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ABSTRACT 

 

This thesis reports the results of DEM (Discrete Element Method) simulations of the 

behaviour of granular material for axisymmetric compression and plane strain 

deformation under both drained and undrained conditions. The aim is to study the 

behaviour of saturated granular material using DEM and the objectives of this thesis 

are:  

 to explore the drained behaviour of granular material using DEM 

 to explore the undrained behaviour of loose samples of granular material with and 

without preshearing history, using DEM 

 to compare axisymmetric compression and plane strain behaviour of a granular 

material under both drained and undrained conditions, using DEM 

 

A servo-control mode with constant mean stress is used to model drained simulations, 

and a strain-control model with constant volume is used to model undrained 

simulations. A periodic cell is used for all the simulations. For the drained simulations, 

the results of both dense and loose systems are presented, and all the systems reach a 

unique critical state at large strains. For the undrained simulations, mainly the results 

of loose systems are presented. The influence of preshearing history is also examined 

for a loose system under undrained axisymmetric compression conditions. The 

concept of liquefaction is shown to strongly correlate with mechanical coordination 



number, and liquefaction is shown to be related to structural mechanism. 

 

An attempt has been made to compare the axisymmetric compression and plane strain 

deformation for the drained and undrained conditions respectively. Shear strength 

criteria are examined and the Lade criterion is shown to be the most appropriate 

failure criterion.  

 

KEY WORDS: Discrete Element Method, simulation, critical state, shear strength, 

liquefaction, coordination number 
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CHAPTER 1:  INTRODUCTION 

CHAPTER 1: INTRODUCTION 

 

1.1 Motivation of Discrete Element Method  

Despite a historical effort spanning at least 300 years (with notable contributions from, 

for instance, Coulomb, Reynolds and Bagnold), a fundamental understanding of the stress 

response of  granular materials remains elusive, as does the ability to relate fundamental 

concepts to real applications. 

 

In classical continuum mechanics, three completely independent assumptions are made, 

i.e. continuity, homogeneity and isotropy [Malvern (1969)]. The idealization of the 

material is called a continuum, or more precisely, the continuum model of the material 

[Khan and Huang (1995)]. Granular materials consist of grains in contact and 

surrounding voids. The micromechanical behaviour of granular materials is therefore 

inherently discontinuous and heterogeneous, and  generally anisotropic.  

 

Kishino (1998) pointed out that in continuum mechanical analyses of granular materials, 

the determination of a constitutive model is the most difficult process. A constitutive 

model based on continuum approaches usually includes a lot of material constants (or 

model parameters), which sometimes have no clear physical meaning (Kishino, 1998). 

However, when one observes the granular materials as packed assemblies of particles, the 

mechanical interaction between particles is very simple and the material constants have 

explicit meanings. The ambiguous characters of the material constants based on 

 1



CHAPTER 1:  INTRODUCTION 

continuum approaches may have their origin in the implicit expression of the geometry of 

a packed assembly of particles. Thus, one can expect to analyse granular materials in a 

more realistic way if one makes use of the discrete element approaches in which the 

particle arrangement is modelled explicitly. 

 

Feda (1982) distinguished between the two different approaches in determining the 

mechanics of granular materials, the phenomenological approach (structure-less 

continuum approach) and the structural (sometimes called micromechanical) approach. 

The structural approach probes into the physical basis, more or less, and the discrete 

element approach is closer to this structural approach but it is a numerical approach. As 

to why the discrete element method (DEM) is an efficient method in studying granular 

materials in terms of both the macromechanical and micromechanical behaviours, this 

will be discussed in Chapter 2.  

 

1.2 Motivation of this thesis 

Since Cundall in 1971 first introduced the innovative distinct element method (DEM) 

into granular materials research, DEM has been developed to different levels and applied 

to a wide range of engineering applications. The content of this thesis is concerned with 

the quasi-static deformation of granular material such as sand. However, real granular 

materials like sand are very complex and it is very difficult for the development of theory 

in this area if there are no simplifying assumptions. As a first approximation, real particle 

shape is ignored and the particles are modelled as spheres. It is also assumed that the 

spheres are elastic and, consequently, the interactions between particles are modelled by 

 2
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algorithms based on theoretical contact mechanics rather than (the much simpler) linear 

springs. Also, since the particles are spherical no rolling resistance is considered. There 

are some other important issues missing in the published DEM studies of granular 

materials such as sand, some of which are the main motives of this thesis. 

 

In DEM, very little research has been reported on the behaviour of loose samples. 

Liquefaction of very loose samples has not been well explained in soil mechanics. Partial 

liquefaction phenomenon for medium loose samples has not previously been reported by 

DEM simulations, and there are still arguments as to whether or not partial liquefaction is 

a real physical behaviour in soil mechanics. 

 

The preloading history influence on undrained shear behaviour has been reported by 

Finge et al (2003) among others, but the explanation for the influence of the preloading 

history has not been well explored. There has not yet been published work on the 

preloading history influence on shear behaviour obtained from DEM simulations. 

 

Although conventional triaxial tests and plane strain tests are fundamental element tests 

in soil mechanics, there has not been much published work on the comparison of these 

two types of tests even in the laboratory test literature. Also, there still seems to be 

argument on the appropriate shear strength failure criteria among soil mechanics 

researchers. DEM is an ideal tool for such a comparison since the same initial sample can 

be copied an infinite number of times if required, however, such a comparison has not yet 

been explored by DEM simulations. 

 3



CHAPTER 1:  INTRODUCTION 

Therefore the aim is to study the behaviour of saturated granular material using DEM and 

the objectives of this thesis are:  

 to explore the drained behaviour of granular material using DEM 

 to explore the undrained behaviour of loose samples of granular material with and 

without preshearing history, using DEM 

 to compare axisymmetric compression and plane strain behaviour of a granular 

material under both drained and undrained conditions, using DEM 

 

1.3 Layout of this thesis 

The whole thesis is divided into eight chapters. In Chapter 2 the computational 

algorithms used in the DEM simulations are briefly introduced and a literature review of 

the development and applications of DEM, in the context of quasi-static deformation, is 

provided. This is followed by four chapters (Chapters 3 – 6) which report the results of 

the DEM simulations that have been performed during the PhD research programme. 

Each of these chapters (except chapter 6) includes a literature review of corresponding 

experimental work and/or DEM simulation work. Chapters 3 and 4 provide results of 

drained axisymmetric compression and drained plane strain simulations respectively. In 

both cases all the simulations were performed with the mean stress held constant. The 

results of undrained axisymmetric compression and undrained plane strain simulations 

are reported in Chapters 5 and 6 respectively. As no fluid is explicitly modelled in this 

work, undrained test is modelled using constant volume simulation. Emphasis is placed 

on the behaviour of loose samples. In Chapter 7, the results of the plane strain and 

axisymmetric compression simulations, both drained and undrained, are compared. 
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Finally, in Chapter 8, some conclusions on the work presented in this thesis are provided 

and further developments are suggested. 

 

1.4 Terminology used  

The stresses and strains are taken as compressive positive. Drained means constant mean 

stress and undrained means constant volume when they refer to the DEM simulation 

reported in this thesis. The stresses mean effective stress except otherwise pointed out.

 5
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CHAPTER 2: REVIEW OF DEM SIMULATIONS 

 

2.1 Introduction  

In a granular medium composed of discrete particles, forces are transferred only through 

the interparticle contacts. The discrete nature makes the constitutive relationship very 

complex. Interpretation of tests on real granular media, such as sand, is difficult because 

the stresses inside the sample cannot be measured and must be estimated from the 

boundary conditions. The observed stress-strain behaviour (from the boundary 

measurements) for a granular medium such as sand, is non-linear and hysteretic, which is 

dependent on stress level, stress path and stress history. Such complexity has led to the 

developement of models of granular media, which may be analytical, physical (typically 

photoelastic) or numerical.  

 

The analytical models can be found in Duffy and Mindlin (1957), Deresiewicz (1958a, 

1958b), Duffy (1959), Thornton (1979) and Thornton and Barnes (1982) for uniform 

packings; and Digby (1981), Walton (1987), and Chang (1988) for random packings. 

However, the analytical models are limited in that, the particles are spheres or discs, the 

particles are of uniform size, loading/unloading paths are restricted, and/or only 

conditions of small deformation can be applied.  

 

The physical (typically photoelastic) models can be found in Dantu (1957), Wakabayashi 

(1957), Drescher and De Josselin de Jong (1972), Drescher (1976), among others. 
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CHAPTER 2:  REVIEW OF DEM SIMULATIONS 

However, the physical analyses are time-consuming and lack flexibility to run multiple 

tests on identical specimens. 

 

Traditionally, theoretical models of material behaviour are validated by physical 

experiments. However, both traditional theoretical and experimental investigations of 

granular materials rely on estimates of the macroscopic stress and strain states from the 

boundary measurements, which themselves depend on assumptions made about the 

material behaviour. It is not clear whether information obtained at the boundaries of a 

specimen can reliably represent the ensemble state of stress and strain inside the 

specimen, which is normally supposed to represent the constitutive behaviour of the 

material at a point in a continuum. 

 

The most powerful way of modelling granular media is by numerical techniques. 

Numerical modelling has many advantages over the analytical models and the physical 

models. In numerical modelling, boundary conditions may be controlled precisely or even 

there can be no boundary by using a periodic cell, stresses and strains may be measured 

over any volume within the sample, any parameter may be varied while keeping the other 

parameters unchanged, any data are accessible at any stage of the test, and the same 

starting state can be used many times. 

 

The Distinct (Discrete) Element Method (DEM) is a numerical model, which was 

originally developed by Cundall (1971, 1974), for the analysis of rock mechanics 

problems. Cundall (1978) and Strack and Cundall (1978) incorporated the methods into 

 7
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the computer program ‘BALL’, and Cundall and Strack (1979a, 1979b) used the method 

to investigate the constitutive laws for soil. At the same time as the development of DEM, 

Serrano and Rodriguez-Ortiz (1973) developed a numerical quasi-static model for 

granular media based on displacement methods of structrual mechanics and finite element 

method (FEM). However, the method was not able to follow large displacement and 

rearrangements which are fundamental characteristics of state changing processes of 

granular media. Cundall and Hart (1992) has shown that DEM is better in modelling a 

discontinuous material than other numerical tools such as FEM and BEM (boundary 

element method). Cundall (2001) suggested that the future trend for numerical modelling 

in soil and rock may consist of the replacement of continuum methods by particle 

methods, although it is currently difficult to apply such particle methods to large-scale 

problems. This should be improved in the future due to the continuing development of 

computer hardware/software. 

 
In this chapter, a brief computational algorithm of DEM will be outlined, previous work 

on development and application of DEM simulations is reviewed and focused on quasi-

static deformation. Micromechanics concepts frequently used in granular materials will 

be discussed in the final section. 

 

2.2 Brief description of computational algorithms in DEM 

A brief description of computational algorithms will be given below. Further detailed 

information can be found in Cundall and Strack (1979b, 1979c), Strack and Cundall 

(1978), and Zhang (2003).  
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In DEM, the interaction of the discrete particles is monitored contact by contact and the 

motion of the particles modelled particle by particle. The DEM program models the 

particle interactions as a dynamic process and the time evolution of the system is 

advanced using a simple explicit time-dependent finite difference technique. At any time 

t, interparticle force increments are calculated at all contacts from the relative velocities 

of the contacting particles using incremental force-displacement rules. The interparticle 

forces are then updated and are resolved to obtain the out-of-balance forces and moments 

on each particle, from which new accelerations (both linear and angular) of each particle 

are then calculated using Newton’s second law of motion. Numerical integration of the 

accelerations is then performed over a small time step to give new velocities (both linear 

and angular) which are then numerically integrated to give displacement increments (both 

linear and angular) from which the new particle positions are obtained. Having obtained 

new positions and velocities for all the particles, the program repeats the cycle of 

updating contact forces and particle locations. Checks are incorporated to identify new 

contacts and contacts that no longer exist.  

 

From the above process, all complete information of each particle can be tracked. Such 

basic local information for a particle includes forces at contacts and contact positions, 

from which the ensemble average (macroscopic) stress tensor can be established in a 

chosen region, as will be explained later in this chapter. The ensemble average strain 

tensor can also obtained in the same way. Such an averaging process is also called the 

microstructural approach by Bagi (1996) or homogenization process by Cambou (1993). 

The constitutive relationship between the macroscopic stress and strain can be established 

 9
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viewing the particle assembly as a point in a continuum under different stress or strain 

probes, which may be incorporated into the finite element method (FEM) analyses of 

engineering scale problems. 

 

2.3 Review of development and application of DEM on quasi-static condition 

In this section, the development of DEM codes, and the application of DEM (mainly 

related to geotechnical laboratory testing) will be summarised. A summary of the 

literature work and the research direction undertaken in this thesis is provided at the end 

of this section. 

 

2.3.1 Development of DEM programs: BALL and TRUBAL 

The early version of the 2D DEM program BALL developed by Cundall (1978) was 

validated by Cundall and Strack (1979a, 1979b ), by comparing the force vector plots 

with a photoelastic analysis by De Josselin De Jong and Verruijt (1969) and by 

reproducing stress-strain behaviour reported by Oda and Konishi (1974). In this early 

version of BALL, a linear spring contact law was used, specimens were made up of discs, 

and wall or particle boundaries were applied. Both wall and particle boundaries could be 

strain-controlled, stress-controlled, or servo-controlled, the details of which can be found 

in Cundall et al (1982). 

 

BALL was extended to an early version of TRUBAL by Cundall and Strack (1979c), who 

used linear spring contact laws, and the structure of the program resembles that of BALL. 

This early version of TRUBAL was specifically designed for reproducing the work of 
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Rowe (1962), in which the results from a triaxial test on an assembly of face-centered-

cubic packings of steel spheres were presented. Neither wall nor particle boundaries were 

available. Only fixed forces could be applied to any set of spheres, which restricts the 

analysis to being valid only for small displacements and strains. The numerical results 

with boundary rotations inhibited showed better agreement with Rowe (1962) than those 

without constraint on rotations.  

 

Cundall (1988) extended the above early version of TRUBAL to random arrays of 

spheres, and introduced the notion of a periodic cell to DEM. A periodic cell allows a 

particle that moves out of the cell to be re-mapped back into the cell at a corresponding 

location on the opposite face. The particle that moves out of the cell carrys all the same 

information as that moving into the cell, except for particle positions. An infinite lattice 

can be imagined by replicating one cell throughout space. Thus, the simulation can be 

performed free from boundaries. In this version, nonlinear contact laws are used with 

complete Hertz normal contact theory and a simplified tangential contact theory of 

Mindlin (1949). Thornton and Randall (1988) implemented particle-particle interaction 

rules that were based on theoretical contact mechanics with Hertz normal contact theory 

and the complete tangential contact theory of Mindlin and Deresiewcz (1953) in 

TRUBAL. 

 

2.3.2 Modelling geotechnical laboratory tests using DEM 

Although the DEM algorithm is essentially a dynamic process, it can also be used for 

quasi-static problems as it models quasi-static problems as a slow dynamic process by 
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ensuring that the loading rates are low enough for inertial forces to be much smaller than 

typical contact forces as pointed out by Cundall and Strack (1979a), where rigid particles 

and compliant contacts were assumed. Viscous damping may be used to inhibit the build-

up of kinetic energy and to bring the system to equilibrium. However, according to 

Kishino (1988), the movement of particles in quasi-static condition is not coaxial with the 

acceleration vector as assumed in DEM because of constraints by neighbouring elements 

( particles and/or boundaries). This led to the so-called Granular Element Method (GEM) 

developed by Kishino (1988, 1989). Similar to DEM, GEM calculates the displacements 

of each particle independently of the others, but the particles are displaced by using a 

successive relaxation technique based on the stiffness of the contacts with neighbouring 

elements. In the basic iteration step all particles are assumed to be fixed except one 

particle. The resultant of external contact forces acting on this particle is calculated and 

the displacement method is applied to determine its displacements. Then the next particle 

can be taken. Large displacements and rearrangements can be followed this way but its 

convergence is slow. Some other quasi-static models for granular assemblies can be 

found in Bagi (1993), Tzaferopoulos (1996), among others. 

 

Ting et al (1989) applied the program DISC (modified version of BALL) to simulate 

geotechnical laboratory tests and the results showed that 2D DEM can simulate realistic 

soil behaviour appropriately when individual particle rotation is inhibited. Modelling of 

large-scale problems is accomplished to some degree by constructing a reduced-scale 

model, then applying the geotechnical centrifuge scaling relationships in order to reduce 

the number of particles simulated and to ensure stress-strain-strength similitude between 
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the model and prototype. Full-scale simulations of bearing capacity and lateral earth 

pressure tests, indicate that DEM can accurately simulate real geotechnical problems, 

including those possessing large local yield zones. Ting et al (1995) investigated the 

effect of particle shape on the strength and deformation mechanisms of assemblies of 

elliptical particles using DEM by varying individual particle aspect ratio. The results 

indicate that the DEM analysis using elliptical particles produces better quantitative and 

qualitative mechanical behaviour similar to real granular materials than when assemblies 

of discs are used, the conclusion of which is the same as that in Rothenburg and Bathurst 

(1992). The contact detection with 2D particle shapes other than discs requires more time 

(also true for 3D particle shapes other than spheres). 

 

Dobry and Ng (1992) presented a general overview of applications of DEM to granular 

media, and incorporated Hertz-Mindlin contact solution to the TRUBAL code developed 

by Strack and Cundall (1984). They presented some 2D cyclic shear results at small and 

large strains with the particle rotation prohibited. Ng and Dorby (1994) further reported 

some 3D simulation results under monotonic drained and cyclic constant volume loadings. 

Effects of particle rotation and intergranular friction were investigated respectively. 

When particle rotation was inhibited, higher strength, greater stiffness and stronger 

dilation were found compared to the case in which rotation was allowed. Higher strength, 

higher initial stiffness and greater dilation were also found when a larger microscopic 

friction angle (intergranular friction) was used. They showed macroscopic friction angle 

increased linearly with the microscopic friction angle. Ng and Petrakis (1996) 

investigated the small-strain response of random arrays of spheres using the above 
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modified TRUBAL, and they found that the distribution of contact forces and the 

magnitude of the normal contact forces were of great importance to the macroscopic 

response of the medium. Lin and Ng (1997) extended the above DEM program to 

assemblies of ellipsoids. Ng (2001) investigated the influence of particle shapes on fabric 

evolution under drained triaxial compression using the program of Lin and Ng (1997), 

and the results indicated that particle shape does not influence shear strength at large 

strain, but does influence volume change. Ng (2002) further incorporated hydrostatic 

boundaries (which was used to simulate the chamber fluid but not the rubber membrane.) 

in their program and named it ELLIPSE3H. Ng (2004a, 2004b) performed a series of 

drained tests under different sample preparation methods and stress paths using 

ELLIPSE3H, in which different failure criteria proposed in the literature were compared. 

It was found that the Lade (1977) and Ogawa et al (1974) failure models showed the best 

agreement. 

 

Jensen et al (1999) investigated the influence of structure interface (surface roughness 

and particle shape) by enhanced DEM, in which a particle of general shape is modelled as 

a combination of several smaller particles of simpler shape, such as a circle, into clusters 

that act as a single larger particle. The clusters more accurately model the geometry-

dependent behaviour of the particles, such as particle interlock and resistance to rolling. 

The granular medium-structure interface shear tests are performed using both clustered 

and non-clustered particles, the results of which show that the clustered particles undergo 

less rolling and provide for increased shear resistence of the medium. Comparison of 

numerical simulations with typical response of laboratory specimens shows that DEM 
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simulations using simple discs or spheres usually underestimates the shear resistance, 

because the particles made up of discs or spheres tend to roll or rotate excessively. In 

order to reduce particle (disc- or sphere- shaped) rotations to more realistic levels, 

particle rotation may be prohibited (Dobry and Ng, 1992), or rolling resistance may be 

added at contacts (Iwashita and Oda ,1998), or as an alternative, ellipse-shaped particles 

may be used in place of disc- shaped particles (Ting et al, 1995), or the discs may be 

glued together in clusters (Jensen et al, 1999), or fused overlapping spheres may be used 

(Powrie et al, 2005). Phenomena such as damage and grain crushing may also be 

investigated by glued particles to form agglomerates, see Cheng et al (2003) and Cheng et 

al (2004).  

 

Sitharam (1999) reported the effect of confining pressure on the mechanical behaviour of 

granular materials from micromechanical considerations starting from the grain scale 

level, based on the results of numerically simulated tests on disc assemblages using DEM. 

The numerical results indicated a non-linear Mohr-Coulomb failure envelope with 

increase in confining pressure. The angle of internal friction slightly decreased with 

increase in confining pressure. Particle breakage was not considered in these simulations, 

and the decrease in the angle of internal friction was attributed to increased average 

coordination number and reduced fabric anisotropy. Sitharam et al (2002) reported 

numerical results of isotropic compression and triaxial shear tests under drained and 

undrained stress paths on 3D assemblages of polydisperse spheres in a periodic cell using 

DEM. Both loose and dense assemblies were investigated to study the evolution of the 

internal variables such as average coordination number and induced anisotropy during 
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deformation along with the macroscopic behaviour. Micromechanical explanations were 

presented in terms of force and anisotropy coefficients. The results indicated there is a 

steady state, in which both macroscopic and microscopic descriptors are constant and 

independent of densities, but the density of the assembly has an obvious influence on the 

pre-steady-state behaviour. 

 

Rothenburg and Bathurst (1989) investigated the developement of induced anisotropy 

during shear deformation of plane granular assemblies with disc-shaped particles by 

introducing statistical characteristics of fabric and contact forces. They introduced 

microstructural parameters that were explicitly related to the measure of deviatoric load 

by considering the condition of static equilibrium. Verification of the stress-force-fabric 

relationship was presented by DEM simulation, which was originally proposed by 

Rothenburg (1980) based on micromechanics approach and can be described as  
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where ϕsin  is the mobilised angle of friction, and  are second-order coefficients 

of contact normal anisotropy, average normal force anisotropy, and average tangential 

force anisotropy, respectively. This relationship gives an important link between some 

macroscopic and microscopic descriptors. The relationship has also been verified using 

DEM in Bathurst and Rothenburg (1990) for 2D disc assemblies, in Rothenburg and 

Buthurst (1992) for 2D ellipse assemblies, in Ouadfel (1998) for 3D ellipsoid assemblies, 

tn aaa ,,
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and in Mirghasemi et al (2002) for 2D angular (polygon-shaped) particle assemblies. 

Rothenburg and Kruyt (2004) developed a theory of critical state and of the evolution of 

coordination number during quasi-static deformations of granular materials based on the 

interpretation of several DEM simulations of plane granular assemblies with a range of 

interparticle friction from nearly frictionless to infinitely rough. They suggested  that the 

critical state is reached when rates of contact breakage and creation become equal. The 

interparticle friction was shown to be an essential element that affects stability of local 

configurations. The simulation data suggested that the packing fraction (solid fraction) 

was affected by both the anisotropy of contact orientations and by the coordination 

number, and suggested that critical state is characterized by both a critical coordination 

number and by a critical anisotropy, the combination of which makes the critical state a 

unique state.  

 
Thornton and Barnes (1986b) reported 2D simulations of quasi-static shear deformation 

of a compact (dense) polydisperse system of 1000 discs using the BALL code, in which 

two biaxial tests (constant mean stress and constant volume ) were examined in detail. 

The results showed that the evolution of induced structural anisotropy and angle of 

internal shearing resistance is unique for the the two tests. Visualisations of the force 

transmission patterns obtained under isotropic and anisotropic stress states were also 

provided. Thornton and Sun (1993) reported simulations of 3D axisymmetric 

compression using two different interparticle friction coefficients, specified for both a 

dense and a loose system, with no interparticle adhesion. The results showed that an 

increase in the interparticle friction resulted in an increase in shear modulus and shear 
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strength for both systems and also resulted in a higher degree of induced structural 

anisotropy and higher rates of dilation. Both tangential and normal contact-force 

contributions to the deviator stress (called deviatoric stress in general) increased with 

increasing interparticle friction, but the tangential contribution is still very small 

compared with the normal contribution. It was also observed that when the interparticle 

friction was increased both the ratio of sliding contacts and the critical mechanical 

coordination number decreased. Simulations of a constant deviatoric strain test and a 

multi-axial plane strain test were reported by Thornton (2000). General 3D stress probes 

were first examined by DEM and the failure criterion proposed by Lade and Duncan 

(1975) was first confirmed by DEM simulations, by Thornton and Sun (1993), and later 

by Thornton (2000) from different radial deviatoric loadings. A higher angle of internal 

shearing resistance for axisymmetric extension than for axisymmetric compression was 

observed in the DEM simulations, which showed that neither Mohr-Coulomb failure 

criterion nor the failure criterion proposed by Matsuoka and Nakai (1974) applies. 

Further studies of general stress and strain probes have been recently reported by 

Thornton and Zhang  (2006a). Some results of cyclic loading tests were reported by 

Thornton and Sun (1994), of which qualitative macroscopic behaviour is in agreement 

with real sand. 

 
Thornton and Antony (2000) reported the results of DEM simulations of quasi-static 

shear deformation for a hard and a soft system respectively and a comparison was made. 

Thornton and Antony (1998) examined and demonstrated the existence of strong- and 

weak- force transmission subnetworks first proposed by Radjai et al (1996) and Thornton 
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(1997), in which a strong subnetwork of contacts transmitting above-average contact 

forces and a weak subnetwork of contacts transmitting below-average contact forces 

existed. By examining the evolution of the separate contributions of the strong and weak 

subnetworks to the partitioned stress tensor (isotropic and deviatoric parts) and the 

partitioned fabric tensor, an important finding was made that the weak force network 

contributes only to the mean stress and the deviatoric stress can be considered to be solely 

due to the strong force network.  

 
Thornton and Zhang (2001) reported 2D constant volume numerical simulations of 

different shear testing devices including biaxial compression, simple shear and direct 

shear, in which a periodic cell was used in biaxial compression while wall boundaries 

were used in all “devices”. It was suggested that interpretations of material behaviour 

based on wall boundary information are not reliable. Masson and Martinez (2001) 

reported 2D direct shear tests using DEM on both dense and loose systems. Thornton and 

Zhang (2003) further reported 2D direct shear simulations under constant normal stress 

conditions using DEM. Futher 3D direct shear simulations were reported by Cui and O’ 

Sullivian (2006). Thornton and Zhang (2006b) examined shear banding during biaxial 

compression and simple shear non-coaxial flow rules by DEM. The shear banding was 

observed and visualized under both wall bounded systems and periodic cell systems. It 

was concluded that localisation and shear band formation are genuine material behaviour 

rather than artefacts created by boundary imperfections. It was also demonstrated that the 

initiation of shear bands is an elastic buckling problem. Results of DEM simulations of 

simple shear deformation were presented to illustrate the evolution of non-coaxialty, and 
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the corresponding non-coaxialty flow rule was shown to be equivalent to that proposed 

by Tasuoka et al (1988). At fully developed flow when there is no further change in 

volume, the stress and strain-rate directions are coaxial and the flow rule is that proposed 

by Hill (1950), which was also shown to apply to direct shear at the critical state, see 

Zhang (2003). 

 

2.3.3 Application of DEM in wave propagation and other DEM topics  

Transient wave propagation (dynamic response) in granular materials was studied using 

DEM by Sadd et al (2000) with the aim to link wave propagational behaviours with 

material microstructure or fabric. With regard to wave propagation, granular materials 

create a structured wave-guide network through which mechanical energy is transferred. 

Along a given wave path, the dynamic load transfer is determined by the contact 

interactions between neighbouring particles, and thus propagational characteristics of 

wave speed, amplitude attenuation and wave form dispersion are related to the local 

fabric along established wave paths. The simulation results indicated that wave speed is 

dependent on the stiffness of the interparticle contacts and the distribution of branch 

vectors along the propagation direction. Wave amplitude attenuation is also dependent on 

the number of branch vectors in the direction of propagation. Different normal contact 

law effects on wave progagation in granular medium was studied using DEM by Sadd et 

al (1993). The specific normal contact laws included linear, non-linear and non-linear 

hysteretic contact laws along with velocity proportional damping. The simulation results 

were compared with experimental data from dynamic photoelastic and strain gage 

experiments. It was found that only the non-linear hysteretic contact law can model the 
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dispersion characteristics reasonably, although all the three contact laws can model the 

wave speed and amplitude attenuation well.  

 

Other applications of DEM can be found in the literature. DEM has been used in 

massively parallel computing by Meegoda and Washington (1994), O’Connor (1996); has 

been applied to unsaturated soils by Jiang et al (2004); has been evaluated by modern X-

Ray computer tomography imaging technique by Fu (2005); has been combined  with the 

finite element method (FEM) by Komodromos and Williams (2004), Onate and Rojek 

(2004); has been combined with the boundary element method (BEM) by Bray (1987); 

has been coupled with a fluid flow to study undrained behaviour of granular soils by 

Bonilla (2004). 

 

 

2.4 Micromechanical descriptors  

Some state variables frequently used in micromechanics will be defined below. 

 
2.4.1 Stress tensor (Thornton and Barnes, 1986b) 

The statistical average stress tensor (without body forces) for a volume occupied by a 

single particle is defined as 
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If we consider the tractions  to consist solely of discrete forces  acting at point 

contacts defined by the coordinates (referenced to the particle centre) then the integral 

in (2.2) may be replaced by a summation over the  contacts for the particle . Thus 
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The average stress tensor for a volume V  of material is defined as 
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But, since the stresses are not continuously distributed within the assembly ( 0=ijσ  in 

the voids) we may replace (2.4) by 
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where the assembly consists of m particles. 

Combining (2.3) and (2.5) we therefore define the macroscopic stress tensor as  
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Noting each contact contributes to (2.6) twice, for systems of equal-sized spheres we may 

replace (2.6) by 
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where there are  contacts in the assembly. C

For polydisperse systems, (2.6) is written as 
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which is the form used in the calculation of the stress tensor for the simulations reported 

in this thesis. 

The average stress tensor defined by (2.9) is a ‘partitioned’ form, considering the 

contributions of the contact normal force and tangential force respectively, derived from 

Thornton and Barnes (1986b). Other ‘partitioned’ forms can be found in detail in Cundall 

and Strack (1983), and Rothenburg and Bathurst (1989). 

 

Other noteworthy definitions of the average stress tensor can be found in Christoffersen 

et al (1981), Rothenburg (1980), Rothenburg and Selvadurai (1981), Mehrabadi et al 

(1982), Bagi (1996), and Kruyt and Rothenburg (1996). 

 

2.4.2 Coordination number 

The coordination number is an alternative parameter to the contact density, and is directly 

related to the structural stability of the assembly concerned. The apparent coordination 

number is defined as the average number of contacts per particle and expressed as 

  

N
CZa

2
=                                                                  (2.10) 

 

where C is the number of contacts and N is the number of particles. Numerical 

simulations have revealed that, at any time during shear, there are some particles with no 

contacts and some particles with only one contact. None of these particles contribute to 
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the stable state of stress. Hence, a mechanical coordination number is defined by 

Thornton and Sun (1993) as  
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where  and  are the number of particles with one or no contacts respectively. 1N 0N

 

2.4.3 Fabric tensor 

In Oda (1972, 1978), fabric (which means the spatial arrangement of solid particles and 

associated voids) is explained by orientation fabric and packing density. Orientation 

fabric is quantitatively defined by vector mean direction and vector magnitude to 

characterize orientation of non-spherical particles. Packing (which means mutual relation 

of individual particles to other ones) is defined by the probability density function of 

contact normals, mean coordination number and deviation of coordination number. 

Therefore fabric in a broad sense includes coordination number. Rothenburg et al (1989) 

have also pointed out that a physically adequate constitutive model for granular materials 

must be able to describe a complex set of phenomena related to the evolution of 

microstructure (fabric) during shear deformations. 

 

Satake (1982) suggested that for disc or sphere assemblies, the distribution of contact 

normals  (also termed as structural anisotropy) could be characterized by a fabric 

tensor  

in

ijφ  where 
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The fabric tensor ijφ  defined above was originally used to describe the orientation of the 

distribution of contact normals or structural anisotropy. However, the general form of 

(2.12) can be used to define other types of anisotropy associated with non-spherical 

particles, e.g. distribution of the orientation of the long axes of elliptical particles, see 

Oda (1999). 

 
Oda et al (1982) combines the structural anisotropy defined by (2.12) and the packing 

density and defined a fabric tensor 

 

ijkkij FF φ=            

           (2.13) 

where 
V

RCFkk
2

=            

           (2.14) 
and R  is the mean particle radius.  appears to be a satisfactory method to characterize 

the complete microstructure of granular materials. 

ijF

 
The fabric tensor defined by (2.12) is a symmetrical second order tensor, which has three 

principal values as a stress tensor or strain tensor does. Like stress and strain tensors, a 

principal fabric space and a Mohr fabric circle can also be identified. According to (2.12), 

the principal fabric values of ijφ , termed as iφ , has the following properties 
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(2.15) and (2.16) show that the principal values of fabric are not independent of each 

other. 

 
For isotropic structure (uniform distribution of ) of granular materials,  in
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For an axisymmetric condition,  
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So for 3D axisymmetric conditions, a deviator fabric defined by )( 31 φφ −  has been used 

to describe the degree of structural anisotropy by Thornton and Sun (1993). Bardet (1994) 

used the fabric ratio defined by 
2

1

φ
φ  to describe structural anisotropy for 2D biaxial 

conditions. Rothenburg and Bathurst (1989) and Sitharam et al (2002) used the second-

order coefficient of contact normal anisotropy to describe induced anisotropy. 

 
Other complex forms of fabric tensor can be found in Nemat-Nasser and Mehrabadi 

(1983). A fourth-order or higher order fabric tensor can also be defined (see Oda 1999, 

Thornton and Barnes 1986a), where more information can be obtained. 

 
 
2.5 Summary  

The Discrete Element Method, since its inception, has been developed from 2D to 3D, 

from simple linear contact law to complex Mindlin and Deresiewcz (1953) type laws, and 

from wall boundaries to periodic cells. In addition it has developed from using purely 

circular particle shapes to elliptical shapes and to other more complex shapes, including 

developing interactions between particle to particle to interactions between clusters. 

Adhesion, viscous liquid bridges and plastic dissipation at the inter-particle contacts have 

also been implemented into DEM (see Thornton 1999). It has been used to simulate 

biaxial tests, direct shear, simple shear, triaxial shear tests plus general 3D shear tests. It 

has been used to study the behaviour of granular materials at low stress levels to particle 

crushing behaviour at high stress levels. It has also been used for the study of shear bands. 
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From the literature review, DEM has been used to model geotechnical tests by many 

researchers. Both macroscopic and microscopic behaviour have been explored. Strain 

hardening, and softening and critical state behaviour has been well captured for dense 

samples under drained conditions. The effects of particle shape, particle rotation and 

friction coefficient have also been modelled and the relationships well documented. 

However, most simulations are drained tests and not undrained tests, and most systems 

simulated are dense not loose, except Sitharam et al (2002). In addition, most simulations 

are of axisymmetric compression or biaxial tests, not plane strain tests. Therefore, the 

behaviour of granular materials for loose particle systems has not been well captured, 

especially under undrained conditions. The explanation of liquefaction has also not been 

well explored. Furthermore, the difference between axisymmetric compression and plane 

strain behaviour has not been well explored. Therefore, this thesis will focus on the 

behaviour of loose samples especially liquefaction under undrained conditions. 
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CHAPTER 3: DRAINED AXISYMMETRIC COMPRESSION 

SIMULATIONS 

 
 

3.1 Introduction 

The triaxial test is one of the most repeatable and useful laboratory tests for determining 

the stress-strain-dilation characteristics of soils. It is more reliable than the unconfined 

compression test and the direct shear test (Bardet 1997). Due to its relative simplicity, its 

versatility, and the degree of controlled deformation that it allows, the triaxial test has 

become one of the most widely used apparatuses for the testing of soil specimens, both 

for research and routine practical purposes. In a standard laboratory drained triaxial 

experiment, an axisymmetric compression test is usually performed under constant cell 

pressure conditions, which means that the minor principal stress σ3 (σ2 =σ3) is maintained 

at a constant value and failure results from the increase in the major principal stress (axial 

stress) σ1 under conditions of full drainage. The rate of loading or deformation is so 

arranged that negligible excess pore pressure is generated in the specimen at any time 

during the application of the axial load and particularly at failure. The starting point 

before drained shear can be at an isotropic stress state or an anisotropic stress state, which 

is usually obtained in laboratories after isotropic consolidation or anisotropic (such as K0) 

consolidation respectively. The isotropically consolidated drained triaxial compression 

test is more frequently performed in laboratories, which is often called CD or CID tests.  

During drained tests, there is no excess pore pressure generated, and the effective stresses 

and total stresses can be taken to be equal. Cohensionless materials such as sand are 
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actually often tested dry as it simplifies the laboratory procedure. The behaviour of dry 

cohensionless soil is virtually identical with the drained behaviour of cohensionless 

saturated soil (Lambe and Whitman 1979). The details of conventional triaxial tests can 

be found in Bishop and Henkel (1957) and Head (1986). In the drained DEM simulations 

with constant mean stress conditions reported in this chapter, dry particles are used 

corresponding to the dry specimens in the laboratory. The DEM simulation results are 

comparable to those of CD tests for dry samples or fully saturated samples. 

 

In this chapter, published literature on axisymmetric compression in both laboratory work 

and DEM work is reviewed briefly in section 3.2. Simulation details of parameters, 

boundary conditions, control modes used in the DEM simulations and especially on how 

to prepare samples of different porosities is described in section 3.3. Simulation results 

and discussions of the DEM drained tests are provided in section 3.4. Finally, a summary 

is given for the chapter. 

 

3.2 Literature review  

3.2.1 Drained behaviour 

Bishop (1966) demonstrated the stress-strain-dilation behaviour of Ham River sand in 

drained triaxial tests. He pointed out that, for loose sand the reduction in volume during 

shear rose rapidly with increase in σ3 up to about 6.89 MPa, and then more gradually as 

σ3 was increased to 27.58 MPa; dense sand (strongly dilatant at low confining pressures) 

showed almost zero rate of volume change at failure when σ3 reached 3.45 MPa, and at 

higher values of σ3 dense sand showed an increasingly marked reduction in volume 
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during shear until, at σ3 =6.89 MPa, its behaviour approximated to that of loose sand. 

Bishop (1966) studied the Mohr envelopes for loose and dense sand and observed a 

marked curvature of the envelope for the dense samples and its convergence at high 

stresses with that for loose samples. The difference between the slope of the Mohr 

envelope for dense sand and loose sand dropped from nearly  at σo5 3 =0.69 MPa to only 

 at σo2.0 3 =6.89 MPa. It was also observed that even for loose sand placed in a very 

loose state the slope of the Mohr envelope was not independent of the confining 

pressures, but drops about  as σo3 3 rises from 0.69 MPa to 6.89 MPa. This drop was 

closely associated with the rate of volume change at failure. By plotting grading curves 

during compression and shear, the degree of particle crush can be compared and it was 

observed that the combined effect of consolidation and shear led to very marked particle 

breakdown even in a medium to fine sand, and that at high stresses the particle 

breakdown occurs to a much greater extent during shear stage than during the 

consolidation stage. 

 

Lee and Seed (1967) investigated drained strength characteristics of sands under elevated 

confining pressure up to 14 MPa. The soil used for the investigations was mainly 

Sacramento River sand, which was a fine uniform sand and the particles were mainly 

feldspar and quartz minerals with subangular to subrounded shapes. They examined the 

stress-strain-dilation relationship in a series of drained triaxial tests on dense Sacramento 

River sands, and observed that an increase in σ3 increased the strain to failure, decreased 

the tendency to dilate, and reduced the brittle characteristics of the stress-strain curve. 
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Similar results were obtained for loose Sacramento River sands, the pattern of which was 

similar to that of the dense sands except that at low pressures the tendency for dilation 

was not so strong as for the dense sands and the tendency for compression was greater for 

the loose sands at high pressures. The same void ratio at failure was observed for each 

confining pressure respectively, independent of the initial void ratios, which was called a 

“critical void ratio” (for the corresponding confining pressure). The corresponding 

confining pressure was extensively defined as the critical confining pressure for the 

corresponding void ratio, under which the soil sample would shear at essentially constant 

volume in drained triaxial tests for each initial void ratio respectively. Lee and Seed 

(1967) also investigated the slopes of the Mohr circle envelopes for the peak deviator 

stresses for the Sacramento River sands (both dense and loose) in drained triaxial tests, 

and they found that the slope of the Mohr envelope for dense sand changed from about 

 at low pressures (<0.8 MPa) to  at the higher pressures (4 MPa). For loose sand, 

the slope correspondingly changed from  to . However, when the confining 

pressure was above 4 MPa, a straight line envelope developed for dense sand and a slight 

increase in the slope developed at higher confining pressures. Lee and Seed (1967) also 

investigated a comparative study of Ottawa sand, which had well-rounded particles and 

exhibited a high resistance to crushing, which can be confirmed by plotting the gradation 

of the sands before shear and after shear at different confining pressures. They observed 

that the failure Mohr envelope for Ottawa sand exhibited a continuous curvature and 

continued to flatten over full range of confining pressures up to 14 MPa, which was 

different from that of the Sacramento River sand. This difference between these two 

o41 o24

o34 o24
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sands was attributed to the relatively high crushing resistance of the Ottawa sand. Lee and 

Seed (1967) recommended four components for the drained shearing resistance of sand, 

i.e. sliding friction, dilatancy, particle crushing, and rearranging. Friction may be 

assumed to be essentially constant though it may vary slightly with changes in confining 

pressure and crushing of particles. At low pressures dilatancy caused a significant 

increase in angle of friction and accounted for the steep failure envelopes commonly 

observed for dense sands. Crushing became progressively more important with increasing 

confining pressures.  

 

Barden and Khayatt (1966) performed drained triaxial tests on River Welland sand, the 

particle shape of which was a mixture of angular and sub-angular. Both triaxial 

compression (increasing mean stress p) and extension (decreasing mean stress p) tests 

were performed and compared under confining pressures of 275.8 kPa and 68.95 kPa 

respectively. By plotting the peak effective stress ratio against initial porosities (after 

consolidation), they found that the triaxial extension exhibited higher shear strength than 

the triaxial compression tests at the confining pressure of 275.8 kPa, but at the confining 

pressure of 68.95 kPa the two strength values have little difference for similar mean stress 

at failure. The difference for the triaxial compression and extension tests under the 

confining pressure of 275.8 kPa was attributed to the particle crushing of the compression 

tests. Barden and Khayatt (1966) proposed that the strength in triaxial compression and 

extension be equal for equal porosity at failure. The peak points in various tests were 

studied to assess the failure criteria, and Barden and Khayatt (1966) showed that the 
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extended von Mises and Tresca criteria are not applicable to sands for theoretical reasons 

alone, while the Mohr-Coulomb criterion gives a more reliable prediction.  

 

Yamamuro and Lade (1996) as well as Lade and Bopp (2005) investigated the effects of 

initial relative density on the drained axisymmetic (both compression and extension) 

behaviour at high pressures up to 52 MPa and 70 MPa respectively. It was found that as 

the confining pressure increased, particle crushing increasingly influenced the stress-

strain and volume change relationships, producing increasing strains to failure and 

increasingly contractive volume changes. Beyond certain high values of mean normal 

stress at failure, increasing with initial relative density, the volumetric contraction and 

strains to failure began to decrease. The Mohr-Coulomb failure envelopes showed the 

greatest curvature for the highest density, but the failure envelopes merged at high 

pressures where, due to particle crushing, the relationships between void ratio and 

isotropic pressure are described by a single curve. The experimental results showed that 

the rates of dilation at failure and the friction angles are directly related to each other, as 

has been proposed by many researchers. The friction angles are higher in extension than 

in compression for lower confining pressures, but a crossover occurs and the friction 

angles are higher in compression than in extension for higher confining pressures. 

Coop (1990) investigated the mechanical behaviour of a typical biogenic carbonate sand 

(Dogs Bay sand) using triaxial testing at standard and also at high pressures up to 8 MPa. 

The test results showed that despite the particle breakage which is characteristic of these 

soils, their behaviour was still qualitatively similar to that observed for more commonly 

encountered soils, and was consistent with the principal features of critical state soil 
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mechanics. The higher stresses used in the tests were an order of magnitude greater than 

were generally used in soil testing, and the values of some individual soil parameters such 

as the friction angle at critical state and other Cam clay model parameters were found to 

be outside the range of normal experience. Micrographic and grading analyses were used 

to examine the influence of the isotropic and shear stresses on particle breakage and 

particle crushing was found even at relatively low stresses.  Coop and Atkinson (1993) 

investigated the mechanical behaviour of artificially cemented carbonate sand using 

triaxial testing at confining pressures up to 9 MPa. The results showed that an important 

effect of cementing was a reduction in specific volume resulting from the increase in fine 

contents. This influences both the stress-strain behaviour and the peak strength at strains 

beyond those required to fracture the cement bonding. Comparisons between the 

behaviour of the cemented and uncemented soils should therefore be carried out on 

samples with the same grading. For cemented samples it was possible to identify a yield 

curve outside the state boundary surface of the uncemented soil. A framework for the 

behaviour was defined which depended on the relative magnitudes of the confining 

pressure and cement bond strength, which was found to be extensively applicable to a 

natural calcarenite and may be applicable to other cemented soils. Cuccovillo and Coop 

(1999) investigated the behaviour of two natural sands by means of triaxial testing over a 

wide range of pressures. One material had bonding as the principal element of its 

structure and the other fabric. It was suggested that structure should be considered as an 

element of the nature of a sand in addition to properties such as mineralogy, particle 

shape and grading. While bonding results in a cohesive mode of shearing, it was 

demonstrated that when fabric dominates, the shearing behaviour remained 
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predominantly frictional, although the rates of dilation and peak strengths may be very 

much higher than for the reconstituted soil at the same stress-volume state. It was 

suggested that it is not necessarily the position of state of the soil relative to the critical 

state line that distinguishes strain hardening and softening behaviour, but the proximity to 

the boundary determined in isotropic compression. 

 

3.2.2 Numerical simulations 

Early DEM simulations were restricted to 2D arrays of discs. The first DEM simulations 

of triaxial compression tests were reported by Cundall (1988), who introduced the 

concept of periodic boundaries in DEM simulations. Cundall (1988) showed that the 

stress-strain-dilation behaviour for different sample sizes (number of particles) was quite 

similar under constant mean stress simulations using a periodic cell. He also showed 

numerical results for dense systems that were qualitatively comparable with those of 

physical tests reported by Ishibashi and Chen (1988).   

 

Thornton and Sun (1993) reported 3D axisymmetric compression results for dense and 

loose systems, and showed that the simulated behaviours were in qualitative agreement 

with those of real experiments reported for glass ballotini. They showed that the 

mobilised shear strength was primarily a function of the normal contact force 

contribution to the stress tensor and the tangential contact force contribution was less than 

10%, the conclusion of which was independent of the interparticle friction coefficient 

used, see also chapter 2. They proposed that the critical void ratio should depend on the 

interparticle friction used. 
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Thornton and Antony (1998) showed stress-strain-dilation behaviours in qualitative 

agreement with real sand for axisymmetric compression simulation tests. They examined 

and demonstrated the existence of strong- and weak- force transmission subnetworks. By 

examining the evolution of the separate contributions of the strong and weak subnetworks 

to the partitioned stress tensor (isotropic and deviatoric parts) and the partitioned fabric 

tensor, an important finding was made that the weak force network contributes only to the 

mean stress and the deviatoric stress can be considered to be solely due to the strong 

force network, see also chapter 2. Thornton and Antony (2000) reported axisymmetric 

(both compression and extension) simulations on a soft (E = 70 MPa instead of 70 GPa 

for a hard system) particle system of 8000 spheres with interparticle friction and adhesion 

and showed that the mechanical behaviour (macroscopic and microscopic) for the soft 

system is qualitative similar to that of the hard system reported by Thornton and Antony 

(1998) for axisymmetric compression conditions. It was found that the shear strength was 

mainly due to strong force network and the weak network’s contribution to shear strength 

was very small for both compression and extension simulation tests for a soft system, the 

conclusion of which had been confirmed in Thornton and Antony (1998) for hard systems 

under axisymmetric compression.  

 

Ng and Dobry (1994) presented drained monotonic triaxial compression simulation tests 

under constant mean stress for a system with 398 spheres of three different particle sizes  

in a periodic cell. They studied the influence of interparticle friction and particle rotation, 

and concluded that a larger microscopic friction angle (interparticle friction coefficient), 

as well as inhibited particle rotation, produced a higher shear strength, a higher initial 
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modulus and stronger dilation. They observed that the macroscopic friction angle had a 

linear relationship with the microscopic friction angle, which was in agreement with 

Rowe (1962) but not with Thornton (2000).  

 

Sitharam et al. (2002) performed traditional drained triaxial simulation (σ2 = σ3 = 

constant) for both a dense and a loose system on 3D assemblages of polydisperse spheres 

in a periodic cell using DEM to study the evolution of the internal variables such as 

average coordination number and induced anisotropy during deformation along with the 

macroscopic behaviour, see also chapter 2. 

 

Instead of spherical particles, ellipsoidal particles were incorporated into the DEM code 

by Lin and Ng (1997) as well as Ouadfel (1998). Lin and Ng (1997) performed traditional 

triaxial compression simulations using a periodic cell with systems of spheres as well as 

ellipsoids (both mono-sized) in order to study the influence of particle shape. They found 

that the system of ellipsoids achieved lower porosity and larger coordination number 

under the same consolidation procedure. They also found that higher shear strength, 

larger initial modulus, more dilation and less particle rotation were exhibited by the 

system with ellipsoids in the triaxial compression. Ng (2001) performed drained triaxial 

compression using the program by Lin and Ng (1997) for systems of ellipsoids with 

different aspect ratios (major/minor axis of the ellipsoidal particle), and the results 

indicated that particle shape did not influence shear strength at large strain, but influenced 

volume change.  
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3.3 Simulation details  

In all the simulations mentioned in section 3.2, only Sitharam et al. (2002) observed 

obvious contractive volume change for a loose system. So it is desirable to generate a 

very loose sample (or looser samples) in DEM simulations and it is necessary to simulate 

a variety of samples from very dense to very loose systematically. In the work reported in 

this thesis different sample preparation procedures were developed to create samples at 

an isotropic stress of 100 kPa with a range of porosities from 0.362 to 0.425. 

 
All the samples presented in this thesis consist of 3600 elastic spherical particles with no 

adhesion. The Young’s modulus and Poisson’s ratio for each particle are E = 70 GPa and 

υ = 0.3, respectively. The interparticle friction coefficient during shear tests is μ = 0.5. 

Nine different sizes of spheres were used: 0.25 mm (2), 0.26 mm (20), 0.27 mm (220), 

0.28 mm (870), 0.29 mm (1376), 0.30 mm (870), 0.31 mm (220), 0.32 mm (20), 0.33 mm 

(2), with an average particle diameter of 0.29 mm (the actual number of particles is given 

in brackets). The notional density of each particle is 2650 kg/m3, which is scaled up by a 

factor of 5 10× 12 in order to perform quasi-static simulations within a reasonable 

timescale. Such density scaling will not affect the quasi-static stress-strain behaviour 

(Thornton 2000). The time step used in the simulations is based on the minimum particle 

size and the Rayleigh wave speed (Thornton and Randall 1988). Cundall and Strack 

(1979b) introduced global and contact damping in order to dissipate sufficient kinetic 

energy. In the DEM simulations presented in this thesis, only contact damping is used; 

and no gravity field is applied. 
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The particles were randomly generated as a ‘granular gas’ in a specified periodic cell 

with an initial cuboidal size of 1.74 mm to provide an assembly with a porosity of 0.676 

and no interparticle contacts. During the simulation of isotropic compression starting 

from the “granular gas”, a servo-control (see Appendix A) was introduced to maintain a 

desired stress level.  

 

Sample preparation for DEM is a time-consuming process. In order to achieve a system 

which could be used for subsequent shear simulations, the isotropic compression was 

carried out in stages, increasing the isotropic pressure from 0 kPa to 0.1 kPa, 1 kPa, 10 

kPa, 50 kPa, 90 kPa and finally 100 kPa. It is not easy to obtain a very loose sample with 

an isotropic stress of 100 kPa, because it takes a large number of steps during the 

isotropic compression stage to compress the initially generated ‘granular gas’ system with 

an isotropic stress of only 0.1 kPa so that sufficient contacts can be established in the 

system, i.e. a sample with a certain value of isotropic stress is formed. Consequently, this 

sample will be much denser than the initial ‘granular gas’ in terms of porosity.  

 

A computational trick was used to overcome this difficulty, i.e. the particle rotations were 

prevented during the very early isotropic compression stage. Without particle rotation the 

assembly is stiffer and more resistant to the isotropic compression, and therefore a very 

loose sample may be formed. For other medium loose samples, the interparticle friction 

can also be adjusted in order to obtain a sample with required values of porosity. The 

details are provided as follows: 
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In order to create a dense system for subsequent shear simulations, the interparticle 

friction was set to zero during the isotropic compression stage until the isotropic stress 

was 90 kPa. The interparticle friction was then set to μ=0.5, which is the value used in the 

subsequent shear simulations. In this way, the densest sample was created with a porosity 

of 0.362 at an isotropic stress of 100 kPa. Like the process for obtaining the densest 

sample, if an interparticle friction of 0.2 was used first, and then changed back to 0.5 

when the isotropic stress was 90 kPa, a dense sample (but looser than the previous 

sample) with a porosity of 0.389 was obtained at an isotropic stress of 100 kPa. If the 

interparticle friction was set to other values (see Table 3.1) during the early isotropic 

compression stage and then set to 0.5 when the isotropic stress approached 90 kPa, a 

series of samples (sample 3 to sample 7) were similarly created, see Table 3.1. In order to 

create an even looser sample (porosity > 0.419), particle rotations were prevented during 

the very early isotropic compression stage until the isotropic stress was 1kPa. During all 

the later isotropic compression stages, the particles were permitted to rotate. In this way 

the loosest sample was obtained. In table 3.1, μi means the interparticle friction value 

used in the early isotropic compression stages (for sample 6 and sample 8, the 

interparticle friction values at all isotropic compression stages are the same as those used 

for the subsequent shear). For sample 8, ‘no rotation’ in the column of μi means there was 

such a process at the very early isotropic compression stage in which the particle 

rotations of the assembly were prevented. In Table 3.1, the values of porosity, Zm, 

stresses and fabrics are those at the end of isotropic compression (p= 100kPa), and 

therefore correspond to the initial values for the subsequent shear stage.  
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In order to perform drained axisymmetric compression simulations at a constant mean 

stress of 100 kPa for each sample listed in Table 3.1, a servo-control was used (see 

Appendix A)  to keep the mean stress constant, and the initial specified strain-rates in the 

three principal directions were set to be , , respectively, 

where positive means compressive strain.  

15
1 101 −−×= sε& 16

32 105 −−×−== sεε &&

 

During shear, strain increments are computed directly from the lengths of the sides of the 

periodic cell. As the principal strain directions do not rotate (a result of the imposed 

conditions), the change of the three principal strains in a time step tΔ  can be obtained as 

follows: 

 

                                   Table 3.1 Information for the initial systems 

stress (kPa) fabric sample μi porosity Zm

11σ  22σ  33σ  11φ  22φ  33φ  

1 0 0.362 5.75 100.6 100.1 99.6 0.334 0.335 0.331 

2 0.2 0.389 5.62 100.0 98.4 102.0 0.331 0.330 0.339 

3 0.3 0.405 5.39 101.7 98.3 99.2 0.335 0.328 0.337 

4 0.35 0.407 5.20 99.9 100.0 100.4 0.334 0.331 0.335 

5 0.4 0.409 5.12 100.3 100.3 99.0 0.333 0.330 0.337 

6 0.5 0.414 5.10 101.6 100.7 97.7 0.337 0.331 0.332 

7 0.6      0.419 5.03 101.8 98.7 98.3 0.336 0.332 0.332 

8  0.5 (no 

rotation) 

0.425 4.76 103.0 99.6 97.8 0.334 0.331 0.335 
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. The strains are then calculated from the initial isotropic stress state when the 
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which corresponds to natural strains. 

 
 
3.4 Simulation results  
 
The simulation results and discussions include both the macroscopic and microscopic 

behaviour. ‘Macroscopic’ behaviour here means an averaged response dealing with the 

system as a continuum, as is measured directly or indirectly in conventional triaxial tests. 

The macroscopic behaviour considered includes the evolution of the deviator stress, 

volumetric strain, porosity and sinϕ. ‘Microscopic’ behaviour here means a response that 

cannot be measured in conventional triaxial tests, and can only be obtained when treating 

granular media as a discontinuum. The microscopic behaviour includes the evolution of 

the structural anisotropy, mechanical coordination number, and percentage of sliding 

contacts. 

 

3.4.1 The macroscopic behaviour 
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Figure 3.1a shows the deviator stress (q= σ1 - σ3) plotted against deviator strain for all 

samples. In the case of the densest sample (n = 0.362, n refers to porosity here) there is a 

pronounced peak deviator stress of about 103 kPa attained at a deviator strain of 7%. Fig. 

3.1b is a refined plot of Fig. 3.1a at smaller strains. Before the peak, the deviator stress  

 

increases as the deviator strain increases, corresponding to strain hardening. After the 

peak, the deviator stress decreases as the deviator strain increases, corresponding to strain 

softening. At large strains the deviator stress remains constant at a value of 74 kPa. For 

the medium dense sample (n = 0.389), a maximum deviator stress of 81 kPa is attained at 

a deviator strain of 5%. This is followed by a small gradual reduction until a constant 

value of 74 kPa is reached at large strains. For all the loose samples (n = 0.405 to n = 

0.425), allowing for the fluctuations, the maximum deviator stress occurs at large strains 

and there is no significant occurrence of a peak deviator stress prior to this. At small 

deviator strains (smaller than 5%) during the strain hardening process, a denser sample 

exhibits stiffer behaviour than a looser one, or it can be said that the shear modulus 

during strain hardening is dependent on the initial porosity of the sample, see Fig. 3.1b. 

All the samples reach a unique value (74 kPa) of deviator stress at large strains, which is 

independent of the initial porosity. Fig. 3.1a shows there are fluctuations on the stress-

strain curve, which is mainly because of the limited number of particles used for the 

system. Cundall (1988) showed that as the number of particles increased the stress-strain 

curve would become smoother. 
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Fig. 3.1a  Evolution of deviator stress (whole range) 

[key refers to porosity] 
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Fig. 3.1b  Evolution of deviator stress (small strain range) 

[key refers to porosity] 
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Figure 3.2 shows volumetric strain plotted against deviator strain, where it can be seen 

that volumetric strain decreases with increasing deviator strain until it remains constant at 

large strains for the two dense samples, and that volumetric strain increases with 

increasing deviator strain until it remains constant at large strains for the three very loose 

samples. For the three medium loose samples, the volumetric strain first increases a little 

with deviator strain before decreasing a little to a steady value at large strains (with a 

deviator strain of over 60%). From Fig. 3.1a and Fig. 3.2, at large strains, both q and εv 

remain constant for each sample and in soil mechanics the sample is said to have reached 

critical state, see Schofield and Wroth (1968) and Muir Wood (1990). It can be said that 

at critical state, volumetric strain remains constant at different values for the different 

samples because of different initial porosities. It can also be seen that the decreasing rate 

of volumetric strain for the dense sample is larger than that for the medium dense sample 

from the beginning till the critical state, and that the increasing rate is the largest for the 

loosest sample. At critical state, the rate of change of volumetric strain remains zero for 

all the samples. 

 

The evolution of volumetric strain and evolution of porosity is completely related by 

  

01
1
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n
ntt

v −
−

=ε            (3.3) 

  

where is the initial porosity at isotropic state, is the porosity at current strain and  

is the volumetric strain corresponding to . 
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vε
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Figure 3.3 shows porosity plotted against deviator strain, where it can be seen that 

porosity increases with increasing deviator strain until it reaches constant at critical state 

for the two dense samples, and that porosity decreases with increasing deviator strain 

until it remains constant at critical state for the three very loose samples. For the three 

medium loose samples, the porosity first decreases a little and then increases a little until 

it remains constant at critical state. 

 

It can also be seen that the increasing rate of change of porosity for the densest sample is 

larger than that for the medium dense sample from the beginning, and that the decreasing 

rate of change is largest for the loosest sample. When porosity increases expansion occurs, 

and when porosity decreases contraction occurs. It can be said that expansion occurs for 

the dense samples during shear, and contraction occurs first then expansion occurs for the 

medium loose samples during shear, and contraction occurs for the very loose samples 

during shear. The initial expansion rate is dependent on the initial porosity which 

increases with decreasing porosity. For the dense samples, a decreasing rate of expansion 

occurs during shear until zero expansion occurs at critical state. For the very loose 

samples, a decreasing rate of contraction occurs during shear until zero contraction occurs 

at critical state.  

 

Figure 3.3 shows there exists a unique value (0.406) of porosity at critical state, which is 

called critical porosity. It should be mentioned that the critical state concept requires a 

unique stress-porosity (or stress against void ratio) relationship (called CSL by Roscoe et 
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Fig. 3.2 Evolution of volumetric strain 
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al. 1958) at critical state in q-p-e space (in drained conditions the effective and total 

stresses can be taken to be equal), which  indicates the existence of a ‘critical void ratio’, 

independent of initial state, i.e. associated with deformation at constant volume and 

constant deviator stress for a given mean stress. 

 

From the macroscopic behaviour exhibited by the axisymmetric compression simulations 

at a constant mean stress of 100 kPa, it has been shown that, at large strains, the deviator 

stress for all samples is constant with a value of 74 kPa, all samples are deforming at 

constant volume, and the porosity is 0.406 independent of initial porosity. These facts 

demonstrate that if the simulations are continued to sufficiently large strains (deviator 

strain of 70%), the critical state as defined by Schofield and Wroth (1968) can be 

observed. 

 

Figure 3.4 shows sinϕ (ϕ is sometimes called the mobilised friction angle or the angle of 

internal shearing resistance) plotted against deviator strain, where it can be seen that the 

trend of sinϕ is similar to that of q. It can be easily shown by using q = σ1 - σ3 and p = 

(σ1 +2σ3)/3 that sinϕ is a monotonic increasing function of q, which can be expressed by 

sinϕ = 3q/(6p+q). The peak value of sinϕ  (or ϕ )  or the value at critical state is often 

used to describe the shear strength, see Cornforth (1964) and Bolton (1986) among 

others). 

 

The peak values of sinϕ for the densest and medium dense samples are 0.44 and 0.36 
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respectively. The unique value of sinϕ for all samples at large strains is 0.33. 
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Fig. 3.4 Evolution of sinϕ 

[key refers to porosity] 

 

 

3.4.2 The microscopic behaviour 

Figure 3.5 shows the deviator fabric plotted against deviator strain. It was found in these 

simulations of axisymmetric compression tests, φ2 is approximately equal to φ3. So the 

deviator fabric (φ1 - φ3) can be used to define the structural anisotropy. It can be seen that, 

for the two dense samples the deviator fabric (structural anisotropy) increases with 

increasing deviator strain until the deviator fabric reaches a peak, which is dependent on 
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Fig. 3.5 Evolution of deviator fabric 

[key refers to porosity] 

 

the initial porosity, then it reduces until an almost steady value is reached at large strains. 

There is no obvious peak deviator fabric for any of the loose samples. At the critical state 

both the dense and loose samples have almost the same value of deviator fabric, which 

can be called the critical deviator fabric. At the beginning of the tests (whether for the 

dense or loose samples), the deviator fabric is almost zero, see Table 3.1. The structure is 

isotropic since the initial randomly generated system of particles was subjected to 

isotropic loading history. As the deviator stress increases (before the peak), the deviator 

fabric increases. The trend of evolution of deviator fabric is similar to that of deviator 

stress. 
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Figure 3.6a shows the mechanical coordination number Zm (as defined by equation 2.11) 

plotted against deviator strain. For all the tests, the mechanical coordination numbers 

always exhibit an initial drop at small strains and remain constant at large strains. Fig. 

3.6b is a refined plot of Fig. 3.6a at smaller strains. The initial drop corresponds to an 

initial loss of number of contacts, which was also observed by Zhang (2003) and 

Sitharam et al. (2002). For the two dense samples, after the initial drop the mechanical 

coordination number remains constant at around 4.7, and the evolution of Zm for the two 

dense samples is almost identical. For the two loosest samples, after the initial drop the 

mechanical coordination number increases until it remains constant at around a value of 

4.85. In all cases, after a deviator strain of 8%, the mechanical coordination number 

remains more or less constant. The critical state was observed after a deviator strain of at 

least 30% from Fig. 3.1. So the state with a constant mechanical coordination number 

does not imply critical state, but the constant values can be called critical mechanical 

coordination numbers. It is seen that the critical mechanical coordination number for the 

two dense samples is approximately 4.7, while for all the loose samples it is 

approximately 4.85. This observation does not agree with a unique critical coordination 

number for a given mean stress as suggested by Thornton (2000). Such a deviation is not 

expected, but at the moment no explanation has been found.  

 

It was suggested by Thornton (1994) that a ‘limiting’ mechanical coordination number 

reflects an underlying stability requirement and corresponds, in statistical physics 

terminology, to a percolation threshold. It was suggested that if the mechanical 

coordination number drops below the ‘limiting’ value then local instability occurs which,  
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Fig. 3.6a Evolution of mechanical coordination number  (whole range) 

[key refers to porosity] 
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Fig. 3.6b Evolution of mechanical coordination number  (small strain range) 

[key refers to porosity] 
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in the presence of boundaries, may result in strain localisation and/or the formation of 

shear bands. 

 

It can be seen from Fig. 3.6a that, for the two dense systems, the coordination number 

remained constant during strain softening without any significant drop occurring. This 

indicates uniform deformation without occurrence of temporary local instabilities and 

demonstrates that softening is a genuine material behaviour. Vardoulakis (1998) 

suggested that strain softening was due to the reduction in the number of contacts, but as 

shown by the results of the two dense samples, this is not the case since the mechanical 

coordination number remains constant throughout post-peak deformation. 

 

Figure 3.7 shows the percentage of sliding contacts plotted against deviator strain. Only 

the evolutions for small ranges of deviator strains (≤  20%) are shown for four samples in 

order that the differences among the evolutions can be visualized. For the larger ranges of 

strains (≥  20%), the evolutions are not much different from those at small ranges (the 

results are not shown). It can be seen that the dense samples have a relatively smoother 

evolution, while the loose samples exhibit a fluctuation of percentage of sliding contacts 

between 0.8% - 6.5%, with an average value of about 4%. Zhang (2003) showed that as 

porosity increases the amplitude of fluctuation increases, which is consistent with the data 

presented in Fig. 3.7. 

 

3.5 Summary 
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Fig. 3.7 Evolution of percentage of sliding contacts 
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This chapter has presented the results of the simulations on a series of samples from very 

dense to very loose under axisymmetric compression and constant mean stress conditions. 

 

It was observed that both strain hardening and softening occurred for the dense samples, 

and only hardening (no softening) occurred for the loose samples. It was demonstrated 

that strain softening is a genuine material behaviour since a uniform specified strain field 

was applied to the system in a periodic cell, i.e. its existence has nothing to do with the 

real boundaries although finite boundaries may affect the softening. The peak value of 

deviator stress was found to be dependent on the initial porosity. A denser sample 
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exhibited a higher peak value of deviator stress. The loose samples do not have an 

obvious peak deviator stress, so it can be said that a denser sample is both stiffer and 

stronger. 

 

It was also observed that the dense samples expanded, the very loose samples contracted, 

and the loose samples initially contracted and then expanded during shear until critical 

state was reached with a deviator strain of over 60%. At the critical state, all the 

macroscopic and microscopic parameters remained constant. A critical deviator stress and 

a critical porosity were found at critical state, both of which were independent of the 

initial state. Such unique deviator stress and unique porosity are in agreement with the 

frame work of critical state soil mechanics. The simulation results showed a lower peak 

and critical state value of sinϕ than those for real sand, which can be explained by 

particle shape, see chapter 2. 
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CHAPTER 4: DRAINED PLANE STRAIN SIMULATIONS 

 

4.1 Introduction 

Plane strain problems occur more frequently than axisymmetric problems in geotechnical 

engineering. Long structures like embankments, retaining walls and strip footings, with 

loading in the plane of the cross-section, are frequently approximated to be in plane strain 

conditions. For such structures, the displacement and strain along the length of the 

structure are assumed to be zero. The three principal stresses acting in plane strain have 

different values (σ1 > σ2 > σ3), with the intermediate principal stress usually assumed to 

act along the axis of zero deformation (ε2 = 0). This is also a general plane strain 

condition that can be studied using a true triaxial apparatus. Cornforth (1964) stated that a 

knowledge of plane strain conditions has useful application in basic research, in applied 

research, and in practice. 

 

The layout of this chapter is as follows. In section 4.2, a literature review of drained plane 

strain is given for both physical tests and numerical DEM tests. In section 4.3, the 

simulation details of the initial isotropic samples and simulation parameters used for 

drained plane strain tests are provided. In section 4.4, the simulation results of drained 

plane strain are presented and discussed. Finally, in section 4.5, a summary of this 

chapter is given. 
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4.2 Literature review 

In the conventional plane strain compression apparatus, a specimen enclosed in a 

membrane is restrained in the direction of the intermediate principal stress σ2 by using a 

pair of lubricated rigid platens, bolted together in order to ensure zero lateral strain in one 

of the principal stress directions and “lubricated” minimises the shear stresses on planes 

normal to the direction of zero strain. The original form of plane strain apparatus was 

developed at Imperial College, London, and used by Bishop and Wood. The 

constructional details were presented by Wood (1958). This apparatus was later used to 

investigate the plane strain behaviour of sand by Cornforth (1961), and clay by Wade 

(1963). A similar type of plane strain apparatus was developed by Wightman (1967). 

Dyson (1970) and Thornton (1974) used plane strain apparatuses, but with flexible side 

platens. Another type of plane strain apparatus called a true biaxial tester was developed 

by Harder and Schwedes (1985), in which stresses or strains in the x- and y- directions 

can be applied independently of each other to investigate the influence of the stress 

history on the yield limit. 

 
Cornforth (1964) presented a series of results for drained plane strain compression (σ3  = 

constant for some cases and σ1 = constant for others) and drained triaxial tests (triaxial 

compression and triaxial extension) on Brasted sand. The triaxial compression and 

triaxial extension agree approximately to a common strength-density curve, and the plane 

strain compression with σ3 = constant or with σ1 = constant also agree approximately to a 

common strength-density curve. The drained strengths of Brasted sand in plane strain 

compression tests were compared with strengths measured in triaxial tests at the same 
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initial density. The strength-density curves had the same general shape but the plane 

strain shear strengths were always higher, the differences in the peak angle of internal 

shearing resistance (ϕmax) increasing progressively from about  for loose sand to 

more than  for the densest specimens tested. The angle of internal shearing resistance 

at large strains (ϕ

o5.0

o4

cv) measured in plane strain compression tests was constant ( ), 

irrespective of initial density, and had approximately the same value as those measured in 

triaxial compression tests ( ). It was concluded that the strain condition is a major 

factor contributing to the shear strength of sands. All the initial samples tested by 

Cornforth (1964) were anisotropically consolidated (K

o3.32

o33

0 consolidation) in order to 

maintain consistency in the plane strain and triaxial tests conditions (all specimens were 

consolidated with zero lateral strain). Cornforth (1964) indicated that K0 consolidation 

and isotropic consolidation led to the same drained shear strength parameters in sands by 

quoting other research work, such as Bishop and Eldin (1953). Lee (1970) also used 

initial anisotropically consolidated samples and implied that this condition is more near to 

true field condition than isotropical consolidation condition. The results were similar to 

those  reported by Cornforth (1964). 

 
Bishop (1966) proposed the extended Tresca, as well as the extended von Mises failure 

criteria and examined different failure criteria (including the Mohr-Coulomb criterion) 

for a series of tests including plane strain, axisymmetric compression and axisymmetric 

extension tests. Bishop (1966) found that the Mohr-Coulomb criterion gave the best over-

all data fit though for a comparison of the compression test and the plane strain test only 
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the extended Tresca was in better agreement for dense sand. Bishop (1966) also proposed 

that for plane strain tests, σ2/(σ1+σ3) = 0.5cos2ϕ, which will be examined in section 4.4. 

 
Barden et al (1969) tested cuboidal samples of sand in plane strain at low and high 

pressures and showed that the critical state value of the mobilised friction angle ϕcv does 

not change significantly with pressure over the range σ3 =137.9-5860.5 kPa for a sand 

with an initial porosity of 0.42. Barden et al (1969) implied that ϕcv was related to particle 

shape.  Bishop (1966) pointed out that in triaxial tests high pressure caused the stress-

strain behaviour of a dense sample to approach that of a loose one due to particle 

crushing, which was also shown to be true in plane strain by Barden et al (1969). 

 

Thornton (1974) performed plane strain and axisymmetric compression tests on sand over 

a range of initial porosities. He concluded that all the previous experimental evidence 

showed that the stress-strain and volume change curves obtained from plane strain tests 

exhibited the same characteristic shape as those obtained from axisymmetric compression 

tests. There were, however, significant differences in the behaviour of granular materials 

when tested under plane strain and axisymmetric compression conditions. There was 

general agreement, from tests using a variety of apparatuses, that the effect of preventing 

any movement in one orthogonal direction was to increase the strength of the soil and to 

decrease both the volumetric and axial strains to failure. As a result, the use of a strength 

parameter determined from axisymmetric compression tests results will in most cases 

lead to a conservative design. On the other hand, it has been found that soils loaded in 

plane strain are highly susceptible to imperfections, leading to material instability or 
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bifurcation, where sudden failure can occur much sooner than what is typically observed 

in the triaxial case (see e.g. Alshibli et al. 2003). 

 
Han and Vardoulakis (1991) presented some results from an experimental study of the 

pre-failure and post-failure behaviour of water-saturated fine-grained sand in biaxial 

compression. The experiments were performed under undrained and drained conditions in 

a plane strain apparatus which allowed a detailed study of bifurcation and post- 

bifurcation phenomena. Emphasis was given to limiting states, deformation instabilities 

and failure phenomena (liquefaction and localization). Failure modes were illustrated by 

X-ray radiographs.  

 

Finno et al (1997) presented experimental results which characterised the behaviour of a 

loose, fine-grained, water-saturated sand tested under globally undrained and drained 

conditions in a plane strain apparatus. The objective of the investigation was to provide 

insight into the phenomenon of shear banding in loose sand. Together with local 

measurements of boundary forces and deformations, stereophotogrammetry was used to 

investigate the progression of strain localization in plane strain compression. Typical 

results and findings concerning the evolution of non-homogeneous deformation were 

presented in detail. Shear banding occurred in both undrained and drained experiments on 

loose masonry sand. In general, temporary modes of strain localization, observed during 

macroscopically ‘uniform’ deformations of a specimen, gave way to a single, persistent 

shear band. A clear pattern of the onset of the formation of the persistent shear band, 

mobilization of the maximum effective friction and complete formation of the band was 
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observed in all tests. The stress state when the localisation began was very close to, but 

preceded that corresponding to the maximum mobilized friction. The persistent shear 

bands evolved with changing width and orientation. 

 

Matsushima et al (2002) presented a Laser-Aided Tomograph / Plane Strain Compression 

(LAT/PSC) testing method, which allowed for a discussion of granular micromechanics 

with visualised granular fabrics. The LAT technique was used to visualise in real time, 

any arbitrary cross-section of a granular specimen. An image processing algorithm was 

successfully developed to extract irregular perimeters of 3D grains, their fabric, and their 

motions (displacements and rotations) caused by loading.  

 

Powrie et al (2005) performed a series of numerical plane strain simulations using the 

Itasca PFC-3D code. In these simulations, dense samples were comprised of about 10000 

non-spherical particles, each formed by strongly bonding two spheres together. The 

simulations demonstrated the ability of DEM to capture the essential macro-features of 

soil behaviour as observed in laboratory tests, including the dependence of peak strengths 

on the initial void ratio relative to the critical void ratio.  The development of strain 

localisation or shear bands associated with the use of rough loading platens, and the 

sensitivity of DEM to the initial sample porosity, particle shape factor and interparticle 

friction angle, were also investigated. It was found that the peak friction angle, maximum 

rate of dilation and the overall sample dilation during shear all increase as the shape 

factor [defined by (R+r)/R, where R and r are radii of the bonded spheres] increases. 

Particle rotations were shown to be a useful indicator of deformation mechanisms in that 
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they indicated the extent of structural disturbance in the samples. In the literature, plane 

strain DEM simulations of dense systems can also be found in the work of Thornton 

(2000) and Ng (2004a, 2004b). However, plane strain DEM simulations of 3D very loose 

systems have never been reported before. 

  

4.3 Simulation details  

All the samples prepared by isotropic compression for axisymmetric compression test 

simulations reported in the previous chapter were used to investigate plane strain 

behaviour. Consequently, for a given porosity, the initial state is identical for both plane 

strain and axisymmetric compression simulations, see Table 3.1. 

 

In order to perform plane strain simulations, the strain rate tensor was initially specified 

as follows: (compressive),15
11 100.1 −−×= sε& 022 =ε& , (tensile) and 15

33 100.1 −−×−= sε&

0=ijε&  when ji ≠ . A servo-control was used to keep the mean stress constant, see 

Appendix A. All the other simulation parameters used were the same as in Chapter 3. 

 

4.4 Simulation results 

The simulation results and discussions include the macroscopic and microscopic 

behaviour. The macroscopic behaviour includes the evolution of (σ1−σ3), (σ2−σ3), 

volumetric strain, porosity, sinϕ, σ2/(σ1+σ3), 0.5cos2ϕ and (σ2−σ3)/(σ1−σ3); the 

microscopic behaviour includes the evolution of the deviator fabric and the mechanical 

coordination number. 
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4.4.1 Macroscopic behaviour 

Figure 4.1 shows the evolution of the deviator stress (q = σ1 - σ3 ) plotted against deviator 

strain for all samples. Comparing Fig. 3.1a and Fig. 4.1, the general trends of the deviator 

stress evolution are very similar, and therefore, some general trends are only described 

briefly. A more detailed comparison (also for other parameters discussed) between 

axisymmetric compression and plane strain will be provided in chapter 7. 

 

It can be seen from Fig. 4.1 that, as in axisymmetric compression, strain hardening 

followed by strain softening occurs for the two dense samples and no softening occurs for 

the loose samples. All the samples have approximately the same value of deviator stress 

at large strains. The peak value of deviator stress (for the dense samples only) and the 

critical state value (for all the samples) do not appear to depend on strain conditions 

(axisymmetric compression or plane strain) for the simulations reported. This implies that 

the appropriate shear strength criterion may be the extended Tresca criterion and it is 

interesting to note that Bishop (1966) stated, for a comparison of the axisymmetric  

compression and plane strain tests, only the extended Tresca criterion was better than the 

Mohr-Coulomb criterion for dense sand. The appropriate shear strength criterion will be 

further discussed in chapter 7. 

 

Fig. 4.2 shows the evolution of (σ2−σ3), which is qualitatively similar to the evolution of  

(σ1−σ3) shown in Fig. 4.1. 
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Fig. 4.1  Evolution of deviator stress (σ1 - σ3) 

[key refers to porosity] 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ε1−ε 3

0

10

20

30

40

σ
2−

σ
3 

(k
pa

)

0.425
0.419
0.414
0.409
0.407
0.405
0.389
0.362

 
Fig. 4.2  Evolution of  (σ2 - σ3) 

[key refers to porosity] 
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Figure 4.3 shows the evolution of volumetric strain against deviator strain. Comparing 

Fig. 4.3 and Fig. 3.2, the evolutions of volumetric strain for axisymmetric compression 

and for plane strain simulations are similar. At large strains (critical state), volumetric 

strain remains approximately constant at different values for the different samples 

because of the different initial porosities. 

 

Figure 4.4 shows the evolution of porosity plotted against deviator strain, in which it can 

be seen that the evolution for each sample is similar to that in drained axisymmetric 

compression simulations, and also the dilation and dilation rate discussed for each sample 

are qualitatively similar to those in drained axisymmetric compression. The porosities 

converge to a value of about 0.408 at large strains, which is slightly higher than the 

critical porosity (with a unique value of 0.407) obtained in drained axisymmetric 

compression simulations, see Fig. 3.3. 

 

Figure 4.5 shows the evolution of sinϕ plotted against deviator strain. Qualitatively the 

trend is similar to that obtained in axisymmetric compression. However, the magnitudes 

of sinϕmax for the two dense samples and the value of sinϕcv for all samples are greater 

than the corresponding values obtained in the axisymmetric compression simulations. It 

can be seen from Fig. 4.5 that the peak value of sinϕ for the densest sample is 0.5 (ϕmax 

= ) compared to the value of 0.44 (ϕo30 max = ) in axisymmetric compression. The 

peak value of sinϕ for the medium dense sample is 0.42 (ϕ

o26

max = ) compared to 0.36  o8.24
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Fig. 4.3 Evolution of volumetric strain 

[key refers to porosity] 
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Fig. 4.5 Evolution of sinϕ  

[key refers to porosity] 

 

(ϕmax = ) in axisymmetric compression. The difference of the peak values of 

ϕ between the densest sample and the medium dense sample is  (the corresponding 

difference in axisymmetric compression is , which does not seem to be dependent on 

the strain conditions. All the samples reach a unique sinϕ at critical state with the value of 

0.36 (ϕ

o21

o2.5

o5

cv = ). The corresponding sinϕ at critical state in axisymmetric compression  

was 0.33 (ϕ

o21

cv = ). The critical state value (ϕo3.19 cv) is independent of porosity under a 

given strain condition, but is dependent on the strain condition imposed. 
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If the peak values of ϕ for the loose samples is taken to be the critical state values under 

axisymmetric compression and plane strain respectively, it can be said that ϕmax in plane 

strain is higher by  for the densest sample and by for the loose samples. Cornforth 

(1964)’s results indicated this range was from  to . With increasing initial porosity, 

the peak strength (sinϕ

o4 o7.1

o4 o5.0

 max or ϕ max) for the dense samples will decrease but for all loose 

samples the strength is essentially the same. 

 

Cornforth (1964) showed that the peak value of ϕ under plane strain was greater than that 

in axisymmetric compression, but the critical state values were not much different. The 

latter is not in agreement with the simulations reported in this thesis.  

 

Figure 4.6a shows the evolution of σ2/(σ1 +σ3) against deviator strain. For an isotropic 

elastic material tested under plane strain conditions, σ2/(σ1 +σ3) defines the Poisson’s 

ratio. However, as the particle systems are neither elastic nor isotropic, the ratio is not a 

measure of Poisson’s ratio for granular media. At the start of the tests, the stress state is 

nearly isotropic and therefore σ2/(σ1 +σ3) is almost equal to 0.5. Cornforth (1964) 

reported that the value of the intermediate principal stress in plane strain was less than 

one-half the sum of the other two principal stresses. Cornforth (1961, 1964) showed that 

σ2/(σ1+σ3) varied from 0.27 for the denser samples to 0.36 for the looser samples (at peak 

failure) and for each porosity the evolution of σ2/(σ1+σ3) could be taken as a constant. 

Fig. 4.6a indicates that all the values of σ2/(σ1+σ3) start from 0.5 and drop to 0.44 

gradually. Comparing Fig. 4.6a and Cornforth’s results, the DEM results give a higher  
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Fig. 4.6a Evolution of  σ2/(σ1 +σ3) 

[key refers to porosity] 
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value of σ2/(σ1+σ3) than that of the physical experiments. However, they cannot be 

directly compared since Cornforth used K0 consolidation instead of isotropic 

consolidation, and, moreover, Green (1969) suggested that the intermediate principal 

stress as measured by Cornforth (1961) was low due to friction between the axial platens 

and the specimen. Fig. 4.6a indicates that after the initial drop, σ2/(σ1+σ3) can be taken as 

a constant value of 0.44, irrespective of the initial porosity. It seems that 

σ2/(σ1+σ3) is essentially independent of the initial porosity, which is in agreement with 

Reades (1972) and not with Cornforth (1964). Thornton (1974) found that the values of 

σ2/(σ1+σ3) at failure range between 0.3 and 0.4 and the value was independent of porosity 

and stress path. It should be mentioned that except for Thornton (1974) all the other 

above physical test data involved were for samples that were K0 consolidated.  

 

Bishop (1966) proposed that, for drained plane strain tests, σ2/(σ1+σ3) = 0.5cos2ϕ, which 

indicates a higher value of σ2/(σ1+σ3) results for a lower value of sinϕ. Since the DEM 

simulations presented in this thesis employed spherical particles which give lower values 

of sinϕ compared with those of real sand), the DEM simulations are expected to give 

higher values of σ2/(σ1+σ3) from Bishop’s formula given above, which has been 

confirmed in the previous paragraph. The plot of [σ2/(σ1+σ3) ]/ (0.5cos2ϕ) is shown in 

Fig.4.6b, in which it is indicated that Bishop’s formula [σ2/(σ1+σ3) = 0.5cos2ϕ] gives a 

reasonable approximation of σ2/(σ1+σ3) for all the loose samples at all strains and gives a 

good approximation for the dense samples only at large strains.  
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Fig. 4.7 Evolution of (σ2−σ3)/(σ1−σ3)  

[key refers to porosity] 

 
 

 
Bishop (1966) suggested that the influence of σ2 can be more readily appreciated in terms 

of the nondimensional parameter 

 

b = (σ2−σ3)/(σ1−σ3)                                                                                                        (4.1) 

 

Figure 4.7 shows the evolution of Bishop’s b parameter stress b parameter plotted against 

deviator strain. At the start of shear, b is indeterminate (0/0) as the initial stress state is 

isotropic, resulting in big fluctuation at very small strains. Therefore the analysis of this 
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parameter is not so significant at very small strains. From its definition, Bishop’s b 

parameter is related to the Lode parameters by the following equations: 

 

b = (1+μσ)/2                                                                                                                    (4.2) 

  

where μσ  is the Lode parameter for stress (see Fung and Tong, 2001) and 

 

μσ = (2σ2− σ1− σ3)/(σ1−σ3)                                                                                            (4.3) 

 

and 

 

)12(
3

1
3

1tan −== bσσ μθ                                                                                         (4.4) 

 

where θσ is the stress Lode angle. 

 

Figure 4.7 shows that b at critical state is about 0.34. Fig.4.1, Fig.4.2, Fig.4.3 and Fig.4.4 

have confirmed that there is an approximate unique stress state at critical state. 

 

4.4.2 Microscopic behaviour 

Figure 4.8 shows deviator fabric plotted against deviator strain. Higher peak values and 

higher critical state values of the deviator fabric are observed  in drained plane strain than 

in drained axisymmetric compression. 
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Fig. 4.8 Evolution of induced structural anisotropy 

[key refers to porosity] 
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Fig.4.9 Evolution of mechanical coordination number 

[key refers to porosity] 
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Figure 4.9 shows the mechanical coordination number plotted against deviator strain. The 

whole trend of the evolution for all the samples is very similar to that shown in Fig. 3.6a 

for axisymmetric compression simulations. Accordingly it can be concluded that there is 

a critical Zm for the dense samples (4.7) and the loose samples (4.85) respectively and the 

evolution of Zm is independent of strain conditions.  

 

4.5 Summary 

An approximate critical porosity (0.408) was observed in these DEM simulations for 

constant mean stress drained plane strain conditions and is a little higher that (0.407) for 

axisymmetric compression drained  conditions. The critical porosity can be 

approximately taken as a constant for a given mean stress, which is independent of the 

initial porosities and strain conditions. It is observed that there is an approximate unique 

critical state in drained plane strain conditions in (σ1,σ2,σ3,e) space,  which is 

independent of the initial porosities.  Oda et al (1997) questioned the existence of critical 

density for dense sands from the results of drained plane strain tests because of shear 

banding (see also Mooney et al 1998). Their result is based on the void ratio measured in 

the shear band, not the same as the void ratio for the whole sample.  

 

The DEM simulations presented showed a lower peak and critical value of sinϕ than real 

sand, which can be explained by the effect of particle shape. This leads to a higher values 

of σ2/(σ1+σ3) for the DEM simulations in this chapter compared with those in Bishop 

(1966). 
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It is also observed that there is a unique value of mechanical coordination number at 

critical state for the dense and loose samples respectively and the values are independent 

of strain conditions. The trend of the evolution of deviator fabric is similar to that of 

deviator stress, which is also true in axisymmetric compression, as reported in chapter 3. 
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CHAPTER 5: ‘UNDRAINED’ AXISYMMETRIC 

COMPRESSION SIMULATIONS 

 
 
5.1 Introduction 

In cases where rapid loading occurs, even cohensionless soils may not have time to drain 

during the loading process and the undrained shear strength must be determined. 

Conventional strength determinations are only made for monotonic loading, not cyclic 

loading although the stress-strain application under loading especially during earthquakes 

will be cyclic in nature (Seed and Lee 1967). In a standard laboratory undrained 

experiment, an axisymmetric compression test is performed under constant cell pressure 

conditions, which means that the minor total principal stress σ3 (σ2 = σ3) is maintained at 

a constant value and failure results from the increase in the major principal stress σ1. The 

starting point before the undrained shearing can be at an isotropic or anisotropic stress 

state, which is usually obtained in laboratories after an isotropic consolidation or 

anisotropic consolidation respectively. The isotropically consolidated undrained triaxial 

test is more frequently performed in laboratories, which is often called CU or CIU tests. 

If there is no consolidation process, the corresponding unconsolidated undrained  test is 

often called a UU test. For saturated soil samples, undrained also means constant volume 

(more strictly constant mass, see Muir Wood 1990), while for unsaturated soil samples 

this is not true. The different types of soil laboratory tests and the procedures are well 

documented in Bishop and Henkel (1957) and Head (1986). Interest in undrained 
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conditions especially for loose sand has become widespread since the work of Bishop 

(1966, 1971) and Castro (1969). 

 

In section 5.2, a literature review of undrained tests is presented covering both physical 

experiments and DEM. In section 5.3, simulation details for undrained shearing are 

provided. In section 5.4, undrained simulation results of loose systems at the same initial 

isotropic stress state are presented and fundamental features in undrained tests at low 

confining pressure on sand are effectively captured. The initiation of instability is also 

examined. In section 5.5, undrained simulation results for a very loose system (porosity = 

0.419) with preshearing history are presented in order to mimic the experimental work 

reported by Finge et al (2003) and to explore more information on preshear effects. A low 

strain rate undrained test is presented in section 5.6. A summary is provided in section 5.7. 

 

5.2 Literature review 

Bishop and Eldin (1950, 1953) presented results of a series of undrained triaxial 

compression tests on saturated sand, and concluded that:  

1) In undrained tests, the pore water pressure may decrease but it will not drop below a 

value of about -1 atm; on reaching this pressure the pore water will cavitate and small 

bubbles of water vapour and air will form in the soil voids. When cavitation occurs in 

the pore water, the failure envelope in terms of total stresses will have a slope equal to 

the angle of friction of the sand. (Seed and Lee 1967). 

2) For undrained tests in which cavitation does not occur, the failure envelope in terms 

of total stresses should be horizontal, and will have the shear characteristics of a 
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purely cohesive material with reference to total stresses, although the sand tested has 

no true cohesion in terms of effective stresses. 

 

Bishop and Eldin (1950) gave an explanation for this behaviour based on three examined 

basic principles:  

1) The mechanical properties, and hence the strength of a soil, are controlled solely by 

the intergranular forces, i.e. effective stresses. 

2) The effective area of contact between the soil grains is negligible. The pore water 

pressure therefore acts equally all round the soil grains, and changes in it do not affect 

the intergranular forces. 

3)  Since water is incompressible compared with the soil structure, a change in applied 

pressure is carried wholly by the pore water, and the stresses in the soil structure are 

not changed unless drainage conditions permit a volume change. 

 

After Bishop and Eldin (1950), Newland and Allely (1959) performed  a set of undrained 

tests in order to study the factors influencing the magnitude of the “cohesion”. Newland 

and Allely (1959) reached a conclusion for dilatant soils that in an “ideal” undrained test 

where no skeleton volume expansion occurs, the value of the “cohesion” is determined by 

the initial porosity with other things being equal. Newland and Allely (1959) also showed 

that significant volume expansion of a dilatant sample may occur during an undrained test 

in which cavitation does not occur, and this expansion is balanced by penetration of the 

rubber membrane into the sample due to the increasing cell pressure. They developed a 

method of analysis to relate the results to those obtained in drained tests on the same 
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materials. Attempts to predict the undrained behaviour from drained tests were later made 

by Seed and Lee (1967), De Groot and Stoutjesdijk (1997), Norris et al (1997) and 

Ashour and Norris (1999). 

 

Poulos (1981) defined and explained the concept of steady state deformation for any mass 

of particles, which is that state in which the mass is continuously deforming at constant 

volume, constant normal effective stress, constant shear stress, and constant velocity. The 

steady state of deformation is achieved only after all particle orientation has reached a 

statistically steady-state condition and after all particle breakage, if any, is complete, so 

that the shear stress needed to continue deformation and the velocity of deformation 

remain constant. It has been pointed out that the critical state and steady state differ in 

that the steady state has an ‘associated flow structure’ and a requirement for a constant 

velocity, neither of which are incorporated in critical state concepts defined by Roscoe et 

al. (1958). Been et al. (1991) pointed out that constant velocities actually occur in load-

controlled liquefaction tests and showed the steady state and critical state were the same. 

The steady state and critical state were considered to be equivalent also by Yang (2002). 

 

Been and Jefferies (1985) defined a state parameter ψ, which is the difference between 

the void ratio in an initial state (ei )and the void ratio of the steady state (ess ) for the same 

initial effective mean stress. It was implied that similar behaviour should be expected for 

similar ψ values, independent of the initial effective confining stress. Been et al. (1991) 

examined a fine to medium, uniformly graded quartzitic sand. The critical and steady 
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states were shown to be equal and independent of stress path, sample preparation method, 

initial density and drainage conditions. The critical/steady state line was shown to be 

nonlinear (curved), and to have a marked increase in slope at stress levels greater than 1 

MPa. The critical state friction angle in sands was found to decrease with increasing void 

ratio, while the critical/steady line was assumed to be straight by Been and Jefferies 

(1985). A unique steady state line (in e-p-q space) was proposed by Been et al (1991), 

which is independent of initial confining pressure, the stress paths, the loading modes, the 

consolidation history, the strain rate and the initial fabric. Such a unique steady state line 

was also shown by Ishihara  (1993).  

 

Vaid et al. (1990) investigated the effect of stress path on the steady state (SS) line of 

very loose sand. Quasi-steady state (which will be explained in section 5.4), which 

corresponds to phase transformation (PT) state defined by Ishihara et al. (1975), is also 

incorporated in the SS frame work. It was found that, for a given void ratio, steady state 

deviator stress (q) is smaller in undrained extension than in compression, and the 

difference increased as the sand becomes looser. However, the friction angles mobilized 

at steady state in undrained extension and in compression are essentially the same. 

 

Yamamuro and Lade (1997) presented undrained triaxial tests on very loose Nevada 

sands with fines and complete static liquefaction (zero effective principal stresses) at low 

confining pressures was observed. As confining pressure was increased, the effective 

stress path indicated increasing resistance to liquefaction by showing increasing dilatant 

tendencies. It was observed that increasing confining pressures also increases stability for 
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the same density. The locus of the top points of different effective stress paths from a 

series of undrained triaxial compression tests of varying initial confining pressures with 

the same initial density fall onto a unique line, called the instability line based on Lade 

(1992). The unique instability line was also observed in Lee (1965) and Konrad (1993). 

Yamamuro and Lade (1997)’s results are opposite to that of normal soil, where increasing 

confining pressure results in decreasing dilatant tendencies (see Lee 1965 and Seed and 

Lee 1967). The presence of fines in the Nevada sand was thought to cause this reverse 

behaviour. It was hypothesized that the fines and larger particles create a particulate with 

unusually high compressibility at low confining pressures.  

 

Doanh et al (1997) presented a series of undrained tests in both triaxial compression and 

extension for very loose Hostun sands consolidated isotropically and consolidated 

anisotropically along constant effective stress ratio paths. Static liquefaction and 

instability concepts were considered in these tests. It was pointed out that the instability 

concept of Lade is strongly influenced by the monotonic consolidation history and, a 

larger positive anisotropic consolidation always produces a steeper slope of instability on 

a q – p plot in compression but a reverse trend may occur in extension. Doanh and Ibraim 

(2000) showed that the minimum undrained strength of Hostun RF sand at steady state 

under triaxial compression and extension is strongly influenced by the normalized mean 

effective stress at peak, and by the void ratio at the end of the initial monotonic 

consolidation stage. 
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Bopp and Lade (2005) investigated the undrained behaviour of sand at high pressures and 

studied the effects of initial relative density on the stress-strain, pore pressure and 

strength behaviour on loose and medium Cambia sand. Undrained behaviour of dense 

Cambia sand at high pressures was investigated by Lade  and Yamamuro (1996). The 

stress-strain, pore pressure and strength behaviour were found to be very similar and 

almost independent of initial relative density at high pressures, because the isotropic 

compression curves tend to merge once particle breakage becomes important at high 

pressures. Rutledge (1947) hypothesised that isotropic compression and strength lines are 

parallel on a semi-log plot of void ratio and stress magnitude, which was considered 

applicable only to normally consolidated clays. Interpretation of all results from high 

pressure testing on Cambia sand (all densities) studied in terms of total stresses showed 

that the sand behaved as a normally consolidated clay in agreement with Rutledge (1947). 

However, at low pressures, this is not true as isotropic compression and strength lines 

cross each other for sands, as also implied by Been et al. (1991). 

 
Instead of undrained tests, Chu et al. (1992) and Chu and Leong (2001) performed 

constant strain increment ratio (dεv/dε1 = constant) test for isotropically consolidated sand. 

It was proposed that strain softening occurs when the following condition meets: 
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where (dεv/dε1)i is the imposed strain increment ratio and (dεv/dε1)s is the maximum 

strain increment ratio obtained in a drained test conducted under the same initial effective 
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confining stress. The undrained test is thus a special case in which (dεv/dε1)i is equal to 

zero, which can explain why strain softening occurs only for loose sand not for dense 

sand in an undrained test. It can also be deduced from (5.1) that for dense sand with 

negative values of  (dεv/dε1)s, strain softening will still occur so long as (dεv/dε1)i is more 

negative, as observed in their experiments. Consequently, liquefaction (even static 

liquefaction) and instability can be observed even for very dense sand, see also Lancelot 

et al. (2004). 

 
In DEM simulations, constant volume tests are often performed to simulate undrained 

behaviour without dealing with pore pressure. However, constant volume only exists for 

undrained saturated samples (not for unsaturated), and this means the constant volume 

DEM simulation results should be relevant only to saturated undrained tests in 

laboratories. Such a method has been used by Thornton and Barnes (1986), Kishino 

(1990), Ng and Dobry (1994), and Sitharam et al (2002). Hakuno and Tarumi (1988) was 

the first to propose a technique to numerically couple fluid flow with the DEM 

considering individual pores. The volume change of each pore was used to calculate pore 

pressure generation by assigning elastic properties to the fluid (So no flow is assumed). 

Hakuno and Tarumi (1988)’s method was improved by Nakase (1999). Bonilla (2004) 

pointed out that the validity of using constant volume simulations as representative of 

undrained tests could be questioned. However, Bonilla (2004) made a comparison 

between DEM constant volume simulation without pore pressure and a DEM undrained 

simulation with fluid coupling, both for 2D assemblies of elliptical particles. The stress-

strain behaviours were found to be very similar.  
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5.3 Simulation details 

There are very few published results of DEM simulations of ‘undrained’ tests (see 

Chapter 2). Almost all DEM simulations are performed ‘in a vacuum’ without fluid. 

However, in principle, it is necessary to model the fluid phase and how the fluid/particle 

phases interact with each other, e.g. as in DEM simulations of fluidised beds (Tsuji et al 

1993 and Kafui et al 2002) in order to obtain complete information. In the DEM 

simulations reported in this thesis the fluid phase is ignored and all stresses are calculated 

from the orientational distributions of forces at the contacts between particles. 

Consequently, the effective stresses are calculated directly. This is in contrast to 

laboratory experiments in which the total stresses and the pore water pressure are 

measured and the effective stresses are obtained indirectly from Terzaghi’s effective 

stress equation. According to Terzaghi’s effective stress concept different total stress 

paths lead to the same unique effective stress path, for the same initial specimen 

conditions. Therefore, in DEM simulations the pore water pressure can be obtained, for 

any desired total stress path, from the horizontal distance between the total stress path and 

the effective stress path on a q – p’ plot. Such a method for calculating pore water 

pressure was used in DEM simulations by Dobry and Ng (1992). 

 

All ‘undrained’ simulations in this chapter were carried out in a periodic cell, thereby 

eliminating any boundary effects. In order to mimic undrained tests, constant volume 

tests were simulated in which the initial strain-rates in the three principal stress directions 

were set to ,  and  respectively, an order of 14100.1 −−× s 15100.5 −−×− s 15100.5 −−×− s
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magnitude ten times of those in the corresponding drained tests, see chapter 3. Under this 

strain-controlled condition (instead of servo-control of stress), σ2 = σ3  is approximately 

satisfied throughout the simulations. All the simulations start from an initial almost 

isotropic state with σ1 = σ2 = σ3 = 100 kPa. All the other simulation parameters (the 

initial strain rates and control mode excluded) are the same as before. One constant 

volume simulation result at low strain rates is also provided and discussed at the end of 

this chapter. 

 

5.4 Simulation results  (for loose samples) without preloading 

In Chapter 3, the results of ‘drained’ axisymmetric compression simulations were 

reported for constant mean stress conditions. Constant volume tests were simulated on the 

same six loose systems. It was shown under ‘drained’ axisymmetric compression 

simulations volumetric contraction occurred (Fig. 3.2) for the six loose systems. In the 

loose systems, samples with porosities of 0.405, 0.407 and 0.409 exhibited very low 

contraction compared with samples with porosities of 0.414, 0.419 and 0.425. Thus the 

first set is called medium loose and the latter set is called very loose.  

 
The macroscopic behaviour includes the undrained stress path and the evolutions of 

deviator stress, mean stress and sinϕ. The ‘microscopic’ behaviour includes the 

evolutions of mechanical coordination number and deviator fabric.  

 

5.4.1 Macroscopic behaviour 
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Fig. 5.1 Constant volume stress paths 

[key refers to porosity] 

 

 
Figure 5.1 shows the constant volume stress path (CVSP) for all six loose samples. The 

initial state on CVSP is the isotropic point (p = 100 kPa, q = 0). It can be seen that for all 

the loose samples, the deviator stress increases to a peak, followed by a decrease to a 

minimum value, maybe followed by an increase again.  For all the loose samples except 

the loosest sample with porosity 0.425, p increases before the initial peak of q or p is 

obtained. According to Been et al. (1991), see also discussion on evolution of p, the loose 

samples can be said to exhibit a tendency to dilate before the initial peak of q (except the 

loosest sample with a porosity of 0.425), followed by a tendency to contract until a 
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minimum value of q is obtained, followed by a tendency to dilate again. For the loosest 

sample (0.425), the stress state after the minimum value of q is obtained is constant with 

further strain (this will be more clearly seen in Fig. 5.2).  Such a state is called steady 

state (SS) by Poulos (1981). The very loose samples (0.414, 0.419, 0.425) all exhibit 

steady state (the change of stress for samples 0.414 and 0.419 after the minimum value of 

q is obtained can be ignored from a practical viewpoint, see Fig. 5.2). The medium loose 

samples also exhibit a ‘steady’ state (with no change of stress with further strain, see Fig. 

5.2, but after this state q increases. Such a ‘steady’ state is called quasi-steady state (QSS) 

by Alarcon-Guzman et al. (1988), or phase transformation (PT) state by Ishihara et al. 

(1975) because it defines a transient state from contractive to dilative behaviour. 

Corresponding to steady state, liquefaction is said to occur for the three very loose 

samples. Corresponding to quasi-steady state, limited (partial, temporary) liquefaction is 

said to occur for the three medium loose samples. There has been some argument about 

whether quasi-steady state is a real material behaviour. Been et al. (1991) suggested that 

quasi-steady state is the result of non-uniformities and other testing effects. Zhang and 

Garga (1997) indicated quasi-steady state is a test-induced behaviour, not because of non-

uniformities but mainly due to end restraint and possibly due to the variation of 

membrane penetration and the compression of pore fluid. Chu (1992) suggested quasi-

steady state can be a real material property.  

 

Been et al. (1991) showed a unique ultimate state line in q-p space in undrained tests and 

also called it the critical state line. Chu (1992) stated that for loose sand, the critical state 

is the failure state measured in a drained state and the steady (or quasi-steady) state is the 
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ultimate state in an undrained test; the equivalence of the critical state and steady state 

reflects the fact that the failure stress ratio measured from a drained test is the same as the 

ultimate stress ratio measured from an undrained test for loose sand. Obviously, for 

quasi-steady state, q is not constant for a given sample at the ultimate state. However, 

Been et al. (1991) considered the ultimate state line to be the same as the critical state line 

and considered QSS as non-real material behaviour. It appears that in Fig. 5.1, the 

ultimate states form a straight line passing through the origin, which means the slope M = 

q/p of the ultimate state line is constant. The relationship between M and sin ϕus (the 

mobilized friction angle at the ultimate state) for undrained axisymmetric compression is: 

M = 6sinϕus/(3-sinϕus). Fig. 5.1 seems to imply that M is independent of porosity. In 

these undrained axisymmetric tests for the loose samples M is about 0.79, which is a little 

higher than the value of 0.74 obtained in drained constant mean stress axisymmetric 

simulations at critical state. The typical value of ϕus has been given by many researchers, 

30o by Castro (1969) as well as by Sladen and Oswell (1985), 34o by Bishop (1971), 31o 

by Ishihara (1993) and  27o by Bonilla (2004). The value of M is accordingly around 1.2. 

The DEM simulations in Fig. 5.1 show a smaller M (M = 0.79, corresponding ϕus is 21o) 

than real sand because of the influence of particle shape as discussed in Chapter 2. The 

value of M is taken to be independent of void ratio and cell pressure by the above 

researchers mentioned. 

 

Figure 5.2 shows the deviator stress plotted against deviator strain for all the systems. In 

the simulations, σ2 is approximately equal to σ3 and ε2 = ε3, and the definition of deviator 
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stress/strain is the same as in drained axisymmetric compression. It can be seen that for 

the very loose samples, the initial peak in q occurs at very small strains. At very small 

deviator strains (smaller than 0.004), the stress-strain behaviours for all loose samples are 

almost identical and can be said to be independent of porosity. After the strain 

corresponding to the initial peak in q for the loosest sample, the stress-strain behaviours 

are different and dependent on porosity. From the six loose samples, it can be concluded 

that the initial peak value of q is dependent on the porosity and, the looser a sample is the 

smaller the strain required to reach peak q and the smaller the peak value of q (the 

deviation between porosities 0.419 and 0.414 is ignored here). After the peak, q drops 

quickly to a minimum value, which corresponds to the SS or QSS state. The concept of 

liquefaction was defined by Castro (1969) as a sudden loss of effective stress in 

undrained conditions due to the large increase of pore pressure, which is similar to the 

behaviour of these constant volume simulations of loose samples. It can be seen that the 

minimum values of q at SS for the very loose samples are not zero (it is about 2kPa for 

porosity 0.425). Yamamuro and Lade (1997) defined static liquefaction as a special case 

in steady state in which zero effective confining pressure and zero deviator stress. Such 

static liquefaction is not observed for the very loose samples in the DEM simulations. 

Thus static liquefaction as defined by Yamamuro and Lade (1997) does not occur in the 

simulations.  

 

It can be said that the three very loose samples exhibit liquefaction and the three medium 

loose samples exhibit limited liquefaction, which corresponds to SS and QSS respectively. 
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Also it can be seen from the three medium loose samples which exhibit QSS behaviour, 

that as porosity decreases, the corresponding strain range (the difference between strain 
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Fig. 5.2  Evolution of deviator stress 

[key refers to porosity] 

 

when QSS starts and when QSS ends) for the whole QSS process becomes smaller. As 

the specified strain rates are the same for all the undrained axisymmetric compression 

tests, it can be said that as porosity decreases, the time required for the whole QSS 

process is smaller. It can be seen that as porosity decreases, a larger strain for SS (QSS) 

to begin is observed or it can be said that decreasing porosity increases the resistance to 
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liquefaction. If the SS and QSS are considered in the same framework, it can be 

concluded that the shear strength (q) at SS and QSS is dependent on porosity, decreasing 

with increasing porosity. 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
ε1−ε3

0

50

100

150

200

250

300

350

p 
(k

Pa
)

0.425
0.419
0.414
0.409
0.407
0.405

 
Fig. 5.3  Evolution of mean stress 

[key refers to porosity] 

 
Figure 5.3 shows the mean stress plotted against deviator strain for all the systems. The 

simulations show that both q and p become constant at SS (QSS) simultaneously (see 

Figs. 5.2 and 5.3). The change of p is indirectly related to change of pore pressure (see 

section 5.3) if a constant σ3 total stress path is assumed, which is what occurs in 

conventional undrained triaxial tests. On a q-p plot (effective stress), the total stress path 

of constant σ3 (TSP) has a slope of 3, the effective stress path (ESP) is as shown in Fig. 

5.1. When p (all the stresses are effective ones except when stated otherwise) decreases in 
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the undrained axisymmetric compression simulation tests, pore pressure will increase. 

When p increases, pore pressure will generally decrease. According to Been et al. (1991), 

dilation and contraction are used in a loose manner to describe negative and positive rates 

of pore pressure change. Therefore, p increasing means tendency for dilation occurs, p 

decreasing means tendency for contraction occurs. Except for the loosest sample, all the 

loose samples exhibit initial tendency of dilation until a peak of p (or q) is obtained. All 

the loose samples exhibit a tendency for contraction (the tendency for contraction rates 

are very high) after the peak value of q until SS (for very loose samples) or QSS (for 

medium loose samples) are reached. The very loose samples (especially porosities 0.414 

and 0.419) exhibit small changes of p at large strains, but such change of p is very small 

and can be so ignored compared with the medium loose samples. It can be seen that the 

rate of the tendency for dilation after QSS for the medium loose samples increases as 

porosity decreases. 

 

Figure 5.4 shows sin ϕ plotted against deviator strain for all the loose systems. From the 

definition of sinϕ, sin ϕ = (σ1−σ3)/(σ1+σ3),  for axisymmetric compression, we have q/p= 

6sinϕ /(3-sinϕ), which shows the evolution of  sin ϕ is not an independent set of plot with 

Figs. 5.1, 5.2 and 5.3. It can be seen that the evolution of sinϕ  is almost identical at the 

very small strains. For the loosest sample (0.425), strong fluctuation occurs at a deviator 

strain of 0.015 which approximately corresponds to the deviator strain when minimum q 

occurs (near SS). For the other very loose samples (0.419, 0.414), fluctuations occur at a 

greater deviator strain and the amplitude is smaller compared with that of the loosest 
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sample. Relatively stable fluctuations for the three very loose samples are observed after 

a deviator strain of 0.06. For the medium loose samples (0.409, 0.407, 0.405), the 

fluctuations can be ignored compared with those exhibited by the very loose systems. The 

fluctuations at SS for the very loose samples indicate that the stresses (q and p) are not 

constant at SS. Since at steady state, the values of q and p are all small, the difference 

between q/p and (q+δq)/(p+δp) may be large, where δ means a change of stress caused by 

a small loading strain. This is why the fluctuations occur.  For the medium loose samples, 

the values of q and p are relatively large and the difference between q/p and (q+δq)/(p+δp) 

is small. This is why a smoother (almost no fluctuations) curve is observed for each of the 

medium loose samples. It can be seen that at SS there is not a unique value of sinϕss, and 

the average value of sinϕss increases as porosity increases. Been et al (1991) pointed out 

that the data points near the origin on q-p space appear to be close to the critical state (as 

they called it), but in fact they were not. Their observation is that sinϕss decreases with 

increasing porosity. However, their observation of this was mainly based on high 

confining pressure. While for medium loose samples, a unique value (about 0.35) of 

sinϕus at ultimate state is observed from Fig. 5.4, which corresponds to the ultimate state 

described previously with M = 0.79. From the three medium loose samples (compare Fig. 

5.2 and Fig. 5.4), it can be seen that sinϕQSS at QSS is smaller than sinϕus. This implies 

that QSS on p-q space is not on the ultimate state line, which cannot be seen very clearly 

in Fig. 5.1. However, from a practical viewpoint, sinϕQSS and sinϕus for the medium loose 

samples can be taken as identical as the difference is small. In q-p space, a unique straight 

line at ultimate state can be assumed. To be conservative, this straight line should be 
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based on the data points obtained from the medium loose samples with higher ultimate 

values of stress and not based on the data points at very low ultimate values of stress. 
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Fig. 5.4 Evolution of sinϕ  

[key refers to porosity] 

 

5.4.2 Microscopic behaviour 

Figure 5.5 shows the mechanical coordination number (Zm) plotted against deviator strain 

for all the loose systems. It is found that the mechanical coordination number decreases 

initially for all the loose systems until a minimum value is reached. The initial drop in the 

mechanical coordination number is due to loss of contacts in the extensional principal 

strain directions, Cundall et al (1982). The minimum value of Zm occurs at a strain 

coincident with the SS or QSS for each loose system see Fig. 5.5 and Fig. 5.2. Similar to 

the discussion related to Fig. 5.2, a steady state mechanical coordination number can be 
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defined for the very loose systems, which remains almost constant; a quasi-steady state 

mechanical coordination number can be defined for the other loose systems.  It is 

observed that the steady (or quasi-steady) state mechanical coordination number depends 

on the porosity, decreasing with increasing porosity (the deviation between porosity 

0.414 and porosity 0.419 is ignored considering the trend for all ranges of porosities), the 

result of which is the same as the shear strength (q) at SS (or QSS).  

 

The mechanical coordination number is related to the structural stability of the system. 

This can be considered as follows: 

 
Consider a 3D assembly with ∞→μ , i.e. no sliding anywhere. The number of degrees 

of freedom of a single particle is 6 (three rotations and three translations), so the total 

number of degrees of freedom in the system is 6N, where N is the number of particles. 

The number of constraints (unknown forces) at a contact is 3 (no couple is considered at a 

contact in this thesis), so the total number of constraints in the system is 3C, where C is 

the number of contacts. If 3C = 6N (Za = 2C/N = 4) the system is statically determinate. 

If Za > 4, the system is redundant in that it has more contacts than necessary to satisfy 

equilibrium. If Za < 4, the system is unstable and the system becomes a mechanism, 

which can lead to further loss of contacts. 

 

Consider a 3D assembly for 0=μ , i.e. frictionless contacts so that there is only a contact 

normal force on any contact and the number of  the independent unknown forces 

(constraints) at a contact is reduced to 1. Therefore, the number of constraints is C (no 
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tangential forces), and the number of degrees of freedom is 3N (no rotation). 

Consequently, when Za = 6, the system is statically determinate; when Za > 6, the system 

is redundant; and when Za < 6, the system is a mechanism or unstable. 

Because of the absence of a gravity field in the simulations, there may exist particles with 

no contacts or only one contact and, therefore, as explained in section 2.4.3, in order to 

examine stability/instability the appropriate definition of coordination number above is 

mechanical coordination number Zm as defined by (2.11). 

 

In the simulations the interparticle friction is finite, u = 0.5, and therefore the limiting 

value of Zm is expected to occur between 4 and 6. It would be expected that for a system 

with a friction efficient of 0.5, a limiting coordination number (for keeping the system 

statically determinate) is a value between 4 and 6, which depends on the percentage of 

sliding contacts. However, the sliding contact is always found to be less than 10% for all 

the samples (the evolutions are not shown in this thesis). This means that more than 90% 

of the contacts are ‘non-sliding’ and thus it would be expected that the limiting 

mechanical coordination number to be only slightly greater than 4. It is difficult to 

ascertain exactly what the value should be and, therefore, Zm = 4 will be assumed to be a 

good approximation. The physical meaning of this limiting mechanical coordination 

number can be associated as follows. When Zm > 4, the sample can be said to be solid-

like (stable); when Zm < 4, the sample can be said to be liquid-like (not stable and a 

mechanism occurs); and when Zm = 4, the sample can be said to be in a phase transition 

state from solid-like to liquid-like. 
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From Fig. 5.5, it can be concluded that in undrained axisymmetric compression, a phase 

transition occurs clearly for the very loose systems and occurs before the SS is reached 

and the samples cannot be recovered to solid-like states; a phase transition occurs for the 

medium loose systems (with porosities of 0.409 and 407) before the QSS is reached. 

However, for the medium loose system with a porosity of 0.405 a phase transition does 

not occur. In chapter 3, for drained constant mean stress simulations, the unique porosity 

at the critical state was found to be 0.407 for all samples. The results of the undrained 

simulations suggest that a phase transition from solid-like to liquid-like behaviour only 

occurs for samples with porosities greater than the critical state porosity, for a given 

initial stress level.  

 

It was mentioned in section 5.2 that the locus of the initial peak values of q on the 

different effective stress paths fall onto a unique line, called the instability line by Lade 

(1992). It is interesting to observe that for all the loose systems, the initial peak states of q 

(Lade instability) occur when the corresponding Zm is about 4.5 irrespective of the initial 

porosity, see Fig. 5.6. 

 

Figure 5.7 shows the evolution of deviator fabric plotted against deviator strain. 

Following Chapter 2, a deviator fabric (φ1 - φ3) can be used to describe structural  

anisotropy. At the initial state before undrained shearing, both the stress and fabric are 

approximately isotropic, so the initial deviator fabric is almost zero. During the 

subsequent undrained shearing, the change in deviator fabric is induced by the applied 
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                              Fig. 5.5 Evolution of mechanical coordination number 

[key refers to porosity] 
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Fig. 5.6 Zm against q 

[key refers to porosity] 
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strain, so the term “induced structural anisotropy” can be used in place of the deviator 

fabric. However, in the discussion of the evolution coordination number, when Zm < 4, 

the system is a mechanism and no longer a stable structure, the induced structural 

anisotropy loses its meaning in these undrained simulations once the phase transition has 

occurred. The fabric tensor defined by (2.12) was originally used to define the structural 

anisotropy in terms of the distribution of the orientation of contact normals. In fluid-like 

(collisional) systems, the fabric tensor defines the distribution of the orientations of 

particle collisions. A deviator fabric (>0) indicates an anisotropic distribution of 

collisional orientations. 
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       Fig. 5.7 Evolution of deviator fabric 

[key refers to porosity] 

 

It can be seen that the deviator fabric at relatively large strain (especially in the fluid-like 

state) is dependent on porosity. The higher the porosity, the higher deviator fabric, which 
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is similar to the evolution of sinϕ. By comparing Figs. 5.2 and 5.7, the reverse behaviour 

of deviator stress and deviator fabric are observed, which means the deviator fabric does 

not relate to q when a mechanism occurs. When the deviator strain is greater than 0.08, 

the deviator fabric remains more or less constant at different values dependent on 

porosity. It is also noted that the amplitude of the fluctuations in the deviator fabric 

increases with increasing porosity. 

 

 

5.5 Simulation results and discussion for the loose sample (porosity = 0.419) with 

preshearing 

Finge et al. (2003) investigated the effects of preloading history on the undrained 

behaviour of saturated loose Hostun RF sand. They presented a detailed analysis of the 

effects induced by isotropic overconsolidation and by drained cycle preshear on the 

subsequent undrained behaviour of Hostun sand, both in compression and extension. The 

analysis of results focused on the evolution of the behaviour according to the deviator 

stress achieved during a drained cycle preshear or as function of the overconsolidation 

ratio. Some plots of the results of the effect of the drained cycle preshear on the 

subsequent undrained shear are shown in Fig. 5.8. An interesting phenomenon in Fig. 5.8 

pointed out by Finge et al. (2003), is that all the presheared samples have the same initial 

positive slope in q-p space and the initial stress path for the undrained shear lies on a 

unique curved line independent of the qmax during the preshear process, which forms a 

limiting stress boundary in the stress space not crossed by all presheared samples. A 

similar phenomenon in physical experiments was observed Gajo and Piffer (1999). As 
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with the increase of qmax in the drained cycle (the preshear loading process), Finge et al. 

(2003) observed that the samples exhibit static liquefaction, temporary liquefaction and 

complete stability respectively in subsequent undrained compression tests depending on 

the qmax obtained in preloading. Finge et al. (2003) attributed the results to the induced 

anisotropy caused by the preshearing process. 

  

The loose sample with a porosity of 0.419 was chosen to examine the effect of 

preshearing. From an initial isotropic stress state (p = 100kPa) the sample was presheared 

by applying ‘drained’ axisymmetric compression at constant σ2 = σ3 = 100 kPa until the 

deviator stress reached the desired value. The sample was then unloaded back to the 

initial isotropic state of stress. In this manner the loose sample was prestressed to q = 20 

kPa, 40kPa, and 60kPa to provide three samples for subsequent simulations of constant 

volume (undrained) tests. Since the initial sample is very loose preshearing resulted in 

volumetric contraction during loading and volumetric expansion during unloading. Due 

to irrecoverable volume change caused by the preshearing process the pressheared 

samples are denser compared to the original one, see table 5.1. 

 

Table 5.1 Sample data at the end of preshearing 

Preshear qmax 
(kPa) 

porosity Zm φ1−φ3 Zm at the end 
of preshear 

loading 
0 0.4190 5.03 0.004 5.03 
20 0.4185 4.95 0.004 4.92 
40 0.4177 4.91 0.002 4.84 
60 0.4143 4.83 0.006 4.79 
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Fig. 5.8 Experimental data from Finge et al (2003) 

 

 104



CHAPTER 5:  ‘UNDRAINED’ AXISYMMETRIC COMPRESSION SIMULATIONS 

5.5.1 Macroscopic and microscopic behaviour 
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Fig. 5.9 Constant volume stress paths 

 
 
Figure 5.9 shows the stress paths for the undrained behaviour of the loose sample with 

and without preshearing history. It can be seen that the undrained behaviour with 

preshearing history is different from that without preshearing history. It is interesting to 

note that the samples follow the same initial stress path prior to reaching the maximum 

deviator stress. The same phenomenon was observed by Finge et al. (2003), see Fig. 5.8, 

who suggested that this was a limiting stress boundary in stress space. As shown in Fig. 

5.8, Finge et al. (2003) observed that presheared samples can exhibit static liquefaction, 

temporary liquefaction or complete stability depending on the amount of preshear 

 105



CHAPTER 5:  ‘UNDRAINED’ AXISYMMETRIC COMPRESSION SIMULATIONS 

applied. Fig. 5.9 shows that, in the DEM simulations, only the sample prestressed to a 

deviator stress of 60 kPa exhibited, to some extent, temporary liquefaction. 
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Fig. 5.10 Evolution of deviator stress 

 
Figure 5.10 shows the deviator stress plotted against deviator strain for the presheared 

and unpresheared samples. It can be seen that the initial slope is identical for the 

presheared and unpresheared samples.  The maximum deviator stress increases if the 

amount of preshear is increased. The two samples presheared to deviator stresses of 20 

kPa and 40 kPa exhibit steady state at large strains but a higher deviator stress at steady 

state compared with that of the unpresheared sample. The sample presheared to a deviator 

stress of 60 kPa exhibits quasi-steady state since it can be seen that the deviator stress is 

increasing slightly at large strains.  

 106



CHAPTER 5:  ‘UNDRAINED’ AXISYMMETRIC COMPRESSION SIMULATIONS 

Figure 5.11 shows the mean stress plotted against deviator strain for the presheared and 

unpresheared samples. It can be seen that the initial slope is identical for the presheared 

and unpresheared samples and p increases initially, which is similar to the evolutions of q. 

The evolution of p is related to the tendency of dilation for constant volume conditions, 

i.e. pore pressure, as discussed in section 5.4. 

 

Figure 5.12 shows sinϕ  plotted against deviator strain for all the presheared and 

unpresheared samples. Although Fig. 5.10 and Fig. 5.11 show differences for the 

presheared and unpresheared samples in terms of the evolution of q and p respectively. 

Fig. 5.12 shows that a more or less unique evolution of sinϕ is obtained, which means 

that q/p is unique. Fig. 5.12 also indicates that the preshear process does not affect the 

ultimate state line in q-p space for undrained axisymmetric compression conditions. 

 

Figure 5.13 shows the evolution of the mechanical coordination number against deviator 

strain for the presheared and unpresheared samples. It is observed that the SS (QSS) is 

associated with the minimum Zm for both presheared and unpresheared samples (porosity 

0.419); and that preshear60 exhibits a little increase in Zm after the QSS. The value of Zm 

is well below 4 (the limiting mechanical coordination number) after some early straining, 

so there is a mechanism occurring. By comparing Fig.5.13 and Fig.5.10, it can be found 

that the initial peak states of q are all associated with the unique Zm of 4.5. So it can be 

concluded that the preshear process does not influence this value of Zm at the initial peak 

deviator stress. 
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Fig. 5.11 Evolution of mean stress 
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         Fig. 5.12 Evolution of sinϕ  
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              Fig. 5.13 Evolution of the mechanical coordination number  
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                                   Fig. 5.14  Evolution of deviator fabric 
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Figure 5.14 shows the evolution of deviator fabric for the presheared and unpresheared 

samples. Deviator fabric increases for all the presheared and unpresheared samples until 

it becomes more or less constant at large strains. Preshear20 and preshear40 have almost 

identical evolution of deviator fabric as that of porosity0.419, while preshear60 shows a 

lower value after a deviator strain of 0.02 (a little after the initial peak q). Finge et al. 

(2003) suggested that the reason for the difference between the undrained tests of the 

presheared and original unpresheared ones is that the preshear processes modifies the 

macrostructure of the material and creates an induced anisotropy expressed, in stress 

space, via a slope of the effective stress path toward the positive p-axis. However, the 

previous discussion showed that the DEM simulations indicate that the preshear process 

does not change the induced anisotropy, in agreement with Gajo and Piffer (1999). This 

can be seen more clearly in Fig. 5.14 and is described as follows. Firstly, after the 

preshear process, all the samples come back to isotropic stress state, which is also 

associated with isotropic fabric state. Secondly, the initial slopes for the presheared and 

unpresheared on q-p space are very similar, which is associated with the same initial 

evolution of the deviator fabric (before a deviator strain of 0.02 which corresponds to the 

initial peak of q in Fig. 5.10).  

 

5.5.2 Comparison of preshear60 and porosity0.414 

Figure 5.15 shows the comparison of preshear60 and porosity0.414 under undrained 

conditions. The two samples have essentially the same porosity. The evolutions of 

deviator fabric are essentially the same. The evolutions of q (or p) are very different and 

the preshear60 exhibits a much greater value of q (or p) than porosity0.414, although the 
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initial mechanical coordination number for the preshear60 is smaller. This implies the 

sample’s undrained behaviour is stress history dependent. 
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       Fig. 5.15 Plots for preshear60 and porosity0.414 

 
 
5.6 Undrained simulations at low strain rates  

Figure 5.16 shows the results of a loose sample (porosity = 0.409) at low strain rates 

( ,  and ) under undrained conditions. The 

medium loose sample (0.409), which exhibited temporary liquefaction at higher strain 

rates, exhibits liquefaction (nearly static liquefaction) at low strain rates. This could 

imply that the undrained behaviour is strain rate dependent but further investigation 

would be needed in the future. 

15100.1 −−× s 16100.5 −−×− s 16100.5 −−×− s
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Fig. 5.16 Undrained results at low strain rates 
[key refers to porosity] 
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5.7 Summary 

 
This chapter has mainly presented the results of simulations under undrained 

axisymmetric compression with and without preshearing at higher strain rates. The 

undrained condition is modelled in ‘dry’ constant volume tests without considering the 

interstitial fluid. 

 

The steady and quasi-steady state behaviour is well captured in the DEM simulations for 

higher strain rates. For the systems without preshearing, it is found that the undrained 

behaviour is mainly governed by the porosity. As porosity decreases, the system exhibits 

higher resistance to liquefaction. The very loose systems exhibit steady state behaviour 

(liquefaction), while the medium loose systems exhibit quasi-steady state behaviour 

(temporary liquefaction).  

 

Liquefaction (or temporary liquefaction) for very loose samples (or medium loose 

samples) has not been well explained by any existing theory. The simulation results in 

this chapter show that liquefaction (or temporary liquefaction) can be explained by 

structural mechanism with the introduction of the limiting mechanical coordination 

number. The value of the limiting mechanical coordination number is found to be 4. A 

phase transition is defined to be associated with the state in which the limiting 

mechanical coordination number occurs. The results of the undrained simulations suggest 

that a phase transition from solid-like to liquid-like behaviour only occurs for samples 

with porosities greater than the critical state porosity, for a given initial stress level.  
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The presheared simulation results show that the presheared samples are denser compared 

with the original unpresheared sample, and exhibit higher resistance to liquefaction. The 

DEM simulation also captures the limiting boundary in q-p space as observed by Finge et 

al. (2003) as well as Gajo and Piffer (1999), which cannot be crossed by any of the 

presheared samples. 

 

The undrained behaviour is found to be strain rate dependent and stress history dependent 

for loose samples. 
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CHAPTER 6: ‘UNDRAINED’ PLANE STRAIN SIMULATIONS 

 

6.1 Introduction 

In routine undrained laboratory testing and design, only undrained axisymmetric 

compression tests are performed and the data from undrained axisymmetric compression 

tests are used in undrained analysis. In DEM, undrained plane strain simulations can be 

performed in strain control mode while keeping zero strain in one of the principal strain 

directions. 

 
All undrained plane strain simulations in this chapter were carried out in a periodic cell 

with strain control mode, and the specified strain-rates in the three principal strain 

directions were set to , 0 and respectively. All the other simulation 

details can be found in Chapters 3 and 6. 

14101 −−× s 14101 −−×− s

 

6.2 Simulations results 

Figure 6.1 shows the constant volume stress path (CVSP) behaviour with deviator stress 

plotted against mean stress for all the loose systems under undrained plane strain 

conditions. It can be seen from Fig. 6.1 that the overall trends are not much different from 

those observed in Fig. 5.1. However, the medium loose sample (with a porosity of 0.405) 

exhibits ‘dense’ undrained behaviour. The three loosest samples exhibit steady state (SS) 

behaviour and one medium loose sample (with a porosity of 0.409) exhibit quasi-steady 

state (QSS) behaviour.  
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Figure 6.2 shows the evolution of the deviator stress plotted against deviator strain for all 

the loose systems. It can be seen that for the three very loose samples, the initial peak of 

deviator stress occurs at small strains. Comparing with Fig. 5.2, the corresponding peak 

values are greater than those in undrained axisymmetric compression for each sample. 

From the results obtained for the loose samples, it can be concluded that the initial peak 

value of q is dependent on the porosity and, the looser a sample is the faster the peak is 

reached and the smaller the peak value of q (the little deviation between porosity 0.419 

and 0.414 is ignored here). Only the very loose systems appear to exhibit SS. If the 

minimum deviator stress at SS and QSS is taken as the ultimate shear strength, then it can 

be said that this ultimate shear strength is dependent on porosity, decreasing with 

increasing porosity. Also, if the initial peak of deviator stress is taken as the peak shear 

strength, then it can also be said that this peak shear strength is dependent on porosity, 

decreasing with increasing porosity. 

 

Figure 6.3 shows the evolution of the mean stress plotted against deviator strain for all 

the loose systems. It can be seen that, for all systems, the evolution of mean stress is 

qualitatively the same as the evolution of deviator stress, as shown in Fig. 6.2.  

 

Figure 6.4 shows the evolution of sinϕ plotted against deviator strain for all the loose 

systems. In axisymmetric compression q/p = 6sinϕ/(3-sinϕ), which is not true in plane 

strain. This is why the slope of q/p in Fig. 6.1 is not associated with sinϕ.  It can be seen 

that the evolution of sinϕ is identical at the very early stage of loading for all loose 
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samples. For the loosest sample, fluctuations occur at a deviator strain of 0.02 which 

corresponds to the deviator strain just before minimum q occurs (near SS). For the other 

two very loose samples, fluctuations occur at a greater deviator strain and the amplitude 

is smaller compared with that of the loosest sample. For the three very loose samples, 

relatively stable fluctuations occur after a deviator strain of 0.06. For the three medium 

loose samples, the fluctuations can be ignored compared with those of the very loose ones. 

The fluctuations at SS for the very loose samples indicates that, the stresses (q and p) are 

not constant at SS. It can be seen that at SS there is not a unique value (independent of 

porosity) of sinϕss, and the average value of sinϕss increases as porosity increases. The 

only literature reporting experimental results for undrained plane strain tests appears to be 

Lee (1970), who showed the friction angle at failure in undrained plane strain was  to 

 greater than that in undrained axisymmetric compression, which is similar to the 

difference found by Conforth (1964) for drained tests and the results of the DEM 

simulations reported in chapters 3 and 4. 

o4

o5

 

Figure 6.5 shows evolution of σ2/(σ1+σ3) against deviator strain for all the loose systems. 

In undrained plane strain, it can be seen that σ2/(σ1+σ3) reduces from an initial value of 

0.5 to values between 0.38 to 0.45. 

 

Figure 6.6 shows the evolution of Bishop’s bσ parameter [b = (σ2−σ3)/(σ1−σ3)] against 

deviator strain for all the loose systems. In constant mean stress tests, the evolution of b 

describes the stress path on the deviatoric plane. In constant volume tests, evolution of b  
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              Fig. 6.1 Constant volume stress paths 
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        Fig. 6.2 Evolution of deviator stress 
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        Fig. 6.3 Evolution of mean stress 
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describes the stress path ‘projected’ in a deviatoric plane as the mean stress is changing. 

Initially, b is indeterminate (0/0). With further straining, b reduces to values in the range 

of 0.26 to 0.38. 

 

Figure 6.7 shows the evolution of mechanical coordination number (Zm) plotted against 

deviator strain for all the loose systems, where it is found that the mechanical 

coordination number decreases initially for all the systems until a minimum value is 

reached. The initial drop of the mechanical coordination number may be mainly because 

of sudden change in the loading conditions. The minimum values of Zm occur at strains 

coincident with the SS or QSS. This can be found by comparing Figs 6.7 and 6.2. The 

values of The minimum values of Zm associated with SS or QSS decrease with increasing 

porosity. 

 

The limiting mechanical coordination number is related to phase transition of the system 

as discussed in chapter 5 and a limiting Zm with a value of 4 was suggested in undrained 

axisymmetric compression simulations. Based on this limiting Zm, it can be said that the 

three very loose samples exhibit fluid-like behaviour. All the other samples can be said to 

be always in a solid-like state.  

 

Fig. 6.8 and Fig. 5.6 suggest that the initial peak q is associated with a unique value of 

mechanical coordination number (Zm = 4.5), irrespective of porosity as well as strain 

conditions.  
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Figure 6.9 shows the evolution of deviator fabric plotted against deviator strain for all the 

loose systems. It can be seen that the trends of the evolutions of deviator stress (Fig. 6.2) 

and deviator fabric are very different. As discussed in Chapter 5, the fabric tensor defines 

the distribution of the orientation of particle collisions in fluid-like (collisional) systems 

when mechanical coordination number is less than 4 and a deviator fabric (>0) indicates 

an anisotropic distribution of collisional orientation. It can be seen that the deviator fabric 

at relatively large strain (especially in the fluid-like state) is dependent on porosity. For 

fluid-like systems, the higher the porosity, the higher the deviator fabric.  
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6.3 Summary 

In this chapter, results of undrained (or constant volume) plane strain simulations have 

been reported. In the literature, almost no results on undrained plane strain have been 

reported in detail. Undrained plane strain DEM simulations have never been reported 

before.  

 

It has been demonstrated in this chapter that the strain condition is an important factor 

influencing the undrained behaviour especially in terms of the resistance to liquefaction. 

Only the very loose samples exhibit liquefaction, and the other loose samples remain in a 

solid-like state throughtout the tests. 

 

This chapter has confirmed the existence of a unique mechanical coordination number 

associating with the initial peak q. This unique Zm is found to have the same value (4.5) 

as found in chapter 5, which indicates its independence of porosities and strain conditions. 
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CHAPTER 7: COMPARISON 

 

7.1 Introduction 

Following the previous chapters, this chapter presents a more detailed comparison 

between drained axisymmetric compression (DAC) and drained plane strain (DPS) 

simulations, as well as undrained axisymmetric compression (UAC) and undrained plane 

strain (UPS) simulations. As the complete information about any parameter’s evolution 

(like any stress parameter, and also any strain parameter) can already be completely 

derived from the plots in the previous chapters, the information presented in this chapter 

is, in a sense, only a reorganisation of the previous chapters, and therefore all the 

information presented in this chapter is not much different from that in the previous 

chapters. However, some direct straightforward comparisons will make the differences 

more clear.  Not many researchers have published comparisons of DAC and DPS (nor 

those of UAC and UPS) behaviour of granular materials such as sand in the literature, 

although this topic is of interest to both researchers and practical engineers. In the 

literature, many shear strength criteria have been proposed and some of them will be 

discussed in detail and compared in section 7.3. Published experimental comparisons, 

such as Cornforth (1964) and Lee (1970), have been reviewed in Chapter 4. There has not 

been any published work on such comparisons by DEM simulations. Therefore, in this 

chapter, the discussion will follow a brief description of the parameters chosen for the 

plotting without a review section of literature work. Some additional literature will be 

mentioned in the discussions. 
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7.2 The parameters used for plotting 

For a given sample, the stress conditions in plane strain  (σ1 > σ2 > σ3) and in 

axisymmetric compression (σ1 > σ2 = σ3) are different. The strain conditions in plane 

strain  (ε1 > ε2 > ε3 with ε2 = 0) and in axisymmetric compression (ε1 > ε2 = ε3) are also 

different. A difficulty arises as to how to quantify the difference between axisymmetric 

compression and plane strain. A possible comparison of stress in axisymmetric 

compression and plane strain may be to compare σ1, σ2, and σ3.  However, such a 

treatment may not mean much as the principal stresses themselves are not directly related 

to shear strength parameters. For this consideration, most chosen stress parameters in this 

chapter are explicitly related to mobilised shear strength such as the mobilised Mohr-

Coulomb shear strength parameter sinϕ. Some stress and strain parameters used for this 

chapter (the definitions are consistent throughout this thesis) are defined as follows: 

 
Deviator stress q (the difference between the major and minor principal stresses)   

 

31 σσ −=q                            (7.1)                                   

 
Deviatoric stress 

 

( ) ( ) ( )
3

2
32

2
31

2
21 σσσσσσ −+−+−

=devq
                                                      (7.2) 

 
Deviator strain (the difference between the major and minor principal strains) 
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 3113 εεε −=                                                                                                               (7.3) 

 
Deviatoric strain 
                    

( ) ( ) ( )
3

2
32

2
31

2
21 εεεεεεε −+−+−

=dev
                                                (7.4) 

 
 
It should be mentioned that the above definition of deviatoric stress/strain does not 

degenerate to deviator stress/strain in axisymmetric compression condition, e.g. 

qqdev 3
2

=
 and

)(
3
2

31 εεε −=dev
 in axisymmetric compression. In general (such as in 

plane strain), the relationships between deviatoric and deviator stress/strain do not have 

such a simple form. It should also be mentioned that the above definitions (especially 

deviatoric stress/strain) are different from those in some published literature, e.g. 

Georgiadis et al. (2004) who defined deviatoric stress as ( ) ( ) ( )
6

2
32

2
31

2
21 σσσσσσ −+−+− . A 

similar difficulty arises for the fabric tensor. But, for the evolution of porosity and 

mechanical coordination number, the physical meaning of which are the same in  both 

axisymmetric compression and plane strain, the difficulty does not arise. 

 

7.3 Comparison  of drained axisymmetric compression and drained plane strain 

simulations  

 

The comparison includes both macroscopic and microscopic behaviour. The macroscopic 

behaviour includes the evolution of deviator stress (σ1−σ3), qdev, sin ϕ,  and porosity; the 
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microscopic behaviour includes the evolution of mechanical coordination number, 

deviator fabric and a new fabric parameter (see the definition in section 7.3.8). The 

sample with a porosity of 0.362 is denoted as porosity0.362 or sample0.362 in the 

discussion for convenience, similarly for other samples. In the following discussion, only 

the densest and loosest samples are superimposed on one graph for a given parameter’s 

evolution. The complete seperate set of graphs for each of the eight samples are provided 

in Appendix B. 

 

 
7.3.1 Evolution of deviator stress 
 
Figure 7.1 shows the evolution of deviator stress (q) against deviatoric strain (εdev) under 

both DAC and DPS conditions for the densest and loosest samples. The separate sets of 

evolution of q for all the samples are provided in Appendix B (Fig. B.1a-h). These plots 

show that the evolution of q at very small strains is quite independent of the strain 

conditions for a given sample. It can seen that qpeak (q at peak ) and qcs (q at critical state) 

are higher in DPS than those in DAC for a given sample, but for the densest sample the 

differences are very small. The deviator stress can be considered to be a “mobilised” 

strength parameter. In terms of shear strength, the series of evolutions of q for the densest 

sample suggest that the extended Tresca failure criterion (q/p = M, M is a constant for a 

given sample) might be an appropriate strength criterion for both peak and critical state 

failure states. For the other samples, the shear strength in terms of deviator stress is 

higher in DPS than in DAC, for both peak and critical state failure states. 
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7.3.2 Evolution of deviatoric stress 

Figure 7.2 shows the evolution of deviatoric stress (qdev) against deviatoric strain (εdev) 

under both DAC and DPS conditions for the densest and loosest samples. The separate 

sets of evolution of qdev for all the samples are provided in Appendix B (Fig. B.2a-h). It 

can seen that qdev at peak  and at critical state are respectively lower in DPS than those in 

DAC for a given sample. In terms of shear strength, the series of evolutions of qdev 

suggest that the extended Mises failure criterion (qdev/p = M, M is a constant for a given 

sample) is not appropriate, which is true for both peak and critical state failure states. 

 

7.3.3 Evolution of sin ϕ 
 
Figure 7.3 shows the evolution of sin ϕ against εdev under both DAC and DPS conditions 

for the densest and loosest samples. The separate sets of evolution of sin ϕ for all the 

samples are provided in Appendix B (Fig. B.3a-h). It can be seen that sin ϕ at peak  and 

at critical state are respectively higher in DPS than those in DAC for a given sample. In 

terms of shear strength, the series of evolutions of sin ϕ suggest that the Mohr-Coulomb 

failure criterion is not an appropriate strength criterion, which is true for both peak and 

critical state failure states. 

 

7.3.4 Evolution of Lade’s parameter 

Lade and Duncan (1975) proposed a new failure criterion (subsequently referred to as the 

Lade criterion): 
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Fig. 7.1  Evolution of deviator stress 
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Fig. 7.2  Evolution of deviatoric stress 
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Fig. 7.3  Evolution of  sin ϕ 
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1 −=

I
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                                 (7.5) 

 

where  and  are the first and the third stress invariants respectively.  1I 3I

 

Figure 7.4 shows the evolutions of the Lade parameter (η) against εdev under both DAC 

and DPS conditions for the densest and loosest samples. The separate sets of evolution of 

η for all the samples are provided in Appendix B (Fig. B.4a-h). It can seen from the 

figure that η at peak and at critical state are respectively independent of strain conditions 

(DPS  and DAC) for a given sample. In terms of shear strength, the series of evolutions of 

 131



CHAPTER 7:  COMPARISON 

η suggest the Lade failure criterion is an appropriate strength criterion, which is true for 

both peak and critical state failure states. An extra interesting point about η is that, for a 

given initial porosity, its evolution against εdev is approximately independent of the strain 

conditions, which was first reported by Thornton (2000). 
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                               Fig. 7.4  Evolution of  the Lade parameter 
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7.3.5 A summary of the different shear strength criteria  

The extended Tresca, extended Mises, Mohr-Coulomb, and Lade failure criteria (all these 

criteria can be described by hyperplanes in stress space) can be viewed on a deviatoric 

plane (sometimes called the ∏ plane), see Fig. 7.5. The different failure hyperplanes 

form bounded surfaces in stress space, and when projected on the deviatoric stress plane, 

the different failure surfaces form a series of contours (also bounded). In Fig. 7.5, only 
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one series of contours (all different failure surfaces have the same common point at the 

axisymmetric compression stress state) is plotted including the Matsuoka-Nakai surface 

and some experimental data from Lade and Duncan (1973, 1975). For the simulations 

performed in Chapter 3 and Chapter 4, there are only two points (e.g. peak states) in the 

deviatoric plane for a given sample. All the simulations were performed under constant 

mean stress conditions, and therefore the stress path is a curved (or straight) line on this 

deviatoric plane. The stress path for DAC is a line along the σx  (in Fig. 7.5) axis, and the 

stress path for DPS is a curved line from the origin of the deviatoric plane. It should be 

mentioned that the Lade failure criterion was proposed mainly based on the experimental 

data for dense sand, and for loose sand there is some small deviation as pointed out by 

Lade and Duncan (1975). But for the DEM simulation data reported for DAC and DPS, 

the Lade failure criterion seems to give the best overall data-fit. 

 

From Fig. 7.5, the extended Tresca and Lade failure surfaces are very close to each other 

for the sub-regions between axisymmetric compression and plane strain noting the value 

of b stress for plane strain at peak stress states is usually between 0.3 and 0.4. This is in 

agreement with the discussion in section 7.3.1 and therefore the extended Tresca failure 

criterion seems to give a good agreement for the reported data: both the physical 

experiment of Lade and Duncan (1973) and the DEM simulation data, for the dense 

sample, which also agrees with observations of Bishop (1966). For the loose samples, the 

extended Tresca criterion does not fit the reported data, as was implied by Bishop (1966) 

and was confirmed by the DEM simulation data reported in this thesis. Although the 

Matsuoka-Nakai  failure criteria is also close to the Lade criterion for the sub-region 
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between axisymmetric compression and plane strain, it does not fit the data for 

axisymmetric extension simulation data as reported by Thornton (2000), and therefore 

Matsuoka-Nakai  criterion is not discussed further.  

 

Also, from Fig. 7.5, the Mohr-Coulomb and the extended Mises surfaces deviate from the 

Lade surface for the sub-region between axisymmetric compression and plane strain. As 

can be seen in Fig. 7.5 for the discrete experimental data, sin ϕ will be expected to be 

smaller in axisymmetric compression than in plane strain, and qdev will be expected to be 

larger in axisymmetric compression than in plane strain. These observations are again in 

agreement with the DEM simulation data reported here, which is another indication that 

the Lade criterion gives the best data-fit. 

 

 
 

Fig. 7.5 Different failure criteria on the deviatoric plane [after Koseki (2005)] 
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7.3.6 Evolution of porosity 
 
Figure 7.6 shows the evolution of porosity against εdev under both DAC and DPS 

conditions for the densest and loosest samples. The separate sets of evolution of porosity 

for all the samples are provided in Appendix B (Fig. B.5a-h). It can seen that porosity 

before critical state is nearly independent of strain conditions (DPS  and DAC) for the 

densest sample. For all the loose samples, the plane strain condition seems to provide a 

higher resistance to volume contraction than axisymmetric compression during shear. The 

critical porosity is found to depend upon both the strain conditions and the initial 

porosities, but from a practical point of view the critical porosity can be considered to be 

independent of these conditions since the deviation is small. 

 

7.3.7 Evolution of deviator fabric 
 
Figure 7.7 shows the evolution of deviator fabric (φ1−φ3) against εdev under both DAC 

and DPS conditions for the densest and loosest samples. The separate sets of evolution of 

(φ1−φ3) for all the samples are provided in Appendix B (Fig. B. 6a-h). It can seen that 

(φ1−φ3) for  DPS  is correspondingly higher than that for DAC for a given sample during 

shear.  

 

7.3.8 Evolution of the generalised fabric parameter 

Following Thornton (2000), the failure fabric envelope in deviatoric fabric space has the 

shape of an “inverted Lade surface” for constant mean stress simulations. Therefore, a 

fabric parameter can be defined as  
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Fig. 7.6  Evolution of  porosity 
[key refers to porosity] 
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                                                              (7.6) 

 

where φ
2I  and φ

3I  are the second and third invariants of the fabric tensor respectively. 

For an isotropic structure, φ
2I  = 1/3 and φ

3I  = 1/27, therefore ηφ = 1.8. 

 
Figure 7.8 shows the evolution of ηφ against εdev under both DAC and DPS conditions for 

the densest and loosest samples. The separate sets of evolution of ηφ for all the samples 

are provided in Appendix B (Fig. B. 7a-h).  The figure shows that for a given initial 
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sample, the evolution of the generalised fabric parameter (ηφ) is independent of the strain 

conditions. It can also be seen that ‘strain hardening and softening’ can be observed in 

terms of this parameter.  

 

7.3.9 Evolution of mechanical coordination number 
 
Figure 7.9 shows the evolution of  Zm against εdev under both DAC and DPS conditions 

for the densest and loosest samples. The separate sets of evolution of Zm for all the 

samples are provided in Appendix B (Fig. B. 8a-h).  It can be seen that the evolution of 

Zm is essentially independent of strain conditions for a given sample in constant mean 

stress tests. 

 

7.4 Comparison of undrained axisymmetric compression and undrained plane 
strain simulations 
 
In this section, comparison of undrained axisymmetric compression (UAC) and 

undrained plane strain (UPS) simulations will be discussed. The comparison is focused 

on the undrained stress path, the evolution of sin ϕ and the evolution of the mechanical 

coordination number. 

 

7.4.1 Undrained stress path 

Figure 7.10 shows the undrained stress paths (deviator stress plotted against mean stress) 

for all the loose systems under UAC and UPS. It can be seen from the figure that the 

undrained stress paths are quite dependent on strain conditions. The system exhibits a 

higher resistance to liquefaction (or temporary liquefaction) in UPS than in UAC. For 
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each of the three medium loose systems, the values of the initial peak of q and p in UPS, 

are correspondingly higher than those in UAC, and the quasi-steady state values of  q and 

p are also correspondingly higher in UPS. 

 

7.4.2 Evolution of sin ϕ 
 
Figure 7.11 shows the evolution of sin ϕ for all the systems (including the two dense 

systems) under UAC and UPS. The figure shows that, for all samples, the value of sin ϕ 

is always greater in UPS than in UAC. This is consistent with Lee (1970) who reported 

higher values of peak sin ϕ for UPS than for UAC. 
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Table 7.1 shows the peak values of sin ϕ for all the systems for both drained and 

undrained conditions. It can be seen from the table that sinϕpeak generally depends on 

both drained conditions and strain conditions. 

 

Table 7.1 Peak values of sin ϕ in drained and undrained simulations 
 
samples  sinϕpeak in DAC sinϕpeak in DPS sinϕpeak in UAC sinϕpeak in UPS 
porosity0.362 0.44 0.50 0.47 0.54 
porosity0.389 0.36 0.42 0.38 0.45 
porosity0.405 0.35 0.40 0.36 0.38 
porosity0.407 0.35 0.39 0.37 0.39 
porosity0.409 0.35 0.39 0.36 0.40 
porosity0.414 0.35 0.39 0.40 0.45 
porosity0.419 0.34 0.38 0.42 0.46 
porosity0.425 0.34 0.39 0.47 0.52 
 
 
 
7.4.3 Evolution of mechanical coordination number 

Figure 7.12 shows the evolution of mechanical coordination number (Zm) for all loose 

systems under UAC and UPS. The figure shows that Zm under UPS  is a little higher than 

that under UAC. This means a loose sample under UAC conditions will be expected to 

reach the limiting value of Zm = 4 at a smaller deviatoric strain than under UPS, and 

therefore a loose system under UPS exhibits higher resistance to instability. 

 

7.5 Summary 

This chapter presents a comparison of DAC and DPS as well as UAC and UPS behaviour. 

It is found that the Lade failure criterion gives the best overall data-fit for all the samples 

under drained conditions, and is independent of strain conditions. It is also found that a 
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Fig. 7.12 Evolutions of mechanical coordination number for all loose systems 
[key refers to porosity] 
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generalised fabric parameter (ηφ) is independent of strain conditions under drained 

conditions. In undrained conditions, a loose system is found to exhibit higher resistance 

to instability in UPS than in UAC in terms of both stresses and mechanical coordination 

number. 
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CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

 

Drained and undrained simulation results have been reported, both under axisymmetric 

compression and plane strain conditions. A range of eight samples from very dense to 

very loose have been generated, and four simulations: drained axisymmetric compression 

(Chapter 3), drained plane strain (Chapter 4), undrained axisymmetric compression 

(Chapter 5) and undrained plane strain (Chapter 6) were performed for each sample but 

only results of the loose samples are presented for all undrained simulations in this thesis. 

The research work presented in this thesis shows that DEM can qualitatively capture 

fundamental behaviour under both drained and undrained conditions. Such a systematic 

investigation of the drained and undrained behaviour using DEM has never been reported 

in the literature before. 

 

In this chapter, the conclusions related to the simulation results will be briefly 

summarised with further comments on the limitations of DEM and possible future work. 

 

8.1 Conclusions  

8.1.1 Summary of the conclusions for the main chapters 

The results reported in Chapter 3 capture the general qualitative drained axisymmetric 

compression behaviour. Strain softening is only observed for dense samples, while strain 

hardening is observed for samples of all initial densities. A unique critical state in (q, p, e) 
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space is observed independent of initial density, which means that there is a unique stress 

ratio and a unique porosity at the critical state. When critical state is reached, all 

microscopic state variables (parameters) remain almost constant. 

 

The results reported in Chapter 4 capture the general qualitative drained plane strain 

behaviour. As in the axisymmetric compression simulations, strain softening is only 

observed for dense samples and strain hardening is observed for all samples. An 

approximately unique critical state is observed independent of initial density but 

dependent on the strain conditions. A unique porosity (or void ratio) at the critical state 

was found to be independent of strain conditions. When critical state is reached, all 

microscopic state variables (parameters) remain constant. 

 

The results reported in Chapter 5 capture general qualitative undrained axisymmetric 

compression behaviour. The steady state (and quasi-steady state), liquefaction and 

instability concepts are redefined in terms of the mechanical coordination number. It was 

found that the limiting mechanical coordination number corresponds to the start of 

mechanical instability of the system. The preshear process was found to decrease the 

porosity, thus explaining the higher resistance to liquefaction. An ultimate state in q-p 

space was found to be curved but can be taken to be approximately linear (with a slope of 

M) for all the undrained simulations on loose samples and M is independent of porosity 

and preshear history. The undrained behaviour was found to be strain rate and stress 

history dependent.  
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The results of undrained plane strain simulations were presented in Chapter 6. The results 

extended the findings in Chapter 5 on the phase transition in terms of the limiting 

mechanical coordination number. It was demonstrated that the strain condition is an 

important factor influencing the undrained behaviour especially with regard to the 

resistance to liquefaction. 

 

In Chapter 7 the results of the axisymmetric compression and plane strain simulations, 

both drained and undrained, were compared. It was found that the Lade failure criterion 

gave the best overall data-fit under drained conditions and is independent of strain 

conditions. It was also found that a generalised fabric parameter (ηφ) is independent of 

strain conditions under drained conditions. In the undrained simulations, loose systems 

were found to exhibit higher resistance to instability in plane strain than in axisymmetric 

compression in terms of both stresses and mechanical coordination number. 

 

8.1.2 Summary of the main conclusions for the whole thesis 

The summary of the conclusions for the whole thesis is as follows: 

 

 Under drained axisymmetric compression conditions, dense samples dilate and loose 

samples contract. All the samples reach a unique critical state (with a critical porosity 

of 0.407) at large deviator strains of over 60%. (See section 3.4)  
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 Under drained conditions (by comparing axisymmetric compression and plane strain 

conditions), the Lade failure criterion is the most appropriate one for describing both 

peak and critical state failures. (See section 7.3)  

 

 Under undrained conditions, liquefaction and temporary liquefaction can be observed 

for very loose and medium loose samples respectively. Liquefaction as well as 

temporary liquefaction can be explained by the loss of contacts and the appearance of 

structural mechanism. A criterion is proposed to justify when liquefaction or 

temporary liquefaction occurs in terms of mechanical coordination number Zm, i.e. 

when Zm < 4, liquefaction or temporary liquefaction occurs (See section 5.4). The 

preshearing process was found to decrease the porosity, thus providing the higher 

resistance to liquefaction compared the one without preshearing. In addition, the 

initial stress path for the presheared samples all lie on a unique curved line 

independent of the preshearing stress values (See section 5.5). Undrained behaviour 

was found to depend on the strain rates imposed, and the higher strain rates provide 

higher resistance to liquefaction (See section 5.6). 

 

 Under undrained conditions, loose samples under plane strain condition give higher 

resistance to liquefaction (temporary liquefaction) than axisymmetric compression. 

(See section 7.4) 

 

The above conclusions fulfil the objectives of this thesis (See section 1.2). 
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8.2 Limitations of DEM and future work 

DEM has been widely used in particle technology and minerals engineering. In civil 

engineering it has been limited to examining the fundamental aspect of the mechanics of 

granular materials such as sand. In the context of geotechnical engineering problems, the 

big constraint is the number of particles required but parallel computing may make it 

possible to examine such problems in the future. However, this is complicated by the fact 

that density scaling, as used in the simulations in this thesis, cannot be used in a situation 

where gravity is included. Consequently, since geotechnical engineering is usually 

concerned with quasi-static problems, even with parallel codes any simulation will take a 

lot of computer time. 

 

In the context of periodic cell simulations there are still problems that need to be 

addressed. An important issue is the effect of the particle size distribution. All DEM 

simulations that have been reported have used a rather narrow particle size distribution 

corresponding to what, in experimental terms, would be regarded as uniformly graded 

samples. With the potential offered by parallel computing, and therefore the total number 

of particles used in a simulation, it will be possible in the near future to examine the 

mechanical behaviour of well-graded systems and, in particular, gap-graded systems. It is 

not clear whether the information obtained from simulations of uniformly graded systems 

will also apply to such more realistic granular material. 

 

The research work presented in this thesis is only a first attempt to investigate the drained 

and undrained behaviour of granular material in a systematic way. However, it should be 
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noted the use of spherical particles has its limitations (see Chapter 2). The future work 

related to this thesis could include: 

 

 To perform drained extension and other general 3D simulations for all the samples 

with a range of porosities in order to confirm whether the Lade’s failure criterion is 

indeed the most appropriate one to be used to describe the results. 

 

 To generate a series of samples with a range of porosities under different confining 

pressures (without considering particle crushing) and perform drained simulations for 

all the samples in order to study the validity of the state parameter as proposed by 

Been and Jefferies (1985). 

 

 To implement bonded particle shapes in the TRUBAL code, in which simple particle 

crushing can be modelled, and study their drained and undrained behaviour.  

 

 To generate other particle systems with more realistic size distributions. 

 

 To compare the drained and undrained simulations using wall boundaries and using a 

periodic cell. 
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APPENDIX A: SERVO-CONTROL MODE USED IN THE 

TRUBAL CODE 

 

The TRUBAL code used for this thesis provides a servo-control option. The function of a 

servo-control mode is to permit any desired stress path to be followed approximately in 

incremental steps. With the servo-control mode, the applied strain field is continuously 

adjusted according to the difference between the desired stress state and the measured 

stress state. Depending on which servo-control mode is selected, the strain rates are 

adjusted differently. There are two servo-control modes used for this thesis, i.e. mode 1 

and mode 2 in the code. Mode 1 is used for the isotropic compression in preparing the 

samples. Mode 2 is used for shear tests (drained simulations). 

 

In both modes, the specified strain rate tensor is updated according to the following 

equation 

 

ij
t
ijij

tt

εεε &&& Δ+=
Δ+

                                                                         (A.1) 

   

where  is the (old) specified strain rate tensor, whose initial values are set by the user; t
ijε&

ijε&Δ  is the change of the specified strain rate tensor, which is calculated according to 
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(A.2) or (A.3) depending on the modes used;  is the (new) updated specified strain 

rate tensor. 

tt

ij

Δ+

ε&

 
In mode 1, the change of the specified strain rate tensor ijε&Δ  is updated according to the 

following equation 

 

)(
3
1 m

ij
d
ijijij g σσεε −+Δ=Δ &&                                                          (A.2) 

 
 
In mode 2, the change of the specified strain rate tensor ijε&Δ  is updated according to the 

following equation 

 

332211
)(

εεε
ε

σσεε
&&&

&
&&
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ij
d
ijijij g                            (A.3) 

 

In the equations (A.2) and (A.3), g  is a gain parameter set by the user,  is the desired 

stress tensor and  is the measured stress tensor. 

d
ijσ

m
ijσ

 
In the application of the servo-control, a limit is set for the maximum strain rate allowed 

for the simulation. This is necessary when high velocities are developed should the 

measured stress differ greatly from the desired stress. The limit of the maximum allowed 

strain rate is given in the servo-control command together with the gain parameter by the 

user.
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AND DPS IN CHAPTER 7 

 
Figure B.1a-h: Evolution of q 
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Fig. B.1a Evolution of q for porosity0.362 
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Fig. B.1b Evolution of q for porosity0.389 
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Fig. B.1c Evolution of q for porosity0.405 
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Fig. B.1d Evolution of q for porosity0.407 
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Fig. B.1e Evolution of q for porosity0.409 
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Fig. B.1f Evolution of q for porosity0.414 
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Fig. B.1g Evolution of q for porosity0.419 
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Fig. B.1h Evolution of q for porosity0.425 
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Figure B.2a-h: Evolution of qdev
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Fig. B.2a Evolution of qdev for porosity0.362 
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Fig. B.2b Evolution of qdev for porosity0.389 

 184



APPENDIX B:  GRAPHS FOR THE COMPARISON OF DAC AND DPS IN CHAPTER 7 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
εdev

0

20

40

60

80

q d
ev

 (k
P

a)

0.405DAC
0.405DPS

 
                  Fig. B.2c Evolution of qdev for porosity0.405 
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Fig. B.2d Evolution of qdev for porosity0.407 
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Fig. B.2e Evolution of qdev for porosity0.409 

 
 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
εdev

0

20

40

60

80

100

q d
ev

 (k
P

a)

0.414DAC
0.414DPS

 
                  Fig. B.2f Evolution of qdev for porosity0.414 
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                    Fig. B.2g Evolution of qdev for porosity0.419 
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 Fig. B.2h Evolution of qdev for porosity0.425 
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Figure B.3a-h: Evolution of sin ϕ 
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Fig. B.3.a Evolution of  sin ϕ for porosity0.362 
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Fig. B.3.b Evolution of  sin ϕ for porosity0.389 
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                 Fig. B.3.c Evolution of  sin ϕ for porosity0.405 
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Fig. B.3.d Evolution of  sin ϕ for porosity0.407 
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Fig. B.3.e Evolution of  sin ϕ for porosity0.409 
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Fig. B.3.f Evolution of  sin ϕ for porosity0.414 
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Fig. B.3.g Evolution of  sin ϕ for porosity0.419 
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Fig. B.3.h Evolution of  sin ϕ for porosity0.425 
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Figure B.4a-h: Evolution of η 
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                   Fig. B.4a Evolution of η for porosity0.362 
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Fig. B.4b Evolution of η for porosity0.389 
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               Fig. B.4c Evolution of η for porosity0.405 
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Fig. B.4d Evolution of η for porosity0.407 
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                Fig. B.4e Evolution of η for porosity0.409 
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Fig. B.4f Evolution of η for porosity0.414 
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                  Fig. B.4g Evolution of η for porosity0.419 
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Fig. B.4h Evolution of η for porosity0.425 
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Figure B.5a-h: Evolution of porosity 
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                  Fig. B.5a Evolution of porosity0.362 
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Fig. B.5b Evolution of porosity0.389 
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Fig. B.5c Evolution of porosity0.405 
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Fig. B.5d Evolution of porosity0.407 
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Fig. B.5e Evolution of porosity0.409 
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Fig. B.5f Evolution of porosity0.414 
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Fig. B.5g Evolution of porosity0.419 
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Fig. B.5h Evolution of porosity0.425 
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Figure B.6a-h: Evolution of deviator fabric 
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Fig. B.6a Evolution of deviator fabric for porosity0.362 
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Fig. B.6b Evolution of deviator fabric for porosity0.389 
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Fig. B.6c Evolution of deviator fabric for porosity0.405 
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Fig. B.6d Evolution of deviator fabric for porosity0.407 
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Fig. B.6e Evolution of deviator fabric for porosity0.409 
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Fig. B.6f Evolution of deviator fabric for porosity0.414 
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Fig. B.6g Evolution of deviator fabric for porosity0.419 
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Fig. B.6h Evolution of deviator fabric for porosity0.425 
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Figure B.7a-h: Evolution of ηφ
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Fig. B.7a Evolution of ηφ for porosity0.362 
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Fig. B.7b Evolution of ηφ for porosity0.389 
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Fig. B.7c Evolution of ηφ for porosity0.405 
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Fig. B.7d Evolution of ηφ for porosity0.407 
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                      Fig. B.7e Evolution of ηφ for porosity0.409 
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Fig. B.7f Evolution of ηφ for porosity0.414 
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Fig. B.7g Evolution of ηφ for porosity0.419 
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Fig. B.7h Evolution of ηφ for porosity0.425 
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Figure B.8a-h: Evolution of Zm
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Fig. B.8a Evolution of Zm for porosity0.362 
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Fig. B.8b Evolution of Zm for porosity0.389 
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Fig. B.8c Evolution of Zm for porosity0.405 
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Fig. B.8d Evolution of Zm for porosity0.407 
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Fig. B.8e Evolution of Zm for porosity0.409 
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Fig. B.8f Evolution of Zm for porosity0.414 
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Fig. B.8g Evolution of Zm for porosity0.419 
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Fig. B.8h Evolution of Zm for porosity0.425 
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