The Molecular Genetic Investigation of Paediatric Liver Disease

by

Jane Louise Hartley

A thesis submitted to The University of Birmingham For the degree of Doctor of Philosophy

Section of Medical and Molecular Genetics Division of Reproductive and Child Health School of Clinical and Experimental Medicine The University of Birmingham March 2010

UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

Abstract

Liver disease in children is rare but often serious, life long, and in many cases leads to death. Advances in diagnosing and treating liver disease (including liver transplant) have improved the outlook for children in many cases however little is known about the molecular pathogenesis of the disease, an understanding of which may identify specific therapeutic options. The aim of this thesis is to investigate the molecular genetics of rare liver disorders as the first step in advancing the understanding of liver disease pathogenesis. As a paediatric hepatologist I have identified cohorts of children in whom there is paucity of knowledge about the disease pathogenesis. I have studied three conditions in detail to encompass different clinical presentations. Chapter 3 summarises the investigation of the multisystem disorder, phenotypic diarrhoea of infancy (PDI), which causes cirrhosis or liver failure. Autozygosity mapping was used to identify the gene TTC37 in which mutations are associated with the PDI disease phenotype. Further work is now required to characterise TTC37, and use knockdown studies to identify whether TTC37 mutations are causative of the PDI phenotype. Chapter 4 describes the molecular genetic investigation of Jeune asphyxiating thoracic dystrophy (JATD), a chondrodysplasia with extra skeletal manifestations including hepatic ductal plate malformation and renal cyst development. Using autozygosity mapping, IFT80 was identified in which mutations are associated with the JATD disease phenotype in 4% of cases. The diverse clinical phenotype of JATD limits the utility of autozygosity mapping as it suggests there is genetic heterogeneity. The identification of IFT80 has led to JATD being classified as a ciliopathy. Chapter 5 is the first description of neonatal liver failure to be associated with variants in *ABCB11* which previously have only been associated with chronic liver disease and liver disease in pregnancy.

This thesis has described the identification of the molecular genetic basis of rare causes of paediatric liver disease which has provoked many additional research questions. Future work will be to extend our knowledge of molecular genetics to all aspects of paediatric liver physiology so to classify disease according to the molecular pathogenesis such as a ciliopathy or bile salt transport defect.

Acknowledgments

I am indebted to my supervisors Professor Eamonn Maher and Professor Deirdre Kelly for giving me the opportunity to do this PhD and for all the invaluable advice, encouragement and support whilst working on this project and the writing of this thesis. I would also like to thank Dr Paul Gissen for all his advice, support and continuing involvement in my projects. Many colleagues in the department have given me support and advice during the course of this work. I would particularly like to thank all members of the BWH research lab for their friendship and support. Specifically I would like to thank Dr Neil Morgan, Dr Esther Meyer and Louise Tee for teaching me the practical techniques that I have needed to complete this project and for their patience in explaining molecular genetics to a clinician.

Thanks also to the members of the diagnostic DNA laboratory for use of their equipment and numerous DNA extractions carried out over the years. Thanks also to Dr Alex Knisely who carried out the immunohistochemical investigations which allowed for greater understanding of the molecular genetic findings in chapter 5.

I also thank all the clinicians around the world that have provided samples and details of patients. Particular thanks are due to the various patients and their families for their participation in these studies some of whom I will continue to see as a clinician. For involvement with the families and sample collection I would like to thank Shanaz Pasha and Rachel Gould.

Finally I would like to give special thanks to my husband Martin, for his extreme patience and support during the writing of this thesis, and also to my parents who have always made me believe I can achieve anything I put my mind to.

Contents

Title Page	
Abstract	2
Acknowedgments	4
Contents	5
List of figures	14
List of tables	18
Preface	21
Abbreviations	22

Chap	oter 1	Introduction	30
1.1	Intro	luction to molecular genetics	32
	1.1.1	History of molecular genetics	32
	1.1.2	Autosomal recessive inheritance	33
	1.1.3	Gene identification using autozygosity mapping	37
	1.1.4	Limitations of autozygosity mapping	41
1.2	The li	ver	42
	1.2.1	Embryologyof the liver	43
	1.2.2	Physiology of the liver	45
1.3	Thesis	s philosophy	63

Chapter 2		Methods and materials	66
2.1	Subje	cts	67
	2.1.1	Phenotypic diarrhoea of infancy	67
	2.1.2	Jeunes Asphyxiating thoracic dystrophy	69
	2.1.3	Biliary atresia	69
	2.1.4	Neonatal liver failure	69
	2.1.5	Control samples	70
2.2	Ethica	al approval	70
2.3	Mater	rials and methods	71
	2.3.1	Extraction of DNA	71
	2.3.2	Extraction of RNA	74
	2.3.3	Conversion of RNA to cDNA	74
	2.3.4	Whole genome amplification	75
	2.3.5	Polymerase chain reaction	76
	2.3.6	Gel electrophoresis	81
	2.3.7	Microsatellite markers	82
	2.3.8	LOD scores	83
	2.3.9	Single nucleotide polymorphism genomewide scan	84
	2.3.10	Sequencing of genes	84
	2.3.11	Western blotting	89

Chaj		identification of the causative gene for phenotypic	
		diarrhoea of infancy	95
3.1	An ov	erview of inherited congenital diarrhoea and hepatic involveme	nt
	3.1.1	Inherited diarrhoea presenting in infancy	96
	3.1.2	Hepatic involvement in congenital diarrhoea	102
3.2	A liter	ature review of phenotypic diarrhoea of infancy and the report	ed
	clinica	ll features	104
	3.2.1	Introduction	104
	3.2.2	Stankler et al, 1982	105
	3.2.3	Girault et al, 1994	106
	3.2.4	Verloes et al, 1997	106
	3.2.5	Goulet et al, 1997	107
	3.2.6	de Vries <i>et al</i> , 2000	107
	3.2.7	Landers and Schroeder, 2003	108
	3.2.8	Teitelbaum et al, 2004	109
	3.2.9	Barabino et al, 2004	109
	3.2.10	Martinez-Vinson et al, 2005	110
	3.2.11	Dweikat et al, 2007	110
	3.2.12	Fabre et al, 2007	110
	3.2.13	Egritas et al, 2009	111
	3.2.14	Fabre et al, 2009	111
	3.2.15	Summary of published clinical features of PDI	111

Chapter 3 Identification of the causative gene for phenotypic

3.3	Clinic	al features of a	a novel PDI cohort	120
	3.3.1	Introduction		120
	3.3.2	Family pedig	rees and clinical features	121
	3.3.3	Hair in PDI		132
		3.3.3.1	Normal hair	132
		3.3.3.2	Trichorrexis nodosa	134
		3.3.3.3	Amino acid composition of hair from PDI patients	139
	3.3.4	Investigation	of platelet structure and function	141
		3.3.4.1	Morphology of platelets from PDI patients	143
		3.3.4.2	Investigation of platelet alpha granules	145
	3.3.5	Summary		149
3.4	The ic	lentification of	f a genetic locus for PDI using autozygosity mapp	ing
	3.4.1	Chapter overv	view	150
	3.4.2	Linkage to Al	RC syndrome locus	151
	3.4.3	Single nucleo	tide polymorphism genomewide scans	153
	3.4.4	Microsatellite	markers	156
	3.4.5	Summary of c	chapter	166
3.5	Gene	expression mi	croarray analysis of PDI patients	167
	3.5.1	Data analysis		169
	3.5.2	Summary of r	results	171
3.6	Direct	t sequencing of	f genes within the PDI locus	172
	3.6.1	Chapter overv	view	172
	3.6.2	Investigation	of genes in region 1	173

	3.6.3	Investigation of genes in region 2	180
	3.6.4	Summary of chapter	184
3.7	Muta	tion identification in <i>TTC37</i>	185
	3.7.1	Chapter overview	185
	3.7.2	TTC37 sequencing results	185
	3.7.3	Summary of results	203
3.8	in sili	co analysis of TTC37	206
	3.8.1	Gene position and structure	206
	3.8.2	Known polymorphisms within the coding region	207
	3.8.3	Conservation through species	207
	3.8.4	Tetratricopeptide repeat domains	208
	3.8.5	Diseases involving tetratricopeptide repeat domain	
		containing genes	209
	3.8.6	Chapter summary	211
3.9	Furth	er investigation of TTC37	212
	3.9.1	Immunohistochemical method for jejuna specimens	212
	3.9.2	Immunohistochemical method for liver specimens	213
	3.9.3	Protein expression results	214
	3.9.4	NHE2 and NHE3	216
	3.9.5	Summary of investigations	217
	3.9.6	Future direction	217

Chapter 4		Ciliopathies and the liver	219
4.1	Intro	luction to primary cilia	220
	4.1.1	Structure of primary cilia	221
	4.1.2	Intraflagellar transport system	223
	4.1.3	Function of cilia	225
	4.1.4	Diseases of motile cilia	225
	4.1.5	Diseases of primary cilia	225
4.2	Jeune	's asphyxiating thoracic dystrophy clinical features	226
	4.2.1	JATD study cohort	228
	4.2.2	Summary of the clinical features of the JATD study cohort	231
4.3	Identi	fication of <i>IFT80</i> as a causative gene for JATD	231
	4.3.1	Background molecular genetic investigation for JATD	231
	4.3.2	Candidate gene selection for chromosome 9 region	232
	4.3.3	Results from sequencing of candidate genes	233
	4.3.4	IFT80 mutations cause JATD	234
	4.3.5	Discussion of results	235
4.4	Invest	igating for other genes resulting in the JATD phenotype	236
	4.4.1	Homozygous regions identified by 250K SNP GWS	237
	4.4.2	Cilial genes identified within the regions of homozygosity	240
	4.4.3	Genes which form the IFT complex B	241
	4.4.4	JATD research in progress	248

4.5	Liver	involvement in ciliopathies	249
	4.5.1	Cilia of cholangiocytes	252
	4.5.2	Predicting ciliopathies	253
4.6	The in	vestigation of cilia in the pathogenesis of biliary atresia	255
	4.6.1	The description of renal cysts in children with biliary atresia	255
	4.6.2	The detection of fibrocystin by immunohistochemistry	257
	4.6.3	PKHD1 sequencing in children with biliary atresia and renal cysts	258
	4.6.4	The investigation of nasal cilia	259
	4.6.5	Summary of results	260

Chapter 5 A novel phenotype of canalicular bile salt transport 261 disorders

5.1	Intro	Introduction to the molecular genetics of canalicular bile salt transport		
	disord	lers	262	
	5.1.1	History	262	
	5.1.2	Nomenclature	262	
	5.1.3	ATP8B1	264	
	5.1.4	ABCB11	265	
	5.1.5	ABCB4	266	
	5.1.6	Farnesoid X receptor	266	

5.2	Clinic	cal phenotypes of canalicular bile salt transport disorders	266
	5.2.1	Progressive familial intrahepatic cholestasis	266
	5.2.2	Benign recurrent intrahepatic cholestasis	269
	5.2.3	Intrahepatic cholestasis of pregnancy	269
	5.2.4	Low yGT cholestasis	272
		5.2.4.1 PFIC1, 2, BRIC and ICP	272
		5.2.4.2 ARC syndrome	272
		5.2.4.3 Bile acid synthesis disorders	273
5.3	Neona	atal liver failure: a novel phenotype of canalicular bile salt tr	ransport
	disore	lers	274
	5.3.1	Introduction to neonatal liver failure	274
	5.3.2	Cohort of neonatal liver failure	277
5.4	Molec	cular investigation of low γGT neonatal liver failure	282
	5.4.1	Sequencing of ABCB11	282
	5.4.2	Immunohistochemical staining of liver biopsies	288
5.5	Discu	ssion of results	289
	5.5.1	Conclusion	292
Chaj	pter 6	Conclusion	293
Cha	pter 7	References	296

Chapter 8 Appendices

8.1	Examples of the proformas used to ascertain clinical details of patients		
	referred from collaborators	327	
8.2	Microsatellite primers	331	
8.3	Oligonucleotide primers for sequencing	335	
8.4	The nucleotide and amino acid sequence of TTC37	365	
8.4	Published papers and abstracts of work contributing to this thesis	371	

List of figures

Figure 1.1.1	Shows the percentage number of consanguineous marriages throughout	
	the world	36
Figure 1.2.1	Pie charts demonstrating the different aetiology of liver disease in	adults
	as compared to children	42
Figure 1.2.2	A diagram of the regulation of CYP7A1	49
Figure 1.2.3	A schematic drawing of the apical membrane transport proteins of	fbile
	salts	50
Figure 1.2.4	A schematic diagram demonstrating the transport proteins which e	efflux
	bile from the hepatocyte across the basolateral membrane into the	
	sinusoids	52
Figure 1.2.5	A schematic drawing of transport proteins at the basolateral memb	orane of
	the hepatocyte	54
Figure 3.3.1	A schematic diagram showing a normal hair shaft	133
Figure 3.3.2	Shows a hair shaft from patient 13C with typical findings of triche	orrhexis
	nodosa which looks as if two paint brush ends are being pushed to	gether
	as the cortex extrudes through the broken cuticle	134
Figure 3.3.3	A schematic drawing of the normal morphology of a platelet	141
Figure 3.3.4	Shows the transmission electron micrographs of a representative n	ormal
	platelet (A) and of platelets from 3 different PDI patients (B-D)	144
Figure 3.3.5	The aggregation of platelets in the control sample and patient 4C i	n
	response to PAR, ADP and collagen	146

Figure 3.3.6	6 Shows the normal secretion from dense granules from the control	
	patient 4C	147
Figure 3.3.7	The abnormal release of CD62P from the alpha granules of patien	t 4C as
	compared to control	148
Figure 3.6.1	A schematic drawing of the relationship of the RNA expression at	nalysis
	oligo probe to the applied cDNA	168
Figure 3.7.1	A chromatogram showing the segregation within family 1 of the b	base
	change TGG->TGA (stop)	186
Figure 3.7.2	The conservation of amino acid 936 of TTC37 in other species	186
Figure 3.7.3	A chromatogram showing the splice site mutation segregating wit	hin
	family 3	187
Figure 3.7.4	The RT-PCR products for patients 3C and 5C are smaller suggest	ing
	truncation of the protein secondary to the mutations	188
Figure 3.7.5	The chromatograms of the cDNA PCR product of 3C. The splice	site
	mutation in 3C causes skipping of exon 29	189
Figure 3.7.6	Shows wild type cDNA transcript with codons shown in alternation	ng
	colours followed by the cDNA transcript for 3C highlighting that	skipping
	of exon 29 causes the formation of a premature stop codon on exc	on 30 and
	therefore truncation of the protein	190
Figure 3.7.7	Shows the chromatogram for family 4 with segregation of the spli	ce site
	mutation	191

Figure 3.7.8	RT PCR using primers in exons 15 and 19 on gel electrophoresis showed	
	smaller band for 4C as compared with the wild type and other affect	cteds
	with different mutations	192
Figure 3.7.9	RT PCR of 3 different RNA samples for 4C to ensure the findings	were
	not due to contamination	193
Figure 3.7.10	Sequencing of the RT PCR product identified skipping of exon 17	due to
	the splice site mutation	193
Figure 3.7.11	The chromatogram of family 5 showing segregation of the splice s	ite
	mutation	194
Figure 3.7.12	Sequencing of the RT PCR for 5C confirms the skipping	
	of exon 29	195
Figure 3.7.13	A chromatogram of family 6 showing segregation of the splice site	;
	mutation	196
Figure 3.7.14	The splice site prediction was investigated using RT PCR and show	ved a
	smaller PCR product for 6C as compared to other affecteds with di	fferent
	mutations and control samples	197
Figure 3.7.15	Sequencing of the RT PCR fragment shows that exon 10	
	is not expressed	197
Figure 3.7.16	Show the chromatogram for patient 7C and a control as extended f	amily
	DNA was not available	198
Figure 3.7.17	Shows conservation between species of the amino acid 1505	200
Figure 3.7.18	Chromatograms showing the segregation of the two mutations CA.	A-
	>TAA and CAG->TAG within family 11	201

a

Figure 3.7.19	Shows conservation of the amino acid D1283N in other species	202
Figure 3.7.20	The chromatograms for family 14 showing appropriate segregation	n of
	p.Trp936X	203
Figure 3.8.1	Shows the relationship of TTC37 to other genes in the region as se	en in
	Ensembl	206
Figure 3.9.1	Immunofluorescence of villin, NHE2 and NHE3 expression in jeju	unal
	samples of patient 3C compared with age matched control sample	s 215
Figure 4.1.1	Is a schematic diagram of a cross sectional view of a cilium	221
Figure 4.1.2	Shows a schematic drawing of a cilium projecting from	
	the cell body	222
Figure 4.1.3.	Diagram of the components of Complex B	224
Figure 4.2.1	The skeletal features of JATD	227
Figure 4.3.1	Electropherograms of mutations in IFT80 in proband C1	
	and family	234
Figure 4.4.1	This is a Western blot of 4 JATD patient cells and 3 control cells l	abelled
	using an antibody against cenexin	247
Figure 4.5.1	This is a diagram of the formation of the ductal plate in the normal state	
	and when there is a ductal plate malformation.	250
Figure 4.5.2	The cartoon shows a working model for the sensory functions of p	orimary
	cilia	253
Figure 5.4.1	The pedigrees and electropherogram results for all the probands	283
Figure 5.4.2	This topology model of BSEP	288
Figure 5.4.3	The results of immunhistochemistry staining	289

List of tables

Table 1.2.1	Provides a list of clinical conditions in which intrahepatic cholestasis	
	presenting at any age is a dominant feature and a genetic defect ha	s been
	identified	56
Table 1.2.2	A table of coagulation factors made by the liver	60
Table 3.2.1	Part a: the demographics, birth details, facial and hair findings and	
	intestinal histology of published cases	114
Table 3.2.1	Part b: the hair histology, development, cardiac abnormalities, pan	creas
	and liver histology of published cases	116
Table 3.2.1	Part c: the abnormal iron distribution, the immunodeficiency and t	he age
	and cause of death in published cases	118
Table 3.3.1	Is a tabulated summary of the clinical features in this cohort of PD	Ι
	patients	131
Table 3.3.2	Conditions in which trichorrhexis nodosa is a feature	135
Table 3.3.3	The amino acid composition of PDI hair. For each amino acid ther	e a four
	bars shown. Normal hair composition is bar 1, trichothiodystrophy	' is
	shown in bar 2 and the amino acid composition of patients 3C and	4C are
	shown in bars 3 and 4	140
Table 3.4.1	A table showing the results of microsatellite markers at the ARC	
	syndrome locus in 5 consanguineous probands with PDI	152
Table 3.4.2	Shows the extent of allele homozygosity in individual consanguine	eous
	probands, which overlap so forming a common region of shared	
	homozygosity in chromosome 5	155

Table 3.4.3	Shows the microsatellite marker allele sizes for the region on chromosome	
	19 in all consanguineous PDI families	157
Table 3.4.4	Shows the microsatellite marker allele size in all consanguineous	families
	for the chromosome 5 region	159
Table 3.4.5	Is a table of the microsatellite marker sizes of chromosome 5 in th	ose
	families who originate from Pakistan	161
Table 3.4.6	Shows the LOD scores for markers and between markers for the c	ohort
	originating from Pakistani	163
Table 3.4.7	Shows the microsatellite marker sizes for chromosome 16	165
Table 3.5.1	A table showing the ranking of the first 16 PDI gene expression ag	gainst
	differing combinations of unrelated conditions	170
Table 3.6.1	A summary of the type of genes within region 1	173
Table 3.6.2	A summary of the sequence changes found within the	
	genes of region 1	178
Table 3.6.3	A summary of the gene types in region 2	181
Table 3.6.4	Summary of sequence changes identified in genes in region 2	182
Table 3.7.1	Provides a summary of mutations detected in TTC37	205
Table 4.2.1	The clinical features of those with JATD from consanguineous	
	union	229
Table 4.2.2	The clinical features of JATD who are from non consanguineous	
	Families	230
Table 4.4.1	Shows the regions of homozygosity for proband C6 which are gre	ater than
	1 Mb in length	238

Table 4.4.2	This table shows the regions of homozygosity shared by each Leb	anese
	sibling pair that are greater in size than 1Mb	239
Table 4.4.3	This table shows the complex B genes and the corresponding area	s of
	homozygosity identified from the 250K SNPs	241
Table 4.4.4	Shows the results of microsatellite markers in the regions of the co	omplex
	B genes in those probands who were homozygous in these regions	\$ 243
Table 4.4.5	Shows the results of microsatellite markers for two related Bangla	deshi
	families in the regions of the complex B genes of interest	244
Table 4.4.6	Gives a summary of those probands that link or can not	
	be excluded	245
Table 4.5.1	Gives a list of the ciliopathies which are associated with DPM's	251
Table 5.1.1	The nomenclature of bile salt transport defects which can be class	ified by
	name, gene, protein deficit or γGT	263
Table 5.3.1	The differential diagnosis of neonatal liver failure	275
Table 5.3.2	The liver histological features of all probands and	
	the mother of proband 2	281
Table 5.4.1	Shows a summary of the sequencing results	287

Preface

Papers and abstracts which have been published or are under peer review which are derived from work contributing to this thesis.

- Mutations in *TTC37* cause tricohepatoenteric syndrome (phenotypic diarrhoea of infancy). Gastroenterology 2010;138:2388–2398
- Clinical phenotype and autozygosity mapping of phenotypic diarrhoea of infancy.
 British Society of Human Genetics 2006. Poster presentation
- Clinical phenotype and autozygosity mapping of phenotypic diarrhoea of infancy.
 American Society of Human Genetics 2006. Poster Presentation
- IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ. Nat Genet. 2007 Jun;39(6):727-9. Epub 2007 Apr 29.
- The identification of renal cysts may implicate primary cilia in the aetiology of biliary atresia. Accepted for publication in JPGN August 2010
- The c.1331C>T / p.V444A *ABCB11* variant in severe intrahepatic cholestasis. American Association for the Study of Liver Disease 2008. Poster presentation.

Abbreviations

А	adenine
А	alanine
A ₁ AT	alpha 1 antitrypsin
ABC	ATP-binding cassette
AD	autosomal dominant
ADP	Adenosine diphosphate
ADPLD	autosomal dominant polycystic liver disease
ALT	alanine aminotransferase
AR	autosomal recessive
ARC	arthrogryposis-renal dysfunction-cholestasis syndrome
ARPKD	autosomal recessive polycystic kidney disease
ASBT	apical sodium-dependent bile acid transporter
AST	aspartate aminotransferase
ATP	adenosine triphosphate
BA	biliary atresia
BASD	bile acid synthetic defect
BBS	Bardet Beild syndrome
BLAST	Basic local alignment search tool
BLAT	Basic local alignment tool
Вр	base pair
BRIC	benign recurrent intrahepatic cholestasis
BSA	bovine serum albumin

BSEP	bile salt export pump
С	cytosine
cAMP	Cyclic adenosine monophosphate
cDNA	complementary DNA
CEP290	Centrosomal protein of 290 kDa
CFTR	cystic fibrosis transmembrane regulator
cGFR	calculated glomerular filtration rate
CGD	carbohydrate deficient glycoprotein
CI	calcineurin inhibitor
CIS	cryptogenic infantile spasms
cM	Centimorgan
CMV	cytomegalovirus
COACH	cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic
	fibrosis
CSD	congenital sodium diarrhoea
CTG	cardiotocography
CT scan	computerised tomography
CTX	cerebrotendinous xanthomatosis
Cu^{2+}	copper
°C	degrees centigrade
del	deletion
DHPLC	denaturing high-performance liquid chromatography
dH ₂ O	distilled water

DNA	dioxyribonucleic acid
dNTP's	Deoxyribonucleotide triphosphate's
DPM	ductal plate malformation
EVC	Allis van Creveld
FACS	Fluorescence-activated cell sorting
FGF	fibroblast growth factor
FHC	familial hypercholesterolaemia
FIC-1	Familial intrahepatic cholestasis 1
FITC	flourescein isothiocyanate
FXR	Farnesoid nuclear receptor
g	grams
G	guanine
GFC	Greenland familial cholestasis
GFR	glomerular filtration rate
γGT	gamma-glutamyl transpeptidase
GWS	genomewide scan
Н	hydrogen ion
HCO ₃	Bicarbonate
HEK 293	human embryonic kidney 293
Hox	homeobox
HSV	herpes simplex virus
ICP	intrahepatic cholestasis of pregnancy
IFALD	intestinal failure associated liver disease

IFT	intraflagellar transport
IgG	immunoglobulin G
IgM	immunoglobulin M
IMCD3	intramedullary collecting duct 3
IPEX	immune dysregulation-polyendocrinopathy-enteropathy, X-linked
ISBT	ileal sodium-dependent bile salt transporter
IU	international units
JATD	Jeune asphyxiating thoracic dystrophy
K	potassium
Kb	kilobase
Kd	kilodalton
L	litre
LOD	logarithm of odds
LREC	local research ethics committee
М	Moles
MAS	MaCune Albright Syndrome
Mb	Megabases
MDR	Multidrug resistence protein
MgCl	Magnesium chloride
μg	micrograms
ml	millilitres
μΙ	microlitres
µmol/mmol	micromole

mmol	millimole
MOAT	multiorganic anion transporter
MOI	mode of inheritance
MRI	magnetic resonance imaging
mRNA	messenger RNA
MRP	multidrug resistence associated protein
MRST	mental retardation, spasticity, tapetoretinal degeneration
MVID	microvillus inclusion disease
Na	sodium
NADPH	nicotinamide adenine dinucleotide phosphate-oxidase
NASH	non alcoholic steatohepatitis
NCBI	National Center for Biotechnology Information
NaCl	sodium cholride
NAICC	North American Indian Childhood cirrhosis
NAMR	National autozygosity mapping
NICCD	neonatal intrahepatic cholestasis caused by citrin deficiency
NHE	sodium hydrogen exchanger
NISCH	neonatal sclerosing cholangitis
NTCP	sodium- taurocholate cotransporter polypeptide
OATP	organic anion transporting polypeptide
OCS	open canalicular system
OLT	orthotopic liver transplant
OMIM	Online mendelian inheritance in man

OST	organic solute transporter
PBC	primary biliary cirrhosis
PBS	phosphate buffered saline
PBST	phosphate buffered saline with tween
PCD	primary cilial dyskinesia
PCR	polymerase chain reaction
PDGF	platelet derived growth factor
PDI	phenotypic diarrhoea of infancy
PFIC	progressive familial intrahepatic cholestasis
рН	power of hydrogen
PN	parenteral nutrition
PRP	plateley rich plasma
PS	phosphatidylserine
PSC	primary sclerosing cholangitis
PSIC	position specific independent count
РТ	prothrombin
Rev	revolutions
RNA	Ribonucleic acid
RT	Rothmond Thompson syndrome
RT PCR	reverse transcriptase polymerase chain reaction
RTS	Rothmund Thompson syndrome
RXR	retinoid nuclear receptor
SGPT	Serum glutamic pyruvic transaminase

SHP	short heterodimer partner
SiRNA	short interfering RNA
SLE	systemic lupus erythematosis
SNARE	Soluble NSF Attachment
SNP	single nucleotide polymorphism
Т	thymine
TAP	Tandem Affinity Purification
TBE	Tris/Borate/EDTA
TBS	Tris-Buffered Saline
TEM	transmission electron microscopy
TEMED	Tetramethylethylenediamine
THE	tricohepatoenteric syndrome
TN	trichorrhexis nodosa
TPR	tetratrichopeptide repeat
TTC37	tetratricopeptide repeat domain 37
TTD	trichothiodystrophy
TTV	transfusion transmissible virus
TXA	Tranexamic acid
UCSC	University California, Santa Cruz
V	valine
VGEF	vascular endothelial growth factor
vWF	Von Willebrand factor
2-D	two dimensional

Wnt wingless

WT wild type

Chapter 1

Introduction

Contents

- 1.1 Introduction to molecular genetics
- 1.2 The liver
- 1.3 Thesis philosophy

"nor is there any better way to advance the proper practice of medicine than to give our minds to the discovery of the usual law of nature by the careful investigation of cases of

rarer forms of disease"

Dr William Harvey, 1657

This chapter provides an introduction to molecular genetics and to liver embryology and physiology.

The introduction to molecular genetics commences with a history of the past 144 years from the first description of genetic traits in peas by Gregor Mendel, to the Human Genome Project and now the recognition that in diseases previously thought to be environmental there may also be a genetic susceptibility.

I have studied rare paediatric liver diseases which are inherited in an autosomal recessive manor. Studying this form of inheritance in those from consanguineous union provides a large amount of genetic information which can be utilised to identify mutations in genes which are associated with disease. A description of the technique of autozygosity mapping and its limitations is provided in this introduction as it is a technique I have used throughout this thesis. Other molecular genetic techniques which are used on single occasions are described within the relevant chapters.

The liver is a complex organ with many functions many of which are not fully understood. This introduction provides firstly a description of the embryology concentrating on bile duct development which is pertinent to the understanding of ductal

plate malformations described in chapter 4. Thereafter I have concentrated on the physiology of the liver with emphasis on bile transport which is relevant to all chapters, in particular to chapter 5.

The introduction provided here is a general overview applicable to all chapters. As I have studied three diverse disorders affecting the liver a more detailed introduction is provided at the beginning of each chapter. Hence, chapter 3 introduction provides detail on inherited causes of intractable diarrhoea, chapter 4 provides an introduction to primary cilial structure and ciliopathies, and chapter 5 introduces the diseases associated with bile salt transport defects.

At the end of this chapter is the philosophy underpinning the thesis is discussed and poses the question 'why study the molecular genetic investigate of paediatric liver disease?'

1.1 Introduction to molecular genetics

1.1.1 History of molecular genetics

In 1866 Gregor Mendel published his work on pea plants describing specific traits which had been inherited from the previous generation of peas so providing the first description of the inheritance of specific discrete genetic material which he termed alleles. The earliest description of the autosomal recessive inheritance of human disease was in alkaptonuria in 1905 by Garrod (Garrod & Hele, 1905) where the term inborn error of metabolism was coined.

DNA was first identified in 1869 by Miescher who described nuclei acid in pus from open wounds. In the 1920's DNA was found to be a major component of chromosomes.

Each chromosome was thought to be composed of one polymer unit until the 1950's when the composition of chromosomes was found to differ depending on source. In 1953 Watson and Crick determined the detailed double stranded DNA structure of chromosomes and described the replication of DNA through the formation of complementary strands and the manufacture of proteins from specific genes (Watson and Crick, 1953).

In the 1970's regulator genes were identified and in 1984 Hox genes which regulate limb development were described (Hogrefe, 1984).

In 2001 the Human Genome Project presented preliminary results of an accurate chemical map of the genome and showed that only about 1% of nucleotides within the genome are transcribed and they reside in approximately 30,000 genes (Venter *et al*, 2001).

The transcript of the sequence of the human genome is a major factor in facilitating the identification of disease genes by allowing specific targeting of genetic regions. The concept of genetic inheritance has expanded from classical inheritance patterns within families to population genetics in which features previously thought to be environmental are found to be associated with specific genetic variants within the genome. These variants may directly cause the trait or confer susceptibility. For example high blood pressure or the development of type 2 diabetes (Smushkin and Vella, 2010).

1.1.2 Autosomal recessive inheritance

Autosomal recessive disorders represent an important cause of morbidity and mortality, particularly within the paediatric age range. As many of the conditions are either lethal in

utero e.g. Meckel Gruber syndrome (Salonen and Norio, 1984); lethal in early childhood e.g. JATD (Turkel et al, 1985); cause developmental delay e.g. Niemann Pick C disease (Garver *et al*, 2007); or become clinically apparent during childhood e.g. cystic fibrosis (Sing *et al*, 1982). Most people have a number of autosomal recessive mutations which affect a single allele and therefore are not disease causing (the disease occurs when both alleles are mutated). An offspring of the carrier parent will only be affected if the other parent is also a carrier and both carrier alleles are inherited i.e. there is a 1 in 4 chance of a child being affected when both parents are carriers. Most mutations are extremely rare making the chances of both parents being carriers unlikely. However in specific populations and ethnic groups a number of autosomal recessive conditions reach significant frequency due to consanguinity. This is more common in those from the Indian sub-continent (Bundey and Alam, 1993) or from isolated communities e.g. Wilsons disease is common in Sardinia (1 in 7000) (Figus et al, 1985; Zappu et al, 2008) whilst in America the incidence is 1 in 30,000; and Tay-Sachs disease is more common in the Ashkenazi Jewish population than in others (the carrier rate in Ashkenazi Jews is 1 in 27 whilst in the general population it is estimated to be 1 in 250) (Kaback et al, 1977). Where a disease occurs in all ethnicities, specific mutations may be more common in certain populations due to a founder effect e.g. cystic fibrosis is much more common in people of Northern European descent, for which a single amino acid deletion named Δ F508 accounts for up 70 % of the mutant alleles, compared with only one-third of Turkish or Arab CF patients (Lemna et al, 1990).

Inbreeding or consanguineous union is common is certain areas of the world primarily due to social and religious beliefs where it is believed family ties would be stronger and health and

financial uncertainty can be avoided by a close kin marriage. This may be first cousin or uncle-niece union (Bittles, 2008). The rate of consanguineous marriage in each country throughout the world is shown in figure 1.1.1.

Figure 1.1.1 shows the percentage number of consanguineous marriages throughout the world

Bundey and Alam in 1993, found among British Pakistanis, 69% of couples were related and 57% were first cousins. Amongst the British Pakistani children the birth prevalence of all congenital and genetic disorders was 7.9%; almost double that of Northern European children (4.3%) where 0.4% of couples are related.

1.1.3 Gene identification using autozygosity mapping

The genetic implications of a consanguineous marriage are related to the proportion of the children's gene pairs that are identical because they are inherited from a common ancestor. For example, in a first cousin union, their children inherit one-eighth of their genes from their common grandparents, and so one-sixteenth of their genes (6.25%) are identical-by-descent. Similarly if the affected offspring has second cousin parents then they would share 1/64 of their genome.

The technique of autozygosity mapping to identify rare disease genes utilises the genetic information that can be gained from studying consanguineous union families and the identical by descent genetic material which is inherited form a common single ancestor. This technique was described in 1987 by Lander and Botstein using microsatellite markers. The technique has now been adapted to incorporate single nucleotide polymorphism (SNP) genome wide scans.

Autozygosity mapping is divided into steps:-

- Identify a cohort with a homogeneous phenotype ideally from the same extended family with multiple affected probands
- Use microsatellite DNA markers to exclude potential known disease loci

37

- Genomewide linkage scan (GWS) in this thesis scans of 10 or 250 thousand SNP's were used for linkage
- Identify regions of homozygosity that are shared by all affected probands
- Fine map the candidate region(s) using polymorphic microsatellite markers
- Candidate gene analysis from the region of interest by direct sequencing

A homogeneous phenotype

Ascertaining families to identify disease genes using autozygosity mapping can be difficult due to the rarity of the disease. The genetic information derived from a consanguineous union, especially if there are multiple affected children, is far greater than from families of non-consanguineous unions. It is essential to phenotype the probands accurately to ensure only one disease state is being studied. If more than one disease is studied at the same time the technique of autozygosity mapping will not identify the disease gene as a common locus of homozygosity will not be recognised. This can be difficult for diseases in which the clinical spectrum can be variable such as with JATD.

Microsatellites to exclude potential known disease loci

Known disease genes or loci that might cause the disease phenotype should be excluded initially using microsatellite markers flanking the locus or gene.

GWS and locus identification

SNPs are the most frequent DNA sequence variations in the human genome, found on average once every 1,200 base pairs (bp) of DNA. SNPs can be used to map regions for gene identification in autozygosity mapping and can also identify susceptibility haplotypes for complex disorders (Johnson *et al*, 2001). SNP's are bi allelic therefore the results from a GWS identify either SNP A or SNP B at each position. In areas of homozygosity both alleles are identical i.e. AA or BB, areas of heterozygosity, and therefore not identical by descent, are AB or BA. The pathogenic gene is likely to be in a region where all the probands (from consanguineous union) are homozygous. In those from the same family the homozygous haplotype should be identical i.e. both AA or BB. When analysing probands from different families the homozygous haplotype may not be identical (although they may be identical if there is a founder effect). The larger the region of homozygosity the more likely it is to harbour the gene of interest. A homozygous region of 3 centiMorgan (cM) or greater with an average size of 27cM is most likely to harbour recessive disease gene (Woods *et al*, 2006).

Fine mapping using microsatellites

Microsatellite markers are short tandem repeats usually of less than 10bp which are polymorphic and stably inherited (although they are occasionally prone to slippage). The segregation of highly polymorphic genetic markers in family pedigrees enables linkage to be either (a) excluded or (b) the families are said to be compatible with linkage. For autozygosity mapping it is usual to look for heterozygosity of particular markers which flank a gene of interest so to exclude the gene.

Selection of candidate genes

When the candidate region is narrowed as much as possible and there is evidence for a conserved haplotype either in one family or between families candidate genes can be identified from genome databases with selection determined by position of the gene, the predicted gene function (compared to what is known about the disease pathogenesis) and the areas of expression of the gene in the body. The candidate genes are screened for pathogenic mutations by direct sequencing using the ABI 3730 capillary sequencer as described in the methods section. A change in the DNA sequence from the wild type is either a:-

Known SNP - will be identified in public databases of SNP's

Novel SNP – the change is likely to be found in control samples from the same ethnic background or is predicted to be a benign change by bioinformatic tools such as Polyphen

Pathogenic mutation – these changes are likely to be significant such as a change at a splice site or the formation of a stop codon. Computer prediction tools such as Polyphen will identify the change as potentially or probably damaging. The sequence change will segregate within families so that the parents will be carriers and the unaffected siblings will be either carriers or homozygous wild type. The sequence change will not be seen (or only very rarely) in controls of the same ethnic origin. Other mutations within the same gene lead to an identical disease phenotype or trait including compound heterozygotes from non consanguineous unions.

1.1.4 Limitations of autozygosity mapping

Although autozygosity mapping is a powerful tool for gene identification it has limitations and pit falls.

Due to the rarity of many of the conditions it may be difficult to ascertain a large enough cohort of affected probands. The ideal family for study would be a multiple consanguineous with multiple affected probands from a common ancestor. In many parts of the world however small family units are more common which limits autozygosity mapping.

Autozygosity mapping will only be successful if mutations in only one gene are responsible for the disease phenotype. In a number of autosomal recessive conditions there is more than one gene (locus heterogeneity) which can lead to the same phenotype (e.g. Bardet Biedl syndrome in which many different genes have been identified and lead to the same phenotype) and indeed mutations in more than one region can lead to a disease state again as in Bardet Beidl syndrome in which triallelic inheritance may also occur (Katsanis *et al*, 2001). These pitfalls can be avoided if a single family with multiple affected probands are studied.

1.2 The liver

Liver disease is a significant cause of morbidity and mortality worldwide. In childhood it is rare but is potentially a life long and life limiting disorder, the treatment of which may include liver transplantation and therefore is a significant cause of morbidity. The aetiology of liver disease varies according to age and figure 1.2.1 demonstrates the different aetiology of liver diseases in adults as compare to

children.

Figure 1.2.1 pie charts demonstrating the different aetiology of liver disease in adults as compared to children.

In childhood it can be seen that metabolic conditions, fulminant hepatic failure and biliary atresia, which potentially have a genetic component to the aetiology, are more common than in adults.

1.2.1 Embryology of the liver

During the third week of gestation the liver bud (hepatic diverticulum) develops as an outgrowth from the endodermal epithelium of the ventral foregut. The bud consists of rapidly developing cell strands which grow through the septum transversum (a mesodermal plate between the pericardial cavity and the yolk sac from which connective tissue, haemopoietic cells and Kupffer cells derive). The strands continue to grow through the septum forming thick plates of hepatocytes whilst the connection with the foregut narrows and becomes the common bile duct. The blood supply to the liver influences the growth of the liver. The two vitelline veins (which ultimately join to become the portal vein) initially supply the developing liver. Later in embryogenesis initially both umbilical veins provide blood to the liver and then the right disappears leaving the left to perfuse the whole liver. The left umbilical vein supplies the left lobe sinusoids, mixes with left branch portal blood flow to provide retrograde flow to the right lobe sinusoids (50% of the blood to the right lobe is supplied from the portal vein which is nutrient poor) and also flows into the inferior vena cava via the ductus venosus (Sadler, 1990).

The arterial supply develops later in embryogenesis and is closely related to the development of the bile ducts. The external biliary system (including the gallbladder) is derived from the hepatic diverticulum. The intrahepatic bile ducts develop independently of the extrahepatic and only towards the end of foetal development do the two structures join. The hepatoblasts which surround the mesenchyme of the portal vein tracts become smaller and form a single cell sheath around the portal vein known as the ductal plate. A

43

second layer of cells forms and under the influence of signals from the portal mesenchyme and the genes NOTCH2, JAG1, HES1, bile ducts develop (Lamaigre, 2008).

Transcription factors regulate the development and differentiation of the liver. The factors which are known are:-

Homeobox gene (Hhex) which is involved at multiple stages of hepatobiliary development (Hunter *et al*, 2007).

Homeodomain-containing proteins (HNF-1 alpha, HNF-1 beta) (Nagaki and Moriwaki, 2008).

Winged helix family proteins HNF-3 alpha, HNF-3 beta, and HNF-3 gamma (also called FoxA1, 2, and 3) (Lee *et al*, 2005).

Nuclear hormone receptor family (HNF-4, COUP-TFII, LRH-1, FXR alpha, and PXR) (Kamiya *et al*, 2003).

Basic leucine zipper-containing factor C/EBP alpha (Hsu et al, 1991)

Homeodomain protein HNF-6 (Clotman et al, 2002).

The hepatic artery development is influenced by vascular endothelial growth factor (VEGF) from developing bile duct cholangiocytes and angiopoietin-1 from hepatoblasts regulates remodelling of the hepatic artery (Fabris *et al*, 2008).

1.2.2 Physiology of the liver

The liver is a complex organ with many diverse functions. When the liver fails the complexity of the organ means there is no dialysis system which can replace it and therefore despite being able to support the liver, for many, liver transplantation is the only option. To develop specific therapies and so reduce the number of transplantations and deaths due to liver failure, it is essential to extend our knowledge of liver physiology in health as well as in disease. The investigation of rare causes of liver disease amenable to molecular genetic investigation may extend knowledge of hepatic intracellular pathways and interactions.

Unlike many other organs in the body the liver has the capacity to self repair and regenerate.

The physiology of the liver can be arbitrarily divided into:-

- Formation and excretion of bile
- Synthesis of clotting factors and proteins
- Immune function formation of immune products and defence
- Excretion of hormones, drugs and waste products
- Storage of vitamins, minerals and nutrients
- The processing of nutrients from digestion

Bile acid physiology

Bile salts are formed by or circulated through hepatocytes. They are excreted into bile canaliculi where they mix with water and ions to form bile. The bile canaliculi join in ever increasing sizes to form bile ducts. Bile is stored in the gallbladder which in the presence of cholecystokinin (secreted due to a fat contain meal) empties bile into the small intestine to aid digestion and absorption of dietary fats including fat soluble vitamins. Bile salts are then recycled through the intestine back to the liver. A bile salt can circulate through the enterohepatic circulation up to 18 times. To replenish those lost in faeces cholesterol is converted to bile acids (Guyton, 1991).

The formation and secretion of bile is a unique function of the liver. The purpose of bile is (Lefebvre *et al*, 2009):-

- Bile salts in the intestine are essential to emulsify fats and form micelles with the lipid particles in the intestine to make them more soluble and creating a larger surface area. The larger surface area promotes the effective hydrolysis by lipases. The micelles direct the lipid to the intestinal mucosa for absorption including the fat soluble vitamins A, D, E and K
- The secretion of bile is an excretory pathway for cholesterol, bilirubin, porphyrins, drugs and infectious agents
- The production of bile from cholesterol is an important route for elimination of cholesterol
- Bile in the intestine regulates pancreatic secretions and gastrointestinal polypeptides

46

- They are implicated in pathways regulating apoptosis, mucin secretion and biliary ductular secretion
- Signalling molecules

Bile is synthesised in the hepatocyte from either dietary cholesterol or cholesterol synthesised from fat metabolism in the liver.

The basic structure of bile acids is a cyclopentanoperhydrophenanthrene (ABCD-ring) nucleus with a five carbon atom side chain and a terminal carboxylic acid. The two primary bile acids are cholic acid (3α , 7α , 12α -trihydroxy-5 β -cholan-24-oic) and chenodeoxycholic acid (3α , 7α -dihydroxy-5 β -cholan-24-oic). Bile acid synthesis from cholesterol is catalyzed by individual enzymes and any deficiencies in these will prevent bile acid production and lead to the build up of other metabolities which may be hepatotoxic (Russell, 2003).

There are two pathways by which bile acids are formed

- Neutral (classical) pathway which is initiated by 7 α -hydroxylation of cholesterol and is the rate limiting step. The gene for this enzyme reaction is *CYP7A1*. This reaction is specific to the liver. Further hydroxylation results in the formation of chenodeoxycholic acid and cholic acid
- An alternative pathway is the side chain oxidation of cholesterol by 27hydroxylase (*CYP27*). *CYP27* is expressed throughout the body including vascular endothelium where it may be important in the removal of cholesterol and therefore reducing vascular atherosclerosis. The oxidised cholesterol is then

converted to chenodeoxycholic acid by the liver. Mutations in CYP27 results in cerebrotendinous xanthomatosis which is characterised by the accumulation of cholesterol in tissue and atherosclerosis in vascular endothelium (Cali *et al*, 1991).

The bile acids are then conjugated with an amino acid either glycine or taurine (a smaller amount with sulfates and glucuronides) to form conjugated bile acids which are water soluble and excreted in bile. Any unconjugated bile acids are excreted in the urine. The pH within the intestine ionises conjugated bile acids usually with sodium so forming primary conjugated bile salts. Bacteria in the intestine dehydroxylate the primary conjugated bile salts to form secondary conjugated bile salts lithocholic acid from chenodeoxycholic acid and deoxycholic acid from cholic acid.

Regulation of bile acid synthesis

CYP7A1has numerous transcription factor binding sites within the promoter region (Chiang *et al*, 1998). It is down regulated by the Farnesoid nuclear receptor (FXR) through a series of reactions shown in figure 1.2.2 (Rizzo *et al*, 2005).

Figure 1.2.2 A diagram of the regulation of CYP7A1. Bile acids are a natural ligand for activation of FXR (Frankenberg *et al*, 2008). When activated the FXR forms a dimer with another nuclear receptor, retinoid nuclear receptor (RXR). This dimer activates short heterodimer partner (SHP). In association with liver receptor homolog-1 (LHR-1) CYP7A1 is repressed (Lu *et al*, 2000).

An increase in bile salts in the ileum stimulates the transcription of fibroblast growth factor (FGF) via FXR (Holt *et al*, 2003). FGF circulates and binds to FGF receptor 4 on the hepatocyte plasma membrane leading to a down regulation of CYP7A1. FXR also stimulates bile salt export pump (BSEP) and organic solute transporter (OST) α - β whilst down regulating sodium-taurocholate cotransporter polypeptide (NTCP) and organic anion transporting polypeptides (OATPs) via SHP (Sanyal *et al*, 2007).

Bile acid transport across the apical membrane

The conjugated bile acids are transported into the canaliculus against a strong gradient. This is achieved by ATP binding cassette (ABC) superfamily of proteins which have a conserved intracellular domain which binds ATP and couples unidirectional movement of compounds with ATP hydrolysis (Weinman *et al*, 1998). This is shown schematically in figure 1.2.3.

Figure 1.2.3 A schematic drawing of the apical membrane transport proteins of bile salts. Except for familial intrahepatic cholestasis 1 (FIC1) all the other transporters on the apical canalicular membrane of the hepatocyte are members of the ABC super family.

BSEP encoded by *ABCB11* determines bile salt dependent bile flow (Trauner and Boyer, 2003).

The multidrug resistant protein (MDR) family, transport the secondary bile acid lithocholic acid. MDR1 is a P-glycoprotein which is encoded by *ABCB1* and transports organic cations.

MDR3 is a phospholipid export pump which excretes phosphatidylcholine and is encoded by *ABCB4* mutations in which results in PFIC3.

Multi organic anion transporter (also known as multidrug resistence associated protein 2) (MOAT / MRP2) excretes conjugated bilirubin as well as glutathione and drug conjugates. This transporter is independent of bile flow. The gene encoding this protein is *ABCC2*. Mutations in MRP2 causes Dubin-Johnson syndrome. In these patients there is no hepatotoxicity suggesting alternative mechanisms must exist (Elferink and Groen, 2002).

Breast cancer resistance protein (BRCP) encoded by *ABCG2* transports similar compounds to MOAT (Choudhuri and Klaassen, 2006).

Sterolin 1 and 2 (*ABCG5 & ABCG8*) form a heteromeric transporter for cholesterol and plant sterols (Yu *et al*, 2002).

FIC1 (an ATPase) is a phosphatidylserine flippase encoded by ATP8B1.

Efflux of bile salts across the basolateral membrane into the sinusoids

There is also a flow of bile salts through the basolateral membrane back into the sinusoids. This pathway increases in the presence of cholestasis. The schematic drawing in figure 1.2.4 demonstrates the transport proteins involved and also that FXR can also increase the expression of some of the proteins.

Figure 1.2.4 A schematic diagram demonstrating the transport proteins which efflux bile from the hepatocyte across the basolateral membrane into the sinusoids.

There is efflux of bile from the hepatocyte into the liver sinusoid and therefore entry into the general circulation via the portal veins. MDR 1, 3, 4, 5 and 6 on the basolateral membrane are important in this reaction. MRP3 (*ABCC3*) and MRP4 (*ABCC4*) are upregulated in cholestasis so removing bile acids from the hepatocyte but increasing the bile acid concentration in the circulation. OST α - β is also upregulated in liver disease via FXR (Kullak-Ublick *et al*, 2004).

Cholehepatic circulation

Within the large bile ducts there is passive as well as active transport of bile salts across the apical cholangiocyte border to the basolateral membrane and back into the sinusoids. The reason for this circulation is unknown but it may play a role in the conservation of bile salts or the bile salts may act as signalling molecules to regulate proliferation of bile ducts within the biliary tree (Trauner and Boyer, 2003).

Enterohepatic circulation

The intestinal bile acids are taken up by enterocytes into the portal venous circulation to the liver sinusoids for uptake through the hepatocyte basolateral membrane and is shown schematically in figure 1.2.5. If the absorption into the hepatocytes is not complete bile salts stay in the circulation and jaundice develops. Bile salts can be recirculated approximately 18 times before being lost in the faeces.

Different parts of the intestine have varying capacity to uptake bile salts.

The distal ileum expresses Na-dependent carrier uptake of taurine and glycine conjugate bile salts through the apical sodium dependent bile acid transporter (ASBT, also known as ileal sodium dependent bile acid transporter (ISBT) (Dawson *et al*, 2005). Mutations in *SLC10A2* which encodes ASBT, result in a syndrome of primary bile salt malabsorption with severe diarrhoea and failure to thrive through poor fat absorption (Oelkers *et al*, 1997). The transport of bile salts from the enterocyte to the splanchnic circulation (and so to the liver sinusoids via the portal vein) is by OST α - β transport proteins.

Sinusoidal blood flow from the portal vein

Figure 1.2.5 A schematic drawing of transport proteins at the basolateral membrane of the hepatocyte

The major route for conjugated bile salts to be transported into the hepatocyte is by NTCP which is encoded by *SLC10A1* and has a high affinity for taurocholate (Splinter *et al*, 2006). This is sodium dependent and therefore relies on a Na gradient created by Na/K ATPase. The transcription of NTCP can be increased such as by prolactin in the postpartum state or down regulated as in the presence of cholestasis, oestrogens or endotoxins (Donner *et al*, 2007).

The unconjugated bile acids are transported by OATP's, consisting of OATP1B1, OATP1B3, OATP2B1 and OATP1A2 which are encoded by *SLCO1B1*, *SLCO1B3*,

SLCO2B1 and *SLCO1A2* respectively. The OATP1B1 is the major sodium independent mechanism for the uptake of bile acids.

Small organic cations are taken up by organic cation 1 transporter OCT-1 (*SLC22A1*). Some organic anions are taken up by the organic anion transporters OAT-2 and 3 (*SLC22A6 and SLC22A8*) (Zhou and You, 2006).

Renal regulation of bile salts

Bile acids are filtered through the glomerulus and reabsorption occurs at the apical surface of the proximal tubule cells. This is a sodium dependent process by the transport protein ASBT. Unconjugated as well as conjugated bile acids are reabsorbed although sulphate conjugates are not excreted in the urine. At the basolateral surface transport into the circulation is predominantly by OST α - β and a small amount by MRP3 (Ballatori *et al*, 2005).

Inherited diseases of intrahepatic cholestasis

Intrahepatic cholestasis use to be an umbrella term for children who had neonatal hepatitis but with the advances in molecular medicine many of these cases now have a specific diagnosis and a large amount knowledge about the liver and metabolic pathways has been gained from studying cholestatic genes and protein expression in the normal as well as the pathological state. Examples of such genes are shown in Table 1.2.1.

Mechanism of disease	Disorder	Gene	Protein, function, substrate
Disorders of canalicular	PFIC-2, BRIC-2	ABCB11	Bile salt export pump to transport bile acids through the
transport		(Strautnieks et al, 1998)	canalicular membrane
	PFIC-3, ICP, cholelithiasis	ABCB4	Multi drug resistance protein 3, phospholipid flippase
		(Deleuze et al, 1996)	
	Dubin-Johnson syndrome	ABCC2	Multi drug resistance associated protein 2. Regulates
		(Tsujii <i>et al</i> , 1999)	canalicular transport of GSH conjugates
Multi organ disorders	PFIC-1, BRIC-1, RFCF-1, GFC	ATP8B1	Familial intrahepatic cholestasis-1. P-type ATPase
		(Bull et al, 1998)	
	NISCH	CLDN1	Claudin-1; tight junction protein
		(Hadj-Rabia et al, 2004)	
	ARC syndrome	VPS33B	Protein trafficking
		(Gissen et al, 2004)	
Altered ion transport	Cystic fibrosis	CFTR	cystic fibrosis transmembrane conductance regulator;
		(Riordan <i>et al</i> , 1989)	chloride channel with ATP binding cassette ;regulates
			chloride transport
Disorders of embryogenesis	Alagille syndrome	JAG1, NOTCH2	Transmembrane, cell-surface protein that interacts with
		(Oda et al, 1997; McDaniell et	NOTCH receptors to regulate hepatocyte to bile duct cell
		<i>al</i> , 2007)	fate during embryogenesis
	ARPKD	PKHD1	Fibrocystin; protein involved in ciliary function
		(Ward <i>et al</i> , 2002)	
	ADPLD	PRKCSH	Hepatocystin; protein assembles with glucosidase II apha
		(Li <i>et al</i> , 2003)	subunit in endoplasmic reticulum

Metabolic diseases	A ₁ AT deficiency	SERPINA1	A ₁ AT; accumulation of mutant PiZZ in hepatocytes;
			decreased anti-proteolytic activity
	BASD: neonatal cholestasis with	AKR1D1	3-oxo Δ -4-steroid 5b-reductase; enzyme that regulates
	giant cell hepatitis	(Lemonde et al, 2003)	bile acid synthesis
	BASD: chronic intrahepatic	HSD3B7	3β-hydroxy-5-C27-steroid oxido-reductase (C27-3β-
	cholestasis	(Cheng et al, 2003)	HSD): enzyme that regulates bile acid synthesis
	BASD: neonatal cholestasis with	СҮР7В1	Oxysterol 7α-hydroxylase; enzyme that regulates the
	giant cell hepatitis	(Setchell et al, 1998)	acidic pathway of bile acid synthesis
	FHC	TJP2	Tight junction protein-2; a family of guanylate kinase
		(Carlton <i>et al</i> , 2003)	homologous that are involved in the organisation of
			epithelial and endothelial intracellular junction; regulates
			paracellular permeability
	FHC	BAAT	Bile acid CoA:amino acid N-acyltransferase; enzyme that
		(Carlton <i>et al</i> , 2003)	transfers the bile acid moiety from the acyl-CoA thioester
			to either glycine or taurine
	FHC	EPHX1	Epoxide hydrolase-1; microsomal epoxide hydrolase
		(Zhu et al, 2003)	regulates the activation and detoxification of endogenous
			chemicals
	Wilsons	ATP7B	ATPase Cu ²⁺ -transporting-beta; P-type ATPase; function
		(Bull et al, 1993)	as copper export pump
	NICCD	SLC25A13	Citrin; mitochondrial aspartate glutamate carrier involved
		(Ohura <i>et al</i> , 2001)	in the malate-aspartate NADH shuttle
	Niemann Pick	NPC1	Abnormal cholesterol sterification and storage
	type C	(Carstea et al, 1997)	

Unclassified	NAICC	CIRH1A	Cirhin; protein involved in cell signalling
		(Chagnon et al, 2002)	
	Villin deficiency	VIL1	Villin; protein involved in structural integrity of
		(Phillips et al, 2003)	canalicular microvilli
	MAS	GNAS1	Postzygotic activating mutations of arginine 201 leading
		(Weinstein et al, 1991)	to the constitutive activation of the guanine-nucleotide-
			binding protein (G protein) α subunit

Table 1.2.1 Provides a list of clinical conditions in which intrahepatic cholestasis presenting at any age is a dominant feature and a genetic defect has been identified. PFIC, progressive familial intrahepatic cholestasis; BRIC, benign recurrent intrahepatic cholestasis; ICP, intrahepatic cholestasis of pregnancy; RFCF, recurrent familial cholestasis of the Faeroe Islands; GFC, Greenland familial cholestasis; NISCH, neonatal ichthyosis-sclerosing cholangitis; ARC, arthrogryposis-renal dysfunction-cholestasis; ARPKD, autosomal recessive polycystic kidney disease; ADPLD, autosomal dominant polycystic liver disease; A₁AT, alpha-1-antitrypsin deficiency; BASD, bile acid synthetic defect; FHC, familial hypercholanemia; NICCD, North American Indian childhood cirrhosis; MAS, McCune-Albright syndrome (adapted from Balistreri and Bezerra, 2006)

Hepatic synthesis of clotting factors

A table of the clotting factors which are made in the liver is shown in table 1.2.2. Those factors with an asterix also require vitamin K which may be deficient in liver disease due to poor absorption with a lack of bile salts and long chain fat absorption. Vitamin K is a cofactor for gamma-glutamyl carboxylase which adds a carboxyl group to glutamic acid residues of clotting factors II, VII, IX, X, protein S, protein C and protein Z (Blanchard *et al*, 1981).

FACTOR	NAME	SOURCE	PATHWAY
I	Fibrinogen	Liver	Common
II	Prothrombin (enzyme)	Liver *	Common
V	Proaccererin (heat labile cofactor)	Liver and Platelets	Extrinsic and Intrinsic
VII	Proconvertin (enzyme)	Liver *	Extrinsic
IX	Christmas factor(plasma thromboplastin component)	Liver *	Intrinsic
X	Stuart Prower factor (enzyme)	Liver *	Extrinsic and Intrinsic
XI	Plasma thromboplastin antecedent (enzyme)	Liver	Intrinsic
XII	Hageman factor	Liver	Intrinsic; also activates plasmin
XIII	Fibrin stabilizing factor	Liver	Retards fibrinolysis

Table 1.2.2A table of coagulation factors made by the liver

A complication of liver disease is hypersplenism which may compound abnormal clotting by causing low platelets.

Hepatic synthesis of albumin

Albumin synthesis begins in the nucleus, where genes are transcribed into messenger ribonucleic acid (mRNA). The mRNA is secreted into the cytoplasm, where it is bound to ribosomes, forming polysomes that synthesize preproalbumin. Preproalbumin is an albumin molecule with a 24 amino acid extension at the N terminus. The amino acid extension signals insertion of preproalbumin into the membrane of the endoplasmic reticulum (Rhodes *et al*, 1989). Once inside the lumen of the endoplasmic reticulum, the leading 18 amino acids of this extension are cleaved, leaving proalbumin (albumin with the remaining extension of 6 amino acids). Proalbumin is the principal intracellular form

of albumin. Proalbumin is exported to the Golgi apparatus, where the extension of 6 amino acids is removed prior to secretion of albumin by the hepatocyte. Once synthesized, albumin is secreted immediately; it is not stored in the liver. Albumin transports various substances, including bilirubin, fatty acids, metals, ions, hormones, and exogenous drugs. One consequence of hypoalbuminemia is that drugs that are usually protein bound are free in the plasma, allowing for higher drug levels, more rapid hepatic metabolism, or both (Klammt *et al* 2007).

Liver immunity

The liver is constantly exposed to large varieties of antigens that are derived from the gastrointestinal tract, including dietary antigens, pathogens, and toxins. Its function as a major immune organ is now being appreciated. The liver lymphocyte population is enriched in macrophages (*ie*, Kupffer cells), natural killer and natural killer T cells, which constitute the innate immune system (Bilzer *et al*, 2006).

Hepatic excretion of hormones and drugs

The conjugation process in the liver also plays a major role in excreting cholesterol, hormones, and drugs from the body.

Hepatic processing and storage of vitamins, minerals and nutrients

The liver plays an important role in metabolizing nutrients such as carbohydrates, proteins, and fats. The liver helps metabolise carbohydrates in three ways:

- Through the process of glycogenesis, glucose, fructose, and galactose are converted to glycogen and stored in the liver.
- Through the process of glycogenolysis, the liver breaks down stored glycogen to maintain blood glucose levels when there is a decrease in carbohydrate intake.
- Through the process of gluconeogenesis, the liver synthesizes glucose from proteins or fats to maintain blood glucose levels.

Liver cells also chemically convert amino acids to produce ketoacids and ammonia, from which urea is formed and excreted in the urine. Digested fat is converted in the intestine to triglycerides, cholesterol, phospholipids, and lipoproteins. These substances are converted in the liver into glycerol and fatty acids, through a process known as ketogenesis (Guyton, 1991).

1.3 Thesis philosophy

Having worked in paediatric hepatology I have had first hand experience of the devastation liver disease can have on children and their families. Paediatric liver disease is uncommon and therefore relatively little is known in the general population. From the initial realisation a child has liver dysfunction to making a definitive diagnosis can be an extremely difficult time.

Why study the molecular genetic investigation of paediatric liver disease?

It is hypothesised that by investigating the molecular genetics of paediatric liver disease and thereby identifying mutations which are associated with the disease phenotype an accurate diagnosis can be made.

For the families and those affected the detection of a mutation within an identified gene can potentially:

- Provide accurate information for parents about their child's condition
- Prevent unnecessary investigations
- Allow specific medical management and counselling as to the likely progression of the disease
- Enable counselling of the genetic risk for other family members and the risk to future children. Preimplantation or prenatal diagnostic testing may also be available
- Provide a specific diagnosis that is often required for parents to be able to access support services such as educational, social and financial as well as support groups

63

- Enable a greater understanding of the condition and therefore permit the identification of complications
- Prevent iatrogenic disease by pharmacogenetics

From a scientific point of view the identification of disease genes provides further information of intracellular pathways and cellular interactions. This allows greater understanding of normal and disease states and may also allow identification of potential therapeutic targets.

The title of this thesis is the molecular genetic investigation of paediatric liver disease and covers a number of different classifications of liver disease. Chapter 3 is the investigation of the multisystem disease phenotypic diarrhoea of infancy (PDI) which involves the liver in numerous ways, presenting with cirrhosis in infancy or liver failure from iron overload. Significant liver disease secondary to the need for parenteral nutrition may develop. Personally in my first paediatric post 12 years ago I looked after a child with PDI who sadly died from the complications of parenteral nutrition. The investigation of the molecular genetics of PDI has enabled me to identify the gene which is associated with PDI which is the first step in elucidating the molecular pathogenesis of the condition. Chapter 4 describes the role of cilia in liver disease. The knowledge regarding primary cilia is fast growing following the identification of primary cilia in the pathogenic process of polycystic kidney disease. It is likely to be a field which continues to grow and the list of conditions in which primary cilia are affected may increase. I have hypothesised that biliary atresia, a more common paediatric liver disease may also be a

64

ciliopathy as the phenotype is also that of a ductal plate malformation, hepatic fibrosis, renal cyst development, and in the embryological form of biliary atresia, situs inversus. Chapter 5 investigates the role of bile salt transport proteins and their defects and describes a novel phenotype of acute neonatal liver failure associated with abnormality in bile salt transport which has not previously been described.

The identification of a mutation associated with the disease phenotype however is the first step in elucidating the molecular pathogenesis of the condition, the role of the identified gene in the normal and diseased state and whether the pathways involved are common to other forms of liver disease. As such this thesis has provided the basis for exciting future work in paediatric liver disease.

Chapter 2

Materials and methods

Contents

- 2.1 Subjects
- 2.2 Ethical approval
- 2.3 Materials and methods

This chapter commences initially with a description of how the patients were ascertained for each project and the ethical approval information for each study.

The methods and materials in this chapter are those I have personally used. Techniques and materials used by collaborators are embedded in the relevant chapter and are highlighted in italics.

The materials, methods, equipment, computer software and mathematical prediction tools are discussed for each molecular genetic technique employed. The chapter in which the technique is used is also stated.

The methods have been written in list format rather than prose to enable the techniques to be replicated easily.

2.1 Subjects

2.1.1 Phenotypic diarrhoea of infancy (PDI)

I have personally been involved in the care of 9 patients with PDI in my career as a paediatric hepatologist and is the reason for my interested in studying this rare condition. The methods I used to identify further patients are:-

- 1 Those patient I personally know through clinical work were the majority of the research cohort (9 patients)
- 2 Identified as having PDI during the period of study by collaborating gastroenterologists (5 patients)

- 3 The presenting of clinical features and outline of this study at the European Society of Paediatric Gastroenterology, Hepatology and Nutrition, Hepatology Summer school in Hungary 2006 (0 patients)
- 4 The presenting of clinical features and outline of this study at the European Society of Paediatric Gastroenterology, Hepatology and Nutrition, Young Investigators meeting, Bavaria 2006 (1 patient)
- 5 A poster presentation of clinical features and outline of study at British Society of Human Genetics meeting, York 2006 (1 patient – who was already known to me)
- 6 A poster presentation of clinical features and outline of study at American Society of Human Genetic meeting, New Orleans 2006 (0 patients)
- Writing to all leads clinical geneticists in the UK (1 patient already known to me)
- 8 Writing to all the lead consultants in paediatric parenteral nutrition in the UK (0 patients)
- Writing to the correspondence of clinical cases published in the literature (1 patient)

To ensure all the patients had the same clinical features a proforma of clinical details was completed by the referring clinician and a sample of hair was sent with the DNA sample. The proforma can be found in appendix 8.1. When screening genes for mutations, DNA from 4 probands was used, all of whom I had personally phenotyped to have the classical features of PDI.

2.1.2 Jeune asphyxiating thoracic dystrophy (JATD)

This large cohort of patients with JATD was ascertained prior to my commencing the project. All the patients had x-rays which had been examined by an expert in chondrodysplasias with the majority seen by Dr C Hall, Consultant Paediatric Radiologist, Great Ormond Street Hospital.

On commencing the study I reviewed the patient clinical details and all the patients had features which were compatible with JATD although the extra skeletal manifestations were very varied.

During the course of my investigation of JATD further samples were sent from Clinical Geneticists who were aware of the project.

One patient was known to me personally.

2.1.3 Biliary atresia

All children with biliary atresia are looked after in one of three centres in the country with Birmingham Children's Hospital being one. All children with biliary atresia are followed up long term for complications.

This cohort of patients therefore I have personally been involved in their clinical care, reviewed the histology of the liver and the liver biochemistry.

2.1.4 Neonatal liver failure

As with biliary atresia, due to Birmingham Children's Hospital being a designated paediatric hepatology centre these patients I was personally involved in their care when they have been referred for specialist hepatology management.

2.1.5 Control samples

Control DNA samples were provided in anonymised 96 well plates by the West Midlands Regional Genetics Laboratory. The plates are a by product of screening for cystic fibrosis. Each plate was composed of DNA from a single ethnicity (i.e. 96 well plate of Caucasian or 96 wells plate of Asian controls) to ensure the correct controls were used.

2.2 Ethical approval

PDI and JATD: National Autozygosity Mapping Research (NAMR) - molecular pathology of human genetic disease. South Birmingham Research Ethics approval (LREC number: CA/5175)

Biliary atresia and neonatal liver failure: Molecular genetics of multifactorial liver disease. South Birmingham Research Ethics approval (LREC number 2002/036)
Biliary atresia: South Birmingham ethics approval: Control of human liver stem cell growth and differentiation: An alternative source of hepatocytes (LREC 2002/158) and Liver Disease Registry and Tissue Bank (LREC 2003/028).

2.3 Materials and methods

A stepwise format has been used in this chapter to describe the methods so as to provide a practical approach to each experiment.

2.3.1 Extraction of DNA

DNA was extracted from either whole blood (by me or by the West Midlands Regional Genetics Service). Chapter 3 proband cousin of 8C had DNA extracted from cultured fibroblasts by myself (the fibroblasts had been stored and then cultured at Birmingham Children's Hospital).

These techniques chosen were those commonly used in the lab and therefore all reagents were available. DNA extracted using this method was used in all chapters of this thesis.

Materials used for DNA extraction from whole blood:-

Lysis buffer	Sigma
Protinase K	Boehringer Mannheim
Phenol	Sigma
Chloroform	Sigma
0.2M NaCl	Fischer Scientific
Ethanol	Fischer Scientific

Method to extract DNA from whole blood:-

DNA was extracted from blood using the Puregene Genomic DNA Purification Kit (Gentra systems) according to the manufacturer's instructions.

Materials used for DNA extraction from cultured cell fibroblasts:-

Trypsin	Invitrogen
Cell lysis solution	Sigma
RNase A solution	Sigma
Protein precipitation solution	Promega
Isopropanolol	Fischer Scientific
Ethanol	Fischer Scientific

Method to extract DNA from cultured fibroblasts:-

- 1. add 400μ l trypsin and swill around the flask then aspirate out
- 2. Add 1µl trypsin and incubate at 37 °C for 5 minutes
- 3. remove all the fluid and the cells from the flask and put into eppendorphs
- 4. Spin each epindorf at 12,000 rev for 5 minutes to form a pellet of cells

Step 1: cell lysis

- 1. remove supernatant from eppendorph leaving 20µl in base
- 2. vortex vigorously to resuspend
- 3. add 300µl cell lysis solution and pipette up and down to lyse cells

Step 2: RNase treatment

- 4. add 1.5µl RNase A solution
- 5. invert tube 25 times and incubate at 37 °C for 5 minutes

Step 3: protein precipitation

6. place in ice for 1 minute

- 7. add 100µl Protein Precipitation solution
- 8. Vortex vigorously for 20 seconds
- 9. centrifuge 13,000 rev for 1 minute to form a tight pellet
- Step 4: DNA precipitation
 - 10. pour off supernatant and put protein pellet into clean 1.5ml ependdorf with 300µl100% isopropranolol

11. invert 50 times

- 12. centrifuge at 13,000 rev for 1 minute
- 13. Pour off supernatant and drain on paper. Add 300µl 70% ethanol and invert several times
- 14. centrifuge at 13,000 rev for 1 minute and pour off supernatant
- 15. drain for 5 seconds on paper

Step 5: Hydration

- 16. add 50µl DNA hydration solution
- 17. vortex (medium) for 5 seconds
- 18. Incubate at 65 °C for 5 minutes
- 19. vortex for 5 seconds at medium speed
- 20. pulse spin down
- 21. store at -20 °C long term

The standard stock concentration of DNA extracted is 500µg/µl. The amount of DNA

used for each PCR reaction was 40µg. To form a working solution:-

What is wantedx volume = $20\mu g$ x100=4µl into $100\mu l = 20\mu g/\mu l$ Concentration $500\mu g$

2.3.2 Extraction of RNA

RNA was extracted from whole blood using Qiagen RNease mini kit as per manufacturer's instructions.

RNA was used for the gene expression microarray in section 3.5.

2.3.3 Conversion of RNA to cDNA

RNA was converted to cDNA for reverse transcriptase PCR:-

All reagents come in a single kit - Reverse transcription System - Promega

25 mM MgCl	4µl
RT buffer	2µl
dNTP's	2µl
RNAsin	0.5µl
AMVRTase	0.75µl
Random primer	1µl
dH ₂ O	7.75µl

Added all reagents to 2µl RNA

Incubate at 42 $^{\circ}$ C for 20 minutes and then terminate the reaction by increasing the temperature to 94 $^{\circ}$ C for 2 minutes.

Reverse transcriptase PCR was used to investigate splice site mutations in section 3.6.

2.3.4 Whole genome amplification

DNA from some of the patients with JATD had been used by other researchers and little DNA was left for this study. To increase the DNA quantity I amplified the DNA (whole genome amplification) using Genomphil kit from Amersham Biosciences. I followed the manufacturer's recommendations however I found the poor results from the advised precipitation therefore precipitated again using chloroform and phenol.

- 1. To the DNA add equal quantities of phenol and chloroform and vortex to make an emulsion
- 2. Spin for 5 minutes at top speed
- 3. Take off the aqueous part to use ~450mls
- 4. Add 4µl sodium acetate 0.2µM (Abbey Chemicals)
- 5. Add 2.5 x volume of 100% ethanol
- 6. Spin for 10 minutes then remove supernatant
- 7. Spin again and remove supernatant
- Repeat process by adding sodium acetate and then 100% ethanol this was then left in the -80°C for 24 hours
- 9. Spin and take off supernatant
- 10. Add 70% Ethanol and spin for 10 minutes take of supernatant and allow drying in air
- 11. Resuspend in water

All DNA. RNA and cDNA was stored at -80° C for long term storage whilst aliquots for daily use were stored at -20° C.

2.3.5 Polymerase chain reaction (PCR)

The PCR reaction is the most important molecular genetic technique that I used in this project. It forms the basis of microsatellite markers, single nucleotide polymorphism genome wide scan and the sequencing of genes.

During the time period of this Ph.D. I used two different standard techniques. The initial method used separate reagents. This was prone to poor PCR product especially when the DNA was not optimal (when the DNA had been used on multiple occasions or was many years old). Due to the difficulties a trial of a premixed solution was used (Biomix red) which was found to be superior even with sub optimal DNA and I adopted this as my preferred method for PCR. The annealing temperatures required re optimising after switching to using Biomix red as in general a low temperature was required. The PCR for all PDI investigations was made using Biomix red. Both methods were used in the investigations of JATD and neonatal liver failure.

Primers were optimised using control DNA prior to using patient DNA.

Primers were designed using Exon Primer (http://ihg2.helmholtz-

<u>muenchen.de/ihg/ExonPrimer.html</u>) which derives suggested primers from analysing cDNA and genomic DNA alignment. When choosing the primer recommendations from Exon primer I used the following criteria:-

- Ensure 60 bp from the start of the exon
- Ensure the length is 19-22 bp
- Ensure there is a C or G at the start and finish
- Ensure there is at least 50% C or G

Exon3 is another online site to identify primers however I did not find this site as easy to use and I found the primers from Exon Primer generally worked well. The primers were ordered on line through Sigma Genosys (I had an excellent quote for each base and all other companies were more expensive).

Initial PCR reagents using ABGene Taq

DNA 20µg/µl	1µl	
10x buffer	1µl	ABGene
MgCl 25mM	0.6µl	ABGene
dNTP's 10mM	1µl	Bioline
dH ₂ O	5.9µl	Sigma
Forward and reverse primer 10mM	0.4µl (0.2µl of each)	Sigma
ABGene Taq	0.1µl	ABGene

Biomix red PCR reaction

DNA, 20µg/µl	1µl	
Biomix red	5µl	Bioline
Forward and reverse primer 10mM	1µl	Sigma
dH ₂ O	3µl	Sigma

PCR reaction

- 1. denature at 95°C -5 minutes
- 2. $95 \degree C 45$ seconds
- 3. annealing 56 $^{\circ}$ C -45 seconds
- 4. extension 72 $^{\circ}$ C -45 seconds
- 5. repeat steps 2 to 4 for 27 reactions (total 28 reactions)
- 6. final extension 72 °C -5 minutes

To ensure the PCR product is optimal the product is run on an agarose gel electrophoresis. A clear single product should be seen.

The PCR product is not optimal if:-

There is more than one band

There is no band or only a faint band seen (microsatellites markers only require a small amount of PCR product and therefore even a faint band PCR product can be used. For sequencing a clear band is required).

If the product is not optimal then techniques which can be used to improve the product:-

Annealing temperature decrease to improve sensitivity

Annealing temperature increased to improve specificity

Other techniques employed to optimise PCR product

• increasing the magnesium concentration to improve sensitivity

- added acetamide (25%, Fluka) to improve specificity (I did not find this a useful technique although I tried it on a number of occasions)
- use different *Taq*
 - Hot Star more specific
 - Bioexact makes the reaction more specific

PCR using Bioexact Taq: PCR reaction as above

DNA 20µg/µl	1µl	
10x buffer	1.5µl	
MgCl 25mM	1.2µl	
dNTP's 10mM	1.5µl	
dH ₂ O	5.6µl	
Enhancer	3µl	Qaigen
Forward and reverse primer 10mM	0.5µl (each)	
Bioexact Taq	0.2µl	Qaigen
PCR using Hot Star Taq		
DNA	1µl	
10x buffer	2.5µl	Bioline
5 x Q solution	5µl	Bioline
dNTP's	2µl	
f primer	1µl	
r primer	1µl	
dH ₂ O	12.85µl	
Hot star Taq	0.15µl	Bioline

Hot Star Taq PCR reaction

- 1. denature for 15 minutes at 95°C
- 2. 95°C for 45 seconds
- 3. annealing temp 57°C for 45 seconds
- 4. extension for 1 minute at 72°C
- 5. repeat steps 2-4 34 times
- 6. final extension at 72°C for 10 minutes

Hot Star and Bioexact were used for some of the genes when investigating JATD.

Nested PCR

The technique of nested PCR was used to make the PCR product specific to the region of interest. The initial PCR creates a large PCR product size repeating the PCR 28 times. More specific primers then are used with the initial PCR product as the DNA template.

RT-PCR

In sequencing large genes cDNA was used in chapter 4. cDNA was also sequenced .

2.3.6 Gel electrophoresis

Reagents for gel electrophoresis:-

Agarose	Invitrogen
Ethidium bromide	Sigma
10x TBE electrophoresis buffer	Invitrogen
100 bp ladder	Norgen
Bromophenol blue loading buffer	Promega
Hyperladder	Bioline

Method for gel electrophoresis:-

1g agarose is diluted in 100ml 1xTBE buffer. 3µl ethidium bromide is added and the gel set in a horizontal electrophoresis plate with combs.

When using ABgene Taq PCR method 5µl of PCR product is mixed with 5µl

bromophenol blue loading buffer.

When using Biomix red PCR method the 5μ l of the PCR product was directly inserted into the wells. A 100 base ladder was loaded for product size reference.

The electrophoresis was run at 170 volts for 15-20 minutes (until visually the PCR

product could be seen to have moved an adequate distance in the gel).

The DNA was visualised using a UV light transilluminator.

If there is a single band then the PCR can be used for microsatellite markers or sequencing.

2.3.7 Microsatellite markers

An explanation of microsatellite markers is provided in section 1.2.3.4. Microsatellites were identified using UniSTS

(http://www.ncbi.nlm.nih.gov.ezproxye.bham.ac.uk/sites/entrez?db=unists) and ordered from Sigma Genosys using FAM (blue) as the fluorescent marker attached to the primer (I found the blue marker to be the clearest). The initial PCR was carried out as described in 2.3.5. For JATD this was carried out using ABGene Taq technique. The PCR of microsatellites for PDI were carried out using biomix red technique. The PCR product was diluted 140µl dH₂O (i.e. 1:15 dilution)

1µl of diluted PCR reaction was added to

10µl HiDi (Applied Biosystems)

and

0.05µl Genescan500 LIZ size standard (Applied Biosystems).

Denature at 95° for 5 minutes and cooled on ice.

The microsatellites were run on ABI 3730 DNA Analyser (Applied Biosystems) and the

PCR product sizes were analysed using Genemapper v3.0

(http://products.appliedbiosystems.com) as described in chapter 1.

Microsatellites were used for mapping in chapter 3 to refute linkage to the ARC syndrome locus. Microsatellites were then used to further explore regions of shared homozygosity which had been identified using SNP genome wide scans and in this way regions could be either excluded or deemed to be a region of interest.

In chapter 4 microsatellites were again used to explore the regions of shared homozygosity identified by the SNP genomewide scans. Microsatellites were also used to look for linkage to other complex B genes in children from consanguineous families.

Appendix 8.2 provides the sequences of the microsatellites used.

2.3.8 LOD score

When mapping DNA this tool predicts linkage. The score is obtained by comparing the likelihood of the results occurring due to linkage compared to occurring by chance. To infer statistic significance therefore a likelihood of more than 1 in 1000 which equates to a LOD score of 3 suggests there is linkage. The larger the LOD score the more significant the linkage and the less likely it has occurred by chance.

The LOD score can be calculated using the formula:-

$$LOD = Z = \log_{10} \frac{\text{probability of birth sequence with a given linkage value}}{\text{probability of birth sequence with no linkage}} = \log_{10} \frac{(1-\theta)^{NR} \times \theta^R}{0.5^{(NR+R)}}$$

When calculating LOD scores for this thesis I used the computer program Superlink to ascertain the LOD score.

(http://bioinfo.cs.technion.ac.il/superlink-online)

When using a SNP genome wide scan in conjunction with microsatellites I did not find using a calculation of LOD scores useful except to confirm there was linkage to a region.

2.3.9 Single nucleotide polymorphism genomewide scan

The SNP genome wide scans were carried out by Louise Tee laboratory technician. I inserted the results into an Excel spreadsheet for analysis. I manually analyzed the results to identify regions of homozygosity which were shared between affected probands. The Affymetrix analyser was used and all recommended consumables.

The basic principles of SNP array are the convergence of DNA hybridization, fluorescence microscopy, and solid surface DNA capture. The three mandatory components of the SNP arrays are:

- 1. The array that contains immobilized nucleic acid sequences or target
- 2. One or more labeled allele-specific oligonucleotide probes
- 3. A detection system that records and interprets the hybridization signal.

Each SNP on the array is interrogated with different probes. Affymetrix extended their SNP array range during the course of this research such that the initial SNP arrays were of 10K SNP's (initial used in chapter 3 and 4) whilst recent SNP arrays contained 250K SNP's.

2.3.10 Sequencing of genes

All genes were directly sequenced by me. Sequencing was carried out in all chapters. The initial step is a PCR reaction as described above.

The product is then run on an electrophoresis gel to identify the PCR reaction has successfully created a single product.

The PCR product is then cleaned. There are two techniques which were used during the course of this project. The initial method was using Exosap. This was timely and expensive so I trialled Microclean which I found to be much quicker and cheaper. In some cases a single product was not obtained by PCR optimisation and therefore by identifying the desired product from the size ladder on the gel electrophoresis the band was cut out and DNA extracted from the band.

Exosap enzyme

USB

7.5 µl PCR product was added to 3µl Exosap

The enzyme was incubated at 37°C for 30 minutes and then deactivated at 80 °C for 15 minutes.

Purification by gel extraction

Qiagen

- 1. Mix 7.5µl PCR reactant with 5µl loading buffer
- 2. Run DNA on gel 1% gel
- 3. Cut out band and place in a clear tube
- 4. Add 450µl GQ buffer to tube
- 5. Incubate at 55° bath for 10 mins
- 6. Add 150µl isopropanol (propan-2ol)
- 7. Put sample in the QIAquick columns and clear tube
- 8. Centrifuged 13,000r for 1 minute, discard supernatant fluid
- 9. Add 500µl QG buffer
- 10. Centrifuged 13,000r for 1 minutes, fluid discarded

- 11. Add 750µl PE buffer
- 12. Stand for 2 minutes
- 13. Centrifuge at 13,000r for 1 minute, discard fluid
- 14. Centrifuge again 13,000r for 1 minute
- 15. Put tube into a clean vial
- 16. 50µl water through membrane
- 17. Centrifuge for 1 minute with elute used for sequencing reaction

microCLEAN enzyme

Webscientific

Add 5µl PCR product to 5µl microCLEAN. Stand for 10 minutes.

Centrifuge 4000rev for 40 minutes.

Inverse spin to remove supernatant at 500rev for 30 seconds.

Resuspend in 10µl water and allow to stand for 10 minutes prior to use.

The 'cleaned' PCR product was then sequenced using the Big Dye method in all cases.

Reagents for sequencing

2µl Big dye buffer

Applied biosystems

1µl dH₂O

0.5µl Big Dye sequence terminator Applied biosystems

2µl 10mM oligonucleotide primer either forward or reverse (2mM concentration was

initially used but better results were obtained using a higher concentration)

4.5µl purified PCR product

- 1. 96°C for 30 seconds
- 2. 96°C for 30 seconds
- 3. 50° C for 15 seconds
- 4. 60° C for 4 minutes
- 5. repeat from step 2 29 times
- 6. end

The sequenced product was then precipitated using a standard technique throughout the research.

Reagents for precipitation of DNA

0.5M EDTA diluted to 0.125MSigmaEthanolFischer Scientific

2µl 0.125M EDTA added to sequence reaction.

Centrifuged at 2000 rev for 30 seconds.

30μl 100% ethanol added and left for 10 minutes prior to centrifuging at 2000rev for 20 minutes. Supernatant removed by inversing the plate and spinning up to 250 rev only. 90μl 70% ethanol added and centrifuged at 2000 rev for 10 minutes. Repeat inversed spin. Sample allowed to dry in air for 5 minutes. Add 10μl HiDi formamide and centrifuge at 2000rev for 30 seconds. Denature at 95 °C for 5 minutes and then cooling on ice.

The ABI 3730 sequencer was used to analyse all sequencing of this project. The data was then manually analysed by me using Chromas (<u>www.technelysium.com.au/chromas</u>)

against a reference sequencing provided by either a control DNA sample or the reference sequence from NCBI. Chromas is a program available to illustrate the electropherogram produced by the electrophoresis of DNA in an automated DNA sequencing machine. The electropherogram reading is a series of discrete peaks corresponding to each base. By convention

Adenine = green

Cytosine = blue

Guanine = black

Thymine = red

When I identified a variant I initially looked in NCBI and UCSC databases to see if it was a known SNP. I then used the tools Polyphen, BLAST and BLAT:-

NCBI – National Center for biotechnology information (<u>www.ncbi.nlm.nih.gov</u>)

UCSC – University of California Santa Cruz (<u>http://genome.cse.ucsc.edu</u>)

Ensembl – www.ensembl.org

Polyphen – Polyphen is a computerised program to predict the effect a change in amino acid would have on the structure and function of the protein. It takes into account the amino acid site, whether it forms part of a domain, what the structure will change to and whether it will change any of the interactions with ions. Using BLAST it looks at the likelihood of the amino acid being in the position of the base change on the likelihood of the changed amino acid being in this position. This then forms a PSIC score (position specific independent count). Less than 0.5 is likely to be benign, 0.5-1.5 possibly damaging and more than 1.5 probably damaging.

BLAST - Finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families. (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

BLAT - This is a similar tool to BLAST but is quicker as it uses a stored nucleotide sequence rather than searching databases. This however means it is only good for primates. (www.genome.ucsc.edu)

Splice site prediction tool – Berkeley Drosophila Genome project

(<u>www.fruitfly.org</u>). This was used in chapter 3 to ascertain the effect of sequence variants near the intron/ exon boundary to ascertain the effect on the splice site.

In all cases control samples were analysed to identify if the sequence variant was a previously unknown SNP.

2.3.11 Western blotting

Western blotting was used in chapter 4. As this was not a technique I was using regularly I found that it was time consuming, technically challenging and the results were not very satisfactory.

Reagents used

ProtoFLOW gel (30% acrylamide, 0.3% bis)	Flowgen
2.5M Tris pH 8.8	Sigma

10% SDS (sodium Dodecyl Sulphate)	Invitrogen
add just before use:-	
10% APS	USB
TEMED	Fischer Biotech
Isopropranolol	Fischer Scientific
CAPS solution (3-[cyclohexylamino]-1-propanesulfonic ad	cid) Sigma Aldrich
Rainbow coloured protein molecular weight markers	Amersham
Methanol	Fischer Scientific
10x PBS (phosphate buffered saline)	Invitrogen
Tween	Sigma
BSA (bovine serum albumin)	Sigma
ECL Western blotting analysis system	Amersham
Developer and fixer	Kodak
X-ray film	Kodak
Antibodies	
Cenexin was supplied by the Gull lab at Oxford University.	

Alpha tubulin	
Rabbit anti-goat (horseradish peroxidase conjugate)	Sigma Aldrich
TRIS pH8.0	Sigma
1% IGE-PAL CA 630	Sigma
Glycerol	Sigma
Protease inhibitor	Sigma

PMSF (phenylmethylsulfryl fluoride)	Sigma
Coomasie Plus Protein Standard reagent	Pierce

Method

- 1. clean glass plates with ethanol
- put plates together and seal bottom with 2% gel (0.2g in 10mls put a line on the glass plate and then stand the two plates joined by bulldog clips on top)
- 3. make up SDS gel in universal containers (6% is good for most proteins but increase percentage for smaller proteins)

6% resolving gel (10ml):

30% acrylamide, 0.3% bis	2 ml
2.5M Tris pH 8.8	1.5 ml
10% SDS	0.1 ml
dH ₂ O	6.4 ml
Add just before use:-	
10% APS	0.067 ml
TEMED	0.01 ml

6 % stacking gel (5ml):

30% acrylamide, 0.3% bis	1 ml
0.5M Tris pH6.8	1.25 ml
10% SDS	0.05 ml

dH2O	2.65 ml
add just before use:-	
10% APS	0.05 ml
TEMED	0.005 ml

- 4. 10mls of the resolving gel for 1 sheet and 5mls of the loading gel
- 5. before pouring on the resolving gel put in combs an mark 0.5cm below this to show how far to fill it.
- 6. Pour in resolving gel the pour on isopropanolol to a depth of 2mm to make the gel flat
- 7. When set (can tell this by the part left in the universal container) pour off isopropanolol and then add a small amount of water to clean it out. Use blotting paper to get rid of any moisture
- 8. Pour on stacking buffer and put in combs, allow to set
- Take off clips and sealing gel from bottom, put into tank with windows inwards. Tighten so 10x buffer will stay in the central chamber.
- 10. denature proteins at 96 degrees for 3 mins then put on ice
- 11. load gels and a ladder (protein)
- 12. fill tank to cover electrodes with 1% SDS buffer solution, 100v until moved through stacker then 120v to see a good band

To transfer

- 13. Put gel in CAPS solution for 15-20 mins to equilibrate
 - a. 100ml 10x CAPS
 - b. 800 ml water
 - c. 100ml methanol
- 14. equilibrate membrane
 - a. 30 seconds methanol
 - b. 2 minutes in shaker
 - c. 1x CAPS for 10 minutes
- 15. soak sponges in CAPS
- 16. make up transfer order
 - 1. pad
 - 2. filter paper
 - 3. gel
 - 4. membrane
 - 5. filter paper
 - 6. pad
- 17. transfer in CAPS solution for 45mins at 50volts
- 18. place membrane on filter paper and dry

Immunodetection

- 19. Incubate filter paper with primary antibody in a blocking buffer (5% dried milk, 0.01% tween-20 in PBS) for 1 hour rocking
- 20. rinse with PBS quickly then 3 x 5minute washes with PBS on rocker
- incubate with secondary antibody (peroxidase conjugate) diluted 1:10000 in blocking buffer for 30 minutes on rocker
- 22. quickly rinse with PBS and then 3x 5 minute washes with PBS on rocker
- 23. detect antibody using ECL
 - a. make 1:40 dilution of reagent B: reagent A
 - b. pipette directly onto membrane
 - c. leave for 5 minutes and then dab off excess
 - d. cover with cling film
- 24. in a dark room expose x-ray film to membrane varying length from 30 seconds to 10 minutes

Chapter 3

Identification of the causative gene for

Phenotypic Diarrhoea of Infancy

Contents

- 3.1 An overview of inherited congenital diarrhoeas and hepatic involvement
- 3.2 A literature review of phenotypic diarrhoea of infancy and the reported clinical features
- 3.3 Clinical features of a novel PDI cohort
- 3.4 The identification of a genetic locus for PDI using autozygosity mapping
- 3.5 Gene expression microarray analysis of PDI patients
- 3.6 Direct sequencing of genes within the PDI locus
- 3.7 Mutation identification in *TTC37*
- 3.8 *in silico* analysis of *TTC37*
- 3.9 Further investigation of *TTC* 37

3.1 An overview of inherited congenital diarrhoea and hepatic involvement

An estimated 5.6 million children die per year from malnutrition with diarrhoea being a major contributory factor (Moszynski, 2006). The development of oral rehydration solution in 1970's revolutionised the management of outbreaks of infective diarrhoea (Fonatine *et al*, 2007) and the charity Medicins Sans Frontieres are now lobbying for the use of energy dense ready to use foods (such as peanut paste) to provide nutrition for those in famine stricken areas without the requirement of adding potentially contaminated water (Moszynski, 2006). These interventions manage the devastating symptoms and consequences of diarrhoea but do not prevent the occurrence or specifically treat the cause.

The genetic investigation of intestinal failure has resulted in a greater understanding of the pathways involved in gut function and pathogenesis. A genetic diagnosis aids patient management and enables prognostication. The genetic investigation of other rare causes of intestinal failure will provide further insight into the complexity of intestinal function and may further facilitate identification of potential therapeutic targets.

3.1.1 Inherited diarrhoea presenting in infancy

Phenotypic diarrhoea of infancy (PDI)

Diarrhoea presents within the first two months of life. It is associated with dysmorphic facial and hair features and a variable immunodeficiency. The phenotyping and genetic

investigation leading to the identification of the causative gene *TTC37* is the subject of this chapter.

Congenital tufting enteropathy

This is a rare (1 in 50,000-100,000 live births in Western Europe (Goulet *et al*, 2007)) autosomal recessive condition initially described in 1994 (Reifen *et al*, 1994). It presents in the neonatal period with diarrhoea, failure to thrive and electrolyte disturbance. Prolonging life and nutrition can only occur through the use of parenteral nutrition which may be required life long. The histology of the intestine is abnormal with epithelial cell dysplasia, villous atrophy without any inflammatory component. Using the technique of autozygosity mapping in one Mexican-American consanguineous family in which two second cousins are affected, the gene for congenital tufting enteropathy was identified (Sivagnanam *et al*, 2008). The epithelial cell adhesion molecule (*EpCAM*) is at 2p21 and is comprised of two different transcripts with the largest consisting of 10 exons. *EpCAM* is expressed throughout the intestine and also in intestinal carcinomas where it acts as a calcium independent adhesion molecule and is being investigated as a potential immunomodulatory target for cancer treatment (Varga *et al*, 2004).

Congenital chloride diarrhoea

The diarrhoea in this condition has a high concentration of chloride. The gene was identified to be the Down-regulated adenoma gene (*DRA*) also known as *SLC26A3* (Hoglund *et al*, 1996). The protein encoded by this gene is a transmembrane glycoprotein which exchanges bicarbonate with chloride mainly in the lower intestinal tract. The

97

reduction in bicarbonate exchange results in systemic alkalosis. The gene consists of 21 coding exons and is located at 7q31 and is adjacent to *CFTR* which is mutated in cystic fibrosis.

Microvillus inclusion disease (MVID)

There is a bimodal presentation of MVID with one group presenting in the neonatal period and another group presenting at 3-4 months of age. The diarrhoea is severe requiring parenteral nutrition to maintain life. Interestingly this congenital diarrhoea may improve allowing reduction and even discontinuation of nutritional support in older children. The histological features are diagnostic with shortened or absent apical villi and inclusions seen on electron microscopy. There is accumulation of PAS positive granules. The gene was identified using autozygosity mapping in a single consanguineous family from Turkey with two affected children who were first cousins (Muller *et al*, 2008). The region of interest contained 79 genes and *MYO5B* was considered a candidate gene as previous phenotyping of the condition showed a deficiency of myosin in the brush border in children with MVID (Carruthers *et al*, 1985).

Congenital sodium diarrhoea (CSD)

This abnormality of sodium-proton exchange of the brush border of the intestine, results in diarrhoea with excessive sodium loss and serum acidosis. It may present in the antenatal period with polyhydramnios and oedematous intestine (Koh *et al*, 1998). The severity varies with some reports of resolution of symptoms (Fell *et al*, 1992). The known sodium-proton exchange genes have been investigated and no mutations have been

98

identified (Muller *et al*, 2000). *SPINT2* has recently been identified using autozygosity mapping techniques in a syndromic form of CSD (associated with hypertelorism, corneal erosions and anal or choanal atresia (Heinz-Erian *et al*, 2009)).

IPEX syndrome

Immundysregulation, polyendocrinopathy, enteropathy X-linked syndrome is caused by mutations in foxhead box P3 (*FOXP3*) (Bennett *et al*, 2001; Wildin *et al*, 2001). The gene was first identified using an animal model approach. The Scurfy mouse was found to have similar symptoms to that found in children with IPEX syndrome. The gene was identified in the mouse to be *Foxp3* (Brunkow *et al*, 2001) and the human ortholog was identified with mutations identified in children with IPEX syndrome. The syndrome develops due to a lack of regulatory T-cells.

Congenital enteropeptidase deficiency

Enteropeptidase is found on the brush border of the proximal small intestine. The serine protease activity is essential to cleave trypsinogen to an active form. *PPRS7* is at 21q21.1 and consists of 27 coding exons (Holzinger *et al*, 2002).

Congenital glucose-galactose malabsorption

Sodium-glucose cotransporter gene (*SGLT1*) has been identified as being mutated in this severe diarrhoeal disease which presents in the neonatal period when fed glucose, lactose and galactose. The mutations are predicted to cause truncation of the protein and loss of function (Martin *et al*, 1996). The histology of the intestine is normal.

Congenital lactase deficiency

This severe diarrhoea is rare worldwide but with an increased incidence in Finland of 1 in 60,000 (Norio, 2003). The diarrhoea presents when the infant takes lactase containing milk and is due to mutations in *LCT* (Kuokkanen *et al*, 2006). Hypercalcaemia and nephrocalcinosis can also occur in this condition (Saarela *et al*, 1995).

Junctional epidermolysis bullosa and pyloric atresia

This congenital diarrhoea is due to the desquamation of the epithelium of the small intestine. The skin is usually severely affected and is often the life limiting symptom however cases have been reported where there is no skin involvement but diarrhoea and pyloric atresia only (Salvestrini *et al*, 2008). In this case the association of pyloric atresia led to the investigation of the epidermolysis genes and mutations were identified in *ITGB4*. The histology showed abnormal IgG at the intestinal basement membrane. *ITGB4* is an integrin which mediate cell-cell or cell-matrix adhesion and *ITGB4* is specifically a receptor for laminins. It is an important gene in the development of intestinal carcinoma (Sashiyama *et al*, 2002).

Mitochondrial respiratory chain complex deficiency

Single case reports have described chronic diarrhoea with villous atrophy in infancy due to mutations resulting in mitochondrial complex I or complex III deficiencies (Cormier-Daire *et al*, 1994).

Cerebrotendinous xanthomatosis (CTX)

CTX is characterised initially by presenile cataracts, chronic diarrhoea and xanthoma formation especially over tendons (the Achilles is the most common) and progresses to involve the nervous system with cerebellar ataxia, spinal cord paresis and dementia. The condition is easily treated in the early stages by supplementing with chenodeoxycholic acid and therefore it is important to diagnose early. The gene for this condition was identified following the investigation of the cholesterol synthesis pathway showing that in these patients there is reduction in 27 sterol which is encoded by *CYP27A* (Skrede *et al*, 1986; Cali *et al*, 1991).

Carbohydrate deficient glycoprotein (CGD)

Diarrhoea can present at any age in CDG although typically it is infancy. In type 1 is associated with neurological features and facial dysmorphism however in infants this may not be prominent and the child may present with gastrointestinal or hepatic involvement. Up to 66% have hepatic fibrosis in childhood, others have steatosis and bile duct hamartomas have also been reported (Damen *et al*, 2004). There is a deficiency of glycosylation of serum and other glycoproteins. The diarrhoea is due to a protein losing enteropathy. The gene for CDG Ib is *MPI* and consists of 7 coding exons.

Immunodeficiency

All forms of immunodeficiency may present with diarrhoea and is commonly one of the presenting features of an immunological disease. For some this will be due to susceptibility to infection whilst in others diarrhoea is part of the pathogenesis.

101

Motility and multifactorial disorders resulting in infantile diarrhoea

The above is not a comprehensive list of causes of intestinal failure but those disorders in which a genetic aetiology has been characterised or is very clearly the case. Many other disorders result in intestinal failure in which the genetic involvement is complex and the aetiology multifactorial. For example in Hirschsprungs Disease, an abnormality in the innervation of the bowel resulting in varying lengths of aganglionosis, more than 16 genes have been associated with the disease, which may indicate the complexity of the embryological development of the intestine. Pseudo obstruction in which the muscle component of the intestine is affected is also likely to have a genetic component which has not yet been delineated. In others environmental factors play a role e.g. gastroschisis and necrotising enterocolitis but a genetic component is likely.

3.1.2 Hepatic involvement in congenital diarrhoea

The liver may or may not be involved in the primary pathological process. In PDI excessive iron accumulation can result in liver failure and in CGD Ib hepatic fibrosis may be present at diagnosis leading to portal hypertension and the development of varices. The liver may be involved in immunodeficiency secondary to hepatic infection such as with cytomegalovirus or cryptosporidium, or through the drug therapies used to treat the conditions. In CTX the enzyme deficiency in the cholesterol synthesis pathway is in the hepatocytes however the liver remains histologically and functionally normal.

Congenital diarrhoeas result in intestinal failure with huge water loss, electrolyte imbalance and malnutrition. Without parenteral nutrition (PN) these infants will die.

102

Long term PN can have deleterious effects on the liver with infants developing intestinal failure associated liver disease (IFALD) (Carter and Karpen, 2007). Cholestasis develops and the liver becomes fibrotic with portal hypertension developing. The onset of IFALD is variable but is influenced by the amount of enteral feeding which is being concurrently given, infections of central venous catheters and also the formulation of the PN itself (Diamanti, 2008). For those whose liver disease progresses and the intestinal failure remains, a small bowel and liver transplant is required (Mazariegos *et al*, 2008). When a small bowel and liver transplant are considered it is essential to have a precise diagnosis as to the cause of the intestinal failure so to understand the long term prognosis of intestinal function. Mutation identification results in a specific diagnosis and aids specific and tailored clinical management of the child.

3.2 A literature review of phenotypic diarrhoea of infancy and the reported clinical features

3.2.1 Introduction

PDI is a rare cause of congenital diarrhoea with an estimate incidence of 1 in 300,000-400,000 in Western Europe although this may be higher in areas in which consanguinity is frequent.

Within the literature the syndrome has been labelled by three different names which demonstrate the multisystem involvement of the syndrome. The names used have been

- Phenotypic diarrhoea of infancy (PDI)
- Syndromic diarrhoea
- Tricho-hepatic-enteric syndrome (THE syndrome) (OMIM %222470)

For this thesis the name used throughout is phenotypic diarrhoea of infancy (PDI).

The syndrome was first reported by Stankler et al. in 1982, in which two siblings from non consanguineous union with unusual facies and abnormal scalp hair who developed unexplained diarrhoea causing dehydration, malnutrition and death. Post mortem findings included normal histology of the intestine and a cirrhotic liver.

Over a 27 year period a total of 25-27 PDI cases have been reported in 9 papers and the clinical findings described.

This chapter is an overview of the published literature on PDI and collates the reported clinical findings.

3.2.2 Stankler *et al*, 1982

This was the first published case report of siblings who had features of what is now known as PDI. The reported children were the second and third pregnancies of healthy non consanguineous parents, with the first pregnancy having resulted in an anencephalic still birth with severe spinal rachischisis.

The first affected infant developed diarrhoea aged 15 days and died aged 33 days from malnutrition. The child had facial features of low-set ears, prominent eyes, broad flat nose and large mouth. The post mortem showed massive intestinal haemorrhage. Other findings were thymic atrophy, abnormal lobulation of the lungs and an increased number of Islets of Langerhans. The intestinal histology was normal. The liver was found to be coarsely lobulated with bile staining and haemorrhage. Histologically the liver was extensively fibrotic with bile duct proliferation, occasional giant cells and regenerative parenchymal nodules. There was haemosiderosis of the liver, exocrine pancreas and thymus. The second child had similar facial features and developed diarrhoea aged 15 days. Death from malnutrition occurred aged 87 days and the post mortem findings were similar to that of the sibling. Differences were normal lung formation and the development of microcortical renal cysts in the second child.

The abnormal woolly hair was extensively investigated. On light microscopy many abnormal features were identified and included pili torti, partial and complete breaks in the hair and trichorrhexis nodosa. On electron microscopy the hair showed abnormal bud

105

like appearances and termed trichorrhexis blastysis. The amino acid composition of the hair demonstrated low cystine and proline, and a raised aspartate and leucine whilst that of the parents was normal.

The authors concluded this was the first presentation of a previously unrecognised syndrome.

3.2.3 Girault *et al*, 1994

In 1994 the first case series of PDI was published and consisted of 8 patients. They were all born small for gestational age with the typical facial features and trichorrhexis nodosa. The onset of diarrhoea was extremely variable between 6 days and 6 months although the majority were in the first 2 months of life. All the children required parenteral nutrition (PN) to maintain life of which two were able to stop with improved enteral feed tolerance. All the children had moderate to severe villous atrophy on initial biopsies and two also had inflammation of the lamina propria. None of the children responded to immunisations and in contrast to subsequent publications none of this series had low serum immunoglobulins. Liver fibrosis was detected in two patients prior to the onset of PN and two other children died of cirrhosis after receiving PN. Three children had mental retardation.

3.2.4 Verloes *et al*, 1997

This paper described two siblings born to non consanguineous parents who had the typical facial and hair appearance of PDI. The first had progressive liver disease thought to be secondary to PN whilst the second child had liver dysfunction from birth. Both

106

children died, the first from liver failure and sepsis and the second from CMV infection following liver transplant. At post mortem of the first child and explant examination of the second child, the liver was found to be severely iron over loaded. It was most severe in the hepatocytes but was also found in the Kupffer cells, biliary epithelium and portal macrophages. Extrahepatic iron was prominent in the thyroid, adrenal cortex, pancreas and pituitary glands in the first child but the thyroid was spared in the second. There was no iron in the reticuloendothelial system including the spleen. The distribution of iron is similar to that found in neonatal haemochromatosis.

The authors concluded that this syndrome is a form of neonatal haemochromatosis due to the iron overload of the liver and the distribution of extrahepatic iron sparing the reticuloendothelial system.

3.2.5 Goulet *et al*, 1998

This paper is a review of all infants with intractable diarrhoea and reports 6 of the 8 children presented by Girault as well as 2 new children with PDI which may be included in the paper by Martinez-Vinson. No new clinical findings were identified.

3.2.6 de Vries *et al*, 2000

In this single case report a child developed diarrhoea aged 5 weeks. He had intrauterine growth retardation, weighing 1345g at 35 weeks gestation. He had tetrology of Fallot. He required parenteral nutrition to maintain nutrition. He also had mild mental retardation. He underwent extensive immunological investigation. Cell mediated immunity and T lymphocytes were normal. Humoral immunity was found to be abnormal with low IgG and poor antibody specific response to tetanus and pneumococcal immunisations. Immunoglobulin electrophoresis showed oligoclonal gammopathy in IgM, IgG1K, IgA1K and IgA2K. The gammopathy improved after the administration of IgG and also

with improvement in the child's general clinical condition.

The patient in this case report consented to be included in this genetic research to identify the gene for PDI.

3.2.7 Landers and Schroeder, 2003

This single case report was published in *Pediatric Dermatology* to emphasise the abnormal hair findings. This child had the typical facial appearance of PDI. The hair had trichorrhexis nodosa on every shaft. Severe diarrhoea started at 2 weeks of age and the child required parenteral nutrition. The histology of the bowel at two months of age showed subtotal villous atrophy and focal inflammation however on subsequent biopsies was normal. She developed elevated hepatic transaminases and hepatomegaly. A liver biopsy revealed cirrhosis and mild periportal inflammation. She had difficulties with fine motor movements and had mental retardation. The child had recurrent infections however the immunoglobulin levels were consistently normal although the total T and B cell levels were low.

The authors concluded that dermatologists should be aware of this condition as they may be referred patients with PDI due to the hair findings.

108

3.2.8 Teitelbaum *et al*, 2004

A poster at the American Society of Human Genetics conference 2004, presented two siblings with facial features in keeping with those described by Stankler et al. In these siblings the iron content of the organs was investigated using MRI. This identified increased iron deposition within the liver and thyroid but not elsewhere in the body. In both children the platelets were enlarged and further investigations showed canalicular dilatation, vacuolation, abnormal granule content and in the second sibling a complete absence of microtubules.

The family consented to the use of DNA from both siblings for this genetic research.

3.2.9 Barabino *et al*, 2004

This report follows up on one patient reported by Girault and also presents a new case. The follow up patient in the initial series remained dependent on PN aged 5 years however full enteral feeding was established at 6 years although intestinal absorption still remained difficult. The child had short stature and delayed puberty. The new child had a milder form of PDI. She presented with the same facial dysmorphism and hair findings and had severe diarrhoea from age 15 days. The intestine improved and PN was discontinued aged 1 year. She continued to have episodes of diarrhoea but otherwise was well. She had elevated IgA but no other immune dysfunction identified. She had short stature but normal pubertal development

3.2.10 Martinez-Vinson *et al*, 2005

A poster at the European Society of Pediatric Gastroenterology, Hepatology and Nutrition conference in 2005 described 8 children with syndromic diarrhoea. Despite coming from the same institution as Girault, the series was said to be novel. In this series all the typical clinical features of PDI were identified. Encouragingly 7 of the 8 patients were alive at the time of publication which may indicate better medical care of children on long term parenteral nutrition and the treatment of infections.

3.2.11 Dweikat *et al*, 2007

This case reports a child born to consanguineous parents who had all the features previously described and suggested it may be an inherited condition.

3.2.12 Fabre *et al*, 2007

This reports two cases of PDI. The clinical features are those already published but highlights THE syndrome and syndromic diarrhoea are the same disease entity and there is some heterogeneity between the liver findings.

The authors suggest that the clinical findings which are diagnostic are

- Characteristic facial dysmorphism
- Woolly hair
- Severe diarrhoea requiring parenteral nutrition
- Intra-uterine growth retardation
- Immunodepression

3.2.13 Egritas *et al*, 2009

This single case report is of a mildly affected patient who only presented aged 4 years with diarrhoea since birth and failure to thrive. She had the typical facial and hair features of PDI. Histology of the colon showed mild colitis with cryptitis and cryptic abscesses which has not been a typical feature of this condition previously.

3.2.14 Fabre *et al*, 2009

This is the first paper looking at the potential genetic cause of PDI. The cohort of patients studied consisted of 8 affected children from 7 families in which 4 were consanguineous. 7 candidate genes were selected by their known function. *EGFR* which encodes the epidermal growth factor receptor, *HRAS* which encodes a Rho-GTPase involved in the MAP-kinase pathway and is mutated in Costello syndrome (mental retardation with skin and hair anomalies), *JUP* and *DSP* which encode proteins within the desmosome (an intracellular adhesive junction involved in many different tissues). *CTNNB1*, *EPPK1* and *PLEC1* were also investigated. All genes were sequenced and no germline mutations identified.

3.2.15 Summary of published clinical features of PDI

Table 3.2.1 a,b,c provides a summary of the published clinical findings. From the published material a maximum of 29 patients with PDI (also called THE syndrome and syndromic diarrhoea) have been reported since 1982. The number of reported affected children is likely to be inaccurate due to the reporting of numerous series from the same institution and therefore likely to represent the same patient cohort.

The facial and hair dysmorphism are a constant finding. The onset of diarrhoea varies hugely from day 1 to 168 days. In all children there was failure to thrive and it may be the later diagnosis reflects less severe diarrhoea and therefore was not initially identified. Villous atrophy was seen on small bowel biopsies but no other diagnostic features were identified on histopathology examination. In 24 patients development had been assessed. Half had mild learning difficulties (12 patients), 1 child had features of autism and one child had difficulties with fine motor movements and learning difficulties. The other children were reported to have normal development. Mild developmental delay may be secondary to prolonged hospitalisation, being physically attached to continuous infusions and recurrent infections and not necessarily part of the clinical phenotype of PDI. Three different heart defected were identified (atrial septal defect, ventricular septal defect and tetrology of Fallot).

In 18 children the liver was commented on. In all of these cases there was fibrosis or cirrhosis. In 4 of these cases excessive iron was noted. Excess iron was also identified in the pancreas, thymus, spleen, thyroid, adrenal glands, kidneys, Langerhans cells and pituitary gland.

The immune system was commented on in 24 cases. Of these, 18 had poor response to vaccinations. 8 were also reported to have low immunoglobulins however this appeared to improve with time and led to the development of monoclonal gammopathies. One child was reported to have normal immunity and one had an isolated increased IgA. Of the 29 children reported 13 were reported to have died. This includes the initially reported 2 siblings who did not receive PN. The others died between 6 months and 5 years. 5 died

112

secondary to liver complications including one child following a liver transplant. The others died secondary to infection.

Paper	Year	Consanguineous parents	Birth weight	Gestation	Day diarrhoea diagnosed	Small bowel histology	PN required	Broad flat nose	Hypertel -orism	Low set ears	Woolly hair
Stankler	1982	no	1680	38	17	normal		Yes	Yes	Yes	Yes
Statikiel	1902	no	1620	39	15	normal		Yes	Yes	Yes	Yes
de Vries	2000	no	1345	35	35	moderate villous atrophy. Variable mononuclear cellularity of lamina propria	Yes	Yes		Yes	No
Landers	2003	yes		40	14	subtotal villous atrophy with focal inflammation	Yes	Yes	Yes	Yes	Yes
		no	2100	34	168	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
		no	1520	37	21	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
		no	1480	37	6	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
		no	1940	40	14	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
Girault	1994	no	2670	40	21	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
		no	1180	35	56	moderate to severe villous atrophy. Increased mononuclear cells in the lamina propria	Yes	Yes	Yes	Yes	
		yes	2000	40	42	moderate to severe villous atrophy	Yes	Yes	Yes	Yes	
		yes	1950	39	10	moderate to severe villous atrophy. Increased mononuclear cells in the lamina propria	Yes	Yes	Yes	Yes	

Table 3.2.1 part a: the demographics, birth details, facial and hair findings and intestinal histology of published cases

Paper	Year	Consanguineous parents	Birth weight	Gestation	Day diarrhoea diagnosed	Small bowel histology	PN required	Broad flat nose	Hypertel -orism	Low set ears	Woolly hair
Teitelbaum	2004	no		40		not diagnostic	Yes	Yes	Yes	Yes	Yes
Telleibaum	2004	no		40		not diagnostic	Yes	Yes	Yes	Yes	Yes
		yes	small		within 1 month	severe villous atrophy	Yes	Yes	Yes	Yes	Yes
		yes	small		within 1 month	severe villous atrophy	Yes	Yes	Yes	Yes	Yes
		yes	small		within 1 month	partial villous atrophy	Yes	Yes	Yes	Yes	Yes
Martinez-	0005	no	small		within 1 month	partial villous atrophy	Yes	Yes	Yes	Yes	Yes
Vinson	2005	no	small		within 1 month	partial villous atrophy	Yes	Yes	Yes	Yes	Yes
		no	small		within 1 month	partial villous atrophy	Yes	Yes	Yes	Yes	Yes
		no	small		within 1 month	partial villous atrophy	Yes	Yes	Yes	Yes	Yes
		no	small		within 1 month		Yes	Yes	Yes	Yes	Yes
	1007	no	1410	34	7		Yes	Yes	Yes	Yes	Yes
Verloes	1997	no	1860	37	7	villous atrophy	Yes	Yes	Yes	Yes	Yes
Dweikat	2007	yes	3250	40	50	flattened villi	Yes	Yes	Yes	Yes	Yes
Quality	4007	no	1400	37	6		Yes				
Goulet	1997	no	1760	39	10						
		no	1240	32		total villous atrophy		Yes	Yes		Yes
Fabre	2007	yes	2200	40	1	moderate non specific inflammation	Yes	Yes	Yes		Yes
Egritas	2008	no	1600	32	84	normal duodenum	No	Yes	Yes		Yes
Barabino	2004	no	1800	40	15	normal	Yes	Yes	Yes		Yes

Table 3.2.1 part b: the hair histology, development, cardiac abnormalities, pancreas and liver histology of published cases

Paper	Hair histology	Development	Heart	Pancreas	Liver
Stankler	Trichorrhexis nodosa		normal	Islet cell hyperplasia	Extensive fibrosis, bile duct proliferation, occasional giant cells and regenerative parenchymal nodules.
	Trichorrhexis nodosa		normal	Islet cell hyperplasia	Extensive fibrosis, bile duct proliferation, occasional giant cells and regenerative parenchymal nodules.
de Vries	Normal	mild mental retardation	tetrology of fallot		
Landers	Trichorrhexis nodosa	difficulty with fine motor movements and learning difficulties			Cirrhosis with mild periportal inflammation
	Trichorrhexis nodosa	normal	normal		Cirrhosis
	Trichorrhexis nodosa	normal	normal		Cirrhosis
		normal	normal		
Circult		mental retardation	normal		
Girault		normal	normal		
	Trichorrhexis nodosa	mental retardation	normal		Cirrhosis
	Trichorrhexis nodosa	mental retardation	normal		Cirrhosis
	Trichorrhexis nodosa	normal	normal		
	Trichorrhexis nodosa		VSD	normal	Fibrosis
Teitelbaum	Trichorrhexis nodosa		normal		Fibrosis

Paper	Hair histology	Development	Heart	Pancreas	Liver
		mental retardation	normal		Cirrhosis
		mental retardation	normal		Cirrhosis
		mental retardation	normal		Cirrhosis
Martinez-		mental retardation	normal		
Vinson		mental retardation	normal		
		mental retardation	normal		
		mental retardation	normal		
		normal	normal		
) (anla an	Trichorrhexis nodosa	normal	ASD	Islet cell hyperplasia	Cirrhosis, severe cholestasis with rosetting, ductular proliferation, giant cells and extramedullary hematopoiesis. Severe iron deposition
Verloes	Trichorrhexis nodosa	normal			Hepatic dysfunction from birth. Cirrhosis, severe cholestasis with rosetting, ductular proliferation, giant cells and extramedullary hematopoiesis. Severe iron deposition
Dweikat	Trichorrhexis nodosa	normal	normal		Portal oedema and fibrosis. Marked deposition of iron
Goulet					
	Trichorrhexis nodosa		normal		Cholestasis and hepatomegaly, micronodular cirrhosis with paucity of intrahepatic ducts. No iron overload
Fabre	Trichorrhexis nodosa	mental retardation and developmental delay with mild autism	normal		Cirrhosis at 1 month of age with some iron overload (prior to PN)
Egritas		normal			Hepatomegaly with histology macrovesicular steatosis, mild to moderate mononuclear infiltrate in portal areas. No iron
Barabino	Trichorrhexis nodosa	mild impairment	normal		

Paper	Iron	Immunity	Age at death	Cause of death
Otentian	Liver, pancrease, thymus		33 days	Malnutrition
Stankler	Liver, pancrease, thymus, spleen		87 days	Malnutrition
de Vries		Low specific antibody responses vaccines. Oligoclonal gammopathy of IgM, IgG and IgA. Improvement with time		
Landers		Mildly decreased T and B cells. Immunoglobulins normal		
		No response to immunisations and immunoglobulin levels were normal or raised with a monoclonal gammopathy of IgA		
		No response to immunisations and immunoglobulin levels were normal or raised with a monoclonal gammopathy of IgA		
		No response to immunisations	38 months	Pneumonia
Girault		No response to immunisations	26 months	Sepsis
Gliadit		No response to immunisations	20 months	Pneumonia following bone marrow transplant
		No response to immunisations and immunoglobulin levels were normal or raised with a monoclonal gammopathy of IgA	26 months	Cirrhosis
		No response to immunisations	58 months	Cirrhosis
		No response to immunisations		
Teitelbaum	Liver and thyroid	Mild immunodeficiency	6 months	Sepsis and liver dysfunction
	Liver and thyroid	Mild immunodeficiency	died	

Table 3.2.1 part c: the abnormal iron distribution, the immunodeficiency and the age and cause of death in published cases

Paper	Iron	Immunity	Age at death	Cause of death
		Absence of response to vaccines and hypogamaglobulinaemia which resolved	died	Infection
		Absence of response to vaccines and hypogamaglobulinaemia which resolved		
		Absence of response to vaccines and hypogamaglobulinaemia		
Martinez- Vinson		Absence of response to vaccines and hypogamaglobulinaemia		
VIISOI		Absence of response to vaccines and hypogamaglobulinaemia		
		Absence of response to vaccines and hypogamaglobulinaemia		
		Absence of response to vaccines		
		Absence of response to vaccines		
	Liver, thyroid, adrenal cortex, pancreas and pituitary glands		6 months	Liver failure and sepsis
Verloes	Liver, adrenal glands, kidneys, langerhans cells - not thyroid		6 months	CMV hepatitis post liver transplant
Dweikat	Liver		10 months	Diarrhoea
Goulet				
Couler				
	No	Poor response to immunisations		
Fabre	No	Decreased IgA and IgG initially then an increase in IgG - monoclonal gammopathy		
Egritas		Normal		
Barabino		Elevated IgA		

3.3 Clinical features of a novel PDI cohort

3.3.1 Introduction

The identification of patients with PDI and ascertaining consent and DNA samples was the initial focus of work towards this thesis. Patients were identified by:-

- Known personally through clinical work to the investigator (JH)
- Identified as having PDI during the period of study by collaborating gastroenterologists
- The presenting of clinical features and outline of this study at the European Society of Paediatric Gastroenterology, Hepatology and Nutrition, Hepatology Summer school in Hungary 2006, by JH
- The presenting of clinical features and outline of this study at the European Society of Paediatric Gastroenterology, Hepatology and Nutrition, Young Investigators meeting, Bavaria 2006, by JH
- A poster presentation of clinical features and outline of study at British Society of Human Genetics meeting, York 2006, by JH
- A poster presentation of clinical features and outline of study at American Society of Human Genetic meeting, New Orleans 2006, by JH
- Writing to all leads clinical geneticists in the UK
- Writing to all the lead consultants in paediatric parenteral nutrition in the UK
- Writing to the correspondence of clinical cases published in the literature

Using these methods 16 patients with PDI were identified and consented for the study. Due to writing to correspondence of published case reports, three patients within this cohort had previously been reported in the literature.

In all families a unique identifying number was given and a letter to designate the person within the family.

A=father

B=mother

C=affected child

D and onwards = siblings

Table 3.3.1 provides a summary of the clinical findings of this study cohort of PDI patients.

3.3.2 Family pedigrees and clinical features

Family 1

The two affected children in this non consanguineous family were initially presented as a poster at the American Society of Human Genetics conference 2004 by Teitelbaum *et al.*

The parents were originally from a small village in India and although consanguinity was denied it is possible they may be distantly related. The two affected children were typical of PDI. Unusual features were the severity of the iron within the Kuppfer cells of the liver which contributed to death and iron was also noted in the thyroid gland. Both children were noted to have enlarged platelets and electron microscopy of the platelets was abnormal.

Family 2

This Dutch Caucasian non consanguineous family were reported in the literature by de Vries *et al* in 2000. This child had all the typical features of PDI but also had Tetrology of Fallot.

This family originated from the Mirpur region of Pakistan. The affected child has the typical features of PDI. In addition she has mild aortic insufficiency and mild ureteric reflux. She also has von Willibrands factor deficiency which has not been reported in any other affected child.

Family 4

This family are from Iraq and are Kurdish in origin. The twins are dizygotic with only one being affected. A cousin was also affected by diarrhoea and liver disease but as the family lived in the rural hills of Iraq they did not have access to investigations or medical care and the child died. Child 4C had all the clinical features typical of PDI at the time of this study however her initial presentation in the neonatal period was with an enlarged and nodular liver. She was initially investigated for infective causes of liver disease but on biopsy was found to have cirrhosis. During these investigations she had normal stools and developed diarrhoea following discharge from hospital. Despite cirrhosis the liver function has remained normal.

Family 5

This consanguineous family originate from Mirpur region of Pakistan. The father has marked vitiligo. This child has all the typical features of PDI. He also has mild pulmonary stenosis which has not required intervention.

This family originate from the Mirpur region of Pakistan. The single affected child has the typical features of PDI.

Family 7

The single affected child of this consanguineous family died aged 8 years from complications of central venous catheters. This study commenced 4 years after his death and although DNA was available and the family consented for it's use in this research project none of the other family members were available to provide DNA samples. The family originated from Pakistan and this child was the only affected in the family. He had typical features of PDI.

This multiple consanguineous family originate from Pakistan. The initial child with PDI investigated is labelled 8C and the other is known as the cousin of 8C. This family is unusual in the degree of albinism. PDI patients have been noted to have reduced pigmentation as compared to others in their families however true albinism has not been a feature. This may reflect a separate pathology in a multiple consanguineous family however the albinism seems to have occurred in both mothers who have had children with PDI and therefore may be important in the pathogenesis. Two children with albinism do not have PDI. Both affected children in this group had severe liver disease with excessive iron.

This consanguineous family originate from Italy. The parents are second cousins. This child had mild liver disease with some steatohepatitis on biopsy and no fibrosis. The immunodeficiency is similar to that found in other PDI patients with a monoclonal band of IgM and then IgG identified. This affected case is the oldest surviving in this cohort and any previously reported in the literature and is currently aged 21 years.

Family 10

This non consanguineous family are Caucasian English. The affected child was mildly affected by PDI with PN only required for 4 months. The immunodeficiency of low IgG resolved with time. Other clinical features are as those seen in other patients with PDI.

This family are non consanguineous Caucasian and originate in Italy. This child has diffuse hypopigmentation as compared to her family. She also has aortic insufficiency. She has hepatomegaly but has not had a liver biopsy. She has thrombocytopenia the cause of which is unknown.

Family 12

This family are Caucasian Flemish. The child has severe diarrhoea diagnosed aged 2 weeks and continues to require PN every night at the age of 3 years. He has mild developmental delay. He is diffusely hypopigmented. He has been noted to have thrombocytosis.

This English Caucasian family are non consanguineous. The affected child is unusual in that he has upper motor neuron signs as well as developmental delay. There is a history of birth asphyxia which may account for these findings. This may be a novel feature of PDI or these signs may indicate that this child is not the same phenotype as PDI. Again unlike the rest of the cohort this child has intermittent neutropenia but immunoglobulins are normal. There appears to be dysmotility of the gut which again has not been seen in other patients. The diarrhoea is severe and the child has required a small bowel transplant. Although this child has been included in this genetic study it is with the caveat that there are subtle differences.

This first born child of consanguineous family presented during the course of this study and had not been fully investigated for intractable diarrhoea. The child had abnormal hair with trichorrhexis nodosa and typical facies. The child had failure to thrive and was being treated with a trial of enteral feed manipulation but it was thought that he may require PN. At the time of investigation there were no immunodeficiencies identified. The liver was found to be heterogenous on ultrasound scan which may indicate there is a fibrosis

Table 3.3.1 is a tabulated summary of the clinical features in this cohort of PDI patients

										1					
Identification number	1C	1D	2C	3C	4C	5C	6C	7C	8C	9C	10C	11C	12C	13C	14C
Ethnicity	Indian	Indian	Dutch	Pakistani	Kurdish	Pakistani	Pakistani	Pakistani	Pakistani	Italian	English	Italian	Flemish	English	Pakistani
Consanguinity	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes
Family history	Sibling	Sibling	No	No	Cousin	No	No	No	Cousin	No	No	No	No	No	No
Sex	Female	Female	Male	Female	Female	Male	Female	Male	Female	Female	Male	Female	Male	Male	Male
Current age	Died 6/12	died 6/12	12 years	11 years	2 1/2 years	3 1/2 years	14 months	died 8 years	9 months	21 years	3 years	13 years	2 years	4 years	1 year
Gestation	40/40	40/40	35/40	34/40	34/40	30/40				39/40	37/40	33/40	34/40	29/40	35/40
Birth weight	IUGR	IUGR	1345g	1410g	1220g	980g				1960g	3580g	780g	1700g		1375g
Dysmorphology															
Wide forehead	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Hypertelorism	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Café au lait spots				Yes				Yes		Yes		Diffuse hypopigmentation	fair skin	Yes and general pale skin	
TN	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nutrition															
Age when PN started			7 months	1 month	2 months	3 months	1 month	5 months	1 month	1 month	4 months	1 month	2 weeks		
Current PN regime			off	5 nights	3 months	5 nights	7 nights	NA	7 nights	off	off	5 nights	7 night	7 nights	
PN stopped			3 years					did Not stop		4 years	5 months				
GI biopsies															
Villous atrophy	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Haematology															
Low immunoglobulins	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Intermittent neutropenia	No
Thrombocytosis	Yes	Yes	No	No	No	Yes	No			No	No	No	Yes	No	No
Large platelets	Yes	Yes		Yes	Yes									No	No
Liver and spleen															
Fibrosis	Yes	Yes	No	Yes	Yes	Yes				fatty changes	No	No	No	Yes	No
Haemosiderosis	Yes	Yes	No	No	No	No					No		No	Yes	
Splenomegaly	No	No	Yes	No	No	Yes				No	No		No	Yes	No
Other systems															
Cardiac anomalies	VSD	Nil	Fallots tetrology	Mild aortic insufficency	Nil	pulmonary stenosis	Nil	Nil	Nil	Nil	Nil	Aortic insufficiency	Nil	Mild pulmonary artery stenosis	Nil
Skeletal anomalies	Nil	Nil	Perthes disease	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
Renal anomalies	Nil	Nil	Small right kidney	Mild reflux	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Bilateral inguinal hernia.
Development	Unknown	Unknown	Severe delay	Delayed	Nil	Mild delay	Normal	Delayed	Nil	Nil	Mild delay	Delayed	Mild delay	Neurological impairment	Unknown

3.3.3 Hair in PDI

3.3.3.1 Normal hair

Hair is unique to the mammal and is likely therefore to be a recent development in evolution. The skin is composed of two layers, the epidermis which is derived from the embryonic ectodermal sheets, and the dermis which is formed from the mesoderm. Hair follicles have components in both layers. The first follicles begin to appear at the end of the second gestational month and hair tends to develop cephalocaudally.

Hair cells are undifferentiated in the hair bulb but as they migrate in the direction of the skin surface they form the different specialised layers of the hair (Muller *et al*, 1991). The inner root sheath cells contain an amorphous mass called trichohyalin granules (rich in arginine). During development these increase in numbers and filaments develop (rich in citrulline). The function of the sheath is unknown but may contribute to the formation of the hair shape. The inner root sheath is degraded at the level of the sebaceous duct probably due to proteolytic enzymes.

The outer layer of hair is made of flattened cuticle cells and is resistant to proteolytic digestion but can be solubilised after oxidation or reduction indicating a large proportion of cystine.

The cortex forms the largest proportion of the hair. Fibrous proteins aggregate to form fibrils and the cell elongates with the filaments in parallel. During this process of keratinisation there is a deposition of electron rich granules which disintegrates along with all of the cell organelles except for the nuclear membrane which is detectable in the centre of the keratinised cells (this is unlike keratinisation of the epidermis in which the nucleus is lost).

132

The medulla is the central core of hair. The amount of medulla varies and determines the diameter of the hair shaft. It is composed of random directional filaments and coalescent vesicles. Projections of cortical cells run between the medulla cells to separate them. The medulla may be a vestigial remnant as in humans it is none functioning whilst in other mammals it contains air to provide insulation (Messenger and Dawber, 1997). The structure of normal hair is illustrated in figure 3.3.1.

Figure 3.3.1 A schematic diagram showing a normal hair shaft.

3.3.3.2 Trichorrhexis nodosa (TN)

TN is a consistent finding in all probands with PDI. The head hair is sparse, woolly and coarse to touch. This may affect all head hairs or may be patchy with normal surrounding hair. Microscopy of the abnormal hair patches shows trichorrhexis nodosa, an abnormal break in the cuticle with cortical hair protruding as if two paint brushes are being pushed together which is illustrated in figure 3.3.2.

Figure 3.3.2 shows a hair shaft from patient 13C with typical findings of trichorrhexis nodosa which looks as if two paint brush ends are being pushed together as the cortex extrudes through the broken cuticle.

Although TN is a consistent finding in all cases of PDI it is not specific to this syndrome. An understanding of the other causes of TN may provide indications as to the underlying pathogenesis of PDI and a list of other conditions is provided in table 3.3.2

Table 3.3.2	Conditions in which trie	chorrhexis nodosa is a feature

	Clinical features	Pathology	Inheritance pattern	Gene
	Ichthyosis, intellectual impairment, decreased fertility and short stature	Nucleotide excision repair and transcription	AR	XPD
Trichothiodystropthy				XPB
				TTD-A
				TTDN1
Argininosuccinic aciduria	Hyperammonaemia resulting in encephalopathy and neurological sequelae	Urea cycle defect	AR	ASL
Conradi-Hunermann- Happle syndrome	Icthyosis, atrophoderma, splitting of nails and patchy alopecia, rhizomelic limb shortening, unilateral facial hypoplasia and scoliosis.	Abnormal sterol formation	X-linked dominant	EBP
Nethertons syndrome	Congenital ichthyosiform erythroderma, and atopic diathesis, hypogammaglobulinemia, failure to thrive, and enteropathy	Reduced serine protease inhibitor	AR	SPINK5
Menke's disease	Focal cerebral and cerebellar degeneration and seizures and kinky hair	Deficiency of copper transport	X-linked recessive	ATP7A
Bazex syndrome	Hypotrichosis, follicular atrophoderma and basal cell neoplasm development		X-linked dominant	
Laron syndrome	Short stature, delayed bone age, occasional blue sclera and hypoglycaemia	Abnormality in growth hormone receptor	AR	IGF1
Giant axonal degeneration	Polyneuropathy and kinky hair	Abnormal intermediate filament organisation	AR	GAN
Kabuki syndrome	Intellectual impairment, short stature, eversion of the lateral 1/3rd of the lower eye lid, long palpebral fissures, cleft or high arched palate, persistence of finger pads, short 5th finger, congenital heart defects, occasionally dysplastic kidneys, liver fibrosis and biliary atresia		AD	
Oculo-dento-digital dysplasia	Microphthalmia, abnormal small nose, hypotrichosis, dental anomalies, fifth finger camptodactyly, syndactyly of the fourth and fifth fingers (type III syndactyly), and missing toe phalanges	Misassembly of channels or altered channel conduction properties		GJA1
Carbohydrate deficient glycoprotein	Severe encephalopathy with axial hypotonia, abnormal eye movement, pronounced psychomotor retardation, peripheral neuropathy, cerebellar hypoplasia, retinitis pigmentosa, peculiar distribution of subcutaneous fat, nipple retraction, hypogonadism, severe infections, liver insufficiency, and cardiomyopathy.	Enzymatic defects in the synthesis and processing of asparagine (N)-linked glycans or oligosaccharides on glycoproteins	AR	PMM2

TN in normal hair: excessive weathering and use of cosmetics results in trauma to the hair and the appearance of TN. This is more pronounced in African hair. When trauma is the cause the TN it is sparse and mainly found on the extremities of the hair which is in contrast to the syndromic causes of TN when it is found throughout the hair shaft.

Trichothiodystrophy (TTD)

This is the term used to describe brittle hair with low sulphur content. On polarized light microscopy the hair shows a pattern of light and dark bands (known as tiger tail banding) as well as trichorrhexis nodosa, trichoschisis, ribboning and a reduced cysteine content. The associated anomalies from the ectodermal and neuroectodermal origins vary from fragile hair only to ichthyosis, intellectual impairment, decreased fertility and short stature (Price *et al*, 1980). Half are affected by photosensitivity but not a predisposition to cancer. The molecular abnormality is a defect in nucleotide excision repair and transcription with mutations identified in the genes *XPD*, *XPB and TTD-A* in photosensitive TTD and *TTDN1* in the non photosensitive form. Amish brittle hair-brain syndrome, Sabinas brittle hair syndrome and Pollitt syndrome (which includes mental retardation) are all forms of non photosensitive TTD.

Argininosuccinic aciduria

This urea cycle defect is due to a deficiency in the enzyme argininosuccinate lyase resulting in hyperammonaemia. All children with this condition have TN and no other hair anomalies have been described. *ASL* on chromosome 7 is the causative gene (Walker *et al*, 1990).

136

Conradi-Hunermann-Happle syndrome

This syndrome is also known as X-linked chondroplasia punctata type 2. Icthyosis, atrophoderma, splitting of nails and patchy alopecia are the clinical features. As well as the chondroplasia punctata the other skeletal findings are rhizomelic limb shortening, unilateral facial hypoplasia and scoliosis. The *EBP* gene at Xp11.22-11.23, encodes emopamil-binding protein, mutations in which result in deficiency of 3 β -hydroxysterol $\Delta 8$, $\Delta 7$ -isomerase activity and consequently abnormal sterol synthesis (Derry *et al*, 1999).

Nethertons syndrome

Both TN and trichorrhexis invaginata (bamboo hair) are seen in this condition of congenital ichthyosiform erythroderma, and atopic diathesis. Some have hypogammaglobulinemia, hypernatremic dehydration (due to transcutaneous fluid loss), failure to thrive, and enteropathy. Mutations in *SPINK5* result in a reduction of the serine protease inhibitor, LEKT1 (Chavanas *et al*, 2000).

Mitochondrial disorders

The defect of oxidative phosphorylation has a wide range of clinical presentations with the most common being neurological and muscular signs. Silengo *et al* (2003) described sparse, thin and fragile hair in 8 of 25 children, one of whom had chronic diarrhoea with recurrent infections and failure to thrive.

Menke's disease

This X-linked recessive disorder of copper deficiency is due to mutations in the gene encoding Cu(2+)-transporting ATPase, alpha polypeptide, *ATP7A*. Clinical features are due to a lack of copper required for metabolic reactions. Clinical features are predominantly neurological with focal cerebral and cerebellar degeneration and seizures. The condition is also known as 'kinky hair syndrome' with TN as well as pill torti and monilethrix. The disease is progressive and death occurs in early childhood (Chelly *et al*, 1993; Mercer *et al*, 1993).

Biotin deficiency

This may result in the formation of TN which is reversible with biotin supplementation. In those with other causes of TN (Menkes, argininosuccinic aciduria and Pollit syndrome) biotin supplementation did not correct the hair changes.

Hypothyroidism

On microscopic examination the coarse wiry hair of hypothyroidism has TN. This is an acquired form of TN.

Other **Other**

TN has also been described in sporadic occasional cases of Bazex syndrome (Vabres *et al*, 1995), Laron syndrome (Berg *et al*, 1993), giant axonal degeneration (Bomont *et al*, 2000), Kabuki syndrome (Maas *et al*, 2007), Oculo-dento-digital dysplasia (Paznekas *et al*, 2003) and carbohydrate deficient glycoprotein (Imbach et al, 1999).

3.3.3.3 Amino acid composition of the hair from PDI patients

Due to the finding of TN in all patients with PDI I hypothesised there may be an abnormality of the hair which is either specific for PDI or the amino acid composition would provide an indication as to the underlying pathogenesis of PDI.

I contacted Dr R Pollitt, Sheffield Children's Hospital, who had previously carried out the hair analysis in the original PDI paper by Stankler *et al*, who carried out the analysis. *A specimen of hair was hydrolysed in a sealed tube with hydrochloric acid to denature the proteins and the amino acids then examined by electrophoresis prior to being measured quantatively on an amino acid analyzer.*

Amino acid analysis of hair from two of the children showed reduced cystine. This is a constant finding in hair that is morphologically abnormal. The sulphur bonds between the cystine aids structural stability, so when reduced leads to the formation of trichorrhexis nodosa. Other sulphur rich amino acids are also reduced – serine and proline. Aspartate, glutamate and leucine are increased. These findings are comparable to those of trichothiodystrophy. Although trichorrhexis nodosa is seen in trichothiodystrophy the constant finding of tiger tail banding is not present in PDI patients. A bar chart of the results is shown in table 3.3.3.

Table 3.3.3 The amino acid composition of PDI hair. For each amino acid there a four bars shown. Normal hair composition is

bar 1, trichothiodystrophy is shown in bar 2 and the amino acid composition of patients 3C and 4C are shown in bars 3 and 4.

Amino acid composition of hair

3.3.4 Investigation of platelet structure and function

During initial investigation into the cause of the diarrhoea and immunodeficiency in siblings 1C and 1D the platelets were examined. The initial blood film showed enlarged platelets. This is not a common feature to all affected with PDI but has subsequently been identified in three other children, 3C, 4C and 5C at the time of central venous line infection. There is no clinical indication that there is either a bleeding diathesis or a hypercoagulable state.

Figure 3.3.3 A schematic drawing of the normal morphology of a platelet.

Alpha granules contain platelet derived growth factor, platelet factor 4, factor V and XIII, and fibrinogen and vWF (Holmsen, 1994). Alpha granules within the platelet are shown in figure 3.3.3.

During platelets activation the alpha granule contents are centralized and then the contents are discharged into the open canalicular system for release into the exterior. ADP, epinephrine and TXA 2 stimulation can cause release of alpha granules as well as collagen (Ciferri *et al*, 2000).

P-selectin is an alpha granule specific protein to which there is a monoclonal antibody.

Storage pool disorders may be restricted to platelets and cause mild haemostasis defects or be part of a systemic syndrome of defective granule assembly and packaging. Delta storage pool disorders appear to be autosomal recessive. They can also be an acquired disorder – SLE (causes premature release of granules induced by circulating immune complexes), myeloproliferative disorders, myelodysplasia and acute leukaemia.

Grey platelet syndrome is a possible inherited defect in the secretion of alpha granules. In this condition there are few alpha granules seen and in the place in the cytoplasm are vacuoles (Smith *et al*, 1997).

Actin and myosin are the major platelet proteins which for a 3D network throughout the cytoskeleton. Shorter actin fibers in 2D retain the discoid shape of the platelets. Surrounding the organelle zone is a membrane system which invaginates into the platelets membrane therefore known as the open canalicular system (OCS) and creates increased amount of membrane during activation (Berry *et al*, 1989).

142

3.3.4.1 Morphology of platelets from PDI patients

Five children (1C, 1D, 3C, 4C and 5C) of 10 patients evaluated were noted intermittently to have enlarged platelets on light microscopy of blood films. Platelets from patients 1C and 1D at the time of platelet enlargement and patient 4C when the platelets were of a normal size were examined by thin section transmission electron microscopy (TEM) (work carried out by Prof W Kahr, Children's Hospital, Toronto). Blood was available for the investigation of the structure of platelets by electron microscopy as previous described¹⁷, in three patients (1C, 1D and 4C). 3.2% citrate anticoagulant blood was centrifuged (150g for 20 minutes) to obtain platelet rich plasma (PRP). PRP was fixed with 2.5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA) in PBS pH 7.4 at $4^{\circ}C$ for 1 hour. Platelets were washed with 0.1M phosphate buffer (pH 7.4), followed by dH_2O . Platelets were then postfixed with 2% osmium tetroxide, dehydrated in graded acetones and embedded in Epon (Electron Microscopy Sciences). Thin sections were examined with JEOL JEM-1011 electron microscope with uranyl acetate and lead citrate staining (Electron Microscopy Sciences) Digital images were captured with a side mounted Advanced Microscopy Techniques (AMT) Advantage HR CCD cameras (Advanced Microscopy Techniques Corp., Danvers, MA).

Figure 3.3.4 shows the transmission electron micrographs of a representative normal platelet (A) and of platelets from 3 different PDI patients (B-D). The black bar represents 500nm. Normal α -granules (white arrowheads) are observed in the control platelet (A) and occasionally in a PDI patient (B) but are frequently absent in PDI platelets (C, D). Whereas the membrane surface–connected canalicular system appears normal in control platelets (A, arrow) it was disrupted, with prominent tubules and small membranous vesicles, in PDI platelets (B-D, arrows). Lipid inclusions were frequently observed in PDI platelets (B, black arrowheads). Electron-dense lysosomal bodies fused with an α -granule were often seen (C, arrowhead).

3.3.4.2 Investigation of platelet alpha granules

This work was carried out by JH under the direction of Dr B Danwood and Prof S Watson. The protocol and methods had been developed by Dr B Danwood.

Platelet aggregation was measured in response to PAR1-specific peptide (SFLLRN, Alta Bioscience, Birmingham, UK), ADP (Sigma-Aldrich, Poole, UK) and collagen (Nycomed Austria, Linz, Austria) in two patients (4C and 5C). Secretion from dense granules was measured in a dual channel lumi-aggregometer (460VS, Chronolog) (Chrono-log Corporation, Havertown, PA) using a luciferase assay that detects released ATP (Chrono-log Corporation, Havertown, PA)¹⁸. The level of expression of CD62P (Pselectin; a granule secretion indicator) was measured by flow cytometry using a specific antibody (Fluorescein isothiocyanate -conjugated anti mouse P-selectin antibody, Emfret Analytics, Wuorzburg, Germany) following stimulation by a collagen related peptide (CRP) (Dr Richard Farndale Cambridge University, UK).

Aggregation Studies results

The platelets of patients 4c and 5c showed aggregation responses to high concentrations of a peptide specific to the PAR 1 thrombin receptor (100 μ M), ADP (100 μ M) and an intermediate collagen concentration (3 μ g/ml) were similar to that of the control. The results are shown in figure 3.3.5.

Figure 3.3.5 The aggregation of platelets in the control sample and patient 4C in response to PAR, ADP and collagen.

ATP secretion from dense granules results

Secretion from dense granules was measured in the lumi-aggregometer using a luciferase assay (ATP). No secretion defect from dense granules was detected in response to any of the three agonists as measured by release of ATP. The greater secretion seen in ATP secretion for the TRAP samples can be explained by the higher platelet count – all results to these high concentrations of agonists lie within the normal range. This is shown in figure 3.3.6.

3.3.6. shows the normal secretion from dense granules from the control and patient 4C

α -granule secretion (analysed by FACS)

The level of expression of CD62P during stimulation showed 2 populations of platelets, of which one expressed P-selectin and the other did not. The level of expression in a non-aged matched control measured on the same day was within the normal range. This is shown in figure 3.3.7.

Figure 3.3.7 The abnormal release of CD62P from the alpha granules of patient 4C as compared to control. The patient showed two populations of platelets one which expresses P selectin and the other did not.

The ultrastructural analysis suggests an abnormality in platelet α -granule formation and secretion of α -granule contents. An abnormal α -granule secretion pattern was also observed with agonist-stimulated PDI platelets whereby only a subpopulation of platelets expressed P-selectin on their surface. It is likely that only those platelets containing some α -granules released their contents whereas platelets without α -granules could not. Clinically children with PDI do not have a bleeding diathesis which can be explained by the identification of two platelet populations, one of which functions normally.

3.3.5 Summary

This chapter describes 14 families of children with PDI. Of these families 10 are of consanguineous union. The clinical features of the cohort are homogeneous. Two families have additional phenotypes – 8C has maternal albinism and although hypopigmentation is seen in the other patient's albinism has not previously been seen. 13C has motor neurological features. These features have been attributed to hypoxia at delivery secondary to maternal severe acute asthma. Both of these families have been considered to have clinical PDI.

Platelet α -granule deficiencies are very rare and have only previously been described in Grey platelet syndrome (GPS) in which the molecular basis has not been elucidated (Nurden and Nurden, 2007), Quebec platelet disorder when there is abnormal break down of α -granule proteins (Haywood *et al*, 1997) and as a feature of Arthrogryposis-Renal dysfunction-Cholestasis (ARC) syndrome (MIM #208085) (Gissen et al, 2004). ARC syndrome is caused by mutations in *VPS33B* which is associated with abnormal vesicular trafficking and mislocalisation of polarised membrane proteins. As well as α -granule abnormalities, children with ARC syndrome also have diarrhoea and liver disease which overlaps with clinical features of PDI. The hypothesised role of TPR proteins in proteinprotein interactions and the shared characteristics with ARC syndrome raises the possibility of an abnormal protein localisation in PDI.

3.4 The identification of a genetic locus for PDI using autozygosity mapping

3.4.1 Chapter overview

Autozygosity mapping utilising the genetic information gained from those families of consanguineous union was used to ascertain a genetic region for investigation.

With some PDI clinical features and the α -granule abnormality similar to ARC syndrome, linkage to the ARC syndrome locus was initially sought and refuted.

A 10K SNP GWS was initially of two of the consanguineous probands identified potential regions of interest. To increase accuracy the original probands and additional affected patients then underwent a 250K SNP GWS. Regions of shared homozygosity were ranked according to length.

250K SNP GWS from other conditions were compared to the PDI GWS to identify regions of the genome which are homozygous in all and therefore unlikely to be solely pertinent to PDI.

Microsatellite markers for the largest regions of shared homozygosity were used to ascertain or refute linkage. The largest region on chromosome 19 was excluded whilst microsatellites for a region on chromosome 5 identified a critical region in all affected children from D5S1462 to D5S433 (96,406,286 – 103,990,534). With further analysis limiting it to those probands of Pakistani origin, extended the proximal region to D5S1725 (89,202,358).

150

3.4.2 Linkage to ARC syndrome locus

The investigation of clinical features in children with PDI showed some similarity to ARC syndrome. This led to the investigation of linkage to the ARC locus using microsatellite markers from D15S996 to D15S963. Table 3.4.1 shows the microsatellite marker results in patients 1C, 1D, 3C, 4C and 5C. In siblings 1C and 1D the microsatellites were of different sizes suggesting that the inherited alleles are different and therefore they are unlikely to have inherited identical copies of genes in this region (1C and 1D are reported to be non-consanguineous but the parents come from the same small village in India suggesting that they may be distantly related). None of the other probands had homozygous alleles throughout the region and in those alleles which were homozygous the marker was not fully informative.

Linkage to ARC syndrome was therefore not detected and no further investigation of this region was carried out.

		1 par	A rent	1 par	B rent		C		D cted	1 sib			A rent	3 par	B ent		C cted	4/ pare		4B parent		C cted	4 sibl			5A irent		iB rent		iC ected
D15S996		196	201	194	196	196	196	194	201	188	201			197	197	197	201	192	199		192	194	192	195	192	201	192	196	192	192
ARC 2		203	207	201	201	203	201	201	207	201	207	201	201	197	197	197	201				197	203			201	197	201	201	201	201
D15s127		142	123	123	123	142	123	123	123	123	123	131	131	131	131	131	131	130	130		130	140	130	130	124	144	124	124	124	124
VPS33B	893	342907 to 8	9366817																											
ARC 4		311	330	328	330	311	330	328	330	311	330	313	313	324	328	313	328	313	328		328	328	324	328	328	330	311	311	311	330
D15S158		98	98	98	100	98	100			98	98	98	98	98	98	98	98	82	86		82	86	82	86	98	98	98	98	98	98
D15S963		275	269	275	269	275	269	275	269	275	269	270	270	270	270	270	270								269	270	269	277	269	269

Table 3.4.1 A table showing the results of microsatellite markers at the ARC syndrome locus in 5 consanguineous probands with PDI. *VPS33B* is the gene for ARC syndrome and is shown in red. Those microsatellites which are homozygous in the affected children are shaded green.

3.4.3 Single nucleotide polymorphism (SNP) genomewide scans (GWS)

An initial 10K SNP GWS of two probands 3C and 5C both of whom are from Pakistan, identified two regions of extensive homozygosity in chromosome 19 and chromosome 5.

All the SNP GWS (10K and 250K) were carried out by L. Tee, research technician. The principle of the technique is

- Each DNA sample is quantitated using a dual beam spectrophotometer and a negligible amount is used to perform QC check
- After adaptor ligation a PCR reaction is set up to amplify 250 2000bp fragments. The resulting amplified DNA is then fragmented, denatured, and tagged using a terminal deoxynucleotidyl transferase end labelling reaction.
- Use a DNA chip with 10 or 250K different DNA sequences immobilised at different positions on the surface
- Patient DNA is hybridised to the chip
- A signal corresponding to the specific base is detected i.e. different signals for either base

I interpreted the results of all the scans.

10K SNP GWS

The interpretation of the results:-

In chromosome 19 the region spanned 23MB (16,317,260 - 39,351,986) and there were two haploidentical regions within this:-

20,152,263 - 32,869,643	12.7MB
33,176,984 - 34,722,418	1.8MB

The region on chromosome 5 was 19.2MB (86,830,251 – 106,117,493) with two haploidentical regions:-

91,111,908 - 94,499,325	3.3MB
95,851,505 - 98,085,824	2.2MB

250K SNP GWS

With further identification of PDI cases and an increased number of SNP's available on a GWS, the DNA of all consanguineous probands (including 3C and 5C) underwent a 250K SNP GWS.

Chromosome 19

In chromosome 19 the region reduced to 9.5MB (23,551,431 – 33,078,226) with proband 4C being mostly heterozygous in the region whilst the other consanguineous probands had homozygous alleles.

Chromosome 5

In chromosome 5 the region changed to 15.1MB (87,858,428 – 102,981,136). In this region all those of Pakistani origin except 8C and cousin of 8C were completely homozygous. Proband 9C, of Italian origin was also extensively homozygous. Probands 1C, 1D and 4C all had regions within this of homozygosity whilst 8C had smaller regions of homozygosity which did not correspond with the cousin. This may be due to either both 8C and the cousin having a different locus for PDI or just the cousin not having the same clinical phenotype (phenotyping in this patient was limited). Forming this region were overlapping regions of extensive homozygosity from individuals which is shown in table 3.4.2

Proband	Ethnicity	Length of homozygosity MB
7C	Pakistani	44
6C	Pakistani	34.4
5C	Pakistani	24.9
14C	Pakistani	21.5
9C	Italian	18.8
3C	Pakistani	15.1
4C	Kurdish	13.4

Table 3.4.2 shows the extent of allele homozygosity in individual consanguineous probands, which overlap so forming a common region of shared homozygosity in chromosome 5.

The haplotype of the alleles was not identical which suggests there is no common ancestor for these alleles even in those of the same ethnicity.

Chromosome 16

A new region was identified from the 250K SNP GWS on chromosome 16 which spanned 15.1MB (31,629,915 – 46,785,363) and the allele haplotypes were identical in all probands. This had not been identified on the 10K SNP GWS due to a paucity of SNP's in this region.

3.4.4 Microsatellite Markers

Microsatellite markers chromosome 19

Microsatellite markers D19S714, D19S898, D19S560, D19S568, D19S433, D19S414, D19S245 showed homozygosity in 3C and 5C so confirming the original 10K SNP GWS but the other affected consanguineous probands had only occasional allele homozygosity for these markers. The region was excluded by the identification of an identical allele haplotype in an unaffected sibling in family 4C in two fully informative markers D19s433 and D19S245. The results are shown in table 3.4.3.

Table 3.4.3 shows the microsatellite marker allele sizes for the region on chromosome 19 in all consanguineous PDI families. Highlighted green are the alleles in affected probands which are homozygous. The boxes shaded red are in an unaffected sibling in family 4 who has inherited identical alleles to the affected proband 4C in markers which are fully informative. Sib=sibling

Microsatellite markers chromosome 5

Microsatellite markers for the region on chromosome 5 confirmed linkage in all those from consanguineous union. The proximal limit was determined by 4C with heterozygous alleles at D5S1462. The distal limit was determined by 8C with heterozygous alleles at D5S409. This resulted in a critical region between 96,406,286 and 102,757,533 a region of 6.3MB. The results are shown in table 3.4.4.

		1A j	parent	1B p	arent	1C F	PDI	1D	PDI	1E	sib		3A pa	arent	3B p	rent	3C	PDI	3D :	sib		4A paren		4Bparent		4C PDI	40) sib	4E	sib		5A p	arent	5B p	arent	5C F	PDI	
NN	D5S428	252	252	257	257	252	257	252	257	252	252		248	264	248	258	248	264				253	253	245	49 253	249	245	250				250	255	250	250	250	250	250
Image: 1 Image: 1 <th< td=""><td>D5S401</td><td>192</td><td>192</td><td>194</td><td>194</td><td>192</td><td>194</td><td>192</td><td>194</td><td>192</td><td>192</td><td></td><td>192</td><td>194</td><td>192</td><td>196</td><td>192</td><td>194</td><td>192</td><td>192</td><td></td><td>192</td><td>192</td><td>192 1</td><td>94 192</td><td>194</td><td>192</td><td>194</td><td>192</td><td>194</td><td></td><td>192</td><td>186</td><td>192</td><td>192</td><td>192</td><td>192</td><td>192</td></th<>	D5S401	192	192	194	194	192	194	192	194	192	192		192	194	192	196	192	194	192	192		192	192	192 1	94 192	194	192	194	192	194		192	186	192	192	192	192	192
11	D5S1725	180	196	196	196	180	195	180	196	180	184		184	184	184	184	184	184	184	184		184	192	184	184	200	184	200	192	200		200	184	200	184	200	200	184
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <		183		191	191	183	191	183		183	180			191	191		191	191	179	191			183	199	80 199	180		180					180					
1 1							287																															
Name <																																						
91 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>204</td><td>204</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>204</td><td>200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>204</td></td<>																			204	204							_		204	200								204
Sec: Sec: <										•••																												
visical <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																				_																		
bit bit <td></td>																																						
i i	D5S495	219	219	219	219	219	219	219	219	219	219		219	219	219	219	219	219	219	219		nc	nc	219 3	19 219	219	219	219	219	219		219	219	219	219	219	219	219
vision	D5\$409	141	147	141	141	141	141	141	141	141	141		141	137	137	141	137	137	137	141		141	139	137	41 141	141	141	137	139	137		141	149	141	141	141	141	141
	D5S433	87	84	87	81	87	81	87	81	87	81		88	88	86	82	86	88				83	76	81	84 83	84	83	81				Π	62	11	74	Π	77	62
image: state in the state	D5S460	140	140	142	142	140	140	140	140	140	140		123	123			123	123						140 1	40		140	140	123	140		140	123	125	123	140	125	123
N N N N N N N N N N N N	D5S485	263	266	265	271	263	271	263	271	263	273		274	265	263	263	263	265	265	274		264	264	266	164 264	264	264	266	264	266		263	265	267	263	263	267	265
N N N N N N N N N N N N	D5S475	242	242	242	242	242	242						242	242			242	242	242	242		240	242	244	40 24	240	240	244	242	244		243	243	nc	nc	243	243	243
1 </td <td>D5S1466</td> <td>277</td> <td>289</td> <td>294</td> <td>298</td> <td>277</td> <td>298</td> <td>277</td> <td>298</td> <td>277</td> <td>298</td> <td></td> <td>281</td> <td>289</td> <td>278</td> <td>294</td> <td>279</td> <td>290</td> <td></td> <td>282</td> <td></td> <td>297</td> <td>289</td> <td>294</td> <td>97 291</td> <td>297</td> <td>297</td> <td>294</td> <td>289</td> <td>294</td> <td></td> <td>298</td> <td>278</td> <td>302</td> <td>294</td> <td>298</td> <td>302</td> <td></td>	D5S1466	277	289	294	298	277	298	277	298	277	298		281	289	278	294	279	290		282		297	289	294	97 291	297	297	294	289	294		298	278	302	294	298	302	
Image Image <th< td=""><td>D5S2501</td><td>312</td><td>312</td><td>316</td><td>309</td><td>312</td><td>312</td><td>312</td><td>312</td><td></td><td>309</td><td></td><td>324</td><td>315</td><td>315</td><td>303</td><td>315</td><td>315</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>311</td><td></td><td></td><td>324</td><td>316</td><td></td><td>316</td><td>311</td><td></td><td>313</td><td></td><td></td><td></td></th<>	D5S2501	312	312	316	309	312	312	312	312		309		324	315	315	303	315	315								311			324	316		316	311		313			
Constrained																																						
5328 63 73 73 73 73 </td <td></td> <td>125</td> <td>129</td> <td></td> <td>123</td> <td></td> <td></td> <td></td>																			125	129															123			
bit bit <td></td> <td>•</td> <td></td> <td>_</td>																											•											_
1 Stat 2 S <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td></t<>																																					_	
Norm Signer Signer </td <td></td> <td>123</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																													123									
OSCA OSC OSC <td>0004/1</td> <td>234</td> <td>232</td> <td>242</td> <td>232</td> <td>2.94</td> <td>232</td> <td>232</td> <td>242</td> <td>232</td> <td>242</td> <td></td> <td>240</td> <td>235</td> <td>233</td> <td>232</td> <td>233</td> <td>233</td> <td></td> <td></td> <td></td> <td>232</td> <td>232</td> <td></td> <td>234</td> <td>242</td> <td>131</td> <td>232</td> <td></td> <td></td> <td></td> <td>240</td> <td>233</td> <td>232</td> <td>232</td> <td>240</td> <td>232</td> <td>234</td>	0004/1	234	232	242	232	2.94	232	232	242	232	242		240	235	233	232	233	233				232	232		234	242	131	232				240	233	232	232	240	232	234
Provise Presidence Presiden																																						
Cancel and		6A j	parent	6B p	arent	6C F	PDI	6D) sib		70	PDI		8A p	arent	8B p	arent	8C	PDI		9A parei	t	9B parent	t	9C PDI		14A	parent	14B	parent	140	PDI						
25540 40 41 <	D5\$428															8B p	arent							_			14A	parent	14B	parent	140	PDI						
DSM Z <thz< th=""> Z <thz< th=""> <thz< th=""></thz<></thz<></thz<>		255	245	255	255	255	255	245	255		254	256		255	255			255	255		153	250	253	255	53 253													
bit bit <td>D5\$401</td> <td>255 192</td> <td>245 194</td> <td>255 192</td> <td>255 192</td> <td>255 192</td> <td>255 192</td> <td>245 194</td> <td>255 192</td> <td></td> <td>254 192</td> <td>256 192</td> <td></td> <td>255 194</td> <td>255 192</td> <td>192</td> <td>192</td> <td>255 194</td> <td>255 192</td> <td></td> <td>153 nc</td> <td>250 nc</td> <td>253 196</td> <td>255 194</td> <td>153 253 196 191</td> <td></td> <td>191</td> <td>193</td> <td>191</td> <td>193</td> <td>193</td> <td>193</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D5\$401	255 192	245 194	255 192	255 192	255 192	255 192	245 194	255 192		254 192	256 192		255 194	255 192	192	192	255 194	255 192		153 nc	250 nc	253 196	255 194	153 253 196 191		191	193	191	193	193	193						
bit bit <td>D5S401 D5S1725</td> <td>255 192 96</td> <td>245 194 95</td> <td>255 192 85</td> <td>255 192 93</td> <td>255 192 96</td> <td>255 192 85</td> <td>245 194 nc</td> <td>255 192 nc</td> <td></td> <td>254 192 nc</td> <td>256 192 nc</td> <td></td> <td>255 194 196</td> <td>255 192 184</td> <td>192 184</td> <td>192 184</td> <td>255 194 196</td> <td>255 192 184</td> <td></td> <td>153 nc 188</td> <td>250 nc 184</td> <td>253 196 188</td> <td>255 194 200</td> <td>153 253 196 191 188 181</td> <td></td> <td>191 192</td> <td>193 200</td> <td>191 184</td> <td>193 192</td> <td>193</td> <td>193</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D5S401 D5S1725	255 192 96	245 194 95	255 192 85	255 192 93	255 192 96	255 192 85	245 194 nc	255 192 nc		254 192 nc	256 192 nc		255 194 196	255 192 184	192 184	192 184	255 194 196	255 192 184		153 nc 188	250 nc 184	253 196 188	255 194 200	153 253 196 191 188 181		191 192	193 200	191 184	193 192	193	193						
D5544 S5 S5 S5 S5 S	D5S401 D5S1725 D5S1463	255 192 96 180	245 194 95 167	255 192 85 180	255 192 93 180	255 192 96 180	255 192 85 180	245 194 nc 167	255 192 nc 180		254 192 nc 164	256 192 nc 164		255 194 196 167	255 192 184 184	192 184 199	192 184 183	255 194 196 167	255 192 184 199		153 nc 188 187	250 nc 184 191	253 196 188 187	255 2 194 200 179	153 253 196 191 188 181 187 183		191 192 183	193 200 191	191 184 183	193 192 183	193 192	193 192						
DSM2 Q20 V30 Q20 Q20 <td>D5S401 D5S1725 D5S1463 D5S815</td> <td>255 192 96 180 287</td> <td>245 194 95 167 283</td> <td>255 192 85 180 287</td> <td>255 192 93 180 258</td> <td>255 192 96 180 287</td> <td>255 192 85 180 287</td> <td>245 194 nc 167 283</td> <td>255 192 nc 180 287</td> <td></td> <td>254 192 nc 164</td> <td>256 192 nc 164</td> <td></td> <td>255 194 196 167 283</td> <td>255 192 184 184 283</td> <td>192 184 199 263</td> <td>192 184 183 283</td> <td>255 194 196 167 283</td> <td>255 192 184 199 263</td> <td></td> <td>153 nc 188 187 279</td> <td>250 nc 184 191 287</td> <td>253 196 188 187 279</td> <td>255 2 194 2 200 2 179 2 287 2</td> <td>153 253 196 191 188 181 187 181 179 275</td> <td></td> <td>191 192 183 254</td> <td>193 200 191 262</td> <td>191 184 183 262</td> <td>193 192 183 288</td> <td>193 192 262</td> <td>193 192 262</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D5S401 D5S1725 D5S1463 D5S815	255 192 96 180 287	245 194 95 167 283	255 192 85 180 287	255 192 93 180 258	255 192 96 180 287	255 192 85 180 287	245 194 nc 167 283	255 192 nc 180 287		254 192 nc 164	256 192 nc 164		255 194 196 167 283	255 192 184 184 283	192 184 199 263	192 184 183 283	255 194 196 167 283	255 192 184 199 263		153 nc 188 187 279	250 nc 184 191 287	253 196 188 187 279	255 2 194 2 200 2 179 2 287 2	153 253 196 191 188 181 187 181 179 275		191 192 183 254	193 200 191 262	191 184 183 262	193 192 183 288	193 192 262	193 192 262						
100 107 100 100 100 <td>D5S401 D5S1725 D5S1463 D5S815 D5S2100</td> <td>255 192 96 180 287 264</td> <td>245 194 95 167 283 266</td> <td>255 192 85 180 287 264</td> <td>255 192 93 180 258 262</td> <td>255 192 96 180 287 264</td> <td>255 192 85 180 287 264</td> <td>245 194 nc 167 283 266</td> <td>255 192 nc 180 287 264</td> <td></td> <td>254 192 nc 164 246</td> <td>256 192 nc 164 246</td> <td></td> <td>255 194 196 167 283 264</td> <td>255 192 184 184 283 266</td> <td>192 184 199 263 264</td> <td>192 184 183 283 264</td> <td>255 194 196 167 283 264</td> <td>255 192 184 199 263 264</td> <td></td> <td>153 nc 188 187 279 262</td> <td>250 nc 184 191 287 262</td> <td>253 196 188 187 279 262</td> <td>255 2 194 200 2 179 2 287 2 262 2</td> <td>153 253 196 191 188 181 187 181 187 275 162 262</td> <td></td> <td>191 192 183 254</td> <td>193 200 191 262</td> <td>191 184 183 262</td> <td>193 192 183 288</td> <td>193 192 262</td> <td>193 192 262</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D5S401 D5S1725 D5S1463 D5S815 D5S2100	255 192 96 180 287 264	245 194 95 167 283 266	255 192 85 180 287 264	255 192 93 180 258 262	255 192 96 180 287 264	255 192 85 180 287 264	245 194 nc 167 283 266	255 192 nc 180 287 264		254 192 nc 164 246	256 192 nc 164 246		255 194 196 167 283 264	255 192 184 184 283 266	192 184 199 263 264	192 184 183 283 264	255 194 196 167 283 264	255 192 184 199 263 264		153 nc 188 187 279 262	250 nc 184 191 287 262	253 196 188 187 279 262	255 2 194 200 2 179 2 287 2 262 2	153 253 196 191 188 181 187 181 187 275 162 262		191 192 183 254	193 200 191 262	191 184 183 262	193 192 183 288	193 192 262	193 192 262						
D584 29 29 29 29	D5S401 D5S1725 D5S1463 D5S815 D5S2100 D5s644	255 192 96 180 287 264 95	245 194 95 167 283 266 95	255 192 85 180 287 264 95	255 192 93 180 258 262 85	255 192 96 180 287 264 95	255 192 85 180 287 264 95	245 194 nc 167 283 266 95	255 192 nc 180 287 264 95		254 192 nc 164 246 95	256 192 nc 164 246 95		255 194 196 167 283 264 100	255 192 184 184 283 266 85	192 184 199 263 264 100	192 184 183 283 264 91	255 194 195 167 283 284 100	255 192 184 199 263 264 100		153 nc 188 187 279 262 87	250 nc 184 191 287 262 96	253 196 188 187 279 262 100	255 2 194 2 200 2 179 2 287 2 262 2 100	153 253 196 191 188 181 187 185 187 279 162 262 187 101		191 192 183 254	193 200 191 262	191 184 183 262	193 192 183 288	193 192 262	193 192 262						
DSAMP HI HI HI HI H	D5S401 D5S1725 D5S1463 D5S815 D5S2100 D5s644	255 192 96 180 287 264 95	245 194 95 167 283 266 95	255 192 85 180 287 264 95	255 192 93 180 258 262 85	255 192 96 180 287 264 95	255 192 85 180 287 264 95	245 194 nc 167 283 266 95	255 192 nc 180 287 264 95		254 192 nc 164 246 95	256 192 nc 164 246 95		255 194 196 167 283 264 100	255 192 184 184 283 266 85	192 184 199 263 264 100	192 184 183 283 264 91	255 194 195 167 283 284 100	255 192 184 199 263 264 100		153 nc 188 187 279 262 87	250 nc 184 191 287 262 96	253 196 188 187 279 262 100	255 2 194 2 200 2 179 2 287 2 262 2 100	153 253 196 191 188 181 187 185 187 279 162 262 187 101		191 192 183 254	193 200 191 262	191 184 183 262	193 192 183 288	193 192 262	193 192 262						
DSS43 N <td>D5S401 D5S1725 D5S1463 D5S815 D5S2100 D5s644 D5S1462</td> <td>255 192 96 180 287 264 95 200</td> <td>245 194 95 167 283 266 95 196</td> <td>255 192 85 180 287 264 95 200</td> <td>255 192 93 180 258 262 85 200</td> <td>255 192 96 180 287 284 95 200</td> <td>255 192 85 180 287 264 95 200</td> <td>245 194 167 283 266 95 196</td> <td>255 192 nc 180 287 264 95 200</td> <td></td> <td>254 192 nc 164 246 95 196</td> <td>256 192 nc 164 246 95 196</td> <td></td> <td>235 194 196 167 283 264 100 196</td> <td>255 192 184 184 283 266 85 196</td> <td>192 184 199 263 264 100 196</td> <td>192 184 183 283 264 91 200</td> <td>255 194 195 167 283 264 100 195</td> <td>255 192 184 199 263 264 100 195</td> <td></td> <td>153 nc 188 187 279 262 87 196</td> <td>250 nc 184 191 287 262 96 203</td> <td>253 196 188 187 279 262 100 196</td> <td>255 194 194 179 179 179 172 172 172 172 172 172 172 172 172 172</td> <td>153 251 196 194 188 188 187 187 179 275 162 260 87 101 196 194</td> <td></td> <td>191 192 183 254 264</td> <td>193 200 191 262 266</td> <td>191 184 183 262 264</td> <td>193 192 183 288 266</td> <td>193 192 262 264</td> <td>193 192 262 264</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D5S401 D5S1725 D5S1463 D5S815 D5S2100 D5s644 D5S1462	255 192 96 180 287 264 95 200	245 194 95 167 283 266 95 196	255 192 85 180 287 264 95 200	255 192 93 180 258 262 85 200	255 192 96 180 287 284 95 200	255 192 85 180 287 264 95 200	245 194 167 283 266 95 196	255 192 nc 180 287 264 95 200		254 192 nc 164 246 95 196	256 192 nc 164 246 95 196		235 194 196 167 283 264 100 196	255 192 184 184 283 266 85 196	192 184 199 263 264 100 196	192 184 183 283 264 91 200	255 194 195 167 283 264 100 195	255 192 184 199 263 264 100 195		153 nc 188 187 279 262 87 196	250 nc 184 191 287 262 96 203	253 196 188 187 279 262 100 196	255 194 194 179 179 179 172 172 172 172 172 172 172 172 172 172	153 251 196 194 188 188 187 187 179 275 162 260 87 101 196 194		191 192 183 254 264	193 200 191 262 266	191 184 183 262 264	193 192 183 288 266	193 192 262 264	193 192 262 264						
DSS43 N <td>D35401 D551725 D551463 D55815 D552100 D56644 D551462</td> <td>255 192 96 180 287 264 95 200 107</td> <td>245 194 95 167 283 266 95 196</td> <td>255 192 85 180 287 264 95 200 107</td> <td>255 192 93 180 258 262 85 200 103</td> <td>255 192 96 180 287 264 95 200</td> <td>255 192 85 180 287 264 95 200 107</td> <td>245 194 nc 167 283 266 95 196 100</td> <td>255 192 nc 180 287 264 95 200</td> <td></td> <td>254 192 nc 164 246 95 196 103</td> <td>256 192 nc 164 246 95 196 103</td> <td></td> <td>255 194 196 167 283 264 100 196</td> <td>255 192 184 184 283 266 85 196 99</td> <td>192 184 199 263 264 100 196</td> <td>192 184 183 283 264 91 200 99</td> <td>255 194 195 167 283 264 100 195</td> <td>255 192 184 199 263 264 100 196</td> <td></td> <td>153 nc 188 187 279 262 87 196</td> <td>250 nc 184 191 267 262 96 203 111</td> <td>253 196 188 187 279 262 100 196</td> <td>255 194 194 179 179 179 179 179 179 179 179 179 179</td> <td>2553 2553 2553 396 190 888 1888 1888 887 187 887 187 779 275 275 275 275 275 275 275 275 275 275</td> <td></td> <td>191 192 183 254 264 99</td> <td>193 200 191 262 266 103</td> <td>191 184 183 262 264 99</td> <td>193 192 183 288 266 99</td> <td>193 192 262 264 99</td> <td>193 192 262 264 99</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	D35401 D551725 D551463 D55815 D552100 D56644 D551462	255 192 96 180 287 264 95 200 107	245 194 95 167 283 266 95 196	255 192 85 180 287 264 95 200 107	255 192 93 180 258 262 85 200 103	255 192 96 180 287 264 95 200	255 192 85 180 287 264 95 200 107	245 194 nc 167 283 266 95 196 100	255 192 nc 180 287 264 95 200		254 192 nc 164 246 95 196 103	256 192 nc 164 246 95 196 103		255 194 196 167 283 264 100 196	255 192 184 184 283 266 85 196 99	192 184 199 263 264 100 196	192 184 183 283 264 91 200 99	255 194 195 167 283 264 100 195	255 192 184 199 263 264 100 196		153 nc 188 187 279 262 87 196	250 nc 184 191 267 262 96 203 111	253 196 188 187 279 262 100 196	255 194 194 179 179 179 179 179 179 179 179 179 179	2553 2553 2553 396 190 888 1888 1888 887 187 887 187 779 275 275 275 275 275 275 275 275 275 275		191 192 183 254 264 99	193 200 191 262 266 103	191 184 183 262 264 99	193 192 183 288 266 99	193 192 262 264 99	193 192 262 264 99						
D5540 1/5 <th< td=""><td>DSS401 DSS1725 DSS1463 DSS815 DSS2100 DS6644 DSS1462 DSS1462 DSS1503 DSS485</td><td>255 192 96 180 287 264 95 200 107 219</td><td>245 194 95 167 283 266 95 196 100 219</td><td>255 192 85 180 287 264 95 200 107 219</td><td>255 192 93 180 258 262 85 200 103 219</td><td>255 192 96 180 287 264 95 200 107 219</td><td>255 192 85 180 287 264 95 200 107 219</td><td>245 194 nc 167 283 266 95 196 100 219</td><td>235 192 nc 180 287 264 95 200 107 219</td><td></td><td>254 192 nc 164 246 95 196 103 219</td><td>256 192 nc 164 246 95 196 103 219</td><td></td><td>255 194 196 167 283 264 100 196 103 219</td><td>255 192 184 184 283 266 85 196 99 219</td><td>192 184 199 263 264 100 196 103 219</td><td>192 184 183 283 264 91 200 99 219</td><td>255 194 195 167 283 264 100 195 103 219</td><td>255 192 184 199 263 264 100 196 103 219</td><td></td><td>153 nc 188 187 279 262 87 195 107 219</td><td>250 nc 184 191 287 262 96 203 111 219</td><td>253 196 188 187 279 262 100 196 107 219</td><td>255 251 194 200 179 287 2 262 2 100 196 2 103 2 219 2</td><td>2533 2553 266 199 88 181 87 181 87 181 87 279 279 279 279 279 279 279 279</td><td></td><td>191 192 183 254 264 99 220</td><td>193 200 191 262 266 103 220</td><td>191 184 183 262 264 99 220</td><td>193 192 183 288 266 99 220</td><td>193 192 262 264 99 220</td><td>193 192 262 264 99 220</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	DSS401 DSS1725 DSS1463 DSS815 DSS2100 DS6644 DSS1462 DSS1462 DSS1503 DSS485	255 192 96 180 287 264 95 200 107 219	245 194 95 167 283 266 95 196 100 219	255 192 85 180 287 264 95 200 107 219	255 192 93 180 258 262 85 200 103 219	255 192 96 180 287 264 95 200 107 219	255 192 85 180 287 264 95 200 107 219	245 194 nc 167 283 266 95 196 100 219	235 192 nc 180 287 264 95 200 107 219		254 192 nc 164 246 95 196 103 219	256 192 nc 164 246 95 196 103 219		255 194 196 167 283 264 100 196 103 219	255 192 184 184 283 266 85 196 99 219	192 184 199 263 264 100 196 103 219	192 184 183 283 264 91 200 99 219	255 194 195 167 283 264 100 195 103 219	255 192 184 199 263 264 100 196 103 219		153 nc 188 187 279 262 87 195 107 219	250 nc 184 191 287 262 96 203 111 219	253 196 188 187 279 262 100 196 107 219	255 251 194 200 179 287 2 262 2 100 196 2 103 2 219 2	2533 2553 266 199 88 181 87 181 87 181 87 279 279 279 279 279 279 279 279		191 192 183 254 264 99 220	193 200 191 262 266 103 220	191 184 183 262 264 99 220	193 192 183 288 266 99 220	193 192 262 264 99 220	193 192 262 264 99 220						
D5545 26 26	DSS401 DSS1725 DSS1463 DSS915 DSS2100 DS6644 DSS1462 DSS1462 DSS495 DSS499	255 192 96 180 287 264 95 200 107 219 141	245 194 95 167 283 266 95 196 100 219	255 192 85 180 287 264 95 200 107 219 141	255 192 93 180 258 262 85 260 103 219 141	255 192 96 180 287 264 95 200 107 219 141	255 192 85 180 287 264 95 200 107 219 141	245 194 nc 167 283 266 95 196 100 219	235 192 nc 180 287 264 95 200 107 219 141		254 192 nc 164 246 95 196 103 219 141	256 192 nc 164 246 95 196 103 219 141		255 194 196 167 283 264 100 196 103 219 143	255 192 184 184 283 266 85 196 99 219 219	192 184 199 263 264 100 196 103 219	192 184 183 283 264 91 200 99 219 141	255 194 195 167 283 264 100 195 103 219 143	255 192 184 199 263 264 100 196 100 196 219		153 nc 188 187 279 262 87 196 107 219 141	250 nc 184 191 287 262 96 203 111 219 141	253 196 188 187 279 262 100 196 107 219	255 2 194 2 200 2 179 2 287 2 262 2 100 1 196 2 103 2 219 2 137 4	25353 255396 199996 199996 199996 199996 199996 19996 19996 19996 19996 19996 19996 19996 19996 19996 19996 19996 19997 10007		191 192 183 254 264 99 220	193 200 191 262 266 103 220	191 184 183 262 264 99 220	193 192 183 288 266 99 220	193 192 262 264 99 220	193 192 262 264 99 220						
DS5/75 246 246 246 246 246 246 246 246 242 242 242 240 <t< td=""><td>DSS401 DSS1725 DSS1463 DSS2160 DSS2100 DS5644 DSS1462 DSS495 DSS495 DSS495 DSS493</td><td>255 192 96 180 287 264 95 200 107 219 141 76</td><td>245 194 95 167 283 266 95 196 100 219 139 76</td><td>255 192 85 180 287 264 95 200 107 219 141 76</td><td>255 192 93 180 258 262 85 200 103 219 141 76</td><td>255 192 96 180 287 264 95 200 107 219 141</td><td>255 192 85 180 287 264 95 200 107 219 141</td><td>245 194 nc 167 283 266 95 196 100 219</td><td>235 192 nc 180 287 264 95 200 107 219 141</td><td></td><td>254 192 nc 164 246 95 196 103 219 141 76</td><td>256 192 nc 164 246 95 196 103 219 141 76</td><td></td><td>255 194 196 167 283 264 100 196 103 219 143 76</td><td>255 192 184 184 283 266 85 196 99 219 219 141 90</td><td>192 184 199 263 264 100 196 103 219 137 74</td><td>192 184 183 283 264 91 200 99 219 141 90</td><td>255 194 195 167 283 264 100 195 103 219 143</td><td>255 192 184 199 263 264 100 196 100 196 219</td><td></td><td>153 nc 188 187 279 262 87 196 107 219 141 75</td><td>250 nc 184 191 267 262 96 203 111 219 141 75</td><td>253 196 188 187 279 262 100 196 107 219 219 141 75</td><td>255 1 194 2 200 2 179 2 287 2 262 2 100 1 196 2 219 2 137 6 2</td><td>2533 25353 25353 25353 25353 25353 25353 25353 25355 25555 25555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 25555 2555 2555 2555555</td><td></td><td>191 192 183 254 264 99 220 141</td><td>193 200 191 262 266 103 220 143</td><td>191 184 183 262 264 99 220 141</td><td>193 192 183 288 266 99 220 145</td><td>193 192 262 264 99 220 141</td><td>193 192 262 264 99 220 141</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DSS401 DSS1725 DSS1463 DSS2160 DSS2100 DS5644 DSS1462 DSS495 DSS495 DSS495 DSS493	255 192 96 180 287 264 95 200 107 219 141 76	245 194 95 167 283 266 95 196 100 219 139 76	255 192 85 180 287 264 95 200 107 219 141 76	255 192 93 180 258 262 85 200 103 219 141 76	255 192 96 180 287 264 95 200 107 219 141	255 192 85 180 287 264 95 200 107 219 141	245 194 nc 167 283 266 95 196 100 219	235 192 nc 180 287 264 95 200 107 219 141		254 192 nc 164 246 95 196 103 219 141 76	256 192 nc 164 246 95 196 103 219 141 76		255 194 196 167 283 264 100 196 103 219 143 76	255 192 184 184 283 266 85 196 99 219 219 141 90	192 184 199 263 264 100 196 103 219 137 74	192 184 183 283 264 91 200 99 219 141 90	255 194 195 167 283 264 100 195 103 219 143	255 192 184 199 263 264 100 196 100 196 219		153 nc 188 187 279 262 87 196 107 219 141 75	250 nc 184 191 267 262 96 203 111 219 141 75	253 196 188 187 279 262 100 196 107 219 219 141 75	255 1 194 2 200 2 179 2 287 2 262 2 100 1 196 2 219 2 137 6 2	2533 25353 25353 25353 25353 25353 25353 25353 25355 25555 25555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 25555 2555 2555 2555555		191 192 183 254 264 99 220 141	193 200 191 262 266 103 220 143	191 184 183 262 264 99 220 141	193 192 183 288 266 99 220 145	193 192 262 264 99 220 141	193 192 262 264 99 220 141						
DSSM46 277 177 197 193 283 277 191 311 317 311 317 311 317 311 317 311 317 311 317 311 317 311 <t< td=""><td>DSS401 DSS1725 DSS1463 DSS815 DSS2100 DS5644 DSS1462 DSS1503 DSS485 DSS485 DSS485</td><td>255 192 96 180 287 264 95 200 107 219 141 76 125</td><td>245 194 95 167 283 266 95 196 100 219 139 76 125</td><td>255 192 85 180 287 264 95 200 107 219 141 76 125</td><td>255 192 93 180 258 262 85 200 103 219 141 76 125</td><td>255 192 96 180 287 284 95 200 107 219 141 76</td><td>255 192 85 180 287 264 95 200 107 219 141 76</td><td>245 194 nc 167 283 266 95 196 100 219 139 76</td><td>255 192 nc 180 287 264 95 200 107 219 141 76</td><td></td><td>254 192 nc 164 246 95 196 103 219 141 76</td><td>256 192 nc 164 246 95 196 103 219 141 76</td><td></td><td>255 194 196 167 283 264 100 196 103 219 143 76 140</td><td>255 192 184 184 283 266 85 196 99 219 141 90 140</td><td>192 184 199 263 264 100 196 103 219 137 74 140</td><td>192 184 183 283 264 91 200 99 219 141 90 140</td><td>255 194 195 167 283 264 100 195 103 219 143 76</td><td>255 192 184 199 263 264 100 196 100 196 219 137 74</td><td></td><td>153 nc 188 187 279 262 87 196 107 219 141 75 122</td><td>250 nc 184 191 287 262 96 203 111 219 141 75 122</td><td>253 196 188 187 279 262 100 196 107 219 141 75 122</td><td>255 200 200 200 200 200 200 200 200 200</td><td>1940 253 253 1940 1946 1946 188 188 188 188 87 188 187 187 779 278 278 262 262 262 262 262 262 262 262 199</td><td></td><td>191 192 183 254 264 99 220 141</td><td>193 200 191 262 266 103 220 143 141</td><td>191 184 183 262 264 99 220 141 123</td><td>193 192 183 288 266 99 220 145 141</td><td>193 192 262 264 99 220 141 123</td><td>193 192 262 264 99 220 141 123</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	DSS401 DSS1725 DSS1463 DSS815 DSS2100 DS5644 DSS1462 DSS1503 DSS485 DSS485 DSS485	255 192 96 180 287 264 95 200 107 219 141 76 125	245 194 95 167 283 266 95 196 100 219 139 76 125	255 192 85 180 287 264 95 200 107 219 141 76 125	255 192 93 180 258 262 85 200 103 219 141 76 125	255 192 96 180 287 284 95 200 107 219 141 76	255 192 85 180 287 264 95 200 107 219 141 76	245 194 nc 167 283 266 95 196 100 219 139 76	255 192 nc 180 287 264 95 200 107 219 141 76		254 192 nc 164 246 95 196 103 219 141 76	256 192 nc 164 246 95 196 103 219 141 76		255 194 196 167 283 264 100 196 103 219 143 76 140	255 192 184 184 283 266 85 196 99 219 141 90 140	192 184 199 263 264 100 196 103 219 137 74 140	192 184 183 283 264 91 200 99 219 141 90 140	255 194 195 167 283 264 100 195 103 219 143 76	255 192 184 199 263 264 100 196 100 196 219 137 74		153 nc 188 187 279 262 87 196 107 219 141 75 122	250 nc 184 191 287 262 96 203 111 219 141 75 122	253 196 188 187 279 262 100 196 107 219 141 75 122	255 200 200 200 200 200 200 200 200 200	1940 253 253 1940 1946 1946 188 188 188 188 87 188 187 187 779 278 278 262 262 262 262 262 262 262 262 199		191 192 183 254 264 99 220 141	193 200 191 262 266 103 220 143 141	191 184 183 262 264 99 220 141 123	193 192 183 288 266 99 220 145 141	193 192 262 264 99 220 141 123	193 192 262 264 99 220 141 123						
DSS28/1 39 311 51 307 61 311 311 317 511 311	D55401 D551725 D551463 D55815 D552100 D55644 D551462 D551603 D55495 D55499 D55499 D55493 D55493 D55493	255 192 96 180 287 264 95 200 107 219 141 76 125 265	245 194 95 167 283 266 95 196 100 219 139 76 125 265	255 192 85 180 287 264 95 200 107 219 141 76 125 265	255 192 93 180 258 262 85 200 103 219 141 76 125 263	255 192 96 180 287 284 95 200 107 219 141 76 285	255 192 85 180 287 264 95 200 107 219 141 76 265	245 194 nc 167 283 266 95 196 100 219 76 139 76 285	255 192 nc 180 287 264 95 200 107 219 141 76 285		254 192 nc 164 246 95 196 103 219 141 76 128	256 192 mc 164 246 95 196 103 219 141 76 128		255 194 196 167 283 264 100 196 103 219 143 76 140 263	255 192 184 283 266 85 196 99 219 219 141 90 140 263	192 184 199 263 264 100 196 103 219 137 74 140 267	192 184 183 283 264 91 200 99 219 141 90 140 263	255 194 195 167 283 264 100 195 103 219 143 76 143 76	255 192 184 199 263 264 100 195 100 195 219 137 74 267		153 nc 188 187 279 262 87 195 107 219 141 75 122 263	250 nc 184 191 267 262 96 203 111 219 141 75 122 263	253 196 188 187 279 262 100 196 107 219 141 75 122 263	255 200 200 200 200 200 200 200 200 200	53 253 253 96 194 98 194 88 188 188 187 187 87 187 275 275 262 262 262 262 194 90 196 194		191 192 183 254 264 99 220 141 123 267	193 200 191 262 266 103 220 143 141 274	191 184 183 262 264 99 220 141 123 265	193 192 183 288 266 99 220 145 141 267	193 192 262 264 99 220 141 123 267	193 192 262 264 99 220 141 123 274						
DSS027 194 193 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 193 197 197 197 193 197 197 193 197 197 193 197 197 197 193 <t< td=""><td>055401 0551725 0551403 055516 0555160 055442 0551462 0554463 0554463 055463 055465 055465</td><td>255 192 96 180 287 264 95 200 107 219 141 76 125 265 246</td><td>245 194 95 167 283 266 95 196 100 219 139 76 125 265 244</td><td>255 192 85 180 287 264 95 200 107 219 141 76 125 265 246</td><td>255 192 93 180 258 262 85 200 103 219 141 76 125 263 242</td><td>255 192 96 180 287 264 95 200 107 219 141 76 285 246</td><td>255 192 85 180 287 264 95 200 107 219 141 76 285 245</td><td>245 194 nc 167 283 266 95 196 100 219 76 139 76 285 246</td><td>255 192 nc 180 287 264 95 200 107 219 141 76 285 242</td><td></td><td>254 192 nc 164 246 95 196 103 219 141 76 128 249</td><td>255 192 nc 164 246 95 195 195 103 219 141 76 128 249</td><td></td><td>255 194 196 167 283 264 100 196 103 219 143 76 140 263 242</td><td>255 192 184 184 283 266 85 196 99 219 219 141 90 140 263 242</td><td>192 184 199 263 264 100 196 103 219 137 74 140 267 242</td><td>192 184 183 283 264 91 200 99 219 219 141 90 140 263 242</td><td>255 194 195 167 283 264 100 195 103 219 143 76 263 263 242</td><td>255 192 184 199 263 264 100 195 103 219 137 74 137 74 267 242</td><td></td><td>153 nc 188 187 279 262 87 195 107 219 141 75 122 263 240</td><td>250 nc 184 191 267 262 96 203 111 219 141 75 122 263 242</td><td>253 196 188 187 279 262 100 196 107 219 141 75 122 263 244</td><td>255 : 194 : 194 : 179 : 287 : 299 : 299 : 299 : 299 : 299 : 299 : 201 : 299 : 201 : 202 : 203 : 203 : 203 : 203 : 203 : 204 : 205 : 20</td><td>553 253 956 194 956 194 888 188 887 187 877 197 275 262 267 100 96 194 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 98 100 98 100 98 100 99 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 <!--</td--><td></td><td>191 192 183 254 264 99 220 141 123 267 248</td><td>193 200 191 262 266 103 220 143 141 274 252</td><td>191 184 183 262 264 99 220 141 123 265 245</td><td>193 192 183 288 266 99 220 145 141 267 252</td><td>193 192 262 264 99 220 141 123 267</td><td>193 192 262 264 99 220 141 123 274</td><td></td><td></td><td></td><td></td><td></td><td></td></td></t<>	055401 0551725 0551403 055516 0555160 055442 0551462 0554463 0554463 055463 055465 055465	255 192 96 180 287 264 95 200 107 219 141 76 125 265 246	245 194 95 167 283 266 95 196 100 219 139 76 125 265 244	255 192 85 180 287 264 95 200 107 219 141 76 125 265 246	255 192 93 180 258 262 85 200 103 219 141 76 125 263 242	255 192 96 180 287 264 95 200 107 219 141 76 285 246	255 192 85 180 287 264 95 200 107 219 141 76 285 245	245 194 nc 167 283 266 95 196 100 219 76 139 76 285 246	255 192 nc 180 287 264 95 200 107 219 141 76 285 242		254 192 nc 164 246 95 196 103 219 141 76 128 249	255 192 nc 164 246 95 195 195 103 219 141 76 128 249		255 194 196 167 283 264 100 196 103 219 143 76 140 263 242	255 192 184 184 283 266 85 196 99 219 219 141 90 140 263 242	192 184 199 263 264 100 196 103 219 137 74 140 267 242	192 184 183 283 264 91 200 99 219 219 141 90 140 263 242	255 194 195 167 283 264 100 195 103 219 143 76 263 263 242	255 192 184 199 263 264 100 195 103 219 137 74 137 74 267 242		153 nc 188 187 279 262 87 195 107 219 141 75 122 263 240	250 nc 184 191 267 262 96 203 111 219 141 75 122 263 242	253 196 188 187 279 262 100 196 107 219 141 75 122 263 244	255 : 194 : 194 : 179 : 287 : 299 : 299 : 299 : 299 : 299 : 299 : 201 : 299 : 201 : 202 : 203 : 203 : 203 : 203 : 203 : 204 : 205 : 20	553 253 956 194 956 194 888 188 887 187 877 197 275 262 267 100 96 194 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 98 100 98 100 98 100 99 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 </td <td></td> <td>191 192 183 254 264 99 220 141 123 267 248</td> <td>193 200 191 262 266 103 220 143 141 274 252</td> <td>191 184 183 262 264 99 220 141 123 265 245</td> <td>193 192 183 288 266 99 220 145 141 267 252</td> <td>193 192 262 264 99 220 141 123 267</td> <td>193 192 262 264 99 220 141 123 274</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		191 192 183 254 264 99 220 141 123 267 248	193 200 191 262 266 103 220 143 141 274 252	191 184 183 262 264 99 220 141 123 265 245	193 192 183 288 266 99 220 145 141 267 252	193 192 262 264 99 220 141 123 267	193 192 262 264 99 220 141 123 274						
D\$5845 123 123 123 123 123 123 123 123 123 123	055401 0551725 055443 0555200 055644 055464 055464 055465 055469 055469 055469 055469	255 192 96 180 287 264 95 200 107 219 141 76 125 265 246 2277	245 194 95 167 283 266 95 196 100 219 139 76 125 265 244 297	255 192 85 180 287 264 95 200 107 219 141 76 125 265 246	255 192 93 180 258 262 85 200 103 219 141 76 125 263 242	255 192 96 180 287 264 95 200 107 219 107 219 141 76 265 246 277	255 192 85 180 287 264 95 200 107 219 107 219 141 76 265 246 246 277	245 194 nc 167 283 266 95 196 100 219 139 76 245 246 246 287	255 192 nc 180 287 264 95 200 107 219 141 76 265 242 277		254 192 nc 164 246 95 196 103 219 141 76 128 249 249 275	255 192 nc 164 246 95 195 103 219 141 76 128 249 238		255 194 196 167 283 264 100 196 103 219 143 76 140 263 242 283	255 192 184 184 283 266 85 196 99 219 219 141 90 140 263 242 277	192 184 199 283 284 100 196 103 219 137 74 140 287 242 197	192 184 183 283 284 91 200 99 219 200 299 219 141 90 140 263 242 193	255 194 195 167 283 284 100 103 219 143 76 263 283 242 293	255 192 184 199 263 264 100 195 103 219 137 74 137 74 267 242 297		153 nc 168 167 279 262 87 195 107 219 141 75 122 263 240 285	250 nc 184 191 287 262 96 203 111 219 141 75 122 263 242 297	253 196 188 187 279 262 100 196 107 219 141 75 122 263 244 189	255 : 194 : 194 : 179 : 287 : 28	2533 2553 96 199 88 188 87 187 779 279 27652 26652 2662 26653 996 199 191 219 191 219 141 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14' 14'		191 192 183 254 264 99 220 141 123 267 248 282	193 200 191 262 266 103 220 143 141 274 252 293	191 184 183 262 264 99 220 141 123 265 245 280	193 192 183 288 266 99 220 145 141 267 252 237	193 192 262 264 99 220 141 123 267	193 192 262 264 99 220 141 123 274						
DSSNS 216 216 218 228 228 216 211 214 222 210 207 227 220 207 218 214 212 218 218 219 219 219 219 219 219 219 219 219 219	055401 0551725 0551463 0555160 0555160 0555160 0555469 055469 055469 055469 055469 055469 055469	255 192 96 180 287 264 95 200 107 219 141 76 125 265 245 245 245 277 309	245 194 95 167 283 266 95 196 100 219 139 76 125 265 244 297 311	255 192 85 180 287 264 95 200 107 219 141 76 125 265 246 277	255 192 93 180 258 262 85 200 103 219 141 76 125 263 242 301	255 192 96 180 287 264 95 200 107 219 141 76 265 246 277 313	255 192 85 180 267 264 95 264 95 200 107 219 141 76 285 285 285 285 285 285 285	245 194 nc 167 283 266 95 196 100 219 109 76 285 246 287 311	255 192 nc 180 287 264 95 200 107 219 141 76 265 242 277 307		254 192 nc 164 246 95 196 103 219 141 76 128 249 275 nc	255 192 nc 164 245 95 195 195 103 219 141 76 128 249 298 nc		255 194 196 167 283 284 100 196 103 219 143 76 140 283 242 283 311	255 192 184 184 283 266 55 195 99 219 219 219 219 219 219 219 219 219	192 184 199 263 264 100 196 103 219 137 74 140 267 242 197 307	192 184 183 283 284 91 200 99 219 219 141 90 140 283 242 193 311	225 194 195 167 283 284 100 198 143 76 283 249 143 76 283 242 283 311	255 192 184 199 263 264 100 196 100 196 103 219 137 74 247 267 242 297 307		153 nc 168 167 279 262 87 195 107 219 141 75 122 263 240 285 311	250 nc 184 191 262 262 263 263 263 263 263 263 263 263	253 1965 1888 1877 279 262 2000 1995 107 229 144 175 122 2853 2853 2853 2854 149 9 3311	255 : : : : : : : : : : : : : : : : : :	33 2553 2553 2553 2553 2553 25653 25652 25652 25652 25652 25652 25652 25653 21919 21919 21919 21919 21919 21917 </td <td></td> <td>191 192 183 254 264 99 220 141 123 267 246 282 307</td> <td>193 200 191 262 266 103 220 143 141 274 252 293 312</td> <td>191 184 183 262 264 99 220 141 123 265 245 280 312</td> <td>193 192 183 288 266 99 220 145 141 267 252 297 316</td> <td>193 192 262 264 99 223 141 123 267 245</td> <td>193 192 262 264 99 220 141 123 274 252</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		191 192 183 254 264 99 220 141 123 267 246 282 307	193 200 191 262 266 103 220 143 141 274 252 293 312	191 184 183 262 264 99 220 141 123 265 245 280 312	193 192 183 288 266 99 220 145 141 267 252 297 316	193 192 262 264 99 223 141 123 267 245	193 192 262 264 99 220 141 123 274 252						
D\$\$\$44 125 116 125 111 <mark>125 126</mark> 116 125 <mark>123 124 125 111 112 113 125 112 125 114 111 116 125 111 113 117 111 113 111 117</mark>	055401 D551725 D551463 D552100 D55540 D55540 D555402 D555403 D555405 D5555405 D5555405 D5555405 D5555405 D5555405 D5555005 D5555005 D5555005 D5555005 D5555005 D5555005 D5555005 D555500000000	255 192 96 180 287 264 95 200 107 219 141 76 125 285 285 245 245 245 245 245 249 194	245 194 95 167 283 286 95 196 100 219 76 125 285 244 297 311 200	265 182 85 180 287 264 95 200 107 219 141 76 125 265 246 277 194	255 192 33 180 258 285 285 200 103 219 141 76 125 283 242 301 195	255 192 55 287 284 55 280 107 299 107 299 141 75 285 285 285 285 285 295 313 313	255 192 85 100 287 284 95 200 107 219 107 219 141 76 265 246 277 313 194	245 134 nc 167 283 266 95 196 100 219 139 76 285 246 287 311 200	255 192 nc 180 287 264 95 200 107 219 141 76 265 242 277 307 194		254 192 nc 164 246 95 196 100 219 141 75 128 248 225 nc 194	255 192 nc 164 246 95 195 195 195 195 195 195 248 293 nc 194		255 194 196 167 283 264 100 196 103 219 143 76 140 263 242 283 311 194	255 192 184 184 283 266 85 196 85 196 99 219 219 249 249 242 242 247 311 200	192 184 199 263 264 100 196 103 219 137 74 140 267 242 197 307 194	192 184 183 283 284 91 200 99 219 219 141 90 140 283 242 193 3111 196	255 194 196 167 283 264 100 196 264 103 219 143 76 283 242 283 3111 194	255 192 184 199 263 284 100 196 284 100 196 297 242 287 287 287 307 194		1533 nc 1583 1877 279 262 87 196 107 219 141 75 122 263 240 285 3111 194	250 nc 184 191 287 262 203 203 111 219 203 141 75 122 263 242 242 247 243 244 194	233 196 188 187 279 262 262 262 100 196 107 129 141 75 122 263 141 75 122 263 141 9 311 122	255 : : : : : : : : : : : : : : : : : :	2533 2553 956 191 888 188 887 187 7779 2797 2757 275 956 191 957 100 199 215 199 215 222 222 222 222 223 222 224 226 225 226 226 2653 2655 26653 2111 313 319 192		191 192 183 254 264 99 220 141 123 267 246 282 307 197	193 200 191 262 266 103 220 143 141 274 252 293 312 199	191 184 183 262 264 99 220 141 123 265 245 280 312 193	193 192 183 288 266 99 220 145 141 267 252 297 316 197	193 192 262 264 99 223 141 123 267 245	193 192 262 264 99 220 141 123 274 252						
	055401 D551725 D551463 D552100 D55444 D551462 D55469 D55409 D55409 D55409 D55409 D55409 D55409 D55409 D55409 D55405 D55466	255 192 96 180 287 264 95 200 107 219 141 125 265 246 277 309 194 123	245 194 95 167 283 286 95 196 295 295 295 285 285 244 287 311 200 123	255 192 85 190 287 264 95 200 107 219 141 76 125 265 246 277 194 123	255 192 93 190 258 262 85 200 103 219 141 76 125 263 242 301 196 129	255 192 56 180 287 284 55 200 187 29 141 75 285 285 285 285 285 217 313 194 123	255 192 85 100 287 284 95 200 107 299 107 299 141 76 265 246 277 313 194 123	245 194 167 283 266 95 196 100 219 76 285 246 287 311 200 123	255 192 nc 190 287 264 95 200 107 219 141 76 285 242 247 207 194 129		254 192 nc 164 245 195 196 103 219 141 75 128 249 275 nc 194 124	255 192 nc 164 245 195 195 195 195 195 195 249 293 nc 194 124		255 194 196 167 283 284 100 196 103 219 143 76 140 283 242 283 311 194 125	255 192 184 184 283 266 85 196 85 196 249 249 249 242 242 247 311 200 125	192 184 199 283 284 100 196 103 219 137 74 140 267 242 197 307 194 125	192 184 183 283 264 91 200 99 219 141 90 140 263 242 193 3111 196 123	255 194 196 167 283 284 100 195 143 76 283 242 283 311 194 125	255 192 184 199 263 264 199 199 199 193 299 193 299 267 267 267 267 267 267 267 267 267 267		153 nc 168 167 279 282 87 199 141 75 122 283 285 311 194 123	290 nc 184 191 287 262 203 203 111 219 242 263 242 242 297 324 194 125	233 196 188 187 279 262 262 262 100 196 196 197 199 144 175 122 263 144 189 311 192 263 311 192 213	255 2 194 2 200 1 179 2 287 2 282 2 282 2 100 1 195 2 219 2 219 2 212 2 283 2 182 2 283 2 182 2 182 2 182 2 182 2 183 2 184 2 185 2 18	53 25:32 56 191 88 181 87 182 87 274 87 274 87 101 87 101 87 101 93 191 94 141 19 215 222 222 101 315 365 283 111 314 113 214 114 141		191 192 183 254 264 99 220 141 123 267 246 282 307 197 127	193 200 191 262 266 103 220 143 141 274 252 293 312 199 129	191 184 183 262 264 99 220 141 123 265 245 280 312 193	193 192 183 288 266 99 220 145 141 267 252 297 316 197	193 192 262 264 99 228 141 141 267 245	193 192 262 264 99 220 141 141 224 252 199						
DSSR1 251 242 248 251 241 248 242 248 242 242 242 242 244 248 253 242 248 242 252 242 242 242 242 242 242 242	055401 0551725 0551463 0552100 055446 055446 055466 055469 055469 055469 055469 055469 055469 055469 055469	255 192 96 180 287 264 95 200 107 219 141 76 125 265 246 277 309 194 123 218	245 194 95 167 283 266 95 196 209 219 139 76 125 265 244 247 311 200 123 216	255 192 85 100 287 264 95 200 107 219 141 76 125 265 246 277 194 123 218	255 192 93 190 258 262 85 200 103 219 103 219 104 117 5 301 125 301 129 222	255 192 56 180 287 284 55 280 187 285 285 285 285 285 285 285 285 285 285	255 192 85 180 287 284 95 200 187 29 184 187 285 285 285 285 285 217 313 194 123 288	245 194 167 283 266 95 196 100 219 139 76 285 246 297 311 200 123 216	255 192 nc 180 287 284 95 200 107 219 141 76 285 242 277 307 194 129 218		254 192 nc 164 245 195 196 103 219 141 75 128 249 275 nc 194 124 241	255 192 nc 164 245 195 195 195 195 195 195 249 238 nc 194 124 244		255 194 196 167 283 284 100 196 103 219 143 76 140 283 242 283 311 194 125 222	255 192 184 184 283 286 85 196 99 219 249 249 249 242 277 311 200 125 210	192 184 199 283 284 100 196 103 219 137 74 140 287 242 197 307 194 125 207	192 184 183 283 264 91 200 99 219 141 90 140 263 242 193 311 196 123 207	255 194 195 167 283 284 100 195 143 283 249 283 249 283 241 283 241 283 241 283 241 194 125 222	255 192 184 199 263 264 199 199 199 193 293 293 293 287 287 287 287 287 287 287 287 287 287		153 nc 168 167 279 262 87 156 107 219 166 107 219 285 311 1194 122 285 2119	230 nc 184 191 287 262 262 96 203 111 219 141 75 122 263 264 293 324 194 125 214	233 196 188 187 279 282 279 282 200 195 195 107 219 141 175 122 283 311 192 213 311 192 213	255 2 194 2 200 1 179 2 287 2 287 2 282 2 282 2 100 1 195 2 100 1 195 2 219 3 107 2 219 3 107 2 107 2 10	533 2525 596 191 988 487 1818 717 277 277 277 277 277 277 277 277 277		191 192 183 254 264 141 123 267 141 123 267 141 123 267 197 127 209	193 200 191 262 266 103 220 143 141 274 252 293 12 199 129 219	191 184 183 262 264 99 220 141 123 265 245 290 312 193 127	193 192 183 288 266 145 145 141 267 252 297 316 197 129	133 192 282 284 99 220 141 123 267 245 197 240	193 192 262 264 99 220 141 123 274 252 199 219						
	055401 D551725 D551463 D552100 D55454 D55406 D55405 D55405 D55405 D55405 D55405 D55405 D55405 D55405 D55455 D555146 D55207	255 192 96 180 287 264 95 200 107 219 141 76 125 265 265 265 265 277 309 194 123 288 125	245 194 95 167 283 266 95 196 100 219 76 125 265 244 297 311 200 123 216 116	255 192 85 190 267 264 95 200 107 219 141 76 125 265 246 277 194 123 218 125	255 192 93 180 288 282 85 200 103 299 103 209 103 209 103 209 103 209 103 209 103 209 103 209 103 209 103 209 103 209 103 209 203 209 209 209 209 209 209 209 209 209 209	255 192 56 180 287 284 55 286 107 219 107 219 441 78 285 285 285 285 246 713 313 441 228 425	255 192 85 189 287 264 95 200 141 75 249 141 75 245 245 245 245 245 2313 194 123	245 194 nc 167 283 266 95 196 100 219 139 76 245 246 247 237 211 200 123 216 116	255 192 nc 180 287 264 95 200 107 29 141 76 285 242 277 93 77 194 129 218 129 218 125		254 192 nc 164 245 95 196 199 199 141 75 128 249 275 nc 249 275 nc 194 124 2211 124	255 192 nc 184 245 95 195 195 195 195 195 195 195 195 195		255 194 196 167 283 264 100 196 103 219 143 76 140 283 242 283 241 194 125 222 125	255 192 184 184 285 286 85 195 299 219 140 283 242 277 140 283 242 277 111	192 184 199 263 264 100 196 103 219 137 74 140 267 74 140 267 194 125 207 112	192 184 183 283 264 91 200 99 219 249 249 249 249 141 90 140 283 242 193 311 196 123 207 113	255 194 195 167 283 284 100 195 284 100 195 284 100 283 283 283 283 283 283 283 283 283 283	255 192 184 199 263 284 199 195 199 195 195 287 287 287 287 307 195 287 287 195 287 195 287 195		153 nc 168 167 279 262 267 166 167 279 265 240 265 311 194 122 265 311 194 122 218 125	250 nc 184 191 287 262 96 203 111 219 141 75 122 263 242 242 244 194 125 214	233 196 188 187 2279 262 279 262 200 995 144 145 2283 244 489 311 192 2283 244 193 111	255 21 194 200 20 1779 227 227 227 227 227 227 227 227 227	153 25:53 99 191 98 191 97 277 77 277 98 191 97 271 97 271 98 191 99 191 97 101 98 191 99 191 97 271 97 272 92 222 93 283 93 193 93 291 272 222 111 211 211 211 212 22		191 192 183 254 264 141 123 267 141 123 267 141 123 267 197 127 209	193 200 191 262 266 103 220 143 141 274 252 293 12 199 129 219	191 184 183 262 264 99 220 141 123 265 245 290 312 193 127	193 192 183 288 266 145 145 141 267 252 297 316 197 129	133 192 282 284 99 220 141 123 267 245 197 240	193 192 262 264 99 220 141 123 274 252 199 219						

Table 3.4.4 shows the microsatellite marker allele size in all consanguineous families for the chromosome 5 region. The alleles which are homozygous in affected probands are shaded green. The unaffected siblings who are homozygous for informative markers are shaded red. The two horizontal lines show the limits of the critical region for investigation. The region is limited proximally by 4C and distally by 8C. Sib=sibling

The 250K SNP GWS of the chromosome 5 region showed extensive homozygosity in those of Pakistani origin and smaller areas in those of other ethnicities. This led the investigation of the microsatellite markers in only those from Pakistan. This increased the critical region to lie between D5S815 to D5S409, with both the proximal and distal limits set by 8C. This is shown in table 3.4.5.

The region of interest on chromosome 5 when limited to those of Pakistani origin lay between 91,026,202 and 102,757,753 which is 11.7MB.

	ЗА ра	arent	3B pare	nt :	BCP	DI	3D	sib	5A p	arent	5B pa	rent	5C	PDI	5D	sib	5E	sib	5F	sib	6A p	parent	6B pare	nt 6	CPDI	6[Dsib	70	PDI	8A par	ent 8	Bpare	nt 8	CPDI	14A p	arent	14B pa	rent	14C P	DI
D5S428	248	264	248 25	8 2	48	264			250	255	250	250	250	250	250	250	250	250	250	250	255	5 245	255 25	5 255	255	245	255	254	256	255 2	255		255	255						
D5S401	192	194	192 19	6 19	92	194	192	192	192	186	192	192	192	192	192	192	186	192	186	192	192	2 194	192 19	2 192	192	194	192	192	192	194	192 1	192 19	2 194	192	191	193	191	193 1	193	193
D5S1725	184	184	184 18	4 18	4	184	184	184	200	184	200	184	200	200	184	200	184	200	184	200	96	95	85 93	96	85	nc	nc	nc	nc	196	184 1	184 18	4 196	184	192	200	184	192 1	192	192
D5S1463	179	191	191 18	3 19	91	191	179	191	180	180	180	191	180	180	180	191	180	180	180	180	180) 167	180 18	0 180	180	167	180	164	164	167	184 1	199 18	3 167	199	183	191	183	183		
D5S815	287	287	287 28	3 28	37	287	287	287	291	291	291	259	291	291	291	259	291	291	291	291	287	7 283	287 25	B 287	287	283	287	246	246	283 2	283 2	263 28	3 283	263	254	262	262 2	288 2	262	262
D5S2100	262	264	264 26	4 20	64	264	264	264	264	260	264	264	264	264	264	264	260	264	260	264	264	1 266	264 26	2 264	264	266	264			264 2	266 2	264 26	4 264	264	264	266	264 2	266 📫	264	264
D5s644	100	90	90 94	19	0	90			100	96	100	90	100	100							95	95	95 85	95	95	95	95	95	95	100	85 1	100 9	1 100	100		\square				
D5S1462	196	196	196 19	6 n	с	nc			240	240	251	251	251	251							200) 196	200 20	0 200	200	196	200	196	196	196	196 1	196 20	0 196	196						
D5S1503	107	103	103 99	9 10	3	103			107	103	107	107	107	107	107	107	103	107	103	107	107	7 100	107 10	3 107	107	100	107	103	103	103	99 1	103 99	9 103	103	99	103	99	99	99	99
D5S495	219	219	219 21	9 2 ′	9	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	219	9 219	219 21	9 <mark>219</mark>	219	219	219	219	219	219	219 2	219 21	9 219	219	220	220	220 2	220 2	220	220
D5S409	141	137	137 14	1 13	7	137	137	141	141	149	141	141	141	141	141	149	149	141	149	141	141	1 139	141 14	1 141	141	139	141	141	141	143	141 1	137 14	1 143	137	141	143	141	145	141	141
D5S433	88	88	86 82	2 8	6	88			77	62	77	74	77	77	62	74	62	74	62	77	76	76	76 76	76	76	76	76	76	76	76	90	74 90) 76	74		\square				
D5S460	123	123		12	23	123			140	123	125	123	140	125	123	123			123	123	125	5 125	125 12	5				128	128	140	140 1	140 14	0		123	141	123	141 1	123	123
D5S485	274	265	263 26	3 2	63	265	265	274	263	265	267	263	263	267	265	263	263	267	263	267	265	5 265	265 26	3 265	265	265	265			263 2	263 2	267 26	3 263	267	267	274	265 2	267	267	274
D5S475	242	242		24	12	242	242	242	243	243	nc	nc	243	243	243	243	243	243	243	243	246	5 244	246 24	2 246	246	246	242	249	249	242 2	242 2	242 24	2 242	242	248	252	245 2	252	245	252
D5S1466	281	289	278 29	4 2	79	290	279	282	298	278	302	294	298	302	278	294	278	294	278	302	277	7 297	277 30	1 277	277	297	277	275	298	293 2	277 1	197 19	3 293	297	282	293	290 2	297		
D5S2501	324	315	315 30	3 <mark>3</mark> ′	15	315			316	311	310	313	316	311	311	316	311	316	311	316	309	311		313	313	311	307	nc	nc	311	311 3	307 31	1 311	307	307	312	312	316		
D5S2027	198	194	194 20	0 19	4	194			200	200	196	194	200	196	200	194	200	194	200	196	194	4 200	194 19	6 194	194	200	194	194	194	194 2	200 1	194 19	6 194	194	197	199	193	197	197	199
D5S2065	125	123	129 12	4 12	29	123	125	129	123	123	129	123	123	129	123	129	123	125	123	129	123	3 123	123 12	9 123	123	123	129	124	124	125	125 1	125 12	3 125	125	127	129	127	129		
D5S2055	222	210	222 22	2 2	22	210	222	222	214	222	210	222	214	210	222	222	222	222	222	210	218	3 216	218 22	2 218	218	216	218	211	214	222	210 2	207 20	7 222	207	209	219			210	219
D5S494	111	121	111 11	1 1	11	121	111	111	111	117	107	113	111	107	117	113	117	113	117	107	125	5 116	125 11	1 125	125	116	125	124	124	125	111 1	112 11	3 125	112	113	117	111	113	111	117
D5S471	248	253	253 25	2 2	53	253	_		248	253	252	252	248	252	254	251	254	251	254	252	25	1 242	248 25	1 251	248	242	248	242	242	242 2	248 2	248 25	3 242	248						

Table 3.4.5 is a table of the microsatellite marker sizes of chromosome 5 in those families who originate from Pakistan. Markers

which are homozygous in affected probands are shaded in green. Siblings who are homozygous in informative markers are shaded red.

The proximal limit of the region of interest is a horizontal blue line and the distal limit is shown by a horizontal red line. Sib=sibling

LOD scores for chromosome 5 region

A LOD score using Superlink was calculated using pedigrees of Pakistani origin. The following criteria were used:-

Mode of inheritance (MOI) = Recessive 0.99

Number of markers 5

Distances between markers = 3.74, 0.53, 2.78, 0

Disease mutant gene frequency = 0.001

Marker Names = D5S2100, D5S644, D5S1462, D5S1503, D5S495

Points to calculate LOD score = -n 2 1 5 - o 10.0000

		Ln(Likelihood)	LOD-SCORE
	(in cM) -10.0000	-158.3699	4.5652
	-5.0000	-157.0412	5.1422
D5S2100	0.0000	-155.5882	5.7733
	1.8700	-156.1735	5.5191
D5S644	3.7399	-159.9254	3.8897
	4.0049	-156.0066	5.5915
D5S1462	4.2699	-155.3254	<mark>5.8874</mark>
	5.6599	-155.3702	5.8679
D5S1462 & D5S495	7.0499	-155.3939	5.8577
L	12.0499	-156.8532	5.2239
	17.0499	-158.1898	4.6434

Table 3.4.6 shows the LOD scores for markers and between markers for the cohort originating from Pakistani.

The maximum LOD score was at D5S1462 with similar scores at D5S2100, D5S1462 and D5S495. The LOD scores were reassuring as to the linkage to this region. The scores

were high throughout the region and therefore did not give an indication of which locus to focus on.

Microsatellite markers chromosome 16

Chromosome 16 had a region of 15.1MB from 31,629,915 to 46,785,363 of haploidentical alleles. All markers in this region were uninformative. Comparing this region of the genome to SNP GWS investigated for other diseases (JATD, biliary atresia, PFIC) showed that this region of the genome is homozygous in all conditions and not specifically homozygous in children with PDI. No further investigation of this region was carried out. The results are shown in table 3.4.7.

											3A																																			-	Т		Т				[Т	
	1A	par en	nt 1B	par en	t 10	PDI	1D P	DI	1E sib	p	ar ent	3B	par er	nt 30	C P D I	3D :	sib	4A p	ar ent	4B pa	ar ent	4C P D	01	4D sib	4	4Esin	5A	par en	t 5B p	oar ent	5C P	DI	5D sib	51	Esib	5Fsib	6/	A par er	it 6B p	par ent	6C P D	1 61	Dsib	7C P	DI	8A par	ent 8	B par en	.t 80	C P D I	9A p	oar ent	9B par	r ent	9C PDI
D16S753	260	260	0 24	9 265	5 260	265	260	265	260 26	5 25	6 260	0 25	6 26	0 26	0 260			264	257	257	257	257 2	64 2	57 25	57		25	3 257	261	261	257	261 2	257 26	1 25	7 261	253 26	1 2	65 265	5 257	265	257 2	65 265	5 265								253	268	253 2	257 :	253 268
D16S3183	197	7 199	9 19	7 199	9 197	7 197	197	197	197 19	9 19	199	9 19	7 19	9 19	7 199	197	197	197	208	197	197	197 1	97 1	97 20	08 19	97 208	19	17 197	7 197	197	197	197 1	197 19	7 19	7 197	197 19	7 1	97 199	9 197	7 197	197 1	9 <mark>7</mark> 197	7 197			202 1	197 1	97 199	3 199	9 202	197	197	196 2	200	197 197
D16S3232	202	2 220	0 20	8 220	220	280	220	280	202 20	8 21	6 220	0 21	0 20	8 220	208			212	214	202	214	202 2	12 2	02 21	4 2	12 214	21	6 218	3 208	219	209	219 2	217 21	9 209	9 219	216 21	8 2	14 214	4 216	6 214	216 2	14 214	216			218 2	220 2	12 204	1 204	4 218	226	210	210	210	210 210
D16S3321	188	3 191	1 19	4 196	5 191	194	191	194	188 19	6 19	15 183	3 18	3 18	9 183	3 189	195	183	190	198	195	199	190 1	99 1	98 19	98 19	95 198	19	194	187	189	187	189 1	187 18	9 18	7 189	187 19	1	90 189	9 200) 193	193 1	90 190	200			184 1	192 1	81 187	/ 187	7 184	188	192	192 f	190 ′	192 192
D16S2964	326	326	6 32	6 326	6 <mark>326</mark>	326	326	326	326 32	6 32	16 326	6 32	6 32	6 <mark>32</mark>	6 326	326	326	326	326	326	326	326 3	26 3	26 32	26 32	26 326	32	6 326	326	326	326	326 3	326 32	6 326	6 326	326 32	26 33	26 320	5 326	326	326 3	<mark>26</mark> 320	326	326	326	326 3	326 3	326 326	ز <mark>326</mark>	6 326	326	326	326 🤅	326	326 326
D16S3409	219	9 219	9 21	3 219	9 219	9 219	219	219	219 21	9 21	9 219	9 21	9 21	9 <mark>21</mark> 9	9 219	219	219	219	219	219	219	219 2	19 2	19 21	19 2 [.]	19 219	21	6 219	9 216	222	219	222 2	219 22	2 219	9 222	216 22	2 2	19 219	9 219	9 219	219 2	<mark>19</mark> 219	9 219			219 2	219 2	19 219	3 215	9 219	219	219	219 2	219	219 219
D16S746	278	3 280	0 28	0 280	278	8 280	278	280	280 28	0 28	0 280	0 28	0 28	0 28	0 280	280	280	280	280	282	280	280 2	80 2	80 28	80 28	80 282	28	0 280	280	280	280	280 2	280 28	0 280	0 280	280 28	0 2	80 280	280	280	280 2	<mark>30</mark> 280	280			280 2	280 2	.80 280	J		280	290	280	290 (280 290
D16S3105	183	3 185	5 18	3 185	5 183	8 185	183	185	183 18	3 18	185	5 18	7 18	3 18	5 183	183	187	183	180	183	183	183 1	83 1	80 18	33 18	80 183	18	3 187	7 183	183	187	183 1	187 18	3 18	7 183	183 18	3 1	83 183	3 183	8 183	183 1	<mark>33</mark> 183	8 183	183	183	183 1	87 1	83 187	7 183	3 187	183	183	183 1	183	183 183
D16S3044	192	2 194	4 18	6 192	2 194	192	194	192	192 19	4 19	2 190	0 19	2 18	3 190	0 183	190	183	190	194	194	190	190 1	94 1	90 19	90 19	90 194	19	2 194	192	194	192	194 1	192 19	4 192	2 194	192 19	2 1	90 196	5 192	2 187	192 1	90 190	187	192	192	194 1	190 1	90 192	2 192	2 194	186	188	192 1	192	192 188

Table 3.4.7 shows the microsatellite marker sizes for chromosome 16. The homozygous alleles for the affected probands are shown in

green. The markers are non informative. Sib= sibling

3.4.5 Summary of chapter

The 10K and 250K SNP GWS both detected extensive areas of shared homozygosity in chromosome 5 and chromosome 19. In addition the 250K SNP GWS also identified an area on chromosome 16. Microsatellite markers excluded linkage to chromosome 19 region. Chromosome 16 could not be excluded by microsatellite markers as none were informative. When the area was compared to GWS carried out for other research projects the area was found to be a common area of homozygosity to all. This region was therefore not further explored.

Linkage was confirmed to chromosome 5 therefore identifying a locus for PDI. The extent of the shared homozygosity was narrowed to the smallest region by microsatellite markers. The markers were analysed for all consanguineous families (region 1) and then also by limiting to just those who originate from Pakistan which extended the locus (region 2).

The probands were not haploidentical suggesting the locus has not descended from a single common ancestor.

3.5 Gene expression microarray analysis of PDI patients

Whole genome expression profiles provide insight into the pattern of gene expression in specific tissue. By comparing RNA expression in disease states to that of normal controls differences in specific gene expression can be identified as being either upregulated or downregulated.

I hypothesised that a gene expression microarray would facilitate the selection of a candidate gene from the region of interest.

I sourced Cambridge Genomic Services to run the microarray.

RNA was transferred to Cambridge Genomic Services on dry ice. Despite careful handling the RNA suffered some degradation which required multiple samples to be analysed in the first stages.

The technique used involved:-

The technology uses a bead chip which contains 1.8 million beads (HumanRef-6 v2). Each bead has several thousand copies of a specific oligo probe.

There are 5 steps in the process

- 1. RNA isolation
- 2. cDNA synthesis
- *3. in vitro transcription amplification*
- 4. hybridization to the Illumina RNA array HumanRef-6 v2
- 5. *the bead chip is then imaged using the beadchip reader*

A schematic diagram of the probe and cDNA attaches to it is shown in figure 3.6.1

Figure 3.6.1 A schematic drawing of the relationship of the RNA expression analysis oligo probe to the applied cDNA

The level of expression of RNA is compared to the expression of control samples. No normal non-diseased controls were available and therefore PDI was compared to three disease groups with clinical features distinct to PDI – Rothman Thompson syndrome (RT), cryptogenic infantile spasms (CIS) and mental retardation, spasticty and taptoretinal degeneration (MRST) syndrome.

3.5.1 Data analysis

I analysed the results which were provided as raw expression data. PDI expression data was then compared to the expression for the control conditions and differences in expression compared in order to identify genes which are either over expressed or under expressed compared to other conditions.

Comparison (shown in table 3.5.1):-

- 1. ranked in order of degree of over expression compared to CIS
- 2. ranked in order of degree of over expression compared to RT + CIS
- 3. ranked in order of degree of over expression compared to MRST + CIS
- 4. from the top 100 over expressed and under expressed genes
 - a. compare to the chromosome 5 region of interest
 - b. using the data from the GWS, identify the position of the top ranked genes to recognise if a ranked gene fell in a region of homozygosity shared by all the affected probands in which the RNA was analysed

<u>GENE</u>	<u>CHROMOSOME</u>	<u>START</u>	<u>MRST + CIS</u>	<u>RT + CIS</u>	<u>CIS</u>	<u>3C</u>	<u>5C</u>	<u>6C</u>
C7ORF54	7	52821138	1	11	26	0.3 Mb	5.5 Mb	heterozygous
DDB1	11	60823495	2	19	48	0.1 Mb	0.4 Mb	0.2 Mb
LOC728153	5	60706424	3	12	22	heterozygous	19.7 Mb	0.2 Mb
RAB6B	3	135025769	6	1	1	15.6 Mb	0.04 Mb	0.04 Mb
CDC14A	1	100590611	20	44	11	7.5 Mb	0.1 Mb	0.4 Mb
LOC440456	17	40869050	22	22	12	1.4 Mb	heterozygous	1.8 Mb
MLL3	7	151462947	28	3	2	0.3 Mb	3.5 Mb	0.5 Mb
C7ORF28A	7	5904867	32	16	30	0.2 Mb	0.1 Mb	heterozygous
STX1A	7	72751472	33	42	72	0.8 Mb	1.1 Mb	heterozygous
HECTD2	15	93160081	41	13	33	heterozygous	0.1 Mb	heterozygous
C15ORF28	15	25686427	42	26	82	0.04 Mb	heterozygous	0.1 Mb
RAPGEF1	9	13344197	8	6	18	0.25 Mb	0.3 Mb	heterozygous
C9ORF38	9	6460369	58	7	16	heterozygous	0.4 Mb	heterozygous
DPRXP4	17	301860	78	24	58	3.4 Mb	heterozygous	0.6 Mb
POLR2J4	7	37175317	82	15	42	0.03 Mb	0.6 Mb	0.18 Mb
PML	15	72074067	85	41	40	heterozygous	heterozygous	heterozygous
				0 1 0 1	< D.D. I		•	

Table 3.5.1. A table showing the ranking of the first 16 PDI gene expression against

differing combinations of unrelated conditions. Each gene has been located on the GWS and the region of homozygosity surrounding the gene has been recorded for each proband (3C, 5C and 6C)

3.5.2 Summary of results

These results show that none of the genes with altered expression are found within the PDI locus on chromosome 5. The results also show that there were no large areas of shared homozygosity in the three probands at the position of the ranked genes. This suggests that the protein expression of the affected gene is not altered when using RNA. It can therefore be hypothesised that the molecular defect resulting in PDI may be due to an abnormality in post translational modification.

The results of the RNA expression analysis are not conclusive and do not aid the identification of the causative gene for PDI assuming the hypothesis that PDI is caused by a single gene which in consanguineous families both copies of the gene in this autosomal recessive inherited condition are identical by descent.

3.6 Direct sequencing of genes within the PDI locus

3.6.1 Chapter overview

Genes within the initial region of linkage between 96,406,286 and 103,990,534 (region 1) were further investigated by direct sequencing as in this region all probands were homozygous. The NCBI and UCSC databases were used to identify the genes in region 1. 30 genes lay within this region. There were no known genes for intestinal diseases. Prioritisation of gene sequencing was determined mainly by putative gene function, expression and size.

Predicted function which suggested high priority for sequencing were

DNA repair Ion transport Immunoregulatory

Further priority was then given to the size of the genes with smaller genes sequenced first.

The annotation of the gene within the public databases also influenced prioritising with the sequence being

Known genes with a documented function

Known genes with the function unknown

Hypothetical genes

Region 1 did not contain any genes with mutations in the affected probands.

The linkage data was re-analysed using only those probands who originated from Pakistan. This extended the region of shared homozygosity to include an additional 40 genes (region 2). No genes within region 2 were known to cause intestinal disease. Genes within the region were prioritised as in region 1.

Mutations were identified in the hypothetical gene *KIAA0372*. During the course of the investigation of the region the gene name was changed to *TTC37*. This chapter describes the sequencing of genes within regions 1 and 2. A detailed description of the mutations identified in *TTC37* is found in chapter 3.7.

3.6.2 Investigation of genes in region 1

In region 1 (96,406,286 - 103,990,534) all affected probands were homozygous. The haplotype was not identical even for common ethnicity.

Using NCBI public database 30 genes were annotated in this region. Table 3.6.1 summarises the gene types within the chromosome 5 region.

Gene type	Number in region 1
Pseudogene	13
Hypothetical gene	4
Known function	11
Function unknown	2

Table 3.6.1 A summary of the type of genes within region 1

Genes were initially prioritised in the following order:

- 1. Known function
- 2. Function unknown
- 3. Hypothetical genes. Two major properties of DNA which distinguishes between coding and non coding are
- High evolutionary conservation
- Expression to give RNA transcripts

In vertebrate DNA there may also be CpG islands associated with a gene. Using these methods areas of the human genome which could potentially be coding DNA can be identified. In some cases the sequence is similar to known genes and a putative function can therefore be ascribed. In exploring the PDI region, hypothetical genes have been the last to be sequenced as they are not fully annotated.

4. Pseudogenes were excluded and not sequenced. A pseudogene is a sequence which has characteristics of one or more paralogous genes. The pseudogene sequence differs from the paralogous gene at crucial points and is therefore non functional due to non transcription, non translation or the production of a non functional protein (Mighell *et al* 2000). The exact number of pseudogenes throughout the genome is unknown. Gene families are likely to arise from a single ancestor gene via gene duplication of which some will be non functional, this is known as a nonprocessed pseudogene. 22.6% of nonprocessed pseudogenes are

174

within 500kb of the functional gene (Bischof *et al* 2006). Another method of pseudogene formation is by retrotransposition (processed pseudogene) in which a double stranded sequence is inserted randomly into the genome formed from single-stranded RNA and therefore has no introns.

Pseudogenes are nonfunctioning genes and therefore have not been sequenced to look for somatic mutations resulting in PDI.

It has to be remembered however that in a small number of cases a pseudogene has been reported to be involved in causing disease. This can occur by two methods:-

- Regulation of gene expression
- Gene conversion the transformation of the sequence of one gene to that of another arising during genetic recombination i.e. a functional gene acquiring some of the sequence of a pseudogene during recombination due to the close locality (or co-localisation) of the two genes and their genetic similarity. Conditions in which this has occurred include chronic granulomatous disease (OMIM 608512), Schwachman-Bodian-Diamond (OMIM 607444) syndrome and autosomal dominant polycystic kidney disease (OMIM 601313).

Within each category genes were then prioritised according to a putative function which could result in the phenotype of PDI and the tissue expression of the gene. There were no genes with known function within the region which were good candidates for PDI. The expression of the gene for PDI is likely to be ubiquitous due to the many systems affected. The initial four genes sequenced due to the putative function of the gene (size of the gene did not influence the selection of these genes as the proposed function made the gene a candidate for PDI) were:-

CHD1: The CHD family of proteins is characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. CHD genes alter gene expression possibly by modification of chromatin structure thus altering access of the transcriptional apparatus to its chromosomal DNA template. *CHD1* is an ATP dependent chromatin-remodelling factor that also functions as a chromatin assembly factor which is thought to function during elongation as it displays physical and genetic interactions with numerous elongation factors.

CHD1 contained 35 exons and due to the large size it was initially sequenced using RT PCR with 8 RT PCR primer pairs to cover all the gene cDNA. All fragments were identified on gel electrophoresis in the probands investigated – 3C, 4C, 5C and 6C. The PCR products were then directly sequenced and no mutations were identified.

CAST: this is a calpastatin which is an endogenous inhibitor of calpains in the presence of calcium. Calpains are non-lysosomal calcium-dependent cysteine proteinases that selectively cleave proteins in response to calcium signals and thereby control cellular functions such as cytoskeletal remodelling, cell cycle progression, gene expression and apoptotic cell death. The ubiquitous expression and variety of functions of calpains and the inhibitor calpastatin make *CAST* a potential candidate gene for PDI.

CAST is composed of 31 exons which were directly sequenced using genomic DNA. Two SNPs were detected which were homozygous.

SLCO4C1 and *SLCO6A1*: solute transporters are associated with intractable diarrhoea of infancy and therefore mutations may potentially result in the phenotype of PDI. *SLCO4C1* was sequence using cDNA and RT PCR whilst *SLCO6A1* was sequenced using genomic DNA. Homozygous SNP's were identified.

Following exclusion of the above genes the other known genes within region 1 were sequenced using genomic DNA in order of number of exons commencing with the smallest genes.

The DNA from four probands (3C, 4C, 5C, 6C) was used to screen each of the genes. This cohort had been personally phenotyped by the investigator (JH) and DNA volume and quality was good.

Table 3.6.2 summarises the findings in each of the genes sequenced.

Gene	Proband	Change
LIX1		no changes
RIOK2	6C	rs2544773
	5C, 6C	rs160632
	4C, 5C	rs12188395
	5C, 6C	rs8654
	3C, 4C, 5C, 6C	rs2547973
RGMB	6C	?rare SNP
FLJ35946	3C, 4C, 5C	start codon
CHD1		no changes
LOC441066		no changes
LOC728104	4C, 6C	rs2460669
TMEM157		no changes
ST8SIA4	6C	?rare SNP
SLCO4C1	5C	rs10479190
SLCO6A1	3C	rs6884141
	3C, 6C	rs11746217
	6C	rs17150488
	6C	rs10073333
PAM		no changes
LOC134505		no changes
FLJ20125		no changes
HISPPD1		no changes
LOC90355		no changes
NUDT12	4C	rs7734923
	4C	rs7723689
	4C, 6C	rs10045774

Table 3.6.2 A summary of the sequence changes found within the genes of region 1.

Fourteen SNP's which are annotated with an rs number were identified in 6 different genes. Only one SNP (rs2547973) in *RGMB* was seen in all 4 screening probands. The identification of a SNP in one proband and not the others made this gene an unlikely candidate for PDI which is hypothesised to be caused by a single gene. In two genes *RGMB* and *ST8SIA4*, proband 6C had point mutations which were not seen in the other probands and also had not previously been described. This suggests that these mutations are likely to be newly identified SNP's.

<u>RGMB</u>

The RGMB gene (Repulsive guidance molecule B) is expressed in the development of the central and peripheral nervous system and may also be involved in the differentiation of intestinal epithelium and therefore a potential gene candidate for PDI.

A sequence variant ATC-ATT in exon 5 of proband 6 results in a synonymous amino acid change leucine to leucine. The nucleotide change segregated appropriately within the family with both parents being heterozygous as well as the unaffected sibling. 160 Asian controls were directly sequenced and no heterozygous or homozygous identical nucleotide changes were found.

No identical sequence variants were found in the other affected patients and no other changes were identified in the other exons. This synonymous change is therefore unlikely to be a significant disease causing mutations for PDI and is likely to be a rare SNP which has not previously been described.

<u>ST8SIA4</u>

The family of sialyltransferases regulate the linkage between neural cell adhesion molecules and polysialic acid which modulates the adhesive properties. Polysialic acid has been implicated in numerous normal and pathologic processes, including development, neuronal plasticity, and tumour metastasis. It has no known pathology within the intestine and is therefore not an obvious candidate gene but was sequenced as part of sequencing of region1.

Proband 6C had a single base change resulting in a non synonymous amino acid change from leucine to methionine. The change segregated within the family with both parents and sibling being heterozygous. The sequence variant was not seen in any other proband. 104 Asian control chromosomes also did not identify this sequence change. This suggests the change did not result in the clinical phenotype of PDI and is likely to be a rare SNP which has not previously been described.

In summary, the direct sequencing of all genes in region 1 did not identify any sequence variants which could plausibly result in the clinical phenotype of PDI.

3.6.3 Investigation of genes in the region 2

Region 2 was investigated following the reanalysis of the microsatellite data using exclusively those probands which had originated from Pakistan.

This extended the region to include a further 40 genes. None of the genes within the region were excellent candidate genes and therefore the same approach as to region 1 was

applied. The 6 pseudogenes within the region were not sequenced. The region also contained 2 microRNA genes.

MicroRNAs (miRNAs) are small RNA molecules of about 22 nucleotides which act as regulators of other genes. Human MiR583 has homology with Drosophila MiR278 which is important in adipocyte regulation and insulin resistance. The MIRN583 gene was sequenced in the exploration of the PDI region.

A summary of the type of genes in region 2 is shown in table 3.6.3

Gene type	Number of genes
Genes with known function	14
Genes with no known function	11
MicroRNA genes	2
Hypothetical genes	7
Pseudogenes	6

Table 3.6.3 A summary of the gene types in region 2.

Gene	Proband	SNP identification number
CETN3	4C	rs11554603
CETINS	5C	rs4873
LOC153364	3C, 5C,6C	rs2162986
POLR3G		no changes
LYSMD3	5C	rs10069050
ARRDC3		no changes
C5orf21		no changes
C5orf36		no changes
ANKRD32	4C	novel SNP
FAM81B	5C, 6C	rs17853328
TTC37		mutations
ARSK	3C, 5C	rs17084927
RFESD		no changes
SPATA9		no changes
	4C, 5C	rs34896
RHOBTB3	3C, 4C, 5C	rs34898
	3C	rs41276257
GLRX		no changes
FIS	6C	Novel splice site
FIS	4C	Novel splice site
ELL2	3C	rs17685249
ELLZ	3C, 4C	rs3777204
MIRN583		no changes
PCSK	6C	rs6233
FOOK	3C	rs6235
CAST	3C, 4C	rs11558594
CAST	3C	rs2290678
	5C	novel SNP
LNPEP	5C	rs11311774
	6C	rs1174632
	3C	rs73150323
	4C, 6C	rs2549782
	4C, 6C	rs2548438
LRAP	4C, 6C	rs41276277
LINAF	4C, 6C	rs61731306
	6C	rs2549796
	6C	rs1056893
	6C	rs73152140

Table 3.6.4 Summary of sequence changes identified in genes in region 2

Twenty-five SNP were identified in region 2. The SNP in *CETN3* was heterozygous in 4C and suggested therefore that this region was no longer homozygous and was the upper limit of the region. The genes prior to *CETN3* were not sequenced (*LOC645323, MIRN9-2, MEF2C, LOC729011*).

Not all genes had complete sequencing analysed before the discovery of mutations in TTC37.

Genes in which sequencing was not completely analysed:-

NR2F1 LOC729040 GPR150 MCTP1 LOC441097 FLJ25680

Those genes which had no analysis:-

ARTS GPR98

Further investigations of FIS

This gene is poorly annotated in the databases with no exons delineated.

The gene was extensively investigated.

- Four exons were identified by comparing the cDNA sequence with genomic DNA sequence.
- 2. The identified exons were directly sequenced and many changes were identified including the formation of premature stop condons.

- 3. BLAST of the genome with individual exons and protein sequence was used to identify alternative transcripts- no alternative transcripts within the genome but different assemblies of the genome (HuFA and Celera) have different transcripts which were identified by BLAST. BLAT did not reveal any alternative sequence within the genome
- 4. cDNA fragments to cover alternative start and stop codons and to also cover the identified sequence variants. Control cDNA was also sequenced.
- 5. FIS was sequenced in all affected probands.
- 6. FIS was sequenced in control DNA samples.

Results

Exon 2: insertion of 4 bases – identified in a different transcript of the gene

Exon 2: GCC->GAC – seen in control samples

Exon 4: GAA->TAA (stop) – also seen in control samples therefore likely to be an alternative transcript

3.6.4 Summary of chapter

All the genes in the region linked by all probands did not identify any mutations which could be ascribed to causing PDI. When the region of linkage was examined to include just those patients from Pakistan the region extended to include a further 40 genes. In total 39 genes were fully sequenced. Known SNP's and novel SNP's were identified. Mutations were identified in *TTC*37 and the further investigation of *TTC*37 is described in chapter 3.7.

3.7 Mutation identification in *TTC37*

3.7.1 Chapter overview

All sequencing was analysed using Chromas and compared to a reference sequence from Ensembl release 52 – Dec 2008.

The DNA from 4 affected children with classical features (3C, 4C, 5C and 6C) was initially sequenced and when germline mutations were identified the other probands with PDI were sequenced. Where available, the affected exon of the proband was analysed in the parents and siblings to look for segregation within families.

To ensure the sequence changes were not due to rare SNP's more than 350 Asian control samples were sequenced for each mutation.

3.7.2 TTC37 sequencing results

Family 1

This family are reported to be non consanguineous of Indian origin but originate from the same village and therefore there may be potential distant consanguinity. The probands died from liver disease with excessive hepatic iron overload. In affected siblings 1C and 1D a homozygous base change from c.2808G>A changes the amino acid codon from tryptophan (TGG: W) to a stop codon (TGA: X) at amino acid position 936 (W936X). The unaffected parents and unaffected sibling were heterozygous as shown in figure 3.7.1.

Figure 3.7.1. A chromatogram showing the segregation within family 1 of the base change TGG->TGA (stop)

A premature stop codon at position 936 will truncate the protein.

The amino acid at this position is conserved in mammals and flies but not in zebra fish

(Danio rario).

Homo sapian	928	EGALGYAY <mark>W</mark> VCTTLQDKSNRETELYQYNILQMNAIPAAQVILNKYVERIQ	977
Canis lupus	926	EGAIGYAY <mark>W</mark> VCTTLQDKSNRDTELYRYNIVQMNAIPAAQVVLSKYIERIQ	975
Bos taurus	928	EGAIGYAY <mark>W</mark> VCTTLQDKSNRDTELYRYNILQMNAIPAAQVVLSKYVERIQ	977
Mus musculus	928	EGAIGYAY <mark>W</mark> VCTTLQDKSNRETELYQYNILEMNAIPAAQGVLCKYVERIQ	977
Rattus norvegicus	928	EGAIGYAY <mark>W</mark> VCTTLQDKSNRETELYQYNILQMNAVPAAQGVLCKYVERIQ	977
Gallus gallus	926	EGAKGYAH <mark>W</mark> VCSTLQDKSNRDTEQYLYNIVEMNAIPAAQVVMSKYTERNP	975
Danio rario	904	EGVKGYAYCVCSTLLDRSNRDSELYLYNIVQMNAVSAAQVALSKYTERIQ	953
Fly	872	EAALGFAH <mark>W</mark> VCEMLSTPGSFDKPRIKHAIEHMYADVLALDAINWYVQNEE	921
Anopheles	873	EAALGYAH <mark>W</mark> VCSIVNEDNYHENERYRFAIDAMAALPVAHDAIGWHCADLA	922

Family 2

This non-consanguineous proband of Dutch origin has a heterozygous sequence change p.Asp1283Asn as also found in a Flemish proband. This may be a founder sequence variant. It is predicted to be a benign change in Polyphen. The child is also heterozygous for the SNP rs17084873 which is also predicted to be a benign change by Polyphen.

Family 3

Family 3 originates from the Mirpur region of Pakistan and are of consanguineous union. Proband 3C has a homozygous intronic change c.2779-2G>A. The parents are heterozygous for this splice site change as shown in figure 3.7.3.

3

Splice site prediction for this acceptor site predicts the wild type splice site with a score of 0.96 but the splice site can not be identified with the base change from A->G.

Reverse transcriptase PCR of cDNA with a forward primer in exon 26 and reverse primer in exon 31 showed a loss of the normal size band on gel electrophoresis. A second transcript was also seen in 3 affected children and faintly in control 2. This is shown in figure 3.7.4.

Both 3C and 5C have the same mutation c.2779-2G>A. This suggests that this mutation results in skipping of exon 29 creating a smaller RT PCR product.

Figure 3.7.4 The RT-PCR products for patients 3C and 5C are smaller suggesting truncation of the protein secondary to the mutations.

The RT PCR product was sequenced to identify the missing sequence and is shown in figure 3.7.5. There is background sequencing due to the second transcript but despite this it can be seen that exon 28 goes straight to exon 30 and exon 29 has not been expressed.

The mutations identified in 4C and 6C do not affect this splice site and the exon 29 is normally expressed.

Figure 3.7.5 The chromatograms of the cDNA PCR product of 3C. The splice site mutation in 3C causes skipping of exon 29

The splice site mutation also results in a frame shift which is likely to create an abnormal protein. The frameshift also results in the formation of a premature stop codon at amino acid 19 in exon 30 so truncating the abnormal protein.

Figure 3.7.6 Shows wild type cDNA transcript with codons shown in alternating colours followed by the cDNA transcript for 3C highlighting that skipping of exon 29 causes the formation of a premature stop codon on exon 30 and therefore truncation of the protein:-

Exon 28

CTGCACAACATTGCAAGATAAAAGCAACAGAGAAACAGAGCTGTACCAGTACAACATCCT CCAGATGAAT

GCTATTCCAGCAGCACAA<mark>GTTATTTTGAATAAATATGTAG</mark>

Exon 29

AAAGAATT<mark>CAG</mark>AAT<mark>TATGCCCCA</mark>GCTTTCACA<mark>ATG</mark>TTGGGTTACTTAAACGAACATCTAC AACTGAAAAAGGAAGCAGCAAATGCATACCAAAG

Exon 30

<mark>GGCAATTTTGTTGTTACAGACT</mark>GCAGAAGAC<mark>CAAGATACT</mark>TACAATGTT<mark>GCAATAAGA</mark>AA <mark>T</mark>TACGGCAGATTGTTATGTTCCACTGGTGAATATGATAAAGCTATCCAGGCTTTTAAGTC AACACCCCTTGAAGTG

3C cDNA transcript with codons shown in alternating colours and the formation of a stop codon in exon 30 shown in red

Exon 28

GCTATTCCAGCAGCACAA<mark>GTT<mark>ATT</mark>TTG<mark>AAT</mark>AAA<mark>TAT</mark>GTA</mark>G

Exon 30

GGCAATTTTGTTGTTACAGACTGCAGAAGACCAAGATACTTACAATGTTGCAATAAGAAA

TTACGGCAGATTGTTATGTTCCACTGGTGAATATGATAAAGC

Family 4

Family 4 are of Kurdish origin and are of consanguineous union. 4C has a homozygous deletion of a single base G at the splice site of exon17 / intron17, c.1632+1delG as shown in figure 3.7.7. The parents and unaffected dizygotic twin are heterozygous and the unaffected sibling is wild type.

Figure 3.7.7 Shows the chromatogram for family 4 with segregation of the splice site mutation

The deleted base is either the last in exon17 or the first in the intron. In either case the splice site is affected with splice site predictor show a score of 0.98 for the wild type splice site and a reduction to 0.75 with the base deletion.

If the base deletion is in the exon there is a frame shift resulting in the formation of abnormal protein in exon 18 and the formation of a stop codon, p.Glu545Phefs*40

Figure 3.7.8 RT PCR using primers in exons 15 and 19 on gel electrophoresis showed a smaller band for 4C as compared with the wild type and other affecteds with different mutations. A faint band was seen the same size as the wild type and this is thought to be due to leaky splicing.

To investigate for contamination in 4C, 3 different samples of RNA from patient 4C were converted to cDNA (chapter 2) and the same RT PCR primers run. This showed that all three samples had the two bands and again this was not seen in the controls. The predominant band is the smaller band. In this RT PCR a sample from 3C was re run as in the initial sample no product was identified. On repeat 3C had a single wild type band as shown in figure 3.7.9.

Figure 3.7.9 RT PCR of 3 different RNA samples for 4C to ensure the findings were not due to contamination.

The RT PCR product was sequenced which identified a loss of expression of exon 17. Although a small amount of exon 17 sequence can also be identified as shown in figure 3.7.10.

Figure 3.7.10 Sequencing of the RT PCR product identified skipping of exon 17 due to the splice site mutation.

Family 5

Family 5 are consanguineous and originate from the Mirpur region of Pakistan. The affected child 5C is homozygous for the intronic mutation c.2779-2G>A. This is the same mutation as identified in child 3C. The parents are heterozygous and the three unaffected siblings are all heterozygous as shown in figure 3.7.11.

Figure 3.7.11 The chromatogram of family 5 showing segregation of the splice site mutation

This base change in intron 28 predicts a splice site change which results in skipping of exon 29 as shown in figure 3.7.12. The RT PCR of 5C has been shown in 3.7.4 where the

wild type electrophoresis band is lost and a smaller band has been formed. This is identical to those of 3C who has the same mutation.

Figure 3.7.12 Sequencing of the RT PCR for 5C confirms the skipping of exon 29.

Family 6

This family are of Pakistani origin and of consanguineous union. A homozygous base change in exon 10 at the exon / intron boundary was identified, c.751G>A shown in figure 3.7.13. This was confirmed by sequencing of the RT PCR product which showed skipping of exon 10 (figure 3.7.15). This is predicted to cause a splice site alteration and

also an amino acid change G251R which is predicted using Polyphen to be probably damaging with a PSIC score difference of 2.168.

Figure 3.7.13 A chromatogram of family 6 showing segregation of the splice site mutation

Figure 3.7.14 The splice site prediction was investigated using RT PCR and showed a smaller PCR product for 6C as compared to other affecteds with different mutations and control samples.

Figure 3.7.15 Sequencing of the RT PCR fragment shows that exon 10 is not expressed.

This then causes a frame shift and the formation of a stop at codon 14 in exon 11

Splice site

Family 7

This family originate from Pakistan and are of consanguineous union. A homozygous base change TGG->TGA (c.2808G>A) causes the formation of a stop codon W936X in exon 28. This is seen in figure 3.7.16. This is the same mutation as seen in family 1 and also family 14.

Only DNA from the affected child is available and therefore segregation within the family can not be ascertained.

Proband 7C TATT G A GTC TATT G G GTC Wild type

Figure 3.7.16 Show the chromatogram for patient 7C and a control as extended family DNA was not available

Family 8

This family originate from Pakistan and are of consanguineous union. The original genome wide scan and microsatellite studies showed linkage to the region. A cousin died from liver disease and had a similar phenotype. A genomewide scan of the cousin did not show homozygosity to the region of interest. No mutations have been identified in this

family. Two SNP's were identified in 8C both of which were heterozygous, rs17084873 in exon 17 and rs2303650 in exon 37.

This suggests that there may be locus heterogeneity and another gene also causes the PDI phenotype. An alternative explanation is the two SNP's result in a reduction in protein expression causing the disease phenotype. Polyphen predicts R1296S to be possibly damaging with a PSIC score difference of 1.895 whilst L437V is predicted to be benign with a score difference of 0.092.

Family 9

Initially a single base deletion was identified but not confirmed on resequencing and therefore no mutation was identified in this family.

Family 10

This family are Caucasian English and not of consanguineous union. Only DNA from the child is available.

This initially showed 4 sequence variants:-

Exon 6: heterozygous L106H. This variant was identified in many controls suggesting it is an unannotated SNP. This is predicted to be potentially damaging by Polyphen.

Exon 15: a 2 base deletion which causes a frame shift and the formation of a stop codon c.1300_1301delAA, p.Lys434Lysfs*14 The amino acid which is deleted is conserved in mammals but not in chicken, flies or zebra fish.

Intron 21-4: heterozygous change in intron 21, 4 bases before exon 22. 290 controls are all wild type. The prediction is that this causes no effect on the splice site indeed the score for the wild type is 0.95 and the sequence variant 0.97. This may also be a rare SNP.

Exon 42: heterozygous change c .4514T>C, p.Leu1505Ser which is predicted to be probably damaging by Polyphen. 140 control chromosomes are all wild type. The amino acid is conserved in mammals and in zebra fish but the sequence is not found in flies.

Homo sapian	RKMGARETRRL <mark>L</mark> ERIVYQTGYPSSIVSAARWYLLRHLYAKDDPELIDV	1540
Canis lupus	DIIETRRL <mark>L</mark> ERVVYQTGYPNSIVSTARWYLLRHLHAKDDHELIDV	1448
Bos taurus	RKMGARETRRL <mark>L</mark> ERVVYQPGYPKSIVSTARWYLLRHLHAKNDYELIDV	1539
Mus musculus	RKMGARETRRL <mark>L</mark> ERVVYQPGYPKSIVSTARWYLLRHLHAKNDYELIDV	1537
Rattus norvegicu	srkmgaretrrl <mark>l</mark> ervvyqpgypksiastarwyllrhlyakddyelidv	1541
Gallus gallus	RKMGARETRRM <mark>L</mark> ERVVYQPGNPETIVSVARWYLLQHLYAKDDYELIDV	1538
Danio rario	VKMGARETRRL <mark>L</mark> ERIVYASALGGSETIASVARWYLLRHLHAKDDLELIDT	1502
Fly		
Anopheles		
E		

Figure 3.7.17 Shows conservation between species of the amino acid 1505

Family 11

This family are non consanguineous and are from Italy. This patient is a compound heterozygote with two base changes both resulting in the formation of a stop codon. From the heterozygous father a CAA->TAA in exon 21, c.2251C>T, G751X and from the heterozygous mother CAG->TAG in exon 8, c.439C>T, G147X. These are shown in figure 3.7.18.

Figure 3.7.18 Chromatograms showing the segregation of the two mutations CAA->TAA and CAG->TAG within family 11

Family 12

In this Flemish non consanguineous family only one mutation has been identified,

D1283N. This mutation was also identified in patient 2C. Polyphen predicts this to be a benign change. The amino acid is conserved in mammals but not in chicken, zebra fish or flies which is shown in figure 3.7.19. As in child 2C the other mutation in this child has not been identified. Child 2C is Dutch and there may be a rare SNP in these two families.

Homo sapian	TAEDKSNTALKTIQKAAFLSPDDPAVWAGLMAACHAD <mark>D</mark> KLALLNNTQPKR	1295
Canis lupus	TAEDKSSTALKTIQKAAFLSPDDPAVWAGLMAACHAD <mark>D</mark> KLALVSNTQPKR	1295
Bos taurus	SAETEKNLALKTIQKAALLSPGDPAVWAGLMAACHAD <mark>D</mark> KLALVNNTQPKR	1294
Mus musculus	SAEDEKNTALKTIQKAALLSPGDPAVWAGLMAACHAD <mark>D</mark> ILALVSSTQPKR	1292
Rattus norvegicus	SAEDEKNTALKTIQKAALLSPGDPAIWAGLMAACHAD <mark>D</mark> KLALVNNTQPKR	1296
Gallus gallus	MLEDERNNPLKNIQKAIHICPDNPAAWAVLMAACHAENTVVCLNNTQPKR	1293
Danio rario	SGEDRRHNALKTIQRAVLLCPDDPAGWAGLMAACHTENTACFLTGSTPHR	1303
Fly	VSAVDKTCSMKLLQRAILLSPTDQRARQLLSAIIANS	1233
Anopheles		

Figure 3.7.19 shows conservation of the amino acid D1283N in other species

In the parents with sequence change was not identified and this change may represent a de novo mutation.

Family 13

This family are English, non consanguineous. No sequence variant has been identified in this child. This may indicate a second locus for the PDI phenotype. This child has a neurological signs which may be part of the clinical component or may represent a separate insult at the time of birth. If the neurology is part of the syndrome then this is distinct to the other affected children and may represent a novel phenotype.

Family 14

This consanguineous family are from the Mirpur region of Pakistan. The affected child 14C is homozygous for TGG->TGA, c.2808G>A, p.Trp936X in exon 28. The parents are

heterozygous as seen in figure 3.7.20. This mutation has also been identified in the two Indian siblings 1C and 1D and also 7C who also originated from Pakistan.

Figure 3.7.20 The chromatograms for family 14 showing appropriate segregation of p.Trp936X

3.7.3 Summary of results

Mutations in *TTC37* are associated with the clinical condition PDI.

A nonsense mutation in exon 28 (c.2808G>A: p.W936X) was detected in three apparently unrelated families (1, 7 and 14) of South Asian origin. The SNP haplotypes in the affected individuals were identical over a 974 kb region (from rs255375 to rs34897) containing *TTC37*, consistent with a founder mutation. An intron 28 splice site mutation was detected in two apparently unrelated families from Pakistan (3 and 5) with identical SNP haplotypes over a 457 kb interval encompassing *TTC37* (from rs116286 to rs7736948).

RNA studies were undertaken to investigate putative splice site mutations in 4 affected individuals. In families 3 and 5 an intronic c.2779-2G>A sequence change resulted in skipping of exon 29 and a predicted truncated protein (p.Glu974Glyfs*19). In family 4, a c.1632+1delG variation at the first nucleotide of intron 17 resulted in skipping of exon 18 producing a frameshift and a premature stop codon, p.Glu545Phefs*40. In family 6 the c.751G>A substitution, predicted to cause a missense substitution (p.Gly251Arg) involved the final nucleotide of exon 10 and resulted in skipping of exon 10 (figure 5c) resulting in a frameshift and predicting a truncated protein (p.Phe215Glufs*14). A summary of results is shown in table 3.7.1.

Family	Number of	Ethnicity	Consanguinity	Mutation 1	Mutation 2	Changes which
Identifier	affected					may be rare
	individuals					SNP's
1	2	Indian	No	c.2808G>A	c.2808G>A	
				p.Trp936X	p.Trp936X	
2	1	Dutch	No			c.3847G>A
						p.Asp1283Asn
3	1	Pakistani	Yes	c.2779-2G>A	c.2779-2G>A	
				p.Glu974Glyfs*19	p.Glu974Glyfs*19	
4	1	Kurdish	Yes	c.1632+1delG	c.1632+1delG	
				p.Glu545Phefs*40	p.Glu545Phefs*40	
5	1	Pakistani	Yes	c.2779-2G>A	c.2779-2G>A	
				p.Glu974Glyfs*19	p.Glu974Glyfs*19	
6	1	Pakistani	Yes	c.751G>A	c.751G>A	
				p.Phe215Glufs*14	p.Phe215Glufs*14	
7	1	Pakistani	Yes	c.2808G>A	c.2808G>A	
				p.Trp936X	p.Trp936X	
10	1	English	No	c.1300_1301delAA	c.4514T>C	с.
				p.Lys434Lysfs*14	p.Leu1505Ser	p.Leu106His
11	1	Italian	No	c.439C>T	c.2251C>T	
				p.Gln147X	p.Gln751X	
12	1	Flemish	No			c.3847G>A
						p.Asp1283Asn
14	1	Pakistani	Yes	c.2808G>A	c.2808G>A	
				p.Trp936X	p.Trp936X	

Table 3.7.1 provides a summary of mutations detected in *TTC37*

3.8 in silico analysis of TTC37

3.8.1 Gene position and structure

The gene TTC37 is found on chromosome 5q15 at position 94,799,599-94,890,709

TTC37 was previously known as *KIAA0372*. Analysis of the domains of *KIAA0372* led to the finding that the gene contained tetratricopeptide repeat domains leading to the renaming of the annotated gene in 2008.

There is a single transcript of the gene which is found on the reverse strand.

TTC37 consists of 43 exons of which exons 1, 2 and 3 are non coding. TTC37 spans

5,704 bases and encodes 1564 amino acids.

The nucleotide and amino acid sequence of TTC37 is provided in appendix 8.4.

The relationship with other genes in the area shows that *TTC37* does not incorporate any other genes. *TTC37* is also not in the region of a superfamily domain.

	<u> </u>			1.00 Mb -			Forwar	d strand 💻
	94.40 Mb	94.50 Mb	94.60 Mb 94.70 M	94.80 Mb	94.90 Mb	95.00 Mb 95.1	.0 Mb 95.20 Mb	95.30 Mb
Chromo some bands				q15				
Contigs	< AC099507.3	< AC010362.6	AC008573.5 >	AC090071.3 >	AC008547.6 >	< AC008840.5	< AC00859	2.4
Ensembl/Havana g								
-	LMCTP1		^L AC008573.5	LAC090071.3-1	LARSK LGPR15	0 ^L RHOBTB	3 ^L GLRX ^L ELL2	LAC008
			L _{EA}	M81B TTC37	^L RF	ESD	^L AC008592.1	
					L S	PATA9		
ncRNA gene								
		04.50.44	o. co.ul	00	04.00.11			05,00,14
	94.40 Mb	94.50 Mb	94.60 Mb 94.70 M			95.00 Mb 95.1	LO Mb 95.20 Mb	95.30 Mb
	Ensembl Homo sapiens	version 55.37 (GR	(Ch37) Chromosome 5: 94	4,345,154 - 95,345,15	3			

Figure 3.8.1 Shows the relationship of *TTC37* to other genes in the region as seen in Ensembl. There is no superfamily domain or bases which overlap with other genes. The position of *TTC37* therefore does not indicate the gene product function.

3.8.2 Known polymorphisms within the coding region

5 polymorphisms have been annotated in the exons of *TTC37*.

Exon 1 non coding region		in the start codon amino acid position 1			
Exon 9 synon	ymous change	mRNA position 855	rs73147944	heterozygosity rate	
unknown	G->A	Lys->Lys codon	position 1	amino acid 195	
Exon 15 miss	ense change	mRNA position 1579	9 rs17684873	heterozygosity rate	
0.342 C->G	leu->val	codon position 1	amino acid po	osition 437	
Exon 37 Miss	ense change	mRNA position 4158	3 rs2303650	heterozygosity rate	
0.333 G->T	arg->ser	codon position 3	amino acid po	sition 1296	
Exon 38 misse	ense change	mRNA position 4288	3 rs1062020	heterozygosity rate	
unknown	T->X codon	position 1 amino	acid 1340		

3.8.3 Conservation through species

There are no paralogues. There are 50 orthologues documented in Ensembl including:-

Anopheles	27%
Bos Taurus	91%
Caenorhabditis elegans	18%
Canis familiaris	91%
Danio rerio	55%
Drosophila melanogester	25%
Felis catus	64%
Gallus gallus	66%
Macaca mulatta	90%

Mus musculus	84%
Pan troglodytes	98%
Rattus norvegicus	83%
Xenopus tropicalis	60%

3.8.4 Tetratricorepeat domains (TPR)

Within the literature tetratricopeptide repeat domains are abbreviated to TTC, TCC or TPR domains. Throughout this thesis I have used the abbreviation TPR.

TPR typically consists of 34 amino acids. The consensus of the sequence is:-[WLF]-X(2)-[LIM]-[GAS]-X(2)-[YLF]-X(8)-[ASE]-X(3)-[FYL]-X(2)-[ASL]-X(4)-[PKE]

The sequence is found in many organisms including yeast, bacteria, cyanobacteria, fungi, plants and in humans in various subcellular locations.

TPR's are involved in protein: protein interactions the exact method of which has not been identified. The domains may be involved in chaperone, cell cycle transcription and protein transport complexes.

5-6 repeats of the TPR sequence generate a right hand helical structure with an amphipathic channel that accommodates an alpha-helix of a target protein. The target protein may be WD-40 repeat proteins or other tetratricopeptide repeats to form multiprotein complexes.

It can be repeated many times and the repeats may be separated by non motif sequence. There are 8 conserved residues in each TPR protein.

-W-L-G-Y-A-F-A-P-

The rest is very diverse and corresponds to the diverse function of TPR containing proteins.

The structure is likely to form 2 α helical domains with –W-L-G-Y- forming a hydrophobic gap into which a phenylalanine side chain fits -A-F-A-. This provides a mechanism for protein to protein interactions (TPR-TPR interactions). In individual TPR's there is a greater degree of homology.

Examples of TPR containing proteins include:-

Cdc16p, Cdc23p and Cdc27p which are responsible for cell cycle progression through mitosis in Saccharomyces cerevisiae.

Cyclosome/ APC responsible for targeting mitotic regulators

Pex5p/Pas10p involved in targeting sequences of peroxisomes

Tom70p involved in mitochondrial biogenesis

3.8.5 Disease involving tetratricopeptide repeat (TPR) domain

containing genes

Fanconi's anaemia

This disorder is characterised by developmental anomalies, progressive pancytopenia and a predisposition to tumour formation. At least 8 genes are involved in DNA protection in this condition with mutations in any resulting in the phenotype. *FANCG* consists of 7 TPR domains and is crucial in binding to *FANCA* and is hypothesised to stabilise the FA

protein core complex. Mutations at the specific position 8 in 4 of the TRP domains prevent the binding to *FANCA* (Blom *et al*, 2004).

Zellwegers syndrome

This peroxisomal biogenesis disorder is inherited in an autosomal recessive fashion and is caused by mutations in one of at least 12 known *PEX* genes encoding peroxins.

Peroxisomal matrix proteins have a carboxyl terminal peroxisomal targeting signal which has a conserved amino acid sequence which bind to the *PEX5* receptor via a TPR domain to import protein into the peroxisome (McCollum et al, 1993).

Bardet Beidl syndrome (BBS)

Many genes have been attributed to cause the clinical phenotype of BBS. *BBS4* has a TPR domain. BBS is a syndrome caused by abnormalities in cell cilia and is therefore termed a ciliopathy (Ansley *et al*, 2003).

Chronic granulomatous disease

 $p67^{phox}$ is an essential component of the NADPH oxidase multiprotein complex involved in producing superoxide ions in response to microbes. Abnormalities in the formation of these complexes results in severe bacterial and fungal infections due to the inability of phagocytes to respond to microbes. The complex formation is mediated by insertion between two TPR domains (Grizot *et al*, 2001).

Polycystic ovary syndrome

Unbound androgen receptors are composed of heat shock proteins, co chaperones and TPR containing proteins and assists in ensuring the androgen receptors are functioning normally (Goodarzi *et al*, 2008).

Nephronophthisis

This cause of renal failure is an oligogenic inherited condition affecting cilia. To date 6 different genes have been identified with *NPHP3* having a TPR domain and is being expressed in the central node of the developing mouse embryo (Fliegauf and Omran, 2006).

Williams Syndrome

This is a developmental abnormality resulting from haploinsufficiency of 7p11.23. Different genes within this region are responsible for the clinical features if William's syndrome. The gene *FKBP6* consists of 3 TPR domains and is deficient in all cases of William's syndrome and therefore may be responsible for the common features of short stature and hypercalcaemia. The specific role of the TPR domains is unknown but is predicted to be involved in hormone binding (Meng *et al*, 1998).

3.8.6 Chapter summary

*TTC*37 has recently been described to contain TPR domains. The finding of TPR suggests the protein may be involved in protein-protein interaction or in the formation of multiprotein complexes.

TPR domains are found throughout the genome and have a wide range of roles with no specific pathways involved.

The role of *TTC*37 in the pathogenesis of PDI can not be predicted from the *in silico* analysis of this specific gene or from the domains within the gene.

3.9 Further investigation of *TTC*37

The tetratricopeptide repeat domains of the TTC37 protein are predicted to be involved in protein-protein interactions and in the formation of multiprotein complexes. There is no further knowledge known about the interactions of *TTC37* within intracellular pathways to enable a hypothesis to be formed as to the molecular pathogenesis of PDI. With no indication as to the localisation of *TTC37* the main tissues affected in PDI, intestine and liver, were investigated by immunohistochemistry to identify any potential disruption to protein localisation as a result of *TTC37* mutations.

This hypothesis was investigated by collaboration with experts within the field and the work undertaken in their laboratory by their staff.

Dr Alex Knisely, Kings College Hospital, London, UK, looked at immunohistochemistry of the liver and Dr Mark Donowitz, Johns Hopkins University, Baltimore, Maryland, USA, investigated protein localisation within the small intestine.

This is a summary of the methods used and the preliminary findings.

3.9.1 Immunohistochemistry method for jejunal specimens

4μm sections of archival material originally obtained for clinical diagnosis were deparaffinized and heat fixed. Slides were microwaved for antigen recovery in 10mM sodium citrate buffer, pH6 (Sigma Chemical Company, St Louise, MO) at power level setting 9 (Panasonic Model NN-C980B Conventional Microwave Oven, Secaucus, NJ), for 2-5minutes. After cooling for 30 minutes, sections were washed in phosphate buffered saline (PBS) and blocked with 5% normal goat serum in phosphate buffered saline – tween (PBS-T). Sections were incubated with rabbit polyclonal antibodies against NHE2 (Ab597) and NHE3 (Ab1381) as well as with a monoclonal antibody against villin, as previously descibed. After 2 washes with PBS, sections were incubated with AlexaFluor 488 anti-rabbit and AlexaFluor 568 anti-mouse secondary antibodies (Invitrogen Ltd, Paisley, UK). Sections were washed, counterstained with Hoechst 33342 (Invitrogen Ltd, Paisley, UK) for nuclei, and mounted with glass cover slips mounting medium. Immunofluorescence images were obtained using a 63x water objective and a LSM 510 Meta confocal microscope. Similar settings for laser power, gain and resolution were used for each sample analysed. Jejunal samples from four patients and 20 aged matched controls (archival material initially taken for the clinical consideration of coeliac disease and found to be normal on histological examination) were analysed by a single investigator blinded to the clinical diagnosis.

3.9.2 Immunohistochemistry method for liver specimens

Samples of liver, sectioned at 4-5µm and picked up on glass slides, were immunostained and counterstained as described previously for the canalicular transport proteins bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The hepatic proteins BSEP, MDR2, MDR3 and GGT were examined. All immunoflourescence showed normal expression of these proteins and normal localisation within the liver. BSEP, MDR3 and GGT are apical proteins whilst MDR2 is a basolateral protein.

3.9.3 Protein expression results

In patients 3C, 4C, 6C and 13C, the apical cytoskeleton marker, villin was expressed normally at the brush border of enterocytes. However, expression of the apical transporter proteins NHE2 and NHE3 was reduced and was not localised to the enterocyte brush border but remained in the subapical region in patients 3C and 6C (Figure 3.9.1). No abnormality of NHE2 or NHE3 staining was detected in 20 age matched controls, p=0.022).

There was no abnormality detected in expression and localisation of the bile salt transporters BSEP and MRP2 in liver biopsies.

Patient 13C was found to have the greatest reduction in NHE2 and NHE3 expression and yet mutations in TTC37 were not identified despite a similar although not identical phenotype. It could be hypothesised that this patient may have

- mutations in a different gene within the same pathway as that involving TTC37
- the mutations are within the unsequenced non coding intron
- There is a sequence change within a promoter region for TTC37

Figure 3.9.1 Immunofluorescence of villin, NHE2 and NHE3 expression in jejunal samples of patient 3C compared with age matched control samples

Figure 3.9.1

Immunofluorescence photomicrographs (confocal microscopy); villin, NHE2 and NHE3 expression in control material and THES patient 3C. The arrows point to the brush borders. 6a and 6g show NHE2 and NHE3 expression (in green) respectively at the apical border of the enterocytes is absent as compared to the control 6d and 6j in which the brush border is clearly seen to express NHE2 and NHE3. In both the THES patient and control samples villin which fluoresces red is seen indicating in both samples the brush border is present. With merging the images, the green dye of NHE2 and NHE3 is not seen at the brush border but remains in the subapical region in the THES patient (6c and 6i) whilst villin in red continues to be seen. In the control sample 6f and 6l, with image merging, villin and NHE2 and NHE3 fluoresce together indicating co localisation at the brush border.

3.9.4 NHE2 and NHE3

The sodium bicarbonate transporter 2. The greatest expression is within the gastrointestinal tract mainly the jejunum, ileum and colon (Dudeja *et al*, 1996). NHE2 is also expressed in the skeletal muscle, kidneys, brain, uterus, testis and heart (Bookstein *et al*, 1997). The location of NHE2 is within the plasma membrane or the apical membrane and it is not trafficked within the cell. NHE2 is involved in Na⁺:H⁺ transport in a 1 to 1 ratio (exchanging one intracellular proton with one extracellular sodium) and therefore maintaining a neutral ionic intracellular balance (Gawenis *et al*, 2001). NHE2 interacts with CHP1 and CHP2.The NHE2 knockout mouse has very few symptoms in early life but develops increasing gastritis.

NHE3 is found in the kidneys and the intestinal tract as well as other epithelia. It localises to the apical boarder of epithelial cells and it may be involved in trafficking in early recycling of endosomes (D'souza *et al*, 1998). NHE3 exchanges one extracellular Na⁺ with one intracellular proton to maintain a neutral balance. It is also involved in HCO³⁻ transport, the acidification of early endosomes and the renal absorption of albumin. In the duodenum NHE3 can be blocked by amiloride which increases the secretion of HCO⁻ through the cystic fibrosis transmembrane regulator (CFTR). NHE3 is also found in the cholangiocytes and hepatocytes (Kiela *at al*, 2009).

The NHE3 knockout mouse has the phenotype of congenital sodium diarrhoea. <u>Further investigations</u>

The identification of NHE2/3 disruption in *TTC37* mutations requires further investigation. Both proteins are found on the apical membrane. The effect on the

basolateral membrane by looking at the Na/HCO³⁻ transporter proteins will be important in identifying if the effect on NHE2/3 is a generalised trafficking disorder.

3.9.5 Summary of investigations

Mutations in *TTC37* result in an abnormal expression of intestinal protein expression in some but not all affected patients. The expression of hepatic proteins was not affected. Although the abnormality in intestinal proteins could explain the diarrhoeal symptoms in some cases the abnormality was not seen in all probands suggesting the affected pathway may not be directly influencing NHE3 / NHE2 expression.

It is also unclear how the multisystem clinical features could be explained by NHE2 / NHE3 and it will be important to look at the effect of other congenital diarrhoeas on NHE2 / NHE3 expression to ascertain if this is primarily due to the effects of *TTC37* mutations or secondary to intestinal epithelial damage.

It may be that *TTC37* is involved in a ubiquitous pathway which influences the expression of many different proteins.

Further investigation of the *TTC37* protein will aid the elucidation of the pathways involved.

3.9.6 Future direction

The identification of *TTC37* as having mutations associated with the disease phenotype PDI is the initial step in understanding the molecular pathogenesis of this multisystem disease.

The first stage however is to confirm that mutations in *TTC37* are the cause of the observed phenotype in humans.

This can be achieved by using siRNA to knockdown the gene in animal models. The best model to use for this is probably mice. With this model the effects on the hair can be observed. Zebrafish are unlikely to be a good model due to the lack of body hair and a number of the pathological mutations identified in this cohort of humans were not in a conserved in the zebrafish.

It has to be remembered however that there may be species specificity meaning that mutations in humans may not have the same effect in other animals.

If a disease phenotype is developed from siRNA it will then be important to ensure that the phenotype can be rescued by then providing *TTC37* RNA.

The development of an antibody to the protein product of *TTC37* will enable the protein expression to be evaluated in animal models as well as in the intestinal and liver specimens from the human cohort.

The observed abnormality in alpha granules of platelets requires more investigation as this is a rare finding and little is known about alpha granule pathology.

As mutations in *TTC37* were not responsible for all the PDI phenotypes in this cohort of patients studied it can be hypothesised that the *TTC37* protein is likely to interact with other proteins within the cell. It may be that mutations in one of the interacting proteins will also harbour pathogenic mutations leading to the same phenotype.

Understanding the interactions of the *TTC37* protein with other proteins will be essential in unravelling the intracellular pathway which has led to this multisystem disease.

218

Chapter 4

Ciliopathies and the liver

Contents

- 4.1 Introduction to primary cilia
- 4.2 Jeune's asphyxiating thoracic dystrophy (JATD) clinical features
- 4.3 Identification of *IFT80* as a causative gene for JATD
- 4.4 Investigations for other JATD genes
- 4.5 Liver involvement in ciliopathies
- 4.6 The investigation of cilia in the pathogenesis of biliary atresia

4.1 Introduction to primary cilia

Cilia are antenna like projects which extend out from many differentiated cells and are evolutionary conserved organelles.

Cilia were first reported in 1898 by Zimmerman using a light microscope, but little more could be delineated until the advent of the electron microscope in the 1950's and the cutting of ultra thin sections. Using these technologies Barnes in 1961 first described in detail the ultrastructure of the cilia of the adenohypophyseal cell. In the past decade there has been increasing interest in primary cilia with the discovery that pathology of the components of primary cilia lead to the development of a wide spectrum of human disease which are termed ciliopathies. Cilia are classified into whether they are motile or are immotile/ primary cilia.

The development of cilia from ancestral eukaryotic cells can be explained by two hypotheses

- symbiotic theory: cilia were originally formed from the fusion of a motile
 Spirochete with a host cell
- autogenous theory: cilia have developed from pre-existing components of the cell

Homology between eukaryocytes and the lack of homology with prokaryocytes suggests that the autogenous theory is more likely (Hartman & Smith, 2009).

4.1.1 Structure of primary cilia

Cilia are microtubular structures which extend from the cell membrane of non proliferating cells which stem from a basal body within the cell. During cell division under tight control cilia are reabsorbed and therefore they can influence cell division.

A schematic drawing of the structure of primary cilia are shown in figure 4.1.1. The microtubules which originate from the mother centriole of centrosomes are made of nine microtubule doublets. In general motile cilia also have a central pair of microtubules which is lacking in primary cilia however this is not exclusive and some primary cilia have two central microtubules and some motile cilia do not have any.

Figure 4.1.1 is a schematic diagram of a cross sectional view of a cilium.

- a) cross section of a motile cilium with two central microtubules. This cilium also contains spokes of dynein and dynein project from the 9 surrounding microtubules.
- b) Is a primary cilium with nine peripheral microtubules and no central microtubules (Cardenas-Rodriguez and Badano, 2009).

Protein synthesis is unable to take place in the cilia and therefore proteins which are made in the cell body are transported into (anterograde) and out (retrograde) of the cilia by an intraflagellar transport system (IFT) to provide building blocks for the continuously assembled and disassembled of the cilial tip. Figure 4.1.2 shows a schematic diagram of the cilium and the IFT transport systems. IFT is essential for cilia function and disruption of any of the components can lead to the development of a disease phenotype. The anterograde transport motor is kinesin-II (composed of 2 subunits KIF3A and KIF3B) and the retrograde motor is dynein 2 (Baldari and Rosenbaum, 2009).

Figure 4.1.2 shows a schematic drawing of a cilium projecting from the cell body. The antegrade flow of particles (or intraflagellar transport) is modulated by kinesin II

and carries the precursors from which to make the tip of the cilia. The retrograde flow (back to the cell body) is mediated by Dynein 1b and carries the waste products away from the tip.

4.1.2 Intraflagellar transport (IFT)

IFT are protein complexes which move bidirectionally along the axoneme coordinated by IFT motors dynein 1b and kinesin II. Complex A is involved in retrograde transport and IFT complex B is involved in antegrade flow.

The rate of movement along the axoneme is approximately 1 micron per second.

Complex A consists of 6 different proteins or subunits and deficiency of complex A in *Chlamydomonas reinhardtii* shortened flagellar filled with IFT particles.

Complex B consists of 12 subunits with deficiency leading to shortened or absent cilia. IFT particles are predicted to bind proteins, as sequence analysis has revealed specific motifs which are predicted to form protein-protein binding domains.

These include:-

tetratricopeptide repeats – involved in transient protein-protein interactions WD-40 repeats – involved in transient protein-protein interactions Coiled-coiled domains – involved in stable protein-protein interactions WAA repeats – which are specific to IFT The stable interactions may form the permanent complex structure whilst the

tetratricopeptide repeats and WD-40 repeats may be involved in the trafficking of protein particles to and from the flagellar tip.

223

Complex B is formed of subunits (shown schematically in figure 4.1.3), of which 7 subunits form the core of complex B. The core is composed of IFT81 which complexes with IFT72 and 74 and is stable, whilst IFT46, IFT52, IFT88 and IFT27 weakly interact.

The other components of complex B are IFT57, 20, 80 and 172 which can dissociate easily with increases in ionic strength which may facilitate the dynamic movement of IFT particles.

Figure 4.1.3. Diagram of the components of Complex B

IFT 81, 72 and 74 form a stable core. IFT 46, 52, 88 and 27 also form part of the core but can dissociate with increasing ionic strength. IFT 57, 20, 80 and 172 are part of complex B but dissociate easily. (Pedersen and Rosenbaum, 2008).

4.1.3 Function of cilia

Primary cilia are involved in sensing chemical, mechanical such as luminal flow and osmotic stimuli. They are involved in signal transduction pathways including hedgehog signalling, Wnt, PDGFER- α and integrin signalling.

Primary cilia regulate important cellular functions such as proliferation and maintenance of planar cell polarity and mitotic spindles orientation so ensuring normal epithelial function and normal diameter of tubular structures.

(Nigg and Raff, 2009).

4.1.4 Diseases of motile cilia

Disease of motile cilia affect the respiratory system where the lack of mucus clearance causes bronchiectasis in a condition named primary cilial dyskinesia (PCD, OMIM 244400) which is also associated with hydrocephalus, sinusitis and immotile sperm. When it is associated with situs inversus it is known as Kartageners syndrome. Left-right axis is determined by motile cilia at the embryonic node which influences the flow of the extra embryonic fluid (Pennarun *et al*, 1999).

4.1.5 Diseases of primary cilia

Diseases which are secondary to defects in primary cilia are known as ciliopathies. The first diseases to be ascribed to primary cilia dysfunction were the autosomal dominant and recessive polycystic kidney diseases. Since then other conditions have come to light to be due to abnormalities in cilia. They share common clinical features and therefore a

disease in which the pathogenesis is not know can be predicted to be a ciliopathy if there are renal cysts, liver fibrosis, polydactyly and abnormal brain development. JATD has many of these findings but the key clinical feature of abnormal skeletal development was not thought to be a component of cilial disease. Section 4.2 describes the identification of the first gene for JATD and led to it being classified as a ciliopathy.

4.2 Jeune's asphyxiating thoracic dystrophy clinical features

JATD was first described in 1954 by Jeune *et al* and is a multisystem autosomal recessive disorder (ATD, MIM 208500). It has a variable presentation and is classified in lethal, severe, mild and latent forms. Most patients die in the neonatal period from the asphyxia resulting from hypoplastic lung development. In those who survive the neonatal period (approximately 1 in 5) then the extraskeletal manifestations become more prominent.

The abnormal skeletal development (which is illustrated by the X-rays in figure 4.2.1) is characterised by:-

- long, narrow "bell shaped" thorax
- short abnormal ribs
- abnormalities of the pelvis are diagnostic and include
 - small ilia
 - trident acetabulum
 - medial and lateral bony projections from the acetabulum
- metaphyseal irregularities
- short long bones (involving predominately ulnae, radii, fibulae and tibiae)

- handlebar shaped clavicles
- cone shaped epiphyses of the hands
- polydactyly of hands and feet and short phalanges

Figure 4.2.1 The skeletal features of JATD. The x-rays are of proband C1 with the skeletal manifestations marked by arrows. The X-ray was taken in the initial clinical investigation of the child and reviewed by Dr C Hall, radiologist, to confirm the skeletal features of JATD. Parents of C1 consented for the use of the x-ray for research.

The extraskeletal manifestations are common but more varied and include

- Renal cyst formation, periglomerular fibrosis and interstitial nephritis may lead to chronic renal failure
- Prolonged neonatal cholestasis can be a presenting feature if the skeletal manifestations are mild. Liver fibrosis and cirrhosis secondary to ductal plate malformation may be severe requiring liver transplantation
- Pancreatic cysts development
- Retinal dystrophy (which is usually not present at birth but develops later in life)

4.2.1 JATD study cohort

During the course of this study 32 probands with a clinical diagnosis of JATD were studied. The x-rays were assessed by an independent radiologist with expertise in skeletal dysplasias. All post mortems were carried out by paediatric and neonatal pathologists. Of these 16 were from consanguineous union and the others were sporadic cases in non consanguineous families. Table 4.2.1 provide a comprehensive list of the clinical features of those probands from consanguineous union. Table 4.2.2 provides a list of clinical features of sporadic cases of JATD. All phenotyping of the patients had taken place prior to my commencing working on JATD

	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30	C31	C32
gestational age (weeks)				19/40	19/40									23/40		
birth weight (grams)																
consanguinity	no	no	no	no	no	no	no	no	no	no	No	no	no	no	no	no
mechanical ventilation		no	no	na	na						No					
<u>skeletal</u>																
short thorax		+	+	+	+						+			+		
bell shaped thorax																
horizontal ribs		+	+								+					
iliac wings																
trident acetabulum		+									+					
iliac spurs		+														
short limbs				+	+						+			+		
short phalanges		+		+	+						+					
polydactyly																
increased bone maturation																
Liver																
neonatal cholestasis											+					
portal hypertension			+													
bile duct paucity			+								+					
<u>renal</u>																
cystic dysplasia											+					
nephronopthisis		+														
interstitial nephritis																
Pancreas																
cysts																
<u>Cranial</u>																
dilated ventricles																
dochocephaly																

Table 4.2.2 The clinical features of JATD who are from non consanguineous families

The most common clinical features are skeletal and only 6 of the 32 (18%) have renal involvement and may indicate those patients who have survived long enough to develop renal disease. Hepatic manifestations are as common as renal disease with 7 of the cohort having abnormalities of the liver.

4.2.2 Summary of the clinical features of the JATD study cohort

The clinical features identified in the study cohort are in keeping with those previously described in the literature except for the dilated ventricles and dochocephaly in two patients. The extraskeletal manifestations are rare and highly variable which may indicate a heterogenous group with variable aetiologies as to the underlying pathogenesis of JATD.

4.3 Identification of IFT80 as a causative gene for JATD

4.3.1 Background molecular genetic investigation of JATD

Prior to my undertaking of investigation into JATD a region of interest had been identified by Dr Colin Johnson. Using the technique of autozygosity mapping a 10K SNP GWS was undertaken in 9 probands from consanguineous union which identified a region of interest on chromosome 9. The region was confirmed using microsatellite markers which also identified the boundaries of the region to 126,409,079-128,607,022. Other centres were also working on JATD and collaborations had been formed to share information on different regions of interest and share DNA from affected probands. Our lab focused on chromosome 9 and 15 (chromosome 15 region had been excluded following sequencing of genes within the region by Dr Neil Morgan)

Dr P Beale, University College London (UCL) Institute of Child Health focused on chromosome 3.

Dr T Attié-Bitach, Hôpital Necker-Enfants Malades, Université Paris Descartes focused on chromosome 12.

4.3.2 Candidate gene selection from region on Chromosome 9

I commenced investigating JATD by interrogating the chromosome 9 region for candidate genes. Within the previously delineated region using the NCBI public database there are 42 genes. Two genes had homeoboxes within the sequence which are associated with skeletal development and therefore were good candidate genes. Another 15 genes had no known function attributed to them and therefore required exclusion. The other genes within the region were either pseudogenes and therefore not sequenced or the known gene function did not correspond to the clinical phenotypic findings of JATD. To summaries genes were sequenced in the priority

Putative function Known function likely candidate Known function unlikely candidate Function unknown and therefore can not be excluded Pseudogenes (not sequenced) Two genes were good candidate genes

LMX1B

LIM homeobox transcription factor 1 beta is implicated in renal disease through transcription of podocytes and skeletal anomalies including nail patella syndrome. The sequence of *LMX1B* contains a homeobox which is also a basis for it being a candidate gene.

Homeoboxes are sequences of approximately 180 bases which encode a protein which binds to DNA and regulates patterns of development especially limbs and therefore may be important in the formation of polydactyly seen in JATD.

DNM1

DNM1 also contains a homeobox and therefore has a potential to disrupt limb formation.

Genes with unknown function

Another 6 genes were also investigated due to the function being unknown and therefore could not be excluded.

WDR34, C9orf74, C9orf16, Nihan like protein, ZNF79 and ZNF297

4.3.3 Results from sequencing candidate genes

DNA from two probands was used to sequence candidate genes to identify mutations.

DNA from C3 and C5 was used.

Sequencing was carried out as specified in chapter 2

No mutations were identified in the candidate genes LMX1B, DNM1 or the genes with no known function.

4.3.4 IFT80 mutations cause JATD

Collaborators (P. Beales and P Scambler) identified mutations in *IFT80* in 3 affected families including a proband from Birmingham. The proband C1 was from a multiple consanguineous family from Pakistan and found to have a deletion of a single amino acid at position 549.

In work for this Ph.D. I confirmed the mutation in the Birmingham family (shown in figure 4.3.1) and demonstrated appropriate segregation within the family. An affected sibling also had the mutation. I sequenced 200 chromosomes from Pakistani Asian controls which were all wild type.

Figure 4.3.1 Electropherograms of mutations in *IFT80* in proband C1 and family.

Following identification of *IFT80* as a causative gene for JATD all the cohort of non consanguineous probands were sequenced and no other affected patient had any mutation identified. The consanguineous families underwent linkage studies and only those who showed linkage underwent sequencing.

No other affected patients had mutations in *IFT80* identified.

IFT80 encodes a 777 amino acid seven WD40 domain protein component of intraflagellar transport (IFT) complex B (Uniprot Q9P2H3). IFT is essential for the development and maintenance of motile and sensory cilia. Interestingly, the *C. Elegans* orthologue of *IFT80* shows a weak genetic interaction with bbs-8, a protein involved in IFT. Human mutations in *BBS8* cause the Bardet-Biedl syndrome, another ciliopathy which shares features of retinal degeneration, cystic kidney disease and polydactyly. The gene was shown by collaborators to affect the structure and function of primary cilia. The identification of *IFT80* as the first causative gene for JATD also characterised JATD as a ciliopathy.

4.3.5 Discussion of results

IFT80 is the first identified gene in which mutations are associated with the phenotype of JATD. It was identified using autozygosity mapping techniques however the clinical features are variable and the cohort not homogenous therefore only one of this study cohort and 4% of all affected children have mutations in *IFT80*. This illustrates the limitations of autozygosity mapping as a tool to identify rare genes.

235

The small number of JATD patients affected by *IFT80* mutations suggests there are many other genes which may be implicated in the pathogenesis of JATD. The discovery of *IFT80* has been critical in understanding the underlying pathogenesis of JATD and classifying it as a ciliopathy. This will allow the search for further genes to target those involved in cilial formation and function.

4.4 Investigating for other genes resulting in the JATD phenotype

With only family C1 with JATD have mutations in *IFT80* from a cohort of 32 affected children equating to only approximately 3% of cases have mutations in *IFT80*. JATD therefore is likely to be secondary to many different gene mutations which also reflects the heterogeneity of clinical features and is in keeping with other ciliopathies such as Bardet Biedl Syndrome in which at least 12 genes have been described.

A number of processes have been used to investigate for other genes which may lead to the clinical phenotype of JATD in this study cohort

- 250K SNP GWS in affected probands from consanguineous families to identify regions of shared homozygosity which were not identifiable from the 10K SNP GWS
- Group probands into ethnicities to ascertain shared regions of homozygosity
 - From these regions to then identify from public databases any genes which have a known or putative function within the cilium

• To focus on genes which are involved in retrograde IFT transport (complex B) and identify if any of the probands are homozygous at the position of these genes in the GWS

4.4.1 Homozygous regions identified by 250K SNP GWS

All consanguineous probands underwent a 250K SNP GWS. From this any area of homozygosity of 3cM or greater was taken to be significant. All individual probands had multiple extensive regions of homozygosity examples of which are given in table 4.4.1.

For example:-

Table 4.4.1 shows the regions of homozygosity for proband C6 which are greater than 1

Mb in length.

Chromosome	Start	End	Mb					
3	210748	2808324	2.5					
3	15506753	116758491	1.25					
3	117248975	118286357	1.03					
5	66239371	133948902	67.7					
5	160382763	161469708	1.08					
7	12456780	130236163	5.6					
9	36431	3998954	3.9					
11	72787283	73815199	1.02					
14	57091406	73649222	16.5					
14	79682157	88340677	8.6					
16	31624102	46841950	15.2					
20	4161663	57915771	1.6					
20	51108814	58696025	7.6					
22	29863796	31205871	1.3					

There were no areas of extensive homozygosity which was shared between all the affected probands even when analysed for specific ethnic grouping.

For example:-

Two probands are Lebanese siblings (C13 and C14) and are from a consanguineous family. During the course of this project another two siblings originating from Lebanon had DNA available (labelled CM). 250K SNP GWS were carried out on these siblings to identify regions of shared homozygosity. The areas of homozygosity are shown in table 4.4.2. Lebanon is a very mixed ethnic country and it may be there is no link between these families therefore each sibling pair was analysed independently.

Table 4.4.2This table shows the regions of homozygosity shared by each Lebanesesibling pair that are greater in size than 1Mb.

None of the regions were shared by both sibling pairs which suggest the families are not related.

Sibling pair	Chromosome	Start	Finish	Length
СМ	3	131838928	133512910	1.67
C13/C14	4	163938136	167600952	3.66
C13/C14	7	155726693	158819393	3.0
C13/C14	10	54060307	58993694	4.3
СМ	12	6216045	7854479	1.6
C13/C14	12	100045651	108761297	8.7
C13/C14	13	38049139	49974381	11.9
C13/C14	18	61364137	64047182	2.68
C13/C14	21	39395769	46351620	6.9
СМ	22	26370974	27789634	1.4

None of the regions were shared by both sibling pairs which suggest the families are not related.

4.4.2 Cilial genes identified within the regions of homozygosity

Interrogation of the NCBI database identified genes within the regions of homozygosity which were identified for each individual proband which are associated with cilial formation or function:-

TMEM2C – within a region of 1.78Mb of homozygosity for C7 and C8 who are cousins originating from Bangladesh

NEK2 – in a homozygous region for C7 (1.6Mb) and also the siblings CM (1.67Mb)

ODF2 – within a homozygous region of 16.5Mb for C6. The protein product of *ODF2* is cenexin.

KIAA0586 – this was a good candidate gene in a region of homozygosity for C6. The chicken ortholog has polydactyly and it is a known cilial gene.

None of the genes formed part of the retrograde transport system complex B.

4.4.3 Genes which form intraflagellar transport complex B

Ten genes are known to make up intraflagellar transport complex B which is involved in retrograde flow of particles. Table 4.4.3 shows the IFT complex B gene positions and the corresponding areas of homozygosity in probands with JATD.

Gene	Chromosome	Start	Finish	Regions of homozygosity
	location			
IFT172	2	27667240	27712571	No
IFT88	13	21141208	21265576	No
IFT81	12	108530506	114544839	CM 8.7Mb region
IFT80	3	161459482	161600014	C1 mutations
IFT74/72	9	26947037	27062931	C8 16.5 Mb but no homozygosity
				in cousin C7
IFT57/55	3	107879659	107941417	C7 34Mb but no homozygosity in
				C8
IFT46	11	118415258	118436750	C7 24.4 but no homozygosity in
				C8
IFT20	17	26655353	26662495	No
IFT52	20	41652993	41709276	No areas greater than 1Mb but 6
				probands had small areas of
				homozygosity
				C13, C8, C3, C11, C4, C15

Table 4.4.3 This table shows the complex B genes and the corresponding areas of

homozygosity identified from the 250K SNPs.

Microsatellite markers

Fine mapping of five of these genes using microsatellite markers was used to corroborate or refute the GWS linkage. The markers used were placed as close to the known gene position as possible with a marker above and below the gene. Using this technique the gene could be excluded if no linkage was ascertained or individuals who were not homozygous at this region could be excluded. Table 4.4.4 and 4.4.5 shows the results of the microsatellite markers for the genes of interest.

Table 4.4.4 Shows the results of microsatellite markers in the regions of the complex B genes in those probands who were homozygous in these regions. The marker name is in the first column and the physical position. The identification of the probands are given in blue and in the top row F, M and S denote the mother, father and siblings of the proband. Those boxes in yellow highlight the homozygous markers.

Marker	physical location	М	F	C10	C3	М	F	S	C11	М	F	C2	М	F	C13	М	F	C9	м	C6	М	F	C5	М	C4	М	F	C13	C14
TMEM2L	78858767-79031054																												
D15S1510	78607698	243 252	249 252	249 252		258 252	258 252	258 252	258 252		258 261	263 266	244 252	248 248	248 252	242 248	248 252	248 252	252 252	244 252	269 269	267 270	266 270	251 251	251 251	244 248	248	248 248	244 244
D15S206	79991342	267 269	265 267	267 267		269 270	268 269	269 270	269 270				263 266	266 270	266 269	257 268	271 271	257 273	263 277	263 266				267 267	267 267	263 272	260 268	264 270	264 270
IFT52	41652993-41709276																												
D20S1121	41612806	126 126	126 126	126 126	127 127	126 126	126 126	126 126	126 126	125 125		125 125	125 125	125 125	125 125	126 126	126 126	126 126	125 125		125 125	125 125							
D20S150	41929128	246 253	249 253	253 253		245 249	245 245	245 249	245 249	245 249		245 253	245 253	249 249	249 253	245 253	249 253	245 249	245 253	245 253	245 253	245 249	245 245						
NEK11	132231147 - 132551993																												
D3S1587	132218515	218 223	217 220	217 233	216	218 223	216 223	216 221	216 218		217 217	217 217	217 223	214 223		216 217	216 217	216 216	216 216	216 216	217 217	216 216	218 218	214 223	214 218	218 221	218 221	218 218	218 221
D3S621	132281515		204 206	206 206		204 204	203 205	203 203	204 204		208 208	210 210	204 204	204 404		208 208	204 208	208 208		206 206		204 210	210 210	206 206					
D3S3548	132670878	216 216	217 219	220 218	216	216 218	216 218	216 218	216 218		219 217		219 219	218 218		216 216	219 219	218 218	216 219	217 219	216 216	217 219	216 217	216 218	216 218			217 219	217 217
KIAA0586	58894710-59015549																												
D14s66	56120368			183 185	183 185					183 183			183 187	185 185			183 183	183 183	183 183	183 183	185 187	185 191	185 187	187 190	183 190	183 187		183 187	183 183
D14s980	56222231			165 167		157 157		157 157		165 171			157 173	165 165			157 165	165 167	151 157	157 157		155 169	169 173	155 167	155 167	165 167			
D14s274	56729090	143 146		143 146	143 143	141 150	143 152			143 150		143 143	143 143	143 143			143 150	143 150	145 147	145 145	143 143	143 143	143 143	143 143		137 145			145 147
D14s696					214 225																								
D14s1038	58692967	225 225		221 225	221 221	223 236		220 236	221 223	236 236	1	225 236	226 226	217 219		219 221	219 221	219 221	225 225	225 225	219 221	221 236	221 236	213 219	220 224	219 221	-		221 221
D14s994	59754388	213 218	212218	212 218	212 218	218 218	215 218	215 218		212 214		214 214	212 218	212220		218 218	218 218	218 218	212 212	212	220 220	218 218	218 220			216 218	216	216 218	218 218
IFT81	108530506-114544839																												
D12S1300	97003411	115 128	115 128	115 128	116							112 124													114 126				
PAH	101784625	240 244	236 244	240 244	244 244							236 240								240 244					227 239				
D12S353	106534007	91 91	91 99	91 99	95 105	93 103		93 105	93 105	89 93		93 93												93 103	93 101				
D12S84	107524647	199 213	215 215	199 215	215 215	202 224?			201 205			207 213	204 212	200 218	200 212	198 216	198 204	198 204				212 218		216 218	199 216		198 200	198 198	198 198
D12S1583	108287449	239 243	237 239	239 239	234 236	222 224	224 236	224 236	222 236	234 240		234 240	221 239	223 233	221 223	223 237	219 237	219 237	233 241		223 245	223 233	223 223	240 240	238 240	223 233	223		223 223
D12S1339	108530506			268 268	272 272	268 268	270 276	268 276	268 276	268 276		268 268												270 276	268 270				
D12s79	114544839	160 166	164 166	166 166	162 167	167 167	173 179	167 173	167 179	169 181	163 169	163 169	160 165	167 171		163 167	163 167	163 167	163 167	167 167	159 163	167 173	159 167	162 162	162 179	165 169	167 173	165 173	169 173
D12S2070	114567092	86 86	8292	86 92	90 98							90 98								96					87 93			1-1	

Marker	physical location											
TMEM2L	78858767-79031054	М	F	s	s	C7	м	F	s	S	S	C8
D15S1510	78607698											
D15S206	79991342	251 260	244 248	248 256	244 260	244 260	244 252	244 248	248 255	244 248	244 244	no call
IFT52	41652993-41709276	265 270	266 266	266 266	266 270	262 266	265 270	265 265	265 265	270 270	257 262	264 265
D20S1121	41612806											
D20S150	41929128	125 125										
NEK11	132231147 - 132551993	245 249	245 245	245 245	245 245	245 249	245 249	245 245	245 245	245 249	245 249	245 249
D3S1587	132218515											
D3S621	132281515	217 217	216 217									
D3S3548	132670878	204 208	204 208	204 206	204 208	204 208	208 210	204 208	206 208	204 210	208 210	208 210
ODF2	130258253-130303060	218 218	216 217	217 218	216 219	217 219	218 218	216 217	216 216	216 218	218 218	218 218
D14s66	56120368											
D14s980	56222231	185 187	185 187				183 187	183 189		183189	183 189	183 183
D14s274	56729090	151 165	151 165	151 151	151 151			161 169	151 161	151 169	151 169	151 161
D14s696		143 143	143 145	143 143	143 143	143 145				143 143	143 143	143 143
D14s1038	58692967											
D14s994	59754388	219 221	219 221	219 219	220 221	219 220	219 223	219 219		221 223	219 219	219 223
IFT81	108530506-114544839	218 218	210 217	210 217		218 218	219 219		218 218	212 218	218 218	218 218
D12S1300	97003411											
PAH	101784625											
D12S353	106534007											
D12S84	107524647											
D12S1583	108287449											
D12S1339	108530506											
D12s79	114544839											
D12S2070	114567092											

Table 4.4.5 Shows the results of microsatellite markers for two related Bangladeshi families in the regions of the complex B genes of interest. The marker name is in the first column and the physical position. The identification of the probands are shown in blue and in the top row F, M and S denote the mother, father and siblings of the proband. Those boxes in yellow highlight the homozygous markers.

Summary of results of microsatellite markers

There are three possible outcomes from the microsatellite marker results – linked, cannot be excluded and does not link, which are shown in table 4.4.6.

Gene	Proband	Linked or cannot be excluded							
TMEM2L	Linked	C4							
	Can not be excluded	C10							
IFT52	Linked	C10, C3, C5, C4, C13, C14							
	Can not be excluded	C11, C13, C9, C6, C7, C8							
NEK2	Linked	C2, C9, C6, C5							
	Can not be excluded	C10, C11, C13, C14, C7, C8							
KIAA0586	Linked	C6							
	Can not be excluded	C3, C2, C5, C13, C14, C7, C8							
IFT81	Linked	C10							
	Can not be excluded	C3, C2, C6, C5, C13, C14, C7, C8							

Table 4.4.6 gives a summary of those probands that link or can not be excluded

In those that could not be excluded or there was positive linkage to the region further investigations was carried out by direct sequencing of the gene or by protein expression.

Sequencing of candidate genes

The initial genes sequenced were those involved in complex B IFT transport – *IFT81* and *IFT52* and also *KIAA0586* as C6 strongly linked to the region.

IFT81

Probands C10, C3, C2, C6, C5, C13 and C14 underwent direct sequencing as described in Chapter 2. No mutations were identified in any of the probands.

KIAA0586

C6 underwent sequencing of *KIAA0586*. Three homozygous known SNP's were identified. No mutations were detected.

IFT52

Sequencing of IFT52 showed no mutations in any of the linked probands.

Protein expression using Western blot

To investigate the protein expression of *ODF2*, an antibody to cenexin, the protein product of *ODF2* was used to identify protein expression in cells from JATD patients. The Western blot is shown in figure 4.4.1. The method used has been described in chapter 2.

Figure 4.4.1 is a Western blot of 4 JATD patient cells and 3 control cells labelled using an antibody against cenexin which is the protein product of *ODF2*. B1, B2 and B3 are cell samples only and no DNA is available for investigation. RT = Rothmund Thompson syndrome, HEK293 human embryonic kidney cell line, IMCD3= inner medullary collecting duct.

The Western shows that all the bands were seen in all JATD patients which corresponded to the bands seen in the controls suggesting there is no loss of protein expression in these patients.

As the Western blot did not show any loss of expression i.e. was normal, the gene was then sequenced to ensure no heterozygous changes were identified (in which case the function may not have been lost but only decreased) although both mutations should be identical if they have come from a common ancestor in these consanguineous families. The other limitation of the Western blot is that cells were only available for 4 patients. C3, C2, C6, C5, C13, C14 and C7 therefore underwent sequencing of *IFT52*. No mutations were identified therefore confirming the Western Blot.

4.4.4 JATD research in progress

The strategy used here to detect novel genes for JATD has not yielded any further mutations. It may be that there will be many genes in which mutations result in the phenotype of JATD. The other possibility is that mutations in genes known to cause other ciliopathies may also result in the phenotype of JATD as there are many similar clinical features.

This work is now in progress to look at all known cilial genes for all conditions and sequence all patients with ciliopathies in a multicentred resequencing study.

4.5 Liver involvement in ciliopathies

Liver involvement in hepatorenal fibrocystic diseases are secondary to abnormalities in the development of the ductal plate, so called ductal plate malformation (DPM) and table 4.5.1 provides a list of ciliopathies which have DPM's. This causes the clinical manifestations of congenital hepatic fibrosis, Caroli disease and polycystic liver disease. Only the cholangiocytes of the liver have cilia.

Clinically DPM do not usually cause liver insufficiency or abnormal liver biochemistry. However they tend to lead to the development of portal hypertension and the resulting manifestations of oesophageal varices and hypersplenism. Caroli's disease also has a tendency to develop cholangitis which can be a life threatening infection. Polycystic liver disease may also cause morbidity due to the mass effect from the huge hepatomegaly.

The biliary epithelium has cilia which are essential to maintain ductular function and diameter. Cilia detect luminal fluid flow which regulates cell proliferation and maintenance of planar cell polarity and mitotic spindle orientation.

Congenital hepatic fibrosis: This is a histopathological diagnosis which consists of DPM, abnormal portal veins and progressive fibrosis of the portal tracts. This affects the microscopic bile ducts.

Caroli's disease: This is diagnosed on imaging of the biliary system where macroscopic saccular or fusiform dilatations of the medium and large sized intrahepatic bile ducts can be identified. These are in continuity with the biliary tract and therefore non obstructed.

Caroli's syndrome: is Caroli's disease in association with congenital hepatic fibrosis and may be a continuum of the same disease. This affects the medium and large bile ducts. *Polycystic liver disease:* this is also diagnosed on imaging in which the cysts are not in continuity and develop from hamartomas from the biliary tract. This affects the large bile ducts. Polycystic liver disease is a component of autosomal dominant polycystic kidney disease.

DPM are most commonly found as part of a multisystem ciliopathy. It may not be apparent in infancy or early childhood as the progressive fibrosis is time dependent. Figure 4.5.1.provdies a schematic diagram of a ductal plate malformation (adapted from Lamaigre, 2008).

Figure 4.5.1 is a diagram of the formation of the ductal plate in the normal and when there is a ductal plate malformation.

Disease	Gene
Autosomal recessive polycystic kidney	PKHD1
disease	
JATD	IFT80
Autosomal dominant polycystic kidney	PKD1, PKD2
disease	
Meckel-Gruber syndrome	MKS1, TMEM67, CEP290, RPGRIP1L,
	CC2D2A
Jouberts syndrome and related conditions	AHI1, NPHP1, CEP290, TMEM67,
eg COACH syndrome	RPGRIP1L, ARL13B, CC2D2A
Bardet-Biedl syndrome	BBS1, BBS2, ARL6, BBS4, BBS5, MKKS,
	BBS7, TTC8, BBS9, BBS10, TRIM32,
	BBS12, MKS1, CEP290
Oral-facial –digital syndrome	OFD1
Renal-hepatic-pancreatic dysplasia	NPHP3
Ellis-Van Creveld syndrome	EVC, EVC2
Nephronophthisis	NPHP1, INVS, NPHP3, NPHP4, IQCB1,
	CEP290, GLIS2, RPGRIP1L, NEK8
Glomerulocystic kidney disease	$HNF-1\beta$

Table 4.5.1Gives a list of the ciliopathies which are associated with DPM's.

4.5.1 Cilia of cholangiocytes

It is thought that the major role of cilia in cholangiocytes is as a sensory organelle. Mechanosensors: In intrahepatic bile ducts (as in renal tubules) flow across cilia cause the cilia to bend and results in PC-1 and PC2 to form a complex which leads to an increase in intracellular calcium and suppression of cAMP. This is shown schematically in figure 4.5.2.

Osmosensors: Transient receptor potential vaniloid 4 receptor is sensitive to changes in osmolality and is stimulated bile a decrease in tonicity causing a change in intracellular calcium affecting ATP release.

Chemosensors: ATP and AFP affect the cilial receptor $P2Y_{12}$ which is activated by biliary nucleotides and causes changes in intracellular calcium affecting the cAMP signalling cascade.

Defects in cilia structure and function result in decreased intracellular calcium and increased cAMP leading to hyperproliferation and may be the mechanism by how cysts are formed.

Figure 4.5.2 The cartoon shows a working model for the sensory functions of primary cilia (adapted from Masyuk *et al*, 2008). FCCT is the C-terminal tail of cleaved fibrocystin which is translocated into the nucleus under certain conditions where it may regulate expression of genes involved in cholangiocyte function.

4.5.2 Predicting ciliopathies

A constellation of clinical phenotypes is common to ciliopathies. These include

Cystic kidneys Left right asymmetry defects Hepatic developmental anomalies Heart disease

Diabetes

Gonadal malformation

Developmental delay

Obesity

Polydactyly

Retinal regeneration

Skeletal defects

Central nervous system malformation

(Badano et al, 2006)

4.6 The investigation of cilia in the pathogenesis of biliary atresia

Biliary atresia shares common features with ciliopathies in that there is ductal plate malformation, cardiac development anomalies, situs inversus and described as part of this Ph.D. the development of renal cysts.

From the constellation of clinical features of biliary atresia the hypothesis could be drawn that primary cilia may play a role in the pathogenesis of biliary atresia.

4.6.1 The description of renal cysts in children with biliary atresia

Renal cysts were identified by abdominal imaging (either ultrasound scan or CT scan) used routinely during patient care. To ascertain the effect of transplantation on the development of renal cysts all children post transplant with differing primary aetiologies were also investigated for comparison.

Renal function was calculated using the Schwartz formula (height (cm) x 40/ creatinine (μ mol/l)) as an approximation for glomerular filtration rate GFR (cGFR) with renal dysfunction being less than 60ml/min/1.73m².

355 children had biliary atresia of which 206 have subsequently undergone liver transplant (58%). No child had renal cysts identified at the time of diagnosis of biliary atresia.

9/355 children were identified as having developed renal cysts either by abdominal ultrasound scan (8 children) or abdominal CT scan (1 child). All 9 children had the perinatal (non syndromic) form of BA. There was no reported family history of liver or

renal disease and no children developed hepatic cysts. 8/9 children have undergone liver transplantation. Child 1 had an atrial septal defect repaired in the neonatal period.

Child 1 has had long term success from the Kasai portoenterostomy and has not required liver transplantation and has not developed renal dysfunction and child 7 developed renal cysts prior to transplantation.

The median age at detection of renal cysts was 9 years (range 0.25 to 14 years). The natural history of the cysts was variable ranging from a single cyst which did not change with time, to a rapid increase in size and number of cysts.

8/9 children had received a liver transplant at a median age of 1.08 years (range 0.66 – 5 years). No child prior to liver transplant had detectable renal dysfunction. Of the 8 transplanted children, 4 developed renal dysfunction following transplantation whilst on calcineurin inhibitors (CI) (cyclosporine or tacrolimus). Two children required renal support for renal failure. On stopping the CI (and commencing mycophenolate mofetil (MMF) for immunosuppression) in 3 children the renal function stabilised including child 9 who was able to discontinue renal dialysis whilst one has continued to require renal support until renal transplantation.

In those transplanted, 1 had renal cysts prior to the development of renal dysfunction, 3 children had cysts identified at the time of dysfunction and 1 child developed cysts since stopping CI. 4 children have had an increase in size and number of cysts since stopping CI, at a time of cGFR recovery. The other 4 children have had no change in number or size of renal cysts over time.

Renal cysts development were identified in 10/463 non biliary atresia cases following liver transplant The primary pathology was hepatoblastoma (3) with single cases of

256

tyrosinaemia, autoimmune hepatitis, fulminant hepatitis A, Alagilles syndrome, Wilson's Disease, biliary hypoplasia and cystic fibrosis. 4/10 developed renal dysfunction post transplant, 2 following transplant for hepatoblastoma and one for cystic fibrosis and biliary hypoplasia.

4.6.2 The detection of fibrocystin by immunohistochemistry

To investigate the bile ducts of children with biliary atresia further work was carried out by S. Blair-Reed using immunohistochemical techniques to identify primary cilia and the expression of fibrocystin.

Four micron sections of formalin fixed paraffin embedded liver tissue were cut, placed onto charged slides and heated for 1 hour at 60° C. After deparaffinisation and rehydration, sections were treated in 0.3% hydrogen peroxide in water to block endogenous peroxidise activity. Antigen retrieval was performed using the ALTER technique, as previously described. Following a brief wash in water, sections were loaded onto a SequenzaTM (Shandon, UK) and washed in TBS/Tween ph7.6. The wild type- C terminus monoclonal antibody (5A) specific for the intracellular domain of fibrocystin. was applied at a 1/200 dilution for 1 hour at room temperature. Sections were then washed in TBS/Tween and visualised with Dako ChemMate EnVision kit (Dako, UK) and Vector NovaRed chromagen (Vector, UK). After washing in water, sections were counterstained in haematoxylin, dehydrated, cleared and mounted.

Fibrocystin staining of liver sections from children with biliary atresia and renal cysts was found to be absent. This may be due to a lack of protein expression by the *PKHD1*

gene due to a molecular defect within the gene. This would support the hypothesis of cilial defect in the aetiology of biliary atresia. Alternatively, the absence of fibrocystin in this cohort may be related to loss of expression secondary to advanced biliary disease and could be a non specific marker of liver damage. However, in contrast, fibrocystin was detectable in the other 6 cases of advanced liver disease studied, suggesting either that fibrocystin was expressed in these conditions or that the diseases were not at such an advanced stage of liver damage compared to the biliary atresia cohort.

4.6.3 PKHD1 sequencing in children with biliary atresia and renal cysts

Sequencing the PKHD1 gene as carried out using DHPLC or direct sequencing, by Prof P Harris and revealed a novel frameshifting change c.5476delG (A1826fsX147) mutation in one child which is predicted to result in a truncated protein. In addition two novel missense changes were detected E2124G (6371A>G) and F283L ($847T\rightarrow C$). F283L is a conservative change at a highly conserved site, phenylalanine to leucine, as found in chicken and frog, while E2124G is a non-conservative change, but at a poorly conserved site. Extended analysis of the family, who are phenotypically normal (including normal ultrasound scan imaging of the kidneys), revealed a sibling and the father to have the deletion mutation and both missense changes indicating that the missense changes are unlikely to be pathogenic. No likely pathogenic changes to PKHD1 were found in any of the other cases.

A second *PKHD1* mutation was not identified. The single mutation could be a coincidental finding of biliary atresia in a carrier of a *PKHD1* truncating mutation, but with a population frequency of such carriers of ~1 in 200, this seems unlikely. A second,

missed, mutation could include a large deletion or an atypical splicing event distant from the splice junctions. Sequencing the promoter region did not identify any variants. An alternative explanation is that a mutation in another gene together with the *PKHD1* mutant allele may result in the biliary atresia plus renal cyst phenotype. Interestingly, in other ciliopathies such as Bardet-Biedl syndrome and nephronophthisis, oligogenic inheritance involving mutations in more than one gene has been reported and may also explain the absence of PKHD1 mutations in the other BA children with renal cysts.

4.6.4 The investigation of nasal cilia

Children with Bardet-Biedl syndrome have anosmia which is likely to be due to anomalies in nasal cilia. I hypothesised that an abnormality in primary cilia may be detected in nasal cilia as a proxy for the cilial involvement of the bile ducts. Although patients with biliary atresia do not report anosmia two children with biliary atresia and renal cysts had their nasal cilia examined. *Prof Chris O'Callaghan carried out the work of my hypothesis. The ultrastructure of nasal cilia was assessed using electron microscopy. The cilial beat cycle, pattern and frequency was analysed by digital high speed video camera. Cilial morphology and function was found to be normal in these two children.*

4.6.5 Summary of results

Cholangiocyte primary cilia play an important role in the normal development and function of bile ducts. Genetic mutations resulting in abnormalities of cilia formation or function cause the clinical syndromes named ciliopathies which have common over lapping clinical features.

The constellation of clinical features forming biliary atresia suggests similarity with ciliopathies. Fibrocystin which is an essential component of cilia has been shown to be absent in biliary atresia patients and supports the hypothesis that biliary atresia may in part be attributed to a cilial defect.

Chapter 5

A novel phenotype of canalicular bile

salt transport disorders

Contents

- 5.1 Introduction to the molecular genetics of canalicular bile salt transport disorders
- 5.2 Clinical phenotypes of canalicular bile salt transport disorders
- 5.3 Neonatal liver failure: a novel clinical phenotype of canalicular bile salt transport disorders
- 5.4 Molecular genetic investigation of low γGT neonatal liver failure
- 5.5 Discussion of results

5.1 Introduction to the molecular genetics of canalicular bile salt transport disorders

5.1.1 History

The first phenotype of a canalicular bile salt transport disorder was described in 1969, in an American Amish population named Byler from which the condition was originally named (Byler disease). The children in the original cohort had severe cholestasis in infancy, intense pruritis, steatorrhoea and failure to thrive (Clayton *et al*, 1969). The liver disease progressed to cirrhosis and it was uniformly fatal. Since this initial description, children across the world from all genetic backgrounds have been described with bile salt transport disorders, three genes have been identified *ATP8B1*, *ABCB11* and *ABCB4*, and the importance of regulator genes has been revealed.

5.1.2 Nomenclature

The nomenclature of categorising canalicular bile salt transport may be by disease phenotype, gamma-glutamyl transpeptidase activity (γ GT), the affected gene or by protein deficit. This is summarised in table 5.1.1.

Names	Gene	Protein	γGT level	Disease phenotype
known by				
PFIC-1	ATP8B1	FIC-1	Low or normal	1.PFIC
FIC-1				2. BRIC
Byler disease				3. ICP (rare)
				4. Greenland Eskimo
				Cholestasis
PFIC-2	ABCB11	BSEP	Low or normal	1.PFIC
BSEP deficiency				2. BRIC (van Mil, 2004)
				3. ICP
				4. Drug induced cholestasis
				(Lang, 2007)
PFIC-3	ABCB4	MDR3	High	1.PFIC
MDR3 deficiency				2. ICP
				3. Cholelithiasis
				4. Drug induced cholestasis
				(Lang, 2007)
ICP	FXR			1. ICP

Table 5.1.1. The nomenclature of bile salt transport defects which can be classified by name, gene, protein deficit or γ GT. Table 5.1.1

5.1.3 ATP8B1

This 85.38Kb gene is on chromosome 18q21.31 (<u>53,464,656 - 53,550,037)</u> and consists of 28 coding exons. It was first identified (Bull *et al*, 1998) in children with PFIC using an autozygosity mapping technique.

68 different mutations have been identified to date:-

44 PFIC
19 BRIC
3 ICP
1 Greenland Eskimo cholestasis
1 BA (although this is unlikely to be pathogenic as BA has a raised γGT and therefore there is intact bile salt canalicular transport)

Missense are the most common type (40) followed by splicing, insertions and deletion.

It encodes FIC-1, a 140kD P-type ATPase with 10 transmembrane domains and signature motifs that characterize the non-heavy metal-binding P-type ATPase. It is expressed in several epithelial tissues, the pancreas, and more strongly in small intestine than in the liver which explains the severe diarrhoea which may also be a clinical feature. The expression within the liver localises it to the cholangiocyte. Chaperone proteins CDC50 are required to transport FIC-1 from the endoplasmic reticulum to the apical membrane (Paulusma *et al*, 2008). FIC-1 functions as an aminophospholipid flippase which participates in the movement of phosphatidylserine from the outer to the inner leaflet. This creates asymmetry in the membrane distribution of lipids which is necessary for

normal function (Paulusma *et al*, 2008). How this results in the phenotype of FIC-1 disease is not known. Mutation type or location correlates with clinical severity i.e. missense mutations are more common in BRIC whilst frameshift and large deletions are more common in PFIC (Klomp *et al*, 2004). Frankenburg *et al*, 2008, demonstrated that *ATP8B1* through protein kinase C ζ leads to phosphorylation, nuclear localisation and activation of FXR. Through this mechanism, mutations in *ATP8B1*, reduces FXR activation and therefore BSEP expression. This is compounded by the reduced negative feedback from FXR on the ileum so there is an increase in bile salt uptake by enterocytes and increased hepatotoxic bile salts entering the hepatocyte which can not transport them across the apical membrane.

5.1.4 ABCB11

This gene on chromosome 2q24 encodes the protein bile salt export pump (BSEP) (Strautnieks *et al*, 1998). 106 different mutations have been identified. Missense mutations are the most common followed by splice sites and deletions. Insertions are rare. The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance. The protein encoded by this gene is the major canalicular bile salt export pump in man. It is suggested that different phenotypes directly correlate with the amount of expression of mature protein that is expressed at the cell surface (Lam *et al*, 2007). *ABCB11* is not expressed in the ileum and this phenotype does not experience diarrhoea.

5.1.5 ABCB4

Multidrug resistence 3(MDR3) *or* ABCB4 encode the hepatobiliary phospholipid transporter, mutations in which cause PFIC3 which differs from PFIC1 and 2 by having a raised γ GT (Dixon *et al*, 2000)

5.1.6 Bile acid farnesoid X receptor (FXR)

This nuclear receptor regulates bile acids homeostasis so to reduce hepatocyte toxicity. It binds to DNA response elements in promotor regions of target genes including *ABCB11* and *ABCB4* to activate their transcription so increasing bile acid secretion out of the hepatocyte. FXR also promotes genes for sulphonidation and glucuronidation, reduces import and synthesis of bile salts in the hepatocyste and also reduces ileal bile salt reabsorption (van Mil *et al*, 2007).

5.2 Clinical phenotypes of canalicular bile salt transport disorders

5.2.1 Progressive familial intrahepatic cholestasis (PFIC)

Three different PFIC disorders have been describe corresponding to mutations in different genes.

PFIC-1

The presentation of PFIC-1 is usually within the first 3-6 months of life with conjugated hyperbilirubinaemia which may fluctuate. There is hepatomegaly and splenomegaly

develops when there is progression to cirrhosis. Pruritus is very intense and can be refractory to treatment. The absorption of long chain fatty acids is poor leading to malabsorption resulting in steatorrhoea, failure to thrive and symptoms of fat soluble vitamin deficiency such as coagulopathy and rickets.

There are extrahepatic manifestations reflecting areas of protein expression with pancreatitis, diarrhoea and sensorineural hearing loss also occurring.

Liver transplantation is usually required early in childhood but the extrahepatic manifestations will not be alleviated and indeed the diarrhoea may become worse. Laboratory investigations show a low or normal γ GT despite severe cholestasis and the serum cholesterol is also normal. The total serum bile salts are elevated but the concentration of chenodeoxycholic acid in bile is very low. Mutations in *ATP8B1* are also associated with ICP (Mullenbach *et al*, 2005).

Liver histology shows cholestasis and canalicular bile plugs. On electron microscopy there is a characteristic granular appearance. There may also be small duct paucity. There is a reduction in the protein FIC-1 secondary to mutations in *ATP8B1*.

PFIC-2

The affected child presents with conjugated hyperbilirubinaemia in infancy, hepatomegaly, severe pruritis, steatorrhoea, fat soluble vitamin deficiency and failure to thrive. There are no extrahepatic manifestations. Liver disease progresses to cirrhosis and liver transplantation is usually required in childhood.

The γ GT level is low despite cholestasis.

Hepatocellular carcinoma and cholangiocarcinoma have both been described in children under the age of 5 years with PFIC-2 (Knisely *et al*, 2006).

The liver biopsy differs from that of PFIC-1 in that there is inflammation with giant cell hepatitis. There may also be ductular transformation and fibrosis. Immunohistochemistry looking for a deficiency in bile salt export pump (BSEP) expression supports the diagnosis.

The disease is due to a reduction in BSEP which is encoded by the gene *ABCB11*. The disease phenotype is due to the reduction in excretion of bile salts.

PFIC-3

Children with PFIC-3 usually present in infancy but may present later with cholelithiasis or in adulthood with biliary cirrhosis when there has been only partial reduction in protein expression such as in the heterozygous state. The pruritis is intense but the conjugated hyperbilirubinaemia may not be as high as the other types of PFIC. A raised γ GT distinguishes PFIC-3 from PFIC1 and PFIC2.

The liver biopsy shows portal fibrosis.

There is progressive cirrhosis and liver transplantation is usually required in childhood. This is a result of MDR3 deficiency which is encoded by the gene *ABCB4*. Adult onset disease, up to 20% of cases of intrahepatic cholestasis of pregnancy, miscarriages and still births have all been linked to mutations in *ABCB4* (Schneider *et al*, 2007) with the severity of phenotype being influenced by the type of mutation (Wasmuth *et al*, 2007) and whether there is heterozygosity or homozygous for the sequence change (Gotthardt *et al*, 2008).

268

Canalicular bile salt transport defects do not exclusively present in childhood but may only become evident when bile salt transport mechanisms are overwhelmed e.g. in the presence of increased circulating oestrogen when using the combined oral contraceptive pill or during the third trimester of pregnancy.

5.2.2 Benign recurrent intrahepatic cholestasis (BRIC)

The cholestasis of BRIC can present at any time but most commonly it is as a teenager or in the early twenties. The cholestasis is transient but can last for up to six months. Pruritis and fat soluble vitamin efficiency can occur. It is said to be benign as it does not progress to chronic liver disease however there are case reports of chronic liver disease developing (van Ooteghem *et al*, 2002). Although BRIC may occur with no apparent stimulus there is often a trigger. In women the oral contraceptive pill which suppresses bile salt transport activity reduces the transport to a critical level resulting in the onset of clinical symptoms. Women who develop cholestasis secondary to increased serum oestrogen may be at risk of developing intrahepatic cholestasis of pregnancy. BRIC can develop from mutations in *ATP8B1*, *ABCB11* (Kubitz *et al*, 2006) or *ABCB4*.

5.2.3 Intrahepatic cholestasis of pregnancy (ICP)

Pruritis, often worse on the soles and palms, is the main presenting symptom causing discomfort, insomnia and fatigue. There is elevation of serum alanine aminotransferase (ALT/SGPT) and serum bile acids >10µmol/L is the most sensitive laboratory indicators in confirming the diagnosis of cholestasis. Conventional liver function tests are initially

normal and it is in this circumstance that serum bile acid measurement may be needed to confirm the presence of cholestasis. Jaundice occurs in up to 10% of ICP and γ GT remains normal in two-thirds. The cholestasis can result in steatorrhoea and fat soluble vitamin malabsorption. There is spontaneous relief of signs and symptoms within 2-3 weeks after delivery (Beuers *et al*, 2006).

In Europe ICP occurs in 0.1-1.5% of pregnancies. Incidence is highest in Chile, Baltic States, Scandinavia and Bolivia with up to 15% of pregnancies being associated with ICP. Over the past decade a trend to lower incidence has been observed in Sweden and Chile possibly due to increased micronutrients such as selenium in an improved diet (Reyes *et al*, 2000).

ICP is not influenced by parity but is 5 times more common in multiple pregnancies. It may be sporadic or run in families. There is seasonal variability with more cases occurring in winter.

Oestrogens and progestagens are naturally cholestatic (Vallejo *et al*, 2006). It is likely that in most instances ICP occurs in individuals who have otherwise subclinical mutations within susceptibility genes for intrahepatic cholestasis whose capacity for efficient biliary excretion is exceded in the hormonal milieu of pregnancy. A hormonal role in the aetiology of ICP is suggested by the observation that symptoms are most prevalent in the 3^{rd} trimester when oestrogen levels are highest. When the hormone levels fall after delivery symptoms tend to improve rapidly. Twin and triplet pregnancies which have higher estrogen levels, have an increased incidence of ICP. Biliary excretion of oestrodiol-17 β -D-glucuronide occurs via a canalicular multispecific conjugate export pump (multidrug resistence related protein, MRP2) and exerts its cholestatic effect via a

270

trans inhibition of BSEP from the canalicular side of the hepatocyte membrane. This causes a transient inhibition of BSEP. Oestradiol-17 β -D-glucuronide also suppresses the expression of MRP2 (Steiger *et al*, 2000).

There is a significant alteration in the ratio of different progesterone isomers in ICP as compared to other causes of liver disease in pregnancy, the cause and effect of which are not known.

A liver biopsy is rarely undertaken unless there is diagnostic uncertainty. Intracellular bile pigment and canalicular bile plugs are seen in the absence of any other histological abnormality. Electronmicroscopy shows dilated canaliculi with loss of microvilli.

The risks to the child include (Rioseco et al, 1994):-

- 1. Increased risk of preterm delivery (19-60%)
- Fetal distress (22-41%) as indicated by meconium liquor. The inhalation of secretions at the time of delivery with high bile salts has been reported to result in the development of respiratory distress syndrome.
- Fetal loss (0.4-1.6%). The pathogenesis of fetal complications is not fully understood. In stillborns the post mortem findings are those of acute asphyxia. The fetus is usually well grown and surveillance of the fetal placental unit is normal suggesting that placental insufficiency is not the cause.
- 4. In those neonates who are born healthy there are no long term complications have previously been reported.

Women who have had ICP may be at risk of cholestasis from use of the oestrogen containing oral contracpetive pill.

There are cases of ICP which can not be attributed to BSEP, FIC1 or MDR3 deficiency which suggest either a non genetic aetiology or there are other as yet unidentified genes for cholestasis (Savander, 2007).

5.2.4 Low *γ***GT** cholestasis

In the presence of cholestasis damage to the bile ducts usually results in an increased γ GT and therefore a low γ GT is a significant finding and can be of diagnostic value.

The differential diagnosis of cholestasis with low yGT is:-

5.2.4.1 PFIC-1 and 2, BRIC and ICP

The clinical features are described above. The diagnosis of BRIC and ICP will be evident from the history. It may be difficult to distinguish between PFIC-1 and 2 initially; however the development of diarrhoea or pancreatitis would implicate PFIC-1.

5.2.4.2 ARC syndrome (OMIM: 208085)

Arthrogryposis, renal dysfunction (Fanconi type tubulopathy) and cholestasis (ARC) syndrome is due to the autosomal recessive inheritance of mutations in *VPS33B* on chromosome 15q26 (Gissen *et al*, 2004). The extended clinical spectrum includes icthyosis, bleeding diathesis, sensorineural deafness, congenital heart disease, diarrhoea, growth failure, cerebral malformations and death is usual before the age of one year. The phenotype can be incomplete with the absence of arthrogryposis (Bull *et al*, 2006). The gene encodes the VPS33B protein which is involved with intracellular vesicular

trafficking and vesicular membrane fusion by interacting with soluble *N*-ethylmaleimidesensitive protein attachment receptor (SNARE) proteins. The bleeding diathesis results from abnormal alpha granule development within abnormally enlarged platelets (Lo *et al*, 2005).

5.2.4.3 Bile acid synthesis disorders

Deficiencies in the enzymes converting cholesterol to the primary bile acids, cholic and chenodeoxycholic acid result in bile acid synthesis disorders some of which present as severe neonatal cholestasis with low γ GT. Other presentations may be with the development of liver disease later in life, fat soluble vitamin deficiency or neurological disease. The diagnosis is made by identifying a low level of bile acids in the patient's serum and by fast atom bombardment mass spectrometry of the urine to categorise the defect by detecting the excess metabolites and a lack of the deficient. The genetic defect has been identified in some cases. It is important to diagnose early as the instigation of treatment with bile acid replacement therapy (chenoic acid) can stop the development of neurological symptoms.

 3β -Hydroxy- Δ^5 -C₂₇-steroid dehydrogenase/isomerase (3β HSD) deficiency: Mutations in HSD3B7 on chromosome 16p12-11.2 are associated with 3β HSD. Typically the presentation is with neonatal cholestasis with giant cells on histological examination of the liver. Without treatment there is progressive cirrhosis (Cheng *et al*, 2007).

Δ^4 -3-Oxosteroid 5 β -reductase deficiency:

This presents with severe cholestasis in infancy with a normal (although occasionally raised) γ GT. The over production of Δ^4 -3-oxo is hepatotoxic. The liver histology is of giant cell hepatitis with pseudoacinar transformation of the hepatocytes. Electron microscopy is unique with small bile canaliculi containing electron dense material and an absence of microvilli. *AKR1D1* on chromosome 7q32-33 encodes this enzyme (Lemonde *et al*, 2003).

5.3 Neonatal liver failure: a novel clinical phenotype of canalicular bile salt transport disorders

5.3.1 Introduction to neonatal liver failure

Neonatal liver failure requiring liver transplantation is rare and accounts for approximately 2.1% of all paediatric liver transplants. For a liver transplant to be successful the underlying cause of liver failure needs to be solely hepatic as extrahepatic features will not modify. Making a diagnosis is therefore important but can be difficult in the neonatal period when not all clinical features may be manifest. Table 5.3.1 provides a list of conditions which can present in the neonatal period with liver failure.

Group	Causes
Infection	Herpes simplex virus
	Echovirus
	Coxsackie virus A and B
	Parvovirus
	Adenovirus
	Cytomegalovirus (rare)
Metabolic defects	Galactosaemia
	Tyrosinaemia
	Neimann-Pick syndrome
	Urea cycle defects
	Organic acidemias
	Mitochondrial respiratory
	chain defects
	Bile salt synthesis defects
	Zellweger syndrome
	Neonatal haemochromatosis
Congenital heart defects	Ischaemia and abnormal
	perfusion of the liver

 Table 5.3.1. The differential diagnosis of neonatal liver failure

In all conditions the laboratory investigations will show hepatitis (raised liver enzymes AST and ALT), hepatic synthetic failure (raised prothrombin time and low albumin) and

cholestasis. Bile duct involvement leads to a rise in alkaline phosphatase and γ GT. Other diagnostic investigations will be specific to each condition. The presence of low γ GT in the presence of cholestasis and liver failure is notable and may intimate the diagnosis to be a defect in the biosynthesis of bile acids in the hepatocyte with low levels of bile salts in the circulation. The diagnosis is made by fast atom mass spectrometry of serum and urine. The other conditions which have a low γ GT are the bile salt transport defects (BSEP and FIC-1 deficiency) which may present with cholestasis in the neonatal period with progressive fibrosis but have not previously been associated with neonatal liver failure.

 γ GT is highest in the neonatal period (including premature infants) and declines to reach adult reference range levels by the age of approximately 5 months. A low γ GT in a neonate is therefore a significant diagnostic finding

Presented here is the investigation of six infants presenting with neonatal liver failure with a low γ GT despite severe cholestasis.

5.3.2 Cohort of neonatal liver failure

All babies presented in the newborn period with jaundice, low γ GT and synthetic liver failure were studied. A full medical and obstetric history was gained form the mother.

Proband 1:

The mother of proband 1 developed intense pruritus at 38 weeks gestation. The serum bile salts were significantly elevated and foetal distress was seen on the CTG. The baby was well at the time of delivery but developed petechiae and jaundice within a few hours of birth. He was found to have hepatosplenomegaly and an inutero infection suspected. Cytomegalovirus (CMV) was isolated from his urine and the infection was confirmed by blood PCR showing 1,000,000 copies/ml. A rapid rise in serum bilirubin required a double exchange transfusion. Despite the extremely high bilirubin levels the γ GT was normal. He was treated with intravenous ganciclovir and resolution of the CMV infection was confirmed by blood PCR. Despite successful treatment of the CMV infection his cholestasis worsened and he developed liver failure. He underwent liver transplantation at the age of seven weeks. There has been no recurrence of disease at 2.5 years follow up and he remains well with the original graft.

Proband 2:

The mother of proband 2 initially had a period of jaundice at the age of 23 years which resolved and no cause was found. During the pregnancy she developed intense pruritus at 34 weeks gestation and became jaundiced at 36 weeks. Unusual for ICP the liver disease did not improve immediately following delivery and she underwent a liver biopsy at 1 month post partum which demonstrated cholestasis and giant cell transformation which is an unusual finding in adult liver disease. The neonate was jaundiced from birth with low γ GT and rapidly developed liver synthetic failure. All known causes of neonatal liver failure were excluded necessitating a transjugular liver biopsy at the age of six days which also showed giant cell transformation and cholestasis. Transfusion-transmissible virus (TTV) was isolated from the serum in the child. The liver failure progressed requiring liver transplantation aged two weeks. There has been no recurrence of the disease at 6 years follow up and he remains well with the original graft.

Proband 3:

The mother presented at 37 weeks gestation with pruritus of increasing severity. Elevated bile salts and fetal distress necessitated delivery. She remained well until day 4 when she became lethargic and developed jaundice. Investigations identified cholestasis with low γ GT and liver failure. All other known causes of liver failure were excluded. The liver failure progressed requiring liver transplantation aged 10 days. She remains well with the original graft at one year follow up.

Proband 4

This infant was born at term weighing 2400g. The mother had been well throughout pregnancy with no symptoms of ICP. The infant was initially well but by 1 week of age had developed intense cholestasis (bilirubin 476 IU/l and γ GT 64IU/l) and liver failure. Despite thorough investigation for causes of liver failure in the neonatal period none were identified. The liver failure deteriorated and she received a liver transplant aged 3 weeks.

She has subsequently developed CMV infection which has been successfully treated. Before transplant she presumably carried antibodies from her mother (IgG CMV positive and IgM negative). She has remained well at follow up 3 months post transplant.

Proband 5

The mother of this infant was generally unwell during pregnancy with malaise and sore throat. She did not have any pruritus or jaundice. All antenatal scans were normal. A female was born at term weighing 2651g (25^{th} centile). At delivery she had a petechial rash, jaundice and massive hepatosplenomegaly. Prior to vitamin K administration the PT 90 seconds and the albumin initially was 28. The bilirubin peaked at 766 IU/l whilst the γ GT was 12 IU/l. Cranial imaging showed extensive changes associated with congenital CMV infection with calcification as well as white matter changes. The heart was also affected with a ventricular septal defect, patent foramen ovale and mild pulmonary artery stenosis. A bone marrow aspirate to investigate marrow suppression was consistent with CMV infection. The liver failure and cholestasis stabilised with supportive medical care but did not resolve. The infant succumbed to the neurological sequele aged three months.

Proband 6

This mother presented at in her first pregnancy at 34 weeks gestation with intense pruritus, increasing transaminases and also high blood pressure. This necessitated induction of labour at 35 weeks. A male child weighing 2463g (20-50th centile) was born with Apgar scores of 5 at 1 minute and 8 at 5 minutes. The delivered placenta contained a chorangioma. The infant was initially well but became increasingly jaundiced by 24

279

hours of age with low γ GT and liver failure. He had no splenomegaly or dysmorphic features. He was extensively investigated for causes of cholestasis. An open liver biopsy showed neonatal hepatitis with widespread cholestasis. Electron microscopy showed myelin figures which are associated with viral infection although no viral inclusions were seen. Bile acids were elevated (Tauro-dihydroxycholanoate 0.19 µmol/mmol (reference range 0.01-0.08)) and no abnormal intermediates were identified. The mothers' symptoms resolved following delivery. The infant's cholestasis resolved with medical support.

All the infants underwent histological examination of the native liver (either by biopsy or explant) and also mother of proband 2 and the results are shown in table 5.3.2.

	Appearance of	Presence of	Presence of	Portal	Portal tracts
	hepatocytes	cholestasis	fibrosis	inflammation	
Proband 1	Hepatocellular	Hepatocellular	Pericellular	Minimal	Normal
	disarray	cholestasis	distribution		
	Giant cell				
	transformation				
Proband 2	Giant cell	Hepatocellular	Early	Mild mixed	Ductular transformation
	transformation	cholestasis	pericellular	inflammatory	
				cells	
Mother of	Giant cell	Hepatocellular	Pericellular	Moderate mixed	Normal
proband 2	transformation	cholestasis	distribution	infiltrate	
	prominent in the				
	perivenular				
	region				
Proband 3	Giant cell	Pseudoglandular	Pericellular	Minimal	Normal
	transformation	cholestasis	distribution		
Proband 4	Giant cell	Hepatocellular	Minimal	Mild mixed	Normal
	transformation	cholestasis		inflammatory	
				cells	
Proband 5	Hepatocellular	Severe	Minimal fibrosis	Mild mixed	Bile duct paucity, with mild
	disarray.	hepatocellular	of the portal	inflammatory	ductular transformation
	Extreme giant	cholestasis	tracts with	cell infiltrate	
	cell		fibrosis in the		
	transformation		perivenular,		
			perisinusoidal		
			and pericellular		
			regions		
Proband 6	Hepatocellular	Canalicular	No fibrosis	No inflammation	Normal bile ducts
	disarray with	cholestasis			
	swollen and				
	multinuclear				
	hepatocytes				
Table	522 The live	r histological for	turge of all pr	abanda and the	mother of proband 2

 Table 5.3.2. The liver histological features of all probands and the mother of proband 2

5.4 Molecular genetic investigation of low γGT cholestasis neonatal liver failure

5.4.1 Sequencing *ABCB11*

The finding of low serum γ GT with raised bile salts led to the investigation of a bile salt transport defect in both mother and child.

ABCB11 was initially chosen for investigation due to the histological feature of giant cell hepatitis which is a feature of PFIC-2. *ABCB11* was also selected as at the time of investigation no extrahepatic features which would suggestive of a defect in *ATP8B1* (diarrhoea or pancreatitis) had become manifest.

The gene was sequenced using the Big Dye sequencing technique on the ABI3700 machine and the results were analysed using Chromas (as described in Chapter 2). In all probands all the exons were sequenced including 20 bases of the intron / exon boundary to identify splice site changes. The electropherogram results are shown in figure 5.4.1 and a summary of the results are shown in table 5.4.1. Where available the DNA from the parents and siblings was also sequenced and the results are shown with the family pedigree to highlight segregation of sequence variants within each family.

C. Proband 3

D. Proband 4

Figure 5.4.1

The pedigree and sequencing results for all the probands are shown in figure 5.4.1

- A. The affected child is homozygous for the sequence variant C->T. His sibling was unaffected but his DNA sample was from a bucal swab and did not amplify despite whole genome amplification. The mother who had severe pruritus is heterozygous and the father who is completely asymptomatic is homozygous.
- B. The affected child is homozygous for C->T whilst the mother who had severe cholestasis is heterozygous and the unaffected father is also heterozygous
- C. The affected child is homozygous for C->T as are the unaffected siblings. The mother suffered with pruritus in the last trimester of the affected pregnancy whilst

she was asymptomatic in the other pregnancies. The father is heterozygous and asymptomatic

- D. This neonate had severe liver failure with low γ GT. She is heterozygous for the -sequence variant C/T. Her mother did not suffer with intrahepatic cholestasis of pregnancy.
- E. The affected neonate was heterozygous for C/T; she also had congenital CMV infection. The mother did not have intrahepatic cholestasis of pregnancy but was generally unwell during pregnancy
- F. The affected child is homozygous for the sequence variant C->T. He recovered and did not require liver transplantation

Subject	Sequence	Manifest symptoms	Confounding factors
---------	----------	-------------------	---------------------

	variant		
Proband 1	CC	Severe liver failure and cholestasis	CMV (successfully treated)
		requiring OLT	
Mother proband 1	TC	Severe pruritus and elevated bile salts	
Father proband 1	CC	Asymptomatic	
Sibling proband	NA	Asymptomatic	
Proband 2	CC	Severe liver failure requiring OLT	TT virus
Mother proband 2	TC	Severe cholestasis	
Father proband 2	TC	Asymptomatic	
Proband 3	CC	Liver failure requiring OLT	None identified
Mother proband 3	TC	Pruritus in this pregnancy only	
Father proband 3	TC	asymptomatic	
Sibling 1 proband 3	CC	asymptomatic	
Sibling 2 proband 3	CC	asymptomatic	
Proband 4	TC	Liver failure requiring OLT	None identified
Mother proband 4	TC	asymptomatic	
Father proband 4	TT	asymptomatic	
Proband 5	TC	Liver failure which resolved	Congenital CMV
Mother proband 5	TC	Pruritus in pregnancy	
Father proband 5	TT	Asymptomatic	
Sibling proband 5	unknown	Asymptomatic	
Proband 6	CC	Liver failure which resolved	Hypertrophic
			cardiomyopathy.
			Unidentified virus?
Mother proband 6	TC	Severe ICP	
Father proband 6	CC	Asymptomatic	

 Table 5.4.1
 Shows a summary of the sequencing results

The substitution of T for C leads to the amino acid change from valine to alanine at position 444 (V444A) which is a known variant (rs2287622).

Polyphen predicts this to be a benign change.

The 444 position falls within the intracellular component of *ABCB11* in which other pathogenic mutations have been identified which is pictorially shown in figure 5.4.2.

Figure 5.4.2 This topology model of BSEP shows the amino acid position of V444A to be in the nucleotide binding fold in the intracellular domain.

5.4.2 Immunohistochemistry of liver biopsies

In collaboration with Dr Alex Knisely, Kings College London, immunohistochemistry of the proband liver biopsies and liver biopsies from the mothers of proband 1, 2 and 6, were studied for expression of biliary proteins including BSEP and the results are shown in figure 5.4.3

Normal liver tissue

Figure 5.4.3

Images a-d are from normal control liver. Images e-h are taken from sections of liver from proband 1.

a & e show the presence of the protein MDR3 in affected and control liver.
b & f show CD13 expression is present in both livers as is GGT (c & g).
Image d shows a normal distribution of BSEP staining whilst in proband 1 (image h)
there is absence of BSEP identified by immunohistochemistry.

5.5 Discussion of results

Reduced expression of BSEP associated with the sequence variant c. C1331T in *ABCB11* has been identified in a cohort of neonates with liver failure and low γ GT.

The development of liver failure with cholestasis and a low γ GT is unusual and suggests an abnormality in bile salt metabolism – either synthesis or transport. In these children the bile salts in the serum were elevated which excludes a synthetic defect. Mutations in *ABCB11* cause PFIC2, BRIC2 and ICP but there have been no previous reports of association with neonatal liver failure.

The cohort was screened for all known causes of neonatal liver failure. In proband 1 congenital CMV infection was detected. This was successfully treated and the virus cleared. Despite this the liver failure progressed necessitating liver transplantation. CMV is a recognised, although rare, cause of liver failure in neonates and with successful treatment should lead to recovery and no need for liver transplantation. In this child the severity of the liver failure required liver transplantation. TT virus was identified in proband 2. This is a rarely identified virus in neonates and has not previously been reported to result in liver failure and liver transplantation. The significance of the identified TT virus is not known. Congenital CMV infection was also detected in proband 4. The liver failure in this child improved with treatment although she later succumbed to the neurological sequele of the congenital CMV infection. This child had a low γ GT suggesting that BSEP expression may also be reduced and she was found to be heterozygous for the sequence variant. In the other probands no other causes of neonatal liver failure were identified.

The sequence change c.T1331C changes the amino acid from valine to alanine (GTC->GCC). Running this sequence change in Polyphen predicts the amino acid change to be benign however studies in pregnant women who develop ICP have shown the sequence variant to be a susceptibility factor for the development of cholestasis with an odds ratio of 3.0 for homozygous CC (Meier *et al*, 2008) and 1.7 for a single allele C (Dixon *et al*, 2009). BRIC and drug induced cholestasis have also been attributed to this V444A polymorphism (Meier, 2006; Kubitz, 2006; Lang, 2007).

290

The reduced or absent BSEP expression could be attributed to the severity of the liver parenchymal collapse and distorted architecture however other canalicular proteins continued to be expressed suggesting that this is unlikely to be the cause of the lack of BSEP expression. It is likely that the reduced BSEP expression is due to the amino acid change from valine to alanine. This is in keeping with previous findings in ICP cases where there have shown decreased BSEP expression with the V444A variant (Meier, 2006). In ICP with early onset severe symptoms was associated with the identification of more than one bile salt transport mutation with an MDR3 mutation and the polymorphism V444A.

V444A is a common variant in the general population with a heterozygosity rate of 0.48. This means the 25% of the population should be homozygous for alanine. This indicates that although the V444A polymorphism may increase susceptibility to liver disease due to reduced BSEP expression, there needs to be a second pathology (second hit) for symptoms to become manifest.

In this population of neonates three cases had additional causes of liver disease identified – CMV and TT virus. It may be that medical knowledge and technology is thus far unable to detect a second cause in the other affected infants. A second hit would also explain the lack of symptoms in the father of proband 1 and the siblings of proband 3. It should be considered that these homozygous changes will increase their susceptibility to drug induced liver disease and in the female sibling of proband 3 an increased susceptibility to ICP as well as cholestasis secondary to a combined oral contraceptive pill.

291

5.5.1 Conclusion

The identification of the sequence variant V444A in this cohort of neonates assists in explaining the severity of the liver disease. It is further evidence that this common variant predisposes to cholestatic liver disease as also shown by the association with ICP, BRIC, drug induced cholestasis and now with neonatal liver failure. The phenotype of neonatal low γ GT liver failure following a pregnancy complicated by ICP should alert the clinician to the severity of the disease process.

Chapter 6

Conclusion

This thesis has investigated the molecular genetics of paediatric liver disease. The subject of the thesis was chosen due to my clinical work as a paediatric hepatologist in which I identified cohorts of children with liver disease in whom the aetiology remained unknown. In other children in whom an accurate diagnosis could be made due to knowledge of the molecular genetic pathology, accurate counselling, management and investigations of the patient could take place. Therefore I investigated three different presentations of liver disease to ascertain the molecular genetic pathology. As well as improving the management of the child and family, a greater understanding of the molecular genetics of liver disease may also increase our knowledge of how the hepatocyte and cholangiocyte work and therefore identify pathways and interactions which may provide clues to intracellular therapeutic targets.

Chapter one described the molecular genetic technique known as autozygosity mapping that I used throughout this thesis. It is an extremely effective tool to identify genes associated with disease phenotypes by utilising the large amount of molecular information that can be gained from studying those from consanguineous union. I have studied a range of different paediatric liver disease conditions which present in different clinical ways and highlight the difficulty of managing a child with liver disease in which a diagnosis is hard to make.

The work on PDI is the main focus of this thesis. Chapter 3 describes the clinical condition, the molecular genetic study of the patients and the successful identification of

293

TTC37 mutations which are associated with the PDI phenotype. I concentrated my studies on molecular genetic techniques and therefore formed collaborations with experts across the world to work on other research modalities such as immunohistochemistry of the liver and bowel. Although this work was extremely succesful and led to a major publication in Gastroenterology, the time taken to identify the gene allowed no futher investigation to characterise *TTC37* for this thesis.

In chapter 4 I have described the investigation of JATD patients which has enabled it to be newly classified as a ciliopathy. These findings have also led to further investigations of other conditions which may also have primary cilial involvement such as biliary atresia. The study was part of a collaboration which was necessary when studying such a heterozygous condition.Mutations in *IFT80* were only found in one family and highlights the limitations of using autozygosity in a condition which does not have a homogeneous phenotype and it is likely there will be a large number of genes which cause a similar phenotype. New technologies such as whole exome sequencing may facilitate the identification of futher JATD genes and this is an area of research I am exploring. Chapter 5 describes the identification of a novel phenotype for *ABCB11* and leads to the question what other liver diseases of unknown aetiology can be ascribed to bile salt transport defects.

Towards the end of this period of study it became clear that newer techniques were being developed which were likely to supersede autozygosity mapping as the preferred technique for identifying new genes for rare phenotypes. Whole exome sequencing is such a development and provides information of all sequence changes within the

294

transcribed region of the genome in one single experiment. The information gained is vast and the art will be how to interpret the information so as to identify the correct pathogenic sequence changes.

Despite new technology, all molecular genetic techniques rely on studying cohorts with exactly the same clinical phenotype. The basis of good molecular genetic research therefore will always continue to lie with the patient and the clinician.

Chapter 7

List of References

Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, Mah AK, Johnsen RC, Cavender JC, Lewis RA, Leroux MR, Beales PL, Katsanis N (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425: 628-33

Badano JL, Mitsuma N, Beales PL, Katsanis N (2006). The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 7: 125-48

Baldari CT, Rosenbaum J (2009). Intraflagellar transport: it's not just for cilia anymore. Curr Opin Cell Biol. [Epub ahead of print]

Balistreri WF, Bezerra JA (2006). Whatever happened to "neonatal hepatitis"? Clin Liver Dis. 10: 27-53

Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005). OST alpha-OST beta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42: 1270-9

Barabino AV, Torrente F, Castellano E, Erba D, Calvi A, Gandullia P (2004). "Syndromic diarrhea" may have better outcome than previously reported. J Pediatr. 144: 553-4 Barnes BG (1961). Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res 5:453–467

Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 27: 20

Berg, M. A., Argente, J., Chernausek, S., Gracia, R., Guevara-Aguirre, J., Hopp, M., Perez-Jurado, L., Rosenbloom, A., Toledo, S. P. A., Francke, U. (1993). Diverse growth hormone receptor gene mutations in Laron syndrome. Am. J. Hum. Genet. 52: 998-1005

Berry S, Dawicki DD, Agarwal KC, Steiner M (1989). The role of microtubules in platelet secretory release. Biochim Biophys Acta. 1012:46-56

Beuers U, Pusl T (2006). Intrahepatic cholestasis of pregnancy – a heterogenous group of pregnancy related disorders. Hepatology 43: 647-9

Bilzer M, Roggel F, Gerbes AL (2006). Role of Kupffer cells in host defense and liver disease. Liver Int. 26: 1175-86

Bischof JM, Chiang AP, Scheetz TE, Stone EM, Casavant TL, Sheffield VC, Braun TA (2006). Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat. 27:545-52

Bittles AH (2008). A community genetics perspective on consanguineous marriage. Community Genet 11: 324-30 Blanchard RA, Furie BC, Jorgensen M, Kruger SF, Furie B (1981). Acquired vitamin Kdependent carboxylation deficiency in liver disease. N Engl J Med. 305: 242-8

Blom E, van de Vrugt HJ, de Vries Y, de Winter JP, Arwert F, Joenje H (2004). Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair 3: 77-84

Bomont, P., Cavalier, L., Blondeau, F., Ben Hamida, C., Belal, S., Tazir, M., Demir, E., Topaloglu, H., Korinthenberg, R., Tuysuz, B., Landrieu, P., Hentati, F., Koenig, M. (2000).The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet. 26: 370-374

Bookstein C, Xie Y, Rabenau K, Musch M, McSwine R, Rao M, Chang E (1997). Tissue distribution of Na/H exchanger isoforms NHE2 and NHE4 in rat intestine and kidney. Am J Physiol Cell Physiol. 273: 1496-1505

Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 27:68-73

Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, Liao M, Klomp LW, Lomri N, Berger R, Scharschmidt BF, Knisely AS, Houwen RH, Freimer NB (1998). A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet. 18: 219-24 Bull LN, Mahmoodi V, Baker AJ, Jones R, Strautnieks SS, Thompson RJ, Knisely AS (2006). VPS33B mutation with ichthyosis, cholestasis, and renal dysfunction but without arthrogryposis: incomplete ARC syndrome phenotype. J Pediatr. 148: 269-71

Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW, (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genet. 5: 327-337

Bundey S, Alam H (1993). A five-year prospective study of the health of children in different ethnic groups, with particular reference to the effect of inbreeding. Eur J Hum Genet 1: 206-19

Cali JJ, Hsieh CL, Francke U, Russell DW (1991). Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 266: 7779-83

Cardenas-Rodriguez M, Badano JL (2009). Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet. 151: 263-80

Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN (2003). Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 34: 91-6

Carruthers L, Phillips AD, Dourmashkin R, Walker-Smith JA (1985). Biochemical abnormality in brush border membrane protein of a patient with congenital microvillus atrophy. J Pediatr Gastroenterol Nutr. 4: 902-7

Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, and 26 others (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277: 228-231

Carter BA, Karpen SJ (2007). Intestinal failure-associated liver disease: management and treatment strategies past, present, and future. Semin Liver Dis. 27: 251-8

Chagnon P, Michaud J, Mitchell G, Mercier J, Marion J-F, Drouin E, Rasquin-Weber A, Hudson TJ, Richter A (2002). A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am. J. Hum. Genet. 71: 1443-1449

Chavanas, S., Bodemer, C., Rochat, A., Hamel-Teillac, D., Ali, M., Irvine, A. D., Bonafe, J.-L., Wilkinson, J., Taieb, A., Barrandon, Y., Harper, J. I., de Prost, Y., Hovnanian, A (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25: 141-142

Chelly, J., Tumer, Z., Tonnesen, T., Petterson, A., Ishikawa-Brush, Y., Tommerup, N., Horn, N., Monaco, A. P (1993). Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nature Genet. 3: 14-19 Cheng JB, Jacquemin E, Gerhardt M, Nazer H, Cresteil D, Heubi JE, Setchell KD, Russell DW (2003). Molecular genetics of 3beta-hydroxy-Delta5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab. 88: 1833-41

Chiang JY (1998). Regulation of bile acid synthesis. Front Biosci. 3: 176-93

Choudhuri S, Klaassen CD (2006). Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 25: 231-59

Ciferri S, Emiliani C, Guglielmini G, Orlacchio A, Nenci GG, Gresele P (2000). Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost. 83:157-64

Clayton RJ, Iber FL, Ruebner BH, McKusick VA (1969). Byler disease. Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child. 117: 112-24

Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP (2002). The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 128: 1819-28

Cormier-Daire V, Bonnefont JP, Rustin P, Maurage C, Ogler H, Schmitz J, Ricour C, Saudubray JM, Munnich A, Rötig A (1994). Mitochondrial DNA rearrangements with onset as chronic diarrhea with villous atrophy. J Pediatr. 124: 63-70 Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M (2004). Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr. 38: 282-7

Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005). The heteromeric organic solute transporter alpha-beta, Ost-alpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem. 280: 6960-8

Deleuze JF, Jacquemin E, Dubuisson C, Cresteil D, Dumont M, Erlinger S, Bernard O, Hadchouel M (1996). Defect of multidrug-resistance 3 gene expression in a subtype of progressive familial intrahepatic cholestasis. Hepatology 23: 904-8

Derry, J. M. J., Gormally, E., Means, G. D., Zhao, W., Meindl, A., Kelley, R. I., Boyd, Y., Herman, G. E (1999). Mutations in a delta(8)-delta(7) sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nature Genet. 22: 286-290

de Vries E, Visser DM, van Dongen JJ, Jacobs CJ, Hoekstra JH, van Tol MJ (2000). Oligoclonal gammopathy in phenotypic diarrhea. J Pediatr Gastroenterol Nutr. 30:349-50

Diamanti A, Basso MS, Castro M, Di Ciommo V, Bracci F, Ferretti F, Pietrobattista A, Gambarara M (2008). Irreversible intestinal failure: prevalence and prognostic factors. J Pediatr Gastroenterol Nutr. 47: 450-7

Dixon PH, Weerasekera N, Linton KJ, Donaldson O, Chambers J, Egginton E, Weaver J, Nelson-Piercy C, de Swiet M, Warnes G, Elias E, Higgins CF, Johnston DG, McCarthy MI, Williamson C (2000). Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: evidence for a defect in protein trafficking. Hum Mol Genet. 9: 1209-17

Dixon PH, van Mil SW, Chambers J, Strautnieks S, Thompson RJ, Lammert F, Kubitz R, Keitel V, Glantz A, Mattsson LA, Marschall HU, Molokhia M, Moore GE, Linton KJ, Williamson C. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut. 58: 537-44

Donner MG, Schumacher S, Warskulat U, Heinemann J, Häussinger D (2007). Obstructive cholestasis induces TNF-alpha- and IL-1 -mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. Am J Physiol Gastrointest Liver Physiol. 293: G1134-46

D'souza S, Garcia-Cabado A, Yu F, Teter K, Lukacs G, Skorecki K, Moore H, Orlowski J, Grinstein S (1998). The epithelial sodium-hydrogen antiporter Na/H exchanger 3 accumulates and is functional in recycling endosomes. J Biol Chem. 273: 2035-2043

Dudeja P, Rao D, Syed I, Joshi V, Dahdal R, Gardner C, Risk M, Schmidt L, Bavishi D, Kim K, Harig J, Goldstein J, Layden T, Ramaswamy K (1996). Intestinal distribution of human Na/H exchanger isolforms NHE1, NHE2 and NHE3 mRNA. Am J Physiol Gastrointest Liver Physiol. 271: 483-493

Dweikat I, Sultan M, Maraqa N, Hindi T, Abu-Rmeileh S, Abu-Libdeh B (2007). Trichohepato-enteric syndrome: a case of hemochromatosis with intractable diarrhea, dysmorphic features, and hair abnormality. Am J Med Genet A. 143: 581-3 Egritas O, Dalgic B, Onder M (2009). Tricho-hepato-enteric syndrome presenting with mild colitis. Eur J Pediatr. 168: 933-5

Elferink RO, Groen AK. (2002). Genetic defects in hepatobiliary transport. Biochim Biophys Acta. 1586: 129-45

Fabre A, André N, Breton A, Broué P, Badens C, Roquelaure B (2007). Intractable diarrhea with "phenotypic anomalies" and tricho-hepato-enteric syndrome: two names for the same disorder. Am J Med Genet A. 143: 584-8

Fabre A, Roquelaure B, Lacoste C, André N, Sarles J, Breton A, Martinez-Vinson C, Cezard JP, Colomb V, Goulet O, Levy N, Badens C (2009). Exclusion of EGFR, HRAS, DSP, JUP, CTNNB1, PLEC1, and EPPK1 as functional candidate genes in 7 families with syndromic diarrhoea. J Pediatr Gastroenterol Nutr. 48: 501-3

Fabris L, Cadamuro M, Libbrecht L, Raynaud P, Spirlì C, Fiorotto R, Okolicsanyi L, Lemaigre F, Strazzabosco M, Roskams T (2008). Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development. Hepatology 47: 719-28

Fell JM, Miller MP, Finkel Y, Booth IW (1992). Congenital sodium diarrhea with a partial defect in jejunal brush border membrane sodium transport, normal rectal transport, and resolving diarrhea. J Pediatr Gastroenterol Nutr. 15: 112-6

Figus A, Angius A, Loudianos G, Bertini C, Dessi V, Loi A, Deiana M, Lovicu M, Olla N, Sole G, De Virgiliis S, Lilliu F (1995). Molecular pathology and haplotype analysis of Wilson disease in Mediterranean populations Am. J. Hum. Genet 57: 1318-1324

Fliegauf M, Omran H (2006). Novel tools to unravel molecular mechanisms in ciliarelated disorders. Trends Genet. 22: 241-5

Fontaine O, Garner P, Bhan MK (2007). Oral rehydration therapy: the simple solution for saving lives. BMJ 334: s14

Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, Arias I, Setchell KD, Suchy FJ, Shneider BL (2008). The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology. 48: 1896-905

Garrod AE, Hele TS (1905). The uniformity of the homogentisic acid excretion in alkaptonuria. J Physiol 33: 198-205

Garver WS, Francis GA, Jelinek D, Shepherd G, Flynn J, Castro G, Vockley CW, Coppock DL, Pettit KM, Heidenreich RA, Meaney FJ (2007). The National Niemann-Pick C1 Disease Database: report of clinical features and health problems. Am. J. Med. Genet 143: 1204-1211

Gawenis L, Stein X, Shull G, Schultheis P, Woo A, Walker N, Clarke L (2002). Intestinal NaCl transport in NHE2 and NHE3 knockout mice. Am J physiol Gastrintest Liver Physiol. 282: 776-784

305

Girault D, Goulet O, Le Deist F, Brousse N, Colomb V, Césarini JP, de Potter S, Canioni D, Griscelli C, Fischer A, *et al* (1994). Intractable infant diarrhea associated with phenotypic abnormalities and immunodeficiency. J Pediatr. 125: 36-42

Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T, Cooper WN, McKiernan PJ, Klomp LW, Morris AA, Wraith JE, McClean P, Lynch SA, Thompson RJ, Lo B, Quarrell OW, Di Rocco M, Trembath RC, Mandel H, Wali S, Karet FE, Knisely AS, Houwen RH, Kelly DA, Maher ER (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat Genet. 36: 400-4

Goodarzi MO, Xu N, Cui J, Guo X, Chen YI, Azziz R (2008). Small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), a candidate gene for polycystic ovary syndrome. Hum Reprod. 23: 1214-9

Gotthardt D, Runz H, Keitel V, Fischer C, Flechtenmacher C, Wirtenberger M, Weiss KH, Imparato S, Braun A, Hemminki K, Stremmel W, Rüschendorf F, Stiehl A, Kubitz R, Burwinkel B, Schirmacher P, Knisely AS, Zschocke J, Sauer P (2008). A mutation in the canalicular phospholipid transporter gene, ABCB4, is associated with cholestasis, ductopenia, and cirrhosis in adults. Hepatology. 48: 1157-66

Goulet OJ, Brousse N, Canioni D, Walker-Smith JA, Schmitz J, Phillips AD (1998). Syndrome of intractable diarrhoea with persistent villous atrophy in early childhood: a clinicopathological survey of 47 cases. J Pediatr Gastroenterol Nutr. 26: 151-61 Goulet O, Salomon J, Ruemmele F, de Serres NP, Brousse N (2007). Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis 2:20

Grizot S, Fieschi F, Dagher MC, Pebay-Peyroula E (2001). The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem. 276: 21627-31

Guyton (1991). Textbook of Medical Physiology 8th Edition.W.B.Saunders Company, Philadelphia

Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y, Munnich A, Hadchouel M, Smahi A (2004). Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 127: 1386-90

Hartman H, Smith TF (2009). The evolution of the cilium and the eukaryotic cell. Cell Motil Cytoskeleton. 66: 215-9

Hayward, C. P. M., Cramer, E. M., Kane, W. H., Zheng, S., Bouchard, M., Masse, J.-M., Rivard, G. E (1997). Studies of a second family with the Quebec platelet disorder: evidence that the degradation of the alpha-granule membrane and its soluble contents are not secondary to a defect in targeting proteins to alpha-granules. Blood 89: 1243-1253

Heinz-Erian P, Müller T, Krabichler B, Schranz M, Becker C, Rüschendorf F, NürnbergP, Rossier B, Vujic M, Booth IW, Holmberg C, Wijmenga C, Grigelioniene G,Kneepkens CM, Rosipal S, Mistrik M, Kappler M, Michaud L, Dóczy LC, Siu VM,

Krantz M, Zoller H, Utermann G, Janecke AR (2009). Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 84: 188-96

Höglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996). Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14: 316-9

Hogrefe C, Römermann D, Friedrich B (1984). Alcaligenes eutrophus hydrogenase genes (Hox). J Bacteriol 158: 43-8

Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003). Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17: 1581-91

Holmsen H (1994). Significance of testing platelet functions in vitro. Eur J Clin Invest. 24 Suppl 1:3-8

Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC, Moroz SP, Hadorn HB, Sadler JE, Roscher AA (2002). Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet. 70: 20-5

Hsu JC, Laz T, Mohn KL, Taub R (1991). Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci U S A. 88: 3511-5

Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, Bogue CW (2007). The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 308: 355-67

Imbach, T., Burda, P., Kuhnert, P., Wevers, R. A., Aebi, M., Berger, E. G., Hennet, T. (1999). A mutation in the human ortholog of the Saccharomyces cerevisiae ALG6 gene causes carbohydrate-deficient glycoprotein syndrome type-Ic. Proc. Nat. Acad. Sci. 96: 6982-6987

Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G, Ueda H, Cordell HJ, Eaves IA, Dudbridge F, Twells RC, Payne F, Hughes W, Nutland S, Stevens H, Carr P, Tuomilehto-Wolf E, Tuomilehto J, Gough SC, Clayton DG, Todd JA (2001). Haplotype tagging for the identification of common disease genes. Nat Genet. 29: 233-7

Kaback MM, Rimoin DL, O'Brien JS (1977). Tay-Sachs Disease: Screening and Prevention. New York: Alan R. Liss (pub.)

Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL, Lupski JR (2001). Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder Science 293: 2256-9

Kamiya A, Inoue Y, Gonzalez FJ (2003). Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology 37:1375-84

Kiela PR, Laubitz D, Larmonier CB, et al (2009). Changes in mucosal homeostasis predisposes NHE3 knockout mice to increased susceptibility to DSS-induced epithelial injury. Gastroenterology 137: 965-75

Klomp LW, Vargas JC, van Mil SW, Pawlikowska L, Strautnieks SS, van Eijk MJ, Juijn JA, Pabón-Peña C, Smith LB, DeYoung JA, Byrne JA, Gombert J, van der Brugge G, Berger R, Jankowska I, Pawlowska J, Villa E, Knisely AS, Thompson RJ, Freimer NB, Houwen RH, Bull LN (2004). Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology. 40: 27-38

Klammt S, Mitzner S, Strange J, Brinkmann B, Drewelow B, Emmrich J, Liebe S, Schmidt R (2007). Albumin-binding function is reduced in patients with decompensated cirrhosis and correlates inversely with severity of liver disease assessed by model for endstage liver disease. Eur J Gastroenterol Hepatol. 19: 257-63

Knisely AS, Strautnieks SS, Meier Y, Stieger B, Byrne JA, Portmann BC, Bull LN, Pawlikowska L, Bilezikçi B, Ozçay F, László A, Tiszlavicz L, Moore L, Raftos J, Arnell H, Fischler B, Németh A, Papadogiannakis N, Cielecka-Kuszyk J, Jankowska I, Pawłowska J, Melín-Aldana H, Emerick KM, Whitington PF, Mieli-Vergani G, Thompson RJ (2006). Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology. 44: 478-86

Koh ET, Chan DK, Ho LY, Yeo CL (1998). Congenital sodium diarrhoea in an Indian girl. Singapore Med J. 39: 468-70

Kubitz R, Keitel V, Scheuring S, Köhrer K, Häussinger D (2006). Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol. 40: 171-5

Kullak-Ublick GA, Stieger B, Meier PJ (2004). Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 126: 322-42

Kuokkanen M, Kokkonen J, Enattah NS, Ylisaukko-Oja T, Komu H, Varilo T, Peltonen L, Savilahti E, Jarvela I (2006). Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency. Am J Hum Genet. 78: 339-44

Lam P, Pearson CL, Soroka CJ, Xu S, Mennone A, Boyer JL (2007). Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol. 293: C1709-16

Lamaigre F (2008). Notch signaling in bile duct development: new insights raise new questions. Hepatology. 48: 358-360

Landers ES, Botstein D (1987). Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 236: 1567-70

Landers MC, Schroeder TL (2003). Intractable diarrhea of infancy with facial dysmorphism, trichorrhexis nodosa, and cirrhosis. Pediatr Dermatol. 20: 432-5

Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, Kullak-Ublick GA, Meier PJ, Pauli-Magnus C (2007). Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 17: 47-60

Lee CS, Friedman JR, Fulmer JT, Kaestner KH (2005). The initiation of liver development is dependent on Foxa transcription factors. Nature 435: 944-7

Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89: 147-191

Lemna WK, Feldman GL, Kerem B, Fernbach SD, Zevkovich EP, O'Brien WE, Riordan JR, Collins FS, Tsui CL, Beaudet AL (1990). Mutation analysis for heterozygote detection and the prenatal diagnosis of cystic fibrosis New Eng. J. Med. 322: 291-296

Lemonde HA, Custard EJ, Bouquet J, Duran M, Overmars H, Scambler PJ, Clayton PT (2003). Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut 52: 1494-9

Li A, Davila S, Furu L, Qian Q, Tian X, Kamath PS, King BF, Torres VE, Somlo S (2003).Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet. 72: 691-703

Lo B, Li L, Gissen P, Christensen H, McKiernan PJ, Ye C, Abdelhaleem M, Hayes JA, Williams MD, Chitayat D, Kahr WH (2005). Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis. Blood. 106: 4159-66 Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000). Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell. 6: 507-15

Maas, N. M. C., de Putte, T. V., Melotte, C., Francis, A., Schrander-Stumpel, C. T. R. M., Sanlaville, D., Genevieve, D., Lyonnet, S., Dimitrov, B., Devriendt, K., Fryns, J.-P., Vermeesch, J. R (2007). The C20orf133 gene is disrupted in a patient with Kabuki syndrome. J. Med. Genet. 44: 562-569

Martín MG, Turk E, Lostao MP, Kerner C, Wright EM (1996). Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet. 12: 216-20

Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006). Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology. 131: 911-20

Mazariegos GV, Soltys K, Bond G, Girnita A, Machaidze Z, Jaffe R, Green M, Martin D, Zeevi A, Squires R, Perez G, Abu-Elmagd K, Sindhi R (2008). Pediatric intestinal retransplantation: techniques, management, and outcomes. Transplantation. 86: 1777-82

McCollum D, Monosov E, Subramani S (1993). The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol. 121: 761-74 McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006). NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 79: 169-73

Meier PJ (1995). Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am J Physiol. 269: G801-12

Meier Y, Zodan T, Lang C, Zimmermann R, Kullak-Ublick GA, Meier PJ, Stieger B, Pauli-Magnus C (2008). Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol. 14: 38-45

Meng X, Lu X, Morris CA, Keating MT (1998). A novel human gene FKBP6 is deleted in Williams syndrome. Genomics. 52: 130-7

Mercer, J. F. B., Livingston, J., Hall, B., Paynter, J. A., Begy, C., Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M., Siemieniak, D., Glover, T. W (1993). Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genet. 3: 20-25

Messenger A, Dawber R (1997). The physiology and embryology of hair growth. Diseases of the hair and scalp. BlackwellScience Inc

Mighell AJ, Smith NR, Robinson PA, Markham AF (2006). Vertebrate pseudogenes. FEBS Lett. 468:109-14

Moszynski P (2006). Unicef warns of "epidemic" of childhood malnutrition. BMJ 332: 1051

Müllenbach R, Bennett A, Tetlow N, Patel N, Hamilton G, Cheng F, Chambers J, Howard R, Taylor-Robinson SD, Williamson C. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut. 54: 829-34

Muller M, Jasmin J, Monteil R, Loubiere R (1991). Embryology of the hair follicle. Early human development. 26: 159-166

Müller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, Ponstingl H, Partsch J, Röllinghoff B, Köhler H, Berger T, Lenhartz H, Schlenck B, Houwen RJ, Taylor CJ, Zoller H, Lechner S, Goulet O, Utermann G, Ruemmele FM, Huber LA, Janecke AR (2008). MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Gen 40: 1163-508

Müller T, Wijmenga C, Phillips AD, Janecke A, Houwen RH, Fischer H, Ellemunter H, Frühwirth M, Offner F, Hofer S, Müller W, Booth IW, Heinz-Erian P (2000). Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology 119: 1506-13

Nagaki M, Moriwaki H (2008). Transcription factor HNF and hepatocyte differentiation. Hepatol Res 38: 961-9

Nigg EA, Raff JW (2009). Centrioles, centrosomes, and cilia in health and disease. Cell. 139: 663-78

Norio R (2003). The Finnish Disease Heritage III: the individual diseases. Hum Genet. 112: 470-526 Nurden, A. T., Nurden, P (2007). Inherited thrombocytopenias Haematologica 92: 1158-1164

Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997). Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 16: 235-42

Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997). Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest. 99: 1880-7

Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, Iinuma K, Saheki T (2001). Neonatal presentation of adult-onset type II citrullinemia. Hum. Genet. 108: 87-90

Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RP (2008). ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology. 47: 268-78

Paznekas, W. A., Boyadjiev, S. A., Shapiro, R. E., Daniels, O., Wollnik, B., Keegan, C.
E., Innis, J. W., Dinulos, M. B., Christian, C., Hannibal, M. C., Jabs, E. W (2003).
Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72: 408-418

Pedersen LB, Rosenbaum JL (2008). Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 85:23-61

Pennarun G, Escudier E, Chapelin C, Bridoux A-M, Cacheux V, Roger G, Clement A, Goossens M, Amselem S, Duriez, B (1999). Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65: 1508-1519

Phillips MJ, Azuma T, Meredith S-LM, Squire JA, Ackerley CA, Pluthero FG, Roberts EA, Superina RA, Levy GA, Marsden, PA (2003). Abnormalities in villin gene expression and canalicular microvillus structure in progressive cholestatic liver disease of childhood. Lancet 362: 1112-1119

Price, V. H., Odom, R. B., Jones, F. T., Ward, W. H (1980). Trichothiodystrophy: sulfurdeficient brittle hair. In: Brown, A. C., Crounse, R. G. Hair, Trace Elements, and Human Illness. New York: Praeger Publ. (pub.)

Reifen RM, Cutz E, Griffiths AM, Ngan BY, Sherman PM (1994). Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr 18: 379-85

Reyes H, Baez M, Ganzalez M, Hernandez I, Palma J, Ribalta J (2000). Selenium, zinc and copper plasma levels in intrahepatic cholestasis of pregnancy, in normal pregnancies and in healthy individuals. J Hepatol 32: 542-9

Rhodes CJ, Brennan SO, Hutton JC (1989). Proalbumin to albumin conversion by a proinsulin processing endopeptidase of insulin secretory granules. J Biol Chem. 264: 14240-5

Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066-73

Rioseco A, Ivankovic M, Manzur A, Hamed F, Kato S, Parer J (1994). Intrahepatic cholestasis of pregnancy: a retrospective case-control study of perinatal outcome. Am J Obstet Gynecol 170: 890-5

Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S (2005). Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord. 5: 289-303

Russell D (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72: 137-174

Saarela T, Similä S, Koivisto M (1995). Hypercalcemia and nephrocalcinosis in patients with congenital lactase deficiency. J Pediatr. 127: 920-3

Sadler TW (1990). Langman's Medical Embryology. 6th edition. Williams and Wilkins, Maryland

Salonen R, Norio R (1984). The Meckel syndrome in Finland: epidemiologic and genetic aspects. Am. J. Med. Genet 18: 691-698

Salvestrini C, McGrath JA, Ozoemena L, Husain K, Buhamrah E, Sabery N, Leichtner A, Rufo PA, Perez-Atayde A, Orteu CH, Torrente F, Heuschkel RB, Thomson MA, Murch

SH (2008). Desquamative enteropathy and pyloric atresia without skin disease caused by a novel intracellular beta4 integrin mutation. J Pediatr Gastroenterol Nutr. 47: 585-91

Sanyal S, Båvner A, Haroniti A, Nilsson LM, Lundåsen T, Rehnmark S, Witt MR, Einarsson C, Talianidis I, Gustafsson JA, Treuter E (2007). Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci U S A. 104(40):15665-70

Sashiyama H, Shino Y, Sakao S, Shimada H, Kobayashi S, Ochiai T, Shirasawa H (2002). Alteration of integrin expression relates to malignant progression of human papillomavirus-immortalized esophageal keratinocytes. Cancer Lett. 177: 21-8

Savander M, Ropponen A, Avela K, Weerasekera N, Cormand B, Hirvioja ML, Riikonen S, Ylikorkala O, Lehesjoki AE, Williamson C, Aittomäki K. Genetic evidence of heterogeneity in intrahepatic cholestasis of pregnancy. Gut. 52: 1025-9

Schneider G, Paus TC, Kullak-Ublick GA, Meier PJ, Wienker TF, Lang T, van de Vondel P, Sauerbruch T, Reichel C (2007). Linkage between a new splicing site mutation in the MDR3 alias ABCB4 gene and intrahepatic cholestasis of pregnancy. Hepatology. 45: 150-8

Setchell KD, Schwarz M, O'Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Weslie Tyson R, Sokol RJ, Russell DW (1998). Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest. 102: 1690-703

319

Silengo M, Valenzise M, Spada M, Ferrero GB, Ferraris S, Dassi P, Jarre L (2003). Hair anomalies as a sign of mitochondrial disease. Eur J Pediatr. 162:459-61

Sing CF, Risser DR, Howatt WF, Erickson RP (1982). Phenotypic heterogeneity in cystic fibrosis Am. J. Med. Genet 13: 179-195

Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, Zlotkin SH, Pencharz PB, Ngan BY, Libiger O, Schork NJ, Lavine JE, Taylor S, Newbury RO, Kolodner RD, Hoffman HM (2008). Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology 135: 429-37

Skrede S, Björkhem I, Kvittingen EA, Buchmann MS, Lie SO, East C, Grundy S (1986). Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in cerebrotendinous xanthomatosis. J Clin Invest. 78: 729-35

Smith MP, Cramer EM, Savidge GF (1997). Megakaryocytes and platelets in alphagranule disorders. Baillieres Clin Haematol. 10:125-48

Smushkin G, Vella A (2010). Genetics of type 2 diabetes. Curr Opin Clin Nutr Metab Care. Epub May 13 2010

Splinter PL, Lazaridis KN, Dawson PA, LaRusso NF (2006). Cloning and expression of SLC10A4, a putative organic anion transport protein. World J Gastroenterol.12: 6797-805

Stankler L, Lloyd D, Pollitt RJ, Gray ES, Thom H, Russell G (1982). Unexplained diarrhoea and failure to thrive in 2 siblings with unusual facies and abnormal scalp hair shafts: a new syndrome. Arch Dis Child. 57: 212-6

Steiger B, Fattinger K, Madon J, Kullak-Ublick G, Meier P (2000). Drug- and estrogeninduced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of a rat liver. Gastroenterology 118: 422-30

Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Németh A, Pawlowska J, Baker A, Mieli-Vergani G, Freimer NB, Gardiner RM, Thompson RJ (1998). A gene encoding a liverspecific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 20: 233-8

Trauner M, Boyer JL (2003). Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 83: 633-71

Tsujii H, König J, Rost D, Stöckel B, Leuschner U, Keppler D (1999). Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin-Johnson syndrome. Gastroenterology 117: 653-60

Turkel S B, Diehl E J, Richmond J A (1985). Necropsy findings in neonatal asphyxiating thoracic dystrophy. J. Med. Genet 22: 112-118

Vabres, P., Lacombe, D., Rabinowitz, L. G., Aubert, G., Anderson, C. E., Taieb, A., Bonafe, J.-L., Hors-Cayla, M.-C (1995). The gene for Bazex-Dupre-Christol syndrome maps to chromosome Xq. J. Invest. Derm. 105: 87-91

Vallejo M, Briz O, Serrano MA, Monte MJ, Marin JJ (2006). Potential role of transinhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol. 44: 1150-7

Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG, Mattsson LA, Whittaker J, Parker MG, White R, Williamson C (2007). Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology. 133: 507-16

van Mil SW, van der Woerd WL, van der Brugge G, Sturm E, Jansen PL, Bull LN, van den Berg IE, Berger R, Houwen RH, Klomp LW. Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11.Gastroenterology. 127: 379-84

van Ooteghem NA, Klomp LW, van Berge-Henegouwen GP, Houwen RH (2002). Benign recurrent intrahepatic cholestasis progressing to progressive familial intrahepatic cholestasis: low GGT cholestasis is a clinical continuum. J Hepatol. 36: 439-43

Varga M, Obrist P, Schneeberger S, Mühlmann G, Felgel-Farnholz C, Fong D, Zitt M, Brunhuber T, Schäfer G, Gastl G, Spizzo G (2004). Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clin Cancer Res 10: 3131-6 Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S and 248 more. (2001). The sequence of the human genome. Science. 291: 1304-51

Verloes A, Lombet J, Lambert Y, Hubert AF, Deprez M, Fridman V, Gosseye S, Rigo J, Sokal E (1997). Tricho-hepato-enteric syndrome: further delineation of a distinct syndrome with neonatal hemochromatosis phenotype, intractable diarrhea, and hair anomalies. Am J Med Genet. 68: 391-5

Vulpe, C., Levinson, B., Whitney, S., Packman, S., Gitschier, J (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3: 7-13

Walker, D. C., McCloskey, D. A., Simard, L. R., McInnes, R. R (1990). Molecular analysis of human argininosuccinate lyase: mutant characterization and alternative splicing of the coding region. Proc. Nat. Acad. Sci. 87: 9625-9629

Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002). The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 30: 259-69

Wasmuth HE, Glantz A, Keppeler H, Simon E, Bartz C, Rath W, Mattsson LA, Marschall HU, Lammert F (2007). Intrahepatic cholestasis of pregnancy: the severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene. Gut. 56: 265-70

Watson JD, Crick FH (1953). The structure of DNA. Cold Spring Harb Symp Quant Biol. 18: 123-31

Weinman SA, Carruth MW, Dawson PA (1998). Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem. 273: 34691-5

Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991). Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. New Eng. J. Med. 325: 1688-1695

Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001). X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 27: 18-20

Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD, McKibbin M, Stern R, Raymond FL, Sandford R, Malik Sharif S, Karbani G, Ahmed M, Bond J, Clayton D, Inglehearn CF (2006). Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet 78: 889-96

Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002). Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 110: 671-80 Zappu A, Magli O, Lepori MB, Dessì V, Diana S, Incollu S, Kanavakis E, Nicolaidou P, Manolaki N, Fretzayas A, De Virgiliis S, Cao A, Loudianos G (2008). High incidence and allelic homogeneity of Wilson disease in 2 isolated populations: a prerequisite for efficient disease prevention programs. J Pediatr Gastroenterol Nutr 47:334-8

Zhou F, You G (2006). Molecular insights into the structure-function relationship of organic anion transporters OATs. Pharm Res. 24: 28-36

Zhu QS, Xing W, Qian B, von Dippe P, Shneider BL, Fox VL, Levy D (2003). Inhibition of human m-epoxide hydrolase gene expression in a case of hypercholanemia. Biochim Biophys Acta. 1638: 208-16

K.W. Zimmerman. Arch. Mikrosk. Entwickl.Mech. 52 (1898), pp. 552–706

Chapter 8

Appendix

Contents

- 8.1 Proformas used to ascertain clinical details of patients referred from collaborators
- 8.2 Microsatellite markers
- 8.3 Oligonucleotide primers for sequencing
- 8.4 Nucleotide and amino acid sequence of *TTC37*
- 8.5 Manuscripts and abstracts derived from the work contributing to this thesis

8.1 Proformas used to ascertain clinical details of patients referred from

collaborators

Proforma for Phenotypic diarrhoea of Infancy clinical details

Family history with family tree, consanguinity details, other affecteds in the family and ethnicity

Gestational and birth weight

Need for parenteral nutrition

Bowel biopsy/histology reports (if possible pictures)

Liver disease / ultrasound findings / histology (if possible pictures)

Facial features

Hair findings on microscopy / trichorrhexis nodosa (if possible pictures)

Cardiac anomalies

Spinal / skeletal anomalies

Immunodeficiency

Platelet anomalies / thrombocytosis

Unexplained anaemia

Renal anomalies (protein / creatinine ratio)

Development

Skin or hair pigment changes

Eyes signs

Central venous catheter difficulties

If died – age and mode of death

Address to send DNA to is:

Dr Jane Hartley Medical and Molecular Genetics C/O Regional Genetics Department Birmingham Women's Hospital Metchley Park Road, Edgbaston Birmingham B15 2TG UK

I would be very grateful if you could let me know by email when the samples are sent so that I can ask to the lab to look out for them for me.

Many thanks for your help with this important research project. If you have any queries then please do not hesitate to contact me by email or on my mobile: +

Jane

Dr Jane Hartley Consultant Paediatric Hepatologist MRC Clinical Research Fellow

Clinical proforma for PFIC patients to accompany DNA sample

Patient name:

Patient date of birth:

Male/female:

Ethnicity:

Demographics		
Birth weight		
Gestational age		
Age at presentation		
Age at diagnosis		
Family pedigree/ family tree	Please attach a family pedigree / tree. This	
	should also indicate family members with	
	any disease or illness	
Parental consanguinity	Yes No	
	First cousin	
	Second cousin	
	Other – please specify	
Familial illnesses		
Current age		
Current centile weight	3^{rd} 25^{th} 50^{th} 75^{th} 95^{th}	
Current centile height	3^{rd} 25^{th} 50^{th} 75^{th} 95^{th}	

Clinical features	Yes/no	answers
Hepatomegaly	Yes	No
Splenomegaly	Yes	No
Portal hypertension	Yes	No
Dysmorphic features	Yes	No
Continuous or intermittent jaundice	Continuous	Intermittent
Diarrhoea	Yes	No
Steatorrhoea	Yes	No
Xanthomas	Yes	No
Pruritis none, mild, severe	None mi	ld severe
Failure to thrive (persistently less then 3 rd	Yes	No
percentile or crossed 2 percentile lines on		
growth chart)		
Poor feeding (nutritional support required	Yes	No
eg Nasogastric tube feeding)		
Hearing loss	Yes	No
Rickets on x-ray	Yes	No
Episodes of pancreatitis?	Yes	No

Gallstones?	Yes No
Hepatocellular carcinoma?	Yes No
Renal dysfunction or tubular defect?	Yes No
Bleeding tendency	Yes No

Biochemistry (current)			
GGT low, normal or high	Low	Normal	High
Transaminases	Normal		Raised
Bilirubin (maximum)	Normal		Raised
Cholesterol	Normal		Raised
Triglycerides	Normal		Raised
Vitamin A (serum level)	Low	Normal	High
Vitamin D (serum level)	Low	Normal	High
Vitamin E (serum level)	Low	Normal	High
Prothrombin time	Normal		Raised

Management	
Medication?	
Biliary diversion?	
OLT and age at transplant	
New clinical features post transplant ie	
diarrhoea	

Consented for research and publications Yes / No

It would be essential to have histology blocks of the liver biopsy from each of the patients.

Histology blocks enclosed Yes / No

DNA is also req	uired from as mai	ny family member	s as possible

Name	Date of Birth	Relationship with affected child
		Affected child
		Father
		Mother
		Sibling

If there is anything not on this form that you feel is important?

8.2 Microsatellite markers

Microsatellites used to look for linkage to region on chromosome 5, 19 and 16 in chapter 3

D5S428F	6CACACATACACACACTCATACAC
D5S428R	GGAGCATTTTAGTAGATATTCACAG
D5S401F	6CTAAACGATCCCCAATGTCT
D5S401R	AGCTATTTTGGTTTTTCTGTTGA
D5S1725F	6TGTACTTCAGGCTACCCTGC
D5S1725R	CCAGAGAAAGAAAACCAATAGG
D5S1463F	6ATTAGCCAGTCATTTAAAAATCG
D5S1463R	ATTAAATACATACAGGTGTGTGCG
D5S815F	6TGGTATACTTGTGTAGCAAATTACA
D5S815R	TGCCATGATTGTTAAGTTTCC
D5S2100F	6TTAATTGAGANGCAATAGTGATAAT
D5S2100R	GCTGGGAAGTCATATACTAGATTTG
D5S644F	6ACTAACTGGTAGATCAATGTGC
D5S644R	TTGGATTTGCTAAGACTGTG
D5S1462F	6CTTTCCCTCTCTTCCCACAT
D5S1462R	CCTGGGGGTAAGAGGAGATA
D5S1503F	6AAGACCTATTAGGAGGCAGATG
D5S1503R	AAATCCCTGTACCAAGTCCC
D5S495F	6GCATAAGTTTTGCTAGGGGA
D5S495R	TTTAACCCCATCACAAGTTG
D5S409F	6GAGGGGATGAAGTGTGGATAAAC
D5S409R	CTGTAGGATGGCAGTGCTCTTAG

D5S433F	6TGTAAGACATACTCTCTATCACCC
D5S433R	TCAGACATCCATCTGTGTG
D5S460F	6GCTATTAGCTGCCAGAATGTT
D5S460R	TGGTCTGTTTTTGACTCAGAAA
D5S485F	6GATCCAATCAATCCAATG
D5S485R	GACACAGCATACAGAATGAA

D5S475F	6CAGATACCGCTACTCTTATCCTACC
D5S475R	TCTGGTTGGTGCTGAATGAA
D5S1466F	6GTATCAGAACTTCATGTTGTACACC
D5S1466R	GGCACCTAGGTTTGTTCTGA
D5S2501F	6TGATTACTCTGAGGAAGAAGGC
D5S2501R	TTGAAATGGGCACAGAAATT
D5S2027F	6ACTTGGCAGATTTTCCACTC
D5S2027R	CACCTCATTGACTGGGAC
D5S2065F	6CAGCCTCATTGTTTATTGACAG
D5S2065R	AATGGCATAGTTTTGGCTC
D5S2055F	6GTCTACCCCATCTCTGAACC
D5S2055R	GATCCCACTGCAGGCT
D5S494F	6GCTTTCACGAAGGTAGATATTG
D5S494R	CAGGCTAGGCAGATTACAGA
D5S471F	6TTTTCACACATTTTCCCAGC
D5S471R	AAAACTTCATTTACAAAAACAGGAG

D19S714F	6ATGCCCTCTTCTGTCTCTCC
D19S714R	GCAGAGAATCTGGACATGCT
D19S898F	6CCAGGAGGTCAAGGCTGC
D19S898R	AGCTCACTCTGCCCATTTCC
D19S560R	6GAAATATAGCGAGACCC
D19S560R	GTCTCACCACAAAAATG
D19S568F	6TGAGTCTGCTGAGACCAAAGTTAG
D19S568R	ATAATGTAGCCTTGTCCTGGAATAG
D19S433F	6CCTGGGCAACAGAATAAGAT
D19S433R	TAGGTTTTTAAGGAACAGGTGG
D19s414F	6TGAGTCTGCTGAGACCAAAGTTAG
D19s414R	ATAATGTAGCCTTGTCCTGGAATAG
D19s245F	6TGAGTCTGCTGAGACCAAAGTTAG
D19s245R	ATAATGTAGCCTTGTCCTGGAATAG

D16S753F	6CAGGCTGAATGACAGAACAA
D16S753R	ATTGAAAACAACTCCGTCCA
D16S3183F	6GCCCATCTAGCCAACTAAATC
D16S3183R	CCCGATCTCACAATTTTGCAG
D16S3232F	6AATGCAATATACAAAAACTCACCC
D16S3232R	ATTTTAAACAATTTTGTCATCACCA
D16S3321F	6TCATGAGGCTACAGGCACAG
D16S3321R	AGAGCTTCCTGCCTAGTCCC
D16S2964F	6CTTCCCAGATTTGCTGACTTG

D16S2864R	CTTTCCCTATCCTGTTGAATGC
D16S3409F	6GGCAGAGGTTGAAGAGAGCTG
D16S3409R	CAGTAGAACACAGGCTAGAG
D16S746F	6CTCTAGCCTGGGTGACAAG
D16S746R	GGCAACAAGAGTTAAACTCC
D16S3105F	6GATCTTCCCAAAGCGCC
D16S3105R	TCCCGTCAGCCAAGCTA
D16S3044F	6ATACTCACTTTTAGACAGTTCAGGG
D16S3044R	GGCTCAGTTCCTAACCAGTTC

Microsatellites used to look for linkage to ARC syndrome in chapter 3

D15S996F	6GAAGGATGGTTTGAGCCC
D15S996R	ACTTAGGAATAATCATTACTGGCAT
D15S127F	6CCAACCACACTGGGAA
D15s127R	AACAGTTGCCCACGGT
D15S158F	6CAGGAGACCTCCAAACACA
D15S158R	TTTCAGCCAAGAAGCACG
D15S963F	6CAGCAAATCTCTGGAGCAC
D15S963R	GCAACTTCTTGTAAGTAGCCTAGC

Microsatellites used to look for linkage to intraflagellar transport proteins complex B in chapter 4

D15S1510F	6AGGGTCCAATTTCAACATGA
D15S1510R	CCAATGGAGCTGAAAGTCAT
D15S206F	6AACTTTTGGTGCTGAGGGC
D15S206R	CTGGCACTTGCTGGTGATA

D20S1121F	6ACTTTTTCTCCTTCAAGAGTCACC
D20S1121R	TGCACTTTCATTCACATGCA
D20S150F	6CCCGTAATCCCAGCTACTC
D20S150R	CAGCCCCACGTAGTCACCT

D3S1587F	6TACAGTTCTATAAGGGCAGCC
D3S1587R	AGGGAGACAGAGTGATGGATT
D3S621F	6ATACCCATGTTCACTGCACC
D3S621R	CACTTAGCACGTTTTCAAGG
D3S548F	6CTTCCAGGTCCAAGAGTG
D3S3548R	CAAAGGCAGCAGAATATG

D14S66F	6CTTATAATCAACACCTGCCTTC
D14S66R	TTTAGACTAGGGATGCAATCC
D14S980F	6CTGGGCAACAAGAGTGG
D14S980R	GAAGCGGGACAATTCTCTAAG
D14S274F	6TGAACTTTGGGCACCCT
D14S274R	TCTGACAAACCAGCAAATGA
D14S696F	6CAGCACAATGCAGGAGGAC
D14S696R	GAGAGAGGGGTTTTAAGCCAAG
D14S1038F	6GATCCATCTTAGCCATTAAGG
D14S1038R	CAGTCAGGTGTCCATCTAAAAC
D14S994F	6GGCAGACAGGGCTAGAA
D14S994R	CGTTATCAGATGTAAGAGACTCCAG
D12S1300F	6CCTCACACAATGTTGTAAGGG
D12S1300R	TGTAACATCCGTGATTAAAATAGC
PAHF	6CTCTGTTCCCAGTGCTTCAC
PAHR	TGCAGATTCAGGAAGCACG
D12S353F	6AATTCATTGGGAGGGCA
D12S353R	TGGCAAATCGGAGAGC
D12S84F	6TGGGGTAGAGTTCTTATCTGG
D12S84R	AAATATGTCTCTAGGCTAATGGC
D12S1583F	6AGCCAGGAGTTGGAGAC
D12S1583R	CCCCTTGTTTACTTCCAG
D12S79F	6TTGGACTGAACTGAGATGCC
D12S79R	TATGTGCACCCAGACTACCA
D12S2070F	6GGGTCAGCGAATATTTCCTT
D12S2070R	TGGCTGACAGAGCCTAAAGT
	· · · · · · · · · · · · · · · · · · ·

8.3 Oligonucleotide primers for sequencing

Primers used in chapter 3

CAST X1FCTCTCTCCCTGGCAGGACCAST X1RGACCCGGTACCCCATCGCAST X2 FCATTTAGCTTTGGGGATTAAAGCAST X2 FGGCAAACTTCACAGTTTAAAAGCCAST X3 FAAGTTTGCATTGACTACATTGGCAST X3 FAAGTTTGCATTGACTACATTGGCAST X3 RAGGCCCCACCACTAATCCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 RTTTGTTTGCTTTGCAGCACCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGCAGCTAAGCCTACCAST X6 FTCAAGCAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 FGAGGGTGAACTGGCAGATGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGTTTGGTGGCAST X12 FGGAATAGTGCTTAATTGCCAST X13 FAACCCACAACAGGCAATACCAST X13 FAACCCACAACGGGCAATACCAST X13 FAACCCACACAGGGCAATACCAST X13 FAACCCACACAGGGCAATACCAST X13 RAATTGATAGCCTGTTCCCCCAST X16 FTTTTACAAAGAGTAATGGATTCTCTGCAST X16 FTTTTACAAAGAGTAATGGATTCTCTGCAST X16 FTTTTACAAAGAGTAATGGATTCTCTGCAST X16 RTTCGGTTTTGTATGTGCAGGCAST X16 RTTCGGTTTGTATGTGCAGGCAST X16 RTTCGGTTTGTATGGCAGCAST X16 RTTCGGTTTGTATGTGCAGGCAST X16 RTTCGGTTTGTATCACATTCATGTGTCCASTATGTCC		
CAST X1RCATTTAGCCTTTGGGGATTAAAGCAST X2RGGCAAACTTCACAGTTTAAAAGCCAST X3 FAAGTTTGCATTTGACTACATTGGCAST X3 FAAGTTTGCATTTGACTACATTGGCAST X3 RAGGCCCCACCACTAATCCAST X4 FGGAGCTGAAGGACCATGTAGCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X8 FGAACCACAGACAGCACACACTGCAST X8 FGAACCACAGACAGCACACACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 RATGACCATGGCCTATTTGGTGGCAST X12 FGGAATAGTGCTTATTTGAGATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACAGGGCAATACCAST X13 FCACCACAACAGGGCAATACCAST X14-15 RGTGCTACTGGCAGTTCCCAST X16 RTTTTACAAAGAAGTAAATGGATTGTCCAST X16 RTTTTCCAATGGCAGATTCCCAST X16 RTTTCCGGTTTGTGAGGCAATACCAST X16 RTTTCCGGTTTGGTGCAGATTCCTGCAST X16 RTTTCCGGTTTGTGAAGAGTAAATGGATTGTCCAST X16 RTTTCCGGTTTGAATGTGCAGA	CAST X1F	CTCTCTCCCTGGCAGGAC
CAST X2RGGCAAACTTCACAGTTTAAAAGCCAST X3 FAAGTTTGCATTTGACTACATTGGCAST X3 FAAGTTTGCATTTGACTACATTGGCAST X3 RAGGCCCCACCACTAATCCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 RTTTGTTTTGCTTTGCAGCACCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGTTTAGTTCAAAAGCACCCAST X13 FAACCCACAACAGGGCAATACCAST X13 RAATGACAATTCCACAGGCCATATCCAST X14-15 RGTGCTACTGGCAGTTCCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCAST X16 RTTTCCGGTTTGGTCCCCCAST X16 RTTTCCGGTTTGTGAGGAATACTGGCAGATTGTCCAST X16 RTTTCCGGTTTGTGAGGAATTGTCCCAST X16 RTTTCCGGTTTGTAATGTGCAGA	CAST X1R	GACCCGGTACCCCATCG
CAST X3 FAAGTTTGCATTTGACTACATTGGCAST X3 FAAGCTTGCATTGCATTGACTACATTGGCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 RTTTGTTTTGCTTTGCAGCACCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X7 FCCTAAGCGAGCACAAAGTGTACAAACTTAACTGCAST X7 RGGATGGCACCATTCTAAAGGGTCCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACCATGGCCGATTATTGGCGCAST X12 FGGAATAGTGCTTTAGTTCAGAAATTGGCAST X12 RAATGACAATTCACAAGCACCCCAST X13 RAATGACAATTCACAAGCACCCAST X13 RAATGATAGTGCTTTGGTGGCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 RTTTGCGTTTGCAGGAGATGCTTCCAST X16 RTTTGCGTTTGCAGGCAGATACGCACCCAST X16 RTTTCCGGTTTGCAGTGCAGATCCCAST X16 RTTTCCACTGGCAGTTCCTGCAST X16 RTTTCCACTGGCAGTTCCTGCAST X16 RTTTCCACTGGCAGTTCCTGCAST X16 RTTTCCACTGGCAGTTCCTGCAST X16 RTTTCCACTGGCAGTTCCTGCAST X16 RTTCCGGTTTGTAATGTGCAG	CASTX2 F	CATTTAGCCTTTGGGGATTAAAG
CAST X3 RAGGCCCACCACTAATCCAST X3 RAGGCCCACCCACTAATCCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 RTTTGTTTGCTTTGCAGCACCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTAATTGCCAST X12 RAATGACAATGGCCTTATTTGCCAST X13 RAATGACAATGGCCTTATTCCCAST X13 RAATGACAATGGCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 RTTTTGCAAAGAAGTAATGGATTCCAST X16 RTTTTGCACATGGCAGTTCCTGCAST X16 RTTTTGCACATGGCAGTTCCTGCAST X16 RTTTCGGTTTGGTGGAGAGTTCCTGCAST X16 RTTTCACAAGAAGTAATGGAGCAGCTCCAST X16 RTTTCACAAGAAGTAATGGACGCAGTTCCAST X16 RTTTACAAGAAGTAAATGGATTGTCC	CAST X2R	GGCAAACTTCACAGTTTAAAAGC
CAST X3 KCOOCCURATIONCAST X4 FGGAGCTGAAGGACCATGTAGCAST X4 RTTTGTTTGCTTTGCAGCACCAST X5 FTGGAGTTATACACATATGCATCGAGCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGCATACCAST X10 FCTGTAGAGCGGATGTCAGTGCAST X10 FCTGTAGAGCGGATGTCAGTGCAST X11 FGAACTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTATTTGAGCATACGTCAST X12 FGGAATAGTGCTTAATTGCCAST X13 RAATCCCACAACGGGCAATACCAST X13 RAATCGACAACGGGCAATACCAST X14 FCATTCTTCCACTTGAGTGCTTCCAST X14 FGTGCTACTGGCATTCCAST X14 FCATCCTCGCAAAGAATCCCAST X13 RAATTGATAGCCTTTAGTTCCCCCAST X14 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCCAST X16 RTTCCGGTTTGAATGTGCAG	CAST X3 F	AAGTTTGCATTTGACTACATTGG
CAST X4 RTITGTTTGCTTTGCAGCACCAST X4 RTTTGTTTGCTTTGCAGCACCAST X5 FTGAGGGCAGCTAAGCCTACCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTAATTGAGCAGCGTATCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTATTTGCCAST X13 FAACCCACAACGGGCAATACCAST X13 FAACCCACAACGGGCAATACCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 RTTTGCGTTTGGTAGTGCAGCAST X16 RTTCGGTTTTGCAGTGCAST X16 RTTCGGTTTTGTAATGGCAGCAST X16 RTTCGGTTTTGTAATGGCAGCAST X16 RTTCGGTTTGTAATGGCAG	CAST X3 R	AGGCCCCACCCACTAATC
CAST X4 RTIGGAGTTATACACATATGCATCGAGCAST X5 FTGATGGGCAGCTAAGCCTACCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTAGTTTCAGAATATGCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 RTTCGGTTTTGTAATGGCAGCAST X16 RTTCGGTTTTGTAATGTCAGGG	CAST X4 F	GGAGCTGAAGGACCATGTAG
CAST X5 TTGATGGGCAGCTAAGCCTACCAST X5 RTGATGGGCAGCTAAGCCTACCAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTCTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAATGGATTGTTCCAST X16 RTTCGGTTTGTAGCAG	CAST X4 R	TTTGTTTTGCTTTGCAGCAC
CAST X6 FTCAAGCAAAGTGTAACAAACTTAACTGCAST X6 FCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 RAATTGATAGCCTTGTTCCCCCAST X14-15 FCATTCTTCCACTTGGCAGTTCCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCAST X16 RTTCGGTTTTGTAGTTCCAGG	CAST X5 F	TGGAGTTATACACATATGCATCGAG
CAST X01FIGHERING AAAGGGTCCAST X6 RCACAGCCATTCAAAAGGGTCCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCTTGAGTGCTTCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCAST X16 RTTCGGTTTTGTAGTGCAG	CAST X5 R	TGATGGGCAGCTAAGCCTAC
CAST X0 RENGROCONTOCONTROLOGICCAST X7 FCCTAAGCGGGCTTTTCCTGCAST X7 RGGATGGCACCATTTTAGCTGCAST X8 FGAACCACAGACAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCTTGTTCCCCCAST X14-15 FCATTCTTCCACTTGGGGAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGACTGTCCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X6 F	TCAAGCAAAGTGTAACAAACTTAACTG
CAST X7 RGGATGGCACCATTTTAGCTGCAST X8 FGAACCACAGACAGCAGCACAACTGCAST X8 RGTGAACAGGGGAACCGTATCCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACCATGGCCTTATTTGCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCAST X16 RTCCGTTTTGTAATGTGCAG	CAST X6 R	CACAGCCATTCAAAAGGGTC
CAST XI RGAACCACAGACAGCAGCAACAGCGCAST X8 FGAACCACAGAGCAGCAGCAACTGCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 FGATAGGTTATTTGAGCATACGTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTCCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X7 F	CCTAAGCGGGCTTTTCCTG
CAST X8 RGTGAACAGGGGAACCGTATCCAST X8 RGAGGGTGAACTGGCAGATGCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X7 R	GGATGGCACCATTTTAGCTG
CAST X0 RCAST X0 RCAST X9 FGAGGGTGAACTGGCAGATGCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X8 F	GAACCACAGACAGCACAACTG
ONOT X011PARAGETRATITICCAST X9 RGATAGGTTATTTGAGCATACGTTTCCAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X8 R	GTGAACAGGGGAACCGTATC
CAST X10 FCTGTAGAGCGGATGTTCAGTGCAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 RGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X9 F	GAGGGTGAACTGGCAGATG
CAST X10 RGCCCACAAGAAATCAGATTATGCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X9 R	GATAGGTTATTTGAGCATACGTTTC
CAST X10 RCOMMENSATION COMMENSATIONCAST X11 FGAACTTTTGGTGTTTGGTGGCAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X14-15 RGTGCTACTGGCAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X10 F	CTGTAGAGCGGATGTTCAGTG
CAST X11 RATGACCATGGCCTTATTTGCCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X14-15 RGTGCTACTGGCAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X10 R	GCCCACAAGAAATCAGATTATG
CAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 FGGAATAGTGCTTTAGTTTCAGAATATGCAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X14-15 RGTGCTACTGGCAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X11 F	GAACTTTTGGTGTTTGGTGG
CAST X12 RAATGACAATTTCACAAGCACCCAST X13 FAACCCACAACGGGCAATACCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X14-15 RGTGCTACTGGCAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X11 R	ATGACCATGGCCTTATTTGC
CAST X12 RAACCCACAACGGGCAATACCAST X13 FAATTGATAGCCCTGTTCCCCCAST X13 RAATTGATAGCCCTGTTCCCCCAST X14-15 FCATTCTTCCACTTGAGTGCTTCCAST X14-15 RGTGCTACTGGCAGTTTCCTGCAST X16 FTTTTACAAAGAAGTAAATGGATTGTTCCAST X16 RTTCGGTTTTGTAATGTGCAG	CAST X12 F	GGAATAGTGCTTTAGTTTCAGAATATG
CAST X13 R AATTGATAGCCCTGTTCCCC CAST X13 R CATTCTTCCACTTGAGTGCTTC CAST X14-15 F CATTCTTCCACTTGAGTGCTTC CAST X14-15 R GTGCTACTGGCAGTTTCCTG CAST X16 F TTTTACAAAGAAGTAAATGGATTGTTC CAST X16 R TTCGGTTTTGTAATGTGCAG	CAST X12 R	AATGACAATTTCACAAGCACC
CAST X14-15 F CATTCTTCCACTTGAGTGCTTC CAST X14-15 R GTGCTACTGGCAGTTTCCTG CAST X16 F TTTTACAAAGAAGTAAATGGATTGTTC CAST X16 R TTCGGTTTTGTAATGTGCAG	CAST X13 F	AACCCACAACGGGCAATAC
CAST X14-15 R GTGCTACTGGCAGTTTCCTG CAST X16 F TTTTACAAAGAAGTAAATGGATTGTTC CAST X16 R TTCGGTTTTGTAATGTGCAG	CAST X13 R	AATTGATAGCCCTGTTCCCC
CAST X16 F TTTTACAAAGAAGTAAATGGATTGTTC CAST X16 R TTCGGTTTTGTAATGTGCAG	CAST X14-15 F	CATTCTTCCACTTGAGTGCTTC
CAST X16 R TTCGGTTTTGTAATGTGCAG	CAST X14-15 R	GTGCTACTGGCAGTTTCCTG
	CAST X16 F	TTTTACAAAGAAGTAAATGGATTGTTC
CAST X17 F GGAAGTGATATCATCTCATTATGTGC	CAST X16 R	TTCGGTTTTGTAATGTGCAG
	CAST X17 F	GGAAGTGATATCATCTCATTATGTGC

CAST X18FTCCCAGAAACAAACTTGATGGCAST X18FTGAATTCCAGACTGTCAAAATTATCCAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X19 FGTAGCGGAGTGTCTTGTGGCAST X20 FGTAGCGGAGTGACAGGAGGCAST X20 RCAGCAGAGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X22 FCAGGCAGAAGGTGATCAATGCAST X22 RTCCCAAGTACCTTGTGTGGCCAST X22 RTCCCAAGTACCTTGTGGCCCCCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 FAACAGCACACTGTACTCCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 RTCTTTCTAGTTGTGGCGCGCCAST X25 RTCTTTCTAGTGTGTGTGTGTCGGCCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 RATGCCAAATACCCTAAGTAAACCCAST X29 FTATTGCATTTGCCTCTGCCAST X29 FTATTGCATTCTGAGAGAGACCAAGACCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGACCCAST X31 RAAATTGCAGAAGATACAGTTGTCSLC04C1 F1 RGAGAGGACCTGGCTCTGSLC04C1 F1 RGCCAGCTTTAACCAGTAGTAATTAACCAGGSLC04C1 F3 RCCAGCTTTAACACATTACCAGGSLC04C1 F3 RCCAGCTTTAACACATTACCAGGSLC04C1 F3 RCCAGCTTTAACACATTACCAGG		
CAST X18 RTGAATTCCAGACTGTCAAAATTATCCAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X20 FGTAGCGGAGTGTCTTGTTGGCAST X20 RCAGCAGAGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21 FCAGGCATGAATTTTATGGAGAGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTTGTTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X25 FAGTGGCACCACTGTACTCCCCAST X25 FAGTGAGGAGTCAAGGTCAAGGCAST X25 FTCCTTGATACAGTTGGCCAST X26 FTGCCTCTGATACAGTTGGCCAST X27 FAGTCATCTGTGTTGTTGTGTGCCAST X27 FAGTCATCTGTGTTGTTCTGTGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTGCCTCAGCCAST X29 FTATTGCATTTGCCTCAGGCCAST X29 FTATTGCATTTGCCTCTGGCCAST X29 FTATTGCATTTGCAGGCCAST X30 FTTTAACTGCAGCCTAAGGTAAGACCCAST X31 RAAATTGCCAAATACCCTACTGTGTAACTGCCAST X31 RCAACTGGTGCTATGAGAAGAACGCCAST X31 RCAACTGGTGCTATTCCTTGTGSLC04C1 F1 RGCCTGGTTTCCAAAACATTTACCAGGSLC04C1 F2 RGCCTTGCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTCAAAACATTACCAGGSLC04C1 F3 RCCAGCTTTCCAAAACATTACCAGGSLC04C1 F3 RCCAGCTTTCAAAACATTACCAGGSLC04C1 F3 RCCAGCTTTCAAAACATTACCAGG	CAST X17 R	AACAAAACAAGATGCAAAGGC
CAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X19 FGCTTTGGGTGTTAAGTATGGCCAST X20 FGTAGCGGAGTGTCTTGTTGGCAST X20 RCAGCAGAGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21 FCAGGCATGAATTTTATGGAGAGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X25 FAGTGGCACCACTGTACTCCCCAST X25 FAGTGAGGAGTCAAGGTCAAGGTCAGGCCAST X26 RTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTGTGCCCAST X27 FAGTCATCTGTGTTGTGTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 FTATTGCATTTGCCTCAAACCTAAGTAAACCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 RAAATTGCCAAATACCTACTGTGTGTCSLC04C1 F1 RCAACTGGTGCTATCAGGAAGAACAGTTGCSLC04C1 F2 RGCCTTGCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTCAAAACCTCAGTTTCCAAAACATTACCAGGGSLC04C1 F3 RCCAGTTTAGCAAAACATTACCAGGSLC04C1 F3 RCCAGTTTAGCAAAACATTACCAGGSLC04C1 F3 RCCAGCTTTAGCAAAACATTAACCAGGSLC04C1 F3 RCCAGCTTTAGCAAAACATTAACCAGGSLC04C1 F3 RCCAGCTTTAGCAAAACATTAACCAGGSLC04C1 F3 RCCAGCTTAGCAAAACATTAACCAGGSLC04C1 F3 RCCAGCTTAGCATAAACC	CAST X18F	
CAST X19RTGGCATATTGGGCTTTCTAACCAST X20 FGTAGCGGAGTGTCTTGTTGGCAST X20 RCAGCAGAGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21 FCAGGCATGAATTTTATGGAGAGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 RTCTTTCTAGTTGTGGCTGCGCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGACCCCAST X28 RTCTCTACTGCCTAAACCTAAGTAAACCCCAST X29 FTATTGCATTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTGATACTGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATTCCTTGTGSLC04C1 F2 RGCCTGGTCTTCCAAAACCTACGSLC04C1 F3 RCCAGCTTTAGATTAACCCCASTTA RACATCCAGTAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCACTGTATCAACCAGTAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCACTGTTCCAAAACC	CAST X18 R	
CAST X20 FGTAGCGGAGTGTCTTGTTGGCAST X20 FGTAGCGGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21 FCAGGGAGAAGGTGATCAATGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 FAACAGCACCACTGTACTCCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X26 FTCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCCAST X29 FTATTGCATTTGCCTCTGCCAST X29 FTATTGCATTTGCCTCTGCCAST X30 FTTTAACTGCAGCTAAGATAAGACCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 RCAACTGGTGCTATTCTTGTTGSLCO4C1 F2 RGCCTGATTTCAAACTTAAGGCTTCSLCO4C1 F3 RCCAGCTTTAGCTTCAAACCCACTGTACTGAAAACCCCAACTGGTGCTATAACTCAGGSLCO4C1 F3 RCCAGCTTTAACTGCAAACC	CAST X19 F	
CAST X20 RCAGCAGAGAGTGACAGGAGGCAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21RGGGGAGAAGGTGATCAATGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 RTCTTTCTAGTTGTGGCGGCCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 FAGTCATCTGTGTTGTTCTGTGCCAST X28 RTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTTACCTGCTGGTCGGCCAST X29 FTATTGCATTTGCCTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 RTGATAAACCTACTGTGTTGTAACTGCCAST X31 RAAATTGCCAAATACCCTACTTGTGTAACTGCCAST X31 RCAACTGGTGCTATTCTTGTGSLCO4C1 F1 RCAACTGGTGCTATTCAAGGTAAGGCTACGSLCO4C1 F2 RGCCTTGATTCCAAACATTTACAGGGSLCO4C1 F3 RCCAGCTTTAGCTTCAAACCTAACGSLCO4C1 F3 RCCAGCTTTAGCTTCAAACCCACTTTACCAAACCTACCGCTTTCCAAAACCTACC	CAST X19R	TGGCATATTGGGCTTTCTAAC
CAST X21 FTGATATGCCTTTCTGAATTGATAGCAST X21 FGGGGAGAAGGTGATCAATGCAST X21 RGGGGAGAAGGTGATCAATGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 RTCTTTCTAGTTGTGGCGCGGCCAST X26 FTGCCTCGATACAGTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X28 RTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTGCCTCTGCCAST X29 FTATTGCATTTGCCTCTGCCAST X30 FTTTAACTGCAGCCTAATGCCCAST X31 FTCCCCTAATTCTGAGAAGACCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATCTGTGTGSLC04C1 F2 RGCCTTGCATTCCAGTAGATAACGSLC04C1 F3 RCCAGCTTAGAGTAAACCCACTGGTCTTCAAACCTACGGSLC04C1 F3 RCCAGCTTAGACTAACACTTACAGGGSLC04C1 F3 RCCAGCTTAGACTAACACTTACAGGGSLC04C1 F3 RCCAGCTTAGACTTACAGTAACCCAACTGGTGCTTCAAAACC	CAST X20 F	GTAGCGGAGTGTCTTGTTGG
CAST X21RGGGGAGAAGGTGATCAATGCAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 RTCTTTCTAGTTGTGGCTGCGCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTGTTGTGCCAST X28 FTCTCTACTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTTACCTGCTGGTCGGCCAST X29 FTATTGCATTTGCCTCTGCCAST X30 FTTTAACTGCAGCCTAGTAAGACCCAST X31 FTCCCCTAATCTGGTAACGCCCAST X31 RAAATTGGCAGAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATCAGAGAGAACAGTTGCSLC04C1 F2 RGCCTGGTTCCAAACCTAAGCTACGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCASCTARACCAGCTTTAGCTTCAAAACC	CAST X20 R	CAGCAGAGAGTGACAGGAGG
CAST X22 FCAGGCATGAATTTTATGGAGAGCAST X22 RTCCCAAGTACCTTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X26 FTCCTTTCTAGTTGTGGCTGCGCAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTGTGCCAST X28 FTCTCTACTGCTGATACAGTTGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATGGCTAGGSLC04C1 F2 FGCCTGATTTCAAAACCTAAGTAAGCTSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X30 RCCAGCTTTAAGAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTACAGAAGAACAACCCACCTAGTAGTAATTAACCAGTAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCCAGCTTTAGCTTCAAAACC	CAST X21 F	TGATATGCCTTTCTGAATTGATAG
CAST X22 ITCCCAAGTACCTTTGTTCTGTGCAST X22 RTCCCAAGTACCTTTGTTCTGTGCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCACTGTACTCCCCAST X25 RTCTTTCTAGTTGTGGCTGCGCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X28 FTCTCTACTGCTGATACAGTAGCCCAST X28 FTCTCTACTGCTGATACGCCAST X29 FTATTGCATGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGACCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTATGGCAGCSLC04C1 F2 FGCTTTCCAAACGTAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X30 RCCAGATTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTCCAAAACCTACTGTGTGTGTGTGTGTGTGTGT	CAST X21R	GGGGAGAAGGTGATCAATG
CAST X22 RAACAGCAAGTATAACCTGTAGACCCCAST X23-24 FAACAGCAAGTATAACCTGTAGACCCCAST X23-24 RGATGGCACCACTGTACTCCCCAST X25 FAGTTAAGTGATGGCACTGTGCCAST X25 RTCTTTCTAGTTGTGGCTGCGCAST X26 FTGCCTCTGATACAGTTTGGCCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATGCCAAATACCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATCTGTGTACTGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATCTGGTGCSLC04C1 F2 RGCCTTGATTCCAAACCTAAGTAATTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCACT F3 RCCAGCTTTAGCTTCAAAACC	CAST X22 F	CAGGCATGAATTTTATGGAGAG
CAST X23-24 RGATGGCACCACTGTACTCCCCAST X23 FAGTTAAGTGATGGCATTGTGCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X26 FTCTTTCTAGTTGTGGCTCGGCAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATTCCTTGTGSLC04C1 F2 RGCCTGGATTTCCAAAACATTTACAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST K30 RCCAGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X22 R	TCCCAAGTACCTTTGTTCTGTG
CAST X25 FAGTTAAGTGATGGCATTGTGCCAST X25 FAGTTAAGTGATGGCATTGTGCCAST X26 FTCTTTCTAGTTGTGGCGCGCAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATTCCTTGTGSLC04C1 F2 RGCCTGATTTCCAAAACATTTACGGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X30 RCCAGCTTAGTAATTAAGGCTTC	CAST X23-24 F	AACAGCAAGTATAACCTGTAGACCC
CAST X25 RTCTTTCTAGTTGTGGCTGCGCAST X26 FTGCCTCTGATACAGTTTGGCCAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 RCAACTGGTGCTATTCATCAGGTACTGGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F3 FGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X23-24 R	GATGGCACCACTGTACTCCC
CAST X26 FTGCCTCTGATACAGTTTGGCCAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F3 FGCTTTCCAAAACATTTACGGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X30 RCCAGCTTTCCAAAACATTTACCAGG	CAST X25 F	AGTTAAGTGATGGCATTGTGC
CAST X26 RTGACAGAGTCAAGACCCAAGGCAST X27 FAGTCATCTGTGTTGTTCTGTTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F3 FGCTTTCCAAAACATTTACGGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X30 RCCAGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTCATCAAGCTACGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACCCAST X31 RCCAGCTTTAGCTTCAAAACC	CAST X25 R	TCTTTCTAGTTGTGGCTGCG
CAST X27 FAGTCATCTGTGTTGTTGTTGTGCCAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 RCAACTGGTGCTATTCCTTGTTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F3 FGCTTTCCAAAACATTTACCAGGSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X26 F	TGCCTCTGATACAGTTTGGC
CAST X27 RATATTTACCTGCTGGTCGGCCAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F3 FGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCAACTCGTGCTATTCCTAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X26 R	TGACAGAGTCAAGACCCAAGG
CAST X28 FTCTCTACTGCCTAAACCTAAGTAAACCCAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 FGAGAGGGACCTGGCTCTGSLCO4C1 F1 RCAACTGGTGCTATTCCTTGTTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F3 FGCTTTCCAAAACATTTAAGGCTTCSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X27 F	AGTCATCTGTGTTGTTGTTGC
CAST X28 RATGCCAAATACCCCTATGGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 FGAGAGGGACCTGGCTCTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F3 FGCAAATCCAGTAGTAATTAAGGCTTCSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACCCACTGGTGCTTCAAAACCCAACTGGTGCTCTCAAAACC	CAST X27 R	ATATTTACCTGCTGGTCGGC
ONOT X20 RTATTGCATTTTGCCTTCTGCCAST X29 FTATTGCATTTTGCCTTCTGCCAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F1 RCAACTGGTGCTATTCCTTGTTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLC04C1 F3 FGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X28 F	TCTCTACTGCCTAAACCTAAGTAAACC
CAST X29 RGCCTGGGCTATAGAGTAAGACCCAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F1 RCAACTGGTGCTATTCCTTGTTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F3 FGCTTTCCAAAACATTTAAGGCTTCSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X28 R	ATGCCAAATACCCCTATGGC
CAST X30 FTTTAACTGCAGCCTAGTTAATTGCCAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F1 RCAACTGGTGCTATTCCTTGTTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLC04C1 F3 FGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X29 F	TATTGCATTTTGCCTTCTGC
CAST X30 RTGATAAACCCTACTCTGTGTAACTGCCAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 FGAGAGGGACCTGGCTCTGSLCO4C1 F1 RCAACTGGTGCTATTCCTTGTTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLCO4C1 F3 FGCTTTCCAAAACATTTACCAGGSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X29 R	GCCTGGGCTATAGAGTAAGACC
CAST X31 FTCCCCTAATTCTGAGAAGGCCAST X31 RAAATTGGCAGAAGATACAGTTGTCSLCO4C1 F1 FGAGAGGGACCTGGCTCTGSLCO4C1 F1 RCAACTGGTGCTATTCCTTGTTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLCO4C1 F3 FGCTTTCCAAAACATTTACCAGGSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X30 F	TTTAACTGCAGCCTAGTTAATTGC
CAST X31 RAAATTGGCAGAAGATACAGTTGTCSLC04C1 F1 FGAGAGGGACCTGGCTCTGSLC04C1 F1 RCAACTGGTGCTATTCCTTGTTGSLC04C1 F2 FGCCTGATTTCATCAAGCTACGSLC04C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLC04C1 F3 FGCTTTCCAAAACATTTACCAGGSLC04C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X30 R	TGATAAACCCTACTCTGTGTAACTGC
SLCO4C1 F1 F GAGAGGGACCTGGCTCTG SLCO4C1 F1 R CAACTGGTGCTATTCCTTGTTG SLCO4C1 F2 F GCCTGATTTCATCAAGCTACG SLCO4C1 F2 R GCAAATCCAGTAGTAATTAAGGCTTC SLCO4C1 F3 F GCTTTCCAAAACATTTACCAGG SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC	CAST X31 F	TCCCCTAATTCTGAGAAGGC
SLCO4C1 F1 FGAGAGGGACCTGGCTCTGSLCO4C1 F1 RCAACTGGTGCTATTCCTTGTTGSLCO4C1 F2 FGCCTGATTTCATCAAGCTACGSLCO4C1 F2 RGCAAATCCAGTAGTAATTAAGGCTTCSLCO4C1 F3 FGCTTTCCAAAACATTTACCAGGSLCO4C1 F3 RCCAGCTTTAGCTTCAAAACC	CAST X31 R	AAATTGGCAGAAGATACAGTTGTC
SLCO4C1 F2 F GCCTGATTTCATCAAGCTACG SLCO4C1 F2 R GCAAATCCAGTAGTAATTAAGGCTTC SLCO4C1 F3 F GCTTTCCAAAACATTTACCAGG SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC	SLCO4C1 F1 F	GAGAGGGACCTGGCTCTG
SLCO4C1 F2 R GCAAATCCAGTAGTAATTAAGGCTTC SLCO4C1 F3 F GCTTTCCAAAACATTTACCAGG SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC	SLCO4C1 F1 R	CAACTGGTGCTATTCCTTGTTG
SLCO4C1 F3 F GCTTTCCAAAACATTTACCAGG SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC	SLCO4C1 F2 F	GCCTGATTTCATCAAGCTACG
SLCO4C1 F3 F GCTTTCCAAAACATTTACCAGG SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC	SLCO4C1 F2 R	GCAAATCCAGTAGTAATTAAGGCTTC
SLCO4C1 F3 R CCAGCTTTAGCTTCAAAACC		GCTTTCCAAAACATTTACCAGG
		CCAGCTTTAGCTTCAAAACC
	SLCO4C1 F4 F	CCTGTCTGTGGAGATGGAG
SLCO4C1 F4 R GCCATGGCAATGTGTGTTC		GCCATGGCAATGTGTGTTC

SLC06A1 F1 FGTTGGCCCAGGCAGGACSLC06A1 F1 RTCGCAAATATCTTCAATTCCTACSLC06A1 F2 FCGATATTGAGCACTGGATTCSLC06A1 F2 RGGCATATGAGCACTGGATTCSLC06A1 F3 FCCAAACAATATGCCAGGTTCSLC06A1 F3 RGGGTCTGGCATCAATAAAATCSLC06A1 F4 FACCTCACGGCTCCTTGCSLC06A1 F4 RCCTCTTCTGAAAGTTGGGCSLC06A1 F4 RCCTCTTCTGAAAGTTGGGCSLC06A1 F4 RCTCCGCCATACTCCCTCTSLC06A1 F4 RCTCCGCCATACTCCCTCTSLC06A1 F4 RCTCCGCCATACTCCCTCTSLC06A1 F4 RCTCCGCCATACTCCCTCTSLC06A1 F4 RCTCCGGCATACTCCCTCTSLC06A1 F4 RGTTCCTTGAGCCAAGGTTTGSLC06A1 F4 RGTTCCTGAGCCAAGGTTGSLC06A1 2FTTGTAGAGGCCAATAGTACTTCSLC06A1 2RGTTCCTTGAGCCAAGGTTGGTGTGSLC06A1 3FTACTGCACATTTGTTTATGGTTTGTGSLC06A1 4FGCTTGGTTCCCACTTCTGAGSLC06A1 4FGCTTGGTTCCACTTCGAGSLC06A1 4FGCTTGGTTCCACTGTGGTATGSLC06A1 5FCTCTGTTTGATTATGGTTTGTGSLC06A1 6FTTGCCATTTCAGGATAATGGTGTAGSLC06A1 6FTTGCCATTTCAGGAATAGTGTTCSLC06A1 7FGATCATTAGCATTGGTCTGTCSLC06A1 7RCACTATGATGGCAAAGGAAATGTGTACSLC06A1 9FTTTCAATAAGCAAAGGAAAACSLC06A1 9FTTTCAATAAGCATATTTTATGGATCTAGCSLC06A1 10FTTCATTTCAATAATACATAGCAGGCSLC06A1 10FTTCATTTCAATAGCATGAAACSLC06A1 10RTCTGCATTGCCCTTTACTAGCSLC06A1 11FAAAATGATAAGCAAGGCTAACTTGAACAGGSLC06A1 11RCCCTTTCACTCGCTTTGTGSLC06A1 11R		I
SLCOGAT F1R FORMATION CONTRACTOR CONTRACT SLCOGAT F2 F CGATATTICATCTGGCCTGG SLCOGAT F2 R GGCATATGAGCACTGGATTC SLCOGAT F3 F CCAAACAATATGCCAGGTTC SLCOGAT F4 F ACCTCACGGCTCTTGC SLCOGAT F4 F ACCTCACGGCTCCTTGC SLCOGAT F4 R CCTCTTCTGAAAGTTGGGC SLCOGAT F4 R CCTCTCCGCCATACTCCCTC SLCOGAT 1F AGTCCTCCGCCATACTCCCTC SLCOGAT 2F TTGTAGAGGTTAAGGCCTATTTATG SLCOGAT 3F TACTGCACATTGTTTATGTTTG SLCOGAT 3F TACTGCACATTGAGCCAAGGTTTG SLCOGAT 3F TACTGCACATTTGTTTATGTTTG SLCOGAT 4F GCTTGGTTCCCACTTCTGAG SLCOGAT 4F GCTTGGTTCCCACTTCTGAG SLCOGAT 4F GCTTGGTTCCCACTTCTGAG SLCOGAT 4F GCTTGGTTCCACTTCTGAG SLCOGAT 4F GCTTGGTTCCACTTCGAG SLCOGAT 4F GCTCTGTTTGATAAGGCCAATGTGTTG SLCOGAT 4F GCTTGGTTCCACTTCTGAG SLCOGAT 4F GCTCTGTTTGAGCAAGGCCATAGTATGTGTG SLCOGAT 4F GCTCTGTTTGAGCAAGGCCATACT SLCOGAT 5F CTCTGTTTGAGCAAGGAAAAC SLCOGAT 6F TTTGCATTAGCATTGGTTCTGTC SLCOGAT 7F	SLCO6A1 F1 F	GTTGGCCCAGGCAGGAC
SLCOGATT21 GGCATATGAGCACTGGATTC SLCOGA1 F2 R GGCATATGAGCACTGGATTC SLCOGA1 F3 F CCAAACAATATGCCAGGTTC SLCOGA1 F3 R GGGTCTGGCATCAATAAAATC SLCOGA1 F4 F ACCTCACGGCTCCTGC SLCOGA1 F4 R CTCTTCTGAAAGTTGGGC SLCOGA1 F4 R CTCCTCCGACGCCCTC SLCOGA1 F4 R CTCCGCCATACTCCCTCC SLCOGA1 F2 TTGTAGAGGTTAAGGCCTATTTATG SLCOGA1 SF GTTCCTTGAGCCAAGGTTTG SLCOGA1 SF TACTGCACATTGTTTATGTTTG SLCOGA1 SF TACTGCACATTGTTTATGTTTG SLCOGA1 SF TACTGCACATTGTTTTATGTTG SLCOGA1 SF CTCTGTTTGATTAGGTTTGGTG SLCOGA1 4F GCTTGGTTCCACTTCTGAG SLCOGA1 5F CTCTGTTTGATTAGGTTTGGTG SLCOGA1 5F CTCTGTTTGATTAGGTTTTGTG SLCOGA1 6F TTGCCATTCAGGAGAAAC SLCOGA1 6F TTGCCATTAGGTAGAGAAAC SLCOGA1 7R CACTATGATGGCAAAGTGCTC SLCOGA1 7R CACTATGATGAGAAAGGAAATTGTATC SLCOGA1 8F TGTTTAGAGCAAAGGAAATTGCTGTAG SLCOGA1 9F TTTCAATAAGCATTGCTGAG SLCOGA1 9F TTCAATAAGCAAAGGAAAGGAAGAGC SLCOGA1 10F TTCATT	SLCO6A1 F1 R	TCGCAAATATCTTCAATTCCTAC
SLCOGATT21K FUNCTION OF CONTRACTOR OF CO	SLCO6A1 F2 F	CGATATTTCATCTGGCCTGG
SLCOGATTGTFURTHALSLCOGATTGTGGGTCTGGCATCAATAAAATCSLCOGATF4FACCTCACGGCTCCTGCSLCOGATF4RCCTCTTCTGAAAGTTGGGCSLCOGA11FAGTCCTCCGACGCCTCSLCOGA11FCTCCGCCATACTCCCTCCSLCOGA12FTTGTAGAGGTTAAGGCCTATTTATGSLCOGA12FTTGTAGAGGTTAAGGCCAATGTTGSLCOGA13FTACTGCACATTTGTTTATGTTTGSLCOGA13FTACTGCACATTGTTTATGTTGSLCOGA13FTACTGCACATTGTTTATGTTGSLCOGA13FTACTGCACATTGTTTGAGCCAAGGTAGGSLCOGA14FGCTTGGTTCCCACTTCTGAGSLCOGA15FCTCTGTTTGATTATGGTTTTGTGSLCOGA15FCTCTGTTTGATTATGGTTTGTGSLCOGA16FTTTGCCATTCAGGATAATTGSLCOGA16FTTTGCCATTCAGGGTAAGTACTCSLCOGA16FTTGCCATTAGGGTAAGTGCTCSLCOGA17RCACTATGATGGCAAAGTGCTCSLCOGA18FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA19FTTTCAATAAGCATATGCTGTAGSLCOGA19FTTTCAATAAGCAAAGGAAATGTATCSLCOGA19FTTCATTATCAAAAGAGGAAAGCSLCOGA110FTTCATTAGAGCAAAGGAAAGGCSLCOGA110FTCTGCATTGCTACCATGAAACSLCOGA111FAAAATGATTAGCCTTGAACSLCOGA112FTGTGTGTGCATTACATGAAACSLCOGA112RCCCTTTCACTGCCTTTACTAGGSLCOGA113FAATAGCACACCTTGCACTTGGGSLCOGA113FAATAGCACACCTTGCACTTGCACTGGSLCOGA113FAATAGCACACCTTGCACTTGGSLCOGA113FAATAGCACACCTTGCACTTGGSLCOGA113RTCCAAATAGCAACCTTGCACTTGGSLCOGA113RTCCAAATAGCAACCTTGCACTTGCACTGGSLCOGA113RTCCAAATAGCAACCTTGCACTTGCACTTGG<	SLCO6A1 F2 R	GGCATATGAGCACTGGATTC
SLC06A1 F4 FACCTCACGGCTCCTTGCSLC06A1 F4 RCCTCTTCTGAAAGTTGGGCSLC06A1 1FAGTCCTCCGACGCCCTCSLC06A1 1RCTCCGCCATACTCCCTTCSLC06A1 2FTTGTAGAGGTTAAGGCCTATTTATGSLC06A1 2RGTTCCTTGAGCCAAGGTTTGSLC06A1 3FTACTGCACATTTGTTTATGTTTGSLC06A1 3FTACTGCACATTTGTTTATGTTTGSLC06A1 3RTTATCATAAGGGCCAATAGTACTTCSLC06A1 4FGCTTGGTTCCCACTTCTGAGSLC06A1 4FGCTTGGTTCCCACTTCTGAGSLC06A1 5FCTCTGTTTGATTATGGTTTGTGSLC06A1 6FTTGCCATTTCAGGATAGAAACSLC06A1 6FTTGCCATTTCAGGATTAATTGSLC06A1 7FGATCATTAGCATTTGGTCTGTCSLC06A1 7FGATCATTAGCATAGGCAAAGTGCTCSLC06A1 8FTGTTTAGAGCAAAGGAAATTGTATCSLC06A1 8FTGTTTAGAGCAAAGGAAATTGTATCSLC06A1 9FTTTCAATAAGCATATTTATGGATCTCSLC06A1 10FTTCCATTCATAAAGAGAAAGCSLC06A1 10FTCTGCATTTGCTACCATGAAACSLC06A1 10FTCTGCATTTGCTCACATGAAACSLC06A1 11FAAAATGATTAGCCTTGAATCTAGCSLC06A1 12RCAGGTTAAGCCTCCTTTACTCATCSLC06A1 13RTCCAAATAGCAAAGGCAACSLC06A1 13RTCCAAATAGCAAAGGCAAC	SLCO6A1 F3 F	CCAAACAATATGCCAGGTTC
SLCOGA1 F4 RCCTCTTTTGAAAGTTGGGCSLCOGA1 1FAGTCCTCCGACGCCCTCSLCOGA1 1RCTCCGCCATACTCCCTTCSLCOGA1 2FTTGTAGAGGTTAAGGCCTATTTATGSLCOGA1 2RGTTCCTTGAGCCAAGGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTGSLCOGA1 3FTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 5FCTCTGTTTGATTATGGTTGTGSLCOGA1 5FCTCTGTTTGATTATGGTTGTGGSLCOGA1 6FTTGCCATTTCAGGATAATTGSLCOGA1 6FTTGAACCCTTTATGGGTATTTCSLCOGA1 7FGATCATTAGCATTTGGTCTGTCSLCOGA1 7FGATCATTAGCATTGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTGAGGTATGTAGGSLCOGA1 9FTTTCAATAAGCATATTGAAGGAAGGAAGCSLCOGA1 10FTTCCATTCATAAAGAGGAAGAGCSLCOGA1 10FTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGTGCATTACATAGTTAAGGGSLCOGA1 12RCAGGTTAAGCCACCTTGCATTGGSLCOGA1 13FAATAGCACACCTTGCAATGGCAACSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 F3 R	GGGTCTGGCATCAATAAAATC
SLCOGATITERAGTCCTCCGACGCCCTCSLCOGA1 1FAGTCCTCCGACGCCCTCSLCOGA1 2FTTGTAGAGGTTAAGGCCTATTTATGSLCOGA1 2RGTTCCTTGAGCCAAGGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTTGSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 5FCTCTGTTTGATTATGGTTTGTGSLCOGA1 5FCTCTGTTTGATTATGGTTTGTGSLCOGA1 6FTTTGCCATTTCAGGATAATTGSLCOGA1 6FTTGCCATTTCAGGATTAATTGSLCOGA1 7FGATCATTAGCATTTGGTCTGTCSLCOGA1 7FGATCATTAGCATTGGTCTGTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATGATCSLCOGA1 9FTTTCAATAAGCATATTTATGGATCTCSLCOGA1 9FTTTCAATAAGCATATTTATGGAGCAAGGCSLCOGA1 10FTTCATTCAAAGAGGAAAGGCSLCOGA1 10RTCTGCATTGCTCACATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGGCATTACATGTTTAAGAGSLCOGA1 13FAATAGCACACTTGCACTTGGACAAGGCAACSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 F4 F	ACCTCACGGCTCCTTGC
SLCOGA1 IRCTCCGCCATACTCCCTCTCSLCOGA1 2FTTGTAGAGGTTAAGGCCTATTTATGSLCOGA1 2RGTTCCTTGAGCCAAGGTTTGSLCOGA1 3FTACTGCACATTTGTTTTATGTTTGSLCOGA1 3FTACTGCACATTTGTTTTATGTTTGSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTGTTGSLCOGA1 5FCTCTGTTTGATTATGGTTTGTGSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGGTATTGTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9FTTCATTTCAATAAGCATATGCTGTAGSLCOGA1 10FTTCATTTCAAATAATACATAGCAGGCSLCOGA1 10FTCCAATTGCTGCAACATGCAAGGGCSLCOGA1 10FTCGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 13FAATAGCACACCTTGCACTTGAGSLCOGA1 13RTCCAAATAGCAAAGGCCAACSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 F4 R	CCTCTTCTGAAAGTTGGGC
SLCOGA1 1RTTGTAGAGGGTTAAGGCCTATTTATGSLCOGA1 2FTTGTAGAGAGGTTAAGGCCTATTTATGSLCOGA1 2RGTTCCTTGAGCCAAGGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTTGSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6FTTGAACCCTTTATGGGTATTTTCSLCOGA1 6RTTGAACCCTTTATGGGTATTTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGGAAATTGTATCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9FTTCATTTCAAATAATACATAGCAGGCSLCOGA1 10FTTCATTTCAAATAATACATAGCAGGCSLCOGA1 10FTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12RCAGGTTAAGCCTCCTTTACTAAGAGSLCOGA1 13RTCCAAATAGCAAAGGCCAACSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 1F	AGTCCTCCGACGCCCTC
SLOOGAT 21SLCOGA1 2RGTTCCTTGAGCCAAGGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTGSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTGTTGSLCOGA1 5RTAAGAACCATGGTGGAAGAAACSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGTTCTGTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGGAAATTGTATCSLCOGA1 8FTTGCTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTTATGGATCTCSLCOGA1 9FTTTCAATAAGCATATTTATGGAAGCASLCOGA1 10FTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAAACSLCOGA1 12FTGTGTGTGCATTACATGATGTAGGSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 1R	CTCCGCCATACTCCCTCTC
SLCOGA1 2RTACTGCACATTTGTTTATGTTTGSLCOGA1 3FTACTGCACATTTGTTTATGTTTGSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 5RTAAGAACCATGGTGGAAGAAACSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGTATTTCSLCOGA1 6RTTGAACCCTTTATGGTATTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGGAAATTGTATCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8FTTTCCATAGAGCAAAGGAAATGCTCSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9FTTCCATTACATAAGAGGAAGAAGCSLCOGA1 10FTCCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGCATTACATGATTAAGGSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 2F	TTGTAGAGGTTAAGGCCTATTTATG
SLCOGATISTTTATCATAAGGGCCAATAGTACTTCSLCOGA1 3RTTATCATAAGGGCCAATAGTACTTCSLCOGA1 4FGCTTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 5RTAAGAACCATGGTGGAAGAAACSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGGTATTTTCSLCOGA1 6RTTGAACCCTTTATGGGTATTTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8FTTGCCTGAGGAATATGCTGTAGSLCOGA1 9FTTTCAATAAGCATATTTATGGATCTCSLCOGA1 9FTTCCATTACTAAAGAGGAAGAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 2R	GTTCCTTGAGCCAAGGTTTG
SLCOGATISINGETTGGTTCCCACTTCTGAGSLCOGA1 4FGETTGGTTCCCACTTCTGAGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 5RTAAGAACCATGGTGGAAGAAACSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGGTATTTCSLCOGA1 6RTTGAACCCTTTATGGGTATTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTCTAGGATCTCSLCOGA1 9FTTCATTTCAAAAGAGAGAAGAGCSLCOGA1 10FTTCATTTCTAAATAACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 3F	TACTGCACATTTGTTTATGTTTG
SLCOGAT 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 4RTGAATAAAGCCAGTGTGGTATGSLCOGA1 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGA1 5RTAAGAACCATGGTGGAAGAAACSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGGTATTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9FTTTCAATAAGCATATTTATGGATCTCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10FTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12RCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 3R	TTATCATAAGGGCCAATAGTACTTC
SLCOGAT 4RREFORMENCESLCOGAT 5FCTCTGTTTGATTATGGTTTTGTTGSLCOGAT 5RTAAGAACCATGGTGGAAGAAACSLCOGAT 6FTTTGCCATTTCAGGATTAATTGSLCOGAT 6RTTGAACCCTTTATGGGTATTTCSLCOGAT 7FGATCATTAGCATTTGGTTCTGTCSLCOGAT 7RCACTATGATGGCAAAGTGCTCSLCOGAT 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGAT 8FTTGCCTGAGGAATATGCTGTAGSLCOGAT 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGAT 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGAT 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGAT 10FTCTGCATTTGCTACCATGAAACSLCOGAT 11FAAAATGATTAGCCTTGAATCTAGCSLCOGAT 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGAT 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGAT 13FAATAGCACACCTTGCACTTGGSLCOGAT 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 4F	GCTTGGTTCCCACTTCTGAG
SLCOGAT SITAAGAACCATGGTGGAAGAAACSLCO6A1 5RTTAAGAACCATGGTGGAAGAAACSLCO6A1 6FTTTGCCATTTCAGGATTAATTGSLCO6A1 6RTTGAACCCTTTATGGGTATTTTCSLCO6A1 7FGATCATTAGCATTTGGTTCTGTCSLCO6A1 7RCACTATGATGGCAAAGTGCTCSLCO6A1 7RCACTATGATGGCAAAGGAAATTGTATCSLCO6A1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCO6A1 8RTTGCCTGAGGAATATGCTGTAGSLCO6A1 9FTTTCAATAAGCATATTTTATGGATCTCSLCO6A1 9FTTCATTTCTAAATAATACATAGCAGGCSLCO6A1 10FTTCATTTCTAAATAATACATAGCAGGCSLCO6A1 10RTCTGCATTTGCTACCATGAAACSLCO6A1 11FAAAATGATTAGCCTTGAATCTAGCSLCO6A1 12FTGTGTGTGCATTACATGTTTAAGAGSLCO6A1 13FAATAGCACACCTTGCACTTGGSLCO6A1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 4R	TGAATAAAGCCAGTGTGGTATG
SLCOGAT SRARTIGUE ACCOUNT OF CONSTRUCTIONSLCOGA1 6FTTTGCCATTTCAGGATTAATTGSLCOGA1 6RTTGAACCCTTTATGGGTATTTTCSLCOGA1 7FGATCATTAGCATTTGGTTCTGTCSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8RTTGCCTGAGGAATATGCTGTAGSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9FGAACATTTCACTAAAGAGGAAGAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12RCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 5F	CTCTGTTTGATTATGGTTTTGTTG
SLCOGAT GITTGAACCCTTTATGGGTATTTCSLCO6A1 6RTTGAACCCTTTATGGGTATTTCSLCO6A1 7FGATCATTAGCATTTGGTTCTGTCSLCO6A1 7RCACTATGATGGCAAAGTGCTCSLCO6A1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCO6A1 8RTTGCCTGAGGAATATGCTGTAGSLCO6A1 9FTTTCAATAAGCATATTTTATGGATCTCSLCO6A1 9FGAACATTTCACTAAAGAGGAAGAGCSLCO6A1 10FTTCATTTCTAAATAATACATAGCAGGCSLCO6A1 10RTCTGCATTTGCTACCATGAAACSLCO6A1 11FAAAATGATTAGCCTTGAATCTAGCSLCO6A1 12FTGTGTGTGCATTACATGTTTAAGAGSLCO6A1 12RCAGGTTAAGCCTCCTTTACTCATCSLCO6A1 13FAATAGCACACCTTGCACTTGGSLCO6A1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 5R	TAAGAACCATGGTGGAAGAAAC
SLOODATIONGATCATTAGCATTTGGTTCTGTCSLCO6A1 7FGATCATTAGCATTTGGTTCTGTCSLCO6A1 7RCACTATGATGGCAAAGTGCTCSLCO6A1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCO6A1 8RTTGCCTGAGGAATATGCTGTAGSLCO6A1 9FTTTCAATAAGCATATTTTATGGATCTCSLCO6A1 9FGAACATTTCACTAAAGAGGAAGAAGCSLCO6A1 10FTTCATTTCTAAATAATACATAGCAGGCSLCO6A1 10RTCTGCATTTGCTACCATGAAACSLCO6A1 11FAAAATGATTAGCCTTGAATCTAGCSLCO6A1 11RCCCTTTCACTCGCTTTGTGSLCO6A1 12FTGTGTGTGCATTACATGTTTAAGAGSLCO6A1 13FAATAGCACACCTTGCACTTGGSLCO6A1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 6F	TTTGCCATTTCAGGATTAATTG
SLCOGAT IIDistributionSLCOGA1 7RCACTATGATGGCAAAGTGCTCSLCOGA1 8FTGTTTAGAGCAAAGGAAATTGTATCSLCOGA1 8RTTGCCTGAGGAATATGCTGTAGSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9RGAACATTTCACTAAAGAGGAAGAAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10FTCTGCATTTGCTACCATGAAACSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 11RCCCTTTCACTCGCTTTGTGSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 6R	TTGAACCCTTTATGGGTATTTTC
SLCOGATTARTATAGAGCAAAGGAAAGGAAATTGTATCSLCOGA1 8FTTGCCTGAGGAATATGCTGTAGSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9RGAACATTTCACTAAAGAGGAAGAAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 11RCCCTTTCACTCGCTTTGTGSLCOGA1 12FTGTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12RCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 7F	GATCATTAGCATTTGGTTCTGTC
SLCOGAT 3FTOTALIGUTATION ACTION A	SLCO6A1 7R	CACTATGATGGCAAAGTGCTC
SLCOGAT GRTHEOREMANDER CARACTERSLCOGA1 9FTTTCAATAAGCATATTTTATGGATCTCSLCOGA1 9RGAACATTTCACTAAAGAGGAAGAAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 11FCCCTTTCACTCGCTTTGTGSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12FCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13FTCCAAATAGCAAAGGCCAACSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 8F	TGTTTAGAGCAAAGGAAATTGTATC
SLCOGAT 31GAACATTTCACTAAAGAGGAAGAAGCSLCOGA1 9RGAACATTTCACTAAAGAGGGAAGAAGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 11RCCCTTTCACTCGCTTTGTGSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12RCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 8R	TTGCCTGAGGAATATGCTGTAG
SLCOGAT SIXTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10FTTCATTTCTAAATAATACATAGCAGGCSLCOGA1 10RTCTGCATTTGCTACCATGAAACSLCOGA1 11FAAAATGATTAGCCTTGAATCTAGCSLCOGA1 11RCCCTTTCACTCGCTTTGTGSLCOGA1 12FTGTGTGTGCATTACATGTTTAAGAGSLCOGA1 12RCAGGTTAAGCCTCCTTTACTCATCSLCOGA1 13FAATAGCACACCTTGCACTTGGSLCOGA1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 9F	TTTCAATAAGCATATTTTATGGATCTC
SLCOGAT 101TCTGCATTTGCTACCATGAAACSLCO6A1 10RTCTGCATTTGCTACCATGAAACSLCO6A1 11FAAAATGATTAGCCTTGAATCTAGCSLCO6A1 11RCCCTTTCACTCGCTTTGTGSLCO6A1 12FTGTGTGTGCATTACATGTTTAAGAGSLCO6A1 12RCAGGTTAAGCCTCCTTTACTCATCSLCO6A1 13FAATAGCACACCTTGCACTTGGSLCO6A1 13RTCCAAATAGCAAAGGCCAAC	SLCO6A1 9R	GAACATTTCACTAAAGAGGAAGAAGC
SLCOGAT TOR AAAATGATTAGCCTTGAATCTAGC SLCOGAT 11F AAAATGATTAGCCTTGAATCTAGC SLCOGAT 11R CCCTTTCACTCGCTTTGTG SLCOGAT 12F TGTGTGTGCATTACATGTTTAAGAG SLCOGAT 12R CAGGTTAAGCCTCCTTTACTCATC SLCOGAT 13F AATAGCACACCTTGCACTTGG SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 10F	TTCATTTCTAAATAATACATAGCAGGC
SLCOGAT TIT CCCTTTCACTCGCTTTGTG SLCOGAT 11R CCCTTTCACTCGCTTTGTG SLCOGAT 12F TGTGTGTGCATTACATGTTTAAGAG SLCOGAT 12R CAGGTTAAGCCTCCTTTACTCATC SLCOGAT 13F AATAGCACACCTTGCACTTGG SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 10R	TCTGCATTTGCTACCATGAAAC
SLCOGAT 12F TGTGTGTGCATTACATGTTTAAGAG SLCOGAT 12R CAGGTTAAGCCTCCTTTACTCATC SLCOGAT 13F AATAGCACACCTTGCACTTGG SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 11F	AAAATGATTAGCCTTGAATCTAGC
SLCOGAT 12R CAGGTTAAGCCTCCTTTACTCATC SLCOGAT 13F AATAGCACACCTTGCACTTGG SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 11R	CCCTTTCACTCGCTTTGTG
SLCOGAT 12R AATAGCACACCTTGCACTTGG SLCOGAT 13F TCCAAATAGCAAAGGCCAAC SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 12F	TGTGTGTGCATTACATGTTTAAGAG
SLCOGAT 13R TCCAAATAGCAAAGGCCAAC	SLCO6A1 12R	CAGGTTAAGCCTCCTTTACTCATC
	SLCO6A1 13F	AATAGCACACCTTGCACTTGG
LIX1 EX1 F GCAAGAATTCAGGCATGAGG	SLCO6A1 13R	TCCAAATAGCAAAGGCCAAC
	LIX1 EX1 F	GCAAGAATTCAGGCATGAGG

LIX1 EX1 RGGATGTGACTTGACGTTTAGGACLIX1 EX2 FTTCACAGCTAAAAGCCCCTCLIX1 EX2 RTCCTTTCTGGTTGTTTTCATTCLIX1 EX3 FTGATGCAGGAGTGGAATGGLIX1 EX3 RAACATCTCTCAAGATTCAAATGCLIX1 EX4 FTCTACTGGAGACTTGGTTGTGAACLIX1 EX4 FCAAAAGATTATTGGGTCGGGLIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCGCAGGGTTTTGATAGACAAG
LIXT EX2 TTROUGHOUSE COULDLIXT EX2 RTCCTTTCTGGTTGTTTTCATTCLIXT EX3 FTGATGCAGGAGTGGAATGGLIXT EX3 RAACATCTCTCAAGATTCAAATGCLIXT EX4 FTCTACTGGAGACTTGGTTGTGAACLIXT EX4 FCAAAAGATTATTGGGTCGGGLIXT EX4 RCAAAAGATTATTGGGTCGGGLIXT EX5 FCTGCTCAGCTCTCACCAATGLIXT EX5 RTGGGAAGATGATAAGCCACCLIXT EX5 RTGGGAAGATGATAAGCCACCLIXT EX6 FACGGGTGCCTTTGTTGCLIXT EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIXT EX2 IXTGATGCAGGAGTGGAATGGLIX1 EX3 FTGATGCAGGAGTGGAATGGLIX1 EX3 RAACATCTCTCAAGATTCAAATGCLIX1 EX4 FTCTACTGGAGACTTGGTTGTGAACLIX1 EX4 RCAAAAGATTATTGGGTCGGGLIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIXT EX3TAACATCTCTCAAGATTCAAATGCLIX1 EX3 RAACATCTCTCTCAAGATTCAAATGCLIX1 EX4 FTCTACTGGAGACTTGGTTGTGAACLIX1 EX4 RCAAAAGATTATTGGGTCGGGLIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIXT EXSTRTCTACTGGAGACTTGGTTGTGAACLIX1 EX4 FTCTACTGGAGACTTGGTTGTGAACLIX1 EX4 RCAAAAGATTATTGGGTCGGGLIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIXT EX4 RCAAAAGATTATTGGGTCGGGLIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIX1 EX5 FCTGCTCAGCTCTCACCAATGLIX1 EX5 FTGGGAAGATGATAAGCCACCLIX1 EX5 RTGGGAAGATGATAAGCCACCLIX1 EX6 FACGGGTGCCTTTGTTGCLIX1 EX6 RGCCTCTGAGGACCTCTGCACRIOK2 EX1 FAATAACGACCTGCCTTACGCRIOK2 EX1 RCTTGCAGGAACAGGAAGAGG
LIXT EX5 R TGGGAAGATGATAAGCCACC LIX1 EX5 R ACGGGTGCCTTTGTTGC LIX1 EX6 F ACGGGTGCCTTTGTTGC LIX1 EX6 R GCCTCTGAGGACCTCTGCAC RIOK2 EX1 F AATAACGACCTGCCTTACGC RIOK2 EX1 R CTTGCAGGAACAGGAAGAGG
LIXT EX6 F ACGGGTGCCTTTGTTGC LIX1 EX6 R GCCTCTGAGGACCTCTGCAC RIOK2 EX1 F AATAACGACCTGCCTTACGC RIOK2 EX1 R CTTGCAGGAACAGGAAGAGG
LIX1 EX6 R GCCTCTGAGGACCTCTGCAC RIOK2 EX1 F AATAACGACCTGCCTTACGC RIOK2 EX1 R CTTGCAGGAACAGGAAGAGG
RIOK2 EX1 F AATAACGACCTGCCTTACGC RIOK2 EX1 R CTTGCAGGAACAGGAAGAGG
RIOK2 EX1 R CTTGCAGGAACAGGAAGAGG
RIOK2 EX2 F CGCAGGGTTTTGATAGACAAG
RIOK2 EX2 R TTGGAACACTTGCTCTGGTG
RIOK2 EX3 F AAATCTTTCTTATGACTTGAACTTACG
RIOK2 EX3 R AAGAGGAAAGGTTTCTGAAGGG
RIOK2 EX4 F TGTTTTAACTGATTGGAATAAACG
RIOK2 EX4 R GCCTTTGAGACACATGTATTATTTG
RIOK2 EX5 F TGTGGCTAATTCTACGCAGTG
RIOK2 EX5 R TCATATTGTCAGAATGAAACTGGG
RIOK2 EX6 F GCATACATACTTTCGTTAAAACCG
RIOK2 EX6 R GCAACAAGCAAAACTCCG
RIOK2 EX7 F AAGGAGGAGCAATACCATTAACC
RIOK2 EX7 R CAGAGCAATGACATCTAACAGTG
RIOK2 EX8_1 F TGACAGCCAGCATATACCTTTC
RIOK2 EX8_1 R TCTGACCATCTTGCCTGTTG
RIOK2 EX8_2 F AAGAATCAGAGGGCTGCTATTG
RIOK2 EX8_2 R TTTCATTTTATACATCAAGGTGGC
RIOK2 EX9 F AGATGAATTGTGGGGAGGTG
RIOK2 EX9 R TAATGGTGGCAGGACACAAC
RIOK2 EX10 F GGACACTAGGTGGCACTATGG
RIOK2 EX10 R AATGGACTGCTTTGGCAGG
FLJ35946 EXON1F TTTCAGCCAATCACATCTGC
FLJ35946 EXON1R AGGGCGGTATCAAGTGTCTC

ГТ	
FLJ35946 EXON2F	TTTCCACTCGTGACTTTCTATGA
FLJ35946 EXON2R	TGCAGCAATAAAAAGTGAATTG
FLJ35946 EXON3F	CACATCCACCCTGTTTCTTG
FLJ35946 EXON3R	GGCTCAGGAAATGAAACTGC
LOC441066 X1F	ATTCCCGTTTGTGTGACCC
LOC441066 X1R	AAGCCAGGGCTACCAGATG
LOC441066 X2F	GGTCTTCCTGCTGTAGGGC
LOC441066 X2R	GGAAGGCTAAAGTGGAAGGTG
LOC441066 X3F	GGGTGGTTCTCCAGGGTC
LOC441066 X3R	GGCAGATTCCAGGAAGGAC
LOC728104 EX1 F(2)	GGAGGAACCGGTGCTCAGAGA
LOC728104 EX1 R(2)	GATCTCGGATAGCACACGTCC
LOC728104 EXON2F	TTTTGGTTTTCTTCCCCTCA
LOC728104 EXON2R	CAGAGAGGGTCAAATCATTGAA
LOC728104 EXON3F	GGGGTAATAAGGTGGTTGAAAA
LOC728104 EXON3R	GCAAATGCAGACCCTGAGAT
TMEM157 EXON1F	CCACCGCGCCTATGGTCCC
TMEM157 EXON1R	GGGAAGGGGGAAAGGGTCAC
TMEM157 EXON2F	CCTAGGTGGTAAATTTGTTGC
TMEM157 EXON2R	CAGAACTGAAGAAACTGTGTTGG
TMEM157 EXON3F	CCTTCCCCTCCAAATCTTTC
TMEM157 EXON3R	CCCCCCAACATTGATATAG
ST8SIA4 EXON1F	CGCGACTATCTCCCCAAAACG
ST8SIA4 EXON1R	CTAACCATCACTCTACCCTC
ST8SIA4 EXON2F	GTATTTCCTTCTAACTTGTAGGG
ST8SIA4 EXON2R	CCAGTGTTGAATACAAGTTTGCC
ST8SIA4 EXON3F	CCACCTAAGATTCATAGCTTACC
ST8SIA4 EXON3R	CTAACAGTTTTCCACCCCC
ST8SIA4 EXON4F	GCACGTGCGGAGACTTATTG
ST8SIA4 EXON4R	CGGAAACATATATCCATTTGGAG
ST8SIA4 EXON5F	GATACCTTTTAAGTTTTCTGC
ST8SIA4 EXON5R	GATGCTGAAACCCAGCCGTG
PAM X1F	ATGAAGTAGCGGCTGCTGG
PAM X1R	CAAAGAACATCAACCCCGTC
	TCATAGAATTCCTTTCTTTCCCC

PAM X3FTTTTACAGTCATAGAAGCCACGPAM X3FTTTTACAGTCATAGAAGCCATCGPAM X3RATTTCAAATCACTGCCTCCPAM X4FCTTTGGTGCACAGAAGTGTAACPAM X4FTTTGCACTTGTAAAACACATTTTCPAM X5FACCATGGGGAGCAATTTATGPAM X5FCACTGTCAACACTGGTTAGAAAGGPAM X5RCACTGTCAACACTGGTAGAAAGGPAM X5RCACTGTCAACACTGGTAGAAAGGPAM X5RCACTGTCAACACTGGTAGAAAGGPAM X6FGAGGGTGGGGCAATTCPAM X6RGAAGCATACAGATGAAACATAACTTGPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTAGAGTCGCCTTCPAM X8FGGAAACATTAACCACTGGCPAM X8FTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCTTGGAAGGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18RGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTGTGTGGGCTTGPAM X22FAGTGGTTTGATTGAACACATAGPAM X22FAGTGGTTTGATTGAACACATAGPAM X22FAGTGGTTTGTATGAACATAGPAM X23FTTGATTGACTGGGTAGGGTGPAM X24FGAAGATGTGCTGTGTGAACACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24FCAAGATGTGCTTGTGAACATTGPAM X24FCAAGATGGCTGCTTGTGAACGGTG <th></th> <th>TOOOTAOOTTTAAAOAA</th>		TOOOTAOOTTTAAAOAA
PAM X3RATTTCAAATCACTGCCCTCCPAM X4FCTTTGGTGCACAGAAGTGTAACPAM X4RTTTGCACTTGTAAAACACATTTTCPAM X5FACCATGGGGAGCAATTTATGPAM X5FCACTGTCAACACTGGTTAGAAAGGPAM X5RCACTGTCAACACTGGTAGAAAGGPAM X6RGAGGGTGTGGGCAATTCPAM X6RGAAGGTTAACTCCATTTAGATGCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTAGAGTCTGCCTTCPAM X8FGGAACCATTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGGGCPAM X17FTTCTGTCACATATGCTTGAAAGTGPAM X17FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTGTGTGGGCCTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTGCAATCAAAGCPAM X22RTTTTAAGTGCAATCAAGGGCPAM X23RGGGGCAATATTGGACACTAGGTTGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTGTGTGACTTGCPAM X24RAAGACATGTGCTTGTGACTTGPAM X24FCATTCCCATCCCCACCTTC	PAM X2R	TGCCTACGTTTAAAGAAGTTCC
PAM X4FCTTTGGTGCACAGAAGTGTAACPAM X4RTTTGCACTTGTAAAACACATTTTCPAM X5FACCATGGGGAGCAATTATGPAM X5FACCATGGCAACACTGGTTAGAAAGGPAM X5RCACTGTCAACACTGGTTAGAAAGGPAM X6FTTTGAGATTAACTCCATTTAGATGCPAM X6RGAGGGTGTGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTAGAGTCGCCTTCPAM X8FGGAACCATTTAGAGTCGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGGGCPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTGGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTGTGTGGGAATCAAACPAM X22FAGTGGTTTGCAATGAACACACTAACGPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTGACTGGGTAGGGGPAM X23FTTGATTGACTGGCATGGGTTGPAM X24FGAAGCATGTGCCTGCCACCTTCPAM X24FCAAACTGCCCACCCTCPAM X25FCTTTCCCATCCCACCTTC	PAM X3F	
PAM X4RTITIGCACTIGITAAAACACATITICPAM X4RTITIGCACTIGITAAAACACATITICPAM X5FACCATGGGGAGCAATTTAGPAM X5FCACTGICAACACTGGTTAGAAAGGPAM X6RGAGGGTGTGGGCAATTCPAM X6RGAGGGTGTGGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTICCCACTCTAAGTTCGCPAM X8FGGAAACCATTAGAGTCTGCCTTCPAM X8FGGAAACATATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X14RCCCTTCAGGTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGGAAGGPAM X17FCCAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTTGTTGTGGGACTTGCPAM X22FAGTGGTTTGATTGAACCTTTTCCPAM X22FAGTGGTTTGATTGAACATCAAACCPAM X22FTTGATTGACTGGGTAGGAGGPAM X22FGGGGCAATATTTGGAACATAGPAM X22FGGGGCAATATTTGGAACATAGPAM X22FCTTTCCCATCCCCACCTTCPAM X24RAAGACATGTGCTTGTGACTTGGPAM X25FCTTTCCCATCCCCACCTTC	PAM X3R	
PAM XSFACCATGGGGAGCAATTTATGPAM XSFACCATGGGAAGCACTGGTTAGAAAGGPAM XSRCACTGTCAACACTGGTTAGAAAGGPAM X6FTTTGAGATTAACTCCATTTAGATGCPAM X6RGAGGGTGTGGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X14RCCCTTCAGGTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTGTGTGGGATTGGPAM X22FAGTGGTTTGATTGAACTCTTTCCPAM X22FAGTGGTTGGCAATATTTGGAACATCAAACPAM X22FTTGATTGACTGGGTAGGGGPAM X22FGGGGCAATATTTGGAACATCAAGGGCPAM X22FTTGATTGACTGGGTAGGGGGPAM X22FGGGGCAATATTTGGAACATAGPAM X22FCTTTCCCATCCCCACCTTCPAM X24RAAGACATGTGCTTGTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X4F	CTTTGGTGCACAGAAGTGTAAC
PAM X5RCACTGTCAACACTGGTTAGAAAGGPAM X5RCACTGTCAACACTGGTTAGAAAGGPAM X6FTTTGAGATTAACTCCATTTTAGATGCPAM X6RGAGGGTGGGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGGGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTTGTGTGGGCTTTGPAM X22FAGTGGTTTGTATAGACATCAAACPAM X22FAGTGGTTTGAATCAAACCAACAAACPAM X22FAGTGGTTTGAATCAAAGGGCPAM X23FTTGATTTGAATGGAACAACAAAGPAM X23FTTGATTTGAATGGATGAGGGGPAM X24FGAAGTTGAGTGCTTGTTGAACTTGGPAM X24FCAAAACTGCCATCACCTTCPAM X24FCTTTCCCATCCCCACCTTC	PAM X4R	TTTGCACTTGTAAAACACATTTTC
PAM X6RDifferencePAM X6FTITGAGATTAACTCCATTITAGATGCPAM X6RGAGGGTGTGGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGAGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCCTCCAATTGCTGGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19RGAACTCCCATCAACCACAACACACAACAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTTGTGTGGGCTTTGPAM X22FAGTGGTTTGAAACACAATCAAACPAM X22FAGTGGTTTGAATTGAACAACAACAACAACAACAACAACAACAACAACAACAAC	PAM X5F	ACCATGGGGAGCAATTTATG
PAM X01PAM X03PAM X6RGAGGGTGTGGGCAATTCPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCTGGCTCPAM X20FGCCAATTGTAGAGCACAACACACAACAGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTGTTGTGGGCTTTGPAM X22FAGTGGTTTGTATTGAACCAAACCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTGACTGGGTAGGGGPAM X23FGGGGCAATATTTGGAACATGAPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTCCCCACCTTCPAM X25FCTTTCCCATCCCCACCTTC	PAM X5R	CACTGTCAACACTGGTTAGAAAGG
PAM X0RDADAGEPAM X7FGAACCATACAGATGAAACATAACTTGPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTGACTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X6F	TTTGAGATTAACTCCATTTTAGATGC
PAM X11DistributionPAM X7RAAACTTCCCACTCTAAGTTCGCPAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8RTGGAAAAGTAATAAAACCACTGGCPAM X9-10FAACCTCAGTCCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTACAPAM X21FTTGTTTGTTGTGGGCTTTGPAM X22FAGTGGTTGTATTGAACAACAAACPAM X22RTTTTAAGTTGCAATCAAGGCPAM X23RGGGGCAATATTTGGAACATAGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X25FCTTTCCCATCCCCACCTTCPAM X25FCTTTCCCATCCCCACCTTC	PAM X6R	GAGGGTGTGGGCAATTC
PAM X8FGGAACCATTTAGAGTCTGCCTTCPAM X8FTGGAAAAGTAATAAACCACTGGCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17FCTCCAATTGCTGTGAAAGTGPAM X18FCTCCAATTGCTGTGAAAGTGPAM X18FCCTTATCTTTCCCCTGGCTCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTGTGTGGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24FCAAGCTGCCTGCTGTGACTTGGPAM X24FCTTTCCCATCCCACCTTC	PAM X7F	GAACCATACAGATGAAACATAACTTG
PAM X8RTGGAAAAGTAATAAACCACTGGCPAM X8RTGGAAAAGTAATAAACCACTGGCPAM X9-10FAACCTCAGTCCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCTGGCTCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACACAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24FCAAGCTGCCTTGTTGACTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X7R	AAACTTCCCACTCTAAGTTCGC
PAM X0RPACTOR CONStructionPAMX9-10FAACCTCAGTCCCTAGCATCTTGPAM X9-10RCAGCTCAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCCTTATCTTTCCCCTGGCTCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACACAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCAAACCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24FCAAGCTGTGCTTGTTGACTTGGPAM X24FCAAGCATGTGCTTGTTGACTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X8F	GGAACCATTTAGAGTCTGCCTTC
PAMX9-10RPAGGOTGAGTTATACAGTTAAGGCAGPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18RGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19FCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22FAGTGGTTTGAATCAAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X8R	TGGAAAAGTAATAAACCACTGGC
PAM X3FLORENDERSTRATEGISTICPAM X14FTCCTATGCTTAAAAGTCTGAGTGCPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19FCCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22FAGTGGTTTGTATTGAACTCAAGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23FGGGGCAATATTTGGAACATAGPAM X23FGAGGTGAGTGGATGGGTTGPAM X23FCTTGATTGAGTGCATGGGTTGPAM X23FCTTGATTGAGTGCATGGGTTGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24FCTTTCCCATCCCCACCTTCPAM X25FCTTTCCCATCCCCACCTTC	PAMX9-10F	AACCTCAGTCCCTAGCATCTTG
PAM X14RPAGENTIC CONTROLOTION OF CONTROLPAM X14RCCCTTCAGGTTTTGCTAACGPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTGTTGTGGGGCTTTGPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X9-10R	CAGCTCAGTTATACAGTTAAGGCAG
PAM X14RDecrementationPAM X17FTTCTGTCACATATGCCTTGAGAGPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18RGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X14F	TCCTATGCTTAAAAGTCTGAGTGC
PAM X171PADAGEGRATIC ConstructionPAM X17RAAAACCCATACAACTCCAGAGCPAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18RGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X14R	CCCTTCAGGTTTTGCTAACG
PAM X18FCTCCAATTGCTTGTGAAAGTGPAM X18FGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X17F	TTCTGTCACATATGCCTTGAGAG
PAM X18RGAGTGTTGGCCAATATTTAGTTCCPAM X19FCCTTATCTTTCCCCTGGCTCPAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X25FCTTTCCCATCCCACCTTC	PAM X17R	AAAACCCATACAACTCCAGAGC
PAM X19RCCTTATCTTTCCCCTGGCTCPAM X19FCCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X18F	CTCCAATTGCTTGTGAAAGTG
PAM X19RCAAAACTGAGTTAGAACACACTAACAGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X18R	GAGTGTTGGCCAATATTTAGTTCC
PAM X13RGCCAATTGTAGGGACCAGGPAM X20FGCCAATTGTAGGGACCAGGPAM X20RAACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X19F	CCTTATCTTTCCCCTGGCTC
PAM X201AACACTCCCATCAACCTTGCPAM X21FTTGTTTTGTTGTGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X19R	CAAAACTGAGTTAGAACACACTAACAG
PAM X20RTTGTTTTGTTGTGGGCTTTGPAM X21FTTGTTTTGTTGTGGGGCTTTGPAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X20F	GCCAATTGTAGGGACCAGG
PAM X21RTCATATGCTTTTAAGCAATCAAACPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X20R	AACACTCCCATCAACCTTGC
PAM X21RAGTGGTTTGTATTGAACTCTTTCCPAM X22FAGTGGTTTGTATTGAACTCTTTCCPAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X21F	TTGTTTTGTTGTGGGCTTTG
PAM X22RTTTTAAGTTGCAATCAAGGGCPAM X23FTTGATTTGACTGGGTAGGGGPAM X23RGGGGCAATATTTGGAACATAGPAM X24FGAAGTTGAGTGCATGGGTTGPAM X24RAAGACATGTGCTTGTTGACTTTGPAM X25FCTTTCCCATCCCCACCTTC	PAM X21R	TCATATGCTTTTAAGCAATCAAAC
PAM X23R TTGATTTGACTGGGTAGGGG PAM X23R GGGGCAATATTTGGAACATAG PAM X24F GAAGTTGAGTGCATGGGTTG PAM X24R AAGACATGTGCTTGTTGACTTTG PAM X25F CTTTCCCATCCCCACCTTC	PAM X22F	AGTGGTTTGTATTGAACTCTTTCC
PAM X23R GGGGCAATATTTGGAACATAG PAM X24F GAAGTTGAGTGCATGGGTTG PAM X24R AAGACATGTGCTTGTTGACTTTG PAM X25F CTTTCCCATCCCCACCTTC	PAM X22R	TTTTAAGTTGCAATCAAGGGC
PAM X24F GAAGTTGAGTGCATGGGTTG PAM X24F AAGACATGTGCTTGTTGACTTTG PAM X24R AAGACATGTGCTTGTTGACTTTG PAM X25F CTTTCCCATCCCCACCTTC	PAM X23F	TTGATTTGACTGGGTAGGGG
PAM X24R AAGACATGTGCTTGTTGACTTTG PAM X25F CTTTCCCATCCCCACCTTC	PAM X23R	GGGGCAATATTTGGAACATAG
PAM X25F CTTTCCCATCCCACCTTC	PAM X24F	GAAGTTGAGTGCATGGGTTG
	PAM X24R	AAGACATGTGCTTGTTGACTTTG
	PAM X25F	CTTTCCCATCCCCACCTTC
PAM X25F GGAAAGGAATCTGACATTCTGG	PAM X25F	GGAAAGGAATCTGACATTCTGG

LOC134505 X1FGAGGACACCGTGCCAGTCLOC134505 X1RTCCAGCAGGTCCTTGAGATACLOC134505 X2FCCCGTGTAAGTGCATGATTGLOC 134505 X2RAAAGGACTCAACTTACCCATCAGFLJ20125 EXON2FAATTCTGGGAATTCTCGGTTCFLJ20125 EXON2RTCCACAAGGAAGAATGTGGGFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3FTGGTTTAAAGAGAAGGCCATGATACCFLJ20125 EXON3FTCCAGAAGTTCCCCTCAAAACFLJ20125 EXON4FTCCAGAAGTTTCCTCTCAAAACFLJ20125 EXON5FCTTGGGATTTGCACCTGCFLJ20125 EXON5FCCTGGGATTTGCACCCCCFLJ20125 X5-6FCCGAGATTTGCATCTCCACCFLJ20125 X7FATTCTCATTATTGCATTACCTTCFLJ20125 X7FATTCTCATTATTGCATTACCTTCFLJ20125 X8F (201)CTTGGGATTTGTCCTCACFLJ20125 X8F (201)CTTGGGATTGCAAATGAAGGGCHISPPD1EXON 1 FCATATGTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGTGAGTTAATGHISPPD1EXON 2 RGTCCATGAAAGTGAGATAGCTGHISPPD1EXON 3 FCTTTTATGGAGGTGCAATCHISPPD1EXON 4 RTGTAAGAATGGGGCAAAGGHISPPD1EXON 5 FCCTCCGATAATAATGTGCAAAGHISPPD1EXON 5 RAAATGATGCCATGCTTTCTAACHISPPD1EXON 5 RAAATGATGCCATGCTTTCTAACHISPPD1EXON 5 RAAATGATGCCATGCTTTCTAACHISPPD1FXON 5 RAAATGATGCCATGCTTTCTAACHISPPD1FXON 5 RAAATGATGCCATGCTTTCTAACHISPPD1FXON 5 RAAATGATGCCATGCTTTCCAAAGGGGHISPPD1FXON 5 RAAATGATGCCATGCTTTCCAAAGGGGHISPPD1FXON 5 RAAATGATGCCATGCTTTCCAAAGGGGHISPPD1FXANG 7GGCACCATAGCGAAGACTATGTAGGC<		
LOC134505 X2FCCCGTGTAAGTGCATGATTGLOC134505 X2RAAAGGACTCAACTTACCCATCAGFLJ20125 EXON2FAATTCTGGGAATTCTCGGTTCFLJ20125 EXON2FTCCACAAGGAAGAATGTGGGFLJ20125 EXON2RTCCACAAGGAAGAATGTGGGFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3FTGGTTTAAAGAGAAGGCCACTGGFLJ20125 EXON4FTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXON4FTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXON5FCTTGGGATTTGCCACCGCFLJ20125 EXON5FCTTGGGATTTGCCACTGCFLJ20125 X5-6FCCGAGATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTACCTTCFLJ20125 X7FATTCTCATTATTTGCATTACCTTCFLJ20125 X8F (201)CTTGGGATTTTGTCAAATGTGGCHISPPD1EXON 1 FCATATGTTGTCAAATGAGGGGAAAAGGHISPPD1EXON 2 RGTCCATGAAAGTGAGAAGCAACTGAHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 4 FGGCTTTTAATGCTAGGTAATGHISPPD1EXON 5 FCCTCGATAATAGTGGGCCAAAGHISPPD1EXON 4 FGGCTTTTAATGCTAGGTAATGHISPPD1EXON 5 FCCTCGATAATAATGGTGCCHISPPD1EXON 6 FCCTCGATAATAATGGGTGCCAAAAGHISPPD1EXON 7 FGTAAGAAGGGGAAGATCATGTAGGHISPPD1EXON 7 FGCTTTTAATGCTCAGGGHISPPD1EXON 8 RAAATGATGCCATGCTTTCTAACHISPPD1EXON 9 FCCTCGATAATAATGGGTGCCAAAGGHISPPD1EXON 7 FGCCTCGATAATAATGGGTGCCAAAGGHISPPD1EXON 7 FCCTCCGATAATAATGGGTGCCAAAGGHISPPD1EXON 8 RAAATGATGCCATGCTTTCTAACHISPPD1EXON 7 FCCTCGATAATAATGGGTGCCAAAGGHISPPD1 FRAG2 FGATTGAAGGGGAA	LOC134505 X1F	GAGGACACCGTGCCAGTC
LOC 134505 X2RAAAGGACTCAACTTACCCATCAGFLJ20125 EXON2FAATTCTGGGAATTCTCGGTTCFLJ20125 EXON2RTCCACAAGGAAGAATGTGGGFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3RGAGAGGTGATACCCAGAATAAATCFLJ20125 EXON3RGAGAGGTGATACCCAGAATAAATCFLJ20125 EXON4FTCCAGAAGTTTCCCTCAAAACFLJ20125 EXON5FCTTGGGATTTGTCCTCACACFLJ20125 EXON5FCTTGGGATTTGCCACTGCFLJ20125 EXON5FCCGAGATTTGCACTTCCACCFLJ20125 X5-6FCCGAGATTTGCACTGCFLJ20125 X7FATTCTCATTATTGCATCTCCACFLJ20125 X7FATTCTCATTATTGCATTACCTTCFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8F (201)CTTGGGATTTTGTCCACACGCFLJ20125 X8F (201)CTTGGGATTTGTCCAAATGGCAHISPPD1EXON 1 FCATATGTTTGCAAATGCAAGGGGAGAAAGGHISPPD1EXON 2 FGGAAAACAAATGAAGAGAGAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGAAGGGGAGAAAGGHISPPD1EXON 4 FGGCTTTAATGCTTAGGTAATGHISPPD1EXON 5 FCCTCGATAATAGTGGGGAATGGHISPPD1EXON 5 FCCTCGGATAATAGTGGGGAAGATCATGTAGHISPPD1EXON5 7CCTCGATAATAATGTGGTGTCCHISPPD1EXON5 8AAATGATGCCATGCTTTCTAACHISPPD1EXON5 7CCTCGATAATAATGTGGTGTCCHISPPD1 FRAG2 FGAGTATAAGGAGAGATCATGTAGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	LOC134505 X1R	TCCAGCAGGTCCTTGAGATAC
LUC 194303 ALXPATTOR AND AND AND ANDFLJ20125 EXON2FAATTCTGGGAATTCTCGGTTCFLJ20125 EXON2RTCCACAAGGAAGAATGTGGGGFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3RGAGAGGTGATACCCAGAATAAATCFLJ20125 EXON4FTCCAGAAGTTTCCCTTCAAAACFLJ20125 EXON4FTCCAGAAGTTTCCCTTCAAAACFLJ20125 EXON5FCTTGGGATTTGTCCTCACFLJ20125 EXON5FCTTGGGATTTGCCACTGCFLJ20125 X5-6FCCGAGATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTGCATCTCCACFLJ20125 X7FATTCTCATTATTGCATTACCTTCFLJ20125 X8F (201)CTTGGGATTTGTCAAAATGTGGCFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGAGAGAGTGAGTTAATGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON 5 FCCTCGATAATAATGTGGTGCCHISPPD1EXON 5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON 7 FGAAAGGGGAGAAGGTGAATGGHISPPD1EXON 7 FGCTCCATGAAGGGGAGATCATGTAGGHISPPD1EXON 8 RAATGATGCCATGCTTTCTAACHISPPD1EXON 7 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON 7 FGCTCCATGAAGGGGAAGATCATGTAGGHISPPD1EXON 7 FCCTCGATAAGGGGAAGATCATGTAGGHISPPD1EXON 7 FGCTCCATGAGGGGAAGATCATGTAGGHISPPD1EXON4 7GGCACCATAGCGATGCTTTCTAACHISPPD1 FRAG2 7GAAGGAGAGATCATGTAGGGGHISPPD1 FRAG3 7AGCTGTTAACGCAAGGAATAGACHISPPD1 FRAG3 7 <t< td=""><td>LOC134505 X2F</td><td>CCCGTGTAAGTGCATGATTG</td></t<>	LOC134505 X2F	CCCGTGTAAGTGCATGATTG
FLJ20125 EXON2RTCCACAAGGAAGAATGTGGGFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3RGAGAGGTGATACCCAGAATAAATCFLJ20125 EXON4FTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXON4FTCCAGGAGGGCACTGGFLJ20125 EXON4FTCCAGAAGTTTCTCCTCAAAACFLJ20125 EXON5FCTTGGGATTTGTCCTCACFLJ20125 EXON5FCCAATAGTTGCATCTCCACCFLJ20125 X5-6FCCGAGATTTCGTCATGCACTGCFLJ20125 X7FATTCTCATTATTGCATCTCCACFLJ20125 X7FATTCTCATTATTGCATCTCCACFLJ20125 X8F (201)CTTGGGATTTGTCCTCACFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAAATGAGGGHISPPD1EXON 1 FCATATGTTTGCAAGTGAGTAAGGHISPPD1EXON 2 FGGAAAACAAATGAAGAGGGGGGGCATCHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON 5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON 5 FCCTCGATAATAATGTGGTGTCCHISPPD1 FRAG2 FGAATGAGGGAGAAGATCATGTAGGHISPPD1 FRAG3 FAGCTGTTAACGTCATGTAGGGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGCAGGAATAGACHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGACHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	LOC 134505 X2R	AAAGGACTCAACTTACCCATCAG
FLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3FTGGTTTAAAGAGAAGGCTATGATTCFLJ20125 EXON3RGAGAGGTGATACCCAGAATAAATCFLJ20125 EXON4FTCCAGAAGTTTCCTCTCAAAACFLJ20125 EXON5FCTTGGGATTTTGTTCCTCACFLJ20125 EXON5FCTTGGGATTTTGTCCTCACFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X8F (201)CTTGGGATTTTGTCCAACFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATGGCAGCHISPPD1EXON 2 FGGAAAACAAATGAAGAAGTAAGCTGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATATGGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCCAAAGHISPPD1EXON5 RAAATGATGCCATGCTGTCGHISPPD1FAG3 FGCTCTAAAGAAGCTGTCGTGGCHISPPD1 FRAG2 RTCCATAAAGAGCTGTCATGAGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCAACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON2F	AATTCTGGGAATTCTCGGTTC
FLJ20125 EXONSTGAGAGGTGATACCCAGAATAAATCFLJ20125 EXONAFTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXON4FTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXON5FCTTGGGATTTTGTTCCTCACFLJ20125 EXON5FCCAATAGTTGCATCTTCCACCFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAGTGGGTGTCCHISPPD1EXON5 FCCTCGATAATAGTGGGGGAAAAGHISPPD1EXON5 RAAATGATGCCATGCTGTGGCHISPPD1FAAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCAACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON2R	TCCACAAGGAAGAATGTGGG
FLJ20125 EXONARFURDATIONFLJ20125 EXONARTCCAGAAGTTTCTCCTTCAAAACFLJ20125 EXONARTATAATGCAGAGGGGCACTGGFLJ20125 EXONSFCTTGGGATTTTGTCCTCACFLJ20125 EXONSRCCAATAGTTGCATCTTCCACCFLJ20125 X5-6FCCGAGATTTCGCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTACCTTCFLJ20125 X7FATTCTCATTATTTGCATTACCTTCFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X88F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON4 FGGCTTTTAATGCTAGGTGATGHISPPD1EXON4 FGGCTTTTAATGTTCGCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAGCTAGGGGHISPPD1 FRAG3 RGGAGTAAGCATAGCCAHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAAACAAATGAAC	FLJ20125 EXON3F	TGGTTTAAAGAGAAGGCTATGATTC
FLJ20125 EXONARTATAATGCAGAGGGGACTGGFLJ20125 EXONARTATAATGCAGAGGGGACTGGFLJ20125 EXON5FCTTGGGATTTTGTTCCTCACFLJ20125 EXON5RCCAATAGTTGCATCTTCCACCFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTGCATTTACCTTCFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8R (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 4 FGGCTTTTAATGCTAGGTGAATGHISPPD1EXON4 FGGCTTTTAATGCTAGGTGAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG3 RGGAGTAAGCTGTCGTGGCHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAGCTATGGGGHISPPD1 FRAG3 RGGAGTAAGCATAGCCATGCCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON3R	GAGAGGTGATACCCAGAATAAATC
FLJ20125 EXONARCTTGGGATTTTGTTCCTCACFLJ20125 EXON5FCCAATAGTTGCATCTTCCACCFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7FATTCTCATTATTGCATTTACCTTCFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTGTGAGGHISPPD1 FAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAGTGAGGHISPPD1 FRAG3 RGGAGGAAGACTATGAGGGGHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON4F	TCCAGAAGTTTCTCCTTCAAAAC
FLJ20125 EXONSTCCAATAGTTGCATCTTCCACCFLJ20125 EXONSRCCAATAGTTGCATCTTCCACCFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 FCATATGTTGCAAATGAAGATAGCTGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 FCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG3 RGGCACCATAGCTATGCATGGGGHISPPD1 FRAG3 RGGCACCATAGCGAAGAATAGACHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON4R	TATAATGCAGAGGGCACTGG
FLJ20125 EXONSICCCGAGATTTTGCCACTGCFLJ20125 X5-6FCCGAGATTTTGCCACTGCFLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTTCCTCACFLJ20125 X8R (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTCTAACHISPPD1 FXAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON5F	CTTGGGATTTTGTTCCTCAC
FLJ20125 X5-6RCAGCATTTCATAGCTAGTAAACCAACFLJ20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTTCCTCACFLJ20125 X8R (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGGTGAGCATCHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGAGGGAAGATCATGTAGGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGACTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 EXON5R	CCAATAGTTGCATCTTCCACC
FLU20125 X7FATTCTCATTATTTGCATTTACCTTCFLJ20125 X7FAACAAAAGAGGGGAGAAAGGFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTCCTCACFLJ20125 X8R (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAATCTTCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X5-6F	CCGAGATTTTGCCACTGC
FLU20125 X/TFACCAAAAGAGGGGAGAAAGGFLJ20125 X7RAACAAAAGAGGGGAGAAAGGFLJ20125 X8F (201)CTTGGGATTTTGTTCCTCACFLJ20125 X8R (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAATCTTCHISPPD1 FRAG3 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X5-6R	CAGCATTTCATAGCTAGTAAACCAAC
FLI20125 XRFLIGGGATTTTGTTCTCACFLJ20125 X8F (201)CGTATACTGATATTGAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON 4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X7F	ATTCTCATTATTTGCATTTACCTTC
FL320125 X8F (201)CGTATACTGATATTCAAATGTGGCHISPPD1EXON 1 FCATATGTTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGAGGAGAATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGACTAACCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X7R	AACAAAAGAGGGGAGAAAGG
HISPPD1EXON 1 FCATATGTTGTCAAATTGCTAAGHISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAGTGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTCCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGACCATGCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X8F (201)	CTTGGGATTTTGTTCCTCAC
HISPPD1EXON 1 RCGGTTCAACCAGAACTCACHISPPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGACTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	FLJ20125 X8R (201)	CGTATACTGATATTCAAATGTGGC
HIGTPD1EXON 2 FGGAAAACAAATGAAGATAGCTGHISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON 3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGATCATGAAC	HISPPD1EXON 1 F	CATATGTTTGTCAAATTGCTAAG
HISPPD1EXON 2 RGTCCATGAAAGTGAGTTAATGHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGATCACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON 1 R	CGGTTCAACCAGAACTCAC
HISPPD1EXON 2 RCTTTTATGGGAGGTGGCATCHISPPD1EXON3 FCTTTTATGGGAGGTGGCATCHISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON 2 F	GGAAAACAAATGAAGATAGCTG
HISPPD1EXON3 RCACCTGATGCCATGTCAGTGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON 2 R	GTCCATGAAAGTGAGTTAATG
HISPPD1EXON3 RGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 FGGCTTTTAATGCTTAGGTAATGHISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON3 F	CTTTTATGGGAGGTGGCATC
HISPPD1EXON4 RTGTAAGAATGTGGCCCAAAAGHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON3 R	CACCTGATGCCATGTCAGTG
HIGT PD TEXONA RHISPPD1EXON5 FCCTCGATAATAATGTGGTGTCCHISPPD1EXON5 RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON4 F	GGCTTTTAATGCTTAGGTAATG
HIGT P D LEXONG THISPPD1EXONS RAAATGATGCCATGCTTTTCTAACHISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON4 R	TGTAAGAATGTGGCCCAAAAG
HISPPD1 FRAG2 FGATTGAAGGGGAAGATCATGTAGHISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON5 F	CCTCGATAATAATGTGGTGTCC
HISPPD1 FRAG2 RTCCATAAGAAGCTGTCGTGCHISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1EXON5 R	AAATGATGCCATGCTTTTCTAAC
HISPPD1 FRAG3 FAGCTGTTATACGTCATGGGGHISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1 FRAG2 F	GATTGAAGGGGAAGATCATGTAG
HISPPD1 FRAG3 RGGAGTAAGCTTTTCATAATCTTCHISPPD1 FRAG4 FTGGAAGGAGAGCTTACACCCHISPPD1 FRAG4 RGGCACCATAGCGAAGAATAGAC	HISPPD1 FRAG2 R	TCCATAAGAAGCTGTCGTGC
HISPPD1 FRAG4 F TGGAAGGAGAGCTTACACCC HISPPD1 FRAG4 R GGCACCATAGCGAAGAATAGAC	HISPPD1 FRAG3 F	AGCTGTTATACGTCATGGGG
HISPPD1 FRAG4 R GGCACCATAGCGAAGAATAGAC	HISPPD1 FRAG3 R	GGAGTAAGCTTTTCATAATCTTC
	HISPPD1 FRAG4 F	TGGAAGGAGAGCTTACACCC
	HISPPD1 FRAG4 R	GGCACCATAGCGAAGAATAGAC
HISPPD1 FRAG5 F CGCTCAGACCTTCAGAGGAC	HISPPD1 FRAG5 F	CGCTCAGACCTTCAGAGGAC

HISPPD1 FRAG5 R	TCCACAAGAGTTCTTGGTGTTC
HISPPD1 FRAG6 F	AGTGTGTCTAGCCCAGAGGG
HISPPD1 FRAG6 R	TCATGACAACAGTTCCTTACCTG
HISPPD1 24F	TGGCTCTGTTGTATCTAACTTTGC
HISPPD1 24R	AAAACAGAAGGATTTACTCTGATGTG
HISPPD1 25F	GTCTGTCTGGAACAGGCTGC
HISPPDI 25R	CATGCTTTCACCAAAGAGTTTTAC
HISPPD1 26F	TCCCAATGTGAATGGAAGAAC
HISPPD1 26R	TACTGCTCATGGGTGTGTGC
HISPPDI 27F	CCTAAACTGTCCAGTTCTAAGCAG
HISPPD1 27R	CAGATAGTATGTAGTTGCCCAGC
HISPPDI 28F	TGAATTTACCTTGACCATTTTCTTC
HISPPD1 28R	CGCTCTAGGGAAGTGCAAAG
HISPPD1 29F	CAAGAATTGTTTTGTCAATCAGC
HISPPD1 29R	TCATGACAACAGTTCCTTACCTG
HISPPDI EX18 F	GCGTATGCCTAAAGTAACTCTC
HISPPD1 EX18 R	CCTTTTTATCCACCAACAGAC
LOC90355 EXON3.1F	GCCTGGCCCAAGTCTCTG
LOC90355 EXON3.1R	TGGAATCTCGTATGGCTGG
LOC90355 EXON3.2F	ATCCTTACGCTCCAAACAGC
LOC90355 EXON3.2R	CATGTACAGAGTACAGCAGTGGG
CETN3 EXON 1F	GTCTTGCTGCCTTGGGTAGG
CETN3 EXON1R	CCCTTCCACACACACCCTC
CETN3 EXON2F	TTGAAATTTAGAAGGTAATTATTGGC
CETN3 EXON2R	TGCCTTCATAGTTCCAAAACC
CETN3 EXON3F	CTGTAAACACTTGTTGGTTACTTTG
CETN3 EXON3R	AAAACTATAAATCTCAGAGCAAAGCC
CETN3 EXON4F	TGAATGCCTTTGTGATTATGC
CETN3 EXON4R	TCTTGCAAGTCATTTGGTTTTAG
CETN3 EXON5F	AAAATGGTAGTCGTGGATTCTG
CETN3 EXON5R	TTTCACATGGCTCCAGGC
LOC153363 X1_1F	GCCGCAGTGCCCTGTGTGTG
LOC153363 X1_1R	CGAACTGGTAGAGGCCGCCG
LOC153363 X1-2F (2)	GCCTCTTGCAGGACCGAGAGGC
LOC153363 X1_2R	GGCCACGCAAGTCTGCAAC

LOC153363 X2_1FCCTTCCCAATTTCTTTGGAAGCLOC153363 X2_1RCGAAAAAGCCTTTCAGCACCLOC153363 X2_2FGGACAGAGGTCTGGTAGAGLOC153363 X2_2RGCACTTCATGAAATGCTCACPOLR3GX2FTGTGCTACTTAAGGGGTGCAGPOLR3GX2RTGAAAACTAATTCTTTACTGGTTCACPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX4FGGAATGCTTAAGTTCAGGGPOLR3GX4FGGAATGCTTAAGTTCAGGGPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGCATTTTCTGGACAACPOLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX6RAAACAGAGCAAAACGAGGTAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX8FGCAGAGGCAAACCAGGTCPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTGCTGCCLYSMD3 EX1 FTTTAACATTATGCCAGGGAGGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 RTTAAAAGTTTTAGCCTGGTGGLYSMD3 EX2_2 RTGGTGGTGAACATTTTCAACAGTGGACLYSMD3 EX2_3 FTGGTGGTGAACGTTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCGATGGLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTGCATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATTCAAAACTGLYSMD3 EX2_6 RCCAAGCAGGTAAATTCCAAAACTG		
LOC153363 X2_2FGGACAGAGGTCTGGTAGAGLOC153363 X2_2FGGACTTCATGAAATGCTCACPOLR3GX2FTGTGCTACTTAAGGGGTGCAGPOLR3GX2RTGAAAACTAATTCTTTACTGGTTCACPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGCATTTTCTGGACAACPOLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX6FCAGCATACGCAAAGCAGGCPOLR3GX6FCAGCAGGGAAGTCAGCAGTCPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 FTGTTAGTCATCATTTAAGGCGGGACLYSMD3 EX2_3 FTGGTGTGTGAACGTTTGGCGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGTTGGCGLYSMD3 EX2_5 FTACCACCTCATTTTCCGAGGLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCAGGARRDC3 X1FAAAATATCGATCAGTAATTGCAAGGGAAGTCAGGARRDC3 X1RCAATCACGTTAATTCAAACAGGAAACTGTTTTAACCACCTCAGTTAATTGCAAGGAAGAGAAACAACTG	LOC153363 X2_1F	CCTTCCCAATTTCTTTGGAAGC
LOC153363 X2_2RGCACTTCATGAAATGCTCACPOLR3GX2FTGTGCTACTTAAGGGGTGCAGPOLR3GX3FGGCCAATAGGAAATTACGCPOLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX3RGGAATGGCTTAAGTTCAGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX7FAACAGAGGAAATCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTGTCCLYSMD3 EX1 RACAGAATGACTATTGCTGCCLYSMD3 EX2_1 FTTTAACATTATGCACAGTGGAGCLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTGAAGGGGTGGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCAAAATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAATATCGATCAGTGTAATTGCAAACTGTTAACTATCACAGTTAATTCAGAAACTGTTAACTATCACAGTTAATTCAGAAACTG	LOC153363 X2_1R	CGAAAAAGCCTTTCAGCACC
LOUINSSIS X2_ZADISTRICTIONPOLR3GX2FTGTGCTACTTAAGGGGTGCAGPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTCTGGACAACCPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX7FAACAGAGCAAAACGAGGTAGGPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTGCCLYSMD3 EX1 FTTTAACATTATGGCAGGAGGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTGTGTGCGLYSMD3 EX2_2 FTGTTGTGTGGAATGTTTCAAGCLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 FCCTCAAAGGCAGTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCAAGGGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTTATTCCAAAACTGTTAGATCACGTTAATTCAAAGTATCGAAAG	LOC153363 X2_2F	GGACAGAGGTCTGGTAGAG
POLR3GX2RTGAAAACTAATTCTTACTGGTTCACPOLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX4RAACCAGACTCAGTTTTCCTATGGPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTCTGGACAACPOLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX6FCAGCATACGCAAAGCAAGGGPOLR3GX6FCAGCATACGCAAAGCAAGGGPOLR3GX7FAAACAGAGCAAAACGAGGTAGGPOLR3GX8FGCAGAGACTTTTAGGCTGGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCAGGGAGGLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_3 FTGGTGTGTGAAATGTTTCAAGCLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCCTGATGGLYSMD3 EX2_6 FGGGTGGATGTTTCCAAAATATGLYSMD3 EX2_6 RCCAAGGAGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTTAAGTCAACGARRDC3 X1RTAAATTCGATCATCAACAGTGAAACTG	LOC153363 X2_2R	GCACTTCATGAAATGCTCAC
POLR3GX3FGGCCAATAGGAAAATTACGCPOLR3GX3RTGGTTCTCTAGGACATAAGAATGGGPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX4RAACCAGACTCAGTTTTCCTATGGPOLR3GX5FACTTTATTGTCATTTTCTGGACAACPOLR3GX5FACTTTATTGCATTTTCTGGACAAACCPOLR3GX5RATAACTTTGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGACAAAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX2 1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2 1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2 1 FTGTTAGTCATCTTGTTGGCTGLYSMD3 EX2 2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2 2 RTTAAAAGTTTGAAGGGGTGTGLYSMD3 EX2 3 FTGGTGTGGAATGTTCAAGCLYSMD3 EX2 4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2 5 FTACCACCTCATTTTCCTGATGGLYSMD3 EX2 6 FGGGTTCGATTTCCAAAGGTAATTGCATTGLYSMD3 EX2 6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTAATTCAGAAACTGTTATATATACAGTAATTCAGAAACTGTAUATTATACAGAAACTG	POLR3GX2F	TGTGCTACTTAAGGGGTGCAG
POLR3GX3RTGGTTCTCTAGACATAAGAATGGGPOLR3GX4FGGAATGGCTTAAGTCAGGGPOLR3GX4RAACCAGACTCAGTTTTCCTATGGPOLR3GX5FACTTTATTGTCATTTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTTCTGGACAACCPOLR3GX5RATAACTTTGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTAGTCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_3 FTGGTGTGTGAATGTTCAAGCLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCTGGGCLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGGTATTGCATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATTCAGAAACTGTARCACGTAATTCAGAAACTGTAAAACTTATCAGAAACTG	POLR3GX2R	TGAAAACTAATTCTTTACTGGTTCAC
POLR3GXARPOUR3GXARPOLR3GX4FGGAATGGCTTAAGTTCAGGGPOLR3GX5FAACCAGACTCAGTTTTCCTATGGPOLR3GX5FACTTTATTGTCATTTGCGACAACPOLR3GX5RATAACTTTGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX6RAAACAGAGCAAAACGAGGTAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTAGTCATCATTCAGTGTGCGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTGAAGGGGTGTGLYSMD3 EX2_3 RCCTCAAAGGCAGTTTAGCCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATTCAGAAACTG	POLR3GX3F	GGCCAATAGGAAAATTACGC
POLR3GX4RAACCAGACTCAGTTTTCCTATGGPOLR3GX5FACTTTATTGTCATTTTCTGGACAACPOLR3GX5FACTTTATTGTCATTTTCTGGACAACCPOLR3GX5RATAACTTGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX7RGCAGAGACTTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 FTTTAACATTATGCCGGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTTCAGGCLYSMD3 EX2_5 FTACCACCTCATTTTCCTGATGGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGGTAATTTGCATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RAAAATATCGATCAGTGAATGTTAAGTGAAGGARRDC3 X1RCAAGACAGTAATTCGACCOG	POLR3GX3R	TGGTTCTCTAGACATAAGAATGGG
POLR3GX5FACTITATTGTCATTITCTGGACAACPOLR3GX5FACTITATTGTCATTITCTGGACAAACCPOLR3GX5RATAACTTIGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX7RGCAGAGACTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTATTTCAGTGTGCGLYSMD3 EX2 1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2 1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2 2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2 3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2 4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2 5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2 6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2 6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RAAATATCGATCAGTGAATTTCCAAGAGAACTG	POLR3GX4F	GGAATGGCTTAAGTTCAGGG
POLR3GX57ATAACTTTGGGTTGACAAATCCPOLR3GX58ATAACTTTGGGTTGACAAATCCPOLR3GX6FCAGCATACGCAAAGCAAGGPOLR3GX7FAAACAGAGCAAAACGAGGTAGGPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCAGGGCLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGGTAATTGCATTTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARDC3 X1RGAATCACGTTAATTCAGAAACTG	POLR3GX4R	AACCAGACTCAGTTTTCCTATGG
POLR3GX6FCAGCATACGCAAAGACAAGGPOLR3GX6FCAGCATACGCAAAGCAAGGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCAAGGCALYSMD3 EX2_5 RTTAGTTATACAAGGTAATTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGGTAATTTGCATTTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATCAGAAACTG	POLR3GX5F	ACTTTATTGTCATTTTCTGGACAAC
POLR3GX6FAAACAGAGCAAAACGAGGTAGGPOLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTATTTGCATTGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATCAGAAACTG	POLR3GX5R	ATAACTTTGGGTTGACAAATCC
POLR3GX7FAAGCAGGGAAGTCAGCAGTCPOLR3GX7RTTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCGATGGLYSMD3 EX2_5 RTTAGTATAAAGGTATTGCATTGLYSMD3 EX2_6 RCCAAGCAGGTAGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATCAGCAAACTG	POLR3GX6F	CAGCATACGCAAAGACAAGG
POLR3GX71PAGENEORATION OF TRACTPOLR3GX87TTCCCATCATCTTGGTTTCTGPOLR3GX8FGCAGAGACTTTTAGGCCTGGPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 RTTAAAAGTTTGATCATCTTGTTGGCTGLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCCTGATGGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAGAAACTG	POLR3GX6R	AAACAGAGCAAAACGAGGTAGG
POLR3GX8RGCAGAGACTTTTAGGCCTGGPOLR3GX8FGCAGAGACTTTTAGGCCTGGLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCAAGGGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGTATTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	POLR3GX7F	AAGCAGGGAAGTCAGCAGTC
POLRSGNAIDERIVERTIGATIONPOLR3GX8RGGTAACAACTATTTGTCCLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCCTGATGGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTAAGTGAAGARRDC3 X1RTAAACTATCGATCACGTACAG	POLR3GX7R	TTCCCATCATCTTGGTTTCTG
I OLINGONIXI OLINGONIATIONLYSMD3 EX1 FTTTAACATTATGGCAGGGAGGLYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_6 RGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	POLR3GX8F	GCAGAGACTTTTAGGCCTGG
LYSMD3 EX1 RACAGAATTTATTTCAGTGTGCGLYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	POLR3GX8R	GGTAACAACTATTTGTCC
LYSMD3 EX2_1 FAGAATGAATGACTATTGCTGCCLYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATCATCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX1 F	TTTAACATTATGGCAGGGAGG
LYSMD3 EX2_1 RTTTATGATCATCTTGTTGGCTGLYSMD3 EX2_2 FTGTTAGTCATCATCTATCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX1 R	ACAGAATTTATTTCAGTGTGCG
LYSMD3 EX2_2 FTGTTAGTCATCATTCAACAGTGGACLYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_6 FGGGTTCGATTTCCAAAGGTAATTTGCATTTGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RTAACATATCGATCAGCACCTACTG	LYSMD3 EX2_1 F	AGAATGAATGACTATTGCTGCC
LYSMD3 EX2_2 RTTAAAAGTTTTGAAGGGGTGTGLYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCGAAAACTG	LYSMD3 EX2_1 R	TTTATGATCATCTTGTTGGCTG
LYSMD3 EX2_3 FTGGTGTGTGAATGTTTCAAGCLYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_2 F	TGTTAGTCATCATTCAACAGTGGAC
LYSMD3 EX2_3 RCCTCAAAGGCAGTTTTGACCLYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_2 R	TTAAAAGTTTTGAAGGGGTGTG
LYSMD3 EX2_4 FCATTTAATGCCTTACTGCTTTATGLYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_3 F	TGGTGTGTGAATGTTTCAAGC
LYSMD3 EX2_4 RTGTCCTGTCTTTTCCTGATGGLYSMD3 EX2_5 FTACCACCTCATTTTCTGGGCLYSMD3 EX2_5 RTTAGTTATACAAGGTAATTTGCATTTGLYSMD3 EX2_6 FGGGTTCGATTTCCAAAATATGLYSMD3 EX2_6 RCCAAGCAGGTAGAGTCCAGGARRDC3 X1FAAAATATCGATCAGTGTTAAGTGAAGARRDC3 X1RGAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_3 R	CCTCAAAGGCAGTTTTGACC
LYSMD3 EX2_5 F TACCACCTCATTTTCTGGGC LYSMD3 EX2_5 R TTAGTTATACAAGGTAATTTGCATTTG LYSMD3 EX2_6 F GGGTTCGATTTCCAAAATATG LYSMD3 EX2_6 R CCAAGCAGGTAGAGTCCAGG ARRDC3 X1F AAAATATCGATCAGTGTTAAGTGAAG ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_4 F	CATTTAATGCCTTACTGCTTTATG
LYSMD3 EX2_5 R TTAGTTATACAAGGTAATTTGCATTTG LYSMD3 EX2_6 F GGGTTCGATTTCCAAAATATG LYSMD3 EX2_6 R CCAAGCAGGTAGAGTCCAGG ARRDC3 X1F AAAATATCGATCAGTGTTAAGTGAAG ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_4 R	TGTCCTGTCTTTTCCTGATGG
LYSMD3 EX2_6 F GGGTTCGATTTCCAAAATATG LYSMD3 EX2_6 R CCAAGCAGGTAGAGTCCAGG ARRDC3 X1F AAAATATCGATCAGTGTTAAGTGAAG ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_5 F	TACCACCTCATTTTCTGGGC
LYSMD3 EX2_6 R CCAAGCAGGTAGAGTCCAGG ARRDC3 X1F AAAATATCGATCAGTGTTAAGTGAAG ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_5 R	TTAGTTATACAAGGTAATTTGCATTTG
ARRDC3 X1F AAAATATCGATCAGTGTTAAGTGAAG ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_6 F	GGGTTCGATTTCCAAAATATG
ARRDC3 X1R GAATCACGTTAATTCAGAAAACTG	LYSMD3 EX2_6 R	CCAAGCAGGTAGAGTCCAGG
	ARRDC3 X1F	AAAATATCGATCAGTGTTAAGTGAAG
	ARRDC3 X1R	GAATCACGTTAATTCAGAAAACTG
ARRDC3 X2F TAAAGTTATGCCACCCTGCG	ARRDC3 X2F	TAAAGTTATGCCACCCTGCG

ARRDC3 X2RGCTTTCATAATTTGCCAGGCARRDC3 X3FTTTGATACCTCATTGGAACATAAACARRDC3 X3FGACAACTGCATAGTTTAGGTGATTGARRDC3 X4FCAGATTGCTTTCTTTGCTGCARRDC3 X4FCGGGAAGAGCAGTCTCAATCARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTGARRDC3 X5FGCTTTAAGAATCTTGACTTCTATGARRDC3 X6FTGACATAGTTTTGCTTACATCCAGARRDC3 X6FTGACATAGTTTTGCTACATCCAGARRDC3 X6FTGGCCCCTAATATTCAGTTTGCARRDC3 X6RTCGAACAGCATGTTCTTATGCARRDC3 X7FTGTGCCCCTATATTCAGTTTGCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTGCTACATTCGCSORF21 X1FTCTCGTGGAATAGATAGGTTTTGAGCSORF21 X1FTCTCGTGGAATAGATAGGTTTTGAGCSORF21 X2FCAAGGTGCTTATGTTAATACTGTGCCSORF21 X2FCAAGGTGCTTATGTAATACTGTGCCSORF21 X3FTGTTTGCATCATAGTGACACTGGCSORF21 X3FTGTTTGCATCATAGTGACACTGGCSORF21 X3FTGTTTGCATCATAGTGACACTGGCSORF21 X3FTGTTTGCATCATAGTGACACTGGCSORF21 X4FGCAATAACTTGCAACAATTTACCCSORF21 X4FGCAATAACTTGTGAACCAAATTACCCSORF21 X4FGCAATAACTATATCTTGTGAACCAAACCSORF21 X5FAACCATTTATATATCTTGCCTAAAGCSORF21 X6FCAATGATGCGTTTGTATGCAAGCCSORF21 X7FCATAGCTGGTATGCAAGCCSORF21 X7FCATAGCTGGGATAAACCTACCSORF21 X7FCATAGCTGGGGATAAACCTACCSORF21 X7FCATAGCTGGGGGGATAAACCTACCSORF21 X7FCATAGCTGGGGGGGGATAAACCTACCSORF21 X7FCATAGCTGGGGCTCAAGATATAAAGGCCSORF21 X7FCATAGCG		0077707474477770004000
ARRDC3 X3RGACAACTGCATAGTTAGGTGATTGARRDC3 X4FCAGATTGCTTTCTTTGCTGCARRDC3 X4RCGGGAAGAGCAGTTCTCAATCARRDC3 X4RCGGGAAGAGCAGTTCTCAATCARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTTGARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTTGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X6FTGGCCCCCTAATATTCAGTTTGARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTGCTACATTCTCCARRDC3 X8FCCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTGAGC50RF21 X1FTCTCGTGGAATAGATAGGTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCATAACTGCACACCCCC50RF21 X3FTGTTTGCATCATAGTGACACTGGC50RF21 X3FTGTTTGCATCATAGTGACACCCCC50RF21 X3FTGCCACTTTGTTTATATACTGTGCC50RF21 X4FGCAATAACTTACCAGGCACACCCC50RF21 X5FAACCATTTACACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTGTAATACTGGC50RF21 X6FCATAGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGCTGTTACCATAAGC50RF21 X8FTCTGACTAAGCAGCGTGCACC50RF21 X8FTCTGACTAAGCAGCAGTGGAGAGC50RF21 X8FTCTGACTAAGCAGCAGTGCACC50RF21 X8FTCTGACTAAGCAGCAGTGGAGGAGC50RF21 X8FTCTGACTAAGCAGCAGTGGAGGAGC50RF21 X8FTCTGACTAAGCAGCAGT	ARRDC3 X2R	GCTTTCTATAATTTTGCCACGC
ARRDC3 X4FCAGATTGCTTTCTTGCTGCARRDC3 X4FCAGATTGCTTTCTTTGCTGCARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTGARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTGARRDC3 X5RCCTGGGTGACAGGTGTTCARRDC3 X6FTGACATAGTTTGCTTACACTCAGARRDC3 X6RTCGAACAGCATGTTCTTATGCARRDC3 X7FTGTGCCCCTAATATTCAGTTTGARRDC3 X7FATGCCTGCAATGCTATTTCCARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCATAAACTGGTGCC50RF21 X3FTGTTTGCATCATGGACATCTGC50RF21 X3FTGTTTGCATCATGGACAATTACCC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACACCAAAACC50RF21 X4FGCAATAACTTGCAACACCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAAACATTATACATTATCTTGGCAAAGCC50RF21 X5FAAACATTATACATTATCTTGCCTAAAGC50RF21 X5FCAATAGTGCGTTTTGTATTCTGC50RF21 X5FCAATAGTGCGTTTTGTATATCTGC50RF21 X5FCATATGCTGTGTATGCAAGCC50RF21 X5FTCTGACTAAGCAGGCTGCACC50RF21 X5FTCTGACTAAGCAGGCTGCACC50RF21 X5FTGAATAGTGGGATTCACCCATGCC50RF21 X5FTGAATAATTACCGACGTGTTTACATAAGC50RF21 X5FTGAATAATTACCGACGTGTTTACATAAGC50RF21 X5FTGAATAGTGGGATTCACCCAT	ARRDC3 X3F	
ARRDC3 X4RCGGGAAGAGCAGTTCTCAATCARRDC3 X5FGCTTTAAGAATCTTGACTTCTATGARRDC3 X5FGCTTTAAGAATCTTGACTTCTATGARRDC3 X5RCCTGGGTGACAGGTGTTCARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X7FTGTGCCCCTAATATTCAGTTTGGARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTGCTACATTCTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCATAAACTGCTGCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTTGTAATACTTGGC50RF21 X5FAACCATTTAATACTTACTGGCAAGCC50RF21 X5FAACAATTAAAAATCATTATCTTGCCTAAAGC50RF21 X5FAACAATTAAAAATCATTATCTTGCCTAAAGC50RF21 X5FCAATAGTGCGTTTTGTAATTCTGC50RF21 X5FCAATAGTGCGTTTTGTAATTCTGC50RF21 X5FCATATGCTGTGTATGCAAGCC50RF21 X5FCATATGCTGTGTATGCAAGCC50RF21 X5FTCTGACTAAGCAGGGGATAAACCTACC50RF21 X5FTCTGACTAAGCAGGGGGCC50RF21 X5FTGAATATTACCGACGTGTTTACATAAGC50RF21 X5FTGAATAGTGGGATTCACCCATGCC50RF21 X5FTGAATAGTGGGATTCACCCATGCC50RF21 X5F	ARRDC3 X3R	
ARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTGARRDC3 X5FGCTTTAAGAATCTTGACTTCTTTGARRDC3 X6FTGACATAGTTTGCTTACATCCAGARRDC3 X6RTCGAACAGCATGTTCTACATCCAGARRDC3 X7FTGTGCCCCTAATATTCAGTTTGARRDC3 X7RATGCCTGCAATGCTATTCCARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTGCTACATTCTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1RAATATTCCTACACCTTTATTAGGCACC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3RAAAGAGTGCATAAACTGCTGGC50RF21 X3RAAAGAGTGCATAAACTGCTGGCC50RF21 X3RAAAGAGTGCATAAACTGCACCCAAAACC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X5FAACCATTTACACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X7FCAATGATGCGTTTTGTAATACTGGC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGAGGAGCC50RF21 X9FTGAATATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACGGTGCACC50RF21 X9FTGAATAATTACCGACGGGAGGCC50RF21 X10FCTAGTTGTGCCCCCCCTATCC50RF21 X10FCTAGTTGTGCCCCCCCCTATCC50RF31 X10FCTAGTTGTGCC	ARRDC3 X4F	CAGATTGCTTTCTTTGCTGC
ARRDC3 X5RCCTGGGTGACAGGTGTTTCARRDC3 X5RCCTGGGTGACAGGTGTTTCTACATCCAGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X7FTGTGCCCCTAATATTCAGTTTTGARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTAGGCACC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACAATTTACCC50RF21 X3FTGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACGCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAAACTATAAATCATTATCTTGCCTAAAGC50RF21 X5FCATAGCTGTGTATGCAAGCC50RF21 X5FCATAGCTGTGTATGCAAGCC50RF21 X6FCATAGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCTGGGAGGCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCAC	ARRDC3 X4R	CGGGAAGAGCAGTTCTCAATC
ARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X6FTGACATAGTTTTGTCTTACATCCAGARRDC3 X7FTGTGCCCCTAATATTCAGTTTTGARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTTCTCCARRDC3 X8FGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1RAATATTCCTACACCTTTATTAGGCACC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTAATACTGTGCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FGCAATAACTTGCAACAATTTACCC50RF21 X3FGCAATAACTTGCAACAGTCAACCCAAAACC50RF21 X4FGCAATAACTTGCAACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTGGAACACCAAAACC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTGAATAATTACCGACTGCTGCACC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X	ARRDC3 X5F	GCTTTAAGAATCTTGACTTCTTTTG
ARRDC3 X6RTCGAACAGCATGTTCTTATGCARRDC3 X7FTGTGCCCCTAATATTCAGTTTTGARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1FTCTCGTGGAATAGATAGGTTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FCAATGATGCGTTTTGTAATCTGGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RCTAGTTGTGCCCCTATCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RCTAGTTGTGCCCCCTATCC50RF21 X10RCAAGCAAGCAGTGAGAGAGAGC50RF21 X10RCTAGTTGTGCCCCCTATCC50RF21 X10RCTAGTTGTGCCCCCTATC </td <td>ARRDC3 X5R</td> <td>CCTGGGTGACAGGTGTTTC</td>	ARRDC3 X5R	CCTGGGTGACAGGTGTTTC
ARROC3 X7FTGTGCCCCTAATATTCAGTTTTGARRDC3 X7FTGTGCCCCTAATATTCAGTTTTGARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FTTGTAGTCATTGCTACATTCTTCCARRDC3 X8RGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FCAATGATGCGTTTTGTATTCTTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAGTGGATTCTACCCATGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RCCAGCACAAGCAGTGAGGAGC50RF21 X10RCCAGCACAAGCAGTGAGAGAGC50RF21 X10RCCAGCACAAGCAGTGAGAGAGC50RF21 X10RCCAGCACAAGCAGTGAGAGAGC50RF21 X10R	ARRDC3 X6F	TGACATAGTTTTGTCTTACATCCAG
ARRDC3 X7RATGCCTGCAATGCTATTTCCARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X6FAAAATAAAATCATTATCATGCAACAACC50RF21 X6FAAAATGAATGATGTGTTTCTTGC50RF21 X7FCAATGATGCGTTTTGTAATCTGCCTAAAGC50RF21 X8FTCTGACTAAGCAGCCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8RGGGGCTCAAGATATAAAGGCC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGAGCC50RF21 X8FTCTGACTAAGCAGGAGTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RCTAGTTGTGCCCTGGGAGCC	ARRDC3 X6R	TCGAACAGCATGTTCTTATGC
ARRDC3 X8FTTGTAGTCATTTGCTACATTCTCCARRDC3 X8FGCCGGAAGAGATACAGTTCGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCATAAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAGTCAACCCAAAACC50RF21 X4FAAACCATTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTATCACAGTCAACCCAAAACC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FGAATGATGCGTTTTGTAATTCTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGCTGCACC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCACCCCTATCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RCTAGTTGTGCCCACCCCTATCC50RF21 X10RCCGACACAAGCAGTGAGGAGC50RF21 X10RCTAGTTGTGCCACCCCTATCC50RF21 X1	ARRDC3 X7F	TGTGCCCCTAATATTCAGTTTTG
ARRDC3 X8RGCCGGAAGAGATACAGTTCGARRDC3 X8RGCCGGAAGAGATACAGTTCGC5ORF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC5ORF21 X2FCAAGGTGCTTATGTTAATACTGTGCC5ORF21 X2RTTTCACCATGCAAGGATGTCC5ORF21 X3FTGTTTGCATCATAGTGACATCTGC5ORF21 X3FTGTTTGCATCATAGTGACATCTGC5ORF21 X3FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X4RAAACCATTTAATACTTGTAACAGCCC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAGTGGGATCCACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCCTATC	ARRDC3 X7R	ATGCCTGCAATGCTATTTCC
ANNOLOS XGNC5ORF21 X1FTCTCGTGGAATAGATAGGTTTTGAGC5ORF21 X1RAATATTCCTACACCTTTATTAGGCACC5ORF21 X2FCAAGGTGCTTATGTTAATACTGTGCC5ORF21 X2RTTTCACCATGCAAGGATGTCC5ORF21 X3FTGTTTGCATCATAGTGACATCTGC5ORF21 X3FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X6FAAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6FCAATAGTGGTGTATGCAAGCC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAGTGGATTCTACCCATGCC5ORF21 X9RTGATAGTGGATTCTACCCATGCC5ORF21 X0FCTAGTTGTGCCCTGGGAGTCC5ORF21 X0FCAATAGTGGATTCTACCCATGCC5ORF21 X3FTGATAGTGGATTCTACCCATGCC5ORF21 X3FTGATAGTGGATTCTACCCATGCC5ORF21 X3FTGATAGTGGATTCTACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCCTATC	ARRDC3 X8F	TTGTAGTCATTTGCTACATTCTTCC
C50RF21 X1RAATATTCCTACACCTTTATTAGGCACC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4RAAACTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X6FGCACTTTAATACTTTGTAACAGCCC50RF21 X6FGCACTTTGTGTTTCTTTGC50RF21 X6FGAATGATGCGTTTTGTATCTTGCCTAAAGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X0FTGAATAATTACCGACTGTTTACATAAGC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X0FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCCTATC	ARRDC3 X8R	GCCGGAAGAGATACAGTTCG
C50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2FCAAGGTGCTTATGTTAATACTGTGCC50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTATCACAGTCAACCCAAAACC50RF21 X4FAAACTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5RTGCCACTTTGTGTTTCTTTGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGATAGTGGATTCTACCCATGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF26 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X1F	TCTCGTGGAATAGATAGGTTTTGAG
C50RF21 X2RTTTCACCATGCAAGGATGTCC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4RAAACTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5RTGCCACTTTGTGTTTCTTGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FGAATGATGCGTTTTGTAATTCTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTGTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X0FCTAGTTGTGGATTCTACCCATGCC50RF21 X8RGGGGCTCCAAGATATAAAGGCC50RF21 X8FTCTGACACAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X0FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X1R	AATATTCCTACACCTTTATTAGGCAC
C50RT21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3FTGTTTGCATCATAGTGACATCTGC50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4RAAACTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5RTGCCACTTTGTGTTTCTTGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X0FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X2F	CAAGGTGCTTATGTTAATACTGTGC
C50RF21 X3RAAAGAGTGCATAAACTGCTGCC50RF21 X4FGCAATAACTTGCAACAATTTACCC50RF21 X4RAAACTTATCACAGTCAACCCAAAACC50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5RTGCCACTTTGTGTTTCTTTGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6RGAATGATGCGTTTTGTAATTCTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X2R	TTTCACCATGCAAGGATGTC
C5ORF21 X4FGCAATAACTTGCAACAATTTACCC5ORF21 X4FGCAATAACTTGCAACACAATTTACCC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X5RTGCCACTTTGTGTTTCTTGC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6RGAATGATGCGTTTTGTAATTCTGC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGATAGTGGATTCTACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X3F	TGTTTGCATCATAGTGACATCTG
C5ORF21 X4RAAACTTATCACAGTCAACCCAAAACC5ORF21 X5FAACCATTTAATACTTTGTAACAGCCC5ORF21 X5FTGCCACTTTGTGTTTCTTTGC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6RGAATGATGCGTTTTGTAATTCTGC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7RGGAGAGGGGATAAACCTACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10FCTAGTTGTGCCCTGGGAGGCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X3R	AAAGAGTGCATAAACTGCTGC
C50RF21 X5FAACCATTTAATACTTTGTAACAGCCC50RF21 X5FTGCCACTTTGTGTTTCTTTGC50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6RGAATGATGCGTTTTGTAATTCTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7RGGAGAGGGGATAAACCTACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9RTGATAGTGGATTCTACCCATGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10FTCGACACAAGCAGTGAGGAGC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X4F	GCAATAACTTGCAACAATTTACC
CSORF21 XSRTGCCACTTTGTGTTTCTTTGC5ORF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC5ORF21 X6RGAATGATGCGTTTTGTAATTCTGC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7RGGAGAGGGGATAAACCTACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8RGGGGCTCAAGATATAAAGGCC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9RCTAGTTGTGCCCTGGGAGTCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCCTATC	C5ORF21 X4R	AAACTTATCACAGTCAACCCAAAAC
C50RF21 X6FAAAATAAAATCATTATCTTGCCTAAAGC50RF21 X6FGAATGATGCGTTTTGTAATTCTGC50RF21 X7FCATATGCTGTGTATGCAAGCC50RF21 X7RGGAGAGGGGATAAACCTACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8RGGGGCTCAAGATATAAAGGCC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X5F	AACCATTTAATACTTTGTAACAGCC
CSORF21 X6RGAATGATGCGTTTTGTAATTCTGC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7RGGAGAGGGGATAAACCTACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8RGGGGGCTCAAGATATAAAGGCC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGATAGTGGATTCTACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X5R	TGCCACTTTGTGTTTCTTTG
CSORN 21 XORCATATGCTGTGTATGCAAGCC5ORF21 X7FCATATGCTGTGTATGCAAGCC5ORF21 X7RGGAGAGGGGGATAAACCTACC5ORF21 X8FTCTGACTAAGCAGGCTGCACC5ORF21 X8RGGGGCTCAAGATATAAAGGCC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9RTGATAGTGGATTCTACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X6F	AAAATAAAATCATTATCTTGCCTAAAG
C50RR 21 X/IGGAGAGGGGATAAACCTACC50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FGGGGCTCAAGATATAAAGGCC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9RTGATAGTGGATTCTACCCATGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X6R	GAATGATGCGTTTTGTAATTCTG
C50RF21 X8FTCTGACTAAGCAGGCTGCACC50RF21 X8FGGGGCTCAAGATATAAAGGCC50RF21 X9FTGAATAATTACCGACTGTTTACATAAGC50RF21 X9FTGATAGTGGATTCTACCCATGCC50RF21 X10FCTAGTTGTGCCCTGGGAGTCC50RF21 X10RTCGACACAAGCAGTGAGGAGC50RF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X7F	CATATGCTGTGTATGCAAGC
CSORF21 X8RGGGGCTCAAGATATAAAGGCC5ORF21 X9FTGAATAATTACCGACTGTTTACATAAGC5ORF21 X9FTGATAGTGGATTCTACCCATGCC5ORF21 X10FCTAGTTGTGCCCTGGGAGTCC5ORF21 X10RTCGACACAAGCAGTGAGGAGC5ORF36 EX3 FAATTTCTGCCCACCCTATC	C5ORF21 X7R	GGAGAGGGGATAAACCTAC
C5ORF21 X9F TGAATAATTACCGACTGTTTACATAAG C5ORF21 X9R TGATAGTGGATTCTACCCATGC C5ORF21 X10F CTAGTTGTGCCCTGGGAGTC C5ORF21 X10R TCGACACAAGCAGTGAGGAG C5ORF36 EX3 F AATTTCTGCCCACCCTATC	C5ORF21 X8F	TCTGACTAAGCAGGCTGCAC
C5ORF21 X9R TGATAGTGGATTCTACCCATGC C5ORF21 X10F CTAGTTGTGCCCTGGGAGTC C5ORF21 X10R TCGACACAAGCAGTGAGGAG C5ORF36 EX3 F AATTTCTGCCCACCCTATC	C5ORF21 X8R	GGGGCTCAAGATATAAAGGC
C5ORF21 X10F CTAGTTGTGCCCTGGGAGTC C5ORF21 X10R TCGACACAAGCAGTGAGGAG C5ORF36 EX3 F AATTTCTGCCCACCCCTATC	C5ORF21 X9F	TGAATAATTACCGACTGTTTACATAAG
C5ORF21 X10R TCGACACAAGCAGTGAGGAG C5ORF36 EX3 F AATTTCTGCCCACCCCTATC	C5ORF21 X9R	TGATAGTGGATTCTACCCATGC
C5ORF36 EX3 F AATTTCTGCCCACCCCTATC	C5ORF21 X10F	CTAGTTGTGCCCTGGGAGTC
C5ORF36 EX3 F AATTTCTGCCCACCCCTATC	C50RF21 X10R	TCGACACAAGCAGTGAGGAG
C5ORF36 EX3R GAGCAGGATACAAATAGACCAGG	C5ORF36 EX3 F	AATTTCTGCCCACCCCTATC
	C5ORF36 EX3R	GAGCAGGATACAAATAGACCAGG

C5ORF36 EX4FTTTCAGGGCCTGTGATATTATGC5ORF36 EX4RTGAATGAGTTGTATTCCCTGTTTACC5ORF36 EX5_1FGATAATCAGCTAGGTTTGAAATGAAGC5ORF36 EX5_1RTTTCACCATTGAAGATGGAGC	
C5ORF36 EX5_1F GATAATCAGCTAGGTTTGAAATGAA C5ORF36 EX5_1R TTTCACCATTGAAGATGGAGC	
C5ORF36 EX5_1R TTTCACCATTGAAGATGGAGC	
	С
C5ORF36 EX 5_2F CAGTGCTTACAACAACTCTTGTTTC	
C5ORF36 EX5_2R CATGTTTGCAGTGAGATTTAACC	
ANKRDX2-3F TTTTAACAGCTGTGCCTAACATC	
ANKRDX2-3R ATGCTATCTCTCCAGAGACTAAAATA	٩C
ANKRDX4F TGTTAGCAGCATAGCTTAAGAGTC	
ANKRDX4R AATCACCATGGCTCATTTGG	
ANKRDX5F AAGAAATTGCAGCCGTGTTC	
ANKRDX5R AAGTAATTGAGAGCCACTGCC	
ANKRDX6F GAGGGTGCATTTTACCTACTTG	
ANKRDX6R CACATGGTTCAAACACCAGC	
ANKRDX7F CTTGTGTTGATTGTGTTAAGGC	
ANKRDX7R CAGCCTGGTAACAGAGCAAG	
ANKRDX8F CTGTCAATGGATGAGATTTTCTG	
ANKRDX8R TCAGGCAAAACAAAATTCACTG	
ANKRDX9F TGTGAGGATCTTTGCTGTGG	
ANKRDX9R ACTTCGGGGCATTGATGTAG	
ANKRDX10F TTCCAAGGTTTTGGGGAAG	
ANKRDX10R CGTTACCTTTTATTGTGCATACAAC	
ANKRDX11F CAGCAAGGCCAGGAATTATC	
ANKRDX11R TTTTCCCCAAAACAAAATTATC	
ANKRDX12F GGGTTACTGTTTTGGTTTTAGACTG	
ANKRDX12R TTTGCCTTTTCATAAGTTTTGC	
ANKRDX13F TTCCAGCAGTATTCTAGAAGGAG	
ANKRDX13R GGCATATAAACCTTTACTCCCAC	
ANKRDX14F TGACTTTATTGAACTGGGGC	
ANKRDX14R GGAACCAGTCTCCAAGGACC	
ANKRDX15F GGGAGAGAATTAGTTAGCTAGGGTT	ГС
ANKRDX15R ATCTATGTGTGCGTGCATCC	
ANKRDX16F TTTGTGGATTAAAATCATGTGG	
ANKRDX16R TACAGTGAGCCGCGATTG	
ANKRDX17F GCAACCATAGTGATGCAACC	

ANKRDX17RTCTTTTGGGAAGCACTTAGAAAGANKRDX18FGTATGCTGGCACGCCTTGANKRDX18FGGGCAAATGTGTGAAACCTGANKRDX19FGGGGCCAGATCTCCTAGTTCANKRDX19FTTGGTATTATCAAAATATGGACACANKRDX20FTGAAGCACCTAGAAAGTCACACANKRD320FTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1F(2)GCTTCTATGTGCCCAAGCCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCTCCCTTTAAGCCFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGCTCATTGTTCFAM81B EX3RTTTTGCGTGTGAGATTTGCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGATGTGCAAGGFAM81B X7F (2)GTTTCCCGGCTCTTAAAGGFAM81B X7F (2)GCTTTCCAGGTCCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCAGACACTGAGTCCGGCACTTAGFAM81B EX9RCCCAGACCTTAAAGGAACATCCCAGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACGCCAGAGGAGGARSK EX1 FAGAGAACGCCAGAGGAGGARSK EX2 FTGTACCAGATACTGGCAACAGCARSK EX2 RAACCCCCAATAGCCAATATATACCARSK EX3 RTGTACACGCTATGGCAAGAGG		
ANKRDX18RGGGCAAATGTGTGAAACCTGANKRDX19FGGGGCCAGATCTCCTAGTTCANKRDX19RTTGGGTATTATCAAAATATGGACACANKRDX20FTGAAGCACCTAGAAAGTCACACANKRDX20RTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTCFAM81B X1F(2)CTCTGTTGTGCCCAAGCCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FCACAACAGGAAATGTGGGAGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX5FCCCCTGCTTTAAATGATGTTCCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCTTAAAGGFAM81B X7F (2)GTTTCCCGGCTCTTAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCAGACACTTAGCFAM81B EX9FCAGTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTGATCCCTGGCCATTAGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCCCGATTAGCFAM81B EX9FCAGGACTGCCGATTAGCFAM81B EX9FCAGTTGATCCCTGGCCATTAGFAM81B EX9FCAGTGCCGCATTAGCFAM81B EX10FGCAGGACTGCCGATAGCFAM81B EX10FGCAGGACTGCCGATAGCFAM81B EX10RCATTAGAAGCCAGAGGAGGAFAM81B EX10FGCAGGACTGCCGAC	ANKRDX17R	TCTTTTGGGAAGCACTTAGAAAG
ANKRDX19FGGGGCCAGATCTCCTAGTTCANKRDX19FGGGGCCAGATCTCCTAGTTCANKRDX20FTGAAGCACCTAGAAAGTCACACANKRDX20RTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21FCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTCFAM81B X1F(2)CTCTGTTGTGCCCAAGCCFAM81B X1F(2)CTCTGTTGTGCCCAAGCCFAM81B X3FAACAAACAGGAAATGTGGGAGFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX3FAACTGAGCTGATTATCTGGTCATGFAM81B EX3FAACTGAGCTGATTATCTGGTCATGFAM81B EX3FCACCCTCCAGCCAATCTTGFAM81B EX3FCCCCTGCTTTAAATGATGTTTCFAM81B EX4FGCTCCTCCAGCTATTCTTGFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTGCAGGFAM81B X6F (2)GCCATCAAATGATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCAGTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAAGCCCGAGAGGGAGGARSK EX1 RCCAAAGCCTGCAATAGCACAGGAAACATCCCAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 FTGTACCAGATACTGCAATATATACCARSK EX3 FTGGACTGCTCTCCAGAGTAATTG	ANKRDX18F	GTATGCTGGCACGCCTTG
ANKRDX19RTTGGGTATTATCAAAATATGGACACANKRDX20FTGAAGCACCTAGAAAGTCACACANKRDX20RTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1F(2)CTCTGTTGTGCCCAAGCCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGATTATCTGGTCATGFAM81B EX3FCACGCCTCCCAGCTCATTCTTGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACCACTGAGTCTCGTCACCFAM81B EX8FGACCACTGAGTCTCGTCACCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAAGCCCCAGAGGGAGGARSK EX1 FAGAGAACGCCAAGGAAACATCCCAAARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 FTGTACCAGATACTGCAAGGAAACACCCARSK EX3 FTGGACTGCTCTCCAGAGTAATATACCARSK EX3 FTGACCGCAATAGCCAATATATACCARSK EX3 FTGACCGCAATAGCCAATATATACCARSK EX3 FTGACCGATACGCAATATATACC <td>ANKRDX18R</td> <td>GGGCAAATGTGTGAAACCTG</td>	ANKRDX18R	GGGCAAATGTGTGAAACCTG
ANKRDX20FTGAAGCACCTAGAAAGTCACACANKRDX20FTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGATTATCTGGTCATGFAM81B EX3FCACGCCTCCAGCCATTCTTGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X6F (2)GCCAATGCTTTCATTAGGCFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACCACATGAGTCTCGTCACCFAM81B EX8FGACCACTGAGTCTCGTCACCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCATTAGFAM81B EX10FGCAAGCCCCAGAGGGAGGARSK EX1 FAGAGAACGCCCAGAGGAACACCCARSK EX1 RCCAAAGCCTGCAGTAACATCCCAGARSK EX2 FTGTACCAGATACTGCAATATATACCARSK EX3 FTGGACTGCTCTCCAGAGAATATG	ANKRDX19F	GGGGCCAGATCTCCTAGTTC
ANKROZORTGCTATCTACCTCTGCAGGATTCANKRD32 X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RGCCATCAAATGAATGTGCAGGFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACCCCAGAGGAGGARSK EX1 FAGAGAACGCCAGAGGAACACCCARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCATATATACCARSK EX2 RAACCCCAATAGCCATATATACCARSK EX2 RTGTACCAGATACTGCAGATATTACCARSK EX2 RTGTACCAGATACTGCAGATATTACCARSK EX2 RTGTACCAGATACTGCAACACCCARSK EX2 RTGTACCAGATACTGCAGATATTACC	ANKRDX19R	TTGGGTATTATCAAAATATGGACAC
ANKROZZ X21FAAGGAGAAAAGAGCTGTTAAGCTGANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACCAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX3RGCTCCTCCAGCTCATTCTTGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX5FCCCCTGCTTTAAATGATGTTCCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCAGACACTGAGTCTCGTCACCFAM81B EX9FCAGTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCAGAGGAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX2 FTGTACCAGATACTGGAAATTGARSK EX2 FTGTACCAGATACTGCAAATTATACCARSK EX2 FTGTACCAGATACTGCAAATTATACCARSK EX2 FTGTACCAGATACTGCAAATTATACCARSK EX2 FTGTACCAGATACTGCAAATTATACCARSK EX3 FTGACCAGATACTCCAAGAATTATACCARSK EX3 FTGACCAGATACTCCAAGAATTATACCARSK EX3 FTGTACCAGATACTCCAAGAATTATACC	ANKRDX20F	TGAAGCACCTAGAAAGTCACAC
ANKRO32 X211TCCACAGTAAGTACCAATGCAAACANKRD32 X21RTCCACAGTAAGTACCAATGCAAACFAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX3RGCTCCTCCAGCTCATTCTTGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X6R (2)CCTGATTGGGCATTTTGATAAGCFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCCCAGACCTTTACTCACTGCFAM81B EX9RCCCAGGACTGCCGATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAAAGCCTGCAGCACAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX2 RTGGACTGCTCTCTCAGAGTAATGCARSK EX2 RTGGACTGCTCTCTCAGAGTAATGCARSK EX2 RTGGACTGCTCTCTCAGGGTAATTG	ANKRDX20R	TGCTATCTACCTCTGCAGGATTC
FAM81B X1F(2)GCTTCTAAATCCCAGGGATTTCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX3RGCTCCTCCAGCTCATTCTTGFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTGCAGGFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX9FCCCAGACCTTTACTCACTGCFAM81B EX9FCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX2 RTGACCAGCTCTCTCAGAGTAATTGTGTACAGATACTGCAATTGTGTACAGATACTGCAATATTG	ANKRD32 X21F	AAGGAGAAAAGAGCTGTTAAGCTG
FAMOID XIT(2)CTCTGTTGTGCCCAAGCCFAM81B X1R(2)CTCTGTTGTGCCCAAGCCFAM81B EX2FTGAAAGCCTCCTTTAAGCCFAM81B EX2RACAAACAGGAAATGTGGGAGGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	ANKRD32 X21R	TCCACAGTAAGTACCAATGCAAAC
FAMBID XIN(2)FORMATION CONTRACTFAMBID EX18TGAAAGCCTCCCTTTAAGCCFAM81B EX28ACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3FAACTGAGCTGATATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4FCCAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5FCCCCTGCTTTAAATGATGTGCAGGFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X6F (2)GCCATCGATTGGGCATTTGATAAGCFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FCACACACTGAGTCTCGTCACCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX2 RAACCCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	FAM81B X1F(2)	GCTTCTAAATCCCAGGGATTTC
FAMBID EXELFAMBID EXELFAM81B EX2RACAAACAGGAAATGTGGGAGFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAM81B X6F (2)CCTGATTGGGCATTTGATAAGCFAM81B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B X7F (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FCACACACTGAGTCTCGTCACCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX10FGCAGGACTGCCGATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX2 RAACCCCCAATAGCCAATATTACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	FAM81B X1R(2)	CTCTGTTGTGCCCAAGCC
FAMILIE EX2RFAMILIE EX2RFAM81B EX3FAACTGAGCTGATTATCTGGTCTATGFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGGGARSK EX1 RCCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	FAM81B EX2F	TGAAAGCCTCCCTTTAAGCC
FAMOLD EXSTFORGETER AGATTEGED and aFAM81B EX3RTTTTGCGTGTGAGATTTGTCFAM81B EX4FGCTCCTCCAGCTCATTCTTGFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 FAGAGAACGCCAGAGGGAAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	FAM81B EX2R	ACAAACAGGAAATGTGGGAG
FAM81B EX4RGCTCCTCCAGCTCATTCTTGFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6F (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATG	FAM81B EX3F	AACTGAGCTGATTATCTGGTCTATG
FAMOLD EXAMCAAGCAATGCTGCCAAAATACFAM81B EX4RCAAGCAATGCTGCCAAAATACFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 FAGAGAACGCCAGAGGAACACCCARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX3R	TTTTGCGTGTGAGATTTGTC
FAMOLD EX4RDEPENDENCION DECOMPOSITIONFAM81B EX5FCCCCTGCTTTAAATGATGTTTCFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX4F	GCTCCTCCAGCTCATTCTTG
FAMOLD EXSTCOUCLED COUNCIDENT CACTORICFAM81B EX5RAGGAATGCGAATTCACTGGCFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX4R	CAAGCAATGCTGCCAAAATAC
FAMOID LXSIXFAMOID LXSIXFAM81B X6F (2)GCCATCAAATGAATGTGCAGGFAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 FCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX5F	CCCCTGCTTTAAATGATGTTTC
FAMILIE XOF (E)FAMB1B X6R (2)CCTGATTGGGCATTTTGATAAGCFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 FAGAGAACGCCAGAGGGAAGGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX5R	AGGAATGCGAATTCACTGGC
FAMBIB X0K(2)CONTROLOGICUMENTICATIONFAMB1B X7F (2)GTTTCCCGGCTCCTTAAAGGFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FGATTGATCCCTGGCCATTAGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B X6F (2)	GCCATCAAATGAATGTGCAGG
FAMBIB X7R (2)GCCAATGCTTTCATTAGGCFAMB1B X7R (2)GCCAATGCTTTCATTAGGCFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAMB1B X6R (2)	CCTGATTGGGCATTTTGATAAGC
FAMBIB XIT(2)EACHFAM81B EX8FGACACACTGAGTCTCGTCACCFAM81B EX8RCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAMB1B X7F (2)	GTTTCCCGGCTCCTTAAAGG
FAMILIE EXOLFAMILIE EXOLFAM81B EXOLCCCAGACCTTTACTCACTGCFAM81B EX9FCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9RGATTGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 FCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAMB1B X7R (2)	GCCAATGCTTTCATTAGGC
FAMILIE EXERCAGTTTTAGATACAAAGGAACTTGGFAM81B EX9FCAGTTTAGATCCCTGGCCATTAGFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX8F	GACACACTGAGTCTCGTCACC
FAMILIE EXSTEARCHARGENERGENERGENERGENERGENERGENERGENERGEN	FAM81B EX8R	CCCAGACCTTTACTCACTGC
FAMILIE EXIGNGCAGGACTGCCGATTAGCFAM81B EX10FGCAGGACTGCCGATTAGCFAM81B EX10RCATTAGAAGCAGTAAACATCCCAGARSK EX1 FAGAGAACGCCAGAGGGAGGARSK EX1 RCCAAAGCCTGCAGCACAGARSK EX2 FTGTACCAGATACTGGAAACACCCARSK EX2 RAACCCCAATAGCCAATATATACCARSK EX3 FTGGACTGCTCTCTCAGAGTAATTG	FAM81B EX9F	CAGTTTTAGATACAAAGGAACTTGG
FAM81B EX10R CATTAGAAGCAGTAAACATCCCAG ARSK EX1 F AGAGAACGCCAGAGGGAGG ARSK EX1 R CCAAAGCCTGCAGCACAG ARSK EX2 F TGTACCAGATACTGGAAACACCC ARSK EX2 R AACCCCAATAGCCAATATATACC ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG	FAM81B EX9R	GATTGATCCCTGGCCATTAG
ARSK EX1 F AGAGAACGCCAGAGGGAGG ARSK EX1 R CCAAAGCCTGCAGCACAG ARSK EX2 F TGTACCAGATACTGGAAACACCC ARSK EX2 R AACCCCAATAGCCAATATATACC ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG	FAM81B EX10F	GCAGGACTGCCGATTAGC
ARSK EX1 R CCAAAGCCTGCAGCACAG ARSK EX2 F TGTACCAGATACTGGAAACACCC ARSK EX2 R AACCCCAATAGCCAATATATACC ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG	FAM81B EX10R	CATTAGAAGCAGTAAACATCCCAG
ARSK EX2 F TGTACCAGATACTGGAAACACCC ARSK EX2 R AACCCCAATAGCCAATATATACC ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG	ARSK EX1 F	AGAGAACGCCAGAGGGAGG
ARSK EX2 R AACCCCAATAGCCAATATATACC ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG	ARSK EX1 R	CCAAAGCCTGCAGCACAG
ARSK EX3 F TGGACTGCTCTCTCAGAGTAATTG		TGTACCAGATACTGGAAACACCC
	ARSK EX2 R	AACCCCAATAGCCAATATATACC
ARSK EX3 R TGTACACGCTATGGCAGAGG	ARSK EX3 F	TGGACTGCTCTCCAGAGTAATTG
	ARSK EX3 R	TGTACACGCTATGGCAGAGG

ARSK EX4F(2)	CCATGTTGTTTTCTTAGTGTATGC
ARSK EX4R(2)	GAGCAAATACCAATAAGCCAC
ARSK EX5 F	TCATCATACATACTTATTGGAGGAAAG
ARSK EX5 R	TGTAAGAAAGTCACCAAGCAGC
ARSK EX6F(2)	GGGTAGAGTGGTTATAAAC
ARSK EX6R(2)	GGACCTCTGACTACTAACTG
ARSK EX7 F	GTGAATGATGCTATTTGTGAATG
ARSK EX7 R	GAGCAATGCTACATAGGGCAG
ARSK EX8 F	AACATAGGGTGTTTAACTCCTGG
ARSK EX8 R	TGACCTTGTGATCTGCTTTCC
RFESD EX2F	GCATTGGAATTTATGTGGCC
RFESD EX2R	GAGATGTCAAGTCAACAACC
RFESD EX3F	GGCTCCTGCCTGTTTACC
RFESD EX3R	GCCTGGAGTACACAGTTGGC
RFESD EX4-5F	CCGAACTATTCATTCTTAGGG
RFESD EX4-5R	GCATTAAAATATAGTTCAAACC
RFESD EX6F	GGTTCTTCTGCAGCAGACTC
RFESD EX6R	CCTTTAAAACTGAAGCAGAG
SPATA9 EX1-2F	TTCCAGCAGTGAGCTGTGAG
SPATA9 EX1-2R	TGAGGCAAAATTAGTGTTTTCTAAAG
SPATA9 EX3F	GCATGACACCATGCACAATG
SPATA9 EX3R	TCCAAGTATATCTGTTTTACACTGGAC
SPATA9 EX4F	GCCCAGATAGCTCTAAAGTAGATGAC
SPATA9 EX4R	TTGTGTAACGAGACTGTGAATGG
SPATA9 EX5F	TGTAGATTAAATGACTTTATGTGGAAC
SPATA9 EX5R	GCAGAGCAATTCAGAATATGTAAAC
RHOBTB3 X1-2F	CGGATTGCGGGTGAACTC
RHOBTB3 X1R(2)	GCGGGGGACAGCGCGCGGCG
RHOBTB3 X2F(2)	CGCCGCGCGCTGTCCCCCGC
RHOBTB3 X1-2R	GGACACTCCACACTCACGG
RHOBTB3 X3F	ATTTCAGGATTGATTGGACG
RHOBTB3 X3R	ATAGCAGCTGGCATTGAACC
RHOBTB3 X4F	TCTTTGTTGTTTAATGTTCAGATTG
RHOBTB3 X4R	CAAAATACCTAAAGAGGCAACC
RHOBTB3 X5F	TTGACAATTGTGACTTCAGATGC

RHOBTB3 X5RTGCTCAAGTTTGAGAATAATTGCRHOBTB3 X6FAAATTGTTGGGTCTGTAAACCTGRHOBTB3 X6RCACAGGCACATTTCATTTCCRHOBTB3 X7FTTAGGGGAAGTTAAACTGATCGRHOBTB3 X7RCACACAATCTAAGATACAAATAACCCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10RTTTGCTCAATTACCACACTGCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12FTCAATAGCTGATATCCTATCTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGELL2 EX11-12FCCTATACTCTGCAAGCTTGCAATGCELL2 X112RGAGATTCCAAGCCAAAGTTTACACCELL2 EX11-12RCTTTCAACAGCCAAAGTTTACACC		1
RHOBTB3 X6RCACAGGCACATITICATITICCRHOBTB3 X7FTTAGGGGAAGTTAAACTGATCGRHOBTB3 X7RCACAGACATCTAAGATACAAATAACCCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8RCATTCCTTCACACAAAACATTCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11RTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 FGAAAAGTTTGGAATCACGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2FCAGGACACTAGCAGAAGTCGAGFIS X4.2FCAGGACTCGCCATGACTCAGFIS X4.2FCAGGAATTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAAACAGCCCAGCGELL2 EX1F(2)CTGCAGAAGCCAAGCAGCGGELL2 X11RGAGATTGCAGAATTACCAACELL2 X11RGAGATTGCAATTCTCCATTACTTGCAATTCTCCTTATACTTGCAATTCCCATTACATCTGCAATTCCAATCCGTTTAAATTCTGCAATTCCCATTACATCTGCAATTCC <t< td=""><td>RHOBTB3 X5R</td><td>TGCTCAAGTTTGAGAATAATTGC</td></t<>	RHOBTB3 X5R	TGCTCAAGTTTGAGAATAATTGC
InternationalInternationalRHOBTB3 X7FTTAGGGGAAGTTAAACTGATCGRHOBTB3 X7RCACACAATCTAAGATACAAATAACCCRHOBTB3 X8FGCATAATTTTCCAAACTGCTAGCRHOBTB3 X8FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCAGGRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGGATGCTACGGTCCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 FGAAAAGTTTGGAATCACGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGCCTCTCTGAGCCCAGCAGCGELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCAGCGELL2 X11RGAGATTGCAGATTTCCAACELL2 X11RGAGATTGCAGAATTCCAACELL2 X11RGAGATTGCAGAATTCAACELL2 X11RGAGATTGCAGAATTCCAACELL2 X11RGAGATTGCAGAATTCCAACELL2 X11RGAGATTGCAGAATTCCAAC	RHOBTB3 X6F	AAATTGTTGGGTCTGTAAACCTG
RHOBTB3 X7RCACACAATCTAAGATACAAATAACCCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8RCATTCCTTCACACCAAACATTCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9RTAACAAAATGGGTGCCAAGGRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGGATGCTACGGTCCCGTGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCGGGLRX EX2 FGAAAAGTTTGGAATCACGGGGGLRX EX2 RCACGACAGAAGAACAGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGGFIS X1-2FTGTCAAAACAGACCACTGGGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGGELL2 EX11-12FCCTATACTTGGCATGCATGELL2 X11RGAGATTGCAGATTTCCAACELL2 X11RGAGATTGCAGAATTCCAACELL2 X12FGTTGTAAATTCGCAATCTC	RHOBTB3 X6R	CACAGGCACATTTCATTTCC
RHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8FGCATAATTTTCCAAATTCCTAGCRHOBTB3 X8RCATTCCTTCACACCAAACATTCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCAGGRHOBTB3 X10FATGGTGGATGCTACGGTCAGGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11RTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAAGGCAATCCGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X4.1FTAAGGGCTGGTTTGCAACFIS X4.2FCAGGAATCGCATGACCACTGGGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX11-12FCCTGCAGAAGCCCAAGCAGCGGELL2 EX11-12FCCTATACTTGCAATTTACAATELL2 X11RGAGATTGCAGAATTCCAACTTCRGTTGTAAATTCGCAATCTCRGTTGTAAATTCGCAATCTC	RHOBTB3 X7F	TTAGGGGAAGTTAAACTGATCG
INHOUTES XofCATTECTTCACACCAAACATTCRHOBTB3 X8RCATTECTTCACACACAAACATTCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGAAGGCACTTTAGCCTCRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTTGGAATCACGGGGLX EX2 RCACGACAGAAGAAAGGCAATCCAGGFIS X1-2FTGTCAAAACAGACCACTGGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X4.1FTAAGGGCTGGTTTCCCATGACCFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGATTTACAACELL2 X11RGAGATTGCAGATTTACAATCCELL2 X11RGTTGTAAATTCTGCAATCTC	RHOBTB3 X7R	CACACAATCTAAGATACAAATAACCC
RHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X9FGGAAAATTGCTGGAATAACCCRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCGGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAAGGCAATCCAGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGAATTGCCATGACTAGCFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAAATTCGCAATCCFIL2 X11RGAGATTGCAAATTCGCAATCCFIL2 X11RGAGATTGCAAATTCGCAATCCFIL2 X112FGTTGTAAATTCTGCAATCTC	RHOBTB3 X8F	GCATAATTTTCCAAATTCCTAGC
RHOBTB3 X9RTAACAAAATGGGTGGCAAGGRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCAAGCAATACCTGCGLRX EX1 FGAAAAGTTTGGAATCACGGGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAATCCCGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2FGGACAACTAGCAGGAAGTGGAGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCCAACCFIS X4.2FCACGACAGAATACTCAAATCCCTAGGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAAATTCCAACCELL2 X12FGTTGTAAATTCTGCAATCTC	RHOBTB3 X8R	CATTCCTTCACACCAAACATTC
RHOBTB3 X10FATGGTGGATGCTACGGTCAGRHOBTB3 X10FATGGTGGATGCTACGGTCACGRHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11RTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAATCCACGGGGLX EX2 RCACGACAGAAGAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.2RGCCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX1F(2)CTGCAGAAGCCAAGCAGCGELL2 EX1R(2)GCCTCTTGGAGCCAGCCTGELL2 X11RGAGATTGCAGAATTACCAACELL2 X12FGTTGTAAATTCTGCAATCTC	RHOBTB3 X9F	GGAAAATTGCTGGAATAACCC
RHOBTB3 X10RTTGTGAAGGCACTTTAGCCTCRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACCGACAGAAGAATCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCCGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCCATAACFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGGELL2 EX11RGAGATTGCAAATCTTGCGAATGCATGELL2 X11RGAGATTGCAGAATTCCAACCELL2 X12FGTTGTAAATTGCAATTTACAACCELL2 X12FGTTGTAAATTGCAATTCTGCAATCTC	RHOBTB3 X9R	TAACAAAATGGGTGGCAAGG
RHOBTB3 X11FATGAATATGGGCTCTCCGTGRHOBTB3 X11FTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 FGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2FGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.2RCCTTATCTAGTCCCCAGAGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)GCGCAGAATTCAATATTGGGGELL2 EX11-12FCCTATACTCTGCGAATGCATGELL2 X11RGAGATTGCAGAATTCACACELL2 X11RGAGATTGCAGAATTCACACELL2 X12FGTTGTAAATTCTGCAATCTC	RHOBTB3 X10F	ATGGTGGATGCTACGGTCAG
RHOBTB3 X11RTTTCCTCAATTACCACACTGCRHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAATCCACGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2RCCTTATCTAGCCCAGAGAGTCAGGFIS X4.2RCCTTATCTAGTCCCCAGAGGCFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCGELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGGELL2 EX11RGAGATTGCAGAATTTACAACELL2 X11RGAGATTGCAGAATTCACACELL2 X112FGTTGTAAATTCTGCAATCTC	RHOBTB3 X10R	TTGTGAAGGCACTTTAGCCTC
RHOBTB3 X12FTCAATAGCTGATATCTTAATTGATCCRHOBTB3 X12FCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAATCCACGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2FCAGGAATCTGCCATGACTCAGGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCGGELL2 EX11-12FCCTATACTCTGCGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X11RGAGATTGCAGAATTTACAACELL2 X112FGTTGTAAATTCTGCAATCTC	RHOBTB3 X11F	ATGAATATGGGCTCTCCGTG
RHOBTB3 X12RCCTGGAGGTATCCCATTCTTCGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCCELL2 EX1F(2)CTGCAGAAGCCCAGCCTGELL2 X11RGAGATTGCAGATTTACAATTACAATGCATGELL2 X11RGAGATTGCAGAATTCAACTCCCAGAATTGCAGAATTCAACTCCGTTGTAAATTCTGCAATCC	RHOBTB3 X11R	TTTCCTCAATTACCACACTGC
InternationalGLRX EX1 FATACCCCAAGCAATACCTGCGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAAACAGGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGCCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAGAATTCAACELL2 X12FGTTGTAAATTCTGCAATCTC	RHOBTB3 X12F	TCAATAGCTGATATCTTAATTGATCC
GLIAX EXTTTIGACAAGAAAAGGCAATCCGGLRX EX1 RTGACAAGAAAAGGCAATCCGGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAGAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	RHOBTB3 X12R	CCTGGAGGTATCCCATTCTTC
GLIAR EXTINFORMATION OF CONSTRUCTGLRX EX2 FGAAAAGTTTGGAATCACGGGGLRX EX2 RCACGACAGAAGAAGAATTCCACGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	GLRX EX1 F	ATACCCCAAGCAATACCTGC
OLICK EX21ONTOTION ACCOUNT OF A COUNT OF	GLRX EX1 R	TGACAAGAAAAGGCAATCCG
OLINALIZATGTCAAAACAGACCACTGGGFIS X1-2FTGTCAAAACAGACCACTGGGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	GLRX EX2 F	GAAAAGTTTGGAATCACGGG
FIG X1-21GGACAACTAGCAGGAAGTGGAGFIS X1-2RGGACAACTAGCAGGAAGTGGAGFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	GLRX EX2 R	CACGACAGAAGAATTCCACG
FIS X1F2IXFORMATION CONTROL CONTROL CONTROLFIS X3FAATAGCACTGGTGTCGGTGGFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X1-2F	TGTCAAAACAGACCACTGGG
FIG XGITTTTATGGTTATCAGTTTCACAGCFIS X3RTTTTATGGTTATCAGTTTCACAGCFIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X1-2R	GGACAACTAGCAGGAAGTGGAG
FIS X4.1FTAAGGGCTGGTTTGCGTAACFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X3F	AATAGCACTGGTGTCGGTGG
FIG X4.11TGTGAAATACTCAAATCCCTTCAGFIS X4.1RTGTGAAATACTCAAATCCCTTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X3R	TTTTATGGTTATCAGTTTCACAGC
FIG X4.11XCAGGATCTGCCATGACTCAGFIS X4.2FCAGGATCTGCCATGACTCAGFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X4.1F	TAAGGGCTGGTTTGCGTAAC
FIG X4.21TCCTTTCCAACCTTTCCAACFIS X4.2RTCCTTTCCAACCTTTCCAACFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X4.1R	TGTGAAATACTCAAATCCCTTCAG
FIG X4.2RGGCAGAATTCAATATTGGGGFIS X4.3FGGCAGAATTCAATATTGGGGFIS X4.3RCCTTATCTAGTCCCCAGAGGCELL2 EX1F(2)CTGCAGAAGCCCAAGCAGCCGELL2 EX1R(2)GCCTCTCTGAGCCCAGCCTGELL2 EX11-12FCCTATACTCTTGCTGAATGCATGELL2 X11RGAGATTGCAGAATTTACAACELL2 X12FGTTGTAAATTCTGCAATCTC	FIS X4.2F	CAGGATCTGCCATGACTCAG
FIG X4.3R CCTTATCTAGTCCCCAGAGGC ELL2 EX1F(2) CTGCAGAAGCCCAAGCAGCCG ELL2 EX1R(2) GCCTCTCTGAGCCCAGCCTG ELL2 EX11-12F CCTATACTCTTGCTGAATGCATG ELL2 X11R GAGATTGCAGAATTTACAAC ELL2 X12F GTTGTAAATTCTGCAATCTC	FIS X4.2R	ТССТТТССААССТТТССААС
ELL2 EX1F(2) CTGCAGAAGCCCAAGCAGCCG ELL2 EX1R(2) GCCTCTCTGAGCCCAGCCTG ELL2 EX11-12F CCTATACTCTTGCTGAATGCATG ELL2 X11R GAGATTGCAGAATTTACAAC ELL2 X12F GTTGTAAATTCTGCAATCTC	FIS X4.3F	GGCAGAATTCAATATTGGGG
ELL2 EXTR(2) GCCTCTCTGAGCCCAGCCTG ELL2 EX11-12F CCTATACTCTTGCTGAATGCATG ELL2 X11R GAGATTGCAGAATTTACAAC ELL2 X12F GTTGTAAATTCTGCAATCTC	FIS X4.3R	CCTTATCTAGTCCCCAGAGGC
ELL2 EXIT(2) CCTATACTCTTGCTGAATGCATG ELL2 EX11-12F CCTATACTCTTGCTGAATGCATG ELL2 X11R GAGATTGCAGAATTTACAAC ELL2 X12F GTTGTAAATTCTGCAATCTC	ELL2 EX1F(2)	CTGCAGAAGCCCAAGCAGCCG
ELL2 X11R GAGATTGCAGAATTTACAAC ELL2 X12F GTTGTAAATTCTGCAATCTC	ELL2 EX1R(2)	GCCTCTCTGAGCCCAGCCTG
ELL2 X12F GTTGTAAATTCTGCAATCTC	ELL2 EX11-12F	CCTATACTCTTGCTGAATGCATG
	ELL2 X11R	GAGATTGCAGAATTTACAAC
ELL2 EX11-12R CTTTCAACAGCCAAAGTTTCACC	ELL2 X12F	GTTGTAAATTCTGCAATCTC
	ELL2 EX11-12R	CTTTCAACAGCCAAAGTTTCACC

MIRN583 X1FCAACAAAACCCCATGATACAAGMIRN583 X1RTTGGTAAGTGGGAGCTCAGGPSCK1 EXON1 FGGGAGTCTGTCTGGCTTTTCPSCK1 EXON2 FTCAGATACCAGGAATGGGCPSCK1 EXON3 FGCAGAGCTGCCTGAACTCPSCK1 EXON4 FGTGCCCATTTTGTAGCAAGCPSCK1 EXON5 FAGCTATCAGCCAGGATGGGPSCK1 EXON6 FCCTATGCCCCATTAATTCATTC
PSCK1 EXON1 F GGGAGTCTGTCTGGCTTTTC PSCK1 EXON2 F TCAGATACCAGGAATGGGC PSCK1 EXON3 F GCAGAGCTGCCTGAACTC PSCK1 EXON4 F GTGCCCATTTTGTAGCAAGC PSCK1 EXON5 F AGCTATCAGCCAGGATGGG
PSCK1 EXON11 TCAGATACCAGGAATGGGC PSCK1 EXON3 F GCAGAGCTGCCTGAACTC PSCK1 EXON4 F GTGCCCATTTTGTAGCAAGC PSCK1 EXON5 F AGCTATCAGCCAGGATGGG
PSCK1 EXON2 F PSCK1 EXON3 F GCAGAGCTGCCTGAACTC PSCK1 EXON4 F GTGCCCATTTTGTAGCAAGC PSCK1 EXON5 F AGCTATCAGCCAGGATGGG
PSCK1 EXONA F GTGCCCATTTTGTAGCAAGC PSCK1 EXON5 F AGCTATCAGCCAGGATGGG
PSCK1 EXONS F AGCTATCAGCCAGGATGGG
PSCK1 EXON6 F CCTATGCCCCATTAATTCATTC
PSCK1 EXON7 F GCTGGGTTACAGAAATTGGG
PSCK1 EXON 8 F CACACATGTAGTCGTTGGGG
PSCK1 EXON9 F ATAGCAGATGCAGCCTTTGG
PSCK1 EXON10 F CACTTGCTTTTGCAAGGAAAC
PSCK1 EXON11 F GCAGATATGCATAAAATGCAAG
PSCK1 EXON12 F TCAGTTATCAGATGCTAGAGTGTATCC
PSCK1 EXON 13 F TCACATGAAATGCACAGAATC
PSCK1 EXON14 F CGTTCCTGTGGTAGGGTTG
PSCK1 EXON1 R CTCCCACTTGGAAGACCG
PSCK1 EXON2 R CCACATTTGCAAAATGCTTC
PSCK1 EXON3 R GCTCCCTATGAAATTCTCCATC
PSCK1 EXON4 R GCATCCCCTTGAAAAGAAGG
PSCK1 EXON5 R TGTTGTGCATTAACATTTCCTG
PSCK1 EXON6 R CATTTACAATGGGTGATGTAAGC
PSCK1 EXON7 R TGAAGAATGATTTGGCCCTC
PSCK1 EXON8 R AGGGGAATCATTTCACATGC
PSCK1 EXON9 R TGCAGTATTCCAAAATTTCTCC
PSCK1 EXON10 R AATCAGGCAGAATGGCAAAC
PSCK1 EXON11 R CAAAAGCAATCAGTTATTTGAATC
PSCK1 EXON12 R AAGGGGTACAATTCTTTAGGGC
PSCK1 EXON13 R TTCCTGCTTGGAAGTTGGG
PSCK1 EXON 14 R TTCAGACACAGGCAAAATCG
LNPEP X1F CTCGGAGTAGGAAGCTCGG
LNPEP X1R GACTGCCCACGACCCTC
LNPEP X2-1F CAGTAGCTCTGAGATGGAAATAAGTC
LNPEP X2-1R TTAGGTTCGGGTGTAGGCTG
LNPEP X2-2F CTGCCCAGATGTACCTTTACC

LNPEP X2-2R	TCTCTGGTGTGGACAAAGGG
LNPEP X3F	GGTGCCTTGTACAGTAGGTGC
LNPEP X3R	TCTGGCAAAGAGGAATTTAAGTG
LNPEP X4F	TTGTTTGTTATTGCCATTTATTCC
LNPEP X4R	CCAGGAATCGTTAAAGCAAGAG
LNPEP X5F	TGCTAGTCTTGACAGTGCTACTTG
LNPEP X5R	CAAACAACTTGGGCAGAACC
LNPEP X6F	CTTCCTCAGCTGACATGTGG
LNPEP X6R	AAATGCTAACAATAACTCCAGGAC
LNPEP X7F	CTTGCTTGTTTCCCATTCAG
LNPEP X7R	TCAAGTTTGGCATACCTTCC
LNPEP X8F	TCCTGAAGTTTAGTGACACTGGTC
LNPEP X8R	CACACAGCTTGCTCACATACG
LNPEP X9F	ACAGTTGAACACAGTCCACATC
LNPEP X9R	TTGACATAAAATTTAGTGCTCCATTC
LNPEP X10-11F	TTGCTCATTTACCTAGATTAGAAGTG
LNPEP X10F	GGAAAAGAGGGAAGGGTACAG
LNPEP X10R	GGGATAATCTTGTTAGGTTTCAC
LNPEP X10-11R	TTGCTCATTTACCTAGATTAGAAGTG
LNPEP X11F	CATATGTAACTAATTTTCC
LNPEP X11R	GCACACTGGAAAGTGTAATC
LNPEP X12F	CCTTCACTAACGTGAAAATAACTG
LNPEP X12R	TTTCCCAATCCTCCAAAATG
LNPEP X13F	AGCATGCATAGACTTCTTCTGTG
LNPEP X13R	TTACTGGCTGAAAATGGAACC
LNPEP X14F	TTACAGGCACGAGACACTGC
LNPEP X14R	GATCCAGGATGAGAATACCCTG
LNPEP X15F	GAAACTCCACCAGGCCAAC
LNPEP X15R	GGGGAAAAGAGATCCCCTC
LNPEP X16F	GCAACAGTTATTTCTCAATTTGC
LNPEP X16R	TCTGTGAGCCAAAACACTGG
LNPEP X17F	CACTCAGGAACAACGCTTTAC
LNPEP X17R	ACTAAAACTGAGCAGCCTGG
LNPEP X18F	GCAGCACAGCCATCACTAAG
LNPEP X18R	TGGCTTTACCTTGGCTTTTG

LRAP X1-1F	TGCAGTGCCATGAAGAACTAC
LRAP X1-1R	GATTTCAAGATCTTTGCTGTGC
LRAP X1-2F	TCTTTGTCCACCCCAATCTC
LRAP X1-2R	GAAGTCTGCTCCTGGCAAAG
LRAP X2F	CCCAGGTTTGATAAGCTGTTTG
LRAP X2R	ATGGCTGAAATCCTGAAAGC
LRAP X3F	TGCCATAAGTCATAGGCATGG
LRAP X3R	CAAAAGTTCATTGCTCTCAGG
LRAP X4F	AATGGAATTATGCCAGGGAG
LRAP X4R	GGAAGAGATCAAAGCAAGTTTTATG
LRAP X5F	AAAGGATCATAGTGTATTTGAGCAG
LRAP X5R	TTGTTTCAGGAAGATTGGTCG
LRAP X6F	CAGAGAGAAAAGGGTAGCAAAG
LRAP X6R	TCCAGTTCTGTGATCTGTTTCG
LRAP X7F	CATCTTACTAAACCTACTATG
LRAP X7R	GGCACCAGTGACTTAAACTGCTG
LRAP X8F	GCTTCCTTTAAAAACATACC
LRAP X8R	GCAGAATAAATATGGTTGACTGAC
LRAP X10F	TGTCCCTCTGTCTTTGGATTG
LRAP X10R	AAGGAAATAACGAGGAAACTGAG
LRAP X11F	TGGGTACTTAGGTGCCTTTTAC
LRAP X11R	TTATTGTATCGTTCCTTCAAATAGC
LRAP X12F	ТССССАААСТТСАТСТТССС
LRAP X12R	TTGAAGTCTAGCATATCTGGTTACG
LRAP X13F	AAGGCAATAGGTCCAGAGAGG
LRAP X13R	GCTCTTAGGATTGGCAATGG
LRAP X14F	ACTGTTTGGGGAAAGATTGG
LRAP X14R	AGGGTTTGTAATGCCCAGC
LRAP X15F	AAAATGCCTTCAACTTGGTG
LRAP X15R	GCCTTTAAAACTGGTGGCTG
LRAP X16F	TGGTGGCTTGAGTTAATGTCC
LRAP X16R	TTGAGGCAACTGAGACATCTG
LRAP X17F	TTTCACAGCTTTAGAATTGTACTGG
LRAP X17R	GGTTTTAATCCTGTCCCTTCC
LRAP X18F	CCTGTGTGTATGTAATTTGCAAGC

	TGAGCTTCACTGGTGTTACCC
	CTGCAGAAGCCCAAGCAGCCG
ELL2 EX1F(2)	GCCAGCCACGGCTCCGCCGGC
ELL2 X1R (3)	GCCTGGCCCAAATAACATAG
ELL2X2F	AAAGGGTCAACTGAAAACGG
ELL2X2R	CATGTTTGCCAGATTCCTTG
ELL2X3F	TTGAACTGTTGTGATTATATCCCC
ELL2X3R	TTGCAAACTTAGTTGGGCTG
ELL2X4F	TCACCATGTTATCCAAAATGTTC
ELL2X4R	TTGTGGAAACTGAGGTGCTC
ELLRX5F	GTCCCAAATAAAGACAATGCTC
ELL2X5R	
ELL2X6-7F	
ELL2X6-7R	GCTTAAGCATGAAGAAAGCG
ELL2X8_1F	
ELL2X8_1R	
ELL2X8_2F	
ELL2X8_2R	GTCATGCTGAGGCTGCAC
ELL2X9R	
ELL2X9R	AGGGTGGCTCCAGGACTC
ELL2X10F	AGTGGCAGAGTGGCATTAAAC
ELL2X10R	AGGGCAGGGAAAGAAGAAG
ELL2 EX11-12F	CCTATACTCTTGCTGAATGCATG
ELL2 X11R	GAGATTGCAGAATTTACAAC
ELL2 X12F	GTTGTAAATTCTGCAATCTC
ELL2 EX11-12R	CTTTCAACAGCCAAAGTTTCACC
RGMBX2F	GTGTTCCGAAGTTCAGGGG
RGMBX2R	GAAAGGAAAGGAGAGAAAATAAGG
RGMBX3F	CTTTGTGTCTTCTCTTCCGC
RGMBX3R	GCTATTTGGGAACAAAGCCC
RGMBX4F	TTCTCATGTAGCTCAGGAAGTTATG
RGMBX4R	AGGCCCTTTATAGCACATTTC
RGMBX5_1F	GGTTACCCCGTTCTGCTTC
RGMBX5_1R	TGTTGGCAGTCTCCAGTGTG
RGMBX5_2F	CATCCGTATGCCTGAAGACC
RGMBX5_2R	GGTGTCCCAGGACAAACATC

NUDT12X2FGGGCATATAAATTGCGTTGCNUDT12X2RGACTCCTCATAAATTGCTTTGCNUDT12X3FTGAAATAAATACGGAGAAAGTGTTTACNUDT12X3RGGAAAGTGCAAATACATACAACTCCNUDT12X4FAAAACCCCTGATCACACAGCNUDT12X4FAAAGGAAAACTCTTTAGGTCCTCACNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6FTGGATGTTGTCACTTTCACTGTTGNUDT12X7FTGGATGTTGTCACTTTCTACTGTTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCCAATCAAAAGTCAGCAGCCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCTAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGAGGAAATTATTCCAGGCHD1 FRAG6 RTGGTGGAGAAAGAGTGATTCCHD1 FRAG7 FTGGGGCAAAAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGGGATCAAAGAAGAAGAAGAACACCHD1 FRAG8 RCTGTGTGGGATCAAGAGCAACACCHD1 FRAG8 RCTGTGTGGGATCTAAGGTGGAGCACCCHD1 FX14(2) FCATGCATGTGGTTCAGGTGGAGCACCCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4RACCACTTTGCTTGCATGCTTGCGTTTGGACTTC37 X4RACCACTTTGCATGCTAGCTGCTTCTGTTC37 X4RTCCTGACCATGCTAGCTAGCTTCTGG		
NUDT12X3FTGAAATAATACGGAGAAAGTGTTTACNUDT12X3FTGAAATAATACGGAGAAAGTGTTTACNUDT12X3RGGAAAGTGCAAATACATACAACTCCNUDT12X4FAAAAGCACAATCCTTTAGGTCCTCACNUDT12X4FAAAGGAAAACTCTTTAGGCCCTCACNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6FTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCACGTGTGNUDT12X7RCCAACATCGTATTTTGTGTTGTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 RACATTAACAGTTGCTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAACCTTGGCHD1 FRAG3 FTCCCATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGGCHD1 FRAG7 FTGGGGCAAAGAAGAGAGATGATTCCHD1 FRAG8 RCTGTGTGGGATCTCAAGGTGCGGGCCHD1 FRAG8 RCTGTGTGGGATCTAAGGAGGAGACHD1 FRAG8 RCTGTGTGGGACCAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACCAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACCAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGACAAAGACAGCAACCHD1 FX1(2) RGCTAGGAGAGTGGGGGCACCCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTGCACTTTCCACTTC	NUDT12X2F	GGGCATATAAATTGCGTTGC
NUDT12X3RGGAAAGTGCAAATACATACATACAACTCCNUDT12X4FAAAACCCCTGATCACACAGCNUDT12X4FAAAGGAAAACTCTTTAGCTCCTCACNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5RAAAGCAGACCAAATTACTAGGAAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6RTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCACTGTTGNUDT12X7FTGGATGTTGTCACTTTCACGGGAAGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTCCAGGCTACAAAGCAGAAAACCTCCHD1 FRAG3 FTCCAATCAAAAGCAGAAAACCTCGCHD1 FRAG3 FTCCCAATCAAAAGCAGCAGCCHD1 FRAG3 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG3 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG3 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG3 FTCCCCTTTCAAAAGTTAGATGGCHD1 FRAG4 RACAACAGTGTCAGCAGAGCCCHD1 FRAG5 FTCCCCTTTCAACAGTTGCACGGCHD1 FRAG5 FTCCCCTTTCAACAGATTAGATGGCHD1 FRAG6 FGAATTGGGAGGAAATTATCCAGCHD1 FRAG6 FGCATGGGGCAACAGAGGAGAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATCCHD1 FRAG8 RCTGTGTGGGATTCAAGGTGGGGGCACCCHD1 FRAG8 RCTGTGTGGGATCCAAGGAGAGAACCHD1 FX14(2) FCATGGATCTCAGGGGGGAACCHD1 EX14(2) FCATGCATCTTTTTGGAGGGGGAACCCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTTTGCTTTGGAC	NUDT12X2R	GACTCCTCATAAATTTGCTTTGC
NUDT12X3RDistributionNUDT12X4FAAAACCCCTGATCACACAGCNUDT12X4RAAAGGAAAACTCTTTAGCTCCTCACNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5FTCAGCCACAATTACTAGGACACAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6RTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTTGTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 FTTCAGGGCTACAAAGCAGAAAACCTCCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCGCHD1 FRAG3 FTCCCAATCAAAAGCAGCAGCAGCCHD1 FRAG3 FTCCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCCCATCTAAAATCTTCCCAGGCHD1 FRAG3 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG3 FTCCCCTTTCAAAATTTACACGGGCCCHD1 FRAG3 FTCCCCCTTTCAAAGATTAGATGGCHD1 FRAG4 RACAACAGTGTCAGCAGAGCCCHD1 FRAG5 FTCCCCTTTCTACTGCGCCCHD1 FRAG5 FTCCCCTTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGAAATTATCCAGCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTGGACAAAGACAGCAACCHD1 EX7(2) FGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGAGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTTTGCATCTTCGACC	NUDT12X3F	TGAAATAAATACGGAGAAAGTGTTTAC
NUDT12X4RAAAGGAAAACTCTTTAGCTCCTCACNUDT12X4RAAAGGAAAACTCTTTAGCTCCTCACNUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5RAAAGCAGACCAAATTACTAGGAAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6RTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTGGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 FTTTATATTCATCTTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCCATCTAAAAGTCAGCAGCCHD1 FRAG3 FTCCCCTTCTAAAATCTTCCCAGGCHD1 FRAG4 RACAACAGTGTCAGCAGCACCCGCHD1 FRAG5 FTCCCCTTTCAAAAATTAGATGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG6 FGAATTGGGAGGAAATTATCCAGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGTGGTTAAGATGGGCCHD1 FRAG8 RCTGTGTGGGACAAAGAAGATGATCCHD1 FRAG8 RCTGTGTGGGACAAAGAAGAAGATGATCCHD1 FRAG8 RCTGTGTGGGACAAAGAAGAAGAACACCCHD1 FX1(2) FCATGGATCTCAGGTGGAGACCHD1 EX7(2) FGCTGTGGACAAAGACAGCAACCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTTTGCTTTGGAC	NUDT12X3R	GGAAAGTGCAAATACATACAACTCC
NUDT12X5FTCAGCTACATTAGGGCAGAAAGNUDT12X5FTTGACCATTCAGGACAAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6FTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTGTGGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAACCTTGGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCGCHD1 FRAG3 FTCCCATCTACAAAGTCAGCAGCGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCAAAGTTAGATGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG6 FGAATTGGGAGAAATTATCCAGGCHD1 FRAG6 FGAATTGGGAGAAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCAAAGTGGGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGACCAAGCAACACHD1 EX14(2) FCATGCATCTTTTGGAGGAGGAACCCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTTGGAC	NUDT12X4F	AAAACCCCTGATCACAGC
NUDT12X5RAAAGCAGACCAAATTACTAGGAAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6RTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCTACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTGTGGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTCCAATCAAAAGCAGAAAACCTGGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCAAGGCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG3 RTCTCCTTCTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGAAAGATGATTCCHD1 FRAG6 FGCTGTGAGCAAGAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTGGGACTCCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FX1(2) FCATGCATCTTCTTGGGAGGAGACCHD1 EX14(2) FCATGCATCTTTTGGACGGAGGCACCCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTGGAC	NUDT12X4R	AAAGGAAAACTCTTTAGCTCCTCAC
NUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X6FTTGAACCATTCAGGACACAAAGNUDT12X7FTGGATGTTGTCACTTTCTACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTGTGGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAACCTTGGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 FTCTCCTCTTCTACAGGAGGCCHD1 FRAG5 FTCTCCTCTTCAAAGATTAGATGGCHD1 FRAG5 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 FGCTGTGAGCAAGAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGACAAAGCAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FRAG8 RCTGTGGGACAAAGACAGCAACCHD1 FX14(2) FCATGCATCTTCTTGGGAGGAGGGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGCCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTGGAC	NUDT12X5F	TCAGCTACATTAGGGCAGAAAG
NUDT12X6RTGCTCTGTGACCAAACCAATACNUDT12X7FTGGATGTTGTCACTTTCTACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTTGTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGCAGCAGCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG5 FTCCCCTTTCAAAATCTTCCCAGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG5 FGCGTGAGGAGAAATTATTCCAGCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 FCGTGAGGATTCAAGTTGCTGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTGGTTTATGATATATGGCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGACAGCAACCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGGCHD1 EX14(2) RGTAGAGAAAGTGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTGGTTTGGAC	NUDT12X5R	AAAGCAGACCAAATTACTAGGAAAAG
NUDT12X0RTGGATGTTGTCACTTTCTACTGTTGNUDT12X7FTGGATGTTGTCACTTTCTACTGTTGNUDT12X7RCCAACATCGTATTTTGTGTTGTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 RACATTAACAGTTGCTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGCAGCAGCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAAATCTTCCCAGGCHD1 FRAG3 RTCTTCTTCAAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGGTGGGCAAAGAAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 RCTGTGTTGGTTTATGATATATGGCCHD1 FRAG8 RCTGTGTGGGATCCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGACAAAGAAGAAGATGATCCHD1 FRAG8 RCTGTGTGGGACAAAGAAGACAGCAACCHD1 FRAG8 RCTGTGTGGGACAAAGAAGAAGAAGATCCHD1 FX7(2) FGCTGTGGGACTCAAGGTGGGGGGAGCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGGAGGCHD1 EX14(2) RGTAGAGAAAGATGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTGCTGTTGGTGTTGGGAC	NUDT12X6F	TTGAACCATTCAGGACACAAAG
NUDT12X7TCCAACATCGTATTTTGTGTTGTGNUDT12X7RCCAACATCGTATTTTGTGTTGTGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 RACATTAACAGTTGCTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGCAGCAGCCHD1 FRAG3 FTCCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTTGGTTTATGATATATGGCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FX7(2) FGCTGTGGGACAAAGAAGAAGAAGAACAGCAACCHD1 EX7(2) RGTAGAGAAGGTGGGGGGCACCCTC37 X4FCTTTTCCAGGGTCCCTTTCTTC37 X4RACCACTTTGCTGTTTGGAC	NUDT12X6R	TGCTCTGTGACCAAACCAATAC
NOD TEXANTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 FTTTATATTCATCTTTTAAACTGGGAAGCHD1 FRAG1 RACATTAACAGTTGCTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGTCAGCAGCCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 FTCTCCTACTTCTACTGCGCCCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FX7(2) FGCTGTGGGACTCCAGGTGGATCCHD1 EX7(2) FCATGCATCTTCTTGGGAGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTCTTC37 X4RACCACTTTGCTGTTTGGAC	NUDT12X7F	TGGATGTTGTCACTTTCTACTGTTG
CHD1 FRAG1 RACATTAACAGTTGCTTGGCGCHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGCAGAAAACCTCGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 FTCCCCTTTCAAAATCTAGATGGCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 FGAATTGGGAGGAAGATCACCGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTTGGTTTATGATATATGGCCHD1 FRAG8 RCTGTGTGGGATCCAGGGGAACCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGAGGCHD1 EX14(2) RGTAGAGAAAGTGGGGGCACCTCC37 X4RACCACTTTGCTGTTGGAC	NUDT12X7R	CCAACATCGTATTTTGTGTTGTG
CHD1 FRAG2 FCAAAGTCAAAAGCAGAAAACCTCCHD1 FRAG2 RTTCAGGGCTACAAAGCAGAAACCTTGGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGGTGAGAGAGAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTTGGTTTATGATATATGGCCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGAGGCHD1 EX14(2) RGTAGAGAAAGTGGGGGCACCTCC37 X4RACCACTTTGCTGTTGGACAAGC	CHD1 FRAG1 F	TTTATATTCATCTTTTAAACTGGGAAG
CHD1 FRAG2 TEXPENSION OF CONStructionCHD1 FRAG2 RTTCAGGGCTACAAAACCTTGGCHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCGCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAGAATTATTCCAGCHD1 FRAG6 FGAATTGGGGCAAAGAAGATGATTCCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGGCHD1 EX14(2) RGTAGAGAAAGTGGGGGGCACCTCC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG1 R	ACATTAACAGTTGCTTGGCG
CHD1 FRAG3 FTCCAATCAAAAGTCAGCAGCCHD1 FRAG3 FTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4RACCACTTTTGCTGTTGGACAAGC	CHD1 FRAG2 F	CAAAGTCAAAAGCAGAAAACCTC
CHD1 FRAG3 RTCTTCTTCAAAATCTTCCCAGGCHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG8 FCCTGAGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTGGGATTCAAGTTGCTGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG2 R	TTCAGGGCTACAAACCTTGG
CHD1 FRAG4 FGTGTTGATGAAGCACACCGCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 FX7(2) FGCTGTGGGACAAAGAAGACAGCAACCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTCTTC37 X4RACCACTTTTGCTGTTTGGTTTGGAC	CHD1 FRAG3 F	TCCAATCAAAAGTCAGCAGC
CHDTTRAG4TACAACAGTGTCAGCAGAGGCCHD1 FRAG4 RACAACAGTGTCAGCAGAGGCCHD1 FRAG5 FTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGTTGGTTTATGATATATGGCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGTAGACAGCAC	CHD1 FRAG3 R	TCTTCTTCAAAATCTTCCCAGG
CHDTTRMOURTCCCCTTTCAAAGATTAGATGGCHD1 FRAG5 FTCTCCTACTTCTACTGCGCCCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTGTTC37 X4RACCACTTTTGCTGTTGGAC	CHD1 FRAG4 F	GTGTTGATGAAGCACACCG
CHDTTRAGSTTCTCCTACTTCTACTGCGCCCHD1 FRAG5 RTCTCCTACTTCTACTGCGCCCHD1 FRAG6 FGAATTGGGAGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG4 R	ACAACAGTGTCAGCAGAGGC
CHDTTRAGG RGAATTGGGAGGAGGAAATTATTCCAGCHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTTGCTGTTGGTTTGGACAAGCAGCAAC	CHD1 FRAG5 F	TCCCCTTTCAAAGATTAGATGG
CHD1 FRAG6 RTGATGAGGTAGTCTGCACGGCHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGTGGGATCTCAGGTGGATCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX7(2) RGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG5 R	TCTCCTACTTCTACTGCGCC
CHD1 FRAG7 FTGGGGCAAAGAAGATGATTCCHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGTGGTTTATGATATATGGCCHD1 EX7(2) FGCTGTGGGATCTCAGGTGGATCCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGGGGGGGGGGGGGGGGGGG	CHD1 FRAG6 F	GAATTGGGAGGAAATTATTCCAG
CHD1 FRAG7 RCGTGAGGATTCAAGTTGCTGCHD1 FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGATCTATGATATATGGCCHD1 EX7(2) FGCTGTGGGACAAAGACAGCAACCHD1 EX7(2) RGCTGTGGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGAGGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG6 R	TGATGAGGTAGTCTGCACGG
CHD1FRAG8 FTCCTGAACAAATTAAGCAATGGCHD1 FRAG8 RCTGTGTGGGTTTATGATATATGGCCHD1 EX7(2) FGCTGTGGGATCTCAGGTGGATCCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTCTTC37 X4RACCACTTTGCTGTTTGGAC	CHD1 FRAG7 F	TGGGGCAAAGAAGATGATTC
CHD1 FRAG8 RCTGTGTGGGTTGGTTTATGATATATGGCCHD1 EX7(2) FGCTGTGGGATCTCAGGTGGATCCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG7 R	CGTGAGGATTCAAGTTGCTG
CHD111100011CHD1 EX7(2) FGCTGTGGGATCTCAGGTGGATCCHD1 EX7(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG8 F	TCCTGAACAAATTAAGCAATGG
CHD1 EXT(2) RGCTGTGGACAAAGACAGCAACCHD1 EX14(2) FCATGCATCTTCTTGGGAGGGAGCHD1 EX14(2) RGTAGAGAAGGTGGGGGGCACCTCC37 X4FCTTTTCCAGGGTCCCTTTTCTTC37 X4RACCACTTTTGCTGTTTGGAC	CHD1 FRAG8 R	CTGTGTTGGTTTATGATATATGGC
CHD1 EX14(2) F CATGCATCTTCTTGGGAGGGAG CHD1 EX14(2) R GTAGAGAAGGTGGGGGGCACC TCC37 X4F CTTTTCCAGGGTCCCTTTTC TTC37 X4R ACCACTTTTGCTGTTTGGAC	CHD1 EX7(2) F	GCTGTGGGATCTCAGGTGGATC
CHD1 EX14(2) R GTAGAGAAGGTGGGGGGCACC TCC37 X4F CTTTTCCAGGGTCCCTTTTC TTC37 X4R ACCACTTTTGCTGTTTGGAC	CHD1 EX7(2) R	GCTGTGGACAAAGACAGCAAC
TCC37 X4F CTTTTCCAGGGTCCCTTTTC TTC37 X4R ACCACTTTTGCTGTTTGGAC	CHD1 EX14(2) F	CATGCATCTTCTTGGGAGGGAG
TTC37 X4R ACCACTTTTGCTGTTTGGAC	CHD1 EX14(2) R	GTAGAGAAGGTGGGGGCACC
	TCC37 X4F	CTTTTCCAGGGTCCCTTTTC
TTC37 X5R TCCTGACTCATGCTAGACTTTCTG	TTC37 X4R	ACCACTTTTGCTGTTTGGAC
	TTC37 X5R	TCCTGACTCATGCTAGACTTTCTG

TTC37 X5R	AGTTTAATGTTGAAACCTGTATTTTG
TTC37 X6F	ATATTTAGAGGCAAATCTCAGACAG
TTC37 X6R	AAAGCTTCGCAATTCCCAG
TTC37 X7F	GGATTGACTAATTTTGGAACTTTG
TTC37 X7R	ACCACAACATCTGCCTCCTG
TTC37 X8F	ATGGGGTTCTATGCTTTTGC
TTC37 X8R	AAATGACAATGATCAATTATGTTTCC
TTC37 X9-10F	TGCAGTTAATTGAACGTGTAGTTTG
TTC37 X9-10R	AACAACACCTTAAACATGGTAGACAC
TTC37 X11F	GGGTTTGGGCATTTAGAAAC
TTC37 X11R	GGCTCAAAGATAAATGCCTACTG
TTC37 X12F	TGGATGGCAAGCACTTGTAG
TTC37 X12R	TGTCAATATTCCAAATGCAGG
TTC37 X13F	TTGTTTTGGAAATTTATGCTTATTG
TTC37 X13R	AGGCAGAGAATGGTTGTTGC
TTC37 X14-15F	AACATTGCTGTGGTTGTGTTG
TTC37 X14-15R	AAAATCAAATCTTCATCAAGCC
TTC37 X16F	TTGGCACCTCTGAATCACTC
TTC37 X16R	CAAAACCTGACATATGAAAGATAAAG
TTC37 X17F	AGGGACAGCTTTCCTGTCTG
TTC37 X17R	AAAAGACAGAACGCTCATGTAAAG
TTC37 X18F	TTGAAACTGTAATTTGATGTATACCAG
TTC37 X18R	TCTCAAAATACAACCTGGTAAGAGAC
TTC37 X19F	GAGATGGACACCTGTCCTGG
TTC37 X19R	TCATATGGATGCTTGCTGTTG
TTC37 X20F	AAAGTGCTTTAAAATAACACCAATAAC
TTC37 X20R	TGTATGTTATAGAATTGGCTTGTCTG
TTC37 X21-22F	AATCAGGGAGATAAACTTCATGC
TTC37 X21-22R	CCAAAACAACTTCGAGAAAAGC
TTC37 X23-25	TTGGATGAAGTAAATAGTGTTTTCAC
TTC37 X23-25	CATTTCTCCACAAGAAGCTGAG
TTC37 X26F	AAATCTGTTGCACCCAGGAG
TTC37 X26R	AGCCCTCAAATGCTATCCG
TTC37 X27F	GCTCAGCTAGTAAACCTTTGGTTC
TTC37 X27R	TAAGCCACTATGCCTAGCCC

TTC37 X28FTTAACAAT IGAC ITAAGAACAC IGAGTTC37 X28RAGACTGCTTCGCTGTTGCTTC37 X29FGCCACTATTCTTAACAGTGTGAGTGTTC37 X29RAGGAACCCTTCCCCTCATCTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X30RCAGTCCCATAGCTTCACCAGTTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X32FGCTTCATCAATAGCAGCACCCCTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32FGCTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGATCCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATACCTTGTGTTGTAGCATTC37 X40FTGTTGGAAGCAGGGGTAACAGACTTC37 X40FTGTTGGAAGCAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACAACTTC37 X43FCCCTTGGATACCTGGCTTCTTC37 X43FCCCTTGGATACAGAGCTTC37 X43FCCCTTGGATACCAGGCAGAGCTTC37 X43FCCCTTGGATACCAGGCAGAGCTTC37 X43FCCCTTGGAAGAAGATTCAAACACTTC37 X43FCCCTTGGAAGAAGACCATTGGCTTCTTC37 X43F<		TTAACAATTCACTTAAACAACACTCAC
TTC37 X29FGCCACTATTCTTAACAGTGTGAGTGTTC37 X29FGCCACTATTCTTAACAGTGTGAGTGTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X31RTTTTAATAAACATTGCAACCCCTTC37 X32FGCTTCATCACAGGATGGCTTC37 X32RGCTTCTCCCATTCTCAACCCTTC37 X32RGCTTCTTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33RAGTCCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39FTTTACAGGCTGTTCATAGCCCTGACTTC37 X40FTGTTGGAAGCAGGCCAGAGCTTC37 X41FAACCTGGGAAGCAGGCTTC37 X42FTGGTACCTAGTGCATAACAAGAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X42FTGGTACCTAGTGCATGATAAAACACTTC37 X43FCCCTTGGATACCAGGTACAAACTGTTC37 X43FCCCTTGGATACCAGGTACAAACTGTTC37 X43FCCCTTGGATACTAGCTTCTTC37 X43FGGGTAGAAGTTCTGGCTTCTTC37 X43FCCCTTGGATACCAACGGTGCAGTTC37 X43FCCCTTGGATACCAACGGTGCAGTTC37 X43FCCCTTGGATACCAACGGTGCAGTTC37 X43FCCCTTGGATACCAACCATTGGCTTCTTC37 X43FC	TTC37 X28F	TTAACAATTGACTTAAAGAACACTGAG
TTC37 X29RAGGAACCCTTCCCCTCATCTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X31RTTTTAATAAACATTGCAACCCCTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGATGGCGTGAACCTGGTTC37 X33FAGATGGCGTGAACCTGGTTC37 X33FAGATGGCGTGAACCTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X35-36FTCCAGTGATTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCATAGCCTGACTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X38RCACCGCACTAGCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FCCCTTGGATACAACAGGTGCAGTTC37 X43FGGGTAGAAGTCTTGATTCATTGCTTC37 X43FGCCTTGGAACAAGGTGCAGTTC37 X43FGCCTTGGAACAAGGTGCAGTTC37 X43FGCCTTGGAACAAGGTGCAGTTC37 X43FGCCTTGGTAGCAACACTTGATTCATTGCTTC37 X43FGCCTTGGTAGCAAGGTGCAGTTC37 X43FGCCTTGGTAGCACACTTGATTCATTGC <td>TTC37 X28R</td> <td></td>	TTC37 X28R	
TTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X30FTTCAGCTAAAGAGGAAGGTAACAGTTC37 X31RTTTTAATAAACATTGCAACCCTTC37 X31RTTTTAATAAACATTGCAACCCCTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGATGGCGTGAACCTGGTTC37 X33FAGATGGCGTGAACCTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FGGAAAGCCGTTTGTATCCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTACAGGCTGTTCATTGTTTTGTTC37 X39FTTTACAGGCCGTTGTATTGTTTTGTTC37 X39FTTTACAGGCCTTCATGCCTCATACTTC37 X39FTTTACAGGCCTTCATGGCTCATACTTC37 X40FTGTTGGAAGTAGGCGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FGCCTTGGAAGAGTCTGATTCATTGCTTC37 X43FGCCTTGGAACCAGTGCAGGTTC37 X43FGCCTTGGAACCAGTGCAGGTTC37 X43FGCCTTGGAAGAGTCTGATCATTGCTTC37 X43FGCCTTGGAAGAGTCTGATCATTGCTTC37 FRAG X10FGCTGCAA	TTC37 X29F	
TTC37 X30RCAGTCCCATAGCTTTCACCAGTTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X31FGTTCGGCCCAACTTAGTGTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FGGAAAGCCGTTGTATCCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATGTTTTGTTC37 X38RCACCGCATCTAGCCTCATACTTC37 X39FTTTACAGGCTGTCATTGTTTTGTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCAGGTCTGATCATTGCTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTGATTCATTGCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10RGATGATACCATCCACTTGCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X29R	AGGAACCCTTCCCCTCATC
TTC37 X31FGTCCGGCCCAACTTAGTGTTC37 X31RTTTTAATAAACATTGCAACCCCTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32RGCTTTCTCCAATTCAACCCCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X34FGGTTGCTTGTACATTTGTGGGTTC37 X34FGGTTGCTTGTACATTTGTGGGTTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTGTGGAAGCAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAAGCAGAGCTTC37 X42FTGGTACCTAGTGCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATACATGGCATGACAACGGTTC37 X43FCCCTTGGATACATCAACAGGTGCAGTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTCCTTC37 FRAG X10RGATGATACCATCCACTTGGCTTC37 FRAG X17RGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGCTGCAAAGATTATGGAAGACC	TTC37 X30F	TTCAGCTAAAGAGGAAGGTAACAG
TTC37 X31RTTTTAATAAACATTGCAACCCCTTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGAATGCCAATGTCAAATGCAACTTC37 X33FAGTCCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAAGCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAAGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 FRAG X10FGGTAGAAGTCTGATCATTGCTTC37 FRAG X10RGATGATACCATCCACTTGGCAGATTC37 FRAG X10RGATGATACCATCCACTTGGCTTC37 FRAG X10RGATGATACCATCCACTTGCTTC37 FRAG X17RGTTGTGTAGCCCCTCTCGC	TTC37 X30R	CAGTCCCATAGCTTTCACCAG
TTC37 X32FGCTTCATCAATCAGGATGGCTTC37 X32FGCTTTCTCCAATCAGGATGGCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGAATGCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGGTTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAAGCATTGTGACATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTCATTGTTTGTTC37 X39FTTTACAGGCTGTCATTGTTTGTTC37 X39FTGTTGGAAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAACCAGTTCTTCCAAAGTTC37 X41FAACCTGGGAAGCAGGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 FRAG X10FGGTGCAAAGATTATGGAAGACTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACC	TTC37 X31F	GTCCGGCCCAACTTAGTG
TTC37 X32RGCTTTCTCCAATTCTCAACCCTTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGACCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTTGTGGTTC37 X34FTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATGTTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTCTTCCAAAGTTC37 X42RAACCCATGGTAAGATACAAACCTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 FRAG X10FGCGCAGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGGCTTC37 FRAG X17RGTTGTAGCATAGCCTCTGCTTC37 FRAG X17RGTTGTAGCATAGCCTCCTCTGCTTC37 FRAG X17RGTTGTAAGCCTCCTCTGC	TTC37 X31R	TTTTAATAAACATTGCAACCCC
TTC37 X33FAGAATGGCGTGAACCTGGTTC37 X33FAGACCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTTGTGGTTC37 X34FTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGCAGTCCTCAAGGCTTC37 X41FAACCTGGGAAGCAGGCTTC37 X42FTGGTACCTAGTCCTGAAGAAACGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FCCCTTGGATACTAGATAAACACTTC37 X43RGGGTAGAAGTCTGATTCATTGCTTC37 FRAG X10FGCGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X32F	GCTTCATCAATCAGGATGGC
TTC37 X33RAGTCCCAATGTCAAATGCAACTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34FGGTTGCTTGTACATTTGTGGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATGTTTGTTC37 X39FTTTACAGGCTGTTCATGTTTGTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTCATGGTTCTTC37 X42FTGGTACCAGGTAACAAACTGTTC37 X43FCCCTTGGATTACTGGCTTCTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTATGAGATACAAACTGTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X32R	GCTTTCTCCAATTCTCAACCC
TTG37 X34FGGTTGCTTGTACATTTGTGGTTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39RAAATGGAGCATAGCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X33F	AGAATGGCGTGAACCTGG
TTC37 X34RTCTTGCAGAAGAATAATGCCATAGTTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38RCACCGCATCTAGCCTCATACTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FCCCTTGGATACAGATACAAACTGTTC37 X43FCCCTTGGATACATACAAACTGTTC37 X43FGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X33R	AGTCCCAATGTCAAATGCAAC
TTC37 X35-36FTCCAGTGATTTAGTGGAAAGGTCTTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAAGCGATGTAGCAATGTGTTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAACCAGTCTTCCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FCCCTTGGATACAGATACAAACTGTTC37 X43FGGGTAGAAGTCTTGATTCATTGCTTC37 X43FGCCTTGGATACAAGGTGCAGTTC37 X43FGCCTTGGATACAAGGTGCAGTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X34F	GGTTGCTTGTACATTTTGTGG
TTC37 X35-36RCACCCAAACTCCTGTTGTAGAAGTTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTACAGGCTGTTCATTGTTTTGTTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGCTGCAAAGATCAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACC	TTC37 X34R	TCTTGCAGAAGAATAATGCCATAG
TTC37 X37FGGAAAGATGAATGTAGCAATGTGTTC37 X37FTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGATGATACCATCCACTGGCAGAGACCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17FGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17FGTTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X35-36F	TCCAGTGATTTAGTGGAAAGGTC
TTC37 X37RTGCTGAAGCCGTTTGTATTCTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAAGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X35-36R	CACCCAAACTCCTGTTGTAGAAG
TTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X38FTTTTAGCAACCAGTTACTCCTCTAAGTTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39FTTTACAGGCCGTCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X37F	GGAAAGATGAATGTAGCAATGTG
TTC37 X38RCACCGCATCTAGCCTCATACTTC37 X39FTTTACAGGCTGTTCATTGTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41RCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCCTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X37R	TGCTGAAGCCGTTTGTATTC
TTC37 X39FTTTACAGGCTGTTCATTGTTTTGTTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAAGCAGAGCTTC37 X41RCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCCTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X38F	TTTTAGCAACCAGTTACTCCTCTAAG
TTC37 X39RAAATGGAGCATAGCCCTGACTTC37 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAACCAGTTCTTCCAAAGTTC37 X41RCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGCCTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X38R	CACCGCATCTAGCCTCATAC
TTC07 X40FTGTTGGAAGTAGGGGTAACAGACTTC37 X40FTGTTGGAAGTAGGGGGTAACAGACTTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41RCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43FGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X39F	TTTACAGGCTGTTCATTGTTTTG
TTC37 X40RAAGCCTTCACGTCAAAGAAAGTTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FAACCTGGGAAGCAGAGCTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X39R	AAATGGAGCATAGCCCTGAC
TTC37 X41FAACCTGGGAGGCAGAGCTTC37 X41FCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X40F	TGTTGGAAGTAGGGGTAACAGAC
TTC37 X41RCTGGAACCAGTTCTTCCAAAGTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X40R	AAGCCTTCACGTCAAAGAAAG
TTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42FTGGTACCTAGTGCATGATAAACACTTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X41F	AACCTGGGAGGCAGAGC
TTC37 X42RAACCCATGGTAAGATACAAACTGTTC37 X43FCCCTTGGATTACTTGGCTTCTTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X41R	CTGGAACCAGTTCTTCCAAAG
TTC37 X43F CCCTTGGATTACTTGGCTTC TTC37 X43F GGGTAGAAGTCTTGATTCATTGC TTC37 X43R GGGTAGAAGTCTTGATTCATTGC TTC37 FRAG X10F GGCAGGAACAAGGTGCAG TTC37 FRAG X10R GATGATACCATCCACTTGTGC TTC37 FRAG X17F GCTGCAAAGATTATGGAAGACC TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC	TTC37 X42F	TGGTACCTAGTGCATGATAAACAC
TTC37 X43R GGGTAGAAGTCTTGATTCATTGC TTC37 FRAG X10F GGCAGGAACAAGGTGCAG TTC37 FRAG X10R GATGATACCATCCACTTGTGC TTC37 FRAG X17F GCTGCAAAGATTATGGAAGACC TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC	TTC37 X42R	AACCCATGGTAAGATACAAACTG
TTC37 X43RGGGTAGAAGTCTTGATTCATTGCTTC37 FRAG X10FGGCAGGAACAAGGTGCAGTTC37 FRAG X10RGATGATACCATCCACTTGTGCTTC37 FRAG X17FGCTGCAAAGATTATGGAAGACCTTC37 FRAG X17RGTTGTGTAGCCTCCTCTGC	TTC37 X43F	CCCTTGGATTACTTGGCTTC
TTC37 FRAG X10R GATGATACCATCCACTTGTGC TTC37 FRAG X17F GCTGCAAAGATTATGGAAGACC TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC	TTC37 X43R	GGGTAGAAGTCTTGATTCATTGC
TTC37 FRAG X10R GATGATACCATCCACTTGTGC TTC37 FRAG X17F GCTGCAAAGATTATGGAAGACC TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC	TTC37 FRAG X10F	GGCAGGAACAAGGTGCAG
TTC37 FRAG X17F GCTGCAAAGATTATGGAAGACC TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC		GATGATACCATCCACTTGTGC
TTC37 FRAG X17R GTTGTGTAGCCTCCTCTGC		GCTGCAAAGATTATGGAAGACC
	TTC37 FRAG X17R	GTTGTGTAGCCTCCTCTGC
	TTC37 FRAG X29F	GCTCTTATTGCTGAGGCAG

TTC37 FRAG X29R	CATAGGCTTTGCTGCTCTC
TTC37 X41(1)F	CAGAGCGAGACTCCGTCTC
TTC37 X41(2)F	GAATTGAATTGAATACTTTTC
TTC37 X41(1)R	GGTCTGTTACAAACTTTAAAG
TTC37 X41(2)R	GGATTTCTGGAACCAGTTCTTCC
TTC37 FRAGX29 (1)F	GCAAGCTCATGAGGCTTTC
TTC37 FRAGX29 (2)F	GACACCATGGATCTCTTCAG
TTC37 FRAGX29 (1)R	GCCAATGCAAAACCTATGATGTC
TTC37 FRAGX29 (2)R	GTTATTGCCAGAGCTGTCAAG

Primers used in chapter 4

DNM1EX1F	ACTACGACACCCATGATGCC
DNM1EX1R	GACGACGTTTGCAGACTAGC
DNM1EX2_3F	ACAGGTACCCCTGGGACAG
DNM1EX2_3R	AGTCTGCAGGAGGAGCGAG
DNM1EX4F	ACCCCGCCCTATTCTTTAAC
DNM1EX4R	TCAGAGGCTCCCCTTTACAC
DNM1EX5_6F	TGCATGGAATTGTGTGTGAG
DNM1EX5_6R	AGGCTAACCTCTGCTGTTCAC
DNM1EX7_8F	CATCCAAGTCCCTTCCTGG
DNM1EX7_8R	CGCAGAGAGAGTCCTGAGTG
DNM1EX9F	CCCTGTCTTGACCTCCCAG
DNM1EX9R	ACTTCATCACTCCCTGTGCC
DNM1EX10F	CAGAGTTCGTGGGCTTGG
DNM1EX10R	CTGGCAGCAGTGCAGGG
DNM1EX11F	TGGACTCGTGGGGTGTG
DNM1EX11R	AGGAGTGGAAGGCGCAG
DNM1EX12_14F	TACTTTTCTCCCAGCTTGCC
DNM1EX12_14R	GTTGCAGATCCCCACTGC
DNM1EX15F	TTTCGAATGCCTCTCTTTGC
DNM1EX15R	GTCTGAGCCTGACTCTGTCC
DNM1EX16F	GGGGACTCTTAGAGAGTGAGGTG
DNM1EX16R	GGATCCCTGTACCCAGCTTC
DNM1EX17_18F	GGCATGCCCTTAACCCC
DNM1EX17_18R	GTCCCTTGCTTGAAAACCTG
DNM1EX19F	ATTCTGGGTACCCTTGGAGG
DNM1EX19R	AACATGGCCACCTGCATC
DNM1EX20F	AAGCCACACCAGCTCACAG
DNM1EX20R	CTCTAAGCTCCGCCCCTC
DNM1EX21F	CTTAGGGGTGCGGCAGG
DNM1EX21R	CGATTGCCTGGGATAGAAAC
DNM1EX22F	TTGCCTTACCAGCTCTCTCC

DNM1EX22R	CAAGTCACAGAACAGCCGTC
KIAA0586 EX2 F	GGGACTTGTTTTGTGACCAAC
KIAA0586 EX2 R	AAACTAGACTTATATCTTACGTTTGGG
KIAA0586 EX3 F	GAATCATGCATATACAGTTTCTAAAGC
KIAA0586 EX3 R	AACAAGGCATGCTGCTAATC
KIAA0586 EX4 F	AAACAAGGCATGCTGCTAATC
KIAA0586 EX4 R	ACAAAGCTCTGGATATGAAAGG
KIAA0586 EX5 F	
KIAA0586 EX5 R	TTCGATCGTGGAATGCTATG GTGTCTAGCACCATGAGAAATG
KIAA0586 EX6 F	AACCACCTTCGGCAGATTAC
KIAA0586 EX6 R	AACACACAACCACAAATGGG
KIAA0586 EX7 F	CTGCCTTTCATTTCTGTGACTC
KIAA0586 EX7 R KIAA0586 EX8 F	TTACCCGCATTACAGGAGAAG GCTGCTACTACAGTGGATACTTGC
KIAA0586 EX8 R	AGCACAAAGAAAATTCACAGC
KIAA0586 EX9 F	
KIAA0586 EX9 R KIAA0586 EX10 F	AGATGATCCACCCACCTCAG
KIAA0586 EX1O R KIAA0586 EX11 F	
	AAGACTGTATCAAAGATTTGTGTAATG
KIAA0586 EX11 R	
KIAA0586 EX12 F	ATGCCTGGCCCACATTAG
KIAA0586 EX12 R	
KIAA0586 EX13 F	AGATCTGATCCAAGTCCTGCTC
KIAA0586 EX13 R	TGTAATGCCTGTAAATTGGAATC
KIAA0586 EX14 F	
KIAA0586 EX14 R KIAA0586 EX15 F	AAACACCTTCACATTCGCTTC AAGGGCTGTTGAAAACAGAG
KIAA0586 EX15 F	TTTTCCATCCCCAAGCATC
KIAA0586 EX16 F	TTTCTGTGAAGAGCTGTTGTATTTC
KIAA0586 EX16 P	CTGAGCCACACAGTGAAACC
KIAA0586 EX17 F	TCCAGATGGTATATTAGACTTTTCCC
KIAA0586 EX17 F	GAAGCAATATAATGGATTTCCG
KIAA0586 EX18 F	AAAACTTAAAGGGCATGCTTTG
	TCATTATGATAAAGGGCATGCTTTAAATGG
KIAA0586 EX18 R	
KIAA0586 EX19 F	TGGGGACTAGCTTGGATTTC
KIAA0586 EX19 R	
KIAA0586 EX20 F	TCACCTAGTTCCTTGCCTATAGTTG
KIAA0586 EX20 R	
KIAA0586 EX21 F	
KIAA0586 EX21 R	TGGAGAATTTACTTGACCTCTGG
KIAA0586 EX22 F	CTTTTAAGAATGAAAGTTCGGC
KIAA0586 EX22 R	GCCCAGAACTTCAAGACCAG
KIAA0586 EX23 F	
KIAA0586 EX23 R	TGCCTGGCCTCAATTATAGAC
KIAA0586 EX24 F	AAAATGGTAAGGGATATCTGAAGC
KIAA0586 EX24 R	TGTTTTCAATGGATCACATAAGTC

KIAA0586 EX25 F CAAAATGAATACAGGCCTTCAG KIAA0586 EX25 R AACTAAATTGCATTGAGTCCCC KIAA0586 EX26 R AAACCTGATCAGTGGCAACC KIAA0586 EX27 F TTTGAGGCAAAGATAGAGGGG KIAA0586 EX27 R AAGGTGGTGGAACAGATGG KIAA0586 EX27 R AAGGAGTGGACAAGGG KIAA0586 EX28 F CCTTCCAAGGAGTCAAAGGG KIAA0586 EX28 P ACACGCTAAGGCAACAGTG KIAA0586 EX29 R ACCACGCTAAGGCAACAGTG KIAA0586 EX30 R CAACTATTATTGGTAGAAGTGCG KIAA0586 EX30 R CAACCACGCTAAGGCAACAGTG KIAA0586 EX30 F CACCTATTTATTGGTAGAAGTGCG KIAA0586 EX31 F GGGAGTGCATTTGTTAACCTGGGG KIAA0586 EX32 F TCGCAAAGCATAAAGCACG KIAA0586 EX32 F TCGCAAAGCATATTGGTGCCAAGGTAAAATG IF81 X2F CCAGGACTTTTGTTGCCAGG KIAA0586 EX32 F TCGCAAAGACAATTTGCAGGAG IF781 X2F CCAGGACTTTGTTGTGCCAAGG IF781 X2F CCAGGACAACATTTGCAGGAG IF781 X2F CCAGGACAACAATTTGCAGGAG IF781 X3F AGCAGAACAATTTGCAGGAGAGCCTGG IF781 X3F TGCCACTTGGAACTACAAGACCCTGG IF781 X3F CACGAGTACACAAGAGCCCCG IF781 X3F CCACGTTGCCCC		
KIAA0586 EX26 FTATGCTATGGCTTTATGGTCAGKIAA0586 EX27 FTTTGAGGCAAAGATAGAGGGKIAA0586 EX27 FAAGCTGATCAGTGGAACAGATGGKIAA0586 EX27 RAAGGTGGTGGAAACAGATGGKIAA0586 EX28 FCCTTCCAAGGACTCAAAGGGKIAA0586 EX28 PGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTTGTGKIAA0586 EX31 RGCTGAGTTTATAGCCAGGGGATGKIAA0586 EX32 RTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTGTTGTCCCAGIFT81 X2FCCAGGACTATATGCAGAGGTTTGGIFT81 X2FCCAGGACTATATGAAGGTTTGGIFT81 X3RTGATTGCAGTATATGAAGGTTTGGIFT81 X4FGCTGTCTCTTCAAAGGTTTGGIFT81 X4FGCTGTCTCTCTCAAAGGTTTGGIFT81 X8RTGATTGCATGGAACTACAAAGACIFT81 X8RTGATGCCATAGGAAACAGTGIFT81 X8RTGGGATACTACAGAAAACCCGGIFT81 X9FCAAATATGCCGTATCCAGGTCIFT81 X9FCAAATATGCCGATACAGAAACCAGTGIFT81 X11FTTGGGATACTACAGAAAACACCTGCIFT81 X11FTTGGGAATACTACAGAAAACACCTGGIFT81 X11FTTGGGAATAGCAGTAGCAGAACIFT81 X12FACGTGTGACATGTGCAAGAACIFT81 X12FCAAGTACACAATACACCTCCTGIFT81 X12FCAAGTACACATGTACCAGAAGCACIFT81 X11FTTGGGATTACTACAGAAAACACCTGCCTCIFT81 X11FTTGGGATACCAATAAACATCCTGIFT81 X12FC	KIAA0586 EX25 F	CAAAATGAATACAGGCCTTCAG
KIAA0586 EX26 RAAACCTGATCAGTGGCAACCKIAA0586 EX27 FTTTGAGGCAAAGATAGAGGGKIAA0586 EX27 RAAGGTGGTTGGAACAGATGGKIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 RAAAGAATTTGCAAGCCCKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 FCACCTATTGAGAGGCAGTGGGATGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGGATGKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTGTCCAGGIFT81 X2FCCAGGACTTTGCCAGIFT81 X2FCCAGGACTTTGCCAGGIFT81X3FAGCAGAACAATTTGTCAGTGAGIFT81X3FAGCAGAACAATTTGCAGTAAGAGCTTGGIFT81X3FAGCAGAACATTTGCAGGAGTIFT81X4FGCTGTCTCTCTCTCAAAGGTTGCGIFT81X8FTTTCATTGCTGCCTAAGAGCCTGGIFT81X8FTTTTCATTGCTGCCAAGAGCIFT81X8FTGTTGCCAATAGCAGGACCIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9FCAAATATGCCGATACAAAAGCCIFT81X10FAAACCAAAACCCGGTTCCGGIFT81X11FTTGGTAACCAGTGGCAAGGACCIFT81X11FTTGGTGACATGTGGGAAGIFT81X12RACCCCAAGACACTGCCGCTCCIFT81X14FTGTTGGGACATGTCGGAAGGIFT81X14FTGGGTTCAACAAACCCTCCCGIFT81X14FTGGGTACAAGAGCCAAGCCTTCCIFT81X14FTGGGTTCAAGCAATCTCAGGGTTCIFT81X14FTGGGTTCAAGCAATCTCAGGGTTCIFT81X14FTGGGTTCA	KIAA0586 EX25 R	AACTAAATTGCATTGAGTCCCC
KIAA0586 EX27 FTTTGAGGCAAAGATAGAGGGKIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 RAAAGAATTTGCAAGCCCKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTTTGTAKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCCAGIFT81 X2FCCAGGACATTTGTAGCCAAGGTTAGAIFT81 X3FAGCAGAACATTTTGTCAGTGAGIFT81 X3FAGCAGAACATTTTGTCAGTGAGIFT81 X3FGCTGTCTCTCTCAAAGATTACAAAGACIFT81 X4FGCTGTCTCTTCAAAGTTACCAAAGCIFT81 X4FGCTGTCTCTCTCAAAGAAGCCTGGIFT81 X4FGCTGTCTCTCTCCAAAGAACCIFT81 X4FGCTGTCTCCTCAAAGAAGCCGGIFT81 X4FTGTTAGCACATGCAGAACCIFT81 X4FTGTTAGCCACTGCACCGIFT81 X4FTGGGATACTACAAAAGCCGGIFT81 X4FTGGGATATAGCAGTGAAAACCIFT81 X4FTGGGATATAGCAGTGAAAACCIFT81 X4FTGGGATATAGCAGTGAAAACCIFT81 X4FTGGGATACTACAAAACACCCGGIFT81 X4FTGGGTTAACAAATATCCAGGAAGCIFT81 X4FTGGGTTAACAATATACAACCTCCCIFT81 X1FTTGGGAACAATTACCAAGAAACACCTGCCTCIFT81 X1FTGGGATAACAATATCCAGGGTTCIFT81 X1FTGGGATAAAAAAAAACCCTGCCTC	KIAA0586 EX26 F	TATGCTATGGCTTTATGGTCAG
KIAA0586 EX27 RAAGGTGGTTGGAACAGATGGKIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 RAAAGAAATTTGCAAGCCCKIAA0586 EX29 FGCAGGTGAGAAATATGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTGGGGKIAA0586 EX32 RGCTGAAGTTTGTAACCTGGGGKIAA0586 EX32 RGGGTTTTAACCTGGGGKIAA0586 EX32 RGGGTTTTAACCAGGTAAAATGIFT81 X2FCCAGGACTTTTGTCAAGGTAAAATGIFT81 X2FAGCAGAACAATTTGCCAAGGTAAAATGIFT81X3RTGATTGCAGTATATGAAGGTTAGGIFT81X3RTGATTGCAGTATATGAAGGTTAGGIFT81X4RTGCCACTTGGAACTACAAAGCCIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X4RTGTAGCCACTGCACCCGIFT81X4RTGGCACTTGCTAAGGACIFT81X8FTTTTCATTGCTAGCTAAGAACCIFT81X9RTGGGATACTACAAAAGCAGGTCIFT81X9RTGGGATACTACAAAAGCAGGCIFT81X10FAAATTCAAAGCTGGACAGCIFT81X10FAAATTCAAAGCTGGCTTGGCIFT81X11FTTGGTAAGGAGCAAGCIFT81X12FACGTGTGACATGTCGGAAGIFT81X12FACGTGTGACACTGCCTTAGGAACIFT81X12FGCTGTAACCCATAAACATCCCTGIFT81X12FGCTGTAACCCATAAACATTCACIFT81X12FGCTGTAACCCATAACAACTCCTCGIFT81X13FCAATGAAGATTGCCTTTAGGAAGATTTCACIFT81X13FCAAGGACATGTCCCCCGIFT81X13FCAAGGACATGTCCCCCGIFT81X14FTGTTGGGACTG	KIAA0586 EX26 R	AAACCTGATCAGTGGCAACC
KIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 RAAAGAAATTTTGCAAGCCCCKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX31 RGGGAGTGCATTTGGTTTGTGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTAACCTGGGGKIAA0586 EX32 RGGGTTTAACCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTCACAGGIFT81 X2FCCAGGACTTTTGTCAGTGAGIFT81 X2FCCAGGACTACAAAGCACAGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4RTGCCACTTGCAAAGACTACAAAGACIFT81X4RTGCCACTTGCAAAGACCCCGGIFT81X4RTGCCACTGCACTGCACCGGIFT81X4RTGTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGGACIFT81X9RTGGGATACTACAAAAGCAGTCIFT81X9RTGGGATACTACAAAGCAGACCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X11FTTGGTAACCATATAAACATCACAIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTAACCATATAAACATCCCTGIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAAACCTCCTGIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACACTCCCTGIFT81X18FTGGGTTCATTGGACAGGATCIFT81X18FGCTGGCCATGCTTCAGGGGTTCIFT81X18FGCTGTAACCAA	KIAA0586 EX27 F	TTTGAGGCAAAGATAGAGGG
KIAA0586 EX28 FCCTTCCAAGGAGTCAAAGGGKIAA0586 EX28 RAAAGAAATTTTGCAAGCCCCKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX31 RGGGAGTGCATTTGGTTTGTGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTAACCTGGGGKIAA0586 EX32 RGGGTTTAACCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTCACAGGIFT81 X2FCCAGGACTTTTGTCAGTGAGIFT81 X2FCCAGGACTACAAAGCACAGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4RTGCCACTTGCAAAGACTACAAAGACIFT81X4RTGCCACTTGCAAAGACCCCGGIFT81X4RTGCCACTGCACTGCACCGGIFT81X4RTGTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGGACIFT81X9RTGGGATACTACAAAAGCAGTCIFT81X9RTGGGATACTACAAAGCAGACCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X11FTTGGTAACCATATAAACATCACAIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTAACCATATAAACATCCCTGIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAAACCTCCTGIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACATTCACIFT81X12FGCTGTAACCATATAACACTCCCTGIFT81X18FTGGGTTCATTGGACAGGATCIFT81X18FGCTGGCCATGCTTCAGGGGTTCIFT81X18FGCTGTAACCAA	KIAA0586 EX27 R	AAGGTGGTTGGAACAGATGG
KIAA0586 EX28 RAAAGAAATTTTGCAAGCCCCKIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX30 FACCACCATTTGTGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 RGCGAGTGCATTTGTACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCAGIFT81 X3FAGCAGAACAATTTTGTCAAGGAGIFT81 X3FAGCAGAACAATTTGTCAAGGAGIFT81 X3FGCTGTCTCTCTTCAAAGTTACAAGGAGIFT81 X4FGCTGTCTCTCTTCAAAGTTACGAGIFT81X3FTGCACATGGAACTACAAAGACIFT81X4FGCTGTCTCTCTTCAAAGTTACGAIFT81X8FTTTCCATTGCTTGCACCCGIFT81X8FTGTTAGCACTGCACCCGIFT81X8FTTTTCATTGCTTGCAAGAGCIFT81X8RTGGGATACTACAAAAGCCCTGGIFT81X9FCAAATATGCCGTATCCAGGACIFT81X10FAACTCCAAGATGCTGAGAACIFT81X10FAACTCCAAATATGCAGAAAGCAGTTCIFT81X11FTTGGTTAAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FCCAAATAACCCCCTTCIFT81X12FCCAAGTAAACACCTGCCTTCIFT81X12FCCAAGATAACCTCCCGGIFT81X12FGCTGTAACCCATAAACCTCCTGIFT81X12FCCAGGTCAAGAATTCCIFT81X12FCCAGGTCAACACACCTGCCTTCIFT81X12FCCAGGTCAACAAAACCTCCCCGIFT81X12FCAGGGTCAACAAATTCCIFT81X14FTGGGTTCATTAGCAGGGTTCIFT		CCTTCCAAGGAGTCAAAGGG
KIAA0586 EX29 FGCAGGTGAGAAATATTGGTGGKIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTTGTGKIAA0586 EX31 RGCTGAGTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCCAGIFT81X3FAGCAGAACAATTTTGTCACAGGIFT81X3RTGATTGCAGTATAGAAGGTTGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X4RTGCCACTGCACTGCACCGGIFT81X4RTGCCACTGCACTGCACCGGIFT81X4RTGTAGCCACTGCACCGGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X10FAAATCAAAGCAGTGCACGGCIFT81X10FAAATCCAAAGCAGTGCACAGAACIFT81X11FTTGGTTAAGCAGTGACAGAACIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X12RCCAAGAAAACACCTGCCTTCIFT81X12RCCAAGAAAACACCTGCCTTCIFT81X14FTGTTGGGACTGAAGCAATCTCCTGIFT81X14FTGTTGGGACTGAAGCAATCTCCTGIFT81X14FTGTTGGGCCATGTTGGGGIFT81X14FTGGGTTCAAGCCATATCTGGCTCIFT81X14FTGGGTTCAAGCCATATCTGGGGIFT81X14FTGGGTTCATTGGCCATGCCCCGIFT81X14FTGGGTTCATTGGCCATACTCCAGGGTTCIFT81X14FTGGGTTCATTCGACGCATCCCCC<		
KIAA0586 EX29 RACCACGCTAAGGCAACAGTGKIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTGCCAGIFT81 X2FCCAGGACTTTGTACCAGGTAAAATGIFT81 X2FCCAGGACATATGCAGGTAGGIFT81X3RTGATTGCAGTATATGAAGGTTGGIFT81X3RTGCACATGGAACTACAAGGIFT81X3RTGCACTTGGAACTACAAAGGCIFT81X4FGCTGTCTCTTCAAAGTTACCGIFT81X4FGCTGTCTCTTCAAAGTTACCGIFT81X4FTGCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAACCCTGGIFT81X8FTTTTCATTGCTGCCTAAGTGIFT81X8FTGTGTCCAAATGCTGAGACIFT81X9FCAAATATGCCGATTCCAGGTCIFT81X9FCAAATATGCCGATTCCAGGTCIFT81X10FAAATCAAAGCTGGTTTGGCIFT81X10FAAATCAAAGCAGGTTCGGCIFT81X11FTTGGATAACCAAAACCTGCCTTCIFT81X12FACGTGTAACCCATAATACACTCACIFT81X12FACGTGTAACCCATAATCACAGAAGCIFT81X12FCCAAGTAACCCATAATCACCTGGIFT81X12FCCAAGTAAACCTGCCTTCIFT81X12FCCAAGTAAACCTGCCTTCIFT81X12FCAAGGACTAACCATAAACCTCCTGIFT81X12FCTAGGGCTAAAATATCCAGGGTTCIFT81X12FCTAGGGCTCAAGGAATCCTCCIFT81X14FTGTTGGGACTGAAGAATTTCCCTCIFT81X14FTGGGTTCATGCACGAGCATCCTCCIFT81X14FTGGGTTCATCAGCAGGCTAAAATATCIFT81X14FTGGGTTCATCAGCAGCATCCTCCAGG <td></td> <td></td>		
KIAA0586 EX30 FCACCTATTTATTGGTAGAAGTGCGKIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTTTGTGKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTGTTGCCAGIFT81 X2RAATGTGCCCAAGACTCACAGIFT81X3FAGCAGAACAATTTGTCAGTGAGIFT81X3FAGCAGAACAATTTGTCAGTGAGIFT81X3FGCTGTCTCTCTCAAAGGTTTAGCIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X4RTGCCACTGCACTGCACCCGIFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8FTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTTGGGAAGIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTAACCAATATTAACATTCACIFT81X12FACGTGTAACCCATAAACCTCCTGIFT81X13FCAAGAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTGCIFT81X14FTGTTTGGGACTGAAGTAATTGCIFT81X14FTGTTTGGGACTGAAGTAATTGCIFT81X14FTGTTTGGACTGAAGAATCCCCTCIFT81X14FTGTTTGGACCATAATAATCCAGGGTTCIFT81X14FTGTTTGGACCATATCTGTCCIFT81X14FTGGTTTCATCGCCATATCTGCCCIFT81X18FTGGGTTTCATCGCCATATCTGCTCIFT81X18FTGGGTTCATCGCCATATCTGCCCIFT81X18FTGGGTTCACTGCCATACTCCCAGG		
KIAA0586 EX30 RAAACCTAGAGAGCAGTGGGATGKIAA0586 EX31 FGGGAGTGCATTTGGTTTGTGKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTGCCAGIFT81 X2FCCAGGACAATTTGTGCCAGIFT81 X3FAGCAGAACAATTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGCCACTTGGAACTACAAAGACIFT81X4FGCTGTCTCTCTTCAAAGTTTACCGIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTACCAGAGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9FCAAATATGCCGTATCCAGGACIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCAGGGCCAAGCIFT81X11FTTGGGAACTACTACAGAAAGCAGCTCIFT81X12FACGTGTAACCCATAAACACTCCTGIFT81X13FCAATAGAAAACACCTGCCTTCIFT81X13FCAATGAACAAACCTGCCTTCIFT81X14FTGTTTGGGACATGAAGTAATTGCIFT81X14FTGTTTGGGACTGAAGTAATTGCIFT81X14FTGTTTGGGACATGAAGTAATTGCIFT81X14FTGTTTGGACATGAGAAATATCCAGGGTTCIFT81X14FTGTTTGGACCATATTGGCTCCIFT81X18FTGGGTTTCATCGAGGGCTAAAATATCIFT81X18FTGGGTTTCATCGAGGGCTAAAATATCIFT81X18FTGGGTTCATCGCCATACTCCCAGGIFT81X18FTGGGTTCATCACCCATACTCCCAGGIFT81X18FTGGGTTCATCGCCATACTCCCAGGIFT81X18FTGGGTTCAT		
KIAA0586 EX31 FGGGAGTGCATTTGGTTTGTGKIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTGCCAGIFT81 X2RAATGTGCCCAAGACTCACAGIFT81 X3FAGCAGAACAATTTTGTCAGTGAGIFT81 X3FAGCAGAACAATTTGTCAGTGAGIFT81 X4FGCTGTCTCTCTCAAAGTTTACCGIFT81 X4RTGCCACTTGGAACTACAAAGACIFT81 X4RTGCCACTTGCACCGGIFT81 X4RTGCCACTTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCCACTGCACCGGIFT81 X4RTGCGATACACAGAAGCCGGIFT81 X4RTGGAGATTAGCCGTATCCAGGTCIFT81 X9FCAAATATGCCGTATCCAGGTCIFT81 X9FCAAATATGCCGATTCCAGGTCIFT81 X0FAAATTCAAAGCTGGTTTGGCIFT81 X10FAAATTCAAAGCAGGACAGAACIFT81 X11FTTGGTTAAGAAGAGGCCAAGCIFT81 X11FTGGGTTAAGCAGTGACAGAACIFT81 X11RAACCCAAAAACACCTGCCTTCAGGATTCIFT81 X12FACGTGTAACCCATAAACCTCCTGIFT81 X13FCAATGAAGAATTTCCACTTTAGGATTCIFT81 X14FTGTTTGGGACTGAAGTAATTGCIFT81 X14FTGTTTGGGCCAAGCATGCTTCCIFT81 X14FTGGTTTCATGCAGGAACAATTTCCCCTCIFT81 X14FTGGGTTTCATGCAGGAACAATTCCIFT81 X14FTGGGTTTCATGCAGGAACAATTCCCCIFT81 X14FTGGGTTTCATGCAGGGCTAAAATATCIFT81 X14F <t< td=""><td></td><td></td></t<>		
KIAA0586 EX31 RGCTGAGTTTGTAACCTGGGGKIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCCAGIFT81 X2FAATGTGCCCAAGACTCACAGIFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4FGCTGTCTCTTCTAAAGTTACCGIFT81X4FGCTGTCTCTTCTAAAGAAGCCCGGIFT81X4FTGCCACTTGGAACTACAAAGACIFT81X8FTTTTCATTGCTTGCCTAAGGAIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8FTTTTCATTGCTTGCCTAAGGACIFT81X8FTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTACAGAACIFT81X11FTTGGTTAAGAAGAGCCAAGCIFT81X11FTTGGTAAGAAGAGCCAAGCIFT81X12FACGTGTAACCCATAATACATTCACIFT81X12RGCTGTAACCCATAATACACTCCTGIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTGGGACTGAAGTAATTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCAAGGCTCAAGCAATCTCCIFT81X18RTGAGGTTCATCTGACTCCAGGIFT81X18FTGGGTTTCATCTGACTCCAGGIFT81X18FTGGGTTTCATCTGACTCCAGIFT81X18FTGGGTTTCATCTGACTCCAGIFT81X18FTGGGTTTCATCTGACTCCAGGIFT81X18FTGAAGCAAATTCCCCCCIFT81X18FTGAGCCCACTTCCCACAGIFT81X18FTGAATGAACAATTCCCCCCCIFT81X18FTGAGCCTAC		
KIAA0586 EX32 FTCGCAAAGCATAAAGCACGKIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCCAGIFT81 X2RAATGTGCCCAAGACTCACAGIFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X3RTGCCACTTGGAACTACAAAGACIFT81X4FGCTGTCTCTCTTCAAAGTTACCGIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X8FTTTTCATTGCTGCCTAAGTGIFT81X8FTTTTCATTGCTGCCTAAGTGIFT81X8FTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAGGAGGCCAAGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11FTTGGTTAAGCAGTGACAGAACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACCATGTTGGGAAGIFT81X13RAACACAAAACCTGCCTCIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X14FTGTTTGGGACATGTTGGGIFT81X14FTGTTGGGACATGTTTGGGIFT81X14FGTTTCAGAGCCATGTTTGGGIFT81X14FTGTTGGGCCATGTTTGGGIFT81X14FTGGGTTTCATCTAGCAGGGCTAAAATATCIFT81X16-17FCAAGGCTCAAGCAATCCTCCIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FTGGAGCTACCTCCCAGIFT81X18FTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACCACAGGODF2EXON5-6FGCCAGTTACCT		
KIAA0586 EX32 RGGGTTTTAAGCCAAGGTAAAATGIFT81 X2FCCAGGACTTTTGTTGCCAGIFT81 X2RAATGTGCCCAAGACTCACAGIFT81 X3FAGCAGAACAATTTTGTCAGTGAGIFT81 X3FAGCAGAACAATTTTGTCAGTGAGIFT81 X3RTGATTGCAGTATATGAAGGTTTGGIFT81 X4FGCTGTCTCTCTTCAAAGTTTACCGIFT81 X4FGCTGTCTCTTGCAAAGACCIFT81 X4FGCCACTTGGAACTACAAAGACIFT81 X4FIFCCACTGCATAAGAAGCCCTGGIFT81 X4FTGCCACTGCACCCGIFT81 X8FTTTTCATTGCTTGCCTAAGTGIFT81 X8FTTTTCATTGCTTGCCTAAGTGIFT81 X9FCAAATATGCCGTATCCAGGACIFT81 X9FCAAATATGCCGTATCCAGGACIFT81 X10FAAATTCAAAGCTGGTTTGGCIFT81 X10FAAATTCAAAGCTGGTACAGAACIFT81 X11FTTGGTTAAGAGAGGCCAAGCIFT81 X11FTTGGTAACCAATATCACCTCGIFT81 X12FACGTGTGACATGTTGGGAAGIFT81 X12FACGTGTAACCAATATCACTCCTGIFT81 X12FACGTGTAACCATAAACCTCCTGIFT81 X13FCAATGAAGATTGTCCTTTAGGATTCIFT81 X13FCAATGAAGATTGTCCTTTAGGATTCIFT81 X13FCAATGAAGATGTCCATAAACCTGCCTTCIFT81 X14FTGTTTGGGACTGAAGTAATTTGCIFT81 X15FGTTTCAGAGCCATGTTTGGGIFT81 X16-17FCAAGGCCATGTTTGGACTCCAGIFT81 X18FTGGGTTTCATTCTGACTCCAGIFT81 X18FTGGGTTTCATTCTGACTCCAGIFT81 X18FTGGGTTTCATTCTGACTCCAGIFT81 X18FTGGAGCCTACCTCCCACAGODF2EXON5-6FGCCCAGTTTACTCACTCCACAGGODF2EXON5-6FGCCCAGTTACCTCCCACTTG		
IFT81 X2FCCAGGACTTTTGTTGCCAGIFT81X2RAATGTGCCCAAGACTCACAGIFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4FGCTGTCTCTCTTCAAAGTTTACCGIFT81X4FGCCGTCTCTCTTCAAAGTTACCGIFT81X4FTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X8FTTTTCATTGCTGCCTAAGTGIFT81X8FTTTTCATTGCTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACATCACAGGAAGCIFT81X12FACGTGTGACCATATTAACATTCACIFT81X12FACGTGTAACCCATAAACTCCTCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13FCAATGAAGACTGACTGAAGTAATTGCIFT81X14FTGTTTGGGACTGAAGTAATTGCGIFT81X14FTGTTTGGGACAGCATGTTGGGIFT81X14FTGTTTGGGACAGCATGTTGGGIFT81X14FTGTTTGGGACTGAAGTAATTCCIFT81X14FTGTTTGGGCCATATCTGTCTCIFT81X14FTGGGTTCCATGCCCATATCTGTCTCIFT81X18FTGGGTTCCATTCGACCCAGIFT81X18FTGGGTTCCATCCACAGGIFT81X18FTGGGGTTCCATCCCCCCIFT81X18FTGGAGCCTACCTCCCACGIFT81X18RTGAATGAACAATTCCCCCCCODF2EXON5-6FGCCCAGTTTACTCCCCCACTTG		
IFT81X2RAATGTGCCCAAGACTCACAGIFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4FGCTGTCTCTCTTCAAAGTTACCGIFT81X4FTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X8-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X14FTGTTTGGGACTGAAGTAATTGCGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18RTGAGTTCATCTGACCCAGIFT81X18RTGAGTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTCCCCTCIFT81X18RTGAATGAACAATTCCCCTCIFT81X18RTGAATGAACAATTCCCCCCCIFT81X18RTGAATGAACAATTCCCCTCIFT81X18RTGAATGAACAATTCCCCCTCODF2EXON5-6FGCCCAGTTTACTCCCCCACTTGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT81X3FAGCAGAACAATTTTGTCAGTGAGIFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4FGCTGTCTCTCTTCAAAGTTTACCGIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X8-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11FTTGGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTCCACGIFT81X18RTGAATGAACAATTCCCCCCIFT81X18RTGAATGAACAATTCCACAGGODF2EXON5-6RGTGAGCCTACCTCCACACTGC		
IFT81X3RTGATTGCAGTATATGAAGGTTTGGIFT81X4FGCTGTCTCTTCTCAAAGTTTACCGIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8FTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCATAAACCTCCTGIFT81X13FCAATGAAGATTGCCTTTAGGATTCIFT81X14FTGTTTGGGACATGATGAGGAGTCIFT81X14FTGTTTGGGACATGATGAGGATCIFT81X15FGTTTCAGAGCCATGATTGCIFT81X16-17FCACGAGCCAAGCATCCTCCIFT81X18FTGGGTTTCATTCAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FTGGGTTTCATTCTGACTCCAGGIFT81X18FGCCCAGTTACTCACAGGIFT81X18FTGGAGCCTACCTCCACGIFT81X18FTGGAGCCTACCTCCAAGCIFT81X18FTGGAGCCTACCTCCACAGGODF2EXON5-6RGTGAGCCTACCTCCACTTG	IFT81X2R	AATGTGCCCAAGACTCACAG
IFT81X4FGCTGTCTCTCTTCAAAGTTTACCGIFT81X4RTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8FTGTGTGTCCAAAATGCTGAGACIFT81X8RTGGGATACTACAGAAAGCAGTCIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGACAGAACIFT81X11FTTGGTAAGAGAGGCCAAGCIFT81X11FTTGGTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X14FTGTTTGGGACTGAAGTATTGCIFT81X14FTGTTTGGGACTGAAGTATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCAACGAAAACACCTCCIFT81X18FTGGGTTCATTCGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGAATGAACAATTCCCCTCIFT81X18FTGAATGAACAATTCCCCTCIFT81X18FTGAATGAACAATTCCCCTCIFT81X18FTGAATGAACAATTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACCCACATGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X3F	
IFT81X4RTGCCACTTGGAACTACAAAGACIFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTCCCAATATTAACATTCACIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCAACGAAAAATATCCAGGGTTCIFT81X16-17RTTCCTACTTAGCAGGCCTAAAATATCIFT81X18RTGAGTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6RGTGAGCCTACCTCCACTTG	IFT81X3R	TGATTGCAGTATATGAAGGTTTGG
IFT81X6-7FCCTGCATAAGAAGCCCTGGIFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCCIFT81X18FTGGGTTTCATTCGACTCCAGIFT81X18RTGAATGAACAATTCCCCTCIFT81X18RTGAATGAACAATTCCCCTCIFT81X18RTGAATGAACAATTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACCACAGGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X4F	GCTGTCTCTCTCAAAGTTTACCG
IFT81X6-7RTGTTAGCCACTGCACCCGIFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCCIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTCCCCTCIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18FTGGGTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTCCCTCODF2EXON5-6FGCCCAGTTTACTCACCACATGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X4R	TGCCACTTGGAACTACAAAGAC
IFT81X8FTTTTCATTGCTTGCCTAAGTGIFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCACGTCGCCATATCTGTCCIFT81X18FTGGGTTCATTCGAGGGCTAAAATATCIFT81X18RTGAATGAACAATTTCCACAGIFT81X18RTGAATGAACAATTCCCCCIFT81X18RTGAATGAACAATTTCCCCCCIFT81X18RTGAATGAACAATTTCCCCCCODF2EXON5-6FGCCCAGTTTACTCACTCCACAGGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X6-7F	CCTGCATAAGAAGCCCTGG
IFT81X8RTGATGTTCCAAAATGCTGAGACIFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10FAAATTCAAAGCTGGTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGGCCAAGCIFT81X11FTTGGTTAAGAGAGGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCGACGCGGCTAAAATATCIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGGODF2EXON5-6RGTGAGCCTACCTCCCACTGC	IFT81X6-7R	TGTTAGCCACTGCACCCG
IFT81X9FCAAATATGCCGTATCCAGGTCIFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT18X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12FACGTGTGACATGTTGGGAAGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTACCACAGCAODF2EXON5-6RGTGAGCCTACCTCCACTTG	IFT81X8F	TTTTCATTGCTTGCCTAAGTG
IFT81X9RTGGGATACTACAGAAAGCAGTTCIFT81X10FAAATTCAAAGCTGGTTTGGCIFT81X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X12FACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X8R	TGATGTTCCAAAATGCTGAGAC
IFT81X10FAAATTCAAAGCTGGTTTGGCIFT18X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACTCCACTGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X9F	CAAATATGCCGTATCCAGGTC
IFT81X10FAAATTCAAAGCTGGTTTGGCIFT18X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACTCCACTGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X9R	TGGGATACTACAGAAAGCAGTTC
IFT18X10RTGGAGATTAGCAGTGACAGAACIFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACTCCACTGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		AAATTCAAAGCTGGTTTGGC
IFT81X11FTTGGTTAAGAGAGGCCAAGCIFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14FGTTTCAGAGCCATGTTGGGIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCACCACTGCODF2EXON5-6RGTGAGCCTACCTCCACTTG	IFT18X10R	
IFT81X11RAACGTCCCAATATTAACATTCACIFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14FGTTTCAGAGCCATGATTGGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCACTCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT81X12FACGTGTGACATGTTGGGAAGIFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14RCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG	_	
IFT81X12RGCTGTAACCCATAAACCTCCTGIFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14RCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCACACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X13FCAATGAAGATTGTCCTTTAGGATTCIFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14FCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT81X13RAACACAAAACACCTGCCTTCIFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14RCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X14FTGTTTGGGACTGAAGTAATTTGCIFT81X14RCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT81X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCACACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X14RCCCAAGTAAAATATCCAGGGTTCIFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT18X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCTCODF2EXON5-6FGCCCAGTTTACTCACTCCACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X15FGTTTCAGAGCCATGTTTGGGIFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT18X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X15RCTAGGCTCAAGCAATCCTCCIFT81X16-17FCATCGTCGCCATATCTGTCTCIFT18X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCACTTG		
IFT81X16-17FCATCGTCGCCATATCTGTCTCIFT18X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT18X16-17RTTCCTACTTAGCAGGGCTAAAATATCIFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT81X18FTGGGTTTCATTCTGACTCCAGIFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
IFT81X18RTGAATGAACAATTTCCCCTCODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG		
ODF2EXON5-6FGCCCAGTTTACTCATCCACAGODF2EXON5-6RGTGAGCCTACCTCCCACTTG	IFT81X18F	TGGGTTTCATTCTGACTCCAG
ODF2EXON5-6R GTGAGCCTACCTCCCACTTG	IFT81X18R	TGAATGAACAATTTCCCCTC
	ODF2EXON5-6F	GCCCAGTTTACTCATCCACAG
ODF2EXON 7F ACTCGTGGTCAAGGTTCTGC	ODF2EXON5-6R	GTGAGCCTACCTCCCACTTG
	ODF2EXON 7F	ACTCGTGGTCAAGGTTCTGC

ODF2EXON 8FTGTGGCATAGAGGAAGGACCODF2EXON8RATTATTGCCCAGGGATGCAGODF2EXON 9FGATCTCTGGCATGCGGODF2EXON9RACGCGTAAAGACCTGCCODF2EXON10FGGCCTGCTTCTTCCCTTCODF2EXON11RGAAAGGCTCAGAGAGGATGGODF2EXON11FAAATGTAGACACTGGGCTTATTGCODF2EXON11FCAAATCTCTGTCCTCCCTGGODF2EXON11RTAGTGGAACGACGCCTCTTGCODF2EXON11RGAACCCAGCTCTGGCATATCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON13FACGGAGCAAGACTCCGTATGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON13RCTACCATCACCACCACGGCODF2EXON14RCACCCAGCCTCCCCAGGODF2EXON14RCACCCAGCCTCACCACTAGGCODF2EXON15FGGCAGCCTCACCACCACAAAGACODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON16RTGGTCAAATCCAGGGCTTTTCODF2EXON19FCCACTAGGAGGCCACCTGAGGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON20RTGGCTGAAAGTCTCAGGTCCCODF2EXON21FGTCGACACTGAGAGTCCAGGGODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCTATGGODF2EXON23FAAGAAGTCCTATGGODF2EXON23FGCCCCACAGAAGCTAGGTCIFT52X3FTGCCTTTCCTAAAGGTTCCCAGCIFT52X3FTGCCCTTTCTTCTTCTTGCIFT52X3FTGCCCTTTCCTAAAGGTTAAGGIFT52X3FTGCCCTTTCCTTTCTTCTTCTCGCIFT52X3FTGCCCTTTCCTAAAGGATACATGAGATTACIFT52X3FTGCCCTTTCCTAAAGGTTACCCIFT52X3F </th <th></th> <th></th>		
ODF2EXON8RATTATTGCCCAGGGCTCAAGODF2EXON9FGATCTCTGGGCATGCGGODF2EXON19FGACCGTAAAGACCCTGCCODF2EXON10RGAAAGCTCCAGAGAGGATGGODF2EXON11RTAGTGGAACGACGCTCTTGCODF2EXON11FAAATGTAGACATCTGGGTTTATTGCODF2EXON12FCAAATCTCTGTCCTCCTGGODF2EXON12FCAAATCTCTGTCCTCCGTGGODF2EXON12FCAAATCTCTGTCTCCCTGGODF2EXON12FCAAATCTCTGTCTCCCTGGODF2EXON12FCAAATCTCTGCTTGCATATCODF2EXON13FACGGAGCAAGACTCCGTATGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON14FCTCCTTCACCCTCTGCTTTGODF2EXON14FCTCCTTCACCCTCTCAGCODF2EXON14FCTCCCTGAGCCACTAGGCODF2EXON14FGTCCCACACCACACAAAGACODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON16RTGGTCAAATCCAGGCTCACAGAODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON20RTGGCTGAAAGCTCAGGGGODF2EXON21RGCTGAGAGTTTAGGTGATTGGGODF2EXON22RGCCCCCACAGAAGCTAGGTCCODF2EXON22RGCCCCCACAGAAGCTAGGTCCODF2EXON22RGCCCTCTGCTTCTATGGODF2EXON23FAAGAAGTCCTAGGGACTTGCIFT52X3FGCCTCTGCTTCCAATAGTTAAGGIFT52X3FGCCTCTGCTTCCCAATAGTTAAGGIFT52X3FTGCCTTTCTTCTCCCAATAGCTAGGIFT52X8FTGGGAACAGCATGGACTTACIFT52X8FTGGGAACAGCATGGACTTACCIFT52X9FTCCACTGTTAGGAAGAGCTGGACCCIFT52X9FTCACATGTTGAGAAGTGCACCIFT52X9F<	ODF2EXON 7R	GAAATCCACCTGGGTGCTC
ODF2EXON 9FGATCTCTGGGCATGCGGODF2EXON 9RACGCGTAAAGACCCTGCCODF2EXON 10FGGCCTGCTTCTTCCCTTCODF2EXON 11FAAATGTAGACATCTGGGTTTATTGCODF2EXON 11FTAGTGGAACGACGCTCTTGCODF2EXON 11FCAAATCTCTGTCCTCCCTGGODF2EXON 12FCAAATCTCTGTCCTCCCTGGODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON 13FACGGAGCAGACTCCGTTGGODF2EXON 13FCTACCATCAAATTGGCAGGCODF2EXON 14FCTCCTTCACCCTCTGCTTGGODF2EXON 14FCTCCTTCACCACCACCAGGCODF2EXON 14FCTCCTTCACCACCACCAGGCODF2EXON 14FGTCCCTCCTGAGCCACTAGGCODF2EXON 14FGTCCCACACCACCACAGAGCODF2EXON 14FGTCCCCTCAGGCCACTAGGCODF2EXON 14FGTCCCACACCACCACAAAGACODF2EXON 14FGTCCCCTCAGGCCACTGAGCODF2EXON 14FGTCCCACACCACCACAAAGACODF2EXON 16FGTCCCACACCACCACAAAGACODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON 19FCCACTAGGGAACAGACTCACAGODF2EXON 19FCCACTAGGGAACAGGCACGGCODF2EXON 20FACAGGTCATAGGGAACAGGACGAGGGODF2EXON 21FGTGGAACATGACAGGAGTTGGGODF2EXON 22FTCTCTTGCCAAGGTCCACCCODF2EXON 22FTCTCTTGGCAAGGTCCACCAGGODF2EXON 23FAAGAAGTCCCTATGGTGTATACCCIFT52X2FTGCCACACCACCACCACCACCAGGIFT52X3FGGCCACCTGGGAAAGGCTAGGIFT52X3FGGGGAGGAGCATGGACTTACIFT52X3FTGGGTATTGGGTACTAGGCIFT52X3FTGGGTACTAGGACTTACCACGIFT52X3FTGGGTACTAGGACATGAAAGTACATGAGATCAIFT52X3F <td></td> <td></td>		
ODF2EXON9RACGCGTAAAGACCCTGCCODF2EXON 10FGGCCTGCTTCTTCCCCTTCODF2EXON 10RGAAAGGCTCAGAGAGGATGGODF2EXON 11FAAATGTAGACATCTGGGTTATTGCODF2EXON 11FTAGTGGAACGACGCTCTTGCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON13RCTACCATCACAATTGGCAGGCODF2EXON14FCTCCTTCACCCTCTGCATTGODF2EXON14RCACCCAGCCTCCCCAGODF2EXON15FGGCAGCCTCACCACTAGGCODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON16RTGGTCAAATCCAGGGCTTTTCODF2EXON16FGTGCCAACACACACACAAAGACODF2EXON17-18FGTAGGAGGTCCACCTGAAGCODF2EXON19FCCACTAGGGAACAGACTCACAGODF2EXON19FCCACTAGGGACAGGCTCTTCODF2EXON19FCCACTAGGGAACAGACTCACAGODF2EXON19FCCACTAGGGAACAGGCTCACCGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGGAACATGACAGGTTGGGODF2EXON22FTCTCTTTGCCAAGGTTCCAGGTODF2EXON22FTCTCTTGCCAAGGTTCCAAGGTODF2EXON23RGGCAACTCTGGAGTTCCAAGGTODF2EXON23RGCCCTCGCTTGCTATAGGTATAGCCIFT52X3FTGCCTTGCTTCCAACTAGGTACAGGIFT52X3FTGCCCTTGCTTCTTTCTGCIFT52X8FTGGGTACTAGGACTTACIFT52X8FTGGGGAGGACATGGACTTACIFT52X8FTGGGTACTAGGACTTACCAGGIFT52X9FTCTGCTTCATTATCCAGGACTTGCIFT52X9FTCACATGTGGAACATGAGAGTCCAGGIFT52X9FTGGGTACTGGAACATGAGAGTACTG		
ODF2EXON 10FGGCCTGCTTCTTCCCTTCODF2EXON 10RGAAAGGCTCAGAGAGGATGGODF2EXON 11FAAATGTAGACATCTGGGTTTATTGCODF2EXON11RTAGTGGAACGACGCTCTTGCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON12RGAACCCAGCTCTCTGCATATCODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON 14FCTCCTTCACCATCTGCTTGODF2EXON 14FCTCCTTCACCACTGACGODF2EXON 14FCTCCTTCACCACTGACODF2EXON 15FGGCAGCCTCACCACTAGGODF2EXON 15FGGCAGCCTCACCACTAGGCODF2EXON 15FGTCCAACACCACACAAAGACODF2EXON 16FGTCCCACACCACCACAAGAGCODF2EXON 17-18FCTAGGAGGTCCACCTGAAGCODF2EXON 17-18FCCACTAGGAGCCACGGCAGGODF2EXON 19FCCACTAGGAGCCACGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 21FGTGGAACTGAGAGTTGCCODF2EXON 22FTCTCTTTGCCAAGGTTGCCODF2EXON 22FTCCTAGTAGGAGTTCAAGGTCODF2EXON 23FAAGAAAGTCCTATGGTGATAGGGODF2EXON 23FAAGAAAGTCCTATGGTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTTGCTTCCCACCIFT52X3FGCCTTGCTTCCCACCIFT52X3FGGGGAGGACCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTACTAGGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCCACTGTTCTCTCTTGCTGACCIFT52X9FTCCACTGACTGAGAAGTACATGAGATGCIFT52X9FTCCACTGAGACAGTGGAGACTGG <td>ODF2EXON 9F</td> <td>GATCTCTGGGCATGCGG</td>	ODF2EXON 9F	GATCTCTGGGCATGCGG
ODF2EXON10RGAAAGGCTCAGAGAGGATGGODF2EXON11FAAATGTAGACATCTGGGTTTATTGCODF2EXON11RTAGTGGAACGACGCTCTTGCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON12RGAACCCAGCTCTGCATATCODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON14FCTCCTTCACCCTCTGGTTTGODF2EXON14FCTCCTTCACCCTCTGGTTGODF2EXON14FCTCCTTCACCACCACCAGCODF2EXON15FGGCAGCCTCACCACTAGGCODF2EXON15FGTCCCACACCACCACAGAGCODF2EXON16FGTCCCACACCACCACAAGAGCODF2EXON16RTGGTCAAATCCAGGCTCTTCCODF2EXON17-18FCAAGGGGAACAGACTCACAGODF2EXON17-18RCAAGGGCAAGGTCCACCGAGGODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON20RTGGCTGAAAGTCCAGGTTGGGODF2EXON21RGCTGAGAGTTAGGTGATTGCGODF2EXON22RGCCCCACAGAAGCTAGGTCCACCODF2EXON23FAAGAAAGTCCTATGTCTCATGGODF2EXON23FAGAAAGGCCATGGGTTCCATGGODF2EXON23RGGCAACTCTGGGCAAAAGTCIFT52X3FTCCTAGATTGAGGTTCCTATGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTTCTTCTTCTGCIFT52X7FAATGATCAAAGATCAAGGTGACTTACIFT52X8FTGGGTACTAGGATACATGAGAGTCIFT52X8FTGGGTACTAGGATACATGAGATCCAGGIFT52X8FTGGGTACTAGGATACATGAGATCCAGGIFT52X9FTCTGATTTAATGAGCAATAAACTTACCAGIFT52X9FTCTGATTAATGAGAATAAACTTACCAGIFT52X9FTCCACTGTGAAAGTGCAAGGAGACTGIFT52X9FTCC	ODF2EXON9R	ACGCGTAAAGACCCTGCC
ODF2EXON 11FAAATGTAGACATCTGGGTTTATTGCODF2EXON11RTAGTGGAACGACGCTCTGCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON12RGAACCCAGCTCTGCATATCODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON 13FCTACCATCAAATTGGCAGGCODF2EXON 14FCTCCTTCACCTCTGCTTTGODF2EXON 15FGGCAGCCTCACCACTAGCODF2EXON 15FGGCAGCCTCACCACTAGCODF2EXON 16FGTCCCACACCACACAAGACODF2EXON 16FGTCCCACACCACACAAGACODF2EXON 16FGTCCCACACCACACAAGACODF2EXON 16FGTCCCACACCACACAAGACODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON 19FCCACTAGGAGCCAGGCTTTTCODF2EXON 19FCCACTAGGAGCCAGGTCTTTCODF2EXON 19FCCACTAGGAGCCAGGTCTTTCODF2EXON 20FACAGGTCATAGGAAAGGTCCACGGODF2EXON 20FTGGCTGAAAGTCTCAGGTCCODF2EXON 20FGCCCACAGAAGCTTGGGGODF2EXON 21FGTGGAAAGTCTCAGGTCCODF2EXON 22FTCTCTTTGCCAAGATGTGTGGODF2EXON 22FTCCTAGATAGGTTCCCACCODF2EXON 23FAAGAAAGTCCTATGGTGTATACCCIFT52X3FGCCCTCGCTTCCAATAGTTAAGGIFT52X3FGCCCTCTGCTTCCAATAGTTAAGIFT52X3FTGCCTTGCTTCCAAAGCTCAGGIFT52X4-5FTGGTATTGGGCAAAAGTCIFT52X7FAATGAATCAAAGAGTGTTACCACGTIGGIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTGATTAATGAGCAAATAAACTTACCAGIFT52X9FTCTGATTAATGAGCAAATAAACTTACCAGIFT52X9F	ODF2EXON 10F	GGCCTGCTTCTTCCCTTC
ODF2EXON11RTAGTGGAACGACGCTCTTGCODF2EXON12FCAAATCTCTGTCCTCCCTGGODF2EXON12RGAACCCAGCTCTCTGCATATCODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON14FCTCCTTCACCCTCGGTTTGODF2EXON14FCACCCAGCCTCCTCAGODF2EXON15FGGCAGCCTCACCACTAGCCODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON16FGTCCCACACCACCACAAAGACODF2EXON16RTGGTCAAATCCAGGCTTTCODF2EXON17-18FCAAGGGAACAGACTCACAGODF2EXON17-18FCCACTAGGAGTCCACCTGAAGCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCCODF2EXON20RTGGCTGAAAGTCCAGGTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTGCODF2EXON22FTCCTTTGCCAAGGTTCCCODF2EXON22FTCCTTTGCCAGAGGTTCCCODF2EXON23RGGCAACTCTGGAGTTCCAGGTCODF2EXON23RGGCAACTCTGGAGTTCCAAGGTTAACCCIFT52X3FGCCTGCTTCCAAATAGTAAGCIFT52X3FGCCCTTGCTTCCAAATAGTAAGCIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X8FTGGGTACTAGGATCATAGCACTAGCIFT52X8FTGGGAACATGAACATGAACTACAGCIFT52X8FTGGGTACTAGGAATCAAGAGTGCIFT52X8FTGGGTACTAGGAATAAACTTACCAGIFT52X9FTCTGATTAATGAGCAAATAAACTTACCAGIFT52X9FTCTGATTAATGAGCAAATAAACTTACCAGIFT52X9FTCTGATTAATGAGCAAATAAACTTACCAGIFT52X9FTCTGATTAA	ODF2EXON10R	GAAAGGCTCAGAGAGGATGG
ODF2EXON12FCAAATCTCTGTCCTCGCATATCODF2EXON12RGAACCCAGCTCTTGCATATCODF2EXON13FACGGAGCAAGACTCCGTATGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON14FCTCCTTCACCTCTGCTTTGODF2EXON14FCTCCTTCACCTCTCAGTTTGODF2EXON14FCTCCTTCACCCTCAGCODF2EXON15FGGCAGCCTCACCACTAGCODF2EXON16RCTTCCCTGAGCACTAGGCODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON20FACAGGTCAAAGGGGGODF2EXON20FACAGGTCAAAGGAGAGAGGGGODF2EXON21RGGCGAACATGACAGGTTGGGODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCACCIFT52X3FGCCTTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTCGGGCAAAAGTCIFT52X4-5FTGGTATTCGGCAAAAGTCIFT52X7FAATGAATCAAAGAGTGTTACCACCTTAGGIFT52X8FTGGGTACTAGGATATCACAGGATTACCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGAACATGAACTTACCAGCIFT52X8FTGGGTACTAGGAACATGAAATAACTTACCAGIFT52X9FTCTTGATTAATTCCTAGGCAAATAACTTACCAGIFT52X9FTCTTGATTAATTCCTAGGCAAATAACTTACCAGIFT52X9FTCTTGATTAATGAGAAATAACTTACCAGIFT52X9FTCTTGATTAATCTCAGGCAAATGAACTGCIFT52X9FTCTTGATTAATCTCAGGACCTGGACCTGI	ODF2EXON 11F	AAATGTAGACATCTGGGTTTATTGC
ODF2EXON12RGAACCCAGCTCTCTGCATATCODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON14FCTCCTTCACCCTCTGCTTTGODF2EXON14FCACCCAGCCCTCCTCAGODF2EXON15FGGCAGCCTCACCACTGACODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON16RTGGTCAAATCCAGGCTCTCCODF2EXON17-18FGTAGGAGGTCCACCTGAAGCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON20FACAGGTCAATGGGAACAGGGGODF2EXON20FACAGGTCAATGGGAACAGGGGODF2EXON20FTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCAGGTTCAGGTODF2EXON23RGCCACACTGGAGTTCAGGTGATAACCIFT52X3FTCCTAGATAGGTTCAAGGTTAAGGIFT52X4-5FTGGCTATTCCAAAGCTCAGGIFT52X4-5FTGGCATTTCCAAAGCTCAGGIFT52X7FAATGAATCAAAGAGTGTAACCIFT52X7FAATGAATCAAAGAGTGTAACATGAGATGCIFT52X8RTTTAAATGAGCAAATAACTTACCAGGIFT52X8RTTTAAATGAGCAAATAACATGAGATGCIFT52X9FTCTTGATTTAATGAGCAAATAACTTACCAGGIFT52X9FTCTTGATTTAATGAGAAAGAGTGCTAGGATACCAGGIFT52X9FTCTTGATTTAATGAGAAATAACTTACCAGGIFT52X9FTCTTGATTTAATGAGGAAATAACTTACCAGGIFT52X9FTCTTGATTTAATGAGAAGTGCAACAGGAGACCGGACCTGGIFT52X9FTCTGATTAATGAGAAAGA	ODF2EXON11R	TAGTGGAACGACGCTCTTGC
ODF2EXON 13FACGGAGCAAGACTCCGTATGODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON 14FCTCCTTCACCCTCGCTTTGODF2EXON 14FCTCCTTCACCCTCGCTTGGODF2EXON 15FGGCAGCCTCACCACCAGACODF2EXON 15FGTCCCACACCACACAAAGACODF2EXON 16FGTCCCACACCACACAAAGACODF2EXON 16FGTCCCACACCACCACAAAGACODF2EXON 16FGTCCCACACCACCACAAAGACODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON 17-18FCAAGGGGAACAGACTCACAGODF2EXON 19FCCACTAGGAGGCCAGGTCTTTCODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCAATGACAGGTGGGODF2EXON 20FACAGGTCAAAGGAGTGGGODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 21FGTGGAACATGACAGGTTGCCODF2EXON 22FTCCTTTGCCAAGTGTTCCCODF2EXON 23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON 23FAAGAAAGTCCTATGTCTCTATGGODF2EXON 23FGCCACACTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTCCAACGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGGIFT52X3FGCCTTGCTTCCAAATAGTAAGGIFT52X4-5FTGGTATTTCGGCAAAAGCTCAGIFT52X7FAATGAATCAAGAGTGTACCAGCIFT52X7FAATGAATCAAGAGTGTACCAGCAATAACTTACCAGIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTAATCAGAGAATAACTTACCAGIFT52X9FTCTTGATTAATCCTAGGCAATGACTTACIFT52X9FTCTTGATTAATCCTAGGCAATGACTGGACCIFT52X10FGACCTGAGACAGTGGAACTTG	ODF2EXON12F	CAAATCTCTGTCCTCCCTGG
ODF2EXON13RCTACCATCAAATTGGCAGGCODF2EXON 14FCTCCTTCACCCTCTGCTTTGODF2EXON 14FCACCCAGCCCTCCTCAGODF2EXON 15FGGCAGCCTCACCACTAGCODF2EXON 15RCTTCCCTGAGCCACTAGGCODF2EXON 16FGTCCCACACCACCACAAAGACODF2EXON 16FGTCCCACCACCACCACAAAGACODF2EXON 16FGTCCCACCACCACCACAAAGACODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON 17-18FCAAGGGGAACAGACTCACAGODF2EXON 19FCCACTAGGAGCCAGGTCTTCODF2EXON 19FCCACTAGGAGCCAGGTCTTCODF2EXON 20FACAGGTCATCTGGTATGCGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAACAGGTTGGGODF2EXON 20FACAGGTCATAGGAGTTTAGGGAGTTGGGODF2EXON 21FGTGGAACATGACAGGATGGGODF2EXON 22FTCTCTTTTCCCAAGGTTCCCODF2EXON 22FTCCTTGTTTGCCAAGGTTCCTATGGODF2EXON 23FAAGAAGTCCCTATGTCTTATGGODF2EXON 23FAAGAAAGTCCTATGTCTTATGGODF2EXON 23FGCCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAAGCTTACIFT52X3FGGGAGGAGCATGGACTTACIFT52X3FTGCACTGTTTCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATCACGGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATGAGAATAAACTTACCAGGIFT52X9FTCTTGATTTAATGAGAATAAACTTACCAGGIFT52X9FTCTGACTGAGAAATAAACTTACCAGG	ODF2EXON12R	GAACCCAGCTCTCTGCATATC
ODF2EXON 14FCTCCTTCACCCTCTGCTTTGODF2EXON 14RCACCCAGCCTCCTCAGODF2EXON 15FGGCAGCCTCACCACTAGGCODF2EXON 15RCTTCCCTGAGCCACTAGGCODF2EXON 16FGTCCCACACCACACAAAGACODF2EXON 16FGTACCACACCACACAAAGACODF2EXON 17-18FGTAGGAGTCCACCTGAAGCODF2EXON 17-18RCAAGGGAACAGACTCACAGODF2EXON 19FCCACTAGGAGCCAGGTCTTTCODF2EXON 19FCCACTAGGAGCCAGGTCTTTCODF2EXON 19FCCACTAGGAGCCAGGTCTTTCODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 22FTCTCTTTGCCAAGGTTCCCODF2EXON 22FCCTCTGCTTGGAAGGTCODF2EXON 23FAAGAAGTCCCTATGGTGTCTATGGIFT52X3FGCCACTCGGATTCCAGGTGCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5FTGGTATTTCCCCATCAGCIFT52X7FAAATGATCCATCCACCTTGGIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8RTTTAAATGAGCAATAAACTTACCAGIFT52X8RTTTAAATGAGCAATAAACTTACCAGIFT52X9FTCTGATTGAGGATACATGAGATGCIFT52X9FTGGGTACTAGGATACATGAGATGCIFT52X9FTGGGTACTAGGAAAGTGCATGGCIFT52X9FTGGGTACTAGACAATAAACTTACCAGIFT52X10FGACCTGAGACAGTGGAACTTG	ODF2EXON 13F	ACGGAGCAAGACTCCGTATG
ODF2EXON14RCACCCAGCCTCCTCAGODF2EXON 15FGGCAGCCTCACCACTAGCODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON 16FGTCCCACACCACACAAAGACODF2EXON 16RTGGTCAAATCCAGGCTTTTCODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTCODF2EXON19FCAGCTCATCTTGGTATGCGGODF2EXON19RCAGCTCATCTGGTATGCGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCAGTGTGTATACCCIFT52X3FTCCTAGATAGGTTTCAGTTGATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAGGCAAAAGTCIFT52X4-5FTGGCATCTCCTCCCACCIFT52X6FTGCCCTTCTTTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGAAATAAACTTACCAGIFT52X8FTGGGTACTAGGAAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	ODF2EXON13R	CTACCATCAAATTGGCAGGC
ODF2EXON14RCACCCAGCCTCCTCAGODF2EXON 15FGGCAGCCTCACCACTAGCODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON 16FGTCCCACACCACACAAAGACODF2EXON 16RTGGTCAAATCCAGGCTTTTCODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTCODF2EXON19FCAGCTCATCTTGGTATGCGGODF2EXON19RCAGCTCATCTGGTATGCGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCAGTGTGTATACCCIFT52X3FTCCTAGATAGGTTTCAGTTGATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAGGCAAAAGTCIFT52X4-5FTGGCATCTCCTCCCACCIFT52X6FTGCCCTTCTTTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGAAATAAACTTACCAGIFT52X8FTGGGTACTAGGAAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	ODF2EXON 14F	CTCCTTCACCCTCTGCTTTG
ODF2EXON 15FGGCAGCCTCACCACTGACODF2EXON15RCTTCCCTGAGCCACTAGGCODF2EXON 16FGTCCCACACCACACAAAAGACODF2EXON 16RTGGTCAAATCCAGGCTTTTCODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTCCODF2EXON 20FACAGGTCATAGGGAAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAAGGGGODF2EXON 20FACAGGTCATAGGGAAAAGGGGODF2EXON 20RTGGCTGAAAGTCTCAGGTCCODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 21FGCTGAGAGTTTAGGTGATTTGCODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON 22FTCTCTTTGCCAAGGTTCCCODF2EXON22RGCCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5FTGGCACTGGACTGACCACGIFT52X4FTGCCCTTTCTTCTTCTTGCIFT52X4FTGGGAAGGAGCATGGACTTACIFT52X4FTGGGTACTAGGATACATGAGATGCIFT52X4FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGAAGTGGTACTGIFT52X9FTCTTGATTTAATTCTCAGGCAACTGGAGACTTGIFT52X9FTCTTGATT	ODF2EXON14R	
ODF2EX0N15RCTTCCCTGAGCCACTAGGCODF2EX0N 16FGTCCCACACACACACAAAGACODF2EX0N16RTGGTCAAATCCAGGCTTTTCODF2EX0N17-18FGTAGGAGGTCCACCTGAAGCODF2EX0N17-18RCAAGGGGAACAGACTCACAGODF2EX0N19FCCACTAGGAGCCAGGTCTTTCODF2EX0N19FCCACTAGGAGCCAGGTCTTCCODF2EX0N19RCAGCTCATCTTGGTATGCGGODF2EX0N20FACAGGTCATAGGGAAAGGGGODF2EX0N20RTGGCTGAAAGTCTCAGGTCCODF2EX0N21FGTGGAACATGACAGGTTGGGODF2EX0N21FGCTGAGAGTTTAGCTGGTGTTCCCODF2EX0N22FTCTCTTTGCCAAGTGTTCCCODF2EX0N22RGCCCCACAGAAGCTAGGTCODF2EX0N23RGGCAACTCTGGAGTTCCTATGGODF2EX0N23RGCCTCTGCTTCCAACTGTGTATACCCIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGGIFT52X3FGCCTTTGCTTCCCACCIFT52X4-5FTGGTATTTCGGCAAAAGTCIFT52X7FAATGATCATCAACAGAGTGAGTTACIFT52X7FAATGAATCAAAGAGTGTTACCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGAGCTGTGAGAAAGTGCTTACCIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON 16FGTCCCACACACACACAAAGACODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON20FACAGGTCATAGGGAAAGGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22RGCCCCACAGAAGTGTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGATTTAATGCTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON16RTGGTCAAATCCAGGCTTTTCODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19FCAGCTCATCTTGGTATGCGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTCAGAGAGTTTAGGTGATTTGCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCTATGGODF2EXON23RGGCAACTCTGGAGTTCCCACCIFT52X2FTCCTAGATAGGTTCCAAATAGTTAAGGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTCTGGIFT52X6FTGCCCTTTCTTCTTCTGGIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCTAGTCTGACCAGGIFT52X9FTCTTGATTAATTCTCTAGTCCTGACCIFT52X9FTCTTGATTAATTCCTCAGCTGACCIFT52X9FTCTTGATTAATTCTCTAGTCCTGACCIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON 17-18FGTAGGAGGTCCACCTGAAGCODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19RCAGCTCATCTTGGTATGCGGODF2EXON20FACAGGTCATAGGGAAAGGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGGTTAGGTGATTTGCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCTATGGODF2EXON23RGGCAACTCTGGAGTTCCCACCIFT52X2FTCCTAGATAGGTTCCAAGTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGGIFT52X4-5FTGGCATTTCCACCTTGGIFT52X6FTGCCTTTCTTCTTCTTGGIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X8RTTTAAATGAGCAAATAACTTACAGCIFT52X8RTTTAAATGAGCAAATAACTTACAGGIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTAGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTAAGAGCAAATAACTTACCAGIFT52X9FTCTTGATTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON17-18RCAAGGGGAACAGACTCACAGODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19RCAGCTCATCTTGGTATGCGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FTGGCTGAAAGTCTCAGGTCCODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 21FGCTGAGAGTTTAGGTGATTTGCODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON 22FTCCTATTTGCCAAGTGTTCCCODF2EXON 22FGCCCCACAGAAGCTAGGTCODF2EXON 23FAAGAAAGTCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCAATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGGIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7RTCCACTGTTTCCCAATAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGATTAATTCTCAGTCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON19FCCACTAGGAGCCAGGTCTTTCODF2EXON19RCAGCTCATCTTGGTATGCGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22FTCTCTTTGCCAAGTGTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCCTATGTCTCATGGODF2EXON23RGGCAACTCTGGAGTTCCATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCAGCTCTGACCIFT52X9FTCTTGATTTAATTCTCAGCAATAACTTACCAGIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAACTTG		
ODF2EXON19RCAGCTCATCTTGGTATGCGGODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON 20FTGGCTGAAAGTCTCAGGTCCODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON 21FGCTGAGAGTTTAGGTGATTTGCODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON 23FAAGAAAGTCCCTATGTCTCATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAGAGCTCAGGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTCTGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGAAATAAACTTACCAGIFT52X8FTGGGTACTAGGAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTGAGCTGTGAGAAGTGGTACTGIFT52X9RTTGAGCTGTGAGAAGTGGAACTTGIFT52X10FGACCTGAGACAGTGGAAGTGGAACTTG		
ODF2EXON 20FACAGGTCATAGGGAAAGGGGODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22FTCTCTTTGCCAAGTGTTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCCTATGTCTCATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2FTCCTAGATAGGTTTCCAACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAGCTCAGGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
ODF2EXON20RTGGCTGAAAGTCTCAGGTCCODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON22FTCTCTTTGCCAAGTGTTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23RGGCAACTCTGGAGTTCCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAGGCAAAAGTCIFT52X3RAACGAGCACCCACCTTGGIFT52X4-5FTGGTATTTCGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X9RTTGAGCTGAGACAGTGGAGCATGGIFT52X10FGACCTGAGACAGTGGAGCATTG		
ODF2EXON 21FGTGGAACATGACAGGTTGGGODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON 22FTCTCTTTGCCAAGTGTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAGGTCAGGIFT52X4-5FTGGTATTTCGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAAAAGATCCAACAGAGAGTGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGCATTG		
ODF2EXON21RGCTGAGAGTTTAGGTGATTTGCODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON 23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FAATGAATCAAAGAGTGTTACCAGCIFT52X7FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
ODF2EXON 22FTCTCTTTGCCAAGTGTTCCCODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON 23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X6FTGCCCTTTCTTCTTGCIFT52X6FTGCCCTTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGATTAATTCTCAGCACTGIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
ODF2EXON22RGCCCCACAGAAGCTAGGTCODF2EXON 23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCTTTCTTCTTCTTGCIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGAGCTGTGAGAAGTGGTACTGIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
ODF2EXON 23FAAGAAAGTCCCTATGTCTCTATGGODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
ODF2EXON23RGGCAACTCTGGAGTTCCTATGIFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCTCCAACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGAGTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X2FTCCTAGATAGGTTTCAGTTGTATACCCIFT52X2RTTTAAATTGAGCTTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCTTTCTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X2RTTTAAATTGAGCTTCTCCCACCIFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTCTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X3FGCCTCTGCTTCCAAATAGTTAAGIFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTGTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTGGGTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X3RATCCGGTATTTCAAAGCTCAGIFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X4-5FTGGTATTTCGGGCAAAAGTCIFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X4-5RAAATGATCCATCCACCTTGGIFT52X6FTGCCCTTTCTTCTTGTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9FTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X6FTGCCCTTTCTTCTTGCIFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X6RGGGGAGGAGCATGGACTTACIFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X7FAATGAATCAAAGAGTGTTACTCAGCIFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X7RTCCACTGTTTCCCCATAAGCIFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	IFT52X6R	
IFT52X8FTGGGTACTAGGATACATGAGATGCIFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	IFT52X7F	AATGAATCAAAGAGTGTTACTCAGC
IFT52X8RTTTAAATGAGCAAATAAACTTACCAGIFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG		
IFT52X9FTCTTGATTTAATTCTCTAGTCCTGACCIFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	IFT52X8F	TGGGTACTAGGATACATGAGATGC
IFT52X9RTTGAGCTGTGAGAAGTGGTACTGIFT52X10FGACCTGAGACAGTGGAGACTTG	IFT52X8R	TTTAAATGAGCAAATAAACTTACCAG
IFT52X10F GACCTGAGACAGTGGAGACTTG	IFT52X9F	TCTTGATTTAATTCTCTAGTCCTGACC
	IFT52X9R	TTGAGCTGTGAGAAGTGGTACTG
IFT52X10R TAATTCCCGTTCCCAGGTTC	IFT52X10F	GACCTGAGACAGTGGAGACTTG
	IFT52X10R	TAATTCCCGTTCCCAGGTTC

IFT51X11F	CACTGTATTTCATGGAGAACAACAC
IFT52X11R	CCTGCTGACAAGATAAGGGC
IFT52X12F	TTTGGACAAGCTCTTTCTTGAG
IFT52X12R	AGCCTGGGCAACAAGAG
IFT52X13F	GTCTGTACTTTGGGAAGGGC
IFT52X13R	CGTCATAAAACATGGCAAGC
IFT52X14F	CAGCCCTAAAGCCAGATATTATG
IFT52X14R	AGCTCATGGAGGAAAGAGTG
IFT80X2F	TCCCTTGTTAGGATTGGCAC
IFT80X2R	GCAAACGGTTCACTTTGGAG
IFT80X3F	TTGAAACCATTTGACCCTATTTTAC
IFT80X3R	TGCAGATCCACAAATACCAG
IFT80X4F	AATGTTAATATTTGCCTTTATGCC
IFT80X4R	CAATGAAAGACACTATTGCTAAATG
IFT80X5F	AAAGAATATGCGGTAGATACTGTTG
IFT80X5R	CCAAAGTCAGTCTCAACCACC
IFT80X6F	AAGAGAAGAAATGAAATGACACCTC
IFT80X6R	GCAAGTGCCCTCTAGTTTAGC
IFT80X7F	CCCTGAGAAGATGACAAAGG
IFT80X7R	TCCATGCTTTAAAATACCACTTAAC
IFT80X8F	TTGCTAATATATAAGGTGCTGATTTC
IFT80X8R	CCATGTGTGTTGTGCATTACC
IFT80X9F	CATGTGCCTGATTTAAAACTTCC
IFT80X9R	AGCTTTGGGCATTCAGG
IFT80X10F	TCTGTATCTATGCTTTGTCAGTTGG
IFT80X10R	CACTTTCTCTCACTTCCGGG
IFT80X11F	TGACTTGCCCAAACTCACAG
IFT80X11R	CCTGTGTTGCTCTCATTCTCTC
IFT80X12F	AACAACCAATGCTGGCTTTC
IFT80X12R	AAGTTCAAACTCTCTACCAACAGC
IFT80X13F	AATTGGATGCTGCTGCTCTC
IFT80X13R	CCAGTGCTTAGTCTTTAACTGTGAC
IFT80X14F	TTCAGTGCAGCTTTTGAACG
IFT80X14R	GACCTTGATCTTGCCACTCC
IFT80X15F	ATGGGATTTTGTTGTCAGG
IFT80X15R	TGTAAAACACCTTGCAGGATTG
IFT80X16F	GTATTTCACGGTCCACTCCC
IFT80X16R	TCATTTTGCACAAAGGTAAACTAC
IFT80X17F	ATGGCCACAATGAAATTCCC
IFT80X17R	CCACTAAACAGTAGTATGTGGGC
IFT80X18F	TGCAGCAATTGGTGAAGTAAG
IFT80X18R	AAATTCTTCTGTGGTGTTAAGAAAC
IFT80X19F	AGAGGCCATGTTTGATCTGG
IFT80X19R	TCAAAATATGCCTGCAAGATTC
IFT80X20-1F	AATCTTTTGGAAGTCACACAGTC
IFT80X20-1R	GAGCTGTTTCCATCTTTTGC
IFT80X20-1F	ATTTGACCTCTAAATTGTAAAATGC

IFT80X20-2R	CACAAATTCAGACTTCAGGGC
LMX1BX1F	ATAGCAACAGGTCCCGAGTC
LMX1BX1R	GTCCACAGCCGGACGAC
LMX1BX2F	GGACTGGGACGGACTAGC
LMX1BX2R	AGCTCTCGGAACCCTTGG
LMX1BX3F	CCTCTGGGAGGGACTTCTG
LMX1BX3R	ACTCCCCTCCAGGACACC
LMX1BX4-5F	CGAAGGGGACAAGGCTG
LMX1BX4-5R	GTAGTCTTCTGGCTGCCCC
LMX1BX6F	GCAGCCAGAAGACTACGGTC
LMX1BX6R	CCTCTGCCCCAGCTCAC
LMX1BX7F	AAGGAGATCAGAAGGGGAGG
LMX1BX7R	CCTAGGGCAGCAGGTGG
LMX1BX8F	ACAGCCTACAGGGCAAACAG
LMX1BX8R	GTAGTCTGTGCGGAGAGCAG
WDR34X1F	GACCAATTCAAACATGGCG
WDR34X1R	ACTGTAAAGGCAAACGGTGG
WDR34X2F	ACAGCAGCAAGGAGGGG
WDR34X2R	TGGGAAGGAAAACAAGAGGAG
WDR34X3F	TAGGTGGGGTTTGGTTAGGC
WDR34X3R	AGACAAGGCCCAAGGAGG
WDR34X4F	GTGATAGGAGCCCCACCC
WDR34X4R	ATGGAAAGCTCCCTTGTGC
WDR34X5F	GTGTTTGGCCAGGAAGTCAG
WDR34X5R	CTCTCCCCAGCTCTGCC
WDR34X6F	TTTCCTGGAAGAGAGGGAGG
WDR34X6R	AGGGGAGATCACAGCAAGTC
WDR34X7F	TGTTCTCTGGCTCTGTTGGG
WDR34X7R	CAGGCTAGAGACCCGCAG
WDR34X8F	CACCACCCAGACCCCAG
WDR34X8R	AGAACCCCAGGTACAAGCAG
WDR34X8F	CTGCCATGTGGTTGGTCTC
WDR34X9R	ATTTGGCTTGCGTCAGAAAC
C9ORF74X1F	CACCGCCTCTTCCGTCC
C9ORF74X1R	CACCGCCTCTTCCGTCC
C9ORF74X2F	CCTCAGTTTTCTGTTTCCGC
C9ORF74X2R	CCATGGACCAACTCCTGTTC
C9ORF74X3F	GTGGGCAGGTGCTATTTGG
C9ORF74X3R	AAGGCCAGGACTGAACCC
C9ORF74X4-5F	AGCTCTCAGCCTCTCTTCCTC
C9ORF74X4-5R	GGATGTCTGATTGCTTCGTTC
C9ORF16X1F	CCCGTGTTCTATCCGCC
C9ORF16X1R	ATGGGTGGGCTCTTTGTTC
C9ORF16X2F	TTCCAGACGGTGACACTGAG
C9ORF16X2R	GGCAAGTGGGTGGGTTG
ZNF79X1F	ATAGACCCTTACGCCCAGAG
ZNF79X1R	CTGATTCGGCTCACACAGC

ZNF79X3FAACTGCCAACGTTAACCACCZNF79X3RAAGCAAGTGCCAACGATTTTCZNF79X4FCTCTCCTGAGTTCTGGGTGGZNF79X4RATTTAAAGGCGCTTTTGCTCZNF79X5FACCCATGTGTAGAGATGCCZNF79X5FTGTTCCTAGTTACTCTCCGGCZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAAACAGCTCTCC90RF88X1FCTAGGGGAAGAAACAGCTGCTCC90RF88X2FCTAGGGGAAGAAACAGCGC90RF88X3FCAACACATGGCAAAACAGCGC90RF88X3FCAACACTGGCAGAAGAC90RF88X3FCAACACATGGAGAAAGCGC90RF88X3FCAACACATGGAGAAACGGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTCTGGAACCCAGGGAGAGC90RF88X5FCTCTGGAAGGCCACTGGGGAGAGC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGTGAGAGCACCCGGGGC90RF88X6FCTTGGTGAGAGCACCCGGGGC90RF88X7-8FGCTCGTGTGGGAATGCAGAGAGC90RF88X10FGACCAAGCCAGGCCAGACCTACC90RF88X10FGACCAAGGCAAGGCCAGGGCCAGACC90RF88X10FGACCAGGCCAAGGCAAGGCAGAGC90RF88X10FGACCAGGCCAAGGGTAGAGC90RF88X11-12FAGGAGGGCCAAGGCCAGGCCACCC90RF88X14_1FTTGAGGCAGACCACCCCTGAGGCCC90RF88X14_1FTTGAGGCAGACCCCCCCTGAGTCC90RF88X14_1FTTGAGGCTAGCCCCGAGACCC90RF88X14_2FTTTGAGGCTAGCCCCGAGACCC90R		
ZNF79X4FCTCTCCTGAGTTCTGGGTGGZNF79X4RATTTAAAGGCGCTTTTGCTCZNF79X5FACCCATGTGTAGAGAGTGCCCZNF79X5RTGTTCCTAGTTACTCTCCGGCZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAAACAGCTCTCC90RF88X1FCTCAGCAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X3FCACACATGGCGAAAGCAC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3FCCACACTGAGCAAAGCGC90RF88X3FCCACACTGAGTAGGGCCTTGC90RF88X4FCCACACTGAGTAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGGCAATAACCCAGGTCCC90RF88X6RGCTGGGTCCTTGGGTGACC90RF88X7-8FGCTGTGGGAATGACACGGC90RF88X7-8FGCTGGGCCCTTGGGTGACC90RF88X7-8RAAAAGAAAGTCCACCTGGCC90RF88X10FGACCCAGGCAATGGCACTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCCAAGGCAGGACC90RF88X10FGCACAGGCCAGGCAGGGACC90RF88X11-12FAGGAGGGCCAGGGCAGGGACC90RF88X13FAAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGGC90RF88X14_1FTTGAGGCAGAGTCCAGCACAGGC90RF88X14_2FTTTGAGGCAGGCCAGGCCC90RF88X14_2FTTTGAGGCAGCCCCGAGACCC90RF88X14_2FTTTGAGGCAGCCTGAGCC		
ZNF79X4RATTTAAAGGCGCTTTTGCTCZNF79X5FACCCATGTGTAGAGAGTGCCCZNF79X5RTGTTCCTAGTTACTCTCCGGCZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCTCCZNF297X3_3FGGGGAGAAGAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCCOORF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACAGCTCTCC90RF88X2FCTAGGGGAAGGAACAGGCACC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3FCAGCTCATGGCGAGAAGGC90RF88X3FCAGCTCAAGGGACACC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTCTGACATCCTCGGTGGAGC90RF88X5FCTCTGACATCCTCGGTGGAGC90RF88X5FCTCTGACATCCTCGGTGGAGC90RF88X5FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGTGAGAGCCACTGGGC90RF88X7-8FGCTGGGTCCTTGGGTGACC90RF88X7-8FGCTGGGTCCTGGGGCCC90RF88X9FCTCCAGCACAGACCAGACCAGAGCC90RF88X10FGACCCAGGCAAAGTGTGGGC90RF88X10FGCCCAGGCCAAGGGTAGAGC90RF88X10FGCCCAGGCCAAGGGTAGAGC90RF88X11-12FAGGACGCCACCTTGCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCAGCACAGGCCAGGGC90RF88X14_1FTTGAGGCCAGGCCACAGGCCCC90RF88X14_2FTTTGAGGCCAGCCCCGAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF79X3R	AAGCAAGTGCCACAGATTTTC
ZNF79X5FACCCATGTGTAGAGATGCCCZNF79X5RTGTTCCTAGTTACTCTCCGGCZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_1RCCATCTCCAGTTCTTGGGCZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTGCATTAATTACCC90RF88X1FCTCAGCAGCAAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAACATGGGGAAGCACC90RF88X3RGCACACATGGGGAGAGCACC90RF88X4FCCACACTGAGAAAAGCGGC90RF88X5FCTTCGACATCCTCTGGTGGAGC90RF88X5FCTTCGGCAAAGCAATGC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGGC90RF88X10FGACCCAGGCAAAGTCTGGCC90RF88X10FGACCCAGGCAAAGTCTACC90RF88X10FGACCCAGGCAAAGTGTGGC90RF88X10FGACCCAGGCAAAGTGTGGACC90RF88X10FGTCAGGGCCAAGGCTAGAGAC90RF88X10FGTCAGGGCCAAGGCTAGAGAC90RF88X11-12FAGGCCTCCCTCTACCCTTGC90RF88X13RTCAGCTGCCACAGACCAAGGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGGC90RF88X14_1FTTGAGCCAGAGTCCAGCACAGC90RF88X14_1FTTGAGGCTAGCCCTGAGTCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF79X4F	CTCTCCTGAGTTCTGGGTGG
ZNF79X5RTGTTCCTAGTTACTCTCCGGCZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_1RCCATCTCTCAGTTCTTGGGCZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCACACATGGGGAAGCACC90RF88X3FCCACACTGAGAAAACCGC90RF88X4FCCACACTGAGTAGGGCACCC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTTCGACATCCTCTGGTGGAGC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X78TTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X78TCCAGCACTGGGCCCC90RF88X78AAAGAAAGTCCACCTGGGC90RF88X78AAAGGAAAGCCACCAGGCACTGGGC90RF88X78CTCCGGACAGCCACGGGCCC90RF88X10FGACCCAGGCAAAGTGTGGC90RF88X10FGACCCAGGCAAAGTGTGGC90RF88X10FGACCCAGGCAAAGTGTGGC90RF88X10FGCACGAGGCAAGGCAGGGACC90RF88X10FGTCAGGGCCAAGGCTAGAGAC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGGCCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF79X4R	ATTTAAAGGCGCTTTTGCTC
ZNF297X3_1FTTATCTTTGGGCTGGAATTTGZNF297X3_1RCCATCTCTCAGTTCTTGGGCZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAAACAGCTCTCC90RF88X1FCTCAGGGGAAGGATCGTGATGC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTTCGACATCCTCGGGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X5RTTCAGCAATAACCCAGGCC90RF88X6RGCTGGGTCTTGGGGAAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X78RTATGGGACACCACCTGGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGCAGAGAGC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGCTGGGACCACAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGGCAGTGGACC90RF88X11-12FAGGAGGGCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGGCAGAGTCCAGCACAGACCC90RF88X14_1FTTGAGGCAGAGTCCAGCACAGGCCC90RF88X14_1FTTGAGGCTAGCCCTGAGTC	ZNF79X5F	ACCCATGTGTAGAGATGCCC
ZNF297X3_1RCCATCTCTCAGTTCTTGGGCZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3FGGCGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2FCAGCTTCATGGGGAGGACC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTTCGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X5RCTTGGTAGAGGCCACTGGGC90RF88X5RCTTGGTAGAGGCCACTGGGC90RF88X6RGCTGGGTCCTTGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGTTGTGGGAATGCAGAGAGC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGTGTGGTGC90RF88X10FGACCCAGGCAAAGTGTGGTGC90RF88X10FGACCCAGGCCAAGGGTAGAGC90RF88X10FGACCCAGGCCAAGGGTAGAGC90RF88X11-12FAGGACCCACCTCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGGCAGAGTCCAGCACAGC90RF88X14_1FTTGAGGCAGAGTCCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF79X5R	TGTTCCTAGTTACTCTCCGGC
ZNF297X3_2FACCACCAGTCACCAAGCAGZNF297X3_2RTTCCCATCTGACCTCTCCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACAGCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGGC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGTGTGGTGC90RF88X10FGACCCAGGCAAAGTGTGGACC90RF88X10FGACCCAGGCCAAGGGTAGAGC90RF88X10FGACCCAGGCCAAGGGTAGAGC90RF88X10FGACCCAGGCCAAGGGTAGAGC90RF88X11-12FAGGAGGGCCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_2FTTTGAGGCTAGCCCTGAGCCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_1F	TTATCTTTGGGCTGGAATTTG
ZNF297X3_2RTTCCCATCTGACCTCTCCZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGCTCGGACCAGACCAGACCTACC90RF88X10FGCAGGGCCAGGGCAGTGGACC90RF88X10FGCAGGGCCAGGGCAGTGGACC90RF88X11-12FAGGAAGGGCCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCAGCACAGC90RF88X14_1FTTGAGCAGAGTCAGCCCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_1R	CCATCTCTCAGTTCTTGGGC
ZNF297X3_3FGGGGAGAAGAAAGTGGAAGCZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGAAGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGTGGGACCACTGGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATCCACCTTGGCC90RF88X7-8FGCTCCAGCACCTGGGCTCC90RF88X9FCTCCAGCACCAGACCAGACCAGACCC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10RCCTGTGGAAGGCAGTGGACC90RF88X10RCCTGTGGAAGGCAGTGGACC90RF88X11-12FAGGAAGGGCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FTCAGCTGCCACACACTTCTCC90RF88X14_1FTTGAGGCAGAGTCAGACCC90RF88X14_2FTTTGAGGCCAGCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_2F	ACCACCAGTCACCAAGCAG
ZNF297X3_3RGCCCAGATTTGCATTAATTACCC90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X5RCTTGGTAGAGGCCACTGGGC90RF88X6RGCTGGGTCCTTGGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9FCTCCAGCACCAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGCTGTGGAAGGCAGTGGACC90RF88X10FGCACGAGGCCAAGGCAGAGCC90RF88X11-12FAGGAAGGGCCATGGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCTCCCCCTCTACCCTTGC90RF88X13FAGGCTCCCCCCTCAGCACAGC90RF88X13FTCAGGTGCCACCACTTCTC90RF88X13FTCAGGCGCAAGAGTCCAGCACAGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1FTTGAGCCAGCCCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_2R	TTCCCATCTGACCTCTCTCC
C90RF88X1FCTCAGCAGCAAACAGCTCTCC90RF88X1RTGACAGAGCAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGGC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10FGACCCAGGCAAAGTGTGGGACC90RF88X10FGTCAGGGCCAAGGCAGTGGACC90RF88X11-12FAGGAAGGGCCAGTGGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGGC90RF88X14_2FTTTGAGCCAGACCCCCCGCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_3F	GGGGAGAAGAAAGTGGAAGC
C90RF88X1RTGACAGAGCAAAAACCTCCTCC90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTTGGTAGAGGCCACTGGGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTGGGTCCTTGGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGGC90RF88X7-8RAAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAAGTGTGGC90RF88X10FGACCCAGGCAAAGTGTGGGC90RF88X10FGCTGGGCTGTGGTCC90RF88X11-12FAGGAAGGGCCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGACCAGGC90RF88X14_1RCTCTCAGGCCACAGCCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	ZNF297X3_3R	GCCCAGATTTGCATTAATTACC
C90RF88X2FCTAGGGGAAGGATCGTGATGC90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9RTCTGGGACAGACCAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGGGC90RF88X10FGCTGGGCCAAGGCAGTGGACC90RF88X10RCCTGTGGAAGGCAGTGGACC90RF88X11-12FAGGAAGGGCCTGTGGTCC90RF88X11-12FAGGCCTCCCTCTACCCTTGC90RF88X13FACAGCGCCACACACACACAGGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1FTTGAGCAGAGCCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X1F	CTCAGCAGCAAACAGCTCTC
C90RF88X2RAGGCCACATGGCGAGAAGC90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGTGGGAATGCAGAGAGC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9RTCTGGGACAGACCAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X11-12FAGGAAGGGGCTGTGGTCC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1RCTCTCAGGCCGCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X1R	TGACAGAGCAAAACCTCCTC
C90RF88X3FCAGCTTCATGGGGAGCACC90RF88X3RGCACACATGGAGAAAGCGC90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6FCTTGGGGACCCTGGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9RTCTGGGACAGACCAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X11-12FAGGAAGGGGCTGTGGTCC90RF88X11-12FAGGAAGGGCCAGTGGACC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13FACGCTGCCACACACTTCTCC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1RCTCTCAGGCCGCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	C90RF88X2F	CTAGGGGAAGGATCGTGATG
C9ORF88X3RGCACACATGGAGAAAGCGC9ORF88X4FCCACACTGAGTAGGGCCTTGC9ORF88X4RATGGGGCTGAAAGCAATGC9ORF88X5FCTCTGACATCCTCTGGTGGAGC9ORF88X5FCTCTGACATCCTCTGGTGGAGC9ORF88X6RTTCAGCAATAACCCAGGTCCC9ORF88X6RGCTGGGTCCTTGGGTGACC9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAAGCAGACCAGACCTACC9ORF88X11-12FAGGAAGGGCCTGTGGTCC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X2R	AGGCCACATGGCGAGAAG
C90RF88X4FCCACACTGAGTAGGGCCTTGC90RF88X4RATGGGGCTGAAAGCAATGC90RF88X5FCTCTGACATCCTCTGGTGGAGC90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6RGCTGGGTCCTTGGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X10FGACCCAGGCAAGACCAGACCTACC90RF88X10RCCTGTGGAAGGCAGTGGACC90RF88X11-12FAGGAAGGGCTGTGGTCC90RF88X13FAGCCTCCCTCTACCCTTGC90RF88X13FAGGCTCCCCTCTACCCTTGC90RF88X13FAGGCTGCCACAGAGCAGAGC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1RCTCTCAGGCCGAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X3F	CAGCTTCATGGGGAGCAC
C9ORF88X4RATGGGGCTGAAAGCAATGC9ORF88X5FCTCTGACATCCTCTGGTGGAGC9ORF88X5RTTCAGCAATAACCCAGGTCCC9ORF88X6FCTTGGTAGAGGCCACTGGGC9ORF88X6RGCTGGGTCCTTGGGTGACC9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9FCTCCAGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X13FAGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X3R	GCACACATGGAGAAAGCG
C9ORF88X5FCTCTGACATCCTCTGGTGGAGC9ORF88X5RTTCAGCAATAACCCAGGTCCC9ORF88X6FCTTGGTAGAGGCCACTGGGC9ORF88X6RGCTGGGTCCTTGGGTGACC9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9FCTCCAGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X4F	CCACACTGAGTAGGGCCTTG
C90RF88X5RTTCAGCAATAACCCAGGTCCC90RF88X6FCTTGGTAGAGGCCACTGGGC90RF88X6RGCTGGGTCCTTGGGTGACC90RF88X7-8FGCTTGTGGGAATGCAGAGAGC90RF88X7-8RAAAAGAAAGTCCACCTTGGCC90RF88X9FCTCCAGCACCTGGGCTCC90RF88X9RTCTGGGACAGACCAGACCTACC90RF88X10FGACCCAGGCAAAGTGTGTGC90RF88X10RCCTGTGGAAGGCAGTGGACC90RF88X11-12FAGGAAGGGCTGTGGTCC90RF88X11-12RGTCAGGGCCAAGGGTAGAGC90RF88X13FAGGCCTCCCTCTACCCTTGC90RF88X13RTCAGCTGCCACCACTTCTCC90RF88X14_1FTTGAGCAGAGTCCAGCACAGC90RF88X14_1RCTCTCAGGCCGCAGACCC90RF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X4R	ATGGGGCTGAAAGCAATG
C9ORF88X6FCTTGGTAGAGGCCACTGGGC9ORF88X6RGCTGGGTCCTTGGGTGACC9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X5F	CTCTGACATCCTCTGGTGGAG
C9ORF88X6RGCTGGGTCCTTGGGTGACC9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X5R	TTCAGCAATAACCCAGGTCC
C9ORF88X7-8FGCTTGTGGGAATGCAGAGAGC9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X6F	CTTGGTAGAGGCCACTGGG
C9ORF88X7-8RAAAAGAAAGTCCACCTTGGCC9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X6R	GCTGGGTCCTTGGGTGAC
C9ORF88X9FCTCCAGCACCTGGGCTCC9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X7-8F	GCTTGTGGGAATGCAGAGAG
C9ORF88X9RTCTGGGACAGACCAGACCTACC9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X7-8R	AAAAGAAAGTCCACCTTGGC
C9ORF88X10FGACCCAGGCAAAGTGTGTGC9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCTGAGTC	C9ORF88X9F	CTCCAGCACCTGGGCTC
C9ORF88X10RCCTGTGGAAGGCAGTGGACC9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X9R	TCTGGGACAGACCAGACCTAC
C9ORF88X11-12FAGGAAGGGGCTGTGGTCC9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X10F	GACCCAGGCAAAGTGTGTG
C9ORF88X11-12RGTCAGGGCCAAGGGTAGAGC9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X10R	CCTGTGGAAGGCAGTGGAC
C9ORF88X13FAGGCCTCCCTCTACCCTTGC9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X11-12F	AGGAAGGGGCTGTGGTC
C9ORF88X13RTCAGCTGCCACCACTTCTCC9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C90RF88X11-12R	GTCAGGGCCAAGGGTAGAG
C9ORF88X14_1FTTGAGCAGAGTCCAGCACAGC9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X13F	AGGCCTCCCTCTACCCTTG
C9ORF88X14_1RCTCTCAGGCCGCAGACCC9ORF88X14_2FTTTGAGGCTAGCCCTGAGTC	C9ORF88X13R	TCAGCTGCCACCACTTCTC
C9ORF88X14_2F TTTGAGGCTAGCCCTGAGTC	C9ORF88X14_1F	TTGAGCAGAGTCCAGCACAG
	C9ORF88X14_1R	CTCTCAGGCCGCAGACC
C9ORF88X14_2R GAGCTGAGCCTGCCTGG	C9ORF88X14_2F	TTTGAGGCTAGCCCTGAGTC
	C9ORF88X14_2R	GAGCTGAGCCTGCCTGG

Primers used in chapter 5

ABCB11X2F	CAAATTGTTCTTTCGTTTGGC
ABCB11X2R	TGCTCCTTGAAACTTGACCAG
ABCB11X3F	TGAGCAGGAAGAAAGAAAAGG

ABCB11X3R	CCTAGAAGGGATATTCCAAAAGG
ABCB11X4F	GCCAGTGGGGATTTTCTTTC
ABCB11X4R	AACACTCCCCTCATGATCTAAAC
ABCB11X5F	AGTCCTCCTACCTCTCCTGC
ABCB11X5R	TCAGCCAGTAAAATCCCCTC
ABCB11X6F	AATCTCTGGTGGCTTGATCC
ABCB11X6R	GTGGCAACACATTGCATCTC
ABCB11X7F	CCCCTTTTCTCAACTGTTGTATTG
ABCB11X7R	AATTTAGAAACAAGGGTTTTATTATCC
ABCB11X8F	GAGAGATGGGAATGTTTAAAAGG
ABCB11X8R	TCAGGAAAAGGGACTCAAGC
ABCB11X9F	GACAGACTGACTTACCTAATTTCTTGG
ABCB11X9R	CCGCTTTGCACAAACTGAG
ABCB11X10F	TCCCTGAAGCTGCTCTGTG
ABCB11X10R	CCTGAAGGCACCAAAGTAATAAAC
ABCB11X11F	TGCGTTAACATGGAAGACCC
ABCB11X11R	GAGTTCATTCTGTGCCCCAC
ABCB11X12F	GCAGAGATACGCCAAAGATG
ABCB11X12R	GGAAACAGAGTCAGGCTTCAG
ABCB11X13F	AAGCATCTGCACCTGTAGCC
ABCB11X13R	CTGCCATTTGCACTTTACTG
ABCB11X14F	TGCCCATTGGTCAAGTATG
ABCB11X14R	CTAAAACATGGCTTAAGAATTTAATG
ABCB11X15F	TTATAGTGGATCACTGTCAGAAGC
ABCB11X15R	AGCAGCACAAGCATTTCCAC
ABCB11X16F	TGATGCAAAGGTCAGTGTCAG
ABCB11X16R	CATAGAAAACCGTAAAGCACTATAGAC
ABCB11X17F	GTAAAGAATTCTACTTGGATATGGTTC
ABCB11X17R	CAGAGTTTCCTTGTTGTACCTGAG
ABCB11X18F	ACACCAGTTGATCCTGCTCC
ABCB11X18R	AAAGGGTACCCAACAGTCCC
ABCB11X19F	TGTGAATGCCAAAGGATCTG
ABCB11X19R	CATGAAAACAAAGAGCGGAC
ABCB11X20-21F	CCCACCAGAATGATACATTTCC
ABCB11X20-21R	ATCCCACTGGTCCCTATTCC

ABCB11X22F	TGGTAATTGGTAAAAGCGACTG
ABCB11X22R	AACAGTTTGTCTGATAGCCACTC
ABCB11X23F	GCCACTGAAATGTCACGAAAG
ABCB11X23R	CAGAACCAGGCTATTCCTTCC
ABCB11X24F	ATCACACCAACCACGCC
ABCB11X24R	CAACCTTACCCCTCATCAATAC
ABCB11X25F	AAACTCAAGATTTAGGTGTGTTTTC
ABCB11X25R	AGGGGTTGGAAATACTCTGC
ABCB11X26F	AAGCAAACCAAATGTCCTGC
ABCB11X26R	TGCTCAACCTGTACACTCTGG
ABCB11X27F	GAGTTCAGTACAGCACAGGAGC
ABCB11X27R	TTGAAAATAGTGCCATTTTATTAAGG
ABCB11X28F	TCATGATGGTGGGCTGG
ABCB11X28R	AAAACAATCCCAGCAATCCC

8.4 The nucleotide and amino acid sequences of *TTC37*

This is the coding sequence of TTC37. The exons are coloured alternately blue and black.

Nucleotide sequence

ATGTCCAGCAAGGAAGTGAAGACTGCTCTAAAAAGTGCTAGAGATGCAATCAGAAACAAAGA ATACAAAGAAGCTTTGAAACACTGTAAG

ACAGTGTTAAAGCAAGAGAAAAATAACTATAATGCCTGGGTTTTTATTGGCGTTGCTGCAGCT

GAACTAGAACAACCTGATCAGGCCCAGAGTGCCTATAAAAAAGCTGCTGAATTAGAG

CCAGACCAATTACTAGCTTGGCAG

GGGTTAGCAAACTTGTATGAGAAATATAATCACATAAATGCTAAGGATGACTTGCCTGGTGTT TACCAAAAGCTCCTGGATCTTTATGAGAG

TGTTGACAAGCAGAAGTGGTGTGATGTCTGCAAGAAACTTGTGGATCTATATTACCAAGAAAA

GAAACACCTAGAG

GTGGCTCGAACATGGCACAAGTTGATAAAAACACGGCAGGAACAAGGTGCAGAAAATGAAG AGCTTCATCAACTATGGAGAAAATTGACTCAGTTCCTGGCTGAAAGTACAGAGGACCAGAAT AATGAAACTCAGCAATTG

CTTTTTACTGCTTTTGAGAATGCACTGGGATTATCAGATAAGATTCCTAGTGAAGATCACCAA GTACTTTATAGGCATTTCATTCAGAGTTTATCCAAA

TTTCCTCATGAGTCTGCTAGATTGAAGAAGGCCTGTGAAGGAATGATAAACATCTATCCTACT GTACAGTATCCATTAGAAGTGCTTTGTTTGCATTTAATTGAATCAG

GAAATCTTACTGATGAGGGGGCAGCAGTATTGTTGTAGATTAGTGGAAATGGATTCAAAAAGTG GTCCAGGCCTCATTGGCTTAGGCATTAAAGCATTACAAGACAAAAAGTATGAAGATGCTGTTA GGAACCTAACAGAAG

GGTTAAAGGAAAGCCCTGTCTGCACAAGTGGATGGTATCATCTGGCAGAAGCCCAAGTCAAA ATGCATAGACCTAAAGAAGCTGTTCTTTCATGCAGTCAAG CTCTGAAGATCGTAGATAATCTTGGTGCGTCTGGTAACAGTCTTTATCAGAGGAATCTTTGTCT TCATTTGAAAGCAGAGGCTTTGATTAAACTCTCAGATTATGACTCTTCAGAGGAAGCAATTC GTACGCTTGATCAG

ATTTCTGATGCAGATAATATCCCAGGACTTTTGGTTCTCAAAAGCTTGGCCTATCGGAACAAA GGTTCATTTGATGAAGCTGCAAAG

ATTATGGAAGACCTTCTCTCTTCTTACCCTGACCTAGCTGAAGTTCATGCCCTTGAGGCTTTGA TTCATTTCACCAAAAAGGACTATCTACAAGCAGAAAAATG

TTTTCAGAGAGCTCTTGAGAAAGATACCGAAGTTGCAGAATATCATTACCAACTTGGATTAAC ATACTGGTTCATGGGTGAAGAGAGACAAGAAAAGATAAAACAAAGGCTCTTACCCACTTTCTGA AG

GCTGCAAGACTGGATACATATATGGGCAAAGTTTTCTGCTATTTAGGTCATTATTATAGAGAC GTAGTGGGAGATAAAAACAGAGCTCGTGGATGTTATAGGAAAGCCTTTGAATTAGATGACAC TGATGCTGAATCTGGAGCTGCAGCAGTTGACCTAAGTGTGGAGCTTGAAGATATG

GTTTGGGTGAATGCCATCTTATGATGGCAAAAGCAGCTCTAGTTGATTATCTTGATGGAAAAG CCGTAGACTACATAGAAAAAGCACTGGAATATTTTACTTG

TGTCTGAAAAAAGCAGTGAGACTCGACAGTAATAATCACTTATACTGGAATGCTCTTGGTGTG GTTGCATGTTACAGTG

GACAA

GCTCTTATTGCTGAGGCAGTTGGAAGTTATGACACCATGGATCTCTTCAGGCACACTACAGAA CTAAATATGCAT

ACTGAAGGAGCATTAGGTTATGCGTATTGGGTCTGCACAACATTGCAAGATAAAAGCAACAG AGAAACAGAGCTGTACCAGTACAACATCCTCCAGATGAATGCTATTCCAGCAGCACAAGTTAT TTTGAATAAATATGTAG

AAAGAATTCAGAATTATGCCCCAGCTTTCACAATGTTGGGTTACTTAAACGAACATCTACAAC TGAAAAAGGAAGCAGCAAATGCATACC

AAAG

GGCAATTTTGTTGTTACAGACTGCAGAAGACCAAGATACTTACAATGTTGCAATAAGAAATTA CGGCAGATTGTTATG

CAACCCTGGTGACCCTGCTCTTTGGTCTCTGTTGTCTCGAGTTGTTGCACAGTATGCTCAACGA AATGCAAAG

GGAGGTGTTGTAGCAGGAAATGTGGCTCATATTCTGGACTCAAATCATGGAAAG

AATTTAAAAAGTAACCCTGATCAGCCAGCCGTTATCTTACTTTTGAGACAAGTTCAGTGTAAA CCACTCCTGGAGTCACAAAAGCCACTCCCAGATGCTGTACTTGAAGAACTACAAAAAACAGTC ATGTCCAACTCAACCTCTGTTCCAGCTTGGCAG

TGGCTGGCACATGTGTATCAATCCCAAGGAATGATGAGAGCTGCAGAGATGTGTTACAGAAA GAGTCTACAATTGGCATCCCAACGGGGCAGTTGGAGTGGGAAGCTCTCAAGTCTGTTGAGACT AGCACTACTTGCATTAAAAGTCTGTATG

GCTAACATTTCCAATGATCACTGGCCATCTTTGGTTCAAGAGGCTACAACTGAGGCCTTGAAG CTTTGCTTTTGTCCACTGGCTGTTCTTTTACAAGCTTTGTTACAATTCAAACGCAAAATGGGGG CAAG

AGAGACACGGCGTCTTTTGGAAAGAGTGGTATATCAGCCTGGGTATCCCAAATCTATTGCATC AACTGCACGTTGGTACCTACTGAGACACTTATATGCCAAAGATGACTATGAGCTTATTGAC GTGCTGGTAAACAATGCCAAAACTCATGGAGATACAAGAGCATTGGAACTGAATCAGAGATT GTCCTCACAATAA

Amino acid sequence

The amino acid sequenced is alternate blue and black to denote individual exons

MSSKEVKTALKSARDAIRNKEYKEALKHCK

TVLKQEKNNYNAWVFIGVAAAELEQPDQAQSAYKKAAELEPDQLLAWQ

GLANLYEKYNHINAKDDLPGVYQKLLDLYES

VDKQKWCDVCKKLVDLYYQEKKHLE

VARTWHKLIKTRQEQGAENEELHQLWRKLTQFLAESTEDQNNETQQL

LFTAFENALGLSDKIPSEDHQVLYRHFIQSLSK

FPHESARLKKACEGMINIYPTVQYPLEVLCLHLIESG

NLTDEGQQYCCRLVEMDSKSGPGLIGLGIKALQDKKYEDAVRNLTE

GLKESPVCTSGWYHLAEAQVKMHRPKEAVLSCSQA

LKIVDNLGASGNSLYQRNLCLHLKAEALIKLSDYDSSEEAIRTLDQ

ISDADNIPGLLVLKSLAYRNKGSFDEAAK

IMEDLLSSYPDLAEVHALEALIHFTKKDYLQAEK

CFQRALEKDTEVAEYHYQLGLTYWFMGEETRKDKTKALTHFLK

AARLDTYMGKVFCYLGHYYRDVVGDKNRARGCYRKAFELDDTDAESGAAAVDLSVELEDM

EMALAILTTVTQKASAGTAKWAWLRRGLYYLKAGQHSQAVAD

LQAALRADPKDFNCWESLGEAYLSRGGYTTALKSFTKASELNPESIYSVFKVAAIQQILGKYKEAV

AQYQMIIKKKEDYVPALK

GLGECHLMMAKAALVDYLDGKAVDYIEKALEYFTC

ALQHRADVSCLWKLAGDACTCLYAVAPSKVNVHVLGVLLGQKEGKQVLKKNELLHLGG

RCYGRALKLMSTSNTWCDLGINYYRQAQHLAETGSNMNDLKELLEKSLH

CLKKAVRLDSNNHLYWNALGVVACYS

GIGNYALAQHCFIKSIQSEQI

NAVAWTNLGVLYLTNENIE

QAHEAFKMAQSLDPSYLMCWIGQ

ALIAEAVGSYDTMDLFRHTTELNMH

TEGALGYAYWVCTTLQDKSNRETELYQYNILQMNAIPAAQVILNKYVE

RIQNYAPAFTMLGYLNEHLQLKKEAANAYQ

RAILLLQTAEDQDTYNVAIRNYGRLLC

STGEYDKAIQAFKSTPLEVLEDIIGFALALFMKGLYKESSK

AYERALSIVESEQDKAHILTALAITEYKQGKTDVAKTLLFKC

SILKEPTTESLQALCALGLAMQDATLSKAALNELLKHIKHKDSNYQRCLLTSAIYALQGRSVAVQK

QISKAVH

SNPGDPALWSLLSRVVAQYAQRNAK

GGVVAGNVAHILDSNHGK

KALLYTAVNQLAMGSSSAEDEKNTALKTIQKAALLSPG

DPAIWAGLMAACHADDKLALVNNTQPKRIDLYLALLSAVSAS

IKDEKFFENYNQSLEKWSLSQAVTGLIDTGRISEAETLCTK

NLKSNPDQPAVILLLRQVQCKPLLESQKPLPDAVLEELQKTVMSNSTSVPAWQ

WLAHVYQSQGMMRAAEMCYRKSLQLASQRGSWSGKLSSLLRLALLALKVCM

ANISNDHWPSLVQEATTEALKLCFCPLAVLLQALLQFKRKMGA

RETRRLLERVVYQPGYPKSIASTARWYLLRHLYAKDDYELID

VLVNNAKTHGDTRALELNQRLSSQ

8.5 Manuscripts and abstracts derived from the work contributing to this thesis

- Mutations in *TTC37* cause tricohepatoenteric syndrome (phenotypic diarrhoea of infancy). GASTROENTEROLOGY 2010;138:2388–2398
- Clinical phenotype and autozygosity mapping of phenotypic diarrhoea of infancy.
 British Society of Human Genetics 2006. Poster presentation

&

Clinical phenotype and autozygosity mapping of phenotypic diarrhoea of infancy. American Society of Human Genetics 2006. Poster Presentation

- IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ. Nat Genet. 2007 Jun;39(6):727-9. Epub 2007 Apr 29
- The identification of renal cysts may implicate primary cilia in the aetiology of biliary atresia. Accepted for publication in JPGN July 2010 accepted for publication
- The c.1331C>T / p.V444A *ABCB11* variant in severe intrahepatic cholestasis. American Association for the Study of Liver Disease 2008. Poster presentation