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SUMMARY

Heat transfer data are reported for the condensation of steam-toluene 

and steara-trichloroethylene eutectic mixtures on 25.4 mm diameter oxidised 

copper and gold plated horizontal tubes. Data are also presented for 

the condensation of pure steam, toluene and trichloroethylene on the 

oxidised copper tube and the film heat transfer coefficients obtained 

agree to within ̂ + 20% of the Labunstov form of the Nusselt equation*

For the binary immiscible systems the heat transfer coefficients 

decrease as the temperature difference increases, with the oxidised copper 

surface giving higher coefficients than the gold. These differences are 

attributed to the two observed fundamental mechanisms of condensation, a 

channelling mode on the oxidised copper and a standing drop mode on the 

gold. Models based on the different mechanisms are proposed and predict 

the experimental results to within j^ 20%.

Finally it is postulated that the temperature dependent mutual 

solubilities affords an explanation of the formation of the large 

number of very small droplets observed during the condensation of these 

eutectic mixtures.
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Chapter 1 

Introduction

The condensation of vapours has been extensively studied, both theoret 

ically and experimentally during the past sev-nty years. A great number 

of these studies have been concerned with the condensation of pure 

vapeurs and in particular steam.

By comparison work on vapour mixtures, particularly those mixtures 

which form immiscible liquids on condensation, has been uncommon. The 

probable reason being that steam condensation in particular is a much 

more important industrial process than that of vapour mixture condensation. 

However, the condensation of vapours which fcrm immiscible liquid condensates 

is nevertheless common in industrial practice. For example steam dist 

illation and azeotropic distillation processes commonly give vapours 

which form immiscible licuid mixtures on condensation, as do certain 

chemical reactor processes, particularly those associated with the petroleum 

industry.

To cesign condensers for the above processes it is necessary to 

know the values of the condensing heat transfer coefficients. Most of 

the previous studies on "immiscible liquid condensation" were primarily 

concerned with the determination and prediction of these heat transfer 

coefficients.

It is apparent from the earlier investigations that the condensation 

processes involved are extremely complex. And although several studies 

have been made the effects of certain important parameters are still 

n»t clear.

The principal objectives of the present study were to investigate 

several of these potentially important parame-ers. In particular the effects



on heat transfer performance of film temperature difference,condenser 

tube surface properties and condensate flow regimes were studied.
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Chapter 2 

Literature Survey

2.1 Introduction

Pure single component vapours have been found to condense on a cooled 

surface in one of two ways. The condensate may forn either a continuous film 

or droplets; these two modes of condensation are termed filmwise and dropwise 

respectively.

When condensing vapour mixtures, the modesof condensation •' 

vary.. For miscible liquids the condensate

usually forms a film, although Mirkovitch and Missen (1961) have reported 

systems which form both films and drops. In the case of immiscible liquids the 

condensate consists of both films and drops of different liquid phases. Thus 

the mechanism of condensation of vapour mixtures, particularly of immiscible 

liquids, is much more complex than for pure vapours.

Most of this chapter is devoted to a detailed review of the literature on 

the condensation of vapours of immiscible liquids. However, a brief survey of 

filmwise and dropwise condensation is given first. No review is given for the 

case of vapours of miscible liquids but the interested reader is referred to 

van Es and Heertjes (1962) for details.

2.2 Laminar film condensation

Musselt (1916) derived theoretical equations for predicting the heat 

transfer coefficients obtained during the filmwise condensation of a pure 

vapour. The eouations are

X q °' 25

p AT B

where: C = 0.728 and B = D for horizontal tubes ando

C = 0.943 and B = L for vertical tubes



^ = T - T 
f s w

T is the saturation temperature
^^

T is the wall temperature.

The other symbols are defined in the nomenclature, 

An alternative form of equation (2.1) is

hN /—tr-r . P I *=•) (2.2)

where: P = 1.47 or 1.51 for horizontal and vertical tubes respectively

T is the mass flowrate of condensate per unit width of film. 

The main assumptions used to derive the above equations were as follows:

1) The only significant resistance to the condensation process is presen 

ted by the liquid film.

2) The condensate flow is laminar.

3) The wall temperature is constant.

4) The fluid properties are constant.

5) Subcooling of the condensate nay be neglected.

6) There is no vapour drag on the condensate film.

7) Acceleration of the liquid film is negligible.

8) The temperature gradient through the film is linear.

Many of the later workers have relaxed the restrictions

imposed by the above assumptions. Bromley (1952) and Rohsenow (1956) took 

account of the subcooling and non linear temperature gradient effects, the 

final equation being

hR/hN = (1 + 0.68 e)°* 25 (2.3)

where e = C AT A. 
P f



The above equation is widely used in place of the original Nusselt equation.

Sparrow and Gregg (1959) give a boundary layer treatment of laminar film 

condensation in which the liquid film acceleration as well as the convective 

terms were included. Chen (1961), using the integral form of the boundary 

layer equations, ar.d Koh, Sparrow and H-irtnett (1951) using the differential 

boundary layer equations, took account of the effects of drag due to the 

initially stationary vapour, as well as the terms included by Sparrow and 

Gregg. The inclusion of vapour drag terms made a significant difference for 

low Prandtl number liquids (e.g. liquid metals) but was not significant for 

liquids with Prandtl numbers greater than one. The agreement between the 

solutions of the integral and differential forms of the boundary layer 

equations is excellent.

Chen presents approximate equations for predicting the heat transfer 

coefficients for a vertical plate and a horizontal tube which are within 1% of 

the detailed numerical solutions. The equations are, for a flat plate

h /hM = 
c N

1 + 0.68 £ + 0.02 (e /Pr)

1 -f 0.85 (s/Pr) - 0.15 (e2/Pr)

0.25

(2.4)

and for a horizontal tube

hc/hN=
1 -f 0.68 e + 0.02 /Pr)

1 + 0.95 (e/Pr) - 0.15 (£/Pr)

0.25

(2.5)

where e = C AT /x and Pr = C u/k. 
p f p^

The above equations are valid for liquids with Prandtl numbers larger 

than 1.0 and for those v/ith Prandtl numbers less than 0.05 provided e ^ 2.0,

Comparing equations (2.3), (2.4) and (2.5), it can be seen that they 

agree if the Prandtl number is large; in fact if Pr > 1.0 and e <*' 0.2 there is 

no significant difference between the Chen, Rohsenow and Nusselt equations.



Most common liquids have Prandtl numbers between 1.0 and 10.0, It is 

therefore apparent that the detailed boundary layer treatments show that 

Nusselts equation is adequate for such liquids. Large deviations are only 

expected for low Prandtl number fluids (e.g. liquid metals) and for high 

condeasate subcoolirgs (e > 0.2).

All of the above treatments assume the physical properties of the 

condensate film are constant. Drew has shown (see McAdams (1954)) that if the 

temperature distribution is linear and it is assumed that the viscosity varies 

inversely with temperature, then the effects of variable viscosity can be 

estimated by using Nusselts equation with the viscosity evaluated at a 

reference temperature given by

T „ = T + 0.25 AT. (2.6)
rer W f

Voskresenskiy (1948) and later Labuntsov (1937) incorporated a linear varia 

tion in the condensate thermal conductivity as well as the above viscosity 

variation. Labuntsov showed that if the physical properties in Nusselts 

equation are evaluated at the vapour saturation temperature a simple correction 

can be applied to take account of the conductivity and viscosity variations 

across tha film. Thus

h . h. 4 C2.7)

and 9 7 = f (k 3 n )/(k 3/U >] * (2.8)
j-> W o o W

where: o_ is the Labuntsov correction factor, k and n are the thermal r L w pw

conductivity and viscosity of the condensate evaluated at the wall temperature.
•

k and u. are the thermal conductivity and viscosity of the condensate 
s s

evaluated at the vapour saturation temperature. Foots and Miles (1967) have 

shown that for the condensation of pure steam the above methods of taking 

account of variable fluid properties are adequate even at very large tempera 

ture differences (i.e. AT = 100°C).



The assumption of a constant wall temperature was investigated in an 

indirect manner by Fujii et al (1972). They assumed tha_ the heat flux was 

constant with varying wall temperature. The conclusion of their work was 

that the difference between the constant heat flux and constant wall tempera 

ture cases was insignificant. Van der './alt and Kroger (IrT'l)

investigated the problem of variable wall temperature for the case of a vertical 

flat plate by assuming a v;all temperature profile and again the conclusion 

was that the effects are negligible. The present author (see appendix E) has 

used the same approach as van der Walt and Kroger applied to the case of a 

horizontal tube. The conclusion that no significant errors are introduced by 

the constant wall temperature assumption is again substantiated.

The conclusion from the above brief survey is that Nusselts equation should 

be adequate for predicting heat transfer coefficients in laminar filmwise 

condensation for fluids with Pr ^ 1.0 and small subcoolings (e <: 0.2). 

However, it is apparent from comparisons with experimental data that some 

disagreement exists: for example McAdams (1954) has stated that for most 

substances Nusselts equation uncerpredicts the heat transfer coefficients. 

The discrepancy between theory and experiment is usually attributed to the 

effects of waves. Kapitisa (1948) has shown that gravity induced waves 

(capillary waves) cause a reduction in the mean film thickness and hence an 

increase in the heat transfer coefficient. The conditions for such waves to 

exist has been shown by Kapitsa (1948) to be when the film Reynolds number 

exceeds a critical value given by

4 
Re = 2.43 f ^—2.* v^— • i_ t. • *^ ~^ I ocrit I p cr3

\ v
An empirical correlation for predicting mean heat transfer coefficients,

when the condensate film is disturbed by waves, was given by Chun and 

Seban (1971) as,

"7

/



= 0.8 (r/i)- (2.10)

The agreement between their experimental data and equation (2.10) written for 

local coefficients was good.

2.3 Dropwise condensation

Sinee McAdams (1954) reported that heat -ransfer coefficients observed 

during dropwise condensation of steam are several times larger' than those 

obtained for filmwise condensation, a large amount of research, into 

both the theoretical and experimental aspects. of 'dropwise condensation 

has been undertaken.

The presently accepted mechanism for the process is as follows. The

vapour condenses as discrete drops on the surface; these drops grow by 

coalescence and condensation until they are large enough to be removed by the 

action of gravity or other body forces (e.g. vapour shear). When such drops 

move they coalesce with other drops in -heir path, thus sweeping an area of the 

surface clear of condensing drops. This enables the condensation process to 

restart on the clear area. It is thus apparent that the dropwise condensation 

process is cyclic in nature.

Several models for predicting the detailed processes involved have been 

presented, an excellent review of the more important theoretical and experi 

mental contributions in this very active field is given by Merte (1973).

2.4 Condensation of vapours of immiscible liquids

The following review is divided into three main sections. The first 

covers experimental studies concerned with binary systems, the second work on 

multicomponent systems and the third models and correlations.

Not all of the published papers are reviewed in detail. Only the key 

papers or those of particular interest are discussed. However, a summary of 

the information contained in most papers can be found in Table 1.

C
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2.4.1. Experimental studies on binary systems

2.4.1.1 Investigations using horizontal tubes

The primary concerns in most condensation studies are the

transfer coefficients it is important to use the correct temperature difference. 

To determine the temperature difference for "immiscible liquid" condensation 

we must first lool< at the manner in which the mixed vapours can condense.

The temperature-composition diagram for a totally 5_mmiscible binary 

system is shown in Fig. 2.1. Three possible condensation paths can be envisaged, 

of which one is exclusive to the hetero-azeotropic mixture (the so called 

eutectic mixture). Consider the superheated eutectic mixture shown by point E 

(Fig. 2.1), the condensation path will be one of desuperheating followed by 

simultaneous condensation of both components at constant temperature (eutectoid 

temperature T ). The cor.csr.sate will consis- of two phases, the overall liquid 

composition being the same as ths 4: of the vapour, that is the eutectoid compo— 

s-'ticr;. This situation is similar to the condensation of a pure vapour except 

for the behaviour of the condensate film.

The ether two condensation paths are for non-eutectic mixtures. They

-5 y^ •

(1) Condensation of one component preferentially, with the other 

component acting as an incondensable gas.

(2) Condensation of both components, the condensate composition being 

dependent on the rates of mass transfer of the two components 

through the vapour phase.

Which of the above two processes is occurring depends on the vapour-liquid 

interface temperature.Considering_pcint M(Fig. 2.1), if the interface tem 

perature (T.) is greater than the eutectoid temperature (T ) then only one 

component can condense On this case component 1). The other component acts 

.is an •'ncondensable gas in this situation.
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If the interface temperature is such that both components can condense 

and the vapour is to remain in equilibrium with the two phase condansate 

then the interface temperature must be the eutectoid temperature and the 

condensate composition is.~eing governed 'z~: -he rates of mass transfer through 

the vapour phase.

Hence if mixed vapours condense to form a two phase

condensate the vapour liquid interface temperature is the eutectoid tem 

perature. The appropriate film temperature difference is therefore given by

the difference between the eutectoid and wall temperature (T - T ).^ e W

The wall temperature TTT has commonly been determined us.ina one of
ti

two methods. In the first, suitably spaced thermocouples are used, the 

mean surface temperature being calculated by an appropriate averaging tech 

nique. The second method uses the condenser tube as a resistance thermo 

meter, the tube surface temperature being calculated using methods first

proposed by Jef fries (1925).

The choice of method seems to depend en the personal preference of 

the investigator, although recently the thermocouple method has been the 

more commonly used technique. This may be because it is easier 

to interpret exactly vhat temperature is being calculated.

The fluids used in the experimental studies (see Table 1 for details) 

vary widely, for example, benzene, carbon tetrachloride, freon 112, 

turpentine and styrene have all been used as the organic phase in organic 

v/ater mixtures.

The surface is usually stated to be oxidised copper. Although Stepanek 

and Standart (1953) and Kawaski et al (1972) do not indicate in their papers



whether they used polished copper or oxidised copper surfaces. Various tube 

diameters have been used, these varying from 5.2 mm (0.244 in) o.d. to 

34.9 mm (1.375 in) o.d.

Most investigators do not condense eutectic mixtures specifically, but

the data usually includes some of •su^c-ic -c.T:pc3ir:vcn.

Reviewing the various papers it is clesr that the effects of such variables 

as, film temperature difference, tube •diar.eter, and condensste flow regimes are

not well understood. Much of the data are very difficult -o compare since
they have been taken using various condensate compositions. If the
heat transfer coefficient is plotted against composition there appears to be a

composition dependency. Therefore the most useful data for comparison are 

those taken for the eutectic vapour mixtures, since here the condensate 

compositions obtained by various workers should be the same if identical 

mixtures are considered. The following discussion will deal with eutectic 

mixtures unless otherwise stated.

The effects of film temperature difference on heat transfer coefficient 

was studied in detail by Sykes and Marchelio (1970). The conclusion, after 

comparing the data of several authors, was that variation of the coefficient 

with temperature difference was dependent on the organic—steam mixture 

being considered.

Looking at the various studies the dots from

investigators using the same fluids and tube surface are quite different. As 

an example consider a stear>-toluene mixture. Baker and Mueller (1937) and 

Sykes and Marchelio (1970) condensed this mixture on an oxidised copper tube. 

The tube diameters were 33.4 mm (1.313 in) and 34.9 mm (1.375 in) o.d. 

respectively. Thus the systems were almost identical, yet the slopes of a 

plot of In h vs. In AT , as determined by Sykes using least squares methods, 

were + 0.062 for Bake.-r and Muellers data and - 0.130 for Sykes and Marchellos 

data.

Recently Ponter and Diah (1974) have presented data for benzene—steam and



trichloroethylene-steam mixtures condensing :.- a 28.6 mm (1.125 in) o.d. oxid 

ised copper tube and their results do not agree v/ith the results of Baker and 

Mueller (1937) either. They suggested the discrepancy was because the tube 

surface used by Baker and Mueller was not hcrrogeneous, that is the surface 

properties and hence the condensation mec'r^r-is.- varied along the tub?.

The criterion used by Ponter and Diah (l?74) to indicate that the surface 

was homogeneous appears to be when filmwise condensation of steam is consistently 

produced over the whole length of the tube. ~f this is the case their 

suggested explanation of the discrepancy between the two data sets is 

complicated by the fact that Baker and Mueller (1937) also reported that they 

too obtained filmwise condensation of steals on their tube. Thus there is still 

doubt as to why these data sets are different.

The detailed effects of tube diameter on -he heat transfer coefficient are 

far from certain. Both Kawas-ci et al (19~2) and Baker and Tsao (1940) have 

stated that the heat transfer coefficient increases as the tube diameter 

increases, this is contrary to the trend when condensing pure vapours or 

vapour mixtures of miscible liquids. It thus appears that the tube diameter 

has a marked effect on the heat transfer coefficient, exactly why there is such 

an effect is unclear.

The differences in behaviour of the various systems may well be due to the 

condensation mechanism, since quite different descriptions have been given by 

various authors. The description given by Bater and Mueller (1937) is as 

follows, the organic forms a film with the water forming standing drops on the 

tube surface, these drops were "fairly stable and remained on the tube consider 

able lengths of time and covered the greater portion of the tube". The 

mechanism reported by Sykes and Marchello (19"3) is quite different, they 

observed the water drops on the organic film, these drops eventually coalesced, 

and finally formed a continuous water film which then flowed from the tube, 

over the organic film. They also observed wh^t they termed secondary drainage,



that is the water film shedding from the side of the tube.

Thus we have two quite different descriptions of the condensation process 

occurring on what apparently are similar tubes with the same fluids condensing. 

It is unfortunate that Ponter and Diah (1974), Stepanek and Standart (1958) ar.c 

Kawaski et al (1972) have not resorted th^ mechanism 5n the~r ex^eri^en^s, si: 1.--*.

the effects of the mechanism seem to influence the heat transfer coefficients. 

It is also possible that the observed tube diameter effects are caused by 

changes in mechanism. However, one cannot be certain of this explanation in 

view of the laclc of descriptions in the relevant papers.

In a recent review Boyes and Ponter (1972) put forward various ideas as to 

the hydrodynamic behaviour of organic—water mixtures. These ideas arose from 

studies carried out with organio-water mixtures on a low energy surface 

(P.T.F.EI.) and a high energy surface (copper). They state that "surface and 

buoyancy forces play equally dominant roles in influencing hydrodynamic and 

hence heat transfer behaviour".

In particular the value of the heat transfer coefficient is influenced by 

the position of the va~er drops in the organic film. Thus, if the organic 

phase density is less than the water density it would be expected that the 

water crops would reside a~ the tube surface. Therefore, disturbing the film 

and hence enhancing the heat transfer process by promoting better mixing.

If zhe organic is -he censer phase the water drops would float at the 

vapour liquid interface and little or no enhancement would be expected. 

However, a complicating factor is the relative growth rates of the film and 

the drops, as the condensation rate is increased. If, as might be expected, 

the drops grow faster than the film (i.e. by coalescence as well as condensa 

tion) they could become large enough to penetrate the organic film, and again 

enhancement of the heat transfer process would be expected.

Boyes and Ponter (1972) also proposed, that it should be possible to 

increase the heat transfer coefficient by increasing the rate of removal of



the water drops, since this would increase the disturbance in the film. 

Further it was suggested that using a P.T.F.E. coated surface would accomplish 

this increased rate of removal»

Recently Ponter and Diah (1974) have conducted experiments using both an 

oxidised copper and P.T.F.2. coatee copper tubes. The results obtain--:! from 

this work tend to support the earlier ideas that greater heat transfer 

coefficients would be obtainable using P.T.F.E. surfaces. Unfortunately most 

of the enhancement goes into compensating for the resistance of the P.T.F.E. 

coating, so that in fact the overall enhancement is not very great. However, 

it does show that if sufficiently thin P.T.F.E. coatings were used an increase 

in heat transfer coefficient might be obtained.

From the above discussion there are considerable

discrepancies between various data sets. It would appear that the mechanism 

of the condensation process is important in trying to understand such 

discrepancies, as are the effects of tube diameter. The reasons why the 

mechanism is apperen-ciy different or. supposedly identical tube surfaces is at

creser.z unknov.r;. ur.lass cf cc^se ~r. oxidised copper surface does not give a 

consistent oxide layer.

2.4.1.2 Investigerions using vertical surfaces

Although there have been several investigations using

vertical surfaces, there are relatively few studies which treat eutectic 

mixtures, the study of Bemhardt et al (1972) being the only one to treat 

eutectic mixtures exclusively.

Bernhardt et al (1972) studied the condensation of various organic steam 

mixtures on a vertical gold plated copper plate. From their experiments it is 

apparent that the heat transfer coefficient increases as the film temperature 

difference decreases, this is contrary to the conclusion made by Hazelton and 

Baker (1944) for the condensation of various mixtures on several different 

diameter sanded copper tubes. They stated that the heat transfer coefficient 

was independent of the temperature difference. However, this conclusion was



made on the basis of comparing data taken at various ccr.densate compositions 

and film temperature differences. Since they do not ap;-ear to have systemati 

cally varied the film temperature difference at cons tar.- condensate composi 

tion it is possible that the effect of temperature difference is being masked 

by a composition dependency.

The effect of the tube diameter has been shown by Baker and Hazelton (1944) 

to be similar to the horizontal tube cas§, that is, the heat transfer 

coefficient increases as the tube diameter increases.

The mechanism of the condensation process has been investigated in 

considerable detail by Bernhardt et al (1972). They tock high speed cine 

films of the process and also used conductivity probe and dye techniques to 

identify the various phases. The description given by the above authors is as 

follows. The organic phase forms a film in which water drops are suspended, 

large standing water drops touch the metal surface and also protrude through 

the film. Thus the bulk of the vapour contacts both liquids and both liquids 

contact the solid. Very small mobile drops of organic were observed to be 

present on the surface cf the large standing water drops. The origin of these 

organic drops was uncertain, but the authors recognised the possibility that 

they =re nucleating en the surface of the water drops, the nucleation sites 

perhaps being microscopic dust particles entrained in the inlet vapours. These 

dust particles are also used to explain the origin of the small water drops 

floating on the film. The above description of the condensation mechanism 

appears to have been the same for all condensation rates and for different 

fluid systems.

Hazelton and Baker (1944) postulated six condensation mechanisms, of these 

only three were observed in their experiments they are:

(1) Film drop mechanism — here the organic forms a continuous film on 

the surface, the water forming drops in and or. this film.

(2) Channelling mechanism - in this case both phases form films which 

flow from the surface in separate rivulets.

' O
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(3) 'The third mechanism is a mixture of the previous -wo.

From their experiments they found that the mechanism observed depended on 

tube diameter. For the 15.9 mm (0.625 in) and 25.4 mm (1.C30 in) o.d. tubes 

the mechanisms were predominantly of types (1) and (3) while for a 33.4 mm 

(1.313 in) o.d, tube the mechanism \;?s of type (2). The authors sc^te that a 

change of mechanism from types (l) to (3) has no marked effect on the heat 

transfer coefficient whereas the channelling mechanism (type (2)) consistently 

produced greater heat transfer coefficients than the other two mechanisms. No 

explanation as to the cause of these effects was given.

Front the description of the condensation process, a channelling mechanism

can be as surged for the experiments of Tobias and Stoppel (lr-54) with a 25.4 mm
(1.000 in) o.d. brass tube.

In an attempt to predict the condensation mechanism Akers and Turner (19S2)

introduced the spreading coefficient concept of Harkins and Feldman,

wn

S_, x is the spreading coefficient for 3 on A. 

c ,. and Qg are the surface tensions of liquids A and 3 respectively.

cr % - is the interracial tension between liquids A and B. t-^

If liquid B spreads on liquid A then 3 is positive. A negative 

coefficient indicates 3 will not spread on A. Also if B spreads on A then A 

cannot spread on 3.

To use this concept the above authors first assume one component condenses 

as a film and then look at the behaviour of the other phase on this film. For 

the case of organic water systems they describe the mechanism as follows. 

First assume the organic preferentially wets the surface, then if the spreading 

coefficient for the organic on water is large (S »0), the organic will
O/\

spread over any water formed on the film. And thus spherical drops of water 

within the organic film will be formed. For organic liquids which do not 

spread on water (Sg^ «0), the water will form as lenses on the film. The

i >'



mechanism of condensation is hence defender.- en the value of S . Also at
Drt

high condensation rates or high v/ater vapcur concentrations the lenses coalesce 

to form channels which flow over the organic film. At near zero spreading 

coefficients the mechanism would be a mixture of the above processes.

A difficulty in using equation (2.11) ir to assign the correct valuer, of 

surface tension to the various liquids, for example if the pure liquid surface 

tensions are used for a benzene-water mixture 3 = 8.9, whereas if the surface
Of\

tensions are those of the mutually saturated liquids S = -1.6. Adamson (1967)
DA

states that for low surface tension liquids (e.g. organics) in contact with 

water the final spreading coefficient will be close to zero or negative. Thus 

the film-drop mechanism of Akers and Turner (1962) should not be realised in 

practice. However, in the experiments reported by Akers and Turner (1962) all 

three of their postulated mechanisms were observed.

The descriptions of the condensation mechanisms given above, although 

apparently different are in fact quite similar, that is the standing drop type 

mechanism observed by 3err.ha.rdt et al (1972) would be like the type (3) 

mechanise described by Hazelton and Baker (1944) when the large water drops 

rolled from the surface. Also if the watejr channels in Akers and Turners 

(1962) description were touching the metal surface instead of the organic film 

as described, this too would be similar to the other mechanisms.

It is apparent from the above discusslor. that the heat transfer coefficient 

is dependent on condensation mechanism. This mechanism is influenced by tube 

diameter, condensate composition, condensation rate and tube surface properties. 

The manner in which these variables effect the mechanism is uncertain, 

but it would seem that increasing the tube diameter changes the mechanism from 

a film-drop to a channelling flow. An increase in the water concentration on 

the tube also causes a film drop mechanism to revert to channelling flow.

Hazel ton and Baker (1944) have stated that changing from film drop to 

channelling flow increases the heat transfer coefficient. Therefore the

• n



increase in heat transfer coefficient with increasing tube diameter can be 

attributed to a change in mechanism. Whether this is also true for horizontal 

tubes cannot be said but it seems likely.

2.4.2 Multicomponent systems

Very few papers have .--en published which deal with mulLiJompor.er.t 

mixtures of vapours which form immiscible liquid phases ? two of the more recent 

papers being due to Yusofova and Neikducht (1970) and Barnea and Mizrahi (1972),

Yusofoya and Neikducht (1970) condensed a steam petroleum mixture 

("Shirvanneft") on the inside of a horizontal tube. Vapour velocities up to 

15 m/s were used in these experiments. The correlation presented contains six 

empirical constants and was derived specifically for the particular mixture 

and experimental conditions studied.

Barnea and Mizrahi (1972) propose that for a kerosene steam mixture 

h a (Q/A) " whereas the :.\;sselt ieper.der.ee is h a CO/A)"1" 

The authors point out that the condensation process is extremely complex, 

since the temperature ~r.d co~oosition are continuously changing along the 

length of the condenser.

The paper does serve to point out the dangers in assuming a Nusselt type 

dependence for predicting heat transfer coefficients for such complex mixtures.

2.4.3 Models and correlations

Most authors have presented some form of empirical correlation 

and/or model of the condensation process. The correlations and models can be 

classified into three basic types:

a) Homogeneous models, these usually use Nusselts equation with the 

physical properties averaged in some manner.

b) Shared surface models, these assume that the two liquid phases form 

seperate films which do not interfere with one another.

c) Other models, these usually start with specific assumptions on flow 

patterns, or are derived empirically using intuitive mechanistic

L.



arguments.

Not all of the existing correlations will be mer.-l — ed in the following 

sections since some of irie~ apply only to a single specific system. The 

correlations not included can, however, be found in -able 1.

2.4.3.1 Hor.ccer.-ou3 models

The first correlation of this type v=.s presented by Baker 

and Kuelier (1937), the equation is as follows,

2
1
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-3.23

(2.12)

where

k1 is a volume average of the pure liquid thernral conductivities,
G V

C , p and \ ere weight averages of the specific heats, densities and

latent heats of the pure liquids respectively.

is the viscosity of rhe wall wetting phase.

Q is the heat Iced of the wall wetting phase. 

Q is the total been load.

The constant in erua.ion (2.12) is not dimer_siunless and is valid 

only for the British engineering system of units. This equation

ate for ~e/:er end Mueller's cv.r*

The equation preserved by Kawaski et al (1972) to correlate data obtained 

using vapour crossflow ever various diameter tubes is,

Nu = O.C295 (Ga. Ku. Pr.) 4 Re \ (2.13)

This may be rewritten as

h = 0.0295
_

(2.14)

where: k 1 , p ' , and ;^'_ ar ? volume averages of the pure liquid thermal



conductivities, densities and viscosities respectively.

X is the weight average of the pure liquid later.- heats of

vapourisation. 

Re is the vapour crossflow Reynolds r.ur.ber.

This correlation predicts their ov/n dara quite veil, but has not been 

tested against other data sets. However, since the correlation is specifically 

for vapour crossflow it is not applicable ro the bulk: of the available 

experimental data, where stagnant or near stagnant vapour conditions have been 

used.

Akers and Turner (1952) presented the following general equation,

h
2

g av ^
= 1.47 L^i (2.15)

where }- Is the viscosity of the film forcing component

~ is the weirht =ver=ce of the pure liruid der_5ities 
•av " - r

k ' Is the vcl'-L-.e-rlc averacre of the cure liquid thermal conductivities av

r is the mass flow rate of the condensate per unit width of condenser 

surface.

If equation (2.15) is compared with equation (2.2) it can be seen that it 

is simply Nusselts equation with averaged physical properties. Akers and 

Turner (1952) stated that: their equation was suitable fcr mechanisms of the 

film drop or film lens type, since for these the major resistance to heat 

transfer would be expected to be that of the organic filr,.

Bernhardt et al (1972) have shown that equation (2.15) predicts the 

majority of the data from several authors to within en sverage error of — 20%. 

2.4.3.2 Shared surface models

The first model of this !<ind was proposed by Kirkbride 

(1933X.His equation is,



h = (Q hf Q h / (Q - ) (2.16)

where ri T.^and h^ are the Nusselt coefficients for components 1 and 2 

respectively.

Q and Q are the heat loads for components 1 and 2 respectively.

This equation is simply the Nusselt coefficients fcr the pure liquids 

weighted on a heat load basis. &kers and Turner (1962) presented equation 

(2.15) in a slightly different form, that is.

h = (a xt h^* b X2 h^ / (= v± + b ;,,,) (2.17) 

where

a and b are the weight fractions of components 1 arid 2 in the condensate.

Akers and Turner recommended that equation (2.17) should be used for 

channelling flows. They also recommend the equation be multiplied by 0.8 in 

order to predict their own experimental data.

Bemhardt et al (1972) proposed the following general correlation,

h = v. rv, - v^ K (2. IS)

v^ and v are rhe volume fractions of ccmponents 1 and 2 in the condensate. 

This equation weights the Nusselt film coefficients on a volume fraction 

basis. 3ernhardt et al (1972) have shown ~h=t equation (2.18) predicts the 

existing -data, for various systems, to within an average error of - 15.0%.

However, if the above equation is compared with dB~a taken on tube 

diameters less than 25.4 mm (1.0 in) o.d. it does not predict the data 

well. This is expected since the ecruatior. r.= s the Nusselt 

diameter dependence and it was shown earlier that the dependence for the 

"immiscible condensation case" is opposite to that of Nusselts equation. 

2.4.3.3 Other models and correlations

Baker and Tsao (1940) presented two empirical equations for 

evaluating the heat transfer coefficients T namely,



h / (1 - u p0/ ) = [500 / (1 - C.OCB5 v )] + 80 (2.19) 
o

and

h = [366C1/DJ (1 - u-^ ) / (1 - O.C!35 v ) j + 1.67/D. O
, (2.20)

wh-re D is the tube diameter in feet, 
o

v is the volume fraction of component 2 in the condensate.

The authors state that the above equation should only be used for tube 

diameters between 12.7 mm (0.5 in) and 38.1 m (1.5 in) o.d. This warning is 

justified since both of the above equations exhibit strange behaviour at tube 

diameters outside the quoted range.

Hazelton and Baker (1944) attempted a theoretical derivation in their 

study. They used a model based on the channelling mechar_ism, but found they 

could not compute the areas occupied by the two liquid films. Eventually 

they applied the model to the film drop mech=nism, the resulting equation for 

a vertical tube ceir.g,

h = a. = C.94; (2.21)

The above equation failed ~o correlate their own data, snd finally the 

following empirical correlations were derived. For vertical tubes,

•

h = 79 i(a\« + b\ 2 ) / a L , T (2.22) 

and for horizontal tubes

h = 61 [(a X a + b \ 2 ) / a DO« (2.23)

Bernhardt et al (1972) have shown that these equations are capable of 

predicting a large amount of existing data tc v/ithin - 20%, the predictions 

falling outside these limits often being conservative.
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Stepanek and Standart (1958) attempted a theoretical derivation based on 

simple hydrodynamic and heat transfer models. The hydrc-cynamic model assumed 

the action of the floating water droplets on the organic film could be 

considered the same as the action of a water film of equivalent thickness. It 

>/=is also assumed that this water film rlows =.z a ccr.star.- velocity equal to 

that of the surface of the organic film.

The heat transfer model was formulated en the basis that the complicated 

drop shape could be replaced by that of a pillbox, its

diameter being equal to the maximum drop dianeter and its volume being that of 

the drop. A uniform distribution of drop sizes was also assumed.

The above authors failed to arrive at ar. analytical solution due to 

intractable mathematical difficulties. Their analysis did suggest 

the importance of various parameters, namely zhe film temperature difference 

and a surface tension and density ratio effect. Finally empirical correlating 

techniques were employed to derive an equaricn to fit their data. The final 

equation contains several empirical constants, and is valid for horizontal

tubes only. The equation is,•r

h = C.~25 
e

~ 3 2 "
*H *1 P! g

u ^T, D

i
V1 K (2.24)

where

K = * i~f- / > - 4.3c;(i>/=}
vO.62 ,,_.,. ,3.2 
; C^ A )

and
rl

This equation was derived from data treating eutectic mixtures only, and 

thus should be used with great caution for any other mixtures.

Sykes and Marchello (1970) present three correlations in their study,



the first being empirical of the form,

h / h, M = (1.0 - 0.8R) C-IJ n (2.25)
Q IM! f

where n = 0.57R and R is defined as

R =

= 1 - r and r = p / -

The exponent n was then determined by least squares techniques using all 

of the available eutectic data. The value of n was different for each system

considered.

r — r 25 The actual temperature dependence of h in equation (2.25) is ^£, "~ ,

thus if n > 0.25 h will increase as _T, increases. This condition should be
e r

met for all organics with specific gravities < 0.38, for specific gravities

> 0.83 n is < 0.25 and h should decrease ~s JT,_ increases. Comparinc the
e r

above statements witr. 5y<es ar.d Marchelio' s (1970) calculated values of n, it

is evident that of the sever, mixtures considered all but two of them obey the

above rules.

The second correlation was derived from a laminar two film model. Here

they assumed a film of organic flowing adjacent to the tube wall with the water

film flowing over the organic film.

In deriving the equations for this model an algebraic error was ~ace

(see Sykes (1S68) eqtn.D-12 p 121to D-3C p 126), however, when corrected the 

conclusion that the model does not agree with available data still holds.

When comparing their earlier models against experimental data Sykes and 

Marchelio (1970) noticed that the eutectic coefficient was in some cases lower 

than the pure organic coefficient. This led them to postulate the existence 

of a nucleation barrier to steam condensation, that is, with a film of organic 

covering the surface, there are no nucleation sites for the condensation of 

steam. This causes a resistance to heat transfer and hence the overall heat

/ - -7
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transfer coefficient (from vapour to condenser wall) cculd conceivably fall 

below that for the pure organic coefficient.

The final correlation derived from nucleation arguments was as follows,

1 / (X,

-1

(2.27)

where KS = [7.6 - 1.8 (Pr^ - "" x "* ~1

K. =
- 

17.3 x 10 Pr. (1

?r =

Oh = (j-r/p gD cr)?

e "f is the rate of nucleation of water drops on the organic film 

5 = 0.035
°"1

Or the three models proposed by SyJces and iMarchello (1970) the nucleation 

model was the most successful over a wide range of systems, however, the 

empirical expression (equation 2.25) did give a better fit for some systems.

The correlation presented by Tobias and Stoppel (1954) was obtained by 

the use of dimensionless groups deduced from dimensional analysis, the final

equation being,

h =• V 1.0 - 545

mi P2 k2 
m2 PI ka

0.5
0.21

(2.28)

where m and m are the mass rates of condensation for components 1 and 2 

respectively.

The authors recommend that equation (2.28) should only be used within the



composition range 8-98% water.

Recently Marschall and Hickman (1973) presented = purely theoretical 

study of the problem. They applied the conservation ecniations to both the 

liquid and vapour phases in order to solve the concerns-ion problem. The flow 

rr.odel assumed was the laminar two film model of Sykes and Marchello (1970), 

Marschall and Hickman (1973) state that if the film temperature difference is 

greater than 15 C then the heat transfer resistance in -he vapour boundary 

layer may be neglected. Thus in this case the heat transfer resistance may be 

obtained by considering the hydrodynamics of the filir only. Since Sykes and 

Marchello (1970) have previously concluded that the two film model is inadequate, 

then presumably the above model is also inadequate.

Another recent paper (Salov and Danilov (1975)) uses the two film model 

to investigate the effects of variable wall temperature when condensing on 

vertical surfaces or horizontal tubes.

Instead of assuming a constant wall temperature Salov and Danilov (1975) 

use equations describing the wall temperature variation, derived empirically 

from experimental data. The equations used are as fcllcws: for a horizontal 

tube,

TW = ?.. T Z^ cos ? (2.29) 

and for a vertical surface,

T,; = T.. + C + C [ f ) + C / £ 1 (2.30)
«v '» 2 o I ij / 4

where T,, is the mean wall temperature 

C , C , C and C are constants
•L £ -3 ^x

0 is the angle at which T is being calculated 

x is the height at which T is being calculated 

L is the length of the vertical surface. 

The above authors conclude that assuming a const?..-.-: wall temperature

2°



instead of a variable veil temperature has no significant effect en ".? 

calculation of the mean heat transfer coefficient. Whether this conclusion 

would hold if a different model of the heat transfer process were used is not 

known.

Broadly the models and correlations above fall into tv/o m-?in ~re~s:

(1) Empirical — these are usually derived from limited experimental data.

(2) Models - these employ some model of the heat transfer process.

The correlations cf type (1) are usually restricted to the data sets used 

in their derivation. Great care is needed if they are used outside these 

limits.

Correlations of type (2), which use a model of the condensation process 

should be capable of handling any situation for which the model is valid.

One of the main problems in trying to predict heat transfer coefficients 

for immiscible systems is in determining the correct condensation, mechanism 

and hence heat transfer model. As we have seen earlier the way in which 

variables such as tube diE.-r.eter, tube surface properties, condensation rate and 

condensste composition influence the condensation mechanism is not clearly 

understood. In view of the above uncertainties it is not surprising -chat the 

previously outlined r.ocels and correlations break: down under certain circum 

stances. In fact it is perhaps surprising that equations (2.15), (2.13), 

(2.22) and (2.23) are so successful. 

2.5 Conclusions

(1) The heat transfer coefficient obtained during the condensation of 

vapours of imiscible liquids depends on the mechanism of condensa 

tion.

(2) The condensation mechanism is influenced by the tube dicimeter, tube 

surface properties, condensation rate and condensate conposition; 

the way in which these variables effect the mechanism is not clearly 

understood.

(3) Difficulties in the nucleacion of water drops onto the organic film could 

be important. - , N



(4) Most of the correlations ar.d models proposed are limited to *r.e 

experimental data or assumed mechanism used in their derivation. 

Because of the difficulties in determining the condensation rechanism 

the choice of the appropriate heat transfer r.odel is difficu.t. 

Squat ions (2.15), (2.13), (2.22) ar.d (2.22) ?.pp-=r to be —- b-sst

:co%

in certain circumstances.

i-j<4>-ia v-j_vjii» \IL.-~I* v£.J.o/, v r. ̂  i; ^..-^ \^.<^^> ;-^-'_--. LU ^-± _..— --

general correlations, although they too can be out by over — 1(



Chapter 3 

Apparatus and Procedure

3.1 Introduction

It is common industrial practice to use horizontal shell and tube 

condensers % The design of such units for vapours of immiscible liquids is not 

well understood, nor are the mechanisms of bhe condensation process. The 

present experimental facility has been designed in an attempt to improve this 

understanding. A single tube horizontal shell and tube condenser was selected 

for this study because it provides a relatively simple means of obtaining the 

necessary heat transfer and mechanistic data needed to improve our understand 

ing of the condensation process.

A flowsheet and photograph of the apparatus are shown in Fig. 3.1 and 3. la

respectively, the essential features are:-

(1) Vapouriser circuit

(2) Test section

(3) Condensate circuit

(4) Cooling water circuit

(5) Condenser tube

(6) Total condenser

The above items will now be described in detaili

3.2 Apparatus

It was known at the beginning of the present study that the liquids used 

would be both toxic and in some cases highly inflammable, The first considera 

tion in designing the rig was thus safety. The laboratory in which the 

apparatus was built is fully flameproofed, and hence all electrical equipment 

and spark inducing devices had to be either eliminated or flameproofed. 

Ventillation is provided by large fans which suck air from a set of ducts at 

floor level. In case of fire the laboratory is protected by an automatic fire
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Fig. 3.la OVERALL VIEW of the APPARATUS



fighting system,which will flood the laboratory with carbon dioxide gas if 

tripped. Under normal working conditions the system is operated manually, 

since there is a danger that any personel in the laboratory when the system is 

triggered will suffocate.

3.2.1 V'apouriser circuit - Liquid is pumped from the two stainless steel 

reservoirs (approx. capacity 60 litres each) by 0.56 kW compressed air operated 

gear pumps. The flowrate of each liquid is controlled by a globe valve and is 

metered by a rotaroeter (accuracy +_ 2-o%).

The vapouriser consists of three jacketted copper tubes. The process 

fluid flows through the inner (2.54 cm i.d.) tube, whilst steam condensing in 

the annular space between the inner and outer jacket (3.81 cm i.d.) provides 

the heat to boil the liquids. Twisted metal tapes were installed in the inner 

tubes, these ensure good heat transfer and hence total vapourisation of the 

liquids.

All three tubes are independently heated, their respective lengths being 

1.2 ro, 0.6 m and 0.5 m, giving a maximum heated length of 2.3 m.

The resulting vapours are then delivered to the test section by a 2.54 cm 

i.d. copper pipe. The whole of the vapouriser circuit is lagged with 

fibreglass.

3.2.2 Test Section - The condenser tubing runs through the centre of a 

21 cm i.d. stainless steel shell 92 cms in length. The shell has three 

windows (61 cms x 5.0 cm) spaced 120 apart (see Fig»3-2), these are provided 

so that observation along the whole length of the condensing surface is 

possible. Special heat resistant glass was used for these windows.

The incoming vapours enter the shell through a bent copper tube 1.3 cm 

i.d., (see Fig.3.2) sixteen 0.7 cm diameter holes provide the vapour flow area. 

The purpose of this tube is to ensure that the vapour flows parallel to the 

condenser tube.

Condensate is collected from the central portion of the tube in an
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inclined trough (61 cr^s x 5.0 cms), it passes out of the test section via a 

1.3 cm i.d. copper pipe. The condensate collected in the shell also drains 

through a 1.3 cm i.d. copper pipe.

Excess vapours ar.c condensate are removed at the end of the shell 

opposite to the vapour Inlet. The excess vapours pass through a 2.54 cm i.d. 

copper pipe to the total condenser.

The vapour temperatures at the inlet and outlet ends of the shell are 

measured by stainless steel sheathed chromel—alumel thermocouples. Test 

section pressure is determined by a pressure gauge and a water manometer. The 

shell is also lagged wrth fibreglass.

3.2.3 Condensate circuit - The condensate passes from the shell drain line 

into either a sampling vessel or through a water cooled line to the separator. 

A glass vessel 23 cms o.d. and 38 cms in height is provided as the separator,

When running the rig in practice the condensate is drained from the separator 

into storage tanks where it is allowed to settle before being returned to 

.the main reservoirs.

3.2.4 Cooling Water circuit - Cooling water is pumped from a large 

storage tank via a 7.5 :<W centrifugal pump through a 5.0 cm i.d. copper pipe to 

the preheater. From the preheater water is delivered to the test section at g 

set temperature autom=iicc.lly controlled to +^ O.SoC. Heating is provided 

by condensation of stears in the tubes of a shell and U tube condenser. The 

unit is approximately 1.5 ~ long and is rated by the manufacturer at 150 kW.

A thermocouple in -he cooling water outlet pipe provides a signal to a 

feedback control loop which adjusts the steam valve setting. The controller 

operates in the proportional + integral mode.

r

From the test section the water flows back to the storage tank through an 

8.0 cm i.d. galvanised iron pipe. The water flowrate is determined by a 3.06 

cm orifice plate situated in the line. The pressure drop across the orifice

3



plate is measured bv =r. inverted water manometer, the orifice plate was 

calibrated by-measuring ~he v;ater flowrate (by collecting a known weight in a 

known time) and noting the corresponding manometer reading.

The cooling water temperature is determined at the inlet and outlet ends 

of the test section by two stainless steel sheathed chromel-alumel thermocouples, 

these were calibrated acains~ National Physical Laboratory (N.P.L.) tested 

mercury in glass thermometers and estimated to be accurate to jf 0.1 C. An 

independent check on the cooling water temperature rise is made by using a 

system of four thermocouples arranged to give the difference in temperature at 

the inlet and outlet ends of the test section. This device was calibrated 

against two N.P.L. calibrated platinum resistance thermometers and has an

Qestimated accuracy of jr_ 0.05 C.

All thermocouples are connected to a "Modulog" data logging system, 

capable of handling up to fifty channels of input data.

3.2.5 Condenser tube - Copper tube 2.54 cm o.d., 1.905 cm i.d. and 

122 cms long is used ir. the test section. Only 61.0 cms of tube are used when 

taking experimental data. Two such tubes were manufactured, the first had nine 

thermocouples (copper-constantan) and the second twelve arranged as shown in 

Fig. 3.3.

The thermocouples were embedded in the tube wall in the following manner. 

A small copper plug was soldered to the end of a constantan wire and the 

surface of the plug was copper plated. The plug was then soldered into a hole 

drilled in the tube wall, the thermocouple leads being taken out through the 

centre of the tube. Fig. 3.3 shows the details of the above procedure. When 

all the thermocouples had been installed the plugs were filed flush with the 

tube surface. A copper wire soldered to one end of the copper tube provides 

the other thermocouple lead.

In order to provide a condenser with uniform surface properties the 

following procedures were adopted. The nine thermocouple tube was polished 

with emergy paper, the final finish being achieved with grade four polishing 

paper* It was then thorough .y washed with acetone and distilled water.

- 38 -
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Before taking any experiment E.1 measurements the tube v;=s used as a steam 

condenser until it consistently produced filmwise condensation over the 

whole tube length, this process took twenty days.

The twelve thermocouple tube v;as first copper placed and then gold 

plated before use. T'-.ls procedure was adopted because B. gold planed surface 

would not be affected by any of the chemicals used in riis study and therefore 

a reproducable surface would be obtained.

3.2.6 Thermocouple calibration - The thermocouples in the condenser tubes 

were calibrated in two ways; in the first method the tube was placed in a glass 

jacket and water from a constant temperature bath was passed through the jacket 

and tube back to the bath. Four previously calibrated chromel-alumel thermo 

couples were used to measure the water temperature. All of the condenser tube 

and water thermocouple outputs were recorded by the "Modulog" data logger, and 

printed out by an I.B.M. typewriter. The sampling speed was usually set at 

1 channel/s but could be increased to 2 ch/s if necessary, the sensitivity of 

the data logger was to within _+ lymV and the estimated accuracy of the calibra 

tion was _+ 0.2 C. The second calibration method was =n "in situ" procedure 

developed to check that no drift occurs during operation. In this method the 

appratus is operated with only the cooling water supply turned on, since the 

temperature at the inlet and outlet end of the tube are known. The heat lost 

through the tube by convection and radiation can be estimated, hence the error 

in assuming the water temperature is the same as the tube surface temperature 

can be calculated. The accuracy of this method has been estimated at better 

than +_ 0.2 C.

3.2.7 Total condenser - 'The excess vapour from The test section flows 

through a 2.54 cm i.d.. copper pipe into the total condenser. This consists of 

3.6 m of jacketed copper tube. Vapour flows in the annular space between the 

jacket (3.81 cm i.d.) and the inner tube (2.54 cm i.e.), while cooling water 

from the mains flows through the tube. A 1.27 cm i.e. copper tube fixed into 

the top section of the total condenser acts as a vent line for any incondensable 

gases.

- 40 -



3.2.8 Liquids used - l~:r.ir.£r = lised water was used in all experiments.

The toluene used ;;as a sulcr.ur free grade obtained from Hay and Baker,

while the trichloroethylene was a purified grade obtained from B D H Chemicals

Ltd.

3.3 Procedure

The start up procedure v;as as follows:

(1) An ice water mixture was placed in the cold junction dewar flasks.

(2) The cooling water supply to the total condenser was turned on

(3) The cooling water supply to the test section was turned on and the 

automatic controller adjusted to give the required water temperature.

(4) Steam to the preheater and the vapour iser was turned on

(5) The fluids to be used were pumped to the vapouriser at the desired 

flowrates.

(6) The valve on the ver.t line was opened slightly .and left open. 

Operating at pressures greater than atmospheric then ensures that any 

incondensable gases are continuously vented from the system. The effectiveness 

of this procedure is discussed later (see section 6.2).

When the cooling water inlet temperature, condensate flowrate and several 

wall temperatures were constant a measurement was made. The time taken from 

start up to the first measurement was typically two hours. Approximately ten 

to twenty minutes were required to bring the system back to steady state after 

a small change in the cooling water temperature was made.

The readings taken were as follows:

(a) Condensate volume, collection time and temperature.

(b) Orifice plate manometer reading and manometer fluid temperature.

(c) Test section pressure gauge and manometer readings.

(d) Thermocouple outputs, these are recorded continuously whilst 

taking the other readings.

(e) Rotameter readings on the input lines to the vapouriser.

(f), Barometric pressure

Using the above measured values the data v;ere processed using a computer 

programme. The physical property correlations used are listed in Appendix A.



Chapter 4 

Results

4.1 Introduction

In this chapter ~.e experimental results are presented. The first 

s-2ctio;i deals with the p-j_re component data and the second binary mixture 

data. All of the data presented below in graphical form are tabulated 

in detail in Appendix 3. A detailed error analysis of the results is given 

in Appendix G. From the analysis it can be seen that the measured heat 

transfer coefficients are accurate to within +_ 15.0% for film temperature 

differences greater than approximately 4.0°C.

4.2 Pure component data

The pure components used were steam, toluene and trichloroethylene; 

the tube used was the oxidised copper tube described earlier (Chapter 

3 section 3.2.5). All three systems condensed in the filmwise manner.

The steam data are shown in figure 4.1 and tabulated in table Bl, toluene 

data are*shown in figure 4.2 and tabulated in table B 2 while the trichloro— 

ethylene data are shown in figure 4.3 and tabulated in table B 3. 

4.3 Immiscible liciuic data

4.3.1 Heat transfer fata

The mixtures usec vere steam—toluene and steam—trichloroethylene. 

Both mixtures were condensed on the oxidised copper arid gold plated tubes.

The steam-toluene data for the oxidised copper and gold plated tubes 

are shown in figures 4.4 and 4.5, and tabulated in table 3 4 and B 5 

respectively, while the steam-trichloroethylene data for the oxidised 

copper tube and gold plated tube are shown in figures 4.6 and 4.7, and 

tabulated in table 3 5 and 3 7 respectively.

4.3.2 Observed flow rattems

The flow pattern observed depended on the tube surface being used. 

For the oxidised copper tube the mechanism for the steam-toluene mixture 

was as follows. Both phases formed irregular films on the tube surfaca
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(see figure 4.S). The orcrar.ic film contained v/ater drops which adhered 

to the tube surface. Or. or in these water drops smaller organic drops 

were observed. These were moving very rapidly. Also the water film had 

organic drops in it, however, in this case the drops moved freely with 

the water film.

The steam-trichloroethylene condensing or. the oxidised copper 

surface gave a flow pattern similar to the one described above (see 

figure 4.9). However, in this case the rivulets were much more clearly 

defined forming discrete bands on the condenser surface.

The flow pattern for the steam-toluene mixture condensing on the 

gold plated tube was as follows. The toluene formed a film, and the water 

standing drops within this film. Rivulets of water were also observed 

(see figure 4.10). Small water drops flowed on or in the organic films. 

Again small organic drops flowed on or in the standing water drops. 

Further it was observed that when a standing drop drained from the surface 

a rivulet was formed, -his contained flowing organic drops. Another 

phenomenon was the existence of patches under the water drops, these 

disappeared when the organic film flowed over them.

The flow regime for the steam-trichloroethylene mixture on the gold 

plated tube was similar, to that for the steam-toluene mixture, however, 

in this case their were no continuous rivulets and far more standing 

drops (Figure 4.11).

When the larger standing water drops drained a track of small water 

drops was left in their wake.



100r
90
80
70
60
50

o
o 

<M

C
a

30

c 20 o;

o
" 10 fc g««- o 
(/) O

7
6

E 
3

/1<1 2 3 4 5 6 78910 20 30 40 50 60 70 100
Film Temperature Difference °C

FIG.4-1. FILM HEAT TRANSFER COEFFICIENTS FOR THE CONDENSATION 
OF PURE STEAM ON AN OXIDISED COPPER TUBE.

44 i/ •



10

9

8

7

6 
o
o

<NJ C

3:

_§ 
01

1

C 
0»

O 
O 
O
i_ 
0)

^2- xx
O o, x

xx

I i I T

xx x xx
X

Jl_______!_____f , f———l i
10 - 20 30 40 . 50 60 70 60 90100

Film Temperature Difference °C

FIG. A-2.FILH HEAT TRANSFER COEFFICIENTS FOR THE CONDENSATION 
OF PURE TOLUENE ON AN OXIDISED COPPER TUBE.



u o
 

(N

E c tt>
 

U c a £
 

"o X E iZ

10 9 8 7 6 1 1

F
l

I
I

1 
I 

I 
I 

I 
I 

I

I 
I 

I 
I 

I 
I 

I

X 
X

X
X

X
X 1

1
I_

_
I_

I 
II
 

I
30

 
40

 
50

 
60

 
70

2 
3
4
5
6

7
8

9
1

0
 

20
 

F
ilm

 
T

em
pe

ra
tu

re
 

D
iff

er
en

ce
 

°C

G.
 4

-3
. 

FI
LM

 
H

E
A

T 
T

R
A

N
S

F
E

R
 

C
O

E
F

F
IC

IE
N

T
S

 
FO

R
 

TH
E

 
C

O
N

D
E

N
S

A
T

IO
N

 
TR

IC
H

LO
R

O
E

TH
Y

LE
N

E
 

O
N 

AN
 

O
X

ID
IS

E
D

 
C

O
P

P
E

R
 

T
U

B
E

.
O

F 
P

U
R

E



o o
 

CM

E 0) OJ o o c a a> £
 

iZ

10 g 8 7 6 5 2

FI
G

.

1
I

I

x 
x

X
X

I 
I 

I 
I 

I 
M

1
I

I 
I 

I
30

40
 

50
 

GO
2 

3 
4

5
G

7
8

9
1

0
 

20

F
ilm

 .
T

em
pe

ra
tu

re
 

D
iff

er
en

ce
 

°C

.F
IL

M
 

H
EA

T 
TR

A
N

S
FE

R
 

C
O

E
FF

IC
IE

N
TS

 
FO

R
 

TH
E 

C
O

N
D

E
N

S
A

TI
O

N
 

O
F 

S
T

E
A

M
-T

O
LU

E
N

E
M

IX
TU

R
E

S
 

ON
 A

N 
O

XI
D

IS
ED

 
CO

PP
ER

 
TU

BE
.



oo

o o E | c o 0) o o 0)
 

«*
- (/) c.
 

a o <D X

10 9 8 7 6 5 1
I

I

o 
. 

o 

o 
o

%
 

0

I 
I 

I 
I 

I 
I I

1
I

1
_

I 
! 

L 
I 

I
1 

2 
3 

A 
5 

6 
7 

8 
9 

10
 

20
 

30
 

40
 

50
 

60
 7

0 
80

Fi
lm

 
Te

m
pe

ra
tu

re
 

D
iff

er
en

ce
 °

C

FI
G

.4
-5

. 
FI

LM
 

H
E

A
T 

TR
A

N
S

FE
R

 
C

O
E

FF
IC

IE
N

TS
 

FO
R 

TH
E 

C
O

N
D

EN
SA

TI
O

N
 

O
F 

ST
E 

A 
M 

- 
TO

L 
U

E
N

E
M

IX
TU

R
E

S
 

ON
 

A 
G

O
LD

 
PL

AT
ED

 C
O

PP
ER

 T
U

BE
.



o o
 

CM
E c

 
<u O

f o
 

o 0> H
— U) c a a (U X

10 9 8 7 6

•*-
 

2

5,
XX

 X
 X

I 
I 

I 
I 

I 
II

I
I

1 
I 

1 
I 

1 
I

5 
6 

7 
8 

9 
10

 
20

 
F

ilm
 

T
em

pe
ra

tu
re

 
D

iff
e

re
n
ce

 
°C

30
 

40
 

50
 

60
 

70

F
IG

.4
-6

. 
F

IL
M

 
H

E
A

T 
T

R
A

N
S

F
E

R
 

C
O

E
F

F
IC

IE
N

T
S

 
FO

R
 

TH
E 

C
O

N
D

E
N

S
A

T
IO

N
TR

IC
H

LO
R

O
ET

H
YL

EN
E 

M
IX

TU
R

E
S

 
ON

 A
N 

O
XI

DI
SE

D 
CO

PP
ER

 T
U

BE
.

O
F 

S
T

E
A

M
 

-



cs

c 'o 0;
 

O
 

O U) C
. a o a> X E LI

10 9 8 6 6

°o
 

o 
°o

1 • 
1 

1 
1 

1 
1 1

1
1

1 
1 

1
5 

6 
7 

8 
91

0 
20

 
Fi

lm
 

T
em

pe
ra

tu
re

 
D

iff
er

en
ce

 °
C

30
 

40
 

50
 

60
 7

08
03

01
00

FI
G

. 4
- 7

.
FI

LM
 

H
EA

T 
TR

A
N

S
FE

R
 

C
O

E
FF

IC
IE

N
TS

 
FO

R 
TH

E 
C

O
N

D
E

N
S

A
TI

O
N

 
OF

 S
TE

AM
-T

RI
CH

LO
RO

ET
HY

LE
NE

M
IX

TU
R

ES
 

ON
 A

 
G

O
LD

 
PL

AT
ED

 
CO

PP
ER

 T
U

BE
.



FIG. 4.8 FLOW PATTERN for the CONDENSATION of STEAM-TOLUENE 
MIXTURES ON AN OXIDISED COPPER TUBE

FIG. 4.9 FLOW PATTERN for the CONDENSATION OF STEAM- 
TRICHLOROETHYLENE MIXTURES ON AN OXIDISED COPPER TUBE



FIG. 4.10 FLOW PATTERN for the CONDENSATION OF STEAM-TOLUENE MIXTURES
on a GOLD PLATED TUBE

FIG. 4.11 FLOW PATTERN for the CONDENSATION OF STEAM- 
TRICHLOROETHYLENE MIXTURES ON A GOLD PLATED TUBE
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CHAPTER 5

Theory 

5.1 Introduction

This chapter considers the prediction of the heat transfer coefficients 

obtained when condensing vapours of immiscible liquids. In deriving a 

model the first consideration is the condensation mechanism. Two distinct 

mechanisms have been observed in this study (Chapter 4 section 4.3.2), a 

channelling mechanism and a standing drop mechanism.

Two models will be presented, the first assumes a channelling flow 

the second a standing drop mechanism. The agreement between the models 

and experimental data is discussed, along with the limitations, in chapter 

6. 

5.2 Channelling model

The following assumptions are made in order to simplify the model:

1. Both liquids form Nusselt type films and these obey the usual 

Nusselt assumptions (see Chapter 2 section 2.2)

2. The temperature drop through the two films is equal and is 

given by ATf = ^e-^

The total amount of heat transferred through the tube wall is 

Q = Qa + Q2 (5.1)

where: Q-i (=hM A1 ATf ) is the heat transferred through film 1,

(=hxt^A^ AT) is the heat transferred through film 2, 
N2 2 f

h . is the Nusselt coefficient for film i and 
Ni

A. is the area occupied by film i. 

From the above definitions,

Q = ChNlAl + W *V 

but since Q = hA AT, where h is the overall heat transfer coefficient



from the vapour liquid ir.-erf ace to the tube wall and A is the total area, 

then

n = A \H /A + A0h,._/A (5.3) •i i"l t. -\/.

Let the volumes of liquid 1 on the tube surface be V , then the area 

occupied by this liquid is

Al = Vl/5 i thus ?ivin<3 A2=(v - va )/62' (5.4)

where 6 . is the film thickness of film i and V is the total volume of 

liquid on the tube surface.

From (5.4) it is apparent that

Vi „

where v, = V /V is the volume fraction of liquid 1 on the tube surface, 

Since the two liquid filnis are laminar then,

htn " V 5 i ^ ̂12 - k2/5 2- (5 ' 6)

Combining(5.3), (5.5) and (5.6) gives

h = h /(1+Y) + hjj^Y/Cl+Y), (5.7) 

k h 1
where Y = • ( - - 1) (5.8) 

*2 Nl 1

To use equation (5.7) the volume fraction v. must be determined. For 

the channelling flow mechanism, since there is no liquid hold up it is 

reasonable to assume that v^ is the volume fraction of component 1 in

D



tr.e -or.densate. Hence using this fraction the value of the heat transfer 

coefficient can be calculated. Trie agreement between equation (5.7) 

ar.c ihe experimental data is discussed in Chapter 6.

If it is assumed that the -r.ickness of the two films are ecu^l 

ther. equation (5.8) becomes

- - 1, (5.9) 
1

and hence equation 5.7 reduces to

h = VlhNl + (1"Vl )hN2

Thus it is apparent that the equation presented by Bernhardt et al (1972), 

without derivation is a special case of equation (5.7). For the case of 

stean -richloroethylene and steart— toluene mixtures the predictions given 

by equations (5.7) and (5.10) do not differ by more than _+ 5%. 

5.3 Standing drop model

For this model the condensation mechanism is assumed as follows. 

The phase which best wets the wall forms a film adjacent to the wall. 

The other phase forms drops, these drops adhere to the -cube surface until 

they reach a certain critical size when they roll from the surface.

It is further assumed that cnly drops protruding through the film 

tak.e part in the heat transfer process, the temperature drop across the 

fi3ji and drops is A Tf and the film is a Nusselt type film.

The heat transferred through a drop is given by,

where h is the heat transfer coefficient for the drop, 
d



Fatica and Katz (1949) have shown that the heat transfer coefficient 

through a drop of base diameter d and contact angle Q is

hd = k f (0)/d, (5.12)

where k is the thermal conductivity of the liquid in the drop and f(0) is a 

function of the contact angle.

To calculate the heat transferred through all drops of diameter d it 

is necessary to know the dropsize distribution. Since there is no 

information available concerning distribution functions for the case of

immiscible liquid condensation , it will be assumed that the distribution 

function is of the same form as that used for dropwige condensation studies. 

A commonly used distribution (Tanaka (1975)) is given by

N = c cT, (5.13)

where N is the probability density of time averaged dropsize distributions 

and c and n are constants. The number of drops in unit area of diameter 

d in the size range d •»• dd is hence Ndd and thus the total amount of heat 

transferred through drops of diameter d is given by

kf (0) n d2
. AT . - —— . N dd A, (5.14) 
±4

where A is the total heat transfer area.

The total heat transferred through all drops in the size range dmax

to d is civen by integrating equation (5.14), on substituting equation 
mm

(5.13) this becomes

t



max
-k f (G)

dd. (5.15)
, d . 4' min

The total heat transferred through the wall is

(5.16)

where Q = h A T A and CL, is the heat transferred through the film i.e, 

h AlVJ^.,. Combining 5.15 and 5.16 gives

h ATf =
max

d . mm

Equation (5.17) can be written

rd

h =

max
dn+1 dd + (1-a) (5.18)

d .min

where a is the fractional area occupied by the drops. From equation (5.13) 

it is apparent that,

max

dd (5.19)

' d . 
mm

Integrating equation (5.13) and (5.19) and combining gives



h = k f a(n
,n+2 d — 
max
,n+3 d — 
max

n+2 
min
n+3
min

+ (1- a ) h.
NF

(5.20)

Thus to find h, the unknowns in equation (5.20) have to be determined, that

is d , d . , Q and n. must be known, max mm

The maximum drop diameter is the diameter of the critical drops, that 

is the diameter of those drops which are just large enough to roll from

the surface. Fatica and Katz (1949) give the following equation for dmax

max

- cos Q )

p g sin a
(5.21)

where g- is the interfacial tension between the two liquids, 0 and Q the 
ij K A

advancing and receeding contact angles, p the density of the drops, a * the 

angle of inclination of the surface and f (QK a function of the contact 

angle given by

f («) a = (5CS/90 - sin 2Q) (1/8 sin 20)

The minimum drop diameter is the diameter of that drop having a height 

equal to the film thickness, that is

d . =2 6 sin O/ (1 - cos £)min (5.22)

At the present time there is little or no information available 

on the contact angle values and the drop size distributions. However, 

to try and test the validity of the model a contact angle of 70 (the 

value for water on gold) will be used and the constant n determined by 

fitting the steam-toluene and steam-trichloroethylene data obtained (this



study) on the gold plated tube. Since d in equation (5.21) cannot
max

be determined, the observed experimental value of approximately 3.0 mm 

will be used. The final equation derived in the above manner (see 

Appendix C for details) is,

h = 13.362 a
0.003 - d .
_______nan

0.0032 - d2 . 
mm

+ (1-a) h.NF (5.23)

The units used in the above equation must be in S.I. That is the constant

13.362 has the units W/mC.



Chapter 6 

Discussion and Conclusions

6.1 Introduction

In this chapter the results presented in chapter 4 ^re discussed in 

detail. The chapter is divided into five nain sections. ST. the first four 

the topics discussed are the pure component data, insnisclbla liquid data, 

comparisons between theory and data and nucleation phenomenon respectively. 

The fifth section presents the conclusions and recorrrner.doti-r.s.

6.2 Pure component data

It was decided early in the present study that pure components 

would be condensed; this would not only add to existing data but also serve- 

to test the reliability of the experimental apparatus sr.d :perating procedures,

As was stated previously (chapter 2 section 2.2) The first attempt to 

predict condensing film neat transfer coefficients vas m,=ce by Nusselt 

(1916) .(equation (2.1)5. Since then several authors have improved the 

Lusseit analysis by relaxing the various assumptions m=ce in the original 

analysis. One of the assumptions which so far appears to be relatively 

rigid (particularly for horizontal tubes) is the const=nr vail temperature 

assumption. Salov and 3arJ.lov (1975) have shown that the wall temperature 

variation around horizontal tubes for both pure vapours and vapour 

mixtures of immiscible liquids is given by the empirics! equation,

TT . = T. f + C cos 0 ".Ectr.. 2.29) 
V* // 1

Salov and Danilov (1975) used equation (2.29) to show that when condensing 

immiscible liquid mixtures the variation in wall temperature made no 

significant difference to the mean heat transfer coefficients obtained, 

they used the laminar two film model to show this. However, they did 

not study the case of pure components, this case is analysed in detail in 

appendix E.

From the curves in appendix E it is apparent that if ir.e parameter



W is sufficiently large the variation in heat trar.£f~r c~efricient from 

the isothermal case is quite large, a 9% increase ir. l~cal coefficient 

occuring at the top of tube with o:^0.3. However, the rear, coefficient 

is only 5% larger with values of o> ~ 0.3. The values :f _ :f practical 

interest are usually less than 0.3 and hence the increase ir. mean 

coefficient will not be greater than 5.0%.

It is apparent from the above discussion and chapiar 2 section 

2.2 that Nusselts equation should be adequate for predicting the pure 

component data.

The pure component data obtained in this study are compared with 

the Labuntsov (1957) form of the Nusselt equation i.e.,

h_ = 0_ h. r (Eqtn. 2.~' 
Li L N

the crly correction taker, into account in deriving ecuc-ion (2.7)

being the variation ir. physical properties across the cor.der.sate film.

The comparison berveen equation (2.7) and the s-e=m da~a is shown 

in figure 6.1; as can r.e seen the agreement is excelLer-. Figure 6.2 shows 

the comparison for the toluene data, here the predictions are lower than 

the data, the maximum deviation occuring at low filnt tesrpersture differences, 

The tricnloroethylene ca~a is compared against equatior C2.~) in 

figure 6.3, the agreement is again good, however, the predictions at film 

temperature differences above about 7.0 C are high by vp to 20%.

It can be seen from figures 6.1, 6.2 and 6.3 that ihe present data 

agree with Nusselts equation to within ̂  20.0% for all ^hree components. 

Thus Nusselts analysis is adequate for predicting condensation heat transfer 

coefficients for the above fluids, es would be expecnec (see chapter 2 

section 2.2).

The above comparisons thus show that the method of operating the
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experimental apparatus, particularly the r.ethod of purging lr.czr.densable 

gases, was satisfactory. That is no major deviations frcrc "<e .Vusselt 

predictions exist, as would have been expected if ir.ccr.der. ==ble gases 

had been present. 

6.3 Immiscible liquid data

6.3.1 Effect of film temperature difference

From the literature survey (chapter 2) the

effect of film temperature difference on film heat transfer coefficients 

is not certain. The data obtained in this study however,, show =-i 

unmistakeable trend, that is as the temperature difference increases the 

heat transfer coefficient decreases. Figure 6.4 shows that -his trend occurs 

for all combinations of mixtures and surfaces used.

6.3.2 Effect of the tube surface

It is apparent from the results (chap-er 4) that: -he flow regimes 

on the oxidised cooper and gold plated tubes are different. On uhe oxidised 

copper surface the water-toluene and water-trichloroethylene mircures flow 

from the rube in essentially the same manner, that is in rivulets flowing 

side by side (channelling flow). This mechanism is very similar to the 

channelling mechanise postulated by Hazelton and Baker (1944^.

The flow mechanism for the water-trichloroethylene mixture on the 

gold surface was of the standing drop type previously described by 

Bemhardt et al (1370) for the condensation of various organic-szeam 

mixtures on a vertical gold plated surface. Here the water forned irregular 

shaped standing drops in the flowing organic film. These crops rolling 

from the surface after reaching a certain critical size. It was also 

observed (from cine films) that there were many tiny water droplet;; 

flowing with the organic film* Whether they are in or on the surface of the 

film is not known.
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The flow mechanise for the water-toluene mixtures on the gold surface 

was similar to that described for the water-trichloroeihylene mixtures, 

In this case however, there were far fewer standing water drops and many 

more tiny water drops fl swing on or in the orcanic filr.. Also when the 

large drops drained fron the surface they formed rivulets which persisted 

for considerable periods of time, whereas for the water-trichloroethylene 

case, when the drops drained they left only a trail cf smaller drops in 

their wake.

The change in mechanisa when condensing on oxidised copper or gold 

plated surfaces could be caused by a change in wetting properties. 

For instance pure steam condensing on a clean oxidised copper surface 

will spread over the surf ace (i.e. the contact angle is zero)), whereas 

pure water on a gold surface forms crops with a finite contact angle 

(approximately 70 ).

In the condensation case, on the oxidis_*d copper surface, both 

liquids spread over the surface and in competing for the surface form 

adjacent films. Further vapour condenses on these filrs, the organic 

vapour on the organic fijja and the steam on the water film.

For the gold surracs the vapour initially condenses to form an 

organic film (organics spread on gold) and standing water drops. It 

would then seem that further water vapour can only condense on those 

water drons which protrude through the organic film* Eventually these 

drops would become large enough to roll from the surface under the action 

of gravity. When the crops roll they sweep a track through the organic 

film and other drops Ln their path, a track of small drops being left 

in the drop wake for the steam—trichloroethylene case and a small rivulet 

of water in the s team-tt luer.e case.

In the steam-toluene case the water rivulet ever.tuilly drains and the 

organic film flows in over the surface, small water cjrcps being left

' ~7

0 I



as "islands" in the organic film.

For the steam-trichloroethylene case it may be speculated that the 

following processes occur simultaneously:

1. The drops in the trail grow by condensation

2. The existing organic film spreads over the bare surface

3. Steam and organic vapour condense on the bare area, the organic 

forming a film and the water drops.

Thus again we have an organic film plus standing water drops. The 

above processes continue indefinitely.

Although the above interpretations explain the major features of the 

observed mechanisms,there are still several unresolved questions regarding 

the origin of the small organic droplets and the origin of the water 

droplets.

Bemhardt et al (197C) speculated that the small organic drops (present 

in or on the water fii~s =r.c crops) were nucleating or. rnicroscopic dust 

particles on the surface of the water, also the mcving water drops could 

have the same origin.

A further possibili-y is that the organic is condensing directly 

onto the water drops. If this were the case it is possible that a nucleation 

barrier exists to the condensation of the organic on the water. Also any 

water condensing directly onto the organic film might also have to overcome 

a nucleation barrier. A more detailed discussion on nucleation phenomenon 

is given in section 6*5»

Another mechanism by which droplets can be produced in the respective 

films and drops is as follows. Although it is often stated that the 

organic-water mixtureiused in immiscible condensation studies are totally 

immiscible this is rarely the case. Figures 6.5 and 6.6 show the solubility 

curves for water-toluene and water-trichloroethylene mixtures.
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Using the water-toluene curve as an example, it can be seen that 

if the temperature difference across the film were say ICTC, then for an 

eutectic mixture (T^, === 84.3°C) the solubility of water ir. toluene 

falls from 0.32 gm/(100 gms of saturated solution) at the interface, to 

0.24 gin/(100 gms of saturated solution) at the wall. Thus 0.077 gms/(100 

gms of saturated solution) of water will have precipitated, in the form 

of droplets, in the organic film.

Those droplets coming out of solution at the wall adhere to the wall, 

further droplets coalescing with these existing droplets until eventually 

the drops are large enough to protrude through the condensate film. They 

can then grow by direct condensation of steam.

The droplets that come out of solution within the film can either 

fall to the wall or rise to the film surface. If the drops are denser 

than the film they fall to the tube wall, and if they are less dense they 

rise to the surface of tr.e film. The above description is for the top 

half of the tube, for cr.e bottom half of the tube the droplet motion is 

reversed.

Although the above description was given for water drops in the 

organic film, the same processes apply for organic droplets coming out 

of solution in the water film (or drops).

Another puzzling aspect of the mechanism is that the organic phase 

forms drops on the water phase. The spreading concept of Harkins and 

Feldman (see section 2.4.1.1 chapter 2) offers an explanation in that 

essentially,if the appropriate spreading coefficient is negative then the 

organic will not spread on the water drops (or films).

The difficulty in using this concept is in deciding what surface 

tension values to use in equation (2.11). If the pure component values 

are used then the spreading coefficient will be positive ar.d the organic 

should spread. However, since the two liquid phases are rmatually saturated,

/I



the correct surface tension values are those of the mutually saturated 

phases and in this case it has been stated by Adamson (1957) that the 

spreading coefficient is usually close to zero or negative. Thus 

it is unlikely that the organic will spread or. the water film (or drops).

It can be seen from the above discussion that the detailed mechanism 

of the condensation process is extremely complex. 

6.3.3 Discussion of the heat transfer data

The data for the steam-toluene and steam-trichloroethylene mixtures 

condensing on the gold plated and oxidised copper tubes are shown in figures 

6.7 and 6.8 respectively. It can be seen that the heat transfer coefficient 

obtained on the oxidised copper surface is greater than that obtained 

on the gold surface. However, it does seem that at high temperature 

differences the data are in closer agreement.

Since two fur.daner.-al_y different rr.echar.isms were observed on the two surfaces 

usec it is not surprising that the heat transfer coefficients differ. From 

the data, it is obvious that the channelling mechanism gives higher heat transfer 

coefficients than the standing drop type mechanism. This confirms for 

horizontal tubes what Hazelton and Baker (1944) found for vertical tubes.

Fig-ure 6.9 shows -he comparison between the steam-toluene data for 

the present study wirh existing data. The data compared lie in the 

composition range 73-85% by weight toluene in the condensate, this is in 

comparison to the eunectic composition of approximately 80%.

From figure 6.9 it is apparent that the authors data on the oxidised 

copper surface is above most of the earlier data > whereas the authors 

data on the gold plated surface is in reasonable agreement with other

data.

The condensation mechanism observed in the present study was of a 

channelling type and a standing drop type for the oxidised copper and gold
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plated tubes respectively. The mechanism described by Baker and Mueller 

(1937) appears to be of the standing drop type, whereas that by Sykes 

(1968) a mixture of the channelling and standing drop types. Thus it 

would be expected tnat Baker and Mueller and Syke's data should either 

agree with the gold plated data or lie between the gold plated and 

oxidised copper tube data of this study. And indeed for the majority of 

the data this is the case (see Figure 6.9).

1^ is interesting to note, however, that the surfaces used by the 

other two sets of workers were reported as being oxidised copper. Thus 

it seems that the mechanism obtained on apparently similar tubes can be 

different. In the vertical plate study by the author (described in 

appendix F) it was observed that a mixed channelling-standing drop 

mechanism was obtained. However, in this particular study on the vertical 

plate no precautions were taken to ensure that filmwise condensation of 

steam was obtained on the copoer surface before use.

From the above discussion it would seem that the properties of 

an oxidised copper surface vary with time (this has previously been 

suggested by Ponter ar.d Diah (1974)). Initially a standing drop type 

mechanism being obtained, rhis apparently transforming to a channelling 

type flow after some unknown period of time. A way of confirming the 

above suggestions would be to continuously condense a given vapour 

mixture or. an initially polished copper tube) any variation of mechanism, 

with time, could then be observed.

An interesting feature of figure 6.9 is the position of the Stepanek 

and Standart (1958) data. Because this data is mucn lower than other data 

sets, several authors (Bernhardt et al (1970), Ponter and Diah (1974)) 

have suggested that the discrepancy is caused by the presence of incond 

ensable gases. However, Standart (1973) has stated that a vent line had 

been included in the apparatus and that incondensable gases had been purged
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from the system. A possible reason for this data set being so far below 

the others is due to the effect of tube ci^-eter. As was started in chapter 

2 several workers have observed that for snail diameter tubes the heat 

transfer coefficient, increases as the tube diameter increases, and since 

th-:? -ube diameter of Scepanek and Star.car- (1953) was crdy 9.33 nin in 

comparison to the more common diameters of between 25.40 and 34.93 mm 

it is possible that this effect might explain the discrepancy.

Figure 6.10 shows the comparison between the authors steam-trichloro- 

ethylene data and Baker and Muellers (1937) data. As can be seen the 

agreement is not good, the Baker and Muller (1937) data being considerably 

higher at high temperature differences than this study. The reasons for 

the discrepancy is not known, but presumably surface properties are of 

importance. 

6.4 Comparison between theory and data

The comparison between the authors channelling data and the channelling 

model (equation (5,")} is shown in figures 5.11 and 6.12. The theoretical 

line was calculated for -he eutectic rrdxture in each case. From the 

figures it can be seen that the model ur.cerpredicts quite considerably.

1r. order to nrecicrt the cats satisfactorily an enhancement factor 

of 1.5 is introduced. Thus ecuation (5.7) becomes

h = 1.5 (h^/Cl-Y) -r h-^Y/(l+Y)) (6.1)

The agreement between ecuation (6.1) and the data (see figures 6.11 

and 6.12) is to within + 20.0%.

"7 -' 

/ /



C
O

UJ o u_
 

u. UJ o
 

o a: LU u.

10 9 8 7 6

o: h- UJ X

1 1

X A
A A

O o
°c

 
o

x 
T

H
IS

 
S

T
U

D
Y

 
O

X
ID

IS
E

D
 

C
O

P
P

E
R

 
T

U
B

E
 

(2
5
-A

O
m

m
 

0
.0

.)
O 

T
H

IS
 

S
T

U
D

Y
 

G
O

LD
 

P
L
A

T
E

D
 

T
U

B
E

 
'(
2

5
-4

0
 

m
m

 
O

.D
.)

A 
B

A
K

E
R

 
& 

M
U

E
L

L
E

R
 

(1
9
3
7
) 

O
X

ID
IS

E
D

 
C

O
P

P
E

R
 

T
U

B
E

 
{3

3
-3

5
 

m
rn

 
O

.D
.

I
3 F
IL

M
40

 
50

 
60

 
70

 8
09

0 
10

0
°C

5 
6 

7 
8 

9 
10

 
20

 
30

 
T

E
M

P
E

R
A

T
U

R
E

 
D

IF
F

E
R

E
N

C
E

F
IG

. 
6

-1
0
. 

C
O

M
P

A
R

IS
O

N
 

O
F 

E
X

IS
T

IN
G

 
S

T
E

A
 M

 -
 T

 R
 I 

C 
H 

L 
0 

R 
0 

E
T 

H 
Y 

L 
E 

N 
E 

D
A

T
A

 
IN

 
T

H
E

 
C

O
M

P
O

S
IT

IO
N

 
R

A
N

G
E

 
9

2
-9

5
%

 
B

Y
 

W
E

IG
H

T
 

T
R

IC
H

L
O

R
O

E
T

H
Y

L
E

N
E

IN
 

T
H

E
 

C
O

N
 D

 E
N

S
 A

T
 E



F
l 

G.
 

6-
11

. 
FO

R

20
 

30
 

D
IF

F
E

R
E

N
C

E
 

°C
,

2 
3 

£
5
6

7
8

9
 1

0 
F

IL
M

 
T

E
M

 P
E

R
A

T
U

R
E

C
O

M
P

A
R

IS
O

N
 

B
E

T
W

E
E

N
 

T
H

E
 

C
H

A
N

N
E

L
L

IN
G

 
T

H
E

 
C

O
N

D
E

N
S

A
T

IO
N

 
O

F 
S

T
E

A
M

 -
 T

0
L

U
E

N
E

O
X

ID
IS

E
D

 
C

O
P

P
 E

R
 

T
U

B
E

50
 

60
 

70
 8

0
9

0
1

0
0

M
O

D
E

L
 

A
N

D
 

T 
H

E
 

D
A

T
A

 
M

IX
T

U
R

E
S

 
O

N
 

A
N



C
O

 
C

D

U. F
IG

. 
6

-1
2

. 
'F

O
R

 
T

H
E

3 F
A 

LM
5 

6
7
8

9
1

0
 

T
E

M
P

E
R

A
T

U
R

E
20

 
30

 
AO

 
D

IF
F

E
R

E
N

C
E

 
°C

50
 

GO
 

70
 

00
90

10
0

C
O

M
 P

A
R

 I
S

 O
N

 
C

O
N

D
E

N
S

A
T

 I
O

N
B

E
T

W
E

E
N

 
TH

E
 

C
H

A
N

N
E

L
L

IN
G

 
M

O
D

E
L 

A
N

D
 

T
H

E
 

D
A

T
A

 
O

F 
S

T
E

A
M

-T
R

1
C

H
 L

O
R

O
E

T
H

Y
L

E
N

E
 

M
IX

T
U

R
E

S
 

O
N

 
A

N
 

O
X

ID
IS

E
D

 
C

O
P

P
E

 R
 

T
U

 B
 E



T>The discrepancy between the original theory (£~~-icr. (5.7)) and 

the data mav be due to the effects of the water drr-s protruding through 

the organic film and/or the small organic drops in -ihe water films. 

Either of these could cause disturbances in the filr.s, thus promoting 

::e--:cr nixir.g and hence increased rates of haat tri:.3fer. If so, higher 

transfer coefficients than those predicted by the si-pie laminar film 

nodal would be expected.

It can be shown (chapter 5 section 5.2) that the Bernhardt correlation 

(equation (2.18)) is a special case of equation (5.7) and that for most 

organic-water mixtures the differences between the iwo equations is less 

than 4_ 5.0%. It is thus apparent that equation (5.7) will fit the same 

data as the Bernhardt correlation. Bernhardt et al (1972) have stated 

that their correlation fits the majority of the existing data to within 

an average error of _+_ 15.0%.

Since much of the earlier data has not been of a purely channelling 

type it would seem that the excellent predictions -f the Bernhardt 

correlation have been somewhat fortutious.

In particular if the Bernhardt correlation is -crnpared in detail 

with existing steam-toluene data it can be seen (figure 6.13) that the 

correlation does not predict the data to anywhere near +^ 15.0%, over- 

predicting some data by factors of two or more and underpredicting a 

considerable amount of data by up to 50%.
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The standing drop model is compared with the authors data obtained 

on the gold plated tube in figures 6.14 and 6.15. It can be seen from 

figure 6.14 that for the steam toluene case the fractional area occupied 

by the drops has to be greater than 0.5 to give reasonable predictions. 

H y.-;2ver, from observation of the cine films it is evident that t:hvi 

fractional area occupied by the drops is much less than the required 

0.5.

From the description of the flow mechanism (for the steam-toluene 

case) given earlier (section 6.3) it is perhaps not so suprising that the 

standing drop model is not adequate (for the steam-toluene case), since 

rivulets of water are also present on the tube and at any instant of time 

occupy a finite fraction of the tube surface. Thus to predict the steam- 

toluene data adequately a combination of the channelling and standing 

drop models is probably more appropriate. To combine the tivo models, 

detailed measurements of the fractional area occupied by the drops and 

the water rivulets is reouired.

Figure 6.15 shows that the fractional area occupied by the drops in 

the steam-trichloroethylene case has to be in the range 0.6 to 0.3 to 

give reasonable predictions. And indeed the experimental observations 

confirm that such values are realistic. In this case the flow mechanism 

was purely of the standing drop type, so agreement between the model and 

observations would be expected.
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Several of the details of the flow mechanism have been ignored in the stand 

ing drop model such as the effect of the small organic droplets on the standing 

water drops. Pres.umably these organic droos will be a 

further resistance to heat transfer. Another important feature of the 

mechanism which has been ignored is the effect of the continual sweeping 

of the surface by the rolling drops. This would cause an 

increase in the heat transfer rate, since the organic film is continually 

being disturbed.

To support the standing drop model further work is needed to 

determine contact angles, dropsize distributions and the dropsize range 

which is effective in transferring heat to the wall. Also

some suitable combination of the channelling and standing drop model

might provide the basis for predicting any data set. A further requirement

in trying to predict heat transfer coefficients for immiscible systems is

a method of predicting the condensation mechanism for any combination

of organic-water mixtures on any specified surface.

6.5 Nucleation barriers

As was stated earlier^ the possibility exists that the organic vapour 

might be condensing on the water or the steam on the organic film. If this 

is the case then it is likely that a certain degree of vapour subcooling 

is required before condensation can take place, that is a nucleation 

barrier exists.

Consider the case of the organic vapour condensing on a water film 

(or drop). The free energy required to form a drop which is part of a 

spherical segment is (see appendix D),

(r») =l^a- r* 2 (2 + cos 0) (1 - cos 0) /4

For organic vapour condensing on the water phase the contact angle



is likely to be zero or near zero, thus the free energy to form a drop 

is zero or small. That is there is a very small or no barrier to the 

condensation of organic vapour on water.

Kcv;ev<-:?r, when water is condensing on the organic it is xir.own th^t 

water will not spread on organic films, that is a finite contact angle 

exists. Thus a free energy barrier will exist for this case. Unfortunately 

there seems to be no data available on the value of the required contact 

angles. In appendix D it can be seen from figure (D2) that for a steam- 

toluene mixture the degree of subcooling required is a strong function of 

contact angle. Thus with a contact angle of 30 the degree of subcooling 

required is approximately 2.7 C whereas for a 60 angle the degree of 

subcooling is approximately 9.2 C.

A few qualitative experiments were performed to try and test if 

nucleation barriers are of importance. To do this the following procedure 

was adopted. The cooling water (passing through the tube) temperature was 

raised to a level high enough to give very small film temperature differ 

ences ( ~1.0 C based on T -T ). The condensation mechanism was thene w

observed. If any significant barrier to the nucleation of one phase 

existed a change in appearance of the condensate would be expected. In fact 

it was found that for all the tests conducted the mechanisms were identical 

to those described earlier (section 6.3). Thus indicating that if nuclea 

tion barriers were present the vapour subcooling required to overcome the 

added resistance is less than 1.0 C.

An interesting speculation is that nucleation barriers are not 

important in "immiscible liquid condensation" because there are other 

mechcinisms by which the steam may condense (for example the solubility 

effect described earlier in section 6.3) which offer less resistance than 

the nucleation path.
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5.6 Conclusions and RecorrLT.sr.cations

1. Nusselts equation is adequate for predicting film heat transfer 

coefficients for the condensation of pure steam, t-lucne and trichloro- 

ethylene.

2. The film heat transfer coefficients for the zor. ter.sation of vapours

of immiscible liquids decreases as the film temperature difference increases,

3. For binary immiscible systems two distinct fundamenta! modes of 

condensation were observed, namely a channelling mode and a standing 

drop mode.

4. The mode of condensation depended on the condenser surface being

used, the channelling mode being observed on an oxidised copper surface and

the standing drop mode on a cold plated surface.

5. For a given binary immiscible system the film heat transfer 

coefficients for the channelling mode are greater than those for the 

standing drop mode. That is the oxidised copper surface gives greater 

rates of heat transfer than the gold plated surface for a given mixture.

6. The origin of the small water and organic droplets, which have 

previously been attributed to nucleation effects, nay be due to solubility 

phenomenon.

7. Models for predicting film heat transfer coefficients for both the 

channelling and standing drop modes have been presented. 

Recommendations

1. The detailed condensation mechanism requires further study. Dropsize 

distributions, contact angles and detailed surface effects being of 

particular importance.

2. The detailed effects of tube diameter on the condensation process 

needs further study.

3. Other aspects which have so far received little or no attention

in connection with the condensation of vapours of imiscible liquids are:

r ' 0
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(a) Vapour shear effects

(b) Condensation on tube banks

(c) Intube condensation

(d) Work on mixtures of more than two components

(e) Effects of incondensable gases

All of the above are of particular importance in industrial 

applications.
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nomenclature

Units 

S.I. 

a - Weight fractior. of component 1 or A -
*~\

A - Total heat transfer area m^

2A^ - Area occupied by the film m

2A. - Area occupied by component i . m

b - Weight fraction of component 2 or 3

B - Length term in Nusselts equation m

B = D for horizontal tubes o

B = L for vertical tubes 

c - Constant in equation (5.13) -

C - Constant in Nussel~s equation: - 

C = C.723 for horizontal tubes "~ 

C= C.r42 fzr ver-ic=l tubes

C^, C,,, C and C^ are rcr.s-snts in equations (2.29: and (2.30).

C_. - Soecific heat cf corrocnent i J/kg C

C - //eight average ~f -he pure component specific heats. J/kg C

c - 3ase diameter ~f =. ircp m

d - Maximum drop diameter m 
max

d . - Minimum droo diEiseter m 
nan

D - Outside tube diameter m 
o

F - Cooling water flowrate kg/s

2g - Gravitational acceleration m/s

^2 2Ga - Gallileo number - (D~ p g/ji )

h - Heat transfer coefficient of immiscible concensates W/m K

h - Chen film coefficient (equation (2.4) and (2.5*) W/m K 
c

h - Heat transfer coefficient through a drop of base
diameter d and contact angle Q W/m K

or



- Heat transfer coefficient for euie-ctic mixtures.

- Heat transfer coefficient defined by equation (2.21).

- Labuntsov film coefficient (equation (2.7)).

2 W/m K

2W/m K

2W/m K

NF

n»T«

Ni

h

Nussei-cs coefficient for the fiir..

- Nusselts coefficient for component i.

- Rohsenow film coefficient (equation 12.3)).

Heat transfer coefficient for a horizon-al tube with 
a non isotheraal wall.

h - Chun and Seban film coefficient (equation (2.10)) w

fx

V;/m~K 

W/m2K 

W/m2K

W/m K 

W/m K

- Nucleation rate.

- Boltzmans constant in equations (D1) and (D5) J/K

k. - Thermal conductivit of comonent i. W/m C

k _ eight average of the oure conoor.er.r ohernal 
conductivities. W/m C

a '"'

' w

Ku

conduct! vi-ies.

Thermal conduce i%*it evaluated ao T

Thermal conducrtlvit*/ evaluated at T .- w

- Kutateladze r.-Lznber -(

W/m C

W/m C 

W/m C

Length of ohe co boc m

Length of a ver-ical surface

'm
i

- v=ss ^a~e of conversation of cortiDor.eni i kg/s

M. - Molecular weich- of component i.
-. i.

n Constant in euation (5.13)

0.67R in equation (2.25).

Probability density of time averaged oropsize 
distributions.

n 

N

N - Avoaadros number (6.023 x 10 ). 
o

Nu - Nusselt number - (h D /k).

2 -*
Oh - Ohnesorge number -(u./pgDO') i

m 

kg mole

r



o 2 
p - Vapour pressure N/m

P ~ Constant in equation (2.2):

P = 1.47 for horizontal tubes.

P = 1.51 f~r vertical tubes.

2P - Critical pressure N/m
\*r

P - Vapour pressure over the drop, at a system temperature 
g Tg "

Pr - Prandtl number - (C

2 POO - Vapour pressure for a planar interface at Tg. N/m

2q - Heat flux through the copper blodc W/m

2q - Condensate heat flux. W/m c

Q - Total heat load W 

Q . - Is the heat transferred throuch a ircr of case diameter d.W
/~4 •*> -
•wl

G*. - Is the hea~ transferred through ail crops of base
diameter c. W

Q^ — ~s the he=.t c^r=-"-rferrec through ail dror>s in a given
diameter range. W

Q_, - Is the heat transferred through the film. W
4.

Q. - Is the hea_ loac for conoor.ent i. W
i

r* - Critical nuclei r=cius m

R - Gas constant (5.214 x 10 ) J/kg mole K

S - As defined by er-a-i^n (E17).

S - Soreading coefficient for B on A. N/m 
3A

— : Q

t - Tenperature in ^C. C

o
t - Cooling water inlet temperature. C

T - Boiling point C

T - Critical terroera-ure C c
T - Eutectoid temperature °C e
Tg - Temperature of the vapour sys.tem K
T - Temperature in K. K

K o 
T - Saturation teir.cers-ure C

5 " o" T Vapour inlet terrcerature C
v(IN.) K ' 0 

T _ Tube surface terrper=-ure C
w

U - Velocity in the x direction m/c••



v. - Volume fraction of component i ir. -r.~ condensate -

V. — Volume of liquid i on the tube surrace. m

V - Total liquid volume on the tube surfare. m

x - is the height at which T is beir.g 2Eirj._ated ir.
equation (2.30). W m

x - P /Pg
Y - As defined by equation (5.8) • -

	Greek Symbols

a - Fractional area occupied by the cr-ps -

a ' - Angle of inclination of the surface °

3 - Constant in equation (2.27) - = 0.052 °C~~1

I1 - Mass flowrate per unit width of zcr.de-.sate film kg/sm

5 . - Film thickness of conroonent i m

A G(r*5 Free energy reculred to form a crz- cf radius r*. J

." »*» ^^ *i >»•
L^ JL j-""i.

oit- Cooling water ternperature differer.ce C
o

LJ T - Film temperature difference C

-
u*" ^

6 - Contact angle

© - Advancing contact angle
f\

o
6 0 - Receding contact angle 

R

X - Weight average of the puts componer.- latent heats of
av vapourisation J/kg

X H - (ax a + bx 2 )/a J/kg

X - Latent heat of vapourisation of ccrTponent i* J/kg 
i

2LI. - V/eight average of the pure component viscosities Ns/m ^ av

u « - Volumetric average of the pure coinrjonsr.- viscosities ^ av



2 
p. . - Viscosity of component i. Ns/rn

2JJL - Viscosity evaluated at the saturation temperature. Ns/m
O

2l_i - Viscosity evaluated at the wall ter-perature. Ns/rn

p - v/eight average of -he pure conpcr.er.t densities. kg/p. * av x "*

p ' - Volumetric average of the pure corrpcnent densities Kg/m

p . - Density of component i. kg/m

cr. - Surface tension of component i. N/m

cr. . - Interfacial tension between liquids i and j. N/m

0 - Angle at which T is calculated in ecuation. (El). ow

0 - Labunstov physical property correction factor. - LI

T.

Subscripts

i - A or 1 and B or 2

A or 1 - Property of rr.e wall wetting phs.se,

3 or 2 - Property of the other phase.

Note

An overbar denotes a mean value

CO 
/ /



APPENDIX A 

PHYSICAL PROPERTIES

The following tables contain the correlations for calculating the 

physical properties used ir. this study.

Table 1 contains correlations for wster, these were tested against 

data obtained from Arnold (1970), the agreement between the data and 

correlations is better than +2.0% within the temperature ranges quoted.

Table 2 contains correlations for toluene, these were tested against 

data from various sources but mainly ESDU Items 74024 (1974), Item 74007 

(1974), Item 66024 (1966), Jamieson et al (1973), International Critical 

Tables (1930) and Timmermans (1950) and (1955). The agreement between 

the data and correlations is better than _-5,C^c within the given temperature 

ranges.

Table 3 contains correlations for tric-.Irroethylene, these were again 

tested against various cEt- sources, i.e. E.5.3.U. Item 68024 (1968), 

I ten 65024 (1966), J=r.ieson et al. (1973), 3y>ces (1968), Gallant (1970) 

and Kirk and Othmer (1954). The agreemer.- between the data and correlations 

is better than +5.0% (except for the liquid, heat capacity which is 

within -ri::=) within the given temperature ranges.

r "\



TABLE A 1

PHYSICAL PROPERTY CORRELATIONS FOR WATER

Physical property Equation

Liquid density p in 

kg/in3

p = 1000.0 - 45.05

Temperature range 0-220 C .

1.65

Liquid viscosity u in • 

Ns/ra2 Temperature range 0-320 C

Liquid thennal conductivity 

k in 

W/s K

k = 0.638 - 7.76 x 10~6 (t - 125.0) 2

Temperature range 0-140 C

Sur~r2ce tension ~ in cr = 0.1032 - 7.2529 x 10~5T. - 1.6052 X 10~7T 2
»» K

Tenperature r=r.ge 0-20C°C

xrjid specific heat c=r>=city

C in

C = 4179.0 + 1.232 x 10~2 (t - 40.0) 2

Tetnperacure range 0-200 C

Latarrt heat cf va

in 
J/lcg

= 2.5D13 x 105 - 2358.0 t - 5.254 x 10~5t4

Temperature range 0-240 C

Vapour pressure p In p = 23.2189 - 3842.567(228.6 + t) 

Temperature range 0-240 C

Critical temperature

in °C

374.15 (647.30 K)

Critical pressure 

P in N/m2

2.212 x 10 (218.3 atm)



TABLE Al cor.tinued

r~. — ————————————————————————— 

Physical property

Normal boiling point 

(1 atm) TD in °C
O

Molecular weight

Equation

100.00 (373.15 K)

18.0153

Where t is the ter.per=t-^re in °C and T the temperature in K



TABL£ A 2

PHYSICAL PROPERTY CORRELATIONS FOR TOLUE2JS

Physical property Equation

Liquid density p in 

kg/n»3

p = 885.45 - 0.92248 t - 3.055 x 10~6t3
• o

Temperature range 0-130 C

Liquid viscosity u in 

Ns/ra2

u = 1.540 x 10 exp (1067.8/TK> 

Temperature range 0-110 C

Liquid therrsal conductivity 

Jc in

k = 0.1368 - 0.000273t

Temperature range 0-120 C

Surface tension <r ir» 

N/a

=' 28.43 x ^-3 ririi
-" I 0.5046

1.23

Temperature range 0-120 C

Liquid specific heat capacity

C in 
P

C = 1599.8 + 3.8B95 t 
P

Tenperature range 0-300 C

Latent heat of vapourisation

Xin

J/fcg

X = 3.634 x 10'
1 - •591.9
0.3536

0.37

Teraperature range 0-260 C

Vapour pressure p in 

N/n2

in p° = 20.90352 - 3094 ' 55
219.377 .-*- t

Temperature range 0-250 C

Critical tssroerature

T in °C

318.7 (591.8X)



TABLE A2 cor.tirr^ed

Physical property

Critical pressure .

P in N/n2c

Npmal boiling point 

. T^ in °C

Molecular weight

Equation

4.104 x 106 (40.5 atm)

110.63 (383.73 K)

92.1418

. o,Where t is the tenperature in C and T the temperature is K.



TABLE A3

PHYSICAL PROPERTY CORRELATION'S FC?. TRiaiLOROETHYLENS

Physical property Equation

Liquid density p in 

kg/ra3

= 1495.27 - 1.6493 t

Temperature renge 0-100 C

Liquid viscosity H in 

Ns/ia2

.-5
\i = 3.5714 x 10 •* exp (814.7/T..)f*
Temperature range 0-80 C

Liquid therssal conductivity

k in W/ai C

k = 0.1275 - 0.000393 t

Temperature range 0-80 C

Surface tension crir. 

N/a

0.0312 - 1.075 x 10~4t 1.25 x 10*~7t2

range 0-100 C

Liquid specific heat 

C in
^

J/kg K

C = 945.2 
P

-v :.3374t

Ten:oerati!re rer.gs 0-100 C

Latent hect of var<«=is2ti2

in JAg
X = 2.4702 x 10"

1 - K
544.15

_ 0.3878

0.38

Teraperature range 0-100 C

Vapour pressure p ir. 3027.9ir, r, inp

Temperature range 0-100 C

Critical temperature

T in °C

271.0 (544.15 K)

Critical pressure 

P in N/m2

5.016 x 10 (49.5 atm)

• r r



TABLE A3 contir.ued

Physical property

Normal boil

«, in °c
ing point •

Molecvilar weight

Equation

87.0 (360.15 X)

131.3893

Where t is the temper a'ture in C and T,, the tenroerature in K"

This equation was derived froa the data of Gallant (1970) and has not been 
compared against an independent data set.



APPENDIX B 

Tabulated Results

The results obtained in the present study are tabulated in the 

following seven tables. From the error analysis (see appendix G) a heat 

balance error limit of +_ 15% was set. That is any experimental run 

giving a heat balance error greater than jf 15% was rejected. Approximately 

5% of the total number of runs were rejected;,

Table Bl requires further explanation here it can be seen that the 

heat balances are all negative and of order -20%. This large error 

was due to the initial method of measuring the condensate flowrate, 

a consistently low reading being obtained. Since the condensate flowrate 

was not a reliable method of determining the heat transferred in this 

particular case the heat transferred to the cooling water was used to 

determine the heat transfer coefficients.

The error in laea^uring the condensate flowrate was corrected for all 

subsequent runs and for these the condensate flowrate was used to 

determine the heat transfer coefficients.
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APPENDIX B

TABLE B 1

DATA for the CONDENSATION of PURE STEAM

Run
No.

1
2 '

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2C

T s°C

100.0

100.0

100.0

100.0

100.0

100.3

101.2

99.9

100.0

100.0

99.5

99.7

100.0

99.8

99.8

99.8

99.8

99.7

99.7

99.7

T w
°C

86.0

86.9

89.2

90.1

89.7

90.3

92.1

91.6

83.7

85.3

84.8

86.5

89.9

90.4

91.5

92.4

92.0

92.6

93.9

84.0

ATF 
°C

14.0

"13.1

10.8

9.9

10.3

10.0

9.1

8.3

16.3

14.7

14.7

13.2

10.1

9.5

8.3

7.4

7.8

7.1

5.8

5.7

W/m

148400

152615

129319

123027

128812

119880

105851

101434

180441

174239

183089

170438

137178

132031

102198

93492

96361

89041

77546

78478

tlN 
°C

71.3

72.3

74.4

76.2

78.9

79.9

82.5

82.4

66.1

68.9

68.4

71.4

77.7

78.5

82.4

84.1

84.1

85.2

87.3

87.5

A t 
°C

3.10

3.22

3.29

3.22

2.38

2.20

2.04

1.95

3.19

3.09

3.02

2.84

2.38

2.30

1.82

1.69

1.61

1.51

1.38

1.39
•i

F 
kg/s

0.8360

0.8240

0.6818

0.6671

0.9434

0.9491

0.9069

0.9113

0.9866

0.9818

1.0523

1.0405

1.0026

0.9926

0.9817

0.9614

1.0443

1.0194

0.9764

0.9746

Ht. Bal. 

%

- 17.2

- 15.3

- 19.9

- 17.4

- 16.5

- 15.2

- 12.3

- 13.0

- 25.5

- 24.7

- 18.9

- 19.5

- 18.5

- 21.2

- 18.5

- 18.7

- 20.2

- 19.6

- 20.6

- 24.4

h 
W/m2°C

10600

11650

11974

12427

12506

11988

11632

12221

11070

11853

12455

12912

13582

13898

12313

12634

12354

12541

13370

13768

hls
W/m2°C

11378

11595

12205

12470

12345

12449

12784

13041

10927

11233

11233

11563

12416

12621

13037-

13465

13267

13608

14327

14415
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TABLE B 2 

DATA for tho COfOSNSATT :•'.' :f TOLUENE

Run 
No.

1
2
3

-.4

5
6
7
8
9

10
ll"

12

13

15

15
17

13

19 

20

21 
i

T 
°C

110.7

110.2
110.2
110.2
110.2
109.8
109.3
110.0
110.2

110.7

110.3

111.2 

110.6

111. 2

111.1

110.9
111.0

110.3
110.3

110.4

110.2

°C

100.4

77.3

79.2
81.0
84.7

90.6

93.0
94.7
84.7

93.9
96.6
99.7 
99.1
ei.o
37.0

8?. 9

95, S
73.5

54.2 
92.4
3-5 - '

\

A°cF

10.3

32.9
31.0
29.2
25.5
19.2
15.3

15.3

25.5
15.3
13.7

11.5
- , -

~ ' Z.

21- - '

31. ~
25-1
~Lz.-,2 '

lr-5 ;

£
21,349.8

48,159.0

45,570.0

41,656.7
39,191.0
31,791.4

29,193.4

26,441.5

42,493.3

31,063.2
27,130.4

23,947.6
24,C31.4

Ilir^S

35.952.5

",^5.9
47,422.7

33,197.4
30,245.2

°cN

98.8

73.6
75.4
77.1

81.1
87.1
89.9

91.5
81.1
90.5

94.0

97.1 

96.4
74.5 

81.7

85.0

92.4

73.1

79.5 

83.4

90.0

A t 
°C

0.45

0.87

0.89

0.83

0.79

0.83

0.75

0.79

0.73

0.63
0.61

0.66 
0.57
^ ._
1.2"

1.20

0.94 !

1.15

0.95

0.92

F 
5cg/s

0.7310

0.8473

0.3148

0.8376

0.8411

0.7504

0.7232

0.65CO
0.3180

0.6930
0.7431

0.6774 

0.6533;"!!!5
J.5342

0.5253
0.5733

0.6723 

0.5407

0.5363

Ht. Bal.
ef J»

- 9.4
- 12.2
- S.4
- 3.7
- 3.0

14.6
7.2

U.4
- 14.1
- 12.6
- 3.0

5.9 
5.0

— 2.1 

- 1.3

. 2.7

- 5.2
- 5.7

- 5.8 

- 9.9

- 6.8

h 
W/n2 °C

2072.8

1463.8

1470.0

1426.6

1536.9
1655.8
1738.0
1728.2
1666.6
1849.0
1984.7
2082.4 
2094.9
1540.7 

1703.4
1712.5

1979.6

1496.3

1603.1 
1844.3

1839.1

W/ra2 °C

1834.4
1384.6
1404.6
1425.0
1472.1
.1578.0
1630.2
1667.9
1472.8
1627.8
1712.0
1783.7 
1785.6
1411.6 
1492.6
1541.9
1658.2
1397.1-
1464.6 
1602.7
1637.6

09



TABLE B 3 

DATA for the CON'DEHSATION of PUT.E Tr-ICKLCROETKYIZNE

Run 
No.

1.
2
3
4
5
6
78~

9
10
11 a
i-i

13

T•s
87.0
87.0
87.0
66.6
86.6
86.6
86.7
86.8

35.9

55.8 

££.9
S£.3
37.0

T w°C

83.2
82.0
80.2
66.3
63.0
70.2
71.0

73.0

75.3
77.3 
•ra o/O.:7

£0.3

82.9

.£TF 
°C

3.8
5.0
6.3

19.8
18.6
16.4

15.7

13.3

11.6
? ^^ *"

= 0
-» » W

S m. ~
.

-c » _

^c
W/ra2

9,166
10,660
13,416
25,720
24,037
22,681

21,792

21, 349

17,354
'5.C?3 ?
13,552

3,597

fc!N 
°C

81.8

80.2

77.9
62.7
64.0
66.6
67.4
69.3

72.3

74.9 

75.5
73.9

81.5

*t 
°C

0.34

0.42

0.51
0.83
0.79

0.77

0.76

0.68

0.65

0.54 

0^4• *s^

0.44

0.34

F 

:<g/s

0.4574

0.4813

0.4562

0.5412

0.5412

0.5445

0.5406

0.5404

0.5435
0.5295 
0.^*^1

3.51 IS

c,:-s

Ht. Bal. 
%

6,5

9.0
6.4
0.1
2.1
5.8
7.5

- 0.2
13.1

10.3 

11.9

- 5.0
2.2

h 
W/m2 °C

2412

2132

1973

1299

1295

1333

1388

1547

1540

1531 
1744

2013

23S5

\ W/m2 °C

2279

2137

1977

1533

1556

1603

1619

1672

1741

1825 

1907

2041

2245

10



TABU: n -1

DATA for the CONDENSATION OP STEAM-TOLUE:.r:: MIXTURES ON AN OXIDISED COPPER Tt'OE

Run 
No.

1

2

3
4
5 
6

7
8
9

10
11
12
13-

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30-

31
32
33
34
35
36
37

T °°c

84.4
84.5
84.6
84.9
84.5 
84.5
83.6
83.7
84.4
84.1
84.1
83.9
84.2
84.3
84.3
84.4
84.3 
84.3
84.3
84.3
84.4
84.4
84.3
84.2
83.9
83.8
84.0
84.7
84.7
84.8
84.8
84.8
84.7
84.7
84.9
85.0
84.6

T w°C

62.7

60.1
60.2
65.5
62.0 
62.5
65.7
70.9
75.0
75.2
76.4
72.2
73.6
74.1
70.4
71.1
63.3 
69.3
59.8
60.9
64.2
49.1
51.5
50.9
51.8
54.9
56.9
74.3
76.4
77.3
79.9
79.8
80.0
80.6
80.8
81.2
80.2

* TF 
°C

21.7
24.4
24.4
19.4
22.5 
22.0
17.9
12.8
9.3
8.9
7.7

11.7
10.6
10.2
13.9
13.3
15.5 
15.0
24.5
23.4
20.2
35.3
32.8
33.3
32.1
28.9
27.1
9.9
8.3
7.5
4.9
5.0
4.7
4.1
4.1
3.8
4.4

W/si

73,938
95,187
94,201
81,061
95,627 
95,960
76,517
60,490
46,956
45,221
41,241
52,007
59,392
58,069
77,437
75,783
80,135 
80,100
99,274
96,080
97,546

123,479
120,999
108,525
114,982
117,623
114,498
57,915
50,597
41,273
30,899
32,280
26,461
27,081
26,613
26,463
24,996

£.
54.0
50.1
49.6
56.8
51.7 

52.5
57.8
65.5
71.2
71.6
72.8
65.8
64.6
65.2
61.7
62.6
59.7 
60.3
48.0
49.5
52.5
33.4
36.3
37.6
37.4
40.5
42.7
67.3
69.9
71.9
76.3
76.1
76.6
77.5
77.7
78.3
77.2

At. 
°C

1.54
1.75
1.74

1.45
1.67 
1.60
1.44
1.04
0.73
0.70
0.82
1.45
1.94
1.90
1.56
1.56
1.64 
1.62
1.94
1.92
2.02
2.32
2.33
2.10
2.25
2.30
2.27
1.51
1.31
1.14
0.79
0.85
0.82
0.77
0.79
0.77
0.65

F
kg/s

0.8727
0.9595
0.9304
0.9579
0.9834 
0.9832
0.9722

' 0.9634
0.9630
0.9603
0.7459
0.6496
0.5078
0.5038
0.8226
0.8319
0.8848 
0.8758
0.9093
0.9112
0.9040
1.0111
1.0106
0.9941
0.9801
0.9796
0.9791
0.6695
0.6690
0.6333
0.6324
0.6324
0.6293
0.6352
0.6229
0.6258
0.6679

lie. Dal. 

%

4.7
1.5

- 1.3
- 1.6
- 1.7 
- 5.5

5.9
- 3.5
- 12.4
- 12.9
- 13.5

4.8
- 4.9
- 5.1
- 5.0
- 1.5

4.2
1.7
2.4
4.8
7.3
9.3

12.1
10.6
10.1
9.8

11.7
0.0

- 0.6
0.3

- 7.4
- 4.9

10.7
3.6
7.1
4.3
0.6

COOT. COKP.
W % /W Toluene

83.0
78.8
79.5
80.1
80.1 
80.1
>9.8
78.7
79.5
81,5
81.9
80.7
78.2
78.5
78.0
78.3
80.8 
80.0
83.3
84.7
80.4
80.9
80.6
82.4 -
80.8
80.6
81.2
78.9
80.7
82.3
84.0
83.8
83.3
82.6
81.0
79.8
84.2

h h (Tol.) 
W/m2 °C ! W/n2 °C

3407
3901
3861
4178
4250 
4362
4275
4726
5049
5081
5355
4445
5603
5693
5571
5698
5170 
5340
4052
4106.
4829
3493
3689
3259
3582
4070
4225
5850
6096
5503
6306
6456

- 5630
6605
6491
6964
5681

1545
1499
1499
1590
1530 
1539
1625
1770
1917
1943
2014
1810
1862
1884
1732
1753
1685

*

1700
1497
1516
1573
1359
1336
1380
1394
1433
1458
1887
1971
2021
2249
2236
2272
2357
2359
2401
2322

TVo (IN)

97.9
96.4
96.3
96.8
98.3 
98.9
97.5
99.9
98. 5

100.6
98.7
98.3
99.3
99.7
99.2
99.3

100.0 
100.4
99.2

100.8
100.8
95.2
96.7
98.8
96.4
97.3
97.4
99.4
99.9

102.7
104.7
104.S
103.1
102.9
101.9
102.4
101.7

111



TABLE B 5

DATA for the CCM35KSATION OF STE/J-'-TOLUZ!^ MIXTURES ON A HORIZONTAL

GOLD PLATED COPPER TUBS

Run 
N'o.

1
2
3

.. 4

5
6

7
8
9

; 10

11

12

13
* A^-*

15
16

T°l

84.4

84.4

84.6

84.6

84.5
84.7

84.7

84.S

S4.3
c ~ -— - » _

54.5
O * £ C^x* »

C.-»» 3

£4.3

84.5

34,3

T V7°C

53.3
55.4
53.7

61.4
64.6

66.0
63.2
70.3

69.0

73.4

75.4
~rf A I *i .*x

75. /

73.6

59.3

69.9

z\Tp 
°c

31.1
29.0
25.9
23.2
20.0

18.7

16.5

14.5

15.9
<• ^ •—

9.5
-^ r> -v
"*" ** "~

7.5

6.2

25.3

14,9

V/s

37,515

73,577

71,510

63,300

57,230

58,007

50,672

45,311

^ ̂  • ^.3 *
— p r — -~*

-„ -- -

3?.5I5

— -« — - -

2£ T 5I7

72,424

52,5~3

'?'

41.0

44.0

49.1

52.7

57.5

57.8

61.4

54.4

51.5
c~ .«

71.3

55.2

T2.2»•
f

75.1

43.5

53.3

At 
°C

1.33

1.76
1.62
1.46

1.23
1.41

1.23

1.10

1.50
- -! '"V

3.33
* n *• u

0.97

0.77

1.37

1.19

F 
kg/s

0.8379

0.8374

0.8596

0.8615

0.8606

0.8015

0.3008

0.7553

0.6351

0.5:96

C.63S2

0.6085

0.5233

0.6295

0.7760

0.7319

Kt.Bal.
0»f>

3.74

7.93

' 11.63

13.25

6.43

11.35

11.ES

8.2?

10.64
't ™ Z-C.

11. / ••

0.52

12.02

4.62

15. IS

1.12

Cond. coop. 
% Tol.

79.1

80.3
83.5
84.0

84.7

83.3
84.1

63.9

83.2
S-i.5

SS.G

31.5

33.0

82.2

83.7

83.0

h 
W/m2 °C

2814.
2713
2761
2750
2364

3102
3071
3172
3352
3233

3264
3873
3947
4280
2863
3555

^(Tol) W/m2 °C

1406
1432
1475
1518
1579
1605
1659

»

1711

1674

1809

1908

1875

1993

2123
1484

1701

Tv(lN)

98.2
99.4

100.6
101.3
102.4
98.3

100.7
101.1
99.2

101.7
102.5

99.7

100.8

101.3

100.0

100.5



Table B 6

DATA for the CONDENSATION OF STEAK-TRICHLORCETHYLENS MIXTURES ON A HORIZONTAL

OXIDISED COPPER TUBE

Rur

No.

1

2

3

4

5

6

7

6

9

10

11

12

13

14

15

16

17

18

T 
°C

.74.9

73.5

73.5

73.5

73.3

73.3

73.4

73.4

73.2

73.1

73.2

73.5

73.6

73.6

73.6

73.6

73.6

73.5

T W°C

69.7

59.0

63.1

65.1

62.6

64.7

48.3

51.7

53.0

61.2

62.5

64.9

67.9

69.1

56.9

61.0

54.6

57.3

ATf 
°C

5.2

14.5

10.4

8.4

10.7

8.6

25.1

21.7

15.2

11.9

10.7

8.6

5.7

4.5

16.7

12.6

19.0

15.2

«c 
W/m2

26,572

41,862

40,248

35.624

52,752

43,757

70,532

69,115

49,155

43,087

41,161

41,902

32,692

27,447

45,539

48,959

57,539

57,316

£
65.5

52.3

58.2

60.6

54.4

57.8

37.3

41.2

49.7

54.0

55.1

57.9

62.6

64.3

48.6

51.7

44.6

47.8

At
6c

0.88

1.24

0.88

0.80

1.47

1.28

1.80

1.74

1.60

1.44

1.45

1.41

1.06

0.94

1.52

1.81

1.77

1.79

F 

kg/s

0.5302

0.6482

0.9024

0.9083

0.6718

0.6713

0.6827

0.6822

0.5501

0.5460

0.5459

0.5492

0.5450

0.5375

0.5502

0.5204

0.5475

0.6371

Ht.Bal. 

%

1.5

10.8

13.1

-

7.7

12.4

- 0.1

1.4

3.2

4.5

10.3

6.2

1.5

5.5

5.5

10.6

- 3.0

14.3

Cond.comp. 

% W/w Trich

92.5

94.0

93.9

93.7

,93.1

.92.9

93.4

93.0

94.0

93.8

93.7

93.8

94.1

95.0

93.9

93.5

93.5

93.4

h 
W/m2°C

5110

2887

3870

4241

4931

5088

2816

3185

3232

3609

3585

4884

5705

6127

2720

3880

3024

3538

^(Trich) 
W/ra2°C
"X

2182

1703

1844

1942

1832"

1931

1492

1545

1683

1785

1834

1932

2133

2266

1643

1759

1593

1658

Tv(IN) 
°C

90.0

74.2

74.2

74.7

83.2

83.3

75.4

76.1

73.8

73.9

74.2

76.0

75.1

74.8

74.7

77.3

78.1

89.7

113



TABLE 3 7

DATA for the CONDENSATION OF STEAM-TRICriLOROETHYLENE MIXTURES ON A HORIZONTAL

GOLD PLATED COPPER TUBE

Run
No.

1

2

3

4

5

6

7

8

9

19-
11
12

13
14

15

T°?

73.3

.73.5

73.4

73.8

74.4

73.8

73.9

74.1

73.8

73.9

73.8

73.7

73.5

73.7

73.2

T 
w°C

56.1

59.8

63.1

71.1

67.3

65.4

65.2

66.9

67.9

62.5

67.5

48.6

52.9

57.7

59.6

£
17.2

13.7

10.6

2.7

7.1

8.4

8.7

7.2

5.9

11.4

8.3

25.1

20.6

16.0

13.6

qc 

W/ra2

40,403

34,099

26,670

10.457

23,629

24,427

24,272

22,414

28,074

27,222

21,762

57,173

50,931

41,124

38,896

fc!N 
°C

49.9

54.6

59.2

69.1

63.2

60.3

60.3

62.6

64.1

57.2

51.5

40.4

45.0

51.3

52.6

At 
°C

1.20

0.97

0.78

0.38

0.85

1.06

0.85

0.74

0.65

1.00

0.76

1.54

1.46

1.22

1.12

F 
kg/s

0.6015

0.6009

0.5970

0.5296

0.4594

0.4597

0.5493

0.5490

0.5452

0.5363

0.5347

0.6891

0.6798

0.6730

0.6483

Ht. Bal. 

%

2.87

- 1.49

0.43

11.69

- 5.06

14.53

11.01

4.81

12.22

12.87

6.76

6.96

11.96

14.46

7.34

Cond. Comp. 

% W/w Trich

93.8

92.5

94.2

94.5

94.5

93.9

92.8

94.0

94.3

94.0

93.7

92.9

94.5

93.6

94.6

h 
W/m2°C

2349

2489

2516

3873

3328

2908

2803

3126

3048

2382

2616

2275

2470

2572

2860

hL 
W/m2°C

1633

1714

1860

2606

2044

1967

1952

2044

2142

1825

1972

1513

1586

1684

1753

Tv(IN 
°C

88.6

89.9

90.6

91.9

91.0

91.1

90.1

90.7

90.9

88.6

90.8

91.4

92.5

92.5

91.5

114



APPENDIX C

Determination of n for use in the s~ending drop model 

From Chapter 5 section 5.2 the heat transfer coefficient predicted by 

the model is,

h = k f a n + 2

,n+2 
max d .m
n+3 
max d . linn

(1-a) (CD

The maximum drop diameter is 3.0 mm while the minimum diameter is 2 6 sin

(1 - cos S), with 0 = 70°.

<C2)

The fractional area occupied by the crops, within the expected dropsize 

range, has been reported ~y Berr.hard- (197C) -o be from 0.64 to 0.16, 

the tine average, however, seerr.s to be between 0.6 and 0.4. The value of 

a = C.5. therefore seems -o be a reasonable ruess with which to start 

calculating n for the s-ean-toluene and steans-trichioroethylene data 

obtained on the gold pla-ec tube. This initial guess could be refined 

later but the uncertainties in the theory and the data do not make such 

refinements worthwhile at this stage.

From Fatica and Ka~z (1949), f(Q), = 10.2 when Q = 70°. To further 

simply the calculations only one value of k, rhe drop (water) thermal 

conductivity will be used, that is k = 0.655 W/m°C (at 60°C). Substituting 

the above values into (CD gives,

h = 3.3405 n + 3 
n + 2

(3 0.5 (C3)

nun



The mean value of the minimum drop diameter for the steam-toluene and steam 

trichloroethylene data obtained on the gold plated tube (calculated using 

(C2)) is 1.785 x l(T4m. The value of n to give the best fit to the data 

is - 1.0 hence (Cl) becomes in general,

h = 13.362 a
3 x ICf3 - d .mm

9 x 10"6 - d2
mm

+• (1 -a )hNF (C4)

4 • /
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APPENDIX D 

Nucleation barriers in immiscible liquid condensation

When condensing vapour mixtures of immiscible liquids the possibility 

exists that if a continuous film of one liquid covers the surface the other 

condensing liquid may not.be able to condense until a resistance to 

nucleation has been overcome.

The homogeneous rate of nucleation of a liquid from a supersaturated 

vapour is given by Hill et al (1963) as

M -AG(r

where I is the rate of r.ucleation, k Bolnznans constant, T the vapour

tenner ature. M the molecular weiaht. N Avocacro's number, pT the liquid » T 0 7 r^ ^

drop density, cr the liruic: ircp surface -er.sion and ^_G(r*) the free energy 

required for nucleaticn of a crop. For the homogeneous case aG(r*) 

is given by (Hill et al (1353); as,

A G(r») = - " ~ r» 2 . (D2) 

Turnbull (1950) has shown that the free energy required to form a drop 

which is part of a spherical segment is

^ GCr») = -|-cr*-(2 + cos 0) (1 - cos £) 2/4 (D3)

= AG (r*)<:,
rl

where AG(r*) is defined by equation (D2), 6 is the contact angle and 
H

2 C = (2 + cos G) (1 - cos 6) /4. Combining (Dl) and (D3) gives

2P M 2(jN -4 -Ttr* Cexp '

I ! /



but r* = 2 <r M/ pL RTIr.CP /P«> ) (Hill et al. ^1963) hence

I =
M 2 O-M -j- 

> (
'o ^L

-K M
-16 K (D5)

3kTc ?l R2(ln?g/? co

The part of equation (D5) which is of greatest interest for this 

study is C, that is (2 + cos 0) (1 - cos G) 2/4. Consider a steam-toluene 

mixture, if the water forms the continuous phase we must consider the 

condensation of toluene onto the water surrace. The contact angle for 

most organics on water is zero or near zero, from equation (D3) this means 

the free energy for the formation of a drop is zero, or near zero, that 

is there is no barrier to the condensation of toluene onto the water

surface

However, if we consider steam condensing on toluene it is known that 

water v/iii not spread en a roluer.e surface (or indeed on most organic 

liquids with which in is immiscible) and hence a finite contact angle 

between -he two liquids will exist. Since there are no data available 

for the required cor.tacn =ncles a range of contact angles will be considered.

Consider the sys-erti shown in figure Dl. The problem is to calculate

T such that the nucleation rate 1 is significant. In this case P is 
i 9

the parnial pressure of the steam in the gas phase (and thus also its 

vapour pressure), thus for a eutectic vapour mixture.

Pg=760 (1-0. 444) =42 3 rnn Kg = 5.6394 x 10"d\T.es/cm2 ,Tg=84.34°C=357.49K, 
PL = 0.9692 gni/cm3 
(at 84.34°C), N = 6.023 x 10 g mole " (Avogadros constant),

Ifi 2 k = 1.3308 x 10 ergs/K (Boltzmans constant), cr = 61.7 ergs/cm
•j 

(at 84.34°C), R = 8.314 x 10 ergs/g moleKCGas constant) and M = 18.0.

equation (D5), 1=1.4591 x 10 26 exp L -31.13 C /(in x) 2 ], CollierFrom
1 "1

(1972) gives a rate of 10 -10 as being a significant nucleation rate, 

thus taking the smaller value

i c



pg - Tg
P T- rs» l i

V.

Organic Film

F! NUCLEATiON OF A WATER 
DROP ON AN ORGANIC FILM.



exp [-31.13 €/ (in x) 2 ] = lO11/-*-^'. x 1Q 26 = 6.8535 x 

therefore In x = (0.8915 C ) 2 . (D6) 

As an example let Q = 30° then C = 0.01235 sr.d hence x = 1.1130 =
\

P /P co i thus P.. = 380.0 mm Ha that is the vaoour pressure of the steam
g _0 ^ .

at the interface must be 380.0 mm Hg and T_. = 81.60 C before any sign 

ificant nucleation takes place. The degree cf vapour subcooling required 

is hence (84.34 - 81.60) 2.70°C. Figure D2 gives the degree of subcooling 

required for various values of the contact ar.gle.

The major errors in this analysis are probably in the calculation of 

the pre-exponential term in equation (D5). However, since a variation 

of two to three orders of magnitude has li-tle effect it is not as 

important as the exponential term.
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APPENDIX £ 

The Effect of Variable V/all Ter.-eri~.Lre on the

Laminar Film Condensation of =. r-.-re Vapour

The following analysis is an attempt -o determine the effects of a 

non-uniform wall temperature on the condensin; film heat transfer co 

efficient. The assumptions made are those of >russelt (see chapter 2 

section 2.2), here however, the wall temperature- is not constant but is 

given by the empirical correlation of Salov am Danilov (1975) i.e.,

T = T + C. cos 0 (El) w w 1

where T is the mean wall temperature, T ihe accrual v/all temperature at
V* W

angle 0 and C a constant.

From equation (El) it is apparent tr.a~

:os .2) (E2)

putting :c = C / £!_,_ then equation (E2) becomes

= AT C 1 - „ cos 0) % (E3)

The coordinate system used is shown in figure El. The momentum 

equation can be reduced to

d2u
sin ^ = -^ (E4)

Integrating equation (E4) gives

, 
I LL



FIG. Et. CO-ORDINATE SYSTEM
FOR THE NON ISOTHERMAL

WALL ANALYSIS.

I L



(p T -oJg sin 0 - 
-l£-—————— (yS-y2/ 2 ) (E5)

where u is the velocity in the x direction. The mean film velocity is hence

Cp L-pv )g sin 08 2 (E6)

The heat transferred through unit width of the element d 0 is given by

D
q- \dr-~AT. (~) d 0 (E7) 

o * ^

where T the condensate flowrate per unit width of film is

p u 6 (E8)

Combining equations (E6), (E8) and differentiating we get

o 
d(63 sin0). (E9)

Thus from equations (E3), (E7) and (E9) it is apparent that,

(1-cocos 0) d 0 » K J5 4 cos 0 d 0 + 3 6 3 sin 0 d 6J (E10)

where K - 2(PT (PT -Pv >g x /(3kD AT u). %
Li Ll V O -I



Putting K 6 4 = z and noting that 3 83 d 8 = -|d ( 

equation (E10) reduces to

dZ 4 Z cot 0 4 oocot 0 4 cosec 0 + ———3——— + ——3———— - ——3———— (Ell)

the solution of this ordinary differential equation being,

3 sin (sin ^0 - oasin ^0 cos 0) d 0 „ (E12)
0

The condensate film heat transfer coefficient is hence given by

h - ~ = k K 4/Z 4 (E13)

However, it is not tr.e sisolu^e value which is of interest but the value 

relative to the Xusseit prediction for an isothermal wall. Following 

the derivation above -.vith the isothermal wall assumption gives

> N = :< KVZ * (E14)

where

_ . 3 sin . 0
in 0 d 0.

0
(E15)

Combining (E12),E(13), (E14) and (E15) gives

N
1 - 0) (E16)



where r 4S « ————S--——— / sin T 0 d 0. (E17) 
3 sin 4/ 3 0

The ratio of the mean heat transfer coefficient is given by

r /-7l 

h d 0 / J0 hN d 0.VH- * J" h d 0 / yn h%T d 0. (E18)

Using equations (E12), (E13), (E14), (E15), and (E18) it can be 

shown that,

0/S (Elf)

Since Chaddock (1957) has shown that

~ J^ d 0/S* = 0.805542, equation (E17) becomes

« 0.39515 J0 d 0/ [s-co], (E20)

Equations (E16) and (E20) have been solved numerically (using 

Simpsons rule) for various values of oo and 0, the results are shown in figures 

E2 and E3 respectively.
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APPENDIX F

Experiments on a Vertical Copper Surface 

F.I Introduction

At a late stage in the present study it was decided that useful 

information on detailed mechanisms might be obtained using a simple flat 

plate. The apparatus described below was designed primarily to give such 

information and at the same time provide quantitative heat transfer data.

Unfortunately it was only possible to do relatively few commissioning 

runs with this apparatus, however, some limited qualitative and quantitative 

data have been obtained.

The following sections will give a brief, description of the apparatus 

and the results obtained. 

F.2 Apparatus and procedure

The flow diagram of the apparatus is shown in Figure Fl; essentially 

the ecuicnent consists of -he following items:

1. Boiler - this is sirnply a 2 litre round bottomed flask fitted 

with a reflux condenser. The heat required to boil the liquids is 

provided by a 2.0 *<W lscnan~le.

2. Test section - this is described in more detail in section

V O •".r . £ . JL.

3. Total condenser - this consists of a coil made up of several 

turns of 7 mm bore glass tube in a 75 mm i.d. glass jacket. The cooling 

water passes through the coil.

4. Constant temperature bath - this provides the cooling water, at 

a controlled temperature, to the test section.

5. Collection vessels - these are simple conical flasks fitted 

with ground glass stoppers to accomodate the glass feed lines.

The lines connecting the various items of equipment are of glass 

and P.T.F.E. tubing, all of the vapour lines being lagged with fibreglass.

I L
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F-2.1 Test section

Figure F2 shows the details of the test section, essentially this 

is a 90 x 60 x 50 mm copper block. The temperature distribution through 

the block is measured by four equally spaced stainless steel sheathed 

copper constant an thermocouples. The measuring junctions are located on the 

centre line of the block as shown in figure F2. These thermocouples 

were calibrated in situ by simply placing the block in a constant temperature, 

bath, the bath temperature being determined by a National Physical Laboratory 

tested mercury in glass thermometer. The accuracy of calibration was 

estimated to be within +_ 0.1°C.

The condensing surface can be viewed through a glass window, when 

running the apparatus this window was kept clear of condensate by shining 

a 500 W lamp onto the glass, this also provided the illumination for 

viewing. 

F.2.2 Procedure

Before taking any readings the condensing face of the copper block 

was polished with successively finer grades of emery paper until uniformly 

smooth. It was ther. vasr.ec with acetone and distilled water before installation,

To commission ~he apparatus the procedure was as follows:

1. The cooling water supplies to the reflux and total condenser
*

were turned on.

2. The cooling water to the block was turned on and the temperature 

adjusted to the required value.

3. The mixture to be boiled was placed in the boiler and the iso-

mantle switched on.

4. When the system had reached steady state, that is when the 

block thermocuples were giving a constant output the following readings

were taken:

1. Thermocouple readings

I J
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2. Condensate flowrates

3. Atmospheric pressure. 

Note

The build up of incondensable gases was prevented by periodical!'/ 

venting from the total condenser. 

F.3 Results and Discussions

The heat transfer results were calculated as follows. The heat flux 

through the block was determined from the measured temperature profile 

using

q = k AT^/1' (Fl)

where k is the thermal conductivity of copper (389 W/m C), 1 and AT 

are the distance and temperature difference between the thermocouple 

nearest the condensing surface and the one furthest away. The condensing 

film heat transfer coefficient is then given by

h « q/ -T_ (F2)

where A T =T — T . I tr.e saturation temnerature was determined from 
r s w s

the atmospheric pressure reading and T the wall temperature by extra-
"" ri

polation of the measured temperature profile.

The results obtained are shown in Fig. F3, as can be seen except for 

three points the heat transfer coefficient does not vary appreciably with 

temperature difference.

The condensation mechanism was as follows: the toluene formed a film 

while the water formed both standing drops and rivulets. Tne area occupied 

by the drops was substantially greater than the area occupied by the water 

rivulets Fig. F4. Small drops were observed on both the standing water 

drops and water rivulets. 

F.3.1 Discussion

Since originally the reported results were only meant to be of a
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FIG. F4 FLOW PATTERN for the CONDENSATION of 
STEAM-TOLUENE MIXTURES ON A VERTICAL FLAT

PLATE
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preliminary nature (i.e. commissioning runs) no atter.pt v;?s made to

uniformly o::.ldise the copper coneensing surface before use. Thus

the results have been obtained on a surface vjhich has been changina v;ith

time.
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APPENDIX G 

Error Analysis 

•The film heat transfer coefficient is calcralated using the ecu=ii::r_

where m is the rate of condensation, \ the latent heat of vapourisa

A the heat transfer area and AT the film temperature difference. 

The estimated accuracy in measuring the above variables is as

follows:

Error on A - this value is assumed correct

Error on X - the physical property correlations are accurate

£ 1.0%.

Error on m - the measurement of the rate of condensation is 

estimated to be accurate to v/ithin j-^ 4.C~.

Error on ^ T,. - -his variable is ceierr±ned front the expression/-^ = 

T -TL. sr.d since T_ =r.d Hear, be measured tc within jr 0.2 C the error in
S ,'( o ,\

- T£ Ls ^_ C.4°C. Thus if _ T^. = 4.0°C the error is jh 10,:% 

= 4C.C DC the error is or.lv + 1.0%.
-* ^MV

Frcn the above esrlnates of the errors it is apparent that the 

minimum theoretical errors in measuring zhe heat transfer coefficient 5_re 

+ 15. C% if ^T = 4.C°C and jf 6.0% when T^ = 40.0°C. Thus for the pr^s-ent
•"^ TJ" ^"^ i

neasurenents an accuracy limit of _+ 15.0% en the heat transfer dat.a i^ 

reasonable.

T::e heat balance is determined from the expression

where Q is the heat gained by the cooling water and C)-,.^ is the
CW

heat lost by the condensate.

The condensate heat load is determined from Q- = m X . Thus frccn

the above discussion it is aoparent that Q^^>TT. can be measured to
v_UIMiJ

•f 5.0%.

The cooling v/ater heat load is obtained from C2 = F At C .cw p



estimated maximum error in measuring F is _+_ 5.0%, v.T.ile the correlation 

for determining C is better than _+ l.G:i. Again ih= error in determining 

A t depends on its magnitude, the absolute error is _+ 0.05 C.

From the above it is apparent that if ̂  t = C.5 JC the error in measuring

the heat balance will be ± 21.0% (5.0 + 1,C + 1C." - 5,0) and if t = 1,0°

the error is +_ 17.0% (5.0 + 1.0 x 5.0 + 5.0).

The limit set on the rejection of data because of bad heat balances 

was set at _+_ 15.0%, and the cooling water temperature difference maintained 

above 0.5 C were possible.
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