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ABSTRACT

Many-body localisation is a phenomenon in interacting, disordered systems and is a robust

way of avoiding thermalisation. It has a number of interesting physical properties includ-

ing giving rise to a finite-temperature insulating state as well as logarithmic entanglement

growth with time. Although experimental progress has been made in systems of ultracold

atoms due to isolation from the environment being possible, there have been limited de-

velopments in solid-state systems where the presence of phonons restores transport and

destroys localisation. This work focuses on identifying signatures of (i) electron-phonon

decoupling in suspended thin films and (ii) the absence of thermalisation in quantum dots.

Both tasks will allow for experimental progress in identifying electronic systems that are

suitable for trying to observe many-body localisation.
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CHAPTER 1

INTRODUCTION

Quantum transport and mesoscopics, the latter of which lies between the more familiar

areas of microscopic and macroscopic physics, both contain many interesting physical

transport phenomena such as the integer and fractional quantum Hall effects (see for ex-

ample [1, 2]), universal conductance fluctuations [3–5], the zero bias anomaly [6, 7] and

the related Coulomb blockade [8–10], and localisation [11–17]. The Coulomb blockade

and localisation will be discussed in this thesis. The understanding of quantum trans-

port in mesoscopic devices has led to developments in a variety of applications, most

notably transistors [18, 19] which are used in most modern technologies. This particu-

lar work focuses on many-body localisation (MBL), where an interacting system can fail

to thermalise even at a finite temperature [20], leading to the vanishing of transport as

well as many other properties that are unique to this state (see reviews [15–17]). MBL

is of interest for various reasons, from studying fundamental physics and the way that

systems thermalise (which is true in most instances), to applications in quantum com-

puters as they retain details of the initial state, so can be used to overcome problems

of decoherence and the loss of information due to noise (see for example [21] and the

references therein). Despite the significant theoretical interest in MBL, the experimental

progress has had mixed success. In particular, the observation in disordered electronic

systems, where MBL was initially predicted [20, 22], has been difficult to achieve due to
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CHAPTER 1. INTRODUCTION

the presence of phonons which lead to thermalisation with the lattice. In order to assist

the experimental developments, this work explores the conditions for observing MBL in

solid-state systems, namely the electron-phonon decoupling requirement alongside other

signatures of the absence of thermalisation. Although the presence of these signatures is

not a guarantee of MBL, which has a number of other properties associated with it, they

are still important for identifying systems where MBL may be observed experimentally.

1.1 Thesis Overview

This thesis consists of two main research topics, linked by the aim of making progress to-

wards the experimental observation of MBL in electronic systems. Before looking at these

in detail however, a background in both mesoscopics and some of the associated experi-

ments and transport phenomena will be discussed in this chapter, laying the foundations

for a more in depth discussion of Anderson (single-particle) localisation and many-body

localisation in Chapter 2. Here, consideration will be given to both theoretical and exper-

imental aspects and the limitations for observing MBL in electronic systems will be made

clear, most notably the coupling to the lattice. This problem will be addressed following

the introduction of the theoretical framework of the Keldysh formalism in Chapter 3.

This method is particularly well-suited for non-equilibrium physics, of which MBL is an

example. Chapter 4 applies the techniques from Chapter 3 to address the requirement of

electron-phonon decoupling in solid-state systems. First, the background to the electron-

phonon interaction will be presented and following this, the signatures of decoupling will

be identified and further discussed in the manuscript Electron-Phonon Decoupling in Two

Dimensions [23]. In this work, it will be emphasised that should such a decoupling be

observed it is not a signature of MBL itself, merely a requirement for it and other methods

of identifying MBL should be found. Quantum dots present a viable system for initially

studying these signatures, as they undergo a localisation-delocalisation transition in Fock

space [24], similar to that which occurs in MBL systems. Therefore, in Chapter 5, the

2



1.2. MESOSCOPICS AND TRANSPORT REGIMES

effect of the absence of thermalisation in a dot asymmetrically coupled to the leads will

be explored in the manuscript Coulomb staircase in an asymmetrically coupled quantum

dot [25] after the background on the Coulomb blockade regime and the concept of lo-

calisation in quantum dots has been provided. A similar setup for a dot symmetrically

coupled to the leads will be explored in Chapter 6, where the manuscript Coulomb block-

ade in a non-thermalized quantum dot [26] is included. In this work a clear signature

of the absence of thermalisation in the differential conductance is identified. After this,

possible directions of future research will be discussed with an emphasis on calculating the

electronic noise and higher moments of current fluctuations. These can be used as a sig-

nature of MBL [27] because they are expected to diverge as the localisation-delocalisation

transition is approached. Finally, conclusions will be drawn in Chapter 7.

1.2 Mesoscopics and Transport Regimes

As briefly outlined in the introduction to this thesis, mesoscopic systems exhibit a mul-

titude of different transport phenomena. One of the primary reasons for this is the

importance of phase coherence in these systems. To characterise this in a system, there

exists a length scale known as the phase coherence length, Lφ, which is the length scale

over which the motion of electrons stays coherent. In mesoscopic systems this length is

comparable to or greater than the system size, L ≲ Lφ, so that coherence is important

across the system and that interference effects play a key role [14, 18, 28, 29]. Such a

scenario arises in small conductors and semiconductors which can have a size of the order

of tens of nanometres up to microns [18, 29–31]. This is in contrast to classical systems

which have much larger system sizes, so that the electrons decohere across the sample

and interference effects are therefore no longer important. It is in this way that the phase

coherence length can determine the dimensionality of a mesoscopic system.

In addition to the size of the system and the phase coherence length, there are a number

of other length scales involved and it is the interplay between these which determines

3



CHAPTER 1. INTRODUCTION

the transport properties. First, there is the de Broglie wavelength of the electrons, λ,

although it is the Fermi wavelength, λF = 2π/kF (kF being the Fermi wavenumber),

that is often the relevant quantity as the electrons involved in transport are those near

the Fermi surface. This length determines whether the wave nature of the electrons is

relevant and is typically a microscopic scale of the order of nanometers [18, 29, 31]. An

important length scale when discussing transport in mesoscopic systems is the mean free

path, l = vFτ , where vF is the Fermi velocity and τ is the elastic scattering time. This is

the typical distance before an electron scatters elastically, for example from an impurity

in the sample, and hence it is important in determining whether the transport across a

regime is ballistic or diffusive. In a similar manner to how the mean free path is related to

the elastic scattering time, the phase coherence length can be related to a timescale. This

time is the phase-breaking time, τφ, and is the time between scattering events that destroy

coherence1. There are a variety of processes that can destroy phase coherence including

the scattering of electrons off dynamical impurities (for example magnetic impurities) [32],

electron-electron interactions [33], and temperature fluctuations, with the latter having a

dependence τφ ∼ T−p with p > 0 [14].

The timescale, τφ, is not related to the elastic scattering time, τ , as elastic scattering

events do not change the phase relationship between different electrons. Therefore, com-

paring the two timescales can give insight into the transport properties of the system. If

τ ≳ τφ, then across a phase coherent region the motion is ballistic and Lφ = vFτφ. On

the other hand, if τφ ≫ τ , then there are many scattering events within a phase coherent

region and so the motion is diffusive across the region, leading to L2
φ = Dτφ, with the

diffusion constant D = v2Fτ/d, where d is the dimensionality of the system. This regime is

of particular importance in this work due to the presence of disorder, necessary for local-

isation, which results in a small mean free path, so that the motion is typically diffusive.

The final length scale that is relevant for this work is the localisation length and this will

be introduced in more detail in the coming sections.

1This time is closely related to the inelastic scattering time although there can be some differences
when low-energy scattering processes become important [30].

4



1.3. TWO-DIMENSIONAL ELECTRON GAS

1.3 Two-Dimensional Electron Gas

The interest in mesoscopic physics increased drastically as experimental methods ad-

vanced, meaning that these effects could be studied. One of the major platforms for

studying mesoscopic physics is a two-dimensional electron gas (2DEG) - see [29, 34] for

reviews. This is typically formed using a semiconductor heterojunction where semicon-

ductors with different band gaps and Fermi energies are brought together, forming an

electron gas at the interface. This occurs as electrons flow from the material with the

higher Femi energy to that with the lower until equilibrium is reached when the Fermi

levels are equal. This flow of electrons leaves behind positively charged ions, establishing

an electric field which causes the bands to bend in both materials and a potential well is

formed at the interface - this is the 2DEG - see Fig. 1.1.

(a) (b)

Figure 1.1: The two-dimensional electron gas (2DEG). (a): The semiconductor het-
erostructure made using GaAs and AlGaAs. (b): The bending of the bands at the
interface between the two semiconductors. The 2DEG sits in the well that is formed at
the interface, as shown by the confined wave function. Figure taken from [31].

One of the most common ways to form a 2DEG structure is to build it layer-by-

layer using molecular-beam epitaxy (MBE) with the two semiconductors being GaAs and

AlGaAs due to the ability to form a 2DEG that is clean (has a large mean free path) and

has a high mobility [35], though disordered samples can also be made. The 2DEG can be

manipulated further using a variety of gate voltages which are applied by patterning gold

wires onto the sample in the desired configuration, allowing alterations to the electron

density and even the dimensionality of the sample. This allows the formation of quantum

wires, quantum point contacts (1d), and quantum dots (0d) [36–38]. This versatility and
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CHAPTER 1. INTRODUCTION

access to many different regimes makes a 2DEG extremely useful for studying mesoscopic

physics in solid-state systems.

1.4 Transport in a Clean Metal

Transport properties of a mesoscopic system are often of interest theoretically and ex-

perimentally (see [29] for a review) and therefore a very common quantity to deal with

is the conductance, G of the system, which relates the current, I, to an applied bias, V .

This is done either through G = I/V , typically used in a linear regime, or the differen-

tial conductance G = dI/dV in the nonlinear regime. The conductance depends on the

dimensions of the system,

G = σ
A

L
=⇒ G ≈ σLd−2, (1.1)

where A is the cross-sectional area, L is the length of the sample, d is the dimensionality

and σ is the conductivity. The conductivity can often be a more useful quantity as it does

not depend on the dimensions of the sample, though both the conductivity and conduc-

tance are measured in transport experiments. The simplest model of the conductivity is

the Drude model, which treats the electrons of mass m and charge e as an ideal gas with

electron density n. This leads to

σ0 =
ne2τ

m
, (1.2)

where τ will depend on the amount of disorder in the system. This is a reasonable model

for clean, macroscopic metals.

1.4.1 Fermi Liquid Theory

A more accurate model for describing a metal is Fermi liquid theory [28, 39, 40], which

uses quasiparticles (electron-hole pairs) to describe the system. This model acknowledges

the electrons as fermions that obey Fermi-Dirac statistics and therefore the excitations

(the quasiparticles) have an energy, ε, and momentum, p, that should be measured with

6



1.4. TRANSPORT IN A CLEAN METAL

respect to the Fermi surface. The ‘electron’-like excitation has an energy

ξ = ε− εF ≈ vF(p− pF), (1.3)

where εF, vF, pF are the Fermi energy, velocity and momentum respectively and p = |p|.

In the approximate equality, the energy has been linearised around the Fermi surface,

which is valid for small quasiparticle energies. This region of small quasiparticle energies

is in fact the region of validity of Fermi liquid theory, as the quasiparticles are only well-

defined if their width (inverse of their lifetime) is significantly smaller than their energy,

γ ≪ ξ, with [28,39,40]

γ ≈ ξ2

εF
. (1.4)

Therefore, if the system is in equilibrium but has a finite temperature, then ξ ∼ T and

the low quasiparticle energy corresponds to low temperatures, T ≪ εF. This framework

is a relatively simple way of incorporating electron-electron interactions into the model of

a metal and its consequences of excitations being located near the Fermi surface can be

used in many instances, including in quantum field theory (QFT) - see Chapter 3. QFT is

a powerful formalism that allows for the incorporation of interactions and disorder when

calculating physical properties, for example the conductance.

1.4.2 Disorder

The result for the conductance in Eq. (1.1) is for a clean, macroscopic metal. The amount

of disorder in a system is characterised by the parameter kFl and in a clean metal kFl ≫ 1.

As the amount of disorder is increased, the mean free path is made shorter, reducing this

parameter. When it becomes comparable to one, the mean free path is comparable to the

Fermi wavelength of the electrons. At this point, the electrons can no longer be treated

as classical particles and the quantum nature of them must be included. This is known

as the Ioffe-Regel criterion [14, 41] and in the case of transport it represents the point at

which Drude conductivity breaks down and the effects of localisation become important.

7



CHAPTER 1. INTRODUCTION

In the next chapter, the strongly disordered regime (kFl ≪ 1) will be considered through

a discussion of Anderson localisation, however before that, it is worth noting that even

in the case of a good metal there are still quantum corrections to the conductivity in the

presence of weak disorder.

1.5 Weak Localisation

The presence of disorder in the system causes electrons to scatter and can lead to diffusive

motion across a sample. Additionally, if the phase coherence length is larger than the

mean free path, then the transport is diffusive and electrons can scatter multiple times

across a phase coherent region and therefore interfere with each other [14, 28, 42]. To see

the effect this has on the conductivity across a phase-coherent region, consider an electron

going from x1 to x2. The probability, P , of such a motion is given by the sum over paths

between the two points with amplitudes, Ai = |Ai|eiSi ,

P (x1 → x2) =
∣∣∣
∑

i

Ai

∣∣∣
2

=
∑

i

|Ai|2 +
∑

i ̸=j

|Ai||Aj|ei(Si−Sj), (1.5)

where Si is the action of path i. The final term above has its origins in quantum mechanics

as it represents the interference between different paths. Generally, the difference in length

between two paths is large enough that they have different phases. Therefore, when

the sum over all paths is performed, this interference term averages to zero due to its

oscillatory nature. However, paths that return to the same point and are time-reversible

(i.e. i = j) create a loop and cannot be neglected in the same way. This is because going

along the loop forwards and backwards gives the same phase, so the paths are coherent

and the interference term now contributes. Through the use of Eq. (1.5), it can be seen

that the return probability is twice that of moving to a different point. Therefore, the

electron is less likely to diffuse away than the classical case and so the conductivity drops.

The correction to the conductivity due to this coherent backscattering is determined by

the probability of having trajectories where the electrons return to the same point and

8



1.5. WEAK LOCALISATION

can be calculated more rigorously using QFT2, though here a simple argument is outlined

that produces the correct behaviour [14,28,42].

As an electron has a linear spatial extent of λ ≈ λF, the cross-sectional area of a path

in d-dimensions is ∼ λd−1
F . The infinitesimal length of a path is then given by vFdt, so that

the volume element of a single path is vFλ
d−1
F dt. After a time t the total volume available

to the electron diffusing through the system with diffusion constant, D, is ∼ (Dt)d/2, so

the probability of returning in a time frame t to t+ dt is ∼ vFλ
d−1
F dt/(Dt)d/2. This gives

the correction to the conductivity

σ − σ0
σ0

=
∆σ

σ0
∼ −

∫ τφ

τ

vFλ
d−1
F dt

(Dt)d/2
. (1.6)

The integral goes from τ as diffusion occurs for t > τ to τφ as this is where the breakdown

of phase coherence occurs. The integration in Eq. (1.6) can then be performed for d =

1, 2, 3 and after expressing the times in terms of the relevant length scales, the correction

to the conductivity is given by

∆σ

σ0
∼





−
(
λF

l

)2
+

λ2
F

lLφ
, d = 3,

−λF

l
ln
(

Lφ

l

)
, d = 2,

−
(

Lφ

l
− 1
)
, d = 1.

(1.7)

In the 3d case, the first term is significantly larger than the second though the smaller

term is retained as it contains Lφ and therefore the temperature dependence. As T is

decreased, the coherence length grows until it becomes larger than the system size. At

this point the entire system is phase coherent and the upper integration limit should be

replaced by the time to diffuse across the system, which has the consequence of making

the replacement Lφ → L in the correction to the conductivity, Eq. (1.7).

The weak localisation corrections are small for kFl ≫ 1, however these corrections

are not guaranteed to be small in strongly disordered systems and once the corrections

2The derivation can be found in many textbooks on QFT, for example, [43, 44].
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CHAPTER 1. INTRODUCTION

begin to become large, it is more appropriate to consider the system moving towards the

strongly localised regime, which will be discussed in more detail in the next chapter. The

length scale at which this occurs is the localisation length, ξ, and can be estimated from

Eq. (1.7) by demanding that |∆σ/σ0| ∼ 1 when the phase coherence length or the system

size (depending on which is involved in the conductivity correction) is approximately equal

to the localisation length [28]. The existence of a localisation length has the following

consequence; if Lφ ≪ ξ, the system is in the weak localisation regime, given by Eq. (1.7),

where the interference correction to the conductivity is small. Strong localisation cannot

occur as it requires phase coherence across the entire localised region. However, in the

opposite limit, Lφ ≫ ξ, strong localisation is able to occur before the phase coherence is

lost and the system is in the strongly localised regime, which will be discussed more in

the following chapter. In the case where the phase coherence length is much larger than

the system size (as can occur at very low temperatures), then the same arguments apply

but for L instead of Lφ.
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CHAPTER 2

LOCALISATION

In this chapter, the concept of localisation in electronic systems will be explored. Previ-

ously, it was shown that quantum corrections can reduce the conductivity in disordered

systems by increasing the probability of return and therefore reducing the probability of

diffusing away. This weak localisation correction is valid in weakly disordered materials

where kFl ≫ 1. In systems where the disorder is increased, such that kFl ≲ 1, then

the quantum corrections are no longer small and the regime of Anderson localisation is

entered. This chapter will explain this regime and explore how finite temperatures and

phonons can destroy localisation. The role of electron-electron interactions will then be

discussed and how this is not necessarily sufficient to destroy localisation, leading to a

finite-temperature insulating state, this phenomenon is many-body localisation (MBL). A

discussion of the phenomena associated with MBL will follow this in addition to some of

the experimental signatures and the problems with observing MBL in solid-state systems.

2.1 Anderson Localisation

Anderson localisation is a single-particle phenomenon in disordered materials, where the

conductivity vanishes at T = 0, due to a wave function,

|ψ(x)|2 ∼ e−|x|/ξ, (2.1)
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CHAPTER 2. LOCALISATION

that decays exponentially with a natural length, ξ, known as the localisation length.

Localisation was initially predicted in 1958 when P. W. Anderson studied a hopping

model on a disordered lattice at T = 0 [45]. He considered a tight-binding model with

the Hamiltonian

H =
∑

i

εic
†
ici +

∑

⟨ij⟩

(
Vijc

†
icj + h.c.

)
, (2.2)

where c†i (ci) are the creation (annihilation) operators for electrons on a site i and ⟨ij⟩

indicates the sum is over the nearest neighbour pairs. Either (or both) the onsite energy,

εi, or the hopping amplitude, Vij, can be random to represent contributions to diagonal

and off-diagonal disorder respectively. If the disorder is taken to be diagonal then Vij = V

and the onsite energies are randomly drawn from the interval εi ∈ [−W,W ], with the

parameter W/V describing the amount of disorder in the system. For vanishing disorder

W/V → 0, the electrons are free to hop (with some weak scattering) so are delocalised

across the lattice. In the opposite limit where disorder dominates the system,W/V → ∞,

the electrons are strongly localised to a single site and therefore, as Anderson found, there

is a localisation-delocalisation transition at a critical amount of disorder (W/V )cr. This

localised regime results in an absence of transport across the system.

Anderson localisation has been the subject of numerous studies since (see reviews

[11–14]) and one of the most useful theories that captures the key results is the scaling

theory of localisation.

2.2 Scaling Theory of Localisation

The scaling theory of localisation was originally introduced in 1979 [46] and aims to

capture all the ideas discussed so far in this thesis with regards to the conductance. In

particular, it explores the effect of the system size, L, on the conductance. To achieve this,

it interpolates between the known macroscopic regimes of Ohmic conductance (g ≫ 1) and

localisation (g ≪ 1), where g = G/(e2/h) is the dimensionless conductance. In the Ohmic

regime, the conductance is given by Eq. (1.1) and can be written as g(L) ≈ (h/e2)σ0L
d−2
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2.2. SCALING THEORY OF LOCALISATION

and for the localised regime g(L) ≈ g0e
−(L/ξ). Here σ0 is defined via Eq. (1.2) and g0 is a

constant.

The scaling hypothesis revolves around being able to write g(αL) as a function of

g(L). Defining α = 1 + ϵ (ϵ ≪ 1), the scaling hypothesis can be expressed via a scaling

function β(g),

g(αL) ≈ g(L)[1 + ϵβ(g(L))], (2.3)

where the scaling function is monotonic and defined by

β(g) =
d ln g

d lnL
. (2.4)

This definition can be used in conjunction with the results above for large and small g to

give

β(g) ≈





d− 2− Cd

g
, g ≫ 1,

ln(g/g0), g ≪ 1,

(2.5)

with Cd ∼ 1. In the large g limit, a small correction in 1/g has also been included and

this corresponds to the weak localisation correction calculated in the previous chapter

(with L rather than Lφ). From Eq. (2.4), it can be observed that for positive β(g), the

conductance increases with increasing system size and for negative β(g), g decreases with

increasing system size. In combination with the results in Eq. (2.5), this can be used to

sketch the RG-flow (renormalisation group flow1) in Fig.2.1. The conductance can then

be obtained by integrating the scaling function, Eq. (2.4).

1Scaling theory and RG-flows are more general concepts than mentioned here. They will not be
reviewed in detail here but see [47] for an introduction.
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CHAPTER 2. LOCALISATION

Figure 2.1: The scaling function, β(g) in d = 1, 2, 3. The arrows represent how β changes
as L is increased. For d = 1, 2 the flow is always towards the localised insulating state
but for d = 3 there is a metal-insulator transition. Figure taken from [14].

2.2.1 One Dimension

In one dimension, it is clear from both Eq. (2.5) and Fig. 2.1 that β(g) < 0 for all g

and therefore as L → ∞, the conductance approaches the localised regime. Therefore,

for an arbitrary amount of disorder all states in 1d are localised. As seen in Chapter 1,

the localisation length is defined when the corrections to the Ohmic regime become non-

negligible. In order to obtain this, the large g limit of Eq. (2.5) is integrated between

L = l (which is the smallest scale under consideration in the diffusive regime) where

g = gl and L = ξ, where g ∼ 1. After performing the integration and using that the

conductivity is Ohmic across a mean free path and interference effects are not important

so gl = (h/e2)σ0/l, it is found that ξ ∼ l, which is expected as there is no way to move
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2.2. SCALING THEORY OF LOCALISATION

around the disorder in 1d.

2.2.2 Two Dimensions

In two dimensions, despite it being the edge case2, the weak localisation correction again

means that β(g) is always negative and all states are localised for an arbitrary amount of

disorder. The localisation length can be calculated in the same way as the 1d case, giving

ξ ∼ legl ∼ lekFl. (2.6)

This exponential dependence has important consequences experimentally as it is impor-

tant to remember that for localisation to occur ξ ≪ L,Lφ is required. This means that

realistically kFl ∼ 1 is required to ensure the localisation length is not exponentially large.

This gives the Ioffe-Regel criterion mentioned in the previous chapter.

2.2.3 Three Dimensions

In three dimensions (and higher), β(g) is no longer always negative and so not all states

are localised for an arbitrary amount of disorder. Instead, there is a value of conductance,

gcr, below which the system tends towards the localised regime as L → ∞ and above it,

tends to the Ohmic regime. Therefore, a metal-insulator transition exists which is not

present in lower dimensions. The critical conductance for the transition corresponds to

the zero in the scaling function, β(gcr) = 0, and is given by gcr ∼ 1 ⇒ G ∼ e2/h [46].

Around this point, the β-function is linear in g,

β(g) =
d ln g

d lnL
= γ

(
g − gcr
gcr

)
. (2.7)

2Without the weak localisation correction β(g) = 0 in the g ≫ 1 limit, so it is not clear whether the
behaviour is metallic or insulating in the macroscopic limit.
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This can be integrated from the mean free path, l, (which is the microscopic length scale

in the system) to L, which gives the conductivity around the transition,

g − gcr
gcr

=

(
gl − gcr
gcr

)(
L

l

)γ

, (2.8)

which is valid providing that |g − gcr|/gcr ≪ 1. As for lower dimensions, the localisation

length is defined as the point at which the corrections become significant on the insulating

side of the transition. When the ratio defined by Eq. (2.8) is approximately one, the length

scale that arises is

ξ ∼ l

∣∣∣∣
gl − gcr
gcr

∣∣∣∣
− 1

γ

, (2.9)

where 1/γ is the critical exponent (often referred to as ν in the literature) and has a value

of approximately 1.5 [12,48]. For the insulating side of the transition this corresponds to

the localisation length as seen in the lower dimensions, however, on the metallic side of

the transition, this simply corresponds to the length above which Ohmic conductance is

seen. In this limit, the conductivity, σξ is a constant and it is found that in the metallic

regime for L≫ ξ, σ scales as

σξ ≈
gξ
ξ

∼ gcr
l

∣∣∣∣
gl − gcr
gcr

∣∣∣∣
1
γ

, (2.10)

where in the final expression, Eq. (2.9) has been used in conjunction with the fact that

g ∼ gcr on all scales near the transition. Therefore, as the metal-insulator transition is

approached, the conductivity vanishes with the same critical exponent as that involved

with the localisation length divergence. This contradicts the idea of Mott’s minimum

metallic conductivity which suggested that no metals could exist with a conductivity less

than (e2/h)kF [14, 49] and instead this should just be used as an estimate as to when

quantum effects become important.

On the scales L ≫ ξ, there is a clear distinction between the insulating and metallic

states, however for L≪ ξ, both the metallic and insulating states behave the same. The
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2.3. HOPPING CONDUCTIVITY

conductivity in this regime, σL, can be estimated by using the fact that g is approximately

a constant near the transition. Therefore,

σL = σξ

(
ξ

L

)
, (2.11)

which leads to a diffusive regime that is now scale-dependent [14,50,51].

2.3 Hopping Conductivity

Up until now, this thesis has focused on the concept of localisation at zero-temperature

(T = 0) where inelastic processes, for example the electron-phonon interaction, are absent.

However, at finite temperature, these must be considered and can result in numerous

hopping processes that can restore transport.

First, the effects of temperature will be considered in the absence of the electron-

phonon interaction. In the previous section, it was shown that for d ≤ 2 all states are

localised for any finite amount of disorder, resulting in vanishing conductivity for all T .

However, in higher dimensions, this is only true above a critical threshold and for an

intermediate amount of disorder, the mobility edge becomes relevant. The mobility edge

separates delocalised (or extended) states located in the middle of the energy band from

localised states which are at the edge, where the electrons have a lower kinetic energy.

These states cannot coexist at the same energy as any mixing simply results in extended

states [52], hence the appearance of the mobility edge. As the disorder of the system is

increased, the mobility edge moves until all states become localised at sufficiently high

disorder. Finite temperatures allow for activation of the electrons across the mobility

edge, εm, giving a conductivity proportional to the probability of excitation

σ(T ) ∼ e−β(εm−εF), (2.12)

where β = 1/kBT and εm is the mobility edge.
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2.3.1 Mott’s Variable Range Hopping

When the electron-phonon interaction is also included, inelastic hopping processes can

occur between different localised states. This bypasses the need for electrons to be ac-

tivated above the mobility edge and therefore can destroy localisation at all non-zero

temperatures even in the lower dimensions. For instance, a phonon may have the energy

to cause electrons to hop to the nearest localised state a distance ξ away. For a constant

density of states, ν0, the energy separation between the two neighbouring localised states

is given by ∆ξ ∼ 1/(ν0ξ
d), leading to the hopping conductivity [14]

σ(T ) ∼ e−β∆ξ . (2.13)

However, it may be more energetically favourable to hop further than the neighbouring

localised state via a process known as Mott’s variable range hopping (VRH) [53–55]. In

this instance, a balance is found between states that are close in space but may be far

apart in energy and those that are further away in space but may be closer in energy as

illustrated in Fig. 2.2.

Figure 2.2: Phonon-induced variable range hopping. An electron is able to hop to another
localised state that may be further away in space but closer energetically, via a phonon
of energy ℏω.
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The probability of hopping over a distance x≫ ξ is given by

Ptot ∼ e−(β∆x+
2x
ξ
), (2.14)

where ∆x ∼ 1/(ν0x
d) is the mean spacing between energy levels separated by a distance

x. The first term in the exponent is due to the energetic difference between the two levels

and the second is due to the square of the matrix elements decaying with distance on a

scale ξ [14]. Maximising this probability, which corresponds to minimising the exponent,

leads to a form of the conductivity

σ(T ) ∼ e−(
T0
T )

1
d+1

, (2.15)

where T0 is the temperature below which VRH becomes the dominant mechanism and is

given by kBT0 ∼ ∆ξ. At higher temperatures, either the nearest neighbour hopping or

the activation to the mobility edge are the relevant mechanisms, with the dominant one

being that with the larger probability [14].

2.3.2 Efros-Shkolvskii Hopping

Mott’s VRH is still a single-electron phenomenon, that is it doesn’t incorporate electron-

electron interactions. This is usually an appropriate approximation in metals when the

long-range Coulomb interaction is screened, however if the screening isn’t as prominent

then this must be considered. Electron-electron interactions are known to modify the

density of states (DoS) in other situations, for example in the zero-bias anomaly [6, 7],

and so in the instance of VRH (which assumes a constant DoS), it is natural to explore

how the density of states is affected and the effect this has on transport. Whilst there

exists no microscopic theory, Efros and Shklovskii [56] were able to show that the Coulomb

interaction results in a gap opening up in the density of states which changes the power

in the exponent of VRH conductivity (Eq. (2.15)) to one that is independent of the

19



CHAPTER 2. LOCALISATION

dimensionality

σ(T ) ∼ e
−
(

TES
T

) 1
2

, (2.16)

where TES is the temperature below which Efros-Shklovskii hopping becomes relevant.

2.4 Many-Body Localisation

A natural question to ask after the introduction of Anderson localisation is how does

this generalise to interacting systems? The previous section showed how the presence of

phonons (both with and without electron-electron interactions) destroys localisation by

providing the electrons with energy to hop between different localised states. The work

of Fleishman and Anderson [57] suggested that short-range electron-electron interactions

on their own in the presence of strong disorder may not do the same. This result was

expanded on when the scaling theory of localisation was extended to include interactions

[58]. However, localisation at finite temperatures was first introduced in the case of

quantum dots where it was found that below a certain energy, excitations would be

localised in many-body (Fock) space [24] (see Chapter 5 for a more detailed discussion on

this). A similar regime was later identified in higher dimensions [20, 22], with this being

what is now recognised as many-body localisation (MBL).

In their seminal work Basko, Aleiner, and Altshuler (BAA) [20], were able to show

to all orders in perturbation theory that localisation was robust to the electron-electron

interaction providing that it is sufficiently weak (the coupling constant λ≪ 1) and short-

range and that the temperature of the system is below a critical temperature defined in

terms of the mean level spacing, ∆ξ,

Tc =
∆ξ

λ ln(1/λ)
. (2.17)

This survival of localisation leads to a finite-temperature insulating state as shown in

Fig. 2.3. The onset of metallic behaviour occurs at temperatures above Tc, with a crossover
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to a hopping regime at T = ∆ξ/λ. Unlike the regimes of Mott’s variable range hopping

and Efros-Shklovskii hopping the conductivity in this case is power-law rather than ex-

ponential. At higher temperatures (T > ∆ξ/λ
2), the discrete levels of the system become

smeared and Drude conductivity, Eq. (1.2), is restored [20]. The physics of the transition

to this metallic regime is an active area of research and a discussion of this and other

areas of current interest in MBL will be presented towards the end of this chapter.

As was the case with quantum dots, BAA demonstrated a localisation in Fock space.

By starting in the case where all single-particle states are localised, they considered how

the electron-electron interaction can cause a high-energy single-particle state to decay into

lower-energy many-body states. If the single particle state decays into all possible many-

body states, there is delocalisation in Fock space. However, at lower temperatures, the

single particle state may remain (potentially coupled to just a few many-particle states)

- this is localisation in Fock space. During the decay, the single particle state should be

broadened according to the finite lifetime of the state. If this broadening, characterised

by the decay rate, Γ, goes to zero then localisation survives. Therefore, by studying the

statistics of Γ, BAA were able to distinguish the metallic from the insulating state. On

the metallic side of the transition, the excitation decays indefinitely into all many-body

states so Γ is a smooth function of energy and the probability distribution for Γ is a

Gaussian centred around some mean. This is different from the insulating side of the

transition, where Γ as a function of energy is a collection of δ-function peaks and so the

probability of finding a non-zero Γ vanishes for arbitrary energy.

Since the initial developments in MBL, there have been numerous studies extending

the research in this area - for example see reviews [15–17]. The remainder of this chapter

is dedicated to understanding some of the key results regarding MBL, both theoretically

and experimentally.
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Figure 2.3: The conductivity as a function of temperature for MBL systems. Here δζ is the
mean level spacing and λ is the electron-electron coupling constant. Below the critical
temperature, Tc, the state is insulating with zero conductivity. At high temperatures
(T > δζ/λ

2), the conductivity has a Drude form, σ∞ (see Eq. (1.2)), A power-law hopping
regime occurs for intermediate temperatures. Figure taken from [27].

2.4.1 Eigenstate Thermalisation Hypothesis

One reason for the major interest in MBL in recent years is that systems which are

localised fail to thermalise. Most systems are expected to act as their own thermal bath

and therefore thermalise, thus having a class of systems that fails to do so is of theoretical

and experimental interest. Intuitively, for thermalising systems to act as their own bath

they require transport in order for energy to be transferred between different parts of

the system (or different subsystems). Therefore systems exhibiting MBL where there is

an absence of transport, do not thermalise. This idea can be put onto a firmer footing

through the eigenstate thermalisation hypothesis (ETH) [59–62], which is the standard

way of defining thermalising (or equivalently ergodic) systems in quantum mechanics.

In thermalised systems with a well-defined energy E, the long-time average of a local
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observable, ⟨O⟩∞, should be equal to the microcanonical average at the energy E,

⟨O⟩mc(E) =
1

N∆E

∑

En∈E±∆E

⟨n|O|n⟩ (2.18)

where N∆E is the number of states summed over in the energy window E −∆E < En <

E+∆E (∆E ≪ E) and |n⟩ are the many-body eigenstates of the Hamiltonian, H, with an

energy En. Now, to define the long-time average consider a generic state, |ψ(t)⟩, evolving

under this Hamiltonian,

|ψ(0)⟩ =
∑

n

An|n⟩ =⇒ |ψ(t)⟩ = e−iHt|ψ(0)⟩ =
∑

n

Ane
−iEnt|n⟩, (2.19)

which leads to the long-time average of a local observable, O,

⟨O⟩∞ = lim
T→∞

1

T

∫ T

0

⟨ψ(t)|O|ψ(t)⟩dt =
∑

n

|An|2⟨n|O|n⟩. (2.20)

There is a clear issue when trying to equate the expression in Eq. (2.18) with that in

Eq. (2.20) and this refers to how the latter expression depends on the initial state via

the coefficients |An|2, whereas the microcanonical average does not depend on the initial

state. The ETH resolves this apparent issue by saying that thermalisation occurs on the

level of individual eigenstates and this ensures the thermalisation of local operators, as the

long-time average defined by Eq. (2.20) becomes equivalent to the thermal value defined

by the microcanonical ensemble. More rigorously it states that the expectation value of

an operator in an eigenstate, |n⟩, is equal to the microcanonical average defined at that

energy, ⟨n|O|n⟩ = ⟨O⟩mc(En). As this is a smooth function of energy, providing that the

coefficients |An|2 are peaked around the energy of the system, E, then Eq. (2.20) and

Eq. (2.18) give the same result and the system is thermalised. In MBL systems, the value

of an observable retains information of the initial state even at long times and therefore

is non-thermal.

Although most systems are known to thermalise, not all systems do and a particular
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class that violates the ETH are integrable systems. Due to the interchangeability be-

tween thermalisation and ergodicity in regards to the ETH, thermalisation can be viewed

as exploring all of phase space whilst obeying all globally conserved quantities. In in-

tegrable systems this does not occur as the extensive set of conserved quantities they

possess strongly limits the dynamics of the system and hence there is an absence of ther-

malisation. Systems that exhibit MBL have a similar property with the emergence of

local integrals of motion (LIOMs or l-bits) that lead to non-ergodic and non-thermal

behaviour, meaning MBL systems are termed quasi-integrable. The key difference be-

tween this quasi-integrability and normal integrability is that these conserved quantities

are quasi-local and robust. When an integrable system is perturbed it tends to become

non-integrable and this will restore ergodicity. In contrast to this, if an MBL system is

perturbed it will remain many-body localised and therefore non-ergodic. It is the only

known robust way of violating thermalisation [15,16].

The l-bits proposed to describe MBL lead to explanations of a variety of different phe-

nomena associated with MBL that will shortly be discussed. They additionally describe

the spatial structure of MBL. As was previously mentioned, the original works of MBL

identified localisation in Fock space. The development of l-bits extended this to localisa-

tion in real space as the l-bits can be written as operators localised around certain sites

with the exponential decay being characterised by the localisation length, ξ [15–17].

2.4.2 Entanglement in MBL

In addition to the absence of transport and thermalisation, there are many other properties

of MBL, for example the absence of level repulsion which causes the level statistics to

adopt a Poisson distribution. Many of these properties are not discussed in this work

and instead the reviews [15–17] and references within should be consulted. Perhaps the

most significant of the signatures of MBL is discussed though, this being the behaviour

of the entanglement entropy, as this is where a key difference between MBL, Anderson

localisation, and thermalisation lies.
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To begin, consider preparing the system in an eigenstate of the generic MBL Hamil-

tonian [16,63,64]

H =
∑

i

hiτ
z
i +

∑

i>j

Jijτ
z
i τ

z
j +

∑

i,j,k

Jijkτ
z
i τ

z
j τ

z
k + . . . , (2.21)

where τ zi are the l-bit operators that decay on a distance ξ and behave like σ(z) (the

z-component of the Pauli matrices) to leading order, hi is an onsite field and the J ’s are

the coupling between the l-bits, with

Jij ∼ J0e
−|i−j|/ξdyn and Jijk ∼ J0e

−|i−k|/ξdyn etc., (2.22)

where ξdyn is a length scale representing the dephasing dynamics of the system. Then

entanglement is defined by partitioning the system. Consider a system divided into two

subsystems A and B. As the coupling between them simply occurs across the boundary

between the two (due to the exponential decay in Eq. (2.22)), then the entanglement

between the two subsystems is proportional to the size of the boundary3. Therefore, as

the size of the system is increased, the entanglement scales with the size of this boundary

and therefore the eigenstates have area law scaling (see Fig. 2.4). This is also true of

Anderson localised systems, however in contrast to this, thermal systems have volume

law scaling where the entanglement entropy scales with the subsystem size as there is no

such restriction on the coupling in this instance.

3The entanglement entropy is typically characterised by the von Neumann entropy though others can
be used, for example the Rényi entropies. These will not be discussed in detail in this thesis, but see [65].

25



CHAPTER 2. LOCALISATION

Figure 2.4: Area law entanglement for MBL eigenstates. This is because the coupling
between subsystems occurs across a small region across the boundary only due to the
exponential decay of the coupling between l-bits. Figure taken from [16].

The area law scaling is able to distinguish between localised and thermal systems

however it cannot distinguish between Anderson localisation and MBL. One way to do

this is to consider the dynamics of the system. If the system is prepared in a product

state and allowed to evolve then in the case of Anderson localisation there will be no

change in the entanglement entropy as there are no interactions between l-bits. However,

in the case of MBL, it can be shown that the entanglement grows logarithmically with

time [66]. Consider two spins separated by a distance x, these will become (almost)

maximally entangled due to the couplings given by Eq. (2.22), over a time that is inversely

proportional to the coupling strength

t ∼ ℏ
J0

ex/ξdyn . (2.23)

This can be inverted so that after a time t, spins separated by a distance x(t) become

entangled, leading to logarithmic entanglement growth as a function of time

S(t) ∼ ξdyn ln

(
J0t

ℏ

)
, (2.24)

which is now seen as one of the defining features of MBL [15–17].
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2.4.3 The Stability of MBL

One of the key areas of current research in the field of MBL is to understand if a stable

MBL regime exists and the nature of the transition between the metallic and insulating

regimes (for a review see [67]). The initial work into MBL suggested a transition to a finite-

temperature insulating state in arbitrary dimension and was found to be true to all orders

in perturbation theory. This finite-temperature transition arises as a consequence of a

proposed many-body mobility edge which occurs at an energy proportional to the systems

volume, such that it occurs at a finite energy density in the thermodynamic limit [20].

This idea was originally supported by numerics [68], which found a many-body mobility

edge separating localised and extended states. However, it was later suggested that this

arose due to finite-size effects and actually the many-body mobility edge doesn’t survive

in the thermodynamic limit due to the mobility of a thermal bubble4 which delocalises

the entire system [69].

Another point of active research is the existence of MBL in dimensions higher than

d = 1. Again, the initial work into MBL [20] suggests that MBL occurs in arbitrary

dimensions and in d = 1 this existence has been supported by a more rigorous approach

which also takes into account non-perturbative effects [70]. Despite this, there has been

no such confirmation for d > 1 and it has been suggested that the presence of ergodic

bubbles due to disorder fluctuations can again destroy the MBL regime [71]. However,

once again this is not conclusive and has led to studies (for example [72]) of a finite-size

(or finite-time) MBL regime, where the system may still behave as if it is many-body

localised in experimentally accessible systems, as well as a prethermal regime where again

localised physics may appear [73].

It is worth noting that in both of these discussions, MBL is defined via the existence of

an extensive set of local integrals of motion (the l-bits) and using this framework various

other aspects of MBL and the transition have been studied. For example, an RG approach

4These have a higher temperature than the rest of the sample and are ergodic. Additionally, they
always exist at finite-T in the thermodynamic limit.
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has been developed (see, for example, [74–76]), similar to that in Anderson localisation

and Griffiths effects (the presence of rare insulating regions) have been explored on the

metallic side of the transition [77], which lead to subdiffusive transport regimes. The

transition will be discussed in more detail in Chapters 5 and 6, where the Fock space

structure and the temperature-induced transition will be explored in greater detail.

Although this definition of MBL in terms of the local integrals of motion has clearly led

to progress and puts MBL on a more ‘rigorous’ mathematical footing, it is also what causes

such an in-depth discussion of the stability of any MBL phase. Whilst this discussion has

its merits, it is not definitive and does not necessarily mean that the original perturbative

work of Basko, Aleiner and Altshuler [20] is no longer applicable. First, many of the

aforementioned works are numerical in nature and this has limitations based on the size

of the system that is available [78]. Therefore, when drawing conclusions about the

thermodynamic limit additional care should be taken. Furthermore, and more relevant

to this work, are the implications for experiments. Although there is a possibility that

a stable MBL phase may not exist in higher dimensions or at finite temperatures in the

thermodynamic limit, this does not mean that it is not experimentally observable because

of the finite scales involved. Both a finite system size and experimental timescale may

allow for the observation of MBL physics and this will be seen in the following section.

2.5 Experimental Progress in MBL

The degree of success in observing MBL in experiments has been largely dictated by the

types of systems which are considered. The most fruitful setup has been that of ultracold

atoms where there is a great deal of control over the system and its isolation from any

external environment or thermal bath. By preparing the system in a state where only the

even sites of an optical lattice were occupied and studying the imbalance

I =
NE −NO

NE +NO

, (2.25)
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between the number of electrons on odd, NO, and even sites, NE, the authors of [79]

were able to identify signatures associated with non-ergodicity and MBL. For sufficiently

large disorder the imbalance would retain information of the initial state and fail to

relax towards zero which would be characteristic of a thermal state, see Fig. 2.5. Other

signatures were also found such as the logarithmic growth of entanglement.

Figure 2.5: The imbalance as a function of time. As the disorder strength, ∆, is increased
the system fails to thermalise, which is signified by the lack of relaxation to zero imbalance.
Figure taken from [79].

Further experiments have explored other aspects of MBL, such as controlling the

amount of dissipation in the system [80] and MBL in higher dimensions (d = 2) [81]. In

these latter studies the imbalance was also used to identify a localised regime.

In contrast to these successes in ultracold atoms, there has been limited experimental

success in more traditional solid-state systems, where MBL was initially predicted to

manifest. Although there are limitations on detecting it in these systems, for example

not being able to directly access entanglement entropy, the main restriction in these

systems is the coupling to the environment. The presence of phonons is unavoidable and

so decoupling between the electron and phonon subsystems must occur; this is one of the
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key focuses of this work and will be built on in Chapter 4. Other experimental factors

regarding electronic systems (including how MBL can be detected) will also be explored

over the course of this thesis.

2.6 Summary

This chapter has provided an introduction to many-body localisation. Initially exploring

the theory of single-particle localisation, it was seen how this is destroyed via hopping

conductivity through the presence of phonons. Many-body localisation is a phenomenon

characterised by inelastic electron-electron interactions failing to restore transport in the

same way, leading to a non-ergodic regime. Since its inception, various aspects have been

the subject of both theoretical and experimental interest, though many open questions

still remain. The ideas outlined in this chapter will be drawn on throughout this thesis

as they motivate the study of non-thermalising systems and the challenges in doing so.
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CHAPTER 3

NON-EQUILIBRIUM FIELD

THEORY

One of the most common analytical techniques in many-body physics is quantum field

theory. The main topic of this thesis, many-body localisation, is an inherently non-

equilibrium problem. Therefore, techniques suited to the non-equilibrium regime must

be used and as a result the Keldysh formalism of quantum field theory becomes a viable

option. There are various equivalent ways to approach this formalism, one of which is

via path integrals (see [82,83]), although here a different approach will be taken, more in

line with that presented in [43, 84, 85]. In this chapter the formalism will be introduced

and the various techniques required for the calculations in the rest of this work will be

outlined.

3.1 Introduction to Green’s Functions

Central to quantum field theory is the presence of correlation functions and in particular

Green’s functions, as these form the basis upon which physical observables can be calcu-

lated. For fermions, the single-particle Green’s function (or propagator) can be defined
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as1 [40, 86]

G(r, t; r′, t′) = − i

ℏ
⟨TψH(r, t)ψ

†
H(r

′, t′)⟩, (3.1)

where ψ†
H(ψH) are the creation (annihilation) field operators for a fermion in the Heisen-

berg picture (see the next section for more details on this) and T is the time-ordering

operator which puts the operators that act at a later time to the left. In doing so it

should be noted that if two fermionic operators are interchanged a minus sign is acquired.

Due to the presence of this time-ordering operator, this particular Green’s function is

sometimes called a time-ordered or causal Green’s function. There are a variety of other

Green’s functions that can be defined (and will be over the course of this chapter) that

have different meanings and uses.

The field operators introduced above are an alternative way of utilising second quanti-

sation and represent the creation (ψ†) or annihilation (ψ) of a fermion at a given position

and time. This means that the Green’s function defined in Eq. (3.1) creates a particle at

(r′, t′) and annihilates one at (r, t), hence why the Green’s function may be described as

the propagator of a particle from (r, t) to (r′, t′). In the case of free electrons in a metal,

the Green’s function can be calculated. These electrons are described by the Hamiltonian,

H =
∑

k

= ξkc
†
kck, (3.2)

where ξk = εk− εF is the electron energy measured from the Fermi surface and c†k(ck) are

the creation (annihilation) operators for an electron with momentum k. In this instance,

the field operators in a system of volume V can be expressed as [40]

ψH(r, t) =
1√
V

∑

k

cke
i(k·r−ξkt). (3.3)

After substitution of this result and its conjugate into Eq. (3.1) and defining the occu-

pation number at T = 0 to be nk = ⟨c†kck⟩ = Θ(kF − k) the Green’s function can be

1Although, ℏ has been explicitly included in this definition, ℏ = 1 will be used going forward in order
to simplify the notation.
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expressed as

G0(r, t; r
′, t′) = − i

V

∑

k

eik·(r−r′)−iξk(t−t′) [(1− nk)Θ(t− t′)− nkΘ(t′ − t)] , (3.4)

where Θ(t) is the standard Heaviside step function. Performing a Fourier transform then

gives the standard result [40,86]

G0(k, ε) =
1

ε− ξk + iδsgn(ξk)
, (3.5)

with δ → 0. A similar analysis can be used to derive the Green’s function for phonons.

Phonons with momentum q are created and annihilated via the bosonic operators, a†q and

aq respectively and have an energy ωq, leading to them being described by the Hamiltonian

H =
∑

q ωq(a
†
qaq + 1

2
). The phonon propagator, D(r, t; r′, t′) = −i⟨TϕH(r, t)ϕH(r

′, t′)⟩,,

which is defined in terms of a scalar field in the Heisenberg picture, ϕH, [40, 86], after

Fourier transforming is given by,

D0(q, ω) =
ω2
q

ω2 − ω2
q + iδ

. (3.6)

The importance of these Green’s functions to the method of quantum field theory stems

from the fact that they can be used to calculate various physical properties of a system for

example, the particle density or density of states. As will be seen in this chapter, this is

achievable via the construction of perturbative schemes, so that the effects of interactions

and disorder can be added to the free particle Green’s functions introduced above, allowing

for the study of a wide variety of systems which contain these effects. Further to this, it

will be seen how these perturbative calculations are performed and the different types of

Green’s functions will be introduced and their relevance discussed.
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3.2 Equilibrium Field Theory

Although the Keldysh formalism is a non-equilibrium technique, the developments of the

equilibrium theory (see [40, 86]) are foundational and relevant aspects will be introduced

first.

3.2.1 The Pictures of Quantum Mechanics

There are three ways of representing quantum mechanics. The first of these is perhaps

the most familiar - the Schrödinger representation. In this picture, the wave functions, ψ,

are time-dependent and their evolution is governed by the Schrödinger equation i∂tψ(t) =

Hψ(t), where H is the Hamiltonian for the system. The operators, O, in this picture are

time-independent.

The second picture is the Heisenberg picture, which shifts the time dependence from

the wave functions, which become time-independent in this picture, to the operators which

then evolve with the Hamiltonian, H, and are determined using the equation OH(t) =

eiHtO(t = 0)e−iHt. In both of these instances, the expectation value of an operator O can

be expressed as

⟨O⟩ = ⟨ψ(0)|eiHtO(0)e−iHt|ψ(0)⟩, (3.7)

demonstrating the equivalence of the two pictures. The third picture of quantum me-

chanics is the interaction picture which combines aspects of both the Schrödinger and

Heisenberg pictures. The Hamiltonian of the system is divided into two parts,

H = H0 + V, (3.8)

where H0 is the quadratic or unperturbed Hamiltonian, which can be solved exactly (in

other words, its eigenstates can be found) and V is the interacting part of the Hamiltonian.
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Then the operators evolve with the ‘easy’ part of the Hamiltonian,

OH0(t) = eiH0tO(0)e−iH0t, (3.9)

and in order to obtain the necessary expectation value of an operator O, given by Eq. (3.7),

the states must evolve as

ψ(t) = U(t)ψ(0) = eiH0te−iHtψ(0). (3.10)

The time evolution operator, U(t) = eiH0te−iHt, obeys the differential equation,

∂U(t)

∂t
= −iVH0(t)U(t), (3.11)

with the boundary condition that U(0) = 1, where VH0(t) is the evolution of the per-

turbation part of the Hamiltonian according to the quadratic part, given by Eq. (3.9).

By solving this differential equation iteratively, the time evolution operator can also be

expressed as [40,86]

U(t) = T e−i
∫ t
0 dt′VH0

(t′). (3.12)

3.2.2 S-matrix and Equilibrium Green’s Function

In the interaction picture a state evolves from t = 0 up until some other time, according

to Eq. (3.10). In general, a state evolves from t′ to t via the S-matrix, ψ(t) = S(t, t′)ψ(t′),

where

S(t, t′) = U(t)U †(t′) = T e−i
∫ t
t′ dt1VH0

(t1). (3.13)

The S-matrix can be used to calculate the Green’s function [40,86]

G(x, x′) = −i⟨φ0|TS(∞,−∞)ψ(x)ψ†(x′)|φ0⟩
⟨φ0|S(∞,−∞)|φ0⟩

, (3.14)
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where x = (r, t) and |φ0⟩ is the ground state of H0. It is this result that allows the

construction of perturbation theory through the expansion of the S-matrix, after which

a number of techniques can be used to calculate the Green’s function such as Wick’s

theorem and the associated Feynman diagrams which will be discussed in more detail

later in the chapter.

The Green’s function in Eq. (3.14) is the causal or time-ordered Green’s function.

In equilibrium, it can be used to express the retarded and advanced Green’s functions,

as well as the greater and lesser Green’s functions. The latter are directly related to

physical observables and the former are useful for calculating a physical response. These

will be discussed in more detail in the context of the non-equilibrium formalism but it is

important to note that the calculation of the Green’s function is important for calculating

physical quantities such as currents.

The final thing to note is that the above discussion is applicable at zero temperature

and in order to consider the effects of temperature in equilibrium, the Boltzmann factor,

e−β(H−µN) (with β = 1/kBT ), must be incorporated into the Green’s functions (and any

other expectation value). This complicates the problem as now it is not only the S-matrix

that needs to be perturbatively expanded but also this thermal weighting. Rather than

performing this double expansion, a Wick rotation is performed by defining an imaginary

time, τ , via it = τ . The calculation of the Green’s function is then performed using the

Matsubara formalism, which won’t be discussed in this thesis, but rather [40,82,86] should

be consulted. Instead, this work focuses on dealing with finite temperature through the

Keldysh formalism.

3.3 The Keldysh Formalism

Although many problems in mesoscopic physics can be dealt with through equilibrium field

theory due to the desire to understand the linear response of a system, it is not always

suitable. For instance, the absence of thermalisation in localised systems immediately
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results in non-equilibrium phenomena and therefore an appropriate theory is required.

Such a theory that is structurally equivalent to its equilibrium counterpart was initially

introduced by Schwinger in 1961 [87] before being utilised further by Keldysh in 1964 [88]

(see [43, 84, 85] for more recent treatments). In this section, this theory will be outlined

and the associated techniques needed to perform calculations will be explored. Consider

first the non-equilibrium Hamiltonian,

H(t) = H0 + V + V ′(t), (3.15)

where, again H0 is the solvable part of the Hamiltonian, V contains time-independent

interactions and V ′(t) contains all the time dependence and is only non-zero for t > t0.

Therefore, up until the time t0, the system evolves with a Hamiltonian H̃ = H0 + V and

can be dealt with using the above equilibrium theory. For t > t0, the system then evolves

under the action of the full Hamiltonian and so the expectation value of an operator O(t)

can be expressed in the interaction picture as,

⟨O(t)⟩ = ⟨ψt0|OH(t)|ψt0⟩ = ⟨ψt0|U †(t, t0)OH0(t)U(t, t0)|ψt0⟩, (3.16)

where |ψt0⟩ is the state at t = t0 and OH0(t) = eiH0(t−t0)O(t0)e
−iH0(t−t0) is the evolution

of an operator under the quadratic Hamiltonian H0. The time evolution operator can

be expressed in two equivalent forms, with the relation between them known as Dyson’s

formula [43,85],

U(t, t0) = eiH0(t−t0)T e
−i

∫ t
t0

dt′H(t′)
= T e

−i
∫ t
t0

dt′ṼH0
(t′)
, (3.17)

where ṼH0(t) = VH0(t) + V ′
H0
(t) and the operators with the subscript H0 are defined as

evolving under the quadratic Hamiltonian as above. Through comparison of the Heisen-

berg and interaction pictures (Eq. (3.16)), the expectation value of an operator at time t

evolving under the full Hamiltonian, ⟨OH(t)⟩ can be thought of as evolving the state from
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t0 to t using U(t, t0) and then acting the operator evolved under the quadratic Hamilto-

nian, OH0(t) before evolving the state back to t0 using U †(t, t0). This naturally leads to

the definition of the operator on the double (or closed) time contour, C (see Fig.3.1),

OH(t) = TC

(
e−i

∫
C dτṼH0

(τ)OH0(t)
)

(3.18)

where the variable τ moves along the contour and TC is the contour ordering operator so

that operators acting at earlier points on the contour are on the right.

Figure 3.1: The double time contour, C. A state is evolved up to a time t where the
operator evolved under the easy part of the Hamiltonian acts on it before being evolved
back.

It is also necessary to see how the effect of finite temperature manifests itself in this

formalism. The expectation value of an operator can be expressed as a trace, ⟨O(t)⟩ =

Tr (ρ0OH(t)), via the density matrix, ρ0, at the time t0. At this time the system is in

equilibrium, with the density matrix being given by the standard Gibbs state [43,85]

ρ0 =
e−β(H0+V )

Z
, Z = Tr

(
e−β(H0+V )

)
, (3.19)

where Z is the partition function. In order to see how this affects the contour structure,

Dyson’s formula (Eq. (3.17)) can be used on this thermal weighting factor, with the result

amounting to that in Eq. (3.18), except along the contour CK depicted in Fig. 3.2 and

with the inclusion of the density matrix ρH0 = e−βH0/Tr
(
e−βH0

)
in the expectation value.
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Figure 3.2: The complete Keldysh contour, CK . The vertical part of the contour represents
initial correlations and can be disregarded in many situations.

As the vertical part of the contour depends on the state for times less than t0, it

corresponds to the initial conditions and can often be neglected by taking t0 to negative

infinity. For instance, often the steady-state response is of interest and the information

on the initial conditions will in many instances, have been lost when the steady-state

has been reached and this vertical part of the contour can be neglected. Additionally,

at higher temperatures, the length of this vertical segment becomes shorter and can be

neglected as thermal fluctuations again smear out the effect of the initial conditions. If

the initial correlations can be neglected then the evolution is simply over the contour C

with the density matrix ρH0 .

3.4 Perturbation Theory - Feynman Diagrams and

Wick’s Theorem

In the previous section, it was seen how the Keldysh formalism can be used to describe

the expectation value of a generic operator. Examples of such expectation values are the

Green’s functions which can subsequently be used to calculate the physical properties of

the system. The contour-ordered Green’s function is defined as

G(x, x′) = −i⟨TCψH(x)ψ
†
H(x

′)⟩, (3.20)
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with x = (r, t). In the presence of interactions and disorder, this can be expressed as

(using Eq. (3.18) and therefore ignoring the initial correlations)

G(x, x′) = −i⟨TC(SψH0(x)ψ
†
H0
(x′))⟩, S = TCe

−i
∫
C dτṼH0

(τ). (3.21)

Through comparison of this contour-ordered Green’s function with its time-ordered coun-

terpart in the equilibrium field theory Eq. (3.14), it can be seen that the formalisms are

structurally equivalent. One key difference is that in this contour picture, the denom-

inator which represents the partition function, Z, is equal to one due to contributions

along the forward and backward contours cancelling out. As is the case in the equilibrium

theory, the ‘S-matrix’ in Eq. (3.21) can be expanded, allowing a perturbative approach

to interactions to be taken. The techniques that will be outlined here to achieve this are

also found in equilibrium field theory [40,86].

3.4.1 Coupling to a Scalar Field

In this section, electrons coupling to a scalar field, ṼH0(r, t) =
∫
drU(r, t)ψ†

H0
(r, t)ψH0(r, t)

will be considered. This could, for example, represent the scattering of electrons from

impurities and this particular case will be dealt with further shortly. Here, rather, some

of the generic techniques of perturbation theory will be introduced. Expanding the S-

matrix to leading order in the interaction gives

G(r, r′, t, t′) = G0(r, r
′, t, t′)

−
∫

C

dτ1

∫
dr1⟨U(r, τ1)⟩⟨TCψ†

H0
(r1, τ1)ψH0(r1, τ1)ψH0(r, t)ψ

†
H0
(r′, t′)⟩, (3.22)

where G0(r, r
′, t, t′) = −i⟨TCψH0(r, t)ψ

†
H0
(r′, t′)⟩. The final average above contains four

operators and in order to deal with this, Wick’s theorem is used to split the average into

averages of pairs of operators. The formal expression of Wick’s theorem can be found in

various texts introducing quantum field theory, for example see [40,86], however here how
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it works in practice will be briefly described. To use Wick’s theorem, it must be noted

that fermionic operators anti-commute and that for a quadratic Hamiltonian, an average

must contain the same number of creation and annihilation operators and following this,

all possible pairings of the operators are then found. To illustrate this, the four operators

above can initially be paired as

⟨TCψ†
H0
(r1, τ1)ψH0(r1, τ1)⟩ and ⟨TCψH0(r, t)ψ

†
H0
(r′, t′)⟩, (3.23)

but, additionally, the middle two operators can swap positions (at the cost of a minus

sign) to give the pairing

⟨TCψ†
H0
(r1, τ1)ψH0(r, t)⟩ and ⟨TCψH0(r1, τ1)ψ

†
H0
(r′, t′)⟩. (3.24)

There are no other unique pairings that contain one creation and one annihilation operator

as the reordering of operators within these pairs is dealt with (up to a minus sign) by

the contour-ordering operator. Therefore, after using Wick’s theorem on Eq. (3.25), the

Green’s function can be written as

G(r, r′, t, t′) = G0(r, r
′, t, t′)

+

∫

C

dτ1

∫
dr1⟨U(r1, τ1)⟩

[
G0(r, r1, t, τ1)G0(r1, r

′, τ1, t
′)−G0(r, r

′, t, t′)G0(r1, r1, τ1, τ1)
]
.

(3.25)

The expression can then be represented using Feynman diagrams2. A bold line is used

to denote a full Green’s function, G, a thin line for the free Green’s function, G0 and a

cross indicates the average of the potential. The integration then occurs over all internal

indices. Using this notation, the second term in Eq. (3.25) leads to two diagrams as shown

in Fig. 3.3. The first of these diagrams is a connected diagram as everything is connected

to the two external vertices (the (r, t) and (r′, t′)). On the other hand, the second is

2Various, well-established rules already exist for writing down the diagrams [40, 86], many of which
will be explored in this chapter.
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a disconnected diagram with a vacuum contribution (no external ‘legs’). This second

diagram and disconnected diagrams in general give zero contribution to the full Green’s

function as the integral along the upper and lower branches of the Keldysh contour cancel

each other out. Therefore, going forwards disconnected diagrams can be disregarded.

(a) (b)

Figure 3.3: The Feynman diagrams representing the first order correction to the elec-
tronic Green’s function due to coupling to a scalar field. (a): A connected diagram that
contributes to the full Green’s function. (b): A disconnected diagram whose contribution
vanishes due to a difference in sign between integrals on the upper and lower branches of
the double time contour.

3.5 Interaction with a Bosonic Field and the Two-

Body Interaction

Before looking at the higher-order terms in the interaction with a scalar field in the

context of disorder averaging, it is worth exploring the interaction with a bosonic field,

which physically could correspond to the electron-phonon interaction. In this instance,

the simplest interaction Hamiltonian appearing in the S-matrix in Eq. (3.18) is,

ṼH0(r, t) = λ

∫
drϕH0(r, t)ψ

†
H0
(r, t)ψH0(r, t), (3.26)

where λ is the coupling strength and the bosonic field, ϕH0(r, t) (which is a real scalar

field in this case), has the additional property that ⟨ϕH0(r, t)⟩ = 0, so that the leading
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order correction to the free Green’s function is

i

2
λ2
∫

C

dτ1dτ2

∫
dr1dr2⟨TCϕH0(r1, τ1)ϕH0(r2, τ2)⟩

× ⟨TCψ†
H0
(r1, τ1)ψH0(r1, τ1)ψ

†
H0
(r2, τ2)ψH0(r2, τ2)ψH0(r, t)ψ

†
H0
(r′, t′)⟩. (3.27)

After performing Wick’s theorem and expressing the averages in terms of the free fermionic

and bosonic propagators

G0(r, r
′, t, t′) = −i⟨TCψH0(r, t)ψ

†
H0
(r′, t′)⟩, (3.28)

D0(r, r
′, t, t′) = −i⟨TCϕH0(r, t)ϕH0(r

′, t′)⟩, (3.29)

the diagrams (ignoring disconnected diagrams) in Fig. 3.4 can be obtained for the leading

order correction to the electronic Green’s function (denoting the bosonic propagator with

a wavy line). These are the Hartree-Fock diagrams and can be used to highlight a few of

the additional rules when dealing with Feynman diagrams. First, each vertex has a factor

of λ associated with it and secondly, each of these diagrams has an associated factor of

two which cancels the factor of 1/2 from the expansion of the exponential. This additional

factor arises as it is possible to swap the internal vertices and obtain the same diagram.

This argument holds at all orders of perturbation theory, so topologically distinct diagrams

can be used without worrying about these additional factors [40, 43, 86]. The remaining

thing to note about these diagrams is that the tadpole diagram in Fig. 3.4(a) can often

be ignored, although not for as simple a reason as a cancellation between the upper

and lower branches of the contour. For example, in the case of the electron-phonon

interaction this occurs as the diagram corresponds to a translation of the entire lattice

which is unphysical [86].
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(a) (b)

Figure 3.4: The Hartree-Fock diagrams due to interaction with a bosonic field: (a) is the
Hartree contribution (in this case it is also known as a tadpole diagram) and (b) is the
Fock contribution.

Before looking at higher-order terms in this expansion, it is worth noting that due

to the vanishing of expectation values with an odd number of bosonic operators, the

diagrammatic expansion for a two-body interaction (for example the electron-electron

Coulomb interaction) is the same. This interaction has the form,

ṼH0(r, r
′, t, t′) =

∫
dr

∫
dr′ ψ†

H0
(r, t)ψ†

H0
(r′, t)V (r, r′, t, t′)ψH0(r

′, t)ψH0(r, t), (3.30)

and the corresponding S-matrix contains integrals over two contour variables and upon

expansion of this, the same diagrammatic expansion as that for coupling to a bosonic

field is obtained except that the wavy line represents the interaction, V (r, t), rather than

the bosonic propagator. Again in this instance, the Hartree digram vanishes in a metallic

system due to the cancellation of the diagram with a corresponding one caused by the

interaction with the background charge, in other words, it vanishes due to electroneutrality

[43,82].

3.5.1 Self-Energy, the Polarisation Operator and Dyson’s Equa-

tion

The diagrammatic rules obtained so far can be used to expand the electronic Green’s

function to higher and higher orders. Calculating these diagrams, however, becomes

more and more cumbersome and so a way to incorporate these higher order diagrams is
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important. One way to achieve this is via an iterative equation known as Dyson’s equation

G = G0 +G0 ◦ Σ ◦G, (3.31)

where Σ is the self-energy and ◦ represents convolution (which is simply the integration

over internal vertices). The physical importance of the self-energy will be discussed more

in the context of disorder averaging, but often the real part of the self-energy represents

a renormalisation of the chemical potential in the system and the imaginary part is re-

lated to the decay or scattering of quasiparticles. The challenge of constructing a valid

perturbative approach to a problem then resides in constructing the self-energy. For the

electron-phonon or electron-electron interactions discussed above, a common way of ap-

proximating the self-energy diagrammatically is shown in Fig. 3.5. Upon insertion of this

into the Dyson equation, Eq. (3.31), a diagrammatic expansion in terms of one-particle

reducible (those that can be cut in two by cutting a single internal fermionic line) and

one-particle irreducible diagrams is produced. This approximation made in Fig. 3.5 is

sometimes known as the non-crossing approximation [82] due to it not including dia-

grams with crossing bosonic or interaction lines. These can be incorporated via vertex

corrections if necessary [40,86].

Figure 3.5: The self-energy in the non-crossing approximation. The bold straight line
represents the full Green’s function.

Further to the expansion of the electronic Green’s function, the bosonic propagator or

interaction line also has a similar expansion

D = D0 +D0 ◦ Π ◦D, (3.32)

where the self-energy, Π, in this case, is known as the polarisation operator. This al-
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lows for the inclusion of fermion loops (or bubbles) into the interaction and can lead to

screening in metals for example. In a weakly interacting metal (relative to the kinetic

energy)3, an appropriate approximation for the polarisation operator is the random phase

approximation (RPA), which is displayed in Fig. 3.6.

Figure 3.6: The polarisation operator in the RPA for a weakly interacting metal.

By including the full interaction or bosonic propagator (denoted by a bold wavy line)

into the electronic self-energy or the full electronic Green’s function (denoted by a bold

line) into the polarisation operator, better models can be obtained. However, this comes at

the cost of further complexity as more terms are included in the diagrammatic expansions

and the problem may need to be solved self-consistently.

So far everything has been constructed making use of the contour-ordered Green’s

function, however this is not the most useful form. In the following section, a transforma-

tion to real-time will be carried out which allows the calculation of physical properties.

3.6 Green’s Functions

The definition of the contour-ordered Green’s function in Eq. (3.20) can lead to different

Green’s functions depending on whether the time arguments lie on the upper or lower

branch of the contour - leading to four possibilities, which can be expressed as a matrix

3This is equivalent to a high electron density as by comparing the interaction to kinetic energies, the
density parameter, rs = λF/aB is defined where aB is the Bohr radius. Then, rs ≪ 1 in the weakly
interacting limit, corresponding to high density.
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[43,82–84],

G(x, x′) =



GT (x, x′) G<(x, x′)

G>(x, x′) GT̃ (x, x′)


 =



−i⟨TψH(x)ψ

†
H(x

′)⟩ i⟨ψ†
H(x

′)ψ(x)⟩

−i⟨ψH(x)ψ
†
H(x

′)⟩ −i⟨T̃ψH(x)ψ
†
H(x

′)⟩


 ,

(3.33)

where x = (r, t). Here, GT is the time-ordered Green’s function, where both time argu-

ments lie on the upper branch of the contour so contour ordering becomes equivalent to

time-ordering. Similarly, if both time arguments are on the lower branch of the contour,

then the anti-time-ordered Green’s function, GT̃ can be defined. In contrast to this, if

the time arguments are on different branches of the contour, then the contour ordering

of operators becomes clear, leading to the greater, G>, and lesser, G<, Green’s functions.

These latter two Green’s functions are often utilised as physical observables can be easily

expressed in terms of them. For instance, the average electron density is given by [85]

⟨n(r)⟩ = −iG<(x, x). (3.34)

This description of the Green’s functions is not always the most appropriate, however

and it should be noted that because GT + GT̃ = G> + G<, there are actually only three

linearly independent Green’s functions. A transformation, originally introduced by Larkin

and Ovchinnikov [89] can be performed such that Eq. (3.33) becomes4,

G̃(x, x′) =



GR(x, x′) GK(x, x′)

0 GA(x, x′)


 , (3.35)

where GR = GT − G<, GA = GT − G> and GK = G< + G> = GT + GT̃ are the re-

tarded, advanced and Keldysh Green’s functions respectively [84]. The retarded and

advanced Green’s functions can be viewed as describing the response of a particle (or

hole for the advanced Green’s function) to an applied perturbation. They addition-

4The tilde notation is not related to the Fourier transform but is simply used here to distinguish
between the two different representations of the Green’s function matrix.
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ally contain information about the density of states, ν(ε), via the spectral function

A(k, ε) = i(GR(k, ε)−GA(k, ε)) = i(G>(k, ε)−G<(k, ε)) [85],

ν(ε) =

∫
ddk

(2π)d
A(k, ε). (3.36)

The remaining Green’s function above, GK is the Keldysh Green’s function and contains

information about the distribution function of the system and in equilibrium can be

expressed as [43]

GK(k, ε) = −iA(k, ε)(1− 2f(ε)), (3.37)

where f(ε) is the standard Fermi function. It is this Keldysh Green’s function that

becomes particularly relevant in non-equilibrium physics as the distribution function is

not guaranteed to be a Fermi function and may also depend on the initial conditions.

3.6.1 Diagrams in Real Time

The diagrammatic approach developed earlier in the chapter was done for a contour-

ordered Green’s function and it is important to understand how this is altered in real

time. Whilst the diagrams themselves remain the same, being able to express them in

terms of the real time Green’s functions is not a trivial task and for the details Appendix A

or [43] should be consulted. Here the main results will be summarised.

In the case of coupling to a scalar potential - see Fig. 3.3 and Eq. (3.25), the analysis

is fairly simple. First, the integral along the contour in Eq. (3.25) can be split into a real

time integral along the top branch (from −∞ to ∞) and a real time integral along the

bottom branch (from∞ to −∞). If care is taken over whether the temporal arguments are

on the upper or lower branches then the result for the first order correction in Eq. (3.25)

can be expressed as ∫
dx1G0(x, x1)V (x1)G0(x1, x

′) (3.38)

where the integration is over both the spatial and temporal variables. In this equation,
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the variables in the integrand are matrices, with the G’s being the free Green’s function

variant of Eq. (3.33) and V (x1) = ⟨U(x1)⟩σ(z), where σ(z) is the standard Pauli-z matrix.

In general, this leads to the Dyson equation [43]

G = G0 +G0 ◦ V G. (3.39)

This can be simplified further by performing the Keldysh rotation which leads to the

equation

G̃ = G̃0 + G̃0 ◦ UG̃, (3.40)

where U = ⟨U⟩1 (1 is the identity matrix). In this instance, the transition to real-time is

relatively simple, but in the case of the electron-electron or electron-phonon interactions,

this is no longer true.

To illustrate how this works, the diagram in Fig. 3.4(b) will be considered. The first

step is to use go from contour-ordering to time ordering, with the intention of writing the

equation in a matrix (or tensor) form similar to that in Eq. (3.38). This leads to, after

making use of index notation and not explicitly writing the spatial variables,

δG
(1)
ij = (G0)im ◦ Σmm′ ◦ (G0)m′j, Σmm′ = iγkmn(G0)nn′(D0)kk′γ

k′
n′m′ , (3.41)

where the δG
(1)
ij represents the first order correction to the full Green’s function. The self-

energy term contains two vertices, one for the emission and one for the absorption of the

phonon and these contain the coupling constant λ. In this representation, both vertices

have the same matrix structure, given by γkmn = λδmnσ
(z)
nk . However, if the Keldysh

rotation is performed, this is no longer the case and the two vertices are given by

γ̃1mn =
λ√
2
δmn, γ̃2mn =

λ√
2
σ(x)
mn (3.42)

γ̄1mn =
λ√
2
σ(x)
mn, γ̄2mn =

λ√
2
δmn, (3.43)
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where γ̃kmn is the vertex associated with the emission of a phonon and γ̄kmn is associated

with the absorption of a phonon. Each index corresponds to a different line, the k is for

the bosonic propagator, the m is for the electronic Green’s function entering the vertex,

and the n is for the outgoing Green’s function and using this allows the diagrams to be

calculated without having to expand the S-matrix explicitly. This will be demonstrated

in the next section. Although the vertices above become more complicated compared to

when absorption and emission had the same form, the advantage of working with the

matrix G̃ is that it preserves the form of the Dyson equation [43], given by Eq. (3.31),

with the convolution involving integration over the spatial and real temporal variables.

3.6.2 The Polarisation Operator for the Coulomb Interaction

In order to demonstrate how this works in practice, the 3d polarisation operator will be

calculated for the Coulomb interaction in the RPA limit where it is approximated to have

the form in Fig. 3.6. Remembering that the left-hand side of the diagram is linked to an

incoming interaction line and the opposite is true on the right-hand side, the diagram can

be expressed as

Πij = −iγ̄imn(G̃0)nn′ γ̃jn′m′(G̃0)m′m (3.44)

where the minus sign arises due to another rule of diagrammatics - that is a fermion

loop contributes a minus sign. Calculation of the retarded component of the polarisation

operator, ΠR = Π11 (which is relevant for the renormalisation of the interaction) gives

ΠR(x, x′) = − i

2

[
GR

0 (x, x
′)GK

0 (x
′, x) +GK

0 (x, x
′)GA

0 (x
′, x)

]
. (3.45)
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This can be easier dealt with in Fourier space5, giving

ΠR(q, ω) = − i

2

∑

k

∫
dε

2π

[
GR

0 (q+ k, ω + ε)GK
0 (k, ε) +GK

0 (q+ k, ω + ε)GA
0 (k, ε)

]

(3.46)

= −
∑

k

f(εk+q)− f(εk)

ω − (εk+q − εk) + iδ
. (3.47)

The final summation above can be performed using the fact that for small q (q ≪ kF) the

relevant electrons are those close to the Fermi surface due to the difference of the Fermi

functions. This leads to the Lindhard function

ΠR(q, ω) = −ν
(
1− ω

2vFq
ln

∣∣∣∣
vFq + ω

vFq − ω

∣∣∣∣
)
− iπν

ω

2vFq
Θ(vFq − |ω|), (3.48)

where ν is the density of states near the Fermi surface, vF is the Fermi velocity and Θ(x)

is the standard Heaviside step function. Using the Dyson equation, the renormalised

interaction,

V (q, ω) =
1

V −1
0 (q, ω)− ΠR(q, ω)

, (3.49)

is defined in terms of the normal interaction, V0(q, ω) = 4πe2/q2 and has two interesting

limits. The first is at low frequency, vFq ≫ ω, where the electrons have time to adjust

to any fluctuations. In this instance, the polarisation operator is equal to −ν, giving an

interaction

V =
4πe2

q2 + 4πe2ν
, (3.50)

which is simply the screening of Coulomb interaction due to the other electrons in the

metal, with the screening length being (4πe2ν)−(1/2). On the other hand, when the fre-

quency is large so that the electrons don’t have time to adjust, the interaction becomes

V =
4πe2

q2

(
1

1− ω2
p

ω2

)
, (3.51)

5A translationally invariant system in thermal equilibrium is assumed. This will be discussed more
when disorder averaging is introduced.
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where ω2
p = 4πne2/m is the plasmon frequency. Therefore, at higher frequencies, a new

excitation emerges - the plasmon, which is the oscillation of the electron gas with frequency

ωp.

In this section, it has been shown how the tools developed using Keldysh field the-

ory can be applied to a physical problem - that is the renormalisation of the Coulomb

interaction in a metal.

3.7 Disorder Averaging

The final major topic that will be discussed in regards to perturbation theory here is that

of disorder averaging. This is of particular importance in this work because the presence

of disorder is crucial in the physics of localisation as was seen in the previous chapter.

There are various models of disorder, for example the Anderson tight-binding model in

Eq. (2.2). Another common way to explore disorder is with a random potential, U(r) such

that ⟨U(r)⟩ = 0 and ⟨U(r)U(r′)⟩ = K(|r − r′|), where K(x) is the correlation function

related to the fluctuations in the potential [14]. A form of this correlation function that

shall be used in this work is the white noise model where the impurities are uncorrelated

s-wave scatterers, such that [40]

⟨U(r)U(r′)⟩ = 1

2πντ
δ(r− r′), (3.52)

where ν is the density of states at the Fermi surface and τ is the time between collisions.

By making use of the perturbative techniques developed above, the effect of disorder on

the electronic Green’s function can be ascertained, however before exploring the diagram-

matics the form of Dyson’s equation will be discussed. Recall that Dyson’s equation is

given by Eq. (3.31), which can be expressed as

G(x, x′) = G0(x, x
′) +

∫
dx1dx2G0(x, x1)Σ(x1, x2)G(x2, x

′). (3.53)
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In thermal equilibrium, all functions here depend only on the difference of the two time

arguments and after disorder averaging (that is averaging over all configurations of dis-

order), the system becomes translationally invariant, so that the functions additionally

become dependent on the difference between the two spatial arguments. Therefore, after

Fourier transforming Eq. (3.53), the Dyson equation takes on a simple form

G(p, ε) = G0(p, ε) +G0(p, ε)Σ(p, ε)G(p, ε). (3.54)

Whilst the Dyson equation holds for the different types of Green’s function as shown in

the previous section, here the free time-ordered Green’s function defined by Eq. (3.5) will

be used. The self-energy then consists of the sum of irreducible diagrams, although some

don’t contribute leading to the first order correction being shown in Fig 3.7(a) and the full

self-energy being shown in Fig 3.7(b). Consider the first order correction in Fig 3.7(a),then

after disorder averaging, the self-energy can be expressed as

Σ(r− r′, t− t′) = G0(r− r′, t− t′)⟨U(r)U(r′)⟩. (3.55)

Upon Fourier transforming and using Eq. (3.52) the self-energy becomes

Σ(p, ε) =
1

2πντ

∫
ddp′

(2π)d
G0(p

′, ε) =
1

2πντ

∫
ddp′

(2π)d
1

ε− ξp′ + iδsgn(ξp′)
, (3.56)

where d is the dimensionality. The integration can be performed and taking into account

that the relevant electrons exist near the Fermi surface, then

Σ(p, ε) = − i

2τ
sgn(ε) =⇒ G(p, ε) =

1

ε− ξp + i
2τ
sgn(ε)

. (3.57)

It turns out that this result also holds after summing relevant diagrams at all orders of

perturbation theory. Through consideration of the diagram in Fig 3.7(b), the self-energy
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can be expressed as

Σ(p, ε) =
1

2πντ

∫
ddp′

(2π)d
1

ε− ξp′ − Σ(p′, ε)
. (3.58)

This includes all ‘rainbow’ diagrams such as that in Fig. 3.8(a), although it does not

include a variety of diagrams that are shown in Figs 3.8(b),(c). The reason why will be

discussed shortly. In Eq. (3.58) the self-energy is momentum independent (as momentum

is integrated over) and so the integration can be performed in the same way as before

after making the ansatz that the self-energy is purely imaginary [40]. This leads to the

same results as in Eq. (3.57). The ansatz of the self-energy being complex is a suitable one

as the real part can simply be absorbed into a renormalised chemical potential so will be

ignored throughout this work. The imaginary part provides the lifetime of quasiparticles,

or equivalently the scattering time, τ . This is confirmed by Fourier transforming the

result in Eq. (3.57) back to real space [40].

Figure 3.7: The self-energy in the presence of disorder. The thin (thick) solid line repre-
sents the free (full) electronic Green’s function and the dashed line represents the impurity
potential, U . The cross represents that the scattering occurs from the same atom in this
model. (a): The first order term in the self-energy. (b): The full self-energy.

Now attention will be turned to the discussion of the diagrams that aren’t included

(for example, see Figs 3.8(b),(c)) as they provide a significantly smaller contribution to

the self-energy. The first diagram to consider is where the electrons just scatter once

from a single atom. This just provides a correction to the Fermi energy [40, 44, 86] and

so can be set to zero, hence the zero average in the model for disorder. This diagram

along with the case where the electrons scatter more than twice from the same atom are
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shown in Fig. 3.8(b). The latter diagrams can be included in the self-energy, however,

they are much smaller than the ones considered when the Born approximation is used,

which is where the scattering potential is considered to be weak. Ignoring these diagrams

corresponds to the model of disorder defined by Eq. (3.52).

The only remaining diagrams that haven’t been included are the diagrams with cross-

ing impurity lines, such as that in Fig. 3.8(c). In order to see why they can be neglected,

it is important to compare the diagrams shown in Fig. 3.8(a) and (c). In both situations,

all momenta of the Green’s functions must be close to the Fermi surface (within a shell of

width ∼ 1/l). In the first diagram, this can be achieved independently for each momenta

meaning that the phase space available is (4πk2F/l)
2. However, in the second diagram, the

additional constraint that p2 − (p1 − p) must be close to the Fermi surface restricts the

phase space to a volume, (4πk2F/l)(2πkF/l
2) - see Fig 3.9. Therefore, the available phase

space for the crossing diagram is ∼ kFl smaller than that for those without crossing. In

the limit of weak disorder kFl ≫ 1, the crossing diagrams can be neglected [40,44].

Figure 3.8: A collection of diagrams that can be included in the self-energy with some
of the associated momentum arguments in the Green’s functions. (a): An example of a
‘rainbow’ diagram. (b): These diagrams are not included in the self-energy. The first
represents a normalisation of the Fermi energy and the remaining two can be neglected
in the Born approximation. (c): An example of a diagram with crossing impurity lines.
These can be neglected in the limit of weak disorder due to a smaller phase space being
accessible.
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Figure 3.9: Constraints on the momenta in disordered systems. The left corresponds to
diagrams with non-crossing impurity lines. Here the condition that momenta are close to
the Fermi surface can be satisfied individually for each momenta. When there are crossing
impurity lines this is no longer the case, as is shown in the right diagram. Figure taken
from [44].

3.7.1 Diffuson and Cooperon

The final objects related to disorder that will be discussed in this chapter are the dif-

fuson and Cooperon. There are two effects in disordered systems that have not yet

been considered, the first is diffusion and the second is the interference effects that cause

backscattering as was seen during the discussion of weak localisation. The first of these

is particularly relevant for this work and is characterised by a particle-hole propagation

through the material and the interference between these two channels [82]. In terms of

Feynman diagrams, this is shown in Fig. 3.10.

Figure 3.10: The diffuson diagram. The labels represent 4-momenta, for example p =
(p, E).

By making the assumption that the top line in Fig. 3.10 is the retarded Green’s

function and the lower line is the advanced Green’s function (as this will be relevant in

the calculations in the next chapter), then after Fourier transforming, the diffuson can be

written as
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Γ(q, ω) =
1

2πντ
+

1

(2πντ)2
1

V
∑

p1

GR(p1, E)G
A(p1 − q, E − ω)

+
1

(2πντ)3
1

V
∑

p1

GR(p1, E)G
A(p1−q, E−ω)

1

V
∑

p2

GR(p2, E)G
A(p2−q, E−ω)+ . . . ,

(3.59)

where V is the d-dimensional volume of the system. The above expression is a geometric

series, so that when the integral is performed around the Fermi surface, the result is

Γ(q, ω) =
1

2πντ 2
1

−iω +Dq2
(3.60)

where D = v2Fτ/d is the diffusion constant. This result is valid when multiple scattering

events have occurred or in other words, the diffusive limit which corresponds to ql ≪ 1

and ωτ ≪ 1.

The Cooperon has a similar structure to the diffuson except it has maximally-crossed

impurity lines, but if, for example, the bottom line were to be ‘reversed’ then the same

structure as in Fig. 3.10 would arise, except with the bottom line reversed. In other words,

this describes the interference in disordered systems for a particle-particle propagator and

as a result the Cooperon is crucial in the calculation of the weak localisation correction

[43,90]. However, this will not be considered in any detail here as it is not needed for this

work.

3.8 QKE

One way of calculating various quantities using the Keldysh formalism is to use a quantum

kinetic equation (QKE). In non-equilibrium situations, there is a difference between the
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left and right Dyson’s equations, which can be written as

G ◦
(
G−1

0 − Σ
)
= 1, (3.61)

(
G−1

0 − Σ
)
◦G = 1. (3.62)

The reason for this difference in non-equilibrium is that the functions are no longer just

dependent on the difference of time arguments, so the order of multiplication matters even

after Fourier transforming [43]. These two equations can be used to derive a form of the

QKE that resembles the semiclassical Boltzmann equation which is common in condensed

matter physics and is used to describe the changing of the distribution function under

various conditions. The QKE, which is a generalisation of the Boltzmann equation, can

be expressed in many different forms that will be explored in the following chapters.

3.9 Summary

This chapter introduced the Keldysh formalism of non-equilibrium field theory. This

makes use of electronic Green’s functions that propagate the electron from one point

to another. These Green’s functions come in various forms, with each one having a

different use. Multiple associated techniques were discussed, with a focus on constructing

a perturbative approach to understand the effects of interactions and disorder on the

Green’s function. This is of particular interest in the context of MBL where both effects

are important. In the next chapter these techniques will be used to analyse the electron-

phonon coupling in disordered systems.
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CHAPTER 4

ELECTRON-PHONON

DECOUPLING

One of the essential conditions for MBL is the presence of electron-phonon decoupling

because without it the system will equilibrate and therefore be in a thermalised state.

This electron-phonon interaction is inherent to solid-state systems meaning that the ob-

servation of MBL in such systems is difficult and is yet to be achieved. In contrast to this,

systems of ultracold atoms have greater control over the isolation of the system from the

environment and signatures of MBL have been identified in these systems as was discussed

in Chapter 2. However, this doesn’t mean there has been no progress towards observing

MBL in solid-state systems and in this chapter, this will be demonstrated.

Both the theoretical and experimental aspects of identifying electron-phonon decou-

pling will be discussed as this phenomenon has been observed on a few occasions. The

theoretical aspect of this work will focus on the conditions that are required to observe

the decoupling as well as building up a general understanding of the electron-phonon

interaction in disordered materials. In addition to this, the link to MBL will be empha-

sised, in particular how the presence of electron-phonon decoupling is a necessary but not

sufficient condition for MBL.

In order to develop further progress in this field, two-dimensional materials will be
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explored as the focus of this work. The electron-phonon cooling rate in suspended films

will be analysed in detail, making use of the techniques developed in the previous chapter.

This analysis forms part of the work that went into the manuscript Electron-Phonon De-

coupling in Two Dimensions [23], authored by myself and Igor V. Lerner. This manuscript

is presented towards the end of this chapter before summarising the key results, the con-

sequences that these have, and how this work can be built on to make progress going

forwards.

4.1 Electron-Phonon Decoupling in Thin Films

Various materials have been observed to exhibit jumps of several orders of magnitude

in the current-voltage (I-V ) characteristics [91–97]. These systems jump between a low

resistive state and a high resistive state, leading original explanations to suggest the

existence of a superinsulating state [93, 98] - akin to that of a superconducting state.

However, this was contested in [99,100] and in 2009 theoretical [101] and experimental [97]

evidence suggested an alternative explanation in which an overheated electronic state,

where the electrons are decoupled from the phonons, was responsible for the jumps in the

I-V characteristics. Previous work suggested that this could be relevant but not the sole

explanation, however disorder had not been properly accounted for when coming to this

conclusion [92,101].

In the overheating work of [101], a phenomenological model was developed in which

the heat balance equation for the system was considered. The heat into the system is

provided by an applied voltage, V , which heats the electronic subsystem but not that of

the phonons. The heat from the electrons is then dissipated into the lattice via interactions

with phonons and it is assumed that both the electronic and phonon subsystems thermalise

individually to a well-defined temperature (Tel and Tph for the electrons and phonons

respectively). These do not need to be the same however, due to a sufficiently weak

electron-phonon interaction. Under these assumptions, the heat balance equation can be
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expressed as the power into the system is equal to the power out, giving

V 2

R(Tel)
= Ė , (4.1)

where R(T ) is the equilibrium resistance and Ė is the cooling rate due to the electron-

phonon interaction. For 3d electronic and phonon subsystems, which is applicable for

films on a substrate, it is given by [102–104]

Ė =
4π4

315

kFlnelV
ℏ4∆4

0

(
T 6
el − T 6

ph

)
. (4.2)

In the above equation, nel = k3F/3π
2 is the three-dimensional electronic density and

∆4
0 = ℏ3ρc5s, with ρ being the material density and cs is the transverse speed of sound.

Substituting the result for the cooling rate in Eq. (4.2) into the heat balance equation,

Eq. (4.1), it was subsequently found that the I-V characteristics would exhibit a bista-

bility providing that the resistance had an exponential form,

R(T ) = R0e
(T0/T )γ (4.3)

where R0 is a temperature-independent constant, T0 ∼ 1 − 5K and γ = 1 gives an

Arrhenius resistance [101]. Through a careful analysis of the heat balance equation,

Eq. (4.1), the authors of [101] were able to predict a number of phenomena that agreed

with the experimental observations, particularly those of the authors in [97] whose results

obtained from InOx films (driven into an insulating state by a magnetic field) are displayed

in Fig. 4.1.

First, it was found that below a critical lattice temperature T cr
ph ∼ 0.1T0, there exists

a bistability in the electron temperature for a certain range of applied voltages, see the

inset of Fig. 4.1(a). Whilst there are three solutions to the heat balance equation in this

region, one of them is unstable as it requires the temperature of the electrons to decrease

with increasing applied bias - which is unphysical. The first of the two stable states is
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found to be the cold electron state where the electrons are still coupled to the lattice

and have approximately the same temperature. The second state is massively overheated

compared to the phonon bath, which is indicative of the decoupling that has occurred due

to insufficient cooling. By making use of Eq. (4.3) at a temperature Tel, the two different

temperature states lead to high and low resistive states, and the jumps between the two

explain the observed jumps in the I-V characteristics, which are shown in Fig. 4.1(b).

Other additional effects that were captured theoretically and experimentally include the

variation of the bistability boundaries with the lattice temperature (Fig. 4.1(a)) that leads

to the hysteretic jumps in the I-V characteristics, as well as an excluded region of electron

temperatures that corresponds to the unstable electron states. The independence of the

boundary of the hot electron state on the lattice temperature clearly indicates the system

is in a transport regime that does not depend on the phonons.

Figure 4.1: The bistability results obtained using InOx. In (a) the bistability is shown in
the inset and the main figure shows how the electron temperature varies with the lattice
temperature for increasing (blue) and decreasing (red) V . The large jumps in the I-V
characteristics are shown in (b). Figure taken from [97].

It is worth noting that whilst this theory and experiment were in good agreement and

there has been further work to support the existence of an overheated state [94], this

theory did not capture everything and further work has been done. More recent analysis

involves the inclusion of localisation, where the effects of a multifractal wave function near
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the Anderson transition [105] and the presence of Mott’s resonant pairs1 [53] increase the

cooling rate to align it with the experimentally measured value [106]. Prior to this, the

theoretically predicted cooling rate was 2-3 orders of magnitude smaller than that in the

experiment.

4.1.1 Relation to MBL

Since the work on the overheated state, there have been multiple other studies involving

indium oxide films and the I-V jumps, with a particular focus on the experimental [95]

and theoretical [107] aspects of the superconductor-insulator transition. More important

to the work in this thesis is that a bistability in I-V characteristics has been linked

to MBL theoretically [27]. Further studies of indium oxide films have also made this

link experimentally [108], although these results are not conclusive. By analysing the

particular form of the resistance, the authors of [108] suggested that the conductivity of the

sample could be parametrised more accurately by introducing an additional temperature

scale, Tc,

σ(T ) ∼ e−T0/(T−Tc), (4.4)

which suggests the vanishing of the conductivity at T = Tc. This finite temperature

insulating state is one of the key results of MBL although alone it does not guarantee its

existence and the bistability is simply an indication of electron-phonon decoupling which

is a requirement for MBL. Therefore, further signatures are needed, an example of which

is a divergence in the electronic noise as the MBL transition is approached. The details

of this will be discussed further in Chapter 6, however it is worth noting that this has

already been explored in indium oxide films [109,110] and although these works observed

enhanced electronic noise they were not conclusive in linking the results to MBL and

either further theoretical work, or ideally signatures reflecting the entanglement and lack

of thermalisation would be required.

In the work presented in the manuscript Electron-Phonon Decoupling in Two Dimen-

1These also cause a logarithmic frequency-dependent conductivity in the localised regime [14,53].
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sion [23] at the end of this chapter, the effects of electron-phonon decoupling are explored

in two dimensions, which is relevant for the case of suspended thin films. In order to carry

out this analysis, it is important to understand the electron-phonon interaction.

4.2 Electron-Phonon Interaction

In a metal the electrons are coupled to the lattice via the phonons (vibrations of the

lattice). This interaction arises as the phonons change the local charge density of the

lattice, which the electrons then couple to via the Coulomb interaction. If the ions of the

lattice are located at positions Rj, then the interaction is given by [86]

Hint =

∫
drψ†(r)ψ(r)

∑

i

V (r−Ri), (4.5)

where ψ†(r) (ψ(r)) are the field creation (annihilation) operators for an electron at position

r and V (r −Ri) is the potential coupling the electrons and ions. The displacements, ui

for the ions due to the lattice vibrations are in general small, |r −Reqm
i | ≪ ui, meaning

the potential can be expanded around the equilibrium points of the ions, Reqm
i , giving

V (r−Ri) ≈ V (r−Reqm
i ) + ui · ∇V (r−Reqm

i ). (4.6)

The following observations can be made after substituting this result into Eq. (4.5). The

first term is just a constant background potential for the electrons and is the cause of the

periodic potential in crystals that leads to the well-known Bloch states for electrons [86].

The second term is the interaction between the electrons and ion displacements - in other

words, this is the electron-phonon interaction. This interaction can be expressed in Fourier

space in terms of the standard creation and annihilation operators, c†, c,

He−ph =
i√
V
∑

p,q

c†p+qcpV (q)(q · uq) =
1√
V
∑

p,q

c†p+qcp(gq · uq), (4.7)
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where V is the d-dimensional volume and uq is the Fourier transform of the displacement

of the ions due to the phonons. In the standard jellium model V (q) = C, where C = nel/ν,

with ν being the density of states at the Fermi surface [111]. This gives a deformation

potential constant of C = (2/3)εF in 3d and C = εF in 2d.

In a clean metal, the model described by Eq. (4.7) is sufficient for describing the

electron-phonon interaction where only the longitudinal phonons interact with the elec-

trons. This is because they modify the local charge density ensuring the coupling via the

Coulomb interaction, whereas the transverse phonons do not, as shown in Fig. 4.2. In

disordered systems (which are necessary for studying localisation) there is a further effect

that needs to be added to the electron-phonon interaction. In this instance, the impurities

can vibrate with the lattice, modifying the interaction and the Hamiltonian acquires an

additional term [102–104]

He−ph−imp = − i√
V
∑

p,q,k

c†p+q+kcpU(k)(k · uq) =
1√
V
∑

p,q,k

c†p+q+kcp(g
imp
k · uq). (4.8)

Here, U(k) is the Fourier transform of the disorder potential and the sum of Eq. (4.7) and

Eq. (4.8) provides the full Hamiltonian for the electron-phonon interaction in disordered

systems.

4.3 The Electron-Phonon Cooling Rate

In order to explore the signatures of electron-phonon decoupling in two dimensions, an

analysis of the heat balance equation, Eq. (4.1), will be required and therefore the electron-

phonon cooling rate must be calculated. Although the main focus of this chapter is

on the signatures of electron-phonon decoupling, the electron-phonon cooling rate in 3d

disordered systems, Eq. (4.2), has some interesting properties of its own. The first is that

it only depends on the transverse phonons. Although the cooling rate due to longitudinal

phonons has the same form, the strong dependence on the speed of sound ensures they do

not contribute as their speed of sound is a few times larger than the transverse equivalent
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Figure 4.2: The electron-phonon interaction in clean metals. Longitudinal phonons alter
the local charge density allowing coupling to the electrons whereas transverse phonons do
not.

[112]. Second, the cooling rate in disordered semiconductor systems is suppressed by a

factor n∗lT/ℏcs compared to a clean metal [101] (n∗ is the number of conduction electrons

in a unit cell and is small in the systems of interest). This suggests that they are more

promising for observing electron-phonon decoupling, although disorder is required for

localisation anyway. These phenomena will also be shown to be true in 2d suspended

films, but first, it is important to understand how to calculate the cooling rate. One way

to achieve this is through the use of the quantum kinetic equation (QKE), which can be

written in the form

∂tfε(t) = I[fε(t)], (4.9)

where fε(t) = 1− 2nF(ε) and nF(ε) is the standard Fermi distribution function, and I[f ]

is the collision integral. This form of the QKE is advantageous in this scenario because it

allows for a direct calculation of the cooling rate. Through multiplication of both sides of

the equation by ε and integration over all energies2, the left-hand side can be related to

the cooling rate of the electrons. By noting that the energy of the electrons in a sample of

2The integration is from −∞ to ∞ as measuring energies from the Fermi energy is implicitly assumed.
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area A is given by E(T ) = π2νAT 2
el/6, the expression for the cooling rate can be expressed

as

Ė =
1

2
νA
∫ ∞

−∞
dε εI[fε(t)]. (4.10)

Clearly in order to calculate the cooling rate a clear understanding of the collision integral

is required and this will be discussed in the remainder of this chapter.

4.3.1 The Boltzmann Equation

The form of the QKE in Eq. (4.9) resembles the Boltzmann equation which is commonly

used to describe the evolution of the distribution function over time in semiclassical calcu-

lations. This distribution function can then be used to calculate various quantities, these

range from thermal properties such as the cooling rate above to electrical properties such

as the current. The Boltzmann equation is given by [28,111]

∂tf(r,p, t) + ṙ · ∇rf(r,p, t) + ṗ · ∇pf(r,p, t) = I[f ]. (4.11)

where f(r,p, t) is the distribution function and I[f ] is the collision integral. In this

formalism, there are multiple ways to approach the collision integral, for instance using

Fermi’s golden rule. The simplest model however, is the relaxation time approximation,

which assumes the distribution doesn’t deviate too far from equilibrium and the relaxation

time, τ is the scattering time. This model has the following form for the collision integral

I[f ] = −f(r,p, t)− f0(r,p)

τ
, (4.12)

where f0(r,p) is the equilibrium distribution and τ is the scattering time, which encap-

sulates all the scattering processes.
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4.3.2 The Quantum Kinetic Equation

The Boltzmann equation can be generalised to the quantum kinetic equation which still

allows the incorporation of different scattering processes. There are various ways to ex-

press this equation, with one being a similar form to the semiclassical Boltzmann equation,

Eq. (4.11), and such a derivation is presented in, for example [43, 83]. In this work, the

preferred form is still similar to that of the Boltzmann equation - it is that in [102], which

is the form in Eq. (4.9).

The starting points of the derivation are the left and right Dyson equations for the

matrix form of the Green’s function involving GR, GA, GK (note the G̃ notation used in

the previous chapter has been dropped),

G ◦
(
G−1

0 − Σ
)
= 1, (4.13)

(
G−1

0 − Σ
)
◦G = 1, (4.14)

where G−1
0 has the same structure as G but contains the inverses of the Green’s functions.

Upon subtraction this can be written as

[G−1
0

◦,G] = [Σ◦,G]. (4.15)

After taking the Keldysh component of this equation, performing a temporal Wigner

transform and then integration over the coordinates, r, r′, (which is equivalent to a trace)

the QKE can be written as

∂tfε(t) =
1

2πνV Tr
(
∆ΣGK − ΣK∆G

)
, (4.16)

where ∆G = GR − GA, and ∆Σ = ΣR − ΣA. For the details of the derivation see

Appendix B.
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4.3.3 The Collision Integral

The form of the QKE in Eq. (4.16) is the same as the general form in Eq. (4.9) with

I[f ] = 1
2πνV Tr

(
∆ΣGK − ΣK∆G

)
. In the case of the electron-phonon interaction, which

is relevant for the calculation of the cooling rate due to this interaction, the self-energy

can be expressed via the diagram shown in Fig. 4.3. Calculation of this diagram can be

performed using the techniques developed in the previous chapter (see Appendix B) and

then disorder averaging can be performed to give the collision integral [23,102]

I[f ] =
i

4πνA

〈∫ ∞

−∞

dω

2π

∫
drdr′∆G(r, r′, ε)ĝα(r

′)∆G(r′, r, ε− ω) (4.17)

×∆Dαβ(r
′ − r, ω)ĝβ(r)[(fε − fε−ω)Nω + fεfε−ω − 1]

〉
.

Here, ∆D = DR−DA is the difference between the retarded and advanced components of

the phonon propagator, Nω = 1−2nB(ω), with nB(ω) being the standard Bose distribution

and the g’s represent either the clean electron-phonon vertex in Eq. (4.7), or its disordered

counterpart in Eq. (4.8).

Figure 4.3: The Feynman diagram for the electron-phonon self-energy used in the calcu-
lation of the collision integral.

The two different types of vertex in combination with the disorder averaging lead to

a variety of diagrams shown in Fig. 4.4 and it is the calculation of these diagrams that

allows the electron-phonon cooling rate to be obtained. Subsequent analysis of the heat

balance equation allows the conditions under which electron-phonon decoupling occurs
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to be derived, as well as the signatures that allow this to be observed in suspended two-

dimensional films. This is all discussed, along with the consequences of the results in the

next section, where the manuscript Electron-Phonon Decoupling in Two Dimensions [23]

is presented, with additional details on the calculations being provided in Appendix C.

Figure 4.4: The Feynman diagrams for the collision integral after disorder averaging.
Small circles correspond to the standard electron-phonon vertex, gq and the large circles
correspond the disorder modified vertex, gimp

k . The solid lines indicate disorder averaged
electronic Green’s functions. Figure taken from [102].
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4.4 Electron-Phonon Decoupling in Two Dimensions

The following is the manuscript for the publication Electron-Phonon Decoupling in Two

Dimensions produced by myself and my supervisor Igor V. Lerner. As first author, I

performed the calculations and analysed the results. I additionally wrote the majority of

the manuscript with assistance on the writing and the direction of the project provided by

Igor V. Lerner. A version of this manuscript has been published in Scientific Reports [23].
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ABSTRACT

In order to observe many-body localisation in electronic systems, decoupling from the lattice phonons is required, which is possible only
in out-of-equilibrium systems. We show that such an electron-phonon decoupling may happen in suspended films and it manifests
itself via a bistability in the electron temperature. By studying the electron-phonon cooling rate in disordered, suspended films with
two-dimensional phonons, we derive the conditions needed for such a bistability, which can be observed experimentally through
hysteretic jumps of several orders of magnitude in the nonlinear current-voltage characteristics. We demonstrate that such a regime is
achievable in systems with an Arrhenius form of the equilibrium conductivity, while practically unreachable in materials with Mott or
Efros-Shklovskii hopping.

Introduction
Tremendous experimental progress in isolating quantum many-body systems from the environment (see1 and2 for reviews) led
to the observation of many-body localization (MBL) in ultracold atomic systems.3, 4 The question remains, however, whether
MBL can be observed in disordered electronic systems for which it was originally predicted.5, 6 In the absence of interaction,
disorder localizes all electron states in low-dimensional systems7 so that the dc electronic current vanishes without inelastic
processes. The essence of MBL is that inelasticity due to the electron-electron (e-e) interaction alone does not lead to thermal
equilibration of the system, as was first suggested for interacting electrons in a chaotic quantum dot.8 Hence in the absence of
other mechanisms of inelasticity all states would remain localized so that finite-temperature conductivity would remain zero.

The main obstacle to the observation of this effect in electronic systems lies in the coupling of the electron system to the
environment via the electron-phonon (e-ph) interaction. In equilibrium, such a coupling equilibrates all electron states with the
underlying lattice leading to their delocalization. This results in nonzero finite-temperature conductivity, which is driven, in the
absence of the electron-electron interaction, by Mott’s variable-range hopping9, 10 and given, at temperatures lower than some
constant T0, by

σ(T ) = σ0 exp [−(T0/T )
γ ] , (1)

where γ = 1/(d+ 1) for a d-dimensional system, and σ0 is a constant, temperature-independent prefactor. The presence of an
electron-electron interaction changes the mechanism of equilibration at sufficiently low temperatures due to the emergence of a
so-called Coulomb gap in the single-electron density of states11 resulting in the change of the exponent in Eq. (1) to γ = 1/2,
independent of dimensionality.

Although the electron-phonon coupling makes it impossible to observe MBL in electronic systems equilibrated with the
lattice, in out-of-equilibrium systems electrons and phonons might decouple even in the presence of a weak electron-phonon
interaction. For MBL to be observable, the interacting electrons should be at internal equilibrium but not equilibrated with the
underlying lattice. It has been suggested12 that such an out-of-equilibrium decoupling could manifest itself via a bistability in
the nonlinear current-voltage (I-V ) characteristics. It has been shown later13 that such a bistability, caused by the electrons
overheating, occurs at low temperatures, T ≲ 0.1T0, provided that the equilibrium conductivity is close to the Arrhenius law, i.e.
γ ≈ 1 in Eq. (1). The quantitative description of this bistability,13 based on an earlier developed analysis of the electron-phonon
equilibration rate in bulk disordered systems,14–16 allowed a full explanation of giant jumps (up to six orders in magnitude) of
resistivity experimentally observed17–20 in various materials with the Arrhenius equilibrium conductivity where T0 is of order
of a few kelvins.

The presence of a bistability in the I-V characteristics below a critical temperature is not, by itself, necessarily a signature
of MBL but its absence would mean electron-phonon equilibration and hence the absence of MBL. Intuitively, it seems that the
electron-phonon decoupling would be easier to achieve in suspended disordered 2d films. Hence, such films might be promising
for observing MBL provided that they are sufficiently disordered for the one-electron Anderson localization on the length scale
smaller than the film dimensions.

In this paper, we derive the electron-phonon equilibration rate in such films and use it to analyze a possible bistability of
the I-V characteristics on the insulating side where the equilibrium conductivity is governed by Eq. (1). We found that in



suspended films with the Arrhenius equilibrium conductivity, the bistability occurs at lattice temperatures T ≲ 0.1T0 similar,
albeit quantitatively different, to bulk systems or thick multilayered films. On the other hand, for disordered films with γ ≲ 1/2,
i.e. those with either Mott9, 10 or Efros-Shklovskii11 conductivity, the bistability could take place at much lower temperatures.
Hence only materials with the Arrhenius resistivity at low temperatures could be potentially promising for detecting MBL.
While the origin of a small Arrhenius gap, T0 ∼ 1K, is quite an interesting problem by itself, we do not consider it here noticing
only that there is a variety of materials with such a gap21–25 which typically have granular disorder.

Model
We consider electron-phonon relaxation in a suspended disordered film where both electron and phonon degrees of freedom are
two-dimensional. Electrons can thermally decouple from phonons when a finite source-drain voltage, V , drives the system out
of equilibrium. The decoupling might reveal itself in a nonlinear, non-Ohmic regime when the electron-phonon interaction is
too weak to effectively dissipate the power supplied to the electron system. Assuming the electron-electron interaction to be
sufficiently strong for thermalizing electrons between themselves at a temperature Tel, the energy dissipation from the electronic
system to the phonon bath (or equivalently the lattice), which is at a temperature Tph, can be described by the phenomenological
heat balance equation,13

V 2

R(Tel)
=

dE
dt

=
E(Tel)

τe-ph(Tel)
− E(Tph)

τe-ph(Tph)
. (2)

Here the temperature-dependent part of the total electron energy is given by E(T ) = π2νAT 2/6 (where A is the sample
area and ν is the density of states at the Fermi surface), and R(Tel) is the sample resistance at equilibrium, which is equal to
the inverse conductivity σ−1(Tel), see Eq. (1), assuming for simplicity a square shape of the film. As the electron energy is
conserved in e-e collisions, the heat balance is fully determined by the e-ph interaction with the scattering time τe-ph(T ) which
is energy-independent at the low temperatures at which MBL might occur, as the relevant part of the dispersion for both the
electrons and phonons is linear. In the presence of disorder, the e-ph interaction is modified by the effect of phonon-induced
impurity displacements.14–16, 26 This can occur in two possible ways depending on whether the phonons directly affect the
impurities. In the case of a suspended film, the impurities oscillate with the lattice so that the Hamiltonian becomes

H =
1√
A
∑

p,q,k

c†p+q+kcp
(
gq · uq δk0 + gimp

k · uq

)
. (3)

Here c†, c are the electron creation and annihilation operators, uq is the the Fourier transform of the lattice displacement
(corresponding to either transverse or longitudinal phonons), gq = iCq is the standard electron-phonon vertex with the
deformation potential C equal to the Fermi energy εF for two-dimensional phonons, and gimp

k = −iU(k)k is the vertex
corresponding to the phonon-displaced impurities, with U(k) being the Fourier transform of the impurity potential. For electron
scattering from impurities we assume the standard model of uncorrelated s-scatterers,27 which is equivalent to the Gaussian
potential with zero average and δ-correlations,

⟨U(r)U(r′)⟩ = 1

2πντ
δ(r − r′), (4)

where τ is the mean scattering time.

Results
We show that electrons can decouple from the phonon bath in thin suspended films provided that the equilibrium finite-
temperature conductivity is close to the Arrhenius law, i.e. γ ≈ 1 in Eq. (1), and the bath temperature is much lower than the
Arrhenius “gap” T0. This conclusion is based on our analysis of the electron-phonon cooling rate for 2d phonons similar to that
for the phonons in bulk materials (see, e.g.,14–16). Using the quantum kinetic equation derived in the Keldysh formalism (see,
e.g.,28), we derive the following expression for the electron-phonon cooling rate due to transverse phonons:

Ė =
α2kFℓnelA

ℏ∆3
0

(
T 5
el − T 5

ph

)
, ∆3

0 = ℏ2ρ2du4
t , α2 =

3

π
ζ(5) ≈ 0.99, (5)

where kF is the Fermi wave vector, ℓ is the electron mean free path, ut is the transverse phonon speed of sound, nel = k2F/(2π)
is the 2d electron density, ρ2d is the 2d material density and ζ is the Riemann-zeta function. This result corresponds to the
τ -approximation for the e-ph relaxation rate in Eq. (2) with the temperature dependence 1/τe-ph(T ) ∝ T 3 and is similar to
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that for the case of 3d phonons,13 where Ė ∝ T 6
el − T 6

ph, with the difference being caused by the weaker dependence of the
phonon density of states on the phonon frequency, which goes as ωd−1. As in the 3d case, the leading contribution to the
cooling rate is due to the impurity-facilitated interaction of electrons with transverse phonons, which is absent in a clean metal.
The contribution from the interaction with longitudinal phonons has the same form as Eq. (5) with the change ut → ul. Since
the longitudinal speed of sound, ul, is typically a few times larger than its transverse counterpart,29 the longitudinal-phonon
contribution contains a small factor of (ut/ul)

4 in comparison to the leading contribution given by Eq. (5). It is worth noting
that the overall low-temperature suppression of the e-ph relaxation rate in disordered semiconductors, as compared to a clean
metal, is given by a factor of n∗Tℓ/ℏut(ul/ut)

3, reflecting Pippard’s ineffectiveness condition.30 Here n∗ is the number of
electrons per unit cell, which is small in semiconductors most promising for MBL so that, with a typical ut of order of 103m/s,
the cooling rate could be several orders in magnitude smaller than in a dense clean metal in spite of the factor (ul/ut)

3 ∼ 10.
Next, we substitute the cooling rate (5) into the heat balance equation (2). Assuming the usual Drude prefactor for the

equilibrium resistance,

R(Tel) = R0 exp

[(
T0

Tel

)γ]
≡ ℏkF

nele2ℓ
exp

[(
T0

Tel

)γ]
, (6)

we find that the heat balance equation is independent of the mean free path, ℓ. This allows us to extend the results for the
electron-phonon cooling rate we have obtained in the metallic regime, kFℓ ≫ 1, to the transition regime, kFℓ ∼ 1, and beyond.
This is empirically justified by experiments20 made in the vicinity of the superconducting-insulating transition, where kFℓ < 1,
as the results obtained were in excellent quantitative agreement with the results for the bistability13 obtained using the cooling
rate via interactions with bulk phonons which had been calculated in the metallic regime.14–16

It is convenient to represent the heat balance equation, obtained by substituting the equilibrium resistance (6) and the cooling
rate (5) into Eq. (2), in terms of a dimensionless temperature and voltage, defined by tel,ph = Tel,ph/T0 and v = V/V0 with
V 2
0 = α2k2FAT 5

0 /(e
2∆3

0), as follows:

v2 =
[
t5el − t5ph

]
exp [(1/tel)

γ ] . (7)

For any given voltage, the electron temperature must be higher than the bath temperature to satisfy this equation. By itself this
does not signify the electron-phonon decoupling. On the other hand, we can see clear evidence of decoupling in the presence
of a bistability where, below a critical bath temperature and in a certain range of the applied voltage, electrons can mutually
equilibrate at two distinct temperatures, “cold” t<el and “hot” t>el . It is in the regime of overheating, at temperature t>el which is
practically independent of the lattice temperature tph, that the electrons become fully decoupled from the phonons.

(a) (b)

Figure 1. (a). The bistability region, where two stable solutions for tel exist in a certain range of the applied voltage, is shown
for tph = 0.75tcrph for the Arrhenius equilibrium resistance, γ = 1. The blue dots correspond to cold and hot electron states at
temperatures t<el and t>el , respectively, and the red dot to an unstable solution. (b). The dependence of tel on v2 for different
phonon bath temperatures is shown as follows from Eq. (7). Above the critical bath temperature this corresponds to the actual
tel(v) dependence while below tcrph the electronic system will fall either to t<el or to t>el , making temperatures in between
experimentally inaccessible.
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Such a bistability occurs when Eq. (7) has, for a given voltage and bath temperature, two stable solutions for tel. This
happens below the critical phonon bath temperature tcrph when the r.h.s. of this equation becomes a non-monotonic function of
the electron temperature. An elementary analysis shows that the critical bath temperature is given by

tcrph ≡
T cr
ph

T0
=

(
1 +

5

γ

)−( 1
γ + 1

5 )
. (8)

For tph < tcrph Eq. (7) has three solutions in a certain region of the source-drain voltage, as illustrated in Fig. 1 for the Arrhenius
case, γ = 1. For a given voltage within this region, both the “cold” and “hot” states, at electronic temperatures t<el and t>el
respectively, are stable. The middle solution, however, corresponds to an unstable electronic state.

Formally, a similar bistability takes place also for the Mott (γ = 1/3) and Efros-Shklovskii (γ = 1/2) hopping regimes.
However, a faster than exponential dependence of the critical phonon bath temperature on 1/γ, Eq. (8), pushes the bistability in
these regimes to very low temperatures: while tcrph ≈ 0.12 in the Arrhenius case, it is about 5 · 10−3 in the Efros-Shklovskii
regime, and 10−4 in the Mott regime. With T0 ∼ 1K in materials of interest, the bistability regime would be practically
unreachable in the systems with the Mott or Efros-Shklovskii conductivity, while the experimentally observed bistability in an
Arrhenius material20 was in a quantitative agreement with the theoretical description13 similar to that developed here but with
the electrons interacting with bulk phonons. Due to this fact we conclude that for γ ≈ 1 the bistability occurs for T ≲ 0.1T0.

At the bistability boundaries for a given tph, the derivative of the r.h.s. of Eq. (7) vanishes, so that the boundaries are
determined in the Arrhenius case by the following equation

5tel = 1− (tph/tel)
5, (9)

which for tph < tcrph has two solutions, hot, thel, and cold, tcel, depicted in Fig. 2(a). The corresponding temperature dependence
of the voltage boundaries of the bistability, v> for the cold state and v< for the hot one, obtained by substituting tc,hel into Eq. (7),
is shown in Fig. 2(b). As previously mentioned, in order to satisfy the heat balance, Eq. (2), the electron temperature must
always be higher than the phonon bath. However, while in the cold state tcel almost follows tph, in the overheated hot state
thel is almost independent of the bath temperature, and so is the voltage boundary of this state, v<. Since the electrons in the
overheated state are practically decoupled from the phonon bath, it is the state most suitable for a possible observation of MBL.

(a) (b)

Figure 2. Dependence of the bistability boundaries on the phonon temperature for (a) the electron temperature and (b) the
source-drain voltage, for γ = 1. The region of electron temperatures inside the curve (a) is experimentally inaccessible as it
corresponds to the unstable states.

It is important to understand the experimental signatures of the bistability as this will confirm with certainty that electron-
phonon decoupling is present. A relatively simple experimental signature is the presence of a region of excluded temperatures
corresponding to the unstable states, which are those enclosed by the curve in Fig. 2(a). Such a region was experimentally
observed in20 and turned out to be in quantitative agreement with the theoretical prediction13 made for films on a substrate with
electrons interacting with bulk phonons. But the most striking feature due to bistability is giant hysteretic jumps in the I-V
characteristics: due to the exponential dependence of resistance on the inverse electron temperature, a switch between the cold
and hot electron states under a given voltage V leads to abrupt changes in the current I that can be of many orders in magnitude.
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To see this, we solve numerically the equation for the non-linear conductance in the Arrhenius regime,

G =
I

V
=

1

R(tel)
=

1

R0
e−1/tel(v), (10)

where R0 is the Drude resistivity, Eq. (6). The solution has an S-shape, as shown in Fig. 3(a), with the dotted part being
unstable. This makes hysteretic jumps between the low conductance (cold electron) state and the high conductance (hot electron)
state inevitable.

These jumps are illustrated in Fig. 3(b). Let us stress that exact positions of the jumps are random as the boundaries here are
simply bounds on the true jumps; where the actual jumps occur depends on the decay mechanisms of the states, as discussed
in13, 31. Moreover, we do not estimate numerical values for these boundaries, because in order to obtain an accurate value for the
voltage scale, V0, we would also need to include the effects of localisation into the electron-phonon cooling rate32, which goes
beyond the aim of this work. Despite this, the temperature dependence of the positions of the jumps should be experimentally
observable, as in the case of electrons interacting with bulk phonons.17–20 Namely, one expects to see a strong temperature
dependence of the boundary for the cold electron states (v>) and almost no temperature dependence of the boundary for the hot
states (v<), as well as the inaccessible region of electron temperatures as in Fig. 2(a).

(a) (b)

Figure 3. (a). The S-shape solution to the equation for the non-linear conductance, Eq. (10), for tph = 0.75tcrph. The dotted
part corresponds to unstable states, resulting in hysteretic jumps, denoted by the arrows. Note that the jumps do not necessarily
occur at the boundaries of the bistability (dashed lines). (b). The numerically predicted I-V characteristics for various lattice
temperatures. The jumps here are shown to be at the bistability boundaries, though this may not be the case in reality. The
V > 0 side of the graph illustrates the transition from the cold electron (low conductance) state to the hot electron (high
conductance) state, which occurs when the source-drain voltage is increased. The V < 0 side displays the opposite transition
when the voltage is decreased, going from the hot to cold electron states. In both (a) and (b) the voltage is measured in units of
V0 and the current is in units such that the resistance is measured in units of R0.

Discussion
To summarise, we have shown that for films with an equilibrium conductivity exhibiting an Arrhenius (or Arrhenius-like) law,
R(T ) = R0 exp [(T0/T )

γ ] with γ ≈ 1, electrons can decouple from phonons in a nonlinear regime. Such an electron-phonon
decoupling manifests itself as a bistability in the electron temperature that can be observed via the I-V characteristics. This
bistability occurs in a certain region of source-drain voltages for a lattice temperature T ≲ 0.1T0, while T0 is known to be of
order of a few kelvins in numerous materials. On the contrary, in systems where the equilibrium conductivity is of the form of
either Mott (γ = 1/3) or Efros-Shklovskii (γ = 1/2) hopping, the lattice temperature required for the bistability is much lower
and practically not accessible. Therefore, for achieving the electron-phonon decoupling necessary for MBL, materials with an
Arrhenius conductivity, such as those recently seen in33, are most promising.

The bistability in the electron temperature means that there exist stable ‘cold’ and ‘hot’ electron states. The former have a
temperature proportional to (but slightly higher than) that of the lattice while the latter have a temperature which is almost
independent of the lattice temperature. It is in this state that the electrons are fully decoupled from the phonons, making it most
promising for observing MBL. The most significant experimental signature of the bistability is giant jumps in the non-linear
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I-V characteristics between the cold (low conductance) and the hot (relatively high conductance) states. Such jumps have been
previously associated, in the 3d case, with a possible transition to MBL34. We emphasise, however, that while these jumps
provide the evidence for electron-phonon decoupling, further evidence would be needed to confirm the existence of the MBL
state.

Methods
In order to calculate the electron-phonon cooling rate in two-dimensional systems, Eq. (5), we used the Keldysh formalism (see,
e.g.,28) in the form similar to that used in calculating the cooling rate in 3D systems.16 The quantum kinetic equation can be
written as

∂tfε(t) = I[f ], (11)

where (after setting ℏ = 1) the collision integral for the electron-phonon interaction modified by disorder is given by,16

I[f ] =
i

4πνA

〈∫ ∞

−∞

dω

2π

∫
drdr′∆G(r, r′, ε)ĝα(r′)∆G(r′, r, ε− ω)∆Dαβ(r

′ − r, ω)ĝβ(r) (12)

×[(fε − fε−ω)Nω + fεfε−ω − 1]

〉
.

Here the brackets ⟨· · · ⟩ stand for averaging over the disorder potential, Eq. (4), Nω = 1 + 2nB(ω) and fε = 1− 2nF (ε), with
nB(ω) and nF (ε) being the standard Bose and Fermi distributions respectively; ĝα,β can be either gq or gimp

k , see Eq. (3);
∆G ≡ GR −GA and ∆D ≡ DR −DA are the differences between the retarded and advanced Green’s functions for electrons
and phonons, respectively.

The phonon Green’s functions are not directly affected by impurities so that their Fourier transforms, which include
contributions from the longitudinal, j = l, and transverse, j = t, phonons, ∆Dαβ(q, ω) =

∑
j ∆D

(j)
αβ(q, ω), are given by the

standard expressions

∆D
(j)
αβ(q, ω) =

[
DR

αβ(q, ω)−DA
αβ(q, ω)

](j)
= −

πiη
(j)
αβ

ρ2dωj(q)
[δ (ω − ωj(q))− δ (ω + ωj(q))] , (13)

where η
(l)
αβ = qαqβ/q

2 and η
(t)
αβ = δαβ − qαqβ/q

2, and we assume the Debye model for the phonon dispersion, ωj(q) =
uj |q|Θ(q0 − |q|), where q0 is the Debye momentum.

The disorder-averaged electron Green’s functions GR,A(r, r′, ε) depend only on the difference of their spatial arguments,
and the appropriate Fourier transforms are given by

GR,A(p, ε) =
1

ε− ξp ± i/2τ
, ξp = εp − εF. (14)

A further contribution of disorder in the collision integral (12) is described by vertex corrections. Including only the leading
transverse phonons contribution, these corrections are shown in the metallic regime, kFℓ ≫ 1, in Fig.4. In the absence of
disorder, transverse phonons do not alter the local charge density and so cannot couple directly to the electrons. However,
in disordered materials they contribute via the vertices gimp

k , Eq. (3), which describe the effect of phonon-induced impurity
displacements.

The longitudinal-phonons contribution to the cooling rate turns out to be functionally the same as that of the transverse
phonons, given in Eq. (5), with ul substituted for ut. It is much smaller as (ut/ul)

4 ≪ 1. Note that this contribution, which
exists also in clean systems, involves more cumbersome diagrams that include diffuson propagators similar to the 3d case.16 We
do not give any further detail of calculating the longitudinal-phonons contribution as it is not relevant for the final results.

The calculation of the diagrams depicted in Fig. 4 is relatively straightforward. We assume that the electron-electron
interaction is sufficiently strong such that the electrons mutually thermalise and can be assigned a single temperature,
Tel which is higher than the phonon bath (lattice) temperature, Tph. This results in a quasi-equilibrium situation where
fε = tanh(ε/2Tel(t)) and Nω(Tph) = coth(ω/2Tph). Then the spatial integral in Eq. (12) is calculated after the Fourier
transform and using the fact that qT ℓ ≪ 1 (where qT ∼ T/ut is a typical phonon momentum at temperature T ) and the identity
fεfε−ω − 1 = −Nω(Tel)(fε − fε−ω), one reduces the collision integral to

I[f ] =

∫
dωK(ω) [Nω(Tph)−Nω(Tel)] [(fε+ω − fε) + (fε−ω − fε)] , (15)
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Figure 4. The two lowest-order diagrams that contribute to the collision integral in Eq. (12) due to the interaction of electrons
with transverse phonons via impurity scattering: the smaller squares correspond to gimp

k , the straight lines are the electron
Green’s functions, the wavy lines are the phonon Green’s functions and the dashed lines describe the standard averaging over
impurities.

where K(ω) is expressed in terms of a dimensionless electron-phonon coupling constant, βt =
νε2F

2ρ2du2
t

, as

K(ω) =
βt sgn(ω)

8kFℓ

(
ωℓ

ut

)2

. (16)

Substituting the result of Eq. (15) into Eq. (11) and multiplying both sides by ε, one finds after integrating with to respect to ε
that the cooling rate (restoring factors of ℏ) is given by

Ė =
kFℓnelA
ℏ∆3

0

∫ ∞

0

dω

16π
ω4

[
coth

(
ω

2Tel

)
− coth

(
ω

2Tph

)]
, ∆3

0 = ℏ2ρ2du4
t (17)

Performing the integration leads to the result in Eq. (5).
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CHAPTER 4. ELECTRON-PHONON DECOUPLING

4.5 Summary

In this chapter, a detailed account of electron-phonon decoupling in thin films was pre-

sented. By starting with the consideration of films on a substrate and the observed jumps

in the I-V characteristics, it was seen how this is an indication of electron-phonon decou-

pling. Similar signatures can be observed in two-dimensional suspended films provided

that the equilibrium conductivity of the film has an Arrhenius form and the temperature

is sufficiently low. These signatures are hysteretic jumps of several orders of magnitude

in the I-V characteristics and an excluded region of electron temperatures. The hystere-

sis is caused by a difference in behaviour of the bistability boundaries with variations

in lattice temperature. The boundary for the hot electron state is almost independent

of the phonon temperature, indicating that in this state the electrons and phonons are

decoupled. In the search for MBL in solid-state setups, this allows for the identification of

materials that have electron-phonon decoupling. Potential candidates include GeSn [113]

and graphene [114]. However, it should be emphasised that whilst this bistability has

been linked to MBL [27, 108], it is not a guarantee of localisation and should instead be

viewed as a necessary but sufficient condition for MBL. Further signatures of any MBL

behaviour should be sought, such as a divergence in the electronic noise [27] which will

be discussed in Chapter 6.
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CHAPTER 5

QUANTUM DOTS -

ASYMMETRIC COUPLING TO

THE LEADS

The previous chapter demonstrated how in electronic systems electron-phonon decoupling

can be observed via a bistability in the electron temperature which causes jumps of several

orders of magnitude in the I-V characteristics, although this is not an indication of MBL

itself. Quantum dots provide a suitable way to study electronic noise, a potential signature

of MBL, as they undergo a transition analogous to that of many-body localisation. In

particular, the concept of localisation in Fock space is important. The next two chapters

will focus on understanding quantum dots - why they are a useful model, how they relate

to MBL, and how the absence of thermalisation can be understood and detected in these

systems.

5.1 The Coulomb Blockade

Quantum dots are ‘zero-dimensional’ devices which can have a large degree of control

exerted over them due to the use of gate voltages and where interactions play a key

role resulting in interesting physics (see [8, 36, 115] for reviews). Additionally, they can
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be made to exhibit diffusive-like behaviour either through the addition of impurities or

by reducing the coupling to the leads so that the electrons scatter off the boundaries

of the dot multiple times before escaping. This latter regime is more common and is

known as a chaotic quantum dot [115]. It is characterised by the separation of energy

scales Γ ≪ ETh, where Γ is the tunnelling rate to the leads and the Thouless energy,

ETh ∼ vF/L, is the inverse of the time to traverse a dot of linear dimension, L. The

tunnelling rate is also important in defining an open or closed dot. In an open dot, the

coupling of the leads allows for electrons to easily tunnel between the dot and leads and

the Coulomb interaction between electrons on the dot is unimportant. However, in the

opposite case of a closed dot where the coupling to the leads is weaker, the effect of the

interactions is more prevalent and leads to the phenomenon of the Coulomb blockade.

This is where the dot has a capacitance, C, so that there is a charging energy, Ec = e2/C,

due to the Coulomb interaction that needs to be overcome in order to add electrons onto

the dot.

There are two different characterisations of the Coulomb blockade regime. The clas-

sical Coulomb blockade considers the regime where the energy levels on the dot (with an

average spacing ∆) are smeared by the temperature, T , such that [36]

Γ ≪ ∆ ≪ T ≪ Ec, (5.1)

whereas the quantum Coulomb blockade regime swaps the order of ∆ and T , such that the

discreteness of the levels becomes important. It is the regime dictated by Eq. (5.1) that is

relevant in this work. Including the additional limit of large dimensionless conductance,

g = ETh/∆ ≫ 1, the Hamiltonian can be written as [8, 36,115]

H =
∑

n

εnd
†
ndn +

Ec

2

(
N̂ −Ng

)2
, (5.2)

where d†n(dn) creates (annihilates) an electron on the dot with energy εn and Ng is the

number of electrons on the dot set by the gate voltage. It is worth noting that in the
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derivation of this, two other types of interaction are neglected - these are the spin exchange

interaction and the Cooper interaction [8,116]. The first of these describes the difference

in energy between spins that are parallel or anti-parallel. The typical energy scale for this

is smaller than the mean energy spacing, so this interaction can be ignored. The Cooper

interaction is what is responsible for superconductivity and gets renormalised to zero if it

is repulsive (which is what will be considered here) [8,116]. Nevertheless, the Hamiltonian

in Eq. (5.2) leads to a lot of interesting phenomena via the Coulomb blockade. The first

of these is peaks in the conductance as a function of gate voltage, see Fig. 5.1. Defining

EN = Ec(N −Ng)
2/2, the energy to add an electron to the dot is

ΩN ≡ EN+1 − EN = Ec

(
N + 1

2
−Ng

)
, (5.3)

so that when Ng = N + 1
2
, the energy difference is zero and an electron can be added to

the dot even in linear response. This leads to a peak in the differential conductance with

the peak shape being given by [25,117–119],

G =
e2

2∆

ΓLΓR

Γ

β
2
(ΩN + εF − µ)

sinh
(
β
2
(ΩN + εF − µ)

) , (5.4)

where εF, µ are the Fermi energies for the dot and leads respectively and Γ = ΓL + ΓR is

the tunnelling rates for the left and right leads. In the valleys of conductance, ΩN ≈ Ec/2,

and so an electron cannot be added in linear response and the conductance vanishes.

The presence of the charging energy also has an impact on the non-equilibrium regime

as an electron can only be added to the dot when the bias voltage is increased by an amount

comparable to the charging energy. This leads to a staircase in the I-V characteristics

[9, 117, 121] and it is precisely this staircase that will be explored in this chapter as its

presence and form may be able to provide a signature of the absence of thermalisation in

a quantum dot.
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Figure 5.1: The peaks in the conductance of a quantum dot as a function of the gate
voltage. Figure taken from [120].

5.2 Relaxation and Localisation in Quantum Dots

The absence of thermalisation on a dot occurs when the relaxation rate, γ, is much smaller

than the tunnelling rate,

γ ≪ Γ, (5.5)

as this corresponds to the electrons tunnelling off the dot before they thermalise. Whilst

this regime is applicable for a wide range of energies, it is of particular interest in this

work because in the case of localisation γ → 0.

Understanding the relaxation rate in quantum dots was clearly addressed by the au-

thors of [122], where it was found that the quasiparticles on a quantum dot decay due to

the electron-electron interaction according to the rate

γ(ε) ≈ ∆

(
ε

ETh

)2

. (5.6)

This result was also supported in subsequent works [123]. The above expression for
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the relaxation rate is applicable provided that
√
g∆ < ε < ETh, with the lower bound

ensuring that the quasiparticles are well-defined [24], which is necessary to ensure that

Fermi’s golden rule holds - as is the case in the result in Eq. (5.6). At lower quasiparticle

energies this no longer remains true and a different approach must be taken. This was

done by Altshuler et. al. [24] when they considered the decay of quasiparticles in Fock

space as a problem on a Cayley tree1. Through careful consideration of the coupling

between the single-particle excitation and the many-particle states that the excitation

can decay to, as well as the density of states at each level of the decay, they found that

below a certain energy, there is localisation in Fock space.

In the localised regime, the initial excitations are weakly coupled to all the other levels

of the decay and therefore the full many-body states are just comprised of the single-

particle excitations. This is in direct contrast to the extended regime considered in [122],

where the single-particle states are coupled to all many-particle states (see Fig. 5.2) and

so the peak is broadened to a width, γ(ε) given by Eq. (5.6). In terms of the Cayley tree

picture, this covers two possibilities. First, where the whole tree is explored (delocalised

and ergodic) and second, where almost none of the tree is explored (localised and non-

ergodic). An intermediate regime also exists whereby there is delocalisation but not

all of the tree is covered and this leads to a delocalised but non-ergodic regime. This

intermediate regime was also later identified in MBL [124–127] and consequently the

localisation in quantum dots, although it does not have all the same structure as MBL,

acts as a good precursor.

1A Cayley tree is a structure where each vertex has a constant number of branches emerging from it.
In [24] the branching number represents the number of ways a decay can occur at each level of the overall
decay process and is proportional to g3.
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Figure 5.2: Localisation and delocalisation in Fock space. The red circles indicate elec-
trons and the blue circles are holes. In the delocalised and ergodic regime, the single
particle excitation is coupled to all states at every order of the decay. In the localised and
non-ergodic regime, there is only weak coupling (indicated by the dotted arrow) to the
three-particle state and decay of the excitations does not occur.

This work about localisation in quantum dots has been built on in many instances

since with a focus on the transition. For example the statistics of energy levels [128] and

fluctuations in the local density of states [129] have been studied, but perhaps more impor-

tant is the identification of the energy at which the localisation-delocalisation transition

occurs. Both analytical and numerical arguments now support the transition occurring

at a quasiparticle energy of

εcr = ∆
g

ln g
, (5.7)

which is different from the initial estimates [130]. The fact that the dots undergo this

transition in Fock space means they are a suitable model to explore the effects of locali-

sation and may provide insight into spatially extended MBL. Therefore, the rest of this

chapter will be used to explore the non-equilibrium properties of quantum dots, namely

the Coulomb staircase and how this can be used to identify the absence of thermalisation

- a regime important when the electrons are localised.
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5.3 The Coulomb Staircase and the Classical Master

Equation

The Coulomb blockade manifests itself in the non-equilibrium regime when a bias voltage

is applied across the dot, through the appearance of a Coulomb staircase. This is most

pronounced in the case of strong asymmetry in the coupling to the leads where one lead

causes a bottleneck in the transport. For instance, in the case where the bias voltage is

applied to the left lead and ΓL ≫ ΓR, then as the bias is increased by Ec, more electrons

are added to the dot and they can accumulate on it, leading to a staircase structure in the

current-voltage (I-V ) characteristics. On the other hand, this staircase structure is less

noticable when the couplings to each lead are approximately equal (ΓL ≈ ΓR) as electrons

tunnel on and off at roughly the same rate. The one-on-one-off type of tunnelling limits

the accumulation of electrons on the dot and the staircase becomes less observable.

The Coulomb staircase is often treated in the case of instantaneous (and therefore

complete) thermalisation, with the use of the classical master equation being the most

prevalent approach. The master equation uses a rate equation for the probability, pN ,

of having N electrons on the dot. Due to the presence of the large charging energy,

the dot experiences single electron tunnelling meaning that the rate equation is given

by [9, 117,121,131]

dpN
dt

= ΓF
N−1pN−1 + ΓT

N+1pN+1 −
(
ΓF
N + ΓT

N

)
pN , (5.8)

where Γ
F(T)
N is the tunnelling rate from (to) the leads given that there are N electrons on

the dot before the tunnelling event has occurred. These have contributions from both the

left and right lead, for example ΓF
N = ΓFL

N + ΓFR
N , and have the form

Γα
N =

Gα

e2

∫
dEf(E)(1− f(E −∆Eα)) =

Gα

e2
∆Eα

eβ∆Eα − 1
, (5.9)

where α = FL,FR,TL,TR, ∆Eα is the change in energy due to the tunnelling event α
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and GFL = GTL etc. as there is only one value of conductance per lead. The form of the

tunnelling rates in Eq. (5.9) are indicative of the full thermalisation occurring in the dot

because, in addition to the integration over all energies, the distribution function in both

the dot and leads is the standard Fermi function.

After defining the set of equations for the probabilities, Eq. (5.8), the steady-state

current can be found, first by finding the steady-state probabilities through utilising dpN
dt

=

0 and the normalisation
∑

N pN = 1 and then by making use of current conservation. This

is simply the statement that the total current (as opposed to the current at each individual

energy) going from the dot to right lead is equal to that coming to the dot from the left

lead and allows the current to be expressed as [9, 117,121,131]

I =
e

2

∑

N

pN
(
ΓFL
N + ΓTR

N − ΓTL
N − ΓFR

N

)
. (5.10)

Using this formula, the properties mentioned above regarding the Coulomb staircase

can be obtained, as well as the peaks in the conductance as a function of gate voltage. In

general, this method is useful for calculating many transport properties in the classical

Coulomb blockade regime, providing that the tunnelling electrons undergo instantaneous

thermalisation with the rest of the electrons on the dot. The Fermi energy of the dot

must also be much larger than the charging energy so that the lowest energy levels of the

dot do not influence transport.

Despite the simplicity of the formalism describing the classical Coulomb blockade

regime, if the absence of thermalisation is to be considered in the non-equilibrium situ-

ation, an alternative method is required. In the limit where there are a large number of

electrons on the dot, previous studies involving the absence of thermalisation have been

limited to the linear response regime [118] as well as numerical studies [132]. To build

on this, the work presented in Coulomb staircase in an asymmetrically coupled quantum

dot [25] at the end of this chapter explores the Coulomb staircase analytically and nu-

merically in the case of asymmetrical coupling to the leads and a complete absence of
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thermalisation. In addition, the effect of the bottom of the dot is also studied - leading

to an additional transport regime where the staircase is practically unobtainable exper-

imentally. In order to address this problem the Keldysh formalism will be used and a

discussion on the use of this in the Coulomb blockade regime will be discussed in the next

section.

5.4 Tunnelling Density of States in Quantum Dots

Previously the Keldysh formalism has been used to study quantum dots to draw compar-

isons between the zero-bias anomaly and the Coulomb blockade [7] as both are charac-

terised by gaps in the tunnelling density of states at small energies.

The tunnelling density of states in a Coulomb blockaded quantum dot was expanded

upon in [133] where the authors used the Keldysh formalism to calculate the tunnelling

density of states, ν(ε) in the linear response regime. Crucially, the authors used the fact

that for any given gate voltage only two states with a different number of particles (N

and N + 1) contribute to the tunnelling density of states giving

ν(ε)

ν0
=
U(ε− ΩN) + e−βΩNU(ε− ΩN+1)

1 + e−βΩN
. (5.11)

Here ν0 is the density of states at large energies (greater than Ec) and U(ε − ΩN) =

f0(ε−ΩN−1)+ 1− f0(ε−ΩN), with f0(ε) being a Fermi function containing the chemical

potential of the dot, εF. This result not only provides the correct gap in the tunnelling

density of states in the valley of conductance but it also identifies a half-gap at the peak,

which is necessary in order to produce the correct peak shape given by Eq. (5.4). It can

also be used to identify the electronic noise in the linear response regime [134,135]. Though

these results are specific to equilibrium and linear response, the use of Keldysh and more

specifically the form of current used can be used in the absence of thermalisation (though

this makes no difference in equilibrium). The current expression used can be derived using
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the expression of the current for a single lead, α,

Iα = −ie⟨[H,Nα]⟩, (5.12)

with Nα =
∑

k c
†
α,kcα,k being the number operator for electrons in the leads and H is

the Hamiltonian for the dot and lead system. Through various manipulations using the

Keldysh contour and expansion of the S-matrix, the current can be written as [25,85,136]

Iα = eΓα

∑

N

pN
∑

n

(
FN(εn) [1− f(εn−µα+ΩN−1)]− [1− FN(εn)] f(εn−µα+ΩN)

)
,

(5.13)

with the details in Appendix D. Then in order to understand the non-equilibrium current,

it is necessary to be able to calculate (in the absence of thermalisation) the probability

that the dot contains N electrons, pN , as well as the distribution function of the electrons

given that there are N of them on the dot, FN(εn). This is the subject of the next section

in which the manuscript Coulomb staircase in an asymmetrically coupled quantum dot [25]

is presented.
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5.5 Coulomb staircase in an asymmetrically coupled

quantum dot

The manuscript for the publication Coulomb staircase in an asymmetrically coupled quan-

tum dot authored by myself, Rose Davies, Igor V. Lerner and Igor V. Yurkevich features

below. As first author, I performed the analytical calculations and analysed the results.

The numerical calculations using the QmeQ package were performed by Rose Davies. I

additionally wrote the majority of the manuscript with collaboration on the writing being

provided by the other co-authors. Assistance on the direction of the project was provided

by Igor V. Lerner and Igor V. Yurkevich. A version of this manuscript can be found in

Journal of Physics: Condensed Matter [25].
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1. Introduction

The phenomenon of the Coulomb blockade in quantum dots has been a longstanding
topic of interest and many aspects of it have been studied (see [1, 2, 3] for reviews).
It arises due to the strong Coulomb interaction resulting in large charging energy,
Ec = e2/C, that must be overcome in order to add an additional electron onto the dot of
capacitance C. This leads to a number of notable physical results such as peaks in the
conductance as a function of gate voltage [4, 5, 6] and a staircase in the dependence of
current on the bias voltage (I-V characteristics) that has become known as the Coulomb
staircase [4, 7, 8].

A prominent approach to understanding transport in mesoscopic systems is based
on the classical master equation [5, 7, 9], which has typically assumed full thermalisation
on the dot. However, a master equation approach is not limited to only dealing with
the thermalised case, and the quantum master equation provides a full microscopic
description by including the traced-out leads, with the assumption of thermalisation
being made to simplify calculations. Using this approach, the full counting statistics of
the problem can be calculated under a Markovian approximation [10, 11, 12, 13], with
recent progress in calculating noise for non-Markovian tunnelling to second order [14].
Other approaches have been successful, such as using the Ambegaokar-Eckern-Schön
(AES) action [15] to study relaxation dynamics on a quantum dot [16] - although this
method cannot be utilised in all regimes [17]. The non-equilibrium Green’s function
approach has also been used to highlight the relation between the Coulomb blockade
and the zero-bias anomaly [18, 19, 20, 21], as well as to calculate the tunnelling density
of states of a Coulomb-blockaded quantum dot near equilibrium [18, 22].

The assumption of thermalisation is justified when the quasiparticle decay rate due
to the electron-electron interaction, γ, is much larger than the tunnelling rates to the
(left and right) leads, ΓL,R, so that the time spent by the extra electrons on the dot is
sufficient for their full thermalisation.

In this paper we consider the regime where one can neglect thermalisation,

γ ≪ Γ, (1)

otherwise keeping the separation of energy scales characteristic for the classical Coulomb
blockade [3]:

ℏΓ ≪ ∆ ≪ kBT ≪ Ec, (2)

where ∆ is the typical energy level spacing and T is the temperature. The rest of this
paper will set the Boltzmann and reduced Plank constant to equal one, ℏ, kB = 1. The
regime (1) is important, in particular, when electrons in the dot experience localisation
in the Fock space [23] (the precursor for many-body localisation [24]) and is easily
reachable in metallic quantum dots with a large dimensionless conductance g. We
additionally consider the regime where there are a large number of electrons on the dot
(N ≫ 1). Previously, analytical calculations for this regime have been performed in the
linear response limit [6], while numerical calculations for an arbitrary bias voltage [25]
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have been limited to the experimentally important regime [26] when εF ≫ Ec with εF
being the Fermi energy on the dot. The opposite limit of considerable experimental and
theoretical interest is that of a few electrons on the dot, where the lowest energy levels
make a strong impact on the observables (see [27] for a review), and the fine structure
of the Coulomb staircase is resolved [28].

Here we consider a quantum dot in the absence of thermalisation with strong
asymmetry in the coupling to the leads (typically assumed in considerations of the
thermalised regime [4, 7, 8, 9]) for both large and small ratio εF/Ec. We use the quantum
kinetic equation to develop a full analytical solution for the Coulomb staircase for N ≫ 1

at any voltage eV .
The solution crucially depends on the ratio εF/Ec. For εF ≫Ec, the absence

of thermalisation does not play a significant role and the Coulomb staircase remains
practically the same as in the thermalised regime [4, 7, 8, 9], with an equilibrium
established with the most strongly coupled lead.

However, for εF ≪Ec we show that the staircase practically vanishes. Instead,
assuming the traditional anisotropy in coupling to the leads, ΓR ≪ ΓL, with the voltage
V applied to the left lead, there is a single step in the current equal to eΓR(N0+1)

(with N0 being the number of electrons on the dot at V=0) when V increases from 0 to
eV ∼ Ec. All the further steps are of order 1 in the same units of eΓR, i.e. practically
invisible for N ≫ 1. This result is complimented with a numerical calculation using the
quantum master equation approach, showing that features of this very strong charging
energy regime persist even for N ≲ 10. This is due to a significant contribution of the
low energy levels even for a large number of electrons in the dot.

2. Model

We consider the quantum dot asymmetrically coupled to two leads with the bias voltage
V applied to the left one described by the Hamiltonian

H = Hd +Hℓ +HT . (3)
Here Hd is the Hamiltonian of the Coulomb-blockaded dot in the zero-dimensional limit
[1, 2, 3],

Hd =
∑

n

εnd
†
ndn +

1
2
Ec

(
N̂ −Ng

)2

, (4)

where εn are the energy levels of the dot, d†n (dn) are the creation (annihilation) operators
of the quantum dot, N̂ =

∑
n d

†
ndn is the number operator for the dot, and Ng is the

preferable number of electrons on the dot in equilibrium set by the gate voltage. The
leads are described by

Hℓ =
∑

k,α

(εk − µα) c
†
k,αck,α, (5)

where α = L,R labels the lead, c†k,α (ck,α) are the creation (annihilation) operators for
an electron of energy εk, and µα is the chemical potential of the lead, µL = µ+ eV and
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µR = µ. The tunnelling between the dot and the leads is described by the tunnelling
Hamiltonian

HT =
∑

α,k,n

(
tαc

†
k,αdn + h.c.

)
, (6)

where the tunnelling amplitude tα, which is assumed to be independent of k and n,
defines the broadening of the energy levels Γ = ΓL + ΓR with Γα = 2πνα|tα|2, with the
density of states να taken to be a constant.

We assume the absence of thermalisation in the dot which will allow us to use the
quantum kinetic equation for a given energy. This is justified when the inequality (1)
is satisfied. For a zero-dimensional diffusive dot, the quasiparticle decay rate due to the
electron-electron interaction at energy ε is given for ∆ ≪ T by [23, 29, 30]

γ(ε) ≈ ∆

(
ε

ETh

)2

, (7)

where ETh = g∆ is the Thouless energy and g ≫ 1 is the dimensionless conductance of
the dot. This result is valid provided that √

g∆ < ε < ETh.
In the equilibrium regime in the absence of the coupling to the leads, the tunnelling

density of states has some interesting features [22] which, intuitively, are preserved if
one lead dominates the behaviour of the system and the chemical potential on the dot
will be determined by that lead. This quasi-equilibration allows us to solve exactly the
case of strongly asymmetrically coupled leads, either for ΓL/ΓR ≫ 1 when the jumps in
the current exist, or for ΓL/ΓR ≪ 1 when the current has almost Ohmic behaviour.

3. Quantum kinetic equation

To analyse the Coulomb blockaded quantum dot in the non-linear regime we use the
Keldysh technique (see, e.g., [31] for a review) in a way similar to that detailed in [32].

3.1. Quantum dot in the weak coupling limit

In the case of an isolated dot, i.e. totally neglecting the level broadening Γ, the Keldysh
Green’s function can be written as a sum over all levels, g>,<(ε) =

∑
n g

>,<
n (ε) with the

single-level Green’s functions given by

g>n (t) = −iTr
(
ρ̂0dn(t)d

†
n

)
, g<n (t) = iTr

(
ρ̂0d

†
ndn(t)

)
, (8)

where dn(t) = eiHtdne
−iHt and ρ̂0 is the density matrix. Additionally, the particle

number is conserved and the Green’s functions can be written as sums over the N -
particle subspaces,

g>n (ε) = −2πi
∑

N

δ (ε− εn − ΩN) g
>
N(εn), g>N(εn) = TrN

(
ρ̂0dnd

†
n

)
, (9)

g<n (ε) = −2πi
∑

N

δ (ε− εn − ΩN−1) g
<
N(εn), g<N(εn) = −TrN

(
ρ̂0d

†
ndn

)
, (10)
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with the normalisation
∑

N (g>N(εn)− g<N(εn)) = 1. The charging energy required to
add an electron is included above through ΩN defined as

ΩN ≡ EN+1 − EN = Ec

(
N + 1

2
−Ng

)
, EN ≡ 1

2
Ec(N −Ng)

2. (11)

The coupling to the leads is included via the quantum kinetic equation (QKE),
which in the weak coupling limit (Γ → 0) can be written for each level as [32, 33]

g>,<
n (ε) = gRn (ε) Σ>,< (ε) gAn (ε) . (12)

The self energies for non-interacting leads are assumed to be independent of the dot
level n and are given by

Σ>(ε) =
∑

k,α

|tα|2g>k,α(ε) = −i [Γ− (ΓLfL(ε) + ΓRfR(ε))] , (13)

Σ<(ε) =
∑

k,α

|tα|2g<k,α(ε) = i (ΓLfL(ε) + ΓRfR(ε)) . (14)

Above, the Green’s functions for the leads are g>k,α(ε) = −2πi(1−f(ε−µα))δ(ε−εk+µα)

and g<k,α(ε) = 2πif(ε − µα)δ(ε − εk + µα), where f(ε − µα) is a Fermi function. The
density of states in the leads, which enters via the tunnelling rates Γα = 2πνα|tα|2, is
given by να =

∑
k δ(ε−εk+µα), while Γ = ΓL+ΓR. Note that the form of (12), with all

functions being considered at the same energy, corresponds to no thermalisation with
γ → 0. This rate must be the smallest scale in the system for the hierarchy of scales in
(1, 2) to be satisfied, therefore it can be taken to zero with no issues.

Now we rewrite the QKE (12) as

g>n (ε)Σ
<(ε) = g<n (ε)Σ

>(ε). (15)

Substituting in Eqs. (9, 10) we use the ansatz

g>N(εn) = pN (1− FN(εn)) and g<N(εn) = −pNFN(εn), (16)

where pN is the probability of having N electrons on the dot and FN(εn) is the
distribution function given N electrons on the dot which, in the case of complete
thermalisation, goes over to the equilibrium Fermi distribution function. In these terms,
we write the QKE as follows:

pN (1− FN(εn)) f̃(εn + ΩN) = pN+1FN+1(εn)
(
1− f̃(εn + ΩN)

)
, (17)

where

f̃(ε) =
ΓL

Γ
f(ε− µ− eV ) +

ΓR

Γ
f(ε− µ). (18)

This corresponds to the detailed balance equations derived in [6] for ∆ ≫ T and
reproduces the case of complete thermalisation after the summation over n and making
the replacement FN(ε) → f(ε − εF). The QKE (17) should be complemented by the
normalisation conditions,

∑
N pN = 1 and

∑
n FN(εn) = N .

We represent the current going from the dot to the lead α via pN and FN(εn) as

Iα = eΓα

∑

N

pN
∑

n

(
FN(εn) [1− f(εn−µα+ΩN−1)]− [1− FN(εn)] f(εn−µα+ΩN)

)
(19)



Coulomb staircase in an asymmetrically coupled quantum dot 6

Applying current conservation, I = IR = −IL and using µL = µ + eV and µR = µ, we
express the current as

I = e
ΓLΓR

Γ

∑

N

pN
∑

n

(
FN(εn) [f(εn − µN−1 − eV )− f(εn − µN−1)]

+ (1− FN(εn)) [f(εn − µN − eV )− f(εn − µN)]
)
. (20)

with µN ≡ µ − ΩN . Assuming a density of states on the dot to be constant, 1/∆, we
convert the sum over n to an integral over all energies on the dot (counted from zero).
Then in the low-T limit

I = e
ΓLΓR

Γ

∑

N

pN

[ ∫ µN−1+eV

µN−1

dεΘ(ε)FN(ε) +

∫ µN+eV

µN

dεΘ(ε)(1− FN(ε))

]
, (21)

where Θ(ε) is the Heaviside step function.

3.2. Solution to the QKE

The charging energy strongly penalises states with a wrong number of electrons on the
dot. In the case of strongly asymmetric leads with ΓL ≫ ΓR, the main contribution
to (20) is given by the two states with N closest to Ng + eV/Ec, since electrons have
time to fill the dot up. In the opposite case, ΓL ≪ ΓR, the two relevant states are those
closest to Ng. Keeping only the appropriate two states in the QKE (17) allows us to
obtain the following exact solution:

pN =
ZN

ZN + ZN+1

, pN+1 =
ZN+1

ZN + ZN+1

,
(22)

FN(εn) =
ZN(εn)

ZN

, FN+1(εn) =
ZN+1(εn)

ZN+1

,

where

ZN =
∑

{nj=0,1}

∞∏

j=1

[φ(εj + ΩN)]
nj δ(

∑
j nj),N ,

(23)
ZN+1 =

∑

{nj=0,1}

∞∏

j=1

[φ(εj + ΩN)]
nj δ(

∑
j nj),N+1,

with functions φ defined via f̃ in (18) as

φ(εj + ΩN) =
f̃(εj + ΩN)

1− f̃(εj + ΩN)
, (24)

while ZN(εn) in (22) is defined by restricting the sums in (23) to configurations with the
state εn occupied. It is important to highlight that due to the form of the QKE (17),
ZN+1 in (23) contain ΩN rather than ΩN+1 so that the relevant N dependence enters
only in the Krönecker delta.

When N ≫ 1, the Krönecker delta is equivalent to a delta function,

δ(
∑

j nj),N =

∫
dθ

2π
eiθ(

∑
j nj−N) , (25)
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which allows us to write the sums in (23) in the form

ZN =

∫
dθ

2π
eNf(θ), f(θ) =

1

N

∑

j

ln
(
1 + φ(εj + ΩN)e

iθ
)
− iθ. (26)

Now ZN can be evaluated in the saddle-point approximation. The optimal θ0 is
found from the second equation above where the sum is converted to the integral,∑

j → ∆−1
∫∞
0

dε, which gives

εF = N∆ =

∫ ∞

0

dε

(
e−iθ0

φ(ε+ ΩN)
+ 1

)−1

. (27)

As ΩN is unchanged by definition when going between ZN and ZN+1, (23), the relevant
N dependence of θ0 enters only via εF = N∆. Thus we find that in the saddle-point
approximation ZN = g(θ0)e

−iNθ0 , where g(θ0) is a function which depends on N only
via εF. Hence for N ≫ 1, this function is approximately the same for ZN and ZN+1

which allows us to cancel g(θ0) in calculating pN and FN(εn) in (22). This results in

pN+1

pN
= e−iθ0 , FN(εn) ≈ FN+1(εn) ≈

(
e−iθ0

φ(ε+ ΩN)
+ 1

)−1

. (28)

The ratio of probabilities can be found by using N =
∑

n FN(εn), which corresponds to
the saddle point equation above.

The resulting I-V characteristics turn out to be strikingly different for the two
opposite regimes, when the ratio εF/Ec is either small or large, as described in the
following section.

4. Results and Discussion

We begin by reproducing the well-known results of the standard theory for εF ≫ Ec to
show that (i) our approach works and (ii) the absence of the full thermalisation does
not make a significant impact on the Coulomb staircase in the case of strong asymmetry
in the coupling to the leads.

Then we show that in the opposite limit, εF ≪ Ec, there is only one significant step
left in the Coulomb staircase if N ≫ 1. Additionally, we present numerical results for
small N which are in full agreement with our analytical results for N ≫ 1.

4.1. Small charging energy, Ec ≪ εF

We start with the linear response regime. Then f̃(ε) → f(ε − µ) in (18) so that
φ(ε+ΩN) → exp[−β(ε−µ+ΩN)] in (24). Hence, using (28) we reduce the saddle point
equation (27) to

εF =

∫ ∞

0

dε

eβ(ε−µN )−iθ0 + 1
= T ln

(
eβµN+iθ0 + 1

)
≈ µN + iθ0T, (29)

where the approximate equality holds in the low-temperature limit, βµN + iθ0 ≫ 1.
The result in (29) leads to iθ0 = β(εF − µN) = β(εF − µ + ΩN) (with µ being the
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chemical potential in the leads and εF in the dot), meaning that the low-temperature
limit corresponds to βεF ≫ 1 satisfying the conditions in (2). Furthermore, substituting
into (28) the expression for iθ0, and using pN + pN+1 ≈ 1 results in the following
expressions for the probabilities and distribution function,

pN =
e−β(EN+N(εF−µ))

∑
N e−β(EN+N(εF−µ))

, FN(ε) =
1

eβ(ε−εF) + 1
, (30)

where the sum over N is restricted to the two states with N closest to Ng. Substituting
(30) into the current (20) results in the following shape of the differential conductance
near the peak, µ− ΩN − εF = 0:

G =
dI

dV
=

e2

2∆

ΓLΓR

Γ

β
2
(ΩN + εF − µ)

sinh(β
2
(ΩN + εF − µ))

, (31)

in agreement with [4, 6].
We now turn to the nonlinear regime and demonstrate, by reproducing the well-

known results [4, 7, 8] for strongly asymmetric coupling to the leads and εF ≫ Ec, that
the absence of thermalisation has no impact on the Coulomb staircase. For ΓL ≫ ΓR,
the solution to the QKE (17) for any V is given by (30) provided that we replace µ by
µL ≡ µ+eV and restrict the sum over N to the two states with N closest to Ng+eV/Ec.
Due to the exponential forms of the probabilities in (30), only one such state contributes
to the current outside some narrow windows in V . For a given V , this is the state where
N obeys the inequality ΩN−1 ≲ eV ≲ ΩN . Noticing that the distribution function in
(30), FN(ε) = f(ε − εF), is a Fermi function with a chemical potential εF, we see that
the second integral in (21) does not contribute to the current for low T , as the upper
limit of integration µN + eV ≈ εF − (ΩN − eV ) < εF.

Consider the contribution of the first integral in (21), starting with the regime
that begins in equilibrium (V = 0) and continues for 0 ≤ eV ≲ ΩN0 , when there
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Figure 1. The I-V characteristics for a dot in the regime where N0∆ ≫ Ec (N0∆=10Ec) and
ΩN0 = Ec/2. The blue line represents our solution to the QKE and the black dashed line is the
solution to the master equation in the standard theory where full thermalisation is assumed [4, 7, 8]. In
both instances, (a): ΓL/ΓR = 103 and (b): ΓL/ΓR = 10−3 an equilibrium is set up with the dominant
lead and the approaches produce the same results.
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are N0 electrons on the dot. Then, as ΩN0 ≈ Ec/2 the lower integration limit
µN0−1 ≡ µ−ΩN0−1 ≈ εF +Ec/2 > εF so that this integral also vanishes. The current is
therefore zero as expected. With V increasing beyond ΩN0 , there are N > N0 electrons
on the dot. In this case, having εF ≫ Ec ensures that εF > ΩN for all relevant ΩN and
both the integration limits are positive, so the presence of Θ(ε) is irrelevant. The steps
in the current in the low-T limit are, therefore, given by

I = 0, 0 ≤ eV ≲ ΩN0 (pN0 = 1),

I = eΓR
ΩN0

∆
, ΩN0 ≲ eV ≲ ΩN0+1 (pN0+1 = 1), (32)

I = eΓR
ΩN0+1

∆
, ΩN0+1 ≲ eV ≲ ΩN0+2 (pN0+2 = 1),

and so on. This demonstrates a staircase structure with the steps separated by eV=Ec

and an almost constant height proportional to Ec/∆. The full results, including the
windows around the jumps at eV=ΩN , are obtained by substituting (30) with the change
µ → µL into (20) and are practically indistinguishable from the full thermalisation case
[4, 7, 8], as shown in Figure 1(a).

For the opposite asymmetry, ΓR ≫ ΓL, equilibrium with the right lead (with no
voltage applied there) is maintained and no staircase is observed as pN0 ≈ 1 for all values
of V . Instead, the Ohmic behaviour prevails for eV ≳ ΩN0 as the tunnelling electron
gains more energy as shown in Figure 1(b).

4.2. Large charging energy, Ec ≫ εF

In this limit, the low-energy states in the dot make a considerable impact on the
transport behaviour. The reason is that the regime εF < ΩN , which was impossible
εF/Ec ≫ 1, now arises.
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(a) (b)

Figure 2. The numerical I-V characteristics for a dot with 7 states in the regime where N0∆ ≪ Ec

(N0∆ ≈ 0.01Ec) and ΩN0
= Ec/2. (a): Increasing the charging energy makes the steps sharper but

does not affect the size of the jumps. (b): Increasing the number, N0, of electrons in equilibrium (with
the gate voltage) illustrates that the first jump is equal to eΓR(N0+1). In both cases ΓL = 100ΓR.
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For ΓL ≫ ΓR, the expressions for pN and FN(ε) are formally the same as for
Ec ≪ εF in (30) with the substitution µ → µL. However, as FN(ε) is now an extremely
narrow function (on the scale of Ec) and the integration limits may be negative, the
contributions of the above integrals to the current are severely restricted in comparison
to the case of εF/Ec ≫ 1. Starting again with N0 electrons on the dot at equilibrium,
we make similar arguments as in the former case to see that only the first integral in
(21) contributes. The crucial difference for N > N0 is that the lower limit of integration,
µN−1 ≈ εF − ΩN−1 = N∆ − ΩN−1, is less than zero, so that Θ(ε) becomes relevant.
Therefore, we find the current in the low-T limit to be strikingly different from that in
(32). (Note that for the opposite asymmetry, ΓR ≫ ΓL, the current remains Ohmic for
any ratio εF/Ec.)

I = 0, 0 ≤ eV ≲ ΩN0 (pN0 = 1),

I = eΓR(N0 + 1), ΩN0 ≲ eV ≲ ΩN0+1 (pN0+1 = 1), (33)
I = eΓR(N0 + 2), ΩN0+1 ≲ eV ≲ ΩN0+2 (pN0+2 = 1),

and so on. Crucially the first jump in the current (measured in units of eΓR) at eV = ΩN0

is equal to N0 + 1 while all the subsequent jumps equal to 1 in these units.
For N0 ≫ 1, this means that the staircase practically disappears beyond the first

step in contrast to the constant jumps of size Ec/∆ for large N0∆, see (32). Although
we have performed analytical calculations for N0 ≫ 1, the results for εF ≪ Ec turn out
to be exactly the same for small N0 given a constant charging energy. We demonstrate
this by numerically solving the quantum master equation [34] under the conditions (1,
2), for a dot with 7 levels. This was achieved by solving the first order von Neumann
equation for a dot that has N energy levels separated by ∆; the first order equation is
sufficient due to the small coupling to the leads. The many-body states on the diagonal
of the density matrix are all the 2N occupations with the appropriate charging energy,
Ec(N −Ng)

2/2, added for the occupation of the configuration. There is no dissipation
mechanism for a state to decay on the dot, with relaxation occurring after tunnelling
into the leads, therefore the numerical calculations are for the case of zero thermalisation
on the dot. The results are shown in Figure 2. While all the steps there are pronounced,
all but the first one would practically disappear for N0 ≫ 1.

5. Conclusion

To summarise, we have analytically calculated I-V characteristics of the quantum dot
with a strong asymmetry in the tunnelling coupling to the leads in the Coulomb blockade
regime (2) in the absence of thermalisation (1). We have solved the appropriate quantum
kinetic equation in the two limits, for either a large or small ratio, Ec/εF, of the charging
energy to the Fermi energy of electrons in the dot.

We have demonstrated that for a relatively small charging energy, Ec/εF ≪ 1, the
absence of thermalisation in a quantum dot has practically no impact on the Coulomb
staircase as an equilibrium is established between the dot and the most strongly coupled
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lead, see Figure 1. This is in agreement with previous numerical results [25] which
assume the distribution function is the same for all relevant N . We have verified this
assumption in the large N limit when no more than two states are relevant in (28).

In the opposite limit, Ec/εF ≫ 1, we have analytically shown that for N ≫ 1 the
Coulomb staircase has only one pronounced step. With a voltage V applied to the left
lead and ΓL/ΓR ≫ 1, this is a step in the current from 0 to eΓR(N0 + 1) in a narrow
window around eV = ΩN0 with ΩN0 = Ec/2 if N0 = Ng, see (11). All the subsequent
current jumps with V increasing have the magnitude eΓR, see (33), i.e. negligible when
the number of electrons at equilibrium N0 ≫ 1. Further to the analytic results, we
have numerically solved the quantum master equation for a constant Ec to find that the
analytical results (33) proven for N ≫ 1 are exactly valid also in the experimentally
attractive regime of N ≲ 10, see Figure 2. The reason for such behaviour of the Coulomb
staircase is that the only electrons available for tunnelling are those in an energy window
∼ εF with the voltage window being much larger, eV ∼ Ec. With εF/Ec increasing,
more electrons are available for tunnelling, thus restoring the jumps between the steps
to their full value ∝ Ec/∆ in the usual regime εF ≫ Ec [4, 7, 8] where electrons from
the entire voltage window contribute to the current.
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CHAPTER 5. QUANTUM DOTS - ASYMMETRIC COUPLING TO THE LEADS

5.6 Summary

This chapter demonstrated how quantum dots are a useful system for studying the effects

of many-body localisation as they undergo an analogous transition of localisation in Fock

space. One of the most common ways to deal with a quantum dot in the classical Coulomb

blockade regime is through a master equation and typically the classical master equation

is used when there are a large number of particles on the dot. This correctly predicts

the Coulomb staircase in the presence of instantaneous thermalisation on the dot and

strong asymmetry in the coupling to the leads. In the publication Coulomb staircase in

an asymmetrically coupled quantum dot [25], the Keldysh formalism is used to explore

the staircase in the absence of thermalisation. When the Fermi energy of the dot is much

larger than the charging energy, the usual Coulomb staircase is recovered due to the

formation of an equilibrium with the lead most strongly coupled to the dot. However,

for a much smaller Fermi energy, the staircase practically vanishes for a large number of

electrons on the dot, as the low-lying energy levels of the dot dominate the transport.

Therefore, if there is to be a clear signature of the absence of thermalisation in the I-V

characteristics it will be in the case of symmetric coupling where it would be expected that

an equilibrium will not be established with one lead. This will be the topic of discussion

in the next chapter.

104



CHAPTER 6

QUANTUM DOTS - SYMMETRIC

COUPLING TO THE LEADS

The previous chapter illustrated that in the case of a quantum dot asymmetrically coupled

to the lead, the Coulomb staircase is recovered in the limit of a large Fermi energy on

the dot. In this instance, there is no difference between the cases of full thermalisation

and its complete absence, as an equilibrium is established with the strongly coupled lead.

In the case of symmetric coupling, however, there is no reason why such an equilibrium

should be established as electrons enter the dot from the left and right leads with similar

rates. This will be addressed in this chapter.

6.1 Thermalisation in One-Dimensional Wires

The absence of thermalisation has previously been considered in one-dimensional wires

[137], where it was found that on short enough length scales electrons do not thermalise

and a double-step distribution characterises the electrons through the wire. By attaching

wires of different lengths to two leads and measuring the differential conductance at

different points along the wire (see Fig. 6.1), the authors were able to identify that the

distribution function varied depending on the amount of thermalisation occurring in the

system.
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Figure 6.1: The absence of thermalisation in 1d wires. A wire was placed between two
leads with a potential difference of U . Different distribution functions can be found
at different points along the wire in the absence of inelastic scattering. Figure taken
from [137].

In the absence of all inelastic scattering, the distribution function is simply a linear

combination of the two leads and results in a different distribution function depending on

how far along the wire it is observed. For a wire of unit length, the distribution function

has a double-step form and varies with the position along the wire, x, as [137]

F (x, ε) = (1− x)f(ε) + xf(ε+ eU), (6.1)

where the f ’s are standard Fermi functions and U is the potential difference between

the two leads. In the opposite limit of strong inelastic scattering, the wire will have

a distribution function in which the intermediate step is smeared out. It has a Fermi

function form with a chemical potential and temperature that depends on the distance

along the wire and the size of U . Both of these limiting cases were observed with the

double-step being seen in shorter wires where insufficient scattering occurs to thermalise

the electrons and the smeared distribution was present in longer wires [137].

Intuitively a similar outcome would be expected in a quantum dot in the non-linear

regime, where in the absence of inelastic scattering a dot coupled to two leads would form

a double-step style distribution. For a non-interacting dot the distribution is simply a
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6.1. THERMALISATION IN ONE-DIMENSIONAL WIRES

linear combination of the Fermi functions of the two leads (left, L, and right, R) [82,85]

F (ε) =
ΓL

Γ
fL(ε) +

ΓR

Γ
fR(ε). (6.2)

The effect of interactions is explored in the manuscript Coulomb blockade in a non-

thermalized quantum dot [26] in the next section. Such an analysis is vital for under-

standing the effect of the absence of thermalisation in quantum dots - a regime that is

particularly relevant for the localisation of electrons on the dot.
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6.2 Coulomb blockade in a non-thermalized quan-

tum dot

The manuscript for the publication Coulomb blockade in a non-thermalized quantum dot

authored by myself, Rose Davies, Igor V. Lerner and Igor V. Yurkevich features below. As

first author, I performed the analytical calculations and most of the numerical calculations

with help from Rose Davies. I wrote the majority of the manuscript with assistance

from the other co-authors on writing and editing. Igor V. Lerner and Igor V. Yurkevich

additionally provided help with the direction of the project. A version of this manuscript

can be found on arXiv [26].
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We investigate non-equilibrium transport properties of a quantum dot in the Coulomb blockade
regime under the condition of negligible inelastic scattering during the dwelling time of the electrons
in the dot. Using the quantum kinetic equation we show that the absence of thermalization leads to
a double-step in the distribution function of electrons on the dot, provided that it is symmetrically
coupled to the leads. This drastically changes nonlinear transport through the dot resulting in
an additional (compared to the thermalized case) jump in the conductance at voltages close to the
charging energy, which could serve as an experimental manifestation of the absence of thermalization.

Many-body localization (MBL), predicted for disor-
dered many-electron systems which are not thermalized
with the environment [1, 2], has attracted a lot of theo-
retical and experimental attention (for a review see [3])
and has been observed in systems of ultracold atoms [4].
One of the defining properties of MBL is the absence of
thermalization [5, 6].

Prior to the MBL papers [1, 2], a similar regime of
localization in Fock space was predicted for quantum dots
[7] where electrons fail to mutually equilibrate as their
dwelling time on the dot, τdw, is much shorter than the
equilibration time τeq. Alternatively, this condition can
be formulated as

γ ≪ Γ, (1)

where γ ∼ 1/τeq is the equilibration rate and Γ ∼ 1/τdw
is the tunneling rate. For a zero-dimensional diffusive
dot, the electron-electron equilibration rate [7–9],

γ ≈ ∆

(
ε

g∆

)2

, (2)

can be sufficiently small provided that
√
g∆ < ε < g∆,

where ε is the quasiparticle energy, ∆ is the mean level
spacing on the dot, and g∆ is the Thouless energy of the
dot with dimensionless conductance g ≫ 1.

In this Letter, we show that such an absence of ther-
malization leads to striking changes in nonlinear trans-
port in the Coulomb blockade regime, where electrons
are loaded one-by-one into a quantum dot due to the
charging energy, Ec = e2/C, of a dot of capacitance C,
preventing a continuous flow. We assume the separation
of scales typical for the classical Coulomb blockade at a
temperature T (see [10–12] for reviews):

Γ ≪ ∆ ≪ T ≪ Ec. (3)

Typically, the study of quantum dots in the Coulomb
blockade regime has been focused on the regime where
complete thermalization is assumed. This regime is char-
acterized by peaks in the conductance as a function of
gate voltage [13, 14] that can be attributed to interest-
ing features in the tunneling density of states [15], and –

in case of strong asymmetry in the coupling to the leads
– by a staircase in the current as a function of the bias
voltage V [16–19]. When the coupling is approximately
symmetric, ΓL ∼ ΓR, the Coulomb staircase practically
vanishes in the thermalized case. But it is precisely in
this case when the absence of thermalization reveals it-
self by an additional jump in the nonlinear differential
conductance, as we show in this Letter by solving the
quantum kinetic equation. The absence of thermaliza-
tion on a dot, therefore, can be detected by this jump
which occurs within the first step of the Coulomb stair-
case.
The jump arises due to the change in the distribution

function of the dot; going from a Fermi function in the
fully thermalized case to a double-step form. A similar
structure (although for practically noninteracting elec-
trons) has previously been observed in one-dimensional
wires where the distribution function was a linear com-
bination of the two Fermi functions of the leads due to
insufficient time for equilibration [20]. A double-step dis-
tribution has also been predicted for open quantum dots,
where electrons are practically noninteracting [21], and
for auxiliary non-interacting electrons in the slave-boson
approach to the Kondo effect in quantum dots [22]. Here,
in the Coulomb-blockade regime in region (3), a double-
step form of the electron distribution function is substan-
tially modified by the interaction.
The standard Hamiltonian of a Coulomb-blockaded

quantum dot coupled to two leads is H = Hdot + Hl +
Htun, where

Hdot =
∑

n

εnd
†
ndn + 1

2Ec

(
N̂ −Ng

)2
, (4a)

Hl =
∑

k,α

(εk − µα)c
†
k,αck,α, (4b)

Htun =
∑

k,n,α

(
tαc

†
k,αdn + h.c.

)
. (4c)

Here α=L,R labels the leads, d†n(dn), c
†
k,α(ck,α) are the

creation (annihilation) operators for electrons with ener-
gies εn and εk in the dot and leads respectively, N̂ =∑

n d
†
ndn is the number operator for the dot, and Ng
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is the preferred number of electrons on the dot set by
the gate voltage. The leads have chemical potentials
µL = µ+eV and µR = µ. The k- and n-independent tun-
neling amplitudes between the dot and leads, tα, define,
along with the density of states of the leads να (taken
to be constant), the tunneling rates Γα = 2πνα|tα|2 with
the total Γ = ΓL + ΓR.

In addition to inequalities (3), we assume that the
Fermi energy of the dot is much larger than the charg-

ing energy, εF ≫ Ec, to ensure that only electrons in a
relatively narrow energy strip around εF contribute the
transport properties of the system. This assumption is
also utilized in the orthodox theory of the Coulomb block-
ade [14, 16–19] and is achievable in experiments [10, 23].
By starting with the standard expression for tunneling
current [24] and assuming current conservation, we ex-
press the current across a quantum dot in the Coulomb
blockade regime in the region (3) as

I = e
ΓLΓR

Γ

∑

N,n

pN

(
FN (εn) [fL(εn +ΩN−1)− fR(εn +ΩN−1)] + (1− FN (εn)) [fL(εn +ΩN )− fR(εn +ΩN )]

)
, (5)

with details of the derivation in Supplemental Material.
Here pN is the probability of N electrons being on the
dot, FN (εn) is their distribution function, and fL,R(εn)
are Fermi functions in the leads with chemical potentials
µL = µ+eV and µR = µ = εF respectively. The presence
of the charging energy is encapsulated by

ΩN = EN+1 − EN = Ec

(
N + 1

2 −Ng

)
, (6)

where EN = 1
2Ec(N −Ng)

2.
The current through a thermalized quantum dot is

usually considered with the help of a master equation
[13, 14, 16–19] involving electrons of all energies. In
the non-thermalized regime (1), the electrons with dif-
ferent energies are not mixed. Hence, the probabilities
and distribution functions can be found from the energy-
conserving quantum kinetic equation (QKE), which is
formulated using the Keldysh formalism (see, e.g., [24–
26]) in terms of the “greater”, g>(t), and “lesser”, g<(t),
Green’s function of the dot. In the regime (3), where the
mean level spacing is much larger than the level broad-
ening due to tunneling, they are split into a sum over the
energy levels, with Green’s function for the nth level given
by g>n (t) = −i⟨dn(t)d†n(0)⟩ and g<n (t) = i⟨d†n(0)dn(t)⟩,
where dn(t) = eiHtdne

−iHt. Then, to linear order in tun-
neling, the QKE is reduced to [24–26],

g>n (ε)Σ
<(ε) = g<n (ε)Σ

>(ε). (7)

Here, the conservation of particle number for an isolated
dot allows one to represent the single-level Green’s func-
tions as (see Supplemental Material)

g>n (ε) = −2πi
∑

N

δ (ε− εn − ΩN ) pN (1− FN (εn)),

g<n (ε) = 2πi
∑

N

δ (ε− εn − ΩN−1) pNFN (εn), (8)

with the normalization
∑

N pN = 1. The self-energy
functions of the leads in Eq. (7) are assumed to be n-

independent and are given by

Σ>(ε) = i
∑

α=L,R

Γα(fα(ε)−1), Σ<(ε) = i
∑

α=L,R

Γαfα(ε).

(9)

Substituting Eqs. (8)and (9) into Eq. (7) leads to the
QKE reflecting the detailed balance equations, coinciding
with those derived in [14] for ∆ ≫ T ,

pN+1FN+1(εn)
(
1− f̃(εn +ΩN )

)

= pN (1− FN (εn)) f̃(εn +ΩN ), (10)

f̃(ε) = (ΓL/Γ)fL(ε) + (ΓR/Γ)fR(ε).

It is this equation along with the normalization condi-
tions,

∑
N pN = 1 and

∑
n FN (εn) = N , that can be

used to obtain the probabilities and distribution func-
tions required in Eq. (5) to calculate the current. The
results for full thermalization are recovered by sum-
ming Eq. (10) over n using the fact that in this case
we can substitute the equilibrium distribution function,
FN (εn) = f(εn−εF).

The absence of thermalization, however, drastically
changes the distribution function. In this case, QKE (10)
has an exact solution providing there are only two rele-
vant states (N and N + 1) for a given voltage (see Sup-
plemental Material). In the case of approximately equal
coupling, this condition can be satisfied only for a finite
bias window, i.e. within the first step of the Coulomb
staircase. For higher bias, one needs to account for more
states with different numbers of particles that are not
being exponentially suppressed (in contrast to the asym-
metric case when ΓL/ΓR ≫ 1 [27]).

Assuming that the chemical potential in the dot is of
order of the unbiased chemical potential in the (right)
lead, we show that the current and, hence, the differ-
ential conductance has an additional peak in the win-
dow 0 ≤ eV ≲ ΩN+1 as compared to the thermalized
case [16–19]. In this window, where only two levels
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FIG. 1. The occupation probabilities pN (the upper line)
and pN+1 (the lower line) as functions of bias voltage, V , for
ΓL=ΓR, andN=Ng. Here they depend only on the ratio Ec/T
in the temperature region 10−100mK, albeit this dependence
is rather weak (Ec/T = 100 was used for this figure).The solid
lines represent the results for the non-thermalized case, the
dashed lines for the full-thermalization case [16–19]. In this
temperature range they are practically indistinguishable.

are relevant, the kinetic equation (10) has the solution
FN (εn) ≈ FN+1(εn) ≈ F (εn) in the limit N ≫ 1, lead-
ing to

F (εn) =
f̃(εn +ΩN )

[1− f̃(εn +ΩN )]AN + f̃(εn +ΩN )
, (11)

where AN = pN+1/pN . This ratio of probabili-
ties is found from normalization, N =

∑
n F (εn) =

(1/∆)
∫∞
0

F (ε)dε, while pN + pN+1 = 1 as shown in
Supplemental Material. As seen in Fig. (1), depicted
for the middle of the Coulomb blockade valley where
ΩN = Ec/2, both pN and pN+1 are practically indis-
tinguishable from the thermalized case. It remains the
case as long as ΩN , Eq. (6), remains far from the peaks
of the Coulomb blockade. Note that this and all subse-
quent results depend only on ratios of energetic param-
eters and are fully applicable in experimental regimes
where T ∼ 10− 100mK and Ec ∼ 1meV.

On the contrary, the distribution function, found by
substituting the ratio AN ≡ pN+1/pN into Eq. (11), ac-
quires an additional step

F (εn) ≈





1, εn<µR−ΩN(
1+ΓR

ΓL
AN

)−1

, µR−ΩN<εn<µL−ΩN

0. µL−ΩN<εn

(12)

as depicted for the middle of the valley in Fig. 2. Such a
double-step is similar to that observed in short quasi-
one-dimensional wires [20]. However, in the wire the
double-step was simply a linear combination of the two

FIG. 2. The electron distribution function in the dot for ΓL =
ΓR, N = Ng, and eV = 0.8Ec where numerically we find
AN ≈ 0.6. The double-step structure is robust as long as
eV > ΩN – in the opposite case AN ≡ pN+1/pN → 0, as seen
from Fig. (1), and the middle step disappears. F (ε) has only
a weak dependence on Ec/T so that the three curves above
practically merge.

Fermi-functions of the leads, while in the present case
it is substantially affected by the Coulomb interaction.
Still, in both cases the double-step reflects the lack of
thermalization between electrons coming from the left
and right leads. In the steady-state limit, electrons from
both leads enter the dot at two different chemical po-
tentials and thermalize with the opposite lead only after
exiting the dot. Note that the double-step is effectively
washed out in the one-lead limit of the Coulomb blockade
when ΓR/ΓL ≪ 1.
The double-step distribution in the dot drastically

changes the differential conductance, G = dI/dV , in
comparison with the thermalized case [16–19]. Substitut-
ing pN and F (εn) into Eq. (5) with FN (εn) ≈ F (εn), we
find G as shown in Fig. 3. For small voltages, eV < Ec,
the absence of thermalization has little impact in the
low-T limit. However, at eV = Ec, there appears a sec-
ondary jump in the non-thermalized case. It is robust as
long as the tunneling is symmetric, ΓL ≈ ΓR, when there
are three distinct regions for the distribution, Eq. (12).
Rewriting Eq. (5) for the current in the low-T limit and
for eV ≲ ΩN+1 will make this clearer:

I =
e

∆

ΓLΓR

Γ

(
pN

∫ µ−ΩN−1+eV

µ−ΩN−1

F (ε)dε

+

∫ µ−ΩN+eV

µ−ΩN

[
pN (1− F (ε)) + pN+1F (ε)

]
dε

+ pN+1

∫ µ−ΩN+1+eV

µ−ΩN+1

(1− F (ε))dε
)
. (13)

The second integration over the middle step starts to con-
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tribute at eV ⩾ Ec/2 when pN and pN+1 start to change,
see Fig. 1, signaling that the oncoming particle is suffi-
ciently energetic to overcome the charging energy. This
results in the usual blockade jump which is the same for
both the thermalized and non-thermalized cases. As long
as eV < Ec, the first and third integrals in Eq. (13) are
negligible as the each integration is over a region where
the integrands are exponentially small at T ≪ Ec. For
eV ⩾ Ec, this is no longer the case and the appropriate
non-zero contribution results in a sudden change in the
current revealed as a jump in the differential conductance
at eV = Ec.

The position of this jump is insensitive to gate voltage
as it only depends on the difference ΩN+1 − ΩN = Ec.
In the region around the jump, the ratio of probabilities
is given for T ≪ Ec (see Supplemental Material) by

AN ≡ pN+1

pN
≈ ΓL

ΓR

(
eV − ΩN

ΩN

)
. (14)

Then, calculating the current from Eq. (13) on both sides
of the jump we find that the jump in the differential con-
ductance, neglecting corrections in T/Ec, has the height

δG =
e2

2∆

ΓLΓR

Γ
, (15)

in the middle of the Coulomb blockade valley, ΩN = 1
2Ec.

(The general expression for δG is given in Supplemen-
tal Material). This jump is rather robust: it occurs at
eV = Ec independently of ΩN and has only a weak tem-
perature dependence. As the temperature is increased,
while still obeying inequalities (3), the jump is only
slightly smeared across a wider range of voltages as shown
in the inset in Fig. (3). This jump should be experimen-
tally observable and give a clear indication of the absence
of thermalization within a quantum dot.

In conclusion we note that the existence of additional
fine structure of the Coulomb blockade peaks has been es-
tablished numerically and experimentally [28] for small
dots, where ∆ ≫ T . Here we have considered the op-
posite case of large quantum dots, (3), where we have
shown that the absence of thermalization manifests itself
as an additional jump in the differential conductance at
eV = Ec, which follows the usual jump at eV = ΩN .
This is a direct consequence of the lack of equilibration
between electrons coming from the left and right leads so
that the distribution function on the dot has a double-
step form. We anticipate this jump to be experimentally
accessible at the appropriate voltages and therefore could
be used as a method of identifying the absence of ther-
malization in the dot.

We gratefully acknowledge support from EPSRC under
the grant EP/R029075/1 (IVL) and from the Leverhulme
Trust under the grant RPG-2019-317 (IVY).

FIG. 3. The differential conductance, G(V ), in units of
e2

∆
ΓLΓR

Γ
≈ e2Γ

4∆
when ΓL ≈ ΓR. For ΓL ∼ ΓR, an additional

jump in G is always at eV = Ec. Such a jump is absent in the
thermalized case [16–19], depicted here by the dotted line for
Ec/T = 100. The dependence of its height, δG, on the ratio
Ec/T , is shown in the inset.
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GREEN’S FUNCTIONS FOR AN ISOLATED QUANTUM DOT AND THE INCORPORATION OF
TUNNELING TO THE LEADS

The Green’s function for an isolated dot can be found explicitly, as we demonstrate below and then in the limit of
weak coupling to the leads, the quantum kinetic equation can be derived using the non-equilibrium Keldysh formalism
(see, e.g., [S1–S3]), allowing the Green’s function of the dot coupled to leads to be found. In the limit where the
broadening of the levels due to tunneling to and from the leads, Γ, is much less than the mean level spacing, ∆, then the
Green’s functions of a dot, g(ε) can be expressed as a sum over the Green’s functions for individual energy levels, n, so
that g(ε) =

∑
n gn(ε). The greater and lesser functions are given by g>n (t) = −i⟨dn(t)d†n(0)⟩ and g<n (t) = i⟨d†n(0)dn(t)⟩

respectively, where dn(t) = eiHtdn(0)e
−iHt annihilates an electron on the dot. In the case of an isolated dot, the

Hamiltonian is given by Eq. (4a) of the main text, which ensures that the number of electrons on the dot, N , is
conserved allowing the Green’s functions to be expressed as sums over N ,

g>n (ε) = −i
∑

N

TrN
(
ρ̂0e

iHtdne
−iHtd†n(0)

)
, (S1)

g<n (ε) = i
∑

N

TrN
(
ρ̂0d

†
n(0)e

iHtdne
−iHt

)
. (S2)

Here ρ̂0 is the density matrix for an isolated dot and TrN is the trace in the subspace where there are N electrons
on the dot. Explicit evaluation of these leads to, after Fourier transforming, the Green’s functions of the isolated dot
[S4]

g>n (ε) = −2πi
∑

N

δ (ε− εn − ΩN ) g>N (εn), g>N (εn) = TrN
(
ρ̂0dnd

†
n

)
, (S3)

g<n (ε) = −2πi
∑

N

δ (ε− εn − ΩN−1) g
<
N (εn), g<N (εn) = −TrN

(
ρ̂0d

†
ndn

)
. (S4)

By defining the probability of having N electrons on the dot, pN , and the associated distribution function for this
number of electrons, FN (εn), we use the ansatz g>N (εn) = pN (1− FN (εn)) and g<N (εn) = −pNFN (εn). This leads
to the results in Eq. (8) of the main text. In order to incorporate the tunneling to the leads, the standard quantum
kinetic equation is used for each level on the dot [S1–S3]

g>,<
n (ε) = gRn (ε) Σ>,< (ε) gAn (ε) . (S5)

where we have used that the full Green’s function of the dot can be replaced by that of the isolated dot in the weak
coupling limit, Γ → 0. Combining the two equations in Eq. (S5) leads to the form of the kinetic equation given in
Eq. (7) of the main text,

g>n (ε)Σ
<(ε) = g<n (ε)Σ

>(ε). (S6)

Upon substitution of the forms of the Green’s functions and self-energies laid out in the main text (Eq.(8) and (9)
respectively), the QKE has the form

pN+1FN+1(εn)
(
1− f̃(εn +ΩN )

)
= pN (1− FN (εn)) f̃(εn +ΩN ), (S7)

f̃(ε) = (ΓL/Γ)fL(ε) + (ΓR/Γ)fR(ε).

similar to the detailed balance relations derived in [S5].
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The results of the QKE, that is pN and FN (ε) can then be subsequently used to calculate the current. To see this,
consider the standard expression for tunneling current going from the dot to the lead, α [S1]

Iα = −ieΓα

∫
dε

2π

(
g<(ε) + fα(ε)

[
g>(ε)− g<(ε)

])
. (S8)

After substitution of the dot Green’s functions in Eq. (S3, S4) along with the corresponding ansatz, into this formula
for the current, then the current can be expressed as

Iα = eΓα

∑

N

pN
∑

n

(
FN (εn)[1− fα(εn +ΩN−1)]− [1− FN (εn)]fα(εn +ΩN )

)
. (S9)

By utilising current conservation, the current can then be expressed as

I = e
ΓLΓR

Γ

∑

N,n

pN

(
FN (εn) [fL(εn +ΩN−1)− fR(εn +ΩN−1)]+ (1−FN (εn)) [fL(εn +ΩN )− fR(εn +ΩN )]

)
, (S10)

as is presented in Eq.(5) of the main text. We have calculated the current in the case when only two consecutive
occupation numbers, say N and N + 1, contribute, but the above equation is applicable more generally. Outside the
Coulomb blockade regime, specified by inequalities (3), one just needs to modify Eq.(6) for ΩN .

FULL SOLUTION TO THE QUANTUM KINETIC EQUATION

In order to calculate the current through the quantum dot using Eq. (5) of the main text, it is necessary to find
the probability that it has N electrons, pN , and the distribution function given that it has N electrons, FN (ε). To do
this, we make use of the quantum kinetic equation (QKE) which for a quantum dot in the Coulomb blockade regime
coupled to two leads is given by Eq. (10) in the main text

pN (1− FN (εn)) f̃(εn +ΩN ) = pN+1FN+1(εn)
(
1− f̃(εn +ΩN )

)
. (S11)

In this equation, f̃(ε) = ΓL

Γ fL(ε)+
ΓR

Γ fR(ε) and the absence of thermalization on the dot has been assumed. Providing
there are only two states whose probabilities aren’t exponentially suppressed this has a solution in which FN (εn) ≈
FN+1(εn) ≈ F (εn). The probabilities are then found from the normalization conditions,

∫ ∞

0

FN (ε)dε = N∆ ≡ εF,
∑

N

pN = 1, (S12)

where the energies in the dot are counted from the bottom of the band and the normalization of the probabilities can
be written as pN + pN+1 ≈ 1. This solution is valid in the limit N ≫ 1 and here we demonstrate how this solution is
obtained using the saddle point approximation as we achieved in [S4]. When there are only two relevant probabilities,
Eq. (S11) has an exact solution

pN =
ZN

ZN + ZN+1
, pN+1 =

ZN+1

ZN + ZN+1
,

(S13)

FN (εn) =
ZN (εn)

ZN
, FN+1(εn) =

ZN+1(εn)

ZN+1
.

Introducing

φ(ε) =
f̃(ε)

1− f̃(ε)
, (S14)
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ZN and ZN+1 are defined as

ZN =
∑

{nj=0,1}

∞∏

j=1

[φ(εj +ΩN )]
nj δ(

∑
j nj),N ,

(S15)

ZN+1 =
∑

{nj=0,1}

∞∏

j=1

[φ(εj +ΩN )]
nj δ(

∑
j nj),N+1.

Then ZN (εn) and ZN+1(εn), required for calculating the distribution functions in Eq. (S13), are found by restricting
the sums in Eq. (S15) to terms where the level εn is occupied. We stress that in these definitions the relevant N
dependence enters only via the Krönecker delta’s as both ZN and ZN+1 contain φ(εj + ΩN ), reflecting the fact that

the two states are coupled via the QKE, Eq. (S11), which contains f̃(εn +ΩN ). The Krönecker delta can be written
as an integral

δ(
∑

j nj),N =

∫
dθ

2π
eiθ(

∑
j nj−N), (S16)

meaning that ZN can be written in a form which we evaluate using the saddle-point approximation.

ZN =

∫
dθ

2π
eNf(θ), f(θ) =

1

N

∑

j

ln
(
1 + φ(εj +ΩN )eiθ

)
− iθ. (S17)

Recalling that the density of states in the dot is approximately the inverse of the mean level spacing, ∆−1, we write
the sum in the definition of f(θ) as an integral, so that the saddle point, θ0, is determined by the equation

εF =

∫ ∞

0

dε
φ(ε+ΩN )

φ(ε+ΩN ) + e−iθ0
. (S18)

Despite the presence of ΩN , the relevant N dependence of θ0 enters only via εF ≡ N∆, as there is no change in
ΩN going from ZN to ZN+1. Therefore we write ZN = g(θ0)e

−iNθ0 , where g(θ0) is a function depending on N only
through εF. In the limit N ≫ 1, N∆ ≈ (N + 1)∆, so that εF is approximately a constant and consequently g(θ0) is
approximately the same for ZN and ZN+1. Therefore we find, after using Eq. (S13), that

pN+1

pN
= e−iθ0 , FN (εn) ≈ FN+1(εn) ≈

(
e−iθ0

φ(ε+ΩN )
+ 1

)−1

. (S19)

This solution is equivalent to assuming FN (εn) ≈ FN+1(εn) in the QKE, Eq. (S11), with the ratio of probabilities
then being given by the normalization of FN (εn), Eq. (S12) (or equivalently Eq. (S18)). This is the solution presented
in the main text.

NORMALIZATION OF THE NON-THERMALIZED DISTRIBUTION FUNCTION

In the regime characterized by the inequalities (1) and (3) of the main text, f̃(εn + ΩN ) = (ΓL/Γ)fL(εn + ΩN ) +
(ΓR/Γ)fR(εn +ΩN ) can be split into three regions,

f̃(εn +ΩN ) ≈





1− (ΓR/Γ)e
β(εn−(µ−ΩN )), εn < µ− ΩN

ΓL/Γ, µ− ΩN < εn < µ− ΩN + eV

(ΓL/Γ)e
−β[εn−(µ−ΩN+eV )], µ− ΩN + eV < εn.

(S20)

Using the normalization of F (εn) with εF = N∆

εF =

∫ ∞

0

dεF (εn) =

∫ ∞

0

dε
f̃(ε+ΩN )

[1− f̃(ε+ΩN )]AN + f̃(ε+ΩN )
(S21)
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and making use of the three regions in Eq. (S20) results in the following equation to determine AN :

βεF =
βeV

AN
ΓR

ΓL
+ 1

+ ln

(
Γ

ΓRAN
eβ(µ−ΩN ) + 1

)
+ ln

(
ΓL

Γ +AN

Γ
ΓR

+AN

)
. (S22)

This equation can be solved numerically across the entire voltage range, 0 ≤ eV <∼ ΩN+1 leading to the probabilities
pN and pN+1 as shown in Fig. 1 of the main text. In the vicinity of the additional jump in the differential conductance,
where AN ∼ 1, a useful analytical estimate for AN can be obtained, which allows for an estimation of the size of the
jump not present in the thermalized case [S6–S9]. Since µ = εF ≫ Ec, then the first logarithm in Eq. (S22) can be
simplified to give

βεF ≈ βeV

AN
ΓR

ΓL
+ 1

+ β(µ− ΩN ) + ln

(
Γ

ΓRAN

)
+ ln

(
ΓL

Γ +AN

Γ
ΓR

+AN

)
. (S23)

The first term on the right-hand side of this equation is of the order βEc ≫ 1 near the additional jump in conductance
and as the arguments of the logarithms are O(1), then it can be found that close to the jump

AN ≈ ΓL

ΓR

(
eV − ΩN

ΩN

)
(S24)

as presented in the main text. By evaluating the current (Eq. (13) of the main text) on either side of the jump, which
occurs at eV = Ec, the size of the jump in the low temperature limit is found to be,

δG =
e2

∆

ΓLΓR

Γ

1 + ΓR

ΓL
Ã2

N

(1 + ÃN )(1 + ΓR

ΓL
ÃN )

(S25)

with ÃN being given by Eq. (S24) evaluated at the position of the jump, eV = Ec. This leads to the result of Eq. (15)
in the main text for ΩN = Ec/2.
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CHAPTER 6. QUANTUM DOTS - SYMMETRIC COUPLING TO THE LEADS

6.3 Future Work - Electronic Noise and MBL

The work presented in the previous section demonstrates a clear way of identifying the

absence of thermalisation in quantum dots. This aligns with the other work in this thesis

which aims to provide signatures of the absence of thermalisation in electronic systems in

order to identify systems where MBL may be observed. When expanding on this work,

it is worth exploring the signatures of the MBL phase itself. One signature that has

been mentioned in this thesis is the divergence in the electronic noise as the localisation-

delocalisation transition is approached [27]. Electronic noise can be defined in terms of

the current-current correlation function as [138]

S(ω) = 2

∫ ∞

−∞
dt′eiωt

′⟨δI(t)δI(t+ t′)⟩, (6.3)

with δI(t) = I(t) − ⟨I⟩. This arises due to a variety of reasons1, for example there is

thermal (or equilibrium or Nyquist-Johnson) noise which is due to the thermal fluctuations

in the system and leads to the noise being independent of frequency but depending on

the conductance, G via

S =
4G

β
. (6.4)

There is additionally 1/f noise that occurs at low frequencies and is believed to be caused

by changes in the impurity configuration [14,142], although this is not the subject of this

discussion. An interesting form of noise in mesoscopic systems is shot noise which arises

due to the discrete nature of electrons. The electrons passing through the system will

have a distribution - the mean of this distribution will be related to the current and the

variance will be related to the noise (see for example [143]). As an example, if the electrons

are uncorrelated, as is the case for a weak tunnelling current, then the distribution is a

Poisson one, which leads to the noise being given by

S = 2e⟨I⟩. (6.5)

1See [14,138–141] for more in-depth discussions on these.
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6.3. FUTURE WORK - ELECTRONIC NOISE AND MBL

In this instance, the noise is proportional to the current so vanishes in equilibrium, though

in general this sort of formula only holds if the charge is transferred in one direction and

so usually the noise has an equilibrium and non-equilibrium part to it. The third moment

of the distribution has no such limitation however and can be a better indication of non-

equilibrium noise [143]. This is particularly relevant for MBL where the non-equilibrium

component is of interest [27].

The third moment of current fluctuations is expected to diverge near the MBL tran-

sition when the transition is viewed as a function of temperature. Whilst it is currently

unclear whether a stable MBL phase exists at finite temperatures in the thermodynamic

limit, MBL physics should still be observable in experiments which have a finite size and

time associated with them. Therefore, a transition occurring at Tc, given by Eq. (2.17),

is of interest. The transition can be thought of as a cascade process because as Tc is ap-

proached a phonon begins to excite electrons and cause hopping. The number of electrons

that hop due to the phonon diverges at the transition, restoring a phononless transport

regime. Whilst there are nuances in precisely how this number of electrons diverges [27],

the key thing to note is that this causes the bunching of electrons as the temperature

is increased and therefore a divergence in the noise. However, as previously mentioned

it is better to observe this in the third moment of the current fluctuations where the

non-equilibrium contribution is clearer.

Therefore, a natural extension to this project is to explore the third moment of current

fluctuations in electronic systems. In quantum dots this can be done by utilising the

Keldysh formalism to calculate the noise using Eq. (6.3) and then the third moment. As

well as considering previous approaches to noise, for instance the tunnelling current [143],

it will also be important to consider the fine structure of tunnelling states at the low

energies relevant for localisation [144] in order to accurately assess the noise in this regime.

Another possible direction of future research could include exploring signatures in driven

systems as the driving can in some instances counteract the thermalisation due to the

phonons [145], though the work with electronic noise is more of a direct extension of the
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CHAPTER 6. QUANTUM DOTS - SYMMETRIC COUPLING TO THE LEADS

work carried out here.

6.4 Summary

This chapter has focused on identifying the absence of thermalisation in quantum dots

through the appearance of an additional peak in the differential conductance compared to

the fully thermalised case. This arises due to the distribution function of electrons having

a double-step form which reflects the fact that electrons coming from the left and right

leads do not equilibrate and is predicted to be observable providing that the coupling

to the leads is symmetric and the dot is in the classical Coulomb blockade regime. This

effect also occurs in a non-interacting dot and has been observed in mesoscopic wires [137].

After this, a discussion of electronic noise as a signature of MBL was discussed as a way

to extend the work presented in this thesis.
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CONCLUSION

To summarise, this work has focused on the identification of signatures of the absence of

thermalisation in electronic systems. This will allow for materials to be found that could

potentially be candidates for observing many-body localisation, which has so far eluded

traditional solid-state setups due to the presence of phonons.

This thesis began by introducing the concept of mesoscopic physics and the associated

transport regimes. It was shown how the phase coherence length being comparable to or

larger than the system size is crucial in observing new behaviour such as weak localisation

which gives a decreased conductivity in a weakly disordered metal. This is due to the

phase coherence between electronic paths resulting in an increased return probability. In

strongly disordered materials, this phase coherence manifests itself as Anderson localisa-

tion where electronic wavefunctions are localised in space leading to zero transport across

a system. It was then seen how transport can be restored (and localisation destroyed) at

finite temperatures due to the phonons in the system providing electrons with the energy

to hop. The topic of MBL was introduced as electron-electron interactions may not be

sufficient to destroy localisation in the same way as the phonons. This gives rise to a

localised regime with a number of unique properties, such as breaking the eigenstate ther-

malisation hypothesis and avoiding thermalisation, in addition to the logarithmic growth

of entanglement in time. Whilst this entanglement growth is seen as one of the defining
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features of MBL, it is inaccessible in solid-state setups.

By making use of the Keldysh formalism, an analysis of the electron-phonon cooling

rate was performed which showed that electron-phonon decoupling can be identified via

hysteretic jumps of several orders of magnitude in the current-voltage characteristics. This

arises below a critical lattice temperature due to a bistability in the electron temperature,

in which a cool electron state exists as well as an overheated one, the latter of which

leads to phonon-independent transport. The bistability can also be observed through the

existence of a regime of inaccessible electron temperatures, corresponding to the unstable

states. For the system to exhibit this observable decoupling, an Arrhenius resistance is

required, as other forms of resistance result in significantly lower critical temperatures

making the bistability practically inaccessible. It is important to emphasise that this

bistability is simply a reflection of the decoupling and does not indicate MBL itself and

further signatures must be identified.

An ideal system to study these signatures is that of quantum dots which undergo a

localisation transition in Fock space, analogous to that in MBL. Interactions play a key

role in quantum dots with the Coulomb blockade being a key example of this. In this

regime, a large amount of energy is needed to overcome the Coulomb repulsion and add

an additional electron onto the dot. It was shown how the Coulomb staircase, which has

characteristically been studied in the case of full thermalisation, persists in the case of

asymmetric coupling to the leads even when thermalisation on the dot is absent. This

is due to the formation of an equilibrium with the strongly coupled lead. Although the

absence of thermalisation is not identifiable in the context of the Coulomb staircase here,

a new regime of transport was identified where the contribution of the lowest energy levels

on the dot causes the practical disappearance of the staircase.

Finally, it was shown that when the leads are coupled to the dot equally, the absence

of thermalisation can be identified as the distribution function on the dot changes from

a Fermi function to a double-step function reflecting the fact that electrons from the

left and right leads tunnel on at different energies and do not equilibrate. This has the
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consequence of an additional jump in the differential conductance compared to the fully

thermalised dot and should allow for an experimentally accessible signature of the absence

of thermalisation. In order to further this work, signatures of the localised regime itself

should be sought after with the behaviour of electronic noise providing the most appealing

opportunity to identify localisation.
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APPENDIX A

ANALYTIC CONTINUATION IN

KELDYSH

In this section the process of analytic continuation in the Keldysh formalism will be

detailed. This provides a procedure that goes from the double-time contour back to real

time, which is necessary for any physical calculations. The first part of this section will

look at performing this procedure for the case of a scalar potential where the added

complication of index notation in interaction vertices is not required. After, the index

notation will also be addressed. This is based on work presented in [43].

For the scalar, potential the first order correction to the contour-ordered Green’s

function, G can be expressed as

δG(1)(x, x′) =

∫
dr1

∫

C

dτ1G0(r, r1, t, τ1)U(r1, τ1)G0(r1, r
′, τ1, t

′), (A.1)

with x = (r, t). The aim is to then express this in terms of the matrix in Eq. (3.33), which

has the notation Gij(x, x
′) with i, j = 1, 2. If x has a time argument on the upper contour,

then i = 1 and if x′ is lower contour j = 2 etc. The contour integral in the expression

above can then be split into an integral along the upper contour and an integral over the

125



APPENDIX A. ANALYTIC CONTINUATION IN KELDYSH

lower contour, resulting in1,

δG
(1)
ij (x, x

′) =

∫
dx1 [(G0)i1(x, x1)U(x1)(G0)1j(x1, x

′)− (G0)i2(x, x1)U(x1)(G0)2j(x1, x
′)] ,

(A.2)

where
∫
dx1 =

∫
dr1
∫∞
−∞ dt1. By expressing the above in matrix form, the result of

Eq. (3.38) is obtained. The Keldysh rotation [43, 89] is then performed using the trans-

formation G→ Lσ(z)GL†, with

L =
1√
2



1 −1

1 1


 , (A.3)

such that L†L = 1 and σ(z)σ(z) = 1. This restores all the results for the scalar potential

mentioned in the main text. The focus will now be on developing the index notation

through exploration of the correction to the Green’s function due to the electron-phonon

(or electron-electron as they have the same diagrammatic expansion) interaction. The

first order correction is shown in Fig. 3.4(b) and after splitting the contour integral into

integrals over the upper and lower branch, the correction is given by

δG
(1)
ij (x, x

′) = i

∫
dx1dx2

[
Gi1(x, x1)γ(x1)G11(x1, x2)D11(x1, x2)γ(x2)G1j(x2, x

′)

−Gi1(x, x1)γ(x1)G12(x1, x2)D12(x1, x2)γ(x2)G2j(x2, x
′)

−Gi2(x, x1)γ(x1)G21(x1, x2)D21(x1, x2)γ(x2)G1j(x2, x
′)

+Gi2(x, x1)γ(x1)G22(x1, x2)D22(x1, x2)γ(x2)G2j(x2, x
′)
]
, (A.4)

where the γ’s represent the vertices and the G’s and D’s under the integral are G0 and

D0 but the subscript has been dropped for clarity. This can be expressed fully in terms

1An alternative to this is to use Langreth’s theorem which involves the deformation of the contour,
details of which can be found in [85].
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of index notation (where repeated indices are summed over) to give

δG
(1)
ij (x, x

′) = i

∫
dx1dx2Gim(x, x1)γ(x1)σ

(z)
mkGmm′(x1, x2)

×Dkk′(x1, x2)γ(x2)σ
(z)
m′k′Gm′j(x2, x

′). (A.5)

After condensing the index notation, making use of the convolution symbol and consid-

ering the case that each vertex has a factor λ associated with it, Eq. (3.41) is recovered,

that is

δG
(1)
ij = (G0)im ◦ Σmm′ ◦ (G0)m′j, Σmm′ = iγkmn(G0)nn′(D0)kk′γ

k′
n′m′ , (A.6)

with γkmn = λδmnσ
(z)
nk . The remaining task is then to perform the Keldysh rotation. In

order to preserve the form of Dyson’s equation, although the Green’s functions transform

as G → Lσ(z)GL†, the self-energy transforms as Σ → LΣσ(z)L†. After various insertions

of the identity via L†L = 1 and σ(z)σ(z) = 1, the ‘rotated’ self-energy becomes

Σ̃mm′ = iγ̃kmn(G̃0)nn′(D̃0)kk′ γ̄
k′
n′m′ , (A.7)

where the emission, γ̃kmn, and absorption, γ̄k
′

n′m′ , vertices transform as

γ̃kmn = Lmiγ
l
ijσ

(z)
jf σ

(z)
lg L

†
fnL

†
gk, (A.8)

γ̄k
′

n′m′ = Ln′iLk′jγ
j
ilσ

(z)
lf L

†
fm′ . (A.9)

Careful calculation of the vertices then gives the results in the main text for the trans-

formed indices,

γ̃1mn =
λ√
2
δmn, γ̃2mn =

λ√
2
σ(x)
mn, (A.10)

γ̄1mn =
λ√
2
σ(x)
mn, γ̄2mn =

λ√
2
δmn. (A.11)
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APPENDIX B

DERIVATION OF THE

QUANTUM KINETIC EQUATION

Here, the quantum kinetic equation (QKE) will be derived and the collision integral will be

found by considering the electron-phonon interaction. It follows a number of derivations

presented in [43,82–84,102].

The starting point is the left and right Dyson equations

G ◦
(
G−1

0 − Σ
)
= 1, (B.1)

(
G−1

0 − Σ
)
◦G = 1, (B.2)

which upon subtraction can be written as

[G−1
0

◦,G] = [Σ◦,G]. (B.3)

The matrix form involving GR, GA, GK can then be utilised and taking the Keldysh com-

ponent gives

(GR
0 )

−1 ◦GK −GK ◦ (GA
0 )

−1 = ΣR ◦GK + ΣK ◦GA −GR ◦ ΣK −GK ◦ ΣA (B.4)
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where terms involving (GK
0 )

−1 ∼ iδ, δ ≪ 1 have been ignored and all Green’s functions

and self-energies are functions of x, x′ with x = (r, t). Both the inverse of the retarded

and advanced Green’s functions can be expressed as G−1
0 = (i∂t −H(r))δ(x− x′), so that

the Keldysh component can then be written as

[G−1
0

◦,GK ] = ΣR ◦GK + ΣK ◦GA −GR ◦ ΣK −GK ◦ ΣA. (B.5)

The next step is to perform a Wigner transform, which is a transformation to mixed

coordinates. If the form of the kinetic equation desired is the same as the Boltzmann

equation, Eq. (4.11), then both a spatial and temporal Wigner transform should be taken

[43, 82–84]. However in this thesis the desired form is that presented in Eq. (4.16) and

derived in [102]. Therefore, only a temporal Wigner transform is required. This takes

a function f(t1, t2) → f(ε, t) by introducing the mixed coordinates t = 1
2
(t1 + t2) and

t′ = t1 − t2. The temporal Wigner transform is then defined by

f(ε, t) =

∫
dt′eiεt

′
f

(
t+

t′

2
, t− t′

2

)
, (B.6)

which leads to a couple of useful properties and for functions slowly varying with t these

become [43,82,83]

f(t1, t2) ◦ g(t1, t2) → f(ε, t)g(ε, t), (B.7)

[f(t1, t2)◦,g(t1, t2)] → −i(∂tf∂εg − ∂εf∂tg), (B.8)

f(t1, t2)g(t1, t2) →
∫

dω

2π
f(ε− ω, t)g(ω, t). (B.9)

These properties can be used to perform a temporal Wigner transform on Eq. (B.5) to

give

i∂εG
−1
0 ∂tG

K = ∆ΣGK − ΣK∆G, (B.10)

where ∆G = GR − GA, ∆Σ = ΣR − ΣK and all functions now depend on r, r′, ε and t.
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Additionally, the term involving ∂tG
−1
0 has been ignored as a slowly varying potential is

assumed [84]. The left-hand side can then be evaluated as the derivative of G−1
0 gives

δ(r− r′) and the quasi-equilibrium form of GK can be used, GK = fε(t)(G
R −GA). Then

integrating both sides of Eq. (B.10) with respect to the spatial coordinates the form of

the kinetic equation in Eq. (4.16) [102] is found

∂tfε(t) = I[fε(t)] =
1

2πνV Tr
(
∆ΣGK − ΣK∆G

)
, (B.11)

where the trace represents integration over the spatial variables.

The next task is to evaluate the self-energy to give a more useful form of the collision

integral. This involves a consideration of the electron-phonon interaction which is dia-

grammatically shown in Fig. 4.3. In index notation (where repeated indices are summed

over) this diagram can be expressed as

Σij = iγ̃kij′Gj′i′Dkk′ γ̄
k′
i′j

=
i

2

(
Gii′σ

(x)
i′j D

R +GijD
K + σ

(x)
ij′ Gj′jD

A
)
. (B.12)

Then the components of the self-energy matrix can be evaluated to give

ΣR =
i

2

(
GKDR +GRDK

)
, (B.13)

ΣA =
i

2

(
GKDA +GADK

)
, (B.14)

ΣK =
i

2

(
GRDR +GADA +GKDK

)

=
i

2

(
GKDK +∆G∆D

)
, (B.15)

where in the final line, terms such as GRDA = 0 have been included. The above ex-

pressions for the self-energy are still in terms of real coordinates and don’t include the

electron-phonon vertices yet. After performing the Wigner transform and including the

131



APPENDIX B. DERIVATION OF THE QUANTUM KINETIC EQUATION

vertices the collision integral can be written as

I[f ] =
i

4πνV

∫
drdr′

∫
dω

2π

[
GK(r, r′, ε)ĝα(r

′)∆G(r′, r, ε− ω)DK(r′, r, ω)ĝβ(r)

+GK(r, r′, ε)ĝα(r
′)GK(r′, r, ε− ω)∆D(r′, r, ω)ĝβ(r)

−∆G(r, r′, ε)ĝα(r
′)GK(r′, r, ε− ω)DK(r′, r, ω)ĝβ(r)

−∆G(r, r′, ε)ĝα(r
′)∆G(r′, r, ε− ω)∆D(r′, r, ω)ĝβ(r)

]
,

(B.16)

where the explicit time dependence has been dropped. The final step is to insert the

quasi-equilibrium forms of the Keldysh components, GK(ε) = fε∆G(ε) and DK(ω) =

Nω∆D(ω), and replace the volume with the area, A, to give the final result [23,102]

I[f ] =
i

4πνA

〈∫ ∞

−∞

dω

2π

∫
drdr′∆G(r, r′, ε)ĝα(r

′)∆G(r′, r, ε− ω) (B.17)

×∆Dαβ(r
′ − r, ω)ĝβ(r)[(fε − fε−ω)Nω + fεfε−ω − 1]

〉
.

which is that in Eq. (4.17).
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CALCULATION OF THE

DIAGRAMS FOR THE

ELECTRON-PHONON COOLING

RATE

In this section, additional details of the calculation of the electron-phonon cooling rate

included in Electron-Phonon Decoupling in Two Dimensions [23] will be presented. The

starting point is the quantum kinetic equation, Eq. (4.9)

∂tfε(t) = I[f ], (C.1)

with the collision integral [23,102]

I[f ] =
i

4πνA

〈∫ ∞

−∞

dω

2π

∫
drdr′∆G(r, r′, ε)ĝα(r

′)∆G(r′, r, ε− ω) (C.2)

×∆Dαβ(r
′ − r, ω)ĝβ(r)[(fε − fε−ω)Nω + fεfε−ω − 1]

〉
.
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The Fourier transform of the phonon propagator,

∆Dαβ(r
′ − r, ω) =

1

A
∑

q

eiq·(r
′−r)∆Dαβ(q, ω), (C.3)

can be used and after recalling that the phonons aren’t affected by the impurities, the

collision integral is given by

I[f ] =
i

4πνA

∫ ∞

−∞

dω

2π

∑

q

Fαβ(q)∆Dαβ(q, ω)[(fε − fε−ω)Nω + fεfε−ω − 1], (C.4)

with

Fαβ(q) =
1

A

∫
drdr′e−iq·r∆G(r, r′, ε)ĝα(r

′)eiq·r
′
∆G(r′, r, ε− ω)ĝβ(r). (C.5)

The phonon propagator is a standard result and the derivation will not be provided

here, with the result being given by [40,86,102]

∆Dαβ(q, ω) =
∑

j

∆D
(j)
αβ(q, ω) = −

∑

j

iπη
(j)
αβ

ρ2dωj(q)
[δ (ω − ωj(q))− δ (ω + ωj(q))] (C.6)

with η
(l)
αβ = qαqβ/q

2, η
(t)
αβ = δαβ − qαqβ/q

2 for longitudinal and transverse phonons respec-

tively, and the phonon dispersion is given by ωj(q) = ujq for q < q0 and zero otherwise,

where q0 is the cutoff Debye momentum. The density of the material forming the 2d film

is denoted by ρ2d. By substituting the result in Eq. (C.6) into Eq (C.4) and manipulating

the δ-functions allows the collision integrals to be written as

I[f ] = −2

∫
dωK(ω)[(fε − fε−ω)Nω + fεfε−ω − 1], (C.7)

with

K(ω) = −sgn(ω)

2

1

(2π)2

∑

j

βj
2ν2ε2F

Fαβ(q)η
(j)
αβ

∣∣∣
q=

|ω|
uj

(C.8)
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and βj =
νε2F

2ρ2du2j
. The remaining task is to calculate Fαβ(q) and then evaluate K(ω). For

the case of transverse phonons, this involves consideration of the diagrams in Fig. 4 of

Electron-Phonon Decoupling in Two Dimensions [23]. The first of these diagrams can be

expressed as

F
(1)
αβ (q) =

1

A3

∑

p,k1,k2

∆G(p, ε)(−iU(k1)k
α
1)∆G(p− k1 − q, ε− ω)(−iU(k2)k

β
2), (C.9)

which after performing disorder averaging and shifting variables becomes

F
(1)
αβ (q) =

1

2πντ

1

A2

∑

p,p′

∆G(p, ε)∆G(p′ − q, ε− ω)(p− p′)α(p− p′)β. (C.10)

The following results for the integrals can then be used

1

A
∑

p

∆G(p, ε) = −2πiν, (C.11)

1

A
∑

p

∆G(p, ε)p = 0, (C.12)

1

A
∑

p

∆G(p, ε)pαpβ = −2πiνp2F
δαβ
2
, (C.13)

to give for the transverse phonons

F
(1)
αβ (q)

(
δαβ −

qαqβ
q2

)
= −2πνp2F

τ
. (C.14)

Following this, the second diagram with the modified vertex must be considered. Since

sums of the form

1

A
∑

p

GR(p, ε)GR(p− q, ε− ω) = 0, (C.15)

as well as the corresponding one involving GA, then the vertex must have different Green’s

functions on the incoming and outgoing vertices. Through simple calculation, it is found

that if GR enters the vertex and GA leaves then the vertex is Γ1 = p/τ and if GA enters
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and GR leaves then the vertex has a form Γ2 = −p/τ . Then the diagram can be expressed

(after some careful algebra) as

F
(2)
αβ (q)

(
δαβ −

qαqβ
q2

)
=
p2F
τ 2

1

A
∑

p

GR(p, ε)GA(p− q, ε− ω)(1− cos2θ) + c.c.. (C.16)

The sum can be converted to an integral via

1

V
∑

p

=

∫
pdpdθ

(2π)2
≈ ν

2π

∫ ∞

−∞
dξ

∫ 2π

0

dθ, (C.17)

after which the integrals can be performed to give in the dirty limit (ql ≪ 1)

F
(2)
αβ (q)

(
δαβ −

qαqβ
q2

)
= −2πνp2F

τ

(
−1 +

(ql)2

4

)
. (C.18)

The two diagrams can then be combined to give the complete result for transverse phonons

F
(2)
αβ (q)

(
δαβ −

qαqβ
q2

)
= −2πνp2F

τ

(ql)2

4
. (C.19)

Then, the substitution of this result into Eq. (C.8), gives the expression for K(ω),

K(ω) =
βt sgn(ω)

8kFl
(ql)2. (C.20)

that appears in Eq. (16) in Electron-Phonon Decoupling in Two Dimensions [23]. From

this point the calculation proceeds as described in the manuscript to calculate the cooling

rate. For longitudinal phonons all diagrams in Fig. 4.4 contribute and can be calculated

in a similar manner to those shown here, remembering to include the diffuson, described

by Eq. (3.60), where necessary.

136



APPENDIX D

DERIVATION OF THE CURRENT

FORMULA FOR TRANSPORT

THROUGH A QUANTUM DOT

In this section, the current formula shown in Eq. (5.13) will be derived. This follows the

work presented in [85,136,146]. The current going from the lead α to the dot is given by

Iα = −e⟨Ṅα⟩ = −ie⟨[H,Nα]⟩, (D.1)

where the number operator for the leads is given by Nα =
∑

k c
†
k,αck,α. The Hamiltonian

of the system, written in terms of the creation and annihilation operators for the dot

(d†, d) and leads, (c†, c), is given by H = Hd +Hℓ +HT with,

Hd =
∑

n

εnd
†
ndn +

1

2
Ec

(
N̂ −Ng

)2
, (D.2)

Hℓ =
∑

k,α

(εk − µα) c
†
k,αck,α, (D.3)

HT =
∑

α

H
(α)
T =

∑

α,k,n

(
tαc

†
k,αdn + h.c.

)
. (D.4)
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Only the latter of these doesn’t commute with the number operator, meaning that

Iα = −ie⟨[H(α)
T , Nα]⟩. (D.5)

After the substitution of the relevant Hamiltonian into this expression, the use of fermionic

anticommutation relations gives,

Iα = ie
∑

k,n

tα⟨c†k,αdn⟩ − t∗α⟨d†nck,α⟩ = 2eRe

[
tα
∑

k,n

G<
α,k,n(t, t)

]
, (D.6)

where G<
α,k,n(t, t

′) = i⟨c†k,α(t′)dn(t)⟩.

In order to make further progress, G<
α,k,n(t, t

′) needs to be calculated. Consider the

contour-ordered Green’s function

Gα,k,n(t, t
′) = −i⟨TCdn(t)c†k,α(t′)⟩ = −i

〈
TC

(
Sd̃n(t)c̃

†
k,α(t

′)
)〉

, (D.7)

where in the last line, the interaction representation (denoted by the tilde’s) has been

used by introducing the S-matrix,

S = TCe
−i

∫
C dt1H̃T(t1)

= TC

∞∑

m=0

(−i)m
m!

[∫

C

dt1
∑

α′,k′,m′

(
tα′ c̃†k′,α′(t1)d̃m′(t1) + t∗α′ d̃

†
m′(t1)c̃k′,α′(t1)

)]m
. (D.8)

Upon substitution into the Green’s function, the m = 0 term doesn’t contribute as it

contains an average ⟨TC d̃n(t)c̃†α,k(t′)⟩ = 0. Therefore the Green’s function can be expressed

as

Gα,k,n(t, t
′) = −i

〈
TC

∞∑

m=0

(−i)m+1

(m+ 1)!

[∫

C

dt1
∑

α′,k′,m′

(
tα′ c̃†k′,α′(t1)d̃m′(t1)

+ t∗α′ d̃
†
m′(t1)c̃k′,α′(t1)

)]m+1

d̃n(t)c̃
†
k,α(t

′)

〉
. (D.9)
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To have a non-zero average upon using Wick’s theorem there needs to be a matching

number of creation and annihilation operators of each variety (i.e. for the dot and the

leads separately). One factor of the term in the square brackets is sufficient to provide

this and as there are m+ 1 ways of taking this factor, the Green’s function becomes

Gα,k,n(t, t
′) = −i

∫

C

dt1
∑

α′,k′,m′

t∗α′

〈
TC(−iS)d̃†m′(t1)c̃k′,α′(t1)d̃n(t)c̃

†
k,α(t

′)
〉
. (D.10)

All of the ‘difficult’ physics encapsulated by the S-matrix can at this point be put into

the Green’s function for the dot, whilst keeping the Green’s functions for the leads simple.

To do this the Green’s functions for the dot and lead can be defined as

Gn,m = −i⟨TCdn(t)d†m(t′)⟩ = −i⟨TCSd̃n(t)d̃†m(t′)⟩, (D.11)

gk,α = −i⟨TC c̃k,α(t)c̃†k,α(t′)⟩. (D.12)

Then, performing Wick’s theorem on Eq. (D.10) leads to

Gα,k,n(t, t
′) =

∑

m

∫

C

dt1t
∗
αGn,m(t, t1)gk,α(t1, t

′) (D.13)

following which analytic continuation can be performed to return to real time and to give

the Green’s function contained in the expression for the current (Eq. (D.6)),

G<
α,k,n(t, t

′) =
∑

m

∫ ∞

−∞
dt1t

∗
α

[
GR

n,m(t, t1)g
<
k,α(t1, t

′) +G<
n,m(t, t1)g

A
k,α(t1, t

′)
]
. (D.14)

The expression for the current in Eq. (D.6) contains the Green’s function evaluated

at equal times and therefore the current, after Fourier transforming, is given by

Iα = 2e|tα|2
∫

dε

2π
Re

[∑

k,m,n

(
GR

n,m(ε)g
<
k,α(ε) +G<

n,m(ε)g
A
k,α(ε)

)
]
. (D.15)

If the density of states is constant on a scale of the charging energy, Ec, then it can be
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assumed that it is a constant in this work and therefore the sum over momenta can be

expressed as an integral,
∑

k = να
∫
dξk,α. Then, defining Γα = 2πνα|tα|2, the current

becomes

Iα = 2eΓα

∫
dε

2π

dξk,α
2π

Re

[∑

m,n

(
GR

n,m(ε)g
<
k,α(ε) +G<

n,m(ε)g
A
k,α(ε)

)
]
. (D.16)

To proceed further expressions for the Green’s functions of the leads can be inserted,

g<k,α(ε) = 2πifα(ξk,α)δ(ε− ξk,α), (D.17)

gAk,α(ε) =
1

ε− ξk,α − iδ
= P

(
1

ε− ξk,α

)
+ iπδ(ε− ξk,α), (D.18)

where in the last equality the Sokhotski–Plemelj formula has been used and P represents

the principal value. In addition to these, it can be noted that G<
n,m(ε) is imaginary as can

be seen by looking at the quasi-equilibrium approximation, G<(ε) = if(ε)A(ε), where

the spectral function, A(ε) is real. Using all this information, a few manipulations can be

performed to show that [85,136]

Iα = ieΓα

∫
dε

2π
Tr
[
G<(ε) + fα(ε)

(
GR(ε)−GA(ε)

)]
, (D.19)

where the trace can be ignored for resonant level coupling, that is Γ ≪ ∆, as transport

involves a single level so the Green’s functions become scalar functions. To get the above

expression into the form of Eq. (5.13), the weak coupling to the leads allows for the use

of the ansatz [25,26],

G<(ε) = 2πi
∑

N,n

pNFN(εn)δ(ε− εn − ΩN−1), (D.20)

G>(ε) = −2πi
∑

N,n

pN(1− FN(εn))δ(ε− εn − ΩN), (D.21)

and along with the identity GR −GA = G> −G<, the current going from the dot to the
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lead (which is a minus sign different from the previous expressions) is given by,

Iα = eΓα

∑

N

pN
∑

n

(
FN(εn) [1− f(εn−µα+ΩN−1)]− [1− FN(εn)] f(εn−µα+ΩN)

)
.

(D.22)

This is the result of Eq. (5.13).
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[64] M. Serbyn, Z. Papić, and D. A. Abanin. Local Conservation Laws and the Structure
of the Many-Body Localized States. Phys. Rev. Lett., 111:127201, 2013.

[65] M. Headrick. Lectures on entanglement entropy in field theory and holography.
2019. arXiv:1907.08126 [hep-th].
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