
Cryptanalysis of Isogeny-based
Protocols in Genus 1 and 2

By

Charlotte Weitkämper

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Cyber Security and Privacy Research Group
School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

June 2023

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

© Copyright by CHARLOTTE WEITKÄMPER, 2023

All Rights Reserved

ABSTRACT

Isogeny-based cryptography is one of the contenders for providing cryptosystems based on

mathematical problems which are assumed to be hard for both classical and quantum com-

puters. The most general of these isogeny-related problems, the pure isogeny problem, is the

task of finding an isogeny between any two given supersingular elliptic curves. Many variants

of this problem exist - not all of which are actually hard both classically and quantumly.

Some variants use special primes, require the found isogeny to be of a certain degree, provide

additional torsion point information, use specific elliptic curves instead of arbitrary ones, or

translate the problem to a higher-dimensional setting using genus-2 curves.

This thesis focuses on the cryptanalysis of encryption schemes using variants of the

pure isogeny problem for their underlying hardness assumption. We provide several attacks

on the Supersingular Isogeny Diffie–Hellman (SIDH) protocol and some variants thereof.

Note that these results predate the recent remarkable full break of the SIDH protocol by

Castryck and Decru, as well as others.

We first introduce a general attack framework using a malleability oracle to reduce

inverting a one-way function with specific characteristics to quantumly solving a hidden

shift problem. This framework can be instantiated to provide a quantum subexponential

attack on SIDH with overstretched parameters by defining a group acting on subsets of

the SIDH keyspace. Furthermore, we present adaptive attacks on two variants of the SIDH

protocol which recover static secret keys by repeatedly sending malformed public information.

The first protocol produces related key exchange instances from making use of non-trivial

automorphisms existing on special elliptic curves. The second protocol is a variant using

Jacobians of hyperelliptic genus-2 curves as well as elliptic curve products and isogenies

between them. We conclude this thesis with the presentation of several new algorithms

for computing isogenies between arbitrary supersingular elliptic curves of prescribed degree

which, in most cases, require knowledge of the endomorphism rings. Making use of speed-

ups obtained from quantum search and factoring algorithms, these methods result in an

acceleration of the computation of certain isogenies.

i

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisors and co-supervisors over the years,

Christophe Petit, Tom Chothia and David Galindo. Thank you for your tireless support,

continued guidance and inspiration. Christophe, thank you also for introducing me to the

world of isogenies and isogenists, and for suggesting so many fascinating topics and research

problems which provoked countless insightful discussions. Unfortunately, in the end, there

was not time to explore them all.

I would also like to thank all my collaborators, fellow workshop attendees and project

group members for teaching me not only how to approach (and often solve) a problem

but also how to put results down on paper; thank you for answering all my isogeny-related

questions ever since I started my PhD. Furthermore, to all reviewers of abstracts and papers,

as well as the examiners of my thesis, thank you for your many questions, suggestions and

ideas, and for guiding me in improving my work.

And finally, to my wonderful family and friends without whose encouragement this

thesis would not exist, and to all my office and department mates who made the last few

years all the more fun: thank you!

The research in this thesis was possible due to financial support in form of a studentship

from the University of Birmingham and EPSRC.

ii

Contents

Page

Introduction 1

I Background 10

1 Abelian varieties & isogenies in dimensions one and two 11

1.1 Abelian varieties and their isogenies . 12

1.2 Elliptic curves . 14

1.2.1 Supersingular endomorphism rings 17

1.2.2 Isogeny graphs . 19

1.3 Principally polarised abelian surfaces . 20

1.3.1 Isogenies of PPAS . 21

1.3.2 Computing isogenies . 23

2 Isogeny-based cryptography 25

2.1 SIDH-based elliptic curve constructions . 28

2.1.1 The SIDH protocol . 31

2.1.2 Cryptanalysis of SIDH . 34

2.1.3 Fixing SIDH . 42

2.1.4 Protocol variants . 44

2.2 Genus-2 SIDH . 52

iii

CONTENTS

2.2.1 The Genus-2 SIDH protocol . 54

2.2.2 Key generation for G2SIDH . 56

2.2.3 Security assumption . 57

II Cryptanalysis 60

3 Hidden shift attacks 61

3.1 Preliminaries . 64

3.1.1 One-way functions . 64

3.1.2 Hard homogeneous spaces and CSIDH 65

3.1.3 Solving the hidden shift problems with quantum algorithms 68

3.2 Malleability oracles and hidden shift attacks 70

3.2.1 Malleability oracles . 70

3.2.2 Reduction to hidden shift problem 71

3.3 Attack on overstretched SIDH instances in quantum subexponential time . . 73

3.3.1 Overview of the attack . 74

3.3.2 A free and transitive group action . 78

3.3.3 Using the Frobenius map . 89

3.3.4 Lifting θ ∈ πZ[ι] to an element of norm eN2 91

3.3.5 Algorithm summary . 102

3.3.6 Hybrid attacks on overstretched SIDH 104

3.4 The attack on HHS by Childs–Jao–Soukharev 107

3.5 Improvements and outlook . 108

4 Attack on the Jao–Urbanik protocol 110

4.1 Preliminaries . 113

4.1.1 The DGLTZ attack . 114

4.1.2 Jao–Urbanik’s protocol . 118

iv

CONTENTS

4.2 Adaptive attack against the Jao–Urbanik scheme 120

4.2.1 Our attack model . 124

4.2.2 Exploiting the additional structure: first step 125

4.2.3 Intermediate bit and pullback computation 127

4.3 Generalising the attack . 130

4.3.1 Attack costs for general ℓ . 130

4.3.2 Querying with EB . 131

4.4 Comparison of k-SIDH and Jao–Urbanik’s protocol 132

4.5 Improvements and outlook . 133

5 Cryptanalysis of G2SIDH 135

5.1 Secret keys in G2SIDH . 137

5.1.1 The G2SIDH keyspace . 139

5.1.2 Symplectic bases . 140

5.1.3 Classification of secret keys . 142

5.1.4 Uniform sampling from the restricted keyspace 149

5.2 Adaptive attack on G2SIDH . 152

5.2.1 Attack model and oracle . 154

5.2.2 Symplectic transformations . 156

5.2.3 Case distinction of kernel subgroups 158

5.2.4 Recovering kernels of rank 2 . 167

5.2.5 Recovering kernels of rank 3 . 172

5.2.6 Complexity of the attack . 178

5.3 Generalising the attack . 179

5.3.1 Symplectic basis algorithm . 179

5.3.2 Attack on an arbitrary basis . 181

5.4 Another look at SIDH and GPST . 182

v

5.4.1 Revisiting the SIDH keyspace . 182

5.4.2 Revisiting GPST . 184

5.5 Improvements and outlook . 188

6 Improved algorithms for finding fixed-degree isogenies 190

6.1 Preliminaries . 194

6.1.1 Coppersmith’s methods . 194

6.1.2 State of the art on isogeny computation 200

6.2 Solving the norm equation with Cornacchia’s algorithm 204

6.3 Solving the norm equation with Coppersmith’s methods 212

6.3.1 Guessing two variables . 213

6.3.2 Guessing one variable . 214

6.3.3 Experimental results . 216

6.4 The order embedding problem . 219

6.5 Solving the degree-d isogeny problem for supersingular elliptic curves 223

6.6 Improvements and outlook . 225

III Conclusion 228

7 Conclusion 229

References 232

vi

List of Figures

2.1 The SIDH isogeny square. 30

2.2 The Supersingular Isogeny Diffie–Hellman (SIDH) protocol. 32

2.3 The Genus-2 Supersingular Isogeny Diffie–Hellman (G2SIDH) protocol. . . . 56

3.1 An SIDH square with endomorphism θ. 76

4.1 The Jao–Urbanik protocol. 118

4.2 Overview of the related isogeny paths and curves. 121

4.3 The isogeny paths between EA, E ′
A and E ′′

A. 126

5.1 The G2SIDH protocol with restricted keyspace. 150

5.2 Strategy for type distinction of normalised G2SIDH kernel generators. 160

5.3 Optimal strategy for recovering parity bits. 168

5.4 The SIDH protocol with restricted keyspace. 183

vii

List of Tables

4.1 Comparisons between Jao–Urbanik’s scheme and k-SIDH. 133

5.1 Classification of maximal ℓn-isotropic subgroups. 149

5.2 Symplectic transformations and impact on parity bit. 168

6.1 Values for plausible symmetric sets. 216

6.2 Experiments for a 253-bit prime p. 217

6.3 Experiments for a 300-bit prime p. 217

6.4 Experiments for a 500-bit prime p. 218

6.5 Experiments for p3923 from SQISign. 219

6.6 Experiments for p6983 from SQISign. 219

6.7 Experiments for SIKEp434. 220

6.8 Experiments for SIKEp503. 220

6.9 Experiments for a 256-bit prime p. 222

6.10 Experiments for a 434-bit prime p. 222

6.11 Experiments for a 610-bit prime p. 223

6.12 Summary of cost for finding isogenies via our different algorithms. 225

viii

Introduction

With the emergence of cryptographically-sized quantum computers expected in the not too

distant future1, the cryptographic community is faced with the fact that quantum algorithms,

most famously those by Shor [Sho94] and Grover [Gro96], will most likely be able to find

solutions to classically assumed hard problems such as computing discrete logarithms and

integer factorisation much more efficiently than any classical algorithm. Most currently

deployed asymmetric cryptographic schemes rely on such problems; for example, the popular

encryption and signature schemes based on RSA [RSA78] are only secure as long as it is

infeasible for any adversary to factor the composite numbers used in the protocols as moduli

into their two very large prime factors. These hard problems will be efficiently solvable once

a sufficiently powerful quantum computer, i.e. one with a large enough number of qubits and

reliable fault-tolerance, is built.

This calls for public key cryptography algorithms relying on alternative hard prob-

lems which, in addition to providing security in the classical setting as was previously suffi-

cient, can also withstand attacks by adversaries with access to powerful quantum computers.

Hence, solutions that provide security even in the future presence of such quantum computers

need to be found. It is imperative to understand that as some applications require long-term

security, protecting today’s communication from the future capabilities of quantum comput-
1Note that this could mean within the next years, a decade or multiple decades - opinions on a timeline

vary between experts (see for example [Mos18; MP22]) - but it is a question of when more than if.

1

INTRODUCTION

ing is already a necessity.

The search for post-quantum cryptographic protocols has been majorly advanced

by the call for submission of such quantum-secure solutions to a ‘Post-Quantum Cryptog-

raphy Standardization’ project [NIST16] lead by the US American National Institute of

Standards and Technology (NIST). The current and former candidates for standardisation

can be classed largely into lattice-based, code-based, multivariate, hash-based as well as

isogeny-based protocols for key encapsulation mechanisms and signature schemes.

As isogeny-based schemes we consider cryptographic protocols whose security relies

mostly on the hardness of mathematical problems involving the computation of isogenies be-

tween principally polarised abelian varieties, where isogenies are surjective morphisms with

finite kernel between two such varieties. Traditionally, only isogenies between specific types

of elliptic curves which are principally polarised abelian varieties of dimension one were con-

sidered. The polarisation is not usually of concern since isogeny-based cryptography is mostly

instantiated with isogenies of elliptic curves which naturally preserve principal polarisations.

Hence, principal polarisation is often ignored or disregarded in this setting. Technically,

it means that there exists an isogeny between the abelian variety and its dual variety, the

Picard group of degree-zero divisor classes, which is also an isomorphism. However, this po-

larisation gains more practical importance when one considers the natural generalisation of

isogeny-based cryptography by broadening the scope to isogenies between higher-dimensional

varieties. This development has recently received more attention. Hereby, the main focus

lies on the cryptographic uses of curves of genus 2 and their Jacobians, which are principally

polarised abelian surfaces, and isogenies between them.

The main computational problem underlying this branch of post-quantum cryptog-

raphy is the pure isogeny problem. It consists of finding an isogeny φ : E → E ′ between

two given supersingular isogenous elliptic curves E and E ′ over some finite field Fq, which

2

INTRODUCTION

can be translated into a path-finding problem in a type of expander graph. Often, schemes

utilising isogenies have additional requirements on φ and for security rely on variants of this

most general problem. For example, breaking the most well-known scheme using isogenies,

the Supersingular Isogeny Diffie–Hellman key exchange [JD11], entails computing a party’s

secret isogeny φ having a specific prime-power degree and additionally exhibiting a certain

action on a torsion subgroup of E. The details of this additional information are provided to

an attacker through a party’s public message in the active phase of the key exchange. SIDH

was a post-quantum protocol based on the presumed hardness of computing an isogeny of

known degree between two supersingular elliptic curves given some additional torsion point

information. After successful active attacks, the then believed to be IND-CCA secure Super-

singular Isogeny Key Encapsulation (SIKE) mechanism [JACCDHJKLLNRSU17] obtained

from SIDH by using a transformation initially due to Fujisaki and Okamoto [FO99; Den03;

HHK17] was selected by NIST as an alternate candidate in 2022 for standardisation. It was

found to be insecure shortly after due to a very effective, passive classical attack. This new

class of attacks is due to Castryck and Decru [CD23] and concurrent work by Maino, Martin-

dale, Panny, Pope and Wesolowski [MM22; MMPPW23] as well as Robert [Rob23], and fully

recovers a secret key in SIDH. However, this strategy only allows one to find a secret isogeny

when enough torsion information is given; no efficient method exists to date which solves

the pure isogeny problem of finding any isogeny between two arbitrary given supersingular

elliptic curves. Hence, this result only eliminates a small number of isogeny-based protocols

from consideration for post-quantum cryptography. Many isogeny-based schemes establish-

ing a variety of different primitives remain unaffected, including the CSIDH (Commutative

SIDH) key exchange [CLMPR18] and the SQISign [DKLPW20] signature.

In comparison to post-quantum schemes based on other mathematical problems,

isogeny-based protocols often offer more efficient communication and less bandwidth re-

quirements due to relatively small key sizes. However, the computation times of most

3

INTRODUCTION

schemes are often not competitive, and the comparative youth of the field with respect

to other disciplines of quantum-safe cryptography has lowered the community’s confidence

in these schemes. A further setback to isogeny-based cryptography has been the recent break

of SIKE, the only isogeny proposal in the “Post-Quantum Cryptography Standardization”

project by NIST [NIST16]. It is important to highlight that the SIDH attacks only impact

the security of a small proportion of isogeny-based protocols which should restore some trust

in isogeny-based cryptography in the wider cryptographic community. Nonetheless, these

attacks provide new tools for constructing further protocols, and there are still many promis-

ing schemes which offer a variety of cryptographic primitives and are unaffected by these

results. Many of these have been first introduced after the initial NIST call and thus have

not enjoyed the same popularity and scrutiny as SIDH and SIKE had as part of the process

of the standardisation project. It is imperative to keep working on improving efficiency of

such protocols as well as continue to assess and test their security so that they can provide

competitive solutions to the post-quantum challenge.

In this thesis we investigate the classical and quantum security of several protocols

relying on isogeny-based mathematical problems. In particular, we present a quantum subex-

ponential attack on SIDH for a specific set of parameters, devise classical adaptive attacks

on variants of the SIDH protocol, one using elliptic curves and one using Jacobians of genus-

2 curves, and also examine the problem of finding an isogeny between arbitrary curves of

prescribed degree. We have organised the presentation of mathematical and cryptographic

background material as well as our findings as follows.

Outline of this thesis

In Chapter 1 we begin by introducing the mathematical background necessary to under-

stand and work with isogeny-based cryptography, focusing on abelian varieties in dimensions

one and two, and isogenies between a pair of such elliptic curves or abelian surfaces.

4

INTRODUCTION

Chapter 2 will then dive more deeply into how isogenies between elliptic curves or

abelian surfaces can be utilised to design cryptographic schemes such as hash functions and

key exchange protocols. Literature relevant to the field and the schemes we focus on in the

proceeding chapters are presented; this, in particular, includes descriptions of the SIDH,

G2SIDH and Jao–Urbanik key exchange schemes.

We present our first contribution, the results of collaborative work with Péter Kutas,

Simon-Philipp Merz and Christophe Petit, published as [KMPW21], in Chapter 3. This

entails the proposal of a new attack framework which can be utilised to invert one-way

functions in quantum subexponential time. By requiring access to a malleability oracle

with respect to some commutative group action, we succeed in reducing the computation

of inverses to an instance of the hidden shift problem for which (several) subexponential

quantum algorithms [Kup05; Kup13] exist. The setting in which we deploy this attack is

overstretched SIDH. This means we manage to recover a secret kernel generator of one of

the parties in SIDH where the torsion sizes are unbalanced and also larger than in practice.

These restrictions allow us to construct a group of fixed-degree endomorphisms of the starting

curve acting on certain candidate kernel subgroups which themselves can be mapped to

their corresponding codomain curve. An attacker can use the public torsion information to

evaluate this action, modulo some heuristic assumptions, and can then reduce finding the

correct kernel to solving a hidden shift instance. This application is a new way to exploit the

additional torsion point information provided in SIDH and, though SIDH is now classically

broken, was one of the first quantum attacks on the protocol at the time. It showed that

even though supersingular elliptic curve endomorphism rings are non-commutative, SIDH

was not immune to such attacks. Though we instantiate our attack with instances derived

from isogeny-based cryptography and in particular SIDH, the framework could not only be

of interest when examining the security of newly proposed isogeny-based key exchanges such

as FESTA [BMP23] or M(D)-SIDH [FMP23], but also further other cryptanalytic efforts to

5

INTRODUCTION

achieve more efficient quantum attacks.

Chapter 4 contains cryptanalysis of the Jao–Urbanik protocol [UJ20], collaborative

work with Andrea Basso, Péter Kutas, Simon-Philipp Merz and Christophe Petit which was

published as [BKMPW20]. The scheme in question is a variant of the static-static k-SIDH

key exchange by Azarderaksh, Jao and Leonardi [AJL18] where the existence of non-scalar

automorphisms on two special supersingular elliptic curves is exploited to generate multiple

shared SIDH instances from a single pair of the two involved parties’ keys. In our adaptive

attack on the Jao–Urbanik key agreement, we manage to exploit exactly the structure under-

lying the protocol’s evolvement from k-SIDH, thus voiding its efficiency improvement even

though larger parameters were suggested to account for the possibility of such attacks. We

achieve this by utilising the relationship between kernel subgroups appearing in these related

SIDH instances instead of applying similar active attacks on SIDH and k-SIDH [GPST16;

DGLTZ20] straightforwardly, or as straightforwardly as possible, and thus significantly re-

duce the number of oracle queries necessary to recover a secret key generating an isogeny of

degree a power of two, or another small prime ℓ.

Chapter 5 focuses on examining the practicality and security of the genus-2 variant

of the SIDH protocol (G2SIDH) as proposed by Flynn and Ti [FT19; Ti19]. The results in

this chapter are based on collaborative work with Sabrina Kunzweiler and Yan Bo Ti, and

have been published as [KTW21]. The contributions of this chapter are twofold: Firstly, we

suggest that a special type of basis, a symplectic one, is used for computing G2SIDH key ex-

changes. This allows us to provide a classification of generators of (ℓn, ℓn)- and (ℓn, ℓk, ℓn−k)-

isogeny kernel subgroups which appear in G2SIDH and results in a new sampling algorithm

for secret keys. If a slight restriction of the original key space is acceptable (as it was for stan-

dard elliptic curve SIDH), this improves secret generation in comparison with the original

proposal by avoiding having to solve several linear congruences and furthermore providing

uniform sampling. Secondly, we present a polynomial-time adaptive attack on the protocol

6

INTRODUCTION

which recovers a static key through an oracle providing one bit of information per query. This

attack is not detectable by the standard checks performed to recognise maliciously generated

torsion information and is described in the case when the attacked party uses a symplectic

basis. However, should the key exchange be instantiated with an arbitrary torsion basis, the

attack is shown to be translatable to this alternative setting.

The more general problem of computing an isogeny φ of a specified degree d between

two given arbitrary but d-isogenous supersingular elliptic curves without knowledge of any

additional information (such as the action of the isogeny on specific points as was the case

in the previous chapters) is examined in Chapter 6. In particular, we utilise the speed-ups

provided by quantum routines for search and factoring [Gro96; Sho94] to improve upon the

current best (quantum) algorithm for this problem by developing an algorithm to find φ.

This algorithm is heuristic quantum-polynomial time for certain parameters, given that the

endomorphism rings of the domain and codomain curves are known. This is achieved by

computing a connecting ideal between the endomorphism rings and solving a norm equa-

tion therein. We present several different approaches to obtaining an integral solution to

this quadratic in four variables, all are based on algorithms by Cornacchia [Cor08], Copper-

smith [Cop96a] and subsequent variants, and thus provide an approach for a broader set of

parameters than was feasible until now. The results of this chapter are based on collaborative

efforts together with Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit

and Miha Stopar which have been submitted for review under the title Improved quantum

algorithms for finding fixed-degree isogenies between supersingular elliptic curves.

We conclude in Chapter 7 with some final remarks and address the question of what

will become of isogeny-based cryptography, now that the arguably most well-known and

popular protocol in the field has been broken. We will further discuss several open problems

and future research directions relating to the contents of this thesis.

7

INTRODUCTION

Contributions

We briefly summarise the contributions of this thesis.

• Building a framework for inverting malleable one-way functions in quantum subexpo-

nential time: Quantum algorithms like Kuperberg’s [Kup05; Kup13] can solve instances

of the hidden shift problem. This means that if we can reduce a problem occurring in

isogeny-based cryptography to solving a hidden shift instance, we obtain a quantum

subexponential attack. We provide conditions on the one-way function and an abelian

group acting on its domain in order to compute inverses. Though SIDH inherently

exhibits non-commutative characteristics, we artificially construct a setting from an

instance of the protocol using overstretched parameters in which we succeed to com-

pute the kernel of a secret isogeny given the domain and codomain curves as well as

the action on a large torsion subgroup.

• Cryptanalysis of SIDH-based non-interactive key exchanges: A NIKE is a crypto-

graphic primitive which requires both participating parties to have published their

public key in advance so that they can obtain a shared secret key at any point with-

out further communication between them. We show that two such protocols making

use of the SIDH construction, the Jao–Urbanik NIKE [UJ20] using supersingular el-

liptic starting curves which have non-trivial automorphisms and the static-key version

of G2SIDH [FT19] which is the natural generalisation of SIDH to using Jacobians of

hyperelliptic genus-2 curves, are vulnerable to an adaptive attack in this setting. In

fact, the decryption oracles utilised in these attacks can be viewed as oracles for the

respective version of the decisional Diffie–Hellman oracles, and the adaptive attack

then proves that the underlying computational isogeny problems can be reduced to the

corresponding decisional problems in both cases.

8

INTRODUCTION

• Analysis of maximal ℓn-isotropic subgroups of J [ℓn]: It is known that these subgroups

are exactly the kernels of isogenies which are chains of (ℓ, ℓ)-isogenies. We show that,

given a set of arbitrary generators of a subgroup in terms of a fixed symplectic basis

of the ℓn-torsion, we can normalise the generators and thus obtain canonical genera-

tors. This strategy results in a better understanding of such torsion subgroups and in

particular their classification into different types. Furthermore, our analysis leads to

an improved key generation algorithm for G2SIDH which allows for uniform sampling

from the keyspace.

• Computing isogenies of specific degree between two given supersingular elliptic curves:

The hardness of this computational problem is crucial to the security of many isogeny-

based cryptosystems. In particular, secret keys of such schemes often consist of a secret

isogeny, or the corresponding kernel subgroup, while the domain and codomain curves

as well as the degree of the isogeny are public information. Thus, finding methods

to efficiently compute isogenies satisfying the provided constraints could detrimentally

reduce the security of such schemes. We provide improved quantum algorithms which

utilise different classical strategies for solving quadratic multivariate equations over the

integers once the endomorphism rings of the given curves have been computed using the

method from [EHLMP20] with quantum speed-ups from Grover’s algorithm [Gro96].

Our algorithms provide a more efficient technique for finding fixed-degree isogenies for

certain types of parameters.

9

Part I

Background

10

CHAPTER 1

Abelian varieties & isogenies in dimensions one

and two

Throughout this thesis we will study cryptographic schemes which can be built from prop-

erties of elliptic curves and Jacobians of hyperelliptic genus-2 curves, and how these schemes

are vulnerable to both active and passive attacks. To obtain successful cryptanalytic results

it is indispensable to have a thorough understanding of abelian varieties and their properties.

We will give a brief introduction to the topic of abelian varieties of low dimension, their isoge-

nies and endomorphisms mainly following expositions in [Mum70; Mil86] on general abelian

varieties and [Sil09; Voi18] on elliptic curves. We refer the reader to these fundamental texts

for further detail.

Many of the following statements can be made generally for abelian varieties over

algebraically closed fields. With regards to our interest in applications in isogeny-based

cryptography, we focus particularly on abelian varieties which are defined over finite fields

(or their algebraic closure), i.e. fields of prime characteristic p, such that p > 3.

11

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

Notation and terminology Throughout this thesis, we will use the following notation.

For two real valued functions f, g with g(x) positive for large enough values, we write f(x) =

O(g(x)) (as x→∞) if there exists some constants c > 0 and Nc > 0 such that |f(x)| ≤ cg(x)

whenever x ≥ Nc. Hence, O(poly(x)) indicates that a quantity is asymptotically upper

bounded by a polynomial in x. Furthermore, we define f(x) = o(g(x)) (as x → ∞) to

mean that for all ϵ > 0 there exists an integer Nϵ such that |f(x)| ≤ ϵg(x) whenever

x ≥ Nϵ. We call an algorithm efficient if the execution time is bounded by a polynomial in

the security parameter of the underlying cryptographic scheme. Sometimes, we may want to

omit factors polynomial in log p, where p is the characteristic of the finite field we are working

with. In those cases, we abbreviate O(g · polylog p) by O∗(g). We say that an algorithm

is subexponential when it runs in time 2o(x) where x is the length of the input. We call a

function µ : N → R negligible if for every positive integer c there exists an integer Nc such

that |µ(x)| < x−c for every x > Nc. We call an integer B-smooth, if it only has prime factors

smaller than B. When B ≪ n, we sometimes say that the integer is “smooth”, meaning that

its smoothness bound B is in O(poly(log n)). If we say that we have oracle access to some

given function, we understand this as being able to evaluate the function efficiently for any

element in its domain of definition. More precisely, we consider the oracle to be a black box

such that a query to the oracle with a genuine input element produces the corresponding

evaluation of the function.

1.1 Abelian varieties and their isogenies

An abelian variety is a projective algebraic variety which admits a group law defined by

regular morphisms of varieties. By convention, we write this group law additively. More

precisely, let K be an algebraically closed field with charK ̸= 0. An abelian variety is then

defined as follows.

12

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

Definition 1.1 (Abelian variety). An abelian variety over K is a complete group variety A

over K, that is, A is a variety with morphisms + : A×A→ A and − : A→ A and contains

an element O ∈ A(K) such that A(K) under + and inversion − forms a group with identity

element O.

As the inversion map − is a homomorphism on A(K), the group law on an abelian

variety is commutative. For any integer N , we can define the multiplication-by-N map,

written as [N], on A which adds N copies of an element in A (and if N < 0 then negates the

result). This allows us to define the N-torsion subgroup A[N] of A as the kernel of the map

[N], or alternatively, the set of all elements of the variety having order dividing N . The set

A[N] forms a subgroup of A and its group structure depends on the genus g of A, since for

N coprime to charK, we have

A[N] := {P ∈ A(K) | [N]P = O} ∼= (Z/NZ)2g.

An isogeny is a morphism φ : A→ A′ of abelian varieties which is surjective and has

finite kernel. We call two abelian varieties isogenous if there exists an isogeny between them.

The degree of an isogeny φ is then defined as the degree of the field extension K(A)/K(A′)

defined via the embedding of the function field K(A′) into K(A) induced by the surjectivity

of φ. We say that an isogeny is separable or (purely) inseparable if this field extension is

separable or (purely) inseparable. If φ is separable, we can alternatively define degφ as the

order of kerφ when considered as a finite group scheme. Each isogeny φ can be factored

into a separable part φ1 : A → B and a purely inseparable part φ2 : B → A′ such that

φ = φ1 ◦ φ2. Note that multiplication-by-N is a separable isogeny as long as N is coprime

to charK, while the Frobenius endomorphism π on an abelian variety A/Fq which raises

points coordinatewise to the q-th power has degree qg and is purely inseparable. To each

separable isogeny φ : A→ A′, we can associate a (unique) dual isogeny φ̂ : A′ → A satisfying

13

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

degφ = deg φ̂ and that composing φ and φ̂ results in the multiplication-by-degφ map on A

and A′ respectively.

For the following exposition, we usually only consider separable isogenies and can

hence use the fact that |kerφ| = degφ. To uniquely identify such isogenies, one can utilise a

result presented in [Mum70, Theorem 4]: For an abelian variety A, there exists a one-to-one

correspondence between finite subgroups G ⊂ A and separable isogenies φ : A → A/G,

up to post-composition with an isomorphism. Hence, instead of writing out an isogeny as

a function on the elements of A, we often simply specify its kernel as a finite subgroup

of A. Let us now consider Hom(A,A′) for two abelian varieties A and A′, i.e. the group

of morphisms A → A′ which are also group homomorphisms. Then Hom(A,A′) is a free

abelian group with finitely many generators, and we denote Hom(A,A) by End(A), which

is the endomorphism ring of A.

1.2 Elliptic curves

In this section we will only focus on elliptic curves, which are smooth non-singular projective

curves of genus one, and hence one-dimensional abelian varieties. To instantiate crypto-

graphic protocols with elliptic curves and their isogenies, we need to be able to perform

computations explicitly. Hence, one is often introduced to elliptic curves as the solution set

to a (projective) algebraic plane curve defined by a polynomial of degree 3.

Let K be a finite field of prime characteristic p with q elements, i.e. K = Fq for q a

power of p > 3. Then an elliptic curve E over Fq defined by Y 2Z = X3 + AXZ2 + BZ3 for

some A,B ∈ Fq can be written in so-called short Weierstraß form 1 as y2 = x3 + Ax + B.
1Note that there are many other ways to parametrise elliptic curves instead of using the (short) Weierstraß

form as introduced here. Depending on the context in which a curves is considered, a certain curve form
might be beneficial. In particular, Montgomery curves and Edwards curves provide convenient and efficient
algorithms for certain arithmetic operations.

14

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

The Fq-points on E are then

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 + Ax+B} ∪ {O},

where O is the point at infinity denoting the point (X : Y : Z) = (0 : 1 : 0) on the associated

projective curve.

The inherent group law on E(Fq) with identity element O can also be geometrically

constructed on the set of points on E under the “chord-and-tangent rule”, however, we forgo

a precise description of this procedure here2. To categorise elliptic curves, one associates the

j-invariant defined as

j(E) = 1728
4A3

4A3 + 27B2

to a curve E. Note that this fraction is well-defined since elliptic curves are non-singular.

There exists an isomorphism f : E → E ′ between two curves E and E ′ precisely when

j(E) = j(E ′). We often omit equivalence up to isomorphism for elliptic curves, and thus

usually consider isomorphism classes of elliptic curves identified by j-invariants instead of

one specific curve in a class.

Reframing the definition of an isogeny for elliptic curves, we consider non-constant

rational maps φ : E → E ′ between two elliptic curves E and E ′ defined over Fq which are

also group homomorphisms from E(Fq) to E ′(Fq). This means in particular, that φ(O) = O.

Then two curves are isogenous if there exists an isogeny between them, which happens if

and only if |E(Fq)| = |E ′(Fq)| [Tat66]. The degree of the isogeny φ is then its degree as a

rational map. When we wish to compute an isogeny or evaluate it on specific curve points,

the degree plays an important role. For example, the well-known formulae by Vélu [Vél71]

provide an algorithm for computing the isogeny from its kernel points. This algorithm

produces an expression of the isogeny as a rational map in polynomial time if its degree is
2A detailed description can be found in [Sil09, Section III.2].

15

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

smooth. Therefore, finding an isogeny is often equated to finding its corresponding kernel

subgroup, as the isogeny can then be efficiently computed and evaluated. The state of the

art on finding isogenies between two given elliptic curves is presented later in Section 6.1.2.

Let ℓ be a prime different from p, and e ∈ Z+. Then one can define the Weil pairing

eℓe : E×E → µµµℓe , where µµµℓe denotes the set of primitive ℓe-th roots of unity, and this pairing

is bilinear, alternating and nondegenerate. For a constructive definition of this pairing, we

refer the reader to [Sil09, Section III.8]. We often make use of the following property of the

Weil pairing which follows from [Sil09, Proposition 8.2]: for an isogeny φ : E → E ′ of elliptic

curves and points P,Q ∈ E[ℓe], it holds that

eℓe(φ(P), φ(Q)) = eℓe(P,Q)
degφ, (1.1)

where the first Weil pairing is computed on E ′ and the second one on E.

The following lemma [Sil09, Chapter III, Corollary 4.11] is a useful result describing

how the isogenies corresponding to two subgroups can be related if one subgroup contains

the other:

Lemma 1.2. Let E,E1 and E2 be elliptic curves and let ϕ1 : E → E1 and ϕ2 : E → E2

be two non-constant isogenies such that kerϕ1 ⊆ kerϕ2 and ϕ1 is separable. Then there is a

unique isogeny ϕ : E1 → E2 such that ϕ2 = ϕ ◦ ϕ1.

Recall that an isogeny from E to itself is called an endomorphism. Together with

the zero map, endomorphisms of E form a ring under addition and composition denoted by

End(E) := Hom(E,E). The structure of the ring End(E) allows us to partition the set of all

elliptic curves into two parts: The first consisting of ordinary curves which, when considered

over a finite field, are characterised by having an endomorphism ring which is an order in

an imaginary quadratic number field, and hence commutative; the second encompassing the

16

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

remaining curves which all have non-commutative endomorphism rings isomorphic to orders

in a quaternion algebra. The latter elliptic curves are called supersingular.

Remark 1.3. Note that for a supersingular elliptic curve E defined over Fp, we always have

j(E) ∈ Fp2. Since there also always exists an Fp-isomorphism to a supersingular elliptic

curve which is defined over Fp2, we can consider all such elliptic curves to be defined over

Fp2 (up to isomorphism).

1.2.1 Supersingular endomorphism rings

Since the remainder of this thesis focuses strongly on supersingular elliptic curves, we now

present some properties of their endomorphism rings. More precisely, the endomorphism

rings of supersingular elliptic curves defined over fields of characteristic p are (isomorphic

to) maximal orders in the quaternion algebra ramified at p and at infinity. The following

definitions of quaternion algebras and their (maximal) orders will give more insight into the

resulting implications.

Quaternions

For p the characteristic of our base field, we set

(a, b) =



(−1,−1) if p = 2,

(−1,−p) if p ≡ 3 (mod 4),

(−2,−p) if p ≡ 5 (mod 8),

(−r,−p) if p ≡ 1 (mod 8),

where r ≡ 3 (mod 4) is a prime that is not a square modulo p. Then the quaternion algebra

(a, b | Q) is defined to be the four-dimensional Q-algebra spanned by 1, i, j, k with i2 = a

and j2 = b, and where we denote ij by k. These basis elements follow the non-commutative

multiplication rule k = ij = −ji. By our choice of a and b, this quaternion algebra is the

17

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

quaternion algebra ramified at p and ∞3 which we denote by Bp,∞. Let a1, . . . , a4 ∈ Q, and

consider the quaternion α = a1 + a2i+ a3j + a4k. Then we always have an involution

α 7→ α = a1 − a2i− a3j − a4k.

The reduced trace of an element α ∈ Bp,∞ is defined as tr(α) := α+ α and its reduced norm

is Norm(α) := αα. Recall that an order O ⊂ Bp,∞ is a Z-submodule of Bp,∞ which is also a

subring, i.e. we have 1 ∈ O and the order is closed under addition and multiplication. We

call an order maximal if it is not properly contained in any other proper, i.e. non-trivial,

order.

The Deuring correspondence

The so-called Deuring correspondence establishes a categorical equivalence between certain

objects from algebraic geometry and notions relating to quaternion algebras, providing an

important tool for linking computations of elliptic curve isogenies with quaternion compu-

tations. More precisely, Deuring [Deu41] showed that there is an equivalence of categories

of supersingular elliptic curves over Fp, together with the isogenies between them, and the

maximal orders in Bp,∞, together with the left ideals of the orders. This implies a bijection

between conjugacy classes of supersingular j-invariants and maximal orders (up to isomor-

phism), and this mapping consists of identifying a supersingular elliptic curve E with its

endomorphism ring End(E). Furthermore, if we let E/Fq and E ′/Fq be supersingular ellip-

tic curves with endomorphism rings End(E) and End(E ′) respectively which are isogenous

via φ : E → E ′, the tuple (E ′, φ) is mapped to an integral left End(E)-ideal I with right or-

der isomorphic to End(E ′). The ideal I is called a connecting ideal of End(E) and End(E ′).

By [Voi18, Lemma 42.1.11], the set of isogenies from E to E ′, Hom(E,E ′), is a left End(E)-

module and a right End(E ′)-module, and forms a Z-lattice of rank 4. In particular, this
3This means that Bν := Bp,∞ ⊗Q Qν is a division algebra only for ν = p,∞, and a matrix ring over Qν

everywhere else. More information on ramified and unramified places can be found in [Voi18, Section 14.1].

18

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

implies that finding an isogeny between two supersingular isogenous elliptic curves E and

E ′ can be solved by finding a corresponding quaternion in the Z-lattice Hom(E,E ′). This

relationship is explored for example in [KLPT14; Wes22a] and [EPSV23].

1.2.2 Isogeny graphs

Fix some prime ℓ distinct from p = charK. Then consider all elliptic curves over K up to

isomorphism, i.e. classes of isomorphic curves represented by their j-invariants. Then the

ℓ-isogeny graph Gℓ is the graph with vertices corresponding to the j-invariants, where two

vertices are joined by an edge exactly when the j-invariants represent isomorphism classes

of ℓ-isogenous curves. Note that this defines an undirected graph4 as the existence of an ℓ-

isogeny between two (isomorphism classes of) curves in one direction implies the existence of

the dual isogeny of the same degree in the opposite direction. In particular, non-backtracking

walks of length e in the ℓ-isogeny graph correspond to ℓe-isogenies between the curves corre-

sponding to the starting and end node. This graph consists of multiple components, where

each component either only includes nodes of ordinary elliptic curves or supersingular el-

liptic curves. Depending on which type of curves are displayed in a (part of the) isogeny

graph, the graph takes on different structures. For example, j-invariants of ordinary curves

together with the isogenies between them form a “volcano-like” graph [Koh96]. Meanwhile,

supersingular elliptic curves yield (ℓ + 1)-regular ℓ-isogeny graphs exhibiting properties of

expander graphs; see e.g. [ACLLNSS23] for more details. This structure has given rise to

interesting cryptographic constructions, some of which will be explored in more detail in the

next chapter.
4More precisely, the graph is undirected nearly everywhere. Exceptions occur at nodes denoting elliptic

curves with non-trivial automorphisms.

19

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

1.3 Principally polarised abelian surfaces

In the remainder of this chapter, we will focus on abelian surfaces, i.e. abelian varieties of

dimension two, and discuss isogenies more explicitly in this setting.

Again, let p and ℓ be different primes, q a power of p, and consider e to be a positive

integer. We now focus on abelian surfaces defined over the finite field Fq. Let A be such a

surface over a characteristic-p field. Firstly, we can define a notion of supersingularity in the

dimension-2 setting. In particular, we consider an abelian surface A/Fq to be supersingular if

there exists an isogeny from A to a product of supersingular elliptic curves over Fq. Further,

the subset of superspecial abelian surfaces is then characterised by surfaces A/Fq in fact being

isomorphic to this product of supersingular elliptic curves. Since we are interested in finding

the “correct”, most useful higher-dimensional analogue of a supersingular elliptic curve to

utilise for cryptographic purposes, we cannot simply work with supersingular or superspecial

abelian surfaces on their own but always have to consider a surface A together with its

canonical principal polarisation. In other words, we are mainly interested in principally

polarised abelian surfaces (PPAS), and often restrict our consideration to those which are

furthermore superspecial (PPSSAS). Let A∨ denote the dual variety of A. Then we call an

isogeny ϕL : A → A∨ induced by some ample divisor L of A a polarisation of A, and say

it is principal when this isogeny is furthermore an isomorphism between the two varieties.

Formally, a PPSSAS is hence given by a tuple (A,L) or (A, ϕL). However, since we only

consider principally polarised A in the following, we usually omit specifying the polarisation

or its induced isogeny.

Principally polarised superspecial abelian surfaces can be divided into two different

types (cf. [Wei57] on results by Torelli). For A/Fp, we either have A ∼= J where J denotes

the Jacobian of a smooth hyperelliptic genus-2 curve, or that A is isomorphic to an elliptic

curve product E1×E2. Therefore, it is possible to explicitly describe the surface A as either

20

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

being associated to the solution set of the equation C : y2 = f(x) where f is a degree-5

or degree-6 polynomial over Fp representing a genus-2 curve, or being expressed via the

equations y2 = g(x) and y2 = h(x) for some polynomials g and h of degree 3 which each

define an elliptic curve. This means that in practice, A is either parametrised componentwise

in terms of its elliptic curve factors and tuples of elliptic curve points are taken as elements

of A, or otherwise one works with degree-0 divisors of C, which are often written in Mumford

representation for convenience.

If the PPSSAS is an elliptic curve product, we represent its Fq-isomorphism class

by the (unordered) pair of j-invariants of its elliptic curve factors. The Fq-isomorphism

classes of hyperelliptic curve Jacobians are often represented by their (weighted projective)

Igusa invariants. While we often only consider the absolute Igusa invariants consisting of

an ordered triple (j1, j2, j3) ∈ F3

q for cryptographic purposes and in this thesis, a rigorous

definition of the generalisation from the (absolute Weierstraß) j-invariant can be found in

[Igu60].

1.3.1 Isogenies of PPAS

In order to define a practical notion of isogenies between principally polarised abelian sur-

faces, we will look at the kernel subgroups defining such isogenies. A particular condition on

these subgroups is dependent on the non-degenerate, alternating Weil pairing which exists

on any abelian surface A/Fq. This pairing is a map

eℓe : A[ℓ
e](Fq)× A∨[ℓe](Fq)→ µµµℓe

where A[ℓe](Fq) denotes the ℓe-torsion group of A and µµµℓe denotes the group of ℓe-th roots

of unity. Should A furthermore be principally polarised, then the isomorphism A ≃ A∨

induced by the polarisation can be used to redefine the Weil pairing eℓe on pairs of elements

21

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

in A[ℓe](Fq). Moreover the pairing is compatible, i.e.

emm′(S, T)m = em′([m]S, [m]T) for all S, T ∈ A[mm′]

for two positive integers m,m′. We can now explicitly state which criteria we need a sub-

group of a PPAS to adhere to in order to define an isogeny which preserves the principal

polarisation.

Definition 1.4 (Maximal ℓe-isotropic subgroup). Let A be an abelian variety and G be a

proper subgroup of the torsion group A[ℓe]. Then we call G a maximal ℓe-isotropic subgroup

if

(i) the ℓe-Weil pairing on A[ℓe] restricts trivially to G, and

(ii) G is a maximal subgroup with respect to Property (i).

An isogeny emanating from an abelian surfaceA whose kernel is given by a maximal ℓe-

isotropic subgroup preserves any principal polarisation of A, so that any subgroup satisfying

the above conditions for isotropy defines an isogeny between principally polarised abelian

surfaces [Mum70]. From this definition, we can see that cyclic subgroups of A will not satisfy

the maximality condition (ii). Hence, the isogenies which we are interested in do not have

kernels of rank 1. We will later see that a polarisation preserving isogeny φ : A→ A′ can have

a rank-2 or rank-3 kernel. The former isogeny is an (ℓe, ℓe)-isogeny with kerφ ∼= (Z/ℓeZ)2, the

latter is a (ℓe, ℓe−k, ℓk)-isogeny for some 1 ≤ k ≤ e/2 with kerφ ∼= Z/ℓeZ×Z/ℓe−kZ×Z/ℓeZ.

Remark 1.5. Isogenies between elliptic curves are often understood as a sequence or chain of

isogenies, each having prime degree. Similarly, we understand an isogeny ϕ : A→ A′ between

PPAS corresponding to a kernel subgroup G which is ℓe-isotropic to be the composition or

chain of e (ℓ, ℓ)-isogenies ϕ1, . . . , ϕe between intermediate varieties. Each of these shorter

isogenies corresponds to a subgroup of rank two generated by two linearly independent order-

22

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

ℓ elements. Generally, chaining e (ℓ, ℓ)-isogenies together could result in an isogeny whose

kernel subgroup is not maximal ℓe-isotropic, as this setting does not prevent us from chaining

together some intermediary (ℓ, ℓ)-isogeny directly with its dual ϕi+1 = ϕ̂i, resulting in only

composing with a multiplication map rather than extending the isogeny chain by two steps. In

most cryptographic situations we only consider isogenies which are non-backtracking in order

to prevent ambiguity arising from varying isogeny degrees or decreasing security when isogeny

chains are shorter than expected. To formally characterise maximal ℓe-isotropic kernels of

non-backtracking isogenies, we can add

(iii) G ̸⊂ A[m] for any m < ℓe

to the conditions of Definition 1.4. We will use this extended definition in the remainder of

this thesis.

1.3.2 Computing isogenies

In general, computing isogenies in the two-dimensional setting is less efficient than computing

isogenies between elliptic curves, and for quite small primes ℓ, computing (ℓ, ℓ)-isogenies is

already infeasible. However, for certain isogenies and chains of isogenies there exist compact

formulae and strategies to compute and evaluate isogenies.

Most prominently, a Richelot isogeny is a (2, 2)-isogeny from a Jacobian of a hy-

perelliptic genus-2 curve C to another with a maximal 2-isotropic subgroup of A[2] as its

kernel. Then the codomain of the isogeny, in particular the defining equation of the cor-

responding hyperelliptic curve, can be explicitly computed via quadratic splittings of the

defining polynomial of C. A general strategy for computing (ℓ, ℓ)-isogenies for ℓ ̸= 2, p is

presented by Cosset and Robert in [CR15], though the arithmetic is often performed in large

extension fields and therefore costly. Formulae for (3, 3)-isogenies have been provided by

Bruin, Flynn and Testa in [BFT14], and (5, 5)-isogenies are covered in [Fly15]. Recently,

23

1. ABELIAN VARIETIES & ISOGENIES IN DIMENSIONS ONE AND TWO

Kunzweiler [Kun22] presented a more efficient strategy for computing chains of Richelot

isogenies, and this result has been adapted for (3e, 3e)-isogenies in [DK23].

24

CHAPTER 2

Isogeny-based cryptography

Elliptic curve cryptography is a well-studied and popular area of public key cryptography. Its

schemes are currently regularly deployed in practice and rely on the hardness of pairing-based

or discrete logarithm-based problems. Schemes based on computing discrete logarithms in

the groups of elliptic curve points over finite fields, which is a foundational problem in

elliptic curve cryptography, are especially vulnerable to future quantum attacks [Sho94].

Thus, there has been a considerable effort to use alternative problems originating from

elliptic curves and higher-dimensional abelian varieties, as well as the maps between them,

to design cryptographic protocols based on problems which are assumed to be hard both

classically and quantumly. The field of isogeny-based cryptography is mainly based on the

general problem of computing an isogeny between two given, arbitrary elliptic curves (or

abelian surfaces), or variants thereof. For supersingular isogeny-based cryptography, the

pure isogeny problem is as follows.

Problem 2.1 (Pure isogeny problem). Given two supersingular elliptic curves E and E ′

defined over the field Fp2 with p2 elements, find an isogeny E → E ′.

25

2. ISOGENY-BASED CRYPTOGRAPHY

As the first known isogeny-based constructions were suggested in the mid to late

1990s and the most well-known scheme, the Supersingular Isogeny Diffie–Hellman key ex-

change [JD11], was not introduced until 2011, the field of isogeny-based cryptography is much

less mature than elliptic curve cryptography, and also most other fields providing (assumed)

quantum-safe primitives.

In 1997, a first key exchange utilising the properties of ordinary elliptic curves was

constructed by Couveignes and only disclosed to some other researchers in private [Cou97].

More generically, the author introduced the concept of a hard homogeneous space (HHS),

a framework describing a transitive action of a finite group on a set which allows efficient

algorithms for some computational problems in the group while other computational tasks

are sufficiently hard to solve. For example, one of the algorithmic requirements for the HHS

group action is that it should be easy to evaluate the group action for any given pair of a set

element and a group element while it should be hard to find a group element whose action

takes a given set element to another. It is possible to construct HHS instances from isogenies

between certain types of elliptic curves. Later, Rostovtsev and Stolbunov independently

rediscovered and further developed Couveignes’ initial proposal [RS06]. The so-called CRS

scheme makes use of the group action which can be constructed from elements of the ideal

class group acting on classes of isomorphic ordinary elliptic curves as follows.

If we denote the set of all isomorphism classes over Fq of isogenous curves with n

points and endomorphism ring O by Ellq,n(O), we can represent the isomorphism class

of a curve E in Ellq,n(O) by its j-invariant j(E). Any horizontal isogeny φ : E → Eb

between curves in Ellq,n(O) is determined by E and kerφ up to isomorphism, and the kernel

corresponds to an ideal [b] in O. Since principal ideals in O correspond to endomorphisms,

ideals that are equivalent in the ideal class group of O, Cl(O), induce the same isogeny up

to isomorphism [Wat69]. Hence, this setting describes a well-defined group action which

further satisfies the criteria to instantiate HHS as it is free and transitive and fulfills the

26

2. ISOGENY-BASED CRYPTOGRAPHY

relevant algorithmic requirements.

· : Cl(O)× Ellq,n(O)→ Ellq,n(O),

([b], j(E)) 7→ j(Eb).

The isogeny computations to evaluate the group action in this setting often have to be per-

formed over extension fields and hence this scheme is quite slow. Adapting the CRS scheme

to supersingular elliptic curves, Castryck, Lange, Martindale, Panny and Renes managed

to eliminate most of the performance issues allowing for larger practical parameters when

introducing CSIDH [CLMPR18].1 Both the CRS scheme and CSIDH have been shown to be

vulnerable to quantum algorithms devised by Childs, Jao and Soukharev which run in subex-

ponential time [CJS14] exploiting their commutative nature to reduce the underlying task

of finding the corresponding ideal [b] given two j-invariants j(E) and j(Eb) to an instance

of the hidden shift problem which can then be solved using one of Kuperberg’s subexponen-

tial quantum algorithm for solving the hidden subgroup and hidden shift problems [Kup05;

Kup13]. We describe this result in more detail in Section 3.4.

Meanwhile, the first construction using supersingular curves is the CGL hash function

developed by Charles, Lauter and Goren [CLG09] over a decade later in 2009. Given a fixed

starting curve, the hash function utilises the expander properties of supersingular isogeny

graphs to deterministically construct an isogeny walk from its input. In order to hash a mes-

sage, one converts the message into an ℓ-ary string. Then, the encoded message describes

a random, non-backtracking walk in the ℓ-isogeny graph, providing the ending curve’s j-

invariant as the hash value of the input message. In particular, each value of the encoded

message corresponds to one ℓ-isogeny emanating at first from the starting curve (where one

ℓ-isogeny is canonically discarded), and later from the intermediate curves (where one of
1Note that the CSIDH construction is strictly speaking not an instance of a hard homogeneous space as

certain algorithmic requirements are not satisfied for all elements. These issues are overcome through some
precomputation and do not affect CSIDH in practice; see Section 3.1.2 for more details.

27

2. ISOGENY-BASED CRYPTOGRAPHY

the ℓ + 1 outgoing ℓ-isogenies would be backtracking). SIDH, the Supersingular Isogeny

Diffie–Hellman key exchange [JD11], was the most prominent isogeny protocol working with

supersingular elliptic curves. Though the scheme was fully broken in 2022 (see [CD23],

[MM22; MMPPW23] or [Rob23]) its impact on isogeny-based cryptography remains funda-

mental and the results concerning its security are vital resources for further studies in the

field.

Collectively, many isogeny-based schemes for varying primitives have been introduced

and analysed, broken, discarded or fixed since the very first protocol by Couveignes. This

includes signatures, e.g [DG19] and [DKLPW20], zero-knowledge proofs, e.g. [DDGZ23],

and verifiable delay functions like [DMPS19] among many others. In this chapter we will

provide an overview of relevant isogeny-based cryptographic schemes and related results

which specifically utilise abelian varieties in dimensions one and two and are based on the

SIDH protocol. We will conclude the chapter with a section on algorithmic results for

computing isogenies between low-dimensional abelian varieties.

2.1 SIDH-based elliptic curve constructions

The Supersingular Isogeny Diffie–Hellman (SIDH) protocol introduced in 2011 by De Feo

and Jao [JD11] forms the basis of the former NIST post-quantum candidate Supersingular

Isogeny Key Encapsulation (SIKE) [JACCDHJKLLNRSU17]. Before recalling the SIDH

protocol in detail, we describe how the authors utilised the fact that quotienting out an

elliptic curve by two large only trivially intersecting subgroups is commutative to construct

a Diffie–Hellman-type key agreement. We further discuss a selection of cryptanalytic results

regarding SIDH and SIKE, as well as countermeasures for (some of) the attacks. Finally, we

introduce some of the elliptic curve schemes which are based on the fundamental SIDH idea.

28

2. ISOGENY-BASED CRYPTOGRAPHY

SIDH squares Recall that the original Diffie–Hellman protocol [DH76] is a key exchange

utilising the hardness of computing discrete logarithms in a multiplicative group G generated

by an element g of prime order p. Secret keys are then integers a and b modulo p chosen

by each of the two parties at random, and the corresponding public keys are yA = ga and

yB = gb. As exponentiation is a commutative operation in the group G, by exchanging

public keys, both Alice and Bob can compute a shared secret (ga)b = gab = (gb)a by raising

the other party’s public key to the power of their own secret key.

The idea underlying SIDH is to recreate a similar construction with random walks

in the supersingular isogeny graphs for two different small primes. In particular, one can

choose a prime p such that one of p+1 and p−1 is divisible by large powers of ℓA and ℓB and

then fix a public starting curve E/Fp2 for the two involved parties, say Alice and Bob. Now

Alice considers the starting curve as a node in the ℓA-isogeny graph and takes a random, non-

backtracking walk of length eA to an end curve EA. Meanwhile Bob considers E as part of the

ℓB-isogeny graph and takes a random walk corresponding to a ℓeBB -isogeny with codomain EB.

The parties can then exchange the j-invariants of the end curves of their walks, effectively

swapping their location nodes in their respective graphs. To complete a Diffie–Hellman-type

construction, Alice and Bob now each need to perform a walk “corresponding” to their own

secret, but this time starting from the public curve the other party provided. This procedure

should then allow both Alice and Bob to reach a shared node in their respective graphs as

the codomain of their “shifted” isogeny.

However, the Diffie–Hellman construction does not transfer to isogeny graphs as

straightforwardly as hoped since it was not known how to push forward a secret isogeny

to an arbitrary starting curve without knowing an isogeny between these two curves. Jao

and De Feo [JD11] suggest that the parties exchange some specific torsion point information,

and this additional knowledge allows both parties to actually compute a pushforward of their

secret isogeny. This process adds some additional computations to the public key generation

29

2. ISOGENY-BASED CRYPTOGRAPHY

E

EA

EB

EAB

ϕA

ϕ
B

ϕ ′
B

ϕ
′
A

Figure 2.1: SIDH isogeny square.

but means that the parties can practically “commute” function composition in this setting,

overcoming the technical difficulty of non-commutative endomorphism rings of supersingular

curves. As can be seen in Fig. 2.1, Alice and Bob jointly compute two isogenies from E to

EAB during the key exchange, one being the composition of ϕ′
B with ϕA via EA and the other

being ϕ′
A ◦ ϕB via EB. The curves and isogenies involved in one specific SIDH instance as

in the diagram are often called an SIDH square with the isogenies known to one party, i.e.

ϕX and ϕ′
X for either party X ∈ {A,B}, parallel as their domain and codomain curves are

isogenous via same-degree isogenies respectively.

The main result underlying the construction of this key exchange is that the final

elliptic curves computed by Alice and Bob belong to the same isomorphism class of super-

singular elliptic curves, allowing both parties to agree on a single j-invariant as a shared

secret. In particular, Alice and Bob compute

ϕ′
A(ϕB(E))

∼= EAB ∼= ϕ′
B(ϕA(E))

together. If PA, QA are independent generators of E[ℓeAA] such that Alice’s secret walk cor-

responds to an isogeny with kernel generated by PA + [α]QA and she is provided during the

exchange of public keys with the image of the ℓeBB -torsion generators PB, QB under Bob’s

30

2. ISOGENY-BASED CRYPTOGRAPHY

secret isogeny ϕB, then Alice can compute EAB and its j-invariant from

EAB = EB/⟨ϕB(PA) + [α]ϕB(QA)⟩.

Bob can then proceed mutatis mutandis and obtain j(EAB).

2.1.1 The SIDH protocol

In the setup phase of the original protocol as in [JD11], a supersingular elliptic curve E

defined over a field Fp2 is fixed together with a prime p. It is important that p is of the form

p = ℓeAA ℓ
eB
B f − 1, where ℓA and ℓB are two small primes and f is a small cofactor coprime to

both ℓA and ℓB. In most applications, in order to ensure similar security for both parties,

eA and eB are large integers chosen in such a way that ℓeAA ≈ ℓeBB . Fix some points PA and

QA such that they jointly generate the ℓeAA -torsion, E[ℓeAA], and similarly, ⟨PB, QB⟩ = E[ℓeBB].

Then the protocol is as follows. An overview is presented in Fig. 2.2.

1. Key Generation

• Alice selects a random cyclic subgroup GA of E[ℓeAA] of order ℓeAA . Due to the

definition of a basis, she can find integers xA, yA not both divisible by ℓA such

that A = [xA]PA + [yA]QA is a generator of GA. Alice then computes the isogeny

ϕA : E → E/GA with codomain EA := E/GA.

• Alice’s secret key is the pair (xA, yA) corresponding to GA and her public key is

the triple (j(EA), ϕA(PB), ϕA(QB)).

• Analogously, Bob selects a random cyclic order-ℓeBB subgroup GB of E[ℓeBB] gener-

ated by a point B = [xB]PB + [yB]QB defined via some positive integers xB, yB

not both divisible by ℓB. Bob computes his secret isogeny ϕB : E → E/GB with

codomain EB.

31

2. ISOGENY-BASED CRYPTOGRAPHY

E

EA

EB

EAB

ϕA

ϕ
B

ϕ ′
B

ϕ
′
A

j(EA),
ϕA(PB), ϕA(QB)

j(EB),
ϕB(PA), ϕB(QA)

Figure 2.2: The Supersingular Isogeny Diffie–Hellman (SIDH) protocol.

• Bob’s secret key is the pair (xB, yB) defining GB and his public key is the triple

(j(EB), ϕB(PA), ϕB(QA)).

2. Key Exchange

• Alice and Bob exchange their public information.

• Alice and Bob can now both compute the shared secret, the j-invariant of the

curve EAB := E/(GA, GB). This is possible utilising the combination of their

secret key and the other party’s public key, i.e. the images of the torsion points

(e.g. Alice computes ϕB(GA) as ⟨[xA]ϕB(PA) + [yA]ϕB(QA)⟩ and can then obtain

the desired curve and its j-invariant from E/⟨A,B⟩ = EB/ϕB(GA)).

In [JD11], Jao and De Feo propose that in practice, a starting curve E with j-invariant

1728 and primes ℓA = 2 and ℓB = 3 should be used as these parameters offer an efficient run

of the protocol.

Keyspace Let ℓ ∈ {ℓA, ℓB} and n be the corresponding exponent in {eA, eB}. Furthermore,

let P and Q be the generators of the ℓn-torsion. As described in the first step of the SIDH

protocol, choosing a secret SIDH key for the party using the ℓn-torsion amounts to selecting a

32

2. ISOGENY-BASED CRYPTOGRAPHY

random cyclic order-ℓn subgroup of E[ℓn], i.e. uniformly sampling an element of the keyspace

Kℓ. Then it is possible to find two integers x and y modulo Z/ℓnZ such that xP + yQ is

a generator of the selected secret subgroup. In particular, by [GPST16, Lemma 2.1], it is

possible to normalise secret keys in a large subset of Kℓ in such a way that either party can

always choose the secret integers x, y so that one of them equals 1 given that the torsion

generators P,Q must be independent by definition. Therefore it is possible to choose only a

single secret integer instead of two, resulting in the partition of the keyspace into two disjoint

subsets as follows.

Kℓ = {⟨P + [x]Q⟩ | x ∈ Z/ℓnZ} ∪ {⟨[ℓx]P +Q⟩ | x ∈ Z/ℓnZ} (2.1)

However in practice, one usually restricts the secret generation to the first type of group since

this significantly simplifies the uniform secret generation procedure while discarding only a

relatively small subset of possible keys. In [JACCDHHJKKLLNPRSU22, Section 1.3.9], it is

shown that the keyspace with this restriction in place has cardinality ℓn in comparison to the

cardinality ℓn−1(ℓ+1) of Kℓ in total generality. In particular, this implies that we can assume

Alice’s and Bob’s secret subgroups GA and GB to be generated by points A = PA + [α]QA

and B = PB + [β]QB respectively, and that we can consider their respective secrets to be

α ∈ Z/ℓeAA Z and β ∈ Z/ℓeBB Z.

Remark 2.2. Throughout this thesis, we will use several different ways to describe secret

SIDH subgroups such as via corresponding isogenies and their representations as rational

maps or integer scalars defining the kernel generators in terms of a fixed torsion basis. This

also applies for secrets in variants of the protocol introduced in the remainder of this chapter.

33

2. ISOGENY-BASED CRYPTOGRAPHY

2.1.2 Cryptanalysis of SIDH

The security of SIDH is not simply based on the hardness of Problem 2.1 as the protocol

reveals additional information which can be used by an attacker to (partially) compute a

party’s secret key. The additional knowledge which can be gathered initially is the degree

of the specific isogeny which is to be recovered. By agreeing on a prime p parametrising

the finite field to work in and specifying each party’s torsion basis, it is revealed that the

secret isogenies in a particular SIDH instance will have degrees ℓeAA and ℓeBB respectively.

Furthermore, once public information has been exchanged, an attacker can also observe the

action of the secret isogeny on the other party’s torsion subgroup. Hence, an adversary

is equipped with additional information, and the security assumption underlying the SIDH

protocol is that the supersingular computational Diffie–Hellman problem [JD11, Problem 5.3]

is computationally infeasible. With the setup and parameters as described in Section 2.1.1,

the SSCDH problem is the following.

Problem 2.3 (SSCDH problem). Let ϕA : E → EA be an isogeny with kernel ⟨PA + [α]QA⟩

for some random α ∈ Z/ℓeAA Z (and ϕB defined analogously). Then, given EA, EB as

well as the points ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA), the supersingular computational Diffie–

Hellman problem is to find the j-invariant of the curve E/⟨PA + [α]QA, PB + [β]QB⟩.

Suppose we want to recover Alice’s secret key α. As discussed previously, the (re-

duced) keyspace for SIDH in practice has size ℓeAA ≈
√
p. This is also the number of different

isogenies of degree roughly √p which need to be computed and whose codomain curves need

to be compared to the given curve. Should the two curves be isomorphic, one can check

their action on the relevant torsion group. Alternatively, one requires O(p1/4) storage and

time each to perform a meet-in-the-middle attack on SIDH: Firstly, all isogenies of degree

ℓ
eA/2
A emanating from E are computed. Secondly, one computes all isogenies of degree ℓeA/2A

emanating from the target curve EA. Then one finds the elliptic curve in the intersection

34

2. ISOGENY-BASED CRYPTOGRAPHY

of codomains of both sets of isogenies, i.e. an elliptic curve Em such that there exist iso-

genies ϕ1 : E → Em and ϕ2 : EA → Em, both of degree ℓeA/2A . In particular, this implies

that one can find the desired isogeny by concatenating the dual of ϕ2 with ϕ1 to obtain

ϕA = ϕ̂2 ◦ ϕ1 : E → EA. Note that primarily this solves the problem of finding an isogeny of

given degree between two elliptic curves without taking the additional torsion point informa-

tion provided in Problem 2.3 into account. Due to the relatively small degree of the desired

isogeny, it is however reasonable to assume that a unique isomorphism class of curves, that

of Em, will lie in the intersection of the codomain curve sets: While the total number of

isomorphism classes isogenous to E is roughly p/12 [Sil09], the isogeny between E and EA is

only of degree roughly √p, implying that there are approximately p1/4 candidates for ϕ1 and

ϕ2 each. Hence, the curve Em found “in the middle” should also lead to an isogeny matching

the torsion point information. The computational and particularly storage requirements of

these two naive attacks are infeasible, therefore, to break SIDH, more inventive techniques

than brute force, meet-in-the-middle or best-known path-finding attacks are required. We

present some of the most impactful cryptanalytic results below.

The GPST attack

One branch of cryptanalysis of the SIDH protocol focuses on exploiting the auxiliary torsion

point information provided by the honest participant(s) of the scheme to reconstruct one of

the secret isogenies. The active attack 2 on standard SIDH presented by Galbraith, Petit,

Shani and Ti (GPST) [GPST16] utilises the torsion information provided to extract Alice’s

secret key α bit by bit through multiple executions of the protocol where Bob sends changing,

malformed torsion point images. This strategy is only effective when the same static secret

key is used for multiple protocol instances and makes clear that SIDH should not be used

with static keys for non-interactive key exchange.
2An active or adaptive attack is a standard attack framework on systems where one party (usually Alice

for convenience) uses a static key (i.e. reuses their private key) and can hence be considered as an oracle for
e.g. signing or encrypting, depending on the type of cryptosystem, with a fixed secret value.

35

2. ISOGENY-BASED CRYPTOGRAPHY

Fix the primes Alice and Bob use as ℓA = 2 and ℓB = 3 in the setup of SIDH as

presented in Section 2.1.1. Suppose further that Alice uses a static secret key α which an

adversary wishes to recover. The attacker will hence take the role of Bob in the key exchange

protocol. The attack oracle with which the GPST attack can be modeled provides one bit of

information per interaction. On input of Bob’s public information (E1, R, S) together with a

candidate curve E2 for the shared secret curve, the oracle will confirm whether an execution

of the protocol with the provided public key will produce a curve with the same j-invariant

as E ′ or not. More precisely, O is defined as follows.

O(E1, (R, S), E2) =

{
1 if E2 ≃ E1/⟨R + [α]S⟩,

0 otherwise.
(2.2)

In an honest run of the protocol, the adversary first computes Bob’s public key (EB, R :=

ϕB(PA), S := ϕB(QA)) and finds the elliptic curve EAB.3 Then Bob sends several varying

queries to the oracle where the curves E1 = EB and E2 = EAB are fixed as in an honest

protocol execution, while the torsion points are maliciously changed in each step to extract

information. The adversary wants the malformed information to remain undetected and thus

must ensure that throughout the attack, all queries are valid. In particular, the attacker must

create the malformed basis elements (R′, S ′) in such a way that their Weil pairing value is

the same as e(R, S) where R and S are the points in the honest first interaction as defined

above.

If we write α as
∑eA−1

i=0 2iαi with the αi bits, the attacker determines the parity of the

secret key α in a first step by sending malformed points (R′, S ′) = (R, S+ [2eA−1]R). By the

lemma below, O(EB, (R′, S ′), EAB) = 0 then implies that α is odd, while α0 = 0 otherwise.

Lemma 2.4 ([GPST16, Lemma 2]). Let R, S ∈ E[2eA] be linearly independent points of
3Note that by construction O(EB , (R,S), EAB) = 1.

36

2. ISOGENY-BASED CRYPTOGRAPHY

order 2eA and let α ∈ Z. Then

⟨R + [α](S + [2eA−1]R)⟩ = ⟨R + [α]S⟩

if and only if α is even.

This strategy of extracting the next more significant bit of α can then be iterated for

the bits i = 1, . . . , eA−3, while the last two bits must be brute forced to avoid detection. Let

Ki denote the part of the key which has been recovered in the first i steps of the iteration.

For the i+ 1-th step, the attacker sends public information of the form

(EB, R
′ = θ(R− [2eA−i−1Ki]S), S

′ = θ([1 + 2eA−i−1]S)) (2.3)

where θ is some scaling factor ensuring that the condition on the Weil pairing, e2eA (R, S) =

e2eA (R
′, S ′), is met. The points are specifically chosen such that they are of the correct order,

satisfy the Weil pairing and reveal one bit of α per oracle query since

O(EB, (R
′, S ′), EAB) =

{
1 if ai ≡ 0 (mod 2),

0 if ai ≡ 1 (mod 2).

Computing the kernel subgroup which Alice would utilise to define ϕ′
A when provided with

Bob’s malformed information gives

⟨R′ + [α]S ′⟩ =

{ ⟨R + [α]S⟩ if ai = 0,

⟨R + [α]S + [2eA−1]S⟩ if ai = 1.

By [GPST16, Lemma 3], we know that the two subgroups are distinct, so that a case dis-

tinction can be made from the oracle’s response. This way KeA−3 can be computed, and the

authors suggest the brute force method for the two remaining bits. In total, the full recovery

of α takes less than eA queries to the oracle along with some computational efforts for the

37

2. ISOGENY-BASED CRYPTOGRAPHY

last bits.

Remark 2.5. We give some more insight via an alternative presentation of the GPST attack

in Section 5.4.2. This allows us to devise a setting in which a GPST-inspired adaptive attack

can be performed in a higher-dimensional setting; see Chapter 5.

Countermeasures With the novel SIDH attacks described in Section 2.1.2, public key

validation in SIDH is possible by simply running the attack. Until then, it used to be

unknown how a party using a static key, say Alice, could reliably confirm that a received

public key was honestly generated by Bob. This confirmation vonsisted of ensuring that

indeed R = ϕB(PA) and S = ϕB(QA) where (EB, R, S) is Bob’s public information. There

were multiple small checks Alice could perform, none of which were powerful enough to

detect the malformed points an attacker might send as part of a GPST-type attack. She

needed to confirm the following.

• R, S ∈ EB.

• The order of R and S is ℓeAA .

• R and S are independent and hence generate the ℓeAA -torsion on EB.

• The points have the correct Weil pairing value (i.e. eℓeAA (R, S) = eℓeAA
(PA, QA)

ℓ
eB
B)

Remark 2.6. The last check exploits the relationship of the Weil pairing of two points and

their images under an isogeny with the isogeny degree as described in Equation (1.1). The

Weil pairing can also be used to check for independence of the points, rendering the previous

check redundant.

The only effective way to prevent adaptive attacks on static keys was to choose new

ephemeral keys for each instance of the SIDH protocol. In [JACCDHJKLLNRSU17], a

version of the Fujisaki–Okamoto transform due to Hofheinz, Hövelmanns and Kiltz [HHK17]

38

2. ISOGENY-BASED CRYPTOGRAPHY

is used to design an IND-CCA secure key encapsulation mechanism based on SIDH which

is called SIKE (Supersingular Isogeny Key Encapsulation). SIKE does not support the use

of static keys, hence some further adaptations of the original SIDH protocol try to rectify

this issue while analogously hindering the above attacks. Two of these non-interactive key

exchange protocols are presented in Section 2.1.4.

Petit’s torsion point attack

Another class of attacks on the (assumed) hard problem underlying SIDH is to compute

endomorphism rings of the public curves involved from the provided torsion information.

Knowledge of the structure of a curve’s endomorphism ring, or even partial information on it,

can make solving the explicit problem at the core of a protocol execution much simpler. The

reason for wanting to compute (low-degree) endomorphisms of supersingular elliptic curves

is that they allow an attacker to make deductions about the isogeny graph. This is due to

the Deuring correspondence (Section 1.2.1) which allows an attacker to translate the task of

computing an isogeny to an equivalent task of finding a connecting ideal between maximal

orders. An algorithm to compute a connecting ideal of prime power norm in polynomial time

has been developed by Kohel, Lauter, Petit and Tignol (KLPT) [KLPT14]. However, the

isogenies determined by the resulting ideals do not satisfy the degree requirements specified

by the SIDH protocol as they are usually too large and the algorithm can therefore not solve

the isogeny problem underlying SIDH directly. Thus, this group of attacks on SIDH consist

roughly of first computing an endomorphism θ of desirable degree on the starting curve E.

One can then shift θ to the curve E ′ along the secret isogeny φ : E → E ′ by computing a

so-called shifted “lollipop” endomorphism of E ′: One composes θ with the secret isogeny and

its dual and shifts it by some integer to obtain τ = φ̂◦ θ ◦φ+[d]. Then due to clever choices

of θ and the unbalancedness of the parameters in the scheme, kerφ can be extracted.

The first passive attack realising this idea was introduced by Petit [Pet17] and it suc-

39

2. ISOGENY-BASED CRYPTOGRAPHY

ceeds when SIDH is performed with non-standard parameters. In contrast to the suggestion

of [JD11] to use balanced parameters where ℓeAA ≈ ℓeBB ≈
√
p, the Petit attack requires un-

balanced torsion sizes, i.e. the (prime power) order of one torsion must be sufficiently larger

than the other. In [QKLMPPS21], the required size and unbalancedness of the parameters

is reduced in general and it is highlighted that a torsion point attack is feasible on balanced

parameter sets for very specific choices of primes. Further improvements to the performance

of these torsion point attacks have been made in [QKLMPPS21] and [FKMT22].

Full key recovery

Recently, several results have emerged relying mainly on a theorem by Kani [Kan97] about

gluing and splitting isogenies of abelian surfaces. Informally, this theorem provides a criterion

to determine whether an (N,N)-isogeny φ : E1×E2 → A between abelian surfaces with the

domain being an elliptic product also has a product of elliptic curves as a codomain. Due

to the small proportion of elliptic curve products among all principally polarised abelian

surfaces, it is highly unlikely that a random walk in the isogeny graph ends with an isogeny

to a split surface.4 To make the deduction of whether A is an elliptic product via Kani’s

theorem, one needs to examine the kernel of the isogeny, kerφ =: H, and determine if it

corresponds to an order-N isogeny diamond configuration.

Definition 2.7 (Isogeny diamond configuration of order N). Let N be a positive integer and

ϕ : C → E a (separable) isogeny between elliptic curves. Now consider two only trivially

intersecting subgroups G1, G2 ⊂ kerϕ such that |G1| · |G2| = deg ϕ and |G1| + |G2| = N .

Then the triple (ϕ,G1, G2) is an isogeny diamond configuration of order N .

More precisely, checking whetherH defines an isogeny between elliptic products means
4More precisely, Castryck, Decru and Smith show the following in [CDS20, Section 4]: When considering

principally polarised abelian surfaces defined over Fp2 for large p, there are approximately p2/288 elliptic
curve products in comparison to the roughly p3/2880 Jacobians of hyperelliptic genus-2 curves among all
such surfaces. Hence, the proportion becomes negligible when cryptographically-sized primes are considered.

40

2. ISOGENY-BASED CRYPTOGRAPHY

testing whether H is a group of the form

H = ⟨(P, xϕ(P)), (Q, xϕ(Q))⟩

for P,Q a basis of an E1-torsion coprime to N , ϕ : E1 → E2, and some invertible x ∈ Z,

forming an N -isogeny diamond configuration with some subgroups G1, G2 of kerϕ. If so, A

is a split surface obtained from a product of two elliptic curves.

It is possible to manipulate the setting of a traditional SIDH instance by constructing

auxiliary curves and isogenies related to the curves known to an attacker in such a way

that one can iteratively guess isogenies of increasing lengths and test whether they yield an

isogeny between elliptic curve products as described above.

This strategy was first introduced in [CD23], where the authors manage to recover

Alice’s secret keys for all security level parameter sets provided for SIKE with very small

computational and time resources. Concretely, Castryck and Decru show that if SIDH and

related schemes are instantiated with a starting elliptic curve E such that its endomorphism

ring is known, as is the case for SIKE for example, an attacker can recover a secret SIDH

isogeny in polynomial time under certain heuristics. A similar attack has independently

been described by Maino and Martindale [MM22] and others [MMPPW23] where a more

direct strategy for starting curves with known endomorphism ring is proposed to improve

performance and the attack is generalised to curves for which the endomorphism ring is

unknown or cannot be efficiently represented. Robert [Rob23; Rob22] shortly thereafter

managed to generalise the strategy further: Firstly, the author shows that key recovery is

possible in deterministic polynomial time regardless of which supersingular elliptic curve

is chosen as the starting curve E in the SIDH parameters. In particular, it is no longer

necessary to know EndE to perform the attack. This result stems from Robert’s concept of

a more general framework embedding varieties and isogenies in 2g dimensions, e.g. abelian

41

2. ISOGENY-BASED CRYPTOGRAPHY

varieties of the form Eg×Eg
B and isogenies emanating from them, instead of the 2-dimensional

setting explored in the previous attacks. In particular, using varieties in 4 or 8 dimensions

allows breaking SIDH for parameters which were infeasible due to constraints on computing

isogenies of non-smooth degrees. Secondly, Robert shows that polynomial-time attacks can

(theoretically) be performed on higher-dimensional variants of elliptic curve SIDH such as

G2SIDH which instantiates the protocol with two-dimensional abelian varieties instead of

elliptic curves; see Section 2.2.1.

2.1.3 Fixing SIDH

As shown in the previous section, the SIDH protocol is vulnerable to both active and pas-

sive attacks. In particular, since the first result introducing the family of Castryck–Decru

attacks was published in 2022, SIDH and SIKE are fully broken and no longer recommended

for secure key exchange or encapsulation. In order to preserve SIDH-based cryptographic

protocols, some candidate variants of SIDH have been proposed to prevent revealing as much

torsion point information as is needed for the efficient attacks of Section 2.1.2. We briefly

present two approaches for repairing SIDH below.

The first idea is due to Fouotsa, Moriya and Petit [Fou22; Mor22; FMP23] and consists

of obscuring the information contained in a public key in order to prevent efficient attacks

utilising Kani’s theorem. In particular, the authors introduce the M-SIDH and MD-SIDH

protocols which are based on scaling and hence masking the torsion point images provided

and computing variable-degree isogenies and hence masking isogeny degrees respectively.

Masking torsion points in both parties’ public keys reduces to scaling the usual points

computed in SIDH by a random secret integer. To prevent the recovery of this secret scaler

by an attacker, the authors require the (fixed) isogeny degrees to have a large number of

distinct prime factors, leading M-SIDH to work with isogeny degrees which are not prime-

42

2. ISOGENY-BASED CRYPTOGRAPHY

powers as in SIDH originally. For MD-SIDH, instead of always using isogenies of degree

ℓeAA or ℓeBB , one selects isogeny degrees uniformly at random from divisors of a fixed maximal

composite degree. This means that, again, the degrees of the involved isogenies are no longer

prime powers but products of several prime powers. Additionally, torsion points are scaled

to obscure the isogeny degrees further. It follows that an adversary cannot launch Castryck–

Decry-type attacks unless they have recovered the isogeny degree first. Note however, that

computing the Weil pairing of the two points in a public key still reveals some information

about the degree used, implying that the number of distinct primes dividing the isogeny

degrees and parameters in general need to be large to ensure security. Hence, M-SIDH and

MD-SIDH are significantly less efficient than SIDH.

Another recent idea of repairing the SIDH construction is to consider artificial orienta-

tions of supersingular elliptic curves and associated isogenies for the protocol. In [BF23], the

authors present the binSIDH and terSIDH protocols which utilise such artificial orientations

and work with fixed-degree and variable-degree isogenies respectively. In comparison to the

other fixes above, the implementation results of [BF23], especially for the latter protocol,

seem to indicate the possibility of terSIDH being a more efficient key exchange.

Let N be a positive integer. Then Basso and Fouotsa define an artificial N -orientation

on a supersingular curve E to be a pair of cyclic subgroups of order N in E[N] which

only intersect trivially. For an artificial N -orientation (G,H), isogenies associated to the

orientation can be defined as isogenies ϕ such that kerϕ is a cyclic subgroup of G⊕H. This

implies that the isogeny can be decomposed into isogenies of coprime degrees as ϕ = ϕH ◦ϕG

with kerϕG ⊂ G and kerϕH ⊂ H. Such artificial orientations reveal less information than

“real” orientations (as for example defined in [CK20]) but suffice for constructing parallel

isogenies as they are required to complete an SIDH square: Suppose SIDH is instantiated

with supersingular elliptic curves equipped with artificial orientations for Bob and Alice,

and both parties use artificially oriented isogenies. While a party in the original SIDH

43

2. ISOGENY-BASED CRYPTOGRAPHY

protocol, say Alice, requires specific torsion point images under Bob’s isogeny ϕB to push

forward her isogeny ϕA to obtain the isogeny ϕ′
A emanating from EB for completing the

shared secret computation, if isogenies associated to artificial orientations on E are used,

only the oriented isogenies need to be pushed forward. This means only the images on two

cyclic torsion subgroups need to be communicated. It is expected that this information is

not sufficient to launch attacks like those discussed in Section 2.1.2.

Overall, the new attacks on SIDH provide a new understanding of certain isogeny

problems with torsion information and thus have a significant cryptanalytic impact on

isogeny-based schemes. As described above, there are already some promising ways to repair

the SIDH construction, but the discovery of efficient ways to compute isogenies between

supersingular curves only given their degree and enough torsion information creates another

opportunity for isogeny-based cryptography: These new techniques could be used construc-

tively to build new isogeny-based encryption or other schemes as has been done for example

from Petit’s torsion attacks [Pet17].

2.1.4 Protocol variants

Many isogeny-based schemes have been constructed which are utilising the commutativity

achieved in the SIDH isogeny square by providing additional torsion point information.

This has included schemes covering several cryptographic primitives, and specifically ones

proposed with the aim of preventing adaptive attacks even in the static-static setting of a

non-interactive key exchange (NIKE). Although these variants are also broken by the full

key recovery attacks on SIDH, they can a priori be fixed with similar techniques. We will

present two such key exchange protocols which are closely related to SIDH, k-SIDH and a

variant due to Urbanik and Jao.

44

2. ISOGENY-BASED CRYPTOGRAPHY

k-SIDH

As a reaction to the active GPST attacks on the SIDH protocol, Azarderakhsh, Jao and

Leonardi [AJL18] developed a generic transformation which allows one to construct a static-

static key agreement from a key exchange scheme which had previously shown vulnerabilities

to adaptive attacks on static keys. In particular, this transformation can be applied to SIDH

to obtain the so-called k-SIDH protocol. This modification was believed to be secure against

active attacks, and its passive security relies on the passive security of the underlying key

agreement, SIDH. However, in the case of SIDH and k-SIDH, active security then comes at

the price of significant loss of efficiency, since the main idea is combining secret information

from multiple protocol instances into a shared secret in such a way that attacking individual

instances via the known active attacks is computationally infeasible.

With the set-up being as in the original SIDH protocol, both parties first agree on a

supersingular elliptic curve E defined over a field Fp2 where the prime p is chosen to be of the

form p = 2eA3eBf ± 1, together with bases for the 2eA-torsion and the 3eB -torsion of E. Let

these bases be denoted by {PA, QA} and {PB, QB} respectively. For some positive integer k,

Alice and Bob then both choose k random secret integers which each generate a secret kernel

subgroup and corresponding isogeny. Each party thus obtains a tuple of k separate SIDH

public keys as their k-SIDH public information. For each of the k2 possible combinations of

their secret integers, Alice and Bob now perform an SIDH-type key agreement. Let H be a

hash function exhibiting preimage-resistance. Then the ley exchange is executed as follows.

1. Key Generation

• Alice selects k secret integers modulo 2eA , α(1), . . . , α(k), and for each secret value

computes the corresponding isogeny ϕA,r with codomain curve E(r)
A = E/⟨PA +

[α(r)]QA⟩.

45

2. ISOGENY-BASED CRYPTOGRAPHY

• Alice’s secret key is then (α(1), . . . , α(k)) while her public key is

(E
(1)
A , ϕA,1(PB), ϕA,1(QB)), . . . , (E

(k)
A , ϕA,k(PB), ϕA,k(QB)).

• Bob similarly selects k secret integers modulo 3eB , β(1), . . . , β(k), and computes

the the corresponding isogenies ϕB,r along with their codomain curves E(r)
B =

E/⟨PB + [β(r)]QB⟩.

• Bob’s secret key is (β(1), . . . , β(k)) and his public key is

(E
(1)
B , ϕB,1(PA), ϕB,1(QA)), . . . , (E

(k)
B , ϕB,k(PA), ϕB,k(QA)).

2. Key Exchange

• Alice sends her public key to Bob, and Bob responds with his own public key.

• For every two public curves E(r)
A , E

(s)
B for 1 ≤ r, s ≤ k, Alice and Bob each compute

the j-invariant jr,s of the elliptic curve which would be the resulting shared secret

of a regular SIDH key exchange instance involving the pair of curves.

• The hash h = H(j1,1||j1,2|| . . . ||jk,k) of the concatenation of all the shared j-

invariants is then used as the shared secret between Alice and Bob.

For verification of the public information received from another party, it is checked

whether the torsion images supplied are independent and of the correct order, and whether

their Weil pairing is of the correct value. Furthermore, they exchange hashes of their shared

secret which allows both parties to verify if they agree on the final hash value h.

46

2. ISOGENY-BASED CRYPTOGRAPHY

The Jao–Urbanik NIKE

Jao and Urbanik [UJ20] proposed that the non-trivial automorphisms which exist on specific

classes of supersingular elliptic curves could be used to design another version of a non-

interactive key exchange based on SIDH in the hopes of reducing the computational cost

associated to k-SIDH. The inefficiency of k-SIDH stems in part from the fact that key

sizes are increased by a factor of k and computation times are increased by a factor of k2

in comparison to SIDH. Hence, Jao–Urbanik proposed using special starting curves in the

protocol which would allow both parties to construct one or two related SIDH instances for

every pair of secret keys. This is possible due to the existence of non-trivial automorphisms

which facilitate the translation of a single secret kernel to one or more isomorphic curves,

effectively thus defining distinct isogenies which can lead to distinct shared j-invariants.

Recall that an automorphism of an elliptic curve E is an invertible map E → E

which is further a group homomorphism. In the general case, an automorphism η of a curve

E/Fp2 can either be the identity map η(P) = P , or the negation map η(P) = −P for all

P ∈ E. However, when considering an SIDH-type prime p satisfying p ≡ 2 (mod 3) and

p ≡ 3 (mod 4), there do exist two isomorphism classes of supersingular curves which have

additional automorphisms distinct from the identity and negation maps which are always

present: the classes characterised by j-invariants j = 0 and j = 1728. For curves with

j-invariant j(E) = 0, there exists an order-6 automorphism η6 of defined by

η6 : E → E

(x, y) 7→ (ζ3x,−y)

where ζ3 denotes a primitive third root of unity. The automorphism satisfies the equations

η36 = −1 and η26 = η6−1. For curves with j-invariant j(E) = 1728, we have an automorphism

η4 of order four explicitly given by η4(x, y) = (−x, iy). To maximise efficiency, using the

47

2. ISOGENY-BASED CRYPTOGRAPHY

former as starting curves is advised by the authors. Thus, we centre our discussion in the

following around curves with j-invariant 0 and automorphism η6.

Let E be such a curve of j-invariant J(E) = 0. Hence, E is equal or isomorphic to

E0 : y2 = x3 + 1. Since there exists η6 as an order-6 automorphism on E, we can observe

the following behaviour which will aid in the construction of the Jao–Urbanik protocol.

Lemma 2.8. Let G ⊆ E be a cyclic subgroup of order 2eA of a supersingular elliptic curve

E/Fp2 with j(E) = 0 as before. Then η6(G) and η26(G) are also subgroups of E, and the

three subgroups are all distinct.

Proof. It is obvious that the image of a subgroup of E under a group homomorphism will

be a subgroup. To prove that the subgroups G and η6(G) are distinct, assume the opposite.

If η6(G) = G for G cyclic, then there exists some odd k for which G ⊆ ker(η6 + k). Since

deg(η6) = tr(η6) = 1 is implied by η26 − η6 + 1 = 0, we then have

deg(η6 + k) = (η6 + k)(η̄6 + k) = deg(η6) + k tr(η6) + k2 = 1 + k + k2.

As k is odd, deg(η6 + k) is also odd. This is impossible as it hence is not divisible by 2eA

as implied by G ⊆ ker(η6 + k). Analogous arguments show that η6(G) and η26(G), as well as

η26(G) and G = −G are pairwise distinct.

Lemma 2.8 is an extension and formalisation of the statement of [BKMPW20, Foot-

note 2]. Note that an analogous result can be stated for subgroups of a different prime power

order, therefore we can deduce that the isogenies emanating from E which correspond to

the three different kernels G as well as the images of G under different powers of the au-

tomorphism η6 respectively are all distinct, the associated codomain curves are isomorphic

however. As an example, observe that an isogeny φ : E → E/G with kernel G while the

map φ ◦ η−1
6 : E → E/G is obtained by quotienting out E with η6(G). We can thus deduce

48

2. ISOGENY-BASED CRYPTOGRAPHY

that E/G ∼= E/η6(G).

Suppose Alice has generated a secret key for SIDH with the starting curve E and

sends her public key (EA, ϕA(PB), ϕA(QB)) to Bob. We can then extract two more distinct

but related SIDH public keys from this single public key with the help of η6. All three

public codomain curves E/⟨A⟩ ∼= E/⟨η6(A)⟩ ∼= E/⟨η26(A)⟩ are isomorphic, and therefore

collectively have one j-invariant, while each of the isogenies associated to the public keys are

not. An analogous argument can be made for Bob’s public information. We now formally

prove [ACLLNSS23, Lemma 6].

Lemma 2.9. Suppose a base curve E with j(E) = 0 together with the parameters as suggested

by Jao and Urbanik [UJ20] is used for SIDH. Then a single exchange of Alice’s and Bob’s

SIDH public keys pkA = (EA, ϕA(PB), ϕA(QB)) and pkB = (EB, ϕB(PA), ϕB(QA)), where

{PA, QA = η6(PA)} and {PB, QB = η6(PB)} are bases of E[2eA] and E[3eB] respectively,

yields three shared secret (isomorphism classes of) curves.

Proof. Let α and β be Alice’s and Bob’s respective secret keys, such that EA = E/⟨A⟩

and EB = E/⟨B⟩ for their respective secret kernel generators A = [α]PA + QA and B =

[β]PB + QB. Then their secret isogenies ϕA, ϕB map E to EA and EB respectively. Define

related isogenies

ϕ′
A := ϕA ◦ η−1

6 , ϕ′′
A := ϕA ◦ η−2

6 , ϕ′
B := ϕB ◦ η−2

6 , ϕ′′
B := ϕB ◦ η−1

6 ,

which map E to E/⟨η26(A)⟩, E/⟨η6(A)⟩, E/⟨η6(B)⟩ and E/⟨η26(B)⟩ respectively. The proper-

ties of η6 and her knowledge of pkB then allow Alice to compute the images of her chosen

torsion points under ϕ′
B and ϕ′′

B as ϕ′
B(PA) = −ϕB(QA), ϕ

′
B(QA) = ϕB(PA) − ϕB(QA) and

ϕ′′
B(PA) = ϕB(PA) − ϕB(QA), ϕ

′′
B(QA) = ϕB(PA). Similarly, Bob can use pkA to compute

ϕ′
A(PB) = ϕA(PB), ϕ

′
A(QB) = ϕA(PB) and ϕ′′

A(PB) = −ϕA(QB), ϕ
′′
A(QB) = ϕA(PB)−ϕA(QB).

49

2. ISOGENY-BASED CRYPTOGRAPHY

Alice and Bob then perform three standard SIDH-instances, first using the given

public keys pkA, pkB, and then using the computed torsion point images under ϕ′
A, ϕ

′
B and

ϕ′′
A, ϕ

′′
B respectively.

Alice obtains three curves by computing the curves

EB/⟨[α]ϕB(PA) + ϕB(QA)⟩ =E/⟨A,B⟩,

EB/⟨[α]ϕ′
B(PA) + ϕ′

B(QA)⟩ = EB/⟨−ϕB(PA) + [1 + α]ϕB(QA)⟩ =E/⟨η26(A), B⟩, and

EB/⟨[α]ϕ′′
B(PA) + ϕ′′

B(QA)⟩ = EB/⟨−[1 + α]ϕB(PA) + [α]ϕB(QA)⟩ =E/⟨η6(A), B⟩

in turn. Similarly, Bob computes three curves as EA/⟨[β]ϕA(PB)+ϕA(QB)⟩, EA/⟨[β]ϕ′
A(PB)+

ϕ′
A(QB)⟩ = EA/⟨−[1 + β]ϕA(PB) + [β]ϕA(QB)⟩ = E/⟨A, η6(B)⟩ and EA/⟨[β]ϕ′′

A(PB) +

ϕ′′
A(QB)⟩ = EA/⟨η6(B)⟩. Since the quotients of the latter two curves only differ by an

application of η6 from those computed by Alice, they obtain the three shared isomorphism

classes of curves

E/⟨A,B⟩, E/⟨A, η6(B)⟩ ∼= E/⟨η26(A), B⟩ and E/⟨A, η26(B)⟩ ∼= E/⟨η6(A), B⟩.

It follows that per public key pair in the Jao–Urbanik scheme, Alice and Bob obtain

three different SIDH squares and resulting shared secret curves which are identified by their

j-invariants. Hence, using the Jao–Urbanik technique with k public keys per party, the

shared secret can be computed from the j-invariants of 3k2 shared secret curves instead of

k2 curves as in standard k-SIDH. In particular, the secret information shared by both parties

is

h = H(j1,1||j′1,1||j′′1,1|| . . . ||jk,k||j′k,k||j′′k,k),

50

2. ISOGENY-BASED CRYPTOGRAPHY

where || denotes the concatenation of the invariants jr,s, j′r,s and j′′r,s. The resulting protocol

can be described as follows (and is further visualised in Fig. 4.1).

The set-up is again similar to that in SIDH, where the prime is p = ℓeAA ℓ
eB
B f ± 1, and

often ℓA = 2 and ℓB = 3 for efficiency. For the Jao–Urbanik protocol one then selects a curve

E with j(E) ∈ {0, 1728}, and the corresponding non-trivial automorphism η ∈ {η6, η4}.

Bases of the relevant torsion subgroups are then fixed such that {PA, QA = η6(PA)} and

{PB, QB = η6(PB)}. Suppose we have selected E = E0 with η = η6.

1. Key Generation

• Alice selects k secret integers modulo 2eA , α(1), . . . , α(k), and computes the corre-

sponding isogenies ϕA,r together with their codomains E(r)
A = E/⟨[α(r)]PA +QA⟩.

• Alice’s secret key is then (α(1), . . . , α(k)), while

(E
(1)
A , ϕA,1(PB), ϕA,1(QB)), . . . , (E

(k)
A , ϕA,k(PB), ϕA,k(QB))

denotes her public key.

• Bob also selects k different secret integers modulo 3eB , β(1), . . . , β(k), and com-

putes the corresponding isogenies ϕB,r along with their codomain curves E(r)
B =

E/⟨[β(r)]PB +QB⟩.

• Bob’s secret key is (β(1), . . . , β(k)) and his public key is

(E
(1)
B , ϕB,1(PA), ϕB,1(QA)), . . . , (E

(k)
B , ϕB,k(PA), ϕB,k(QA)).

2. Key Exchange

• Alice sends her public key to Bob, and Bob sends his public key to Alice.

51

2. ISOGENY-BASED CRYPTOGRAPHY

• For each pair E(r)
A , E

(s)
B , 1 ≤ r, s ≤ k, Alice and Bob perform the computations re-

quired to obtain the j-invariants jr,s, j′r,s and j′′r,s of the three resulting shared secret

curves. Alice computes jr,s as the j-invariant of the curve E(s)
B /⟨[α(r)]ϕB,s(PA) +

ϕB,s(QA)⟩, while Bob computes it via E(r)
A /⟨[β(s)]ϕA,r(PB)+ϕA,r(QB)⟩. The curves

corresponding to j′r,s are computed as E(s)
B /⟨−ϕB,s(PA) + [α(r) + 1]ϕB,s(QA)⟩ and

E
(r)
A /⟨−[β(s) +1]ϕA,r(PB)+ [β(s)]ϕA,r(QB)⟩. The remaining j-invariant j′′r,s is that

of curves E(s)
B /⟨−[α(r)+1]ϕB,s(PA)+[α(r)]ϕB,s(QA)⟩ and E(r)

A /⟨−ϕA,r(PB)+[β(s)+

1]ϕA,r(QB)⟩.

• Hashing the concatenation of the shared j-invariants then gives the secret infor-

mation shared by Alice and Bob, h = H(j1,1||j′1,1||j′′1,1|| . . . ||j′′k,k).

2.2 Genus-2 SIDH

In an attempt to mirror improvements made in elliptic curve cryptography by generalising

schemes to using hyperelliptic curves, some schemes originating from isogeny-based elliptic

curve cryptography have been modified to using isogenies between higher-dimensional abelian

varieties. The shift to considering hyperelliptic curves instead of solely elliptic curves for find-

ing abelian groups suitable for cryptography since the discrete logarithm problem seemed

intractable therein was first suggested by Koblitz [Kob89] with the purpose of improving

computational efficiency and increasing the choice of groups for such cryptographic appli-

cations. For discrete logarithm uses, for example, Jacobians of genus-2 curves yield groups

of order double the bit-length of elliptic curve groups over the same finite field so that in

many applications genus-2 curves are competitive since primes of half the size can be used to

provide the same security level. Evidently, the higher-dimensional setting is only preferable

if more complicated arithmetic is acceptable during the execution of the protocol.5 The mo-
5Note that for hyperelliptic curves of genus g ≥ 3, there exist index calculus attacks [GTTD07] which

would require parameters to be scaled to sizes that no longer make the genus-g settings attractive.

52

2. ISOGENY-BASED CRYPTOGRAPHY

tivation for considering isogenies between hyperelliptic curves rather than isogenies simply

between elliptic curves is similar, with the expected potential for at least equally as useful

trade-offs.

As a first step, in [CGL09], the authors of the CGL hash function briefly explain how

their original construction can be used to describe collision-resistant hash functions using any

general graph with certain expansion properties, thus implying that supersingular (or, indeed,

superspecial) graphs of higher-genus curves can yield further instantiations of the hash. (This

idea was formalised in [Tak18] and its issues surrounding collision resistance were fixed in

[FT19].) While the size of the supersingular isogeny graph over characteristic p is O(p),

abelian surfaces provide a graph with O(p3) nodes. More precisely, each (isomorphism class of

a) supersingular elliptic curve has exactly three neighbours in the 2-isogeny graph while each

node in the Richelot isogeny graph depicting (2, 2)-isogenies between principally polarised

supersingular (or superspecial) abelian surfaces has 15 neighbouring (classes of) curves. This

difference scales proportionally for larger primes ℓ. Each step in the graph for computing

the hash function chooses (for reasons related to non-backtracking and avoiding collisions

via simple cycle-construction; see [FT19] and [CDS20]) between two or eight neighbouring

curves, respectively, and therefore, might amount to one bit of entropy in the former case

compared to up to three bits in the latter. Hence, if one assumes that all computational

procedures can be easily translated to the genus-2 case without significant loss in efficiency6,

one could hope for reducing down the finite field characteristic to a third of the bit-length for

similar security as in the elliptic curve isogeny case. Note that theoretically, this reduction

is even more significant when higher genus curves are used. Hence, it seems promising to

examine existing isogeny-based cryptosystems which currently use elliptic curve isogenies,

as well as known attacks, for use with general abelian varieties.

In this section, we present a natural generalisation of the SIDH key exchange scheme
6This is not yet possible, especially when using (ℓ, ℓ)-isogeny chains where ℓ ̸= 2, 3.

53

2. ISOGENY-BASED CRYPTOGRAPHY

to the two-dimensional setting with principally polarised abelian surfaces, Genus-2 SIDH or

G2SIDH, as first proposed by Flynn and Ti [FT19; Ti19]. We also explain the complicated

key generation procedure.

2.2.1 The Genus-2 SIDH protocol

As part of the setup for the key exchange scheme, one is required to choose a prime which is

of the usual form, i.e. p = 2eA · 3eB · f − 1 where 2eA ≈ 3eB and f is a small, positive integer

coprime to 2 and 3.7 To select the base abelian variety, a PPSSAS is constructed as follows.

Define H to be the hyperelliptic curve given by

H : y2 = x6 + 1 ,

which is a double cover of the genus-1 elliptic curve E : y2 = x3 + 1 via

ϕ1 : E → H and ϕ2 : E → H

(x, y) 7→ (x1/2, y), (x, y) 7→ (x−1/2, yx−3/2).

As shown in [CF96, p. 155], the ϕi induce a (2, 2)-isogeny from the elliptic product E2 to

the Jacobian of H, JH .

Due to the choice of prime p ≡ 2 (mod 3) and the criterion of [Sil09, Theorem V.4.1(a)],

E is a supersingular curve with (p + 1)2 elements. Therefore, the Jacobian JH = Jac(H) is

a principally polarised superspecial abelian surface, as desired. By [Tat66, Theorem 1], JH

is of cardinality (p+ 1)4, so that JH(Fp2) = JH [2
eA]× JH [3eB]× JH [f] as a group.

Finally, a random principally polarised superspecial abelian surface J is found as the
7Due to practical restrictions when computing (ℓ, ℓ)-isogenies for arbitrary primes ℓ and the standard

prime choices made for SIKE, Flynn and Ti only suggest using primes 2 and 3. Theoretically, other choices
of primes are possible.

54

2. ISOGENY-BASED CRYPTOGRAPHY

endpoint of a short random walk in the (2, 2)-isogeny graph. Torsion bases P1, P2, P3, P4 and

R1, R2, R3, R4, all defined over Fp2 , are fixed for J [2eA] and J [3eB]. Then the key exchange

proceeds as follows. An overview of the protocol is given in Fig. 2.3. More details of the

secret key generation are provided in Section 2.2.2.

1. Key Generation

• Alice chooses a random maximal 2eA-isotropic subgroup GA of J [2eA] correspond-

ing to a 12-tuple of secret scalars αi,j defining the generators of GA in terms of

the torsion basis Pi and computes the (2eA , 2eA)-isogeny ϕA : J → J/GA =: JA.

• Alice’s secret key are the scalars αi,j (or a different representation of the same

information, such as GA), and her public key is the tuple

(
JA, ϕA(R1), ϕA(R2), ϕA(R3), ϕA(R4)

)
,

where JA is characterised through the Igusa variants.

• Similarly, Bob chooses a random maximal 3eB -isotropic subgroup GB of J [3eB]

corresponding to scalars βi,j as his secret key and computes the (3eB , 3eB)-isogeny

ϕB : J → J/GB =: JB.

• Bob’s secret key are the scalars βi,j (or an alternative representation), and his

public key is the tuple

(
JB, ϕB(P1), ϕB(P2), ϕB(P3), ϕB(P4)

)
,

where JB is characterised through the Igusa variants.

55

2. ISOGENY-BASED CRYPTOGRAPHY

J

JA

JB

JAB

ϕA

ϕ
B

ϕ ′
B

ϕ
′
A

I(JA),
ϕA(R1), . . . , ϕA(R4)

I(JB),
ϕB(P1), . . . , ϕB(P4)

Figure 2.3: The Genus-2 Supersingular Isogeny Diffie–Hellman (G2SIDH) protocol.

2. Key Exchange

• Alice sends her public information to Bob, and he sends her his public key in

return.

• Alice and Bob each use the provided images of the torsion points to compute isoge-

nies parallel to ϕA from JB and ϕB from JA utilising their respective secret scalars.

Both these maps share isomorphic codomain varieties JAB := J/(GA, GB).

• Alice and Bob can use (a hash of the Igusa invariants of) the variety JAB as a

shared secret.

2.2.2 Key generation for G2SIDH

The key selection process for Bob and Alice is not quite straightforward. Suppose we want

to select a secret for Alice to use during the G2SIDH protocol. Ideally, this would mean that

Alice uniformly chooses a random maximal 2eA-isotropic subgroup GA ⊂ J[2
eA]. This is not

immediately feasible.

Flynn and Ti sketch an algorithm for selecting Alice’s secret defined by twelve secret

56

2. ISOGENY-BASED CRYPTOGRAPHY

scalars αi,1, . . . , αi,4 ∈ Z/2eAZ,1 ≤ i ≤ 3 such that the points

A1 =
4∑
i=1

[α1,i]Pi, A2 =
4∑
i=1

[α2,i]Pi, and A3 =
4∑
i=1

[α3,i]Pi

generate a valid secret kernelGA = ⟨A1, A2, A3⟩, i.e. aGA is a maximal 2eA-Weil isotropic sub-

group of J [2eA]. Selecting the αi,j randomly from Z/2eAZ is not possible as this might com-

promise the isotropy of the subgroup. Firstly, one needs to choose an integer 0 ≤ k ≤ ⌊eA/2⌋

fixing the orders of the points A1, A2 and A3 to be 2eA , 2eA−k and 2k, respectively. To then

ensure that the Ai satisfy the triviality condition of the Weil pairing, several congruences

need to be satisfied. These congruences are made explicit in [Ti19, Section 2.3] and involve

solving several multivariate, underdetermined modular equations. Note that it is also pos-

sible for a solution to the congruences not to define three (or, if k = 0, two) independent

points, resulting in an invalid kernel subgroup. After making the necessary checks however,

this strategy will generate a usable secret for Alice.

A procedure for sampling uniformly from the keyspace is not explicitly provided by

Flynn–Ti. One could start by calculating a distribution for the selection of k which accurately

represents the proportion of rank-2 and different-order of rank-3 subgroups among the valid

choices for GA. Furthermore, the strategy presented here allows the generation of distinct

tuples of scalars which eventually define the same subgroups. In order to prevent this issue

skewing the uniform generation of secrets, finding a unique representation for each possible

subgroup by determining equivalent keys is necessary. An alternative way to sample from

the keyspace avoiding these pitfalls and granting uniform sampling is presented in Chapter 5.

2.2.3 Security assumption

The security of G2SIDH relies on the following problem.

Problem 2.10 (Computational G2SIDH problem). Fix ℓA = 2, ℓB = 3 and let eA, eB be

57

2. ISOGENY-BASED CRYPTOGRAPHY

integers satisfying ℓeAA ≈ ℓeBB . Further let J be a PPSSAS, let

(Pi,1, Pi,2, Qi,1, Qi,2)

be a basis for J [ℓeii] and let ϕi : J → Ji be an isogeny of degree ℓeii for i ∈ {A,B}.

Given J, J1, J2 as well as (Pi,1, Pi,2, Qi,1, Qi,2) and (ϕj(Pi,1), ϕj(Pi,2), ϕj(Qi,1), ϕj(Qi,2))

for i ̸= j ∈ {A,B}, determine a PPSSAS J3 such that there exists an isogeny ϕ : J → J3

with kernel

ker(ϕ) = ker(ϕA) + ker(ϕB).

Few works are concerned with solving this problem directly. A general algorithm due

to Costello and Smith [CS20] examines the pure supersingular isogeny problem for curves

of genus 2 and higher of finding an arbitrary isogeny connecting two given varieties. Their

strategy is based on a prior algorithm [DG16] which classically computes isogenies between

two given elliptic curves. Similarly to Delfs–Galbraith, in [CS20], the authors take random

isogeny walks from the two given nodes in the isogeny graph Γg(ℓ; p) consisting of (ℓ, . . . , ℓ)-

isogenies between superspecial principally polarised abelian varieties of dimension g over Fp2

until a distinguished surface is reached. A distinguished surface in this case is one that is

(isomorphic to) a product of lower-genus varieties. In the genus-2 setting, this means the

algorithm looks for elliptic curve products. Then the problem of connecting the distinguished

surfaces can be translated into lower dimensions and solved recursively starting with the

Delfs–Galbraith algorithm for elliptic curves and gluing isogenies together for higher genera.

The Costello–Smith algorithm solves the supersingular isogeny problem in genus 2

in Õ(p) classical computer operations or Õ(√p) quantum calls to the Grover oracle. Note

that this algorithm is not well-suited to solve the problem underlying G2SIDH as the secret

isogeny between the two given curves is of a fixed degree. The corresponding isogeny walk

58

2. ISOGENY-BASED CRYPTOGRAPHY

is relatively short compared to the isogeny walks usually recovered through the Costello–

Smith algorithm, i.e. the walks found through the algorithm are too long to be viable G2SIDH

keys. Further, simple adjustments to G2SIDH can prevent an attack using this algorithm

by modifying the key generation in such a way that the procedure is aborted and started

again as soon as a secret isogeny walk will pass through a vertex which represents an elliptic

product.

We provide an adaptive attack on G2SIDH in Chapter 5, but due to the class of

Castryck–Decru attacks, and specifically Robert [Rob23; Rob22], it is now possible to attack

G2SIDH passively by solving the underlying problem directly. Though some of the coun-

termeasures described in Section 2.1.3 for thwarting the attacks on SIDH seem to also fix

G2SIDH at first glance, a thorough examination has not been performed.

59

Part II

Cryptanalysis

60

CHAPTER 3

Quantum hidden shift attacks on overstretched

SIDH (and other schemes)

Personal contributions: Chapter 3 is fully based on collaborative work with Péter Kutas,

Simon-Philipp Merz and Christophe Petit, published as [KMPW21]. My main contributions

were formalising the general framework, working out many parts of the technical details

required for instantiating an attack on overstretched SIDH and finally writing up our results

and some of the pseudocode algorithms for the publication.

In this chapter, we introduce a subexponential quantum attack on instances of SIDH

with overstretched parameters. This attack can be positioned as a special case within a

more general framework, allowing an attacker with access to a certain type of malleability

oracle to reduce the inversion of a one-way function to a hidden shift problem for which

subexponential quantum algorithms exist. Thus we can unify our cryptanalysis of SIDH

with previous quantum attacks on isogeny-based protocols, e.g. a method for computing an

isogeny between two ordinary elliptic curves, or a similar application of quantum hidden shift

61

3. HIDDEN SHIFT ATTACKS

algorithms to CSIDH. The CRS cryptosystem utilising ordinary elliptic curves independently

proposed by Couveignes [Cou97] and Rostovtsev–Stolbunov [RS06] was attacked by Childs,

Jao and Soukharev [CJS14] in 2010. The Childs–Jao–Soukharev attack showed how to break

the CRS scheme in quantum subexponential time using a reduction to an instance of an

abelian hidden shift problem. While this attack is tolerable for sufficiently large parameters,

the main drawback of the CRS construction is its notable lack of speed. By adapting the CRS

scheme to supersingular elliptic curves, the CSIDH protocol does not display the performance

issues of CRS and thus allows for larger practical parameters [CLMPR18]. However, there

have still been similar cryptanalytic results utilising the idea of reduction to a hidden shift

instance for this scheme [BLMP19; BS20; Pei20].

The attack due to Childs, Jao and Soukharev crucially relies on the commutativity of

the ideal class groups acting on the endomorphism rings of the relevant elliptic curves over Fq.

This motivated the consideration of the full isogeny graph of supersingular elliptic curves for

cryptographic use as endomorphism rings of these curves are maximal orders in a quaternion

algebra, and hence inherently non-abelian. The result of this idea by Jao and De Feo [JD11]

is the SIDH protocol (cf. Section 2.1.1). Before the Castryck–Decru-type attacks [CD23;

MMPPW23; Rob23] breaking SIDH, and hence SIKE, with balanced parameters, the best

known strategy to finding SIDH secret keys with balanced parameters both classically and

quantumly was a claw-finding approach on the isogeny graph [JS19] which did not utilise

the additional torsion point information provided by the parties in SIDH. Thus far, the

additional torsion point information had only proven useful when finding active GPST-type

attacks or in cryptanalysing SIDH with unbalanced parameters; see Section 2.1.2. It was also

widely believed that the lack of commutativity in the SIDH protocol would prevent quantum

attacks which would effectively reduce the SIDH problem to an abelian hidden shift problem

in a variant of the Childs–Jao–Soukharev attack designed for the supersingular case [JD11,

Section 5].

62

3. HIDDEN SHIFT ATTACKS

This chapter highlights that it is indeed possible to artificially construct a setting

in which SIDH is vulnerable to this type of attacks, despite the non-commutativity of the

endomorphism rings of supersingular elliptic curves. Though we only show that this is true

when non-standard parameters are used, we still disprove the general misconception. We

provide the necessary tools and setup for an attack on overstretched parameters, and show

that some tricks or improvements to standard subroutines used in our algorithms (such as

e.g. the KLPT algorithm [KLPT14]) would advance this method to also succeed for more

typical choices of parameters.

In the case of SIDH, the problem we are trying to solve is not the pure isogeny problem

but that of recovering a secret isogeny φ : E → E/K where curves E, E ′ := E/K, the degree

d := degφ as well as the images of some torsion points under the secret isogeny are publicly

known. The idea underlying our cryptanalysis is to use the provided torsion information in

a novel way: We construct an abelian group G ⊆ EndE of E-endomorphisms acting freely

and transitively on certain cyclic subgroups of E. These subgroups are kernels of d-isogenies,

and therefore they can be mapped to supersingular elliptic curves d-isogenous to E. If we

consider the group action of G as an action on the curves and force the endomorphisms

in G to be of a certain degree, the public torsion point information allows an adversary to

compute the action on E ′ efficiently under some heuristics. It then only remains to solve

an abelian hidden shift problem of two functions mapping G to a set of curves d-isogenous

to E containing E ′ in order to find the kernel K of φ. Thus an attacker recovers the secret

isogeny φ.

After providing some necessary background on one-way functions, hard homogeneous

spaces and relevant quantum algorithms in Section 3.1, we present our general framework

in Section 3.2 by giving sufficient conditions for computing preimages of one-way functions

via reduction to a hidden shift problem. The resulting attack on overstretched SIDH in

discussed in Section 3.3, while an instantiation of our general framework with the attack of

63

3. HIDDEN SHIFT ATTACKS

Childs, Jao and Soukharev and its generalisation to CSIDH is explained in Section 3.4. We

conclude this chapter in Section 3.5 with potential improvements and adjustments to our

strategy.

3.1 Preliminaries

Throughout this chapter, we say a supersingular elliptic curve E ′ is at distance d ∈ Z+ from

E if there exists a separable isogeny φ with cyclic kernel of degree d from E to E ′.

3.1.1 One-way functions

Informally, a one-way function is a function that is easy to compute on every input but hard to

invert given the image of a random input, where the difficulty is to be understood with respect

to computational complexity. One-way functions play an integral part in cryptography.

For example, one can use a one-way function which has a trapdoor, meaning there exists

additional information which makes it easy to invert the function, to construct public key

encryption schemes. More formally, we define a one-way function as follows.

Definition 3.1 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is one-way if f can be

computed by a polynomial-time algorithm, and for all polynomial-time randomised algorithms

F all positive integers c and all sufficiently large n = length(x),

Pr[f(F (f(x))) = f(x)] < n−c.

The probability is taken over the choice of x from the discrete uniform distribution on {0, 1}n,

and the randomness of F .

64

3. HIDDEN SHIFT ATTACKS

3.1.2 Hard homogeneous spaces and CSIDH

Recall the notion of Couveignes’ hard homogeneous spaces (HHS) [Cou97], a finite commu-

tative group action for which some operations are easy to compute and others are hard.

Definition 3.2 (Hard homogeneous space). A hard homogeneous space consists of a finite

commutative group G acting freely and transitively on some set X. The following tasks are

required to be easy (e.g. polynomial-time):

(i) Compute group operations in G and decide whether elements are equal.

(ii) Sample randomly from G with (close to) uniform distribution.

(iii) Decide validity and equality of a representation of elements of X.

(iv) Compute the action of a group element g ∈ G on some x ∈ X.

The following problems are required to be hard (e.g. not polynomial-time):

(i) Given x, x′ ∈ X, find g ∈ G such that g · x = x′.

(ii) Given x, x′, y ∈ X such that x′ = g · x, find y′ = g · y.

Instances of Couveignes’ hard homogeneous spaces can be constructed using elliptic

curve isogenies and have been the basis of one branch of isogeny-based cryptography which

uses the group action we will describe in the following.

Denote the set of all isomorphism classes over Fq of isogenous curves with n points

and endomorphism ring O by Ellq,n(O), and represent the isomorphism class of a curve E

in Ellq,n(O) by the j-invariant j(E). Any isogeny φ : E → Eb between curves having the

same endomorphism ring in Ellq,n(O) is determined by E and kerφ up to isomorphism. This

kernel corresponds to an ideal [b] in O. Recall that the ideal class group of O, Cl(O), is the

65

3. HIDDEN SHIFT ATTACKS

quotient group of the abelian group of fractional O-ideals under ideal multiplication and all

principal fractional O-ideals. Since principal ideals in O correspond to isomorphisms, ideals

that are equivalent in Cl(O) induce the same isogeny up to isomorphism. Hence, we have a

well-defined group action

· : Cl(O)× Ellq,n(O)→ Ellq,n(O),

([b], j(E)) 7→ j(Eb),

which is free and transitive ([Wat69, Theorem 4.5] and [Sch87, Erratum Theorem 4.5]).

Given two elliptic curves E,E ′ in Ellq,n(O) up to isomorphism, it is in general assumed

to be hard to find an isogeny φ : E → E ′.

A similar construction can be performed with endomorphism rings of supersingu-

lar curves. This occurrence of hard homogenous spaces is used for the CSIDH proto-

col [CLMPR18] proposed for post-quantum non-interactive key exchange. Since the endo-

morphism rings of such curves are orders in a quaternion algebra, they are non-commutative

and hence yield a group action with less desirable properties than in the construction for

ordinary curves. Therefore, the authors suggest a restriction of the endomorphism ring to

the subring of Fp-rational endomorphisms which is an order in an imaginary quadratic field,

and as such commutative. Again, the ideal class group of this order O acts on Ellp(O),

the set of all isomorphism classes of supersingular isogenous curves over Fp with Fp-rational

endomorphism ring (isomorphic to) O.

Given that the set Ellp(O) is non-empty, the group action is free and transitive

(see [CLMPR18, Theorem 7] summarising results from [Wat69; Sch87]), and can be used

to perform a Diffie–Hellman-type key exchange. Note that CSIDH is strictly speaking not

an instance of a HHS as it is not always possible to check whether two arbitrary elements

66

3. HIDDEN SHIFT ATTACKS

are equal in polynomial time or compute the group action efficiently for all group elements.

Indeed, De Feo and Meyer [DM20] give an example of an element which does not adhere to

some of the algorithmic requirements of the definition of HHS. In CSIDH, these issues are

avoided by computing the group structure of the class group in question as well as the class

group relations; for the only suggested set of CSIDH-parameters (using a prime of roughly

512 bits), this has been done for example by Beullens, Kleinjung and Vercauteren [BKV19] so

that CSIDH-512 is possible with current computational resources. However, these differences

have little impact in practice on the CSIDH protocol itself.

For CSIDH, fix a large prime p = 4 · ℓ1 . . . ℓn − 1 for some small, distinct primes ℓi,

and consider the supersingular elliptic curve E : y2 = x3+x defined over Fp with Fp-rational

endomorphism ring O := Endp(E) = Z[π], where π denotes the Frobenius endomorphism of

E.

Note that all supersingular Montgomery curves EA : y2 = x3 + Ax2 + x for A ∈

Fp defined over Fp are elements of Cl(O) · E and furthermore uniquely represented (up

to isomorphism over Fp) by the coefficient A. This observation yields the following key

exchange.

1. Key Generation

• Alice chooses an n-tuple (e1, . . . , en) with randomly sampled integers −m ≤ ei ≤

m for some bound m to generate her private key, an ideal class [a] ∈ Cl(O) such

that [a] = [le11 . . . lenn] for the ideals li = (ℓi, π − 1).

• Alice computes the Montgomery curve EA := [a] ·E : y2 = x3+Ax2+x and takes

A ∈ Fp to be her public key.

• Bob analogously produces his private key [b] and the corresponding curve EB,

taking B as his public key.

67

3. HIDDEN SHIFT ATTACKS

2. Key Exchange

• Alice and Bob exchange their public keys.

• After verifying that the curve EB is indeed in Ellp(O), Alice computes the secret

curve [a] ·EB = [a][b] ·E. Bob proceeds mutatis mutandis and computes the secret

curve as [b] · EA.

• By commutativity of Cl(O), Alice and Bob have computed the same curve [a][b] ·

E = [b][a] ·E, and can use the Montgomery coefficient S such that [a][b] ·E : y2 =

x3 + Sx2 + x as the shared secret.

There have been multiple proposals to attack concrete parameter suggestions for

CSIDH with quantum algorithms. Peikert [Pei20], for example, uses Kuperberg’s collimation

sieve algorithm to solve the hidden shift instance with quantum accessible classical memory

and subexponential quantum time, a strategy independently also explored by Bonnetain–

Schrottenloher [BS20].

3.1.3 Solving the hidden shift problems with quantum algorithms

First, we recall what is meant when two functions are said to be shifts of each other, or

equivalently that these two functions hide a shift.

Problem 3.3 (Hidden shift problem). Let F0, F1 : G→ X be two functions defined on some

group G, such that there exists some s ∈ G satisfying F0(g) = F1(g · s) for all g ∈ G. The

hidden shift problem is to find s given oracle access to the functions F0 and F1.

Assume we are given two functions F0, F1 : G → X mapping a finite abelian group

G to some finite set X. Multiple approaches utilising quantum computations have been

proposed to solve the hidden shift problem.1 Some of these works have considered different
1Before trying to immediately solve a hidden shift instance on F0 and F1, in some situations it might be

68

3. HIDDEN SHIFT ATTACKS

group structures as well as variations on the promise. We summarise some relevant quantum

algorithms solving the injective abelian hidden shift problem, i.e. where the functions Fi are

injective functions and G is abelian.

The first quantum subexponential algorithm is due to Kuperberg [Kup05] and reduces

the hidden shift problem to the hidden subgroup problem in the dihedral group DG ≃ C2⋉G,

i.e. to finding a subgroup of DG such that a function obtained from combining the input

functions of the hidden shift problem is constant exactly on its cosets. It requires quantum

subexponential time, namely 2O(
√

log|G|) quantum queries, for a finite abelian group G.2 A

modification of this method proposed by Regev [Reg04] reduces the memory required by Ku-

perberg’s approach (from super-polynomial to polynomial) while keeping the running time

quantum subexponential. Furthermore, Childs, Jao, and Soukharev [CJS14] use Kuper-

berg’s algorithm to construct elliptic curve isogenies in subexponential time; we give a brief

account of their resulting attack on hard homogenous spaces using hidden shift algorithms

in Section 3.4. In [CJS14, Appendix A], a general subexponential quantum algorithm using

time L|G|(1/2,
√
2) is presented for finding hidden shifts in finite abelian groups G. Another,

slightly faster algorithm, the collimation sieve, using polynomial quantum space was pro-

posed later by Kuperberg [Kup13]. In this variant, parameter trade-offs between classical

and quantum running time and quantumly accessible memory are possible.

These algorithms for solving the hidden shift problem when G is abelian generally

begin by producing some random quantum states, each with an associated classical label

advisable to decide whether these functions actually satisfy the hidden shift promise fully or at least for a
large proportion of the elements in the domain first. One can use a property testing algorithm to determine
whether this relationship exists between the two given functions. For example, Friedl, Santha, Magniez and
Sen [FSMS09] devise a testing algorithm which has perfect completeness. In our setting, this implies that
two functions which are shifts of each other will always be accepted by the tester, preventing the occurrence
of false negatives.

2Note that this complexity satisfies our definition of subexponential time: Let N := |G|, and suppose
Kuperberg’s algorithm runs in time 2f(N) = 2O(

√
logN). Then we also have f(N) = o(logN) since for any

ϵ > 0 we can choose Nϵ = max{Nc, 2
(c/ϵ)2}, where c and Nc are the constants from the definition of what it

means that f(N) = O(
√
logN), so that |f(N)| ≤ c

√
logN ≤ ϵ

√
logN

√
logN = ϵ logN for N ≥ Nϵ.

69

3. HIDDEN SHIFT ATTACKS

or tag, by evaluating the group action on a uniform superposition over the group G. For

this generation of states, oracle access to the two functions F0 and F1 is needed. Then, the

hidden shift s is extracted bitwise through performing measurements on specific quantum

states (i.e. ones with desirable labels) which are generated from the random states via some

sieving algorithm.

3.2 Malleability oracles and hidden shift attacks

We now introduce the notion of a malleability oracle for a one-way function. Under some

conditions, such an oracle (which might be readily available for some known one-way func-

tions) allows the computation of preimages of given elements in quantum subexponential

time by reduction to the hidden shift problem.

3.2.1 Malleability oracles

Recall the definition of a free and transitive group action.

Definition 3.4 (Group action). Let G be a group with neutral element e, and let I be a set.

A (left) group action ⋆ of G on I is a function

⋆ : G× I → I, (g, x) 7→ g ⋆ x,

that satisfies e ⋆ x = x, and gh ⋆ x = g ⋆ (h ⋆ x) for all x ∈ I and g, h ∈ G.

The group action is called transitive if and only if I is non-empty and for every pair

of elements x, y ∈ I there exists g ∈ G such that g ⋆ x = y. The group action is called free

if and only if g ⋆ x = x implies g = e.

Next, we define an oracle capturing the main premise required for our strategy to

compute preimages of one-way functions.

70

3. HIDDEN SHIFT ATTACKS

Definition 3.5 (Malleability). Let f : I → O be an injective (one-way) function and let ⋆

be the action of a group G on I. A malleability oracle for G at o := f(i) provides the value

of f(g ⋆ i) for any input g ∈ G, i.e. the malleability oracle evaluates the map

g 7→ f(g ⋆ i).

We call the function f malleable, if a malleability oracle is available at every o ∈ f(I).

To abstract away from the notion of group actions, it is possible to define malleability

in terms of more general knowledge relating inputs and outputs of the one-way function

f respectively. In the following we will concentrate on the group action-based model as

defined above since it facilitates the construction of a polynomial-time malleability oracle

in the context of SIDH with overstretched parameters; see Section 3.3. In Section 3.4 we

describe other contexts where such an oracle arises naturally.

For the remainder of this chapter, we will denote the action of a group element g ∈ G

on a set element i ∈ I by g · i.

3.2.2 Reduction to hidden shift problem

Given a malleability oracle at o = f(i), computing a preimage of o reduces to a hidden shift

problem in the following case.

Theorem 3.6. Let f : I → O be an injective (one-way) function and let G be a group acting

transitively on I. Given a malleability oracle for G at o := f(i), the preimage of o can be

computed by solving a hidden shift problem.

Proof. Given o ∈ f(I), the goal is to compute i such that f(i) = o. Let k be an arbitrary

71

3. HIDDEN SHIFT ATTACKS

but fixed element in I and define

Fk : G→ O , θ 7→ f(θ · k).

Since f is an injective function, i = f−1(o) is unique and thus Fi is well-defined. Moreover,

the malleability oracle allows us to evaluate the function Fi on any θ ∈ G, as Fi(θ) = f(θ · i).

Fix some arbitrary j ∈ I. Since we know j, we can evaluate Fj on any group element

θ by evaluating f(θ · j) via simply computing the group action. Due to the transitivity of

the group action of G, there exists σ ∈ G such that i = σ · j. Since for all θ ∈ G

Fi(θ) = f(θ · i) = f(θσ · j) = Fj(θσ),

the functions Fj and Fi are shifts of each other. Hence, solving the hidden shift problem for

Fi and Fj allows us to recover σ, and thus to compute i = σ · j.

The following corollary will be used in our attack on overstretched SIDH. Note that

the precise complexity of our strategy for inverting a one-way function depends on which

one of the quantum algorithms (cf. Section 3.1.3) is selected for solving the hidden shift as

well as the cost of accessing the malleability oracle.

Corollary 3.7. Let f : I → O be an injective (one-way) function and let G be a finitely

generated abelian group acting freely and transitively on I. Given a malleability oracle for

G at o := f(i), the preimage of o can be computed in quantum subexponential time.

Proof. To obtain a hidden shift instance solvable by a subexponential quantum algorithm

such as Kuperberg’s, we only have to show that for every k ∈ I the function Fk(θ) = f(θ ·k)

is injective. Then the claim follows from Theorem 3.6 and the discussion in Section 3.1.3.

72

3. HIDDEN SHIFT ATTACKS

Suppose that Fk(g) = f(g · k) = f(h · k) = Fk(h) for some g, h ∈ G. Since f is

injective and the group action is free, this implies g = h.

3.3 Attack on overstretched SIDH instances in quantum

subexponential time

Despite the non-commutative nature of SIDH, we show in this section that one can find

an abelian group action on its private key space. Moreover for sufficiently overstretched

SIDH parameters, the torsion point information revealed in the protocol allows us to build

a malleability oracle for this group action. More precisely this means that for our quantum

attack to work in the SIDH setting, we will need to relax the balancedness condition, i.e.

the recommendation that ℓeAA ≈ ℓeBB for parameters which was discussed in Section 2.1.1,

and require one torsion to be larger than the other by a certain factor. If we let {N1, N2} =

{ℓeAA , ℓ
eB
B } denote the two torsion orders of the parties involved, we further require N1N2 ≫ p

which prohibits choosing p as originally suggested by Jao–De Feo (and fixed in SIKE via the

recommended parameter sets). We call this variant of SIDH overstretched. Note that this

variant of SIDH is still polynomial-time as long as N1 and N2 are smooth numbers, albeit

much slower in practice than with the suggested parameters. This gives rise to an attack

using quantum subexponential hidden shift algorithms as outlined in Section 3.2.2.

We present our results regarding SIDH as follows: First we sketch our approach to

exploiting the torsion point information in Section 3.3.1. We then overcome some technical

issues in Sections 3.3.2 to 3.3.4. These issues require small tweaks to our general approach,

and we summarise the resulting algorithm in Section 3.3.5. Finally in Section 3.3.6, we

present a hybrid approach to combine guessing part of the secret and computing the re-

maining part using our new attack; this allows us to slightly extend the attack to further

parameter sets.

73

3. HIDDEN SHIFT ATTACKS

Throughout this section, we let p be a prime with p ≡ 3 (mod 4), E the supersingular

elliptic curve with j-invariant 1728 defined over Fp2 given by the equation y2 = x3 + x,

and let O = End(E) be its endomorphism ring. Note that O is well-known; it is the

Z-module generated by 1, ι, 1+π
2

and ι+ιπ
2

where ι denotes the non-trivial automorphism3

(x, y) 7→ (−x, iy) of E, and π is the Frobenius endomorphism (x, y) 7→ (xp, yp). Recall

further that we use N1 and N2 to denote the torsion orders in SIDH so that N1, N2 | p− 1.

Remark 3.8. The attack we describe can be expanded to other curves that are close to E by

computing the isogeny to E and translating the problem back to E with j(E) = 1728.

3.3.1 Overview of the attack

Let I be the set of cyclic N1-order subgroups of E, and let O be the set of j-invariants of all

supersingular curves that are N1-isogenous to E. Let f be the function sending any element

of I to the j-invariant of the codomain of its corresponding isogeny, i.e.

f : I → O, K 7→ j(E/K). (3.1)

The function f can be efficiently computed on any input using Vélu’s formulae [Vél71],

provided N1 is sufficiently smooth and that the N1-torsion is defined over a sufficiently small

extension field of Fp. In SIDH, the latter is achieved by choosing N1 | p− 1 but this is true

more generally for sufficiently powersmooth N1.

On the other hand, inverting f amounts to finding an isogeny of degree N1 from E to

a curve in a given isomorphism class, or equivalently to finding the subgroup of E defining

this isogeny. This problem is closely related to the pure isogeny problem whose conjectured

hardness is at the heart of isogeny-based cryptography.
3We have previously introduced this order-four automorphism as η4 in Section 2.1.4 where it was utilised

in a version of the Jao–Urbanik scheme [UJ20].

74

3. HIDDEN SHIFT ATTACKS

In the SIDH protocol, additional torsion point information is transmitted publicly as

part of the exchange, and thus also given to adversaries. For the security proof it is assumed

that the variant Problem 2.3 of the following problem with N1 ≈ N2 is hard [JD11]. As

discussed in Section 2.1.2, this assumption has been disproved.

Problem 3.9. Let p be a large prime, let N1 and N2 be two smooth coprime integers such

that E[N1] and E[N2] can be represented efficiently, let K ∈ I be a cyclic subgroup of order

N1 of E chosen uniformly at random, and let φ : E → E/K. Given the supersingular elliptic

curves E and E/K together with the restriction of φ to E[N2], compute K.

Our attack exploits the information provided by the restriction of the secret isogeny

to E[N2] to construct a malleability oracle for f at the (unknown) secret. Following the

framework outlined in Section 3.2, this gives rise to an attack on overstretched SIDH.

Let G be a subgroup of (O/N1O)∗. Then G induces a well-defined group action on I

given by

G× I → I , (θ,K) 7→ θ(K).

Indeed, the degree of any non-trivial representative θ in G is coprime toN1 and thus preserves

the order of any generator of K.

Note that the full group (O/N1O)∗ contains the invertible elements in End(E[N1])

(see proof of [Voi18, Theorem 42.1.9]) and is isomorphic to GL2(Z/N1Z). Therefore, it is not

abelian. For our attack to succeed, we do however require an abelian subgroup G acting on

I such that G acts freely and transitively on the orbit of a kernel of an isogeny E → E/K

under this group action, as well as one element in this orbit. This leads to the following task.

Task 3.10. Let K ∈ I be any cyclic subgroup of E of order N1 chosen uniformly at random

and let φ : E → EA := E/K. Compute an element L ∈ I and an abelian subgroup G of

(O/N1O)∗ such that G acts freely and transitively on the orbit G · L, f is injective on G · L

75

3. HIDDEN SHIFT ATTACKS

E EA

E E/θ(kerφ) ∼= EA/φ(ker θ)

φ

θ

Figure 3.1: An SIDH square with the endomorphism θ where the isogeny φ and the endo-
morphism θ are of coprime degrees.

and j(EA) is contained in f(G · L) ⊂ O.

We solve this task in Section 3.3.2. More precisely, we find three subsets of I restricted

to which f is injective, and we give abelian groups that induce the required action on these

subsets. Furthermore, the image of f restricted to one of these three subsets of I will always

contain j(E/K).

In order to apply our general framework from Section 3.2, it remains to construct a

malleability oracle for f at j(E/K) for any secret K ∈ I. To do so, we use both the torsion

point information provided in the SIDH protocol and a solution to the following task.

Task 3.11. Given an endomorphism θ ∈ G of degree coprime to N1 and an integer N2

coprime to N1, compute an endomorphism θ′ of degree N2 such that θ and θ′ induce the

same action on the set I of cyclic subgroups of E[N1] of order N1.

In Section 3.3.4, we first give a direct solution to a variation of this task when using

sufficiently overstretched and unbalanced parameters, i.e. N2 > p2N4
1 . However, we then

show that it suffices to lift elements of πG where π is the Frobenius map. A solution to

Task 3.11 for these elements requiring only N2 > pN4
1 is described in Section 3.3.4.

The following lemma results from the coprimality of deg θ and N1 and is depicted in

Figure 3.1.

76

3. HIDDEN SHIFT ATTACKS

Lemma 3.12. Let φ : E → EA be an isogeny of degree N1 and let θ ∈ End(E) be of degree

coprime to N1. Then EA/φ(ker θ) is isomorphic to E/θ(kerφ).

LetN3 be the degree of θ. We cannot compute the curve E/θ(kerφ) in general without

the knowledge of the isogeny φ or its action on the N3-torsion. However, we can compute

the curve if we find an endomorphism θ′ of degree N ′
3 such that θ and θ′ have the same

action on the N1-torsion and φ|E[N ′
3]

is known. This is the motivation behind Task 3.11, as

we know the action of φ on the N2-torsion in Problem 3.9. A solution to this task yields a

malleability oracle for f with respect to the previously described group action of G on I in

the SIDH setting.

Algorithm 1: Computation of f(θ(K)), given f(K) and θ ∈ G
Let φ : E → EA := E/K be an isogeny of degree N1, let N2 be coprime to N1

and G ⊂ (O/N1O)∗ one of the abelian groups as in Task 3.10 that acts freely
and transitively on K.

Input: E, f(K) = j(EA), φ|E[N2] and θ ∈ G.
Output: f(θ(K)) = j(E/θ(K)).

1 Compute endomorphism θ′ of degree N2 having the same action as θ on cyclic
N1-order subgroups of E[N1] as provided by a solution to Task 3.11;

2 Determine φ(ker θ′), using the knowledge of φ on E[N2];
3 Compute j(EA/φ(ker θ′)) = j(E/θ(K));
4 return f(θ(K)) = j(E/θ(K))

We outline the construction of the malleability oracle in Algorithm 1. Correctness

will follow from the proof of Proposition 3.37 given a suitable choice of the acting group G

which we will discuss in Section 3.3.2.

For parameters that allow us to construct a malleability oracle, we can then solve

Problem 3.9 underlying SIDH-like protocols via a reduction to an injective abelian hidden

shift problem using the framework introduced in Section 3.2.2.

Informal result 3.13. Suppose the parameters allow the efficient solution of Task 3.11,

then Problem 3.9 can be solved in quantum subexponential time.

77

3. HIDDEN SHIFT ATTACKS

We use the remainder of this section to prove this result formally under certain as-

sumptions. To this end, we first give solutions to Task 3.10 and, for some parameters, to

a variant of Task 3.11. More precisely, we show in Section 3.3.3 that it is sufficient to lift

elements from πG instead of G. For this case, we then give a more efficient lifting proce-

dure requiring unbalanced and overstretched parameters. We construct a malleability oracle

using the torsion point information provided in SIDH and a subroutine solving our vari-

ant of Task 3.11. Apart from some technical details that we will address in the following,

the informal result follows from Corollary 3.7. An overview of the attack is depicted in

Algorithm 2.

Algorithm 2: Solving SIDH’s underlying hardness assumption via an abelian
hidden shift problem

Let φ : E → E/K be an N1-isogeny and N2 ∈ Z such that gcd(N1, N2) = 1.
Input: E, E/K, φ(E[N2]).
Output: Isogeny E → E ′, where j(E ′) = j(E/K).

1 Compute an abelian group G ⊂ (O/N1O)∗ acting freely and transitively on the
orbit G(K) and some J ∈ G(K) ⊂ I;

2 Define FK : G→ O, g 7→ f(g(K)) and FJ : G→ O, g 7→ f(g(J));
3 Compute injective abelian hidden shift θ ∈ G of FK and FJ , i.e. θ ∈ G such that

FK(g) = FJ(θg) for all g ∈ G, using a quantum algorithm such as Kuperberg’s.
To this end, one evaluates FK using Algorithm 1 and FJ using the knowledge of
J ;

4 return Isogeny E → E/θ(J)

3.3.2 A free and transitive group action

Recall that E is the supersingular curve with j-invariant 1728, given by the equation y2 =

x3 + x. In this section we provide a solution to Task 3.10. For simplicity, we treat N1 as

a power of 2, but the results generalise to any power of a small prime. A generalisation to

powers of 3 is sketched at the end of this section.

We provide the solution by identifying three subsets of I that are orbits under a free

and transitive action of abelian subgroups of (O/N1O)∗. More precisely, let P ∈ E such that

78

3. HIDDEN SHIFT ATTACKS

⟨P, ι(P)⟩ = E[N1] where ι denotes the non-trivial automorphism of E. Let Q := P + ι(P)

and define the following three subsets of I.

I1 := {⟨P + [α]ι(P)⟩ | α even }

I2 :=
{
⟨Q+ [α]ι(Q)⟩ | α even and α ∈

[
0,
N1

2
− 1

]}
I3 :=

{
⟨Q+ [α]ι(Q)⟩ | α even and α ∈

[
N1

2
, N1 − 1

]}

Recall the function f defined in Equation (3.1), mapping cyclic subgroups of E[N1] of order

N1 to j-invariants of curves at distance N1 from E,

f : I → O, K 7→ j(E/K).

We will show that restricting the function f to any of the subsets I1, I2, or I3 yields an

injective function and we will prove that f
(⋃

i Ii
)

contains all j-invariants of curves which

can arise as SIDH public keys. Furthermore, we will see that

G0 := {a+ bι | a odd, b even} /N1O∗

acts transitively on I1. In order to ensure that the action is free, we identify two endomor-

phisms a+bι and a′+b′ι in G0 if there exists an odd λ ∈ Z/N1Z such that a ≡ λa′ (mod N1)

and b ≡ λb′ (mod N1). We denote the resulting group by G.

In order to define free and transitive group actions on I2 and I3 we define

H0 := {a+ bι | a odd, b even } /(N1/2)O∗

similarly to G0. Again, we identify two endomorphisms a + bι and a′ + b′ι in H0 if there

exists an odd λ ∈ Z/(N1/2)Z such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) and

79

3. HIDDEN SHIFT ATTACKS

obtain the resulting group H. The group H will act freely and transitively on I2 and I3.

Hence, one of these three options will always be a solution to Task 3.10.

The map f is based on the well-known correspondence between I and curves at dis-

tance N1 from E. However, this correspondence is not necessarily one-to-one. In particular,

if E has a non-scalar endomorphism of degree N2
1 , this endomorphism can be decomposed

as τ̂1 ◦ τ2, where τ1 and τ2 are non-isomorphic isogenies of degree N1 from E to E itself. For

small enough N1, the following lemma shows that two kernels correspond to the same curve

if and only if they are linked by the automorphism ι.

Lemma 3.14. Suppose that N2
1 < p+1

4
. Then the only endomorphisms of degree N2

1 of E

are [N1] and [N1] · ι, where ι : E → E, (x, y) 7→ (−x, iy) is the non-trivial automorphism.

Proof. Due to the condition N2
1 <

p+1
4

, an endomorphism θ of degree N2
1 lies in Z[ι]. Let

θ = a+ bι for some a, b ∈ Z. Then the degree of θ is a2 + b2. Now we have to prove that the

only ways to decompose N2
1 as a sum of two squares are trivial, i.e. N2

1 = N2
1 +02 = 02+N2

1 .

Let N1 = 2k, and we prove the statement by induction on k. For k = 1 the statement

is trivial. Suppose that k > 1 and that N2
1 = a2 + b2. Then a and b cannot both be odd as

N2
1 is divisible by four. If they were both even, then dividing by four yields a decomposition

of (N1/2)
2 = (a/2)2 + (b/2)2. By the induction hypothesis, this decomposition is trivial

implying that N2
1 can also only be decomposed in a trivial way.

Corollary 3.15. Suppose that N2
1 <

p+1
4

. Let φ and φ′ be two isogenies of degree N1 from

E to a curve E ′. Then either kerφ = kerφ′ or kerφ = ι(kerφ′).

Proof. Consider the endomorphism τ = φ̂′ ◦ φ of E. The degree of τ is N2
1 , so τ = [N1] or

τ = [N1] · ι by Lemma 3.14. In the former case, the isogenies φ and φ′ are identical by the

uniqueness of the dual. In the latter case, we have kerφ = ι(kerφ′).

80

3. HIDDEN SHIFT ATTACKS

Thus, an element in the image of f has precisely one preimage if the kernel of the

corresponding isogeny is fixed by the automorphism ι.

Finding an abelian group with I1:

Now, we will give the free and transitive group action on I1 and show that f restricted to

I1 is injective.

Let P be a point such that {P, ι(P)} is a basis of E[N1] and recall

I1 := {⟨P + [α]ι(P)⟩ | α even } .

We show that the restriction of f to I1 is injective.

Proposition 3.16. Let j(E) = 1728 and suppose that N2
1 <

p+1
4

. The restriction of f to I1

is injective.

Proof. We apply Corollary 3.15 to show that the codomains of isogenies with kernel in I1

are pairwise non-isomorphic curves. It is clear that P + [α]ι(P) and P + [α′]ι(P) are not

scalar multiples of each other if α ̸= α′ as P, ι(P) generate E[N1]. It remains to show that

for any even α, α′, the points P + [α]ι(P) and ι(P + [α′]ι(P)) = [−α′]P + ι(P) are not scalar

multiples of each other. Suppose there exists an odd λ such that

P + [α]ι(P) = λ([−α′]P + ι(P)).

Note that we can restrict to odd λ as the order of both points is N1. Since {P, ι(P)} is

a basis of the N1-torsion, this implies that 1 ≡ −λα′ (mod N1). Since α′ is even this is a

contradiction concluding the proof.

Clearly, f(I1) does not include all elliptic curves at distance N1 from E, i.e. all curves

81

3. HIDDEN SHIFT ATTACKS

in f(I). Every curve at distance N1 from E which could be a SIDH public key4 is of the

form E/⟨P + [α]ι(P)⟩ for some α ∈ Z/N1Z, which follows from the observation that the

curves E/⟨[β1]P +[β2]ι(P)⟩ and E/⟨[−β2]P +[β1]ι(P)⟩ are isomorphic since their kernels are

linked by ι. We first restrict ourselves to defining a free and transitive group action on I1

and define the free and transitive group action on the kernels corresponding to the remaining

curves later.

Recall that E is a curve with well-known endomorphism ring, and we are interested in

the endomorphisms that are of degree coprime to N1. While there are infinitely many such

endomorphisms, we are only concerned with their action on E[N1], i.e. we are looking at the

group (O/N1O)∗ which is isomorphic to GL2(Z/N1Z). Furthermore, we are only concerned

with the action of the endomorphisms on I, i.e. on cyclic subgroups of E[N1] of order N1,

and we can therefore identify even more endomorphisms with each other by the following

lemma.

Lemma 3.17. Let (a, b, c, d) and (a′, b′, c′, d′) be the coefficients of θ and θ′ in (O/N1O)∗

with respect to some Z-basis of the endomorphism ring O of E, and let I be the set of cyclic

N1-order subgroups of E[N1]. Then θ(K) = θ′(K) for every K ∈ I if and only if there exists

some λ ∈ (Z/N1Z)∗ such that

(a, b, c, d) ≡ λ(a′, b′, c′, d′) (mod N1).

Proof. Considering the respective restrictions to E[N1], two endomorphisms are equal if they

lie in the same class in (O/N1O)∗. Moreover, let θ1, θ2 be two endomorphisms of E such that

θ1 = [λ]θ2 for some integer λ, and let P be an element of order N1. Since scalar multiplication

commutes with any endomorphism, it is easy to see that θ1(P) and θ2(P) generate the same

subgroup in E[N1] if and only if λ is coprime to N1.
4Recall that the keyspace considered for SIDH is restricted slightly from the set of all order-N1 subgroups

of E[N1] in favour of a more straightforward secret generation algorithm; see Section 5.4.

82

3. HIDDEN SHIFT ATTACKS

Now, we are ready to give a solution to Task 3.10 if K ∈ I1.

Proposition 3.18. Let G be the group of equivalence classes of elements

{a+ bι | a odd, b even } ⊂ (Z[ι]/N1Z[ι])∗ ⊂ (O/N1O)∗,

where we identify two elements if and only if they differ by multiplication by an odd scalar

modulo N1. Then G is an abelian group and it acts freely and transitively on I1.

Proof. It is easy to see that the endomorphisms in Z[ι] of degree coprime to N1 form an

abelian subgroup of O. Using any basis for E[N1] of the form {P, ι(P)}, we can write the

elements of this subgroup as matrices of the form
(
a b
−b a

)
, where a is odd and b is even. By

identifying two endomorphisms a1 + b1ι and a2 + b2ι if there exists an integer λ coprime

to N1 and an endomorphism δ such that a1 − λa2 + (b1 − λb2) = N1δ, which is possible

by Lemma 3.17, we obtain G. As G is closed under multiplication and reduction modulo

N1, it is a subgroup of an abelian group and therefore abelian itself. Note that G contains

all equivalence classes under Lemma 3.17 of endomorphisms of the form a + bι for even b,

independently of the chosen basis.

To examine the orbit of an element in I, which is a cyclic N1-order subgroup of E[N1],

under the action of G, it is sufficient to look at the orbit of a generator of this cyclic group

in I. We consider the orbit of P which has coordinates (1 0) with respect to our basis under

the group action of G. The image of (1 0) under an element
(

1 b
−b 1

)
is (1 b). Inspecting the

cyclic subgroups of E these points generate, we get G · ⟨P ⟩ = I1.

Free and transitive group action on I2 and I3:

So far we have defined a free and transitive group action on I1 and thus for the curves in

f(I1). However, when the secret kernel is generated by P + [α]ι(P) with α odd, the curve

83

3. HIDDEN SHIFT ATTACKS

E/⟨P + [α]ι(P)⟩ is not contained in f(I1). This is the case we handle next.

One can show that the action of the previously defined group G acting on curves at

distance N1 from E considered via f has three orbits resulting from secret SIDH keys (see

the next section for details). We have already seen that f(I1) is one orbit, but the odd-α

cases will split into two orbits. Clearly, G cannot be free and transitive on both orbits, since

the size of the orbits is smaller than the cardinality of the group. We avoid this issue by

choosing a different but related group of cardinality N1/4 acting on the curves corresponding

to an odd α.

Lemma 3.19. Again, let Q := P + ι(P) and define

I2 =
{
⟨Q+ [α]ι(Q)⟩ | α even and α ∈

[
0,
N1

2
− 1

]}
I3 =

{
⟨Q+ [α]ι(Q)⟩ | α even and α ∈

[
N1

2
, N1 − 1

]}

as before. The restrictions f|I2 and f|I3 of f to I2 and I3 are injective.

Proof. We show that two distinct isogenies with kernel both in I2 (or both in I3) map to

two non-isomorphic curves. Let α, α′ be such that ⟨Q+[α]ι(Q)⟩ and ⟨Q+[α′]ι(Q)⟩ are both

in I2 (or I3). Suppose there exists an odd λ such that

Q+ [α]ι(Q) = λ(Q+ [α′]ι(Q)).

This means 1 − λ ≡ 0 (mod N1/2) and α − λα′ ≡ 0 (mod N1/2) which implies α ≡ α′

(mod N1/2). It remains to show that Q+ [α]ι(Q) is never an odd multiple of [−α]Q+ ι(Q).

Suppose there exists an odd λ such that

Q+ [α]ι(Q) = λ([−α′]Q+ ι(Q)).

84

3. HIDDEN SHIFT ATTACKS

This implies 1 + α′λ ≡ α − λ ≡ 0 (mod N1/2), which is a contradiction since α − λ ≡ 0

(mod N1/2) implies that λ is even while 1 + α′λ ≡ 0 (mod N1/2) implies that λ is odd.

Therefore, the curves E/⟨Q+[α]ι(Q)⟩ and E/⟨Q+[α′]ι(Q)⟩ are pairwise non-isomorphic.

Finally, we give a free and transitive group action on I2 and I3. We start by defining

the acting group. Recall our definition of H0 as

H0 = {a+ bι | a odd, b even } /(N1/2)O∗.

Again, we identify two endomorphisms a+bι and a′+b′ι if there exists an odd λ ∈ Z/(N1/2)Z

such that a ≡ λa′ (mod N1/2) and b ≡ λb′ (mod N1/2) to obtain the subgroup H ⊂ H0.

Proposition 3.20. H acts freely and transitively on I2 and I3.

Proof. It is enough to show that H acts transitively on I2 and I3 because H, I2 and I3 have

the same cardinality. We show that the orbit H · ⟨Q⟩ contains every element in I2. This

follows immediately from (1 + αι)Q = Q+ [α]ι(Q). Similarly, H acts transitively on I3 as

(1 + αι)(Q+N1ι(Q)/2) = (1− αN1/2)Q+ (α +N1/2)ι(Q) = Q+ (α +N1/2)ι(Q),

where (αN1/2)Q = 0 as α is even.

What remains to be shown is that every curve E/⟨P + [α]ι(P)⟩ with odd α has a

j-invariant contained in f(I2) or f(I3).

Proposition 3.21. Let α be an odd integer. Then f(⟨P + [α]ι(P)⟩) is contained in f(I2)

or f(I3).

85

3. HIDDEN SHIFT ATTACKS

Proof. Observe that

P + [α]ι(P) =
1 + α

2
(P + ι(P)) +

α− 1

2
(−P + ι(P)) =

1 + α

2
Q+

α− 1

2
ι(Q).

The sum of 1+α
2

and α−1
2

is odd and therefore one of the fractions is even while the other one

is odd. If α−1
2

is even, then it is clear that the curve is contained in f(I2) or f(I3). In the

case where 1+α
2

is even, E/⟨1+α
2
Q+ α−1

2
ι(Q)⟩ is isomorphic to E/⟨1−α

2
Q+ α+1

2
ι(Q)⟩ (because

their kernels are related by ι) and thus the curve is contained in f(I2) or f(I3).

In this subsection, we have identified three subsets of I, restricted to which f is

injective. Moreover, we have seen that the union ∪3i=1f(Ii) contains the j-invariants of all

curves at distance N1 from E which can be public curves in an SIDH instance. Finally, we

gave an abelian subgroup of (O/N1O)∗ for each of these subsets of I that acts freely and

transitively on it. Thus, we solve Task 3.10 as long as one determines or guesses which of

the three f(Ii) contains j(E/K).

The orbits of the group action

Recall that we previously defined a group acting on the set I1 which differs from the group

acting on the sets I2 and I3. The reason for having multiple group actions is that we require

them to be free and transitive. Let G be the group defined at the beginning of Section 3.3.2

and recall that N1 is a power of 2. Clearly, G acts on all the kernels generated by points of

the form P + [α]ι(P). Let us study the orbits of this group action in more detail. As we

have already seen in Proposition 3.18, the kernels where α is even form a single orbit. Now

we show that there are two more orbits occurring when α is odd. For simplicity we will refer

to a kernel generated by P + [α]ι(P) by (1 α).

Lemma 3.22. Let α be odd. Then (1 α) is either in the orbit of (1 1) or (1 3).

86

3. HIDDEN SHIFT ATTACKS

Proof. First we suppose that α ≡ 1 (mod 4) and show that (1 α) is in the orbit of (1 1) in

this case. For this, we must prove the existence of an odd λ and an even b such that the

following system is satisfied: λ(1+ b) = 1 and λ(1− b) = α. Solving the system, we find that

λ = 1+α
2

and b = 1−λ
λ

. These satisfy the required criteria since 1 + α ≡ 2 (mod 4), hence λ

is odd and 1− λ is even.

Now suppose that α ≡ 3 (mod 4). In this case, we show that (1 α) is in the orbit

of (1 3). Again there must exist an odd λ and an even b such that both λ(1 + 3b) = 1 and

λ(3 − b) = α. This implies that λ = 1+3α
10

, which is an odd integer because α is congruent

to 3 (mod 4) and so 1 + 3α is congruent to 2 (mod 4). Now one can calculate that b equals

1−λ
3λ

which is even since λ is odd, proving the second case.

By Lemma 3.22 the group action defined above has three orbits on the subset of SIDH

public curves of I. However, the action of all of G is no longer free on the (smaller) orbits

corresponding to an odd α, hence we consider H.

Generalising the group action to N1 = 3k

In this section we sketch a generalisation of the previous results in this section to the case

where N1 is a power of 3. This amounts to attacking Bob instead of Alice in an overstretched

SIDH instance.

Lemma 3.14 carries over to this case as 9k can only be written as a sum of two squares

in a trivial fashion. Let P be a point such that {P, ι(P)} is a basis of E[N1]. We show that

every curve at distance N1 from E corresponding to an SIDH secret key can be reached by

an isogeny with a kernel of the form ⟨P + [α]ι(P)⟩. Let Q = [β1]P + [β2]ι(P) be a point

of order N1. If β1 is coprime to 3, then we may multiply Q by an appropriate scalar such

that the coordinate of P becomes 1. Suppose that β1 is divisible by 3. Since Q has order

N1, β2 is not divisible by 3. Observe that the points Q and ι(Q) generate kernels leading

87

3. HIDDEN SHIFT ATTACKS

to isomorphic curves which implies that Q = [β1]P + [β2]ι(P) and ι(Q) = −[β2]P + [β1]ι(P)

correspond to isogenies leading to isomorphic curves. Multiplying ι(Q) with an appropriate

scalar, we obtain a kernel generator of the form P + [α]ι(P).

However, some curves of the form E/⟨P + [α]ι(P)⟩ may be pairwise isomorphic.

Namely let α be coprime to 3. Then the kernels generated by P+[α]ι(P) and P+[−α−1]ι(P)

correspond to isomorphic curves. On the other hand, it is easy to see that α and −α−1 are

not congruent modulo 3. In particular, all curves at distance N1 from E occurring in SIDH

can be reached by isogenies with kernels of the form P + [α]ι(P) where α is congruent to

0 or 1 (mod 3). With a calculation similar to the one for N1 being a power of 2, it can be

shown that these curves are pairwise non-isomorphic.

The acting group can also be defined in a similar fashion, namely as the endomor-

phisms of the form a + bι where b is divisible by 3 and two endomorphisms are identified

whenever they are the same modulo N1 up to multiplication by a scalar coprime to N1.

Again, for simplicity we denote a point P + [α]ι(P) as (1 a). Similarly to our previous

discussion of the orbits of the group action, one can check that this action has two orbits:

1. The orbit of (1 0) consisting of points of the form (1 x), where 3 divides x.

2. The orbit of (1 1) consisting of points of the form (1 x), where x ≡ 1 (mod 3).

The orbit of (1 2) contains points of the form (1 x) where x is congruent to 2 (mod 3), but

in terms of j-invariants it consists of exactly the same curves as the second orbit. Since

all these orbits have the same cardinality as the acting group, the group action is free and

transitive, as required.

88

3. HIDDEN SHIFT ATTACKS

3.3.3 Using the Frobenius map

In Section 3.3.2, we described how to choose suitable abelian subgroups of (O/N1O)∗ in

order to solve Task 3.10 after guessing whether j(E/K) is a j-invariant in f(I1), f(I2), or

f(I3).

The elements of the acting groups chosen as described in the previous section can be

trivially lifted to Z[ι] := Q[ι] ∩O. We will later show as an alternative in Section 3.3.4 how

these representatives can be lifted directly to elements of norm N2 or eN2, where e is a small

positive integer, whenever the SIDH parameters N1 and N2 are sufficiently overstretched and

unbalanced, satisfying N2 > p2N4
1 . For these parameters, this solves a variation of Task 3.11.

First however, we reduce the required unbalancedness partially by proving that we can

lift elements from πZ[ι] instead. Assuming that N2 > pN4
1 , we will then show in Section 3.3.4

how an endomorphisms from πZ[ι] can be lifted efficiently to another endomorphism of norm

N2 or eN2, for some small integer e, inducing the same action on I. Note that it is not

possible to choose a group generated by an element in πZ[ι] to solve Task 3.10 directly,

acting freely and transitively on a large number of N1-isogeny kernels, as such an element

has multiplicative order at most 4.

As before, let φ : E → E/K denote the secret N1-isogeny we want to compute. Recall

that to run our attack we need to be able to compute E/θ(K) for every θ in the groups G

acting on I1, and H acting on I2 and I2. We have seen that we can represent θ as an element

in Z[ι].

Let π denote the Frobenius map. Assuming that we can lift πθ to an endomorphism

of degree N2 inducing the same action on I, we can compute E/πθ(K) using knowledge of

φ(E[N2]) as described in Section 3.3.1. Now let B := θ(K). Given E/π(B), we can compute

E/B using the Frobenius map as follows.

89

3. HIDDEN SHIFT ATTACKS

Lemma 3.23. Let E be an elliptic curve defined over Fp, π the Frobenius map and let B ⊂ E

be a cyclic subgroup. E/π(B) is isomorphic to the image of the Frobenius map of E/B.

Proof. Let φ1 be the isogeny with kernel B and φ2 the isogeny with kernel π(B). The isogeny

φ1 is separable and its kernel is contained in the kernel of φ2 ◦π. Then, there exists a unique

isogeny ψ : E/B → E/π(B) satisfying φ2 ◦ π = ψ ◦ φ1 (see [Sil09, Corollary III.4.11.]), i.e.

the following diagram commutes.

E E/B

E E/π(B)

φ1

π

φ2

ψ

The degree of a composition of isogenies is the product of its factors which implies degψ = p.

Furthermore, ψ is not separable as the Frobenius map is not. As ψ can be decomposed as

a composition of the Frobenius map and a separable isogeny (see [Sil09, Corollary II.2.12.]),

degψ = p implies that ψ must be a composition of Frobenius and an automorphism. Hence,

E/B and E/π(B) are linked by the Frobenius map.

Lemma 3.23 implies that we can compute E/θ(K) by first computing E/πθ(K) and

then applying the Frobenius map. This gives rise to the following strategy when constructing

the malleability oracle: Assume we want to compute E/θ(K) for some θ ∈ Z[ι] and unknown

K, given the image of theN2-torsion of the isogeny φ : E → E/K. Using the lifting algorithm

of the next section, we compute an endomorphism θ′ of degree N2 or eN2 for a small e that

induces the same action on I as πθ. As described previously, the torsion point information

allows us to compute E/θ′(K) = E/πθ(K). By Lemma 3.23, applying the Frobenius map

yields E/πθ′(K) = E/θ(K).

90

3. HIDDEN SHIFT ATTACKS

3.3.4 Lifting θ ∈ πZ[ι] to an element of norm eN2

In this section we give an efficient algorithm to lift endomorphisms from πZ[ι] = π(Q[ι] ∩

End(E)) to another endomorphism of E/Fp of degree N2 or eN2 that induces the same action

on I, whenever N2 > pN4
1 . Here, e is the smallest positive integer such that eN2/p(c

2
0 + d20)

is a quadratic residue modulo 2N1, where π(c0 + d0ι) ∈ πZ[ι] is the endomorphism we want

to lift.

This will solve the following task, which is a variant of Task 3.11, efficiently.

Task 3.24. Let N1, N2 be coprime integers such that N2 > pN4
1 , let θ := π(c0+d0ι) ∈ πZ[ι]

be an E-endomorphism of degree coprime to N1 and let e denote the smallest positive integer

such that eN2/p(c
2
0 + d20) (mod 2N1) is a quadratic residue. Compute an endomorphism θ′

of degree N2 or eN2 such that θ(K) = θ′(K) for all K ∈ I.

We have discussed in Section 3.3.3 that we can lift π(c0 + d0ι) instead of c0 + d0ι.

Therefore, this task solves Task 3.11 up to the following two relaxations. First, we require

N2 to be sufficiently large and unbalanced compared to N1. Second, we allow θ′ to be either

of degree N2 or eN2 for some small positive integer e.

Remark 3.25. If N1 were a prime, e could be chosen as the smallest quadratic non-residue

modulo N1. However, in our case N1 is a composite number. Thus, the product of two

quadratic non-residues might not be a quadratic residue if there are multiple cosets of the

subgroup of quadratic residues in the group of units modulo 2N1.

We are primarily interested in the case where N1 is a prime power ℓn ∈ {ℓeAA , ℓ
eB
B }.

By Hensel’s lemma, being a quadratic residue modulo ℓn is equivalent to being a quadratic

residue modulo ℓ, if ℓ is odd, and equivalent to being a quadratic residue modulo 8, if ℓ = 2.

Consequently, there is one coset of the quadratic residues in the group of units of 2N1 if ℓ is

an odd prime. Therefore, e can be chosen to be the smallest quadratic non-residue modulo ℓ.

91

3. HIDDEN SHIFT ATTACKS

For example, if N1 is a power of 3 one can choose e = 2.

If ℓ = 2, then there are three cosets of the quadratic residues in the group of units,

i.e. the ones that contain 3, 5 and 7 respectively. Consequently, e can always be chosen to be

one of 3, 5 or 7 in this case.

In case N1 has distinct prime factors, for eN2/p(c
2
0 + d20) to be a quadratic residue it

has to be a quadratic residue modulo the largest prime power dividing 2N1 for each distinct

prime factor. If the number of cosets grows, so do the possibilities for e und thus the size of

the smallest e that is guaranteed to work.

We now describe an algorithm to solve Task 3.24. By Lemma 3.17, it suffices to

solve the following task which is similar to the problem solved at the core of the KLPT

algorithm [KLPT14].

Task 3.26. Given θ = a0+b0ι+(c0+d0ι)π, find θ′ = a1+b1ι+(c1+d1ι)π of degree N2 or eN2

with coefficients (a1, b1, c1, d1) ≡ λ(a0, b0, c0, d0) (mod N1) for some scalar λ ∈ (Z/N1Z)∗.

In the following, we provide a solution to this task. Let

θ′ = λa0 +N1a1 + ι(λb0 +N1b1) + (λc0 +N1c1 + ι(λd0 +N1d1))π.

From Norm(x+ yι) = x2 + y2, we can compute

Norm(θ′) = (λa0 +N1a1)
2 + (λb0 +N1b1)

2 + p
(
(λc0 +N1c1)

2 + (λd0 +N1d1)
2
)
. (3.2)

Since θ ∈ πZ[ι] implies a0 = b0 = 0, Equation (3.2) simplifies to

Norm(θ′) = N2
1 (a

2
1 + b21) + p

(
(λc0 +N1c1)

2 + (λd0 +N1d1)
2
)
. (3.3)

92

3. HIDDEN SHIFT ATTACKS

Set e to be the smallest positive integer such that eN2/(p(c
2
0 + d20)) is a quadratic residue

modulo 2N1.

The goal is to compute θ′ such that Norm(θ′) = eN2. Considering Equation (3.3)

modulo N1, we obtain

eN2 ≡ λ2p(c20 + d20) (mod N1). (3.4)

Since eN2/p(c
2
0 + d20) is a quadratic residue modulo 2N1 by the choice of e, there exists a

solution for λ in Equation (3.4) modulo 2N1. Compute any such solution, and lift it to the

integers in [1, 2N1 − 1]. Note that we do not lose generality by the lift as any other lift of λ

corresponds to a change in c1 and d1 instead.

For fixed c0, d0 and λ, this gives an affine relation between c1 and d1 modulo N1, i.e.

c0c1 + d0d1 ≡
Norm(θ′)− λ2p(c20 + d20)

2λpN1

(mod N1). (3.5)

Finally, one is left with the problem of representing an integer r as the sum of two squares,

namely to find a solution (a1, b1) for

a21 + b21 = r :=
Norm(θ′)− p

(
(λc0 +N1c1)

2 + (λd0 +N1d1)
2
)

N2
1

(3.6)

where λ, c0 and d0 are fixed, and c1, d1 satisfy an affine equation modulo N1.

As Petit and Smith pointed out in [PS18], the solution space to Equation (3.5) is

a translated lattice modulo N1. More precisely, we know that c0 or d0 is coprime to N1.

Without loss of generality, let d0 be coprime to N1. Furthermore, let C denote the right

hand side of Equation (3.5). Then, (c1, d1) lies in the lattice

⟨(c0/d0,−1), (N1, 0)⟩+ (C/d0, 0). (3.7)

93

3. HIDDEN SHIFT ATTACKS

Clearly, r from Equation (3.6) can only be represented as a sum of two squares if

it is positive. This happens when the parameters N1 and N2 are sufficiently overstretched

and unbalanced. To find a solution, one computes close vectors (c1, d1) to the target vector

(−λc0/N1,−λd0/N1) in the translated lattice.

Given the factorisation of r as defined in Equation (3.6), Cornacchia’s algorithm [Cor08]

can then efficiently solve for a1, b1 or determine that no such solution exists. If no solution

exists, a different vector (c1, d1) is chosen.

Remark 3.27. Cornacchia’s algorithm requires the factorisation of r. This can be done in

classical subexponential time or in quantum polynomial time. To avoid such computations,

we apply Cornacchia’s algorithm only when r is a prime and otherwise sample another close

vector from the lattice.

Assuming the values of r behave like random values around pN3
1 for the close vectors,

one expects to choose log(pN3
1) different vectors (c1, d1) before finding a solution for a1, b1

with Cornacchia’s algorithm. If we do not apply Cornacchia’s algorithm unless r is prime,

we expect furthermore to sample roughly log(pN3
1) values for (c1, d1) until r is prime.

The volume of the translated lattice is N1. Thus, for a generic lattice for which the

Gaussian heuristic holds we expect to find a lattice point at distanceN1 from (λc0/N1, λd0/N1).

Furthermore, we can use the Hermite constant for 2-dimensional lattices to trivially bound

the distance between this lattice point and the next 2 log(pN3
1) closest lattice points by

8
3
log(pN3

1)
√
N1. Thus, heuristically r is positive for the expected number of vectors (c1, d1)

that we need to sample, whenever eN2 > pN3
1 + 8/3 log(pN3

1)
√
N3

1 .

Remark 3.28. Note that for specific lattices, the Gaussian heuristic might be violated. In the

worst case, we can only expect to find a lattice point at distance N2
1 from (λc0/N1, λd0/N1)

and overall solutions require roughly eN2 > pN4
1 .

94

3. HIDDEN SHIFT ATTACKS

It is easy to see that a solution for (a1, b1, c1, d1) as computed with the routine de-

scribed above satisfies Equation (3.9). The full algorithm is summarised in Algorithm 3.

Algorithm 3: Lift element from πZ[ι] to quaternion of norm N2 or eN2

Input: θ = π(c0 + d0ι) ∈ End(E), and parameters p, ε, N1, N2

Output: θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ satisfying
Norm(θ′) = N2 or eN2 with probability 1− ε, and ⊥ otherwise

1 e← least positive integer such that eN2/p(c
2
0 + d20) (mod 2N1) is a quadratic

residue;
2 Compute λ in eN2 ≡ λ2p(c20 + d20) (mod 2N1);
3 Compute affine relation c0c1 + d0d1 ≡ C (mod N1);
4 Define translated lattice L containing all (c1, d1) satisfying the affine relation;
5 B ← log(ε) log(pN3

1)/ log(1− log−1(pN3
1));

6 for m = 1, . . . , B do
7 Compute next closest vector (c1, d1) to (−λc0/N1,−λd0/N1) in L;
8 r ← Norm(θ′)−p((λc0+N1c1)2+(λd0+N1d1)2)

N2
1

;
9 if r prime then

10 Use Cornacchia’s algorithm to find a1, b1 such that a21 + b21 = r or
determine that no solution exists;

11 if solution found then
12 return θ′ = N1a1 +N1b1ι+ (λc0 +N1c1)π + (λd0 +N1d1)ιπ;

13 return ⊥

An examination of Algorithm 3 shows that it aborts after a fixed number of trials for

pairs (c1, d1), which leads to the following result.

Lemma 3.29. Algorithm 3 always terminates and is correct if it returns a solution.

We conclude this section by investigating the heuristic probability of the lifting algo-

rithm returning a solution or aborting unsuccessfully, as well as its complexity.

Lemma 3.30. Let 0 < ε < 1. Assume r in Line 8 of Algorithm 3 behaves like a random

value around pN3
1 . Then we expect Algorithm 3 heuristically to return a correct lift with

probability 1− ε and an error ⊥ otherwise.

Proof. If r in Line 8 of Algorithm 3 behaves like a random value around pN3
1 , we expect it

95

3. HIDDEN SHIFT ATTACKS

to be prime with probability roughly 1/ log(pN3
1) and Cornacchia’s algorithm to provide a

solution with probability approximately 1/(log(pN3
1)) due to Landau [Lan08] and Ramanu-

jan [Ram13]. Iterating over B short vectors (c1, d1) of the lattice as defined in Step 6 of

Algorithm 3, we therefore expect our algorithm to return ⊥ with probability

(
1− 1

log(pN3
1)

)B/ log(pN3
1)

.

Hence, iterating over B ≥ log(ε) log(pN3
1)/ log(1− log−1(pN3

1)) as in Algorithm 3, we fail to

find a solution with probability less than ε heuristically.

Remark 3.31. In Algorithm 2 the lifting of endomorphisms is used for every element of

the acting group G or H with cardinality N1/2 and N1/4, respectively. Since we expect

the lifting algorithm to fail heuristically with probability ε for every single group element

and the functions in Algorithm 2 are only exact shifts of each other when it does not fail

a single time, we need to choose ε sufficiently small. Assuming independence between the

different executions of the lifting algorithm, we expect to find two functions satisfying the

promise of a hidden shift with probability (1 − ε)N1/2 ≈ 1 − εN1/2 by first order Taylor

approximation. Thus, choosing ε < 1
N1

we expect our lifting to work with probability roughly

1
2

on all endomorphisms of G and similarly ε < 2
N1

for the elements in H. By the previous

lemma, the lifting remains polynomial in log(N1) and log(p) for any such ε. Choosing ε

smaller allows us to heuristically achieve a larger success probability of the algorithm. The

worst-case complexity of the lifting increases linearly in | log(ε)|.

Lemma 3.32. Let 0 < ε < 1. Algorithm 3 runs in time polynomial in log p, logN1, and

| log(ε)|.

Proof. The worst-case runtime of the algorithm stems from sampling B (as defined in Algo-

rithm 3, Line 5) potential values of (c1, d1) from a lattice of dimension 2. In each iteration one

96

3. HIDDEN SHIFT ATTACKS

needs to run a primality test, and apply Cornacchia’s algorithm to a prime of size polynomial

in p and N1.

The main drawback of our lifting algorithm is the requirement of approximately N2 >

pN3
1 in case the Gaussian heuristic is satisfied for the lattice defined in Equation (3.7), and

roughly N2 > pN4
1 otherwise (see Remark 3.28). This bound might be partially caused by

inefficiencies in the lifting algorithm. However, the following remark discusses why we can a

priori not expect to find a lifting algorithm for balanced parameters.

Remark 3.33. A randomly chosen non-homogeneous quadratic equation in two variables has

in general no solution. Similarly, for arbitrary endomorphisms and any N1, N2, we would

not expect to find an endomorphism a1+b1ι ∈ Z[ι] (in the variables a1, b1) inducing the same

action on I of degree N2. Yet, as soon as we lift an endomorphism θ to an endomorphism

θ′ = N1(a1 + b1ι+ c1π) + λθ, the degree of the lift will be of degree larger than pN2
1 .

Lifting θ ∈ Z[ι] to an element of norm N2 or eN2

Similar to our approach above, let e denote the smallest positive integer such that eN2/p(a
2
0+

b20) is a quadratic residue modulo 2N1, where a0 + b0ι ∈ Z[ι] is the endomorphism we want

to lift. Remark 3.25 regarding the size of e still applies in this case.

In this section we describe how to lift endomorphisms in Z[ι] = Q[ι]∩End(E) directly

to another endomorphism of E of degree N2 or eN2 which has the same action on I. This

gives an efficient solution to the following variant of Task 3.11.

Task 3.34. Let N1, N2 be integers such that N2 > p2N4
1 . Given an endomorphism θ ∈ G

of degree coprime to N1 and an integer N2 coprime to N1, compute an endomorphism θ′ of

degree N2 or eN2 such that θ(K) = θ′(K) for all K ∈ I.

As before, this is a relaxation of Task 3.11 in two ways. First, we require N2 to be

97

3. HIDDEN SHIFT ATTACKS

sufficiently large and unbalanced compared to N1. Second, we allow θ′ to be either of degree

N2 or eN2 for some small integer e.

We now give the algorithm to solve Task 3.34. By Lemma 3.17 it suffices to solve

Task 3.26 for endomorphisms in Z[ι].

Let θ′ = λa0 +N1a1 + ι(λb0 +N1b1) + (λc0 +N1c1 + ι(λd0 +N1d1))π. Then its norm

equals

Norm(θ′) = (λa0 +N1a1)
2 + (λb0 +N1b1)

2 + p((λc0 +N1c1)
2 + (λd0 +N1d1)

2), (3.8)

as Norm(x+ yι) = x2 + y2. Since θ ∈ Z[ι] implies c0 = d0 = 0, Equation (3.8) simplifies to

Norm(θ′) = (λa0 +N1a1)
2 + (λb0 +N1b1)

2 + pN2
1 (c

2
1 + d21). (3.9)

We want to compute θ′ such that Norm(θ′) = eN2. Considering Equation (3.9) modulo 2N1,

we obtain

eN2 ≡ λ2(a20 + b20) (mod 2N1). (3.10)

The choice of e implies that there exists a solution for λ. Compute any such solution, and

lift it to the integers in [1, 2N1 − 1]. This is without loss of generality as any other lift of λ

corresponds to a change in a1, b1 instead.

Considering the equation modulo N2
1 yields an affine relation between a1 and b1 mod-

ulo N1, i.e.

λ(a0a1 + b0b1) ≡
Norm(θ′)− λ2(a20 + b20)

2N1

(mod N1).

Take the affine relation between a1 and b1 modulo N1, say ebb1 = eaa1 + ec + mN1

for some fixed integers ea, eb, ec and a variable integer m. Assume eb ̸≡ 0 (mod p) as lifting

98

3. HIDDEN SHIFT ATTACKS

would be trivial otherwise, and substitute b1 in Equation (3.9) modulo the prime p, i.e.

eN2 ≡ (λa0 +N1a1)
2 + (λb0 +N1e

−1
b (eaa1 + ec +mN1))

2 (mod p).

Note that fixing any value for m leaves a quadratic equation in a1 modulo p. Fix m = 0 and

complete the square in the equation to solve it if there exists a solution. Otherwise, increase

m by one and repeat. Heuristically, one expects this degree-2 polynomial modulo p to be

split with probability 1/2 and hence we expect to iterate twice before finding a solution.

Once a solution for a1 is obtained modulo p, lift it to the integers. One is left with

the problem of representing an integer as the norm of an element in Z[ι], i.e. finding c1 and

d1 such that

c21 + d21 = r :=
Norm(θ′)− (λa0 +N1a1)

2 + (λb0 +N1b1)
2

pN2
1

if they exist. Clearly, r can only be a norm if it is positive. This happens when the parameters

N1 and N2 are overstretched, and more precisely if Norm(θ′) > p2N4
1 .

Again, if the prime decomposition of r is known, Cornacchia’s algorithm can efficiently

answer the question whether r can be decomposed that way and compute a solution if one

exists. Assuming the value of (λa0 + N1a1)
2 + (λb0 + N1b1)

2 behaves like a random value

around p2N4
1 , one expects to choose log(p2N4

1) different values for m with a solution to the

quadratic equation modulo p before finding a solution with Cornacchia’s algorithm. Like

before, we avoid having to factor r by sampling values for m until r is prime, and then apply

Cornacchia’s strategy.

It is easy to see that a solution for (a1, b1, c1, d1) as computed with the routine de-

scribed above satisfies Equation (3.3). The full algorithm is summarised in Algorithm 4.

We conclude this section by investigating the heuristic probability of the lifting algo-

rithm returning a solution or aborting unsuccessfully, as well as its complexity.

99

3. HIDDEN SHIFT ATTACKS

Algorithm 4: Lift element from Z[ι] to quaternion of norm N2 or eN2

Input: θ = a0 + b0ι ∈ End(E), and parameters p, ε, N1, N2 > p2N4
1

Output: θ′ = λa0 +N1a1 + (λb0 +N1b1)ι+N1c1π +N1d1ιπ satisfying
Norm(θ′) = N2 or eN2 with probability 1− ε and ⊥ otherwise

1 e← least positive integer such that eN2/p(a
2
0 + b20) (mod 2N1) is quadratic

residue;
2 Compute λ in eN2 ≡ λ2(a20 + b20) (mod 2N1);
3 Compute linear relation between a1 and b1 modulo N1, say ebb1 ≡ eaa1 + ec

(mod N1) for some integers ea, eb, ec, using

λ(a0a1 + b0b1) ≡
eN2 − ((λa0)

2 + (λb0)
2)

2N1

(mod N1);

4 B ← 2 log(ε) log(p2N4
1)/ log(1− log−1(p2N4

1));
5 for m = 0, 1, . . . , B do
6 Substitute b1 using expression ebb1 = eaa1 + ec +mN1 in

eN2 ≡ (λa0 +N1a1)
2 + (λb0 +N1b1)2 (mod p);

7 if solution for a1 (mod p) exists then
8 Compute a1 and b1 modulo p and lift them to integers in [−p/2, p/2];
9 r ← eN2−((λa0+N1a1)2+(λb0+N1b1)2)

pN2
1

;
10 if r is prime then
11 Use Cornacchia’s algorithm to decompose r as sum of two squares

c21 + d21 or determine that no solution exists;
12 if solution is found then
13 return θ′ = λa0 +N1a1 + (λb0 +N1b1)ι+N1c1π +N1d1ιπ;

14 return ⊥

The success probability is based on the following heuristic assumptions:

1. The discriminant of (λa0+N1a1)
2+(λb0+N1b1)

2 in Line 6 of Algorithm 4 is uniformly

distributed modulo p.

2. r in Line 9 of Algorithm 4 behaves like a random value around p2N4
1 .

Lemma 3.35. Let ε > 0. Under the heuristic assumptions mentioned in the preceding

paragraph, the algorithm returns a lift with probability 1− ε and an error ⊥ otherwise.

100

3. HIDDEN SHIFT ATTACKS

Proof. Based on the heuristic that the discriminant of (λa0 + N1a1)
2 + (λb0 + N1b1)

2 in

Line 6 of Algorithm 4 is uniformly distributed modulo p, we expect to find a solution for

a1 (mod p) for half of the chosen m. Moreover, if r (Line 9, Algorithm 4) behaves like a

random value around p2N4
1 , we expect it to be prime with probability roughly 1/ log(p2N4

1)

and Cornacchia’s algorithm to provide a solution with probability roughly 1/(log(p2N4
1))

due to Landau [Lan08] and Ramanujan [Ram13]. Iterating over B values of m, we therefore

expect our algorithm to return ⊥ with probability

(
1− 1

log(p2N4
1)

)B/2(log(p2N4
1)

.

In particular, iterating over B ≥ 2 log(ε) log(p2N4
1)/ log(1− log−1(p2N4

1)) as in Algorithm 4,

we expect to fail to find a solution with probability less than ε heuristically.

Finally, it is easy to observe the following result.

Lemma 3.36. Algorithm 4 always terminates and it runs in time polynomial in log p, logN1

and | log(ε)| for every ε > 0.

Proof. For any ε > 0, the worst-case runtime of the algorithm stems from the iteration over

up to 2 log(ε) log(p2N4
1)/ log(1 − log−1(p2N4

1)) values of m. In each iteration one needs to

solve at most one quadratic equation modulo p, and apply Cornacchia’s algorithm to a prime

of size polynomial in p and N1.

The main drawback of this lifting algorithm is the requirement for the unbalancedness

N2 > p2N4
1 . In Section 3.3.3, we argued why we can lift endomorphisms from πZ[ι] instead,

which is possible with an unbalancedness of N2 > pN4
1 as described at the beginning of

Section 3.3.4.

101

3. HIDDEN SHIFT ATTACKS

3.3.5 Algorithm summary

We begin the summary of our attack by proving that a solution to Task 3.11 allows us to

construct a malleability oracle for f .

Proposition 3.37. Let f|I′ : I ′ → O be the function defined in (3.1) restricted to a domain

I ′ so it is injective, let G be an abelian subgroup of (O/N1O)∗ acting freely and transitively

on I ′ and let φ : E → E/K, where K ∈ I ′ is chosen uniformly at random and unknown.

Suppose the public parameters allow us to solve Task 3.11 for endomorphisms in G efficiently.

Given φ|E[N2], we then have a polynomial-time malleability oracle for G at f|I′(K).

Proof. We need to show that there exists an efficient algorithm that, on input f(K) =

f|I′(K) = j(E/K) and θ ∈ G, computes f(θ(K)). Let φ be the isogeny corresponding to

the cyclic subgroup K ⊂ E of order N1.

The endomorphism θ has degree N2 coprime to N1 and using the efficient solution

to Task 3.11, we can compute some θ′ of degree N2 such that it has the same action on

the N1-torsion as θ. Therefore, f(θ(K)) = E/θ(K) = E/θ′(K) up to isomorphism. By

Lemma 3.12, this equals (E/K)/φ(ker θ′). Since ker θ′ lies in E[N2], we can compute its

image under φ and therefore we can calculate f(θ(K)) = (E/K)/φ(ker θ′) efficiently.

Proposition 3.37 calls for solutions to the Tasks 3.10 and 3.11. In Sections 3.3.2

and 3.3.4 we presented solutions to variants of these tasks. We use the remainder of this

section to summarise the impact of these variations on the success of our approach.

Restricting the function f : I → O to a subset I ′ such that f|I′ is injective and its

image contains j(E/K) for the K one desires to recover requires information on the secret

we do not posses. However, we gave three subsets I1, I2, I3 of I in Section 3.3.2 such that

f restricted to any of these subsets is injective. The images of these sets under f partition

102

3. HIDDEN SHIFT ATTACKS

all curves at distance N1 from E which can arise from SIDH instances up to isomorphism,

i.e. one of the three subsets will yield the desired result. Moreover, we provided abelian

subgroups of Q[ι] ∩ (O/N1O)∗ acting freely and transitively on I1, I2, and I3.

We then supply an algorithm to solve Task 3.24, a variant of Task 3.11 when N1

and N2 are sufficiently unbalanced, lifting endomorphisms from πZ[ι] to ones with the same

action on I of degree N2 or eN2. Here, e is a small integer depending on the parameters

p,N1, N2 and the endomorphism. As a consequence, to use the torsion point information of

E[eN2] under the secret isogeny given the image of E[N2], we need to guess the action on

E[e]. Furthermore, we lift all endomorphisms in the acting group and thus we need to guess

the action on E[T], where T is the least common multiple of all e appearing for the different

lifts. In Remark 3.25 we discuss which e might appear depending on the factorisation of N1.

For example, T is 2 if N1 is a power of 3, or lcm(3, 5, 7) if N1 is a power of 2. Guessing the

action of the secret isogeny on E[T] takes O(T 3) trials. Finally, for efficiency reasons we lift

endomorphisms from πZ[ι], whereas the elements in the abelian groups acting on I1, I2, and

I3 have representatives in Z[ι]. In Section 3.3.3 we showed that this is no restriction via the

computation of an action of the Frobenius map.

For each combination of guesses of E[e] under the secret isogeny and whether f maps

the secret K into f(I1), f(I2) or f(I3), we can use a subexponential quantum algorithm such

as Kuperberg’s [Kup13] to compute the hidden shift for the functions FK and FJ as defined in

Algorithm 2 and verify the output of the algorithm. Both functions are injective and therefore

the verification can be achieved by computing both functions on a single element and its shift

respectively. Once the premise of a hidden shift is satisfied, Kuperberg’s algorithm [Kup13]

recovers the (correct) solution to the injective abelian hidden shift problem. Thus, we recover

the secret isogeny as described in Section 3.3 in general. We can summarise our result as

follows.

103

3. HIDDEN SHIFT ATTACKS

Theorem 3.38. Let N2 > pN4
1 . Under the heuristics used for the lifting of endomorphisms

in Section 3.3.4, the SIDH problem can be solved in quantum subexponential time via a

reduction to the injective abelian hidden shift problem.

During this section, we have made some restrictions to simplify the presentation of

our cryptanalysis. We assumed the starting curve E to be a supersingular curve with j-

invariant 1728. However, the attack also applies to other curves with known endomorphism

rings that are close to E. In Section 3.3.2, we described the required group action on I under

the further assumption that N1 is a power of 2, which can be generalised to powers of small

primes. A sketch for powers of 3 can be found in Section 3.3.2. Finally, we assumed that

N2
1 <

p+1
4

in Lemma 3.14. However, to run our attack we can slightly ease this restriction.

Namely, if N2
1 >

p+1
4

, then we choose a divisor N ′
1 of N1 such that N ′2

1 < p+1
4

and run the

attack with N ′
1 instead. This will reveal the N ′

1-part of the isogeny and then we can guess

the remaining part. For sufficiently small N1

N ′
1
, this is only a minor inefficiency.

3.3.6 Hybrid attacks on overstretched SIDH

In this section, we examine to what extent partial knowledge of the secret, i.e. knowledge of

the most or least significant bits, renders the attack more efficient. Moreover, we describe

how the attack can be adapted to some further parameters that are not quite sufficiently

unbalanced. The idea is to apply exhaustive search to recover parts of the secret isogeny

until the remaining part of the isogeny is of such small degree that the attack outlined in

this paper can be used to recover the remaining part.

We start with the case where the most significant bits of the secret are leaked or

correctly guessed. These bits correspond to the last steps of the secret isogeny in the isogeny

graph. Assume N1 is a power of a prime ℓ. If the most significant k digits of the secret with

respect to their representation in base ℓ are leaked or guessed correctly, the partial isogeny

104

3. HIDDEN SHIFT ATTACKS

which remains to be recovered is of degree N1/ℓ
k and we can run our attack as soon as N1/ℓ

k

fulfills the unbalancedness criterion N2 > p(N1/ℓ
k)4.

The case where the least significant digits are known or guessed requires a little more

work. For simplicity of our exposition we assume again that N1 is a power of 2, but the

results generalise to powers of small primes.

Lemma 3.39. Let G be the group of Proposition 3.18, and let G′ ⊂ G be the subset of the

form {a+bι | a odd, b divisible by 2k} where we identify two endomorphisms with each other

if they differ by multiplication by an odd scalar modulo N1. Then G′ is an abelian subgroup

of G.

Proof. SinceG is abelian, it suffices to show thatG′ is a subgroup. Consider (a+bι)(a′+b′ι) =

(aa′ − bb′) + (ab′ + a′b)ι. It is easy to see that aa′ − bb′ is odd and ab′ + a′b is divisible by 2k

if a+ bι and a′ + b′ι are in G′.

Assume the least significant k bits of the secret, or equivalently the first k steps of

the secret isogeny, are known. Kernels of isogenies of degree N1 > 2k that share the same

first k steps lie in the same 2k-torsion subgroup and are therefore congruent modulo 2k.

Recall the subsets of I introduced in Section 3.3.2.

Proposition 3.40. Let I ′ be any subsets of I1 := {⟨P + [α]Q⟩ with 2|α} containing all those

cyclic subgroups where the α are congruent modulo 2k. The group G′ of Lemma 3.39 acts

freely and transitively on any I ′.

Proof. First, we need to show thatG′×I ′ → I ′ is well-defined. Let (1+bι) be a representative

of some element in G′ and let P + kι(P), for some k ∈ Z, be the kernel of an isogeny leading

105

3. HIDDEN SHIFT ATTACKS

to a curve in I ′. We have

(1 + bι)(P + kι(P)) = P + kι(P) + b(ι(P)− kP) ≡ P + kι(P) (mod b)

and as b is divisible by 2k, P + kι(P) ∈ I ′ implies (1 + bι)(P + kι(P)) ∈ I ′. That the action

is free and transitive follows from Proposition 3.18 and a counting argument as |G|/|G′| =

2k−1 = |I1|/|I ′|.

Similarly, we can take subsets of I2 and I3 and restrict the acting group.

This gives rise to an attack strategy when N2 is not large enough. Guessing k bits of

the secret before applying the attack on the remaining part allows an attacker to reduce the

requirements on the parameters to N2 > p(N1/2
k)4. This is the same as when guessing the

last bits of the secret.

Given such a partial isogeny, one computes the correct equivalence class I ′ from the

kernel of the known part of the isogeny. Moreover, one needs to compute the lifts of elements

of G′ to endomorphisms of norm N2 or eN2. Computing the action of G′ on the set I ′ allows

one to test for the hidden shift property. Once it is satisfied, the secret can be recovered by

solving an injective abelian hidden shift problem. Otherwise, one can make another guess

on the k bits of the secret.

Apart from reducing the requirements on the unbalancedness, guessing part of the

isogeny reduces the number of elements one needs to lift and the size of the hidden shift

instance. Depending on the concrete parameter sets provided, one may combine exhaustive

search and the attack presented in this paper to recover secrets more efficiently.

106

3. HIDDEN SHIFT ATTACKS

3.4 The attack on HHS by Childs–Jao–Soukharev

We begin by providing more detail on how the algorithm proposed by Childs, Jao and

Soukharev [CJS14] succeeds to construct an isogeny between two given ordinary elliptic

curves in quantum subexponential time. The provided strategy can further be applied to

CSIDH [CLMPR18].

Recall the free and transitive group action from Section 3.1.2 of the class group on the

set of isogenous ordinary curves with the same endomorphism ring. The hard problem is to

find an isogeny between two isogenous ordinary elliptic curves with the same endomorphism

ring, i.e. reversing this group action. Childs–Jao–Soukharev provide an algorithm that con-

structs such an isogeny in quantum subexponential time [CJS14] using a reduction to the

hidden shift problem.

We summarise the core idea as another instance of our framework using malleability

oracles. Let I := Cl(O) and O := Ellq,n(O). We can look at the group action defined in

Section 3.1.2 as a one-way function

f : I → O , [x] 7→ [x] · j(E)

for a fixed curve E. Note that the class group Cl(O) acts on itself and therefore f has a

malleability oracle with respect to the class group readily available everywhere on the image,

i.e. f is malleable with respect to this group action.

Finding an isogeny φE → E ′ is now equivalent to finding the ideal class [b] in Cl(O)

containing the ideal corresponding to the kernel of φ, i.e. we would like to compute the

preimage of f at j(E ′) = [b] · j(E).

Childs–Jao–Soukharev observed that the functions F0, F1 : Cl(O) → Ellq,n(O), de-

107

3. HIDDEN SHIFT ATTACKS

fined by F0([x]) = [x] · j(E) and F1([x]) = [x] · j(E ′), are shifts of each other. Moreover, they

are injective functions since the action of the class group on Ellq,n(O) is free and transitive.

The injective abelian hidden shift problem can be solved in quantum subexponential time,

which allows one to recover [b] and therefore an isogeny φ between the two given curves.

Analogously to the case for ordinary curves, the group action in CSIDH utilising

supersingular curves can be attacked this way. Recall that CSIDH uses the Fp-rational

endomorphism ringO of the fixed starting curve E. In the Diffie–Hellman-type key exchange,

recovering a party’s secret key constitutes of computing their secret ideal class [b] ∈ Cl(O)

which satisfies [b] · E = EB for the party’s public curve EB. Through defining functions

F0, F1 : Cl(O) → Ellp(O) as above by F0([x]) = [x] · E and F1([x]) = [x] · EB, it is possible

to reduce finding Bob’s secret key [b] to an instance of the injective hidden shift problem:

We have F1([x]) = F0([x] · [b]) for any ideal class [x] ∈ Cl(O), where the functions are both

injective due to the group action being free and transitive.

3.5 Improvements and outlook

In this chapter we constructed an abelian group action on the key space of the inherently

non-commutative SIDH. Having this group action in place allowed us to construct a heuristic

malleability oracle using the torsion point information provided in SIDH when overstretched

and sufficiently unbalanced parameters are being used. This contradicted the commonly

believed misconception that no such group action exists in the branch of isogeny-based

cryptography where one considers the full isogeny graph of supersingular elliptic curves. We

also embedded our attack in a more general framework that also captures other quantum

attacks on schemes in isogeny-based cryptography.

While the attack does not apply to balanced parameters as specified in the original

SIDH proposal [JD11] or the former NIST post-quantum candidate SIKE [JACCDHJK-

108

3. HIDDEN SHIFT ATTACKS

LLNRSU17], it still provided a novel cryptanalytic approach to SIDH. Interestingly, the

obstruction to attack SIDH with balanced parameters in our case does not seem to be di-

rectly related to the hindrances in other attacks on unbalanced SIDH exploiting torsion point

information [Pet17; QKLMPPS21] but to limitations of the KLPT algorithm [KLPT14] and

the ones described in Remark 3.33 instead. Improvements to the lifting subroutine included

in the KLPT algorithm would not only partially decrease the required unbalancedness of

SIDH parameters in this work, but also improve various isogeny-based schemes such as

Galbraith–Petit–Silva’s signatures [GPS20] and SQISign [DKLPW20]. There are further

technical details of our framework which could be improved. For one, studying the free and

transitive group action proposed in Section 3.3.2 in more detail could lead to interesting

results, in particular to an extension of the group action to a larger class of supersingular

curves. This has already been the subject of follow-up work [CIIKLP23] where the full

group action of (O/N1O)∗ is utilised instead of the restrictions to subgroups necessary for

our attack strategy (cf. Section 3.3.2). It also remains an open problem to improve the frame-

work further and to give conditions on the malleability oracle that are sufficient to invert

one-way functions in quantum polynomial time. Finally, finding one-way functions which

are malleable and thus providing applications of this work to areas beyond isogeny-based

cryptography is left for future investigation.

109

CHAPTER 4

Adaptive attack on the Jao–Urbanik variant of

SIDH

Personal contributions: Chapter 4 is based on collaborative work with Andrea Basso, Péter

Kutas, Simon-Philipp Merz and Christophe Petit, published as [BKMPW20]. I contributed

to all parts of the development of the attack, especially to computing and checking the impact

of malformed points on kernel subgroups utilised in the scheme and extracting the required

pullbacks, as well as the writing of the corresponding publication.

Semi-static key exchange protocols often find application in internet-based communi-

cation. In such settings, a single pair of corresponding static secret and public keys is used

by a server whenever a client wishes to initiate a new session with a corresponding shared

key. Hence it is generally reasonable to analyse the security of several key exchanges when a

static key is used by one of the parties. As SIDH was found vulnerable against the adaptive

GPST attacks (cf. Section 2.1.2), the k-SIDH protocol was proposed to salvage SIDH for

settings where non-ephemeral keys are used. The k-SIDH construction basically consists of

110

4. ATTACK ON THE JAO–URBANIK PROTOCOL

generating k secret kernel subgroups per participant such that the associated public keys

allow each party to complete k2 SIDH key exchanges in total. The resulting j-invariants can

then be hashed to produce a single secret shared by both parties.

In this chapter, we discuss cryptanalytic results regarding the Jao–Urbanik variant of

SIDH which was designed to provide a non-interactive key exchange (NIKE) in light of the

GPST attacks on SIDH and the inefficiency of computing k2 SIDH secrets in k-SIDH; see

Section 2.1.2 and Section 2.1.4. The scheme we focus on was introduced by Jao and Urbanik

in response to the significant computational efforts required for k-SIDH when compared with

SIDH. Additionally, the new proposal [UJ20] provided another alternative protocol which

was hoped to be unaffected by adaptive attacks on static SIDH keys since such an active

attack against 2-SIDH was devised in [DGLTZ20]. Dobson–Galbraith–LeGrow–Ti–Zobernig

(DGLTZ) generalise their strategy to also apply when an arbitrary k > 2 is fixed for the k-

SIDH protocol, though a number of oracle queries (which correspond to completed protocol

interactions with the server) exponential in k is then needed to recover a static secret key.

Recall that the Jao–Urbanik scheme (presented in Section 2.1.4) utilises non-trivial

automorphisms on the starting curve in an SIDH instance to derive multiple shared secret

j-invariants from one single pair of public keys. The authors claimed that deploying this

scheme with k′ secret keys per party, thus resulting in a shared secret obtained by hashing the

3(k′)2 shared j-invariants, would make this variant as secure as k-SIDH with k chosen in such

a way that the secret hash also contains 3(k′)2 j-invariants while being a lot more efficient due

to the underlying relationship between secrets and curves. However, our attack demonstrates

that the relationship underlying the distinct but related SIDH instances corresponding to

a single pair of secret keys stemming from the non-trivial automorphism in Jao–Urbanik’s

scheme can also be exploited in an active setting. Note that our attack is not efficient enough

to break the parameters proposed in [UJ20]. However, it effectively decreases the claimed

security of Jao–Urbanik’s scheme as well as the efficiency gains over k-SIDH anticipated by

111

4. ATTACK ON THE JAO–URBANIK PROTOCOL

the authors. We show in Section 4.4 how the same security against adaptive attacks can be

achieved through less computational effort with k-SIDH.

Though the attack presented in this chapter builds upon results from the GPST

attack [GPST16] and [DGLTZ20], there are several crucial differences between the GPST

and DGLTZ strategies and ours: While the attack on 2-SIDH requires the treatment of the

two SIDH secrets independently, in our case, we can exploit the interrelation of multiple

secrets which stems from the use of the non-trivial automorphism. By matching up triples

(or pairs, if the order-4 automorphism is utilised) of candidate curves which display the

same relation to one another as the curves associated with automorphism-related generators

of secret kernels when recovering the first bit for each of the secret keys, this strategy is

much more efficient than exhaustive search over all possible combinations of curves. A

similar approach, allowing us to only check a smaller number of possible combinations of

guessed key bits and candidate pullbacks with the oracle, also improves how we compute

key bits and pullbacks simultaneously during the iterative part of the attack rather than

individually as in [DGLTZ20]. Furthermore, we reduce the complexity of trying different

possible pullback candidates which appear identical to an attacker of k-SIDH by extracting

the correct pullbacks explicitly at each step. On the whole, we manage to significantly

reduce how many queries to the oracle are necessary to recover a secret key in Jao–Urbanik’s

scheme through utilising the relationships between isogenies or curves provided by the use

of the non-trivial automorphism in the protocol’s construction. Given that the adversary is

recovering secret isogenies of power-of-two degrees, our attack will be successful after running

O(32k/3) protocol instances with the static party. Contrasting to the strategy in [DGLTZ20],

we therefore provide a nearly cube root speedup in the same setting.

This chapter is organised as follows. We begin by describing the attack model in which

we position our attack and briefly present an overview of the DGLTZ attack [DGLTZ20] in

Section 4.1. Our attack is explained in detail in Section 4.2, while we give some information

112

4. ATTACK ON THE JAO–URBANIK PROTOCOL

on generalising the attack in Section 4.3. Finally, we compare the Jao–Urbanik protocol to

the k-SIDH scheme in Section 4.4 and highlight remaining open questions in Section 4.5.

4.1 Preliminaries

To set up the presentation of our results, we first give a brief introduction to the general

adaptive attack setting and describe the GPST-based attack Dobson–Galbraith–LeGrow–

Ti–Zobernig (DGLTZ) devised on 2-SIDH. Finally, we discuss the parameter selection as

suggested by Jao and Urbanik for their protocol as well as the impact DGLTZ has on this

scheme straightforwardly without any adjustment.

For an active attack like the GPST attack due to Galbraith–Petit–Shani–Ti [GPST16],

we generally assume that Alice is an honest party running the SIDH key exchange protocol

using a static secret key α, and that the attacker aims to recover this secret key while acting

as Bob. As mentioned before, this scenario for example appears in online contexts such as

using the TLS protocol where the server fulfils Alice’s side of the protocol.

As Alice’s secret key remains the same, the attacker can run several instances of the

key exchange protocol with Alice to recover her key. The first instance is run honestly in order

for the attacker to obtain a valid shared secret with Alice as a reference j-invariant against

which to compare curves resulting from future dishonest protocol runs. More specifically,

during the following executions of the protocol, the attacker sends maliciously constructed

points to Alice who will use them to compute a new shared key. Based on his malformed

public information, Bob as the attacker can then make a guess as to what the shared secret

curve with Alice could be for this malicious key exchange. It is realistic in the online setting

that Bob will find out whether his guess was correct or not, for example by receiving an

error message from using an incorrect secret key for secure follow-up communications.

113

4. ATTACK ON THE JAO–URBANIK PROTOCOL

This means that an adversary can extract Alice’s secret key bit by bit when using the

key exchange scheme as an oracle. Recall the definition of the oracle O as in Eq. (2.2); O

takes as input E1, an elliptic curve, two linearly independent, full-order points R, S in the

2eA-torsion of E1 as well as a second curve E2, then it outputs 1 whenever the j-invariants

of the curves E1/⟨R + [α]S⟩ and E2 coincide, and 0 if not.

4.1.1 The DGLTZ attack

The DGLTZ attack [DGLTZ20] adopts a similar strategy to the well-known GPST attack

(cf. Section 2.1.2 based on [GPST16]).

Let us first specify some notation that will be used in the following. The k secret

integers α(r) Alice picks during the key generation phase each define a corresponding kernel

generator A(r) = R + [α(r)]S in terms of a E[2eA]-basis R, S. As it is easier to present our

attack clearly without the convolution of an arbitrary, likely large, number of secrets, we

will mostly restrict to the case where k = 2, and consider secret values α, β and associated

subgroups A,B. Where we use this simplification, it is straightforward to generalise the

attack for larger k. Each of the secrets, say α for example, can be written in terms of its

individual bits αi such that α = K
(a)
i + αi2

i + α′2i+1 when we define K(a)
i to be the sum of

the first i bits, hence the partial key known to an attacker who is about to recover the i-th

bit. The oracle used in [DGLTZ20, Section 4.1] is the following.

Definition 4.1 (Oracle in k-SIDH). Let H be some public hash function. Upon receipt of

an elliptic curve E, two points R, S spanning E[2eA] and a hash value h, the oracle reveals

whether h = H
(
j(E/⟨R + [α(1)]S⟩)|| . . . ||j(E/⟨R + [α(k)]S⟩)

)
.

It is important to understand the difference between the oracle from Definition 4.1,

which reveals information only about the input tuple of k static secret keys (α(1), . . . , α(k)),

and the usual oracle in GPST-like attacks. The latter often allows the adversary to make

114

4. ATTACK ON THE JAO–URBANIK PROTOCOL

deductions about a single secret key from the provided information. This is not the case in

either [DGLTZ20] or the attack described in this chapter.

To overcome this limitation in the information provided by an individual query to the

oracle, different hash values must often be tested for each collection of malformed points.

In particular, upon receiving Alice’s public information an adversary aims to recover the

first bits of each of Alice’s secret values at the same time, and then repeatedly finds the

next bits of each secret in one go. Like in the Galbraith–Petit–Shani–Ti attack, secret bits

are extracted through oracle queries with malformed torsion point information. However,

instead of simply computing the shared j-invariants resulting from completed SIDH squares

with the malicious points for verification by the oracle, for k-SIDH, the hash of all resulting

j-invariants concatenated is checked against the correct shared key. By the properties of the

hash function, a match in hash values, and thus a positive response from the oracle, can

clearly only be achieved if the next bits of each of the k different secret integers have been

guessed correctly at the same time. Thus all i-th key bits have to be recovered simultaneously.

To begin with, let us recall how an adversary finds α(i)
0 for all secret keys in more

detail. The oracle is called on queries which include guesses for the j-invariants ji of the k

elliptic curves which Alice might compute as shared secrets. Oracle inputs then comprise

of
(
E,R, [1 + 2eA−1]S,H(j1|| . . . ||jk)

)
and can be constructed utilising the following lemma

which is a formalisation of results and ideas from [DGLTZ20, Section 5.1].

Lemma 4.2. Let α be any of Alice’s secret keys. Consider the isogeny path from E to EA,

and replace the last step in this path by the only other possible step that leaves the path non-

backtracking. Let E ′
A be the final curve of this path. Let s ∈ {0, 1}. Let R′ := R− [s][2eA−1]S

and S ′ := [1+2eA−1]S. Then the SIDH key computed by Alice is either EA or E ′
A. Moreover,

it is EA exactly whenever α0 = s.

115

4. ATTACK ON THE JAO–URBANIK PROTOCOL

Proof. A straightforward computation gives A′ := R′+[α]S ′ = R+[α]S+[2eA−1(α− s)]S =

A+[2eA−1(α0−s)]S. Note that A′ has order 2eA and [2]A′ = [2]A, so the curves EB/⟨A⟩ and

EB/⟨A′⟩ are both neighbours of EB/⟨[2]A⟩ in the 2-isogeny graph. Finally, we have equality

A = A′ precisely when α0 = s.

From the above result and the properties of the supersingular 2-isogeny graph, we can

compute exactly how many possibilities there are for each curve: the respective EA(i) in case

the guess is correct, and the six codomain curves which are isogenous to it via a degree-4

isogeny. Therefore, seven candidate curves have to be checked per secret integer and the

total number of candidate j-invariants is 7k.

During the iterative step, queries of the form

(E, (R− [K
(a)
i][2eA−i−1]S, [1 + 2eA−i−1]S), H(j1|| . . . ||jk))

are used so that the j-invariants of elliptic curves E/⟨A + [αi][2
eA−1]S⟩, E/⟨B + [K

(b)
i −

K
(a)
i][2eA−i−1]S + [βi][2

eA−1]S⟩ will appear in the hash value. Pursuing the same strategy

of exhaustively searching through all possibilities for the next bits as was done for the α(i)
0

is infeasible. Even for k = 2 exponentially many queries will be required since the number

of candidates for each curve at the i-th bit recovery step is one more than the number of

2i+1-neighbours of each correct curve. Let Ei denote the (n− i)-th curve in the isogeny path

from E to EB and ψB,i the associated partial isogeny. To significantly reduce the number of

necessary queries, DGLTZ analyse the relation of elliptic curves of the forms E/⟨B+[K
(b)
i −

K
(a)
i][2eA−i−1]S+[βi][2

eA−1]S⟩ and Ei/⟨ψB,i(B+[K
(b)
i −K

(a)
i][2eA−i−1]S+[βi][2

eA−1]S)⟩ to each

other in the isogeny graph, and find that these are isogenous curves connected by a degree-2

isogeny. It is however non-trivial to compute these two curves, so certain pullbacks, namely

the intermediate points ψi(B) and [2eA−i]ψi(S) on Ei, have to be computed beforehand.

These computations are made during each iterative step once the i-th key bits and thus the

116

4. ATTACK ON THE JAO–URBANIK PROTOCOL

partial keys Ki+1 have been found, and utilise this new knowledge to query the oracle on

(
E, (R− [K

(a)
i+1][2

eA−i−1]S, [1 + 2eA−i−1]S), H(j1|| . . . ||jk)
)

as input. From the oracle’s response, the attacker can then deduce if the j-invariants

j1, . . . , jk correspond to curves of the form Ei+1/⟨ψB,i+1(B+[K
(b)
i+1−K

(a)
i+1][2

eA−i−1]S)⟩. Note

during the bit recovery phase, 2-neighbours of these curves were computed. As stated pre-

viously, the oracle deployed for the DGLTZ attack does not facilitate the extraction of the

correct pullbacks even if all possible points ψB,i+1(B) and [2eA−i−1]ψB,i+1(S) and combina-

tions thereof are queried for. This is due to the fact that multiple combinations of pullbacks

can result in a 1 being returned by the oracle: points ψB,i+1(B) and [2eA−i−1]ψB,i+1(S), as

well as points ψB,i+1(B)+C and [2eA−i−1]ψB,i+1(S)+C where C is an order-2 point generating

the isogeny between Ei+1 and Ei. In order to be able to utilise the pullbacks in the following

steps, one pullback ψB,i(B) for B is selected, and two possible points for [2eA−i−1]ψB,i+1(S)

then form a candidate pullback set. The attacker can use [DGLTZ20, Lemma 2] below to

find the required intermediate isogenies for each iteration.

Lemma 4.3. Let A(i) = P + [α(i)]Q be the generator of the subgroup corresponding to the

i-th secret isogeny and let ψ(i)
j := ϕ

(i)
eA ◦ ϕ

(i)
eA−1 ◦ · · · ◦ ϕ

(i)
j+1. Then, we have

kerϕ
(i)
j = ⟨[2j−1]ψ

(i)
j (A(i))⟩, ker ϕ̂

(i)
j = ⟨[2eA−1]ψ

(i)
j−1(Q)⟩.

At each step, computing the key bits simultaneously requires 24k queries1, while

computing the pullbacks is possible with 16k queries when the technical conditions which

are addressed in the appendix of [DGLTZ20] are satisfied.
1Note that this estimation is not given in [DGLTZ20].

117

4. ATTACK ON THE JAO–URBANIK PROTOCOL

4.1.2 Jao–Urbanik’s protocol

Setup
• prime p = 2eA · 3eB · f − 1.
• supersingular elliptic curve E : y2 = x3 + 1 with j(E) = 0
• non-trivial automorphism η6 : E → E
• torsion bases {PA, η6(PA)} for E[2eA] and {PB, η6(PB)} for E[3eB]

Key Generation

• α
$←− {0, . . . , 2eA − 1}

• GA = ⟨[α]PA + η6(PA)⟩
⊆ E[2eA]

• ϕA : E → EA = E/GA

EA, ϕA(PB), ϕA(η6(PB))
−−−−−−−−−−−−−−−−−−−−−→

EB, ϕB(PA), ϕB(η6(PA))
←−−−−−−−−−−−−−−−−−−−−−

• β
$←− {0, . . . , 3eB − 1}

• GB = ⟨[β]PB + η6(PB)⟩
⊆ E[3eB]

• ϕB : E → EB = J/GB

Shared Key

RB := ϕB(PA), SB := ϕB(η6(PA)) RA := ϕA(PB), SA := ϕA(η6(PB))

EB/⟨[α]RB + SB)⟩ ∼= EAB ∼= EA/⟨[β]RA + SA⟩
EB/⟨−RB + [α + 1]SB⟩ ∼= EAη6(B)

∼= EA/⟨−[β + 1]RA + [β]SA⟩
EB/⟨−[α + 1]RB + [α]SB⟩ ∼= EAη26(B)

∼= EA/⟨−RA + [β + 1]SA⟩

h = Hash
(
j(EAB), j(EAη26(B)), j(EAη6(B))

)
Figure 4.1: The Jao–Urbanik protocol using one key and automorphism η6 on an elliptic
curve with j-invariant 0.

Recall the Jao–Urbanik scheme as it was presented in Section 2.1.4. A schematic

overview of the key exchange when each party uses one key is given in Fig. 4.1. The security of

this scheme is analysed in [UJ20, Section 4] where the authors consider an instantiation with

secret isogenies of degree a power of general primes ℓ. While the possibility of exploiting the

relationship between kernel subgroups, curves and isogenies from usage of the automorphism

in an attack setting is identified, they overestimate the associated cost and thus the security

of their scheme as some of the inherent structure of the construction is overlooked. As a

conclusion to their brief security discussion, selecting k′ = 18 keys when using 11-isogenies

is proposed to achieve 256-bit security. Though this suggested parameter set (k′, ℓ) remains

118

4. ATTACK ON THE JAO–URBANIK PROTOCOL

secure against the active attacks that Jao and Urbanik considered at the time2 a more

thorough security analysis needs to be performed.

In particular, it is imperative to explicitly define an attack model as well as a suitable

oracle instead of the one the authors envision during their analysis. This oracle confirms

whether multiple elliptic curves which are provided as input are all intermediate curves on

the secret isogeny between E and E/⟨A⟩.3 As we will later show, the additional structure

present in instances of the Jao–Urbanik protocol ensures that corresponding intermediate

curves on the three related secret isogenies are isomorphic. Our result implies that using

this type of oracle in this novel setting is suboptimal. Additionally, Dobson, Galbraith,

LeGrow, Ti and Zobernig dismiss a straightforward generalisation to k-SIDH of the oracle

used in [GPST16] as inefficient for any k < 1. Thus they are required to compute the

aforementioned pullbacks in order to make valid and useful queries and have to accept the

resulting increase of the attack complexity. In other words, in the k-SIDH setting, the cost

of the call to an oracle which returns true if and only if all the guessed curves are on the

correct path is not constant but exponential in k. This observation clearly applies to the

Jao–Urbanik scheme as well.

Current impact of the DGLTZ attack on Jao–Urbanik’s scheme

Applying the DGLTZ attack to the Jao–Urbanik protocol is not straightforward. The

DGLTZ attack assumes that all the secret kernels are of the form ⟨[α]P + Q⟩ which is

not the case in the Jao–Urbanik scheme due to the following. To one secret the following

three kernels are associated: ⟨[α]P +Q⟩, ⟨−P + [α + 1]Q⟩, ⟨−[α + 1]P + [α]Q⟩. The parity

of the coefficient of Q in the second and the third kernel is different, thus in particular, it

is impossible that both of them are odd (hence for every λ-multiple of the kernel the coeffi-
2Clearly the class of Castryck–Decru-type attacks from Section 2.1.2 also pose a threat to the Jao–

Urbanik protocol whenever it uses isogeny chains of degree-ℓ isogenies where (ℓ, ℓ)-isogenies can be efficiently
computed.

3It is shown how a comparable oracle can be implemented for regular SIDH in [GPST16].

119

4. ATTACK ON THE JAO–URBANIK PROTOCOL

cient of Q will be even). This difficulty could potentially be overcome, however a number of

O(24k) queries, where k = 3k′ and k′ is the number of secrets per party in the Jao–Urbanik

scheme, will still be required.

Therefore, we intend to utilise the relationship between the kernel subgroups and

curves present in the protocol setting to devise an adaptive attack which provides a close

to cube root speed-up. Our strategy is described in the next section and requires O(32 k
3)

oracle queries.

4.2 Adaptive attack against the Jao–Urbanik scheme

We now present our active attack on the Jao–Urbanik NIKE [UJ20]. As the version of the

scheme utilising an order-6 automorphism is the one promising maximal security gains over

a regular SIDH instance, we focus on the case where the base curve E is of j-invariant 0

and has the non-trivial automorphism η6 of order 6. To simplify the exposition below, we

focus on attacking Alice’s torsion and denote by ℓ and n the prime and exponent, ℓA and

eA respectively, which she uses. Firstly, we consider the case where ℓ = 2, and later broaden

the scope of our attack in Section 4.3.1 by discussing a generalisation to arbitrary primes ℓ.

Select a basis {P,Q} of the 2n-torsion of E whose elements satisfy the relation Q = η6(P).

Denote by α one of the random secret integers Alice chose during key generation. Then, as

shown in Section 2.1.4, three distinct isogeny kernels can be constructed from α with the

help of η6. The subgroup generators and corresponding isogenies are

A = [α]P +Q, A′ = η6(A) = −P + [α + 1]Q, A′′ = η26(A) = −[α + 1]P + [α]Q,

and

ψA,0 : E → EA = E/⟨A⟩, ψ′
A,0 : E → E ′

A = E/⟨A′⟩, ψ′′
A,0 : E → E ′′

A = E/⟨A′′⟩.

120

4. ATTACK ON THE JAO–URBANIK PROTOCOL

E . . . EA,i EA,i−1 . . . EA := E/⟨A⟩

E . . . E ′
A,i E ′

A,i−1 . . . E ′
A := E/⟨η6(A)⟩

E . . . E ′′
A,i E ′′

A,i−1 . . . E ′′
A := E/⟨η26(A)⟩

ψA,i

ηA,n:=η6

ϕA,i

ηA,i

ϕA,1

ηA,0ψ′
A,i

η′A,n:=η6

ϕ′A,i

η′A,i

ϕ′A,1

η′A,0ψ′′
A,i

ϕ′′A,i ϕ′′A,1

Figure 4.2: Overview of the related isogeny paths and curves in an instance of the Jao–
Urbanik protocol.

Let γ, C, C ′, C ′′, and EC , E ′
C , E ′′

C denote any of Alice’s secret keys other than α, as well

as the three kernel generators based on γ, as well as the corresponding codomain curves

respectively. We will generally indicate by the subscript C instances derived from non-α

secret keys, but also omit subscripts when it is clear in the context from which secret key a

curve, isogeny or kernel originates or when we state a universally applicable property.

The isogeny ψA,0 can be decomposed into n individual 2-isogenies. We index inter-

mediate curves by EA,i, with EA,0 = EA and EA,n = E. The intermediate isogenies are

denoted by ϕA,i : EA,i → EA,i−1. We also call ψA,i the composition ϕA,n ◦ . . . ◦ ϕA,i+1 from

E to EA,i. Notation related to the curves E ′
A and E ′′

A is obtained similarly. Let furtermore

the isomorphisms established in Lemma 4.5, EA ∼= E ′
A
∼= E ′′

A, be η and η′, and indicate their

shifts to intermediate curves by subscripts i. Also define the pullbacks

Ai := ψA,i(A), and Pi := ψA,i(P).

Fig. 4.2 provides an overview of the notations we use, as well as a visual depiction of the

interconnection between related curves and isogenies as in the Jao–Urbanik NIKE.

121

4. ATTACK ON THE JAO–URBANIK PROTOCOL

As discussed above, we cannot straightforwardly adapt either the GPST [GPST16] or

DGLTZ [DGLTZ20] strategies to the Jao–Urbanik setting. Still, the two-stage structure of

first recovering the first bit of each secret key, and then iteratively computing further key bits

and pullbacks of kernel generators also builds the foundation for our attack: Section 4.2.2

describes how the parity of each secret key is discovered and the pullbacks A1, A′
1, A′′

1

and [2n−1]P1, [2n−1]P ′
1, [2n−1]P ′′

1 are computed for each key, while Section 4.2.3 shows how

knowledge of all partial secret keys KA,i as well as the previously computed pullbacks allows

an adversary to recover the next key bits of each secret together with new pullbacks on

intermediate curves further along the isogeny path. More precisely, the second phase of the

attack shows that if we let KA,i denote the partial secret key already recovered and express

α as

α = 2i+1α′ + 2iαi +KA,i,

αi can be found via oracle queries using the partial keys and the i-th pullbacks.

Even though this strategy closely resembles that of the DGLTZ attack, we adapt

it further to reflect the additional structure provided by the automorphism-related secrets,

curves and isogenies that is present in Jao and Urbanik’s scheme. In particular, we eliminate

combinations of curves from our queries which violate the underlying relationship, reducing

their total number during the bit computation, and find the precise pullbacks during each

phase of the attack. The resulting attack implies that k′-SIDH is only marginally less secure

than when Jao–Urbanik’s key exchange is instantiated with k′ secret keys. While we leave

a more meticulous complexity analysis to Section 4.2.3, we can already conclude that the

desired improvements of the Jao–Urbanik protocol over k-SIDH are limited.

Like in [DGLTZ20], we initially use the starting curve E as a basis for our attack.

However in Section 4.3.2, we provide a strategy to shift the attack in order to work with

queries using points on arbitrary curves. Note that this also generalises the DGLTZ key

122

4. ATTACK ON THE JAO–URBANIK PROTOCOL

recovery algorithm.

In [BKMPW20, Lemma 7, Lemma 8], some important results about the generators

of the intermediate isogenies ψA,i, ψ′
A,i and ψ′′

A,i, as well as the relationship of the associated

elliptic curves EA,i, E ′
A,i, E ′′

A,i are highlighted. We present more detailed proofs of both

results below.

Lemma 4.4. For simplicity, denote subscripts of the form A, i by i. Then,

kerψi = ⟨[2i]A⟩, kerψ′
i = ⟨[2i]A′⟩, kerψ′′

i = ⟨[2i]A′′⟩,

kerϕi = ⟨[2i−1]Ai⟩, kerϕ′
i = ⟨[2i−1]A′

i⟩, kerϕ′′
i = ⟨[2i−1]A′′

i ⟩,

ker ϕ̂i = ⟨[2n−1]Pi−1⟩, ker ϕ̂′
i = ⟨[2n−1]P ′

i−1⟩, ker ϕ̂′′
i = ⟨[2n−1]P ′′

i−1⟩.

Proof. The first identity follows from the fact that the subgroup generated by A has a unique

subgroup of order 2n−i for every i which implies that this subgroup must be the kernel of

the 2n−i-isogeny ψi. The same argument shows that the kernel of the partial isogeny ψ′
i is

generated by [2i]A′ = [2i]η6(A), and that kerψ′′
i is generated by [2i]A′′. Deductions about

the kernels of ϕi and ϕ̂i follow from [DGLTZ20, Lemma 5.1], while an application of the

automorphism η6 confirms the remaining kernel generators.

Lemma 4.5. Let notation be as above. Then EA,i, E ′
A,i and E ′′

A,i are isomorphic.

Proof. We have that kerψA,i ⊆ ker(ψ′
A,i ◦ ηA,n). Thus, there exists an isogeny ηA,i : EA,i →

E ′
A,i such that ψ′

A,i ◦ ηA,n = ηA,i ◦ ψA,i. By examining the degrees, we find that deg ηA,i = 1

and thus ηA,i is an isomorphism. The same reasoning holds for E ′′
A,i.

The isomorphisms ηA,i and η′A,i are assumed to be known when EA,i, E ′
A,i and E ′′

A,i are

known, since they can be easily computed (a 1-isogeny between two curves can be recovered

in time O(1)).

123

4. ATTACK ON THE JAO–URBANIK PROTOCOL

4.2.1 Our attack model

In this section, we describe our assumptions and our attack model: Firstly, let k′ denote the

number of Alice’s secret keys. We assume that Alice has a static set of keys α(1), . . . , α(k′)

all chosen at random from Z/2nZ and that the attacker impersonates Bob to recover Alice’s

secret keys. The attacker engages with Alice on sessions of Jao–Urbanik’s protocol and sends

particularly chosen data, not necessarily conforming to the protocol. By checking whether

the two parties have obtained the same shared secret, the attacker may recover information

on Alice’s keys. We model this information leakage in terms of an oracle and represent each

interaction with Alice as an oracle query.

An adaption of the second oracle presented in [DGLTZ20] to the η6 variant of the

Jao–Urbanik protocol gives an oracle O′(E(1), . . . , E(k′), (R(1), S(1)), . . . , (R(k′), S(k′)), h) that

returns true if

h = Hash(j1,1||j1,2||j1,3|| . . . ||jk′,k′−1||jk′,k′),

where jr,s denotes the concatenation of

j
(
E(r)/⟨[α(r)]R(s) + S(s)⟩

)
, j

(
E(r)/⟨−R(s) + [α(r) + 1]S(s)⟩

)
and

j
(
E(r)/⟨−[α(r) + 1]R(s) + [α(r)]S(s)⟩

)
.

Similarly to what is done for the third oracle in [DGLTZ20], we can simplify the oracle

by assuming that the attacker generates one secret key and sends repeated copies of the

same curve and points. Note that any information that can be recovered with querying with

distinct curves can also be recovered by querying with repeated copies of the same curve.

Hence, we obtain the following oracle

O(E, (R, S), h) = O′(E, . . . , E, (R, S), . . . , (R, S), h), (4.1)

124

4. ATTACK ON THE JAO–URBANIK PROTOCOL

which is the one we use in our attack. As noted in [DGLTZ20], the attacker could change

one curve at each iteration to slightly obscure their intentions. All curves but one (k′ − 1 in

this case) have to remain constant across iterations for the attack to succeed.

4.2.2 Exploiting the additional structure: first step

Let us focus on one of Alice’s secrets α. The attack extends straightforwardly to all the keys.

In order to recover the first bits of α, the attacker sends the modified points P ′ = [1+2n−1]P ,

Q′ = Q, so that Alice uses the following kernels in her computation of the shared secret,

where we mark modified kernel generators and elliptic curves by ·̂ .

1. Â = ⟨[α]P ′ +Q′⟩ = ⟨[α]P +Q+ [α0][2
n−1]P ⟩,

2. Â′ = ⟨−P ′ + [α + 1]Q′⟩ = ⟨−P + [α + 1]Q+ [2n−1]P ⟩,

3. Â′′ = ⟨−[α + 1]P ′ + [α]Q′⟩ = ⟨−[α + 1]P + [α]Q− [α0 + 1][2n−1]P ⟩.

Note that, depending on the value of the least significant bit α0, either the first or

third curve computed has not been altered by using the modified points. Thus the attacker

already knows one of j(ÊA) or j(ÊA′′), where ÊA = E/⟨Â⟩, although at this stage not which

one of the two.

The attacker now computes E∗A, the sets containing all six proper 4-neighbours of the

curves EA in Alice’s public key, and their respective j-invariants. If α0 = 0, ⟨[α]P ′ +Q′⟩ =

⟨A⟩, and hence the first curve Alice obtains is isomorphic to her original EA. The second

curve is independent of α0 and is a 4-neighbour of E ′
A, since they share the 2-neighbour

E/⟨2A′⟩. Similarly, the third curve is a 4-neighbour of E ′′
A since they share E/⟨2A′′⟩ as a

2-neighbour. Note that the intermediate 2-neighbours in this construction are isomorphic

since their kernel generators differ only by an application of η6. Hence, the three curves

EA, E/⟨−P ′ + [α+ 1]Q′⟩ and E/⟨−[α+ 1]P ′ + [α]Q′⟩ are the three distinct 2-neighbours of

125

4. ATTACK ON THE JAO–URBANIK PROTOCOL

E ′′
A
∼= EA,2

E/⟨2A⟩ ∼= EA,1

EA

E ′
A

EA,3
. . .

2

2

2

Figure 4.3: The isogeny paths between EA, E ′
A and E ′′

A.

E/⟨2A⟩ (distinctness follows from simple computations on the kernel generators), as depicted

in Fig. 4.3.

Analogously if α0 = 1, we find that the three computed curves all share a common 2-

neighbour. The attacker proceeds analogously for the choices of any other curve. This allows

the attacker to match up candidate curves for EA, E ′
A and E ′′

A among the 4-neighbours of

EA, depending on which combination of first key bits they are querying for at the time: The

attacker may choose any curve in E∗A as a candidate curve for E ′
A, depending on the guessed

bit they may select EA or E ′′
A to be equal to EA and then select the unique curve in E∗A which

is also a 4-neighbour of E ′
A as a candidate for the remaining curve. Querying the oracle for

all possible combinations (12k/3 combinations, six for each neighbour and one for the curve

itself) gives the attacker the first bit of each secret.

Now, given the position of EA, E ′
A and E ′′

A in the isogeny graph, we know that E/⟨2A⟩

must be the first intermediate curve EA,1 and similarly E ′′
A must be EA,2; see Fig. 4.3. This

means the attacker can easily recover the first two intermediate curves without additional

oracle queries, unlike what happens in the DGLTZ attack. Since the isogenies between

EA and EA,1 (i.e. ϕA,1) and between EA,1 and EA,2 (i.e. ϕA,2) are known, the attacker can

compute the first pullbacks of A and [2n−1]P (up to odd scalar multiplication) by setting

A1 to be a generator of ker(ϕA,1) and [2n−1]PA,1 a generator of ker(ϕ̂A,2) by Lemma 4.4.

Finally, the attacker obtains the further pullbacks via the isomorphisms as A′
1 = ηA,1(A1)

and A′′
1 = η′A,1(A1). This approach can be easily repeated for every following curve.

126

4. ATTACK ON THE JAO–URBANIK PROTOCOL

4.2.3 Intermediate bit and pullback computation

Suppose we have recovered the first i bits of each key and have computed the relevant

pullbacks. Let α be one of Alice’s secrets keys and let γ denote any other secret key. Now,

we want to recover the (i + 1)-th bits and compute the new pullbacks. In the DGLTZ

attack, the bit recovery and pulling back are two separate stages, but in order to exploit the

additional structure of Jao–Urbanik’s scheme, we combine them into one: The attacker does

not actively recover the (i+1)-th key bits, but instead tries all the 2k
′ possibilities and uses

the pullback queries to validate both the bit guesses and the pullback candidates.

Using Lemma 4.4, it is possible to compute ϕ̂i+1 and thus recover ϕi+1. With this

information, the attacker can obtain candidates for the pullbacks of A and P . The same

applies to ϕ′
i+1 and ϕ′′

i+1.

Hence, the attacker proceeds by querying the oracle with the points

P ′ = [1 + 2n−i−1]P and Q′ = Q− [KA,i][2
n−i−1]P,

which would lead Alice to make the following kernel computations

⟨[α]P ′ +Q′⟩ = ⟨A+ [αi][2
n−1]P ⟩,

⟨−P ′ + [α + 1]Q′⟩ = ⟨A′ − [K2
A,i +KA,i + 1][2n−i−1]P

+ [KA,i][αi][2
n−1]Q⟩,

⟨−[α + 1]P ′ + αQ′⟩ = ⟨A′′ − [K2
A,i +KA,i + 1][2n−i−1]P

− [KA,i + 1][αi][2
n−1]P ⟩,

127

4. ATTACK ON THE JAO–URBANIK PROTOCOL

⟨[γ]P ′ +Q′⟩ = ⟨C + [KC,i −KA,i][2
n−i−1]P

+ [γi][2
n−1]P ⟩,

⟨−P ′ + [γ + 1]Q′⟩ = ⟨C ′ − [KC,iKA,i +KA,i + 1][2n−i−1]P

− [KA,i][γi][2
n−1]P ⟩,

⟨−[γ + 1]P ′ + [γ]Q′⟩ = ⟨C ′′ − [KC,iKA,i +KA,i + 1][2n−i−1]P

− [KA,i + 1][γi][2
n−1]P ⟩.

All kernels can be shifted with ψi+1 (e.g. E/⟨C + [KC,i − KA,i][2
n−i−1]P + [γi][2

n−1]P ⟩ =

EC,i+1/⟨Ci+1 + [KC,i −KA,i][2
n−i−1]PC,i+1 + [γi][2

n−1]P ⟩) similarly to the DGLTZ attack by

applying [Sil09, Corollary III.4.11.]. Now, since the candidate pullbacks for Ai+1 (preimages

of Ai via ϕA,i), Ci+1 (preimages of Ci via ϕC,i), [2n−i−1]PC,i+1 (preimages of
[
1
2

]
[2n−i]PC,i),

[2n−i−1]PA,i+1 (preimages of
[
1
2

]
[2n−i]PA,i) and their isomorphic correspondents are known,

the attacker can query the oracle with the hash values of all 2k′2k′8k′ possibilities (2 for each

bit, 2 for the kernel generator pullback candidates and 4 · 2 for the P pullback candidates).

Note that the attacker may try a candidate for the first curve and then shift it to the second

curve using the isomorphisms ηi or η′i (therefore reducing an a priori complexity of 32k to

32k
′). We show that if we find a match it means that we have found the correct pullbacks

for Ci+1 and PC,i+1 as well as the correct key bits for C. To begin with, we include a result

from [BKMPW20, Lemma 9].

Lemma 4.6. Let KA,i, KC,i be natural numbers. Then,

1. K2
A,i +KA,i + 1 is odd.

2. It is not possible that all of (KA,i−KC,i), (KA,iKC,i+KA,i+1) and (KA,iKC,i+KC,i+1)

have the same parity.

Proof. The first claim is trivial. For the second claim, observe that the sum of these quantities

128

4. ATTACK ON THE JAO–URBANIK PROTOCOL

is even, thus it is not possible that all three of them are odd. If KA,i − KC,i is even, then

KA,i and KC,i have the same parity and then KA,iKC,i + KA,i + 1 = KA,i(KC,i + 1) + 1 is

odd.

Now, we prove our main lemma.

Lemma 4.7. If the oracle query returns true, then we have found γi, Ci+1 and PC,i+1.

Proof. Suppose the attacker guesses that αi is 0. It is clear from the above computation

that we always get at least one match when we substitute Ci+1, γi and PC,i+1. If γi = 0,

then it follows from the computation of [DGLTZ20, Claim 1], that the number of matches

for the first curve is exactly two. The other match corresponds to choosing Ci+1 + [2i]Ci+1

as the preimage of Ci and [2n−i−1]PC,i+1 + [2i]Ci+1 as the preimage of
[
1
2

]
[2n−i]PC,i. Due to

Lemma 4.6, it is not possible that (KA,i−KC,i), (KA,iKC,i+KA,i+1) and (KA,iKC,i+KC,i+1)

are all odd. Assume for instance that (KA,i−KC,i) is odd and (KA,iKC,i+KA,i+1) is even.

Then we show that the second curve will not match as its kernel will be generated by

C ′
i+1 + [KC,iKA,i + KA,i + 1][2n−i−1]PC,i+1 + [2i]Ci+1. Hence it will be 4-isogenous to the

queried curve. The other cases follow similarly.

When γi = 1, then there will be another match for the first curve. Namely when we

pull back
[
1
2

]
[2n−i]Pi as [2n−i−1]Pi+1 + [2n−1]Pi+1. However, again a similar calculation to

[DGLTZ20, Claim 1] (one has to distinguish cases depending on the parity of KA,i and KC,i)

shows that either the second or the third curve will not match. The calculations when the

attacker guesses αi to be 1 are analogous.

Lemma 4.7 implies that for all secrets except α we know the correct bits and pullbacks

(as otherwise we cannot receive 1 from the oracle). However, we have seen that the coefficient

K2
A,i +KA,i + 1 is odd, thus there will be multiple matches. In order to retrieve αi and the

129

4. ATTACK ON THE JAO–URBANIK PROTOCOL

corresponding pullbacks we perform another query with different points, switching KA,i with

KC,i. For this, we can use the previously computed pullbacks and thus only query the oracle

32 times (corresponding to the 32 possibilities for the pullbacks and the bit). Since the

correct pullbacks are computed, we are able to recover the isogenies ϕA,i+1 and ϕC,i+1 using

Lemma 4.4 as before. Finally, since the next intermediate curves are now known, we compute

the isomorphisms between them. Thus, we have proven the following theorem.

Theorem 4.8. 1. There exists an algorithm that recovers the first bit of each secret using

O(12k′) = O(12 k
3) queries to the oracle defined in (4.1).

2. There exists an algorithm that recovers the intermediate bits and pullbacks using O(32k′) =

O(32 k
3) queries to the oracle defined in (4.1).

4.3 Generalising the attack

We now discuss a way to broaden the scope of our attack. We first give an analysis of how the

attack works and performs when the ℓe-torsion is attacked where ℓ is a general prime, instead

of assuming that Alice utilises isogenies of degree 2n. We further describe how one can query

from the public key curve EB of the attacker as would be realistic in an attack setting, and

how one can then lift the problem to recovering the path E → EA as in Section 4.2.

4.3.1 Attack costs for general ℓ

So far, we have demonstrated our attack on the Jao–Urbanik protocol with parameter choice

ℓ = 2 for simplicity. However, in their proposal, the authors suggest the use of ℓ = 11 or

ℓ = 13 and further compute that k′ = 18 keys are necessary to obtain security against

Grover’s algorithm for ℓ = 11; see [UJ20, Section 4]. Thus we briefly assess the cost of

our attack and the DGLTZ attack for arbitrary ℓ. We divide the discussion into two parts.

First, we estimate the number of queries needed for computing the first key bits and later

130

4. ATTACK ON THE JAO–URBANIK PROTOCOL

the number of queries needed in the iterative step.

The complexity estimate of our attack is a straightforward generalisation of Theo-

rem 4.8. During the recovery of the first bit of every key, we query - as before - for any of the

ℓk
′ possible first ℓ-adic digit combinations by first fixing the curve (either EA or E ′′

A using

notation as in Section 4.2.2) corresponding to the guessed key digit to be the curve given in

Alice’s public key. Then we select any of the ℓ(ℓ+1) ℓ2-neighbours of the correct curve to be

E ′
A and choose one of the remaining ℓ− 1 curves which are ℓ2-isogneous to both previously

selected curves as the third curve associated to a given key. Hence, for each possible combi-

nation of first key digits we have
(
ℓ(ℓ+ 1)(ℓ− 1)

)k′ choices of curves. Thus, there exists an

algorithm which recovers the first digit of each secret using O(ℓk′ℓ3k′) = O(ℓ4k′) = O(ℓ 4k
3)

oracle queries.

For the iterative step, we again first guess the i-th ℓ-adic digits and then compute

candidate preimages for the first curve and shift them to the other two curves using the

respective isomorphisms. There are ℓk′ possibilities for the digits and ℓ2k
′ possibilities for

each preimage. This implies that we need O(ℓ5k′) queries in total.

Hence, for general ℓ, we can summarise our findings in the following theorem.

Theorem 4.9. 1. There exists an algorithm that recovers the first digit of each secret

using O(ℓ4k′) = O(ℓ 4k
3) queries to the oracle defined in (4.1).

2. There exists an algorithm that recovers the intermediate digits and pullbacks using

O(ℓ5k′) = O(ℓ 5k
3) queries to the oracle defined in (4.1).

4.3.2 Querying with EB

The following lemma shows how to lift from the path EB → EAB to the path E → EA which

we have been using to query along in Section 4.2.

131

4. ATTACK ON THE JAO–URBANIK PROTOCOL

Lemma 4.10. Let ψA,i be the partial isogeny from E to Ei (as in Fig. 4.2) and let ψBA,i be

the corresponding partial isogeny from EB to EB
i on the isogeny path from EB to EAB. Let A

generate the kernel of the isogeny from E to EA and let AB = ϕB(A). Define δi : EB
i → Ei

to be the isogeny which is the SIDH lift via ϕB. Assume we know ψBA,i(AB) and ψBA,i(ϕB(Q))

for some Q ∈ E. Then we can compute [3eB]ψA,i(A) and [3eB]ψA,i(Q).

Proof. By defining δi as the lifting isogeny between the two parallel isogeny paths, we have

constructed a setting where δi ◦ ψ′
i = ψi ◦ ϕ̂B. From knowing ψBA,i(AB), we can find

[3eB]ψA,i(A) = ψA,i(ϕ̂B(ϕB(A))) = δi(ψ
B
A,i(AB)).

The computation for the scaled image of Q works analogously.

This lemma can be applied to compute the relevant pullbacks on the isogeny paths

from E to EA, E ′ to E ′
A and E ′′ to E ′′

A in the following manner: First one computes a

pullback candidate on the path starting from EB. Then it is lifted with the above lemma to

the path starting from E (using the fact that 3eB is odd and hence coprime to the degree of

ϕA). Then it can further be shifted to the other two isomorphic curves via the automorphism

η6. Finally, these points can be shifted back with ϕB.

4.4 Comparison of k-SIDH and Jao–Urbanik’s protocol

The algorithm described in Section 4.2 and in particular in Theorem 4.9 does not break the

security parameters suggested by Jao and Urbanik. However, in order to assess the security

gain of Jao–Urbanik’s protocol, we compare it with the security of k-SIDH for arbitrary ℓ.

Since the DGLTZ method requires an extra step which computes the i-th digits and then

uses that information to compute candidate pullbacks, the overall complexity of the attack is

ℓ4k for k-SIDH. Table 4.1 gives an overview of the number of SIDH-instances and public key

132

4. ATTACK ON THE JAO–URBANIK PROTOCOL

SIDH
instances

public key
exchanges Attack cost

Jao–Urbanik
with k′ keys 3(k′)2 (k′)2 O(ℓ5k′)

k-SIDH
with k = k′

(k′)2 (k′)2 O(ℓ4k′)

k-SIDH
with k = 5

4
k′

(5
4
k′)2 ≈ 1.56(k′)2 ≈ 1.56(k′)2 O(ℓ4 5

4
k′) = O(ℓ5k′)

Table 4.1: Comparisons between Jao–Urbanik’s scheme and k-SIDH

exchanges occurring when executing the different protocols, as well as the respective cost of

attacking the ℓ-torsion.

We can observe that the Jao–Urbanik protocol with k′ secrets is as secure as 5k′

4
-SIDH

when comparing necessary oracle queries for an adaptive attack to recover the secret keys.

Consequently, it is more efficient to use 5k′

4
-SIDH than the Jao–Urbanik scheme with k′ keys

and the same ℓ when measuring security with respect to the attacks prior to the full key

recovery of SIDH, as the former has a computational cost equivalent to 3(k′)2 SIDH exchanges

whereas the latter has a computational cost equivalent to 1.56(k′)2 SIDH exchanges. Note

that the Jao–Urbanik scheme maintains a moderate advantage in public key size, since it

requires sharing k′ keys, compared to the 5
4
k′ keys shared in k-SIDH.

4.5 Improvements and outlook

We have introduced an adaptive attack against Jao–Urbanik’s protocol with parameter ℓ = 2.

As shown in Section 2.1.2, this scheme is fully broken passively as it requires Alice to release

the same public information to as in SIDH and an attacker can then run a Castryck–Decru-

type attack. However, Jao and Urbanik suggest using ℓ = 11 or ℓ = 13, which would require

an attacker to compute (ℓ, ℓ)-isogenies between abelian surfaces to recover secret keys. This

is much less efficient than the attacks on standard parameters where chains of degree-2 and

degree-3 isogenies are used due to more complicated arithmetic for larger primes ℓ.

133

4. ATTACK ON THE JAO–URBANIK PROTOCOL

The active attack presented in this chapter can more easily be adapted to work for

general choices of ℓ as we showed in Section 4.3.1. The complexity of such an attack increases

significantly, possibly reaching levels where the protocol is secure for the specified parameter

sets against this type of attack. However, even in that case, our attack provides a nearly

cubic speedup compared to a generic application of the DGLTZ attack against the Jao–

Urbanik scheme. Assessing the security of k-SIDH and Jao–Urbanik’s variant of it against

adaptive attacks, we conclude that Jao–Urbanik’s protocol does not seem to offer a sufficient

security improvement over k-SIDH with the same number of secret keys to justify the roughly

double the number of computations needed. It remains an interesting issue beyond the

cryptanalysis of the Jao–Urbanik protocol how the existence of non-trivial automorphisms

can aid in the construction and the cryptanalysis of isogeny-based schemes using the curves

with j-invariants 0 or 1728, or those close to them.

Though outperformed by the full key recovery SIDH attacks, adaptive attacks on

SIDH variants as such still allow some insight into vulnerabilities in isogeny-based construc-

tions. It remains imperative to analyse not only the usage of ephemeral keys but also that

of static ones as non-interactive key exchange is still a desirable primitive for certain crypto-

graphic settings. The knowledge amassed through adaptive attacks such as GPST, DGLTZ

and our attack can first of all contribute to the assessment of how much information in

addition to the two given curves of the pure isogeny problem (cf. Problem 2.1) makes the

resulting problem efficiently solvable. Furthermore, these attacks can be used as guides when

analysing the security of future protocols, above all those which have been proposed as SIDH

variants deploying countermeasures against the Castryck–Decru-type of attacks.

134

CHAPTER 5

Cryptanalysis of Genus-2 SIDH

Personal contributions: Chapter 5 is based on collaborative work with Sabrina Kunzweiler

and Yan Bo Ti, published as [KTW21]. I contributed to all results presented in this chapter,

especially the case distinction algorithm and development of the subsequent attack which

allows a full key recovery.

Like when considering hyperelliptic curves for elliptic curve cryptography, examining

higher-dimensional abelian varieties as base objects for isogeny-based protocols promises

some interesting trade-offs between parameter sizes, efficiency and security. One of the first

such proposed schemes, Genus-2 SIDH (G2SIDH) [FT19], adapts SIDH to using principally

polarised supersingular or superspecial abelian surfaces in a natural generalisation to the two-

dimensional setting. Hence it seems crucial to examine the hardness of the isogeny problem

with given torsion point information for abelian surfaces, and in particular, whether an

adaptive attack based on GPST and its descendants is possible in this new setting. Such an

attack on a static-key implementation of G2SIDH was already tentatively assumed to exist

by the authors of [FT19]. The implications of the existence of such an attack on G2SIDH

135

5. CRYPTANALYSIS OF G2SIDH

would be the same as the GPST attack had on SIDH. Specifically, an attack would indicate

that in the genus-2 setting, the computational Diffie–Hellman problem can be reduced to the

decisional Diffie–Hellman problem, and that CCA2-protection is needed when non-ephemeral

keys are deployed. Before the publication of the results presented in this chapter, an attack

bearing these connotations was not known.

In order to formulate such an efficient, polynomial-time adaptive attack, we first

have to examine the keyspace originally proposed for the G2SIDH protocol in much more

detail than was done in [FT19]. In particular, we begin by characterising the types of ker-

nel subgroups of admissible, non-backtracking chains of (ℓ, ℓ)-isogenies as they appear in

the G2SIDH protocol, and devise a way to normalise kernel generators to achieve a proper

classification of all maximal ℓeℓ-Weil isotropic subgroups of J [ℓeℓ] for some Jacobian J of a

hyperelliptic genus-2 curve. This classification of subgroups along with choosing to work with

a symplectic torsion basis instead of an arbitrary one allows us to suggest a significantly im-

proved key generation procedure for G2SIDH. The original description of the scheme [FT19]

called for a total of twelve secret integers fulfilling certain linear congruences. One can imme-

diately see that the number of solutions to the congruences exceeds the number of admissible

isogenies, so that either different solutions define the same isogenies or some solutions do not

yield valid secret keys. Solving these linear equations during the key generation procedure

is inconvenient and adds quite costly computations to the overall runtime estimate of the

key exchange. If we tolerate a slight restriction of the keyspace analogous to the restriction

widely accepted for SIDH, we can select secret keys uniformly at random by simply uniformly

sampling a number of integers. We give the details of the classification of kernel subgroups

and the new key generation method in Section 5.1.

After having determined what a party’s secret scalars look like, i.e. what type of

scalars an adversary wants to recover in an adaptive attack, we give a precise strategy for

extracting such a secret through malformed interactions with an honest party modeled by an

136

5. CRYPTANALYSIS OF G2SIDH

oracle providing one bit of information per query. We give more information on our oracle

and attack model in Section 5.2.1. Though our attack is based on the techniques of the

foundational GPST attack [GPST16], GPST cannot be applied straightforwardly. The main

difference between our adaptive attack and the SIDH attack lies in the number of secret

scalars and the number of kernel generators associated with each cryptosystem which we

overcome through distinguishing the different types of kernel subgroups.

The adaptive attack recovers Alice’s secret isogeny which we assume, for ease of ex-

position, to be a chain of Richelot isogenies by first determining the type of kernel subgroup,

i.e. the form the normalised kernel generators take in our classification. Depending on the

type determined via our case distinction algorithm described in Section 5.2.3, we might

have already discovered partial knowledge of the scalars defining the kernel subgroup. This

knowledge is then leveraged to launch the adaptive attack as is presented in Section 5.2.4

and Section 5.2.5 for kernels of rank 2 and rank 3 respectively.

Strategies to generalise the active attack from Section 5.2 to arbitrary torsion bases

instead of symplectic ones is presented in Section 5.3. Additionally, we revisit the SIDH

scheme and the GPST attack on its static variant in Section 5.4 in order to draw parallels

between the genus-1 and genus-2 settings and to justify and further explain the suggested

use of a restricted keyspace and our attack strategy. We conclude in Section 5.5 with a

discussion of the attack in light of the successful SIDH attacks which also impact G2SIDH,

and give avenues for further exploration related to the contents of this chapter.

5.1 Secret keys in G2SIDH

The G2SIDH key exchange protocol as presented in Section 2.2.1 requires each party to

sample a secret key. Such a private key can be expressed as an isogeny of principally polarised

abelian surfaces; for example ϕA : J → JA in the case of Alice. We have seen in Section 1.3.1

137

5. CRYPTANALYSIS OF G2SIDH

that this isogeny corresponds to a maximal 2eA-isotropic subgroup of the starting variety J ,

so that Alice samples an isogeny of degree 2eA . Analogously, Bob’s secret key corresponds

to a maximal 3eB -isotropic subgroup of J defining an isogeny ϕB : J → JB. As discussed in

Remark 1.5, the sampled isogenies are required to be non-backtracking so that their degree

is as desired. For ℓ ∈ {2, 3} and n = eA or eB, respectively, we can therefore write the

keyspace as

Kℓ = {G ⊂ J | G maximal ℓn-isotropic and G ̸⊂ J [m] for any m < ℓn},

and characterise the elements of Kℓ via the following result.

Proposition 5.1 ([FT19, Proposition 2]). Let G ∈ Kℓ, then G is isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk

for some 1 ≤ k ≤ ⌊n
2
⌋.

As the above proposition highlights again, the kernel subgroups making up the keyspace

Kℓ have rank two or three, and in particular, are not cyclic as is the case in elliptic curve

isogeny-based contexts.

In the following, we analyse the full keyspace and show that it is possible to sample

(almost) uniformly from the entirety of Kℓ. We further define Kres
ℓ ⊂ Kℓ, a slight restriction

of the keyspace which preserves the order of magnitude of the keyspace. True and straight-

forward random sampling is achievable when Kres
ℓ is used. To accomplish this, we make use

of symplectic bases for J [ℓn] which allow us to normalise secret keys and specify canonical

representatives generating classes of the groups in Kℓ. This classification is presented in

more detail in Section 5.1.3.

138

5. CRYPTANALYSIS OF G2SIDH

5.1.1 The G2SIDH keyspace

Let us briefly recall the method of sampling secrets suggested in the original G2SIDH pro-

tocol [FT19] as described in Section 2.2.2. In particular, given a PPSSAS J and a basis

(P1, . . . , P4) for J [ℓn] the authors describe a method to generate a secret maximal isotropic

subgroup of the ℓn-torsion which by Proposition 5.1 must be isomorphic to

Cℓn × Cℓn−k × Cℓk

for some 0 ≤ k ≤ ⌊n
2
⌋.

First, a random k ∈ {1, . . . , ⌊n
2
⌋} is chosen. Note that to sample from all possible

maximal ℓn-isotropic subgroups uniformly, k cannot be picked uniformly. We give more

detail about the distribution of different values of k in Section 5.1.4.

Next, four scalars α1,1, . . . , α1,4 ∈ Z/ℓnZ are picked at random. Since these scalars

will produce the first kernel generator of full order ℓn, at least one of the scalars must not be

divisible by ℓ. Finally, the remaining scalars αi,1, . . . , αi,4 for i ∈ {2, 3} are found by solving

the following linear congruences.

 α1,1α2,2 − α1,2α2,1 +x1,3(α1,1α2,3 − α1,3α2,1) +x1,4(α1,1α2,4 − α1,4α2,1)

+x2,3(α1,2α2,3 − α1,3α2,2) +x2,4(α1,2α2,4 − α1,4α2,2) +x3,4(α1,3α2,4 − α1,4α2,3)

 ≡ 0 (mod ℓk)

and

 α1,1α3,2 − α1,2α3,1 +x1,3(α1,1α3,3 − α1,3α3,1) +x1,4(α1,1α3,4 − α1,4α3,1)

+x2,3(α1,2α3,3 − α1,3α3,2) +x2,4(α1,2α3,4 − α1,4α3,2) +x3,4(α1,3α3,4 − α1,4α3,3)

 ≡ 0 (mod ℓn−k),

where xi,j denotes the integer such that eℓn(Pi, Pj) = eℓn(P1, P2)
xi,j for i, j ∈ {1, . . . , 4} and

139

5. CRYPTANALYSIS OF G2SIDH

eℓn(P1, P2) a primitive ℓn-th root of unity.

This produces the tuple (α1,1, . . . , α3,4) of secret scalars defining the generators of the

kernel G = ⟨G1, G2, G3⟩ corresponding to the secret isogeny as

G1 =
4∑
i=1

[α1,i]Pi, G2 =
4∑
i=1

[α2,i]Pi, and G3 =
4∑
i=1

[α3,i]Pi .

By construction, the points G1, G2 and G3 are of order ℓn, ℓn−k and ℓk, respectively, and

satisfy the necessary Weil pairing-conditions eℓn(G1, G2) = eℓn(G1, G3) = eℓn(G2, G3) = 1.

This implies that ⟨G1⟩ ≃ Cℓn , ⟨G2⟩ ≃ Cℓn−k , ⟨G3⟩ ≃ Cℓk and that G = ⟨G1, G2, G3⟩ is

isotropic. However, the congruences above do not always guarantee that G is isomorphic to

Cℓn×Cℓn−k×Cℓk . In the worst case, one could have chosen α2,1, . . . , α3,4 such that G2 = ℓkG1

and G3 = ℓn−kG1. In this case G = ⟨G1⟩ is a cyclic group of order ℓn, and in particular not

maximal ℓn-isotropic. This issue is not addressed in [FT19], but it is fixed using the selection

process that we describe in the subsequent sections.

5.1.2 Symplectic bases

We begin by stating the defining characteristics of a symplectic basis. Recall that for an

integer m coprime to p, the m-torsion of J is a finitely generated rank-4 group, i.e.

J [m]
∼−→ Z/mZ × Z/mZ × Z/mZ × Z/mZ.

Definition 5.2 (Symplectic basis). We say that a tuple (P1, P2, Q1, Q2) is a basis for J [m]

if it generates J [m] as a group. We say that the basis (P1, P2, Q1, Q2) for J [m] is symplectic

with respect to the Weil pairing if

em(Pi, Qj) = ζδij , em(P1, P2) = em(Q1, Q2) = ζ0 = 1,

140

5. CRYPTANALYSIS OF G2SIDH

where ζ is some primitive m-th root of unity and δij =

{
1 if i = j,

0 otherwise.

Due to the alternating property of the Weil-pairing, we always have em(Qj, Pi) = ζ−δij

for a symplectic basis (P1, P2, Q1, Q2).

An alternative way of phrasing the definition is to say that a basis is symplectic if the

associated pairing matrix is of the form

(log(ζ, em(P,Q)))P,Q∈{P1,P2,Q1,Q2} =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


,

where the logarithm is taken with respect to ζ.

We can always find a symplectic basis of the m-torsion of J by transforming an

arbitrary basis into one satisfying the conditions of Definition 5.2. The straightforward

process is formalised in Algorithm 5; see Section 5.3.1.

Lastly, it is essential to make note of the following result [KTW21, Lemma 1] which

shows that we can use symplectic bases at any stage of the Genus-2 SIDH key exchange since

they are preserved under the isogenies considered in the protocol.

Lemma 5.3. Let (P1, P2, Q1, Q2) be a symplectic basis of J [m] with respect to some prim-

itive root ζ, and let ϕ : J → J ′ be an isogeny whose degree is coprime to m. Then(
ϕ(P1), ϕ(P2), ϕ(Q1), ϕ(Q2)

)
is a symplectic basis of J ′[m] with respect to ζdeg(ϕ).

141

5. CRYPTANALYSIS OF G2SIDH

Proof. Observe that we have

em(ϕ(Pi), ϕ(Qj)) = em(Pi, Qj)
deg ϕ = 1 and em(ϕ(Qi), ϕ(Pj)) = em(Pj, Qi)

− deg ϕ = 1

for all i ̸= j. Likewise, we have that

em(ϕ(Pi), ϕ(Qi)) = em(Pi, Qi)
deg ϕ = ζdeg ϕ

for i = 1, 2. Finally, since ⟨ϕ(P1), ϕ(P2), ϕ(Q1), ϕ(Q2)⟩ = J ′[m] and the torsion subgroup is of

rank 4, we can conclude that
(
ϕ(P1), ϕ(P2), ϕ(Q1), ϕ(Q2)

)
is a symplectic basis of J ′[m].

5.1.3 Classification of secret keys

In this section we suggest a normalisation algorithm that produces canonical generators for

each group G ∈ Kℓ. For this purpose, we let

(P ∗
1 , P

∗
2 , P

∗
3 , P

∗
4) := (P1, P2, Q1, Q2)

be a symplectic basis for J [ℓn].1 Clearly, this method can be applied for arbitrary bases by

including a change of basis transformation at the beginning of the algorithm, similar to how

we describe attacking arbitrary bases in Section 5.3.2.

Let (α1,1, . . . , α3,4) denote the secret scalars defining the elements

G1 =
4∑
i=1

[α1,i]P
∗
i , G2 =

4∑
i=1

[α2,i]P
∗
i , and G3 =

4∑
i=1

[α3,i]P
∗
i ,

of J which generate the subgroup G = ⟨G1, G2, G3⟩ ∈ Kℓ. G must be maximal ℓn-isotropic

in order to preserve the polarisation on the surfaces involved, and hence we can use the
1The notation (P ∗

1 , P
∗
2 , P

∗
3 , P

∗
4) is used here to make it easier to express the impact of permuting the basis

elements. As it does not reflect that the basis is symplectic, we only use it in this section of the thesis.

142

5. CRYPTANALYSIS OF G2SIDH

Weil-pairing to deduce several conditions on the scalars (α1,1, . . . , α3,4).

Normalising the secret scalars is based on the well-known Gaussian elimination pro-

cedure. Let

A =


α1,1 α1,2 α1,3 α1,4

α2,1 α2,2 α2,3 α2,4

α3,1 α3,2 α3,3 α3,4


∈M3,4(Z/ℓnZ).

Permuting columns if necessary, we can apply elementary row operations in order to

produce a matrix of the form

A ∼σ


1 0 ∗ ∗

0 1 ∗ ∗

0 0 0 0


or A ∼σ


1 ∗ ∗ ∗

0 ℓk ∗ ∗

0 0 ∗ ℓn−k


, (5.1)

if G ≃ Cℓn×Cℓn or G ≃ Cℓn×Cℓn−k×Cℓk , respectively. We let σ denote the permutation in S4

expressing the necessary permutation of the columns, and ∗ be a placeholder for a positive

integer, possibly adhering to certain divisibility conditions. Note that the left matrix is a

special case of the right by setting k = 0. Therefore we will centre the following discussion

around the latter.

As desired, the process of normalising the subgroup generators does not change the

appearance of the group. More precisely, let

A′ =


α′
1,1 α′

1,2 α′
1,3 α′

1,4

α′
2,1 α′

2,2 α′
2,3 α′

2,4

α′
3,1 α′

3,2 α′
3,3 α′

3,4



143

5. CRYPTANALYSIS OF G2SIDH

be obtained fromA by applying elementary row operations and potentially swapping columns.

Let σ ∈ S4 denote the corresponding permutation of the columns. Then G = ⟨G′
1, G

′
2, G

′
3⟩,

where

G′
1 =

4∑
i=1

[α′
1,i]P

∗
σ(i), G′

2 =
4∑
i=1

[α′
2,i]P

∗
σ(i), G′

3 =
4∑
i=1

[α′
3,i]P

∗
σ(i) .

We only used the knowledge of the group structure of G to obtain a presentation as

an upper triangular matrix as in (5.1). Additionally, we also know that the Weil pairing

eℓn(Gi, Gj) = 1 for any i, j ∈ {1, 2, 3}. This property can be used to work out the relations

between the non-zero entries of the matrices. [KTW21, Proposition 2] below summarises

these results.

Proposition 5.4. Let A be a matrix corresponding to a maximal ℓn-isotropic subgroup of

the form Cℓn×Cℓn−k ×Cℓk for some integer 0 ≤ k ≤ ⌊n
2
⌋. Then there exist a permutation σ ∈

D8 = ⟨(1234), (13)⟩ and scalars a ∈ {0, . . . , ℓn−1}, b ∈ {0, . . . , ℓn−k−1}, c ∈ {0, . . . , ℓn−2k−

1}, d ∈ {0, . . . , ℓk − 1} such that

A ∼σ A′ =


1 d a b

0 ℓk sσ ℓ
k (b− cd) ℓk c

0 0 −sσ ℓn−k d ℓn−k


∈M3,4(Z/ℓnZ),

where sσ = sgn(σ) denotes the sign of the permutation σ.

On the other hand, if A′ is as above and G′ = ⟨G′
1, G

′
2, G

′
3⟩, where

G′
1 =

4∑
i=1

[α′
1,i]P

∗
σ(i), G′

2 =
4∑
i=1

[α′
2,i]P

∗
σ(i), G′

3 =
4∑
i=1

[α′
3,i]P

∗
σ(i)

for some σ ∈ D8, then G′ is maximal ℓn-isotropic.

144

5. CRYPTANALYSIS OF G2SIDH

Proof. Following the Gaussian elimination process one obtains a matrix A′ of the form given

in (5.1). Note that the rank-2 case is just the special case obtained by setting k = 0.

Examining this process more closely, one sees that σ can be chosen to lie in the dihedral

group D8 = ⟨(1234), (13)⟩.2

Let us write

A′ =


1 d a b

0 ℓk ℓkx ℓk c

0 0 ℓn−k y ℓn−k


for some a, b, c, d, x, y ∈ {0, . . . , ℓn− 1}, now including the divisibility by ℓ-powers which was

omitted in (5.1). First, note that after adding a multiple of the second line to the first line of

A′, we may assume that d ∈ {0, . . . , ℓk − 1}. Similarly, we can achieve b ∈ {0, . . . , ℓn−k − 1}

and c ∈ {0, . . . , ℓn−2k − 1}. It remains to show that x and y are determined by the scalars

a, b, c, d. This is done using the Weil pairing. For the following computation, it is important

to note that

eℓn(P
∗
σ(1), P

∗
σ(3)) = eℓn(P

∗
σ(2), P

∗
σ(4))

sσ (5.2)

for all σ ∈ D8.

Let G′
1, G

′
2, G

′
3 be the generators corresponding to the matrix A′. Then

eℓn(G
′
1, G

′
2) = eℓn(P

∗
σ(1) + [d]P ∗

σ(2) + [a]P ∗
σ(3) + [b]P ∗

σ(4), ℓ
k · (P ∗

σ(2) + [x]P ∗
σ(3) + [c]P ∗

σ(4)))

= eℓn(P
∗
σ(1), P

∗
σ(3))

ℓkx · eℓn(P ∗
σ(2), P

∗
σ(4))

ℓk(cd−b).

Using Property (5.2), we obtain the condition ℓkx = sσℓ
k(b − cd). Computing the Weil

pairing on G′
2 and G′

3 shows that ℓn−ky = −sσℓn−kd.
2In the rank-2 case, we moreover have σ ∈ V4 = ⟨(13), (24)⟩ ⊂ D8.

145

5. CRYPTANALYSIS OF G2SIDH

For the other direction, it remains to show that the group G′ = ⟨G′
1, G

′
2, G

′
3⟩ is max-

imal ℓn-isotropic. This can be done by verifying that G′ meets the criteria from Defini-

tion 1.4.

The corollary below follows straightforwardly from Proposition 5.4 and significantly

simplifies the type distinction of secret kernel subgroups during the adaptive attack which

is presented in Section 5.2.3.

Corollary 5.5. Let (P ∗
1 , P

∗
2 , P

∗
3 , P

∗
4) be a symplectic basis for J [ℓn] and let G ⊂ J be an

isotropic group isomorphic to Cℓn×Cℓn−k×Cℓk . Assume that G1 = P ∗
σ(1)+[d]P ∗

σ(2)+[a]P ∗
σ(3)+

[b]P ∗
σ(4) ∈ G for some permutation σ ∈ D8 and scalars a, b, d. Then

Cℓk × Cℓk ≃ ℓn−k
〈
P ∗
σ(2) + [sσ · b]P ∗

σ(3), [−sσ · d]P ∗
σ(3) + P ∗

σ(4)

〉
⊂ G.

Proposition 5.4 further implies that each subgroup G ∈ Kℓ can be represented by a

tuple of the form (a, b, c, d, k, σ), where

a ∈ {0, . . . , ℓn − 1}, b ∈ {0, . . . , ℓn−k − 1}, c ∈ {0, . . . , ℓn−2k}, d ∈ {0, . . . , ℓk − 1},

for some 0 ≤ k ≤
⌊
n
2

⌋
and σ ∈ D8.

Clearly, such a characterisation is not unique in most cases. However, tweaks to the

elimination algorithm, such as enforcing a specific order of application to the permutations

σ ∈ D8, can result in a deterministic procedure. Thus we can find canonical representatives

(a, b, c, d, k, σ), where non-trivial permutations σ imply some additional constraints on the

parameters a, b, c, d defining the generators.

Definition 5.6 (Classification). Let (P ∗
1 , P

∗
2 , P

∗
3 , P

∗
4) be a symplectic basis for J [ℓn] and

146

5. CRYPTANALYSIS OF G2SIDH

denote by P∗ the column vector
(
P ∗
1 P ∗

2 P ∗
3 P ∗

4

)T

. For a group G = ⟨G1, G2⟩ ≃ Cℓn×Cℓn

in Kℓ, we say that G1, G2 are the canonical generators if one of the following is true for some

a, b, c ∈ Z/ℓnZ.

2.1

G1

G2

 =

1 0 a b

0 1 b c

P∗.

2.2

G1

G2

 =

1 b a 0

0 c −b 1

P∗, and ℓ | c.

2.3

G1

G2

 =

 a 0 1 b

−b 1 0 c

P∗, and ℓ | a, b.

2.4

G1

G2

 =

a b 1 0

b c 0 1

P∗, and ℓ | a, b, c.

For a group G = ⟨G1, G2, G3⟩ ≃ Cℓn × Cℓn−k × Cℓk with 0 < k < n
2

in Kℓ, we say

that G1, G2, G3 are the canonical generators if one of the following is true for some a ∈

{0, . . . , ℓn − 1}, b ∈ {0, . . . , ℓn−k − 1}, c ∈ {0, . . . , ℓn−2k − 1}, d ∈ {0, . . . , ℓk − 1}.

3.1


G1

G2

G3


=


1 d a b

0 ℓk ℓk(b− cd) ℓkc

0 0 −ℓn−kd ℓn−k


P∗.

3.2


G1

G2

G3


=


1 b a d

0 ℓkc −ℓk(b− cd) ℓk

0 ℓn−k ℓn−kd 0


P∗,

and ℓ | c.

3.3


G1

G2

G3


=


a d 1 b

−ℓk(b− cd) ℓk 0 ℓkc

ℓn−kd 0 0 ℓn−k


P∗,

and ℓ | a.

3.4


G1

G2

G3


=


a b 1 d

ℓk(b− cd) ℓkc 0 ℓk

−ℓn−kd ℓn−k 0 0


P∗,

and ℓ | a, c.

3.5


G1

G2

G3


=


d 1 b a

ℓk 0 ℓkc ℓk(b− cd)

0 0 ℓn−k −ℓn−kd


P∗,

and ℓ | b, d.

3.6


G1

G2

G3


=


b 1 d a

ℓkc 0 ℓk −ℓk(b− cd)

ℓn−k 0 0 ℓn−kd


P∗,

and ℓ | b, c, d.

147

5. CRYPTANALYSIS OF G2SIDH

3.7


G1

G2

G3


=


d a b 1

ℓk −ℓk(b− cd) ℓkc 0

0 ℓn−kd ℓn−k 0


P∗,

and ℓ | a, b, d.

3.8


G1

G2

G3


=


b a d 1

ℓkc ℓk(b− cd) ℓk 0

ℓn−k −ℓn−kd 0 0


P∗,

and ℓ | a, b, c, d.

For a group G = ⟨G1, G2, G3⟩ ≃ Cℓn×Cℓk×Cℓk with k = n
2

in Kℓ, we say that G1, G2, G3

are the canonical generators if one of the following is true for some a ∈ {0, . . . , ℓn−1}, b, d ∈

{0, . . . , ℓk − 1}.

4.1


G1

G2

G3


=


1 d a b

0 ℓk ℓkb 0

0 0 −ℓkd ℓk


P∗.

4.2


G1

G2

G3


=


a d 1 b

−ℓkb ℓk 0 0

ℓkd 0 0 ℓk


P∗, and

ℓ | a.

4.3


G1

G2

G3


=


d 1 b a

ℓk 0 0 ℓkb

0 0 ℓk −ℓkd


P∗, and

ℓ | b, d.

4.4


G1

G2

G3


=


d a b 1

ℓk −ℓkb 0 0

0 ℓkd ℓk 0


P∗, and

ℓ | a, b, d.

Moreover we say that a group G ∈ Kℓ is of Type 2.i, 3.i or 4.i for i ∈ {1, . . . , 8}

depending on which of the cases above applies.

Table 5.1 summarises the classification of the groups in Kℓ defined above. The clas-

sification of the groups in Kℓ also allows us to determine the cardinality of Kℓ. The number

of groups of a given type can be directly read off from the description and is provided in

the last column of Table 5.1. Adding up the numbers for Types 2.1, 2.2, 2.3, 2.4, we obtain

ℓ3n−3(ℓ2 + 1)(ℓ + 1), the number of maximal isotropic subgroups of rank 2. Adding up the

148

5. CRYPTANALYSIS OF G2SIDH

type σ condition on (a, b, c, d) cardinality

k = 0 2.1 id - ℓ3n

2.2 (24) ℓ | c ℓ3n−1

2.3 (13) ℓ | a, b ℓ3n−2

2.4 (13)(24) ℓ | a, b, c ℓ3n−3

0 < k < n
2

3.1 id - ℓ3n−2k

3.2 (24) ℓ | c ℓ3n−2k−1

3.3 (13) ℓ | a ℓ3n−2k−1

3.4 (13)(24) ℓ | a, c ℓ3n−2k−2

3.5 (12)(34) ℓ | b, d ℓ3n−2k−2

3.6 (1234) ℓ | b, c, d ℓ3n−2k−3

3.7 (1432) ℓ | a, b, d ℓ3n−2k−3

3.8 (14)(23) ℓ | a, b, c, d ℓ3n−2k−4

2k = n 4.1 id - ℓ2n

4.2 (13) ℓ | a ℓ2n−1

4.3 (12)(34) ℓ | b, d ℓ2n−2

4.4 (1432) ℓ | a, b, d ℓ2n−3

Table 5.1: Classification of maximal ℓn-isotropic subgroups.

numbers for Types 3.1−3.8, we find that there are ℓ3n−2k−4(ℓ2+1)(ℓ+1)2 groups isomorphic

to Cℓn ×Cℓn−k ×Cℓk , where 0 < k < n
2
. Finally the sum over the numbers for Types 4.1− 4.4

is equal to ℓ2n−3(ℓ2 + 1)(ℓ + 1), the number of groups isomorphic to Cℓn × Cℓk × Cℓk , where

2k = n. These cardinalities coincide with the numbers provided in [FT19, Proposition 3].

5.1.4 Uniform sampling from the restricted keyspace

In the previous section we described a classification of the groups in Kℓ. This can be used to

sample uniformly from the entire keyspace. Here, we introduce a slightly restricted keyspace

Kres
ℓ that allows a particularly easy way of sampling from the keyspace which chooses ele-

ments uniformly at random. For the convenience of the reader, Fig. 5.1 provides an explicit

149

5. CRYPTANALYSIS OF G2SIDH

Setup
• prime p = 2eA · 3eB · f − 1
• superspecial hyperelliptic curve H/Fp2 with Jacobian J
• symplectic bases (PA,1, PA,2, QA,1, QA,2) for J [2eA] and (PB,1, PB,2, QB,1, QB,2) for
J [3eB]

Key Generation

• ai
$←− {0, . . . , 2eA − 1}

for i = 1, 2, 3
• A1 = PA,1 + [a1]QA,1 +
[a2]QA,2

A2 = PA,2 + [a2]QA,1 +
[a3]QA,2

• ϕA : J → JA =
J/⟨A1, A2⟩

JA, ϕA(PB,i), ϕA(QB,i)
for i ∈ {1, 2}

−−−−−−−−−−−−−−−−−−−−−→

JB, ϕB(PA,i), ϕB(QA,i)
for i ∈ {1, 2}

←−−−−−−−−−−−−−−−−−−−−−

• bi
$←− {0, . . . , 3eB − 1}

for i = 1, 2, 3
• B1 = PB,1 + [b1]QB,1 +
[b2]QB,2

B2 = PB,2 + [b2]QB,1 +
[b3]QB,2

• ϕB : J → JB =
J/⟨B1, B2⟩

Shared Key

JB/⟨ϕB(A1), ϕB(A2)⟩ = J/⟨A1, A2, B1, B2⟩ = JA/⟨ϕA(B1), ϕA(B2)⟩

Figure 5.1: G2SIDH with restricted keyspace Kresℓ .

description of the G2SIDH protocol in this setting.

For some fixed symplectic basis (P1, P2, Q1, Q2) of J [ℓn], we define the restricted

keyspace as

Kres
ℓ = {⟨P1 + [a]Q1 + [b]Q2, P2 + [b]Q1 + [c]Q2⟩ | a, b, c ∈ Z/ℓnZ} .

In the terminology of the previous section this means that Kres
ℓ is the set of all groups of

Type 2.1 (cf. Definition 5.6 and Table 5.1).

First of all, note that every secret key sk ∈ Kres
ℓ is indeed a maximal ℓn-isotropic

subgroup as per Proposition 5.4. A very beneficial feature of the new keyspace is that every

secret key sk ∈ Kres
ℓ is uniquely encoded by a tuple (a, b, c) ∈ (Z/ℓnZ)3. This means that a

150

5. CRYPTANALYSIS OF G2SIDH

secret key can be sampled by choosing three random integers a, b, c ∈ Z/ℓnZ.

Moreover, the restricted keyspace still has the same order of magnitude as the original

keyspace. To see this recall the number of maximal ℓn-isotropic subgroups from [FT19,

Theorem 2]:

#Kℓ = ℓ2n−3(ℓ2 + 1)(ℓ+ 1)

(
ℓn +

ℓn−1 − 1

ℓ− 1

)
= ℓ3n · (ℓ

2 + 1)(ℓ+ 1)

ℓ3

(
1 +

ℓn−1 − 1

ℓn(ℓ− 1)

)
︸ ︷︷ ︸

αℓ

.

For n which are large (as is the case in the cryptographic applications we consider), we find

that α2 ≈ 45
16

and α3 ≈ 140
81

.

As discussed in the context of (2.1), the keyspace of the SIDH protocol is restricted in

a similar fashion for practical reasons. In the genus-2 setting, the restriction only marginally

reduces the size of the keyspace: While Kℓ has cardinality (ℓ+1)ℓn−1, we effectively consider

the ℓn different ℓn-isogenies from a fixed starting curve corresponding to the kernels of Type

2.1 in the restricted keyspace.

Remark 5.7. It is also possible to develop a key generation algorithm which uniformly

samples from the unrestricted keyspace. This would require a more thorough analysis of the

proportions of the subgroup types corresponding to the different possible canonical generators

in Kℓ.

We consider the case where ℓ = 2. [FT19, Theorem 2] and [FT19, Proposition 3] give

explicit formulae to compute the distribution of subgroups of rank two among all admissible

subgroups is
2n

2n + 2n−1 − 1
≈ 2

3

for large n.

151

5. CRYPTANALYSIS OF G2SIDH

Performing the same computation on rank-3 subgroups, for large n we have

3 · 2n−2k

3 · 2n − 2
≈ 1

22k
,

where k is the parameter determining the subgroup structure.

Therefore, we obtain a method to almost uniformly sample the keyspace. First, 0 ≤

k ≤ N is determined for some bound N ≤ ⌊n
2
⌋, weighted according to the proportion stated

above. Next, one has to make a choice of canonical generators based on the distribution of

the different types presented in Table 5.1. Finally, uniformly selecting the required scalars

will ensure the near-uniform sampling from the keyspace.

5.2 Adaptive attack on G2SIDH

The attack as presented in this section is able to recover Alice’s secret kernel when she uses

a static secret kernel which is maximal 2n-isotropic. In particular, we will describe a method

that can recover secret kernels of various group structures. In the exposition to come, the

scalars θi are used to ensure Weil pairing countermeasures are unable to detect our attack.

This method is employed in tandem with the symplectic transformations that are primarily

used to isolate the bit under attack. The adaptive attack on G2SIDH is similar to adaptive

attacks on SIDH and some of its variants3. It interacts with an oracle by sending points on

some starting variety that correspond to the auxiliary points provided in the protocol. The

oracle is “weak” in the sense that only one bit is returned per query. By sending malformed

points, the adaptive attack is able to recover scalars that determine the secret kernels.

The first step of the adaptive attack is to recover the kernel structure used by Alice,

and a strategy for this is presented in Section 5.2.3. The next step then recovers the scalars
3See the description of the GPST attack in Section 2.1.2 or Section 5.4.2 and attacks on 2-SIDH and the

Jao–Urbanik protocol in Chapter 4.

152

5. CRYPTANALYSIS OF G2SIDH

associated with the kernel structure determined in the first step and is divided into two

parts depending on the rank of the kernel structure: Section 5.2.4 describes the technique

for rank-2 kernels and Section 5.2.5 for kernel subgroups of rank 3. In each case, we will

recover the first bit of the secret scalars before iteratively determining the remaining bits.

In the following, we will assume that all users of the G2SIDH protocol (or at least

Alice, the honest party whose key we want to recover) are using a symplectic basis as

described in Section 5.1.2. This attack will still work on users not using a symplectic basis

as one can perform a linear transformation from an arbitrary torsion basis into a symplectic

basis. For clarity, we present the attack directly on a symplectic torsion basis here and

describe the extension to arbitrary bases in Section 5.3.

Notations and setup

Let us fix some notation. Let J be the starting variety, and let JA be the codomain of

the secret isogeny with kernel ⟨A1, A2, A3⟩, where the orders of the points are 2n, 2n−k, 2k

respectively.

Furthermore, suppose ⟨P1, P2, Q1, Q2⟩ = J [2n] is a symplectic basis such that e2n(Pi, Qj) =

ζδij , where ζ is a primitive 2n-th root of unity, and e2n(P1, P2) = e2n(Q1, Q2) = ζ0 = 1.

We write ϕB : J → JB for Bob’s secret isogeny. Then (ϕB(P1), ϕB(P2), ϕB(Q1), ϕB(Q2))

is a symplectic basis for JB[2n] as per Lemma 5.3. To ease notation, we set

R1 = ϕB(P1), R2 = ϕB(P2), S1 = ϕB(Q1), S2 = ϕB(Q2).

We will assume that Alice is the party under attack, and that she is using twelve secret

scalars α1,1, . . . , α3,4 which define a maximal 2n-isotropic subgroup of J [2n] as was suggested

in [FT19]. We can write any of the secret scalars, say a, as a =
∑n−1

i=0 2iai for bits ai ∈ {0, 1}.

153

5. CRYPTANALYSIS OF G2SIDH

For i = 1, . . . , n − 1, let us then denote the partial key consisting of the first i bits of a as

Ka
i =

∑i−1
j=0 2

jaj so that a = Ka
i + 2iai + 2i+1a′ for some a′. This convention will help us

keep track of the known information at each step of the attack below.

5.2.1 Attack model and oracle

The attack we present in the following assumes that an honest Alice uses a static key which

a malicious Bob is trying to learn through repeatedly providing malformed torsion point

information during the G2SIDH protocol execution. Bob’s overall goal is to recover Alice’s

full key or a valid tuple of scalars forming an equivalent key which corresponds to the same

sequence of Richelot isogenies.

It is customary in similar attacks to consider two distinct oracles which can model

the information obtained by the attacker which differ in their inherent strength. On input

of a variety J and four points R′
1, . . . , R

′
4 ∈ J [2n], one provides the isomorphism invariants

of the codomain variety J/GA of the isogeny corresponding to the kernel subgroup GA =

⟨
∑4

i=1[α1,i]R
′
i,
∑4

i=1[α2,i]R
′
i,
∑4

i=1[α3,i]R
′
i⟩. The second, less powerful oracle is the one we will

utilise to model our attack in the following, as is done in [GPST16].

Our oracle, which replaces Alice in an honest execution of the protocol,

O (J, (R′
1, R

′
2, R

′
3, R

′
4), J

′)

returns 1 whenever the subgroup GA = ⟨
∑4

i=1[α1,i]R
′
i,
∑4

i=1[α2,i]R
′
i,
∑4

i=1[α3,i]R
′
i⟩ is isotropic

and the variety J/GA has the same isomorphism invariants as the second input variety J ′.

Otherwise, it returns 0. Moreover we assume that the oracle checks whether an input is valid

and returns ⊥ if this is not the case. Here, we say that a tuple (J, (R′
1, R

′
2, S

′
1, S

′
2), J

′) is a

valid input if (R′
1, R

′
2, S

′
1, S

′
2) is a symplectic basis for J [2n] and e2n(R′

i, S
′
i) = e2n(Pi, Qi)

3eB .

Note that an honest run of the protocol generates the valid input (JB, (R1, R2, S1, S2), JAB).

154

5. CRYPTANALYSIS OF G2SIDH

For ease of reading, we will represent malformed points to be queried as linear com-

binations of R1, R2, S1, S2 and laid out in a 4× 4 matrix. That is, for any points R′
1, R′

2, S ′
1,

S ′
2 that the adversary sends to the oracle, we can write



R′
1

R′
2

S ′
1

S ′
2


=



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4





R1

R2

S1

S2


,

and we will represent the queries R′
1, R′

2, S ′
1, S ′

2 by the 4× 4 matrix.

Remark 5.8. In comparison to attacks on elliptic curve SIDH and its variants, the genus-2

setting would allow us to consider another type of oracle distinguishing between different cases

of 0 outputs for O above. More precisely, this oracle would specify whether it returns 0 because

the subgroup generated by the malformed input points is not a maximal 2n-isotropic subgroup

of J [2n] (and thus does not specify a variety isogenous to J with this kernel subgroup), or

because the given subgroup is isotropic but yields a variety different from the reference variety

J .

However, the additional information learned from such an oracle does not always lead

to a reduction in the number of necessary queries made by an attacker. For example, the

simultaneous recovery of a bit each of the scalars b and c when the secret kernel is of rank 3

as described in Section 5.2.5 requires three queries with the oracle O. This number could be

reduced to two queries with the distinguishing oracle whenever the scalar d is odd. This only

happens with probability 1/2, so we restrict to using the oracle O so that our strategy works

for arbitrary scalars.

155

5. CRYPTANALYSIS OF G2SIDH

5.2.2 Symplectic transformations

When constructing malformed torsion points for the oracle queries, we need to make sure

that the input is still valid. In our setting, an oracle query

O (JB, (R
′
1, R

′
2, S

′
1, S

′
2), JAB)

is valid if and only if (R′
1, R

′
2, S

′
1, S

′
2) is a symplectic basis and

e2n(R
′
i, S

′
j) = e2n(Ri, Sj) for i, j ∈ {1, 2}.

A change of basis t : (R′
1, R

′
2, S

′
1, S

′
2) ← (R1, R2, S1, S2) with this property is called a sym-

plectic transformation. The matrices corresponding to symplectic transformations are called

symplectic matrices. We are going to write Mt for the matrix corresponding to the transfor-

mation t.

Using symplectic transformations has yet another advantage. Let G = ⟨G1, G2, G3⟩ ⊂

J be maximal 2n-isotropic and t : J [2n] → J [2n] a symplectic transformation, then G′ =

⟨t(G1), t(G2), t(G3)⟩ is maximal 2n-isotropic as well. Note that this is not true for general

isomorphisms of J [2n].

One can easily verify that the following matrices are symplectic. We will use different

combinations of these to construct the transformations for the oracle queries.

Mt0 =



1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1


, Mt1 =



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


, Mt2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1


,

156

5. CRYPTANALYSIS OF G2SIDH

Mt3 =



1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


, Mt4 =



1 0 0 0

0 1 0 0

0 1 1 0

1 0 0 1


, Mt5 =



1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1


.

Proposition 5.9. The following matrices are symplectic for any values x, x0, x1, x2, x3, x4, x5

and ivertible elements θ1, θ2 ∈ Z/2nZ.

M1 =



θ1 θ2x 0 0

0 θ2 0 0

0 0 θ−1
1 0

0 0 −θ−1
1 x θ−1

2


, M2 =



1 0 x1 x5

0 1 x5 x3

0 0 1 0

0 0 0 1


,

M3 =



θ1(1 + x0x1 − x4x5(1 + x0x1)) θ2x2x5 θ−1
1 x1(1 + x4x5) θ−1

2 x5

θ1x0x5 θ2(1 + x2x3 + x4x5(1 + x2x3)) θ−1
1 x5 θ−1

2 x3(1 + x4x5)

θ1x0 θ2x4(1 + x2x3) θ−1
1 θ−1

2 x3x4

θ1x4(1 + x0x1) θ2x2 θ−1
1 x1x4 θ−1

2


.

Proof. It is easy to check that M1 is symplectic since the scalars satisfy θ1θ−1
1 = θ2θ

−1
2 = 1.

The matrix M2 can be easily written in terms of the transformations ti, namely M2 =

Mx1
t1 ·M

x3
t3 ·M

x5
t5 . Finally, M3 can be written as

M3 =M1 ·Mx0
t0 ·M

x1
t1 ·M

x2
t2 ·M

x3
t3 ·M

x4
t4 ·M

x5
t5 .

157

5. CRYPTANALYSIS OF G2SIDH

All our queries to the oracle are obtained by combining the transformations in the

proposition above. In order to choose a transformation, it is necessary to examine the

effect of a transformation on a secret subgroup. To illustrate this, assume that Alice uses

a group ⟨A1, A2, A3⟩ of Type 3.1. This means A1 = R1 + [d]R2 + [a]S1 + [b]S2, A2 =

2k(R2 + [b − cd]S1 + [c]S2) A3 = 2n−k([−d]S1 + S2). As in Section 5.1.3, we let A be the

associated matrix, i.e. here

A =


1 d a b

0 2k 2k(b− cd) 2kc

0 0 −2n−kd 2n−k


.

Applying a basis transformation t corresponds to computing A′ = A · Mt. As an

example, consider the second basis transformation from the above proposition.

A′ = A ·M2 =


1 d a+ x1 + dx5 b+ x5 + dx3

0 2k 2k(b− cd) + 2kx5 2kc+ 2kx3

0 0 −2n−kd 2n−k


= A+


0 0 x1 + dx5 x5 + dx3

0 0 2kx5 2kx3

0 0 0 0


.

This means that the matrices A and A′ correspond to the same group GA if and only if

⟨[x1 + dx5]S1 + [x5 + dx3]S2, [2
k]([x5]S1 + [x3]S2)⟩ ⊂ GA.

5.2.3 Case distinction of kernel subgroups

Recall that in [FT19], Alice’s secret can be described by (α1,1, . . . , α3,4). A priori we do

not know, if the group GA defined by these scalars has rank 2 or 3. Moreover we do not

know which canonical form is obtained when normalising the generators (cf. Definition 5.6,

Table 5.1). In total, when k = 0 there are 4 types of maximal 2n-isotropic groups, 8 different

158

5. CRYPTANALYSIS OF G2SIDH

types when 0 < k < n
2

and 4 different types when k = n
2
. The type can be recovered by

sending at most 4k+4 queries that mimic the normalisation process outlined in Section 5.1.3.

The approach is illustrated in the decision tree in Fig. 5.2, where each node is labelled with

the condition we want to test for. Note that at most two queries have to be made per

“equivalence” node while at most four queries are necessary to test for divisibility by a power

of 2. We provide details for one of the paths in the decision tree below.

Assuming that the key (α1,1, . . . , α3,4) is drawn uniformly at random from the entire

key space K2, the algorithm illustrated by the decision tree will in many cases terminate at

an early stage: Recall from Section 5.1.4 that roughly one third of the key space consists

of groups of Type 2.1. In that case the algorithm terminates after three queries; one to

find that one of α1,1, α2,1, α3,1 is odd, and another two to determine that one of α2,2, α3,2 is

odd. In total, the rank-2 subgroups constitute two thirds of the key space, in which case

the algorithm terminates after having made at most six queries. Finally, if we encounter a

rank-3 group, it will usually not be necessary to perform many iterations to find k because

the probability that k > k0 for some fixed k0 is less than 1
3·22k0 .

Observe that an attacker obtains some information about the value of certain bits

during the course of the type distinction. In particular for rank-3 groups, we recover nor-

malised scalars b (mod 2k) and d (mod 2k) = d via the iterative queries. At each step of

the iteration, we aim to find out whether 2k0+1 divides the coefficients of Pσ−1(2) and Pσ−1(4)

in the canonical generators of ⟨A2⟩ and ⟨A3⟩. In order to achieve this, we need to eliminate

the possibility that an oracle query returns 0 because ⟨A′
1⟩ ≠ ⟨A1⟩. Hence, we need to query

twice for each possible further bit of the coefficients of Pσ−1(2) and Pσ−1(4) in ⟨A1⟩. There-

fore we recover the first k bits of b and d fully while we determine the type of GA. This

information can then be used to drastically reduce the number of queries in the main attack

algorithm presented in Section 5.2.5, and we thus assume knowledge of b (mod 2k) and d for

any rank-3 kernel subgroups.

159

5. CRYPTANALYSIS OF G2SIDH

(α1,1, . . . , α3,4)

α1,1 ≡ α2,1 ≡ α3,1 ≡ 0

α1,3 ≡ α2,3 ≡ α3,3 ≡ 0 α′
2,2 ≡ α′

3,2 ≡ 0

α1,2 ≡ α2,2 ≡ α3,2 ≡ 0

v2(α
′
2,1), v2(α

′
3,1) > k0

v2(α
′
2,3), v2(α

′
3,3) > k0

k0 + 1 < n
2

4.4, n
2

3.7, k0

3.8, k0

v2(α
′
2,1), v2(α

′
3,1) > k0

v2(α
′
2,3), v2(α

′
3,3) > k0

k0 + 1 < n
2

4.3, n
2

3.5, k0

3.6, k0

α′
2,2 ≡ α′

3,2 ≡ 0

α′
2,4 ≡ α′

3,4 ≡ 0

v2(α
′
2,2), v2(α

′
3,2) > k0

v2(α
′
2,4), v2(α

′
3,4) > k0

k0 + 1 < n
2

2.3, 0

2.4, 0

3.3, k0

3.4, k0

4.2, n
2

α′
2,4 ≡ α′

3,4 ≡ 0

v2(α
′
2,2), v2(α

′
3,2) > k0

v2(α
′
2,4), v2(α

′
3,4) > k0

k0 + 1 < n
2

2.1, 0

2.2, 0

3.1, 0

3.2, k0

4.1, n
2

Set k0 = 1 Set k0 = 1

Set k0 = 1

Set k0 = 1

inc. k0 inc. k0

inc. k0

inc. k0

Figure 5.2: Strategy for type distinction of normalised kernel generators as in Table 5.1.

Annotations to Fig. 5.2 We begin with Alice’s scalars (α1,1, . . . , α3,4). Each node be-

low represents one or multiple malformed queries which determine whether the displayed

condition holds. All equivalence conditions are viewed modulo 2 here. For example, the

first query node corresponds to checking whether α1,1 ≡ α2,1 ≡ α3,1 ≡ 0 (mod 2) which can

be done with the transformation t1
2n−1 . At each node, a true response indicates that the

next query can be found along the blue and solid arrow, while the red and dotted path is

taken when the condition is not fulfilled. Note that when an odd scalar is found, the sub-

sequent conditions use further normalised scalars denoted by α′
i,j. Leaves show which type

of normalised generators define the secret subgroup Alice uses (as classified in Table 5.1),

followed by k which indicates the order of the generators of the subgroup. For distinguishing

types of rank-3 subgroups, it is necessary to use iterative queries to find the correct type

and determine the value of k. At each step, we test whether k = k0 for increasing values

160

5. CRYPTANALYSIS OF G2SIDH

of 0 < k0 <
n
2
− 1 by checking if certain scalars are divisible by 2k0+1. We use that for any

integer x, v2(x) denotes the largest integer such that 2v2(x) divides x. If a scalar is found to

not satisfy the divisibility condition, we can again normalise at this position and deduce the

type of the subgroup along with k indicating the order of its generators.

We now provide an example that illustrates how the decision tree in Fig. 5.2 can be

used to determine the canonical form of the normalised generator for an admissible kernel

subgroup (cf. Definition 5.6 and Table 5.1) by presenting the queries along one path which

allow us to classify one type of rank-3 subgroup. The queries required to check the conditions

along other paths are very similar and hence omitted.

Suppose Alice’s secret is of the form (α1,1, . . . , α3,4) and let A be the 3 × 4 matrix

defined by these scalars. We do not initially know the rank of the group GA defined by

these scalars, which canonical form is obtained when normalising the generators, nor their

respective order. We proceed as follows to find the type of GA according to our classification

from Section 5.1.3.

Step 1 We start by testing whether α1,1 ≡ α2,1 ≡ α3,1 ≡ 0 (mod 2) with the query

(R′
1, R

′
2, S

′
1, S

′
2) obtained from the transformation

Mt1
2n−1

=



1 0 2n−1 0

0 1 0 0

0 0 1 0

0 0 0 1


.

161

5. CRYPTANALYSIS OF G2SIDH

Applied to A this transformation yields

A′ = A ·Mt = A+ 2n−1 ·


0 0 α1,1 0

0 0 α2,1 0

0 0 α3,1 0


.

The matrices A and A′ define the same group GA if and only if

[2n−1][α1,1]S1, [2
n−1][α2,1]S1, [2

n−1][α3,1]S1 ∈ GA.

This is the case if and only if α1,1, α2,1 and α3,1 are all even. One direction is easy. For

the other direction, note that if [2n−1][αj,1]S1 ∈ GA, then isotropy implies 1 = e2n([αi,1]R1 +

[αi,2]R2 + [αi,3]S1 + [αi,4]S2, [2n−1αj,1]S1) = e2n(R1, S1)
2n−1αi,1·αj,1 for all i ∈ {1, 2, 3}. This

leads to the first case distinction depending on the output of the oracle which signifies

whether the permutation σ ∈ D8 corresponding to the normalisation of GA fixes the first

basis point:

O (JB, (R
′
1, R

′
2, S

′
1, S

′
2), JAB) =

{
1 : Types 2.3, 2.4, 3.3− 3.8, 4.2− 4.4.

0 : Types 2.1, 2.2, 3.1, 3.2, 4.1.

Assume that the answer is 0. This implies that at least one of the coefficients of R1

is invertible and we can perform a first normalisation step. We obtain elements α′
i,2, α

′
i,3, α

′
i,4

for i ∈ {1, 2, 3} such that

A ∼


1 α′

1,2 α′
1,3 α′

1,4

0 α′
2,2 α′

2,3 α′
2,4

0 α′
3,2 α′

3,3 α′
3,4


.

162

5. CRYPTANALYSIS OF G2SIDH

Step 2 Now we test whether one of α′
2,2 or α′

3,2 is invertible. This requires at most two

queries. First, we send the basis obtained from the transformation

M2n−1

t3
=



1 0 0 0

0 1 0 2n−1

0 0 1 0

0 0 0 1


.

Similarly to the strategy above, O(J, J ′, (R′
1, R

′
2, S

′
1, S

′
2)) = 1 if and only if all of α′

1,2, α
′
2,2, α

′
3,2

are even. On the other hand if O(J, J ′, (R′
1, R

′
2, S

′
1, S

′
2)) = 0, we only know that at least one

of the three coefficients of R2 is odd. We want to distinguish between the two cases where

α′
1,2 is odd and both α′

2,2, α
′
3,2 are even, or where at least one of α′

2,2, α
′
3,2 is odd. Therefore,

we also send the query obtained from

M2n−1

t1
M2n−1

t3
M2n−1

t5
=



1 0 2n−1 2n−1

0 1 2n−1 2n−1

0 0 1 0

0 0 0 1


.

Taking into account that the output of the previous query was 0, the answer of this query is

1 if α′
1,2 is odd and both α′

2,2, α
′
3,2 are even, and it is 0 otherwise.

Note that we are done with the case distinction if both of the previous queries returned

163

5. CRYPTANALYSIS OF G2SIDH

0. In that case we can simply normalise the coefficient of R2 to 1 and find that

A ∼


1 0 α′′

1,3 α′′
1,4

0 1 α′′
2,3 α′′

2,4

0 0 α′′
3,3 α′′

3,4


.

Using the fact that the group GA is isotropic, we see that α′′
3,3 = α′′

3,4 = 0, and GA is a rank-2

group of Type 2.1.

On the other hand if one of the queries returned 1, then none of α′
2,2, α

′
3,2 are invertible.

This leaves the following possibilities for the group structure.

2.2

1 b a 0

0 c −b 1


where c is even, and the three rank-3 types

3.1


1 d a b

0 ℓk ℓk(b− cd) ℓkc

0 0 −ℓn−kd ℓn−k


, 3.2


1 b a d

0 ℓkc ℓk(cd− b) ℓk

0 ℓn−k ℓn−kd 0


, 4.1


1 d a b

0 ℓk ℓkb 0

0 0 −ℓkd ℓk


.

Note that we can also deduce the parity of d (resp. b) for Type 3.1 and 4.1 (resp. Type 3.2)

from the previous queries.

Step 3 In this step we distinguish between Type 2.2 and the possible rank-3 types. For

that purpose, we check whether one of α′
2,4 or α′

3,4 is invertible using the transformations

164

5. CRYPTANALYSIS OF G2SIDH

M2n−1

t2
=



1 0 0 0

0 1 0 0

0 0 1 0

0 2n−1 0 1


and Mt4 ·M2n−1

t1
·M−1

t4
=



1 2n−1 2n−1 0

0 1 0 0

0 0 1 0

0 2n−1 2n−1 1


.

If the queries show that one (or both) of α′
2,4 or α′

3,4 is invertible, then GA has Type 2.2.

Otherwise, if both α′
2,4 and α′

3,4 are even we know that GA is a rank-3 group, and we continue

with the next step.

Step 4 In order to distinguish between Types 3.1, 3.2 and Type 4.1, we have to compare the

elements α′
2,2, α

′
3,2 and α′

2,4, α
′
3,4. Recall that all of these scalars are necessarily even, hence

we can find positive integers k2,2, k2,4, k3,2, k3,4 and odd numbers β2,2, β2,4, β3,2, β3,4 such that

α′
i,j = 2ki,jβi,j for (i, j) ∈ I = {(2, 2), (2, 4), (3, 2), (3, 4)}. Our goal is to determine

k = min{ki,j | (i, j) ∈ I}.

This minimum can be found iteratively. We start with k0 = 1 and increase k0 by one

if the following queries are not successful. Before describing the queries, note that

2n−k⟨R2 + [α′
1,4]S1, S2 − [α′

1,2]S1⟩ ⊂ GA (5.3)

as per Corollary 5.5. Property (5.3) will be used multiple times in this step.

The first query is to test whether GA is of Type 3.1 with k = k0. Recall that we

know the parity of α′
1,2 and α′

1,4 from the previous queries. For each iterative step, we

have determined α′
1,2 (mod 2k0) and α′

1,4 (mod 2k0) from the previous queries. We write

α′
1,2 = Kα′

1,2
+ 2k0α′

1,2,k0
+ 2k0+1α′′

1,2 and α′
1,4 = Kα′

1,4
+ 2k0α′

1,4,k0
+ 2k0+1α′′

1,4. We send the

165

5. CRYPTANALYSIS OF G2SIDH

following query

(Mt3Mt1
xiMt5

yi)2
n−2k0−1

=



1 0 2n−2k0−1xi 2n−2k0−1yi

0 1 2n−2k0−1yi 2n−2k0−1

0 0 1 0

0 0 0 1


first with y1 = −Kα′

1,2
and x1 = y21. This transformation leaves the kernel unchanged if and

only if

2n−k0−1α1,2,k0([−α1,2]S1 + S2) ∈ GA,

2n−2k0−1α2,2([−α1,2]S1 + S2) ∈ GA,

2n−2k0−1α3,2([−α1,2]S1 + S2) ∈ GA.

Using Property (5.3), this translates to the conditions α′
1,2,k0

= 0 and 2k0+1 divides α′
2,2 and

α′
3,2, i.e. k2,2 > k0 and k3,2 > k0. If the oracle query returns 0, we resend the query with

y2 = −(Kα′
1,2

+ 2k0) and x2 = y22. If these malformed points produce a group distinct from

GA, we can deduce that one of k2,2, k3,2 equals k0. Hence, the group must be of Type 3.1

with k = k0. Otherwise, O (J, (R′
1, R

′
2, S

′
1, S

′
2), J

′) = 1 implies that we have determined the

correct next bit of α′
1,2 and that k2,2 > k0 and k3,2 > k0. We thus proceed with the next set of

queries to test whether the group is of Type 3.2. We send the two queries corresponding to

the transformation Mt = M2n−2k0−1xi
t1 M2n−2k0−1

t2
M

(2n−2k0−1yi)
2

t2 M−1
t1 M

2n−2k0−1yi
t4 Mt1M

−2n−2k0−1yi
t4

such that

166

5. CRYPTANALYSIS OF G2SIDH

Mt =



1 2n−2k0−1yi 2n−2k0−1xi 0

0 1 0 0

0 0 1 0

0 2n−2k0−1 −2n−2k0−1yi 1


with y1 = −Kα′

1,4
, y2 = −(Kα′

1,4
+ 2k0) and xi = −y2i . With analogous reasoning as before,

we can deduce from the oracle responses whether both k2,4 > k0 and k3,4 > k0, and learn the

next bit of α′
1,4 if any query returns 1. Thus we can either determine the type of GA to be

3.2 with k = k0, or increase k0 by 1 and repeat the queries in this step.

If we have not managed to determine that GA is of Type 3.1 or 3.2 with k0 <
n
2
, we

conclude that indeed GA must be of Type 4.1 with k = n
2
.

5.2.4 Recovering kernels of rank 2

As discussed above, there are multiple canonical forms for rank-2 kernels. In this section,

we assume that we have applied the case distinction method from above to find the correct

canonical form of the kernel generators. We illustrate the attack for Type 2.1, where

A1

A2

 =

1 0 a b

0 1 b c

 ·



R1

R2

S1

S2


.

Should the generators be of a different canonical form, slight alterations to the malformed

points in the exposition of the attack below will suffice to still recover the correct scalars.

167

5. CRYPTANALYSIS OF G2SIDH

Parity bits We want to employ symplectic transformations so that the Weil pairing coun-

termeasure is unable to detect that malformed points have been sent. Table 5.2 presents

transformations that return information about the parity bits, and Fig. 5.3 illustrates how

one can use the transformations to get an optimal adaptive attack.

transformation same j-invariant iff

t0
2n−1

a ≡ b ≡ 0

t2
2n−1

b ≡ c ≡ 0

t4
2n−1

b ≡ ac

t0
2n−1

t1
2n−1

a+ 1 ≡ b ≡ 0

t0
2n−1

t3
2n−1

a ≡ b+ 1 ≡ 0

t2
2n−1

t1
2n−1

b+ 1 ≡ c ≡ 0

t2
2n−1

t3
2n−1

b ≡ c+ 1 ≡ 0

Table 5.2: Table of symplectic transformations and how parity bits affect the codomain. The
equivalences in the second column are all modulo 2.

t4
2n−1

t0
2n−1

t2
2n−1

t1
2n−1

t2
2n−1

t2
2n−1

t0
2n−1

t3
2n−1

t0
2n−1

t3
2n−1

0 1 4 7 2 6 3 5

Figure 5.3: Optimal strategy for recovering parity bits. The top node represents the first
malformed query which will use the t4 transformation to determine whether b ≡ ac (mod 2),
as shown in Table 5.2. A true response indicates that the next query can be found along
the blue and solid arrow, while the red and dotted path is taken when the condition is
false. Leaves are decimal representations of the parity bits a0, b0, c0, i.e. 6 corresponds to
[a0, b0, c0] = [1, 1, 0].

As an example, we examine how the first transformation, t42
n−1 , affects the kernel

168

5. CRYPTANALYSIS OF G2SIDH

generators. This step corresponds to sending malformed points obtained via the matrix

M =



1 0 0 0

0 1 0 0

0 2n−1 1 0

2n−1 0 0 1


and leads to Alice using

A′ =

1 0 a b

0 1 b c

·M =

1 + 2n−1b 2n−1a a b

2n−1c 1 + 2n−1b b c

 ∼ A+

0 0 0 2n−1(b2 + ac)

0 0 2n−1(b2 + ac) 0.


during her internal computations. Note that in the last step, Gaussian elimination is used to

normalise A′. We can observe that O (JB, (R
′
1, R

′
2, S

′
1, S

′
2), JAB) = 1 if and only if 2n−1(b2 +

ac) ≡ 0 (mod 2n). This occurs whenever b ≡ ac (mod 2), as displayed in Table 5.2, and from

the response we can determine whether [a0, b0, c0] is among {[0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]}

or {[0, 1, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]}.

Iterative step The recovery of subsequent bits will not follow the optimal strategy from

the recovery of the parity bits. However, it will still recover one bit of information on average

per query.

Suppose now that we have learned the first i bits of each key scalar. Then we know

Ka
i , K

b
i and Kc

i , where a =
∑n−1

j=0 2
jaj = Ka

i +
∑n−1

j=i 2
jaj (and similarly for b and c).

Now assume that i < n− 3 and set ei := n− i− 1. By the lemma below, the element

Ti = 1− 2ei is thus a quadratic residue modulo 2n.

169

5. CRYPTANALYSIS OF G2SIDH

Lemma 5.10 ([GPST16, Lemma 4]). Let n ≥ 5 and i ∈ {1, . . . , n−4}. Then Ti := 1−2n−i−1

is a quadratic residue modulo 2n.

In the following, θi ∈ {0, . . . , 2n−1} denotes one of the square roots of Ti, i.e. θ2i ≡ Ti

(mod 2n). Note that θi is necessarily odd, hence there exists an inverse θ−1
i modulo 2n.

Intuitively, θi is a masking scalar that allows us to defeat the Weil pairing countermeasure.

We use three different sets of malformed points to determine ai and ci, and then learn

bi with one further query.

First, we send the malformed points obtained from

θ−1
i



Ti 0 −2eiKa
i 0

0 1 0 2eiKc
i

0 0 1 0

0 0 0 Ti


.

Upon which, the subgroup computation4 will entail

A′ = θ−1

Ti 0 −2eiKa
i + a Tib

0 1 b 2eiKc
i + Tic



∼

1 0 a+ T−1
i 2ei(Ka

i − a) b

0 1 b c+ 2ei(Kc
i − c)

 = A+

0 0 T−1
i 2n−1ai 0

0 0 0 2n−1ci

 .

Hence A′ defines the same group as A, exactly when both ai and ci are zero.

If we have not yet recovered the two bits in question, we proceed with sending mal-
4To verify the computation below note that T−1

i ≡ 1 + 2eiT−1
i (mod 2n).

170

5. CRYPTANALYSIS OF G2SIDH

formed points corresponding to the transformation matrix

θ−1
i



Ti 0 −2ei(Ka
i + 2i) 0

0 1 0 2eiKc
i

0 0 1 0

0 0 0 Ti


.

In this case

A′ ∼ A+

0 0 T−1
i 2n−1(ai + 1) 0

0 0 0 2n−1ci

 .

The groups associated to A and A′ coincide exactly when ai = 1 and ci = 0.

If both queries fail to recover the bits ai and ci, i.e. (ai, ci) /∈ {(0, 0), (1, 0)}, then we

can conclude that ci = 1. To find the bit ai, we then send the third set of malformed points

obtained from

θ−1
i



Ti 0 −2eiKa
i 0

0 1 0 2eiKc
i+1

0 0 1 0

0 0 0 Ti


.

Here, the oracle will return 1 exactly when ai = 0. If this is not the case, then ai = 1.

After these series of queries, we have recovered the bits ai and ci, hence we know Ka
i+1

and Kc
i+1. It remains to recover the bit bi. This is done by querying the oracle on the points

171

5. CRYPTANALYSIS OF G2SIDH

corresponding to the matrix

θ−1
i



1 0 2eiKa
i+1 2eiKb

i

0 1 2eiKb
i 2eiKc

i+1

0 0 Ti 0

0 0 0 Ti


.

Here,

A′ ∼ A+

0 0 2ei(Ka
i+1 − a) 2ei(Kb

i − b)

0 0 2ei(Kb
i − b) 2ei(Kc

i+1 − c)

 = A+

0 0 0 2n−1bi

0 0 2n−1bi 0

 .

The oracle returns 1 exactly when bi = 0. Otherwise, we know that bi = 1.

It follows from Theorem 5.9 that all of the transformations used in these queries are

symplectic. Therefore they constitute valid queries in our oracle model. As a consequence

the attack is not detectable by the Weil pairing.

Note that we are not able to use these transformation for i ∈ {n − 3, n − 2, n − 1}.

We suggest to use a brute force method to deduce the last three bits of each scalar. This is

consistent with the adaptive attack described in [GPST16].

5.2.5 Recovering kernels of rank 3

Now suppose Alice’s secret kernel subgroup has rank 3, i.e. k > 0. Let 1 ≤ k ≤ ⌊n
2
⌋ be

fixed. We assume that the attacker has determined the type of Alice’s secret subgroup as

outlined in Section 5.2.3, and therefore knows k. We present the attack for a kernel of Type

172

5. CRYPTANALYSIS OF G2SIDH

3.1, hence the generators are of the form


A1

A2

A3


=


1 d a b

0 2k 2k(b− cd) c

0 0 −2n−kd 2n−k


·



R1

R2

S1

S2


for some (a, b, c, d) ∈ {0, . . . , 2n−1}×{0, . . . , 2n−k−1}×{0, . . . , 2n−2k−1}×{0, . . . , 2k−1},

where b (mod 2k) and d are known from the case distinction algorithm. As usual, we denote

the resulting variety JB/⟨A1, A2, A3⟩ by JAB.

We again fix

ei = n− i− 1, Ti = 1− 2ei ∈ Z/ℓnZ, θ2i = Ti ∈ Z/ℓnZ

for 1 ≤ i ≤ n − 4, where θi is any one of the two square roots. Recall that θi exists since

Ti ≡ 1 (mod 8).

Recovering a (mod 2k−1) We first recover the parity of the secret scalar a by sending the

malformed points obtained from the transformation matrix



1 0 0 0

0 1 0 0

2n−1 0 1 0

0 0 0 1


.

173

5. CRYPTANALYSIS OF G2SIDH

These allow us to recover the bit a0 since

A′ =


1 + 2n−1a d a b

0 2k 2k(b− cd) 2kc

0 0 −2n−kd 2n−k


∼ A+


0 0 2n−1a2 0

0 0 0 0

0 0 0 0


This means that A and A′ correspond to the same group if and only if a0 = 0, hence we can

deduce a0 from the oracle response.

Now, we iteratively recover the bit ai for i = 1, . . . , k − 2 using the knowledge of

Ka
i =

∑i−1
j=0 2

jaj obtained from the previous steps. Fix

α = −2ei(dKb
k +Ka

i), δ = −2eid.

and send the malformed points obtained from the transformation

θ−1
i



Ti δ α 0

0 1 0 0

0 0 1 0

0 0 −δ Ti


.

This transformation applied to A yields

A′ = θ−1


Ti δ + d α + a− δb Tib

0 2k 2k(b− cd− δc) 2kTic

0 0 2n−k(−d− δ) 2n−kTi


∼


1 d a+ 2ei(a−Ka

i) b

0 2k 2k(b− cd) 2kc

0 0 −2n−kd 2n−k



174

5. CRYPTANALYSIS OF G2SIDH

∼ A+


0 0 2n−1ai 0

0 0 0 0

0 0 0 0


.

To verify the above simplifications, note that T−1
i = 1 + 2ei (when k ≥ 1 and i ≤ k − 1 as

is the case here). Hence, we can determine the desired bit from the oracle response since

O (JB, (R
′
1, R

′
2, S

′
1, S

′
2), JAB) = 1 implies ai = 0, and ai = 1 otherwise.

Recovering a (mod 2n−k−1) and c We recover the bits ai and ci−k+1 for i = k−1, . . . , n−

k− 2 simultaneously. Recall that we know the first k bits of b, i.e. Kb
k, as well as d from the

type distinction of kernel subgroups. In the following we assume that d is an odd integer.

The queries can be easily adapted to the case where d is even by shifting the indices of c

accordingly.

In the first query we send the malformed points obtained from the transformation

θ−1
i



Ti δ α β

0 1 β γ

0 0 1 0

0 0 −δ Ti


where α = −2eiKa

i , β = −2ei−1Kc
i−k+1d, γ = 2eiKc

i−k+1, δ = −2ei−1d. Then we obtain

A′ ∼ A+


0 0 2n−1ai − 2n−k−1d2ci−k+1 2n−k−1dci−k+1

0 0 2n−1dci−k+1 0

0 0 0 0



175

5. CRYPTANALYSIS OF G2SIDH

This means that A and A′ define the same group if

[2n−1ai]S1 + [2n−k−1dci−k+1]([−d]S1 + S2), [2
n−1dci−k+1]S1 ∈ GA.

Recall that we assume d odd and note that [2n−k]([−d]S1+S2) ∈ GA. Hence the oracle returns

1 if and only if ai = ci−k+1 = 0. If the oracle returns 0, we proceed with a query to test if

ai = 1 and ci−k+1 = 0. This is achieved by setting α = −2ei(Ka
i +2i)T−1

i in the query above.

Similarly, we test for ai = 0 and ci−k+1 = 1 by setting β = −2ei−1(Kc
i−k+1− 2i−k+1)dT−1

i and

γ = 2ei(Kc
i−k+1 + 2i−k+1).

Recovering b Recall that Ka
n−k−1, K

b
k, c and d are known from previous oracle queries. We

now utilise this knowledge to find the remaining bits of b. Again, assuming d to be odd here

allows us to perform the queries below for any k ≤ i < n−max{k, 3} which can be adapted

via some shift in indices to accommodate even d. Let

α = 2ei(Ka
n−k−1 +Kb

i d− cd2), β = 2eicd, γ = 2eic, δ = 2eid.

We then send malformed points obtained via

θ−1
i



1 δ α β

0 Ti β −γ

0 0 Ti 0

0 0 −δ 1



176

5. CRYPTANALYSIS OF G2SIDH

to the oracle resulting in

A′ ∼


1 δ + Tid α+ βd− δb+ Tiα β − γd+ b

0 2k 2k(T−1
i β + b− dc− T−1

i δc) 2kT−1
i (c− γ)

0 0 2n−k(−Tid− δ) 2n−k


= A+


0 0 2eid(Kb

i − b) 0

0 0 0 0

0 0 0 0


so that the oracle returns 1 if bi = 0, and 0 if bi = 1.

Recovering a It remains to recover the last bits of a, given Ka
n−k−1 as well as b, c and d.

Let i = n− k − 1, . . . , n− 3. We again fix

α = 2ei(Ka
i + bd− cd2), β = 2eicd, γ = 2eic, δ = 2eid

and query the oracle with the symplectic transformation

θ−1
i



1 δ α β

0 Ti β −γ

0 0 Ti 0

0 0 −δ 1


.

We obtain

A′ ∼ A+


0 0 2ei(Ka

i − a) 0

0 0 0 0

0 0 0 0


.

177

5. CRYPTANALYSIS OF G2SIDH

Hence, we can deduce the bit ai from the response of the oracle whereby

O (JB, (R
′
1, R

′
2, S

′
1, S

′
2), JAB) = 1

implies ai = 0, and ai = 1 otherwise.

Since the square root of Ti = 1 − 2ei is not defined when i ≥ n − 3, we cannot scale

the malformed points in order to obtain a valid symplectic transformation. Therefore, the

last three bits of a need to be recovered by brute force.

5.2.6 Complexity of the attack

Kernels of rank-2 Taking into account that the case distinction strategy outlined in

Section 5.2.3 requires at most 6 queries to determine any type of rank-2 kernel subgroup as

well as the information we learn about the parity of Alice’s scalars throughout the process,

we find that this attack requires at most 6+ 4(n− 4) = 4n− 10 queries, each corresponding

to one isogeny computation. This leaves 3 bits per secret scalar, hence 9 bits in total, to be

recovered through brute force.

Kernels of rank-3. If Alice’s kernel has rank 3, we can learn the type of the subgroup as

well as the scalars d and b (mod 2k) following Section 5.2.3 with at most 4+4k queries. We

further require k − 1 queries, one for each of the first k − 1 bits of a, and then 3 queries for

each step of the parallel recovery of ai and ci−k+1, summing to 4+4k+k−1+3(n−2k−2) =

3n− k− 3 queries thus far. Each remaining bit of b and a, potentially bar the last 4− k and

3 bits respectively, requires exactly one query to recover, adding n − 6 queries. This leads

to a total number of at most 4n− k − 9 queries to recover Alice’s secret key while leaving 3

bits of a as well as 4 − k bits of b and 3 − k bits of c (if k < 4 and k < 3, respectively) to

brute force.

178

5. CRYPTANALYSIS OF G2SIDH

5.3 Generalising the attack

For the attack presented in Section 5.2, we assume that Alice, the party whose secret scalar we

want to recover, utilises a public basis of her torsion subgroup which is symplectic. Though

we will show in Section 5.4 that working with symplectic bases in G2SIDH is a natural

generalisation from the elliptic curve SIDH protocol, using this specific type of basis was not

included in the initial proposal of the scheme by Flynn and Ti [FT19] and can hence not be

assumed. In an instance where arbitrary bases are used, the malformed points presented in

the previous section can easily be detected by the party under attack. Upon receiving Bob’s

public information (JB, R1, R2, R3, R4), Alice can compute the Weil pairing of the points in

the public key and compare it to the Weil pairing of the original basis {PA,i}4i=1 contained

in the public parameters of the scheme. Should it not be true that

eℓeAA
(Ri, Rj) = eℓeAA

(PA,i, PA,j)
deg ϕB

for some pair 1 ≤ i, j ≤ 4, by the properties of the Weil pairing, Alice can conclude that the

provided torsion information is malformed in some way. Even if this does not necessarily

indicate a malicious second party, she can then abort the protocol to thwart a possible attack.

However, it is still possible for an attacker to perform the adaptive attack to recover

the other party’s static secret key in this scenario. First, some pre-computation is required

to generate a symplectic torsion basis, then our attack can be “translated” to the general

setting through a change of basis.

5.3.1 Symplectic basis algorithm

We begin by describing an algorithm which deterministically computes a symplectic basis

from an arbitrary one in a straightforward way. Let J be a PPSSAS over some finite field Fp2

179

5. CRYPTANALYSIS OF G2SIDH

and m an integer not divisible by p. Suppose we are given an arbitrary basis (R1, R2, R3, R4)

for J [m], Algorithm 5 constructs a basis (P1, P2, Q1, Q2) for J [m] satisfying the required

pairing conditions (cf. Definition 5.2). The algorithm resembles the Gram–Schmidt process

for orthonormalisation.

Algorithm 5: Converting an arbitrary set of generators of the torsion sub-
group to a symplectic basis.

Data: Basis (R1, R2, R3, R4) for J [m]
Result: Symplectic basis (P1, P2, Q1, Q2) for J [m]

1 Set P1 ← R1;

2 if ord(e(P1, R2)) = m then
3 Set Q1 ← R2;
4 else if ord(e(P1, R3)) = m then
5 Set Q1 ← R3;
6 Set R3 ← R2;
7 else
8 Set Q1 ← R4;
9 Set R4 ← R2;

10 Set ζ ← e(P1, Q1);
11 Set λ1 ← log(ζ, e(Q1, R3)), λ2 ← log(ζ, e(P1, R3));
12 Set P2 ← R3 + [λ1]P1 − [λ2]Q1;
13 Set µ1 ← log(ζ, e(Q1, R4)), µ2 ← log(ζ, e(P1, R4)), µ3 ← log(ζ, e(P2, R4));
14 Set Q2 ← [µ−1

3](R4 + [µ1]P1 − [µ2]Q1);
15 Return (P1, P2, Q1, Q2);

We first fix P1 to be any element of the arbitrary basis and then begin to construct

a symplectic basis around it. Then one finds an element Q1 such that e(P1, Q1) has full

order m by determining which of the remaining three elements from the input basis already

fulfils this condition. The pairing value of P1 and P2 then allows us to fix ζm. It remains

to construct P2 and Q2 which should be “orthogonal” to P1 and Q1 respectively. A precise

procedure for this is described in Lines 11 to 14 of Algorithm 5.

180

5. CRYPTANALYSIS OF G2SIDH

5.3.2 Attack on an arbitrary basis

As shown in Algorithm 5, we are able to obtain a symplectic basis from an arbitrary basis

using a 4× 4 change of basis matrix. In particular, such a basis is of the form

T :=



1 0 0 0

γ1 −γ2 1 0

0 1 0 0

µ−1
3 µ1 −µ−1

3 µ2 0 µ−1
3


up to swapping certain columns depending on the result of the if branch of Algorithm 5,

such that for example T · (R1 R2 R3 R4)
T = (P1 P2 Q1 Q2)

T if Line 3 is executed. This

matrix T , together with its inverse, allows us to transform elements written in terms of one

basis into the other. Each time we need to query the oracle on a particular set of malformed

points (R1, R2, S1, S2) expressed in the symplectic basis, we translate these points with the

inverse of the matrix T to the original setting and get the corresponding malformed points

in terms of the arbitrary basis as

T −1 · (R1 R2 S1 S2)
T .

We still obtain the same bit of information in return: Either the oracle confirms that the

malformed variety coincides with the reference variety, or it indicates the opposite. This

ultimately allows one to recover the secret for a symplectic basis which is equivalent to

knowing the secret isogeny. Note that the attack is still not detectable by the Weil pairing

if the transformations from the previous sections are applied.

181

5. CRYPTANALYSIS OF G2SIDH

5.4 Another look at SIDH and GPST

In the previous sections we studied different aspects of the generalisation of the SIDH scheme

to abelian surfaces. For that purpose it was necessary to introduce different notions that did

not appear in the description of the SIDH protocol for elliptic curves. In order to give some

intuition on the different terms, we explain their meaning in the case of elliptic curves and

demonstrate the analogies to our setting here.

5.4.1 Revisiting the SIDH keyspace

A secret key of Alice is a cyclic subgroup of E order 2eA , and similarly Bob’s secret key is a

cyclic subgroup of order 3eA . In analogy to the definition in Section 5.1, we denote

Kℓ = {G ⊂ E | G cyclic and #G = ℓn},

for ℓ ∈ {2, 3} and n = eA or eB, respectively.

It is easy to see that a group G ∈ Kℓ is maximal ℓn-isotropic with respect to the

Weil-pairing on E.5 Moreover G ̸⊂ E[m] for any m < ℓn, since a generator of G has order

ℓn. In particular, we may use the equivalent definition

Kℓ = {G ⊂ E | G maximal ℓn-isotropic and G ̸⊂ E[m] for any m < ℓn},

which resembles the definition in Section 5.1.4 more closely.

An important ingredient in the classification of secret keys for G2SIDH is the use of

symplectic bases for the torsion groups J [ℓn]. In the elliptic curve setting one automatically

works with symplectic bases.
5Isotropy follows from the fact that G is cyclic. To see that G is maximal with this property, consider

some R ∈ G with G = ⟨R⟩ and note that for any R′ ∈ E \G, the Weil pairing eℓn(R,R′) is non-trivial.

182

5. CRYPTANALYSIS OF G2SIDH

Lemma 5.11. Let ℓ ̸= p be a prime and n > 0. Then every basis (P,Q) for E[ℓn] is

symplectic with respect to the Weil pairing.

It is well known that the keyspace of SIDH, Kℓ, can be divided into two disjoint sets

as follows

Kℓ = {⟨P + [a]Q⟩ | a ∈ Z/ℓnZ} ∪ {⟨[ℓa]P +Q⟩ | a ∈ Z/ℓnZ}.

In the terminology of Section 5.1.3, this means that there are two types of groups in Kℓ as

opposed to the multitude of types in the genus-2 setting (cf. Definition 5.6 and Table 5.1).

To make the analogy more explicit, we introduce the following terminology.

Setup
• prime p = 2eA · 3eB · f − 1
• supersingular elliptic curve E
• torsion bases (PA, QA) for E[2eA] and (PB, QB) for E[3eB]

Key Generation

• α
$←− {0, . . . , 2eA − 1}

• A = PA + [α]QA

• ϕA : E → EA = E/⟨A⟩

EA, ϕA(PB), ϕA(QB)
−−−−−−−−−−−−−−−−−−−−−→

EB, ϕB(PA), ϕB(QA)
←−−−−−−−−−−−−−−−−−−−−−

• β
$←− {0, . . . , 3eB − 1}

• B = PB + [β]QB

• ϕB : E → EB = E/⟨B⟩

Shared Key

EB/⟨ϕB(PA) + [α]ϕB(QA)⟩ = E/⟨A,B⟩ = EA/⟨ϕA(PB) + [β]ϕA(QB)⟩

Figure 5.4: SIDH protocol with restricted keyspace.

Definition 5.12 (Classification). Let (P,Q) be a basis for E[ℓn]. For a group G = ⟨G1⟩ ≃ Cℓn

in Kℓ, we say that G1 is the canonical generator of G if one of the following is true for some

a ∈ Z/ℓnZ.

1.1 G1 =

(
1 a

)
·

P
Q

. 1.2 G1 =

(
a 1

)
·

P
Q

 and ℓ | a.

183

5. CRYPTANALYSIS OF G2SIDH

Moreover we say that a group G ∈ Kℓ is of Type 1.i for i ∈ {1, 2} depending on which

of the cases above applies.

Note that the entire keyspace has cardinality ℓn−1(ℓ + 1). However in practice one

restricts to the groups of Type 1.1. This restricted keyspace has cardinality ℓn [JACCD-

HHJKKLLNPRSU22, Section 1.3.9]. This is very similar to the restriction suggested in

Section 5.1.4. A sketch of the SIDH protocol using the restricted keyspace is provided in

Fig. 5.4.

5.4.2 Revisiting GPST

Recall the adaptive GPST attack on SIDH due to Galbraith, Petit, Shani and Ti [GPST16]

which we presented in Section 2.1.2. In order to illustrate the connection to our adaptive

attack on G2SIDH, we use a different terminology in this section.

A major obstruction when devising an attack strategy for G2SIDH was to avoid

detection by the Weil pairing. We overcame potential detection by only allowing symplectic

transformations of the basis elements for the oracle queries. Indeed this strategy is also

followed in [GPST16] albeit not explicitly phrased in this way.

Assume that Alice uses a fixed secret key xA, yA defining the group GA = ⟨[xA]PA +

[yA]QA⟩ ∈ K2. Her public key is of the form (EA, ϕA(PB), ϕA(QB)), where EA is the codomain

of the isogeny ϕA : E → EA with kernel GA. It is assumed that the attacker has access to

the oracle

O (E1, (R, S), E2) =


⊥ if e2n(R, S) ̸= e2n(PA, QA)

3m ,

1 if E2 ≃ E1/⟨[xA]R + [yA]S⟩,

0 otherwise.

Honestly running the protocol, the attacker first generates Bob’s ephemeral values

184

5. CRYPTANALYSIS OF G2SIDH

(EB, R = ϕB(PA), S = ϕB(QA)) and computes the elliptic curve EAB.6 Then they send

different queries to the oracle with fixed curves EB and EAB, while the basis (R, S) is

modified in each step. In order to create a valid query it is necessary that the Weil pairing

on the malformed basis elements (R′, S ′) coincides with that on (R, S). Phrased differently,

the basis transformation

(R′ = [m1,1]R + [m1,2]S, S
′ = [m2,1]R + [m2,2]S)← (R, S)

has to be a symplectic transformation. Note that this transformation can be represented by

the 2× 2 matrix

M =

m1,1 m1,2

m2,1 m2,2

 .

It is easy to see that this matrix is symplectic if and only if det(M) = 1. 7

Case distinction The first step in the attack is to distinguish between groups of Type 1.1

and 1.2. This is done by sending the malformed points (R+ [2n−1]S, S) to the oracle. These

malformed points are obtained from the transformation

M =

1 2n−1

0 1

 .

Note that

⟨[xA](R + [2n−1]S) + [yA]S⟩ = ⟨[xA]R + [yA]S + [2n−1xA]R⟩.
6Note that by construction O(EB , EAB , (R,S)) = 1.
7Note that this criterion is unique to the case of 2 × 2 matrices. For 2n × 2n matrices with n > 1 the

condition det(M) = 1 is necessary but not sufficient.

185

5. CRYPTANALYSIS OF G2SIDH

This coincides with ⟨[xA]R + [yA]S⟩ if and only if xA is even. It follows that

O
(
EB, (R + [2n−1]S, S), EAB

)
=

{
1 if GA is of Type 1.2,

0 if GA is of Type 1.1.

In the following we assume that GA is of Type 1.1 and denote the canonical generator

by A1 = R + [a]S. In order to be consistent with the notation from Section 5.2, we set

A =
(
1 a

)
, hence A1 = A ·

(
R S

)T .

First bit recovery In order to find the first bit of a, the attacker queries the oracle on

the malformed points
(
R′ S ′)T =M0 ·

(
R S

)T , where

M0 =

 1 0

2n−1 1

 .

Note that A ·
(
R′ S ′)T = A′ ·

(
R S

)T , where

A′ = A ·M0 =

(
1 a

)
·

 1 0

2n−1 1

 =

(
1 + 2n−1a a

)
.

It follows that

O(EB, EAB, (R
′, S ′)) =

{
1 if a is even,

0 if a is odd.

Iterative step Assume the attacker has recovered the first i bits of a. Then we know Ka
i ,

where a = Ka
i +

∑n−1
j=i aj2

j. If i < n− 3, there exists θ satisfying θ2 ≡ 1 + 2n−i−1 (mod 2n),

[GPST16, Lemma 3.3]. Necessarily θ is an odd integer, hence invertible modulo 2n. Consider

186

5. CRYPTANALYSIS OF G2SIDH

the transformation
(
R′ S ′)T =Mi ·

(
R S

)T , where

Mi = θ−1 ·

1 −2n−i−1Ka
i

0 1 + 2n−i−1

 .

Clearly Mi is symplectic, hence the tuple (EB, EAB, (R
′, S ′)) defines a valid query. Here, we

obtain

A′ = A ·Mi =

(
1 a

)
· θ−1 ·

1 −2n−i−1Ka
i

0 1 + 2n−i−1

 = θ−1

(
1 a+ 2n−i−1a− 2n−i−1Ka

i

)

= θ−1

(
1 a+ 2n−1ai

)
.

This shows that ⟨A ·
(
R S

)T ⟩ = ⟨A′ ·
(
R S

)T ⟩ if and only if ai is even. In conclusion

O (EB, (R
′, S ′), EAB) =

{
1 if ai is even,

0 if ai is odd.

Thus the attacker can iteratively recover the first n−2 bits of a. For the remaining two bits,

the authors suggest to use a brute force method.

Remark 5.13. It is a priori not obvious how to find symplectic transformations which can

be used to recover the parity of some bit ai of the secret scalar. In [GPST16], the authors

use the following strategy.

First, they find a transformation
(
R′ S ′) ← (

R S
)

using some clever reverse engi-

neering such that

⟨R + [a]S⟩ = ⟨R′ + [a]S ′⟩ ⇔ ai is even.

In the second step, the authors multiply R′ and S ′ by a scalar to make the transformation

187

5. CRYPTANALYSIS OF G2SIDH

symplectic. This corresponds to multiplying the associated matrix by a scalar such that its

determinant is 1. The latter only works if the determinant is a square modulo 2n. This

condition also prevents the use of the same attack approach for recovering the last bits.

The first step could be translated directly to the G2SIDH setting. However, the scaling

in the second step is not possible in the genus-2 case. Let (R1, R2, S1, S2) be an arbitrary

basis for J [2n]. Then in general there will not exist an integer λ with the property that

(λR1, λR2, λS1, λS2) is symplectic. As a consequence, it was necessary to use a different

strategy for finding suitable symplectic transformations.

5.5 Improvements and outlook

In this chapter, we have made two contributions. We first thoroughly analysed the generators

of maximal ℓn-isotropic subgroups of principally polarised superspecial abelian surfaces. Our

classification of normalised generators allowed us to propose a key generation algorithm

for G2SIDH which is very simple and allows for uniform sampling from a slightly reduced

keyspace. Secondly, we presented a polynomial-time adaptive attack on static G2SIDH which

utilises our prior classification of kernel types.

For the attack, we make the assumption that Alice’s secret isogeny is a chain of

Richelot isogenies and therefore explicitly work with elements of J [2n]. This strategy can be

translated to recover a key for more general small primes ℓ and therefore ℓeℓ-torsions of J due

to Proposition 5.4. The resulting attack on G2SIDH with a different prime ℓ may not return

a bit of information with every single query, but may require a small number of additional

queries to determine a bit of information. The attack can still be carried out successfully,

though it might only be of theoretical interest due to inefficient isogeny computation and

the new passive attacks on SIDH-based schemes.

188

5. CRYPTANALYSIS OF G2SIDH

As discussed in Section 2.2.3, G2SIDH is now fully broken due to a generalisation of

techniques from [CD23] by Robert [Rob23]. However, it remains to be seen whether the inno-

vative, yet novel and therefore largely untested, countermeasures to these types of attacks will

prove themselves in the one-dimensional setting and whether they will translate to abelian

surfaces without problems. While masking the isogeny degree as suggested in [FMP23] for

the MD-SIDH protocol will be tricky in the two-dimensional setting as computing general

(ℓ, ℓ)-isogenies (especially for primes larger than ℓ = 5, 7) is still inefficient and thus does not

leave much room for varying isogeny degrees, masking the torsion point information as for

M-SIDH seems more feasible. Overcoming the technicalities preventing a straightforward

adaptation and explicitly constructing G2SIDH with scaled torsion information is left for

further work.

It further remains to explore how one can improve the naive method for computing

symplectic torsion bases which we presented in Section 5.3.1. The lack of a faster algorithm

is for example a hindrance for the more efficient ways of computing (2, 2)- and (3, 3)-isogeny

chains due to Kunzweiler [Kun22] and Kunzweiler–Decru [DK23].

189

CHAPTER 6

Improved quantum algorithms for finding

fixed-degree isogenies between supersingular

elliptic curves

Personal contributions: The results presented in Chapter 6 are based on collaborative

work with Benjamin Benčina, Péter Kutas, Simon-Philipp Merz, Christophe Petit and Miha

Stopar and have been submitted for review under the title Improved quantum algorithms for

finding fixed-degree isogenies between supersingular elliptic curves. Hence the corresponding

article is yet to be published. My main contributions within the results presented in this

chapter were to the theoretical analysis of the isogeny finding strategies, especially those

utilising Cornacchia’s algorithm and Coppersmith’s variant for bivariate equations, as well

as formalising ideas and writing up further sections of the article and pseudocode for its

submission.

In this chapter we examine the complexity of one of the computational problems

integral to isogeny-based cryptography. Finding any isogeny between two given supersingular

190

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

elliptic curves, i.e. solving the pure isogeny problem (cf. Problem 2.1), is a natural algorithmic

task which is known to be equivalent to computing the curves’ endomorphism rings. When

the isogeny is additionally required to have a specified degree d, the problem appears to be

somewhat different in nature. However, this variant is still considered a hard problem, and

one which isogeny-based cryptosystems rely on for security. We formalise this problem as

follows.

Problem 6.1 (Fixed-degree isogeny problem). Given supersingular elliptic curves E and E ′

defined over the field Fp2 with p2 elements, and given a positive integer d, find an isogeny

E → E ′ of degree d if such an isogeny exists.

Variants of the pure isogeny problem such as the fixed-degree version Problem 6.1,

where a solution is required to fulfill certain further properties, arise in cryptanalysis from

the additional public information supplied by various isogeny-based protocols. The existence

of a solution with specific attributes supplies additional information for solving the problem.

Thus, it is a priori not clear whether finding a solution with specific properties, when such

a solution is known to exist, will lead to an easier or harder problem compared to the pure

isogeny problem.

In 2021, Wesolowski proved that the pure isogeny problem between supersingular

elliptic curves reduces to the computation of their endomorphism rings [Wes22b] which was

previously only proved under certain heuristics [KLPT14; PL17; EHLMP18]. Yet, it is not

clear how the hardness of finding an isogeny of a specific degree compares to the hardness

of the pure isogeny problem in general.

Classically, the best known methods for solving Problem 6.1 are based on exhaustive

search, meet-in-the-middle search or more general collision finding algorithms tailored to the

concrete amount of memory available [CLNRV20]. Regarding quantum algorithms, Tani’s

claw finding algorithm [Tan09] was considered to solve Problem 6.1. However, Jaques and

191

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Schanck argued that the algorithm’s cost of accessing memory renders it more expensive than

its classical counterpart [JS19], and the algorithm was widely dismissed. Finally, Fouotsa,

Kutas, Merz and Ti gave a reduction of Problem 6.1 to the problem of computing the

curves’ endomorphism rings, if additionally the image of a sufficiently large torsion subgroup

is known under the secret isogeny [FKMT22]. In an updated version of their article, the

authors show that it is also sufficient if the image of a slightly larger torsion subgroup is only

known up to some scalar [FKMT21].

We propose several new algorithms to solve Problem 6.1 in this chapter. Our general

approach is divided into three distinct steps.

1. Compute the endomorphism rings O and O′ of E and E ′.

2. Construct a connecting ideal I between the quaternion orders O and O′ and find a

representation of d by the norm form associated to Hom(E,E ′).

3. Convert the ideal back to some suitable isogeny representation: Depending on the

smoothness of the degree d, this can be as a composition of rational maps or a less

straightforward representation.

The main focus of our work is solving the norm equation in Item 2 when the isogeny

degree is relatively small. In general, this task can be seen as the quaternion version of the

isogeny problem for fixed degrees: We first compute an LLL-reduced basis of Hom(E,E ′)

and write the norm form with respect to this basis. The problem can thus be expressed as

finding a solution to

Q(x1, x2, x3, x4) = d (6.1)

where Q is a quadratic form. Firstly note that when we have a smooth isogeny degree d = ℓe

for some prime ℓ, a solution can be found ℓ-adically. Note furthermore that using the LLL

algorithm to reduce our basis allows us to bound the coefficients of Q. We then consider

192

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

multiple approaches to solving Equation (6.1) which combine the guessing of certain variables

(using Grover’s algorithm) and methods for solving quadratic Diophantine equations such

as Cornacchia’s algorithm and multivariate variants of Coppersmith’s method.

In the first approach, we simply guess two variables and consider the remaining bi-

variate equation. Such an equation can be transformed into one efficiently solvable by Cor-

nacchia’s algorithm. For an ideal norm and isogeny degree of d ≈ p1/2+ϵ for some ϵ > 0,

the cost of this approach is p2ϵ to test all possible guesses, or pϵ using a quantum com-

puter and Grover search [Gro96]. Adding the costs of precomputing endomorphism rings,

we obtain total costs for isogeny computation of max{p1/2, p2ϵ} classically and max{p1/4, pϵ}

quantumly.

Our second approach uses Coppersmith-type methods for solving the norm equation.

Here we have various algorithms available depending on how many variables we want to

guess. If we guess two variables we can use bounds derived by Coron [Cor07] to show that the

algorithm succeeds whenever ϵ < 1/4. The advantage of this approach is that it requires less

heuristics than the Cornacchia approach (while achieving the same complexity). If we guess

only one variable we can use multivariate Coppersmith techniques, either a generalisation of

Coron’s approach or a more rigorous variant due to Bauer and Joux [BJ07].

As an additional application of our algorithms, we discuss utilising the trivariate

Coppersmith approach for solving another quaternion problem relevant to isogeny-based

cryptography, namely that of embedding given quadratic orders into maximal orders. We

provide a heuristic method which embeds orders of small discriminant in polynomial time, or

alternatively detects that no such embedding exists. Based on our experiments, the approach

works for quadratic orders of discriminant up to p0.8.

Our contributions are presented in the following way. We begin in Section 6.1 with

an exposition of several relevant techniques and algorithms for solving multivariate integer

193

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

equations which we utilise for our methods, followed by a summary of state-of-the-art isogeny

and endomorphism ring computations. The following sections describe our methods for

solving the quaternion version of the isogeny computation problem. Two main avenues for

finding elements of prescribed norm in the connecting ideal of two maximal quaternion orders

are explored: We first utilise a well-known algorithm solving bivariate quadratic equations

over the integers due to Cornacchia; the theoretical analysis of this approach can be found

in Section 6.2. Secondly, we use Coppersmith’s algorithms and variants thereof to solve

bivariate and trivariate norm equations in Section 6.3 and present some experimental results

making use of this strategy. The order embedding problem, as another application for solving

multivariate equations with the provided algorithms, is discussed in Section 6.4. Lastly, we

make explicit how solving the norm equation equips us with enough information to finally

compute a degree-d isogeny between the two given curves in Section 6.5. In Section 6.6, we

provide a summary of our results and ways to improve these further.

6.1 Preliminaries

In the following we first present algorithms for solving Diophantine equations due to Cop-

persmith, as well as variants thereof proposed by Coron as well as Bauer and Joux. We

furthermore give an overview of the current best-known methods for computing isogenies

and endomorphism rings, allowing us to position our improved algorithms in relation to the

state of the art.

6.1.1 Coppersmith’s methods

Inspired by lattice-techniques from Håstad [Has86] and Girault–Toffin–Valleé [GTV90], Cop-

persmith’s methods can find small roots of polynomial equations over either Z or any integer

ring Z/NZ by forming lattices from the polynomial’s coefficients and those of “related” poly-

nomials and extracting the roots from the reduced lattice. These algorithms have found

194

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

many applications in cryptography from the cryptanalysis of RSA with small public expo-

nent when some part of the message is known [Cop97] or when the private exponent d is

smaller than some bound N0.29 [BD99] to the polynomial-time factorisation of N = prq for

large r [BDH99].

Several variants of Coppersmith’s original algorithms [Cop96a; Cop96b; Cop97] exist,

while Howgrave-Graham [How97] offers an alternative approach. The latter is often argued

to be simpler to analyse [Cor07] but the two approaches work equally well asymptotically,

and can both be generalised to handle polynomials with multiple variables [Cor07; BJ07].

In the following we focus on three multivariate variants for which an implementation was

publicly available.

Bivariate approach of Coron

Coron’s algorithm [Cor07] finds small roots of bivariate integer polynomials and follows

Howgrave-Graham’s approach. In this variant, the lattice reduction is applied to a full rank

lattice that admits a natural triangular basis, hence the determinant can be easily computed.

Suppose we are given an irreducible polynomial P (x, y) =
∑

i,j pi,jx
iyj of total degree

δ with coefficients in Z and the promise that it has an integer root (x0, y0) where x0 < X

and y0 < Y . Our goal is now to recover this small root (x0, y0) of P . Let a := P (0, 0) = p0,0

and denote by W the quantity ∥P (xX, yY)∥∞ where ∥P (x, y)∥∞ = maxi,j |pi,j|. We then

generate an integer n coprime to a such that W ≤ n < 2 ·W , and define the normalised

modular polynomial

q(x, y) := a−1P (x, y) (mod n).

We then consider two further types of polynomials. For all monomials xiyj such that 0 ≤

195

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

i, j ≤ k for some chosen constant k, we form polynomials of the form

qij = Xk−iY k−jxiyjq(x, y).

For the remaining monomials up to degree δ + k, i.e. the monomials with 0 ≤ i, j ≤ δ + k

but not both i, j < k + 1, we form

qij(x, y) = nxiyj.

Note that all these polynomials also have a root at (x0, y0) such that qij(x0, y0) = 0 (mod n).

Let M be the set of all monomials of the polynomials qij, and denote by m the number

of elements in M . Notice that we have precisely m polynomials qij. Form a matrix M1 by

labeling each column with a monomial in M , and let the coefficients of the polynomials qij

be the elements in the corresponding rows. Denote by L1 the lattice generated by the rows

of M1. By applying LLL reduction [LLL82] to L1 and considering the vectors of the LLL-

reduced basis (b1, . . . , bm) of L1 in order, we obtain a polynomial h defining the hyperplane of

the lattice containing the small solutions to the original polynomial P . Hence, h also admits

(x0, y0) as a root modulo n, but has smaller coefficients than P due to LLL-reduction. If the

solution (x0, y0) is sufficiently small, the polynomial h will also admit it as a root over the

integers such that h(x0, y0) = 0 also holds. Then, the zeros can easily be computed. More

precisely, if we define ∥h(x, y)∥2 :=
∑

i,j|hij|2 for hij the coefficient of the monomial xiyj in

a polynomial h, we have the following result due to Howgrave-Graham [How97].

Lemma 6.2. Let h(x, y) ∈ Z[x, y] be a sum of at most ω monomials. Suppose that h(x0, y0) =

0 (mod n), where |x0| ≤ X and |y0| ≤ Y and ∥h(xX, yY)∥ < n/
√
ω, then h(x0, y0) = 0 holds

over the integers.

Due to the way the polynomial h(x, y) has been constructed, it cannot be a multiple

196

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

of P (x, y) when the conditions of Lemma 6.2 hold. Since P (x, y) is assumed to be irreducible

and h(x, y) is not a multiple of P (x, y), Q(x) = Resultanty(h(x, y), P (x, y)) gives a non-zero

integer polynomial such that Q(x0) = 0. Using any standard root-finding algorithm, x0 can

be recovered first, and finally y0 can be computed by straightforwardly solving P (x0, y) = 0.

The preformance of Coron’s bivariate algorithm can be summarised in the following

two theorems.

Theorem 6.3 ([Cor07, Theorem 2]). Let P (x, y) be an irreducible polynomial over Z of

maximum degree δ in each variable. Let X and Y be upper bounds on the desired integer

solution (x0, y0), and denote W = maxi,j|pij|X iY j. If XY < W
2
3δ , then in time polynomial

in (logW, 2δ), one can find all integer roots (x0, y0) of P bounded by X and Y .

Theorem 6.4 ([Cor07, Theorem 3]). With the hypothesis of Theorem 6.3, except that P has

total degree δ, the bound is XY < W
1
δ .

Multivariate approach of Coron

Coron’s method as described above can also be extended to handle polynomial equations in

more than two variables [Cor07, Section 3.3], but the extension is only heuristic.

In the trivariate case, polynomials defining the lattice will now be of the forms

xiyjzlXk−iY k−jZk−lq(x, y, z) and nxiyjzt which again preserve the desired root and evaluate

to 0 over Z/nZ at (x0, y0, z0). Note that given a polynomial P (x, y), a bivariate algorithm

only needs to compute one polynomial h(x, y) that is algebraically independent from P to

be able to compute (x0, y0) such that P (x0, y0) = 0. On the other hand, when given a poly-

nomial P (x, y, z), we require two polynomials h1(x, y, z) and h2(x, y, z), where P , h1 and h2

are pairwise algebraically independent. The heuristic nature of the algorithm stems from

the difficulty to guarantee algebraic independence (while linear independence when seen as

vectors is guaranteed). In practice however, algebraic dependencies are rarely an issue. The

197

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

method similarly generalises to more variables.

While Coron does not state a formal claim about the performance of this variant

(even up to an algebraic independence assumption), it is a priori similar to the following

method, which does handle algebraic dependencies.

Bauer–Joux approach

In contrast to Coron’s algorithm which generalised the simplification found by Howgrave-

Graham, the approach by Bauer and Joux [BJ07] extends the original bivariate approach by

Coppersmith [Cop96a] to three variables. It also uses truncated Gröbner bases to handle so-

called algebraic dependencies. A similar approach without using Gröbner bases was already

proposed by e.g. [Jut98]; the main contribution of [BJ07] is a criterion for rigorous success,

although it is worth noting that their algorithm still uses heuristics.

While Coron’s approach works directly in the lattice generated by polynomials that

share a common root (x0, y0, z0) we wish to find, the Bauer–Joux approach aims to find a

vector that is orthogonal to the vector s0, which we define later, that is derived from the

root. This yields a polynomial that shares the root (x0, y0, z0) with the initial polynomial.

Again, let P (x, y, z) be a polynomial with integer coefficients and (x0, y0, z0) a small

root. Having P (x, y, z) and knowing the bounds |x0| < X, |y0| < Y , |z0| < Z, the goal is to

recover the root (x0, y0, z0). Let (S,M) be an admissible pair of sets of monomials for P as

in [BJ07], and denote by s and m the number of elements in the sets S and M , respectively.

Normally, we pick a set of monomials S, then multiply them with the monomials of P to

obtain the set M .

The algorithm generates the following m×(m+s) rational matrix M1. The left m×m

submatrix DM is a diagonal rational matrix with X−iY −jZ−k in the row corresponding to

the monomial xiyjzk ∈ M . The columns of the right m × s submatrix R1 are the integer

198

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

coefficients of the polynomials xfygzh · P for xfygzh ∈ S, where the coefficient goes into the

row belonging to the corresponding monomial [BJ07, Figure 1].

Denote by L1 the lattice generated by the rows of M1. Since s < m, there exists a

sublattice L′
1 ⊂ L1 such that its vectors have the last s components equal to zero. We achieve

this by noting that R1 is an integer matrix, so we compute a unimodular transformation U

that transforms R1 into a matrix that has an s × s identity matrix on the top and zeros

everywhere else, then apply U to DM as well, and take its bottom (m − s) rows as a basis

of L′
1 (ignoring the zeros in the last s components). Denote M ′

1 = UM1.

Denote by r0 = (xi0y
j
0z
k
0 | xiyjzk ∈ M) the solution vector, and observe that s0 =

r0M1 =
(
(x0
X
)i(y0

Y
)j(z0

Z
)k

∣∣∣ xiyjzk ∈M)
||(0, . . . , 0), where || refers to concatenation of vec-

tors, gives a short vector in L′
1. We denote r = m − s, compute an LLL-reduced basis

(b1, . . . , br) of L′
1, and let (b⋆1, . . . , b

⋆
r) be its Gram-Schmidt orthogonalisation. Then when

∥s0∥ < ∥b⋆r∥, we know that the inner product ⟨b⋆r, s0⟩ = 0, i.e. b⋆r yields a polynomial P ′
1(x, y, z)

that annihilates
(
x0
X
, y0
Y
, z0
Z

)
. By a change of variables we obtain P1(x, y, z) = P ′

1

(
x
X
, y
Y
, z
Z

)
that has (x0, y0, z0) as a root. Note that we may get other polynomials that annihilate

(x0, y0, z0) by considering b⋆r−1 and so on, making the next step unnecessary.

The second step is to compute the Gröbner basis G of the ideal I = (P, P1), truncated

at the maximal degree of the monomials in the setM . We then repeat the previous procedure

almost exactly. Denote by t the number of elements in the set G. We construct them×(m+t)

rational matrix M2 the same way we constructed M1 in the previous step, except that we use

the polynomials from G in the columns of the right m× t matrix, instead of {m ·P | m ∈ S}.

The rest of the procedure is identical, and we obtain P2 that annihilates (x0, y0, z0). Note

that we cannot guarantee that P2 is algebraically independent from P and P1, making

this algorithm heuristic, although [BJ07] gives a criterion for algebraic independence. The

approach is summarised in the following theorem.

199

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Theorem 6.5 ([BJ07, Theorem 1]). If S and M are admissible sets for P , we can find in

polynomial time P1(x, y, z) which has (x0, y0, z0) as a root over the integers and is algebraically

independent from P , provided that

XsxY syZsz < W s
1 2

−(6+c)s(d2x+d
2
y+d

2
z)

where we assume that (m − s)2 ≤ cs(d2x + d2y + d2z) for some constant c. In this formula,

W1 denotes ∥P (xX, yY, zZ)∥∞, and dx, dy, dz denote the maximum degree of P in x, y, z

respectively. We obtain sx by adding up the exponents of x in all monomials in the set

M \ S, i.e. sx :=
∑

xiyjzk∈M\S i, with analogous definitions of sy and sz.

6.1.2 State of the art on isogeny computation

In this section, we briefly survey the current state of the art for finding isogenies between two

supersingular elliptic curves and closely related algorithms. First, we discuss the problem

of computing endomorphism rings of supersingular elliptic curves. Then we review algo-

rithms that recover any isogeny between two given supersingular curves, before we discuss

algorithms that recover an isogeny of a given degree under the premise that such an isogeny

exists.

Computing endomorphism rings of supersingular elliptic curves.

The problem of computing endomorphism rings of elliptic curves was first studied by Kohel

in his thesis [Koh96]. For supersingular elliptic curves over Fp this is considered to be a

hard problem. Kohel gave an algorithm with O∗(p) time and memory costs which was

later improved to O∗(p1/2) by Galbraith. The current best algorithm in [EHLMP20] runs in

O
(
(log p)2p1/2

)
with low memory requirements.

200

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Classical algorithms to find isogenies of arbitrary degree.

For any prime p, the full supersingular isogeny graph with its roughly p/12 isomorphism

classes of supersingular elliptic curves over Fp is connected. Thus, one could use a simple

collision search to find a path between two given elliptic curves in O∗(p1/2) time and memory.

Delfs and Galbraith showed how to find isogenies in the same time but requiring signif-

icantly less memory [DG16]. Their algorithm splits the isogeny computation into two parts.

First, a random walk from both given curves is computed until a connection to the subgraph

of supersingular elliptic curves defined over the base field Fp is found. There are roughly √p

subfield curves in the full isogeny graph and therefore the step requires O∗(p1/2) bit oper-

ations. In the second step, one searches a subfield isogeny connecting both curves defined

over Fp. Using a meet-in-the-middle strategy the isogeny can be recovered in O∗(p1/4), or al-

ternatively using a different collision finding algorithm requiring less memory. The concrete

complexity of the Delfs–Galbraith algorithm was analysed and further improved in [CCS22].

However, the improvements did not change the asymptotic complexity of O∗(p1/2).

Assuming GRH, the problem of finding an isogeny between two supersingular curves

is polynomial time and memory equivalent to computing their endomorphism rings [Wes22b].

Using the previously mentioned algorithm by Eisenträger, Hallgren, Leonardi, Morrison and

Park [EHLMP20], the endomorphism rings of supersingular elliptic curves can be com-

puted in O∗(p1/2). A connecting isogeny (of rather large degree) can then be computed

in classical polynomial time using the KLPT algorithm or a rigorous variation due to

Wesolowski [KLPT14; Wes22b].

Classical algorithms to find isogenies of fixed degree.

Computing an unknown isogeny of known degree d between two d-isogenous supersingular

elliptic curves can always be done using an exhaustive search over all O(d) degree d isogenies

201

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

(or equivalently their kernels). In fact, if d is a prime this is the best known method prior

to the results of this paper.

When d is a smooth integer a meet-in-the-middle approach with O∗(
√
d) time and

memory complexity can be used. However, for large d the required memory becomes unre-

alistic. Limiting the available memory leads to the conclusion that a van Oorschot–Wiener

collision search whose concrete complexity depends on the amount of memory available is

more efficient to compute the isogeny [CLNRV20].

When the endomorphism rings of the two supersingular curves are known (or have

been precomputed), d does not need to be smooth but merely the product of two factors

of roughly the same size to make a meet-in-the-middle approach work. This is because the

isogenies corresponding to the factors, which are potentially of large degree, can be replaced

by a powersmooth isogeny using for instance the KLPT algorithm [KLPT14]. While this

approach adds to the overhead of the meet-in-the-middle, the powersmooth isogenies can

still be computed in order to find a collision.

Computing endomorphism rings and then using an algorithm such as KLPT to com-

pute a connecting isogeny will in general not return an isogeny of the sought degree. However,

if d ≈ p1/2 or shorter, the sought isogeny is usually the shortest one between the two curves.

Galbraith, Petit, Shani and Ti showed how this relative shortness could be exploited to re-

cover the isogeny from the endomorphism rings [GPST16, Section 4.2]. They used the fact

that the smallest element in the connecting ideal, which can be computed efficiently using

the endomorphism rings [KV10], corresponds to the small degree d isogeny to compute first

the small element and then the isogeny. The approach works in polynomial time. The result

trivially generalises to isogenies slightly larger than p1/2 by exhaustively searching over linear

combinations of the smallest elements in the connecting ideal.

For larger degrees, Fouotsa, Kutas, Merz and Ti showed that an isogeny of a specific

202

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

degree can be computed efficiently, if additionally to the endomorphism rings (masked)

torsion point images under the sought isogeny are known [FKMT22]. More precisely, they

show how to efficiently recover an isogeny of degree d < sT
16

, where s denotes the degree

of the isogeny of smallest degree connecting the two given curves and T the size of the

subgroup with known torsion point images. Depending on d, this requires images on a

smaller subgroup compared to recent SIDH attacks which allow to compute a connecting

isogeny from the images without requiring the endomorphism rings [CD23; Rob23]. Further,

an updated version of the reduction by Fouotsa, Kutas, Merz and Ti shows that the reduction

still applies if the images of a slightly larger subgroup are given only up to an unknown scalar

[FKMT21, Theorem 4.2] - a setting where the SIDH attacks are not known to apply. Thus,

when images under the sought after isogeny are available for a sufficiently large subgroup,

the complexity of computing an isogeny of degree d could be computed efficiently after

computing the endomorphism rings in O∗(p1/2).

When d is larger than p, the isogeny is usually not unique. One can compute the

endomorphism ring of both curves in time O∗(p), and a connecting ideal in polynomial

time. If d > p3 and d has at least two factors, one can then use a variant of KLPT al-

gorithm [KLPT14] to compute an ideal of the correct norm in the same class, and then

translate this to some representation of an isogeny.

Quantum algorithms

Some of the previously mentioned algorithms can be accelerated using quantum computation.

Utilising Grover’s search [Gro96], the endomorphism ring computation from [EHLMP20]

can be run in O∗(p1/4) time and constant memory. Similarly, Biasse, Jao and Sankar showed

how to accelerate the Delfs–Galbraith algorithm to run in O∗(p1/4) [BJS14]. Note that this

algorithm can be used to find a connecting isogeny of arbitrary degree but also to find loops

in the isogeny graph, i.e. to compute endomorphisms.

203

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

To compute degree-d isogenies between two supersingular elliptic curves, Grover’s

quantum search algorithm [Gro96] brings the complexity of the exhaustive search over all

degree-d isogenies, e.g. if d is prime, to O∗(
√
d) with constant memory.

For a sufficiently smooth degree d, Tani’s claw finding algorithm with complex-

ity d1/3 [Tan09] has been suggested, but been widely dismissed since. For instance, Jaques

and Schanck pointed out that Tani’s algorithm assumes unrealistic costs of accessing memory.

They argued that it is more efficient to use the classical hardware dedicated to access mem-

ory for Tani’s algorithm for a classical attack instead [JS19]. In particular, Tani’s algorithm

does not seem to lead to a quantum speed-up.

6.2 Solving the norm equation with Cornacchia’s algo-

rithm

In this section, we describe a new and improved algorithm of finding elements of prescribed

norm in the connecting ideal between the endomorphism rings of the two given supersingular

elliptic curves. Our method is based on Cornacchia’s algorithm and solves the following

problem for d = p1/2+ϵ for some ϵ > 0.

Problem 6.6. Let O,O′ be maximal orders in the quaternion ramified at p and ∞, Bp,∞

and let I be a connecting ideal of O and O′. Find an element of reduced norm d in I, if it

exists.

To solve Problem 6.6, we compute the reduced norm form Q of I. Then, finding an

element of reduced norm d in I means solving the equation

Q(x1, x2, x3, x4) = d. (6.2)

204

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

The ideal I is a four-dimensional lattice, say with basis ϕ1, . . . , ϕ4, and we are looking

for xi such that Q(x1, x2, x3, x4) = ∥
∑4

i=1 xiϕi∥ = d. Now, as long as we consider Q with

respect to a reduced basis of I, we can compute bounds for the xi. More precisely, for an

LLL reduced basis ϕ1, . . . , ϕ4, one has the bound |xi| ≤ c d
∥ϕi∥ , where c is a (small) constant

that depends on the parameters used in the LLL reduction.

More explicitly, let G :=
(
gij

)
be the Gram matrix of the LLL- or Minkowski-reduced

lattice basis ϕ1, . . . , ϕ4 of the connecting ideal I, where gij = ⟨ϕi, ϕj⟩. Using the reduced

norm and that the basis is close to orthogonal, we can estimate the sizes for i ∈ {1, . . . , 4}:

∥ϕi∥ = pαi such that
∑4

i=1 αi ≈ 2. Furthermore, we assume α1 ≤ α2 ≤ α3 ≤ α4 so that

α1 ≤ 1
2
.

Let d = p1/2+ϵ for some 0 < ϵ < 1/2. To solve Problem 6.6, the goal is to find an

element x = (x1 x2 x3 x4) ∈ I such that xGxT = d, i.e. |x| = d = p1/2+ϵ. Since ϕ1, . . . , ϕ4 is

a reduced basis, we can bound the sizes of the xi as described above by

|xi| ≤ c · p
1
2
+ϵ−αi

for some small constant c.

In general, solving Diophantine equations like Q(x1, . . . , x4) = d with four variables

can be daunting. Thus, our strategy in this section is to first guess two of the variables and

then solve the remaining bivariate equation using Cornacchia’s algorithm. In Section 6.3, we

will describe an alternative approach using Coppersmith’s methods and some of its variants

to solve the multivariate equations resulting from guessing two or less variables.

We make random guesses for the two variables x3 and x4 in Equation (6.2), which

results in a quadratic bivariate equation to be solved. Note that by our labeling ϕ3, ϕ4 are a

priori the largest vectors in the LLL-reduced basis, hence bounds on x3 and x4 are smaller

205

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

than the bounds on x1 and x2. Guessing these two variables will contribute to a factor

p1+2ϵ−α3−α4 in the overall complexity, or a factor p
1
2
+ϵ−α3+α4

2 using Grover’s quantum search

algorithm [Gro96].

Assuming we guess x3 =: k and x4 =: l correctly, where k ≈ p
1
2
+ϵ−α3 and l ≈ p

1
2
+ϵ−α4 ,

the remaining equation to be solved is1

f(x1, x2) = Q(x1, x2, k, l)− d

= g11x
2
1 + g22x

2
2 + 2g12x1x2 (quadratic)

+ (2g13k + 2g14l)x1 + (2g23k + 2g24l)x2 (linear)

+
(
2g34kl + g33k

2 + g44l
2 − d

)
. (constant)

Performing a change of variables similar to [SSW08] (attributed to Lagrange) then allows us

to rewrite f(x1, x2) = 0 as an equation of the form

x2 −Dy2 = N (6.3)

due to the following.

Let fij denote the coefficient of xiyj in f . The bivariate quadratic f can, in a first

step, be transformed into an equation of the form

Dy2 = (Dx2 + E)2 +DF − E2, (6.4)

where the new variable y is defined as y := 2f20x1 + f11x2 + f10 and the substitutions

D := f 2
11 − 4f20f02,

1More precisely, f is a family of functions fk,l where each function depends on the specific values guessed
for x3 and x4. To improve notation/readability, we implicitly assume that f (and the values D,E, F, x, y
and N) all depend on the k and l which are considered in the context where f (and the changed variables)
are used.

206

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

E := f11f10 − 2f20f01, and

F := f 2
10 − 4f20f00

are made. In a second step, the introduction of the new variable x := Dx2 + E facilitates

another rearrangement from Equation (6.4) into the desired form

x2 −Dy2 = N, (6.3)

if we define N as N := E2 −DF .

Examining the coefficient values in our new quadratic equation, Equation (6.3), ob-

tained from the change of variables leads us to several observations: Firstly, we can see

that the size of N can be bounded polynomially in the absolute value of the largest en-

try of G (more precisely N ∈ O(max{(gij)4}p1+2ϵ−α3−α4). Secondly, we note that D =

−4 (g11g22 − g212) is always negative as a consequence of the symmetric and positive semi-

definite nature of the Gram matrixG. Hence, Equation (6.3) has only finitely many solutions.

In particular, when looking for a fixed-degree isogeny, we expect there to usually only be a

unique solution. Either way, we only require a single solution to obtain the desired isogeny.

Such a solution can be found using Cornacchia’s algorithm (see e.g. [Nit95, Algo-

rithm 1]) under the condition that N does not have too many prime factors, as it requires

finding (all) square roots of D (mod N). Finding these square roots becomes expensive if N

has too many distinct factors. More precisely, we choose to abandon a pair of guesses x3, x4

when factoring N reveals that N has more than B log logN distinct prime factors for some

fixed B ∈ Z. To estimate the probability of this event, we use the following lemma.

Lemma 6.7. Let N be an integer as in Equation (6.3) and let B ∈ Z>1. Under the heuristic

assumption that the number of prime divisors of N behave as predicted by standard asymp-

207

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

totics for sufficiently large integers, we expect N to have more than B log logN prime factors

with probability smaller than 1
2(B−1)2

.

Proof. Let ω : N→ N be the function which maps a positive integer to its number of distinct

prime divisors. Asymptotically, the distribution of ω(n) is a normal distribution around the

mean B1 + log log n, where B1 ≈ 0.261 is the Mertens constant, with standard deviation

log(log n)1/2, see e.g. [HW79, Section 22.11] or [ROW94].

Under the heuristic that N is large enough for these asymptotics to apply and that

its number of prime factors behaves as predicted for a random integer of roughly the same

size, we can use Chebyshev’s inequality to get the bound

Pr(ω(N)−B1 > B log logN) ≤ 1

2B2 log logN
.

Here, we used that the normal distribution is symmetric around B1 + log logN and that the

standard deviation is log(logN)1/2. Since for N interesting for our application log logN > 1,

we can very crudely estimate our bound by

Pr(ω(N) > B log logN) ≤ 1

2(B − 1)2
.

Note that taking a larger B to bound the number of prime factors of N , B log logN ,

accepted in our algorithm may increase the cost to run Cornacchia’s algorithm.

Remark 6.8. Assume that the asymptotic heuristics hold for all the N sampled by fixing

x3, x4 for a fixed basis and assume that the correct solution is randomly distributed among

these trials. Then by Lemma 6.7 taking for instance B = 11, we expect to find a solution

in > 99% of cases after iterating through all guesses for a fixed basis. However, it may be

208

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

possible that the correct solution (x1, . . . , x4) with respect to some fixed basis gives an N with

too many prime factors. We accept this as the failure probability of our algorithm.

These observations lead us to the following theorem:

Proposition 6.9. Assume ω(N) ≤ B log logN , i.e. N is not too smooth and has fewer than

has at most B log logN prime factors. One can find a solution to the equation f(x1, x2) = 0

in quantum polynomial time, if it exists, or determine that there is no such solution.

Proof. The main observation is that since G is a positive definite matrix, its leading principal

minors are positive. Hence we have that g212 − g11g22 < 0 which implies that D = (2g12)
2 −

4g11g22 < 0. Therefore, it is possible to use the above change of variables to reduce solving

f(x1, x2) = 0 to solving x2−Dy2 = N where the size of N is polynomial in the size of G (i.e.

the size of the absolute value of the largest entry). One can use Shor’s algorithm [Sho97] for

factoring N and then apply Cornacchia’s algorithm for solving x2 − Dy2 = N . Reversing

the substitutions leads to a solution to f(x1, x2) = 0. Note that if a guess k, l is incorrect,

then f(x1, x2) = 0 will have no solution. Fortunately, running Cornacchia’s algorithm helps

us detect efficiently if no solution exists by [Coh13, Section 1.5.2].

Theorem 6.10. Let O,O′ be maximal orders in Bp,∞. Let d ≈ p1/2+ϵ for some ϵ > 0

and let ϕ1, ϕ2, ϕ3, ϕ4 be an LLL-reduced basis of the connecting ideal I such that ∥ϕi∥ = pαi

and α1 ≤ α2 ≤ α3 ≤ α4. Then Algorithm 6 is a quantum algorithm that computes an

element of reduced norm d in I, i.e. solves Problem 6.6 for the given parameters, in time

O∗(p1/2+ϵ−α3/2−α4/2) or returns no solution. The algorithm fails to find an existing solution

with probability smaller than 1/2(B − 1)−2 under the heuristics of Lemma 6.7, where the

probability is taken over the possible choices of LLL-reduced lattices and B log logN is the

number of prime factors allowed in Step 4 of Algorithm 6.

209

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Algorithm 6: Recovering an element of reduced norm d in connecting ideal I
using Cornacchia

Input: Let O,O′ be maximal orders in Bp,∞ and let I be their connecting ideal
containing an element of reduced norm d, where d ≈ p1/2+ϵ. Let
ϕ1, ϕ2, ϕ3, ϕ4 be an LLL-reduced basis of I with ∥ϕi∥ = pαi and
α1 ≤ α2 ≤ α3 ≤ α4. Finally, let G = (gij) be the corresponding Gram
matrix and B ∈ Z>1.

Output: x1, x2, x3, x4 ∈ Z such that Q(x1, x2, x3, x4) = ∥
∑4

i=1 xiϕi∥ = d.

1 for (k, l) ∈ {0,±1, . . . ,±c · p1/2+ϵ−α3} × {0,±1, . . . ,±c · p1/2+ϵ−α4} do
2 D ← 4(g212 − g11g22), E ← 4(g12(g13k + g14l)− g11(g23k + g24l)),

F ← 4((g13k + g14l)
2 − g11(2g34kl + g33k

2 + g44l
2 − d)), N ← E2 −DF ;

3 Factor N using Shor’s algorithm;
4 if N has more than B log logN factors then
5 continue
6 else
7 Run Cornacchia’s algorithm to find solutions of x2 −Dy2 = N ;
8 if Cornacchia returns a solution (x, y) then
9 x2 ← (x− E)D−1, x1 ← (2g11)

−1(y − 2(g12x2 + g13k + g14l));
10 x3 ← k, x4 ← l;
11 return x1, x2, x3, x4

Proof. Guessing two integer values for x3 and x4, with the restriction that |xi| ≤ c · p 1
2
+ϵ−αi ,

results in (a worst-case number of) 4c2p1+2ϵ−α3−α4 combinations to try.

Each of these tries consists of first computing the change of variables using the coef-

ficients of the corresponding function f to obtain Equation (6.3). This requires a constant

number of multiplications and additions of values polynomially bounded by the size of the

largest entry by absolute value of the Gram matrix G. The time required for solving the

resulting equation is closely related to the size and number of prime factors of N . In partic-

ular, factoring N using Shor’s quantum algorithm takes O ((logN)3) and reveals the prime

factors of N . When N is not too smooth for the correct values for x3 and x4 with respect

to a fixed LLL-reduced basis of I, the algorithm recovers x1 and x1 correctly in quantum

polynomial time by Proposition 6.9. More explicitly, for N not too smooth, the first step of

Cornacchia’s algorithm finds all square roots of D modulo N which can be done, for exam-

210

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

ple, using the Tonelli–Shanks algorithm for composite moduli. Each of these square roots is

then reduced against N using the Euclidean algorithm, until one of these reductions yields a

solution to Equation (6.3). Running the division algorithm and checking whether the result

is a solution takes polynomial time, but the number of square roots to check is exponential

in the number of distinct prime factors of N .

If Cornacchia’s algorithm fails to provide a solution, the same procedure is repeated

with new guesses for x3 and x4. However, if the algorithm is successful, we reverse the change

of variables and obtain solutions x1 and x2, which together with guesses x3 and x4, give us

an element in the connecting ideal.

If N is too smooth for the correct guesses of x3 and x4 with respect to the fixed LLL-

reduced basis of I, the algorithm skips to run Cornacchia’s algorithm and hence will fail to

find the solution. Assuming that the number of factors of N for the correct solution with

respect to different choices of LLL-reduced bases are independent, the probability of picking

an LLL-reduced basis for which N is too smooth is less than 1
2(B−1)2

by Lemma 6.7 which

gives the failure probability. We discuss the plausibility of the assumption of independence

in Remark 6.11.

Remark 6.11. The analysis of Theorem 6.10 raises the question whether the correct guesses

for x3 and x4 with respect to different bases leads to N with distinct prime factorisation

respectively. Experimentally, we re-randomised multiple bases using unimodular matrices

and indeed the resulting N corresponding to the correct guesses with respect to the respective

bases were different, did in general neither share the same factors nor have the same number

of distinct prime factors.

Similarly, one could also just guess values for a different pair of xi (instead of x3 and

x4) to obtain a different N . For basis vectors all of size roughly p1/2 this would not affect

211

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

the complexity of the algorithm.

Remark 6.12. Algorithm 6 relies on quantum computations for factoring the integer N

only. The remaining steps are performed using classical computation. However, to obtain

the complexity statement made in Theorem 6.10 the amplitude amplification of Grover’s

quantum search over the guesses is used.

6.3 Solving the norm equation with Coppersmith’s meth-

ods

In this section, we describe a slightly different approach to solve Problem 6.6 of finding

elements of prescribed norm in the connecting ideal of two maximal quaternion orders. The

first step is the same as in Section 6.2: we compute the reduced norm form with respect to

an LLL-reduced basis, and our goal is still to represent the integer d. Using the notation

from the previous section we are thus looking for x1, x2, x3, x4 such that Q(x1, x2, x3, x4) = d

and we have the same bounds on the xi as before.

As an alternative to solving the equation using Cornacchia’s algorithm, in the fol-

lowing we apply several variants of Coppersmith’s techniques to compute short solutions of

polynomial equations. In particular, we make guesses for one or multiple of the xi and then

solve the remaining equations leading us to either discard the guess and guess anew, or to

finding a representation of d. One could also directly solve the equation in four variables;

the analysis of this strategy remains for future work.

We split this section into parts, first providing theoretical analyses highlighting for

which isogeny degrees we expect our methods to work and later providing experimental

results to support our estimates.

212

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

6.3.1 Guessing two variables

Again, we assume the same setup as in Section 6.2. Recall that G = (gij) is the Gram matrix

of the reduced norm form of the ideal I with corresponding basis {ϕi}4i=1. As before, we

have size estimates for i ∈ {1, . . . , 4}: ∥ϕi∥ = pαi such that
∑4

i=1 αi = 2. We also assume for

simplicity that αi ≈ 1/2, which is the generic case [GPST16].

Now, we guess two variables as in the previous section, but we would like to solve the

remaining bivariate quadratic equation utilising Coron’s approach to Coppersmith’s methods

instead of Cornacchia’s algorithm. We recall the quadratic polynomial that we would like to

solve for guesses k = x3 and l = x4.

f(x1, x2) = Q(x1, x2, k, l)− d

= g11x
2
1 + g22x

2
2 + 2g12x1x2 (quadratic)

+ (2g13k + 2g14l)x1 + (2g23k + 2g24l)x2 (linear)

+
(
2g34kl + g33k

2 + g44l
2 − d

)
. (constant)

Also recall our size estimate for d: d ≈ p1/2+ϵ where ϵ > 0. Since we assume that we

start with a reduced basis, we have that for the correct solution |xi| < pϵ, hence the same is

true for every guess k, l. Then Theorem 6.4 with δ = 2 as in our case implies that Coron’s

algorithm is able to find a solution to this equation (or detect that no solution exists) if

XY < W 1/2 where |x1| < X,|x2| < Y and W = max{|fij|X iY j} for fij the coefficient of

xi1x
j
2. Since the Gram matrix is reduced it follows from our assumptions that gij ≈

√
p which

in turn implies that W ≈ p1/2+2ϵ, and therefore X ≈ Y ≈ pϵ. The condition XY < W 1/2 on

the bound ensuring that we can find the small integer roots of f means that we can state a

213

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

condition on ϵ to ensure the same. More explicitly, we require that

p2ϵ < p1/4+ϵ,

so that Coron’s algorithm will be successful for ϵ < 1/4, hence for ideals with norms between

p1/2 and p3/4.

We summarise our results in the following theorem.

Theorem 6.13. Let O,O′ be maximal orders in Bp,∞. Let d ≈ p1/2+ϵ for some 0 < ϵ < 1/4.

Further, let ϕ1, ϕ2, ϕ3, ϕ4 be an LLL-reduced basis of the ideal I connecting O and O′ such

that deg(ϕi) = pαi and αi ≈ 1/2 for alls i. Then there exists a quantum algorithm that

computes an element of reduced norm d in I in time O(p1/4) or determines that no such

element exists.

The cost of the entire algorithm is exactly the same as in the previous section as it is

dominated by guessing two of the variables and the endomorphism ring computations. The

advantage of this approach using Coron’s algorithm is that in comparison to the method de-

scribed in Theorem 6.10, it has no failure probability and thus does not rely on non-standard

heuristics (other than that the shortest element in Hom(E,E ′) has degree approximately
√
p).

6.3.2 Guessing one variable

Let us finally consider the case of guessing only a single variable l = x4. We now sketch

for which sizes of degrees d = p1/2+ϵ we expect this method to produce a valid solution to

Problem 6.6.

Using our previous notation, we have W = Q(x1, x2, x3, x4) = d = p1/2+ϵ, where Q is

again considered with respect to a reduced basis. In this case, we have xi ≈ d/∥max{gij}∥ ≈

214

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

pϵ, as for a generic basis all of the vectors will be roughly of size p1/2.

Due to the symmetry in the set of monomials appearing in the norm equation, we

focus on sets S that are invariant under permutations of variables; see Table 6.1 for examples

of S. Using the notation of [BJ07] we introduced in Section 6.1.1, we find that sx = sy = sz

for these S.

Neglecting the LLL approximation factors, which depend on the parameters used in

the computation of the LLL basis and asymptotically only contribute a small constant, Theo-

rem 6.5 then implies that we can find a solution of the trivariate polynomial Q(x1, x2, x3, k) =

d as long as

X3sx < W s. (6.5)

Using the estimate |xi| ≈ pϵ to give a bound X and W = p1/2+ϵ, we find that Equation (6.5)

is equivalent to

3sxϵ < (1/2 + ϵ)s.

Therefore, we expect the Bauer–Joux algorithm to provide us with a solution whenever

ϵ <
s

2(3sx − s)
. (6.6)

Table 6.1 provides values for s, sx = sy = sz and s
2(3sx−s) for some a priori plausible

symmetric sets S. The first row already provides a suitable set S, containing monomials of

total degree up to D = 1. We then consider two examples of sets S for D = 2 and in the last

row give formulae and estimates for sets S for increasing D. We remark that while increasing

D ostensibly improves the estimate for the bound (6.6) on ϵ, the matrix M1 defining the

lattice L1 grows significantly resulting in much slower LLL reduction. For efficiency resasons,

despite the algorithm still technically being polynomial-time for any fixed D, we keep D = 1

in practice.

215

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Symmetric set S s sx = sy = sz
s

2(3sx−s)

{1, x, y, z} 4 14 0.05263

{1, xy, xz, yz} 4 26 0.02703

{1, x, y, z, xy, xz, yz} 7 28 0.04545

monomials with total
degree ≤ D

∑D
i=0

(
i+2
2

) ∑D+1
i=0 (D + 2− i)

(
i+1
1

)
+∑D

i=0(D + 1− i)
(
i+1
1

) → 0.1

Table 6.1: Values for plausible symmetric sets.

This approach requires us to run Coppersmith’s algorithm once per guess l = x4.

Depending on the given parameters, a trade-off between broadening the range of applicability

by adding more monomials, i.e. increasing D, and the rise in complexity stemming from a

larger set S can be considered.

6.3.3 Experimental results

In our experiments of solving the norm equation we used magma [MAGMA] to generate

maximal orders and connecting ideals containing an element with increasing reduced norm

from random walks. We then transformed them into the corresponding quadratic forms.

This method immediately yields the solution to our problem, knowledge of which we utilise

to avoid guessing when working with large parameters to reduce computation times. Instead,

we pick one variable (resp. two variables) we consider known, i.e. correctly guessed, and then

use our implementations of Coppersmith’s methods to solve the form for the remaining three

(resp. two) variables. We can then compare the thus obtained solution with the known solu-

tion to check correctness. Note that once one of the algorithms has found enough additional

polynomials, we try to obtain the unknown root by computing resultants which simulta-

neously checks for algebraic dependence. As with many lattice reduction applications, we

observe that the approaches seem to work better in practice than in theory.

Our experimental results for the bivariate case are presented in Tables 6.2 to 6.4. For

216

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

each of the three primes we generated using SageMath [SAGE], we observe that Coron’s

bivariate approach works for ideal norms until approximately p0.8, i.e. approximately 20.8ℓ,

where ℓ is the bit length of p. Note that the we only include ideal norms in the tables which

allow us to observe when the rate of success starts to decrease from 100% and at which point

it drops close to zero.

Ideal norm Instances run number of successes

2208 100 100

2209 100 76

2210 100 29

2211 100 18

2212 100 9

2213 100 4

Table 6.2: Experiments for a 253-bit prime p.

Ideal norm Instances run number of successes

2245 100 100

2246 100 77

2247 100 34

2248 100 18

2249 100 15

2250 100 0

Table 6.3: Experiments for a 300-bit prime p.

Our SageMath implementations of the trivariate Bauer–Joux approach and the

trivariate Coron approach find connecting ideals between two maximal orders O and O′

containing an element of reduced norm up to approximately 20.67ℓ where ℓ is the bit-length

of the prime p. We tested our implementations on large primes ranging from 253 to 503

bit-length. The primes include the two 254-bit primes p6983 and p3923 from [DKLPW20;

DLLW23] as well as the first two primes used in SIKE [JACCDHJKLLNRSU17] which have

bit-lengths of 434 and 503 respectively.

217

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Ideal norm Instances run number of successes

2204 100 100

2405 100 99

2406 100 72

2407 100 32

2408 100 5

2409 100 0

Table 6.4: Experiments for a 500-bit prime p.

As already discussed in Section 6.1.1, we avoid a Gröbner basis computation and fur-

ther LLL reduction by using a slightly altered version of the original Bauer–Joux algorithm.

This alteration can for example be found in [BVZ12], and entails using other LLL-reduced

and orthogonalised vectors (b⋆1, . . . , b⋆r−1) in reverse order, in addition to b⋆r. In particular we

check if any of the b⋆i already yields another polynomial P2 which annihilates the desired root

and is algebraically independent from P and the polynomial P1 obtained from b⋆r. As with

b⋆r, this is guaranteed if ∥s0∥ < ∥b⋆i ∥ but can happen even if the condition is not fulfilled. If

we are successful, we immediately proceed to extracting the root and skip the second, costly

step of the Bauer–Joux algorithm entirely.

Our experimental results for the trivariate case are presented in Tables 6.5 to 6.8, and

show the successes of both implementations among a hundred randomly generated instances

of quadratic forms and their roots. For each of the four selected primes, we observe that

both trivariate approaches work for ideal norms until approximately p0.66, i.e. approximately

20.66ℓ where ℓ is the bit length of p. Again, we only display meaningful experimental results

in the tables by only including the range of ideal norms which shows relevant changes to the

rate of success for either algorithmic approach.

218

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Ideal norm Instances run Coron success Bauer–Joux success

2169 100 100 100

2170 100 100 96

2171 100 84 0

2172 100 27 0

2173 100 2 0

2174 100 0 0

Table 6.5: Experiments for p3923 from SQISign.

Ideal norm Instances run Coron success Bauer–Joux success

2170 100 100 100

2171 100 88 100

2172 100 26 0

2173 100 4 0

2174 100 2 0

2165 100 0 0

Table 6.6: Experiments for p6983 from SQISign.

6.4 The order embedding problem

Though the main focus of this chapter lies on improving isogeny finding algorithms via

speed-ups for solving Problem 6.6, our methods are naturally applicable to a slightly different

algorithmic problem where one wants to find an element of prescribed trace and norm inside

a maximal order O, i.e. the following problem.

Problem 6.14 (Order embedding problem). Let O be a maximal order in Bp,∞ for some

prime p and let D be a quadratic order. Decide whether D embeds into O and find this

embedding if it exists.

There are several reasons why this problem is interesting. On the one hand there is a

natural connection between this problem and finding connecting ideals of a given norm. For

219

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Ideal norm Instances run Coron success Bauer–Joux success

2288 100 100 100

2289 100 100 82

2290 100 84 0

2291 100 26 0

2292 100 3 0

2293 100 0 0

Table 6.7: Experiments for SIKEp434.

Ideal norm Instances run Coron success Bauer–Joux success

2333 100 100 100

2334 100 100 15

2335 100 71 0

2336 100 22 0

2337 100 1 0

2338 100 0 0

Table 6.8: Experiments for SIKEp503.

example, it is easy to see that finding a connecting ideal to the endomorphism ring of the

curve E : y2 = x3 + x of norm d is closely related to finding an embedding of the quadratic

order Z[dι] where ι is the non-trivial automorphism of the curve E with j(E) = 1728. On

the other hand, the order embedding problem plays an important role in the reductions of

[Wes22a]. Namely, Problem 6.14 is the missing link in relating the Uber isogeny problem

[DDFKLPSW21, Problem 5.1] and the endomorphism ring problem [Wes22a, Problem 6].

Informally, the Uber isogeny problem is the following. One is given two D-oriented

curves and one has to find a connecting ideal class between them. The key recovery problem

in many isogeny-based schemes can be reduced to this problem [DDFKLPSW21]. A partic-

ular example of this is the key recovery in CSIDH [CLMPR18] and its relation to the general

isogeny problem: If the discriminant of the quadratic order is large enough, we expect D to

be embedded in every maximal order. Hence, finding the desired ideal class would solve the

220

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

pure isogeny problem of finding any isogeny between the two given curves.

For simplicity, we will assume that the element we are looking for has trace zero, i.e.

we would like to embed Z[
√
−d] into O. First, one can compute the Z-lattice of trace-0

elements which is known to be a rank-3 lattice of determinant p2. If d < p2/3 one can usually

find this element by computing the shortest element in the lattice. This approach is no longer

useful when d is substantially bigger than p2/3. However, since we are working with a rank-3

lattice, the trivariate approaches described in Section 6.3.2 can be applied. For efficient

computations, we are only interested in polynomial-time algorithms and will hence refrain

from investigating the complexity of first guessing one variable and then applying one of our

bivariate approaches; deducing a running time should nevertheless be straightforward. The

results presented below are heuristic but more rigorous bounds could potentially be achieved

using the Bauer–Joux approach.

Experimental results

For our experiments, we generated problem instances in the following way. First, we com-

puted a random maximal order in Bp,∞. This can be accomplished by starting from a

standard maximal order and taking a random walk of length log p. Then we computed a

basis for the trace-0 part of the order and found a reduced basis of this lattice. From this

basis we generated the corresponding quadratic form. We then chose random values for

x1, x2 and x3 of bounded size and checked whether the Coron or Bauer–Joux algorithms

from Section 6.3 were able to recompute the (known) solution. We used this approach in

our experiments.

Remark 6.15. An alternative procedure to the one above is as follows: We fix some order

Z[
√
−d] =: O0 and find a maximal order O containing it. This can be accomplished by

embedding O0 into the quaternion algebra Bp,∞ through finding rational solutions (x, y, z)

to the equation x2 + py2 + pz2 = d. Given d in terms of its prime factors, we can use the

221

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

algorithm from [Sim05] which is conveniently implemented in PARI/GP [PARI/GP] to solve

the equation over Q. It remains to compute a maximal order containing this element. Thus,

we have constructed a maximal order which we know is oriented by D.

We experimented with 3 different primes of varying sizes and we ran multiple instances

for each different discriminant size of the orders. In Tables 6.9 to 6.11 we present our findings

on when and how often we succeeded in computing the embeddings.

Discriminant size Instances run Number of successes

2188 100 100

2189 100 58

2190 100 7

2191 100 1

2192 100 0

Table 6.9: Experiments for a 256-bit prime p.

Discriminant size Instances run Number of successes

2316 100 100

2317 100 100

2318 100 99

2319 100 43

2320 100 11

2321 100 4

2322 100 1

2323 100 0

Table 6.10: Experiments for a 434-bit prime p.

Based on our experiments, we conjecture that the approach outlined in this section

works for discriminants of size p0.8.

222

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Discriminant size Instances run Number of successes

2485 100 100

2487 100 100

2489 100 95

2491 100 23

2493 100 4

2495 100 3

2497 100 0

Table 6.11: Experiments for a 610-bit prime p.

6.5 Solving the degree-d isogeny problem for supersingu-

lar elliptic curves

Let E and E ′ be two supersingular elliptic curves defined over the field Fp2 connected by an

unknown isogeny of degree d. We now briefly give a strategy for how finding an element of

reduced norm d in the ideal connecting the endomorphisms rings of E and E ′, O and O′,

leads to solving Problem 6.1 by finding a degree-d isogeny E → E ′.

To recover the unknown isogeny starting from knowledge of just the two curves and

the specified degree d, we need to first compute the endomorphism rings O and O′. This

can be done classically in time O∗(p1/2) or on a quantum computer in O∗(p1/4) using the

algorithm by Eisenträger et al. [EHLMP20] and its quantum version, or alternatively the

Delfs–Galbraith [DG16] algorithm. After the endomorphism rings have been recovered, we

compute any connecting ideal I for O and O′. This can be done efficiently, for instance using

the algorithm of Kirschmer and Voight [KV10].

Given the connecting ideal I, we next have to recover an element of reduced norm

d in I. This means solving Problem 6.6 and we described methods for finding solutions in

the previous sections. More explicitly, in Section 6.2 we described an algorithm which solves

223

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Problem 6.6 for d ≈ p1/2+ϵ, ϵ > 0 in roughly O∗(p1/4+ ϵ) with high probability on a quantum

computer or returns no solution; see Theorem 6.10. As an alternative, we presented another

algorithm based on a method by Coppersmith’s for bivariate equations in Section 6.3. This

solves Problem 6.6 for d ≈ p1/2+ϵ, 0 < ϵ < 1/4 in roughly O∗(p1/4) on a quantum computer;

see Theorem 6.13.

Once the element of reduced norm d in I has been recovered, we can compute a

connecting ideal of O and O′ of norm d by [KLPT14, Lemma 5]. Under Deuring’s corre-

spondence [Deu41], this ideal then corresponds to an isogeny φ : E → E ′ of degree d. To

make this correspondence effective, it remains to compute the corresponding isogeny from

the ideal. That is, to convert the quaternion representation of the isogeny into a more us-

able form. For example, this could mean giving a kernel representation of the corresponding

isogeny φ, i.e. writing down ker(φ) explicitly, or providing explicit rational maps defining

the isogeny. Depending on smoothness of d and its relation to p, it might not be possible

to represent the isogeny in these common forms efficiently, e.g. as the kernel might only

be defined over a large field extension. If d is sufficiently smooth to allow for an efficient

kernel representation of φ, this kernel representation can be recovered efficiently using tools

described for example in [DKLPW20; DLLW23] or [EPSV23]. In case d is not smooth, say

a large prime, our approach allows for an efficient isogeny representation in the sense that

one can still evaluate an isogeny of degree d on any point P ∈ E and compute φ(P) ∈ E ′

using [FKMT22, Algorithm 1] or strategies from [Ler23]. [Rob22] also provides a strat-

egy for evaluating isogenies of large prime-degrees where the isogeny is embedded into a

higher-dimensional analogue to make allow for explicit computations.

The costs of using our various techniques to find fixed-degree isogenies are summarised

in the following table.

224

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

Method Cost (classical) Cost (quantum) Condition on
size

Cornacchia
(Section 6.2)

max{1
2
, 2ϵ} max{1

4
, ϵ} -

Coppersmith
bivariate
(Section 6.3.1)

max{1
2
, 2ϵ} max{1

4
, ϵ} ϵ < 1/4

Coppersmith
trivariate
(Section 6.3.2)

max{1
2
, ϵ} max{1

4
, ϵ
2
} ϵ < 0.16

State-of-the-art
(general d)

1
2
+ ϵ 1

4
+ ϵ

2
-

State-of-the-art
(general d)

1
2

1
4

ϵ > 5/2

State-of-the-art
(smooth d)

1
4
+ ϵ

2
1
4
+ ϵ

2
-

Table 6.12: Summary of cost for finding isogenies via our different approaches and (empirical)
conditions for the algorithms to work. The isogeny degree is given as d = p1/2+ϵ, and costs
are provided as logarithms in base p.

In summary, if one is given two d-isogenous supersingular elliptic curves, the quater-

nion representation of the d-isogeny can be recovered in O∗(max{p1/4, pϵ}), which can be

transformed to a kernel representation whenever d is smooth enough. Previously, the best

known algorithm to solve the problem of recovering a d-isogeny took O∗(p1/4+ϵ/2).

6.6 Improvements and outlook

In this chapter, we provided new algorithms to compute an isogeny of specified degree d

between two given supersingular elliptic curves defined over a field of prime characteristic p,

provided that such an isogeny exists.

Our strategy consisted of computing the curves’ endomorphism rings and a connect-

ing ideal thereof first, and then finding a representation of the integer d in terms of the

225

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

norm form of Hom(E,E ′). In particular, we improved upon previously known quantum al-

gorithms in the setting where the isogeny degree d ≈ p1/2+ϵ satisfies 0 < ϵ < 1/2 by reducing

the complexity from O∗(p1/4+ϵ/2) to O∗(max{p1/4, pϵ}). To achieve this speed-up, we ex-

amined several methods of solving the norm equation. While using Cornacchia’s algorithm

as in Section 6.2 means accepting a small failure probability, the other techniques based

on Coppersmith methods Section 6.3 work whenever the ideal norm is not too large. The

approach where we guess two variables works whenever 0 < ϵ < 1/4 and the approach where

one variable is guessed until ϵ < 1/6. The performance of the latter approaches for different

sizes of p are compared in Table 6.12. As we described how to reduce finding a fixed-degree

isogeny to the problem of finding an element of prescribed reduced norm in an ideal connect-

ing two maximal quaternion orders, we also examined the related problem of embedding an

arbitrary quadratic order into a given maximal order, if such an embedding exists. Based

on our experiments, we observe that the previously developed tools also succeed in finding

such embeddings provided the size of the discriminant does not exceed p0.8.

There are several avenues for follow-up research. Currently the trivariate Coppersmith

methods do not provide an overall speed-up, just a better reduction from finding a degree-d

isogeny to endomorphism ring computations. In order to achieve improvements over the

bivariate approaches one could potentially combine the approach with guessing the most

significant bits of the other three variables which should immediately improve the range of

our results. Furthermore, one might also consider combining this approach with guessing

part of the secret isogeny. This might lead to an improved algorithm (i.e. better than the

bivariate approaches we use) for isogeny degrees slightly larger than p3/4. We leave a precise

investigation of these ideas to future research.

As we only provide an advancement when using quantum resources, it remains an

important task in cryptanalysing isogeny-based schemes to examine and improve on the

current classical complexity of solving the fixed-degree isogeny finding problem when no

226

6. IMPROVED ALGORITHMS FOR FINDING FIXED-DEGREE ISOGENIES

further information is provided. Developing more efficient algorithms to solving multivariate,

specifically four-variable, quadratic equations with relatively small integer solutions could

further lower the quantum complexity of the problems in question.

227

Part III

Conclusion

228

CHAPTER 7

Conclusion

In this thesis, we demonstrated several cryptanalytic results regarding the security of SIDH,

an SIDH-based NIKE due to Jao and Urbanik and the Genus-2 SIDH protocol, and further

addressed the (quantum) hardness of the problem of computing general prescribed-degree

isogenies. In particular, we first presented an attack framework which allows one to invert a

certain type of one-way function in subexponential quantum time which can be instantiated

to recover secret keys for overstretched and unbalanced SIDH. We additionally presented

adaptive attacks on two SIDH variants, showing specifically that not only protocols can be

adapted for using (isogenies of) higher-dimensional abelian varieties, but so can cryptanalytic

methods. Our exploration of the G2SIDH protocol also included an improvement to the

secret sampling algorithm brought about by a classification of kernel subgroups appearing in

the procedure. Finally, we examined one of the fundamental isogeny problems, that of finding

an isogeny of a specific degree between two supersingular elliptic curves, and provided new

methods of solving this problem which utilise known quantum algorithms as subroutines.

229

7. CONCLUSION

Impact in light of the SIDH attacks and future directions Though the attacks

presented in this thesis are now surpassed by the brilliant SIDH-attacks by Castryck–Decru

and others, they advanced the understanding of (cryptanalysis of) SIDH-based schemes.

Many of the ideas and techniques which emerged from the former attempts such as GPST

or Petit’s torsion point attacks and the recent full break have inspired further research, both

into developing protocols and cryptanalysis as they provide useful tools and guidance when

building new or assessing the security of other schemes.

For example, techniques from Chapters 4 and 5 can be utilised to examine the security

claims of other isogeny-based schemes. The M-SIDH and MD-SIDH protocols respectively

masking torsion point information or isogeny degrees in SIDH were proposed in response

to the SIDH-attacks and though trust in SIDH-based but sufficiently altered schemes has

not been restored, these protocols could benefit from an assessment of their active security.

Furthermore, the very recently proposed Fast Encryption from Supersingular Torsion Attacks

(FESTA) protocol [BMP23] should be inspected as it could show vulnerabilities to adaptive

attacks via sending repeated malformed public information (when the OAEP transform is

not applied).

The malleability oracle framework from Chapter 3 can be utilised as a building

block for further cryptanalytic efforts. A further development of the SIDH group action

we constructed was recently shown in [CIIKLP23] where the authors perform a quantum

polynomial-time attack on the key exchange protocol pSIDH [Ler23]. It is possible that the

hidden shift reduction framework and work building on it can be helpful in assessing security

of other schemes.

Exploring isogeny-based cryptography with higher-dimensional abelian varieties also

leaves many avenues for further research. While there have not yet been any proposals of

schemes which directly originate from the properties of higher-dimensional isogenies, it also

230

7. CONCLUSION

remains an ongoing project to translate schemes more elaborate than SIDH and CGL to the

two-dimensional setting. Multiple schemes would lend themselves to this exercise. So far,

there has not yet been an adaptation of the CSIDH group action for endomorphism rings

of Jacobians of genus-2 curves. In order to build a version of CSIDH working with general

principally polarised abelian surfaces, more insight into higher-dimensional isogeny graphs,

isogeny computation and other subroutines of the CSIDH protocol is required. A better

understanding of the genus-2 isogeny graphs and properties of abelian surfaces will most

likely not only advance the CSIDH-centred attempts of generalising protocols. For example,

rigorously and explicitly expressing the Deuring correspondence for two-dimensional abelian

varieties or designing an algorithm akin to KLPT in dimension two would be great accom-

plishments. Regarding cryptographic primitives, especially in the light of the (planned)

submission of SQISign to NIST’s signature standardisation project [NIST23] and the pro-

posal of SQISignHD [DLRW23], it will be of interest to build more signature schemes from

higher-dimensional isogenies.

For cryptanalytic purposes, speeding up the algorithms presented in this thesis by, for

example, improving runtime of certain subroutines or coming up with alternative strategies,

especially for those in Chapters 3 and 6, would be of interest. It is possible that some

of the quantum subroutines could be avoided with classical computations of similar (or

lower) complexity. It remains of utmost importance to isogeny-based cryptography to keep

examining whether there exist better, i.e. faster or low(er)-memory, ways to compute the

endomorphism ring of an arbitrary supersingular elliptic curve, compute arbitrary isogenies

as well as isogenies satisfying certain characteristics.

231

References

[ACLLNSS23] Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter,

Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.

“Adventures in supersingularland”. In: Experimental Mathe-

matics vol. 32, no. 2 (2023), pp. 241–268. Taylor & Francis.

[AJL18] Reza Azarderakhsh, David Jao, and Christopher Leonardi.

“Post-quantum static-static key agreement using multiple

protocol instances”. In: Selected Areas in Cryptography —

SAC 2017. Ed. by Carlisle Adams and Jan Camenisch. Lec-

ture Notes in Computer Science vol. 10719. Springer. 2018,

pp. 45–63.

[BD99] Dan Boneh and Glenn Durfee. “Cryptanalysis of RSA with

private key d less than N0.292”. In: Advances in Cryptol-

ogy — EUROCRYPT 1999. Ed. by Jacques Stern. Lecture

Notes in Computer Science vol. 1592. Springer. 1999, pp. 1–

11.

[BDH99] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham.

“Factoring N = prq for large r”. In: Advances in Cryptology

— CRYPTO’99. Ed. by Michael Wiener. Lecture Notes in

Computer Science vol. 1666. Springer. 1999, pp. 326–337.

232

REFERENCES

[BF23] Andrea Basso and Tako Boris Fouotsa. “New SIDH Coun-

termeasures for a More Efficient Key Exchange”. In: Cryp-

tology ePrint Archive (2023). ePrint no. 2023/791.

[BFT14] Nils Bruin, E Victor Flynn, and Damiano Testa. “Descent

via (3, 3)-isogeny on Jacobians of genus 2 curves”. In: Acta

Arithmetica vol. 165, no. 3 (2014), pp. 201–223. Institute

of Mathematics of the Polish Academy of Sciences.

[BJ07] Aurélie Bauer and Antoine Joux. “Toward a Rigorous Vari-

ation of Coppersmith’s Algorithm on Three Variables”. In:

Advances in Cryptology — EUROCRYPT 2007. Ed. by Moni

Naor. Lecture Notes in Computer Science vol. 4515. Springer,

2007, pp. 361–378.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. “A

quantum algorithm for computing isogenies between super-

singular elliptic curves”. In: Progress in Cryptology — IN-

DOCRYPT 2014. Ed. by Willi Meier and Debdeep Mukho-

padhyay. Lecture Notes in Computer Science vol. 8885.

Springer. 2014, pp. 428–442.

[BKMPW20] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe

Petit, and Charlotte Weitkämper. “On adaptive attacks against

Jao–Urbanik’s isogeny-based protocol”. In: Progress in Cryp-

tology — AFRICACRYPT 2020. Ed. by Abderrahmane Ni-

taj and Amr M. Youssef. Lecture Notes in Computer Sci-

ence vol. 12174. Springer. 2020, pp. 195–213.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren.

“CSI-FiSh: efficient isogeny based signatures through class

group computations”. In: Advances in Cryptology — ASI-

233

REFERENCES

ACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Mo-

riai. Lecture Notes in Computer Science vol. 11921. Springer.

2019, pp. 227–247.

[BLMP19] Daniel J Bernstein, Tanja Lange, Chloe Martindale, and

Lorenz Panny. “Quantum circuits for the CSIDH: optimiz-

ing quantum evaluation of isogenies”. In: Advances in Cryp-

tology — EUROCRYPT 2019. Ed. by Yuval Ishai and Vin-

cent Rijmen. Lecture Notes in Computer Science vol. 11477.

Springer. 2019, pp. 409–441.

[BMP23] Andrea Basso, Luciano Maino, and Giacomo Pope. “FESTA:

Fast Encryption from Supersingular Torsion Attacks”. In:

Cryptology ePrint Archive (2023). ePrint no. 2023/660.

[BS20] Xavier Bonnetain and André Schrottenloher. “Quantum se-

curity analysis of CSIDH”. In: Advances in Cryptology —

EUROCRYPT 2020. Ed. by Anne Canteaut and Yuval Ishai.

Lecture Notes in Computer Science vol. 12106. Springer.

2020, pp. 493–522.

[BVZ12] Aurélie Bauer, Damien Vergnaud, and Jean-Christophe Za-

palowicz. “Inferring Sequences Produced by Nonlinear Pseu-

dorandom Number Generators Using Coppersmith’s Meth-

ods”. In: Public Key Cryptography — PKC 2012. Ed. by

Marc Fischlin, Johannes Buchmann, and Mark Manulis.

Lecture Notes in Computer Science vol. 7293. Springer,

2012, pp. 609–626.

[CCS22] Maria Corte-Real Santos, Craig Costello, and Jia Shi. “Ac-

celerating the Delfs–Galbraith Algorithm with Fast Subfield

Root Detection”. In: Advances in Cryptology — CRYPTO

234

REFERENCES

2022. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Lec-

ture Notes in Computer Science vol. 13509. Springer. 2022,

pp. 285–314.

[CD23] Wouter Castryck and Thomas Decru. “An efficient key re-

covery attack on SIDH”. In: Advances in Cryptology — EU-

ROCRYPT 2023. Ed. by Carmit Hazay and Martijn Stam.

Lecture Notes in Computer Science vol. 14008. Springer,

2023, pp. 423–447.

[CDS20] Wouter Castryck, Thomas Decru, and Benjamin Smith. “Hash

functions from superspecial genus-2 curves using Richelot

isogenies”. In: Journal of Mathematical Cryptology vol. 14, no.

1 (2020), pp. 268–292. De Gruyter.

[CF96] J. W. S. Cassels and E. V. Flynn. Prolegomena to a Mid-

dlebrow Arithmetic of Curves of Genus 2. London Math-

ematical Society Lecture Note Series vol. 230. Cambridge

University Press, 1996.

[CGL09] Denis X Charles, Eyal Z Goren, and Kristin E Lauter. “Fam-

ilies of Ramanujan graphs and quaternion algebras”. In:

Groups and Symmetries: From Neolithic Scots to John McKay.

Ed. by J.P. Harnad and P. Winternitz. CRM proceedings &

lecture notes vol. 47. American Mathematical Society, 2009,

pp. 53–63.

[CIIKLP23] Mingjie Chen, Muhammad Imran, Gábor Ivanyos, Péter

Kutas, Antonin Leroux, and Christophe Petit. “Hidden Sta-

bilizers, the Isogeny to Endomorphism Ring Problem and

the Cryptanalysis of pSIDH”. In: Cryptology ePrint Archive

235

REFERENCES

(2023). ePrint no. 2023/779 (to appear at ASIACRYPT

2023).

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. “Con-

structing elliptic curve isogenies in quantum subexponential

time”. In: Journal of Mathematical Cryptology vol. 8, no. 1

(2014), pp. 1–29. De Gruyter.

[CK20] Leonardo Colò and David Kohel. “Orienting supersingu-

lar isogeny graphs”. In: Journal of Mathematical Cryptology

vol. 14, no. 1 (2020), pp. 414–437. De Gruyter.

[CLG09] Denis X Charles, Kristin E Lauter, and Eyal Z Goren. “Cryp-

tographic hash functions from expander graphs”. In: Journal

of Cryptology vol. 22, no. 1 (2009), pp. 93–113. Springer.

[CLMPR18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz

Panny, and Joost Renes. “CSIDH: An Efficient Post-Quantum

Commutative Group Action”. In: Advances in Cryptology

— ASIACRYPT 2018. Ed. by Thomas Peyrin and Steven

Galbraith. Lecture Notes in Computer Science vol. 11274.

Springer. 2018, pp. 395–427.

[CLNRV20] C. Costello, P. Longa, M. Naehrig, J. Renes, and Fernando

Virdia. “Improved Classical Cryptanalysis of SIKE in Prac-

tice”. In: Public Key Cryptography — PKC 2020. Ed. by

Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and

Vassilis Zikas. Lecture Notes in Computer Science vol. 12111.

Springer, 2020, pp. 505–534.

[Coh13] Henri Cohen. A course in computational algebraic number

theory. Graduate Texts in Mathematics vol. 138. Springer,

2013.

236

REFERENCES

[Cop96a] Don Coppersmith. “Finding a small root of a bivariate inte-

ger equation; factoring with high bits known”. In: Advances

in Cryptology — EUROCRYPT 1996. Ed. by Ueli Mau-

rer. Lecture Notes in Computer Science vol. 1070. Springer.

1996, pp. 178–189.

[Cop96b] Don Coppersmith. “Finding a small root of a univariate

modular equation”. In: Advances in Cryptology — EURO-

CRYPT 1996. Ed. by Ueli Maurer. Lecture Notes in Com-

puter Science vol. 1070. Springer. 1996, pp. 155–165.

[Cop97] Don Coppersmith. “Small solutions to polynomial equa-

tions, and low exponent RSA vulnerabilities”. In: Journal

of Cryptology vol. 10, no. 4 (1997), pp. 233–260. Springer.

[Cor07] Jean-Sébastien Coron. “Finding small roots of bivariate in-

teger polynomial equations: A direct approach”. In: Ad-

vances in Cryptology — CRYPTO 2007. Ed. by Alfred Menezes.

Lecture Notes in Computer Science vol. 4622. Springer.

2007, pp. 379–394.

[Cor08] Giuseppe Cornacchia. “Su di un metodo per la risoluzione in

numeri interi dell’equazione
∑n

h=0 chx
n−hyh = p”. In: Gior-

nale di Matematiche di Battaglini vol. 46, (1908), pp. 33–

90.

[Cou97] Jean-Marc Couveignes. “Hard homogeneous spaces”. In: Cryp-

tology ePrint Archive (1997). ePrint no. 2006/291.

[CR15] Romain Cosset and Damien Robert. “Computing (ℓ, ℓ)-isogenies

in polynomial time on Jacobians of genus 2 curves”. In:

Mathematics of Computation vol. 84, no. 294 (2015), pp. 1953–

1975. American Mathematical Society.

237

REFERENCES

[CS20] Craig Costello and Benjamin Smith. “The supersingular

isogeny problem in genus 2 and beyond”. In: Post-Quantum

Cryptography — PQCrypto 2020. Ed. by Jintai Ding and

Jean-Pierre Tillich. Lecture Notes in Computer Science vol.

12100. Springer. 2020, pp. 151–168.

[DDFKLPSW21] Luca De Feo, Cyprien Delpech de Saint Guilhem, Tako

Boris Fouotsa, Péter Kutas, Antonin Leroux, Christophe

Petit, Javier Silva, and Benjamin Wesolowski. “SÉTA: Su-

persingular encryption from torsion attacks”. In: Advances

in Cryptology — ASIACRYPT 2021. Ed. by Mehdi Ti-

bouchi and Huaxiong Wang. Lecture Notes in Computer

Science vol. 13093. Springer. 2021, pp. 249–278.

[DDGZ23] Luca De Feo, Samuel Dobson, Steven D Galbraith, and

Lukas Zobernig. “SIDH proof of knowledge”. In: Advances in

Cryptology — ASIACRYPT 2022. Ed. by Shweta Agrawal

and Dongdai Lin. Lecture Notes in Computer Science vol.

13792. Springer. 2023, pp. 310–339.

[Den03] Alexander W Dent. “A designer’s guide to KEMs”. In: Cryp-

tography and Coding 2003. Ed. by Kenneth G Paterson. Lec-

ture Notes in Computer Science vol. 2898. Springer. 2003,

pp. 133–151.

[Deu41] Max Deuring. “Die Typen der Multiplikatorenringe ellip-

tischer Funktionenkörper: G. Herglotz zum 60. Geburtstag

gewidmet”. In: Abhandlungen aus dem mathematischen Sem-

inar der Universität Hamburg. Vol. 14. Springer. 1941, pp. 197–

272.

238

REFERENCES

[DG16] Christina Delfs and Steven D Galbraith. “Computing iso-

genies between supersingular elliptic curves over Fp”. In: De-

signs, Codes and Cryptography vol. 78, no. 2 (2016), pp. 425–

440. Springer.

[DG19] Luca De Feo and Steven D Galbraith. “SeaSign: compact

isogeny signatures from class group actions”. In: Advances

in Cryptology — EUROCRYPT 2019. Ed. by Yuval Ishai

and Vincent Rijmen. Lecture Notes in Computer Science

vol. 11478. Springer. 2019, pp. 759–789.

[DGLTZ20] Samuel Dobson, Steven D Galbraith, Jason LeGrow, Yan

Bo Ti, and Lukas Zobernig. “An adaptive attack on 2-

SIDH”. In: International Journal of Computer Mathematics:

Computer Systems Theory vol. 5, no. 4 (2020), pp. 282–299.

Taylor & Francis.

[DH76] W. Diffie and M. Hellman. “New directions in cryptogra-

phy”. In: IEEE Transactions on Information Theory vol.

22, no. 6 (1976), pp. 644–654.

[DK23] Thomas Decru and Sabrina Kunzweiler. “Efficient compu-

tation of (3n, 3n)-isogenies”. In: Cryptology ePrint Archive

(2023). ePrint no. 2023/376 (to appear at AFRICACRYPT

2023).

[DKLPW20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Pe-

tit, and Benjamin Wesolowski. “SQISign: Compact Post-

quantum Signatures from Quaternions and Isogenies”. In:

Advances in Cryptology — ASIACRYPT 2020. Ed. by Shiho

Moriai and Huaxiong Wang. Lecture Notes in Computer

Science vol. 12491. Springer, 2020, pp. 64–93.

239

REFERENCES

[DLLW23] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin

Wesolowski. “New Algorithms for the Deuring Correspon-

dence”. In: Advances in Cryptology — EUROCRYPT 2023.

Ed. by Carmit Hazay and Martijn Stam. Lecture Notes in

Computer Science vol. 14008. Springer. 2023, pp. 659–690.

[DLRW23] Pierrick Dartois, Antonin Leroux, Damien Robert, and Ben-

jamin Wesolowski. “SQISignHD: New dimensions in cryp-

tography”. In: Cryptology ePrint Archive (2023). ePrint no.

2023/436.

[DM20] Luca De Feo and Michael Meyer. “Threshold schemes from

isogeny assumptions”. In: Public Key Cryptography — PKC

2020. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros

Wallden, and Vassilis Zikas. Lecture Notes in Computer Sci-

ence vol. 12111. Springer. 2020, pp. 187–212.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and An-

tonio Sanso. “Verifiable delay functions from supersingular

isogenies and pairings”. In: Advances in Cryptology — ASI-

ACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Mo-

riai. Lecture Notes in Computer Science vol. 11921. Springer.

2019, pp. 248–277.

[EHLMP18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis

Morrison, and Christophe Petit. “Supersingular Isogeny Graphs

and Endomorphism Rings: Reductions and Solutions”. In:

Advances in Cryptology — EUROCRYPT 2018. Ed. by Jes-

per Buus Nielsen and Vincent Rijmen. Lecture Notes in

Computer Science vol. 10822. Springer. 2018, pp. 329–368.

240

REFERENCES

[EHLMP20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis

Morrison, and Jennifer Park. “Computing endomorphism

rings of supersingular elliptic curves and connections to

path-finding in isogeny graphs”. In: Open Book Series vol.

4, no. 1 (2020), pp. 215–232. Mathematical Sciences Pub-

lishers.

[EPSV23] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková,

and Mattia Veroni. “Deuring for the People: Supersingu-

lar Elliptic Curves with Prescribed Endomorphism Ring

in General Characteristic”. In: Cryptology ePrint Archive

(2023). ePrint no. 2023/106 (accepted at LuCaNT 2023).

[FKMT21] Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and

Yan Bo Ti. “On the Isogeny Problem with Torsion Point

Information”. In: Cryptology ePrint Archive (2021). ePrint

no. 2021/153.

[FKMT22] Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and

Yan Bo Ti. “On the isogeny problem with torsion point in-

formation”. In: Public Key Cryptography — PKC 2022. Ed.

by Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe.

Lecture Notes in Computer Science vol. 13177. Springer.

2022, pp. 142–161.

[Fly15] E Victor Flynn. “Descent via (5, 5)-isogeny on Jacobians of

genus 2 curves”. In: Journal of Number Theory vol. 153,

(2015), pp. 270–282. Elsevier.

[FMP23] Tako Boris Fouotsa, Tomoki Moriya, and Christophe Pe-

tit. “M-SIDH and MD-SIDH: countering SIDH attacks by

masking information”. In: Advances in Cryptology — EU-

241

REFERENCES

ROCRYPT 2023. Ed. by Carmit Hazay and Martijn Stam.

Lecture Notes in Computer Science vol. 14008. Springer,

2023, pp. 282–309.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure integra-

tion of asymmetric and symmetric encryption schemes”. In:

Advances in Cryptology — CRYPTO’99. Ed. by Michael

Wiener. Lecture Notes in Computer Science vol. 1666. Springer.

1999, pp. 537–554.

[Fou22] Tako Boris Fouotsa. “SIDH with masked torsion point im-

ages”. In: Cryptology ePrint Archive (2022). ePrint no. 2022/1054.

[FSMS09] Katalin Friedl, Miklos Santha, Frédéric Magniez, and Pranab

Sen. “Quantum testers for hidden group properties”. In:

Fundamenta Informaticae vol. 91, no. 2 (2009), pp. 325–

340. IOS Press.

[FT19] E Victor Flynn and Yan Bo Ti. “Genus two isogeny cryptog-

raphy”. In: Post-Quantum Cryptography — PQCrypto 2019.

Ed. by Jintai Ding and Rainer Steinwandt. Lecture Notes in

Computer Science vol. 11505. Springer. 2019, pp. 286–306.

[GPS20] Steven D Galbraith, Christophe Petit, and Javier Silva.

“Identification protocols and signature schemes based on

supersingular isogeny problems”. In: Journal of Cryptology

vol. 33, no. 1 (2020), pp. 130–175. Springer.

[GPST16] Steven D Galbraith, Christophe Petit, Barak Shani, and

Yan Bo Ti. “On the security of supersingular isogeny cryp-

tosystems”. In: Advances in Cryptology — ASIACRYPT

2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Lec-

242

REFERENCES

ture Notes in Computer Science vol. 10031. Springer. 2016,

pp. 63–91.

[Gro96] Lov K. Grover. “A fast quantum mechanical algorithm for

database search”. In: ACM Symposium on Theory of Com-

puting — STOC 1996. Ed. by Gary L. Miller. Association

for Computing Machinery, 1996, pp. 212–219.

[GTTD07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and

Claus Diem. “A double large prime variation for small genus

hyperelliptic index calculus”. In: Mathematics of Computa-

tion vol. 76, no. 257 (2007), pp. 475–492. American Math-

ematical Society.

[GTV90] Marc Girault, Philippe Toffin, and Brigitte Vallée. “Compu-

tation of approximate L-th roots modulo n and application

to cryptography”. In: Advances in Cryptology — CRYPTO’88.

Ed. by Shafi Goldwasser. Lecture Notes in Computer Sci-

ence vol. 403. Springer. 1990, pp. 100–117.

[Has86] Johan Hastad. “On using RSA with low exponent in a public

key network”. In: Advances in Cryptology — CRYPTO’85

Proceedings. Ed. by Hugh C. Williams. Lecture Notes in

Computer Science vol. 218. Springer. 1986, pp. 403–408.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A

modular analysis of the Fujisaki–Okamoto transformation”.

In: Theory of Cryptography Conference — TCC 2017. Ed.

by Yael Kalai and Leonid Reyzin. Lecture Notes in Com-

puter Science vol. 10677. Springer. 2017, pp. 341–371.

[How97] Nicholas Howgrave-Graham. “Finding small roots of uni-

variate modular equations revisited”. In: Crytography and

243

REFERENCES

Coding 1997. Ed. by Michael Darnell. Lecture Notes in

Computer Science vol. 1355. Springer. 1997, pp. 131–142.

[HW79] Godfrey Harold Hardy and Edward Maitland Wright. An

introduction to the theory of numbers. Oxford University

Press, 1979.

[Igu60] Jun-Ichi Igusa. “Arithmetic variety of moduli for genus two”.

In: Annals of Mathematics vol. 72, no. 3 (1960), pp. 612–

649.

[JACCDHHJKKLLNPRSU22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig

Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir

Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia,

Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost

Renes, Vladimir Soukharev, and David Urbanik. “Super-

singular isogeny key encapsulation”. In: Update for Round

3 of NIST Post-Quantum Standardization Project (2022).

http://sike.org/.

[JACCDHJKLLNRSU17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig

Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel,

Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost

Renes, Vladimir Soukharev, and David Urbanik. “SIKE:

Supersingular isogeny key encapsulation”. In: Submission

to the NIST Post-Quantum Standardization project (2017).

http://sike.org/.

[JD11] David Jao and Luca De Feo. “Towards quantum-resistant

cryptosystems from supersingular elliptic curve isogenies”.

In: Post-Quantum Cryptography — PQCrypto 2011. Ed. by

244

http://sike.org/
http://sike.org/

REFERENCES

Bo-Yin Yang. Lecture Notes in Computer Science vol. 7071.

Springer. 2011, pp. 19–34.

[JS19] Samuel Jaques and John M Schanck. “Quantum cryptanal-

ysis in the RAM model: Claw-finding attacks on SIKE”. In:

Advances in Cryptology — CRYPTO 2019. Ed. by Alexan-

dra Boldyreva and Daniele Micciancio. Lecture Notes in

Computer Science vol. 11692. Springer. 2019, pp. 32–61.

[Jut98] Charanjit S Jutla. “On finding small solutions of modular

multivariate polynomial equations”. In: Advances in Cryp-

tology — EUROCRYPT 1998. Ed. by Kaisa Nyberg. Lec-

ture Notes in Computer Science vol. 1403. Springer, 1998,

pp. 158–170.

[Kan97] Ernst Kani. “The number of curves of genus two with ellip-

tic differentials”. In: Journal für die reine und angewandte

Mathematik vol. 485, (1997), pp. 93–122. De Gruyter.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-

Pierre Tignol. “On the quaternion ℓ-isogeny path problem”.

In: LMS Journal of Computation and Mathematics vol. 17, no.

A (2014), pp. 418–432. London Mathematical Society.

[KMPW21] Péter Kutas, Simon-Philipp Merz, Christophe Petit, and

Charlotte Weitkämper. “One-way functions and malleabil-

ity oracles: Hidden shift attacks on isogeny-based proto-

cols”. In: Advances in Cryptology — EUROCRYPT 2021.

Ed. by Anne Canteaut and François-Xavier Standaert. Lec-

ture Notes in Computer Science vol. 12696. Springer. 2021,

pp. 242–271.

245

REFERENCES

[Kob89] Neal Koblitz. “Hyperelliptic cryptosystems”. In: Journal of

Cryptology vol. 1, no. 3 (1989), pp. 139–150. Springer.

[Koh96] David Russell Kohel. “Endomorphism rings of elliptic curves

over finite fields”. PhD thesis. University of California, Berke-

ley, 1996. https ://www. i2m.univ - amu. fr/perso/david .

kohel/pub/thesis.pdf.

[KTW21] Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkäm-

per. “Secret keys in Genus-2 SIDH”. In: Selected Areas in

Cryptography — SAC 2021. Ed. by Riham AlTawy and

Andreas Hülsing. Lecture Notes in Computer Science vol.

13203. Springer. 2021, pp. 483–507.

[Kun22] Sabrina Kunzweiler. “Efficient Computation of (2n, 2n)-Iso-

genies”. In: Cryptology ePrint Archive (2022). ePrint no.

2022/990.

[Kup05] Greg Kuperberg. “A subexponential-time quantum algo-

rithm for the dihedral hidden subgroup problem”. In: SIAM

Journal on Computing vol. 35, no. 1 (2005), pp. 170–188.

SIAM.

[Kup13] Greg Kuperberg. “Another subexponential-time quantum

algorithm for the dihedral hidden subgroup problem”. In:

Theory of Quantum Computation, Communication and Cryp-

tography — TQC 2013. Ed. by Simone Severini and Fer-

nando Brandao. vol. 22. Leibniz-Zentrum für Informatik,

2013, pp. 20–34.

[KV10] Markus Kirschmer and John Voight. “Algorithmic enumer-

ation of ideal classes for quaternion orders”. In: SIAM Jour-

246

https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf

REFERENCES

nal on Computing vol. 39, no. 5 (2010), pp. 1714–1747.

SIAM.

[Lan08] Edmund Landau. “Über die Einteilung der positiven ganzen

Zahlen in vier Klassen nach der Mindestzahl der zu ihrer

additiven Zusammensetzung erforderlichen Quadrate”. In:

Archiv der Mathematik und Physik vol. 13, no. 3 (1908),

pp. 305–312. Teubner.

[Ler23] Antonin Leroux. “A new isogeny representation and appli-

cations to cryptography”. In: Advances in Cryptology —

ASIACRYPT 2022. Ed. by Shweta Agrawal and Dongdai

Lin. Lecture Notes in Computer Science vol. 13792. Springer.

2023, pp. 3–35.

[LLL82] Arjen K. Lenstra, Hendrik Willem Lenstra, and László Lovász.

“Factoring polynomials with rational coefficients”. In: Math-

ematische Annalen vol. 261, (1982), pp. 515–534. Springer.

[MAGMA] Wieb Bosma, John Cannon, and Catherine Playoust. “The

Magma algebra system I. The user language”. In: Journal

of Symbolic Computation vol. 24, no. 3–4 (1997), pp. 235–

265.

[Mil86] J. S. Milne. “Abelian Varieties”. In: Arithmetic Geometry.

Ed. by Gary Cornell and Joseph H. Silverman. Springer,

1986, pp. 103–150.

[MM22] Luciano Maino and Chloe Martindale. “An attack on SIDH

with arbitrary starting curve”. In: Cryptology ePrint Archive

(2022). ePrint no. 2022/1026.

[MMPPW23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo

Pope, and Benjamin Wesolowski. “A direct key recovery

247

REFERENCES

attack on SIDH”. In: Advances in Cryptology — EURO-

CRYPT 2023. Ed. by Carmit Hazay and Martijn Stam.

Lecture Notes in Computer Science vol. 14008. Springer,

2023, pp. 448–471.

[Mor22] Tomoki Moriya. “Masked-degree SIDH”. In: Cryptology ePrint

Archive (2022). ePrint no. 2022/1019.

[Mos18] Michele Mosca. “Cybersecurity in an era with quantum

computers: will we be ready?” In: IEEE Security & Privacy

vol. 16, no. 5 (2018), pp. 38–41. IEEE.

[MP22] Michele Mosca and Marco Piani. 2022 Quantum threat time-

line report. https : / / globalriskinstitute . org /publication /

2022-quantum-threat-timeline-report/. 2022.

[Mum70] David Mumford. Abelian Varieties. Oxford University Press,

1970.

[NIST16] National Institute for Standards and Technology (NIST).

NIST Post-Quantum Cryptography Project. http : / / csrc .

nist.gov/groups/ST/post-quantum-crypto/. 2016.

[NIST23] National Institute for Standards and Technology (NIST).

NIST Post-Quantum Cryptography Project: Digital Signa-

ture Schemes. https://csrc.nist.gov/projects/pqc-dig-sig.

2023.

[Nit95] Abderrahmane Nitaj. “L’algorithme de Cornacchia”. In: Ex-

position. Math. vol. 13, no. 4 (1995), pp. 358–365.

[PARI/GP] The PARI Group. PARI/GP. https://pari.math.u-bordeaux.

fr. Université de Bordeaux, 2000–2022.

[Pei20] Chris Peikert. “He gives C-sieves on the CSIDH”. In: Ad-

vances in Cryptology — EUROCRYPT 2020. Ed. by Anne

248

https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2022-quantum-threat-timeline-report/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://csrc.nist.gov/projects/pqc-dig-sig
https://pari.math.u-bordeaux.fr
https://pari.math.u-bordeaux.fr

REFERENCES

Canteaut and Yuval Ishai. Lecture Notes in Computer Sci-

ence vol. 12106. Springer. 2020, pp. 463–492.

[Pet17] Christophe Petit. “Faster algorithms for isogeny problems

using torsion point images”. In: Advances in Cryptology —

ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas

Peyrin. Lecture Notes in Computer Science vol. 10625. Springer.

2017, pp. 330–353.

[PL17] Christophe Petit and Kristin Lauter. “Hard and easy prob-

lems for supersingular isogeny graphs”. In: Cryptology ePrint

Archive (2017). ePrint no. 2017/962.

[PS18] Christophe Petit and Spike Smith. An improvement to the

quaternion analogue of the l-isogeny problem. Presentation

at MathCrypt. 2018. https://crypto.iacr.org/2018/affevents/

mathcrypt/medias/08-50_3.pdf.

[QKLMPPS21] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe

Martindale, Lorenz Panny, Christophe Petit, and Kather-

ine E Stange. “Improved torsion-point attacks on SIDH vari-

ants”. In: Advances in Cryptology — CRYPTO 2021. Ed. by

Tal Malkin and Chris Peikert. Lecture Notes in Computer

Science vol. 12827. Springer. 2021, pp. 432–470.

[Ram13] Srinivasa Ramanujan. “First letter to G.H. Hardy”. In: Ra-

manujan: Letters and Commentary. Ed. by Bruce C. Berndt

and Robert A. Rankin. History of Mathematics vol. 9. Amer-

ican Mathematical Society, 1913, pp. 21–30.

[Reg04] Oded Regev. “A subexponential time algorithm for the di-

hedral hidden subgroup problem with polynomial space”.

In: arXiv preprint quant-ph/0406151 (2004).

249

https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf
https://crypto.iacr.org/2018/affevents/mathcrypt/medias/08-50_3.pdf

REFERENCES

[Rob22] Damien Robert. “Evaluating isogenies in polylogarithmic

time”. In: Cryptology ePrint Archive (2022). ePrint no. 2022/1068.

[Rob23] Damien Robert. “Breaking SIDH in polynomial time”. In:

Advances in Cryptology — EUROCRYPT 2023. Ed. by Car-

mit Hazay and Martijn Stam. Lecture Notes in Computer

Science vol. 14008. Springer, 2023, pp. 472–503.

[ROW94] Hans Riesel, J Oesterlé, and A Weinstein. Prime numbers

and computer methods for factorization. Progress in Math-

ematics vol. 126. Springer, 1994.

[RS06] Alexander Rostovtsev and Anton Stolbunov. “Public-key

cryptosystem based on isogenies”. In: Cryptology ePrint Archive

(2006). ePrint no. 2006/145.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman.

“A Method for Obtaining Digital Signatures and Public-

Key Cryptosystems”. In: Communications of the ACM vol.

21, no. 2 (1978), pp. 120–126.

[SAGE] The Sage Developers. SageMath, the Sage Mathematics Soft-

ware System (Version 10.0). https://www.sagemath.org.

2023.

[Sch87] René Schoof. “Nonsingular plane cubic curves over finite

fields”. In: Journal of Combinatorial Theory, Series A vol.

46, no. 2 (1987), pp. 183–211. Elsevier.

[Sho94] Peter W Shor. “Algorithms for quantum computation: dis-

crete logarithms and factoring”. In: Proceedings 35th an-

nual symposium on foundations of computer science. IEEE.

1994, pp. 124–134.

250

https://www.sagemath.org

REFERENCES

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum Com-

puter”. In: SIAM Journal on Computing vol. 26, no. 5 (1997),

pp. 1484–1509. SIAM.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves. Grad-

uate Texts in Mathematics vol. 106. Springer, 2009.

[Sim05] Denis Simon. Quadratic equations in dimensions 4, 5 and

more. Preprint. https://simond.users.lmno.cnrs.fr/maths/

Dim4.pdf. 2005.

[SSW08] Reginald E Sawilla, Alan K Silvester, and Hugh C Williams.

“A new look at an old equation”. In: Algorithmic Number

Theory — ANTS-VIII. Ed. by Alfred J. van der Poorten

and Andreas Stein. Lecture Notes in Computer Science vol.

5011. Springer. 2008, pp. 37–59.

[Tak18] Katsuyuki Takashima. “Efficient algorithms for isogeny se-

quences and their cryptographic applications”. In: Mathe-

matical Modelling for Next-Generation Cryptography. Ed.

by Tsuyoshi Takagi, Masato Wakayama, Keisuke Tanaka,

Noboru Kunihiro, Kazufumi Kimoto, and Dung Hoang Duong.

Mathematics for Industry 29. Springer, 2018, pp. 97–114.

[Tan09] Seiichiro Tani. “Claw finding algorithms using quantum walk”.

In: Theoretical Computer Science vol. 410, no. 50 (2009),

pp. 5285–5297. Elsevier.

[Tat66] John Tate. “Endomorphisms of abelian varieties over finite

fields”. In: Inventiones mathematicae vol. 2, no. 2 (1966),

pp. 134–144. Springer.

251

https://simond.users.lmno.cnrs.fr/maths/Dim4.pdf
https://simond.users.lmno.cnrs.fr/maths/Dim4.pdf

REFERENCES

[Ti19] Yan Bo Ti. “Isogenies of abelian varieties in cryptography

(Ph.D. thesis)”. PhD thesis. University of Auckland, 2019.

https://www.math.auckland.ac.nz/~sgal018/Yan-Bo-Ti-

Thesis.pdf.

[UJ20] David Urbanik and David Jao. “New techniques for SIDH-

based NIKE”. In: Journal of Mathematical Cryptology vol.

14, no. 1 (2020), pp. 120–128. De Gruyter.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes-

Rendus de l’Académie des Sciences vol. 273, (1971), pp. 238–

241.

[Voi18] John Voight. Quaternion algebras. Preprint. https://math.

dartmouth.edu/~jvoight/quat-book.pdf, 2018.

[Wat69] William C Waterhouse. “Abelian varieties over finite fields”.

In: Annales scientifiques de l’École Normale Supérieure vol.

2, no. 4 (1969), pp. 521–560.

[Wei57] André Weil. “Zum Beweis des Torellischen Satzes”. In: Nachr.

Akad. Wiss. Göttingen, Math.-Phys. Kl. (1957), pp. 33–53.

Vandenhoeck & Ruprecht.

[Wes22a] Benjamin Wesolowski. “Orientations and the supersingular

endomorphism ring problem”. In: Advances in Cryptology

— EUROCRYPT 2022. Ed. by Orr Dunkelman and Ste-

fan Dziembowski. Lecture Notes in Computer Science vol.

13277. Springer. 2022, pp. 345–371.

[Wes22b] Benjamin Wesolowski. “The supersingular isogeny path and

endomorphism ring problems are equivalent”. In: 62nd An-

nual Symposium on Foundations of Computer Science (FOCS).

IEEE. 2022, pp. 1100–1111.

252

https://www.math.auckland.ac.nz/~sgal018/Yan-Bo-Ti-Thesis.pdf
https://www.math.auckland.ac.nz/~sgal018/Yan-Bo-Ti-Thesis.pdf
https://math.dartmouth.edu/~jvoight/quat-book.pdf
https://math.dartmouth.edu/~jvoight/quat-book.pdf

	Title Page
	Abstract
	Introduction
	I Background
	1 Abelian varieties & isogenies in dimensions one and two
	1.1 Abelian varieties and their isogenies
	1.2 Elliptic curves
	1.2.1 Supersingular endomorphism rings
	1.2.2 Isogeny graphs

	1.3 Principally polarised abelian surfaces
	1.3.1 Isogenies of PPAS
	1.3.2 Computing isogenies

	2 Isogeny-based cryptography
	2.1 SIDH-based elliptic curve constructions
	2.1.1 The SIDH protocol
	2.1.2 Cryptanalysis of SIDH
	2.1.3 Fixing SIDH
	2.1.4 Protocol variants

	2.2 Genus-2 SIDH
	2.2.1 The Genus-2 SIDH protocol
	2.2.2 Key generation for G2SIDH
	2.2.3 Security assumption

	II Cryptanalysis
	3 Hidden shift attacks
	3.1 Preliminaries
	3.1.1 One-way functions
	3.1.2 Hard homogeneous spaces and CSIDH
	3.1.3 Solving the hidden shift problems with quantum algorithms

	3.2 Malleability oracles and hidden shift attacks
	3.2.1 Malleability oracles
	3.2.2 Reduction to hidden shift problem

	3.3 Attack on overstretched SIDH instances in quantum subexponential time
	3.3.1 Overview of the attack
	3.3.2 A free and transitive group action
	3.3.3 Using the Frobenius map
	3.3.4 Lifting to an element of norm
	3.3.5 Algorithm summary
	3.3.6 Hybrid attacks on overstretched SIDH

	3.4 The attack on HHS by Childs–Jao–Soukharev
	3.5 Improvements and outlook

	4 Attack on the Jao–Urbanik protocol
	4.1 Preliminaries
	4.1.1 The DGLTZ attack
	4.1.2 Jao–Urbanik's protocol

	4.2 Adaptive attack against the Jao–Urbanik scheme
	4.2.1 Our attack model
	4.2.2 Exploiting the additional structure: first step
	4.2.3 Intermediate bit and pullback computation

	4.3 Generalising the attack
	4.3.1 Attack costs for general
	4.3.2 Querying with

	4.4 Comparison of k-SIDH and Jao–Urbanik's protocol
	4.5 Improvements and outlook

	5 Cryptanalysis of G2SIDH
	5.1 Secret keys in G2SIDH
	5.1.1 The G2SIDH keyspace
	5.1.2 Symplectic bases
	5.1.3 Classification of secret keys
	5.1.4 Uniform sampling from the restricted keyspace

	5.2 Adaptive attack on G2SIDH
	5.2.1 Attack model and oracle
	5.2.2 Symplectic transformations
	5.2.3 Case distinction of kernel subgroups
	5.2.4 Recovering kernels of rank 2
	5.2.5 Recovering kernels of rank 3
	5.2.6 Complexity of the attack

	5.3 Generalising the attack
	5.3.1 Symplectic basis algorithm
	5.3.2 Attack on an arbitrary basis

	5.4 Another look at SIDH and GPST
	5.4.1 Revisiting the SIDH keyspace
	5.4.2 Revisiting GPST

	5.5 Improvements and outlook

	6 Improved algorithms for finding fixed-degree isogenies
	6.1 Preliminaries
	6.1.1 Coppersmith's methods
	6.1.2 State of the art on isogeny computation

	6.2 Solving the norm equation with Cornacchia's algorithm
	6.3 Solving the norm equation with Coppersmith's methods
	6.3.1 Guessing two variables
	6.3.2 Guessing one variable
	6.3.3 Experimental results

	6.4 The order embedding problem
	6.5 Solving the degree-d isogeny problem for supersingular elliptic curves
	6.6 Improvements and outlook

	III Conclusion
	7 Conclusion

	References

