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ABSTRACT

Surrogate-assisted evolutionary algorithms (SAEAs) are designed to solve black-box opti-

misation problems that are computationally expensive. These optimisation problems could

be multi-objective or/and constrained. In industry, many real-world optimisation problems,

such as engine calibration problems, allow only a few evaluations due to their high cost and

therefore limited budgets. To save these valuable budgets, this thesis focuses on develop-

ing effective and efficient SAEAs to solve computationally expensive optimisation problems.

This thesis makes three major contributions: First, to achieve better optimisation results

within limited evaluations, it proposes a domination-based ordinal regression surrogate for

SAEAs. This ordinal regression surrogate approximates the ordinal landscape of multiple

objectives. Two surrogate management strategies are also proposed to cooperate with the or-

dinal regression surrogate. The resulting SAEAs outperform the state-of-the-art algorithms

on a set of multi-objective optimisation problems. Second, it develops a bilevel SAEA to

handle constrained optimisation problems. In the algorithm, decision variables are divided

into either upper-level or lower-level variables according to their impacts on solution feasibil-

ity. The lower-level optimisation focuses on lower-level variables to make candidate solutions

feasible, while the upper-level optimisation adjusts upper-level variables to optimise objec-

tive(s). The algorithm finds more feasible solutions and better optimisation results in an

engine calibration problem when compared with the algorithms used in the engine industry

and some state-of-the-art algorithms. Third, for the sake of saving more evaluations, it pro-

poses an experience-based SAEA framework to learn experience from related tasks and then

use the learned experience in a new optimisation task. The experience is learned through a

novel meta-learning technique and they represent the domain-specific features among related

tasks. Assisted by the learned experience, accurate surrogates can be learned with very few

evaluated samples in an efficient way. Experimental studies have demonstrated the effective-

ness of experience learning and that of using experience in an existing SAEA. Competitive

optimisation results are achieved while fewer evaluations are used than before, which saves

valuable evaluation budgets considerably.
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Chapter 1

Introduction

1.1 Background

In real-world applications, numerous optimisation problems are sophisticated such that their

mathematical expressions are not available. These optimisation problems are called black-

box optimisation problems as we cannot assume they have properties such as linearity, con-

tinuity, convexity, or even differentiability. Hence, it is difficult to solve these optimisation

problems with traditional gradient-based optimisation methods. In contrast, evolutionary

algorithms (EAs) are a family of powerful heuristic optimisation algorithms that are capa-

ble of solving black-box optimisation problems. Inspired by biological phenomena, EAs are

usually implemented by either emulating the process of evolution or behaving like animals

in a herd. They are able to approximate the global optima of black-box problems without

requiring gradient information. Due to these advantages, EAs have been widely applied

to a variety of real-world applications successfully, such as engine calibration [116], traffic

signal control [86], production scheduling [55], water resource engineering [39], and medical

resource management [37].

In EAs, solutions are evaluated to obtain their performance on the optimisation prob-

lems to be solved. To reduce the risk of getting stuck in local optima, EAs usually evaluate a
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large number of solutions during the evolutionary search. Moreover, some features of black-

box optimisation problems can lower the optimisation efficiency of EAs. For example, when

solving constrained black-box optimisation problems with EAs, quite a lot of evaluations can

be wasted on infeasible solutions. Because EAs often do not know whether a solution is fea-

sible or not until the solution is evaluated. Additionally, those problems with many decision

variables usually have a very large decision space. Due to the curse of dimensionality, EAs

need to evaluate more solutions to sufficiently search over a large decision space. Therefore,

most EAs require a large number of evaluations.

However, the cost of evaluations is not trivial in some real-world applications. Take

the engine calibration problem as an example: Evaluating engine performance on engine

testing facilities is costly in finance and also time-consuming [116]. Considering the limited

financial budget and short calibration cycles, only a few performance evaluations will be

allowed during the whole calibration process. As a result, engine calibration problems and

other evaluation-costly optimisation problems can be formulated as expensive black-box

optimisation problems.

The limitation of evaluation budget prevents most EAs from solving expensive opti-

misation problems directly. An intuitive idea to handle expensive optimisation problems is to

employ computational efficient surrogate models in EAs [42, 54]. During the evolutionary op-

timisation, the solutions that have been evaluated on expensive functions can be maintained

as an archive. In some EAs, such an archive serves as the training dataset for computational

efficient surrogates. By approximating the expensive problem or expensive fitness functions

[42], these surrogates are able to produce approximate objective values for given solutions

with a much lower cost than expensive optimisation problems. The tributary of EAs assisted

by these surrogates is referred to as surrogate-assisted evolutionary algorithm (SAEA). In

practice, for an iteration of evolutionary optimisation in SAEAs, the offspring solutions that

originally were evaluated on expensive functions will be firstly evaluated on computational

efficient surrogates. Based on the surrogate evaluation results, only a few offspring solutions
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will be selected by SAEAs and then re-evaluated on expensive functions. Here, the envi-

ronmental selection criterion used to determine which offspring solutions are good enough

to be selected is known as the infill sampling criterion. Consequently, many expensive eval-

uations are replaced by computational efficient surrogate evaluations, which saves valuable

evaluations in expensive optimisation problems. The strategy of using computational effi-

cient surrogates to enhance the efficiency of using expensive function evaluations is known

as surrogate management in conventional optimisation or evolution control in evolutionary

computation [45, 43].

Although SAEAs are capable of handling expensive black-box optimisation problems,

it should be noted that they still have some challenges in expensive optimisation problems.

Most challenges are caused by other characteristics of optimisation problems. For example,

some expensive optimisation problems have more than one conflicting objectives, which are

known as expensive multi-objective (two or three objectives) or many-objective (more than

three objectives) optimisation problems (EMOPs or EMaOPs). In EMOPs or EMaOPs, the

evaluation of every objective function is computationally costly and it is essential to find

proper approximations for all objectives. Besides, the diversity of non-dominated solutions

in the objective space is very important to the optimisation of multiple objectives. During

the optimisation, the balance between convergence and diversity also deserves concern. Some

expensive optimisation problems have constraints in the objective space. These problems

are expensive constrained optimisation problems (ECOPs). The constraints in ECOPs can

be equality, inequality, linear, and nonlinear. Also, these constraints can be soft or hard

constraints. The SAEAs designed for ECOPs have to consider the surrogate modelling

for constraints and how to handle constraints with surrogates. In addition, some expensive

optimisation problems suffer from the curse of dimensionality. These problems are large scale

problems since they have many decision variables. One challenge to large scale problems is

the efficiency of optimisation. The time cost of using some surrogates increases exponentially

as the number of decision variables increases. Additionally, the performance of EAs can
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also be affected adversely. Therefore, efforts should be made to deal with these challenges.

Moreover, the decision space of some expensive optimisation problems is not continuous or

even numerical. These problems are combinatorial optimisation problems and the domain of

their decision variables is a set of finite elements. Therefore, conventional SAEAs designed for

continuous optimisation cannot be applied to combinatorial optimisation problems directly.

Apart from the capability of handling diverse expensive optimisation problems, op-

timisation performance is also an important topic of SAEA research. To enhance the effec-

tiveness and efficiency of SAEAs, various surrogates and surrogate management strategies

have been developed and used in SAEAs. Moreover, some SAEAs even extract useful experi-

ence from other optimisation problems and use such experience to enhance the optimisation

efficiency of new problems, which are referred to as experience-based SAEAs.

This thesis aims to solve some aforesaid challenges. Section 1.2 points out the scope

of expensive optimisation problems considered in this thesis. In Section 1.3, the concrete

research questions to be addressed in each chapter are clarified. Section 1.4 lists the major

contributions made in this thesis. The thesis organisation and content summaries for each

chapter are given in Section 1.5 In Section 1.6, the published papers and submitted papers

included in this thesis are listed.

1.2 Thesis Scope

Despite the diverse challenges and problems discussed above, this thesis focuses on only the

following three problems. The first problem is the expensive (unconstrained) multi-objective

optimisation problem (EMOP). EMOP is one of the most common expensive optimisation

problems. The second problem is the expensive constrained optimisation problem (ECOP).

ECOP is also a kind of common expensive optimisation problem and it is widely existing

in real-world applications. Different from our first problem, ECOP is more complex since

optimisation algorithms need to search for optimal solutions on the basis of satisfying all
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constraints. To concentrate on constraint handling techniques, the constrained optimisa-

tion problem to be solved has only one objective but multiple inequality constraints. The

last problem is experience-based optimisation. Although our previous two problems are

dealing with the most common and representative optimisation scenarios in expensive opti-

misation problems, they still only focus on the optimisation problems to be solved (denoted

as target optimisation problems). All surrogate modelling and optimisation operations are

started from scratch. To further improve the optimisation efficiency and performance of

existing SAEAs, in our last problem, we take other optimisation problems that are related

to the target optimisation problems into consideration. We aim to make SAEAs capable of

gaining experience from related optimisation problems and then solve target optimisation

problems efficiently via making good use of gained experience. Note that experience-based

optimisation and transfer optimisation have been widely used in many practical applications,

including dynamic optimisation and expensive optimisation problems [27]. In this thesis, we

consider only the experience-based optimisation designed for expensive optimisation prob-

lems. It should be noted that the three problems considered in this thesis are neither large

scale optimisation problems nor combinatorial optimisation problems. Besides, other char-

acteristics of optimisation problems that have not been discussed above are not considered

when solving these three problems.

1.3 Research Questions

Based on the thesis scope mentioned above, we clarify the concrete research questions to

be addressed in this thesis as follows. The motivations and explanations of these research

questions are also described.
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1.3.1 Solving Expensive Multi-Objective Optimisation with Evolu-

tionary Algorithms Assisted by Ordinal Surrogates

In the SAEAs that are designed to solve EMOPs, surrogates are expected to predict the

ordinal relation between two given solutions. These surrogates help SAEAs to select either

estimated optimal solutions for expensive fitness evaluations, or solutions for surrogate im-

provement. In most SAEAs, such a demand for surrogates is implemented by employing

regression-based surrogates to approximate expensive objective functions. In practice, some

SAEAs convert multiple objectives into a single objective through a weight vector, then a

regression-based surrogate is used to approximate the aggregate function [47]. For two given

solutions, their ordinal relation is accessible if the SAEA compares their surrogate evaluation

results directly. Another way to use regression-based surrogates is to use multiple surrogates

to approximate every objective function separately [120, 8]. When comparing two solutions,

surrogates are used to estimate the fitnesses of two solutions on every objective function. A

dominance-based comparison is then conducted to obtain the ordinal relation between two

solutions.

Recently, many researchers realised that using regression-based surrogates is not nec-

essary for the SAEAs designed for EMOPs. The demand for ordinal relation prediction can

be satisfied by classification-based surrogates. Some SAEAs use classification-based surro-

gates to predict whether a solution is good or not based on the dominance-based relation

between this solution and some reference solutions [68]. Another way to use classification-

based surrogates is to learn the pairwise relation between solutions [117, 31]. Compared

with regression-based SAEAs, although classification-based SAEAs take advantage of learn-

ing solution relations directly, their drawbacks are obvious: The learning of pairwise relations

indicates an exponential increase in the complexity of surrogate training and prediction. For

relations between reference points and solutions, the solutions classified into the same cate-

gory are not comparable.
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To take advantage of both regression-based and classification-based surrogates, we

aim to design a new surrogate to approximate the ordinal relation between solutions directly

but also to overcome the shortcomings of classification-based surrogates. Furthermore, as-

sisted by such a new surrogate, we aim to develop new SAEAs to solve EMOPs in a more

efficient way than existing SAEAs. Clearly, this thesis firstly focuses on the following research

questions:

• How to construct an efficient surrogate to approximate the ordinal landscape of multi-

objective optimisation problems?

• How to balance convergence and diversity when using our ordinal surrogate in SAEAs

to solve EMOPs?

For the first research question, the time complexity of surrogate training should not be

exponential. Besides, for the sake of environmental selection, it is preferable to make the

results of surrogate evaluation comparable for a population of offspring solutions. For the

second research question, proper surrogate management strategies should be developed to

consider both convergence and diversity. In this way, our ordinal surrogate can be fully

exploited and the optimisation performance of our SAEAs can be enhanced.

1.3.2 Surrogate-Assisted Bilevel Evolutionary Algorithm for Ex-

pensive Constrained Optimisation

For some real-world applications, the distribution of local optima implies that some decision

variables are playing more important roles than other variables [97]. Therefore, the feasibility

of solutions could be mainly affected by only a subset of decision variables, which motivates

us to develop an efficient bilevel framework to handle constraints for ECOPs. The bilevel op-

timisation framework divides the optimisation process into an upper-level optimisation and a

lower-level optimisation. The upper-level optimisation adjusts only upper-level variables and
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the lower-level optimisation optimises only lower-level variables. Such a bilevel architecture

will allocate more optimisation resources to the lower-level optimisation, because only the

optimal solutions in the lower-level optimisation can be treated as the candidate solutions

in the upper-level optimisation. Therefore, if we can identify which decision variables have

significant impacts on solution feasibility and then classify them as the lower-level variables,

then more optimisation efforts would be made toward these variables and the efficiency of

handling constraints can be enhanced.

Besides, considering the problem to be solved having multiple constraints, it is desir-

able to use our ordinal surrogate to approximate these constraints. Therefore, we have the

following research questions:

• How to identify which decision variables have significant impacts on solution feasibility

and thus divide them into lower-level variables?

• How to apply our ordinal surrogate to approximate multiple constraints?

• In the framework of using bilevel architecture to solve ECOPs, how to use surrogate

evaluations to generate optimal solutions for expensive fitness evaluations?

For the first research question, it is necessary to find a way to analyze and quantify the impact

of decision variables on solution feasibility. For the second research question, our ordinal

surrogate cannot be applied to approximate multiple constraints directly since the feasible

solutions are incomparable in the constraint space. Hence, some modifications should be

made. For the last research question, an effective surrogate management strategy should be

developed to save expensive evaluations. Particularly, the EAs used to search for candidate

solutions should be able to explore potentially feasible regions such that the evolutionary

search will not be trapped in local optimums.
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1.3.3 Experience-Based Surrogate-Assisted Evolutionary Algorithms

for Expensive Optimisation

Learning quickly is a characteristic of human intelligence, which can be attributed to the

capability of learning and using experience. Skilled humans are able to solve a new task

quickly as they can gain useful experience from the related tasks they have seen before. These

experiences are used to enhance the efficiency of working on a new task. In comparison,

novices need more time to solve a new task due to their lack of experience. From the

perspective of solving expensive optimisation problems, we hope our SAEAs behave like

skilled humans instead of novices. In this way, a new optimisation problem can be solved

with fewer expensive fitness evaluations, which saves more fitness evaluations and makes

it possible to solve some extremely expensive optimisation problems. Therefore, we are

motivated to mimic the behaviour of skilled humans and want to enable SAEAs with the

capability of learning experience. The SAEAs that are capable of using experience are

referred to as experience-based SAEAs.

In real-world applications, many optimisation problems are related since they are

dealing with the optimisation problems in the same domain. These optimisation problems

usually share some domain-specific features which are beneficial to the optimisation of other

related optimisation tasks. The last optimisation problem to be solved in this thesis assumes

that all related tasks are small and they cannot provide existing knowledge or experience on

domain-specific features. As a result, the following research questions should be considered:

• How to represent experience from related expensive optimisation tasks and adapt them

to a new expensive optimisation task?

• How to use and update experience during the surrogate-assisted evolutionary optimi-

sation?

For the first research question, it should be noted that each related task can provide only
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a small set of samples. Hence, useful experience may not be learned from a single related

task. The key point in this question is to extract the domain-specific features over plenty of

different related tasks. The second research question concerns the compatibility of SAEAs

and the experience learning technique. A suitable strategy should be developed to make full

use of experience in SAEAs.

1.4 Thesis Contributions

This thesis makes the following major contributions by addressing the research questions

discussed in Section 1.3.

• A novel ordinal-regression-based surrogate designed for EMOPs. A hybrid surrogate

management strategy and an adaptive surrogate management strategy are developed

to use the ordinal-regression-based surrogate, resulting in two efficient and effective

SAEAs for EMOPs. Detailed contributions can be found in the end of Chapter 3.

• The framework of a novel SAEA to solve ECOPs with a bilevel architecture. Addi-

tionally, a sensitivity analysis method is developed to quantify the impact of decision

variables on solution feasibility. The ordinal-regression-based surrogate is also adapted

to approximate the ordinal landscape of constraints. Detailed contributions can be

found in the end of Chapter 4.

• A novel meta-learning method to learn experience from related expensive tasks. An

experience-based SAEA framework to combine regression-based SAEAs with our ex-

perience learning method. Detailed contributions can be found in the end of Chapter

5.
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1.5 Thesis Outline

The remaining content of the thesis is organised as follows.

Chapter 2 firstly formulates the computational expensive optimisation problems to

be solved in this thesis. Then, it provides some preliminaries to SAEAs. After that, it

reviews existing research work related to this thesis, including SAEAs designed to solve

expensive multi-objective or expensive constrained optimisation problems, and experience-

based SAEAs that attempt to enhance the optimisation efficiency by using the experience

gained from related optimisation problems. Finally, it ends with an introduction to the

surrogate modelling methods used in this thesis, including the Kriging model and neural

network.

Chapter 3 firstly introduces an ordinal-regression-based surrogate to approximate the

dominance-based ordinal landscape for EMOPs. After that, two surrogate management

strategies are proposed to cooperate with the ordinal surrogate and solve EMOPs. The

first management strategy is a hybrid and static strategy to consider both convergence and

diversity. The second strategy is an adaptive strategy which is more flexible and powerful

than the first one. Comparison experiments are conducted between state-of-the-art SAEAs

on DTLZ benchmark test problems are detailed in this chapter.

Chapter 4 proposes an efficient bilevel SAEA to handle a real-world ECOP: the en-

gine calibration problem. A sensitivity analysis method is introduced to quantify the impact

of decision variables on solution feasibility. Then decision variables are divided into either

upper-level or lower-level variables. A bilevel architecture is designed to optimise upper-

level and lower-level variables in nested order. In addition, the ordinal surrogate described

in Chapter 3 is adapted to approximate multiple constraints. Experimental results are con-

ducted to compare our SAEA with two optimisation approaches used in the engine industry

and other state-of-the-art SAEAs proposed for ECOPs. Detailed results are reported.

Chapter 5 presents a new experience-based SAEA framework to solve extremely ex-
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pensive optimisation problems. This chapter does not focus on any specific optimisation

scenario but concentrates on learning experience from related tasks and using experience in

SAEAs. Details about experience learning approach are given and the method to use experi-

ence in SAEAs is explained. Empirical experiments are displayed to show the effectiveness of

the experience learning approach as well as that of the experience-based SAEA framework.

Finally, Chapter 6 concludes the work of the thesis and future research directions are

suggested.

1.6 Papers Resulting from the Thesis

The published or submitted papers resulting from the thesis are listed as follows.

Referred or Submitted Journal Papers

• X. Yu, L. Zhu, Y. Wang, D. Filev, and X. Yao, "Internal Combustion Engine Calibra-

tion Using Optimisation Algorithms", Applied Energy, vol. 305, pp.117894, 2022.

This paper is associated with Chapter 2.

• X. Yu, Y. Wang, L. Zhu, D. Filev and X. Yao, "Engine Calibration with Surrogate-

Assisted Bilevel Evolutionary Algorithm", IEEE Transactions on Cybernetics, early

access, May 1, 2023. DOI: 10.1109/TCYB.2023.3267454.

This paper is associated with Chapter 4.

• X. Yu, Y. Wang, L. Zhu, D. Filev and X. Yao, "Experience-Based Evolutionary Algo-

rithms for Very Expensive Optimisation", under review.

This paper is associated with Chapter 5.

Referred Conference Paper

• X. Yu, X. Yao, Y. Wang, L. Zhu, and D. Filev, "Domination-Based Ordinal Regres-

sion for Expensive Multi-Objective Optimisation," in Proceedings of the 2019 IEEE
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Symposium Series on Computational Intelligence (SSCI’19), 2019, pp. 2058-2065.

This paper is associated with Chapter 3.

• X. Yu and X. Yao, "Ordinal Regression Evolutionary Algorithm with Adaptive Sam-

pling Strategy for Expensive Multi-Objective Optimisation", under review.

This paper is associated with Chapter 3.
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Chapter 2

Background and Literature Review

This chapter introduces the background knowledge of SAEAs and reviews research studies

related to this thesis. Section 2.1 provides some basic definitions and formulations about the

optimisation problems to be solved in this thesis. In Section 2.2, an introduction to SAEAs is

given, including the workflow of SAEAs, and the surrogates and management strategies used

in SAEAs. Section 2.3 reviews the existing SAEAs designed for solving different expensive

optimisation problems, which are related to the work in this thesis. Section 2.4 discusses

the details of surrogate modelling methodologies used in the thesis. A chapter summary is

presented in Section 2.5.

2.1 Formulation of Computational Expensive Optimisa-

tion Problems

Computationally expensive optimisation problems are often encountered in numerous real-

world applications [116]. Many of these problems belong to black-box optimisation as they

are so sophisticated such that their closed-form expressions are not available. Thus, tra-

ditional mathematical optimisation methods cannot be used to solve these problems. To

solve many expensive optimisation problems in real-world applications, potential solutions
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are evaluated on some industrial facilities. However, the cost of running these industrial fa-

cilities is not trivial, so the number of allowed evaluations is limited. This section formulates

the expensive optimisation problems we considered in the thesis.

The cost of performance evaluations is the utmost distinction between expensive opti-

misation problems and non-expensive optimisation problems. Evaluating the performance of

an arbitrary solution on an expensive optimisation problem can be time-consuming and/or

costly to finance. However, such a distinction cannot be presented in the formulation of ex-

pensive optimisation problems. Therefore, the formulation of expensive optimisation prob-

lems is equivalent to the formulation of non-expensive optimisation problems. Considering

the diversity of expensive optimisation problems, it is unrealistic to formulate all possible

expensive optimisation problems in this thesis. As a result, this section only formulates two

kinds of expensive optimisation problems mentioned in Section 1.2:

1. Expensive multi-objective optimisation problems (EMOPs).

2. The expensive constrained optimisation problems (ECOPs) with one objective.

Without loss of generalisation, this thesis assumes that all optimisation problems

discussed in the thesis aim to minimise the objective(s). Then the EMOP can be formulated

as follows:

Problem 2.1.1 Expensive Multi-Objective Optimisation Problem:

For a given evaluation budget FEmax, obtain the Pareto set for the following multi-objective

optimisation problem:

minimise
x∈X

f(x) = (f1(x), . . . , fm(x))

where fi denotes the ith objective function and m denotes the number of objectives, X is the

decision space of the problem. In other words, X is the domain of optimisation problem f .

Pareto set and Pareto front are defined as follows:
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Definition 2.1.1 Pareto dominance:

A solution x1 is said to dominate another solution x2 (denoted by x1 ≺ x2) if and only if:

∀k ∈ {1, 2, . . . ,m} : fk(x1) ≤ fk(x2)∧

∃k ∈ {1, 2, . . . ,m} : fk(x1) < fk(x2)

Definition 2.1.2 Non-dominated solution:

A non-dominated solution x? in the decision space X is a solution that cannot be dominated

by any other solutions in X:

@x ∈ X : x ≺ x?

Definition 2.1.3 Pareto set:

Pareto set Sps is the set of all non-dominated solutions in the decision space X:

Sps = {x? ∈ X|@x ∈ X : x ≺ x?}

Definition 2.1.4 Pareto front:

Pareto front Spf is the corresponding unique set of the Pareto set in the objective space:

Spf = {f(x)|x ∈ Sps}

The second problem, ECOP, is formulated as:

Problem 2.1.2 Expensive Constrained Single-Objective Optimisation Problem:

For a given evaluation budget FEmax, obtain the minimum for the following constrained

optimisation problem:

minimise
x∈X

f(x)

subject to gi(x) ≤ 0, i = 1, . . . , p

ki(x) = 0, i = 1, . . . , q.
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where f, gi, kj denotes the objective, inequality constraints, and equality constraints, respec-

tively. p and q are the number of inequality and equality constraints, respectively. X is the

decision space of the problem.

2.2 Surrogate-Assisted Evolutionary Algorithms

SAEAs have been widely used to solve expensive optimisation problems in the literature. To

understand the working mechanism of SAEAs and how can SAEAs solve expensive optimi-

sation problems, this section introduces the background knowledge about SAEAs.

2.2.1 General Workflow of SAEAs

A general workflow of SAEAs is illustrated in Fig. 2.1. Initially, a set of solutions are sampled

Figure 2.1: A general workflow of surrogate-assisted evolutionary algorithms.

from the decision space through some design of experiment (DoE) methods. The sampled

dataset is evaluated on the expensive function and then saved as an archive. The archive

serves as a training dataset and is used to train computational efficient surrogates. Then,

new offspring solutions are generated through running EAs or conducting some reproductive

operations such as crossover and mutation. The generated solutions are evaluated on surro-

gates and some estimated optimal solutions are selected based on some infill criteria. These
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selected solutions are evaluated on expensive functions to obtain their real performance, the

evaluated solutions are added to the archive for further surrogate training. If the budget

of expensive evaluations has run out, then the surrogate-assisted evolutionary optimisation

will stop and the optimal solutions in the archive will be outputted as optimisation results.

Otherwise, the evolutionary optimisation will continue and new offspring solutions will be

generated.

2.2.2 Issues in SAEAs

This subsection discusses some important issues existing in SAEAs separately.

Initial dataset

The initial dataset is used to initialise surrogates. The dataset should be well-distributed

in the decision space to ensure a global exploration of the whole decision space. Many

DoE methods have been widely used to sample the initial dataset, such as Latin hypercube

sampling [60], uniformly sampling, and randomly sampling. There has no guideline for

selecting DoE methods. Many studies in the literature use Latin hypercube sampling due to

its popularity [68, 115, 90]. However, one should make sure that the selected DoE method

is applicable for the problem to be solved. For example, Latin hypercube sampling is not

applicable for expensive combinatorial optimisation problems, thus random sampling is used

in [104]. Note that there is not a clear requirement for the size of the initial dataset.

Conventionally, 10 d or 11d-1 solutions are sampled as the initial dataset [46, 47, 120, 68, 115],

where d is the dimension of the decision space. Recently, an initial dataset of size 3d or 4d

has been demonstrated to be efficient for some single-objective optimisation problems [100].

Besides, the evaluation budget should be considered as the size of the initial dataset must

be fewer than the number of allowed evaluations.
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Surrogates

For the sake of saving expensive function evaluations, the surrogates used in SAEAs are

designed to mimic the behaviour of expensive functions, then a majority of expensive function

evaluations can be replaced with surrogate evaluations.

Surrogate categories: Existing surrogates can be mainly divided into two categories

based on the purpose of the surrogate modelling. In the first category, surrogates aim to

provide accurate approximations of expensive functions. For a given input, it is desirable for

surrogates to output the exact same results as querying the expensive functions. Typically,

such surrogates are implemented using regression-based models. Instead of approximating

exact function values, the surrogates in the second category are trained from the perspec-

tive of assisting evolutionary optimisation directly. These surrogates are different from the

expensive functions, but they have the same preference for solutions as expensive functions.

Usually, they are trained to predict which solutions are preferable to other solutions [31],

or are trained to predict if the given solutions are feasible [82, 30]. In the literature, both

regression-based models and classification-based models have been employed to implement

this kind of surrogate.

Surrogate modelling techniques: The technique of surrogate modelling is also

an issue. Plenty of models have been employed as surrogates in SAEAs, such as Kriging

model (also known as Gaussian processes) [46, 47, 115, 90], neural network [64, 72, 117, 31],

polynomials (also known as response surface methodologies) [36, 88], support vector machine

(SVM) [1] and some ensemble surrogates [28]. However, there has very little guideline about

how to choose the model for building surrogates, and a model is selected due to either

its popularity or its usage in the domain of the problems to be solved [9]. For example,

some models are selected because they give uncertainty estimations which are critical to

some surrogate modelling techniques. In general, the Kriging model is the most popular

one among the aforesaid models because it is able to provide uncertainty information in the
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prediction. When uncertainty information is available, more flexible surrogate management

strategies can be designed to reach a trade-off between exploration and exploitation during

the surrogate-assisted optimisation.

Surrogate Management

Surrogate management, also known as evolution control, is the strategy to manage surrogates

in SAEAs. A surrogate management strategy covers several issues that should be of concern,

such as how to use surrogate evaluations to select solutions for expensive evaluations, and

how to update surrogates with evaluated solutions. Specifically, the selection of solutions

for expensive evaluations is the most important issue in a surrogate management strategy

(see the modules included in the dashed block in Fig. 2.1), it consists of two parts: the

framework of selection and the criterion of selection.

Selection frameworks: The selection framework describes how to use surrogate

evaluations to select solutions for expensive evaluation. Existing surrogate management

strategies can be mainly classified into two categories based on their selection frameworks:

generation-based evolution control and individual-based evolution control [45]. In generation-

based evolution control, an EA is applied to generate offspring solutions. During the evo-

lutionary optimisation, all offspring solutions in a generation are evaluated using either

expensive functions or approximation surrogates, the frequency of using expensive function

evaluations can be fixed [21] or adaptive [66]. Note that if one generation of offspring so-

lutions are evaluated on surrogates, then the next generation of offspring solutions will be

generated based on the evaluation results on surrogates (see the dashed arrow in Fig. 2.1).

Another way to implement generation-based evolution control is to run a complete EA on

approximation surrogates. The output of this EA is an optimum on surrogates in terms

of estimated objective values or other acquisition functions such as expected improvement

(EI) [46]. The optimum is selected as an estimated optimal solution and re-evaluated on

expensive functions. For instance, ParEGO [47] employs a steady-state EA to search for the
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solution with maximum for re-evaluation. By comparison, individual-based evolution control

generates a generation of offspring solutions through crossover and mutation operations. All

solutions in the generation are firstly evaluated on surrogates and then some of them are

chosen for re-evaluation on expensive functions. Compared with generation-based evolution

control, the individual-based one is more flexible when selecting solutions for expensive func-

tion evaluations. In contrast, generation-based evolution control tends to be preferable to

the individual-based one if the EA is implemented in parallel [43].

Infill criteria: The infill criterion is an environmental selection criterion used to

select optimal solutions. Given a generation of offspring solutions and their evaluation results

on surrogates, a SAEA needs an infill criterion to define which solutions are optimal and

thus should be selected. Many infill criteria have been developed in the literature. SAEAs

often use surrogate prediction as their infill criterion if their surrogates provide only one

prediction. For instance, CSEA [68] employs a neural network as its surrogate, such a

surrogate predicts the probability that a given solution is non-dominated by reference points.

In the process of generation-based evolution control, the solutions with high probabilities to

dominate reference points are selected for the reproduction of the next generation. And in the

last generation, the offspring solutions whose probabilities are higher than 0.9 are selected for

re-evaluation on expensive functions. Some infill criteria also take uncertainty into account.

The uncertainty can be measured as the distance between the solution to be evaluated and

the evaluated solution in the archive [4]. A more straight forward way to obtain uncertainty

is to use the surrogates which are able to provide both prediction and uncertainty, such as

Kriging model [109]. Infill criteria such as EI [46, 120], lower confidence bound [71, 56], and

probability of improvement (PoI) [122, 11] have been widely used in SAEAs when surrogates

can provide uncertainty. Additionally, to explore decision space and maintain the diversity of

the selected solutions, some SAEAs attempt to select representative solutions through using

clustering-based infill criteria. For example, in MOEA/D-EGO [120], offspring solutions that

have been evaluated on surrogates are divided into several clusters firstly, then the solutions
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with maximum EI in each cluster are selected as optimal ones for expensive evaluations.

Surrogate update: Surrogates should be updated to maintain their quality dur-

ing evolutionary optimisation. Existing SAEAs usually update their surrogates when new

evaluated solutions are added to the archive, which is beneficial to the accuracy of surro-

gate approximations. However, as the number of evaluated solutions increases, the size of

the archive will be larger than before, which results in an increase in the training time of

surrogates. To reduce the time cost of surrogate training without degrading the frequency

of surrogate updates, some SAEAs use a small dataset to train their surrogates [47, 120].

Hence, how to select a subset of the archive as the training dataset is also an issue in surro-

gate management. The solutions in the training dataset can be chosen based on randomness,

fitness, or the distribution in the decision space. For instance, in [47], half solutions in the

training dataset are selected from the archive on the basis of their aggregated fitness, while

the remaining solutions are selected from the archive randomly. In [120], training datasets

are generated through grouping the archive into several clusters. Apart from the consider-

ation for the training time, the demand for local approximations is another reason to train

surrogates with a subset of the archive [106]. In this situation, the solutions that are close

to the areas of interest will be added to the training dataset.

Evolutionary algorithms

A variety of EAs and reproductive operators have been used in SAEAs to generate candidate

solutions, including conventional EAs such as genetic algorithm (GA) [33, 34], evolutionary

programming (EP) [24], evolutionary strategy (ES) [84, 3], genetic programming (GP) [49],

differential evolution (DE) [92] and swarm intelligence algorithms such as ant colony opti-

misation (ACO) [10], and particle swarm optimisation (PSO) [20]. There is little guideline

about how to choose EAs for SAEAs since no EA outperforms other EAs significantly. The

selection of EAs tends to be arbitrary in many SAEA studies. However, the performance of

SAEAs will be affected by the parameter setups of the EAs used in SAEAs, thus proper EA
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parameter setups should be considered.

2.3 Literature Review on SAEAs

Based on the background knowledge of SAEAs discussed in the last section, this section

further reviews the SAEA studies that are related to the expensive optimisation problems

to be solved in this thesis.

2.3.1 SAEAs designed for Expensive Multi-Objective Optimisation

Various multi-objective SAEAs have been proposed to solve EMOPs in past decades. Based

on the strategy to handle multiple objectives, these SAEAs can be roughly classified into two

categories: conversion-based SAEAs and dominance-based SAEAs. The former uses different

conversion techniques to solve EMOPs with some single-objective optimisation methods,

while the latter solves EMOPs through dominance relation.

Conversion-based SAEAs extend the idea of single-objective optimisation to the do-

main of multi-objective optimisation. There are many ways to implement the conversion

between single-objective optimisation and multi-objective optimisation. Using a dynamic

scalarising weight vector is the simplest way to convert multiple objectives into an aggregate

objective [47]. The dynamic scalarising weight vector is changing at each iteration, thus

an approximation of Pareto front can be obtained gradually through employing an EA to

optimise the aggregate objective function. Decomposition is another popular way to im-

plement the conversion. Decomposition-based methods use diverse static weight vectors to

decompose a multi-objective optimisation problem, which results in series of single-objective

optimisation subproblems [120]. Different from the use of a dynamic weight vector where

only the aggregate objective needs to be optimised, in decomposition-based methods, EAs

are employed to optimise all these subproblems in every iteration. For the two kinds of

conversion-based SAEAs mentioned above, their solution diversity is dependent on the dis-
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tribution of weight vectors. Additionally, performance indicators that are designed for multi-

objective optimisation, such as hypervolume (HV) [125], are also used to convert multiple

objectives into a single objective [71, 70]. One shortcoming of such indicator-based SAEAs

is that the computation of HV or other performance indicators is time-consuming, which

limits the application of this kind of SAEAs.

Compared with conversion-based SAEAs, dominance-based SAEAs are predominant

in the literature [9] and they do not need conversions. Typically, these SAEAs approximate

each objective with one surrogate separately, which makes it convenient for these SAEAs to

combine existing MOEAs with the surrogates discussed in Section 2.2.2. For example, NSGA-

II [16], a classic dominance-based MOEA, cooperates with a neural network surrogate in

NSGA-II-ANN [65]. A reference-guided MOEA, namely RVEA [7], is combined with Kriging

surrogates in K-RVEA [8]. And a two-archive assisted MOEA, TA2 [103], is combined with

Kriging surrogates in KTA2 [90], where one of two archives is designed for maintaining

the diversity of non-dominated solutions in the objective space. However, three drawbacks

of approximating each objective with one surrogate should be noted. Firstly, the time

complexity of maintaining surrogates grows exponentially with the number of objectives.

Second, the cumulative approximation errors from all surrogates will adversely affect the

overall approximation accuracy. Thirdly, correlations between objectives are lost.

Recently, a new class of dominance-based SAEAs is proposed to use a single classification-

based surrogate to directly learn the dominance relation for solutions. These classification-

based surrogates will not suffer from the cumulative errors encountered by multiple regression-

based surrogates. For instance, CSEA [68] trains a neural network to predict whether candi-

date solutions can be dominated by given reference points or not. Such a dominance-based

SAEA is efficient since the algorithm needs to maintain only one classification-based surro-

gate. Apart from learning relations between solutions and reference points, some dominance-

based SAEAs also use classification-based surrogates to learn the dominance relations for

pairwise solutions. θ-DEA-DP [117] uses two neural networks to predict the Pareto dom-
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inance relation and the θ-dominance relation between two solutions, respectively. REMO

[31] employs a neural network to fit a ternary classifier, which is able to learn the dominance

relation between pairs of solutions. These SAEAs take advantage of learning dominance

relations and have found their way into solving EMOPs. But it should be pointed out that

the learning of pairwise dominance relations [117, 31] indicates an exponential increase in

the complexity of surrogate training and prediction. For relations between reference points

and solutions [68], the solutions classified into the same category are not comparable.

2.3.2 SAEAs Designed for Expensive Constrained Optimisation

Many studies have been conducted to solve ECOPs with SAEAs. In [75, 100], radial ba-

sis function (RBF) surrogates were used to approximate each constraint separately, which

assists the proposed evolutionary programming (EP) algorithm to solve high-dimensional

ECOPs. In [44], each nonlinear constraint was approximated by an artificial neural network

(ANN) surrogate, these surrogates were assembled into a stochastic ranking evolution strat-

egy (SRES) [81]. Surrogates such as k-nearest neighbour (KNN) regression surrogate [82]

and support vector machine (SVM) classification surrogate [30] have been employed to define

solution feasibility directly. SA-DECV [62] uses one unique surrogate to approximate both

the objective value and the feasibility of solutions. Moreover, adaptive surrogates [87] and

the combination of global and local surrogates [106] have been developed to solve ECOPs.

Besides, SAEAs have been used to solve diverse ECOPs including multi-objective problems

[76], [12], combinatorial problems [104], high-dimensional problems [22], and the ECOPs

with inequality constraints [106, 50], equality constraints [112], and nonlinear constraints

[44], [121]. In [107], distributed ECOPs were studied where the evaluation of constraints

is asynchronous. In [58], a SAEA was designed to solve ECOPs involving mixed-integer

variables. From the view of constraint handling techniques (CHTs), the influence of four

CHTs on a SAEA was investigated in [63]. A novel CHT was developed in [93] to map the
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feasible region into the origin of the Euclidean subspace for ECOPs. A parallel constrained

lower confidence bounding approach was proposed to solve ECOPs [6]. In [114], a specific

mutation operation was developed to achieve an efficient classification-collaboration between

feasible and infeasible solutions.

The aforesaid studies have made achievements of solving ECOPs from different as-

pects, such as the use of constraint surrogates [77], the category of ECOPs, and the de-

velopment of CHTs. However, a shortcoming is that the sensitivity of solution feasibility

to decision variables has not been investigated in existing studies. Although CHTs such as

feasibility rule [13], ε-constrained method [94], stochastic ranking [81], and diversity main-

tenance [61] have been widely used to solve ECOPs, these CHTs tend to pay their attention

to every decision variable evenly. In [29], constrained optimisation problems are solved via

a bilevel architecture, but the problems are not expensive and every decision variable is

optimised in both lower and upper levels. In real-world applications, decision variables may

have different impacts on the feasibility of solutions. Hence, it is desirable to allocate op-

timisation resources on the basis of the impact of variables on solution feasibility. To fill

this gap, this thesis analyzes the sensitivity of solution feasibility to decision variables, the

decision variables that have a significant impact on solution feasibility will be divided into

lower-level variables. A bilevel architecture is employed to handle constraints where more

effort is made on lower-level variables to explore the feasible region.

2.3.3 SAEAs Based on Experience Learning and Transformation

Many SAEAs have been developed to solve expensive optimisation problems. These SAEAs

are designed to handle different optimisation scenarios such as single-objective optimisation

[100], multi-objective optimisation [74], constrained optimisation [114], large-scale optimisa-

tion [75], and combinatorial optimisation [104]. Although these SAEAs have reached some

achievements in diverse optimisation scenarios, none of them gains experience from past
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optimisation problems, making their optimisation start from a zero prior knowledge state.

Hence, these SAEAs still need tens to hundreds of evaluated samples to initialise their sur-

rogates due to the demand for reliable surrogates.

In the past decade, experience-based evolutionary optimisation has attracted much

attention as it uses the experience obtained from other optimisation problems to improve

the optimisation efficiency of target problems, which mimics human capabilities of cognitive

and knowledge generalisation [27]. The optimisation problems that provide experience or

knowledge are regarded as source tasks, while the target optimisation problems are regarded

as target tasks. To obtain useful experience, the tasks that are related to target tasks are

chosen as source tasks since they usually share domain-specific features with target tasks.

Diverse experience-based evolutionary optimisation methods have been proposed to use the

experience gained from related tasks to tackle target tasks. They can be divided into two

categories based on the direction of experience transformation.

In the first category, experience is transformed mutually. Every considered optimi-

sation problem is a target task and is also one of the source tasks of other optimisation

problems. In other words, the roles of source task and target task are compatible. One rep-

resentative tributary is EMTO that aims to solve multiple optimisation tasks concurrently

[19, 108, 53, 2, 113]. In EMTO, experience is learned, updated, and spontaneously shared

among target tasks through multi-task learning techniques. A variant of EMTO is multi-

forms optimisation [27, 119, 26]. In multiforms optimisation, multi-task learning methods

are employed to learn experience from distinct formulations of a single target task.

In the second category, experience is transformed unidirectionally. The roles of source

task and target task are not compatible, an optimisation problem cannot be a source task

and a target task simultaneously. One popular tributary is transfer optimisation which

employs transfer learning techniques to transform experience from source tasks to target tasks

[95, 41, 40, 102]. In transfer learning, experience can be transformed from a single source

task, multiple source tasks, or even source tasks from a different domain [124]. However,
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these transfer learning techniques pay more attention to experience transformation instead of

experience learning. Although diverse and complex situations of experience transformation

have been studied [78, 79], the difficult of learning experience from small (expensive) source

tasks has not been well studied. Actually, a common scenario in transfer learning is that the

source task(s) is/are large enough such that useful experience can be obtained easily through

solving source task(s) [124]. In contrast to transfer optimisation, recently, some experience-

based optimisation algorithms attempted to use meta-learning methods to learn experience

from small source tasks, which is known as few-shot optimisation [111]. Since meta-learning

only works for related tasks in the same domain, the situations of experience transformation

are less complex than that of transfer learning, thus meta-learning pays more attention

to experience learning instead of experience transformation. Domain-specific features are

extracted as experience and no related task needs to be solved.

In this thesis, we consider experience-based optimisation in the context of few-shot

problems [96, 111]. That is, we have many related expensive tasks which serve as source

tasks and one new expensive task which is our target task, each related task provides a

few samples and the target task allows a few fitness evaluations. Our work belongs to

the few-shot optimisation in the second category above since our experience is transformed

unidirectionally. More importantly, our experience is learned across many related expensive

tasks, rather than gained through solving more or fewer source tasks.

Existing studies in few-shot optimisation only work for global optimisation [111],

leaving other optimisation scenarios such as multi-objective optimisation and constrained

optimisation still awaiting investigation. In addition, in-depth ablation studies are lacking in

the literature, it is unclear which factors will affect the performance of few-shot optimisation.

Moreover, some studies used existing meta-learning models [69] as their surrogates. No

further adaptations are made to these surrogates during the optimisation since they are not

designed for optimisation originally. Therefore, a novel meta-learning model for few-shot

optimisation is desirable. Our work fills the aforesaid gaps by proposing a novel meta-
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learning modelling method and a general experience-based SAEA framework. As a result,

accurate surrogates and competitive optimisation results can be achieved while the cost of

surrogate initialisation is only 1d evaluations for a d-dimensional expensive target problem.

2.4 Surrogate Modelling

This section introduces the surrogate modelling methodologies used in the thesis, including

the Kriging model and the feedforward neural network.

2.4.1 Kriging Model

Kriging model, also known as Gaussian process model [46] or design and analysis of computer

experiments (DACE) model [83], is a stochastic process model used to approximate an

unknown objective function. It plays an important role in this thesis since it is employed

to build surrogates in Chapters 3, 4, and 5. To avoid potential confusion and help the

understanding of the next three sections, the working mechanism of the Kriging model is

described below.

A common way to approximate an unknown objective function with n observations

is linear regression:

y(xi) =
N∑
k=1

βkfk(xi) + εi, (2.1)

where xi is the ith sample point observed from the objective function. fk(xi), βk are a linear

or nonlinear function of xi and its coefficient, respectively. N is the number of functions

f(x). εi is an independent error term, which is normally distributed with mean zero and

variance σ2.

However, a stochastic process model such as Kriging does not assume that the error

terms ε are independent. Hence, an error term εi is rewritten as ε(xi). Moreover, these error

terms are assumed to be related or correlated to each other. The correlation between two er-
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ror terms ε(xi) and ε(xj) is inversely proportional to the distance between the corresponding

points [46]. The correlation function in the Kriging model is defined as:

Corr(ε(xi), ε(xj)) = exp[−dis(xi,xj)], (2.2)

where the distance between two points xi and xj are measured using the special weighted

distance formula shown below:

dis(xi,xj) =
d∑

k=1

θi|xik − x
j
k|
pk , (2.3)

where d is the number of decision variables, θθθ ∈ Rd
≥0 and p ∈ [1, 2]d are parameters of the

Kriging model. It can be seen from Eq.(2.2) that the correlation is ranged within (0, 1]

and is increasing as the distance between two points decreases. Particularly, in Eq.(2.3),

the parameter θk can be explained as the importance of the decision variable xk, and the

parameter pk can be interpreted as the smoothness of the correlation function in the kth

coordinate direction.

Due to the effectiveness of correlation modelling, the regression model in Eq.(2.1) can

be simplified without degrading modelling performance [46]. Clearly, all regression terms

are replaced with a constant term, thus the Kriging regression model can be rewritten as

follows:

y(xi) = µ+ ε(xi), (2.4)

where µ is the mean of this stochastic process, ε(xi) ∼ N (0, σ2).

To train the Kriging model and estimate the parameters θθθ,p in Eq.(2.3), the following

likelihood function is maximised:

1

(2π)n/2(σ2)n/2|R|1/2
exp[−(y− 1µ)TR−1(y− 1µ)

2σ2
], (2.5)
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where |R| is the determinant of the correlation matrix, each element in the matrix is obtained

using Eq.(2.2). y is the n-dimensional vector of dependent variables that observed from the

objective function. The mean value µ and variance σ2 in Eq.(2.4) and Eq.(2.5) can be

estimated by:

µ̂ =
1TR−1y
1TR−11

, (2.6)

σ̂ =
1

n
(y− 1µ̂)TR−1(y− 1µ̂). (2.7)

For a new solution x∗, the Kriging model predicts the approximation of ŷ(x∗) and the

uncertainty ŝ2(x∗) as follows:

ŷ(x∗) = µ̂+ r′R−1(y− 1µ̂), (2.8)

ŝ2(x∗) = σ̂2(1− r′R−1r), (2.9)

where r is a n-dimensional vector of correlations between ε(x∗) and the error terms at the

training data, which can be calculated via Eq.(2.2). More details about the Kriging model

and Gaussian Process can be found in [46, 109].

2.4.2 Feedforward Neural Network

Artificial neural networks are models designed to interact with the real-world objectives in a

way inspired by biological nervous systems [48]. They are parallel interconnected networks

of transfer functions (neurons) and have hierarchical organisations. Feedforward neural net-

works (FNNs) are an important tributary of artificial neural networks where connections

between the neurons do not form a cycle. A FNN is combined with the Kriging model to

build surrogates in Chapter 5, thus this subsection presents the background of FNNs as a

preliminary.

The architecture of FNNs is illustrated in Fig. 2.2 through an example of a three-layer

31



FNN. It can be seen that a k-layer FNN model consists of an input layer, k-1 hidden layers,

Figure 2.2: Architecture of a three-layer FNN. The input layer does not conduct any com-
putation operations, thus the number of layers k counts only hidden layers and the output
layer. In this example, the number of decision variables d = 4 and the number of objectives
m = 3. Therefore, the input layer has 4 neurons and the output layer has 3 neurons. Two
hidden layers have h1 and h2 neurons, respectively.

and an output layer. The neuron, also known as the unit, is the basic component in FNNs.

Each layer of a FNN is made up by several neurons. Specially, the input and output layers

contain d,m neurons, respectively, where d is the number of decision variables and m is the

number of objectives to approximate. In comparison, the number of neurons in a hidden

layer is flexible and always determined based on the demand of modelling complexity. The

FNNs with k > 2 also known as deep FNNs.

The workflow of a FNN starts from the input layer which receives input data x. For

the lth layer (1 ≤ l ≤ k), the outputs of its neurons a[l] are computed by

a[l] = h(w[l]a[l−1] + b[l]), (2.10)

32



where w[l] are the weights of connections between the lth layer and the (l − 1)th layer, b[l]

are the biases of neurons in the lth layer. Both w[l] and b[l] are the parameters need to

be tuned in the lth layer. a[l−1] are the outputs of the (l − 1)th layer and a[0] = x. h is

a nonlinear activation function, e.g. sigmoid, tanh, ReLU [67]. The output layer (the kth

layer) gives the output of this FNN: y = a[k]. The parameters w = (w[1],w[2], . . . ,w[k]) and

b = (b[1],b[2], . . . ,b[k]) are often trained through backpropagation [80].

2.5 Chapter Summary

In this chapter, the background knowledge related to this thesis has been given. Firstly,

basic definitions and mathematical formulations of expensive optimisation problems are in-

troduced to clarify what optimisation problems we are solving in this thesis. Then, a detailed

description of SAEAs is given, including the explanation of SAEA working mechanism and

some discussions about the important issues in the initial dataset, surrogates, surrogate

management strategies, and EAs. Literature reviews on SAEAs designed for EMOPs and

ECOPs as well as experience-based SAEAs are conducted, the gaps in solving expensive op-

timisation problems with SAEAs are analyzed. Finally, due to the use of the Kriging model

in Chapters 3-5, an introduction to the Kriging model is given, which covers the nature of

the Kriging model as a stochastic process model, the training methodology of the Kriging

model, and the prediction methodology through the Kriging model. A brief introduction to

feedforward neural network is also provided since neural networks are related to our work in

Chapter 5.
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Chapter 3

Ordinal Surrogate Assisted Evolutionary

Algorithms for Expensive

Multi-Objective Optimisation

This chapter proposes a dominance-based ordinal regression surrogate, in which a Krig-

ing model is employed to learn the dominance-based relation values and to approximate

the ordinal landscape of objective functions. Coupling with a hybrid surrogate management

strategy, the solutions with higher probabilities to dominate others are selected and evaluated

on expensive objective functions. Moreover, an adaptive surrogate management strategy is

proposed to further improve the optimisation performance for EMOPs. The adaptive man-

agement strategy analyzes the state of optimisation and the distribution of non-dominated

solutions. Based on the analysis result, the management strategy will adapt the number of

solutions sampled from global search, local search, or diversity maintenance, leading to a dy-

namic balance between convergence and diversity. Our computational experiments on DTLZ

benchmark test problems have shown that our algorithms outperform all compared state-of-

the-art SAEAs. The effectiveness of our ordinal surrogate and two surrogate management

strategies has also been demonstrated.
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3.1 Motivation

Existing SAEAs that are designed for EMOPs can be mainly classified into two categories

based on their purposes of using surrogates. In most existing SAEAs, surrogates aim to

approximate the fitness of solutions or the objective functions of expensive problems [42].

Therefore, regression-based models are used as surrogates in these SAEAs. For example,

ParEGO [47] employs a Kriging model to estimate the fitness of a weighted objective function.

MOEA/D-EGO [120] uses multiple Kriging models to approximate all objective functions.

In K-RVEA [8] and KTA2 [90], Kriging models are also trained to do fitness regression.

However, from the perspective of assisting evolutionary optimisation, what MOEAs need is

the relation between solutions rather than accurate fitness values. As a result, some recently

proposed SAEAs use classification-based surrogates to learn the relation between solutions

directly. CSEA [68] trains a neural network to predict whether candidate solutions can be

dominated by given reference points or not. θ-DEA-DP [117] uses two neural networks to

predict the Pareto dominance relation and the θ-dominance relation between two solutions,

respectively. REMO [31] employs a neural network to fit a ternary classifier, which is able

to learn the dominance relation between pairs of solutions. Compared with regression-based

SAEAs, although classification-based SAEAs take advantages of learning solution relations

directly, their drawbacks are obvious: The learning of pairwise relations [117, 31] indicates

an exponential increase in the complexity of surrogate training and prediction. For relations

between reference points and solutions [68], the solutions classified into the same category

are not comparable.

Considering the shortcomings of regression-based and classification-based surrogates,

it is desirable to develop a novel surrogate model. Such a surrogate should be able to learn

the ordinal relation between solutions directly with a low training complexity. In addition,

most solutions should be comparable based on their surrogate evaluation results. Besides,

to improve the optimisation performance on EMOPs, an efficient surrogate management

35



strategy should be developed. We firstly develop a hybrid surrogate management strategy

to balance convergence and diversity. Then, an adaptive surrogate management strategy is

proposed to balance convergence and diversity in a more flexible way, which further improves

the performance of our SAEA.

3.2 Ordinal Regression Evolutionary Algorithm (OREA)

This chapter firstly propose a novel SAEA, namely OREA, to solve EMOPs with the ordinal-

regression-based surrogate.

3.2.1 General Framework

The framework of OREA is depicted in Algorithm 1, it can be divided into the following

steps 1:

1. Initialisation: An initial dataset of size 11d - 1 is sampled from the decision space

using the Latin hypercube sampling (LHS) [60] (line 1), where d is the dimensionality

of decision variables. The sampled solutions are evaluated on expensive functions f

and then saved in an archive SA (line 2). A group of reference vectors is generated

using the method in [51] (line 3).

2. Ordinal relation quantification and surrogate modelling: The domination-based ordinal

relations are quantified (line 5) and then used to train the ordinal-regression-based

surrogate h (line 6).

3. Reproduction: A generation-based evolution control method is used to produce one

solution x1∗ (line 7), and an individual-based evolution control method is used to

produce another solution x2∗ (line 8).
1Equations in lines 2, 10, and 11 denote assignment operations, left arrows in lines 6, 7, and 8 indicate

results of invoking functions.

36



Algorithm 1 OREA framework
Input:

f : Objective functions of the expensive optimisation problem;
FEmax: Maximum number of allowed fitness evaluations;

Procedure:
1: Sample a set of solutions {x1, . . . ,x11d−1} and evaluate them on f .
2: Save all evaluated solution (x, f(x)) in an archive SA. Set the number of used evaluations
FE = |SA|. /∗|SA| is the size of SA.∗/

3: Generate reference vectors RV .
4: while FE < FEmax do
5: /∗Ordinal Relation Quantification and Surrogate Modelling∗/

Quantified relation values SV ← Quantification. /∗See Algorithm 2.∗/
6: Train the ordinal surrogate h← Kriging(SA, SV ).

/∗Reproduction with Hybrid Management Strategy∗/
7: x1∗ ← Gen_Reproduce(h).
8: x2∗ ← Ind_Reproduce(h,RV, SA, SV ).

/∗Update∗/
9: Evaluate new solutions x1∗ and x2∗ on expensive functions f .
10: Update SA = SA ∪ {(x1∗, f(x1∗)), (x2∗, f(x2∗))}.
11: FE = FE + 2
12: end while
Output:

Non-dominated solutions in archive SA.

4. Update: New solutions are evaluated on the expensive functions (line 9), archive SA

is updated (line 10) and the number of used function evaluations FE is updated (line

11).

The details of these steps are explained in the following subsections.

3.2.2 Ordinal-Regression-Based Surrogate

In the ordinal regression, the domination-based ordinal relations between solutions x and a

set of reference points SRP are quantified and then used to fit a regression-based Kriging

model. Considering the Kriging model is a common modelling method that has been widely

used in many studies and its details can be found in [109], in this section, we focus on the

quantification of domination-based ordinal relations (line 5 in Algorithm 1). The quantifi-
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cation consists of two phases: the generation of reference and the computation of relation

values. The pseudo code is given in Algorithm 2.

Algorithm 2 Quantification (SA, no, cshape)

Input:
SA = {Sx, Sf(x)}: An archive of evaluated solutions and their fitnesses;
no: Minimum of ordinal levels;
cshape: A coefficient for shaping reference points.

Procedure:
1: Attainment front SAF ← Non-dominated solutions in Sf(x).
2: bu,bl ← Upper and lower bounds of SAF .
3: SAF0 = SAF − bl. /∗Initial reference points.∗/
/∗Generation of Reference∗/

4: Set the size of reference points |SRP | = 0.
5: while |SRP | < 2 do
6: Shape criterion Cshape = (bu − bl)× cshape.
7: SRP ← Exclusion(SAF0 , Cshape)
8: cshape = cshape − 0.01
9: end while
10: Update SRP to shape the reference, making the reference interact with bl.
11: for f0(xi) ∈ SAF0 but 6∈ SRP do
12: SRP ← SRP ∪ f0(xi) if @x ∈ SRP : x ≺ f0(xi). /∗f0(x) = f(x)− bl.∗/
13: end for

/∗Computation of Relation Values∗/
14: Sf0(x) = Sf(x) − bl
15: Compute extension coefficient ec(x) for all f0(x) ∈ Sf0(x) but 6∈ SRP , results in a set Sc.
16: Number of ordinal levels No ← max(no, d |SA|

|SRP |
e).

17: Solutions in the first ordinal level: S1 = SRP .
18: {S2, . . . , SNo} ← Divide remaining solutions x ∈ SA into No− 1 ordinal levels uniformly

based on their ec(x).
19: Quantified relation value for the ith ordinal level SV (Si) = No−i

No−1
, i = 1, . . . , No.

Output:
SV : A set of quantified relation values for solutions in SA.

Generation of Reference

The reference points for quantification and the quantified relation values are updated iter-

atively during the evolutionary optimisation (Algorithm 1). For an arbitrary iteration of

Algorithm 1, the procedure of generating reference is illustrated in both Fig. 3.1 and Algo-
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(a) Initial reference (b) Shape lines and sensitive points

(c) Shaped reference (d) Extended reference

Figure 3.1: The reference used to quantify the domination-based ordinal relations between
solutions. In Fig. (a), the initial reference is the centralised attainment front, a boundary
consist of the non-dominated solutions found so far. The initial reference points are these
centralised non-dominated solutions. In Fig. (b), sensitive points that are close to the lower
bound of the current reference will be identified and excluded. In Fig. (c), a shaped reference
is formed. In Fig. (d), the shaped reference is extended to quantify the domination-based
ordinal relations between solutions.

rithm 2. First, the reference points SRP are initialised using the non-dominated solutions

in archive. Based on the domination-based relation between SRP and other solutions, an

attainment front SAF is obtained and then centralised as the initial reference SAF0 (lines 1-3,
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see Fig. 3.1a). Second, the sensitive solutions in SAF0 (crosses in Fig. 3.1b) are excluded

from SRP (lines 4-9). For these sensitive solutions, at least one of their fitnesses is close to

the lower bound of SAF . Compared with other non-sensitive solutions in SAF0 , despite that

the fitnesses of sensitive solutions in some objectives can be much greater than the fitnesses

of non-sensitive solutions, these sensitive solutions are still non-dominated. It is obvious

that these sensitive solutions are not desirable as other non-sensitive solutions in SAF0 . In

practice, let bu and bl denote the upper bound and lower bound of SAF , respectively. Then

the shape criterion is defined as the product of the range of objective values and a shape

coefficient cshape:

Cshape = (bu − bl)× cshape. (3.1)

All solutions x ∈ SAF0 that are located between bl (black solid lines in Fig. 3.1b) and

the shape criterion (red dash lines in Fig. 3.1b) are identified as sensitive points. Third,

new reference points that are derived from the upper bound of SRP (green points in Fig.

3.1c) are added to SRP , making the reference interact with the lower bound bl (line 10).

Additionally, some sensitive points are non-dominated with respect to the updated SRP but

were excluded in the second step, these solutions are added back to SRP (lines 11-13). The

selected reference points SRP construct a shaped reference in Fig. 3.1c.

Computation of Relation Values

The shaped reference in Fig. 3.1c is extended to quantify ordinal relations for the purpose

of ordinal regression (see Fig. 3.1d). As the reference extends, a solution x ∈ SA which was

dominated by SRP would be non-dominated with respect to the extended SRP . Hence, we

define a domination-based distance metric, namely extension coefficient ec, as follows:

ec(x) = arg min
ec≥1

f0(x) ≺ {SRP × ec}, (3.2)
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where f0(x) is the objective values f(x) minus bl (line 14). Note that although the extension

coefficient ec(x) quantifies the distance between a solution x and reference SRP , it has not

been used to train the ordinal-regression-based surrogate directly. Despite that the lower

bound of extension coefficients is fixed to 1.0, their upper bound is dependent on the problem

to be optimised and the state of evolutionary optimisation. If these extension coefficients

are used to fit the ordinal-regression-based surrogate directly, large fluctuations in extension

coefficients will occur between two consecutive iterations. To generate a stable ordinal-

regression-based surrogate, relation values are used to fit the surrogate, which are numerical

values ranged from 1.0 to 0.0. In detail, solutions in SA are divided into No ordinal levels:

No = max(no,
|SA|
|SRP |

), (3.3)

where no is the minimum of ordinal levels, a hyper-parameter defined in Algorithm 2. The

solutions in SRP belong to the first ordinal level, thus a relation value v1 = 1.0 is assigned

to them. Remaining solutions in SA are sorted by their extension coefficients ec(x) and then

divided into No - 1 ordinal levels uniformly. A smaller ec(x) indicates a smaller ordinal level.

The relation value vi = No−i
No−1

will be assigned to the solutions x in the ith ordinal level.

It is noticeable that bu and bl can be equal in one or more objectives. In such case,

these objectives are treated as invalid objectives, they will be ignored during the quantifi-

cation process. Another extreme condition is that SAF contains only one solution, which

means the optimum f(x∗)=bl and SRP=f0(x∗)={(0, 0, . . . , 0)}. In this case, the objective

space will be divided evenly to form the ordinal levels.

Comparison between OREA and PRL

It is noticeable that PRL [85] employed a Pareto rank based surrogate, which is similar to

the proposed domination-based ordinal-regression-based surrogate at first glance. However,

the differences can be summarised as follows:
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1. The number of ranks/levels: In PRL surrogate, the number of Pareto ranks, K, de-

pends on how many non-dominated solution groups exist in the archive, while the

number of ordinal levels no in the ordinal-regression-based surrogate can be pre-defined

or self-adaptive.

2. The number of solutions in each rank/level: The number of solutions in each Pareto

rank group is beyond control, but in the ordinal-regression-based surrogate, every

ordinal level (except the first level) shares the same number of solutions.

3. The first rank/level: The first rank group in PRL surrogate is the original archived

PF, while the first ordinal level in the ordinal-regression-based surrogate is a shaped

one.

4. The output of the surrogates: PRL surrogate predicts the Pareto rank r for given

solutions, where r ∈ Z and r < K. In contrast, the ordinal-regression-based surrogate

predicts the mean and variance of domination-based ordinal relation values.

3.2.3 Hybrid Surrogate Management Strategy

In OREA, a hybrid surrogate management strategy is developed to select candidate solutions

for expensive evaluation. Such a management strategy is derived from generation-based evo-

lution control and individual-based evolution control. The former is responsible for searching

global optima, while the latter uses a local search to maintain the diversity of non-dominated

solutions in SA. For both evolution control methods, their infill sampling criterion is the ex-

pected improvement [46], which can be explained as the expectation of locating at the first

ordinal level in the ordinal regression:

E[SV (x∗) ≥ 1.0] = (µ̂− 1.0)Φ(
µ̂− 1.0

σ̂
) + σ̂φ(

µ̂− 1.0

σ̂
), (3.4)
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where µ̂, σ̂ are the surrogate predictions from h(x∗). Φ and φ are cumulative distribution

function and probability density function, respectively. Therefore, OREA is also a Bayesian

optimisation method.

Generation-Based Evolution Control

The generation-based evolution control employs a PSO to search the candidate solutions on

the approximation surrogate h. Clearly, an initial population is sampled from the decision

space uniformly, then all the solutions are evaluated on the surrogate until the budget of

surrogate evaluations has run out. The result of the PSO run is the final population of

offspring solutions, and the best one of them is picked (using the criterion in Eq.(3.4)) as a

candidate solution for expensive evaluation.

Individual-Based Evolution Control

The pseudo code of using individual-based evolution control to reproduce solutions for ex-

pensive evaluation is given in Algorithm 3. Two mating solutions are selected during this

process, one is selected by distribution, another one is selected by convergence.

In order to maintain the diversity of non-dominated solutions SAF , we employ refer-

ence vectors RV to divide the objective space into several regions SR (line 1) [51] and count

the number of non-dominated solutions in each region (line 2). The region containing the

fewest non-dominated solutions is picked as the target region r∗1(line 3), given it contains

at least one non-dominated solution. Note that the regions without any non-dominated so-

lution inside are ignored since there is no guarantee that non-dominated solutions exist in

these regions. In r∗1, non-dominated solutions with the largest relation value form the set Sr∗1

(line 4), and based on normalised Euclidean distance, the sparsest solution in Sr∗1 is selected

as the first mating solution x1 (line 5).

For the purpose of convergence, the second mating solution x2 is randomly selected

from reference points SRP since all reference points are non-dominated solutions and they
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Algorithm 3 Ind_Reproduce(h,RV, SAF , SV )

Input:
h: The ordinal-regression-based surrogate;
RV : Reference vectors in the m-dimensional objective space;
SAF : Attainment front, the non-dominated solutions in archive SA;
SV : Quantified relation values.

Procedure:
1: SR = {r1, . . . , r|RV |} ← Based on the Euclidean distance to RV , divide objective space

into |RV | regions.
2: Count the number of non-dominated solutions in each region.
3: r∗1 ← The non-empty region with the fewest number of non-dominated solutions.
4: Sr∗1 ← A set of non-dominated solutions with the largest relation value in region r∗1.
5: x1 ← Select the most sparse solution based on the density in Sr∗1 .
6: r∗2 ← A random region with at least one reference point inside (r∗2 6= r∗1).
7: x2 ← Select a random non-dominated solution from r∗2.
8: Offspring population P ← Crossover and mutation operations(x1,x2).
9: x∗ ← Select the best solution from P through Eq.(3.4).
Output:

x∗: The candidate solution for expensive evaluation.

have the largest relation value. To avoid the situation where most of reference points are

located in the same region, instead of selecting x2 from SRP directly, a two-steps random

selection is conducted. The first step selects a region r∗2 randomly, then x2 is selected from r∗2

(lines 6-7). A special case is where all solutions in SRP are located in r∗1, for this condition,

a random solution x2 ∈ SAF but not in r∗1is selected.

A crossover operator is applied to two mating solutions to produce two offspring solu-

tions, then one randomly picked offspring solution is mutated to produce plenty of candidate

solutions (line 8). These solutions will be evaluated on our ordinal-regression-based surrogate

h and the best solution will be selected through Eq.(3.4).
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3.3 Adaptive Ordinal Regression Evolutionary Algorithm

(AOREA)

Using OREA as a basis, this section further proposes a novel SAEA to solve EMOPs with

the ordinal-regression-based surrogate and an adaptive management strategy.

3.3.1 General Framework

The framework of our proposed adaptive ordinal regression evolutionary algorithm (AOREA)

is depicted in Algorithm 4, which consists of four phases:

1. Initialisation: An initial dataset of size 11d - 1 is sampled from the decision space

using the Latin hypercube sampling (LHS) [60] (line 1), where d is the dimensionality

of decision variables. The sampled solutions are evaluated on the expensive problem

f and then saved in an archive SA (line 2). A group of reference vectors is generated

using the method in [51] (line 3).

2. Ordinal relation quantification and surrogate modelling: The domination-based ordinal

relations are quantified (line 5) and then used to train the ordinal-regression-based

surrogate h (line 6).

3. Reproduction with adaptive sampling strategy: New solutions are generated using di-

versity maintenance, global search, or local search. The diversity maintenance method

will be triggered once an imbalanced distribution of non-dominated solutions in SA

is detected (line 7, detailed in Algorithm 5). The states of recent optimisation are

analyzed (line 8), which determines the strategy of evolutionary search in the current

iteration (lines 9-15).

4. Update: New solutions are evaluated on the expensive functions (line 16), archive SA

is updated (line 17) and the number of used function evaluations FE is updated (line
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Algorithm 4 AOREA framework
Input:

f : Objective functions of the expensive optimisation problem;
FEmax: Maximum number of evaluations allowed.

Procedure:
1: Sample a set of solutions {x1, . . . ,x11d−1} and evaluate them on f .
2: Save all evaluated solution (x, f(x)) in an archive SA. Set the number of used evaluations
FE = |SA|.

3: Generate reference vectors RV .
4: while FE < FEmax do
5: /∗Ordinal Relation Quantification and Surrogate Modelling∗/

Quantify relation value vi for all xi ∈ SA, forming a set of relation values SV .
6: Train the ordinal surrogate h← Kriging(SA, SV )

/∗Reproduction with Adaptive Management Strategy∗/
7: x2∗, nrep ← Diversity Maintenance(h,RV, SA, SV ).
8: Update the state of optimisation search s.
9: for i = 1 to nrep do
10: if random number r < s then
11: xi∗ ← Global Search(h).
12: else
13: xi∗ ← Local Search(h, SA, SV ).
14: end if
15: end for

/∗Update∗/
16: Evaluate new solutions x1∗ and x2∗ on expensive functions f .
17: Update SA = SA ∪ {(x1∗, f(x1∗)), (x2∗, f(x2∗))}.
18: FE = FE + 2
19: end while
Output:

Non-dominated solutions in archive SA.

18).

The ordinal-regression-based surrogate used in AOREA is the same as we discussed in Section

3.2.2. We are focusing on the adaptive management strategy in the next subsection as it is

the major novelty of AOREA and helps us to distinguish AOREA from OREA.
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3.3.2 Adaptive Management Strategy

The adaptive management strategy consists of two components: diversity maintenance and

adaptive evolutionary search. The diversity maintenance will be triggered once an imbal-

anced distribution of non-dominated solutions is detected, while the adaptive evolutionary

search will be conducted in every iteration.

Diversity Maintenance

The diversity maintenance method is derived from the individual-based evolution control in

OREA. The distinction between the two methods is that the diversity maintenance method

also considers the diversity when selecting the second mating solution. Besides, unlike the

individual-based evolution control which will be conducted in every iteration of OREA, the

diversity maintenance method will be triggered only when the solutions in SAF are not

well-distributed.

The reference vectors RV divide the objective space into several regions. In each

iteration of optimisation, the distribution of non-dominated solutions SAF in these regions

is analyzed. As described in Algorithm 5, the number of non-dominated solutions in each

region is counted (line 2). If the number of non-dominated solutions in a non-empty region

is very few, or if the total number of non-dominated solutions is few (two criteria in line 6),

then the diversity maintenance method will be triggered. In practice, two non-empty regions

r∗1, r
∗
2 with the fewest number of non-dominated solutions are selected as target regions (lines

3 and 7). To take both convergence and diversity into account, the two solutions with the

largest relation values and the largest distance from other solutions are selected as mating

parents (lines 8-9). Then crossover and mutation operations are conducted on mating parents

to reproduce an offspring population P (line 10). Finally, an estimated optimal solution x∗

is selected with the assistance of the ordinal-regression-based surrogate h (line 11). x∗ is the

solution we sampled from diversity maintenance for expensive evaluation. Otherwise, if the
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Algorithm 5 Diversity Maintenance(h,RV, SAF , SV )

Input:
h: The ordinal-regression-based surrogate;
RV : Reference vectors in the m-dimensional objective space;
SAF : Attainment front, the non-dominated solutions in archive SA;
SV : Quantified relation values.

Procedure:
1: SR = {r1, . . . , r|RV |} ← Based on the Euclidean distance to RV , divide objective space

into |RV | regions.
2: Count the number of non-dominated solutions in each region.
3: r∗1 ← The non-empty region with the fewest number of non-dominated solutions.
4: nr∗1 ← The number of non-dominated solutions in region r∗1.
5: nne ← The number of non-empty regions.
6: if nr∗1 <

|SAF |
2nne

or |SAF | < 2m then
7: r∗2 ← Another non-empty region with the (second) fewest number of non-dominated

solutions.
8: Get the sets of non-dominated solutions with the largest relation values Sr∗1 , Sr∗2 .
9: x1,x2 ← Select solutions based on density in Sr∗1 , Sr∗2 , respectively.
10: Offspring population P ← Crossover and mutation operations(x1,x2).
11: x∗ ← Select the best solution from P through Eq.(3.4).
12: nrep = 1.
13: else
14: x∗ ← NULL. /∗No diversity maintenance in this generation.∗/
15: nrep = 2.
16: end if
Output:

x∗: The solution for expensive evaluation.
nrep: Number of solutions to be reproduced in the adaptive evolutionary search.
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criteria in line 6 are not satisfied, then we think the solutions in SAF are well distributed

already. As a result, there is no need to maintain diversity in this generation (line 14), two

estimated optimal solutions will be generated by the adaptive evolutionary search (lines 9-15

in Algorithm 4).

Adaptive Evolutionary Search

The adaptive evolutionary search is derived from the generation-based evolution control in

OREA. In adaptive evolutionary search, the output of either global search or local search

is sampled for expensive evaluation. Note that both global and local search use the same

evolutionary optimiser to search for optimal solutions, the optimiser can be any evolutionary

optimisation method. In AOREA, the evolutionary optimiser used for global and local search

is PSO [20], just like the setup we used in OREA. The evolutionary search aims to find

the solution that maximises the expected improvement (described in Eq.(3.4)) using the

surrogate h.

Difference Between Global and Local Search. The initial population in global search

is uniformly sampled from the decision space, no prior is considered during the optimisation.

However, priors are used to initialise the population in local search, which narrows down the

range of evolutionary search in the decision space. Particularly, the mutants of the reference

points SRP in SA are selected to initialise the population for local search.

State of Global Search. To determine which search method to use in the current iteration

and to adapt the search method dynamically during the surrogate-assisted optimisation, we

analyze the optimisation state of global search in the last few iterations. Particularly, we

assume x∗ is the solution reproduced by the last run of the global search, we set the state of
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the global search in this run s1 = 1 if x∗ is non-dominated by the smooth AF :

@x ∈ SAF : gλ(x) ≺ gλ(x?) (3.5)

where gλ is a smooth function. gλ(x) is an m-dimensional vector with its ith element gλ,i(x)

defined as:

gλ,i(x) = f̃i(x) + λ
m∑
j=1

f̃j(x). (3.6)

f̃i(x) is the ith objective value of x that has been normalised by the range of m-dimensional

objective space. λ is the factor of smoothness. Otherwise, the state s1 = 0. It is noticeable

that s1 reflects whether the last run of global search has reached a satisfactory result or not.

Overall State of Optimisation. In the adaptive evolutionary search, states of the most

recent k global searches are recorded. All states are initialised to 1 in the beginning. The

overall state of optimisation in Algorithm 4 is updated using the mean of k states and a

minimum state sm:

s = max(

∑k
j=1 sj

k
, sm). (3.7)

The adaptive evolutionary search will run a global search if a random generated number

r ∈ [0, 1) is less than s, otherwise, a local search will be conducted. Therefore, if the global

search cannot reach satisfactory results during a period of time in the surrogate-assisted

optimisation, the probability of conducting global search will be decreased and the adaptive

evolutionary search will allocate more effort to local search.

3.4 Experimental Studies

To evaluate the optimisation performance of the proposed OREA and AOREA on EMOPs,

in this section, we conduct computational experiments to compare OREA and AOREA with
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other SAEAs that are designed for EMOPs.

3.4.1 Experimental Setup

Optimisation Problems. The comparison experiments are conducted with the experi-

mental setups that have been widely used in the domain of ECOP studies [68, 115, 90, 31].

Performance comparison is conducted on 7 DTLZ test problems [18], each problem instance

contains 10 decision variables and 3 objectives. Latin hypercube sampling is used to generate

11 d - 1 data points as the initial dataset. The maximum number of allowed evaluations

FEmax is set to 300. The statistical results are obtained from 30 independent runs.

Performance Indicator. The inverted generational distance plus (IGD+) [38] is employed

as the performance indicator in our experiments. The IGD+ indicator measures the distance

between the true Pareto front (reference points) and the attainment front, it takes both the

diversity and the convergence of the attainment front into account. Given a set of reference

points sampled from the Pareto front, the IGD+ indicator converts the inputted attainment

front into a numerical value, making the results of multi-objective optimisation comparable.

A small IGD+ value indicates that the inputted attainment front is close to the Pareto front,

which means a good performance of a MOEA. In the experiments, the number of reference

points is set to 5000, or a number very close to 5000, just as recommended in [68] 2. To

get reference points from the Pareto front, a series of evenly distributed reference vectors

are generated, and each reference point x is the intersection of a vector and the true Pareto

front of the problem to be optimised.

Comparison Algorithms. We compare OREA and AOREA with 6 state-of-the-art SAEAs

designed for EMOPs, these SAEAs can be classified into three categories:
2Using more than 5000 reference points to compute IGD+ values will enhance the accuracy of performance

estimation, but the improvement of accuracy is not significant and the time cost of computation will increase
rapidly.
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• Regression-based SAEAs: ParEGO [47], K-RVEA [8], and KTA2 [90]. ParEGO is a

classic regression-based SAEA which employs a Kriging model to approximate an ag-

gregate of all objectives. It uses expected improvement as infill sampling criterion and

thus belongs to the family of Bayesian optimisation methods. K-REVA is a reference

vector guided SAEA, it uses m surrogates to approximate m objectives. KTA2 is a

newly proposed SAEA that is assisted by two archives.

• Classification-based SAEAs: CSEA [68] and REMO [31]. CSEA is a classic classification-

based SAEA which employs a neural network to learn the binary relation between so-

lutions and reference points. REMO is a newly proposed SAEA that learns the ternary

relation between solutions with a neural network.

• Ordinal-regression-based SAEAs: OREA and AOREA. Both SAEAs use one ordinal-

regression-based surrogate to approximate the domination-based ordinal landscape of

all objectives.

The configuration of comparison algorithms and the code sources of them are same as [68].

Note that PRL is not compared here since it requires thousands of fitness evaluations [85].

Additionally, MOEA/D-EGO [120] and CPS-MOEA [118] are not compared in our experi-

ments as they failed to outperform other comparison algorithms on any DTLZ test problem

[31].

Parameter Setup. For the ordinal-regression-based surrogate in AOREA and OREA, the

minimum number of ordinal levels used is no = 10, and the shaping coefficient cshape =

0.03. The Kriging model is implemented using DACE [83] with the hyper-parameter range

θ ∈ [10−5, 10], p ∈ [1, 2]. In the diversity maintenance, the crossover and mutation operations

are simulated binary crossover (SBX) [14] and polynomial mutation [15], respectively. The

crossover probability pc = 1.0 and crossover index ηc = 20; the mutation probability pm =

1/d and mutation index ηm = 20. The parameter setups of these reproductive operators
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Table 3.1: Mean Inverted Generational Distance Plus (IGD+) values and standard deviation
(in brackets) of 6 comparison algorithms and AOREA, results are obtained by 30 independent
runs on DTLZ test problems with 10 variables and 3 objectives. ‘+’, ‘≈’, and ‘−’ denote
AOREA is statistically significantly superior to, almost equivalent to, and inferior to the
compared algorithms in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last row counts the total win/tie/loss results. It can be observed that AOREA generally
outperforms all comparison algorithms.
Problems ParEGO K-RVEA KTA2 CSEA REMO OREA AOREA
DTLZ1 5.98e+1(3.81e+0)+ 8.88e+1(2.16e+1)+ 4.75e+1(1.55e+1)+ 6.30e+1(1.69e+1)+ 5.06e+1(1.49e+1)+ 4.44e+1(1.38e+1)+ 3.83e+1(1.36e+1)
DTLZ2 2.61e-1(3.63e-2)+ 9.22e-2(2.57e-2)+ 3.82e-2(3.29e-3)− 1.60e-1(2.76e-2)+ 1.01e-1(1.75e-2)+ 5.86e-2(8.28e-3)≈ 5.69e-2(7.00e-3)
DTLZ3 1.66e+2(1.31e+1)+ 2.43e+2(4.61e+1)+ 1.52e+2(4.73e+1)+ 1.62e+2(4.84e+1)+ 1.49e+2(3.88e+1)+ 1.26e+2(3.18e+1)+ 9.36e+1(2.82e+1)
DTLZ4 4.57e-1(7.52e-2)+ 2.66e-1(1.02e-1)+ 2.33e-1(8.36e-2)+ 2.34e-1(7.76e-2)+ 1.32e-1(6.41e-2)+ 1.07e-1(9.68e-2)≈ 7.04e-2(1.38e-2)
DTLZ5 1.60e-1(4.40e-2)+ 9.18e-2(2.76e-2)+ 8.66e-3(1.96e-3)− 9.58e-2(2.60e-2)+ 5.78e-2(1.81e-2)+ 1.59e-2(5.12e-3)≈ 1.43e-2(3.30e-3)
DTLZ6 2.42e-1(1.07e-1)+ 3.05e+0(5.23e-1)+ 1.82e+0(4.48e-1)+ 4.85e+0(6.38e-1)+ 4.27e+0(5.48e-1)+ 2.35e-1(4.14e-1)+ 1.13e-1(1.76e-1)
DTLZ7 1.10e-1(3.57e-2)≈ 7.39e-2(1.52e-2)− 1.54e-1(1.97e-1)≈ 1.65e+0(6.43e-1)+ 1.20e+0(5.73e-1)+ 1.79e-1(1.20e-1)≈ 2.00e-1(1.36e-1)
+/ ≈ /− 6/1/0 6/0/1 4/1/2 7/0/0 7/0/0 3/4/0 -/-/-

are suggested by the literature of comparison algorithms [120, 8, 68, 90]. The number of

generated offspring solutions are 100d. For the optimiser PSO in the adaptive evolutionary

optimisation, the inertia coefficient is set to 0.5, and the learning rate of the cognitive

component and that of the social component are both set to 1.5. The population size and

neighbour size (with a ring topology) are set to 100 and 10, respectively. The maximum

number of surrogate evaluations is 3000. States of the most recent k = 10 global search runs

are recorded. The minimum state sm = 0.2 and the factor of smoothness λ = 0.05. For local

search, 20% solutions are initialised by conducting polynomial mutation operations on the

reference points in SRP .

3.4.2 Experimental Results

The statistical results of IGD+ values obtained by comparison algorithms are reported in

Table 3.1. Wilcoxon rank sum tests are conducted to compare the results obtained by

AOREA and comparison algorithms at a significance level of 0.05. It can be observed that

AOREA has achieved the smallest IGD+ values on 4 DTLZ test problems, followed by

OREA with the second smallest IGD+ values on 4 DTLZ test problems. The advantages of

using ordinal-regression-based surrogates have been demonstrated. Besides, KTA2 has ob-

tained the smallest IGD+ values on DTLZ2 and DTLZ5, K-RVEA has achieved the smallest
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IGD+ value on DTLZ7. In general, AOREA outperforms most state-of-the-art comparison

algorithms on DTLZ test problems.

The comparison between AOREA and OREA shows that the use of the adaptive man-

agement strategy improves the multi-objective optimisation performance of OREA on DTLZ

test problems. Clearly, on DTLZ1, DTLZ3, and DTLZ6, statistically significant improve-

ments are achieved. This is explainable as OREA uses a fixed management strategy in which

all optimisation resources are allocated to global search and diversity maintenance evenly,

thus no special effort has been made to do a local search. However, DTLZ1 and DTLZ3 are

multimodal problems with rugged landscapes. It is difficult for SAEAs to converge within

limited evaluations, especially for the SAEAs that mainly use global optimisers. In addition,

the optimum of DTLZ6 is located in the corner of the decision space. Although global search

plays an important role in the early stage of optimisation, local search is more desirable in

the late stage. In contrast, AOREA takes the advantages of the adaptive management strat-

egy and thus expends some effort on local search. Therefore, significant improvement can

be observed when compared with OREA. A different example is DTLZ4, which is a scaled

problem with poor solution distribution in the objective space. Global search is preferable to

local search on DTLZ4. AOREA and OREA have achieved comparable results on DTLZ4.

This indicates the adaptive management strategy has adapted itself dynamically during the

optimisation, rather than simply sampling more solutions from local search. Additionally,

the dynamic diversity maintenance in the adaptive management strategy also makes the al-

location of optimisation resources in AOREA more flexible than OREA. This might explain

why AOREA always outperforms OREA on DTLZ test problems.

The distribution of non-dominated solutions obtained by AOREA on 4 DTLZ test

problems is illustrated in Fig. 3.2. Although AOREA generally outperforms the com-

pared optimisation algorithms, the non-dominated solutions found by AOREA are not well-

distributed on DTLZ4 and DTLZ7. Particularly, on DTLZ7, a patch of the true Pareto

front is missing, which leads to a worse IGD+ performance than K-RVEA and ParEGO in
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Figure 3.2: The distribution of non-dominated solutions obtained by AOREA on DTLZ2
(upper left), DTLZ4 (upper right), DTLZ5 (lower left), and DTLZ7 (lower right) in the run
associated with the median IGD+ value.

Table 3.1. This is caused by the limitation of the ordinal-regression-based surrogate. The

ordinal-regression-based surrogate cannot predict the location of solutions in the objective

space, which lowers the performance of our diversity maintenance method. Similar limita-

tions exist in other classification-based SAEAs. By comparison, K-RVEA and ParEGO are

regression-based SAEAs that supported by reference vectors, thus they are suitable for the

problem with discontinuous Pareto front.

3.5 Chapter Summary

In this chapter, we present two effective SAEAs for solving EMOPs, namely OREA and

AOREA. Both SAEAs use a novel ordinal-regression-based Kriging surrogate as their surro-

gates. Such a surrogate is designed to approximate the domination-based ordinal landscape

for all objectives and thus is capable of learning the ordinal relations between solutions ef-
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ficiently. On the basis of this ordinal surrogate, a hybrid surrogate management strategy

and an adaptive surrogate management strategy are proposed to save expensive function

evaluations with computational efficient surrogate evaluations. The proposed adaptive man-

agement strategy consists of diversity maintenance and adaptive evolutionary search. In each

iteration, the diversity maintenance cooperates with the reference vectors to analyze the dis-

tribution of non-dominated solutions. More specifically, based on the regions of the objective

space divided by reference vectors, the diversity maintenance method checks if a non-empty

region has much fewer non-dominated solutions than other regions. Such an imbalanced dis-

tribution of non-dominated solutions will trigger a reproduction procedure, which generates

new solutions to improve the diversity and balance the distribution. Moreover, a small total

number of non-dominated solutions will also activate the diversity maintenance method. The

adaptive evolutionary search allocates the optimisation resources to either global search or

local search. During the optimisation, the optimal solution found by global search will be

compared with the non-dominated solutions in the archive. The comparison result will affect

the state of global search, which determines the probability of conducting global search in

the upcoming iterations. Besides, in an iteration, when the diversity maintenance has not

been activated, more optimisation resources will be allocated to global or local search.

Our experimental studies on DTLZ test problems have demonstrated that OREA and

AOREA generally outperform all compared state-of-the-art SAEAs. Particularly, the advan-

tages and the effectiveness of the adaptive management strategy have been demonstrated

in the comparison between OREA and AOREA. It turns out that the dynamic adapta-

tion between global search, local search, and diversity maintenance is able to improve the

optimisation performance of SAEAs designed for EMOPs.

The contributions of this chapter can be summarised as:

• An ordinal-regression-based surrogate is proposed. Different from existing surrogates

which are employed to either approximate accurate fitness values (regression-based
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surrogates) or learn binary/ternary solution relations (classification-based surrogates),

our ordinal surrogate manages to approximate the domination-based ordinal landscape

of all objectives. The approximation of ordinal landscape is a more efficient represen-

tation of solution relations than binary or ternary classifiers. Moreover, the landscape

of all objectives is approximated with one ordinal surrogate instead of a combination

of multiple regression-based surrogates, which indicates the computational efficiency

of using our ordinal surrogate in SAEAs. This is an answer to the first question in

Section 1.3.1.

• A novel SAEA (Ordinal Regression Evolutionary Algorithm, OREA) is developed to

solve ECOPs with our ordinal-regression-based surrogate. To manage our ordinal sur-

rogate in OREA, a hybrid surrogate management strategy is developed, which is de-

rived from the generation-based evolution control framework and the individual-based

evolution control framework. Such a hybrid strategy determines how to generate can-

didate solutions and which solutions will be selected for re-evaluation on expensive

functions. This is an answer to the second question in Section 1.3.1.

• An adaptive management strategy is proposed to manage surrogates for SAEAs de-

signed for EMOPs. Based on the state of optimisation in the last few iterations, the

proposed strategy is able to dynamically balance global search and local search. More-

over, a dynamic diversity maintenance method will be triggered once the imbalanced

distribution of non-dominated solutions is detected. The proposed adaptive manage-

ment strategy is introduced to OREA as a surrogate management strategy, resulting in

a new algorithm, adaptive ordinal regression evolutionary algorithm (AOREA). This

is an answer to the second question in Section 1.3.1.
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Chapter 4

Surrogate-Assisted Bilevel Evolutionary

Algorithm for Expensive Constrained

Optimisation

The previous chapter aimed to address unconstrained EMOPs by using ordinal-regression-

based SAEAs. Considering constrained optimisation is a common optimisation scenario

in the domain of expensive optimisation and it can be encountered in many real-world

applications [116]. In this chapter, we focus on a real-world gasoline engine calibration

problem. Specifically, our research on ECOPs is conducted on the basis of a real-world

gasoline engine calibration problem. The problem has six engine control parameters including

throttle angle, waste gate orifice, ignition timing, valve timings, state of injection, and air-

fuel-ratio. The problem aims at minimising the brake special fuel consumption (BSFC) and

satisfying four constraints in terms of temperature, pressure, CA50, and load simultaneously.

Due to the limited financial budget and short calibration cycle, only 300-500 evaluations are

available during the calibration process. Hence, this engine calibration problem can be

58



formulated as an expensive constrained optimisation problem (ECOP):

minimise f(x)

subject to 0 ≤ gi(x) ≤ 1, i = 1, 2, 3, 4,
(4.1)

where x is a solution of six engine control parameters, f is the expensive objective to be min-

imised, gi are constraints. This chapter proposes a surrogate-assisted bilevel evolutionary

algorithm to solve a real-world engine calibration problem. Principal component analy-

sis is performed to investigate the impact of variables on constraints and to divide decision

variables into lower-level and upper-level variables. The lower-level aims at optimising lower-

level variables to make candidate solutions feasible, and the upper-level focuses on adjusting

upper-level variables to optimise the objective. In addition, an ordinal-regression-based sur-

rogate is adapted to estimate the ordinal landscape of solution feasibility. Computational

studies on a gasoline engine model demonstrate that our algorithm is efficient in constraint

handling and also achieves a smaller fuel consumption value than other state-of-the-art cal-

ibration methods.

4.1 Motivation

SAEAs have been widely used to solve ECOPs [104, 106, 121]. These SAEAs employ sur-

rogates to approximate the landscape of objectives and constraints and predict the solution

feasibility of candidate solutions, which saves valuable evaluations. Efficient constraint han-

dling techniques (CHTs) are desirable for SAEAs to explore the feasible region. As discussed

in Section 2.3.2, existing CHTs tend to allocate the optimisation resource to every decision

variable evenly. Interestingly, in some engine calibration problems, the distribution of local

optima implies that some decision variables are playing more important roles than other

variables [97]. Therefore, the feasibility of solutions could be mainly affected by only a sub-

set of decision variables, which motivates us to handle constraints with the architecture of
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bilevel optimisation.

We use a brief introduction to bilevel optimisation to inspire the bilevel architecture

we used in this chapter. However, the ECOP considered in this chapter is not a bilevel

optimisation problem. We are not considering bilevel optimisation in this chapter. Bilevel

optimisation is defined as a mathematical program, where an upper-level optimisation prob-

lem contains another lower-level optimisation problem as a constraint [89]. Clearly, an

upper-level solution is feasible only if it is one of the optima of a lower-level optimisation

problem [17]. A simplified bilevel optimisation problem can be formulated as follows:

minimise fu(xu,xl)

subject to argmin
xl

fl(xu,xl),
(4.2)

where fu and fl are the objective of upper-level and lower-level optimisation, respectively.

xu is a vector of upper-level variables, xl is a vector of lower-level variables. Note that

lower-level optimisation function fl depends on both xu and xl instead of only xl. Further

details on bilevel optimisation and its architecture are available in [89]. To solve our engine

calibration problem with such a bilevel architecture, we can set the objective to be minimised

f as upper-level objective fu and set four constraints g as lower-level objectives fl. Note

that in this bilevel architecture, the membership of xu and xl is unknown and needs to

be identified. Since the lower-level optimisation is focusing on lower-level variables, if the

decision variables that have significant impacts on solution feasibility can be identified as

lower-level variables, then more optimisation effort will be made on them. Consequently, the

efficiency of searching for the feasible region will be enhanced when compared with other

CHTs.

This chapter analyzes the sensitivity of solution feasibility to decision variables, the

decision variables that have a significant impact on solution feasibility will be divided into

lower-level variables. A bilevel architecture is employed to handle constraints where more
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efforts are made on lower-level variables to explore the feasible region. Besides, to improve

the efficiency of surrogate modelling, an ordinal-regression-based surrogate will be adapted

to approximate constraints.

4.2 Surrogate-Assisted Bilevel Differential Evolution (SAB-

DE)

4.2.1 General Framework

A diagram of the proposed SAB-DE framework is shown in Fig. 4.1. The pseudo code of

Figure 4.1: Diagram of the proposed SAB-DE framework. It can be seen that the bilevel
architecture is nested rather than parallel: The lower-level optimisation (in the grey block)
works as a component of the reproduction operation of the upper-level optimisation (in the
light grey block). The dash lines will be executed only once for the purpose of initialisation.
Note that the modules marked by star (∗) symbols as well as the architecture of bilevel
optimisation for ECOPs are our major contributions.

the proposed SAB-DE framework is depicted in Algorithm 6. The algorithm consists of the

following steps.

1. Initialisation: Ninit solutions are sampled from the decision space using the Latin hyper-

cube sampling (LHS) method [60] (line 1). These solutions are evaluated on expensive
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Algorithm 6 Framework of SAB-DE
Input:
f, g: Objective function, constraint functions;
Ninit: Size of the initial archive SA;
FEmax: Maximum number of allowed evaluations;
Ne: Size of the elite population E;
Nu: Size of the upper-level population U ;
Nl: Size of the lower-level population L.

Procedure:
1: Dx ← Latin_Hypercube_Sampling (Ninit)
2: SA = {Dx, f(Dx), g(Dx)}
3: FE = Ninit

4: while FE < FEmax do
5: Xl, Xu ← Variables_Division(SA)
6: hl, hu ← SA /∗Surrogates.∗/
7: if FE == Ninit then
8: Initialise E ← ε-Selection (f, SA, hl, ∅, Ne, NULL)
9: else
10: Update E ← ε-Selection (f, SA, hl, E,Ne,x∗)
11: end if
12: Optimal solution x∗ ←Reproduction(E, SA, Nu, Nl, Xu, Xl, hu, hl)
13: Evaluate x∗ on f, g
14: FE = FE + 1
15: Update SA = SA ∪ {x∗, f(x∗), g(x∗)}
16: end while
Output:

Best feasible solution in SA.

functions f, g and then saved in an archive SA (line 2). Note that LHS is a statistical

sampling method that maximise the diversity of sampling different combinations of

different variable values. Using LHS to initialise SA enhances the initial diversity of

SA.

2. Decision Variable Division: All decision variables X are divided into either upper-

level variables Xu or lower-level variables Xl (line 5). The division of upper and lower

variables is based on the quantified variable impacts, which are estimated by a PCA-

based sensitivity analysis. No prior knowledge is required in this step.
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3. Surrogates Training: The surrogates in both upper-level and lower-level are trained

with SA (line 6). The surrogate in upper-level optimisation hu approximates the fitness

landscape of the objective function f . The surrogate in lower-level optimisation hl

approximates the ordinal landscape of solution feasibility.

4. Environmental Selection: Ne solutions in SA are selected to initialise an elite population

E using an ε-selection strategy (lines 7-8). Otherwise, the newly evaluated solution x∗

from the last iteration is used to update E (lines 9-11).

5. Reproduction: An upper-level population U of size Nu is generated by conducting DE

operations on elite population E and archive SA. ns upper-level variable vectors xu

are produced, each xiu corresponds to a subpopulation of size Nl (denoted by lower-

level population Li). Then, for each Li, an independent lower-level optimisation (step

6) is conducted. Once all potentially feasible solutions have been collected from the

lower-level optimisation, an unconstrained optimisation will be conducted to produce

an estimated optimal solution x∗. The structures of U and L are illustrated in Fig.

4.2.

6. Lower-Level Optimisation: The lower-level optimises lower-level variables Xl to gener-

ate more potentially feasible solutions. This step is a component of step 5.

7. Evaluation and Update Archive: Evaluate the output of the upper-level optimisation

x∗ on expensive functions f, g (line 13). Update archive SA (line 15).

8. Output the optimal feasible solution in SA when evaluation budget FEmax has run

out.

In the following subsections, we first introduce the method to divide decision variables

(step 2). Then, we describe the surrogates in both upper-level and lower-level optimisation

(step 3). Finally, we discuss the details of the upper-level optimisation, including the ε-
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Figure 4.2: Illustration of the structures of the upper-level population U and lower-level
populations Li, i = 1, . . . , ns. There are Nu solutions in U , each solution xij is a combination
of an upper-level variable vector xiu and a lower-level variable vector xijl , presented in the
format: xij = (xiu, x

ij
l ). Solutions in U can be evenly divided into ns groups. Each group

contains Nl = Nu/ns solutions, forming a subpopulation (denoted by lower-level population
Li). For a given Li, all solutions xij in Li share the same xiu, thus U has ns different
upper-level variable vectors xiu in total.

selection strategy developed to maintain the elite population E (step 4), the reproduction

operation of the upper-level optimisation (step 5), and the lower-level optimisation (step 6).

4.2.2 Division of Upper-Level and Lower-Level Variables

The variable division aims at allocating the decision variables that have greater impacts on

solution feasibility than other variables to lower-level variables Xl. Thus, we need to quantify

the variable impacts before the variable division. In the decision space, if an independent

variable xi is essential to solution feasibility, then solution feasibility will vary in the cor-

responding ith dimension, implying the distribution of xi of feasible solutions or infeasible

solutions will be limited in a relatively narrow range. Fig. 4.3 illustrates how the variables

xi, which have greater impacts on solution feasibility, affect the distribution of feasible (red

circle) or infeasible (blue cross) solutions in the decision space. Hence, the basic idea behind

the quantification of variable impacts is to investigate the distribution of feasible solutions.

Note that the investigation of the distribution of infeasible solutions is ignored in our variable

division process. Although the distribution of infeasible solutions can be more informative

than that of feasible solutions in the case presented in Fig. 4.3e, the feasible region will be
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much larger than the infeasible region. In such a situation, it is not necessary to use special

constraint handling methods to search for feasible solutions.

(a) Linear feasible region (b) NonLinear feasible region (c) x1, x2 affect feasibility equally

(d) x1, x2 affect feasibility equally (e) Linear infeasible region (f) x3 has no impact on feasibility

Figure 4.3: Distribution of feasible solutions in the decision space. The feasible region in
Fig. (a) is shaped by a linear constraint. Feasible solutions are scattered over a narrow
range in the dimension x2, because x2 has a significant impact on solution feasibility. The
feasible region in Fig. (b) is shaped by two nonlinear constraints. x1 has a greater impact
on solution feasibility than x2. All variables in Figs. (c) and (d) have equal impacts on
solution feasibility. In Fig. (e), the distribution of infeasible solutions implies that x2 affects
the feasibility of infeasible solutions heavily. Fig. (f) displays a 3D decision space, where x1

and x2 have equal impacts on solution feasibility but x3 is irrelevant to solution feasibility.

We use variance to measure whether a decision variable xi is scattered over a narrow

range or not. The interaction between decision variables should be considered. For example,

in Fig. 4.3f, three original variables x1, x2, x3 of feasible solutions have equal variance. But

it is obvious that x1 and x2 have equal impacts on solution feasibility but x3 is irrelevant to

that. To take the variable interaction into account, we employ PCA to identify the principal

components from original variables, and then measure the variance of these principal compo-

nents. The pseudo code of decision variable division is presented in Algorithm 7. First, PCA
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Algorithm 7 Variable_Division
Input:
X: d-dimensional space of decision variables;
SA: Archive of evaluated solutions.

Procedure:
1: Sf ← SA /∗Feasible solutions in SA.∗/
2: if |Sf | < 2 then
3: Xl ← Select bd

2
c variables from X randomly.

4: else
5: nc = min{|Sf |, d}
6: vr, c← PCA(Sf ) /∗Variance ratio vr,components c.∗/
7: vr = 1

0.001+vr
8: for i = 1 to d do
9: impi=

∑nc

j=1 vrjc
2
ji /∗Quantified variable impacts.∗/

10: end for
11: PXl

= imp
imp+d

/∗Probability of Xl.
∗/

12: Allocating variables to Xl with probability vector PXl
.

13: end if
14: Xu = X −Xl /∗Set operation.∗/
Output:
Xu: Set of upper-level variables;
Xl: Set of lower-level variables.

is performed on feasible solutions Sf to obtain the principal components c and the ratio of

variance explained by these components vr (line 6). Considering a small variance indicates

a significant impact on solution feasibility, the variance ratio vr is inverted and then used as

an indicator of component impact on solution feasibility. A constant 0.001 is added to the

denominator to smooth such a component impact indicator (line 7). Then, we quantify the

impact of each decision variable xi on solution feasibility as:

impi =
nc∑
j=1

vrjc
2
ji, (4.3)

where nc is the number of principal components, rj is the jth element of r. cji is the ith

element of the jth principal component cj, which presents the contribution of xi to cj (lines

8-10). The quantified impact impi is a cumulation of inverted variance ratios of xi on all
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principal components.

To determine which variables are lower-level variables, the quantified variable impacts

imp are not used directly. In practice, we use the ratio of imp to the sum of imp and d as

the probability PXl
of allocating decision variables to Xl (line 11). PXl

∈ (0, 1)d and a large

impi indicates variable xi has a great probability to be allocated to Xl. There are two reasons

to introduce probability as uncertainty in the variable division: Firstly, the archive SA is a

small dataset sampled from the real distribution, so the impact quantified from SA can be

different from the real one, leading to an incorrect variable division. If the division does not

contain uncertainty, the incorrect division has no chance to be corrected. Secondly, although

most optimisation resource in the lower-level optimisation is allocated to the variables which

have significant impacts on solution feasibility, other variables can still get small chances

to be optimised due to their small impacts on solution feasibility. Noted that Xu and Xl

cannot be ∅, otherwise, the variable xi with minimum or maximum probability PXl
will be

allocated to Xu or Xl, respectively.

The effectiveness of the PCA operation in the variable division process is demonstrated

using the example illustrated in Fig. 4.3f. For three variables, PXl
={0.994, 0.994, 0.5}.

Hence, x1, x2 have a probability of 99.4% to be allocated to Xl. In comparison, if we use the

variance of decision variables directly without a PCA operation, all elements in PXl
will be

0.5, implying all variables have a probability of 50% to be allocated to Xl. The impacts of x1

and x2 on solution feasibility have not been quantified correctly. Therefore, PCA operation

is necessary for the process of sensitivity analysis. The sensitivity analysis is based on SA.

Thus, it does not require extra sampling effort and it is not computational costly.

4.2.3 Surrogates in Bilevel Architecture

In this work, we use Kriging models [91] as our surrogates for both upper-level and lower-

level optimisation. The engine calibration problem to be solved has only one objective, so
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the upper-level optimisation employs a Kriging model as its surrogate to approximate the

fitness. Instead of training four separate surrogates to approximate constraints, we adapt a

Kriging model as an ordinal-regression-based surrogate [115] in the lower-level optimisation.

The use of our ordinal surrogate implies the lower-level optimisation needs to maintain only

one surrogate rather than four separate surrogates. Therefore, the architecture of the lower-

level optimisation is simplified and the efficiency of surrogate management is improved. All

decision variables are used to train our upper-level and lower-level surrogates.

Regression-Based Surrogate for the Objective

The Kriging surrogate in the upper-level optimisation hu aims to approximate the fitness,

which is the most common usage of the Kriging model in optimisation [46, 109]. The corre-

lation function of hu is defined as:

Corr(ε(xi), ε(xj)) = exp[−dis(xi,xj)], (4.4)

where the distance between two solutions xi and xj is:

dis(xi,xj) =
d∑

k=1

θk|xik − x
j
k|
pk . (4.5)

θ and p are two vectors of parameters that are tuned by maximising the following likelihood:

1

(2π)n/2(σ2)n/2|R|1/2
exp[−(y− 1µ)TR−1(y− 1µ)

2σ2
], (4.6)

where |R| is the determinant of the correlation matrix, µ, σ2 are the mean and the variance

of the prior distribution, respectively. y is the vector of fitness in SA.

For a given candidate solution x∗, the Kriging surrogate hu produces a predictive

Gaussian distribution N (ŷ(x∗), ŝ2(x∗)), the predicted mean ŷ(x∗) and covariance ŝ2(x∗) are
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specified as [46]:

ŷ(x∗) = µ+ r′R−1(y− 1µ), (4.7)

ŝ2(x∗) = σ2(1− r′R−1r), (4.8)

where r is a correlation vector consisting of covariances between x∗ and SA, other variables

are explained in Eq.(4.6). The selection criterion of hu is expected improvement (EI), as

suggested in [46]. More details about the Kriging model are available in Chapter 2.

Ordinal-Regression-Based Surrogate for Multiple Constraints

The ordinal-regression-based Kriging surrogate hl in the lower-level optimisation is trained in

the same way as the upper-level surrogate hu except the fitness vector y in Eq.(4.6) is replaced

by a relation value vector. Therefore, in this subsection, we focus on the quantification of

domination-based ordinal relations for constraints.

The relation value is a numerical label that is designed to quantify the domination-

based ordinal relation between a solution and the reference points in the objective space [115].

Considering the lower-level optimisation is handling constraints instead of objectives, the

reference points in the ordinal-regression-based surrogate are replaced by the real constraints

in our engine calibration problem. Four constraints in Eq.(4.1) are redefined as:

g∗i (x) = abs(gi(x)− 0.5)

subject to g∗i (x) ≤ 0.5, i = 1, 2, 3, 4.
(4.9)

In this way, the left-side constraints in Eq.(4.1) can be ignored since g∗i (x) is an absolute

value that is always non-negative. Thus we define the reference points as 4 unit vectors

{e1, e2, e3, e4}. For ith reference point ei, its ith entry is 0.5 and the remaining entries are 0.

An extension coefficient ec is calculated beforehand using the domination-based ordi-

nal relation between the reference points and a solution x in SA, which can be simplified in
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this problem:

ec(x) = max
over i

(
g∗i (x)

0.5

)
, i = 1, 2, 3, 4. (4.10)

Multiplying reference points by the extension coefficient ec(x) will result in extended con-

straints. The solution x will be non-dominated with respect to the extended constraints in

the constraint space. Therefore, ec is a measure of the distance between a solution x and

the constraint boundaries. The solutions in SA are sorted based on their ec values and then

divided into No ordinal values:

No = max(no, |SA|/|Sf |), (4.11)

where no is the minimum number of ordinal levels defined by users, Sf is the set of feasible

solutions. Clearly, all feasible solutions Sf are allocated to the first ordinal level, and re-

maining infeasible solutions are uniformly divided into No − 1 ordinal levels based on their

rankings in ec. Finally, for solutions in the ith ordinal level, their relation value vi = i−1
No−1

.

These relation values are used to train the lower-level surrogate hl.

As for the usage of surrogate hl, a given candidate solution x is predicted to be feasible

if hl(x) ≤ 1
2(No−1)

or infeasible if hl(x) > 1
2(No−1)

. The feasibility of two solutions xi and xj

can be compared even if they are both infeasible, since the relation values hl(xi) and hl(xj)

are numerical and thus comparable.

4.2.4 Upper-Level Optimisation

In SAB-DE, the upper-level optimisation focuses on optimising the objective, while the

lower-level optimisation concentrates on constraint handling. The upper-level population U

is generated from elite population E. To exploit the infeasible solutions that are close to the

feasible region, an ε-selection strategy is developed to initialise E from SA and to update E

iteratively during the optimisation.
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Algorithm 8 ε-Selection
Input:
f : Objective function;
SA: An archive of evaluated solutions;
hl: Lower-level surrogate;
E: Elite population;
Ne: Size of the elite population;
x∗: The solution to be selected.

Procedure:
1: SA ← Sort SA by lower-level ordinal labels hl(SA).
2: SC ← top-ε infeasible solutions in SA. /∗Set of candidate solutions that are close to

the feasible region.∗/
3: SC ← SC ∪ {All feasible solutions in SA}.
4: if E is ∅ then
5: SC ← Sort SC by their objective values f(SC).
6: E ← Optimal Ne solutions in SC . /∗Initialise E.∗/
7: else
8: xk ← A solution randomly picked from E.
9: if x∗ ∈ SC and f(x∗) < f(xk) then
10: The kth solution in E ← x∗. /∗Update E.∗/
11: end if
12: end if
Output:
E: Initialised or updated E.

Environmental Selection by ε−Selection Strategy

The ε-selection strategy is outlined in Algorithm 8. In the ε-selection strategy, the parameter

ε ∈ [0, 1] is a criterion for determining if an infeasible solution is close to the feasible region or

not. For solutions that have been sorted by their distance to the feasible region (line 1), only

feasible solutions and top-ε infeasible solutions will be selected as candidate solutions SC

(line 2-3). For example, assuming SA has 65 solutions, including 5 feasible and 60 infeasible

solutions. If ε = 1
3
, then 60 ×1

3
= 20 infeasible solutions as well as 5 feasible solutions will be

selected and included in SC , the size of SC will be 25. The selected solutions in SC will be

further sorted by objective values (line 5), and the optimal Ne solutions in SC are selected

to initialise E (line 6).
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The solution evaluated in the last iteration x∗ will be used to update a randomly

picked solution xk from E, where k ∈ {1, . . . , Ne} (line 8). Note that x∗ is used to update

a randomly picked xk, instead of the worst one, from E in order to enhance population

diversity and avoid premature convergence. If x∗ ∈ SC and the fitness of x∗ is smaller than

that of xk (line 9), then x∗ will replace xk and take the kth position in E (line 10).

Reproduction of Upper-Level Optimisation

The reproduction of the upper-level optimisation starts with the generation of upper-level

population U . As described in Algorithm 9, ns upper-level variable vectors xu are produced

by conducting DE [92] and mutation operators on the upper-level variables Xu of elite pop-

ulation E and archive SA (lines 3-7). For each xiu, Nl lower-level variable vectors xijl are

generated by conducting the same operations on the lower-level variables Xl of E and SA

(lines 9-13). These xijl are combined with xiu to form an initial lower-level population Li

(lines 14-15). The upper-level population U consists of ns different lower-level populations

(line 17). The upper-level optimisation runs an independent lower-level optimisation for

each Li, resulting in ns sets of potentially feasible solutions {SL1, . . . , SLns} (line 18). All

solutions in these solution sets are predicted to be feasible on lower-level surrogate hl. When

the optimisation returns from the lower-level to the upper-level optimisation, all potentially

feasible solutions are gathered in a set SU (line 20) and then evaluated on upper-level sur-

rogate hu. Based on the predicted objective values hu(SU), the optimal solution x∗ ∈ SU is

selected as the output of the upper-level optimisation (line 21). Note that the changes of the

upper-level variables (lines 4-7) will not make the final optimisation result in SU (line 20)

violate the constraints, because these changes are made before the lower-level optimisation

(line 18).
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Algorithm 9 Reproduction
Input:
E: Elite population;
SA: An archive of evaluated solutions;
Nu: Size of the upper-level population U ;
Nl: Size of the lower-level population L;
Xu: Set of upper-level variables;
Xl: Set of lower-level variables;
hu: Upper-level surrogate;
hl: Lower-level surrogate.

Procedure:
1: ns = Nu

Nl

2: U = ∅
3: for i = 1 to ns do
4: xe ← A solution randomly selected from E.
5: xa1,xa2 ← 2 solutions randomly selected from SA.
6: xiu ← DE_Operator(xe,xa1,xa2, Xu).
7: xiu ← Mutation_Operator(xiu).
8: Li = ∅
9: for j = 1 to Nl do
10: xe ← A solution randomly selected from E.
11: xa1,xa2 ← 2 solutions randomly selected from SA.
12: xijl ← DE_Operator(xe,xa1,xa2, Xl).
13: xijl ← Mutation_Operator(xijl ).
14: xij ← Combine(xiu,x

ij
l ).

15: Li = Li ∪ {xij}
16: end for
17: U = U ∪ Li
18: SLi ← Lower-Level_Opt(Li, Xl, hl, tmax)./∗Potentially feasible solutions in Li.∗/
19: end for
20: SU={L1, . . . , Lns}/∗Potentially feasible solutions in U.∗/
21: x∗ ← The optimal solution in hu(SU).
Output:
x∗: Optimal solution to be evaluated on expensive functions.
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Algorithm 10 Lower-Level_Opt
Input:
L0
i : Initialised lower-level population;

Xl: Set of lower-level variables;
hl: Lower-level surrogate;
tmax: Maximum iterations of lower-level optimisation.

Procedure:
1: for t = 1 to tmax do
2: Lti = Lt−1

i /∗Population in the new generation.∗/
3: hl(x)← Evaluate x ∈ Lti on hl.
4: for x ∈ Lti and hl(x) is infeasible do
5: xr1,xr2,xr3 ← Randomly select 3 different solutions from Lt−1

i .
6: x← DE_Operator(xr1,xr2,xr3, Xl).
7: x← Mutation_Operator(x).
8: end for
9: end for
10: SLi ← Solutions x ∈ Lti and hl(x) are feasible.
Output:
SLi: A set of potentially feasible solutions.

Lower-Level Optimisation

For each subpopulation Li of the upper-level population U , an independent run of the lower-

level optimisation is conducted. The pseudo code of the lower-level optimisation is given in

Algorithm 10. In the lower-level optimisation, new solutions are generated by conducting

DE and mutation operations on the lower-level variables Xl of three parent solutions. These

parent solutions are randomly selected from the current generation. The generated new

solutions will replace the potentially infeasible solutions in the current generation (lines

5-7). As the generation number t increases, the number of potentially feasible solutions

in Lti will keep increasing. The search for feasible solutions will be terminated once the

maximum number of generation tmax is reached. Then the lower-level optimisation outputs

all potentially feasible solutions at the final generation (line 10).
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4.3 Experimental Studies

In this section, we demonstrate the performance of the proposed SAB-DE framework by

conducting several computational experiments.

4.3.1 Performance of Sensitivity Analysis on Solution Feasibility

We first investigate the performance of our sensitivity analysis method, which quantifies the

impacts of decision variables on solution feasibility and assists the identification of lower-level

variables Xl. Considering the numerical values of real impacts or even the correct division

of engine variables is unknown in the real-world engine calibration problem, our experiment

is conducted on some benchmark test problems selected from IEEE CEC 2006 special ses-

sion on constrained real-parameter optimisation [52]. Existing constrained optimisation test

problems (from CEC) do not include any suitable benchmark test problems (the feasible

region of these benchmark test problems depends on all decision variables). For our first ex-

periment, we need to construct some artificial test problems where their solution feasibility

is dependent on a subset of decision variables. In practice, we construct some test problems

by selecting three benchmark problems (g01, g07, and g09) and reconstructing their feasible

regions with selected constraints. Detailed information about the selected problems and the

test problems we construct are summarised as follows (see also Table 4.1):

• g01 is a 13-dimensional problem with 9 linear inequality constraints. We use 6 linear

constraints g1, g2, g3, g4, g5, and g6 to construct the feasible region, making their solution

feasibility depends on the subset {x1, x2, x3, x10, x11, x12}. The sets of variables that

have impacts and have no impact on solution feasibility are denoted by X+ and X−,

respectively. For g01, X+={x1, x2, x3, x10, x11, x12}, X−={x4, x5, x6, x7, x8, x9, x13}.

• g09 is a 7-dimensional problem with 4 nonlinear inequality constraints. We use 2 non-

linear constraints g1, g2 to construct the feasible region, making their solution feasibility
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Table 4.1: Details of the CEC2006 benchmark problems used in the experiments. |X+|,
|X−| are the numbers of decision variables that have impacts or have no impact on solution
feasibility, respectively. LI and NI are the numbers of linear or nonlinear inequality con-
straints, respectively. The numbers in the brackets indicate the number of LI or NI we used
to construct the feasible region.

Problems Variables |X+| |X−| LI NI
g01 13 6 7 9(6) 0
g09 7 5 2 0 4(2)
g07 10 6 4 3(1) 5(3)

dependent on the subset X+={x1, x2, x3, x4, x5}. Therefore, X−={x6, x7}.

• g07 is a 10-dimensional problem with both linear and nonlinear inequality constraints.

We use 1 linear constraint g3 and 3 nonlinear constraints g4, g5, g8 to construct the

feasible region. For g07, X+={x1, x2, x3, x4, x9, x10}, X−={x5, x6, x7, x8}.

Despite the use of benchmark problems, it should be noted that, for these problems,

the exact impacts of decision variables on solution feasibility are still unknown. For this

reason, it is difficult to do a quantitative comparison between our quantified impacts and

the numerical values of real impacts. However, as the feasible regions of these problems are

dependent on a subset of decision variables X+, it is clear that the variables in X+ have some

impacts on solution feasibility. Therefore, a qualitative comparison is conducted (between

X+ and Xl) to evaluate the performance of our sensitivity analysis method. Clearly, if

our quantified impacts show that a variable has impact on solution feasibility (that is, the

probability of being allocated to lower-level variables > 50%), then it will be added to a set

Xl. The performance of our method is measured by two indicators about Xl and X+:

Accuracy =
|Xl

⋂
X+|

|X+|
, (4.12)

Efficiency =
|Xl

⋂
X+|

|Xl

⋃
X+|

. (4.13)

The accuracy indicator counts how many variables in X+ are identified successfully by our
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method. The efficiency indicator takes these variables in Xl that have no impact on solu-

tion feasibility into account, since allocating these irrelevant variables to Xl will lower the

efficiency of handling constraints in the lower-level optimisation.

In SAB-DE, the variable division is based on the result of sensitivity analysis for the

evaluated solutions in SA. In this experiment, a pre-sampled dataset works as a substitute

for SA, where 70 to 300 solutions are randomly sampled from the decision space. As the

ratio between the feasible region and the decision space can be different in the optimisation

problems to be solved, the performance is investigated under four different situations, where

20%, 40%, 60%, and 80% of the solutions in the sampled dataset are feasible.

The mean accuracies and efficiencies of sensitivity analysis on modified problems g01,

g09, and g07 are plotted in Fig. 4.4. Each result is obtained from 30 independent runs. It

can be seen from Figs. 4.4a, 4.4b, and 4.4c that the majority of variables in X+ have been

allocated to Xl successfully on three problems no matter the ratio of feasible solutions or

the size of datasets (x-axis). On problem g09, accuracies are close to 0.8 as the variable

x5 in X+ has a very weak impact on solution feasibility. Therefore, our method tends to

treat x5 as a variable that is irrelevant to the solution feasibility of g09. By comparison,

in Figs 4.4d, 4.4e, and 4.4f, for a fixed ratio of feasible solutions, the efficiency increases

(until reaches its maximum) as the size of the given dataset increases, which is caused by the

simultaneous increase in the number of feasible solutions. Also, the efficiency comparison

between four feasible ratios indicates that a large amount of feasible solutions is beneficial

to the efficient division of variables. When only a few feasible solutions are available, the

variables in X− may be allocated to Xl, which will lower the efficiency of constraint handling.

This also explains why the accuracy of ratio 0.2 in Fig. 4.4b is higher than other ratios at the

early stage. In summary, the results of qualitative comparison on three different problems

have demonstrated that the proposed sensitivity analysis method is effective. The quantified

impacts lead to accurate division of variables, where most variables in X+ are identified as

lower-level variables Xl.
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(a) g01: Linear constraints (b) g09: Nonlinear constraints (c) g07: Linear and nonlinear con-
straints

(d) g01: Linear constraints (e) g09: Nonlinear constraints (f) g07: Linear and nonlinear con-
straints

Figure 4.4: The accuracy (upper row) and efficiency (lower row) of sensitivity analysis on
modified problems g01, g09, and g07. Each result is the mean value over 30 independent
runs. The size of the randomly sampled dataset used for sensitivity analysis varies from 70
to 300 with 10 intervals. The ratio between feasible solutions and all solutions in the dataset
is set to 0.2, 0.4, 0.6, and 0.8.

4.3.2 Performance of Ordinal Regression Surrogate

In the lower-level optimisation, we use an ordinal-regression-based surrogate to estimate the

ordinal landscape of constraints, which simplifies the architecture of lower-level optimisation

without damaging the prediction accuracy of solution feasibility. In this section, we provide

empirical evidence to show the effectiveness and efficiency of our ordinal-regression-based

surrogate.

The empirical experiment is conducted on an experience-based gasoline engine model,

which is learned from real engine data [123]. 70 to 300 random solutions are sampled from

the engine model as the training dataset, and an extra 10000 random solutions are sampled
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as the test dataset. To obtain a comprehensive understanding of surrogate modelling per-

formance, four different situations are considered, where approximately 20%, 40%, 60%, and

80% of the solutions in the training and test datasets are feasible. Two constraint modelling

methods are compared with our ordinal-regression-based Kriging surrogates for 30 indepen-

dent runs. The first method uses four Kriging surrogates to approximate the value of four

constraints separately. If the predictions of all four surrogates satisfy their corresponding

constraints, then a solution will be predicted to be feasible. The second method uses one

Kriging surrogate to estimate the sum of violations in all constraints. A solution is predicted

to be feasible if the estimated sum of its constraint violations is less than or equivalent to

0. For the sake of convenience, the two comparison methods mentioned above are denoted

as ‘Constraint’ and ‘Violation’ in Fig. 4.5. Additionally, we train ordinal-regression-based

surrogates with three different ordinal levels no={3, 5, 10}. All Kriging surrogates are imple-

mented using DACE [83], the parameter range of the correlation function is θ ∈ [10−5, 100],

p = 2. The surrogate modelling performance is evaluated through the prediction accuracy

of solution feasibility and the runtime of using surrogates.

Fig. 4.5 shows the prediction accuracy of the solution feasibility on the engine calibra-

tion problem. For ordinal-regression-based surrogates, a stable enhancement of prediction

accuracy can be observed as the size of the training dataset increases. The comparison

between three ordinal-regression-based surrogates shows that the difference between their

prediction accuracies is less than 1% (see the inset diagrams in Fig. 4.5). Hence, the pre-

diction accuracy of ordinal-regression-based surrogates is not particularly sensitive to the

number of ordinal levels no.

For the compared constraint modelling methods, it can be seen that their overall pre-

diction accuracies are decreasing as the ratio of feasible solutions increases. This is explain-

able since both the combination of constraint regressors and the regressor of total constraint

violations are inclined to produce infeasible predictions. When the ratio of feasible solutions

is greater than 0.2, the prediction accuracy of the combination of four constraint regressors
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(a) 0.2 (b) 0.4

(c) 0.6 (d) 0.8

Figure 4.5: The prediction accuracy of solution feasibility on the engine calibration problem.
Ordinal 3, 5, 10 indicates the ordinal-regression-based surrogates trained with no={3, 5, 10}.
Each result is the mean of results collected from 30 independent runs. The size of the
randomly sampled training dataset varies from 70 to 300 with 10 intervals. A randomly
sampled test dataset of size 10000 is used to measure the prediction accuracy. The ratios
between feasible solutions and all solutions in both the training and test datasets are set to
approximately 0.2, 0.4, 0.6, and 0.8.

is increasing as the size of the training dataset increases. In contrast, the prediction accuracy

of the constraint violation regressor enhances at a slow rate. The comparison between three

kinds of surrogates has demonstrated that our ordinal-regression-based surrogate has higher

accuracy than the compared two constraint modelling surrogates. These results indicate that

our ordinal-regression-based surrogate is effective in the prediction of solution feasibility.
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A runtime comparison is also conducted to compare the efficiency of three kinds of

surrogates. Fig. 4.6 presents the time cost of surrogate training and prediction over different

training dataset sizes. It can be observed that the time cost of using the combination of four

Figure 4.6: The time cost of three kinds of surrogates over different training dataset sizes.
Each result is the mean value over 30 independent runs. The size of the randomly sampled
training dataset varies from 70 to 300 with 10 intervals. The runtime includes the time cost
of surrogate training and prediction.

constraint regressors is three times more than the cost of maintaining only one surrogate (an

ordinal-regression-based surrogate or a surrogate of constraint violations). The efficiency of

our ordinal-regression-based surrogate has been demonstrated.

4.3.3 Comparison of Environmental Selection Strategies

An ε-selection strategy is developed to select evaluated solutions for maintaining elite pop-

ulation E. In order to investigate the effect of the ε-selection strategy in SAB-DE and the

influence of different ε parameter setups, we compare three SAB-DE variants in this section:

• SAB-DE with 1
3
-selection strategy. In this variant, top-1

3
infeasible solutions have a

chance to be selected for the elite population E.
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• SAB-DE with 2
3
-selection strategy. In this variant, top-2

3
infeasible solutions are con-

sidered for the elite population E.

• SAB-DE with 0-selection strategy. In this variant, only feasible solutions can be se-

lected for the update of the elite population E. Thus infeasible solutions cannot assist

the evolutionary search.

The comparison is conducted on the engine model mentioned in Section 4.3.2. As

suggested in [46], the size of initial dataset Ninit is 11d−1, which is 65 in this engine calibra-

tion problem. The total evaluation budget FEmax is 300. For the upper-level optimisation,

the size of the elite population Ne and that of upper-level population Nu are set to 20 and

4000, respectively. For the lower-level optimisation, the size of lower-level population Nl and

the maximum generation tmax of the lower-level optimisation are 40 and 20, respectively. no

is set to 10, the parameters of Kriging surrogates θ ∈ [10−5, 100], p =2. The parameters of

DE operator and polynomial mutation operator are F = 0.5, CR = 1.0 and pm = 1
d
, η = 20,

respectively, as suggested in [120].

Figure 4.7: Mean BSFC values obtained by SAB-DE with different ε setups over 20 inde-
pendent runs. The smallest BSFC value is reached when SAB-DE employs the 1

3
-selection

strategy.
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Mean BSFC values obtained by three SAB-DE variants over 20 independent runs are

plotted in Fig. 4.7. Since the raw engine data is confidential and we are not allowed to

disclose it, all engine calibration results (BSFC) have been processed to hide their original

values. It can be observed that using 1
3
-selection strategy in SAB-DE leads to the smallest

BSFC optimisation result in this engine calibration problem. Compared with other ε setups,

setting ε to 1
3
leads to a quicker decrease of BSFC value when 100 to 150 evaluations are used.

The comparison between the results of ε = 0 and ε = 1
3
has demonstrated the effectiveness

of exploiting the infeasible solutions that are very close to the feasible region. However,

the comparison between the results of ε = 1
3
and ε = 2

3
also shows that a small ε value

is preferable to a larger ε value. When ε is large, some infeasible solutions that are not

close to the feasible region will be considered for elite population E, which is not desirable.

Consequently, we set ε = 1
3
as a default setup for SAB-DE.

4.3.4 Parameter Tuning

To investigate the effect of the size of elite population E on the performance of SAB-DE, we

run SAB-DE on the engine calibration problem with three different setups (|E| = 10, 20, 30)

for 20 independent runs. It turns out that SAB-DE achieves competitive BSFC values when

|E| is set to 10 or 20. The result obtained when E=30 is larger than the results obtained

by other setups. Considering the DE operation in the upper-level optimisation uses the

solutions randomly selected from the archive SA (see Algorithm 9), the diversity of solutions

generated in the upper-level optimisation can be guaranteed. Therefore, it is not necessary

to use a very large elite population to ensure the diversity of reproduction. In contrast, the

convergence speed of the upper-level optimisation will be slow if a very large elite population

is used in SAB-DE. Hence, in Section 4.3.5, the size of elite population |E| is set to 20.
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Figure 4.8: Mean BSFC values obtained by SAB-DE with different elite population sizes over
20 independent runs. SAB-DE achieves competitive BSFC results when the elite population
size is set to 10 or 20.

4.3.5 Performance on Engine Calibration Problems

In this subsection, we compare SAB-DE with four state-of-the-art algorithms:

• Two constrained optimisation algorithms used in the engine industry [123]: A Bayesian

optimisation method derived from EGO but designed to handle constraints (denoted by

cons_EGO) and a self-adaptive GA customised for this calibration problem (denoted

by adaptiveGA). cons_EGO and adaptiveGA have been fine-tuned on the same engine

calibration problem in [123].

• MPMLS [50]: A SAEA which uses multiple penalties and multiple local surrogates to

handle constraints.

• PC-EGO [73]: A parallel constrained EGO.

The settings of the comparison algorithms are the same as suggested in [123, 50, 73] except

that the population size of MPMLS is set to 20, since the original population size in MPMLS

leads to poor optimisation results on our engine calibration problem. No additional modifi-
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cations have been made to the parameter setups of PC-EGO, because the suggested setups

are optimal on our engine calibration problem. Other experimental setups are the same as

described in Section 4.3.3.

Calibration Results

Mean BSFC values obtained by SAB-DE and the four comparison algorithms over 30 inde-

pendent runs are depicted in Fig. 4.9. Again, BSFC optimisation results have been processed

(based on the result of cons_EGO) to hide their original values. It can be observed that

Figure 4.9: Mean BSFC values obtained by SAB-DE and four comparison algorithms over 30
independent runs. Since the BSFC values obtained by all algorithms decrease drastically at
an early stage, the y-axis is displayed on an exponential scale. It can be seen that SAB-DE
outperforms four comparison algorithms in terms of the optimal BSFC reached. SAB-DE
saves approximately 120 expensive evaluations than comparison algorithms.

SAB-DE outperforms four comparison algorithms in terms of the optimal BSFC reached.

Clearly, on average, the optimal BSFC value obtained by SAB-DE is smaller than that

obtained by adaptiveGA, MPMLS, and PC-EGO when more than 70 solutions have been

evaluated. In comparison, SAB-DE and cons_EGO have reached comparable BSFC values

when the number of evaluations is less than 130. However, after that, the difference between
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Table 4.2: Statistical results of optimal BSFC values obtained by SAB-DE and four com-
parison algorithms. 30 independent runs are conducted to obtain mean results. ‘+’, ‘≈’,
and ‘−’ denote SAB-DE is statistically significantly superior to, almost equivalent to, and
inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is 0.05),
respectively. The best result is highlighted.

Algorithms BSFC +/ ≈/ -
SAB-DE -2.0293E+00± 2.0254E+00
cons_EGO 0.0000E+00 ± 1.0371E+00 +
adaptiveGA 2.1038E+00 ± 1.4969E+00 +
MPMLS 8.7745E-01 ± 1.3827E+00 +
PC-EGO 1.5339E+00 ± 9.9921E-01 +

SAB-DE and cons_EGO appears and such a difference is increasing until the evaluation

budget has run out.

Considering this engine calibration problem is a real-world application, it is necessary

to evaluate whether the improvement in BSFC values caused by using SAB-DE is statistically

significant and is meaningful to industry. The result of a statistical test is reported in Table

4.2. It shows that the use of SAB-DE results in a significant improvement in BSFC values

from the perspective of statistics. However, from the view of industry, since all BSFC values

have been processed to hide their original values, it is hard to explain the meaning of such an

improvement using BSFC values. Alternatively, we can explain the advantage of SAB-DE

using the cost of expensive evaluations. As illustrated in Fig. 4.9, for SAB-DE, it costs

about 180 evaluations to reach the smallest BSFC value achieved by comparison algorithms.

Therefore, in contrast to using comparison algorithms, the use of SAB-DE saves at least

120 expensive fitness evaluations on engine facilities. It should be noted that, in engine

calibration problems, a real engine performance evaluation on engine facilities is very costly

in terms of both time and financial budget [116]. Saving 120 evaluations indicates a shorter

engine development cycle than before and a saving of millions of dollars [59]. Therefore, the

improvement caused by using SAB-DE is meaningful to industry.

86



Efficiency Analysis

Further comparisons are conducted to evaluate the efficiency of SAB-DE. Fig. 4.10 displays

the number of feasible solutions obtained by SAB-DE and comparison algorithms. It can be

Figure 4.10: Statistical results of the number of feasible solutions obtained by SAB-DE and
four comparison algorithms over 30 independent runs. Mean values are shown on the top.
SAB-DE finds much more feasible solutions than comparison algorithms, showing a high
efficiency of searching for the feasible region.

seen that SAB-DE finds more feasible solutions than comparison algorithms, implying the

bilevel architecture in SAB-DE enhances the efficiency of searching for the feasible region.

The computational efficiency of SAB-DE is also investigated in the comparison be-

tween the best two SAEAs in Fig. 4.9. Note that cons_EGO and the gasoline engine model

are implemented in Matlab and SAB-DE is implemented in Python. Therefore, the ab-

solute runtimes of two SAEAs are not directly comparable. Alternatively, we compare the

number of operations conducted by SAB-DE and cons_EGO between two expensive eval-

uations. As illustrated in Fig. 4.11, SAB-DE conducts fewer operations than cons_EGO.

Clearly, since the constraint handling process in SAB-DE is pertinent to the lower-level vari-

ables, it is not necessary for SAB-DE to generate as many candidate solutions as cons_EGO.

In addition, reproductive operations, such as DE and mutation operations, will be conducted

on only upper-level variables in the upper-level optimisation. The reproductive operations
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Figure 4.11: Numbers of the operations conducted by SAB-DE and cons_EGO in an itera-
tion (between two expensive evaluations). Note these numbers are compared through their
upper bounds, since the actual numbers are dependent on the number of potential feasible
solutions found in an iteration.

in SAB-DE are mainly conducted on lower-level variables and the total reproductive opera-

tions are less than that in cons_EGO. Likewise, the evaluations on the objective surrogate

only happen in the upper-level optimisation, thus SAB-DE conducts a few operations in this

stage. Finally, for the evaluations on constraint surrogates, as explained in Section 4.3.2, the

use of our ordinal-regression-based surrogate saves plenty of surrogate evaluation operations.

Consequently, the computational efficiency of SAB-DE is higher than that of cons_EGO.

4.3.6 Summary

Our computational studies have provided empirical evidence to support the contributions we

claimed in Section 1.4. First, three constrained benchmark test problems are selected and

then reconstructed to make their feasible regions affected by a subset of decision variables. A

qualitative comparison has been conducted on these problems to demonstrate the accuracy

and efficiency of dividing variables with quantified impacts. Second, we have demonstrated

the effectiveness of using an ordinal-regression-based Kriging model as a constraint surrogate.
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The comparison between ordinal-regression-based surrogates and other constraint modelling

methods shows that using the our surrogate will not lower the performance of predicting solu-

tion feasibility. Furthermore, our surrogate tends to be more computationally efficient when

compared with the compared methods. Third, the effect of different ε-selection strategies

has been investigated. Better optimisation results are achieved when a 1
3
-selection strategy

is applied to SAB-DE. It is beneficial to exploit the infeasible solutions that are very close to

the feasible region. Fourth, the optimisation performance of SAB-DE has been demonstrated

on a real-world engine calibration problem. SAB-DE is compared with four state-of-the-art

constrained optimisation algorithms. The calibration results show that SAB-DE outperforms

the compared algorithms. A significant improvement in BSFC is achieved, which is mean-

ingful to this real-world application. Besides, compared with other algorithms, SAB-DE is

efficient when searching for feasible solutions. Additionally, the advantage of SAB-DE in

computational efficiency is also discussed.

4.4 Chapter Summary

In this chapter, we propose a surrogate-assisted bilevel differential evolution, SAB-DE, to

solve the expensive constrained optimisation problems in engine calibration applications.

The bilevel architecture used (not to be confused with the traditional bilevel optimisation)

facilitates constraint handling and optimisation. The lower-level focuses on tuning lower-

level variables to handle constraints, while the upper-level adjusts upper-level variables to

minimise the objective. A PCA-based sensitivity analysis method is developed to quantify

the impact of decision variables on solution feasibility. The variables with significant im-

pact on solution feasibility are allocated to lower-level variables, improving the efficiency of

constraint handling in the lower-level. To simplify the architecture of the lower-level optimi-

sation and reduce the time cost of using surrogates, an ordinal-regression-based surrogate is

adapted to approximate the ordinal landscape of multiple constraints. Additionally, infea-
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sible solutions are allowed to assist the evolutionary search through an ε-selection strategy.

Our computational studies have demonstrated that the proposed optimisation algorithm is

effective and efficient on a real-world engine calibration problem. Compared with state-

of-the-art engine calibration methods, better BSFC values are achieved and more feasible

solutions are detected.

However, the surrogates used in SAB-DE are derived from Kriging models whose

computational cost will increase rapidly as the number of decision variables increases. Hence,

high computational cost can be a limitation and will prevent SAB-DE from being applied

to large-scale ECOPs. Besides, if all decision variables of an ECOP have significant impacts

on solution feasibility, then SAB-DE will be inclined to classify all decision variables into

lower-level variables. As a result, the advantage of using bilevel architecture in SAB-DE

might disappear, indicating a lower efficiency of handling constraints.

The contributions of this chapter can be summarised as:

• A sensitivity analysis method is developed to quantify the impact of decision variables

on solution feasibility. This analysis method employs principal component analysis

(PCA) to analyze the distribution of feasible solutions. The quantified impacts will

be used to guide the division of upper-level and lower-level variables. The decision

variables that have significant impacts on solution feasibility are identified as lower-

level variables, while the remaining variables are denoted by upper-level variables. This

is an answer to the first question in Section 1.3.2.

• An ordinal-regression-based surrogate is adapted to approximate the ordinal landscape

of constraints. Instead of approximating each constraint function with a regression-

based surrogate separately, we use only one ordinal-regression-based surrogate to ap-

proximate the domination-based ordinal landscape of multiple constraints. The use

of our ordinal-regression-based surrogate simplifies the architecture of lower-level op-

timisation and it is more efficient than using multiple regression-based surrogates to
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approximate constraints separately. Moreover, compared with classification-based sur-

rogates, the ordinal-regression-based surrogate also exploits the difference between in-

feasible solutions. This is an answer to the second question in Section 1.3.2.

• The framework of a novel SAEA (Surrogate-Assisted Bilevel Differential Evolution,

SAB-DE) is proposed to solve ECOPs with a bilevel architecture. In the SAB-DE

framework, the lower-level aims at optimising lower-level variables to make candidate

solutions feasible, while the upper-level focuses on adjusting upper-level variables to

optimise the objective. Such a bilevel architecture ensures that more constraint han-

dling effort can be made on lower-level variables. Thus, it is more efficient than a

majority of existing constraint handling methods which allocate effort evenly to every

decision variable. In comparison, existing studies that use bilevel architectures are

designed for bilevel optimisation problems instead of ECOPs. Additionally, a novel

environmental selection strategy is employed to exploit the infeasible solutions that

are close to the feasible region. This is an answer to the last question in Section 1.3.2.
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Chapter 5

Experience-Based Evolutionary

Algorithms for Expensive Optimisation

In the last two chapters, we have developed several new SAEAs to solve EMOPs and ECOPs,

respectively. We have demonstrated that when solving expensive optimisation problems,

our proposed optimisation algorithms are capable of finding near-optimal solutions with a

given limited fitness evaluation budget. Significant improvements on optimisation results

are observed in our experimental studies. However, when compared with human optimisers,

these optimisation algorithms are not intelligent enough. A human being would gain more

experience through problem-solving, which helps her/him in solving a new unseen problem.

Yet an optimisation algorithm never gains any experience by solving more problems. In

this chapter, we continue our research on the topic of expensive optimisation problems.

Unlike previous chapters which focus on the target optimisation problems, in this chapter,

we take other related optimisation problems into consideration. We aim to make existing

optimisation algorithms more intelligent than before through learning experience from related

optimisation problems.

In recent years, there have been efforts made towards endowing optimisation algo-

rithms with some abilities of experience learning, which are regarded as experience-based
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optimisation. In this chapter, we argue that hard optimisation problems could be tackled ef-

ficiently by making better use of the experience gained in related problems. We demonstrate

our ideas in the context of expensive optimisation, where we aim to find a near optimal

solution to an expensive optimisation problem with as few fitness evaluations as possible. In

practice, we propose an experience-based SAEA framework to enhance the optimisation effi-

ciency when applied to expensive problems, where useful experience is learned across related

expensive tasks via a novel meta-learning method. The learned experience serves as the task-

independent parameters of a deep kernel learning surrogate, then the solutions sampled from

the target task are used to further adapt task-specific parameters for the surrogate. With

the help of experience learning, competitive regression-based surrogates can be initialised

with a cost of only 1d solutions from the target task. In Section 5.4, our experimental results

demonstrate that the experience learned from related tasks is beneficial to the saving of

evaluation budgets on the target problem, indicating that our SAEA framework is suitable

for the optimisation of problems whose evaluation is extremely expensive.

5.1 Motivation

When solving a new unseen problem, a human being often benefits from the experience

gained from the related problems he/she has seen in the past. Such an ability of experience

learning enhances the efficiency of solving new problems and thus is desirable for intelligent

optimisation algorithms. To endow optimisation algorithms with some abilities of experience

learning, many efforts have been made to combine diverse experience learning techniques

with optimisation algorithms, which results in experience-based optimisation algorithms [57,

96, 95]. In the past decade, experience-based optimisation approaches such as evolutionary

transfer optimisation [95, 41, 40] and evolutionary multi-tasking optimisation (EMTO) [108,

2, 113] have been proposed to solve diverse optimisation problems, including automatic

parameter tuning problems [96], dynamic optimisation problems [78, 79]. These studies
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have demonstrated that the idea of experience-based optimisation is effective when solving

hard optimisation problems, the experience gained from past problems could be helpful for

solving new unseen optimisation problems.

The motivation of this chapter is to demonstrate that the idea of experience-based

optimisation is also working in the context of expensive optimisation problems. In other

wards, we want to demonstrate that useful experience could be learned from related expensive

optimisation problems via using suitable experience learning techniques, and new unseen

expensive optimisation problems could be tackled efficiently by using the learned experience

in existing SAEAs. In real-world applications, many expensive optimisation problems are

related since they are working on similar issues in the same domain. For example, in the

domain of gasoline engine calibration, many calibration problems can be treated as related

tasks. Although the categories of gasoline engines to be calibrated are different, the physical

properties of gasoline will not change. Moreover, the mechanical structures of some gasoline

engines are similar [116]. These domain-specific features make many calibration problems

related to each other. It is desirable to explore the domain-specific features from related

tasks and then use them as experience in SAEAs. The learned experience could help SAEAs

to build reliable surrogates with a fewer cost of fitness evaluations than before (e.g., 1d

evaluations). Consequently, these experience-based SAEAs can save more fitness evaluations

(in surrogate initialisation) than non-experience-based SAEAs and thus are more suitable

for very expensive optimisation problems, where only 150 or fewer fitness evaluations are

allowed during the optimisation.

The related tasks considered in this chapter are expensive and each of them can

provide only a small dataset of evaluated samples for experience learning. Therefore, our

experience-based SAEA is based on the context of few-shot problems [5, 105], where plenty

of small related tasks are available for experience learning. A challenge is that most existing

experience-based optimisation approaches cannot learn experience from small related tasks.

However, recently, meta-learning [35] has been proved to be powerful in solving few-shot
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problems. In meta-learning, the underlying common features of related tasks are extracted

as domain experience, which can be integrated with the solutions sampled from new tasks

and thus enhance the learning efficiency for new tasks. Quite a few meta-learning methods

[105] have been proposed for few-shot problems. Benefiting from the ability of experience

learning, these methods are capable of fitting accurate classification or regression models with

limited samples from the target task, which motivates us to develop meta-learning methods

to learn experience for SAEAs. In this chapter, we propose an experience-based SAEA

framework to solve expensive optimisation problems, including multi-objective optimisation

and constrained optimisation.

5.2 Preliminaries

A meta deep kernel learning modelling method is developed to learn experience in our SAEA

framework. This section gives preliminaries about meta-learning and deep kernel learning.

The former is the method of experience learning, the latter is the underlying structure of

experience representation.

Meta-Learning in Few-Shot Problems

In the context of few-shot problems, we have plenty of related tasks, each task T contributes

a couple of small datasets D = {(S,Q)}, namely support dataset S and query dataset Q,

respectively. After learning from datasets of random related tasks, a support set S∗ from

new unseen task T∗ is given and one is asked to estimate the labels or values of a query

set Q∗. The problem is called 1-shot or 5-shot when only 1 data point or 5 data points are

provided in S∗. A comprehensive definition of few-shot problems is available in [5, 105].

Meta-learning methods have been widely used to solve few-shot problems [105]. They

learn domain-specific features that are shared among related tasks as experience, such expe-

rience is used to understand and interpret the data collected from new tasks encountered in
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the future.

Deep Kernel Learning

Deep kernel learning (DKL) [110] aims at constructing kernels that encapsulate the expressive

power of deep architectures for Gaussian processes (GPs) [109]. To create expressive and

scalable closed form covariance kernels, DKL combines the non-parametric flexibility of kernel

methods and the structural properties of deep neural networks. A brief introduction to

the GP (Kriging) model and the feedforward neural network can be found in Chapter 2.

In practice, a deep kernel k(xi,xj|γ) transforms the inputs x of a base kernel k(xi,xj|θ)

through a non-linear mapping given by a deep architecture φ(x|w,b):

k(xi,xj|γ) = k(φ(xi|w,b), φ(xj|w,b)|θ), (5.1)

where θ and (w,b) are parameter vectors of the base kernel and the deep architecture,

respectively. γ = {θ,w,b} is the set of all parameters in this deep kernel. Note that

in DKL, all parameters γ of a deep kernel k(xi,xj|γ) are learned jointly by using the log

marginal likelihood function of GPs as a loss function. Such a jointly learning strategy has

been shown to make a DKL algorithm outperform a combination of a deep neural network

and a GP model, where a trained GP model is applied to the output layer of a trained deep

neural network [110].

Advantages of Applying Meta-Learning to DKL

An important distinction between DKL algorithms and applications of meta-learning to the

DKL is that DKL algorithms learn their deep kernels from single tasks instead of collections

of related tasks. Such a difference alleviates two drawbacks of single task DKL [101]:

• First, the scalability of deep kernels is no longer an issue as each dataset in meta-

learning is small.
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• Second, the risk of overfitting is decreased since diverse data points are sampled across

tasks.

5.3 Experience-Based Surrogate-Assisted Evolutionary Al-

gorithm Framework

In this section, expensive optimisation is carried out in the context of few-shot problems

[96], where the expensive optimisation problem to be solved is denoted as target task T∗, and

plenty of small datasetsDi sampled from related tasks Ti are available for experience learning.

We propose a SAEA framework to learn experience from Ti and use experience in T∗, which

saves fitness evaluations for expensive optimisation problems. A meta deep kernel learning

(MDKL) modelling method is developed to learn experience from Ti and then initialises

surrogates with a cost of 1d evaluations on T∗. Our SAEA framework combines MDKL with

existing regression-based SAEAs. A new update strategy is designed to maintain and adapt

surrogates for SAEAs. As a result, although many fewer evaluations from T∗ are used, our

SAEA framework can still achieve competitive or even better optimisation results than the

SAEAs that are unable to learn experience from Ti.

5.3.1 Overall Working Mechanism

A diagram of our experience-based SAEA framework is illustrated in Fig. 5.1. All modules

covering the evolutionary optimisation of target task T∗ are included in a grey block. The

modules beyond the grey block are associated with related tasks Ti and experience learning,

which are the main distinctions between our SAEA framework and existing SAEAs. The

MDKL surrogate modelling method used in our SAEA framework consists of two procedures:

meta-learning procedure and adaptation procedure. The former learns experience from Ti,

and the latter uses experience to adapt surrogates to approximate T∗.
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Figure 5.1: Diagram of the proposed experience-based SAEA framework. The grey block
includes all modules that are related to the evolutionary optimisation of target task T∗.
The MDKL surrogate modelling method used in the framework consists of a meta-learning
procedure and an adaptation procedure. The meta-learning procedure learns experience
(task-independent parameters γe) from related tasks Ti. Based on the learned experience,
the adaptation procedure adapts MDKL task-specific parameters to approximate target task
T∗. Note that existing SAEAs train and update their surrogates on S∗ only, thus their
workflows do not contain a meta-learning procedure and they cannot gain experience from
related tasks.

The framework of experience-based evolutionary optimisation is depicted in Algorithm

11, it consists of the following major steps:

1. Experience learning: Before the evolutionary optimisation starts, a meta-learning

procedure is conducted to train task-independent parameters γe for MDKL surrogates

(line 1). γe are trained on Nm datasets {Dm1, . . . , DmNm} which are collected from

N related tasks {T1, . . . , TN}. The learned parameters γe are the experience that

represents the domain-specific features of related tasks.

2. Initialise surrogates with experience: Evolutionary optimisation starts when a

target optimisation task T∗ is given. An initial dataset S∗ is sampled (line 2) to adapt

task-specific parameters γ∗ on the basis of experience γe. After that, MDKL surrogates

are updated (line 3).

3. Reproduction: MDKL surrogates h(γ∗) are combined with a SAEA optimizer Opt

to search for optimal solution(s) x∗ on h(γ∗) (line 6). This is implemented by replacing

the original (regression-based) surrogates in a SAEA with h(γ∗).
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Algorithm 11 Experience-Based SAEA Framework.
Input:

Di: Datasets collected from related tasks Ti, i={1, . . . , N};
Nm: Number of subsets Dm for meta-learning;
|Dm|: Size of subsets Dm. |Dm| ≤ |Di| due to Dm ⊆ Di.
B: Number of related tasks in a batch;
α, β: Surrogate learning rates;
T∗: Target task;
Opt: A SAEA optimiser;
FEmax: Fitness evaluation budget.

Procedure:
1: Experience γe ← Meta-learning(Di, Nm, |Dm|, B, α). /∗Algorithm 12.∗/
2: S∗ ← Sampling 1d solutions from T∗.
3: h(γ∗)← Adaptation(γe, S∗, β). /∗Initialise surrogate, Algorithm 13.∗/
4: Set evaluation counter FE = |S∗|.
5: while FE < FEmax do
6: Candidate solution(s) x∗ ← Surrogate-assisted optimisation (Opt, h(γ∗))
7: f(x∗)← Evaluate x∗ on T∗.
8: S∗ ← S∗ ∪ {(x∗, f(x∗))}.
9: h(γ∗)← Update(γ∗, S∗, β). /∗Algorithm 14.∗/
10: Update FE.
11: end while
Output: Optimal solutions in S∗.

4. Update archive: New optimal solution(s) x∗ is evaluated on target task T∗ (line 7)

and the evaluated solutions will be added to dataset S∗ (line 8). S∗ serves as an archive.

5. Update surrogates: Since new data has been added to S∗, further surrogate adap-

tation is triggered. As a result, surrogates h(γ∗) are updated (line 9).

6. Stop criterion: Once the evaluation budget has run out, the evolutionary optimi-

sation will be terminated and the optimal solutions in dataset S∗ will be outputted.

Otherwise, the algorithm goes back to step 3.

In the following subsections, we first present the details of our MDKL surrogate modelling

method, including how to learn experience through through meta-learning and adapt it to a

specific target task. Then we explain the surrogate update strategy in our experience-based

SAEA framework. Finally, we discuss the usage of MDKL surrogates and the compatibility
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of our SAEA framework with existing SAEAs.

5.3.2 Learning and Using Experience by Meta Deep Kernel Learn-

ing

In MDKL, the domain-specific features of related tasks are used as experience, which are

represented by the task-independent parameters γe learned across related tasks. To make

MDKLmore capable of expressing complex domain-specific features, the base kernel k(xi,xj| θ)

in GP is combined with a neural network φ(w,b) to construct a deep kernel (see Eq.(5.1)).

The main novelties of our MDKL surrogate modelling method can be summarised as

follows:

• A simple and efficient meta-learning structure for experience learning. Our method

learns only one common neural network for all related tasks, such a neural network

works as a component of the shared deep kernel. In contrast, [25, 101] generate separate

deep kernels for each related task and train multiple neural networks to encode and

decode task features, which makes their model complexity grow with the number of

related tasks.

• The explicit task-specific adaptation for the deep kernel, which is implemented by

cumulating task-specific increments on the basis of the learned experience.

The modelling of a MDKL model consists of two procedures: meta-learning procedure and

adaptation procedure. To make a clear illustration, we introduce frameworks of two proce-

dures and then explain them in detail.

Meta-learning procedure: Learning experience
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Our MDKL model uses the kernel in [46] as its base kernel:

k(xi,xj|θ,p) = exp(−
d∑

k=1

θk|xik − x
j
k|
pk). (5.2)

Therefore, the deep kernel will be:

k(xi,xj|γ) = exp(−
d∑

k=1

θk|φ(xik)− φ(xjk)|
pk), (5.3)

where γ = {w,b,θ,p} is a set of deep kernel parameters. φ,w and b are neural network

and its parameters, as explained in Eq.(5.1). Details about other alternative base kernels

are available in [109].

The aim of meta-learning procedure is to learn experience γe from related tasks

{T1, . . . , TN}, including neural network parameters w,b that describes the shared expression

of correlation functions and the task-independent base kernel parameters θe,pe. The pseudo

code of meta-learning procedure is given in Algorithm 12.

Ideally, the experience γe is learned from plenty of (Nm) small datasets Dm collected

from different related tasks. However, in practice, the number of available related tasks

N can be much smaller than Nm. Hence, the meta-learning is conducted gradually over

U update iterations (line 2). During each update iteration, a small batch of related tasks

contribute B small datasets {Dm1, . . . , DmB} for meta-learning purpose (lines 4 and 6). Note

that if N < Nm, a related task Ti can be used multiple times in the meta-learning procedure.

For a given dataset Dmi, we denote θi = θe + ∆θi and pi = pe + ∆pi as the task-

specific kernel parameters, where ∆θi,∆pi are the distance we need to move from the task-

independent parameters to the task-specific parameters (line 8). The loss function L of

MDKL is the likelihood function defined as follows [46]:

1

(2π)n/2(σ2)n/2|R|1/2
exp[−(y− 1µ)TR−1(y− 1µ)

2σ2
], (5.4)

101



Algorithm 12 Meta-learning(Di, Nm, |Dm|, B, α)
Input:

Di: Datasets collected from related tasks Ti, i={1, . . . , N};
Nm: Number of subsets Dm for meta-learning;
|Dm|: Size of subsets Dm. |Dm| ≤ |Di| due to Dm ⊆ Di.
B: Number of related tasks in a batch;
α: Learning rate for priors.

Procedure:
1: Randomly initialise w,b,θe,pe.
2: Set the number of update iterations U = Nm/B.
3: for j = 1 to U do
4: {D′1, . . . , D′B} ← Randomly select a batch of datasets from {D1, . . . , DN}.
5: for all D′i in the batch do
6: Dmi ← Randomly sample a subset of size |Dm| from D′i.
7: Initialise task-specific increment ∆θi,∆pi.
8: Compute task-specific parameters: θi = θe + ∆θi, pi = pe + ∆pi.
9: Obtain deep kernel k(xi,xj|γ) based GP: h(γ), where γ={w,b,θi,pi} (Eq.(5.3)).
10: Compute the loss function L(Dmi, h(γ)) (Eq.(5.4)).
11: end for
12: Update w,b,θe,pe using gradient descent: α5 L(Dmi, h(γ)) (Eq.(5.5)).
13: end for
Output: Task-independent parameters: γe = {w,b,θe,pe}.

where |R| is the determinant of the correlation matrix R, each element in the matrix is

computed through Eq.(5.3). y is the fitness vector of Dmi. µ and σ2 are the mean and the

variance of the prior distribution, respectively. Experience γe = {w,b,θe,pe} is updated by

gradient descent (line 12), take θe as an example:

θe ← θe − α

B

B∑
i=1

5θeL(Dmi, h(γ)). (5.5)

After U iterations, γe has been trained sufficiently (γe values do not change anymore) by

Nm small datasets Dm and will be used in the evolutionary optimisation of target task T∗

later.

Adaptation procedure: Using experience
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Algorithm 13 Adaptation(γ∗, S∗, β)
Input:

γ∗: Current surrogate parameters;
S∗: A dataset sampled from target task T∗ (Archive).
β: Learning rate for adaptation.

Procedure:
1: if γ∗ == γe then
2: Initialise task-specific increments ∆θ∗,∆p∗.
3: Compute task-specific parameters: θ∗ = θe + ∆θ∗, p∗ = pe + ∆p∗.
4: Obtain deep kernel k(xi,xj|γ∗) based GP: h(γ∗), where γ∗ = {w,b,θ∗,p∗} (Eq.(5.3)).
5: end if
6: Compute the loss function L(S∗, h(γ∗)) (Eq.(5.4)).
7: Update ∆θ∗,∆p∗ using gradient descent: β 5 L(S∗, h(γ∗)) (Eq.(5.6)).
Output: Adapted MDKL h(γ∗).

The meta-learning of experience γe enables MDKL to handle a family of related tasks in

general. To approximate a specific task T∗ well, surrogate h(γe) needs to adapt task-specific

increments ∆θ∗ and ∆p∗ in the way described in Algorithm 13. There are three major

differences between the meta-learning procedure and the adaptation procedure:

• First, the dataset S∗ for adaptations is sampled from target tasks T∗. By comparison,

in the meta-learning procedure, the training datasets {Dm1, . . . , DmNm} are sampled

from N different related tasks.

• Second, the parameters to be updated are increments ∆θ∗ and ∆p∗, not task-independent

parameters θe and pe. Thus, the gradient descent in Eq.(5.5) is replaced by the fol-

lowing one (line 7):

∆θ∗ ← ∆θ∗ − β 5∆θ∗ L(S∗, h(γ∗)). (5.6)

• Third, task-specific increments ∆θ∗ and ∆p∗ are initialised only when it is the first

time to adapt task-specific parameters (lines 1-5). From the perspective of tuning

parameters, we can say task-independent base kernel parameters θe and pe are the

initialisation points for further adaptations. In other words, the learning of a new task

starts on the basis of the learned experience.
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A diagram of the deep kernel implemented in our MDKL model is illustrated in Fig. 5.2.

Figure 5.2: Diagram of our deep kernel implementation. The solid lines depict the training
process, the dotted lines depict the inference process. Q∗ denotes query samples to be
evaluated on our surrogates. The neural network ensures the expressive power of our deep
kernel. Common features of related tasks are represented by neural network parameters w,b
and base kernel parameters θe,pe, which are the learned experience. Task-specific increments
∆θ∗ and ∆p∗ distinguishes a given task T∗ from other tasks

5.3.3 Surrogate Update Strategy

The adaptation procedure details how experience is used to adapt a MDKL surrogate with

a dataset S∗ from the target task T∗. In this subsection, we describe the update strategy in

our experience-based SAEA framework. To properly integrate experience and data from T∗,

our update strategy is designed to determine whether a MDKL surrogate should be adapted

in the current iteration or not, ensuring an optimal update frequency of surrogates.

As illustrated in Algorithm 14, the surrogate update starts when a new optimal

solution(s) has been evaluated on expensive functions and an updated archive S∗ is available.

For a given surrogate h(γ∗), its mean squared error (MSE) on S∗ is chosen as the update

criterion: If the MSE after an adaptation e1 (line 3) is larger than the MSE without an

adaptation e0 (line 1), then the surrogate will roll back to the status before the adaptation.

This indicates the surrogate update has been refused and h(γ∗) will not be adapted in the
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Algorithm 14 Update(γ∗, S∗, β)
Input:

γ∗: Current surrogate parameters;
S∗: Updated archive.
β: Learning rate for further adaptations.

Procedure:
1: e0 ← MSE(h(γ∗), S∗).
2: h(γ ′)← Adaptation(γ∗, S∗, β)./∗Temporary surrogate, Algorithm 13.∗/
3: e1 ← MSE(h(γ ′), S∗).
4: if e0 > e1 then
5: update γ∗ = γ ′, obtain new h(γ∗).
6: end if
Output: Surrogate h(γ∗).

current iteration. Otherwise, the adapted surrogate will be chosen (line 5). Note that no

matter whether surrogate adaptations are accepted or refused, the resulting surrogates will

be treated as updated surrogates, which are employed to assist a SAEA optimiser in the

next iteration.

5.3.4 Framework Compatibility and Surrogate Usage

Our experience-based SAEA framework is compatible with regression-based SAEAs since

the original surrogates in these SAEAs can be replaced by our MDKL surrogates directly.

Due to the nature of a GP, when predicting the fitness of a query solution x∗, a MDKL

surrogate produces a predictive Gaussian distribution N (ŷ(x∗), ŝ2(x∗)) , the predicted mean

ŷ(x∗) and covariance ŝ2(x∗) are specified as [46]:

ŷ(x∗) = µ+ r′R−1(y− 1µ) (5.7)

ŝ2(x∗) = σ2(1− r′R−1r) (5.8)

where r is a correlation vector consisting of covariances between x∗ and S∗, other variables

are explained in Eq.(5.4).
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Classification-based SAEAs are not compatible with our SAEA framework. The clas-

sification surrogates in these SAEAs are employed to learn the relation between pairs of

solutions, or the relation between solutions and a set of reference solutions. The class la-

bels used for surrogate training can be fluctuating during the optimisation and thus hard

to be learned over related tasks. Similarly, in ordinal-regression-based SAEAs, the ordinal

relation values to be learned are not as stable as the fitness of expensive functions. So

ordinal-regression-based SAEAs are also not compatible with our SAEA framework. In this

chapter, we focus on experience-based optimisation for regression-based SAEAs, while other

SAEA categories are left to be discussed in future work.

5.4 Experimental Studies

Our computational studies can be divided into three parts:

• Section 5.4.1 evaluates the effectiveness of learning experience through a sinusoid func-

tion regression problem and a real-world engine modelling problem.

• Sections 5.4.2 to 5.4.5 use the scenario of multi-objective optimisation as an example

to investigate the performance of our SAEA framework in depth. Empirical evidence

is provided to guide the application of our SAEA framework.

• Section 5.4.6 investigates the performance of our SAEA framework in breadth. The en-

gine calibration problem to be solved in the experiment covers many representative fea-

tures, such as constrained optimisation, single-objective optimisation, and real-world

applications.

For all meta-learning methods used in our experiments, their basic setups are listed in Table

5.1. The neural network structure is suggested by [23, 69], and the learning rates are the

default values that have been widely used in many meta-learning methods [23, 32, 69].
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Table 5.1: Parameter setups for meta-learning methods.
Module Parameter Value
Meta-learning Number of meta-learning datasets Nm 20000

Number of update iterations U 2000
Batch size B 10

Neural network Number of hidden layers 2
Number of units in each hidden layer 40
Learning rates α, β 0.001, 0.001
Activation function ReLU

5.4.1 Effectiveness of Learning Experience

The evaluation of the effectiveness of learning experience aims at demonstrating that our

MDKL model is able to learn experience from related tasks and it outperforms other meta-

learning models. For this reason, the experiment is designed to answer the following ques-

tions:

• Given a small dataset S∗ from target task T∗, can MDKL learn experience from related

tasks and then generate a model that has the smallest MSE?

• If yes, which components of MDKL contribute to the effectiveness of learning experi-

ence? Meta-learning or/and deep kernel learning? If not, why not?

To answer the two questions above, we consider two experiments to evaluate the effectiveness

of learning experience: amplitude prediction for unknown periodic sinusoid functions, and

fuel consumption prediction for a gasoline motor engine. The former is a few-shot regression

problem that motivates many meta-learning studies [23, 32, 101, 69], while the latter is a

real-world regression problem [123].

A. Sinusoid Function Regression

In the sinusoid regression experiment, we learn experience from a series of 1-dimensional

sinusoid functions:

y = Asin(wx+ b) + ε (5.9)
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where the amplitude A and phase w of sine waves are varied between functions. The target

is to approximate an unknown sinusoid function with a small support dataset S∗ and the

learned experience. Clearly, by integrating experience with S∗, we estimate parameters

(A,w, b) for an unknown sinusoid function. As a result, the output y of the given sinusoid

function can be predicted once a query data x is inputted.

Generation of Sinusoid Function Variants:

As suggested in [23, 32], we set amplitude A ∈ [0.1, 5.0], frequency w ∈ [0.999, 1.0], phase

b ∈ [0, π], and Gaussian noise ε ∼ (0, 0.1). Therefore, a sinusoid function can be generated

by sampling three parameters (A,w, b) from their ranges uniformly. In total, Nm = N =

20000 related sinusoid functions are generated at random.

Experimental Setups:

All data points x are sampled from the range ∈ [-5.0, 5.0]. In the meta-learning procedure,

both support set and query set contain 5 data points. Hence, a dataset Di is sampled from

each (related) sinusoid function Ti, and |Di| = |Dm| = 10. Six experiments are conducted

where |S∗| = {2, 3, 5, 10, 20, 30} data points are sampled from the target function. Consider-

ing Gaussian noise ε could be relatively large when amplitude A is close to 0.1, normalised

mean squared error (NMSE) is chosen as a performance indicator. NMSE is measured using

a dataset that contains 100 data points sampled uniformly from the x range.

Comparison methods:

In this experiment, three families of modelling methods are compared with our MDKL model:

• Meta-learning modelling methods that were proposed for regression tasks: MAML

[23], ALPaCA [32], and DKT [69]. The configurations of MAML, ALPaCA, and DKT

are the same as suggested in the original literature.
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• Non-meta-learning modelling method that is widely used for regression tasks: the

GP model (also known as Kriging model [91] or the design and analysis of computer

experiments (DACE) stochastic process model [83]). We choose a GP as a baseline

since it is effective and more relevant to MDKL than other non-meta-learning modelling

methods. We set the range of base kernel parameters in the GP model as θ ∈ [10−5, 10]

and p ∈ [1, 2].

• MDKL related methods that are designed to investigate which components of

MDKL contribute to the modelling performance: GP_Adam, DKL, and MDKL_NN.

GP_Adam is a GP model fitted by Adam optimiser. The combination of GP_Adam

and a neural network results in a kind of DKL algorithm. MDKL_NN is a meta-

learning version of DKL, but it learns only neural network parameters through meta-

learning and has no task-independent base kernel parameters.

Results and Analysis:

Table 5.2 reports the statistical test results of the NMSE values achieved by comparison

algorithms in sinusoid function regression experiments. Each row lists the results obtained

when the same number of fitness evaluations |S∗| are used to train models. The results

of Wilcoxon rank sum test between MDKL and other compared algorithms are listed in

the last row. It can be observed that both MDKL and DKT have achieved the smallest

NMSE values in all tests in the comparison with other meta-learning and non-meta-learning

modelling methods.

Additional Wilcoxon rank sum tests have been made between MDKL related algo-

rithms to answer our second question (not reported in Table 5.2). All test results are obtained

under the same number of fitness evaluations |S∗|. The statistical test results between DKL

and GP_Adam are 5/1/0, showing that DKL is preferable to GP_Adam when only a few

data points are available for modelling. Hence, using a neural network to build a deep kernel
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Table 5.2: Mean Normalised Mean Squared Error (NMSE) and standard deviation (in brack-
ets) of 30 runs on the amplitude regression of sinusoid function. GP [91] is a widely used
surrogate in SAEAs, MAML [23], ALPaCA [32], and DKT [69] are meta-learning methods.
GP_Adam is a GP model fitted by Adam optimiser. DKL is a deep kernel learning algo-
rithm that adds a neural network to GP_Adam. MDKL_NN applies meta-learning to DKL,
but no task-independent base kernel parameters are shared between related tasks. Support
data points are used to train non-meta surrogates or adapt meta-learning surrogates. ‘+’,
‘≈’, and ‘−’ denote MDKL is statistically significantly superior to, almost equivalent to,
and inferior to the compared modelling methods in the Wilcoxon rank sum test (significance
level is 0.05), respectively. The last row counts the total win/tie/loss results. It shows that
MDKL and DKT have lower NMSE than other models. The effectiveness of meta-learning
on both the neural network and the base kernel has been demonstrated on this example.
Support data GP [91] GP_Adam DKL MDKL_NN MDKL DKT [69] MAML [23] ALPaCA [32]
points |S∗|
2 1.63e-1(9.18e-2)≈ 1.93e-1(9.72e-2)+ 1.63e-1(9.05e-2)≈ 1.57e-1(9.26e-2)≈ 1.56e-1(9.49e-2) 1.56e-1(9.49e-2)≈ 2.09e-1(3.63e-1)≈ 1.07e+0(2.57e+0)≈
3 1.27e-1(6.04e-2)≈ 1.62e-1(6.53e-2)+ 1.21e-1(5.96e-2)≈ 1.16e-1(5.95e-2)≈ 1.10e-1(6.20e-2) 1.10e-1(6.20e-2)≈ 2.09e-1(3.60e-1)≈ 4.36e-1(8.57e-1)≈
5 6.76e-2(4.62e-2)≈ 1.09e-1(5.61e-2)+ 7.52e-2(4.40e-2)+ 6.38e-2(3.91e-2)≈ 4.79e-2(3.73e-2) 4.79e-2(3.70e-2)≈ 2.08e-1(3.59e-1)+ 4.31e-1(8.04e-1)≈
10 1.70e-2(1.87e-2)≈ 6.13e-2(4.58e-2)+ 2.87e-2(1.89e-2)+ 1.89e-2(1.61e-2)+ 1.07e-2(1.16e-2) 1.09e-2(1.17e-2)≈ 2.08e-1(3.58e-1)+ 6.59e-1(2.14e+0)+
20 5.42e-3(7.64e-3)+ 3.92e-2(4.29e-2)+ 9.64e-3(1.02e-2)+ 5.24e-3(6.57e-3)+ 2.57e-3(4.53e-3) 2.63e-3(4.61e-3)≈ 2.08e-1(3.58e-1)+ 1.13e-1(3.39e-1)+
30 3.97e-3(7.40e-3)+ 3.32e-2(4.18e-2)+ 4.81e-3(6.68e-3)+ 3.20e-3(5.85e-3)+ 1.68e-3(3.61e-3) 1.60e-3(3.39e-3)≈ 2.08e-1(3.58e-1)+ 7.59e-2(2.01e-1)+
+/ ≈ /− 2/4/0 6/0/0 4/2/0 3/3/0 -/-/- 0/6/0 4/2/0 3/3/0

for GP is able to enhance the performance of modelling. When meta-learning technique

is applied to DKL, the statistical test results between MDKL_NN and DKL are 3/3/0.

The meta-learning of neural network parameters is necessary since it contributes to the per-

formance of MDKL. Further statistical test between MDKL and MDKL_NN gives results

of 3/3/0, indicating that the meta-learning of base kernel parameters is effective on this

regression problem.

B. Estimation of Engine Fuel Consumption

We then consider a BSFC regression task for a gasoline motor engine [123], where BSFC is

evaluated on a gasoline engine simulation (denoted by T∗ in this engine experiment) provided

by Ford Motor Company.

Experimental setups:

The related tasks Ti used in our experiment are N = 100 gasoline engine models. These

engine models have different behaviours when compared with T∗, but they share the basic
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Table 5.3: Mean Mean Squared Error (MSE) and standard deviation (in brackets) of 30
runs on the regression of engine fuel consumption. GP [91] is a widely used surrogate
in SAEAs, MAML [23] and ALPaCA [32] are meta-learning methods. GP_Adam is a GP
model fitted by Adam optimiser. DKL is a deep kernel learning algorithm that adds a neural
network to GP_Adam. MDKL_NN applies meta-learning on DKL, but no task-independent
base kernel parameters are shared between related tasks. Support data points are used to
train non-meta surrogates or adapt meta-learning surrogates. All results are normalised
since the actual engine data is unable to be disclosed. ‘+’, ‘≈’, and ‘−’ denote MDKL
is statistically significantly superior to, almost equivalent to, and inferior to the compared
modelling methods in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last row counts the total win/tie/loss results. It shows that MDKL and MDKL_NN
have achieved the smallest MSE. The effectiveness of meta-learning on the neural network
has been demonstrated on this example.
Support data GP [91] GP_Adam DKL MDKL_NN MDKL DKT [69] MAML [23] ALPaCA [32]
points |S∗|
2 2.23e+1(3.20e+0)+ 2.37e+1(6.30e+0)+ 2.30e+1(5.87e+0)+ 1.73e+1(6.33e+0)≈ 1.72e+1(6.34e+0) 1.81e+1(5.68e+0)≈ 1.87e+1(6.37e+0)≈ 1.91e+1(1.02e+1)≈
3 2.14e+1(3.74e+0)+ 2.41e+1(1.38e+1)+ 2.20e+1(3.74e+0)+ 1.45e+1(7.13e+0)≈ 1.45e+0(7.01e+0) 1.55e+1(6.66e+0)≈ 1.80e+1(4.69e+0)≈ 2.13e+1(1.97e+1)≈
5 2.13e+1(3.27e+0)+ 2.46e+1(1.00e+1)+ 2.07e+1(3.95e+0)+ 1.12e+1(6.65e+0)≈ 1.10e+1(6.58e+0) 1.21e+1(6.49e+0)≈ 1.84e+1(6.05e+0)+ 1.99e+1(2.29e+1)+
10 1.84e+1(1.89e+0)+ 2.06e+1(1.19e+1)+ 2.10e+1(5.79e+0)+ 7.19e+0(4.82e+0)≈ 7.08e+0(4.77e+0) 7.99e+0(4.87e+0)≈ 1.70e+1(5.54e+0)+ 1.38e+1(8.12e+0)+
20 1.56e+1(2.00e+0)+ 2.38e+1(1.05e+1)+ 1.76e+1(2.42e+0)+ 5.03e+0(1.82e+0)≈ 4.86e+0(1.71e+0) 5.74e+0(1.91e+0)+ 1.50e+1(2.59e+0)+ 1.01e+1(5.52e+0)+
40 1.28e+1(2.03e+0)+ 1.48e+1(7.35e+0)+ 1.67e+1(3.73e+0)+ 4.13e+0(7.90e-1)≈ 4.00e+0(8.59e-1) 4.92e+0(1.09e+0)+ 1.45e+1(1.85e+0)+ 8.01e+0(3.35e+0)+
+/ ≈ /− 6/0/0 6/0/0 6/0/0 0/6/0 -/-/- 2/4/0 4/2/0 4/2/0

features of gasoline engines. All related tasks and the target task have the same six decision

variables. Each related task Ti provides only 60 solutions, forming a dataset Di. The size of

datasets used for meta-learning |Dm| is set to 40. Six tests are conducted where |S∗| = {2,

3, 5, 10, 20, 40} data points are sampled from the real engine simulation T∗. MSE is chosen

as an indicator of modelling accuracy, which is measured using a dataset consisting of 12500

data points that are sampled uniformly from the engine decision space.

Comparison methods:

The comparison algorithms are the same as described in Section 5.4.1.A.

Results and analysis:

The statistical test results of the MSE values achieved by comparison algorithms on BSFC

regression are summarised in Table 5.3. Each row lists the results obtained when the same

number of fitness evaluations |S∗| are used to train models. The result of Wilcoxon rank

sum test between MDKL and other compared algorithms is listed in the last row. It can
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be observed that MDKL and MDKL_NN outperform other comparison modelling methods

since they have achieved the smallest MSE in all tests. The MDKL model learned from

20 data points on the target problem is still competitive to the compared models that are

learned from 40 data points on the target problem, showing the effectiveness of our learning

experience.

Contributions of MDKL components are analyzed through statistical tests between

MDKL related methods. Again, all test results are obtained under the same number of

fitness evaluations |S∗|. The statistical test results between DKL and GP_Adam are 1/5/0,

indicating that the neural network in DKL makes some contributions to the performance of

MDKL. The statistical test results between MDKL_NN and DKL are 6/0/0, demonstrating

that the meta-learning of neural network parameters constructs a useful deep kernel and

contributes to the improvement of modelling accuracy. However, there is no significant dif-

ference between the performance of MDKL and that of MDKL_NN, the meta-learning on

base kernel parameters does not play a critical role on this engine problem. In comparison,

the meta-learning on base kernel parameters is effective in sinusoid function regression ex-

periments. Besides, the statistical test results between MDKL_NN and MAML are 4/2/0.

Considering that MAML is a neural network regressor learned through meta-learning, we

can conclude that GP is an essential component of our MDKL. In summary, all components

in MDKL are necessary, they all contribute to the effectiveness of learning experience.

C. Discussion

The comparison experiments on the gasoline motor engine and sinusoid functions have

demonstrated the effectiveness of our MDKL modelling method in the learning of experience

for these problems. Given a small dataset of the target task, the model learned through

MDKL method has the smallest MSE or NMSE among all comparison models. Besides, the

investigation between MDKL and its variants shows that all components in MDKL have

made their contributions to the effectiveness of learning experience. However, similar to
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other meta-learning studies [23, 32], we have not defined the similarity between tasks. In

other words, the boundary between related tasks and unrelated tasks has not been defined.

This should be a topic of further study on meta-learning. Additionally, the relationship

between task similarity and modelling performance has not been investigated. Instead of it,

we study the relationship between task similarity and SAEA optimisation performance in

Section 5.4.4, since our main focus is the surrogate-assisted evolutionary optimisation.

5.4.2 Performance on Expensive Multi-Objective Optimisation

So far we have shown the effectiveness of our experience learning method. In the following

subsections, we aim to demonstrate the effectiveness of our experience-based SAEA frame-

work. The experiment in this subsection is designed to answer the question below:

• With the experience learned from related tasks, can our SAEA framework helps a

SAEA to save 9d solutions without a loss of optimisation performance?

The computational study is conducted on DTLZ benchmark test problems [18]. All DTLZ

problems in our work have d = 10 decision variables and 3 objectives, as the setups that

have been widely used in [68, 90].

Generation of DTLZ variants:

The details of generating DTLZ variants (related tasks) are given as follows. The DTLZ

optimisation experiment generates m-objective DTLZ variants in the following ways:

DTLZ1:

f1 = (a1 + g)0.5
m−1∏
i=1

xi, (5.10)

fj=2:m−1 = (aj + g)(0.5

m−j∏
i=1

xi)(1− xm−j+1), (5.11)

fm = (am + g)0.5(1− x1), (5.12)
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g = 100

[
k +

k∑
i=1

(
(zi − 0.5)2 − cos (20π(zi − 0.5))

)]
, (5.13)

where z is a vector consisting of the last k = d − m + 1 variables in x. In other words,

z = {z1, . . . , zk} = {xm, . . . , xd}. The variants of DTLZ1 introduce only one variable a ∈

[0.1, 5.0]m in Eq.(5.10), Eq.(5.11), and Eq.(5.12), where a = 1 in the original DTLZ1. For

out-of-range test, a ∈ [1.5, 5.0]m.

DTLZ2:

f1 = (a1 + g)
m−1∏
i=1

cos(
xiπ

b1

), (5.14)

fj=2:m−1 = (aj + g)

(
m−j∏
i=1

cos(
xiπ

bj
)

)
sin(

xm−j+1π

bj
), (5.15)

fm = (am + g)sin(
x1π

bm
), (5.16)

g =
k∑
i=1

(zi − 0.5)2. (5.17)

The variants of DTLZ2 introduce two variables a ∈ [0.1, 5.0]m and b ∈ [0.5, 2.0]m in

Eq.(5.14), Eq.(5.15), and Eq.(5.16), where a = 1 and b = 2 in the original DTLZ2. For

out-of-range test, a ∈ [1.5, 5.0]m,b ∈ [0.5, 1.5]m.

DTLZ3: The variants of DTLZ3 are generated using the same way as described in DTLZ2,

except the equation g from Eq.(5.17) is replaced by the one from Eq.(5.13).

DTLZ4: The variants of DTLZ4 are generated using the same way as described in DTLZ2,

except all xi are replaced by x100
i .

DTLZ5: The variants of DTLZ5 are generated using the same way as described in DTLZ2,

except all x2, . . . , xm−1 are replaced by 1+2gxi
2(1+g)

.

DTLZ6:

g =
k∑
i=1

z0.1
i . (5.18)

The variants of DTLZ6 are generated using the same way as described in DTLZ5, except
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the equation g from Eq.(5.17) is replaced by the one from Eq.(5.18).

DTLZ7:

fj=1:m−1 = xj + aj, (5.19)

fm = (1 + g)

(
m−

m−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))

])
, (5.20)

g = am + 9
k∑
i=1

zi
k
. (5.21)

The variants of DTLZ7 introduce one variable a ∈ [0.1, 5.0]m in Eq.(5.19) and Eq.(5.21),

where aj=1:m−1 = 0 and am = 1 in the original DTLZ7. For out-of-range test, a ∈ [1.5, 5.0]m.

Comparison algorithms:

As we explained in Section 5.3.4, our experience-based SAEA framework is compatible with

regression-based SAEAs. Hence, we select MOEA/D-EGO [120] as an example and replace

its GP surrogates by our MDKL surrogates. The resulting algorithm is denoted as MOEA/D-

EGO(EB). Note that it is not necessary to specially select a newly proposed regression-

based SAEA as our example, our main objective is to save evaluations with experience

and observe if there is any damage to the optimisation performance caused by the saving

of evaluations. Therefore, it does not make any difference which regression-based SAEA

we choose as our example. Additionally, to demonstrate the improvement of optimisation

performance caused by using experience on DTLZ problems is significant, several state-of-

the-art SAEAs are also compared as baselines, including ParEGO [47], K-RVEA [8], CSEA

[68], OREA [115], and KTA2 [90]. Among these SAEAs, ParEGO, K-RVEA, and KTA2 use

regression-based surrogates, CSEA uses a classification-based surrogate, and OREA employs

an ordinal-regression-based surrogate. Note that all comparison SAEAs are not capable of

learning and using experience from related tasks. Hence, for comparison SAEAs, using the

data from related tasks to train their surrogates will make no difference to their optimisation

performance.
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Table 5.4: Parameter setups for DTLZ optimisation.
Parameter MOEA/D-EGO(EB) Comparisons
Number of related tasks N 20000 (Nm in Table 5.1) -
Size of datasets from related tasks |Di| 20 (2d) -
Size of datasets for meta-learning |Dm| |Di| -
Evaluations for initialisation 10 (1d) 100 (10d)
Evaluations for further optimisation 50 50
Total evaluations 60 150

We implement the experience-based SAEA framework, MOEA/D-EGO, ParEGO,

and OREA, while the code of K-RVEA, CSEA, and KTA2 is available on PlatEMO [99], an

open source Matlab platform for evolutionary multi-objective optimisation. To make a fair

comparison, all comparison algorithms share the same initial dataset S∗ in an independent

run. We also set θ ∈ [10−5, 100]d and p = 2 for all GP surrogates as suggested in [90], these

GP surrogates are implemented through DACE [83]. Other configurations are the same as

suggested in their original literature.

Experimental setups:

The parameter setups for this multi-objective optimisation experiment are listed in Table

5.4. In the meta-learning procedure, we assume plenty of DTLZ variants are available, thus

N = Nm = 20000, each DTLZ variant Ti provides |Di| = |Dm| = 20 samples for learning

experience. During the optimisation process, an initial dataset S∗ is sampled using Latin-

Hypercube Sampling (LHS) method [60], then extra evaluations are conducted until the

evaluation budget has run out. Please note that our purpose is using related tasks to save 9d

evaluations without a loss of SAEA optimisation performance. Hence, the total evaluation

budgets for MOEA/D-EGO(EB) and comparison algorithms are different.

Since the test problems have 3 objectives, we employ inverted generational distance

plus (IGD+) [38] as our performance indicator, where smaller IGD+ values indicate better

optimisation results. 5000 reference points are generated for computing IGD+ values, as

suggested in [68].
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Table 5.5: Mean Inverted Generational Distance Plus (IGD+) and standard deviation (in
brackets) of 30 runs on the optimisation of DTLZ test problems. MOEA/D-EGO(EB) re-
places the original GP [91] surrogates in MOEA/D-EGO [120] with our MDKL surrogates.
MOEA/D-EGO(EB) and comparison algorithms initialise their surrogates with 10, 100 sam-
ples, respectively. Extra 50 evaluations are allowed in the further optimisation. ‘+’, ‘≈’, and
‘−’ denote MOEA/D-EGO(EB) is statistically significantly superior to, almost equivalent
to, and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level
is 0.05), respectively. The last row counts the total win/tie/loss results. Competitive results
can be observed from the comparisons between MOEA/D-EGO(EB) and MOEA/D-EGO,
while 90 evaluations are saved using the experience learned from related tasks.
Problem MOEA/D-EGO MOEA/D-EGO(EB) ParEGO K-RVEA KTA2 CSEA OREA
DTLZ1 1.07e+2(2.05e+1)+ 9.70e+1(1.87e+1) 7.82e+1(1.54e+1)− 1.18e+2(2.45e+1)+ 1.01e+2(2.38e+1)≈ 1.10e+2(2.50e+1)+ 1.02e+2(1.97e+1)≈
DTLZ2 2.99e-1(7.01e-2)+ 1.43e-1(2.29e-2) 3.17e-1(4.12e-2)+ 2.69e-1(5.97e-2)+ 2.14e-1(3.84e-2)+ 2.98e-1(5.25e-2)+ 1.76e-1(4.69e-2)+
DTLZ3 3.15e+2 (6.04e+1)+ 1.97e+2 (1.64e+1) 2.30e+2 (5.99e+1)≈ 3.24e+2 (5.90e+1)+ 2.67e+2 (6.70e+1)+ 2.82e+2(6.97e+1)+ 2.72e+2(6.88e+1)+
DTLZ4 5.04e-1(8.25e-2)≈ 4.44e-1(1.35e-1) 5.44e-1(7.58e-2)+ 4.57e-1(1.14e-1)≈ 4.51e-1(9.54e-2)≈ 4.75e-1(1.09e-1)≈ 3.18e-1(1.54e-1)−
DTLZ5 2.39e-1(7.17e-2)+ 1.13e-1(2.24e-2) 2.58e-1(3.68e-2)+ 1.92e-1 (5.97e-2)+ 1.44e-1(4.60e-2)+ 2.14e-1(4.05e-2)+ 7.84e-2(2.42e-2)−
DTLZ6 1.29e+0(4.74e-1)≈ 1.11e+0(5.71e-1) 1.67e+0(6.77e-1)+ 4.62e+0(6.42e-1)+ 3.37e+0(6.71e-1)+ 6.26e+0(3.40e-1)+ 4.60e+0(1.19e+0)+
DTLZ7 3.31e-1(3.11e-1)− 2.47e+0(1.89e+0) 3.66e-1(1.31e-1)− 1.74e-1(3.57e-2)− 4.34e-1(2.20e-1)− 4.17e+0(1.13e+0)+ 2.14e+0(1.15e+0)≈
+/ ≈ /− 4/2/1 -/-/- 4/1/2 5/1/1 4/2/1 6/1/0 3/2/2

Results and analysis:

The statistical test results of IGD+ values achieved by comparison algorithms on DTLZ

test problems are reported in Tables 5.5. It can be seen from Table 5.5 that, although 90

fewer evaluations are used in surrogate initialisation, MOEA/D-EGO(EB) can still achieve

competitive or even smaller IGD+ values than MOEA/D-EGO on all DTLZ problems except

for DTLZ7. Fig. 5.3 also shows that the minimal IGD+ values obtained by MOEA/D-

EGO(EB) drop rapidly, especially during the first few evaluations, implying the experience

learned from DTLZ variants are effective. Therefore, in most situations, our experience-

based SAEA framework is able to assist MOEA/D-EGO in reaching competitive or even

better optimisation results, with the number of evaluations used for surrogate initialisation

reduced from 10d to only 1d.

MOEA/D-EGO(EB) is less effective on DTLZ7 than on other DTLZ problems, which

might be attributed to the discontinuity of Pareto front on DTLZ7. Note that MOEA/D-

EGO(EB) learns experience from small datasets such as Dm and S∗. The solutions in these

small datasets are sampled at random, hence, the probability of having optimal solutions
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Figure 5.3: Mean Inverted Generational Distance Plus (IGD+) values of 30 runs on the
optimisation of DTLZ test problems. MOEA/D-EGO(EB)s replace the original GP [91]
surrogates in MOEA/D-EGO [120] with our MDKL surrogates. Note that ‘EB out’ indi-
cates the target task is excluded from the range of related tasks during the meta-learning
procedure. MOEA/D-EGO(EB)s and comparison algorithms initialise their surrogates with
10, 100 samples, respectively. Extra 50 evaluations are allowed in the further optimisa-
tion. X-axis denotes the number of evaluations used after the surrogate initialisation. In
comparison to MOEA/D-EGO, both MOEA/D-EGO(EB)s achieve smaller IGD+ values on
DTLZ1, DTLZ2, DTLZ3, DTLZ5 and competitive IGD+ values on DTLZ4, DTLZ6, while
90 evaluations are saved by using experience.
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being sampled is small. However, it is difficult to learn the discontinuity of Pareto front from

the sampled non-optimal solutions. As a result, the experience of ‘there are four discrete

optimal regions’ cannot be learned through such small datasets (|Dm| = 20) collected from

related tasks. However, although MOEA/D-EGO(EB) achieves a larger IGD+ value than

MOEA/D-EGO on DTLZ7, the application of our experience-based SAEA framework is still

acceptable since the 90 evaluations saved from surrogate initialisation can be used for further

evolutionary optimisation.

The experience learned from related tasks also makes MOEA/D-EGO more compet-

itive when compared with other SAEAs. By using MDKL surrogates, significant improve-

ments of optimisation results in terms of the IGD+ value are achieved on DTLZ1, DTLZ2,

DTLZ3, and DTLZ5. As a result, MOEA/D-EGO(EB) achieves the smallest IGD+ val-

ues on DTLZ2 and DTLZ3, and its optimisation results on DTLZ1 and DTLZ5 are much

closer to the best optimisation results (e.g. results obtained by ParEGO and OREA) than

MOEA/D-EGO. Although MOEA/D-EGO(EB) does not achieve the smallest IGD+ val-

ues on all DTLZ problems, it should be noted that MOEA/D-EGO(EB) is still the best

algorithm among comparison SAEAs due to its overall performance. From the statistical

test results reported in the last row of Table 5.5, we can observe that no comparison SAEA

outperforms MOEA/D-EGO(EB) on three DTLZ problems, but MOEA/D-EGO(EB) out-

performs all comparison SAEA on at least three DTLZ problems. Furthermore, the IGD+

values of MOEA/D-EGO(EB) are achieved with an evaluation budget of 60 (10 in surro-

gate initialisation and 50 in evolutionary optimisation). By comparison, the IGD+ values of

other SAEAs are reached with a cost of 150 evaluations, including 100 evaluations used in

surrogate initialisation and 50 evaluations in evolutionary optimisation.

The statistical test results reported in the last row of Table 5.5 show that ParEGO

and OREA are the best two comparison algorithms when compared with our MOEA/D-

EGO(EB). In this paragraph, we want to discuss the advantages of MOEA/D-EGO(EB)

when no extra evaluation is saved. For this purpose, we compare the optimisation perfor-
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Table 5.6: Mean Inverted Generational Distance Plus (IGD+) and standard deviation (in
brackets) of 30 runs on the optimisation of DTLZ test problems. MOEA/D-EGO(EB) is
compared with ParEGO and OREA under the same evaluation budget: 10 evaluations for
surrogate initialisation and 50 evaluations for the optimisation process. ‘+’, ‘≈’, and ‘−’
denote MOEA/D-EGO(EB) is statistically significantly superior to, almost equivalent to,
and inferior to the compared two algorithms in the Wilcoxon rank sum test (significance
level is 0.05), respectively. The last row counts the total win/tie/loss results.

Problem MOEA/D-EGO(EB) ParEGO OREA
DTLZ1 9.70e+1(1.87e+1) 6.70e+1(4.75e+0)− 1.10e+2(3.65e+1)≈
DTLZ2 1.43e-1(2.29e-2) 5.51e-1(5.37e-2)+ 4.28e-1(6.68e-2)+
DTLZ3 1.97e+2 (1.64e+1) 1.84e+2(8.86e+0)≈ 2.72e+2(6.59e+1)+
DTLZ4 4.44e-1(1.35e-1) 6.29e-1(7.99e-2)+ 6.45e-1(1.24e-1)+
DTLZ5 1.13e-1(2.24e-2) 4.32e-1(8.88e-2)+ 3.02e-1(7.63e-2)+
DTLZ6 1.11e+0(5.71e-1) 1.03e+0(4.78e-1)≈ 5.71e+0(6.73e-1)+
DTLZ7 2.47e+0(1.89e+0) 4.38e-1(1.39e-1)− 7.12e+0(1.77e+0)+
+/ ≈ /− -/-/- 3/2/2 6/1/0

mance of these three SAEAs under the same evaluation budget: 10 evaluations (1d) for

surrogate initialisation and 50 evaluations for further optimisation. The statistical test re-

sults are reported in Table 5.6. It can be seen that our MOEA/D-EGO(EB) generally

outperforms the compared SAEAs when only 1d evaluations are used to initialise their sur-

rogates. The effectiveness of our experience-based SAEA framework has been demonstrated

on these examples. Note that OREA is an evolutionary algorithm assisted by ordinal re-

gression surrogates. Currently, our experience-based SAEA framework is applicable to the

SAEAs working with fitness regression surrogates. The meta-learning of ordinal regression

models can be a topic of further research.

The question raised at the beginning of this subsection can be answered by the results

discussed so far. Due to the integration of the experience learned from related tasks (DTLZ

variants), although the evaluation cost of surrogates initialisation has been reduced from 10d

to 1d, our experience-based SAEA framework is still capable of assisting regression-based

SAEAs to reach competitive or even better optimisation results in most situations.
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Table 5.7: Mean Inverted Generational Distance Plus (IGD+) and standard deviation (in
brackets) of 30 runs on the optimisation of DTLZ test problems. MOEA/D-EGO(EB) re-
places the original GP [91] surrogates in MOEA/D-EGO [120] with our MDKL surrogates.
MOEA/D-EGO(EB) and comparison algorithms initialise their surrogates with 10, 60 sam-
ples, respectively. Extra 30 evaluations are allowed in the further optimisation. ‘+’, ‘≈’, and
‘−’ denote MOEA/D-EGO(EB) is statistically significantly superior to, almost equivalent to,
and inferior to the compared algorithms in the Wilcoxon rank sum test (significance level is
0.05), respectively. The last row counts the total win/tie/loss results. Performance improve-
ment can be observed from the comparisons between MOEA/D-EGO(EB) and MOEA/D-
EGO, while 50 evaluations are saved from surrogate initialisation.
Problem MOEA/D-EGO MOEA/D-EGO(EB) ParEGO K-RVEA KTA2 CSEA OREA
DTLZ1 1.07e+2(2.73e+1)≈ 1.03e+2(2.34e+1) 8.70e+1(2.53e+1)− 1.22e+2(3.26e+1)+ 1.15e+2 (3.18e+1)≈ 1.08e+2(2.68e+1)≈ 1.11e+2(2.25e+1)+
DTLZ2 3.49e-1(5.82e-2)+ 1.57e-1(2.29e-2) 3.51e-1(5.01e-2)+ 3.72e-1(4.40e-2)+ 3.57e-1(4.68e-2)+ 3.55e-1(5.23e-2)+ 3.14e-1(3.76e-2)+
DTLZ3 3.07e+2 (5.32e+1)+ 2.03e+2(2.42e+1) 2.16e+2(4.89e+1)≈ 3.53e+2(7.89e+1)+ 3.23e+2(8.82e+1)+ 3.35e+2 (6.95e+1)+ 3.39e+2(7.72e+1)+
DTLZ4 5.45e-1(1.09e-1)≈ 4.91e-1(1.24e-1) 6.36e-1(8.67e-2)+ 5.53e-1(9.96e-2)≈ 5.47e-1(1.04e-1)≈ 5.84e-1(9.75e-2)+ 5.14e-1(1.21e-1)≈
DTLZ5 2.79e-1 (5.69e-2)+ 1.18e-1(2.25e-2) 2.78e-1(5.59e-2)+ 2.82e-1(5.52e-2)+ 2.60e-1(5.59e-2)+ 2.77e-1(4.41e-2)+ 1.99e-1(4.53e-2)+
DTLZ6 2.04e+0(7.33e-1)+ 1.29e+0(6.44e-1) 2.47e+0(7.39e-1)+ 5.23e+0(6.27e-1)+ 4.58e+0(6.47e-1)+ 6.44e+0 (3.59e-1)+ 5.79e+0(6.70e-1)+
DTLZ7 1.90e+0(9.19e-1)− 4.16e+0(2.54e+0) 1.39e+0(1.49e+0)− 3.13e-1(6.17e-2)− 2.05e+0 (2.20e+0)− 5.47e+0(1.34e+0)+ 5.51e+0(1.32e+0)+
+/ ≈ /− 4/2/1 -/-/- 4/1/2 5/1/1 4/2/1 6/1/0 6/1/0

5.4.3 Performance on Extremely Expensive Multi-Objective Opti-

misation

In this subsection and the next two subsections, we conduct three experiments to investigate

the performance of our SAEA framework in-depth. We aim at concluding some empirical

guidelines to help the application of our experience-based SAEA framework.

The aim of this subsection is to answer the question below:

• Is our experience-based SAEA framework more suitable for the optimisation problems

in which evaluations are extremely expensive? In other words, will the advantage of

our SAEA framework become more prominent if the optimisation problems allow a

smaller evaluation budget?

We conduct the experiment described in Section 5.4.2 but with a smaller evaluation budget

than the budget listed in Table 5.4: The size of the initial dataset S∗ is set to 10, 60 for

MOEA/D-EGO(EB) and comparison algorithms, respectively. 30 extra evaluations for fur-

ther optimisation are allowed. The total evaluation budget is 40, 90 for MOEA/D-EGO(EB)

and comparison algorithms, respectively.

The comparison results reported in Table 5.7 and Fig. 5.4 show that MOEA/D-
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Figure 5.4: Mean Inverted Generational Distance Plus (IGD+) values of 30 runs on the
optimisation of DTLZ test problems. MOEA/D-EGO(EB)s and comparison algorithms ini-
tialise their surrogates with 10, 60 samples, respectively. Extra 30 evaluations are allowed
in the further optimisation. Note that ‘EB out’ indicates the target task is excluded from
the range of related tasks during the meta-learning procedure. X-axis denotes the num-
ber of evaluations used after the surrogate initialisation. In comparison to MOEA/D-EGO,
both MOEA/D-EGO(EB)s achieve smaller or competitive IGD+ values on all DTLZ test
problems except for DTLZ7, while 50 evaluations are saved with the assistance from re-
lated tasks. Moreover, MOEA/D-EGO(EB)s achieve the smallest IGD+ values on DTLZ2,
DTLZ3, DTLZ4, DTLZ5 and DTLZ6.
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EGO(EB) has achieved competitive or smaller IGD+ values than MOEA/D-EGO on all

DTLZ problems except DTLZ7. Meanwhile, 5d evaluations have been saved. Consistent

with the results discussed in the last subsection, MOEA/D-EGO(EB) fails to achieve a

competitive result compared to MOEA/D-EGO on DTLZ7 since experience is learned from

small datasets collected from related tasks. Although we set a different evaluation budget

for all SAEAs, the size of datasets for meta-learning |Dm| has not been modified. However,

it can be observed from the statistical test results (see the last row of Tables 5.5 and 5.7)

that MOEA/D-EGO(EB) outperforms the comparison algorithms on 26, 29 test instances

when the total evaluation budget of comparison algorithms is set to 150, 90, respectively.

This answers the question we raised before: The advantage of our experience-based SAEA

framework is more prominent in the extremely expensive problems where a smaller evaluation

budget is allowed. The comparison between the results obtained from Tables 5.5 and 5.7 has

demonstrated that our SAEA framework is preferable when solving optimisation problems

within a very limited evaluation budget.

5.4.4 Influence of Task Similarity

In real-world applications, it is optimistic to assume some related tasks are very similar to

the target task. A more common situation is that all related tasks have limited similarity

to the target task. To investigate the relationship between task similarity and SAEA opti-

misation performance, we also test the performance in an ‘out-of-range’ situation, where the

original DTLZ is excluded from the range of DTLZ variants during the MDKL meta-learning

procedure. As a result, only the DTLZ variants that are quite different from the original

DTLZ problem can be used for experience learning. The ‘out-of-range’ situation eliminates

the probability that MDKL surrogates benefit greatly from the DTLZ variants that are very

similar to the original DTLZ problem. Detailed definitions of the related tasks used in the

‘out-of-range’ situation are given in Section 5.4.2 (Generation of DTLZ variants). Apart
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Table 5.8: Mean Inverted Generational Distance Plus (IGD+) and standard deviation (in
brackets) of 30 runs on the optimisation of DTLZ test problems. ‘Out-of-range’ indicates
the target task is excluded from the range of related tasks during the meta-learning proce-
dure. Both MOEA/D-EGO(EB)s initialise their surrogates with 10, extra 50 evaluations are
allowed in the further optimisation. ‘+’, ‘≈’, and ‘−’ denote the result of the ‘out-of-range’
situation is statistically significantly superior to, almost equivalent to, and inferior to that of
the ‘in-range’ situation in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last two rows count the statistical test results between MOEA/D-EGO(EB)s and other
compared algorithms.

MOEA/D-EGO(EB)s In-range Out-of-range
DTLZ1 9.70e+1(1.87e+1)≈ 9.11e+1(1.53e+1)
DTLZ2 1.43e-1(2.29e-2)≈ 1.41e-1(1.75e-2)
DTLZ3 1.97e+2 (1.64e+1)≈ 1.98e+1(1.51e+1)
DTLZ4 4.44e-1(1.35e-1)≈ 4.96e-1(8.63e-2)
DTLZ5 1.13e-1(2.24e-2)≈ 1.03e-1(2.39e-2)
DTLZ6 1.11e+0(5.71e-1)≈ 1.17e+0(6.88e-1)
DTLZ7 2.47e+0(1.89e+0)≈ 2.86e+0(1.87e+0)
+/ ≈ /− 0/7/0 -/-/-
vs MOEA/D-EGO 4/2/1 4/2/1
vs 6 Comparisons 26/9/7 27/7/8

from the related tasks used, the remaining experimental setups are the same as the setups

described in Sections 5.4.2 and 5.4.3. For the sake of convenience, we denote the situation

we tested in Sections 5.4.2 and 5.4.3 as ‘in-range’ below.

The statistical test results reported in Tables 5.8 and 5.9 show that the ‘out-of-range’

situation achieves competitive IGD+ values to the ‘in-range’ situation on all 7 test instances.

This suggests that the related tasks that are very similar to the target task have a limited

impact on the optimisation performance of our experience-based SAEA framework. Useful

experience can be learned from the related tasks that are not very similar to the target

task. Crucially, when comparing the performance of the ‘out-of-range’ situation and that of

MOEA/D-EGO, we can still observe competitive or improved optimisation results on 6 DTLZ

problems (see Tables 5.8 and 5.9, the row titled by ‘vs MOEA/D-EGO’, or Figs. 5.3 and

5.4). Moreover, it can be seen from the last row of Table 5.8 that the ‘out-of-range’ situation

achieves better/competitive/worse IGD+ values than all compared SAEAs on 27/7/8 test

instances. In comparison, the ‘in-range’ situation achieves better/competitive/worse IGD+
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Table 5.9: Mean Inverted Generational Distance Plus (IGD+) and standard deviation (in
brackets) of 30 runs on the optimisation of DTLZ test problems. ‘Out-of-range’ indicates
the target task is excluded from the range of related tasks during the meta-learning proce-
dure. Both MOEA/D-EGO(EB)s initialise their surrogates with 10, extra 30 evaluations are
allowed in the further optimisation. ‘+’, ‘≈’, and ‘−’ denote the result of the ‘out-of-range’
situation is statistically significantly superior to, almost equivalent to, and inferior to that of
the ‘in-range’ situation in the Wilcoxon rank sum test (significance level is 0.05), respectively.
The last two rows count the statistical test results between MOEA/D-EGO(EB)s and other
compared algorithms.

MOEA/D-EGO(EB)s In-range Out-of-range
DTLZ1 1.03e+2(2.34e+1)≈ 9.84e+1(2.04e+1)
DTLZ2 1.57e-1(2.29e-2)≈ 1.62e-1(1.90e-2)
DTLZ3 2.03e+2(2.42e+1)≈ 2.06e+2(2.13e+1)
DTLZ4 4.91e-1(1.24e-1)≈ 5.20e-1(6.92e-2)
DTLZ5 1.18e-1(2.25e-2)+ 1.11e-1(2.41e-2)
DTLZ6 1.29e+0(6.44e-1)≈ 1.36e+0(7.36e-1)
DTLZ7 4.16e+0(2.54e+0)≈ 4.94e+0(2.31e+0)
+/ ≈ /− 0/7/0 -/-/-
vs MOEA/D-EGO 4/2/1 4/2/1
vs 6 Comparisons 29/8/5 28/9/5

values than all compared SAEAs on 26/9/7 test instances. The difference between these

statistical test results is not significant. Furthermore, similar results can be observed in the

last row of Table 5.9, there is only a minor difference between the optimisation results of

two situations.

Consequently, the related tasks that are very similar to the target task are not es-

sential to the optimisation performance of our experience-based SAEA framework on these

problems. In the ‘out-of-range’ situation, our MOEA/D-EGO(EB) can still reach compet-

itive or better optimisation results than MOEA/D-EGO while using only 1d samples for

surrogate initialisation. The related tasks that are very similar to the target task are not

necessary to the application of our SAEA framework.
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Table 5.10: Mean Inverted Generational Distance Plus (IGD+) and standard deviation
(in brackets) of 30 MOEA/D-EGO(EB) runs on the optimisation of DTLZ test problems.
10 samples are used for initialisation and extra 50 evaluations are allowed in the further
optimisation. |Dm| is the size of the dataset collected from each related task. ‘+’, ‘≈’, and
‘−’ denote the result of |Dm| = 60 is statistically significantly superior to, almost equivalent
to, and inferior to that of |Dm| = 20 in the Wilcoxon rank sum test (significance level is
0.05), respectively. The last row counts the total win/tie/loss results. It shows that using
a large Dm for the meta-learning procedure can improve the optimisation performance of
experience-based SAEA framework.

Problem In-range Out-of-range
|Dm|=20 |Dm|=60 |Dm|=20 |Dm|=60

DTLZ1 9.70e+1(1.87e+1)≈ 9.77e+1(1.73e+1) 9.11e+1(1.53e+1)≈ 9.93e+1(1.87e+1)
DTLZ2 1.43e-1(2.29e-2)+ 1.24e-1(2.11e-2) 1.41e-1(1.75e-2)+ 1.29e-1(2.36e-2)
DTLZ3 1.97e+2 (1.64e+1)≈ 1.98e+2 (2.21e+1) 1.98e+1(1.51e+1)≈ 1.93e+2(1.19e+1)
DTLZ4 4.44e-1(1.35e-1)≈ 5.17e-1(5.68e-2) 4.96e-1(8.63e-2)≈ 5.17e-1(5.38e-2)
DTLZ5 1.13e-1(2.24e-2)+ 9.96e-2(2.18e-2) 1.03e-1(2.39e-2)≈ 1.05e-1(2.73e-2)
DTLZ6 1.11e+0(5.71e-1)≈ 1.04e+0(6.06e-1) 1.17e+0(6.88e-1)≈ 1.22e+0(6.41e-1)
DTLZ7 2.47e+0(1.89e+0)+ 7.49e-1(2.61e-1) 2.86e+0(1.87e+0)+ 6.96e-1(2.41e-1)
+/ ≈ /− 3/4/0 -/-/- 2/5/0 -/-/-

5.4.5 Influence of the Size of Datasets Used in Meta-Learning

We also investigated the performance of our experience-based SAEA framework when differ-

ent sizes of datasets |Dm| are used in the meta-learning procedure. The experimental setups

are the same as the setups of MOEA/D-EGO(EB) in Section 5.4.2 except for |Dm|.

It is evident from Table 5.10 that when each DTLZ variant provides |Dm| = 60

samples for the meta-learning of MDKL surrogates, the performance of both MOEA/D-

EGO(EB)s are improved on 2 or 3 DTLZ problems. Thus, it would be desirable if relatively

large datasets Dm can be sampled from related tasks and then used in the meta-learning

procedure. Particularly, a significant improvement can be observed from the optimisation

results of DTLZ7. As we discussed in Section 5.4.2, the poor performance of our experience-

based optimisation on DTLZ7 is caused by the small |Dm|. Optimal solutions have few

chances to be included in a small Dm, which makes Dm fails to provide the experience about

the discontinuity of optimal regions. In comparison, the experience of ‘optimal regions’ can be

learned from large datasets Dm and thus the optimisation results are improved significantly.
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In conclusion, for our experience-based SAEA framework, a large |Dm| for the meta-

learning procedure indicates more valuable experience can be learned from related tasks,

which further improves the performance of experience-based optimisation. Therefore, when

applying our experience-based SAEA framework to real-world optimisation problems, it is

preferable to collect more data from related tasks for experience learning.

5.4.6 Performance on Expensive Constrained Optimisation (Engine

Calibration Problem)

The experiments on multi-objective benchmark test problems have investigated the perfor-

mance of our SAEA framework in depth. In this subsection, we finally study a real-world

gasoline motor engine calibration problem, which is an expensive constrained single-objective

optimisation problem. This experiment covers the optimisation scenarios of single-objective

optimisation, constrained optimisation, and real-world applications. Hence, it serves as an

example to demonstrate the generality and broad applicability of our experience-based

SAEA framework.

The calibration problem has 6 adjustable engine parameters including throttle angle,

waste gate orifice, ignition timing, valve timings, state of injection, and air-fuel-ratio. The

calibration aims at minimising the BSFC and satisfying 4 constraints in terms of temperature,

pressure, CA50, and load simultaneously [123].

Comparison algorithms:

Since the comparison algorithms in the DTLZ optimisation experiments are not designed for

handling constrained single-objective optimisation, our comparison is conducted with two

state-of-the-art constrained optimisation algorithms used in industry [123]: a variant of EGO

designed to handle constrained optimisation problems (denoted by constrained_EGO), and

a GA customised for this calibration problem (denoted by adaptiveGA). The settings of
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comparison algorithms are the same as suggested in [123]. In this experiment, we apply our

SAEA framework to constrained_EGO and investigate its optimisation performance. The

GP surrogates in constrained_EGO are replaced by our MDKL surrogates to conduct the

comparison, and the resulting algorithm is denoted as constrained_EGO(EB).

Experimental setups:

The setups of related tasks (N,Di) are the same as described in Section 5.4.1. In the meta-

learning procedure, both support set and query set contain 6 data points, thus |Dm| = 12.

The total evaluation budget for all algorithms is set to 60. For adaptiveGA, all evaluations

are used in the optimisation process as it is not a SAEA. For constrained_EGO, 40 samples

are used to initialise the surrogates and 20 extra evaluations are used in the optimisation

process. For constrained_EGO(EB), only 6 samples are used to initialise MDKL surrogates,

and the remaining evaluations are used for further optimisation.

Optimisation results and analysis:

The mean normalised BSFC results and the mean number of feasible solutions found over the

number of evaluations used are plotted in Figs. 5.5a and 5.5c, respectively. The statistical

results of three comparison algorithms are illustrated in Figs. 5.5b and 5.5d. From Fig. 5.5a,

it can be observed that the minimal BSFC obtained by constrained_EGO(EB) decreases

drastically in the first few evaluations, implying the experience learned from related tasks is

working. In comparison, the minimal BSFC obtained by adaptiveGA and constrained_EGO

drops in a relatively slow rate, even though constrained_EGO has used 34 more samples to

initialise its surrogates. The star marker denotes the point at which constrained_EGO(EB)

has evaluated 20 samples after surrogate initialisation. It is worth noting that when 20

samples have been evaluated in the optimisation, constrained_EGO(EB) achieves a smaller

BSFC value than constrained_EGO. In addition, after the star marker, the decrease of BSFC

becomes slow as constrained_EGO(EB) has reached the optimal region that we found so
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(a) (b)

(c) (d)

Figure 5.5: Results of 30 runs on the engine calibration problem, all BSFC values are nor-
malised. The evaluation budget is set to 60, including 40, 6 samples used to initialise surro-
gates for constrained_EGO and its experience-based variant, respectively. Figs. (a) and (c)
show how BSFC and the number of feasible solutions vary with the number of evaluations,
respectively. The star markers highlight the results achieved when 20 evaluations are used in
the optimisation process. It can be seen that constrained_EGO(EB) can achieve a smaller
BSFC value and find more feasible solutions than the compared algorithms, indicating the
experience learned from related tasks is effective in objective function and constraint func-
tions. Figs. (b) and (d) illustrate the statistical results of BSFC and the number of feasible
solutions when the evaluation budget has run out. Mean values are shown on the top, the
results in brackets are achieved at the star markers of Figs. (a) and (c).
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far. Therefore, the further improvement in the normalised BSFC value is not significant and

thus hard to be observed. The advantages of our experience-based SAEA framework can

also be observed in constraint handling. In Figs. 5.5c and 5.5d, constrained_EGO(EB) finds

more feasible solutions than the two comparison algorithms. These results indicate that our

SAEA framework improves the performance of constrained_EGO on both objective function

and constraint functions. Meanwhile, only 1d evaluations are used to initialise surrogates.

Discussion on runtime:

It should be noted that real engine performance evaluations on engine facilities are very

costly in terms of both time and financial budget [116]. Since a single real engine per-

formance evaluation can cost several hours [59, 116], the time cost of the meta-learning

procedure is negligible as it takes only a few minutes. Savings from reduced real engine

performance evaluations on engine facilities and the reduced development cycle due to our

SAEA framework could amount to millions of dollars [116]. Therefore, our SAEA framework

is an effective and efficient method to solve this real-world calibration problem.

5.4.7 Discussions

Our computational studies have demonstrated the following: First, we provide empirical ev-

idence to show the effectiveness of learning experience: The meta-learning of neural network

parameters and base kernel parameters are essential to the modelling accuracy of a MDKL

model. As a result, our MDKL model outperforms the compared meta-learning modelling

and non-meta-learning modelling methods on both the engine fuel consumption regression

task and the sinusoid function regression task.

Second, we demonstrate the main contribution of this work: In most situations, our

proposed experience-based SAEA framework can assist regression-based SAEAs to reach

competitive or even better optimisation results, while the cost of surrogate initialisation is
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only 1d samples. Due to the effectiveness of saving evaluations, our SAEA framework is

preferable to other SAEAs when solving problems within a very limited evaluation budget.

Moreover, some empirical guidelines are concluded to help the application of our SAEA

framework. For the influence of task similarity, we find that related tasks that are very similar

to the target task are not necessary to the application of our approach. The influence of

these similar tasks on the optimisation performance is limited. Our experience-based SAEA

framework can achieve competitive results without datasets from very similar related tasks.

In addition, for the related tasks used for meta-learning, we have demonstrated that more

useful experience can be learned if more data points are sampled from related tasks.

Third, the effectiveness of our SAEA framework is validated on a real-world engine cal-

ibration problem. Competitive or better results are achieved on the objective and constraint

functions, while 1d samples are used to initialise surrogates. Therefore, our experience-based

SAEA framework can also be applied to optimisation scenarios such as single-objective op-

timisation and constrained optimisation.

5.5 Chapter Summary

Experienced human engineers are good at tackling new and unseen optimisation problems

in comparison to novices. There has been an ongoing effort in evolutionary optimisation

trying to capture and then use such experience [57, 96, 95]. In this chapter, we present

an experience-based SAEA framework to solve expensive optimisation problems. To learn

experience from related tasks, a novel meta-learning modelling method, namely MDKL, has

been developed. Our MDKL model learns the domain-specific features of a set of related

tasks from plenty of small datasets. The learned experience is integrated with very lim-

ited examples collected from the target optimisation problem, which improves the modelling

efficiency and approximation accuracy. The effectiveness of learning experience has been

demonstrated by comparing our MDKL modelling method with other meta-learning mod-
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elling and non-meta-learning modelling methods. Our experience-based SAEA framework

uses MDKL models as surrogates and an MSE-based update criterion is proposed to manage

MDKL surrogates during the evolutionary optimisation. Our SAEA framework is applica-

ble to any regression-based SAEAs by replacing their original surrogates with our MDKL

surrogates. Our computational studies have demonstrated the effectiveness of our SAEA

framework on multi-objective optimisation and constrained single-objective optimisation (a

real-world engine application). On most test problems, better or competitive optimisation

results are achieved when only 1d samples are used to initialise our surrogates. It has been

demonstrated that the advantage of our SAEA framework becomes more prominent on the

extremely expensive problems where very few evaluations are allowed.

The contributions of this chapter can be summarised as:

• A novel meta-learning method (Meta Deep Kernel Learning, MDKL) is developed to

learn experience from related expensive tasks. Based on the learned experience, a

regression-based surrogate is generated and then adapted to approximate the fitness

landscape of the target task. The surrogate is derived from the deep kernel learning

framework in which a Gaussian process employs a deep kernel to work as its covariance

function. Different from existing deep kernel learning models that are trained through

meta-learning, our method learns only one common neural network for all related tasks

and adapts task-specific parameters for the base kernel of a Gaussian process. Such a

framework simplifies the architecture of experience learning as the model complexity

will not grow with the number of past tasks, yet it is still able to adapt itself to a new

task explicitly. This is an answer to the first question in Section 1.3.3.

• We propose an experience-based SAEA framework to combine regression-based SAEAs

with our experience learning method. In the framework, our meta-learning model is

employed as surrogates to learn experience and an update strategy is designed to adapt

surrogates constantly. Such a framework is compatible with existing regression-based
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SAEAs, making these SAEAs can be assisted by the experience from related tasks.

Note that our SAEA framework is a general framework as it is not designed for any

specific scenario of optimisation problems, such as single-objective optimisation, multi-

objective optimisation, constrained optimisation, large-scale optimisation, or combina-

torial optimisation. However, due to the page limitation, this thesis focuses on only

the scenarios of multi-objective optimisation and constrained optimisation, which have

not been investigated before This is an answer to the second question in Section 1.3.3.
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Chapter 6

Conclusions and Future Work

This chapter concludes the contributions of this thesis and discusses some potential directions

for future work related to the work presented in this thesis.

6.1 Conclusions

This thesis is dedicated to develop novel and efficient SAEAs to address expensive optimisa-

tion problems, especially for EMOPs and ECOPs. The contents presented in Chapters 3-5

have answered the research questions we raised in Section 1.3.

In Chapter 3, two ordinal-regression-based SAEAs, OREA and AOREA, are proposed

to address EMOPs. An ordinal-regression-based surrogate is developed to approximate the

dominance-based ordinal landscape for two SAEAs. This ordinal-regression-based surrogate

is computationally efficient since the landscape of multi-dimensional objective space is ap-

proximated using only one surrogate. Therefore, our research question “How to construct

an efficient surrogate to approximate the ordinal landscape of multi-objective optimisation

problems?" is answered. Our computational studies on DTLZ benchmark test problems

show that OREA outperforms state-of-the-art comparison SAEAs in terms of IGD+ values

when a limited fitness evaluation budget is available. Such an observation indicates that
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the hybrid of individual-based and generation-based evolution control (we used in OREA)

is an effective surrogate management strategy to balance convergence and diversity for the

ordinal-regression-based surrogate. In addition, AOREA achieves smaller IGD+ values on

EMOPs than OREA and other comparison SAEAs, implying that the adaptive surrogate

management strategy used in AOREA is preferable to the hybrid one. In other words,

it is desirable to adapt the balance between convergence and diversity dynamically as the

evolutionary optimisation state changes. The observations discussed above have answered

our research question “How to balance convergence and diversity when using our ordinal

surrogate in SAEAs to solve EMOPs".

Chapter 4 takes constraints into consideration and focuses on addressing a real-world

ECOP, gasoline motor engine calibration. In many real-world applications, the feasibility

of solutions are mainly affected by a subset of all decision variables. Inspired by this phe-

nomenon, a surrogate-assisted bilevel evolutionary algorithm, namely SAB-DE, is proposed

to use a bilevel architecture to solve real-world ECOPs. In the bilevel architecture, decision

variables that have significant impacts on solution feasibility would be divided into lower-

level variables and then optimised to handle constraints, while remaining decision variables

are classified as upper-level variables and would be adjusted to optimise objective(s). To

improve the efficiency of handling constraints, a PCA-based sensitivity analysis method is

developed to quantify the impact of decision variables on solution feasibility. Our experimen-

tal studies show that our sensitivity analysis method are capable of identifying the decision

variables which have significant impacts on solution feasibility, resulting in a reasonable

division of upper-level and lower-level variables. In addition, in lower-level optimisation,

our ordinal-regression-based surrogate is adapted to approximate the ordinal landscape of

constraints. The reported comparison experiments have demonstrated that using an ordinal-

regression-based surrogate can reach a higher prediction accuracy on solution feasibility than

using multiple constraint approximation surrogates or using a surrogate to approximate the

total violation of constraints. Moreover, the computational efficiency of using an ordinal-
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regression-based surrogate to handle multiple constraints has been demonstrated. Finally, it

can be observed from the engine calibration experiments that our SAB-DE and ε−selection

environmental selection strategy are effective. SAB-DE achieves better BSFC results and

also find more feasible solutions than compared expensive constrained optimisation algo-

rithms. The contributions concluded above have answered the research questions listed in

Section 1.3.2.

To endow SAEAs with the capability of learning experience and make SAEAs more

intelligent, in Chapter 5, an experience-based optimisation framework is proposed to address

very expensive optimisation problems. In this experience-based optimisation framework, a

meta-learning method, called MDKL, is developed to learn experience from related expen-

sive optimisation problems. Our studies show that the MDKL model is effective in learning

experience and all MDKL components have contributed to the performance of learning ex-

perience. An update strategy is designed to use the MDKL model in the experience-based

optimisation framework. The performance of experience-based expensive optimisation is

tested on two representative expensive optimisation scenarios: EMOPs and ECOPs, which

are the research topics this thesis studied in previous chapters. Our experimental studies

have demonstrated that the idea of experience-based optimisation works for expensive opti-

misation, especially for very expensive optimisation where only a few fitness evaluations are

allowed. In comparison to state-of-the-art SAEAs, experience-based SAEAs have achieved

better or competitive optimisation results with a cost of fewer fitness evaluations, showing

its effectiveness and efficiency on addressing (very) expensive optimisation problems. In ad-

dition, some empirical guidances are concluded to help the application of experience-based

expensive optimisation in real-world applications. Our studies show that very similar and re-

lated optimisation problems are not necessary for learning experience. Moreover, increasing

the size of datasets collected from related optimisation problems is beneficial to the learning

of useful experience.
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6.2 Future Work

There are four possible research directions for future work: compatibility, generalisation,

development, and completeness.

From the perspective of compatibility, the compatibility of our proposed ordinal-

regression-based surrogate and other SAEAs can be studied. Also, the compatibility of

the adaptive management strategy and other SAEAs can be studied. Furthermore, the

surrogates employed in SAB-DE are Kriging models. Considering diverse surrogate modelling

methods have been developed to approximate the objective and constraint functions [100],

the performance of combinations of SAB-DE framework and different surrogates could be

studied to discover the most appropriate and compatible combination.

To investigate the generalisation of our methodologies, it would be interesting to

examine the performance of our methodologies in more expensive optimisation scenarios. For

example, the optimisation performance of OREA and AOREA for expensive many-objective

optimisation problems can be investigated. Besides, the engine calibration problem solved

in Chapter 4 has only one objective, and the performance of SAB-DE on expensive multi-

objective constrained optimisation problems needs further investigation. Additionally, while

the constraints discussed in the engine calibration problem are all inequality constraints.

Equality constraints need to be considered in the future. Furthermore, different types of

real-world engines [116, 98] should be considered in our study to evaluate the effectiveness

of the SAB-DE framework. And it would be interesting to investigate whether the bilevel

architecture could serve as a generic constraint handling method for constrained optimisation

in general.

From the view of algorithm development, developing new methodologies to further

improve the optimisation performance of the methods proposed in this thesis could be a

direction of future work. For our adaptive surrogate management strategy, different criteria

can be developed to update the state of global search. For the SAEA without reference vec-
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tors, more diversity maintenance methods can be designed and introduced to the adaptive

management strategy. Also, as discussed in the last paragraph of Section 3.4, the distri-

bution of non-dominated solutions is not perfect and there are some spaces to improve it.

Additionally, some of the techniques developed for SAEAs for single-objective optimisation

[100] could be adapted to the multi-objective case.

Finally, considering the completeness of research, future work could be conducted

to address the open research questions that have not solved in this thesis. For example,

the precise definition of experience is still unclear. Different work so far seems to have

captured different aspects of experience. A more precise and comprehensive definition of

optimisation experience is needed. It is also a challenging task to represent such experience

formally. As regard to the SAEA work in Chapter 5, there are two specific future research

directions. First, we do not have a mathematical definition of related tasks. Although our

computational studies have demonstrated that the experience learned from a set of related

tasks that differ from the target task is beneficial to the optimisation, we cannot guarantee

the optimisation performance if we further decrease the similarity between the related tasks

and the target task. It is very interesting to study similarity measures between tasks in the

context of experience-based SAEA framework. In fact, this is also a general research topic

that is relevant to other experience-based optimisation methods, such as transfer optimisation

[78, 79]. Second, the proposed framework is currently for regression-based SAEAs only. As

we can see from the DTLZ optimisation experiments, classification-based SAEAs and ordinal-

regression-based SAEAs could be more effective sometimes. These SAEAs learn surrogates

from user-assigned class labels or ordinal relationships, instead of original fitness values. It

is an interesting future work to do meta-learning from user-assigned values.
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