the thermal and physical properties of 

the fruit pieces. Sylgard 184 elastomer was poured into plastic moulds to make the TTI 

particles. Chapter 2 describes how this was done.  

 

Two trials with firstly a blackcurrant and secondly a pineapple fruit preparation were 

conducted in order to calculate the pasteurisation achieved at the core of the moving fruit 

pieces. Blackcurrants required an 8 mm spherical TTI particle and pineapple cubes required a 

10 mm TTI particle; Table 4.3 shows the details of the two trials. The objective was to 



 132 

measure the P-values achieved at production flowrates, using silicone TTI particles to 

represent the fruit. These TTI trials were carried out at the end of a production run to ensure 

that if any TTI particles were lost they would be removed with the water wash and cleaning 

programme. 

 

The same 75 kW ohmic heater was used as with the strawberry; as shown in Figure 4.14. A 3” 

diameter holding tube of 16.4 metres in length connected the ohmic column to eleven 2” 

cooling tubes each 6 metres in length. The amylase used in the TTI particles was from BLA93 

which had sufficient heat stability to measure P-values that were expected to be much higher 

than the process target of 5 minutes at 85°C. This was because the measurements on which 

the process was based were from temperature probes in the liquid; however, the ohmic system 

heated the fruit particles preferentially. P-values achieved in the fruit pieces were expected to 

be higher than those from the slower heating liquid. 

 

The ohmic heater was operated at an average power of 60 kW giving a column outlet 

temperature of around 93°C and a holding tube exit temperature approximately 7°C higher. 

This rise in temperature along the holding tube confirmed that the fruit particles heated 

preferentially to the liquid. Flowrate for the blackcurrant was 850 kg.h
-1

 and 790 kg.h
-1

 for the 

pineapple.  

 

Details of the experimental trials for case study 6 are given in Table 4.3. Silicone 

blackcurrants were made using an 8 mm spherical mould and those for pineapple used a 10 

mm rectangular mould. TTI particles were introduced into the fruit mixtures by dosing into 

the tank outlet at intervals during tank emptying. This ensured a regular supply of TTIs to the 

fruit. 
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Table 4.3: Details of the numbers of TTI particles and conditions used for the ohmic 

heating trials with blackcurrant and pineapple pieces (* low particle recovery was 

caused by difficulties in identifying TTI spheres and in product loss down the drains) 

 

 Blackcurrant Pineapple 

 

TTI particle dimensions 8 mm spheres 10 mm cubes 

No. TTI particle for controls 4 4 

No. TTI particles put in the feed tank 44 43 

No. TTI particles recovered 29* 43 

Feed batch size (kg) 700 650 

Flowrate (kg.h
-1

) 850 790 

 

 

Blackcurrant 

 

TTI particles in the blackcurrant trial were recovered by rinsing the blackcurrant mix with 

water through a sieve that removed the liquid, making the silicone particles more visible. The 

TTI particles in the pineapple trial were marked, prior to processing, with a blue cross on 

opposite faces making them easily visible in the light yellow fruit mixture. 

 

For the blackcurrant trial, only 29 of the TTI particles were recovered out of the 44 originally 

placed in the feed tank. Two reasons for the low recovery were proposed. Firstly, on the day 

of the trial, the ohmic operators did not realise they were supposed to collect all fruit material 

that might contain a blackcurrant or TTI particle. Instead, the trial took place as if it were a 

normal production run in which only good quality, saleable fruit was collected in the 800 kg 

finished product tanks. Hence, some blackcurrants prior to the start of filling and in the 

product/starch interface at the end of the batch were washed down the drain by mistake. 

Secondly, identification of the silicone TTI spheres amongst the dark blackcurrant mixture 

was difficult, and some may have been missed during sorting.  

 

Calculation of P-values from the TTI particles required the BLA93 D-value to be converted 

for reference temperatures of 93 and 85°C; this used a z-value of 9.1°C. P-values were then 
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appropriate to an 85°C reference temperature. Equation 4.4 shows the equation used to 

convert the D-value from 93 to 85°C.  D93 was measured using the same procedure as given in 

Chapter 2 and calculated as 8.8 minutes at 93°C.  D85 was calculated from Equation 4.4 as 

66.6 minutes at 85°C; this value was used in Equation 4.5 to calculate the P-values. 

 

1.9

8593

9385 10DD                           4.4 

 

 
final

initial

A

A
DP log85        4.5 

 

where, Ainitial is the initial amylase activity, minutes
-1 

Afinal  is the final amylase activity after the ohmic process, minutes
-1 

 

Amylase activities measured from the BLA93 spheres indicated a wide range of P-values, 

with the highest P-value of 159 minutes and the lowest value 52 minutes (see Figure 4.16). 

 

The factory control panel during the process gave a Pu (pasteurisation unit) value of 93  2 

minutes. This value for the carrier liquid was calculated from temperature and time 

measurements: 

 

 Temperature was measured from a sensor located at the ohmic column outlet; which 

measured the carrier liquid temperature, T(t), and not the temperature from the fruit or 

TTI particles. 

 Time (residence time in the hold tube) was calculated from a flowrate reading; which 

itself was calculated from the pump piston capacity and stroke speed.  

 

Ohmic column outlet was at the same point as the holding tube inlet and represented the 

lowest carrier liquid temperature. Equation 4.6 was used in the ohmic software to perform the 

P-value calculations, which used a reference temperature of 85°C and a z-value of 10°C. 

These parameters were appropriate to a process for high acid fruits (CCFRA, 1992a).  
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Figure 4.16: Frequency distribution for 8 mm silicone TTI spheres representing 

blackcurrants in a blackcurrant fruit preparation, processed in a 75 kW ohmic heater at 

850 kg.h
-1

. Sample size 29. Explanation of the graphs is given in Chapter 2 section 2.8. 

 

 

Conventional heat exchangers, such as tubular heat exchangers, operate with the liquid 

pasteurisation levels considerably higher than with the particles because of the slowness of 

conduction into the particles. This is discussed in section 4.4.1 on the tubular heat exchanger 

trials with pear and toffee. As discussed in section 4.5.1, this situation is reversed in ohmic 

heating because of the different electrical heating rates of the fruit and the carrier liquid. It is 

also interesting to note the similarity between liquid and particle P-values; the ohmic control 

panel displayed P-values of 90-100 minutes compared with 52-159 minutes measured with 

the TTI particles. These P-values were unlikely to represent true P-values for the complete 

system because liquid P-values were calculated from the temperature sensor at the ohmic 
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column outlet (using Equation 4.6) whereas particle P-values were from TTI particles that 

travelled the complete heating, holding and cooling sections (using Equation 4.5). It was not 

possible to calculate both P-values for the complete heat-hold-cool process because of 

uncertainties of liquid temperatures within the heat and cool parts of the process. 

 

Pineapple 

 

For the pineapple trial, five TTI cubes were retrieved from the product/starch interface. Starch 

was used to push the product through the system in order to recover the maximum quantity of 

saleable product. All other TTI particles were retrieved within the pineapple mixture. These 

five P-values do not appear in the distribution of P-values presented in Figure 4.17 because 

they may not have heated at the same electrical rate as those in the fruit carrier liquid. As with 

the blackcurrants, the results for the pineapple pieces showed a wide range of P-values.  For a 

reference temperature of 85°C, the highest P-value achieved was 168 minutes and the lowest 

was 18 minutes.  The factory control panel showed an average P-value of 99 minutes: a value 

representative of the liquid. 
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Figure 4.17: Frequency distribution for 10 mm silicone TTI cubes representing 12 mm 

pineapple pieces in a pineapple fruit preparation, processed in a 75 kW ohmic heater at 

750 kg.h
-1

. Sample size 38. Explanation of the graphs is given in Chapter 2 section 2.8. 

 

 

The frequency distributions in Figures 4.16 and 4.17 are very different in shape to that 

measured from the tubular heat exchanger in Figure 4.13. The distributions with the ohmic 

heated blackcurrant and pineapple products showed proportionally more high P-values than 

with the tubular data, and also a sharper lower P-value cut-off. These effects were likely to be 

caused by instantaneous electrical heating of particles within the ohmic column that could 

raise the temperature of all particles to similar levels.  Slow tubular cooling could 

subsequently cool the particles at different rates within the tubes and thus result in the tailing 

of distributions in Figures 4.16 and 4.17.  

 

An additional effect that could affect the P-value distribution was the increase in temperature 

along the holding tube, which was approximately 7°C for both blackcurrant and pineapple 

products.  The magnitude of this temperature increase varied from 5 to 10°C for different fruit 

products. It depended on factors such as particle concentration, relative electrical 
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conductivities of the liquid and particles, ohmic column exit temperature and flowrate. 

Historic data from this ohmic plant showed that smooth products such as fruit purees showed 

no temperature rise in the holding tube whereas products with large particles commonly 

showed rises of 6 to 8°C. 

 

The particle residence time distribution through the heating and holding tubes also differed 

from that expected with tubular heat exchangers (Tucker and Withers, 1992). This is a 

viscosity effect caused by particles that are hotter than the surrounding liquids for ohmic 

heating systems compared with the reverse situation with a tubular or conventional 

conduction controlled heat exchanger. This results in differences in liquid viscosity at particle 

surfaces and consequently in particle slip velocities. Conventional tubular heating results in 

high viscosity liquid layers adjacent to the colder particle surfaces. However, particle surfaces 

in ohmic heating rise rapidly in temperature which result in hot liquid surrounding the 

particles; this creates low viscosity liquid layers around the particles. The net result is that 

particles in an ohmic system may not be as restricted in their movement as with a tubular heat 

exchanger. 

 

P-value results from the TTI particles shown in Figures 4.16 for blackcurrant and 4.17 for 

pineapple were greater than the target P-value of 5 minutes at 85°C.  TTI P-values represented 

heat transfer into silicone TTI particles by conduction heat transfer and did not receive any 

electrical heating effects, and therefore they erred on the safe side. Considerable scope thus 

exists for optimising the ohmic processes by operating to lower column exit temperatures 

through, (i) reducing the ohmic column power output or, (ii) operating at higher flowrates. 

Process optimisation of the same ohmic heater is considered in the next case study. 

 

4.5.3  Case Study 7: 400 kg batch of diced strawberries processed in a 75 kW ohmic 

column 

 

The objective of the process optimisation trials were to establish microbiologically safe 

operating limits for the 75 kW ohmic column by challenging the settings until TTI P-values 

fell below the process targets. The experiments involved increasing the process flowrate at 

constant power. The product was a 400 kg batch of 10-12 mm diced strawberry, which were 

represented by TTI particles of 10 mm cubes containing the amylase solution at their centres. 

A single 400 kg batch was sufficient to evaluate four sequential increases in flowrate, starting 
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with the normal production rate of 750 kg.h
-1

 and working upwards to over 1,000 kg.h
-1

 (see 

Table 4.4 for details of the flowrates and the TTI particles introduced).  

 

Two different amylases were used; BAA85 and BLA90. The amylase used for the first three 

runs was BLA90, because it was expected that the TTI P-values would be substantially higher 

than the microbiological target of 5 minutes at 85°C.  However, in the final run at the highest 

flowrate of 1,000 kg.h
-1

, both amylases were used, because it was thought that this flowrate 

would challenge the microbiological safety for the product. Therefore, both types of TTI were 

used, with 20 of the TTI particles containing BLA90 and 20 containing BAA85.  This ensured 

a better chance that the residual amylase activities from the processed TTIs were within the 

measurable range for these TTI systems. Both amylases showed similar temperature 

sensitivity in that z-values for were similar; with z for BLA90 at 9.1°C and for BAA85 it was 

9.4°C. 

 

TTI particles were introduced to the flowing fruit product by a dosing tube and plunger 

system. This ensured they entered the fruit product prior to the pump, and were drawn into the 

pump chamber during the next suction stroke of the piston. Mixing TTI particles into the feed 

tank would not have provided a guarantee of when they entered the system, and so was not 

appropriate for this trial. The dosing tube enabled the TTI introduction to be controlled so that 

the TTI particles experienced the required flowrate conditions. For example, in the first trial at 

750 kg.h
-1

, all 30 TTI particles were dosed into the vessel outlet together so that they travelled 

through the ohmic column and holding tube while the flowrate was 750 kg.h
-1

. Once 

sufficient time had elapsed for the TTI particles to exit the holding tube, the flowrate was 

increased and another batch of TTIs introduced. 

 

TTI particles were marked with different colour crosses so they could be identified as being 

from a specific flowrate condition. They were recovered by spreading the fruit onto sorting 

trays and going through by hand. This method was time consuming but proven with previous 

continuous processing work to be the most effective means of recovering TTI particles from 

large batches of food products.  
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Table 4.4:  Details of processing conditions for each run of the 

ohmic trial with 12 mm diced strawberries. 

 

 
Flowrate 

(kg.h
-1

) 

Details of TTI particles  

added to the feed batches 

 

Run 0 750 30 BLA90 

Run 1 750 - 800 20 BLA90 

Run 2 815 - 850 20 BLA90 

Run 3 1,015 – 1,050 20 BLA90 + 20 BAA85 

 

 

(i) Run 0; Flowrate 750 kg.h
-1

 

 

Run 0 was the baseline flowrate of 750 kg.h
-1

, which was the flowrate used for most factory 

production runs. 22 out of 30 of the TTI particles were recovered and all of the TTI particles 

showed they had been processed substantially in excess of the target of 5 minutes equivalent 

at 85°C. Figure 4.18 (a) shows the P-value distribution in Run 0. Measured P-values from the 

BLA90 TTIs ranged from 62 to 195 minutes equivalent at 85°C.  

 

However, it was expected that the lowest P-value of 62 minutes was not a true value because 

of cross contamination of low activity amylase samples with unheated amylase of higher 

activity. Procedural changes for extracting amylase solution from the TTI tubes/particles were 

introduced following this strawberry trial; these are discussed in Chapter 2.  

 

(ii) Run 1; Flowrate 750 to 800 kg.h
-1

 

 

Experimental complications were experienced in operating the ohmic column at flowrates 

greater than 750 kg.h
-1 

because of the excessive current required to maintain the column exit 

temperature. In order to achieve the exit holding tube temperature at the higher flowrates for 

Runs 1 to 3, plant settings for the voltage : current ratio on the column were changed. This 

was necessary because the ohmic column was operating close to its maximum current density 

for flowrates over 750 kg.h
-1

. 
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Achieving a stable flowrate in Run 1 was difficult, and it ranged from 750 to 800 kg.h
-1

. In 

Run 1, 18 out of the 20 TTI particles were recovered and all showed P-values that exceeded 

the target process. P-values measured with the BLA90 TTIs ranged from a lowest value of 33 

minutes to 164 minutes, with the distribution given in Figure 4.18 (b). 

 

(iii) Run 2; Flowrate 815 to 850 kg.h
-1

 

 

An increased flowrate in Run 2 of between 815 and 850 kg.h
-1 

was achieved by accepting a 

lower column exit temperature within the ohmic control panel software. The factory control 

panel indicated that the P-values remained above 6 minutes during the run, and therefore the 

carrier liquid was safely processed. P-values measured with the BLA90 TTIs ranged between 

12 minutes and 135 minutes, with the distribution given in Figure 4.18 (c). 

  

(iv) Run 3; Flowrate 1,010 to 1,050 kg.h
-1

 

 

The flowrate was increased in Run 3 to between 1,010 and 1,050 kg.h
-1

, which was achieved 

by allowing the ohmic exit temperature to fall below 95°C.  The P-value display on the 

control panel dropped to below 3 minutes, which indicated that the carrier liquid within the 

holding tube did not receive sufficient pasteurisation. Results from the BLA90 TTI particles 

gave P-values between 5 and 38 minutes, however, the relatively high heat stability of the 

amylase at 85°C meant that these P-values were achieved with only a small percentage of 

activity lost. This was the least accurate part of the measurement and so the BLA90 results 

were not used in Figure 4.18 (d). More reliable results were measured by the BAA85 TTI 

particles that gave P-values ranging from 5 to 11 minutes, with the distribution given in 

Figure 4.18 (d). Residual amylase activity from the BAA85 TTI particles was in the range 

where one to two log reductions in activity were measured. This resulted in more accuracy in 

activity readings than with the BLA90 TTI particles that reduced in activity by less than one 

log reduction. The lowest P-values from BAA85 measurements were close to the target of 5 

minutes, which indicated that the product was adequately processed but there was no process 

margins to allow for minor fluctuations in flowrate or electrical energy input 
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Figure 4.18: Frequency distribution for 10 mm TTI cubes representing 12 mm 

strawberries in diced strawberry processed in a 75 kW ohmic heater. Run 0 at 750 kg/h, 

(b) Run 1 at 750-800 kg/h, (c) Run 2 at 815-850 kg/h, (d) Run 3 at 1,015-1,050 kg/h.  
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Table 4.5 presents minimum, maximum and mean P-value from each of the four process 

optimisation trials. It shows a gradual decrease in P-values as the flowrate increased from the 

normal production value of 750 to 1,050 kg.h
-1

.  Figure 4.19 illustrates the data from Table 

4.5 to illustrate the relationship between TTI particle P-value and flowrate. 

 

 

Table 4.5: Minimum, maximum and mean P-values from 10 mm TTI particles in the 75 

kW ohmic heater at flowrates of 750 kg.h
-1

 (Run 0) to 1,050 kg.h
-1

 (Run 3). Reference 

temperature was 85°C and z 9.1°C for BLA90 and 9.4°C for BAA85. 

 

Flowrate 

(kg.h
-1

) 

Run 0 

750 

Run 1 

750-800 

Run 2 

815-850 

Run 3 

1,015-1,050 

Minimum P-value 117.9 32.8 11.6 4.7 

Maximum P-value 195.3 164.4 135.1 10.7 

Mean P-value 166.1 117.8 58.0 9.1 
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Figure 4.19: Minimum, maximum and mean P-values from 10 mm TTI particles 

in the 75 kW ohmic heater at flowrates of 750 to 1,050 kg.h
-1

. 

Reference temperature was 85°C and z 9.1°C for BLA90 and 9.4°C for BAA85. 
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These process optimisation trials identified flowrates that gave acceptable P-values for 

processing of fruit particles. Flowrates up to 850 kg.h
-1

 provided sufficient margin above the 

lower P-value limit for the 10 mm particles. Operating the 75 kW ohmic heater at 1,050 kg.h
-1

 

did not allow sufficient operational margin to allow for variability in critical parameters that 

affect P-value, for example, electrical conductivity of fruit and carrier liquid, flowrate, initial 

fruit temperature, electrical current. 

 

If flowrates above 850 kg.h
-1

 need to be achieved, the results suggest that the 75 kW ohmic 

column will struggle to deliver sufficient electrical energy to the products without changing 

the configuration. The simple solution would be to increase the hold tube length from the 

existing 16.4 metres to increase the residence time and thus the P-value for both carrier liquid 

and fruit particles.  

 

4.5.4 Case Study 8: Two 850 kg batches of nectarine & orange processed in a 75 kW 

ohmic column, hot-filled into 8.5 kg plastic bags 

 

The objective of this TTI trial was to measure P-values on the inside surfaces of hot-filled 

plastic bags. Fruit product was heated through the 75 kW ohmic column and filled hot into 

bags. Residual heat from the hot fruit was intended to pasteurise the inside bag surfaces 

(CCFRA, 1992). 

 

Pergal bags are one of the commercial packaging formats used for the types of fruit 

preparations described here. They are plastic bags (typically holding 8.5 to 15 kg of fruit) with 

a plastic stopper that creates an hermetic seal. These bags are used as an intermediate sized 

package for fruit intended for inclusion as an ingredient in yoghurts or desserts. They allow 

manufacturers of yoghurts and desserts, as well as catering establishments, the opportunity to 

prepare small quantities of finished products without the wastage that would otherwise occur 

if the fruit was delivered in a 400 kg tank.  

 

Fruit products intended for filling into Pergal bags are usually pasteurised in 1,000 kg stirred 

vessels and are then hot-filled. Cooling takes place in the bag, which is slow due to the 

relatively large volumes in each bag. Figure 4.20 shows the schematic layout of the ohmic 

plant. 
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Figure 4.20: Schematic of a hot fill into 8.5 kg bags fed directly  

from a 75 kW ohmic column. 

 

 

Issues to resolve with the process were (i) to measure the levels of pasteurisation for the fruit 

pieces as they flowed through the ohmic heater using TTI particles, and (ii) to measure the 

pasteurisation achieved at the inside bag surfaces using TTI tubes. With hot-filled products, 

any microbiological contamination on the inside package surfaces relies on residual heat 

within the products to effect pasteurisation. 

 

The test product was an 850 kg batch of nectarine and orange fruit preparation. Fruit particles 

were 12-15 mm diced nectarines. The orange component of the product was juice. TTIs were 

divided into four groups for this trial to evaluate the effect of four different hot fill 

temperatures from 80 to 89°C. One 850 kg batch of nectarine and orange fruit preparation was 

sufficient to test four different hot filling temperatures. Four runs were completed at fill 

temperatures of approximately 80, 83, 86 and 89°C; these temperatures were required at the 

Pergal bag filler. Flowrate used throughout the trial was 750 kg.h
-1

.  

 

Time taken for the TTI cubes to pass through the ohmic column and 16.4 metre hold tube was 

calculated at 180 seconds minimum and 360 seconds average. These calculations assumed 

laminar flow and the centreline velocity of double the mean velocity. Once the TTIs had 

reached the end of the hold tube (according to the mean residence time calculation), the set 
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point temperature of the column was increased by adjusting the column control settings in 

order to draw more electrical power (success of this control method is discussed later). When 

the ohmic column had stabilised at this new temperature, the next set of TTIs were introduced 

to the feed tank using the dosing system as described in section 4.5.4. The best efforts to 

control fill temperature to 3°C increments between 80 and 89°C resulted in hot fill 

temperatures accurate to approximately 1°C. 

 

TTI tubes were prepared by injecting 15-20 L of BAA85 into the centre of each tube and 

capping the tubes with Sylgard 184 elastomeric compound.  Sixty TTI tubes were 

incorporated into the centres of 10 mm silicone cubes that represented the 12-15 mm pieces of 

nectarine. Batches of fifteen TTI cubes were marked with different colour crosses so they 

could be identified as being processed by different hot-fill temperatures. Fifty TTI tubes were 

used for surface P-value measurement. For the BAA85, the kinetics were represented by a 

decimal reduction time of 6.8 minutes at 85°C and a z of 9.4°C. These TTIs were suitable for 

this high acid fruit product with a target process of 5 minutes at 85°C with a z of 10°C. 

 

TTI tubes were secured to the inner layer of the Pergal bags in groups of twos and threes, 

positioned in the corner and at the filling nozzle. These were the positions where the residual 

heat from the hot product was considered to be lowest and/or the thermal mass of plastic was 

greatest. Bag corners were likely to cool fastest and therefore deliver the least pasteurisation. 

Pergal bag nozzles contained substantially more plastic than the relatively thin bags 

themselves, and so were likely to absorb heat from the hot fruit. TTI tubes were attached at 

these locations using adhesive tape. Two Pergal bags containing TTI tubes were used for each 

hot fill temperature.  

 

Fifteen TTI cubes were put through the ohmic process at each of the different fill 

temperatures to estimate the fruit particle P-values. The first column operating temperature 

was 80°C. Fifteen TTI cubes were introduced to the outlet pipe of the feed tank to ensure they 

exited the feed tank at the same time and were processed at the same operating temperature.  

 

After hot filling and blast chilling to a temperature low enough for handling the fruit, the 

Pergal bags were opened and the fruit sorted by hand to recover the TTI cubes from the fruit, 

and the TTI tubes from the inside bag surfaces. All but one of the TTI cubes were recovered. 

Recovery of the TTI cubes required each Pergal bag to be opened and the 8.5 kg contents 
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spread onto fruit sorting trays. Cubes from each operating temperature were kept in chilled  

water at 5-8°C, in pots labelled with the appropriate fill temperature. 

 

Two of the TTI cubes from the 89°C trial were damaged during the amylase extraction 

procedure and so could not be analysed. Table 4.6 presents P-values results from individual 

TTI cubes, calculated using a D-value for BAA85 of 6.8 minutes. These showed that the 

80 1°C ohmic column temperature was insufficient to pasteurise the fruit particles to the 

target of 5 minutes at 85°C. However, with the column operating at 89 1°C, both fruit 

particles and inside bag surfaces received an adequate pasteurisation. Results from column 

temperatures of 83 1°C and 86 1°C were not conclusive for bag surface pasteurisation; it 

was thought that was because temperature control might not have been within 1°C. 

 

Despite the uncertainty with TTI results for column temperatures of 83 1°C and 86 1°C, in 

all cases, groups of TTIs inside Pergal bags gave consistent results within that group. For 

example, at a hot fill temperature of 83 1°C the groups of two TTIs gave P-values of 5.7 to 

5.9 minutes and 5.1 to 6.0 minutes, and the groups of three TTIs gave P-values of 5.3 to 6.1 

minutes and 4.9 to 9.5 minutes (see Table 4.7). The latter grouping of three TTIs showed a 

wider spread of P-values but these were still realistic values. Closeness of the P-values within 

a group of TTI tubes gave further confidence that the TTI P-values were correct. 
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Table 4.6: P-values results from individual TTI particles, representing 12-15 mm diced 

nectarines, calculated using a D-value for BAA85 of 6.8 minutes.  

 

 

TTI number 

Hot fill temperatures 

80°C 83°C 86°C 89°C 

1 4.3 9.6 8.7 8.7 

2 1.4 9.6 8.7 9.9 

3 2.0 11.7 8.7 8.7 

4 1.3 9.6 12.0 7.9 

5 3.5 9.6 9.9 12.0 

6 7.6 6.4 9.9 12.0 

7 6.4 8.4 8.7 9.9 

8 8.4 9.6 9.6 9.9 

9 8.4 6.9 11.7 8.7 

10 5.9 8.4 11.7 6.2 

11 6.9 9.6 9.6 8.7 

12 9.6 9.6 8.4 8.7 

13 11.7 - 9.6 8.7 

14 9.6 - 11.7 - 

Minimum 1.3 6.4 8.4 6.2 

Maximum 11.7 11.7 12.0 12.0 

Average 6.2 9.1 9.9 9.2 
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Table 4.7: P-values results from TTI tubes attached to the inside surface of the Pergal 

bags, calculated using a D-value for BAA85 of 6.8 minutes. 

 

Hot fill 

temperatures 

Group of 2 

TTIs 

Group of 2 

TTIs 

Group of 3 

TTIs 

Group of 3 

TTIs 

 

80 1.0 0.0 1.9 0.0 

 0.0 0.0 2.4 2.1 

   0.0 0.0 

     

83 5.7 6.0 6.1 9.5 

 5.9 5.1 5.5 4.9 

   5.3 6.4 

     

86 0.2 0.0 0.3 0.0 

 0.1 0.3 0.0 4.7 

   0.8 2.8 

     

89 5.4 6.9 6.2 6.1 

 6.5 5.9 7.2 8.8 

   5.5 6.1 

 

 

The single 850 kg batch of fruit product was sufficient to allow four incremental increases in 

ohmic column temperature to be studied. Achieving a stable and controlled fill temperature 

was difficult. Temperature control acted within the column whereas the temperature at the 

point of filling was the critical temperature for achieving surface bag pasteurisation. Product 

temperature at the ohmic column outlet was actually close to that at the point of filling. This 

was achieved by coincidence rather than design. Fruit pieces that heated electrically gave up 

heat in the hold tube to the surrounding carrier liquid, which resulted in measured 

temperatures at the hold tube exit some 5-7°C higher than at the entry. Once equilibrated, the 

fruit product subsequently cooled by 2-3°C during the 5 metre pipe to the filler bowl and 



 151 

further cooled by 3-4°C in the filler bowl and during filling. The overall effect was that the 

ohmic column outlet temperature was almost the same as at the point of filling. 

 

Adjusting the (heat capacity value) control panel to change the hot fill temperature required 

some manipulation. Therefore, the column required time to stabilise in response to each 

change in heat capacity. This resulted in gradual increases in product temperature within the 

fruit product filled off at each different temperature at the filling machine. The indirect means 

of temperature control prevented the exact temperature targets of 80, 83, 86 and 89°C from 

being achieved. However, as described earlier, it was possible to achieve a similar filling 

temperature to that measured at the column outlet.  

 

Conclusions from this optimisation study were: 

 

 With a filling temperature (column outlet temperature) of 80 1°C neither the fruit product 

nor the packaging received an adequate pasteurisation of 5 minutes equivalent at 85°C. 

 

 At 83 1°C, the P-values from TTI tubes in the Pergal bags all measured greater than 5 

minutes at 85°C, except for one TTI at 4.9 minutes. TTI cubes processed with the fruit 

exceed 5 minutes at 85°C. 

 

 At 86 1°C, TTI tubes in the Pergal bags suggested very low levels of surface 

pasteurisation, with P-values lower than those measured at the 83 1°C filling temperature. 

These seemed inconsistent and might have been caused by the variability in ohmic column 

outlet temperature. TTI cubes processed with the fruit exceed 5 minutes at 85°C. 

 

 At 89 1°C, all of the TTIs inside the bags and in the fruit product received an adequate 

pasteurisation of 5 minutes equivalent at 85°C. It was concluded that a fill temperature of 

89 1°C was high enough to achieve the target pasteurisation with sufficient operating 

margins.  
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4.6  Discussion of results and findings from the industrial trials 

 

Experimental techniques in applying different types of TTIs to industrial processes evolved 

over the series of trials described in this chapter. The stage was reached in which zero TTI 

particle damage occurred within fruit processing equipment and 100% recovery of TTIs was 

achieved on many occasions. Encapsulating the amylase solution in 2.5 mm diameter silicone 

tubes proved an important step forwards. This provided a robust system that allowed the tubes 

filled with amylase solution to be used directly with the food or incorporated into larger 

silicone food particles. Towards the later stages of this research, these silicone particles were 

made with a black silicone compound incorporated as a bottom layer in order to make 

identification easier. These multi-layered TTI particles were as strong as those from a single 

silicone compound. 

 

The key step in making the TTI method one suitable for use in complex industrial processes 

was in the encapsulation of amylase solutions. This has evolved with industrial experience of 

successes and some failures, and has been applied to improve numerous thermal processes. 

Examples from a fruit processing factory were given in this chapter to illustrate how this can 

work. 

 

Many challenges were addressed in ensuring the TTI method was applicable to food 

manufacturing operations. However, they can be summarised in the following three needs, 

which are to: 

 

(a) Introduce TTIs to complex processing systems in a way that represents the distribution of 

food particles in the preparation step, 

(b) Ensure the TTIs heat and flow in the same way as the critical food particles, without 

incurring damage to the TTIs, 

(c) Recover all of the TTI particles intact. 

 

Data generated from the TTI trials described in this chapter were invaluable for optimising 

fruit product manufacture. This was demonstrated in a variety of industrial equipment 

including mixing vessels, a tubular heat exchanger, hot-filling operations, and in an ohmic 

column. Most fruit processes measured with TTIs showed very high levels of pasteurisation at 

normal production throughputs. This gave scope for processes to be optimised so that 
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production efficiency was increased and in some cases product quality improved. The latter 

was achievable for processes in which the heating took place with high shearing conditions 

such as mixing vessels. In general, it was the increases in production efficiency that drove the 

factory needs for process optimisation. 

 

4.6.1 Future needs 

 

Despite the improvements in TTI recovery, it would still be convenient to develop a fast and 

reliable method to recover TTI particles from large volumes of food products. Hand sorting 

was demonstrated to work but takes time and requires the TTI test to be destructive for the 

food product. Incorporation of a (mildly) radioactive particle into a TTI tube or TTI particle 

may allow the use of a Geiger counter for their detection. This has not yet been attempted 

because of the concerns about residual radioactivity in a food processing environment. Work 

with the positron emission particle tracking system (PEPT) at the University of Birmingham 

has used micron sized glass particles with low levels of radioactivity. These may be suitable 

and provide an alternative TTI particle recovery method. 
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CHAPTER 5: A NOVEL STERILISATION TIME-TEMPERATURE INTEGRATOR 

BASED ON AMYLASE FROM THE HYPERTHERMOPHILIC MICROORGANISM 

PYROCOCCUS FURIOSUS 

 

 

"If we knew what we were doing then it would not be called research". 

Albert Einstein 

 

 

5.1  Introduction 

 

Chapters 1 to 3 describe the range of amylase-based TTIs suitable for measuring P-values 

with most commercial pasteurisation processes.  These range from a few minutes at 70°C up 

to many minutes at 95°C. However, attempts to manufacture an enzyme-based TTI to survive 

a full sterilisation process at 121.1°C for several minutes have had limited success when 

applied to industrial situations (Van Loey et al., 1997b). Chapter 1 provides details of the 

minimum thermal requirements for a full sterilisation process. These are substantially higher 

than for pasteurisation treatments and will result in all amylase activity being lost before the 

TTI temperatures increased much above 100°C. Hence, it is not surprising that a TTI solution 

has not yet been discovered. 

 

Amylase does appear to be one of the few enzymes that exhibits suitable properties for use as 

a TTI to mimic microbiological death kinetics, but only for pasteurisation. Specifically, the 

measured z-values for different amylases have been in the range 9 to 10°C, ideal for bacterial 

spore destruction (De Cordt et al., 1992 and 1994; Maesmans et al., 1994; Hendrickx et al., 

1995). Hence, an amylase was considered to provide the greatest chance of finding a TTI for 

use in sterilisation processes. Extension of the useable range upwards into sterilisation 

temperatures has been demonstrated by drying commercial grade amylases to precise 

moisture levels (Van Loey et al., 1997b, Guiavarc‟h, 2003). Results achieved in the laboratory 

were encouraging and showed that different levels of moisture content gave a range of heat 

stabilities. 
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One approach immobilised a mixture of Bacillus licheniformis -amylase (BLA), sucrose and 

salts at the surface of non-porous glass beads (inert filler), and under several low moisture 

conditions (aw in the range 0-0.63 after equilibrium at 4°C (Guiavarc‟h et al., 2004a). These 

systems showed potentially useful thermal stabilities in the range 100-132°C under isothermal 

and non-isothermal conditions. Residual amylase activity was used, instead of a residual heat 

denaturation enthalpy reading, as the response property of the system. This had advantages in 

reduced assay times and reduced amounts of amylase were required per TTI (50-fold smaller). 

Thermal processes up to 30 minutes at 121.1°C could be monitored.  

 

A similar approach was taken by Samborska et al. (2005) who reduced moisture content to 

enhance thermal stability of Aspergillus oryzae -amylase. The enzyme was mixed with 

maltodextrin and freeze dried after equilibration above saturated salt solutions to achieve 

moisture contents from 3.5 to 0.029 g H2O/g dry wt..  Thermal inactivation kinetics of the 

enzymes were then determined.  Results were compared with those obtained using the 

enzyme mixed with aqueous solutions of maltodextrin. In general, the -amylase showed 

greater thermal stability in maltodextrin systems at reduced moisture content than in aqueous 

solutions.  Decreasing the moisture content from 3.5 to 0.029 g H2O/g dry wt. led to an 

increase in the temperature at which inactivation of amylase occurred, increasing it from 70-

75 to 100-115°C.  The activation energy (related to z-value) of thermal inactivation was also 

affected by moisture content. Despite reducing the moisture content, the levels of heat 

stability for Aspergillus oryzae -amylase were insufficient for use as a sterilisation TTI. 

 

Guiavarc‟h et al. (2002 and 2004b) again used Bacillus licheniformis -amylase, but 

equilibrated at 81% equilibrium relative humidity at 4°C (BLA81). Isothermal and non-

isothermal conditions were used to determine heat denaturation kinetics by monitoring the 

decrease in enthalpy associated with the heat denaturation of the enzyme. Due to its low water 

content, BLA81 denaturation could be studied in the range of 118-124°C. Two batches of 

BLA81 were successfully validated under non-isothermal conditions allowing the 

determinations of process values (reference temperature of 121.1°C) in the range of 1-15 

minutes. BLA81 was used as a TTI to investigate potential differences of process values 

received by freely moving spherical particles as compared to a centrally fixed particle (single-

position impact) inside cans containing water as brine. Interesting results showed the process 

value received by freely moving particles to be from 5.6% (4 rpm) to 19.7% (8 rpm) smaller 
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than those with centrally fixed spheres. This study highlighted the potential of the TTI 

technology to monitor the safety of heat-processed agitated solid/liquid foodstuffs. 

 

However, other researchers (Tucker, 2003; Tucker and Wolf, 2003) encountered experimental 

difficulties in controlling the sterilisation TTI based on the dried amylase approaches of Van 

Loey et al. (1997b) and Guiavarc‟h, (2003). Heat stability was increased by drying the 

amylase in a steel DSC (differential scanning calorimeter) capsule, and the same capsule was 

used for measuring process values. This had the advantage that, once sealed, the capsule did 

not have to be opened during the heating tests or for analysis. However, the encapsulation 

method did not provide adequate isolation from its environment when used in industrial 

sterilisation processes because the rubber O-ring gasket was unable to withstand the swings in 

pressure experienced within a food container during a sterilisation process. It was possible to 

encapsulate the DSC capsule in a silicone compound that prevented moisture ingress but this 

resulted in dimension changes to the TTI particle (Van Loey et al., 1997b and Guiavarc‟h, 

2003). For some products with large particles this was acceptable but for most it negated the 

purposes of conducting process validation studies using TTIs. One further issue with the steel 

capsules was their high density that prevented their use in flowing foods. 

 

Thus, a different method was required for a sterilisation TTI, with ideally, a TTI system that 

allowed the TTI to be used as a solution within the silicone TTI tubes already proven in 

industrial pasteurisation processes (see Chapters 2, 3 and 4). This was a substantial challenge 

that required a novel solution. 

 

The idea developed in this chapter was to locate a microorganism that has evolved in hostile 

conditions of temperature, yet was reported to be an amylase producer. Of the millions of 

types of microorganisms found in nature, this narrowed the search to just a few of extreme 

durability. The challenge was to grow this microorganism, extract the amylase and apply it in 

its native form to industrial sterilisation processes. The logic was that the amylases produced 

by these extreme microorganisms must be able to withstand high temperature conditions, 

otherwise their structure would break down before they started work in breaking down 

complex starches and carbohydrates to sugars. 

 

Microorganisms are known to exist in hostile environments such as volcanic pools where they 

have adapted to high temperature conditions and to chemical environments considerably 
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different to those favoured by the microorganisms we are more familiar with (Segerer et al., 

1993; Stetter,1996). These „hyperthermophilic‟ microorganisms represent a relatively new 

area for microbiological research and one with enormous potential for supply of heat stable 

enzymes (Sterner and Liebl, 2001).  

 

Hyperthermophilic microorganisms were one possible and promising route to finding a source 

of thermostable amylase. Amylases from these microorganisms must be inherently heat stable 

in order to hydrolyse starches in their favoured environmental conditions (Laderman et al., 

1993; Leuschner and Antranikian, 1995; Niehaus et al., 1999; Vieille and Zeikus, 2001). This 

might allow an amylase solution to be developed with heat stability sufficient to operate in the 

sterilisation arena: that is to mimic the destruction of Clostridium botulinum spores.  

 

A number of bacteria capable of growing at or above 100°C have been isolated from several 

geothermic terrestrial and marine environments (Vieille and Zeikus, 2001).  Among the many 

interesting features associated with these bacteria are their ability to grow and carry out 

biological functions at normally protein-denaturing temperatures.  The enzymes that are 

formed by these extremely thermophilic and hyperthermophilic microorganisms are of great 

interest due to their thermostability and optimal activity at high temperatures. The following 

paragraphs describe some of the relevant papers. 

 

A novel heat stable enzyme, -amylase-pullulanase, produced by Clostridium 

thermohydrosulfuricum E 101-69 was purified by Melasniemi (1987; 1988). Melasniemi and 

Paloheimo (1989) later produced an -amylase-pullulanase gene from Clostridium 

thermohydrosulfuricum DSM 3783 by cloning it in Escherichia coli on a 7.0 kb EcoRI 

fragment using a lambda vector. The gene produced active thermostable -amylase-

pullulanase, which was mostly a soluble intracellular enzyme in E. coli. The apparent 

temperature optimum of the enzyme was 80-85°C and the heat stability was the same as that 

of the extracellular -amylase-pullulanase produced by the native host.  

 

Another hyperthermophilic microorganism reported to produce -amylase was Sulfolobus 

solfataricus (Worthington et al., 2003). Sulfolobus solfataricus secreted an acid-resistant -

amylase during growth on starch as the sole carbon and energy source. This microorganism 

had the advantage of being aerobic and thus was easier to grow than the anaerobic 
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microorganisms. No data was available on the heat stability properties of the amylase and so 

Sulfolobus solfataricus was not chosen for further investigation in the thesis work. 

 

Several of the most promising microorganisms referred to later are known as archaea. These 

are defined in the American Heritage Dictionary (2003) as a group of bacteria-like 

microorganisms comprising a division of the Prokaryotae and usually thriving in extreme 

environments. Prokaryotae are unicellular organisms lacking a true nucleus and nuclear 

membrane, with genetic material composed of a single loop of naked double-stranded DNA 

(Dorland, 2007). Archaea are often classified as a separate domain in taxonomic systems 

based on similarities of DNA sequences. However, for the purposes here of locating an 

amylase-producing microorganism, archaea are bacteria that can survive in extreme 

environments such as high temperatures, and can produce thermostable enzymes. Several 

microorganisms showed potential. 

 

One of these, a hyperthermophilic archaeon of the genus Pyrococcus, strain AL585(T), was 

isolated from a deep-sea hydrothermal vent located on the East Pacific Rise at a depth of 

2,650 m (Barbier et al., 1999). The isolate was a strictly anaerobic coccus with a mean cell 

diameter of 1µm. The optimum temperature, pH and concentration of sea salt for growth were 

95°C, 7.5 and 30 g/l. Under these conditions, the doubling time and cell yield were 0.5 h and 

5 x 10
8
 cells/mL. This strain grew preferentially in media containing complex proteinaceous 

carbon sources, glucose and elemental sulphur. Sequencing of the 16S rDNA gene showed 

that strain AL585(T) belonged to the genus Pyrococcus and was probably a new species, 

described as Pyrococcus glycovorans sp. nov. 

 

Perevalova et al., (2005) isolated a microorganism from a freshwater hot spring of the Uzon 

caldera (Kamchatka Peninsula, Russia). They described the microorganism as an obligately 

anaerobic, hyperthermophilic, organoheterotrophic archaeon, Desulfurococcus fermentans sp. 

nov., strain Z-1312T. The cells were regular cocci, 1–4 µm in diameter, with one long 

flagellum. The cell envelope was composed of a globular layer attached to the cytoplasmic 

membrane. Temperature range for growth was 63–89°C, with an optimum between 80 and 

82°C; pH range for growth at 80°C was 4.8–6.8, with an optimum at pH 6.0. Strain Z-1312T 

grew by hydrolysis and/or fermentation of a wide range of polymeric and monomeric 

substrates, including agarose, amygdalin, arabinose, arbutin, casein hydrolysate, cellulose, 

dextran, dulcitol, fructose, lactose, laminarin, lichenan, maltose, pectin, peptone, ribose, 



 159 

starch and sucrose. No growth was detected on glucose, xylose, mannitol or sorbitol. Growth 

products when sucrose or starch were used as the substrate were acetate, H2 and CO2. 

 

Lioliou et al., (2004) described a number of important properties of enzymes produced by the 

Thermus thermophilus genome. This microorganism showed hyperthermophilic tendencies 

but the interest was in cloning the microorganism and comparing the enzyme properties 

between the native microorganism and its clone. Enzymes from the cloned microorganism 

were not only more thermostable but were also more resistant to chemical agents, properties 

that made them extremely attractive for industrial processes. The genome approach as an 

alternative method, to producing amylase from the native microorganism, will be discussed 

later in this chapter. 

 

Uma Maheswar Rao and Satyanarayana (2004) worked with the microorganism Geobacillus 

thermoleovorans MTCC 4220. They studied the effect of polyamines and their biosynthesis 

inhibitors on the production of hyperthermostable and Ca
2+

-independent -amylase. The -

amylase was produced in starch-yeast extract-tryptone broth with different polyamines and 

polyamine biosynthesis inhibitors at 70°C. The cell-free culture filtrates were used in -

amylase assays. During growth, total polyamines in biomass increased until 2 h, and 

thereafter, decreased gradually. The total polyamine content was very high in the biomass 

cultivated at 55°C when compared with that of higher temperatures. Enzyme titre enhanced 

up to 70°C, and thereafter declined suggesting that 70°C was an optimal temperature for 

amylase production.  

 

An hyperthermophilic bacterium, Thermotoga maritima (Blamey and Adams, 1994) was 

reported to be a strict anaerobe that grows up to 90°C by carbohydrate fermentation. Enzymes 

produced during metabolism were heat stable. One such enzyme was pyruvate ferredoxin 

oxidoreductase (POR), which catalyses the oxidation of pyruvate to acetyl-CoA, the terminal 

oxidation step in the conversion of glucose to acetate. POR was extremely thermostable, with 

a temperature optimum for pyruvate oxidation above 90°C, and the time for a 50% loss of 

activity was 15 h at 80°C under anaerobic conditions. Although amylase was not mentioned, 

this work demonstrated the heat stable properties of an extracellular enzyme from an 

hyperthermophilic microorganism. 
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Growth conditions of the extremely thermophilic microorganisms Thermococcus celer and 

Pyrococcus woesei were optimised by Blamey et al. (1999). Both archaea were shown to be 

strictly anaerobic with optimal growth temperatures of 85 and 95°C respectively. Sodium 

sulphide, not cysteine, was used as a sulphur and reductive capacity source. The addition of 

elemental S(o) enhanced growth of both microorganisms, with T. celer far more sensitive than 

P. woesei to the absence of S(o). P. woesei utilised maltose as a carbon source, while T. celer 

was able to use only peptides from yeast extract, peptone and tryptone as its carbon source. 

The growth of P. woesei, but not T. celer, was stimulated considerably in the presence of iron, 

while Co, Ni, Zn, Mo. Mn and Mg were essential trace elements. Both bacteria produced -

amylase. 

 

The capability of utilising carbohydrates in the form of starch as an energy and carbon source 

is widely distributed among bacteria, fungi and yeast.  Thermophilic and hyperthermophilic 

microorganisms have been found to grow on starch, indicating that they possess starch-

degrading enzymes.  The enzymes involved in the conversion of starch to low-molecular-

weight compounds (glucose, maltose and oligosaccharides) include -amylase, -amylase, 

glucoamylase, debranching enzymes and -glucosidase.  Microorganisms that produce the 

starch-hydrolysing enzyme -amylase include Pyrococcus woesei, Pyrococcus furiosus, 

Thermococcus celer, Fervidobacterium pennavorans, Desulfurcoccus mucosus and 

Termotoga maritima (Leuschner and Antranikian, 1995). All these microorganisms offer the 

potential as sources of thermostable -amylase. 

 

According to Koch et al. (1990 and 1991), Pyrococcus furiosus and Pyrococcus woesei 

produced extremely thermostable amylolytic enzymes which were of great interest for 

industrial applications. Methods for culturing these microorganisms at 100°C and extracting 

the amylase were given together with data that suggested the amylase heat stability was very 

close to that required to survive a thermal sterilisation process. These two microorganisms 

were of the greatest interest for the sterilisation TTI work reported here. 

 

5.1.1  Pyrococcus furiosus 

 

Pyrococcus furiosus is an obligate anaerobic, hypothermophilic archaebacterium which has 

been isolated by Fiala and Stetter (1986) from shallow thermal waters near Vulcano island, 
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Italy.  The motile coccus-shaped microbe, with about 50 flagella at one end, is capable of 

growth on complex media with or without elemental sulphur. Several relevant papers 

described growth conditions and certain properties of the extracellular amylases excreted. 

 

Weinberg et al. (2005) grew Pyrococcus furiosus on maltose, both near its optimal growth 

temperature of 95°C, and at the lower end of the temperature range for significant growth at 

72°C.  In addition, cultures were shocked by rapidly dropping the temperature from 95 to 

72°C, which resulted in a 5 hour lag phase, during which time little growth occurred. Driskill 

et al. (1999) utilised a range of carbohydrates for Pyrococcus furiosus growth by examining 

the spectrum of glycosyl hydrolases produced by this microorganism and the thermal labilities 

of various saccharides. P. furiosus was grown in batch cultures on several -linked 

carbohydrates but not on glucose or other -linked sugars. Significant growth at 98°C 

occurred.  

 

Savchenko et al., (2002) investigated the role played by metal ions in thermal stability of 

extracellular -amylase from P. furiosus.  They found that this amylase was more 

thermostable than its bacterial and archaeal homologues (e.g. Bacillus licheniformis and 

Pyrococcus kodakaraensis -amylases) even without adding Ca
2+

 ions. Unlike the B. 

licheniformis amylase that contained no cysteine, the P. furiosus enzyme contained five 

cysteines (C152, C153, C165, C387, and C430), only four of which (C152, C153, C387, and 

C430) were conserved in the P. kodakaraensis -amylase. Mutant and wild-type -amylases 

are strongly destabilized by dithiothreitol and ethylenediaminetetraacetic acid, suggesting that 

metal binding was involved in the amylase thermostability. Inductively coupled plasma-

atomic emission spectrometry showed the presence of Ca
2+

 and Zn
2+

 metal ions in P. furiosus 

-amylase. Although Ca
2+

 is known to contribute to -amylase stability, the absence of two 

out of the three conserved Ca
2+

 ligands in the P. furiosus amylase suggested that a different 

set of amino acids was involved in Ca
2+

 binding. Evidence was provided suggesting that C165 

was involved in Zn
2+

 binding and that C165 was essential for the stability of P. furiosus -

amylase at very high temperatures. Adjustment of amylase thermal stability with various 

metal ions is important for tailoring a TTI system to the needs of a food sterilisation process. 

 

P. furiosus is a fast growing microorganism. During cultivation of P. furiosus amylase on 

complex medium (Koch, et al., 1990) the amylase activity reached a maximum of 150 U.l
-1

 (U 
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= μmol.min
-1

) and 2.8 x 10
9
 cells.mL

-1
 after 13 hours and then decreased.  Optimal growth 

and amylase production (more that 200 U.l
-1

 after 8 hours and 6.2 x 10
9
 cells.mL

-1
) was 

obtained during cultivation of P. furiosus on a modified medium containing soluble starch and 

elemental sulphur, at 98°C, pH 6.6 and under an atmosphere of H2/CO2 (80/20). Starch was 

randomly attacked by the amylase forming a mixture of various oligosaccharides. Eighty 

percent of the amylase was present in the culture supernatant, which is typically the waste 

stream from a fermentation. This made it ideal was a candidate source of TTI material. The 

native enzyme from P. furiosus was a homodimer with a molecular mass of 129 kDa. Its 

deduced amino acid sequence displayed strong homology to the -amylase of Dictyoglomus 

thermophilum, an obligately anaerobic, extremely thermophilic bacterium.  

 

P. furiosus amylase is active over a broad temperature (40 – 140ºC) and pH range (3.5 – 8.0), 

with the optimum activity at 100ºC and pH 5 (Koch et al., 1990).  In contrast, Ladermann et 

al. (1993) found the optimum pH range between 6.5 –7.5 and Brown et al, (1990) found it to 

be 5.6.  Metal ions were not required for amylase activity, the addition of Co
2+

, Ni
2+ 

and Fe
2+

 

slightly inhibited the enzyme and addition of 2 mM of Cr
3+

, Zn
2+

 and Cu
2+

 caused almost a 

complete inhibition. Ca
2+

 ions caused a slight stabilisation of the enzyme. 

 

In terms of the amylase stability to heat, no loss of activity was detected after 6 hours of 

incubation at 90°C (Koch et al., 1990).  At 120ºC, about 10% of the initial activity was 

measured after 6 hours. This equated to a decimal reduction time at 120°C of 6 hours (D120 = 

6 hours).  In order to inactivate the enzyme completely, incubation had to be performed at 

130ºC for at least 1 hour.  These levels of heat stability are higher than those required to 

measure a thermal sterilisation process, where the target is to exceed at least 3 minutes at 

121.1°C (F0 3) but the process can sometimes be a high as F0 50. Adjustment of the amylase 

thermal stability may be required. 

 

5.1.2  Pyrococcus woesei 

 

Pyrococcus woesei is also an anaerobic, hypothermophilic archaebacterium which has been 

isolated by Fiala and Stetter (1986) from hot water in Vulcano (Italy).  The microorganism 

has a slightly irregular non-motile coccus-shape and the specific activity of the amylase from 

P. woesei was much higher when compared to the enzymes from moderate thermophilic 

anaerobic eubacteria.   
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P. woesei also produces an extremely thermostable and thermoactive amylase.  Cultivation on 

starch with elemental sulphur under continuous gassing (H2/CO2, 80/20) produced 250 U.l
-1

 

of -amylase (Koch et al., 1991).  On a complex medium without elemental sulphur under 

80% N2 and 20% CO2 atmosphere, amylase production could be elevated up to 1,000 U.l
-1

.  

Optimal growth and amylase production was obtained during cultivation of P. woesei on a 

modified medium containing soluble starch, but without elemental sulphur, pH 6.5, 98°C and 

under N2/CO2 (80/20).  The -amylase consisted of a single sub-unit with a molecular mass of 

68 kDa (purified after absorption onto starch and desorption by preparative gel 

electrophoresis).  The amylase was capable of randomly hydrolysing the -1,4-glycosidic 

linkages of amylopectin, glycogen and amylose to form various oligosaccharides.  The -

amylase also hydrolysed native starch, but unlike other -amylases, it did not form glucose as 

an end product. 

 

P. woesei  amylase is active over a broad temperature (40 – 130°C) and a pH range (3.5 – 

8.0), with the optimum activity of the amylase at 100ºC and pH 5.5 (Laderman et al., 1993).  

Metal ions are not needed for amylase activity, the addition of 1 - 5 mM Cr
2+

, Cu
2+

, Fe
2+

 and 

Zn
2+

 causes amylase inhibition. Almost 20% of amylase activity was detected even at 130°C 

and for the complete inactivation of the -amylase at least 8 hours of autoclaving at 120°C 

and pressure of 2 bars was necessary. 

 

The amylase from P. furiosus displayed a temperature optimum of activity similar to that 

observed with the amylase purified from the hyperthermophilic P. woesei (Laderman et al., 

1993).  The amylases differed in that the purification of the protein from P. woesei involved 

the capacity of the amylase to bind substrate at ambient temperatures, while P. furiosus 

amylase only bound to substrates at temperatures required for amylase activation.   

 

Extremely thermostable amylase from P. furiosus was of great interest as material for a 

candidate sterilisation TTI. Heating at 120-130°C for lengths of time indicated that sufficient 

amylase activity remained to allow detection in an assay. In its „pure‟ form as extracellular 

material, P. furiosus amylase appeared to show a level of heat stability greater than that 

required for a food sterilisation treatment. This was ideal as a starting position because it is 

easier to reduce heat stability through metal ion adjustment than to increase it. A programme 
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of work was initiated to obtain and study P. furiosus amylase with the objectives of using it as 

a sterilisation TTI. 

 

5.1.3  Methods for the measurement of amylase activity 

 

There are several methods that can be used for measuring amylase activity. Conventional 

assays, such as those described in Chapters 2 and 3, operate at temperatures in the range 25-

30°C, where most amylases are near their optimal temperature. Amylases from 

hyperthermophilic microorganisms, however, are optimally active at much higher 

temperatures. Conventional assay techniques cannot be used and so alternative methods are 

required. 

 

Koch et al., (1990) used the method of Bergmeyer and Grassl (1983) to determine the amylase 

activity.  According to this method, 100 μL of amylase solution was added to 250 μL of 

sodium acetate buffer containing 1% starch. Acid hydrolysis of the starch gave products 

(amylose, pullulan and maltose) identified by employing HPLC using a Carbohydrate 

HPX42A column operating at 85°C.  Eluted sugars were monitored by a differential 

refractometer to determine the rate of concentration increase of these sugars. 

  

Laderman et al. (1993) determined the activity of amylase using a modification of the assay of 

Manning and Campbell (1961).  A 20 L sample containing the amylase, 1% soluble starch 

and 100 mM sodium phosphate was incubated at pH 7.0 and at 92°C for 10 minutes.  Colour 

was developed by the addition of 15 μL of an iodine solution (4% KI, 1.25% iodine) and an 

additional 1 mL of distilled water was added to each sample to dilute the colour of the sample 

to a measurable range at 600 nm.  One unit of the amylase activity was defined as the amount 

which hydrolysed 1 mg of starch.min
-1

. This is similar to the traditional starch-iodine test. 

  

Brown et al. (1990) determined the activity of amylase by measuring the amount of reducing 

sugars released during incubation with starch.  A 0.5 mL volume of 2% soluble starch was 

added to 0.5 mL of 0.1 M sodium acetate-acetic acid buffer (pH 5.6).  A portion (10 to 100 

μL) of amylase solution was added, incubated for 30 minutes at 98°C.  The amount of 

reducing sugars released was determined by using the dinitrosalicylic acid method (Bernfeld, 

1955).  In this method, sucrose was hydrolysed and the amount of glucose and fructose was 

measured through the absorbance between the acid treated sample and the untreated sample.  
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One unit of amylase activity was defined as the amount of amylase that released 1 mmol of 

reducing sugar (as glucose standard) per minute under the assay conditions. 

 

5.1.4  Objectives 

 

The primary objective of the work reported here was to determine if amylase from 

Pyrococcus furiosus was suitable for use as a sterilisation TTI. In order for this to be possible, 

the kinetics of the amylase destruction by heat were limited by the following two constraints:  

 

(a) It must show sufficient heat stability for some of the active amylase structure to remain 

after several minutes heating at 121.1°C.  The commercial requirement is for sterilisation 

processes to achieve at least an equivalent process of 3 minutes at 121.1°C.  However, this 

is often increased to allow for product and process variability, and to target spoilage 

microorganisms of higher heat resistance (Stumbo, 1965). This is discussed briefly in 

Chapter 1. Decimal reduction time (DT-value) for the amylase at 121.1°C was the 

parameter that characterised the heat stability. 

 

(b) It must exhibit a temperature sensitivity of breakdown that is characterised by a z-value 

close to 10°C.  This is the value used to represent the destruction of Clostridium 

botulinum spores (Stumbo, 1965). 

 

Finding a TTI material with thermal behaviour within these constraints is extremely difficult, 

otherwise a liquid sterilisation TTI would already have been discovered and available for use.  

 

Several stages were involved in achieving these objectives; these are described in detail in 

subsequent sections of this report: 

 

 The first was to determine whether the Pyrococcus furiosus microorganism could be 

grown in conditions that were favourable to amylase production and in the quantities 

suitable for use as a TTI. This proved more difficult than expected because of the extreme 

nature of the fermentation conditions and doubts over the viability of the microorganisms 

supplied.  
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 Purification of the amylase was the next issue since it is reported that up to eighty other 

enzymes are produced in the fermentation, as well as numerous by-products of the 

fermentation that may affect the amylase performance (Adams et al., 2001). This thesis 

work focussed on finding a suitable candidate material for the sterilisation TTI, and 

conducting sufficient tests to confirm that the D- and z-values were in the correct range. 

 

 Encapsulation of the sterilisation TTI was achieved using the same method as with the 

pasteurisation TTIs; that was within silicone tubes capped with a silicone elastomer 

compound. These TTI tubes gave the greatest flexibility for applications to industrial 

processes. Integrity of these TTI tubes at sterilisation process conditions was unknown, 

i.e. temperatures of 115 to 135°C, pressures up to 4 bar, and very rapid pressure changes.  

 

 There was also the need to determine which assay method was appropriate to an amylase 

with optimal activity close to 100°C. 

 

 

5.2  Production of Pyrococcus furiosus amylase 

 

Certain definitions are important at this stage. Chapter 1 describes the nomenclature for 

different TTI systems. The new thermostable amylase from Pyrococcus furiosus should be 

referred to as PFA121. For much of this report, however, the PFA121 TTI was in the form of 

freeze-dried-powder (FDP) from the Pyrococcus furiosus fermentation, and is referred to as 

FDP. When the FDP was dissolved in buffer solution and encapsulated within a silicone TTI 

tube it was referred to as a sterilisation TTI.  

 

Obtaining a consistent supply of amylase from a hyperthermophilic microorganism such as 

Pyrococcus furiosus proved to be a difficult task. Attempts to culture the microorganism at 

University of Birmingham failed on several occasions while the work in this thesis was 

ongoing. It was thought that one of the reasons was in the viability of the starting culture. A 

“live” culture under oil or broth might have made this more successful rather than the 

lyophilised cultures supplied from the culture collection.  The process of lyophilisation 

exposes the anaerobes to low temperatures and probably did not ensure a total absence of 

oxygen until the vacuum was formed, both of which are detrimental to culture viability. After 
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several failures in the fermentations at Birmingham, it was decided to out-source this task to a 

institution with a track record in growing Pyrococcus furiosus.  

 

A group at the Health Protection Agency (HPA) in Porton Down was active in continuous 

fermentation of Pyrococcus furiosus, and agreed to supply a 1-litre sample of unwanted 

fermentation broth. Results from this showed extremely high levels of amylase activity but 

there was insufficient sample to continue with the tests. A summary of the results from the 

first tests on this amylase are given below. Note that details on the assay method form a study 

in itself later in section 5.3. 

 

Summary of the first Pyrococcus furiosus amylase results: 

 

 Pyrococcus furiosus ACDP1 culture supernatant, pH 7.0 from HPA, Porton Down 

 Heated in glass capillary tubes for 0, 10 and 20 minutes at 121°C. 

 Assay conditions: 

20 L 1% starch, 20 uL 100mM phosphate buffer, pH 7.0 (conditions of Koch et al., 

1990). Incubate for defined time at 92°C. Stop reaction by cooling on ice; add 15 uL 

iodine, add 1 mL water. Measure absorbance at 600 nm. 

 Results: 

Activity still present after heating at 121°C, but more thermostable than required. 

 

Heating time 

at 121°C (minutes) 

 

Rate 

(minutes
-1

) 

0 0.056 

10 0.045 

20 0.044 

 

 

These were the first heating tests at sterilisation temperatures and used the fermentation broth 

directly in glass capillaries with no concentration. This was source of highly active amylase. 

The tests showed that there was residual amylase activity after 20 minutes at 121°C, and it 

looked very promising for further experiments to refine the broth. Unfortunately the HPA 
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group was closed down for commercial reasons and the source of high temperature amylase 

was lost.  

 

Further groups with active interests in Pyrococcus furiosus fermentation were sought through 

web searches and publication databases. Universities of Maryland and Georgia were 

identified. A sample of fermentation broth from University of Maryland was supplied but 

showed minimal amylase activity (see Table 5.1). After this, a collaboration with the 

University of Georgia (Department of Biochemistry & Molecular Biology) was set up 

because of their track record with Pyrococcus furiosus fermentation and enthusiasm to work 

together (Adams et al., 2001).  

 

5.2.1  Pyrococcus furiosus growth medium 

 

Pyrococcus furiosus was grown by University of Georgia on a rich medium containing yeast 

extract, according to published methods (Verhagen et al., 2001; Adams et al., 2001; Schut et 

al., 2003). Peptides, maltose or starch provided the primary carbon sources (see item f in 

Appendix 1 which contains details of the preparation methods used by University of Georgia). 

 

Fermentation broths were supplied from three 1-litre cultures of P. furiosus, so that they could 

be compared for amylase activity and relative heat stability. Each broth used a different 

source of carbon; peptides, maltose or starch. The peptides/S medium contained 0.5% 

(wt/vol) casein hydrolysate (enzymatic), while the maltose (1%, w/v) and starch (1%, wt/vol) 

media contained the indicated carbohydrates. All the proteins, including thermostable 

amylase, were precipitated out from the supernatant using ammonium sulphate. 

 

On receipt of the precipitate at CCFRA, the ammonium sulphate pellets were resuspended in 

an equivalent volume of 50 mM ammonium bicarbonate buffer, pH 7.0. This was dialysed 

against the same buffer to remove residual ammonium sulphate.  The dialysate was freeze-

dried and the resulting freeze-dried-powder (FDP) used to prepare solutions for amylase 

assay. Figure 5.1 shows the FDP from one of the three cultures as a low density white 

powder. 

 



 169 

Table 5.1: Details of various Pyrococcus furiosus fermentation broths supplied as 

material for an amylase based sterilisation TTI.  

 

 

Source 

Vol of 

broth 

(L) 

Amt of 

FDP 

(g) 

Protein 

content 

(μg protein/ 

mg FDP) 

Amylase activity 

Δ600/min/20µL of mg 

protein/mL buffer 

Porton Down 

P. furiosus ACDP1 

 

0.5 1.8 23 2.2 

10 mM phosphate 

buffer, pH 7.0 

University of Maryland 

P. furiosus 

 

10 0.24 0.8 trace
 

10 mM acetate buffer, 

pH 5.0, 1 mM CaCl2
 

The University of Georgia 

P. furiosus   

Starch carbon source 

1 0.431 13.2 trace 

10 mM acetate buffer, 

pH 5.0, 1 mM CaCl2 

The University of Georgia 

P. furiosus   

Maltose carbon source 

1 0.010 0.0 - 

The University of Georgia 

P. furiosus  

Peptides carbon source 

1 0.190 43.5 0.62 

10 mM acetate buffer, 

pH 5.0, 1 mM CaCl2 

 

 



 170 

 

 

Figure 5.1: FDP from one of the three cultures as a low density white powder. 

 

 

FDP from the U. Georgia fermentation using starch as the carbon source did not contain 

sufficient amylase activity for use as a TTI. It is likely that additional enzymes were produced 

by P. furiosus during metabolism on starch and these broke down any amylase. Also, the 

maltose source of carbon resulted in a low FPD weight and it was not possible to measure 

amylase activity. However, amylase activity was measured at high levels from the 

fermentation broth using peptides as the carbon source. A measurement of 0.62 in 20 µL of 25 

mg FDP/mL acetate buffer was made. This was a level that could be used in a dissolved form 

for TTI work. 
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5.2.2  Encapsulation of freeze-dried-powder into TTI tubes 

 

One major advantage of a liquid sterilisation TTI compared with one in powder form is the 

option of encapsulation within silicone TTI tubes. Chapter 2 describes in detail how these 

tubes are made. FDP from the fermentation using peptides as a carbon source was dissolved at 

25 mg FDP/mL of 10mM acetate buffer (pH 5.0 and containing 1 mM CaCl2). Between 25 

and 30 L of the FDP solution was injected into each TTI tube. Once the FDP solution was 

encapsulated in the TTI tubes it was ready for use.  

 

Filled TTI tubes were stored frozen in acetate buffer until ready for use, which included the 

time during transportation to and from the industrial processing plants. Frozen storage had 

been shown to maintain high amylase activity for many months (see Chapter 3) if the TTI 

system used an amylase buffer. This is important for ensuring the TTI method has practical 

application to thermal processing operations where factories are located some distance from 

CCFRA. The two trials at Masterfoods and Baxters, reported later in this chapter, challenged 

this in that one factory was located in East Anglia and the other in the Scottish Highlands. 

First class post was used successfully to transport the frozen TTIs between CCFRA and the 

factories with ice blocks remaining partially frozen on receipt of the TTI tubes. 

 

Only 0.19 g of FDP was obtained from the 1-litre fermentation using peptides as the carbon 

source. This meant that only a limited number of TTI tube trials to evaluate the effectiveness 

of the FDP as a sterilisation TTI were possible, and thus careful planning was needed. A 

proportion of this material was used in practising how to carry out the various experiments, 

for example in developing the new assay procedure, before the FDP could be used for thermal 

tests. 

 

Each TTI tube or glass capillary tube contained approximately 25 L of FDP solution, at a 

concentration of 25 mg/mL buffer, which was 0.000625 g per TTI tube. Therefore, the total 

number of TTI tubes available from 0.19 g of FDP was 304; this assumed no wastage. Such a 

low number focussed the experimental plan in order to obtain the maximum quantity of 

valuable data from the 0.19 g of FDP. 
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5.3  Development of the discontinuous assay methods 

 

Conventional amylase assays used with the amylase TTI systems for pasteurisation had 

previously been conducted using reagent purchased from Sigma or Randox (Tucker et al., 

2005). Chapter 1 describes these methods. They have the benefit of being continuous assays 

that are carried out using a laboratory spectrophotometer or a portable colorimeter. The ideal 

situation would be for this type of continuous assay to be appropriate to the sterilisation TTI. 

 

5.3.1  Randox assay 

 

Conventional Randox assays described in Chapter 1 are conducted at 30°C because this 

temperature is optimal for amylases originating from mesophilic microorganisms. However, 

amylase from Pyrococcus furiosus has minimal activity at 30°C (Koch et al., 1990) and so 

these standard amylase assays were unlikely to work. It was necessary to first determine a 

method by which the amylase activity for the P. furiosus FDP could be measured. Despite 

small quantities of FDP, a proportion of this was used in the development of an assay method. 

Most work on assay development used 15 mg FDP per mL of buffer solution. This 

concentration was chosen because the active amylase component of the FDP (see Table 5.1) 

was in a similar range to that for the B. amyloliquefaciens and B. licheniformis amylases (see 

Chapter 1). 

 

A FDP solution was made by adding 20 µL of FDP (15 mg resuspended per mL of 10 mM 

acetate buffer, pH 5.0 containing 1 mM calcium chloride) to 1 mL of Randox amylase reagent 

at 90ºC (Randox Laboratories, Catalogue number AY1580). A Randox assay was the ideal 

system because it provided a continuous assay that took a few minutes for the measurement to 

take place. Rate of increase of absorbance at 405 nm was measured with a spectrophotometer.  

Unfortunately, at 90ºC the amylase substrate precipitated from solution, and so this assay was 

unsuitable for activity measurement with this thermostable amylase. Limited success was 

obtained at temperatures of 40-50°C because of the lengthy incubation times required for the 

amylase to become active. Another approach was required for the assay, and so a 

discontinuous starch-iodine method was investigated. 
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5.3.2  Starch assay 

 

The starch/iodine assay was chosen for the P. furiosus amylase because of the need to operate 

at temperatures close to 100°C. Despite the disadvantages of a discontinuous assay there are 

advantages of the starch/iodine approach.  One is the less expensive materials, another is that 

it might be possible to dispense with an instrumental colour measurement and use colour 

charts to determine colour readings.   

 

Amylase activity was measured by incubating, at 92ºC and pH 5.0, a mixture of 20 µL of 1% 

soluble starch, 20 µL of 100 mM acetate buffer and 20 µL FDP (15 mg resuspended per mL 

of 10 mM acetate buffer, pH 5.0 containing 1 mM calcium chloride).  Incubation was for a 

range of time intervals up to 15 minutes so the reaction with starch could progress towards 

completion.  The reaction was stopped by the addition of 1 mL of ice cold water and the 

colour developed by addition of 15 µL of iodine solution (4% potassium iodide and 1.25% 

iodine solution). Figure 5.2 shows the range of colour changes from black to yellow as the 

amylase acts on the starch solution. Each of these tubes were incubated at 92°C for 15 

minutes, and in doing so reached the end point of the amylase-starch reaction. Zero amylase 

activity is shown as a black colour whereas high activity shows as a yellow colour. 

Absorbance was read at 600 nm and plotted against incubation time. Activity (ΔA600 

nm/minute/20 µL sample) was calculated from the gradient.  

 

 

Figure 5.2: Gradation of colour with discontinuous starch/iodine assay. Tube #1 shows a 

sample with high amylase activity and tube #4 with no activity. Tubes were incubated at 

92°C for 15 minutes. 
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5.3.3  Calculation of amylase activity rates 

 

Traditional amylase activities are calculated from the gradient of absorbance against time, 

using a continuous assay that measures colour change. Chapter 1 describes this method and 

presents Figure 1.5 as an example of absorbance data for a Bacillus amyloliquefaciens 

amylase, with the data points measured with a colorimeter. Activity for this example was 

taken as the maximum gradient, which in the example given, was between time reading of 20 

and 50 seconds.  

 

The difference between the continuous colorimeter measurements using 25 L of solution 

from a single TTI tube and the discontinuous starch-iodine method is that each of the points in 

Figure 1.5 corresponds to absorbance measurements from one sterilisation TTI tube 

containing 25 L of FDP solution. Therefore, to obtain the same number of data points as in 

Figure 1.5 it is necessary to use thirteen aliquots of the sterilisation TTI, or 13 x 25 L of FDP 

solution. Each tube is incubated at 92°C for a fixed time before the colour measurement is 

taken. Thus, the sterilisation TTI assays require more time to carry out and the sample volume 

to achieve the same end result of an activity rate is considerably higher. This encouraged 

further work to optimise the FDP concentration in buffer solution. 

 

The following section describes some of the D-value measurements that were made with the 

FDP in acetate buffer. Development of the assay procedure was undertaken simultaneously 

with measurement of D-values otherwise the 0.19 g of FDP would not have been sufficient to 

gather the data that proved this novel TTI approach worked. 

 

 

5.4  Determination of D- and z-values for the FDP using isothermal measurements 

 

Isothermal methods for D- and z-value measurement are the industry standards because of 

their relative simplicity (see Chapters 1 and 2). Thus, immersion of sealed glass capillary 

tubes in an oil bath at 121°C was used to obtain the first data on the D121-value for the 

sterilisation TTI. The downside of this approach was that isothermal D-value experiments 

required high quantities of FDP because of the demands of the discontinuous assay (described 

above). Therefore, much of the thermal characterisation used non-isothermal methods because 
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they were more effective in their use of the 0.19 g of FDP. All z-value work was from non-

isothermal kinetics in order to avoid having to repeat D-value measurements at different 

temperatures. This would have used most, if not all, of the FDP sample and would not have 

enabled any industrial testing to be carried out. 

 

It was considered an essential step to first measure the D-value at 121°C to confirm whether 

the FDP was of suitable heat stability. This required isothermal experiments to be conducted 

at 121°C using the FDP solution enclosed within glass capillary tubes immersed in a well 

stirred oil bath. The discontinuous assay required a minimum of five capillary tubes to 

calculate a single reaction rate for each immersion time at 121°C. Thus, five tubes were 

removed from the oil bath together at 0, 5, 11 and 15 minutes, and immersed in cold water to 

quench the amylase degradation. The four immersion times of 0, 5, 11 and 15 minutes 

required a total of 20 capillary tubes in addition to those for zero heating time. Figure 5.3 

shows these data. 
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Figure 5.3: Discontinuous assay data for four different heating times at 121°C; 0, 5, 11 

and 15 minutes. Five glass capillary tubes were incubated at 92°C from each heating 

time at 121°C. FDP concentration was 15 mg/mL of acetate buffer. 
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Amylase activity is estimated from the maximum gradients from these reaction curves. 

Typically the curves display a lag before the reaction starts, followed by a period of maximum 

activity in which the amylase is reacting with the substrate, and finally the rate slows as the 

reacting species are used up. With discontinuous assays, the position of maximum gradient is 

not always clear because each point is a measurement from a different glass capillary sample. 

For these discontinuous assays, two time periods were chosen over which the gradients were 

calculated. These were for each heating time at 121°C between 0 and 2 minutes incubation 

and between 0 and 5 minutes incubation, as given in Tables 5.2 and 5.3 respectively. This 

only affected the value for zero heating time at 121°C.  

 

 

Table 5.2: Amylase activities calculated from the gradients 

between 0 and 2 minutes incubation at 92°C, from Figure 5.3. 

 

Heating time at 121°C 

(minutes) 

Activity, N 

(minute
-1

) 

N/N0 log N/N0 

0 0.375 1.000 0.000 

5 0.160 0.422 -0.374 

11 0.092 0.243 -0.614 

15 0.061 0.162 -0.792 

 

Table 5.3: Amylase activities calculated from the gradients 

between 0 and 5 minutes incubation at 92°C, from Figure 5.3 

 

Heating tme at 121°C 

(minutes) 

Activity, N 

(minute
-1

) 

N/N0 log N/N0 

0 0.261 1.000 0.000 

5 0.160 0.613 -0.213 

11 0.092 0.352 -0.453 

15 0.061 0.234 -0.631 
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These data are illustrated graphically in Figures 5.4 and 5.5 using the traditional approach of 

plotting the logarithm of ratio of final activity (N) divided by initial activity (N0) as a function 

of heating time (Stumbo, 1965). Figures 5.4 and 5.5 represent data from the same experiment 

conducted using FDP at a concentration of 15 mg/mL buffer.  

 

D-values at 121°C of 18.1 and 23.9 minutes were encouraging, since they were in a range that 

represented F0-values for sterilised foods. (Ball and Olson, 1957). The important aspect of this 

was that P. furiosus amylase as a candidate material for producing a sterilisation TTI in 

solution appeared to provide suitable heat stability. Thermal processes with commercial F0-

values between 6 and 20 minutes could be measured using this TTI. 
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Figure 5.4: Graph of heating time at 121°C against log of final activity (N) 

divided by initial activity (N0). Gradients for each point taken between 0 and 2 minutes 

incubation at 92°C. D-value was 18.1 minutes at 121°C. 
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Figure 5.5: Graph of heating time at 121°C against log of final activity (N) divided by 

initial activity (N0). Gradients for each point taken between 0 and 5 minutes 

incubation at 92°C. D-value was 23.9 minutes at 121°C. 

 

 

5.4.1  Optimising the isothermal D-value methods to conserve FDP 

 

One limitation of using the FDP at 15 mg/mL buffer was the amount required to complete one 

measurement of either a D-value or of a series of activity rates for calculating a sterilisation 

value; as only 0.19 g of FDP was available. An alternative method was investigated in which 

a higher concentration of FDP was used, and the TTI solution was diluted before the assay 

was conducted. This allowed four replicates to be produced from the one sample and so four 

points could be obtained for calculating the gradient.  

 

Another series of heating tests at 121°C were carried out using glass capillary tubes in a well 

stirred oil bath. FDP at 25 mg/mL acetate buffer was heated in the glass capillaries and diluted 

after heating to 5 mg/mL for the incubation tests at 92°C.  This enabled five incubation times 



 179 

to be used for obtaining the gradient at each heating time at 121°C. Gradients were calculated 

between 0 and 5 minutes at 92°C, based on the findings from work reported in Tables 5.2 and 

5.3.  Figure 5.6 shows the plot of logarithm of activity ratio (final activity divided by initial 

activity) as a function of heating time at 121°C.  Each of the points in Figure 5.6 was 

determined with an effective FDP concentration of 5 mg/mL buffer, which was considerably 

less than with the data presented in Figures 5.4 and 5.5.  

 

Of interest with this trial was whether the reduced FDP concentration was sufficient to 

measure amylase activities with sufficient accuracy. It was known from trials with the 

pasteurisation TTIs that amylase activity decreased during storage time. Chapter 3 contains 

detailed descriptions of work with the BAA70 TTI, which is also a TTI in an acetate buffer. A 

dilution from 25 to 5 mg/mL might cause greater inconsistency with the assays at high 

heating times because there is less active amylase as a starting material.  
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Figure 5.6: Graph of heating time at 121°C against log of final activity (N) divided by 

initial activity (N0). Gradients for each point taken between 0 and 5 minutes incubation 

at 92°C. D-value of 22.5 minutes at 121 °C for 5 mg FDP / mL acetate buffer. 
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The D121-value was calculated from the regression line as 22.5 minutes, which was between 

the two values from Figures 5.4 and 5.5, which used FDP at 15 mg/mL buffer. This suggested 

that the heat stability of the FDP in acetate buffer was insensitive to FDP concentration within 

the range 5 to 25 mg/mL buffer. Figure 5.6 presents the data from Figures 5.4 to 5.6 on one 

graph to illustrate the similarity and to validate either approach. 
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Figure 5.7: Graph of heating time at 121°C against log of final activity (N) divided by 

initial activity (N0) for FDP at 15 mg/mL and diluted from 25 to 5 mg/mL. 

 

 

The method developed for conducting assays with this TTI system is to start with a solution 

of 25 mg/mL FDP concentration and to dilute this after the heating test is completed. This is 

more economical with the FDP and requires only one TTI tube to be heated in order to obtain 

an activity value. When transferring this technology to industry, it would be unrealistic to use 

five different TTI tubes to obtain one activity value (N), and hence calculate a single F-value 

from Equation 5.1. 
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Accuracy with the data presented in Figure 5.7 suggests that there is little difference between 

the D-values from either 15 mg/mL FDP concentration or if it is diluted from 25 to 5 mg/mL 

after the heating test is completed. However, it is noticeable with the diluted FDP that the 

differences between duplicate readings (from the same glass capillary) diverge as heating time 

increases. This is likely to be caused by very low amylase activities remaining in solution and 

so the accuracy of this test at heating times greater than 10-15 minutes is reduced. This will 

have implications when this TTI system is used for industrial tests in which a degree of over-

processing is usually built into the thermal processing conditions. Typical industrial process 

values (F0-values) tend to range from 4 to 20 minutes at 121.1°C. F0-values over 10 minutes 

are likely to be less accurate. 

 

 

5.5  Non-isothermal calibration 

 

Data on the D-value at 121°C gave confidence that FDP from P. furiosus fermentation broth, 

when grown in a peptide rich medium, was a candidate as a sterilisation TTI. Approximately 

half of the 0.19 g of FDP had been used in the work on developing methods for assaying 

amylase activity and in obtaining isothermal D-values. It was clear that measurements of z-

value, which required at least four D-values to be measured, could not be done without 

exhausting the rest of the FDP. This would leave no scope for testing this TTI material in any 

industrial conditions. An alternative to traditional isothermal kinetic methods was thus 

evaluated at this stage. 

 

There are two main limitations of the traditional isothermal kinetic method for measuring D- 

and z-value: 

 

 The experiments need to be repeated at several different temperatures, usually at least 

four, in order to calculate the z-value, which is time-consuming and uses precious 

material. 
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 Isothermal death kinetics do not represent the nature of heating experienced by a food 

product, in which the particle or pack temperatures increase gradually during heating 

before decreasing gradually during cooling.  

 

Non-isothermal methods for kinetic data determination have been used by various research 

groups (De Cordt et al., 1992; Miles and Swartzel, 1995; Van Loey et al., 1997a). The method 

requires the sterilisation value or F-value to be calculated simultaneously (as shown in 

Equation 1.11 as a P-value and Equation 5.2 as an F-value) using amylase activity measured 

with a TTI and from temperature measurements. This will result in two F-value measurements 

that will equate providing that the D-value and z-value used in either side of Equation 5.2 are 

correct for the TTI system.  

 

N

N
DdtF Tref

z
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0
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0

log10     5.2 

 

In Equation 5.2, N is the final amylase activity after a specific time-temperature history, and 

N0 is the initial activity. DTref is the decimal reduction time at the reference temperature (Tref) 

appropriate to destruction of thermostable amylase, and in this case it was taken at 121°C. 

T(t) is the measured product temperature, which is a function of time (t). z is the kinetic factor 

for the FDP, which is the temperature change required to effect a ten-fold change in the DTref 

value (°C).  

 

From Equation 5.2, the integration of temperature over time (left side of the equation) will 

result in the same F-value as that calculated from the sterilisation TTI activities (right side of 

the equation), provided that first order kinetics have been followed for the amylase 

destruction throughout the heat process. Hence, by applying the correct z-value to the 

temperature measurements and the correct D-value for the amylase activities, both sides of 

Equation 5.2 will be equal. The theory behind non-isothermal kinetics is that a series of 

experiments are carried out over varying time-temperature conditions with TTIs located at or 

close by the temperature sensors so that both systems measure the same process. A non-

isothermal measurement with a number of matching pairs of TTIs and probes should result in 

a correlation between pairs of calculated F-values.  
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It is important to measure a range of F-values calculated using a number of different thermal 

processes, to represent conditions expected in a food thermal treatment. All F-values must be 

measured at the end of cooling because this represents the measurement obtained from a TTI 

system when used for measuring processes in packs of food or in a continuous heat process 

(Tucker et al., 2002).  

 

One unique pair of D121 and z-values is appropriate for all sets of time-temperature data. To 

achieve a range of F-values, the thermal processing data sets utilised different product heating 

rates as well as different process temperatures between 121 and 131°C.  These sets of time 

and temperature data provided a range of conditions at which the lethal rates accumulated. 

Two sets of experimental trials were set up to provide a wide range of F-values to challenge 

the measurement range of the TTI and thus estimate DT and z. Figures 5.8 and 5.10 present 

the time-temperature profiles measured in packs of food processed in two industrial situations. 

 

Trial 1: The first processing style used a commercial Lagarde steam-air retort at Masterfoods, 

Kings Lynn. Products were packaged in plastic pouches and glass jars. The thermal processes 

were given depending on the product requirements to achieve commercial values for 

sterilisation. Different heating rates from the two products and between replicates allowed the 

time-temperature data to differ in the rates of lethal rate or F-value accumulation. Figure 5.8 

shows the time-temperature data that illustrates the increase in F-value from the five sets of 

data. The pouch product was a pasta cook-in-sauce and the glass jar product a white sauce.  
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Figures 5.8: Temperature data measured in pouches and glass jars of food 

processed in a Lagarde steam-air retort. 
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Figures 5.9: F-value data measured in pouches and glass jars of food 

processed in a Lagarde steam-air retort. 

 

 

Trial 2: The second processing style used a laboratory simulator of an FMC reel and spiral 

cooker-cooler with cylindrical metal cans at Baxters, Scotland. In this system, fast axial 

rotation (FAR) occurred during parts of the process where the cans lost their contact with the 

reel. The FMC 610B bar simulator (FMC FoodTech, Belgium) achieved this using FAR for 

one-third of the time it took a can to travel around the reel. This resulted in extremely efficient 

heat transfer. Water (0), 1 and 2% w/w starch solutions were used to produce three different 

heating rates for the product. Two different process temperatures were used, 124 and 131°C. 



 186 

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Time (minutes)

T
e
m

p
e
ra

tu
re

 (
°C

)

Water

Water

1%

1%

2%

2%

 

Figure 5.10: Temperature data measured in cans of 0, 1 and 2% starch 

processed in a FMC 610B simulator. 
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Figures 5.11: F-value data measured in cans of 0, 1 and 2% starch 

processed in a FMC 610B simulator. 
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The objectives of these industrial trials were two-fold: 

 

 To obtain data for use in a non-isothermal measurement of D- and z-value for the FDP in 

acetate buffer. Several very different time-temperature and time-F-value measurements 

were experimentally set up so that D- and z-values were appropriate over a wide range. 

 

 The industrial trials were also to evaluate whether the sterilisation TTI tubes would 

withstand the rigours of a full thermal treatment where pressure swings of up to 2 bar 

can occur almost instantaneously (Pape, 2007). 

 

Temperature and TTI measurements needed to be from the same position within the food 

product. This was achieved by taping at least one sterilisation TTI tube to the measuring 

junction of a temperature sensor within the products (see Figure 5.12 from trial 1 and Figure 

5.13 from trial 2). Datatrace loggers (Wessex Power Technology Ltd, Poole) and conventional 

Ellab thermocouple wires (Ellab UK Ltd, Kings Lynn) were used for the temperature 

measurements. Datatrace loggers used thermistors and Ellab wires were type T hermocouples. 

Note that in Figure 5.12, the thermocouple junction was not at the end of the stainless steel 

sheath, but at a known distance along its length, and so the TTI tube was taped adjacent to the 

junction. A common measuring position was assured within a few millimetres for each 

matching pair of TTI and probe. This enabled the F-values calculated from TTIs and probes to 

be from virtually the same location.  

 

Sterilisation TTI tubes were approximately 8 mm in length and 2.5 mm outside diameter. The 

light brown FDP solution can be seen in Figure 5.12, enclosed between two black end plugs 

of Sylgard 170 elastomer. 
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Figure 5.12: Ellab Tracksense logger with a sterilisation TTI tube 

attached to the measuring tip. (picture courtesy of Masterfoods, Kings Lynn) 

 

 

 

 

Figure 5.13: Ellab thermocouple housing with a sterilisation TTI tube 

taped at the point of measurement. (picture courtesy of Baxters, Fochabers) 

 

 

5.5.1  Measurement of amylase activity rates  

 

Each of the sterilisation TTIs, attached to probes in Figures 5.12 and 5.13, contained 

approximately 25 L of the FDP solution. This volume of TTI solution has been found to be 

sufficient for subsequent amylase activity measurement yet is small enough that the heating 
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rate of the TTI tube does not affect the measurement (Lambourne and Tucker, 2001;Tucker et 

al., 2004). Concentration of the FDP was 15 mg/mL of acetate buffer. 

 

Each starch-iodine assay required 20 L of the FDP solution. In some TTI tubes, it was not 

possible to recover 20 L from the processed tubes because of losses during extraction of a 

small aliquot from the tubes. However, at least 15 L was recovered from each TTI tube and 

a pro-rata adjustment in activity was made for the TTIs where less than 20 L was recovered. 

 

At this stage of the work, isothermal experiments to measure D-value, described in section 5.4 

above, had already used a substantial quantity of the FDP. To evaluate the sterilisation TTI at 

Masterfoods and Baxters, a more effective assay method was developed from previous 

experiences with incubated samples at 92°C.  Information on the colour changes over the 15-

minute incubation period at 92°C had shown that the first 5-minutes of incubation was critical 

in determining the reaction rate. Incubation beyond 5-minutes was not necessary because the 

maximum gradient occurred within the first five minutes (see Figure 5.3). This was consistent 

for all samples, irrespective of the heating time of the TTI tubes.  

 

Thus, to maximise effectiveness of the data obtained in the industrial experiments, the 

decision was made to optimise the assay by working with only two points on the reaction 

curve; a time zero point and one at five minutes incubation at 92°C.  This assumed linearity in 

the measured colour change between zero and five minutes of incubation (see Figure 5.14 and 

compare with Figure 5.3).  

 

Figure 5.3 shows absorbance data at 600 nm using a number of TTI samples incubated up to 

15 minutes. Figures 5.4 and 5.5 show the impact on calculated activities and D-value of 

measuring the gradient between 0 and 2 minutes (Figure 5.4) or between 0 and 5 minutes 

(Figure 5.5). It is only the unheated FDP that shows a different gradient, which is because the 

reaction of amylase with starch occurs rapidly at high amylase concentrations. Heated FDP 

has less active amylase and so the reaction rates with starch are lower and the gradients of 

absorbance at 600 nm with incubation time are linear over a longer time. This is similar to 

mesophilic bacterial amylases such as BAA85 and BLA90 used for work in Chapter 4. 
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Figure 5.13: Initial activity rate calculation using zero and five minute incubation times 

at 92°C and assuming linearity between the two points. Activity rate was 0.375. 

 

 

The ideal scenario for the unheated FDP is to have numerous TTI samples incubating at 92°C 

and to remove them every few seconds to measure absorbance. By measuring with many 

samples over the first few minutes of the incubation, it will be possible to generate more 

points on the discontinuous reaction rate curve, and define the region of maximum gradient 

with more accuracy. However, this will not work for a manual assay procedure because of the 

time it takes to carry out one absorbance measurement and also heat transfer issues with short 

heating times. The potential for using a different amylase assay method is discussed in section 

5.6.1 on future work. 

 

Work summarised in Figures 5.3 to 5.5 demonstrated that an assay method that incubated at 

92°C for 0 and 5 minutes was of sufficient accuracy for calculating amylase activities. It is 

likely that an unheated solution of FDP will give a maximum gradient before 5 minutes 

incubation, and this approach will result in a small underestimation of initial activity. 

Therefore, a ratio of the initial activity divided by the final activity is likely to underestimate 

the integrated F-values (see Equation 5.2).  Tables 5.2 and 5.3 show that the unheated activity 
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was 0.261 minutes
–1

 when calculated over the first 0 to 5 minutes and 0.375 minutes
–1

 over 

the first 0 to 2 minutes of incubation at 92°C.  It was considered that the positive benefits of 

using only one 25 L sample of FDP solution for the assays outweighed the negative of an 

underestimation in calculated F-value. When more P. furiosus material is available it is 

essential that further work is done on the assay method, particularly for the unheated samples. 

 

Equation 5.2 presents the calculation procedure for F-value based on initial and final amylase 

activities. 
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Equation 5.2 can be written in terms of colour measurements at 0 and 5 minutes of incubation 

at 92°C, since the gradients (amylase activities) were calculated between these times. 

Equation 5.3 uses values for colour measurements at 600 nm instead of activities. 
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where,  C0 is the colour reading at 600 nm for a unheated control sample after 0-minutes 

incubation at 92°C, 

 C05 is the colour reading at 600 nm for a unheated control sample after 5-minutes 

incubation at 92°C, 

 Ct5 is the colour reading at 600 nm for a heated sample after 5-minutes incubation at 

92°C, 

 

Equation 5.3 shows the calculation procedure for obtaining F-values from the industrial 

experiments in which sterilisation TTI tubes are inserted into food products. Initial activity is 

calculated from (C0 – C05) and final activity after a thermal process from (C0 – Ct5).  
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5.5.2  F-value, D121.1 and z-value calculation procedures 

 

The benefit of a non-isothermal TTI calibration is that the food products experience this form 

of time-temperature history during a thermal process. It is not possible for a thermally 

processed food to rise in temperature instantaneously, and hold that temperature for a period 

of time before being instantaneously cooled. One exception may be UHT processing of thin 

liquids in which direct steam injection is used to heat and vacuum cooling is used to cool 

(CCFRA, 1986). A non-isothermal D- and z-value measurement should have a benefit in that 

it represents more closely the time-temperature histories that foods experience. Measured D- 

and z-values by non-isothermal methods should enable more accurate calculation of F-values. 

 

This non-isothermal method used 25 mg/mL FDP solution within silicone TTI tubes and 

exposed them to various thermal processes where the F-values accumulated at different rates 

(see Figures 5.9 and 5.11). This was the highest concentration of FDP in acetate buffer used 

in any of the test described earlier in this chapter. It was used because of the need to start with 

an initial activity that was high enough to result in measurable activities following the 

industrial time-temperature processes in Figures 5.8 and 5.10.  

 

Kinetic data (i.e. D- and z-values) were evaluated with a series of coupled equations within an 

Excel workbook. Equation 5.4 was the basis for the F-value comparison. Time-temperatures 

were converted to F-values using the left side of Equation 5.4, with z-value as the kinetic 

parameter, and colour measurements using the right side of Equation 5.4, with D-value as the 

kinetic parameter. 
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where,  t is the time interval used for time-temperature measurements, minutes 

 t is the total heating and cooling time, minutes 

 

Within the Excel worksheet, the parameters used to determine values for D121.1 and z were the 

sterilisation values (F-values) calculated from the time-temperature data (referred to as F(t-T)) 

and from the TTI data (referred to as F(TTI)). By comparing F(t-T) and F(TTI) calculations 

from paired values it was possible to estimate values for D121.1 and z that minimised the sum 



 193 

of the absolute difference between all of the TTI and probe measurements. This was done 

through an Excel macro using a D121.1 of 24 minutes and a z of 10°C as the starting point. The 

macro stepped through increments in D- and z-value of 0.05 respective units to locate the 

lowest sum of the absolute difference. 

 

For trial 1 in the Lagarde retort, the minimum value for the average percentage absolute 

difference between F(t-T) and F(TTI) was 14.83. This was estimated for a D121.1 of 21.45 

minutes and a z of 9.95°C. Two decimal places (d.p.) for D121.1 and z were used in the 

calculations. Agreement between F(t-T) and F(TTI) for each of the paired values was within 

1.5 units of F-value, i.e. minutes. This was considered by the industrial project consortium to 

be a level of agreement that was sufficiently close in order to have confidence that the 

sterilisation TTI can be applied to industrial situations. 

 

Table 5.4 and Figure 5.14 provide the raw data for these calculations from data generated in 

trial 1. Note that in Figure 5.14 the best fit line between paired values of F(t-T) and F(TTI) 

has been adjusted to go through the origin. This adjustment did not markedly affect the values 

of D121.1 and z.  

 

 

Table 5.4: F-value data for trial 1; products in pouches processed in a Lagarde steam-

air retort. D121.1 was 21.45 minutes and z was 9.95°C. 

 

CCFRA MF F(t-T) F(TTI) % Abs % Abs

tube code mins mins Diff Diff Diff Diff

1 1A 5.97 4.57 1.40 23.5 1.40 23.5

2 2A 4.18 3.57 0.61 14.6 0.61 14.6

3 3A 8.90 10.42 -1.52 -17.1 1.52 17.1

11 3B 9.37 11.14 -1.77 -18.9 1.77 18.9

13 5B 8.44 8.45 -0.01 -0.1 0.01 0.1

Ave -0.26 0.39 1.06 14.83  
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Figure 5.14: Graphical illustration of F(t-T) and F(TTI) for trial 1; products in pouches 

processed in a Lagarde steam-air retort. D121.1 was 21.45 minutes and z was 9.95°C. 

 

 

For trial 2 in an FMC bar simulator, paired values for F(TTI) and F(t-T) were calculated using 

the D121.1 of 21.45 minutes and z of 9.95°C respectively from trial 1. It can be seen from 

Table 5.5 and Figure 5.15 that there was good agreement between F(t-T) and F(TTI), although 

the highest F-values were 30-40% different.  
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Table 5.5: F-value data for trial 2; products in cans processed in an FMC reel & spiral 

cooker-cooler. D121.1 was 21.45 minutes and z was 9.95°C - values taken from trial 1. 

 

CCFRA Baxters F(t-T) F(TTI) % Abs % Abs

tube code mins mins Diff Diff Diff Diff

2A 1 6.50 4.86 1.64 25.2 1.64 25.2

2B 1

3A 2 5.32 4.01 1.31 24.6 1.31 24.6

3B 2 5.32 4.14 1.18 22.1 1.18 22.1

4A 3 4.67 3.27 1.39 29.9 1.39 29.9

4B 3 4.67 3.12 1.55 33.2 1.55 33.2

5A 1 8.53 9.16 -0.63 -7.4 0.63 7.4

5B 1

6A 2 28.61 16.20 12.41 43.4 12.41 43.4

6B 2 28.61 19.02 9.59 33.5 9.59 33.5

7A 3 3.54 3.76 -0.22 -6.3 0.22 6.3

7B 3

Ave 4.54 19.29 4.88 24.75  
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Figure 5.15: Graphical illustration of F(t-T) and F(TTI) for trial 2; products in cans 

processed in an FMC reel & spiral cooker-cooler.  D121.1 was 21.45 minutes and z was 

9.95°C - as with values from trial 2.
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Most of the F(TTI) values are higher in Table 5.5 than their paired F(t-T) values. The two 

highest F-values in CCFRA tubes 6A, 6B (Baxters code 2) skew the minimum sum of the 

absolute differences. It is possible to achieve a slightly better agreement between F(t-T) and 

F(TTI) by adjusting the D and z values in the Excel workbook. Table 5.6 and Figure 5.16 

show improved fits in paired F(t-T) and F(TTI) values despite the minimum sum of the 

absolute differences being similar to those given in Table 5.5. These calculated values are for 

D121.1 of 25.00 minutes and z of 11.5°C, which are quite close to those calculated from trial 1.  

 

 

Table 5.6: F-value data for trial 2; products in cans processed in an FMC reel & spiral 

cooker-cooler. D121.1 was 25.00 minutes and z was 11.5°C. Lower minimum sum of the 

absolute differences to that in Table 5.5. 

 

CCFRA Baxters F(t-T) F(TTI) % Abs % Abs

tube code mins mins Diff Diff Diff Diff

2A 1 6.04 5.67 0.37 6.2 0.37 6.2

2B 1

3A 2 5.10 4.68 0.42 8.3 0.42 8.3

3B 2 5.10 4.83 0.27 5.3 0.27 5.3

4A 3 4.50 3.81 0.69 15.2 0.69 15.2

4B 3 4.50 3.63 0.87 19.3 0.87 19.3

5A 1 7.23 10.68 -3.45 -47.8 3.45 47.8

5B 1

6A 2 20.84 18.88 1.96 9.4 1.96 9.4

6B 2 20.84 22.17 -1.33 -6.4 1.33 6.4

7A 3 3.29 4.38 -1.09 -33.3 1.09 33.3

7B 3

Ave -0.61 -11.74 1.74 23.22  
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Figure 5.16: Graphical illustration of F(t-T) and F(TTI) for trial 2; products in cans 

processed in an FMC reel & spiral cooker-cooler. D121.1 was 25.00 minutes and z was 

11.5°C. Lower minimum sum of the absolute differences to that in Figure 5.15. 

 

 

Estimated error bars displayed in Figures 5.14 to 5.16 were 11% on time-temperature F-

values (x-scale) and 12.5% on TTI F-values (y-scale). These errors were calculated from 

estimated inaccuracies with the measurement systems and variability with the relative 

experiments. For example, if a temperature sensor is quoted as 0.5°C at the reference or test 

temperature of 121.1°C, this can be converted to 11% error in terms of F0 units. The basis 

for this calculation was Equation 5.5. 
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TFTF
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where,  F0 is the sterilisation value specifically for destruction of C. bot. spores, minutes 

T is the test temperature, °C 

  is the temperature offset from the correct test temperature, °C 
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Equation 5.5 was modified to Equation 5.6 by substituting Equation 5.2 for each F0 term. 

Absolute values for the positive and negative errors do not equate, with positive errors 

calculated as slightly higher. Table 5.7 shows how the error increases for temperature offsets 

between 0 to 1.0C°. Interestingly, the % error is independent of the test temperature, T. 
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where,  T is the test temperature, °C 

 Tref is the reference temperature, for C. bot. spores this is 121.1°C 

 z is the kinetic factor, for C. bot. spores this is 10°C 

  is the temperature offset from the correct test temperature, C° 

 

 

Table 5.7: Errors in calculated F0-value if measured product  

Temperatures are offset by up to 1°C from a setpoint temperature. 

 

Offset 

(°C) 

% error in F0 

for + offset 

% error in F0 

for – offset 

 

0.0 0.00 0.00 

0.1 2.33 -2.28 

0.2 4.71 -4.50 

0.3 7.15 -6.67 

0.4 9.65 -8.80 

0.5 12.20 -10.87 

0.6 14.82 -12.90 

0.7 17.49 -14.89 

0.8 20.23 -16.82 

0.9 23.03 -18.72 

1.0 25.89 -20.57 
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Calculation of errors with TTI F-value measurements is more complicated because of the 

presence of two activity or three colour measurements for each F-value calculation. Equation 

5.3 presents the method for calculating an F-value using the novel sterilisation TTI in FDP 

form, in which three colour readings are required. These are, C0, the colour reading at 600 nm 

for a unheated control sample after 0-minutes incubation at 92°C, C05, the colour reading for a 

unheated control sample after 5-minutes incubation, and Ct5, the colour reading for a heated 

sample after 5-minutes incubation. The error bar value chosen for Figures 5.14 to 5.16 was 

12.5% on TTI F-values. This was based on work with amylase pasteurisation TTIs such as 

BLA90 where two activity measurements are used in the equation for F-value (Tucker et al., 

2002). Errors with TTI F-values are discussed in Chapters 1 and 3.  

 

It is likely that the sterilisation TTI, which uses three colour readings, could be subject to 

higher error values. However, the purpose of the work reported here was to identify a 

candidate material suitable for the new TTI. Insufficient FDP material was available to carry 

out replication of the experiments and so precise analysis of errors was not possible. 

 

TTI F-values calculated using the D121.1-value for the sterilisation TTIs were consistently 

within 1.5 F-value units of those calculated from the time-temperature data. Tables 5.4 and 

5.6 show how close the F-values are for a wide range of commercial processes. Most in-pack 

thermal processes operate at around F0-values of 6 to 12 end of heating, and so this agreement 

between F(TTI) and F(T-t) was an acceptable level of accuracy when used to establish a 

thermal process. Continuous thermal processes with particles usually operate to substantially 

higher F0-values because of the uncertainty involved with measurements of residence time 

and heat transfer coefficient (McKenna and Tucker, 1991). Thus, an error of 1.5 minutes on 

a measured F-value in the region of 20-30 minutes would not be an issue for process safety. 

 

 

5.6  Conclusions and further work 

 

The novel concept of an amylase produced by a microorganism of extreme heat stability was 

investigated in the work reported here. Such microorganisms exist in volcanic areas where 

their environment is comprised of hot water pools rich in sulphur and other elements that 

would be poisonous to most life forms. Some of these extreme microorganisms, referred to as 

hyperthermophilic microorganisms, produce highly active amylase in order to break down 
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carbohydrates present their food sources. Extracellular amylase from Pyrococcus furiosus was 

demonstrated to exhibit suitable thermal stability kinetics. These were both a decimal 

reduction time high enough for residual amylase activity to be measured following a full 

sterilisation process, but also a z-value close to 10C° that is taken as industry standard for 

Clostridium botulinum spores. This combination of D- and z-values was hitherto unobtainable 

from an enzyme in solution. 

 

Throughout the testing period for the sterilisation TTI, there were limitations on the numbers 

of tests that could be done because of low sample mass. This focused the types of tests and 

limited the replicates. Sufficient testing was conducted to prove that an amylase from 

Pyrococcus furiosus displayed a thermal behaviour that was suitable for use as a sterilisation 

TTI. It would be necessary to procure a much larger sample of this amylase in order to 

conduct more detailed isothermal and non-isothermal kinetic testing and understand the TTI 

more fully. This should be part of a future project. 

 

Some isothermal kinetic data were collected to determine the D-value at 121°C but it was 

non-isothermal methods that were used more extensively. The method of non-isothermal 

calibration was a quicker and more efficient method to determine the D and z values for a TTI 

system. Requirements for a non-isothermal calibration were to attach sufficient numbers of 

TTIs to temperature sensors so that F(t-T) and F(TTI) were calculated for each paired value. 

No absolute minimum number is recommended, however, ten to fifteen paired values over the 

3 to 15 F0 range provide sufficient data to obtain accurate D- and z-values. This has a distinct 

advantage over isothermal methods because it can be done as part of a thermal processing trial 

and need not be a lengthy exercise of its own. Thus, the approach to calibrating the TTI 

sensors can be made similar to that for calibrating temperature sensors in which the sensor 

readings are compared against a master temperature indicator during the first trial. 

 

D-values at 121°C were measured between 18 and 24 minutes for the isothermal calibrations 

and 24.5 and 25.0 minutes for the non-isothermal calibration. F-values measured with the 

sterilisation TTI compared within 1.5 F-value units to the probe F-values over most of the 

measurement range. The one exception was for the single F0-value of 28 minutes where the 

TTI system gave a lower value. This can be explained by this value being outside of the upper 

measurement range. It may be that the sterilisation TTI cannot be used to measure more than 

one-log reduction in amylase activity at the 25 mg/mL FDP concentration (further diluted to 5 
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mg/mL for assay purposes). Conventional pasteurisation TTIs using a pure amylase source for 

the starting material allow a measurement of at least two-log reductions in amylase activity. 

Obtaining high accuracy at high F0-values is not important for process safety where the 

operating region is in the lower range towards F0 3.  

 

A z-value was not measured from an isothermal calibration because of limitations with the 

mass of FDP available. These tests would have required at least four D-value tests to be 

conducted. Instead, non-isothermal calibration was used for measuring the z-value, because of 

its greater efficiency with sample requirements. The z-value from the first set of thermal 

processes came out at 9.95 1.5°C. This z-value was close to the Clostridium botulinum value 

of 10°C.  

 

Results presented in this chapter were the culmination of three years of effort in characterising 

the sterilisation TTI in solution. Much of this time was involved with obtaining amylase from 

the hyperthermophilic microorganism Pyrococcus furiosus, which proved difficult for the 

reasons given earlier. Having obtained a working sample, the results for its heat stability were 

shown to be suitable for use as a sterilisation TTI.  

 

5.6.1  Further work 

 

There are two main objectives for a TTI-based thermal process measurement system; firstly to 

measure a process value in order that a food product can be produced safely, and secondly to 

optimise processes if the values are too high. The measurement range for the sterilisation TTI 

allowed both these objectives to be realised. Further testing of the sterilisation TTI will be 

required to determine the measurement limits more precisely and assign levels of confidence 

in the F-values over this measurement range. 

 

Heat stable amylase from Pyrococcus furiosus was demonstrated as a suitable material for use 

as a TTI for thermal sterilisation processes. Due to the small sample sizes available it was not 

possible to complete all the testing appropriate for a new TTI. Further experimental work is 

required in a number of areas to address the questions that arose during the research: 

 

 It will be necessary to obtain larger quantities of FDP to enable further testing. Conditions 

used in the batch fermentation may not have been optimised for amylase production and 
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may have resulted in detrimental by-products (e.g. proteases). Continuous fermentation 

could be used for greater yields and consistency. 

 

 Determine the best conditions for storing the FDP and of the filled sterilisation TTI tubes. 

This is important to prevent loss in activity during transportation to/from industry trials. It 

was assumed that storing the TTI tubes in acetate buffer, which were then put into a 

freezer, was the best method since this had been used with other TTI systems. 

 

 Purification - how far to go? The end point for work reported here was FDP with minimal 

purification. Reduction in activity was found when the sterilisation TTIs were stored 

chilled, which was thought to be caused by proteases acting on the amylase. The FDP was 

not a pure amylase and so other by-products of the fermentation will be present. Some of 

these may be detrimental to the amylase.  

 

 What variability should be expected for the sterilisation TTI?  It has many applications to 

industrial thermal processes and so it will be necessary to understand the accuracy of F-

values estimated from the TTIs. 

 

 How to guarantee long term supply of the FDP with reproducible heat stability properties. 

Pyrococcus furiosus fermentation may not be the best method to produce heat stable 

amylase. There are many reports of the gene being expressed in bacteria such as E. coli or 

in yeast and mould. Reports suggest the amylase from an E. coli retains its heat stability 

but it has not been tested in the same way as for a sterilisation TTI. Early results are given 

in Chapter 6 for thermostable amylase produced from a yeast culture where the amylase 

producing gene was expressed into the yeast cells. 
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CHAPTER 6: FUTURE TTI PROJECTS 

 

 

„The only way to discover the limits of the possible is to go beyond them into the impossible‟ 

Arthur C. Clarke 

 

 

Chapter 5 described a series of tests to develop an innovative TTI suitable for applications to 

sterilisation processes. This has considerable potential as a TTI for measuring F-values in 

continuous sterilisation processes and in many other applications such as continuous rotary 

canning. The tests concluded that an -amylase from Pyrococcus furiosus had suitable heat 

stability characteristics, however, production of the amylase from this organism proved 

troublesome because of the extreme conditions in which it survives. Therefore, two routes for 

production of a heat stable amylase were explored during the latter stages of this thesis work.  

 

Chapter 5 dealt with amylase produced directly from the Pyrococcus furiosus organism and 

the media conditions required to encourage this organism to produce amylase. Samples of a 1-

litre fermentation broth were obtained from the University of Georgia as a means of fast 

tracking the work. This was proven to be successful but difficult to reproduce in larger 

quantities. Work is now ongoing at the University of Birmingham to grow Pyrococcus 

furiosus using continuous fermentation techniques that have the potential to increase the yield 

of thermostable amylase. One of the challenges is to encourage Pyrococcus furiosus to 

produce its cocktail of enzymes, of which it is known that around 80 are produced, but with a 

preference to production of the thermostable amylase. Results from this work are promising 

but are not included in this thesis. 

 

The alternative technique, which is described in this chapter, is to clone the amylase 

producing gene into a different microorganism that can be grown in more moderate laboratory 

conditions. This has many benefits over that of a Pyrococcus furiosus fermentation that must 

take place under extreme laboratory conditions. By selecting the gene responsible for amylase 

production, the secretion of enzymes from the host cell should have a preference for the 

thermostable amylase. Concentration of amylase should be proportionally higher and the 
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presence of amylase degrading enzymes such as proteases should be reduced. Thus, 

purification steps for the TTI that involve freeze drying and taking the freeze dried powder up 

into a buffer should result in greater yields. It is also easier to grow the chosen microorganism 

in conventional laboratory fermentation equipment, which has a major advantage for the 

ultimate aim of manufacturing the sterilisation TTI for widespread use in the food industry. 

CCFRA does not operate a fermentation laboratory suitable for growing hyperthermophilic 

microorganisms but is well placed to grow mesophilic bacteria, yeast and mould. 

 

 

6.1  Review of literature on gene expression 

 

Gene expression has emerged as one of the most important scientific techniques of this age. It 

is surrounded with controversy because it attempts to combine the strengths of one organism 

with those of another, and in doing so creates a new organism. Its origins are in plant 

molecular biology in which disease-resistant, drought-resistant or heavy-cropping strains can 

be developed.  

 

Gene expression, also called protein expression or expression, is the process by which a gene 

DNA sequence is converted into the structures and functions of a cell (Wikimedia, 2006). 

Gene expression is a multi-step process that begins with transcription of DNA, the building 

blocks of genes, into messenger RNA. It is then followed by post transcriptional modification 

and translation into a gene product, followed by folding, post-translational modification and 

targeting. The amount of protein that a cell expresses depends on the tissue, the 

developmental stage of the organism and the metabolic or physiologic state of the cell. The 

thermostable amylase required for the sterilisation TTI was one such protein. 

 

Protein encoded for by a gene can be expressed in increased quantity. This can come about by 

increasing the number of copies of the gene or increasing the binding strength of the promoter 

region. Often, the DNA sequence for a protein of interest will be cloned or subcloned into a 

plasmid containing the lac promoter, which is then transformed into the bacteria, Escherichia 

coli. Addition of IPTG (a lactose analog) causes the bacteria to express the protein of interest. 

IPTG is a common abbreviation for Isopropyl β-D-1-thiogalactopyranoside, a molecular 

biology reagent, which has a molecular weight of 238.3. However, this strategy does not 

always yield functional proteins, in which case, other organisms or tissue cultures may be 
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more effective. The yeast, Saccharomyces cerevisiae, is often preferred to bacteria for 

proteins that undergo extensive post-translational modification.  

 

In the research conducted here, a heat stable amylase was required from Pyrococcus furiosus 

but with a preference for growing conditions suited to use in general microbiological 

laboratories. This required the amylase-producing gene to be expressed in a mesophilic 

organism such as a bacterium, yeast or mould. There was a reluctance on behalf of some food 

manufacturing companies to go down this path, particularly if the bacterium was Escherichia 

coli.  

 

Some of the relevant literature to gene expression of proteins from hyperthermophilic 

organisms is reviewed. The focus of the papers presented here is in relevant proteins to the -

amylase produced by Pyroccocus furiosus, or related organisms. 

 

Vieille and Zeikus (2001) reviewed properties of several hyperthermophilic enzymes 

(sometimes referred to as thermozymes) synthesised by hyperthermophiles. The enzymes 

were inherently thermostable, optimally active at high temperatures, and shared the same 

catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in 

mesophilic hosts, thermozymes usually retained their thermal properties, indicating that these 

properties were genetically encoded. Sequence alignments, amino acid content comparisons, 

crystal structure comparisons, and mutagenesis experiments indicated that thermozymes were 

very similar to their mesophilic homologues. The molecular mechanisms involved in protein 

thermostabilisation were discussed, including ion pairs, hydrogen bonds, hydrophobic 

interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit 

interactions. Current uses and potential applications of thermophilic and thermozymes as 

research reagents and as catalysts for industrial processes were described. This was an area of 

rapid growth. 

 

Findings on the biochemical and molecular features of several thermozymes were presented 

by Zeikus et al. (1998). This included; -amylase and amylopullulanase used in starch 

processing, glucose isomerase used in sweetener production, alcohol dehydrogenase used in 

chemical synthesis, and alkaline phosphatase used in diagnostics. The corresponding genes 

and recombinant proteins were characterised in terms of sequence similarities, specific 
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activities, thermophilicity, and unfolding kinetics. All these thermozymes displayed higher 

stability and activity than their counterparts currently used in the biotechnology industry. 

 

Melasniemi and Paloheimo (1989) cloned an -amylase-pullulanase gene from Clostridium 

thermohydrosulfuricum DSM 3783 in Escherichia coli on a 7.0 kb EcoRI fragment using a 

lambda vector. The gene produced active thermostable -amylase-pullulanase, seemingly 

mostly a soluble intracellular enzyme in E. coli. Despite the marked degeneration of its 

constituent polypeptides, the apparent temperature optimum of the enzyme (80-85°C) was 

only some 5°C lower and the heat stability the same as that of the extracellular -amylase-

pullulanase produced by the native host.  

 

Lioliou et al. (2004) reported that the genome sequence analysis of Thermus thermophilus 

HB27, a microorganism with high biotechnological potential, had recently been published. 

Enzymes produced by Thermus thermophilus HB27 were found to be more thermostable than 

their mesophilic homologues and were also more resistant to chemical agents, properties that 

made them extremely attractive for industrial processes. Recent structural comparisons among 

mesozymes and thermozymes had validated numerous protein stabilising mechanisms 

including hydrophobic interactions, packing efficiency, salt bridges, hydrogen bonding, 

reduction of conformational strain, loop stabilization, resistance to covalent destruction and 

binding to RNA. This report confirmed the fact that most thermal studies resulted in similar or 

higher levels of heat stability for recombinant proteins. 

 

Jorgensen et al. (1997) cloned, sequenced, and expressed the gene for the extracellular -

amylase from Pyrococcus furiosus into Escherichia coli and Bacillus subtilis. The gene was 

1,383 bp long and encoded a protein of 461 amino acids. The open reading frame of the gene 

was verified by microsequencing of the recombinant purified enzyme. The deduced amino 

acid sequence was 25 amino acids longer at the N terminus than that determined by 

sequencing of the purified protein, suggesting that a leader sequence was removed during 

transport of the enzyme across the membrane. The recombinant -amylase was biochemically 

characterised and showed an activity optimum at pH 4.5, whereas the optimum temperature 

for enzymic activity was close to 100°C. -amylase showed sequence homology to the other 

known -amylases and belonged to family 13 of glycosyl hydrolases. This extracellular -
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amylase was not homologous to the sub-cellular -amylase previously isolated from the same 

organism. 

 

A related piece of work by Tachibana et al. (1997) studied the enzyme 4-alpha-

glucanotransferase (GtpK), which produces cyclic alpha-1,4-glucans (cycloamyloses) by 

transglycosylation.  Cycloamyloses are potentially useful in the chemical, pharmaceutical and 

food industries because of their ability to form inclusion complexes with specific molecules 

and thereby alter their solubility, stability and reactivity properties. For industrial production 

of these compounds, an enzyme with increased thermal stability is required; therefore, a GtpK 

from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was studied.  Cloning of the 

GtpK gene revealed a nucleotide sequence consisting of 1,973 bp, encoding a 653 amino acid 

residue protein with a molecular weight of 76,693 Da.  GtpK was expressed in Escherichia 

coli, and the protein product was purified and reacted with maltooligosaccharides (from 

maltose to maltoheptaose) to form glucose and various maltooligosaccharides, containing 

more sugar units than the original substrate. Optimum temperature and pH were 100°C and 6-

8, respectively, and the enzyme remained stable after heating at 100°C for 30 minutes.  GtpK 

exhibited 68.3 and 36.0% homology to -amylases from Pyrococcus furiosus and 

Dictyoglomus thermophilum respectively.  These three homologous enzymes did not share the 

conserved regions observed in other enzymes of the -amylase family.  Therefore, it was 

suggested that these two -amylases and GtpK should be classified as a new family of starch-

degrading enzymes. 

 

The gene for Pyrococcus furiosus amylopullulanase (APU) was cloned, sequenced and 

expressed in Escherichia coli by Dong et al. (1997).  The gene encoded a single 827-residue 

polypeptide with a 26-residue signal peptide.  The protein sequence of this glycosidase had 

very low homology (17-21% identity) with other APU and enzymes of the -amylase family.  

In particular, none of the consensus regions present in the -amylase family could be 

identified.  P. furiosus APU showed similarity to 3 proteins, including the P. furiosus 

intracellular -amylase and Dictyoglomus thermophilum -amylase A.  The mature protein 

had a molecular weight of 89,000.  The recombinant P. furiosus APU remained folded after 

denaturation at temperatures of less than or equal to 70°C and showed an apparent molecular 

weight of 50,000 in SDS-PAGE.  Denaturating temperatures in excess of 100°C were 

required for complete unfolding. The enzyme was extremely thermostable, with an optimal 
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activity at 105°C and pH 5.5. Ca
2+

 ions increased the enzyme activity, thermostability, and 

substrate affinity.  The enzyme was highly resistant to chemical denaturing reagents, and its 

activity increased up to 2-fold in the presence of surfactants. 

 

An extracellular -amylase gene from the hyperthermophilic archaeon Pyrococcus woesei 

was cloned and sequenced by Frillingos et al. (2000). The 1.4-kb protein-coding sequence 

was identical to that of the corresponding -amylase gene of the closely related species P. 

furiosus. By using a shuttle cloning vector for halophilic bacteria, the P. woesei -amylase 

was expressed in the moderate halophile Halomonas elongata, under the control of a native 

H. elongata promoter. The hyperthermophilic amylase activity expressed in the halophilic 

host was recovered completely in the crude membrane fraction of cell homogenates. 

However, thermal stability, metal ion interactions, optimal temperature and pH values for the 

crude and purified recombinant -amylase were comparable with those of the native 

pyrococcal enzyme. The P. woesei amylase activity expressed in H. elongata was consistently 

detected in the cells upon growth on a wide range of NaCl concentrations.  

 

Expression of an extracellular -amylase from Pyrococcus furiosus in Escherichia coli was 

also investigated by Wei et al. (2003).  The recombinant plasmid, pET-amy(sig+) was 

constructed by inserting the amplified DNA segment from P. furiosus into the expression 

vector pET28a. The enzyme expressed in E. coli without the signal peptide had similar 

properties to the -amylase produced by P. furiosus, with pH and temperature optima of 5.0 

and 95°C, respectively.  The enzyme retained >50% of its activity after incubation at 121°C 

for 1 hour.  

 

Yang et al. (2004) conducted genomic analysis of Pyrococcus furiosus to reveal the presence 

of thermostable amylase. This amylolytic enzyme, designated PFTA (Pyrococcus furiosus 

thermostable amylase), was cloned and expressed in Escherichia coli. The recombinant PFTA 

was extremely thermostable, with an optimum temperature of 90°C. This compared 

favourably with that from Pyrococcus furiosus. The substrate specificity of PFTA suggested 

that it possessed characteristics of both -amylase and cyclodextrin-hydrolyzing enzymes. 

 

Chapter 5 of this thesis proved that an amylase from Pyrococcus furiosus could exhibit 

thermal properties suitable for applications as a sterilisation TTI. Generating a repeatable 
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supply of thermostable amylase had proved a challenge by the method of harvesting the 

cocktail of enzymes secreted by Pyrococcus furiosus. In order to achieve a pure form of 

amylase, without competing enzymes present, techniques for expressing the thermostable -

amylase from various mesophilic bacteria were of great interest. The gene responsible for 

producing this amylase was investigated in order to provide an alternative fermentation 

method that did not require the adverse conditions of a fermentation at 100°C in a reducing 

atmosphere. It was possible to spend a short time within the TTI LINK project investigating 

whether the gene expression route could work. This was carried out in collaboration with 

Unilever Research in their Vlaardingen Laboratories.  

 

6.1.1  Food industry acceptability 

 

Pyrococcus furiosus itself is not a food poisoning organism and so an amylase preparation 

from the extracellular fermentation by-products was not considered by food companies to 

represent a risk. Ideally, any microorganism used to produce and enzyme for use as a 

processing aid in food industry applications should be non-toxic. This applied equally to the 

work in finding an organism for producing the thermostable amylase for the sterilisation TTI. 

Unfortunately, the most common bacteria into which the amylase producing gene was 

expressed was E. coli. The high toxicity of E. coli 0175 made this an unattractive host 

organism for food companies to work with.  

 

The E. coli route to securing a thermostable amylase was discussed at one of the AFM194 

LINK project meetings. The industrial consortium that guide this project thought it would be 

difficult to convince their senior management that using an amylase from E. coli did not 

represent a food safety risk. Recent experiences with the GM debate in the UK had resulted in 

food products manufactured using GM technology being withdrawn from retailers shelves 

(Soil Association, 2005). This has left its mark on the UK food industry. 

 

Fortunately, there are alternatives to E. coli that are more acceptable to the food industry.  The 

common yeast, Saccharomyces cerevisiae, is reported to offer flexibility to operate as an 

optimised cell factory for the production of proteins such as amylase (Vasavada, 1995). The 

group at Unilever Vlaardingen (Verrips et al., 2000) used Saccharomyces cerevisiae for the 

production of a fungal cutinase, which is a lipase produced by fungi to break down the cuticle 

layer of plants. Cutinase is an enzyme with applications for laundry cleaning products, hence 
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the Unilever interests, but requires protein engineering to optimise its performance and 

stability in the presence of detergent components. This is achieved within the cell 

environment. 

 

Expertise in genetic modification techniques was therefore available at Unilever Vlaardingen 

and offered to the AFM194 project. The first stage was to identify a suitable yeast cell in 

which the gene manipulation had taken place successfully. A series of screening experiments 

were done using around fifty different types of Saccharomyces cerevisiae cells. Synthetic 

gene encoding of the Pyrococcus furiosus extracellular amylase took place in Saccharomyces 

cerevisiae under the control of the galactose inducible GAL7 promotor (Schaffers, 2007). 

Transformants were screened for the production of thermostable amylase. One yeast cell 

showed promise and was the focus of further study to generate the thermostable amylase. 

 

 

6.2  Evaluation of the Unilever yeast amylase 

 

The first experiments to produce thermostable amylase for use as the liquid in a sterilisation 

TTI were done in shake flasks by Ingrid Schaffers at Unilever Vlaardingen. Most of the 

thermostable amylase was extracellular and therefore contained in the fermentation broth. 

Measured activity of this amylase was high in comparison with amylases from mesophilic 

bacterial amylases such as B. licheniformis or B. amyloliquefaciens. This made the 

fermentation broth sufficiently active that it could be used directly as a TTI solution without 

purification. At this stage of the work the experiments were intended simply to determine if 

the amylase possessed a level of heat stability that was high enough to survive a commercial 

sterilisation process with measurable activity.  

 

Fermentation broth from a Saccharomyces cerevisiae shake flask fermentation provided the 

liquid used for determination of the amylase heat stability. Yeast cells were filtered out and 

the filtrate centrifuged to remove any remaining cells. The cells were discarded. Heating tests 

at 121°C were conducted in a well stirred oil bath using the fermentation liquid enclosed in 

glass capillary tubes. Heating times of 0, 2, 4, 6, 8, 10 and 12 minutes were used. These times 

were chosen because the minimum sterilisation process for foods is 3 minutes at 121.1°C 

(DoH, 1994) but many food companies increase processes to 6-12 minutes at 121.1°C. Hence, 
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the heating times represented commercial practice. The experiments looked for a reduction in 

amylase activity as the heating time at 121°C increased from 0 to 12 minutes. 

 

Methods for assaying the amylase activities arising from each set of heating tests were similar 

to those described in Chapter 5. Amylase activity was measured by incubating at 92ºC and pH 

5.0 a mixture of 20 µL of 1% soluble starch with 20 µL of 100 mM acetate buffer and 20 µL 

of the fermentation liquid.  Incubation was for a range of time intervals up to 25 minutes.  The 

reaction was stopped by the addition of 1 mL of ice cold water and the colour developed by 

addition of 15 µL of an iodine solution (4% potassium iodide and 1.25% iodine solution).  

 

Figure 6.1 presents examples of the kinetic evaluation of the thermostable amylase, for 

heating times at 121°C of 0, 4 and 12 minutes. Minimal or no reduction in amylase activity 

was measured for these heating times. Results for other heating times at 121°C (2, 6, 8 and 10 

minutes) did not show any reduction in amylase activity and so are not shown here. 
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Figure 6.1: Kinetic evaluation of the thermostable amylase, for heating times 

at 121°C of 0, 4 and 12 minutes. Starch-iodine assay at 92°C was used. 

(Courtesy of Unilever Vlaardingen) 

 

 

6.2.1  Tubular heat exchanger TTI trial 

 

The same fermentation liquid was used in an industrial TTI trial on a continuous tubular heat 

exchanger at the Unilever factory in Duppigheim, France. This trial was done at a similar time 

to the heating tests at 121°C described above, and before results were available on heat 

stability. At this point in time, it was considered that the industrial trial might provide 

confirmation of the approximate levels of amylase heat stability. The trial was set up to 
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evaluate the feasibility of introducing and recovering the TTI „in-flow sensing devices‟ and so 

only a small number of TTI tubes were included in the tests. 

 

A Goulash soup with 10 mm particles of various vegetables was used for the product. Silicone 

TTI tubes were made using the method described in Chapter 2. Each tube contained at least 

40 L of fermentation broth, which was sufficient for the number of incubation tests that were 

required from each tube (method for dilution of the liquid is described in Chapter 5). The 

estimated thermal process for the Goulash soup was approximately F0 23 (estimated at 

18<F0<40) in the heating, holding and cooling tubes. This estimation was made from the 

measured Goulash temperatures and flowrates. It assumed the centreline Goulash velocity 

was double that of the mean velocity calculated from the flowmeter readings. Potential 

variation in calculated F0 were significant for this continuous flow system because of the 

uncertainties in knowing the flow behaviour through the exchanger and holding tubes, 

together with the instability issues with the holding tubes. However, the minimum F0 was 

estimated to be no less than 18.   

 

All of the TTI tubes were recovered from the Goulash soup by spreading the soup onto a 

stainless steel table and hand sorting. These tubes were taken back to CCFRA for analysis. 

When the thermostable amylase was extracted from the TTI tubes and assayed, no reduction 

in amylase activity was measured. Results thus confirmed that the amylase was very heat 

stable. 

 

The laboratory heating tests and the continuous flow experiment had highlighted that the 

Unilever yeast amylase showed a level of heat stability (F0 23) greater than that required for 

the measurement of commercial food sterilisation processes (3 < F0 < 20). Although this was 

not the ideal finding, it was considered easier to adjust the level of heat stability downwards 

rather than to increase it.  

 

The next experiments were set up to investigate whether it was possible to reduce the amylase 

heat stability in a controlled way. 
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6.2.2  Decreasing the heat stability of the Unilever yeast amylase 

 

A number of candidate chemicals were tested for their ability to destabilise the Unilever yeast 

amylase. These all had the effect of binding up the metal ions, primarily calcium ions, and in 

doing so, making the amylase molecule more susceptible to cleavage (Koch et al., 1990; 

Ladermann et al., 1993; Brown et al., 1990). Table 6.1 presents the combinations of buffer 

solutions used to dissolve the thermostable amylase FDP and the destabilising chemicals 

tested. The sterilisation TTI solutions were made from 100 mg of FDP dissolved in 1 mL of 

buffer solution. Heating tests used 20 L of the FDP solution enclosed within a glass capillary 

tube, and immersed in a glycerol bath at 121°C for either 2 or 12 minutes. After heating, the 

FDP solution was diluted 1:10 in buffer solution in order that 20 L was available for each of 

the assays required to generate an activity curve at different incubation times. This procedure 

was the same as that described in Chapter 5. 

 

 

Table 6.1: Amylase activity after 100 mg solutions of FDP dissolved in 1 mL of buffer 

with different destabilising chemicals.  

 

 

Buffer solution 

Destabilising 

chemical 

% activity 

after 2 minutes 

at 121°C 

% activity  

after 12 minutes 

at 121°C 

10 mM phosphate, pH 7.0 None - 100 

 1 mM EDTA 100 - 

 0.1 mM EDTA 80 - 

100 mM phosphate, pH 7.0 None  100 

 10 mM EDTA 0  

 1 mM EDTA 70  

 0.1 mM EDTA 70  

 10 mM DTT 20 0 

100 mM citrate-phosphate, pH 7.0 None  100 

 10 mM EDTA  0 

50 mM Tris-HCl, pH 8.6 None 60  
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From these screening experiments, it was decided that the most promising system for 

reducing the heat stability of the thermostable amylase was with the amylase dissolved in 100 

mM phosphate buffer with 0.1 mM EDTA added. Experiments were set up to heat glass 

capillary tubes containing amylase (FDP 100 mg/mL in 100 mM Phosphate buffer, pH 7.0) 

with 0.1 mM EDTA, and heated for 2-12 minutes at 121°C in a glycerol bath. After removal 

from the glycerol bath the amylase solution was diluted 1 in 10 with 10 mM sodium acetate 

buffer pH 5.0 with 1 mM CaCl2. 20 L was required for each assay.  

 

Table 6.2 shows the gradients calculated from each of the heating times at 121°C. Initial 

activity of –0.141 minutes
-1

 was taken from the mean of five samples, which are also given in 

Table 6.2. Gradients were calculated in three ways: 

 

 the best fit over the straight portion of the activity curve,  

 between 0 and 2 minutes incubation at 92°C and  

 between 0 and 10 minutes incubation at 92°C.  

 

Shape of the activity curves was similar to that shown in Figure 5.3 for the discontinuous 

assay. 
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Table 6.2: Gradients (rates) calculated from each amylase heating time at 121°C.  

100 mg/mL FDP in 100 mM Phosphate buffer, pH 7.0, with 0.1 mM EDTA was used to 

reduce thermostability. Initial activity of –0.141 minutes
-1

 was taken from the mean of 

five samples. 

 

Heating time at 121
o
C 

(minutes) 

 

- Rate (best fit), 

minutes
-1

 

- Rate (0/2), 

minutes
-1

 

- Rate (0/10), 

minutes
-1

 

0.0 (mean value) 0.1410 0.1380 0.1380 

2.0 0.1291 0.1425 0.1325 

2.5 0.1253 0.0875 0.1245 

5.0 0.0881 0.0590 0.0896 

7.5 0.0523 0.0300 0.0551 

10.0 0.0387 0.0190 0.0392 

12.0 0.0353 0.0205 0.0416 

    

0 0.1360 0.1610 0.1350 

0 0.1398 - - 

0 0.1400 0.1380 0.1370 

0 0.1390 0.1330 0.1370 

0 0.1450 0.1350 0.1440 

Mean initial rate 0.1410 0.1350 0.1390 

 

 

Figure 6.2 shows data from the three different ways of calculating the gradient from the 

discontinuous activity curve using the data from Table 6.2. Only minor differences were 

found between the three methods, which was insignificant in the context of the objectives of 

achieving a destabilised thermostable amylase. Decimal reduction time at 121°C for the 

destabilised amylase ranged between 10.8 and 14.1 minutes. 
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Figure 6.2: Log Ao/A for thermostable amylase (FDP 100 mg/mL  in 100 mM Phosphate 

buffer, pH 7.0) with 0.1 mM EDTA added, against heating times at 121°C. 

Decimal reduction time was between 10.8 and 14.1 minutes. 

 

 

Data in Figure 6.2 shows that the log-linear portion of the graph extends only to around 8-10 

minutes. This is of significance when applying the sterilisation TTI to food processes with F0 

value greater than 8-10 minutes. These data points are intended to illustrate that the Unilever 

yeast amylase can be reduced in its high levels of thermostability. There are no repeat 

experiments to substantiate these data neither are there any heat stability data taken at 

different temperatures to determine the z-value. This needs to be done in a subsequent study. 

 

 

6.3  Further work 

 

Data presented above suggests that there is now a potential route to securing large quantities 

of thermostable amylase with a level of heat stability close to that required for measuring 

commercial food sterilisation processes. By cloning the amylase producing gene into a 
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common yeast cell it was possible to generate sufficient quantities of amylase for extensive 

thermal testing. This had proved difficult with a direct Pyrococcus furiosus fermentation. 

 

The challenge is now to confirm the data in Figure 6.2 with a fresh sample of FDP, to 

understand the inherent variability with the data, and to determine the measurement range of 

this TTI system. In addition, it will be necessary to carry out a similar set of heating 

experiments at different temperatures in order to calculate the sensitivity of this amylase TTI 

to changing temperature. In conventional thermal processing analogy this is quantified with 

the z-value. No z-value data was generated in the data presented here because of time 

constraints.  

 

It is hoped that the z-value for the Unilever yeast amylase will lie in the range 8-14°C, which 

have been measured with amylases from other microbiological origin, and reported in earlier 

chapters of this thesis. A z-value close to 10°C seems to be a property of bacterial amylases 

that can be achieved when careful selection of concentration and buffering solution is made. 

This makes it unique as a time-temperature integrator for measuring process values that can 

be converted to log reductions for spores of certain microorganisms. Few other chemical 

systems show this similarity in z-value. 

 

This work is planned to start during 2007 as part of a Development LINK project that has 

objectives to commercialise a thermostable amylase for food industry use. Both routes for 

producing the amylase will be studied and a decision taken as to the most promising for 

industrial use. Proposed work within the Development LINK project will progress the 

findings in Chapters 5 and 6 by working with larger quantities of starting material. 

Purification, buffering conditions, heat stability kinetics, improved assay methods, and 

industrial applications will all feature. At the end of the project the intention is to have a TTI, 

via one or both of the two approaches, that can be used for measuring industrial sterilisation 

processes. 

 

Two of the LINK project industrial applications for the sterilisation TTI are to intermittent 

rotary processing of canned foods with particles and to continuous UHT processing of foods 

with particles. Data generated will have commercial value in helping provide the data for 

carrying out process optimisation studies. These are presently limited by the lack of a 
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measurement system that does not interfere with the measured process. The sterilisation TTI 

enclosed within a silicone tube will enable this work to be done. 

 

If, and when successful, the sterilisation TTI based on thermostable amylase will find many 

applications for the measurement of F-values in complex heating situations. 



 220 

 

 

CHAPTER 7: OVERALL CONCLUSIONS 

 

 

This thesis describes the research and development of a range of time-temperature integrators 

(TTIs) that are used to measure process values for thermally processed foods. Process values 

are either for pasteurisation heat treatments (generally < 100°C) or sterilisation (> 3 minutes 

at 121.1°C). All of the TTIs described in this thesis are based on the first order thermal 

degradation of the protein -amylase. 

 

Several types of TTIs are described for measuring process values. Two of these TTIs are new 

developments: 

 

 A TTI for measuring mild pasteurisation treatments of the order of only a few minutes 

at 70°C.  These mild pasteurisation treatments are commonly used for chilled foods 

with shelf lives less than 10-days. Many of the mild pasteurisation treatments take 

place in heated vessels or continuous ovens in which the movement of the food 

product prevents the use of temperature sensors. Examples are given in Chapter 3 in 

which this new TTI enables these processes to be (i) quantified and (ii) optimised. 

 

 For sterilisation processes, the challenges are much greater because of the limited 

number of enzyme systems designed to operate above 100°C and at pressures greater 

than 1 bar. A candidate TTI material is identified based on an amylase secreted by a 

hyperthermophilic microorganism. This organism, Pyrococcus furiosus, exists in 

extreme conditions where it has evolved in boiling volcanic pools; with elemental 

sulphur readily available, in water of high salinity, and in a reducing atmosphere. The 

amylase it secretes is naturally thermostable and is found to withstand a full thermal 

sterilisation time-temperature process. Data in Chapter 5 shows the potential of this 

solution as a sterilisation TTI. 

 

Examples are given for how the TTIs are applied to a variety of industrial thermal food 

processes. These include traditional methods such as canning, and also more complex systems 

such as tubular heat exchangers and batch vessels, together with novel systems such as ohmic 
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heating. Process values are calculated using the difference in amylase activity before and after 

processing. Some of the industrial experiments measure process values in which the thermal 

effects had not been quantified previously. Considerable over-processing is typical in these 

situations and so the application of TTIs to these food processes results in improvements in 

the line efficiency and on occasion in food quality. 

 

Preparation of an amylase TTI for an industrial trial requires the amylase to be protected from 

contact with the food. Encapsulating the amylase solution in a silicone tube is found to be the 

most convenient method, which results in a strong yet flexible cylinder containing the 

amylase TTI solution. Many of the industrial processes where TTIs are used to gather P-value 

data require the TTIs to be used directly in the form of tubes. These are glued to container 

surfaces or inserted directly into solid food pieces. One further advantage of using a tube is 

that it can be easily moulded into silicone food particles whose size is calculated so that the 

food and TTI particles heat at similar rates. Equations are derived from work in the canning 

industry that enables the particle sizes to be calculated. Choice of a silicone compound 

(Sylgard 184 or 170) with similar thermal and physical properties to high water content foods 

allows the food and TTI particles to behave in a similar manner to food pieces. This 

overcomes concerns with differences in the way that food and TTI particles move in a food 

carrying liquid, or in different rates of heat transfer from carrying liquids to particle surfaces. 

 

Chapter 3 describes the BAA70 TTI for mild pasteurisation processes, which is amylase from 

Bacillus amyloliquefaciens at a low concentration of 0.5 mg/mL in acetate buffer. A D70-value 

of 8.4 minutes and a z-value of 8.9°C are calculated from the kinetic experiments in a water 

bath.  Slightly different values are calculated from silicone oil experiments and this is thought 

to be caused by water or acetate molecules migrating through the tubing walls. This is an 

important finding that has implications for handling and storage of other TTI systems. D-

value results from the water bath are considered as representative of a medium similar to that 

in a food product containing a high percentage of water.  

 

The upper limit of P-values that can be measured with the BAA70 TTI depends on the 

sensitivity of the amylase assay method. It is possible to measure P-values up to 16.8 minutes 

at 70°C if a colorimeter is used for the assays, and up to 25.2 minutes at 70°C if a 

spectrophotometer is used. However, most heat treatments for products appropriate for testing 

with the BAA70 TTI use a minimum process of 70°C for 2 minutes but actually achieve 
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considerably more than this. Typical processes are often 6-10 minutes at 70°C, which enables 

the BAA70 TTI to operate within the middle of its range, and therefore at the highest 

accuracy levels. 

 

Storage of BAA70 TTIs before and after heating tests is a critical operation. Chilled storage 

for up to 14 days is acceptable but longer storage times enable microbial growth to occur in 

the acetate buffer. This compromises the amylase behaviour and can affect the kinetics. 

Storage experiments show that BAA70 TTI tubes are best stored in a freezer to obtain a long 

shelf life.  This is suitable for either unprocessed or processed TTI tubes; it allows frozen TTI 

tubes to be transported to and from the site of an industrial trial without either (i) the concern 

of amylase breakdown or (ii) microorganism growth in the buffer solutions. This finding is 

important for enhancing the merit of TTIs as a method for validating process values in food 

manufacturing operations. 

 

Results obtained from industry trials demonstrate that the BAA70 TTI is used with great 

success to evaluate headspace and surface pasteurisation in various containers and food 

products. BAA70 TTIs can be adopted by food companies for regular QA/QC checks on P-

values, for example, BAA70 TTI tubes can be frozen in small numbers, say 5-10 tubes, 

sufficient for such P-value checks. Analysis of amylase activity can be carried with a 

colorimeter on site or sent back to a laboratory for a spectrophotometer assay.  

 

Chapter 4 chronicles the development and application of TTIs to measuring P-values in 

continuous processes or fruit products. Experimental techniques evolved over a series of trials 

to culminate at the stage in which (i) zero TTI particle damage occurs in the fruit processing 

equipment and (ii) 100% recovery of TTIs is achieved on most occasions. Encapsulating the 

amylase solution in 2.5 mm diameter silicone tubes provide a robust system that allows the 

tubes to be used directly with the food or moulded into larger silicone food particles. Towards 

the later stages of this research, these silicone particles are made with part black silicone 

compound to make identification easier.  

 

Many challenges are addressed in Chapter 4 and they are summarised in the following three 

needs, which are to: 
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 Introduce TTIs to complex processing systems in a way that represents the distribution 

of food particles in the preparation step, 

 

 Ensure the TTIs heat and flow in the same way as the critical food particles, without 

incurring damage to the TTIs, 

 

 Recover all of the TTI particles intact. 

 

Data from TTI trials in Chapter 4 are invaluable for optimising fruit product manufacture at 

the factory involved in this work. This is demonstrated in a variety of industrial equipment 

including mixing vessels, a tubular heat exchanger, hot-filling operations, and in an ohmic 

column. Most fruit processes measured with TTIs show high P-value levels at normal 

production throughputs; this gives scope for process optimisation to improve production 

efficiency in some cases improves product quality. The latter is achievable for processes in 

which the heating takes place with high shearing conditions such as mixing vessels. In 

general, it is the increases in production efficiency that drives a factory needs for process 

optimisation. 

 

Despite improvements in TTI recovery from food batches, it is still desirable to develop a fast 

and reliable method to recover TTI particles from large volumes of food products. Hand 

sorting is shown to work but takes time and requires the TTI test to be destructive for the food 

product. Incorporation of a (mildly) radioactive particle into a TTI tube or TTI particle may 

allow the use of a Geiger counter for their detection. This has not yet been attempted because 

of concerns about residual radioactivity in food processing environments. Work with the 

positron emission particle tracking system (PEPT) at the University of Birmingham uses 

micron sized glass particles with low levels of radioactivity. These may be suitable and 

provide an alternative TTI particle recovery method. 

 

The search for a TTI suitable for measuring sterilisation processes is a challenge that has 

eluded the industry so far. Chapter 5 describes the novel concept of an amylase produced by a 

microorganism of extreme heat stability. Such microorganisms exist in volcanic areas where 

their environment is comprised of hot water pools rich in sulphur and other elements that are 

poisonous to most life forms. Some of these, referred to as hyperthermophilic 

microorganisms, can produce highly active amylase in order to break down the meagre supply 



 224 

of carbohydrates present in their food sources. Extracellular amylase from Pyrococcus 

furiosus exhibits suitable thermal stability kinetics, which includes both (i) a decimal 

reduction time high enough for residual amylase activity to be measured following a full 

sterilisation process, and (ii) a z-value close to 10°C that is the industry standard for 

Clostridium botulinum spores.  

 

During testing of the sterilisation TTI, there were limitations on the numbers of tests that 

could be done because of low sample mass. This focuses the types of tests and limits the 

replicates, but despite this, sufficient testing is done to prove that an amylase from 

Pyrococcus furiosus displays suitable thermal behaviour for use as a sterilisation TTI. 

Isothermal kinetic data are taken to determine the D-value at 121°C although it is non-

isothermal methods that are extensively here because they are more efficient in their use of 

the Pyrococcus furiosus amylase. Non-isothermal calibration involves attaching sufficient 

numbers of TTIs to temperature sensors so that F(t-T) and F(TTI) are calculated for paired 

values. Experiments using ten to fifteen paired values over the 3 to 15 F0 range provides 

sufficient data to obtain D- and z-values.  

 

D-values at 121°C of 18-24 minutes are calculated for isothermal calibrations and 24.5-25.0 

minutes for non-isothermal calibrations. A z-value is not done using isothermal method 

because of limitations with the mass of FDP available. These tests require at least four D-

values, so instead, non-isothermal calibration is used for measuring z-value. The z-value from 

the first set of thermal processes came out at 9.95 1.5°C, which is close to the Clostridium 

botulinum value of 10°C.  

 

F-values measured with the sterilisation TTIs are within 1.5 F-value units of the probe F-

values over most of the measurement range. The exception is for an F0-value of 28 minutes 

where the TTI system gives a lower value; this is thought to be outside of the upper 

measurement range for the TTI. Obtaining high accuracy at high F0-values is less important 

than with process safety where the operating region is in the lower range towards F0 3. It may 

be that the sterilisation TTI can measure up to one-log reduction in amylase activity at the 25 

mg/mL FDP concentration tested here.  

 

Results presented in Chapter 5 are the culmination of three years of effort in characterising the 

sterilisation TTI in solution. Much of this time is involved with obtaining amylase from the 
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hyperthermophilic microorganism Pyrococcus furiosus. Heat stable amylase from Pyrococcus 

furiosus is demonstrated as a suitable material for use as a TTI for thermal sterilisation 

processes. Due to the small sample sizes available it is not possible to complete all the testing 

appropriate for a new TTI. Further experimental work is required in a number of areas to 

address the questions that arose during the research, for example: 

 

 It is necessary to obtain larger quantities of FDP to enable further testing. Conditions used 

in batch fermentations may not be optimal for amylase production and may result in 

detrimental by-products (e.g. proteases). Continuous fermentation could be used for 

greater yields and consistency. 

 

 The best conditions for storing the FDP and of the filled sterilisation TTI tubes need to be 

determined. This is important to prevent loss in activity during transportation to/from 

industry trials. It is assumed that storing the TTI tubes in acetate buffer, which are then 

put into a freezer, is the best method since this is used with other TTI systems. 

 

 The end point for work reported here was FDP with minimal purification. Reduction in 

activity is measured when the sterilisation TTIs are stored chilled, which is thought to be 

caused by proteases acting on the amylase. The FDP is not a pure amylase and so other 

by-products of the fermentation are present, and some may be detrimental to the amylase.  

 

 What variability should be expected for the sterilisation TTI.  This TTI has many 

applications to industrial thermal processes and so it is necessary to understand the 

accuracy of F-values estimated from the TTIs. 

 

 Long term supply of FDP with reproducible heat stability properties needs to be 

guaranteed. Fermentation of the native Pyrococcus furiosus organism may not be the best 

method to produce heat stable amylase. There are many reports of the gene being 

expressed in bacteria such as E. coli or in yeast and mould. Reports suggest the amylase 

from an E. coli retains its heat stability but this is not been evaluated in the rigorous way 

as is required for a sterilisation TTI. Early results are given in Chapter 6 for thermostable 

amylase produced from a yeast culture where the amylase producing gene is expressed 

into yeast cells. 
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Chapter 6 investigates cloning of the amylase producing gene into the common yeast cell 

Saccharomyces cerevisiae. This is a potential route to securing large quantities of 

thermostable amylase that do not require the extreme fermentation conditions with 

Pyrococcus furiosus. First measurements of amylase heat stability suggest the amylase is at 

least sufficiently heat stable for measurements of thermal processes of several minutes at 

121.1°C.  In fact, work is needed to reduce the heat stability; this work is planned to start 

during 2007 as part of a collaborative project with objectives to commercialise the amylase 

for food industry use. Both Pyrococcus furiosus amylase and the cloned yeast cell will be 

studied and a decision taken as to the most promising. Purification, buffering conditions, heat 

stability kinetics, improved assay methods, and industrial applications all need to be 

addressed. At the end of the project the intention is to have a TTI, via one or both of the two 

approaches, that can be used for measuring industrial sterilisation processes. If, and when 

successful, the sterilisation TTI based on thermostable amylase will find many applications 

for the measurement of F-values in complex heating situations. 

 

In conclusion, TTIs represent one of the most significant advances in techniques for 

measuring process values for the food industry. All of the TTIs in this thesis are based on the 

thermal degradation of amylase solutions. There is something unique about the way amylase 

breaks down with heat that results in kinetics with z-values close to 10°C, which is the value 

required to mimic microorganism death. Adjustment of the type of amylase, its concentration 

and the buffering solutions are used to manipulate the amylase heat stability to suit the needs 

of the process. The two new TTIs developed here, for mild pasteurisation and full 

sterilisation, complete the required range of TTIs so that all thermal treatments of food 

products can be measured with a TTI. There is still work required with the sterilisation TTI, 

however, results are promising and the two routes forward by producing thermostable 

amylase from either the native or cloned organism give rise to genuine optimism. Engineering 

developments in TTI construction are demonstrated that enables the TTIs to be applied to 

industrial food processes. While relatively simple in conception the silicone TTI tubes and 

particles have wide ranging applications. This is important in ensuring these TTI techniques 

are used regularly in the food industry.  

 



 227 

REFERENCES 

 

Adams, M.W.W., Holden, J.F., Menon, A.L., Schut, G.J., Grunden, A.M., Hou, C., Hutchins, 

A.M., Jenney, F.E. Jr., Kim, C., Ma, K., Pan, G., Roy, R., Sapra, R., Story, S.V. and 

Verhagen, M.F.J.M. (2001). Key role for sulfur in peptide metabolism and in regulation of 

three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. Journal of 

Bacteriology. 183, 716-724. 

 

Adams, J.B. (1978). The inactivation and regeneration of peroxidase in relation to the high 

temperature short time processing of vegetables. Journal of Food Technology, 13, 281-197. 

 

Adams, J.B. (1996). Determination of D80°C for -amylase inactivation. CCFRA Internal 

Project Report, Ref: 12598/1, May 1996. Campden & Chorleywood Food Research 

Association. 

 

Adams, J.B. and Langley, F.M. (1998). Nitrophenyl glucoside hydrolysis as a potential time-

temperature integrator reaction. Food Chemistry, 62 (1), 65-68. 

 

Adams, J.A. and Rogers, D.F. (1973). Computer Aided Analysis in Heat Transfer. McGraw-

Hill Education. 

 

American Heritage Dictionary (2003). American Heritage Dictionary of the English 

Language, Fourth Edition copyright 2000 by Houghton Mifflin Company. Updated in 2003. 

Published by Houghton Mifflin Company. 

 

Bakalis, S. (2005). New Trends – Old themes in food engineering. Presentation at IChemE 

Food and Drink subject group meeting, November 2005, Unilever Colworth. 

 

Ball, C.O. (1923). Thermal Process Time for Canned Food, Bulletin of the National Research 

Council, Washington, DC. Vol. 7, Part 1, Number 37. 

 

Ball, C.O. (1927). Theory and practice in processing. The Canner, 64 (5):27. 

 



 228 

Ball, C.O. and Olsen, F.C.W. (1957). Sterilization in Food Technology. McGraw-Hill Book 

Co., New York. 

 

Bee, G.R. and Park, D.K. (1978). Heat penetration measurement for thermal process design. 

Food Technology, 32 (6), 56-58. 

 

Barbier, G., Godfroy, A., Meunier, J.R., Querellou, J., Cambon, M.A., Lesongeur, F., 

Grimont, P.A.D. and Raguenes, G. (1999). Pyrococcus glycovorans sp. nov., a 

hyperthermophilic archaeon isolated from the East Pacific Rise. International Journal of 

Systematic Bacteriology, 49, 1829-1837. 

 

Bauman, H.E. (1974). The HACCP concept and microbiological hazard categories. Food 

Technology, 28 (9), 30-2, 74. 

 

Bergmeyer, H.U. and Grassl, M.  (1983).  Reagents for enzymatic analysis enzymes – α-

amylase.  In: Methods of enzymatic analysis, 3rd edition, Vol. 2, Bergmeyer, H.U. (editor), 

Verlag Chemie, Weinheim, pp.151-152. 

 

Bernfeld, P.  (1955).  Amylases α and β.  Methods of Enzymology, 1, 149-158. 

 

Bigelow, W.D., Bohart, G.S., Richardson, A.C and Ball, C.O. (1920). Heat penetration in 

processing canned foods. National Canners Association Bulletin 161. 

 

Blamey, J.M. and Adams, M.W. (1994). Characterization of an ancestral type of pyruvate 

ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. 

Biochemistry, 33, 1000-1007. 

 

Blamey, J., Chiong, M., Lopez, C. and Smith, E. (1999), Optimization of the growth 

conditions of the extremely thermophilic microorganisms Thermococcus celer and 

Pyrococcus woesei. Journal of Microbiological Methods, 38, 169-75. 

 

Brown, S.H., Costantino, H.R. and Kelly, R.M. (1990).  Characterization of amylolytic 

enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus 

furiosus.  Applied and Environmental Microbiology. 56 (7), 1985-1991. 



 229 

 

Brown, K.L., Ayres, C.A., Gaze, J.E. & Newman, M.E. (1984). Thermal destruction of 

bacterial spores immobilised in food/alginate particles. Food Microbiology, 1, 187-198. 

 

CCFRA (1977). Guidelines to the establishment of scheduled heat processes for low-acid 

foods, CCFRA Technical Manual No.3, Campden & Chorleywood Food Research 

Association. 

 

CCFRA (1986). Guidelines for the processing and aseptic packaging of low-acid foods. 

CCFRA Technical Manual No.11, Campden & Chorleywood Food Research Association. 

 

CCFRA. (1992a). Food Pasteurisation Treatments. Technical Manual No.27, Edited by Joy 

Gaze. Campden & Chorleywood Food Research Association. 

 

CCFRA. (1992b).  The microbiological safety of sous-vide processing.  Technical Manual 

No.39, Edited by Gail Betts. Campden & Chorleywood Food Research Association. 

 

CCFRA (2006a). New Technologies Bulletin No. 32. Update on ohmic heating. 32, 3-20. 

 

CCFRA. (2006b). Pasteurisation: A food industry practical guide (second edition). Guideline 

No.51. Edited by Joy Gaze. Campden & Chorleywood Food Research Association. 

 

CCFRA (2007). Guidelines for the processing and aseptic packaging of. CCFRA Guideline 

53, Campden & Chorleywood Food Research Association. 

 

Day, B.P.F. (2001). Fresh prepared produce: GMP for high oxygen MAP and non-sulphite 

dipping. Guideline No.31, Campden & Chorleywood Food Research Association. 

 

De Alwis, A.A.P. & Fryer, P.J. (1990a). A finite element analysis of heat generation and 

transfer during ohmic heating of foods. Chemical Engineering Science, 45, 1547-1559. 

 

De Alwis, A.A.P. & Fryer, P.J. (1990b). The use of direct resistance heating in the food 

industry. Journal of Food Engineering, 11, 3-27. 

 



 230 

De Cordt, S., Hendrickx, M., Maesmans, G., and Tobback, P. (1992). Immobilised -

amylase from Bacillus licheniformis: a potential enzymic time-temperature integrator for 

thermal processing. International Journal of Food Science and Technology, 27, 661-673. 

 

De Cordt, S., Avila, I., Hendrickx, M. & Tobback, P. (1994). DSC and protein-based time-

temperature integrators: Case study of -amylase stabilised by polyols and/or sugar. 

Biotechnology & Bioengineering, 44, 859-865. 

 

DoH (1989). Chilled and frozen guidelines on cook-chill and cook-freeze catering systems. 

HMSO. 

 

DoH (1994).  Guidelines for the safe production of heat preserved foods.  London: The 

Stationery Office. ISBN 0 11 321801X. 

 

Dong, G., Vieille, C. and Zeikus, J.G. (1997). Cloning, sequencing, and expression of the 

gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization 

of the recombinant enzyme. Applied and Environmental Microbiology, 63, 3577-3584. 

 

Dorland (2007). Dorland's Medical Dictionary for Health Consumers 2007. On-line version. 

Published by Saunders, an imprint of Elsevier, Inc. 

 

Dow Corning (1986). Information about High Technology Materials Sylgard 182 & 184 

Silicone Elastomers. Data Sheet number 61-113C-01, June 1986. Dow Corning Europe, 

Chaussee de la Hulpe 154, B-1170 Brussels, Belgium. 

 

Dow Corning (1998). Information sheets on Sylgard 170 A & B silicone elastomer. Data 

Sheet number 61-045E-01, July 1998. Dow Corning Europe, Chaussee de la Hulpe 154, B-

1170 Brussels, Belgium. 

 

Driskill, L.E., Kusy, K., Bauer, M.W. and Kelly, R.M. (1999). Relationship between glycosyl 

hydrolase inventory and growth physiology of the hyperthermophile Pyrococcus furiosus on 

carbohydrate-based media. Applied and Environmental Microbiology, 65, 893-897. 

 



 231 

Esty, J.R. and Meyer, K.F. (1922). The heat resistance of the spores of B. Botulinus and allied 

anaerobes. XI. J. Infectious Diseases, 31, 650-663. 

 

Fiala, G. and Stetter, K.O.  (1986).  Pyrococcus furiosus sp. Nov. represents a novel genus of 

marine heterotophic archaebacteria growing optimally at 100˚C.  Archives of Microbiology, 

145, 56-61. 

 

Fourier, J. (1822). Théorie analytique de la chaleur, Firmin Didot, Paris. 

 

Fryer, P.J. (1995). Electrical resistance heating of foods. In Gould, G.W. (Ed). New Methods 

of Food Preservation, Blackie Academic & Professional, London. 

 

Frillingos, S., Linden, A., Niehaus, F., Vargas, C., Nieto, J.J., Ventosa, A., Antranikian, G. 

and Drainas, C. (2000). Cloning and expression of -amylase from the hyperthermophilic 

archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. 

Journal of Applied Microbiology, 88, 495-503. 

 

George, R.M. (1990). A literature survey of the thermal diffusivity of food products. 

Technical Bulletin No. 73, Campden & Chorleywood Food Research Association. 

 

Gillespy, T.G. (1951). Estimation of sterilising values of processes as applied to canned 

foods. I. Packs heating by conduction. Journal of the Science of Food and Agriculture, 2, 107-

125. 

 

Guiavarc'h, Y., Dintwa, E., Van Loey, A., Zuber, F. and Hendrickx, M. (2002a). Validation 

and use of an enzymic time-temperature integrator to monitor thermal impacts inside a 

solid/liquid model food. Biotechnology Progress, 18, 1087-1094. 

 

Guiavarc'h, Y., Deli, V., Van Loey, A., Zuber, F. and Hendrickx, M. (2002b). Development 

of an enzymic time temperature integrator for sterilization processes based on Bacillus 

licheniformis alpha-amylase at reduced water content. Journal of Food Science, 67, 285-291. 

 



 232 

Guiavarc‟h, Y. (2003). Development and use of enzymic time-temperature integrators for the 

assessment of thermal processes in terms of food safety. PhD Thesis No.570, Katholike 

Universiteit Leuven, Belgium. 

 

Guiavarc'h, Y., Sila, D., Duvetter, T., Van Loey, A. and Hendrickx, M. (2003). Influence of 

sugars and polyols on the thermal stability of purified tomato and cucumber 

pectinmethylesterases:  a basis for TTI development. Enzyme and Microbial Technology, 

2003, 33, 544-555. 

 

Guiavarc'h, Y., Van Loey, A., Zuber, F. and Hendrickx, M. (2004a). Development 

characterization and use of a high-performance enzymatic time-temperature integrator for the 

control of sterilization process' impacts. Biotechnology and Bioengineering, 88, 15-25. 

 

Guiavarc'h, Y., Van Loey, A., Zuber, F. and Hendrickx, M. (2004b). Bacillus licheniformis 

alpha-amylase immobilized on glass beads and equilibrated at low moisture content:  

potentials as a time-temperature integrator for sterilisation processes. Innovative-Food 

Science and Emerging Technologies, 5, 317-325. 

 

Hendrickx, M., Saraiva, J., Lyssens, J., Oliveira, J.  & Tobback, P. (1992). The influence of 

water activity on thermal stability of horseradish peroxidase. International Journal of Food 

Science & Technology, 27, 33-40. 

 

Hendrickx, M., Maesmans, G., De Cordt, S., Noronha, J., Van Loey, A. & Tobback, P. 

(1995). Evaluation of the integrated time-temperature effect in thermal processing of foods. 

Critical Reviews in Food Science & Nutrition, 35 (3), 231-262. 

 

Heppell, N.J. (1985). Measurement of the liquid-solid heat transfer coefficient during 

continuous sterilisation of liquids containing particles. In: Proceedings of IUFoST 

Symposium, Aseptic Processing and Packaging of Foods, Tylosand, Sweden. p.108. 

 

Holdsworth, S.D. (1992). Aseptic processing and packaging of food products. Elsevier 

Science Publishers Ltd. ISBN 1-85166-775-X. 

 



 233 

Holdsworth, S.D. (1997). Thermal processing of packaged foods. Blackie Academic & 

Professional, London. 

 

Hutton, T.C. (2004). Food preservation: an introduction. Key Topics in Food Science and 

Technology, No.9. Campden & Chorleywood Food Research Association. 

 

IFTPS (1995). Institute for Thermal Processing Specialists. Protocol for conducting heat 

penetration studies. www.iftps.org. 

 

IFTPS (1997). Institute for Thermal Processing Specialists. Nomenclature for studies in 

thermal processing. www.iftps.org. 

 

Jorgensen, S., Vorgias, C.E. and Antranikian, G. (1997). Cloning, sequencing, 

characterization, and expression of an extracellular alpha-amylase from the hyperthermophilic 

archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. Journal-of-Biological-

Chemistry. 1997; 272(26): 16335-16342.  

 

Kim, H-J., Choi, Y-M., Yang, A.P.P., Yang, T.C.S., Taub, I.A., Giles, J., Ditusa, C., Chall, S., 

and Zoltai, P. (1996a). Microbiological and chemical investigation of ohmic heating of 

particle foods using a 5 kW ohmic system. Journal of Food Preservation and Processing, 20, 

41-58. 

 

Kim, H-J., Choi, Y-M., Yang, T., Taub, I.A., Tempest, P., Skudder, P., Tucker, G. and 

Parrott, D.L. (1996b). Validation of ohmic heating for quality enhancement of food products. 

Food Technology, 50 (5), 253-261. 

 

Koch, R., Zablowski, A., Spreinat, A. and Antranikian, G.  (1990).  Extremely thermostable 

amylolytic enzyme from the archaebacterium Pyrococcus furiosus.  FEMS Microbiology 

Letters. 71, 21-26. 

 

Koch, R., Spreinat, A., Lemke, K and Antranikian, G.  (1991).  Purification and properties of 

a hyperthermoactive α-amylase from the archaebacterium Pyrococcus woesei.  Archives 

Microbiology. 155, 572-578. 

 

http://www.iftps.org/
http://www.iftps.org/


 234 

Krieth, F. and Bihn, M.S. (1986). Principles of heat transfer. Harper and Row, New York. 

ISBN: 0-06-043785-5. 

 

Laderman, K.A., Davis, B.R., Krutzsch, H.C., Lewis, M.S., Griko, Y.V., Privalov, P.L. and 

Anfinsen, C.B.  (1993).  The purification and characterization of an extremely thermostable α-

amylase from the hypertherophilic archaebacterium Pyrococcus furiosus.  The Journal of 

Biological Chemistry, 32, 24394-24401. 

 

Lambourne, T. and Tucker, G.S. (2001). Time temperature integrators for validation of 

thermal processes. R&D Report No.132. CCFRA, Chipping Campden, Glos., GL55 6LD. 

 

Leuschner, C. and Antranikian, G.  (1995).  Heat-stable enzymes from extremely thermophilic 

and hyperthermophilic microorganisms.  World Journal of Microbiology and Biotechnology, 

11, 95-114. 

 

Lioliou, E.E., Pantazaki, A.A.and Kyriakidis, D.A. (2004). Thermus thermophilus genome 

analysis: benefits and implications. Microbial Cell Factories, 3, 5-.  

 

Maesmans, G., Hendrickx, M., De Cordt, S., Van Loey, A., Noronha, J., & Tobback, P. 

(1994). Evaluation of process value distribution with time temperature integrators. Food 

Research International, 27, 413-423. 

 

Manning, G.B. and Campbell, L.L.  (1961). Thermostable -Amylase of Bacillus 

stearothermophilus. I. Crystallization and some general properties. Journal of Biological 

Chemistry, 236, 2952-2957. 

 

McKenna, A.B. and Tucker, G.S. (1991). Computer modelling for the control of particle 

sterilization under dynamic flow conditions. Food Control, 2, 224-233. 

 

Mehauden, K. (2006). Verification of the reliability of the Time Temperature Integrators 

made from the -amylase of the Bacillus amyloliquefaciens for assuring the safety of various 

thermal processes. Presentation at 8
th

 TTI LINK project meeting, held at Baxters of Speyside 

Ltd, 6 September 2006. 

 



 235 

Mehauden, K., Cox, P.W., Bakalis, S., Fryer, P.J. (2006). Validation of thermal processing of 

foods in large agitated vessels. Poster paper at IUFoST conference, 17-21 September 2006, 

Nantes, France. 

 

Mehauden, K., Cox, P.W., Bakalis, S., Simmons, M.J.H., Tucker, G.S. and Fryer, P.J. (2007). 

A novel method to evaluate the applicability of time-temperature integrators to different 

temperature profiles. Innovative Food Science & Emerging Technologies, 8, 507-514. 

 

Mehauden, K. (2007). Heating efficiency of the Giusti vessel (Vesuvio). Presentation at the 

9
th

 AFM194 TTI LINK Project Meeting, 31 January 2007, CCFRA. 

 

Melasniemi, H. (1987). Characterization of alpha-amylase and pullulanase activities of 

Clostridium thermohydrosulfuricum. Evidence for a novel thermostable amylase. 

The Biochemical Journal, 246, 193-197. 

 

Melasniemi, H. (1988). Purification and some properties of the extracellular alpha-amylase-

pullulanase produced by Clostridium thermohydrosulfuricum. The Biochemical Journal, 250, 

813-818. 

 

Melasniemi, H. and Paloheimo, M.(1989). Cloning and expression of the Clostridium 

thermohydrosulfuricum alpha-amylase-pullulanase gene in Escherichia coli. Journal of 

General Microbiology, 135, 1755-1762. 

 

Miles, J.J. and Swartzel, K.R. (1995). Evaluation of continuous thermal processes using 

thermocouple data and calibrating reactions. Journal of Food Process Engineering, 18, 99-

113. 

 

Montville, T.J. (1982). Metabolic effect of Bacillus licheniformis on Clostridium botulinum: 

implications for home-canned tomatoes. Applied and Environmental Microbiology, 44, 334-

338. 

 

Niehaus, F., Bertoldo, C., Kahler, M. and Antranikian, G. (1999). Extremophiles as a source 

of novel enzymes for industrial application. Applied Microbiology and Biotechnology, 51, 

711-29. 



 236 

 

Pape, G. (2006). Container specifications: The influence of sterilisation systems. Presentation 

at: 4
th

 International Conference on Thermal Processing: Innovations for Quality Improvement. 

CCFRA, 8-9 June 2006. 

 

Perevalova, A.A., Svetlichny, V.A., Kublanov, I.V., Chernyh, N.A., Kostrikina, N.A., 

Tourova, T.P., Kuznetsov B.B. and Bonch-Osmolovskaya, E.A. (2005). Desulfurococcus 

fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and 

emended description of the genus Desulfurococcus. International Journal of Systematic 

Evolutionary Microbiology, 55, 995-999. 

 

Pickles, J. (2006). Canned soup: the problem with innovation. Presentation at: 4
th

 

International Conference on Thermal Processing: Innovations for Quality Improvement. 

CCFRA, 8-9 June 2006. 

 

Put, H.M.C. and de Jong, J. (1982). The heat resistance of ascospores of four Saccharomyces 

species isolated from spoiled heat-processed soft drinks and fruit products. Journal of Applied 

Bacteriology, 52, 235-243. 

 

Reyes de Corcuera, J.I., Cavalieri, R.P., Powers, J.R., Tang, J. and Kang, D.H. (2005). 

Enzyme-electropolymer-based amperometric biosensors:  an innovative platform for time-

temperature integrators. Journal of Agricultural and Food Chemistry, 53, 8866-8873. 

 

Ruan, R., Ye, X., Chen, P. (2004) Developments in ohmic heating. In: Improving the thermal 

processing of foods.  Richardson P. (Eds) Woodhead Publishing Ltd. Cambridge UK. 

 

Samborska, K., Guiavarc'h, Y., Van Loey, A., Hendrickx, M. (2005). The influence of 

moisture content on the thermostability of Aspergillus oryzae alpha-amylase. Enzyme and 

Microbial Technology, 37, 167-174. 

 

Sastry, S.K. and Salengke, S. (1998). Ohmic heating of solid-liquid mixtures: a comparison of 

mathematical models under worst-case heating conditions. Journal of Food Process 

Engineering, 21, 441-458. 

 



 237 

Savchenko, A., Vieille, C., Kang, S. and Zeikus, J.G. (2002). Pyrococcus furiosus alpha-

amylase is stabilized by calcium and zinc. Biochemistry, 41, 6193-6201. 

 

Schaffers, I. (2007). Thermostable Amylase. Presentation to 9
th

 AFM194 Project Consortium. 

Held at CCFRA on 31
st
 January 2007. 

 

Schut, G.J., Brehm, S.D., Datta, S. and Adams, M.W.W. (2003). Whole-genome DNA 

microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on 

carbohydrates or peptides. Journal of Bacteriology. 185, 3935-3947. 

 

Segerer, A.H, Burggraf, S., Fiala, G., Huber, G., Huber, R., Pley, U. and Stetter, K.O. (1993). 

Life in hot springs and hydrothermal vents. Origins of Life and Evolution of the Biosphere: 

the Journal of the International Society for the Study of the Origin of Life, 23 (1), 77-90. 

 

Skudder, P.J. (1988). Ohmic heating: new alternative for aseptic processing viscous foods. 

Journal of Food Engineering, 60(1): 99-101. 

 

Soil Association (2005). Flavr Savr tomato & GM tomato puree: The failure of the first GM 

foods. Soil Association Briefing Paper 29/11/2005. 

 

Sterner, R. and Liebl, W. (2001). Thermophilic adaptation of proteins. Critical Reviews in 

Biochemistry and Molecular Biology, 36 (1), 39-106. 

 

Stetter, K.O. (1996). Hyperthermophiles in the history of life. Ciba Foundation Symposium, 

202: 1-10, discussion 11-18. 

 

Stumbo, C.R. (1949). Further considerations relating to the evaluation of thermal processe for 

foods. Food Technology, 3, 126. 

 

Stumbo, C.R. (1965). Thermobacteriology in food processing. Academic Press, 111 Fifth 

Avenue, New York. 

 

Tachibana, Y., Fujiwara, S., Takagi, M. and Imanaka, T. (1997). Cloning and expression of 

the 4-alpha-glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp. 



 238 

KOD1, and characterization of the enzyme. Journal of Fermentation and Bioengineering, 83, 

540-548. 

 

Tomazic, S.J. and Klibanov, A.M. (1988).  Mechanisms of irreversible thermal inactivation of 

Bacillus -amylases.  The Journal of Biological Chemistry, 263 (7), 3086-3091. 

 

Townsend, C.T., Esty, J.R. and Baselt, F.C. (1938). Heat resistance studies on spores of 

putrefactive anaerobes in relation to determination of safe processes for canned foods. Food 

Research, 3, 323-346. 

 

Tucker, G.S and Holdsworth, D. (1991). Mathematical modelling of sterilisation and cooking 

processes for heat preserved foods. Application of a new heat transfer model. Transactions of 

the Institution of Chemical Engineers, Food & Bioproducts Processing, 69, Part C, 5-12. 

 

Tucker, G.S. and Withers, P.W. (1994). Determination of residence time distribution of 

nonsettling food particles in viscous food carrier fluids using hall effects sensors. Journal of 

Food Process Engineering, 17, 401-422. 

 

Tucker, G.S., Noronha, J.F. and Heydon, C.J. (1996).  Experimental validation of 

mathematical procedures for the valuation of thermal processes and process deviations during 

the sterilization of canned foods.  Transactions of the Institution of Chemical Engineers, Food 

& Bioproducts Processing, 74, Part C, 140-148. 

 

Tucker, G.S. (1998a). Comment calculer les valeurs de pasteurisation dans le produits avec 

morceaux avec l'integrateur temps-temperature amylase. Presentation at: Symposium 

Technique International de l'appertise UPPIA/CTCPA "Securite et appertisation: de nouveaux 

outils pour la maitrise des treatments thermiques", 28 April 1998, Paris. 

 

Tucker, G.S. (1999). A novel validation method: Application of time-temperature integrators 

to food pasteurization treatments. Transactions of the IChemE, Food and Bioproducts 

Processing, 77, Part C, 223-231. 

 

Tucker, G.S. (1999a). Heating and cooling of solid-liquid foods in heat exchangers. R&D 

Report No.87. Campden & Chorleywood Food Research Association. 



 239 

 

Tucker, G.S. (1999b). Application of biochemical time-temperature integrators to food 

pasteurisation treatments. Presentation at the 8
th

 International Congress on Engineering and 

Food. Puebla, Mexico, 9-12 April, 2000. 

 

Tucker, G.S. (1999c). Application of time-temperature integrators for validation of 

pasteurisation processes. R&D Report No.77. CCFRA, Chipping Campden, Glos., GL55 

6LD. 

 

Tucker, G.S. (2000). Estimation of pasteurisation values using an enzymic time-temperature 

integrator. Food Australia, 52 (4), 131-136. 

 

Tucker, G.S., Lambourne, T., Adams, J.B. and Lach, A. (2002). Application of biochemical 

time-temperature integrators to estimate pasteurisation values in continuous food processes. 

Innovative Food Science & Emerging Technologies, 3, 165-174. 

 

Tucker, G. (2003). Time-temperature Integrators As A Novel Sensor For Thermal Processes 

Safety. IChem
E 

Food & Drink Subject Group. Newsletter Issue 02. 

 

Tucker, G.S. and Wolf, D. (2003).  Time-temperature integrators for food process analysis, 

modelling and control.  R&D Report No.177.  Campden & Chorleywood Food Research 

Association. 

 

Tucker, G.S. (2004). Using the process to add value to heat-treated products. Journal of Food 

Science. 69 (3), 102-104. 

 

Tucker, G.S., Wolf, D. and Lach, A. (2004). Time-temperature integrators applied to 

pasteurised high acid foods processed with ohmic heating. ICEF9 – International Congress on 

Engineering and Food. p.4-. 

 

Tucker, G., Cronje, M. and Lloyd, E. (2005). Evaluation of a time-temperature integrator for 

mild pasteurisation processes. R&D Report No.215. CCFRA, Chipping Campden, Glos., 

GL55 6LD. 

 



 240 

Tucker, G.S., Brown, H.M., Fryer, P.J., Cox, P.W., Poole II, F.L., Lee H.-S. and Adams, 

M.W.W. (2007). A sterilisation time-temperature integrator based on amylase from the 

hyperthermophilic organism pyrococcus furiosus. Innovative Food Science and Emerging 

Technologies, 8, 63-72. 

 

Uma Maheswar Rao, J.L. and Satyanarayana, T. (2004). Amelioration in secretion of 

hyperthermostable and Ca2+-independent -amylase of Geobacillus thermoleovorans by 

some polyamines and their biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone. 

Journal of Applied Microbiology, 97, 1015-. 

 

U.S. Food and Drug Administration. (2000). Kinetics of Microbial Inactivation for 

Alternative Food Processing Technologies. 

 

Vaidya, S., Orta-Ramirez, A., Smith, D.M. and Ofoli, R.Y. (2003). Effect of heat on 

phycoerythrin fluorescence:  influence of thermal exposure on the fluorescence emission of 

R-phycoerythrin. Biotechnology and Bioengineering, 83, 465-473. 

 

Vasavada, A. (1995). Improving productivity of heterologous proteins in recombinant S. 

cerevisiae fermentations. Advances in Applied Microbiology, 41, 25–54. 

 

Van Loey, A.M., Hendrickx, M. E., De Cordt, S., Haentjens, T.H. & Tobback, P. P. (1996). 

Quantitative evaluation of thermal processes using time-temperature integrators. Trends in 

Food Science & Technology, 7, 16-26. 

 

Van Loey, A.M., Arthawan, A., Hendrickx, M. E., Haentjens, T.H., & Tobback, P. P. 

(1997a). The development and use of an -amylase based time-temperature integrator to 

evaluate in-pack pasteurisation processes. Lebensmittel-Wissenschaft und-Technologie, 30, 

94-100. 

 

Van Loey, A.M., Haentjens, T.H., Hendrickx, M. E. and Tobback, P. P. (1997b). The 

development of an enzymic time temperature integrator to assess the thermal efficacy of 

sterilization of low-acid canned foods. Food Biotechnology, 11 (2), 147-168. 

 



 241 

Verhagen, M.F.J.M., Menon, A.L., Schut, G.J. and Adams, M.W.W. (2001). Pyrococcus 

furiosus: Large-scale cultivation and enzyme purification. Methods in Enzymology. 330, 25-

30. 

 

Verrips, T., Duboc, P., Visser, C. and Sagt, C. (2000). From gene to product in yeast: 

production of fungal cutinase. Enzyme and Microbial Technology, 26, 812-818. 

 

Vieille, C and Zeikus, G.  (2001).  Hyperthermophilic enzymes: Sources, uses and molecular 

mechanisms for thermostability.  Microbiology and Molecular Biology Reviews, 65 (1), 1-43. 

 

Wei, S. Zhengxiang, W., Jiquan, L. and Jian, Z. (2003). Expression of a hyperthermophilic 

alpha-amylase of the archaeon Pyrococcus furiosus in Escherichia coli. Food & Fermentation 

Industries, 29, 10-14.  

 

Weinberg, M.V., Schut, G.J., Brehm, S., Datta, S. and Adams, M.W.W. (2005). Cold Shock 

of a Hyperthermophilic Archaeon: Pyrococcus furiosus Exhibits Multiple Responses to a 

Suboptimal Growth Temperature with a Key Role for Membrane-Bound Glycoproteins. 

Journal of Bacteriology, 187, 336-348. 

 

Wikipedia (2006). Wikipedia – A Free Encyclopedia. Wikipedia Foundation, Inc. 

http://en.wikipedia.org/wiki/Gene_expression. 

 

Wong, H.Y. (1977). Heat transfer for engineers. Longman Group Ltd, London. 

 

Worthington, P., Hoang, P., Perez-Pomares, F. and Blum, P. (2003). Targeted Disruption of 

the -Amylase Gene in the Hyperthermophilic Archaeon Sulfolobus solfataricus. Journal of 

Bacteriology, 185, 482-488. 

 

Yang, S-J., Lee, H-S., Park, C-S., Kim, Y-R., Moon, T-W. and Park, K-H. (2004). Enzymatic 

Analysis of an Amylolytic Enzyme from the Hyperthermophilic Archaeon Pyrococcus 

furiosus Reveals Its Novel Catalytic Properties as both an -Amylase and a Cyclodextrin-

Hydrolyzing Enzyme. Applied and Environmental Microbiology, 70, 5988-5995. 

 



 242 

Zeikus, J.G., Vieille, C. and Savchenko, A. (1998). Thermozymes: biotechnology and 

structure-function relationships. Extremophiles, 2, 179-83. 

 

Zhang, L. and Fryer, P. J. (1993) Models for the electrical heating of solid-liquid mixtures. 

Chemical Engineering Science, 48, 633-643. 



 243 

APPENDIX 1: 

 

Preparation Of Pyrococcus Furiosus Broths Supplied By University Of Georgia 

 

The fermentation medium contained seven separate components (a-g) prepared as separate 

sterile stock
 
solutions and stored at 4°C.  Stock solutions were as follows: 

 

a) 5 × salts solution, containing, per litre, 140 g of NaCl, 17.5
 
g of MgSO4 · 7H2O, 13.5 g of 

MgCl2 · 6H2O, 1.65 g of KCl, 1.25
 
g of NH4Cl, and 0.70 g of CaCl2 · 2H2O 

 

b) 100 mM Na2WO4 · 2H2O (10,000 ×,
 
containing 33.0 g of Na2WO4 · 2H2O per litre) 

 

c) 1,000 × trace minerals
 
solution, containing, per litre, 1 mL of HCl (concentrated), 0.5

 
g of 

Na4EDTA, 2.0 g of FeCl3, 0.05 g of H3BO3, 0.05 g of ZnCl2,
 
0.03 g of CuCl2 · 2H2O, 

0.05 g of MnCl2 · 4H2O, 0.05 g of (NH4)2MoO4,
 
0.05 g of AlK(SO4) · 2H2O, 0.05 g of 

CoCl2 · 6H2O, and 0.05 g
 
of NiCl2 · 6H2O 

 

d) potassium phosphate buffer, pH 6.8 (1,000 ×),
 
containing 450 mL of 1 M KH2PO4 (pH 

4.3), to which 1 M K2HPO4
 
was added until the solution reached pH 6.8 (approximately 

550
 
mL) 

 

e) 10% (wt/vol) yeast extract, consisting of 100 g of filter-sterilized
 
yeast extract (DIFCO) 

per litre 

 

f) 10% (wt/vol) casein hydrolysate,
 
consisting of 100 g of filter-sterilized casein hydrolysate 

(enzymatic;
 
U.S. Biochemicals) per litre, 50% (wt/vol) maltose, or 5% (wt/vol) starch 

 

g) 50 g resazurin
 
at 5 mg per

 
mL.   

 

The 5 x salts solution and maltose were filter sterilised. All other solutions were degassed and 

flushed with argon and stored at 4°C.  The reducing reagent consisted of cysteine, HCl (0.5 

g), Na2S (0.5 g) and NaHCO3 (1.0 g) per 500 mL adjusted to pH 6.8 with 1M HCl.  The 

solution was filter sterilised before use. 
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University of Georgia supplied broth from three 1-litre cultures of P. furiosus so that they 

could be compared for amylase activity and relative heat stability. Each broth used a different 

source of carbon; these were peptides, maltose or starch. The peptides/S medium contained 

0.5% wt/vol casein hydrolysate (enzymatic), while the maltose and starch media both 

contained 1% w/vol of the indicated carbohydrates. Sulphur was added directly as a 

suspension to give a final concentration of 5 mg/mL.  

 

Three 1-Litre Cultures 

 

For growth of the 1-litre cultures, a fresh overnight culture of P. furiosus was used to 

inoculate (2% vol/vol) a 40 mL culture which was then grown overnight at 98°C without 

stirring.  Each 40 mL culture was then used as an inoculum for one 500 mL culture contained 

in a one-litre flask.  Each 1-litre was grown for 12 h at 98°C to a cell density of ~ 2 x 10
8
 

cells/mL.  Two 500-mL cultures were used for each of the three conditions (peptides, maltose 

and starch) to give a total of one-litre culture for each.   The extracellular fraction was 

collected by centrifugation at 10,000 x g for 10 minutes at 4°C.  The supernatant was pink in 

colour because of resazurin (see Figure 1).  

 

Samples (2 mL) of the 1-litre cultures were saved before and after removing the cells for 

activity assays.  To each 1-litre of supernatant, a total of 561 g of ammonium sulphate was 

added slowly over a 1 h period with stirring, and the solution was allowed to stir for a further 

16 h at 4°C.  The precipitated material was collected by centrifugation at 10,000 x g for 10 

minutes.  After decanting the supernatant, the precipitate was sent by express mail to 

Campden & Chorleywood Food Research Association Group Services packed in dry ice. 

Figure 1 shows the bottles as received at CCFRA. 
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Figure 1: Protein precipitates received at CCFRA for the three 1-litre P. furiosus 

cultures. 

 

 

One 15-litre Culture 

 

Following the successful tests on the 1-litre cultures, it was necessary to scale up the quantity 

of amylase for further heat stability tests. University of Georgia prepared a 15-litre culture 

using the same basic medium as with the 1-litre cultures, with the methods of preparation 

exactly the same, except that the resazurin indicator was not added.  A 40 mL culture grown 

for 12 hours was used as an inoculum for a 500 mL culture, which in turn was grown for 12 

hours and used to inoculate 15-litres of medium contained in a 20-litre fermentor.  All 

incubations were at 98°C.   

 

Once the 15-litre culture reached approximately 2 x 10
8
 cells/mL, the extracellular fraction 

was obtained by centrifugation at 10,000 x g for 10 minutes.  The supernatant was 

concentrated from 15-litres to 2-litres at 4°C using a hollow fibre membrane system with a 10 
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kDa filter.  This took approximately 3 hours, during which time the supernatant became 

cloudy.  A total of 1,020 g of ammonium sulphate was added slowly to the supernatant over a 

period of 1 hour, and stirring was continued at 4°C for a further 16 hours.   

 

Samples (2 mL) of the supernatant and from the steps prior to ammonium sulphate addition 

were retained for activity assays. The suspension was then centrifuged at 10,000 x g for 10 

minutes and the precipitate was collected. Resazurin was not added and consequently the 

precipitate was brownish in colour.   The precipitate was sent by express mail to Campden & 

Chorleywood Food Research Association Group Services packed in dry ice. 

 

Method used by U. Georgia for amylase analyses 

 

Amylase activity
 
was measured using Remazolbrilliant Blue. Starch azure (0.3 % wt/vol; 

Sigma, St Louis, Mo.)
 
was washed with 50 mM EPPS (pH 7.5) containing 40 mM NaCl. The 

insoluble material was recovered by centrifugation at 10,000 x g for 15 minutes and 

resuspended in the same buffer to the same concentration. This wash step was repeated three 

times to remove any unbound Remazolbrilliant Blue.  To measure activity, 100 µL samples 

were incubated at 80°C with 900 µL of the starch suspension, with vortexing every 5 minutes.  

The amount of product release was measured at 595 nm, where 1 unit is equivalent to a 

change of absorbance of 1.0/h.  

 

As shown in Table 1, the 15-litre culture contained 2.3 units of amylase activity per mL of 

culture, whereas the 1-litre cultures yielded almost three-times as much (6.4 units/mL).  Most 

of the amylase activity in both cultures was in the extracellular fractions, as activity was not 

lost to any extent when the whole cells were removed.  Similarly, when the 15-litre 

extracellular fraction was concentrated by filtration, no amylase activity was detected in the 

flow-through, indicating that all of the amylase was retained by the 10 kDa filter.  However, 

there was a significant decrease in the total activity after the concentration procedure with a 

21% recovery (6,520 units from 30,225 units total).  The reasons for this are not known. It is 

possible that activity could be recovered if the sample is diluted, perhaps in the presence of 

metal ions such as calcium or magnesium.  
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Table 1: Comparison of amylase production 

 

 

Fraction 

Units/mL Volume 

(mL) 

Total units 

 

1-litre culture (with cells) 6.475 1,000 6,475 

1-litre culture supernatant (without cells) 6.210 1,000 6,210 

15-litre culture (with cells)  2.355 15,000 35,325 

15-litre culture supernatant (without cells) 2.015 15,000 30,225 

10 kDa flow-through (15-litre) 0 13,000 0 

10 kDa concentrate (15-litre) 3.260 2,000 6,520 

Ammonium sulphate  (15-litre) 3.105 2,000 6,210 

 

 


