
Analysing Security Risks in the
Architecture of
Blockchain-Based Systems
and Smart Contracts

By

Sabreen Ahmadjee

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
May 2023



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ABSTRACT

Blockchain is a revolutionary technology that aims to provide secure, decentralised dis-

tributed systems where users can share, store and verify transactional data without the need

for a central authority to perform authentication or verification. However, the widespread use

of this technology, especially after the emergence of smart contracts, the blockchain-based

computer programs, has incentivised attackers to exploit its existing security challenges.

Moreover, the distinguishing properties and internal complex structure of the technology in-

crease the chance of making poorly informed architectural design decisions, which might in-

troduce security weaknesses to the systems supported by blockchain. Malicious attacks with

severe consequences result from weak designs in blockchain systems and smart contracts. For

instance, in recent years, the decentralised finance (DeFi) sector experienced a series of high-

profile attacks resulting in multi million-dollar losses. These concerns advocate the need for

architecture-centric approaches to abstract the complexity of the blockchain components,

address architectural-level security risks specific to smart contracts and blockchain-based

systems, and make the development of such systems secure, easier, and more organised.

Within this context, we propose architectural-centric analysis approaches for security

risk assessment that allow security to be incorporated into blockchain-based systems from

the ground up. We present a classification of the state-of-the-art that provides secure archi-

tectural design approaches and supports blockchain security risk assessment methods. We

also provide a taxonomy of blockchain architecture design decisions and map these decisions

to related security attacks and threats. Additionally, we explore the use of the security

i



technical debt metaphor to identify smart contracts’ security issues related to sub-optimal

design decisions and to estimate the accumulation of the security risk ramifications. By

leveraging security debt, we contribute to a technical debt-aware approach to design secure

smart contracts, and we provide a decision support model to select a secure and cost-effective

blockchain oracle platform.

As part of the demonstration and evaluation, we use three case studies that represent

blockchain-based systems and decentralised applications; we leverage a dataset of represen-

tative vulnerable smart contracts; and we distribute a survey and conduct interviews with

smart contract experts to assess and refine our approaches. The significance of this work is

that it uses architecture-centric approaches that provide a systematic guide for blockchain

systems and smart contract software engineers to make justifiable design decisions that result

in more secure implementations and reduced security complications.

ii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Rami Bahsoon, for his

unwavering support in helping me grow as a confident researcher. From the very beginning,

he encouraged me to develop my own ideas, provided guidance in structuring and writing

my own papers, and helped me publish my work in some of the top journals and conferences.

Rami, I cannot express how much I appreciate your mentorship throughout my PhD journey,

your valuable insights, and most importantly, your empathy and patience.

I want to express my sincere gratitude to my thesis group members, Dr. Dave Parker

and Dr. Leandro L. Minku, for their ongoing feedback and valuable insights on my re-

search. Additionally, I would like to thank Prof. Rick Kazman and Dr. Siamak Farshidi

for generously sharing their time and expertise, providing insightful conversations, and of-

fering constructive feedback on the paper we co-authored. Finally, a special thanks to Dr.

Carlos Mera-Gómez for his useful inputs and suggestions, as well as his valuable advice and

guidance throughout my PhD journey.

I am confident that I could not have completed this PhD research without the support

and love of my family. I am indebted to my parents, Mohammedsiraj and Safia, and my

sister, Saleha, for their support and continuous prayers; to my husband, Ahmed, for his

endless support, love, and encouragement throughout my PhD journey; to my brothers; and

my friends in Birmingham, Weam, Hanouf, and Ohoud; in Ecuador, Mercy; and in Saudi

Arabia, Shorouq and Wasaif.

iii



Contents

Page

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems to be Addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Publications Linked to this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Security Architectural Approaches for Blockchain Systems: A System-

atic Literature Review 14

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Blockchain Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Study Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.5 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



CONTENTS

2.3.6 Data Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Demographics of Selected Studies . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Purpose of Selected Studies . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Analysis of the Selected Publications . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Security Architectural Design Approaches (RQ1) . . . . . . . . . . . 27

2.5.2 Blockchain Security Risk Assessment Methods (RQ2) . . . . . . . . . 34

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 An Outlook for Future Directions . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Blockchain Major Architectural Design Decisions and their Security At-

tacks and Threats 47

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Surveying the Literature . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Mapping Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Taxonomy of Dimensions for Architectural Decisions in Blockchain-based Sys-

tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Blockchain Access Type . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Storage and Computation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 Consensus Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.4 Block Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.5 Key Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

v



CONTENTS

3.3.6 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.7 Chain Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.8 Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.9 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Mapping Threats and Attacks with Blockchain Architectural Decisions . . . 82

3.4.1 Attacks and Threats Classification in Blockchain-based Systems . . . 84

3.5 Application of the taxonomy and mapping approach . . . . . . . . . . . . . . 107

3.5.1 Key management as a case to demonstrate instantiating the taxonomy

and its mapping to attacks and threats . . . . . . . . . . . . . . . . . 108

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.6.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.8 Finding and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4 A Novel Approach for Assessing Smart Contracts’ Security Technical

Debts 123

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.1 Ethereum Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.2 The Common Weakness Scoring System . . . . . . . . . . . . . . . . 127

4.2.3 Technical Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Our Approach for Assessing Technical Debts . . . . . . . . . . . . . . . . . . 128

4.3.1 Identification of Security Design vulnerabilities . . . . . . . . . . . . . 129

4.3.2 Measurement of Negative Consequences of Design vulnerability in Smart

Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vi



CONTENTS

4.3.3 Replication Package for Replicability . . . . . . . . . . . . . . . . . . 140

4.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.2 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.5.1 Identification of Design Vulnerabilities (RQ1) . . . . . . . . . . . . . 145

4.5.2 Estimation of Negative Consequences (RQ2) . . . . . . . . . . . . . . 148

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.1 Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5 Decision Support Model for Blockchain Oracle Platform Selection 159

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 MCDM For Blockchain Oracle Platform Selection . . . . . . . . . . . . . . . 165

5.4.1 Knowledge Acquisition and Mapping . . . . . . . . . . . . . . . . . . 166

5.4.2 Inference Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.5 Application of the model using two case studies . . . . . . . . . . . . . . . . 182

5.5.1 Application one: Dynamic Legal Agreements (DLA) . . . . . . . . . . 185

5.5.2 Application two: Decentralised Auctions (DA) . . . . . . . . . . . . . 188

5.5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.6.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

vii



5.6.2 Comparison with Previous Work . . . . . . . . . . . . . . . . . . . . 199

5.6.3 Comparison with Ad-hoc Methods . . . . . . . . . . . . . . . . . . . 201

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.7.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Reflection and Appraisal 210

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.2 Analysis of the Research Questions . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 Reflection on the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.3.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Conclusion Remarks and Future Work 220

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.2.1 Enhancing Current Security Analysis Tools . . . . . . . . . . . . . . . 222

7.2.2 Extending the Approaches Proposed . . . . . . . . . . . . . . . . . . 223

7.2.3 Fully Automating the Approaches Proposed . . . . . . . . . . . . . . 224

7.2.4 Addressing Security and Architectural Dimension Limitations. . . . . 225

A Quality Assessment of Selected Studies 227

B Mapping Selected Publications with the Taxonomy 229

C Survey Questioners and Responses 232

D Interviewee Structure 239

E Linking Oracle Features with Platforms and Quality Attributes 241

viii



CONTENTS

References 243

ix



List of Figures

1.1 Structure of the Chapters and Related Research Questions . . . . . . . . . . 12

2.1 Search and Academic Papers Selection Procedure . . . . . . . . . . . . . . . 20

2.2 Quality Scores of the Included Studies . . . . . . . . . . . . . . . . . . . . . 24

2.3 Chart of Focus Areas of Selected Studies . . . . . . . . . . . . . . . . . . . . 26

2.4 Chart of the Classification of Selected Publications . . . . . . . . . . . . . . 35

3.1 Search and Paper Selection Procedure . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Taxonomy of Major Dimensions for Blockchain Architectural Decisions . . . 56

3.3 Mapping Threats, Attacks and Architectural Decisions . . . . . . . . . . . . 84

3.4 Architectural Decisions for EMR System . . . . . . . . . . . . . . . . . . . . 111

4.1 Experiment Execution Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2 Identified Vulnerabilities per Category by each Tool. . . . . . . . . . . . . . . 148

4.3 Principal and Interest of Ten Vulnerable Contracts. . . . . . . . . . . . . . . 149

5.1 Decision Model Structure for Oracle Selection . . . . . . . . . . . . . . . . . 166

5.2 Distribution of Chosen Studies Throughout the Document Analysis Phase . 167

5.3 A Sample of the Mapping Between: a. the Boolean Oracle Features and

Platforms and b. the Boolean Oracle Features and Quality Attributes . . . . 174

5.4 The Percentages of the Q that are Desired for each Application and the Per-

centages that Tellor Provides . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

x



List of Tables

2.1 Extracted Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Publication Venues of Selected Studies . . . . . . . . . . . . . . . . . . . . . 25

2.3 Main Purpose and Focus Area of the Primary Studies . . . . . . . . . . . . . 28

2.4 Categories of Secure Architectural Design Approaches . . . . . . . . . . . . . 37

2.5 Blockchain Security Risk Assessment Methods . . . . . . . . . . . . . . . . . 38

2.6 Related Works, their Methods, and Focus Area . . . . . . . . . . . . . . . . 45

3.1 Selected Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Quality Attributes per Dimension of Architectural Decisions . . . . . . . . . 58

3.3 Linking Attack Categories with Blockchain Architectural Decisions . . . . . 93

3.4 Linking STRIDE with Blockchain Architectural Decisions . . . . . . . . . . . 98

3.5 Linking Attacks with Threats . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Analisis of Alternative Decisions for EMR System . . . . . . . . . . . . . . . 109

3.7 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 An Example of Vulnerabilities Mapping for DoS to CWE Categorisation . . 133

4.2 Description of Design Flaws Categories . . . . . . . . . . . . . . . . . . . . . 134

4.3 Experiment Dataset. For each Vulnerable Contract, We Provide Design Flaws

Categories of its Flaws (DFC), Number of Design Vulnerabilities (Vulns), and

Lines of Code (LOC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4 Overall Severity Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.5 Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xi



5.1 Explanation of Attacks that Target Centralised (C) and/or Decentralised

(DC) Oracle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.2 Deployment and Transactional (tx.) Cost of Integrating each Oracle Platform 182

5.3 STDI Quantification of Attacks for Price Feeds Smart Contract . . . . . . . 183

5.4 Final Cost and Security Value of Oracle Platforms . . . . . . . . . . . . . . . 183

5.5 Entire List of Oracle Features of the Two Case Studies . . . . . . . . . . . . 192

5.6 Inference Engine Outcomes based on Features’ Priorities and Pareto-Optimal

Solutions (POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.7 Sensitivity Analysis of WSM Results of DLA Application . . . . . . . . . . . 196

5.8 Sensitivity Analysis of STDI Results . . . . . . . . . . . . . . . . . . . . . . 202

5.9 Our Work in Comparison to Previous Works . . . . . . . . . . . . . . . . . . 203

5.10 Comparison of our Model and Ad-hoc Methods . . . . . . . . . . . . . . . . 204

A.1 Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.1 Mapping Selected Publications with the Taxonomy . . . . . . . . . . . . . . 230

xii



Chapter One

Introduction

1.1 Overview

Blockchain is an append-only data structure that connects blocks of data consecutively fol-

lowing the chronological sequence, ensuring that this distributed ledger cannot be tampered

with or cryptographically fabricated. Blockchain technology has received widespread atten-

tion in industry and academia since the success of Bitcoin, a seminal application based on

this technology [376]. Smart contracts, pieces of programming code that enforce trustworthy

transactions and agreements between several anonymous participants, are among the most

crucial blockchain applications.

Indeed, the usage of blockchain and smart contracts has gone beyond cryptocurrency

systems to underlie many dependable mainstream software systems, including finance, in-

tegrity verification, the Internet of Things (IoT), healthcare, data management, security,

and privacy [55]. Organisations leverage blockchain as a critical component within software

system architectures to provide more dependable and secure computation and storage [55,

325]. Despite this widespread adoption, blockchain is considered at an early stage of its

development since the incubation period of software engineering technology usually requires

1



Introduction

15 to 20 years to reach maturity [313, 285]. Thus, anticipating the attack landscape and

the mindset of the adversary is still challenging. Therefore, to satisfy most security re-

quirements, blockchain applications must be well-designed, and security risks surrounding

blockchain must be recognised and assessed at an early development stage.

Although blockchain-based systems are not inherently secure [211, 152, 166], there

is a lack of a systematic guide to designing secure systems based on blockchain technology.

This situation leads to architects operating in an ad-hoc manner [276], relying on the wisdom

and trust of peers, which may introduce security flaws to the system. Additionally, the main

focus of current research is providing security at the code level [218, 294, 101], proposing

techniques [145, 157] and developing tools [225, 248, 334] that detect contract code issues.

However, concentrating just on code makes it challenging to obtain high system quality [297].

Architectural concerns can overwhelm the most thorough coding efforts, and neglecting such

issues leads to vulnerable systems that can be easy to breach [176]. The consequent security

breaches may span many dimensions leading to costly repairs to stabilise the security of

the system (i.e. security maintenance costs), loss of trust in the system, and costs in terms

of credibility and reputation damage. Moreover, exploiting the security vulnerabilities in

blockchain systems may lead to significant financial losses [166, 40].

Malicious attacks with severe consequences result from weak designs in blockchain

systems and smart contracts. As this technology gains traction, attackers are drawn to

exploit its security gaps. In July 2020, a breach of Ledger’s website led to a massive data

compromise. Attacker used this to phish users for crypto wallet keys and even sent ransom

emails. Storing sensitive data insecurely enabled these attacks. This underscores the need for

architectural secure approaches in building secure blockchain systems. A strong architectural

foundation is pivotal in such methods, integrating security from the outset.

In this thesis, we contribute to architecture-centric analysis approaches for security

2



Introduction

risk assessment in blockchain-based systems and smart contracts. Architectural analysis [297]

is a structured method for examining the design decisions in a complex system concerning

the desired quality attribute goals, such as security and cost-effectiveness. The idea behind

architectural analysis for security is that it is too late to fix security design issues identified

during coding or maintenance stages because doing so might lead to severe security risks and

costly repairs. We aim to equip blockchain systems decision-makers, architects, and non-

technical individuals with systematic approaches to building secure-by-design blockchain-

based systems and smart contracts. Secure-by-design [192, 302] refers to a systematic process

that ensures that a system and all its components are developed from the ground up with

security quality attributes in mind. Our work focuses on secure-by-design processes that

operate at the architectural design stage of blockchain systems and smart contracts.

To achieve our aim, this thesis first contributes to a systematic literature review that

identifies and categorises existent approaches regarding architecting and designing secure

blockchain-based systems and smart contracts. This review confirmed the lack of system-

atic architectural techniques for blockchain software engineers to make well-informed design

decisions and build secure systems.

Second, the thesis investigates and classifies the key architectural decisions regarding

blockchain-based systems and maps such decisions to potential security attacks and threats.

We leveraged several techniques, including threat modelling, to identify and classify security

issues surrounding blockchain architectural decisions. Threat modelling [359] is a systematic

analysis of the design of a system. It helps to identify, rate, and prioritise design-level security

threats.

Third, the thesis provides a technical debt-aware approach for assessing security design

vulnerabilities in smart contracts. Technical debt is a metaphor devised to capture how the

value of software engineering decisions evolves over time [240]. Specifically, the metaphor

3



Introduction

helps identify the root causes of issues by highlighting the decisions that led to the debt.

The metaphor also helps estimate the debt value and monitor the environmental trade-offs

in which the decision is made [193]. Security debt approaches have proven to be applicable

[292] and effective [167, 260] in assessing software security risks. Employing the security

debt metaphor to express security risks assists in making such a risk more visible and,

consequently, more justifiable [291].

We found that multiple security debts might ship to smart contracts from external

third parties, such as off-chain data feeders, known as blockchain oracles. Oracle is an agent

that collects and provides data from external resources to the contracts. The secure decision-

making process becomes increasingly complex as the number of oracle alternatives and their

features increases. Thus, finally, the thesis creates a decision support model for the oracle

selection problem.

1.2 Problems to be Addressed

The architectural design of blockchain systems and smart contract applications should follow

systematic approaches and adopt security architectural-centric analysis techniques. They

make the security implications of design decisions more visible in the final architecture,

making the system less vulnerable to potential threats and attacks that may emerge from

simplified assumptions or unjustified architectural choices.

However, existing research and methods on blockchain systems and smart contracts

security are mainly concerned with coding and testing, providing little insight into creating

a secure blockchain architecture [101, 195, 218, 409]. For instance, Durieux et al. [101]

systematically evaluated several state-of-the-art automated tools for analysing smart con-

tacts code and discussed their accuracy and efficiency. Similarly, Kushwaha et al. [195]

4



Introduction

reviewed smart contracts analysis tools and explored several code analysis techniques, such

as symbolic execution and taint analysis. Liu et al. [218] proposed a taxonomy regarding

the security verification of blockchain smart contracts. The study presents the pros and

cons of each existing security verification technique. Zou et al. [409] conducted interviews

with smart contract developers. However, the questions mainly concerned smart contract

implementation and testing. Other works [306, 212, 152] focused on aggregating security

vulnerabilities and attacks regarding blockchain and smart contracts. These studies have

not considered assessing the security implications of such attacks.

This thesis bridges that gap by developing a suite of systematic architectural-centric

approaches for assessing the security risks in blockchain-based systems and smart contracts,

making novel use of security threat modelling and technical debt analysis.

We pose and address the following research questions to solve this issue:

• RQ: a) What are the common security architectural design approaches used when

architecting blockchain-based systems and smart contracts? b) What are the existing

frameworks, models, and methodologies for security risk assessment in blockchain-

based systems and smart contracts?

• RQ2: a) What are the architecturally significant design decisions in blockchain-based

systems? b) How can potential threats and attacks be traced to blockchain architec-

tural decisions and to which components?

• RQ3: a) How to identify design vulnerabilities in smart contracts? What are the

specific analysis techniques and tools? b) How to quantify the impact of technical

debts related to design vulnerabilities in smart contracts?

• RQ4: How can we advance the oracle selection problem by designing decision support

models that assist in systematically selecting secure and cost-effective oracle platforms

5



Introduction

feasible for decentralised applications?

Any system based on blockchain and smart contracts is prone to security risks [212, 60,

353]. Therefore, the security of blockchain systems calls for approaches capable of increasing

the visibility of such risks and assessing their consequences to the entire system if left un-

addressed. This work explores architectural-centric approaches from a security perspective,

employee security risk assessment techniques, and security technical debt metaphor. They

support the feasibility of our approaches in locating the design root of security issues and

measuring the ramifications of sup-optimal decisions over time. Combining risk assessment

techniques and technical debt processes produces a robust method for the assessment of both

security risks and quality issues [291, 292].

1.3 Research Methodology

Design Science Research (DSR) is a problem-solving-focused research model [89]. It aims to

create and assess artefacts to solve identified problems by facilitating the transformation from

the current state, such as following ad hoc methods, to the desired state, such as employ-

ing systematic approaches. Since our work aims to create systematic architectural-centric

analysis solutions that assist in making informed security architectural design decisions, we

found that our research aligns with design science research. Therefore, we adopt the iterative

process of Design Science Research Methodology (DSRM) proposed by Peffers et al. [275].

The primary steps appear below:

• Problem identification and motivation: Understanding security architecture anal-

ysis and its approaches in the context of blockchain-based systems is the initial step

in our research. Thus, we conducted a Systematic Literature Review (SLR) to deepen

6



Introduction

our knowledge of the subject and to identify potential future challenges. According to

the results, we found a need to provide systemic approaches that allow software en-

gineers to build secure blockchain-based systems. Therefore, we focused our research

on the architectural-centric analysis of security approaches regarding blockchain-based

systems.

• Define the objectives for a solution: The primary aim of this thesis is to devise

systematic architectural analysis approaches that guide blockchain-based systems’ soft-

ware engineers in making informed architectural design decisions concerning security

quality attributes. We intend to raise awareness of security issues, their root causes,

and the implications for blockchain systems. This intention allows systems architects

to make early interventions, starting from the inception and design stages. Further-

more, our approaches aim to assist in making feasible and secure design decisions that

are also cost-efficient.

• Design and development: We have leveraged several well-known security techniques

to develop our approaches, including threat modelling and security technical debt.

These techniques effectively identify security issues and increase the visibility of their

negative impacts on systems. In particular, the technical debt metaphor has proven to

measure the impact of security weaknesses’ exploitation in terms of damage to business

value, the ramifications of incorrect decisions over time, and locating the design root

of security vulnerabilities [168, 167]. The metaphor also allows for quantifying the

monetary consequences of making a sup-optimal design decision. In this thesis, we

establish the foundations for integrating the built-in decision support of technical debt

analysis into blockchain-based systems.

• Demonstration: To demonstrate the applicability of our proposed approaches, sev-

eral case studies that represent blockchain-based systems and decentralised applica-

tions have been used, including electronic medical record blockchain-based systems

7



Introduction

[99], a dynamic legal agreement decentralised application [293], and a decentralised

auctions application [264]. Additionally, we use a dataset of representative vulnerable

smart contracts that are either actual vulnerable contracts or explicitly programmed

to demonstrate a specific vulnerability.

• Reflective Evaluation: To reflect on the evaluation of this work, we follow the as-

sessment strategy proposed by Kitchenham et al. [187]. Multiple subfeatures are

adopted to assess our proposed approaches: (i) completeness and organisation to eval-

uate the approach’s documentation; (ii) ease of implementation and applicability to

evaluate the quality of the approaches; (iii) usefulness, clarity, comparison with alter-

native approaches, and cost-effectiveness to evaluate the benefits of the approaches.

We consulted experts through an online survey and interviews to assess and refine our

approaches.

1.4 Research Contributions

The work described in this research contributes to the field of security architectural design

decisions for blockchain and smart contract-based systems. In particular, the work con-

tributes novel security architectural approaches that assist software engineers in designing

secure and cost-effective blockchain and smart contract systems. Our work employed several

methods of security-centric architectural analysis [297], including threat modelling classifica-

tion, vulnerability assessment, security risk analysis, and attack surfaces. In addition, it uses

the security technical debt metaphor [168] to quantify the implications and cost of potential

security risks. In summary, this thesis makes the following contributions:

1. A thorough analysis of existing literature that proposes architectural design

approaches to architect secure blockchain systems and smart contracts. We

8



Introduction

conducted a systematic literature review (SLR) to identify existing approaches to ar-

chitecting and designing secure blockchain-based systems and smart contracts. This

review has established a lack of systematic techniques that provide a clear guide for

creating secure blockchain and smart contract systems. Based on this review, we advo-

cate architectural analysis of security approaches for blockchain systems. As a result,

we formulated a set of security architectural design approaches to assist in making

secure and optimal decisions when designing blockchain systems and smart contracts.

2. A taxonomy of the primary dimensions of blockchain architectural decisions

and a mapping approach that associates each dimension with potential se-

curity attacks and threats. We conducted a review partially guided by the SLR

method to derive this taxonomy, which defines, illustrates, and classifies the key archi-

tectural decisions regarding blockchain-based systems. It describes each architectural

decision from the security perspective and discusses the quality attribute trade-offs en-

tailed by each architectural choice. We mapped each dimension of our taxonomy with

potential security attacks and their posed threats. Mapping the proposed taxonomy

with the related security ramifications allows software architects to fully comprehend

the impact and scope of the security challenges associated with developing blockchain

systems.

3. A technical debt-aware approach to designing secure smart contracts. We

formulated a technique for assessing security architectural design vulnerabilities in

smart contracts. This approach contributes to a Vulnerability-oriented Architectural

Analysis (VoAA) approach [297] for smart contracts. Our technique involves two steps:

(i) identification of design vulnerabilities using security analysis techniques; and (ii) an

estimation of the ramifications of the identified vulnerabilities leveraging the technical

debt metaphor, its principal, and interest. Developers can use our approach to inform

the design of more secure contracts and reduce unintentional debts caused by a lack of

9



Introduction

awareness of security issues.

4. A decision support model for blockchain oracle platform selection. The model

supports smart contract decision-makers in selecting a secure, cost-effective, and fea-

sible oracle platform for their applications. We investigated existing blockchain oracle

platform alternatives and analysed their related features. We formulated our model by

leveraging Multi-Criteria Decision-Making (MCDM) techniques. Additionally, we used

a combination of security technical debt and Multi-Objective Optimisation (MOO)

techniques, as the former allows one to estimate the security consequences of each

alternative, and the latter guides in selecting the best ones, considering the mone-

tary cost and security value. The model assists architects in comparing and assessing

various platforms precisely and making a secure and cost-effective optimal decision.

1.5 Thesis Structure

Figure 1.1 demonstrates the structure of the chapters and related research questions. Below

is an overview of the remaining parts of this thesis.

Chapter 2 reviews existing architectural analysis of security approaches related to

blockchain-based systems and smart contracts. Based on the findings, this chapter broadly

classifies existing publications that contribute to providing security by design approaches,

as well as the chapter shows a categorisation of publications that support blockchain risk

assessment methods. The chapter concludes by illuminating the architectural design issues

with blockchain security that have not yet been solved and need further research.

Chapter 3 provides a taxonomy of the major dimensions for blockchain architec-

tural decisions and demonstrates a mapping approach that associates such a dimension with

potential security attacks and threats. Attack tactics categorisation and threat modelling

10



Introduction

classification classify attacks and their posed threats, respectively. This chapter derives from

our paper presented in [6].

Chapter 4 proposes a debt-aware approach to assessing the security technical debts

incurred in smart contracts design. The assessment involves detecting design issues and

quantifying their consequences to security if they remain unfixed. Moreover, the chapter

shows that employing our approach increases the visibility of security design issues and allows

developers to concentrate on resolving smart contract vulnerabilities through technical debt

impact analysis and prioritisation. This chapter derives from our paper presented in [5].

Chapter 5 provides a blockchain oracle decision support model. The chapter com-

piles information on features, attack surfaces, and quality aspects of cutting-edge blockchain

oracle platforms to inform oracle selection decision-making. This chapter shows how a com-

bination of prioritisation techniques and a multi-objective optimisation valuation mechanism

guide selecting the best alternatives, considering the requirements specification, monetary

cost, and security technical debts.

Chapter 6 evaluates the thesis concerning the extent to which our work in earlier

chapters answered the stated research questions and includes a reflection on how we evaluated

each contribution.

Chapter 7 summarises the key contributions of the thesis and discusses possible di-

rections for further research in the security architectural analysis of blockchain-based systems

and smart contracts.

11



Introduction

Figure 1.1: Structure of the Chapters and Related Research Questions

1.6 Publications Linked to this Thesis

This thesis has a definitive reference of research that has either already been published or is

presently being submitted to top-tier journals or a well-established conference. The research

concepts and outcomes of the thesis appear in the articles below.

• S. Ahmadjee, C. Mera-Gomez, R. Bahsoon and R. Kazman, "A Study on Blockchain

Architecture Design Decisions and their Security Attacks and Threats", ACM Transac-

tions on Software Engineering and Methodology (TOSEM) continuous Special Section

on Security and SE.

• S. Ahmadjee, C. Mera-Gomez and R. Bahsoon, "Assessing Smart Contracts Security

Technical Debts", in 2021 IEEE/ACM International Conference on Technical Debt

(TechDebt), 2021 pp. 6-15.

• S. Ahmadjee, C. Mera-Gomez, S. Farshidi, R. Bahsoon and R. Kazman, "Decision

Support Model for Blockchain Oracle Platform Selection", ACM Transactions on Soft-

12



Introduction

ware Engineering and Methodology (TOSEM) continuous Special Section on Security

and SE, (under review for publication).

• S. Ahmadjee, C. Mera-Gomez and R. Bahsoon, "Security architectural approaches

for blockchain systems: A systematic literature review", ACM Computing Surveys

(CSUR), (under review for publication).

13



Chapter Two

Security Architectural Approaches for

Blockchain Systems: A Systematic

Literature Review

2.1 Overview

Blockchain is a disruptive technology intended to implement secure, decentralised distributed

systems, in which transactional data can be shared, stored and verified by participants with-

out needing a central authentication or verification authority. The distinguishing properties

and internal complex structure of blockchain technology enable the development of new

security risks. Moreover, the widespread usage of this technology, especially after the emer-

gence of smart contracts, blockchain-based computer programs, has incentivised attackers to

exploit their existing security challenges [338].

Numerous malicious attacks have occurred because of poorly designed or vulnerable

blockchain-based systems and/or smart contracts. For instance, in July 2020, an unautho-

rised third party accessed the e-commerce and marketing database of the Ledger company

14



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

website [200]. This cyberattack caused a massive data breach. Scammers used this data and

applied phishing attacks to trick users into revealing the keys to the company’s crypto wal-

let. Scammers also sent emails that included users’ data and threatened them, asking them

to pay a ransom. Making a poor decision to store sensitive data in an insecure, off-chain,

centralised database facilitated these attacks. This sort of incident emphasises the neces-

sity of secure-by-design approaches to orchestrate the creation of secure blockchain-based

systems. A robust architectural design is the first step in secure-by-design processes, which

allow security to be incorporated into the system from the ground up.

In this chapter, we provide a Systematic Literature Review (SLR) that identifies exis-

tent approaches to architect and design secure blockchain-based systems and smart contracts.

The following are this chapter’s main contributions:

• A classification of existing publications that contribute to providing secure architectural

design approaches. Four commonly used approaches are identified: decision models;

taxonomies; design patterns; and guidelines.

• Categorisation of publications that support blockchain risk-assessment methods. The

publications contribute to several security risk-assessment phases that comprise secu-

rity risk identification, risk analysis and/or risk calculation.

• Determination of certain blockchain security architectural design challenges that are

yet unresolved and require more investigation.

Existing studies focus on reviewing the approaches, frameworks and/or automation

tools that are leveraged in blockchain and smart contract testing [343, 148]. However, the

approaches for assessing security issues’ root causes at the early design stages are neglected.

Even though there is a study [97] that reviewed the state of knowledge on perceived risk

related to the adoption and application of blockchain technology, approaches related to secu-

15



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

rity risk assessment were not investigated. To the best of our knowledge, our efforts represent

a pioneering step in conducting an SLR to investigate, classify and analyse the current ap-

proaches and methods for architecting and designing secure blockchain-based systems and

smart contracts.

The rest of this chapter is structured as follows. Section 2.2 presents a brief overview

of blockchain and smart contracts. Section 2.3 provides the research methodology used to

conduct the systematic literature review and Section 2.4 presents the findings of the review.

Analysis of the findings is provided in Section 2.5. Section 2.6 presents the future directions,

the gap analysis, and the potential threat to the validity of the work. Related reviews are

contrasted with ours in Section 2.7, and finally, Section 2.8 summarises the chapter.

2.2 Background

This Section provides a brief overview of blockchain and smart contracts. Chapter 3 will

provide a thorough explanation of the architectural design decisions and components of a

blockchain and smart contacts.

2.2.1 Blockchain Overview

Blockchain is a chain of ordered blocks, which are distributed across thousands of nodes,

each block connecting to the previous block via a cryptographic hash of its content [131].

The block is seen as immutable because it cannot be modified retroactively without the

modification of all the subsequent blocks. Generally, each block contains a list of trans-

actions, a hash of the current block, a hash of the previous block, a timestamp and other

information such as a nonce value. Each node participating in the blockchain network can

16



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

create a cryptographically signed transaction and then exchange it with peers in the network

to provide non-repudiation to the stored transactions. Cryptographic mechanisms used by

blockchain technology add integrity to the system. This technology is based on a decen-

tralised peer-to-peer network that dispenses with the need to trust a centralised controller.

Trust in the blockchain is built by relying on its protocols, mechanisms and cryptographic

algorithms. Transparency and visibility are high in blockchain because data stored in the

chain is publicly accessed by all the participants in the network.

2.2.2 Smart Contracts

A smart contract is a decentralised code agreement designed to impose an automatic ne-

gotiation of a series of instructions without requiring approval by a central authority [356].

The structure of a smart contract is similar to the structure of the class in object-oriented

languages. The contract could consist of state variables, functions and events. Additionally,

the contract can leverage other contracts by using inheritance. A smart contract code is

stored and run on top of the blockchain and the correct execution of the contract is enforced

by the blockchain properties, namely transparency and immutability. Once a contract is

deployed, its program code is fixed and cannot be modified. This condition distinguishes

smart contract programs from regular computer programs.

2.3 Research Methodology

Based on Kitchenham and Charters [177], who offered widely recognised SLR guidelines in

software engineering, we conducted the review in several distinct stages: (i) identifying the

review research questions; (ii) establishing the search strategy; (iii) determining the inclusion

and exclusion criteria; (iv) applying the study selection procedure; (v) assessing the quality

17



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

of the final set of included studies; and (vi) extracting and analysing the data.

2.3.1 Research Questions

We intend to examine the following Research Questions (RQ):

• RQ1: What are the common security architectural design approaches used when ar-

chitecting blockchain-based systems and smart contracts?

• RQ2: What are the existing frameworks, models and methodologies for security risk

assessment in blockchain-based systems and smart contracts?

RQ1 is designed to provide an overview of the existing security architectural design ap-

proaches used in architecting blockchain systems and smart contracts. Several blockchain

architectural methods have been developed in recent years, and we aim to investigate to

what extent security aspects are considered in these approaches. Additionally, we want to

understand the purpose and limitations of these approaches. RQ2 is devised to determine

current methods for assessing the security risks linked to blockchain and smart contracts. It

is important to emphasise that our research focuses on the security risk assessment method-

ologies for blockchain adaption rather than on how blockchain technology is employed as a

solution for use in risk management or as a method to provide security to applications such

as blockchain-based Internet of Things (IoT) applications.

2.3.2 Search Strategy

Studies were selected by entering keywords into the search feature of five major publishers

or search engines: (i) IEEE Explore; (ii) ACM Digital Library; (iii) Science Direct; (iv) ISI

18



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Web of Science; and (v) Scopus. The keywords were chosen to encourage the emergence of

research findings that would aid in addressing the two RQs. The search strings for the search

are as follows:

• (“Blockchain” OR “Smart contract”) AND (“Secure”) AND (“Architecture Analysis”

OR “Architectural Analysis” OR "Architectural Design") AND ("Methodology" OR

"Frameworks" OR "Approach" OR “Model”)

• (“Blockchain” OR “Smart contract”) AND (“Secure”) AND (“Architecture” OR “Archi-

tectural”) AND (“Risk”) AND ("Assessment" OR "Analysis")

We filtered the results of these searches by applying the inclusion and exclusion criteria, which

are presented in the following Section. To complement and enhance the search process,

a snowballing strategy was employed as defined by Wohlin [361]. This strategy refers to

identifying more articles by utilising a paper’s reference list, which is known as ’backwards

snowballing’, or citations, which is known as ’forwards snowballing’. We conducted forwards

and backwards snowballing iterations until no more papers fulfilling the inclusion criteria

were found.

As the blockchain technology topic is actively growing in the industry and the tech-

nology is being rapidly adapted, we considered including relevant grey literature, specifically

industry sources and standards from the leading global consultancy firms that have pub-

lished white papers, guidelines or approaches that discuss the security architectural design

of blockchain systems.

19



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Figure 2.1: Search and Academic Papers Selection Procedure

2.3.3 Study Selection

Because not all the papers returned by the search were relevant to the study questions, they

had to be screened first. As a result, we identified the selection criteria that were used to

verify that the outcomes were objective. The following are the inclusion and exclusion cri-

teria that we established:

Inclusion Criteria (I)

I1: Papers published in peer-reviewed journals, conference proceedings, workshops, or book

chapters.

I2: Papers containing information related to blockchain and/or smart contracts.

I3: Papers explicitly related to the topics of analysis, assessment or management of security

risks in blockchain and/or smart contract applications.

I4: Papers explicitly related to security architectural design approaches for blockchain

and/or smart contracts.

Exclusion Criteria (E)

20



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

E1: Papers from disciplines other than computer science, in which blockchain was used

merely as a component of the application.

E2: Papers written in languages other than English.

E3: Papers that were not freely available.

Three rounds of filtering were used to determine the final selection of research papers. Figure

2.1 presents the search and selection processes.

First round: We selected papers based on metadata, including title, venue name and key-

words. In this round, we considered the criteria I1 and E1.

Second round: We independently chose papers by reading the papers’ abstracts. In this

round, we considered criteria I2 and E2.

Third round: We independently chose papers by reading the full text of the papers selected

in the previous round. In this round, we considered criteria E3, I2, I3 and I4.

Snowballing: Additional articles were discovered using forwards and backwards snow-

balling. All inclusion and exclusion criteria were considered.

After round three and the snowballing step, we applied Equation 2.1 to calculate

Cohen’s Kappa (k) [320], which is a statistical measure to assess the agreement between two

reviewers deciding the same issue:

k = (Po − Pe)/(1− Pe), (2.1)

where Po is the probability of the observed agreement, and Pe is the probability of random

agreement. We got a Po of 0.90, and a Pe of 0.60, which produced a k of 0.75, indicating

substantial agreement. To resolve the disagreements, a discussion that involved all the

reviewers was conducted. As a result of this discussion, 27 studies were included in our SLR.

Manual search: We started searching for publications of well-known institutions and

organisations that regularly produce publications related to blockchain, such as Deloitte [88],

KPMG [191] and NIST (National Institute of Standards and Technology) [257]. Additionally,

21



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

we expanded our research by conducting a manual search using the Google search engine to

cover other industrial publications. Finally, we selected eight grey publications that matched

our inclusion criteria.

2.3.4 Quality Assessment

In this study, the criteria presented by Yang et al. [384] were customised to assess the quality

of the selected studies. Three essential characteristics of empirical studies were considered

in this research: rationality, rigour and credibility. Rationality assesses whether the research

context and purpose are clearly stated; rigour investigates whether the research approach is

practical, scientific and complete; and credibility determines whether the research findings

are reliable and meaningful. We selected the most widely used criteria for each characteristic,

as determined by previous software engineering SLRs. The following are the eight quality

criteria that were examined for each selected study:

Rationality

1. Is the paper based on empirical research?

2. Is the context of the study stated clearly?

3. Is there a clear description of the research objectives?

Rigour

1. Does the method adequately address the research objectives?

2. Is the data collection method fully described?

3. Is data analysis sufficiently described?

Credibility

1. Is there a clear description of the results?

2. Do the researchers discuss limitations or threats to the validity of the results?

The reviewers separately scored each of the eight studies’ criteria based on a Boolean

22



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Table 2.1: Extracted Data Items

Item Association

Title of the study Demographic

Year of the study Demographic

Venue of the study Demographic

Type of security architectural method RQ1

Purpose of the security architectural method RQ1

Security risk assessment method RQ2

Purpose of the risk assessment method RQ2

matrix (0 or 1), in which 1 indicates that the study fulfils the quality assessment question

and 0 indicates that the study fails to fulfil the quality assessment question. A discussion

was held if there were any discrepancies between the reviewers, and the study was reviewed

again to determine the final score. Table A in Appendix 1 illustrates the scores of each study.

2.3.5 Data Extraction

Data extraction is the process of gathering data items that were used to analyse the final stud-

ies and answer our two research questions. This study’s data extraction mostly comprised

demographic information, information related to blockchain security architectural design ap-

proaches and information related to security risk assessment methods. Table 2.1 shows the

extracted items. Demographic information can be statistically demonstrated, while the in-

formation related to the research questions requires in-depth analysis. The data extraction

method was first applied to a collection of 10 highly cited studies in the field of blockchain

architecture. The collected data were merged and classified. We selected the main concepts

and aspects that resulted in the first draft of our classification. Next, we examined the entire

collection of selected studies to develop the classification.

23



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Figure 2.2: Quality Scores of the Included Studies

2.3.6 Data Synthesis

This Section aims to provide a concise summary of the data that was extracted to fulfil

the study’s objectives. The data that was extracted for this study is both quantitative and

qualitative. A descriptive analysis method was applied to synthesise a set of quantitative

data, including publication venues of selected studies and their quality scores. The purpose

and focus area of each selected study was also described. The thematic synthesis method [161]

was used to synthesise the qualitative data and answer the study’s research questions. The

qualitative data refers to the type of blockchain security architectural approaches and security

risk assessment methods. To answer RQ1, a categorisation process was conducted, and the

blockchain security architectural design approaches were classified into categories that have

similar characteristics. Then the purpose of each approach was explained. To answer RQ2,

the security risk identification and security risk analysis and calculation approaches were

identified and thoroughly explained. Section 2.4 (Result) and Section 2.5 (Analysis) present

all the extracted and synthesised information.

24



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Table 2.2: Publication Venues of Selected Studies

Publication Channel Selected Studies

Journals [119, 124, 51, 382, 159, 154, 8, 398, 34, 308, 9, 128, 44]

Conferences [373, 376, 369, 378, 318, 303, 336, 289, 220, 374, 183, 247, 228]

Workshop [364]

2.4 Results

This Section demonstrates the distribution of publications in different venues over time, the

distribution of selected studies’ quality assessment scores and the aim and focus of each

paper.

2.4.1 Demographics of Selected Studies

Only peer-reviewed articles were included in this study, Table 2.2 illustrates the selected

studies in each publication venue. As shown, half of the included studies were published

at conferences and the other half were published in journals. However, most of the journal

papers received high scores on the quality assessment. For instance, only journal papers

received a full quality assessment score of eight, while only one conference paper received a

score of seven, as shown in Figure 2.2. It demonstrates the quality scores of the included

studies according to the quality criteria presented in Table A. Figure 2.2 shows eight studies

received a score of six. Most of these studies provided no details on their data collection

methods, and they did not discuss limitations or threats to the validity of their results.

Only one study received the lowest score, which is three. This study was not empirical

research; it provided no information about the data collection methods; and there was no

clear description of the results and study limitations.

25



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Figure 2.3: Chart of Focus Areas of Selected Studies

2.4.2 Purpose of Selected Studies

Each selected article was fully read before essential information was retrieved and sum-

marised in Table 2.3. It explains the aim of each study as well as its focus area. Figure 2.3

shows the percentages of different focus areas of the 27 selected studies. The focus areas

identified in the selected studies highlight that a quarter (25%) of all studies are mostly

concerned with blockchain security issues as they discuss popular blockchain security at-

tacks and threats. Blockchain selection and blockchain consensus mechanisms are both the

second-most-popular areas, at 14%. The studies related to blockchain selection aim to help

select a suitable blockchain platform, while the studies related to consensus mechanisms are

mostly concerned with exploring multiple consensus protocols. Some studies also aim to as-

sist decision-makers in selecting the most-suitable one. IoT is the third-most-common focus

area, at 11%, and is mostly concerned with security issues and quality attributes related

to blockchain-based IoT. Smart contracts are the fourth-most-common area, with 7%. The

studies focus on a few architectural design aspects of smart contracts. The least-common ar-

26



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

eas on our list are related to quality attributes, blockchain access types, blockchain network

design, self-sovereign identity, penetration testing, information security and cryptocurren-

cies, each accounting for 4%.

2.5 Analysis of the Selected Publications

The two research questions are analysed in-depth in this Section. Figure 2.4 depicts the

classification of the selected publications and the percentage of studies per category.

2.5.1 Security Architectural Design Approaches (RQ1)

Based on our results, we broadly classify the selected studies into four commonly used ap-

proaches that support the secure architectural design of blockchain-based systems. These

are (i) decision models; (ii) taxonomies; (iii) design patterns; and (iv) guidelines. A repre-

sentative selection of studies that belong to these categories can be found in Table 2.4. Since

some studies contribute to multiple categories, they appear more than once in the table.

Decision models . In our context, decision models refer to the models that support

the analysis and inform architecture-related design decisions with regard to blockchain-based

systems and smart contracts. One of the aims of a decision model is to link components

from the problem space to their solution space counterparts. Four studies [119, 373, 124,

369] contributed to the architectural design decision model.

Farshidi et al. [119] provided a multi-criteria decision model (MCDM) for the blockchain

platform selection problem. The authors stated that their decision model involves 121

blockchain features that can be linked to 28 blockchain platform alternatives and multiple

quality attributes, including security. However, the blockchain features were briefly explained

27



Security
A

rchitecturalA
pproaches

for
B

lockchain
System

s:
A

System
atic

Literature
R

eview
Table 2.3: Main Purpose and Focus Area of the Primary Studies

Study Purpose Focus Area

[119] Equips blockchain decision-makers with a decision support model to select a suitable

blockchain platform for their applications
Blockchain selection

[378] Provides an experience report about blockchain architectural decisions to decide or discard

the adoption of a decentralised solution based on blockchain

[318] Provides a methodology that assists the selection of blockchain for a given set of requirements

and also offers guidance throughout blockchain configuration

[154] Provides a risk analysis methodology to facilitate understanding of the security implications

in the adoption of blockchain

[159] Introduces a layered security reference architecture for blockchain that identifies origins of

known security threats and their potential mitigation mechanisms

Blockchain security

[398] Discusses the blockchain’s basic architecture and its potential security and trust issues at

the data, network, consensus, smart contract and application layers

[308] Presents a discussion on a set of attack vectors and security threats to blockchain-based

solutions

[9] Presents a security risk assessment methodology that enables a systematic quantification of

the risk associated with blockchain technology and its ecosystem

Continued on next page

28



Security
A

rchitecturalA
pproaches

for
B

lockchain
System

s:
A

System
atic

Literature
R

eview
Table 2.3 Main Purpose and Focus Area of the Primary Studies (Continued from previous page)

Study Purpose Focus Area

[373] Provides architects with a decision model to assist them in selecting the appropriate archi-

tectural design patterns for blockchain-based applications

[247] Identifies the main threats to blockchain and assesses how these threats may adversely

impact a blockchain-based solution

[374] Categorisesdesign patterns for blockchain-based applications, including one category of se-

curity patterns

[124] Introduces a multi-criteria framework for selecting the most-suitable consensus protocols

depending on the identified criteria, priorities and other requirements
Consensus protocol

[228] Assesseses attacks that target consensus protocols with respect to their potential implemen-

tation in an IoT blockchain environment

[128] Introduces an evaluation framework of blockchain consensus algorithms and discusses secu-

rity design principles to deal with different attacks

[44] Proposes a classification framework of consensus protocols to serve as a comprehensive and

integrated taxonomy

[289] Provides a brief discussion of architectural aspects of smart contracts and a security mech-

anism to be followed when designing smart contracts
Smart contracts

[364] Elaborates a set of security design patterns for smart contracts

[303] Presents a discussion of security issues related to blockchain adoption in IoT environments

Continued on next page

29



Security
A

rchitecturalA
pproaches

for
B

lockchain
System

s:
A

System
atic

Literature
R

eview
Table 2.3 Main Purpose and Focus Area of the Primary Studies (Continued from previous page)

Study Purpose Focus Area

[382] Provides a catalog of architectural tactics for achieving a set of required quality attributes

in the design of IoT systems based on blockchain IoT

[51] Presents an analysis of security issues at each layer of a blockchain architecture and the

potential impact of security attacks against a blockchain system

[376] Proposes a taxonomy that captures some architecturally relevant blockchain characteristics

in relation to their support for various quality attributes

Quality attributes

[369] Provides a methodology to identify whether blockchain is useful depending on the problem

requirements, and if so, what type of blockchain might be appropriate

Blockchain access type

[336] Presents a map with the main design dimensions for blockchain networks Blockchain network design

[220] Provides design guidelines that detail a number of Ethereum design patterns and their map

to Solidity coding practices

Self-Sovereign identity

[34] Presents a penetration testing framework for smart contracts and decentralised apps that

assesses the security risk of several attacks

Penetration Testing

[8] Complements the information security controls framework for blockchain established by the

International and National Information Security Standards

Information security

[183] Provides risk analysis and risk management guidelines based on NIST and ISO standards

for cryptocurrency exchange

Cryptocurrencies

30



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

as the study focused on the methodology of building the decision model. Although the study

considered security and listed a few security issues, the authors failed to analyse any of these

issues and did not explicitly discuss how blockchain features are associated with security

quality attributes.

Xu et al. [373] proposed a decision model that allows designers to choose suitable

patterns for blockchain applications. The work provided patterns for several blockchain

architectural components, including smart contracts and blockchain oracles. It proposed

two security decision models, one for authentication and the other for authorisation. Several

security quality attributes were considered with regard to the patterns, including integrity,

availability and confidentiality. However, security issues that might arise when employing

these patterns were not discussed.

Only one element of blockchain architecture was discussed in previous studies [124,

369]. Filatovas et al. [124] proposed the use of MCDM to select an appropriate consen-

sus protocol for blockchain applications. Wüst et al. [369] provided a decision model for

choosing a suitable blockchain type: permissioned or permissionless. Because neither study’s

main focus was security, they only discussed a few security attributes, such as integrity and

availability, and mentioned some security issues.

Taxonomies. In software engineering, taxonomies help with knowledge categorisa-

tion and organisation, enabling practitioners and researchers to comprehend and analyse a

complicated design space as well as assess and compare design solutions.

Xu et al. [376] proposed taxonomies of the architectural components of blockchain

systems and demonstrated how these components affected system quality attributes such as

performance. However, impacts on security attributes, possible attacks and their subsequent

threats were missing. Attacks were classified in the study by Zhang et al. [398] based on

blockchain layers: data, networks, consensus, smart contracts and applications.

31



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Xu et al. [378] classified design decisions into blockchain decisions and application

decisions and then conducted a trade-off analysis of the related quality attributes. Their

research briefly analysed security and discussed a few security attacks. Homoliak et al. [159],

classified security vulnerabilities and threats in four layers: the consensus layer, the network

layer, the state machine layer, and the application layer. Brotsis et al. [51] only analysed

blockchain architectural components that are suitable for IoT applications. The study also

classified attacks based on several aspects including identity, service and manipulation.

Previous studies [128, 44] focused solely on the architectural decisions of the blockchain

consensus protocols. Bouraga [44] classified 28 consensus protocols based on four criteria:

origin, design, performance and security. In terms of security, they showed whether the

considered consensus protocol addressed Sybil attacks, denial of service attacks, 51% attacks

and eclipse attacks. Fu et al. [128] introduced three evaluation dimensions of blockchain

consensus algorithms: effectiveness, decentralisation and security. The study reviewed the

security design principles for resisting several attacks, including double spending attacks,

Sybil attacks and eclipse attacks.

Guidelines. The guidelines refer to well-established concepts and outlines that work

in practice and, as a result, offer knowledge and insights.

Staderini et al. [318] presented a guide to selecting the most appropriate type of

blockchain. The proposed guidelines considered some blockchain architectural criteria, in-

cluding consensus protocols and smart contracts. The study discussed a number of attacks,

such as 51% attacks and mining attacks. Richard et al. [289] briefly explored smart contract

architecture. The study suggested a smart contract development model that is divided into

three classes in the form of the development cycle, security mechanism and development

support. Several tasks were assigned to the security mechanism class, including input filter-

ing, bug detection and vulnerability metrices. The study failed to examine or discuss any

32



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

security-related issues.

Previous studies [336, 303] analysed types of blockchain; Tran et al. [336] analysed

the consensus protocol, while Sargsyan et al. [303] discussed node architecture. Both studies

discussed security briefly. Despite the fact that these studies claimed to provide blockchain

architectural design guidelines, their proposed guidelines failed to provide a precise and clear

set of steps to be followed by blockchain systems architects.

Design patterns. These refer to repeatable solutions that can be applied to common

blockchain or smart contracts’ architectural design problems.

Xu et al. [374] presented security patterns that enhance the immutability, integrity

and non-repudiation of blockchain systems. The study also proposed design patterns that

provide solutions to common security issues related to smart contracts built on Ethereum

blockchain. Two studies [382, 228] presented a catalogue of architectural solutions for

blockchain-based IoT applications. Yánez et al. [382] discussed multiple blockchain ar-

chitectural elements and their related security attributes; however, the security issues of

these architectural elements were not discussed. Mackenzie et al. [228] only discussed sev-

eral blockchain consensuses protocols for IoT application and their related attacks. In ad-

dition, Liu et al. [220] only presented and discussed design patterns for blockchain-based

self-sovereign identity, and the study briefly analysed the security issues of some presented

patterns.

Based on our findings, there are only four industry sources that provide approaches for

architecting blockchain systems and for analysing security. NIST [380] provided an overview

document of blockchain technology to assist practitioners in understanding how this tech-

nology works. The document organises concepts, components, models and other elements

related to blockchain technology, as well as discusses several security attacks including 51%

attacks, Sybil attacks, DDoS attacks and double spending attacks. The American Council

33



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

for Technology-Industry Advisory Council (ACT-IAC) [327] also provided a blockchain play-

book that defines a process incorporating several phases, including a technology selection

phase, to help adopt the technology. In the selection phase, the playbook discusses several ar-

chitectural components such as smart contracts and consensuses protocols and discusses the

security attributes of such components. However, both documents lack a thorough analysis

of security problems that are associated with blockchain architectural components.

The European Union Agency for Cybersecurity (ENISA) [76] produced a report that

explained several blockchain components, including consensus mechanism, smart contracts

and sidechains. Their report also discussed several traditional and blockchain-specific cyber-

security issues. Finally, each issue was mapped to essential best practices to aid practition-

ers in developing secure blockchain systems. The report, however, is only concerned with

blockchain-related challenges in the financial sector.

The German Federal Office for Information Security [165] produced a document that

highlighted the security attributes of several blockchain components and discussed possi-

ble attacks that targeted each component. The document also assessed and compared the

security attributes of public and private blockchains.

2.5.2 Blockchain Security Risk Assessment Methods (RQ2)

According to ISO 27001 [1], risk assessment involves five main steps: (i) risk identification; (ii)

assigning risk owners; (iii) risk analysis; (iv) risk calculation; and (v) risk evaluation. Based

on our results, we found that the selected studies related to RQ2 contribute to blockchain

risk identification, risk analysis and risk calculation methods. Table 2.5 lists these studies.

Some of the research helps to either identify security risks or analyse and calculate such

risks. A few publications, however, have an impact on both areas, as Table 2.5 shows. The

34



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Figure 2.4: Chart of the Classification of Selected Publications

primary contribution of each study is described in the following paragraphs.

Security risk identification. ISO 27001 defines risk identification as the process

of determining the assets that have value and could be targeted by attackers; finding the

potential threats to these assets; and determining the vulnerabilities that might be exposed

to these threats. We found several studies that contributed to blockchain security risk

identification methods.

Homoliak et al. [159] proposed a threat-risk model that involves six elements: (i)

the kind of blockchain users (owners); (ii) assets that are present at the application layer;

(iii) threat agents or malicious users; (iv) threats that emerge from blockchain architectural

components’ vulnerabilities; (v) countermeasures; (vi) risks that are caused by threats and

malicious users and lead to asset corruption or losses. However, the model fails to provide

clear steps or a guide to blockchain practitioners on how to employ such a model in their

system design.

In Schlatt et al. [308], the attack vectors were classified based on several blockchain

architectural components, including consensus protocols, application wallets and smart con-

35



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

tract language. The work proposed a research framework from an information security

perspective to help analyse the identified attacks. Kim et al. [183] only concentrates on

cryptocurrency exchange platforms. The study analyses their related vulnerabilities and

provides security enhancement recommendations based on NIST and ISO/IEC 13187:2011

[163] standards. Hebert and Di Cerbo [154] proposed a partial risk assessment methodology

to identify security risks in various elements of blockchain architecture. It also suggested

using threat modelling methodology to analyse the identified risks. However, the evaluation

and ranking of the consequences of these risks were not considered in the methodology.

Security risk analysis and calculation. ISO 27001 defines risk analysis and

calculation as the process of assessing the impact of security risks and their likelihood of

occurrence and then determines the severity of each risk. We found several studies that

proposed blockchain security risk analysis and/or calculation methods.

A penetration testing framework for blockchain applications was proposed by Bhard-

waj et al. [34]. The study performed penetration testing on a commercial blockchain appli-

cation to identify and rank the consequences of the potential threats. However, the study

only considered a few security issues that were solely related to smart contracts. Al Ketbi et

al. [8] proposed blockchain security controls and their implementation guidelines to fill the

gap in the existing national and international standards. The study evaluated, ranked and

recommended security controls that could be implemented. However, the security attacks

that were imposed as a consequence of the blockchain architectural components were not

been considered.

Al Mallah et al.[9] classified blockchain security threats into four categories: network

threats; double spending threats; private key threats; and smart contract threats. The

study also assessed the threat risk impact based on the author’s observations and opinions.

Case studies of blockchain applications were not employed to show how to identify and

36



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Table 2.4: Categories of Secure Architectural Design Approaches

Category Studies

Decision Model [119, 373, 124, 369]

Taxonomy [376, 398, 378, 159, 51, 128, 44]

Guidelines [318, 289, 336, 303, 378]

Design Patterns [374, 382, 228, 220, 373]

assess threats in a real work example. Morganti et al. [247] proposed a cybersecurity risk

assessment framework for blockchain-based smart mobility. The framework first determined

the impact and probability of occurrence of each threat and then ranked the corresponding

risks.

We found four industrial sources that contributed to blockchain risk assessment meth-

ods. In 2017, KPMG [184] released a white paper that investigated two specific blockchain

attacks and explained how these attacks can be avoided. The paper also proposed a security

framework that blockchain architects can use to identify and mitigate security risks that have

arisen as a result of the use of blockchain. In 2018, KPMG [103] published another white

paper that identified 10 specific blockchain risk areas and provided a five-level approach to

assess the identified risks. Security attributes and issues were briefly discussed.

Deloitte provides a risk management framework that involves three risk considera-

tions, including standard risks, value transfers and smart contracts [279]. The information

security risks of blockchain wallets and smart contracts are superficially explained, as the

main aim of this framework is not security. The World Economic Forum (WEF) provides

a toolkit that involves a five-step approach for blockchain cybersecurity risk management

[250]. The risk assessment template and the guide for filling it out are also provided. The

toolkit provides a risk identification checklist involving multiple risk factors. However, secu-

rity issues related to blockchain architectural and design decisions were missing.

37



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Table 2.5: Blockchain Security Risk Assessment Methods

Method Studies

Security Risk Identification [159, 308, 183, 154, 34]

Security Analysis and Calculation [34, 8, 9, 247, 159, 183]

2.6 Discussion

Based on the results of this review and our observations and analysis, in this Section we

discuss research directions that deserve further investigation; describe specific limitations to

be addressed in this thesis; and finally, present potential threats to the validity of our work

and how we mitigate them.

2.6.1 An Outlook for Future Directions

According to our results, only a few studies [119, 124, 376, 369, 336] have provided systematic

approaches with clear steps for architecting and designing secure blockchain-based systems.

However, security is not the focus of these studies. Security tends to be briefly discussed

as an architectural quality attribute and in the context of blockchain architectural design

decisions for integration.

Lacking systematic security in design approaches and security standards that assist

practitioners at the early blockchain development stages may lead to catastrophic incidents

such as the attacks that caused a permanent freeze of 280M USD [60] because of a design

problem in the smart contracts. Moreover, because blockchain-based systems contain sev-

eral architectural components, each with a relatively complex internal structure, a lack of

systematic methods can over-complicate the design of secure blockchain systems and smart

contracts. Therefore, researchers need to establish comprehensive and systematic secure-

38



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

by-design approaches to orchestrate the decision-making and architectural design processes

with regard to blockchain systems and smart contracts. This is also one of the recommen-

dations made by Wan et al. [353], in which the authors conducted a comprehensive study

to investigate how practitioners view and practice smart contract security.

As the results show, there is a lack of complete methodologies that provide a clear

guide to the identification, quantification and management of security risks related to blockchain

systems’ architectural design decisions. The selected publications either provide partial risk

assessment methods with no clear guide on how to employ them or only focus on a few secu-

rity issues that relate to blockchain architectural components. Moreover, security attributes

are not the focus of some publications [119, 124, 369, 376], and security is only discussed in

a briefly or superficially. Due to the lack of methods for identifying, analysing, assessing and

managing a broad set of security issues, a large percentage of blockchain projects have failed

[97]. Consequently, there is an urgent need for a general framework, approaches and method-

ologies that address security risks in the context of blockchain architecture. The availability

of such approaches enables the architecting of blockchain systems that are secure-by-design,

have manageable security risks and lower the chances of security breaches and project failure.

There have been several initiatives in smart contract security, resulting in the defini-

tion of several vulnerabilities for smart contracts and tools for finding them. However, smart

contract security is still in its early stages and many other challenges require attention, such

as the security implications of design decisions in smart contracts, including programming

languages and off-chain integration. Despite the number of smart contract vulnerabilities

discovered by researchers [159, 212, 152, 24, 60], there is no reference classification that

organises and collects security issues based on criteria such as implications, ramifications,

cost of exploitation and resolution. Therefore, systematising the process of smart contract

security from the early design stage, including the standards, best practices, tools and ap-

proaches, is an essential step towards designing secure smart contracts.

39



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

2.6.2 Gap Analysis

Drawing on the findings of the systematic literature review and the outlook for the future,

we identified the following gaps that steered our investigations in the thesis:

• A systematic approach to assist architects in making secure architectural

design and configuration decisions for blockchain-based systems: The results

of our review indicate that although there are several initiatives that discuss blockchain

architectural components, these initiatives either focus on only one of these components

or briefly discuss a few of them. Additionally, our results show there are few studies

that discuss the security of blockchain components or that provide a systematic ap-

proach to identifying security issues that are associated with such components. This

knowledge gap may increase the occurrence of unsuitable design decisions and produce

configurations prone to potential security risks. To address this limitation, we derive

a taxonomy of commonly used architectural design decisions in blockchain-based sys-

tems. We map each of these decisions to potential security attacks and their posed

threats. We provide a systematic way to apply the taxonomy and leverage the mapping

approach. A thorough justification of our solution is given in Chapter 3.

• An approach for assessing smart contracts’ security risks: Assessing the secu-

rity risks of smart contracts at the early design stage is an essential step to mitigate

potential vulnerabilities and deploy secure and robust contracts. However, the find-

ings of our SLR revealed that there is a lack of security-based design approaches that

focus on the architectural design elements of smart contracts and assist in identifying,

analysing and quantifying the associated security risks. Experience shows that many

deployed contracts are vulnerable to exploitation due to their poor design, which allows

attackers to steal valuable assets from the involved parties. An assessment approach

that allows developers to recognise the consequences of deploying vulnerable contracts

40



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

is needed. The technical debt metaphor has proven to be effective in measuring the

impact of security weaknesses, exploitation, ramifications of negative decisions, over-

time and locating the design root of security vulnerabilities. Therefore, in this thesis

we leverage this metaphor, as a potential approach, to propose a debt-aware approach

for assessing security design vulnerabilities in smart contracts. Chapter 4 provides a

detailed explanation of the approach.

• Decision support model for blockchain oracle platform selection: Smart con-

tracts use agents known as blockchain oracles to collect and provide data feeds to the

contracts. The functionality and compatibility of oracle with smart contract applica-

tions need to be considered when selecting the best-fit oracle platform. As the number

of oracle alternatives and their features increases, the decision-making process becomes

increasingly complex. Selecting the wrong or sub-optimal oracle is costly and may lead

to severe security risks. Although there are several studies that propose decision-model

approaches for selecting blockchain architectural components or blockchain platforms,

approaches that evaluate the security issues of blockchain oracles have been neglected in

existing publications. To address this limitation, we provide a guided decision support

model for the oracle selection problem. The model leverages the security technical debt

metaphor to quantify the security risks of possible attacks on the examined blockchain

oracles and assists in eliminating solutions that can manifest into potentially costly

and risky security technical debts. Henceforth, the model can support smart contract

decision-makers in selecting a secure, cost-effective and feasible oracle platform for their

applications. The proposed decision model is explained in depth in Chapter 5.

2.6.3 Threats to Validity

Based on Wohlin et al. [362], we have considered the following potential threats to validity:

41



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

External validity. Though an effort to include studies on architecture design ap-

proaches for building secure blockchain systems and smart contracts, there is the risk of

missing some papers. To mitigate this potential threat, in addition to the results of the au-

tomated search, we applied backwards and forwards snowballing search methods to examine

additional papers, where the snowballing strategy was explained in Subsection 2.3.2. More-

over, we considered including grey literature to enhance the generalisability of the results.

Construct validity. There are potential biases during the study selection and data

extraction processes. To mitigate this threat, we worked independently on the selection

paper process. Any disagreement was resolved by having a group discussion. The possibility

of bias introduced during the data extraction process was reduced by ensuring that everyone

reviewing the studies had a common understanding. We also made sure that the data

extraction procedure matched the research questions.

Conclusion validity. Another threat arose because we cannot guarantee the com-

pleteness of our classification of blockchain secure architectural design approaches and secu-

rity risk assessment methods, as there might be additional categories that could enrich the

classification. To mitigate this threat, we iteratively refined our classification each time a

new concept was encountered in the literature. Nevertheless, the classification is adaptable

to evolve and to cope with new additions and changes.

2.7 Related Work

The academic community is becoming increasingly interested in problems related to blockchain

technology. Unfortunately, there is still a dearth of comprehensive literature reviews that

look at certain areas of software engineering, including architectural design approaches for

building secure blockchain-based systems. Based on the methods employed to apply the re-

42



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

views by the existing literature, we categorise them into three groups: systematic literature

reviews, surveys, and comprehensive reviews. The studies, their methodologies, and their

focus areas are listed in Table 2.6.

Systematic Literature Reviews. Drljevic et al. [97] conducted a systematic lit-

erature review that demonstrates the state of knowledge with regard to the perceived risk

related to the adoption and application of blockchain technology. The study sheds light

on risk definitions that are related to technology, business and project management. The

connection between blockchain technology adoption and risks is also clarified. The study

emphasises the importance of standards-based approaches for the effective adoption and ap-

plication of blockchain. The study concluded that there are significant research gaps in the

field of risk management with regard to the use of blockchain technology, a conclusion that

is consistent with our findings. However, in contrast to our study, security risk assessment

approaches have not been investigated in this study.

In 2016, Yli-Huumo et al. [391] conducted a mapping study to investigate the available

topics and challenges that were related to blockchain technology. They found most of the

studies focused on Bitcoin systems, and only a few papers investigated other blockchain

topics such as smart contracts. According to that study, blockchain security architectural

design approaches were ignored in the considered studies. This is nearly consistent with our

findings, as we found no studies investigating security architectural design methods prior to

2016, and we only found one study [378], published in 2016, which sheds light on several

blockchain design decisions.

The improvement of smart contracts and decentralised application development was

the focus of a systematic literature study carried out by Vacca et al. [343]. The study

included the frameworks and automation tools that are employed in smart contract testing.

They found that many of the currently used methods and tools only deal with particular

43



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

smart contract-related problems and challenges.

Surveys of Literature. Guo and Yu [148] conducted a survey on the security of

blockchain technology. The study evaluated blockchain security through risk analysis to

identify extensive blockchain security risk categories, examined actual attacks against the

blockchain and possible defects and their underlying causes, as well as presented newly

developed blockchain security countermeasures. Leng et al. [203] conducted a survey to

review the state of blockchain security research. Based on the selected papers, the study

classified the security of the blockchain into three levels: the process level, the data level,

and the infrastructure level. The study also investigated the existing solutions for addressing

security issues. Studies [148] and [203] both presented an extensive review of blockchain

security issues, and their reviews can be used to support the building of secure blockchain

systems. However, security design issues and security risk assessment methodologies, which

assist in avoiding security problems at the early stages, have not been investigated in these

studies.

Comprehensive Reviews. König et al. [189] provided a comparative analysis of 19

blockchain standards published by organisations that work and focus on information security.

Security management and technical security are among the criteria that are used to compare

the content of the standards. The study, however, only considered organisational standards

in the comparison and excluded other types of grey literature such as white papers and

industrial reports. They also ignored academic literature, which can also aid in the adoption

of reliable and secure blockchain technology.

To the best of our knowledge, and in contrast to other efforts, our work explores and

categorises the current architectural design approaches and security risk assessment methods

used to construct secure-by-design blockchain-based systems.

44



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

Table 2.6: Related Works, their Methods, and Focus Area

Study Methods Focus Area

[97] SLR Risk management of blockchain

[391] SLR Blockchain topics and challenges

[343] SLR Smart contract applications

[148] Survey Security issues of blockchain

[203] Survey Security issues of blockchain

[189] Comprehensive Review Blockchain standards

2.8 Summary

This chapter presented a systematic literature review to investigate current approaches and

methods that assist in architecting and designing secure blockchain-based systems and smart

contracts. We selected 27 academic studies and eight industrial reports that satisfied the

defined inclusion criteria. We found that the approaches provided by a set of selected studies

can be classified into four categories: (i) decision models; (ii) taxonomies; (iii) design pat-

terns; and (iv) guidelines. The other set of selected studies contributed to several security

risk assessment phases: (i) security risk identification and/or (ii) security risk analysis and

calculation.

We argued that the development of secure blockchain systems requires leveraging

security architectural design approaches. However, based on our review results, we found

there is a lack of systematic security architectural-centric approaches, security standards and

complete security risk assessment methodology. We concluded that there is a critical need

for a generic framework, methods and approaches that handle security risks in the context

of blockchain architecture at the early architectural and design stages.

45



Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review

In this chapter, we presented several research directions that deserve further investi-

gation in the field of security architectural design decisions for blockchain systems and smart

contracts. These are as follows: (i) a systematic approach to assist architects in making

secure architecture design and configuration decisions for blockchain-based systems; (ii) an

approach for assessing smart contracts’ security risks; and (iii) a decision support model

for blockchain oracle platform selection. We will provide a thorough explanation of each

research direction in the upcoming chapters.

46



Chapter Three

Blockchain Major Architectural Design

Decisions and their Security Attacks and

Threats

Chapter 2 has identified certain blockchain security architectural design challenges that are

yet unresolved and require more investigation. Among the identified challenges, we found

a need for a systematic approach to assist architects to make secure architectural design

and configuration decisions for blockchain-based systems. Therefore, in this chapter, we

present a taxonomy of commonly used architectural design decisions in blockchain-based

systems. We identify and classify the potential security attacks and their posed threats

and map them to the architectural design decisions of blockchain systems. The mapping

approach aims to guide architects to make justifiable design decisions that will result in

more secure implementations. The result of the mapping feeds into the requirements of the

upcoming chapters as it assists in determining the attack surfaces of the smart contracts and

understanding their impacts.

This chapter reports in full the contents of a published manuscript [6] by the thesis

47



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

author Ahmadjee et al. It includes verbatim text from the manuscript and some changes

employed for the purpose of this thesis.

3.1 Overview

Blockchain is a decentralised technology that claims to provide several security properties,

including immutability, integrity, non-repudiation, and availability [376]. Additionally, the

technology helps alleviate multiple security risks that threaten traditional centralised sys-

tems such as single points of failure. However, since a blockchain-based system has several

architectural components, each with complex internal structures, the chance of introducing

security vulnerabilities by making poorly informed design decisions or misconfiguring any

of those components is non-trivial. There is a lack of a systematic guide to design secure

systems based on blockchain technology [351, 409]. This situation leads to architects oper-

ating in an ad-hoc manner [276], relying on the wisdom and trust of peers [409]. Moreover,

a lack of awareness of security attacks and the consequent impacts on blockchain system

architecture can deter practitioners from addressing security issues at the early development

stage [352]. As a result, attackers might discover security flaws and breach the system.

The novel contributions of this chapter are:

• A taxonomy that defines, illustrates, and classifies the key architectural decisions re-

garding blockchain-based systems including access type, data storage, and transaction

computation decisions. This taxonomy is the result of an approach partially guided by

a systematic literature review that identifies the major architectural design properties

and choices related to blockchain-based systems.

• A mapping approach that associates architectural decisions of blockchain-based sys-

48



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

tems with potential security attacks and threats. A threat classification model is used

to categorise threats associated with the attacks and the architectural choices. Specif-

ically, we use the Microsoft STRIDE threat model [199] because it classifies threats

based on the ramifications of their realisation, such as a denial of service (DoS), dis-

closure of information, or elevation of privilege.

Mapping the proposed taxonomy with the related security ramifications helps software ar-

chitects to fully comprehend the impact and scope of the security challenges associated with

blockchain systems. The security implications of threats can be directly associated with the

likelihood and impact of potential attacks on the whole system. This approach provides a

basis for evaluating the potential security risks in all dimensions of the system. We advocate

security risk assessment at early stages to provide the engineers with more objective guidance

that can assist in further analysis for potential threats and attacks, refining the design and

testing for security.

Previous studies have illustrated various security vulnerabilities and the consequent

attacks on blockchain-based systems [211, 152, 217]. However, to the best of our knowledge,

our work represents a novel initiative in presenting a thorough categorisation of threats and

their correlation with attacks, as well as with blockchain architectural decisions that are

susceptible to those attacks. Other studies [376, 403] have presented taxonomies of the ar-

chitectural properties of blockchain systems and showed the impact of these properties on

quality attributes of the system such as performance. However, their effects on security

properties— possible attacks and their subsequent threats—have not been covered. More-

over, these prior studies did not systematically determine the major architectural decisions

that are considered when designing such a system. To the extent of our knowledge, this work

is among the initial efforts to present a taxonomy that categorises architectural decisions of

blockchain-based systems based on a systematic review of the literature.

49



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

The rest of the chapter is organised as follows. Section 3.2 outlines the procedure

followed to conduct our review. Section 3.3 provides a comprehensive taxonomy of archi-

tectural decisions for blockchain-based systems, followed by Section 3.4 that introduces our

mapping approach, and links the classified threats and attacks with our taxonomy. Section

3.5 demonstrates an application of our work, followed by Section 3.6 shows the validation

of our work and discusses the threats to validity to our approach. Section 3.7 discusses the

related works. Finally, Section 3.8 represents future research directions and concludes the

chapter.

3.2 Research Methodology

3.2.1 Surveying the Literature

Our empirical route [255] is partially guided by a systematic literature review research

method [186]. In this way, we increase the possibility of producing an unbiased exploration

of the current body of work on the field and select representative articles that can reflect the

major architectural decisions for blockchain-based systems along with their characteristics,

attributes, and variants. To achieve this aim we conducted the following research question

(RQ):

RQ1: What are the architecturally significant design decisions in blockchain-

based systems? The search period for this survey starts in 2008 since the original paper

describing blockchain appeared that year [251]. We conducted a trial search first to select

and refine the query terms used. We tested several possible queries which resulted in either

a huge number of papers or research papers that were unrelated to our survey goals. Fi-

nally, we settled on Blockchain AND (Architecture OR Architectural). This query has been

designed as open-ended, to provide exhaustive coverage of the literature where the terms

50



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

architecture or architectural often preceded many of the keywords that relate to architecture

such as design, tactic, quality, model, or concerns. Searches were performed in five elec-

tronic databases: IEEEXplore, ACM Digital Library, Science Direct, ISI Web of Science,

and Scopus.

Since not all the resulting papers from the search were related to the research ques-

tions, they needed to be filtered first. Hence, we identified several selection criteria that were

applied to ensure that the outcomes were objective. The inclusion and exclusion criteria we

defined are as follows:

Inclusion criteria (I)

I1: Papers published in peer-reviewed journals, conference proceedings, workshops, or book

chapters.

I2: Papers focused on one or more blockchain architectural design decisions.

I3: Papers reporting on fundamental research into software architecture for blockchain

and/or their applications.

Exclusion criteria (E)

E1: Papers from disciplines different that computer science, in which they use blockchain

merely as a component of the application.

E2: Papers without full text, papers written in other language than English, and duplicate

papers.

E3: Papers related to blockchain-based applications without any substantial architectural

discussion.

Our study selection procedure employed three rounds to filter the research papers and

select the final set.

First round: We selected papers based on metadata including title, venue name and key-

words. In this round, we considered the criteria I1 and E1.

Second round: We independently chose papers by reading the abstracts of the papers. In

51



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Table 3.1: Selected Articles

Publication Type References

Surveyed and SLR (Secondary study) [24], [217], [64], [152], [60], [211], [83], [299], [307],

[50], [18], [23], [123], [381]

Primary Study [38], [106], [266], [201], [284], [21], [390], [155], [335],

[63]

Grey Literature [314], [109], [284], [74], [93], [277]

this round, we considered criteria I3, E2, and E3.

Third round: We independently chose papers by reading the full text of the papers selected

in the previous round. In this round, we considered criteria I2, I3, E2, and E3.

Additionally, we performed a manual search to include relevant papers informed by

experience or citations from seminal research. Figure 3.1 illustrates the search and the

selection procedure followed.

Data Extraction

The data extraction process was initially applied to a set of 10 studies that are highly

cited and considered the most seminal in the area of blockchain architecture. We read

their full text to collect information regarding architecting blockchain-based systems. The

considered aspects were: blockchain-based systems architectural components, their variants,

characteristics, and design decisions. Then, all the extracted information was combined and

categorised. We identified the key concepts and dimensions that led to an initial version

of our taxonomy. Next, we analysed the full set of selected papers to revise and refine the

taxonomy. Therefore, the approach that we followed to build our taxonomy can be described

as an empirical to conceptual approach. Publication titles and aims were collected from all

included studies.

52



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

IEEEXplore

418

ACM DL

130

Science Direct

202

ISI Web of Science

315

Scopus

650

Selection by title and 
keywords

80

Selection by title and 
keywords

69

Selection by title and 
keywords

41

Selection by title and 
keywords

50

Selection by title and 
keywords

81

Results merge

352

Duplication removal

309

Selection by abstract

140

Reading full text articles

140

Final included 
articles by full text

78

Manual Search

41

Selection by title and 
keywords

31

Figure 3.1: Search and Paper Selection Procedure

3.2.2 Mapping Approach

The second objective of our study is to map the architectural decisions of blockchain-based

systems to threats and attacks. To achieve this, we decided to address the following research

question:

RQ2: How can potential threats and attacks be traced to blockchain architectural

decisions and to which components?

There are various strategies that can be used to investigate ways in which blockchain-based

systems may be threatened. We focus on common and widely acknowledged security threats

with a malicious purpose which are often posed by cyberattacks, compiled from existing

literature. We propose attack and threat classification models with the aim of identifying

and tracing the threats to the architectural aspects of blockchain systems. The adversarial

tactics categorisation proposed by MITRE [245] is used to classify attacks and the STRIDE

threat model is used to classify threats. MITRE provides adversarial tactics and techniques

53



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

based on community contributions from real-world observations.

We used a general search string (Blockchain AND (“Security Attacks” OR “Cyberat-

tacks “) AND (“Security Threats “)) for identifying blockchain-specific threats and attacks.

We have specifically searched for seminal and widely cited surveys and reviews on the topic

to help us identify commonly documented blockchain attacks and threats. At the time of

writing, we found 14 articles that surveyed blockchain-specific threats and attacks. Addi-

tionally, we have considered 10 primary studies on the topic, where additional attacks were

identified. Grey literature is also considered by searching and analysing the first 200 top

results from Google. From the selected results, we have filtered the most relevant reports,

unpublished research, and articles that relate to the investigation query and published by

public or private institutions or organisations. We included those results that identified

new/recent issues that were not covered by the standard academic literature. We excluded

generic reports related to blockchain technology without describing specific issues and those

that provide superficial and non-elaborating mentioning about attacks and threats. Addi-

tionally, when grey literature provides redundant information to that of the peer-reviewed

one - peer-reviewed ones were used. Table 3.1 shows the selected articles. Our search iden-

tified 56 distinct blockchain specific attacks that are defined and classified. Each of the

identified attacks and threats can be traced back to its source(s).

Before the classification and mapping process, we first extracted blockchain-specific

attacks and threats from the selected articles, along with their definitions, to ensure that

we had a shared understanding. We have only focused on commonly used strategies for

launching the attacks as attackers may take novel approaches in combining different tactics

to launch/execute the attack. The classification was straightforward for the attacks that

are not only targeting blockchain as the MITRE team has classified them under the related

tactics. To minimise inherent biases in the mapping process, two reviewers with security

backgrounds and expertise worked independently on the rest of identified attacks and threats

54



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

to categorise and map them to blockchain architectural dimensions. Once the reviewerss

completed the task, the results were discussed and verified with the third reviewers, and

for each disagreement, all reviewers discussed their rationale to consolidate the results. The

final result was reviewed by the fourth reviewer. After analysing the result, we found that

several attack tactics proposed by MITRE are unrelated to any of the attacks in our set.

Thus, we excluded these tactics from our mapping. Finally, the result was sent to an expert

in blockchain security, who reviewed and provided feedback on our classification.

3.3 Taxonomy of Dimensions for Architectural Decisions

in Blockchain-based Systems

Taxonomies have an essential role in the software engineering discipline because the categori-

sation and organisation of the knowledge enable practitioners and researchers to understand

and analyse a complex design space and to evaluate and compare design options.

Our work is not only aligned with academia but also with the industry. The industry

has organised concepts, components, models, and other elements around blockchain tech-

nology to facilitate its understanding [380]. The industry has also proposed a playbook of

blockchain [327] that defines a process with five phases to assist in the adoption of the tech-

nology: (i) problem assessment; (ii) organisational readiness; (iii) technology selection; (iv)

blockchain implementation; and (v) blockchain integration. In this context, our work fits in

the third phase since an organisation of architectural decisions in dimensions is intended to

support the construction of a platform architecture and an operational model, which are two

of the outputs of the referred phase.

55



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Access Type

Architectural Decisions

Storage and Computation

Consensus Mechanism

Block Configuration

Key Management

Cryptographic Primitives

Chain Structure

Node Architecture

Smart Contract

Public

Private

Consortium

On_Chain

Off_Chain

PoX

Voting-Based

Block Size

Block Confirmation

Block Propagation

Single Key

Multi-Signature

Threshold-Signature

Essential

Optional

Single Chain

Multiple Chain

Full Node

Light Node

Platform

Developing Languages

External Oracle

Legend:

Mandatory

Optional

Or Group

Alternative Group

 Concrete Feature

Abstract Feature

Figure 3.2: Taxonomy of Major Dimensions for Blockchain Architectural Decisions

56



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

As Figure 3.2 1 illustrates, the results of our survey indicate that the dimensions of

key architectural decisions are:

(i) blockchain access type; (ii) data storage and transaction computation; (iii) consen-

sus mechanism; (iv) block configuration; (v) key management; (vi) cryptographic primitives;

(vii) chain structure; (viii) node architecture; and (ix) smart contract. In the following Sub-

sections, we describe each architectural decision from the security perspective and provide

a discussion of the quality attribute trade-offs entailed by each architectural choice. Table

3.2 illustrates these attributes. Table B.1 in Appendix 2 represents selection of studies that

belong to each dimension of the taxonomy.

3.3.1 Blockchain Access Type

Among the crucial design decisions for blockchain-based systems is the choice of blockchain

access, which identifies who is permitted to participate in the network and in what trans-

actions. Blockchain access is classified into three categories: public, private and consortium

[404]. Each has its own security properties and limitations.

Public Access

In this access type, any node can read, send and verify transactions. This type is often

known as a permissionless digital ledger, where nodes are also able to create new blocks of

transactions [231]. A public blockchain is fully decentralised; there is no central authority

that controls the system [207]. Additionally, information is distributed, shared and recorded

in all nodes that participate in the network. Therefore, this type is widely available since

they have no single point of failure. Importantly, immutability and integrity of information
1The diagram follows an extended feature model notation

57



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.2: Quality Attributes per Dimension of Architectural Decisions

Quality Attributes
Dimensions of Architectural Decisions

Upside Downside

Access Type

Public • Fully decentralised

• Widely available

• High immutability

• High integrity

• High level of transparency

• Low privacy

• Low confidentiality

Private • Centralised administration

• High privacy

• Low integrity

• Low immutability

Consortium • Partially decentralised

• Better availability than in private

ones

• Better privacy than in public ones

• Low integrity

• Low immutability

Storage and

Computation

On-Chain • Based on the applied blockchain access type

Continued on next page

58



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.2 Quality Attributes per Dimension of Architectural Decisions (Continued from previous page)

Quality Attributes
Dimensions of Architectural Decisions

Upside Downside

Off-Chain • High privacy

• High confidentiality

• Reduced cost

• Low latency

• Low availability in case of

a centralised administration

• Low integrity

• Low immutability

Consensus

Mechanism

Proof-based

(PoX)

• Unlimited number of nodes

• High decentralisation

• Free join

• Award

• Low energy consumption in case of

PoS

• Mismanaged node identity

• High energy consumption in

case of PoW

Voting-based • Managed node identity

• Low energy consumption

• Not free join

• Mostly no award

• Limited number of nodes

• Low decentralisation

Continued on next page

59



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.2 Quality Attributes per Dimension of Architectural Decisions (Continued from previous page)

Quality Attributes
Dimensions of Architectural Decisions

Upside Downside

Block

Configuration

Block Size • Higher throughput in case of large

size

• Network congestion and

slower propagation in case of

a large size

Block

Confirmation
• Low latency in case of fast

confirmation

• Increase fraud attempts in

case of fast confirmation

Block

Propagation
• Based on the block size

Key Management

Single Key • Better accessibility than in other

types

• Low latency

• Low availability

• Low integrity

• Repudiation

Multi-Signature • High integrity

• Non-repudiation

• High latency

• Low confidentiality

Threshold-

Signature

• High confidentiality

• High integrity

• Non-repudiation

• High latency

Continued on next page

60



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.2 Quality Attributes per Dimension of Architectural Decisions (Continued from previous page)

Quality Attributes
Dimensions of Architectural Decisions

Upside Downside

Cryptographic

Primitives

Essential Primi-

tive

• Hash: immutability, integrity, high efficiency

• Digital signature: authentication, non-repudiation, medium efficiency

Optional Primi-

tive

• Confidentiality, privacy, anonymity, unlinkability

Chain Structure
Single Chain • Manageability

• Low privacy

• High latency

• Low scalability

• Low throughput

Multiple Chains • High privacy

• Better scalability and throughput

than in single chain

• Complex to manage

Node Architecture
Light Node • Low storage cost • Partial dependency on full

nodes

Full Node • High availability • Costly

Smart Contract

Platform • Based on the applied blockchain access type and consensus mechanisms

Continued on next page

61



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.2 Quality Attributes per Dimension of Architectural Decisions (Continued from previous page)

Quality Attributes
Dimensions of Architectural Decisions

Upside Downside

Developing Lan-

guages

• Based on the applied blockchain access type and consensus mechanisms

External Oracle • High availability and trustworthy

in case of a decentralised oracle

• High efficiency in case of a cen-

tralised oracle

• Low availability and low

trust in case of a centralised

oracle

• Low efficiency in case of a

decentralised oracle

62



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

are also supported in public blockchains, as any node can verify that the data has not been

tampered with and, once the information is written in the block, it cannot be altered without

detection because it is stored in different nodes in the decentralised network [197]. The level

of transparency of this type of blockchain is high as well, since the records and their updates

are available to the public. While public blockchains are highly transparent and the chained

information is visible to other peers, privacy is difficult to achieve; extra cryptographic

mechanisms are required to strike a balance between transparency and privacy. Hence, the

decision for adopting this type of blockchain requires architects to consider the trade-offs

between privacy and transparency in the given context.

Private Access

In this type, often known as permissioned blockchains [20, 231], only one organisation has

written permissions, while read permissions can be public or restricted to a preselected set

of readers [207]. Since private blockchains are controlled by a single group, they are known

as centralised blockchains. In this type, all validators are known as they are all members

of a single group- and a centralised authority controls the network by verifying each node,

and allowing or rejecting requests to join the network. These specific features of private

blockchains give them some security advantages over the public type. Private blockchains

provide a greater level of privacy [197], especially when read permission is also restricted

[402]. However, private blockchains require trust in identities, especially when the number

of nodes in the network is low as the parties might act in collusion to threaten the system.

Incorrect trust assumptions, when selecting participants in the network, can have security

ramifications. Moreover, as public verifiability is not required, the integrity of the system

can only be ensured if the system is not breached.

63



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Consortium Access

This type of access is partially decentralised, meaning that rather than the system being

controlled by a single organisation, a group of pre-selected nodes from multiple organisations

are responsible for consensus and block validation [94]. Read and write permissions can be

determined by the consortium; they can be public or limited to selected nodes in the network

[231, 283]. This type of access provides a balance between public and private. Since it is

partially decentralised, it provides better availability than private access, while it has better

privacy than public one, as it is partly private. The possibility of tampering, however, is one

of the significant security limitations of this type of access. Since the chain is controlled by a

group of nodes, they can collude and alter or reverse the transactions, which negatively affects

the immutability promise of the technology. Hybrid is a type of blockchain that combines

the features of public permissionless and private permissioned classes [367]. Participants can

manage the access feature and decide who gets access to which data on the blockchain. This

allows systems to operate with transparency without having to reduce system privacy [90].

Recognising the security strengths and possible risks of each type of blockchain access

assists architects to choose the model that best matches the requirements of the systems they

are attempting to build. In practice, an access type that is optimal for a particular case,

such as financial systems, may be sub-optimal for another case, such as healthcare systems.

In [368] authors provided a methodology to determine the appropriate access type for a

particular blockchain systems scenario. Additionally, [231] and [197] explain the differences

between each type.

64



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

3.3.2 Storage and Computation

Blockchain technology choices have implications on storage space and computation. Choos-

ing to place data and computation on-chain or off-chain is a critical architectural decision

that involves several trade-offs such as cost, privacy, and integrity of information.

Data Storage

Several properties must be considered when deciding to store data on- or off-chain, such as

scalability, performance, privacy, and confidentiality [377]. Confidentiality and privacy of

sensitive information stored on a public blockchain cannot be guaranteed, as the content is

visible to every node joining the chain. In some applications, data is required to be visible

to specific nodes, not to all the nodes in the blockchain network. In this case, storing data

off-chain can be helpful to overcome and mitigate such limitations [383]. Commonly, when

there is a decision to include off-chain storage, it will be used to store raw data, while meta-

data and hashes of raw data will be stored on-chain. A set of on-chain data management

patterns have been proposed in [375].

The decision to select off-chain storage needs to be taken deliberately, because inad-

equate analysis of the security consequences of any storage type can lead to security risks.

For example, an architect might decide to use a centralised solution, such as private cloud

storage, as it is easy to configure and manage; yet this solution could become a single point

of failure. Moreover, if the raw data which is stored off-chain is deleted or lost, it cannot be

recovered from its hash value which is permanently stored on–chain. Another option would

be to use a peer-to-peer decentralised file sharing platform such as IPFS (InterPlanetary

File System) [28, 372, 401], Swarm [151], OrbitDB [265] or Filecoin [280]. Due to the de-

centralised nature of these kinds of storage, if one node disconnects, the data can still be

65



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

accessed. One of the drawbacks of off-chain storage is that the integrity of the raw data is

based on the soundness and the security of the hash algorithm that is applied to hash the

raw data, as Subsection 3.3.6 discusses.

Transaction Computation

Transaction execution, validation and consensus mechanisms in blockchain increase the re-

sponse time as they require communication and execution overheads. Moreover, mining

processing – the process of assigning new blocks to the chain – is expensive because it

typically involves a fee. Some blockchain applications require micropayment transactions,

payments of small amounts of money, often just a few cents. This kind of transaction is

very costly to be done on-chain because the transaction fee that is required to execute the

transaction might be higher than the cost associated with the transaction. As it is infeasible

to execute and store each micropayment transaction on-chain, several applications which

require such kinds of transactions have been established to create a separate off-payment

channel between the participants [405]. This construction helps to reduce latency and cost

and increases throughput. The constructions are also commonly known as Layer-2 channels

or state channels.

There are several protocols available for implementing off-chain payment channels,

each of which has its own advantages and disadvantages. Lightning Network is a protocol

that allows the routing of payments through several intermediary nodes. This approach

reveals information about the nodes and the performed transactions, as the intermediary

nodes can see the flow of funds through the channel. To mitigate this problem, Bolt protocol

has been proposed [144]. This protocol includes a set of techniques for building anonymous

payment channels. There are also other methods that have been proposed to preserve the

privacy of users of the off-chain channel. A comprehensive analysis of the off-chain channel

66



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

and its related protocols can be found in [173]. A set of off-chaining patterns were also

proposed in [104, 246]. The objective of these patterns is to move computation and data

off-chain, without compromising blockchain features such as trustlessness.

3.3.3 Consensus Mechanism

While blockchain is a decentralised technology that relies on a decentralised authority to man-

age, authorise and verify the transactions, a fault-tolerant consensus protocol is required,

which is a set of rules to assure that all nodes agree on the new block that is appended to

the blockchain. Transaction verification and immutability depend on the selected consen-

sus mechanism. There are several consensus mechanisms in use in the existing blockchain

technologies. One crucial point is to understand the type of faults and trade-offs relating

to the application domain to select an optimal consensus protocol that helps to secure the

blockchain. When a sub-optimal protocol decision has been taken, replacing the consensus

protocol in blockchains will be challenging, requiring a serious code rewrite. Researchers

have suggested that a general-purpose permissioned blockchain should be built with plug-

gable consensus mechanisms, and it has been emphasised that there is no “one-size-fits-all”

solution [345]. Hyperledger fabric is the first blockchain that has come with a pluggable (not

hard-coded) consensus protocol.

A consensus protocol inside a blockchain can be classified into two classes [253]. The

first class is the proof-based consensus mechanism, also known as Proof-of-X (PoX). This

type of mechanism is preferable when the expected number of nodes joining the network

is large as in the case of public blockchain. The second class is a voting-based consensus

mechanism, also known as Byzantine Fault Tolerant (BFT)-based consensus. This type is

more applicable to consortium and private blockchains where the number of nodes is often

restricted and all the nodes inside the network are known and adjustable. However, PoX

67



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

is also applicable to the consortium and private blockchains and is not restricted to public

ones.

The core concept of PoX consensus is to give a right to the node or set of nodes

that show or accomplish a specified proof to be allowed to append a new block to the chain

and receive a subsequent incentive. Several variants of this consensus mechanism have been

proposed in the literature. The main one is Proof-of-Work (PoW) [137] which was proposed

when Bitcoin appeared in 2009. This consensus type requires solving a puzzle with adjusted

difficulty, demanding high computational power consumption. The solution of the puzzle

involves a group of nodes; the nodes that first solve the puzzle are then allowed to broadcast

their blocks to the blockchain network. The second popular protocol in this type of category

is Proof-of-Stake (PoS) [180, 30] which was proposed in 2011 and claimed to mitigate the

high resource consumption and the limitations of PoW. The main idea of this consensus

type is utilising stake to determine the possibility of nodes mining the subsequent block of

the chain. Hence, the nodes with a higher stake have a higher chance of validating and

broadcasting the block. Although PoS requires lower energy consumption than PoW, the

latter provides better decentralisation [45]. Often, the number of miners in the PoW is much

larger than the number of validators in PoS. There are several variants have emerged to tackle

the drawbacks of PoS including Delegated Proof-of-Stake (DPoS) [209], CloudPoS [45], and

Proof-of-Supply-Chain-Share (PoSCS) [45]. In addition to PoW and PoS, there are multiple

consensus protocols that can be classified under PoX category including Proof-of-Space [102],

Proof-of-Activity [31], Poof-of-elapsed time [62], and more [253, 383, 241].

The main concept behind a voting-based consensus mechanism is that agreement to

append the block to the chain is based on the majority of node decisions. In particular, K

nodes, where K is a given threshold, are required to show the same proposed block before

accepting it in the chain. Most of these algorithms require at least one process to receive

and validate the votes from all other processes and then broadcast the result. There are

68



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

several consensus protocols proposed under this category such as Practical Byzantine Fault

Tolerance (PBFT) [56] which has been used by the Hyperledger blockchain platform, Ripple

[310], R3 Corda [71] with BFT-SMART [33], Quorum with Raft [198], and more [253, 283,

407, 323]. More about consensus algorithms can be found in [253, 357].

3.3.4 Block Configuration

There are three main aspects to be considered regarding block configuration: block size,

confirmation, and propagation.

Block Size

This refers to the maximum number of transactions aggregated within a block. The optimal

block size is still a debatable subject. The system’s throughput is sensitive to the size of

the block as increasing its size is a way to enhance the throughput of the blockchain system.

However, arbitrary increases in the block size without carefully analysing the consequences of

this increase can adversely affect the system. Large block sizes can cause network congestion

and slower propagation speeds, which, in turn, result in raising the number of stale blocks

[137]; these are blocks that are not joined to the longest chain because of a conflict or

concurrency. This results in wasted computational effort of the miners, who simultaneously

create large blocks, and could be exploited by attackers seeking to disrupt the network.

Moreover, an attacker could exploit the size of a large block to multiply the impact of their

malicious actions. This could involve embedding harmful transactions or smart contracts

within a large block, causing more extensive damage when validated. A malicious actor can

also intentionally create a large block containing numerous fraudulent transactions. This

could slow down the validation process and potentially lead to a backlog of transactions.

69



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

A trade-off between security risks and throughput requires an analysis at an early

stage when deciding on the block size. Alternative solutions need to be taken into account

to enhance the throughput of the blockchain systems such as second layer payment channels

[375].

Block Confirmation

Commonly, in blockchain-based systems, a transaction is confirmed after waiting for a certain

period, which can be a specific number of blocks that have been created once the transaction

has joined the blockchain. Deciding on the required number of blocks for confirmation is

a critical design decision. This strategy has been used to guarantee that a transaction is

attached to the longest chain securely. However, researchers [405, 383] have argued that real-

world businesses often require an immediate response, as no one wants to be at risk of losing

assets during the waiting time. Therefore, an immediate confirmation has been proposed in

some consensus algorithms such as PBFT and Proof-of-Familiarity [383]. Another strategy

for transaction confirmation is to add a checkpoint to the blockchain [376]. The transaction is

accepted once the checkpoint is valid; otherwise, if the fork chain starts before the checkpoint

appears, it will be rejected by all nodes.

Block Propagation

In a blockchain network, a broadcast protocol is needed to distribute blocks to the peers

in the network. The architectural decision of the underlying broadcast protocol affects the

security, reliability, and scalability of the network [115]. Several protocols have been proposed

to deliver blocks to the nodes in the network. Advertisement dissemination [137] is one of

the common protocols that has been used by the PoW blockchain. In this protocol, if node A

receives a new block from another node in the network, it advertises the hash of the block to

70



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

its other connections. If one of the nodes, e.g. node B, has not previously received this block,

B will demand it from block A which will then send the contents of the block to B. Other

propagation mechanisms are proposed, such as send header, unsolicited block push, and relay

networks, with the aim of reducing the propagation delay as blockchain forks are caused due

to long propagation time [137]. Obviously, there is a correlation between the propagation

latency and the size of the block as a large block is propagated slowly in the network which

allows an adversary to leverage this delay. Multiple ways have been introduced for enhancing

the propagation of the blocks such as minimise verification, pipelining block propagation,

and connectivity increase [86].

Block configuration aspects are often based on the blockchain platform. At the time of

writing the average Ethereum block size is 20 to 30 KB, transactions are confirmed every 15

seconds, and an advertisement hybrid propagation mechanism is used for block propagation.

Therefore, it is essential that the developer knows these details to select an appropriate

platform for their system.

3.3.5 Key Management

This Section explains the various ways for signing transactions and different options for

storing the users’ keys.

There are alternative signature schemes to sign the transaction in a blockchain: us-

ing a single key, a multi-signature scheme, or a threshold signature scheme. Storing and

depending on only a single key to sign sensitive transactions, such as financial or cryptocur-

rency transactions, introduces a single point of failure, which contradicts decentralisation

and the distributed trust concepts of blockchain technology [96]. To mitigate this threat a

multi-signatures mechanism was proposed [142]. This mechanism requires multiple secret

71



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

keys to generate the signatures, M signatures for N private keys are required to sign any

transaction. A simple example is a two-factor wallet [233] that requires two devices, such as

the user’s mobile phone and laptop, to sign any transaction. However, this scheme increases

the transaction size linearly with the number of signatures which subsequently increases

the transmission time. Additionally, this scheme negatively affects the confidentiality of the

transaction, since it will be visible in the public block that a multi-signature transaction has

been used.

Threshold signatures are an alternative signature scheme where the transaction can

be signed using shares of a single private key. These shares are split among N parties

using threshold cryptography. This scheme provides the same M-of-N security but increases

confidentiality since transactions are indistinguishable from non-threshold transactions on

the blockchain and the parameters M and N are kept private. ECDSA threshold signature

has been introduced by [135] and [141] to enhance Bitcoin security. Other research [319]

proposed RSA and BLS threshold signatures for the Hyperledger Fabric blockchain platform.

The security of the threshold signature scheme is based on a cryptographic algorithm that

is used to apply the digital signature as described in Subsection 3.3.6.

There are several alternative ways to manage and store private keys, each of which

has its own security implications [299]. In most blockchain applications users use a piece

of software, called a wallet, to store their private keys securely. Public keys and associated

addresses can also be stored in the wallet [52]. Keys can be stored in an off-line wallet which

is the most secure type; however, it is inconvenient to use, and it is commonly used as a

backup. Alternatively, online wallets can be used, which is more convenient, but the server

can steal such keys. A local or device wallet is another kind of wallet where the keys are

stored directly in a specific file; thus users can have full control over their keys.

72



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

3.3.6 Cryptographic Primitives

Cryptography is a key component of blockchain technology, as the security of the whole

blockchain system is based on the security of its underlying cryptographic primitives. Com-

promising one of them adversely affects the security of the entire blockchain system. Cryp-

tographic primitives in blockchains are classified into: essential and optional.

Essential Cryptographic Primitive

This type includes hash functions and digital signatures.

Cryptographic Hash Function: In blockchain, the hash function is used in many oper-

ations such as addresses and block generations, message digests in signatures, and in some

consensus mechanisms such as PoW. A secure hash function should be collision resilient,

tamper-resilient and should be a one-way function, where its result should be easy to verify

and hard to invert [355]. These proprieties provide two security attributes to the blockchain

system: immutability and integrity. Secure Hash Algorithms (SHA256) and RIPEMD160

[305] are popular hash functions in blockchain and have been used in most blockchain plat-

forms [355]. However, there are also several hash functions that have been used in different

platforms such as Ethash [344] in Ethereum, SCrypt in Litecoin [117] and other platforms.

Based on [196] results, SHA256 and RIPEMD160 are among the fastest algorithms and have

the best performance. This is because these algorithms can validate blocks without occu-

pying a lot of memory space and processing power. As [355] stated the efficiency of hash

algorithms is the highest comparing to other types of cryptographic primitives. In [355, 196],

authors comprehensively analysed the performance of hash functions suitable for use in the

blockchain.

Digital Signature: Asymmetric-key cryptography primitive is used to generate a digital

signature, where each node should have a pair of a private key and a public key. The private

73



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

key should be kept secret since it is used to sign the transaction, while the corresponding

public key can be used by any node in the system to confirm the ownership of the signed

transaction and to verify that the transaction has not been modified or tampered with. One

of the security properties that secure digital signatures provide is authentication where a

valid signature indicates that the transaction is signed by a known user. Non-repudiation is

another security property where the node that sent the transaction cannot deny it. More-

over, a valid signature can guarantee the integrity of the transaction and that it has not

been altered in transmission. The key generation algorithm of a digital signature scheme

should have a good randomness source to generate different key pairs for different users. A

weak randomness source could allow an attacker to recover the user’s private key and sign

transactions. In [237] a vulnerability is reported in an elliptic curve digital signature algo-

rithm (ECDSA) [305], which is used in the most common algorithm in several blockchain

platforms, such as Bitcoin and Ethereum. This algorithm fails to generate enough random-

ness during the signature process, which allows an attacker to discover the user’s private

key. However, based on [116] analysis, ECDSA requires lower computation and it is much

faster than other type of digital signature including RSA and DSA. These two algorithms

require longer keys to provide a safe level of encryption protection compared with ECDSA

which requires much shorter keys and that leads to much better performance. As stated in

[355] the efficiency of digital signature is medium comparing to other type of cryptographic

primitives. Alternative digital signatures, listed and explained in detail in [355], are also

used by several blockchain platforms.

The choice of secure cryptographic primitives is essential as a vulnerable one can

weaken the entire blockchain system. The main cryptographic schemes used in blockchain,

including ECDSA, depend on the difficulty of prime factorisation and the discrete logarithm

problem. However, these schemes can be threatened by applying quantum algorithms that

work in a polynomial time to break such schemes. Thus, using quantum-resistant cryptog-

74



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

raphy and post-quantum mechanisms, which utilise cryptosystems that stay secure under

the assumption that an attacker is in possession of a large-scale quantum computer, are rec-

ommended by [129, 390, 206]. However, the authors in [182] argued that the robustness of

these algorithms is based on unproven assumptions, and they are computationally intensive.

They suggested the use of quantum key distribution (QKD), which provides security based

on the laws of quantum physics where a secret key is distributed using the quantum channel.

As quantum physics is fundamentally random [129], the bit stream generated by a quantum

random number generation (QRNG) is provably random. Thus, this ensures the generation

of truly random encryption keys. A thorough analysis of QKD and QRNG can be found in

[182].

Optional Cryptographic Primitive

This includes the symmetric algorithms and other cryptographic primitives that are used

mainly for enhancing the confidentiality, privacy, anonymity, and unlinkability of blockchain-

based systems. One or more of these properties might require to be provided by the sys-

tem under consideration, especially in the case of a public blockchain, as the chain’s state

is transparent, and everyone can access the chain without restriction. Therefore, crypto-

graphic primitives that preserve identity and transaction privacy need to be considered in

the decision-making process.

There are several cryptographic methods that aim to protect identity and transaction

privacy in the blockchain, including zero-knowledge proof (NIZK) [146] and Homomorphic

encryption [136]. Zerocash [304] is a privacy protocol that makes use of NIZK proof and

a homomorphic scheme to achieve both anonymity and transaction privacy. However, it

involves high computational costs for generating transaction proofs. Lelantus [171] protocol

has emerged to enhance the confidentiality and privacy of the blockchain and mitigate the

75



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

disadvantages of zerocash. Multiple privacy protocols leveraging one or more of the crypto-

graphic schemes have emerged [190]. Authors in [355], systematically discussed, analysed,

and compared the cryptographic schemes.

3.3.7 Chain Structures

Creating single chains or multiple chains is one of the essential architectural decisions to

design a secure, reliable, and efficient blockchain-based system.

Single Chain

All transaction types generated in a blockchain-based system are recorded together in a

unique chain when this type is selected. Clearly, a single chain is easier to manage; yet

it increases latency and negatively affects the scalability and the throughput of systems

[379], especially when a sub-optimal data structure is implemented. In a classical blockchain

such as Bitcoin, the data structure is a linked list of blocks that creates a chain and, when a

conflict appears, the longest chain is selected by the nodes in the network. This selection rule

increases the chances of double spending threats. The Greedy Heaviest-Observed Sub-Tree

(GHOST) protocol was proposed by [316] and has been used by Ethereum, but it changed the

selection rule to select the side whose subtree has the most work. This protocol enhances

security by increasing mining fairness. Directed Acyclic Graph (DAG) is an alternative

structure that has been proposed by [205] to enhance the security of a traditional blockchain

structure. They changed the structure from a list to a graph where each block references

multiple predecessors. This structure is better suited when the block size is large or when

blocks are frequently created. Analysis showed that this structure considerably enhances

the mining power utilisation [205]. TrustChain [266] is another data structure which can

be used in permissionless blockchain systems. This structure includes a NetFlow algorithm

76



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

that calculates the trustworthiness of the nodes using the prior transaction as input. This

algorithm makes blockchain systems more secure as it prevents untrusted fake identities from

joining the network. There are several data structures that have been demonstrated in the

literature including LeapChain [286] and segregated witness [376].

It is worth noting that a longer chain in a blockchain can introduce security vulner-

abilities as it takes more time to propagate across the network. This can lead to variations

in the blocks seen by different nodes, potentially causing temporary forks [114]. Attackers

could exploit these forks by intentionally creating conflicting transactions, resulting in con-

fusion and potential double-spending. A longer chain also increases the time and resources

required for synchronisation. If synchronisation is inefficient or slow, it could create a window

of opportunity for attackers to exploit inconsistencies or vulnerabilities in the synchronisa-

tion process. Moreover, a longer chain can lead to increased storage costs and bandwidth

requirements for participants. This economic burden might prompt some participants to

opt for lightweight or simplified validation methods, reducing overall network security and

decentralisation. Therefore, it’s essential for blockchain software engineers to address these

vulnerabilities through strong security practices.

Multiple Chains

Instead of storing and executing all types of transactions and information on one chain,

information and transactions can be classified, executed, and stored in more than one chain.

There are several structures involving multiple chains that have emerged to overcome scal-

ability and throughput issues in the blockchain. The sharding scheme, also known as a

layer-1 scalability method, is one of the solutions aimed at improving the performance of

the blockchain. It does this by splitting the processing of transactions among smaller sets of

nodes, called shards. These shards operate separately and in parallel to enhance throughput

77



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

and decrease storage and computation overheads. However, the possible corruption of the

shards is one of the security issues that need to be tackled, in that malicious nodes can easily

dominate a single shard. To tackle this concern a sharding scheme requires the random divi-

sion of the network into small shards to prevent any shard from accepting an overwhelming

number of adversaries. Ethereum 2.0 and RapidChain [394] are sharding mechanisms that

randomly attach nodes to specific shards, and regularly reassign them at random intervals.

A detailed explanation and systematic analysis of several sharding protocols can be found

in [78].

Another scalability solution is called sidechain [223], which is an independent blockchain

that has its own ledger. However, it is not a standalone platform as it is linked to the main

chain to allow the assets to flow from one chain to other. This scheme can extend the

blockchain to support multiple applications without increasing the load on the main chain.

Satellite chains [210] are type of multiple chains, where each interconnected but independent

sub-chain can have a different consensus mechanism running privately in parallel in single

blockchain system. Double chain [204] is another instance that aims to ensures the privacy

of the user information by storing users’ information in one chain, while transactions are

stored in another chain. Multiple chain structures are intended to enhance performance and

privacy of blockchain systems. However, the nodes classification in this type of chain might

be complex and it requires a specific management strategy [170]. Additionally, not consid-

ering secure protocols for exchanging information, assets or tokens among different chains

can weaken the security and soundness guarantees of blockchain systems. Unitary Inter-

chain Network Protocol on Transport Layer (UINP) supports cross-chain [366][216] schemes

from the transport layer. This protocol gives low latency convenience and provides high

security similar to Transport Layer Security (TLS) [366]. UINP employs point-to-point data

transmission that can match transactions without requiring a third party for validation.

78



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

3.3.8 Node Architecture

Blockchain is a peer-to-peer decentralised network where the participant nodes can be full

nodes or light nodes. The job of full nodes is to keep and verify a local copy of the entire

chain of transactions. Each full node can access all the historic transactions and verify if the

new one is valid and consistent with the existing transactions. As all records are replicated

in each full node, blocks and transactions can be verified locally, if one of the full nodes is

down the blockchain network is not affected because there are other active full nodes in the

network [40]. These properties contribute to the availability of the blockchain network and

reduce a single point of failure threat. Pruned node is a full node that erases some data when

it reaches a particular limit to allow the new blocks to be stored and preserve blockchain size

[125]. Even though having full nodes adds robustness to the blockchain network by omitting

the need for a centralised party, this type of node requires a substantial amount of storage

and processing cost to download a full copy of the entire chain and to execute the verification

operations. Since often the size of the blockchain increase linearly due to the immutability

and append-only properties, the overhead of the full nodes continually grows. As a result

low-end users, who have mobile and smart devices, may be reluctant to participate in a

blockchain.

To overcome the aforementioned drawbacks and allow end users with limited resource

devices to join blockchain systems, light nodes were introduced [251]. In this type of node,

downloading and verifying the full set of blockchain transactions is unnecessary as the light

nodes only need to store block headers that are requested from a full node to employ trans-

action verification. Simple Payment Verification Protocol (SPV) can be utilised by light

clients. They request the block header from a full node which, in turn, provides them with

the required information. However, requesting a block header from a single full node in-

troduces a serious security risk as the full node can behave maliciously and provide a fake

79



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

header to the light nodes. To mitigate this risk, light nodes can request block header from

multiple full nodes and then compare the received results. This approach adds overheads

to the light node as it needs to establish a secure connection to each full node and that can

slow the verification operation and add complexity. There are several strategies presented

to address this issue such as the Distributed Lightweight Client Protocol (DLCP) [72]. In

this protocol, the request can be encrypted before sending it to a predetermined number of

full nodes which can access and process it and then relay it to the light client with a single

response. Then the light client is required to decrypt the response only once for verification

irrespective of the number of contributing full nodes to ensure that all full nodes agree in one

response. This approach reduces computing and communication complexity on the client’s

side and provides lower latency.

There are several protocols that have been proposed to mitigate the computation over-

head and storage size from the client‘s side, such as Blockstack [12], distributed hash tables

(DHTs) [3] and more [72]. The architects need to investigate and analyse the security prop-

erties of these protocols to mitigate the potential risks, especially if the application domain

needs a blockchain with hundreds of gigabytes in size and lightweight users participating in

the blockchain application.

3.3.9 Smart Contracts

Smart contracts offer a general-purpose computing platform to provide more complex pro-

grammable transactions [211] [152]. A smart contract is a decentralised piece of code designed

to impose the negotiation of a contract’s instructions automatically without the need of a

central authority to approve it. Importantly, once the contracts are deployed, they cannot

be modified and the author of the contracts will not have any control over them. Thus, a

cautious approach is required when designing and structuring smart contracts.

80



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

The reliability and security of smart contracts are based on the consensus mechanism

and the decisions of the underlying blockchain platform, programming language, and includ-

ing an external oracle. Selecting of blockchain platform depends on the access type that the

developer decides to choose. There are multiple platforms for developing smart contracts,

each of which provides various features. In [119], the authors provide a decision module

to assist the developers in selecting the suitable platform based on its criteria and quality

attributes. Each platform supports one or more than one programming languages. Some

platforms, such as Hyperledger fabric, support general-purpose programming languages such

as Java, Python, and GO [20] [294]. As claimed in [345], using such a language facilitates and

accelerates the development process as the developers are not required to learn a domain-

specific language and they can continue with familiar languages. Some applications require

domain-specific languages [218] [262], such as Solidity [81] and Vyper [346], the two most

active and maintained languages used in the Ethereum platform, to enhance the security of

smart contracts, making them like traditional contracts and more straightforward to under-

stand. In [79] and [294], the authors provide a comparison of the available platforms and

discuss the supporting languages. Considering security patterns [364] [219] and adhering to

best practices [91] [140] are also crucial to guarantee the correctness of the contracts.

One of the critical design decisions related to smart contracts is introducing an ex-

ternal oracle to the isolated blockchain environment [376]. While smart contracts cannot

access any data from outside the blockchain environment, a trusted third-party oracle can

provide the contracts with the required information. Blockchain oracle is an external data

agent that accesses real-world data and transmits it to the blockchain to be leveraged by

smart contracts [364]. Moreover, the external oracle role is not restricted to fetching the

data from outside of the blockchain, but it can ensure the validity and the authenticity of

the fetched data to guarantee a valid execution of the contracts [232]. Blockchain oracles,

such as Provable [282], can retrieve data from a centralised server. The efficiency of this

81



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

type is high, but a single point of failure is introduced, which might affect the availability

and accessibility to the data. A distributed type of oracle, such as ChainLink [107], resolves

these issues as it contains several redundant oracles servers. These servers are trusted by the

whole blockchain network and do the same job of checking the external state. However, the

efficiency of this type is low as it leads to higher latency for data processing [221].

3.4 Mapping Threats and Attacks with Blockchain Ar-

chitectural Decisions

Even though the security properties of blockchain technology help to make the system based

on it resistant to some kinds of attacks, they do not make it completely immune. This is

because the system may be subject to a number of security threats if inappropriate archi-

tectural design decisions are made.

The architecture of a software system is the set of structural design decisions that

serve as a blueprint for the construction and evolution of the system [27]. Decisions that

transversely impact the system include the selection of technological platforms, the selec-

tion of structural components, and quality attributes (e.g. security, performance) [290]. In

particular, architecture-related security concerns can be fixed more efficiently if they are

identified and assessed at an early stage.

Multiple studies have shown how weaknesses in a software system’s architecture may

have a greater influence on numerous security concerns that allow adversaries to attack the

system [168, 167]. Schemes for architectural security analysis have also been proposed to

identify potential attacks and threats before the system is developed [13]. Additionally, our

previous work [5] proposes an approach to assess smart contract security design weaknesses.

82



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

This increases the awareness of the developer of the potential security issues before publicly

deploying the contract.

Making use of threat modeling is a crucial part of the development process when it

comes to enhancing the security of the system. Microsoft reported that security vulnerabil-

ities significantly decrease after including threat analysis in the development process [330].

Threat modeling assists in focusing on firstly addressing threats that represent the highest

risk by following appropriate mitigation strategies. Threat modeling involves a structured

method that is more cost efficient and effective than conducting security analyses in a hap-

hazard manner without recognising distinct threats in each architectural component of the

system.

In this study, we use the STRIDE threat modeling classification approach proposed

by Microsoft to classify different threat types into six categories as shown in Figure 3.3.

This approach classifies the threats based on the implications of their realisation, such as the

manipulation of information, denial of service, and elevation of privilege. The ramification

of threats can be mapped to the impact of their incidence, as such mapping is crucial

for the assessment of the security risks in blockchain systems. Each class of the STRIDE

model covers the unique sort of attacks that lead to a specific type of threat. Noticeably,

one attack can pose several threats in such a threat classification; for instance, a majority

attack – also known as a 51% attack – can pose multiple threats such as tampering with

transactions, disclosing sensitive information and/or the elevation of privilege [252]. The

STRIDE threat model has been used in the blockchain context by [175] to classify and

analyse the risks associated with blockchain-based records management. However, to the

best of our knowledge, we are at the forefront of identifying and classifying the threats at a

low-level of the blockchain-based systems to link them to specific architectural decisions.

We categorise the possible attacks with regard to blockchain systems based on the

83



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Treaths (STRIDE) Attacks (MITRE) Architectural Decisions

Spoofing

Tampering

Repudiation

Information 
Disclosure

Denial of Service

Elevation of 
Privilege

Reconnaissance

Resource 
Development

Persistence

Privilege Escalation

Credential Access

Collection

Exfiltration

Impact

Access Type

Storage and 
Computation

Consensus 
Mechanism

Block Configuration

Key Management

Cryptographic 
Primitives

Chain Structure

Node Architecture

Smart Contracts

Figure 3.3: Mapping Threats, Attacks and Architectural Decisions

adversarial tactics categorisation proposed by MITRE [245]. Each tactic characterises a

high-level description of an attack’s behavior. Previous studies have categorised the attacks

in terms of organisation and accessibility point of view [211, 152], and some have illustrated

possible attacks for specific blockchain applications [68, 123]. To the best of our knowledge,

this work is among the initial efforts that attempt to shed light on not only the attacks but

also the threats posed by each form of attack.

3.4.1 Attacks and Threats Classification in Blockchain-based Sys-

tems

This Section shows how an architect can use the categorisation of attack information to

identify threats in a blockchain-based system by considering the following steps: (i) deter-

mine architectural dimensions of the blockchain based-system and how each attack cate-

gory can breach them; (ii) determine the threats that affect the architectural dimensions

84



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

of blockchain-based system; and (iii) determine the security threats caused by each attack

category using the STRIDE threat model. This way, an architect can map all applicable at-

tacks and their associated threats in the blockchain system. Figure 3.3 captures the essence

of the mapping.

Linking Attack Categories with Blockchain Architectural Decisions

Attacks that target blockchains are aggregated and classified based on MITRE’s attack

tactics. In this work, we select attack tactics categories that are applicable to blockchain

systems. Each tactic represents the objective that adversaries attempt to accomplish. Table

3.3 shows attack tactic categories and the related techniques that each architectural dimen-

sion of a blockchain-based system might be prone to. The selected attack categories are

illustrated with examples of attacks that are applicable to the blockchain systems as follows:

Reconnaissance: The adversary’s goal here is to aggregate sensitive information. To

achieve this goal, an adversary might apply active scans to gather information by prob-

ing victim infrastructure via network traffic. This helps the attacker to accomplish further

attacks such as deanonymisation [38] attacks to a public blockchain, in hopes of identifying

nodes’ identities and grabbing useful information that should not be known to the adver-

sary. Man-in-the-middle (MITM) attacks [7, 106] target private and consortium blockchains

to violate node privacy or gather data exchanged between nodes and these blockchain net-

works. The adversary can also leverage malware attacks [83] to gather the information that

might help to achieve other objectives, such as gathering users’ wallet information to steal

their private keys. Also, there are multiple attacks belonging to this tactic that target smart

contracts. Attacks classified under this tactic are mostly intended to compromise pseudo-

anonymity, confidentiality, or the privacy of targeted blockchain-based systems.

Resource Development: The adversary’s goal in this tactic is to establish or compromise

85



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

resources that can be exploited to support further malicious operations. Such resources

include a large number of pseudonymous identities, or fake identities, that appear to be

different nodes when, in reality, they are all under the control of a single party. Therefore,

the attacker can gain influence and control a majority of nodes in the network; this action

is known as a Sybil attack [266] and targets public blockchains. Block withholding [299] and

Finney attacks [7] are intended to create conflicting views about a blockchain. These lead to

hiding, forging, or withholding important information that must be transmitted across the

network. Reputation-based attacks [83], such as whitewashing and hiding block attacks, are

considered a part of this tactical approach. A malicious node can change its reputation from

negative to positive by eliminating its current identity and creating a new one. Noticeably,

attacks using this tactic mostly target the mining process and consensus mechanisms. As

a result, this might affect block configuration, chain structure, and several aspects of smart

contracts.

Persistence: This shows a tactical adversary’s objective to maintain its presence in the

system. This goal can be achieved when a single attacker keeps creating Sybil nodes to

dominate a majority of the network’s hash rate and manipulate blockchain transactions to

their advantage. This is known as a majority attack [211] and is mostly used to target public

blockchains. The adversary might also target smart contracts and exploit access control

vulnerabilities to change the contract owner and control every transaction invoked in the

contract. Parity multi-signature wallet attacks [60] is a well-known type of attack that tar-

gets Ethereum smart contracts. This hack is an instance of exploiting a well-written library

code once it is used in a non-intended context. The library’s initialisation function could

be externally called, which allowed the attacker to set himself as the owner of the contract.

After taking over the contract, the attacker called the suicide method to kill the contract;

this was once done, causing a permanent freeze of US$280M in the affected wallets. Attacks

belonging to this tactic can also target consensus mechanisms, cryptographic primitives, and

multiple chains structure architectural dimensions.

86



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Privilege Escalation: In this sort of attack, the adversary is attempting to obtain a higher

level of permission in a blockchain system. Adversaries can exploit smart contract vulnera-

bilities to elevate their permissions and perform unauthorised actions. Parity multi-signature

wallet attacks are one instance of an attack that falls under this category. Attacks belong-

ing to this tactic can also target public access types, cryptographic primitives, and multiple

chains structure. It is worth mentioning that this category of attack often overlaps with per-

sistence attacks, as the exploited weaknesses that let an adversary persist can be exploited

in an elevated context.

Credential Access: Attacks in this category aim to gain access to resources by exploiting

the vulnerabilities within the system identification and authentication mechanisms to expose

sensitive data or transactions and/or manipulate them. Such attacks include quantum at-

tacks [390] that can derive private keys from public keys, brute-force attacks [152], man in the

browser (MITB) [109] and malware attacks that can steal the keys and credentials of users’

online wallets. Adversaries may attempt to hijack network traffic using MITM techniques

to collect nodes’ sensitive information. Employing legitimate credentials allows adversaries

to gain access to the system and makes attackers’ actions harder to detect. These types of

attacks can also target private and consortium blockchains and centralised off-chain storage.

Collection & Exfiltration: We combined these two adversarial tactics into one Section,

as adversaries often need to gather sensitive data by applying collection techniques before

attempting to steal data via exfiltration techniques. Such attacks include MITB, where

an adversary injects malware into a node’s browser to collect sensitive data such as wallet

credentials, which then allows the adversary to steal users’ private keys. Additionally, an

adversary can change the unique digital signature of a transaction before it is assigned to

the chain, a process known as a malleability attack [152]. DNS hijacking attacks [299] aim

to redirect users to malicious websites to collect seed phrases and private keys from users to

allow the attacker to access users’ wallets and steal their funds. According to [65], in 2021,

two cryptocurrency portals faced this type of attack. Attacks under this category mostly tar-

87



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

get users’ private keys to manipulate their transaction and steal their money. Additionally,

attackers can target smart contracts and identify their weaknesses to steal the cryptocurren-

cies stored in them. Such attacks have included DAO attacks [152], GovernMental attacks

[23], and King of the Ether Throne attacks [211]. In each of these attacks, attackers were

able to drain millions from compromised contracts. Attacks belong to this tactic can also

target access type and centralised off-chain storage.

Impact: The adversary’s objective in this tactic is to damage, disrupt, or manipulate the

blockchain system and its transactions. In particular, DDoS attacks [152] are a part of this

category. The adversary uses legitimate operations to make connections, but then consumes

resources to prevent other legitimate connections from requesting a particular service. Such

an attack can be applied in a centralised off-chain storage system to prevent legitimate

users from gaining access to stored records. Additionally, the attacker might use reconnais-

sance and collection techniques to hijack the connection between the external server and the

blockchain system to tamper with the data. Selfish mining attacks [211], which target public

blockchains, also fall under this category, where malicious miners collude to increase their

benefits by causing honest miners to waste processing power creating blocks that will not

eventually be linked to the chain. Meanwhile, the selfish miners can keep their mined blocks

private, in an effort to maintain a private branch that is longer than the public branch. These

selfish miners can then reveal their branch, and the honest miners will switch to it. As a

result, the selfish miners win and are rewarded, while the honest miners lose and waste their

power. Attacks classified in this category can be linked to all the architectural dimensions

of the blockchain system. Noticeably, attacks in the impact category include only those

affecting the integrity or availability of blockchain systems’ information or transactions.

One insight from Table 3.3 is that a notable proportion of attacks target public

blockchains and the consensus mechanisms related to them. If an architect decides to de-

sign a public blockchain-based system, they need to recognise adversaries’ tactics and attack

88



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

techniques that often target this type of blockchain access. As the Table shows, public

blockchains are prone to a significant number of attacks compared with private ones. Be-

cause of the characteristics of private blockchains, several attacks – including Sybil attacks,

selfish mining attacks, and majority attacks – are difficult to launch and easy to prevent.

Furthermore, a PoW consensus mechanism, which is often applied in public blockchains, is

prone to the last two mentioned attacks, while PoS has been proposed to mitigate the risks

of these attacks. However, since the records are securely distributed in public blockchain

networks, they are more resilient against DDoS. Moreover, ransomware attacks [109] are

difficult to achieve as locking down redundant records across the whole public network is a

complicated task.

Another insight is that in blockchain, a user’s private keys are the most vulnerable

point of attack. These keys can be compromised not only through exploiting the vulnerability

in the digital signature cryptographic primitive, but also by attacking the wallets where

these keys are stored. In particular, online wallets, which store the private keys in web

servers, are prone to attacks that often target web applications. Moreover, several attacks

that target smart contracts have been reported which have resulted in losses of millions of

dollars including DAO attacks and Parity Multi-Sig Wallet attacks. To this end, architects

can leverage Table 3.3 to recognise the adversarial tactics and attacks that target each

architectural dimension when they decide to design blockchain-based systems.

Linking STRIDE Threats with Blockchain Systems Architectural Decisions

Exploration of the relationship between blockchain architectural decisions and their conse-

quent threats is presented in Table 3.4. The explanation of each STRIDE threat category

in the context of blockchain systems is as follows.

Spoofing: This threat refers to the attempt on the part of an adversary to access

89



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

a blockchain system, or even control the network, by using a false identity. This can be

done by stealing or retrieving the private keys and the credentials of an authorised node.

Subsequently, the adversary can successfully access the victim’s account or wallet to en-

gage in illegitimate activities such as abusing transactions or violating the victim’s privacy.

Moreover, the adversary can create multiple fake accounts, Sybil nodes, to gain control of

a consensus protocol as explained in the previous Subsection (Resource Development para-

graph) and accomplish malicious behaviour such as double-spending. When the adversaries

with their malicious nodes control a majority of the network, they can alter the entries on

the distributed ledger to make the payments disappear after they have been spent [252].

Tampering: In this threat, an attacker attempts to accomplish unauthorised al-

terations to data, transactions, or blocks that are recorded in the storage or those that are

being transferred through the network. Particularly, when an online wallet is used to perform

transactions, the attacker attempts to hijack the session and modify the outgoing transac-

tion to his benefit. Furthermore, attackers equipped with quantum computers will be able to

apply the Shor algorithm [206], which can find the prime factorisation of large numbers and

solve discrete logarithms in polynomial time. Consequently, the digital signature algorithms

utilised in most current blockchain-based systems can be breached. This will allow attackers

to easily derive private keys from public keys to alter transactions and sign them on behalf

of the victim.

Repudiation: This is the ability of malicious participants or attackers to leverage

the inability of the system or other participants to track the malicious actions or transactions

that they have performed. The attacker can modify the blocks in the chain and the hashed

meta-data stored on the chain once he can crack the hash function by finding hash collisions.

Furthermore, a quantum adversary, who can apply a quantum algorithm such as Grovers’

search algorithm, can search for hash collisions significantly faster O(
√
n) than in the case of

a classic brute force attack O(n) [206]; in the future, an attacker will also be able to replace

90



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

blocks in the chain without affecting the integrity of the blockchain system.

Information Disclosure: This refers to exposing private information to individuals

who are not permitted to have access to it. If the attacker successfully derives the private key

from the user’s public key, as explained in the Section dealing with a tampering threat, users

will lose their privacy. In a public blockchain, if effective privacy-preserving mechanisms are

not in place, the attacker can trace transactions and eventually link the user’s pseudonym

to the user’s real identity [38].

Denial of Service: The aim of this threat is to make a system unavailable when

legitimate users request a service. This can be accomplished by causing network congestion

which interrupts the service available to the user. Even though a blockchain network presents

resistance against this threat [152], blockchain-based systems are prone to this category

of threat. This is because the node can be flooded with a large amount of junk data to

exhaust its computational resources and prevent it from performing normal transactions.

Additionally, blockchain systems might have a single point of failure component which is

vulnerable to a denial of service threat. In particular, if smart contracts request data from

a single external oracle and wait for its response to accomplish subsequent operations, an

attacker can target this server by bombarding it with requests to prevent it from responding

to legitimate smart contract requests.

Elevation of Privileges: This threat occurs when malicious users with restricted

privileges succeed in gaining access to a system or a network to perform unauthorised activ-

ities. For example, this can be accomplished by an attacker who can trick a user of an online

wallet to install a malicious payload into a high-privilege extension to gain access to the

victim’s wallet and alter the transactions. Another example is the usage of large block sizes

that may cause chain forks [217], resulting from the increasing number of stale blocks [137],

which leads to a significant mining power loss and limit the growth of the main chain. As

91



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

a consequence, this decision allows malicious miners to elevate their privilege level through

(i) colluding to compromise and control the consensuses mechanism; and (ii) performing

malicious activities such as establishing their private chain to create conflicting transactions

with higher chances of double spending threats.

Table 3.4 shows that threats exist in almost all architectural aspects of blockchain

systems. In particular, private keys and their management face significant threats. One

important insight is that the tampering category may potentially threaten all architectural

aspects of blockchain systems. Taking sub-optimal choices when engineering blockchain

system leads to threats that could potentially affect the other architectural dimensions of

the system. Blockchain systems architects can use this Table to better understand the

potential threats that each architectural decision might face. The information in this Table

can therefore serve as a checklist for architects as they make or review design decisions.

Linking Attack Categories with STRIDE Threats

In Table 3.5 we have linked attack categories and STRIDE threats. One insight from the

relationships shown in this Table is that most categories of attacks can cause nearly all

threat types. These attack categories include resource development, privilege escalation,

credential access, collection & exfiltration, and impact. Moreover, some of these categories

may pose a significant number of threats under each threat type such as the impact category.

Another insight is that other attack categories such as reconnaissance pose a specific threat

type as spoofing and information disclosure. This classification supports the identification

of potential attacks that can exploit known vulnerabilities in blockchain system components

and specifies the posed threats. Vulnerability identification approaches and tools can then be

used to determine the specific flaws in the chosen system components. Particularly, there are

a set of static and dynamic analysis tools that can identify security vulnerabilities in smart

92



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.3: Linking Attack Categories with Blockchain Architectural Decisions

Attack Tactics
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Man-

agement

Cryptographic

Primitives

Chain

Structure

Node Ar-

chitecture

Smart Con-

tracts

Reconnaissance Public:

Deanonymisa-

tion attack [38],

Replay attack

[299]; Private:

MITM [7] [106];

Consortium:

MITM [7] [106]

Single-key:

Malware

attacks [83],

MITM [7]

[106]; Multi-

Signature:

Malware

attacks [83],

Deanonymi-

sation at-

tack [38];

Threshold-

Signature:

Malware

attacks [83]

Malware attacks

[83], Replay

attack [299];

Solidity: Solid-

ity: Overflow/

underflow attack

[299]; Hyper-

ledge Platform:

Range query risks

[50], Log injec-

tion attack [50];

External oracle:

MITM [7] [106]

Resource De-

velopment

Public: Sybil

attack [266],

Majority attack

[211], Time-

jacking attack

[299]

PoW: Majority

attack [211], Self-

ish mining [211],

Vector76 attack

[152]; BFT:

Consensus 34%

Attack [74]; PoS:

Majority attack

[211], Long-range

attacks [152],

Short-range

attacks [152];

Vote-based:

Whitewashing

[83], Hiding block

attack [83]

Block with-

holding

[299], Finney

attack [7]

Block with-

holding

[299], Self-

ish mining

[211], Vec-

tor76 attack

[152], Finney

Attack [7]

EOS Platform:

Roll back attack

[314], Replay

attack [314],

RAMsomware

attack [201];

External oracle:

Oracle Manip-

ulation Attack

[284]

Continued on next page

93



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.3 Linking Attack Categories with Blockchain Architectural Decisions (Continued from previous page)

Attack Tactics
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Man-

agement

Cryptographic

Primitives

Chain

Structure

Node Ar-

chitecture

Smart Con-

tracts

Persistence Public: Major-

ity attack [211],

Sybil attack

[266]

PoW: Majority

attack; PoS:

Majority attack

[211]; BFT:

Consensus 34%

Attack [74];

Vote-based:

Whitewashing

[83]

Majority attack

[211]

Multiple

Chains

(Shards):

Majority

attack [211]

Solidity &

Vyper: Parity

multi-signature

wallet attack [60]

Privilege Esca-

lation

Public: Major-

ity attack [211],

Sybil attack

[266]

Majority attack

[211]

Multiple

Chains

(Shards):

Majority

attack [211]

Solidity &

Vyper: Parity

Multi-signature

wallet attack

[60], BECTo-

ken Attack [60];

Solidity: Over-

flow/ underflow

attack [299];

Hyper-ledge

Platform: Sand-

boxing attacks

[50]; GOLANG:

Docker TOCTOU

Bug [50]

Continued on next page

94



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.3 Linking Attack Categories with Blockchain Architectural Decisions (Continued from previous page)

Attack Tactics
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Man-

agement

Cryptographic

Primitives

Chain

Structure

Node Ar-

chitecture

Smart Con-

tracts

Credential Ac-

cess

Private:

MITM [7]

[106], MITB

[109]; Consor-

tium: MITM

[7] [106], MITB

[109]

Centralised

Off- chain:

MITM [7]

[106]

Single-key:

Brute Force

attack [152],

Malware

attacks [83],

Phishing [21]

[93], MITB

[109], MITM

[7] [106], Re-

play attack

[299]; Multi-

Signature:

Brute Force

attack [152],

Malware

attacks [83];

Threshold-

Signature:

Brute Force

attack [152],

Malware

attacks [83];

Brute force at-

tack [152], Quan-

tum attack [390]

Continued on next page

95



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.3 Linking Attack Categories with Blockchain Architectural Decisions (Continued from previous page)

Attack Tactics
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Man-

agement

Cryptographic

Primitives

Chain

Structure

Node Ar-

chitecture

Smart Con-

tracts

Collection &

Exfiltration

Public:

Deanonymi-

sation attack

[38]; Private:

MITM [7] [106],

MITB [109],

Wormhole

attacks [18];

Consortium:

MITM [7] [106],

MITB [109]

Centralised

Off- chain:

MITM [7]

[106]

Online-

Wallet:

DNS hijack-

ing [299],

Single-key:

MITB [109],

MITM [7]

[106], Crypto

jacking [307],

Malware

attacks

[83];Multi-

Signature:

Malware

attacks [83];

Threshold-

Signature:

Malware

attacks [83];

Malleability

attack [152]

Solidity &

Vyper: Short

address attack

[307], King of

the Ether Throne

[211], Dynamic

libraries [211];

Solidity: DAO

attack [152],

Overflow/ under-

flow attack [299],

GovernMental

attack [23]; EOS

Platform Fake

EOS Attack

[314], Random

number attack

[314]

Continued on next page

96



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.3 Linking Attack Categories with Blockchain Architectural Decisions (Continued from previous page)

Attack Tactics
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Man-

agement

Cryptographic

Primitives

Chain

Structure

Node Ar-

chitecture

Smart Con-

tracts

Impact Public: Finney

attack [7],

Selfish mining

[211], Eclipse

attack [155],

Routing attacks

[64], Stealth-

ier attack

[335]; Private:

Ransomware

attacks [109]

[277], Tamper-

ing [123], DDoS

[152], DoS on

endorsers [18]

; Consortium:

DDoS [152]

Centralised

Off- chain:

DDoS [152];

Off-chain:

Brute force

attack [152],

Tampering

[123]

PoW: Finney

attack [7], Selfish

mining [211],

Eclipse attack

[155], BGP hi-

jacking [299]

PoS: Nothing-

at-stake [152];

PBFT: DDoS

[152]

Consensus

delay [152],

Block with-

holding

[299], Time-

jacking

attack [299]

Online-

Wallet:

Flooding

attack [152],

DNS hijack-

ing [299]

Brute force at-

tack [152], Quan-

tum attack [390]

Finney at-

tack [7],

Multiple

chains:

DDoS [152]

Tampering,

Block with-

holding

[299]; Light

node: DDoS

[152]

Solidity &

Vyper: DoERS

[208], HYIP At-

tack [60], ERC-20

Signature Re-

play Attack [60],

Under-priced

DDoS Attacks

[60], BECToken

Attack [60], Ex-

ploit Inconsistent

behaviours of

ERC-20 [63]; So-

lidity: Govern-

Mental Attacks

[23]; Hyperledge

Platform: Con-

currency Attacks

[381]; GOLANG:

Key generation

attack [381];

EOS Platform:

Transaction Con-

gestion Attack

[314], Random

number attack

[314], DoS by

draining EOS

resources [201];

External ora-

cle: DDoS [152],

Tampering [123],

Oracle Manipula-

tion Attack [284]

97



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.4: Linking STRIDE with Blockchain Architectural Decisions

STRIDE Threat
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Manage-

ment

Cryptographic

Primitives

Chain

Struc-

ture

Node

Archi-

tecture

Smart Con-

tracts

Spoofing Public: Dou-

ble spending

[252] Private/

Consortium: Pri-

vacy violation

[19], Untrusted

identities [19],

steal-front end

login information

[215] [112]

Centralised

off-chain

storage:

Gain ac-

cess to the

storage [375]

Voting-based:

Out-vote by

fake accounts

[152]. PoS:

Generat-

ing different

blockchains

with old ac-

counts [152].

Local wallet and

On-line wallet:

Buggy software

installation [194],

Compromised

private key [7],

Packet spoofing

[174].

Transaction

spoofing [386],

Recovering of the

private key [211],

Compromised

private key [7]

Change contracts

owner [162].

Continued on next page98



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.4 Linking STRIDE with Blockchain Architectural Decisions (Continued from previous page)

STRIDE Threat
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Manage-

ment

Cryptographic

Primitives

Chain

Struc-

ture

Node

Archi-

tecture

Smart Con-

tracts

Tampering Private: Transac-

tion manipulation

[305]

On-chain:

modify the

hashed met-

data [375].

Off-chain

Compu-

tation:

Transaction

manipulation

[305]

PoW: Control

transaction’s

confirmation

[211], Acquire

dominance

in the pools

[152], Block

modification

[305].

Control

transaction’s

confirmation

[211].

Impersonation

at future trans-

action [305],

Transaction

manipulation.

Online-Wallet:

Alter out-going

data [109], Al-

ter transaction

history.

Digital-signature:

Shor’s quan-

tum algorithm

[129], Transac-

tion malleability,

Impersonation

at future trans-

action [305],

Transaction

manipulation

[305]. Hash:

Grover’s search

algorithm [206],

Transaction ma-

nipulation [305],

Block modifica-

tion [305]

Control

the

confir-

mation

oper-

ation

[211],

Control

trans-

action’s

confir-

mation.

Off-

chain

Chan-

nel:

Trans-

action

manip-

ulation

[305]

Light

node:

Fake

header

[72]

Malicious exter-

nal oracle [376],

Change contracts

owner [162],

External oracle:

Unfair income

[24], Critical

unwanted behav-

iors [61], Money

frozen [284]

Continued on next page

99



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.4 Linking STRIDE with Blockchain Architectural Decisions (Continued from previous page)

STRIDE Threat
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Manage-

ment

Cryptographic

Primitives

Chain

Struc-

ture

Node

Archi-

tecture

Smart Con-

tracts

Repudiation Private: Transac-

tion manipulation

[305]

PBFT: Un-

trustworthy

nodes [375].

PoW: Control

the confirma-

tion operation

[211], Acquire

dominance in

the pool, Block

modification

[305].

Control the

confirmation

operation

[211]

Impersonation at

future transac-

tion [305].

Hash: Grover’s

search algo-

rithm [206],

Transactions

manipulation,

Block modifi-

cation [305].

Digital-signature:

Shor’s quantum

algorithm [129].

Malicious exter-

nal oracle [376],

Untrustworthy

data feeds [23],

Unfair income

[24].

Information

Disclosure

Public: Sensitive

data exposure

[19], Privacy

violation [19],

Private/ Consor-

tium: Steal-front

end login infor-

mation [215],

Eavesdropping

[7]; Private: leak-

age of confiden-

tial information

[18].

On-chain:

Sensitive

data expo-

sure, Privacy

violation

[19].

Single-key:

Eavesdrop-

ping [7], Data

exposure, Privacy

violation; Multi-

sig: Eavesdrop-

ping [7], Privacy

violation; [19],

On-line wallet:

Bypass credential

validation [52],

Compromised key

[135].

Compromised

key, Transaction

pattern exposure

[122], Trans-

action graph

analysis [122].

Single

chain:

Sensitive

data

exposure

[19],

Privacy

violation

[19]

Light

node:

Privacy

violation

[19], Un-

tractabil-

ity vi-

olation

[19].

Information leak-

age.

Continued on next page

100



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.4 Linking STRIDE with Blockchain Architectural Decisions (Continued from previous page)

STRIDE Threat
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Manage-

ment

Cryptographic

Primitives

Chain

Struc-

ture

Node

Archi-

tecture

Smart Con-

tracts

Denial of Ser-

vice

Private/ Consor-

tium: Exhausting

computational

resources [211],

Nodes flood-

ing/isolation

[152], Massive

transaction back-

logs [152].

Centralised

Off-chain:

Compromise

the avail-

ability [376],

Data loss

[375].

PoW: Ex-

hausting

computational

resources [211],

nodes flood-

ing/isolation,

massive trans-

action back-

logs.

Increase

Block Size:

Network con-

gestion [68],

Decrease

transaction

throughput

[137].

Single-Key:

Compromise

the availability,

Online-Wallet:

Server flooding

[152].

Multiple

chains:

Compro-

mise the

avail-

ability.

Light

node:

Compro-

mise the

avail-

ability.

resource-

consuming pro-

cedure [208],

Untrustworthy

external calls

[152], Untrust-

worthy data feeds

[23], Disturbing

external oracle

[23], Compromise

the availability,

temporary shut-

down of token

trading [60]

Continued on next page

101



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.4 Linking STRIDE with Blockchain Architectural Decisions (Continued from previous page)

STRIDE Threat
Blockchain Architectural Dimensions

Access Type Storage

and Com-

putation

Consensus

Mechanisms

Block Con-

figuration

Key Manage-

ment

Cryptographic

Primitives

Chain

Struc-

ture

Node

Archi-

tecture

Smart Con-

tracts

Elevation of

Privileges

Public: Splitting

mining power

[227], Engineer-

ing block races,

Modifying trans-

actions, Create

blockchain forks

[217], Race con-

ditions by forking

[298]. Private-

Consortium:

Untrusted identi-

tiey.

Centralised

Off-chain

Storage:

Gain ac-

cess to the

storage.

PoW: Double-

spending,

Modifying

transactions,

Control the

confirmation

operation

[211]. PoS:

Double-

spending,

Modifying

transactions,

Control the

confirma-

tion opera-

tion [211].

DPoS: Double-

spending, Col-

lude threats

[211]

Double-

spending,

Blockchain

forks [217],

Conflicting,

Stale Block

[137].

Crafting mali-

cious Payload

into high priv-

ilege extension

[194], Bypass cre-

dential validation

[52]; Online-

wallet: Crafting

malicious Pay-

load into high

privilege ex-

tension [194],

Bypass creden-

tial validation,

Local-Wallet:

Bypass credential

validation.

Digital-signature:

Shor’s quantum

algorithm [129].

Hash: Grover’s

search algorithm

[206], Double

spending [252].

Double

spending

[252],

Blockchain

forks

[217].

Destroyable

contract [49],

Change contract

owner [162],

Stolen tokens

[60].

102



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.5: Linking Attacks with Threats

Attack Tactics
STRIDE Threats

Spoofing Tampering Repudiation Information Disclo-

sure

Denial of Service Elevation of Privilege

Reconnaissance Privacy violation [19],

Transaction spoofing

[386]

Privacy violation [19],

Information leakage,

Sensitive data expo-

sure [19], Transaction

graph analysis [122],

employment analy-

sis, Eavesdropping

[7], Untractabil-

ity violation [19],

Eavesdropping [7],

Transaction pattern

exposure [122]

Resource Devel-

opment

Out-vote by fake

accounts [152], gen-

erating different

blockchains with

old accounts [152],

Change contracts

owner [162], Un-

trusted identities [19],

Double spending [252]

Control the confir-

mation operation

[211], Acquire domi-

nance in the pools,

Unfair income [24],

Change contract

owner, Alter trans-

action history

Control the

confirmation op-

eration, acquire

dominance in the

pool, Untrusted

identity, Unfair

income

Exhausting computa-

tional resources [211],

Nodes flooding/ isola-

tion, Data loss [375].

Double-spending, Split-

ting mining power [227],

Engineering block races,

Untrusted identity, Create

blockchain fork, Race con-

ditions by forking [298],

Control the confirmation

operation [211], Collude

threats [211], Conflicting,

Stale Block [137], Change

contract owner

Continued on next page

103



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.5 Linking Attacks with Threats (Continued from previous page)

Attack Tactics
STRIDE Threats

Spoofing Tampering Repudiation Information Disclo-

sure

Denial of Service Elevation of Privilege

Persistence Double spending

[252], Out-vote by

fake accounts [152],

Generating different

blockchains with

old accounts [152],

Untrusted identities

[19]

Impersonation at

future transaction

[305], Block modifi-

cation [305], Control

the Confirmation

Operation [211],

Acquire dominance

in the pools, Fake

header , Unfair

income [24]

Block modifi-

cation [305],

Control the

Confirmation Op-

eration, Acquire

dominance in the

pools, Untrusted

identities [19],

Unfair income

[24]

Block modification [305],

Double-spending, Un-

trusted identity, Control

the confirmation operation

[211]

Privilege Escala-

tion

Double spending,

Generating different

blockchains with

old accounts [152],

Change contracts

owner [162], Un-

trusted identities [19],

Out-vote by fake ac-

counts [152], Privacy

violation [19]

Control the Confir-

mation Operation,

Acquire dominance

in the pools, Unfair

income [24], Change

contracts owner

[162]

Control the Con-

firmation Opera-

tion [211], Ac-

quire dominance

in the pools, Un-

trusted identities

[19], Unfair in-

come [24]

Privacy violation [19],

Sensitive data expo-

sure [19]

Double-spending, Un-

trusted identity, Control

the confirmation op-

eration [211], Change

contract owner, Critical

unwanted behaviors [61],

Stolen tokens [60]

Credential Ac-

cess

Privacy violation [19],

steal-front end login

information [215],

Gain access to the

storage [375], Buggy

software installation

[194], Compromised

private key [7], Trans-

action spoofing [386],

Recovering of the

private key [211]

Transactions Ma-

nipulation, Shor’s

quantum algorithm

[129], Transaction

malleability, Al-

ter out-going data

[109], Grover’s

search algorithm

[206]

Transaction ma-

nipulation [305],

Shor’s quan-

tum algorithm,

Grover’s search

algorithm [206]

Privacy violation [19],

Sensitive data expo-

sure [19], Eavesdrop-

ping [7], Steal-front

end login information

[215], Bypass creden-

tial validation [52],

Compromised private

key [7]

Transaction manipulation

[305], Shor’s quantum al-

gorithm [129], Grover’s

search algorithm [206]

Continued on next page

104



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.5 Linking Attacks with Threats (Continued from previous page)

Attack Tactics
STRIDE Threats

Spoofing Tampering Repudiation Information Disclo-

sure

Denial of Service Elevation of Privilege

Collection & Ex-

filtration

Privacy violation

[19], Change con-

tracts owner [162],

steal-front end login

information [215],

Compromised private

key [7], Transaction

spoofing [386], Iden-

tity theft, Gain access

to the storage [375]

Transaction ma-

nipulation [305],

Alter out-going data

[109], Fake transac-

tion, Identity theft,

Change contract

owner, Malicious

external oracle [376]

Transaction

manipulation

[305], Malicious

external oracle

[376]

Privacy violation [19],

Transaction graph

analysis [122], Sen-

sitive data exposure

[19], Eavesdropping

[7], Steal-front end

login information

[215], Bypass creden-

tial validation [52],

Compromised private

key [7], Untractabil-

ity violation [19],

Transaction pattern

exposure [122], leak-

age of confidential

information [18]

Transaction manipulation

[305], Change contract

owner, Gain access to

the storage [375], Bypass

credential validation [52]

Continued on next page

105



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.5 Linking Attacks with Threats (Continued from previous page)

Attack Tactics
STRIDE Threats

Spoofing Tampering Repudiation Information Disclo-

sure

Denial of Service Elevation of Privilege

Impact Double spending

[252], Recovering of

the private key [211]

Control the confir-

mation operation

[211], Acquire domi-

nance in the pools,

Unfair income [24],

Modify the hashed

met-data [375],

Shor’s quantum

algorithm [129],

Grover’s search

algorithm [206],

Untrustworthy data

feeds [23], Malicious

external oracle

[376], Money frozen

[284]

Control the

confirmation

operation [211],

Acquire dom-

inance in the

pools, Unfair

income [24],

Grover’s search

algorithm [206],

Shor’s quantum

algorithm [129],

Malicious exter-

nal oracle [376],

Untrustworthy

data feeds [23]

Compromised private

key [7]

Compromise the

availability [376],

Exhausting compu-

tational resources

[211], Nodes flood-

ing/isolation [152],

Massive transaction

backlogs [152], Data

loss [375], Compro-

mise the availability

[376], Network con-

gestion [68], Disturb-

ing external oracle

[23], Data loss [375],

Decrease transaction

throughput [137],

Server flooding [152],

Blockchain ingestion,

Untrustworthy data

feeds [23]

Double spending [252],

Splitting mining power

[227] , Engineering block

races, Create blockchain

forks [217], Race condi-

tions by forking [298],

Control the confirmation

operation [211], Collude

threats [211], Stale Block

[137], Destroyable con-

tract [49], Gain access to

the storage [375], Shor’s

quantum algorithm [129],

Grover’s search algorithm

[206], Acquire dominance

in the pools, Critical

unwanted behaviors [61].

106



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

contract components [294, 218]. The information on the identified vulnerabilities allows a

determination of the attack patterns that might exploit them. Our mapping approach assists

an analyst in identifying the attacks and their corresponding threats in each architectural

dimension of blockchain systems.

The mapping approach also supports the prevention of zero-day attacks, as recognis-

ing current attacks provides insights into the behaviour of malicious actors, their motivations,

and their preferred attack vectors. Security systems can then be configured to analyse devi-

ations from normal user or system behaviour. This proactive behavioural analysis can raise

flags for potential zero-day attacks, as attackers might employ new methods to achieve their

goals. Moreover, current attacks often target common vulnerabilities. Educating blockchain

software engineers about these ongoing threats helps them recognise suspicious activities,

avoid risky behaviour, and report potential incidents promptly. This heightened engineer’s

awareness can serve as an additional layer of defence against zero-day attacks that might

exploit familiar attack vectors.

3.5 Application of the taxonomy and mapping approach

In this Section, we provide a three-step decision-making process to be applied to each archi-

tectural dimension illustrated in the taxonomy:

1. Determine the quality attributes that are provided and not provided by each design

alternative (using Table 3.2) to recognise the quality trade-offs and select among the

alternatives with quality rationale in mind.

2. Identify attack tactics and techniques (using Table 3.3) that might compromise each

design alternative to understand the adversarial objectives and potential methods for

107



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

attacking the system.

3. Identify the potential threats to each design alternative (using Table 3.4) and the

specific threats posed by each attack (using Table 3.5).

Systematically applying these steps helps in evaluating and balancing trade-offs to

find the optimal solution that best aligns with project goals. Additionally, it supports se-

curity engineers in establishing a risk management approach and effectively prioritising and

mitigating the highest security risks that threaten blockchain systems by implementing effec-

tive countermeasures. Although some attacks and threats might be missed in the provided

tables or new attacks might emerge, the provided classification and mapping are general

enough to be extended and to categorise many types of attacks. Moreover, our approach can

help in predicting the behaviour of zero-day attacks, as recognising current attacks provides

insights into the behaviour of malicious actors, their motivations, and their preferred attack

vectors, as explained earlier in Subsection 3.4.1.

3.5.1 Key management as a case to demonstrate instantiating the

taxonomy and its mapping to attacks and threats

In this Section, a concrete example of an existing blockchain-based system is leveraged to

show how the proposed taxonomy and guidelines can be applied in practice. This blockchain

system manages and shares electronic medical record (EMR) data for cancer patient care.

The framework was proposed by Dubovitskaya et al. [99] in collaboration with the Stony

Brook University Hospital. They utilise blockchain technology to maintain immutable and

verifiable records that keep track of all actions across the network. This helps to improve

the integrity of sensitive medical data, reducing the time needed to share EMRs as well as

the overall cost. Figure 3.4 shows the EMR system’s architectural decisions that we were

108



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Table 3.6: Analisis of Alternative Decisions for EMR System

Analysis of Alternative Decisions

Quality Attributes

Alternatives Potential Attacks Potential Threats

Single Key

Reconnaissance: Malware attacks, MITM. Tampering: Impersonation at future

Credential Access: Brute Force, MITM, transaction, Transaction Manipulation.

MITB, Malware attacks, Replay attacks, Repudiation: Impersonation at future

phishing. transaction.

Collection and Exfiltration: MITM, MITB, Information Disclosure: Privacy violation.

Malware attacks. Denial of Service: Compromise the

Impact: Flooding attack. availability of the key, server flooding.

Elevation of Privileges: Crafting

malicious payload into high privilege

extension, Bypass credential validation.

Multi-Signature

Reconnaissance: Malware attacks, Tampering: Impersonation at future

Deanonymisation attacks. transaction, Transaction Manipulation.

Credential Access: Brute Force, Malware Repudiation: Impersonation at future

attacks. transaction.

Collection and Exfiltration: Malware Information Disclosure: Privacy violation.

attacks. Elevation of Privileges: Crafting

malicious payload into high privilege

extension, Bypass credential validation.

Threshold Signature

Reconnaissance: Malware attacks, Tampering: Impersonation at future

Credential Access: Brute Force, Malware transaction, Transaction Manipulation.

attacks. Repudiation: Impersonation at future

Collection and Exfiltration: Malware transaction.

attacks. Elevation of Privileges: Crafting

malicious payload into high privilege

extension, Bypass credential validation.

109



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

able to extract or infer from their paper. The identified decisions are presented based on our

taxonomy.

The EMR blockchain system is a permissioned consortium access type as patients’

data might be transferred to several hospitals. This access type safeguards the privacy of

highly sensitive data about patients. A fast response time is essential in medical systems,

which can be provided easily by this access type. Moreover, in a permissioned consortium

blockchain, there is no need to pay for the execution of a transaction, and this increases the

usability of the system.

Patient metadata is stored on-chain, while two off-chain storage locations are used

to store patients’ raw data: an in-hospital database that stores oncology-related data and

a cloud storage database that organises patients’ data and encrypts the saved data with a

symmetric key for each patient. A doctor can access data in the cloud according to the

permission policy specified by the patient. These two off-chain storage sites reintroduce cen-

tralisation into the blockchain system and can function as a single point of failure. The EMR

blockchain system applies a PBFT algorithm, which is a vote-based consensus mechanism.

This is because all users in a medical application are known (patients and doctors), and

only a predefined set of nodes can participate in the consensus mechanism. This type of

mechanism protects against Sybil and Majority attacks.

This medical application was built on top of the Hyperledger platform, which im-

plements smart contracts in the form of chaincode, comprising logic and correlated state

components. Chaincode is written in the Go programming language. In Hyperledger, the

size of the block is often 98 MB, and the block confirmation takes one-second [172]. SHA-256

is used as the default hash in the Hyperledger platform, and the EdDSA scheme is used for

digital signatures. A symmetric algorithm is used to encrypt clinical data stored in the cloud

repository to provide data confidentiality.

110



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

EMR-blockchain 
System 

Access Type

Storage and 
Computation

Consensus Mechanism

Block Configuration

Key Management

Cryptographic 
Primitives

Smart Contracts

Consortium

On-Chain

Off-Chain

Voting-Based

Block Size

Block Confirmation

Single Key

Essential

Optional

Platform

Developing Languages

Cloud

Local Database

PBFT

98 MB

1 second

Signature Key

Asymmetric Encryption Key

Symmetric Encryption Key

SHA256

Symmetric algorithms

EdDSA

Hyperledger

Go

Figure 3.4: Architectural Decisions for EMR System

Each doctor has a public key pkS
U and a private key skS

U for signing, as well as pkε
U and

skε
U for encryption. The patient can generate a metadata record on the chaincode, retrieve it,

and specify permissions. In addition to the two key pairs, the patient also has an asymmetric

encryption key SKAεS that encrypts and decrypts patient data. If a patient needs to enable

a doctor to access his data, he should encrypt the SKAεS with the encryption public key of

the doctor pkε
D, and then share the encrypted value with the doctor. Since each user has

a single key pair for signing and another single key pair for encryption, these keys become

a single point of failure. If attackers compromise them, they could sign and encrypt data

themselves. Moreover, if passive attackers compromise the patient’s symmetric key, they

could decrypt and observe data.

We aim to investigate alternative architectural choices regarding key management

dimensions as the current choice is sub-optimal, and this might affect the security of the

system. We apply our proposed three-step process to make secure and informative key

111



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

management choices, as shown in Table 3.6 and describe below.

Step 1: Determine the quality attributes. We used Business Process Model and

Notation (BPMN) to represent the quality attributes provided and not provided by each key

management choice. The single key option provides higher accessibility and reduced sys-

tem latency, but it reduces system integrity, availability, and non-repudiation. The digital

signature option provides higher integrity and non-repudiation but decreases system confi-

dentiality and leads to higher latency. Although a threshold-signature may increase system

latency, it increases system confidentiality, integrity, and non-repudiation.

Step 2: Identify attack tactics and techniques. We identify the tactics of

potential attacks that each alternative key management design choice might be vulnerable

to. Noticeably, the single key option is prone to larger sets of attacks than the other two

options. Threshold signatures provide better mitigation against deanonymisation attacks

than multi-signatures as the signed transactions are indistinguishable from non-threshold

transactions on the blockchain.

Step 3: Identify the potential threats. We identify the potential security threats

for each key management design option. The single key choice is prone to five threat cat-

egories and is the only choice that is threatened by denial of service. If this key is stored

in an online wallet, the server might receive a massive number of requests with the aim of

exhausting its resources and compromising the availability of the key. Threshold signature

scheme is prone to the least number of threats compared with the other two choices. Ap-

plying this scheme protects users’ privacy when compared to multi-signature scheme where

the adversary can link users’ identities by tracing their multiple keys.

Based on the three-step analysis, it appears that a threshold signature would enhance

the security and privacy of the EMR system. Nevertheless, security architects need to

conduct a risk assessment to quantify the potential risk exposures and thus make an informed

112



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

decision.

This brief example has illustrated that our approach provides a systematic way of

assisting software engineers who are attempting to build a blockchain system. It also aids

engineers who need to analyse and improve the security of an existing system. We have

used key management as an example to demonstrate the instantiation of our taxonomy and

its mapping to both threats and attacks. The same steps can be applied to analysing the

attack tactics and the implied threats on any blockchain based technique. For the case of

the blockchain-based EMR system, as an example, the security of other architectural choices

as identified in Figure 3.4 can be analysed in the same way as that of key management. Our

work provides systematic guidance for security engineers and architects, where the specific

analysis techniques (e.g., prediction, estimation, etc.) for each step may vary based on the

context and may be influenced by the availability of expertise in using these techniques.

3.6 Discussion

Here we discuss how we validate our work and the threats to validity to our approach.

3.6.1 Validation

A taxonomy can be validated in three ways to ensure its reliability and usefulness [342]: (i)

orthogonality demonstration; (ii) benchmarking; and (iii) utility demonstration.

113



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Orthogonality Demonstration

Shows the dimensions and the categories of the taxonomy as Figure 3.2 and Section 3.3

demonstrated. We performed an iterative content analysis method to identify the dimensions

of the proposed taxonomy. We continuously evolved our taxonomy whenever a new concept

was encountered in the literature. We strove to ensure the generality of each dimension

by noting when several terms appeared in the literature referring to the same concern (e.g.

consensus protocol vs. consensus mechanism). Moreover, a new class is introduced only

when clear-cut evidence of its relevance and significance justify its inclusion. As an example,

we included consensus algorithm as a class because it has unique characteristics, properties,

and well-defined terms as used in the literature. However, when there was an uncleared

agreement on the term (e.g. node architecture), we came with a general class to encompass

concerns and properties; nevertheless, some of the sub concerns can be further refined.

Benchmarking

Compares the taxonomy to related classification schemes. Only two prior works have pro-

vided taxonomies of architectural aspects of blockchain [376, 301]. However, our taxonomy is

novel as each dimension of our taxonomy has been discussed from a security perspective and

mapped with the potential attacks and associated threats. Additionally, the taxonomy pre-

sented by Xu et al. [376] focuses only on six architectural components of blockchain systems,

whereas the taxonomy presented here captures nine major dimensions for blockchain archi-

tectural decisions, and the discussions are explicitly focused on security. Different from Xu et

al.’s taxonomy, three main architecture design dimensions – key management, cryptographic

primitives, and node architecture – have been considered and thoroughly discussed in our

study. Moreover, unlike theirs, our taxonomy has been derived by conducting a systematic

literature review of studies related to architectural design decisions relevant to blockchain

114



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

systems. Salah et al. [301] presented a taxonomy that only targeted blockchain-based ar-

tificial intelligence applications; the architectural coverage of the paper was limited to the

intelligence component. Conversely, the taxonomy proposed in this work is adequate for

designing blockchain-based systems in general.

Utility Demonstration

Is a mechanism to validate the benefits that could be gained from the taxonomy. There are

several ways to demonstrate the benefits of the taxonomy as [342] stated, including expert

opinion and instantiation. Our taxonomy has been reviewed by an expert who gave us

substantial suggestions for refinements. Additionally, the instantiation of our taxonomy has

presented in Subsection 3.5.1.

3.6.2 Threats to Validity

Based on [362], four potential threats to validity may affect our findings:

Internal Validity. One threat comes from the inherent nature of taxonomies: we cannot

guarantee the completeness of our taxonomy since there may be additional architectural

design decisions that could enrich or refine the taxonomy. To mitigate this threat, we it-

eratively refined our taxonomy each time a new concept was encountered in the literature.

Furthermore, our taxonomy is adaptable and flexible to evolve and cope with new additions

and changes. Another threat comes from the possibility of considering alternative methods

for threat and attack categorisation. However, the Microsoft STRIDE threat model and

MITRE’s attack tactics categorisation were used in our study since they are widely used,

they are consistent with current practice, and they ensure extensive coverage of potential

threats and attacks.

Construct validity. Another threat arises because our taxonomy was mainly based on the

115



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

results of surveying the literature. We believe that additional sources of information could

improve the completeness of this taxonomy. We mitigated this by searching the findings on

multiple data sources. Additionally, our automated search was complemented by a manual

search. Another threat arises from the provided set of attacks. Even though we have illus-

trated various kinds of attacks that pose threats to blockchain-based systems, it is impossible

to cover all attacks because new attack types are always emerging. Therefore, the reader

should be aware that the provided set of attacks is continually evolving as it is difficult to

predict the state of the attackers. In this study, all presented attacks are informed not only

by research papers but also by technical reports, developers blogs, and wiki pages. In any

case, our proposed technique and methods for classification can be applied to categorise new

and emerging attacks.

Conclusion Validity. There is a threat regarding the possibility that we interpreted the

extracted data differently. The potential for bias introduced during the data extraction pro-

cess was at least partially mitigated by ensuring a common understanding by all reviewers.

We also ensured that the data extraction process was aligned with the research question.

External Validity. A final threat is related to the need to instantiation the taxonomy in

different contexts, to assist in its refinement and validation. We demonstrated the utility of

the taxonomy using an example of a blockchain-based health care system. We demonstrated

the applicability of our guidelines by analysing the key management architectural dimension

to enhance the security of such a system. Nevertheless, further validation of the utility of

the taxonomy is needed to address this threat.

3.7 Related Work

A wide range of prior literature has discussed the properties, characteristics, and structure of

blockchains. Some of them have focused on architectural components of a specific blockchain

116



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.7: Summary of Related Work

Categorisation Ref No Year Contribution Focusing Area

Blockchain Architecture
[379] 2016 Explored blockchain from an architecture point of view. Com-

pared blockchain with other software solutions

General Blockchain-Based System

[376] 2017 Proposed taxonomy of some of the architectural components

of blockchain systems. Showed how different architectural de-

cisions affect the quality attributes of blockchain systems

General Blockchain-Based System

[403] 2017 Reviewed the properties of blockchain systems. Mainly in-

vestigated, compared and analysed different consensus mech-

anisms

General Blockchain-Based System

[130] 2018 Illustrated the blockchain frameworks. Reviewed some

blockchain applications in details

General Blockchain-Based System

[301] 2019 Provided a detailed survey on blockchain, platforms, consen-

sus protocols and applications which are adequate for AI area

Artificial Intelligence

[223] 2019 Reviewed some of the blockchain components. Provided a a

comprehensive discussion of the main properties of the state-

of-the-art blockchain applications

Blockchain Application

Security and Privacy Issues
[211] 2017 Illustrated security risks and attacks over blockchains systems.

Demonstrated several solutions protocols

General Blockchain-Based Systems

[152] 2019 Extensively investigated vulnerabilities in each blockchain

generation. Explained potential attacks. Highlighted possi-

ble countermeasures

General Blockchain-Based Systems

[399] 2019 Explained the required security properties of blockchain-based

cryptocurrency. Reviewed the existing techniques to achieve

security and privacy for such systems

General Blockchain-Based Systems

Continued on next page

117



B
lockchain

M
ajor

A
rchitecturalD

esign
D

ecisions
and

their
Security

A
ttacks

and
T

hreats
Table 3.7 Summary of Related Work (Continued from previous page)

Categorisation Ref No Year Contribution Focusing Area

[354] 2019 Reviewed the security aspects and cyberattacks of each layer

of blockchain-based systems. Summarised the existing miti-

gation techniques

General Blockchain-Based Systems

[299] 2020 Investigated attack surface in multiple implementations of

blockchains. Outline multiple defence techniques.

General Blockchain-Based Systems

[68] 2018 Reviewed vulnerabilities in Bitcoin and related threats. In-

vestigated the effectiveness of the proposed solutions. Re-

viewed privacy threats to Bitcoin’s users. Analysed the exist-

ing privacy-preserving solutions

Bitcoin

[123] 2018 Classified the potential attacks against blockchain-based IoT

applications. Provided mechanisms to enhance their security

and privacy

Internet-of-Things

[11] 2019 Overviewed the main blockchain architecture components

and characteristics from IoT perspective. Discussed how

blockchain properties enhance IoT security

Internet-of-Things

[40] 2017 Provided a taxonomy of the major security vulnerabilities in

Ethereum smart contracts. Illustrated the significant attacks

in Ethereum smart contracts

Smart Contracts

[239] 2018 Provided a comprehensive classification of known security vul-

nerabilities in Ethereum smart contracts

Smart Contracts

[229] 2018 Reviewed security and privacy issues related to smart con-

tracts applications

Smart Contracts

[60] 2020 Provided a comprehensive list of known security vulnerabili-

ties, attacks, and defences in Ethereum smart contracts.

Smart Contracts

118



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

application, such as blockchain-based IoT [123], while others illustrated and discussed the

security and privacy issues of blockchain technology [354]. To the best of our knowledge,

no previous studies have classified the architectural design decisions of a blockchain-based

system based on a systematic survey and then mapped them to threats and attacks. As

shown in Table 3.7, we have classified the prior literature on blockchain into two major

categories: blockchain architecture and security and privacy issues.

Regarding the first category, authors in [379] discussed several blockchain architec-

tural design choices and compared decentralised blockchain with other software solutions. In

[376], the authors presented a taxonomy of the architectural properties of blockchain-based

systems and showed the impact of these properties on the performance and other quality

attributes of the system. Yet, their impact on the security properties and their consequen-

tial security risks has not been covered. Moreover, a systematic review of the literature has

not been conducted to represent the taxonomy. Similarly, in [403], the authors briefly dis-

cussed the types of blockchains and then discussed and compared different types of consensus

protocols. Also, they provided a classification of different types of blockchain applications.

A detailed dissection of blockchain applications and their properties, architecture, and is-

sues was presented in [130]. Another review of blockchain applications was conducted by

[223]. This study reviewed blockchain and its key components and comprehensively detailed

application examples of blockchain-based IoT, security and data management. In [301], a

survey on blockchain technology for Artificial Intelligence (AI) was conducted. This study

provided a taxonomy of blockchain characteristics that can be leveraged by AI applications.

It summarised existing blockchain platforms and protocols that could be adopted for AI

applications.

Moving to the second category, security and privacy issues, researchers investigated

this area and emphasised that blockchain is not completely secure and is prone to various

vulnerabilities and security risks. One pioneering article in this category was [211], where

119



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

the authors reviewed the security threats to blockchain and the corresponding attacks and

suggested some security solutions. Similarly, the authors in [152], classified security vulner-

abilities based on blockchain accessibility. It also provided a detailed explanation of known

vulnerabilities and subsequent potential attacks. Countermeasure techniques to improve the

security of blockchain systems were also surveyed in this study. Investigation of security

issues of blockchain was reviewed from other perspectives in [354], which analysed the se-

curity issues of each layer of blockchain: application, smart contracts, incentive, consensus,

network and data layer. Another study [399] targeted security and privacy issues raised in

blockchain-based cryptocurrency applications, highlighted security and privacy properties

required in many blockchain applications and then reviewed the techniques and mechanisms

to achieve them. In [299], authors investigated the attack surface in multiple implementa-

tions of blockchains in terms of cryptographic constructions, distributed system architecture,

and applications. They also summarised defence measures carried out by blockchain tech-

nologies or recommended by researchers, to mitigate the impacts of these attacks. Several

attacks that target Bitcoin and its underlying protocols, such as Proof-of-Work (PoW), were

tabulated and analysed in [68]. Their survey also investigated the effectiveness of existing so-

lutions. Moreover, it discussed privacy related threats and the privacy perceiving techniques

against them.

A considerable number of surveys have reviewed the incorporation of blockchain in

IoT systems. Three studies, [123, 11, 153], are related to our work, they reviewed archi-

tectural components and implementation of blockchain based-IoT and the related security

issues regarding such integration. In [123], a detailed overview of blockchain protocols for IoT

applications was provided. The authors classified and discussed the potential attacks against

IoT applications implemented on a blockchain foundation. Likewise, a comprehensive sur-

vey regarding developing blockchain-based platforms, applications and services, which were

adequate for IoT applications, was carried out in [11].

120



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

Since the emergence of smart contracts in blockchains the number of vulnerabilities

and potential threats caused by wrong design and coding of smart contracts has increased.

One review [40] aggregated the known vulnerabilities in Ethereum smart contracts and clas-

sified them into three categories based on the level: solidity level, Ethereum Virtual Machine

(EVM) level, and blockchain level. Similarly, authors in [239] provided the same classification

of vulnerabilities in Ethereum smart contracts; however, they provided a more comprehen-

sive list. Authors in [60] utilised the same classification to classify 40 vulnerabilities and

analysed their root causes. This study also discussed attacks and multiple defense tech-

niques. Another study [229] provided an overview of the privacy and security issues that can

arise in different smart contract applications. Noticeably, all presented blockchain surveys

have discussed its architecture and security concerns from different perspectives. However,

no one provided an in-depth survey of blockchain architectural design decisions and linked

them to classified threats and potential attacks which can breach the system if ill-informed

design decisions are taken.

3.8 Finding and Summary

Methodological Limitations. One of the major findings that require more investigation

is a lack of academic studies with regard to conducting systematic approaches and the use

of decision models to assist decision-makers and architects in choosing appropriate compo-

nents, patterns, and features when constructing blockchain systems. Moreover, analysing

the security risks encountered during blockchain systems’ development, and how they influ-

ence the outcomes, has not been investigated in the literature. The programming flexibility

of smart contracts opens opportunities for attackers to compromise them. Thus, there is

a crucial need for best practices, standards, and frameworks to assess the security risks in

smart contracts, as attacks against such contracts are unavoidable. In this thesis, we make a

121



Blockchain Major Architectural Design Decisions and their Security Attacks and Threats

contribution to a debt-aware approach that assesses security architectural design issues that

manifest as a result of making ill-informed design decisions in the creation of smart contracts

(in Chapter 4), as well as security issues that are shipped to the contract from a third party

(in Chapter 5).

3.8.1 Summary

In this chapter, we surveyed architectural properties and aspects of blockchain-based sys-

tems and provided a taxonomy that captures their major architectural design decisions. The

taxonomy illustrates nine dimensions of architectural decisions related to access type, data

storage and transaction computation, consensus mechanism, block configuration, key man-

agement, cryptographic primitive, chain structure, node architecture, and smart contracts.

We provided a mapping that links attacks and the posed threats to the architectural decisions

in our taxonomy. We systematically classified the attacks in blockchain systems following

MITRE’s attack tactics categories and then associated the attacks with their posed threats

using the STRIDE threat model.

122



Chapter Four

A Novel Approach for Assessing Smart

Contracts’ Security Technical Debts

In Chapter 2, we found that there is a lack of security-based design approaches that focus

on the architectural design elements of smart contracts and assist in identifying, analysing

and quantifying the associated security risks. A smart contract is one of the architectural

elements of blockchain-based systems that is prone to multiple attacks, as demonstrated in

Chapter 3. This chapter bridges an identified gap by proposing a debt-aware approach for

assessing security architectural design issues in smart contracts at the early design stage.

The results show that our assessment approach increases the visibility of security design

issues. It also allows developers to concentrate on resolving these issues through technical

debt impact analysis and prioritisation.

Most of the content in this chapter is based on our paper [5] that was published in

the 2021 IEEE/ACM International Conference on Technical Debt.

123



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.1 Overview

A smart contract is a software deployed on a blockchain-based development platform to

support, verify and impose a decentralised negotiation and implementation of digital agree-

ments between un-trusted parties [356]. Despite the infancy of smart contracts, their emer-

gence has disrupted several sectors, including cryptocurrencies, financial services, insurance,

healthcare, and decentralised management, among others [132]. The widespread usage of

this emerging technology has incentivised attackers to exploit its existing security and pri-

vacy challenges. Various malicious attacks have been accomplished due to deploying poorly

designed or vulnerable smart contracts [60, 338].

Uploading smart contracts to the public blockchain is not free as a specific amount

of money is required to be paid for each deployment process [392]. Moreover, different from

traditional distributed software that can be patched when vulnerabilities are discovered,

smart contracts are irreversible and immutable [225]. These properties mean that once

a smart contract is deployed in the chain, it cannot be subsequently modified. Therefore,

timely identification of vulnerability is crucial to saving business value [168, 167]. In practice,

design vulnerabilities do not only originate from 50% of security issues [302] but they are

also the most harmful [317] and difficult to identify [260, 388]. Securing smart contracts calls

for approaches that can accelerate the identification of root causes of vulnerabilities in the

design of such contracts.

The novel contribution of this chapter is a debt-aware approach for assessing security

design vulnerabilities in smart contracts. The technical debt metaphor has proven to be

effective to measure the impact of security weaknesses exploitation in terms of damage to

business value [167], the ramifications of negative decisions over time, and locating the

design root of security vulnerabilities [260]. Then, we leverage the metaphor to estimate

the monetary cost of redeploying the patched version of the vulnerable contract and the

124



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

evolution of the debt interest linked to a design vulnerability. Our approach is based on both

automated analysis tools and manual analysis to discover potential security vulnerabilities

caused by design decisions. The evolution of the negative consequences of these security

issues in smart contracts is estimated as an analogy with the concepts of debt principal and

interest growth rate.

This research intends to answer the following research questions (RQ):

• RQ1: How to identify design vulnerabilities in smart contracts? What are the specific

analysis techniques and tools?

• RQ2: How to quantify the impact of technical debts related to design vulnerabilities

in smart contracts?

Although prior works have introduced the idea of technical debt in the context of

software security [168, 167, 260, 291], to the best of our knowledge, our work represents a

novel initiative in introducing the metaphor to discuss design vulnerabilities that lead to

security issues in smart contracts. Moreover, although previous works have surveyed smart

contract vulnerabilities [212, 152, 60], up to our knowledge, this research is among the initial

efforts that focus on design vulnerabilities and map them to their related entries in the

Common Weakness Enumeration (CWE) list, which is a catalog of common software and

hardware weakness types [243]. Additionally, different from previous efforts that performed

empirical evaluations of automated analysis tools to compare their real capabilities [101, 270,

202], this work characterises a set of automated analysis tools that can discover a group of

design vulnerabilities pertinent to smart contracts.

The remainder of the chapter is organised as follows. Section 4.2 introduces necessary

preliminaries of smart contracts and technical debt, while Section 4.3 provides a detailed

overview of our debt-aware approach to assess security design issues in smart contracts. We

125



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

report on experiments guided by our approach in Section 4.4, followed by a discussion of our

results in Section 4.5. The evaluation of the proposed approach is discussed in Section 4.6.

Finally, related works are contrasted with ours in Section 4.7. Section 4.8 summarises the

chapter.

4.2 Preliminaries

4.2.1 Ethereum Platform

Ethereum is the most popular general-purpose blockchain platform that enables developers

to deploy smart contracts written using Turing-complete languages such as Solidity. Solidity

is an object-oriented language designed specifically for writing blockchain contracts. The

programmable contracts are then compiled into bytecode that executes on the Ethereum

Virtual Machine (EVM). EVM executes typical cryptocurrency transactions and contracts

bytecode, which are a special kind of transaction [365].

In practice, several properties distinguish smart contracts from regular computer pro-

grams and make the implications of deploying vulnerable contract more severe. First, the

primary distinction is that contracts operate on a decentralised public blockchain network

that makes the contract open for inspection, with the state of the contract transparent

and traceable by everyone [356]. Second, contracts typically handle monetary transactions

that can involve considerable amounts of Ether, an Ethereum cryptocurrency with a current

market value equivalent to billions of dollars [60]. The combination of monetary value and

public availability makes vulnerable smart contacts compelling targets for attackers. Third,

smart contracts are irreversible and immutable. Consequently, vulnerable contracts cannot

be patched after deployment to the blockchain [225]. The only way to fix the contract is

126



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

to deploy a new version with a repair code. However, the old version will remain in the

blockchain. Fourth, deploying and executing smart contracts cost an amount of gas (the fuel

of computation in Ethereum) [392].

To prevent the abuse of computational resources, in Ethereum, developers and users

are required to pay a gas fee to deploy and execute contracts, respectively [365]. The concept

of gas involves the following: (i) gas cost, which is a constant amount that determines the

computational effort required to execute specific operations; (ii) gas price, which denotes

the amount of Ether that users are required to pay for each unit of gas; it is dynamic,

governed by Ethereum miners, and measured in Gwei (1 Gwei = 0.000000001 Ether); and

(iii) gas fee, which is the incentive received by miners in exchange for the computational

resources used to execute the operations of a contract and the building of blocks; gas fee is

converted to Ether and paid to miners.

4.2.2 The Common Weakness Scoring System

The Common Weakness Scoring System (CWSS™) [244] provides a quantitative mechanism

to score unfixed CWEs found in software. The system supports prioritisation of weaknesses

in terms of their potential negative consequences. The scoring formula is based on three

metrics: (i) Base Finding (BF), which consists of several factors that estimate the level of

technical impact once the weakness is successfully exploited, the accuracy of the finding,

and the effectiveness of the existing control; (ii) Attack Surface, whose factors estimate how

easy the attacker could exploit the weakness; (iii) Environmental (E), which involves factors

that refer to a specific operational context such as the potential impact to the business and

the likelihood of discovery. Each metric factor is assigned a numeric value that is calculated

based on specific formulas, and the sub-score of each metric is multiplied with each other to

generate the final CWSS score in a range between 0 and 100.

127



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.2.3 Technical Debt

Technical debt is a metaphor devised to capture how the value of software engineering

decisions evolves over time [240]. Specifically, the metaphor supports the identification of

the roots of a sub-optimal decision, the estimation of its value, and the monitoring of the

environmental trade-offs in which the decision was made [193]. The metaphor also supports

attributes that are intrinsic to debts in finance such as principal and interest [332]. In the

metaphor, the principal represents the value of the gap between the ideal and the actual

decision, whereas the interest represents the additional effort that needs to be incurred to

pay back the principal.

Technical debt has been applied in architectural design to value the gap between the

ideal and an actual decision [214], to identify the architectural root of an issue [176], and

to manage the debt incurred by a decision [14], among others. Since some roots of security

issues tend to be intertwined with architectural decisions, the metaphor has also been used

to identify security vulnerabilities [260], prioritise the attention to security weaknesses [167],

and estimate the consequences on business value if vulnerabilities are exploited [168].

4.3 Our Approach for Assessing Technical Debts

This Section presents our approach to assessing the security technical debts incurred in

smart contracts design. The assessment involves detecting design issues and quantifying

their consequences to security if remain unfixed.

We have defined the steps that support the creation of secure-by-design smart con-

tracts:

128



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

1. Identify security design vulnerabilities in a smart contract.

(a) Run automated security analysis tools on the smart contract source code to obtain

a list of potential vulnerabilities.

(b) Perform a manual analysis complementing the automated analysis to uncover any

missed vulnerability.

(c) Determine the design vulnerabilities and map them to related weaknesses to high-

light the root cause of the issues.

(d) Classify the design vulnerabilities per design flaw categories to determine the

negative technical impact upon the contract.

2. Measure the ramifications of the identified design vulnerabilities.

(a) Estimate the monetary cost of technical debt principal by calculating the gas fee

for redeploying a patched version of the vulnerable contract.

(b) For each vulnerability identified, estimate technical debt interest value by quan-

tifying the negative security consequences and the interest growth rate over time.

Our approach is a debt-aware assessment approach, as it facilitates visualisation of the debt

incurred by exploitable flaws created while designing smart contracts. Furthermore, by

applying this approach, developers can be aware of the long-term consequences of security

design issues. Subsequently, the developer can prioritise the debt based on both the monetary

cost and the interest value associated with vulnerability violations.

4.3.1 Identification of Security Design vulnerabilities

Building our assessment approach involves two steps: aggregating vulnerabilities caused by

flaws in smart contracts design and selecting security analysis tools that assist the identifi-

129



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

cation process.

Mapping Design vulnerabilities to Security Design Weaknesses

Security flaws coming from design decisions have been reported as the main cause of software

security problems [260]. If these flaws remain unaddressed, these can be viewed as root cause

of technical debt, with consequences observed through an accumulation of interests over time

[168, 260]. Additionally, if security software engineers are aware of these issues but they do

not fix them, these workarounds can be considered as (self-) admitted technical debts.

Although several efforts, from industry and academia, illustrate smart contract vul-

nerabilities, they have missed distinguishing between coding and architectural design vul-

nerabilities. Therefore, in this study, we present a set of vulnerabilities rooted in the archi-

tectural design of smart contracts and their related security weaknesses. The aggregated set

is classified based on the security impact of such issues.

Security weaknesses are flaws in software that may lead to exploitable security vul-

nerabilities. Therefore, the identification of weaknesses can assist us in understanding the

security problems and performing root cause analysis. Our study leverages Common Weak-

ness Enumeration (CWE™) [243], which is a community-developed list of common security

weaknesses that may appear in the architecture, design, or implementation of software. Thus,

we aim to map vulnerabilities in contract design to security weaknesses in the CWE catalog

that stands out regarding adoption and scope of coverage. Although CWE does not refer

to any weaknesses particular to smart contracts, it depicts associated weaknesses at higher

abstraction layers.

We followed a systematic procedure to collect and map each design vulnerability

in contract design architecture to the corresponding weaknesses in CWE. This procedure

130



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

consisted of two steps.

First, we collected a list of security vulnerabilities from academic papers that surveyed

existent vulnerabilities in smart contracts [152, 212, 60, 24]; we also considered Ethereum

community [126], wiki [360], and developers’ blogs [408, 288] that listed and explained ex-

ploitable flaws and anti-patterns not discussed in the literature. Specifically, we extracted

information about the vulnerabilities, such as their descriptions, ways of exploitation, and

preventive techniques that can be used to avoid them. The collected information assisted in

knowing the negative impacts of these issues on the contracts and the cost of fixing them.

In addition, the information also helped to determine the vulnerabilities that result from the

flaws manifested at the contract’s design stages. Second, we analysed each collected vulner-

ability to map it with the subset of weaknesses (438/1248) of CWE. This subset represents

weaknesses that can be introduced during a design stage.

To reduce inherent biases in the mapping process, we separately worked over all the

collected vulnerabilities. After completing the analysis, results were compared and double-

checked with Smart Contract Weakness Classification (SWC) [315] Registry. This registry

was established by a group of developers, auditors, and researchers at ConsenSys Diligence

[66] that provides smart contract developers with a system analog to CWE. However, at the

time of writing, only 20 architectural design security weaknesses are listed in the registry.

Finally, a group discussion was conducted to resolve any disagreement.

We observed that the identified design vulnerabilities can be classified based on their

impact into ten categories. Front-Running, Time Manipulation, Denial of Services (DoS),

Broken Access Control, Arithmetic Issues, and Bad Randomness. These first six categories

are also presented in Decentralised Application Security Project (DASP) [147] taxonomy.

Other categories are Sensitive Data Exposure and Using Components with Known Vulner-

abilities, which are the third and ninth categories, respectively in Open Web Application

131



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Security Project (OWASP)-Top 10 Security Risks [127]. The two remaining categories are

Improper Inheritance and Modularity Violation, which are the flaws that violate object-

oriented design principles. Since Solidity is an objected oriented language, the contracts

written by this language are also prone to these types of design flaws.

Table 4.2 describes each design flaws category, whereas Table 4.1 shows an example of

mapping the design vulnerabilities classified under DoS to relevant CWEs. Our replication

package, described in Subsection 4.3.3 carries full details of the mapping.

Our classification allows the designers to select a specific design flaws category and

visualise all related vulnerabilities and weaknesses. It may also serve as a guide for architects

to avoid common security architectural issues when creating smart contracts.

Selection of Security Analysis Tools

The analysis of potential vulnerabilities in smart contracts needs to be performed before

its deployment to the immutable environment of the blockchain, in which refactoring or

updating the contract is costly and not trivial.

Recently, a growing number of security analysis tools have emerged to detect common

vulnerabilities and bad practices in Ethereum smart contracts written in Solidity. Although

these tools have been developed by different teams such as academic teams [334], community

teams [225], and industrial teams [248], most of the existing tools are inaccurate in finding the

security issues as they yield a considerable number of false positives [101, 270]. Furthermore,

each tool only detects a limited scope of vulnerabilities. Consequently, the combination of

several existing tools is essential to increase coverage and accuracy of vulnerability detection.

In this study, we selected a set of security analysis tools that help in identifying design

vulnerabilities in smart contracts. To do that, we investigated the academic literature,

132



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Table 4.1: An Example of Vulnerabilities Mapping for DoS to CWE Categorisation

Design Vulnerabilities CWE Design Weaknesses

Exception handling problem CWE-703 Improper Check or Handling of Exceptional

Conditions

Non-validated arguments CWE-20 Improper Input Validation

DoS by external contract/Call CWE-703 Improper Check or Handling of Exceptional

Conditions

Calculates the upper bond of Gas CWE-400 Uncontrolled Resource Consumption

Balance equality /Unexpected Ether

balance

CWE-667 Improper Locking

Costly pattern/Costly loop CWE-400 Uncontrolled Resource Consumption

Call to untrusted contract CWE-807 Reliance on Untrusted Inputs in a Security De-

cision

Non-validated return value CWE-20 Improper Input Validation

Exception Disorder CWE-703 Improper Check or Handling of Exceptional

Conditions

Reachable SELFDESTRUCT oper-

ation

CWE-284 Improper Access Control

Destroyable / Suicidal contract CWE-267 Privilege Defined With Unsafe Actions

Unprotected simultaneous execution

of sensitive tasks

CWE-667 Improper Locking

133



A
N

ovelA
pproach

for
A

ssessing
Sm

art
C

ontracts’Security
TechnicalD

ebts
Table 4.2: Description of Design Flaws Categories

Study Purpose Focusing Area

Front-Running DASP A type of race condition where a malicious user can steal the solution and submit a trans-

action with a higher gas price to make their transaction assigned to the block before the

victim.

Time Manipulation DASP The timestamp of the block is adjusted by malicious miners to their own advantage.

Denial of Services DASP The attacker can make the contract inoperable temporarily or permanently.

Arithmetic Issues DASP An arithmetic operation that reaches the max or min size of a type and presents incorrect

results that compromise contract security and reliability.

Bad Randomness DASP The random number generator is written in a way that is predictable and exploitable.

Sensitive Data Exposure OWSAP-10 The developer does not adequately protect critical information related to the contract and

assumes that private type variables cannot be read.

Using Components with

Known Vulnerabilities
OWSAP-10 Malicious or deficient components, such as libraries or off-chain data sources, where the

developer unaware of all the running code.

Improper Inheritance
Object Oriented

Design Flaws
When a contract inherits another contract, the presence of multiple variables with the same

name in both contracts might lead to unintended effects.

Modularity Violation
Object Oriented

Design Flaws
This consists of a tight coupling between contracts that makes them frequently change

together.

134



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

searched the Internet, and scanned Github. The tools selected for our study were those

matching the following criteria (C):

C#1. The tool is free, publicly available, and specific information about it can be found

in at least one official source. This excludes tools such as Mythx [66] and DappGuard [69].

The former is not free and the latter could not be found.

C#2. The tool is up to date. This excludes deprecated tools such as Porosity [321], and

tools that detect several outdated vulnerabilities, such as Oyente [225].

C#3. The tool can take source code of the contract as an input, which excludes tools such

as Echidna [202] as it only takes EVM bytecode.

C#4. The tool identified at least one design vulnerability or bad practice related to design.

This excludes tools such as Solgraph [287].

After exploring all the collected tools, we identified only nine tools that met the

criteria. These tools are: Slither [121], SmartCheck [331], and Securify [338] which perform

static analysis techniques. Mythril [249] which is a symbolic analysis tool and Manticore

[248] which performs dynamic symbolic execution identification. Another tool is sFuzz [254]

which applies a fuzzing testing technique. Solhint [281] and Ethlint [98] perform static

analysis to identify security issues and bad practices. The final tool is Mythos which applies

a combination of dynamic symbolic execution and fuzzing techniques.

4.3.2 Measurement of Negative Consequences of Design vulnera-

bility in Smart Contracts

Besides detecting vulnerabilities, it is also crucial to estimate the associated implications of

taking a shortcut by not fixing those issues. To this end, we adopt the notions of principal

and interest to quantify the debt cost and value related to each identified vulnerability in

a smart contract. Quantifying the cost and value of the security debts aids developers to

135



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

apply a cost-effective technique and justifies the investment in fixing security problems.

Estimation of Gas Cost (Quantifying the Principal)

Immutability in smart contracts restricts developers’ ability to patch vulnerabilities after

deploying the contract to the blockchain. The developer needs to upload a new version of

the contract after fixing those vulnerabilities, and this requires additional gas consumption

with the associated expenses. As a result, the need to refactor vulnerable deployed contracts

has financial implications.

Our aim is to calculate the gas consumption fee for redeploying a contract to estimate

technical debt principal (P). This estimation provides useful insights for developers regarding

the cost of repairing vulnerabilities in the deployed contracts. We use the following formula:

PSecurityDebt = Gas_D(c) +Gas_U(c) (4.1)

where Gas_D indicates the cost of gas required to deploy the repaired contract (c), and

Gas_U indicates the cost of the gas required to update the contract (c) for a given issue.

Gas Cost Required to Redeploy Repaired Contract. The cost of the gas

required for deployment depends on the size of the smart contract. The number of functions

(NoF) and lines of code (LoC) are both influencing factors. Each operation consumes a

specific amount of gas based on its complexity and resource requirements. More complex

operations, such as loops or heavy calculations, consume more gas. Similarly, when a smart

contract interacts with other contracts on the blockchain, it incurs additional gas costs. This

encourages developers to design contracts that minimise external interactions, reducing the

risk of introducing vulnerabilities or performance bottlenecks due to excessive inter-contract

calls.

The gas cost model provides cost predictability for users. Before executing a trans-

136



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

action, users can estimate the gas cost based on the anticipated complexity and external

interactions. This discourages the execution of overly complex code, as users would need to

pay more for these resource-intensive operations. This helps maintain network performance

by preventing excessive computational demands.

The uploading cost fee is computed using gas_price × gas_cost, where the former is

the value of a unit of gas as specified by the market, and the latter is mostly determined by

the summation of the following factors:

Gcreate, 32000 gas, paid for a CREATE operation,

Gtransaction, 21000 gas, paid for every transaction,

Gcodedeposit, 200 × |o| gas, paid per byte for a create operation, |o| amount of bytecode in the

compiled contract,

Execution costs, gas paid for necessary computation processes.

The last factor refers to the costs associated with the part of the code that requires

to be executed before the creation of the contract, such as initialising the state variables

whose values are permanently stored in the contract storage, and executing a constructor.

If the constructor requires a lot of computation to generate the bytecode, then there will be

an extra expense. Appendix G in the Ethereum yellow paper [365] shows the costs, in gas,

of several opcode operations.

Gas Cost of Update Pattern. Since redeployment results in a new contract with a

new address, an updated pattern needs to be utilised to avoid using the vulnerable deprecated

contract. The developer can use a self-destruct opcode, which costs Gselfdestruct = 5000

gas, to destroy the contract. Another option is to upload the main contract with a proxy

smart contract, which has a changeable variable that stores the main contract’s address.

Thus, once an updated contract version is released, the value of this version is updated.

137



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Estimation of Security Consequences (Quantifying the Interest)

In the security context, the interest value represents the undesirable effects that can result

if the vulnerability is exploited. The longer the exploitable design flaw remains unaddressed

in the deployed contract, the higher the chance the debt interest associated with this flaw

grows. Accordingly, three factors are considered when estimating the accumulated interest:

CWSS score, contract activity level, and contract lifespan.

CWSS Score. We adopted the CWSS to estimate the severity of identified weak-

nesses in a contract. The CWSS framework provides different scoring methods; in this study,

we use the targeted method, which assesses individual design weakness. Multiple factors are

used to quantify CWSS scores in smart contracts, such as mapping the vulnerabilities to the

related CWEs and the proposed design flaws categories. This information allows the nega-

tive impact on the contract in the case of an attack to be estimated. The estimated score

generated by CWSS allows for technical debt items to be visualised and those debts that

lead to more severe consequences to be addressed. In practice, addressing contract security

design issues early, in the pre-deployment stage, minimises debt.

The developer can use the OWASP method to accurately estimate the technical and

business impact factors of CWSS, in case vulnerabilities are exploited. This method suggests

dividing the technical impact into sub-factors aligned with the traditional security areas of

concern: loss of confidentiality, integrity, availability, and accountability. Similarly, the

method divides the business impact factor into sub-factors common to many businesses:

financial damage, reputation damage, non-compliance, and privacy violation.

Accumulated interest. Debt interest increases when exploited contracts become ex-

tremely common like, for example, the hacked Parity Multi-Sig Wallet contract [60]. This

was a smart contract for a multiple signature wallet that had a critical, exploitable vulnera-

138



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

bility, which allowed an attacker to steal millions of dollars. The debt interest also increases

if the exploitation of vulnerabilities in the contract has irreparable consequences, as is the

case with suicidal vulnerability. With this vulnerability, any arbitrary account can kill a

contract, causing it to stop functioning and locking its ether [338]. The accumulation of in-

terest associated with vulnerabilities in smart contracts is difficult to quantify; however, we

find that the activity level and the lifespan of the contract are useful for estimating interest

growth.

Contract Activity Level (CAL). CAL refers to the expected number of active

users and the number of transactions that a contract is expected to deal with. This factor

can be predicted from statistical information about contracts provided on websites, such

as State of the DApps [82], which is a website with a curated list of smart contract-based

applications. This website ranks the contracts and categorises them based on their activity

level. Statistical research [263] shows that the top three high-activity contract categories in

2020 are games, currency exchanges, and gambling.

Contract Lifespan (CLS). CLS refers to the time, measured in days, between the

contract’s deployment and its last execution. Most smart contracts live between 2 and 800

days [222], and the average age of smart contracts is 295.6 days [263]. A contract can be short-

lived, medium-lived, or long-lived [263, 222]. A contract is long-lived when it is expected

to be executed for a long interval or even for as long as the network exists. Conversely, a

short-lived contract is mostly designed to be executed for a limited time and then either

the interaction with it ends or it is destroyed. This type of contract typically includes

few operations, involves few fixed users, and has limited transactions. Thus, the security

implications of breaching this contract are not significant compared to a long-lived, highly

active contract in which there is interaction with thousands of customers and thousands of

transactions are accepted over a long period of time.

139



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Therefore, during the CLS period (i.e., before the contract reaches its maturity stage),

the accumulated interest (AI) of the security technical debt can be estimated as follows:

AISecurityDebt = CWSSscore× CAL× CLS (4.2)

Nevertheless, we acknowledge that some issues may go beyond, and the interest can be

adjusted accordingly. For this work, we focus on interest within the CLS period, as this

enables action to be taken before contract redemption to avoid the accumulation of issues

that are rooted in technical debt.

The developer can assign a point scale to each contract activity level category and

lifespan category. The multiplication of the scores of the three factors determines the accu-

mulated interest.

4.3.3 Replication Package for Replicability

The data source and replication package for our experiments are publicly available 1 to assist

in verifiability and reproducibility of our results. The package includes: (i) the complete

mapping of all aggregated design vulnerabilities and their rated CWE entries; (ii) the list

of all founded analysis tools; (iii) the set of vulnerabilities claimed to be identified by each

tool; (iv) details of inclusion criteria that were not met by each of the excluded tools; (v) the

dataset used in the experiment; and (vi) the detailed results of each step of the approach.

4.4 Experimentation

To demonstrate our approach, the following example shows how the steps of our approach

are performed to assess the potential security-related debts in smart contracts.
1https://bitbucket.org/Smart_Contract/assessing-smart-contracts-security

140



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.4.1 Experiment Setup

We collected a dataset of 16 representative vulnerable smart contracts that are either actual

contracts identified as vulnerable or explicitly programmed to demonstrate a specific vulner-

ability. This dataset comes from several publicly-available resources: (i) GitHub repositories

such as SWC Registry, not-so-smart-contracts [39], and Solidity-Security [234]; (ii) Ethernet

[326], an online game for smart contract attacking challenges; and (iii) blog.positive [311],

which publishes articles discussing vulnerabilities in smart contracts.

We intentionally chose a dataset of known vulnerable contracts to examine the ability

of the nine selected security analysis tools to identify vulnerabilities. Our selection of smart

contracts enables a discussion of their source codes and permits the publication of our results

for replication without users being involved in legal and privacy issues.

All the tools are installed and run on the same computer utilising Solidity compiler-

solc (v 0.7.1), under Ubuntu 18.04.5 operating system. Only sFuzz provides a web-based

interface for using the tool, then there was no need to install anything related to it.

4.4.2 Experimental Study

Figure 4.1 represents the overall procedure of our experiment.

Step 1.a. We first ran the automatic security tools against each contract in our

dataset to identify the design vulnerabilities. As mentioned in the previous Section, different

types of tools were selected to enhance the detection abilities of design vulnerabilities. We

started the operation process by running the tools that perform static analysis techniques.

After the static analysis has been completed, operating the tools that perform dynamic

analysis techniques was the next step for obtaining deeper results. We finalised the analysis

141



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Table 4.3: Experiment Dataset. For each Vulnerable Contract, We Provide Design Flaws

Categories of its Flaws (DFC), Number of Design Vulnerabilities (Vulns), and Lines of Code

(LOC).

Contracts DFC #Vulns #LOC

FindThisHash Front-Running 1 9

EtherLotto
Time Manipulation /

Bad Randomness
1 20

Roulette Time Manipulation 1 14

Lottopollo
Time Manipulation /

Bad Randomness
1 24

DosAuction DoS 1 13

SimpleToken
DoS /

Access Control Broken
1 65

Etheraffle DoS/ Bad Randomness 2 122

DosNumber DoS 1 28

AccessControl Access Control Broken 1 53

BlockdBuildDemo Access Control Broken 3 62

FunctionTypes Access Control Broken 2 18

OddEven Sensitive Data Exposure 1 22

Transaction_malleablity Sensitive Data Exposure 1 77

Token Arithmetic Issues 1 17

TokenSaleChallenge Arithmetic Issues 1 20

CEOThrone Improper Inheritance 1 21

142



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

by running the tool’s applied fuzzing techniques.

Step 1.b. We conducted a manual analysis to complement the previous step as the

selected tools could not detect all the known vulnerabilities in the dataset. We annotated

the known vulnerabilities and detected several other flaws that were not mentioned in the

online source with regard to the vulnerable contracts. We ended up with a set of possible

vulnerabilities that was composed of flaws not related to the design.

Step 1.c.&1.d. We checked the aggregated set of design vulnerabilities and the

aligned CWEs to only record the issues that belonged to that set. Each contract had one

or more vulnerabilities mapped in at least one of the design flaw categories. There were 20

distinct vulnerabilities in our dataset. Table 4.3 shows each collected contract, its name, the

categories of its flaws, the number of design vulnerabilities, and the lines of code.

Step 2.a. The cost fees required to deploy the patches contracts were calculated by

Formula 4.1 to quantify the technical debt principal. A self-destruct updated pattern was

considered when calculating the total gas cost. At the time of experimenting, the average

gas price was 126 Gwei, and Ether’s price was around $500 US.

Step 2.b. We estimated the security risk severity scores related to identified vulner-

abilities and weaknesses using the CWSS formula that explained in Subsection 4.2.2. We

used the OWASP method to estimate the technical and business impact sub-factors. Addi-

tionally, our proposed categories of design flaws support determining the technical impact

as each category shows the ramifications of the exploitation. In OWASP method, each sub-

factor has several scored options. We selected one of the options and then averaged the

scores for each factor, technical and business impacts, to decide their severity level.

There are other required factors to calculate the CWSS score, such as required priv-

ileges; authentication and access vector to perform the attack; and the acquired privilege

143



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Smart 
Contracts

Apply Security Analysis 
( Automated & Manual) 

Step 1.a & 1.b

Set of Vulner-
abilities

Identify and map design 
vulnerabilities to CWEs  

Step 1.c 

Estimate the severity of the 
consequences (CWSS score ) 

Step 2.b 

Estimate the growth 
rate (CAL & CLS) 

Step 2.b
Result = TD Principal 

and TD Interest 

Classify them into the 
design flaws category  

Step 1.d

Estimate the 
deployment fee  

Step 2.a  

Figure 4.1: Experiment Execution Steps

after accomplishing it. These factors were determined based on the information collected

about each vulnerability and the way of exploiting it. Additionally, the knowledge about the

vulnerable contracts and security analysis performed assisted in determining factors such as

finding confidence, the likelihood of discovery, and exploitation.

In addition to the CWSS score, the contract’s activity level and lifespan factors have

to be estimated to visualise the potential accumulated debt interest. A six-point scale is

used to determine the activity level, where six refers to the top three highly active contract

categories, and one refers to the lowest three categories. The ranking of the categories is

informed by the State of the DApps website. Since most smart contracts live between 2 to

800 days, we thus divided the lifespan into three intervals and gave each interval a score

as follows: (i) Short-lived, 1-266 days, 0.17 score; (ii) Medium-lived, 267- 533 days, 0.35

score; (iii) Long-lived, 534-800+ days, 0.5 score. The accumulated interest for each unfixed

vulnerability was calculated by Formula 4.2. The value of the final score is between 0 and 300.

Noticeably, we set those particular scores to clearly visualise how the interest could redouble.

However, smart contract developers can customise the scores based on their context.

144



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.5 Results and Discussion

In this Section, the collected dataset of some represented vulnerable contracts is analysed

and discussed with respect to our research questions. Additionally, we discuss the practical

implications of our findings and we outline the potential threats to their validity.

4.5.1 Identification of Design Vulnerabilities (RQ1)

Locating design vulnerabilities in smart contracts source code is the main step in our assess-

ment approach. Figure 4.2 presents the results of executing nine security analysis tools on 16

vulnerable contracts in order to locate their design vulnerabilities. It shows the percentage

of vulnerabilities that each tool was able to detect per design flaws category.

Nine tools, in combination, were only able to locate 70% (14/20) of all the vulnera-

bilities. Most of the tools were generally able to detect a high percentage of vulnerabilities

classified in the categories Time Manipulation, Improper Inheritance, and Bad Random-

ness. However, the tools underperformed when it came to identifying vulnerabilities of the

categories Front-Running and Sensitive Data Exposure. The nine tools failed to detect four

vulnerabilities linked to Access Control Broken, one vulnerability linked to DoS, and another

linked to Sensitive Data Exposure. Throughout the analysis, we observed that the output

of some tools was noisy, as they failed to disregard the false warnings and detected unreal

flaws.

Figure 4.2 indicates that the tools demonstrate different abilities to locate design

vulnerabilities. The tool Mythril surpassed all other tools as it was able to identify more

vulnerabilities in the 16 contracts than any of the others. Securify is the only tool that

detected the vulnerability, Transaction Ordering Dependency, linked to the Front-Running

145



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

category. Although the documentation of several tools such as Manticore claimed that they

could detect this vulnerability, they failed to identify it. Similarly, Smartcheck is the only tool

that identified the vulnerability, Unencrypted Private Data On-Chain, in the Sensitive Data

Exposure category. However, the output of Smartcheck does not reveal a clear explanation

of the identified flaws. Mythril and Mythos both provide informative output as they link

the identified vulnerabilities to related SWC. Securify resulted in the most confusing output

among all the tools because it showed a large number of false alarms.

Our study emphasises that conducting manual analysis to complement automated

ones is essential to discover most vulnerabilities. This is because, as our analysis experiment

shows, the scope of issues addressed by state-of-the-art tools is limited. Additionally, manual

analysis assists in eliminating false positives that might be detected by automated tools. In

fact, the accuracy of automated analysis tools needs to be increased by reducing the likelihood

of false-positive alarms that confuse the developers and discourage them from leveraging the

results. Even though an empirical study [101] claimed that combining different types of

analysis tools yields more vulnerability coverage, the existing tools are not powerful enough

to replace manual analysis. Bhardwaj et al. [34], who contrasted the outcomes of manual

penetration testing with automated test scanners, further confirm this assertion. The study

shows that manual vulnerabilities investigation outperformed the automated smart contract

tools in terms of precision and soundness of vulnerabilities detected.

The manual analysis provides a deeper understanding of the smart contract’s logic,

interactions, and underlying business rules. Complex attacks often exploit nuanced vulner-

abilities that automated tools might miss. Manual analysis can reveal hidden attacks by

examining how different parts of the contract interact in intricate ways. Moreover, complex

attacks often exploit zero-day vulnerabilities that have not been previously documented.

Manual analysis can detect these vulnerabilities by assessing the contract’s code, logic, and

interactions, filling the gap left by automated tools’ reliance on known signatures.

146



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Table 4.4: Overall Severity Level

Value

Cost High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

Manual analysis offers a critical layer of expertise that complements the capabili-

ties of automated tools. It addresses the limitations of automated tools in detecting complex

attacks. By combining automated tools and manual analysis, developers can achieve an effec-

tive approach to identifying and mitigating sophisticated security vulnerabilities. Therefore,

taking a shortcut by deploying the contract to the public without performing both auto-

mated and manual inspection processes might lead to invisible exploitable flaws that are

prone to attacks.

Through the analysis, all the detected flaws were found in our aggregated set of de-

sign vulnerabilities and their associated weaknesses. In contrast, some of these detected

flaws, including no restricted write and no restricted transfer, did not exist in the SWC Reg-

istry which provides a set of classified issues that come up in smart contract development.

Moreover, our proposed design flaw categories cover all the detected flaws, while the current

DASP taxonomy is not extensive enough to include all types of security design issues that

affect smart contracts. Unlike DASP, our classification includes vulnerabilities of the fol-

lowing categories: Sensitive Data Exposure, Using Components with Known Vulnerabilities,

Improper Inheritance, and Modularity Violation.

Classifying vulnerabilities based on their impact and mapping them to a wider group

of agreed-upon weaknesses (CWEs) come with several benefits: (i) it provides a common

147



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Figure 4.2: Identified Vulnerabilities per Category by each Tool.

language for defining security architectural design issues in smart contracts; (ii) it offers a

simple way to classify security issues in such contracts; and (iii) it generates useful insights

into the root causes of vulnerabilities, and the negative impacts posed by the exploitable

ones.

4.5.2 Estimation of Negative Consequences (RQ2)

The second step in our approach is to estimate the ramification of deploying vulnerable

contracts to the public blockchain in terms of debt principal and accumulated interest. Figure

4.3 shows the debt principal and interest of 10 vulnerable contracts from our dataset out of

16. The Figure represents the estimated monetary cost of refactoring each contract and the

value of the accumulated interest in relation to the effects of the vulnerabilities over time if

148



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Figure 4.3: Principal and Interest of Ten Vulnerable Contracts.

they are left unfixed.

For the sake of visualising and discussing the data, we have categorised the coor-

dinates of the (cost, value) points in the graph into three categories: high, medium, and

low, depending on their severity. Given the score for values in this range [0,300], we de-

fined (100<value<=200) as medium, values greater than 200 as high, and values lower

than or equal to 100 as low. As in our example the highest cost is $100.25, we defined

($33.33<cost<=$66.66) as a medium, a cost greater than $66.66 as high, and a cost lower

than or equal to $33.33 as low. The final degrees of severity are then derived from both the

cost and the value using Table 4.4. As such, vulnerabilities in contracts 2, 9, and 10 falls

into the high category; vulnerabilities in contracts 3 and 8 into the medium category; and

those in contracts 1, 4, 5, 6, and 7 into the low category.

Estimating the cost and value related to security violations in smart contracts facil-

itates decision-making regarding which issues need more attention when seeking to reduce

technical debt. For instance, a vulnerability in the CEOThrone contract is assumed to be

149



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

in the high category. The cost of gas required to fix the issue that has not been fixed before

deployment is 897,200, which is equivalent to $51 at the time of writing. The size of this

contract is relatively small compared to other contracts in our dataset. There is only one

operation in the constructor, and there are no state variables that need to be initialised.

However, the contract suffers from variable shadowing vulnerability, which occurs

when a variable declared within a child contract has the same name as a variable declared in

a parent contract. In the case of CEOThrone, this allows an unauthorised node to withdraw

the balance of the contract, leading to a significant technical and business impact. The

likelihood of discovering and exploiting this issue is also high since most of the analysis tools

were able to detect it. The vulnerability in this contract allows any attacker to gain the

required privilege to exploit it. CEOThrone is a contract created for a game and it can thus

be assumed that the contract will be highly active and have a long lifespan. As such, we

estimated the accumulated security debt interest for this contract at around 228.9, which is

a high score compared with other contracts.

Beyond the results of our experiments, employing our assessment approach helps

significantly reduce the cost of developing smart contracts, in particular in cases where

a contract is big and, as such, has a potentially higher cost, or in the case of fixing an

issue in a contract that requires modifying and redeploying other dependent contracts. We

provided a quantitative way of indicating the relative costs and values of publicly deploying

vulnerable contracts. Developers can thus make informative decisions before uploading a

contract to the blockchain. Additionally, they can prioritise the resolution of issues based

on the available quantitative information. Overall, the assessment approach presented here

supports reducing the introduction of unintentional debt caused by unawareness of security

issues rooted in smart contract design while increasing the visibility of such issues and helping

manage the debt more strategically.

150



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.6 Evaluation

We conducted an online survey with smart contract experts to assess the usefulness and

clarity of our proposed approach for assessing smart contracts’ security technical debts. The

experts were pragmatically choosing based on their expertise and experience that they stated

on their LinkedIn profile. We selected experts who had more than two years of experience in

developing smart contracts. We sent a link to the survey to 150 smart contact practitioners

and we received 20 responses. The participants were not asked for any personally identifying

information.

4.6.1 Survey Questions

Table 4.5 shows the eight questions we devised. The primary goal of the first question

was to understand the specific experience of the participant. A high percentage of the

participants are working as programmers, designers, and/or architects, while few participants

are working as decision-makers and/or researchers. One participant is working as an auditor.

The following questions (Q2 to Q7) were kept simple with the aim of encouraging participants

to justify the reasons for their answers. The purpose of these questions was to confirm the

benefits and clarity of our approach. The final question (Q8) was left open-ended in order

to gather suggestions for enhancing the approach.

4.6.2 Key Findings

The following are the key findings from the survey:

1. Understandability. The steps of our assessment approach, according to all of the par-

ticipants, are clear and understandable. One participant suggested assigning each of

151



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

the key steps an acronym to help people remember them.

2. Learnability. The majority of the participants agreed that the approach will be poten-

tially easy to use. One of the participants made the point that, in the case of complex

smart contracts, the approach’s implementation might become extensive. Addition-

ally, two participants also emphasised that some developers might need help learning

how to manually analyse smart contracts and that they might need to have a basic

understanding of each class of vulnerabilities beforehand. We acknowledge that some

of the steps might require a learning curve. To use automated tools or to conduct

manual analysis, for instance, some of the developers may require training. But after

they get past the learning stage, developers will become accustomed to the strategy

and be able to use it effortlessly each time they design smart contracts.

3. Usefulness. The participants affirmed that the proposed approach is useful for devel-

oping secure contracts. Three of the participants emphasised that early detection of

design issues is necessary as the impact of such issues might be substantial.

The participants affirmed that the approach is also useful in assessing the security

risk of smart contracts. Most participants also believed that the strategy helped make

security issues more visible. One participant made the observation that the developers

of the smart contract often fail to conduct a thorough examination of the contract’s

security; however, by adopting our steps, they will be aware of the potential security

issues and their effects.

All the participants affirmed that following our approach assists in designing secure

contracts compared with ad-hoc approach. One of the participants emphasised the

importance of dealing with smart contract security in a deliberate and structured

manner. Another participant added that our strategy aids in directing an in-depth

post-developmental analysis of the contract.

152



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Table 4.5: Survey Questions

ID Questions

Q1 What best describes your main role in the area of smart contracts?

Q2 Are the steps of the proposed approach clear and understandable?

Q3 Is the proposed approach potentially easy to use?

Q4 Is the proposed approach useful to support designing and developing secure contracts?

Q5 Is the proposed approach potentially useful in assessing the security risk of smart contracts?

Q6 Is the proposed approach potentially helpful in increasing the visibility of the security

design issues related to smart contracts?

Q7 Does the proposed approach add additional value in designing secure smart contracts

compared with doing so in an ad hoc manner?

Q8 What are your suggestions to enhance the suitability of our approach?

4. Potential improvements. One participant suggested predetermining the contract’s

scope and then deciding on the depth of the necessary analysis in order to expedite the

proposed approach. We agree that the type of contract application determines how

serious the security implications are. Therefore, we will incorporate this suggestion

into our current strategy. Another participant suggested broadening the approach and

making it applicable to contracts that are not Ethereum-based. Even though step 2.a of

our approach concentrates on Ethereum-specific tools, the other steps are transferable

to other (non-Ethereum) blockchains that support smart contracts.

Appendix 3 shows the participants’ answers in detail.

153



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.6.3 Threats to Validity

A potential threat to internal validity is related to the possibility of considering alternative

security flaws scoring methods. However, unlike other scoring systems, the CWSS can be

applied at the early stages of the development process. CWSS provides support if there is

incomplete information, as most of its factors have values for uncertainty and flexibility, such

as Unknown and Not applicable. Furthermore, CWSS facilitates a thorough estimation of the

security consequences of uploading vulnerable contracts. It considers 16 factors compared

to the only four factors in the risk rating of the OWASP method.

Another internal threat relates to the potential subjectivity of CWSS results. We

mitigated this possible risk as follows: (1) we proposed categories of design flaws that en-

able precise determination of technical impact; (2) conducting the security analysis creates

awareness of the ease and likelihood of discovering any flaws; (3) in the proposed estimation

Formula 4.2, the CWSS score is accompanied with smart contract activity level and lifespan

factors.

Another internal threat might be related to using a six-point scale approach to de-

termine the activity level of the smart contract. However, we consider this approach as

offering a balance between granularity and simplicity, facilitating more nuanced evaluations

and allowing for clearer distinctions between contract activity levels. These features make

it a useful tool for our assessment scenarios. Nevertheless, its effectiveness depends on the

context and objectives of the evaluation. Considering the pros and cons is essential when

deciding whether to use a six-point scale or another scale format to assess the security debt

interest.

There might also be an internal threat related to not mentioning the cost of develop-

ment efforts in the technical debt principal equation. However, the equation can be updated

154



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

if fixing the detected flaws leads to a total redesign of the smart contract application. The

developer can then update the equation by adding a factor that refers to the cost of the

development effort that is required to refactor and fix each identified vulnerability before the

redeployment.

A potential threat to external validity relates to the fact that the contracts we have

considered in our experiment are relatively small and simple (approximately 1.5KB) - the

typical size of commonly used contracts in practice as contracts are recommended to be

simple and not complex. Nevertheless, the same steps and analysis can scale up to larger

ones, often not exceeding 24KB in practice. Referring to our 10 out of 16 selected contracts

in our study, the estimated monetary costs required to pay for repairing them were not

significant. However, the quantitative approach provided for calculating the debt principal

is applicable to any size and type of smart contract. As mentioned earlier, the monetary

cost is dynamic as it depends on the gas price and the Ether price, either of which may

significantly increase. For instance, in January 2018 the price of Ether rose dramatically

to $1066 US. Hence, uploading even a small and simple contract might cost a significant

amount of money.

A potential threat to construct validity is the completeness of the aggregated set of

design vulnerabilities. We mitigated this risk by conducting a thorough inspection of the

academic papers, the Ethereum community, Wiki pages, and developers’ blogs. Nevertheless,

the set of vulnerabilities supplied is continually evolving because of the high potential for

the emergence of new exploitable security design flaws in smart contracts.

Another threat to construct validity is the number of experts who assess the clarity

and usefulness of our approach. Despite the evaluation’s limited scope, the participants

are all experienced smart contract practitioners or researchers with more than two years of

industry experience.

155



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.7 Related Work

We discuss closely related work, covering (i) smart contract vulnerabilities; (ii) empirical

evaluations of automated analysis tools that are relevant to our work; and (iii) security

technical debt.

Smart Contract Vulnerabilities. Previous studies have illustrated, discussed, or

surveyed various security vulnerabilities in blockchain and smart contracts. Li et al. [212]

reviewed the security vulnerabilities in blockchain, the corresponding attacks, and suggested

several security solutions, without differentiating between Bitcoin and Ethereum. Similarly,

the authors in [152], classified the security vulnerabilities based on blockchain generation.

They also provided a detailed explanation of known vulnerabilities and subsequent potential

attacks. Unlike these studies, we focus on design vulnerabilities in smart contracts run on

Ethereum. Other studies such as that of Atzei et al. [24], discussed 12 known vulnerabilities

in Ethereum smart contracts, and classified them into three categories based on the level

where they presented: the Solidity level, the EVM level, and the blockchain level. Simi-

larly, authors in [60] provided the same classification of vulnerabilities in Ethereum smart

contracts; however, they provided a more comprehensive list. In contrast, we aggregated

vulnerabilities caused by flaws in a contract’s architectural design, mapped them to their

related CWE entries, and classified them based on their impact.

Automated Analysis Tools. As several automated tools have recently emerged to

analyse the security of smart contracts, empirical studies have been conducted to compare

their real capabilities and the techniques used. Durieux et al. [101] carried out a system-

atic evaluation of several state-of-the-art automated tools and discussed their accuracy and

efficiency. We also followed a systematic method when it came to selecting the nine tools

that were used in the vulnerability identification process. But different from other studies,

we identified and analysed a set of tools able to discover a subset of design vulnerabilities.

156



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

Parizi et al. [270] performed an assessment of four static analysis tools with regard to 10

vulnerable smart contracts. In contrast, in our analysis, besides using static analysis tools,

we included tools that use dynamic or fuzzing techniques. Additionally, we analysed their

ability to identify design vulnerabilities on 16 vulnerable contracts. Leid et al. [202] com-

pared the effectiveness of symbolic and fuzzy testing tools by evaluating their effectiveness

when analysing smart contracts. Despite a large number of available automated analysis

tools, they only considered three tools in their assessment.

Security Technical Debt. The nature of work presented in this chapter is gener-

ally related to applying technical debt to raise the visibility of security risks, and the costly

consequences of deploying vulnerable smart contracts. Despite the vast contributions on

technical debt in software, only few studies have looked at security-related debts including

[168] [167] [260] and [291]. In particular, Izurieta et al. [168] established an approach to

prioritise security technical debt in a software system. This was related to CWEs entries by

leveraging the CWSS scoring systems. Unlike their approach, our study proposes a mech-

anism to estimate the accumulated debt interest, not only by using the CWSS score but

also by including the activity level and lifespan of the smart contract under consideration.

Additionally, we quantify the debt principle of refactoring the vulnerable contract. In [167],

authors mapped attack tactics to the related posed consequences of the exploitable vulner-

abilities. This helps to prioritise vulnerabilities that require the most attention to reduce

technical debt. In [260], the authors applied a preliminary experiment to show the correlation

between technical debt and software vulnerabilities. A recent study [291], regarding security

debt, discussed the concept of managing security risk by leveraging technical debt. They

emphasised that the combination of software security engineering techniques and technical

debt increases the security of software systems. By articulating security technical debts in

smart contracts, our study advances previous security technical debt research.

157



A Novel Approach for Assessing Smart Contracts’ Security Technical Debts

4.8 Summary

In this chapter, we have presented a debt-aware approach for assessing security design vul-

nerabilities in smart contracts. We used nine state-of-the-art tools to widen the detection

abilities of security design issues in smart contracts. We use the CWE catalogue when

analysing the identified vulnerabilities and their weaknesses. We adopted the community-

informed scoring mechanism to consider contract activity level and the contract lifespan. The

combination helps security software engineers to estimate the accumulated debt interests re-

lated to design vulnerabilities in a contract. Debt principal was quantified by calculating

the gas fee required to redeploy the patched version of a vulnerable contract. Experiment

results demonstrated that our approach can allow developers to visualise and prioritise tech-

nical debts, rooted in unaddressed smart contract design vulnerabilities. The approach can

increase the visibility of debts and their ramifications. We evaluated the proposed approach

based on expert judgment regarding its usefulness and clarity in guiding the architectural

design of secure smart contracts and recognising the consequences of potential security debts.

158



Chapter Five

Decision Support Model for Blockchain

Oracle Platform Selection

In Chapter 4, we propose a debt-aware approach for assessing security architectural design

issues in smart contracts at the early design stage. In this chapter, we assess security debts

that might be shipped to smart contracts from external third parties such as off-chain data

feeders, which are also known as blockchain oracles. As the number of oracle alternatives and

their features increases, the secure decision-making process becomes increasingly complex.

Thus, in this chapter, we provide a decision-support model for the oracle selection problem.

The model assists architects to compare and assess various platforms precisely and make a

secure, cost-effective and optimal decision.

5.1 Overview

Blockchain-based smart contracts run in an isolated environment, preventing data about the

situation and events in the real world from being acquired from outside the blockchain system.

Blockchains get their most desirable qualities, such as security and trustlessness, by being

159



Decision Support Model for Blockchain Oracle Platform Selection

purposefully isolated from external systems. Many smart contract applications, however,

cannot function without access to off-chain data sources, such as insurance smart contracts,

which rely on online data to make policy payout choices. A blockchain oracle is a component

that allows blockchains and off-chain systems to communicate. This component collects and

validates data from a variety of external sources and transmits it to the blockchain. As the

data that oracles supply influences how smart contracts behave, oracles have a significant

level of control over how the contracts are executed, which makes them less trustworthy as

a decentralised network component [48].

Numerous blockchain oracle platforms have emerged recently, such as Provable Things

[282] and Chainlink [107], and are utilised in a variety of smart contract applications. As

the number of available oracle platforms and their assessment criteria continues to grow,

the selection of oracle alternatives available increases complexity and makes taking wrong or

sub-optimal decisions more likely [232, 113]. These decisions become costly to fix because

switching from one oracle platform to another requires uploading the smart contracts to

the public blockchain, which is not free. For each deployment process, a specific amount of

money needs to be paid [225]. Moreover, incorrect or unjustified oracle selections result from

a failure to properly assess the available oracle platforms and they may also inadvertently

lead to hidden security risks [54].

This study provides a model to support decision-making when selecting blockchain

oracles. Our decision model is built using the multi-criteria decision-making (MCDM) ap-

proach [337], which involves evaluating a collection of alternatives while considering a set of

decision criteria. The model assists blockchain and security software engineers in selecting

an optimal oracle alternative to integrate into blockchain-based software. This model will

inform them of the existing collection of oracle platforms, the relevant decision criteria, and

quality attributes they should consider when building this software category. The presented

decision model includes reusable knowledge on various oracle platforms and features. This

160



Decision Support Model for Blockchain Oracle Platform Selection

knowledge can help blockchain software engineers and decision-makers understand the capa-

bilities of oracle systems, the features, and the quality attributes supported by each oracle

platform. Our model leverages the security technical debt metaphor to assess the ill conse-

quences of sub-optimal selection that manifest as a debt that will accumulate interest over

time [5]. Therefore, blockchain software engineers and decision-makers can assess each ora-

cle alternative systematically and make better-informed decisions, considering the monetary

cost of integrating and executing alternative options. This article’s primary contributions

are as follows:

• It introduces a blockchain oracle decision support model, which is among the initial

efforts to guide blockchain software engineers and decision-makers with the systematic

selection of a feasible, secure, and cost-effective oracle for specific blockchain applica-

tions or systems.

• It provides a compilation of information on the features and quality attributes of eight

cutting-edge blockchain oracle platforms to inform oracle selection decision-making

systematically.

• It leverages the security technical debt metaphor to quantify the security risks of pos-

sible attacks on the examined blockchain oracles, and assists in eliminating solutions

that can manifest into potentially costly and risky security technical debts. The model

uses a multi-objective optimisation valuation mechanism to assist in the selection of

the best alternatives, considering the monetary costs and security technical debts.

Our study represents a novel initiative in proposing an oracle decision model that

assists smart contract developers in analysing the security of each alternative oracle by using

well-informed decision-making. Previous research investigated and analysed only a small

subset of the features of blockchain oracles [48, 232]. Our contribution goes beyond existing

161



Decision Support Model for Blockchain Oracle Platform Selection

research to compile an extensive set of features of blockchain oracles, to describe how they can

be mapped to quality attribute requirements of the blockchain-based system under develop-

ment, and to calculate the monetary cost of integrating each of the available oracle options.

In contrast to previous efforts that described several attacks aimed against blockchain oracles

[113], this work categorises and evaluates the attacks based on their likelihood and potential

consequences and considers the domains of smart contracts in representative applications.

The remainder of the chapter is structured as follows. Section 5.2 introduces the

necessary preliminary explanations of blockchain oracles and technical debt, while Section

5.3 provides an overview of our research approach. Section 5.4 presents the decision model

for the oracle platform selection problem. Section 5.5 demonstrates two smart contract

applications that were analysed to evaluate the effectiveness of the decision model, followed

by an evaluation and a discussion of our results in Section 5.6 and Section 5.7, respectively.

Finally, Section 5.8 sets out the summary of our work.

5.2 Preliminaries

Smart contracts are self-executing computer programs that run automatically when certain

criteria are satisfied. Many smart contract applications built on blockchain technology, such

as Ethereum [365], need to interact with other external systems. Smart contracts may need

data such as price feeds, weather data, or even the generation of random numbers. However,

smart contracts cannot fetch the required data since it is not possible to access resources

outside of the blockchain environment [221].

Oracles can obtain and validate external data for smart contracts by using methods

such as web APIs or market data feeds. The oracle initially monitors the blockchain network

for off-chain data requests from users or smart contracts. It then interacts with the data

162



Decision Support Model for Blockchain Oracle Platform Selection

source to find the required data and it provides these data, and any associated proofs to

the smart contract on the blockchain for consumption [58]. Therefore, the execution of the

smart contract relies on the data retrieved from the data feed. Using an oracle introduces a

trusted third party to the decentralised, trustless blockchain environment. This leads to a

conflict between third-party oracles and the trustless execution of smart contracts regarding

security, authenticity, and trust.

Third-party or external dependency, which describes the use of any framework or

software developed by external parties, is one of the causes that contribute to technical debt

accumulation [236]. Technical debt is a metaphor devised to encapsulate how the value of

software engineering decisions evolves. Evidence shows that a great deal of software depends

on external parties to at least some extent, making it almost impossible to avoid incurring

this debt [84]. This is because reliance on external sources might lead to invisible issues,

such as security issues that might be transferred to the main product and make the entire

system prone to attacks.

In blockchain oracle selection, technical debt can manifest because of compatibility

issues between the chosen oracle platform and a specific application and/or the misconfigu-

ration of the oracle, which can lead to security, availability, reliability, or performance issues.

Technical debt can also be caused by selecting an oracle without proper justification, e.g., if

the features and services provided might not fully meet the use case’s requirements. These

issues could require re-selection, reconfiguration, or redeployment, introducing additional

costs and overheads.

In our model, we utilised the technical debt metaphor to assess the security issues

that are rooted in the oracle platforms and can affect the whole smart contract application.

Security technical debt has been shown to be an effective method for estimating the con-

sequences to the business value of the vulnerabilities that are being exploited [167]. Steep

163



Decision Support Model for Blockchain Oracle Platform Selection

accumulation of interest can be avoided if the debt is analysed at an early design stage [5].

Leveraging technical debt in our model benefits decision-making as it quantifies the impact

of security issues over time, encouraging the designers to slow down when selecting an oracle.

This allows them to select a secure and optimal oracle for their smart contract applications.

5.3 Research approach

The number of smart contracts oracle platforms and their features has recently expanded,

complicating the decision-making process when selecting them. Making optimal decisions

calls for smart contract developers to recognise the existing collection of alternatives and

understand their related features so that it is possible to compare and assess the various

platforms. Multi-criteria decision-making (MCDM) techniques can be leveraged to rank and

prioritise alternative options based on the required features and their relative importance. In

general, MCDM techniques involve six steps [230] including (1) determining the objective; (2)

determining various alternatives; (3) determining the criteria; (4) determining the weighting

approach; (5) applying the aggregate approach; and (6) using the aggregate findings to make

decisions.

MCDM processes can be executed using a variety of mathematical approaches, which

are chosen based on the nature of the problem and the amount of complexity ascribed to

the decision-making process. In this study, we extend the security technical debt equation

proposed in our previous study [5] to estimate the security consequences and quantify the

security debt interest. Our approach assists developers with recognising the security risks

and uncertainties associated with each alternative and supports them in selecting a secure

solution. In addition to security, we leverage Multi-Objective Optimisation (MOO) tech-

niques to analyse the cost of deploying and executing a contract. These techniques produce

164



Decision Support Model for Blockchain Oracle Platform Selection

a Pareto front optimisation, in which all the solutions are Pareto optimal [57]. This suggests

that no single solution is best for all purposes but rather a collection of alternatives with

various trade-offs among the competing goals.

Our systematic decision model is grounded in a document analysis of an extensive

review of the main sources of knowledge, i.e., the literature concerning smart contracts and

oracles. To build the decision model, we examined oracle data feeds from multiple resources,

including primary and secondary studies, white papers, and blogs. Expert interviews were

another source of knowledge used to refine and validate the decision model. We interviewed

five experts (three oracle co-founders and two domain experts). The interviews followed

a semi-structured interview protocol, presented in Appendix 4, and lasted between 30 and

45 minutes. We demonstrate how the decision model can be applied using two exploratory

theory-testing case studies. We support the decision model with a stability and sensitivity

analysis, which checks the extent to which the final decision can be affected when altering

critical factors.

5.4 MCDM For Blockchain Oracle Platform Selection

This section discusses the eight-step process used to formulate the blockchain oracle selection

decision support model. Three of the steps (namely five, six, and seven) were based on a well-

known decision support system proposed by Farshidi et al. [118]. Adapting these steps in our

context is feasible as they are applied to a decision model related to the blockchain platform

selection problem [119]. However, we contribute the other five steps. Detailed explanations

of each step are provided in the following subsections. First, the process of extracting,

organising, and arranging the information from various sources is explained in Subsection

5.4.1 Then in Subsection 5.4.2, we elaborate the aggregation equations that transform the

165



Decision Support Model for Blockchain Oracle Platform Selection

Figure 5.1: Decision Model Structure for Oracle Selection

criteria into a set of results to find the best-fit candidate oracle platforms. We also justify how

the multi-objective optimisation technique can be adapted to find secure and cost-effective

solutions. Figure 5.1 illustrates the main steps of our systematic model.

5.4.1 Knowledge Acquisition and Mapping

Expert interviews, online documentation, and literature studies were the primary sources of

information used to formulate the steps related to the knowledge acquisition and organisation

phase. We investigated the literature using the following search query: ’(Blockchain OR

Smart Contract) AND (Oracle OR Oracles OR Decentralised Oracle OR Data feed)’. Due

to the novelty of blockchain oracles and the industry’s rapid growth and development, we

166



Decision Support Model for Blockchain Oracle Platform Selection

Figure 5.2: Distribution of Chosen Studies Throughout the Document Analysis Phase

could not find many academic articles investigating them. Therefore, we also considered grey

literature as part of our knowledge-acquisition process. At the time of writing, around 45%

of the results found are academic papers, 26% are blogs and forum articles, 18% are white

papers and documentation of the platforms themselves, and 11% are collections of videos

that demonstrate how some platforms are used or that present interviews with developers

of some platforms explaining their features. Based on the selected sources of knowledge, we

observed that the investigation of blockchain oracles has gained more attention in the past

two years, as shown in Figure 5.2.

We implemented a document analysis procedure [70] for reviewing and examining

the selected sources of knowledge in order to derive information and insights regarding the

oracles. We created an extraction form that includes the following criteria to compile infor-

mation comprehensibly: oracle platforms, oracle features, related quality attributes, security

flaws, and potential attacks.

This section presents the five steps needed to acquire and organise the information.

Step One (Platform Selection): In addition to the extracted information from the

document analysis phase, we inspected GitHub repositories to identify oracle alternatives.

At the time of writing, we have identified 22 oracle platforms. All platforms and their sources

are publicly available [4]. Popularity is a key factor that we used to measure the suitability

167



Decision Support Model for Blockchain Oracle Platform Selection

of these platforms for inclusion in our decision model. Thus, two metrics are used to assess

the popularity of each oracle platform: recognition and activity.

Recognition refers to the degree of acceptance of the oracle platform by developers and

others. The recognition indicators that we used are the number of forks, the total number

of commits, and the number of stars in GitHub. GitHub forks denote the number of people

who have participated (or want to participate) in the oracle; the total number of commits

in GitHub denotes the development rate of the oracle; and the number of stars in GitHub

denotes the number of developers who like the oracle.

Activity tracks the extent to which developers and others use a particular platform.

The oracle is no longer popular when developers stop updating and enhancing it, or people

stop talking about it. As an indicator of activity, we use the number of commits in GitHub

in the previous month to express the development of the oracle platform since the previous

month. Additionally, we use the Keywords Everywhere tool [178] to find the monthly search

volume of the GitHub page and the main web page of the oracle platform if it exists. We

have made the indicator values of each metric public for interested readers [4].

Since this study is primarily concerned with smart contracts that run on the Ethereum

blockchain, we only considered the oracle platforms compatible with Ethereum. As a result,

based on recognition, activity metrics, and compatibility with Ethereum, we ended up with

eight oracle platforms which are: (1) Provable Things [282], (2) Town Crier[397], (3) Chain-

link [107], (4) Witnet [274], (5) BandChain [26], (6) Paralink [268], (7) Tellor [328], and (8)

iExec [164].

Step Two (Features Identification): We performed an iterative content analysis

method [46] to organise the information extracted from the interviews and the document

analysis into categories related to oracle features. These categories continued to evolve

as new concepts were identified in the sources. The insights from the sources allowed us

168



Decision Support Model for Blockchain Oracle Platform Selection

to identify 37 features, which were then categorised into 13 categories. Our sources and

extraction forms are publicly available [4]. Even though our model includes a large number

of features - 37 features - it allows decision-makers to adjust the selection to their own needs,

allowing analysts to focus on the most important features that have the potential to meet

the quality attributes of their blockchain-based application.

We briefly explain each category and its related features to prevent semantic mis-

matches throughout the oracle platform selection process.

1. Type of Oracle refers to the type of entities that provide data from an external source

to a smart contract. An oracle can be either centralised, semi-decentralised, or fully-

decentralised. A centralised oracle relies on a central authority with complete control

over the data being provided to the smart contracts. A semi-decentralised oracle relies

on a decentralised network of nodes, or a predetermined number of nodes in some oracle,

to provide data. Still, they also rely on a central authority or centralised infrastructure.

A fully-decentralised oracle relies on an undetermined number of decentralised nodes to

provide data, and it does not depend on any central authority to control or manipulate

the data.

2. Type of Data Source refers to the data sources that oracles use to collect the data

they send to smart contracts. A single-source oracle uses just one data source, while a

multi-source oracle uses numerous data sources.

3. Data Validation Mechanism refers to the process through which oracles verify that

the data submitted to the contract is accurate. Some oracles utilise a consensus-based

solution for data validation. Other platforms rely on a third-party approach and assume

the data source is trustworthy. A trusted execution environment is also used by a set

of oracles to ensure that data is processed and protected in a secure environment.

4. Integration Methods refer to the mechanisms for connecting an oracle to a blockchain

169



Decision Support Model for Blockchain Oracle Platform Selection

to provide data. Delivering the data to the contract can be completely off-chain, on-

chain, or hybrid.

5. Encryption Methods are used to ensure confidentiality when data is sent from ex-

ternal data sources to the oracles.

6. Data Feeders Selection Method ensures that the correct data is sent to the blockchain

by only including legitimate data feeders and excluding malicious ones. This technique

can be collateral-based (e.g., staking) or reputation-based. In the reputation-based ap-

proach, a reputation contract is generated to track the accuracy of the data provided

by each feeder. This helps in picking the best data feeders from all those available.

7. Aggregation Mechanism combines several data inputs into a single output. The

output quality is determined by the data feeders chosen and by the aggregate method

employed. Mean, median, and mode are the three most important aggregation statis-

tics. Weights can be used in the computation process to enhance the quality of simple

statistics such as the median and mode.

8. Dispute Resolution is designed to ensure the quality of the result and to provide

stakeholders with an opportunity to correct potential errors. Several resolution mech-

anisms are available such as staking, voting and statistical approaches. Staking-based

resolution incentivises the discovery of incorrect outcomes. In the case of a voting-

based resolution, any token holder can vote on disputed data, and the decision is not

limited to the data feeders. In a statistical approach, the median or the mode of the

values is calculated from a set of values proposed by different feeders. After the data

has been aggregated, statistical methods can be applied automatically and almost in-

stantaneously. Voting, on the other hand, involves human judgement, which may result

in more accurate results in complex situations.

9. Incorrect data can be either corrected or reverted. The new, uncontested value will

170



Decision Support Model for Blockchain Oracle Platform Selection

be reflected in the corrected data. Reversion means the result will be nullified, and the

system will have to start over to obtain a new outcome.

10. Incentive Schemes are intended to encourage feeder nodes to be truthful and provide

correct results to maximise their profits.

11. Punishment Methods, on the other hand, apply appropriate punishments to feeders

if the data they provide is shown to be incorrect. These may include banning, slashing,

or suffering a reputation loss.

12. Native Tokens are included with most oracle platforms. For example, Tellor has

the TRB token, whereas other solutions, such as Provable, have not introduced a new

token.

13. Using a Native Token in some oracle platforms such as Chainlink requires users to

use their token to request external data, while in the case of other platforms such as

Witnet, users are allowed to use Ether for the requesting transaction.

Step Three (Attack Surface): In addition to the information acquired through

the document analysis and the extracted information from the expert interviews, we use the

categories that we developed in Ahmadjee et. al [6] in which attacks that targeted centralised

and decentralised blockchain oracles were identified and classified. We use this classification

to categorise the attack surfaces. We have identified 12 distinct attacks that might target

the oracle. Table 5.1 offers a brief explanation of each attack, and shows which type of

oracle each of them targets. A set of attacks, such as front-running attacks [54], that target

both centralised and decentralised oracles. Other attacks, such as Sybil attacks [266], are

only applicable when a decentralised oracle is in use, while other attacks, such as flash loan

attacks [54] and Software Guard Extensions (SGX) attacks [400], target centralised oracles.

A ’flash loan’ is a transaction in which a borrower takes out a loan without collateral, uses

171



Decision Support Model for Blockchain Oracle Platform Selection

the money to complete specific tasks, and then repays the initial loan at the end of the

transaction. Otherwise, the transaction fails if the original loan is not repaid at the end of

the transaction.

It is important to note that some of the attacks, such as MITM attacks and data

manipulation attacks, might also target decentralised blockchain oracles. However, the de-

centralised nature of this type of oracle offers significant advantages in mitigating the impact

of these attacks and making them less effective. Decentralised oracles often rely on consensus

mechanisms, where multiple nodes must agree on the validity of data before it is accepted

by the smart contract. If one node attempts to manipulate data, it is likely to be flagged as

inconsistent with the data from other reputable sources. This distributed consensus makes

it extremely difficult for an attacker to manipulate data without controlling a significant

portion of the oracle network, making the attack less effective. Decentralised oracles also

often aggregate data from multiple sources to provide a more accurate and reliable result.

This aggregation process further reduces the impact of a MITM attack, as the manipulated

data from one source would be diluted by the data from other trustworthy sources. There-

fore, due to the inherent security features and architecture of decentralised oracles, which

provide several layers of protection against these types of attacks, decentralised oracles are

not considered prone to them in Table 5.1.

Step Four (Quality Attributes): As this study intends to assist in selecting se-

cure and cost-efficient oracle platforms, we identified a set of security quality attributes

that relate to blockchain oracles using the following sources: (i) the extracted form that

was derived in the document analysis phase, where several quality attributes related to the

blockchain oracle were determined; (ii) the NISTIR 8202 report [380] that presents infor-

mation about blockchain technology; and (iii) the ISO/TR 23455:2019 document [2] that

provides a detailed overview about smart contracts. The following security attributes were

found in these sources: confidentiality, integrity, availability, non-repudiation, authenticity,

172



Decision Support Model for Blockchain Oracle Platform Selection

and transparency. In addition to the security attributes, other criteria, such as cost efficiency,

latency, and accessibility are also considered. The oracles’ features were analysed based on

their impact on the quality attributes that had been determined.

Step Five (Mapping): This step concerns performing the mapping between the

set of Features (F) and the set of Platforms (P), and between the set of Qualities (Q) and

the set of Features (F) during the knowledge acquisition and organisation stage. To apply

the mapping, let P = {p1, p2, ..., p|Platforms|} be a set of blockchain oracle platforms in

the market (i.e., Chainlink and BandChain) and F = {f1, f2, ..., f |Features|} be a set of

features (i.e., Integration Methods and Incentive Schemes) of the oracle platforms. Each

p ∈ P supports a subset of features in the set F. The main objective is to select the most

secure and cost-effective oracle platform p that supports required oracle features.

According to the argument put forward by Farshidi et al. [118], the main sources of

knowledge in this step could be the documentation of alternatives, literature studies, and

experts’ knowledge. Thus, we determined the (PF) mapping between the sets of Platforms

and Features based on the information extracted from the sources of knowledge and expert

interviews. PF mapping is accomplished using a Boolean adjacency matrix (Feature ×

Platform → {0, 1}). PF (p, f) = 0 means that the oracle platform p does not support the

oracle feature f, whereas PF (p, f) = 1 means that the platform employs the feature. For

example, Provable, Town Crier, and Chainlink support the Encryption Method feature as

they can apply asymmetric encryption to the transmitted data, while the other platforms

do not. Figure 5.3.a represents a sample of PF mapping. Appendix 5 demonstrates the full

mapping.

The (FQ) mapping between the set of Features and the set of Qualities is determined

based on the extracted information form derived from the selected sources of knowledge,

expert interviews, and the reviewers’ expertise. Their expertise is assessed in the fields of

173



Decision Support Model for Blockchain Oracle Platform Selection

Figure 5.3: A Sample of the Mapping Between: a. the Boolean Oracle Features and Plat-

forms and b. the Boolean Oracle Features and Quality Attributes

software architecture evaluation, quality attribute and trade-off analysis, blockchain, and se-

curity. A Boolean adjacency matrix is used in FQ mapping (Quality×Feature → Boolean)

which means that each feature either provides or does not provide a specific quality attribute.

To reduce inherent biases in the mapping process, there are two reviewers that worked sep-

arately to map the qualities with the related features. The first reviewer is a PhD student

with expertise in the area of cybersecurity and software engineering. The other is a univer-

sity professor with extensive industrial experience (11 years) who works in the area of cloud

software engineering. Using Equation 5.1, we calculated Cohen’s Kappa (k) [320], which is

a statistical approach to assess the agreement between two reviewers deciding on the same

issue, as follows:

k = (Po − Pe)/(1− Pe), (5.1)

where Po is the probability of the observed agreement, and Pe is the probability of

random agreement. Based on our two different mappings, we got a Po of 0.96, and a Pe of

0.76 which produced a k of 0.83 indicating near-perfect agreement. Finally, three reviewers,

including a professor who is an expert in distributed and autonomous software engineering

174



Decision Support Model for Blockchain Oracle Platform Selection

discussed the overall mapping and resolved any disagreements. Another professor, who

created several highly influential methods and tools for architecture analysis used in the

software industry worldwide provided feedback. We have used Cohen’s Kappa to check for

disagreements and discrepancies in scores to elevate subjectivity and strive for consistency.

The FQ mapping does not affect the final results, but they do assist in the qualitative

assessment and profiling of the alternative solutions under consideration.

Figure 5.3.b shows a sample of a final FQ mapping. Zero has been assigned if the oracle

feature is prone to security threats that would likely have an effect on the quality attribute(s)

that are of interest. Otherwise, a value of one has been assigned if the likelihood of threat

is not evidenced in the review of the source of knowledge or further discussions on the case.

For instance, a centralised oracle introduces a single point of failure threat as it is prone to

denial of service attacks, which might affect oracle availability [113]. A decentralised oracle

resolves these issues as it contains several redundant oracle servers, which leads to better

availability. Additionally, as the Figure shows, the features provided by oracles can support

developers in acquiring many quality attributes that are of interest to them. For example,

the on-chain integration method, as an oracle feature, supports several quality attributes

such as integrity, availability, and transparency. Appendix 5 demonstrates the full mapping.

5.4.2 Inference Engine

This Section describes an inference engine that makes a secure and cost-effective optimal

decision by computing the score of the feasible oracle platforms and excluding the infeasible

ones; it ultimately recommends a ranked shortlist of feasible options. Steps six, seven, and

eight are involved with the inference engine.

Step Six (Weighting Method): This step aims to specify the importance of

175



D
ecision

Support
M

odelfor
B

lockchain
O

racle
P

latform
Selection

Table 5.1: Explanation of Attacks that Target Centralised (C) and/or Decentralised (DC) Oracle Types

Attack Explanation Oracle Type

Flash Loan Attack An exploitation of a smart contract’s security in which an attacker borrows a

large sum of money without requiring collateral and then manipulates a crypto

asset’s price on one market before immediately reselling it on another.

C

Man-in-the-middle A malicious actor intercepts the communication between the oracles and the

contract and alters or falsifies the data.

C

Denial of Service Attackers flood the data source with requests to slow it down or they prevent

other users from using oracle’s server by congesting the whole network.

C

SGX Attack Executed by extracting attestation keys signed by Intel from SGX’s private

quoting enclave. The attacker can impersonate real Intel machines by signing

arbitrary SGX attestation quotes.

C

Data Manipulation When the data that the oracle collects has been tampered with at the data

source.

C

Front Running The transparency of data collected by oracles is used for personal gain. C and DC

Malfunctions Circumstances in which oracles offer skewed data despite the source being reli-

able and trustworthy.

C and DC

Sybil Attack The Sybil node manipulates the decentralised oracle platforms to obtain the

most votes by replicating their votes to gain a higher weight when compared to

others.

DC

Continued on next page

176



D
ecision

Support
M

odelfor
B

lockchain
O

racle
P

latform
Selection

Table 5.1 Explanation of Attacks (Continued from previous page)

Attack Explanation Oracle Type

Mirroring To assure the lowest cost of data gathering and the best possibility of selling

the data to the client platform, the Sybil node gathers the data once and then

distributes it to other nodes under its control.

DC

Freeloading When a malicious entity duplicates data retrieved by another entity without

making an effort to obtain the data itself.

DC

Spam Attack An attack that drains the data feeder’s balance with high gas fees. DC

Sidechain Oracle Attack An attacker can take control of oracle nodes in a sidechain to manipulate the

data the oracles report and to change the outcome of smart contracts on the

sidechain.

DC

177



Decision Support Model for Blockchain Oracle Platform Selection

each feature. Similar to Farshidi et al. [118], the MoSCoW [67] prioritisation technique

is utilised to assign priority weights (W) to the oracle features. We employed this technique

due to its simplicity, suitability for medium-to-large features and lack of complexity [179]

[341]. WMoSCoW refers to four categories: wMust_have, wShould_have, wCould_have,

wWon’t_have where ∀w ∈ WMoSCoW ; 3 ≥ w ≥ 0. We assigned a specific score to each

category to be able to rank platforms based on numerical values. Thus, must-have and

won’t-have oracle features are given priority weights of 3 and 0, respectively, and act as

hard constraints, while the features with should-have and could-have priorities are weighted

2 and 1, respectively, and act as soft constraints. A potential oracle platform must support

all oracle features with must-have priorities, but not the features with won’t-have priorities.

For example, if the decision-maker assigns must-have priority weight to the decentralisation

feature, would mean that Provable Things and Town Crier, as centralised oracles, would be

excluded from the ranked shortlist of potential platforms.

Step Seven (Score Calculation): The possible oracle alternatives are ranked by

the inference engine based on their estimated scores using Equations 5.2 and 5.3.

• The Weight Sum Model (WSM) [385] equation is applied to each supported oracle

alternative to prioritise the oracle platforms based on the selected features. It is for-

mulated as follows:

n∑
i=1

Wi ∗ ScorePF (i), (5.2)

where n denotes the number of features, Wi represents the weight assigned to the feature,

and ScorePF (i) represents the Boolean score of mapping the Features and Platforms set (PF).

Note: If the resulting ranked list is large, the decision-maker can select certain threshold

platforms and then apply the equation 5.3 to them.

178



Decision Support Model for Blockchain Oracle Platform Selection

Step Eight (STDI Values and Monetary Cost Estimation):

• The Security Technical Debts Interest (STDI) equation, proposed by Ahmadjee et. al

[5], is adapted to estimate the security consequences of each oracle alternative. It is

formulated as follows:

STDI = CL ∗ CAL ∗ SR, (5.3)

where Contract Lifespan (CL) refers to the time, measured in days, between the contract’s

deployment and its last execution. The followings are the durations and corresponding

weights: (i) Short-lived, 1-266 days, 0.17 score; (ii) Medium-lived, 267-533 days, 0.35 score;

(iii) Long-lived, 534-800+ days, 0.5 scores.

Contract Activity Level (CAL) refers to the expected number of active users and the

number of transactions that a contract is expected to deal with. A six-point scale is used to

determine the activity level.

The Security Risk Value (SR) is calculated as follows:

SR = Likelihood ∗ TI ∗BI, (5.4)

where Likelihood is the mean of the attack likelihood factors, based on the OWASP [267]

risk rating methodology.

Technical Impact (TI) is the mean of the TI factors, based on the OWASP [267] risk

rating methodology.

Business Impact (BI) is the mean of the BI factors, based on the OWASP [267] risk rating

methodology.

Note: In the context of security, the debt interest value describes the negative conse-

quences of exploiting a vulnerability. The longer the exploitable design flaw goes unresolved

179



Decision Support Model for Blockchain Oracle Platform Selection

in the deployed contract, the higher the risk of interest accruing as a result of the flaw.

We propose a public framework that uses the aforementioned equations to help decision-

makers quantify, estimate, and prioritise oracle alternatives.

Finally, by adapting multi-objective optimisation to apply cost-value trade-offs, the

inference engine offers secure and cost-effective optimal solutions. The application of multi-

objective optimisation techniques supports the selection of a set of secure and cost-effective

solutions rather than one solution, as there is no unique option that can be the best fit

with respect to security and low-cost objectives. The identified set of results is known as

a Pareto-optimal solution [59]. Simple non-dominated sorting algorithms can be utilised to

implement a vector ranking method that detects and indicates the elitism of each solution

within a set of alternatives and returns a set of non-dominated solutions.

To clarify the application of the MOO technique and the related algorithms, we

executed price feed smart contracts that fetch the Ethereum price from external sources

and feed it to the contracts using several blockchain oracle platforms. This implementation

allows us to recognise and compare the costs of deployment transactions and calling oracle

transactions. The costs are calculated by adding the contract’s deployment cost to the cost

of a transaction that requests external data from an oracle. The cost required for deployment

depends on the size of the smart contract and the part of the code that needs to be executed

before the creation of the contract. The more complex the contract is, the higher the required

cost. Interested readers can find a detailed explanation of the deployment cost in [5].

The cost of the oracle transaction mostly depends on the data validation mechanism’s

features and the number of data feeders participating in the validation process. Using a

decentralised oracle requires two transactions to request data from an external source: the

first transaction is responsible for sending tokens to the contract to be able to successfully

implement the second transaction, which is requesting the price through the oracle. Table

180



Decision Support Model for Blockchain Oracle Platform Selection

5.2 shows the cost prices, in ETH, that are required to integrate each oracle alternative. For

the sake of visualising and discussing the data, we have converted the costs to dollars after

adding the cost of deployment to the cost of requesting data for each oracle alternative.

The values are the results of the STDI equation (Equation 5.3) for each oracle plat-

form. We estimated the STDI of each attack identified in step three, and the results are

presented in Table 5.3. The likelihood and the impact factors were estimated based on the

smart contract context and on the facts presented in the sources of knowledge that we used in

previous steps. If the attacks have been successful, the corresponding likelihood estimation

scores are higher than for unsuccessful attacks. Also, the quantified impact scores are higher

if the attacks lead to catastrophic consequences. For instance, in November 2020, Cheese

Bank was attacked for $3.3 million as a result of flash-loan attacks [273]. Other attacks

such as mirroring [329] and freeloading [329] have not yet been successful. However, if these

attacks do take place, the integrity of the entire system might be affected. We assume that

the price feed contract is long-lived and that the contract is highly active. The explanations

and scores for each factor are presented in detail in our public framework [4].

We added estimated values for the attacks that targeted centralised oracles and the

values for the attacks that targeted decentralised oracles. For Chainlink, in addition to the

total of STDI values for the decentralised oracle, we added the estimated value of SGX attacks

because Chainlink supports SGX in its implementation. Sidechain oracle attacks mostly

target BandChain as it uses the sidechain mechanism to provide cross-chain compatibility.

Thus, for BandChain the estimated value of sidechain attacks was added to the total of STDI

values for the decentralised oracle. The costs in dollars and STDI values of six blockchain

oracle platforms are presented in Table 5.4.

To find the Pareto-optimal solutions, we need to select the solutions with minimum

cost and minimum STDI value. If we compare Provable and Tellor, we notice that while

181



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.2: Deployment and Transactional (tx.) Cost of Integrating each Oracle Platform

Oracle Platforms Deployment Cost Tx Execution Cost

Provable 0.00161819 ETH 0.000299591 ETH

ChainLink 0.001632422 ETH 0.000306035 ETH

Witnet 0.003937 ETH 0.0075315 ETH

Tellor 0.002345111 ETH 0.00045238 ETH

BandChain 0.0052231 ETH 0.000400999 ETH

iExec 0.0072231 ETH 0.000372546 ETH

Provable is better from the cost perspective, Tellor is better from the security angle. How-

ever, if we compare Tellor with Witnet and iExec, we notice that Tellor is equal to them

in STDI values, but better than both of them in terms of cost. Tellor is better than Band-

Chain in terms of both security and cost. Hence, Tellor dominates Witnet, BandChain, and

iExec. Similarly, Provable dominates Chainlink as it is better in terms of both security and

cost. Therefore, Tellor and Provable form a non-dominated set, and they are Pareto-optimal

solutions in the price feed smart contract example.

The inference engine finally offers a shortlist of feasible oracle platforms based on

selected features, security assessment, and monetary cost analysis. However, decision-makers

can apply MOO analysis to perform further investigations, such as performance vs cost, to

find the best fitting blockchain platform for their application.

5.5 Application of the model using two case studies

Two case studies of non-trivial scale were selected. The first describes the case of dynamic

legal agreements [293], which are smart contracts that can adapt and respond to unpre-

dictable events and which were used during the COVID era (described in Subsection 5.5.1).

182



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.3: STDI Quantification of Attacks for Price Feeds Smart Contract

Type of Oracle Attacks Likelihood TI BI CAL CLS STDI

Centralised

Data Manipulation 0.58125 0.475 0.45 5 0.5 1.344140625

Flash Loan Attacks 0.46875 0.475 0.4875 5 0.5 1.127929688

Man-in-the-middle 0.3375 0.65 0.43125 5 0.5 0.912304688

Denial of Service 0.3375 0.625 0.45 5 0.5 0.90703125

Front Running 0.46875 0.375 0.35625 5 0.5 0.856933594

Malfunctions 0.525 0.225 0.4125 5 0.5 0.83671875

SGX Attacks 0.39375 0.6 0.39375 5 0.5 0.978222656

Dcentralised

Denial of Service 0.28125 0.475 0.13125 5 0.5 0.426269531

Front Running 0.46875 0.425 0.35625 5 0.5 0.915527344

Sybil Attacks 0.28125 0.425 0.4125 5 0.5 0.588867188

Mirroring 0.28125 0.475 0.4125 5 0.5 0.588867188

Freeloading 0.28125 0.475 0.4125 5 0.5 0.624023438

Malfunctions 0.525 0.325 0.4125 5 0.5 0.96796875

Spam attacks 0.4875 0.525 0.3 5 0.5 1.00546875

Sidechain oracle attack 0.5438 0.7 0.3938 5 0.5 1.4868164

Table 5.4: Final Cost and Security Value of Oracle Platforms

Oracle Platforms Cost Value (STDI)

Provable $8.37 5.941113281

ChainLink $8.44 6.09521484375

Witnet $45.87 5.1169921875

Tellor $11.19 5.1169921875

BandChain $22.49 6.603808594

iExec $30.38 5.1169921875

183



Decision Support Model for Blockchain Oracle Platform Selection

The second case concerns decentralised auction applications [264] that capture the interac-

tions between auctioneers and bidders (described in Subsection 5.5.2). Both cases leverage

blockchain oracles, where the decision on selecting oracles is of paramount importance for

dependable operations. In our analyses of these cases, we use the guidelines recommended

by Per and Martin [296] and the framework proposed by Ebneyamini et al. [105] to ensure

clarity in the exposition and potential for replication and reproducibility, as described below:

1. Objectives of the case studies: Our objective for presenting the case studies is

to show how the blockchain oracle decision model can be applied in practice and to

examine the applicability of the model in more than one case study. This allows us to

ensure the usefulness of the proposed decision model for the oracle selection problem.

2. Reasons for the use of case studies: We intentionally selected two smart contract

projects as case studies as both will need to employ oracles that are suitable and

effective fits for their applications. Even though the first case study employed an

initial oracle platform, as the authors stated in the documentation, they are looking to

integrate another oracle platform to improve the application. The second case study’s

developers, however, have not decided which oracle platform to employ. Therefore,

applying our decision model could assist in the selection of a feasible, secure, and cost-

effective oracle platform for both applications based on the features that the developers

state in the documentation.

3. Methods of gathering data: We searched for multiple sources such as documents,

white papers, academic papers, and repositories. These data sources allowed us to

learn which oracle features are desirable and which specifications are required for each

case study application. This is known as the third-degree method with regards to data

collection [296], where available data is analysed and compiled independently without

direct interaction with subjects. For the first case study, we were able to find several

184



Decision Support Model for Blockchain Oracle Platform Selection

sources for data collection [293, 349, 350, 348], while for the second, we were only able

to find one source [264].

4. Data analysis: Before we started the analysis process, we compiled the available data

and prepared a template in an excel sheet where the oracle features could be filled in

based on the extracted data. The analysis was done by one reviewer and reviewed

by the other reviewers. For both applications, we assume the blockchain is the best

fitting technology because we are only interested in the selection and integration of

oracle platforms. The oracle feature requirements were specified for both applications

according to the MoSCoW priorities as shown in Table 5.5. Then, the inference engine

recommended feasible solutions based on feature priorities and Pareto-optimal solu-

tions. Finally, we compared our decision model outcomes with outcomes using ad-hoc

methods.

The remainder of this Section describes the applications in both case studies and discusses

the outcome of applying the decision model.

5.5.1 Application one: Dynamic Legal Agreements (DLA)

A dynamic legal agreement [293] is a smart contract that can adapt and respond to an un-

predictable event with severe consequences, such as the COVID-19 pandemic. The contract

needs to employ an oracle to fetch the required data regarding the event, such as the rates

of virus infection and transmission, from external sources and feed it to the contract. There-

fore, the agreement can be adapted based on the provided data. An example might include

a service level agreement relying on the supply of goods being limited due to the closure

of a production line. This application is implemented using the Provable oracle platform.

However, as mentioned above, the developers are looking to integrate another oracle plat-

185



Decision Support Model for Blockchain Oracle Platform Selection

form to enhance the application. Thus, applying our decision model assists in the selection

of a feasible, secure, and cost-effective oracle platform for the DLA contract based on the

features that the authors state in the documentation.

The DLA application was developed by the CTO-in-Residence at the UCL School of

Management and a business analyst, who collaboratively contributed to providing contrac-

tual certainty in an uncertain time. They wrote a discussion paper [293] that was published

by the UCL Centre for Blockchain Technologies and participated in a hackathon [350, 349]

where all their code was made public in online repositories [348].

The following are some of the expected application functionalities and related ora-

cle feature requirements extracted from the available sources. The MoSCoW technique is

utilised to assign priority weights (W) to the desirable oracle features.

1. Since the developers of the DLA application wanted to update the application and employ

multiple entities to provide data, integrity, trustlessness and availability of the fetched data

needs to be ensured. A fully-decentralised oracle is a suitable type, and it is considered a

must-have feature. A semi-decentralised oracle is prioritised as could-have, while won’t-have

priority weight is assigned to a centralised oracle.

2. The developers aim to get the most accurate data for the contracts to use. Integrity,

therefore, must be ensured. This type of application requires retrieved data to be trustless

and available as the data needs to be sourced from multiple trusted sources. Therefore,

multiple sources need to be leveraged and prioritised as a must-have. A single source is

considered a could-have feature.

3. The developers’ intention is to avoid centralisation in the updated application to better

meet qualities like security, availability, and fault tolerance. Hence, a trusted third-party

is considered a won’t-have feature as it introduces centralisation to the application. A

consensus-based solution is a must-have feature as it is more applicable to decentralised ap-

plications. A trusted execution environment can be utilised if the data needs to be processed

186



Decision Support Model for Blockchain Oracle Platform Selection

in a protected environment. This feature is therefore considered a could-have.

4. The developers aim to provide a means of transparency in the application. Thus, on-chain

integration or hybrid integration are the suitable integration methods and are prioritised as

should-have, while off-chain integration is prioritised as won’t-have.

5. The application does not have strict requirements for data confidentiality and sensitivity.

Therefore, both symmetric and asymmetric encryption methods are prioritised as could-have

oracle features.

6. Since the integrity and correction of the data are important in DLA applications, staking

and reputation can be leveraged as selection methods for data feeders, and they are both

considered must-have features. The remaining features, such as PoW, PoCo, random, and

pseudo-random, can be considered should-have features as they will increase the integrity of

the data even if they lead to transaction latency because the speed of transactions in the

DLA application is not a crucial issue.

7. The median aggregation mechanism is a should-have feature in the DLA application as

most of the required data is numerical, such as the number of infections. However, some non-

numerical data, such as time periods for restrictions to be started, might also be required,

and mode is more suitable for use on non-numerical data. Therefore, applying the statistical

approaches and letting the data requesters select a suitable method based on the nature of

the external data is more appropriate. Thus, statistical approaches are also a should-have

feature, and the rest of the aggregation methods are considered could-have features.

8. To ensure the quality of the result, dispute resolution based on staking is a more feasible

solution as it enforces the feeders to behave honestly. Otherwise, they could suffer economic

loss by having their stake slashed. Therefore, staking and slashing are should-have features

as dispute resolution and punishment methods, respectively. Additionally, a statistical ap-

proach can be employed in combination with staking by slashing the collateral of the feeder

if the data deviates from the median by some threshold. Data feeders can be punished not

only by losing their collateral tokens, but also by reducing their reputation rank on the rep-

187



Decision Support Model for Blockchain Oracle Platform Selection

utation registry. The loss of tokens is an immediate penalty, but the loss of reputation may

influence future revenue. As a result, the statistical approach and reputation loss are could-

have features for dispute resolution and punishment, respectively. Banding is considered a

could-have feature.

9. Since the speed of the transaction is not crucial in the DLA application and the integrity

of the data is important, correction is a should-have feature for dispute data. Data correc-

tion demands the submission of new data, followed by a decision taken on all the options.

A could-have priority is assigned to the revision feature.

10. A reward incentive scheme is a should-have feature as all decentralised oracle platforms

use rewards as an incentive to encourage data feeders to be honest. Similarly, the existence

of a native token is a should-have feature as each decentralised oracle has its own token.

11. The DLA application has no strict requirements regarding which token is used when

requesting external data. Thus, a could-have priority weight is assigned to both features

(required and not required).

5.5.2 Application two: Decentralised Auctions (DA)

This decentralised auction application [264] is a blockchain-based solution that uses an

Ethereum smart contract, a decentralised storage system, and oracles to capture the inter-

actions between auctioneers and bidders. The oracle acts as an external timer that indicates

the bidding start and end times of the contract. Even though the developers of the DA

application have discussed and analysed it in detail in their paper, they have not specified

which oracle platform will be integrated into their application. Our blockchain oracle selec-

tion decision model can overcome guesses and ad hoc practices; should it be used in similar

contexts, it can provide systematic means for informing the selection of more secure and

cost-effective oracle alternatives that can be integrated into the Ethereum DA application.

188



Decision Support Model for Blockchain Oracle Platform Selection

The auction application project was proposed by five researchers — three professors

and two research associates — whose work was supported by the Research Center for Digital

Supply Chain and Operations Management at Khalifa University. Although we were only

able to find their published academic paper [264] regarding the auction application, we were

able to extract the main oracle requirements from the paper. However, we would have

preferred to have had access to multiple sources of data as this would have been more useful.

The criteria and the required oracle features that were stated by the developers of the

DA application in their paper are listed below. The MoSCoW technique is utilised to assign

priority weights (W) to the oracle features.

1. The main objective of the DA developers was to avoid placing trust in a single source to

avert having a single point of failure. Applying a centralised oracle would reintroduce this is-

sue to a decentralised environment. Therefore, a fully-decentralised oracle is a suitable type,

and it is considered a must-have feature, while a semi-decentralised oracle and centralised

are considered could-have and won’t-have features, respectively.

2. The DA application also tries to avoid using a single source for its time data to increase

availability, integrity, and trustlessness. Thus, multiple sources need to be leveraged and

prioritised as a must-have. A single source is considered a could-have feature.

3. Since third party intermediaries need to be eliminated, a decentralised environment

needs to be established in the DA application. Therefore, a trusted third-party is considered

a won’t-have feature and a consensus-based solution is a must-have feature as it is more

appropriate for decentralised applications. A trusted execution environment is a could-have

feature as it could be useful if the data needs to be processed in a protected environment.

4. Enhancing transparency and tractability of online auctions are the main objectives of

developing the DA application. Thus, on-chain integration or hybrid integration are the

suitable integration methods and are prioritised as should-haves, while off-chain integration

is prioritised as won’t-have.

189



Decision Support Model for Blockchain Oracle Platform Selection

5. The application does not have strict requirements for data confidentiality and sensitivity.

Therefore, both symmetric and asymmetric encryption methods are prioritised as could-have

oracle features.

6. Since the developers of DA intend to address the core security concerns related to data

integrity in online auctions, both staking and reputation are considered must-have features

that can be leveraged as selection methods for data feeders. Although applying the remain-

ing features, such as PoW, PoCo, random, and pseudo-random, increases the integrity of

retrieved data, it also increases transaction latency which the DA application requires to be

low. Thus, a could-have priority is assigned to these features.

7. In the DA application, time is calculated using the Unix epoch time in Solidity, which

considers time as a number. Thus, the median aggregation mechanism is a should-have

feature in the DA application as it is more suitable for numerical values. The rest of the

mechanisms are considered could have features as they might be applied if time were to be

treated as a string.

8. The DA developers refer to the necessity of employing an oracle platform that rewards

truth-reporting nodes while punishing malicious nodes in the network. Therefore, a rewarded

incentive scheme is a should-have feature. Slashing and reputation loss punishment methods

are also should-have features, while banding is a could-have feature.

9. Since transaction speeds are crucial in the DA application, data reversion is a should-

have feature for dispute data as it is faster and less complex than data correction, which is

considered a could-have feature.

10. To ensure the quality of the result, dispute resolution based on staking is a more feasible

solution as it enforces the feeders to behave honestly. Otherwise, they could suffer economic

loss by having their stake slashed. Therefore, staking is a should-have feature for dispute

resolution. Additionally, a statistical approach can be employed in combination with staking

by slashing the collateral of the feeder if the data deviates from the median by some thresh-

old. Thus, the statistical approach is a could-have feature for dispute resolution.

190



Decision Support Model for Blockchain Oracle Platform Selection

11. The existence of a native token is a should-have feature, as each decentralised oracle

has its own token.

12. The DLA application has no strict requirements regarding which token should be used

when requesting external data. Thus, a could-have priority weight is assigned to both fea-

tures (required and not required).

5.5.3 Results and Analysis

The blockchain oracle features were specified according to the MoSCoW priorities. Then,

the inference engine of the oracle decision support model identified optimal solutions for

each application. Table 5.6 shows the oracle alternatives along with their calculated scores

based on WSM. The Table also indicates the Pareto-optimal solutions for each application.

Although the estimation of STDI factors was based on the attack information extracted in

Step 4, certain factors, including some security risk factors, Contract Lifespan and Contract

Activity Level, might need to be updated based on the application context. STDI calculations

for each application are presented in detail in our public framework [4]. The monetary cost

of integration for each oracle is demonstrated in Table 5.3.

Based on the oracle features that we extracted from the DLA documentation, the

oracle decision support model assigned the highest score to the Tellor oracle platform. Tellor

supports all the must-have, and most of the should-have and could-have, oracle features.

Moreover, Tellor is one of the Pareto-optimal solutions as it is more secure and provides a

better cost-benefit than any of the other decentralised solutions. The second most feasible

oracle platform is iExec, which has higher scores than the BandChain, Chainlink, and Par-

alink platforms. The Witnet platform is excluded as it does not support one of the must-have

features, which is the staking method for data feeder selection. Provable and Town Crier

are also excluded as they do not support more than one of the must-have features, such as

191



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.5: Entire List of Oracle Features of the Two Case Studies

MoSCoW Dynamic Legal Agreements Decentralized Auctions

Must-have Fully-decentralised oracle Fully-decentralised oracle

Multiple sources Multiple sources

Consensus-based solution Consensus-based solution

Stacking and reputation Stacking and reputation

Should-have On-chain On-chain

Hybrid Hybrid

Median aggregation mechanism Median aggregation mechanism

Statistical measure Rewarded incentive scheme

Stacking dispute resolution Stacking dispute resolution

Slashing punishment Slashing punishment

Data correction Data reversion

Rewarded incentive scheme Reputation loss

PoW, PoCo, random, and pseudo-random Existence of a native token

Existence of a native token

Could-have Single data source Single data source

Semi-decentralised oracle Semi-decentralised oracle

Trusted execution environment Trusted execution environment

Symmetric and asymmetric encryption Symmetric and asymmetric encryption

Mode aggregation mechanism PoW, PoCo, random, and pseudo-random

Mean aggregation mechanism Mode aggregation mechanism

Voting aggregation mechanism Mean aggregation mechanism

Reputation loss Voting aggregation mechanism

Banding Statistical aggregation mechanism

Continued on next page

192



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.5 Entire List of Oracle Features of the Two Case Studies (Continued from previous page)

MoSCoW Dynamic Legal Agreements Decentralized Auctions

Statistical measure for dispute resolution Banding

Data reversion Data correction

Using of a native token Statistical measure for dispute resolution

Using Ether Using of a native token

Using Ether

Won’t-have Centralised oracle Centralised oracle

Trusted third-party Trusted third-party

Off-chain Off-chain

decentralisation and consensus data validation methods.

Regarding the Decentralised Auctions application, the oracle decision support model

also assigned the highest scores to the iExec, Tellor, and BandChain oracle platforms. They

support all the must-have, and most of the should-have and could-have, oracle features.

However, Tellor is better than both BandChain and iExec as it provides a better cost-

benefit than all other decentralised solutions. The fourth most feasible oracle platform is

Chainlink, which has higher scores than Paralink platforms, which ranked as the fifth most

feasible solution. The remaining three platforms, Witnet, Provable, and Town Crier, are

excluded as they do not support one or more of the must-have features.

The inference engine concludes that Tellor is a feasible oracle platform for both appli-

cations, which means that this platform at least supports all oracle features with must-have

priority and does not support the features with won’t-have priority. Additionally, it provides

better security and cost-benefit than the other platforms. The developers of both applica-

tions had not considered Tellor as a potential feasible oracle platform for their applications.

193



Decision Support Model for Blockchain Oracle Platform Selection

Figure 5.4: The Percentages of the Q that are Desired for each Application and the Percent-

ages that Tellor Provides

DLA employed Provable in the current version and is considering employing Chainlink for

the updated version as stated in the documentation. Although the DA developers have not

integrated any oracle yet, they considered Provable, Chainlink, and Witnet as candidate

platforms to be implemented in the DA application.

Figure 5.4 shows the percentages of the quality attributes based on the selected or-

acle features that need to be implemented in each application. Additionally, the Figure

demonstrates the percentages of the quality attributes that the Tellor platform provides.

Availability and integrity are the main objectives that both applications need to meet. Tel-

lor provides high availability and integrity with 75% and 67%, respectively. Transparency

is also a primary feature required in both applications and Tellor provides a reasonable per-

centage of 50%. Tellor affords a high percentage for trustlessness, which is one of the main

aspects that needs to be provided in the DA application. Confidentiality is not provided by

194



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.6: Inference Engine Outcomes based on Features’ Priorities and Pareto-Optimal

Solutions (POS)

Oracle Platforms WSM (DLA) POS (DLA) WSM (DA) POS (DA)

Tellor 34

Chainlink

31

Provable

iExec 33

Tellor

32

Tellor

BandChain 31 30

Chainlink 29 29

Paralink 27 28

Witnet 29 28

Town-Crier 8 8

Provable 4 4

Tellor. However, both applications do not have strict requirements for data confidentiality

and sensitivity. Providing a low cost solution is the objective of the DA application, and

based on our experiments, Tellor provides lower costs than most of the other decentralised

alternatives. Moreover, Tellor is resistant to MITM attacks and data manipulation, which

are the main concerns stated in the DA documentation. Even though Tellor is better than

other platforms in terms of security, cost, and most of the other attributes, Tellor is slow as

it provides a low latency of 31% because the dispute resolution step may take a long time to

resolve. Therefore, developers might need to make a further trade-off analysis to compare

and investigate the applicability of other platforms. The analysis can be done using our

decision model framework.

195



D
ecision

Support
M

odelfor
B

lockchain
O

racle
P

latform
Selection

Table 5.7: Sensitivity Analysis of WSM Results of DLA Application

Features Main Scenario Scenario 1 Scenario 2

Data Feeders Selection Method Weight Oracle Score Weight Oracle Score Weight Oracle Score

Stacking 3 Tellor 34 2 Tellor 31 2 Tellor 35

Reputation 3 iExec 33 2 iExec 29 2 iExec 33

PoW 2 BandChain 31 1 BandChain 28 3 BandChain 30

PoCo 2 Chainlink 29 1 Chainlink 27 3 Witnet 30

Random 2 Witnet 29 1 Witnet 26 3 Chainlink 27

Pseudo-random 2 Provable 4 1 Provable 4 3 Provable 4

196



Decision Support Model for Blockchain Oracle Platform Selection

5.6 Evaluation

In this Section, we evaluate our decision model and appraise its reliability and usefulness.

We report on the sensitivity analysis, discuss the added value of our method when compared

to ad-hoc selection practices, and explore how we go beyond existing work in providing an

explicit oracle selection method.

5.6.1 Sensitivity Analysis

The sensitivity analysis [41] is important in terms of evaluating the quality and stability of

our decision model and its recommendations when faced with uncertainties and changes to

input values. It assists in showing the extent to which the estimations and the rankings of

the results continue to be valid despite changes to inputs. For example, the values might be

altered due to the uncertainty of the inputs or to test the design space. We have assessed

the sensitivity of the blockchain oracle decision model by observing that alterations in the

weight values in the WSM equation can be used as a means of detecting the consequences

of changes to the ranking of oracle alternatives. In addition, we altered the values of some

factors in the STDI equation to see if the results would change depending on the severity of

the attacks.

The key to sensitivity analysis is the ability to identify the most significant assump-

tions that affect the output, i.e., which input variables have the strongest impact on the

target variable. We considered altering the weights of those oracle categories that involve

the largest number of features, which in our model is the Data Feeders Selection Method.

The new scores were then recalculated according to the updated group weights. We applied

the sensitivity analysis to the DLA application example. Table 5.7 illustrates the results of

the analysis.

197



Decision Support Model for Blockchain Oracle Platform Selection

Sensitivity analysis is applied here by changing the priority weighting according to

the MoSCoW [67] scheme using alternative scenarios. We first considered the consequences

of decreasing the weight parameter by one (Scenario 1), such as altering the should-have

(2) features to be could-haves (1), and then increasing the weight by one (Scenario 2), such

as altering the should-have (2) features to become must-haves (3). We noticed that the

final score changed for each alternative, which consequently slightly changed the ranking.

However, compared with the other alternatives, Tellor still has the highest ranking. The

model is sensitive when it comes to hard constraints (must-have and won’t-have weights)

because it affects the list of platforms included and excluded. For example, assigning a

should-have weight instead of a must-have weight to the staking feature leads to Witnet

being included in the suggested platforms, even though that platform should be excluded as

it does not support one of the must-have features.

A One-Factor-At-a-Time (OFAT) [347] approach has been applied to evaluate the

sensitivity of STDI estimation outputs against the assigned set of factor values. Five alter-

native scenarios (Scenario 2 to Scenario 6) were constructed, as shown in Table 5.8, to apply

the analysis to. These scenarios are effective in revealing the sensitivity of the STDI estima-

tions. In particular, we modified the values of the technical impact factors because they have

a higher impact on the final estimation score compared with the two other factors, namely

the likelihood and the business impact. We slightly changed the range of one technical im-

pact factor each time by increasing or decreasing one of the values. For example, we changed

the ’loss of availability’ technical impact factor for flash loan attacks in Scenario 4, from 1

(minimal secondary services interrupted) to 5 (minimal primary services interrupted), which

is the subsequent score values based on the OWASP [267] risk rating methodology. Then the

final STDI result was recalculated based on the updated score. This analysis indicated that

the STDI estimation is stable, as the final estimations of the attacks’ severity range (1.00

≤ STDI < 1.5) did not change. Additionally, we simultaneously modified the values of the

198



Decision Support Model for Blockchain Oracle Platform Selection

technical impact factors in Scenario 6 to observe the changes in the final estimation values.

As with OFAT, the final estimations of the attacks’ severity range remained unchanged.

5.6.2 Comparison with Previous Work

This section considers the academic papers we selected in the knowledge acquisition and

organisation phase. We also applied a snowball method to ensure that all studies related to

our work are included. This section’s objective is to compare our decision model’s novelty

and effectiveness against existing work related to blockchain oracles. We compared our work

to the academic literature in terms of the number of oracle features discussed in step 2 and

quality aspects covered in step 3, as well as the type of methods that have been used.

Table 5.9 illustrates the oracle features that are covered by each study. As shown in

the Table, the majority of studies agreed concerning certain essential features such as the

type of data feeder, type of data source, and data validation mechanism. Some features, such

as integration methods and encryption methods, are only discussed in a few studies. Only one

study [113], analysed aggregation mechanisms, dispute resolution, incorrect data, punishment

methods, and several methods of data feeder selection. Our model has compiled additional

features that had not been covered by any other work, including incentive schemes and the

existence of and use of native tokens. These features allow decision-makers to anticipate

the monetary cost of oracle integration. Additionally, only our model involves random and

pseudo-random techniques as features concerning data feeder selection methods. Considering

these features at the decision-making stage assists in recognising the extent to which the

chosen oracle is secure [25]. Our model considers more features than other works that have

discussed blockchain oracles. Even though there is no agreement on the number of features

that should be involved in the decision-making process, enlarging the set of features can

provide more meaningful comparisons between oracle alternatives, which may lead to the

199



Decision Support Model for Blockchain Oracle Platform Selection

selection of a more optimal solution. Although our model is more comprehensive regarding

the number of features, it gives decision-makers a degree of flexibility when it comes to

customising the selection so that analysts can focus on the key features relevant to their

situation.

Unlike previous works, we have linked each oracle feature to corresponding quality

attributes, as illustrated in Figure ?? and Appendix 5. Mammadzada et al. [232] discussed

the confidentiality and integrity provided by some oracle features. Al-Breiki et al. [48]

compared the integrity, confidentiality, authenticity, and accessibility of the oracle solutions.

Lo et al. [221] investigated the reliability of seven oracles in terms of their probability of

failure. Xu et al. [373] considered availability and transparency when discussing oracle

features. However, none of these studies discussed the security implications of the analysed

oracle platforms. Some studies explored and analysed the potential security vulnerabilities

and the types of attacks that target blockchain oracles. Eskandari et al. [113] analysed

oracle design options, explored potential system vulnerabilities, discussed cyberattacks, and

showed some attack mitigation measures. They also mentioned examples of some real attacks

that had severe consequences. Pasdar et al. [271] analysed Sybil attacks that mostly target

decentralised oracles. Even though the studies discussed some attacks that targeted oracles,

they failed to quantify the consequences of the security risks. In our model, we classify and

assess the possible attacks based on their likelihood, possible impacts, and type of smart

contract. Moreover, we are the only study that has discussed and compared the monetary

cost of each oracle alternative.

To the best of our knowledge, there is a dearth of academic studies that provide

a systematic approach to comparison and evaluation of oracle alternatives and which assist

smart contract developers in selecting feasible solutions for their applications. Mammadzada

et al. [232] conducted a systematic literature review to formulate an oracle framework that

defines what blockchain oracles are, and how they relate to blockchain applications. Al-

200



Decision Support Model for Blockchain Oracle Platform Selection

Breiki et al. [48] investigated the trustworthiness of the multiple oracles and their system

design, benefits, and drawbacks. A fault tree analysis was utilised by Lo et al. [221] to

study oracle systems’ dependability and to analyse their designs. Eskandari et al. [113]

conducted a systematisation of knowledge study to present a classification of existing oracle

implementations. Pasdar et al. [271] provided a comprehensive review and categorised

oracles into two main groups: voting-based and reputation-based. Xu et al. [373] briefly

discussed oracle problems by providing a simple decision model for connecting blockchain

systems with the external world.

Even though the methods applied in previous works might implicitly assist in the

oracle selection process, we are not aware of any systematic method that provides a step-by-

step approach when it comes to the selection of a suitable oracle platform. In the following

Subsection 5.6.3 we have provided analysis of the value added by our systematic model when

compared to prevalent ad-hoc methods of selection.

5.6.3 Comparison with Ad-hoc Methods

Our comparison is based on the fact that our systematic model obliges decision-makers to

consider an application’s required features, cost, and security attributes. However, decision-

makers can opt not to examine any of these aspects when picking an oracle platform on

an ad-hoc basis. Indeed, ignoring any of these aspects can lead to a different, potentially

sub-optimal, outcome. Table 5.10 shows the results of our comparison.

By applying all the steps of our model for the DA application, we found that iExec

had the highest WSM scores followed by Tellor. However, Tellor was better in terms of

cost. If the cost attribute is not considered, iExec might be employed despite being more

expensive than Tellor. In contrast, if cost is the only factor in the decision process, Provable

201



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.8: Sensitivity Analysis of STDI Results

Attack Technical Impact Factors
Final Result

Flash Loan Attacks
Loss of

Confidentiality
Score

Loss of

Integrity
Score

Loss of

Availability
Score

Loss of

Accountability
Score STDI

Scenario 1

(main)

Minimal

non-sensitive

data disclosed

2
All data

totally corrupt
9

Minimal secondary

services interrupted
1 Possibly traceable 7 1.1279297

Scenario 2

Minimal

critical data

disclosed

6
All data

totally corrupt
9

Minimal secondary

services interrupted
1 Possibly traceable 7 1.12451172

Scenario 3

Minimal

non-sensitive

data disclosed

2
Extensive seriously

corrupt data
7

Minimal secondary

services interrupted
1 Possibly traceable 7 1.0693359

Scenario 4

Minimal

non-sensitive

data disclosed

2
All data

totally corrupt
9

Minimal primary

services interrupted
5 Possibly traceable 7 1.12451172

Scenario 5

Minimal

critical data

disclosed

2
All data

totally corrupt
9

Minimal secondary

services interrupted
1

Completely

anonymous
9 1.1865234

Scenario 6

Minimal

critical data

disclosed

6
Extensive seriously

corrupt data
7

Minimal primary

services interrupted
5

Completely

anonymous
9 1.3623046875

would be the best choice, followed by Chainlink. However, neither platform is optimal for

DA applications, as Provable has several unsuitable features, and Chainlink has a high STDI

value. Finally, if the security attribute is the only consideration, Witnet, Tellor, and iExec

would be the best options. However, not considering the required features of the application

and the cost of employing the platform might lead to the selection of a sub-optimal platform

for an application such as Witnet. That platform is unsuitable for DA applications, as it

is the most expensive platform and does not provide features that must be applied in DA

applications.

202



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.9: Our Work in Comparison to Previous Works

Oracle Features [232] [48] [221] [113] [271] [373] This work

Type of Data Feeder × ✓ × ✓ ✓ ✓ ✓

Type of Data Source ✓ × ✓ ✓ ✓ × ✓

Data Validation Mechanism ✓ ✓ ✓ × ✓ × ✓

Integration Methods ✓ ✓ × × × × ✓

Encryption Method ✓ ✓ × × × × ✓

Aggregation Mechanism × × × ✓ × × ✓

Dispute Resolution × × × ✓ × × ✓

Incorrect data × × × ✓ × × ✓

Incentive scheme × × × × × × ✓

Punishment methods × × × ✓ × × ✓

Native Token (NT) × × × × × × ✓

Using NT × × × × × × ✓

Data Feeders Selection Method

Stacking × × × ✓ × × ✓

Reputation × × × ✓ ✓ × ✓

PoW × × × ✓ × × ✓

PoCo × × × × × × ✓

Random × × × × × × ✓

Pseudo-random × × × × × × ✓

203



Decision Support Model for Blockchain Oracle Platform Selection

Table 5.10: Comparison of our Model and Ad-hoc Methods

Our model (all steps)
Cost only STDI only WSM only

WSM POS

iExec

Provable

Provable Witnet iExec

Tellor

Tellor

Chainlink Tellor Tellor

BandChain Tellor iExec BandChain

Chainlink BandChain Provable Chainlink

Witnet iExec Chainlink Witnet

Provable Witnet BandChain Provable

5.7 Discussion

The existence of multiple blockchain oracle platforms with varying features and criteria makes

it difficult for decision-makers to select the best platform for their applications. Based on

expert interviews, blockchain oracle platforms are currently chosen in an ad hoc manner,

based on their reputation, or based on the wisdom of the crowd. Our decision model can

overcome ad-hoc practices and assist smart contract developers in the systematic selection of

feasible, more secure, and cost-effective oracle solutions that the developers may not be able

to discern without the support of the proposed model. The importance of our decision model

was also emphasised by blockchain oracle experts, who affirmed the usefulness of our model

in facilitating transparent oracle selections by making oracle alternatives and their associated

features and qualities more explicit. The model can be applied at the architectural design

stage, where architects and blockchain software engineers have to integrate oracle solutions

into the software being designed, by probing for features that best meet the quality attributes

of interest for the said application. The systematic steps that we provide as part of our model

serve this objective.

204



Decision Support Model for Blockchain Oracle Platform Selection

One of the distinctive features of our model is that it provides cost analysis, covering

the deployment and execution of the oracles under investigation. These are particularly im-

portant factors to consider when integrating oracles with Ethereum smart contracts because

the cost can differ among platforms. For example, using the Provable platform comes with

a different cost compared to using Chainlink. The observation is also evidenced by previous

studies, which indicate that different oracle features can lead to different costs [48, 156].

Additionally, one study [271] emphasised the need for further research that investigates the

operating costs of blockchain oracles. Unlike previous studies, our study implements price

feed contracts to compare and analyse the exact costs of each oracle.

Another distinctive feature of our model is the provision of a security technical debt

assessment for the selection. Our technical debt analysis considers inherent issues in the

oracle that can make the solution more susceptible to attacks that target blockchain oracle

platforms. The evolution of oracles has led to an increase in attacks which demands a greater

focus on security analysis and assessment [113, 54]. Using our model, developers can thus

make informed decisions before integrating oracle platforms into the smart contract. Apply-

ing a security debt assessment step helps to reduce the introduction of unintentional debt

caused by unawareness of external security issues related to oracle platforms, while increasing

the visibility of such issues and helping manage the debt more strategically. Furthermore,

smart contract developers can avoid debt that might accumulate as a result of incorrect

oracle selection decisions that would lead to re-selection, re-development, and redeployment

of the contract.

Our decision model indicates that there is no unique optimal solution that can be the

best fit for all quality attributes. This should come as no surprise. The model suggests more

than one feasible oracle platform based on the required features selected by the developer,

the security assessment, and the cost analysis. Mapping quality attributes to each oracle

feature and each oracle platform permits the identification of quality attribute trade-offs

205



Decision Support Model for Blockchain Oracle Platform Selection

related to the chosen features and suggested oracle solutions. This assists in choosing among

the oracle alternatives while bearing in mind the desired quality attributes.

Systematic and fine-grained analysis like our decision support model can uncover

issues that might be ignored when taking an ad-hoc approach or even when consulting with

experts. Without the use of approaches such as our model, a sub-optimal design decision

might be made. Furthermore, choosing a more optimal solution reduces the overhead of

redesigning and updating the smart contract, which therefore reduces the overall cost of the

contract’s development.

The application of our model can benefit both uninformed and knowledgeable decision-

makers. The model provides information on oracle platforms to assist inexperienced decision-

makers while also providing experienced ones with a systematic model. An investigation into

our model by industry would likely contribute towards a fuller understanding of the costs

and benefits that its introduction at the decision-making stage would provide. According

to the interview and survey by Zou et al. [409], there is a lack of standardised knowledge

and useful guidance for developing secure smart contracts, and our model aims to fill that

gap. Practitioners also refer to the need to define criteria and features for selecting the most

appropriate smart contract components [276].

5.7.1 Threats to Validity

Based on Wohlin et al. [362] and Runeson and Höst [296], we have considered the following

potential threats to validity: internal validity, conclusion validity, construct validity, external

validity, and reliability.

A potential threat to internal validity is the completeness of the knowledge extrac-

tion steps. We mitigated this risk by conducting a thorough inspection of multiple sources,

206



Decision Support Model for Blockchain Oracle Platform Selection

including the online documentation for each platform, industry white papers, academic pa-

pers, and blogs. Furthermore, we refined the extracted information by conducting interviews

with Oracle co-founders and experts. The landscape of oracle features and cyberattacks is

continuously evolving and completeness cannot be guaranteed. Nevertheless, our work pro-

vides comprehensive and detailed coverage that goes beyond existing works, as discussed in

Subsection 5.6.2. New attacks can always emerge and attackers may exploit hidden security

flaws in oracles; the visibility of these attacks can then become noticeable over time. How-

ever, our decision model is adaptable and flexible to evolve and cope with new additions

and changes. Researchers can add more oracle platforms, oracle features, and/or possible

oracle attacks to the decision model by systematically following the five steps of knowledge

acquisition and organisation that we presented.

A potential threat to conclusion validity is related to the need to involve decision-

makers for blockchain oracle applications in the examination of the applicability of the

decision model. However, we mitigated this threat by using public and well-documented

applications for the decision model application.

There is a construct threat regarding the possibility of inaccuracy when assigning

scores to the impact and likelihood factors. However, the sensitivity analysis we conducted

demonstrates the stability of the STDI estimation approach. Furthermore, our framework is

public [4] and allows decision-makers to change the scores based on their context. Another

threat might be related to employing the MoSCoW prioritisation technique rather than an-

other technique. Based on Farshidi et al. [118, 119], who evaluated their decision models

using multiple experts and according to the comparative analysis conducted by [179], and

[341], the MoSCoW technique is simple, suitable for large-medium features, easy to use, and

imbues users with confidence when used. For these reasons, we chose to employ the MoSCoW

technique in our model. Nevertheless, researchers can use other types of prioritisation tech-

niques to define their feature requirements. Regarding the data collection in terms of the

207



Decision Support Model for Blockchain Oracle Platform Selection

case studies, there is a potential threat related to misinterpretation of the oracle features

required by each application. To mitigate this, two reviewers independently reviewed the

extracted features. Whenever there was a disagreement, all reviewers discussed the matter

until a conclusion was reached.

There is an external threat related to the applicability of our decision model to other

types of blockchain oracle platforms, i.e., not just Ethereum oracle platforms. Ethereum

is, however, the most used platform for developing decentralised applications. Nevertheless,

the decision model presented here can be updated to involve more types of oracle platforms

without changing the main steps. Moreover, we applied the model in two domains, insurance,

and auction application domains, to prove that our decision model can be generalised to other

contexts.

To strengthen the reliability of our study, all the data sources and information related

to knowledge acquisition and mapping have been made available. We have also been open

and explicit about the calculation process used in the inference engine. Additionally, the data

sources for the case study applications have been given, and the templates for the extracted

features have been made available to the public [4]. This enables easy replication of the case

study analysis with a high likelihood of achieving the same outcomes.

5.8 Summary

In this chapter, we have presented a decision support model for blockchain oracle platform

selection. The selection process was modeled as an MCDM problem, with a set of solutions

being evaluated and a set of choice criteria being considered. Our model provides knowledge

about blockchain oracle platforms to assist inexperienced decision-makers while providing

knowledgeable decision-makers with a sound decision model. In addition, our model: (1)

208



Decision Support Model for Blockchain Oracle Platform Selection

prioritises possible oracle solutions; (2) assesses the security of each solution using technical

debt; and (3) finds Pareto-optimal solutions in terms of security and cost-effectiveness. We

conducted two case studies to evaluate the usefulness and effectiveness of our decision support

model. Based on the developer’s required criteria, security evaluation, and cost analysis, the

model provides more than one suitable oracle platform to choose from. We assessed our

decision model’s reliability and applicability using a sensitivity analysis and described the

increased benefit of our technique when compared to previous work and ad-hoc selection

procedures.

209



Chapter Six

Reflection and Appraisal

6.1 Overview

The purpose of this chapter is to review the research questions from Chapter 1 and see how

this thesis resolved them. This chapter also explains how each contribution was evaluated.

6.2 Analysis of the Research Questions

This Section discusses how far previous chapters resolved the four research questions.

RQ1: a) What are the common security architectural design approaches

used when architecting blockchain-based systems and smart contracts? b) What

are the existing frameworks, models, and methodologies for security risk assess-

ment in blockchain-based systems and smart contracts?

In Chapter 2, we conducted SLR to investigate existing blockchain architectural design

approaches for security and to understand current methodologies to assess security risk in

blockchain-based systems and smart contracts. The review led us to identify four commonly

210



Reflection and Appraisal

used techniques that support the secure architectural design of blockchain-based systems: (i)

decision models; (ii) taxonomies; (iii) design patterns; and (iv) guidelines. Additionally, we

found that some of the selected studies contribute to blockchain risk identification methods,

risk analysis, and risk calculation methods.

Based on the review results, we found a lack of systematic security architectural-

centric approaches, security standards, and complete security risk assessment methodologies

that provide the identification and quantification of security risks related to blockchain sys-

tems and smart contracts’ architectural design decisions. Additionally, there is a need to

investigate the security implications of design decisions regarding various aspects of smart

contracts, such as programming languages and off-chain integration. Moreover, we found

that systematising the process of smart contract security from the early design stage is an

essential step toward designing secure smart contracts. Therefore, drawing on these pending

challenges, we derived the following needs that steered investigations into the thesis: (i) a

systematic approach to assist architects in making secure architecture design and configura-

tion decisions for blockchain-based systems; (ii) an approach for assessing smart contracts

security risks; and (iii) a decision support model for blockchain oracle platform selection.

RQ2. a) What are the architecturally significant design decisions in blockchain-

based systems? b) How can potential threats and attacks be traced to blockchain

architectural decisions and to which components?

In Chapter 3, we devised a taxonomy that defines, illustrates, and classifies the key

architectural decisions regarding blockchain-based systems. This taxonomy is the result

of an approach partially guided by an SLR. The findings of the review indicate that the

dimensions of key architectural decisions are: (i) blockchain access type; (ii) data storage

and transaction computation; (iii) consensus mechanism; (iv) block configuration; (v) key

management; (vi) cryptographic primitives; (vii) chain structure; (viii) node architecture;

211



Reflection and Appraisal

and (ix) smart contract.

We provided a mapping approach that associates architectural decisions of blockchain-

based systems with potential security attacks and threats. We searched for seminal sur-

veys, reviews, articles, and reports on this topic to help us identify commonly documented

blockchain attacks and threats. We used MITRE’s attack tactic [245] categories and Mi-

crosoft STRIDE threat modelling [199] to systematically classify a collected set of threats

and their associated attacks. The classification allows for identifying potential attacks and

threats in blockchain-based systems.

Mapping the proposed taxonomy with its security implications enables software archi-

tects to fully understand the impact and scope of the security challenges of the architecture

of blockchain systems. Threat implications are directly related to the likelihood and impact

of potential attacks on the entire system. This method provides a foundation for assessing

potential security risks across all system dimensions.

RQ3. a) How to identify design vulnerabilities in smart contracts? What

are the specific analysis techniques and tools? b) How to quantify the impact of

technical debts related to design vulnerabilities in smart contracts?

In Chapter 4, we developed a debt-aware approach for assessing security design vul-

nerabilities in smart contracts. This approach utilises both automated analysis tools and

manual analysis to identify potential security vulnerabilities caused by design decisions of

smart contracts. We mapped the smart contracts design vulnerabilities and the related

weaknesses to highlight the root cause of the issues. We classified the design vulnerabilities

based on their impact, including front-running, time manipulation, and denial of services.

We estimated the evolution of the negative consequences of the identified security issues in

smart contracts as an analogy with the concepts of technical debt principal and interest

growth rate. In particular, the approach leveraged the technical debt metaphor to estimate

212



Reflection and Appraisal

the monetary cost of redeploying the patched version of the vulnerable contract and the

evolution of the debt interest linked to a design vulnerability.

Experiment results demonstrated that our approach enables developers to visualise

and prioritise technical debts caused by unaddressed smart contract design vulnerabilities.

The approach increases the visibility of debts and their ramifications. Moreover, smart

contract experts confirmed the usefulness and clarity of this approach in guiding the ar-

chitectural design of secure smart contracts and recognising the consequences of potential

security debts.

RQ4. How can we advance the oracle selection problem by designing

decision support models that assist in systematically selecting secure and cost-

effective oracle platforms feasible for decentralised applications?

Chapter 5 presented a decision support model for blockchain oracle platform selection.

The selection process was modelled as an MCDM problem [337], which evaluates a collection

of oracle alternatives while considering a set of decision criteria and quality attributes for

building this software category. Our model employs the MoSCoW [67] prioritisation tech-

nique to assign the priority weights to each oracle feature. The model also leverages the

security technical debt metaphor to assess the ill consequences of sub-optimal selection that

can manifest into debt and accumulate interest on that debt [5]. In addition to the secu-

rity debt estimation, the model also estimates the monetary cost of integrating each oracle

alternative into a smart contract. The multi-objective optimisation technique is applied to

choose a set of secure and cost-effective solutions. The oracle decision model finally offers a

short-ranked list of feasible oracle platforms based on selected features, security assessment,

and monetary cost analysis.

The oracle selection decision model overcomes ad hoc-practices and assists smart

contract developers in the systematic selection of feasible, more secure, and cost-effective

213



Reflection and Appraisal

oracle solutions that the developers may not have without the support of the proposed

model. A guided decision model reveals issues that might otherwise go unnoticed if done

haphazardly, reduces decision-making efforts, and provides a cost-effective solution.

6.3 Reflection on the Evaluation

In this work, we follow the DESMET evaluation method [187] to select suitable methods

for evaluating our approaches. We employed hybrid evaluation methods by considering

various ways to evaluate our techniques, including three case studies (electronic medical

record (EMR) blockchain-based systems [99], a dynamic legal agreement (DLA) decentralised

application [293], and a decentralised auctions (DA) application [264]), experiments related

to assessing security debts of smart contracts, and experts’ opinions in the form of surveys

and interviews. Using various evaluation methods assists in mitigating the potential risk of

incorrect conclusions [187].

6.3.1 Evaluation Criteria

In this Subsection, we reflect on our evaluation of this work by adopting the evaluation

strategy and criteria used by Kitchenham et al. [187] to evaluate DESMET methods, as

follows:

Basic Validation - According to Kitchenham et al. [187], this validation assesses

the quality of the approach’s documentation through several subfeatures. We found the fol-

lowing subfeatures suitable to our context:

• Completeness - Even though we cannot guarantee the completeness of the taxonomy

214



Reflection and Appraisal

of blockchain architectural design decisions presented in Chapter 3, we performed an

iterative content analysis by following the SLR methodology to systematically review

the literature and mitigate the risk of missing critical dimensions. Nevertheless, our

taxonomy is adaptable and flexible to evolve and cope with new additions and changes.

Additionally, we thoroughly inspected the academic papers, the Ethereum community,

Wiki pages, and developers’ blogs to aggregate the set of design vulnerabilities that

we provided in Chapter 4. This set is continually evolving because of the high po-

tential for the emergence of new exploitable security design flaws in smart contracts.

However, the same provided steps apply to identifying and classifying new issues. In

Chapter 5, we implemented a document analysis procedure [70] for examining the

selected online documentation and literature studies to formulate the knowledge ac-

quisition and organisational steps for the proposed blockchain oracle decision model.

Moreover, we consulted domain experts and oracle platforms co-founders to confirm

the completeness of the extracted information. The participants affirmed that the de-

cision model includes the key features and is general enough to assist in selecting an

oracle. Nevertheless, the decision model can acquire additional oracle platforms, fea-

tures, and possible attacks by systematically following the proposed steps of knowledge

acquisition and organisation.

• Organisation - We presented our approaches systematically with well-defined steps

and sub-steps. We structured and organised the information in tables and templates.

For instance, tables presented the mapping of architectural design decisions with secu-

rity attacks and threats. Blockchain oracle features appeared in a template that allows

practitioners to assign priority to each feature based on the requirements of their de-

centralised applications. The source of knowledge and the methods that we used to

formulate the approaches and demonstrate them are publicly available to facilitate

tracing the provided information, replicating the demonstrations, and maintaining the

215



Reflection and Appraisal

transparency of our studies.

Use Validation - As Kitchenham et al. [187] stated, this validation evaluates the

quality of the techniques. We assess our approaches through the following subfeatures:

• Ease of Implementation - Some blockchain and smart contract software engineers

require a learning curve to become familiar enough with our proposed methods to use

them effectively. Learning time is necessary to comprehend some of the principles of

the proposed approaches. Some practitioners, for instance, might need a deeper un-

derstanding of some security issues to assess their ramifications on blockchain systems

or smart contracts. We mitigate this concern by explaining most security issues, their

categories, and classifications. Additionally, some developers require time to become

proficient in using our approaches. We provided clear guidelines and explications of

the proposed steps to simplify their implementation.

• Applicability - We demonstrated and proved the applicability of our approaches

through case studies and experiments. In Chapter 3, we demonstrated the mapping

of the proposed taxonomy with the related security ramifications through the EMR

blockchain-based system proposed by Dubovitskaya et al. [99] in collaboration with the

Stony Brook University Hospital. We demonstrated the architectural decisions for the

EMR system using our taxonomy. We analysed the alternative architectural choices

regarding key management dimensions as we found that the currently implemented

choice is sub-optimal and showed how it might affect the security of the EMR project.

We used the EMR system as a case study since we found that the applicability of the

taxonomy and mapping approach is observable in this type of project. Nevertheless,

our future study will demonstrate the utility of the taxonomy and mapping approach to

various blockchain systems to prove its applicability to any such system. In Chapter

4, we demonstrated the applicability of the smart contracts security technical debt

216



Reflection and Appraisal

assessment approach through quantitative experiments since the results can be clearly

quantifiable and directly measurable. The experiments worked with a dataset of 16

representatively vulnerable smart contracts. In Chapter 5, we presented two case

studies— DLA application and DA application—to demonstrate the applicability of the

blockchain oracle decision model. We selected these applications as case studies since

the developers of the first DLA plan to change the current oracle platform to improve

the application security, while the developers of the DA have not yet decided which

oracle platform to employ. Thus, the proposed decision model can assist developers of

both case studies in selecting suitable, secure, and cost-effective oracle platforms for

their applications.

Gain Validation - Based on Kitchenham et al. [187], gain validation assesses the

benefits delivered by the approaches through the multiple subfeatures. Our context considers

the following subfeatures:

• Usefulness - The approaches proposed in this work provided multiple benefits for

designing and evaluating secure blockchain systems and smart contracts: (i) they sup-

ported early interventions of the blockchain security issues, starting from the inception

and design stages; (ii) they assisted software engineers to recognise the root causes of

security issues and understand the impact and scope of the challenges associated with

them; (iii) they helped developers to manage security issues more strategically; (iv)

they narrowed the number of blockchain architectural options to make decision-making

easier; (v) they guided architects to make justifiable design decisions that would re-

sult in more secure implementations and reduce security complications. For instance,

in Chapter 5, our decision model selected Tellor above the other option as the first

choice for integration into the DA application because it is more secure, affordable,

and suited to that application. However, as was seen in the chapter, failing to employ

217



Reflection and Appraisal

a systematic decision-making process could result in the integration of a less-than-ideal

alternative, which could be detrimental to the application’s efficiency or security. In-

deed, the experts we have consulted through the survey and interviews have confirmed

these benefits.

• Clarity - The provided approaches were systematic and comprised distinct steps. We

thoroughly explained each step to be clear enough to render a transparent decision-

making process for the architectural components of blockchain systems and smart

contracts, with clear rationale, criteria, and steps to inform the decision as judged

by experts. Additionally, based on the experts’ judgments, the structured manner for

assessing the security of smart contracts helped increase the visibility of the underlying

security debts associated with the design of smart contracts.

• Comparison with alternative approaches - Our investigation showed that only a

few studies [119, 124, 376, 369, 336] provided systematic approaches with clear steps

for architecting and designing blockchain-based systems. However, the main focus of

these studies was not security. Most current practices of designing blockchain and

smart contract systems are ad hoc. When we compared each proposed technique to

the existing methods, we observed that our approaches were distinct as they offered

systematic steps to guide software engineers in making informed and secure design

decisions regarding blockchain systems and smart contracts. For example, to the best

of our knowledge and based on the opinions of blockchain oracle experts, blockchain

oracle platforms are chosen ad hoc, by their reputation, or based on the wisdom of the

crowd. Additionally, we formulated our approaches based on a thorough investigation

of the current literature and experts’ knowledge. Moreover, this is among the initial

efforts that introduce the metaphor of technical debt to analyse and assess security

issues in smart contracts. The detailed comparison appears in Chapters 3, 4, and 5.

• Cost-effectiveness - Following our approaches when architecting blockchain and

218



Reflection and Appraisal

smart contracts applications would reduce the overall development cost since they

assist in making secure and optimal decisions in the first place, which reduces the over-

head of redesigning and updating applications due to sub-optimal decisions. Although

there might be an overhead or cost related to tools installation, developers’ training,

or work-process restructuring, the adding values of employing the approaches extend

their potential overhead, especially in the case of a sensitive application where making

ill-informed decisions might lead to severe security implications or wrong selection of

the architectural components. Nevertheless, the steps of our approaches are flexible

and refinable based on the developers’ requirements and application context.

219



Chapter Seven

Conclusion Remarks and Future Work

This chapter highlights our contributions and outlines directions for future research.

7.1 Contributions

This thesis aims to provide systematic approaches that guide software engineers to build

secure blockchain-based systems and smart contracts. To achieve this aim, we have addressed

the following:

• A systematic literature review (SLR) of existing architectural design ap-

proaches for building secure blockchain systems and smart contracts. Chap-

ter 2 analysed academic publications and grey literature to determine the current

methods for architecturally designing secure blockchain systems and smart contracts.

We provided a classification of existing publications that provide secure architectural

design approaches, and we also categorised the publications that support blockchain

security risk assessment methods. The review led us to determine gaps and opportuni-

ties for further research related to the inadequacies of the current methods in providing

220



Conclusion Remarks and Future Work

a clear guide to building secure blockchain and smart contract systems.

• A taxonomy of blockchain architecture design decisions and their security

attacks and threats [6]. In Chapter 3, we conducted a review partially guided by

the SLR method to derive a taxonomy of commonly used architecture design decisions

in blockchain-based systems. We mapped each decision to potential security attacks

and their posed threats. MITRE’s [245] attack tactic categories and Microsoft STRIDE

[330] threat modelling classify threats and their associated attacks to identify potential

security issues in blockchain-based systems. Our mapping approach aims to guide ar-

chitects to make justifiable design decisions that result in more secure implementations.

The demonstration showed how this approach assists blockchain systems architects in

recognising the impact and scope of the potential security challenges associated with

suboptimal design decisions.

• A technical debt-aware approach to designing secure smart contracts [5].

In Chapter 4, we provided an assessment approach that allows developers to recognise

the consequences of deploying vulnerable contracts. Our assessment approach involves

two steps: (i) identification of design vulnerabilities using security analysis techniques

and (ii) an estimate of the ramifications of the identified vulnerabilities leveraging the

technical debt metaphor, its principal, and interest. We use a dataset of vulnerable

contracts to demonstrate the applicability of our approach. The results showed that

our assessment increases the visibility of security design issues. It also allows develop-

ers to concentrate on resolving smart contract vulnerabilities through technical debt

impact analysis and prioritisation. We evaluated the proposed approach based on ex-

perts’ judgment. The experts affirmed that the steps of our technique are clear and

understandable, and it helps develop secure smart contracts.

• A decision support model for blockchain oracle platform selection. In Chap-

ter 5, we provided a decision support model for the oracle selection problem. As the

221



Conclusion Remarks and Future Work

number of oracle alternatives and their features increases, the decision-making process

becomes increasingly complex. The model supports smart contract decision-makers

in selecting a secure, cost-effective, and feasible oracle platform for their applications.

We interviewed oracle co-founders and smart contracts experts to refine the knowl-

edge base of our decision model and confirm its usefulness. We used two real-world

smart contract application case studies to evaluate the decision model. Based on the

developer’s required criteria, security assessment, and cost analysis, the model priori-

tises and suggests more than one possible oracle platform. A guided decision model

can reveal issues that might go unnoticed if done haphazardly, reduce decision-making

efforts, and provide a cost-effective solution.

7.2 Future Work

7.2.1 Enhancing Current Security Analysis Tools

According to our examination of the available security analysis tools in Chapter 4, they

only provide a limited list of security issues. One possible future direction is to enhance

security tools by using artificial intelligence (AI), which makes the tools adaptable and able

to evolve in response to new and emerging attack techniques. AI-enhanced tools leverage

machine learning and adaptive algorithms to learn from new data and experiences, enabling

them to improve their detection capabilities over time. These tools can integrate data from

various sources, such as the collection of attacks and threats that we classified in Chapter

3, the design vulnerabilities that we classified in Chapter 4, and public sources reporting

new vulnerabilities. By assimilating diverse data, they stay informed about the latest attack

trends. Machine learning algorithms process and analyse a multitude of features and patterns

within smart contracts. As new types of vulnerabilities emerge, the algorithms can adapt

222



Conclusion Remarks and Future Work

to identify these patterns, even if they were previously unknown. Dynamic updates can

also incorporate behavioural analysis, where tools identify patterns of behaviour that might

signal new attack vectors. By learning from these behaviours, the tools can predict and

prevent attacks that were previously unseen.

Another possible future direction is to enhance the output of the tools and make them

more meaningful by, for example, integrating our assessment approaches into these tools to

complement the current analysis and improve the effectiveness of their outcomes. They will

not only list the vulnerabilities but will also map them to their corresponding weaknesses,

providing an assessment and severity level of the potential security debts.

We observed that none of the current tools identifies vulnerabilities brought on by

the injected data from the oracle. An oracle that contains outdated or malicious data

could significantly impact the entire contract. As a result, a tool that can spot security

flaws in oracle integration with smart contracts is necessary. This tool must verify the call

function to ensure only the oracle can make the call to avoid malicious parties supplying

false information. The tool could also check the assigned access control while requesting and

receiving data from an oracle. Moreover, we found a need for a general tool that can work

for different blockchain platforms since multiple tools that detect a small set of issues and

only work on a specific platform complicate security analysis.

7.2.2 Extending the Approaches Proposed

We can expand the application of the proposed approaches in this work to involve plat-

forms other than Ethereum, like Hyperledger Fabric. Although our techniques apply to

other blockchain platforms, some steps require updating or extending. Chapter 4 presented

a systematic procedure to collect and map each design vulnerability in smart contract de-

223



Conclusion Remarks and Future Work

sign architecture to the corresponding weaknesses in CWE. This procedure can collect and

map design issues in chaincode, a smart contract that runs over the Hyperledger blockchain.

Researchers should investigate security analysis tools that detect flaws with chaincodes and

apply the established criteria in the chapter to select suitable tools. The same remaining

steps can assess security debt identified in the chaincodes. In Chapter 5, most of the oracle

alternatives in our decision model can only integrate with Ethereum contracts. An inter-

esting future research direction would be to add other oracle platforms that integrate with

Hyperledger to the list of alternatives. This extension might expand the list of features and

attacks. However, the rest of the model will not need to be updated.

7.2.3 Fully Automating the Approaches Proposed

Fully automating the approaches proposed in this work would be an interesting direction for

future work to promote quicker and more efficient analysis. Automated support will ensure

consistency in the analysis and allow security software engineers to quickly estimate the

implications of applying alternative architectural design components and security options

when designing blockchain systems and smart contracts. One possible project is to integrate

the blockchain oracle decision model proposed in Chapter 5 into a decision model studio 1

provided by a decision support system (DSS) proposed by Farshidi et al. [119]. The oracle

decision model needs to be uploaded to the knowledge base of the DSS to facilitate the

decision-making process. The DSS offers a venue for discussion that empowers decision-

makers at software-producing companies to reach a consensus. Moreover, the DSS can be

utilised throughout the whole lifecycle and adjust its suggestions in response to changing

requirements.

Another possible direction is to enhance decision support models using AI and ma-
1https://dss-mcdm.com/

224



Conclusion Remarks and Future Work

chine learning, as they offer numerous opportunities to provide more accurate, timely, and

personalised recommendations. AI-enhanced models can simulate different scenarios based

on historical data and user input. This allows decision-makers to evaluate the potential

outcomes of various decisions, enabling strategic planning. Decision support models can

also continuously learn from user feedback and the outcomes of decisions. This feedback

loop helps refine recommendations over time, making the system more accurate and aligned

with user needs. Moreover, natural language processing can be leveraged to enable decision

support models to understand and process natural language queries. Decision-makers can in-

teract with the system using everyday language, making it more accessible and user-friendly.

7.2.4 Addressing Security and Architectural Dimension Limitations.

Based on the findings of Chapter 3, we have identified several research areas that require

more investigation.

Architectural Dimension Limitations. There is a lack of significant research on as-

pects of node architecture, as described in the taxonomy. Specifically, there is still a need

to investigate and design more effective architectural solutions that allow nodes to receive

and store transactional data more efficiently and securely. Another architectural dimension

that requires more research is block configuration. Not enough research has investigated

the limitations and security challenges related to block size and its propagation, and how

these decisions would affect the latency and the throughput of the blockchain network. The

throughput of the blockchain network needs to be improved to be applicable in current pro-

duction environments. At present, in most blockchain platforms, a transaction takes minutes

to be confirmed. Thus, improving the confirmation latency to seconds, while still preserving

security, is a key challenge.

Security Limitations. Even though blockchain has been considered as a solution to tackle

225



Conclusion Remarks and Future Work

DDoS attacks because of its decentralisation and distributed properties, it can be seen from

our mapping that several blockchain system architectural dimensions are still vulnerable to

DDoS attacks. Introducing centralised components, which become a single point of failure,

into the blockchain system, makes the system highly prone to DDoS attacks. These attacks

prevent the system from delivering the required services to the users. Therefore, techniques

that can improve security against this type of attack need to be explored. Public-key algo-

rithms are prone to quantum attacks which might easily break transaction signatures. Few

studies have investigated this situation and suggested alternative anti-quantum algorithms.

However, there is a lack of studies that have analysed the alternative solutions as a means

of enhancing the cryptographic algorithms applied in blockchain and selecting the optimal

one in terms of the security attributes required by the application domain.

226



Appendix One

Quality Assessment of Selected Studies

Table A illustrates the quality assessment scores of each included study in a systematic

literature review presented in Chapter 2.

227



Q
uality

A
ssessm

ent
ofSelected

Studies
Table A.1: Quality Assessment

Study
Rationality Rigor Credibility

Total
Empirical Context Objectives Method Data Analysis Results Limitations

[119] 1 1 1 1 1 1 1 1 8

[373] 1 1 1 1 0 1 1 1 7

[124] 1 1 1 1 1 1 1 0 7

[376] 1 1 1 1 0 1 1 0 6

[369] 1 1 1 1 0 1 1 0 6

[378] 1 1 1 1 0 1 1 0 6

[318] 0 1 1 1 0 1 0 0 4

[303] 1 1 1 1 0 1 0 0 5

[336] 1 0 1 1 0 1 1 1 6

[51] 1 1 1 1 0 1 1 0 6

[289] 0 0 1 1 1 1 0 0 4

[220] 0 1 1 1 0 1 0 0 4

[382] 1 1 1 1 1 1 1 1 8

[374] 0 1 1 1 0 1 1 0 5

[159] 1 1 1 1 1 1 1 1 8

[154] 1 1 1 1 0 1 1 0 6

[398] 0 1 1 1 0 1 1 0 5

[34] 1 1 1 1 1 1 1 0 7

[8] 1 1 1 1 0 1 1 0 6

[308] 1 1 1 1 1 1 1 1 8

[9] 1 1 1 1 0 1 1 0 6

[183] 1 1 1 1 0 1 0 0 5

[247] 0 1 1 1 0 1 1 0 5

[364] 1 1 1 1 1 1 1 0 7

[228] 0 1 1 1 0 1 0 0 4

[128] 0 1 1 0 0 1 0 0 3

[44] 1 1 1 1 1 1 1 1 8

228



Appendix Two

Mapping Selected Publications with the

Taxonomy

A representative selection of studies that belong to each dimension of architectural design

decision of blockchain-based systems can be found in Table B.1. It shows that some studies

contribute to more than one dimensions.

229



M
apping

Selected
P

ublications
w

ith
the

Taxonom
y

Table B.1: Mapping Selected Publications with the Taxonomy

Dimensions of Architectural Decisions Studies

Access Type

Public [231, 207, 197, 204, 368]

Private [231, 207, 197, 20, 368]

Consortium [231, 207, 20, 94] [283, 383, 368, 367, 90]

Storage and

Computation

On-Chain [377, 104, 383, 12, 144, 173]

Off-Chain [377, 104, 383, 372, 401, 405, 375, 246]

Consensus

Mechanism

Proof-based (PoX) [231, 207, 383, 180, 30, 209, 102, 62, 137, 115, 266, 241]

Voting-based [231, 283, 407, 323, 56, 33, 198]

Block

Configuration

Block Size [375, 137, 96]

Block Confirmation [405, 137, 383, 205, 96]

Block Propagation [137, 115, 86]

Key

Management

Single Key [319, 52, 96]

Multi-Signature [135, 141, 319]

Threshold-Signature [142, 135, 141, 319]

Cryptographic

Primitives

Essential Primitive [355, 129, 344, 206, 305]

Optional Primitive [142, 355, 304, 171, 305, 190, 146, 136]

Chain Structure Single Chain [405, 205, 266, 286, 316]

Continued on next page

230



M
apping

Selected
P

ublications
w

ith
the

Taxonom
y

Table B.1 Mapping Selected Publications with the Taxonomy (Continued from previous page)

Dimensions of Architectural Decisions Studies

Multiple Chains [405, 210, 204, 366, 12, 170, 78]

Node Architecture
Light Node [72, 12, 3]

Full Node [72, 125]

Smart Contract

Platform [20, 345, 372, 119, 79]

Developing

Languages
[345, 364, 219, 262, 190]

External Oracle [377, 190, 79, 221, 364, 232, 219, 246]

231



Appendix Three

Survey Questioners and Responses

In this appendix, we present the responses of each participant to the survey questionnaires

that we distributed to the smart contract experts to evaluate our approach to assessing

smart contract security issues presented in Chapter 4. We also present the ethical approval

confirmation to conduct this survey.

232



Survey Questioners and Responses

Survey about Evaluating our Approach for 
Assessing Smart Contract Security Issues 

 

1. Do you agree to give us your opinion about our proposed approach?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

100.00% 27 

2 No  0.00% 0 

 
answered 27 

skipped 0 

 
Questionnaires  
 

2. What best describes your main role in the area of smart contracts?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Decision maker   
 

21.05% 4 

2 Designer   
 

36.84% 7 

3 Architect   
 

26.32% 5 

4 Programmer   
 

78.95% 15 

5 Researcher   
 

21.05% 4 

 
answered 19 

skipped 8 

Other: (2) 

1 08/11/2022 
16:23 PM 

ID: 203389038  

I work on SC design and implementation (programming) together with colleagues - we 
share responsibility.  

2 09/11/2022 
14:13 PM 

ID: 203473925  

Auditor 

 

 

3. Are the steps of the proposed approach to smart contracts security assessment 
clear and understandable?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

100.00% 19 

2 No  0.00% 0 

233



Survey Questioners and Responses

3. Are the steps of the proposed approach to smart contracts security assessment 
clear and understandable?  

 
answered 19 

skipped 8 

Comments: Why? (1) 

1 01/12/2022 
09:57 AM 

ID: 205680184  

Reasonably so. It would be nice if there is a quicker way to capture it. For instance, if 
there is an acronym one can use that reflects the various steps?  

 

 

4. Is the proposed approach to smart-contract security assessment potentially easy 
to use?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

94.44% 17 

2 No   
 

5.56% 1 

 
answered 18 

skipped 9 

Comments:Why? (2) 

1 09/11/2022 

22:28 PM 
ID: 203534872  

Not always because with complex smart contracts, the process implementation will 

become too extensive  

2 01/12/2022 
09:57 AM 

ID: 205680184  

There will be challenges because it needs tool support, so such tool support should be 
easy. There also is a learning curve to understand various classes of vulnerabilities--how 
does such learning take place? Should there be training of developers?  

 

 

5. Is the proposed approach to smart contract security assessment useful to support 
designing and developing secure contracts?  

Answer Choices 
Response 

Percent 
Response 

Total 

1 Yes   
 

100.00% 18 

2 No  0.00% 0 

 
answered 18 

skipped 9 

Comments: Why? (2) 

1 09/11/2022 
22:28 PM 

ID: 203534872  

yes more extensive assessment of smart contracts will not help in early detection but also 
impact of the vulnerability in accordance with specific use-case scope  

2 01/12/2022 
09:57 AM 

ID: 205680184  

Something like this is very necessary, since the impact of security-related software bugs 
can be substantial.  

 

 

234



Survey Questioners and Responses

6. Is the proposed approach to smart contract security assessment potentially useful 
in assessing the security risk of smart contracts?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

100.00% 18 

2 No  0.00% 0 

 
answered 18 

skipped 9 

 

7. Is the proposed approach to smart contract security assessment potentially helpful 
in increasing the visibility of the security design issue related to smart contracts?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

94.44% 17 

2 No   
 

5.56% 1 

 
answered 18 

skipped 9 

Comments: Why? (1) 

1 01/12/2022 
09:57 AM 

ID: 205680184  

I think this aspect is important: software engineers should deal with smart contract 
security in a deliberate and structured manner.  

 

 

8. Does the proposed approach to smart contract security assessment add additional 
value in designing secure smart contracts compared with doing so in an ad hoc 
manner?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Yes   
 

100.00% 18 

2 No  0.00% 0 

 
answered 18 

skipped 9 

Comments: Why? (2) 

1 09/11/2022 

22:28 PM 
ID: 203534872  

Yes for sure as it will help in set rules of deep 'post dev' analysis of contracts  

2 01/12/2022 
09:57 AM 

ID: 205680184  

Similar comment to 7 

 

 

235



Survey Questioners and Responses

9. What are your suggestions to enhance the suitability of our approach?  

Answer Choices 
Response 
Percent 

Response 
Total 

1 Open-Ended Question 100.00% 19 

1 05/11/2022 
18:28 PM 

ID: 203170434  

I think tools like Trail of bits Manticore are helpful in formal verification of contracts. 
Program exploration and state assertions. Also I think automated tools are helpful but 
cannot test the intended design errors of how a contract is intended to be used. 

2 06/11/2022 

15:23 PM 
ID: 203194037  

Its well and good 

3 06/11/2022 
16:37 PM 

ID: 203196376  

No suggestions  

4 06/11/2022 
18:46 PM 

ID: 203199785  

In general I do agree with your approach. However I find the full approach to be more 
suitable for a code review style of security verification.  
 
For example when designing/developing new contracts, the original devs should certainly 
perform 1a and 1b but will normally not perform steps 1c, 1d and step 2. 

 
Also one should always be wary from over relying on automated tools. Some may 
consider these as a security seal and be less thorough when performing 1b.  
 
Indeed the real difficult part is on how to do 1b. This is where I believe all devs need 
help. 

5 07/11/2022 
16:28 PM 

ID: 203272264  

Encouraging a deep understanding of each vulnerability category (Time manipulation, 
reentrancy etc), enables for efficient human audit after the results of the automated 
analysis tools. 
Focus on smart contract behaviour and functionality being as intended by the 

management, is an easily overlooked factor when we predominantly focus on the 
procedural exploitability of the code.  
Yet from my experience, logical errors and malicious developer-implemented functions 
are common and overlooked. 

6 08/11/2022 
16:23 PM 

ID: 203389038  

A couple of topics come to mind that might be worth exploring further. 
 
The approach you've described is in some ways similar to the process used during a 
contract audit. 
Is it expected that such an approach would be used by developers themselves instead of 
an audit, or in addition to an audit carried out by a third party? 
 

Several of the steps mention Ethereum-specific tools and concepts (Mythos, Solhint, 
gas) - is the approach generally targeted at Ethereum, or can/will it be extended to other 
(non-EVM) blockchains that support smart contracts? 
 
Good work! :-) 

7 09/11/2022 
08:20 AM 

ID: 203431544  

Asking more specific questions 

8 09/11/2022 
09:49 AM 

ID: 203439303  

Add formal verification methods and tools like Certora. 

9 09/11/2022 
14:13 PM 

ID: 203473925  

I would suggest increasing the amount of work done in the identification phase. Even 
suggested tools are good, most of the vulnerabilities found in Smart Contracts are related 
to business logic. I think writing formal specifications and invariants for the system is a 
way for improving identification phase 

236



Survey Questioners and Responses

10 09/11/2022 
22:28 PM 

ID: 203534872  

Since most contracts are custom build for the specific use case, predetermining the 
contract use case and scope will help in determining the depth of analysis required, 
thus helping in speeding up the proposed process 

11 01/12/2022 
09:57 AM 

ID: 205680184  

1. Aim to simplify yet further. 2. Try to be creative in terms of how to capture your 
approach in some that people can remember, eg an acronym that represents the main 
steps. 3. Address the learning curve aspect, how can engineers learn the necessary 

things to easily do the structured approach? 

12 04/12/2022 
20:31 PM 

ID: 205888320  

They are clear 

13 04/12/2022 
22:42 PM 

ID: 205888680  

None  

14 06/12/2022 
10:44 PM 

ID: 205888772  

Make the steps automated to become easy to apply.   

15 07/12/2022 
20:46 PM 

ID: 205888838  

This kind of method is helpful especially for beginner and non-experts smart contract 
developers.  

16 10/12/2022 
20:48 PM 

ID: 205888878  

The approach is easy to follow. I suggested to posted in a blog so developers can 
follow it because not all developers read research papers.  

17 13/12/2022 
20:52 PM 

ID: 205888944  

I have no suggestions  

18 15/12/2022 

11:56 PM 
ID: 205889146  

None… 

19 16/12/2022 
09:02 PM 

ID: 205889338  

Good work  

 

 
answered 19 

skipped 8 

 

237



Survey Questioners and Responses

Dear Rami Bahsoon ,

RE: Security Assessment Approaches for Blockchain-based Systems  

Application for Ethical Review:  ERN_2022-0558 

You project has been considered in line with the University of Birmingham’s research ethics processes and on the basis of the information you have provided, it is
understood that while your project does involve human participants, the project raises no substantial research ethics issues and therefore no further ethics review is
required

Any adverse events occurring during the study should be promptly brought to the Committee’s attention by the Principal Investigator and may necessitate further ethical
review.

Please ensure that the relevant requirements within the University’s Code of Practice for Research and the information and guidance provided on the University’s ethics
webpages (available at https://intranet.birmingham.ac.uk/finance/accounting/Research-Support-Group/Research-Ethics/Links-and-Resources.aspx ) are adhered to.

Please be aware that whilst Health and Safety (H&S) issues may be considered during the ethical review process, you are still required to follow the University’s
guidance on H&S and to ensure that H&S risk assessments have been carried out as appropriate.  For further information about this, please contact your School H&S
representative or the University’s H&S Unit at healthandsafety@contacts.bham.ac.uk.   

Kind regards,

The Co-Chairs of the Science, Technology, Engineering and Mathematics Committee

E-mail: ethics-queries@contacts.bham.ac.uk 

University of Birmingham Edgbaston Birmingham B15 2TT United Kingdom w: www.birmingham.ac.uk

Page 1 of 1

238



Appendix Four

Interviewee Structure

In this appendix, we present the semi-structured interview script that we followed when

conducting the interview with blockchain oracle experts to refine and validate the blockchain

oracle decision model represented in Chapter 5. The ethical approval confirmation to conduct

the interviews was presented in Appendix 3.

239



Interviewee Structure

Interview Script 

 

Introduction 

I really appreciate your taking the time to meet with me today. Let me briefly explain to you our project, its 

aim, and the purpose of the interview. We are developing a blockchain oracle decision support model to assist 

smart contract developers and decision-makers in selecting suitable, secure, and cost-effective oracle 

platforms. During the interview, I would like to ask you several questions about blockchain oracle 

characteristics, then we will discuss your experience of developing and/or integrating oracle into smart 

contracts. Your answers will help us in refining and validate the knowledge base of our decision model. 

 

Interview Questions 

 

Demographics  

When it comes to blockchain oracles and smart contracts, how many years of experience do you have?  

 

Open-Ended Questions 

Q1: Which blockchain oracle platforms are you familiar with? 

Q2: From your experience, how do you think smart contract developers are selecting the oracle platform to 

integrate it into their applications? 

Q3: From your perspective, which features should be supported by blockchain oracle?  

Q4: When people attempt to select oracle, what are the features that they should look at?  

Q5: Based on your knowledge, what are the current oracle platforms that support your stated features? 

Q6: Based on your knowledge, what are the quality attributes provided by the stated features? 

Q7: Which sort of security threats you can imagine that target such type of blockchain oracle?   

Q8: Do you think there is a need for a decision model to assist the decision-makers in selecting a suitable 

oracle?   

Q9: Do you think employing a decision model makes the features of oracle visible to the decision-makers 

and increases transparency?      

 

We would like to thank you for the discussion and for answering our questions. We are working to 

formulate the decision model, and we will send you the final version. 

 

240



Appendix Five

Linking Oracle Features with Platforms

and Quality Attributes

A complete mapping between: a. the Boolean oracle features and platforms and b. the

Boolean oracle features and quality attributes

241



Linking Oracle Features with Platforms and Quality Attributes

 

Boolean Oracle Criteria and Attributes

C
o

n
fi

d
e

n
ti

al
it

y

In
te

gr
it

y

A
va

il
ab

il
it

y

N
o

n
-r

e
p

u
d

ia
ti

o
n

A
u

th
e

n
ti

ci
ty

Tr
u

st
le

ss
n

e
ss

Tr
an

sp
e

re
n

cy
 

Lo
w

 la
te

n
cy

Lo
w

 c
o

st

Lo
w

  t
ra

n
sa

ct
io

n
al

 fi
n

an
ci

al
 C

o
st

 

A
cc

e
ss

ib
il

it
y

Type of Data Feeder
Centralised 0 0 0 0 0 0 0 1 0 0 0

Semi-decentralised 0 0 1 0 0 0 0 0 0 0 0

Fully-Decentralised 0 1 1 0 0 1 0 0 0 0 0

Type of Data Source

Single 0 0 0 0 0 0 0 1 0 0 0

Multiple 0 1 1 0 0 1 0 0 0 0 0

Data Validation Mechanism
Trusted third party 1 1 0 1 1 0 0 1 0 0 0

Trusted Execution Environment 1 1 0 1 1 0 0 1 0 0 0

Consensus 0 1 0 1 1 1 0 0 0 0 0

Integration Methods
On-chain 0 1 1 0 0 0 1 0 0 0 0

Off-chain 0 0 0 0 0 0 0 0 1 0 0

Hybrid 0 1 0 0 0 1 1 0 1 0 0

Encryption Method

Symmetric cryptography 1 0 0 0 0 0 0 0 0 0 0

Asymmetric cryptography 1 0 0 0 0 0 0 0 0 0 0

Data Feeders Selection Method 

Stacking 0 1 0 0 0 0 0 0 0 0 0

Reputation 0 1 0 0 0 0 0 0 0 0 0

PoW 0 1 0 0 0 0 0 0 0 0 0

PoCo 0 1 0 0 0 0 0 0 0 0 0

Random 0 1 0 1 1 0 0 0 0 0 0

Pseudo-random 0 1 0 1 1 0 0 0 0 0 0

Aggregation Mechanism

Statistical Measure 0 0 0 0 0 0 0 1 1 0 0

Mean 0 0 0 0 0 0 0 1 1 0 0

Median 0 0 0 0 0 0 0 1 1 0 0

Mode 0 0 0 0 0 0 0 1 1 0 0

Voting 0 0 0 0 0 0 0 0 0 0 0

Dispute Resolution
Voting 0 0 0 0 0 0 0 0 0 0 0

Stacking 0 1 0 0 0 0 0 0 0 0 0

Statistical Measure 0 0 0 0 0 0 0 1 1 0 0

Incorrect data 

Corrected 0 0 0 0 0 0 0 0 0 0 0

Reverted 0 0 0 0 0 0 0 1 0 0 0

Incentive scheme
Reward 0 1 0 0 0 0 0 0 0 0 0

No reward 0 0 0 0 0 0 0 0 0 1 0

punishment methods 

Slash 0 1 0 0 0 0 0 1 0 0 0

Ban 0 1 0 0 0 0 0 1 0 0 0

Reputation Loss 0 1 0 0 0 0 0 1 0 0 0

Native Token (NT)  
Exist 0 0 0 0 0 0 0 0 0 0 0

Not exist 0 0 0 0 0 0 0 0 0 0 0

Using NT for requesting 

Required 0 0 0 0 0 0 0 0 0 0 0

Not-required 0 0 0 0 0 0 0 0 0 0 1

Boolean Oracle Criteria and Platforms

P
ro

va
b

le
 

To
w

n
-C

ri
e

r

C
h

ai
n

li
n

k 

W
it

n
e

t

Te
ll

o
r

P
ar

al
in

k

B
an

d
C

h
ai

n

iE
xe

c

Type of Data Feeder
Centralised 1 1 0 0 0 0 0 0

Semi-decentralised 0 0 1 1 0 1 1 0

Fully-Decentralised 0 0 0 0 1 0 0 1

Type of Data Source
Single 1 1 1 1 1 1 1 1

Multiple 0 1 1 1 1 1 1 1

Data Validation Mechanism
Trusted third party 1 0 0 0 0 0 0 0

Trusted Execution Environment 0 1 1 0 0 0 0 1

Consensus 0 0 1 1 1 1 1 1

Integration Methods

On-chain 0 0 1 1 1 1 1 0

Off-chain 1 1 0 0 0 0 0 0

Hybrid 0 0 0 0 0 0 0 1

Encryption Method
Symmetric cryptography 0 0 0 0 0 0 0 0

Asymmetric cryptography 1 1 1 0 0 0 0 1

Data Feeders Selection Method 

Stacking 0 0 1 0 1 1 1 1

Reputation 0 0 1 1 0 1 1 1

PoW 0 0 0 1 1 0 0 0

PoCo 0 0 0 0 0 0 0 1

Random 0 0 0 0 1 0 1 1

Pseudo-random 0 0 0 1 0 0 0 0

Aggregation Mechanism

Statistical Measure 0 0 1 0 0 0 1 0

Mean 0 0 0 1 0 1 0 0

Median 0 0 0 1 1 1 0 0

Mode 0 0 0 1 0 0 0 0

Voting 0 0 0 0 0 0 0 1

Dispute Resolution

Voting 0 0 0 0 1 0 0 0

Stacking 0 0 0 0 1 0 1 0

Statistical Measure 0 0 1 0 0 0 1 0

Incorrect data 

Corrected 0 0 0 0 1 0 0 0

Reverted 0 0 0 0 0 0 0 0

Incentive scheme

Reward 0 0 1 1 1 1 1 1

No reward 1 1 0 0 0 0 0 0

punishment methods 
Slash 0 0 1 1 1 1 1 1

Ban 0 0 0 0 1 0 0 0

Reputation Loss 0 0 1 1 0 1 1 1

Native Token (NT)  

Exist 0 0 1 1 1 1 1 1

Not exist 1 1 0 0 0 0 0 0

Using NT for requesting 

Required 0 0 1 0 1 1 1 1

Not-required 1 1 0 1 0 0 0 0

a. PF Mapping  b. FQ Mapping  

242



References

[1] 27001academy. ISO 27001 Risk Assessment, Treatment, & Management: The Com-

plete Guide. Mar. 2022. url: https://advisera.com/27001academy/iso-27001-risk-

assessment-treatment-management/.

[2] ISO/TC 307. Blockchain and distributed ledger technologies — Overview of and inter-

actions between smart contracts in blockchain and distributed ledger technology sys-

tems. ISO. Mar. 2019. url: https://www.iso.org/standard/75624.html.

[3] Ryosuke Abe, Shigeya Suzuki, and Jun Murai. “Mitigating bitcoin node storage size

by DHT”. In: Proceedings of the 2018 Asian Internet Engineering Conference. New

York, NY, USA: ACM, 2018, pp. 17–23.

[4] S. Ahmadjee. Oracle DSM. bitbucket. Mar. 2022. url: https://bitbucket.org/Smart_

Contract/oracle_dsm/src/master/.

[5] S. Ahmadjee, C. Mera-Gomez, and R. Bahsoon. “Assessing Smart Contracts Security

Technical Debts”. In: 2021 2021 IEEE/ACM International Conference on Technical

Debt (TechDebt) (TechDebt). Los Alamitos, CA, USA: IEEE Computer Society, May

2021, pp. 6–15.

[6] Sabreen Ahmadjee et al. “A Study on Blockchain Architecture Design Decisions and

Their Security Attacks and Threats”. In: ACM Trans. Softw. Eng. Methodol. 31.2

(Apr. 2022). issn: 1049-331X.

243

https://advisera.com/27001academy/iso-27001-risk-assessment-treatment-management/
https://advisera.com/27001academy/iso-27001-risk-assessment-treatment-management/
https://www.iso.org/standard/75624.html
https://bitbucket.org/Smart_Contract/oracle_dsm/src/master/
https://bitbucket.org/Smart_Contract/oracle_dsm/src/master/


REFERENCES

[7] Nurzhan Zhumabekuly Aitzhan and Davor Svetinovic. “Security and privacy in de-

centralized energy trading through multi-signatures, blockchain and anonymous mes-

saging streams”. In: IEEE Transactions on Dependable and Secure Computing 15.5

(2016), pp. 840–852.

[8] Maitha Al Ketbi et al. “Establishing a Security Control Framework for Blockchain

Technology”. In: Interdisciplinary Journal of Information, Knowledge, and Manage-

ment 16 (2021), p. 307.

[9] Ranwa Al Mallah, David López, and Bilal Farooq. “Cyber-Security Risk Assessment

Framework for Blockchains in Smart Mobility”. In: IEEE Open Journal of Intelligent

Transportation Systems 2 (2021), pp. 294–311.

[10] Maher Alharby and Aad Van Moorsel. “Blockchain-based smart contracts: A system-

atic mapping study”. In: arXiv preprint arXiv:1710.06372 (2017).

[11] Muhammad Salek Ali et al. “Applications of blockchains in the Internet of Things: A

comprehensive survey”. In: IEEE Communications Surveys & Tutorials 21.2 (2018),

pp. 1676–1717.

[12] Muneeb Ali et al. “Blockstack: A global naming and storage system secured by

blockchains”. In: Proceedings of the 2016 Annual Technical Conference. Denver, CO:

USENIX, 2016, pp. 181–194.

[13] Mohamed Almorsy, John Grundy, and Amani S Ibrahim. “Automated software archi-

tecture security risk analysis using formalized signatures”. In: 2013 35th International

Conference on Software Engineering (ICSE). San Francisco, CA, USA: IEEE, 2013,

pp. 662–671.

[14] Esra Alzaghoul and Rami Bahsoon. “CloudMTD: Using real options to manage tech-

nical debt in cloud-based service selection”. In: 2013 4th International Workshop on

Managing Technical Debt (MTD). IEEE. 2013, pp. 55–62.

244



REFERENCES

[15] Esra Alzaghoul and Rami Bahsoon. “Economics-driven approach for managing tech-

nical debt in cloud-based architectures”. In: Proceedings of the 2013 IEEE/ACM 6th

International Conference on Utility and Cloud Computing. IEEE Computer Society,

2013, pp. 239–242.

[16] Sidney Amani et al. “Towards verifying ethereum smart contract bytecode in Is-

abelle/HOL”. In: Proceedings of the 7th ACM SIGPLAN International Conference on

Certified Programs and Proofs. ACM, 2018, pp. 66–77.

[17] Areti Ampatzoglou et al. “The financial aspect of managing technical debt: A system-

atic literature review”. In: Information and Software Technology 64 (2015), pp. 52–

73.

[18] Nitish Andola et al. “Vulnerabilities on hyperledger fabric”. In: Pervasive and Mobile

Computing 59 (2019), p. 101050.

[19] Elli Androulaki et al. “Evaluating user privacy in bitcoin”. In: Proceedings of the

2013 International Conference on Financial Cryptography and Data Security. Berlin,

Heidelberg: Springer, 2013, pp. 34–51.

[20] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for permis-

sioned blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. New York,

NY, USA: ACM, 2018, p. 30.

[21] AA Andryukhin. “Phishing attacks and preventions in blockchain based projects”. In:

2019 International Conference on Engineering Technologies and Computer Science

(EnT). Moscow, Russia: IEEE, 2019, pp. 15–19.

[22] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. “Hijacking bitcoin: Routing

attacks on cryptocurrencies”. In: Proceedings of the 2017 IEEE Symposium on Security

and Privacy (SP). IEEE, 2017, pp. 375–392.

245



REFERENCES

[23] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A survey of attacks on ethereum

smart contracts”. In: Principles of Security and Trust. Berlin, Heidelberg: Springer,

2017, pp. 164–186.

[24] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A survey of attacks on Ethereum

smart contracts.” In: IACR Cryptol. ePrint Arch. 2016 (2016), p. 1007.

[25] band. Band Protocol. band. Mar. 2021. url: https://docs.bandchain.org/whitepaper/

system-overview.html.

[26] BandChain. BandChain Whitepaper. Band. Mar. 2020. url: https://docs.bandchain.

org/whitepaper/system-overview.html.

[27] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-

Wesley Professional, 2003.

[28] Juan Benet. “Ipfs-content addressed, versioned, p2p file system”. In: arXiv preprint

arXiv:1407.3561 92 (2014), pp. 399–406.

[29] Fabrice Benhamouda, Shai Halevi, and Tzipora Tracy Halevi. “Supporting private

data on Hyperledger Fabric with secure multiparty computation”. In: IBM Journal of

Research and Development (2019).

[30] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies without proof of

work”. In: Proceedings of the 2016 International Conference on Financial Cryptogra-

phy and Data Security. Berlin, Heidelberg: Springer, 2016, pp. 142–157.

[31] Iddo Bentov et al. “Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of

Stake.” In: IACR Cryptology ePrint Archive 2014 (2014), p. 452.

[32] Terese Besker, Antonio Martini, and Jan Bosch. “Managing architectural technical

debt: A unified model and systematic literature review”. In: Journal of Systems and

Software 135 (2018), pp. 1–16.

246

https://docs.bandchain.org/whitepaper/system-overview.html
https://docs.bandchain.org/whitepaper/system-overview.html
https://docs.bandchain.org/whitepaper/system-overview.html
https://docs.bandchain.org/whitepaper/system-overview.html


REFERENCES

[33] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. “State machine replication for

the masses with BFT-SMaRt”. In: Proceedings of the 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks. Atlanta, GA, USA:

IEEE, 2014, pp. 355–362.

[34] Akashdeep Bhardwaj et al. “Penetration testing framework for smart contract blockchain”.

In: Peer-to-Peer Networking and Applications 14.5 (2021), pp. 2635–2650.

[35] Karthikeyan Bhargavan et al. “Formal verification of smart contracts: Short paper”.

In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis

for Security. ACM, 2016, pp. 91–96.

[36] Karthikeyan Bhargavan et al. “Formal verification of smart contracts: Short paper”.

In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis

for Security. ACM, 2016, pp. 91–96.

[37] Alex Biryukov and Dmitry Khovratovich. “Equihash: Asymmetric proof-of-work based

on the generalized birthday problem”. In: Ledger 2 (2017), pp. 1–30.

[38] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. “Deanonymisation of

clients in Bitcoin P2P network”. In: Proceedings of the 2014 ACM SIGSAC Confer-

ence on Computer and Communications Security. New York, NY, USA: ACM, 2014,

pp. 15–29.

[39] Trail of Bits. (Not So) Smart Contracts. 2018. url: https://github.com/crytic/not-

so-smart-contracts.

[40] Joseph Bonneau et al. “Sok: Research perspectives and challenges for bitcoin and cryp-

tocurrencies”. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy

(SP). San Jose, CA, USA: IEEE, 2015, pp. 104–121.

247

https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts


REFERENCES

[41] Emanuele Borgonovo et al. “Sensitivity analysis”. In: An Introduction for the Manage-

ment Scientist. International Series in Operations Research and Management Science.

Cham, Switzerland: Springer (2017).

[42] Amiangshu Bosu et al. “Understanding the motivations, challenges and needs of

Blockchain software developers: a survey”. In: Empirical Software Engineering 24.4

(2019), pp. 2636–2673.

[43] Bounty. Ethereum Bounty Program. bitbucket. 2019. url: https://bounty.ethereum.

org/.

[44] Sarah Bouraga. “A taxonomy of blockchain consensus protocols: A survey and clas-

sification framework”. In: Expert Systems with Applications 168 (2021), p. 114384.

issn: 0957-4174.

[45] Sarah Bouraga. “A taxonomy of blockchain consensus protocols: A survey and clas-

sification framework”. In: Expert Systems with Applications 168 (2021), p. 114384.

[46] Glenn A Bowen. “Document analysis as a qualitative research method”. In: Qualitative

research journal (2009).

[47] Lorenz Breidenbach. An In-Depth Look at the Parity Multisig Bug. 2017. url: https:

//bit.ly/3sTxkMd.

[48] Hamda Al-Breiki et al. “Trustworthy Blockchain Oracles: Review, Comparison, and

Open Research Challenges”. In: IEEE Access 8 (2020), pp. 85675–85685.

[49] Lexi Brent et al. “Vandal: A scalable security analysis framework for smart contracts”.

In: arXiv preprint arXiv:1809.03981 (2018).

[50] Sotirios Brotsis et al. “On the Security and Privacy of Hyperledger Fabric: Challenges

and Open Issues”. In: 2020 IEEE World Congress on Services (SERVICES). Beijing,

China: IEEE, 2020, pp. 197–204.

248

https://bounty.ethereum.org/
https://bounty.ethereum.org/
https://bit.ly/3sTxkMd
https://bit.ly/3sTxkMd


REFERENCES

[51] Sotirios Brotsis et al. “On the suitability of blockchain platforms for IoT applications:

Architectures, security, privacy, and performance”. In: Computer Networks 191 (2021),

p. 108005. issn: 1389-1286.

[52] Thanh Bui et al. “Pitfalls of open architecture: How friends can exploit your cryptocur-

rency wallet”. In: Proceedings of the 12th European Workshop on Systems Security.

New York, NY, USA: ACM, 2019, p. 3.

[53] Vitalik Buterin. Thinking About Smart Contract Security. 2016. url: https://bit.ly/

3BkiMIn.

[54] Giulio Caldarelli and Joshua Ellul. “The Blockchain Oracle Problem in Decentralized

Finance—A Multivocal Approach”. In: Applied Sciences 11.16 (2021). issn: 2076-

3417.

[55] Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. “A systematic literature

review of blockchain-based applications: current status, classification and open issues”.

In: Telematics and Informatics 36 (2018). issn: 0736-5853.

[56] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In: Pro-

ceedings of the 1999 OSDI. usenix, 1999.

[57] Yair Censor. “Pareto optimality in multiobjective problems”. In: Applied Mathematics

and Optimization 4.1 (1977), pp. 41–59.

[58] Chainlink. What Is the Blockchain Oracle Problem? Chainlink. Mar. 2020. url: https:

//blog.chain.link/what-is-the-blockchain-oracle-problem.

[59] Kuang-Hua Chang. “Chapter 19 - Multiobjective Optimization and Advanced Topics”.

In: e-Design. Ed. by Kuang-Hua Chang. Boston: Academic Press, 2015, pp. 1105–

1173. isbn: 978-0-12-382038-9.

[60] Huashan Chen et al. “A survey on ethereum systems security: Vulnerabilities, attacks,

and defenses”. In: ACM Computing Surveys (CSUR) 53.3 (2020), pp. 1–43.

249

https://bit.ly/3BkiMIn
https://bit.ly/3BkiMIn
https://blog.chain.link/what-is-the-blockchain-oracle-problem
https://blog.chain.link/what-is-the-blockchain-oracle-problem


REFERENCES

[61] Jiachi Chen et al. “DEFECTCHECKER: Automated Smart Contract Defect Detec-

tion by Analyzing EVM Bytecode”. In: IEEE Transactions on Software Engineering

48 (2021), pp. 1–1.

[62] Lin Chen et al. “On security analysis of proof-of-elapsed-time (poet)”. In: Proceed-

ings of the 2017 International Symposium on Stabilization, Safety, and Security of

Distributed Systems. Cham: Springer, 2017, pp. 282–297.

[63] Ting Chen et al. “TokenScope: Automatically Detecting Inconsistent Behaviors of

Cryptocurrency Tokens in Ethereum”. In: Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’19. London, United

Kingdom: Association for Computing Machinery, 2019, pp. 1503–1520.

[64] Jieren Cheng et al. “A survey of security threats and defense on Blockchain”. In:

Multimedia Tools and Applications 80.20 (2021), pp. 30623–30652.

[65] Catalin Cimpanu. DNS hijacks at two cryptocurrency sites. 2021. url: https://bit.

ly/3gGtO33.

[66] CONSENSYS. mythx. 2020. url: https://mythx.io/.

[67] DSDM Consortium. The DSDM Agile Project Framework. Agile Business Consortium.

Dec. 2014. url: https : / /www . agilebusiness . org / page /ProjectFramework_10_

MoSCoWPrioritisation.

[68] Mauro Conti et al. “A survey on security and privacy issues of bitcoin”. In: IEEE

Communications Surveys & Tutorials 20.4 (2018), pp. 3416–3452.

[69] Thomas Cook, Alex Latham, and Jae Hyung Lee. “Dappguard: Active monitoring

and defense for solidity smart contracts”. In: Retrieved July 18 (2017), p. 2018.

[70] Juliet Corbin and Anselm Strauss. Basics of qualitative research: Techniques and

procedures for developing grounded theory. Sage publications, 2014.

250

https://bit.ly/3gGtO33
https://bit.ly/3gGtO33
https://mythx.io/
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation


REFERENCES

[71] Corda. An Open Source Blockchain Platform for Businesses | Corda. 2019. url: https:

//www.corda.net.

[72] Leonardo da Costa et al. “Securing light clients in blockchain with DLCP”. In: Inter-

national Journal of Network Management 29.3 (2019), e2055.

[73] Michael Crosby et al. “Blockchain technology: Beyond bitcoin”. In: Applied Innovation

2.6-10 (2016), p. 71.

[74] CSA. Over 200 Documented Blockchain Attacks, Vulnerabilities and Weaknesses. 2020.

url: https://bit.ly/3kuMgwx.

[75] Ward Cunningham. “The WyCash portfolio management system”. In: ACM SIG-

PLAN OOPS Messenger 4.2 (1993), pp. 29–30.

[76] European Union Agency for Cybersecurity. Distributed Ledger Technology & Cyber-

security - Improving information security in the financial sector. 2017. url: https:

//www.enisa.europa.eu/publications/blockchain-security.

[77] Mingjun Dai et al. “A low storage room requirement framework for distributed ledger

in blockchain”. In: IEEE Access 6 (2018), pp. 22970–22975.

[78] Hung Dang et al. “Towards scaling blockchain systems via sharding”. In: Proceedings

of the 2019 international conference on management of data. New York, NY, USA:

Association for Computing Machinery, 2019, pp. 123–140.

[79] Florian Daniel and Luca Guida. “A service-oriented perspective on blockchain smart

contracts”. In: IEEE Internet Computing 23.1 (2019), pp. 46–53.

[80] DanielCawrey. 37 Coins Plans Worldwide Bitcoin Access With SMS-Based Wallet.

2014. url: https://bit.ly/3kzmQ0Q.

[81] Chris Dannen. Introducing Ethereum and Solidity. Vol. 1. Springer, 2017.

[82] State of the DApps. state of the dapps. 2020. url: https://www.blockdata.tech/.

251

https://www.corda.net
https://www.corda.net
https://bit.ly/3kuMgwx
https://www.enisa.europa.eu/publications/blockchain-security
https://www.enisa.europa.eu/publications/blockchain-security
https://bit.ly/3kzmQ0Q
https://www.blockdata.tech/


REFERENCES

[83] Dipankar Dasgupta, John M Shrein, and Kishor Datta Gupta. “A survey of blockchain

from security perspective”. In: Journal of Banking and Financial Technology 3.1

(2019), pp. 1–17.

[84] Saulo S. de Toledo, Antonio Martini, and Dag I.K. Sjøberg. “Identifying architectural

technical debt, principal, and interest in microservices: A multiple-case study”. In:

Journal of Systems and Software 177 (2021), p. 110968. issn: 0164-1212.

[85] Christian Decker and Roger Wattenhofer. “Information propagation in the bitcoin

network”. In: Proceedings of the 2013 IEEE Thirteenth International Conference on

Peer-to-Peer Computing (P2P). IEEE, 2013, pp. 1–10.

[86] Christian Decker and Roger Wattenhofer. “Information propagation in the bitcoin

network”. In: Proceedings of the 2013 IEEE P2P. Trento, Italy: IEEE, 2013, pp. 1–10.

[87] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis.

“A Survey on Long-Range Attacks for Proof of Stake Protocols”. In: IEEE Access 7

(2019), pp. 28712–28725.

[88] Deloitte. Risk Advisory. 2022. url: https://www2.deloitte.com/uk/en/services/risk-

advisory.html?icid=top_risk-advisory.

[89] Qi Deng and Shaobo Ji. “A review of design science research in information systems:

concept, process, outcome, and evaluation”. In: Pacific Asia journal of the association

for information systems 10.1 (2018), p. 2.

[90] Harsh Desai, Murat Kantarcioglu, and Lalana Kagal. “A hybrid blockchain archi-

tecture for privacy-enabled and accountable auctions”. In: 2019 IEEE International

Conference on Blockchain (Blockchain). IEEE, 2019, pp. 34–43.

[91] Giuseppe Destefanis et al. “Smart contracts vulnerabilities: a call for blockchain soft-

ware engineering?” In: Proceedings of the 2018 International Workshop on Blockchain

Oriented Software Engineering (IWBOSE). IEEE, 2018, pp. 19–25.

252

https://www2.deloitte.com/uk/en/services/risk-advisory.html?icid=top_risk-advisory
https://www2.deloitte.com/uk/en/services/risk-advisory.html?icid=top_risk-advisory


REFERENCES

[92] Thomas Dickerson et al. “Adding concurrency to smart contracts”. In: Proceedings of

the ACM Symposium on Principles of Distributed Computing. ACM, 2017, pp. 303–

312.

[93] digitalshadows. Cryptocurrency Attacks To Be Aware Of In 2021. 2021. url: https:

//bit.ly/2WyC3XG.

[94] Sheng Ding et al. “A Novel Attribute-Based Access Control Scheme Using Blockchain

for IoT”. In: IEEE Access 7 (2019), pp. 38431–38441.

[95] Tien Tuan Anh Dinh et al. “Blockbench: A framework for analyzing private blockchains”.

In: Proceedings of the 2017 ACM International Conference on Management of Data.

ACM, 2017, pp. 1085–1100.

[96] Ali Dorri et al. “Blockchain: A distributed solution to automotive security and pri-

vacy”. In: IEEE Communications Magazine 55.12 (2017), pp. 119–125.

[97] Nusi Drljevic, Daniel Arias Aranda, and Vladimir Stantchev. “Perspectives on risks

and standards that affect the requirements engineering of blockchain technology”. In:

Computer Standards & Interfaces 69 (2020), p. 103409. issn: 0920-5489.

[98] Raghav Dua. Protofire. 2019. url: https://github.com/duaraghav8/Ethlint.

[99] Alevtina Dubovitskaya et al. “Secure and trustable electronic medical records sharing

using blockchain”. In: Proceedings of the 2017 AMIA Annual Symposium Proceedings.

Vol. 2017. American Medical Informatics Association, 2017, p. 650.

[100] Evan Duffield and Kyle Hagan. “Darkcoin:Peertopeer cryptocurrency with anony-

mous blockchain transactions and an improved proofofwork system”. In: bitpaper.

info (2014).

[101] Thomas Durieux et al. “Empirical review of automated analysis tools on 47,587

Ethereum smart contracts”. In: Proceedings of the ACM/IEEE 42nd International

253

https://bit.ly/2WyC3XG
https://bit.ly/2WyC3XG
https://github.com/duaraghav8/Ethlint


REFERENCES

Conference on Software Engineering. Seoul South Korea: ACM/IEEE, 2020, pp. 530–

541.

[102] Stefan Dziembowski et al. “Proofs of space”. In: Proceedings of the 2015 Annual Cryp-

tology Conference. Springer, 2015, pp. 585–605.

[103] Dennis de Vries Eamonn Maguire Kiran Nagaraj. Realizing blockchain’s potential.

2018. url: https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/09/realizing-

blockchains-potential.pdf.

[104] Jacob Eberhardt and Stefan Tai. “On or off the blockchain? Insights on off-chaining

computation and data”. In: Proceedings of the European Conference on Service-Oriented

and Cloud Computing. Cham: Springer, 2017, pp. 3–15.

[105] Shiva Ebneyamini and Mohammad Reza Sadeghi Moghadam. “Toward Developing a

Framework for Conducting Case Study Research”. In: International Journal of Qual-

itative Methods 17.1 (2018), p. 1609406918817954.

[106] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. “Impact of Man-In-

The-Middle Attacks on Ethereum”. In: 2018 IEEE 37th Symposium on Reliable Dis-

tributed Systems (SRDS). Salvador, Brazil: IEEE, 2018, pp. 11–20.

[107] Steve Ellis, Ari Juels, and Sergey Nazarov. Chainlink: A decentralized oracle network.

2018. url: https://research.chain.link/whitepaper-v1.pdf.

[108] Joshua Ellul and Gordon J Pace. “Runtime verification of ethereum smart con-

tracts”. In: Proceedings of the 2018 14th European Dependable Computing Conference

(EDCC). IEEE, 2018, pp. 158–163.

[109] E English, AD Kim, and M Nonaka. Advancing Blockchain Cybersecurity: Technical

and Policy Considerations for the Financial Services Industry. 2018. url: https :

//rb.gy/jv8rra.

254

https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/09/realizing-blockchains-potential.pdf
https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/09/realizing-blockchains-potential.pdf
https://research.chain.link/whitepaper-v1.pdf
https://rb.gy/jv8rra
https://rb.gy/jv8rra


REFERENCES

[110] Neil A Ernst et al. “Measure it? manage it? ignore it? software practitioners and

technical debt”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM, 2015, pp. 50–60.

[111] Neil A Ernst et al. “What to Fix? Distinguishing between design and non-design rules

in automated tools”. In: 2017 IEEE International Conference on Software Architecture

(ICSA). IEEE. Gothenburg, Sweden: IEEE, 2017, pp. 165–168.

[112] Shayan Eskandari et al. “A first look at browser-based Cryptojacking”. In: Proceed-

ings of the 2018 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW). IEEE, 2018, pp. 58–66.

[113] Shayan Eskandari et al. “SoK: Oracles from the Ground Truth to Market Manipu-

lation”. In: Proceedings of the 3rd ACM Conference on Advances in Financial Tech-

nologies. New York, NY, USA: Association for Computing Machinery, 2021, pp. 127–

141.

[114] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: Bitcoin mining is vulnerable”.

In: Communications of the ACM 61.7 (2018), pp. 95–102.

[115] Ittay Eyal et al. “Bitcoin-ng: A scalable blockchain protocol”. In: Proceedings of

the 13th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 16). Santa Clara, CA: USENIX, 2016, pp. 45–59.

[116] Weidong Fang et al. “Digital signature scheme for information non-repudiation in

blockchain: a state of the art review”. In: EURASIP Journal on Wireless Communi-

cations and Networking 2020.1 (2020), pp. 1–15.

[117] Kurt Fanning and David P Centers. “Blockchain and its coming impact on financial

services”. In: Journal of Corporate Accounting & Finance 27.5 (2016), pp. 53–57.

[118] Siamak Farshidi et al. “A decision support system for software technology selection”.

In: Journal of Decision Systems 27.sup1 (2018), pp. 98–110.

255



REFERENCES

[119] Siamak Farshidi et al. “Decision Support for Blockchain Platform Selection: Three

Industry Case Studies”. In: IEEE Transactions on Engineering Management 67.4

(2020), pp. 1109–1128.

[120] Amir Feder et al. “The impact of DDoS and other security shocks on Bitcoin currency

exchanges: Evidence from Mt. Gox”. In: Journal of Cybersecurity 3.2 (2018), pp. 137–

144.

[121] J. Feist, G. Grieco, and A. Groce. “Slither: A Static Analysis Framework for Smart

Contracts”. In: 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain (WETSEB). Montreal, QC, Canada, Canada:

ACM/IEEE, 2019, pp. 8–15.

[122] Qi Feng et al. “A survey on privacy protection in blockchain system”. In: Journal of

Network and Computer Applications 126.2 (2018). issn: 1084-8045.

[123] Mohamed Amine Ferrag et al. “Blockchain technologies for the internet of things:

Research issues and challenges”. In: IEEE Internet of Things Journal 6.2 (2018),

pp. 2188–2204.

[124] Ernestas Filatovas et al. “A MCDM-based framework for blockchain consensus pro-

tocol selection”. In: Expert Systems with Applications 204 (2022), p. 117609. issn:

0957-4174.

[125] Martin Florian et al. “Erasing data from blockchain nodes”. In: 2019 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW). Stockholm, Sweden:

IEEE, 2019, pp. 367–376.

[126] forum openzeppelin forum. Discuss about smart contract security patterns, vulner-

abilities, hacks and best practices. openzeppelin, Nov. 2020. url: https : / / forum.

openzeppelin.com/c/security/25.

256

https://forum.openzeppelin.com/c/security/25
https://forum.openzeppelin.com/c/security/25


REFERENCES

[127] OWASP Foundation. Open Web Application Security Project. 2022. url: https://

owasp.org/www-project-top-ten/.

[128] Xiang Fu, Huaimin Wang, and Peichang Shi. “A survey of Blockchain consensus algo-

rithms: mechanism, design and applications”. In: Science China Information Sciences

64.2 (2021), pp. 1–15.

[129] Yu-Long Gao et al. “A secure cryptocurrency scheme based on post-quantum blockchain”.

In: IEEE Access 6 (2018), pp. 27205–27213.

[130] Weichao Gao, William G Hatcher, and Wei Yu. “A survey of blockchain: techniques,

applications, and challenges”. In: Proceedings of the 2018 27th International Confer-

ence on Computer Communication and Networks (ICCCN). Hangzhou, China: IEEE,

2018, pp. 1–11.

[131] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin backbone protocol:

Analysis and applications”. In: Annual international conference on the theory and

applications of cryptographic techniques. Springer. 2015, pp. 281–310.

[132] Valentina Gatteschi et al. “Blockchain and smart contracts for insurance: Is the tech-

nology mature enough?” In: Future Internet 10.2 (2018), p. 20.

[133] Peter Gaži, Aggelos Kiayias, and Alexander Russell. “Stake-bleeding attacks on proof-

of-stake blockchains”. In: Proceedings of the 2018 Crypto Valley Conference on Blockchain

Technology (CVCBT). IEEE, 2018, pp. 85–92.

[134] Rosario Gennaro and Steven Goldfeder. “Fast multiparty threshold ecdsa with fast

trustless setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2018, pp. 1179–1194.

[135] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. “Threshold-optimal DSA/ECDSA

signatures and an application to Bitcoin wallet security”. In: Proceedings of the 2016

257

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/


REFERENCES

International Conference on Applied Cryptography and Network Security. Springer,

2016, pp. 156–174.

[136] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme. Vol. 20. 09.

Stanford University Stanford, 2009.

[137] Arthur Gervais et al. “On the security and performance of proof of work blockchains”.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-

cations Security. New York, NY, USA: ACM, 2016, pp. 3–16.

[138] Ilias Giechaskiel, Cas Cremers, and Kasper Bonne Rasmussen. “On Bitcoin Security

in the Presence of Broken Crypto Primitives.” In: IACR Cryptology ePrint Archive

2016 (2016), p. 167.

[139] Githup. GitHub - 1522402210/BlockChain-Security-List: BlockChain-Security-List.

2018. url: https://bit.ly/3mM8SeR.

[140] Bill Gleim. General Philosophy - Ethereum Smart Contract Best Practices. 2017. url:

https://bit.ly/3DpudAy.

[141] Steven Goldfeder et al. Securing Bitcoin wallets via a new DSA/ECDSA threshold

signature scheme. 2015. url: https://tinyurl.com/3p2p2s85.

[142] Steven Goldfeder et al. Securing bitcoin wallets via threshold signatures. 2014. url:

https://tinyurl.com/k2cj4ee2.

[143] Rishab Goyal and Vipul Goyal. “Overcoming cryptographic impossibility results us-

ing blockchains”. In: Proceedings of the 2017 Theory of Cryptography Conference.

Springer, 2017, pp. 529–561.

[144] Matthew Green and Ian Miers. “Bolt: Anonymous payment channels for decentralized

currencies”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. 2017, pp. 473–489.

258

https://bit.ly/3mM8SeR
https://bit.ly/3DpudAy
https://tinyurl.com/3p2p2s85
https://tinyurl.com/k2cj4ee2


REFERENCES

[145] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. “Foundations and tools

for the static analysis of ethereum smart contracts”. In: International Conference on

Computer Aided Verification. Springer. 2018, pp. 51–78.

[146] Jens Groth. “Short pairing-based non-interactive zero-knowledge arguments”. In: Pro-

ceedings of the 2010 International Conference on the Theory and Application of Cryp-

tology and Information Security. Springer, 2010, pp. 321–340.

[147] NCC Group. Decentralized Application Security Project. 2018. url: https://dasp.co/.

[148] Huaqun Guo and Xingjie Yu. “A survey on blockchain technology and its security”.

In: Blockchain: Research and Applications 3.2 (2022), p. 100067.

[149] Empire Hacking. Echidna: A Fast Smart Contract Fuzzer. 2018. url: https://github.

com/crytic/echidna.

[150] Alireza Toroghi Haghighat and Mehdi Shajari. “Block withholding game among bit-

coin mining pools”. In: Future Generation Computer Systems 97 (2019), pp. 482–491.

[151] John H Hartman, Ian Murdock, and Tammo Spalink. “The Swarm scalable storage

system”. In: Proceedings of the 19th IEEE International Conference on Distributed

Computing Systems (Cat. No. 99CB37003). IEEE, 1999, pp. 74–81.

[152] Huru Hasanova et al. “A survey on blockchain cybersecurity vulnerabilities and possi-

ble countermeasures”. In: International Journal of Network Management 29.2 (2019),

e2060.

[153] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. “Privacy preserva-

tion in blockchain based IoT systems: Integration issues, prospects, challenges, and fu-

ture research directions”. In: Future Generation Computer Systems 97 (2019), pp. 512–

529.

[154] Cédric Hebert and Francesco Di Cerbo. “Secure blockchain in the enterprise: A

methodology”. In: Pervasive and Mobile Computing 59 (2019), p. 101038.

259

https://dasp.co/
https://github.com/crytic/echidna
https://github.com/crytic/echidna


REFERENCES

[155] Ethan Heilman et al. “Eclipse Attacks on Bitcoin’s Peer-to-Peer Network”. In: 24th

USENIX Security Symposium (USENIX Security 15). Washington, D.C.: USENIX

Association, Aug. 2015, pp. 129–144.

[156] Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. “From Oracles to Trustworthy

Data On-Chaining Systems”. In: 2019 IEEE International Conference on Blockchain

(Blockchain). Atlanta, GA, USA: IEEE, 2019, pp. 496–503.

[157] Everett Hildenbrandt et al. “Kevm: A complete formal semantics of the ethereum

virtual machine”. In: 2018 IEEE 31st Computer Security Foundations Symposium

(CSF). IEEE. 2018, pp. 204–217.

[158] Yoichi Hirai. Formal Verification of Deed Contract in Ethereum Name Service. Tech.

rep. 2016. url: https://bit.ly/3t7DHMd.

[159] Ivan Homoliak et al. “The security reference architecture for blockchains: Toward

a standardized model for studying vulnerabilities, threats, and defenses”. In: IEEE

Communications Surveys & Tutorials 23.1 (2020), pp. 341–390.

[160] Yao-Chieh Hu et al. “Hierarchical interactions between ethereum smart contracts

across testnets”. In: Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains

for Distributed Systems. ACM, 2018, pp. 7–12.

[161] Xin Huang et al. “Synthesizing Qualitative Research in Software Engineering: A Crit-

ical Review”. In: Proceedings of the 40th International Conference on Software Engi-

neering. ICSE ’18. Gothenburg, Sweden: Association for Computing Machinery, 2018,

pp. 1207–1218.

[162] Pete Humiston. Smart Contract Attacks [Part 2] - Ponzi Games Gone Wrong - By.

2018. url: https://bit.ly/2WqVcew.

[163] IEC. Information technology - Server management command line protocol. ISO. Mar.

2011. url: https://www.iso.org/standard/53458.html.

260

https://bit.ly/3t7DHMd
https://bit.ly/2WqVcew
https://www.iso.org/standard/53458.html


REFERENCES

[164] iExec. iExec Technical Documentation. iExec. Mar. 2022. url: https://docs.iex.ec/.

[165] German Federal Office for Information Security: Bonn. Towards Secure Blockchains.

2019. url: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/

Secure_Blockchain.html.

[166] KPMG International. Securing the chain. Tech. rep. 2017. url: https : / / vz . to /

3kuHXS0.

[167] Clemente Izurieta and Mary Prouty. “Leveraging secdevops to tackle the technical

debt associated with cybersecurity attack tactics”. In: 2019 IEEE/ACM International

Conference on Technical Debt (TechDebt). IEEE. 2019, pp. 33–37.

[168] Clemente Izurieta et al. “A position study to investigate technical debt associated with

security weaknesses”. In: 2018 IEEE/ACM International Conference on Technical

Debt (TechDebt). IEEE, 2018, pp. 138–142.

[169] Bo Jiang, Ye Liu, and WK Chan. “Contractfuzzer: Fuzzing smart contracts for vulner-

ability detection”. In: Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering. ACM, 2018, pp. 259–269.

[170] Hai Jin, Xiaohai Dai, and Jiang Xiao. “Towards a novel architecture for enabling

interoperability amongst multiple blockchains”. In: Proceedings of the 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS). IEEE, 2018,

pp. 1203–1211.

[171] Aram Jivanyan. “Lelantus: Towards Confidentiality and Anonymity of Blockchain

Transactions from Standard Assumptions.” In: IACR Cryptol. ePrint Arch. 2019

(2019), p. 373.

[172] Aditya Joshi. Modifying the Batch Size in Hyperledger Fabric v2.2. 2020. url: https:

//bit.ly/3ve5zyM.

261

https://docs.iex.ec/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Secure_Blockchain.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Secure_Blockchain.html
https://vz.to/3kuHXS0
https://vz.to/3kuHXS0
https://bit.ly/3ve5zyM
https://bit.ly/3ve5zyM


REFERENCES

[173] Maxim Jourenko et al. “SoK: A Taxonomy for Layer-2 Scalability Related Protocols

for Cryptocurrencies.” In: IACR Cryptol. ePrint Arch. 2019 (2019), p. 352.

[174] JWWeatherman. bitcoin security threat model. 2018. url: https://bit.ly/2Y0xJkx.

[175] Satyanarayan Kar et al. Risk Analysis of Blockchain Application for Aerospace Records

Management. Tech. rep. SAE Technical Paper, 2019.

[176] Rick Kazman et al. “A case study in locating the architectural roots of technical debt”.

In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

Vol. 2. IEEE. 2015, pp. 179–188.

[177] Staffs Keele et al. Guidelines for performing systematic literature reviews in software

engineering. Tech. rep. Technical report, ver. 2.3 ebse technical report. ebse, 2007.

[178] keywordseverywhere. keywords every where. keywordseverywhere. Mar. 2022. url:

https://keywordseverywhere.com/.

[179] Javed Ali Khan et al. “Comparison of Requirement Prioritization Techniques to Find

Best Prioritization Technique.” In: International Journal of Modern Education &

Computer Science 7.11 (2015).

[180] Aggelos Kiayias et al. “Ouroboros: A provably secure proof-of-stake blockchain proto-

col”. In: Proceedings of the 2017 Annual International Cryptology Conference. Springer,

2017, pp. 357–388.

[181] Lucianna Kiffer, Dave Levin, and Alan Mislove. “Stick a fork in it: Analyzing the

Ethereum network partition”. In: Proceedings of the 16th ACM Workshop on Hot

Topics in Networks. ACM, 2017, pp. 94–100.

[182] Evgeniy O Kiktenko et al. “Quantum-secured blockchain”. In: Quantum Science and

Technology 3.3 (2018), p. 035004.

262

https://bit.ly/2Y0xJkx
https://keywordseverywhere.com/


REFERENCES

[183] Chang Yeon Kim and Kyungho Lee. “Risk management to cryptocurrency exchange

and investors guidelines to prevent potential threats”. In: 2018 international confer-

ence on platform technology and service (PlatCon). IEEE. 2018, pp. 1–6.

[184] Eamonn Maguire Kiran Nagaraj. Securing the chain. 2017. url: https://assets.kpmg/

content/dam/kpmg/xx/pdf/2017/05/securing-the-chain.pdf.

[185] KirstenS. Category: Attack - OWASP. 2010. url: https://bit.ly/3yukAwx.

[186] Barbara Kitchenham. “Procedures for performing systematic reviews”. In: Keele, UK,

Keele University 33.2004 (2004), pp. 1–26.

[187] Barbara Kitchenham, Stephen Linkman, and David Law. “DESMET: A method for

evaluating software engineering methods and tools”. In: Keele University (1996).

[188] Tim Klinger et al. “An enterprise perspective on technical debt”. In: Proceedings of

the 2nd Workshop on managing technical debt. ACM, 2011, pp. 35–38.

[189] Lukas König et al. “Comparing blockchain standards and recommendations”. In: Fu-

ture Internet 12.12 (2020), p. 222.

[190] Ahmed Kosba et al. “Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts”. In: Proceedings of the 2016 IEEE Symposium on Security

and Privacy. IEEE, 2016, pp. 839–858.

[191] KPMG. KPMG. 2022. url: https://home.kpmg/xx/en/home.html.

[192] Mark Kreitz. “Security by Design in Software Engineering”. In: SIGSOFT Softw. Eng.

Notes 44.3 (Oct. 2020), p. 23.

[193] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. “Technical debt: From metaphor

to theory and practice”. In: Ieee software 29.6 (2012), pp. 18–21.

[194] Nir Kshetri. “Can blockchain strengthen the internet of things?” In: IT professional

19.4 (2017), pp. 68–72.

263

https://assets.kpmg/content/dam/kpmg/xx/pdf/2017/05/securing-the-chain.pdf
https://assets.kpmg/content/dam/kpmg/xx/pdf/2017/05/securing-the-chain.pdf
https://bit.ly/3yukAwx
https://home.kpmg/xx/en/home.html


REFERENCES

[195] Satpal Singh Kushwaha et al. “Ethereum Smart Contract Analysis Tools: A System-

atic Review”. In: IEEE Access 10 (2022), pp. 57037–57062.

[196] Alexandr Kuznetsov et al. “Performance of hash algorithms on gpus for use in blockchain”.

In: 2019 IEEE International Conference on Advanced Trends in Information Theory

(ATIT). IEEE, 2019, pp. 166–170.

[197] Roy Lai and David LEE Kuo Chuen. “Blockchain–from public to private”. In: Hand-

book of Blockchain, Digital Finance, and Inclusion, Volume 2. Elsevier, 2018, pp. 145–

177.

[198] Leslie Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18–

25.

[199] David LeBlanc and Michael Howard. Writing secure code. Pearson Education, 2002.

[200] Ledger. e-commerce and marketing data breach. 2020. url: https://bit.ly/2WI33EC.

[201] Sangsup Lee et al. “Who spent my {EOS}? on the (in) security of resource manage-

ment of eos. io”. In: 13th {USENIX} Workshop on Offensive Technologies ({WOOT}

19). 2019.

[202] Alexander Leid, Brink van der Merwe, and Willem Visser. “Testing Ethereum Smart

Contracts: A Comparison of Symbolic Analysis and Fuzz Testing Tools”. In: Confer-

ence of the South African Institute of Computer Scientists and Information Technol-

ogists 2020. 2020, pp. 35–43.

[203] Jiewu Leng et al. “Blockchain Security: A Survey of Techniques and Research Direc-

tions”. In: IEEE Transactions on Services Computing 15.4 (2022), pp. 2490–2510.

[204] Kaijun Leng et al. “Research on agricultural supply chain system with double chain

architecture based on blockchain technology”. In: Future Generation Computer Sys-

tems 86 (2018), pp. 641–649.

264

https://bit.ly/2WI33EC


REFERENCES

[205] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. “Inclusive block chain proto-

cols”. In: Proceedings of the 2015 International Conference on Financial Cryptography

and Data Security. Springer, 2015, pp. 528–547.

[206] Chao-Yang Li et al. “A New Lattice-Based Signature Scheme in Post-Quantum Blockchain

Network”. In: IEEE Access 7 (2018), pp. 2026–2033.

[207] Daming Li et al. “Information security model of block chain based on intrusion sensing

in the IoT environment”. In: Cluster Computing 22.1 (2019), pp. 451–468.

[208] Kai Li et al. “As Strong As Its Weakest Link: How to Break Blockchain DApps at

RPC Service”. In: NDSS. NDSS, 2021.

[209] Wenting Li et al. “Securing proof-of-stake blockchain protocols”. In: Data Privacy

Management, Cryptocurrencies and Blockchain Technology. Springer, 2017, pp. 297–

315.

[210] Wenting Li et al. “Towards scalable and private industrial blockchains”. In: Proceedings

of the 2017 ACM Workshop on Blockchain, Cryptocurrencies and Contracts. ACM,

2017, pp. 9–14.

[211] Xiaoqi Li et al. “A survey on the security of blockchain systems”. In: Future Generation

Computer Systems 107.4 (2017).

[212] Xiaoqi Li et al. “A survey on the security of blockchain systems”. In: Future Generation

Computer Systems 107 (2020), pp. 841–853.

[213] Zengyang Li, Paris Avgeriou, and Peng Liang. “A systematic mapping study on tech-

nical debt and its management”. In: Journal of Systems and Software 101 (2015),

pp. 193–220.

[214] Zengyang Li, Peng Liang, and Paris Avgeriou. “Architectural debt management in

value-oriented architecting”. In: Economics-Driven Software Architecture. Elsevier,

2014, pp. 183–204.

265



REFERENCES

[215] Chao Lin et al. “BSeIn: A blockchain-based secure mutual authentication with fine-

grained access control system for industry 4.0”. In: Journal of Network and Computer

Applications 116 (2018), pp. 42–52.

[216] Fei Lin and Minqian Qiang. “The Challenges of Existence, Status, and Value for

Improving Blockchain”. In: IEEE Access 7 (2018), pp. 7747–7758.

[217] Iuon-Chang Lin and Tzu-Chun Liao. “A Survey of Blockchain Security Issues and

Challenges.” In: IJ Network Security 19.5 (2017), pp. 653–659.

[218] Jing Liu and Zhentian Liu. “A survey on security verification of blockchain smart

contracts”. In: IEEE Access 7 (2019), pp. 77894–77904.

[219] Yue Liu et al. “Applying design patterns in smart contracts”. In: Proceedings of the

2018 International Conference on Blockchain. Springer, 2018, pp. 92–106.

[220] Yue Liu et al. “Design patterns for blockchain-based self-sovereign identity”. In: Pro-

ceedings of the European Conference on Pattern Languages of Programs 2020. 2020,

pp. 1–14.

[221] Sin Kuang Lo et al. “Reliability analysis for blockchain oracles”. In: Computers &

Electrical Engineering 83 (2020), p. 106582.

[222] Matthias Lohr and Sven Peldszus. “Maintenance of Long-Living Smart Contracts.”

In: Software Engineering (Workshops). Innsbruck, Österreich: ceur-ws, 2020.

[223] Yang Lu. “The blockchain: State-of-the-art and research challenges”. In: Journal of

Industrial Information Integration 15 (2019). issn: 2452-414X.

[224] Christian Lundkvist et al. “Uport: A platform for self-sovereign identity”. In: short-

url.at/ktS08 (2017).

[225] Loi Luu et al. “Making smart contracts smarter”. In: Proceedings of the 2016 ACM

SIGSAC conference on computer and communications security. Vienna Austria: ACM,

2016, pp. 254–269.

266



REFERENCES

[226] Loi Luu et al. “Making smart contracts smarter”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2016, pp. 254–

269.

[227] Loi Luu et al. “On power splitting games in distributed computation: The case of

bitcoin pooled mining”. In: Proceedings of the 2015 IEEE 28th Computer Security

Foundations Symposium. IEEE, 2015, pp. 397–411.

[228] Beverley Mackenzie, Robert Ian Ferguson, and Xavier Bellekens. “An assessment of

blockchain consensus protocols for the Internet of Things”. In: 2018 International

Conference on Internet of Things, Embedded Systems and Communications (IIN-

TEC). IEEE. 2018, pp. 183–190.

[229] Daniel Macrinici, Cristian Cartofeanu, and Shang Gao. “Smart contract applications

within blockchain technology: A systematic mapping study”. In: Telematics and In-

formatics 35 (8 2018).

[230] Mrinmoy Majumder. “Multi criteria decision making”. In: Impact of urbanization on

water shortage in face of climatic aberrations. Springer, 2015, pp. 35–47.

[231] Imran Makhdoom et al. “Blockchain’s adoption in IoT: The challenges, and a way

forward”. In: Journal of Network and Computer Applications 125 (2018).

[232] Kamran Mammadzada et al. “Blockchain oracles: A framework for blockchain-based

applications”. In: International Conference on Business Process Management. Springer,

2020, pp. 19–34.

[233] Christopher Mann and Daniel Loebenberger. “Two-factor authentication for the Bit-

coin protocol”. In: International Journal of Information Security 16.2 (2017), pp. 213–

226.

[234] Adrian Manning. solidity-security-blog. 2019. url: https://github.com/sigp/solidity-

security-blog.

267

https://github.com/sigp/solidity-security-blog
https://github.com/sigp/solidity-security-blog


REFERENCES

[235] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. “Low-Resource Eclipse At-

tacks on Ethereum’s Peer-to-Peer Network.” In: IACR Cryptology ePrint Archive

2018 (2018), p. 236.

[236] Antonio Martini, Jan Bosch, and Michel Chaudron. “Architecture Technical Debt:

Understanding Causes and a Qualitative Model”. In: 2014 40th EUROMICRO Con-

ference on Software Engineering and Advanced Applications. Verona, Italy: IEEE,

2014, pp. 85–92.

[237] Hartwig Mayer. “ECDSA security in bitcoin and ethereum: a research survey”. In:

CoinFaabrik, June 28 (2016).

[238] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. “Refund attacks on Bit-

coin’s payment protocol”. In: Proceedings of the 2016 International Conference on

Financial Cryptography and Data Security. Springer, 2016, pp. 581–599.

[239] Alexander Mense and Markus Flatscher. “Security Vulnerabilities in Ethereum Smart

Contracts”. In: Proceedings of the 20th International Conference on Information In-

tegration and Web-based Applications & Services. ACM, 2018, pp. 375–380.

[240] Carlos Mera-Gómez et al. “A Multi-Agent Elasticity Management Based On Multi-

Tenant Debt Exchanges”. In: Proceedings of the 12th IEEE International Conference

on Self-Adaptive and Self-Organizing Systems (SASO 2018). IEEE. 2018.

[241] Andrew Miller et al. “Permacoin: Repurposing bitcoin work for data preservation”.

In: Proceedings of the 2014 IEEE Symposium on Security and Privacy. IEEE, 2014,

pp. 475–490.

[242] Mitar Milutinovic et al. “Proof of luck: An efficient blockchain consensus protocol”.

In: proceedings of the 1st Workshop on System Software for Trusted Execution. ACM,

2016, p. 2.

[243] MITRE. Common Weakness Enumeration. 2006. url: https://cwe.mitre.org/.

268

https://cwe.mitre.org/


REFERENCES

[244] MITRE. Common Weakness Scoring System. 2014. url: https ://cwe .mitre .org/

cwss/.

[245] mitre. MITRE ATT&CK. 2018. url: https://attack.mitre.org/.

[246] Carlos Molina-Jimenez et al. “Implementation of smart contracts using hybrid archi-

tectures with on and off–blockchain components”. In: Proceedings of the 2018 IEEE

8th International Symposium on Cloud and Service Computing (SC2). IEEE, 2018,

pp. 83–90.

[247] Giacomo Morganti, Enrico Schiavone, and Andrea Bondavalli. “Risk assessment of

blockchain technology”. In: 2018 Eighth Latin-American Symposium on Dependable

Computing (LADC). IEEE. 2018, pp. 87–96.

[248] Mark Mossberg et al. “Manticore: A user-friendly symbolic execution framework for

binaries and smart contracts”. In: 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE). San Diego, California, United States: IEEE,

2019, pp. 1186–1189.

[249] Bernhard Mueller. “Smashing ethereum smart contracts for fun and real profit”. In:

HITB SECCONF Amsterdam 9 (2018), p. 54.

[250] Francis Jee Nadia Hewett Sumedha Deshmukh. Cybersecurity. 2020. url: https://

widgets.weforum.org/blockchain-toolkit/cybersecurity.

[251] Satoshi Nakamoto et al. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008).

url: https://rb.gy/lk0e98.

[252] Christopher Natoli and Vincent Gramoli. “The blockchain anomaly”. In: Proceedings

of the 2016 IEEE 15th International Symposium on Network Computing and Appli-

cations (NCA). IEEE, 2016, pp. 310–317.

[253] Giang-Truong Nguyen and Kyungbaek Kim. “A Survey about Consensus Algorithms

Used in Blockchain.” In: Journal of Information processing systems 14.1 (2018).

269

https://cwe.mitre.org/cwss/
https://cwe.mitre.org/cwss/
https://attack.mitre.org/
https://widgets.weforum.org/blockchain-toolkit/cybersecurity
https://widgets.weforum.org/blockchain-toolkit/cybersecurity
https://rb.gy/lk0e98


REFERENCES

[254] Tai D. Nguyen et al. “SFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Con-

tracts”. In: Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering. ICSE ’20. Seoul, South Korea: Association for Computing Machinery,

2020, pp. 778–788. isbn: 9781450371216.

[255] Robert C Nickerson, Upkar Varshney, and Jan Muntermann. “A method for taxonomy

development and its application in information systems”. In: European Journal of

Information Systems 22.3 (2013), pp. 336–359.

[256] Ivica Nikolić et al. “Finding the greedy, prodigal, and suicidal contracts at scale”. In:

Proceedings of the 34th Annual Computer Security Applications Conference. ACM,

2018, pp. 653–663.

[257] nist. STANDARDS & MEASUREMENTS. 2022. url: https://www.nist.gov/.

[258] nodejs. Vulnerabilities | Node.js. 2019. url: https://bit.ly/2Y0wGB7.

[259] Shen Noether. “Ring SIgnature Confidential Transactions for Monero.” In: IACR

Cryptology ePrint Archive 2015 (2015), p. 1098.

[260] Robert L Nord et al. “Can knowledge of technical debt help identify software vulner-

abilities?” In: 9th Workshop on Cyber Security Experimentation and Test ({CSET}

16). 2016.

[261] Organisation internationale de normalisation. Systems and Software Engineering: Sys-

tems and Software Quality Requirements and Evaluation (SQuaRE): System and Soft-

ware Quality Models. ISO/IEC, 2011.

[262] Russell O’Connor. “Simplicity: A new language for blockchains”. In: Proceedings of the

2017 Workshop on Programming Languages and Analysis for Security. ACM, 2017,

pp. 107–120.

270

https://www.nist.gov/
https://bit.ly/2Y0wGB7


REFERENCES

[263] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang. “An exploratory

study of smart contracts in the Ethereum blockchain platform”. In: Empirical Software

Engineering (2020), pp. 1–41.

[264] Ilhaam A. Omar et al. “Implementing decentralized auctions using blockchain smart

contracts”. In: Technological Forecasting and Social Change 168 (2021), p. 120786.

issn: 0040-1625.

[265] orbit. orbit-db: Peer-to-Peer Databases for the Decentralized Web. 2017. url: https:

//bit.ly/3zwVcYI.

[266] Pim Otte, Martijn de Vos, and Johan Pouwelse. “TrustChain: A Sybil-resistant scal-

able blockchain”. In: Future Generation Computer Systems 107 (2017).

[267] owasp. OWASP Risk Rating Methodology. owasp. Mar. 2019. url: https://owasp.

org/www-community/OWASP_Risk_Rating_Methodology.

[268] Paralink. Paralink Network. Paralink. Dec. 2021. url: https://cutt.ly/0DPtJY4.

[269] Reza M Parizi, Ali Dehghantanha, et al. “Smart Contract Programming Languages

on Blockchains: An Empirical Evaluation of Usability and Security”. In: Proceedings

of the 2018 International Conference on Blockchain. Springer, 2018, pp. 75–91.

[270] Reza M. Parizi et al. “Empirical Vulnerability Analysis of Automated Smart Contracts

Security Testing on Blockchains”. In: Proceedings of the 28th Annual International

Conference on Computer Science and Software Engineering. CASCON ’18. Markham,

Ontario, Canada: IBM Corp., 2018, pp. 103–113.

[271] Amirmohammad Pasdar, Zhongli Dong, and Young Choon Lee. “Blockchain Oracle

Design Patterns”. In: arXiv preprint arXiv:2106.09349 (2021).

[272] Celeste Lyn Paul. “A modified Delphi approach to a new card sorting methodology”.

In: Journal of Usability studies 4.1 (2008), pp. 7–30.

271

https://bit.ly/3zwVcYI
https://bit.ly/3zwVcYI
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cutt.ly/0DPtJY4


REFERENCES

[273] PeckShield. Cheese Bank Incident: Root Cause Analysis. medium. Dec. 2020. url:

shorturl.at/zDX38.

[274] Adán Sánchez de Pedro, Daniele Levi, and Luis Iván Cuende. “Witnet: A decentralized

oracle network protocol”. In: arXiv preprint arXiv:1711.09756 (2017).

[275] Ken Peffers et al. “A design science research methodology for information systems

research”. In: Journal of management information systems 24.3 (2007), pp. 45–77.

[276] Simone Porru et al. “Blockchain-oriented software engineering: challenges and new

directions”. In: Proceedings of the 2017 IEEE/ACM 39th International Conference on

Software Engineering Companion (ICSE-C). Buenos Aires, Argentina: IEEE, 2017,

pp. 169–171.

[277] portswigger. Latest cryptocurrency security news. 2021. url: https://bit.ly/38nQL6h.

[278] Purathani Praitheeshan et al. “Security analysis methods on Ethereum smart contract

vulnerabilities: A survey”. In: arXiv preprint arXiv:1908.08605 (2019).

[279] Abhishek Biswas Prakash Santhana. Blockchain risk management Risk functions need

to play an active role in shaping blockchain strategy. 2017. url: https : / /www2 .

deloitte . com / content / dam / Deloitte / us / Documents / financial - services / us - fsi -

blockchain-risk-management.pdf.

[280] ProtocolLabs. Filecoin: A Decentralized Storage Network. 2017. url: https://filecoin.

io/filecoin.pdf.

[281] Protofire. solhint. 2020. url: https://github.com/protofire/solhint.

[282] Provable. Provable Documentation. 2019. url: https://docs.provable.xyz/.

[283] Rui Qiao et al. “Optimization of dynamic data traceability mechanism in Internet

of Things based on consortium blockchain”. In: International Journal of Distributed

Sensor Networks 14.12 (2018), p. 1550147718819072.

272

shorturl.at/zDX38
https://bit.ly/38nQL6h
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-fsi-blockchain-risk-management.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-fsi-blockchain-risk-management.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-fsi-blockchain-risk-management.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://github.com/protofire/solhint
https://docs.provable.xyz/


REFERENCES

[284] Kaihua Qin et al. “Attacking the DeFi ecosystem with flash loans for fun and profit”.

In: arXiv preprint arXiv:2003.03810 (2020).

[285] Samuel T Redwine Jr and William E Riddle. “Software technology maturation”. In:

Proceedings of the 8th international conference on Software engineering. IEEE Com-

puter Society Press, 1985, pp. 189–200.

[286] Emanuel Regnath and Sebastian Steinhorst. “LeapChain: efficient blockchain verifi-

cation for embedded IoT”. In: Proceedings of the 2018 International Conference on

Computer-Aided Design. New York, NY, USA: ACM, 2018, p. 74.

[287] Raine Revere. solgraph. 2015. url: https://github.com/raineorshine/solgraph.

[288] Yos Riady. Common Smart Contract Vulnerabilities and How To Mitigate Them. Yos

Riady, Oct. 2018. url: https://yos.io/2018/10/20/smart-contract-vulnerabilities-

and-how-to-mitigate-them/.

[289] Richard Richard et al. “Smart Contract Development Model and the Future of Blockchain

Technology”. In: 2020 the 3rd International Conference on Blockchain Technology and

Applications. 2020, pp. 34–39.

[290] Eric Dashofy Richard N. Taylor Nenad Medvidovic. Software Architecture: Founda-

tions, Theory, and Practice. Addison-Wesley Professional, 2009.

[291] Kalle Rindell, Karin Bernsmed, and Martin Gilje Jaatun. “Managing Security in Soft-

ware: Or: How I Learned to Stop Worrying and Manage the Security Technical Debt”.

In: Proceedings of the 14th International Conference on Availability, Reliability and

Security. ARES ’19. Canterbury, CA, United Kingdom: Association for Computing

Machinery, 2019.

[292] Kalle Rindell and Johannes Holvitie. “Security risk assessment and management as

technical debt”. In: 2019 International Conference on Cyber Security and Protection

of Digital Services (Cyber Security). IEEE. 2019, pp. 1–8.

273

https://github.com/raineorshine/solgraph
https://yos.io/2018/10/20/smart-contract-vulnerabilities-and-how-to-mitigate-them/
https://yos.io/2018/10/20/smart-contract-vulnerabilities-and-how-to-mitigate-them/


REFERENCES

[293] Niall Roche and Alastair P Moore. “Oraclised Data Schemas: Improving contrac-

tual Certainty in uncertain Times”. PhD thesis. London University; UCL Centre for

Blockchain Technologies, 2020.

[294] Sara Rouhani and Ralph Deters. “Security, performance, and applications of smart

contracts: A systematic survey”. In: IEEE Access 7 (2019), pp. 50759–50779.

[295] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “Coinshuffle: Practical decen-

tralized coin mixing for bitcoin”. In: Proceedings of the 2014 European Symposium on

Research in Computer Security. Springer, 2014, pp. 345–364.

[296] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical software engineering 14.2 (2009),

pp. 131–164.

[297] Jungwoo Ryoo, Rick Kazman, and Priya Anand. “Architectural analysis for security”.

In: IEEE Security & Privacy 13.6 (2015), pp. 52–59.

[298] Muhammad Saad et al. “Countering selfish mining in blockchains”. In: Proceedings of

the 2019 International Conference on Computing, Networking and Communications

(ICNC). IEEE, 2019, pp. 360–364.

[299] Muhammad Saad et al. “Exploring the attack surface of blockchain: A comprehensive

survey”. In: IEEE Communications Surveys & Tutorials 22.3 (2020), pp. 1977–2008.

[300] Muhammad Saad et al. “Exploring the attack surface of blockchain: A systematic

overview”. In: arXiv preprint arXiv:1904.03487 (2019).

[301] K. Salah et al. “Blockchain for AI: Review and Open Research Challenges”. In: IEEE

Access 7 (2019), pp. 10127–10149.

[302] Joanna CS Santos, Katy Tarrit, and Mehdi Mirakhorli. “A catalog of security architec-

ture weaknesses”. In: 2017 IEEE International Conference on Software Architecture

Workshops (ICSAW). IEEE. 2017, pp. 220–223.

274



REFERENCES

[303] Gohar Sargsyan et al. “Blockchain security by design framework for trust and adop-

tion in IoT environment”. In: 2019 IEEE world congress on services (SERVICES).

Vol. 2642. IEEE. 2019, pp. 15–20.

[304] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”.

In: Proceedings of the 2014 IEEE Symposium on Security and Privacy. Berkeley, CA,

USA: IEEE, 2014, pp. 459–474.

[305] Masashi Sato and Shin’ichiro Matsuo. “Long-term public blockchain: Resilience against

compromise of underlying cryptography”. In: Proceedings of the 2017 26th Interna-

tional Conference on Computer Communication and Networks (ICCCN). Vancouver,

BC, Canada: IEEE, 2017, pp. 1–8.

[306] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. “Smart Contract: Attacks and

Protections”. In: IEEE Access 8 (2020), pp. 24416–24427.

[307] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. “Smart contract: Attacks and

protections”. In: IEEE Access 8 (2020), pp. 24416–24427.

[308] Vincent Schlatt et al. “Attacking the trust machine: Developing an information sys-

tems research agenda for blockchain cybersecurity”. In: International Journal of In-

formation Management (2022), p. 102470. issn: 0268-4012.

[309] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. “Writing safe smart

contracts in flint”. In: Proceedings of 2nd International Conference on Art, Science,

and Engineering of Programming. ACM, 2018, pp. 218–219.

[310] David Schwartz, Noah Youngs, Arthur Britto, et al. “The ripple protocol consensus

algorithm”. In: Ripple Labs Inc White Paper 5 (2014), p. 8.

[311] ICO Security. blog.positive. 2017. url: https://blog.positive.com/.

[312] Graham Sh. “Hyperledger Fabric version: 1.1 Assessment Technical Report”. In: Hy-

perledger Fabric (2017).

275

https://blog.positive.com/


REFERENCES

[313] Mary Shaw. “What makes good research in software engineering?” In: International

Journal on Software Tools for Technology Transfer 4.1 (2002), pp. 1–7.

[314] slowmist. EOS DApp total loss money by hacked is about. 2021. url: https://bit.ly/

3ynTKX1.

[315] SmartContractSecurity. SWC Registry. 2020. url: https://swcregistry.io/.

[316] Yonatan Sompolinsky and Aviv Zohar. “Secure high-rate transaction processing in

bitcoin”. In: Proceedings of the 2015 International Conference on Financial Cryptog-

raphy and Data Security. Springer, 2015, pp. 507–527.

[317] Leonardo Sousa et al. “Identifying design problems in the source code: A grounded

theory”. In: Proceedings of the 40th International Conference on Software Engineering.

2018, pp. 921–931.

[318] Mirko Staderini, Enrico Schiavone, and Andrea Bondavalli. “A requirements-driven

methodology for the proper selection and configuration of blockchains”. In: 2018 IEEE

37th Symposium on Reliable Distributed Systems (SRDS). IEEE. 2018, pp. 201–206.

[319] C Stathakopoulous and Christian Cachin. “Threshold signatures for blockchain sys-

tems”. In: Swiss Federal Institute of Technology (2017). url: https://rb.gy/rqgvk3.

[320] Stephanie. What is Cohen’s Kappa Statistic? Statistics How To. May 2014. url:

https://www.statisticshowto.com/cohens-kappa-statistic/.

[321] Matt Suiche. porosity. 2017. url: https://github.com/comaeio/porosity.

[322] Harish Sukhwani et al. “Performance Modeling of Hyperledger Fabric (Permissioned

Blockchain Network)”. In: Proceedings of the 2018 IEEE 17th International Sympo-

sium on Network Computing and Applications (NCA). IEEE, 2018, pp. 1–8.

[323] Harish Sukhwani et al. “Performance modeling of pbft consensus process for permis-

sioned blockchain network (hyperledger fabric)”. In: Proceedings of the 2017 IEEE

36th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2017, pp. 253–255.

276

https://bit.ly/3ynTKX1
https://bit.ly/3ynTKX1
https://swcregistry.io/
https://rb.gy/rqgvk3
https://www.statisticshowto.com/cohens-kappa-statistic/
https://github.com/comaeio/porosity


REFERENCES

[324] He Sun et al. “Multi-blockchain model for central bank digital currency”. In: Proceed-

ings of the 2017 18th International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT). IEEE, 2017, pp. 360–367.

[325] Don Tapscott and Alex Tapscott. “How blockchain will change addresss”. In: MIT

Sloan Management Review 58.2 (2017), p. 10.

[326] openzeppelin team. ethernaut. 2019. url: https://ethernaut.openzeppelin.com/.

[327] American Council for Technology-Industry Advisory Council. Blockchain Playbook

Online - beta. 2021. url: https://rb.gy/g5ci8e.

[328] Tellor. Tellor: A decentralized Oracle. Tellor. Mar. 2021. url: https://docs.tellor.io/

tellor/.

[329] Julien Thevenard. Decentralised Oracles: a comprehensive overview. medium. Dec.

2019. url: shorturl.at/mxFL7.

[330] ThomasKur. Threats and Countermeasures | Microsoft Docs. 2018. url: https://bit.

ly/38i3Pu6.

[331] Sergei Tikhomirov et al. “Smartcheck: Static analysis of ethereum smart contracts”.

In: Proceedings of the 1st International Workshop on Emerging Trends in Software

Engineering for Blockchain. Gothenburg Sweden: ACM/IEEE, 2018, pp. 9–16.

[332] Edith Tom, AybüKe Aurum, and Richard Vidgen. “An exploration of technical debt”.

In: Journal of Systems and Software 86.6 (2013), pp. 1498–1516.

[333] Edith Tom, AybüKe Aurum, and Richard Vidgen. “An exploration of technical debt”.

In: Journal of Systems and Software 86.6 (2013), pp. 1498–1516.

[334] Christof Ferreira Torres, Julian Schütte, and Radu State. “Osiris: Hunting for integer

bugs in ethereum smart contracts”. In: Proceedings of the 34th Annual Computer

Security Applications Conference. San Juan PR USA: ACM, 2018, pp. 664–676.

277

https://ethernaut.openzeppelin.com/
https://rb.gy/g5ci8e
https://docs.tellor.io/tellor/
https://docs.tellor.io/tellor/
shorturl.at/mxFL7
https://bit.ly/38i3Pu6
https://bit.ly/38i3Pu6


REFERENCES

[335] Muoi Tran et al. “A Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Net-

work”. In: Proceedings of IEEE Symposium on Security and Privacy (IEEE S&P).

San Francisco, CA, USA, 2020.

[336] Nguyen Khoi Tran and M Ali Babar. “Anatomy, concept, and design space of blockchain

networks”. In: 2020 IEEE International Conference on Software Architecture (ICSA).

IEEE. 2020, pp. 125–134.

[337] Evangelos Triantaphyllou et al. “Multi-criteria decision making: an operations re-

search approach”. In: Encyclopedia of electrical and electronics engineering 15.1998

(1998), pp. 175–186.

[338] Petar Tsankov et al. “Securify: Practical Security Analysis of Smart Contracts”. In: 18

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’18. Toronto, Canada: Association for Computing Machinery, 2018,

pp. 67–82.

[339] Petar Tsankov et al. “Securify: Practical security analysis of smart contracts”. In:

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2018, pp. 67–82.

[340] Petar Tsankov et al. “Securify: Practical security analysis of smart contracts”. In:

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2018, pp. 67–82.

[341] Hanny Tufail et al. “Towards the selection of Optimum Requirements Prioritization

Technique: A Comparative Analysis”. In: 2019 5th International Conference on In-

formation Management (ICIM). 2019, pp. 227–231.

[342] Muhammad Usman et al. “Taxonomies in software engineering: A systematic mapping

study and a revised taxonomy development method”. In: Information and Software

Technology 85 (2017), pp. 43–59.

278



REFERENCES

[343] Anna Vacca et al. “A systematic literature review of blockchain and smart contract

development: Techniques, tools, and open challenges”. In: Journal of Systems and

Software 174 (2021), p. 110891.

[344] Dejan Vujičić, Dijana Jagodić, and Siniša Ranđić. “Blockchain technology, bitcoin,

and Ethereum: A brief overview”. In: Proceedings of the 2018 17th International Sym-

posium INFOTEH-JAHORINA (INFOTEH). IEEE, 2018, pp. 1–6.

[345] Marko Vukolić. “Rethinking permissioned blockchains”. In: Proceedings of the 2017

ACM Workshop on Blockchain, Cryptocurrencies and Contracts. New York, NY, USA:

ACM, 2017, pp. 3–7.

[346] Vyper. Vyper. 2019. url: https://bit.ly/38mnVmY.

[347] Z Wahid and N Nadir. “Improvement of one factor at a time through design of ex-

periments”. In: World Applied Sciences Journal 21.1 (2013), pp. 56–61.

[348] Niall Roche Walter Hernandez. An Oracle to allow Pandemic-aware Policies. bit-

bucket. Mar. 2020. url: https://github.com/niallroche/covidhack-oracle-provable.

[349] Niall Roche Walter Hernandez. An Oracle to allow Pandemic-aware Policies. bit-

bucket. Mar. 2020. url: https://devpost.com/software/covidhack-oracle-provable.

[350] Niall Roche Walter Hernandez. Oracle Data Lexicon – Bringing contractual certainty

in uncertain time. bitbucket. Mar. 2020. url: https://challenge.globallegalhackathon.

com/gallery/5ec84aef202da60044c03d6b.

[351] Zhiyuan Wan, Xin Xia, and Ahmed E Hassan. “What do programmers discuss about

blockchain?” In: IEEE Transactions on Software Engineering 07 (2021), pp. 1331–

1349.

[352] Zhiyuan Wan et al. In: 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE). IEEE, 2021, pp. 1410–1422.

279

https://bit.ly/38mnVmY
https://github.com/niallroche/covidhack-oracle-provable
https://devpost.com/software/covidhack-oracle-provable
https://challenge.globallegalhackathon.com/gallery/5ec84aef202da60044c03d6b
https://challenge.globallegalhackathon.com/gallery/5ec84aef202da60044c03d6b


REFERENCES

[353] Zhiyuan Wan et al. “Smart Contract Security: A Practitioners’ Perspective”. In: 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 2021,

pp. 1410–1422.

[354] Hai Wang et al. “An Overview of Blockchain Security Analysis”. In: Proceedings of

the 2018 China Cyber Security Annual Conference. Springer, 2018, pp. 55–72.

[355] Licheng Wang et al. “Cryptographic primitives in blockchains”. In: Journal of Network

and Computer Applications 127 (2019), pp. 43–58.

[356] Shuai Wang et al. “Blockchain-enabled smart contracts: architecture, applications,

and future trends”. In: IEEE Transactions on Systems, Man, and Cybernetics: Sys-

tems 49.11 (2019), pp. 2266–2277.

[357] Wenbo Wang et al. “A survey on consensus mechanisms and mining strategy man-

agement in blockchain networks”. In: IEEE Access 7 (2019), pp. 22328–22370.

[358] Yunsen Wang and Alexander Kogan. “Designing confidentiality-preserving Blockchain-

based transaction processing systems”. In: International Journal of Accounting Infor-

mation Systems 30 (2018), pp. 1–18.

[359] Jon Whittle, Duminda Wijesekera, and Mark Hartong. “Executable misuse cases for

modeling security concerns”. In: Proceedings of the 30th international conference on

Software engineering. ACM, 2008, pp. 121–130.

[360] github wiki. List of Security Vulnerabilities. github, Apr. 2019. url: https://github.

com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities.

[361] Claes Wohlin. “Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering”. In: Proceedings of the 18th International Con-

ference on Evaluation and Assessment in Software Engineering. EASE ’14. London,

England, United Kingdom: Association for Computing Machinery, 2014.

280

https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities


REFERENCES

[362] Claes Wohlin et al. Experimentation in software engineering. Springer Science & Busi-

ness Media, 2012.

[363] Maximilian Wohrer and Uwe Zdun. “Smart contracts: Security patterns in the ethereum

ecosystem and solidity”. In: Proceedings of the 2018 International Workshop on Blockchain

Oriented Software Engineering (IWBOSE). IEEE, 2018, pp. 2–8.

[364] Maximilian Wohrer and Uwe Zdun. “Smart contracts: security patterns in the ethereum

ecosystem and solidity”. In: Proceedings of the 2018 International Workshop on Blockchain

Oriented Software Engineering (IWBOSE). Campobasso, Italy: IEEE, 2018, pp. 2–8.

[365] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”.

In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[366] Jing Wu et al. “A New Sustainable Interchain Design on Transport Layer for Blockchain”.

In: Proceedings of the 2018 International Conference on Smart Blockchain. Springer,

2018, pp. 12–21.

[367] Lijun Wu et al. “Democratic centralism: a hybrid blockchain architecture and its

applications in energy internet”. In: 2017 IEEE International Conference on Energy

Internet (ICEI). IEEE, 2017, pp. 176–181.

[368] Karl Wüst and Arthur Gervais. “Do you need a Blockchain?” In: Proceedings of the

2018 Crypto Valley Conference on Blockchain Technology. IEEE, 2018, pp. 45–54.

[369] Karl Wüst and Arthur Gervais. “Do you need a blockchain?” In: 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT). IEEE. 2018, pp. 45–54.

[370] Valentin Wüstholz and Maria Christakis. “Learning inputs in greybox fuzzing”. In:

arXiv preprint arXiv:1807.07875 (2018).

[371] Jennifer J Xu. “Are blockchains immune to all malicious attacks?” In: Financial In-

novation 2.1 (2016), p. 25.

281



REFERENCES

[372] Quanqing Xu et al. “Building an Ethereum and IPFS-Based Decentralized Social

Network System”. In: Proceedings of the 2018 IEEE 24th International Conference on

Parallel and Distributed Systems (ICPADS). IEEE, 2018, pp. 1–6.

[373] Xiwei Xu et al. “A decision model for choosing patterns in blockchain-based applica-

tions”. In: 2021 IEEE 18th International Conference on Software Architecture (ICSA).

IEEE. 2021, pp. 47–57.

[374] Xiwei Xu et al. “A Pattern Collection for Blockchain-Based Applications”. In: Proceed-

ings of the 23rd European Conference on Pattern Languages of Programs. EuroPLoP

’18. Irsee, Germany: Association for Computing Machinery, 2018.

[375] Xiwei Xu et al. “A pattern collection for blockchain-based applications”. In: Proceed-

ings of the 23rd European Conference on Pattern Languages of Programs. ACM, 2018,

p. 3.

[376] Xiwei Xu et al. “A taxonomy of blockchain-based systems for architecture design”.

In: Proceedings of the 2017 IEEE International Conference on Software Architecture

(ICSA). IEEE, 2017, pp. 243–252.

[377] Xiwei Xu et al. “Designing blockchain-based applications a case study for imported

product traceability”. In: Future Generation Computer Systems 92 (2019), pp. 399–

406.

[378] Xiwei Xu et al. “The blockchain as a software connector”. In: 2016 13th Working

IEEE/IFIP Conference on Software Architecture (WICSA). IEEE. 2016, pp. 182–

191.

[379] Xiwei Xu et al. “The blockchain as a software connector”. In: Proceedings of the

2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE,

2016, pp. 182–191.

282



REFERENCES

[380] Dylan Yaga et al. “Blockchain technology overview”. In: arXiv preprint arXiv:1906.11078

(2019).

[381] Kazuhiro Yamashita et al. “Potential risks of hyperledger fabric smart contracts”.

In: 2019 IEEE International Workshop on Blockchain Oriented Software Engineering

(IWBOSE). IEEE, 2019, pp. 1–10.

[382] Wendy Yánez et al. “Architecting Internet of Things Systems with Blockchain: A

Catalog of Tactics”. In: 30.3 (Apr. 2021).

[383] Jinhong Yang et al. “Proof-of-Familiarity: A Privacy-Preserved Blockchain Scheme

for Collaborative Medical Decision-Making”. In: Applied Sciences 9.7 (2019), p. 1370.

[384] Lanxin Yang et al. “Quality Assessment in Systematic Literature Reviews: A Soft-

ware Engineering Perspective”. In: Information and Software Technology 130 (2021),

p. 106397.

[385] Xin-She Yang. “Chapter 14 - Multi-Objective Optimization”. In: Nature-Inspired Op-

timization Algorithms. Ed. by Xin-She Yang. Oxford: Elsevier, 2014, pp. 197–211.

[386] Zhe Yang et al. “Blockchain-based decentralized trust management in vehicular net-

works”. In: IEEE Internet of Things Journal 6.2 (2018), pp. 1495–1505.

[387] Zheng Yang and Hang Lei. “Formal process virtual machine for smart contracts ver-

ification”. In: arXiv preprint arXiv:1805.00808 (2018).

[388] Udi Yavo. Design Vulnerabilities: They Hide and You can’t Catch Them. infosecu-

rity, June 2016. url: https ://www. infosecurity-magazine .com/opinions/design-

vulnerabilities-hide-you/.

[389] Congcong Ye et al. “Analysis of Security in Blockchain: Case Study in 51%-Attack

Detecting”. In: Proceedings of the 2018 5th International Conference on Dependable

Systems and Their Applications (DSA). IEEE, 2018, pp. 15–24.

283

https://www.infosecurity-magazine.com/opinions/design-vulnerabilities-hide-you/
https://www.infosecurity-magazine.com/opinions/design-vulnerabilities-hide-you/


REFERENCES

[390] Wei Yin et al. “An anti-quantum transaction authentication approach in blockchain”.

In: IEEE Access 6 (2018), pp. 5393–5401.

[391] Jesse Yli-Huumo et al. “Where is current research on blockchain technology?—a sys-

tematic review”. In: PloS one 11.10 (2016), e0163477.

[392] Xiao Liang Yu et al. “Smart Contract Repair”. In: ACM Transactions on Software

Engineering and Methodology (TOSEM) 29.4 (2020), pp. 1–32.

[393] Yong Yuan and Fei-Yue Wang. “Blockchain and cryptocurrencies: Model, techniques,

and applications”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems

48.9 (2018), pp. 1421–1428.

[394] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. “Rapidchain: Scaling

blockchain via full sharding”. In: Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security. 2018, pp. 931–948.

[395] Martin Zeilinger. “Digital art as ‘monetised graphics’: Enforcing intellectual property

on the blockchain”. In: Philosophy & Technology 31.1 (2018), pp. 15–41.

[396] Fan Zhang. Liberating web data using DECO, a privacy-preserving oracle protocol.

2019. url: https://bit.ly/2UXD0IA.

[397] Fan Zhang et al. “Town Crier: An Authenticated Data Feed for Smart Contracts”. In:

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’16. Vienna, Austria: Association for Computing Machinery, 2016,

pp. 270–282.

[398] Peiyun Zhang and Mengchu Zhou. “Security and trust in blockchains: Architecture,

key technologies, and open issues”. In: IEEE Transactions on Computational Social

Systems 7.3 (2020), pp. 790–801.

[399] Rui Zhang, Rui Xue, and Ling Liu. “Security and Privacy on Blockchain”. In: arXiv

preprint arXiv:1903.07602 (2019).

284

https://bit.ly/2UXD0IA


REFERENCES

[400] Yahui Zhang et al. “Survey of Attacks and Defenses against SGX”. In: 2020 IEEE 5th

Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing,

China: IEEE, 2020, pp. 1492–1496.

[401] Qiuhong Zheng et al. “An innovative IPFS-based storage model for blockchain”. In:

Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelli-

gence (WI). IEEE, 2018, pp. 704–708.

[402] Zibin Zheng et al. “An overview of blockchain technology: Architecture, consensus,

and future trends”. In: Proceedings of the 6th International Congress on Big Data.

IEEE, 2017, pp. 557–564.

[403] Zibin Zheng et al. “Blockchain challenges and opportunities: A survey”. In: Work

Pap.–2016 (2016). url: https://rb.gy/btg0vl.

[404] Zibin Zheng et al. “Blockchain challenges and opportunities: A survey”. In: Interna-

tional Journal of Web and Grid Services 14.4 (2018), pp. 352–375.

[405] Lin Zhong et al. “A secure versatile light payment system based on blockchain”. In:

Future Generation Computer Systems 93 (2019), pp. 327–337.

[406] Tong Zhou, Xiaofeng Li, and He Zhao. “DLattice: A Permission-Less Blockchain Based

on DPoS-BA-DAG Consensus for Data Tokenization”. In: IEEE Access 7 (2019),

pp. 39273–39287.

[407] Liehuang Zhu et al. “Controllable and trustworthy blockchain-based cloud data man-

agement”. In: Future Generation Computer Systems 91 (2019), pp. 527–535.

[408] Kaden Zipfel. New Smart Contract Weakness: Hash Collisions With Multiple Vari-

able Length Arguments. Medium, Jan. 2019. url: https://medium.com/swlh/new-

smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-

dc7b9c84e493.

285

https://rb.gy/btg0vl
https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493
https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493
https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493


REFERENCES

[409] Weiqin Zou et al. “Smart Contract Development: Challenges and Opportunities”. In:

IEEE Transactions on Software Engineering 47.10 (2021), pp. 2084–2106.

[410] Weiqin Zou et al. “Smart contract development: Challenges and opportunities”. In:

IEEE Transactions on Software Engineering 47.10 (2019).

286


	Title Page
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Problems to be Addressed
	1.3 Research Methodology
	1.4 Research Contributions
	1.5 Thesis Structure
	1.6 Publications Linked to this Thesis

	2 Security Architectural Approaches for Blockchain Systems: A Systematic Literature Review
	2.1 Overview
	2.2 Background
	2.2.1 Blockchain Overview
	2.2.2 Smart Contracts

	2.3 Research Methodology
	2.3.1 Research Questions
	2.3.2 Search Strategy
	2.3.3 Study Selection
	2.3.4 Quality Assessment
	2.3.5 Data Extraction
	2.3.6 Data Synthesis

	2.4 Results
	2.4.1 Demographics of Selected Studies
	2.4.2 Purpose of Selected Studies

	2.5 Analysis of the Selected Publications
	2.5.1 Security Architectural Design Approaches (RQ1)
	2.5.2 Blockchain Security Risk Assessment Methods (RQ2)

	2.6 Discussion
	2.6.1 An Outlook for Future Directions
	2.6.2 Gap Analysis
	2.6.3 Threats to Validity

	2.7 Related Work
	2.8 Summary

	3 Blockchain Major Architectural Design Decisions and their Security Attacks and Threats
	3.1 Overview
	3.2 Research Methodology
	3.2.1 Surveying the Literature
	3.2.2 Mapping Approach

	3.3 Taxonomy of Dimensions for Architectural Decisions in Blockchain-based Systems
	3.3.1 Blockchain Access Type
	3.3.2 Storage and Computation
	3.3.3 Consensus Mechanism
	3.3.4 Block Configuration
	3.3.5 Key Management
	3.3.6 Cryptographic Primitives
	3.3.7 Chain Structures
	3.3.8 Node Architecture
	3.3.9 Smart Contracts

	3.4 Mapping Threats and Attacks with Blockchain Architectural Decisions
	3.4.1 Attacks and Threats Classification in Blockchain-based Systems

	3.5 Application of the taxonomy and mapping approach
	3.5.1 Key management as a case to demonstrate instantiating the taxonomy and its mapping to attacks and threats

	3.6 Discussion
	3.6.1 Validation
	3.6.2 Threats to Validity

	3.7 Related Work
	3.8 Finding and Summary
	3.8.1 Summary


	4 A Novel Approach for Assessing Smart Contracts' Security Technical Debts
	4.1 Overview
	4.2 Preliminaries
	4.2.1 Ethereum Platform
	4.2.2 The Common Weakness Scoring System
	4.2.3 Technical Debt

	4.3 Our Approach for Assessing Technical Debts
	4.3.1 Identification of Security Design vulnerabilities
	4.3.2 Measurement of Negative Consequences of Design vulnerability in Smart Contracts
	4.3.3 Replication Package for Replicability

	4.4 Experimentation
	4.4.1 Experiment Setup
	4.4.2 Experimental Study

	4.5 Results and Discussion
	4.5.1 Identification of Design Vulnerabilities (RQ1)
	4.5.2 Estimation of Negative Consequences (RQ2)

	4.6 Evaluation
	4.6.1 Survey Questions
	4.6.2 Key Findings
	4.6.3 Threats to Validity

	4.7 Related Work
	4.8 Summary

	5 Decision Support Model for Blockchain Oracle Platform Selection
	5.1 Overview
	5.2 Preliminaries
	5.3 Research approach
	5.4 MCDM For Blockchain Oracle Platform Selection
	5.4.1 Knowledge Acquisition and Mapping
	5.4.2 Inference Engine

	5.5 Application of the model using two case studies
	5.5.1 Application one: Dynamic Legal Agreements (DLA)
	5.5.2 Application two: Decentralised Auctions (DA)
	5.5.3 Results and Analysis

	5.6 Evaluation
	5.6.1 Sensitivity Analysis
	5.6.2 Comparison with Previous Work
	5.6.3 Comparison with Ad-hoc Methods

	5.7 Discussion
	5.7.1 Threats to Validity

	5.8 Summary

	6 Reflection and Appraisal
	6.1 Overview
	6.2 Analysis of the Research Questions
	6.3 Reflection on the Evaluation
	6.3.1 Evaluation Criteria


	7 Conclusion Remarks and Future Work
	7.1 Contributions
	7.2 Future Work
	7.2.1 Enhancing Current Security Analysis Tools
	7.2.2 Extending the Approaches Proposed
	7.2.3 Fully Automating the Approaches Proposed
	7.2.4 Addressing Security and Architectural Dimension Limitations.


	A Quality Assessment of Selected Studies
	B Mapping Selected Publications with the Taxonomy
	C Survey Questioners and Responses
	D Interviewee Structure
	E Linking Oracle Features with Platforms and Quality Attributes
	References

