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Abstract

This thesis is concerned with magnetism at the surfaces of frustrated magnets,

and in particular with magnetism on face-centred cubic (FCC) lattice systems. Nor-

mally, magnets do not react to a surface. Frustrated magnets do, however, and we

consider two cases: Magnetic relaxation and the more unusual magnetic reconstruc-

tion phenomenon. Magnetic relaxation involves the extinction near the surface of

a magnetic order that is present in the bulk and exists as a type of magnetic do-

main wall. Calculations of the ground state configuration of a semi-infinite system

of uranium dioxide, an FCC triple-q magnet, show a solitonic solution correspond-

ing to this relaxation. Fluctuations of this domain wall are considered in order to

explain the unusual disordering observed experimentally in the near-surface region

at a temperature below the bulk ordering transition temperature. The rarer case of

reconstruction involves completely new magnetic order from the bulk appearing at

the surface spontaneously and at a temperature below the bulk ordering transition

temperature. Analysis of this phenomenon is undertaken via the construction of

a phase diagram for a frustrated square lattice Heisenberg model. Regions of the

phase diagram are found to exist in which the reconstruction is expected to occur,

and furthermore the results can be mapped directly to type-1 FCC lattice systems.
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Chapter 1

INTRODUCTION

This thesis investigates the magnetic surface of face-centred-cubic(FCC) magnets.

FCC magnets possess geometric frustration in the form of exotic multiple-q mag-

netism, which in turn leads to the possibility of access to degenerate magnetic states.

As a result, the magnetic spins can react to the inclusion of a surface in interesting,

and in one of the cases we shall be presenting, novel ways. In particular, these states

can possess more than one magnetic order parameter, in the form of multiple Bragg

spots. As such, FCC lattice materials have the potential to reorient the magnetic

spins in reaction to a change in a parameter, and in some cases to completely alter

the magnetic translational symmetries present in the system. This change in pa-

rameter can be in the form of, for example, temperature, uniaxial stress or impurity

concentration. The focus of this research is the investigation of how such systems

react to the introduction of a surface, which can be thought of as an impurity to a

system which in its pure form extends to infinity in all dimensions.

The behaviour of materials at surfaces is a discipline in its own right - whereas

some treat the surfaces as an inevitable but unwanted disorder effect that impacts

negatively on their bulk measurements, others embrace the resulting properties of

the material. We consider the case of pure surfaces, ignoring effects such as leaching,

roughening etc.

The effect of the presence of a surface on the chemical make up of a material
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is well studied. The system alters in order to minimise the number of the dangling

bonds present due to the broken chemical bonds. This can be realised by either

rearrangements of the atoms, whereby the atoms are displaced from their bulk po-

sitions but maintain the bulk periodicity, or reconstructions of the surface, which

alters the periodicity from that in the bulk such that the symmetry parallel to the

surface becomes lower than the bulk.

Reconstruction can result in highly complex structures, such as one of the most

heavily studied; the Si(111) 7x7 reconstruction[1][9]. The currently accepted geom-

etry is that of a Dimer-adatom-stacking fault, the DAS model, first proposed by

Takayanagi et al [10] and illustrated in fig 1.1. The surface geometry involves 12

adatoms per unit cell, 6 rest atoms (those that have not been saturated by adatoms)

sitting 1 layer below this new ’surface’ that are 3-fold co-ordinated, and vacancies

at the corners of the unit cell. Fig 1.2 details these different building blocks as well

as others found on other silicon surface geometries. Half of the new unit cell has a

stacking sequence identical to the bulk, whereas the other half does not. The result

is four layers at the surface that are reconstructed compared to the bulk chemical

geometry, with 19 broken chemical bonds, or dangling bonds, pointing towards the

vacuum. The translational symmetry parallel to the surface is as a result lowered,

as described by the unit cell, which alters from being defined as 1x1 to be 7x7.

Analogous to this are the magnetic relaxation and reconstruction phenomena,

both of which are studied in this thesis. In comparison with the system minimising

the number of dangling bonds by atomic relaxation or reconstruction, the system

minimises the magnetic energy lost from broken magnetic bonds by orienting spins

to have minimum frustration. This can be achieved by orienting spins to have less

frustration parallel to the surface than perpendicular. In this way the introduction

of the surface takes away the frustration and magnetic energy lost from broken

bonds can be compensated for. The energetically-favourable orientation can be

understood by considering spins surrounding a spin on the surface as a local field.

2



Loss of bonding can alter the local field if the spins are non-collinear, resulting in a

relaxation of the spins towards the surface. Alternatively, if the spins are collinear

relaxation cannot occur, but the new phenomenon of magnetic reconstruction can

under certain circumstances, where new order is introduced at a ’surface-ordering’

temperature. In this way a ’new’ local field is introduced at the surface which results

in an energetically-favourable reorientation of the spins, compensating for the lost

bonding.

The analogy of magnetic relaxation to chemical relaxation can be considered by

defining magnetic relaxation as the ’displacement’, or perturbation, of the magnetic

spins from their bulk state, which constitutes a reorientation of the spin direction,

but with no underlying change in symmetry parallel to the surface. This includes,

among other examples, the case of uranium dioxide which is one of the studies

within this thesis. In this case, there is an altering of the magnitude of order in the

near surface region from the bulk, but the translation symmetry perpendicular to

the surface remains the same. The case of magnetic surface reconstruction which

constitutes the second study within this thesis is the more exotic case and is a

completely new phenomenon previously not thought possible. It is the exotic class

of multiple-q magnets that possess the characteristics required for this new type of

reconstruction.

The recent reignited interest in surface magnetism has come about due to recent

advances in experimental techniques that have as a result become capable of probing

the near-surfaces of materials to high enough accuracy. Experimental techniques for

imaging surfaces have been developed over the years to include ’purely surface layer’

techniques, such as atomic force microscopy, and those that penetrate a finite depth

into the material with a function-dependent absorption profile, such as LEED. An

example of the application of LEED can be seen in figs. 1.3 and 1.4 which shows the

depth profiling of the Si surface reconstruction discussed earlier. These techniques

have been used previously for determining atomic and electronic structure, but so
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Figure 1.1: The DAS mode for the Si(111) 7x7 surface reconstruction[1]

Figure 1.2: Building blocks of the Si surface reconstruction [1]

far not magnetic structure due to the difficulty or impossibility of coupling the

magnetism to the probe. However, there have been advances in recent years whereby

techniques originally used to determine either atomic and electronic structures on

the surface, or magnetic structure in the bulk, have been tailored to probe the

magnetism at the surface of the samples and are becoming very powerful tools.

Depth-profiling near surfaces is no mean feat, and there have been several dif-

ferent experimental techniques used in the past to achieve it, to varying degrees of

success. Depth selective conversion electron Mössbauer spectroscopy (MS) has been

performed[11] to examine hematite and FeBO3 crystals. This is a great method for

depth profiling with accuracy, however the compound must consist of the one of the

MS probing atoms, for example 57Fe.
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Figure 1.3: LEED measurement at 40eV of Si with a (111) surface [2]. Since the electron mean
free path is very small, only one graphite-like layer primarily contributes to the scattering

At first sight neutron scattering seems unsuited to be a surface probe due to the

penetrating nature, and only samples with a large surface-to-bulk ratio could give

reasonably-sized signals for the surface, for example fine powders. However glancing

angle scattering can provide reasonable resolution and the analysis is performed by

examining lateral cuts across the resulting truncation rods. Evanescent neutron

scattering has also provided decent results [12] and can be used simultaneously.

However, the minimum escape-depth (scattering depth) of evanescent neutrons is

in most cases around 100 Å for angles lower than the critical angle of the sample.

As such, the probe is not good enough for probing effects very close to the surface,

nor purely 2D magnetic phenomena, unless the material is highly-absorbing, for

example Gd[12].

Watson et al [13] have developed evansecent magnetic x-ray scattering to obtain

data for near-surface regions of semi-infinite systems, made possible by relatively

recent access to synchrotron radiation light sources. The depth weight functions

involved in this method are exponentials, which makes accurate depth profiling

tricky, but again, lateral analysis across truncation rods can bear fruit.

The pioneering work on the behaviour of the order parameter near the surface of

antiferromagnets was undertaken decades ago on ultrafine hematite particles where

it was found that there was a magnetic behaviour in the first few atomic layers that

was different from that of the bulk. The work was then extended to thin films, and

then to magnetism near surfaces of larger crystals resulting in the observation of a
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Figure 1.4: LEED measurement at 125eV of Si with a (111) surface [2]

range of phenomena.

Ginzburg-Landau theories have been applied to magnetism at surfaces in order

to obtain critical laws and exponents for the associated magnetic behaviour. The

theories concern the enhancement of or decrease in magnetic surface coupling as the

causes of magnetic phenomena associated with the near-surface. If the surface cou-

pling is enhanced, then one can expect, in terms of approaching the magnetic order-

ing temperature from above, the surface to magnetically order before the bulk, with

the depth of the near-surface region being given by the magnetic correlation length.

Below the bulk transition temperature the surface should exhibit an enhanced or-

der parameter value compared to that of the bulk. If conversely the coupling is

decreased at the surface, then the bulk is expected to order first, at the ’original’

bulk transition temperature, and this order then to leak to the surface, such that

magnetic ordering is only present below the bulk transition temperature. In this

case, the near-surface has decreased order from the bulk at any temperature but

identical order, and so has no phase transition associated solely with itself. However

no literature has so far been concerned with magnetic surface ordering transitions

that occur independently and what’s more below the bulk ordering temperature,

and it is this type of transition that this thesis will provide theoretical evidence for,

along with preliminary proposals that the theory has in fact already been experi-

mentally observed. This is the magnetic reconstruction phenomenon and we find

that multiple-q systems, in particular type-1 FCC magnetic materials, are prime

candidates for this unique transition.
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The magnetic reconstruction is studied by determining a phase diagram for a

semi-infinite square lattice system with frustration, modelled by a Heisenberg Hamil-

tonian. A phase boundary to the reconstruction is found and the configuration de-

termined explicitly for some locations of the phase diagram. The study allows the

development of ideas that lead to a statement of the criteria needed for magnetic

reconstruction to occur. In addition, and of great significance, it is shown that the

results for the square lattice can be mapped directly onto an FCC type-1 magnet.

The second investigation within this thesis concerns magnetic surface studies of

UO2, for which interesting phenomena has been observed experimentally, in terms

of unusual magnetic disordering behaviour of the near-surface region at a temper-

ature below the bulk ordering temperature. The ground state of the semi-infinite

system is determined using a Heisenberg Hamiltonian with appropriate anisotropy

terms and is found to take a solitonic form, describing a domain wall between a 2q

state on the surface and a 3q state in the bulk . The determination of the ground

state provides a basis for understanding how thermal fluctuations may disorder the

system. Literature containing fluctuation calculations based on this ground state is

consulted [14] and a picture for what the unusual disorder observed may correspond

to provided. In addition, the phenomenon of wetting is considered for the system

in question, but a different theory is proposed as a more likely scenario, in which

fluctuations of the domain boundary present in the system between the 2q and 3q

states descend towards the bulk on the increase of temperature. This movement of

the wall does not need to be discontinuous to explain the unusual sharp behaviour

observed, since the increase of the length scale associated with the fluctuations could

simply be increasing past the length scale of the depth probe which would show up

in this way.

We begin this thesis by introducing the main principles behind the determina-

tion of magnetic spin configurations, followed by a review of multiple-q magnetism

and associated transitions and magnetic surface transitions, before beginning our
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two studies: magnetic surface relaxation in uranium dioxide and magnetic surface

reconstruction.
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Chapter 2

DETERMINING CLASSICAL SPIN

CONFIGURATIONS

In this chapter, we detail how one determines the spin configuration of magnets

for different lattices and interactions. The method is based on the use of a Bloch

transform, and the subsequent minimisation of the energy as performed in reciprocal

space subject to appropriate constraints. The determination of spin configurations

in turn leads us to classify different types of magnets according to the spin state

degeneracies they possess in the ground state. The second part to this chapter

involves solving for the magnetic state of different types of lattice. It is here that we

introduce multiple-q magnetism and study the magnetism of the FCC lattice with

nearest neighbour coupling, which will be the foundation of our subsequent studies.

2.1 Diagonalisation

The Bloch transform can be used to diagonalise any Hamiltonian that describes a

system of discrete sites that possesses periodicity. A system possesses periodicity if

the potential viewed from any particular atom is equivalent to that of any other, and

as such the translation through any vector joining two atoms is thereby a symmetry

of the system. A lattice that possesses this property is known as a Bravais lattice,

and it is the translational symmetry of these lattices that is exploited in order to
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2.1. Diagonalisation

diagonalise the Hamiltonian as will be shown in the next few sections.

The diagonalisation of the Hamiltonian is achieved by using the property that

commuting operators can be simultaneously diagonalised (or, more precisely, block-

diagonalised). It will be shown below that any symmetry operator of the Hamilto-

nian commutes with the Hamiltonian and thus, if one can find a symmetry of the

Hamiltonian and determine the basis in which the symmetry is diagonalised, one can

reduce or even solve the problem of diagonalising the Hamiltonian by transforming

it into this basis.

Consider two operators: Ĥ , a Hamiltonian which is necessarily a hermitian op-

erator, and Û , a unitary operator. A symmetry of the Hamiltonian is defined as any

unitary transformation that leaves the Hamiltonian invariant. As such, if

Ĥλ = φ (2.1.1)

for the two wavefunctions λ and φ, then the Hamiltonian should also map the

transformed wavefunctions onto each other too:

ĤÛλ = Ûφ. (2.1.2)

Since the unitary operator can be inverted, we can write

Û−1ĤÛλ = φ = Ĥλ (2.1.3)

and since this must be true for all wavefunctions, we find that
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2.1. Diagonalisation

Û−1ĤÛ = Ĥ, (2.1.4)

which leads us to the commutation relation

[Ĥ, Û ]− = 0. (2.1.5)

Hence, a unitary operator, Û , that is a symmetry of the Hamiltonian has the

property that it commutes with the Hamiltonian.

Next, we show that commuting operators can be simultaneously diagonalised.

We remind the reader that hermitian operators have real eigenvalues, and that

eigenvectors associated with distinct eigenvalues are automatically orthogonal. This

is also true for unitary operators, as we shall now show by visiting the inner product

definition.

For unitary operators,

Û |u〉 = u|u〉, (2.1.6)

the following inner product equation is satisfied:

(u, u′) = (Ûu, Ûu′) (2.1.7)

and so, acccording to the eigenvalue equation above,

(u, u′) = u∗u′(u, u′). (2.1.8)
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2.1. Diagonalisation

Writing the inner product using bra and ket notation and we see that

(1− u∗u′)〈u|u′〉 = 0. (2.1.9)

Thus, substitution of u = u′ unveils that the eigenvalues u have unit modulus,

and that therefore eigenvectors corresponding to distinct eigenvalues are orthogonal.

Given this property, and that Û † = Û−1, one can write

u′(u, u′) = (u, Ûu′) = (Û †u, u′) = (Û−1u, u′) = (u−1)∗(u, u′) = u(u, u′). (2.1.10)

As such, one can still use the notation 〈u|Û |u′〉 for eigenstates of a unitary

operator and allow Û to operate in both directions.

Using this allowed notation and the property of commuting operators already

discussed, one can consider picking a basis in which Û is diagonal and see how Ĥ

acts in this basis. We write down the matrix elements in the following form to

exploit the properties discussed above:

u〈u|Ĥ|u′〉 = u〈u|ÛĤ|u′〉 = 〈u|ĤÛ |u′〉 = 〈u|Ĥ|u′〉u′ (2.1.11)

and can therefore write

(u− u′)〈u|Ĥ|u′〉 = 0. (2.1.12)

From this, we see that if one considers the matrix elements of Ĥ that couple

eigenvectors corresponding to different eigenvalues, then the matrix elements are

12



2.2. Bloch Transform

zero and we have ’block-diagonalisation’, whereby the matrix H can be written such

that the elements are non-zero only in ’blocks’ of matrix elements that follow the

diagonal of the matrix:








H1





u1

0 ... 0

0




H2





u2

... 0

. . ... .

. . ... .

. . ... .

0 0 ...




HN





uN





Each of these blocks only contain elements that correspond to identical eigen-

values un, and as such are independent of other blocks. To completely diagonalise

this matrix, one then needs to determine other symmetries of H that ’decouple’ the

remaining dependence within the blocks. The final operation that fully diagonalises

H is constructed by multiplying these unitary transformations together.

2.2 Bloch Transform

To diagonalise a Hamiltonian that describes a Bravais lattice, one exploits the pe-

riodicity of the lattice, using the translational symmetry of translation by 1 atom

in 1 direction, T̂ . The overall diagonalisation involves separating out the different

dimensions of the lattice and dealing with each one one-at-a-time. Note that the
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2.2. Bloch Transform

Bloch transform that is related to a single dimension serves to block -diagonalise the

Hamiltonian (unless of course the problem is in 1D, in which case the Hamiltonian

will be fully diagonalised).

Our first step is to diagonalise T̂ after applying periodic, or ring boundary con-

ditions in order to make the matrix a finite size.

T̂= 



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

. . . . . .

. . . . . .

0 0 0 0 0 1

1 0 0 0 0 0





One thereby obtains the normalised eigenvectors cn and eigenvalues tn that are

given by

cn =
1√
L

exp

(
i2πn

L
j

)
(2.2.1)

tn = exp

(
i2πn

L

)
, (2.2.2)

where n labels the eigenvector (and corresponding eigenvalue), j labels the ele-

ments of the eigenvector, being the original position integer describing the location

of the atoms on the lattice, and L is the number of atoms within the translation

direction in the lattice, i.e. in the corresponding single dimension we are currently

dealing with. By convention, one makes the parameterisation

k =
2πn

L
, (2.2.3)
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2.2. Bloch Transform

where k is called the Bloch momentum. One must restrict the range of k in

order to get distinct eigenstates and prevent overcompleteness. This idea leads to

the representation of k in reciprocal space, as becomes more apparent if we generalise

the Bloch transform to multi-dimensions....

The eigenbasis for diagonalising the Hamiltonian is the set of eigenstates that

are each comprised of the multiplication of the translation eigenstates corresponding

to each dimension:

c =
1√
N

.e
i2πn1

L1
xe

i2πn2
L2

ye
i2πn3

L3
z (2.2.4)

=
1√
N

.eik.Rj , (2.2.5)

where N = L3, the total number of spins in the lattice, k = (k1, k2, k3) and

Rj = (x, y, z).

We are now in a position to construct the Bloch transform. From linear algebra,

the transformation of a vector from one basis to another is achieved by multiplying

the vector by the inverse of the matrix Ujk which is the matrix constructed from

columns of the eigenstates that make up our new basis. As such, the transformation

of a vector sRj representing the spin vectors at each location j into the basis in

which the Hamiltonian is diagonalised is represented by

sRj =
1√
N

∑

k

ske
ik.Rj , (2.2.6)

which is our Bloch transform. Its inverse is defined as

sk =
1√
N

∑

Rj

sRje
−ik.Rj . (2.2.7)

The transform is often defined as the following, involving a rescaling of the vector

sk →
√

Nsk:
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2.2. Bloch Transform

sRj =
∑

k

ske
ik.Rj , (2.2.8)

and it’s inverse

sk =
1

N

∑

Rj

sRje
−ik.Rj . (2.2.9)

This is a more convenient form since most spin configurations are constructed

from a single k, or at most 3 k’s. The rescaling gives a one-to-one mapping for the

magnitude of the real and reciprocal lattice spin vectors if a single k is used and as

such makes more sense - without this scaling the sk vector scales macroscopically

with system size.

The overcompleteness of k discussed previously leads to the construction

eik.Rj = eik̃.Rj (2.2.10)

for certain values of k̃. Solving this equation we end up with the eigenvector being

identical (and hence the transformation being identical) if

k̃ = k + G, (2.2.11)

where G satisfies the condition

eiG.Rj = 1 ∀j, (2.2.12)

the condition satisfied by a Bloch wave. As such, there exist what we term

’equivalent’ k’s, defined since any k’s that are separated by a reciprocal lattice vector

correspond to identical spin configurations in real space. As such, we represent the
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2.3. Reciprocal Space

k’s in reciprocal space, which is in turn generated from the direct lattice, and restrict

attention to solely the first Brillouin zone.

2.3 Reciprocal Space

The conjugate basis to real space, reciprocal space, is generated from primitive re-

ciprocal lattice vectors, G1, G2 and G3, which we now detail. They are constructed

such that they satisfy Ri.Gj = δi,j2π, where Ri are primitive real space lattice

vectors, so that they belong to the reciprocal lattice, and are given by cyclic permu-

tations of the following:

Gα = 2π
Rβ ×Rγ

Rα.Rβ ×Rγ
. (2.3.1)

These vectors are permitted to be primitive vectors, that is they define a general

reciprocal lattice vector G as:

G = m1G1 + m2G2 + m3G3, (2.3.2)

where m1, m2, m3 are integer values, since (a) they are linearly independent,

which can be seen from

G1.G2 ×G3 =
(2π)3

R1.R2 ×R3
(2.3.3)

and (b) the mi are necessarily integer values, from

e2πmi = 1, (2.3.4)
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where the real space vector R is defined with respect to the primitive real space

lattice vectors

R = x1R1 + x2R2 + x3R3, (2.3.5)

where xi are integer values.

We define the range of k within which we have inequivalent k points as the

Brillouin zone, and the first Brillouin zone is that which contains the k = 0 point.

The Brillouin zone can be constructed by taking the perpendicular bisectors of the

reciprocal lattice vectors.

2.4 Identities

Several identities are used in conjunction with the Bloch transform in order to deter-

mine spin configurations, and we detail them here. We simply state our first identity

which is a consequence of spins being real:

s∗k = s-k. (2.4.1)

Our second identity is the following:

N∑

j=1

eik.Rj = N
∑

G

δk,G, (2.4.2)

which is valid for any bravais lattice, where N is the total number of sites in the

system.
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2.4. Identities

We begin the proof by defining an N’th root of unity, ω̄,

ω̄N − 1 = 0. (2.4.3)

One can consider writing this expression in terms of a summation:

0 = (ω̄ − 1)
(
1 + ω̄ + ω̄2 + .. + ω̄N−1

)
(2.4.4)

such that ω̄ can either be equal to 1, or defined to satisfy

N−1∑

p=0

ω̄p = 0, (2.4.5)

where p are integers. The second expression can be redefined with respect to the

sum as

N∑

p=1

ω̄p = 0 (2.4.6)

due to the periodic nature of roots of unity, and therefore both possibilities for ω̄

can be encapsulated with the expression

N∑

p=1

ω̄p = Nδω̄,1. (2.4.7)

To apply this identity to our Bloch phase, we split the phase into the differ-

ent translational symmetry components present in the system via expansion of the

position vector Rj in terms of its primitive lattice vectors:

N∑

j=1

eik.Rj =
N1∑

a1=1

eik.a1R1

N2∑

a2=1

eik.a2R2

N3∑

a3=1

eik.a3R3 (2.4.8)

and consider each summation component separately, where al are integers, Rl
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2.4. Identities

label the primitive vector directions in which the system possesses translational

symmetry and Nl are the number of atoms the system possesses along each of the

Rl directions.

Equating the single term
∑N1

a1=1 eik.a1R1 with identity 2.4.7 is valid only if

expik.R1 is a root of unity. To determine when this is true, we expand the vec-

tor k in terms of the primitive reciprocal lattice vectors:

k = k1G1 + k2G2 + k3G3. (2.4.9)

Given that Ri.Gj = 2πδi,j, the root of unity requirement may be expressed as

(
eik.R1

)N1 =
(
ei2πk1n1

)N1 = 1 (2.4.10)

and hence we see that k1N1 must equal an integer, r1. As such, the term may be

expressed as

N1∑

a1=1

eik.a1R1 = N1δeik.R1 ,1

=
∑

r1

δk1,r1 . (2.4.11)

Performing the same procedure on the other terms completes the proof:

N∑

j=1

eik.Rj = N
∑

r1,r2,r3

δk1,r1δk2,r2δk3,r3

=
∑

G

δk,G. (2.4.12)
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2.5 Constraints

In solving our spin Hamiltonian, we must adhere to the constraint on the length of

each spin, which in real space is given by

sj.sj = S2 (2.5.1)

for ALL lattice points j. We transform this constraint into reciprocal space to

obtain a form that we can exploit in determining the minimum energy spin config-

uration, as detailed in the next section. We shall show in the following derivation

that this leads to the constraints in reciprocal space being

∑

k

sk.s
∗
k = S2 if q=0 (2.5.2)

∑

k

sk.sk+q−G = 0 if q (= 0. (2.5.3)

Multiplying eq.2.5.1 by 1
N eiq.Rj , where q is an arbitrary translation in reciprocal

space, summing over all j and implementing eq. 2.4.2 gives

1

N

∑

j

Sj .Sje
iq.Rj =

1

N
S2

∑

j

eiq.Rj

= S2
∑

G

δq,G. (2.5.4)

We now apply a Bloch transform to the left-hand side to obtain

1

N

∑

j

∑

k

∑

k′

Sk.Sk′eik.Rjeik′.Rjeiq.Rj (2.5.5)
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2.5. Constraints

=
1

N

∑

k,k′

Sk.Sk′
∑

j

ei(k+k′+q).Rj . (2.5.6)

.

Applying eq. 2.4.2 to expression 2.5.6 we obtain

∑

k

∑

G

Sk.SG−k−q. (2.5.7)

Given that the inverse Bloch transform of −k can be written as

S−k =
1

N

∑

j

Sje
ik.Rj = S∗

k, (2.5.8)

we arrive at the following expression for the real-spins constraint transformed

into reciprocal space

∑

k

∑

G

Sk.S
∗
k+q−G = S2

∑

G

δq,G. (2.5.9)

This leads to 2 constraints on the spins in reciprocal space:

∑

k

Sk.S
∗
k = S2 if q = G, (2.5.10)

∑

k

Sk.S
∗
k+q−G = 0 if q (= G. (2.5.11)

Hence, if kmin are a reciprocal lattice vector apart, then they contribute to the

sum of eq.2.5.10. Else, they contribute to the sum of eq.2.5.11. Examples of the
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2.6. Minimisation Procedure

application of these constraints will be shown in calculations of magnetic ground

states in the following sections.

2.6 Minimisation Procedure

Now that we have a method of transforming our real space problem into one that

diagonalises our Hamiltonian along with the constraints, we can develop a method

to determine the minimum energy solution to our spin Hamiltonian. The procedure

is performed in the reciprocal space basis where the Hamiltonian is diagonalised and

therefore where it is easy to determine which state corresponds to the minimum

energy solution.

In the following sections, we will find that the minimum energy spin configuration

is given by putting the spin density down only at the sk’s that correspond to k’s that

minimise a quantity called the structure factor. We label these particular k’s as the

kmin. Furthermore, we detail how to deal with systems where we have degenerate

kmin, and also show that in some cases both kmin and −kmin must be used in order

to ensure reality with respect to the spins in real space.

We begin by representing the Heisenberg energy of the spin system in reciprocal

space by performing our previously-defined Bloch transform on the system. The

point group symmetry of the lattice system, being the group of rotations and inver-

sions that keep the lattice invariant, is exploited in writing the expression for the

Hamiltonian. We therefore define the Hamiltonian as

H =
∑

n

Jn

2

∑

<j,j′>n

Sj.Sj′, (2.6.1)

where n defines each set of points on the real space lattice that are generated

by the point group from a point jn, with < j, j′ >n indicating the sum is performed

over all j′n generated from jn. The notation n is alternatively often referred to

as describing the nth nearest neighbours of the lattice, with < j, j′ >n therefore
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2.6. Minimisation Procedure

describing how the sum is performed over all j and j′ that are nth nearest neighbours.

Jn is the antiferromagnetic coupling between nth nearest neighbours. The factor of

a half takes care of double-counting with respect to the summation over all nearest

neighbours.

Applying the Bloch transform to eq. 2.6.1 we obtain

H =
∑

n

Jn

2

∑

<j,j′>n

∑

k

eik.RjSk.
∑

k′

eik′.R′
jSk′ , (2.6.2)

which can be re-arranged as

H =
∑

n

Jn

2

∑

k,k′

Sk.Sk′

∑

j

eiRj .(k+k′)
∑

mn

eik′.Rmn , (2.6.3)

where mn are vectors (Rj −Rj′) for nth nearest neighbours. Using our identity

∑

j

ei(k+k′).Rj = Nδk+k′,G, (2.6.4)

we arrive at

H =
N

2

∑

k

Sk.S−k

∑

n

Jn

∑

mn

eik.Rmn . (2.6.5)

The structure factor1 is defined as

γk =
∑

n

Jn

∑

mn

eik.Rmn (2.6.6)

and so we can write the Hamiltonian in the simple form of

1The convention is to define the structure factor as zγk such that the structure factor is nor-
malised between −1 and 1
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H =
N

2

∑

k

Sk.S
∗
kγk. (2.6.7)

.

It is useful at this stage to note that the Hamiltonian in the reciprocal space basis

obeys the same point group symmetry as that in real space. As such, if one can rotate

the real space lattice such that the Hamiltonian remains invariant, then performing

this particular rotation in reciprocal space leaves the Hamiltonian invariant too and

hence provides other k that give the same value of γk. To demonstrate this property,

we consider acting a rotation Û , which is a unitary operator, on the lattice site

locations Rj to obtain sÛRj
and determine what happens to the Bloch-transformed

spins:

sÛRj
=

1√
N

∑

k

sk expik.ÛRj . (2.6.8)

Using the definition of a unitary operator in terms of the scalar product, and

introducing the vector q = Û †k, we obtain

sÛRj
=

1√
N

∑

q

sÛq expiq.Rj , (2.6.9)

which corresponds to the spin density being put down at Ûk rather than the

pre-rotation k.

Now that we have an expression for our Heisenberg energy in reciprocal space,

we return to the aim of our procedure; we wish to minimise the energy of the

spin system, subject to the spin length remaining a fixed length in real space. We

define the problem as determining the minimum energy solution to the following
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reciprocal-space expression:

E =

∑
k sk.sk∗γk∑
k sk.sk∗

(2.6.10)

whereby the first constraint in reciprocal space, eq. 2.5.10, is included as the

normalisation factor. The second constraint, 2.5.11, will be applied later. To

determine the vector field sk that minimises the expression, we first express the

vector field instead as a vector a that includes all degrees of freedom:

a = (aα1
k1

, aα2
k1

, aα3
k1

, aα1
k2

, ..., aα3
kN

) (2.6.11)

where α = (α1,α2,α3) labels the Cartesian components (x, y, z) of the spin vector

in spin space and the set k label all available reciprocal space positions k. We

differentiate the expression for E with respect to each of degree of freedom present

in the expression for E, requiring the differential equal zero for every degree. Given

that we are in the reciprocal space basis in which the Hamiltonian is diagonal in k,

and that, in addition to this independence of the k components, the energy consists

of scalar product interaction between the spin space vectors and hence only couples

the elements of a of identical α labels, the expression simplifies to

E =

∑
k

∑
α(a

α
k )∗(aαk )γk∑

k

∑
α(a

α
k )∗(aαk )

. (2.6.12)

Differentiating with respect to each component al of a, and the corresponding

complex conjugates present in 2.6.12, leads to two expressions for the turning points

of the energy2:

2We assume a and a∗ are independent and end up with two equations related to each other as
is expected
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E(aαq )∗ = γq(a
α
k )∗ (2.6.13)

and

E(aαq ) = γq(a
α
k ) (2.6.14)

that must be obeyed for all l. For each l, there are two possible solutions to the

equations; either

E (= γq then (aαq ) = 0 for all α (2.6.15)

or

E = γq then (aαq ) = τν for all αν , (2.6.16)

where the τν are not as yet defined in magnitude and are also unrelated to each

other at present. As such, we find that for E = γq, a turning point energy, aturn,

consists of non-zero elements only at aαq unless there is a degeneracy in energy. If

this degeneracy exists, then there exist k’s such that γk = γq, in which case the

elements aαk may be non-zero, resulting in a multiple-q spin configuration.

Returning to the original representation of our spin state, the minimum energy

state sk therefore corresponds to any state that consists of spin space vectors s that

are non-zero only at reciprocal space locations k that correspond to the minimum

value of the structure factor γk. In other words, the minimum energy state cor-

responds to the eigenvector of the Hamiltonian that corresponds to the minimum

eigenvalue. From now on we shall refer to the k that minimises the structure factor
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2.6. Minimisation Procedure

as kmin. The final step in the minimisation procedure is the assignment of these

non-zero spin space vectors such that they adhere to the second constraint on spin

length, 2.5.11. This is easily performed since only those spin densities sk corre-

sponding to k = kmin exist. The choice of which of the potentially non-zero spin

vectors to assign as non-zero however requires some further thought.

The use of more than one skmin encompasses the spin configurations of multiple-q

magnetism present in real systems. Additionally, in certain cases, more than one spin

space vector skmin must be non-zero in order to ensure the real space spins are real,

as is the case for spin spirals. Specifically, for cases in which skmin is complex, which

occurs for any system that breaks the inversion symmetry of the lattice, leading to

k (= −k (from identity 2.4.1), the real space spin must be constructed from an skmin

and its complex conjugate. The result simplifies nicely according to identity 2.4.1

and as such, the real spin sj can be written as

sj = ske
ik.Rj + s-ke

i-k.Rj . (2.6.17)

This requirement comes about from the inversion symmetry present in the spin

system. Any system whose kmin do not lie mid-way between reciprocal lattice points

requires this construction.

Finally we mention the shortfalls of this procedure. In most cases, the procedure

we have described is sufficient to obtain the solution to the problem subject to both

our constraints. However, this is not always the case, as in some systems the second

constraint cannot be satisfied using the kmin. This is true for some cases in which

there is more than 1 atom per unit cell.
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Chapter 3

FRUSTRATION AND DEGENERACY

We now introduce the concept of frustration that leads to degeneracy in the spin

ground states and hence to interesting behaviour at surfaces. This leads us to classify

different types of magnets according to the spin state degeneracies they possess in

the ground state. We then determine the spin configurations of different types of

systems in order to demonstrate these different classes. The last section of the

chapter is concerned with multiple-q magnets and in particular those associated

with the FCC lattice, the focus of my research.

3.1 Frustration and degeneracy

A system is said to be frustrated if it possesses interactions such that no spin state

exists whereby all bonds can be completely satisfied simultaneously. The common

example is that of a 3 spin problem whereby the spins have a triangular formation

and equal interactions between each site, as shown in fig 3.1. There is no direction

that the third spin can point in and satisfy all bonds simultaneously. Frustration

can be achieved in two different ways: via competing interactions, or geometric

frustration. Examples of frustration brought on by competing interactions include

the 1D chain of atoms that possesses both nearest neighbour and second nearest

neighbour interactions, and the 2D frustrated square lattice again with both nearest

and second nearest neighbour coupling that we shall be tackling shortly. Geometrical
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3.2. Classification of Magnets

Figure 3.1: Example of a frustrated system

frustration occurs as a result of the lattice being based in triangular or tetrahedral

units, for example the triangular, hexagonal close packed or pyrochlore lattice. The

face centred cubic lattice possess tetrahedral units and we will be analysing the

frustration later on.

Frustration is required for a magnetic spin state to ’care’ about a surface. For

the state to prefer to reorient or reconstruct, there must be a larger proportion

of frustration parallel to the surface in comparison with perpendicular to it. In

this way, it becomes possible for the system to gain back more energy by using a

different spin configuration of different symmetry, for which there is a better ratio

of frustration with respect to the perpendicular and parallel directions. Thus, when

bonds are broken by the introduction of the surface, some of the frustration is lost

by using the alternative state and energy can therefore be gained by reorienting or

reconstructing to this state.

3.2 Classification of Magnets

Magnets can be classified into different styles according to the types of degeneracy

their ground states possess. The term degeneracy is used to describe degeneracy

between state with different point-group symmetries, as opposed to the trivial de-

generacy describing states connected simply by a global spin rotation with no as-

sociated change in symmetry. The degeneracy shows up as spin states related by

point-group symmetries of the Hamiltonian. We must be more specific however in
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3.2. Classification of Magnets

what we mean by this, as the Heisenberg Hamiltonian possesses invariance with

respect to operations on the spins in spin space as well as operations solely con-

cerned with the lattice. It is the second of these two types of operations that lead

to different translational symmetries and are the symmetries we are interested in.

As such, when we refer to the point group symmetries of the Hamiltonian, we refer

to those relating to the lattice or lattice-plus-spin-space operations, and not solely

to the global rotations of spins in spin space. We remind the reader that, as was

shown in section 2.6, rotations of this type act on the k’s in reciprocal space in

exactly the same way as in real space. Thus, studying the problem in reciprocal

space eliminates confusion associated with the extra space of the spin vectors, and

as such we shall be classifying magnets by studying the problem in reciprocal space.

Specifically, we classify magnets in terms of the number of kmin’s and their relation

to one another, as this indicates the number and type of appropriate degeneracies

the system possesses in the ground state.

The simplest class is one in which the system occupies a single kmin that maps

onto itself under all point-symmetries of the Hamiltonian. Ferromagnetism (k = 0)

and bipartite antiferromagnetism are examples of this class of magnet. The second

simplest involves two kmin points that are related by inversion symmetry. As a result

of eq. 2.4.1, the spin density vectors Sk and S−k are constrained to be complex

conjugates of each other, and as such the magnitude of the spin density put on each

k must be identical. The resulting magnet in real space is a spin spiral, with 2-fold

degeneracy associated with left or right-handed chirality.

The final class is that of multiple-q magnets, which encompasses magnets that

have more than one distinct kmin and which are related by the rotational symmetry

group of the Hamiltonian. Within this class there are 1-q, 2-q and 3-q multiple-q

magnets that have simultaneously 1, 2 or 3 styles of long-range order, associated with

putting the spin density down at more than one location in reciprocal space, and we

have continuous degeneracy. Anisotropy and effects such as quantum fluctuations or
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3.2. Classification of Magnets

R1

R2

Figure 3.2: Real space lattice vectors for the 2D square lattice.

inclusion of impurities in the system breaks the degeneracy associated with how the

spin density is split between the different kmin and we shall discuss this in section

3.3.

We now proceed to determine the ground state magnetic configurations of a few

systems as examples of the different classes of magnets, using the theory developed

in the preceeding sections.

3.2.1 The 2D Nearest Neighbour Square Lattice

Our first example involves a system which has a single distinct kmin, remaining

invariant under the action of all the point symmetries of the Hamiltonian. We are to

use a 2D square lattice modelled with an antiferromagnetic Heisenberg Hamiltonian

(i.e. where Jn > 0), with only nearest neighbour interactions, J , included.

The real space lattice vectors are defined as in figure (3.2) and given by

R1 = (1, 0)

R2 = (0, 1). (3.2.1)

The structure factor γk is hence given by

γk =J
∑

m

eik.Rm

32



3.2. Classification of Magnets

Figure 3.3: kmin for the square lattice modelled with a Heisenberg Hamiltonian with nearest
neighbour coupling. The kmin are shown as blue spots, black spots are the reciprocal lattice points
and the dotted line indicates the location of the first Brillouin zone boundary.

=2J [cos(kx) + cos (ky)]. (3.2.2)

kmin = (π,π ) minimises the structure factor expression. We implement the point

group symmetries of H in real space in the reciprocal space to generate other kmin

from (π,π ), namely using π
2 rotations. The resulting full set of kmin is shown in

fig.(3.8). The primitive reciprocal lattice vectors, G1 and G2 are constructed using

eq.2.3.1 and are found to be

G1 =(2π, 0)

G2 =(0, 2π). (3.2.3)

The primitive vectors are then implemented to determine which kmin are distinct,

and we find that π,π describes the only distinct vector that exists.

The reciprocal lattice constraints are now implemented. Only eq. 2.5.10 is non-

trivial in this case and simply gives

33



3.2. Classification of Magnets

Figure 3.4: Real space spin configuration for the 2D square lattice.

S(π,π).S
∗
(π,π) = S2, (3.2.4)

the simple result of which is that the length of the spin is fixed in reciprocal

space and no other constraint on the spin vector Sk is present. As a result, the

corresponding real space configuration, obtained by performing an inverse Bloch

transform, is described by

SRj =
∑

k

eik.RjSk = eiπRx .eiπRySπ,π, (3.2.5)

where Sπ,π is free to point in any direction in real space. The resulting spin

configuration can be seen in figure (3.4) and is an antiferromagnet in its Neél state.

3.2.2 The 2D Triangular Lattice

We next tackle a system whose two distinct kmin are related by inversion symmetry;

the 2D nearest neighbour triangular lattice modelled again with an antiferromagnetic

Heisenberg Hamiltonian.

The position vectors

R1 = (1, 0)
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3.2. Classification of Magnets

R1

R2

Figure 3.5: Real space lattice vectors for the 2D triangular lattice.

R2 =

(

−1

2
,

√
3

2

)

. (3.2.6)

as illustrated in fig. 3.5, are used to label the lattice points. The structure factor

is hence given by

γk = 2 [cos (k.R1) + cos (k.R2) + cos (k.(R1 + R2))] . (3.2.7)

Substituting for R1 and R2 and simplifying we obtain

γk = 2

[
cos (kx) + 2 cos (

kx

2
) cos (

√
3

2
ky)

]
. (3.2.8)

To minimise the expression we re-write it in a more convenient form by complet-

ing the square

γk = 2



2

(
cos

(
kx

2

)
+

1

2
cos

(√
3

2
ky

))2

− 1

2
cos2

(√
3

2
ky

)
− 1



 , (3.2.9)

and hence obtain some kmin:

k1 =

(
4π

3
, 0

)
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3.2. Classification of Magnets

Figure 3.6: kmin for the triangle lattice modelled using a Heisenberg Hamiltonian with nearest
neighbour coupling. The kmin are shown as blue spots, black spots are the reciprocal lattice points
and the dotted line indicates the location of the first Brillouin zone boundary.

k2 =

(
2π

3
,

2π√
3

)
. (3.2.10)

The point group symmetries of the Hamiltonian, of rotations by π
6 , generate all

other kmin values, which are shown in figure (3.6).

The reciprocal lattice vectors are calculated to be

G1 =

(
2π,

2π√
3

)

G2 =

(
0,

4π√
3

)
. (3.2.11)

From inspection of figure (3.6), we can see that there are 2 distinct kmin that are

inversion-related1

k1 =

(
4π

3
, 0

)

k2 = −k1 =

(
−4π

3
, 0

)
. (3.2.12)

1The inversion-relation can be shown by considering that translating k2 by lattice vector G1

gives an equivalent k, which in this case is−k1
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3.2. Classification of Magnets

Before proceeding with the reciprocal lattice constraints, we note that, by im-

plementing the identity

S−k =
∑

j

e−ik.RjSRj = S∗
k, (3.2.13)

we have that

Sk2 = S−k1 = S∗
k1

. (3.2.14)

We now apply the reciprocal lattice constraints. The first constraint, eq.2.5.10,

gives

2Sk1 .S
∗
k1

= S2, (3.2.15)

giving that the magnitude of the spin vectors |Sk1 | = |S−k1 | = S√
2
. The second

constraint, eq.2.5.11, gives2

Sk1 .Sk1 =0

S−k1 .S−k1 =0. (3.2.16)

Since the spin space vectors do not have to be real in reciprocal space, we can

solve eq.3.2.16 by using complex vectors whose real and imaginary components have

identical magnitudes. From eq.3.2.15 the magnitude of the vectors must be S√
2

and

so we arrive at
2The two separate equations arise from the fact that the vector q joining k1 to k2 is not the

same as that joining k2 to k1.
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Sk1 =
S

2
(ê1 + iê2)

S−k1 = S∗
k1

=
S

2
(ê1 − iê2),

(3.2.17)

where ê1 and ê2 are orthogonal unit vectors arranged arbitrarily in real space.

We finally transform back into real space, given that Rj = n1R1 + n2R2 where

n1 and n2 are integers, to obtain

Sj =
∑

k

eik.RjSj = Sk1e
ik1.Rj + S−k1e

−ik1.Rj

= S

[
cos

(
2π

3
(2n1 − n2)

)
ê1 − sin

(
2π

3
(2n1 − n2)

)
ê2

]

= S [cos (θn1,n2)ê1 + sin (θn1,n2)ê2] , (3.2.18)

where

θn1,n2 =
2π

3
(2n1 + n2). (3.2.19)

The spin configuration is shown in figure (3.7). The two degenerate states, which

are the right-handed and left-handed chiral states, are accessed by altering the phases

of the spin density put at the two spots; the magnitudes remain fixed. This can be

contrasted with the accessing of the different degenerate state in multiple-q magnets,

which we shall be showing are accessed by instead altering the magnitude of the spin

densities at the spots.
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3.2. Classification of Magnets

Figure 3.7: Ground state spin configuration of the 2D triangular lattice modelled using a Heisen-
berg Hamiltonian with nearest neighbour interactions.
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3.2.3 The 2D Frustrated Square Lattice

We now solve for the ground state spin configuration of a square lattice which

contains, via the introduction of a second nearest interaction, frustration. The

second nearest neighbour interaction, J2, in effect serves to split the geometry into

triangles, which as we know leads to frustration. As such, the Néel state, which

completely solved all bonds in the previous 2D square lattice system studied, is no

longer an unfrustrated state and as such is not the ground state for the whole of

parameter space. We shall find that the solution is our first example of a multiple-q

magnetic state.

In addition to the introduction of J2, our 2D square lattice is also modified by

removing the constraint of all nearest neighbour interactions being identical to each

other. Specifically, we allow nearest neighbour interactions that act in directions

perpendicular to each other to be unrelated in strength. This adds extra states to our

phase space that are differentiated between in terms of their translational symmetry

in different directions. This will become useful when we introduce the surface, and

so we label the different nearest neighbour interactions with the subscripts ‖ and ⊥

in anticipation. Our resulting Heisenberg Hamiltonian is described by:

H =
J‖

2

∑

<jj′〉‖

Sj .Sj′ +
J⊥

2

∑

<jj′〉⊥

Sj .Sj′ +
J2

2

∑

<jj′〉2

Sj.Sj′ , (3.2.20)

where < jj′〉‖ denotes nearest-neighbour bonds parallel to the surface, < jj′〉⊥

denotes nearest-neighbour bonds perpendicular to the surface and < jj′〉2 denotes

second-nearest-neighbour bonds.

The structure factor associated with this Hamiltonian is

γk = 2J⊥ cos kx + 2J‖ cos ky + 4J2 cos kx cos ky (3.2.21)
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Figure 3.8: Degenerate, inequivalent kmin for the frustrated square lattice system.

(A) (B) (C)

(D) (E)

"" "

""
"

Figure 3.9: Possible spin orientations of our square lattice antiferromagnet, along with the θ
convention used to describe them. We have (a) Single-q (x-oriented) (b) Single-q (y-oriented) (c)
Double-q (Equal mixture) (d) Double-q (Unequal mixture) (e) Néel State.
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Neel State

(3)

(1)

(2)

J||

#J
2J2

2J2

1

1

!

Figure 3.10: Bulk phase diagram for our square lattice, showing 3 regions containing the 3 single-
q states, plus 3 degeneracy lines corresponding to regions of double-q (and a single point of triple-q).
Region (1) is θ = 0 and region (2) θ = π/2

and can be miminised simply by inspecting the form obtained by ’completing

the square’

γk = 4J2

(
cos kx +

J‖

2J2

) (
cosky +

J⊥

2J2

)
−

J‖J⊥

J2
. (3.2.22)

.

The inequivalent kmin are shown in fig 3.8 and become active for different values

of parameters. The spin arrangements available to our square lattice are pictured

in fig. 3.9 and we plot the associated phase diagram with respect to the natural

parameters
J‖
2J2

and J⊥
J2

in fig.3.10. The phase diagram involves multiple-q states as

we shall now describe.

Notice that the (0, π) and (π, 0) points are related by the rotational symmetry

of the Hamiltonian that is present for the case of J‖ = J⊥. This is a property of

multiple-q systems; magnetic states map onto other distinct magnetic states via

a rotational symmetry of the Hamiltonian. As a result, these states are degener-

ate in energy but possess different translational symmetries and therefore different

42



3.2. Classification of Magnets

magnetic order. As such, there can exist a spin state corresponding to the super-

imposition of states that possess different magnetic order. This ’combined’ state,

whereby the spin density is put down at two locations in reciprocal space simulta-

neously, is termed a double-q state. In three dimensions, a triple-q state can exist,

whereby the system has the potential to possess three spin orders simultaneously,

and we shall come across this possibility later.

The spin quantisation direction of the states is of course degenerate since global

rotations of the spins in spin space leave the Hamiltonian invariant. As such, we

choose the spin quantisation direction of each state as illustrated in fig. 3.9, such

that we can conveniently describe all available states with respect to an angle θ. The

double-q state just described exists on the diagonal phase boundary, and there is

freedom to choose the relative strengths of the two spin densities that it is comprised

of, subject to the length constraints. These states thereby correspond to θ taking

any value in the range 0 ≤ θ ≤ π/2. Similarly, the other two phase boundaries

correspond to degeneracy between the Néel state and the k = (0, π) or k = (π, 0)

magnetic states and hence to other double-q states (although these degeneracies are

not between states related by the rotational symmetry of the Hamiltonian). The

convention with respect to θ can also be used to describe these states, since the Néel

character can be incorporated by using alternate values of the angle on successive

parallel layers. This will become useful when a surface is introduced to the system

in chapter 6.

3.2.4 FCC Lattices

We now solve for the spin state of the FCC lattice described by the AFM Heisen-

berg Hamiltonian with nearest neighbour coupling. This lattice possesses geometric

frustration since each elementary cell consists of a tetrahedron formed from four tri-

angular plaquettes, as shown in fig. 3.11. We shall find that this frustration leads to

multiple-q magnetism, and in particular, we find that, in the absence of anisotropy,
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3.2. Classification of Magnets

Figure 3.11: Elementary cell of the FCC lattice, a tetrahedron, which can be considered as being
constructed from four triangular plaquettes.

!/a

Figure 3.12: kmin for the FCC lattice for the AFM Heisenberg Hamiltonian with nearest neighbour
coupling. The cell depicted in reciprocal space is 1/8th of the BCC unit cell. The thick green lines
are the kmin while the crosses mark the underlying lattice symmetry, being BCC. The real space
lattice spacing magnitude is denoted a.

we obtain lines of degenerate kmin.

The structure factor for this system is given by γk = cos kx cos ky+cos kz(cos kx+

cos ky) and the resulting k-points corresponding to minimum energy are shown as

thick ’lines of degeneracy’ on the reciprocal space lattice in figure 3.2.4, which depicts

1/8th of the body-centred cubic (BCC) reciprocal lattice

The real space spin configuration cannot be constructed using a superposition

of points that are located on lines that protrude in different directions. The proof

is not trivial, so we merely state this fact and proceed to study a single line to

determine the allowed spin configurations of the model. Noting that there is only

1 non-equivalent line in each direction (making use of the reciprocal lattice vector),

we focus our attention on the line in the kz-direction.

Since we are dealing with a line as opposed to a point, we shall describe lines

as k̃ = (kx, ky), and so in this case, k̃ = (π, 0). Since all the points along the
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3.3. Multiple-q FCC Magnets

line correspond to degenerate spin configurations3, one can consider the real space

configuration in general terms as being a sum over these points where we may or

may not assign an sk to each one, the details of which are dictated by the spin length

constraints. As such, we can perform a Bloch transform parallel to the z-direction

and obtain the expression

s(kx,ky,nz) =
∑

kz

eikz .nzs(kx,ky,kz). (3.2.23)

Given that the ground state configuration is constructed only using spots that

correspond to (kx, ky) = (π, 0), one can Bloch transform parallel to x and y to obtain

s(nx,ny,nz) = ei(kx,ky).(nx,ny)s(kx,ky,nz). (3.2.24)

This expression demonstrates that, if we localise to any xy plane, which we

label nz, only a square lattice Néel state is present. This phase in turn leads to a

special case where the interaction of a spin with those neighbours in the plane above

or/and below has a net value of zero, and as such spins in neighbouring planes are

independant of each other.

Due to the presence of these ’degeneracy’ lines in all three directions x, y and z,

the ground state spin configuration can therefore be constructed from independent

planes in the x, y or z direction which have a Néel configuration but whose spin

quantization direction is independent from other planes.

3.3 Multiple-q FCC Magnets

The degeneracy of the n.n. FCC ground state spin configuration, present as lines in

reciprocal space, is broken in real systems. It has been observed that the degeneracy

3As such, we shall in future refer to these lines as ’lines of degeneracy’.
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!/a

Figure 3.13: kmin for the FCC lattice magnetic types 1,2 and 3. The cell depicted in reciprocal
space is 1/8th of the BCC unit cell. The thick green lines are the kmin obtained from the nearest
neighbour Heisenberg Hamiltonian, void of anisotropy. Blue spots denote type-1 magnetism, red
squares type-3, and the yellow star in the centre of the cell type-2. The crosses mark the underlying
lattice symmetry, being BCC. The real space lattice spacing magnitude is denoted a.

can be broken in three different ways, corresponding to 3 standard sets of kmin. We

shall from now on refer to the kmin as their experimental counterpart Bragg spots.

These are measured in reciprocal space and correspond to our kmin vectors. The

different sets of Bragg spots are shown in fig. 3.13 and are a result of competing

phenomena. Type 1 occurs for systems in which the nearest neighbour interactions

are dominant and further neighbours are not significant. Type 3 is stabilised by sec-

ond nearest neighbor interactions, if the nearest neighbour interactions are still the

dominant coupling. Finally, type-2 systems correspond to those for which the second

nearest neighbour coupling is dominant over the nearest neighbour interactions.

We shall be studying systems of type 1, whose Bragg spots are located at highly

symmetric points and hence this type is the simplest case to study. Specifically, the

non-equivalent Bragg spots are located at k1 = (π, 0, 0), k2 = (π, 0, 0),k3 = (π, 0, 0)

and the corresponding magnetic states, including multiple-q states, are shown in

fig. 3.14. It is possible to access different multiple-q states by moving through

parameter space, moving for example from a single-q to another single-q state, or

from single-q states to double-q states. One can observe these types of transitions

in the phase diagram for Manganese Nickel alloys constructed by Honda et al [3],

shown in fig. 3.15. The transitions in spin configuration, brought on in this case

by the impurity concentration of Ni increasing, result in structural transitions that
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3.3. Multiple-q FCC Magnets

Figure 3.14: The five distinct types of multiple-q state found in FCC type 1 antiferromagnets.
(A)-(C) are single-q, (D) equal mixture double-q and (E) equal mixture triple-q

effectively alter the magnetic coupling between the spins on the lattice and further

stabilise the different states.

The increase in impurity concentration, which results in alloy disorder, serves

to stabilise double or triple-q spin configurations over single-q configurations, for

reasons that will be visited in the following chapter. Other effects that affect the

stability of the different multiple-q states include quantum fluctuations, order from

disorder, magnetoelasticity, and itinerancy.

On top of the degeneracy associated with the location and strength of the Bragg

spots, there is the additional degeneracy of spin quantisation direction present in

Heisenberg models that is broken in real systems via for example spin-orbit cou-

pling. Magnets are thus classed as longitudinal, where the spin quantisation direc-

tion follows the direction of the k vector, and transverse magnets, whereby the spin

quantisation direction lies in a plane perpendicular to the k vector direction. There

are two possible domains describing the spin directions for transverse magnets, with

the spin directions in the domains being orthogonal to each other. This issue of

domain mixture will be covered in the next chapter.

We close this section by exploring the construction of spin configurations from

Bragg spot data for our FCC lattice type-1 systems. These systems possess the useful
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Figure 3.15: Phase diagram of the γ Mn Ni alloy system, showing structural distortions as a
function of Ni concentration and temperature. Both t1 and t2 are tetragonal. TN is the Néel point
and Tt the distortion temperature [4]. The structural distortions can be associated with transitions
between different magnetic states

property of the spots obeying the condition k = -k. From demanding that the spins

in real space be real such that (sk)
∗ = s-k, and simultaneously demanding that the

length of the real space spin be constrained, one can determine, using the reciprocal

space constraints of ( 2.5.10) and ( 2.5.11), that the sk used to construct the real

space spin are all directed orthogonally to each other. Moreover, the constraints

also force the sum of the squares of the magnitudes of each sk vector to be equal to

the square of the total spin length in real space. As such, one can represent the sk’s

in polar coordinates as

Sk1 = ê1S sin (θ) cos (φ)

Sk2 = ê2S sin (θ) sin (φ)

Sk3 = ê3S cos (θ), (3.3.1)

and the construction hence becomes trivial.

Now that we have introduced the FCC lattice and its spin configuration in its

bulk form, we have the tools to proceed with our goal of determining how the spin
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configuration of a FCC lattice may be altered when a surface is introduced. However

before we tackle the two main studies of this thesis, we first give an overview of the

field of multiple-q magnets, focussing on the domain structures, effects that stabilise

the different multiple-q states and phase transitions between them.
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Chapter 4

PHENOMENA ASSOCIATED WITH

MULTIPLE-Q MAGNETS

The motivation behind this chapter is to introduce properties of multiple-q magnets

that are central to the requirements of the reconstruction phenomenon, and also

aid in the modelling of uranium dioxide and the reorientational spin configuration.

We begin by discussing the mixture of domains present in multiple-q systems which

allows a description of the different types of degeneracy present in real magnets and

offers validity to real systems possessing states in the bulk that would reconstruct

towards the surface.

Effects that stabilise the different multiple-q states are then discussed to aid the

modelling of different systems and will be used to understand the main effects at work

in uranium dioxide and also any effects that would stabilise or hinder reconstruction

so that appropriate materials can then be determined that have the potential to

show reconstruction at the surface.

Finally, a case study of the phase transitions observed in γ-Mn Ni alloys is

presented. The study demonstrates how a system can go through a series of spin

reorientation transitions between different multiple-q states and how magnetoelastic

coupling then results in structural distortions that respect the symmetry of the

magnetic states, further stabilising them in the domain mixture. The origin of this

magnetoelastic coupling is discussed briefly.
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4.1 Domains and Magnetoelastic Distortions

We begin this chapter with a discussion of domains as applied to multiple-q magnets.

Multiple-q magnets are special in that additional domains are present in the domain

mixture and as such the possibility of a different type of domain wall exists. These

walls are called T-domains and are the relevant walls to consider in our surface

reorientation and reconstruction phenomena.

Magnetic domain mixtures exist in real systems due to effects such as stacking

faults, dislocations, grain boundaries and crystallographic twins. It is the bulk

rather than surface that controls the domain distribution. This point will become

important for our surface reconstruction phenomenon later. A description of the

domain mixtures present in multiple-q systems will now be explored with the aid of

experiments performed on NiO. [3][15][16][17].

The magnetic spins of antiferromagnetic NiO are frustrated, residing on a FCC

lattice. The spin states are type-3 due to stronger second nearest than nearest

neighbour coupling. According to neutron scattering measurements obtained in

the 60’s [15], there are either 1 or two distinct Bragg spots. The complication in

distinguishing multi-single-q domains and double or triple-q magnets arises from

the fact that both types of system possess identical Bragg spots. For the case of

a single-q magnet, within a reciprocal space description each star of k wave vector

corresponds to a single K domain [18]. For a double or triple-q magnet however, some

or all of these star of k contribute to the single type of domain of the double or triple-

magnet. Magnetic neutron scattering experiments, and indeed any experiments that

are global probes that rely on interference of the probe over the entire crystal, provide

Bragg spots at the star of k wavevectors. As such, distinguishing between a mixture

of single-q domains and a magnet of double or triple-q spin structure is generally

not possible by analysing Bragg peaks. Furthermore, whilst experimenting on a

single-domain crystal would solve this issue, producing these crystals via for example
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4.1. Domains and Magnetoelastic Distortions

Figure 4.1: Orientation of the T regions in NiO (ferromagnetic planes lie parallel to these vec-
tors). [15]

Figure 4.2: Bulk antiferromagnetic domains in NiO [3]

uniaxial stress is not easy. This is due to the large energetic cost associated with

moving the domain walls in a multiple-q magnet, a result of the large magnetoelastic

distortions that stabilise the domains.

Roth and Stark [17][15] proposed that the system consisted of a mixture of single-

q domains [19]. These planes are directed parallel to the (111) direction and all

equivalent directions, as detailed in figure 4.1, and the direction of the spins were

proposed to lie within these planes. Their proposed domains are thus fully described

by what are termed T-domains, which differ according to which plane contains the

ferromagnetically aligned spins, plus an S-domain description, which describes the

direction in which the spins point within the ferromagnetic sheets. The S-domains

were proposed to contain spins in the different 〈211〉 directions[15][20], as indicated

52



4.1. Domains and Magnetoelastic Distortions

Figure 4.3: The twinning pattern observed in a crystal by Slack et al after a high temperature
anneal. The solid lines indicate visible T-walls, the dotted ones are walls with zero-facial tilt angles.
This is an example of a complex 4-wall pattern where all 4 T-domains exist. [17]

by polarisation experiments, an example of which is shown in Fig. 4.6. The different

T-domains contain ferromagnetic configurations in the different 111 planes, of which

there are four possible domains in the system. Their proposed domain mixture is

detailed in table 4.2 and an example of a mixture that was observed in a crystal by

Slack shown in figure 4.3.

T-domains are the real space manifestation of K-domains. They exist in multiple-

q magnets as a result of the different Bragg spots, corresponding to different trans-

lational symmetries in real space, being related by the point group symmetry of the

Hamiltonian. Due to the existence of T-domains, a domain wall can exist between

two domains that have different, distinct Bragg spots, and this domain wall can be

constructed from multiple-q states. This type of domain wall will be crucial to our

reconstruction phenomenon, and is in contrast to the simple rotation of spins seen

in normal magnetic systems.

For normal magnets that possess only one distinct Bragg spot, the mixture of

domains solely involves S domains, related by the global rotations of spins that

maintain the magnetic phase. If a spin orbit coupling exists, the orbital population

becomes biased according to perturbative spin-orbit effects and the degeneracy is
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broken into longitudinal or transverse cases. For the longitudinal case, the spin di-

rection in real space is parallel to the wavevector kmin and for the transverse case

perpendicular to it. Additionally, for the transverse case, there only exists two de-

generate configurations with respect to spin direction, or in other words two domains

in the real system, such that the spin directions lie within the plane perpendicular

to kmin and are orthogonal to each other. The spin quantisations respect the sym-

metry of the system and normally lie either along crystallographic directions, along

body-diagonals, or along face diagonals. S-walls between these types of domains

consist of a rotation of the spins.

Magnetoelastic Distortion

There is often a magnetoelastic distortion associated with the different domains

due to the magnetism breaking the symmetry present in the paramagnetic phase.

This is via spin-orbit coupling; as described above, the perturbative spin orbit effect

causes a bias in the orbital population. This leads to non-spherically-symmetric

spatial distributions for the spins and allows the lattice to distort to gain energy

from the Coulomb attraction and hopping. Thus, the different S-domains distort in

different directions according to the direction of the spin within the domains, and

crystallographic twinning occurs. However, the distortion is perturbatively small,

and could not be observed by x-rays or the crystallographic techniques available at

the time of Roth and Stark’s analysis.

There is however another driver of magnetoelastic distortion that is present for

multiple-q systems and which is of a much larger energy scale. The distortion is

driven again by orbital population bias, but the orbital degeneracy is split on the

scale of the magnetic interaction. This is caused by the magnetic multiple-q spin

state reducing the symmetry of the system to tetragonal, and can lead to a sizeable

distortion - Mn1-xNix distorts by 6% [21]. As such, domain mixtures can be stabilised

further than the stability offered by spin-orbit effects, and the transformation from
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Figure 4.4: Illustration of the different T and S domains found in Ni. The section is parallel to
(100). The traces of the ferromagnetic sheets are shown and all of the spins lie within (111). [15]

Figure 4.5: An exaggerated model of the rhombohedral distortion in NiO below TN . The Oxyz
axes are orthogonal. The rhombohedral angle α is greater that 90 deg, and each of the rhombohedral
axes makes an angle δ with the Oxyz axes. A twin wall on a (001) plane between T-domains of
types I and II are shown. [17]

one domain to another or rather the movement of domain walls requires a much

larger energy scale.

Roth et al propose that the walls between the T-domains do not involve any

rotation of the spin, so that the walls are located between T-domains along faces

that have a ferromagnetic spin phase. Their proposal can be seen in figure 4.4

which illustrates their T and S wall types. The model is based on observing the

rhombohedral twinning that is the result of magnetoelastic distortion of the domains

due to the non-cubic symmetry of the spin states involved, and is illustrated in figure

4.5. It was found that twinning between T-domains only occurred along two different

faces, and this constraint was explained via the non-rotation of spins.
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However, a domain wall constructed in this way is energetically terrible due to

the large Heisenberg cost of aligning spins ferromagnetically along the wall in a

direction that should be antiferromagnetically aligned according to the Heisenberg

interaction. The spin directions of the twinned domains is actually unknown since

this information is not available from the type of experiments performed on the ma-

terial, nor from the distortion directions. This leaves room for another, much more

likely scenerio: twinning between different T domains of orthogonal spin direction

with respect to each other. In this way, a domain wall can be set up that rotates

the spins from one T domain to the other by passing through a double-q state which

is energetically close in energy. This type of wall will be used for the magnetic

reconstruction phenomenon we shall be proposing.

Magnetoelastic distortions can help to solve the problem of distinguishing be-

tween single-q domain mixtures and 2q or 3q states. For example, the reason why

the generally accepted single-q structure of UO2[22] was challenged was the lack of

magnetoelastic tetragonal deformations that would be present. The triple-q struc-

ture was hence proposed for UO2 due to its maintenance of the cubic symmetry

which would not lead to any such distortion and subsequent experiments and anal-

ysis seem to confirm this analysis [23].

The application of uniaxial pressure can be used to distinguish between single-q

multi-domain and multiple-q systems due to the difference in spin symmetry that

leads to the large magnetoelastic distortion discussed. Specifically, single and double-

q magnetic states have tetragonal symmetry whereas triple-q states have cubic sym-

metry. On applying a uniaxial stress to a magnetic material, one can move the

domain walls as one domain is energetically favourable over others and this can

occur if the domains are single or double-q domains due to the broken cubic symme-

try; the pressure is favoured by those domains whose AFM phase is in the uniaxial

direction, since magnetic energy can be gained from shortening these bonds whilst

lengthening FM ones. For the UO2 compound, the lack of biased population of Bragg
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4.1. Domains and Magnetoelastic Distortions

spots after applying uniaxial pressure led to more evidence for the triple-q magnetic

structure. For the NiO compound, the proposal of single-q domains was based on the

redistribution of the Bragg spot intensities observed after annealing and stressing

[15]. This points towards NiO consisting of single-q domains, since the percentages

of the total intensity moved from being approximately equally distributed between

the 4 different T-domains to becoming 98.7% of a single type, the other 1.3% as-

signed to the only other type that can be involved in the crystallographic twinning

with the dominant domain. However, the annealing and stressing processes could

instead have forced the system out of a double-q structure if the energies were large

enough, and so it is not possible to state the type of spin states within the domains

with complete certainty. In addition, the rhombohedral distortion also does not

indicate which multiple-q state the material takes since the contraction along the

< 111 > axes, occuring to shorten antiferromagnetically aligned spins and lengthen

ferromagnetically aligned spins, can result from 1q, 2q or 3q spin configurations

Domain Mixtures and Reconstruction in Type-1 Materials

The spin configuration of the type-3 NiO compound can be mapped to type-1 by

introducing an oscillation of π in the direction (111). Thus the analysis of domains

so far presented can be applied easily to the discussion of γ-Mn Ni that follows and

also to the reorientation and reconstruction studies tackled later. A point crucial to

these studies is that the surface domain distribution is dictated by bulk rather than

surface effects, as is demonstrated by experiments on cleaved surfaces of NiO using

polarisation-dependent x-ray absorption. The domain mixture at the surface was

consistent with that of the bulk, with a mixture of T-domains being observed[3].

Additionally, it was observed that surface roughness, in terms of defects, does not

affect the domains. In particular, on heating above the Néel temperature and subse-

quently cooling, the domain structure reappears to take the same pattern, indicating

it is controlled by defects and stresses that are already incorporated within the crys-
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Figure 4.6: AF domains on a cleaved NiO surface. The bright and dark areas on the image
indicate smaller and larger angles between magnetic moments and light polarisation, where the
direction of light polarisation is shown by the double-headed arrow. The field of view is 300 µm [3]

tal, probably formed during growth. Thus the preference of a particular state by the

surface does not overcome the domain mixture present in the bulk so that the entire

crystal simply takes this state. Rather there is scope for magnetic reconstruction to

occur since there exist domains in the bulk consisting of states not preferred by the

surface. However since there is still a T-domain distribution on the surface for NiO,

reconstruction has not occurred for this material.

4.2 Stabilisation of Different MSDW states

Multiple-q magnets are very interesting since they can ’heal’ disorder introduced to

them [24][25][26][27] (and references therein). Surfaces can be thought of as a type

of impurity in terms of missing spins in a system, in the same way as an impurity

could be the introduction of a spin with a modified moment or coupling. A cluster

calculation has been performed by Long to calculate the effect of perturbing the

length of an impurity’s moment on the spin configuration[24], with the result that

the spins within a non-collinear multiple-q state reorient around the impurity with

a rotation that is finite and sizeable in order to compensate for the loss in magnetic

energy. In the following section it will be shown for the case of a missing spin
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4.2. Stabilisation of Different MSDW states

that this reorientation again occurs in non-collinear multiple-q magnets and not in

collinearly-arranged magnetic spins systems and in this way multiple-q magnets can

indeed react to a surface in an interesting way. Single-q states do not have the

capacity to reorient around an impurity (which could also be a site containing a

spin with a different moment or with different coupling strengths), since the loss

of the impurity spin does not alter the collinear alignment of the local field to any

spin, and the only way to compensate for this loss of moment is to alter the length

of spins, an energetically-costly move.

As such, the introduction of impurities to a system serves to stabilise multiple

spin density waves (MSDW) over single-q states (SSDW). There are other effects that

are believed to stabilise different MSDW states, which include ordering-by-disorder

[27][26][28](and references therein), magnetoelasticity, quantum fluctuations and im-

purities [24]. Ordering-by-disorder was termed by Villain in work concerning the

nearest neighbour Ising antiferromagnet on an FCC lattice [29]. The term describes

the breaking of degeneracy in a frustrated system by thermal fluctuations, favour

those ground states whose low energy excitations have the largest density of states.

Henley [26] extended the work to n-component vector spin systems, using a spin

wave calculation and minimising a free energy that included temperature via en-

tropy terms. The work indicates thermal fluctuations favour collinear states, in a

similar way to quantum fluctuations. We shall now analyse the effect of quantum

fluctuations and also of impurities on the stabilities of the different MSDW states

via perturbation theory calculations. The results will be compared and contrasted

with each other in order to assess relative stability and also which of the dominant

energy contributions are responsible for such stabilisations.

4.2.1 Quantum Fluctuations

Perturbation theory is performed on the following Heisenberg Hamiltonian

59



4.2. Stabilisation of Different MSDW states

H = J
∑

<ii′>

si.si′ (4.2.1)

= H0 + ∆H. (4.2.2)

The quantum fluctuations are considered in the classical limit and are best de-

scribed by performing a Holstein-Primakoff transformation on the spins. The trans-

form acts to describe a state according to the number of bosons at each site, where

the boson represents a quanta of fluctuation away from the z-direction. The trans-

formed spin operators in this new bosonic basis are given by:

sz
i = S − b†ibi (4.2.3)

s+
i =

√
(2S − bi † bi)bi (4.2.4)

s−i = b+
i

√
(2S − b†ibi). (4.2.5)

The operators are expanded to first order in
√

S, which is valid in the classical

limit S →∞. The real space spin vector can thus be represented incorporating the

quantum nature, up to the appropriate order, as:

si =
(√

(S/2)b†i ,
√

S/2ib†i , S
)

(4.2.6)

si = Sê3 +
√

Sb†i ê+ +
√

Sbiê−, (4.2.7)

with ê+ =
(
1/
√

2
)
(ê1 + iê2) and ê− =

(
1/
√

2
)
(ê1 − iê2), where ê1, ê2, ê3 form an

orthonormal basis and ê3 is the direction the classical spin takes in the ground state.

To perform perturbation theory, firstly an appropriate H0 and associated eigen-

states must be decided upon. H0 is chosen to commute with ŝz such that the eigen-

states used in the determination of the perturbation will be those that describe all
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available quantum spin states in our new representation of the spins. These eigen-

vectors are described by the number of bosons on each site, (b+
1 )n1...(b+

m)nm ...|0〉. As

such, H0 is chosen to be

H0 = J
∑

<ii′>

sz
i s

z
i′
. (4.2.8)

In this way, the unperturbed Hamiltonian does not couple bosons into the states

since there are no ŝ+
i or ŝ−i terms to do this. As such, there is no potential for the

existence of quantum fluctuations as there is no potential for a boson to exchange,

or in other words the number of bosons on each site to fluctuate.

The full Hamiltonian is now obtained by substituting the quantum representa-

tion of the spins as given by 4.2.7 and the resulting terms analysed. However it must

first be taken into account that this representation assumes the classical direction of

each spin is aligned with the (global) z-direction rather than to their own classical

quantisation direction. The states being considered are not simple classical ferro-

magnetic states but instead are general MSDW states. We shall therefore need to

perform rotations on the spins of our general MSDW state in order that all spins

have their classical directions aligned to the single global frame that the Heisenberg

Hamiltonian acts in. This is achieved using the rotation matrices Ri:

s̃i = Risi. (4.2.9)

In this representation our Hamiltonian becomes

H = J
∑

<ii′>

s̃(i (R−1
i Ri′ )̃si′ (4.2.10)

and we are now in a position to substitute the quantum representation of the

spins which gives
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H = JS2
∑

<ii′>

ê(
3 R−1

i Ri′ ê3 + 2JS
√

S
∑

<ii′>

ê(
3 R−1

i Ri′ ê+b+
i′

+ JS
∑

<ii′>

ê(
+R−1

i Ri′ ê+b+
i b+

i′
. (4.2.11)

Applying non-degenerate perturbation theory (since there is no degeneracy asso-

ciated with the ground state) one obtains the first order perturbation to the energy:

ε1 = 〈0|∆H|0〉. (4.2.12)

The term∆ H|0〉 is best determined by evaluating:

H|0〉 = (H0 + ∆H)|0〉 = J S2
∑

<ii′>

ê(
3 R−1

i Ri′ ê3|0〉

+ JS
√

S
∑

<ii′>

ê(
3 R−1

i Ri′ ê+b+
i′
|0〉

+ JS
√

S
∑

<ii′>

ê(
+R−1

i Ri′ ê3b
+
i |0〉

+ JS
∑

<ii′>

ê(
+R−1

i Ri′ ê+b+
i b+

i′
|0〉. (4.2.13)

The first term is H0|0〉, and so∆ H , the contributions from quantum fluctuations,

is assigned to be the second, third and fourth terms according to the order to which

we are working.

We proceed to analyse the first three terms by making use of a property of the

rotations which is a result of the symmetry inherent in the system.

The rotations Rα required to map the spins in the different sublattices α = [0, 3]

of the type-q AFM FCC magnet to the z-direction spin s̃i are constructed from R0,

the matrix that rotates the spin in sublattice α = 0 to the z-direction, and the three

matrices Tα which map the spins in each sublattice α = 1, 2, 3 to s0:
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R̂0= 



cos θ cosφ cos θ sin φ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ





T̂1= 



1 0 0

0 −1 0

0 0 −1





T̂2= 



−1 0 0

0 1 0

0 0 −1





T̂3= 



−1 0 0

0 −1 0

0 0 1





such that the Rα)=0 correspond to Rα = TαR0. Given this notation, the property

s0 + s1 + s2 + s3 = 0 (4.2.14)

leads to an identity for the rotations

3∑

α=0

Rα = 0, (4.2.15)

which can be understood by noting that s0 = R0s̃i and subsequently acting the

Rα’s that map to the spin s̃i to the spins on other sublattices to obtain 4.2.14.
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Substituting (4.2.15) into the first term of (4.2.13) and splitting the spins into

different sublattices in order to exploit the symmetry of the general MSDW spin

state, one obtains

H1|0〉 = JS2
∑

ν

∑

α

∑

α′ )=α

∑

X
α
′

ê(
3 R−1

α′ Rαê3|0〉, (4.2.16)

where ν is the number of sublattices in the system and Xα′ are nearest neighbours

to spins in sublattice α
′
. Rewriting the expression to make use of identity 4.2.15 one

arrives at

H1|0〉 =
1

3
NXJS2|0〉, (4.2.17)

where X = 12 is the total number of nearest neighbours per spin and N the total

number of spins in the system. Thus the ground state energy of the unperturbed

system, or rather the classical ground state energy, is −1
3JS2NX. The second term

and third term are tackled in a similar way and return

H2|0〉 = JS
√

S
∑

ν

∑

α

∑

α′ )=α

∑

X
α
′

ê(
3 R−1

α′ Rαê+b†
i′
|0〉

+JS
√

S
∑

ν

∑

α

∑

α′ )=α

∑

X
α
′

ê(
+R−1

α′ Rαê3b
†
i |0〉

= 0. (4.2.18)

This is not suprising - the ground state |0〉 is the state that is stable against

first order fluctuations. As a result, the first order correction to the energy does not

lead to a breaking of degeneracy, indicating that two spin fluctuations are effectively

independent at this order and so the second order correction is required:
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δε2 =

∑
n )=0〈0|∆H|n〉〈n|∆H|0〉

ε0 − εn
. (4.2.19)

For the order to which we are working, only the eigenstates |k〉 = b+
i′
b+
i |0〉, where

i and i
′

are nearest neighbours, give a non-zero value for 〈n|∆H|0〉, and so the

summation over n can be replaced with a summation over |k〉 and the completeness

relation applied to simplify the expression to:

δε2 =

∑
k )=0〈0|∆H∆H|0〉

ε0 − εn
. (4.2.20)

Given that

∆H = JS
∑

<ii′>

ê(
+R−1

i Ri′ ê+b+
i b+

i′
, (4.2.21)

the second order perturbation to the ground state energy is given by

δε2 = − 3

2XJS

∑

<ii′

2J2S2|ê(
+R−1

i Ri′ ê+|2 (4.2.22)

and simplified to

δε2 = −JSN
3∑

α=1

|X(TαX|2, (4.2.23)

where X = R0ê+.Calculating δε2 explicitly, given the rotation matrices, we find

δε2 = −JSN
[
4
(
|x1|4 + |x2|4 + |x3|4

)
− |x2

1 + x2
2 + x2

3|2
]
, (4.2.24)
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where x1, x2, x3 are the components of X. Using spherical polar coordinates to

describe the MSDW state, it can be shown, using complex analysis, that

δε2 = −JSN(1− 2 sin2 θ cos2 θ − 2 sin2 φ cos2 φ sin4 φ), (4.2.25)

which is minimised for collinear states.

4.2.2 Impurities

We now perform a calculation using the same methodology as the perturbation

calculation we applied in the previous section for analysing the effect of quantum

fluctuations. The impurity is modelled as the absence of a single spin at location at

the origin i = 0, such that the perturbation to the system H0 is now given by

∆H = −2J
∑

[0i]

s0.si (4.2.26)

leading to

∆H|0〉 = −2J
∑

[0i]

[
S2ê(

3 R−1
i′=0

Riê3|0〉+ S
√

Sê(
+R−1

i′=0
Riê3b

+
0 |0〉+

S
√

Sê(
3 R−1

i′=0
Riê+b+

i |0〉+ Sê(
+R−1

i′=0
Riê+b+

0 b+
i |0〉

]
.

We again analyse the terms to determine which unperturbed eigenstates dom-

inantly contribute to the perturbed state and perturbation to the energy. The

summation is split as before into firstly a sum over sublattices and secondly a sum

over the nearest neighbours present in each sublattice in order to make use of the

rotation identity. The first term simplifies to
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−2J
∑

[0i]

S2ê(
3 R−1

i′=0
Riê3|0〉 = 8JS2|0〉 (4.2.27)

and returns the magnetic energy lost from taking the impurity spin out of the

lattice ignoring the effect of fluctuations. The second term vanishes. This term

is associated with the interaction of the impurity spin with its local field derived

from the surrounding nearest neighbour spins. Since the local field is parallel to the

direction of the spin that has been taken out, any fluctuations that were associated

with this missing spin did not couple to the local field, and as such the loss of the

spin at the origin does not affect the energy of the system through this contribution.

The third term however does not necessarily vanish. This is because the loss of the

impurity perturbs the local field of the spin si that neighbours the missing spin. As

such, the local field to si is not necessarily collinear any more, and so fluctuations

of this spin may couple to its local field. This is therefore the leading order process

by which the loss of a spin affects the system’s energy, and in particular the change

in local field can cause the neighbouring spins to gain from their fluctuations.

The second order perturbation is thus given by

δε2 =
6

XJS

∑

[0i]

J2S3|ê(
3 R−1

i′=0
Riê+|2

= 2JS2
3∑

α=1

|Y(TαX|2, (4.2.28)

where Y = Rê3 is the uniformly-rotated classical spin direction. The state taken

by this reorientation can be deduced by again determining the perturbative energy

in terms of θ and φ and minimising the resulting expression. Performing complex

analysis in a similar way as previously, and given that X.Y = 0, the solution is

determined to be
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δε2 = −2JS2 sin2 θ(cos2 θ + sin2 φ cos2 φ sin2 θ). (4.2.29)

There is no saving for the collinear case and a maximum energy saving for the triple-

q case at δε2 = 2
3JS2, in direct contrast to the states stabilised by the quantum

fluctuations alone.

These fluctuations perturb the energy from that of the classical state by an

order JS2, i.e. of the order of the classical energy, in comparison with the order

JS by which quantum fluctuations associated with the entire lattice gained from

the classical state. As such, the loss of a spin causes a much larger perturbation of

the nearest neighbouring spins from the classical state than that caused simply from

quantum fluctuations, and the spins near the impurity relax around it to compensate

for the loss of a spin.

The perturbative calculation has limitations in terms of validity, as the energy

perturbation to the classical ground state is not small in the case of the impurity

perturbation; indeed, it is of the same order as the energy of the unperturbed (classi-

cal) Hamiltonian. This is because the perturbation of the neighbouring spins to the

lost spin is in no way small - the spins rotate through relatively large angles in order

to compensate for the loss of antiferromagnetic energy , a result of only the nearest

neighbour spins having been allowed to move to compensate for the impurity. The

solution to the classical problem, whereby the impurity is free to affect spins up to

any length scale, is tricky for exactly this reason of large length scale.

However, the two calculations that have been performed give an indication as

to what processes are responsible for making either the collinear or non-collinear

MSDW states stable. The quantum fluctuations stabilise the collinear state due to

the coupling of neighbouring fluctuations. These fluctuations are only coupled if

they have a component parallel to each other, requiring therefore that the original
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spins are collinear such that the fluctuations occur in the same plane. On the other

hand, the introduction of an impurity in terms of the loss of a spin stabilises the

triple-q state due to the interaction of the neighbouring spins with the lost spin,

si, with their local field that has been perturbed by the loss of a spin and which

therefore may no longer lie parallel to si. This occurs for the case of a non-collinear

MSDW magnet and can be thought of as the ability of the state to compensate for

the lost spin by rotating the spins.

4.3 Case Study: Phase Transitions Between SDW

states

We present an overview of phase transitions that are observed when the γ-manganese

is alloyed with most other transition metals. A cascade of structural phase tran-

sitions is observed as the doping concentration increases, and this is attributed to

magnetic phase transitions between different spin density waves states. The mag-

netic transitions are believed to occur due to the presence of impurities in the γ-Mn

in the form of the doping element, a composition also referred to as alloy disorder.

Different SDW states are then stabilised due to the impurity, with the particular

state stabilised being a function of the concentration of impurity. A picture arises

whereby, on increasing the doping concentration, the regions in which the spins re-

lax around impurities begin to overlap. This results in the correlation length of the

magnetic component associated with the spin relaxation increasing until the length

is over a macroscopic scale and long-range order sets in. This new order shows up

as Bragg spots appearing at wavevectors corresponding to the new magnetic com-

ponent. Diffuse scattering can be associated with the new magnetic components

surrounding the impurity concentrations at which long range order of the new mag-

netic order has not yet set in, due to the local nature of the impurity and resulting

reorientation. Calculations by Long et al [30] analysing the diffuse scattering agree
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4.3. Case Study: Phase Transitions Between SDW states

Figure 4.7: Five distinct types of multiple-q state found in FCC type-q antiferromagnets: Sin-
gle(S), double(D), triple(T), orthorhombic(O) and another tetragonal (A) spin density wave (SDW)
states. The magnetic unit cell is simple cubic and a single cell is depicted in each case. [28]

with experiments on γ-Mn73Ni27.

There is an associated magnetoelastic distortion because, for MSDW systems,

the spin waves are coupled to the phonons, and these phonons are equivalent to

elasticity, being distortions of the charge density. As discussed in the previous

section, magnetoelastic distortions can occur if the MSDW state does not take a

cubic arrangement such that the cubic symmetry of the system is broken, and these

distortions are observed experimentally via lattice parameter and elastic constant

measurements, and what’s more predicted theoretically via expected spin wave and

phonon softening at magnetic transitions.

We shall focus primarily on the alloy γ-Mn-Ni. The ’pure’ alloy of γ-Mn has an

antiferromagnetic state, labelled as the SSDW (single spin density wave) state in

figure 4.7, which consists of two antiferromagnetic sublattices. The spin direction

points in the (100) direction [4]. The electrons are believed to be itinerant and

have a predominantly d-orbital moment. There is a magnetoelastic distortion due

to the broken cubic symmetry to the tetragonal symmetry of the spin state and this

distortion is a sizeable 6%[28].

Experiments by Honda et al [4] show an alteration in the symmetry of the lattice

structure as a function of both temperature and Ni concentration, which can be seen

in figures 4.8 and 4.9 via the variation of the lattice parameters. In particular, the
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4.3. Case Study: Phase Transitions Between SDW states

Figure 4.8: Composition dependence of lattice parameters and nearest neighbour distance of γ-Mn
Ni alloys at 24◦C.V is the unit cell volume so that

√
V is the cubic lattice parameter[4].

system passes through cubic, tetragonal and orthorhombic phases. t1 refers to the

tetragonal and orthorhombic types in which the lattice parameter a < c, and t2 to

the a > c case. For the case of 15% Ni, the structure can be seen in figure 4.9 to

convert as the temperature is increased through t1 orthorhombic, t2 orthorhombic,

t2 tetragonal and finally becomes cubic symmetric. The 13.9% alloy, also shown,

indicates transitions from t2 orthorhombic to t2 tetragonal and finally to cubic. As a

function of increasing Ni concentration for measurements taken at 24◦C, figure 4.8

shows a cascade of structural transitions from t2 tetragonal to orthorhombal to t1

tetragonal and finally to a cubic phase. The nearest neighbour distance can be seen

to increase with concentration up to the cubic phase, at which it begins to decrease.

Furthermore, this variation in nearest neighbour distance is smooth except at the

t1-tetragonal-to-cubic boundary, at which point there is a sharp change.

The spin orbit distortion is apparent in experimental data obtained via neutron

scattering by Uchisiba et al [31]. The spin configuration in the tetragonal SSDW

states was determined. It was found that the t2 tetragonal phase has the spin direc-

tion pointing along the c-axis and the t1 tetragonal phase spin pointing orthogonally

to the c-axis, such that the ferromagnetic layers always point perpendicular to the
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4.3. Case Study: Phase Transitions Between SDW states

Figure 4.9: Temperature dependence of lattice parameters of γ-Mn Ni alloys for 13.9 and 15.0
at % Ni[4].

spin direction, which points parallel to the shortest axis. This is in agreement with

distortions expected from spin-orbit coupling effects.

A summary of the phase boundaries between the different states defined by the

structural symmetry is shown by the phase diagram of figure 4.10 as a function of

temperature and concentration.

Honda et al also undertook elastic measurements of the structure as a function of

temperature and concentration, in terms of Young’s modulus (Y), internal friction

and shear modulus, the latter of which is shown in fig.( 4.11). The shear modulus

shows the steepest temperature dependence at the Néel temperature where there is

a step-type change of the curve, indicative of a first order transition. The minimum

corresponds to a t1 to cubic transition. Young’s modulus bears a close resemblance

to the behaviour of the shear modulus. The unit cell volume does not change ap-

preciably at the structural transition temperatures, indicating a volume-conserving

distortion is at work; in other words, a decrease in one dimension is accompanied

by a roughly compensatory expansion in the orthogonal dimension.

Long and Yeung [32]studied magnetic states that could bring about the structural

distortions and associated elastic behaviour observed by Honda et al and Lowde et

al [6] and were able to construct models that reproduced the behaviour seen experi-
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Figure 4.10: Magnetic and crystallographic phase diagram of the γ-Mn-Ni alloy system. Both t1
and t2 are tetragonal. TN is the Néel point and Tt the distortion temperature. [4]

Figure 4.11: Temperature dependence of shear modulus of γ-Mn-Ni alloys [4].
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mentally. The work allows the prediction of the behaviour of the elastic constants at

the magnetic phase transitions involving SDW states, based on the type of magnetic

transition the system is undergoing.

Long and Yeung began by constructing a Landau model in terms of magnetisa-

tion order parameters and studying the types of phase transitions available to the

system between states with different symmetry. The resulting phases and transitions

available to these models in terms of magnetisation was then related to structural

distortions via a simple magnetoelastic coupling term, which serves to couple the

magnetic configuration to the lattice. The coupling of phonons to spin waves in this

material is key in terms of why the magnetoelastic coupling occurs in this form.

Long-wavelength phonons describe charge distortion and as such are equivalent to

lattice strains. These strains cause distortions that change the symmetry of the lat-

tice observed experimentally. Due to the nature of MSDW states, phonons and spin

waves are coupled and as such a transition to a different magnetic state, which cor-

responds to macroscopically occupying a different spin wave, is coupled to a phonon

and hence a lattice distortion. The inclusion of Ni as an impurity causes mag-

netic state transitions between the different MSDW states, and it is the magnetic

transition that is the driving force for the structural distortions, with any stability

or instability brought about by magnetoelastic effects not the dominant factor but

merely serving to stabilise further any magnetic state taken by the system. The work

indicates that the elasticity stabilises the SSDW state above other MSDW states.

In constructing an appropriate Landau model for the system, a model only in-

cluding up to fourth order terms is not appropriate, since the model does not allow

for all of the SSDW, DSDW and TSDW states as ground states. In particular, the

DSDW state exists in the model as a saddle point rather than minimum. As such, a

model involving up to sixth order terms and including all cubic invariants is initially

studied:
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where mi are the components of magnetisation, and are defined by

sRj = (m1 cos (k1.Rj), m2 cos (k2.Rj), m3 cos (k3.Rj)) , (4.3.2)

where ki are in directions corresponding to the Cartesian directions; ki = (2π/a)ei,

where ei is the Cartesian vector in the i’th direction. This is the specific case of

k′s = ±π, for a system with a cubic-like reciprocal lattice, of the more general case

we have worked with of:

sRj = sk1e
ik1.Rj + sk2e

ik2.Rj + sk1e
ik1.Rj . (4.3.3)

In other words, the order parameters in the model correspond to our sk as defined

in chapter 2.

α, the second order coefficient, corresponds to the inverse susceptibility, and

is assumed to be linearly-proportional to temperature. This term is assumed to

drive the transition both in terms of temperature and concentration, of which it is

assumed to be a monotonic function. The other coefficients are functions of the type

of alloy and their dependence on the variables of temperature and concentration are

assumed to be small. The model permits two independent order parameters as a

minimum solution, and as such there are five distinct phases as equilibria:
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SSDW [ms, 0, 0] tetragonal

DSDW [mD/
√

2, mD/
√

2, 0] tetragonal

TSDW [mT /
√

3, mT /
√

3, mT /
√

3] cubic

OSDW [m0 cos θo, m0 sin θo, 0] orthorhombic

ASDW [mA sin θA/
√

2, mA sin θA/
√

2, mA cos θA] tetragonal





These SDW states are shown in figure 4.7.

The analysis of the model presents several findings. First order transitions oc-

cur for transitions SSDW↔ DSDW ↔ TSDW and so it can be proposed that the

first-order cubic-to-tetragonal (c>a) structure phase transition seen by Honda cor-

responds to a TSDW-to-DSDW phase transition. The model also supports second-

order-spin-orientation phase transitions (SOPT), in which the spins reorient con-

tinuously between magnetic states that possess different symmetries. At the phase

transition the two different magnetic states become degenerate. Within this cate-

gory there exists two cases; (1) the two states have different numbers of components

for the staggered magnetisation, as in OSDW ↔ SSDW, and (2) the number of

components remains the same, as in OSDW ↔ DSDW.

There is however an error in the model - the OSDW solution exists at a saddle

point rather than at a minimum. In order to have α’s existing at which which

the OSDW and ASDW states become degenerate with those of the SSDW, DSDW

or/and TSDW states, one must go to eighth order in the Landau function. An extra

solution exists to this model, named the general spin density wave state (GSDW), for

which there are three independent magnetisation components and hence the state

possesses orthorhombic symmetry. In principle this state can transform into any

of the other five SDW states mentioned previously, but practice there can only be

transitions that involve the creation or destruction of one order parameter.

Long et al are able to tune the coefficients αi,βi and γi to obtain cascades of
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Figure 4.12: Example of a theoretically-determined magnetic cascade, TDOS (between triple→
double→orthorhombic→single spin density wave states).[5]

transitions as functions of α that match those seen by Honda et al. An example as

a function of staggered magnetisation squared is shown in fig. 4.12, where a cascade

TDSW →DSDW→OSDW→SSDW is shown. The phase changes are signalled by

the appearance or disappearance of certain branches in the magnetisation curve.

As introduced earlier, the magnetoelastic coupling of the magnetisation to the

lattice can cause structural distortions if the symmetry of the magnetic state al-

ters due to magnon-phonon coupling in MSDW states. The driving force behind

the phase transitions between states with different symmetry for the magnetisation

Landau model is therefore now attributed to magnetoelasticity and this coupling is

added via a ’minimum coupling term’:

Fε = P.ε+
1

2
ε
′
.Cε. (4.3.4)

The first term is the dominant magnetoelastic term in their minimal coupling

model. The second term is the elastic strain energy term, where the tensor Cij de-
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Figure 4.13: The measured elastic constants of Mn85Ni9C6. The shear elastic constant can be
seen to soften as the TSDW-ASDW transition temperature is approached.[6].

pends on the magnetisation, among other things. P is the magnetic pressure. Solely

strains available to a lattice possessing perpendicular angles only are considered.

The stability of the spin density wave states are analysed based on the model

of the free energy that consists of the magnetisation part (Landau theory) plus

the elastic part, via a combination of fluctuation theory, renormalisation theory

and finally microscopic theory. The elastic term is first minimised with respect to

strain, and the resulting conditions substituted back into the free energy expression.

A renormalisation of the original landau coefficients maps this function onto the

original Landau expression, which is then minimised subject to self-consistency with

respect to changes in magnetisation coupling to changes in elasticity. It is found that,

for an SSDW state, elasticity stabilises the state further against fluctuations. For a

DSDW state, the elasticity makes the states more stable to ASDW fluctuations, and

conversely less stable towards the OSDW state. The presence of magnetoelasticity

causes the TSDW state to be less resistant to fluctuations towards an ASDW state.

In this way, the SSDW state is stabilised over other MSDW states by elasticity. This

is expected due to the SSDW having the largest direction-dependent difference in

magnetic interaction.
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Figure 4.14: Softening of the [110] T1 acoustic phonon mode[6].

In terms of the behaviour of the elastic constants, analysis of the renormalised

elastic constant tensor led to several theories. Transitions between magnetic states

possessing different numbers of magnetic components mi have discontinuities in the

elastic constants as observed in the t1-to-cubic phase by Honda, with the state with

the lower number of components having the lower value of elastic constant. For

transitions in which the number of magnetic components remains the same, the

elastic constants remain continuous across the transition and certain shear elastic

constants vanish due to the change from cubic to non-cubic symmetries etc. This is

demonstrated experimentally in the temperature dependence of the alloy Mn85Ni9C6

[33]. Figure 4.13 shows the vanishing of the shear elastic constant at the TSDW ↔

ASDW , or rather cubic to tetragonal, transition. The associated softening of the

[110] T1 acoustic phonon mode that has a vibrational polarisation direction of [110] is

also seen in these experiments, shown in figure 4.14. The lowering of the number of

magnetic components in the state can be seen in neutron diffraction data [34], shown

in figure 4.15. The intensity of one of the Bragg spots is seen to rise as the magnetism

orders, and then as it begins to level off at TMS it again shows a significant increase,

finally levelling off at TL. This behaviour corresponds to the system magnetically

ordering in a cubic TSDW state, and then undergoing a magnetic spin reorientation

transition at TMS, where the spins rotate towards the basal plane continuously with
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Figure 4.15: Solid curve: the magnetic Bragg intensity 01̄1 from a single crystal of Mn85Ni9C6 as
a function of temperature, showing three critical points. Broken curves by way of extrapolation show
a natural division of the intensity into two components, indicating a TSDW-ASDW continuous, or
’lift-off ’transition. [34].

temperature, taking an ASDW state. The spin density is thus transferred from

the third Bragg spot to the other two spots present until the system arrives at the

double-q state, at which point the intensity at the two spots levels off. This type

of transition termed a ’lift-off’ transition if it is viewed in the context of increasing

temperature.

Fig. 4.16shows structural phase diagrams theoretically produced by Long. The

various phases are believed to correspond to those probed by Honda for the low

temperature regime.

Magnetic surface relaxation and reconstruction can be understood using these

magnetic cascades. Although there is no such quantity as a Bragg spot, due to the

truncation of the system and therefore rods of magnetic scattering instead, one can

consider descriptions of spots by considering the case of large-enough regions over

which the scattering is observed in the perpendicular direction such that the rods

approach a spot-like profile. Within this picture, as a function of depth, relaxation

involves the transferral of spin density between spots, but so that there is no new
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Figure 4.16: Example of a theoretically-determined structural cascade via a strain curve, as per
the minimum coupling model of Long et al.[5]

order present, corresponding to, for example, the TSDW to DSDW transition. Con-

versely, magnetic reconstruction concerns the other case considered whereby a new

magnetic component appears, as of, for example, an SSDW to OSDW transition.
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Chapter 5

SURFACE MAGNETISM

5.1 Original Magnetic Surface Transitions

Phase transitions in semi-infinite systems are of many types. Lubensky and Rubin

[35] identified four types of seperate surface transitions associated with the surface.

Bray and Moore [36] review these different transitions by modelling with a Ginzberg-

Landau-Wilson Hamiltonian for a system with O(n) spin symmetry, containing an

extra ’surface’ contribution:

H =

∫
ddx



1

2
t

n∑

i=1

φ2
i (x) +

1

2

n∑

i=1

(∆φi(x))2 +
u

4

(
n∑

i=1

φ2
i (x)

)2

+
1

2
cδ(z)

n∑

i=1

φ2
i (x)− h1δ(z)φ1(x)

]

, (5.1.1)

where φi(x) is the i’th Cartesian component of the n-component order param-

eter, and the reduced temperature t ∝ (T − T MF
c ) where T MF

c is the mean-field

transition temperature. The integration over x is over the half-space z ≥ 0. The

delta function δ(z) serves to incorporate a magnetic field, h1, that couples to one

of the components of the order parameter, and a surface coupling perturbation, c.

This surface perturbation locally changes the value of T MF
c . For a spin system with

nearest neighbour exchange interactions J(1 + γ) between spins in the surface layer
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Figure 5.1: Order parameter profiles of the ordinary (a), special (b), surface (c) and extraordinary
(d) transition within the mean-field or Landau approximation. ξb is the bulk correlation length.[40]

and J between all other nearest neighbour pairs, it can be shown that [37][38][39]

c =
1− 2(d− 1)γ

a
, (5.1.2)

where d is the dimensionality of the system and a is the lattice spacing. In

mean field theory, the spontaneous magnetisation ,φ1(z) is linear in z for small z

and extrapolates to zero at z = −c−1 as is illustrated in fig. 5.1. As such, c−1 is

called the ’extrapolation length’ in the literature and is denoted λ. A positive λ

refers to a system whereby the spin field sz in the ordered phase would vanish if it

were linearly extrapolated a distance λ outside the surface of the system, or in other

words the order decreases as the surface is approached. As such, the extrapolation

length effectively determines the range of the surface effects [35]

The different transitions are shown as cross-hatched lines on the phase diagram

of fig. 5.2. The ordinary transition corresponds to ordering at the bulk transition

temperature Tc . This occurs above the point P , which corresponds to c = 0 for
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the infinite system and c > c∗ for the semi-infinite system. The ’surface’ transition

describes those transitions for which T MF
c in the surface exceeds that in the bulk

and the surface orders spontaneously at a higher temperature than the bulk. This

corresponds to the phase boundary PQ. As the temperature is lowered below this

surface-ordering temperature, the bulk undergoes a second order transition in the

presence of the ordered surface, termed the extraordinary transition[35]. Finally,

the case c = 0 corresponds to an enhanced surface interaction between surface spins

(their eq1.2) which is not quite strong enough to split off a surface phase. For

this system, the system orders at the bulk transition temperature, but the critical

exponents and correlation function differ from those of the ordinary transition. LR

call this the λ = ∞ transition, corresponding to the extrapolation length being

infinite. Bray however disagrees with this nomenclature, since extrapolation length

has no meaning outside of mean field theory, where in the vicinity of the transition

there are fluctuations on all length scales. They also reassign the transition to

c = c∗, due to the disagreement with the mean field value, as illustrated by the work

of Binder and Hohenberg (1974). In this work, a high series expansion was performed

on the semi-infinite 3D Ising model and the behaviour of the critical exponents was

determined as a function of c. It was found that the existence of the surface phase

for this case requires∆ > ∆c 1 0.6, as opposed to the mean-field value of∆ c = 1.4.

Bray assigns the phase transition associated with this reassignment of c the ’special’

transition. This reassignment agrees with Lubensky and Rubin’s later work [35], as

shown in fig. 5.2.

The qualitatively different magnetisation profiles corresponding to the differently-

ordered phases are shown in fig. 5.1. For the case whereby the mean field (MF) at

the surface is smaller than in the bulk, there is an ordinary transition from the disor-

dered state to a state with a magnetisation profile as depicted in (a), which is valid

for λ−1 > 0, t < 0. For the case whereby the mean field on the surface is equal to

that in the bulk, the λ =∞ transition leads to the flat magnetisation profile of (b).
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Figure 5.2: Phase diagram as a function of c and t for h1 = 0 = h. P is at the point c = 0 for
the infinite problem and c = c∗ for the semi-infinite problem. The shape of the line PQ near P is
c ∼ t1−ν or c − c∗ ∼ t1−ν for infinite and semi-infinite problems respectively. Cross-hatched lines
represent the phase boundaries as described in the text.[35]

For λ−1 < 0, as the temperature is decreased past the surface transition tempera-

ture, the surface orders and the state has the magnetisation profile as shown in (c),

with an exponential decay of the magnetisation into the bulk. As the temperature

is then decreased further, the extraordinary transition occurs between (c) and (d),

whereby the bulk orders in the presence of the surface order.

At the critical value of coupling on the surface, Js = Jsc, at which the special

transition occurs, one has simultaneous criticality of 2D surface layer correlations

and bulk 3D correlations [41]. All of these behaviours are of particular interest since

they have a close relation between critical wetting and prewetting phenomena[42]

which shall be investigated later.

5.2 Interface Delocalisation Transitions: Wetting

Wetting was originally studied in terms of a lattice-gas picture but has also been

applied to magnetic systems. Surface-induced disorder transitions (SID’s) were also

investigated, but initially the similarity to wetting was not realised. The SID tran-

sition will be covered in the next section, but we begin the introduction to interface

delocalisation transitions with the wetting transition.
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The wetting phenomenon originates from the wall, or surface, preferring a state

that is different from the bulk state. As a parameter is changed, such as temperature

in the magnetic picture, the preference at the surface can overwhelm the state dic-

tated by bulk effects and the surface-preferred state that is nucleated at the wall can

diverge into the bulk. Wetting requires the near-degeneracy of the phases involved,

such that the energy cost of the surface-preferred state diverging into the bulk is

small compared to the energy gain associated with the surface.

The preference of one magnetic state over another at the surface is artificially

forced using a surface magnetic field h1. The system is prevented from taking this

surface-preferred state throughout by another magnetic field h applied to the bulk

which is orientated differently (oppositely in the case of the Ising mode) from h1.

As such, a domain wall is set up between the surface and bulk magnetic states and

it is the movement of the interface length, or rather the distance from the surface

to the wall, that can lead to wetting.

Diehl [40] analyses the form of a Landau model that gives rise to wetting. The

Hamiltonian of the system is written in terms of a surface and bulk term:

H(φ) = Hb(φ) + Hs(φ), (5.2.1)

which are defined with respect to lagrangian functions:

Hb(φ) =

∫

V

dV Lb(φ, δφ) (5.2.2)

and

Hs(φ) =

∫

S

dSLs(φ, δφ), (5.2.3)

86



5.2. Interface Delocalisation Transitions: Wetting

where δφ is shorthand for ∂φ/∂z. The order parameter m(z) =< φ(z) > is

approximated by the function that minimises the Hamiltonian. In this context,

Diehl[40] assumes a form with

Lb =
1

2
(∇φ)2 − U(φ), (5.2.4)

and Ls = Ls(φ), with no dependence on δφ. U(φ), the potential, and Ls, include

possible bulk or surface magnetic field terms (such as the h and h1 referred to pre-

viously). In this case, the problem applied to a semi-infinite system is extremalised

by

∇2m(z) = −U ′(m) (5.2.5)

where the prime denotes differentiation by the argument, subject to the generalised

boundary conditions for semi-infinite systems

m′(z) = L′

s(m1) (5.2.6)

lim
z→∞

m(z) = mb (5.2.7)

lim
z→∞

m
′
(z) = 0, (5.2.8)

where m1 is the surface layer magnetisation and mb is the bulk magnetisation,
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Figure 5.3: Graphical solution of eq. 5.2.10. The solutions m1 giving the surface free energy fs

are marked by full circles. The broken curve is −m
′
since for m > mb one must take the negative

sign of the square root (2∆U)(1/2). From [43].

defined to be the magnetisation at the maximum of U . The condition for extrema,

5.2.5, can be rewritten using energy conservation as

m
′
(z) = ± (2[U(mb)− U(m)])1/2 , (5.2.9)

where the difference U(mb) − U(m) is the bulk energy required to change the

bulk magnetisation at constant temperature from mb to m, or in other words the

energetic cost of having a state in the bulk that is not a ground state of the bulk, a

result of the presence of a domain wall. The extrema condition subject to the first

boundary condition 6.2.14 can be written, by eliminating m
′
, as

L′

s(m1) = ±[2∆U(m1; mb)]
1/2. (5.2.10)

The functions m
′
and Ls versus m are plotted in fig. 5.3 as per [40][43], so that

the intersections of the two curves are solutions to the extrema condition subject to
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boundary condition 6.2.14. Ls is plotted for a given c value, for various positive and

negative values of h. The free energy expression, which can be shown to be given by

fs =

∫ ∞

0

dz(m
′
)2 + Ls(m1), (5.2.11)

is used to determine which of the multiple solutions accessible when h1 is strong

enough and negative correspond to the minimum energy equilibrium phase. Note

that the free energy is a function of the variation of the magnetisation in the system,

which can be thought of as the cost of a magnetic domain wall, and a contribution

from the surface interaction Ls. The free energy can also be written in a form more

suited to analysis via the graph:

fs = Ls(mb) +

∫ mb

m1

dm[(2∆U)1/2 − L′

s]. (5.2.12)

Minimising the free energy amounts to minimising the second term, since the first

term Ls(mb) is constant for fixed h, τ, h1 and c. Thus, the free energy is minimised

by minimising the second term, which amounts to minimising the difference between

the shaded areas A and B of the graph. Decreasing a negative h1 increases area A and

decreases B until the areas are equal, at which point a first order transition occurs

from intersection III being the stable solution to I being the stable solution. The

profile of the solution corresponding to intersection III is like that of the ordinary

transition. However, for sufficiently large c > 0, m1 may be negative, and the

magnetisation profile may thus have an inflection point, as shown in fig. 5.4(a). The

intersection solution I can be seen in fig. (b) and is our first illustration of a wet

system, with lW growing without bound.

Complete wetting concerns a first order transition, whereby the thickness lw of the

wetting layer increases discontinuously from a finite microscopic value to an infinite
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5.2. Interface Delocalisation Transitions: Wetting

Figure 5.4: Mean-field order parameter values for T above (a) or below (b) the wetting tempera-
ture. The profile in (b) corresponds to the solution marked I in fig. 5.3.[40]

(macroscopic) one. Other wetting phenomena also exist, which are applicable to

our magnetic studies; critical wetting describes the diverging of lw continuously and

prewetting refers to the transition from a thin to thick, but finite, layer. It has

been a point of contention as to whether the critical wetting phenomenon should be

referred to as a phase transition since it does not involve a discontinuous jump in

the parameter lw, nor its increase from a zero value.

Nakanashi and Fisher used Landau theory to study the semi-infinite n-vector

model with bulk and surface fields h and h1 included. They show that the prewetting

criticality and pure surface enhanced transitions are essentially the same phenomena,

connecting the diagrams in fig. 5.5. Their work effectively unfolds figure 5.2 at the

’special’ surface multicritical point P into four-dimensional thermodynamic space,

in terms of the additional magnetic field variables h and h1. The resulting phase

diagrams are shown in fig. 5.6. Figure (a) of 5.6 was also reproduced by Lipowsky

and Speth [44] using a mean field treatment of the Landau free energy functional

defined by

F{φ} =

∫
dd−1ρ

∫ ∞

0

dz

[
1

2
(∆φ)2 + f(φ) + δ(z)f1(φ)

]
, (5.2.13)
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5.2. Interface Delocalisation Transitions: Wetting

where ρ describes the Cartesian components parallel to the surface, z is the

coordinate perpendicular to the surface, and φ is the scalar field that describes the

order parameter φ. f(φ) governs the bulk properties and f1(φ) is the surface term

that contains the influence of the surface on the order parameter field and is activated

only for the surface layer z = 0 via the delta function. The (∆φ)2term is related

to the energy cost of the system not taking the ground state of the bulk up to the

surface. The functional presupposes short-range interactions. For the wetting case,

the functions take the forms

f(φ) = −τ
2
φ2 +

υ

4
φ4 − hφ (5.2.14)

and

f1(φ) =
1

2
gφ2 − h1φ, (5.2.15)

where the temperature-dependence is assumed to be dominated by the Landau

coefficient a present on the bulk contribution to the free energy, and the remaining

coefficients are taken to be temperature-independent. τ is the reduced temperature

defined as Tc − T such that the ordered phase corresponds to a positive reduced

temperature and h is proportional to the bulk magnetic field. The effect of the free

surface is taken into account in terms of two contributions; the first is the modified

interaction between spins on the surface, which is represented by than incremental

surface field g in the continuum model. Only surface enhancement, corresponding to

g > 0, is considered. The quantity is also our inverse extrapolation length described

earlier on in the chapter. The second contribution describes the affinity of the surface

for the surface phase and is described by a local chemical potential or surface field

h1.
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5.2. Interface Delocalisation Transitions: Wetting

Figure 5.5: Surface phase diagrams in terms of t ∝ T − T∞
c , surface enhancement g, bulk field

h, and surface field h1 [42].

Figure 5.6: Sections of the global surface phase diagram for various surface enhancements g,
showing wetting lines, W; critical points, C1

W , C1
pre, C1

surface, C∞; and multicritical points (en-
circled labels). Superscripts ∞ and 1 distinguish transitions in which, respectively, both bulk and
surface or only surface criticality occurs.[42].
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5.2. Interface Delocalisation Transitions: Wetting

To describe the phase diagrams of figures 5.5 and 5.6 in more detail, let us go

back to 5.5, where we are already familiar with diagram (a), whereby no magnetic

field is present in the bulk or on the surface. Figures (b) and (c) deal with cases

in which the surface magnetic field h1 is present and positive. We consider the

diagrams with respect to the Ising model for simplicity. The presence of h1 forces

the surface to take up an order parameter on the surface which permeates the entire

system. If we then consider the case of h → 0− such that the bulk magnetic field

tends towards zero but is oppositely-directed from the field on the surface, we have

the interesting case in which the surface takes on a spin up phase but deep into the

bulk the system is forced to take the spin down phase. As such, the system possesses

a domain wall between the phases which moves as the temperature is increased and

the energetics of h that order the bulk to have spin down becomes less dominant.

Eventually, the bulk disorders and the surface phase nucleated/seeded by h1 extends

across the entire system. The bulk phase is thereby wet by the surface phase. It is

this case of h→ 0− and h1 > 0 that we are therefore interested in and we shall now

discuss the graphs with this path in mind.

To begin, we relate the case of h1 = h = 0 in fig. 5.6(c) to 5.5(a). For supercritical

surface enhancement g > 0, the pure surface transition C1
sur of figure 5.5(a) lies on

the prewetting line where it meets the t-axis, at t∞c . For the g = 0 case, the special

point defined by Bray et al, labelled SP in fig 5.5(a), is located in 5.6(b), where

the extraordinary and surface transitions merge into this single point. What’s more,

the SP is the common terminus of the wetting and pre-wetting lines. For g < 0, the

special point is replaced by the critical point for the ordinary transition C∞
ord. This

point is more singular than the bulk-driven transition C∞.

The interesting physics occurs for the case of h1 (= 0. The lines c∞ in all three

graphs of 5.6 for this parameter range are the bulk criticality lines which forces the

free energy at the surface to have singularities. As t crosses these lines, the bulk

orders. For different ranges of h1, different types of wetting phenomena occur. In
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5.2. Interface Delocalisation Transitions: Wetting

addition to the existence of prewetting and wetting transitions, there is a new surface

multicritical point T 1
W that is not present for g ≥ 0, where the first order wetting

line W turns abruptly into the critical wetting line C1
W . This point is termed the

wetting tricritical point. For supercritical surface enhancement, for a certain range

of h1 the bulk orders in the presence of an ordered surface in a similar way to the

extraordinary transition.

The equivalence of these diagrams with those of 5.5(b) and (c) thus depend on

the value of h1. fig. 5.5(c) is equivalent to 5.6(a) for 0 < h1 < (h1)critical, before the

wetting line W appears. 5.5(b) is equivalent to both g < 0 and g > 0 of the 3D

graphs; for g > 0, the graphs are equivalent for all h1 > 0, but for g < 0, it coincides

only for h1 > (h1)critical.

We now consider these graphs in the context of magnetic systems for h → 0−.

Increasing the temperature from t = 0, lW begins as small and finite, since the

bulk order is dominant and perseveres towards the surface layers. For the case

of subcritical surface enhancement with 0 < h1 < (h1)critical, as the temperature

increases the system goes through a critical wetting transition, at which point the

thickness diverges continuously and the surface phase wets the bulk phase as the

bulk becomes less ordered. For both subcritical enhancement for h1 > (h1)critical

and supercritical enhancement for any h1 (= 0, as the temperature is increased the

system instead undergoes a prewetting transition and the thickness of the surface

phase jumps discontinuously from the small finite value to a large but nevertheless

still finite value. For supercritical enhancement and large enough h1, the prewetting

jump to a larger thickness can occur at a temperature distinctly higher than the bulk

ordering temperature, which in other words describes a prewetting jump occurring

at a temperature at which the bulk has already disordered. The complete wetting

transition in fact only occurs in the limit h → 0 such that the difference in free

energy between the surface and bulk phases become not just similar but equal and

lw can diverge completely.
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5.3. Surface-Induced Order-Disorder Transition; A Form of
Wetting

We must now be more specific with respect to the definition of the thickness of

the wall lW . It is in fact possible for a system to possess a variable that is both

macroscopic, diverging with system size, and possess a length scale that increases

continuously. The effect is due to the thermal distribution associated with the

interface length. Consider, for example, a power law distribution P (lW ) ∼ 1/lαW .

We define the moments 〈lW 〉y by

〈lW 〉y = lim
a→∞

∫ a

1

P (lW )lyW d(lW ). (5.2.16)

One can then envisage a case where the power law exponent α goes through a

value as a function of, for example, temperature, such that the mean, corresponding

to the case of y = 1, is finite, but the second moment is divergent. The second

moment, a measure of the standard deviation of lW from the mean value, can be

thought of as a measure of the fluctuations of the wall from the mean width. Care

must be taken with respect to the definitions of lW in the papers as to whether

the measurement refers to the mean value of the interface width or the fluctuations

associated with it.

Lipowsky and Speth [44] also went on to solve for the magnetisation profile

for both the wetting case and SID case, which we shall be discussing next. The

profiles are shown in fig. 5.7 and illustrate the comparison between the two types of

interface-delocalisation transition.

5.3 Surface-Induced Order-Disorder Transition; A

Form of Wetting

Interface localisation-delocalisation transitions can occur for systems in which the

bulk undergoes a first order disordering transition but the near-surface instead un-
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Figure 5.7: (a)Order-parameter profile φ(z) for τ ≥ τw near the critical wetting transition. φb

is the bulk value of the order parameter and ms, the distance of the interface from the surface, is
the coverage. φ(z = 0) + φb → 0 and ms → ∞ at the wetting transition. (b) Order-parameter
profile ψ(z) for a ≤ a∗ near the SID transition O2. ψb is the bulk value of the order parameter.
ψ(z = 0)→ 0 at the SID transition [44].

dergoes a continuous disordering transition. A magnetisation profile can then be set

up between the disordering surface and ordered bulk and it is the behaviour of the

interface length associated with the profile that can be special - it can become delo-

calised and diffuse near the bulk ordering temperature, and this is considered a wet-

ting transition. As such, the bulk ordering transition at which both bulk and surface

become simultaneously disordered on approaching the temperature from below can

be considered to be the divergence of the interface into the bulk. The phenomenon is

an unusual form of wetting since there is no requirement for externally-applied fields

h or h1; it is the altered coupling at the surface alone that mediates the transition.

The transition and can manifest in surface quantities behaving continuously even

though the bulk undergoes this discontinuous transition[45][46]. Lipowsky et al in

particular showed that for d = 2 in the presence of a bulk first order transition,

the surface order parameter always behaves continuously [44]. The continuously

decreasing magnetisation at the surface is made possible by the interface moving

into the bulk and correspondingly the surface being shielded from the magnetic field

provided by the ordered bulk as the thickness of the interface increases.
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Lipowsky and Speth [46] showed that, instead of the requirement for external

fields h and h1 as in wetting, the phenomenon can be mediated solely by a non-zero

value of the first order invariant a1 of a free energy of the surface of the form

f1(ψ) =
1

2
a1ψ

2 −H1ψ, (5.3.1)

where the Landau free energy functional of the system is given by 5.2.13 where

f(φ) which governs the bulk properties is to take a form that leaves the bulk with

a first order transition from disorder, φ = 0, to order, φ = MB > 0. One of the

simplest models they solve for which the magnetisation profile M(z) can be solved

analytically is defined by the surface function 5.3.1 and the bulk function

f(ψ) = −Hψ +
1

2
aψ2 − 1

3
bψ3 +

1

4
cψ4, (5.3.2)

with b, c > 0 and where a has the dominant temperature dependence. The cubic

invariant forces a first order transition.

Lipowsky and Speth [44] showed that this free energy functional describing the

SID transition can in fact be mapped onto that of the wetting transition using an

appropriate coupling constant transformation. The resulting figure, obtained from

fig. 5.6(a) using this transformation, is shown in fig. 5.8. The SID transition occurs

for H = H1 = 0, where the a axis cuts the coexistence plane of the wetting case,

h = 0, τ > 0.

Relating the coefficients to physical parameters, a1 represents the enhancement or

’repression’ of surface coupling, with respect to microscopic interaction parameters,

in comparison with the bulk coupling. It is this term that leads to the wetting-type

phenomenon. In particular, for the Potts model, a1 > 0 for J1 << J , corresponding

to surface interaction repression, and a1 < 0 when J1 >> J , corresponding to surface
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Figure 5.8: SID phase diagram obtained from the wetting phase diagram in fig. 5.6(a) using a
coupling constant transformation. The SID transition occurs for H = H1 = 0, i.e. where the a
axis cuts the coexistence plane [44].

interaction enhancement. H and H1 are both taken to be positive, as opposed to

the case of wetting where the external fields are considered to be oppositely-directed

to one another such that a different phase is preferred on the surface from the bulk

and an interface is therefore automatically existent. In this way, the same phase

is preferred on the surface as in the bulk and so the interface may only exist for

other reasons. Specifically in this case, it is the a1 coefficient that can cause an

interface to exist in this model, which represents the size of the departure of the

surface interaction strength from the bulk value

The phase diagram as a function of a and a1 is shown in fig. 5.9, where the

bulk first order transition occurs at a = a∗ which corresponds to the bulk transition

temperature T = T ∗. The temperature deviation is therefore proportional to δa ≡

a− a∗.

At the bulk transition, several transitions are possible, depending on the value of

a1. There are 2 extraordinary transitions E+ and E− that occur if one approaches

the bulk transition from a higher or lower temperature respectively. For the Ising

model, where the bulk orders continuously, these transitions are identical, and there

is only one instead of two ordinary transitions.

s̄ is a multicritical point.The dashed line separates two metastable profiles, and
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Figure 5.9: Global a, a1 phase diagram for for semi-infinite system exhibiting a first-order bulk
transition at a = a∗ corresponding to the temperature T = T ∗. The different types of transitions
are denoted by S, E+,E−, O1, s̄ and O2. The dashed line is a line of metastability [46]

one of these becomes the equilibrium profile at the phase boundary S. For the

Ising case, whereby the bulk orders continuously, the phase boundary is instead a

continuous transition and so the transition line S and the dashed line of metastability

are identical.

In both models considered, the order parameter at the surface, M1, is continuous

at E− and E+, discontinuous at O1, and goes to zero continuously at s̄ and O2, even

though the bulk orders continuously.

The order parameter profiles are given in fig. 5.10. Profiles (b) and (c) exhibit

a monotonic increase or decrease respectively in magnetisation from the surface to

the value of the bulk order parameter MB. Whether there is an increase or decrease

depends on whether the surface interaction is repressed or enhanced respectively

compared to the bulk. The magnetisation profile exhibits a point of inflection for

the cases of (a) and (d) and one can therefore define the existence of an interface at

l̂ and
ˆ̂
l respectively. Unlike the length scale of the variation in (b) and (c), which is

limited to the value of 1/(a∗)1/2, the interface of (a) and (c) can delocalise.

The order parameter profile of fig 5.10(a) is possible at temperatures well below

the bulk transition temperature. This is due to the reduced and altered relative

numbers of neighbours on the surface as a result of the termination of the material,
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which in terms of the exchange energies associated with the transition, amounts to

a large ’anti-’enhancement at the surface. In the magnetic picture, the anologue

to the alternation of the exchange coupling is the reduction in magnetic bonding

such that the spins are less tightly bound to particular directions on the surface

layer than in the bulk. The surface then acts as a natural nucleus for the disordered

phase in temperature ranges where the bulk is ordered. An interface can then exist

in the presence of an ordered bulk which favours disorder over order, resulting in

a surface region with disorder existing. The width of the interface depends on the

bulk correlation length.

As the temperature is increased towards the bulk ordering transition temperature

T0 the interface moves into the bulk, growing from a micro to a meso and even

macroscopic behaviour. If short-range interactions dominate on the surface, then one

would expect the temperature dependence of the wetting layer to follow a logarithmic

law[47]:

L(t) = ξd ln
1

t
(5.3.3)

where ξ is the correlation length in the disordered phase and remains finite at

all temperatures.

We now report findings of x-ray evanescent scattering studies of a Cu3Au surface

which have the hallmarks of an order-disorder transition. The system possesses an

interface between a disordered surface phase and ordered bulk phase that is pinned

to the surface, but whose interface length increases as the bulk ordering temperature

is approached from below and eventually diverges continuously into the bulk.

The experiments we discuss are those performed by Dosch, Mailander et al

[48][45]. Cu3Au is a binary alloy consisting of a superlattice structure as shown

in fig. 5.11. The structure can be described as a simple cubic lattice decorated on
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Figure 5.10: Generic shapes of the order-parameter profile M(z): (a) at the transitions O2 and
s̄; (b) and (c) at the transitions O1 and E−; (d) at the transition E+. Near O2, s̄ and E+ there
is an interface at z = l̂ and z = ˆ̂l respectively [46].

each site with FCC (tetrahedral) units each comprising of 3 Cu atoms and 1 Au

atom. As the temperature is lowered, the randomly-distributed Cu and Au ex-

change sites take the ordered form shown in fig. 5.11, leading to the definition of the

Bragg-Williams order parameter

m =
3

4

[
rα − cCu

1− cCu

]
+

1

4

[
rβ − cAu

1− cAu

]
, (5.3.4)

where rα and rβ are the fractions of correctly-occupied sites which range from 1

in the ordered state to cCu and cAu in the disordered state, where cCu and cAu are the

concentrations of Cu and Au respectively. One can compare the system to a magnetic

anologue modelled by an Ising model, by assigning an up spin to Cu sites and a down

spin to Au sites. The ordered structure corresponds to modelling the system with

a nearest neighbour AFM coupling plus an FM next nearest neighbour coupling,

and this competition between interactions leads to the first order character of the

ordering transition in the bulk. In comparison, the surface begins to order at the

same temperature T0 but as a continuous transition, as can be seen in fig. 5.13. It has

been suggested by Dosch and coworkers [45][48] that this behaviour is a realisation

of the surface-induced-order-disorder transition brought about by delocalisation of
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Figure 5.11: Structure of the ordered Cu3Au crystal. a0 = 3.75Å. [45].

Figure 5.12: Long-range order profiles close to the free surface. z = 0 denotes the surface. (a)
T 5 T0, onset of surface disorder; (b) T < T0; disordered surface layer with thickness L. The
thermal roughness of the interface is ξb[45].

the order-disorder interface.

The key difference between order-disorder transitions at bulk first order transi-

tions and ordinary bulk-ordering transitions is the size of the altered bonding on

the surface - For the magnetic ordering case, the altered bonds on the surface are of

the order of the size of J . In contrast, the case of Cu3Au involves much higher dif-

ferences between the bulk and surface coupling energies, being the atomic exchange

energy that comes about from large thermal fluctuations. As such, the stabilisation

of disorder on the surface is much more pronounced, resulting in the width of the

disordered phase existing at lower temperatures and perhaps leading to the interface

moving further into the bulk.

We turn our attention to the experimental signatures, which shall be helpful when

we analyse similar results in our chapter concerning unusual phenomena associated
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Figure 5.13: Temperature dependence of the evanescent superlattice intensity at two different
scattering depths Λ = 30Å and Λ = 300Å (The solid lines are a guide for the eyes).[45].

with the near-surface region of uranium dioxide. The bulk ordering is characterised

by the gaussian contribution of the integrated intensity distribution of fig. 5.14, thus

indicating long range correlations are present. The additional diffuse contribution,

which is a small, broad contribution, is attributed to short-range order in the surface.

The intensity as a function of reduced temperature t for depths ranging from 17 to

500 Åis plotted on a double-logarithmic scale in fig. 5.15. The intensity dependence

on temperature is relatively weak far away from T0, but becomes marked close to

T0, where it takes on a power-law behaviour described by

IΛ(t) ∝ |t|2βΛ. (5.3.5)

The solid lines on the figure are fitted by this power law, and the value of the

slope 2βΛ is found to increase with decreasing depth by the relationship

βΛ =
ξm
Λ

. (5.3.6)

This can be seen in fig. 5.15, where the data points all fall on a straight line within

the dashed error bars. For large depths, the exponent tends towards zero, which is
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Figure 5.14: αf -integrated intensity distribution around (100) superlattice peak at T = 623K < T0

as measured in an ω scan for αi/αc = 1.0. The solid lines are the least squares fit to the data. The
half-width of the LRO contribution is 0.35 deg.[45].

typical of first order transitions. Thus, the data exhibits a smooth transition with

depth from the continuous behaviour with temperature of the surface region to the

discontinuous ordering with temperature of the bulk.

We shall refer to these results when discussing how to interpret the experimental

data for uranium dioxide, since the results are similar, suggesting that an interface

delocalisation may offer a reasonable picture of the behaviour.
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Figure 5.15: Evanescent superlattice intensities IΛ associated with scattering depth Λ as a func-
tion of the reduced temperature t ≡ (T0 − T ) on a double-logarithmic scale. tas denotes the onset
of the asymptotic regime, 2βΛ denotes the near-surface ’critical exponent’.[45].
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Chapter 6

MAGNETIC SURFACE RECONSTRUCTION

INVOLVING NEW ORDER

We now present the first study of the thesis, in which a surface reconstruction

involving new order is shown to be a theoretically possible phenomenon.

The study of Uranium Dioxide that will be presented in the next chapter is an

illustration of how multiple-q magnets can compensate for energy lost at the surface;

the relative spin densities corresponding to the different magnetic orders in the bulk

are altered as the surface is approached, such that the system moves towards the

extinction of an order in the near-surface region. For the case of Uranium dioxide,

whereby the system takes a triple-q state in the bulk at low temperature, there is not

a possibility of new order being introduced at the surface since any new magnetic

order would not be compatible the triple-q state that already exists. Specifically, no

new order can be introduced since there are no dimensions in real space available to

the system in which to superimpose another magnetic order whilst maintaining the

length of the spin everywhere.

We therefore propose a new model, in which there is potential for the introduction

of new order at the surface. This is a completely novel concept, as previous literature

dealing with magnetic order only concerns order identical to that in the bulk. The

properties of the magnetic domain make-up of multiple-q systems allow for the

appearance of order on the surface that is independent from the bulk order, since
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each magnetic T-domain possesses different translational symmetries along a given

direction.

Ordinary magnets do not have this property as was discussed in section 4.1; the

S domains that are the only type that exist for ferromagnets and bipartite magnets

can be distinguished between solely according to the direction of the spins within the

domains, as opposed to any underlying difference in the symmetry. As such,these

domains do not correspond to different order with respect to Bragg spots. Ordinary

magnets refer to ferromagnets, bipartite magnets and chiral magnets, since they do

not break the point group symmetry of the Hamiltonian.

Domains found in multiple-q magnets that take up single-q states can be equiv-

alently generated by rotating the whole lattice-plus-spin system.1 The resulting

single-q domains for a type-1 FCC lattice are shown in (a) - (c) in fig. 6.2. As this

picture illustrates, these different domains correspond to different Bragg spots and

hence possess different translational symmetries which is not the case for ordinary

magnets. The complete set of domains present in the system can then be generated

from the figure by rotating the spins solely in spin space. This is a continuous sym-

metry for the case of the Heisenberg model, but in reality anisotropy effects such as

spin-orbit coupling results in discrete rotations to degenerate states, such as those

that leave the spins pointing along the crystallographic axes for example.

The property of the single-q magnet possessing domains of different underlying

symmetry is crucial, as it allows us to envisage a material which favours one single-q

state over another on the surface - it is the translational symmetry of the state in the

direction parallel to the surface that leads to the state possessing different magnetic

energies on the surface layer, and so the different magnetic domains present in a

multiple-q system would be expected to react differently to a surface. If therefore

the surface prefers a single-q state different from that present in the bulk, then

1Applying the term multiple-q to magnets that possess single-q states seems counterintuitive.
In this thesis however, the multiple-q nomenclature refers to the potential for the magnet to take
up more than one Bragg spot, due to the degeneracy present in the system.
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it becomes feasible that the material may wish to move from the bulk-favoured

single-q state to a different single-q state as the surface is approached, energy-costs

permitting. As such, there may appear new order as the surface is approached, in

the form of a second Bragg spot.

The reality of a material possessing a ’surface-hating’ single-q T-domain in the

bulk with a different single-q T-domain in close proximity energetically is actually

completely feasible, as per discussions about bulk domain distributions of section

4.1. In terms of the mixture of domains in real systems, bulk considerations control

the structural domain distribution, and consequently we would expect to find, in

the absence of the surface reconstruction, a mix of the single-q domains on the

surface, stabilised by energetics associated with the bulk distortion. The following

chapter therefore models the behaviour of those domains that are not preferred by

the surface, and we expect those that like the surface to remain at the surface,

perhaps with some distortion of the domain walls between the styles of single-q as

the surface is approached.

The style of reconstruction we propose in this chapter is particularly interesting

as it presents the possibility of a phase transition that occurs at a temperature below

that of the bulk magnetic ordering temperature. The bulk orders at a transition

temperature TN and this order penetrates to the surface, albeit with less magnitude

due to the fewer magnetic bonds and hence ordering ’capability’ present on the

surface. This ’bulk’ order increases in magnitude as the temperature decreases and

the magnetic order overcomes thermal fluctations. We expect that, at a certain

temperature,the bulk order parameter value at the near-surface has increased to a

value whereby the system can benefit by possessing a different symmetry parallel

to the surface from the bulk symmetry in the near-surface region. This second

symmetry is an order parameter in its own right, appearing from zero to a finite

value at a temperature T2, as shown in fig 6.1. The order parallel to the surface can

be quantified by the value of the intensity of the associated spin density in reciprocal
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Figure 6.1: Qualitative graph to show how order parameters associated with the different symme-
tries evolve as temperature is decreased.

space. The increase in magnitude of the new order corresponds to a tilting of the spin

orientation due to the superimposition of the two orders, and as such the magnitude

of the ’old’ bulk order decreases to compensate and maintain the spin length, as can

be seen qualitatively in the figure. This will be discussed in more detail later.

There are 3 basic criteria that a system should have to allow our reconstruction.

Firstly, we require the system to offer, under certain parameters, degeneracy between

two states, such that a system can be ’tuned’ using these parameters to exist near

to the degeneracy. Frustrated systems offer this possibility. Secondly, we require the

degenerate states to react differently to a surface. Finally, we require that the states

are superimposed onto each other such that one can move gradually between the

two phases without too high a domain wall energy cost. Thus one requires collinear

spins, and a perpendicular superimposition in order that spin length is conserved.

The ’tuning’ of the system away from degeneracy is often realised in real systems.

On magnetically ordering to the single-q structure, magnetoelastic distortions occur

that strengthen the bonds that gain energy and weakening those that loose energy.

This further stabilises one domain over another in the bulk. The magnetoelastic

distortion phenomenon however also results in vital complications. Unlike normal

magnetoelastic phenomena, the distortion can be sizeable for single-q states (4.1)

and as such the energy cost of superimposing one single-q state over another within

the crystal could be too high. The distortion is also a severe modelling complica-
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6.1. Square Lattice Model

(A) (B) (C)

(D) (E)

Figure 6.2: Possible spin orientations of an FCC lattice antiferromagnet with nearest neighbour
coupling (a) Single-q (x-oriented) (b) Single-q (y-oriented) (c) single-q(z-orientated) (d) Double-q
(equal mixture) (e) triple-q.

tion. As the phase changes character as the surface is approached, one expects the

magnetoelastic distortions to also sympathetically change. The self-consistent deter-

mination of such distortions is beyond the scope of our investigation, and we merely

point out that our investigation is in fact a worse case scenario: The sympathetic

change of the magnetoelastic distortions on reconstruction would serve to stabilise

further the reconstruction and so our results to show that the reconstruction exists

are not negated by this effect, but in fact supported by them.

Magnetoanisotropic effects also present another problem to the reconstruction

which involves non-collinear spin directions that vary in nature plane-to-plane. The

anisotropy costs of such reconstructions could be large enough to prevent our recon-

struction in some materials. We also ignore this complication in our investigation,

and provide reasons as to why this is a valid effect to neglect later on.

6.1 Square Lattice Model

We investigate our proposal using a 2D square lattice with frustration, which can

achieve all criteria for the reconstruction, yet is simple enough to study in detail.

We shall show later on that this model is in fact equivalent to a FCC lattice with

nearest neighbour coupling and so has immediate and important application to real
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systems.

We employ the following simple model for the 2D square lattice:

H = J‖
∑

<jj′〉‖

Sj.Sj′ + J⊥
∑

<jj′〉⊥

Sj .Sj′ + J2

∑

<jj′〉2

Sj .Sj′, (6.1.1)

which was solved for the bulk states in section 3.2.3, and we use the variable θ

defined there for our work. < jj′〉‖ denotes nearest-neighbour bonds parallel to the

surface, < jj′〉⊥ denotes nearest-neighbour bonds perpendicular to the surface and

< jj′〉2 denotes second-nearest-neighbour bonds. The second-neighbour coupling

is both crucial and sizeable in order to frustrate the system and to stabilise the

multiple-q ground-states. We introduce J‖ (= J⊥ so that one can detune the system

from degeneracy, a criteria for the surface reconstruction. This detuning models real

systems as the distortion is naturally present via magnetoelastic effects, as discussed

in the previous section.

6.2 Introducing a Surface

The main physical question addressed in the following sections is how the phase

diagram of fig. 3.10 is modified by a surface. (we use the convention of adopting

a surface in the vertical orientation, as defined in figure 3.9). A simple summing

over bonds at this surface provides inequalities for the coupling parameter values

for which the different states are preferred by the surface, and comparison to the

phase space for the bulk indicates in which regions the surface prefers a different

state from that taken in the bulk. Using the convention of section 3.2.3, the surface

is taken to be parallel to the x-direction. We find that only in a region in which the

bulk takes the state k = (kx, ky) = (0, π), or in other words the θ = 0 state, is this

condition satisfied, whereby the surface prefers either (π, 0) or (π,π ) depending on

the particular coupling ratios. We therefore investigate a state of the type depicted
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6.2. Introducing a Surface

in fig.(6.3), assuming that each layer parallel to the surface, n, is characterised by a

different value of the angle θn, which is allowed to vary freely. The figure illustrates a

specific example corresponding to assuming that θ = π/2 is preferred at the surface,

and that there is a smooth, layer-by-layer evolution between these values. This

corresponds to one of the solutions to the problem that we discuss below. However,

for the time being we will allow, much more generally, the value of θ on each layer

to vary independently. This amounts to assuming that within a given layer parallel

to the surface there are no additional broken symmetries other than those present

in the bulk phase diagram of Fig. 3.10.

In terms of our variable θ, the total energy per spin of the whole system is given

by

E = J‖

∞∑

n=1

cos 2θn − J⊥

∞∑

n=1

cos(θn + θn+1)

−2J2

∞∑

n=1

cos(θn − θn+1) (6.2.1)

and the mathematical task amounts to choosing the angles so as to minimise this

energy.

Minimisation over θn provides the controlling equations which must be satisfied

for all n:

0 = J⊥[sin (θn−1 + θn) + sin (θn + θn+1)]

+2J2[sin (θn − θn+1)− sin (θn−1 − θn)]

−2J‖ sin (2θn) for all n > 1 (6.2.2)

and
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6.2. Introducing a Surface

0 = J⊥ sin (θ1 + θ2) + 2J2 sin (θ1 − θ2)− 2J‖ sin (2θ1) for n = 1. (6.2.3)

We now put eq. 6.2.2 into a more convenient form. The angle sum and difference

trigonometric identities are used and resulting terms grouped into coefficients of θn

functions:

0 = (J⊥ − 2J2) cos θn(sin θn+1 + sin θn−1)

+(J⊥ + 2J2) sin θn(cos θn+1 + cos θn−1)

−2J‖ sin 2θn. (6.2.4)

One can exploit the double-angle trigonometric form now present, by parame-

terising as

(
J⊥

2J2
− 1

)
cos θn = −Rn cosφn (6.2.5)

and

(
J⊥

2J2
+ 1

)
sin θn = Rn sinφn. (6.2.6)

The choice of sign is for convenience, such that in the region of interest J⊥/2J2 <

1, θn, φ and Rn are all positive. Using this substitution, the equation can be written

as

−
J‖

J2
sin 2θn = Rn [sin (θn+1 − φn) + sin (θn−1 − φn)] . (6.2.7)

113



6.2. Introducing a Surface

Given that sin (θn − φn) = −
(

J⊥
J2Rn

)
sin θn cos θn, the controlling equation for all

n > 1 can then be written in the simplified form of

sin (θn+1 − φn) + sin (θn−1 − φn) =
2J‖

J⊥
sin (θn − φn) for all n > 1, (6.2.8)

where φ is defined as

tanφn ≡
2J2 + J⊥

2J2 − J⊥
tan θn, (6.2.9)

which is valid provided that J⊥ (= 2J2. In the same way, eq. 6.2.3 can be written

as

sin (θn+1 − φn) =
2J‖

J⊥
sin (θn − φn) for n = 1. (6.2.10)

.

Eqs. 6.2.8 and 6.2.10 can be amalgamated to take the form of 6.2.10 by

extending the range of n to include a virtual layer n = 0 and incorporating an

appropriate boundary condition to effectively deal with the termination of the system

at the surface (n = 1) layer. This boundary condition is referred to as the ’surface’

boundary condition, and is obtained by requiring

sin (θ0 − φ1) = 0 (6.2.11)
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6.2. Introducing a Surface

Figure 6.3: Example of magnetic spin reorientation close to the surface (see main text).

Thus, the turning points of the solution corresponding to any J⊥ (= 2J2 satisfy

sin(θn+1 − φn) + sin(θn−1 − φn)− 2
J‖

J⊥
sin(θn − φn) = 0 (6.2.12)

for all nε[0,∞] in terms of

tanφn ≡
2J2 + J⊥

2J2 − J⊥
tan θn, (6.2.13)

provided the surface boundary condition

θ0 = φ1 (6.2.14)

is applied.

For the special case of J⊥ = 2J2, the controlling equation cannot be expressed

in this way. The energy equation to minimise in this case simplifies to:

E =
∑

n

(J‖ cos 2θn − 2 cos θn cos θn+1). (6.2.15)

The turning points for the special case are determined by the same process as be-

fore, specifically by differentiating expression (6.2.15) with respect to θn and setting

the resulting expressions to zero. The following expression is valid for all n if we

implement the boundary condition θ0 = π
2
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sin θn

[
cos θn+1 + cos θn−1 − 2

J‖

J⊥
cos θn

]
= 0. (6.2.16)

The appropriate boundary condition in the bulk is given by

θn 6→ θ∞. (6.2.17)

In what follows, we will take θ∞=0, which is valid for parameter values that simul-

taneously satisfy J‖ < J⊥ ,and
J‖
2J2

< 1, in which the bulk ground state corresponds

to θn = 0. Note that if the latter condition is not met then the state favoured by

the surface is the same as the bulk, and in this case we can expect the bulk phase

to extend undistorted all the way up to the surface.

There are five basic approaches that unravel the expected behaviour: firstly, lin-

earisation which establishes the phase boundary to surface distortion; secondly, a

transformation that maps the Néel-like states onto the single-q-like states and com-

pletes the phase diagram; thirdly, an exactly solvable boundary which highlights the

general principles and controls the energetic subtleties; fourthly, the continuum limit

that provides simple pictures and physical intuition; lastly, the exact solution, found

numerically, which underpins the previous more instructive calculations. However,

before we solve the problem analytically, we first look into which energies in partic-

ular cause and control the existence of a surface reconstruction to get a feel for our

problem and include a ’back of the envelope’ calculation for length scales involved.

6.3 Feasibility Study - Energetic Considerations

Before we solve our model, we perform a short study on the energetic considerations

involved. In the following section we shall perform an approximate energy balance

to determine a length scale for the phenomenon, but to begin with, let us consider

which energies are responsible for one state being preferred over the other at the
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surface and within the bulk.

Specifically there are two energies at work: the ’intrinsic’ energy from which our

system is built, or in other words, the magnetic coupling J ’s, and the magnetoelastic

energy that is gained as a result of martensitic distortions, which are proportional

to |J⊥ − J‖|. We explicity define these two energies in our Hamiltonian by writing

them as two seperate terms; the average interaction energy and the magnetoelastic

energy:

H =

(
J⊥ + J‖

2

) 


∑

<i,j>⊥

si.sj +
∑

<i,j>‖

si.sj





+

(
J⊥ − J‖

2

) 


∑

<i,j>⊥

si.sj −
∑

<i,j>‖

si.sj



 + J2

∑

<i,j>2

si.sj. (6.3.1)

In this way, we determine whether the different states cost different energies

as a result of magnetoelasticity or simply the innate broken bonds present at the

surface. We perform the summations for our particular problem, paying particular

attention to boundary effects. Specifically, we must perform the summation over

bonds such that at the upper limit of infinity, the contributions are correct and a

new, equivalently ’surface’ boundary is not introduced. As such, we sum over nearest

neighbour bonds in all directions for all atoms from layer n = 2 to infinity, taking

into account double-counting, and add the n = 1 layer as a separate term, hence

covering all bonds in the system and overcoming termination problems. In this way,

the hamiltonians for the different states we are interested in, (kx, ky) = (0, π) and

(π, 0), which we label states 1 and 2 respectively, are computed. For the term that

involves the summation from n = 2 to ∞, which we call the ’bulk’ term of the

Hamiltonian, we have
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H1
bulk =

∞∑

n=2

[
−(J⊥ − J‖)− 2J2

]
(6.3.2)

for the energy if state 1 is used, and

H2
bulk =

∞∑

n=2

[
+(J⊥ − J‖)− 2J2

]
(6.3.3)

for the energy if state 2 is used. From this, we can immediately see that the

degeneracy of the two states is broken in the ’bulk’ solely by the magnetoelastic

effects.

We now study the terms due to the surface layer, n = 1:

H1
n=1 = +

(
J⊥ + J‖

4

)
− 3

(
J⊥ − J‖

4

)
− J2 (6.3.4)

H2
n=1 = −

(
J⊥ + J‖

4

)
+ 3

(
J⊥ − J‖

4

)
− J2. (6.3.5)

Contrary to the ’bulk’, the surface layer contribution to the energy is state-

dependant as a result of both the magnetoelastic distortion and intrinsic energy, or

in other words, due merely to the existence of either or both interaction constants J‖

and J⊥. Thus this ’intrinsic’ energy gain at the surface of having, for example, state

2 if we are in the regime of J‖ > J⊥
2 , is indeed due to the loss of bonds at the surface.

The magnetoelastic distortion in this case merely serves to stabilise further one state

over the other. Specifically, in the regime J‖ > J⊥, the magnetoelastic energy serves

to stabilise a state already preferred due to the loss of bonds at the surface. For

J⊥
2 < J‖ < J⊥, the magnetoelastic energy tries to destabilise this surface-preferred

state but fails, and only in the region of J‖ < J⊥
2 does the magnetoelastic energy win
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over the intrinsic energy and the surface prefers the state that is taken in the bulk.

As such, as is referred to previously, ’below’ but near the degeneracy line J‖ = J⊥

the surface indeed prefers state 2 over state 1, whereas the bulk prefers state 1 over

state 2. We note that this calculation is approximate to help decide on feasibility,

since the domain wall cost has not been included. However, in general it is true

that if the n = 1 calculation shows the bulk state is preferred then there can be no

reconstruction, but if the other state is preferred, then one of our criteria is satisfied

and there may be reconstruction.

If our system, undergoes a magnetoelastic distortion, the resulting effect is a

finite value of magnetoelastic energy and one state preferred over the other in the

bulk. If the distortion stabilises state 1 in the bulk, then if we are close enough to

degeneracy between the two states then we can expect the system to change to state

2 as the surface is approached, merely due to the loss of bonds.

6.3.1 Energy Balance

We now proceed to do a ’back of the envelope’ calculation for the depth, D, to which

the surface-preferred state protrudes into the bulk, by balancing relevant energies to

the problem. We need to consider 3 energies: (a) the energy gained at the surface

layer, n = 1, by adopting the surface-preferred state, which gains from the loss of

bonds, (b) the energy cost of adopting the surface-preferred state down to depth D

for parameter values in which it is not the ground state, the cost being attributed

to the magnetoelastic energy, and (c) the energy cost of the domain wall between

the two states. There is of course no energy associated with the interaction between

the two states on superimposing them, since they are superimposed orthogonally.

Our energy balance simplifies nicely due to the fact that the energy cost of the

domain wall can be neglected, as shall now be shown. The domain wall energy for

our problem corresponds to the Heisenberg cost associated with the variation layer-

by-layer of the angle θ, which occurs as state 2 is slowly transformed into state 1 as
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we move further into the bulk.

We determine the Heisenberg energy cost of the state represented in fig. 6.3,

whereby the θn varies from layer-to-layer, and determine the dependance of the

energy on the existence of the domain wall by examining the dependence on the

variable δθn. For the purposes of this derivation we shall call this state the δθn

state. Being an orthogonal superposition of states 1 and 2, the state can be written

as a sum of the s.s contributions of state 1 and state 2. Specifically, we take the

cosine of the spin vector to be the state 1 contribution and the sine of the spin vector

to be the state 2 contribution. We hence obtain the following expression for Hδθn
bulk

by summing for n = 2 to n = ∞ using the convention for the ’bulk’ summation as

applied in the Hbulk calculation of the previous section:

Hδθn
bulk =S2

∞∑

n=2

[
J‖ [cos 2θn]− J⊥

2
[cos (θn + θn+1)]−

J⊥

2
[cos (θn + θn−1)]

− J2 [cos (θn − θn+1)]− J2 [cos (θn − θn−1)]

]
.

(6.3.6)

We take a Taylor expansion of the cosine functions using the conventions θn+1 =

θn + δθn and θn−1 = θn − δθn−1 to obtain

Hδθn
bulk 1S2

∞∑

n=2

[
J‖ cos 2θn −

J⊥

2

(
cos 2θn − δθn sin 2θn −

(δθn)2

2
cos θn

)

− J⊥

2

(
cos 2θn + δθn−1 sin 2θn −

(δθn−1)2

2
cos θn

)

− J2

(
1− (δθn)2

2

)
− J2

(
1− (δθn−1)2

2

) ]
.

(6.3.7)

We justify the relevance of Taylor expanding by considering that the angle θn

will rotate from π
2 on the surface to 0 in the bulk over a length scale D, such that

we can approximate δθn to be π
2D .As such, if we are in the region of parameter space

corresponding to D being many layers, then the approximation is valid.
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We make the additional approximation that δn 1 δn−1 and so determine that,

for small δθn, the expression for the Heisenberg cost is given by

Hδθn
bulk 1 S2

∞∑

n=2

[
J⊥ cos 2θn −

J‖

2

(
2 cos 2θn − (δθn)2 cos 2θn

)

− J2

(
2− (δθn)2

) ]
.

(6.3.8)

The Heisenberg energy associated with the state where the domain boundary is

present is therefore dependent on δθn only to second order. As such, for small δθn,

or in other words for parameter values where the surface state protrudes into the

bulk over many layers, we can ignore the cost of the domain boundary and merely

pay attention to the first 2 energy considerations discussed previously. Note however

that for small D, δθn is no longer small. As such the domain boundary cost is very

much relevant in this case and the following simple analysis is not valid.

We therefore consider the case of small δθn and neglect the structure of the

domain wall, simply assuming that the system takes state 2 down to a depth D,

whereby the system switches to take up state 1 instead, with no superposition of

the states involved. In this case our balance becomes the energy gain of using state

2 on the surface layer versus the cost of having state 2 in the bulk, referenced to

state 1, and within the parameter regime J‖ > J⊥
2 in which the surface can prefer a

different state from that taken by the bulk:

H1
n=1 −H2

n=1 = D(H2
bulk −H1

bulk) (6.3.9)
[
(J⊥ + J‖)

2
− 3

2
(J⊥ − J‖)

]
= 2D(J⊥ − J‖) (6.3.10)

and so we find that the depth is approximately of the form:
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D 1
(
J‖ − J⊥

2

)

(J⊥ − J‖)
. (6.3.11)

Note that this D is a maximum bound as we have completely ignored the cost

of the domain wall, which is not negligible if we are not near the continuum limit

whereby δθn is vanishing, corresponding to not being near the degeneracy regime

J⊥ = J‖, as shall be shown in section 6.7. As one would expect, D increases as one

approaches degeneracy, tending to infinity at degeneracy whereby the system takes

on state two throughout.

The continuum limit calculation tackled later in this chapter takes into account

the domain wall cost that we have neglected in this simple calculation and provides

the optimum structure.
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6.4 Linearising to Obtain the Phase Boundary

The first natural limit is to linearise the ’minimisation problem’ for J⊥ (= 2J2.

This amounts to assuming that the distortion is infinitesimally small but finite, and

as we will see leads to the phase boundary where the surface phase first appears.

Linearising eq.(6.2.12) and eq.(6.2.13) we obtain

θn+1 + θn−1 = 2φn +
2J‖

J⊥
(θn − φn) (6.4.1)

and

φn =
(2J2 + J⊥)

(2J2 − J⊥)
θn (6.4.2)

and hence generate the equation for turning points of the energy in the linearised

regime:

θn+1 + θn−1 = 2θn
2J2 + J⊥ − 2J‖

2J2 − J⊥
. (6.4.3)

To solve this second order difference equation we employ the general solution

θn = θ0λ
n, (6.4.4)

where substitution results in an expression λ must obey for the general solution to

be valid:

λ+
1

λ
= 2

[
2J2 + J⊥ − 2J‖

2J2 − J⊥

]
. (6.4.5)

λ is further constrained by our specific problem by our ’surface’ boundary condition

θ0 = φ1. The constraint comes into play by using eq.(6.4.2) and making use of our
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general solution to replace θ1. This sets λ to be

λ =
(2J2 − J⊥)

(2J2 + J⊥)
. (6.4.6)

We observe that eq.(6.4.5) is only valid for infinitesimally small but non-zero

distortion, and hence represents the condition at which the distortion first appears:

our phase boundary for the surface reconstruction. We substitute our value for λ

and obtain the phase boundary

J‖ =
2J⊥J2

(2J2 + J⊥)
. (6.4.7)

.

This phase boundary is the lower curve in Fig. 6.4. At this phase transition,

the symmetry with respect to lattice translations parallel to the surface, which is

respected by the bulk magnetic state, is spontaneously broken in a layer near the

surface with finite thickness ξ. Specifically, Eq. 6.4.4 describes an exponential decay

of θn for λ > 0, or an exponentially-decaying envelope to the oscillating case of

λ > 0), as we move from the surface (n = 1) into the bulk (n = ∞) with the

characteristic decay length,

ξ = − ln

∣∣∣∣
2J2 − J⊥

2J2 + J⊥

∣∣∣∣
−1

. (6.4.8)

This formula is valid along the boundary line given by Eq. (6.4.7). It is plotted in

Fig. 6.5 along with two representative dependences of the angle θn on the layer index

n at the phase boundary. Note that the length ξ diverges as J⊥ → 0 or J⊥ →∞ as

in those limits the state favoured by the surface becomes degenerate with the bulk

state.

Note that the dependence of θn on the layer index n is monotonic for J⊥ < 2J2

but oscillatory for J⊥ < 2J2. The oscillatory state corresponds to the preferred
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Neel State
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Figure 6.4: A qualitative representation of the completed phase diagram for our square lattice
model, showing regions (4 and 5) in which the surface reconstruction exists. In region (4), the
surface-preferred state is the θ = π/2, whereas in region (5) the superposition involves the ’bulk’
state, θ = 0 and the Néel state.

surface phase being the Néel phase as opposed to the θ = π/2 phase and one can

generate this new state from that depicted in Fig. 6.3 by simply translating every

second layer of spins by one unit parallel to the surface. The transformation between

the oscillating and non-oscillating states will be seen in the next section.

6.5 Transformation

We can also understand the presence of the two styles of surface-reconstructed states

by considering a transformation of the form

θn 6→ (−1)nθ̃n

J2 6→ J̃2

J⊥ 6→ (2J̃2)2

J̃⊥

J‖ 6→
2J̃2J̃‖

J̃⊥
(6.5.1)
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Figure 6.5: The characteristic length of the surface state at the phase boundary where it forms,
as a function of J⊥. Inset: dependence of the angle θn on the layer index n for λ = −0.5 (solid
line) and λ = +0.5 (dashed line).

which sends

E 6→ 2J̃2

J̃⊥
Ẽ. (6.5.2)

The solution to the problem using the variables J̃⊥, J̃‖ and J̃2 is θ̃n which is

identical to the solution θn for the square lattice defined by the variables J⊥, J‖ and

J2, but with the plane-by-plane oscillation that was discovered in the previous sec-

tion. Applying this transformation maps our surface phase boundary onto itself and

maps two regions that were not obviously related. The transformation provides the

solution for J⊥ > 2J2 in terms of the solution to J⊥ < 2J2 with an added oscillation.

Additionally, the transformation demonstrates a degeneracy when J⊥=2J2, which

amounts to the final boundary as depicted in fig.6.4 where both the monotonic and

oscillatory solutions are degenerate. This completes the agreement with the solu-

tions found on the phase boundary by the linearisation procedure in the previous

section. The degeneracy between solutions is expected as it is located in the region

whereby the two different surface-preferred states are degenerate. This degeneracy

also manifests itself as a degeneracy associated with the spin quantisation direction

within the planes parallel to the surface, which can be different for each plane. This

corresponds to there being Néel sheets parallel to the surface, but the direction of
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6.5. Transformation

the spins within the sheets being arbitrary as long as this order is maintained.
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6.6. Exact Solution

6.6 Exact Solution

The next task is to analyse the special case of J⊥=2J2 which provides an exact

solution and a picture for how the solutions behave in general. The special equation

of Eq. (6.2.16) has two possible solutions, either we find θn=0 and we are dealing

with the undistorted bulk phase or we need to solve

cos θn+1 + cos θn−1 = 2
J‖

J⊥
cos θn (6.6.1)

and we are dealing with the surface reconstruction. To solve this recursion relation

we write it as the real part of an equation constructed using a new variable zn = eiθn :

zn+1 + zn−1 = 2
J‖

J⊥
zn. (6.6.2)

We can solve this equation in exponentials using a power law, and we hence make

the substitution zn = Cλn to obtain

λ2 − 2
J‖
J⊥
λ + 1 = 0. (6.6.3)

Rearranging to the form

J‖

J⊥
=
λ + 1

λ

2
, (6.6.4)

one can identify a trigonometric or hyperbolic function form, and since we are

interested in the parameter range J⊥ > J‖ where our surface reconstructs, we let

λ = eiα to obtain the expression in terms of a cosine function
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6.6. Exact Solution

J‖

J⊥
=

eiα + e−iα

2
= cosα, (6.6.5)

where we constrain cosα to lie between 0 and 1 and further choose to constrain α

to be between zero and π
2 in order to avoid ambiguities later. By using this specific

substitution, we ensure the range defined by J⊥ > J‖ is appropriate to the chosen

function.

The substitution λ = e−iα also returns expression (6.6.5) and represents another

solution to our recursion relation. As such, the general solution to the recursion

relation can now be determined from the real part of the general solution to zn,

which in turn is constructed from a linear combination of the roots of the linear

equation eq.(6.6.2)

zn = Aeinα + Be−inα (6.6.6)

so that, given A and B can be complex,

cos θn = Re[zn] =
zn + z∗n

2

=
A + B∗

2
einα +

A∗ + B

2
e−inα

=
c

2
einα +

c∗
2

e−inα

=
|c|
2

eiγeinα +
|c|
2

e−iγe−inα

= |c|
(

ei(nα+γ) + e−i(nα+γ)

2

)

= |c| cos (nα + γ), (6.6.7)

where α = cos−1
(

J‖
J⊥

)
, and |c| and γ are constants to be determined via the bound-

ary conditions of our problem.
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6.6. Exact Solution

The appropriate boundary conditions to implement for the exact solution prob-

lem are our bulk boundary condition, θn = 0, and our ’surface’ boundary condition

θ0 = π
2 . Considering firstly the solution θn = 0, we can see that whilst our bulk

boundary condition is satisfied, our surface boundary condition is not. Conversely,

the solution to eq.(6.6.7), which we label from hereon as θ̃n, can satisfy the surface

boundary condition if γ = ±π
2 but cannot simultaneously satisfy the bulk boundary

condition. As such, our solution to the J⊥ = 2J2 case for the entire system, θn

defined for all n, must be constructed using a combination of both solutions θn = 0

and θ̃n.

In constructing the combined state, we are hence forced to use θ̃n for θ0 and

θn = 0 for θ∞. Additionally, we require the minimum energy solution, which fur-

ther constrains how we construct the combined state. Applying firstly the surface

boundary condition, we obtain

cos θ̃n = |c| cos (
π

2
− nα) = |c| sin (nα). (6.6.8)

From this form, one can resolve that θ̃n is a decaying function up to its first

zero-crossing, which we label ñ. The minimum energy combined state corresponds

to switching to the θn = 0 solution at this ñ, in order not to increase the energy

of the combined state unneccessarily through the Heisenberg energy cost present in

the θ̃n solution for all subsequent n > ñ.

According to this construction, it is useful to express 6.6.7 with respect to an n

at which θ̃n is zero, which we label N . Hence we can now evaluate γ and obtain the

useful form of

cos θ̃n =
sin (nα)

sin (Nα)
. (6.6.9)

.

We now have an equation for our θ̃n which obeys two constraints; firstly, that
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6.6. Exact Solution

at the zeroth layer, θ̃ is π
2 , and secondly, that at some layer, N , θ̃N goes to zero.

On analysing the roots of the function θ̃n defined by eq. 6.6.9 we will find that two

distinct roots come into existence as α is varied and that this corresponds to the

surface state moving into the bulk on the variation of α, or rather, the variation of

the ratio J⊥
J‖

, the distance from the line of degeneracy.

The roots of θ̃n obey

sin (Nα) = sin (nα) (6.6.10)

and in addition, from trigonometric identities, obey

− sin (−Nα) = sin (π −Nα) = sin nα. (6.6.11)

Thus two roots exist; N = na and N = nb = π
α − na. These roots are identical

when N = na = nb = π/2α. Given that N is an integer, on the variation of α the

roots first become distinct when nb = na ± 1.

We now study the consequences of this by setting na = 1, which corresponds

to the case of there being no surface phenomenon (where all layers have θn = 0)

and varying α to access additional zero-crossings. The next available zero-crossing

occurs for nb = na + 1 = 2 corresponding to α = π/(2na + 1) = π/3 and so the

decrease of α results in an additional zero-crossing being accessed at a higher plane

number. This additional zero-crossing can be thought of as an na value in its own

right corresponding to a particular θ̃n(na) solution (since the solutions are functions

of na = N) with an additional zero-crossing appearing again at α = π/(2na + 1).

Thus, as α is decreased, solutions corresponding to the surface state moving further

and further into the bulk become accessible. The ground state is constructed by

splicing the θ̃n(na) solution with the θn = 0 solution at the location of the first

zero-crossing, or lowest root value na, of the θ̃n function for the energetic reasons

described above. However, a final task exists of determining which θ̃n(na) function
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6.6. Exact Solution

corresponds to the minimum energy solution for a given value of α.

The number of solutions θ̃n(na) available at a certain value of α increases as

J‖ → J⊥. Bearing in mind that we cut the solution θ̃n at the first zero-crossing na,

which we will refer to from now on as N, one can determine the energy saved by

using the different surface solutions θ̃n(N) instead of using the bulk state all the way

to the surface, as a function of α

∆E

J⊥
(Ñ,α ) = 2(Ñ − 1)(cosα− 1) +

sin ([Ñ − 1]α)

sin Ñα
. (6.6.12)

From the graphs of fig. 6.6, where∆ E is only plotted for any specific N when it

becomes ’available’ as a solution, it can be seen that the larger the N, the lower the

energy of the solution, for any α. As such, once a new N appears as α is decreased,

the θ̃n corresponding to that N is the ground state solution. Specifically, θ̃n(N) only

represents the ground state solution for the range

π

2N + 1
≤ α ≤ π

2N − 1
, (6.6.13)

or alternatively,

cos

(
π

2N − 1

)
≤

J‖

J⊥
≤ cos

(
π

2N + 1

)
(6.6.14)

Therefore as α is decreased, the solution corresponding to N stays the ground

state until a certain α, at which point it ’jumps’ to the next plane.

As such, the ground state solution evolves as α decreases in a very special way.

The length scale over which the solution decays to zero increases, changing at an

increasing number of planes. More importantly there is no exponential decay into

the bulk; the surface state has a sharp cut-off with respect to its protrusion into the
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Figure 6.6: Plot of the difference in energy between bulk state and superposition of surface and
bulk states, ∆E, versus ratio J‖

J⊥
, for (a) N = 1 (when the surface state first appears), and (b)

N = 1 to N = 20, plus N = 50, 100and 150, for J2 = 1. Increasing N corresponds to the curve
location being lower
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6.6. Exact Solution

bulk of the material and goes like

N 1 π

2
(
1− J‖

J⊥

) 1
2

. (6.6.15)

We check agreement with the phase boundary found earlier by the linearisation

procedure. The solution constructed by assigning N equal to 1, which corresponds

to no surface phenomenon, is the valid ground state for the range

0 ≤
J‖

J⊥
≤ 1

2
. (6.6.16)

On our phase diagram, this range corresponds to a parameter line on our exact

solution line that extends from zero up to and including the phase boundary. This

is as expected, since it is in the region of no surface phenomenon. Furthermore, the

upper bound of this range indeed corresponds to the phase boundary for the exact

solution, since at this point in phase space θ̃n has zero-crossings at both n = 1and

n = 2. Thus, increasing J‖ further results in the ground state becoming the state

where N = 2, and the surface phenomenon hence appears. Finally, as the triple

point on the phase diagram is approached, N tends to infinity, corresponding to the

ground state tending towards θn = ±π
2 for all n, again as expected.

To further understand the qualitative form of the combined state, we study the

’shape’ of the function θ̃n. If Nα = π
2 , the value of α at which there is no degeneracy

in where the zero-crossing lies and the system has settled on a single choice of layer

at which to go to zero, then we simply have a decaying linear dispersion

θ̃n = −nα +
π

2
. (6.6.17)

For other values of α, we can describe the solution as a deviation from the linear
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6.6. Exact Solution

dispersion

θ̃n = −nα +
π

2
− γn, (6.6.18)

where γn is the deviation of θn from that of the linear dispersion. We determine

the deviation for the limit of large N , which corresponds to small α. This limit

corresponds to the limit of J‖ → J⊥. We express N as

Nα =
π

2
+ µα, (6.6.19)

where µ is determined by considering the range for Nα outside of which the solution

returns to a linear form. Due to the discreteness of our problem, the range corre-

sponds to the values of α at which N shares a root with N + 1 or N − 1, which.

Thus, we have a range for α of

π

2N + 1
≤ α ≤ π

2N − 1
, (6.6.20)

which corresponds to the range of µ ∈ [−1
2 ,

1
2 ]. µ = 0 returns the N that

corresponds to the original linear dispersion solution. Moving outside of this range,

Nα, being a discrete variable, corresponds next to another linear solution.

Expression 6.6.19 is substituted into eq.(6.6.9). Since α is very small, so is the

term µα and as such we can perform a Taylor’s expansion of sin (Nα) followed by a

binomial expansion to obtain, to first order,

cos θ̃n 1 sin (nα)

[
1 +

(µα)2

2

]
. (6.6.21)
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To determine the deviation γn, we compare eq.6.6.21 to the cosine of expression

6.6.18

cos θ̃n = sin (nα)

[
sin γn

tan (nα)
+ cos γn

]
, (6.6.22)

which, to leading order in γn, gives

γn 1
1

2
(µα)2 tan (nα). (6.6.23)

This expression for the deviation from the linear solution is valid for small α, corre-

sponding to large N .

Since only the cosine of the angle is relevant, the angles may be chosen to have

arbitrary signs and this amounts to an arbitrary choice of using the single-q or Néel

continuation for the surface distortion. Therefore our exact solution corresponds to

the boundary between the two states where the surface distortion is of a single-q

character and when it is of a Néel character. Indeed this phase boundary marks a

pure surface phase transition.
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6.7 Continuum Limit

The fourth style of calculation is the continuum limit in which we take the system

size L to ∞. The continuum limit is hence the limit at which ’change’ occurs over

an infinite length. One can determine the shape of the domain wall, or in other

words the form of the function θn using this limit, and proceed to fix the scaling and

position of the function with respect to the variable n by choosing the appropriate

boundary condition to the problem where we approach but are not at the continuum

limit. The generation of this boundary condition is undertaken in detail later in this

section.

Taking the continuum limit is equivalent to assuming a slowly varying solution

where dθn
dn tends to zero, and treating n as a continuous variable. As such, the

summations present in the energy equation (become integrals over dn and we can

Taylor expand around θn to obtain the energy functional in terms of

E = E
(
θn, θ

′

n; n
)

(6.7.1)

such that Euler Lagrange can be applied. Applying the boundary condition

θ∞ = 0, we obtain an expression for the energy to second order in (θn+1 − θn)

E = (J|| − J⊥)
∫

n dn cos 2θn + 1
2

∫
n dn(θ

′
n)2 [2J2 − J⊥ cos 2θn]

−J⊥
2 (1− cos 2θ0)− J⊥

2 θ
′
n(n = 0) sin 2θ0 − 2J2(n∞ − n0). (6.7.2)

Since we are only interested in finding the function θn that minimises the energy, we

ignore constant terms and define the Lagrangian as

L = (J‖ − J⊥) cos 2θn +
1

2
(θ

′

n)2[2J2 − J⊥ cos 2θn], (6.7.3)
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where we wish to minimise the value F defined by

F =

∫ ∞

0

L (θn, θ
′

n)dn. (6.7.4)

Since the Lagrangian for our problem does not depend explicitly on n, to min-

imise F we therefore use

θ
′

n

∂L

∂θ′n
−L = C, (6.7.5)

where C is defined by boundary conditions.

The Euler-Lagrange equation for our system returns the following condition that

must be satisfied by all θn in order for the solution to correspond to a turning point

in the energy:

(
dθn
dn

)2

= 2

[
C + (J|| − J⊥) cos 2θn

]

(2J2 − J⊥ cos 2θn)
. (6.7.6)

Given that θn → 0 as n→∞, we can assume that as n→∞, θ
′
n → 0 (since the

solution must skim the θn = 0 line as n → ∞). Applying this boundary condition

in conjunction with our bulk boundary condition θn → 0 as n→∞, the value of C

is determined to be J⊥− J||. As such, we arrive at an expression that minimises the

energy in the continuum limit

(
dθn
dn

)2

= 2

[
(J⊥ − J||)(1− cos 2θn)

]

(2J2 − J⊥ cos 2θn)
. (6.7.7)

The continuum limit is valid only when θ
′
n is vanishingly small, which, from

expression 6.7.7, is true when the parameter J⊥ − J|| is vanishingly small. This
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corresponds to the region of the phase diagram which is only a small departure from

the degeneracy line J⊥ = J||.

Eq.(6.7.7) in turn integrates to yield

2

[
J⊥ − J‖

2J⊥

] 1
2

(n0 − n) = cos−1

[(
2J⊥

2J2 + J⊥

) 1
2

cos θ

]

+

(
2J2 − J⊥

2J⊥

) 1
2

ln

[
(2J2 + J⊥)

1
2 sin θ

(2J2 − J⊥ cos(2θ))
1
2 + (2J2 − J⊥)

1
2 cos θ

]
,

(6.7.8)

where the ambiguity of signs present in deriving solution (6.7.8) has been removed

by requiring that the lowest energy solution is chosen, which corresponds to choosing

signs so that as n→∞, θn = 0.

Being a continuum limit, all values of θn are valid solutions to all/any n at the

continuum limit, since the solution changes over an infinite length scale. To single

out the solution for which the ’surface state’ of θ = π/2 is adopted, we choose the

solution (by applying a suitable boundary condition) such that at the continuum

limit, i.e. when J⊥ = J‖, θ = π/2 for any n, including the surface layer, as required.

Using this construction, once the boundary condition and hence the length scale is

introduced, the corresponding solution to the continuum limit becomes one in which

θn moves from π/2 to zero as the plane number increases, as is required.

This construction amounts to defining a new variable m0 as

2

[
J⊥ − J‖

2J⊥

] 1
2

n0 = 2

[
J⊥ − J‖

2J⊥

] 1
2

m0 +
π

2
(6.7.9)

and as such, expressing the solution to the continuum limit as
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2

[
J⊥ − J‖

2J⊥

] 1
2

(m0 − n) =− π
2

+ cos−1

[(
2J⊥

2J2 + J⊥

) 1
2

cos θ

]

+

(
2J2 − J⊥

2J⊥

) 1
2

ln

[
(2J2 + J⊥)

1
2 sin θ

(2J2 − J⊥ cos(2θ))
1
2 + (2J2 − J⊥)

1
2 cos θ

]
.

(6.7.10)

The next task amounts to choosing an appropriate value for m0, the ’other part’

of the boundary condition so to speak. Before we begin this task, let us understand

further the role m0 plays by studying the form of solution (6.7.10). By considering

the LHS of the equation as the variable, x, for a function that returns θ 2, one can see

that J⊥−J‖ controls the length scale of the function θ and m0 shifts the function to

the left and right wrt x i.e. wrt the parameter (J⊥ − J‖)
1
2 . As such, the continuum

limit solution can be fitted to the discrete solution for values of the parameter

J⊥ − J‖ close to the continuum limit range, up to a reasonable accuracy, and we

have successfully modelled the problem by using the continuum limit technique.

We now return to the problem of determining an appropriate value of m0. The

boundary condition must satisfy the surface boundary condition of the general prob-

lem, in the regime of the continuum limit. We reproduce the boundary condition of

the general problem in its exact form here:

tan (θ0) =

(
2J2 + J⊥

2J2 − J⊥

)
tan (θ1) (6.7.11)

and rewrite in a more convenient form for our next steps as:

sin (θ0 − θ1) =
J⊥

2J2
sin (θ0 + θ1). (6.7.12)

2The function can be obtained in practice by rearrangement, but this is not required here, only
the concept is considered
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One can use the fact that n = m0 when θ = π/2 to express θn as a Taylor

expansion around m0

θ(m0 + [n−m0]) = θn = θm0 + (n−m0)
dθ

dn

∣∣∣∣
n=m0

+
(n−m0)2

2

d2θ

dn2

∣∣∣∣
n=m0

+ ... (6.7.13)

One can show that this expansion is valid for any n, not just for n 1 m0 and

furthermore that the first order expansion is an expansion of appropriate accuracy.

We hence obtain an expression for θn

θn =
π

2
+ (n−m0)

dθ

dn

∣∣∣∣
n=m0

, (6.7.14)

which can be substituted into our surface boundary condition (6.7.12). A further

simplification can be applied in the sense of Taylor expanding the sine function to

first order, by taking into account that the 1st differential of θn at m0 has previously

been shown to be small. As such, we arrive at a value for our continuum limit

boundary condition

mo =
(J⊥ − 2J2)

2J⊥
(6.7.15)

that satisfies the surface boundary condition as applied to the continuum limit.

For completeness we now state the complete boundary condition

2

[
J⊥ − J‖

2J⊥

] 1
2

n0 = 2

[
J⊥ − 2J2

2J⊥

] [
J⊥ − J‖

2J⊥

] 1
2

+
π

2
. (6.7.16)

Returning to the form of our continuum limit solution, we study what the form

tells us about our problem. The ’perturbative’ parameter, (J⊥ − J‖), which ’per-

turbs’ the system away from case whereby all spins take up the bulk ground state

configuration, serves to control the diverging n in the solution. One can also observe
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Figure 6.7: Bulk and surface phase diagram for our square lattice model to show the positions
(red stars) at which we explicitly calculate the solution (seen in figs. 6.8 and 6.9) using both the
continuum limit technique and direct numerical calculation to determine the exact solution.

the presence of a cos 2θn term, which one can immediately contribute to the differ-

ence in energy in having the two states, applied to a given superimposition described

by θ, and which is dependent on the ratio of the superimposition of the states. We

employ a numerical ‘shooting’ method to solve the difference equation, Eq. (6.2.12),

and the continuum limit is compared with the exact solution in figure 6.

If both θ0 and θ1 are known, the difference equation generates θ values for all other

values of n. Moreover, the problem is further simplified by the surface boundary

condition, such that if solely θ1 is known, φ1 and hence in turn θ0 can be calculated

and the solution to the problem therefore solved entirely from a single value, θ1.

To determine a θ1 appropriate for the minima solution, a secant method is em-

ployed, whereby θN is expressed as a function of θ1 and we require the root of this

function to be zero, corresponding to requiring θN be zero. Furthermore, this N

value must be chosen such that the solution given by the function θn has no turning

points wrt n, so that we choose the minima energy solution from our set of ’turning

point’ solutions.

The parameter that is small in the continuum limit is ε = 1 − J‖
J⊥

and we have

chosen ε=0.01 in fig. 6.8 and allowed J⊥ (or effectively j⊥) to vary. There is a very

close correspondence between the exact solution and the continuum limit as might

be expected in this limit. The behaviour of the spins is well described by the exact
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Figure 6.8: A variety of angular profiles that describe the surface distortions for ε = 0.01 for
various values of the ratio J⊥

2J2
, where ε quantifies the departure from the degeneracy line J⊥ = J‖.

The full curves denote the continuum limit and the symbols are the (numerically obtained) exact
solution. (a) 0.5 (b) 0.7 (c) 0.9 (d) 0.99.
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Figure 6.9: A variety of angular profiles that describe the surface distortions for ε = 0.15 for
various values of the ratio J⊥

2J2
, where ε quantifies the departure from the degeneracy line J⊥ = J‖.

The full curves denote the continuum limit and the symbols are the (numerically obtained) exact
solution. (a) 0.5 (b) 0.7 (c) 0.9 (d) 0.99.
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solution of an essentially linear spiral for small n with the linearised solution taking

over when the angle becomes small. The linearised solution becomes exact as the

angle tends to zero and the exponential decay is controlled by Eq. (6.4.4). A larger

value of ε = 0.15 is chosen in fig. 6.9 and although the agreement is not always

very good, the basic picture of the linear regime followed by the exponential regime

remains valid.

In this section we have investigated the expected behaviour of a pure surface

to the frustrated square lattice Heisenberg model. We have tuned the system off

degeneracy, equivalent to employing a fixed magnetoelastic deformation and find that

if this deformation is not too great, then the surface would be expected to reconstruct

and a cap of the surface preferred phase would be expected to develop if the bulk

phase was locally different. The depth of this surface phase appears to involve two

length-scales, one over which the spins rotate linearly from the surface preferred

phase to the bulk phase and then a second over which the residual spin distortion

decays exponentially into the bulk. One can interpret the phenomenon as a phase

boundary between the two phases which is bound to the surface. Additionally, due

to the implicit magnetoelastic distortion, the distinct phases that can, under certain

circumstances, form on the surface are not equivalent to each-other, and we have

found a transition which is solely associated with the surface; where the surface

phase transits from a single-q to a Néel state while the bulk retains the single-q

character throughout.
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6.8 FCC Lattices

Being three-dimensional, the face-centred-cubic lattice is geometrically more sophis-

ticated than the square lattice but at its simplest level, the nearest-neighbour level,

it involves fewer free parameters and is algebraically simpler. We shall show that the

magnetic state that results from introducing a Cartesian surface to a FCC lattice

with nearest neighbour coupling is in fact the solution to our square lattice model.

Additionally, we introduce and solve for a non-trivial surface orientation designed

to be a ’worst case scenario’ whereby the different types of bond cut by the surface

equal a net zero over the whole surface. This calculation shows the robustness of the

phenomenon, since, contrary to initial expectations, the new order on the surface

survives.

To model the surface reconstruction, we first remind the reader that we require

two states with different symmetries parallel to the surface to be superimposed, as

opposed to states with different symmetries perpendicular to the surface, as this

translational symmetry disappears on the introduction of a surface and so has no

meaning with respect to the order that we require if our surface reconstruction is to

be realised.

6.8.1 Cartesian Surface

We introduce a Cartesian surface perpendicular to the z-direction, as in the previ-

ous convention for our square lattice model, and solve the resulting problem. We

use a convention whereby coupling with a component in the direction perpendicular

to the surface is labelled the J̃⊥ coupling, and the remaining couplings, which are

completely parallel to the surface are labelled J̃‖ couplings, as before. The kmin

for the nearest neighbour Heisenberg model of the FCC lattice were calculated in

section 3.2.4, and turned out to be what we termed ’lines of degeneracy’. A magne-

toelastic distortion of the lattice such that J̃⊥ (= J̃‖ breaks the degeneracy in such a
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way that, for J̃‖ < J̃⊥, the ground state corresponds to a single point, (0, 0, π), and

for J̃‖ > J⊥, the kmin instead correspond to the lines of degeneracy described by

(π, 0, kz) and (0, π, kz). These lines of degeneracy correspond to planes of Néel struc-

ture, orientated parallel to the surface. They possess a free parameter with respect

to the quantisation direction defined in each plane, describing how the planes are

magnetically independent from each other, a result of the Néel-type order imposed

on the FCC geometry. In this way, the states are not affected energetically by the

surface. Conversely, the surface ’hating’ state, (0, 0, π), looses energy at the surface.

This is a result of the state consisting of planes containing ferromagnetically-aligned

spins which therefore have coupling to neighbouring layers.

As such, only the (0, 0, π) state is expected to be capped, and so we consider the

case whereby the magnetoelastic distortion in the bulk finds the bonds parallel to

the surface weakened and those perpendicular strengthened to stabilise this state in

the bulk and investigate the superimposition of Néel sheets. The relevant Heisenberg

model is

H = J̃‖
∑

<jj′〉‖

Sj .Sj′ + J̃⊥
∑

<jj′〉⊥

Sj .Sj′. (6.8.1)

The surface distortion is described using just a single angle in each layer that

describes the mixing between the underlying bulk magnetism, with amplitude cosθn,

and an arbitrary-orientated (but perpendicular to the bulk) Néel component of am-

plitude sin θn. The second angle φ required to completely describe the spin direction

is dependent only on the quantisation directions of the Néel planes we described

above, and as such makes no contribution to the Heisenberg energy of our system.

The energetics reduce down to (per spin in each layer)

E = 2J̃‖

∞∑

n=1

cos 2θn − 4J̃⊥

∞∑

n=1

cos θn cos θn+1 (6.8.2)

and this is proportional to the energy of the previous model, given by Eq.(6.2.1), in

the case that corresponds to the exact solution, J⊥=2J2. One can understand this
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correspondence by realising that we can transform the FCC lattice into our square

lattice model through projection parallel to the surface, in directions where there is

no spatial phase shift of the spin direction. The transformation corresponds to

J2 = J̃⊥ (6.8.3)

J⊥ = 2J̃⊥ (6.8.4)

J‖ = 2J̃‖, (6.8.5)

where J̃ couplings are those of the FCC lattice, and J those of the square lattice.

One can therefore map our FCC lattice to the case of J⊥ = 2J2 of our square lattice.

This is our exact solution case which was characterised by a linear or near-linear

dispersion and additionally a finite number of planes where new order exists. The

’free’ parameter in this mapping, J‖, moves the model up and down this line in

the square lattice phase diagram, specifically moving into regions where the surface

reconstruction is predicted, and corresponds to the magnetoelastic distortion corre-

sponding to J̃⊥ (= J̃‖. The degeneracy along this line in the square lattice, where

both the non-oscillating and oscillating solutions can be superimposed in each plane

with arbitrarily ratios, corresponds in the FCC lattice case to the free angle φ or in

other words to the independence of the Néel planes that are superimposed onto the

bulk state.

Following this proof of the equivalence of the FCC lattice and square lattice

models, we therefore expect the surface distortion angle θn for FCC lattices to be

essentially linear as we previously found for the square lattice model.

6.8.2 A Non-Cartesian Surface - Robustness to Non-Trivial

Surfaces

So far we have examined Cartesian surfaces which are optimal for the surface recon-

struction that we are investigating. The FCC lattice offers us another non-Cartesian
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surface - the (110) surface - which has a preference for one state over another but

not in an obvious way. Bond counting tells us that on average equal numbers of the

two types of bonds are lost at the surface. As such, one might expect the system to

be passive to the introduction of a surface. However, the surface layer has a biased

distribution for which the bonds are lost, resulting in the system ’hating’ the same

’capped’ phase as with the previous case of a Cartesian surface, and as we now show,

a distortion as depicted in figure 8 is stable.

The ’subtlety’ relating to the slanted surface problem is that alternate layers

have different numbers of broken bonds on the introduction of this particular sur-

face, as can be seen in fig. 6.10, and as such react very differently to the surface. A

determination of which state is preferred at the surface for each sublattice as a func-

tion of the coupling parameters is performed. Sublattice A prefers the Néel sheets

described by the lines of degeneracy for a region on phase space that corresponds

to the other state, (0, 0, π), being the ground state in the bulk, and as such has a

surface-preferred state with which it can lower its energy. Conversely, sublattice B

does not prefer a different state on the surface from that in the bulk for any region of

phase space, and as such there is an energy cost associated with using an orthogonal

superposition of the two different states.

As such, we impose a superposition of the ’surface’ state, the Néel planes, with

the bulk state (0, 0, π) only on sublattice A where energy can be gained by such a

superposition, and note that, due to the Néel nature of the surface state, sublattice

B is independent of this superposition and as such its spins remain invariant, taking

on solely the bulk ground state all the way up to the surface.

We use the same labelling of couplings as introduced in the previous section as

defined by a Cartesian surface, specifically so that J|| corresponds to the ferromag-

netic direction and J⊥ to the antiferromagnetic direction of the bulk state. In terms

of our sublattices, this results in intra-sublattice bonds being J‖ bonds and inter-

sublattice bonds being ⊥ bonds, and then the energy (per spin in the surface layer)
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Figure 6.10: Magnetic distortion close to a (110) surface. The hatched spins, residing on sub-
lattice B, which remain passive to the surface, are in neighbouring layers to the spins on sublattice
A, which rotate to take on a Néel state,.

is

E = J‖

∞∑

n=1

cos 2θn + J‖

∞∑

n=1

cos(θn + θn+1)

−4J⊥ cos θ1 − 8J⊥

∞∑

n=2

cos θn, (6.8.6)

where we ignore the energy of the spins that remain invariant.

This energy is optimised by solving

sin(θn+1 + θn) + sin(θn−1 + θn) = 4 sin θn

[
2
J⊥

J‖
− cos θn

]
(6.8.7)

subject to the boundary condition

sin(θ0 + θ1) = 4
J⊥

J‖
sin θ1 (6.8.8)

and linearisation provides a phase boundary when J⊥
J‖

=3-
√

5 and a decaying solution

θn = θ0 [
√

5− 2]n . (6.8.9)
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As such, we find that even for this case, whereby one would naively expect no

reconstruction due to the material having overall an equal number of each type of

bond lost at the surface, a surface reconstruction is in fact expected.
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6.9 General Considerations

Although we have analysed the square lattice in much detail, many of the funda-

mental ideas are likely to be relevant to all such multiple-q systems. Firstly, for a

Heisenberg model with a pure surface we can Bloch transform parallel to the surface

to generate

H ≡
∞∑

n=1

∞∑

n′=0

∑

q‖

Jn′

n (q‖)Sn(q‖).S
∗
n+n′ , (q‖) (6.9.1)

which offers the critical conclusion that spin density from different values of q‖

are independent. We apply this result to our surface phenomenon to understand

the energetic considerations in detail. A distinct surface phase is associated with

a distinct q‖ from that of the bulk phase and consequently, from the above proof,

is independent from the bulk phase. Given that the bulk order is guaranteed to

maintain its symmetry parallel to the surface from layer to layer, the surface phase

must be superimposed, and specifically, since the two phases have different spatial

structures parallel to the surface, the constraint of fixed spin length on each site

invariably forces the two phases to be associated with orthogonal spin orientations.

The energetic considerations in having a surface phenomenon can hence be sim-

plified down, as a result of the independence of the surface phase from the bulk

phase, to the statement that the surface phase need to only be self-sustaining, the

details of which we will now discuss.

In order to be self-sustaining the magnetic phase bound to the surface must be

very low energy intrinsically. Specifically, since the surface phase is not the bulk

ground-state it needs to gain more energy at the single surface layer than all the

bulk state that it replaces over the region in which it exists. The closer the surface-

state energy to the bulk-state energy, the deeper the surface state can penetrate into

the bulk. For a general multiple-q system, the distinct single-q states are degenerate

for the pure model and consequently the system would be expected to choose its

preferred state at the surface, which corresponds to the surface state descending
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infinitely far into the bulk. It is the magnetoelasticity and magnetoanisotropy terms

that lift this degeneracy and provide the length-scale over which the surface phase

is stabilised. The magnetoelasticity provides an energy scale for the distortion from

degeneracy, J⊥ − J||, and this in turn is the energy scale for the cost of adopting

the surface state within a parameter regime in which it is not a ground state of the

bulk.

In transition metals the magnetoelastic energy is not large in comparison with

the intrinsic magnetic energy, there being an order of magnitude separation between

them, and so we might expect a surface phase over many layers. Conversely, in rare-

earths and actinides, the magnetoelasticity is quite large and so no surface phase

is expected. However in rare-earth and actinide systems like CeAs and UO2 the

magnetoelastic distortion required to achieve deformations from single-q to multiple-

q is surprisingly small.

The effect that the magnetoanisotropic energy may have on the stability of the

phase has not been quantified in this investigation, but, coupled with magnetoelastic

energy scale considerations, we expect a surface phase to form for any system for

which this magnetoanisotropic energy is small in comparison to the intrinsic mag-

netic energy. As a result, actinides and rare earths may not be prime candidates for

the phenomemon, due to the presence of large anisotropy in these systems.

Since all multiple-q systems have an intrinsic degeneracy between the different

single-q orientations, which is only lifted on a smaller energy-scale, we might expect

all such systems to exhibit the phenomenon of a preferred surface phase capping the

bulk domain structure.
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Chapter 7

URANIUM DIOXIDE: MAGNETIC SURFACE

RELAXATION

In this chapter we investigate the effect of introducing a surface to uranium dioxide,

an actinide FCC geometrically-frustrated magnetic system that adopts a 3-q state

in the bulk. The investigation is motivated by the findings of an x-ray resonant

magnetic scattering experiment that uses the large resonant enhancements at the

uranium MIV absorption edge [49]. In addition to the unusual behaviour of the

surface, which orders continuously in the presence of a discontinuous ordering of

the bulk, unusual disordering behaviour is observed at a temperature lower than the

bulk magnetic ordering temperature, and it has been proposed that the behaviour

could be a phase transition.

After discussing results of experiments performed on UO2, an appropriate model

is constructed and the ground state found, which exhibits a magnetic reconstruction

due to the ability of multiple-q states to compensate for the introduction of impu-

rities such as a surface. The domain wall associated with this and also an order-

disorder domain wall will be discussed with respect to the disordering behaviours

found by experiment.
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Figure 7.1: Crystal structure of UO2 - fluorite type CaF2. The uranium atoms, surrounded by 8
oxygen atoms, are in the FCC structure [7]

7.1 Literature Review for Uranium Dioxide

7.1.1 Electronic and Magnetic Structure

Above the magnetic ordering transition temperature TN = 30.8K, Uranium dioxide

is a paramagnet with a FCC fluorite structure, CaF2, as shown in fig. 7.1. The

uranium atoms, which take an FCC lattice structure, are surrounded by 8 atoms.

The magnetism present below TN is a result of the electrons that reside in the

partially-filled orbitals of the uranium atoms which only undertake virtual hopping.

The resulting magnetic moments form a type-1 antiferromagnetic structure. In terms

of the electronic structure, the tendancy to fill a shell is incredibly strong in oxygen

and so the oxygens become O2− ions. The uranium therefore exists in the compound

as U4+, having an electron configuration [Rn]+2é, describing a fully-occupied shell of

the noble gas plus a partially filled shell containing 2 electrons. These electrons reside

in the 5f, the other options of the 7s or 6d shell having too great a radial extent and

therefore costing electrostatic repulsion with the strongly-negatively-charged oxygen

ions. The very small extent of the f-orbitals causes there to be very little crystal

field dependence and so there is no large distortion caused by the magnetism. The

occupation of the 5f rather than 7s or 6d shell has been experimentally verified

according to the large angular extent of the form factor [7] [50]. Investigation of the

intensities of the Bragg spots via the form factor also gives information about the
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Figure 7.2: Spinwave dispersion for UO2 for 9K, propogating along four high symmetry di-
rections. The dashed curves show the phonon dispersion curves appropriate to 296K. The solid
curves are the result of a least squares fitting procedure in which the experimental measurements
are assigned labels according to Cowley and Dolling’s model AB [22]

spin orientation within the system, which can be determined using knowledge of the

vanishing of certain Bragg spots. Faber et al ’s measurements indicate UO2 to be a

transverse rather than longitudinal triple-q magnet [51]. As such, the spin density

vectors sk are directed perpendicular to the propagation vector k, and this leaves

two styles of S-type domain[51], as discussed in section 4.1.

In terms of the spin configuration, there has been some confusion as to which

of the MSDW states the bulk takes, as discussed in section 4.1. However, the

system is now known to take a triple-q state in the bulk, and this spin configuration

explains the phonon-magnon hybridisation observed in the dispersion. The spinwave

spectrum for UO2 is shown in fig. 7.2 for 9K and one can clearly see the result of

phonon-magnon coupling in the region of [0 0 0.5], where the dispersion has been

’pulled away’ from crossing, or rather, the lowest branch has been split. It can be

shown that phonons and magnons couple if the magnetic state is non-collinear - due

to the non-collinearity of the spins, fluctuations couple in a perpendicular fashion

to the spin moment and interact to make the spin length fluctuate accordingly.

We now determine the total angular momentum associated with the spin of each

uranium ion, which allows us to validate the use of classical spin vectors rather

than the quantum case. Each electron’s spin and angular momentum are defined
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Figure 7.3: Magnetic form factor for U4+ in UO2.Reproduced from [7]

as s1 = s2 = 1/2 and l1 = l2 = 3, being f-electrons. The total spin S and angular

momenta L the system can take are given by the ranges |s1 − s2| ≤ S ≤ |s1 + s2|

and |l1 − l2| ≤ L ≤ |l1 + l2|. Hund’s rules then apply. The first two rules plus

consideration of Fermi-statistics result in the system adding the spins to make the

maximum spin of S = 1, and the maximum angular momentum L = 5. L = 5 rather

than 6 since the state |L, Lz >= |6, 6 > is not allowed since this corresponds to both

electron states being identical. Since the relevant shell is less than half-filled, the

application of Hund’s third rule results in the total momentum J = |L − S| = 4.

Thus, the total number of ground states of the system in the absence of interactions

between atoms is 9.

The crystal field of UO2 in its paramagnetic state, i.e. in the absence of magnetic

interactions, splits these 9 states such that the lowest energy states form a triplet;

specifically aΓ 5 triplet.

Due to the uncertainty in the ground states taken by the uranium moment at low

temperature, we stop the analysis here, and instead look to clues from experiment

in order to determine how best to model the system. The complication related to

uranium is a result of the total moment consisting of two electrons each residing in

the f-shell, and as such there is a large number of combinations of the spin, angular

momentum and spin-orbit coupling degrees of freedom that must be considered,

especially as it is not clear whether the breaking of degeneracy by Hund’s third
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rule is in fact accessible energetically, or whether other magnetic interaction effects

prevent this and instead cause a rearrangement of the previously-specified ground

states to new levels and degeneracies. Any determination of the magnetic exchange

interactions required in order to set up a model is best tackled with knowledge of

the moment’s individual spin and angular momentum values rather than the total

moment so as selection rules can be applied. This procedure becomes far too complex

for us to follow in the case of uranium dioxide and so our model will be based on

experimental observations, as explained later.

Since even quantum-mechanical spin vectors can be made to point in any direc-

tion, a picture using classical spin vectors is still valid. For example, for a spin 1/2

system, a spin in any direction can be represented in the eigenstate-of-ŝz-basis as

the linear combination

|ψ(θ,φ ) >= e−
iφ
2 cos

θ

2
| ↑> +e

iφ
2 sin

θ

2
| ↓>, (7.1.1)

where the direction of the spin is defined in the regime of spherical polar coordi-

nates as (θ,φ ).

The difference between a classical model and the quantum-mechanical reality of a

system comes about from the probability distribution of the direction of a spin. For a

classical model, the spin points in the direction it is represented as with a probability

of one. For a quantum mechanical spin vector however, even in its eigenstate of for

example ŝz, there is still a finite probability that the spin is simultaneously pointing

in the sx and sy directions, which is a result of the commutation relations of quantum

mechanics. This manifests as (smax
z )2 < S(S + 1). For example, for spin S = 1/2,

the expectation value of the θ value of the spin, as measured from the z − axis, is

given by
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< ψ(θφ)|ŝz|ψ(θφ) >= cos θ, (7.1.2)

where the the spin is in state |ψ(θφ) > as defined in eq.7.1.1, which can be though

of as the eigenstate of ŝθ,φ. Thus the probability of a spin pointing a deviation (θ/φ)

from a basis vector of which it is an eigenstate goes like cos2 θ.

The value smax
z approaches the value of S2 as S is increased. The probability

distribution of the spin direction as a function of deviation from the z-direction gets

much less broad as the total spin value increases. Thus, a larger total spin moment

brings more agreement with the classical model.

Bulk First Order Transition

UO2 is believed to undergo a first order transition from paramagnetic to antiferro-

magnetic at the Néel temperature 30.8K, as can be seen in fig. 7.4 [7]. Although the

magnetisation goes discontinuously in close proximity to the ordering temperature, it

seems to be second-order-like, since the spinwaves are seen to soften at the magnetic

Bragg reflections towards zero as the temperature approaches the ordering tran-

sition temperature, indicating a sharp but nevertheless continuous transition.This

behaviour can be seen in figures 7.5 and 7.6.
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Figure 7.4: Details of neutron measurements through the Néel temperature. Data scaled to 100
at 5◦K. Reproduced from [7]

Figure 7.5: Temperature dependence of the [ξξ1 − ξ] branch of lowest frequency. The spinwave
gap at (001) can be seen to soften with increasing temperature.[8]

Figure 7.6: Temperature dependence of the lowest frequency mode of excitation at q = (001)
compared with that of the intensity of a Bragg reflection.[8]
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7.2 Experimental Results of Langridge et al and

Interpretation

Here we present the results of the experiments by Langridge et al [49] and Watson

et al [13] on the (001) surface of UO2. We begin by covering some background that

is required in order to interpret the measurements.

The depth of the probe can be tuned via the grazing angle, which alters the

reflection coefficient when the incident angle is near to the critical angle of the

material. Specifically, below the critical angle, a purely evanescent wavefield with

an exponential-like decay as a function of depth is set up inside the sample [45].

Additionally, the magnetic scattering can be enhanced by using photon energies

that are tuned near to the U MIV edge. The number of photons contributing to the

cross section that have undergone a scattering process is increased via the resonant

process in which the photon is absorbed and re-emitted. Furthermore, due to the

magnetic splitting of the energy level associated with this process, the tuning of

the photon energy to near the U MIV edge results in the transitional probability

associated with the absorption and re-emission of the photon to favour a particular

spin direction. Thus, the magnetic part of the scattering is enhanced.

We shall discuss the different measurements acquired using this technique that

are paramount to the experiments we are interested in.

7.2.1 Specular Reflection

We conduct a back-of-the-envelope derivation to illustrate how the scattering am-

plitude is affected by the loss of translational symmetry in a direction and also

the depth profile associated with how the x-rays penetrate the system, taking into

account that the contribution from each plane to the intensity measured by the

detector decreases with depth, specifically as pure exponentials. It is the structure

factor, S(q) that controls the variation in intensity of the scattering, and is given by
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S(q) =
∑

j

fj(θ)e
iq.Rj , (7.2.1)

where j labels points on the lattice, and hence Rj is the location of the lattice

sites, q is the difference in incoming and outgoing wavevectors and fj(θ) is the scat-

tering amplitude of a scatterer. In defining the structure factor in this way, we have

made several assumptions; that all scatterers are identical, that the scattering is

weak so that only single-scattering events occur, and that we can take the limit of

the distance at which the observation of the cross section as infinity. Ignoring the

structure of each of the scatterers and treating them instead like point scatterers,

we tackle the structure factor form by assuming translational symmetry of the mag-

netism parallel to the surface and hence Bragg scattering and are left with the sum

over the layers that the x-rays penetrate:

∑

j

eiq.Rj =
∑

j

eiqzRz
j

∑

l

eiq‖.R‖
l = N‖

∑

G‖

δq‖,G‖

∑

j

eiqzRz
j , (7.2.2)

where we have used the identity 2.4.2 for the parallel term where translational

symmetry is present and primitive vectors can be used to label each point within

this quasi-2D lattice of the parallel component. The attenuation of the probe with

depth is incorporated by using a complex ’propagation’ vector:

qz → qz − iδ, (7.2.3)

where δ is a small parameter. Representing Rz with respect to the lattice pa-

rameter in this direction, az, so that Rz = jaz, we can perform the remaining sum

over j to provide

∞∑

j=0

eiqzRz
j =

∞∑

j=0

e−iqzjaz−jazδ =
1

1− e−iqzaz−azδ
, (7.2.4)
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where the summation of j from zero to ∞ takes care of the presence of the surface.

Squaring this last expression leads to the intensity in the direction perpendicular to

the surface:

I2[qz] =
1

1− 2 cos (qzazeazδ) + e−2azδ
=

eazδ

2[cosh (azδ)− cos (qzaz)]
. (7.2.5)

The Bragg spots of an infinite crystal are thereby modified due to the attenuation

with depth of the scattering power into a collection of peaks along a truncation rod

(TR). As δ is decreased with respect to qz, so the probe penetrates further into the

bulk. As δ → 0, we gain back the profile of Bragg spots, as the peaks get sharper

and converge onto δ-functions. The case of no absorption, δ = 0, returns the form

as described by Robinson and Tweet of

I2[qz] ∼ 1

sin2 (qzaz/2)
. (7.2.6)

As such, it is the structure between the locations that the Bragg spots would take

in a non-truncated system that provides information about the near-surface layers of

the sample. Due to the inverse nature of the Fourier transform from real to reciprocal

space, a less-severe truncation of the surface corresponding to the broadening of the

step function leads to a sharper decay from the Bragg point of the intensity profile.

This often occurs for real chemical surfaces, where there may be adatoms, steps etc.

Thus, the contribution to the intensity profile from the bulk is centered around

qz = 2πm
az

and the near surface contributes to the other qz regions. In order to

determine how the order parallel to the surface is behaving both within the near

surface and within the bulk, one can perform and contrast scans taken in q-space

parallel to the surface direction both at qz = 2πm
az

and off this value of qz, in order

to pick up either bulk or near-surface contributions respectively. However, due to

the finite attenuation of the probe, it is not solely the bulk that contributes to the
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Figure 7.7: Crystal truncation rod profiles. The full curve shows the CTR for a perfect surface,
the dotted curve for a rough surface (eq. 7.2.7).Reproduced from [52]

scattering located at qz = 2πm
az

, but also the surface, and so care must be taken - we

can only compare and contrast rather than get information solely about the bulk

and vice versa.

The resulting intensity distribution is shown in fig. 7.7. The figure also includes

the more realistic example of a non-smooth surface; specifically, using the model of a

’statistically rough surface’. The height of the surface is modelled by an exponential

distribution - layer zero is assumed to be fully occupied layer, 1 above it has a fraction

β of sites filled, layer 2 has fraction β2 filled etc. This leads to a modification of the

CTR intensity by an additional factor:

Irough = ICTR
(1− β)2

1 + β2 − 2β cos (qzaz)
. (7.2.7)

The discussion so far has assumed no in-plane correlations. For this case of

no in-plane correlations, the intensity removed from the TR would be distributed

uniformerly over reciprocal space as a flat background. The effect of the system

possessing in-plane correlations causes the flat background to instead become peaked

at the same in-plane positions as the peaks in the TR, with a width inversely-related

to the in-plane correlation length. The scattered intensity is therefore a sum of that
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due to the in-plane scattering which contributes sharp peaks due to the translational

symmetry, and ’diffuse’ scattering associated with the truncation of the surface and

also thermal and impurity effects etc.

Lateral Magnetic Order and Lineshapes

The results of particular interest in the following sections are those of Langridge

et al [49], whereby scans across the truncation rods are performed. One can obtain

important information from the resulting lineshapes of these intensity profiles, by

relating the lineshapes to correlation functions and hence to thermodynamics present

with respect to the direction parallel to the surface. This is in contrast to the specular

reflection discussed above, which obtains information about the depth profile of the

average magnetisation

If the system were perfectly periodic, void of domain structures, defects, thermal

fluctuatios, dislocations etc., then one would obtain δ-functions in this direction,

and the system would have correlations of infinite range. These impurities serve to

broaden the peaks as the correlations become weaker, and the particular shape of

the peak gives information about the type of order or disorder present.

It can be shown [52] that the electron density-density correlation function, C(r) =

〈ρ(r)ρ(0)〉, can be related to the integrated intensity Iq measured in reciprocal space

by

C(r) =

∫
I(q)eiq.rd3q. (7.2.8)

Interpreting the entire correlation function from the entire integrated intensity

profile is complicated. Even though one may only have short range interactions

present, between for example nearest and next-nearest neighbours only, a correlation

will still exist at further distances than next-nearest neighbour. Thus, even if a
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correlation exists, there is not a simple relationship that indicates the interactions

present in the system.

In order to assess whether long range order is present, one can examine the

lineshape of I(q), the inverse fourier transform of the correlation function which

is the scattering normalised to the system size. If I(q) diverges with system size

at some q, then this is indicative of long range correlations existing. Consider the

definition of

I(q) =

∫ ∞

−∞
c(r)e−iqrdr. (7.2.9)

If the correlations in real space do not decay to zero at a large enough rate

with r, which indicates long range correlations, then the integral must diverge with

increasing system size. This defines the presence of long range correlations, since

the contribution is relevant for all r up to the system size even as the system size

tends to infinity. Thus, given the limits of 7.2.9, a system possessing long range

correlations possesses a divergent I(q) function:

lim
N→∞

I(q = 0) = lim
N→∞

∫ N

−N

c(r)d3r =∞. (7.2.10)

The divergence of I(q) at some q does not necessarily indicate long range order

however - a system is long range ordered only if the contributions to the correlation

function are identical for all r, such that the correlation is linearly proportional to

system size. The form of I(q) must therefore be examined in order to determine

whether long range order exists. This is achieved by taking the integral around the

Bragg spot at which long range correlations appear:
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lim
δq→0

∫ +δq

−δq
I(q) (7.2.11)

and determining if the integral is equal to a constant, indicative of a delta func-

tion, or zero, indicating no long range order is present. In a perfect system, in the

absence of impurities, thermal fluctuations etc. the long range order shows up as

a δ-function in the (q) profile, since this corresponds to a flat correlation function

c(r), which in turn corresponds to the correlation function having equal contribu-

tions from all length scales. In addition, for a δ-function, the resulting finite value

for the integral 7.2.11 is proportional to the system size, and so all scattering, which

is proportional to system size, is located under this area. For a system with long

range correlations but no long range order, the correlations are a function of sys-

tem size, but not in a linear fashion - the correlations decay as a function of r, but

not ’fast’enough for the contribution to the correlation to be irrelevant at a certain

distance - all spins correlate to some degree up to an infinite seperation of spins.

A third case concerns no long range correlations and corresponds to any q that is

not located at the divergent peak of I(q). For a particular q, I(q) can be considered

to be a measure of the amount of the corresponding spin spiral present in the system,

from 7.2.9, where c(r) can be considered to be a probability/ or weighting, to each

spiral present in the spin state. For a quantum spin state, the ground state consists

of a linear superposition of spin spirals due to the presence of quantum fluctuations

which lower the energy of the system further from the classical configuration. As

such, there exists non-zero I(q) and the peak broadens due to the presence of long-

wavelength spin spirals in the ground state. The I(q) does not diverge at these

points, and instead converges with respect to system size, with the length scale of

convergence corresponding the length scale at which the correlations die away, or in

other words the range of the short range order.
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Due to the finite size of experimental materials, the presence of domains, dislo-

cations, etc., the spin density of real materials possesses additional structure to a

delta-function as the scattering gets thrown between the Bragg spots of the pure

system. In addition, non-zero temperature contributes structureless diffuse scat-

tering as a flat background. As such, the spin density is moved into a broader

profile whose width is inversely-proportional to the in-plane correlation length[53],

and which consists of a diffuse contribution plus the original delta-function contri-

bution from the long-range-ordered system. For real systems therefore, the profile

I(q) can have a complicated structure. As such, one examines the long range cor-

relation behaviour by analysing the profile I(q) near the peak in question, which

corresponds to analysing the behaviour of tail of the correlation function C(r). If

I(q) diverges near the peak, then it follows that C(r) must also diverge and long

range correlations are present.

This can be understood by considering the correlations having, for example, a

power-law-like tail at large distance. A power-law tends to zero slower than, for

example, an exponential, and so the correlations are finite and fall to zero with

a longer length scale than for example an exponential tail would. Next consider

expanding the correlation function around large r, given that it takes a power-law

form plus corrections due to, for example, short range correlations, defects of the

crystal etc that are represented by a Taylor expansion:

c(r) ∼ 1

rα

(
a + b

1

x
+ c

1

x2
+ ...

)
. (7.2.12)

The fourier transform of this leads to a form

I(q) ∼ 1

q1−α

(
a + bq + cq2 + ....

)
(7.2.13)
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and as such, in order to study the long range order in the absence of the diffuse

scattering component, one considers the form of I(q) close to q = 0 (or, in the case

of antiferromagnetic ordering for example, around the q = π point.

Thus, if the I(q) profile near the peak is a power law, the correlation function tail

will also follow a power law; if the intensity profile is a lorentzian, the correlation

function tail will follow an exponential, and thus will be correlated over smaller

distances. Different lineshapes and their corresponding correlation function profiles,

being inverse fourier transforms, are shown in fig. 7.8. The profiles provided by [52]

accompany the derivation of the height-height correlation function 〈(h(ξ)− h(0))2〉

in real space associated with the roughening transition from that of the intensity

profile, where

I(qx, qz) =
N∑

ξ

eiqxa1ξc(ξ) (7.2.14)

and c(ξ) is the gaussian quantity

c(ξ) = e−〈(h(ξ)−h(0))2〉a2
3[qz]2/2. (7.2.15)

However, we can apply the illustrations to our magnetic correlations. Comparing

to our procedure of simply fourier transforming the electron density-density corre-

lation function to obtain the intensity profile, we point the reader to the second

and third columns of fig. 7.8 in order to illustrate the relevant relationships. Figure

(a) represents a correlation function with an exponential decay, which corresponds

to short range order. One can observe that the faster the exponential decay, the

broader the peak of the Lorentzian lineshape. For correlations with a flat profile

(b), LRO is present and one can see this as a Dirac delta-function as mentioned pre-

viously. Figure (d) concerns correlations with an algebraic decay, or rather, a power
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law form. The fourier transform is another power law but with an inversely-related

power to the untransformed power law. For our analysis of the UO2 results, the

power η < 1 and so the lineshape is always a decay. The correlations decay over the

characteristic length scale η but do not diverge linearly with the system size and as

such do not correspond to long range order.

One must however take care - we study only the small region around the intensity

peak which gives us information about the tail of the correlation function and not the

whole function as this comprises of non-trivial dependencies on distance. This can be

understood simply by figure (c); a correlation function with multiple-dependencies

on distance presents itself in the intensity profile as a sharp peak plus a broader peak,

relating to the long range and short range correlations respectively. The behaviour

of the correlations at short range is represented by the behaviour of the intensity

profile away from the peak and thus corresponds to the broader contribution. An

example can be seen in the intensity profiles of experiments on the Cu3Au surfaces,

as shown in fig. 5.14.

We run through examination of the particular lineshape we shall be interested

in: that which describes the lateral correlations in a 3D system. The lineshape near

the peak is therefore a function of a 2D variable q‖, and for the case we shall be

studying is given by the circularly-symmetric function that follows a power law:

I(q‖) = |q‖|−η. (7.2.16)

The correlation function corresponding to this lineshape is given by

c(x) =

∫ ∞

−∞
dx|q‖|−ηeiq‖.x. (7.2.17)

(7.2.18)
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Figure 7.8: Cross-sectional lineshape of crystal truncation rods from a rough surface represented
by different height-height correlation functions. The left column is the lateral dependence of the
height-height correlation function. The middle column is the correlation function C(ξ) obtained
with equation eq. 7.2.15. The right column is the Fourier transform of C(ξ) which is the cross-
sectional lineshape according to eq. 7.2.14[52].
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Given that q‖.x = r|x| cos θ and making the substitution R = r|x|,

=

∫ ∞

−∞
dθ

dR

|x|

(
R

|x|

)1−η

eiR cos θ. (7.2.19)

As such, the correlation function c(r) ∼ |x|η−2. The inverse relationship of the

powers with respect to the correlations and the lineshape indicates that the smaller η

is, the larger the length scale over which the system is correlated; or in other words,

a decreasing η value corresponds to a decrease in disorder present in the system.

Power law correlations are significant since they occur when a system is at or near

criticality, where fluctuations are present over all length scales.

XRMS signal

A final note concerns the type of correlations discussed in the following experiments.

The integrated intensity measured, referred to as the X-ray Resonant Magnetic Scat-

tering (XRMS) signal, correspond to static spin-spin correlation functions, in the

same way as for neutron scattering cross sections. Spin-spin correlation functions

are defined in reciprocal space as 〈s∗α(q,ω)sα(0, 0)〉, where sα is a spin direction com-

ponent of s and the average is a thermal average. For their experimental geometry,

the XRMS signal is sensitive to the component of the uranium moment parallel to

the scattered wavevector, which is primarily in the surface. As such, the correlations

measured are with respect to the component of the spins that lie in the xy-plane.

The spin-spin correlation function covers any correlations found in both elastic and

inelastic scattering, whereby correlations between spins undergoing excitations de-

scribed by ω are also included. The static case of elastic scattering that the following

experiments measure corresponds to ω = 0.
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Figure 7.9: Reciprocal space map for the UO2 (001) surface showing chemical (solid circles) and
magnetic (open circles) bulk Bragg reflections and mixed (solid lines) and magnetic (dashed lines)
truncation rods. Reproduced from [13]

7.2.2 Experimental Results

We now turn to the results of the experiments. The scattering geometry of the two

experiments is shown in fig. 7.9. Both experiments are carried out using a glancing

incidence, whereby the incident and exit angles of the x-ray beam to the surface are

near the critical angle for total external reflection, αc ∼ 0.75 deg.

Figure 7.10 shows a dramatic difference between the magnetic order parameter

in the near-surface versus the bulk. It may be shown that the measurements at

positions (0, 1, 0.075), (0, 1, 0.15) and (0, 0, 1) correspond to penetration depths of

50, 120 and 850Å. The bulk shows a discontinuous transition at the Néel tem-

perature of 30.2K, as is well-known [7]. The magnetic order parameter for the

near-surface however decreases continuously as the Néel temperature is approached

from below, with a power-law dependence on the reduced temperature. The surface

ordering temperatures are equal to within ±0.5K of the bulk.

Watson’s findings suggest that the magnetic structure begins to disorder in the

near-surface at a temperature below the bulk first order transition temperature.

The structural order-disorder transition of [47] that we visited in section 5.3 which

is interpreted as an interface delocalisation transition shows the same behaviour.

From Landau theory, one obtains regions of the phase diagram for which the or-
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Figure 7.10: Magnetic intensities obtained at the (001) specular Bragg reflection (solid circles)
and along the (01L) magnetic truncation rod at L=0.075 (open circles) and 0.15 (open squares).
They have been normalised to 1.0 at low temperatures The solid lines present best fits to a power
law dependence on reduced temperature. The solid line for the (001) reflection is a guide for the
eye. Inset:Log-Log plot of the magnetic scattering intensity at (0,1,0.075) and (0,1,0.15) vs reduced
temperature. Reproduced from [13].

der parameter at the surface varies continuously, following a power law in reduced

temperature, and this appears to occur in Watson’s experiments. Watson fits their

data to power laws I = I0t2β where t = TN−T
TN

, the reduced temperature, and the

critical exponent is dependent on the reciprocal lattice location L. In particular, the

exponents increase with increasing distance from the nearest Bragg peak.

Langridge et al ’s experimental results agree with these findings so far discussed.

The order parameter behaviour as a function of temperature is shown in fig. 7.11

which also illustrates a fit to a power law for the continuous transition of the

(0, 1, 0.97) intensity. The bulk Bragg peak intensity saturates below 25K. They

do however propose that the continuous transition associated with the ordering of

the near-surface region may occur at a temperature below the bulk ordering tem-

perature and as such that the system exhibits an extraordinary transition (although

this is not certain due to experimental resolution).

The interesting phenomenon however has been discovered in transverse scans
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Figure 7.11: Integrated intensity vs temperature of the bulk (011) magnetic Bragg reflection (open
circles) and the surface magnetic rod (0 1 0.97) (filled squares). The continuous transition of the
surface magnetic rod has been fitted to a power law I = I0t2β where t is the reduced temperature.
Reproduced from [49]

taken by Langridge across the magnetic truncation rods (MTRs) at two tempera-

tures T = 29K and T = 14.8K. The intensity measurements shown in Fig. 7.12

correspond to measurements of the static spin-spin correlations with respect to the

component of the spins that lie in the xy-plane, as was introduced in the previous

section. The scans are taken along the bulk Bragg reflection (0, qk, 1) and purely

magnetic truncation rod (0, qk, 0.97). The lineshape of the bulk shows clear order

independent of temperature in the temperature region 29K to 14.8K, in agreement

with Watson. Langridge et al fit this lineshape to a Lorentzian raised to the power

1.75.

The scan taken along (0, qk, 0.97) represents the near-surface region and shows

a phenomenon not picked up by Watson. For scans performed by Watson at

(0, 1, 0.075) and (0, 1, 0.15), the widths of these MTR’s appeared to be temperature-

independent. As such, the correlations within the near-surface appeared to remain

the same as the temperature was lowered and the near-surface became more or-

dered. Conversely, the experiments by Langridge present a key find. Below TN the

lineshape of the peak obtained from a transverse scan of the MTR instead becomes

temperature dependent. The lineshape near qk can be fitted to a power-law decay
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Figure 7.12: Transverse cuts through the bulk magnetic (011) Bragg reflection (open symbols) and
purely magnetic truncation rod (0qk0.97) (closed symbols) as a function of two temperatures above
and below TN . The bulk magnetic Bragg reflection shows no change in lineshape with temperature
and is fitted to a Lorentzian raised to the power 1.75. Conversely, the lineshape of the rod (0qk0.97)
shows a temperature dependence. Reproduced from [49]
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of the form s(q) ∝ qη̄ as in the log-log plot of fig. 7.13 and it is the behaviour of

the exponent η̄ which appears to exhibit a phase transition. The transform from

the lineshape in reciprocal space to the real space correlation function 〈s(r)s(0)〉 is

detailed in section 7.2.1 and from this one can determine that the real space corre-

lations develop a power-law-like tail as the temperature is increased past TKT . The

power-law nature indicates that the correlations do not extend macroscopically, and

furthermore that their length scale decreases with decreasing η̄.

Fig. 7.14 plots the exponent of the corresponding real space exponent, η = 2− η̄,

as a function of temperature 1 . As the temperature is increased from T = 0, the

behaviour of the correlations, which have a finite extent, change from a steady, slow

decrease in correlation length with temperature, corresponding to a slow disordering

parallel to the plane in the near-surface region, to a sudden sharp decrease, corre-

sponding to a sharp onset of disorder in this direction. The subsequent decrease in

correlation length, which is linear according to the author’s least squares fit to the

data, is in fact undertaken at a rate an order of magnitude faster than for tempera-

tures below TKT . It has been proposed that this sudden change in rate of decrease

of correlation length may be discontinuous and as such has been assigned as a tran-

sition. Interestingly, the temperature of this apparent transition is much below the

bulk ordering temperature.

7.3 Uranium Dioxide - Modelling

We study UO2 at T = 0 to get a feel for how the spins reorient as the surface

is approached in order to gain a better physical picture and foundation on which

to hang possible explanations for the unusual disordering behaviour observed at a

temperature below the bulk ordering temperature.

Assuming a type-1 spin configuration in the bulk, we begin by determining how

1The relationship between the 2D circularly symmetric power law lineshape and that of the real
space correlation function is covered in section 7.2.1
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Figure 7.13: log-log plot of the purely magnetic truncation rod near qk = 0 for temperatures below
TN . The plots have been fitted to a power law of the form I(q) ∼ q2η̄, and the gradient of the plots,
corresponding to −η̄, becomes shallower with increasing temperature. Reproduced from [49]
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Figure 7.14: Temperature dependence of the exponent of the real space correlations, η − η̄. At
the transition temperature TKT , the exponent is seen to increase sharply and the rate of increase
to be an order of magnitude larger than below TKT . The increase is fitted to a linear function.
Reproduced from [49]

we would expect the spins of an FCC lattice to behave under a nearest-neighbour

AFM Heisenberg interaction as the surface is approached, in order to simplify our

model before solving the thereby reduced form of the Hamiltonian with respect to

its degrees of freedom. A Hamiltonian, consisting of both a Heisenberg interaction

and an anisotropy energy cost associated with departure from a triple-q structure,

is then applied to the simplified model and the ground state determined, which is

found to be of a solitonic nature. The magnetism of UO2 has a transverse orientation

with respect to its spins, but we study the simpler longitudinal case here.

7.3.1 Simplifying the Model

We simplify the general state acted on by the Hamiltonian by decreasing the manifold

of states available to the system. This is done by considering how the triple-q state

in the bulk may want to deform as the surface is approached, assuming there is

no variation in the couplings as the surface is approached. We achieve this by

performing a Bloch transform parallel to the surface and studying the form of the
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ground state in terms of the remaining real-space dimension. Due to symmetry

considerations assuming identical couplings throughout the system, we focus only

on those states of the surface-terminated system that possess a vector component

parallel to the surface, k‖, that is identical to the bulk, i.e. k‖=(kx
min, k

y
min). The

effect of the surface is to break the translational symmetry of the lattice and as

such we are working with rods of spin density located at the k‖’s. We can however

qualitatively predict the structure of these rods, or in other words the evolution of

the spin structure as the surface is approached, by constraining the spin lengths to

be identical in real space, as we shall show.

An analysis of the bonds lost at the surface informs us that states with a phase

(π, 0) in the plane parallel to the surface of a FCC lattice with nearest neighbour

only couplings are energetically invariant to the presence of the surface, but states

with a (0, 0) phase lose energy. As such, one would expect that, as the surface is

approached, the system moves its spin density, originally equally-distributed between

the 3 type-1 Bragg spots, from that that corresponds to a (0, 0) phase parallel to

the surface to that of (π, 0). This is realised in real space as the system reorienting

its spins from a 3-q towards a 2-q state as the surface is approached.

7.3.2 Heisenberg Hamiltonian for FCC Lattice with a Sur-

face

Performing a Bloch Transform Parallel to the Surface

For convention, we align the surface to be perpendicular to the z-direction. The

FCC lattice can be broken down into 2 distinct layers parallel to the surface which

alternate. The layers are labelled by nz and nz′ and the positions of the spins within

the layers are labelled by jnz and jnz′ . The Bloch transform parallel to the surface

is hence notated as:
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Sjnz nz =
1√
N

∑

k̃

eik̃.Rjnz Sk̃nz
(7.3.1)

and the inverse Bloch transform as

Sk̃nz
=

1√
N

∑

jnz

e−ik̃.Rjnz Sjnznz , (7.3.2)

where N is the number of atoms within the plane nz (or nz′), k̃ is (kx, ky) and

Rjnz
is the position vector of the spin at the jnz position.

The Heisenberg of the system can be written as

H =
J

2

∑

<jnz nz ,j′
n′

z
n′

z>

Sjnznz .Sj′
n′

z
n′

z
, (7.3.3)

where the notation < jnznz, j′n′
z
n′

z > indicates that the sum must be calculated

such that for each point jnznz, sum over all its nearest neighbours j′n′
z
n′

z (= jnznz

then sum over all jnznz points.

The Bloch transform is applied to the system. Additionally, a new ’convention’

for performing the sum over all interactions is adopted which simplifies the problem

as a result of the system not extending to infinity in both directions. This convention

is described as performing a sum over planes nz where each term in the sum over

planes includes the energy associated with interactions within the plane nz and with

the plane below (towards the bulk). As such, all interactions are accounted for and

the resulting expression is
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H = J
∑

nz

∑

k̃,k̃′




(

1

2N

)
Sk̃nz

.Sk̃′nz

∑

<jnz nz ,j′nznz>

e
(ik̃.Rjnz +ik̃′.Rj′nz

)

+

(
1

N

)
Sk̃nz

.Sk̃′(nz+1)

∑

<jnz nz,j′(nz+1)(nz+1)>

e
ik̃.Rjnz +ik̃′.Rj′

(nz+1)



 ,

(7.3.4)

where double-counting need only be taken care of in the sum over nearest neigh-

bours within the plane, hence the factor of a half is present in the first term of the

summation over nz. Next we consider that the 2 terms in the summation over the

planes nz can be written in terms of structure factors so our expression simplifies to

H =
∑

nz

∑

k̃

[(
1

2

)
Sk̃nz

.S−̃knz
J

∑

Rm

eik̃.Rm

+Sk̃nz
.S−̃k(nz+1)J

∑

Rp

eik̃.Rp



 , (7.3.5)

where Rm are the vectors Rjnz − Rj′nz and constitute the vectors joining 2nd

nearest-neighbour points on a 2D square lattice, and Rp are the vectors Rjnz −

Rj′(nz+1) which correspond to the vectors joining nearest neighbour points again on

a 2D square lattice. The structure factors corresponding to the 2 summation terms

over the vectors Rm and Rp were calculated in section 3.2.3 as 3.2.21 and so our

expression becomes

H =
∑

nz

∑

k̃

[
(2J cos kx cos ky)Sk̃nz

.S−̃knz

+2J(cos kx + cos ky)Sk̃nz
.S−̃k(nz+1)

]
. (7.3.6)
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7.3.3 Determining Eigenstates for the Ground State Con-

figuration

Now that we have an expression for Hkx,ky,nz , we limit the manifold of states ac-

cessible to the system, as described above, by substituting the k‖’s present in the

bulk and obtain the Hamiltonian as a function of only one variable, nz. The turning

points of the energy correspond to the eigenstates of this Hamiltonian, as proved in

2.6, which includes our ground state. In the current basis the eigenstates we deter-

mine are of the form
(
s(kx,ky)

)
nz

, where we label the element of this vector by plane

number nz. In order to allow for the determination of the eigenstates, we terminate

the system also at nz = N such that the matrix becomes of finite size tridiagonal.

Substituting the rods (kx
min, k

y
min) = (π, 0) and (kx

min, k
y
min) = (π, 0) results in a

diagonal matrix for Hkx,ky,nz and as such any vector
(
s(kx,ky)

)
nz

is an eigenstate with

eigenvalue 2J . As such, the order with planes parallel to the surface is fixed, but

we therefore have complete freedom with respect to the magnitude and direction

of the spin density associated with the different planes parallel to the surface. In

other words, we have ’independent’ xy planes with respect to the spin interaction.

This is due to the FCC lattice geometry; in this geometry, if a plane consists of

Néel order, then adjacent planes are independent from each other in the nearest-

neighbour Heisenberg model due to a cancelling of the plane-to-plane coupling. As

a result, this state, whereby the planes parallel to the surface are Néel order in

character, is passive to the surface.

Substituting the rod (kx
min, k

y
min) = (0, 0) however results in a tridiagonal matrix

which couples the nz planes and fixes the eigenstates. To solve for the eigenstates,

we first determine the eigenstates of the problem concerning a system with infinite

extent in the z-direction. Ring boundary conditions are used in order to solve

for the eigenstates, with the result that states defined by (s0,0)nz
= znz ŝ0,0 and

(s0,0)nz
= z−nz ŝ0,0 are both eigenstates. We shall use these to construct a solution
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to the finite system.

Surfaces are then introduced to the system by terminating the basis at nz = 1

and nz = N . The elements of the eigenstates can thus be found by solving the set

of simultaneous equations

β (s0,0)nz−1 + α (s0,0)nz
+ β (s0,0)nz+1 = λ (s0,0)nz

(7.3.7)

for all nz subject to the boundary conditions (s0,0)N+1 = 0 and (s0,0)0 = 0, where λ

is the eigenvalue, α = 2J cos kx cos ky = 2J and β = J(cos kx + cos ky) = 2J .

Eigenstates to satisfy this expression can be constructed from those of the infinite

problem and are defined by (s0,0)nz
= (znz − z−nz) .ŝ(0,0) where z is a (2N + 2)’th

root of unity, to satisfy the second boundary condition. The eigenvalue λ is thus

given by the expression

λ = 2J

[
1 +

(
z +

1

z

)]
. (7.3.8)

The minimum value that gives a non-trivial eigenstate corresponds to z = e
iπN
N+1 ,

thereby defining the minimum energy eigenstate as

(s0,0)nz
= 2i sin

(
2πN

N + 1
nz

)
.ŝ0,0, (7.3.9)

with eigenvalue

λ = 1 + 2 cos

(
nπ

N + 1

)
. (7.3.10)
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As such, the spin space vectors in each plane oscillate in the direction perpendic-

ular to the surface by a π phase, resulting in a final state consisting of ferromagnetic

planes orientated parallel to the surface with an antiferromagnetic configuration in

the direction perpendicular to the surface. Furthermore, the direction of this vector

is forced to lie along the same direction, ŝ0,0, plane to plane, unlike those of the

(sπ,0)nz
eigenstate with its independent independant planes. 2

Since (s0,0)nz
varies its magnitude from plane-to-plane, it cannot satisfy the

length constraint on its own and we must therefore construct the real space spin

by using a superimposition of both eigenstates. We hence continue our study of the

eigenstates in order to determine how to construct the combination as the surface

is approached by focussing on how exactly the surface affects these eigenstates.

(s0,0)nz
decreases its magnitude as the surface is approached, since this state

’hates’ the surface. In contrast, ignoring the length constraint, (sπ,0)nz
has the

freedom to choose the magnitude of each element. As such, the system can maintain

the spin length of all spins by compensating for the decreasing spin contribution

of eigenstate (s0,0)nz
with (sπ,0)nz

, superimposing them contributions orthogonally.

This construction in real space is described by

snx,ny,nz = eiπnx (sπ,0)nz
+ (s0,0)nz

, (7.3.11)

where the vector (sπ,0)nz
lies in a plane perpendicular to the vector (s0,0)nz

which

remains fixed in direction with nz,

We therefore arrive at a simpler problem to solve - the manifold of states available

to the system can be decreased according to this construction, and the problem then

reduces to determination of the ratio involved in the superimposition as a function

2It is also worth noting that that magnitude of the vector sk‖ is very small according to the
eigenstate. This is a consequence of the Bloch transform consisting not of one or two k points
but many, a consequence of the system being truncated which produces rods of spin density in
reciprocal space.
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$n

$n

$n+1

$n+1

Figure 7.15: Spin states available to our UO2 model. The surface, directed perpendicular to the
z-axis, is located at n = 1

of plane nz. The simplified manifold of states is illustrated in fig. 7.15 whereby there

is solely one variable, φ, which we expect to soften as the surface is approached. The

resulting components of each spin are shown explicitly in the figure.

Note that this φ-model reflects the different MSDW phases involved in the spin-

density-wave phase transitions of γ-Mn that was studied in section 4.3.

7.3.4 Solving the Model

We introduce a single-ion anisotropy term which is applied to cubic crystals in order

to break the spin space degeneracy inherent in the Heisenberg model and reflect

the preference of spin direction which we know to be triple-q in the bulk. The

Hamiltonian now takes the modified form

H =
J

2

∑

<jj′>

SjSj′ + κ
∑

j

(
[sx

j ]
4 + [sy

j ]
4 + [sz

j ]
4
)
. (7.3.12)

The term serves to stabilise both single-1 and triple-q states, which can be seen

by applying a lagrange-multiplier, λ, to the minimisation, such that the anisotropy

term is minimised subject to the length constraint. Analysing the energies of the

turning-point solutions to the equation that involves a lagrange multiplier λ:
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f(sx
j , s

y
j , s

z
j ) =

(
[sx

j ]
4 + [sy

j ]
4 + [sz

j ]
4
)
− λ

(
[sx

j ]
2 + [sy

j ]
2 + [sz

j ]
2 − S2

)
, (7.3.13)

one finds that the minimum solution corresponds to the spins pointing along the

cubic diagonals, but with the freedom to point towards or away from the centre

of the cube. The manifold of minimum solutions thus corresponds to (sx
j , s

y
j , s

z
j ) =

1/
√

3(1, 1, 1) and all combinations achieved by independently changing the signs

of each component. These states are a subset of the manifold described by our

simplified φ state of figure 7.15 that is a solution to the Heisenberg model with a

surface included and as such does indeed merely break the degeneracy rather than

renormalise the states.

Although the inclusion of this anisotropy results in the double-q state no longer

being a ground state of the system, both the 1-q and 3-q states accommodate this

anisotropy. This degeneracy, which prevents good agreement of the model with

the experimentally-observed spin wave dispersion, shall be discussed later on and

improvements made to the model. For now though, we assume this simple model

and solve for the ground state solution in the presence of the surface.

In acting the Heisenberg term, H1, on our general state, the calculation is split

into a sum over planes that are labelled n, and a sum over the sites within each plane,

which are labelled by i, taking care to include double-counting for interactions within

planes only:

H1 = J
∞∑

n=1

∑

i

[
2S

(
cn√
2
,

cn√
2
, sn

)
.S

(
−cn√

2
,
−cn√

2
, sn

)

+ 2S

(
cn√
2
,

cn√
2
, sn

)
.S

(
cn+1√

2
,−cn+1√

2
,−sn+1

)

+2S

(
cn√
2
,

cn√
2
, sn

)
.S

(
−cn+1√

2
,
cn+1√

2
,−sn+1

)]
,(7.3.14)
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where cn and sn refer to cosφn and sin φn respectively. Converting the cosines

into sines and given that the number of spins within a plane is N , we arrive at

H1 = 2JS2N
∞∑

n=1

(
2s2

n − 1− 2snsn+1

)
. (7.3.15)

The second term in the Hamiltonian, H2 is given by

H2 = κN
∞∑

n=1

[(
Scn√

2

)4

+

(
Scn√

2

)4

+ (Ssn)4

]

. (7.3.16)

Completing the square puts H2 into the form

H2 = κNS4
∞∑

n=1

[
1

6
(3s2

n − 1)2 +
1

3

]
. (7.3.17)

The full Hamiltonian H = H1+H2 can be written in terms of a parameterisation

β2 = κS2

4J , describing the relative strengths of the interaction constant and the cubic

anisotropy of the system:

H = 2JS2N

[
s2
1 +

∞∑

n=1

[
(sn − sn+1)

2 − 1 +
β2

3

(
(3s2

n − 1)2 + 2
)]

]
. (7.3.18)

Since the summation is over an infinite number of planes, our expression diverges.

However, we are interested in the spin state that corresponds to the ground state

close to the surface, and so we may use the bulk state energy as a reference energy,

H0, and minimise the convergent expression H −H0.

We constrain the spins to point along the cubic diagonals in the bulk by applying

the bulk boundary condition s∞ = 1√
3
. As such, we can write the Hamiltonian as
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H = 4JS2NE + H0, (7.3.19)

where

E =
1

2

[
s2
1 +

∞∑

n=1

[
(sn − sn+1)

2 +
β2

3
(3s2

n − 1)2

]]
− 1

6
. (7.3.20)

To determine the spin state that corresponds to the ground state configuration

for the spins near the surface, we only need to minimise E which corresponds to

differentiating the expression

(sn − sn+1)
2 +

β2

3
(3s2

n − 1)2, (7.3.21)

with respect to sn for all n. Equation 7.3.21 involves sn and sn+1, so we must

take care to include all relevant terms during the minimisation procedure. We obtain

sn+1 + sn−1 = 2sn + 2β2[3s2
n − 1]sn if n (= 1, (7.3.22)

sn+1 = 2sn + 2β2[3s2
n − 1]sn if n = 1. (7.3.23)

We can express eq.7.3.23 as eq.7.3.22 by incorporating a surface boundary con-

dition s0 = 0, and hence can define the minimisation condition as

sn+1 + sn−1 = 2sn + 2β2[3s2
n − 1]sn for n ⊂ [0,∞]. (7.3.24)

The continuum limit to our problem can also be considered, since in the limit
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β → 0, n becomes a continuous variable (since dsn
dn → 0). In this case, we find

that the minimisation problem reduces down to a standard soliton problem. Given

eq. 7.3.20 we define the lagrangian, L, as

L = L(s
′

n, sn; n) = (s
′

n)2 +
β3

3
(3s2

n − 1)2 (7.3.25)

and applying the Euler-Lagrange equation. We obtain

(
dsn

dn

)2

=
β2

3
(3s2 − 1)2 + C (7.3.26)

where C is defined by boundary conditions. Given that s′n → 0 as n → ∞, or

equivalently as sn → 1√
3
, we arrive at the ordinary differential equation

dsn

dn
=
β√
3
(3s2 − 1) (7.3.27)

and hence the solution

sn =
1√
3

tanh βn. (7.3.28)

Calculation of the continuum limit value of E yields

E =
2β

9
− 1

6
. (7.3.29)

Eq. 7.3.24 is solved numerically using a recursion method with boundary condi-

tion s∞ → 1√
3
. Specifically, the sn are set to the bulk value 1√

3
initially, except for

s0 which takes its boundary condition value of zero. Iterations are then performed

based on a rearrangement of eq.7.3.24:
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s(new)
n = F.

s(old)
n+1 + s(old)

n−1

2 + 2β2

[
3
(
s(old)

n

)2
− 1

] , (7.3.30)

where F is a percentage and solves convergence problems. The results for β = 0.1

and β = 0.8 for a system with 100 planes are shown in figure 7.16. We can see

that the system smoothly transforms from the bulk state towards a double-q state

on the surface (although the system only becomes double-q on the virtual plane

neighbouring the surface layer). The rotation of spins occurs over a very small

length scale of only a few planes when the anisotropy term has a similar strength to

the interaction term.

7.3.5 Solitonic Solution

The ground state of the triple-q structure can be thought of as alternating sublat-

tices in the direction perpendicular to the bulk, due to the π phase of the state in

this direction. As a result, there exists a two-fold degeneracy in the ground state

that are related by a translation by one layer in this direction. The surface can

be thought of as a defect that upsets this alternating configuration in such a way

that one can think of extending our spin configuration past the surface, whereby

the triple-q ground state turns into the other degenerate triple-q ground state. This

configuration is a result of the two boundary conditions of the problem, being the

surface termination and the triple-q structure taken in the bulk. The surface ter-

mination forces a topological soliton to form, in the same way described in [54]

which is concerned with soliton formation in polyacetylene. The bond-alternation

of polyacetylene, in terms of pi and sigma bonds, is anologous to the alternation

of the spin configuration in the direction perpendicular to our surface, and results

in a topological soliton. The soliton comes about as a localised excitation in the

polyacetylene in accordance with imposed boundary conditions of having one of the
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two degenerate phases, A, at one end of the system, and the other, B, at the other

end.

Specifically, consider the system initially being in one of the degenerate states,

which we shall call the A phase. In order to create a soliton, the B phase must be,

for example, the left-hand portion of the chain. We want to treat the soliton as a

localised excitation, which it is not if the two ends terminate at different phases. Su

et al deal with this construction by considering creation of an additional antisoliton,

such that the configuration goes from phase A to B and back to A along the chain.

If the soliton and antisoliton are widely separated then they do not interact and one

can neglect this construction and the energy to create the configuration is solely the

addition of the energy required to create the antisoliton plus the soliton.They find

that in a perfect lattice there is relatively free translation of the soliton down to

temperatures of 20− 40K.

Solitons by definition cannot be created or destroyed by perturbative effects, and

hence are very stable - in order to destroy a soliton, one would need to ’move’ it

all the way to the edge of the system, which in our case is into the bulk. This

is not allowed due to the large energy cost of having a double-q state in the bulk

which cannot be compensated for by the energy gain at the surface layer (unless

appropriate surface roughness exists).

7.3.6 Improved Model

The model 7.3.12 used in the calculations so far does not in fact break enough

degeneracies to give reasonable solutions. This is due to the degeneracy between

single-q and triple-q states, which is not broken by the anisotropy term present -

the term serves solely to stabilise the spin vectors to point along cubic diagonals.

According to the spin wave dispersion calculated for this model by Long [14], there

is a softening of the spin waves in the Cartesian directions that are not present in

the experimental spinwave dispersions. This softening corresponds to the lines of
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Figure 7.16: Numerically-generated plot of sn against plane n for (a)β = 0.1 and (b)β = 0.8.
1000 iterations performed for a system with 100 planes n and F set to 0.01

degeneracy present in a Heisenberg model with respect to the kmin as we covered in

section 3.2.4. This 1q-3q degeneracy present in the model results in the minimum

energy configuration of the system in fact being sheets aligned perpendicular to the

surface of Néel character. In this way, the surface can be completely compensated

for since the sheets are not coupled and so there is no energy cost in introducing

a surface to the system. In addition, one may align the spins within these néel

sheets to the (111) direction and therefore pay no anisotropy energy according to

the present model.

As such, extra anisotropy terms are required, to stabilise the triple-q structure

and also the longitudinal structure we have assumed in our investigation. We know

from our previous studies of chapter 4 that quantum fluctuations stabilise collinear

states and so strong anistropies are required to overcome this factor. Impurities,

entering the system local disorder, stabilise multiple-q states, but UO2 is inherently

clean/very pure as a material, and so the phenomenon stabilising triple-q in the bulk

must be something else.

As such, Long [14] introduces two terms to the Hamiltonian. The term
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H

4

∑

<jj′>

(sj .sj′ )
2 (7.3.31)

stabilises the 3q state over the 1q state by promoting perpendicular bonds and

penalising parallel bonds. The term is isotropic in spin space, and so an additional

term

J

2

∑

α

∑

<jj′>α

(δ − 1)sαj sα
j′
, (7.3.32)

where
∑

<jj′>α
denotes nearest neighbour bonds oriented in a direction perpendicular

to the Cartesian α-axis, is used to modify the Hamiltonian to prefer longitudinal

rather than transverse spin orientations by reducing the strength of the frustrated,

parallel components by a factor δ.

7.3.7 Results and Conclusion

The calculations performed in this chapter indicate that a solitonic domain wall ex-

ists between a 2q state on the surface and 3q state in the bulk. The MSDW behavior

with depth is similar to the behaviour seen in the spin-reorientation transition of

Mn85Ni9C6 detailed in section 4.3 and illustrated in fig. 4.15 For the Mn85Ni9C6, as

the temperature is decreased past the bulk ordering temperature, the system takes

on the triple-q structure with all three Bragg spots possessing equal spin density

amounts. As the temperature reaches TMS the system is ordered enough for the

energetics near the impurities to play a part and the system to prefer to orient the

spins into a 2q configuration in the vicinity which becomes long range correlations if

the concentration of impurity is past a critical value. Thus as the temperature passes

through TMS the spin density originally located at the third Bragg spot becomes
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redistributed to the other two Bragg spots and increases in intensity as the system

orders further. The depth profile of ground state of uranium dioxide can be consid-

ered in a similar fashion. The truncation of the system by the surface results in the

loss of Bragg spots, but if one considers the truncation rods in the limit of small

attenuation so that one could envisage measuring the depth profile as large enough

’chunks’ of depth to give an approximately coherent scattering, then a spot can be

associated with different depths. In this way, the ’spots’ as a function of depth follow

a similar behaviour as those for Mn85Ni9C6 as a function of temperature.

Long [14] has applied classical fluctuation theory to the solitonic ground state

configuration at T = 0. The lowest energy excitation constrained to be uniform

within the planes perpendicular to the surface has a structure which, when super-

imposed onto the ground state profile, corresponds to a profile in which the domain

wall has shifted more towards the bulk. The distortion as a function of depth is

shown in Fig.7.17. This mode is bound to the surface and on the same length scale

as the soliton. The distortion suggests the possibility of the domain wall moving

further into the bulk, since thermal excitations of this mode, which lie within the

bulk spinwave gap, would amount to distortions of this type as thermal fluctuations

from the ground state. Since the surface creates a boundary and the profile is not

symmetric, these fluctuations would be biased towards the direction of the bulk.

This corresponds to a movement of the average location of the wall towards the

bulk and an increase in temperature would correspond to the excitement of more

of these modes, creating larger fluctuations and therefore the movement of the wall

towards the bulk on the increase of temperature.

A similar picture can also be gained through comparison of the behaviour of the

spinwave gap observed by Cowley and Dolling to the theoretically produced spinwave

spectrum for our model as detailed in [14]. The theoretical analysis indicates that

the low energy spinwave gap to double-q fluctuations is equal to 4JSα, where α =

3KS2

J sin2 φ cos2 φ = 12β2 sin2 φ cos2 φ. It has been shown experimentally that this
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gap, corresponding to (001), softens as temperature is increased, as shown in figure

7.5 [8]. It therefore seems appropriate to consider the parameter 4JSα decreasing

with increasing temperature. Renormalisation can then be applied in an attempt to

introduce temperature into the theory and this is done in [14]. The following idea

based on preliminary analysis has not been analysed in detail, but gives a reasonable

picture of how the domain wall may behave as the temperature is increased. β can

be thought of as a measure of how far the domain wall moves into the bulk, as can

be see in fig. 7.16. One can express β2 in terms of the spin wave gap G = 4JSα

which is known to decrease with temperature:

β2 ∼ G

(
1

Jf(φ)

)
(7.3.33)

where f(φ) is the φ dependence of α. As such, one may expect, since J does

not alter much with temperature, the domain wall to drop into the bulk as the

temperature is increased and G decreases.

Although it is possible that a picture of the behaviour of the magnetisation

profile could be obtained by analysis of the scattering intensity distribution along

the truncation rods in a direction perpendicular to the surface, it is particularly

tricky to calculate. The correlations as a function of depth can be obtained from

the size of the magnetic moment as a function of depth and can provide a length

scale which, if altering with temperature, would indicate that our domain wall is

fluctuating as a function of depth. The intensity, relating to the size of the magnetic

moment, measured at a particular location on the truncation rod, can be associated

with a particular depth, as per the analysis of Watson et al [13]. However, to

obtain said profile of the magnetic moment length, the surface termination, probe

attenuation with depth etc. all need to be taken into account and this can prove

tricky. Instead, we look to the explicit information indicated by Langridge et al ’s

experiment, being the correlations parallel rather than perpendicular to the surface,
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which are in fact tied to those in the perpendicular direction.

Further analysis is hence performed by Long et al whereby the fluctuation on

each lattice site is allowed to vary independently within planes as well as from plane-

to-plane. The result is a band of excitations that control the disordering parallel to

the surface and this again sits inside the spinwave gap to bulk excitations. Thus, the

movement of the domain wall into the bulk is indeed associated with a disordering

of spins in a direction parallel to the surface moving further into the bulk, and this

is what may be being observed in Langridge et al ’s experiments.

The disordering of the surface and in particular the system behind the wall at a

lower temperature than the bulk is intuitively sound, as is seen in the measurements

of Fig.7.10. The theoretical determination of the low energy spinwave gap indicates

that the gap is smaller for smaller φ angles [14]. This is as expected since as φ

is decreased the spins reside more towards the xy plane and so there is stronger

coupling in the xy plane. Thus, more energy is required to access fluctuations

within the xy plane than those associated with an added phase in the z-direction,

perpendicular to the surface, since in this direction the Heisenberg coupling has

decreased at the expense of the in-plane coupling. This leads to hardening of the spin

waves within the planes and softening in the perpendicular direction to the surface,

so that fluctuations that lead to double-q excitations become more energetically

accessible near the surface. Thus, one would indeed expect the surface to disorder

at a lower temperature than the bulk.

Wetting or Not?

We look to wetting as an explanation due to it explaining the presence of a transi-

tion associated with the surface that occurs below the bulk ordering temperature.

The only other magnetic surface transition that can occur below the bulk ordering

temperature of which the author is aware is via the phenomenon of magnetic surface

reconstruction that has been formulated within this thesis. However, this theory can
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Figure 7.17: Shape of lowest energy distortion (mode), which appears close to the surface, based
on a fluctuation calculation modelling fluctuations δφn that are allowed to vary plane-to-plane.
The symbols represent the exact solution and the curve the continuum solution as computed using
impurity theory by Long in [14]. The distance axis measures the number of planes from the surface
layer and the distortion is the sinusoid of the distortion δφn from the ground state angle (see
calculation in [14].

be disregarded since the phenomenon requires the surface to have access to a new,

independent magnetic order not taken by the bulk which then has its own transition.

The bulk of uranium dioxide is triple-q and as such all magnetic orders are taken

by the bulk, leaving no scope for a new order and hence magnetic reconstruction on

the surface.

On approaching the surface from the bulk, the magnetisation profile related

to the third spot increases as the system reorients from a 2-q to a 3-q state as

a function of depth. Wetting-type transitions are concerned with the behaviour

of the magnetisation profile as a function of temperature, and one can consider

there to be three cases as the temperature is increased: (1) The order parameter

decreases uniformally with respect to depth, such that there is no change in shape

of the magnetisation profile (2) there is a change in the shape of the magnetisation

profile, corresponding to the interface location moving, but continuously and (3)

there is a discontinous change of shape of the magnetisation profile, corresponding
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to the interface suddenly moving into the bulk, either divergent or to another finite

but larger value. The theoretical analysis points towards the shape of the profile

altering with temperature as thermal fluctuations cause the domain wall interface

to effectively move towards the bulk, but whether or not this movement can be

considered wetting-like is another matter.

Wetting transitions and the associated surface-induced disorder transition was

covered in chapter 5 and we refer to this literature. The order parameter associated

with wetting transitions is concerned with the depinning of the domain wall, and

measures the fluctuations of the interface length as defined in section 5.2. The wet-

ting case occurs for the limiting case of h1 → 0 where the bulk and surface states

become degenerate. For the SID transition, the wetting-type analogue again con-

cerns the bulk and surface free energies becoming degenerate as the temperature is

increased and both states completely disorder. In both these cases there is therefore

scope for the bulk to take up the surface state once certain parameters are reached

and for the domain wall to become delocalised, possessing fluctuations up to and

including macroscopic length scales.

For the 2q-3q interface however, wetting does not seem a fitting theory. The

free energies of the 2q and 3q states are not degenerate in uranium dioxide on the

increase of temperature, and so whilst the domain wall may move into the bulk via

thermal fluctuations of the spins, the interface length is not able to diverge into the

bulk as per complete wetting and critical wetting. There remains the possibility of a

pre-wetting transition occurring, in which the interface width jumps discontinuously

but to a finite value as per a first order transition.

Although there is hesitation in using wetting-type transitions to explain the sud-

den, sharp disordering in the near-surface region at a temperature lower than the

bulk ordering temperature, it is possible that an interface-delocalisation SID tran-

sition could explain the unusual onset of a continuous disordering of the surface in

the presence of a bulk that remains ordered up to a first order transition. CuAu3
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shows this behaviour, and Lipowsky [44] analyses the behaviour in terms of a mag-

netisation profile between the surface and bulk, present due to the reduced coupling

at the surface in comparison with the bulk. The magnetisation at the surface, M1,

can go continuously to zero in the presence of a bulk that shows no disordering until

the ordering temperature TN is reached for a variety of values of surface coupling.

If the profile possesses a point of inflection, an interface width can be assigned to

the inflection point and the idea is that movement of this interface width, which

occurs as the surface disorders further with temperature, results in M1 decreasing

continuously. The presence of this interface prevents the large field present from

the ordered bulk from affecting the surface layer magnetisation, allowing a continu-

ous disordering transition to occur there. The phenomenon has been compared to

wetting via analysis of Landau models.

However, the continuous disordering of the surface is perhaps not surprising, since

the bulk transition is slow but continuous up to a very small deviation from the bulk

ordering temperature 7.1. The surface can therefore follow the bulk’s second-order

disordering character up to very close to the bulk ordering temperature, but with

a much more pronounced disordering due to the loss of magnetic bonding at the

surface. The surface may in fact then follow the first order behaviour of the bulk

ordering transition in the small temperature range below it, but it may be discernible

from a continuous transition due to experimental resolution.

There are two domain walls that need to be considered in the theory; this order-

disorder-type wall, and the 2q-3q domain wall. The sharp disordering seen in the

surface layer is at a temperature much below that of the bulk ordering temperature.

It therefore seems reasonable to assume that the disordering is concerned with the

domain wall between the 2q and 3q states, rather than the other order-disorder

wall as the surface order parameter has almost approached saturation at the sharp

disordering transition. As such, we can expect the sharp disordering to occur in a

system that is reasonably near to being fully ordered, which is our solitonic state
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perturbed with thermal fluctuations. There exists a picture in which, on lowering the

temperature past the bulk ordering temperature, the 3q state exists everywhere and

begins to order sharply. At a temperature below the bulk ordering temperature the

system prefers a 2q state to form in the near-surface region, and so a magnetisation

profile is set up corresponding to the intensity of the third order that the near-

surface prefers not to have. Since a magnetisation profile exists, one can assign an

interface width to it and try to apply wetting-like ideas. However, this situation

would correspond to the wetting of the bulk by the 2q state as the temperature

is increased, which will not occur due to energetics. One can instead consider the

wetting of the surface by the bulk, whereupon the interface width can be considered

instead to go from infinity to a finite value at the temperature at which the system

prefers the 2q state to reside in the near-surface region. It is unclear as to whether

this can be termed a wetting transition. Also, the relationship to disorder, the

parameter measured by the experiments, is not clear and thinking of the 2q-3q

interface as an ingredient to a wetting phenomenon does not seem to give any useful

insight into the problem.

A different theory is proposed instead. Although the unusual change in rate of

disordering parallel to the surface at a temperature below the bulk ordering temper-

ature could be interpreted as a first order phase transition, it could in fact just be

a sharpish but continuous change in the disorder measured parallel to the surface.

Thus, as opposed to a pre-wetting-like jump in the domain wall location towards

the bulk, there is also the possibility that at this temperature the interface location

merely begins to fluctuate over a depth which is the length scale of the probe.
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Chapter 8

CONCLUSION AND DISCUSSION

8.1 Conclusions

Most magnets react to a surface in quite a dull way; the loss of magnetic interactions

at the surface weakens the magnetism there, allowing the paramagnetic state to nu-

cleate there first but otherwise offering no new physics. However, we have considered

two phenomena that occur in multiple-q systems: magnetic relaxation and magnetic

reconstruction. The collinear configuration in normal magnets, being ferromagnets

or bipartite magnets, does not reorient to gain back energy at the surface. This is

a result of there being no change in the direction of the local field of the surface

spins on the introduction of a surface, since the underlying magnetism is collinear,

and additionally no degeneracy available, leaving no ability to superimpose another

state to obtain a non-collinear local field and reorientation.

Multiple-q systems however possess an interesting property - degeneracy exists

between states that are related by a rotational symmetry of the Hamiltonian. This

degeneracy leads to the possibility of states possessing two or three magnetic or-

ders, corresponding to putting spin density down at more than one distinct Bragg

momentum location in reciprocal space.

The first consequence of this property is the ability of a multiple-q magnet to

reorient near the surface to gain back some energy from the missing bonds by de-
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creasing spin density at one Bragg momentum location and redistributing to the

other two orders already present. This is termed a magnetic surface relaxation. The

relaxation does not involve the introduction of any new order at the surface, and as

such the relaxation configuration is taken at the bulk ordering transition.

The second consequence of the property is the ability to magnetically reconstruct

at the surface, a new phenomenon that has not been proposed before. For systems

which do not take all magnetic orders available to the multiple-q magnet in the bulk,

there leaves the opportunity to take the remaining magnetic order(s) at the surface

to gain back energy from lost bonds. Our analysis was concerned with the square

lattice and type-1 FCC lattice and a single-q state was considered in the bulk. Due

to the single-q states of a multiple-q magnet being related by a rotational symmetry

of the Hamiltonian, and importantly not a trivial global rotation of all spins but

of the lattice, each state possesses different translational symmetries. As such, the

states react to a surface in different ways and the case of the bulk taking a state

that is one that is not preferred energetically by the surface layer becomes possible.

Additionally, the states are close to degeneracy in multiple-q systems, with the

degeneracy being broken by magnetoelastic distortions, and can be superimposed

orthogonally. The orthogonal superimposition allows for a low domain wall cost,

which consists of a multiple-q state of varying spin density ratios. In this way, the

domain wall cost solely involves the energetic cost of having a state that is not the

ground state in the bulk and also spin-orbit effects.

Once the system orders in the bulk to become one of these single-q states, mag-

netoelastic distortions can detune the system slightly off degeneracy in real systems.

If the bulk has chosen a state that does not favour the surface, then as the surface

is approached the bulk state can reconstruct. The domain mixture present in the

bulk cannot be overturned by surface effects, and as such domains exist in the bulk

of real materials that would be expected to reconstruct. Therefore in real systems

as the bulk domain structure meets the surface the surface-preferred domain is ex-
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pected to provide a cap, yielding a few layers with a magnetically equivalent state

across the entire surface, which smoothly decays into the bulk, being replaced by

the underlying bulk domain structure.

This surface phase can develop at a phase transition that is distinct from the bulk

transition. Specifically, the surface transition occurs at a lower temperature than

the bulk transition, due to there being reduced magnetic coupling at the surface.

Additionally, the surface phase can suffer its own internal transitions whilst the bulk

behaviour remains unaffected. Hence it appears that there are good physical reasons

for experimentally studying the magnetic properties of the surfaces of such magnets.

Our investigation of the uranium dioxide system that involves a surface provides a

solitonic spin structure pinned to the surface at T = 0. This relaxation phenomenon

is as a result of the system being triple-q and thereby having access to the variation

of the different magnetic orders, allowing a double-q state to be approached as the

surface is approached from the bulk. It has since been determined theoretically by

Long et al [14] that there is a surface mode amounting to fluctuations of the position

of the soliton which is the lowest energy excitation of the system and a picture

appears in which the position of the soliton, or domain wall, moves further into the

bulk as the temperature in increased. However, the idea of the interface delocalising

and a wetting phenomenon occuring does not seem likely, since the free energies of

the 2q and 3q states are never degenerate. As such, another explanation for the

unusual disordering behaviour that occurs below the bulk ordering temperature is

needed. It is proposed that the fluctuations of the location of the interface, which

has disorder associated with it in the direction parallel to the surface, do not diverge

or jump discontinuously into the bulk, but instead fluctuate over increasing length

scales until crossing the length scale of the depth probe, which may explain the

sudden onset of a larger disorder parameter.
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8.1.1 Further Work

For the study of uranium dioxide, there are several points that need to be addressed.

The Kosterlitz-Thouless (KT) transition has been proposed by other authors to

explain the sudden change in the power law exponent describing lateral correlations

in UO2. The transition is associated with the unpairing of magnetic vortices as the

temperature is increased past the transition temperature TKT . This unpairing causes

a sudden onset of disorder, and the ratio of the Néel temperature to the proposed

KT temperature agrees with that predicted theoretically of 0.89. The author of this

thesis has not yet studied this as a potential explanation.

In addition, there has been no detailed modelling that involves the introduction

of temperature. The introduction of temperature to modelling is very hard and

lengthy and this has not yet been achieved.

With respect to the magnetic reconstruction phenomenon, temperature again

has not been included, and no materials have as yet been proposed in the literature

to follow such a case. However, preliminary work by Long and Hopper seems to have

provided materials for which the reconstruction would be expected to occur and the

experimental signatures seem to support this theory. These findings lead one to

the conclusion that whilst multiple-q systems are natural candidates for the surface

reconstruction, in fact other systems also need to be considered. The requirement

is solely for the symmetry of the state to be different such that the states react

differently to a surface. The case of FeBO3 [11][55] is an example of an ’accidental’

degeneracy similar to that encountered in our square lattice model between a single-

q state and a Néel state. In this case, the spin densities of the degenerate states

are not related by a simple rotational symmetry of the Hamiltonian, but instead by

the tuning of the interaction parameters. According to theoretical calculations [56]

the bipartite antiferromagnet begins to develop a spiral character in the near-surface

region as the transition temperature is approached, and it is this spiral that contains

the new order that could be involved in a reconstruction at the surface.
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For the case of hematite[57], the existence of more than one atom per unit cell

leads to the possibility of states with different translational symmetries existing that

are related by inversion rather than rotational symmetry of the Bragg spots. The

bulk state consists of layers parallel to the surface which have robust sublattices,

but which can rotate with respect to each other and also spiral from plane-to-plane

for certain interaction parameter ratios.

Thus, for magnetic reconstruction, the main criteria can be contained in two

points. Firstly, that the states possess frustration and for the bulk state to possess

more frustration in a direction perpendicular to the surface than parallel. In this

way, the loss of bonding at the surface costs energy. The second criterion is for there

to exist another state close in energy that possesses a better ratio of frustrated to

unfrustrated bonds with respect to the direction in which the surface is cut, such

that more energy can be gained at the surface using this state in comparison with

the bulk state. For the case of FeBO3, the antiferromagnetically-aligned spins in

neighbouring triangular planes which sit parallel to the surface are severed by a

(111) surface, resulting in a large loss of magnetic energy. The interaction within

the triangular planes is frustrated in the bulk. Another state exists close in energy

in which the spin configuration within the planes is less frustrated, and it is this

state that is taken by the surface in the reconstruction.

We have studied both magnetic surface relaxation and reconstruction and find

that both phenomena can exist in multiple-q systems, and whatsmore that recon-

struction is also expected to occur in other systems for which the general criteria are

satisfied. This thesis has hopefully added to the richness of phenomena associated

with multiple-q systems and provided frameworks with which to approach unusual

surface-related phenomena.
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