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Abstract

We consider two problems inspired by the social properties of large-scale random

networks. Firstly, we consider evolutionary games on a population whose underlying

topology of interactions is determined by a binomial random graph. Our focus is on 2-

player symmetric games with 2 strategies played between the incident members of such

a population. Players update their strategies synchronously. At each round, each player

selects the strategy that is the best response to the current set of strategies its neighbours

play. We show rapid convergence to unanimity for p in a range that depends on a certain

characteristic of the payoff matrix. In the case where the matrix possesses a further

strategic bias, we determine a sharp threshold on p, above which the largest connected

component reaches unanimity with high probability. For p below this critical value, where

this does not happen, we identify those substructures inside the largest component that

remain discordant throughout the evolution of the system. We consider extensions of

this system into three or more strategies and declare unanimity for two specific cases

depending on entries in the payoff matrix.

Our final project considers graph modularity: a quantity that has been introduced in

order to quantify how close a network is to an ideal modular network. In such an ideal

network the nodes form small interconnected communities that are joined together with

relatively few edges. In this thesis, we consider this quantity on a recent probabilistic

model of complex networks introduced by Krioukov et al. [50].

This model views a complex network as an expression of hidden hierarchies, encapsu-

lated by an underlying hyperbolic space. For certain parameters, this model was proved

to have typical features that are observed in complex networks such as power-law de-

gree distribution, bounded average degree, clustering coefficient that is asymptotically

bounded away from zero, and ultra-small typical distances. We investigate its modularity

and we show that, in this regime, it converges to 1 in probability.
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CHAPTER 1

INTRODUCTION

We are concerned with the analysis of random graph models as a means to understand

phenomena concerning social interactions. We consider two major problems: The former

problem concerns the study of best response dynamics, a game theoretic evolutionary pro-

cess, combined with a local network topology given by the binomial random graph. The

latter problem is concerned with computing the modularity score of the hyperbolic random

graph. These random graphs are suggested to be promising models for representing com-

plex networks, possessing many typical features we would expect of large-scale real-world

networks.

Each section within the introduction features some brief expository and foundational

material which supports the main results. We then conclude with a theorem statement.

The chapters are structured to lead with a relevant review of the current literature; fol-

lowed by a proof of the main result; and finally a set of concluding remarks and suggestions

for further work.

The work found within chapter two is joint with Calina Durbac and Nikolaos Foun-

toulakis, and has been published within [22]. The work within chapter three is joint

with Nikolaos Fountoulakis. While the work within chapter four is joint with Nikolaos

Fountoulakis and Fiona Skerman and has been published within [23].
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1.1 Best Response Dynamics on Random Graphs

Our first result concerns the analysis of a collection of agents competing in evolutionary

games, with an interaction topology given by the binomial random graph. Our main

result concerns the speed at which the agents playing these games settle into a unanimous

strategy. In Sections 1.1.1 and 1.1.2 we detail the key components of the system, namely

the underlying topology of interactions and the mode by which pairs of agents interact.

The subsequent subsections detail the rules of the system, followed by an outline of the

general behaviour in a variety of regimes, namely Theorems 1.1.1 to 1.1.4.

1.1.1 The Binomial Random Graph

A graph G = (V,E) consists of a set of vertices, and a set of unordered pairs of vertices

referred to as edges. We denote the set of vertices of G as V (G), and the set of edges as

E(G). In this section of the thesis we are primarily focused on the binomial random graph,

which was first studied by Erdős and Rényi [29], along with Edgard Gilbert independently

[37]. For n ∈ N, we denote Gn to be the set of all graphs on n vertices. We define the

binomial random graph as follows: for n ∈ N and p ∈ [0, 1], we denote G(n, p) to be a

probability distribution on Gn. We have for a given graph G ∈ Gn,

P(G) = p|E(G)|(1 − p)(
n
2)−|E(G)|,

in the G(n, p) model. This distribution describes a process which starts on an empty n

vertex graph and for every pair of vertices we connect them with probability p indepen-

dently of all other pairs. As a brief aside, we also mention the alternative model of the

binomial random graph. For n,m ∈ N with 0 ≤ m ≤
(
n
2

)
, we denote G ′

n,m to be the set of

all graphs on n vertices and m edges. We define G(n,m) to be a probability distribution
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over G ′
n,m. We have for a given G ∈ G ′

n,m,

P(G) =

((n
2

)
m

)−1

,

in the G(n,m) model. This distribution describes a process starting with an initial empty

graph on n vertices; sequentiallym edges are added to the graph randomly (and uniformly)

across the current non-edges. We remark that these two models are asymptotically equiv-

alent in n, this can be seen by considering the G(n, p) model with p = m/
(
n
2

)
, for more

on G(n,m) see [15]. Throughout this thesis, we will only consider the G(n, p) model.

We briefly detail some well-known results regarding the G(n, p) model, namely the

phase transitions that occur for ranges of p. For different choices of pn = p(n), we have

that G(n, pn) tends to have different graph properties with high probability. Initially, if

pn = o(n−2) then G(n, p) is empty with high probability, while for pn = ω(n−2) we have

that G(n, p) contains at least one edge with high probability. The next threshold occurs

at pn = 1/n, known at the critical threshold. For ε > 0, we have that if pn = (1 − ε)/n

then, with high probability, all connected components of G(n, pn) have size O(log n),

where log · is the natural logarithm. While for pn = (1 + ε)/n we have the emergence of a

giant connected component, which is linear in size. The remaining components have order

O(log n), see [15, 45, 52]. Figure 1.1 shows this transition: In these Java simulations, a

small radius indicates a higher relative degree.
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Figure 1.1: Two realisations of G(n, p) with n = 250. We have p = 0.0005 on the left,

and p = 0.045 on the right. This illustrates the sub-critical and super-critical regimes

respectively.

Following the above, is the sharp connectivity threshold, due to Gilbert [37]. Let

ω(n) : N → R+, such that ω(n) → ∞ as n → ∞. If npn = log n + ω(n), then with high

probability G(n, pn) is connected. While if npn = log n−ω(n), then G(n, p) almost surely

possesses isolated vertices, this can be seen in Figure 1.2. We remark the threshold for a

Hamilton cycle occurs slightly above the connectivity threshold at npn = log n+ log log n

[51, 79].

Figure 1.2: Two realisations of G(n, p) with n = 250. We have p = 0.01 on the left, and

p = 0.0221 on the right. The former possesses isolated vertices, while the latter does not.
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Throughout this thesis, we will be focused on p ranging from just above the critical

threshold, (pn = ω(1)/n). We will also consider the range where pn ≥ Λn−1/2, for a

suitably large positive constant Λ.

1.1.2 Normal-Form Games

Normal-Form games are a class of mathematical games focusing on simultaneous decision-

making. The general setup we consider is that of two players, each of whom can choose

either strategy zero or one. Each player will then simultaneously choose a strategy, and

depending on which of the four combinations arises each player will receive a given payoff.

Each of the player’s respective payoffs can be represented by a pair of real-valued 2 × 2

matrices, each referred to as the payoff matrix. Suppose we have two players, Alice and

Bob. If Alice is assigned a payoff matrix A and plays strategy i, while Bob is assigned

payoff matrix B and plays strategy j; then Alice receives payoff ai,j, while Bob receives

payoff bi,j. The pair (A,B) is referred to as a bi-matrix game [68].

A prominent class of bi-matrix is the case where A = −B. In this case, the sum

of Alice and Bob’s payoff is always zero, known as a zero-sum game. A fundamental

question we can ask is, given Alice and Bob have knowledge of (A,B) what would be

their optimal choice of strategies, and what would be their respective payoffs? As Alice

is choosing the row, it would be intuitive to expect her to choose the row which contains

the largest element. However, Bob is choosing the columns and will aim to choose the

smallest element in A, which corresponds to a large payoff in B. Thus, the only elements

which can satisfy both players (in the sense that neither would have the incentive to switch

strategy from the current logical position), is an entry which is both a row minimum and

a column maximum, also referred to as a saddle point. In terms of pure strategies, where

the game is only played once, the zero-sum game has a solution if and only if the payoff

matrix has a saddle point [17]. We observe that this saddle point is also an example of

a Nash equilibrium, wherein the strategy chosen by Alice is the optimal response to any

optimal strategy chosen by Bob, and vice-versa. When a saddle point does not exist, we
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may instead consider mixed strategies, where Alice and Bob play the game repeatedly

and their strategies are instead given as a probability distribution over their own pure

strategies. In this case, determining the optimal distribution is a standard problem solved

through Linear Programming, for more on general matrix games see, [68,74].

Throughout this thesis, we will be focusing on symmetric matrix games. In this case,

if Q is a 2×2 payoff matrix, the symmetric game is defined as the bi-matrix game (Q,QT ).

Immediately we note that if all the column maximums occur in the same row, then for

QT , all the row maximums will occur in the same column. This causes Alice and Bob

to immediately agree on the same strategy, and thus the game is solved. This type of

argument is an example of dominating strategies, we will review this argument rigorously

in Section 2.1.2. In the remaining cases (where neither strategy dominates), there are

two Nash equilibria that will occur, either at the top left and bottom right corners, or

bottom left and top right corners. The former type of matrix is known as a co-ordination

game, Alice and Bob will receive the best payoff for choosing the same strategies; while

in the latter, known as an anti-coordination game, they should choose different strategies.

Generally, this analysis describes the broad strategy the pair should follow; however, it is

not entirely clear how the two should decide between the Nash equilibria. In this thesis, we

will be considering a type of iterative sequence of pure strategies, known as best response.

In this setting, agents will play repeated games and will choose their next strategy by

playing what should have been the best response to their opponent’s current strategy.

We can view these tactics through the perspective that both players believe that their

opponent will utilise the same strategy in the following round, and thus they should react

accordingly.

1.1.3 A Model for Best Response Dynamics on Graphs

Let Q = [qi,j]0≤i,j≤1 be a 2 × 2 payoff matrix with entries in R. The rows and columns of

Q are indexed by {0, 1}, which are assumed to represent the strategies. Each player will

now choose a strategy from {0, 1}. Player 1 will then receive a payoff given by qi,j, where i

6



is the strategy chosen by Player 1, and j is the strategy chosen by Player 2. Analogously,

Player 2 will receive a payoff qj,i.

The interaction topology of the agents/players is represented by a fixed graph G =

(V,E). The nodes of G represent the agents, and if two nodes are adjacent, then the

corresponding agents interact with each other by playing the game with payoff matrix

Q. We refer to this process as an interacting node system (G,Q,S), which we detail

formally as follows. We fix a graph G, a payoff matrix Q, and for every v ∈ V (G)

an initial vertex strategy S(v) where S : V (G) → {0, 1}. We consider a discrete time

process. For each t ∈ N0 := N ∪ {0}, we denote by St(v) the strategy played by vertex

v at step t. Thus, St : V (G) → {0, 1}. Let NG(v) denote the set of neighbours of a

vertex v ∈ V (G) in G. For a vertex v ∈ V (G), a step t ∈ N0 and j ∈ {0, 1}, we set

nt(v; j) = |NG(v) ∩ {u : St(u) = j}|. To each vertex v ∈ V (G), we assign the initial state

S0(v) = S(v). To progress from round t to round t + 1, the following evolution rule is

applied: Each vertex v will play a game against each one of its neighbours, playing strategy

St(v). For each game played, the vertex will receive a payoff given by the corresponding

entry in the payoff matrix Q. We denote the total payoff for a vertex v at time step t to

be the sum of all payoffs that v received in that round. Therefore, for a vertex v with

St(v) = i, we define the total payoff of v at time t as Tt(v) := nt(v; 0)qi,0 + nt(v; 1)qi,1.

We define the alternative payoff of v at time t, as the total payoff the vertex would have

received, had they played the other available strategy. Hence, the alternative payoff for

a vertex v with St(v) = i is given as: T ′
t(v) := nt(v; 0)q1−i,0 + nt(v; 1)q1−i,1. The value of

St+1(v) is determined by comparing the values of the current payoff and the alternative

payoff. If the alternative payoff is strictly greater than the total payoff, then the vertex

will switch to strategy 1 − i in round t + 1; otherwise, it will continue with its current

strategy. For a vertex v at time t, we can succinctly express the evolution rule as follows:

St+1(v) =


St(v) if Tt(v) ≥ T ′

t(v);

1 − St(v) if Tt(v) < T ′
t(v).

7



We wish to analyse the global evolution of the strategies as time elapses. We say that

a vertex’s strategy is periodic if there exists some T, p ∈ N, such that ST (v) = ST+kp for

all k ∈ N. We call the least possible p which satisfies this definition the period. We say

that the evolution of a system is unanimous, if there exists some T ∈ N such that for all

t ≥ T and all distinct pairs of vertices u, v ∈ V (G), we have that St(u) = St(v). We say

that the system is stable if there exists T ∈ N such that for all v ∈ V (G) and t ≥ T, we

have that ST (v) = St(v).

1.1.4 Classification of Payoff Matrices

The evolution of the node system is largely governed by the entries present in the payoff

matrix Q. As a consequence of choosing specific entries for Q, it can be the case that

one strategy is strictly more beneficial than the other. In this case, the evolution of the

system is trivial, as all agents will unanimously maximise their payoff; we capture this

behaviour with the notion of degeneracy. We say that a payoff matrix Q = (qi,j) with

i, j ∈ {0, 1} is non-degenerate, if one of the following holds:

(i) We have that q0,0 > q1,0 and q0,1 < q1,1.

(ii) Or, q0,0 < q1,0 and q0,1 > q1,1.

Otherwise, we say that Q is degenerate. The behaviour of interacting node systems with

degenerate payoff matrices will be discussed in Section 2.1.2. Furthermore if Q is such

that (i) holds, then we say that Q is in the majority regime, while if (ii) holds then we

say that Q is in the minority regime. The context and implications for this classification

are discussed within Section 2.1.1. We discuss some examples of this classification below:

Examples

1. The Hawk-Dove Game. In this game, a population of animals consists of two types

of individuals which are differentiated by the amount of aggression they display during

8



their interactions. There is the most aggressive type (hawk) and the least aggressive, or

most cooperative, type (dove). When two of them interact over some fixed resource, the

outcome depends on their types. If two hawks compete over the resource they get injured,

because of the fighting, and one of them (at random) manages to grab the resource. Hence,

if R > 0 is the gain from the resource, each is expected to gain R/2 out of the fight, but

they pay a price P > R for their injuries, whereby their overall gain is (R − P )/2. If

a hawk interacts with a dove, then the hawk grabs the resource gaining R, whereas the

dove walks away with nothing. Finally, if two doves interact, then they share the resource

each gaining R/2. Thus, if QH−D denotes the payoff matrix of the Hawk-and-Dove game,

this is

QH−D =

 R−P
2

R

0 R
2

 , (1.1)

where the first row and column correspond to the hawk strategy, and the second row and

column correspond to the dove strategy. We observe that as R < P, the column maxima

occur on the anti-diagonal. Thus QH−D is a non-degenerate payoff matrix in the minority

regime.

2. The Prisoners Dilemma. In this game, two individuals are arrested while committing

a crime together, but they are put in different cells. The police do not have enough

evidence to convict them, but they make an offer to each one separately. If one of them

confesses (defects) but the other remains silent (cooperates), then the former is released

but the other is sentenced to imprisonment of P > 0 years. If they both confess, they are

sentenced to R > 0 years of imprisonment, for R < P . Finally, if both remain silent, they

are both sentenced to S years imprisonment for some minor offence, as the police do not

have enough evidence. In this case, S < R.

Thus, 0 < S < R < P . The payoff matrix of the Prisoners dilemma game QPD is

QPD =

 −R 0

−P −S

 ,

9



where the first row and column correspond to the Defect strategy and the second row and

column correspond to the Cooperate strategy. (Here, we put the − sign in front of these

quantities, as imprisonment is thought of as a loss.) Hence, this is a case of a degenerate

payoff matrix.

1.1.5 Main Results and Theorems for Best Response Dynamics
with Two Strategies

We consider an interacting node system where the underlying graph G is both random and

suitably dense. We let G(n, p) be the binomial random graph on vertex set Vn := [n] :=

{1, 2 . . . , n}, where each edge appears independently with probability p. We introduce

a random binomial initial state, which we refer to as S1/2 ∈ {0, 1}[n]. For every vertex

v ∈ Vn, we have that P[S1/2(v) = 1] = P[S1/2(v) = 0] = 1/2, independently of any other

vertex. We say that a sequence of events En defined on a sequence of probability spaces

with probability measure Pn occurs asymptotically almost surely (or a.a.s.) if Pn[En] → 1

as n → ∞. We now state our first result which describes the vertex strategies of an

interacting node system on G(n, p), with initial state S1/2. We denote this system by

(G(n, p), Q,S1/2).

Theorem 1.1.1. Let Q be a 2× 2 non-degenerate payoff matrix. For any ε ∈ (0, 1] there

exist positive constants Λ, n0 such that for all n ≥ n0, if p > Λn− 1
2 , then with probability

at least 1 − ε, across the product space of G(n, p) and S1/2, the interacting node system

(G(n, p), Q,S1/2) will be unanimous after at most four rounds.

While the above result only allows us to consider densities of p ≫ Λn−1/2 we remark

that placing a condition on Q allows us to consider densities just below the connectivity

threshold of G(n, p). For a 2 × 2 payoff Q with rows and columns indexed with {0, 1} we

define the payoff skew of Q as,

λ = λ(Q) := (q1,1 − q0,1)/(q0,0 − q1,0).
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We will discuss the interpretation of λ (and its relationship to a global strategic bias)

during the derivation of evolution rules, this is found within Section 2.1.1. For the follow-

ing results, we assume that λ ̸= 1. Under this assumption we are able to consider sparser

values of p, which include passing well below the connectivity threshold to just above

the critical threshold of G(n, p). In the sub-critical regime, we can no longer hope for

unanimity, as all components are isolated vertices or trees of size O(log n). The following

result states for p≫ 1/n almost all vertices will be unanimous with O(log n) rounds.

Theorem 1.1.2. Let p = d/n ≤ 1, where d ≫ 1, and let Q be a 2 × 2 non-degenerate

payoff matrix. Suppose that (G(n, p), Q,S1/2) is an interacting node system with payoff

skew λ ̸= 1. For any ε > 0 there exists β = β(λ, ε) > 0 such that a.a.s. at least n(1 − ε)

vertices in G(n, d/n) will be unanimous after at most β log n rounds.

Moreover, there exists a constant α(λ) > 1 such that if d > α(λ) log n, then a.a.s.

G(n, d/n) will be unanimous after one round.

The part of the above theorem for np > c log n with c > α(λ) implies that in fact, it

is much stronger than Theorem 1.1.1. That is, for λ ̸= 1 the system goes into unanimity

in one round for much lower densities than n−1/2. Thus, it will remain to prove Theorem

1.1.1 only for λ = 1.

We refine the above theorem focusing on the largest connected component of G(n, p),

which we denote as L1(G(n, p)) (formally, if there are at least two, we take the lexico-

graphically smallest one). Let u
(1)
n be the probability that L1(G(n, d/n)) will eventually

become unanimous. The next two theorems give the precise location of the threshold on

p above which u
(1)
n approaches 1. In fact, there are two different thresholds for the two

regimes. We start with the majority regime. For λ > 0, let

ℓλ := ⌈max{λ, λ−1}⌉ and cλ :=
1

ℓλ + 1
.

(For a real number x > 0, we let ⌈x⌉ = x, if x ∈ N, and ⌈x⌉ = ⌊x⌋ + 1, otherwise.) We

write Po(γ) for the Poisson distribution with parameter γ > 0.
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Theorem 1.1.3. Suppose that λ ̸= 1 and d = cλ log n + log log n + ω(n). Then the

following hold in the majority regime.

1. If ω(n) → +∞ as n→ +∞, then

lim
n→+∞

u(1)n = 1.

2. If ω(n) → c ∈ R as n→ +∞, then

lim sup
n→+∞

u(1)n ≤
∞∑
k=0

(
1 − 1

2ℓλ+1

)k
P
(
Po(ec(ℓλ+1)/ℓλ!) = k

)
.

and

lim inf
n→+∞

u(1)n ≥
∞∑
k=0

(
1

2ℓλ+1

)k
P
(
Po(ec(ℓλ+1)/ℓλ!) = k

)
.

3. If ω(n) → −∞ as n→ +∞, then

lim
n→+∞

u(1)n = 0.

The analogous result for the minority regime is as follows. For λ > 0, we let

ℓ′λ = ⌊max{λ, λ−1}⌋.

Theorem 1.1.4. Suppose that λ ̸= 1 and d = 1
2

log n +
1+ℓ′λ
2

log log n + ω(n). Then the

following hold in the minority regime.

1. If ω(n) → +∞ as n→ +∞, then

lim
n→+∞

u(1)n = 1.
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2. If ω(n) → c ∈ R as n→ +∞, then

lim sup
n→+∞

u(1)n ≤
∞∑
k=0

(
3

4

)k
P
(
Po(e2c/ℓ′λ!) = k

)
.

and

lim inf
n→+∞

u(1)n ≥ P
(
Po(e2c/ℓ′λ!) = 0

)
.

3. If ω(n) → −∞ as n→ +∞, then

lim
n→+∞

u(1)n = 0.

The reason for the existence of two different thresholds is that the structures that block

unanimity are different in the two regimes. Effectively, these are the thresholds for their

disappearance as subgraphs of G(n, p) and, as it turns out, as subgraphs of L1(G(n, p)).

Nevertheless, as our arguments show, in both regimes the unanimity of L1(G(n, p)) is

achieved in O(log n) steps.

During our analysis, we will see that there are two different kinds of unanimity de-

pending on whether the payoff matrix is in the majority or in the minority regime. In the

majority regime, all vertices of L1(G(n, p)) stabilise to one of the two strategies. However,

in the minority regime, the vertices of L1(G(n, p)) arrive at unanimity but they fluctuate

incessantly between the two strategies. In other words, in the majority regime the sub-

system of L1(G(n, p)) becomes periodic with period 1, whereas, in the minority regime,

the period is equal to 2. Furthermore, we identify the strategy that is played at each step

once this subsystem has entered the periodic cycle.
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1.2 Best Response Dynamics with More than Two

Strategies

We consider an extension to the work given in Section 1.1. In this section, we are concerned

with the evolution of best response dynamics on G(n, p) where each agent may possess

any constant ℓ ∈ N number of strategies. We deduce a classification for the evolution

of agent behaviour. This classification depends on a collection of terms derived from the

payoff matrix, analogous to the λ term in the previous section. We consider two possible

cases that may arise depending on the value of this term and deduce unanimity in each

of these settings. We also suggest future work and approaches, in order to analyse the

behaviour of the system in the remaining cases.

1.2.1 Best Response Dynamics with ℓ Strategies

Consider an ℓ×ℓ payoff matrix Q = [qi,j]0≤i,j≤ℓ−1, with each qi,j ∈ R. Each player will now

simultaneously choose a strategy from {0, 1, . . . , ℓ− 1}. We recall that player 1 will then

receive a payoff given by qi,j, and player 2 will receive a payoff qj,i. Again, we work on a

fixed graph G = (V,E) where if two nodes are adjacent, then the corresponding agents

interact with each other by playing the matrix game Q. Again the system has the same

setup as in Section 1.1.3. We fix a graph G, a payoff matrix Q, and for every v ∈ V (G)

an initial vertex strategy S0(v) where S0 : V (G) → {0, 1, . . . , ℓ − 1}. Again the process

evolves in discrete time. We recall for each t ∈ N0 that St(v) denotes the strategy played

by vertex v at step t. We have that nt(v; j) = |NG(v) ∩ {u : St(u) = j}|. Each vertex will

observe the strategies of all of its neighbours and compute the total payoff it would have

received had it played each of the strategies. We can summarise this information by the

score vector of v at time t, which we define as Tt(v) = (Tt(v; 0), Tt(v; 1), . . . , Tt(v; ℓ− 1))
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with

Tt(v) :=


q0,0 . . . q0,ℓ−1

...
. . .

...

qℓ−1,0 . . . qℓ−1,ℓ−1

 ·


nt(v; 0)

...

nt(v; ℓ− 1)

 .
To progress from round t to round t+ 1 we consider the row(s) containing the maximum

score in the vector Tt(v). In the case that

argmax
0≤i≤ℓ−1

(Tt(v; i)) = {i ∈ {0, . . . , ℓ− 1} : Tt(v; i) ≥ Tt(v; j) for all j ∈ {0, 1, . . . , ℓ− 1}}

is uniquely defined, we have that

St+1(v) = argmax
0≤i≤ℓ−1

(Tt(v; i)) .

In the case that the above term is not unique, equivalently there exist at least two

rows which achieve the maximum value in Tt(v), we have two cases. If we have that

St(v) ∈ argmax0≤i≤ℓ−1 (Tt(v; i)) then St+1(v) = St(v). Otherwise, it follows that St+1(v)

is a uniform random variable over argmax0≤i≤ℓ−1 (Tt(v; i)). In practice, these tiebreak

situations have little impact on the subsequent analysis. We justify such rules in an infor-

mal sense. If an agent’s current strategy is among the best total payoffs, then the agent

has no incentive to switch to another strategy. Otherwise, if there exists a set of equally

optimal strategies different from St(v), then the agent has the incentive to switch. As

these strategies are equally rewarding, the agent should have no preference for any single

strategy. As a result, the agent chooses from this set uniformly at random.

1.2.2 Main Results for Best Response Dynamics with ℓ > 2
Strategies.

In this section, we state our two main theorems. Both theorems declare the unanimity

of the system for a given density and a condition on the matrix Q. We recall that the

system possesses an underlying topology given by the binomial random graph, G(n, p).
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We denote the random multinomial initial state on ℓ ∈ N strategies as, S1/ℓ, wherein for

all k ∈ {0, 1, . . . ℓ− 1} we have

P[S0(v) = k] = 1/ℓ

for all v ∈ V (G). Furthermore, our analysis depends heavily on the sums of each row

in Q. We introduce some notation to denote the number of rows in Q that achieve the

maximum row sum. For an ℓ× ℓ payoff matrix Q and each i ∈ {0, 1, . . . , ℓ−1} we denote,

ΣRi =
ℓ−1∑
k=0

qi,k,

to be the sum of the entries in row i. We will be interested in how many rows achieve a

maximum row sum in Q. Thus we define,

M(Q) :=

∣∣∣∣argmax
0≤i≤ℓ−1

{ΣRi}
∣∣∣∣ = |{i ∈ {0, 1, . . . , ℓ−1} : ΣRi ≥ ΣRj for all j ∈ {0, 1, . . . , ℓ−1}}|.

Our two theorems consider the case where |M(Q)| ∈ {1, 2}. Furthermore, throughout the

remainder of our analysis we demand that Q has unique column maxima, i.e., for every

j ∈ {0, 1, . . . ℓ− 1} we have

∣∣∣∣argmax
0≤i≤ℓ−1

{qi,j}
∣∣∣∣ = |{i ∈ {0, 1, ℓ− 1} : qi,j ≥ qk,j for all {0, 1, . . . , ℓ− 1}}| = 1.

This condition is required for the system to stay unanimous after unanimity is reached

for the first time. This follows from Lemma 1.2.3, as the evolution of a unanimous system

is dictated by the column maxima. If there exists a column with non-unique column

maxima, then a totally unanimous system can potentially evolve by vertices making in-

dependent random choices. At this point, determining the long-term behaviour of the

system becomes intractable.

Our two theorems are distinguished by the value of M(Q). In both cases, the system
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rapidly achieves unanimity. In the case that M(Q) = 1, or equivalently there is a unique

maximum row sum, unanimity is achieved in 1 round a.a.s.

Theorem 1.2.1. Let p be such that, p ≫ n−α, for α ∈ (0, 1). Suppose ℓ ∈ N and Q is

an ℓ × ℓ payoff matrix. Furthermore suppose M(Q) = 1, i∗ = argmax0≤i≤ℓ−1{ΣRi}, and

the column maxima of Q are uniquely defined. Then across the product space of S1/ℓ and

G = G(n, p) we have with probability 1 − o(1) that S1(v) = i∗ for every v ∈ Vn.

We consider the case where M(Q) = 2, equivalently there exists exactly two rows

with equal maximal row sums. We consider the case where ℓ = 3, however our arguments

can be adapted with minimal changes to prove an analogous result for an ℓ × ℓ matrix.

In the initial state, the strategy with the minimal row sum covers o(1) vertices in the

following round. For the remaining vertices, the behaviour of the first round is governed

by a quantity which depends on the entries of Q and the global distribution of strategies.

This quantity determines which of the two remaining strategies receives a boost in the

following round. The unique column maxima requirement ensures a bias exists between

these two strategies. In the following round, the entries of Q determine the evolution of a

large number of vertices. The unique column maxima condition ensures one of the three

strategies is identified as a leader, and this results in a large bias towards this strategy.

Finally, the column maxima alone will then determine which strategy is first entered as

the system reaches unanimity.

Theorem 1.2.2. Let np≫ n2/3. Suppose that Q is a 3×3 payoff matrix, with M(Q) = 2

and a unique column maxima. Then for every ε > 0 there exists an n0 ∈ N such that for

all n > n0, across the product space of G(n, p) and S1/3, we have that there exists some

i∗ ∈ {0, 1, 2} such that

P

[ ⋂
v∈Vn

{S3(v) = i∗}

]
≥ 1 − ε.

Each of the above theorems declares an upper bound for when each system first reaches

unanimity. The following lemma dictates the behaviour of the system beyond this point

for any payoff matrix Q with unique column maxima. If all vertices are playing strategy
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k, they will evolve by playing the strategy contained in the row of column k’s maxi-

mum. Given that the unique column maxima condition is met, this process is always

deterministic.

Lemma 1.2.3. Suppose G contains no isolated vertices, and Q an ℓ × ℓ payoff matrix

with distinct column maxima. Suppose that for all v ∈ V (G) we have that St(v) = k for

some strategy k. Then we have that St+1(v) = argmax0≤i<ℓ−1{qi,k}.

Proof. The proof of this lemma follows by direct calculation of the score vector for each

vertex v. As all vertices have at least one neighbour and the system is unanimous, we note

there exists some k such that every vertex has nt(v; j) = 0 for j ̸= k and nt(v; k) > 0.

Hence for the vector nt(v) = (nt(v; 0), nt(v; 1), . . . , nt(v; ℓ− 1)) we have that,

Tt(v) = Q · nt(v) = nt(v; k)Ck,

where Ck is the kth column of Q. As Q has unique column maxima, we have that

Ck has a unique maximum entry in some row k′. Thus we have that St+1(v) = k′ =

argmax0≤i<ℓ{qi,k}.

In light of Lemma 1.2.3, it is of interest to consider what long-term behaviour can

occur. Firstly, if vertices are playing a strategy k and the column maximum of column k

is also in row k then the system stabilises. Thus column maxima on the leading diagonal

can lead to stabilisation in that strategy. Consequently, matrices which have all column

maxima off the leading diagonal can never stabilise under the above hypothesis. If the

system does not stabilise then the vertices will unanimously cycle through a subset of the

strategies.

Finally, it is of note to consider the case when Q does not possess unique column max-

ima. Suppose the vertices are unanimously playing strategy k, and Ck contains multiple

column maxima, lying off the leading diagonal. It follows that each vertex will choose

one of these strategies independently and uniformly at random. This leads to a situation
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where unanimity is lost entirely and we essentially have a new initial global distribution

from a subset of the strategies. At this point, deducing any long-term behaviour is largely

infeasible, if any discernible long-term behaviour exists at all.

1.3 The Modularity of Random Graphs on the Hy-

perbolic Plane

The final result of this thesis concerns the computation of a prominent network metric on

a certain model of complex networks. In this section, we provide a brief overview of the

rich and emergent field of complex networks, along with a brief description of the popular

metrics used for analysis. We conclude this survey with a more in-depth overview of our

metric of interest, modularity. We then proceed to define the Hyperbolic Random Graph

model and state our central result concerning the modularity score of these networks,

namely Theorem 1.3.1

1.3.1 Complex Networks

A wide array of complex physical phenomena can be identified by studying how smaller

parts of the system are connected. For example, the complex information transfer within

the internet can be studied through the lens of many physically connected computers. Sim-

ilarly, analysing how diseases propagate globally through populations can be understood

by having a grasp on both the structure of local communities and how these communities

connect.

Complex networks are generally considered to be networks which arise as representa-

tions for some sufficiently large real-world systems or phenomena. This notion can feel

generally quite imprecise, as different systems can encode wildly different networks; how-

ever, we can broadly classify these networks by the idea that they possess similarly valued

network theoretic metrics.
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1.3.2 Properties of Complex Networks

There are a variety of properties and metrics which are desirable in classifying complex

networks. We outline a number of common metrics: Small Worlds ; Scale-Free Degree

Distribution; Community Structure; and Modularity. We direct the reader to [6, 26, 71]

for consideration of other prominent metrics; including, Clustering Coefficients, Motifs,

and Centrality.

Small World Phenomena

Despite the large size of a complex network, any pair of vertices are typically linked by

short paths. This is a broadly similar notion to observing that these networks possess

small diameter. This apparent property was coined by Milgram [61] as the small world

effect. In the context of the population networks, this property is sometimes popularly

referred to as the “six degrees of separation”, wherein any pair of people can be linked

together by a chain of at most six acquaintances. In more recreational settings this inspired

the suggestion of the Erdős number, defined to be the distance a given mathematician is

from Paul Erdős in the co-authorship collaboration graph, see [63]. In popular culture,

even more variants of this quantity exist. The most well-known of these is the Bacon

number, the distance an actor is from Kevin Bacon based on mutual film credits. Both

of these quantities form crude upper bounds on both the radius and diameter of these

networks. Among those with a finite Bacon number, the average is 2.9994, indicating

positive empirical evidence for the small world properties of this network [10].

Mathematical models of complex networks generally display a diameter of polylog-

arithmic order as a function of the number of vertices, see [36]. This is explained by

considering the degree distribution: a small number of nodes appear to have an atypically

large degree. As a consequence, many of the shortest paths end up passing through a

small collection of “highly popular” nodes. This was empirically suggested during Mil-

gram’s letter experiment [61]. Milgram tasked a diverse selection of participants to send

a letter to one target person in New York. The participants were only allowed to forward
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the letter to an immediate friend or acquaintance who was more likely to know the target

person. Equivalently, Milgram had described an empirical variation of searching for a

target vertex in a network. Milgram made two key observations of the completed chains:

many were short (< 10) connections, and almost all chains passed through the same two

acquaintances at the penultimate step. This later property appears to mimic the idea that

in some complex networks, global connectivity is generally dependent on a small set of

popular nodes. For example, the connectivity in some regimes of the hyperbolic random

graph model can be determined by the presence or absence of nodes near the centre [14].

Scale Free Networks and Power Law Degree Distributions

As remarked above, the small-world phenomena is primarily driven by a small number of

nodes with a large degree. Conversely, many of the remaining nodes in the network have

a significantly smaller degree. We quantify this as follows: for a given network and any

integer k ≥ 0, denote pk to be the proportion of nodes with degree k. We say a network

is scale free if there exists positive constants C and γ such that pk = Ck−γ, we remark

that such a pk is said to follow a power-law distribution.

The scale of the degree distribution is dependent on the method of generation. Some of

the earliest constructions of networks with a scale-free degree distribution were formulated

by Barabási and Albert [3]. In their preferential attachment model, they considered an

evolving process, where new vertices join the network and attach to a subset of existing

vertices with probabilities proportional to the vertex’s current degree. This leads to a

rich-get-richer style of generation, where a small number of nodes achieve a relatively

large degree.

The below figure shows the comparison of the degree counts between two graph models:

the former, a Barabási-Albert model where a newly arriving vertex connects to a single

existing vertex with a distribution as above, while the latter depicts the standard Erdős-

Rényi binomial random graph.
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Figure 1.3: Comparison of the degree distribution between the Barabási-Albert and Erdős-

Rényi Graph Models. Diagrams are produced with the Python NetworkX package, [42].

The Barabási-Albert preferential attachment model displays a clear exponential de-

cay for the number of vertices showing a larger degree. In contrast, the vertices in the

Erdős-Rényi random graph possesses degrees which are independently and identically dis-

tributed binomial random variables. Consequently, the degree distribution roughly obeys

a Gaussian limit law centred on np. Therefore, in contrast to the scale-free preferential

attachment network, we say that the Erdős-Rényi random graph possesses a single-scale,

see [31].
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Community Structure and Modularity

M. Granovetter, in his pioneering analysis of social networks [40], pointed out that a fun-

damental feature of social networks is the distinction between weak links and strong links.

These strengths reflect the intensity of interaction between two individuals, which may be

dependent on measures such as the frequency of interaction. As Granovetter remarked,

an individual is more likely to interact with other individuals through strong links. This is

expressed in terms of structural features of the social network, whereby individuals belong

to communities, tightly knit by strong links, and these communities are typically joined

through weak links. These ideas postulate that a fundamental characteristic of social

networks is the existence of communities, or modules, within such a network. These are

mutually disjoint subsets of nodes/individuals which have many edges connecting them

but are joined to other modules by few edges.

The applications of community detection can be wide-ranging. Primarily, if we view

the communities as induced subgraphs, then they possess broadly different properties

compared to the network globally. On average, communities display higher local clustering

and edge density compared to the entire network. Consequently, this can be exploited

to detect the communities themselves, see [44]. Other applications can be seen in [24],

whereby assuming an underlying community structure can be used to detect and correct

errors within the data collection stages of encoding real-world networks.

Identifying such a partition in a given social network, or any other complex network

is computationally challenging [16]. But before we set out to find algorithms that give

even an approximate solution to this problem, one needs to quantify what defines a

quality partition capturing the underlying community structure of the network. Such a

quantification was given by Newman and Girvan [72] and is called the modularity score

of a given partition.

For a graph G with m ≥ 1 edges, define the modularity score associated with the
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partition A of the vertex set V to be

modA(G) =
∑
A∈A

(
e(A)

m
−
(

vol(A)

2m

)2
)

where e(A) denotes the number of edges within part A and vol(A) =
∑

v∈A deg(v) denotes

the volume of A, that is, the sum of the degrees of the vertices in A.

For graphs G without edges define modA(G) = 0. Note that the definition of mod-

ularity extends naturally to weighted graphs and is often used in the weighted form in

applications. The term e(A) becomes the sum of the weights of edges in A and the degree

of a vertex deg(v) is the sum of the weights of the edges incident to v. The summation that

defines modA(G) is a comparison between the given network G and a random network with

the same degree sequence. The first term 1
m

∑
A∈A e(A) is the probability that a randomly

chosen edge of G will lie inside one of the parts, whereas the term
∑

A∈A (vol(A)/2m)2

represents the probability that a random edge lies in one of the parts in a uniformly

random graph with the same degree distribution as G. On one extreme if there were no

edges between the parts of A, then 1
m

∑
A∈A e(A) = 1. If A consists of a large number of

parts that are comparable in volume, then the second term
∑

A∈A (vol(A)/2m)2 is small.

Hence, such a highly modular partition will have a modularity score close to 1. With

P(V ) denoting the set of all partitions of V the modularity of graph G is then

mod(G) = max{modA(G) : A ∈ P(V )}.

The set P(V ) includes the trivial partition {V } placing all vertices into the same part.

Note that the modularity score of {V } is zero for any graph. Hence for any graph 0 ≤

mod(G) < 1 with values near 1 taken to indicate a high level of community structure and

values near 0 taken to indicate a lack of community structure.

The diagram below shows the difference in modularity score achieved by two vertex

partitions. The former shows a vertex partition focused on maximising modularity. As

a result, this partition contains densely clustered communities, with weak connections

24



between them. The latter partition is chosen randomly, but with the same number of parts

as the previous algorithm. Clearly, this partition fails to capture any of the underlying

community structure and consequently achieves a modularity score close to zero.

Figure 1.4: A comparison of two vertex partitions, with parts indicated by vertex colour.

The former partition is found using the greedy Clauset-Newman-Moore algorithm, see [25].

The latter is a random vertex partition with the same number of parts. The associated

modularity score is given by Q. Diagrams produced with the Python NetworkX package,

[42].

1.3.3 The Hyperbolic Random Graph

Krioukov et al. [50] introduced a model of random geometric graphs on the hyperbolic

plane as a model of complex networks, which we abbreviate as the KPKBV model after its

inventors. This is based on the assumption that the geometry of the hyperbolic plane can

accommodate the hidden hierarchy of a complex network and its intrinsic inhomogeneity.

Their basic assumption is that the hierarchies that are present in a complex network
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induce a tree-like structure, and this suggests that there is an underlying geometry of a

complex network which is hyperbolic.

There are several representations of the standard hyperbolic plane H2
−1 of curvature

−1. We shall use the Poincaré unit disc representation, which is simply the open disc of

radius one, that is, {(u, v) ∈ R2 : u2 + v2 < 1}, which is equipped with the hyperbolic

metric: 4 du2+dv2

(1−u2−v2)2 . This is a standard formulation of the hyperbolic plane. In particular,

a suitable integration of the metric shows that the length of a circle of (hyperbolic) radius

r (centred at the origin) is 2π sinh(r), whereas the area of this circle (centred at the

origin) is 2π(cosh(r) − 1). Hence, a fundamental difference with the Euclidean plane is

that volumes grow exponentially.

The KPKBV model introduced by Krioukov et al. [50] yields a random geometric

graph on H2
−1. Consider the Poincaré disc representation of the hyperbolic plane H2

−1.

The random graph will have n vertices, we take all asymptotics with respect to n. Let

ν > 0 be a fixed constant and let R = R(n) > 0 satisfy n = νeR/2.

Consider the disc DR of hyperbolic radius R centred at the origin of the Poincaré disc

(that is, the set of points of the Poincaré disc at a hyperbolic distance of at most R from

its origin).

We take a random set of points of size n that are the outcomes of the i.i.d. random

variables v1, . . . , vn taking values on DR. (We will be referring to the random variables

vi as vertices, meaning their values on DR.) More specifically, assume that v1 has polar

coordinates (r, θ). The angle θ is uniformly distributed in (0, 2π] and the probability

density function of r, which we denote by ρn(r), is determined by a parameter α > 0 and

is equal to

ρn(r) =


α sinh(αr)

cosh(αR)−1
if 0 ≤ r ≤ R;

0 otherwise.

(1.2)

The aforementioned formulae for the area and the length of a circle of a given radius

imply that if we set α = 1, the distribution described in (1.2) is the uniform distribution

on DR (under the hyperbolic metric). For general α > 0 Krioukov et al. [50] called this
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the quasi-uniform distribution on DR. Let us remark that in fact this is the uniform

distribution on a disc of hyperbolic radius R within H2
−α2 (the hyperbolic plane that has

curvature −α2).

Given the point process Vn = {v1, . . . , vn} on DR ⊂ H2
−1 and the fixed parameters α

and ν we define the random graph G(n;α, ν) on the point-set of Vn, where two distinct

points form an edge if and only if they are within (hyperbolic) distance R from each

other. Figure 1.5 (below) shows the ball of radius R around a point p ∈ DR, denoted by

B(p;R). Thus, any point/vertex of G(n;α, ν) that falls inside the shaded region becomes

connected to p.

Figure 1.5: The ball of radius R centered at point p, within DR

We refer the discussion of the general network properties of the KPKBV model to

Section 4.1.1. Below, we attach some realisations of this graph for various values of α.
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Figure 1.6: Three samples of G(n;α, ν) with a fixed n = 150, ν = 2 and variable α. From

left to right: α = 0.6, α = 1 and α = 1.8

1.3.4 Poissonisation of the KPKBV Model and Main Results

We will work on the Poissonisation of the above model. Recall that DR was defined to be

the disc of hyperbolic radius R around the origin O of the Poincaré disc representation

of the hyperbolic plane of curvature −1. Here, the vertex set is the point set of a Poisson

point process on DR with intensity

n
1

2π
ρn(r)drdθ.

We denote it by Pα,ν,n. We also denote by κα,ν,n the Borel measure on DR given by

κα,ν,n(S) =
1

2π

∫
S

ρn(r)drdθ,

for any Borel-measurable set S. Hence, the number of points that Pα,ν,n has inside S is

distributed as Po (n · κα,ν,n(S)). Moreover, the numbers of points in any finite collection

of pairwise disjoint Borel-measurable subsets of DR are independent Poisson-distributed

random variables.

We will define the random graph whose vertex set is the set of points of Pα,ν,n in DR.

As in G(n;α, ν), two vertices/points of Pα,ν,n are adjacent if and only if their hyperbolic
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distance is at most R. We denote the resulting graph by P(n;α, ν). The main theorem

of this chapter is that with high probability the modularity of P(n;α, ν) is close to 1.

Theorem 1.3.1. For any α > 1/2 and ν > 0, we have

mod(P(n;α, ν)) → 1,

as n→ ∞, in probability.

The modularity of P(n;α, ν) approaches 1 as n → ∞, without any dependence on the

average degree or the existence of a giant component. Very recently, Kovács and Palla

consider an empirical approach to community structure in hyperbolic networks, [49]. In

particular, they show that almost optimal modularity scores (greater than 0.95) can be

achieved, using simulations of the hyperbolic random graph; however, they work in a range

of parameters where the resulting random graph exhibits a high clustering coefficient

and large α. In light of this, our results show that for sufficiently large networks this

dependency on parameters is no longer required to achieve optimal modularity.

1.4 General Terminology

For a graph G, the vertex set will be denoted by V (G) or in the case that V (G) = [n] =

{1, 2, . . . , n}, we may denote this by Vn. We denote E(G) to be the edge set of G, while

e(G) represents the quantity |E(G)|, and denotes the number of edges in G. For two

distinct vertices v, u ∈ V we write v ∼ u to indicate that they are adjacent.

For a vertex v in a given graph, we denote NG(v) = {u ∈ V (G) : u ∼ v}, to be the

neighbourhood of v in G. Furthermore, we denote d(v) := |NG(v)| to be the degree of v

within the graph G, we may also denote this as deg(v) and the particular graph we refer

to will be made specific by the context. If S ⊂ V , we write e(S) as the number of edges

in G that have both endpoints in S. For v ∈ V, we denote dS(v) to be the degree of v

inside S, i.e |{u ∈ S : u ∼ v}|.
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We recall that if En is an event on the probability space (Ωn,Pn,Fn), for each n ∈ N, we

say that the sequence En occurs asymptotically almost surely (a.a.s.) if Pn(En) → 1 as n→

∞. In our context, we will be using the term a.a.s. for the sequence of probability spaces

of the binomial random graphs G(n, p) and the hyperbolic random graphs P(n;α, ν).

Let an, bn be two sequences of positive real numbers. We write an = Θ(bn), to denote

that there are real numbers c, C > 0 such that cbn ≤ an ≤ Cbn, for all natural numbers

n. We also write an ∼ bn to denote that an/bn → 1, as n→ ∞.

We also use the symbol ∼ in the context of random variables. In particular, for a

random variable X, we will write X ∼ Bin(s, q) to indicate that the distribution of X is

binomial with parameters s ∈ N and q ∈ [0, 1]. While for λ > 0 we say X ∼ Po(λ) to

denote thatX is Poisson with parameter λ. For real µ and positive σ, we writeN ∼ N(µ, σ)

to say that N is a normally distributed random variable, with mean µ and variance σ. For

a probability space (Ω,F) and an event A ∈ F , we denote 1A to be the indicator function

of A. Specifically 1A = 1 if A occurs and 0 otherwise.

1.4.1 General Tools

In this section, we detail some common results from probability theory which are utilised

throughout this thesis. We provide suitable references in the statement of each result.

The Chernoff Bound

Throughout our arguments, we will use the standard Chernoff bounds for the concentra-

tion of binomially distributed random variables. The inequality we will use follows from

Theorem 2.1 in [45]. If X is a random variable such that X ∼ Bin(N, q), then for any

δ ∈ (0, 1) we have

P(|X −Nq| ≥ δNq) ≤ 2e−δ
2Nq/3. (1.3)
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The FKG Inequality

We also require a classical correlation inequality, the FKG inequality. We state it in the

context of the G(n, p). We say that a graph property P is non-decreasing if, for graphs

G,H on Vn, whenever G ∈ P and G ⊆ H then H ∈ P . Similarly we say that P is

non-increasing, if whenever H ̸∈ P and H ⊆ G, then G ̸∈ P as well. We state the FKG

inequality as follows.

Theorem 1.4.1 The FKG inequality [5] (page 91). Let P1 be an non-decreasing graph

property and P2 be a non-increasing graph property. Then for the binomial random graph,

G(n, p), we have the following:

P[G(n, p) ∈ P1 ∩G(n, p) ∈ P2] ≤ P[G(n, p) ∈ P1] · P[G(n, p) ∈ P2].

Convergence to a Poisson Variable

We will also require a result concerning Poisson convergence, stated as Theorem 1.22

in [15]. For r ∈ N we define the rth factorial moment of a random variable X, as

X(r) = X(X − 1)(X − 2) . . . (X − r + 1).

Theorem 1.4.2 [15] (page 25). Let λ = λ(n) be a non-negative, bounded and natural-

valued function. We define the random variable Pλ ∼ Po(λ), and let Xn be a sequence of

integer-valued random variables. Suppose for all r ∈ N we have,

lim
n→∞

E
[
X(r)
n

]
= λr.

Then we have that, Xn
d→ Pλ.
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CHAPTER 2

BEST RESPONSE DYNAMICS ON RANDOM
GRAPHS WITH BINARY STRATEGIES

In this chapter we consider the analysis of best response dynamics on G(n, p), where

the vertices can play either strategies 0 or 1. We lead with a survey of work in the

field of evolutionary game theory, with a particular focus on games with an underlying

topology. We will then briefly restate our main theorems, alongside a proof outline, before

progressing into a full proof of each result.

2.1 Evolving Games with an Underlying Topology

The need for a dynamic game theory was pointed out by von Neumann and Morgenstern

in their seminal book [85] which set the foundations of modern game theory. Research

on dynamic games on populations was stimulated by settings in evolutionary biology. In

1973 John Maynard Smith and George Price [58] set the foundations of evolutionary game

theory, trying to explain phenomena that arise in animal fighting, which contradict the

traditional Darwinian theory.

Considering two types of behaviour: hawk and dove. Any two interacting members

of the population play the well-known hawk-dove game (see Section 2.1.1 for a precise

description of its payoff matrix). Maynard Smith and Price use this game to illustrate

that in a population in which individuals may have one of the two types, it is better to
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have a mixture of hawks and doves, rather than a pure population consisting of only either

hawks or doves. In this model, every member of the population may interact with any

other member. In graph-theoretic terms, this is an evolutionary system on a complete

graph.

Later on, Nowak and May [73] considered settings with non-trivial underlying topology.

They considered a population of agents that are located on the vertices of a 2-dimensional

lattice, in which every agent interacts only with its four neighbours. The interaction is

that any two adjacent agents play the prisoner’s dilemma (which we describe in section

2.1.1) in which they may cooperate or defect. The dynamics that were considered there

depends on the total payoff of each agent that is accumulated by the four games it plays

with its neighbours (or three or two, if it is located on the boundary of the lattice). The

agents update their strategies synchronously, with each agent adopting the strategy of a

neighbour who had the largest total payoff in the previous round. The main observation

in [73] is the co-existence of the two strategies in the long term, despite the fact that

the defect strategy is a Nash equilibrium for this game: that is, in a game between two

players who both defect none has an interest in cooperating, given that the other does not.

Similar dynamics were studied by Santos and Pacheko [83] in the preferential attachment

model, which typically yields graphs which have some properties of complex networks.

A form of local best response dynamics was first considered by Gilboa and Matsui [38]

in a continuous-time setting and for a population with no underlying topology, where

everyone interacts with everyone else. Gilboa and Matsui showed the existence of cyclically

stable sets. Roughly speaking, these are sets of configurations of the population in which

the best response dynamics is trapped.

We recall that our main focus is the study of the evolution of best response dynamics

on a random graph, through the model of an interacting node system. In our analysis of

these systems, we show that these best response dynamics reduce to generalised majority

or minority dynamics. These terms refer to a general class of discrete processes on graphs

where vertices have two states and at each round, a vertex adopts the state of the majority
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or the minority of its neighbourhood, respectively. Majority games reward the individuals

who follow strategies which are in line with the popular opinion; such games are clearly

cooperative, and thus agents will tend to form large unanimous coalitions; see [43]. On

the other hand, minority games capture the idea that agents will benefit from making

choices that oppose the popular consensus. The idea of a minority game was introduced

to characterise the behaviour of agents within the El Farol Bar problem. The problem

describes a fixed population who will repeatedly attempt to synchronously choose their

favourite evening location; however, only the individuals who choose less crowded locations

will be rewarded [18,27]. This problem captures the underlying tension of minority games.

Choosing the lucrative option will clearly reward agents with the greatest payoff; however,

this payoff is easily spoiled if too many of the participants think alike. If agents adopt

this line of thinking, then we deduce that the entire population will reject the optimal

payoff, regardless of the fact that the most lucrative option will tend to be uncontested.

In the case of the El Farol Bar problem, any deterministic strategy will ultimately fail to

satisfy anyone.

In the context of market investments, majority and minority strategies are of central

importance. As suggested in [57], traders utilising contrarian-like strategies will view the

market functioning in a minority-game-like way. They believe goods on the market have a

fundamental price and will invest in such a way as to discourage the market from deviating

away from its fundamental value. On the other hand, investors who are trend followers

view the market from the context of a majority game. These investors tend to inflate the

price of goods which are already travelling on an upward trend. Such investment strategies

are believed to be the central cause driving the pricing bubble phenomena [20,21,46]. The

success of each of these strategies is heavily dependent on the payoff agents can expect to

receive, along with the motives and actions of their rivals.

While the study of evolutionary games on populations with arbitrary mutual inter-

actions is well established, a new focus has now been given to systems of agents which

possess an underlying topology. Within these systems, agents are only able to interact
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with their topological neighbours. The topology of these interactions is commonly rep-

resented by means of an underlying network. Consideration of an underlying topology

allows us to analyse how local decisions in the system can cascade out to form a global

consensus. For example, in [55] it is shown that a small set of agents which oppose the

current consensus, can cause a large contagion of opposing opinions to spread throughout

the network. While in [12] systems of interacting agents on a lattice are considered, agents

have the opportunity to asynchronously update their opinion at random times, which are

driven by an underlying Poisson point process. In the windows of opportunity which are

given by these random times, agents will choose to update their strategies to the one

which will now give them the largest current payoff. It is shown that a steady state can

be achieved within this system; the shape of this distribution is heavily dependent on how

agents choose to update their opinion during these random times.

As previously mentioned, the underlying topology which is the main focus of this

thesis is that of a binomial random graph G(n, p). Our results show that in a wide range

of densities, best response dynamics stabilises rapidly. We prove a general result which

shows that this is achieved in at most 4 rounds when np = Ω(n1/2). However, if the game

exhibits a certain form of bias in terms of its pure Nash equilibria, then we get very precise

results on how these dynamics evolve for p such that np ≫ 1. In the presence of such a

bias, we determine a sharp threshold on p above which the largest connected component

reaches consensus among its vertices. For p below this critical value, we identify those

substructures inside the largest component that are in disagreement with the majority of

the vertices therein. Hence, we are able to characterise the co-existence of strategies very

precisely.

We lay out the remainder of this chapter as follows: In Section 2.1.1, we consider our

first approaches to analysing the model, specifically we construct precise evolution rules

which lead towards a classification of the payoff matrices. We follow with a consideration

of the degenerate payoff matrices and show the behaviour of the system is generally

resolved within a single round. Following this, We focus our attention on a specific class
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of payoff matrices where there exists a certain form of bias among the pure Nash equilibria

of the game. This is analysed in Section 2.2. In this case, we identify a sharp threshold

for p above which consensus is reached in the largest component of G(n, p) in at most

β log n rounds, for a positive constant β. This critical value is determined by the payoff

matrix and is below the connectivity threshold of G(n, p). Furthermore, we show that

if np > c log n, for some c > 1 which depends on the parameters of the system, then

in fact the system reaches consensus only after one round. This is summarised by the

restatement of the following theorem.

Theorem 1.1.2. Let p = d/n ≤ 1, where d ≫ 1, and let Q be a 2 × 2 non-degenerate

payoff matrix. Suppose that (G(n, p), Q,S1/2) is an interacting node system with payoff

skew λ ̸= 1. For any ε > 0 there exists β = β(λ, ε) > 0 such that a.a.s. at least n(1 − ε)

vertices in G(n, d/n) will be unanimous after at most β log n rounds.

Moreover, there exists a constant α(λ) > 1 such that if d > α(λ) log n, then a.a.s.

G(n, d/n) will be unanimous after one round.

In Section 2.3, we consider games where this bias is no longer present. In this scenario,

we observe that the interacting node system reduces to the so-called majority or minority

dynamics on G(n, p). We sample a selection of results from [32], which concern the rapid

stabilisation of agent strategies when playing a majority game on a dense random graph.

Using these results as a basis, we proceed to prove our result concerning the formation of

consensus strategies in the minority game analogue of the random graph majority game.

By combining the above results, we may readily deduce that for any 2×2 non-degenerate

real-valued payoff matrix and suitably dense random graph, the agents of the interacting

node system will reach a consensus after at most four rounds, with high probability. We

restate this result as follows.

Theorem 1.1.1. Let Q be a 2× 2 non-degenerate payoff matrix. For any ε ∈ (0, 1] there

exist positive constants Λ, n0 such that for all n ≥ n0, if p > Λn− 1
2 , then with probability

at least 1 − ε, across the product space of G(n, p) and S1/2, the interacting node system

(G(n, p), Q,S1/2) will be unanimous after at most four rounds.
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2.1.1 The Skew of the Payoff Matrix

Suppose a vertex v at time t has picked a strategy St(v) = i. From the above discussion,

we observe that the incentive for v to switch strategy is the condition that Tt(v) < T ′
t(v).

Expanding both terms and re-arranging, we observe the condition for a vertex playing

strategy i to switch to strategy 1 − i, in the following round, is as follows:

nt(v; 0) (qi,0 − q1−i,0) < nt(v; 1) (q1−i,1 − qi,1) . (2.1)

We recall the definition of the payoff skew of the matrix Q as:

λ = λ(Q) := (q1,1 − q0,1) / (q0,0 − q1,0) .

We remark that λ(Q) is positive and well-defined, if and only if, Q is non-degenerate. If

Q is non-degenerate, there are two possible cases: Either q0,0 > q1,0 and q1,1 > q0,1; or we

have that q0,0 < q1,0 and q1,1 < q0,1.

We lead with the former case. By substituting values of i ∈ {0, 1} into (2.1), we can

rephrase the evolution conditions for each agent in terms of nt(v; 0) and nt(v; 1). Suppose

St(v) = 0, then the incentive for changing strategy is given as follows:

nt(v; 0) (q0,0 − q1,0) < nt(v; 1) (q1,1 − q0,1) .

We now re-arrange the above, and apply that λ = (q1,1 − q0,1)/(q0,0 − q1,0), to form the

first evolution rule for changing from St(v) = 0 to St+1(v) = 1:

nt(v; 0) < nt(v; 1)
q1,1 − q0,1
q0,0 − q1,0

= nt(v; 1)λ. (2.2)

Similarly, if we instead have that St(v) = 1, then the incentive to change to zero in the
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next round is expressed as:

nt(v; 0) (q1,0 − q0,0) < nt(v; 1) (q0,1 − q1,1) .

We recall that in this case we have q0,1 < q1,1, and therefore we re-arrange as follows:

nt(v; 1) < nt(v; 0)
q1,0 − q0,0
q0,1 − q1,1

= nt(v; 0)
q0,0 − q1,0
q1,1 − q0,1

= nt(v; 0)
1

λ
. (2.3)

Combing equations (2.2) and (2.3) provide the required evolution rules as described by

equation (2.4). For the second case, where q0,0 < q1,0 and q0,1 > q1,1, an identical argument

will produce the rules given by equation (2.5). If St(v) = i, and Q is such that q0,0 > q1,0

and q1,1 > q0,1, then we can write:

St+1(v) =


1 − i if nt(v; i) < λ1−2int (v; 1 − i) ;

i otherwise.

(2.4)

Suppose now that the latter case holds, that is, q0,0 < q1,0 and q0,1 > q1,1. Then if St(v) = i,

St+1(v) =


1 − i if nt(v; i) > λ1−2int (v; 1 − i) ;

i otherwise.

(2.5)

We refer to the system governed by the evolution rules from (2.4) as the majority

regime; while we refer to the system described in (2.5) as the minority regime. We will

tackle each of these systems separately. The intuition for these names arises from how

each individual agent tends to think of its neighbours. In the majority regime, agents

will tend to follow the strategies which are shared by the majority of their neighbours;

however, in the minority regime agents will generally choose the least popular strategy seen

across their neighbourhood. The value of λ determines the strength of this tendency. As

previously mentioned in Section 1.1, we see that payoff matrices in the majority regime

give rise to two Nash equilibria which are pure strategies: namely with both players
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playing simultaneously strategy 1 or strategy 0, thus they are co-ordination games. From

this point of view, the parameter λ can be seen as some form of bias between the two

pure Nash equilibria.

2.1.2 Degenerate Payoff Matrices

We briefly discuss the case of degenerate payoff matrices. We recall from the introduction

that a payoff matrix Q is non-degenerate if one of the following hold:

(i) We have that q0,0 > q1,0 and q0,1 < q1,1.

(ii) Or, q0,0 < q1,0 and q0,1 > q1,1.

If neither condition holds then we say that Q is degenerate. The above classification leads

to two possible degenerate matrices: either rows 0 and 1 are identical, or one of the rows

contains both column maxima. Therefore if Q is degenerate, then the behaviour of the

interacting node system is readily deduced. The system will either reach stability from the

outset, or it will reach stable unanimity after one round. We summarise this behaviour

in the following lemma.

Lemma 2.1.1. Let Q be a degenerate payoff matrix, G a connected graph, and S an initial

configuration of vertex strategies. Then the interacting node system (G,Q,S), evolves as

follows: Either the system is stable from T = 0, or the system is unanimous and stable

from T = 1.

Proof. We divide our proof into a number of cases. Firstly, we note that if q0,0 = q1,0

and q0,1 = q1,1, then we must achieve stability from the initial state, since T0(v) = T ′
0(v).

Hence, for all v ∈ V (G) we have that S0(v) = St(v) for t ≥ 0.

Suppose that the above case does not occur, and we have q0,0 > q1,0. For Q to be

degenerate, we are forced to have that q0,1 ≥ q1,1. Consequently, we now have top-row

domination in Q. For any game played by vertex v, it is always optimal to play strategy

zero. As G is connected, every vertex will play at least one game, and, in particular,
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it is always optimal to play strategy 0, which corresponds to the top row of the payoff

matrix. Therefore, for all v we have that S1(v) = 0, and a stable unanimity is achieved.

A similar row domination argument follows for the remaining possibilities of degenerate

matrices.

As Lemma 2.1.1 holds when G is any connected graph, it then follows that this argu-

ment suffices as a proof of both Theorem 1.1.1 and Theorem 1.1.2 for the case that Q is

a degenerate payoff matrix.

2.2 Skewed Interacting Node Systems

In this section, we are concerned with node systems where λ ̸= 1. The central focus of this

analysis is finding which sub-structures can block unanimity (i.e they evolve independently

of the behaviour of the rest of the graph). We show that if none of these blocking structures

are present, then the node system achieves unanimity. The emergence of these structures

is characterised by Theorems 1.1.3 and 1.1.4. In this chapter, we will show that in the

majority and minority regimes, there exists respective thresholds for the existence of these

blocking structures. We remark that in each regime these structures, and hence their

respective thresholds, are different. Furthermore, we then show that if these structures

are not present, then the node system achieves unanimity within β log n rounds, as given

by Theorem 1.1.2. This is done by first showing that a sub-linear majority is achieved

in the first round, such a result hinges on the fact that λ ̸= 1. Following from this, we

partition the network into vertices of high and low degree, defined in terms of a suitable

constant. We show that between each round, the size of the majority strategy among

high-degree vertices increases until unanimity is achieved in the high-degree part, this is

shown in Theorem 2.2.16. Following this, we show that given these blocking structures do

not exist, the remaining low-degree vertices also synchronise with the high-degree vertices.
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2.2.1 Blocking Structures and their Distribution

We will start with the identification of those structures/induced subgraphs of G(n, p)

which, roughly speaking, will stay immune to what the rest of the graph is doing. Thus,

these substructures act as obstructions to unanimity.

In particular, the structure we consider is an (ℓ, k)-blocking star. This is a star whose

central vertex has degree ℓ + k in G(n, d/n) and, furthermore, ℓ leaves of the star have

degree 1 insideG(n, d/n), whereas we impose no restriction on the degrees of the remaining

k leaves. We call the latter leaves the connectors of the blocking star, whereas the ℓ leaves

of degree 1 are called the blocking leaves. Such a structure is illustrated in Figure 2.1.

v u

u1

u2

uk

v1

v2

v3

v`

Figure 2.1: A blocking star with central vertex v, blocking leaves v1, . . . , vℓ and connectors

u1, . . . , uk.

An (ℓ, k)-blocking star has the property that it can block or absorb the influence of

the external vertices depending on the choice of its parameters ℓ and k, respectively. Let

us consider first the minority regime. It will turn out that it will be sufficient to consider

(1, k)-blocking stars for a suitable defined k. Let i∗ ∈ {0, 1} be such that λ2i
∗−1 =

max{λ, λ−1}. For i, j ∈ {0, 1}, we say that a star has the (i, j)-configuration if the

blocking leaves play strategy i whereas the centre plays strategy j.

Claim 2.2.1. Consider a (1, k)-blocking star with k ≤ ⌊λ2i∗−1⌋. In the minority regime,

if the star ever gets into the (i∗, 1 − i∗)-configuration, it will stay so forever.

Proof. Let v1 denote the blocking leaf and v denote the centre of the star. Suppose
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that St(v1) = i∗ but St(v) = 1 − i∗. By (2.5), the vertex v will change strategy, if

nt(v; 1 − i∗) > λ2i
∗−1nt(v; i∗). Since St(v1) = i∗, then nt(v; 1 − i∗) ≤ k ≤ ⌊λ2i∗−1⌋.

But also nt(v; i∗) ≥ 1. So we would have ⌊λ2i∗−1⌋ > λ2i
∗−1, which is impossible. Thus,

St+1(v) = 1 − i∗. Furthermore, St+1(v1) = i∗, since v1 has no neighbours playing i∗.

Claim 2.2.2. Consider a (1, k)-blocking star with k > ⌊λ2i∗−1⌋. In the minority regime,

if the k connectors simultaneously alternate between 1 − i∗ and i∗, then the blocking leaf

and centre will eventually synchronise with them.

Proof. Let v1 be the blocking leaf, v be the centre and u1, . . . , uk be k connectors of the

star. Suppose that St(uj) = 1 − i∗, for all j = 1, . . . , k.

If St(v) = 1− i∗, then v will change strategy if nt(v; 1− i∗) > λ2i
∗−1nt(v; i∗) (cf. (2.5)).

But nt(v; 1 − i∗) ≥ k and nt(v; i∗) ≤ 1. Since k > ⌊λ2i∗−1⌋, the above inequality is indeed

satisfied. Hence, St+1(v) = i∗. Also, note that St+1(v1) = i∗.

On the other hand, if St(v) = i∗, then v will not change strategy if nt(v; i∗) ≤

λ1−2i∗nt(v; 1 − i∗). But nt(v; 1 − i∗) ≥ k > ⌊λ2i∗−1⌋. Therefore, nt(v; 1 − i∗) > λ2i
∗−1.

So λ1−2i∗nt(v; 1 − i∗) > 1. But nt(v; i∗) ≤ 1 and the inequality is satisfied. Therefore,

St+1(v) = i∗. However, now St+1(v1) = 1 − i∗.

Suppose now that St(uj) = i∗, for all j = 1, . . . , k. If St(v) = 1 − i∗, then by (2.5)

v will change strategy if nt(v; 1 − i∗) > λ2i
∗−1nt(v; i∗). But now nt(v; 1 − i∗) ≤ 1 and

nt(v; i∗) ≥ k > λ2i
∗−1. Thus, the above inequality is not satisfied and St+1(v) = 1 − i∗.

Also, note that St+1(v1) = i∗.

If St(v) = i∗, then v will not change strategy if nt(v; i∗) ≤ λ1−2i∗nt(v; 1 − i∗). Now,

nt(v; i∗) ≥ k > λ2i
∗−1 > 1 but λ1−2i∗nt(v; 1 − i∗) ≤ λ1−2i∗ < 1. So the above inequality is

not satisfied and St+1(v) = 1 − i∗. Furthermore, St+1(v1) = 1 − i∗.

We thus conclude that in any case, the centre v will synchronise with the k connectors.

Note that from the above four cases, we see that the blocking leaf v1 will synchronise with

v at the steps where it changes state. Hence, it will also synchronise with the k connectors

too.

42



In the majority regime, it will turn out that we will need to consider (ℓ, 1)-blocking

stars. We will show that if ℓ is sufficiently large, then the (ℓ, 1)-blocking star can block

the influence of the external vertices and retain the strategy of its vertices.

Claim 2.2.3. Consider an (ℓ, 1)-blocking star with ℓ ≥ ⌈λ2i∗−1⌉. In the majority regime,

if it is set to the (1−i∗, 1−i∗)-configuration initially, then it will stay in this configuration

forever.

Proof. Suppose that v1, . . . , vℓ are the ℓ-blocking leaves and v is the centre of the star.

Assume that all St(v) = St(v1) = · · · = St(vℓ) = 1 − i∗. By (2.4), the centre will change

strategy at step t + 1, if nt(v; 1 − i∗) < λ2i
∗−1nt(v; i∗). But nt(v; 1 − i∗) = ℓ ≥ ⌈λ2i∗−1⌉

and nt(v; i∗) ≤ 1. Hence, we should have ⌈λ2i∗−1⌉ < λ2i
∗−1, which is impossible. So

St+1(v) = 1 − i∗. Further, note that the ℓ-blocking leaves will adopt the strategy of the

centre at step t+ 1 since they have no other neighbours. Thus, St+1(vj) = 1 − i∗, for any

j = 1, . . . , ℓ, as well.

Claim 2.2.4. Consider an (ℓ, 1)-blocking star with ℓ ≥ 1. In the majority regime, if it is

set to the (i∗, i∗)-configuration initially, then it will stay in this configuration forever.

Proof. Suppose that v1, . . . , vℓ are the ℓ-blocking leaves and v is the centre of the star.

Assume that all St(v) = St(v1) = · · · = St(vℓ) = i∗. By (2.4), the centre will change

strategy at step t+1, if nt(v; i∗) < λ1−2i∗nt(v; 1−i∗). But nt(v; i∗) ≥ 1 and nt(v; 1−i∗) ≤ 1.

So the above inequality is not satisfied, since λ1−2i∗ < 1, and, therefore, St+1(v) = i∗.

Finally, the ℓ-blocking leaves will retain the strategy of the centre at step t+ 1, since they

have no other neighbours. Thus, St+1(vj) = i∗, for any j = 1, . . . , ℓ, as well.

Now, we shall give a general condition that determines the distribution of the (ℓ, k)-

blocking stars in G(n, d/n). The following results will be useful both for the subcritical

and the supercritical regime that we analyse in the next subsection.

Let Xℓ,k,n be the random variable which is the number of (ℓ, k)-blocking stars in

G(n, d/n) and let X
(1)
ℓ,k,n be the number of those (ℓ, k)-blocking stars which are subgraphs
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of L1(G(n, d/n)). Clearly, X
(1)
ℓ,k,n ≤ Xℓ,k,n. However, we will show that a.a.s. these two

random variables are approximately equal.

In particular, we will show the following three lemmas. The first Lemma provides an

asymptotic for the expected number of (ℓ, k)-blocking stars in G(n, d/n).

Lemma 2.2.5. Let ℓ, k ∈ N and p = d/n, where 1 ≪ d = d(n) = O(log n). Then we

have,

E [Xℓ,k,n] ∼ n
dℓ+k

ℓ!k!
e−d(ℓ+1).

Our second Lemma describes the sharp threshold for the existence of an (ℓ, k)-blocking

star, in terms of ℓ, k and n, inside of G(n, d/n). We show that below this threshold an

(ℓ, k)-blocking star will exist a.a.s. While above this threshold, no such stars will exist

a.a.s. In the case that d is within a constant of the threshold, then we show the number

of (ℓ, k)-blocking stars converges in distribution to a Poisson distribution by applying

Theorem 1.4.2.

Lemma 2.2.6. Furthermore, if d = 1
ℓ+1

log n + ℓ+k
ℓ+1

log log n + ω(n), then the following

hold.

i. If ω(n) → −∞ as n → +∞, then E [Xℓ,k,n] → +∞ as n → +∞ and moreover,

a.a.s. Xℓ,k,n ≥ E [Xℓ,k,n] /2.

ii. If ω(n) → c ∈ R as n→ +∞, then E [Xℓ,k,n] → e(ℓ+1)c

ℓ!k!
as n→ ∞ and

Xℓ,k,n
d→ Po

(
e(ℓ+1)c

ℓ!k!

)
.

iii. If ω(n) → +∞ as n→ +∞, then P(Xℓ,k,n > 0) < 2e−(ℓ+1)ω(n), for any n sufficiently

large. Thus, a.a.s. Xℓ,k,n = 0.

We denote X
(2)
ℓ,k,n = Xℓ,k,n − X

(1)
ℓ,k,n. This quantity describes the number of (ℓ, k)-

blocking stars found outside of the giant component. The following Lemma states that

in expectation there are asymptotically much fewer (ℓ, k)-blocking stars in the rest of the

graph.
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Lemma 2.2.7. We have E
[
X

(2)
ℓ,k,n

]
= o(E [Xℓ,k,n]).

Hence by applying Markov’s inequality we have that a.a.s. X
(2)
ℓ,k,n ≤ E [Xℓ,k,n] /4. By

Lemma 2.2.5, if d = 1
ℓ+1

log n+ ℓ+k
ℓ+1

log log n+ ω(n), with ω(n) → −∞, then a.a.s.

X
(1)
ℓ,k,n ≥ 1

4
E [Xℓ,k,n] . (2.6)

Furthermore, note that any two (ℓ, k)-blocking stars can share only their connector ver-

tices. So, if we consider the initial assignment of strategies, each (ℓ, k)-blocking star

inside L1(G(n, d/n)) will be set into (i, j)-configuration with probability 1/2ℓ+1, indepen-

dently of each other. Thus, the weak law of large numbers together with (2.6) implies the

following.

Lemma 2.2.8. Let p = d/n, where d = 1
ℓ+1

log n+ ℓ+k
ℓ+1

log log n+ ω(n), for k, ℓ ∈ N. Let

i, j ∈ {0, 1}.

i. If ω(n) → −∞ as n→ +∞, then a.a.s. at least 1
8
· 1
2ℓ+1E [Xℓ,k,n] of the (ℓλ, k)-blocking

stars inside L1(G(n, d/n)) will be set into (i, j)-configuration at the beginning of the

process.

ii. If ω(n) → c ∈ R as n → +∞, then the number of (ℓ, k)-blocking stars inside

L1(G(n, d/n)) will be set into (i, j)-configuration at the beginning of the process

converges in distribution as n→ ∞ to a random variable distributed as

Bin

(
Po(e(ℓ+1)c/(ℓ!k!)),

1

2ℓ+1

)
.

We conclude this section with the proofs of Lemmas 2.2.5 and 2.2.7.

Proof of Lemma 2.2.5. We start with the expected value of Xℓ,k,n. Suppose S denotes a

set of size ℓ + k + 1 on which an (ℓ, k)-blocking star will be formed. There are
(

n
ℓ+k+1

)
ways to select these vertices and (ℓ + k + 1)

(
ℓ+k
k

)
ways to select the centre v and the
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connector vertices u1, . . . , uk. Suppose that the remaining vertices are v1, . . . , vℓ. We have

P(d(v1) = 1|v1 ∼ v) = (1 − p)n−1. For j = 2, . . . , ℓ,

P(d(vj) = 1|vi ∼ v, d(vi) = 1, for i = 1, . . . , j − 1) = (1 − p)n−(j−1) < e−d+dℓ/n.

But since j ≤ ℓ, we have for n sufficiently large

e−d−(d/n)2 ≤ (1 − p)n−(j−1) < e−d+dℓ/n.

Hence, using the assumption that d = O(log n)

P(d(v1) = · · · = d(vℓ) = 1|vi ∼ v, for i = 1, . . . , ℓ) ∼ e−dℓ.

Also, P(dVn\S(v) = 0) = (1 − p)n−(ℓ+k+1) ∼ e−d Thus, we obtain

E [Xℓ,k,n] ∼ nℓ+k+1

(ℓ+ k + 1)!
· (ℓ+ k + 1)

(
ℓ+ k

k

)
·
(
d

n

)ℓ+k
· e−d(ℓ+1)

=
nℓ+k+1

(ℓ+ k + 1)!
· (ℓ+ k + 1)

(ℓ+ k)!

ℓ!k!
·
(
d

n

)ℓ+k
· e−d(ℓ+1)

= n
dℓ+k

ℓ!k!
· e−d(ℓ+1).

This concludes the proof of this lemma.

Proof Of Lemma 2.2.6. Now, the value of limn→∞ E [Xℓ,k,n] is deduced as in parts i., ii.

and iii. of the lemma follows by taking d(ℓ+ 1) = log n+ (ℓ+ k) log log n+ (ℓ+ 1)ω(n),

where either ω(n) → +∞ or → c or → −∞, as n→ ∞, respectively.

For Part iii., Markov’s inequality implies that

P(Xℓ,k,n > 0) ≤ E [Xℓ,k,n]
n large
< 2 · e−(ℓ+1)ω(n) → 0, as n→ +∞.
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For Parts i. and ii. we now show that for any fixed integer r ≥ 2, we have

E [Xℓ,k,n(Xℓ,k,n − 1) · · · (Xℓ,k,n − (r − 1))] ∼ Er [Xℓ,k,n] ,

where Er [Xℓ,k,n] is defined as (E [Xℓ,k,n])r . So the second statement in Part i. will

follow from Chebyshev’s inequality as for r = 2, the above implies that Var(Xℓ,k,n) =

o(E [Xℓ,k,n]). The second statement in Part ii. will follow from Theorem 1.4.2.

Consider r subsets S1, . . . , Sr ⊂ Vn of size ℓ+k+1. They may all induce (ℓ, k)-blocking

stars only if any two of them share at most k vertices. For S ⊂ Vn let IS be the indicator

random variable that is equal to 1 if and only if S is an (ℓ, k)-blocking star. If Si∩Sj = ∅

for all i ̸= j, then

P(IS1 = · · · = ISr = 1) ∼
(

(ℓ+ k + 1)

(
ℓ+ k

k

)
p(ℓ+k)e−d(ℓ+1)

)r
. (2.7)

There are
∏r

i=1

(
n−(i−1)(ℓ+k+1)

ℓ+k+1

)
to select the ordered r-tuple of pairwise disjoint sets

(S1, . . . , Sr). But

r∏
i=1

(
n− (i− 1)(ℓ+ k + 1)

ℓ+ k + 1

)
∼
(

nℓ+k+1

(ℓ+ k + 1)!

)r
. (2.8)

Now, let us assume that Si∩Sj ̸= ∅ for some i ̸= j. Note first that if |Si∩Sj| > k, then

the two sets cannot induce (ℓ, k)-blocking stars simultaneously. If Si ∩ Sj = {u1, . . . , us},

with s ≤ k and Si, Sj induce (ℓ, k)-blocking stars, then u1, . . . , us must be connector

vertices in both of them. Since ℓ and k are fixed, there are O(1) ways to select the

vertices in ∪ri=1Si that will be the connectors of the (ℓ, k)-blocking stars. Let S ′ ⊂ ∪ri=1Si

be such a choice; by the above observation, this contains any vertex which belongs to at

least two members of the r-tuple. Set S1..r = ∪ri=1Si. Hence,

P(IS1 = · · · = ISr = 1) = O(1)·
[
(1 − p)(

ℓ+k+1
2 )−(ℓ+k)p(ℓ+k)

]r
·P(∀v ∈ S1..r\S ′, dVn\S1..r(v) = 0).
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Note that |S1..r \ S ′| = r(ℓ+ 1). So, the latter probability is

P(∀v ∈ S1..r \ S ′, dVn\S1..r(v) = 0) = (1 − p)r(ℓ+1)(n−|S1..r|) ∼ e−dr(ℓ+1).

Therefore,

P(IS1 = · · · = ISr = 1) = O(1) · pr(ℓ+k)e−dr(ℓ+1). (2.9)

Now, such an ordered r-tuple can be selected into at most

(
n

r(ℓ+ k + 1) − 1

)
= o(nr(ℓ+k+1)) (2.10)

ways. Thus,

E(Xℓ,k,n(Xℓ,k,n − 1) · · · (Xℓ,k,n − (r − 1))) =
∑

(S1,...,Sr):Si⊂Vn,|Si|=ℓ+k+1

P(IS1 = · · · = ISr = 1)

= (1 + o(1))

(
nℓ+k+1

(ℓ+ k + 1)!
·
(

(ℓ+ k + 1)

(
ℓ+ k

k

))
pℓ+ke−d(ℓ+1)

)r
by (2.7),(2.8)

+o(nr(ℓ+k+1))pr(ℓ+k)e−dr(ℓ+1) by (2.9),(2.10)

∼ Er(Xℓ,k,n).

Proof of Lemma 2.2.7. In this lemma, we will bound the expected number of (ℓ, k)-

blocking stars which do not belong to L1(G(n, d/n)). Recall that the random variable

which counts these is X
(2)
ℓ,k,n.

We will give an upper bound on the expected number of connected components of

order at most log n which contain an (ℓ, k)-blocking star. This suffices due to the following

result, (Theorem 6.10 in [15]) about the structure of G(n, d/n) in the super-critical regime.

Theorem 2.2.9. Let p = d/n with d ≫ 1. Then a.a.s. all connected components of

G(n, d/n) apart from L1(G(n, d/n)) have order at most log n.

For r ≥ ℓ+k+1, let Cℓ,k,r denote the number of connected components which contain
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an (ℓ, k)-blocking star and have order r. We will give an upper bound on the expected

value of Cℓ,k,r. For two sets S ⊂ S ′ ⊂ Vn having |S| = ℓ + k + 1 and |S ′| = r, and

v, u1, . . . , uk ∈ S, we set I(S, S ′, v, u1, . . . , uk) to be the indicator random variable which

is equal to 1 if and only if S ′ is a connected component in G(n, d/n), where in particular,

S induces an (ℓ, k)-blocking star with centre v and connectors u1, . . . , uk. Let Sℓ,k,r denote

the set of pairs (S, S ′) such that S ⊂ S ′ ⊂ Vn with |S| = ℓ+k+ 1 and |S ′| = r. Moreover,

for a set S ⊂ Vn of size at least k + 1, let S
(k+1)
̸= denote the set of all ordered k + 1-tuples

of distinct vertices in S. With this notation, we can write

E [Cℓ,k] ≤
∑

(S,S′)∈Sℓ,k,r

∑
(v,u1,...,uk)∈S

(k+1)
̸=

E [I(S ′, S, v, u1, . . . , uk)] . (2.11)

For S ⊂ Vn having |S| = ℓ+k+1 and (v, u1, . . . , uk) ∈ S
(k+1)
̸= , we let I1(S, v, u1, . . . , uk) be

the indicator random variable that is equal to 1 if and only if S forms an ℓ-blocking star

with centre v and connectors u1, . . . , uk. Also, we take I2(S
′) to be the indicator random

variable that is equal to 1 if and only if S ′ is a connected component of G(n, d/n).

For a given (S, S ′) ∈ Sℓ,k and (v, u1, . . . , uk) ∈ S
(k+1)
̸= , we write

P(I(S ′, S, v, u1, . . . , uk) = 1) =

P(I1(S, v, u1, . . . , uk) = 1) · P(I2(S
′) = 1 | I1(S, v, u1, . . . , uk) = 1). (2.12)

We will provide an upper bound on P(I2(S
′) = 1 | I1(S, v, u1, . . . , uk) = 1). If S induces

an (ℓ, k)-blocking star with centre v and connectors u1, . . . , uk, then any spanning tree

TS′ on S ′ contains the star on S \ {u1, . . . , uk} centred at v as an induced subgraph

and. Moreover, one of the edges uiv is a cutting edge between S ′ \ (S \ {u1, . . . , uk})

and S \ {u1, . . . , uk}. Thus, TS′ \ (S \ {u1, . . . , uk}) is a spanning tree of the subgraph

induced by the set S ′ \ (S \ {u1, . . . , uk}). Furthermore, if S ′ is a connected component

in G(n, d/n), there are no edges between S ′ \ (S \ {u1, . . . , uk}) and Vn \ S ′.
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With the above observations and p = d/n we can give the following bound:

P(I2(S
′) = 1 | I1(S, v, u1, . . . , uk) = 1) ≤

(r − (ℓ+ 1))r−(ℓ+1)−2pr−(ℓ+1)−1(1 − p)(n−r)(r−(ℓ+1)), (2.13)

since there are kk−2 labelled trees on k vertices. We have that

(r − (ℓ+ 1))r−(ℓ+1)−2pr−(ℓ+1)−1 ≤ (rp)r−(ℓ+1)−1 = (rp)r−ℓ−2,

and for r ≤ log n,

(1 − p)(n−r)(r−(ℓ+1)) ∼ e−dr ≤ 2e−d(r−ℓ−1) = 2e−d(r−ℓ−2)e−d.

Using these in (2.13) we get

P(I2(S
′) = 1 | I1(S, v, u1, . . . , uk) = 1) ≤ 2(rpe−d)r−ℓ−2e−d.

Hence, the left-hand side in (2.12) is bounded as

P(I(S ′, S, v, u1, . . . , uk) = 1) ≤ P(I1(S, v, u1, . . . , uk) = 1) ·
(
2(rpe−d)r−ℓ−2e−d

)
.

Thus, for n sufficiently large, (2.11) yields:

E(Cℓ,k,r) ≤
∑

(S,S′)∈Sℓ,k,r

∑
(v,u1,...,uk)∈S

(k+1)
̸=

P(I1(S, v, u1, . . . , uk) = 1) ·
(
2(rpe−d)r−ℓ−2e−d

)
=

∑
S⊂Vn:|S|=ℓ+k+1

∑
(v,u1,...,uk)∈S

(k+1)
̸=

P(I1(S, v, u1, . . . , uk) = 1) ×

∑
S′:|S′|=r,S⊂S′

2(rpe−d)r−ℓ−2e−d. (2.14)

50



For a fixed choice of S, we will provide an upper bound on the inner sum. This is

∑
S′:|S′|=r,S⊂S′

(rpe−d)r−ℓ−2e−d ≤
logn∑

r=ℓ+k+1

(
n− ℓ− k − 1

r − ℓ− k − 1

)
(rpe−d)r−ℓ−k−1e−d

≤ e−d
logn∑

r=ℓ+k+2

(
ne

r − ℓ− k − 1

)r−ℓ−k−1(
rde−d

n

)r−ℓ−k−1

+ e−d((ℓ+ k + 1)pe−d).

By observing that d ≫ 1 we have that the second term is o(1). We also observe that

r
r−ℓ−k−1

≤ ℓ+ k + 2 hence by shifting the index we have that,

∑
S′:|S′|=r,S⊂S′

(rpe−d)r−ℓ−2e−d ≤ e−d
logn+ℓ+k+1∑

j=1

(
(ℓ+ k + 2)ede−d

)j
+ o(1).

Furthermore by observing that (ℓ + k + 2)ede−d ≤ e−d/2 and bounding from above by a

geometric series, we have

e−d
logn+ℓ+k+1∑

j=1

(
(ℓ+ k + 2)ede−d

)j
+ o(1) ≤ e−d

logn+ℓ+2∑
j=1

(
e−d/2

)j
+ o(1) = o(1).

Note that this upper bound holds for n sufficiently large uniformly over all choices of S.

Thus,

E [Cℓ,k,r] = o(1) ·
∑

S⊂Vn:|S|=ℓ+k+1

∑
(v,u1,...,uk)∈S

(k+1)
̸=

P(I1(S, v, u1, . . . , uk) = 1) = o(1) · E [Xℓ,k,n] ,

which concludes the proof of the lemma.

2.2.2 Small Degree Vertices, their Structure and their Role in
Unanimity

In this subsection, we proceed with the proof of Theorems 1.1.2, 1.1.3 and 1.1.4. Suppose

that I = (G,Q,S) is an interacting node system with λ = λ(Q) ̸= 1 and G = G(n, p).
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For each v ∈ Vn and for δ ∈ (0, 1) we say that v is δ-balanced if for all i ∈ {0, 1}, we

have that
∣∣n0(v; i) − E[n0(v; i)]

∣∣ ≤ δE[n0(v; i)]. If v is not δ-balanced then we say that

v is δ-unbalanced, and we denote the set of δ-unbalanced vertices as Uδ. We denote Pt

and Nt to denote the subsets of vertices whose agents play strategy 1 and 0, respectively,

at the tth step. More formally, for t ≥ 0, we define Pt = {v ∈ Vn : St(v) = 1} and

Nt = {v ∈ Vn : St(v) = 0}. We define mt = Nt if |Nt| ≤ |Pt|, and Pt otherwise. Hence mt

is the set of vertices playing the minority strategy at time t, or the vertices playing zero

in the case |Nt| = |Pt|. We define µt = min{|Nt|, |Pt|}. The following lemma describes

the first round of evolution; notably, it describes the formation of a large majority after a

single round. Recall that i∗ ∈ {0, 1} is the strategy which satisfies λ1−2i∗ < 1. Note that

since λ ̸= 1, exactly one of 0 or 1 satisfies this. Note further that λ1−2i∗ = min{λ, λ−1}.

Hence,

max{λ, λ−1} · λ1−2i∗ = max{λ, λ−1} · min{λ, λ−1} = λ · λ−1 = 1. (2.15)

We will use this identity later on. Now, we will show that after one round, in the majority

regime strategy, i∗ will become the dominant strategy among the vertices of G(n, d/n).

However, in the minority regime, it will be strategy 1 − i∗ that will dominate.

Lemma 2.2.10. Let p = d/n where d ≫ 1. For any 0 < λ ̸= 1, there exists γ > 0 for

which the following holds. A.a.s. across the product space of G(n, p) and S1/2 : For the

interacting node system I = (G(n, p), Q,S1/2) with λ(Q) = λ, we have µ1 ≤ ne−γd. In

particular, after the first round, the majority of the vertices will be playing either strategy i∗

(majority regime) or strategy 1− i∗ (minority regime). Furthermore, there exists α(λ) > 1

such that if d > α(λ) log n, then a.a.s. µ1 = 0.

Proof. Suppose first that our system is in the majority regime. By (2.4), if a vertex

plays strategy 1 − i∗, then it will change strategy if n0(v; 1 − i∗) < λ1−2(1−i∗)n0(v; i∗) =

λ2i
∗−1n0(v; i∗). Also, if a vertex plays strategy i∗, then it will stay there, if n0(v; i∗) ≥

λ1−2i∗n0(v; 1 − i∗).

Suppose now that our system is in the minority regime. By (2.5), if a vertex plays strat-
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egy 1 − i∗, then it will remain there if n0(v; 1 − i∗) ≤ λ1−2(1−i∗)n0(v; i∗) = λ2i
∗−1n0(v; i∗).

Also, if a vertex plays strategy i∗, then it will switch to strategy 1 − i∗, if n0(v; i∗) >

λ1−2i∗n0(v; 1− i∗). Now, note that if v is δ-balanced, then provided that δ = δ(λ) ∈ (0, 1)

is sufficiently small

λ1−2i∗ <
1 − δ

1 + δ
≤ n0(v; 1 − i∗)

n0(v; i∗)
≤ 1 + δ

1 − δ
< λ2i

∗−1.

In other words, if v is δ-balanced, then all the above four inequalities will be satisfied. We

thus arrive at the following conclusions:

1. if v is δ-balanced and Q is in the majority regime, then S1(v) = i∗;

2. if v is δ-balanced but Q is in the minority regime, then S1(v) = 1 − i∗.

Furthermore, if the majority of the vertices in Vn are δ-balanced, then µ1 = |Uδ|. We

will show that a.a.s. the majority of the vertices in Vn are δ-balanced, whereby they

adopt strategy i∗ or 1 − i∗ after one step, as described above. We will show that an

arbitrary vertex v ∈ Vn is δ-balanced with probability 1 − o(1). For any v ∈ Vn the

random variables n0(v; 0) and n0(v; 1) have identical distributions, namely the binomial

distribution Bin(n− 1, p/2). Therefore

E[n0(v; 1)] = E[n0(v; 0)] = (1 − o(1))
d

2
.

Set γ̄ = δ2/7. We bound the probability that v ∈ Uδ. By Chernoff’s inequality (1.3) we

have:

P
(∣∣n0(v; 0) − E[n0(v; 0)]

∣∣ ≥ δE[n0(v; 0)]
)
≤ 2e−

δ2

3
(1−o(1))d

2 ≤ e−γ̄d,

where the last inequality holds for n sufficiently large. The same holds for n0(v; 1) as it

is identically distributed to n0(v; 0). Hence, by the union bound, for any v ∈ Vn

P [v ∈ Uδ] ≤ 2e−γ̄d.
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Therefore, E [|Uδ|] ≤ 2ne−γ̄d. By Markov’s inequality we have:

P(|Uδ| ≥ ne−γ̄d/2) ≤ 2ne−γ̄d

ne−γ̄d/2
= 2e−γ̄d/2 = o(1).

Therefore, a.a.s. we have that |Uδ| < ne−γ̄d/2. In turn, a.a.s. µ1 ≤ |Uδ| < ne−γ̄d/2. Finally,

note that the last inequality above implies that if d > α(λ) log n, for some α(λ) > 1

sufficiently large then the above is o(1), which shows the last part of the lemma.

For the analysis of the subsequent rounds we will split the vertices of G(n, d/n) into

two classes and we will consider their evolution separately. More specifically, for C ∈ N

we set

Hn(C) := H(C,G(n, d/n)) := {v ∈ Vn : d(v) ≥ C},

and

Ln(C) := L(C,G(n, d/n)) := Vn \H(C,G(n, d/n)) = {v ∈ Vn : d(v) < C}.

It is of note that a large proportion of the vertices will fall into Hn(C).

Claim 2.2.11. Let G ∼ G(n, d/n) for d ≫ 1. Then for any positive constant C we have

that a.a.s |Hn(C)| ≥ n(1 − o(1)).

Proof. Clearly we have that |Ln(C)| + |Hn(C)| = n, therefore it suffices to show that for

any positive constant C, a.a.s |Ln(C)| = o(n). Suppose v ∈ Vn, then by the Chernoff

bound with δ = 1/2, we have following:

P[d(v) ≤ C] ≤ P
(
d(v) ≤ d+ o(1)

2

)
≤ e−

d+o(1)
12 ≤ e−d/24.

Therefore it follows that E[|Ln(C)|] ≤ ne−d/24, hence for any ε > 0, we have by Markov’s:

P(|Ln(C)| > εn) ≤ ne−d/24

εn
d≫1
= o(1).
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Given that d ≫ 1, for any positive C we have that a.a.s |Ln(C)| = o(n), therefore

|Hn(C)| = n(1 − o(1)).

By Lemma 2.2.10, it suffices to assume that d ≤ α(λ) log n, as otherwise a.a.s. the

process reaches unanimity after one step. We will now provide some lemmas regarding

the structure of the subgraph induced by the vertices in Ln(C), for any fixed integer

C ≥ 2. Before doing this we shall give a bound on the joint probability that a given

collection of vertices S ⊂ Vn of size |S| = O(1) belong to Ln(C).

Claim 2.2.12. Let S ⊂ Vn be such that |S| < k, for some fixed k ∈ N. Then

P(∀v ∈ S, d(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

.

Proof. If a vertex in S has degree at most C, then it has also degree at most C in Vn \S.

So we can write:

P(∀v ∈ S, d(v) ≤ C) ≤ P(∀v ∈ S, dVn\S(v) ≤ C).

Observe that these degrees form an independent family as they are determined by mutually

disjoint sets of edges. Thereby,

P(∀v ∈ S, dVn\S(v) ≤ C) =
∏
v∈S

P(dVn\S(v) ≤ C).

But dVn\S(v) is distributed as Bin(n−|S|, d/n) and, therefore, its expected value is d−o(1).

Hence, P(dVn\S(v) = k) is increasing as a function of k, if d/k → ∞, as n → ∞. Using(
n
k

)
≤
(
ne
k

)k
we can write the following bound:

P(dVn\S(v) ≤ C) ≤ C ·
(
n

C

)(
d

n

)C (
1 − d

n

)n−|S|−C

|S|<k
≤ C

(ne
C

)C (d
n

)C
e−d+o(1)
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≤ 2C

(
de

C

)C
· e−d, (2.16)

for n sufficiently large. Therefore,

P(∀v ∈ S, dVn\S(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

,

and the claim now follows.

The following lemmas describe the structure of the subgraph induced by the vertices

in Ln(C). We recall the definitions,

ℓλ := ⌈max{λ, λ−1}⌉ and cλ :=
1

ℓλ + 1
.

Lemma 2.2.13. Suppose that p = d/n with cλ log n ≤ d ≤ α(λ) log n. A.a.s. there are

no ℓλ + 2 vertices in Ln(C) that have a common neighbour.

Proof. We will use a first-moment argument to bound the expected number of collections

of vertices in Ln of size ℓλ + 2 that have a common neighbour. Let S ⊂ Vn be a subset

of vertices. We denote the degree of v outside the set S by dVn\S(v). Let S ⊂ Vn be such

that S = {u1, . . . , uℓλ+2} and z ∈ Vn \ S. The expected number of collections of ℓλ + 2

vertices in Ln(C) which have a common neighbour is at most

(
n

ℓλ + 2

)
· (n− (ℓλ + 2)) ·

(
ℓλ+2∏
i=1

P(ui ∼ z)

)
· P (∀i = 1, . . . , ℓλ+2 dVn(ui) ≤ C) ,

Claim 2.2.12

≤ nℓλ+3 ·
(
d

n

)ℓλ+2 (
2C (de)C · e−d

)ℓλ+2

,

= ndℓλ+2 ·
(

2C (de)C · e−d
)ℓλ+2

= n · e−d(ℓλ+2)+O(log d). (2.17)

But d ≥ cλ log n = (ℓλ + 1)−1 log n. So d(ℓλ + 2) − log n = Ω(log n), whereby the above

expected value is o(1).

The above lemma implies in particular that a.a.s. at most ℓλ + 1 vertices in Ln(C) are
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adjacent to each vertex in Hn(C). Thus, we see that if all vertices in Hn(C) play a certain

strategy simultaneously, then if C is large compared to ℓλ, then they may stay unaffected

by what the vertices in Ln(C) do.

Lemma 2.2.14. Let ℓ ∈ N and let p = d/n where 1
ℓ+1

log n ≤ d = d(n) ≤ α(λ) log n.

A.a.s. all connected sets of vertices in Ln(C) have size at most ℓ+ 1.

Proof. We will show that a.a.s. there are no connected sets of vertices in Ln(C) of size

ℓ + 2 or more. If there is such a set, then in fact there must also be such a set of size

exactly ℓ+ 2. So it suffices to show that a.a.s. no such subsets exist.

Let S ⊂ Vn have |S| = ℓ+ 2. Then

P(S is connected and ∀v ∈ S, d(v) ≤ C) ≤ P(S is connected) · P(∀v ∈ S, d(v) ≤ C),

by the FKG inequality (Theorem 1.4.1), since the graph property that {S is connected}

is non-decreasing whereas the property that {∀v ∈ S, d(v) ≤ C} is non-increasing. Now,

P(S is connected) ≤ |S||S|−2 ·
(
d

n

)|S|−1

,

since if S induces a connected subgraph, then this has to have a spanning tree (selected

in |S||S|−2 ways). By Claim 2.2.12, we have

P(∀v ∈ S, d(v) ≤ C) ≤
(

2C (de)C · e−d
)|S|

.

Therefore,

P(S is connected and ∀v ∈ S, d(v) ≤ C) ≤ (ℓ+ 2)ℓ ·
(
d

n

)ℓ+1

·
(

2C (de)C · e−d
)ℓ+2

.

Hence, the expected number of such subsets is at most

O(1) ·
(

n

ℓ+ 2

)
·
(
d

n

)ℓ+1

·
(
dC · e−d

)ℓ+2
= ne−(ℓ+2)d+O(log logn).
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But d ≥ 1
ℓ+1

log n. Thereby, (ℓ+2)d−log n = Ω(log n), and the right-hand side is o(1).

Lemma 2.2.15. Let p = d/n where cλ log n ≤ d = d(n) ≤ α(λ) log n. A.a.s. all connected

sets of vertices in Ln(C) induce trees.

Proof. By the previous lemma, it suffices only to consider sets of size at most ℓλ + 1. Let

S ⊂ Vn with |S| ≤ ℓλ + 1. Then

P(e(S) ≥ |S| and ∀v ∈ S, d(v) ≤ C) ≤ P(e(S) ≥ |S|) · P(∀v ∈ S, d(v) ≤ C),

by the FKG inequality (Theorem 1.4.1), since the graph property that {e(S) ≥ |S|} is

non-decreasing and the property that {∀v ∈ S, d(v) ≤ C} is non-increasing. But

P(e(S) ≥ |S|) = O(1) ·
(
d

n

)|S|

.

Combining this with Claim 2.2.12 we get

P(e(S) ≥ |S| and ∀v ∈ S, d(v) ≤ C) = O(1)·
(
d

n

)|S| (
dCe−d

)|S|
= O(1)·n−|S|e−d|S|+O(log logn).

As there are
(
n
|S|

)
≤ n|S| choices for S, the expected number of such sets is

O(1)e−d|S|+O(log logn) = o(1).

The lemma follows from the union bound, taking the union over all possible values of

|S| ≤ ℓλ + 1.

The next lemma will help us deal with the evolution of the vertices in Hn(C). It shows

that if one of the strategies occupies only a sublinear number of vertices in Hn(C) (and

we have almost unanimity) then after one more round the size of the minority strategy

will contain only a fraction of these vertices.

Lemma 2.2.16. Let d = d(n) be such that 1 ≪ d ≤ α(λ) log n, and let Q be a 2 × 2

non-degenerate payoff matrix. For any ε > 0 there exists Cε,λ ∈ N such that for any γ > 0
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and for any C ≥ Cε,λ a.a.s. G(n, d/n) satisfies the following: for any initial configuration

S with |m0∩Hn(C)| < ne−γd, the interacting node system I = (G(n, d/n), Q,S) will have

|m1 ∩Hn(C)| ≤ ε|m0 ∩Hn(C)|.

Proof of Lemma 2.2.16. Suppose that initially, the majority strategy is i. Assume first

that I is in the majority regime. Then in the random graph G(n, d/n) typically a vertex

is expected to have many more neighbours among those playing strategy i than those

playing strategy 1 − i. So one would expect that most vertices will adopt strategy i

in the next round. If we revisit (2.4), we will see that if this does not happen, then

n0(v; i) ≤ λ1−2in0(v; 1). Indeed, if v initially was playing strategy i, it switches to 1− i, if

n0(v; i) < λ1−2in0(v; 1). If v was initially playing 1− i, then it does not switch if n0(v; 1−

i) ≥ λ1−2(1−i)n0(v; i). Rearranging the latter, we also get that n0(v; i) ≤ λ1−2in0(v; 1− i).

Suppose now that I is in the minority regime. In this case, one would expect that

most vertices will adopt strategy 1− i. Suppose that a vertex v initially plays i. By (2.5),

it keeps on playing i after one round, if n0(v; i) ≤ λ1−2in0(v; i− 1). Similarly, if v initially

plays 1−i, then it switches to i, if n0(v; 1−i) > λ1−2(1−i)n0(v; i). If we rearrange the latter,

we get n0(v; i) < λ1−2in0(v; 1 − i). Furthermore, to reduce notation we set Hn := Hn(C),

where C is to be determined later. Also, we set Ln := Ln(C).

Assuming that initially the most popular strategy in Hn is i, we say that a vertex

v ∈ Vn∩Hn is i-atypical, if n0(v; i) ≤ λ1−2in0(v; 1− i). Let A
(i)
n denote the set of i-atypical

vertices. We will show that a.a.s. for any assignment of strategies to Hn, respecting

|m0| < ne−γd, we have that |A(i)| ≤ ε|m0 ∩ Hn|. If this happens, then all but at most

ε|m0∩Hn| vertices in Hn will behave as expected and, therefore, |m1∩Hn| ≤ ε|m0∩Hn|.

We proceed with showing the above. We assume the majority strategy initially is i.

So a vertex is i-atypical if n0(v; i) ≤ λ1−2in0(v; 1 − i). We denote the S1−i = {v ∈ Vn :

S0(v) = 1 − i}. By assumption, we have that |S1−i| < ne−γd for some γ ∈ [0, 1).

We will condition on the event of Lemma 2.2.13, which we refer to as Dn. That is, Dn

denotes the event that no more than ℓλ + 1 vertices in Ln(C) have a common neighbour.

According to Lemma 2.2.13, we have P(Dn) = 1 − o(1).
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For a partition (Ui, U1−i) of Hn(C), we assume that the vertices in Uj are assigned

strategy j, for j ∈ {0, 1}. As we pointed out previously, the event Dn will allow us to

ignore the influence of the vertices in Ln(C) on the evolution of those in Hn(C), provided

that C is sufficiently large. To this end, we will say that a vertex is i-atypical with respect

to (Ui, U1−i) if n0(v; i) ≤ λ1−2in0(v; 1 − i) for any initial assignment of strategies to the

vertices of Ln(C). We will show that a.a.s. for all configurations (Ui, U1−i) of Hn with

|U1−i| < ne−γd there is no collection of ε|U1−i| vertices in Hn(C) which are i-atypical with

respect to (Ui, U1−i). This will imply that G(n, p) is such that for any initial configuration

(Ui, U1−i) on Hn(C), with |U1−i| < ne−γd, and an arbitrary configuration for the vertices

in Ln(C), there will be at most ε|U1−i| vertices in Hn(C) that will adopt strategy 1− i in

the subsequent round.

We wish to bound the number of vertices in Hn(C) which are i-atypical with respect to

a given configuration (Ui, U1−i); thus we define Ŝi = {v ∈ Ui : n0(v; 1− i) ≥ λ2i−1n0(v; i)}

and Ŝ1−i = {v ∈ U1−i : n0(v; 1 − i) ≥ λ2i−1n0(v; i)}. If there are at least ε|S1−i| vertices

which are i-atypical with respect to (Ui, U1−i), then either |Ŝi| ≥ ε|U1−i|/2 or |Ŝ1−i| ≥

ε|U1−i|/2. We will show that

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝi| ≥ ε|U1−i|/2

}⋂
Dn

 = o(1), (2.18)

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝ1−i| ≥ ε|U1−i|/2

}⋂
Dn

 = o(1). (2.19)

We will show that the union bound indeed suffices to show (2.18) and (2.19). So, firstly,

we will consider a fixed partition (Ui, U1−i) as above. To bound P(|Ŝi| ≥ ε|Ui|/2) and

P(|Ŝ1−i| ≥ ε|Ui|/2), we translate the defining conditions of Ŝi and Ŝ1−i into a condition

on the degree of these vertices in U1−i. On the event Dn, there are at most ℓλ+1 neighbours

of v in Ln. Consider the degree of v inside U1−i, which we denote by dU1−i(v). Similarly, we

denote by dS1−i∩Ln(v) its degree inside S1−i∩Ln. Thus, dU1−i(v)+dS1−i∩Ln(v) = n0(v; 1−i).
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But since Dn is realised, we have dS1−i∩Ln(v) ≤ ℓλ + 1, whereby

dU1−i(v) + ℓλ + 1 ≥ n0(v; 1 − i). (2.20)

Furthermore, n0(v; i) + n0(v; 1 − i) = d(v) ≥ C. If λ2i−1n0(v; i) ≤ n0(v; 1 − i), then

λ2i−1 + 1

λ2i−1
n0(v; 1 − i) ≥ C.

We further bound n0(v; 1 − i) using (2.20) and get

λ2i−1 + 1

λ2i−1

(
dU1−i(v) + ℓλ + 1

)
≥ C.

Rearranging this we deduce that

dU1−i(v) ≥ λ2i−1

λ2i−1 + 1
C − (ℓλ + 1) ≥ λ2i−1

2(λ2i−1 + 1)
C =: ψλC,

provided that C is large enough. To summarise, we have proved that if λ2i−1n0(v; i) ≤

n0(v; 1 − i) and Dn is realised, then

dU1−i(v) ≥ ψλC. (2.21)

We will start with (2.18). Using (2.21), we see that the event in (2.18) is included in the

following event: there are disjoint set sets S, U with 1 ≤ |U | < ne−γd and |S| = ε|U |/2 such

that for any v ∈ S we have dU(s) ≥ ψλC. Let us consider a set U with 1 ≤ |U | ≤ ne−γd

and let S ⊂ Vn \ U be such that |S| = ε|U |/2.

P(∀v ∈ S, dU(v) ≥ ψλC) =
∏
v∈S

P(dU(v) ≥ ψλC), (2.22)

since these are events depending on pairwise disjoint sets of edges. We now observe

that for any v ∈ S the random variable dU(v) is stochastically dominated by a random
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variable with distribution Bin(|U |, d/n). Using that
(
n
k

)
≤ (en/k)k, we can bound the

above probability in the following way:

P(dU(v) ≥ ψλC) ≤
(

|U |
ψλC

)(
d

n

)ψλC
≤
(
ed|U |
ψλn

)ψλC
.

Substituting this bound into (2.22), we finally get

P(∀v ∈ S, dU(v) ≥ ψλC) ≤
(
ed|U |
ψλn

)ψλ|S|C
d≤α(λ) logn

= exp (−ψλ|S|C log(n/|U |)(1 + o(1))) .

Now we can bound

P
(
∃S : |S| = ε|U |/2, ∀v ∈ S, dU1−i(v) ≥ ψλC

)
≤

(
n

ε|U |/2

)
· exp

(
−ψλ

ε

2
|U |C log

(
n

|U |

)
(1 + o(1))

)
≤

(
ne

ε|U |/2

)ε|U |/2

· exp

(
−ψλ

ε

2
|U |C log

(
n

|U |

)
(1 + o(1))

)
≤ exp

(
−(ψλC − 1)ψλ

ε

2
|U | log

(
n

|U |

)
(1 + o(1))

)
.

We are now ready to show (2.18). We write

P
(
∃U, S : S ∩ U = ∅, 1 ≤ |U | < ne−γd, |S| = ε|U |/2, ∀v ∈ S, dU1−i(v) ≥ ψλC

)
≤∑

1≤k<ne−γd

(
n

k

)
exp

(
−(ψλC − 1)

ε

2
k log (n/k) (1 + o(1))

)
≤

∑
1≤k<ne−γd

(ne
k

)k
exp

(
−(ψλC − 1)

ε

2
k log (n/k) (1 + o(1))

)
=

∑
1≤k<ne−γd

exp (k log(n/k)(1 − (ψλC − 1)ε/2)(1 + o(1)))

log(n/k)>γd

≤
∑

1≤k<ne−γd
exp (γdk(1 − (ψλC − 1)ε/2)(1 + o(1))) = o(1),

(2.23)

provided that C is large enough, depending on ε, λ.
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Now, we turn to (2.19). Consider a partition (Ui, U1−i) ofHn(C) with |U1−i| as specified

above. If |Ŝ1−i| > ε|U1−i|/2 and Dn is realised, then there exists a set of ε|U1−i|/2 vertices

in U1−i, whose degree inside U1−i is at least ψλC. Hence, the total degree of this set

inside U1−i must be at least εψλ
2
|U1−i|C. In turn, the number of edges in U1−i is at least

εψλ
4
|U1−i|C. Thus, if e(U1−i) denotes the number of edges inside S1−i we have

P(|Ŝ1−i| ≥ ε|U1−i|/2|,Dn) ≤ P
(
e(U1−i) ≥

εψλ
4

|U1−i|C
)
.

We will show that a.a.s. any subset U ⊂ Vn with 1 ≤ |U | < ne−γd has e(U) ≤ εψλ
4
|U |C.

Now, e(U) is stochastically dominated from above by a binomially distributed random

variable Y ∼ Bin(|U |2, d/n). So

P
(
e(U) ≥ εψλ

4
|U |C

)
≤ P

(
Y ≥ εψλ

4
|U |C

)
.

We now bound the last probability as follows:

P
(
Y ≥ εψλ

4
|U |C

)
≤

(
|U |2

εψλ
4
|U |C

)
·
(
d

n

) εψλ
4

|U |C

≤

(
|U |2e

εψλ
4
|U |C

· d
n

) εψλ
4

|U |C

≤
(

4e

εψλ
· d
C

· |U |
n

) εψλ
4

|U |C

.

Since d = O(log n), we conclude that

P
(
e(U) ≥ εψλ

4
|U |C

)
≤ exp

(
−(1 + o(1))

εψλ
4

|U |C log(n/|U |)
)
.

Arguing as in the case of (2.18), we take the union bound over all choices of the subset

U which satisfy the assumed conditions and a similar calculation as in (2.23) (the only
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difference being that ε/2 is replaced by ε/4) yields:

P

 ⋃
1≤k<ne−γd

⋃
(Ui,U1−i):|U1−i|=k

{
|Ŝ1−i| ≥ ε|U1−i|/2

}⋂
Dn

 ≤

P
(
∃U : 1 ≤ |U | < ne−γd, e(U) ≥ εψλ

4
|U |C

)
= o(1).

We now proceed with the proofs of Theorems 1.1.2, 1.1.3 and 1.1.4.

Proof of Theorem 1.1.2. Let us first point out that by Lemma 2.2.10, if d ≥ c log n with

c > α(λ), where α(λ) is as in the statement of that lemma, then a.a.s. µ1 = 0; so the last

part of Theorem 1.1.2 follows. Hence, we now assume that d ≤ α(λ) log n. We say that

G(n, d/n) has the minority decline property for some γ > 0, if whenever the node system

I = (G(n, d/n), Q,S) is such that µ0 ≤ ne−γd, then |m1 ∩ Hn(C)| ≤ |m0 ∩ Hn(C)|/10.

Observe now that if G(n, d/n) has the minority decline property, and I = (G(n, p,Q,S)

is a node system with µ0 < ne−γd, for some γ > 0, then the vertices in Hn will reach

unanimity in a finite number of rounds, by repeated applications of this definition.

By Lemma 2.2.10, a.a.s. µ1 < ne−γd for some γ > 0. But by Lemma 2.2.16, if

C > C1/10,λ, then a.a.s. G(n, p) has the minority decline property for γ > 0 as above.

Thus, for every t ≥ 1 we have |mt ∩ Hn(C)| ≤ |m0 ∩ Hn(C)|10−t. Hence, for R =

⌈(1/ log 10) log (|m1 ∩Hn(C)|)⌉ + 1 = O(log n) we have

|mR ∩Hn| ≤ |m1 ∩Hn(C)|10−R < 1.

So |mR ∩ Hn(C)| = 0. We now show that if C is sufficiently large and every vertex in

Hn(C) does not have too many neighbours inside Ln(C), then once Hn(C) has reached

unanimity, it will stay there. In particular, Lemma 2.2.13 states that a.a.s. no ℓλ + 2

vertices in Ln(C) have a common neighbour. Let us denote this event by Dn. Thus, on

Dn all vertices in Hn(C) have at most ℓλ + 1 neighbours inside Ln(C).

64



Claim 2.2.17. If C ≥ max{ℓλ + 4, (ℓλ + 1)2} and the vertices in Hn(C) are unanimous

just after step t, playing i∗ when in the majority regime, then on the event Dn, the vertices

of Hn(C) will stay unanimous after step t+ 1.

Proof of Claim 2.2.17. Indeed, suppose that at step t all vertices of Hn(C), for C to be

determined, are unanimous at playing strategy i ∈ {0, 1}. Consider a vertex v ∈ Hn(C).

If the event Dn is realised, then all but at most ℓλ + 1 = ⌈max{λ, λ−1}⌉ + 1 neighbours

of v play strategy i. So nt(v; i) ≥ C − (ℓλ + 1) and nt(v; 1 − i) ≤ ⌈max{λ, λ−1}⌉ + 1 <

max{λ, λ−1} + 2. Suppose first that we are in the majority regime. Then in this case

i = i∗, by assumption. Vertex v will change strategy if nt(v; i∗) < λ1−2i∗nt(v; 1 − i∗)

(cf. (2.4)). But

λ1−2i∗nt(v; 1 − i∗) < λ1−2i∗(ℓλ + 1) ≤ λ1−2i∗(max{λ, λ−1} + 2)
(2.15)
< 1 + 2 = 3.

Therefore must have that C − (ℓλ + 1) < 3. However, choosing C ≥ ℓλ + 4 leads to a

contradiction.

If we are in the minority regime, then we want to show that v will switch strategy.

By (2.5) if the entire set Hn(C) plays strategy i∗, then v ∈ Hn(C) will switch strategy if

nt(v; i∗) > λ1−2i∗nt(v; 1 − i∗). But nt(v; i∗) ≥ C − (ℓλ + 1) and nt(v; 1 − i) ≤ ℓλ + 1. As

seen above, if C ≥ ℓλ + 4 then nt(v; i∗) ≥ C− (ℓλ + 1) ≥ 3 > λ1−2i∗(ℓλ + 1) ≥ nt(v; 1− i∗).

Now, if the entire set Hn(C) plays strategy 1 − i∗, then v ∈ Hn(C) will switch strategy if

nt(v; 1−i∗) > λ1−2(1−i∗)nt(v; i∗). But nt(v; i∗) ≤ ℓλ+1 whereas nt(v; 1−i∗) ≥ C−(ℓλ+1).

Thus v will switch strategy if C−(ℓλ+1) ≥ λ2i
∗−1(ℓλ+1). Therefore, choosing C ≥ (ℓλ+1)2

yields a contradiction and completes the proof of the claim.

Remark 2.2.18. For the minority regime, the above claim and Lemma 2.2.10 imply that,

when unanimity occurs within Hn(C), its vertices will be playing strategy 1 − i∗ at odd

steps and strategy i∗ at even steps. In the majority regime, they stabilise to strategy i∗.

Note that by Claim 2.2.11, if d≫ 1, then for any fixed C ∈ N we have a.a.s. |Hn(C)| ≥

n(1 − o(1)). Therefore, the above analysis implies that for any ε > 0 there exists β =
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β(ε, λ) > 0 such that if d ≫ 1, then a.a.s. at least n(1 − ε) vertices in G(n, d/n) will be

unanimous after at most β log n rounds.

Proof of Theorem 1.1.3. Suppose first that d = cλ log n+ log log n+ ω(n), where ω(n) →

−∞ as n→ +∞. By Lemma 2.2.8 i., a.a.s. there are (ℓλ, 1)-blocking stars in L1(G(n, d/n))

that are set to the (1− i∗, 1− i∗)-configuration. By Claim 2.2.3, those will retain this con-

figuration forever and, therefore, they will be in disagreement with the vertices in Hn(C).

Hence, u
(1)
n , the probability that L1(G(n, d/n)) becomes eventually unanimous, tends to

0 as n→ +∞. We will now consider the cases where d = cλ log n+log log n+ω(n), where

either ω(n) → +∞ or ω(n) → c ∈ R, as n→ +∞. We will need the following claim.

Claim 2.2.19. Let Q be in the majority regime. If a vertex v has at most ℓλ−1 neighbours

playing strategy 1 − i∗ but at least one playing strategy i∗, it will play strategy i∗ in the

next round.

Proof of Claim 2.2.19. If v already plays strategy i∗, then it will change strategy if nt(v; i∗) <

λ1−2i∗nt(v; 1 − i∗). But nt(v; i∗) ≥ 1 and nt(v; 1 − i∗) ≤ ℓλ − 1. Hence we have,

λ1−2i∗nt(v; 1 − i∗) ≤ λ1−2i∗(ℓλ − 1) < λ1−2i∗ · max{λ, λ−1} (2.15)
= 1.

So v will not change strategy. Now, if v already plays strategy 1−i∗, then it will not change

its strategy if nt(v; 1− i∗) ≥ λ1−2(1−i∗)nt(v; i∗) = λ2i
∗−1nt(v; i∗). But nt(v; 1− i∗) ≤ ℓλ− 1

whereas λ2i
∗−1nt(v; i∗) ≥ λ2i

∗−1 > ℓλ−1. Therefore, v will change its strategy into i∗.

Suppose that d = cλ log n + log log n + ω(n) with ω(n) → +∞ as n → +∞. Let

G(L)(n, d/n) denote the subgraph of G(n, d/n) induced by the vertices in Ln(C). By

Lemma 2.2.14 (with ℓ = ℓλ) and Lemma 2.2.15, every connected component ofG(L)(n, d/n)

is a tree of order at most ℓλ + 1. Let T be one of these connected components that is a

subgraph of L1(G(n, d/n)).

If |T | ≤ ℓλ, then all its vertices have degree at most ℓλ − 1 in T . For i ≥ 1, let T (i)

denote the set of vertices in T that are at distance i from Hn(C). Once the vertices in
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Hn(C) have been unanimous on strategy i∗, they will stay there forever. By Claim 2.2.19

the vertices in T (1) will adopt strategy i∗ eventually and remain there forever. Assuming

that the vertices T (i) have adopted strategy i∗ forever, then the vertices of T (i+1) will

adopt strategy i∗ too (provided it is non-empty) by Claim 2.2.19 and remain there forever.

Hence, the entire vertex set of T will adopt strategy i∗.

Suppose now that |T | = ℓλ + 1. If all its vertices have degree at most ℓλ − 1, then

eventually the vertices of T adopt strategy i∗, by the above argument. If there is a vertex

in T of degree ℓλ within T , then T must be a star. However, by Lemma 2.2.8 ii. a.a.s. this

is not an (ℓλ, 1)-blocking star. Thus, one of its leaves must have a neighbour in Hn(C).

Since it has degree 1 (≤ ℓλ − 1) inside T , then by Claim 2.2.19 it adopts strategy i∗

after Hn(C) becomes unanimous and stays there forever. Subsequently, the centre of T

will do so (it also has at most ℓλ − 1 neighbours that are not playing strategy i∗) and

finally, the remaining leaves adopt it as well. Moreover, the above argument shows that

the only connected components of G(L)(n, d/n) which may not adopt strategy i∗ are the

(ℓ, 1)-blocking stars, for ℓ ≤ ℓλ. If there are no (ℓλ, 1)-blocking stars, then L1(G(n, d/n))

will then become unanimous. Firstly, let us observe that if ω(n) → c ∈ R as n → ∞,

then by Lemma 2.2.5 iii. a.a.s. there are no (ℓλ + 1, 1)-blocking stars as

P(Xℓλ+1,1,n > 0) ≤ 2e−(ℓλ+1)Ω(logn) = o(1).

Furthermore, by Lemma 2.2.13 a.a.s. there are no ℓλ + 2 vertices of degree 1 that have a

common neighbour. Therefore, a.a.s. there are no (ℓ, 1)-blocking stars for any ℓ ≥ ℓλ + 1.

Now, by Lemma 2.2.8 ii., the random variableX
(1)
ℓλ,1,n

converges in distribution as n→ +∞

to a random variable distributed as Po(ec(ℓλ+1)/ℓλ!). Thus, for any integer k ≥ 0, we have

P
(
X

(1)
ℓλ,1,n

= k
)
→ P

(
Po(ec(ℓλ+1)/ℓλ!) = k

)
,

as n→ +∞.

Suppose now that X
(1)
ℓλ,1,n

= k, for some k ∈ N0. The case k = 0 was treated above and
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unanimity is attained a.a.s. (on the conditional space where X
(1)
ℓλ,1,n

= 0). Let us consider

the case k ≥ 1. If an (ℓλ, 1)-blocking star is initially set to (1 − i∗, 1 − i∗)-configuration,

then by Claim 2.2.3 it will stay in this configuration forever. We thus conclude that

if unanimity is achieved then no (ℓλ, 1)-blocking star is initially set to (1 − i∗, 1 − i∗)-

configuration. The probability of this is (1 − 1/2ℓλ+1)k. Also, if all (ℓλ, 1)-blocking stars

attached to L1(G(n, d/n)) are initially set to (i∗, i∗)-configuration, they will remain so

forever (cf. Claim 2.2.4) and will be synchronised with the vertices of Hn(C). Thus,

L1(G(n, d/n)) will be unanimous. The probability of this is 1/2k(ℓλ+1).

Consequently,

lim sup
n→+∞

u(1)n ≤
∞∑
k=0

(
1 − 1

2ℓλ+1

)k
P
(
Po(ec(ℓλ+1)/ℓλ!) = k

)
.

and

lim inf
n→+∞

u(1)n ≥
∞∑
k=0

(
1

2ℓλ+1

)k
P
(
Po(ec(ℓλ+1)/ℓλ!) = k

)
.

Since Hn(C) will reach unanimity in at most β log n steps, the above case analysis

implies that L1(G(n, d/n)) will reach unanimity in at most β log n+O(1) steps.

Proof of Theorem 1.1.4. Let us recall that ℓ′λ = ⌊max{λ, λ−1}⌋ = ⌊λ2i∗−1⌋. Suppose first

that d = 1
2

log n+
1+ℓ′λ
2

log log n+ω(n), where ω(n) → −∞ as n→ +∞. By Lemma 2.2.8 i.

(setting ℓ = 1 and k = ℓ′λ therein), a.a.s. there are (1, ℓ′λ)-blocking stars in L1(G(n, d/n))

that are initially set to the (i∗, 1 − i∗)-configuration. By Claim 2.2.1, those will retain

this configuration forever and, therefore, they will be in disagreement with the vertices in

Hn(C). Hence, u
(1)
n , the probability that L1(G(n, d/n)) becomes eventually unanimous,

tends to 0 as n→ +∞.

Now, suppose that d = 1
2

log n+
1+ℓ′λ
2

log log n+ ω(n), where ω(n) → +∞. As before,

we let G(L)(n, d/n) denote the subgraph of G(n, d/n) induced by the vertices in Ln(C).

By Lemma 2.2.14 (with ℓ = 1) a.a.s. every connected component of G(L)(n, d/n) is of

order at most 2. That is, a.a.s. every component of G(L)(n, d/n) is either a vertex or an

edge.
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Let T be one of these connected components that is a subgraph of L1(G(n, d/n)). If

T is a vertex, then it will synchronise with the vertices Hn(C) after the Rth step, where

the vertices of Hn(C) arrive at unanimity. Thus, all its neighbours (which lie in Hn(C))

will play the same strategy, say i, by (2.5) this vertex will adopt strategy 1− i in the next

round and be in agreement with the vertices of Hn(C) (cf. Claim 2.2.17).

Suppose now that T is an edge with one of its endpoints being adjacent to vertices

in Hn(C). Hence, T is a (1, k)-blocking star for some k ∈ N. But in fact, k > ℓ′λ as

ω(n) → +∞ and by Lemma 2.2.8 iii. a.a.s. there are no (1, k)-blocking stars with k ≤ ℓ′λ.

Such a (1, k)-blocking star with k > ℓ′λ, will have its k connectors inside Hn(C). But recall

that these will arrive at unanimity after step R and will start alternating simultaneously

between states i∗ and 1 − i∗. So by Claim 2.2.2, the (1, k)-blocking star will synchronise

with them.

Finally, suppose that T = v1v2 is an edge where both its endpoints v1 and v2 have

at least one neighbour in Hn(C). Let t ≥ R be a step at which St(v) = i∗, for all

v ∈ Hn(C). Assume that v1 and v2 are not unanimous with Hn(C). In particular,

suppose that St(v1) = St(v2) = 1− i∗. Vertex v1 will not switch strategy, if nt(v1; 1− i∗) ≤

λ2i
∗−1nt(v1; i

∗). But nt(v1; 1 − i∗) = 1, nt(v1; i
∗) ≥ 1 and λ2i

∗−1 > 1. So the inequality

is satisfied. The same holds for v2. Thereby, St+1(v1) = St+1(v2) = 1 − i∗ and as

St+1(v) = 1 − i∗ for all v ∈ Hn(C), thereafter v1, v2 will be synchronised with Hn(C).

Suppose now that St(v1) = 1 − i∗ but St(v2) = i∗. Then St+1(v1) = 1 − i∗ as v1

has no neighbours who play strategy 1 − i∗. Also, St+1(v2) = 1 − i∗, since nt(v2; i
∗) >

λ1−2i∗nt(v2; 1− i∗). The latter holds since nt(v2; i
∗) ≥ 1, nt(v2; 1− i∗) = 1 and λ1−2i∗ < 1.

As St+1(v) = 1 − i∗ for all v ∈ Hn(C), thereafter v1, v2 will stay synchronised with

Hn(C). By symmetry, an analogous argument can be used for the case St(v1) = i∗ but

St(v2) = 1 − i∗.

We thus conclude that if ω(n) → ∞, then u
(1)
n → 1 as n→ ∞.

Finally, suppose that ω(n) → c ∈ R as n → ∞. By Lemma 2.2.8 ii., the random

variable X
(1)

1,ℓ′λ,n
converges in distribution as n→ +∞ to a random variable distributed as
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Po(e2c/ℓ′λ!). Thus, for any integer k ≥ 0, we have

P
(
X

(1)

1,ℓ′λ,n
= k

)
→ P

(
Po(e2c/ℓ′λ!) = k

)
as n→ +∞.

Suppose now that X
(1)

1,ℓ′λ,n
= k, for some k ∈ N0. The case k = 0 was treated above

and unanimity is attained a.a.s. (on the conditional space where X
(1)

1,ℓ′λ,n
= 0). Indeed as

no (1, ℓ′λ)-blocking stars are present, and hence we have that,

lim inf
n→+∞

u(1)n ≥ P
(
Po(e2c/ℓ′λ!) = 0

)
.

Let us consider the case k ≥ 1. If an (1, ℓ′λ)-blocking star is initially set to (i∗, 1 − i∗)-

configuration, then by Claim 2.2.1 it will stay in this configuration forever. In other

words, if unanimity is achieved, then no (1, ℓ′λ)-blocking star is initially set to (i∗, 1− i∗)-

configuration. The probability of this is (1 − 1/4)k = (3/4)k. Consequently,

lim sup
n→+∞

u(1)n ≤
∞∑
k=0

(
3

4

)k
P
(
Po(e2c/ℓ′λ!) = k

)
.

Since Hn(C) will reach unanimity in at most β log n steps, the above argument implies

that L1(G(n, d/n)) will reach unanimity in at most β log n+O(1) steps.

We conclude this section with the proof of Lemma 2.2.16.

2.3 Unbiased Node Systems in Dense Regimes

In this chapter, we explore the remaining cases that are not covered in Theorem 1.1.1. We

consider the range for p ≥ Λn−1/2, for large positive Λ and payoff skew λ = 1. We have

two cases depending on the regime of Q. We note that if Q is in the majority regime, then

this is covered by the main result of [32]. Therefore the majority of this section focuses

on when Q is in the minority regime. By considering a coupling of the minority regime
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to a suitably designed majority game, we can confirm that an analogous result for the

minority regime result holds.

2.3.1 Majority and Minority Dynamics

We recall that St(v) is the state of a vertex v at a discrete time-step t ≥ 0. We consider

a process running on a suitably dense realisation of G(n, p), and also utilise the initial

configuration S1/2. If our interacting node system (G(n, p), Q,S1/2) is in the majority

regime with λ(Q) = 1, then its evolution coincides with the majority dynamics process.

The latter is defined by the following evolution rule:

St+1(v) =


1 if nt(v; 1) > nt(v; 0);

0 if nt(v; 1) < nt(v; 0);

St(v) if nt(v; 1) = nt(v; 0).

(2.24)

In other words, in the majority dynamics process, a node will always choose to adopt

the state shared by the majority of its neighbours. If there is a tie, then its state will

remain unchanged. Goles and Olivos [39] showed that majority dynamics on a finite

graph becomes eventually periodic with a period at most 2. More specifically, there is

a t0 depending on the graph such that for any t > t0 and for any vertex v we have

St(v) = St+2(v). Majority dynamics is also a special case of voting with at least two

alternatives; see [64]. Results on the evolution of majority dynamics on the random

graph G(n, p) were obtained recently by Benjamini et al. [9]. In [32], Fountoulakis et al.

proved the following theorem confirming the rapid stabilisation of the majority dynamics

process on a suitably dense G(n, p), confirming a conjecture stated in [9]. Let M0 be the

most popular vertex state seen across the initial configuration.

Theorem 2.3.1 [32]. For all ε ∈ [0, 1) there exist Λ, n0 such that for all n > n0, if

p ≥ Λn− 1
2 , then G(n, p) is such that with probability at least 1−ε, across the product space

of G(n, p) and S1/2, the vertices in Vn following the majority dynamics rule, unanimously
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have state M0 after four rounds.

We note that Theorem 2.3.1 allows us to conclude the stabilisation of the interacting

node system with λ = 1 in the majority regime. On the other hand, if we consider an

interacting node system in the minority regime with λ = 1, then the process coincides

with the minority dynamics process, described by the following:

St+1(v) =


1 if nt(v; 1) < nt(v; 0);

0 if nt(v; 1) > nt(v; 0);

St(v) if nt(v; 1) = nt(v; 0).

(2.25)

Under these rules, nodes will update to the state shared by the minority of their neigh-

bours. It can be readily checked from (2.4) and (2.5), respectively, that the evolution

of the above systems is identical to an interacting node system with λ = 1. We show

that in the minority regime, unanimity is also achieved within at most four rounds too.

However, (2.25) implies that vertex strategies will alternate synchronously with period

two. Our theorem concerning the evolution of minority dynamics is analogous to Theo-

rem 2.3.1.

Theorem 2.3.2. For all ε ∈ (0, 1] there exist Λ, n0 such that for all n > n0, if p ≥ Λn− 1
2 ,

then G(n, p) is such that with probability at least 1−ε, across the product space of G(n, p)

and S1/2, the vertices in Vn following the minority dynamics rule will unanimously have

the same state after four rounds.

Throughout this section, we consider p = d/n where d ≥ Λ
√
n, for a suitably large

constant Λ. Thus, in comparison to the previous section, we will now work in a denser

realisation of G(n, p). We will comment on sparser regimes in the discussion section of

this chapter. We consider an initial configuration of S1/2, and apply the evolution rules

from (2.24) in the majority regime, or the evolution rules from (2.25) in the minority

regime. We refer to the node system using evolution rule (2.24) as the majority game

which we denote as
(
G(n, p),S1/2

)>
; while we refer to the system given by evolution

72



rule (2.25) as the minority game, denoted
(
G(n, p),S1/2

)<
. We show that in the minority

game, unanimity is achieved after at most four rounds with high probability. As noted

above, the majority game will give rise to stability, while the minority game produces a

system with period two.

The quantity ηt :=
∣∣∣|Pt| − |Nt|

∣∣∣ represents the size of the majority of the dominant

strategy at time t. Due to the distribution of the S1/2, we have with probability 1 − ε

that the quantity η0 =
∣∣∣|P0| − |N0|

∣∣∣ will be sufficiently bounded away from zero.

Lemma 2.3.3 [32]. Given ε > 0, set c = c(ε) =
√

2πε/20. Then across the probability

space S1/2,

P
(
η0 ≥ 2c

√
n
)
≥ 1 − ε/4,

for any n sufficiently large.

The proof of this lemma is a direct consequence of the Local Limit Theorem (see

Theorem 2.4.3 below). We define E+
c to be the event that |P0| − |N0| ≥ 2c

√
n, and E−

c to

be the event that |N0|−|P0| ≥ 2c
√
n. The events E+

c and E−
c occur with equal probability;

therefore by symmetry we may condition on either E+
c or E−

c , without loss of generality.

We will consider a selection of results from [32] (Lemmas 3.5, 3.6 therein), which will

be useful in the minority regime analysis. The first result concerns the expectation and

variance of n1(v; 1), given that E+
c has occurred. For a vertex v ∈ Vn define the event

N (v) = {|d(v) − d| < d2/3}.

Lemma 2.3.4. Consider the majority gameM = (G(n, p),S1/2)
> where p = d/n. Let c =

c(ε) be the constant given in Lemma 2.3.3. Then there exists a constant ζ, (independent

of ε) such that for any v ∈ Vn and any n sufficiently large the following holds: for any

configuration s0 ∈ E+
c and any k ∈ N such that |k − d| < d2/3:

E
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≥ k

2
+
ζc

7

(
d3

n

)1/2

.

Moreover, there exists a positive constant α, such that for any k ∈ N with |k − d| < d2/3
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we have

Var
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≤ αd.

By applying Lemma 2.3.4, we now proceed to prove an adjustment to a result from [32].

In the modified result, we show that with high probability a vertex v will have a n1(v; 1)

sufficiently bounded away from d(v)/2. In [32], the authors show that this quantity is

at least d(v)/2. However, in order for us to utilise this result for the minority game, we

will instead require the stronger bound n1(v; 1) ≥ d(v)/2 + 2γ
√
d, with high probability,

for some positive constant γ. We elaborate on the reasoning behind this assertion in

Section 2.4.

Lemma 2.3.5. Let ε > 0, and c a positive constant as given in Lemma 2.3.3. Consider

the majority game M = (G(n, p),S1/2)
> where p = d/n. For any positive constant γ there

exists a positive constant Λ = Λ(γ, ε), such that for all n sufficiently large if d ≥ Λn1/2

and v ∈ Vn, the followings holds:

P
(
n1(v; 1) <

d(v)

2
+ 2γ

√
d

∣∣∣∣ E+
c

)
< ε.

Proof. This argument is a direct application of Chebyshev’s inequality. Fix s0 ∈ E+
c and

k ∈ N such that |k − d| < d2/3. By applying Lemma 2.3.4 and subtracting 2γ
√
d, from

both sides we have that:

∣∣∣∣E [n1(v; 1) | S1/2 = s0, d(v) = k
]
−
(
d(v)

2
+ 2γ

√
d

)∣∣∣∣ ≥ (d3n
)1/2

ζc

7
− 2γ

√
d.

By Lemma 2.3.4 we have Var
[
n1(v; 1) | S1/2 = s0, d(v) = k

]
≤ αd. We now apply

Chebyshev’s inequality to bound the probability that n1(v; 1) < d(v)/2 + 2γ
√
d. This

gives

P
(
n1(v; 1) <

d(v)

2
+ 2γ

√
d | S1/2 = s0, d(v) = k

)
≤
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49αd(
ζc (d3/n)1/2 − 14γ

√
d
)2 ≤ 49α

ζc
(

d√
n

) [
ζc
(

d√
n

)
− 28γ

] .
We now recall that d > Λ

√
n. If we take Λ > (1 + 28γ)/(ζc), then ζc (d/

√
n) −

28γ ≥ 1. Applying this inequality to the denominator, and choosing Λ > 2 · max{(1 +

28γ)/ζc , 49α/εcζ} we have:

P
(
n1(v; 1) <

d(v)

2
+ 2γ

√
d | S1/2 = s0, d(v) = k

)
≤ 49α

Λcζ
≤ ε/2.

Integrating over all possible choices of s0 ∈ E+
c and k such that N (v) is realised, we obtain

P
(
n1(v; 1) <

d(v)

2
+ 2γ

√
d | E+

c ,N (v)

)
≤ ε/2.

But P [N (v)] = 1 − o(1), (which follows by a standard application of the Chernoff

bound (1.3)), we deduce that for n sufficiently large we have

P
(
n1(v; 1) <

d(v)

2
+ 2γ

√
d | E+

c

)
≤ ε.

2.4 The Minority Regime

We now work within the minority regime, proving Theorem 2.3.2. Recall that by (2.25), a

vertex will update to the state shared across the minority of its neighbours. In the event

of a tie, the vertex will remain in its current state.

We observe similarities with Theorem 2.3.1, namely the fact that unanimity occurs,

and is achieved within at most four rounds. However, the system is no longer stable but

will become periodic with period two after unanimity is reached.

We wish to relate the proof of Theorem 2.3.2 to Theorem 2.3.1. We first start by

showing that the first round of the minority game m =
(
G(n, p),S1/2

)<
can be approx-
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imated by a specific majority game which starts on the complementary configuration.

For a configuration S on Vn we define the complementary configuration S̄ as follows: for

every v ∈ Vn we set S̄(v) = 1 − S(v). Suppose we have an interacting node system

I =
(
G,S1/2

)∗
, where ∗ ∈ {<,>}. For v ∈ Vn, we denote SI

t (v) to be the strategy of a

vertex v in the game I at time t; similarly we define nI
t (v; i) = |{u : SI

t (u) = i} ∩NG(v)|.

While these definitions are similar to their counterparts, we would like to emphasise the

role of I, as we will generally work with two different systems: a minority game I = m

(when ∗ is <) and a majority game I = M (when ∗ is >). We now state the follow-

ing lemma concerning the approximation of a minority game m to a suitably designed

majority game M .

Lemma 2.4.1. Let G = (V,E) be a graph and S : V → {0, 1} be a configuration. Let

m = (G,S)< be a minority game, and M = (G, S̄)> be a majority game with initial

configuration S̄. If for v ∈ V (G) we have that nm0 (v; 0) ̸= nm0 (v; 1), then Sm1 (v) = SM1 (v).

If nm0 (v; 0) = nm0 (v; 1), then Sm1 (v) = 1 − SM1 (v).

Lemma 2.4.1 allows us to deduce the behaviour of a significant number of vertices in

the first round of the minority process. The idea is to take a minority game, complement

each of the vertex strategies, and then allow one round of evolution to occur using the

majority rules. As long as a vertex satisfies the condition nm0 (v; 0) ̸= nm0 (v; 1), it will

have the same state as if it had just evolved using the minority rules on the original

configuration. We refer to the additional condition nm0 (v; 0) = nm0 (v; 1), as the equal

neighbourhoods condition (ENC).

Proof of Lemma 2.4.1. We first assume that nm0 (v; 0) ̸= nm0 (v; 1). We split our analysis

into cases which depend on both the current state of the vertex, along with which of

nm0 (v; 0) and nm0 (v; 1) is larger. In all four cases the argument is identical; we simply must

show that Sm1 (v) = SM1 (v).

Suppose Sm0 (v) = 0, and nm0 (v; 0) > nm0 (v; 1). By applying the minority rules, we see

that Sm1 (v) = 1. We now consider the complementary state, 1 − S̄m0 (v) = SM0 (v) = 1.
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As we have that nm0 (v; 0) > nm0 (v; 1), then by the definition of complementary initial

configuration, it must be the case that nM0 (v; 0) < nM0 (v; 1). By applying the majority

rules to the vertex v we have that SM1 (v) = 1; therefore, Sm1 (v) = SM1 (v).

For the case where nm0 (v; 0) = nm0 (v; 1), we observe that in both games v has an

equal of the number of the vertices playing strategy one and zero in its neighbourhood.

Therefore, it follows that Sm0 (v) = Sm1 (v) and SM0 (v) = SM1 (v). However, by the definition

of complementary states we have that Sm0 (v) = 1− SM0 (v), and thus Sm1 (v) = 1− SM1 (v).

The main application of the above lemma is to connect the games m and M on

G(n, d/n) with initial configuration S1/2. It is at that point where we apply Lemma 2.3.5 to

the game m. However, we must consider which vertices satisfy the equal neighbourhoods

condition. For each vertex v ∈ Vn, we say that v ∈ ENC if nm0 (v; 0) = nm0 (v; 1), and we

define EQ(v) = |{w : w ∈ ENC} ∩ NG(n,d/n)(v)|. Let γ be a positive constant. We say

that a vertex v ∈ Vn has a γ-decisive neighbourhood in G(n, d/n) if EQ(v) < γ
√
d, and

a vertex has a γ-abundant neighbourhood in G(n, d/n) if nM1 (v; 1) ≥ 2γ
√
d + d(v)/2. We

say that a vertex v ∈ Vn is γ-good if v has a γ-abundant and a γ-decisive neighbourhood

in G(n, d/n). The following corollary illustrates the role of γ-good vertices.

Corollary 2.4.2. Let γ > 0. If a vertex v ∈ Vn is γ-good in G(n, d/n) for a given initial

configuration, then Sm2 (v) = 0.

Proof. Let us abbreviate G(n, d/n) by G. Given an initial configuration on Vn, set up

the systems m and M as in Lemma 2.4.1, and assume that v ∈ Vn is γ-good vertex. We

show that nm1 (v; 1) > d(v)/2; we proceed by applying Lemma 2.4.1 to bound nm1 (v; 1)

from below. This lemma implies that if u /∈ ENC, then Sm1 (u) = SM1 (u). Hence, for all

u ∈ NG(v) \ ENC, if SM1 (u) = 1, then Sm1 (u) = 1. However for w ∈ ENC ∩ NG(v), we

have that Sm1 (w) = 1 − SM1 (w). If we assume that for all w ∈ ENC ∩NG(v) we have that

SM1 (w) = 1, then we would minimise the size of nm1 (v; 1) as in that case Sm1 (w) = 0. As a

direct consequence, we have that nm1 (v; 1) ≥ nM1 (v; 1) − EQ(v). Therefore, by combining
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this bound with the definitions of γ-abundance and γ-decisiveness, we have:

nm1 (v; 1) ≥ nM1 (v; 1) − EQ(v) > nM1 (v; 1) − γ
√
d ≥ d(v)

2
+ 2γ

√
d− γ

√
d

=
d(v)

2
+ γ

√
d.

Hence we have that v changes to strategy zero after two rounds.

2.4.1 Bounding the Size of EQ(v)

In light of Corollary 2.4.2, our aim is to show that there are a significant number of good

vertices. We first show that with high probability, there are a sufficient number of vertices

with a γ-decisive neighbourhood. The proof of this bound will require us to invoke the

Local Limit Theorem for sums of Bernoulli-distributed random variables, which follows

from Theorem V.4 p.111 in [77]. We state this result as follows.

Theorem 2.4.3 [77]. Let X1, . . . Xn be independent identically distributed Bernoulli-

distributed random variables with E(X1) = µ and Var(X1) = µ − µ2 =: σ2 > 0. Let

also X =
∑n

i=1Xi. There exists ρ depending on µ for which:

sup
i∈N0

∣∣∣∣∣√Var[X] · P[X = i] − 1

2π
exp

(
−(i− E[X])2

2Var[X]

)∣∣∣∣∣ < ρ√
Var[X]

.

The following lemma provides an upper bound on the number of vertices in the neigh-

bourhood of v ∈ Vn in G(n, p) which satisfy the equal neighbourhoods condition.

Lemma 2.4.4. Consider G(n, p) with np =: d = d(n) → ∞ as n → ∞ and let v ∈ Vn.

For every ε > 0, there exist positive constants γ and n0 such that for all n > n0 we have

P[EQ(v) ≥ γ
√
d] < ε.

Proof. For a vertex v ∈ Vn we bound the value of E[EQ(v)]. Without loss of generality,
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we may also assume that S0(v) = 1. For a vertex w ∈ Vn to belong to EQ(v), we must

have that w ∈ NG(n,p)(v) and w ∈ ENC. Therefore, we write

E[EQ(v) | S0(v) = 1] = E

[ ∑
w:w ̸=v

1{w∼v}1{w∈ENC} | S0(v) = 1

]
,

=
∑
w:w ̸=v

P [{w ∼ v} ∩ {w ∈ ENC} | S0(v) = 1] .

By conditioning on the event {w ∼ v}, we have the following:

E[EQ(v) | S0(v) = 1] =
∑
w:w ̸=v

P[w ∼ v]P[w ∈ ENC | w ∼ v, S0(v) = 1]

=
d

n

∑
w:w ̸=v

P[w ∈ ENC | w ∼ v, S0(v) = 1].

We now condition on the size of NG(n,p)(w)\{v}. The size of NG(n,p)(w)\{v} can vary from

zero to n−2. We set µ′ = E [EQ(v)] and let Nk(w) be the event that |NG(n,p)(w)\{v}| = k.

Note that for w ∈ ENC, we necessarily have k is odd. Applying the law of total probability

and bounding the upper and lower extremes of k, we have that:

P(w ∈ ENC | w ∼ v, S0(v) = 1) ≤ P
(∣∣∣∣∣NG(n,p)(w)\{v}

∣∣− µ′
∣∣∣ ≥ d3/4

)
+∑

k : |k−µ′|≤d3/4,k odd

P
(
|NG(n,p)(w) \ {v}| = k

)
P
(
w ∈ ENC

∣∣∣{w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
)
.

(2.26)

As we have conditioned on {v ∼ w}, we have that |NG(n,p)(w)\{v}| ∼ Bin(n− 2, d/n).

So, Var[|NG(n,p)(w)\{v}|] = (n−2)(d/n)(1−d/n) and therefore Var[|NG(n,p)(w)\{v}|] < d.

By Chebyshev’s inequality,

P
(∣∣∣ ∣∣NG(n,p)(w)\{v}

∣∣− µ′
∣∣∣ ≥ d3/4

)
≤ d

d6/4
=

1√
d
. (2.27)
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Recall that Nk(w) is the event that |NG(n,p)(w)\{v}| = k. It follows from (2.27) that:

E[EQ(v) | S0(v) = 1] ≤

d

n

∑
w:w ̸=v

 1√
d

+
∑

k:|k−µ′|≤d3/4,k odd

P (Nk(w))P
(
w ∈ ENC

∣∣∣{w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
) .

We now turn our attention to the range where µ − d3/4 ≤ k ≤ µ + d3/4. We wish

to apply Theorem 2.4.3 to bound P [w ∈ ENC | {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}] . For a

vertex w ∈ NG(n,p)(v), we define X+
w =

∣∣∣{u ∈ NG(n,p)(w)\{v} : S0(u) = 1}
∣∣∣. As we have

conditioned on v ∼ w and S0(v) = 1, for odd k the following holds:

P (w ∈ ENC | {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}) =

P
(
X+
w = (k − 1)/2

∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
)
. (2.28)

Now for a given k, suppose we condition on the event Nk(w). By conditioning on

Nk(w), we observe that X+
w ∼ Bin(k, 1/2); so Var[X+

w ] = k/4. We now apply Theorem

2.4.3, to bound the probability of the event given by (2.28): there exits a constant ρ such

that for all k we have:

P
(
X+
w =

k − 1

2

∣∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
)

≤

ρ

Var
[
X+
k

] +
1√

2πVar
[
X+
k

]e−1/(8Var[X+
k ]) ≤ 2ρ√

Var
[
X+
k

] =
4ρ√
k
. (2.29)

Using (2.28) and (2.29) in (2.26), we finally deduce that

E[EQ(v) | S0(v) = 1] ≤

d(n− 1)

n

(
1√
d

+ max
k : |k−µ′|≤d3/4, k odd

{
P
(
X+
k = (k − 1)/2

∣∣∣ {w ∼ v} ∩ Nk(w) ∩ {S0(v) = 1}
)})

.
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Using the bound (2.29), the above expression becomes

E[EQ(v) | S0(v) = 1] ≤ d(n− 1)

n

(
1√
d

+
4ρ√

µ− d3/4

)
.

A similar argument gives the same upper bound on E[EQ(v) | S0(v) = 0]. Since µ′ =

Θ(d), therefore there exists a constant κ, such that for sufficiently large d we have that

µ′ − d3/4 ≥ κd. Letting Γ = 2(
√
κ+ 4ρ)/

√
κ, for sufficiently large d we have that:

E[EQ(v)] ≤ Γd√
d

= Γ
√
d.

Fix ε > 0 and define γ = Γ/ε. Then by Markov’s inequality

P
[
EQ(v) ≥ γ

√
d
]
<

E[EQ(v)]

γ
≤ ε.

2.4.2 A Bound on the Number of Good Vertices

We now have a suitable bound on EQ(v), which holds with high probability. Furthermore,

we would like to show that there are a significant number of good vertices. We denote

the set of γ-good vertices in G(n, p) as GDγ. We recall that a vertex v ∈ Vn of G(n, p)

is γ-good if v has a γ-abundant and a γ-decisive neighbourhood. The following corollary

asserts that our node system will have a significant number of good vertices. We also recall

the definition of the event E−
c : we say that the event E−

c occurs if |N0| − |P0| ≥ 2c
√
n,

where |P0| =
∑

v∈Vn S0(v) and |N0| = n− |P0|.

Corollary 2.4.5. Let ε > 0 and m = (G(n, d/n),S1/2)
<, where d > Λn1/2. Suppose that

E−
c has occurred for some constant c > 0. Then there exist positive constants Λ and γ,

such that for all n large enough we have with probability at least 1−ε that |GDγ| ≥ n(1−ε).

Proof. We fix ε > 0 and again define the majority game M = (G(n, d/n), S̄1/2)
> as above.

As we have conditioned on E−
c in m, then M starts with an initial configuration which

satisfies E+
c . By Lemma 2.4.4, there exists a constant γ such that for all n sufficiently
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large and all v ∈ Vn, we have that P
[
EQγ(v) ≥ γ

√
d
]
< ε2/2. Also, by Lemma 2.3.5, we

may select Λ large enough, such that for all n sufficiently large and v ∈ Vn, we have that

P
[
nM1 (v; 1) < d(v)/2 + 2γ

√
d | E+

c

]
< ε2/2.

Now, we denote the events that v has a γ-decisive neighbourhood by Dγ(v) and that

v has an γ-abundant neighbourhood by Aγ(v). Note that Dc
γ(v) and Acγ(v) are the events

of the previous paragraph for this particular γ. By the union bound, we have that:

P[v /∈ GDγ] = P[Acγ(v) ∪Dc
γ(v)] ≤ P[Acγ(v)] + P[Dc

γ(v)] < ε2.

By taking a sum across all vertices, and applying the above inequality we have that

E [|Vn \ GDγ|] ≤ ε2n, where |Vn \ GDγ| is the number of vertices which are not good. By

Markov’s inequality, we have that P[|Vn \ GDγ| > εn] ≤ ε. Therefore, with probability at

least 1 − ε, we have that |GDγ| ≥ n(1 − ε).

Now, if there are at least (1− ε)n good vertices (which occurs with high probability),

then by Corollary 2.4.2 we have that |N2| ≥ (1 − ε)n.

2.4.3 The Final Two Rounds

In the remaining two rounds we claim that unanimity will occur. We note that as a

consequence of Corollary 2.4.5, at time t = 2 our node system satisfies the hypothesis

of Lemma 2.2.16. However, as we are working within a denser regime, it turns out that

unanimity can be reached in the entire G(n, p) much faster than β log n rounds. We state

a result from [32], which concerns the rapid formation of unanimity for majority dynamics,

wherein one of the initial strategies has a linear majority. We recall the definitions Pt =

{v ∈ Vn : St(v) = 1}, and Nt = {v ∈ Vn : St(v) = 0}. Suppose that S is an initial

configuration of vertex states on Vn, and δ ∈ (0, 1) is fixed. We say that S ∈ Ŝδ, if we

have that |N0| ≥ (1−δ)n in S. Thus Ŝδ is the collection of all initial vertex configurations

where there are at least (1− δ)n vertices in the zero state. We now consider the following

result considering the two-round evolution of games utilising initial states belonging to
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Ŝδ for sufficiently small δ.

Lemma 2.4.6. Let d ≥ Λn− 1
2 , p = d/n and 0 < δ < 1/10. On the probability space of

G(n, p) we have that a.a.s. for any S ∈ Sδ the majority game (G(n, p),S)> will reach

unanimity after at most two rounds.

While this lemma concerns the majority regime, we observe with a few adjustments

to the proof, we can prove an analogous result for minority dynamics.

Lemma 2.4.7. Let δ < 1/10 and S ∈ Sδ. Then the statement of Lemma 2.4.6 holds for

the minority game (G(n, p),S)<.

Proof. The proof of this lemma essentially follows the argument given in [32]. We observe

that rather than the same state dominating each round, we account for the majority state

switching between rounds. Suppose we have the game m = (G(n, p),S)<, with S ∈ Sδ for

δ < 1/10. Again we recall Pt = {v ∈ Vn : St(v) = 1} and Nt = {v ∈ Vn : St(v) = 0}. As

S ∈ Sδ we have that |N0| ≥ n(1 − δ). We first show a.a.s that |N1| < d/10. We note that

if |N1| ≥ d/10, then there exits a set W ⊆ Vn, with |W | = d/10 such that all vertices in

W are in state zero in after round zero; we show that a.a.s such a set can not exist. For

a set W ⊂ Vn with |W | = d/10, let W̄ denote the event {∀v ∈ W : S1(v) = 0}. For a set

S ⊆ Vn and v ∈ Vn, we recall that dS(v) = |NG(v) ∩ S|. We note that,

P(W̄ ) ≤ P(∀v ∈ W : dP0(v) > dN0(v)) ≤ P(∀v ∈ W : dP0(v) ≥ dN0(v)).

We now observe that we can decompose each of the degree terms into two parts. A degree

term which intersects with W , and a degree term which intersects with W c. By recalling

that |W | = d/10, we have that dP0(v) = dP0∩W (v) + dP0/W (v) ≤ d/10 + dP0/W (v). Clearly

we also have that dN0(v) ≥ dN0/W (v) therefore we have the following:

P(W̄ ) ≤ P
(
∀v ∈ W : dP0/W (v) > dN0/W (v) − d/10

)
.

This bound can alternatively be seen by observing that the most favourable position for
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this event to hold for v, is when all vertices of W are in the +1 state. We remark that

for each u, v ∈ W we have that dP0/W (v) and dP0/W (u) are independent, as each quantity

only depends on disjoint edge sets. Therefore, P[W̄ ] can be bounded by a product of event

probabilities over the vertices in W. Let v ∈ W, by conditioning on whether dN0/W (v) is

greater than, or less than, d/2 and applying the law of total probability, we have:

P
(
dP0/W (v) > dN0/W (v) − d/10

)
≤ P

(
dP0/W (v) ≥ dN0/W (v) − d/10 | dN0/W (v) > d/10

)
+P
(
dN0/W (v) < d/2

)
,

≤ P
(
dP0/W (v) ≥ d/3

)
+ P

(
dN0/w(v) < d/2

)
.

We note that dP0/W (v) ∼ Bin(|P0/W |, d/n) and dN0/W (v) ∼ Bin(|N0/W |, d/n). We bound

the probability of each event occurring separately. We lead with the second event, as

S ∈ Sδ we have that |N0/W (v)| ≥ n− δn− d/10 ≥ 8n/10 for n sufficiently large. Hence

we have that E[dN0/W (v)] = d|N0/W |/n ≥ 8d/10. Clearly we have that |N0/W |/n ≤ 1,

hence E[dN0/W (v)] ≤ d. By applying the upper tail of Chernoff’s inequality, we have:

P(dN0/W (v) < d/2) ≤ P
(
dN0/w(v) ≤ (1 − 1/4)E[dN0/W (v)]

)
,

≤ exp(−E[dN0/W (v)]/32),

≤ e−d/32 = e−Ω(d).

For the other event, we note that |P0/W | ≤ |P0| ≤ δn, as |P0| + |N0| = n. Therefore, we

have that E[dP0/W (v)] ≤ d · δ ≤ d/10. By a similar argument we have that P(dP0/W (v) ≥

d/3) = e−Ω(d). The above results imply that there exists a positive constant Γ, such that

for every vertex v ∈ W we have that:

P(dP0/W (v) > dN0/W (v) − d/10) ≤ e−Γd.
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We note that W̄ is the intersection on |W | independent events therefore we have

P(W̄ ) ≤ e−Γd|W | = e−Γd2/10.

We take a union bound over all possible sets W with |W | = d/10. Hence, the probability

such a W exists is bounded above by,

(
n

d/10

)
· e−Γd2/10 ≤ nd/10 · e−Γd2/10 = exp

(
d

10
(log n− Γd)

)
,

≤ exp

(
−Γd2

20

)
,

d≥Λ
√
n

≤ exp

(
−ΓΛ2n

20

)
.

We take a union bound across all partitions in Sδ; however, it suffices to bound across all

the 2n partitions in S. Therefore, we have that for Λ sufficiently large,

P(|N1| > d/10) ≤ 2n · exp

(
−ΓΛ2n

20

)
= o(1).

Therefore we conclude with probability 1− o(1) that |N1| < d/10. In the following round

we show that a.a.s |N2| = n. Firstly we note that a.a.s, all vertices in G have degree at

least d/2. Indeed, by the union bound we have that:

P(δ(v) ≤ d/2) = P

(⋃
v∈Vn

{dG(v) ≤ d/2}

)
≤
∑
v∈Vn

P(dG(v) ≤ d/2).

We observe that dG(v) ∼ Bin(n − 1, d/n), therefore for sufficiently large n we have that

3d/4 ≤ E[dG(v)] ≤ d. Therefore by Chernoff we have:

P(dG(v) ≤ d/2) ≤ P
(
dG(v) ≤

(
1 − 1

10

)
E[dG(v)]

)
,

≤ exp(−E[dG(v)]/300),

≤ e−d/300
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≤ e−Λ
√
n/300.

Hence we have that P(δ(G) ≤ d/2) ≤ n exp(−Λ
√
n/300) = o(1); therefore as |N1| < d/10,

this implies that every vertex has a strict majority of neighbours inside P1. Hence, all

vertices switch to the zero state and thus |N2| = n. As unanimity is achieved, by governing

equations (2.25), it is clear that the system will also display periodic behaviour of period

two.

Proof of Theorem 2.3.2. We fix a minority game (G,S)<, and condition on E−
c for an

appropriate c. By Corollary 2.4.5 and Corollary 2.4.2 there exists Λ such that for all n

large enough |N2| > 9n/10. Therefore this configuration now belongs to S1/10. As Lemma

2.4.7 applies to any partition in S1/10, we conclude that the system is unanimous by round

four, and hence the periodic behaviour readily follows.

2.5 Discussion

In this chapter, we studied the evolution of games on G(n, p) under the best response rule.

Our first main result of this chapter concerned the formation of unanimous strategies

in sparser regimes, namely beyond the connectivity threshold, and on the presence of a

strategic bias given by λ ̸= 1.Our second result concerns the rapid formation of unanimous

strategies on the node system (G(n, p), Q,S1/2) for p ≥ Λn−1/2. As a byproduct of this

analysis, we also prove an analogous result of Fountoulakis et al. [32] regarding the rapid

formation of unanimity in the random graph minority game. A natural question of the

sparse regime is to ask whether we can remove the condition that λ ̸= 1. As previously

seen, the case λ = 1 reduces to the problem of majority and minority dynamics. However,

the study of majority dynamics for p = o
(
n−1/2

)
imposes immense complications. Very

recently in [19], Chakraborti et al. show that Majority Dynamics stabilises to unanimity

for λ/n−1/2 ≥ p ≥ λ′n−3/5 log n. Thus combined with Theorem 2.3.1 we observe that

majority dynamics achieves majority for all p ≥ λ′n−3/5 log n. In the most extreme case,
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the following was conjectured by Benjamini et al. [9].

Conjecture 2.5.1 [9]. With high probability over the choice of random graph and choice

of the initial state, if p ≥ d/n then the following holds:

1. If d≫ 1 then, for any ε > 0 and n sufficiently large we have,

lim
t→∞

∣∣∣|P2t| − |N2t|
∣∣∣ ∈ [(1 − ε)n, n] .

2. If d is bounded then for any ε > 0 and for n sufficiently large,

lim
t→∞

∣∣∣|P2t| − |N2t|
∣∣∣ ∈ [(1 − ε/2)n, (1 + ε/2)n].

These results suggest the idea of long-term almost unanimity when d ≫ 1. Theorem

1.1.2 can be thought of as an approximate approach to studying these kinds of systems.

By introducing the strategic bias λ ̸= 1, we are able to show a stronger form of (1) in

the above conjecture. In fact, we have been able to identify precisely the critical density

of the random graph around which its largest connected component (which contains the

overwhelming majority of its vertices) achieves unanimity. Furthermore, non-unanimity

occurs, we identified those substructures which play different strategies to the majority

of the vertices in this component. In very recent work, Charkrabroti et al. [19] consider

a different range of p. Namely, they show that majority dynamics achieve unanimity in

six rounds with high probability, for p such that λ′n−3/5 ≤ p ≤ λn−1/2, for large positive

constants λ and λ′. We could hope to mimic this argument for minority dynamics, pos-

sibly with Lemma 2.4.1, this would lead to a strengthening of Theorem 1.1.1, specifically

unanimity is achieved for (G(n, p), Q,S) for p = Ω(n−3/5).

Another direction for consideration is to remove the synchronicity of the decision

updating. For the asynchronous setting, in each round, we randomly and uniformly select

a node from the network and update its strategy. Such dynamics have been considered

in [7, 65]. A natural question is whether unanimity can be achieved in G(n, p) under
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asynchronous majority dynamics, or even best response, and determine bounds on how

many steps this requires. If unanimity is indeed achieved, then we can observe this

must happen in at least Ω(n log n) steps. This follows from the fact that in any initial

configuration, there are a linear number of vertices in the “wrong state”, and they must be

sampled at some time step during the process. Due to the nature of the sampling, checking

each one of these contrarian vertices follows a coupon-collector-like scheme, see [30].
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CHAPTER 3

BEST RESPONSE DYNAMICS WITH MORE
THAN TWO STRATEGIES

In this chapter, we study a generalisation of best response dynamics wherein vertices

may choose from any of ℓ possible strategies. We recall the quantity M(Q) defined in

Section 1.2.2, the number of row sums in Q which achieve a maximum value. We show

that unanimity occurs rapidly with high probability for the case where M(Q) = 1 and

M(Q) = 2. We note that once unanimity is achieved, the system will stay unanimous and

will either stabilise or cycle through some subset of the possible strategies.

3.1 Best Response with a Unique Maximum Row

Sum

In this section, we consider the case where M(Q) = 1, and give the proof of Theorem

1.2.1. We lead this section by considering a quantity derived from the payoff matrix which

will appear heavily throughout our subsequent analysis. We will also detail an expression

for the difference between two entries in the score vector T0(v). We close this section with

the proof of Theorem 1.2.1 and show that the system reaches unanimity in one round

a.a.s.
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3.1.1 Cost Coefficients

Suppose Q is a matrix then for i, j, k, ℓ ∈ {0, 1, 2} we define,

Ck,ℓ
i,j = qi,k − qi,ℓ − qj,k + qj,ℓ.

We refer to these quantities as cost coefficients. We can consider them in the context

of the minor Qk,ℓ
i,j of Q, with the top left corner at (i, k) and the bottom right corner

at (j, ℓ). Thus we can view the associated cost coefficient as the difference between the

trace and the sum of the anti-diagonal entries of Qk,ℓ
i,j . As an aside, we observe that these

coefficients are also proportional to the value of the zero-sum game played on Qk,ℓ
i,j . These

quantities are central to our analysis, as they indicate the bias given by Q between pairs

of strategies. We immediately observe that,

Cℓ,k
i,j = −Ck,ℓ

i,j , and Cℓ,k
i,j = −Cℓ,k

j,i ,

and a pair of identities that these coefficients satisfy.

Lemma 3.1.1. Suppose for i, j, k, ℓ ∈ {0, 1, 2}, i ̸= j and k ̸= ℓ then the following

identities hold:

C0,1
i,j + C1,2

i,j = C0,2
i,j

and,

Ck,ℓ
0,1 + Ck,ℓ

1,2 = Ck,ℓ
0,2.

Proof. Both equalities can be immediately verified by direct computation. We illustrate

the former,

C0,1
i,j + C1,2

i,j = (qi,0 − qi,1 − qj,0 + qj,1) + (qi,1 − qi,2 − qj,1 + qj,2)

= qi,0 − qj,0 − qi,2 + qj,2

= C0,2
i,j .
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3.1.2 Decomposition of the Score Difference and Proof of The-
orem 1.2.1

We detail a general expression for the comparison of scores between strategies i and j,

namely the term T0(v; i)− T0(v; j), we refer to this term as the payoff difference between

i and j. We derive a decomposition of the payoff difference in terms of a leading term, of

order O(np), and an additional deviation term of lower order. For each i ∈ {0, . . . , ℓ− 1}

we denote the quantity d0(v; i) to be such that,

n0(v; i) =
|NG(v)|

ℓ
+ d0(v; i).

Lemma 3.1.2. Let ℓ ≥ 2 be an integer. Then we have for every 0 ≤ i < j ≤ ℓ− 1 :

P [T0(v; i) > T0(v; j)] = P

[
|NG(v)|

ℓ
(ΣRi − ΣRj) +

ℓ−2∑
k=0

Ck,ℓ−1
i,j d0(v; k) > 0

]
.

Proof. We lead by considering the difference in scores between strategy i and strategy j :

T0(v; i) − T0(v; j) =
ℓ−1∑
k=0

n0(v; k)(qi,k − qj,k)

=
|NG(v)|

ℓ

ℓ−1∑
k=0

(qi,k − qj,k) +
ℓ−1∑
k=0

d0(v; k)(qi,k − qj,k).

We recall for k ∈ {0, 1, 2} we denote ΣRk to be the sum of elements in row k of the matrix

Q. Hence, we observe that the first summation is the difference of ΣRi and ΣRj For the
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second summation, we observe that

ℓ−1∑
k=0

d0(v; k) =
ℓ−1∑
k=0

n0(v; k) − |NG(v)|
ℓ

= |NG(v)| − |NG(v)|

= 0.

Hence we can express the final deviation in terms of the former ℓ− 2 deviations,

T0(v; i) − T0(v; j) =
|NG(v)|

ℓ
(ΣRi − ΣRj) +

ℓ−2∑
k=0

d0(v; k) (qi,k − qj,k − (qi,ℓ−1 − qj,ℓ−1))

=
|NG(v)|

ℓ
(ΣRi − ΣRj) +

ℓ−2∑
k=0

d0(v; k)Ck,ℓ−1
i,j .

The condition that Q has a unique maximum row sum is sufficient for determining

the initial strategy first achieved at unanimity. For any given i and j, we have that

T0(v; i) − T0(v; j) has a leading term whose sign depends on the difference of the row

sums. To this end, we declare unanimity in one round to the strategy whose row is the

maximal row sum in Q. We re-state the result as follows:

Theorem 1.2.1. Let p be such that, p ≫ n−α, for α ∈ (0, 1). Suppose ℓ ∈ N and Q is

an ℓ × ℓ payoff matrix. Furthermore suppose M(Q) = 1, i∗ = argmax0≤i≤ℓ−1{ΣRi}, and

the column maxima of Q are uniquely defined. Then across the product space of S1/ℓ and

G = G(n, p) we have with probability 1 − o(1) that S1(v) = i∗ for every v ∈ Vn.

Proof. We lead by considering the comparison of scores between strategy i∗ and an arbi-

trary strategy j. We have by Lemma 3.1.2

P [T0(v; i∗) > T0(v; j)] = P

[
|NG(v)|

ℓ
(ΣRi∗ − ΣRj) +

ℓ−2∑
k=0

Ck,ℓ−1
i,j d0(v; k) > 0

]
, (3.1)

with d0(v; k) = n0(v; k) − |NG(v)|/ℓ. Thus as ΣRi∗ is the unique maximum row sum we

have that ΣRi∗ > ΣRj for every j ̸= i∗. Thus for the range of p we are considering the

leading term on the right hand side of (3.1) will be positive and have order O(np). While
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we will show the remaining terms have order at most O(
√
np log n) and thus we have that

T0(v; i∗) > T0(v; j) for every j. Firstly fix v ∈ V (G) then by the law of total probability

we can condition on the size of |NG(v)| as follows:

P[T0(v; i∗) < T0(v; j)] =
n−1∑
t=0

P
[
T0(v; i∗) < T0(v; j)

∣∣∣∣|NG(v)| = t

]
P[|NG(v)| = t]

We split the summation into two parts depending on the value of |NG(v)|. For |NG(v)|

further than
√
np log n away from it’s expectation, we can bound this probability using

Chernoff. Hence we have that P[T0(v; i∗) < T0(v; j)] is bounded above by,

2
√
np log n max

t:|t−np|≤√
np logn

{
P

[
|NG(v)|

ℓ
(Ri∗ −Rj) +

ℓ−2∑
k=0

d0(v; k)Ck,ℓ−1
i∗,j < 0

∣∣∣∣|NG(v)| = t

]}

O(e−(logn)2).

The third inequality holds due to a standard Chernoff bound on the concentration

of the vertex degrees, we consider this more precisely in Section 3.2.1. We have that

Ri∗ > Rj, hence as we have conditioned on t being the range of np±√
np log n it follows

there exists a constant K > 0, such that for t in this range,

P

[
|NG(v)|

ℓ
(ΣRi∗ − ΣRj) +

ℓ−2∑
k=0

d0(v; k)Ck,ℓ−1
i∗,j < 0

∣∣∣∣|NG(v)| = t

]

≤ P

[∣∣∣∣∣
ℓ−2∑
k=0

d0(v; k)Ck,ℓ−1
i∗,j

∣∣∣∣∣ ≥ 1

2
(np)1/2 log n

∣∣∣∣|NG(v)| = t

]

Hence if the sum of a constant number of these terms terms is larger than 1
2
(np)1/2 log n,

we must have that at least one of them of is of at least this order. Therefore, with the

union we bound, we have

P

[
ℓ−2⋃
k=0

{|d0(v; k)| ≥ 1

2K
(np)1/2 log n}

∣∣∣∣|NG(v)| = t

]
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≤
ℓ−2∑
k=0

P
[
{|d0(v; k)| ≥ 1

2K
(np)1/2 log n}

∣∣∣∣|NG(v)| = t

]
.

Thus it suffices for us to the bound the probability of the above event uniformly over

k. We note that conditional on |NG(v)| = t, we have that n0(v; k) ∼ Bin(t, 1/ℓ) hence,

E(n0(v; k)) = t/ℓ. Thus we have that d0(v; k) = n0(v; k) − E[n0(v; k)]. Thus by Chernoff

we have:

P
[
|d0(v; k)| ≥ 1

2K
(np)1/2 log n

∣∣∣∣|NG(v)| = t

]
= P

[
|n0(v; k) − E[n0(v; k)]| ≥ 1

2K
(np)1/2 log n

]
≤ e−

ℓ(np) log2 n
4Kt .

Thus substituting this into the above expression, we have for a vertex v that:

P[T0(v; i∗) < T0(v; j)] ≤ 2
√
np log n max

t:|t−np|≤√
np

{
e−

ℓ(np) log2 n
4Kt

}
+O

(
e−(logn)2

)
≤ 3

√
np log n · e−Ω(log2 n) +O

(
e−(logn)2

)
.

Finally, we take a union bound across every strategy compared with i∗ and every vertex,

thus we have:

P

 ⋃
v∈V (G)

{S1(v) ̸= i∗}

 ≤ P

 ⋃
v∈V (G)

⋃
0≤j≤ℓ−1
j ̸=i∗

{T0(v; i∗) < T0(v; j)}


≤

∑
v∈V (G)

∑
0≤j≤ℓ−1
j ̸=i∗

P [{T0(v; i∗) < T0(v; j)}] .

≤ 3n(ℓ− 1)
√
np log n · e−Ω(log2 n) + 3n(ℓ− 1) ·O

(
e− log2 n

)
.

= o(1).

We highlight two direct corollaries of Theorem 1.2.1. Firstly, for any system as above,

with ΣRi∗ > ΣRj, then all vertices will never switch to strategy j a.a.s. We summarise

this as follows.

Corollary 3.1.3. Suppose p ≫ n−α and Q is an ℓ × ℓ payoff matrix as above. Suppose
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that ΣR∗
i > ΣRj, then with probability at least 1 − o(1) that for all v ∈ Vn we have,

T0(v; i∗) > T0(v; j).

Our second corollary states that in the case of the 3 × 3 matrix game, for all v ∈ Vn,

the initial deviations of the zero and one strategies are at most log n(np)1/2 a.a.s.

Corollary 3.1.4. With probability 1−o(1) any vertex v ∈ Vn has |d0(v; 0)| ≤ log n·(np)1/2

and |d0(v; 1)| ≤ log n · (np)1/2.

3.2 Best Response for M(Q) = 2

In this section, we proceed with the proof of Theorem 1.2.2. Namely for 3 × 3 matrix Q

with exactly two equal maximal row sums, we show that the system reaches unanimity

in three steps with high probability. We restate our main result as follows,

Theorem 1.2.2. Let np≫ n2/3. Suppose that Q is a 3×3 payoff matrix, with M(Q) = 2

and a unique column maxima. Then for every ε > 0 there exists an n0 ∈ N such that for

all n > n0, across the product space of G(n, p) and S1/3, we have that there exists some

i∗ ∈ {0, 1, 2} such that

P

[ ⋂
v∈Vn

{S3(v) = i∗}

]
≥ 1 − ε.

We lead this section with the derivation of a Local Limit Theorem for the number

of strategies of each type in the neighbourhood of v, from the perspective of the hyper-

geometric distribution. We then consider a decomposition of the payoff difference, in a

similar vein to Lemma 3.1.2. Consequently, we determine a condition for either of the

two-row dominating strategies to gain a bias. By applying our local limit theorem, we es-

timate these probabilities and find bounds on the size of this bias. Following this, we show

another strategy gains a significant bias in the next round, followed by the declaration of

unanimity after the third round with high probability.
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3.2.1 A Local Limit Theorem

Consider a vertex v ∈ Vn+1 and a set Sn = Vn+1 \ {v} of size n1 We consider the random

neighbourhood N(v) of v in Sn, where each vertex in Sn becomes a neighbour of v, with

probability p independently of any other vertex in Vn+1. Let n(v) denote the size of its

neighbourhood in Sn, which follows the binomial distribution Bin(n, p). Let us condition

on the event that |n(v) − np| ≤ log n · (np)1/2 - we call this Nv. The standard Chernoff

bound yields that Nv occurs with probability 1−o(1/n). In general, these parts represent

the set of vertices playing each strategy. Throughout this section, Sn is partitioned into

three parts {S0(0), S0(1), S0(2)}, where for each v ∈ Sn we have v ∈ S0(i) if S0(v) = i.

We aim to quantify the bias given to each strategy from the initial multinomial global

distribution S1/3. To account for this, we define ci such that,

|S0(i)| = ni and ni = n/3 + ci
√
n. (3.2)

We will justify this choice of bias from n/3 in Section 3.2.2.

Let us write ni = npi; thus pi = 1/3+ci/
√
n. Let us condition on Nv and, in particular,

the value of n(v) is such that Nv is satisfied. For i = 0, 1 let us write mi = ⌈n(v)pi⌉ and

m2 = n(v) −m0 −m1. Let n(v; i) = |N(v) ∩ Si|, for i = 0, 1, 2. We will give an estimate

of the probability that (n(v; 0), n(v; 1), n(v; 2)) = (k0, k1, k2) conditional on the value of

n(v). Note that this probability is:

P [(n(v; 0), n(v; 1), n(v; 2)) = (k0, k1, k2)] =

(
n0

k0

)
·
(
n1

k1

)
·
(
n2

k2

)(
n
n(v)

) . (3.3)

We will show that this probability is approximated by the probability distribution function

of a bivariate gaussian random vector, provided that ki is close to mi for i = 0, 1. We

remark that such a probability is dependent on the revealing of n(v) and the initial global

strategies Sn = {S0(0), S0(1), S0(2)} . With a slight abuse of notation, for an event E we

1Note that when we apply the following calculations, we will work with the set Sn−1 as G is an n
vertex graph. This choice allows a sequence of slightly neater calculations.
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write,

P [E|n(v),Sn] = E (1E |n(v),Sn) .

Lemma 3.2.1. Let p = p(n) ∈ [0, 1] be such that lim supn→∞ p(n) < 1 and n1/2p ≥ log3 n.

Let n(v) be such that Nv occurs. Suppose that ki = mi+δi with |δi| ≤ log n·(np)1/2, for i =

0, 1. Then uniformly over these choices of (δ0, δ1) with x = (x0, x1)
T := (δ0, δ1)

T/n(v)1/2

and

Σ =
1

1 − n(v)/n

 1
p0

+ 1
p2

1
p2

1
p2

1
p1

+ 1
p2

 ,
we have

P [(n(v; 0), n(v; 1), n(v; 2)) = (k0, k1, k2)|n(v),Sn] =
1

n(v)
· ϕ(x)

(
1 + o(p1/2)

)
,

where ϕ(x) = 1
2π
|Σ|1/2 exp

(
−1

2
xTΣx

)
.

Proof. We will give asymptotic estimates for each one of the four binomial coefficients

that appear in (3.3). Before we do this, let us give some relations, which we will use in

our estimates later. Firstly, let us observe

1

np
≤ log3 n

√
np

= o
(
p1/2

)
. (3.4)

This is equivalent to 1/(np)2 = o(p) which in turn is equivalent to 1/n2 = o(p3). But this

holds, since 1/n1/2 = o(p). Also,

log2 n

np
= o

(
p1/2

)
. (3.5)

This is equivalent to log2 n/n = o(p3/2). But

log4/3 n

n2/3
≪ 1

n1/2
≪ p.

We begin by estimating the binomial coefficient that appears in the denominator
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of (3.3). Let

H(x) = −x lnx− (1 − x) ln(1 − x),

denote the entropy function defined for x ∈ (0, 1). We recall a standard estimate for

this binomial coefficient which relies on the Stirling approximation for the factorial: n! =
√

2πnnne−n(1 +O(1/n)). Using this, we write

(
n

n(v)

)
=

n!

n(v)!(n− n(v))!

=
1 +O(1/n(v))√

2π
·
√

n

n(v)(n− n(v))
· nne−n

n(v)n(v)e−n(v)(n− n(v))n−n(v)e−(n−n(v))

=
1 +O(1/np)√

2π
·
√

n

n(v)(n− n(v))
enH(n(v)/n).

Therefore, (
n

n(v)

)
= (1 + o(p1/2))

√
1

1 − n(v)/n
· 1√

2πn(v)
enH(n(v)/n). (3.6)

Now, we will consider
(
ni
ki

)
. In fact, we will express this in terms of

(
ni
mi

)
. In turn, we will

express the latter using (3.6). Recalling that ki = mi + δi, we write

(
ni
ki

)
/

(
ni
mi

)
=

mi!

(mi + δi)!
· (ni −mi)!

(ni −mi − δi)!
.

Suppose first that δi > 0. Then

mi!

(mi + δi)!
=

1

mδi
i

δi∏
j=1

(
1 +

j

mi

)−1

.

Writing 1 + j/mi = exp (ln(1 + j/mi)) and expanding the ln function around 1, we get

that
δi∏
j=1

(
1 +

j

mi

)−1

= exp

(
− δ2i

2mi

+O

(
|δi|
mi

+
|δi|3

m2
i

))
.

Similarly, we get

(ni −mi)!

(ni −mi − δi)!
= (ni −mi)

δi exp

(
− δ2i

2(ni −mi)
+O

(
|δi|

ni −mi

+
|δi|3

(ni −mi)2

))
.
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As ni −mi = Ω(n), we deduce that

|δi|
ni −mi

+
|δi|3

(ni −mi)2
= O

(
log n · (np)1/2

n
+

log3 n · (np)3/2

n2

)
= o(p1/2).

We thus conclude that

(
ni
ki

)
=

(
1 + o(p1/2) +O

(
|δi|
np

+
|δi|3

(np)2

))(
ni
mi

)
·
(
ni −mi

mi

)δi
·exp

(
−δ

2
i

2
· ni
mi(ni −mi)

)
.

(3.7)

Note that as |n(v) − np| ≤ (np)1/2 log n, we have

mi

ni
=
n(v)

n
+O(1/n) (3.8)

and

mi = n(v)pi(1 +O(1/np))
(3.4)
= n(v)pi(1 + o(p1/2)). (3.9)

Since |δi| = O(log n · (np)1/2), we deduce that

(
ni −mi

mi

)δi
=

(
n

n(v)
− 1

)δi (
1 +O(log n

√
p/n)

)
=

(
n

n(v)
− 1

)δi
(1 + o(p1/2)).

Furthermore by (3.7) and (3.8) we have,

δ2i
2

· ni
mi(ni −mi)

=
δ2i

2n(v)pi

(
1

1 − n(v)/n

)
+O(δ2i /(np)

2).

But δ2i = O(log2 n · (np)) and therefore

δ2i
2

· ni
mi(ni −mi)

=
δ2i

2n(v)pi

(
1

1 − n(v)/n

)
+O(log2 n/(np)).

But log2 n/(np)
(3.5)
= o(p1/2) and thereby

exp

(
−δ

2
i

2
· ni
mi(ni −mi)

)
= (1 + o(p1/2)) exp

(
− δ2i

2n(v)pi

(
1

1 − n(v)/n

))
.
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As ni = Θ(n) and mi = Θ(np), applying (3.6), we can also deduce that

(
ni
mi

)
= (1 + o(p1/2))

√
1

1 − n(v)/n
· 1√

2πmi

eniH(mi/ni). (3.10)

Combining (3.6), (3.7) and (3.10), we deduce that

P [(n(v; 0), n(v; 1), n(v; 2)) = (k0, k1, k2)] =(
1 + o(p1/2) +O

(
|δ0| + |δ1|

np
+

|δ0|3 + |δ1|3

(np)2

))
× 1

1 − n(v)/n
· 1

2π
·

√
n(v)

m0m1m2

·

(
2∏
i=0

(
n

n(v)
− 1

)δi)

× exp

(
−1

2

2∑
i=0

δ2i
n(v)

1

pi(1 − n(v)/n)

)
· e

∑2
i=0 niH(mi/ni)−nH(n(v)/n).

As we have that δ0 + δ1 + δ2 = 0 it follows that the above is equal to,

(
1 + o(p1/2) +O

(
|δ0| + |δ1|

np
+

|δ0|3 + |δ1|3

(np)2

))
× 1

1 − n(v)/n
· 1

2π
· 1

n(v)
·
√

1

p0p1p2

× exp

(
−1

2

2∑
i=0

δ2i
n(v)

1

pi(1 − n(v)/n)

)
× e

∑2
i=0 niH(mi/ni)−nH(n(v)/n).

(3.11)

Claim 3.2.2. With x = (δ0, δ1)
T/n(v)1/2 and,

Σ =
1

1 − n(v)/n

 1
p0

+ 1
p2

1
p2

1
p2

1
p1

+ 1
p2


we have

exp

(
−1

2

2∑
i=0

δ2i
n(v)

1

pi(1 − n(v)/n)

)
= exp

(
−1

2
xTΣx

)
.

Proof of Claim. Since δ0 + δ1 + δ2 = 0 we write with δ = (δ0, δ1)
T

2∑
i=0

δ2i
pi

=
δ20
p0

+
δ21
p1

+
(δ0 + δ1)

2

p2
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= δ20

(
1

p0
+

1

p2

)
+ δ21

(
1

p1
+

1

p2

)
+ δ0δ1

2

p2

= δT

 1
p0

+ 1
p2

1
p2

1
p2

1
p1

+ 1
p2

 δ.
Thus, setting

Σ =
1

1 − n(v)/n

 1
p0

+ 1
p2

1
p2

1
p2

1
p1

+ 1
p2

 ,
and using the scaling x = (δ0, δ1)

T/n(v)1/2 we get

exp

(
−1

2

2∑
i=0

δ2i
n(v)

1

pi(1 − n(v)/n)

)
= exp

(
−1

2
xTΣx

)
.

♢

We now calculate |Σ|.

Claim 3.2.3. We have

|Σ| =
1

(1 − n(v)/n)2
· 1

p0p1p2
.

Proof of Claim. We have

|Σ| =
1

(1 − n(v)/n)2
·
((

1

p0
+

1

p2

)(
1

p1
+

1

p2

)
− 1

p22

)
.

But as p0 + p1 + p2 = 1 we have,

(
1

p0
+

1

p2

)(
1

p1
+

1

p2

)
− 1

p22
=

1

p0p1p2
.

We thus conclude that

|Σ| =
1

(1 − n(v)/n)2
· 1

p0p1p2
.

♢

Now, we will deal with the last exponential in (3.11).
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Claim 3.2.4. We have

2∑
i=0

niH(mi/ni) − nH(n(v)/n) = O(1/np).

Proof of Claim. We will approximate H(mi/ni) by H(n(v)/n) using (the second order)

Taylor’s theorem around n(v)/n. Let i ∈ {0, 1}. Then mi ≥ n(v)pi, whereby n(v)/n ≤

mi/ni. Furthermore, for n sufficiently large mi/ni < 1 and therefore [n(v)/n,mi/ni] ⊂

(0, 1). Since the entropy function H is twice differentiable in (0, 1), there exists ξ ∈

[n(v)/n,mi/ni]

H

(
mi

ni

)
= H

(
n(v)

ni

)
+H ′

(
n(v)

n

)(
min− nin(v)

nni

)
+

1

2
H ′′(ξ)

(
min− nin(v)

nni

)2

.

By (3.8), we have that (
min− nin(v)

nni

)2

= O

(
1

n2

)
.

Also, H ′′(x) = −1/(x − x2), for any x ∈ (0, 1). As ξ = p + o(p) and p is asymptotically

bounded away from 1, we have

|H ′′(ξ)| =
1

ξ(1 − ξ)
= O(1/ξ) = O(1/p).

We can deduce the same for i = 2, except that in that case m2/n2 ≤ n(v)/n. Using these,

we can write

2∑
i=0

niH

(
mi

ni

)
=

2∑
i=0

niH

(
n(v)

n

)
+

2∑
i=0

niH
′
(
n(v)

n

)(
min− nin(v)

nni

)
+O

(
1

n2p

) 2∑
i=0

ni

= nH

(
n(v)

n

)
+

2∑
i=0

H ′
(
n(v)

n

)(
n
∑

imi − n(v)
∑

i ni
n

)
+O

(
1

np

)
= nH

(
n(v)

n

)
+O

(
1

np

)
,

since
∑

imi = n(v) and
∑

i ni = n. ♢
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Therefore,

e
∑2
i=0 niH(mi/ni)−nH(n(v)/n) = eO(1/np) = 1 +O(1/(np))

(3.4)
= 1 + o(p1/2). (3.12)

Finally we observe that as |δi| ≤ (np)1/2 log n,

|δ0| + |δ1|
np

+
|δ0|3 + |δ1|3

(np)2
= O

(
log3 n
√
np

)
(3.4)
= o(p1/2).

We thus conclude that

P [(n(v; 0), n(v; 1), n(v; 2)) = (k0, k1, k2)|n(v),Sn] =
1

n(v)
· ϕ(x) ·

(
1 + o(p1/2)

)

3.2.2 Some (Anti-)Concentration Properties of the Initial Con-
figuration

Let S0 : Vn → {0, 1, 2} be the random configuration on Vn in which S0(v) = i ∈ {0, 1, 2}

with probability 1/3, independently of any other vertex in Vn. We recall that S0(i) ⊆ Vn

denotes the subset of Vn which consists of those vertices in Vn which play strategy i in

the initial round. Then |S0(i)| ∼ Bin(n, 1/3). Let us also recall the local limit theorem

for the binomial distribution.

Theorem 3.2.5. Let X ∼ Bin(n, q) for some fixed q ∈ (0, 1). Then with σ2 = nq(1 − q)

we have

sup
k∈Z

∣∣∣∣P [X = k] − 1√
2πσ2

e−
(k−np)2

2σ2

∣∣∣∣ = O

(
1

nq

)
.

The local limit theorem implies that the probability that |S0(i)| is too close to n/3

(applying it for q = 1/3) is small.

Lemma 3.2.6. For any δ > 0 there exists ε > 0 such that for n sufficiently large,

P
[
|S0(i)| − n/3| ≤ ε

√
n
]
< δ.
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Proof. We use the local limit theorem above and write

P
[
|S0(i)| − n/3| ≤ ε

√
n
]

=
∑

k:|k−n/3|≤ε
√
n

P [|S0(i)| = k]

=
1√

2πn(1/3)(2/3)

∑
k:|k−n/3|≤ε

√
n

e−
(k−n/3)2

2n(1/3)(2/3) +O

(
1√
n

)

≤ 2ε
√
n√

2πn(1/3)(2/3)
+O

(
1√
n

)
= O(ε).

The lemma follows.

Also, the Chernoff bound implies that |S0(i)| is not too far from n/3.

Lemma 3.2.7. For any δ > 0, there exists C > 0 such that

P
[
|S0(i)| − n/3| > C

√
n
]
< δ.

The two lemmas together with the union bound imply that for any δ there exists ε > 0

such that with probability at least 1 − δ, for i = 0, 1, 2 we have

ε <
1√
n
||S0(i)| − n/3| ≤ 1/ε.

We denote this event En,ε. In what follows, we will condition on En,ε. More specifically, we

shall assume that the initial configuration S0 induces the partition (S0(0), S0(1), S0(2))

where

|S0(i)| = n/3 + ci
√
n,

where ε < |ci| < 1/ε. For such initial states satisfying the above, we write S0 ∈ En,ε. Note

that c0 + c1 + c2 = 0.
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3.2.3 The Expected Evolution of the System After One Step

Let v ∈ Vn. We will estimate the probability that S1(v) = i, for i ∈ {0, 1, 2}. Without

loss of generality, let us assume that rows 0 and 1 have maximal row sums, i.e. both

strictly larger than ΣR2. Previously we have shown that the probability that S1(v) = 2 is

o(1/n), this is given by Theorem 1.2.1 and Corollary 3.1.3, hence the probability a vertex

has S1(v) = 2 is equal to o(1). For the remainder of this section, we condition on this

event for all v ∈ Vn. We show that the probabilities of the events S1(v) = 0, S1(v) = 1

are approximately 1/2. However, we will show that one of them is larger than 1/2 by

a term that is of order p1/2. The chosen strategy depends on the initial configuration

of S0. In other words, with probability 1 − o(1) all vertices will play Strategy 0 or 1

after the first step. Thus, we need to determine the probability of each of them. We

will argue as in Lemma 3.1.2; however, as we intend to use Lemma 3.2.1 we will express

ni = (n − 1)pi whereby pi = 1
3

+ ci√
n

+ O(1/n). Using this, we write n0(v; i) = mi + δi,

where mi = ⌈n(v)pi⌉ for i = 0, 1 and m2 = n(v)−m0 −m1. With this notation, we write

for i = 0, 1

T0(v; i) = (m0 + δ0)qi,0 + (m1 + δ1)qi,1 + (m2 + δ2)qi,2.

But δ2 = −δ0 − δ1, whereby

T0(v; i) = m0qi,0 +m1qi,1 +m2qi,2 + δ0(qi,0 − qi,2) + δ1(qi,1 − qi,2).

Now, using the definition of mi = n(v)pi + ri, where 0 ≤ ri < 1, and the fact that

pi = 1
3

+ ci√
n

+O(1/n), we have that

m0qi,0 +m1qi,1 +m2qi,2 =
n(v)

3
ΣRi +

n(v)√
n

2∑
k=0

ckqi,k +
2∑

k=0

rkqi,k +O

(
n(v)

n

)
.
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Now, note that c0 + c1 + c2 = 0 and also r2 = −r0 − r1, the above becomes:

m0qi,0 +m1qi,1 +m2qi,2 =
n(v)

3
ΣRi +

n(v)√
n

(c0(qi,0 − qi,2) + c1(qi,1 − qi,2))

+O(1) +O

(
n(v)

n

)
.

Therefore,

T0(v; 0) − T0(v; 1) =
n(v)

3
(ΣR0 − ΣR1) +

n(v)√
n

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+δ0C

0,2
0,1 + δ1C

1,2
0,1 +O(1) +O

(
n(v)

n

)
. (3.13)

But, by our hypothesis, ΣR0 − ΣR1 = 0 and therefore the payoff difference in (3.13)

becomes

T0(v; 0)−T0(v; 1) = δ0C
0,2
0,1 + δ1C

1,2
0,1 +

n(v)√
n

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+O(1) +O

(
n(v)

n

)
. (3.14)

So by (3.14), T0(v; 0) − T0(v, 1) > 0 if and only if

δ0C
0,2
0,1 + δ1C

1,2
0,1 > −n(v)√

n

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+O(1) +O

(
n(v)

n

)
.

We re-scale both sides. Dividing by n(v)1/2 and setting xi = δi/n(v)1/2, the above is

written as:

x0C
0,2
0,1 + x1C

1,2
0,1 > −

√
n(v)

n

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+O

(
n(v)1/2

n
+

1

n(v)1/2

)
. (3.15)

Recall that we have assumed that |n(v)− np| ≤ (np)1/2 log n. Thus,
√
n(v)/n = p1/2(1 +

o(1)) and n(v)1/2/n = O(p1/2/n1/2) = o(p1/2). Finally, since 1/n(v)1/2 = O(1/(np)1/2)

and 1/n1/2 ≪ p, we also have that 1/n(v)1/2 = o(p1/2). Therefore, the above expression

becomes:

x0C
0,2
0,1 + x1C

1,2
0,1 > −p1/2

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+ o(p1/2).
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We recall that x = (x0, x1)
T while we define c = (c0, c1)

T and C =
(
C0,2

0,1 , C
1,2
0,1

)T
, where

the ci
′s are given by (3.2) and Cℓ,k

i,j is defined as in Subsection 3.1.1. The above equation

may also be rewritten as

xT ·C > −p1/2cT ·C + o(p1/2).

Therefore, we conclude that

P [T0(v; 0) > T0(v; 1) | n(v), (S0, S1, S2)]

= P
[
x0C

0,2
0,1 + x1C

1,2
0,1 > −p1/2

(
c0C

0,2
0,1 + c1C

1,2
0,1

)
+ o(p1/2) | n(v),S0

]
= P

[
xT ·C > −p1/2cT ·C + o(p1/2) | n(v),S0

]
. (3.16)

Let L denote the set of points {n(v)−1/2 · (k0, k1) : ki ∈ Z, i = 0, 1} and let L′ denote its

restriction {(x0, x1) ∈ L : |xi| ≤ log n, i = 0, 1}. Using Lemma 3.2.1 and Corollary 3.1.4,

we have the above probability is written as:

P
[
xT ·C > −p1/2cT ·C + o(p1/2) | n(v),S0

]
=

1

n(v)

(
1 + o(p1/2)

) ∑
xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x) +O
(
e−(logn)2

)
.

Clearly exp(− log n)2 ≪ p1/2 and we also observe by Lemma 3.2.9 and Lemma 3.4.2,

∣∣∣∣∣∣∣∣o(p
1/2) · 1

n(v)
·

∑
xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x)

∣∣∣∣∣∣∣∣ = o(p1/2).

Therefore,

P
[
xT ·C > −p1/2cT ·C + o(p1/2) | n(v),S0

]
=

1

n(v)
·

∑
xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x) + o(p1/2).
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We write

1

n(v)
·

∑
x∈L′

xT ·C>−p1/2cT ·C+o(p1/2)

ϕ(x) =

1

n(v)
·
∑
x∈L′

xT ·C≥0

ϕ(x) +
1

n(v)
·

∑
x∈L′

0>xT ·C>−p1/2cT ·C+o(p1/2)

ϕ(x).

We will show that for n sufficiently large:

1

n(v)
·

∑
x∈L′ : xT ·C≥0

ϕ(x) =
1

2
+ o(p1/2) (3.17)

and for some δ > 0

1

n(v)
·

∑
0>xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x) > δ · p1/2. (3.18)

So for n sufficiently large

1

n(v)
·

∑
xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x) ≥ 1

2
+
δ

2
· p1/2. (3.19)

While (3.19) suffices as a suitable lower bound, we also consider a more precise de-

composition of this term. Namely,

1

n(v)
·

∑
xT ·C>−p1/2cT ·C+o(p1/2)x∈L′

ϕ(x) =
1

2
+

∫
0>xT ·C>−p1/2cT ·C+o(p1/2)

∥x∥∞<logn

ϕ(x)dx+o(p1/2). (3.20)

For n sufficiently large, equation (3.20) is a direct consequence of (3.17) and Lemma 3.2.8

given below. We refer to the integral in the above expression as βcT ·C. We proceed with

the proof of these inequalities. We lead by considering an approximation of the sum of

ϕ(x) for points in L′ to an appropriate Gaussian integral. For any x = (x0, x1)
T ∈ L, let
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Bx denote the box [x0, x0 + n(v)−1/2) × [x1, x1 + n(v)−1/2).

Lemma 3.2.8. Suppose x ∈ L. Then for any x′,x′′ ∈ Bx we have uniformly over any

choice of x,x′ and x′′,

|ϕ(x′) − ϕ(x′′)| = O

(
1√
n(v)

)
.

Proof. Suppose we have x′ = (x′0, x
′
1)
T and x′′ = (x′′0, x

′′
1)T , both belonging to Bx. We

appeal to the multivariate mean value theorem as follows: there exists some c ∈ (0, 1)

such that,

|ϕ(x′) − ϕ(x′′)| ≤ ∥∇ϕ((1 − c)x′ + cx′′)∥2∥x′ − x′′∥2. (3.21)

We remark that equation (3.21) is a direct consequence of applying the usual single

variable mean value theorem to ϕ, over the line segment with endpoints x′ and x′′. We set

z0 = x′0(1 − c) + x′′0c and z1 = x′1(1 − c) + x′′1c, and consider the order of ∥∇ϕ((z0, z1))∥2.

We remark that the exponent in ϕ(z0, z1) is a quadratic form in z = (z0, z1)
T thus we have

that,

−1

2
zTΣz = h(z0, z1),

where h quadratic in z0 and z1. Hence it follows from the definition of ϕ that,

∥∇ϕ((z0, z1))∥2 = |ϕ(z)|∥∇h((z0, z1)∥2.

Now we observe that as h is quadratic in z0 and z1 it follows that,

∥∇h((z0, z1)∥2 = O(max{|z0|2, |z1|2}) = O(1).

We also have that ϕ(z) ≤ 1. Hence we have that,

|ϕ(x′) − ϕ(x′′)| = O(∥x′ − x′′∥2).
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However, as x′ and x′′ ∈ Bx then we have that ∥x′ − x′′∥2 = O
(

1/
√
n(v)

)
, which

concludes the proof of this Lemma.

By applying the above, we can consider an approximation of our sums by a Gaussian

integral. We define B∞
logn = {z = (z0, z1) ∈ R2 : ∥z∥∞ < log n}.

Lemma 3.2.9. Suppose D ⊂ B∞
logn is a Borel set. Then we have

∣∣∣∣∣ 1

n(v)

∑
x∈D∩L′

ϕ(x) −
∫
D
ϕ(z)dz

∣∣∣∣∣ = o(p1/2).

Proof. We deduce an asymptotic for the above in terms of an appropriate Gaussian inte-

gral. For each x ∈ D ∩ L′ we define

zmax(x) = argmax
z∈Bx

{ϕ(z)} and, zmin(x) = argmin
z∈Bx

{ϕ(z)},

the locations of the maximum and minimum values of ϕ across the box region Bx. Thus

we will now deduce upper and lower bounds in terms of the Gaussian integral over D. By

Lemma 3.2.8 we have,

1

n(v)
·
∑

x∈D∩L′

ϕ(x) =
1

n(v)
·
∑

x∈D∩L′

ϕ(zmin(x)) +
1

n(v)
·
∑

x∈D∩L′

|ϕ(x) − ϕ(zmin(x))|

=
1

n(v)

∑
x∈D∩L′

ϕ(zmin(x)) +O

(
1

n(v)3/2
|D ∩ L′|

)
.

We observe that |D ∩ L′| ≤ |L′| = O(n(v) log2 n). Therefore we observe that as p ≫

n−1/2 log3 n it follows that np≫ p and, hence

|D ∩ L′|
n(v)3/2

= O

(
log n√
n(v)

)
= o(p1/2).

Thus by taking an appropriate bound using a Riemann integral across Bx we have,

1

n(v)
·
∑

x∈D∩L′

ϕ(x) ≤
∫
D
ϕ(x)dx + o(p1/2).
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Similarly, for a lower bound, we have,

1

n(v)
·
∑

x∈D∩L′

ϕ(x) =
1

n(v)
·
∑

x∈D∩L′

ϕ(zmax(x)) − 1

n(v)
·
∑

x∈D∩L′

|ϕ(zmax(x)) − ϕ(x)|

=
1

n(v)

∑
x∈D∩L′

ϕ(zmax(x)) −O

(
1

n(v)3/2
|D ∩ L′|

)
≥
∫
D
ϕ(x)dx− o(p1/2).

Proof of equation (3.17)

For C as given above, we define the sets,

C+ = {z = (z0, z1) ∈ B∞
logn : z ·C ≥ 0} and C− = {z = (z0, z1) ∈ B∞

logn : z ·C < 0}.

By Lemma 3.2.9, ∣∣∣∣∣∣∣∣
1

n(v)
·
∑

xT ·C>0
x∈L′

ϕ(x) −
∫
C+

ϕ(z)dz

∣∣∣∣∣∣∣∣ = o(p1/2).

Thus, it suffices for us to show that the above integral is equal to 1/2 + o(p1/2). Firstly

we observe that as Σ is symmetric and semi-positive definite it follows that

∫
R2

ϕ(z)dz = 1.

Furthermore we have by Lemma 3.4.2,

∫
z ̸∈B∞

logn

ϕ(z)dz = O
(
e−(logn)2

)
= o(p1/2).

However we also observe that ϕ(z) = ϕ(−z), hence combining the above we obtain the

following two equations,

∫
C+

ϕ(z)dz =

∫
C−
ϕ(z)dz,
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∫
C+

ϕ(z)dz +

∫
C−
ϕ(z)dz = 1 −O

(
e−(logn)2

)

Combining the above gives the desired conclusion.

Proof of equation (3.18)

Let L′′ = {(x0, x1) ∈ L′ : |x0| ≤ 1, |x1| ≤ |C0/C1| + 2∥C∥∞/ε}. As L′′ ⊂ L′, provided

that n is sufficiently large, we first bound

1

n(v)
·

∑
0>xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′

ϕ(x) >
1

n(v)
·

∑
0>xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′′

ϕ(x).

Let γ > 0 be such that ϕ(x) > γ, for any x ∈ L′′. Thus, we can further bound:

1

n(v)
·

∑
0>xT ·C>−p1/2cT ·C+o(p1/2)

x∈L′′

ϕ(x) >
γ

n(v)
·|{x ∈ L′′ : 0 > xT ·C > −p1/2cT ·C+o(p1/2)}|.

(3.22)

We will now bound from below the size of the set {x ∈ L′′ : 0 > xT ·C > −p1/2cT ·C +

o(p1/2)}. Set α = p1/2cT · C + o(p1/2) > 0. Since c = (c0, c1)
T with |c0|, |c1| ≤ 1/ε and

p < 1, for any n sufficiently large we have

(1 + o(1))p1/2ε∥C∥∞ < |α| < |cT ·C| ≤ ∥c∥2∥C∥2 ≤
2

ε
∥C∥∞.

With this notation, note that the above set consists of points n(v)−1/2 ·(i, j), with i, j ∈ Z,

that satisfy

0 >
1

n(v)1/2
(iC0 + jC1) > −α.

Thus, for any i ∈ Z with |i| ≤ n(v)1/2, there are at least

1

2
n(v)1/2

|α|
|C1|

>
1 + o(1)

2
n(v)1/2p1/2ε∥C∥∞
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choices for j such that n(v)−1/2(i, j) ∈ L′′. Therefore,

|{x ∈ L′′ : 0 > xT ·C > −p1/2cT ·C + o(p1/2)}| ≥ 1

8
p1/2n(v)ε∥C∥∞.

So the left-hand side of (3.22) is bounded from below by γε∥C∥∞
8

· p1/2, thus concluding

the proof of (3.18). We observe Lemma 3.2.8 implies that,

βcT ·C > δ · p1/2 + o(
√
p). (3.23)

Concentration after the first step

Let X0 denote the random variable that is the number of vertices that adopt Strategy 0,

given that cT ·C > 0. By Lemma 3.4.1 (found in the auxiliary results section), we may

assume this as cT ·C ̸= 0 with high probability. By the previous analysis, there exists δ

such that for any n sufficiently large

E (X0) =
n

2
+ nβcT ·C + o(np1/2) ≥ n

2
+ δnp1/2. (3.24)

We will show that with probability 1 − o(1) for n sufficiently large we have

n

2
+ nβcT ·C − δ

3
np1/2 ≤ X0 ≤

n

2
+ nβc·C +

δ

3
np1/2. (3.25)

and consequently by (3.23),

X0 ≥
n

2
+
δ

2
np1/2. (3.26)

To this end, we will show that

P
[
|X0 − E (X0) | >

δ

4
np1/2

]
= o(1), (3.27)
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We will use a second-moment argument - Chebyschev’s inequality yields

P
[
|X0 − E (X0) | >

δ

4
np1/2

]
≤ 16

δ2
· Var(X0)

n2p
.

We will bound Var(X0) and, in particular, we will show that

Var(X0) = O
(
n3/2

)
. (3.28)

This implies that

P
[
|X0 − E (X0) | >

δ

4
np1/2

]
= O

(
1

n1/2p

)
= o(1).

Hence we have with high probability,

|X0 − E (X0) | <
δ

4
np1/2

and thus,

n

2
+ nβcT ·C − δ

4
np1/2 + o(n

√
p) ≤ X0 ≤

n

2
+ nβcT ·C +

δ

4
np1/2 + o(n

√
p). (3.29)

Taking n sufficiently large implies the bounds given by (3.25).

Proof of (3.28). We write

E (X0) =
∑
v∈Vn

P [S1(v) = 0] .

and

Var(X0) ≤
∑
v ̸=v′

(P [S1(v) = S1(v
′) = 0] − P [S1(v) = 0]P [S1(v

′) = 0]) + E (X0) .
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We will show that uniformly over all distinct v, v′ ∈ Vn we have

P [S1(v) = S1(v
′) = 0] − P [S1(v) = 0]P [S1(v

′) = 0] = O

(
1

n1/2

)
. (3.30)

Using the trivial bound that E (X0) ≤ n we obtain:

Var(X0) = O

(
n2

n1/2

)
+ n = O

(
n3/2

)
.

For any v ∈ Vn let Jv denote the indicator random variable that is equal to 1 precisely

on {S1(v) = 0}, thus we note that Jv = 1S1(v)=0. We will bound

E (Jv · Jv′) − E (Jv) · E (Jv′) .

We define n̂(v) = |NG(v)\{v, v′}|. Applying the law of total probability and conditioning

on whether or not v ∼ v′, as well as on the values of n̂(v) and n̂(v′), it follows that:

E (Jv · Jv′) =

p · E (E (Jv · Jv′ | n̂(v), n̂(v′)) | v ∼ v′) + (1 − p) · E (E (Jv · Jv′ | n̂(v), n̂(v′)) | v ̸∼ v′) .

(3.31)

To begin, we will start with the first summand on the right-hand side. Recall that

we are conditioning on the initial configuration S0 =
(
S
(0)
0 , S

(1)
0 , S

(2)
0

)
being such that

|S(j)
0 | = n/3 + cj

√
n, for j ∈ {0, 1, 2}, where ε < |cj| < 1/ε.

Having selected v and v′, let us abbreviate E∼ [·] = E (· | v ∼ v′). Using this shorthand,

we can write explicitly

E∼ [E (Jv · Jv′ | n̂(v), n̂(v′))] =

115



n−2∑
k̂=0

n−2∑
k̂′=0

E∼

[
Jv · Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
· P
[
n̂(v) = k̂, n̂(v′) = k̂′

]
.

Note that conditional on v ∼ v′ and on n̂(v) = k̂, n̂(v′) = k̂′, the random variables Jv and

Jv′ are independent. The random variables n̂(v), n̂(v′) are independent too. Furthermore,

Jv depends only N(v) \ {v, v′} and Jv′ depends only on N(v′) \ {v, v′} , if we condition

on v ∼ v′. So each summand in the above double sum can be written as:

E∼

[
Jv · Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
· P
[
n̂(v) = k̂, n̂(v′) = k̂′

]
=

E∼

[
Jv | n̂(v) = k̂, n̂(v′) = k̂′

]
· E∼

[
Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
· P
[
n̂(v) = k̂

]
P
[
n̂(v′) = k̂′

]
=

E∼

[
Jv | n̂(v) = k̂

]
· E∼

[
Jv′ | n̂(v′) = k̂′

]
· P
[
n̂(v) = k̂

]
P
[
n̂(v′) = k̂′

]
.

Therefore, the double sum itself can be factorised as follows:

E∼ [E (Jv · Jv′ | n̂(v), n̂(v′))] =

=

n−2∑
k̂=0

E∼

[
Jv | n̂(v) = k̂

]
· P
[
n̂(v) = k̂

] ·

n−2∑
k̂′=0

E∼

[
Jv′ | n̂(v′) = k̂′

]
· P
[
n̂(v′) = k̂′

] .

(3.32)

Let us fix k̂ ∈ {0, . . . , n− 2} and define

K̂k̂ =

{
(k̂0, k̂1, k̂2) ∈ N3

0 :
2∑
j=0

k̂j = k̂,
2∑
j=0

k̂j(q0j − q1j) > −(q0,S(v′) − q1,S(v′))

}
.

Using this, we express:

E∼

[
Jv | n̂(v) = k̂

]
=

∑
(k̂0,k̂1,k̂2)∈K̂k̂

P
[
n̂0(v; j) = k̂j, j = 0, 1, 2 | n̂(v) = k̂

]
. (3.33)

Now, set kj = k̂j + 1S(v′)=j, for j = 0, 1, 2. We will compare P
[
n̂0(v; j) = k̂j, j = 0, 1, 2

]
with P [n0(v; j) = kj, j = 0, 1, 2]. For any v ∈ Vn let Kk = {(k0, k1, k2) ∈ N3

0 :
∑2

j=0 kj =
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k + 1,
∑2

j=0 kj(q0j − q1j) > 0}.

Claim 3.2.10. For any k ∈ {0, . . . , n− 1} and all (k0, k1, k2) ∈ Kk we have

(n0−1s(v)=0−1s(v′)=0

k0−1s(v′)=0

)(n1−1s(v)=1−1s(v′)=1

k1−1s(v′)=1

)(n2−1s(v)=2−1s(v′)=2

k2−1s(v′)=2

)
(
n−2
k

) ·

((
n0−1s(v)=0

k0

)(
n1−1s(v)=1

k1

)(
n2−1s(v)=2

k2

)(
n−1
k+1

) )−1

=
n− 1

k + 1
·

ks(v′)
ns(v′) − 1s(v′)=s(v)

.

Proof. Note that if s(v′) = j

(
nj − 1s(v)=j − 1s(v′)=j

kj − 1s(v′)=j

)
·
(
nj − 1s(v)=j

kj

)−1

=
kj

nj − 1s(v)=j

but otherwise (
nj − 1s(v)=j − 1s(v′)=j

kj − 1s(v′)=j

)
·
(
nj − 1s(v)=j

kj

)−1

= 1.

Similarly, (
n− 1

k + 1

)
·
(
n− 2

k

)−1

=
n− 1

k + 1
.

So the claim follows.

Therefore,

P
[
n̂0(v; j) = k̂j, j = 0, 1, 2 | n̂(v) = k̂

]
=

n− 1

k̂ + 1
·

ks(v′)
ns(v′) − 1s(v′)=s(v)

· P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂ + 1

]
.

Now, let us relate P
[
n̂(v) = k̂

]
with P

[
n(v) = k̂ + 1

]
:

P
[
n̂(v) = k̂

]
=

(
n− 2

k̂

)
pk̂(1 − p)n−2−k̂

=
1

p

k̂ + 1

n− 1
·
(
n− 1

k̂ + 1

)
pk̂+1.(1 − p)n−1−(k̂+1)

=
1

p

k̂ + 1

n− 1
· P
[
n(v) = k̂ + 1

]
.
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With these, we can write

n−2∑
k̂=0

E∼

[
Jv | n̂(v) = k̂

]
· P
[
n̂(v) = k̂

]
=

n−2∑
k̂=0

P
[
n(v) = k̂ + 1

] ∑
(k0,k1,k2)∈Kk̂+1

ks(v′)
(ns(v′) − 1s(v′)=s(v))p

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂ + 1

]

To this end, we express ks(v′) = (ns(v′) − 1s(v′)=s(v))p+ δs(v′). Using this, we get:

n−2∑
k̂=0

E∼

[
Jv | n̂(v) = k̂

]
· P
[
n̂(v) = k̂

]
=

n−2∑
k̂=0

∑
(k0,k1,k2)∈Kk̂+1

P
[
n(v) = k̂ + 1

]
P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂ + 1

]
+

n−2∑
k̂=0

P
[
n(v) = k̂ + 1

] ∑
(k0,k1,k2)∈Kk̂+1

δs(v′)
(ns(v′) − 1s(v′)=s(v))p

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂ + 1

]
.

The first term is precisely equal to E (Jv) , while, for the second term, we combine:

P
[
n(v) = k̂ + 1

]
·P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂ + 1

]
= P [n0(v; j) = kj, j = 0, 1, 2] .

Note that the random variables n0(v; j) for j = 0, 1, 2 are independent and binomially

distributed. Let Γk = {(k0, k1, k2) ∈ N3
0 :
∑2

j=0 kj = k, 0 ≤ kj ≤ n − 1}. Using this

notation and the triangle inequallity we bound,

∣∣∣∣∣∣
n−2∑
k̂=0

∑
(k0,k1,k2)∈Kk̂+1

δs(v′)
(ns(v′) − 1s(v′)=s(v))p

P [n0(v; j) = kj, j = 0, 1, 2]

∣∣∣∣∣∣ ≤
≤

n−2∑
k̂=0

∑
(k0,k1,k2)∈Γk̂+1

|δs(v′)|
(ns(v′) − 1s(v′)=s(v))p

P [n0(v; j) = kj, j = 0, 1, 2]

≤
n−1∑
k=0

∑
(k0,k1,k2)∈Γk

|δs(v′)|
(ns(v′) − 1s(v′)=s(v))p

P [n0(v; j) = kj, j = 0, 1, 2]

As we work in Γk we may treat this sum as three independent binomials hence we have
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the above is equal to,

n0∑
k0=0

n1∑
k1=0

n2∑
k2=0

|δs(v′)|
(ns(v′) − 1s(v′)=s(v))p

2∏
j=0

P [n0(v; j) = kj]

=

ns(v′)∑
ks(v′)=0

|δs(v′)|
(ns(v′) − 1s(v′)=s(v))p

P
[
n0(v; s(v′)) = ks(v′)

] ns(v′)=nps(v′)
= O

(
1

√
np

)
.

Therefore,

n−2∑
k̂=0

E∼

[
Jv | n̂(v) = k̂

]
· P
[
n̂(v) = k̂

]
≤ E (Jv) +O

(
1

√
np

)
.

Using this upper bound in (3.32), we get

E∼ [E (Jv · Jv′ | n̂(v), n̂(v′))] ≤ E (Jv) · E (Jv′) +O

(
1

√
np

)
. (3.34)

Now, let us abbreviate E̸∼ [·] = E (· | v ̸∼ v′). Using the law of total probability condi-

tioning again on the values of n̂(v) and n̂(v′), we get

E̸∼ [E (Jv · Jv′ | n̂(v), n̂(v′))] =

n−2∑
k̂=0

n−2∑
k̂′=0

E ̸∼

[
Jv · Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
· P
[
n̂(v) = k̂, n̂(v′) = k̂′

]
.

We now show a similar relation for E̸∼

[
Jv · Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
. Note that

E̸∼

[
Jv · Jv′ | n̂(v) = k̂, n̂(v′) = k̂′

]
= E̸∼

[
Jv | n̂(v) = k̂

]
· E̸∼

[
Jv′ | n̂(v′) = k̂′

]
.

We deal with E̸∼

[
Jv | n̂(v) = k̂

]
, as the analogous calculation can be carried out for v′.

Note that Setting Kk̂ = {(k0, k1, k2) :
∑2

j=0 kj = k̂,
∑2

j=0 kj(q0j − q1j) > 0} can write

E̸∼

[
Jv | n̂(v) = k̂

]
=

∑
(k0,k1,k2)∈Kk̂

P
[
n̂0(v; j) = kj, j = 0, 1, 2 | n̂(v) = k̂

]
. (3.35)

119



We now show the analogue of Claim 3.2.10. In particular, we will relate the value of

P
[
n̂0(v; j) = kj, j = 0, 1, 2 | n̂(v) = k̂

]
to P

[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
.

Claim 3.2.11. Uniformly over all (k0, k1, k2) ∈ Kk̂ we have

(n0−1s(v)=0−1s(v′)=0

k0

)(n1−1s(v)=1−1s(v′)=1

k1

)(n2−1s(v)=2−1s(v′)=2

k2

)(
n−2
k̂

) ·

((
n0−1s(v)=0

k0

)(
n1−1s(v)=1

k1

)(
n2−1s(v)=2

k2

)(
n−1
k̂

) )−1

=
n− 1

n− k̂ − 1
·
ns(v′) − ks(v′) − 1s(v′)=s(v)

ns(v′) − 1s(v′)=s(v)
.

Proof. Again we follow a similar approach to that in Claim 3.2.10. We split into two

cases. Firstly suppose s(v) = s(v′) = j for some j ∈ {0, 1, 2}. Then we have:

(
nj − 1s(v)=j − 1s(v′)=j

kj

)
·
(
nj − 1s(v)=j

kj

)−1

=
nj − kj − 1

nj − 1
.

While for any i ̸= j we have that:

(
ni − 1s(v)=i − 1s(v′)=i

ki

)
·
(
ni − 1s(v)=i

ki

)−1

= 1.

Furthermore, we have that:

(
n− 1

k̂

)
·
(
n− 2

k̂ − 1

)−1

=
n− 1

k̂
,

and hence the result follows. In the case that s(v) = i and s(v′) = j with i ̸= j then we

have the following:

(
ni − 1s(v)=i − 1s(v′)=i

ki

)
·
(
ni − 1s(v)=i

ki

)−1

= 1,

while,

(
nj − 1s(v)=j − 1s(v′)=j

kj

)
·
(
nj − 1s(v)=j

kj

)−1

=

(
nj − 1

kj

)
·
(
nj
kj

)−1

=
nj − kj
nj

.

Hence the result follows as j = s(v′).
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Therefore,

P
[
n̂0(v; j) = k̂j, j = 0, 1, 2 | n̂(v) = k̂

]
=

n− 1

n− k̂ − 1
·
ns(v′) − ks(v′) − 1s(v′)=s(v)

ns(v′) − 1s(v′)=s(v)
· P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
.

(3.36)

Furthermore,

P
[
n̂(v) = k̂

]
=

(
n− 2

k̂

)
pk̂(1 − p)n−2−k̂

=
1

1 − p

n− k̂ − 1

n− 1
·
(
n− 1

k̂

)
pk̂.(1 − p)n−1−k̂

=
1

1 − p

n− k̂ − 1

n− 1
· P
[
n(v) = k̂

]
.

Therefore,

P
[
n̂(v) = k̂

]
P
[
n̂0(v; j) = k̂j, j = 0, 1, 2 | n̂(v) = k̂

]
=

=
ns(v′) − ks(v′) − 1s(v′)=s(v)
(ns(v′) − 1s(v′)=s(v))(1 − p)

· P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
P
[
n(v) = k̂

]
.

Now, we express ks(v′) = p
(
ns(v′) − 1s(v)=s(v′)

)
+ δs(v′), where ns(v′) = nps(v′). We observe,

n−2∑
k̂=0

P
[
n(v) = k̂

]
×

∑
(k0,k1,k2)∈Kk̂

ns(v′) − ks(v′) − 1s(v′)=s(v)
(ns(v′) − 1s(v′)=s(v))(1 − p)

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]

=
n−2∑
k̂=0

P
[
n(v) = k̂

]
×

∑
(k0,k1,k2)∈Kk̂

(ns(v′) − 1s(v′)=s(v))(1 − p) + δs(v′)
(ns(v′) − 1s(v′)=s(v))(1 − p)

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
.
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(3.37)

As in the above calculation, the first summand is,

n−2∑
k̂=0

P
[
n(v) = k̂

] ∑
(k0,k1,k2)∈Kk̂

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
≤ E (Jv) . (3.38)

By an analogous calculation to the above, the second summand is bounded above by,

∑
(k0,k1,k2)∈Γk

|δs(v′)|
(ns(v′) − 1s(v′)=s(v))(1 − p)

P
[
n0(v; j) = kj, j = 0, 1, 2 | n(v) = k̂

]
= O

(√
p

n

)
.

This implies that

E (E̸∼ [Jv · Jv′ | n̂(v), n̂(v′)]) = E (E ̸∼ [Jv | n̂(v)]) · E (E̸∼ [Jv′ | n̂(v′)])

≤ E (Jv) · E (Jv′) +O

(√
p

n

)
. (3.39)

Using the bounds of (3.34) and (3.39) into (3.31) we deduce that

E (Jv · Jv′) ≤ E (Jv) · E (Jv′) +O

(
1

n1/2

)
.

3.2.4 After the First Round

In the previous subsection, we used a second-moment argument in order to show that

in the case cT · C > 0, we have with probability 1 − o(1) that |S1(0)| = n
2

+ a(n),

for a(n) ≥ δ
2
np1/2. We recall that |S1(1)| denotes the number of vertices which adopt

strategy 1 after the execution of the first round. On the event that a(n) ≥ δ
2
np1/2 we

have, |S1(1)| ≤ n
2
− a(n), and |S1(2)| = 0. We prove the following.

Lemma 3.2.12. Let ω = ω(n) : N → R be such that ω(n) → ∞ as n→ ∞ and n1/3p ≥ ω.

Suppose that a(n) : N → R is such that a(n) = Ω(np1/2) but a(n) ≤ n
2
− np

ω1/3 . For any
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ε > 0 a.a.s. the following holds: for any partition (P0, P1) of Vn with |P0| = n/2 + a(n),

all but fewer than np/ω1/2 vertices v ∈ Vn we have for i ∈ {0, 1},

|dPi(v) − |Pi|p| ≤ εa(n)p.

Proof. Let S ⊂ Vn be such that |S| = np/
√
ω and let (P0, P1) be a partition of Vn as

specified above. We apply the Chernoff bound to deduce the concentration of the number

of edges within S. Namely the quantity e(S):

P
(∣∣∣∣e(S) −

(
|S|
2

)
p

∣∣∣∣ ≥ p|S|2√
ω

)
≤ exp

(
−Ω

(
p|S|2

ω

))
.

As p ≥ ωn−1/3, we deduce that p|S|2/ω = Ω(nω). Hence with probability at least

1−2−Ω(ω·n)), we have that e(S) is suitably concentrated about its expected value. Thereby,

on this event, the average degree on G(n, p)[S] is

2e(S)

|S|
≤ p|S|(1 + o(1)).

So on the above event and for n sufficiently large, there exists a subset S ′ ⊂ S with

|S ′| = |S|/2 such that every vertex v ∈ S ′ has dS(v) ≤ 3|S|p. We first consider P0. If

|dP0(v)−|P0|p| > εa(n)p, for any v ∈ S, then of course this is also the case for any v ∈ S ′.

Since |P0| ≫ |S| and, moreover, a(n) = Ω(np1/2) ≫ |S|, it follows that for any v ∈ S ′

|dP0\S(v) − |P0 \ S|p| > εa(n)p− 3|S|p > ε

2
a(n)p,

provided that n is sufficiently large. Observe that the family {dP0\S(v)}v∈S′ consists of

i.i.d. random variables which are binomially distributed with parameters |P0 \ S|, p. The

Chernoff bound implies that

P
[
for all v ∈ S ′ |dP0\S(v) − |P0 \ S|p| >

ε

2
a(n)p

]
= exp

(
−Ω

(
|S ′|a(n)2p2

np

))
.
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But since |S ′| = |S|/2 and |S| = np/
√
ω we have

|S ′|a(n)2p2

np
= Ω

(
a2(n)p2√

ω

)
.

Since a(n) = Ω(np1/2), the numerator on the right hand side is

a(n)2p2 = Ω(n2p3).

Hence as p ≥ ωn−1/3ω we have that a(n)2p2/
√
ω ≥ nω5/2, thus this probability is o(e−n).

If instead we consider dP1(v), the calculations remain almost identical; though we remark

that as |P0| ≤ n − np/ω1/3 we have that |P1| ≥ np/ω1/3 ≫ |S|. Thus the calculation of

the appropriate probability follows with:

P
[∣∣dP1\S(v) − |P1 \ S|p

∣∣ > ε

2
a(n)p, for all v ∈ S ′

]
=

exp

(
−Ω

(
ω|S ′|a(n)2p2

np

))
= exp

(
−Ω(nω7/2)

)
.

As there are 2O(n) choices for S and the partition (P0, P1), the union bound implies the

lemma.

We now apply Lemma 3.2.12 to deduce the evolution of the behaviour of all but at most

np/ω1/2 vertices from round 1 into round 2. By our previous arguments, and potentially

permuting the rows of Q and relabelling the vertices, we have |S1(0)| = n/2 + a(n) and

|S1(1)| = n/2 − a(n), with |S1(2)| = o(1). We define Q′ to be the 3 × 2 matrix, which is

formed by removing column 2 from Q. We again distinguish cases on Q′ depending on its

row sums.

In light of Lemma 3.2.12, let X be the set of vertices which satisfy the concentration of

degrees inside S1(0) and S1(1), i.e for an a(n) satisfying the hypothesis of Lemma 3.2.12,

X consists of vertices satisfying |dPi(v)− |Pi|p| ≤ εa(n)p for i ∈ {0, 1}. By Lemma 3.2.12

we have that |X| ≥ n− np/ω1/2 a.a.s. We claim that for vertices in X their evolution is
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unanimous and entirely determined by the entries in Q′.

Lemma 3.2.13. Suppose that after one round we have that |S1(0)| = n/2 + a(n) and

|S1(1)| = n/2−a(n). Let ΣR′
ℓ = qℓ,0 +qℓ,1 denote the sum of row ℓ in the matrix Q′. Then

for any vertex v ∈ X we have the following for i, i∗ ∈ {0, 1, 2},

sgn (T (v; i) − T (v; i∗)) = sgn
(
ΣR′

i − ΣR′
i∗ + 2C0,1

i,i∗βcT ·C
)
.

Proof. We consider the decomposition of the payoff difference T1(v; i) − T1(v; i∗). We use

the notation x = a± b to denote that a− b ≤ x ≤ a+ b, for b ≥ 0. As v ∈ X, by Lemma

3.2.12 for any ε > 0 we have that for k ∈ {0, 1} that n1(v; k) = nkp ± εa(n)p. Hence

we have that n1(v; 0) = p(n/2 + a(n)) ± εa(n)p, and n1(v; 1) = p(n/2 − a(n)) ± εa(n)p.

Furthermore, we recall by equation (3.25) that

n

2
+ nβcT ·C − δ

3
np1/2 ≤ X0 ≤

n

2
+ nβcT ·C +

δ

3
np1/2. (3.40)

Hence as X0 = n0 we may utilise the above notation to deduce that,

a(n) = nβcT ·C ± δ

3
np1/2.

In the following calculations, we may take ε and δ to be chosen sufficiently small for their

associated terms to have negligible effect when n is large. We give an explicit bound

further within the proof. By expanding the payoff we can choose some K1, K2 large

enough such that

T (v; i) − T (v; i∗) = (qi,0 − qi∗,0)
(np

2
+ a(n)p± εa(n)p

)
+ (qi,1 − qi∗,1)

(np
2

− a(n)p± εa(n)p
)

=
np

2
(ΣR′

i − ΣR′
i∗) + a(n)pC0,1

i,i∗ ±K1εa(n)p

=
np

2

(
ΣR′

i − ΣR′
i∗ + C0,1

i,i∗βc·C
)
±
(
K1εa(n)p+

K2δ

3
np3/2

)
(3.41)
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We observe we may choose δ and ε such that,

δ, ε <
1

100
(ΣR′

i − ΣR′
i∗ + C0,1

i,i∗βc·C) · min

{
1

K1

,
1

K2

,
1

C0,1
i,i∗

}
.

Consequently, this implies that the sign of equation (3.41) is decided by the leading term.

Thus for n sufficiently large, we have,

sgn (T (v; i) − T (v; i∗)) = sgn
(
ΣR′

i − ΣR′
i∗ + 2C0,1

i,i∗βcT ·C
)
.

The above deciding term is additive in the sense of Lemma 3.1.1, thus given that

each term is non-zero, a preferred strategy is decided. The following three results justify

that these terms are non-zero with high probability. The first lemma and corollary imply

that rows with equal row sums in Q′, either have a non-zero cost coefficient or they

are dominated column-wise by the remaining row. This causes all vertices to prefer the

dominating strategy deterministically. While our final lemma implies that the probability

βcT ·C takes a value near to

β(i,i∗) := −ΣR′
i − ΣR′

i∗

2C0,1
i,i∗

,

for any i, i∗ ∈ {0, 1, 2}, is at most ε for any ε > 0. Together these results imply that,

ΣR′
i − ΣR′

i∗ + 2C0,1
i,i∗βcT ·C ̸= 0

with probability at least 1 − ε.

Lemma 3.2.14. Suppose Q′ is the 3× 2 matrix formed by removing column 0 from Q. If

ΣR′
i = ΣR′

i∗ and they are maximal across the row sums in Q′, then we have that C0,1
i,i∗ ̸= 0.

Furthermore, if ΣR′
i = ΣR′

i∗ < ΣR′
i∗∗ and C0,1

i,i∗ = 0, then both column maxima occur in

row i∗∗.

Proof. Suppose that ΣR′
i = ΣR′

i∗ . If C0,1
i,i∗ = 0, then it follows that qi,0−qi,1−qi∗,0+qi∗,1 = 0.

However as rows i and i∗ have the same row sum, it then follows that qi,0+qi,1 = qi∗,0+qi∗,1.
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Thus by solving the resultant system, we conclude that qi,0 = qi∗,0 and qi,1 = qi∗,1.

But we recall that Q, and hence Q′, have unique column maxima. From the above, we

observe that row i and i∗ are identical and ΣR′
i = ΣR′

i∗ is strictly greater than the sum

of the elements in the remaining row, say i∗∗. Hence it follows that both column maxima

in Q′ can not occur row i∗∗. Hence there exists a column in Q′ with non-unique column

maxima, this is a contradiction and therefore C0,1
i,i∗ ̸= 0. For the second part, we observe

that if C0,1
i,i∗ = 0, then as row i and i∗ are identical, both column maxima must occur in

row i∗∗.

Our final lemma is concerned with the setting where βcT ·C takes a specific value which

causes the leading term in equation (3.41) to equal zero for some i, i∗ ∈ {0, 1, 2}. For each

pair i, i∗ the equation,

ΣR′
i − ΣR′

i∗ + 2C0,1
i,i∗βcT ·C = 0

is linear and has a solution given by,

β(i,i∗) := −ΣR′
i − ΣR′

i∗

2C0,1
i,i∗

,

In the following lemma, we show that the probability βcT ·C takes a value sufficiently close

to any fixed value is small, hence the probability that βcT ·C takes a value close to β(i,i∗)

for any i, i∗ ∈ {0, 1, 2} is at most ε for any ε > 0.

Lemma 3.2.15. Let βcT ·C be defined as above, i.e.

βcT ·C =

∫
0>xT ·C>−p1/2cT ·C+o(p1/2)

∥x∥∞<logn

ϕ(x)dx.

Suppose β∗ ∈ (0, 1/2]. Then we have that for every ε > 0 there exists a ξ > 0 such that

P[|βcT ·C − β∗| < ξ] < ε.
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Proof. Fix β∗ ∈ (0, 1/2] and we set I to be the region integrated over above,

I = {x = (x0, x1) : ∥x∥∞ ≤ log n, 0 > xT ·C > −p1/2cT ·C + o(p1/2)},

We view the value of βcT ·C to be a function of I. In this setting we have conditioned on

the event that {cT ·C > 0}. Thus we parameterise based on the value of cT ·C. For λ > 0

we define,

Iλ = {(x0, x1) : ∥x∥∞ ≤ log n, 0 > xT ·C > −p1/2λ+ o(p1/2)},

where the o(p1/2) is identical to that in the definition of I. Hence we have that I = IcT ·C.

We remark that the o(p1/2) term contains an implicit dependence on λ, thus we uniformly

bound I by above and below. To this end, we define

I∗λ = {(x0, x1) : ∥x∥∞ ≤ log n, 0 > xT ·C > −p1/2λ}

We remark that by equation (3.15) the above o(p1/2) term is contributed by a measure

of lattice points. Thus it is non-negative and therefore Iλ ⊆ I∗λ. Similarly by Equation

(3.15) we note that this error term is of order at most,

O

(
n(v)1/2

n
+

1

n(v)1/2

)
.

However we observe for n sufficiently large that,

n(v)1/2

n
+

1

n(v)1/2
≤ 2

√
np

≤ p1/2

n1/6
.

Hence for any such n, I∗
λ− 2

n1/6

⊆ Iλ. We now define the following integrals over these

regions as a function of λ,

g(λ) =

∫
Iλ

ϕ(x)dx,
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g∗(λ) =

∫
I∗λ

ϕ(x)dx.

By combining the above observations, we note that for any λ > 0 and n sufficiently large,

we have that

g∗(λ− 2n−1/6) ≤ g(λ) ≤ g∗(λ).

Furthermore we note that,

g∗(λ) − g∗(λ− 2n−1/6) =

∫
I∗λ

ϕ(x)dx−
∫
I∗
λ−2n−1/6

ϕ(x)dx

≤
∣∣I∗λ \ I∗λ−2n−1/6

∣∣
= O

(
log n

n1/6

)
.

Now suppose for a given β∗ ∈ (0, 1/2] and some ξ > 0, the parameter λ is such that,

∣∣∣∣∫
Iλ

ϕ(x)dx− β∗
∣∣∣∣ < ξ.

We relate the above as a sub-event about g∗(λ). Firstly, by considering the upper tail we

have, ∫
Iλ

ϕ(x)dx < ξ + β∗,

and therefore, g∗(λ− 2n−1/6) < ξ + β∗. But this is equivalent to

g∗(λ− 2n−1/6) + g∗(λ) − g∗(λ) < β∗ + ξ.

Therefore we have,

g∗(λ) < β∗ + ξ +
log n

n1/6
,

and we conclude that for n sufficiently large,

P
[∫

Iλ

ϕ(x)dx < ξ + β∗
]
≤ P [g∗(λ) < 2ξ + β∗] .
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Similarly, the lower tail is given,

∫
Iλ

ϕ(x)dx > β∗ − ξ

Then as g∗(λ) > g(λ), for n large, we have that,

P
[∫

Iλ

ϕ(x)dx > β∗ − ξ

]
≤ P [g∗(λ) > β∗ − 2ξ]

Thus it suffices for us to show that for any ε > 0 there exists a ξ′ > 0 such that,

P [|g∗(λ) − β∗| < ξ′] < ε.

We observe that g∗(λ) is continuous and monotonically increasing in λ. Furthermore, we

have that g∗(0) = 0, and limλ→∞ g∗(λ) = 1/2. Hence by the Intermediate Value Theorem,

there exists a positive λ∗ such that g∗(λ∗) = β∗. Thus by monotonicity, we have that for

every ξ′ > 0 if |g∗(λ) − β∗| < ξ′ then there exists a maximal δξ′ , such that |λ− λ∗| < δ′ξ.

Hence we have that,

P
[∣∣∣∣∫

Iλ

ϕ(x)dx− β∗
∣∣∣∣ < ξ

]
≤ P[|λ− λ∗| < δξ′ ].

We recall that the above is uniform over for any choice of λ, thereby we set λ = cT ·C.

We also observe that the vector c comprises of the scaled deviations of |S0(0)| and |S0(1)|.

By the Central Limit Theorem, it follows that c converges in distribution to a standard

bivariate normal. Equivalently, there exists constants µ and σ such that as n→ ∞,

cT ·C d→ N ∼ N(µ, σ2)

Hence for n large enough we have that,

P[|λ− λ∗| < δ′ξ] < P[|N − λ∗| < δξ′ ] +
ε

2
.
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Thus we have that,

P[|N − λ∗| < δξ′ ] =
1

σ
√

2π

∫ λ∗+δξ′

λ∗−δ′ξ

e−
1
2(x−µσ )

2

dx ≤ 2δξ′

σ
√

2π
.

By Lemma 3.4.3, we have that uniformly over any choice of δξ′ , it follows that δξ′ → 0 as

ξ′ → 0. Therefore, by taking ξ sufficiently close to zero, we have that,

P[|N − λ∗| < δξ′ ] <
ε

2
,

and thus it follows that,

P|βcT ·C − β∗| < ξ′] < ε.

Hence by the union bound, the probability βcT ·C is within a small interval containing

one of the following: β(0,1), β(1,2) or β(0,2) is at most ε. Thus the following lemma determines

the evolution of vertices in X.

Lemma 3.2.16. Suppose that n0 = n/2 + a(n) and n1 = n/2− a(n), with a(n) > δ
2
np1/2.

Let X be the set of vertices which satisfy the conclusion of Lemma 3.2.12. Then there

exists a unique strategy i∗, such that for all v ∈ X, we have that v switches to strategy i∗

in the next round.

Proof. We split this proof into three cases, depending on how many rows share the same

maximum partial row sum. We recall by Lemma 3.2.13 that,

sgn (T (v; i) − T (v; i∗)) = sgn
(
ΣR′

i − ΣR′
i∗ + 2C0,1

i,i∗βcT ·C
)
.

For i, i∗ ∈ {0, 1, 2} we set

Ti,i∗ = ΣR′
i − ΣR′

i∗ + 2C0,1
i,i∗βcT ·C.
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Immediately we observe a similar identity to that of Lemma 3.1.1 namely,

T0,1 + T1,2 = T0,2. (3.42)

Furthermore recall if Ti,i∗ > 0 then T1(v; i) > T1(v; i∗), if this event occurs then we say

that i ≻ i∗. Similarly if Ti,i∗ < 0 then i∗ ≻ i. We now split into a number of cases,

depending on the values of ΣR′
i for i ∈ {0, 1, 2}.

Firstly, if all three partial row sums in Q′ are distinct, then by Lemma 3.2.15 all Ti,i∗

terms are non-zero with high probability. Thus by the above discussion, the Ti,i∗ terms

determine a winner. A winner is found, as the additive property in (3.42) prevents the

existence of the two possible Condorcet cycles, (i.e 0 ≻ 1 ≻ 2 ≻ 0 and 0 ≻ 2 ≻ 1 ≻ 0).

Suppose now that there are exactly two partial row sums that are the same, say in

row i and i∗, while i∗∗ denotes the distinct partial row sum. Then Lemma 3.2.15 implies

that Ti,i∗∗ and Ti∗,i∗∗ are non-zero with high probability. We split into two cases. If

ΣR′
i = ΣR′

i∗ > ΣR′
i∗∗ then Lemma 3.2.14 implies that Ti,i∗ is also non-zero, and we are

done. If we have that ΣR′
i∗∗ > ΣR′

i = ΣR′
i∗ , and Ti,i∗ ̸= 0 then we are done. Otherwise if

Ti,i∗ = 0, then this implies that C0,1
i,i∗ = 0, and by Lemma 3.2.14 we have that both column

maxima occur in row i∗∗. Thus this row dominates column-wise and all vertices in Vn will

switch to i∗∗.

Finally suppose we have that ΣR′
i = ΣR′

i∗ = ΣR′
i∗∗ . By Lemma 3.2.14, all associated

cost coefficients are non-zero. This implies that all Ti,j terms are non-zero, and thus a

winner is decided as above.

3.2.5 The Final Round

Following the previous section, we detail the final argument to declare unanimity. We

recall that the vertices are partitioned into sets {S2(0), S2(1), S2(2)} . Furthermore, we

are in the setting where for some i∗ ∈ {0, 1, 2} there exists a subset Pi∗ ⊂ S2(i
∗), of size

at least n− np/ω1/2. The remaining vertices in Vn \ Pi∗ may be playing any of the three
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strategies. By relabelling vertices and permuting the corresponding rows of Q we may

assume without loss of generality that i∗ = 0.

We claim that the evolution of the system is now decided by the zero column. This

follows from the fact that vertex degrees inside P0 are asymptotically larger than in Vn\P0.

Consequently we have,

n2(v; 1), n2(v; 2) = o(n2(v; 0)).

As a result, we have,

sgn(T2(v; i) − T2(v; j)) = sgn(qi,0 − qj,0).

Consequently, as all columns in Q have a unique column maximum, this implies that all

vertices switch to the row containing the column maximum of column 0. We recall the

event Nv which holds when |n(v)− np| < log n(np)1/2. As previously remarked this event

holds with probability 1 − o(1/n). By the union bound, the event N ′ = ∩v∈VnNv, holds

with probability 1 − o(1).

Lemma 3.2.17. Let P0 ⊂ Vn be a set of vertices as above, ω(n) → ∞ and n → ∞.

Suppose Q is a 3 × 3 payoff matrix with unique column maxima and suppose that |P0| ≥

n− np/ω1/2. Then conditional on N ′ we have for all v ∈ Vn,

S3(v) = argmax
0≤i≤2

{qi,0}

Proof. Suppose v ∈ Vn and the event N ′, and hence Nv, has occurred. We lead by

considering bounds on the number of vertices playing each strategy in the neighbourhood

of v. As stated above, all vertices in P0 are in the 0 state. Therefore we have that,

n2(v; 1), n2(v; 2) ≤ np/ω1/2. Now we observe that as we are conditional on Nv it follows

that, dVn(v) > np − log n(np)1/2. However we have that dVn(v) = dP0(v) + dP c0 (v) hence
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we also have that,

n2(v; 0) > dP0(v) > np− log n(np)1/2 − np

ω1/2
= (1 − o(1))np.

Therefore this implies that n2(v; 1) and n2(v; 2) = o(n2(v; 0)). We now observe the payoff

difference between two strategies i, j ∈ {0, 1, 2},

T2(v; i) − T2(v; j) =
2∑

k=0

n2(v; k)(qi,k − qj,k) = n2(v; 0)(qi,0 − qj,0) + o(np).

Hence, for n sufficiently large

sgn(T2(v; i) − T2(v; j)) = sgn(qi,0 − qj,0).

Thus it follows that v will switch to the strategy given by the argmax0≤i≤2{qi,0} in the

next round.

Therefore, all vertices in Vn switch to the argmax0≤i≤2{qi,0} in round 3, and hence the

system enters unanimity, with behaviour dictated by Lemma 1.2.3.

3.3 Discussion

In this chapter, we have considered the evolution of best response dynamics for systems

with more than two strategies. We have deduced a classification for payoff matrices Q

which differentiate how the system evolves. We observe that our M(Q) quantity mirrors

the behaviour of λ in the two strategy case, i.e., M(Q) = 1 reflects the case where λ ̸= 1

within the two-strategy system. In the case M(Q) = 1 a direct calculation, based on the

concentration of the degrees, deduces unanimity in the first round, we observe parallels

with Theorem 2.2.10.

The case for M(Q) = 2 is significantly more involved and requires the derivation of

a new local limit theorem, alongside careful approximations to the normal distribution.
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In comparison with the above, we consider p ≫ n−1/3. Again we show rapid unanimity

within at most three rounds, with high probability.

A natural extension is to classify the system for all payoff matrices for values of

2 < M(Q) ≤ ℓ. One notable case is for ℓ = 3 and Q = I3, the 3 × 3 identify matrix.

Deriving the evolution rules in this case leads to a system evolving with the rules given

by majority dynamics; analogously Q = −I3 gives rise to minority dynamics. Clearly,

M(I) = 3, thus the case M(Q) = ℓ can give rise to generalisations of majority and

minority dynamics.

The main challenge is to determine the bias gained by each strategy from the matrix.

For M(Q) = 2 the bias gained is given by a function of cT · C, a term containing both

the randomness of the initial distribution, and values from the matrix. Geometrically this

describes a gain in the area within L′ for one strategy. We observe that majority and

minority dynamics operate without the presence of a payoff matrix, hence the initial bias

is entirely decided by the random initial distribution. A more careful case distinction may

be needed here to deal with both the presence and absence of a bias given by the matrix.

3.4 Auxiliary Results for M(Q) = 2

In this short, appendix like, section we provide a selection of three fairly straightforward

lemmas, which support our analysis for the case M(Q) = 2.

3.4.1 Proof That cT ·C is Non-Zero

We recall the vectors c = (c0, c1)
T and C =

(
C0,2

0,1 , C
1,2
0,1

)T
, we justify that cT ·C is non-zero

with high probability.

Lemma 3.4.1. Suppose Q is a payoff matrix with M(Q) = 2, and the maximum row

sums occur in rows 0 and 1. For every ε > 0 there exists a δ > 0 such that for all n

135



sufficiently large we have,

P
[
|cT ·C| < δ

]
< ε.

Proof. We observe that in the case of C ̸= 0, the above holds as a direct consequence of

the Central Limit Theorem, using a similar argument as in Lemma 3.2.15. Suppose for

a contradiction that C = 0, then if follows that C0,2
0,1 = C1,2

0,1 = 0. Furthermore, we also

have that ΣR0 = ΣR1. Hence these equations form the following system,

q0,0 − q1,0 = q0,2 − q1,2

q1,1 − q0,1 = q1,2 − q0,2

q0,0 + q0,1 + q0,2 = q1,0 + q1,1 + q1,2

Combining the first two lines and re-arranging the bottom we observe,

q0,0 − q1,0 = q0,2 − q1,2 = −(q1,1 − q0,1)

(q0,0 − q1,0) + (q0,2 − q1,2) = q1,1 − q0,1

As a result, we observe that,

q0,0 = q1,0, q0,2 = q1,2, q1,1 = q0,1

Hence it follows that rows 0 and 1 are identical. Thus in order to preserve unique column

maxima, all column maxima are in row 2, but this contradicts the fact that rows 0 and 1

have strictly maximal row sums.

3.4.2 The Integral of ϕ(x) Outside of B∞
log n

We briefly compute the integral of ϕ(x) over the region ∥x∥∞ > log n.
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Lemma 3.4.2. For ϕ(x) : R2 → R defined as ϕ(x) = 1
2π
|Σ|1/2 exp

(
−1

2
xTΣx

)
we have,

∫
∥x∥∞>logn

ϕ(x)dx = O
(
e− log2 n

)
.

Proof. We recall that ϕ(x) = 1
2π
|Σ|1/2 exp

(
−1

2
xTΣx

)
, where Σ is positive-definite and

symmetric. Hence there exists square matrices P and Λ such that,

Σ = PΛP−1

where P is such that P T = P−1, and Λ is a diagonal matrix containing the eigenvalues of

Σ. Thus we may make a change of coordinates by z = (z0, z1) = P Tx. We first consider

an upper bound on the transformed region of integration. Namely for any x ∈ R2 with

∥x∥∞ ≥ log n has ∥P Tx∥∞ ≥ 1√
2

log n. Indeed, if ∥x∥∞ ≥ log n, then ∥x∥2 ≥ log n as

well. But

∥z∥2 = zTz = xPP Tx = xx = ∥x∥2.

So ∥z∥2 ≥ log n as well. But then ∥z∥22 ≥ log2 n and, therefore, max{z20 , z21} ≥ 1
2

log2 n.

Thereby, ∥z∥∞ ≥ 1√
2

log n. Hence by applying the above and observing that det(P ) = 1,

we have:

∫
∥x∥∞>logn

ϕ(x)dx ≤ 1

2π
|Σ|1/2

∫
∥z∥∞> 1√

2
logn

e−
1
2
zTΛzdz.

We note that as Λ is diagonal, and contain positive entries λ0 and λ1. We have that the

above integral is separable into z0 and z1.

∫
∥z∥∞> 1√

2
logn

e−
1
2
zTΛz ≤ 2

∫ ∞

−∞
e−

1
2
λ0z20dz0

∫ ∞

1√
2
logn

e−
1
2
λ1z21dz1+

2

∫ ∞

−∞
e−

1
2
λ1z21dz1

∫ ∞

1√
2
logn

e−
1
2
λ0z20dz0.
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As Σ is positive-definite we have that λ0, λ1 > 0, furthermore we observe by standard

computation that for all a > 0,

∫ ∞

−∞
e−

1
2
at2dt = O(1).

Finally we observe for a > 0,

∫ ∞

logn

e−
1
2
at2dt =

1√
a
· erfc(log n) = O

(
e− log2 n

)
.

where erfc is the complementary error function [87].

3.4.3 A Lemma Concerning Continuous Monotone Functions

We briefly state a lemma concerning the property of a function from R → R which is

continuous and strictly monotone. We consider the standard ε− δ definition of continuity

and further show that under the assumption of monotonicity, we have that δ → 0 as

ε→ 0.

Lemma 3.4.3. Suppose f : R → R is continuous and strictly monotone (increasing) on

R. Let x0 ∈ R, then for every ε > 0 there exists δ > 0 such that,

|f(x) − f(x0)| < ε whenever |x− x0| < δ,

Moreover, for each ε > 0, let δε be any value of δ which satisfies the definition above.

Then for any choice of suitable values for the function δε, we have that δε → 0 as ε→ 0.

Proof. We note that for any ε > 0 we have that at least one choice of δε trivially exists

by the standard definition of continuity. Thus we show that for any δ̂ > 0 we have that

there exists an ε̂ such that δε < δ̂ whenever ε < ε̂. We set,

ε̂ = min

{
f(x0 + δ̂) − f(x0)

2
,
f(x0) − f(x0 − δ̂)

2

}
,
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by monotonicity we have that ε̂ > 0. Similarly by monotonicity we also have that

f(x0) < f(x0) + ε̂ ≤ f(x0 + δ̂) + f(x0)

2
< f(x0 + δ̂).

Thus by the Intermediate Value Theorem there exists some δ+ > 0 such that, f(x0 +

δ+) = f(x0) + ε̂, and hence by monotonicity we have that δ+ < δ̂. Similarly we also have

that,

f(x0) > f(x0) − ε̂ > f(x0 − δ̂).

Following from this, we can analogously define δ− and again conclude that δ− < δ̂. Now

by the definition of continuity at x0 we have for any ε < ε̂ that there exists δε such that,

f(x0) − ε < f(x) < f(x0) + ε

whenever |x−x0| < δε. But f(x0) + ε < f(x0 + δ+) and f(x0)− ε > f(x0− δ−). Hence

by monotonicity for any suitable choice of δε we have that δε ≤ max{δ−, δ+} < δ̂, this

choice was uniform over all such choice of δε hence the result follows.
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CHAPTER 4

THE MODULARITY OF HYPERBOLIC RANDOM
GRAPHS ON THE PLANE

4.1 Introduction

In this chapter, we consider the problem of computing the modularity score of the KPKBV

Hyperbolic Random Graph Model. The definition of this model (and its poissonisation)

can be found in Section 1.3.3, while the definition of the modularity partition function

can be found in Section 1.3.2. We lead this section with a survey of the current literature

on the KPKBV model and a general discussion of recent work in graph modularity. We

close this section with two preliminary results involving approximating the hyperbolic

ball around a point, and a useful mapping between DR and R2. The remainder of this

chapter is dedicated to proving Theorem 1.3.1, namely that the hyperbolic random graph

possesses optimal modularity with high probability:

Theorem 1.3.1. For any α > 1/2 and ν > 0, we have

mod(P(n;α, ν)) → 1,

as n→ ∞, in probability.

140



4.1.1 Typical Properties of the KPKBV Model

For α ∈ (1/2,∞), Krioukov et al. [50] show that the tails of the distribution of the degrees

in G(n;α, ν) follow a power law with exponent 2α + 1. This was verified rigorously by

Gugelman et al. in [41]. Thus, when α ∈ (1/2, 1) the exponent is between 2 and 3. There

has been experimental evidence that this is indeed the case in a number of networks that

emerge in applications (the survey [3] contains a comprehensive list of such examples).

Krioukov et al. [50] also observe that the average degree of G(n;α, ν) is also tuned by

the parameter ν for α ∈ (1/2,∞). This was also proved by Gugelman et al. [41]. They

showed that the average degree tends to 8α2ν/π(2α− 1)2 in probability. However, when

α ∈ (0, 1/2], the average degree tends to infinity as n → ∞. Thus, in this sense, the

regime α ∈ (1/2,∞) corresponds to the so-called thermodynamic regime in the context

of random geometric graphs on the Euclidean plane [76].

Gugelman et al. [41] also showed G(n;α, ν) has clustering coefficient that is a.a.s.

bounded away from 0. More precise results about the scaling of the local clustering coef-

ficient in terms of the degrees of the vertices were obtained by Stegehuis et al. [84]. More

recently in [34], convergence in probability of the clustering coefficient to an explicitly

determined constant was derived.

When α is small, the density ρn induces more points near the origin and one may

expect increased graph connectivity there. In [13], Bode et al. proved that α = 1 is the

critical point for the emergence of a giant component in G(n;α, ν). When α ∈ (0, 1),

the fraction of the vertices contained in the largest component is bounded away from 0

a.a.s. [13], whereas if α ∈ (1,∞), the largest component is sublinear in n a.a.s. For α = 1,

the component structure depends on ν. If ν is large enough, then a giant component

exists a.a.s., but if ν is small enough, then a.a.s. all components have sublinear size [13].

The above results were strengthened in [33]. In that paper, it was shown that the

fraction of vertices which belong to the largest component converges in probability to

a certain constant which depends on α and ν. More specifically, when α = 1, it turns

out that there exists a critical value ν0 ∈ (0,∞) such that when ν crosses ν0 a giant
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component emerges a.a.s. The papers [47] and [48] consider the size of the second largest

component. Therein, it is shown that when α ∈ (0, 1) the second largest component has

polylogarithmic order a.a.s.

The connectivity of G(n;α, ν) was considered by Bode et al. in [14]. There, it is shown

that for α < 1/2 the random graph G(n;α, ν) is a.a.s. connected, it is disconnected for

α > 1/2. When α = 1/2, it turns out that the probability of connectivity converges to a

certain constant which is given explicitly in [14].

The a.a.s. disconnectedness of G(n;α, ν) for α > 1/2 follows easily from the a.a.s.

existence of isolated vertices. Recently, asymptotic distributional properties of the number

of isolated as well as the extreme points in the poissonisation of G(n;α, ν) were derived

in [35]. (A point is called extreme, when it is not connected to any other point of a larger

radius.) The authors showed that the former satisfies a central limit theorem when α > 1,

but it does not when α < 1. However, the number of extreme points satisfies a central

limit theorem for any α > 1/2. This is due to the fact that the number of isolated vertices

is sensitive to the existence of a few vertices close to the centre of DR. Those a.a.s. appear

when 1/2 < α < 1. On the other hand, extreme points involve only local dependencies.

Bounds on the diameter of G(n;α, ν) were derived in [47] and [36]. Therein, polylog-

arithmic upper bounds on the diameter are shown. These were improved by Müller and

Staps [66] who deduced a logarithmic upper bound on the diameter. Furthermore, in [1]

it is shown that for α ∈ (1/2, 1) the largest component has doubly logarithmic typical

distances and it forms what is called an ultra-small world.

4.1.2 Survey of Results on Graph Modularity

Newman [69] determined the modularity of several examples of complex networks, not

only social, finding them ranging between 0.3 and 0.8. Among these examples, higher

modularity (> 0.7) was found in the social network of co-authorship among scientists

working on condensed matter.

Brandes et al. [16] showed that finding the modularity of a given graph is NP-hard.
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Further it was established by Dinh, Li and Thai that it is NP-hard to approximate mod-

ularity to within any constant factor [28]. However, community detection in networks

has been a central theme in network science. Newman [70] used modularity to design

a spectral algorithm for community detection in a given network. A popular algorithm,

the Louvain method, is an iterative clustering technique using the modularity function to

compare candidate partitions [11]. Methods that utilise random walks on the network in

order to trace its community structure are the Infomap algorithm [82] and the Walktrap

algorithm [78]. The Label propagation algorithm [81] on the other hand uses an approach

that is similar to majority dynamics where the states of the nodes are labels that indicate

different communities. More recently, Wang et al. [86] came up with another method

which uses the notion of local expansion. We further note that in [86], the authors give

a comparison of these methods on a number of networks. According to Table 3 therein,

typically, the modularity of these networks, as it is evaluated by these algorithms, is far

from 1 (we see values ranging from 0.39 to 0.94).

For binomial random graphs from the G(n, p) model, there is a transition for the

typical behaviour of mod(G(n, p)) that is determined by np. In particular, McDiarmid

and Skerman showed in [60], that when np ≤ 1 + o(1), then mod(G(n, p)) is concentrated

around 1, but when np exceeds and is bounded away from 1, then it scales like (np)−1/2.

They have also shown [59] that for random d-regular graphs of bounded degree, it is

bounded away from 0 and 1 with high probability and scales approximately like 1/
√
d

when d is large. Recently, Lichev and Mitsche [56] showed that for d = 3 the modularity

exceeds 2/3 (confirming a conjecture of McDiarmid and Skerman) and is below 0.8 with

high probability. They further considered the modularity of random graphs having a given

degree distribution with a bounded maximum degree.

The relation between the topological properties of a graph and its modularity was

explored in [53, 59]. In particular, Lasoń and Sulkowska [53] showed that the class of

graphs with an excluded minor and sub-linear maximum degree have modularity that

approaches 1 as their number of vertices grows.
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In the context of community driven models, Zuev et al. [88] introduced a model (pref-

erential geometric attachment) which encapsulates the notion of an underlying hyperbolic

space of hierarchies where the angle of each vertex is not selected uniformly at random,

but it follows a distribution which is biased towards sectors that are more densely popu-

lated. This aims at modelling the notion of homophily through a preferential attachment

mechanism: a newly arrived node is more likely to be located in a region/community of a

larger size. In this model, the notion of soft communities is considered in which nodes form

a community if they are close to each other in terms of their relative angle. This model

rectifies the lack of community structure that is exhibited in the popularity-similarity-

optimisation model that was introduced by Papadopoulos et al. [75]. Later on Muscoloni

and Cannistraci [67] introduced the non-uniform popularity-similarity-optimisation model

which is also a strengthening of the model of Zuev et al. This model gives the opportunity

to fix the number and the size of communities and tune their mixing. Furthermore, the

authors use in [4] this model as a benchmark for the algorithms we described above.

On the other hand, the classic preferential attachment model of Barabási and Albert [8]

has modularity which is bounded away from 1. In particular, Prokhorenkova et al. [80]

observed that this is bounded away from 1 with high probability (in the version of the

model where each newly arriving vertex is attached to m ≥ 2 existing vertices - in fact,

they show that for m ≥ 3 the modularity is at most 15/16 with high probability). This is

not the case for the spatial preferential attachment model which was introduced by Aiello

et al. [2]. This is a geometric version of the preferential attachment model where vertices

arrive one at a time at the d-dimensional unit cube and are allocated uniformly therein.

They are attached to existing vertices if they are within the sphere of influence of the

latter. The size of this is proportional to their degree. Ostroumova Prokhorenkova et

al. [80] showed that the modularity of the resulting random graph approaches 1 with high

probability as the number of vertices tends to infinity.
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4.1.3 Preliminaries: Approximating a Ball Around a Point

The main lemma in this section provides a useful (almost) characterisation of two vertices

being within hyperbolic distance R, given their radii. The lemma reduces a statement

about hyperbolic distances to a statement about the relative angle between two points.

Let us first introduce some notation. For a point p ∈ DR, we let θ(p) ∈ (−π, π] be the

angle ˆpOs between p and a (fixed) reference point s ∈ DR (moving from s to p in the

anti-clockwise direction). For θ, θ′ ∈ (−π, π], we set

|θ − θ′|π = min{|θ − θ′|, 2π − |θ − θ′|} ∈ [0, π].

For two points p, p′ ∈ DR we denote by θ(p, p′) ∈ [0, π] their relative angle:

θ(p, p′) = |θ(p) − θ(p′)|π.

Also, for p ∈ DR we let y(p) denote the defect radius of p in DR. In other words, if

r(p) is the radius (the hyperbolic distance of p from O), then y(p) = R − r(p). The

following lemma gives a characterisation of what it is to have hyperbolic distance at most

R in terms of the relative angle between two points. For r, r′ such that r + r′ > R, let

θR(r, r′) ∈ (−π, π] be such that if two points p, p′ with r(p) = r and r(p′) = r′ have

θ(p, p′) = θR(r, r′) iff dH(p, p′) = R. In other words, θR(r, r′) is the relative angle of two

points of radii r and r′, respectively, which are at distance R.
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Figure 4.1: An example of θR(r, r′) for two points at a distance of r and r′ from the centre

Also, we set TR(y, y′) = 2 · e−R/2e 1
2
(y+y′), for y, y′ ∈ [0, R]. The following lemma is a

consequence of Lemma 28 in [33].

Lemma 4.1.1. Let κ ∈ (0, 1). For any δ > 0 and any n sufficiently large, uniformly for

any p, p′ ∈ DR with y(p) + y(p′) ≤ κR the following holds

∣∣∣∣ θR(r(p), r(p′))

TR(y(p), y(p′))
− 1

∣∣∣∣ < δ.

Proof. Lemma 28 in [33] states that there exists a constant K > 0 such that, for every

ε > 0 and for R sufficiently large, the following holds: with

∆(r, r′) :=
1

2
eR/2 arccos ((cosh r cosh r′ − coshR)/ sinh r sinh r′) ,

For every r, r′ ∈ [εR,R] with r + r′ > R we have that

e
1
2
(y+y′) −Ke

3
2
(y+y′)−R ≤ ∆(r, r′) ≤ e

1
2
(y+y′) +Ke

3
2
(y+y′)−R, (4.1)

where y := R−r, y′ := R−r′. The above is a consequence of the hyperbolic law of cosines.
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Take two points p and p′ inside DR having radii r and r′, respectively, and consider the

triangle pOp′. If the distance between p and p′ is R, then the angle opposite that side is

θR(r, r′) and satisfies:

cosh(R) = cosh r cosh r′ − sinh r sinh r′ cos(θR(r, r′)).

Therefore,

θR(r, r′) = 2e−R/2∆(r, r′).

So multiplying (4.1) by 2e−R/2 we get

TR(y, y′) −Ke
3
2
(y+y′−R) ≤ θR(r, r′) ≤ TR(y, y′) +Ke

3
2
(y+y′−R),

or

1 − K

2
ey+y

′−R ≤ θR(r, r′)

TR(y, y′)
≤ 1 +

K

2
ey+y

′−R.

But y+ y′ ≤ κR whereby y+ y′−R ≤ (κ− 1)R. Since κ < 1, the lemma follows provided

that n is sufficiently large.

For a point p ∈ DR, we let B(p;R) denote the set of points in DR of hyperbolic distance

at most R from p. We further define

B̌κ,δ(p) := {p′ ∈ DR : y(p′) + y(p) ≤ κR, θ(p, p′) < (1 + δ)TR(y(p), y(p′))}.

We can think of B̌κ,δ(p) to be an approximation to the ball B(p;R). Essentially B(p;R)

is a subset of B̌κ,δ(p), and in subsequent calculations B̌κ,δ(p) is easier to work with. Let

Ar := DR \ Dr denote the annulus of the disc DR which consists of all points of defect

radius at most R− r. The above lemma implies that for any κ ∈ (0, 1), δ > 0 and any n

sufficiently large we have

B̌κ,−δ(p) ⊂ B(p;R) ∩ A(1−κ)R+y(p) ⊂ B̌κ,δ(p); (4.2)
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hence, the set B̌κ,δ(p) includes all points in B(p;R) of defect radius at most κR − y(p).

Furthermore, the following holds and will be useful later on during our second-moment

calculations.

Claim 4.1.2. If κ ∈ (0, 1) and δ > 0, then for any n sufficiently large whenever θ(p, p′) >

4(1 + δ)e−(1−κ)R/2 for points p, p′ ∈ DR with y(p), y(p′) < R/2, we have

(
B(p;R) ∩ A(1−κ)R+y(p)

)
∩
(
B(p′;R) ∩ A(1−κ)R+y(p′)

)
= ∅.

Proof. By (4.2), it is sufficient to show that

B̌κ,δ(p) ∩ B̌κ,δ(p
′) = ∅.

Suppose not and let p′′ ∈ B̌κ,δ(p) ∩ B̌κ,δ(p
′). Then by the definition of B̌κ,δ(p) we have

θ(p, p′′) < 2(1 + δ)eR/2e(y(p)+y(p
′′))/2 < 2(1 + δ)e−R/2+κR/2.

Similarly,

θ(p′, p′′) < 2(1 + δ)eR/2e(y(p
′)+y(p′′))/2 < 2(1 + δ)e−R/2+κR/2.

So,

θ(p, p′) ≤ θ(p, p′′) + θ(p′, p′′) < 4(1 + δ)e−(1−κ)R/2.

This concludes the proof of the claim.

Another result, that will be useful later on, provided a bound on the expected number

of points of Pα,ν,n inside B̌κ,δ(p).

Claim 4.1.3. For any κ ∈ (1/2, 1) and δ ∈ (−1, 1), uniformly for any p ∈ DR with

y(p) ≤ R/2 we have

E
(
|Pα,ν,n ∩ B̌κ,δ(p)|

)
= Θ(ey(p)/2).

Proof. We first observe that uniformly for all 0 < ρ < R:
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α sinh(αρ)

cosh(αR) − 1
= Θ

(
eαρ

eαR − 1

)
= Θ

(
e−α(R−ρ)) .

Hence we may calculate the following

E
(
|Pα,ν,n ∩ B̌κ,δ(p)|

)
=

= n
1 + δ

2π
· 2e−R/2+y(p)/2 ·

∫ R

(1−κ)R+y(p)

e(R−ϱ)/2 α sinh(αϱ)

cosh(αR) − 1
dϱ

= Θ(1) · ey(p)/2
∫ R

(1−κ)R+y(p)

e(1/2−α)(R−ϱ)dϱ

= Θ(1) · ey(p)/2
∫ κR−y(p)

0

e(1/2−α)ydy
α>1/2

= Θ(ey(p)/2).

Furthermore, |Pα,ν,n ∩ B̌κ,γ(p)| follows a Poisson distribution. For a random variable

X ∼ Po(λ) we have E (X2) = λ2 + λ, hence the above claim also yields that for any

κ ∈ (1/2, 1) and δ > 0,

E
(
|Pα,ν,n ∩ B̌κ,δ(p)|2

)
= O(ey(p)), (4.3)

uniformly for any p ∈ DR with y(p) ≤ R/2.

4.1.4 Preliminaries: A Projection of DR onto R2

To simplify our calculations, we will transfer our analysis from DR to R2. In particular, we

make use of a mapping introduced in [33] which reduces our model to that of a percolation

model on R2. Our result could in principle be proved without the use of it, but the proofs

would be much heavier. This is achieved using a local approximation of the hyperbolic

metric as given in Lemma 4.1.1. For a point, p ∈ DR, let (θ(p), y(p)) ∈ (−π, π] × [0, R]

denote its angle with respect to a reference point and its defect radius, respectively. We

define the map Φ : DR → B = (−π
2
eR/2, π

2
eR/2]× [0, R], mapping a point p = (θ(p), y(p)) ∈
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DR to a point (x(p), y(p)) ∈ B

θ(p) 7→ x(p) :=
1

2
θ(p)eR/2 and y(p) 7→ y(p).

For simplicity, we set I := I(R) := π
2
eR/2. The map Φ projects the process Pα,ν,n to a

point process on B. We will approximate this process with the Poisson point process on

B having intensity

2ν

π
αe−αydxdy.

For any measurable subset S ⊆ B, we set µα,β(S) = β
∫
S
e−αydxdy, with β = 2να

π
. We

denote this Poisson process by Pα,β. The analogue of the relative angle between points in

DR is defined as follows. For x, x′ ∈ (−I, I], we let

|x− x′|B := min {|x− x′|, 2I − |x− x′|} .

For a positive real number y < R, we set B(y) := (−π
2
eR/2, π

2
eR/2]× [0, y]; thus B(R) = B.

We define the random graph By(n;α, ν) with vertex set the point set of Pα,β ∩ B(y), and

for any distinct p, p′ ∈ Pα,β, the vertices p, p′ are adjacent if and only if

|x(p) − x(p′)|B < e(y(p)+y(p
′))/2.

We define the ball around a point p ∈ B(y) as By(p) = {p′ ∈ B(y) : |x(p)− x(p′)|B <

e
1
2
(y(p)+y(p′))}. Thus, for a point p ∈ Pα,β, the neighbourhood of p in the random graph

By(n;α, ν) is By(p) ∩ Pα,β \ {p}. Figure 4.2 shows the neighbourhood around a point

p ∈ B(y). Thus any point lying in the region bounded by the x-axis and the two log

curves will be connected to p. The rectangular region bounded by the axis and the dotted

line represents a single box in our partition, see Section 4.3.
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Figure 4.2: The ball By(p).

4.2 Mapping P(n;α, ν) into B and the proof structure

of Theorem 1.3.1

To prove Theorem 1.3.1, it suffices to consider a subgraph of P(n;α, ν) which contains

most edges of it. To this end, we use Lemma 5.1 from [60].

Lemma 4.2.1. Let G = (V,E) be a graph with |E| ≥ 1, let E0 be a nonempty subset of

E. For E ′ = E\E0, let G
′ = (V,E ′). Then

|mod(G) − mod(G′)| < 2|E0|/|E|.

We will show the following lemma.

Lemma 4.2.2. Let α > 1/2 and ν > 0. For every ε > 0 there exists yε > 0 such that

a.a.s.

vol(Pα,ν,n ∩ DR−yε) ≤ εe(P(n;α, ν)).

For a positive real number y < R, let P≤y(n;α, ν) denote the subgraph of P(n;α, ν)

induced by the points of Pα,ν,n having defect radius at most y. (The subgraph P>y(n;α, ν)

is defined analogously.) As the number of edges incident to points in Pα,ν,n ∩DR−yε is at

most vol(Pα,ν,n ∩ DR−yε), the above two results imply that for every ε > 0 there exists
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yε > 0 such that a.a.s.

|mod(P(n;α, ν)) − mod(P≤yε(n;α, ν))| < 2ε.

Thereby, to prove Theorem 1.3.1 it suffices to show that

mod(P≤yε(n;α, ν)) → 1, (4.4)

as n → ∞ in probability. To show this, we will couple the random graph P≤yε(n;α, ν)

with the random graph Byε(n;α, ν).

Lemma 4.2.3 Lemmas 27 and 30 in [33]. There is a coupling between the point processes

Pα,β and Pα,ν,n such that a.a.s. on the coupling space Φ(Pα,ν,n) = Pα,β. Furthermore,

a.a.s. on the coupling space for any distinct p, p′ ∈ Pα,ν,n with y(p), y(p′) ≤ R/4 we have

dH(p, p′) ≤ R if and only if Φ(p′) ∈ B(Φ(p);R).

The above lemma implies that there is a coupling between the processes Pα,β and

Φ(Pα,ν,n) on B such that for any fixed y > 0 a.a.s., on this coupling space, the two point-

sets coincide and moreover the random graph By(n;α, ν) is isomorphic to P≤y(n;α, ν).

So we can deduce (4.4) from the following theorem.

Theorem 4.2.4. For any α > 1/2, ν > 0 and any fixed y > 0, we have

mod(By(n;α, ν)) → 1,

as n→ ∞ in probability.

4.3 The Modularity of By(n;α, ν)

In this section, we provide the proof of Theorem 4.2.4. Namely that the modularity

of By(n;α, ν) → 1 as n → ∞, in probability. We split the proof into two subsections.
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The first subsection provides a lower bound on the modularity of G, given as a rough

characterisation of how much G differs from an optimally modular graph. While in a

later subsection, we calculate concentrations on edges within, and between, parts of a

given partition of By(n;α, ν). Applying this, we obtain that for any ε > 0 it follows that

for mod(By(n;α, ν)) ≥ 1 − ε a.a.s.

4.3.1 Some General Properties of Graph Modularity

For a given graph G and A,B ⊂ V , let Ā denote V \A and, for disjoint A,B, let e(A,B)

denote the number of edges with one end-vertex in A and the other in B. We recall

e(A), which denotes the number of edges within part A, and vol(A) =
∑

v∈A deg(v) which

denotes the volume of A. Let A be a partition of V . We recall the modularity score of A

in G is defined to be,

modA(G) =
∑
A∈A

(
e(A)

m
−
(

vol(A)

2m

)2
)

It will sometimes be helpful to talk separately of the edge-contribution, also called coverage

modEA(G) =
1

m

∑
A∈A

e(A) = 1 − 1

2m

∑
A∈A

e(A, Ā),

and the degree tax

modDA(G) =
1

(2m)2

∑
A∈A

vol(A)2.

The following lemma provides a lower bound on modA(G) with respect to the parameters

of a given partition A.

Lemma 4.3.1. Let G be a graph with m edges. Suppose the partition A = {A1, . . . , Ak}

has the property that for each 1 ≤ i ≤ k and some ε, δ > 0,

e(Ai, Āi) ≤ εm and |vol(Ai) − 2m/k| ≤ 2mδ,
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then

modA(G) ≥ 1 − kε

2
− 1

k
− kδ2.

Proof. Define δi to be such that vol(Ai) = (1/k + δi)2m and note that
∑

i δi = 0 and by

assumption ∀i |δi| ≤ δ. We may now bound the degree tax of A,

modDA(G) =
1

4m2

k∑
i=1

vol(Ai)
2 =

k∑
i=1

(
1

k
+ δi

)2

≤ 1

k
+ kδ2.

The edge contribution of A is modEA(G) = 1 −
∑

i e(Ai, Āi)/2m ≥ 1 − kε/2 and thus we

have our required bound.

4.3.2 Proof of Theorem 4.2.4

We shall make use of the following identity which is an application of the (multivari-

ate) Campbell-Mecke formula (see for example Theorem 4.4 [54]): for a Poisson point

process P on a measurable space S with intensity ρ and a measurable non-negative func-

tion h : Sk ×N → R, where N is the set of all locally finite collections of points in S, we

have

E

 ∑
x1,...,xk∈P
∀i,j,xi ̸=xj

h(x1, . . . , xk,P \ {x1, . . . , xk})


=

∫
S

· · ·
∫
S

E (h(x1, . . . , xr,P ∪ {x1, . . . , xk})) ρ(x1) · · · ρ(xk)dx1 · · · dxk.

(4.5)

We set out to show that for any fixed y > 0, we have mod(By(n;α, ν)) → 1 in

probability as n → ∞. To this end, we will use Lemma 4.3.1 on a specific partition

of the vertex set of By(n;α, ν). More specifically, we consider a partition of the box

By = (−I, I]×[0, y] into 2t boxes Bi := (i·hI, (i+1)·hI]×[0, y], for i = −1/h, . . . , 1/h−1,

where h = 1/t with t ∈ N. Given this partition of the box By, we let Ai = Pα,β ∩ Bi, for
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i = −t, . . . , t− 1. With A = {A−t, . . . , At−1}, we will show that a.a.s.

modA(By(n;α, ν)) ≥ 1 − 4h− o(1). (4.6)

Therefore, for ε > 0, we take t ∈ N to be such that 4h = 4/t < ε/2 and deduce that a.a.s.

mod(By(n;α, ν)) ≥ 1 − ε.

Let us now proceed with the proof of (4.6). Firstly, note that since the random

variables vol(Ai) are identically distributed, with m denoting the number of edges of the

random graph By(n;α, ν), we have

E (vol(Ai)) =
1

2t
E [ vol(Pα,β ∩ By) ] =

E (m)

t
. (4.7)

We will use a second moment argument to show that a.a.s. for each i = −t, . . . , t− 1, we

have

2m

(
h

2
− 3h2

)
≤ vol(Ai) ≤ 2m

(
h

2
+ 3h2

)
. (4.8)

Furthermore, we will show the following.

Claim 4.3.2. There exists a constant C (depending on y) such that

E
(
e(A1, A1)

)
< C.

By the union bound and Markov’s inequality, this implies that a.a.s. for all i =

−t, . . . , t− 1

e(Ai, Ai) < log n.

Since a.a.s. m = Ω(n), we can then deduce (4.6) by applying Lemma 4.3.1 with ε =

log2 n/n, δ = 3h2, and k = t = 1/h. We will deduce (4.8) from Chebyschev’s inequality

has shown that both the expectation and the variance of vol(Ai) are of order n. These
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quantities also depend on t, though as t is a fixed constant we may omit this dependency

and only concern ourselves with the asymptotic in n.

Claim 4.3.3. We have

E (vol(A1)) = Θ(n) and Var(vol(A1)) = O(n).

Since the random variables vol(Ai) are identically distributed, the first part of the

above claim together with (4.7) imply that E (m) = Θ(n) too. Furthermore, Chebyschev’s

inequality implies that a.a.s.

2E (m)

(
h

2
− h2

)
≤ vol(A1) ≤ 2E (m)

(
h

2
+ h2

)
.

In turn, the union bound implies that a.a.s. for all i = −t, . . . , t− 1, we have

2E (m)

(
h

2
− h2

)
≤ vol(Ai) ≤ 2E (m)

(
h

2
+ h2

)
. (4.9)

Furthermore, a.a.s m ≥ E (m) (1 − h3). Indeed, we have by Chebyshev’s inequality that

for each i = −t, . . . , t− 1

P
[
|vol(Ai) − E (vol(Ai))| > h3E (vol(Ai))

]
≤ Var(vol(Ai))

h6E (vol(Ai))
2

Claim 4.3.3
= o(1).

Hence, by the union bound, we have that a.a.s vol(Ai) ≥ (1 − h3)E (vol(Ai)) for all

i = −t, . . . , t− 1. Therefore by the Handshaking Lemma,
∑t−1

i=−t vol(Ai) = 2m whereby

2m =
∑

−t≤i≤t−1

vol(Ai) ≥
∑

−t≤i≤t−1

(1 − h3)E (vol(Ai)) = 2E (m) (1 − h3)

and,

2m =
∑

−t≤i≤t−1

vol(Ai) ≤
∑

−t≤i≤t−1

(1 + h3)E (vol(Ai)) = 2E (m) (1 + h3).
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From the above, we deduce (4.8) since a.a.s. for all i = −t, . . . , t− 1

vol(Ai) ≤
(
h

2
+ h2

)
(1 − h3)−1m ≤

(
h

2
+ h2

)
(1 + h2)m ≤

(
h

2
+ 3h2

)
m,

provided that t ≥ 2 (so that h2 > h3 + h5 which is equivalent to 1 > h + h3 and holds if

h ≤ 1/2), and

vol(Ai) ≥
(
h

2
− h2

)
(1 + h3)−1m ≥

(
h

2
− h2

)
(1 − h3)m ≥

(
h

2
− 3h2

)
m.

Proof of Claim 4.3.2. Firstly, let us point out that if a point p ∈ A1 is far from the

boundary of B1, then it does not contribute to e(A1, A1). To quantify this, let us recall

that for another p′ ∈ B(y), if |x(p′) − x(p)|B > e
1
2
(y(p)+y), then p′ ̸∈ By(p). Since y(p) ≤ y

as well, we can further conclude that for any point p′ ∈ B(y), if |x(p′)− x(p)|B > ey, then

p′ ̸∈ By(p). Hence, the only points p ∈ A1 that may contribute to e(A1, A1) are such that

0 ≤ x(p) < ey or hI − ey ≤ x(p) < hI. Let A
(1)
1 denote the set of the former and A

(2)
1 the

set of the latter. Hence,

E
(
e(A1, A1)

)
≤ E

(
vol(A

(1)
1 )
)

+ E
(

vol(A
(2)
1 )
)

= 2 · E
(

vol(A
(1)
1 )
)
,

where the last equality holds since the random variables vol(A
(1)
1 ) and vol(A

(2)
1 ) are iden-

tically distributed. For a finite set of points P and a point p ∈ P , we let deg(p;P ) =

|By(p) ∩ P \ {p}|. Now, we apply the Campbell-Mecke formula (4.5) and get

E
(

vol(A
(1)
1 )
)

= E

 ∑
p∈Pα,β∩A

(1)
1

deg(p; Pα,β)


(4.5)
= β ·

∫ y

0

∫ ey

0

E (deg((x0, y0)); Pα,β ∪ {(x0, y0)}) · e−αy0dx0dy0.

But E (deg((x0, y0)); Pα,β ∪ {(x0, y0)}) = |By((x0, y0)) ∩ Pα,β| = O(1), uniformly over all
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x0 ∈ (0, ey] and y0 ∈ [0, y]. So

E
(

vol(A
(1)
1 )
)

= O(1) ·
∫ y

0

∫ ey

0

e−αy0dx0dy0 = O(1).

Proof of Claim 4.3.3. We will calculate E (vol(A1)) with the use of the Campbell-Mecke

formula (4.5):

E (vol(A1)) = E

 ∑
p∈A1∩Pα,β

deg(p; Pα,β ∪ {p})


= β ·

∫ hI

0

∫ y

0

E (deg((x0, y0); Pα,β ∪ {(x0, y0)})) e−αy0dy0dx0

= βhI ·
∫ y

0

E (deg((0, y0); Pα,β ∪ {(0, y0)})) e−αy0dy0, (4.10)

since Pα,β is homogeneous on the x-coordinate and deg((x0, y0); Pα,β ∪ {(x0, y0)}) are

identically distributed with respect to x0. Now,

E (deg((0, y0); Pα,β ∪ {(0, y0)})) = 2β ·
∫ y

0

e(y0+y
′
0)/2e−αy

′
0dy′0

α>1/2
=

2β

α− 1/2
ey0/2

(
1 − e−y(α−1/2)

)
.

(4.11)

We substitute the integrand in (4.10) with the above expression and get

E (vol(A1)) = hI
2β2

α− 1/2

(
1 − e−y(α−1/2)

)
·
∫ y

0

ey0/2−αy0dy0

= 2hI

[
β

α− 1/2

(
1 − e−y(α−1/2)

)]2
= Θ(n).

We calculate Var(vol(A1)) = E (vol(A1)
2) − (E (vol(A1)))

2. For convenience, let p0 =

(x0, y0) and similarly p′0 = (x′0, y
′
0). With the use of the Campbell-Mecke formula (4.5).
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We write

E
(
vol(A1)

2
)

= E

 ∑
p,p′∈Pα,β∩B1

deg(p; Pα,β) · deg(p′; Pα,β)

 (4.5)
=

∫ y

0

∫ hI

0

∫ y

0

∫ hI

0

E (deg(p0; Pα,β ∪ {p0, p′0})× (4.12)

deg(p′0; Pα,β ∪ {p0, p′0})) · e−αy0e−αy′0dx′0dy′0dx0dy0.

We will now argue that for the majority of the pairs of points p0, p
′
0 ∈ B1, the expectation

that is inside this integral factorises. Suppose without loss of generality that x0 < x′0. In

this case, By(p0) ∩ By(p
′
0) = ∅ if and only if x′0 − x0 > e(y

′
0+y)/2 + e(y0+y)/2. So, if this

is the case, the random variables deg(p0; Pα,β ∪ {p0, p′0}) and deg(p0; Pα,β ∪ {p0, p′0}) are

independent. For given y0, y
′
0 ∈ [0, y], we let

S(y0, y
′
0) = {(x0, x

′
0) ∈ (0, hI] × (0, hI] : 0 < x′0 − x0 ≤ e(y

′
0+y)/2 + e(y0+y)/2}.

With this definition, we split the quadruple integral in (4.12) in the following way:

∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′0)

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0}) ×

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

+

∫ y

0

∫ y

0

∫
S(y0,y′0)

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0}) ×

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0. (4.13)

If (x0, x
′
0) ∈ (0, hI]× (0, hI] \ S(y0, y

′
0), then the random variables deg(p0; Pα,β ∪ {p0, p′0})

and deg(p′0; Pα,β ∪ {p0, p′0}) are independent. In the first integral, the integrand is

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0})

= E (deg(p0); Pα,β ∪ {p0, p′0}) · E (deg(p′0); Pα,β ∪ {p0, p′0})

= E (deg(p0); Pα,β ∪ {p0}) · E (deg(p′0); Pα,β ∪ {p′0}) .
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Therefore, we can bound the first integral in (4.13) as follows:

∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′0)

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0}) ×

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

=

∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′0)

E (deg(p0); Pα,β ∪ {p0}) ×

E (deg(p′0); Pα,β ∪ {p′0}) e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

≤
∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]

E (deg(p0); Pα,β ∪ {p0}) · E (deg(p′0); Pα,β ∪ {p′0}) ×

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

=

(∫ y

0

∫ hI

0

E (deg(p0); Pα,β ∪ {p0}) e−αy0dx0dy0

)2

.

But by the Campbell-Mecke formula (4.5), the latter is

(E (vol(A1)))
2 =

(∫ y

0

∫ hI

0

E (deg(p0); Pα,β ∪ {p0}) e−αy0dx0dy0

)2

.

Now, let us consider the second integral in (4.13). We first consider the following claim:

Claim 4.3.4. Let y > 0 be a constant. Then for every y0, y
′
0 ∈ [0, y] and (x0, x

′
0) ∈

S(y0, y
′
0), we have

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0}) = O(1).

Proof. By recalling that p0 = (x0, y0) and p′0 = (x′0, y
′
0), we note by the Cauchy-Schwarz

inequality

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0}) ≤ E
(
deg(p0)

2; Pα,β ∪ {p0, p′0}
)1/2×

E
(
deg(p′0)

2; Pα,β ∪ {p0, p′0}
)1/2

.

Furthermore, as conditioning on a single point in the process can only change the square
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of the degree by a constant factor, we have that

E
(
deg(p0)

2; Pα,β ∪ {p0, p′0}
)

= Θ(E
(
deg(p0)

2; Pα,β ∪ {p0}
)
).

As the intensity measure is homogeneous on the x co-ordinate, it suffices for us to show

that for any y0 ∈ [0, y],

E
(
deg(0, y0)

2; Pα,β ∪ {(0, y0)}
)

= O(1).

Indeed, we note that as a consequence of equation (4.11) and the definition of the point

process, the random variable deg(0, y0) on the probability space of the point process

Pα,β ∪ {(0, y0)} follows the Poisson distribution Po
(

2β
α−1/2

ey0/2
(
1 − e−y(α−1/2)

))
. Set λ

to be the parameter of this Poisson distribution. Since y is fixed and y0 ≤ y we have

λ = O(1). Using the second moment of the Poisson distribution, we have:

E
(
deg(0, y0)

2; Pα,β ∪ {(0, y0)}
)

= λ2 + λ = O(1).

We now return our attention to the second integral in (4.13),

∫ y

0

∫ y

0

∫
S(y0,y′0)

E (deg(p0) · deg(p′0); Pα,β ∪ {p0, p′0})×

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

= O(1) ·
∫ y

0

∫ y

0

∫
S(y0,y′0)

e−αy0e−αy
′
0dx0dx

′
0dy0dy

′
0

= O(1) ·
∫ y

0

∫ y

0

∫ hI

0

∫ x+2ey

x−2ey
e−αy0e−αy

′
0dx0dx

′
0dy0dy

′
0

= O(1)

∫ y

0

∫ y

0

∫ hI

0

e−αy0e−αy
′
0dx′0dy0dy

′
0

= O(n).
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Thus, we conclude that

E
(
vol(A1)

2
)
≤ (E (vol(A1)))

2 +O(n),

whereby

Var(vol(A1)) = O(n).

4.4 Comparing the Disk to the Annulus: Proof of

Lemma 4.2.2

Here, we return to the probability space associated with the random graph P(n;α, ν). In

particular, we will work with a subset of the point process Pα,ν,n on DR, which we denote

by P
(>δR)
α,ν,n : we set P

(>δR)
α,ν,n = Pα,ν,n\DδR, for some δ ∈ (0, 1). In other words, P

(>δR)
α,ν,n is Pα,ν,n

but without the points inside the disc DδR. The reason for working with this process is

that it is hard to bound the degrees of the points of Pα,ν,n which may appear close to the

centre of DR. However, we can show that the two processes coincide a.a.s. provided that

δ is small enough.

Claim 4.4.1. If δ < 1 − 1/(2α), then a.a.s.

P(>δR)
α,ν,n = Pα,ν,n.

Proof. This follows from a simple first-moment argument. Indeed,

E (|Pα,ν,n ∩ DδR|) = n · κα,ν,n(DδR) = n · 1

2π

∫ π

−π

∫ δR

0

ρn(r)drdθ.

But ∫ δR

0

ρn(r)dr =

∫ δR

0

α sinh(αr)

cosh(αR) − 1
dr =

cosh(αδR) − 1

cosh(αR) − 1
= O(n−2α(1−δ)).
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Therefore,

E (|Pα,ν,n ∩ DδR|) = O(n1−2α(1−δ)).

So, if δ < 1 − 1/(2α), then the exponent is negative and this expected value is o(1).

Note that 1− 1/(2α) < 1, as α > 1/2. Furthermore, note that the definition of P
(>δR)
α,ν,n

allows for both processes to be defined on the same probability space, thus being naturally

coupled. The intensity measure of P
(>δR)
α,ν,n is n · κα,ν,n(· \ DδR). For the moment, we shall

assume that δ < 1 − 1/(2α), so that the conclusion of Claim 4.4.1 holds.

For a point p ∈ DR and a finite set of points P ⊂ DR, we set deg(p;P ) = |B(p;R)∩P \

{p}|. For 0 ≤ y1 < y2 ≤ R, we let Ay1,y2 ⊂ DR denote the annulus inside DR consisting

of those points in DR having defect radius between y1 and y2. We set

Xy1,y2(P ) =
∑

p∈P∩Ay1,y2

deg(p;P ).

Clearly, for any 0 < y < R on the event {Pα,ν,n = P
(>δR)
α,ν,n } we have

vol(Pα,ν,n ∩ DR−y) = Xy,R(P(>δR)
α,ν,n )

and,

e(P(n;α, ν)) =
1

2
X0,R(P(>δR)

α,ν,n ).

So, on {Pα,ν,n = P
(>δR)
α,ν,n }, if vol(Pα,ν,n ∩ DR−y) > εe(P(n;α, ν)), for some ε > 0, then

Xy,R(P(>δR)
α,ν,n ) >

ε

2
X0,R(P(>δR)

α,ν,n ). (4.14)

We will give a general result on the concentration of the sum Xy,R(Pα,ν,n), parametrised

by y. We will show the following.
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Lemma 4.4.2. For any fixed y ≥ 0, we have

Xy,R(P
(>δR)
α,ν,n )

E
(
Xy,R(P

(>δR)
α,ν,n )

) → 1,

as n→ ∞ in probability.

Furthermore, we show that E
(
Xy,R(P

(>δR)
α,ν,n )

)
decays exponentially in y.

Lemma 4.4.3. For any 0 ≤ y < R/4 and any n sufficiently large, we have

E
(
Xy,R(P(>δR)

α,ν,n )
)
≤ 2e−(α−1/2)y · E

(
X0,R(P(>δR)

α,ν,n )
)
.

The above two lemmas imply that a.a.s.

Xy,R(P(>δR)
α,ν,n ) ≤ 3e−(α−1/2)yX0,R(P(>δR)

α,ν,n ).

If we set y = yε := 1
α−1/2

· log(6/ε), it follows from (4.14) that

P(e(P>yε(n;α, ν)) > εe(P(n;α, ν))) ≤ P(Xyε,R(Pα,ν,n) >
ε

2
X0,R(P(>δR)

α,ν,n ))

= P(Xyε,R(Pα,ν,n) > 3e−(α−1/2)yεX0,R(P(>δR)
α,ν,n )) = o(1).

This concludes the proof of Lemma 4.2.2, assuming Lemmas 4.4.2 and 4.4.3. We now

proceed with the proofs of these two lemmas.

Proof of Lemma 4.4.3. We lead with an upper bound on the expected value of the random

variable Xy,R(P
(>δR)
α,ν,n ). Note that for S < R we have Xy,S(P

(>δR)
α,ν,n ) ≤ Xy,R(P

(>δR)
α,ν,n ). So we

can bound

0 ≤ Xy,R(P(>δR)
α,ν,n ) −Xy,R/2(P

(>δR)
α,ν,n ) ≤ 2 · |{p ∈ P(>δR)

α,ν,n ∩ DR/2}|2

+
∑

p∈P(>δR)
α,ν,n ∩AR/2,(1−δ)R

deg(p; P(>δR)
α,ν,n ∩ A0,R/2).

(4.15)
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We will show that the right-hand side is sublinear a.a.s.

Claim 4.4.4. E
(
Xy,R(P

(>δR)
α,ν,n )

)
− E

(
Xy,R/2(P

(>δR)
α,ν,n )

)
= o(n).

Proof. We lead by calculating the expected value of the first term on the right hand side

of (4.15), given by E
(
|{p ∈ P

(>δR)
α,ν,n ∩ DR/2}|2

)
. Thus we first calculate the first moment

of |{p ∈ P
(>δR)
α,ν,n ∩ DR/2}| as,

E
(
|{p ∈ P(>δR)

α,ν,n ∩ DR/2}|
)

= n · κα,ν,n(DR/2)

< n · α
2π

∫ R/2

0

∫ π

−π

sinh(αr)

cosh(αR) − 1
dθdr

= n · cosh(αR/2) − 1

cosh(αR) − 1
= O(n1−α)

α>1/2
= o(n1/2).

Since this random variable is Poisson-distributed, the expected value of its square is

proportional to the square of its expected value. Thereby,

E
(
|{p ∈ P(>δR)

α,ν,n ∩ DR/2}|2
)

= o(n). (4.16)

We now bound the expected value of the last term in (4.15), using the Campbell-Mecke

formula (4.5):

E

 ∑
p∈P(>δR)

α,ν,n ∩AR/2,(1−δ)R

deg(p; P(>δR)
α,ν,n ∩ A0,R/2)

 =

n · 1

2π

∫ π

−π

∫ R/2

δR

E
(
deg((ϱ, θ); (P(>δR)

α,ν,n ∪ {(ϱ, θ)}) ∩ A0,R/2)
)
ρn(ϱ)dϱdθ.

(4.17)

For a point p = (ϱ, θ) ∈ DR (here ϱ is the radius of p), we set hκ(p) := κR − R + ϱ. We

will use the upper bound which is a consequence of (4.2): for κ ∈ (0, 1) and γ ∈ (0, 1)
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and for n sufficiently large

deg((ϱ, θ); (P(>δR)
α,ν,n ∪ {(ϱ, θ)}) ∩ A0,R/2) ≤ |B̌κ,γ((ϱ, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |

+|B↑((ϱ, θ); P(>δR)
α,ν,n )|,

where

B↑((ϱ, θ);P ) := {p ∈ P : y(p) > hκ((ϱ, θ))}.

Thereby,

E
(
deg((ϱ, θ); (P(>δR)

α,ν,n ∪ {(ϱ, θ)}) ∩ A0,R/2)
)
≤

E
(
|B̌κ,γ((ϱ, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |
)

+ E
(
|B↑((ϱ, θ); P(>δR)

α,ν,n )|
)
.

(4.18)

Now, the first term on the right hand side of (4.18) can be bounded as follows:

E
(
|B̌κ,γ((ϱ, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |
)

= (4.19)

= n
1 + γ

2π
· 2e−R/2+(R−ϱ)/2 ·

∫ R

R/2

e(R−z)/2 α sinh(αz)

cosh(αR) − 1
dz

= Θ(1) · e(R−ϱ)/2
∫ R

R/2

e(1/2−α)(R−z)dz

= Θ(1) · e(R−ϱ)/2
∫ R/2

0

e(1/2−α)zdz = Θ(e(R−ϱ)/2).

Note that this bound is uniform over all ϱ ∈ (δR,R/2). Substituting it in (4.17) we get

E

 ∑
p∈P(>δR)

α,ν,n ∩AR/2,(1−δ)R

|B̌κ,γ((ϱ, θ)) ∩ A0,R/2 ∩ P(>δR)
α,ν,n |

 =

= O(n)

∫ π

−π

∫ R/2

δR

e(R−ϱ)/2ρn(ϱ)dϱdθ

= O(n)

∫ R/2

δR

e(R−ϱ)/2e−α(R−ϱ)dϱ

α>1/2
= O(n)e−(α−1/2)R/2 = o(n). (4.20)
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For the second term we have:

E
(
|B↑((ϱ, θ); P(>δR)

α,ν,n )|
)

= n · κα,ν,n({p : y(p) > κR−R + ϱ})

= n · α
2π

∫ 2R−κR−ϱ

0

∫ π

−π

sinh(αr)

cosh(αR) − 1
dθdr

= n · cosh(α(2R− κR− ϱ)) − 1

cosh(αR) − 1
= O(n · eα(R(1−κ)−ϱ)), (4.21)

uniformly over all R/2 < ϱ < R− y. Therefore,

n · 1

2π

∫ R/2

δR

∫ π

−π
E
(
|B↑((ϱ, θ); P(>δR)

α,ν,n )|)
)
ρn(ϱ)dθdϱ =

O(n2) · eαR(1−κ) ·
∫ R/2

δR

e−αϱ
sinh(αϱ)

cosh(αR) − 1
dϱ

sinh(x)≤ex

≤ O(n2) · eαR(1−κ) ·
∫ R/2

δR

e−αϱ
eαϱ

cosh(αR) − 1
dϱ

= O(n2) · eαR(1−κ)−αR
∫ R/2

δR

dϱ

= O(R) · n2e−ακR = O(R) · n2(1−ακ) α>1/2
= o(n),

provided that 1 − κ is sufficiently small (depending on α).

We can now consider E
(
Xy,R/2(P

(>δR)
α,ν,n )

)
. Applying the Campbell-Mecke identity (4.5)

to the point process P
(>δR)
α,ν,n on DR with intensity measure n · κα,ν,n(· \ DδR), we have

E
(
Xy,R/2(P

(>δR)
α,ν,n )

)
= E

 ∑
p∈P(>δR)

α,ν,n ∩Ay,R/2

deg(p; P(>δR)
α,ν,n )

 =

n · 1

2π

∫ π

−π

∫ R−y

R/2

E
(
deg((ϱ, θ); (P(>δR)

α,ν,n ∪ {(ϱ, θ)}))
)
ρn(ϱ)dϱdθ.

(4.22)

Now, we bound the degree of (ϱ, θ) inside Ay,R/2 with respect to the point process P
(>δR)
α,ν,n ∪

{(ϱ, θ)} with the use of Lemma 4.1.1. We apply (4.2) with κ sufficiently close to 1. For
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γ ∈ (0, 1), and any finite subset P ⊂ DR we bound

|B̌κ,−γ((ϱ, θ)) ∩ P | ≤ deg((ϱ, θ);P ) ≤ |B↑((ϱ, θ);P )| + |B̌κ,γ((ϱ, θ)) ∩ P |, (4.23)

where

B↑((ϱ, θ);P ) := {p ∈ P : y(p) > hκ((ϱ, θ))}.

Let us set

X(κ,γ)
y1,y2

(P ) =
∑

p∈P∩Ay1,y2

|B̌κ,γ(p) ∩ P \ {p}|.

For the expected value of the first term in (4.23) we use the calculation in (4.21) which

holds uniformly over all R/2 < ϱ < R− y:

n · 1

2π

∫ R−y

R/2

∫ π

−π
E
(
B↑((ϱ, θ); (P(>δR)

α,ν,n ∪ {(ϱ, θ)}) ∩ DR−y)
)
ρn(ϱ)dθdϱ = o(n)

(4.24)

as in the proof of the previous claim, provided that 1 − κ is sufficiently small (depending

on α). Therefore,

0 ≤ E
(
Xy,R/2(P

(>δR)
α,ν,n )

)
− E

(
X

(κ,γ)
y,R/2(P

(>δR)
α,ν,n )

)
= o(n). (4.25)

Now, for any real γ such that |γ| ∈ (0, 1), we have

E
(
|B̌κ,γ((ϱ, θ)) ∩ P(>δR)

α,ν,n |
)

=

n · α
2π

· (1 + γ)2e−R/2 · e
1
2
(R−ϱ)

∫ R

2R−κR−ϱ
e

1
2
(R−z) sinh(αz)

cosh(αR) − 1
dz.

For n sufficiently large we have

∣∣∣∣ ρn(z)

e−α(R−z) − 1

∣∣∣∣ =

∣∣∣∣ 1

e−α(R−z) ·
α sinh(αz)

cosh(αR) − 1
− 1

∣∣∣∣ < |γ|.

For real quantities a, b, c, d, with c, d > 0, we write that a = d(b ± c) if d(b − c) ≤ a ≤
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d(b + c). So by the above inequality, the last integral is bounded, for n sufficiently large,

as

∫ R

2R−κR−ϱ
e

1
2
(R−z) sinh(αz)

cosh(αR) − 1
dz =

(1 ± |γ|)
α

·
∫ R

2R−κR−ϱ
e(

1
2
−α)(R−z)dz.

(4.26)

By applying the fact that ϱ > R/2 and 1 − κ is sufficiently small (hence κ is bounded

away from 1/2) we can compute the right hand integral as follows:

∫ R

2R−κR−ϱ
e(

1
2
−α)(R−z)dz =

∫ κR+ϱ−R

0

e(
1
2
−α)zdz

α>1/2
=

1

(α− 1/2)
·
(

1 − e(
1
2
−α)(κR+ϱ−R)

)
=

1

(α− 1/2)
(1 − o(1)).

Therefore by substituting this expression into (4.26), and taking n to be sufficiently large

for any ϱ > R/2

∫ R

2R−κR−ϱ
e

1
2
(R−z) sinh(αz)

cosh(αR) − 1
dz =

(1 ± 2|γ|)
α(α− 1/2)

.

By substituting (4.26) and recalling that ν = ne−R/2, and setting Cα,ν = ν/(π(α− 1/2)),

it follows that uniformly for all ϱ ∈ [R/2, R− y] and θ ∈ (−π, π] we have:

E
(
|B̌κ,γ((ϱ, θ)) ∩ P

(>δR)
α,ν,n |

)
e

1
2
(R−ϱ)

= (1 ± 2|γ|)2Cα,ν .

Therefore, by the Campbell-Mecke formula (4.5) we get:

E
(
X

(κ,γ)
y,R/2(P

(>δR)
α,ν,n )

)
=

n

2π

∫ R−y

R/2

∫ π

−π
E
(
|B̌κ,γ((ϱ, θ)) ∩ P(>δR)

α,ν,n |
)
ρn(ϱ)dθdϱ

= (1 ± 2|γ|)2Cα,ν ·
n

2π

∫ R−y

R/2

∫ π

−π
e

1
2
(R−ϱ)−α(R−ρ)dθdϱ.

(4.27)
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Again, we turn our attention to the right hand integral, as α > 1/2 and y < R/4 we have

the following:

∫ R−y

R/2

∫ π

−π
e

1
2
(R−ϱ)−α(R−ρ)dθdϱ = 2π

∫ R−y

R/2

e(1/2−α)(R−ϱ)dϱ

= 2π

∫ R/2

y

e(1/2−α)zdz

=
2π

α− 1/2
e−(α−1/2)y

(
1 − e−(α−1/2)(R/2−y))

=
2π

α− 1/2
e−(α−1/2)y(1 − o(1)),

uniformly over y < R/4. Substituting the above into (4.27), and taking n sufficiently

large and setting C ′
α,ν = Cα,ν/(α− 1/2), we have the following:

E
(
X

(κ,γ)
y,R/2(P

(>δR)
α,ν,n )

)
= n(1 ± 3|γ|)2C ′

α,νe
−(α−1/2)y.

So (4.22) and (4.25) yield, for sufficiently large n

E
(
Xy,R/2(P

(>δR)
α,ν,n )

)
= n(1 ± 4|γ|)2 · C ′

α,νe
−(α−1/2)y.

Combining this with Claim 4.4.4 we deduce the following result: for γ ∈ (−1, 1), and n

sufficiently large, we have for all 0 ≤ y < R/4,

n(1 − 5|γ|)2C ′
α,νe

−(α−1/2)y ≤ E
(
Xy,R(P(>δR)

α,ν,n )
)
≤ n(1 + 5|γ|)2C ′

α,νe
−(α−1/2)y. (4.28)

By applying (4.28) we bound the following ratio: for |γ| chosen small enough such that

(1 + 5|γ|)/(1 − 5|γ|) <
√

2 and n sufficiently large: for all 0 ≤ y < R/4,

E
(
Xy,R(P

(>δR)
α,ν,n )

)
E
(
X0,R(P

(>δR)
α,ν,n )

) ≤
n(1 + 5|γ|)2C ′

α,νe
−(α−1/2)y

n(1 − 5|γ|)2C ′
α,ν

=
(1 + 5|γ|)2

(1 − 5|γ|)2
e−(α−1/2)y

≤ 2e−(α−1/2)y.
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Proof of Lemma 4.4.2. Since

0 ≤ E
(
Xy,R(P(>δR)

α,ν,n )
)
− E

(
Xy,R/2(P

(>δR)
α,ν,n )

)
= o(n),

but E
(
Xy,R(P

(>δR)
α,ν,n )

)
= Θ(n) (for fixed y > 0) to show the concentration of Xy,R(P

(>δR)
α,ν,n )

around its expected value, it suffices to show that

Xy,R/2(P
(>δR)
α,ν,n )

E
(
Xy,R/2(P

(>δR)
α,ν,n )

) → 1

as n→ ∞, in probability.

We decompose this random variable as follows:

Xy,R/2(P
(>δR)
α,ν,n ) = Xy,logR(P(>δR)

α,ν,n ) +XlogR,R/2(P
(>δR)
α,ν,n ).

By applying the upper bound of (4.28) with y = logR, we deduce that

E
(
XlogR,R/2(P

(>δR)
α,ν,n )

)
= o(n).

For p ∈ DR, we set

deg>hκ(p)(p;P ) := |{p′ ∈ (P \ {p}) ∩B(p;R) : y(p′) > hκ(p)}|

and

deg≤hκ(p)(p;P ) := |{p′ ∈ (P \ {p}) ∩B(p;R) : y(p′) ≤ hκ(p)}|.

Hence, we express

Xy,logR(P(>δR)
α,ν,n ) =

∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg>hκ(p)(p; P(>δR)
α,ν,n )
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+
∑

p∈P(>δR)
α,ν,n ∩Ay,logR

deg≤hκ(p)(p; P(>δR)
α,ν,n ).

Note that deg>hκ(p)(p;P ) ≤ |B↑(p;P )|. So, by (4.24), the first term has

E

 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg>hκ(p)(p; P(>δR)
α,ν,n )

 = o(n).

For any κ ∈ (0, 1) and any finite set P ⊂ DR, set

X
(κ)
y,logR(P ) :=

∑
p∈P∩Ay,logR

deg≤hκ(p)(p;P ).

Therefore,

E
(
Xy,logR(P(>δR)

α,ν,n )
)

= E
(
X

(κ)
y,logR(P(>δR)

α,ν,n )
)

+ o(n).

In turn,

E
(
X

(κ)
y,logR(P(>δR)

α,ν,n )
)

= Θ(n).

too. Hence, to show concentration around its expected value, it suffices to show that

X
(κ)
y,logR(P

(>δR)
α,ν,n ) is concentrated around its expected value: as n→ ∞

X
(κ)
y,logR(P

(>δR)
α,ν,n )

E
(
X

(κ)
y,logR(P

(>δR)
α,ν,n )

) → 1, (4.29)

in probability. Since the expected value scales linearly in n, (4.29) will follow if we show

that

Var
(
X

(κ)
y,logR(P(>δR)

α,ν,n )
)

= o(n2).

4.4.1 Second-Moment Calculations

To bound the variance of X
(κ)
y,logR(P

(>δR)
α,ν,n ), we will use Claim 4.1.2: we set tκ,γ,R := 4(1 +

γ)e−(1−κ)R/2 and write A2
y,logR for the product Ay,logR×Ay,logR. We apply the Campbell-
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Mecke formula (4.5)

(2π)2

n2
E


 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg<hκ(p)(p; P(>δR)
α,ν,n )


2 =

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′));

P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

=

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′))×

1|θ−θ′|π≤tκ,γ,R ; P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

+

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′))×

1|θ−θ′|π>tκ,γ,R ; P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ.

Recall that for r > 0, we defined Ar = A0,R−r. To bound the second integral, let us

observe that by Claim 4.1.2, if |θ − θ′|π > tκ,γ,R, then

(
BR((ϱ, θ)) ∩ AR−hκ((ϱ,θ))

)
∩
(
BR((ϱ′, θ′)) ∩ AR−hκ((ϱ′,θ′))

)
= ∅.

So, the random variable deg<hκ((ϱ,θ))((ϱ, θ); P
(>δR)
α,ν,n ∪{(ϱ, θ), (ϱ′, θ′)}) and the random vari-

able

deg<hκ((ϱ′,θ′))((ϱ
′, θ′); P

(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}) are independent. Thus, we can write

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′))×

1|θ−θ′|π>tκ,γ,R ; P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

=

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)); P(>δR)

α,ν,n ∪ {(ϱ, θ)}
)
×

E
(
deg<hκ((ϱ′,θ′))((ϱ

′, θ′)); P(>δR)
α,ν,n ∪ {(ϱ′, θ′)}

)
1|θ−θ′|π>tκ,γ,R · ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

≤
∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)); P(>δR)

α,ν,n ∪ {(ϱ, θ)}
)
×

E
(
deg<hκ((ϱ′,θ′))((ϱ

′, θ′)); P(>δR)
α,ν,n ∪ {(ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ
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=

(∫
Ay,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)); P(>δR)

α,ν,n ∪ {(ϱ, θ)}
)
· ρn(ϱ)dϱdθ

)2

=
(2π)2

n2
E

 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg<hκ(p)(p)


2

,

by the Campbell-Mecke formula (4.5). For the first integral, we bound the product of the

degrees by the sum of their squares:

deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ
′, θ′)) ≤

deg2
<hκ((ϱ,θ))((ϱ, θ)) + deg2

<hκ((ϱ′,θ′))((ϱ
′, θ′)).

So, by symmetry, we bound the first integral as follows:

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′))×

1|θ−θ′|π≤tκ,γ,R ; P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

≤ 2 ·
∫
A2
y,logR

E
(
deg2

<hκ((ϱ,θ))((ϱ, θ); P(>δR)
α,ν,n ∪ {(ϱ, θ)})

)
· 1|θ−θ′|π≤tκ,γ,R ×

ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

= 4tκ,γ,R

(∫
Ay,logR

E
(
deg2

<hκ((ϱ,θ))((ϱ, θ); P(>δR)
α,ν,n ∪ {(ϱ, θ)})

)
ρn(ϱ)dθdϱ

)
×(∫

Ay,logR
ρn(ϱ′)dθ′dϱ′

)
. (4.30)

But by (4.2), we have

deg<hκ((ϱ,θ))((ϱ, θ); P(>δR)
α,ν,n ∪ {(ϱ, θ)}) ≤ |P(>δR)

α,ν,n ∩ B̌κ,γ(p)|.

So by (4.3) we have

E
(
deg2

<hκ((ϱ,θ))((ϱ, θ)); P(>δR)
α,ν,n ∪ {(ϱ, θ)}

)
= O(eR−ϱ),
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uniformly over all R− logR < ϱ < R− y. Therefore,

∫
Ay,logR

E
(
deg2

<hκ((ϱ,θ))((ϱ, θ)); P(>δR)
α,ν,n ∪ {(ϱ, θ)}

)
ρn(ϱ)dθdϱ =

O(1) ·
∫ R−y

R−logR

eR−ϱ sinh(αϱ)

cosh(αR) − 1
dϱ

= O(1) ·
∫ R−y

R−logR

e(R−ϱ)(1−α)dϱ

= O(1) ·
∫ logR

y

e(1−α)zdz
α>1/2

= O(1) ·R1/2. (4.31)

Furthermore,

∫
Ay,logR

ρn(ϱ′)dθ′dϱ′ = 2π
cosh(α(R− y)) − cosh(α(R− logR))

cosh(αR) − 1
= O(1).

(4.32)

Using (4.31) and (4.32) into (4.30), we get

∫
A2
y,logR

E
(
deg<hκ((ϱ,θ))((ϱ, θ)) · deg<hκ((ϱ′,θ′))((ϱ

′, θ′))×

1|θ−θ′|π≤tκ,γ,R ; P(>δR)
α,ν,n ∪ {(ϱ, θ), (ϱ′, θ′)}

)
ρn(ϱ)ρn(ϱ′)dθ′dϱ′dθdϱ

= O(1) · tκ,γ,RR1/2 = O(1) · e−(1−κ)R/2R1/2

= O(1) · n−(1−κ)R1/2.

Therefore, we obtain

E


 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg<hκ(p)(p)


2 ≤

E

 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg<hκ(p)(p)


2

+O(1) · n2−(1−κ)R1/2.
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Rearranging the above, we get

Var

 ∑
p∈P(>δR)

α,ν,n ∩Ay,logR

deg<hκ(p)(p)

 = O(1) · n1+κR1/2 = o(n2).

4.5 Discussion

In this chapter, we have considered the modularity value of the KPKVB model of a

random graph on the hyperbolic plane. We have shown that for all α > 1/2 and ν > 0

we have that mod(P(n;α, ν)) → 1 as n→ ∞ in probability. The partition we consider is

that of dividing the Poincaré disc into a constant number of equal sectors. We show that

the modularity of this partition is closely related to the box partition given in By(n;α, ν).

Following from this, we observe that for any ε > 0 a.a.s the modularity of By(n;α, ν) is

at least 1 − ε and thus mod(P(n;α, ν)) → 1, as n→ ∞, in probability.

As we have now shown that the modularity value of the KPKVB model tends to 1 in

probability, a natural question is the order of 1 − mod(G). This is also referred to as the

modularity deficit of the graph [60]. The modularity deficit of a partition, 1 − modA(G),

quantifies how much a given partition A differs from optimal modularity. Trees on n

nodes with maximum degree ∆ have modularity deficit O(∆
1
2n− 1

2 ) [59], while the torus

graph on n nodes in dimension d has deficit O(n−1/2d) [62]. While we deduce that the

modularity deficit of the sector division in the KPKVB model can be made arbitrarily

small, it is open to determine whether we can explicitly express the rate of convergence

asymptotically. It is also open to determine for a given growth rate, whether we can

exhibit a partition that possesses such a deficit.

A modular community structure is characterised by a vertex partition where edge

density within parts is much greater than expected, while density between parts is much

smaller. While a high modularity value (> 0.3) can be indicative of an underlying modular

176



community structure, a high value alone does not guarantee that such a community

structure exists. This tends to occur in sparse networks. For example, in regimes where the

average degree is bounded, the Erdős-Rénýı random graph can exhibit a high modularity

value in probability, without possessing a modular community structure [60].

In the case of the KPKBV model, the high modularity may be a consequence of the

tree-like structure of the random graph. Generally, trees with sublinear maximum degree

demonstrate an almost optimal modularity value; see [59]. Here, the term “tree-like” does

not refer to the lack of short cycles (in fact, the presence of clustering implies that there

are many short cycles with high probability). It refers to the existence of a hierarchy

on the set of vertices of the random graph, which resembles the natural hierarchy that

a rooted tree exhibits. Let us note that as a consequence of the negative curvature of

hyperbolic space, tangential distances in the Poincaré disc expand exponentially with the

respect to the radial distance from the centre. Pairs of vertices near the boundary of

the disc are much less likely to connect, as they must possess an exponentially smaller

relative angle for this to happen. In contrast, vertices near the centre have a relatively

high degree, as the balls of radius R centred near O cover almost all of the disc. This

implies that communities tend to have an underlying hierarchical structure, where they

are formed from the mutual descendants of nodes with larger defect radii. Each part of

the sector partition tends to capture a large proportion of one of these rooted sub-trees;

therefore, this may suggest why the modularity score of the sector partition tends to one,

in probability.
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[17] P. Butkoviĉ, D. Jones, and S. Sergeev. Lecture notes in game theory, February 2021.

[18] A. S. Chakrabarti, B. K. Chakrabarti, A. Chatterjee, and M. Mitra. The Kolkata
paise restaurant problem and resource utilization. Physica A: Statistical Mechanics
and its Applications, 388:2420–2426, 2009.

[19] D. Chakraborti, J. Han Kim, J. Lee, and T. Tran. Majority dynamics on sparse
random graphs. Random Structures & Algorithms, 2021.

[20] D. Challet, A. Chessa, M. Marsili, and Y-C. Zhang. From minority games to real
markets. Quantitative Finance, 1:168–176, 2001.

[21] D. Challet, M. Marsili, and Y-C. Zhang. Minority games: interacting agents in
financial markets. Oxford University Press, 2005.

[22] J. Chellig, C. Durbac, and N. Fountoulakis. Best response dynamics on random
graphs. Games and Economic Behavior, 131:141–170, 2022.

179



[23] J. Chellig, N. Fountoulakis, and F. Skerman. The modularity of random graphs on
the hyperbolic plane. Journal of Complex Networks, 10(1):cnab051, 2022.

[24] A. Clauset, C. Moore, and M. Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453(7191):98–101, 2008.

[25] A. Clauset, M. Newman, and C. Moore. Finding community structure in very large
networks. Physical review E, 70(6):066111, 2004.

[26] L. Costa, F. Rodrigues, G. Travieso, and P. Villas Boas. Characterization of complex
networks: A survey of measurements. Advances in physics, 56(1):167–242, 2007.

[27] M.A.R. De Cara, O. Pla, and F. Guinea. Competition, efficiency and collective
behavior in the “El Farol” bar model. The European Physical Journal B-Condensed
Matter and Complex Systems, 10:187–191, 1999.

[28] T. Dinh, X. Li, and M. Thai. Network clustering via maximizing modularity: Approx-
imation algorithms and theoretical limits. In 2015 IEEE International Conference
on Data Mining, pages 101–110. IEEE, 2015.
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[88] K. Zuev, M. Boguná, G. Bianconi, and D. Krioukov. Emergence of soft communities
from geometric preferential attachment. Scientific reports, 5(1):1–9, 2015.

185


