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Abstract

Plant root systems play a vital role in carbon sequestration, but the quantitative prin-
ciples governing their growth and architecture remain poorly understood. The ‘forward
problem’ of what root forms can arise from given models and parameters has been well
studied through modelling and simulation, but comparatively little attention has been
given to the ‘inverse problem’: what models and parameters can accurately simulate
an experimentally observed root system? This thesis proposes the use of approximate
Bayesian computation to infer mechanistic parameters governing root growth and archi-
tecture, allowing us to learn and quantify uncertainty in parameters and model structures
using observed root architectures. In addition, large-scale field observations of fine roots,
derived from belowground imaging and soil cores are combined with with image analysis,
stochastic modelling, and statistical inference, to elucidate belowground root dynamics in
a mature temperate deciduous forest under free-air carbon enrichment to 150ppm above
ambient levels. Results show that elevated carbon dioxide leads to relatively faster root
production. Also discussed and quantified is the large, but often neglected, uncertainties
in such production measurements resulting from the experimental process, which may
then be propagated in further work.
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Chapter 1

Introduction

1.1 Carbon dioxide and climate change

Carbon dioxide is a major greenhouse gas [Bolin and Doos, 1989], and increasing levels of

carbon dioxide in the greenhouse layer are contributing to climate change [Hoyt, 1979].

While there is a great deal of focus on reducing human carbon emissions [Sawyer, 1972,

Keeling, 1997, Fang et al., 2018], which are indeed a major contributing source [IPCC,

2013], carbon dioxide is also released by natural carbon sources [Lüthi et al., 2008] such as

gas release from the oceans [Key et al., 2004] and decomposition of vegetation [Jobbágy

and Jackson, 2000]. Conversely, terrestrial and oceanic ecosystems can act as carbon

sinks, where carbon is stored for a period of time [Houghton, 2002]. Forests can provide

an important carbon sink [Pan et al., 2011], as plants capture the carbon dioxide through

photosynthesis before it reaches the greenhouse layer. Carbon may then pass into the soil

[Bruce et al., 1999], be stored as plant matter [Min and Guangsheng, 2004], or be released

through decomposition [Gougoulias et al., 2014] or respiration [Chambers et al., 2004].

An understanding of the carbon cycle within complex forestry ecosystems is therefore

crucial to our understanding of the possible carbon uptake of the system [Grace, 2004].

This uptake may change as the ambient carbon dioxide levels increase [Gifford, 1992], and
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forestry ecosystems across the globe may respond differently [Gower, 2003]. Therefore,

we need to understand how the forestry carbon cycle will be affected by future ambient

carbon dioxide levels in order to make accurate climate change predictions [Bradley and

Pregitzer, 2007].

1.2 The forestry carbon cycle

There are many carbon stores, sinks and flows within a forestry ecosystem [Houghton,

1996], as shown in Figure 1.1. Carbon enters the system through photosynthesis; the

amount of carbon fixed by all photosynthesisers within the system is known as the Gross

Primary Productivity (GPP) [Gower, 2003]. Some of this carbon is then released through

respiration, including aboveground respiration, root respiration, and soil respiration [Delu-

cia et al., 2007], or stored as biomass within the system [Nabuurs et al., 2013]. Carbon

may then enter the soil through biomass decomposition [Karhu et al., 2010], or root ex-

hudates [Kumar et al., 2006]. Measuring net primary production (NPP) is crucial to

our understanding of the carbon cycle [Fahey and Knapp, 2007]. In plants, NPP is the

measurement of the energy stored as biomass [Fath, 2018] and represents the difference

between energy gained through photosynthesis and that used for respiration [Waring,

2007]. Since NPP cannot be directly caculated [Clark et al., 2001a], it is often estimated

using biomass production over a given time period [Clark et al., 2001b]. This contains

many sources of error and may underestimate true NPP by up to 30% [Eviner, 2004]. In

addition, belowground NPP is often neglected, sometimes assumed to be a proportion of

aboveground NPP estimates [Medlyn et al., 2016, De Kauwe et al., 2016, Adame et al.,

2017].
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Figure 1.1: The forestry carbon cycle. A simplified representation of carbon flows
within the forestry ecosystem. Arrows denote the movement of carbon and circles a
carbon sink.
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Figure 1.2: Relative root orders. A section of a bramble (Rubus fruticosus) root system
with the relative root orders labelled. Note that since the whole root system is not imaged
the labels denote relative root orders only.

1.3 Challenges in observing root production

While aboveground production is readily observed [Clark et al., 2001a], measurement of

production belowground is far more challenging, particularly non-destructively [Majdi,

1996]. However, root systems are a crucial part of the forestry carbon cycle and should

not be neglected, as they are estimated to be responsible for 5% by mass of the total

global carbon budget [Jackson et al., 1997]. They stabilise plants [Yang et al., 2017],

stabilise soils [Vannoppen et al., 2015], foster beneficial microbes [Reinhold-Hurek et al.,

2015] and are the entry point for water and nutrients to the plant [Dotaniya and Meena,

2015]. The shape of a plant’s root system is generated by a variety of physiological and

signalling pathways within the plant, and understanding the generation of this system

opens paths to its optimisation to maximise crop yield [Shahzad and Amtmann, 2017].
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1.4 Root system architecture

Plant roots may follow a variety of structures depending on the phenotype [Morris et al.,

2017]. Although a broad consensus has not been fully reached, there have been efforts to

produce a general framework for root system taxonomy [Bodner et al., 2013, Liu et al.,

2018]. Therefore, I will define some common terms that will be used within this work.

The tap root is defined as the first root to emerge from the seed [Esau et al., 1965], and

can clearly be seen in Arabidopsis Thaliana. Lateral roots are then defined as any root

branching from another root [Péret et al., 2009]. When the whole root is observed, the

order of a root branch can be taken as it’s distance from the main root; a second order

lateral is a branch from a first order lateral and so on. However, for roots sampled or

observed in the field, the whole root system may not be visible and so we refer to relative

root order, as seen in Figure 1.2.

1.5 Mathematical modelling for root studies

The interaction between roots (and plants) and carbon dioxide is a complex and multiscale

process [Garnier et al., 2017, Verheijen et al., 2016, Bradley and Pregitzer, 2007, Jack-

son et al., 1997], compounded by the difficulties in making quantitative observations

[Iversen et al., 2017]. In such problems, tools from mathematical modelling and statistics

can increase the power and interpretability of underlying theory [Fowler et al., 1997].

Stochasticity is included in models across biology to capture the apparent randomness

often observed in biological processes [Morgan, 2008]. For example, stochasticity is re-

quired to capture cell dynamics, cell populations and gene expression [Wilkinson, 2009].

Therefore, stochastic models are well suited to the noisy data obtained from experimental

work at BIFoR FACE.
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1.6 Hypothesis testing and likelihood

When addressing a research question, we typically have a null and an alternative hypoth-

esis – for example, a null hypothesis may be that eCO2 does not affect roots and the

alternative is that eCO2 increases root growth. Statistics gives us ways of comparing the

support for these hypotheses given empirical observations. An understanding of statis-

tics is crucial to accurate scientific reporting of research results [Ioannidis, 2005]. An

commonly used statistic in hypothesis testing is the p-value, although the overreliance

of this result comes with some controversy [Nuzzo, 2014, Ioannidis, 2018, Halsey et al.,

2015]. The p-value, popularised by Sir Ronald Fisher in 1925 [Biau et al., 2010, Pearce,

1992], represents the probability that the observed effect would be as large or larger if

the null hypothesis is true [Thiese et al., 2016]. Generally in biosciences a result is con-

sidered statistically significant if this probability is less than 0.05 [Dorey, 2010]. Fisher

also first made the case for using likelihood to measure the fit of a statistical model to

data [Fienberg and Kadane, 2001]. The likelihood function, L(θ|x) measures the fit of a

model to a given dataset, and is defined as the probability mass or density function of

observed data x, viewed as a function of parameter set θ [Azzalini, 1996]. In this way, the

likelihood function helps us identify the structures and parameterisations of hypothesised

models that are most compatible with empirical observations. However for some models

the likelihood function may be impossible or difficult to compute, necessitating the use of

likelihood-free inference methods [Gutmann et al., 2018].

1.7 Thesis structure

The following chapters detail the use of mathematical and statistical modelling to gain

greater insight into root growth, and to investigate the impact of elevated carbon dioxide

in a temperate mature oak woodland. Chapter 2 contains work using likelihood-free

inference to investigate root growth parameters. I detail the strength of this approach for

6



distinguishing phenotypic differences between root systems, extracting growth parameters

from observed root systems, and in model selection. Chapter 3 contains experimental data

collected from the BIFoR FACE experiment, and the calculation of NPP from this data.

This work is then expanded upon in Chapter 4, where I use stochastic modelling and

uncertainty quantification to gain greater insight into the data.
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Chapter 2

Model selection and parameter

estimation for root architecture

models using likelihood-free

inference

2.1 Introduction

In this chapter, I detail work using ABC SMC to investigate mathematical models of root

systems. I propose a method of taking an existing root system and finding the growth

and branching rates that contributed to its form. The application of the mathematical

framework shows a clear separation of these rates for different root systems, and can also

be used with simulated roots. The framework is applied to model selection, allowing us to

compare and contrast how well existing root simulation models recreate root growth we

observe in real plants. This work was published in Journal of the Royal Society Interface,

and the full paper can be found in Appendix B.
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2.1.1 Mathematical models of plant root systems

Many mathematical modelling techniques have been employed to represent root processes

[Wu et al., 2005]. Source sink models such as the recent model produced by Feller et al

[Feller et al., 2015] aim to capture resource allocation within a plant. Parts of the plant

such as the shoot and root are described as compartments and include flow rate equa-

tions describing the movement of key nutrients within the plant. This approach provides

a simple method of capturing nutrient movement but fails to take into account plant

morphology or more complicated processes such as hormone pathways. This approach

is however useful to consider flow from the shoot to the root system in a model of root

growth and structure.

Plant growth models allow for investigation into the underlying processes without the

difficulties of growing and imaging plant root systems [Fourcaud et al., 2008]. Functional-

structural plant models are key to this approach, as they seek to produce a simulation

of root system architectures, and can be useful in investigating root responses to various

environments [Dunbabin et al., 2013]. Lungley (1973) produced one of the first computer

simulated root systems, which generated two-dimensional outputs made up of ASCII char-

acters [Lungley, 1973]. Root systems were simulated with prescribed rates of elongation

and branching for primary and secondary roots, with a fixed inter-branch distance. Nu-

trient uptake from soil was characterised by looking at the percentage of total root length

at different soil depths. A similar approach was taken by Gerwitz and Page (1974) who

produced a model of nutrient uptake using a simple ODE fitted to data [Gerwitz and

Page, 1974].

A constant growth rate was also used by Pages et al in 1989 to produce a 3D simulation

of maize, but only for first order roots. Roots of second and third order have a negative

exponential growth function dependent on the root age [Pages et al., 1989]. Growth di-

rection is computed by resolving forces representing gravitropism, initial growth direction

and resistive forces from the soil. A network-based approach was taken by Lynch et al
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(1979), who modelled a root system as a network, with nodes as branches and inter-branch

distances as edges. The model also included root radius, and volume chages along the

growing root [Lynch et al., 1997]. A mass conservation law as used by Ozier-Lafontaine

et al in their fractal analysis model, which defined the diameter of newly formed root

branches according to a mass conservation law [Ozier-Lafontaine et al., 1999].

Previous modelling approaches were combined in the production of RootTyp in 2004

[Pagès et al., 2004], which allowed the simulation of root systems from a variety of plant

species, in contrast to many earlier studies [Pages et al., 1989]. This has allowed the

model to be adapted for use by other researchers in a range of studies [Collet et al.,

2006, Garré et al., 2012]. Another key root architecture model is RootBox, [Leitner

et al., 2010] which is designed to be combined with soil and water uptake models, along

with allowing for the simulation of roots grown in containers of user-defined shape and

dimensions to investigate root-soil interactions. This model has been recently improved

with the advent of CRootBox, and there are plans to eventually extend the modelling

approach to also consider above-ground plant growth [Schnepf et al., 2018]. An effective

model is able to reproduce root systems of many different plant species, which necessitates

the incorporation of root data collected in situ [Roose et al., 2016]. Due to advances in

imaging techniques, models have begun to be informed by data collected through x-ray

µct, where a 3D image is developed by stacking cross sectional x-rays, and MRI imaging

[Metzner et al., 2015].

Root system data used to inform architecture models is collected from image analysis

techniques from photos taken of lab-grown roots or from the aforementioned imaging tech-

niques. Many pieces of software have been developed to analyse root images [Lobet et al.,

2013], often highly specialised to each experimental approach [Lobet, 2017]. The Cen-

tre for Plant Integrated Biology at the University of Nottingham has taken this approach

with RooTrak [Mairhofer et al., 2012], RootNav [Pound et al., 2013] and RooTrace [French

et al., 2009]. A threshold algorithm is used to map the root system from user-identified

start points, making the assumption that the roots are lighter than the background. This
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semi-automated approach was also used in the production of SmartRoot [Lobet et al.,

2011], but with the inclusion of a more manual approach, which can be used to improve

accuracy if necessary. This makes the software particularly useful for less complex images.

Key root system data can then be extracted for use in modelling.

2.1.2 Parameter inference using ABC MCMC

Approximate Bayesian Computation (ABC) provides a statistical framework for parame-

ter inference with comparison to data, when a likelihood function is not easily computable

[Didelot et al., 2011]. It is highly adaptable, but requires careful consideration of results

in the context of how it has been applied [Bertorelle et al., 2010]. A simple ABC imple-

mentation is the rejection algorithm [Csilléry et al., 2010], in which a sample parameter

value θ̂ is pulled from a predefined prior which describes the probability distribution of

its value. The simulation is then run with θ̂, and a dataset D̂ is produced as the model

output. This dataset is compared to existing dataset D by some measure ρ(D̂,D) with a

given tolerance ε so that if ρ(D̂,D) ≤ ε, θ̂ is accepted and recorded or otherwise discarded.

A new θ̂ is then pulled from the same prior distribution and the process repeated until

a required number of hits have been reached. By recording the values of θ̂ that satisfy

ρ(D̂,D) ≤ ε a posterior distribution can be produced that describes the likely values of

parameter values θ to fit the dataset D [Toni et al., 2009]. This requires many decisions

to be made during setup such as the choice of priors, the tolerance, the number of hits

required and the choice of parameters. Each of these choices will impact the output of the

model and therefore any evaluation of outputs should be done with careful consideration

of these potential impacts [Didelot et al., 2011].

Markov Chain Monte Carlo (MCMC) is an ABC approach that converges more effi-

ciently than the previously described rejection algorithm. θ̂ is pulled from the prior as

before, but after a value has been accepted, a new θ̂ comes from perturbing the previ-

ously accepted value using a user defined perturbation kernel K(θ̂, θ). If the new value is
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accepted it is perturbed for the next iteration, if not, the perturbation kernel is applied

to the previously accepted value of θ̂ [Marjoram et al., 2003]. The perturbation kernel

must be carefully chosen to facilitate exploration of the whole parameter space.

Both the rejection algorithm and MCMC methods can be applied to model selection,

by introducing a random model selection before the generation of parameter values. This is

difficult to implement with MCMC however, due to the dependence on previously accepted

values. The rejection algorithm quickly becomes very inefficient when implemented for

model selection, particularly for models with multiple parameters. SMC provides a more

efficient ABC method and is well suited for model selection [Toni et al., 2009]. SMC works

by considering T populations, with tolerances ε1 < ε2 < ... < εT for each population. The

rejection algorithm is applied to produce the initial population of size N with tolerance ε1.

For the second population, values of θ̂ are taken from the N previously accepted values,

weighted appropriately to compensate for the differing prior, perturbed by a perturbation

kernel, and then used to generate D̂ and accepted with tolerance ε2. If a value is not

accepted, a new value from the previous population is perturbed. This is repeated until

N values of θ̂ have been accepted, and the process is then repeated until there are N

accepted values in population T , which make up the posterior outputs. ABC SMC is a

method that will be central to the work in this chapter.

While a great number of advances have been made in simulating root systems from a

set of parameters, relatively little work has been done on the inverse problem: extracting

the growth parameters from a given root system. This step is crucial to gain biological

insight from these root models and gaining information about a plant from observing

its root system. It is vital that we can validate root models and their application and

can quantify uncertainty in the mechanisms and parameters. Advancing technologies are

allowing observation of root systems in increasing detail, making it ever more important

to bridge the gap between theory and observation.

A major challenge in solving the inverse problem is that of finding a likelihood for an
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observed root system. This can be aided through the use of stochastic simulation and

ABC techniques, which produce an approximation of the likelihood and remove the need

for its explicit calculation. Another strength of these techniques lies in model selection

and the inclusion of priors.

Root systems are essential to plants’ structure and uptake of water and nutrients, and

constitute more than 5% by mass of the total global carbon budget [Jackson et al., 1997].

They stabilise plants [Yang et al., 2017], stabilise soils [Vannoppen et al., 2015], foster

beneficial microbes [Reinhold-Hurek et al., 2015] and are the entry point for water and

nutrients to the plant [Dotaniya and Meena, 2015]. The shape of a plant’s root system

is generated by a variety of physiological and signalling pathways within the plant, and

understanding the generation of this system opens paths to its optimisation to maximise

crop yield [Shahzad and Amtmann, 2017].

Despite this importance, the mechanisms underlying root growth remain challenging

to quantitatively understand [Dunbabin et al., 2013, Roose et al., 2016, Sievänen et al.,

2014]. The complexity of root systems and their belowground nature poses observational

challenges. Experimental techniques aiming to elucidate root architecture have histori-

cally included sketches of root systems and the use of hydroponics, then images of cleaned

root systems. More recent advances have facilitated the imaging of plants in situ through

the use of x-ray µ-Computed Tomography [Mairhofer et al., 2013], MRI scanning [Metzner

et al., 2015, van Dusschoten et al., 2016], and transparent soil [Downie et al., 2012], which

have been used to investigate root soil exploration and uptake of water and nutrients.

In parallel with this experimental elucidation, in an effort to understand how root

systems grow, many physical and mathematical models of root growth and structure

have been produced. These models solve the ‘forward problem’: given knowledge of the

parameters governing growth processes in plants, they produce the details and dynamics

of a likely simulated root system. The Lockhart equation described the elongation of a

cell under turgor pressure [Lockhart, 1965], and has been widely adapted to describe the
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growth of many plant organs, including roots [Dyson et al., 2014, Geitmann and Ortega,

2009]. Hackett and Rose produced the first root system model in the 1970s [Hackett and

Rose, 1972] based on the growth and branching of barley roots, while Lungley [Lungley,

1973] produced a computational model which generated root systems represented using

ASCII characters. Fitter [Fitter, 1987] introduced a topological model of root architecture

where a root system was considered as a set of links. This idea was extended in the

three dimensional model of Pagès [Pages et al., 1989] and Diggle, whose ROOTMAP

model could be applied to a variety of plant species [Diggle, 1988], while Tatsumi et al.

represented variation in root systems using fractal analysis [Tatsumi et al., 1989, Pagès

et al., 2000] Lynch et al. modelled a root system as a network with nodes as branches

and inter-branch distances as edges. The model also included root radius, and volume

changes along the growing root [Lynch et al., 1997]. Advances in computation have led

to a plethora of root system architecture models, which produce a three dimensional

reproduction of a root system using a detailed parameter set [Dunbabin et al., 2013].

Previous modelling approaches were combined in the production of Root Typ in 2004

[Pagès et al., 2004]. This has allowed the model to be adapted for use by other researchers

[Collet et al., 2006, Garré et al., 2012]. Another key root architecture model is RootBox,

[Leitner et al., 2010] which is designed to be combined with soil and water uptake models

along with allowing for the simulation of roots grown in containers of user-defined shape

and dimensions. This model has been recently updated to produce CRootBox, and there

are plans to eventually extend the modelling approach to also consider above-ground

plant growth [Schnepf et al., 2018]. An effective model is able to reproduce root systems

of many different plant species, which necessitates the incorporation of root data collected

in situ [Roose et al., 2016].

While a great number of advances have been made in simulating root systems from a

set of parameters, relatively little work has been done on the inverse problem: extracting

the growth parameters from an observed root system. Model parameterisation is often

limited by difficulties in root observation [Garré et al., 2012, Pagès and Pellerin, 1994],
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however, this step is crucial to gain biological insight from these root models. It is vital

that we can validate root models and the predictions they make, and quantify uncertainty

in their mechanisms and parameters. A manual approach to the inverse problem, feeding

specific measured parameters into generative models for root systems and assessing their

ability to reproduce observations, has been used to gain biological insight and validate

generative models [Chen et al., 2011]. However, without an automated approach, it

remains challenging to explore the full ranges of parameters and mechanisms that could

give rise to observed structures, and the likelihoods of each. Advancing technologies are

allowing observation of root systems in increasing detail, making it ever more important

to bridge the gap between theory and observation.

A major challenge in solving the inverse problem with traditional statistical methods is

finding a likelihood function for an observed root system. Modern statistical approaches

allow this challenge to be circumvented through the use of stochastic simulation and

Approximate Bayesian Computation (ABC) techniques [Beaumont et al., 2002], which

produce a computational approximation replacing the likelihood and remove the need

for its explicit calculation. Another strength of these techniques lies in their natural

capacity for model selection and the inclusion of prior knowledge about the system in

an inference setting. Here, we report a novel pipeline by which ABC, embedded in an

Sequential Monte Carlo (SMC) framework [Toni et al., 2009], can be used to learn the

values of and uncertainty in generative, mechanistic parameters underlying root growth

and architecture, and to compare different root architecture models. Arabidopsis thaliana

(thale cress) is used in both computational and experimental investigation throughout

as a model plant, but this process can readily be extended to any root system, as we

also demonstrate with Lupinus angustifolius (narrowleaf lupin). We demonstrate how

this framework can be used to identify generative parameters according to a given model,

distinguish phenotypic differences, and evaluate the comparative effectiveness of models

for root elongation and root branching processes, providing insight into the underlying

mechanisms.
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2.2 Methods

2.2.1 Plant growth

Arabidopsis Col-0 seeds were sterilised with three 3-minute washing steps in 50% domestic

bleach and water rinses, then plated on 1
2

MS agar in vertical plates. Plants were grown at

constant 25◦C on a 16h light / 8h dark cycle. Plates were photographed over a time course

of 2, 5, 7, and 10 days to produce time-series images of the seedling growth. Summary

statistics were extracted from the images using SmartRoot [Lobet et al., 2011], an imageJ

plugin. The root systems were traced manually using thresholding, producing a skeleton

over the original image. Summary statistics on root length and branch placement were

then recorded from this skeleton.

2.2.2 Model structure

Root growth was simulated using a hybrid stochastic-deterministic algorithm. Primary

root growth, by default, was assumed to follow a negative-exponential growth law:

l(t) = lmax
(
1− e−gt/lmax

)
, (2.1)

parameterised by a rate constant g and a scaling constant lmax. The alternative uniform

growth model simply took the form l(t) = gt. Lateral roots grow according to the same

growth law as the primary root, but with a multiplicative factor α applied to g so that

for lateral roots gl = αg.

Branching was treated as a Poisson event with rate parameter b. The time until

the next branching event is found using the Gillespie algorithm [Gillespie, 1977], and

the length of existing branches is updated from the current time until the time of the

branching event. The branching location was then determined by a specified branching
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model, initially specified as a uniform probability distribution along the length of the

primary root. In visualising structures, branching angle was always set to an angle of 45◦

from the growth direction, with equal change of being placed each side of the primary

root, although these angles and positions play no role in the simulation. These steps

are repeated until the time of the next branch exceeds the maximum simulation time, at

which point the branch lengths are updated up to the maximum simulation time, and

no branching event occurs. Once a branching event has occurred, the sidebranch grows

according to the same growth law as the main root, scaled by parameter α; variability in

lateral root length thus corresponds to variability in initial branching times and positions.

2.2.3 ABC SMC implementation

An ABC framework was implemented in Matlab. Model parameters were drawn from

specified distributions and passed to the model as described in Model Structure above.

Broadly, the simulated root systems are then compared to data, and the parameter values

accepted if the simulation is sufficiently close to the data, with tolerance ε defined at the

time of implementation. If the previous values were accepted, the parameter values are

perturbed with a perturbation kernel Kt. If the previous values were not accepted, the

parameter values were drawn from the priors as previously described. This process was

repeated until 1000 hits were obtained at the specified tolerance.

We follow Ref. [Toni et al., 2009] in our ABC SMC implementation. For complete-

ness, Algorithm 1 introduces a simple rejection sampling scheme under ABC. Algorithm

2 embeds this scheme in an SMC framework for parameter inference and model selection.

Algorithm 1. ABC rejection sampling for parameter inference.

1. Given Np plant structures and Nt(i) longitudinal observations for plant i, charac-

terise the summary statistics dij = {B,L, l̂} from every plant i and observation j in
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the dataset.

2. Draw a trial set of parameters θ∗ from the prior distribution π(θ).

3. Simulate Np instances of root growth, recording the state of structure i at each of

the Nt(i) time points corresponding to an experimental observation.

4. Compute ρ using Eqn. 2.4 above, to give the separation between each recorded

structure and its simulated counterpart.

5. If ρ < ε, where ε is a given tolerance, accept θ∗ as a sample from the posterior.

6. If a termination condition is not met, return to 2.

Algorithm 2. ABC SMC for parameter inference and model selection.

1. Given Np plant structures and Nt(i) longitudinal observations for plant i, charac-

terise the summary statistics dij = {B,L, l̂} from every plant i and observation j in

the dataset.

2. Initialise tolerance vector E containing T elements. Set population indicator t = 0.

3. Set particle indicator i = 1.

4. Sample model indicator m∗ from prior π(m).

5. If t = 0, sample θ∗∗ from π(θ(m∗)). If t > 0, sample θ∗ from the previous population

{θ(m∗)t−1} with weights w(m∗)t−1, and set peturbation kernel θ∗∗ ∼ Kt(θ|θ∗).

6. If π(θ∗∗) = 0, go to 4.

7. Simulate Np instances of root growth using θ∗∗, recording the state of structure i at

each of the Nt(i) time points corresponding to an experimental observation.

8. Compute ρ using Eqn. 2.4 above.

9. If ρ ≥ E[t], go to 4.

10. Set m
(i)
t = m∗ and add θ∗∗ to the population {θ(m∗)t}. If t = 0, set weights w

(i)
t = 0,

otherwise

w
(i)
t =

π(θ∗∗)∑N
j=1w

(j)
t−1Kt(θ

(j)
t−1, θ

∗∗)
. (2.2)

If i < N , set i = i+ 1, go to 4.

11. For every m, normalise the weights. If t < T , set t = t+ 1, go to 3.
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For a single model, the prior π(m) associated with that model is unity and the choice

of model indicator m∗ plays no role in the inference process.

We used uniform priors over all model structures for π(m) and uniform priors between

0-1.4 day−1 for g, 0-1.4 day−1 for b, 0-1 for α and 5-40cm for lmax. The perturbation

kernel we used was Kt ∼ N(0, 0.1P ), where P is the width of the uniform prior. The

tolerance vector was E = ε{5, 3, 2, 1.5, 1}.

2.2.4 Additional work

In addition to work in this paper, other avenues were investigated and later abandoned,

since they were unsuccessful or beyond the scope of this work. Initially, it was planned to

create a new root simulation model to apply the ABC framework to. However, a great deal

of excellent root models exist and are available to use [Schnepf et al., 2018, Pagès et al.,

2004] and producing a model that was an improvement would be beyond the scope of this

work. Therefore, a very simple model was used to clearly demonstrate the applicability

of the ABC framework and for ease of model comparison.

Further to this, work was done in improving the root simulation output. Initially, the

aim was to produce a realistic root output more in line with those obtained from models

like CRootBox [Schnepf et al., 2018]. However, as discussed previously in this section,

models exist and are available to use, and therefore improving the appearance of the roots

would provide little scientific insight. Subsequently, the root output was greatly simplified

to clearly demonstrate the summary statistics rather than prioritising the appearance of

the root system.

The branching model comparison initially included a wider range of branching models.

In addition to the uniform distribution for branching location included in this chapter,

model selection was carried out on other distributions, such as using a combination of

normal distributions with peaks spaced a distance, δ along the root. However, this work
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was abandoned as it complicated the model selection and results, without gaining any

particular mechanistic understanding. The model selection included is an illustration of

how models can be compared using this framework, rather than making any claims about

the best branching or growth model currently widely used in the literature.

2.3 Results

2.3.1 An ABC SMC framework for inferring mechanistic pa-

rameters from root systems

For generality, we begin by considering a highly simplified model for root growth (see

Methods). Starting from an infinitesimal initial condition, a primary root elongates ac-

cording to a growth law. Branches from this primary root occur stochastically according

to a branching law. Branches elongate according to the primary root growth law mul-

tiplicatively scaled (allowing, for example, branches to grow at a slower rate than the

primary root). Branching is for now restricted to first-order branches from the primary

root, though nothing in our framework is dependent on this or any other structural choice.

This coarse-grained model was chosen to reflect the core behaviour shared at the in-

tersection of several contemporary root models [Pagès et al., 2004, Leitner et al., 2010,

Schnepf et al., 2018]. Its computational simplicity is an advantage but not a necessity

for our inference framework; we later consider an alternative generative model to demon-

strate the transferrability of our approach. The details of the model are described in

Methods, but in this section we consider constructing the inference framework for a gen-

eral mechanistic model, the parameters of which we denote θ. Our results mainly consider

mechanistic models as we aim to capture the underlying processing contributing to the

growth of a root system.
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The platform proceeds by simulating outputs from this model with different trial pa-

rameterisations, using a distance function to compare these outputs to summary statistics

of experimental observations, and iterating this process within a Bayesian framework to

build up posterior distributions on model structures and parameters given the observed

data.

To compare simulation to experiment, we focus on a mechanistically informative set

of summary statistics. For a given root structure d, these are the number of branches B,

length of the primary root L, and average length of the lateral roots l̂. Within our scheme,

these lengths are for convenience measured in cm, but different scalings of these features

can be used to emphasise different aspects of root architecture in the simulation-data

comparison. The distance function we use to compare two structures d1, d2 is similar to

the Euclidean distance:

ρ(d1, d2) =
1

3

(
(B1 −B2)

2 + (L1 − L2)
2 + (l̂1 − l̂2)2

)
. (2.3)

This was chosen to give equal weight to each component and as a straightforward

distance measure.

A dataset D may consist of a set of structures dij, where i labels individual plants

and j labels longitudinal observations. In this case, for each observed plant i, a model

plant is simulated and its structure recorded at each of the times corresponding to the

longitudinal observations. We will call these recorded structures d′ij and are interested in

the comparison between each recorded structure and its observed counterpart:

ρ(D,D′) =
∑
i

∑
j|i

ρ(dij, d
′
ij). (2.4)

We deliberately choose this model and summary statistics to focus on the topological

aspects of root architecture and ignore any specific physical embeddings (for example,
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branching angles). This focus on topological degrees of freedom increases the generality

of the approach, but features like branching angles and higher-order topological statistics

can readily be included in the modelling and distance calculation if they reflect important

degrees of freedom for the scientific question under consideration.

Eqn. 2.3 balances the ability to capture fine detail of the root system against the

computational time required to obtain a reasonable number of samples from the posterior.

Including more detail and/or degrees of freedom in the distance function will allow more

detailed matching of observations, but will increase the sampling effort required to find

regions of parameter space that match these criteria.

ABC involves accepting a trial set of parameters as a sample from the posterior distri-

bution when ρ(D,D′) < ε, or in other words when the summary statistics of the structure

emerging from simulation are ‘close’ to those arising from the experimental data. The

posterior distribution on parameters θ built up from a set of samples taken in this way

is P (θ|D; ρ < ε), which forms an increasingly good approximation to the true posterior

P (θ|D) as ε is decreased [Csilléry et al., 2010].

For parametric inference within a fixed model, a simple rejection-sampling pipeline is

then given by Algorithm 1 (see Methods). This approach would be sufficient to identify

generative parameters from data, but rejection sampling is an inefficient paradigm, as

any ‘good’ regions of parameter space are immediately forgotten when the next draw

from the prior is made. To facilitate more efficient parametric inference as well as model

selection, we use ABC embedded in a sequential Monte Carlo (SMC) framework as in

Toni et al. [Toni et al., 2009]. ABC SMC first enforces only a relaxed fit to the data

then sequentially uses the inferred parameter distributions as priors while enforcing a

tighter fit to data. This sequential process is parameterised by a sequence of ε values

describing the fit threshold required at each step in the sequence. Model selection can

proceed by including a ‘model index’ parameter describing which model structure is to be

used, applying a prior to this parameter (thus incorporating prior knowledge about which
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(a) (b) (c) (d)

Figure 2.1: Validating root inference platform with synthetic Arabidopsis data.
(a) Output from CRootBox simulation of Arabidopsis root growth; black scale bar is 1cm.
(b-d) Output posteriors from an ABC SMC framework run on CRootBox output, with
final ABC SMC tolerance ε = 0.5 (see Methods). (b) Posterior distribution on branching
rate b in the growth model. (c) Two-dimensional posterior on primary root growth rate g
and lateral root growth scaling α. (d) Posterior distribution on lmax, the maximum length
parameter in the negative-exponential growth model used.

model structures are more likely), then treating this index as a parameter to be inferred

through SMC. Following Toni et al. [Toni et al., 2009], the coupled inference and model

selection pipeline is then given by Algorithm 2 (see Methods).

2.3.2 Inferring parameters from a simulated root system

We first sought to test the applicability of our likelihood-free inference process on syntic

root data, to confirm its ability to identify known generative parameters. To this end, the

CRootBox root simulation model [Schnepf et al., 2018] was used to produce an example of

an Arabidopsis thaliana root system. The governing parameters were mean growth rates

of 0.49 cm day−1 for the primary root, 0.08 cm day−1 for the lateral roots, and an inter-

lateral distance of 0.2cm, although inter-lateral distance is not an explicit parameter in

our model (see next section). CRootBox adds an element of stochasticity to its generative

parameters; in the default Arabidopsis case this corresponded to a coefficient of variation

of 0.1 in the growth rates and 0.45 in the lateral spacing parameters. The simulation was

run over 15 simulated days, yielding the structure in Fig. 2.1a).

To mirror the pipeline that will be used for experimental data, we analysed this simu-

lation output with SmartRoot image analysis software [Lobet et al., 2011], obtaining the
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(a) (b) (c)

Figure 2.2: Posteriors on lmax for Arabidopsis wild-type seedlings (a) from the
initial pipeline described in section 2.3.4, and the wildtype (b) and friendly (c) comparison
from section 2.3.6.

statistics of tap and lateral root length and placement. We then applied our ABC SMC

framework to estimate posterior distributions on the mechanistic parameters of our simple

growth model (see Methods). These parameters are g (primary root growth rate), lmax

(primary root scaling constant), b (branching rate), and α (lateral root growth scaling).

As shown in Fig. 2.1b)-d), the growth rates and, notably, their variability are well

captured in the resultant posteriors, with g inferred to lie around 0.55 ± 0.10 cm day−1,

compatible with the true growth rate parameterising the synthetic data. The branching

rate parameter is more broadly spread, with a mean of 0.6 day−1 corresponding to the ob-

served number of branches, and flexibility in the posterior reflecting the stochastic nature

of this parameter’s influence. α was inferred to lie around 0.021±0.02, corresponding to a

lateral growth rate around 0-0.04 cm day−1; this is rather lower than the value used in the

simulation, reflecting the rather limited lateral growth occurring in the specific simulated

instance of the model. The posterior for lmax is close to recovering the prior which sug-

gests that the model output is minimally dependent on the value of this parameter. We

found this limited lmax dependence to generally be the case, and in subsequent sections

will omit lmax from the posterior plots; all lmax posteriors, generally recovering priors,

are plotted in Figure 2.2. This assessment of the relative importance of, and flexibility

in, generative mechanistic parameters reflects a powerful aspect of this inverse modelling

approach.
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2.3.3 Inferring mechanistic parameters for other synthetic phe-

notypes and root simulation models

To test the wider applicability of our likelihood-free inference process, we next tested

the ability to identfy known generative parameters when using a different, existing root

simulation model, and for different plant species. RootBox [Leitner et al., 2010] was

chosen for its wide application in the field. We embedded RootBox as the generative

model in our inference framework, which was then applied as in section 2.3.2 to the

previous synthetic Arabidopsis thaliana data and a simulated Lupinus angustifolius root

system. The Lupinus simulation involved an initial growth rate of 1cm day−1 for the

primary root, 0.2 cm day−1 for the laterals and an inter-root distance of 0.9cm, and

proceeded for 15 simulation days.

RootBox employs a different branching protocol from our simple model above. Rather

than allowing stochastic branching anywhere on the primary root, RootBox allows lateral

branches to emerge at specified intervals along the primary structure. This interval d, and

a value bmax governing the maximum number of allowed lateral branches, are parameters

of the model and we therefore seek posterior distributions on these quantities as well as

the other mechanistic parameters which directly map to those in our simple model.

Fig. 2.3 shows the resultant posteriors after applying our inference approach using

RootBox as the core mechanistic model. Once more, the original generative parameters

are well supported by the resulting posteriors, which also agree with the inferred values

for primary and lateral growth rates using our simplified core model above (Fig. 2.1).

The inter-lateral distances d, present in RootBox but not above, are also well recovered by

the inference process. The maximum number of branches bmax is not tightly constrained
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(a) (b) (c)

(d)

(e) (f)

Figure 2.3: Posterior distributions on Arabidopsis thaliana and Lupinus an-
gustifolius roots generated using RootBox. (a) Output from RootBox simulation
of Lupinus angustifolius root growth; black scale bar is 1cm. (b-c) Output posteriors
from an ABC SMC framework run on RootBox output of Lupinus angustifolius, with
final ABC SMC tolerance ε = 0.4 (see Methods). (b) Two-dimensional posterior on pri-
mary root growth rate g and lateral root growth scaling α. (c) Posterior distribution on
branch separation d in the RootBox growth model. (d) Output from RootBox simulation
of Arabidopsis thaliana root growth; black scale bar is 1cm. (e-f) Output posteriors from
an ABC SMC framework run on RootBox output of Arabidopsis thaliana, with final ABC
SMC tolerance ε = 0.4 (see Methods). (e) Two-dimensional posterior on primary root
growth rate g and lateral root growth scaling α. (f) Posterior distribution on branch
separation d in the RootBox growth model.
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(a) (b)

Figure 2.4: Posterior distributions on bmax for a) Arabidopsis thaliana and b)
Lupinus angustifolius roots generated using RootBox.

by the synthetic data, as can be seen in Figure B.11).

2.3.4 Inferring mechanistic parameters for wildtype Arabidop-

sis thaliana root systems

To test the pipeline on experimental data, we grew Arabidopsis Col-0 plants on vertical

1
2

MS agar plates (see Methods) and used a digital camera to capture their root system

structure over several days. We used SmartRoot image analysis software [Lobet et al.,

2011] to extract the lengths and placements of tap and lateral roots from these digital

images at each sampled timepoint. An example of the digitised data is shown in Fig. 2.5.

We applied our ABC SMC framework to estimate the posterior distributions of the

mechanistic parameters underlying the development of these root systems. The earlier

populations of the SMC process gave a diverse range of simulated root structures; by the

final population, the simulation outputs provide excellent visual matches to the observed

experimental structures (Fig. 2.5) given the deliberate simplicity of the model. This intu-

itive snapshot matching is supported by the good agreement between the experimentally

observed time series of summary statistics and those arising from simulation with the

final posteriors (Fig. 2.6). Here, both the mean and the variability in the experimental
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(a) (b) (c)

Figure 2.5: Example data and simulation output for the root inference frame-
work. (a) Arabidopsis seedlings grown vertically on agar (see Methods) provide example
root systems for the analysis pipeline. (b) Digitisation of the root systems using Smart-
Root [Lobet et al., 2011] provide the quantitative data used in the inference process. (c)
Example outputs from the stochastic growth model with parameters identified through
the ABC SMC inference process. Black scale bar is 1cm.

statistics over time is captured by the distributions of simulated behaviour arising from

the posteriors.

The posterior distributions themselves are shown in Fig. 2.7. The primary root growth

rate g is reasonably well constrained, with a mean that intuitively falls around the total

growth average. Notably, the posterior distribution on g is tighter than for the synthetic

data example. This refinement reflects the strength of including time-course data in the

inference platform. Observations of systems at different times provide more information

on dynamic rate parameters, allowing better estimates than are available from single-

instance observations alone.

The scaling of lateral growth rate α has a broader variance, reflecting the greater

variability in average lateral root length observed in the data, and is correlated to some

extent, as expected, with the value of g. The distribution of branching rate b is broader,

reflecting a greater variability in the experimental observation of branch number over

time, and also the stochastic nature of this process: as b reflects the mean rate of a

Poisson process, the same branching structure can be achieved with a variety of different

b values. The modal value of b matches the average branching rate observed in the data.

Overall, therefore, the ABC SMC framework gives reliable and intuitive readouts linked
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(a) (b) (c)

Figure 2.6: Summary statistic comparison between data and parameterised
model. Individual line traces in each plot show time series of the summary statistic from
observed Arabidopsis seedlings in Fig. 2.5; boxplots give the range of values arising from
stochastic model simulation after parameter values have been learned. (a) Number of
branch points; (b) primary root length; (c) average lateral root length.

to both the average observed behaviour and plant-to-plant variability in root structure.

2.3.5 Model selection for root growth and branching mecha-

nisms

We next asked whether our approach could select between competing generative models,

given time course data on the evolution of a root system. To this end, we considered a

range of possible generative mechanisms for root growth and branching, as summarised in

Table 2.1. We will employ uniform priors over competing models, reflecting the fact that

before any observations are made, we have no belief that one mechanism is more likely

than another. This prior belief can of course be arbitrarily changed within our Bayesian

framework to reflect prior information. We then use our ABC SMC framework to identify

the posterior support for each mechanistic model, given the observed data [Toni et al.,

2009] (see Methods).

First, we consider different elongation laws for root growth. The first model involves

root growth at a constant rate such that l = gt. This model is chosen for its simplicity,

it is clear that it will not fully represent root growth; for example, the growth under this

model is unbounded. This is compared with the second model, which involves a negative
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(a) (b)

Figure 2.7: Posteriors from our ABC SMC framework run on the data from
figure 2.5 with final tolerance ε = 2.5. (a) Posterior distribution on branching rate
b. (b) Two-dimensional posterior on primary root growth rate g and lateral root growth
scaling α.

exponential growth law supported by [Schnepf et al., 2018] of the form

l(t) = lmax
(
1− e−gt/lmax

)
, (2.5)

where l(t) is the length of the root at time t, parameterised by a rate constant g and

scaling constant lmax. The posterior distribution over model index through the SMC

process is shown in Fig. 2.8a)-b). The most permissive population (highest ε) shows

less support for the exponential model to ensure model parsimony. As a better fit to the

data is required, the support for the exponential model increases until it overcomes the

lower weightings due to the additional parameter and is preferentially selected. Next, we

explore a more nuanced mechanistic question underlying root architecture. We compared

two models for branch placement positions. First, a uniform branching model, where the

branching location was chosen at random anywhere along the primary root such that the

branching location, x, is given by x ∼ U(0, l(t)), where l(t) is the length of the root at time

t of the branching event occuring. Second, a minimally spaced model, which imposed a

distance parameter δ around each existing branch where no further branching could occur.

Branching was uniform as with the first model, but if a branch was attempted within this
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distance no branch was implemented and the algorithm continues. Fig. 2.8b)-c) shows

the model selection posteriors with decreasing tolerance, and the posterior on δ when the

minimally spaced model was implemented. Here, the posteriors for the spacing model

are lower for the more permissive populations, reflecting the increased model complexity

– the extra parameter δ makes the model less parsimonious. The support for the model

increases as a better fit to data is required, in the subsequent populations. By the final

tolerance, the models have comparable support. Hence, the dataset suggests roughly

equal support for both models despite their difference in complexity.

Model name Model type Description

Linear Growth Constant growth rate.

Exponential Growth Negative exponential growth rate as used in

CRootBox [Schnepf et al., 2018], see equa-

tion 2.5.

No restriction Branching Branching can occur anywhere along the tap

root.

Minimum spacing Branching No branching can occur within a distance, δ,

of an existing branch, otherwise unrestricted

as above.

Table 2.1: A summary of the growth and branching models used for model selection.
Model selection posteriors are shown in Figure 2.8.

These simple experiments serve to illustrate the ability of ABC SMC to provide statis-

tical support for competing mechanistic hypotheses (for example, linear versus negative-

exponential root elongation laws). There is, however, nothing to prevent other targetted

mechanistic questions being addressed using this framework (see Discussion).
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(a) (b)

(c)

Figure 2.8: ABC SMC allows selection of competing mechanistic models for
root growth. (a) Model selection posteriors from comparing a simple, constant-rate
growth model to the negative exponential model used in CRootBox [Schnepf et al., 2018]
for decreasing ABC tolerance ε. Tolerances are chosen to illustrate the convergence so val-
ues will depend on the models included. The negative exponential model acquires greater
support as the tolerance decreases. (b) Model selection posteriors from comparing a uni-
form branching model to a model imposing a minimum separation from existing branches.
The more parsimonious uniform model experiences higher support with relaxed tolerance
but the minimum-separation model gains support with tighter tolerances (tolerances are
higher for this model selection run, reflecting a tradeoff with the greater computational
resource required). (c) Posterior for the minimum branch separation, δ, required when
the minimum spacing model is implemented.

32



2.3.6 Comparison between root structures

Next, we asked whether the ABC SMC framework could distinguish between two phe-

notypes – those corresponding to wild-type Arabidopsis and the friendly mutant line.

FRIENDLY is a mitochondrial fusion gene that when compromised has a range of bioen-

ergetic effects which lead to reduced root growth [El Zawily et al., 2014].

Wildtype and friendly plants were grown under the same conditions as above (see

Methods), and the inference pipeline was run as before, with exponential growth and

uniform branching. The output posteriors in Figure 2.9 reflect the differing root systems

shown in the tracings, with a clear separation in the parameter space between the two

phenotypes. The branching rate b is fairly unconstrained as observed in section 2.3.4 due

to inherent stochasticity in the branching mechanism. The values of g vary significantly

between wildtype and friendly, as reflected in the tracings, with little change in the value

of α. The distribution of g is substantially shifted towards lower values for the friendly

plants, reflecting the known challenge to root growth resulting from this mutation. lmax

shows a wide variability in both phenotypes, while representing clear differences consistent

with the reduced root growth observed in the friendly mutant line. There is very little

constraint in the value of lmax, suggesting little reliance on the value, although smaller

values appear to be favoured for the friendly phenotype. This may be because we are

comparing seedlings, and so the limiter lmax is not reached in either case.

Taken together, these results demonstrate that the physical parameters governing root

architecture growth can be learned using this ABC SMC approach, and uncertainty in

these learned outcomes quantified. The mechanistic model within our inference process

both allows us to harness time-course data and dissects which parameters change (here,

growth rate g) and which remain similar (here, lateral root scaling α) in different cases.

This is a key strength of this method, and would be difficult to obtain through traditional

parameter inference methods. The platform readily identifies the physically different
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mechanisms underlying root architecture in a mutant line, and identifies accepted physical

model structures for root growth.

2.4 Discussion

We have presented a framework for the inference of parameter values and mechanisms in

root growth models when applied to an observed root system. While there has been much

work undertaken producing plant root simulations from given parameters, our approach

addressed the much less-studied ‘inverse problem’: that of finding generative parameter

values and mechanisms that can reproduce a given root system. Knowledge about these

mechanisms and parameters, and their ranges, flexibility, and relative importance, is

necessary for an understanding of root growth processes such as growth and branching

decisions, and how these may relate to biological processes within the plant. We hope

that this highly general approach will allow for a more mechanistic understanding of root

growth, and to quantify the efficacy of existing models.

We first used a very general growth model to (a) retain consistency with the ‘core’ of

the maximum possible number of existing growth models, and (b) focus on parameters

related to the growing plant and its phenotype, rather than the specifics of its physical

embedding. We have demonstrated using RootBox [Leitner et al., 2010] that our approach

can readily be adapted to other specific existing root models to allow the quantification

of values of and uncertainty in generative parameters, furthering understanding of root

system architecture. We also illustrated how alternative hypothesised mechanistic mod-

els can straightforwardly be compared, using SMC model selection. A strength of the

Bayesian embedding here is that the most parsimonious model that is capable of ex-

plaining observations is naturally selected in the case of models with different numbers of

parameters [Toni et al., 2009].

Advances in imaging techniques are allowing for greater insight into root system archi-
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(d) (e)

Figure 2.9: Distinguishing phenotypes with mechanistic inference. (a) (left) Wild-
type and (right) friendly Arabidopsis seedlings grown in agar as described in section 2.2.1,
demonstrating the root growth phenotype of friendly. The tracings were produced using
SmartRoot software [Lobet et al., 2011] and the colours adjusted; black scale bar is 1cm.
(b-c) Output posteriors for branching rate b show similar distributions for wildtype and
friendly. (d-e) Two-dimensional posteriors on primary root growth rate g and lateral
root growth scaling α demonstrate clear separation, reflecting the reduced root growth
observed in friendly.
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tecture [Roose et al., 2016], and specially designed image analysis software [Lobet et al.,

2013] allows for increasingly efficient data collection from images. The combination of root

models, advanced imaging techniques, image analysis software and an SMC framework

could allow further advances in our understanding of root growth. We anticipate that,

with the increasing developments in root imaging, this technique will find application in

a growing variety of datasets, allowing for investigation of generative parameters for a

wide variety of root system phenotypes. A natural future extension for this work would

be to perform inference based directly on image data, rather than statistics of these data.

This approach would require simulation of the imaging process as well as the generation

of model root systems, for example, embedding the idealised root system in a simulated

soil substrate and simulating the artefacts and noise involved in the imaging process.

While (much) more computationally intensive, this approach would allow a more direct

leveraging of phenotype data from experimental studies.

Notably, our approach allows inference based on time-course measurements of a de-

veloping root system, which increase the power and precision with which parameters and

mechanisms can be identified. As demonstrated with our synthetic examples, this ap-

proach can readily be applied to single-instance observations, but also naturally leverages

dynamic information to refine posterior distributions on physical rate parameters.

A stochastic modelling framework for root growth allows for a wide variety of possible

outputs to be considered in the inference process, reflecting the variation between root

systems in the real world. In this way, the modelling approach allows for investigation

into the underlying mechanisms which are widely applicable, while avoiding a reliance on

specificities and overfitting to a particular phenotype or growth environment. Predicting

a branching event would require the consideration of processes such as genetics, cellular

interactions, and organism-scale resource partitioning [Band et al., 2012], necessitating

the development of a multiscale framework. As such multiscale approaches develop, we

anticipate the use of likelihood-free inference to be further embraced to resolve inverse

problems in parameter identification.
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While the generality of our approach is appropriate for the scope of this study, greater

specificity is required to gain a true understanding of plant processes. Care needs to be

taken in the application of ABC techniques: choices must be made over elements such as

the tolerance, priors, and summary statistics to achieve a balance between convergence

rate and specificity of results. As specific choices for these values can be hard to interpret,

simulation outputs must be verified to provide a reasonable match to genuine behaviour

(as we have attempted throughout). We have worked with different models to explore

the behaviour of our method under different generative assumptions. In Bayesian model

selection, prior beliefs about models can strongly affect their support and interpretation

must take this into account [Toni et al., 2009]. For example, when comparing the expo-

nential and linear models, it should be noted that the models are going to function very

similarly for early stages of root growth as represented here. However, we have aimed to

demonstrate the strength of this approach when carefully applied and interpreted.

Overall, we have demonstrated a technique to allow for greater insight into model

parameters for root systems, which could aid in increasing understanding of root growth

mechanisms. The generalised approach allowed for investigation of the key aspects under-

lying root topology, while being highly adaptable for use with existing root architecture

models.
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Chapter 3

Characterising root processes at the

BIFoR FACE site

3.1 Introduction

We now complement the theory in the previous chapter with a large-scale fieldwork anal-

ysis of root growth under elevated CO2.This chapter details experimental work conducted

at the BIFoR research site, and the results from this work. The experiment was set up

with the null hypothesis that elevated carbon dioxide would have no effect on fine root

growth in a temperate oak forest, and the alternative hypothesis that there will be an

observable carbon fertilisation effect on fine root growth.

In order to quantify these effects four key metrics were observed; the root length,

width, biomass and production. Here, the root length and width is the observed root

measurements gained from analysis of images obtained from a minirhizotron or root scan

(see methods). The biomass is obtained either by weighing roots extracted from soil cores,

or by a conversion of observed root geometry to biomass from obtaining root density

measurements. Production represents the amount of new root matter observed since the
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last sampling. There is an important distiction here between biomass and production:

biomass represents the roots observed, and production only the new roots that have grown

since last observation. In this way, a root that has undergone no growth will be observed

as a measure of biomass but not as production.

The experimental work conducted here represents the first FACE study of this scale

of fine roots in a temperate oak forest, which will complement existing work on forestry

systems around the world (see Table 3.1). As such, this chapter will detail a range of

experimental methods for fine root observation followed by a more detailed introduction

to the methods implemented as those most suited to the BIFoR FACE setup. This will

be followed by the results from the experimental work performed.

3.1.1 Experimental observation of fine root dynamics under el-

evated carbon dioxide

Non-destructive observation of below-ground systems such as roots continues to be diffi-

cult. Although a powerful experiment, BIFoR offers a particular challenge due to its situ-

ation in a mature oak woodland, studying plants within a delicate preexisting ecosystem

rather than a plantation as with many previous FACE experiments [Norton et al., 2008]

[Hendrey et al., 1999]. Therefore, data collection methods need to be as non-destructive

as possible. Minirhizotrons allow a small subset of a root system to be observed over

time [Johnson et al., 2001], but provide little information regarding root biomass and by

nature obstruct the natural structure of the root system [Taylor et al., 1990]. Soil cores

are a more destructive sampling method and do not allow long-timescale observation, but

allow for estimations of root biomass and turnover [Samson and Sinclair, 1994]. Both

methods have been successfully employed in previous studies of fine root growth [Iversen,

2010].

Previous experiments allow for some predictions to be made about the effect of eCO2

on root systems [Matamala et al., 2003], but are limited by their timespan, experimental
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setup and type of plant studied. There is a general consensus that eCO2 leads to an

initial increase in carbon capture and growth in both above-ground [Norby et al., 2002]

[Thilakarathne et al., 2015] and below-ground tissues [Allen et al., 2000]. This initial

growth increase appears to be limited by nutrient availability [Johnson et al., 2004] [Norby

et al., 2010] [Rogers et al., 1999], with many short-term experiments failing to capture

this effect [Madhu and Hatfield, 2013] which may only be visible in experiments run over

many years [Norby et al., 2010].

Increased growth under elevated carbon dioxide leads to a greater dependence on soil

nutrient availability [Fernando et al., 2014], which is particularly important in agricul-

tural studies due to decreased nutritional value in crops [Myers et al., 2014]. Nitrogen

availability appears to be of particular importance in long-term growth response [Iversen,

2010], and may become a limiting factor in non-fertilised soils. Tight coupling between

nitrogen levels and phosphate mobility in soils [Marklein and Houlton, 2012] may also lead

to growth becoming phosphate limited [Edwards et al., 2006]. However, it is important to

note that variations in plant species and growth environments may limit the application

of these results to the UK temperate oak forest observed in this study [Lau et al., 2010].

It is clear that eCO2 affects many key plant processes [Leakey et al., 2009], necessi-

tating consideration of the entire plant when making root growth predictions. Lack of

stomatal acclimation leads to greater water use efficiency [Ainsworth and Rogers, 2007],

while photosynthetic activity is shown to increase in C3 plants [Leakey et al., 2009]. Any

study of below-ground systems will therefore be greatly strengthened by consideration of

results from other research conducted at BIFoR FACE.

3.1.2 BIFoR and other FACE experiments

One class of experiments aiming to elucidate the intersection between biosphere and

carbon flow is Free Air Carbon Enrichment (FACE) experiments. FACE experiments aim
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to understand the biosphere’s response to elevated carbon dioxide, by artificially raising

the level of carbon dioxide in a concentrated area, outside of a laboratory setting. Rather

than enclosed growth chamber experiments, FACE experiments can be installed outside in

a plantation or natural woodland allowing the study of plants in situ. FACE experiments

have been performed around the world [Norby and Zak, 2011], on crops [Long et al., 2006],

on forestry stands [Schlesinger et al., 2006, Norby et al., 2001], and on forests [Medlyn

et al., 2016, Hart et al., 2019, Pepin and Körner, 2002].

The use of carbon dioxide for crop fertilisation has been established for 200 years as an

agricultural practice, using the decomposition of biological matter [Allen Jr, 1992]. The

1960’s saw the introduction of aerosolised CO2 for this purpose as it became economically

viable [Wittwer and Robb, 1964]. Following the progression of technology and increasing

interest in climate change research, FACE experiments were performed in the 1990’s on

crops, forestry and grassland [Ainsworth and Long, 2005], with early tree-focused FACE

experiments carried out on saplings grown in open-top chambers [Norby et al., 1999]. Duke

FACE was the first FACE experiment of the type discussed in this chapter, beginning

fumigation of multiple experimental plots in 1996 [McLeod and Long, 1999, Schlesinger

et al., 2006].

Free Air Carbon Enrichment (FACE) experiments have been set up around the world

to study plant responses to elevated carbon dioxide (eCO2) [Nowak et al., 2004], as detailed

in Table 3.1. These experiments provided valuable research in this field, but further

experiments were required to cover the broad range of forestry types across the globe

[Hickler et al., 2008]. This inspired the second generation of FACE experiments [Norby

et al., 2016], including BIFoR and EucFACE which are currently operating [Medlyn et al.,

2016, Hart et al., 2019]. In addition to increasing our understanding of the world’s forests,

BIFoR also provides an opportunity to study a varied forest ecosystem rather than a

plantation.
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Experiment name Location CO2 elevation Study area

BIFoR FACE UK Ambient + 150ppm Native oak woodland

EucFACE Australia 550ppm Native eucalyptus forest

ORNL FACE TN, USA 550ppm Sweetgum plantation

Duke FACE NC, USA Ambient +200ppm Loblolly pine stands

Aspen FACE WI, USA Ambient +200ppm Native Aspen forest plantation

Table 3.1: A selection of key forestry FACE experiments, with their location, CO2 levels
and type of plants studied. Contents adapted from [Laboratory, 1243].

Experimental work in this thesis was conducted at the BIFoR FACE experimental

site, which opened in 2016 in a temperate oak forest in Staffordshire [Hart et al., 2019].

The structure is very similar to the Australian EucFACE study, with 3 treatment and

3 control arrays based in native forest [Duursma et al., 2016]. The experimental setup

consists of 6 roughly 30m diameter rings of towers which reach above the height of the

oak canopy, and 3 similarly sized areas with minimal research infrastructure known as

’Ghost’ arrays. The towers emit air which can be treated with additional CO2, three of

the rings are treated to raise the CO2 level within the arrays to 150ppm above ambient

levels, referred to as ’Treatment’ arrays. The remaining three ’Control’ arrays emit air

with no additional CO2 to act as a control. In this way, the experiment contains two levels

of control; three Control arrays with the same setup as the treatment arrays without the

additional CO2, and three Ghost arrays with minimal infrastructure. The FACE site is

host to a wide array of research looking at different areas of the forest [Hart et al., 2019].

3.1.3 Observing fine root growth using minirhizotrons

Minirhizotrons are a belowground observation system that allow for the observation of

roots in situ over a longer timespan while minimising the belowground impact [Bates,

1937]. Clear tubes, often made of plastic [Withington et al., 2003], are installed in the
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soil with care taken to prevent soil impaction [Phillips et al., 2000]. After a resettlement

period of ideally one year [Johnson et al., 2001], roots growing around the tube can

be monitored without further disturbance to the system. Following proper installation

and resettlement, the area around the tube is assumed to be representative of bulk soil

[Johnson et al., 2001], although this is a topic of some debate [Taylor et al., 1990, Samson

and Sinclair, 1994, Majdi, 1996]. Roots are imaged through the use of a specialised

periscopic camera system [Vamerali et al., 2012], which can be adapted for multi-spectral

imaging [Wang et al., 1995, Pierret, 2008, Rahman et al., 2020]. Minirhizotron camera

systems allow for high resolution imaging at small scales through both video and image

capture [Johnson and Meyer, 1998], and the tracking of image location using an indexing

handle [Ferguson and Smucker, 1989]. A minirhizotron and camera setup can be seen in

Figure 3.1 Battery operated cameras are avaliable for use in remote systems [Upchurch

and Ritchie, 1984]. Minirhizotron has been aided by advances in camera technology

[Vamerali et al., 2012], while a great deal of image analysis softwares have been produced

of variable efficacy [Lobet et al., 2013, Lobet, 2017]. However, the collection and analysis

of images remains a time consuming and expensive endeavor, particularly in the image

analysis as an effective automated solution does not appear to exist. Minirhizotrons can

be used to estimate root productivity through the use of time-separated measurements of

a growing root element [Norby et al., 2004, Tierney and Fahey, 2001, Majdi, 1996].

3.1.4 Sampling root biomass using soil cores

Sequential soil coring can be used to monitor root production [Makkonen and Helmisaari,

1999]. They continue to provide a far less expensive method of monitoring roots as

no camera equipment is required, and are an effective choice when minirhizotrons are

cost-prohibitive [Majdi et al., 2005] . Soil cores are a destructive method that allows

samples of roots to be directly analysed [Borken et al., 2007]. Soil cores should provide

better representation of the bulk soil due to fewer scaling assumptions [Rytter and Rytter,
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Figure 3.1: The minirhizotron setup used for fine root observation. (A) A diagram
showing how roots can be observed using an installed tube. (B) A photo of a tube installed
at the BIFoR FACE research site. (C) A photo of the camera setup used for imaging at the
BIFoR research site. The system is a BTC I-CAP image capture system (Bartz Technology
Corporation, Carpinteria, California, US), set up as for root imaging. Example images
are visible on the laptop screen.
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2012], but only provide a snapshot of the roots at the sampling site and do not allow for

the monitoring of specific root segments over time. Due to the destructive nature of soil

coring, it can be difficult to obtain enough samples to be confident they represent general

trends without causing disturbance to a natural system [Taylor et al., 2013].

Ingrowth cores are a method that can be used to estimate fine root production and

biomass [Makkonen and Helmisaari, 1999]. This involves removing a column of soil using

a corer, then re-filling the empty column with soil containing no root matter. A core can

then be taken at the same point to monitor how roots have grown into the area since the

core was taken [Brunner et al., 2013]. Care should be taken to avoid mischaracterising

compensatory root proliferation as natural growth [Pritchard et al., 2008]. In addition,

ingrowth cores are particularly unreliable when performed in a species-rich ecosystem as

there can be significant bias due to a variation in recovery rates between species [Addo-

Danso et al., 2016]. For this reason, ingrowth cores are better suited to studies performed

on a single species and less so to the complex ecosystem studied at BIFoR FACE. Recre-

ating the soil environment within the core is difficult at sites with defined soil horizons,

and also allows for ingrowth with no competition, which is a key element in a natural

ecosystem [Lukac, 2012].

3.2 Methods

3.2.1 Experimental setup at BIFoR FACE

Our field observations were carried out at the Birmingham Institute of Forest Research

(BIFoR) FACE facility [Hart et al., 2019] in Staffordshire, England. The facility has been

built into a native mature deciduous woodland, dominated by oak (Quercus robur) inter-

spersed with overstood hazel (Corylus avellana) coppice. Sycamore (Acer pseudplatanus),

hawthorn (Crataegus) and holly (Ilex aquifolium) have self-seeded into gaps and, with the
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hazel, form a distinct sub-canopy. The forest grows on centuries-old Orthic Luvisol soil

with a mul-moder humus classification [Hart et al., 2019, Wrb, 2015]. The experimental

design consists of three eCO2 and three ambient-air control arrays (as in the Australian

EucFACE study [Duursma et al., 2016]). The arrays are 30m diameter rings, with free-

standing towers extending above the 2̃5m oak canopy.. Pipes attached to the towers emit

treated air with increased CO2, in order to raise the CO2 levels within the eCO2 arrays

to 150 ppm above the ambient (calculated as the lowest CO2 mixing ratio measured in

the control arrays). The control arrays are identical, but the air released into the array

contains no additional CO2. Performance of the facility was excellent over the course

of these experiments [Hart et al., 2019]. Air was emitted (treated or otherwise) during

daylight hours from around April to October each year; treatment began with budburst

in the spring and was stopped with leaf-fall in autumn.

3.2.2 Minrhizotrons

Minirhizotron installation

To facilitate time-series observations of fine roots in situ, four 50cm long minirhizotron

tubes sealed at the bottom with a removable bung in the top, were installed in each array

in winter 2016. Since the BIFoR arrays had been already paired and there were a small

number of tubes being installed, the sites were chosen to keep the surrounding vegetation

as consistent as possible rather than using a randomisation technique. A Van Walt 55mm

corer was used to remove a cylinder of soil at a 45 degree angle. The minirhizotron

tube was then inserted manually into the hole, with care taken to prevent damage to the

exterior of the tube. Each set of four were installed in close proximity to each other within

the array, and the area fenced with clear markers to minimise footfall. The tubes were

then numbered 1-4 for ease of referencing. Following advice, above ground sections of the

tubes were covered with black pipe insulation to prevent light from entering the tubes.
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Four 50cm tubes were installed in each of the 6 control and treatment arrays, leading to 24

tubes in total. Data was also collected from two 2m tubes previously installed in Arrays 1

and 6 although this data was not used in investigate growth under elevated carbon dioxide,

as both 2m tubes are installed in treatment arrays and therefore cannot be compared with

control data. Difficulties during installation also led to poor soil contact with the tubes

leading to poor quality images, particularly under wet conditions. A further 50cm tube

was later installed at the entrance of Array 2 for demonstrational purposes. The tubes

were left to settle until sampling began in April 2017.

Root imaging

A BTC ICAP image capture system (Bartz Technology Corporation, Carpinteria, Cali-

fornia, US) was used to obtain the root images from the minirhizotrons, mounted on a

Smucker manual indexing handle and paired with a BTC I-CAP image capture system.

The bung was carefully removed from the end of the tube, with one hand stabilising the

tube during removal, and the camera inserted until the outer cuff rested on the top of

the tube. The camera was set to point 13 on the indexing handle, which corresponds

to the bottom of the tube. The camera was rotated 360◦, then moved up to point 12

on the indexing handle and rotated 360◦. This process was repeated until points 1-13

on the handle were covered, where point 1 on the handle represented the top of the soil.

In the first year roots were photographed and the depth, angle and tube number were

recorded. The camera setup was improved for the second year of sampling, allowing for

the capture of video. Therefore, in the second year videos were taken of the camera being

moved 360◦ from point 13 up to point 1, covering the entire visible section of the tube.

Screenshots were then taken for analysis. The images are then analysed using SmartRoot

[Lobet et al., 2011] as described in section 3.2.2 and the amount of growth and branching

is recorded through comparison with earlier images. Data is collected monthly from all

tubes in all arrays.
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Figure 3.2: Example of image analysis perfomed on minrhizotron images. (A)
A source image from minirhizotron sampling. (B) The same image following analysis
with SmartRoot (see Methods). Each circle represents a root width measurement and the
underlying skeleton the root length. Colours denote relative root order.

Image analysis

Image analysis was performed using SmartRoot [Lobet et al., 2011], an ImageJ plugin.

ImageJ was installed as part of the Fiji package. Roots were manually identified using

the software, and a skeleton was produced with periodic width measurements along the

root (see figure 3.2). The length of each root segment was recorded along with an average

width across each width measurement point. Each segment was recorded with a length and

width measurement in cm, along with the array number, tube number, date of sampling,

depth of sampling as taken from the Smucker manual indexing handle (see section 3.2.2),

and angle of measurement when available. The image analysis was performed by myself

so that any subjectivity in root identification would remain constant across treatment and

control populations.

3.2.3 Soil cores

3 plots per array were designated for soil research to minimise impact across the site. For

each sampling session soil cores of 3 x 2.5 cm were taken from these areas using a lined

Van Walt 55mm corer, then the hole was filled in with sieved soil from outside of the
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array and marked with a flag to prevent resampling of the same area. Each filled liner

was sealed for transport back to the lab for analysis. The cores were then separated by

horizon, and roots were removed by hand for further analysis as described in section 3.2.3

Root biomass from soil cores

Soil cores were taken periodically over the two year study period; in March 2017, March,

July, November of 2018, and March 2019. 3 3 x 2.5cm cores were taken from each array at

BIFoR using a lined Van Walt 55mm corer. The cores were separated by horizon. Roots

were picked from the soil by hand and live and dead roots were separated. Live roots

were identified by their elasticity, colour, and lack of evidence of decomposition. Similarly,

dead roots would break upon bending, were often hollow inside and were darker in colour

[Santantonio and Hermann, 1985]. The separation of live and dead roots was verified

using Evans Blue vital stain on a random sample. Roots were then washed using a fine

mesh sieve and left to dry before being weighed using a mg scale.

Root scans from soil cores

Roots were picked from soil, separated and washed as described in section 3.2.3. Roots

were then blotted with paper towelling to remove excess water, and arranged on a scanner.

Care was taken to separate root sections as much as possible, and roots were scanned with

a background of graph paper for ease of scaling, to produce images as shown in Figure

3.3. Image analysis was then performed as described in section 3.2.2.

Calculating root density from soil cores

Root scans (see section 3.2.3 for method) were analysed using Smart Root (see section

3.2.2) to obtain the total root volume present in the scan. This number was used along

with the weight of that sample (section 3.2.3) to calculate root density. This was repeated
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Figure 3.3: A scanned image of roots from a soil core, as described in section
3.2.3. Roots have been removed from soil, washed and arranged on graph paper. This
image shows roots from the organic horizon of a soil core, which represents the top layer
of soil.
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for multiple scans, and the density was found to be consistent well within the accuracy

of Smart Root. The average density was then used to scale from volume to biomass for

root segments observed in minirhizotrons.

3.2.4 Additional methods

Fold-change in root biomass

The fold change in root biomass was calculated by first taking the total biomass per tube

data shown in figure 3.10A. The ’earliest mean biomass’ was then calculated. This was

the average across the 4 tubes in a single array at the time of first sampling (11/04/2017).

Therefore, each array had an earliest mean value by which to normalise all the future

data. The fold change was found by taking the total biomass per tube data and dividing

each point by the earliest mean measurement for the corresponding array. In this way,

we obtain a fold change in biomass based on the amount of root matter at first sampling,

which would have grown before the ambient carbon dioxide levels were raised in the

treatment arrays.

Installation of root viewing windows

Root viewing windows were installed outside the experimental arrays at the BIFoR site

as a test of their efficacy for fine root observation. Pits were dug with a shovel to around

30cm deep and 50cm wide, to match the dimensions of 3 perspex sheets to be installed,

with one vertical face where the viewing windows were to be installed. This face was

made as flat as possible to minimise space between the soil and the viewing window once

in situ. The sheets were placed against the flat face of the pit, and left for the roots to

recover. Canvas sheets were placed inside the pits and used to cover the viewing windows.
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These pits were found to be unsuitable for data collection, since the space between

the soil and the windows quickly filled with water, so the roots could not be seen. These

windows would need to be installed under a permanent cover to be used successfully.

Whole root system excavation and scanning.

In order to observe root system architecture of a variety of plant species, whole plant root

systems were carefully excavated outside of the experimental arrays at the BIFoR research

site. Care was taken to preserve as much of the root system as possible. An array of plants

were excavated to match those observed around the minirhizotrons installed in the arrays.

Once removed, soil was carefully brushed off the roots, and roots were carefully teased

apart as much as possible without damaging the structure. A scanner was used with a

black background sheet to produce scanned images of the root systems, to aid in root

identification in the images from the minirhizotrons.

3.3 Results

3.3.1 Root lengths and widths from minirhizotrons

Root growth around the minirhizotrons was monitored for a two year period beginning

in April 2017 and ending in March 2019. Tubes were imaged monthly during treatment

periods and alternate months when no treatment was taking place, as described in 3.2.1.

Sampling was undertaken over a single day when possible, and as close together as logisti-

cally viable when the work could not be completed in a single day. Each sampling session

including the imaging of the total viewable area inside each of the 24 tubes; four in each of

the six arrays. Initially, images were taken with the help of BIFoR volunteers as two peo-

ple were needed; one to operate the camera and one the laptop. Visits were coordinated

with the volunteers so that they were fully supervised at all times and provided transport
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when necessary. The volunteers operated the camera and assisted with equipment setup

and removal. Later, damage to the video capture card necessitated an adjustment to the

camera setup. During this process the hardware was adapted to allow video recording,

which meant that a single person could operate the equipment and later take frames from

the video for analysis. Analysis was performed using SmartRoot software [Lobet et al.,

2011] on images containing a root, and root length, diameter and number of branches

were recorded for each root segment. Over the two years nearly 18,000 measurements of

length, diameter and branch numbers were recorded; one for each time a root segment

was captured in an image.

Total root length per tube was taken at each time point, separated between tubes in

arrays treated with eCO2 (treatment), and those with ambient air (control), as shown

in Figures 3.4A and 3.4C. Therefore, each sampling session contributes 12 datapoints in

Figure 3.4 for each array type. The data shows some seasonal variation, with a great deal

of variation between tubes. Initially, greater lengths were recorded in control tubes, but

this gap is reduced in the second year.

Root widths were recorded, where each datapoint is the width of a single root segment

recorded, with a LOESS fit to the data (3.4B). Any seasonal variation appears far less

pronounced than in 3.4A 3.4C, though the widths do appear to increase in the second year

of sampling, with a greater increase in the treatment array. Again, there is a great deal

of variation across datapoints, with particularly wide segments appearing in the control

arrays.

3.3.2 Root weights from soil cores

Root samples were analysed from soil cores as part of wider research at the BIFoR site.

Cores were initially taken in March 2017, then quarterly from March 2018-2019 as de-

scribed in section 3.2.3. Cores were separated visually by soil horizon; soil cores contained
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Sampling date (mm/yy)
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Figure 3.4: Fine root observations in eCO2 (red) and control (blue) experiments.
Each datapoint is the total root length in a single tube (A), the width of each segment
observed (B), and the total biomass observed in a single tube (C). LOESS fits to the data
are shown with 95% confidence intervals. To show the variation between tubes, (C) is
plotted with different colours for each array, and a different plot marker for each tube
within the array. As with the other plots, control arrays are shown in shades of blue and
treatment in shades of red.
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samples of the organic (O) horizon from the surface, topsoil (A) located below the or-

ganic layer, and the denser subsoil (B). Some cores did not contain any B horizon due to

variations in horizon depth; if the O and A horizons were deep enough that the core did

not reach the B horizon. Roots were separated from the soil by hand and processed as

described in section 3.2.3

3.3.3 Root biomass from minirhizotrons

Root biomass was obtained from root data collected from minirhizotrons over the two

year sampling period, as described in section 3.2.2, along with root density information

using the method detailed in section 3.2.3. Total root biomass per tube was plotted,

mirroring the root length plot (figure 3.4A). As seen in figure 3.4B, the biomass shows a

more pronounced seasonal trend, mirroring that visible in figure 3.4A. The increase begins

earlier in the first year of sampling than the second, beginning in spring of 2017, but not

until late summer of 2018.

3.3.4 Root production

Root production data was collected by tracking singular roots growing along the top strip

of a minirhizotron, in the region shown in Figure 3.7. Individual roots were identified and

tracked between sampling periods (see figure 3.9), allowing for any growth to be recorded.

The resulting production data is detailed in Figure 3.8. The production was greater in the

first year, with a significant reduction between the first and second year of sampling. Both

years saw greater production in treatment arrays than control, although this difference is

lesser in the second year. These results generally follow the pattern shown in the length

and biomass results (see Figures 3.4A and 3.4C).
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Figure 3.5: Root biomass per horizon sampled from soil cores. (A-B) (B) Biomass
measurements separated by soil horizon for (A) control and (B) eCO2 experiments. Hori-
zons are O (up arrows), A (circles), B (down arrows); biomass is living (warm colours)
and dead (cool colours). (C) Biomass summmed over all soil horizons for eCO2 (red) and
control (blue) experiments, classified by living, dead, and total. Each datapoint corre-
sponds to a single array. LOESS fits with 95% confidence intervals are shown.
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Figure 3.6: Root biomass per array sampled from soil cores. Biomass summmed
over all soil horizons for eCO2 (red) and control (blue) experiments, classified by (A)
living, (B) dead, and (C) total. Each datapoint corresponds to a single array. LOESS fits
with 95% confidence intervals are shown.
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Figure 3.7: The imaging region of a minirhizotron used for root production.
The tube is shown as installed in the ground, with the shaded area indicating the area in
which root growth was monitored as detailed in section 3.3.4.
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Figure 3.8: The production across all of the tubes in all of the arrays, separated
by eCO2 (red), and control (blue). The quarterly production is shown over the two
year monitoring span with LOESS fits with 95% confidence intervals. The inset shows
the total yearly production for each year. Error bars are standard error between tubes
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Figure 3.9: Example of root growth used to calculate production. Arrows identify
the root tip and the horizontal scale bar represents 1mm. Images are taken month-by-
month going from top to bottom.
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3.3.5 Fold-change in fine root biomass

As discussed in Chapter 3, the raw data shows a great deal of variance and appears

heavily dependent on sampling and environmental effects. Therefore, it would be greatly

beneficial to find a method of separating any change in root dynamics due to elevated

carbon dioxide from those caused by spatial or temporal variations in the natural ecosys-

tem. In our biomass data, (see Chapter 3), the values observed appeared broadly similar

for both treatment and control, but the rates of increase for spring-summer 2017 and late

summer 2018 appeared much larger for the eCO2 measurements compared to the control.

To investigate this, a fold-change was calculated, so each datapoint showed the change in

root biomass with respect to the biomass in the same tube at initial sampling (see section

3.2.4).

As can be readily seen from Figure 3.10, the increase in biomass for the treatment

arrays appears substantially greater. LOSS fits applied to the data showed a maximum

mean fold-change increase of 2.58 ± 0.20 for tubes in control arrays and 4.62±0.44 for

those under elevated CO2. This is also supported by Mann-Whitney tests performed on

individual points for October 2017 and March 2018, showing values of 4.59 ± 0.58 for

treatment and 2.49 ± 0.31 for control, where the errors represent standard error and p=

0.016. However, this approach suffers from an over reliance on the accuracy of the data

from the first set of sampling, and the validity of this must be carefully considered before

conclusions are drawn.

3.4 Discussion

The monitoring of natural root systems continues to be a challenging endeavor, both in

finding accurate nondestructive methods and in collecting data that is representative of the

true picture belowground [Hendricks et al., 2006]. Soil cores offer a relatively inexpensive

and accessible method of quantifying root stocks, but are time consuming and are a
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Figure 3.10: A comparison of the raw biomass per tube and the ’fold-change’
transformation. (A) The biomass per tube data shown and detailed in Chapter 3.
Fine root biomass observations in eCO2 (red) and control (blue) experiments. Each
datapoint is an observation from a single minirhizotron site. LOESS fits to the data
are shown with 95% confidence intervals (B) The same data having undergone the fold-
change transformation described in section 3.2.4. Each datapoint is an observation from
a single minirhizotron site, normalised by the initial biomass averaged across all sites in
an individual array.
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poor method for monitoring root growth over time. Ingrowth cores have been used in

other studies [Maria do Rosário et al., 2000], but are a poor choice for a natural varied

ecosystem such as that at BIFoR FACE since results are likely to be biased towards species

with greater recovery rates, and are inappropriate for sites with high seasonal variability

[Addo-Danso et al., 2016, Hertel and Leuschner, 2002]. Minirhizotrons have been the

main method of data collection for this study, since they offer a more accurate estimation

of productivity than soil cores [O’connell et al., 2003, Guo et al., 2004], however they

present their own challenge to the researcher [Matamala et al., 2003, Norby and Jackson,

2000], and careful interpretation of the results is required [Yuan and Chen, 2012]. The

use of both methods has provided a broader picture of root activity at BIFoR FACE.

Taken together, the raw results alone show little carbon fertilisation effect. Root length

and biomass measurements per tube are greater in the control arrays than in treatment

in the first year of sampling (see Figures 3.4A and 3.4C), with treatment results slightly

larger than control by the second year. This result is also visible in root widths (Fig

3.4B), but the separation is very slight. However, this result is not echoed in the root

production measurements (Figure 3.8), which shows greater production in the treatment

arrays in both years of treatment, with a smaller difference in the second year. Figure

3.8 shows generally greater production in the treatment arrays in the second year, but

a fair amount of variation month to month. Soil core results (Fig 3.6) suggest slightly

greater root standing stock in treatment than control, but this is not consistent and well

within error bars. There will also be an error present in the accumulation of production

measurements, where the results will be dependent on sampling rate. This is not included

in the results and would be useful to quantify, maybe by comparing results with different

sampling rates.

A great deal of variation is shown in all of the results, reflecting heterogeneity across the

site, with this dependence on sampling location visible in results from both minirhizotrons

and soil cores. Heterogeneity is particularly visible in the soil core results (Fig 3.5A), where

there is a great deal of variation in mass recorded in separate samples. For this reason,

62



results may have a large dependence on sampling location. However, as can be seen from

Figure 3.4 C, the variability is present between sampling times and not consistent in each

tube over time. Therefore, this variance appears to come from the sampling method and

the sampling of a complex system rather than from just the tube locations. This effect

is particularly concerning for productivity measurements, where a smaller region is used

for sampling, and therefore there may be a greater impact on the results. While one

of the strengths of the BIFoR face setup is its location in a natural ecosystem, spatial

variation may be amplified by the number of competing species across the site. Since

we do not identify species in any of our data, we are relying on our sampling methods

to produce a broad picture of the overall ecosystem. The use of a natural ecosystem

for this study also means that the results may be impacted by outside factors. The

summer of 2018 (July - September) was particularly dry which may have affected root

proliferation. The trees were also recovering from a springtime winter moth (Operophtera

brumata) caterpillar infestation (17th May to 3rd June) [Hart, 2019]. Some increased

growth in the first year could be attributed to a wounding response due to disturbance

from minirhizotron installation [Pritchard et al., 2008]. All of these factors need to be

considered when interpreting the results from the study.

The fold-change transformation in section 3.3.5 provided support for separation be-

tween the datasets with a Mann-Whitney test giving p = 0.016 in support of separate

model fits for treatment and control data. This suggests that further modelling ap-

proaches could help to elucidate the effects of eCO2 in the noisy data detailed in this

chapter. Overall, it is difficult to see the real picture in these results due to the many

uncontrolled factors affecting the data. Careful statistical analysis is required to account

for this large variability in the results and obtain a clearer picture of the effect of eCO2,

as detailed in the following chapter.
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Chapter 4

Exploring data from BIFoR FACE

using mathematical modelling

4.1 Introduction

In the previous chapter, it was concluded that more statistical analysis was required

to further elucidate the effect of eCO2 on fine root growth. To this end, this chapter

details modelling work performed on the data in Chapter 3. In addition, an estimation

of Net Primary Production (NPP) is reported, along with careful error quantification.

These methods provide further insight into the impact of eCO2 on fine root growth at the

BIFoR FACE site.

In section 3.3.5, it was shown how looking at the fold-change in root biomass showed

a greater separation between treatment and control populations. However, this approach

has a large dependence on the first set of measurements and can propagate error. A

stochastic population model will mitigate this effect by including both initial and ongoing

behaviour in the model fitting. This kind of model will account for all of the points, so

the larger number of datapoints increases the strength of the model, while capturing the
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Minirhizotrons

Soil cores

Fig 3.4

Minirhizotrons

Fig 3.8

Stochastic BID model

NPP conversion

Fig 4.4
Fig 4.5

Fig 4.6
Figure 4.1: Data collection and modelling schematic. A schematic to show how the
experimental work detailed in Chapter 3 is used in Chapter 4 and the modelling applied
in each case.

distributional detail so the variance in the data is accounted for in addition to the mean

trends. In comparison, ABC would be a poor choice for this kind of data, since it would

be too computationally inefficient.

In addition to looking at the time-series measurements of root growth, a measurement

of Net Primary Production (NPP) will allow for the inclusion of this work into larger

Earth System Models which look at global carbon dynamics. This chapter details a novel

approach to calculating NPP from the production data in section 3.3.4, along with a

careful analysis of the uncertainty in this calculation. Overall, this chapter details how

the application of stochastic modelling allows for greater insight into the kind of noisy

data obtained from this type of study. In addition, we show the large uncertainty inherent

in the calculation of NPP, and how this can be clearly quantified.

4.1.1 Stochastic modelling and quantifying uncertainty

Population models are used in a wide variety of biological applications [Novozhilov et al.,

2006, Gani, 1984, Hastings and Palmer, 2003]. Stochastic modelling is particularly suited

to the noisy systems often present in biology, and has been often used in cell modelling

[Bressloff, 2014], and gene expression [Swain et al., 2002].

A birth-immigration-death process is an extension of the well-studied birth-death
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Figure 4.2: Diagram of processes in BID model P (m, t) is the probability of the
population being at size m at time t, λ is the birth rate, ν the death rate (both population
dependent), and α the immigration rate.

stochastic process [Van Kampen, 1992], with the addition of the immigration term. Both

models make the assumption of an infinite population, so there is no maximum limit from

outside factors. Population members are modelled as particles that behave independently

from one another; they can die or give birth at given rates. This model works at popu-

lation level, and therefore the population birth and death rates will be dependent on the

population size. The immigration term models an addition of new members at a given

immigration rate. This is not dependent on the size of the population [Van Kampen,

1992].

This model is described by the master equation, which describes the evolution of the

probabilities of the population being at a given state over time. To derive this model,

we consider the probability of the population being at a given state m at time t. The

master equation can then be derived by considering the probability to be at state m− 1

at time t, and at m + 1 at time t, see Figure 4.2. In this way, the model depends on

a Markov assumption, where the changes in population are not influenced by what has

happened prior to this, and it is assumed that the birth, immigration and death rates

are time-independent [Van Kampen, 1992]. A full description of the model used in this

chapter can be found in section 4.2.1.

A Birth - Immigration - Death (BID) stochastic model can be applied to root system

data by considering a unit length of root as a member of the root ’population’. In this way,

birth represents the growth and branching of existing roots, immigration a root hitting the

minirhizotron and therefore being recorded, and death the decomposition of dead roots.
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The birth-immigration-death (BID) model is well studied in mathematics [Van Kampen,

1992, Matis and Kiffe, 2000, Ekanayake and Allen, 2010], and has previously been applied

to cell dynamics [Johnston and Jones, 2015]. The generating function can be readily

written and solved, and moments can be calculated [Van Kampen, 1992, Johnston and

Jones, 2015], making it suitable for modelling the noisy root data detailed in chapter 3.

4.1.2 NPP

Measuring net primary production (NPP) is crucial to our understanding of the carbon

cycle [Fahey and Knapp, 2007]. In plants, NPP is the measurement of the energy stored

as biomass [Fath, 2018] and represents the difference between energy gained through

photosynthesis and that used for respiration [Waring, 2007]. Since NPP cannot be directly

calculated [Clark et al., 2001a], it is often estimated using biomass production over a

given time period [Clark et al., 2001b]. This contains many sources of error and may

underestimate true NPP by up to 30% [Eviner, 2004]. In addition, belowground NPP is

often neglected, sometimes assumed to be a proportion of aboveground NPP estimates

[Medlyn et al., 2016, De Kauwe et al., 2016, Adame et al., 2017].

Previous FACE experiments estimate fine root NPP in a variety of ways. Aspen face

did not include minirhizotrons in the study, and used estimates of fine root standing stock

from soil cores in their total NPP calculation [King et al., 2005]. Duke FACE also did not

include minirhizotrons in their study, calculating fine root turnover using estimates from

soil cores [DeLucia et al., 1999]. ORNL FACE used minirhizotrons, and found an estimate

of fine root NPP using a consideration of the volume of soil sampled from minirhizotrons

[Norby et al., 2002]. The method from this study was expanded upon, using careful

consideration of the geometry of the minirhizotron system to produce an estimate of NPP

per unit area from fine root productivity observed in the minirhizotrons.

Variations in methodology make it very important to consider errors in the reporting

of NPP values [Clark et al., 2001a]. In particular, fine root NPP from this study is
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designed to be combined with other NPP figures from other experiments at BIFoR, to

gain an understanding of the carbon cycle across the ecosystem. This figure could then

be used in large scale carbon models [Flato, 2011]. It is readily seen how this could lead

to a large propagation of error values. Therefore, clear consideration of the magnitude

and sources of error is critical for reporting of NPP measurements.

4.2 Methods

4.2.1 BID model dynamics

A birth-immigration-death (BID) stochastic model was be applied to the time series root

biomass data shown in Figure 3.4 C in Chapter 3. The model was conceptualised by

considering a unit length of root as a member of the root ‘population’. As in the main

text, we take birth to represent the growth and branching of existing roots, immigration

to represent a new root appearing in the minirhizotron viewing window and therefore

entering the population, and death to represent the decomposition of dead roots. Taking

m as the number of unit root lengths, λm the birth rate, νm the death rate and α the

immigration rate, this model is described by the master equation

dPm
dt

= (α + λ(m− 1))Pm−1 + ν(m+ 1)Pm+1 − (α + λm+ νm)Pm, (4.1)

for Pm(t), the probability of a state with m unit root elements at time t. Initial

conditions at t = 0, E(m(t = 0)) = m0 and V(m(t = 0)) = v0, are also parameters of the

model.
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BID statistics

We start with the BID master equation, describing the probability P (m, t) of observing

m length elements at time t under the influence of immigration α, birth λ and death ν:

dP (m, t)

dt
= αP (m−1, t)+ν(m+1)P (m+1, t)+λ(m−1)P (m−1, t)−(α+νm+λm)P (m, t),

(4.2)

with initial condition enforcing that m = m0 at t = 0:

P (m, 0) = δm,m0 . (4.3)

Defining the generating function G(z, t) =
∑

m z
mP (m, t), we obtain the following

PDE from Eqn. 4.2

∂G(z, t)

∂t
= α(z − 1)G(z, t) + (ν(1− z) + λ(z2 − z))

∂G(z, t)

∂z
, (4.4)

with initial condition

G(z, 0) = zm0 . (4.5)

The solution is readily found through the method of characteristics [Johnston and

Jones, 2015]:

G(z, t) =

(
ν − λ

λe(λ−ν)t(z − 1)− λz + ν

)α
λ
(
νe(λ−ν)t(z − 1)− λz + ν

λe(λ−ν)t(z − 1)− λz + ν

)m0

. (4.6)
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We can obtain necessary information about P (m, t) from the generating function (Eqn.

4.6). P (m) is given by

P (m) =

(
1

m!

)(
∂mG

∂zm

)∣∣∣∣
z=0

, (4.7)

the expected value by

E(m) =
∂G

∂z

∣∣∣∣
z=1

, (4.8)

= et(λ−ν)m0 +
et(λ−ν)α − 1

λ− ν
, (4.9)

and the variance by

V(m) =

(
∂2G

∂z2
+
∂G

∂z
−
(
∂G

∂z

2))∣∣∣∣
z=1

(4.10)

=

(
et(λ−ν) − 1

) (
et(λ−ν)(αλ+m0(λ

2 − ν2))− αν
)

(λ− ν)2
. (4.11)

Note that for the purposes of this model we add an additional value v0 to the variance.

This linear noise contribution accounts for experimental variance due to noisy observa-

tions:

V(m) = v0 +

(
et(λ−ν) − 1

) (
et(λ−ν)(αλ+m0(λ

2 − ν2))− αν
)

(λ− ν)2
. (4.12)

4.2.2 Statistical analysis and uncertainty quantification

Statistical analysis was performed in R [R Core Team, 2020] using custom scripts. LOESS

fitting was performed using the default parameterisation of the loess command, specifically

using a span α of 0.75 and a polynomial degree of 2.

Caladis [Johnston et al., 2014] was used for uncertainty propagation, specifically to

track uncertainty through the calculation of NPP, as described in section 4.2.5. Caladis
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is an online tool allowing for calculations using probability distributions [Johnston et al.,

2014]. Each variable in a calculation is associated with a user-defined probability distri-

bution reflecting uncertainty in that quantity, and when a calculation is performed the

value of each variable is sampled from its distribution for use in the equation.

4.2.3 Maximum likelihood estimation for parameter values

Maximum likelihood estimation and bootstrapping for the BID model was performed in

Mathematica [Inc., ]. The BID model admits a closed-form solution for an exact likelihood

(which has been previously studied in stochastic biology [Johnston and Jones, 2015]), but

for simplicity and because of the continuous nature of our root observations we employ a

normal approximation. Hence, we set

L(x, τ) = N (E(m(t = τ)),
√
V(m(t = τ))), (4.13)

using expressions for E(m(t = τ)) (equation 4.8) and V(m(t = τ)) (equation 4.12),

the mean and variance of root biomass observed at time τ .

The total log-likelihood was calculated for eCO2, control and for both eCO2 and control

treated as one dataset. This came from the sum of the log-likelihood for each element in

the corresponding dataset. These log-likelihood calculations were used to find parameter

fits for the birth, immigration, death and the linear noise contribution (see section 4.2.1)

using the NMaximize function in Mathematica [Inc., ] for numerical optimisation.

4.2.4 Bootstrapping on parameter estimation

Bootstrapping was performed on the maximum likelihood parameter estimation from

section 4.2.3 using Mathematica [Inc., ]. 200 repetitions were performed, with samples the
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same size as the original dataset. This was performed on the control, eCO2 and combined

dataset to produce histograms representing confidence intervals for the parameter fits for

birth, immigration, death and linear noise contribution (see section 4.2.1).

4.2.5 Calculating NPP from fine root production

We now produce a novel scaling for the production data shown in Figure 3.8, to give an

estimate for NPP.

The minirhizotron tube samples a proportion of the total volume of the soil column

in which it is embedded:

V =
Vs
Vt

=
lId(d+ 2r)

2hr(r + d) sin 2φ
, (4.14)

where h is the length of the viewing area, r is the radius of the minirhizotron tube, d

is depth of viewing field, φ is the angle of the minirhizotron tube, and lI is the viewing

arc length. We further show that, given observed biomass production p through this

sampling, the total NPP estimate is given by:

NPP =
p

V A
, (4.15)

where A is the area on the surface covered by the viewing area, and V is calculated

using equation 4.14.

Deriving an equation for NPP scaling

We model a rhizotron tube in situ at an angle φ with the horizontal soil surface. Root

images are collected covering a segment with angle θ, and corresponding image width w,
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Figure 4.3: Model geometry for production calculations. (A) A minirhizotron tube
in soil, with sampling volume Vs a subset of total volume Vt, which is volume ABCDEFGH
coloured brown in the figure. The top surface is area A, shown as ABCD in green. (B)
The sampling volume Vs shown here as volume ABCDEFGH away from the tube for
clarity. The shaded area of the tube represents the region of the tube imaged for root
production. Also shown is a view of the end of the tube, showing the shape of face EFGH
of volume Vs, again shown away from the tube. (C) A cross section of the tube showing
the geometry of the viewing area, shown as a shaded segment.
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which allows a viewing window of width lI with depth of field, d, as shown in Figure 4.3.

We aim to produce a 2D projection, A, of the volume sampled by the minirhizotron, Vs,

onto the surface for the estimation of root NPP as a production per unit area. To do this,

we define the proportion of the total volume below this region (A) that has been sampled

using the minirhizotron, and call this volume Vt (Figure 4.3A).

The viewing angle, θ (in radians) can be calculated from the viewing arc lI and the

tube radius r

θ =
lI
r
, (4.16)

and therefore the outer arc lO can be determined from the depth of field (Figure 4.3B):

lO =
(r + d)lI

r
(4.17)

The sampling volume around the minirhizotron, Vs, Figure 4.3B. From the area of a

circle sector, area ABO is θ
2
(r+d)2 and area CDO is θ

2
r2, so area ABCD is θ

2
((r+d)2−r2)

and

Vs =
θh

2
((r + d)2 − r2), (4.18)

=
lIh

2r
d(d+ 2r). (4.19)

The total volume Vt is delimited by the extreme points of the sampling volume

ABEFPQ. From Figure 4.3B it is readily seen that lengths AE = h cosφ, AQ = h sinφ,

AB = (r + d), so
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Vt = 2h2(r + d) sinφ cosφ, (4.20)

= h2(r + d) sin 2φ. (4.21)

Using equations 4.19 and 4.21, we obtain the proportion of the total volume sampled

by the minirhizotron:

V =
Vs
Vt

=
lId(d+ 2r)

2hr(r + d) sin 2φ
. (4.22)

Obtaining the sampled arc length lI from the image width

The viewing arc, lI , can be calculated from the image width, w, and the tube radius, r,

using the following set of equations:

lI = arcsin

(
w

h+ w2

4h

)(
h+

w2

4h

)
, (4.23)

where

h = r

(
1− cos θ

2

)
, (4.24)

and

θ = 2 sin−1
( w

2r

)
. (4.25)
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Scaling to total fine root NPP

Let p be the fine root production. We can calculate total NPP as:

NPP =
p

V A
, (4.26)

where A is the area at the surface that has been imaged (see Figure 4.3).

In this case A is given by

A = hw cosφ. (4.27)

where h is the length and w the width of the viewing area and φ is the angle of the

tube (see Figure 4.3).

4.2.6 Calculating NPP using Caladis

Caladis allows for calculations using probability distributions [Johnston et al., 2014]. Each

variable is associated with a user-defined probability distribution, and when a calculation

is performed the value of each variable is first pulled from its distribution for use in the

equation. By repeating the calculation with a new set of variables each time, a histogram

is produced showing the result of the calculation after a default of 20000 iterations.

Our NPP calculation uses the following equation (derived above):

NPP =
2phr(r + d) sin(2φ)

lId(d+ 2r)hw cos(φ)
. (4.28)

Each variable in equation 4.28 has an associated probability distribution, defined be-

low, chosen to reflect the confidence levels in the values given. A normal distribution is
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used for measurements, or for normally distributed data while a uniform distribution was

used when the values were all equally likely.

� p ∼ N(µp, σp), where µp is the total root production (g yr−1) and σp is the standard

deviation of the production for each array, which comes from the data shown in

Figure 3.8 (inset) in Chapter 3.

� h ∼ N(µh, σh), where µh is the total viewing length along the rhizotron (m) (see

Methods). Our calculation used h ∼ N(0.1755, 0.005) to allow for inacurracies in

the measurement of the viewing windows.

� r ∼ N(µr, σr), where µr is the the radius of the minirhizotron tube (m). Our

calculation used r ∼ N(0.0275, 0.005) to allow for variations in tube manufacturing.

� d ∼ U(d−, d+), where d− and d+ represent the maximum and minimum depth of

field values (m). These values were chosen to represent the spread of depth of field

values in [Taylor et al., 2014], centred around the standard value used. A uniform

distribution d ∼ U(0.0005, 0.0035) was used to reflect the uncertainty as explained

in [Taylor et al., 2014], rather than this being a measurement.

� φ ∼ N(µφ, σφ), where µφ is the angle of the minirhizotron tube. Our calculation

used φ ∼ N(0.756, 0.196) (radians) to cover variations in tube installation.

� w ∼ N(µw, σw), where µw is the width of the viewing area. Our calculation used

li ∼ N(0.0192, 0.005) to capture inaccuracies in the measurement and calculation of

this width.

� li ∼ N(µli , σli), where µli is the viewing arc length (m) (see Methods). Our calcu-

lation used li ∼ N(0.0189, 0.005) to capture inaccuracies in the measurement and

calculation of this arc length.

The mean values given, and the midpoint of the depth of field distribution, were then

used to calculate the NPP values quoted in section 4.3.2

77



4.3 Results

4.3.1 Stochastic modelling for fine root biomass

As discussed in section 3.3.5, the raw minirhizotron data shows a great deal of variation

due to outside effects such as weather events, a caterpillar infestation and spread of

vegetation across the site. This is readily seen in Chapter 3, and figure 3.10A. Therefore,

it would be prudent to model the system in a way that allows for the influence of these

outside processes that cannot be easily modelled deterministically. Stochastic modelling

is suitable for a noisy system such as in this study. It aims to capture the distributional

detail while allowing for variation within the dataset. A BID model is well suited to

time series data, and is strengthened by the inclusion of multiple datapoints at each time.

This consideration of the whole dataset represents a significant improvement upon the

fold change model shown in chapter 3.

The mechanisms considered in this study are root growth, root decay, and new roots

entering the area of observation. A model that readily maps to these three processes is

a birth-immigration-death (BID) model, as described in section 4.2.1. In this model, we

seek to find stochastic birth, immigration and death rates that correspond to the growth

of roots, roots entering the viewing area, and decay of roots respectively; the se will be

compared for treatment and control data.

The stochastic BID model described in section 4.2.1 was fitted to root biomass data

shown in figure 3.4C by finding the parameters that maximise the likelihood function as

detailed in section 4.2.3. A likelihood ratio test was performed, comparing the use of

two models; the first model with separate datasets for control and eCO2 data, with a

second model containing the whole dataset. The first model will require the inclusion of

8 parameters: birth rate, immigration rate, death rate and linear noise contribution for

both eCO2 and control populations. In comparison, the second model only requires the

fitting of 4 parameters: birth rate, immigration rate, death rate and linear noise for a
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single population containing the whole dataset. Therefore, the null hypothesis would be

that there is no separation between the control and eCO2 datasets, and the alternative

hypothesis that there is support for two distinct population. In this way, we look at

the statistical evidence for separating the model, and compare whether separating the

datasets provides improved model fit significant to offset the use of two sets of parameters.

This showed that in the first 300 days there is a significant difference between treatment

and control datasets (p = 1.0 × 10−11). This is supported by considering the maximum

likelihood value of the difference between birth and death rates, which is positive (0.0045

day−1) for treatment and negative (-0.0086 day−1) for control. This separation can readily

be seen in figure 4.4D which shows the result of boostrapping with the percentile method

(p = 0.041). The data was separated by year since the expected seasonal variation would

be poorly captured by this model type.

The same process applied to the second year data showed negative proliferation across

both datasets, but with a less negative result in the fit for eCO2. There is again a

significant difference between the two datasets (p = 1.3 × 10−13). Both the separation

and difference in root proliferation can readily be observed in figure 4.5, especially when

compared to figure 4.4. Here the use of the BID stochastic model has shown a significant

difference between the two datasets that was not easily seen from the raw data shown in

Chapter 3.

4.3.2 NPP estimation and uncertainty

As discussed in Chapter 3, root productivity was estimated through continued observation

of growing root segments along the top strip of minirhizotrons. In transforming this to a

measurement of NPP, a method was sought that would also quantify the uncertainty in

the measurement, both from the experimental setup and from assumptions used in the

transformation.
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Figure 4.4: Root biomass changes over time under eCO2 and control condi-
tions in the first year of sampling. (A-C) The birth-immigration-death (BID) model
described in the text, applied to (A) eCO2, (B) control, and (C) combined biomass ob-
servations. The datapoints here are the biomass data for the first year of sampling as
shown in figure 3.4C. Time axis gives days from 11/04/2017. The maximum likelihood
BID parameterisation is found for each dataset, then the mean and standard deviation of
the model for that parameterisation is plotted. A likelihood ratio test shows statistical
support for the individual models (A)+(B) over the combined model (C) (p = 1.3×10−13).
(D) Bootstrapped estimates for the difference between root elongation (birth, λ) and root
decay (death, ν) parameters for eCO2 and control data, as described in section 4.2.4.
λ− ν is higher (with positive maximum likelihood estimate) for eCO2, reflecting increas-
ing root proliferation, and lower (with negative maximum likelihood estimate) for control,
reflecting decreasing proliferation.
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Figure 4.5: Root biomass changes over time under eCO2 and control conditions
in the second year of sampling. (A-C) The birth-immigration-death (BID) model
described in the text, applied to (A) eCO2, (B) control, and (C) combined biomass ob-
servations. The datapoints here are the biomass data for the second year of sampling as
shown in figure 3.4C. Time axis gives days from 23/04/2018. The maximum likelihood
BID parameterisation is found for each dataset, then the mean and standard deviation of
the model for that parameterisation is plotted. A likelihood ratio test shows statistical
support for the individual models (A)+(B) over the combined model (C) (p = 1.3×10−13).
(D) Bootstrapped estimates for the difference between root elongation (birth, λ) and root
decay (death, ν) parameters for eCO2 and control data, as described in section 4.2.4.
λ − ν is higher for eCO2, although both have a negative maximum likelihood estimate,
reflecting decreasing proliferation across the site.
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An equation was derived for NPP from consideration of the geometry of the setup (see

section 4.2.5 and figure 4.3):

NPP =
2phr(r + d) sin(2φ)

lId(d+ 2r)hw cos(φ)
. (4.29)

Where p is the production observed through minirhizotron samples (see Methods), h is

the length and w the width of the viewing area, r is the radius of the minirhizotron tube, d

is depth of viewing field, φ is the angle of the minirhizotron tube and lI is the viewing arc

length. Briefly (full explanation in Methods), Eqn. 4.29 maps the productivity observed

in the part-cylindrical viewing region of the minirhizotron tube to the corresponding

surrounding volume of the soil column, and maps this volume to the corresponding 2D

surface area for interpretation as a traditional NPP measurement. This equation was used

with Caladis [Johnston et al., 2014], to quantify the uncertainty involved in each of the

parameters that are used in the NPP calculation. In this way, the uncertainty involved

in the measurement can be readily quantified.

As seen in Figure 4.6, the overall NPP was greater in under eCO2 in both years of

sampling, with mean values of 467 ± 373 g m−2 yr−1 control and 551 ± 290 g m−2 yr−1

for eCO2 in year 1, and 140 ± 61 g m−2 yr−1 and 204 ± 92 g m−2 yr−1 in year 2. However,

there is substantial uncertainty with the transformation to NPP, as visible in figure 4.7.

The use of Caladis has facilitated the observation of this significant uncertainty.

The output from running Caladis on equation 4.28 with the probability distributions

detailed in section 4.2.6 is shown in figure 4.7. The distributions show some larger NPP

values in eCO2 than control as in Figure 4.6, but the separation is relatively small. How-

ever, the spread of the histograms shows the massive uncertainty in the calculation of

NPP that is not captured in a direct calculation as shown in figure 4.6. This very large

uncertainty is illustrated by the impossibility of obtaining the values in figure 4.6 from

the outputs in figure 4.7 because of the large spread in the results. As the results in
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Figure 4.6: Net primary productivity estimates and uncertainties. Calculated
NPP per quarter (traces) and per year (points) from root observations under eCO2 (red)
and ambient air (blue). Error bars are standard error between tubes.

section 4.3.1 show that there is some significant differences between eCO2 and control,

and the increase under eCO2 is echoed in the NPP calculations (figure 4.6), this suggests

that NPP may be a poor representation of root growth. The broad spread in the Caladis

results (figure 4.7) show how much uncertainty there is in making the approximation from

production to NPP.

4.4 Discussion

Two modelling approaches were applied to raw root data collected using minirhizotrons

at the BIFoR FACE site, detailed in Chapter 3. Both approaches suggest an increase

in root growth under eCO2 with one of them showing statistically significant differences.

The fitting of the stochastic birth-immigration-death (BID) model in section 4.3.1 was

applied to root biomass data, and provided support for separation between the datasets

with a Mann-Whitney tests giving p = 1.0 × 10−11 supporting separate model fits for

treatment and control data. Although this model does not capture the apparent yearly

seasonality in the data and is therefore a poor choice for forecasting, it does clearly show
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Figure 4.7: NPP estimates from Caladis. Estimates from Caladis [Johnston et al.,
2014] of NPP in year 1 (top) and year 2 (bottom) of fine root productivity observations.
Control data is shown in blue and eCO2 in red. Distributions reflect the uncertainty in
these estimates, derived by propagating uncertainty in each value involved in the calcu-
lation.
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separation between the treatment and control datasets. In this way, a novel modelling

approach has provided greater evidence for increased root biomass under eCO2 that was

not immediately clear from the initial data in Chapter 3. Initially, the raw results shown

in figure 3.4 showed greater root biomass in the control array, although when only the

root production was considered there was increased production under eCO2 as shown in

figure 3.8. This suggests that there was some difference that was difficult to extract due to

the noisy system at BIFoR FACE, as discussed in Chapter 3. This was then supported by

the transformation to fold change (figure 3.10). The novel application of a stochastic BID

model to root data has elucidated this separation between eCO2 and control populations.

The transformation to NPP applied to production data from Chapter 3 has clearly

shown the great deal of ’hidden’ uncertainty involved with a calculation of this type.

Although there is an increase in NPP under eCO2 for both years of sampling (see section

4.3.2), this is not statistically significant. Although NPP is an crucial figure for inclusion

in wider research [Flato, 2011], it is important that errors in the calculation are clearly

quantified for consideration when these values are included in larger models. The use

of Caladis provided a valuable representation of the magnitude of this uncertainty. In

summary, NPP may not be the best way of representing fine root growth in these kind

of studies, due to the large amount of additional processing and measurements in what

is already noisy data prone to variation. Scaling to NPP necessitates a consideration of

depth of field, geometry of the minirhizotron and spacial area that are not present in other

measurements and introduce additional error that is not quantified in the measurement.

However, fine root NPP is a valuable measurement when considering the whole forestry

ecosystem and the carbon cycle. Therefore, reporting of NPP values should be done

carefully, with a greater consideration of sources of error than is currently present in the

literature.

Overall, taking the three approaches together increases confidence that elevated am-

bient carbon dioxide stimulates root growth at BIFoR FACE. However, each approach

comes with its own drawbacks and assumptions, and these must be carefully considered
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when evaluating these results.
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Chapter 5

Discussion

This project set out to investigate how plant root growth is impacted by elevated carbon

dioxide (eCO2). I began by looking at root growth in general, and investigated a method

of gaining greater insight from existing root architecture models through the use of ABC

SMC. To complement this theoretical analysis, I conducted a two year experimental study

into the impact of eCO2 on fine root growth in a temperate oak forest. Following the

collection of these results, I used mathematical and statistical modelling techniques to

gain further insight into the noisy data from a complex forest ecosystem, to extract the

carbon fertilisation from other factors affecting the results. The central hypothesis was

that eCO2 would have a detectable fertilisation effect on root growth, and this work

evidences that this is the case, with the modelling giving key insight that was not clearly

evident in the initial results.

Chapter 2 details a novel framework for parameter inference and model selection that

can be applied to existing root systems. This could be used to improve mechanistic

understanding of root growth and in model selection for existing root architecture models.

There are many excellent root system architecture models in the literature [Dunbabin

et al., 2013], and this work provides a way to gain greater understanding from these

root models, by showing the parameter space that could have produced an observed root
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system. This was shown in Figure 2.3, where clear separation between the parameter

spaces is visible for Arabidopsis thaliana and Lupinus angustifolius roots generated using

RootBox [Leitner et al., 2010]. In addition, Figure 2.8 illustrates the strength of this

approach for model selection, comparing a simple growth model to that used by CRootBox

[Schnepf et al., 2018]. In this way, the applicability of this work to the existing literature is

clearly shown. In addition, the ability to distinguish between phenotypes shown in Figure

2.9 could have many wider applications in future research. In summary, this readily

applicable inference process allows for the consideration of the inverse problem which

is poorly represented in current plant growth literature. In this way, quantitative and

interpretable mechanistic insight can now readily be gained from root system architecture

models.

While providing a significant contribution to root modelling literature [Postma and

Black, 2020], the work detailed in Chapter 2 could not provide enough detail of root

growth mechanisms to answer the central research question; the impact of eCO2 on root

growth. The two year fieldwork study conducted at BIFoR FACE was set up to answer this

question. This study was designed and implemented incorporating established techniques

in environmental science to elucidate belowground root dynamics, with careful application

of each method in light of the difficulty in belowground sampling. This work will provide a

key part in understanding carbon flows at BIFoR FACE. In turn, knowledge of the future

carbon sink potential of temperate oak forests will improve the accuracy of current earth

system models, and therefore help predict the future of our planet under climate change.

Root data was collected through a variety of different methods; time series monitoring of

the root lengths, widths, and calculated biomass visible within each minirhizotron at each

sampling point (Figure 3.4), the root biomass from soil cores taken at the site (Figures 3.5

and 3.6) and the root production visible from monitoring root segments growing around

the minirhizotron (Figure 3.8). Taken together, these results showed little evidence of

increased root growth under eCO2, indeed the root biomass monitoring suggested greater

growth in the control arrays, the soil coring showed little discernible separation between
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treatment and control, and the production measurement showed greater production under

eCO2 that was not statistically significant. These results will greatly benefit from more

data, as BIFoR is intended to continue running well past the duration of this study. It

is also possible that a greater fertilisation effect will be seen in later years as the forest

continues to adapt. This is particularly likely for BIFoR, as it is situated in a mature

oak forest rather than a fast-growing plantation. In addition, the resettlement period

was shorter than would have been optimal, and that may have had an impact on the

data observed, this will not be a problem in later years. Overall, a clear picture was not

obtained from these fieldwork methods, and the results were conflicting. However, looking

at the fold-change in root biomass (Figure 3.10 showed an increase under eCO2, supporting

the results from the production measurement. This evidenced the need for applying

modelling techniques to these results to separate any fertilisation effect from eCO2 from

the noisy system at BIFoR FACE. In addition, a transformation from production to NPP

was necessary to allow for a larger picture to be built of carbon flows within the whole

forestry ecosystem.

The modelling in Chapter 4 provided greater evidence for a carbon fertilisation effect

in the data. The application of a stochastic BID model to the biomass data provided sta-

tistical evidence of two separate populations (Section 4.3.1, Figure 4.4, Figure 4.5). This

model was unable to capture the seasonality evident in the data, so is not able to make

accurate forward predictions. However, it does provide evidence for carbon fertilisation

that was not evident without the application of the model (Figure 3.4). This analysis

shows the power of stochastic modelling for use in complex biological systems with a

great deal of uncertainty, and further work would be valuable in adapting a stochastic

modelling framework to capture the seasonality in the data. The application of stochas-

tic modelling is a novel step for this type of root study, and presents a philosophy for

greater understanding that could readily be applied to further research. The application

of Caladis [Johnston et al., 2014] allowed for greater clarity on the inherent uncertainty

in the NPP calculation. This has great importance when figures are incorporated into
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large-scale models of the carbon cycle [MacDougall et al., 2017], and is something that

should be considered when reporting figures from similar studies. The careful uncertainty

quantification present in this work sets new standards for data collection and climate

modelling in environmental science.

Overall, this project has made contributions to the fields of environmental science

and mathematical biology, combining big data, fieldwork, modelling and statistics. The

interdisciplinary approach has facilitated the use of statistical and modelling techniques

in areas where they are rarely applied, and this has led to greater insights than a more

traditional approach, particularly when quantifying uncertainty.
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[Lüthi et al., 2008] Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-
M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., et al.
(2008). High-resolution carbon dioxide concentration record 650,000–800,000 years
before present. Nature, 453(7193):379–382.

[Lynch et al., 1997] Lynch, J. P., Nielsen, K. L., Davis, R. D., and Jablokow, A. G. (1997).
Simroot: modelling and visualization of root systems. Plant and Soil, 188(1):139–151.

[MacDougall et al., 2017] MacDougall, A. H., Swart, N. C., and Knutti, R. (2017). The
uncertainty in the transient climate response to cumulative co2 emissions arising from
the uncertainty in physical climate parameters. Journal of Climate, 30(2):813–827.

[Madhu and Hatfield, 2013] Madhu, M. and Hatfield, J. (2013). Dynamics of plant root
growth under increased atmospheric carbon dioxide. Agronomy Journal, 105(3):657–
669.

[Mairhofer et al., 2013] Mairhofer, S., Zappala, S., Tracy, S., Sturrock, C., Bennett, M. J.,
Mooney, S. J., and Pridmore, T. P. (2013). Recovering complete plant root system
architectures from soil via x-ray µ-computed tomography. Plant Methods, 9(1):1.

[Mairhofer et al., 2012] Mairhofer, S., Zappala, S., Tracy, S. R., Sturrock, C., Bennett,
M., Mooney, S. J., and Pridmore, T. (2012). Rootrak: automated recovery of three-
dimensional plant root architecture in soil from x-ray microcomputed tomography im-
ages using visual tracking. Plant physiology, 158(2):561–569.

[Majdi, 1996] Majdi, H. (1996). Root sampling methods-applications and limitations of
the minirhizotron technique. Plant and Soil, 185(2):255–258.

[Majdi et al., 2005] Majdi, H., Pregitzer, K., Moren, A.-S., Nylund, J.-E., and Ågren,
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Appendix A

Outreach and deliverables

This section will outline deliverables and outreach events that did not form part of formal
research.

A.1 Conference presentations

� The impact of elevated carbon dioxide on fine root growth in a temperate oak forest,
Time temperature and a transforming world, SEB Seville 2019

� Likelihood-free inference reveals physical mechanisms and parameters governing root
architecture, In silico plants, SEB Seville 2019

� Quantitative modelling of root growth and carbon allocation: bridging theory and
experiment, International Minirhizotron Working Group meeting, Oak Ridge, Ten-
nessee 2019

� Using stochastic modelling to investigate fine root growth under elevated CO2, Long-
term ecological experiments in plant-soil ecosystems, BES Buxton 2019

� Quantitative modelling of root growth and carbon allocation bridging theory and
experiment, BIFoR Annual Meeting, UoB 2019

A.2 Awards

� Winner, UoB Research Poster Conference 2017

� Best talk, UoB BGRS Symposium 2019

� Runner up, UoB 3 Minute Thesis competition
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A.3 Articles and videos

� Sampling in the Dark: Challenges in Fine-Root Research, EOS, 2019

� Elevated carbon dioxide: Getting to the root of the problem, Botany One, 2018

� Filmed Rapid Researcher segment for Old Joe alumni magazine, 2017

A.4 Outreach

� Gave short presentation of my research to HRH Prince Charles on his visit to the
BIFoR research centre, 2018

� Appeared on BBC Midlands Today as part of the above visit, giving brief outline
of my work

� Helped organise a Birmingham Pint of Science event, 2018

� Presented research at many BIFoR open days 2017 - 2019

� Exhibitor for BIFoR’s stand at a Next Generation Innovators day at Malvern 3
Counties Showground, 2018

A.5 Other deliverables

� Supervised volunteers while root imaging at the BIFoR research site

� Managed larger groups of volunteers taking soil cores at BIFoR, and sorting roots
in a lab at UoB.

� Participated in MSB-Net Multiscale Biology study groups in the UoB mathematics
department in 2016 and 2017

� Teaching Assistant work in both Mathematics and Biosciences

� Worked in the Maths Support Centre in the university library
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Abstract

Plant root systems play vital roles in the biosphere, environment, and agriculture, but
the quantitative principles governing their growth and architecture remain poorly un-
derstood. The ‘forward problem’ of what root forms can arise from given models and
parameters has been well studied through modelling and simulation, but comparatively
little attention has been given to the ‘inverse problem’: what models and parameters
are responsible for producing an experimentally observed root system? Here, we propose
the use of approximate Bayesian computation (ABC) to infer mechanistic parameters
governing root growth and architecture, allowing us to learn and quantify uncertainty
in parameters and model structures using observed root architectures. We demonstrate
the use of this platform on synthetic and experimental root data and show how it may
be used to identify growth mechanisms and characterise growth parameters in different
mutants. Our highly adaptable framework can be used to gain mechanistic insight into
the generation of observed root system architectures.



B.1 Introduction

Root systems are essential to plants’ structure and uptake of water and nutrients, and
constitute more than 5% by mass of the total global carbon budget [Jackson et al., 1997].
They stabilise plants [Yang et al., 2017], stabilise soils [Vannoppen et al., 2015], foster
beneficial microbes [Reinhold-Hurek et al., 2015] and are the entry point for water and
nutrients to the plant [Dotaniya and Meena, 2015]. The shape of a plant’s root system
is generated by a variety of physiological and signalling pathways within the plant, and
understanding the generation of this system opens paths to its optimisation to maximise
crop yield [Shahzad and Amtmann, 2017].

Despite this importance, the mechanisms underlying root growth remain challenging
to quantitatively understand [Dunbabin et al., 2013, Roose et al., 2016, Sievänen et al.,
2014]. The complexity of root systems and their belowground nature poses observational
challenges. Experimental techniques aiming to elucidate root architecture have histori-
cally included sketches of root systems and the use of hydroponics, then images of cleaned
root systems. More recent advances have facilitated the imaging of plants in situ through
the use of x-ray µ-Computed Tomography [Mairhofer et al., 2013], MRI scanning [Metzner
et al., 2015, van Dusschoten et al., 2016], and transparent soil [Downie et al., 2012], which
have been used to investigate root soil exploration and uptake of water and nutrients.

In parallel with this experimental elucidation, in an effort to understand how root
systems grow, many physical and mathematical models of root growth and structure
have been produced. These models solve the ‘forward problem’: given knowledge of the
parameters governing growth processes in plants, they produce the details and dynamics
of a likely simulated root system. The Lockhart equation described the elongation of a
cell under turgor pressure [Lockhart, 1965], and has been widely adapted to describe the
growth of many plant organs, including roots [Dyson et al., 2014, Geitmann and Ortega,
2009]. Hackett and Rose produced the first root system model in the 1970s [Hackett and
Rose, 1972] based on the growth and branching of barley roots, while Lungley [Lungley,
1973] produced a computational model which generated root systems represented using
ASCII characters. Fitter [Fitter, 1987] introduced a topological model of root architecture
where a root system was considered as a set of links. This idea was extended in the
three dimensional model of Pagès [Pages et al., 1989] and Diggle, whose ROOTMAP
model could be applied to a variety of plant species [Diggle, 1988], while Tatsumi et al.
represented variation in root systems using fractal analysis [Tatsumi et al., 1989, Pagès
et al., 2000] Lynch et al. modelled a root system as a network with nodes as branches
and inter-branch distances as edges. The model also included root radius, and volume
changes along the growing root [Lynch et al., 1997]. Advances in computation have led
to a plethora of root system architecture models, which produce a three dimensional
reproduction of a root system using a detailed parameter set [Dunbabin et al., 2013].
Previous modelling approaches were combined in the production of Root Typ in 2004
[Pagès et al., 2004]. This has allowed the model to be adapted for use by other researchers
[Collet et al., 2006, Garré et al., 2012]. Another key root architecture model is RootBox,
[Leitner et al., 2010] which is designed to be combined with soil and water uptake models
along with allowing for the simulation of roots grown in containers of user-defined shape
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and dimensions. This model has been recently updated to produce CRootBox, and there
are plans to eventually extend the modelling approach to also consider above-ground
plant growth [Schnepf et al., 2018]. An effective model is able to reproduce root systems
of many different plant species, which necessitates the incorporation of root data collected
in situ [Roose et al., 2016].

While a great number of advances have been made in simulating root systems from a
set of parameters, relatively little work has been done on the inverse problem: extracting
the growth parameters from an observed root system. Model parameterisation is often
limited by difficulties in root observation [Garré et al., 2012, Pagès and Pellerin, 1994],
however, this step is crucial to gain biological insight from these root models. It is vital
that we can validate root models and the predictions they make, and quantify uncertainty
in their mechanisms and parameters. A manual approach to the inverse problem, feeding
specific measured parameters into generative models for root systems and assessing their
ability to reproduce observations, has been used to gain biological insight and validate
generative models [Chen et al., 2011]. However, without an automated approach, it
remains challenging to explore the full ranges of parameters and mechanisms that could
give rise to observed structures, and the likelihoods of each. Advancing technologies are
allowing observation of root systems in increasing detail, making it ever more important
to bridge the gap between theory and observation.

A major challenge in solving the inverse problem with traditional statistical methods is
finding a likelihood function for an observed root system. Modern statistical approaches
allow this challenge to be circumvented through the use of stochastic simulation and
Approximate Bayesian Computation (ABC) techniques [Beaumont et al., 2002], which
produce a computational approximation replacing the likelihood and remove the need
for its explicit calculation. Another strength of these techniques lies in their natural
capacity for model selection and the inclusion of prior knowledge about the system in
an inference setting. Here, we report a novel pipeline by which ABC, embedded in an
Sequential Monte Carlo (SMC) framework [Toni et al., 2009], can be used to learn the
values of and uncertainty in generative, mechanistic parameters underlying root growth
and architecture, and to compare different root architecture models. Arabidopsis thaliana
(thale cress) is used in both computational and experimental investigation throughout
as a model plant, but this process can readily be extended to any root system, as we
also demonstrate with Lupinus angustifolius (narrowleaf lupin). We demonstrate how
this framework can be used to identify generative parameters according to a given model,
distinguish phenotypic differences, and evaluate the comparative effectiveness of models
for root elongation and root branching processes, providing insight into the underlying
mechanisms.
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B.2 Results

B.2.1 An ABC SMC framework for inferring mechanistic pa-
rameters from root systems

For generality, we begin by considering a highly simplified model for root growth (see
Methods). Starting from an infinitesimal initial condition, a primary root elongates ac-
cording to a growth law. Branches from this primary root occur stochastically according
to a branching law. Branches elongate according to the primary root growth law mul-
tiplicatively scaled (allowing, for example, branches to grow at a slower rate than the
primary root). Branching is for now restricted to first-order branches from the primary
root, though nothing in our framework is dependent on this or any other structural choice.

This coarse-grained model was chosen to reflect the core behaviour shared at the in-
tersection of several contemporary root models [Pagès et al., 2004, Leitner et al., 2010,
Schnepf et al., 2018]. Its computational simplicity is an advantage but not a necessity for
our inference framework; we later consider an alternative generative model to demonstrate
the transferrability of our approach. The details of the model are described in Methods,
but in this section we consider constructing the inference framework for a general mech-
anistic model, the parameters of which we denote θ.

The platform proceeds by simulating outputs from this model with different trial pa-
rameterisations, using a distance function to compare these outputs to summary statistics
of experimental observations, and iterating this process within a Bayesian framework to
build up posterior distributions on model structures and parameters given the observed
data.

To compare simulation to experiment, we focus on a mechanistically informative set
of summary statistics. For a given root structure d, these are the number of branches B,
length of the primary root L, and average length of the lateral roots l̂. Within our scheme,
these lengths are for convenience measured in cm, but different scalings of these features
can be used to emphasise different aspects of root architecture in the simulation-data
comparison. The distance function we use to compare two structures d1, d2 is based on
the Euclidean distance:

ρ(d1, d2) =
1

3

(
(B1 −B2)

2 + (L1 − L2)
2 + (l̂1 − l̂2)2

)
. (B.1)

A dataset D may consist of a set of structures dij, where i labels individual plants
and j labels longitudinal observations. In this case, for each observed plant i, a model
plant is simulated and its structure recorded at each of the times corresponding to the
longitudinal observations. We will call these recorded structures d′ij and are interested in
the comparison between each recorded structure and its observed counterpart:

ρ(D,D′) =
∑
i

∑
j|i

ρ(dij, d
′
ij). (B.2)

113



We deliberately choose this model and summary statistics to focus on the topological
aspects of root architecture and ignore any specific physical embeddings (for example,
branching angles). This focus on topological degrees of freedom increases the generality
of the approach, but features like branching angles and higher-order topological statistics
can readily be included in the modelling and distance calculation if they reflect important
degrees of freedom for the scientific question under consideration.

Eqn. B.1 balances the ability to capture fine detail of the root system against the
computational time required to obtain a reasonable number of samples from the posterior.
Including more detail and/or degrees of freedom in the distance function will allow more
detailed matching of observations, but will increase the sampling effort required to find
regions of parameter space that match these criteria.

ABC involves accepting a trial set of parameters as a sample from the posterior distri-
bution when ρ(D,D′) < ε, or in other words when the summary statistics of the structure
emerging from simulation are ‘close’ to those arising from the experimental data. The
posterior distribution on parameters θ built up from a set of samples taken in this way
is P (θ|D; ρ < ε), which forms an increasingly good approximation to the true posterior
P (θ|D) as ε is decreased [Csilléry et al., 2010].

For parametric inference within a fixed model, a simple rejection-sampling pipeline is
then given by Algorithm 1 (see Methods). This approach would be sufficient to identify
generative parameters from data, but rejection sampling is an inefficient paradigm, as
any ‘good’ regions of parameter space are immediately forgotten when the next draw
from the prior is made. To facilitate more efficient parametric inference as well as model
selection, we use ABC embedded in a sequential Monte Carlo (SMC) framework as in
Toni et al. [Toni et al., 2009]. ABC SMC first enforces only a relaxed fit to the data
then sequentially uses the inferred parameter distributions as priors while enforcing a
tighter fit to data. This sequential process is parameterised by a sequence of ε values
describing the fit threshold required at each step in the sequence. Model selection can
proceed by including a ‘model index’ parameter describing which model structure is to be
used, applying a prior to this parameter (thus incorporating prior knowledge about which
model structures are more likely), then treating this index as a parameter to be inferred
through SMC. Following Toni et al. [Toni et al., 2009], the coupled inference and model
selection pipeline is then given by Algorithm 2 (see Methods).

B.2.2 Inferring parameters from a simulated root system

We first sought to test the applicability of our likelihood-free inference process on synthetic
root data, to confirm its ability to identify known generative parameters. To this end, the
CRootBox root simulation model [Schnepf et al., 2018] was used to produce an example of
an Arabidopsis thaliana root system. The governing parameters were mean growth rates
of 0.49 cm day−1 for the primary root, 0.08 cm day−1 for the lateral roots, and an inter-
lateral distance of 0.2cm, although inter-lateral distance is not an explicit parameter in
our model (see next section). CRootBox adds an element of stochasticity to its generative
parameters; in the default Arabidopsis case this corresponded to a coefficient of variation
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(a) (b) (c) (d)

Figure B.1: Validating root inference platform with synthetic Arabidopsis data.
(a) Output from CRootBox simulation of Arabidopsis root growth; black scale bar is 1cm.
(b-d) Output posteriors from an ABC SMC framework run on CRootBox output, with
final ABC SMC tolerance ε = 0.5 (see Methods). (b) Posterior distribution on branching
rate b in the growth model. (c) Two-dimensional posterior on primary root growth rate g
and lateral root growth scaling α. (d) Posterior distribution on lmax, the maximum length
parameter in the negative-exponential growth model used.

of 0.1 in the growth rates and 0.45 in the lateral spacing parameters. The simulation was
run over 15 simulated days, yielding the structure in Fig. B.1a).

To mirror the pipeline that will be used for experimental data, we analysed this simu-
lation output with SmartRoot image analysis software [Lobet et al., 2011], obtaining the
statistics of tap and lateral root length and placement. We then applied our ABC SMC
framework to estimate posterior distributions on the mechanistic parameters of our simple
growth model (see Methods). These parameters are g (primary root growth rate), lmax
(primary root scaling constant), b (branching rate), and α (lateral root growth scaling).

As shown in Fig. B.1b)-d), the growth rates and, notably, their variability are well
captured in the resultant posteriors, with g inferred to lie around 0.55 ± 0.10 cm day−1,
compatible with the true growth rate parameterising the synthetic data. The branching
rate parameter is more broadly spread, with a mean of 0.6 day−1 corresponding to the ob-
served number of branches, and flexibility in the posterior reflecting the stochastic nature
of this parameter’s influence. α was inferred to lie around 0.021±0.02, corresponding to a
lateral growth rate around 0-0.02 cm day−1; this is rather lower than the value used in the
simulation, reflecting the rather limited lateral growth occurring in the specific simulated
instance of the model. The posterior for lmax is close to recovering the prior which sug-
gests that the model output is minimally dependent on the value of this parameter. We
found this limited lmax dependence to generally be the case, and in subsequent sections
will omit lmax from the posterior plots; all lmax posteriors, generally recovering priors, are
plotted in Appendix B.8. This assessment of the relative importance of, and flexibility
in, generative mechanistic parameters reflects a powerful aspect of this inverse modelling
approach.
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B.2.3 Inferring mechanistic parameters for other synthetic phe-
notypes and root simulation models

To test the wider applicability of our likelihood-free inference process, we next tested
the ability to identify known generative parameters when using a different, existing root
simulation model, and for different plant species. RootBox [Leitner et al., 2010] was
chosen for its wide application in the field. We embedded RootBox as the generative
model in our inference framework, which was then applied as in section B.2.2 to the
previous synthetic Arabidopsis thaliana data and a simulated Lupinus angustifolius root
system. The Lupinus simulation involved an initial growth rate of 1cm day−1 for the
primary root, 0.2 cm day−1 for the laterals and an inter-root distance of 0.9cm, and
proceeded for 15 simulation days.

RootBox employs a different branching protocol from our simple model above. Rather
than allowing stochastic branching anywhere on the primary root, RootBox allows lateral
branches to emerge at specified intervals along the primary structure. This interval d, and
a value bmax governing the maximum number of allowed lateral branches, are parameters
of the model and we therefore seek posterior distributions on these quantities as well as
the other mechanistic parameters which directly map to those in our simple model.

Fig. B.2 shows the resultant posteriors after applying our inference approach using
RootBox as the core mechanistic model. Once more, the original generative parameters
are well supported by the resulting posteriors, which also agree with the inferred values for
primary and lateral growth rates using our simplified core model above (Fig. B.1). The
inter-lateral distances d, present in RootBox but not above, are also well recovered by the
inference process. The maximum number of branches bmax is not tightly constrained by
the synthetic data, and is therefore shown in the supplementary information (Fig. B.9).

B.2.4 Inferring mechanistic parameters for wildtype Arabidop-
sis thaliana root systems

To test the pipeline on experimental data, we grew Arabidopsis Col-0 plants on vertical
1
2

MS agar plates (see Methods) and used a digital camera to capture their root system
structure over several days. We used SmartRoot image analysis software [Lobet et al.,
2011] to extract the lengths and placements of tap and lateral roots from these digital
images at each sampled timepoint. An example of the digitised data is shown in Fig. B.3.

We applied our ABC SMC framework to estimate the posterior distributions of the
mechanistic parameters underlying the development of these root systems. The earlier
populations of the SMC process gave a diverse range of simulated root structures; by the
final population, the simulation outputs provide excellent visual matches to the observed
experimental structures (Fig. B.3) given the deliberate simplicity of the model. This intu-
itive snapshot matching is supported by the good agreement between the experimentally
observed time series of summary statistics and those arising from simulation with the
final posteriors (Fig. B.4). Here, both the mean and the variability in the experimental
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(a) (b) (c)

(d)

(e) (f)

Figure B.2: Posterior distributions on Arabidopsis thaliana and Lupinus an-
gustifolius roots generated using RootBox. (a) Output from RootBox simulation
of Lupinus angustifolius root growth; black scale bar is 1cm. (b-c) Output posteriors
from an ABC SMC framework run on RootBox output of Lupinus angustifolius, with
final ABC SMC tolerance ε = 0.4 (see Methods). (b) Two-dimensional posterior on pri-
mary root growth rate g and lateral root growth scaling α. (c) Posterior distribution on
branch separation d in the RootBox growth model. (d) Output from RootBox simulation
of Arabidopsis thaliana root growth; black scale bar is 1cm. (e-f) Output posteriors from
an ABC SMC framework run on RootBox output of Arabidopsis thaliana, with final ABC
SMC tolerance ε = 0.4 (see Methods). (e) Two-dimensional posterior on primary root
growth rate g and lateral root growth scaling α. (f) Posterior distribution on branch
separation d in the RootBox growth model.
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(a) (b) (c)

Figure B.3: Example data and simulation output for the root inference frame-
work. (a) Arabidopsis seedlings grown vertically on agar (see Methods) provide example
root systems for the analysis pipeline. (b) Digitisation of the root systems using Smart-
Root [Lobet et al., 2011] provide the quantitative data used in the inference process. (c)
Example outputs from the stochastic growth model with parameters identified through
the ABC SMC inference process. Black scale bar is 1cm.

statistics over time is captured by the distributions of simulated behaviour arising from
the posteriors.

The posterior distributions themselves are shown in Fig. B.5. The primary root
growth rate g is reasonably well constrained, with a mean that intuitively falls around
the total growth average. Notably, the posterior distribution on g is tighter than for the
synthetic data example. This refinement reflects the strength of including time-course
data in the inference platform. Observations of systems at different times provide more
information on dynamic rate parameters, allowing better estimates than are available
from single-instance observations alone.

The scaling of lateral growth rate α has a broader variance, reflecting the greater
variability in average lateral root length observed in the data, and is correlated to some
extent, as expected, with the value of g. The distribution of branching rate b is broader,
reflecting a greater variability in the experimental observation of branch number over
time, and also the stochastic nature of this process: as b reflects the mean rate of a
Poisson process, the same branching structure can be achieved with a variety of different
b values. The modal value of b matches the average branching rate observed in the data.
Overall, therefore, the ABC SMC framework gives reliable and intuitive readouts linked
to both the average observed behaviour and plant-to-plant variability in root structure.

B.2.5 Model selection for root growth and branching mecha-
nisms

We next asked whether our approach could select between competing generative models,
given time course data on the evolution of a root system. To this end, we considered a
range of possible generative mechanisms for root growth and branching. We will employ
uniform priors over competing models, reflecting the fact that before any observations
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(a) (b) (c)

Figure B.4: Summary statistic comparison between data and parameterised
model. Individual line traces in each plot show time series of the summary statistic from
observed Arabidopsis seedlings in Fig. B.3; boxplots give the range of values arising from
stochastic model simulation after parameter values have been learned. (a) Number of
branch points; (b) primary root length; (c) average lateral root length.

(a) (b)

Figure B.5: Posterior distributions on mechanistic parameters for Arabidopsis
seedling roots. Posteriors from our ABC SMC framework run on the data from figure
B.3 with final tolerance ε = 2.5. (a) Posterior distribution on branching rate b. (b) Two-
dimensional posterior on primary root growth rate g and lateral root growth scaling α.
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are made, we have no belief that one mechanism is more likely than another. This prior
belief can of course be arbitrarily changed within our Bayesian framework to reflect prior
information. We then use our ABC SMC framework to identify the posterior support for
each mechanistic model, given the observed data [Toni et al., 2009] (see Methods).

First, we consider different elongation laws for root growth. The first model involves
root growth at a constant rate; the second involves a negative exponential growth law
supported by [Schnepf et al., 2018] of the form

l(t) = lmax
(
1− e−gt/lmax

)
, (B.3)

where l(t) is the length of the root at time t, parameterised by a rate constant g
and scaling constant lmax. The posterior distribution over model index through the SMC
process is shown in Fig. B.6a)-b). The most permissive population (highest ε) shows less
support for the exponential model to ensure model parsimony. As a better fit to the data
is required, the support for the exponential model increases until it overcomes the lower
weightings due to the additional parameter and is preferentially selected.

Next, we explore a more nuanced mechanistic question underlying root architecture.
We compared two models for branch placement positions. First, a uniform branching
model, where the branching location was chosen at random anywhere along the primary
root. Second, a minimally spaced model, which imposed a distance parameter δ around
each existing branch where no further branching could occur. If a branch was attempted
within this distance no branch was implemented and the algorithm continues. Fig. B.6b)-
c) shows the model selection posteriors with decreasing tolerance, and the posterior on δ
when the minimally spaced model was implemented. Here, the posteriors for the spacing
model are lower for the more permissive populations, reflecting the increased model com-
plexity – the extra parameter δ makes the model less parsimonious. The support for the
model increases as a better fit to data is required, in the subsequent populations. By the
final tolerance, the models have comparable support. Hence, the dataset suggests roughly
equal support for both models despite their difference in complexity.

These simple experiments serve to illustrate the ability of ABC SMC to provide statis-
tical support for competing mechanistic hypotheses (for example, linear versus negative-
exponential root elongation laws). There is, however, nothing to prevent other targetted
mechanistic questions being addressed using this framework (see Discussion).

B.2.6 Comparison between root structures

Next, we asked whether the ABC SMC framework could distinguish between two phe-
notypes – those corresponding to wild-type Arabidopsis and the friendly mutant line.
FRIENDLY is a mitochondrial fusion gene that when compromised has a range of bioen-
ergetic effects which lead to reduced root growth [El Zawily et al., 2014].

Wildtype and friendly plants were grown under the same conditions as above (see
Methods), and the inference pipeline was run as before, with exponential growth and
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(a) (b)

(c)

Figure B.6: ABC SMC allows selection of competing mechanistic models for
root growth. (a) Model selection posteriors from comparing a simple, constant-rate
growth model to the negative exponential model used in CRootBox [Schnepf et al., 2018]
for decreasing ABC tolerance ε. The negative exponential model acquires greater support
as the tolerance decreases. (b) Model selection posteriors from comparing a uniform
branching model to a model imposing a minimum separation from existing branches.
The more parsimonious uniform model experiences higher support with relaxed tolerance
but the minimum-separation model gains support with tighter tolerances (tolerances are
higher for this model selection run, reflecting a tradeoff with the greater computational
resource required). (c) Posterior for the minimum branch separation, δ, required when
the minimum spacing model is implemented.
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uniform branching. The output posteriors in Figure B.7 reflect the differing root systems
shown in the tracings, with a clear separation in the parameter space between the two
phenotypes. The branching rate b is fairly unconstrained as observed in section B.2.4 due
to inherent stochasticity in the branching mechanism. The values of g vary significantly
between wildtype and friendly, as reflected in the tracings, with little change in the value
of α. The distribution of g is substantially shifted towards lower values for the friendly
plants, reflecting the known challenge to root growth resulting from this mutation. lmax
shows a wide variability in both phenotypes, while representing clear differences consistent
with the reduced root growth observed in the friendly mutant line. There is very little
constraint in the value of lmax, suggesting little reliance on the value, although smaller
values appear to be favoured for the friendly phenotype.

Taken together, these results demonstrate that the physical parameters governing root
architecture growth can be learned using this ABC SMC approach, and uncertainty in
these learned outcomes quantified. The mechanistic model within our inference process
both allows us to harness time-course data and dissects which parameters change (here,
growth rate g) and which remain similar (here, lateral root scaling α) in different cases.
This is a key strength of this method, and would be difficult to obtain through tradi-
tional parameter inference methods. The platform readily identifies the physical different
mechanisms underlying root architecture in a mutant line, and identifies accepted physical
model structures for root growth.

B.3 Discussion

We have presented a framework for the inference of parameter values and mechanisms in
root growth models when applied to an observed root system. While there has been much
work undertaken producing plant root simulations from given parameters, our approach
addressed the much less-studied ‘inverse problem’: that of finding generative parameter
values and mechanisms that can reproduce a given root system. Knowledge about these
mechanisms and parameters, and their ranges, flexibility, and relative importance, is
necessary for an understanding of root growth processes such as growth and branching
decisions, and how these may relate to biological processes within the plant. We hope
that this highly general approach will allow for a more mechanistic understanding of root
growth, and to quantify the efficacy of existing models.

We first used a very general growth model to (a) retain consistency with the ‘core’ of
the maximum possible number of existing growth models, and (b) focus on parameters
related to the growing plant and its phenotype, rather than the specifics of its physical
embedding. We have demonstrated using RootBox [Leitner et al., 2010] that our approach
can readily be adapted to other specific existing root models to allow the quantification
of values of and uncertainty in generative parameters, furthering understanding of root
system architecture. We also illustrated how alternative hypothesised mechanistic mod-
els can straightforwardly be compared, using SMC model selection. A strength of the
Bayesian embedding here is that the most parsimonious model that is capable of ex-
plaining observations is naturally selected in the case of models with different numbers of
parameters [Toni et al., 2009].
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(b) (c)

(d) (e)

Figure B.7: Distinguishing phenotypes with mechanistic inference. (a) (left)
Wild-type and (right) friendly Arabidopsis seedlings grown in agar as described in section
B.4.1, demonstrating the root growth phenotype of friendly. The tracings were produced
using SmartRoot software [Lobet et al., 2011] and the colours adjusted; black scale bar is
1cm. (b-c) Output posteriors for branching rate b show similar distributions for wildtype
and friendly. (d-e) Two-dimensional posteriors on primary root growth rate g and lateral
root growth scaling α demonstrate clear separation, reflecting the reduced root growth
observed in friendly.
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Advances in imaging techniques are allowing for greater insight into root system archi-
tecture [Roose et al., 2016], and specially designed image analysis software [Lobet et al.,
2013] allows for increasingly efficient data collection from images. The combination of root
models, advanced imaging techniques, image analysis software and an SMC framework
could allow further advances in our understanding of root growth. We anticipate that,
with the increasing developments in root imaging, this technique will find application in
a growing variety of datasets, allowing for investigation of generative parameters for a
wide variety of root system phenotypes. A natural future extension for this work would
be to perform inference based directly on image data, rather than statistics of these data.
This approach would require simulation of the imaging process as well as the generation
of model root systems, for example, embedding the idealised root system in a simulated
soil substrate and simulating the artefacts and noise involved in the imaging process.
While (much) more computationally intensive, this approach would allow a more direct
leveraging of phenotype data from experimental studies.

Notably, our approach allows inference based on time-course measurements of a de-
veloping root system, which increase the power and precision with which parameters and
mechanisms can be identified. As demonstrated with our synthetic examples, this ap-
proach can readily be applied to single-instance observations, but also naturally leverages
dynamic information to refine posterior distributions on physical rate parameters.

A stochastic modelling framework for root growth allows for a wide variety of possible
outputs to be considered in the inference process, reflecting the variation between root
systems in the real world. In this way, the modelling approach allows for investigation
into the underlying mechanisms which are widely applicable, while avoiding a reliance on
specificities and overfitting to a particular phenotype or growth environment. Predicting
a branching event would require the consideration of processes such as genetics, cellular
interactions, and organism-scale resource partitioning [Band et al., 2012], necessitating
the development of a multiscale framework. As such multiscale approaches develop, we
anticipate the use of likelihood-free inference to be further embraced to resolve inverse
problems in parameter identification.

While the generality of our approach is appropriate for the scope of this study, greater
specificity is required to gain a true understanding of plant processes. Care needs to be
taken in the application of ABC techniques: choices must be made over elements such as
the tolerance, priors, and summary statistics to achieve a balance between convergence
rate and specificity of results. As specific choices for these values can be hard to interpret,
simulation outputs must be verified to provide a reasonable match to genuine behaviour
(as we have attempted throughout). We have worked with different models to explore
the behaviour of our method under different generative assumptions. In Bayesian model
selection, prior beliefs about models can strongly affect their support and interpretation
must take this into account [Toni et al., 2009].However, we have aimed to demonstrate
the strength of this approach when carefully applied and interpreted.

Overall, we have demonstrated a technique to allow for greater insight into model
parameters for root systems, which could aid in increasing understanding of root growth
mechanisms. The generalised approach allowed for investigation of the key aspects under-
lying root topology, while being highly adaptable for use with existing root architecture
models.
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B.4 Methods

B.4.1 Plant growth

Arabidopsis Col-0 seeds were sterilised with three 3-minute washing steps in 50% domestic
bleach and water rinses, then plated on 1

2
MS agar in vertical plates. Plants were grown at

constant 25◦C on a 16h light / 8h dark cycle. Plates were photographed over a time course
of 2, 5, 7, and 10 days to produce time-series images of the seedling growth. Summary
statistics were extracted from the images using SmartRoot [Lobet et al., 2011], an imageJ
plugin. The root systems were traced manually using thresholding, producing a skeleton
over the original image. Summary statistics on root length and branch placement were
then recorded from this skeleton.

B.4.2 Model structure

Root growth was simulated using a hybrid stochastic-deterministic algorithm. Primary
root growth, by default, was assumed to follow a negative-exponential growth law:

l(t) = lmax
(
1− e−gt/lmax

)
, (B.4)

parameterised by a rate constant g and a scaling constant lmax. The alternative uniform
growth model simply took the form l(t) = gt. Lateral roots grow according to the same
growth law as the primary root, but with a multiplicative factor α applied to g so that
for lateral roots gl = αg.

Branching was treated as a Poisson event with rate parameter b. The time until
the next branching event is found using the Gillespie algorithm [Gillespie, 1977], and
the length of existing branches is updated from the current time until the time of the
branching event. The branching location was then determined by a specified branching
model, initially specified as a uniform probability distribution along the length of the
primary root. In visualising structures, branching angle was always set to an angle of 45◦

from the growth direction, with equal change of being placed each side of the primary
root, although these angles and positions play no role in the simulation. These steps
are repeated until the time of the next branch exceeds the maximum simulation time, at
which point the branch lengths are updated up to the maximum simulation time, and
no branching event occurs. Once a branching event has occurred, the sidebranch grows
according to the same growth law as the main root, scaled by parameter α; variability in
lateral root length thus corresponds to variability in initial branching times and positions.

B.4.3 ABC SMC implementation

An ABC framework was implemented in Matlab. Model parameters were drawn from
specified distributions and passed to the model as described in Model Structure above.
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Broadly, the simulated root systems are then compared to data, and the parameter values
accepted if the simulation is sufficiently close to the data, with tolerance ε defined at the
time of implementation. If the previous values were accepted, the parameter values are
perturbed with a perturbation kernel Kt. If the previous values were not accepted, the
parameter values were drawn from the priors as previously described. This process was
repeated until 1000 hits were obtained at the specified tolerance.

We follow Ref. [Toni et al., 2009] in our ABC SMC implementation. For complete-
ness, Algorithm 1 introduces a simple rejection sampling scheme under ABC. Algorithm
2 embeds this scheme in an SMC framework for parameter inference and model selection.

Algorithm 1. ABC rejection sampling for parameter inference.

1. Given Np plant structures and Nt(i) longitudinal observations for plant i, charac-

terise the summary statistics dij = {B,L, l̂} from every plant i and observation j in
the dataset.

2. Draw a trial set of parameters θ∗ from the prior distribution π(θ).
3. Simulate Np instances of root growth, recording the state of structure i at each of

the Nt(i) time points corresponding to an experimental observation.
4. Compute ρ using Eqn. B.2 above, to give the separation between each recorded

structure and its simulated counterpart.
5. If ρ < ε, where ε is a given tolerance, accept θ∗ as a sample from the posterior.
6. If a termination condition is not met, return to 2.

Algorithm 2. ABC SMC for parameter inference and model selection.

1. Given Np plant structures and Nt(i) longitudinal observations for plant i, charac-

terise the summary statistics dij = {B,L, l̂} from every plant i and observation j in
the dataset.

2. Initialise tolerance vector E containing T elements. Set population indicator t = 0.
3. Set particle indicator i = 1.
4. Sample model indicator m∗ from prior π(m).
5. If t = 0, sample θ∗∗ from π(θ(m∗)). If t > 0, sample θ∗ from the previous population
{θ(m∗)t−1} with weights w(m∗)t−1, and set θ∗∗ ∼ Kt(θ|θ∗).

6. If π(θ∗∗) = 0, go to 4.
7. Simulate Np instances of root growth using θ∗∗, recording the state of structure i at

each of the Nt(i) time points corresponding to an experimental observation.
8. Compute ρ using Eqn. B.2 above.
9. If ρ ≥ E[t], go to 4.

10. Set m
(i)
t = m∗ and add θ∗∗ to the population {θ(m∗)t}. If t = 0, set weights w

(i)
t = 0,

otherwise

w
(i)
t =

π(θ∗∗)∑N
j=1w

(j)
t−1Kt(θ

(j)
t−1, θ

∗∗)
. (B.5)

If i < N , set i = i+ 1, go to 4.
11. For every m, normalise the weights. If t < T , set t = t+ 1, go to 3.
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For a single model, the prior π(m) associated with that model is unity and the choice
of model indicator m∗ plays no role in the inference process.

We used uniform priors over all model structures for π(m) and uniform priors between
0-1.4 day−1 for g, 0-1.4 day−1 for b, 0-1 for α and 5-40cm for lmax. The perturbation
kernel we used was Kt ∼ N(0, 0.1P ), where P is the width of the uniform prior. The
tolerance vector was E = ε{5, 3, 2, 1.5, 1}.
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B.8 Appendix

Figures B.8 and B.9 show posteriors on lmax and bmax omitted from the main text.

(a) (b) (c)

Figure B.8: Posteriors on lmax for Arabidopsis wild-type seedlings (a) from the initial
pipeline described in section B.2.4, and the wildtype (b) and friendly (c) comparison
from section B.2.6.

(a) (b)

Figure B.9: Posterior distributions on bmax for a) Arabidopsis thaliana and b) Lupinus
angustifolius roots generated using RootBox.

B.9 Supplementary Information

Figures B.10 and B.11 show posteriors on lmax and bmax omitted from the main text.
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(a) (b) (c)

Figure B.10: Posteriors on lmax for Arabidopsis wild-type seedlings (a) from the initial
pipeline described in section 2.4, and the wildtype (b) and friendly (c) comparison from
section 2.6.

(a) (b)

Figure B.11: Posterior distributions on bmax for a) Arabidopsis thaliana and b) Lupinus
angustifolius roots generated using RootBox.
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