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ABSTRACT

This thesis examines the weak localisation correction to electrical and thermal conduc-

tivity in superconductors. We propose that the thermal conductivity may be the better

candidate to detect weak localisation effects in superconductors, due to the absence of the

supercurrent. We provide an analytic calculation of the weak localisation correction to

thermal conductivity in a superconductor with the phase coherence lifetime, τϕ, included

as a phenomenological parameter. We then examine the case where magnetic impurities

are the source of the phase breaking. We provide a thorough derivation of the analytic

behaviour in the calculation of the electrical and thermal conductivity with magnetic

impurities. We evaluate the full frequency dependent form of the cooperon including

magnetic impurities and find the leading order form in the limit of weak doping with

magnetic impurities. We provide a partial calculation of the weak localisation correction

to thermal conductivity in superconductors weakly-doped with magnetic impurities.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to the Introduction

We will begin this thesis with a discussion of the history of transport phenomena, begin-

ning from the turn of the 20th century with Drude’s model for conductivity, all the way

through to the development of quantum field theory techniques. Of course this discussion

cannot hope to include everything, nor dive too deep into the mathematical details of the

various models we will mention. The objective is simply to give a qualitative overview,

highlighting the key points that are of relevance to the contents of this thesis.

We will use this background to build up a picture of why we are interested in the theory

of weak localisation effects in the thermal conductivity of superconductors, concluding the

chapter with an outline of the contents of the rest of the thesis.

1.2 A Brief History of Transport Phenomena

1.2.1 From Classical to Quantum

In 1900 Drude proposed a simple model for conductivity in a metal, motivated by the

discovery of the electron only three years prior by J. J. Thomson. In this model the mobile

electrons in the metal are treated in the same way as a dilute neutral ideal gas, so their
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CHAPTER 1. INTRODUCTION

dynamics are described by the kinetic theory of gases. Understanding that the metal was

net-neutral, there was assumed to be some static background of heavy, positively charged

particles, i.e. the ion-cores, a new notion at the time [1]. When an electric field is applied,

the electrons move on average through the metal, scattering elastically with the ions with

a characteristic scattering rate, τ−1
0 . Using this relatively simple model, Drude was able

to derive an equation for the electrical conductivity, σ in terms of quantities that were all

measurable, except for the scattering rate,

σ =
ne2τ0
m

, (1.1)

where n is the number density of electrons, m the mass of the electron and e the charge.

Drude also used this model to predict the contribution to thermal conductivity from

the mobile electrons, finding

κ =
3nτ0k

2
BT

2m
. (1.2)

It had been known for some time that the ratio of thermal and electrical conductivity

of metals appeared to be a universal constant, this fact known as the Wiedemann-Franz

law, and the constant known as the Lorenz number, L. The Drude results predict this

ratio to be

κT

σ
=

3

2

(
kBT

e

)2

= L , (1.3)

which is remarkably close to the measured values; only approximately a factor of 2 out.

However, this close agreement was in fact a coincidence, due to two incorrect values ob-

tained from the kinetic theory of gases fortuitously cancelling in the derivation of the

thermal conductivity. The specific heat per electron was assumed to be cv = 3
2
kB (as it

would be in a conventional monotomic gas [2]) which turns out to be approximately a

factor of 100 too large at room temperature, whereas, the average of the square of the ve-

2



1.2. A BRIEF HISTORY OF TRANSPORT PHENOMENA

locity used in the derivation was a factor of 100 too small. Although the predicted Lorenz

number was close to correct, many other thermal properties were far off the observed

results as result of using a Maxwell-Boltzmann distribution for the electrons.

With the advent of quantum mechanics around this time, improvements to the under-

standing of specific heat were also under way. Boltzmann’s classical model treated each

atom as trapped in a harmonic well formed by the interactions with its neighbours. The

model predicted a constant specific heat of 3kB per atom, obeying the so called law of

Dulong-Petit that had been known since the early 1800s. This ‘law’ was reasonably ac-

curate for a number for materials at room temperature, but it was clear from experiment

that the specific heat was not a constant at low temperatures. In 1907, Einstein proposed

a model where the atoms were instead treated as quantum harmonic oscillators, with a

oscillation frequency know as the Einstein frequency, ω. In the limit kBT ≫ ℏω it recov-

ered the Dulong-Petit law and at low temperatures predicted the specific heat decreased

with temperature as an exponential. Experimental findings showed that the dependence

of the specific heat at low temperatures went as T 3, plus a small part linear in T that

becomes significant at very low temperatures. In 1912 Debye was able to explain the

T 3 dependence by realising that the oscillations of the atoms could be treated as sound

waves, and quantised in the same way as Planck’s quantisation of light. Using a linear

dispersion for the sound waves, ω(k) = v|k|, where v is the speed of sound, the Debye

model yields for the specific heat in the low temperature limit,

C =
12π2NkB

5

(
kBT

ℏωD

)3

=
12π2NkB

5

(
T

TD

)3

, (1.4)

where ωD is the Debye frequency and TD is the Debye temperature [2]. This expression is

only valid for low temperature, more precisely T ≪ TD, because it includes sounds wave

modes up to infinite momentum. In the low temperature regime the large momentum

modes are not occupied, thus do not contribute to the value of the specific heat, but at

higher temperatures, there needs to be a cut-off so that the number of modes included

3



CHAPTER 1. INTRODUCTION

does not exceed the actual available degrees of freedom of the system. In this model the

number of degrees of freedom is 3N , where N is the number of atoms and the factor

of three arising from the three Cartesian directions in which the atoms can oscillate.

The derivation has been cleverly constructed so that the cut-off frequency is in fact the

Debye frequency. In the limit T ≫ TD, the Debye model also recovers the Dulong-Petit

result, so is overall very successful. The one remaining question is the source of the term

in the specific heat that is linear is T , that seemed to become significant at very low

temperatures.

After the discovery of the Pauli-exclusion principle in 1925 and subsequent develop-

ment of Fermi-Dirac statistics in 1926, Sommerfeld realised the Drude model could be

generalised to incorporate the Fermi distribution [2]. The usage of the Fermi-Dirac dis-

tribution, as opposed the Maxwell-Boltzmann distribution, resolved issues of the Drude

model pertaining to quantities that depended on the form of the distribution. Because the

electrical conductivity in the Drude model is not one such quantity, the Sommerfeld model

reproduces this result. However, the specific heat is altered by the new distribution. One

finds the specific heat is a function of temperature that is linear in T , demonstrating that

the contribution to the specific heat at lower temperatures in metals is in fact coming from

the specific heat of the electrons. This specific heat is in the order of kBT/EF smaller

than predicted by the Drude model (where EF is the Fermi energy) and the averaged

velocity term the same order larger. These factors then cancel, explaining why the Drude

model’s prediction of the Lorenz number is so close. In the Sommerfeld model the Lorenz

number is found to be

κT

σ
=
π2

3

(
kBT

e

)2

, (1.5)

which is in good agreement with measured values, and also in good agreement with

predictions from microscopic theory, but more on that later.

The Sommerfeld model was not without its problems however. Although the form of

4



1.2. A BRIEF HISTORY OF TRANSPORT PHENOMENA

the electrical conductivity is identical to the Drude model, and hence the values of the

scattering rates deduced from it, when calculating the mean-free path, l0 = vτ0, the larger

value for the velocity was now predicting values of l0 up to hundreds of atomic-spacings

at room temperature, whereas the Drude model would yield mean-free-paths in the order

of one atomic-spacing. Surprisingly, considering the scattering mechanism was assumed

to be due the collisions with the ions, the Drude model actually seemed to predict mean-

free-paths more in line with this assumption (albeit somewhat coincidentally once again).

This begs the question is the Sommerfeld model’s prediction of such long mean-free paths

correct? It turns out that it is correct, but the Sommerfeld model could not offer any

insight as to how the electrons were able to travel so far through the metal without

colliding with the ions.

The resolution to this issue came in 1928 with Bloch’s theorem, discovered not long

after the Schrödinger equation. The major difference of Bloch’s theorem compared to the

Drude and Sommerfeld models, is that it addresses the periodic potential acting on the

electrons due to the lattice of positive ions; whereas the previous model are completely

free-electron models. Bloch’s theorem also departs with the näıve picture of electrons

scattering off of ions as the source of resistance and instead employs a plane wave solution

to the Schrödinger equation, which, because the ion potential is included intrinsically as

part of the solution, cannot be the source of the scattering. In fact, in a perfectly periodic

lattice the model would predict that the electrons are able to travel through the lattice

uninhibited and hence lead to an infinite conductivity. The reality is that imperfections

in the lattice, due to vacancies, impurities and thermal excitations are abundant, and will

all prevent the lattice from being exactly periodic, and hence the conductivity will be

finite in practice. Hence, this model was more successful in providing an explanation for

why the mean-free paths are so much longer than typical atomic spacing.

The fuller treatment of the lattice also improved understanding of the role of phonons.

By examining a one-dimensional, monoatomic toy model of a lattice, one can find a

dispersion relation of the phonons where ω ∝ |sin(ka/2)|, where a is the atomic spacing.

5



CHAPTER 1. INTRODUCTION

So Debye’s assumption of a linear dispersion was a good approximation for small momenta,

but breaks down at the Brillouin zone boundaries. By counting normal modes of the

system we can also provide a more fundamental footing for the cut-off predicted in Debye’s

model. Of course real materials have a much more complex dispersion relations and normal

modes, but we are interested solely in the thermal conductivity, and the phonon picture

is helpful in demonstrating how the lattice contributes to the thermal conductivity. We

can construct a simple picture where the thermal transport due to the lattice is treated

as the transport of a phonon gas, and hence will be described by the kinetic theory of

gases, similar to the Drude conductivity. This yields

κ =
1

3
ncvv

2τph , (1.6)

where n is the number density of phonons, cv the heat capacity per phonon, v is the

speed of sound and τph some characteristic scattering rate of the phonons. In pure metals

this contribution is very small in comparison to contributions from the electrons at all

temperatures, but in dirty samples where the mean free path of the electrons is reduced

the contributions can become comparable at higher temperatures [3].

1.2.2 Superconductivity

During this time where theories of conductivity for metals were moving from a classical

to a quantum picture, superconductivity was discovered. First in 1911 with Kamerlingh-

Onnes’ measurement of the resistivity of mercury [4], where he observed the resistivity

dropped sharply to zero at 4K [5]. So a superconductor is a ‘perfect’ conductor but this

is not the entire story. If a superconductor was only a perfect conductor it would exhibit

a phenomena known as ‘field-locking’. In a perfect conductor the magnetic field inside

the bulk is not able to change, this means that if a superconductor was cooled to below

the transition temperature without a field applied, any subsequent applied field would be

expelled. But if it were cooled with the field already applied, the field would be locked

6



1.2. A BRIEF HISTORY OF TRANSPORT PHENOMENA

in. In 1933, Meissner and Oschenfeld found that the magnetic field is always expelled

regardless of when it is applied [6], dubbed the Meissner effect. So superconductors are

also perfect diamagnets. This effect also implied that superconductivity will be destroyed

by the application of a critical magnetic field.

These two key electrodynamic properties of superconductors were explained phe-

nomenologically by Fritz and Heinz London in 1935 using classical electromagnetism [7],

named London theory. This predicted that the magnetic field would die-off exponen-

tially inside the superconductor, with a characteristic length scale called the penetration

depth, λ. This was superseded by Ginzburg-Landau theory in 1950 [8]: a quantum

phenomenological theory in which a complex order parameter, Ψ, was used to describe

the superconducting electrons, with the density of superconducting electrons given by

ns = |Ψ|2. One of the major successes of Ginzburg-Landau theory was in handling the

intermediate state of superconductors, that occurs at magnetic fields close to the critical

value, in which superconducting and normal domains coexist in the material. The theory

includes a length scale called the coherence length, ξ, that characterises the range of order

in the superconducting electrons [9]. For typical pure metal superconductors that were

investigated at the time, λ ≪ ξ, and GL-theory predicts this ratio leads to a positive

energy cost for the boundary. In 1957, Abrikosov showed that when ξ <
√
2λ, there

would be a negative cost for domain walls [10]. This predicted a regime, called the mixed

state, where when a magnetic field would be able to penetrate the superconductor in an

array of flux vortices, each carrying a quantum of flux. This regime would occur with

magnetic fields applied with strength over the lower critical field, Hc1, as as the magnetic

field was increase from here, the vortex density would increase up until a upper critical

field, Hc2 where the superconductivity is fully destroyed [11]. Superconductors of this

nature were called type-II superconductors, and typically occurred in alloys, and the type

of superconductivity found in pure metals was called type-I.

The breakthrough for the microscopic theory of superconductivity came in 1956, when

Cooper showed that if there were a weak attractive potential between a pair electrons it

7
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would be energetically favourable for them form a bound pair with opposite spin and

momenta to each other [12]. One year later Bardeen, Cooper and Schrieffer would extend

this model, demonstrating that entire Fermi-sea of electrons would be unstable to the

formation of these Cooper pairs and so would, at absolute zero at least, all pair-up and

form a superconducting condensate [13]. This microscopic description, on top of being

consistent with the electrodynamics we discussed above, successfully explained why there

was an energy-gap, ∆, in the excitation spectrum of most superconductors. This is

because there is a minimum energy of 2∆ required in order to excite the electrons out of

the cooper pair condensate before they can be excited. At finite temperature, electrons

are able to be thermally excited out of the condensate leading to a ‘two-fluid’ picture,

where the electrons can be thought of as co-existing superconducting condensate and

thermally excited quasi-particles that conduct normally.

It is important to mention at this point, that it is possible for a superconducting state

to exist without a gap in the energy spectrum, for example in superconductors containing

magnetic impurities, and that superconductivity is characterised fundamentally by the

existence of the pair correlations and not the presence of a gap [14]. In 1958, Matthias

et. al. observed that doping lanthanum with small concentrations of paramagnetic rare

earth elements lead to a reduction in the transition temperature. This was then examined

theoretically by Abrikosov and Gor’kov explaining the decrease in transition temperature,

but also predicted that the gap would be suppressed. At a critical concentration of

impurities the superconductor would become ‘gapless’ (about 91% of the concentration

required to completely destroy the superconductivity at 0K) [15]. This prediction was

confirmed experimentally in 1962 by Reif and Woolf in thin films of indium doped with

iron [16].

We have discussed that the superconducting state requires an attractive potential be-

tween electrons to form, so where does this potential arise from, especially considering

that we know that the Coulomb interaction between electrons will actually repel them?

In 1950 Frölich was the first to suggest the interaction of the electrons with the lattice

8
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could lead to an effective attractive potential between electrons [17] and this was sup-

ported experimentally by the discovery of the isotope effect [18, 19]. This effect is that

if measurements are made on samples made from from different isotopes of the same el-

ement, one would find the transition temperatures are dependent on the isotopic mass.

A physical picture of this effective attraction is as an electron passes through the lat-

tice its negative charge will attract the positively charged lattice ions, causing them to

move toward it. Because the lattice ions are much heavier than the electron, the lattice

takes a longer time to relax back to its initial position than it take for the electron to

move on. Thus, the electron will leave behind a area of positive charge density, which in

turn will attract another electron toward where the first electron just was. Hence, there

is an effective attraction between the two electrons. So long as this potential exceeds

the Coulomb repulsion, Cooper’s condition for pairing would be satisfied. This picture

can also be formulated in terms of the exchange of virtual phonons between the pairing

electrons. The BCS theory approximates this interaction as a featureless interaction of

constant strength between electrons within ωD of the Fermi surface.

1.2.3 Microscopic theories of conductivity

Development of a microscopic theory of quantum transport would take off in 1955 with

Matsubara introducing a methodology for quantum field theory at finite temperatures,

encapsulating statistical physics into the theory [20]. By making use of this formalism,

along with Kubo’s linear response theory [21, 22] and Edwards’ method for averaging

over impurity distributions [23], Langer published a trio of papers in 1960, 1961 and 1962

that successfully reproduced the Drude conductivity at finite temperature using a fully

microscopic method [24, 25, 26]. Around the same time as these developments the BCS

theory of superconductivity [13] was cast into quantum field theoretic language separately

by Gor’kov [27] and Nambu [28].

Shortly after, Langer [29] applied the methodology used for the Drude conductivity to

thermal conductivity in the normal state and Ambegaokar and Tewordt [30] extended the

9
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microscopic theory for thermal conductivity into the superconducting regime. However,

we must note that there are number of theoretical hurdles to overcome when considering

the microscopic theory of thermal currents. First and foremost is that, because temper-

ature is a statistical property of the system, there is no Hamiltonian that describes the

application of a temperature gradient; so there is immediately a difficulty in applying

Kubo’s formula in this context. Furthermore, thermal averaging that takes place in the

Kubo formula assumes a constant temperature, which is incompatible with the thermal

gradient that is the cause of the current [31]. Luttinger was able to shed some light on

this issue, demonstrating that one can construct energy flows in the system by using a

fictitious potential, analogous to a gravitational field, and from this extract thermal co-

efficients both in the normal and superconducting states [32, 33]. However one has to be

careful about the exact definition of what constitutes a thermal current, there are several

constructions one may take, that if treated self-consistently will all lead to correct eval-

uation of thermal coefficients. An excellent discussion of this is provided in Mahan [31],

but a key take-away for our purposes is that the rate of change of entropy, rather than

energy, is really the important quantity for thermal transport.

The advent of field-theoretic methods, whilst successfully explaining basic transport

phenomena, like the Drude conductivity, opened the door to exploring from a theoretical

perspective more interesting quantum effects in electron transport. Honorable mentions

go to electron-electron interactions via the Coulomb force [34] and fluctuation conductiv-

ity close to the transition temperature in superconductors, due to finite-lifetime virtual

Cooper pairs [35, 36, 37]. The focus of this thesis is on weak-localisation effects due to

quantum interference of the electrons with disorder, which we will now discuss in more

detail.
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1.3 Weak Localisation

In as early as 1966 Langer and Neal [38], in an attempt to go beyond lowest order per-

turbation theory in the impurity scattering in conductivity calculations, noted that a

certain class of diagram (known as the maximally-crossed diagrams) in the perturbation

expansion each contributed a small logarithmic term to the conductivity, and that this

occurred at all orders of the perturbation expansion. They highlighted this would cause

potential divergence issues, but was simply presented as a mathematical difficulty that

may need to be overcome and was not given any physical interpretation. It was not

until the late 1970s with the development of the scaling theory of localisation [39] that

this class of diagram was identified with the quantum interference effect corresponding

to coherent back-scattering of the electrons due to impurities. This effect leads to a de-

creased probability of electron transport and hence a reduction in conductivity, and so

was called weak-localisation. The term ‘weak’ here is an important distinction here with

regards the scaling theory of localisation. The weak localisation effect occurs well in the

metallic regime, when the disorder is not too strong, and hence can be considered as a

perturbative correction to the metallic behaviour described by Bloch’s theorem. In terms

of wave functions, we can say that at long enough time scales the wave functions of the

electrons will be extensive over the system size. For stronger disorder the spatial extent

of the wave function can become exponentially suppressed and we will be in the realm of

stronger localisation effects, i.e. Anderson localisation [40]. In this thesis we will only be

concerned with weak localisation.

Gorkov et. al. calculated the weak localisation correction to conductivity using field-

theory by considering the full infinite sum of maximally-crossed diagrams in 1979 [41].

The weak localisation correction exists in one, two and three dimensions, but the two-

dimensional case is of particular interest because provides the largest correction. In exper-

iments in thin metallic films the correction to the resistance is in the order of 10−3− 10−2

and can be measured with an accuracy of ∼ 1% [42]. The form of the correction predicted
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by theory, and confirmed experimentally, is logarithmic,

δσ ∝ ln

(
τϕ
τ0

)
, (1.7)

where τ0 is the elastic scattering lifetime (the same as found in the Drude formula) and τϕ is

the phase coherence lifetime. Because weak localisation is a quantum coherence effect be-

tween electrons, τϕ measures the characteristic time the over which electron wave-function

maintains its phase. If the phase of the wave functions are sufficiently ‘scrambled’ between

scattering events the coherence between the electrons, and hence the weak localisation,

will be destroyed. As a general rule, the phase coherence lifetime increases as tempera-

ture decreases, so the effect will be most prominent at low temperatures. The exact form

of this temperature dependence will depend on the particular mechanisms contributing

toward it, so theoretical determination of the temperature dependence of different mecha-

nisms is an important tool for understanding which effects are present in experiment. An

example of a direct measurement of a logarithmic dependence in the resistance of a thin

film of AuPd obtained by Dolan and Osheroof is shown in figure 1.1 [43]. Unfortunately,

to complicate matters Altshuler et. al. demonstrated that the electron-electron interac-

tion correction to conductivity we mentioned briefly in the previous section would also

yield a logarithmic correction at low temperatures. So experiment would have to develop

a means to distinguish between the two effects. To understand this let us discuss some of

the sources of phase breaking.

The types of effects that can cause ‘scrambling’ of the phase can be broken up broadly

into two categories. Firstly, there are inelastic scattering processes, the most prevalent

of which is electron-electron interactions. The phase coherence lifetime due to electron-

electron interactions was first calculated by Fukuyama and Abrahams [44] and a fairly

comprehensive discussion of this can be found in Altshuler and Aronov [45]. This is not

a particularly controllable effect though and we essentially at at the mercy of the partic-

ular system for how significant this will be. Secondly, there are time-reversal symmetry
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Figure 1.1: Figure taken from Dolan and Osheroff [43]. An example of the correction to
resistance increasing logarithmically with decreasing temperature in a thin film of AuPd.

breaking processes. The examples we will be interested in are magnetic impurities and

the application of a magnetic field. For experiment the magnetic field is a powerful tool,

especially in two dimensions, where the field can be applied perpendicular to the films.

This is because by increasing the magnetic field, the phase coherence lifetime, and hence

the weak localisation correction, is decreased. Because the application of a magnetic

field is so controllable it can be used to switch-off the correction, and so measurements

of the magneto-resistance of thin films has become the favoured method for detecting

weak-localisation effects [42].

An example of a magneto resistance curve for a thin film of Mg is shown in figure 1.2.

We can see in the upper set of curves, at zero applied field, the resistance increases with

decreasing temperature. As the field is applied the effect is killed off and this leaves a

peak in the centre of the figure. In the lower figure the Mg has been doped with 1% of

Au, this introduces spin-orbit scattering. This is a time-reversal breaking process similar

to the spin-flip scattering of magnetic impurities, however it actually has the effect to

decrease the resistance, hence this effect is called weak anti-localisation. This effect can

be seen in the figure as the peak in the centre being inverted for the MgAu film.
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Figure 1.2: Figure taken from Bergmann [42]. The figure displays the magneto-resistance
curves for a thin film of Mg. The upper image displays the increasing resistance with
decreasing temperature when no field is applied corresponding to weak localisation effect.
As the magnetic field is increased (going outward in each curve) this effect is killed off.
The lower figure shows the film after it has been doped with a small amount of Au, this
introduces spin orbit scattering that inverts the effect, called weak anti-localisation.

1.4 Motivation of the Thesis

The objective of this thesis is to extend the theoretical framework of weak localisation

correction calculation to the thermal conductivity of s-wave superconductors and to, in

particular, examine the case where the phase-breaking mechanism is provided by magnetic

impurities. In this section we will build up a picture of why this is of interest.

The understanding of weak localisation effects in normal metals has been so well

studied that it has moved from being a theoretical point of interest to a tool for material

science. That is to say, by fitting experimental results to the theory, weak localisation

experiments have become a method to probe the particular scattering rates in materials.

Typically, experiments of this type are conducted by looking at the electrical conductivity

rather than the thermal. This is because weak-localisation effects are caused only by the

interaction of the electrons with impurities and do not include any two-body interaction

effects. Hence the effect will be identical for the electrical conductivity and electronic
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thermal conductivity (i.e. the contribution to thermal conductivity from the electrons

specifically) and so the Wiedemann-Franz law persists for this correction, and there is

perhaps not much one can learn from thermal measurements that one cannot find by

electrical measurements, that are relatively easier to perform. As far as the author is

aware the only experimental measurement of the weak localisation correction to thermal

conductivity in the normal state is by Bayot et. al. [46].

There has been recent experimental interest in weak localisation effects in materials

with superconducting properties. One study on a LaAlO3/SrTiO3 interface system [47],

and another on topologically-insulating Sb2Te3 nanoplates [48], both observed weak local-

isation and superconducting transitions in their samples. However, they were primarily

focused on the interplay between weak localisation and weak anti-localisation corrections

to electrical conductivity above the transition. Some studies have examined more gen-

erally the transition from the normal state to the superconducting state, taking into

account all quantum contributions to conductivity,including the weak localisation correc-

tion, electron-electron interactions and superconducting fluctuations. Such as in ultra

thin TiN films [49] and in strained Sn1-xInxTe thin films [50]. But once again, as these

studies used electrical conductivity, there was no probe of weak localisation firmly in the

superconducting state.

There still remains a significant gap in experimental study of weak localisation inside

the superconducting state itself. To understand why, we consider the two-fluid picture

of superconductivity. In the superconducting state at finite temperatures, some of the

electrons form the condensate that carries the supercurrent and some are thermally ex-

cited out of the condensate (referred to as the quasiparticles) that can still carry a normal

current. The quasi-particles still have, in principle, a weak localisation correction to their

contribution to the conductivity. However, the quasiparticle current is shorted-out by the

supercurrent, so this small correction is essentially impossible to resolve in measurements

of the electrical conductivity. Considering that historically most weak localisation exper-

iments have been conducted with electrical conductivity, we can see why there would be
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little interest in the superconducting state. This is where thermal conductivity becomes

an interesting prospect. Because the condensate does not carry entropy, it does not carry

a thermal current and hence only the quasi-particles will contribute the the electronic

thermal conductivity. Without the issue of the supercurrent eclipsing the conductivity

measurement, it should in principle be possible to resolve the weak localisation correction

to thermal conductivity in a superconductor, as experiments are able to accurately mea-

sure thermal conductivities well down into the millikelivin range [51, 52, 53]. Thus, by

having a working theory of weak localisation in the superconducting state, we can match

the theory to experiment in order to probe how the phase coherence lifetime is affected

by the superconducting state.

Although we have argued that thermal conductivity is a good candidate for measur-

ing weak localisation in superconductors, there are some additional considerations with

regards to experimental measurements that we must address. We have discussed that the

most reliable method for measurements of the weak localisation in the normal state relies

on the application of a magnetic field. This presents an immediate problem in the su-

perconducting state, as the magnetic field will suppress the superconductivity. So rather

than only destroy the weak localisation correction, the magnetic field will introduce a

number of competing effects that will be difficult to distinguish. In the case of thermal

conductivity, the break-down of the condensate should lead to an increase in conductivity,

due to the increase in number of available quasi-particles for thermal transport. This ef-

fect may mask the increase in conductivity that we would expect from the destruction of

the weak-localisation contribution. Therefore, we expect that a more direct measurement

of the temperature dependence of the conductivity would be a more viable option than

examination of magneto-resistance curves. However, a measurement of this type comes

with its own complications.

Firstly, the weak localisation effect affects the contribution to the thermal conductivity

from the electron transport. However there is also a contribution from the transport

of phonons, such that the thermal conductivity can be written as the sum of the two
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parts, κ = κe + κph. Each of these terms can then be split into two contributions. The

electron term has a contribution from scattering with impurities and from scattering with

the phonons. The phonon term also has a contribution from scattering with impurities

and a contribution from scattering off the electrons [54]. The best candidate materials

for experiment would be those in which there is a temperature region where the effects

involving the phonons are minimised and the primary term contributing to the thermal

conductivity comes from the electronic component whose mean-free path is limited by

scattering with the impurities, as well as having a significant weak localisation effect in

that region. Of course it may not be possible to find a case where the phononic effects

are entirely negligible, but because the weak localisation correction is expected to be

1 − 10% of the electronic contribution, maximising the electronic part compared to the

phononic will lead to the best chance of resolving the correction. In this case one would

have to have an understanding of the temperature dependencies of the phononic effects

so that one could distinguish them from the weak localisation correction by fitting the

shapes of the temperature-conductivity curves. As the focus of this thesis is entirely on

the electronic thermal conductivity, we will direct the reader to Gladstone et. al. [55] and

Ginsberg and Hebel [54] in Parks’ treatise and Rickayzen [9] for reviews on the phononic

thermal conductivity.

The second effect we will consider is once again best framed within the two fluid

picture of superconductivity, as this will inform where measurements should be focused

in the temperature range (it is useful to express this on a scale on 0 to 1 in the reduced

temperature T/Tc). As the temperature is decreased below Tc the number of quasiparticles

available to participate in thermal conductivity will decrease as they will become part of

the condensate. This will cause a suppression of the electronic thermal conductivity as

temperature is decreased, an example of which for aluminium can be seen in figure 1.3,

where the ratio of superconducting to normal thermal conductivity is shown as a function

of T/Tc. Therefore, we should direct attention to the higher-temperature region, just

below Tc, as the phononic contribution may become comparable to that of the electronic
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contribution lower in the temperature range [56].

Figure 1.3: Figure taken from Satterthwaite [57]. The ratio of superconducting to normal
thermal conductivity of Aluminium as a function of temperature normalised to the critical
temperature. The dots are the experimental data for three different specimens and the
solid lines are theoretical curves based on the calculation of Bardeen et. al. [58] with
three different fitting parameters for the gap.

Now that we have discussed the experimental background, we will discuss the theoreti-

cal work that has examined weak localisation in superconductors. Smith and Ambegaokar

found the correction to the number density of superconducting electrons from the weak

localisation effect in dirty s-wave superconductors [59], Yang et. al. calculated this correc-

tion in d-wave superconductors [60] and Jujo has calculated the effect of weak localisation

on the linear absorption in s-wave superconductors [61]. All of these studies have been

concerned with the effects of weak localisation on properties of superconductors other

than the conductivity itself. Only two studies have examined the correction to thermal

conductivity, one of which is in a superconductor-normal-superconductor junction system

[62], which is not of as much interest to us, and the other is the recent work of González
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Rosado et. al. [63]. In the latter paper the weak localisation correction to thermal

conductivity in s-wave superconductors is calculated, with the phase breaking rate in-

cluded as a phenomenological parameter. The clean and dirty limits are examined and

particular attention is drawn to the temperature region T ≈ 0.9Tc as the optimum region

for observing the correction, which is in agreement with the arguments we have outlined

above. Thus, in this thesis, we aim to develop a methodology for the calculation of weak

localisation corrections in the superconducting state and verify the results of this paper

for dirty superconductors in this high temperature region.

The next step to take from a theoretical standpoint is to be able to include mechanisms

for phase breaking directly into the calculation. González Rosado et. al. included a

brief look at the inclusion of spin-orbit scattering, but found that the correction in this

case is functionally the same as their results with the phenomenological parameter, only

with an additional factor of −1/2, meaning the result is weak anti-localisation instead

as expected. Reizer has developed much of the theory of phase coherence lifetime due

to electron-electron interactions in the superconducting state [64], however this work is

rather complex from a theoretical standpoint. As well as this, when electron-electron

interactions are an appreciable source of phase breaking for the weak localisation effect,

they typically will cause their own correction to conductivity that can difficult to resolve

from the weak localisation correction.

The primary original work in this thesis will be the development of the theory of weak

localisation in superconductors where magnetic impurities provide the limiting source of

the phase coherence lifetime. We are motivated to choose magnetic impurities because

these are a relatively simple dephasing mechanism that one can include directly into the

formalism. Their effect on most common physical properties, such as the order parameter

and the conductivity, have been established for some time (see Maki’s chapter in Parks’

treatise for a good summary [14]). The only work the author is aware of to date that

covers the theory of weak localisation with magnetic impurities is in the work of Smith [65].

However, this work does not examine the correction to conductivity, but the correction
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the superconducting density of states.

Like magnetic fields, magnetic impurities will act to suppress the superconductivity

and because they are a strong source of phase breaking there should be a doping concen-

tration that is high enough for them to be the dominant source of phase breaking, but low

enough such that the superconductivity is not strongly suppressed. In the case of thin

films, in which the weak localisation is most prominent, the doping concentration should

be a controllable parameter, as the magnetic impurities can be purposefully dispersed

into the sample during or after the growth of the film.

1.5 Summary of the Contents of this Thesis

The remainder of this thesis will be mathematical in nature and consist primarily of the

derivation of results, gradually increasing in complexity with each chapter. To that end,

we begin in Chapter 2 by establishing the mathematical techniques related to Green’s

functions and diagrammatic quantum field theory that we will make heavy use of in the

rest of the thesis. Then in Chapter 3, we make use of these techniques to derive a number

of important results relating to transport phenomena in the normal state, starting with

Drude’s results for electrical conductivity and the electronic component of the thermal

conductivity. We then introduce the weak localisation effect and calculate the correction

for both electrical and thermal conductivity. We conclude the chapter by examining the

superconducting transition through the lens of quantum fluctuations in the normal state

just above the transition temperature.

In Chapter 4 we introduce the Nambu-Gorkov formalism for performing calculations

of transport properties in BCS-type superconductors, then go on to use these to derive

some rudimentary results such as the gap parameter, the transition temperature and the

superconducting carrier density. We also provide an analytic expression for the frequency-

dependent linear response to an electromagnetic field in a superconductor, which describes

the infrared absorption and transmission of the superconductor. We then derive the
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electronic component of thermal conductivity in the superconducting state.

In Chapter 5 we move on to weak localisation effects in the superconducting state,

which is the beginning of the original work of this thesis. First we demonstrate how to

construct a cooperon in the Nambu-Gorkov formalism in isolation, utilising the outer-

product of Pauli matrices to encode the information of both vertices of the cooperon in

one function. We then use this to calculate the weak localisation correction to electrical

and thermal conductivity. Here we focus on the thermal conductivity, because the super-

current will short-out the electrical conductivity, meaning the weak localisation correction

to the quasi-particles will be negligible in comparison to the supercurrent. We introduce

the phase-breaking rate as a phenomenological parameter in the thermal weak localisation

to provide a cut-off for the correction. We find that our results are in agreement with

those of González Rosado et. al. for the case of the dirty superconductor in the upper

temperature range of the superconducting state [63].

Chapter 6 introduces magnetic impurities into the Nambu-Gorkov formalism. We

once again treat the linear response of the superconductor, now doped with magnetic im-

purities, to both an electromagnetic field and a temperature gradient to obtain analytic

expressions for the electrical and thermal conductivity. We in particular hope to shed

some light on the process of analytic continuation of the linear response functions in this

regime, as this is particularly poorly demonstrated in the literature. In the second half

of the chapter we provide a full derivation of the form of the cooperon in a supercon-

ductor containing paramagnetic impurities, similarly to that which can be found in the

work of Smith [65]. Here we depart from Smith’s previous work as we take the leading

order approximation for weak doping with magnetic impurities whilst retaining the full

frequency dependence of the cooperon, such that analytic continuation is still possible.

The previous work was only concerned with the correction to number density of supercon-

ducting electrons, thus the frequency could be taken to zero at this stage. We then go on

to progress with the weak localisation calculation as far as analytic methods can take us.

We are able to complete this calculation up to the point where we could perform analytic
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continuation in the same way as outlined in the first half of the chapter. It is possible to

perform this analytic continuation stage exactly, however there is no neat simplification,

leading to an explosion in the number of terms. Therefore we end this chapter with a

discussion of behaviour we might expect from the analytic continuation and potential

avenues for future work.
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CHAPTER 2

THE METHODOLOGY OF

GREEN’S FUNCTIONS FOR

TRANSPORT

In this chapter we will lay the groundwork for the diagrammatic quantum field theory,

which will be the method that all calculation in the thesis will utilise. Firstly, we will

discuss Green’s functions and their function in the context of diagrammatics. In the next,

section we will establish the main types of Green’s functions that are of interest to us

and establish their analytic properties. With the mathematical formalities out of the

way, we then move on to deriving the single particle Green’s function, which is perhaps

the most fundamental object in the diagrammatic theory. We will then use it in the

perturbation expansion for a one-body and two-body potential. The chapter culminates

with the derivation of the impurity Green’s function, which will be used in the remainder

of the thesis, as it describes the propagation of electrons in disordered systems. This

section importantly discusses the process of ensemble averaging, which bridges the gap

between particular distributions of impurities on the microscopic level and macroscopic

observables, such as conductivity, where the impurity distributions appear homogeneous.
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2.1 Motivating Green’s Functions

When considering the microscopic theory of electrical and thermal transport, one is deal-

ing with a system of many electrons which may be interacting with one another and their

environment, hence many body quantum field theory is the natural language with which

to approach this problem. Broadly speaking quantum field theory is approached in one

of two equivalent ways: path integral formulation or diagrammatics. For certain applica-

tions the path integral approach proves a more powerful tool, however we will be making

heavy use of perturbative expansions and diagrammatics offers a much more simple and

direct route to this objective. This methodology is well established and can be found in a

number of standard texts. The structure presented here follows most closely that found

in refs [56, 66], but the reader may also find useful ref [67].

The diagrammatic approach uses Green’s functions as the primary objects that power

the theory, but what is a Green’s function in this context? In mathematics, they are

encountered as a means to solve linear differential equations; where loosely they can be

thought of as the inverse of the differential operator, such that applying the differential

operator to the Green’s function yields a delta function source, or an impulse. In a

classical physical context, this method is employed in electrostatics to find the electrical

potential ϕ generated by a fixed charge distribution [66],

∇2ϕ(r) = −ρe(r)
ε0

, (2.1)

define ∇2G(r) = δ(r) ,

⇒ ϕ(r) = − 1

ε0

∫
d3r G(r− r′)ρe(r

′) . (2.2)

So we have reduced the problem down to solving the much differential equation for G(r),
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which can be solved immediately with a Fourier transformation yielding

G(k) = − 1

k2
,

⇒ G(r) = −
∫

dk

(2π)3
eik·r

k2
= − 1

4π|r| . (2.3)

Now this can simply be substituted back into equation 2.2 to obtain the well known

equation for the potential

ϕ(r) =
1

4πϵ0

∫
dr′

ρe(r)

|r− r′| (2.4)

We can also apply this same concept to quantum mechanical problems. Consider the

time-dependent Schrödinger equations (with ℏ = 1) for a free particle and a particle in a

potential, V (r),

[i∂t −H0(r)]ψ0(r, t) = 0 , (2.5a)

and [i∂t −H0(r)− V (r)]ψ(r, t) = 0 , (2.5b)

where we know the eigenstates of H0 and want to find out about the full Hamiltonian by

treating the potential as a perturbation. The Green’s functions for these equations can

then be defined as

[i∂t −H0(r)]G0(r, t, r
′, t′) = δ(r− r′)δ(t− t′) (2.6a)

and [i∂t −H0(r)− V (r)]G(r, t, r′, t′) = δ(r− r′)δ(t− t′) , (2.6b)

then because

G−1(r, t)G(r, t, r′, t′) = δ(r− r′)δ(t− t′) , (2.7)
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the inverse of the Green’s functions are given by

G−1
0 (r, t) = i∂t −H0(r) (2.8a)

and G−1(r, t) = i∂t −H0(r)− V (r) . (2.8b)

Now by inspection we can see that the solution to equation 2.5 is

ψ(r, t) = ψ0(r, t) +

∫
dr′ dtG0(r, t, r

′, t′)V (r′)ψ(r′, t′) ,

or equally ψ(r, t) = ψ0(r, t) +

∫
dr′ dtG(r, t, r′, t′)V (r′)ψ0(r

′, t′) , (2.9)

which can be verified by substituting the form of ψ(r, t) back into the Schrödinger equation

along with using the definitions of the inverse Green’s functions. These integral equation

can be solved iteratively to yield

G = G0 +G0V G0 +G0V G0V G0 + ... ,

⇒ G = G0 +G0V G (2.10)

= (G−1
0 − V )−1 ;

where equations of this type are known as Dyson equations. This approach of using a

perturbation to a known Hamiltonian to obtain a Dyson equation will be reflected as we

extend this formalism up into the realms of quantum field theory, as it allows us to obtain

a Green’s function for the Hamiltonian we are interested in, given we know the Green’s

function for the simpler unperturbed Hamiltonian and the form of the interaction. This

leads us a building block approach where we can repeat this process up from a very simple

single particle Green’s function to obtain Green’s functions that include information about

more and more interactions, as long as we can add these interactions to the Hamiltonian

in a perturbative way.

However there is some subtlety when comparing single particle quantum mechanics
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to the full many body problem. In the Shrödinger equation example above the Green’s

function relates the wavefunction at times t′ and t,

ψ(r, t) =

∫
dr′G(r, t; r′, t)ψ(r′, t′) . (2.11)

For this reason these Green’s functions are also referred to as propagators, as they propa-

gate the wavefunction through time and space. But when we construct Green’s functions

in diagrammatic quantum field theory they turn out to be the solutions to equations of

motion, as opposed to the differential operator acting on the full wavefunction as in the

Schrödinger equation example. As such they do not contain all the information in the

many body wavefunction, but instead the information relevant for the equation of motion

we have constructed [66].

2.2 General Properties of Green’s Function

Before examining in detail the single particle Green’s function, we will summarise some

of the important properties of the types of Green’s functions of which we will make use.

At this stage, the general form of the Green’s functions will be introduced without much

motivation, however it will become more clear when we look at the single particle case.

As well, the retarded Green’s function we will discuss next naturally arises in the Kubo

formula for the linear response of a system to a small perturbation (see appendix A for a

full derivation), which is the context in which we wish to use the Green’s functions.

The retarded Green’s function relating two time dependent operators A(t) and B(t′)

is given by

GR(t, t′) = −i ⟨[A(t), B(t′)]η⟩Θ(t− t′) ; (2.12)

where [A(t), B(t′)]η = A(t)B(t′) + ηB(t′)A(t) ,

where η = +1 for fermionic operators and −1 for bosonic operators. This Green’s function
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is the one that arises naturally in linear response theory and is known as retarded because

the Heaviside function, Θ(t − t′), enforces the correct causality: in this case that the

response of A(t) comes after the perturbation caused by B(t′). Similarly, there is an

advanced Green’s function given by

GA(t, t′) = i ⟨[A(t), B(t′)]η⟩Θ(t′ − t) , (2.13)

which relates A(t) to B(t′) at a later time t′. The advanced Green’s function will not

be nearly as important to us- being interested in response to perturbations. The angled

brackets denote thermal averaging with respect to the density matrix, ρ = e−βH , of a

Hamiltonian, H,

⟨A(t)B(t′)⟩ = 1

Z
Tr
{
e−βHA(t)B(t′)

}
, Z = Tr

{
e−βH

}
, (2.14)

where Z is the partition function [56].

The next type of Green’s function we will examine is the temperature Green’s function,

named as such because it is constructed to allow us to perform calculations at finite

temperatures [56]. This is achieved by making use of the formal similarity between the

statistical density matrix, e−βH , and the quantum mechanical time-evolution operator,

e−iHt [68]. This similarity is exploited by performing the Wick rotation from real time,

t, into imaginary time, −iτ , causing the time-evolution and density matrix to have the

same functional form. Furthermore, the time domain is transformed from t ∈ [−∞,∞]

to τ ∈ [0, β] (where β = 1/T and kB = 1), meaning that integrals over real time are cast

into integrals up to the reciprocal temperature, thereby encoding the information about

the system temperature into calculations. The Green’s function has the form

G(τ, τ ′) = −⟨TτA(−iτ)B(−iτ ′)⟩

= −⟨A(−iτ)B(−iτ ′)⟩Θ(τ − τ ′) + η ⟨B(−iτ ′)A(−iτ)⟩Θ(τ ′ − τ) ; (2.15)
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where Tτ is the imaginary time ordering operator, whose definition is as equation 2.15.

Note that all of the following still holds when we extend this formalism to a grand canonical

ensemble, where our density matrix and time evolution operators will be given instead by

ρ = e−β(H−µN) and U(t) = e−i(H−µN))t . (2.16)

When we have Green’s functions that are functions of only two times, by using the

cyclic property of the trace, the time dependence of one operator may be shifted onto the

other, making the Green’s functions only functions of time differences:

GR(t, t′) = −i ⟨[A(t− t′), B(0)]η⟩Θ(t− t′) = GR(t− t′) , (2.17a)

GA(t, t′) = −i ⟨[A(t− t′), B(0)]η⟩Θ(t′ − t) = GA(t− t′) , (2.17b)

G(τ, τ ′) = −⟨TτA(−iτ + iτ ′)B(0)⟩ = G(τ − τ ′) . (2.17c)

This means that we can Fourier transform with respect to their time differences, but we

must treat the real time and imaginary time differently due to their different domains.

Beginning with the real time Green’s functions, the Fourier transform for the retarded

Green’s function is given by

G∧(Ω) =

∫ ∞

−∞
dtGR(t− t′)eiΩ(t−t′) , (2.18)

where Ω is in general a complex number and so we must be careful about where the

function is analytic. If we write Ω as its real and imaginary parts, Ω = ω+ iδ (ω, δ ∈ R),

it is clear that the integral converges for δ > 0 i.e. in the upper half plane (hence why

we have suggestively labelled it with an upwards arrow), provided the correlation does

not grow faster than an exponential; a reasonable assumption for most real systems. If

we take the limit that the imaginary part goes to zero, we obtain the retarded Green’s
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function in frequency space,

GR(ω) = lim
δ→0

G∧(ω + iδ) , (2.19)

this gives the response of the system to a perturbation of frequency ω. Similarly for the

advanced Green’s function, we find it is analytic in the lower half plane and we have

G∨(Ω) =

∫ ∞

−∞
dtGA(t− t′)eiΩ(t−t′) , (2.20a)

GA(ω) = lim
δ→0

G∨(ω − iδ) ; (2.20b)

where we have assumed for now that the Fourier transform of the retarded and advanced

Green’s functions do not necessarily yield the same function, so we have defined another

Green’s function, G∨(Ω), to denote it is analytic in the lower half plane. The Green’s

functions G∧(Ω) and G∨(Ω) can be written in terms of a spectral function

G∧(Ω) = G∨(Ω) =

∫ ∞

−∞

A(x)

Ω− x
; (2.21)

where it so happens that the spectral function has the same form for both, only distin-

guished by their regions of analyticity [56]. Hence, there is a single function, G(Ω), that

is analytic in both the upper and lower half plane that equals GR as the real axis is ap-

proached from above and GA when approached from below. One must be careful on the

real axis due to this break in analyticity, as there is a branch cut given by

GR(ω)−GA(ω) = lim
δ→0

[G(ω + iδ)−G(ω − iδ)]

= lim
δ→0

∫ ∞

−∞
dxA(x)

[
1

ω + iδ − x
− 1

ω − iδ − x

]
(2.22)

= −2πiA(ω) .
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Where we have made use of the Plemelj formula

∫ ∞

−∞
dx

A(x)

ω ± iδ − x
= ∓πiA(x) + P

∫ ∞

−∞

A(x)

ω − x
, (2.23)

with P being the principle part. So the spectral function is related to the difference

between the retarded and advanced Green’s functions [56].

The temperature Green’s function requires different treatment because it has a finite

time domain, so the solutions must be periodic and hence there will be discrete frequency

modes. Start by choosing τ ′ = β and 0 < τ < β, therefore due to the time ordering

operator we will only be left with the term corresponding to τ < τ ′, then we use the

cyclic property of the trace to show that the temperature Green’s functions are periodic,

G(τ − β) = η ⟨B(0)A(−iτ + iβ)⟩

=
η

Z
Tr
{
e−βHB(0)e(τ−β)HA(0)e−(τ−β)H

}

= η ⟨A(0)B(iτ)⟩ (2.24)

= −ηG(τ) .

Note that bosonic and fermionic operators will have different Fourier transforms, due to

the sign of η. For bosonic operators, the temperature Green’s functions are periodic over

the interval 0 < τ ≤ β and hence can be expanded in terms of exponentials e−iωlτ , where

ωl =
2πl
β
:

G(iωl) =

∫ β

0

dτ eiωlτG(τ)

and G(τ) =
1

β

∑

ωl

G(iωl)e
−iωlτ . (2.25)

Whereas for fermonic operators the Green’s functions are anti-periodic over 0 < τ ≤ β

and hence the Fourier series can be constructed in the same way only with frequency

modes of εl =
2π
β

(
l + 1

2

)
[56].
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Re(Ω)

Im(Ω)

G(Ω) = GR(ω)

G(Ω) = GA(ω)

G(Ω) = G(iεl)

Cut along real axis

iδ

Figure 2.1: This schematic shows the important features of Green’s functions on the
complex frequency plane. G(Ω) is analytic in the upper and lower half planes and equals
the retarded Green’s function, GR(ω), just above the real axis and the advanced Green’s
function, GA(ω), just below; with a break in analyticity when crossing the real axis. Up
the imaginary axis the Green’s function is equal to the temperature Green’s function at
the Matsubara frequencies depicted by the crosses.

These discrete frequencies in the imaginary time regime are known as Matsubara

frequencies and lie up the imaginary axis in the complex Ω plane, as shown in figure 2.1.

The spectral function related to these Matsubara Green’s functions is exactly the same

as for the real time case, but now

G(iωl) =

∫ ∞

−∞
dx

A(x)

iωl − x
or G(iεl) =

∫ ∞

−∞
dx

A(x)

iεl − x
(2.26)

As the retarded, advanced and Matsubara Green’s functions can all be defined by a single

spectral function, for a given problem there should be a single Green’s function, G(Ω),

that is analytic in the upper and lower half planes and yields all the aforementioned

Green’s functions at the appropriate points on the complex plane. However, to uniquely

define G(Ω) we must also use the condition that G(Ω) must fall off to zero at least as fast

as Ω−1 as |Ω| → ∞ [56].

32



2.3. THE SINGLE PARTICLE GREEN’S FUNCTION

2.3 The Single Particle Green’s Function

Now we will turn our attention to the single particle Green’s function, that will constitute

the fundamental building blocks of the many body framework. Consider the time-ordered

correlation function between two particle field operators

〈
ψ(r, t)ψ†(r′, t′)

〉
Θ(t− t′) . (2.27)

This object describes the expectation of a particle to be created at (r′, t′) and later an-

nihilated at (r, t), or in other words the propagation of the particle. From this we can

construct a retarded Green’s function as per equation 2.12,

GR
0 (r, t; r

′, t′) = −i
〈[
ψ(r, t), ψ†(r′, t′)

]
η

〉
Θ(t− t′) . (2.28)

So there is a term as in equation 2.27 describing a particle propagator, but also a second

term of the form
〈
ψ†(r′, t′)ψ(r, t)

〉
that corresponds to a hole propagator. So the inclusion

of the commutator encapsulates the fact that the propagation of a particle forward in time

is equivalent to the propagator of a hole backward in time.

Although the retarded Green’s functions are those that arise naturally in linear re-

sponse theory, we will find that is is most practical to operate using temperature Green’s

functions during calculations and then use analytic continuation to recover the retarded

Green’s function from the temperature Green’s function. The single particle temperature

Green’s function is defined by

G0(r1, τ1; r2, τ2) = −
〈
Tτψ(r1,−iτ1)ψ†(r2,−iτ2)

〉
,

where ψ(r,−iτ) = eHτψ(r)e−Hτ (2.29)

and ψ†(r,−iτ) = eHτψ†(r)e−Hτ .
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One must be careful about the Hermitian conjugation as

[ψ(r,−iτ)]† = ψ†(r, iτ) ̸= ψ†(r,−iτ) , (2.30)

thus to avoid confusion we employ the notation

ψ(r, τ) = ψ(r,−iτ) , ψ†(r, τ) = ψ†(r,−iτ) . (2.31)

Now to evaluate this propagator in the simplest case, we take a translationally invariant

system of non-interacting particles. The translational invariance means our Green’s func-

tion only depends on spatial differences r = r1 − r2 and we already established that the

Green’s functions are only dependent on time differences, τ = τ1 − τ2, therefore we can

write our propagator in terms of single arguments,

G0(r1, τ1; r2, τ2) → G0(r, τ) . (2.32)

Now we can expand the field operators in terms of single particle creation and annihilation

operators:

ψ(r1, τ1) =
1√
V
∑

k

eik·r1ck(τ1) , ψ†(r2, τ2) =
1√
V
∑

k′

e−ik′·r2c†k′(τ2) , (2.33)

where the operators obey the usual commutation relations
[
ck, c

†
k′

]
η
= δkk′ and V is the

system volume. Substituting the equations in 2.33 into equation 2.29 yields

G0(r, τ) = − 1

V
∑

k

eik·r
〈
Tτck(τ)c

†
k(0)

〉
=

1

V
∑

k

eik·rG(k, τ)

⇒ G0(k, τ) = −
〈
Tτck(τ)c

†
k(0)

〉
. (2.34)
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The system of non-interacting particles can be described by the Hamiltonian

H0 =
∑

k

ξkc
†
kck , (2.35)

where ξk is the energy of a particle of momentum, k. By making use of the commutation

relations it can be shown for this Hamiltonian that

ck(τ) = eH0τcke
−H0τ = cke

−ξkτ ,

⇒ G0(k, τ) = −
〈
Tτcke

−ξkτc†k

〉
(2.36)

=
[
−
〈
ckc

†
k

〉
Θ(τ) + η

〈
c†kck

〉
Θ(−τ)

]
e−ξkτ .

Now we wish to Fourier transform this to Matsubara frequencies, but this must be per-

formed separately for the bosonic and fermionic cases because of both the η factor, as

well as because of the differing occupation factors given by
〈
c†kck

〉
= b(ξk), f(ξk) for the

bosonic and fermionic cases respectively. Thus, for the fermionic case we have that

G0(k, τ) = [−(1− f(ξk))Θ(τ) + f(ξk)Θ(−τ)]e−ξkτ

∴ GF
0 (k, iεl) = −(1− f(ξk))

∫ β

0

dτ e(iεl−ξk)τ (2.37)

= −(1− f(ξk))
e(iεl−ξk)β − 1

iεl − ξk
=

1

iεl − ξk

One can follow a similar process for the bosonic case [66] and it so happens that the

functional form is identical, save for the bosonic Matsubara frequencies , thus in total we

have

GB
0 (k, iωl) =

1

iωl − ξk
and GF

0 (k, iεl) =
1

iεl − ξk
. (2.38)

By comparing this back to our definition for the spectral function, given by equation 2.26,

we can immediately deduce that the spectral function must be given by a simple delta
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function,

A(x) = δ(x− ξk) . (2.39)

which makes the analytic continuation from the imaginary time Green’s functions to the

retarded and advanced Green’s functions trivial, by simply replacing iωl, iεl 7→ ω+ iδ and

iωl, iεl 7→ ω − iδ respectively,

GR,A
0 =

1

ω − ξk ± iδ
. (2.40)

Now that we have obtained the form of the most basic objects that will make up our

framework we can use them as the zeroth order term in a perturbation expansion to

construct Green’s functions that describe more complex Hamiltonians. The first case we

will examine the addition of a one-body interaction to the non-interacting Hamiltonian.

2.4 Perturbation Theory for a One-body Potential

Now we will consider the addition of a single particle potential, U(r, τ), to the free particle

Hamiltonian, H0, given in equation 2.35. If this interaction is sufficiently weak we can

treat this interaction as a perturbation on H0. We define temperature Green’s functions

for this similarly to the Schrödinger equation, as in equation 2.6:

[
∂

∂τ1
+ h0(r1) + U(r1, τ1)

]
G(r1, τ1; r2, τ2) = −δ(r1 − r2)δ(τ1 − τ2) (2.41a)

and

[
∂

∂τ1
+ h0(r1)

]
G0(r1, τ1; r2, τ2) = −δ(r1 − r2)δ(τ1 − τ2) , (2.41b)

where h0(r) = − 1

2m
∇2

r − µ .

Subject to the usual periodicity condition

G(r1, τ1 + β; r2, τ2) = −ηG(r1, τ1; r2, τ2). (2.42)
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From now we will compactify our notation to 4-positions, (1) = (r1, τ1), such that

G(1, 2) = G(r1, τ1; r2, τ2) and δ(1, 2) = δ(r1 − r2)δ(τ1 − τ2) ,

⇒
[
∂

∂τ1
+ h0(1) + U(1)

]
G(1, 2) = −δ(1, 2) (2.43a)

and

[
∂

∂τ1
+ h0(1)

]
G0(1, 2) = −δ(1, 2) . (2.43b)

From the equations in 2.43 we can find an integral equation

G(1, 2) = G0(1, 2) +

∫
d1′G0(1, 1

′)U(1′)G(1′, 2) , (2.44)

where

∫
d1′ =

∫ β

0

dτ ′1

∫

V
dr′1 .

By equating powers of U a recursion formula can be found,

G(1, 2) =
∞∑

n=0

Gn(1, 2) , (2.45)

with Gn+1 =

∫
dn′G0(1, n

′)U(n′)Gn(n
′, 2) .

This can be expressed as an infinite series expansion of G0 in powers of U ,

G(1, 2) = G0(1, 2) +

∫
d1′G0(1, 1

′)U(1′)G0(1
′, 2)

+

∫
d1′ d2′G0(1, 1

′)U(1′)G0(1
′, 2′)U(2′)G0(2

′, 2) (2.46)

+

∫
d1′ d2′ d3′G0(1, 1

′)U(1′)G0(1
′, 2′)U(2′)G0(2

′, 3′)U(3′)G0(3
′, 2) + ...

We can represent this expansion diagrammatically (figure 2.2), remembering that G0

represents the propagation of a particle from (2) to (1), thus we represent this as a line

directed from (2) to (1). The full perturbed GF, G, is represented as a thick line. The

4-positions that appear in the G are called the external vertices. Interactions with the one

body potential occur at internal vertices (dashed 4-positions in the above equations) and
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these are integrated over to take into account all possible positions and times at which

this interaction can occur. We represent these interactions as crosses in the diagrams.

2 1
=

2 1
+

2 1′ 1
+

2 2′ 1′ 1
+ ...

Figure 2.2: The diagrammatic representation of the perturbation expansion for the
Green’s function of a particle in a one-body external potential. The thick line is the
full GF, the thins lines are the single particle GFs in the absence of the potential and the
crosses are interactions with the one-body potential.

2.5 Perturbation Theory for a Two-body Potential

Now we will extend our treatment in the previous section further to consider the addition

of a two body interaction potential term to the Hamiltonian:

H(τ) = H0(τ) +Hint ,

where H0(τ) =

∫
drψ†(r)h(r, τ)ψ(r) , (2.47)

with h(r, τ) = − 1

2m
∇2

r − µ+ U(r, τ)

and Hint(τ) =
1

2

∫
dr dr′ dτ ′ ψ†(r)ψ†(r′)V (r− r′)δ(τ − τ ′)ψ(r′)ψ(r) .

So now our new ‘unperturbed’ Hamiltonian contains the one-body interaction and so the

corresponding zeroth order Green’s function we will do the two-body perturbation with

carries the information about the one-body potential already. This a prime example of

the ‘building blocks’ approach we can take using diagrammatic QTF, where if a Green’s

function is known we can use it as the effective G0 in a further perturbation regime. Note

that the delta function in the interaction term means we are considering an instantaneous

interaction. Diagrammatically we represent the two body interaction as a dashed line

connecting the 4-positions (1′) and (2′), that we know must be at the same τ due to the

delta function.

Now that we have two body interactions, the particle whose propagation we are consid-

38



2.5. PERTURBATION THEORY FOR A TWO-BODY POTENTIAL

ering can now be affected by the other particles in our many body problem and visa versa.

But formally the Green’s functions are constructed to describe the propagation of the par-

ticle with the rest of the many body state restored to its initial state. Diagrammatically

this means that we may have interaction lines connecting the main ‘backbone’ particle

propagation to other particle propagators, but these extra sections of propagators cannot

have any external vertices (they must be closed loops). Furthermore internal vertices

forming sections of the diagram that are completely disconnected from the ’backbone’

that connects the eternal vertices (that is that there are no interaction lines connecting

the two or more distinct parts) are found to formally cancel in the perturbation expansion.

This follows logically realising that disconnected sections of the diagram correspond to

background processes that do not interact with the particle propagator we are interested

in, so should have no affect on its dynamics.

The full derivation of the diagrammatic expansion of the two body expansion can

be summarised in essentially two steps: firstly, the full Green’s function is expanded in

of the two body interaction, each term including a many-particle Green’s function of

the unperturbed system; secondly, Wick’s theorem is used to express the many-particle

Green’s function in terms of single particle Green’s functions that we know. Then each of

the terms of the expansion can be expressed in terms of Feynman diagrams by establishing

a set of conventions, or Feynman rules, for what each element of the diagram corresponds

to in terms of the integral equations. Here we will omit the details of the proof as these

are quite tedious and can be found in a number of standard texts (see [67, 66, 68, 56]);

instead, we will simply summarise the Feynman rules as per Rickayzen’s convention [56].

If we remove the time dependence from the one-body potential, U(r, τ) → U(r) then

our Hamiltonian has spatial and temporal invariance and we can easily Fourier transform

from G(1, 2) to G(k, ε), so that we can construct our Feynman rules in terms of momenta

and energies (or equivalently frequencies as ℏ = 1). For the nth order contribution to

G(k, ε) one must draw all topologically distinct connected diagrams that:

(i) Each contain two external vertices 1 and 2.
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(ii) Each contain 2n internal vertices.

(iii) All internal vertices are connected in pairs by dashed interaction lines.

(iv) Solid electron lines are drawn with exactly one entering and exiting each internal

vertex, one exiting external vertex 2 and one entering external vertex 1.

Then the Feynman rules are:

(i) Assign a momentum k and energy ε to the particle lines entering and exiting the

diagram.

(ii) Assign a momentum ki and energy εi to each internal particle line such that energy

and momentum are conserved at each vertex.

(iii) Introduce a factor G0(ki, εi) for each line carrying the respective energy and mo-

mentum labels.

(iv) Introduce a factor −V (ki) for each dashed interaction line.

(v) Sum over all n arbitrary internal energies εi and sum or integrate over all internal

momenta ki.

(vi) Introduce a factor T for each internal energy and a factor V−n for each discrete

internal momentum or (2π)−3n if the momenta are continuous.

(vii) Introduce a factor (−η) for each closed particle loop for spinless particles or (−2η)

for spin-1/2 Fermions.

2.6 Single Particle Green’s Function with Disorder

For real systems we will want to include the effect of disorder/impurities on our electron

propagators. Take a model where all the impurities are alike, such that we can construct
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a one-body potential

U(r) =
Nα∑

i=1

u(r−Ri) , (2.48)

where u(r−Ri) is the potential due to an impurity located at Ri and the number of im-

purities is Nα. Thus we can employ the same iterative solution to the integral equations

as in section 2.4 (equation 2.46). But at the level of measurements made on a macroscopic

scale, such as the conductivity, the impurity distribution appears homogeneous. There-

fore, we need not be concerned with a particular distribution of impurities, but rather a

average over possible distributions. This corresponds to considering the ensemble average

of the Green’s function,

⟨G(1, 2)⟩ens , (2.49)

and because G0 is independent of the impurities, this amounts to calculating the ensemble

averages of the impurities distributions at each order in U ,

⟨U(1′)⟩ens , ⟨U(1′)U(2′)⟩ens , ⟨U(1′)U(2′)U(3′)⟩ens , etc. . (2.50)

If one can assume that the distribution of impurities is independent and random,

which tends to be a reasonable assumption for a low concentration of impurities, then one

finds that ⟨G(1, 2)⟩ens can be represented by a diagrammatic expansion as in figure 2.3.

Where the thick line is ⟨G(1, 2)⟩ens, the thin lines are the bare electron propagators G0,

the crosses represent an impurity at position Ri and the dotted lines are the interaction

between the electron and the impurity. The contributions from averages to only first order

in U , i.e. ⟨U⟩ens, only amount to a constant shift in energy level and no dynamical effects,

so these have been absorbed into the chemical potential without loss of generality.

A Dyson equation can be formed from this infinite set of diagrams by identifying a

‘self-energy’ part, Σ, that contains the complete set of interactions with impurities that
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= + + +

+ + + ...

2 1 2 1 2 2′ 1′ 1 2 3′ 2′ 1′ 1

2 4′ 3′ 2′ 1′ 1 2 4′ 3′ 2′ 1′ 1 2 4′ 3′ 2′ 1′ 1

Figure 2.3: The beginning of the full diagrammatic series for the impurity averaged
Green’s function. The bold arrow is the full Green’s function including all terms in the
perturbation expansion, the thin arrows are the unpurturbed clean Green’s function and
the dotted lines are the interaction with the impurity, represented by the cross.

cannot be separated by breaking a single electron line to form two simpler diagrams.

Because the ensemble averaging automatically ensures translational invariance we can

Fourier transform to momentum and energy so we have

⟨G(k, iε)⟩ens =
[
G−1

0 (k, iε)− Σ−1(k, iε)
]−1

; (2.51)

note that from here we will drop the integer subscript from the Matsubara frequencies

and the inclusion of the i in the argument will imply we are working with Matsubara

frequencies. The simplest approximation that can be taken is to take the self energy part

to be as shown in figure 2.4; known as the first Born approximation. This is useful in

the case where the scattering by the impurities in very weak, because we have chosen to

neglect terms including three or more scatterings with the same impurity, which intuitively

will be suppressed when scattering is highly improbable. Less intuitively though it also

discards all contributions that include any crossing or nesting of impurity scatterings.

This can be justified because it can be shown that contributions of these types carry a

Σ(k, iε) =

Figure 2.4: The self energy part in the First born approximation, found when considering
only the leading contribution at each order in U . The Green’s function is the unperturbed
G0.
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factor of (kF l0)
−1 compared to the other diagrams at the same order. Then because the

impurity scattering is weak the mean free path, l0, is very large and this factor suppresses

the diagrams containing these types of impurity interactions.

The mean free path can be related to the characteristic scattering lifetime, τ0, by

l0 = vF τ0. The scattering lifetime is defined as

1

τ0
= 2πN(0)nimp|U |2 ; (2.52)

where N(0) is the density of states (DoS) at the Fermi surface per spin, nimp is the number

density of impurities and |U | is the strength of the potential. Given this definition of the

scattering lifetime it is also the case that the self-energy part as in figure 2.4 is given by

Σ(k, iε) =
∑

k′

G0(k
′, iε)

1

2πN(0)τ0
=
∑

k′

1

iε− ξk′

1

2πN(0)τ0
. (2.53)

In these two equations we have made the assumption that, because we are considering

transport, the only electrons that are relevant are those that are close to the Fermi surface.

As a result of this the scattering off the impurity only contributes (2πN(0)τ0)
−1 to the

self energy part: a factor that is independent of both momentum and energy. Because of

this assumption we can change our sum to an integral and extend the limits to infinity,

as the integrand will decay sufficiently rapidly away from zero:

Σ(k, iε) = − 1

2πτ0

∫ ∞

−∞
dξ

iε+ ξ

ε2 + ξ2
. (2.54)

The second term is odd and so will evaluate to zero and the first term is the standard

integral for arctan(ε) and therefore when the limits are taken

Σ(k, iε) = − i

2τ0
sgn(ε) ,

⇒ ⟨G(k, iε)⟩ens =
1

iε− ξk +
i

2τ0
sgn(ε)

. (2.55)
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CHAPTER 2. THE METHODOLOGY OF GREEN’S FUNCTIONS FOR
TRANSPORT

As we will be considering the transport properties of disordered systems, this impurity

Green’s function will be the primarily building block of diagrammatic calculations.
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CHAPTER 3

CONDUCTIVITY IN THE

NORMAL STATE

In the previous chapter we established the diagrammatic methodology we require to per-

form calculations within the thesis. Now in this chapter we will put it use for the electronic

transport in metals in the normal state. We will use diagrammatic quantum field theory to

calculate the classical result of Drude conductivity for electrical conductivity and then the

electronic thermal conductivity; in doing so we will have verified the Wiedemann-Franz

relation.

In section 3.3, we introduce the primary quantum interference effect of interest: the

weak localisation effect. We discuss the physical picture of the effect and how this re-

lates to the maximally-crossed diagrams that are used to calculate the weak localisation

correction to conductivity. In section 3.4, we derive the form of the cooperon, which is

a diagrammatic object that allows us to encapsulate the behaviour of the infinite set of

maximally-crossed diagrams into one term. We then use this in the following section to

calculate the weak localisation correction to both electrical and electronic thermal con-

ductivity, and show that the Wiedemann-Franz relation still holds for the corrections.

We then end the chapter by examining another diagrammatic object known as the pair

propagator, which is related to the superconducting transition and use it to calculate the
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CHAPTER 3. CONDUCTIVITY IN THE NORMAL STATE

transition temperature.

3.1 Drude Conductivity

We wish to show that in the simplest approximation our quantum field theory methods

can reproduce the classical result of the Drude conductivity,

σ =
ne2τ0
m

. (3.1)

This will serve as an important proof of concept. Of course, this is using a very powerful

and complex method to obtain a relatively simple result, however this result is the baseline

against which all the more interesting quantum effects will be compared, so we must be

sure that we can successfully reproduce Drude to have any faith in the quantum corrections

we will go on to calculate. The structure of this calculation will follow that shown in ref

[56].

To do this we consider a disordered metal in the presence of a weak electric field, E,

with corresponding vector potential, A, related by

E(r, t) = −∂A(r, t)

∂t
. (3.2)

The Hamiltonian describing this can written as

H =
∑

σ

∫
d3r ψ†

σ(r)

[
(−i∇− eA)2

2m
+ U(r)

]
ψσ(r) , (3.3)

to which a current density per spin can be associated (see appendix B):

jσ(r) = j∇σ (r) + jAσ (r) ,

j∇σ (r) =
ie

2m

(
ψ†
σ(r)∇ψσ(r)−∇ψ†

σ(r)ψσ(r)
)
, (3.4)

jAσ (r) = −e
2

m
A(r)ψ†

σ(r)ψσ(r) ;

46



3.1. DRUDE CONDUCTIVITY

where we have suggestively split the current density operator into two parts: the param-

agnetic part, j∇, and the diamagnetic part, jA.

To extract a macroscopic observable such as the conductivity, we must find the macro-

scopic current density, J, from the current density operator. The macroscopic current

does not depend on microscopic details of the system, or in other words it is an averaged

quantity, and so can be related to the microscopic operator by

J(r, t) =
∑

σ

⟨jσ(r, t)⟩0,ens . (3.5)

The average here denotes first taking a thermal expectation value with respect to the

unperturbed Hamiltonian, H0, and then taking an ensemble average over all possible

impurity distributions. To obtain the leading-order approximation of the conductivity,

we will appeal to the linear response of the system to the A-field. The diamagnetic term

is already linear in A so we can immediately average this term, but for the paramagnetic

term we must apply Kubo’s formula to obtain for the αth component of J (see appendix

A for a derivation of Kubo’s formula),

Jσα(r, t) = ⟨jσα(r, t)⟩0,ens =− e2

m
A(r, t)

〈
ψ†
σ(r)ψσ(r)

〉
0,ens

−
∫ ∞

0

dt′
∫

V
d3r′Aβ(r

′, t′)
〈
GR,E

αβσ(r, t, r
′, t′)

〉
ens

, (3.6)

where GR,E
αβσ(r, t, r

′, t′) =
〈[
j∇σα(r, t), j

∇
σβ(r

′, t′)
]〉

0
. (3.7)

Note that we are using the summation convention where repeated index, β, is being

summed over. The first term can be evaluated immediately because the expectation

value,
〈
ψ†
σψσ

〉
simply gives the number density per spin, so

〈
jAσα(r, t)

〉
= −nσe

2

m
Aβ(r, t)δαβ . (3.8)
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CHAPTER 3. CONDUCTIVITY IN THE NORMAL STATE

The second term we have written in terms of the current-current Green’s function

〈
GR,E

αβσ(1, 1
′)
〉
ens

= −i
〈[
j∇σα(1), j

∇
σβ(1

′)
]〉

0,ens
, (3.9)

where we have switched to the 4-position notation. Because we are ensemble averaging,

translational invariance is ensured, so we can write

〈
GR,E

αβσ(1, 1
′)
〉
ens

= GR,E
αβσ(1− 1′) , (3.10)

where for now we will use the convention that the Green’s functions written in terms of

differences have had the ensemble average completed. This gives the integral in equation

3.6 the form of a convolution, and hence we can immediately Fourier transform to obtain

〈
j∇σα(q, ω)

〉
= −Aβ(q, ω)G

R,E
αβσ(q, ω) . (3.11)

Now switch to working with the temperature Green’s functions,

GE
αβσ(1, 1

′) = −
〈
Tτ j∇σα(1)j

∇
σβ(1

′)
〉
0
, (3.12)

from which we can extract the retarded Green’s function by appropriate analytic con-

tinuation. The 4-position labels now contain the imaginary time, so (1) = (r, τ) and

the average, ⟨...⟩0, denotes a thermal average for a particular impurity distribution. We

substitute in for the current operators, but we do so introducing two extra degrees of

freedom, 2 and 2′, such that we can subscript the ∇ operators to indicate which operator

they should act on. Then we can later take the limit that 2 → 1− and 2′ → 1′− to elimi-

nate the fictitious degrees of freedom whilst preserving correct time ordering. Doing this
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3.1. DRUDE CONDUCTIVITY

we obtain

GE
αβσ(1, 1

′) =
e2

4m2
(∇2α −∇1α)(∇2′β −∇1′β)

〈
Tτψ

†
σ(1)ψσ(2)ψ

†
σ(1

′)ψσ(2
′)
〉
0

=
e2

4m2
(∇2 −∇1)α(∇2′ −∇1′)β Gσ(2, 2

′; 1, 1′) . (3.13)

The Green’s function in equation 3.13 is a two-particle Green’s function that can be

written in terms of the single-particle electron Green’s functions in the presence of disorder

by making use of Wick’s theorem,

G2,σ(2, 2
′; 1, 1′) = Gσ(2, 1)Gσ(2

′, 1′)−Gσ(2, 1
′)Gσ(2

′, 1) . (3.14)

Diagrammatically these two terms can be represented as in figure 3.1. The first term turns

out to be zero as each single-particle Green’s function corresponds to the expectation value

of the current density at a point in the absence of an applied field, which is of course zero.

We take the ensemble average of the remaining second term, where we will assume that

1

2

1′

2′
1 2′

2 1′

Figure 3.1: The diagrammatic representation of the two terms obtained from the Wick
expansion of the two particle Green’s function in terms of single particle Green’s functions.

the disorder is sufficiently weak such that there will be no interference terms between

the two propagators. This means that the average of the product can be treated as the
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CHAPTER 3. CONDUCTIVITY IN THE NORMAL STATE

product of the averages (which is not true in general) i.e.

⟨Gσ(2, 2
′; 1, 1′)⟩ens = −⟨Gσ(2, 1

′)Gσ(2
′, 1)⟩ens

= −⟨Gσ(2, 1
′)⟩ens ⟨Gσ(2

′, 1)⟩ens

= −Gσ(2− 1′)Gσ(2
′ − 1) . (3.15)

Now that the Green’s functions are the translationally invariant impurity Green’s func-

tions that we calculated in section 2, they can be Fourier transformed easily and the limits

2 → 1 and 2′ → 1′ taken to obtain

GE
αβσ(q, iω) =

e2

4m2V T
∑

k,ε

(2k+ q)α(2k+ q)βGσ(k+ q, iε+ iω)Gσ(k, iε) . (3.16)

Thus, by also performing the trivial Fourier transform on the diamagnetic term, we can

write the problem in terms of the linear response function, KE. Note that the problem is

also completely spin-independent so we can simply drop the spin factor and introduce a

factor of two, this yields:

Jα(q, ω) = −KE
αβ(q, ω)Aβ(q, ω) =

KE
αβ(q, ω)Eβ(q, ω)

−iω = σαβ(q, ω)Eβ(q, ω) , (3.17)

with KE
αβ(q, ω) = GR,E

αβ (q, ω) +
ne2

m
δαβ . (3.18)

From this set of equations we see that if we evaluate the temperature Green’s function in

equation 3.16, and analytically continue it to real frequencies, then we can read off the

conductivity tensor, σαβ(q, ω).

Substituting in the the impurity averaged Green’s functions given in equation 2.55

leads to

GE
αβ(q, iω) =

2e2T

4m2V
∑

kε

(2k+ q)α(2k+ q)β

× 1

iε+ iω − ξk+q +
i

2τ0
sgn(ε+ ω)

1

iε− ξk +
i

2τ0
sgn(ε)

. (3.19)
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For most cases of interest the wavelength of the applied field will be much longer than the

Fermi-wavelength, or in terms of momenta |q| ≪ |k|. In particular for a uniform applied

field, q = 0. In this regime only electrons close to the Fermi surface will be involved in

the transport, so we can approximate |k| ≈ kF . This can also be interpreted the Green’s

functions being peaked around the Fermi-surface with a width proportional to q. This

allows the Green’s function to be simplified to

GE
αβ(q, iω) =

2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ

∫ ∞

−∞
dξk

×
∑

ε

1

iε− ξk +
i

2τ0
sgn(ε)

1

iε+ iω − ξk − µθ +
i

2τ0
sgn(ε+ ω)

. (3.20)

We have converted the sum over momentum to an integral over the kinetic energy, ξk,

and surface integral over dΩ = dθdϕ sin θ; this introduces a factor of the density of states

at the Fermi surface, N(0). The factor µθ = vF · q = vF q cos θ is the first-order term

in q from ξk+q. Note that the summation over frequency and integration over energy

are purposefully ordered, and one must in general be careful for divergence issues when

exchanging the order. This calculation is an instance where the logarithmic divergence

of the integral does not allow for a trivial interchanging of the order. However, we show

in appendix C that careful treatment of this simply leads to a term that exactly cancels

the contribution from the diamagnetic part. So here we will make the ansatz that we can

simply exchange the order without issue and this will cancel the diamagnetic part, and

so we obtain

KE
αβ(q, iω) =

2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ

×
∑

ε

∫ ∞

−∞
dξ

1

ξ − iε− i
2τ0

sgn(ε)

1

ξ + µθ − iε− iω − i
2τ0

sgn(ε+ ω)
. (3.21)

We compute the integral over dξ using a contour integral, but it will only be non-zero if

the two poles are in opposite half planes. We can without loss of generality choose ε < 0

and ε+ω > 0 (we will obtain exactly the same result choosing the other way around), to
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give

KE
αβ(q, iω) =

2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ

×
∑

ε

∫ ∞

−∞
dξ

1

ξ − iε+ i
2τ0

1

ξ + µθ − iε− iω − i
2τ0

Θ(−ε)Θ(ε+ ω)

=
2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ (3.22)

×
∑

ε

∮

Γ

dz
1

z − iε+ i
2τ0

1

z + µθ − iε− iω − i
2τ0

Θ(−ε)Θ(ε+ ω) .

The contour Γ closes in the upper half plane, and hence we pick up the residue at z =

iε+ iω − µθ +
i

2τ0
yielding

KE
αβ(q, iω) =

2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ

∑

ε

2πi

iω − µθ +
i
τ0

Θ(−ε)Θ(ε+ ω) . (3.23)

Now the term inside the sum over ε has no ε-dependence, so only the Θ-functions deter-

mine the value of the sum, therefore we can use the result

T
∑

ε

Θ(−ε)Θ(ε+ ω) =
ω

2π
, (3.24)

to find

KE
αβ(q, iω) =

2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

ωτ0
1 + ωτ0 + iµθτ0

. (3.25)

The Drude conductivity is obtained when the electric field is static and uniform, there

we only require the Fourier components with q = 0 and ω = 0. So set q = 0 now to yield

KE
αβ(0, iω) =

2e2N(0)

m2

k2F
3
δαβ

ωτ0
1 + ωτ0

=
ne2τ0
m

ω

1 + ωτ0
δαβ . (3.26)

Now we can analytically continue from Matsubara frequencies to real frequencies by taking
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iω → ω and then set ω = 0 and α = β to obtain the d.c. conductivity:

KE
αβ(0, ω) =

ne2τ0
m

−iω
1− iωτ0

δαβ , (3.27a)

∴ σαβ(ω) =
ne2τ0
m

1

1− iωτ0
δαβ , (3.27b)

σDrude = σαα(0) =
ne2τ0
m

. (3.27c)

We have therefore successfully reproduced the classical Drude conductivity result using

diagrammatic field theory techniques.

3.2 Thermal Conductivity of Electron Transport

For the calculation of the thermal conductivity the process is similar to that of the elec-

trical conductivity, except that the Green’s function that the Kubo formula yields is now

the heat current-heat current Green’s function,

GT
αβσ(1, 1

′) = −
〈
Tτ jTσα(1)j

T
σβ(1

′)
〉
0
. (3.28)

The derivation of this is not as simple as that of the electrical conductivity, where it is

possible to write a Hamiltonian describing the applied electrical field. Whereas, we cannot

write a Hamiltonian for the application of a thermal gradient, as it is a statistical property

of the system. However, Luttinger [32] demonstrated that one could circumvent this issue

by instead studying a Hamiltonian with a field, analogous to a gravitational field, along

with Einstein relations to find the thermal transport coefficients. The appropriate form

for the heat-current operator to use in the Green’s function is

jTσ (1) =− i

2m

(
∂τψ

†
σ(1)∇ψσ(1) +∇ψ†

σ(1)∂τψσ(1)
)
, (3.29)

where ∂τ is the partial derivative with respect to imaginary time, which is the form found

in ref [30]. In general, one must be careful to ensure that the heat-current operator is
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appropriate choice for the system in question, however, we can simply use the Wiedemann-

Franz relation to confirm that our heat-current operator is the correct choice (further

discussion of the construction of the heat-current operator can be found in refs [31, 69]).

We can extract the differential operators in the heat current - heat current Green’s

function in the same way as in equation 3.13, leading to

GT
αβσ(1, 1

′) =
1

4m2
(∂τ1∇2 + ∂τ2∇1)α(∂τ1′∇2′ + ∂τ2′∇1′)βGσ(2, 2

′; 1, 1′) . (3.30)

The principal difference in this case is that when the temporal Fourier transform takes

place, the time derivatives will bring down factors of the Matsubara frequencies, yielding

GT
αβσ(q, iω) = − 2T

4m2V
∑

kε

(
ε(k+ q) + (ε+ ω)k

)
α

(
ε(k+ q) + (ε+ ω)k

)
β

×Gσ(k+ q, iε+ iω)Gσ(k, iε) . (3.31)

Once again the linear response function is obtained by simply inverting the order of the

momentum and frequency sums and is related to the thermal conductivity, κ, by the

relation

Tκαβ(q, ω) =
KT

αβ(q, ω)

−iω (3.32)

Making use of the assumption |q| ≪ |k|, and gaining a factor of 2 for each spin, we can

therefore write

KT
αβ(q, iω) =− 2N(0)T

m2

∫
dΩ

4π
kFαkFβ

∑

ε

(
ε+

ω

2

)2

×
∫ ∞

−∞
dξ

1

ξ − iε− i
2τ0

sgn(ε)

1

ξ + µθ − iε− iω − i
2τ0

sgn(ε+ ω)
. (3.33)

This calculation is then identical to that of the electrical conductivity until the sum over
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Matsubara frequencies, where instead we have

KT
αβ(q, iω) = −2N(0)

m2

∫
dΩ

4π
kFαkFβ

2πτ0
1 + ωτ0 + iµθτ0

× T
∑

ε

(
ε+

ω

2

)2
Θ(−ε)Θ(ε+ ω) . (3.34)

The Matsubara sum can be reformulated using ε = 2πT
(
l − 1

2

)
and ω = 2πTm, and

because the Θ-functions limit the sum to −ω < ε < 0 we also transform ε → −ε, which

leads to

S(iω) =T
∑

ε

(
ε+

ω

2

)2
Θ(−ε(ε+ ω))

=T (2πT )2
m∑

l=1

(
l2 − (m+ 1)l +

1

4
(m+ 1)2

)
. (3.35)

To solve the sum use the following standard results

m∑

l=1

l2 =
m(m+ 1)(2m+ 1)

6
(3.36a)

m∑

l=1

l =
m(m+ 1)

2
(3.36b)

m∑

l=1

1 = m. (3.36c)

After simplifying and substituting back for the Matsubara frequency we get

S(iω) =T (2πT )2
m(m2 − 1)

12

=
(2πT )2

12

ω

2π

(
ω2

(2πT )2
− 1

)
. (3.37)
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CHAPTER 3. CONDUCTIVITY IN THE NORMAL STATE

Now substituting this back into the linear response function and setting q = 0 we obtain

KT
αβ(0, iω) =− 2N(0)k2F

3m2
δαβ

π2T 2

3

ωτ0
1 + ωτ0

(
ω2

(2πT )2
− 1

)

=
nτ0
m

π2T 2

3

ω

1 + ωτ0

(
1− ω2

(2πT )2

)
δαβ . (3.38)

For thermal conductivity we will only be concerned with the ‘d.c.’ result corresponding

to ω = 0. Hence, we can discard the term cubic in ω as we will be taking the limit ω → 0

anyway. At this stage we can also analytically continue iω → ω+iδ to obtain the retarded

linear response function,

∴ KT
αβ(0, ω) =

nτ0
m

π2T 2

3

−iω
1− iωτ0

δαβ . (3.39)

Finally, from this we can obtain the thermal conductivity using equation 3.32,

Tκ =
π2T 2

3

nτ0
m

. (3.40)

To be reassured that this method for finding the thermal conductivity is valid we can

confirm our result is consistent with the Wiedemann-Franz law [3] which states that for

electron gases at sufficiently high temperatures (such that other quantum effects do not

interfere) the ratio of the thermal and electrical conductivity is given by

Tκ

σ
=
π2T 2

3e2
. (3.41)

Or if we restore the Boltzmann factor it can also be written as

κ

Tσ
=
π2k2B
3e2

= L , (3.42)

where L is the Lorenz factor. Clearly our calculation satisfies this relation so we can

be satisfied that our choice of heat-current operator is appropriate. The inclusion of
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time derivatives in the operator will mean that we will always get an additional factor

proportional to a Matsubara frequency on the vertex in thermal calculations compared

to electrical.

3.3 Quantum Interference Effects and Weak localisa-

tion

The major advantage of calculating the conductivity using diagrammatic field theory

techniques is the ease at which interference effects can be included. In this section we will

expand upon the Drude calculation by including the weak localisation correction to the

conductivity.

In the Drude calculation the only impurity scattering terms included are those that

scatter off the same impurity and interference between scattering off different impurities

are not included. This is a good approximation at higher temperatures because the phase

coherence lifetime, τϕ, is small in comparison the the impurity scattering lifetime, τ0.

This means that as the electron propagates its quantum mechanical phase is scrambled,

or ‘dephased’, on average in between each impurity scattering event. So any coherent

scattering is averaged out and hence interference effects can be neglected. However as the

temperature is lowered the phase coherence lifetime, or equivalently the phase coherence

length lϕ, will increase and when τϕ > τ0 scattering on different impurities can interfere

[66]. When the coherence length is such that it is comparable to the system size, L,

we enter the so called mesoscopic regime where all manner of quantum effects become

important.

We will be interested in the case where the sample is sufficiently large so that l0 ≪ lϕ ≪

L, this is because we can still ensemble average in this regime which eliminates most of the

interference effects. The important class of diagrams that survive the ensemble averaging

are the maximally-crossed diagrams that correspond to weak localisation [38, 41].

We can see why this is the case by examining the problem from the more physical
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perspective of the paths the electrons take through the metal as they conduct. We will

follow the interpretation of Altshuler and Aronov [45] and consider the probability of a

particle travelling from point A to point B,

P (A→ B) =

∣∣∣∣∣
∑

i

Ai

∣∣∣∣∣

2

=
∑

i

|Ai|2 +
∑

i ̸=j

AiA
∗
j , (3.43)

where Ai is the probability amplitude for the particle travelling along the ith path. The

first term is simply the sum of all the probabilities of travelling down each path and the

second term comes from the interference between the different paths. The averaging over

impurity positions will mean that most pairs of paths will have negligible interference,

because the averaging usually destroys any coherence between the paths. The class of

paths where the interference survives the averaging are depicted in the lowest path in

figure 3.2: the so-called self-intersecting paths.

A B

O

Figure 3.2: A visual representation of a few possible paths through a space an particle
could take when propagating from point A to point B. The bottom path shows a self-
intersecting path, where the particle passes through the point O twice. Paths of this type
lead to a increased probability of remaining at point O, hence leading to a decrease in
conductivity.

The path in the figure actually depicts two possible paths: the particle first travels

from A to O; then it can travel around the loop in either the clockwise or anticlockwise

direction (which we will label as A1 and A2 respectively); then it continues on from O to
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B. For the particle to have travelled around the same loop but in the opposite direction, it

must have scattered off the same impurities but in the opposite order [66]. Therefore, the

two paths will have picked up the same phase as they travelled around the loop, meaning

their relative phase is always zero and hence they will constructively interfere. Then the

probability of finding the particle at O is given by

|A1|2 + |A2|2 + 2Re[A1A
∗
2] = 4|A1|2 , (3.44)

which is a factor 2 larger than if there was no coherence and we could ignore the inter-

ference term. This means that for self-interesting paths there is a higher probability of

remaining at the point O and thereby a lower probability of reaching point B, thus leading

to a reduction in the conductivity. This is the origin of the name ‘weak localisation’.

r

R1 R2

Figure 3.3: A representation of two time-reversed paths that an electron could take when
travelling from point r and scattering off two impurities, before returning to r. One path
propagates to R1 first, the R2, and visa versa. If the propagators in between each impurity
are identical, up to their direction, the two paths will constructively interfere.

To demonstrate why the maximally-crossed diagrams correspond to these self inter-

secting paths, we will examine the simplest case where two such time reversed paths can

be constructed, following the discussion in Bruus and Flensburg [66]. Suppose we have

two impurities, as shown in figure 3.3. One path scatters off the impurity at position R1

first, then off the impurity at R2 then returns to the starting point r and the other path

scatters first off R2 and then off R1. The probability amplitudes of these two paths can
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be related to Green’s functions by

A1 ∝ lim
r′→r

[
GR

0 (r, R1, ε)UG
R
0 (R1, R2, ε)UG

R
0 (R2, r

′, ε)
]

A2 ∝ lim
r′→r

[
GR

0 (r, R2, ε)UG
R
0 (R2, R1, ε)UG

R
0 (R1, r

′, ε)
]
, (3.45)

where we assume that the impurity interaction is short-ranged, so the one-body potential

is given by

U(r) =
∑

i

Uδ(r −Ri) . (3.46)

Since the Green’s function is time-translationally invariant, we have taken the temporal

Fourier transformation. Now the quantum correction due to this interference is given by

Re[A1A
∗
2] ∝ lim

r′→r
Re
[
GR

0 (r, R1, ε)UG
R
0 (R1, R2, ε)UG

R
0 (R2, r

′, ε)

×
(
GR(r, R2, ε)UG

R(R2, R1, ε)UG
R(R1, r

′, ε)
)∗]

(3.47)

and after ensemble averaging over the impurity positions we can take the spatial Fourier

transform to obtain

⟨δP (O)⟩ens ∝ Re
1

V4

∑

k1k2k3q

GR
0 (q − k1, ε)UG

R
0 (q − k2, ε)UG

R
0 (q − k3, ε)

×GA
0 (k1, ε)UG

A
0 (k2, ε)UG

A
0 (k3, ε) . (3.48)

This is can be represented diagrammatically as the first diagram in figure 3.4. It is

straightforward to see how this process can be repeated for increasing numbers of impuri-

ties leading to diagrams such as the second and third in the figure. Therefore, to calculate

the weak localisation correction to the conductivity, we must sum up the infinite class

of such diagrams, restoring the appropriate factors and sums in analogy with the Drude

calculation that would arise from Kubo formula.
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Figure 3.4: The first three diagrams in the series of maximally crossed diagrams that arise
when considering the self intersecting paths that give rise to the weak localisation correc-
tion to conductivity. The upper Green’s functions are retarded, the lower are advanced
and the the upper and lower Green’s functions scatter off the same local impurities, rep-
resented by the crosses, in a time reversed order.

3.4 Calculation of the Cooperon

Since we need to sum an infinite series of diagrams, it is appropriate to construct a Dyson

equation. The way to approach this for the maximally crossed diagrams is to realise that

we can construct a ladder of impurities by twisting the diagram around as in figure 3.5.

We can then take the ladder sum and compute it in isolation. This infinite impurity

ladder is shown in figure 3.6 and is known as the cooperon. It can be represented in terms

the Dyson equation form in the lower line of the figure to give

ΓC(q, iε, iε+ iω) = Γ0 + Γ0ΣC(q, iε, iε+ iω)ΓC(q, iε, iε+ iω) (3.49)

with Γ0 =
1

2πN(0)τ0

and ΣC(q, iε, iε+ iω) =
∑

k

G(q− k, iε+ iω)G(k, iε) .

Calculating the cooperon is therefore reduced to calculating the self-energy part, ΣC, and

then simply substituting it and the impurity line contribution, Γ0 back into the Dyson

equation. Using the impurity Green’s function given in equation 2.55, we have

ΣC(q, iε, iε+ iω) =
∑

k

1

iε+ iω − ξq−k +
i

2τ0
sgn(ε+ ω)

1

iε− ξk +
i

2τ0
sgn(ε)

(3.50)

=N(0)

∫
dΩ

4π

∫ ∞

−∞
dξ

1

ξ − µθ − iε− iω − i
2τ0

sgn(ε+ ω)

1

ξ − iε− i
2τ0

sgn(ε)
,
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Figure 3.5: An example of a maximally crossed diagram where the propagator lines have
been twisted, so the impurity lines are displayed a a ‘ladder’ of impurity interaction lines
in a particle-particle or hole-hole channel.

ΓC = + + + . . .

= + ΓC

Figure 3.6: The upper line in the figure displays the first first terms in infinite series of
the cooperon. The lower line displays the infinite sum as a Dyson equation.

where we are in the diffusive limit, |q| ≪ l−1
0 , along with once again being primarily

interested in long wavelength applied fields and so |q| ≪ |k| ∼ kF . The integral over dξ

can be completed using a contour integral, choosing ω > 0, which yields

ΣC(q, iε, iε+ iω) = 2πN(0)τ0

∫
dΩ

4π

1

1 + ωτ0 − iµθτ0
Θ(−ε(ε+ ω)) . (3.51)

Using the fact that we are in the diffusive limit, which implies the limits ωτ0 ≪ 1 and

ql0 ≪ 1, we can expand out the denominator to leading order

ΣC(q, iε, iε+ iω) ≈ 2πN(0)τ0

∫
dΩ

4π

(
1− ωτ0 + ivF · qτ0 − (vF · qτ0)2

)
. (3.52)
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When the angular integration is completed, the first order term vF · q will average to

zero, hence why the leading order term in ql is quadratic. This leads to

ΣC(q, iε, iε+ iω) = 2πN(0)τ0
(
1− (Dq2 + ω)τ0

)
, (3.53)

where D =
v2F τ0
d

is the diffusion constant. Substituting equation 3.53 back into the Dyson

equation, we obtain

ΓC(q, iε, iε+ iω) =
Γ0

1− Γ0ΣD

=
1

2πN(0)τ 20

1

Dq2 + ω
for ω > 0 . (3.54)

If we were to take the poles to have opposite signs, i.e. ε > 0 and ε + ω < 0 and hence

ω < 0, we get the same result apart from the sign of ω:

ΓC(q, iε, iε+ iω) =
1

2πN(0)τ 20

1

Dq2 − ω
for ω < 0 . (3.55)

Hence we can combine the two regimes like so

ΓC(q, iε, iε+ iω) =
1

2πN(0)τ 20

1

Dq2 + |ω| Θ(−ε(ε+ ω)) . (3.56)

One can see that that the cooperon has a pole at q → 0, ω → 0 and though this does not

pose a problem for the form of the cooperon in isolation, when we use it to calculate weak

localisation effects we will be integrating over dq and so this causes divergence issues

unless the pole is cut off. The cooperon describes phase coherence between paths, so

fortunately it is naturally cutoff by the phase coherence length lϕ, Remembering that at

length scales above this the phase is scrambled and there is no reduction in conductivity.

We could introduce this cutoff by changing the lower limit of the dq integral to q = l−1
ϕ ,

but more conveniently it is equivalent to leave the lower limit and introduce into the
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denominator the phase breaking rate, τ−1
ϕ ,

ΓC(q, , iε, iε+ iω) =
1

2πN(0)τ 20

1

Dq2 + |ω|+ τ−1
ϕ

Θ(−ε(ε+ ω)) . (3.57)

3.5 Weak Localisation Correction to Electrical and

Thermal Conductivity

3.5.1 Correction to Electrical Conductivity

To calculate the weak localisation correction to conductivity we can set up a bubble di-

agram including the cooperon, which includes all the maximally crossed diagrams up to

infinite order; this diagram is shown in figure 3.7. We will start by calculating the correc-

tion to electrical conductivity, where, by following the same diagrammatic construction

we used for the Drude calculation, we can write the linear response function as

KWL,E
αβ (0, iω) =

2T

V2

∑

ε

∑

kq

(ek
m

)
α

(e(q− k)

m

)
β
G(k, iε+ iω)G(q− k, iε+ iω)

×G(q− k, iϵ)G(k, iε)
Θ(−ε(ε+ ω))

2πN(0)τ 20 (Dq
2 + |ω|+ τ−1

ϕ )
. (3.58)

We have the external momentum set to zero here, so this corresponds to the application of

a uniform field. The inclusion of the cooperon in the weak localisation bubble implies that

this calculation must also be in the diffusive limit and hence we can take |q| ≪ |k| ∼ kF .

Thus, we can replace the Green’s functions with argument (q− k) with G(k), also using

the fact that the Green’s function is even in k. This simplifies the linear repose function

to

KWL,E
αβ (0, iω) = − 2e2T

m2V2

∑

ε

∑

kq

kFαkFαG(k, iε+ iω)2G(k, iϵ)2

× Θ(−ε(ε+ ω))

2πN(0)τ 20 (Dq
2 + |ω|+ τ−1

ϕ )
. (3.59)
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0, iω 0, iω

k, iε+ iω

k, iε

q− k, iε+ iω

q− k, iε

ΓC

Figure 3.7: A diagrammatic representation of the weak localisation correction to the
Drude conductivity.

Unlike the Drude calculation, there are no divergence issues to be concerned with,

because we have three sums but four Green’s functions, and so we can interchange the

order of integrations/sums freely. So starting with the integral over k, assuming isotropy

so the angular dependence of the vertex parts can be approximated to simply
kF
d
, where

d is the dimensionality of the system. The cooperon part is only dependent on q and ε

so the integral over k only contains the Green’s functions and can be computed from the

standard formula in the diffusive limit,

∑

k

G+(k, iω1)
nG−(k, iω2)

m = 2πN(0)τ0
(m+ n− 2)!

(m− 1)!(n− 1)!
(−iτ0)n−1(iτ0)

m−1 , (3.60)

where ω1 > 0 and ω2 < 0 (see appendix D for a full derivation of this result). So in this

case with n,m = 2 we are left with

KWL,E
αβ (0, iω) = −2e2k2Fδαβ

m2d

T

V
∑

ε

Θ(−ε(ε+ ω))
∑

q

4πN(0)τ 30
2πN(0)τ 20 (Dq

2 + |ω|+ τ−1
ϕ )

. (3.61)

Next we can complete the sum over ε trivially and simplify the pre-factor to get

KWL,E
αβ (0, iω) = −4e2Dδαβ

ω

2π

1

V
∑

q

1

Dq2 + |ω|+ τ−1
ϕ

. (3.62)

We then follow the same steps as in the Drude calculation to obtain the d.c. conductivity
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from the linear response function: analytically continue iω → ω+ iδ ; divide by −iω ; set

ω → 0 ; take the diagonal component. After doing all of this we are left with

σWL = −2e2D

π

1

V
∑

q

1

Dq2 + τ−1
ϕ

. (3.63)

We can write this sum as an integral in d-dimensions, like so,

σWL = −2e2D

π

∫
ddq

(2π)d
1

Dq2 + τ−1
ϕ

. (3.64)

Remembering that for the cooperon calculation to be valid we made the assumption that

ql0 ≪ 1, meaning we must cutoff the upper limit of the q integral at l−1
0 . Hence, we have

σWL =− e2

π

√
Dτϕ when d = 1 , (3.65a)

σWL =− e2

2π2
ln

(
τϕ
τ0

)
when d = 2 , (3.65b)

and σWL =− e2

π3
√
Dτ0

+
e2

2π2
√
Dτϕ

when d = 3 , (3.65c)

where we have used τϕ ≫ τ0, recalling that we need phase coherence to persist over many

collisions with the static impurities to have this effect. We can also write the correction

in terms of scattering lengths,

σWL =− e2

π
lϕ when d = 1 , (3.66a)

σWL =− e2

π2
ln

(
lϕ
l0

)
when d = 2 , (3.66b)

and σWL =− e2

π3l0
+

e2

2π2lϕ
when d = 3 . (3.66c)

3.5.2 The Phase Coherence Lifetime

Typically the phase coherence lifetime is dependent on temperature as an inverse power

law, τϕ ∝ T−p [66]. Therefore, it is a increasing function with decreasing temperature. In

the two-dimensional case this means we have a logarithmic correction to the conductivity
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(both electrical and thermal) that decreases the conductivity as temperature is decreased,

regardless of the exact value of p. We are most interested in the two-dimensional case be-

cause it typically has a much larger correction than in three-dimensions. The logarithmic

dependence is also helpful for detecting the effect in experiments, because it is distinct

from the power law behaviour from the leading order parts of the conductivity.

To understand why the weak localisation effect in three dimensions is much smaller

than in two dimensions, we recall the picture of self-intersecting paths. The paths the

electron takes as it propagates, colliding with impurities, can be interpreted as a random

walk [45]. In a random walk, the ratio of paths that self intersect to the set of all possible

paths in decreases with increasing dimensions dimensions. This not difficulty to reason

intuitively, because the higher the dimension, at any given point in the path there are more

possible directions the particle could travel, and hence a lower probability of travelling

back to a point it has already been.

This argument is most easily interpreted in one-dimensional systems. In this case

any back-scattering at all will immediately lead to a self intersection, as the electron

can only travel back exactly the way it came. So in one dimension, weak localisation

effects can become very large even with weak disorder. In fact, it can be shown that

a particle in a one-dimensional random potential is always localised [66]. Conversely,

in three dimensions we may have to introduce a lot of disorder to be able to generate

appreciable weak localisation effects.

Recall that in all of this discussion, we have included τϕ as a phenomenological param-

eter, understanding that we need a cut-off for the 1/Dq2 in the cooperon. We discussed

some of the sources of phase breaking in section 1.3 but we will reiterate them here. Mech-

anisms that cause phase breaking can either be inelastic processes or time-reversal sym-

metry breaking processes. The primary inelastic process at low temperatures is electron-

electron interactions. Fukuyama and Abrahams calculated the electron-electron phase
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breaking rate [44] to have a temperature dependence of

τ−1
ϕ ∝ T ln(T ) . (3.67)

It is important to mention that the application of magnetic field is a time-reversal symme-

try breaking mechanism, because of its importance in identifying weak localisation effects

in experiments. However, in this context it not so much a used as a cut-off to the correc-

tion, instead magnetic fields strong enough to completely destroy the effect are applied in

order to generate magneto-resistance curves. The other phase breaking mechanism of this

type we will be interested in is magnetic impurities. In this case the phase coherence be-

tween paths is destroyed when the electron interacts with the magnetic impurity because

it scrambles its spin state. When magnetic impurities are the dominant phase breaking

mechanism, i.e. τϕ ∼ τs. where τs is the characteristic scattering time with magnetic

impurities, we must therefore have τs >> τ0. This means the concentration of magnetic

impurities must be much less than the concentration of non-magnetic impurities to be

in the correct regime for weak localisation. If τs ∼ τ0 we weak localisation effect will be

destroyed as the spin will be scrambled on average in between scattering events with the

non-magnetic impurities. Magnetic impurities, like non-magnetic, are a static effect and

we would not expect them to have any temperature dependence.

3.5.3 Correction to Thermal Conductivity

When comparing the Drude electrical and thermal conductivity we confirmed the Wiede-

mann Franz relationship using microscopic theory, so it is a natural continuation to ask

where this ‘law’ breaks down. It was shown by Chester and Thellung [70] in a very gen-

eral sense, using the method of exact-eigenstates, that for a system of non interacting

electrons involving only elastic scattering that the Wiedemann-Franz law should always

hold. The weak localisation effect satisfies this criterion, discussed explicitly by Kearney

and Butcher [71], so we expect the relation to hold. To calculate the weak localisation
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correction to thermal conductivity via a microscopic means we need only change the con-

tribution from the vertex in the same way as we did for the Drude conductivity. This

means that the linear response function we have to compute will instead be

KWL,T
αβ (0, iω) = − 2T

m2V2

∑

ε

∑

kq

kFαkFβ

(
iε+

iω

2

)2
G(k, iε+ iω)2G(k, iϵ)2

× Θ(−ε(ε+ ω))

2πN(0)τ 20 (Dq
2 + |ω|+ τ−1

ϕ )
. (3.68)

Simplifying this down we are left with

KWL,T
αβ (0, iω) = 4Dδαβ

T

V
∑

ε

(
ε+

ω

2

)2
Θ(−ε(ε+ ω))

∑

q

1

Dq2 + |ω|+ τ−1
ϕ

. (3.69)

So note the only difference between this and the electrical case is the form of the sum

and a factor of e2. The sum we have already completed in equation 3.37 and so one

easily verifies that the Wiedemann-Franz law holds for the weak localisation corrections

to electrical conductivity and thermal conductivity, and so they will simply be related by

the Lorenz factor,

TκWL =
π2T 2

3e2
σWL . (3.70)

In a way that is more useful for our methodology, we can say generally that if the thermal

conductivity and electrical conductivity calculations differ only by a factor of (ε+ ω/2)2

in the sum over Matsubara frequencies, then the Wiedemann-Franz law should hold.

However, as we will be moving on to superconducting systems shortly, this will be the

last time that this condition will be satisfied moving forward.
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3.6 The Transition to the Superconducting State

The next quantum effect we consider is related to the transition from the normal state to

the superconducting state. We consider the BCS theory of superconductivity that states

that below the critical temperature, Tc, due to an effective phonon-mediated attractive

potential, it is energetically favourable for electrons of opposite spin and momenta to

pair up into bosonic quasi-particles called cooper pairs. These cooper pairs then form

a condensate that is able to carry and electrical current without dissipation, a super-

current, leading to a massive increase in the conductivity, or equivalently a nearly zero

resistance. The form of the phonon potential is assumed to be featureless and constant,

V , and only active within a shell of width ±ωD around the Fermi surface, where ωD is

the Debye frequency: a typical phonon energy.

In the next chapter we will address how to deal with the superconducting state with

diagrammatic field theory. Here we will examine the instability in the normal state as the

superconducting state is approached from above the transition temperature. A transition

to the superconducting state that involved the condensate instantaneously forming at Tc

with zero Cooper-pairs present above Tc, would lead to the resistance dropping to zero as

a step function at the transition; this is know as a a first-order transition. However, the

decrease in resistance is observed to be a smooth curve with a finite width: a second-order

transition. This is due to superconducting fluctuations above Tc, where finite-lifetime

cooper pairs are formed, temporarily creating a superconducting channel. Intuitively one

would expect this to increase conductivity and as Tc is approached the lifetime of these

fluctuations will increase, leading to the smooth second-order transition one expects.

We will not be going into the detail of calculating the contribution of superconduct-

ing fluctuations to conductivity above Tc, that were calculated in a trio of papers by

Aslamazov and Larkin, Maki and Thompson [35, 36, 37]. We can however, relatively

easily reproduce some important results about the superconducting state, such as the

critical temperature, by calculating the pair propagator that appears in the diagrams for

superconducting fluctuations.
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The pair propagator is an infinite ladder sum, similar to the cooperon, that physically

corresponds to the finite-lifetime virtual cooper pair channel. In the case of a ‘clean’

superconductor with no impurities, the ladder consists of the BCS interaction between

particle-particle or hole-hole pairs, shown in figure 3.8, as opposed to the impurity lines

in the case of the cooperon. We will begin with calculating the clean pair propagator,

L0(q, iω), before moving to the full pair propagator including impurities, L(q, iω).

L0 = + + + . . .

= + L0

Figure 3.8: Diagrammatic representation of the infinite summation series for the pair
propagator in a clean superconductor and in the lower line the corresponding Dyson
equation.

As usual we can construct the Dyson equation for the infinite sum like so

L−1
0 (q, iω) =V −1 − ΣL0(q, iω) , (3.71)

where the wavy line corresponds to the featureless BCS interaction, given by the constant

V . As we are considering a clean superconductor the self-energy part will consist of clean

Green’s functions with opposite sign of momenta, remembering that cooper pairs are

formed of electrons with opposite momenta and spin:

ΣL0(q, iω) =
T

V
∑

ε

∑

k

G0(k+ q, iε+ iω)G0(−k,−iε)

=T
∑

ε

N(0)

∫
dΩ

4π

∫ ∞

−∞
dξk

1

ξk+q − iε− iω

1

ξk + iε
. (3.72)

First, we will restrict ourselves to the case where ω > 0. We can solve the integral using

71



CHAPTER 3. CONDUCTIVITY IN THE NORMAL STATE

a contour, which will only be non-zero if the poles are in opposite half planes, leading to

contributions from ε > 0 and ε < −ω:

ΣL0(q, iω) =N(0)T

(∑

ε>0

+
∑

ε<ω

)∫
dΩ

4π

∮
dz

1

z + µθ − iε− iω

1

z + iε
(3.73)

By making the substitution ε 7→ −ε−ω in the latter contribution and taking the residues,

we have

ΣL0(q, iω) = 2πN(0)T
∑

ε>0

∫
dΩ

4π

(
1

2ε+ ω − µθ

+
1

2ε+ ω + µθ

)
(3.74)

The denominator can then be expanded in the same way as equation 3.52 and the angular

integral average away the linear term in µθ, leaving only the quadratic term. Hence, the

two contributions are in fact equal, just leading to a factor of two, yielding

ΣL0(q, iω) = 4πN(0)T
∑

ε>0

(
1

2ε+ ω
− v2F q

2

3(2ε+ ω)3

)
for ω > 0 . (3.75)

If one was to repeat for ω < 0, we simply find the sign of ω is switched and hence we can

combine the two regimes, like so

ΣL0(q, iω) = 4πN(0)T
∑

ε>0

(
1

2ε+ |ω| −
v2F q

2

3(2ε+ |ω|)3
)

for ω > 0 . (3.76)

To evaluate the first term an upper cutoff must be introduced to avoid the logarithmic

divergence that corresponds to the region of validity of the BCS interaction, ε ∼ ωD:

4πN(0)T
∑

ε>0

1

2ε+ |ω| = N(0)

ωD
2πT∑

l=0

1

l + 1
2
+ |ω|

4πT

. (3.77)
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Sums of this form may be calculated using the difference equation of the digamma

function,

N∑

k=0

1

k + a
= ψ(N + a+ 1)− ψ(a) (3.78)

⇒ N(0)

ωD
2πT∑

l=0

1

l + 1
2
+ |ω|

4πT

= N(0)

(
ψ
( ωD

2πT
+

|ω|
4πT

+
3

2

)
− ψ

( |ω|
4πT

+
1

2

))
(3.79)

For a superconductor, typically ωD

2πT
≫ 1 and for very large arguments ψ(x) ∼ ln(x),

hence we can say

N(0)

ωD
2πT∑

l=0

1

l + 1
2
+ |ω|

4πT

≃ N(0)

(
ln
( ωD

2πT

)
− ψ

( |ω|
4πT

+
1

2

))
. (3.80)

Now consider the second term

4πN(0)T
∑

ϵ>0

1

(2ϵ+ |ω|)3 =
N(0)

(4πT )2

∞∑

l=0

1

(l + 1
2
+ |ω|

4πT
)3
. (3.81)

As this term will contribute higher order terms we will only take the leading order con-

tribution that comes from when ω = 0. This puts the sum in the form of a Hurwitz-zeta

function,

ζ(s, q) =
∞∑

l=0

1

(l + q)s
, (3.82)

with s = 3 and q = 1
2
. In the q = 1

2
case there is a simple relation to the Riemann zeta

function that we can use, given by

ζ
(
s,
1

2

)
= (2s − 1)ζ(s) , (3.83a)

∴ ζ
(
3,

1

2

)
= 7ζ(3) . (3.83b)
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Putting this all together gives

ΣL0(q, iω) = N(0)

(
ln
( ωD

2πT

)
− ψ

( |ω|
4πT

+
1

2

)
− v2F q

2

3

7ζ(3)

16π2T 2

)
, (3.84a)

⇒ L−1
0 (q, iω) = V −1 −N(0)

(
ln
( ωD

2πT

)
− ψ

( |ω|
4πT

+
1

2

)
− 7v2F q

2ζ(3)

48π2T 2

)
. (3.84b)

We can find the critical temperature for a clean superconductor, which we will label as

Tc,0, by finding the value of T for which L−1
0 (0, 0) = 0. This is because a divergence

in the pair propagator will cause a divergence in the fluctuation conductivity diagrams

and hence signals the onset of the Cooper instability and therefore the superconducting

regime. So we have

0 = V −1 −N(0)

(
ln

(
ωD

2πTc,0

)
− ψ

(1
2

))
. (3.85)

After using the standard result ψ(1
2
) = −2 ln 2 − γ (where γ is the Euler-Mascheroni

constant) and a simple rearrangement, we can obtain the well-known BCS result for the

critical temperature,

Tc,0 =
2eγ

π
ωD exp

(
− 1

N(0)V

)
≃ 1.13ωD exp

(
− 1

N(0)V

)
. (3.86)

As equation 3.85 is identically zero we can subtract it from 3.84b to write the pair prop-

agator in terms of the transition temperature,

L−1
0 (q, iω) = N(0)

(
ln

(
T

Tc,0

)
+ ψ

( |ω|
4πT

+
1

2

)
− ψ

(1
2

)
+

7v2F q
2ζ(3)

48π2T 2

)
. (3.87)

To consider the pair propagator in the presence of disorder, the Dyson equation is

altered to be as in figure 3.9, where now the electron propagators are the impurity Green’s

functions and cooperon interference terms are inserted in between each BCS interaction

line. This of course also means we will be again working in the diffusive limit. So the
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L = + C L

Figure 3.9: The Dyson equation for the pair propagator in a dirty superconductor. The
self-energy part now contains a cooperon.

Dyson equation and self-energy part can be written as,

L−1(q, iω) =V −1 − Σ−1
L (q, iω) (3.88)

ΣL(q, iω) =
2T

V2

∑

kk′

∑

ε

G(k+ q, iε+ iω)G(k′ + q, iε+ iω)

×G(−k,−iε)G(−k′,−iε) Θ(ε(ε+ ω))

2πN(0)τ 2(Dq2 + 2ε+ ω + τ−1
ϕ )

(3.89)

We can switch the order of summations as there are no divergence issues. Using the

standard diffusive integral result from appendix D we can easily complete the integrals

over k and k′ to obtain

ΣL(q, iω) = 4πN(0)T
∑

ε>0

1

Dq2 + 2ε+ |ω|+ τ−1
ϕ

. (3.90)

Again, this is logarithmically divergent, so we introduce the cutoff ε ∼ ωD.

ΣL(q, iω) = N(0)

ωD
2πT∑

l=0

1

l + 1
2
+

Dq2+|ω|+τ−1
ϕ

4πT

. (3.91)

Using the same result as in equation 3.80, we have

ΣL(q, iω) = N(0)

(
ln
( ωD

2πT

)
− ψ

(1
2
+
Dq2 + |ω|+ τ−1

ϕ

4πT

))
(3.92)

∴ L−1(q, iω) = V −1 −N(0)

(
ln
( ωD

2πT

)
− ψ

(1
2
+
Dq2 + |ω|+ τ−1

ϕ

4πT

))
. (3.93)
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Again L will diverge as q → 0 and ω → 0 giving us the value of Tc

V −1 = N(0)

(
ln

(
ωD

2πTc

)
− ψ

(1
2
+

1

4πTcτϕ,c

))
, (3.94)

noting that if τϕ is temperature dependent it will be the value at Tc, τϕ,c. If τ−1
ϕ = 0

we will simply recover the result as for Tc,0, agreeing with the result that the critical

temperature for BCS superconductors is robust to doping with non-magnetic impurities.

Now we can use the expression for Tc to simplify yielding:

L−1(q, iω) = N(0)

(
ln

(
T

Tc

)
+ ψ

(1
2
+
Dq2 + |ω|+ τ−1

ϕ

4πT

)
− ψ

(1
2
+

1

4πTcτϕ,c

))
. (3.95)

These will be important results to keep in mind in the following chapter where we

will move on to using the Green’s function formalism in the superconducting regime,

because we should be able to recover these result when calculating Tc from below the

superconducting transition as well.
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CHAPTER 4

CONDUCTIVITY IN THE

SUPERCONDUCTING STATE

To be able to perform calculations for systems in the superconducting state we must have

Green’s functions that explicitly contain information about the formation of Cooper pairs.

In the following section we will show the construction of the Nambu-Gorkov description of

superconducting Green’s functions which contains this information for a clean supercon-

ductor. In section 4.2, we will extend the formalism to dirty superconductors by adding

an impurity scattering term. In section 4.3 we use the dirty Nambu-Green’s functions to

construct the linear response fuction of the superconductor to an applied electromagnetic

field. Firstly, we use it to calculate the number density of superconducting electrons by

taking the ω → 0 limit. Everything mentioned so far is fairly standard practice and can

be found in a number of texts (see [56, 66, 68] for example).

In the second part of this section, we calculate the frequency-dependent response,

which requires proper treatment of the analytic continuation to real frequencies. This

was first calculated by Abrikosov and Gor’kov [72] and can also be found in ref [67]. In

section 4.4 we turn our attention to calculating the electronic thermal conductivity of

the superconductor, reproducing the result found in Ambegaokar and Griffin [30], which

reveals the exponential suppression of the thermal conductivity at low temperatures.
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4.1 Nambu-Gorkov Formalism for Diagrammatics in

the Superconducting State

We begin with the simple BCS model for a clean superconductor described by the following

interacting Hamiltonian which contains a constant potential within the shell of size ωD

about the Fermi surface,

H(τ) = H0 +Hint =
∑

kσ

ξkc
†
kσ(τ)ckσ(τ)−

V

2

∑

kk′qσ

c†kσ(τ)c
†
q−kσ̄(τ)cq−k′σ̄(τ)ck′σ(τ) . (4.1)

where we take the convention that σ̄ is the opposite spin to σ and, thus, repeated σ’s are

the same spin-species. For now we will drop the τ ’s out of the notation for convenience

and we will return them when necessary. To include the Cooper instability into the theory,

when considering relevant correlations there will be new non-zero terms corresponding to

electron-electron and hole-hole pairing. For s-wave pairing we have

⟨cq−k↓(τ)ck↑(0)⟩ = bk δ(q) δ(τ) ,
〈
c†k↑(τ)c

†
q−k↓(0)

〉
= b∗k δ(q) δ(τ) ,

⟨cq−kσckσ⟩ = 0 (4.2)

and
〈
c†kσc

†
q−kσ

〉
= 0 ,

where b∗k and bk are the expectation values for the creation of a cooper pair made up

of electrons or holes (respectively) with momenta ±k. We assume that the Cooper pair

quasiparticle operator c†kσc
†
q−kσ̄ is close to its expectation value, so that we can represent

it as its expectation value plus small fluctuations about the expectation value,

c†kσc
†
q−kσ̄ =

〈
c†kσc

†
q−kσ̄

〉
+ δ(c†kσc

†
q−kσ̄)

=
〈
c†kσc

†
q−kσ̄

〉
+
(
c†kσc

†
q−kσ̄ −

〈
c†kσc

†
q−kσ̄

〉)
. (4.3)
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Now we can use this approximation to perform a ‘mean-field’ approximation on the in-

teraction term, where we can ignore terms quadratic in the fluctuations,

Hint = −V
2

∑

kk′qσ

c†kσc
†
q−kσ̄cq−k′σ̄ck′σ ≃ −

∑

k

[
∆c†k↑c

†
−k↓ +∆∗c−k↓ck↑ −∆b∗k

]
. (4.4)

where we have defined the internal pairing field

∆ = V
∑

k

bk , (4.5)

that’s value is to be obtained self consistently. Hence, after absorbing any non-dynamical

terms into the chemical potential, the mean field Hamiltonian we are left with is

H = H0 +HBCS =
∑

kσ

ξkc
†
kσckσ −

∑

k

[
∆c†k↑c

†
−k↓ +∆∗c−k↓ck↑

]
. (4.6)

We now obtain the equations of motion for the electron creation and annihilation operators

using Heisenberg’s equation of motion:

dA(τ)

dτ
=
[
H(τ), A(τ)

]
. (4.7)

As we are working with Fermionic operators and in the Hamiltonian all the terms appears

as pairs of operators, we will make use of the following relation in order to switch the

commutator in Heisenberg’s equation of motion to appropriate anticommutators:

[
AB,C

]
= A

{
B,C

}
−
{
C,A

}
B . (4.8)
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Using this along with standard anticommutation relations we find the set of equations of

motion:

dc†k↑(τ)

dτ
= ξkc

†
k↑(τ)−∆∗c−k↓(τ) , (4.9a)

dck↑(τ)

dτ
= −ξkck↑(τ) + ∆c†−k↓(τ) , (4.9b)

dc†−k↓(τ)

dτ
= ξkc

†
−k↓(τ) + ∆∗ck↑(τ) , (4.9c)

dc−k↓(τ)

dτ
= −ξkc−k↓(τ)−∆c†k↑(τ) . (4.9d)

Each of the above equations of motion can be related to an equation of motion for a

particular Green’s function. Two of the Green’s functions are normal electron propa-

gators that we have encountered before in the normal state, but the other two are new

Green’s functions called the anomalous, or off-diagonal, Green’s functions. These Green’s

functions correspond to the creation or annihilation of Cooper pair quasiparticles in the

Cooper pair condensate, and will be denoted by F . The set of four Green’s functions we

will be concerned with is shown below, where we have temporal invariance such that the

imaginary time can be defined by a single difference variable, τ = τ1 − τ2,

G↑(k, τ) = −
〈
Tτck↑(τ)c

†
k↑(0)

〉
, (4.10a)

−G↓(−k,−τ) = −
〈
Tτc

†
k↓(τ)c−k↓(0)

〉
, (4.10b)

F †(k, τ) = −
〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉
, (4.10c)

F (k,−τ) = −⟨Tτck↑(τ)c−k↓(0)⟩ . (4.10d)
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Now we can use the equations of motion for the electron operators to find a set of equations

for our Green’s functions that relate them to one another:

d

dτ
G↑(k, τ) = −ξkG↑(k, τ) + ∆F †(k, τ)− δ(τ) , (4.11a)

d

dτ

(
−G↓(−k,−τ)

)
= ξk

(
−G↓(−k,−τ)

)
+∆∗F (k,−τ)− δ(τ) , (4.11b)

d

dτ
F †(k, τ) = ξkF

†(k, τ) + ∆∗G↑(k, τ) , (4.11c)

d

dτ
F (k,−τ) = −ξkF (k,−τ) + ∆

(
−G↓(−k,−τ)

)
. (4.11d)

We can represent this system of four equations as 2 × 2 matrix equation by defining

spinors,

αk(τ) =



ck↑(τ)

c†−k↓(τ)


 and α†

k(τ) =

(
c†k↑(τ) c−k↓(τ)

)
, (4.12)

and a corresponding matrix Green’s function

G(k, τ) = −
〈
Tταk(τ)α

†
k(0)

〉

=




−
〈
Tτck↑(τ)c

†
k↑(0)

〉
−⟨Tτck↑(τ)c−k↓(0)⟩

−
〈
Tτc

†
−k↓(τ)c

†
k↑(0)

〉
−
〈
Tτc

†
−k↓(τ)c−k↓(0)

〉


 (4.13)

=



G↑(k, τ) F (k,−τ)

F †(k, τ) −G↓(−k,−τ)
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The set of equations of motion can then be represented in this matrix form,

d

dτ
G(k, τ) =



−δ(τ)− ξkG↑ +∆F † −ξkF +∆(−G↓)

ξkF
† +∆†G↑ −δ(τ) + ξk(−G↓) + ∆∗F




=− δ(τ)



1 0

0 1


− ξk



G↑ F

−F † −(−G↓)




+∆



F † (−G↓)

0 0


+∆∗




0 0

G↑ F




=− δ(τ)σ0 − ξkσzG + (∆σ+ +∆∗σ−)G , (4.14)

where σx, σy, etc. are the usual Pauli matrices. In general, ∆ is complex, but unless one

is looking at calculations relating more than one distinct superconducting region, such

as in Josephson junctions, the complex phase will never manifest in the calculation. So

for now we will set ∆ to be real and we will see this will not affect the result of these

calculations to follow. Therefore, after applying this simplification and rearranging we

have

( d

dτ
σ0 + ξkσz −∆σx

)
G(k, τ) = −δ(τ)σ0 . (4.15)

From here we drop the identity matrices, σ0, for convenience and the absence of a Pauli

matrix will imply there is an identity. We next Fourier transform this equation in imagi-

nary time,

( d

dτ
+ ξkσz −∆σx

)
T
∑

ε

G(k, iε)e−iετ = −δ(τ) ,

⇒ G(k, iε) = 1

iε− ξkσz +∆σx
. (4.16)
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We wish to remove the Pauli matrices from the denominator as these will be difficult to

deal with. To do this we note that,

(
iε− ξkσz +∆σx

)(
iε+ ξkσz −∆σx

)

= −ε2 − ξ2kσ
2
z −∆2σ2

x − ξk∆(σxσz + σzσx) + iε(ξkσz −∆σx)− iε(ξkσz −∆σx)

= −ε2 − ξ2k −∆2 , (4.17)

since σ2
x = σ2

z = σ0 and (σxσz + σzσx) = 0. Multiplying the denominator of equation 4.16

by iε+ ξkσz −∆σx then gives

G(k, iε) = iε+ ξkσz −∆σx
−ε2 − ξ2k −∆2

(4.18)

Sometimes, we will find it useful to write this Green’s function in terms of the quantity

E2
k = ξ2k +∆2 instead.

This matrix Green’s function is the primary object with which we will build the dia-

grammatic description of the superconducting state, analogous to the free single-electron

Green’s function that was derived in section 2.3. By analogy to the normal state for-

malism, we can construct a set of Feynman rules for the perturbation expansion of these

matrix Green’s functions. These turn out to be the same as described as in section 2.5

except:

(i) The solid electron lines now represent the matrix Green’s function, G.

(ii) Electron-Coulomb and electron-phonon vertices now carry a factor of σz.

(iii) The order of matrices follows the order they appear along the diagram.

(iv) For any closed loop, the trace is taken over matrices that appear in the loop.

we now wish to find the form of ∆ self consistently between the original definition in

equation 4.5 and the matrix Green’s function in equation 4.18 that we have just defined
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using it. We can relate bk to the anomalous Green’s function by noting,

bk = F (k,−τ)
∣∣∣
τ=0−

= Tr
{
σ−G(k, τ = 0−)

}

= Tr

{
σ−T

∑

ε

e−iε0−
iε+ ξkσz −∆σx
−ε2 − ξ2k −∆2

}
; e−iε0− = 1 (4.19)

= T
∑

ε

Tr

{
iεσ− + ξkσ−σz −∆σ−σx

−ε2 − ξ2k −∆2

}
.

Using Tr{σ−} = 0, Tr{σ−σz} = 0 and Tr{σ−σx} = 1, we are only left with one term in

the numerator after taking the trace, leaving

bk = −T
∑

ε

∆

−ε2 − ξ2k −∆2
,

⇒ 1 = V
∑

k

T
∑

ε

1

ε2 + ξ2k +∆2
. (4.20)

We can now compute the sum over Matsubara frequencies to simplify this equation using

the usual residue method,

T
∑

ε

1

ε2 + E2
k

=
1

2πi

∮
dz

f(z)

z2 − E2
k

= −
∑

Res

(
f(z)

z2 − E2
k

)

=
1

2Ek

tanh

(
Ek

2T

)
=

1

2Ek

(
1− 2f(Ek)

)
(4.21)

Substituting this back into the self consistency equation we have

1 = V
∑

k

tanh
(
Ek

2T

)

2Ek

,

⇒ 1 = N(0)V

∫ ωD

0

dξ
tanh

(√
ξ2+∆2

2T

)

√
ξ2 +∆2

. (4.22)

This is the simplest general closed form of the self consistency equation for ∆, although in

general this integral is not analytically tractable and must be tackled numerically. Note

that the upper limit of the momentum sum has been cut-off by the Debye frequency, due
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to the nature of the BCS interaction. It is solvable in two important case, as we will show

shortly. We first calculate an alternative form of the self consistency equation switching

the order of sums and computing the sum over momenta,

1 = V T
∑

ε

∑

k

1

ε2 + ξ2k +∆2

= N(0)V T
∑

ε

∫ ∞

−∞
dξk

1

ξ2k + ε2 +∆2
,

∴ 1 = πN(0)V T
∑

ε

1√
ε2 +∆2

= 2πN(0)V T
∑

ε>0

1√
ε2 +∆2

. (4.23)

This form can formally be proven to be equivalent to the other by performing the contour

integral around the Matsubara frequencies in the complex ε plane whilst properly address-

ing the branch cut caused by the square root. This second form is again not in general

analytically tractable, but leaves us with a sum over Matsubara frequencies instead of an

integral over energy. So we are free to choose the form that is most convenient for us in

a given situation.

We now examine the behaviour of the self-consistency equation at important points.

We will perform these calculations with the form involving the sum over Matsubara fre-

quencies, because we wish to show that we can produce the same results as the first form

with which one usually derives these BCS results. Firstly, we should be able to find the

critical temperature by setting ∆ = 0, as this corresponds to the situation where cooper

pair formation is no longer energetically favourable to form Cooper pairs. This leads to

1 = 2πN(0)V Tc,0
∑

ε>0

1

ε
= N(0)V

ωD
2πTc,0∑

l=0

1

l + 1
2

. (4.24)

We then can proceed as in the calculation of the pair propagator by using the diagamma

function identity to obtain

1 = N(0)V

(
ψ
( ωD

2πTc,0
+

3

2

)
− ψ

(1
2

))
. (4.25)
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Noting that ψ(x) ∼ ln(x) for x ≫ 1, as in equation 3.86, this can then be rearranged to

give the expected result for the critical temperature,

Tc,0 =
2eγ

π
ωD exp

(
− 1

N(0)V

)
≈ 1.13ωD exp

(
− 1

N(0)V

)
. (4.26)

Now consider the limit T → 0, which should correspond to the largest value of ∆, as

physically we expect the condensate to contain more Cooper pairs the lower the temper-

ature. Our sum over Matsubara frequencies goes in steps of 2πT , so in this limit we can

write the sum as an integral, where we must impose an upper cut off of ωD to avoid the

integral diverging,

1 = N(0)V

∫ ωD

0

dϵ
1√

ϵ2 +∆2(T = 0)

= N(0)V arcsinh

(
ωD

∆(0)

)
= N(0)V ln

(
ωD

∆(0)
+

√
ω2
D

∆2(0)
+ 1

)
(4.27)

Using ωD ≫ ∆(0), as the Debye energy is a much higher energy scale than any supercon-

ducting energy scale, this equation becomes

1 = N(0)V ln

(
2ωD

∆(0)

)
,

⇒ ∆(0) = 2ωD exp

(
− 1

N(0)V

)
, (4.28)

which agrees with the standard result from BCS theory.

4.2 Nambu-Gorkov Diagrammatic Formalism for a

Dirty Superconductor

The next step is to add impurities to the Nambu-Gorkov formalism to be able to deal

with dirty superconductors. We therefore add an impurity term to the Hamiltonian.

However now because of the impurity distribution there will be no translational invariance
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until we ensemble average over impurity distributions, so instead we will write the BCS

Hamiltonian in real space,

H = H0 +Hint +Himp (4.29a)

H0 =
∑

σ

∫
drψ†

σ(r)

(
∇2

2m
− µ

)
ψσ(r) (4.29b)

Hint = −V
2

∑

σ

∫
dr dr′ ψ†

σ(r)ψ
†
σ̄(r

′)ψσ̄(r
′)ψσ(r) (4.29c)

Himp =
∑

σ

∫
dr
∑

i

u(r−Ri)ψ
†
σ(r)ψσ(r) (4.29d)

We can rewrite these in terms of real space Nambu-Gorkov operators,

Ψ(r) =



ψ↑(r)

ψ†
↓(r)


 ; Ψ†(r) =

(
ψ†
↑(r) ψ↓(r)

)
(4.30a)

⇒ H0 =

∫
drΨ†(r)

(
∇2

2m
− µ

)
σzΨ(r) (4.30b)

Hint = −V
2

∫
dr dr′ Ψ†(r)σzΨ(r)Ψ†(r′)σzΨ(r′) (4.30c)

Himp =

∫
dr
∑

i

u(r−Ri)Ψ
†(r)σzΨ(r) (4.30d)

Using the mean field approximation on the interaction term we can obtain the BCS term

and then write it in terms of the Nambu-spinors like so

HBCS = −∆

∫
dr
(
ψ†
↑(r)ψ

†
↓(r) + ψ↓(r)ψ↑(r)

)

= −∆

∫
drΨ†(r)σxΨ(r) . (4.31)

We can then construct equations of motion in the same way as the clean case. It is clear

that the impurity has functionally the same matrix behaviour as the unperturbed term,

H0, so will also carry a σz after following through this process. Since we have a particular

impurity configuration that has not yet been ensemble averaged here, we do not have
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translational invariance, so we will work in terms of real space operators,

[
d

dτ
+

(
∇
2m

− µ

)
σz +

∑

i

u(r−Ri)σz −∆σx

]
G(r, r′; τ) = −δ(r− r′)δ(τ) . (4.32)

To proceed, we ensemble average over impurity positions which works essentially identi-

cally to the impurity Green’s function in section 2.6, only now following the additional

diagrammatic rules for the Nambu-Gorkov Green’s functions outlined above. By treating

the impurity term as a perturbative correction to the clean BCS Green’s function, we can

construct a Dyson equation,

G−1 = G−1
0 − Σimp . (4.33)

Assuming a sufficiently low impurity concentrations, we can take the first Born approxi-

mation. In this regime the self-energy contribution, shown diagrammatically in figure 4.1,

is given by

Σimp(iε) = nimp|U |2
∑

k

σzG0(k, iε)σz , (4.34)

where we have taken the impurity interaction to be instantaneous and point-like with

strength U so

u(r−Ri) = Uδ(r−Ri) . (4.35)

Noting that commuting the σz through the Green’s function will simply switch the sign

of the σx term, we can solve the expression for Σimp,

Σimp =− nimpN(0)|U |2
∫ ∞

−∞
dξk

iε+ ξkσz +∆σx
ε2 + ξ2k +∆2

=− nimpN(0)|U |2π iε+∆σx√
ε2 +∆2

. (4.36)
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Σimp =

G0
σz σz

Figure 4.1: Self-energy part for the scattering with impurities in the superconducting
state, where the first born approximation has been taken.

Substituting this expression back into equation 4.33 and using the definition for the scat-

tering rate, given in equation 2.52, we find

G−1 = iε

(
1 +

1

2τ0

1√
ε2 +∆2

)
− ξkσz +∆

(
1 +

1

2τ0

1√
ε2 +∆2

)
σx . (4.37)

From this we define new variables for the dirty Nambu Green’s function,

ε̄ = ε

(
1 +

1

2τ0
√
ε2 +∆2

)
and ∆̄ = ∆

(
1 +

1

2τ0
√
ε2 +∆

2

)
, (4.38)

⇒ G−1 = iε̄− ξkσz + ∆̄σx . (4.39)

If we opt to slightly extend our treatment we can use the full Green’s function in the

self-energy diagram, which diagrammatically amounts to including the nested diagrams

in our Dyson equation. So we have

Σimp(iε) = nimp|U |2
∑

k

σzG(k, iε)σz . (4.40)

Now we must make an ansatz for the form of the self-energy part and solve self-consistently,

as now the form of Gdepends on itself. We make the ansatz that the Full Green’s function

has the same form as equation 4.39. So from the form of the Dyson equation we can

deduce that this requires

Σimp = i(ε− ε̄) + (∆− ∆̄)σx , (4.41)
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and we must solve this self-consistently with

Σimp =− nimpN(0)|U |2
∫ ∞

−∞
dξk

iε̄+ ξkσz + ∆̄σx
ε̄2 + ξ2k + ∆̄2

. (4.42)

This integral is solved identically to equation 4.36 and by equating the coefficients of the

Pauli matrices with equation 4.41 we find

ε = ε̄

(
1− 1

2τ0
√
ε̄2 + ∆̄2

)
and ∆ = ∆̄

(
1− 1

2τ0
√
ε̄2 + ∆̄2

)
. (4.43)

It is important to note the relation between the ratios of the clean and dirty variables,

ε̄

∆̄
=

ε

∆
. (4.44)

This is the case both when the nested diagrams are included and when they are not, and

by using this relation one can go between equations 4.38 and 4.44. So including the full

Green’s function in the self-energy contribution has not changed the form of the Green’s

function and hence we have for the dirty Nambu-Green’s function,

G =
iε̄+ ξkσz − ∆̄σx
−ε̄2 − ξ2k − ∆̄2

. (4.45)

If one returns to equation 4.20 to self consistently determine the gap but now using

the impurity superconducting Green’s functions, one can see that the extra factors from ε̄

and ∆̄ will cancel out and the gap equation will be the same as in the clean case. In other

words the gap is independent of impurities so long as the above ratio holds. Similarly the

transition temperature is also unaffected by these impurities.
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4.3 Linear Response of a Superconductor to an Elec-

tromagnetic Field

Calculating the linear response function of the superconductor in an applied electromag-

netic field encapsulates a number of interesting effects, depending on which limiting cases

are taken. We will find the carrier density of superconducting carriers by finding K(0, 0).

Furthermore, as discussed in Rickayzen [9], the condition for infinite conductivity is

lim
ω→0

lim
q→0

KE(q, ω) = non-zero constant , (4.46)

and for the Meissner effect is

lim
q→0

lim
ω→0

KE(q, ω) = non-zero constant . (4.47)

We will also calculate the long wavelength response to an alternating field given by

KE(0, ω), which describes infrared absorption and transmission [67].

4.3.1 Construction of the Linear Response Function and the

Superconducting Carrier Density

The construction of the linear response function is exactly analogous to the normal state

Drude calculation (section 3.1), the only difference is that we will be constructing the

‘bubble’ Drude diagram using Nambu Green’s functions. To demonstrate this analogy we

need only show that we can replace the electron operators, c
(†)
k,σ, with the Nambu spinors,
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α
(†)
k , so we examine the current operator in momentum space,

j∇(q) =
e

2m

∑

k,σ

(2k+ q)c†kσck+qσ

=
e

2m

∑

k

(2k+ q)
(
c†k↑ck+q↑ + c−k↓c

†
−k−q↓ − δq,0

)

=
e

2m

∑

k

(2k+ q)α†
kαk+q . (4.48)

In the second line we have expanded out the sum over spin and substituted k 7→ −k− q

in the second term, then commuted the operators yielding a delta function, however the

delta function will evaluate to zero under the sum over k, because when q = 0 it is odd

in k. Thus, the current operator can be written in terms of the Nambu-spinors and the

rest of the derivation using Kubo’s formula follows straightforwardly. The linear response

function is given by the diagram in figure 4.2. Using the appropriate diagrammatic rules

for the Nambu Green’s functions this diagram can be written as,

GE
αβ(q, iω) =

e2T

4m2V
∑

k,ε

(2k+ q)α(2k+ q)β Tr[G(k, iε)G(k + q, iε+ iω)] , (4.49)

where the Green’s functions are those for the dirty superconductor, as this will yield both

the clean and dirty results upon taking the appropriate limits. As in normal state result,

e
2m (2k+ q)ασ0

e
2m (2k+ q)βσ0

G(k+ q, iε+ iω)

G(k, iε)

Figure 4.2: Diagrammatic representation of the linear response of a superconductor to an
electromagnetic field
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we will take the small momentum limit, |q| → 0 and |k| ∼ kF , leading to

GE
αβ(0, iω) =

e2k2FN(0)

3m2
δαβ

∫ ∞

−∞
dξk T

∑

ε

Tr

[
iε̄+ ξkσz − ∆̄σx
ε̄2 + ξ2k + ∆̄2

iε̄′ + ξkσz − ∆̄′σx
ε̄′2 + ξ2k + ∆̄′2

]
,

(4.50)

where ε̄′ = ε̄+ ω, ∆̄ = ∆̄(ε) and ∆̄′ = ∆̄(ε+ ω). We can invert the order of the sum and

integral to obtain the linear response function, as we will have an exact cancellation with

the diamagnetic term. This must be the case because at any stage we could take the limit

∆ → 0 and the calculation should collapse to the normal state calculation. Thus we have

KE
αβ(0, iω) =

ne2

2m
δαβT

∑

ε

∫ ∞

−∞
dξk Tr

[
iε̄+ ξkσz − ∆̄σx
ε̄2 + ξ2k + ∆̄2

iε̄′ + ξkσz − ∆̄′σx
ε̄′2 + ξ2k + ∆̄′2

]
. (4.51)

The only terms in the trace that will give a non-zero contribution are the terms that carry

a identity matrix, which will give Tr{σ0} = 2. This leads to

KE
αβ(0, iω) =

ne2

m
δαβT

∑

ε

∫ ∞

−∞
dξk

ξ2k − ε̄ε̄′ + ∆̄∆̄′

(ξ2k + Ē2)(ξ2k + Ē ′2)
, (4.52)

where Ē2 = ε̄2 + ∆̄2 and Ē ′2 = ε̄′2 + ∆̄′2. These integrals can be performed using the

standard results

∫ ∞

−∞
dξ

ξ2

(ξ2 + a2)(ξ2 + b2)
=

π

a+ b
(4.53a)

and

∫ ∞

−∞
dξ

1

(ξ2 + a2)(ξ2 + b2)
=

π

ab(a+ b)
, (4.53b)

subject to the condition Re{a},Re{b} > 0 (this will be of importance later when it comes

to analytic continuation). Using the above results yields

KE
αβ(0, iω) =

πne2

m
δαβT

∑

ε

ĒĒ ′ + ∆̄∆̄′ − ε̄ε̄′

ĒĒ ′(Ē + Ē ′)
. (4.54)
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Using the relations in equation 4.38 and cancelling the factors in the denominator and

numerator, along with the additional relation,

Ē =
1

2τ0
(1 + 2τ0E) , (4.55)

we can obtain an expression for the linear response entirely in terms of the unperturbed

frequency and gap parameters,

KE
αβ(0, iω) =

πne2τ0
m

δαβT
∑

ε

EE ′ +∆2 − εε′

EE ′(1 + τ0E + τ0E ′)
. (4.56)

To calculate the number density of superconducting electrons, ns, we take the limit

ω → 0 and use the relation

KE
αβ(0, 0) =

nse
2

m
δαβ . (4.57)

This relationship can be understood because the condensate’s response to the applied field

will be purely diamagnetic. The only contributions to the paramagnetic part will be from

quasiparticle excitations out of the condensate, leading to a result of order ω. So when

we take the limit ω → 0 the paramagnetic part will vanish leaving only the diamagnetic

part, with only the superconducting electrons contributing to it, hence why it has the

factor of ns. When we take ω → 0 the linear response function becomes

KE
αβ(0, 0) =

πne2τ0
m

δαβT
∑

ε

E2 +∆2 − ε2

E2(1 + 2τ0E)

=
2πne2τ0
m

δαβT
∑

ε

∆2

(ε2 +∆2)(1 + 2τ0
√
ε2 +∆2)

. (4.58)

Using equation 4.57 we obtain for the superconducting carrier density,

ns =2πnτ0T
∑

ε

∆2

(ε2 +∆2)(1 + 2τ0
√
ε2 +∆2)

. (4.59)
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In this model the gap does not depend on the frequency of the applied field, ω, so we

have taken ∆ = ∆′.

Using this expression we can examine the two extreme limits: the dirty case (1 ≫ ∆τ0)

and the clean case (1 ≪ ∆τ0). Because the 2τ0
√
ε2 +∆2 term is of order ∆τ0, in the clean

case we have

ns,0 = πnT
∑

ε

∆2

(ε2 +∆2)
3
2

, (4.60)

but we are going to be primarily interested in superconductors with impurities so we will

not invest any more time into the clean limit. In the dirty limit the superconducting

carrier density is given by

ns = 2πnτ0T
∑

ε

∆2

ε2 +∆2
. (4.61)

Using the standard method to convert a Matsubara sum into a contour integral, shown

in appendix E, we obtain

ns =− 2πn∆2τ0
i

2π

∮

Γ

dz
f(z)

(z −∆)(z +∆)

=− πn∆τ0[f(∆)− f(−∆)]

=πn∆τ0 tanh
∆

2T
. (4.62)

4.3.2 Long-wavelength Response to an Alternating Electromag-

netic Field

Continuing in the dirty limit, we can calculate the full ω dependence of the linear response

function, with q → 0; meaning a long-wavelength response. As we mentioned earlier, this

corresponds to infrared absorption and transmission in the superconductor.
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Equation 4.56 in the dirty limit reduces to

KE
αβ(0, iω) =

πne2τ0
m

δαβT
∑

ε

(
1 +

∆2 − εε′

EE ′

)

=
πne2τ0
m

δαβT
∑

ε

(
1 +

∆2 + iε(iε+ iω)√
∆2 − (iε)2

√
∆2 − (iε+ iω)2

)
. (4.63)

Because the response is purely diagonal we will drop the α and β notation. Now we can

cast the sum into a contour integral using the usual method

KE(iω) =
πne2τ0
m

i

2π

∮

Γ

dz f(z)

(
1 +

z(z + iω) + ∆2

√
∆2 − z2

√
∆2 − (z + iω)2

)
. (4.64)

The first term has no poles in the the plane outside of the contour and no branch cuts,

as shown in the left-hand side of figure 4.3, so this term will evaluate to zero trivially.

For the second term the contour can be deformed to enclose the branch cuts that occur

due to the square roots, as shown in the right-hand side of figure 4.3, and hence can be

written as four contributions: Γa through Γd.

Re{z}

Im{z}

Γ

∞

−∞

Re{z}

Im{z}

∆−∆

∆− iω−∆− iω

Γa

Γd

Γb

Γc

Figure 4.3: The contour that arises when the sum over Matsubara frequencies in the
linear response function for a superconductor in an electromagnetic field is converted into
a contour integral. The first term in the response function does not contain any poles or
branch cuts, shown in the left figure. The second term has two branch cuts due to the
square roots and so the contour can be deformed to enclose them, as shown in the right
figure.
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Our objective here is to eventually analytically continue iω 7→ ω + iδ in order to find

the linear response in term of real frequencies, however this poses potential problems, as

we will moving the branch cut down to the real axis, whilst it is enclosed by a contour.

However, we may circumvent any potential dangers with the analytic continuation by

removing the contours that enclose the lower two branch cuts, using the transformation

z 7→ −z− iω. This maps Γc and Γd exactly to Γa and Γb respectively, the integrals picking

up a minus sign in the process. The Fermi function maps as f(z) 7→ f(−z− iω) = f(−z);

using the fact that ω is a Bosonic Matsubara frequency. So all together, using this

transformation yields

i

2π

∮

Γ

dz f(z)
z(z + iω) + ∆2

√
∆2 − z2

√
∆2 − (z + iω)2

=
i

2π

∫

Γa+Γb

dz (f(z)− f(−z)) z(z + iω) + ∆2

√
∆2 − z2

√
∆2 − (z + iω)2

=
1

2πi

∫

Γa+Γb

dz tanh
( z

2T

) z(z + iω) + ∆2

√
∆2 − z2

√
∆2 − (z + iω)2

. (4.65)

Now we are able to analytically continue iω 7→ ω + iδ without issue, yielding

KE(ω) =
πne2τ0
m

1

2πi

∫

Γa+Γb

dz tanh
( z

2T

) z(z + ω) + ∆2

√
∆2 − z2

√
∆2 − (z + ω)2

, (4.66)

and shifting the contours to those shown in figure 4.4. When ω < 2∆ the appropriate

contour is that of on the left of the figure and when ω > 2∆ one will have a contour of

the form on the right.

Taking z 7→ x± iδ above and below the real axis respectively we can obtain an integral

along the real axis, but whilst doing so we must ensure the the sign of the square roots

is consistent with the condition enforced by the integrals over ξ performed earlier. The

conditions require that Re
{√

∆2 − z2
}
> 0 and Re

{√
∆2 − (z + ω)2

}
> 0. Beginning

with Γa, we can expand out the square root that corresponds to this branch cut into its
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Re{z}

Im{z}

∆−∆

∆− ω−∆− ω

iδ

ΓaΓb

ω < 2∆

Re{z}

Im{z}

∆−∆

∆− ω−∆− ω

iδ

ΓaΓb

ω > 2∆

Figure 4.4: The contours in the integral in the linear response function after the lower
two contours have been mapped to the upper two and the external frequency, iω, has
been analytically continued to real frequency, ω + iδ. The left and right figures show
the two distinct regimes: when ω < 2∆ the lower contour does not crossover with the
contour on the opposite side and when ω > 2∆ it does. The two regimes lead to different
integrals along the real axis due to the different signs of the square roots in the regions
of integration relative to the positions of the branch cuts.

real and imaginary parts as follows,

√
∆2 − z2 7→

√
∆2 − (x± iδ)2 ≃ ±i

√
x2 −∆2

[
1± iδx

x2 −∆2
+O(δ2)

]
, (4.67)

where we must choose the sign in front of the expression such that the real term is positive.

Since on this branch we have x > ∆,

√
∆2 − z2 7→ −i

√
x2 −∆2 , when z 7→ x+ iδ , (4.68a)

and
√
∆2 − z2 7→ i

√
x2 −∆2 , when z 7→ x− iδ . (4.68b)

For the Γb contour we have the same process except x < −∆, so

√
∆2 − z2 7→ i

√
x2 −∆2 , when z 7→ x+ iδ , (4.69a)

and
√
∆2 − z2 7→ −i

√
x2 −∆2 , when z 7→ x− iδ . (4.69b)

All of the contours lie above the branch cut that arises from the
√

∆2 − (z + ω)2 term,

so by simply making the substitution x 7→ x + ω, we can use the same process as above
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but we only require the z + ω 7→ x+ ω + iδ part. Therefore

√
∆2 − (z + ω)2 7→ −i

√
(x+ ω)2 −∆2 for x > ∆− ω , (4.70a)

and
√

∆2 − (z + ω)2 7→ i
√

(x+ ω)2 −∆2 for x < −∆− ω . (4.70b)

However, there is the third region to consider, −∆ − ω < x < −∆ when ω < 2∆ and

−∆ − ω < x < ∆ − ω when ω > 2∆, where the contour is not directly over the lower

branch cut, and so the value of the square root is real without having to pull out a factor

of ±i. Thus is this region we will have

√
∆2 − (z + ω)2 7→

√
∆2 − (x+ ω)2

for −∆− ω < x < −∆ when x < 2∆ , (4.71)

or −∆− ω < x < ω −∆ when x > 2∆ .

Using the above results we can write the response function in terms of integrals along the

real axis. When ω < 2∆ we have

KE(ω) =
πne2τ0
m

[
i

π

∫ ∞

∆

dx tanh
( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
(x+ ω)2 −∆2

+
i

π

∫ −∆−ω

−∞
dx tanh

( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
(x+ ω)2 −∆2

(4.72)

− 1

π

∫ −∆

−∆−ω

dx tanh
( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
∆2 − (x+ ω)2

]
,

where contributions from above and below the branch cut in each region are identical,

giving a factor of two. For ω > 2∆ there is an additional integral that appears due to the
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region where the lower-right branch cut overlaps with the upper-left. In this case we have

KE(ω) =
πne2τ0
m

[
i

π

∫ ∞

∆

dx tanh
( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
(x+ ω)2 −∆2

+
i

π

∫ −∆−ω

−∞
dx tanh

( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
(x+ ω)2 −∆2

− 1

π

∫ ∆−ω

−∆−ω

dx tanh
( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
∆2 − (x+ ω)2

(4.73)

− i

π

∫ −∆

∆−ω

dx tanh
( x

2T

) x(x+ ω) + ∆2

√
x2 −∆2

√
(x+ ω)2 −∆2

]

We will begin by examining the case where ω < 2∆. We can symmetrise the integrals

by making the substitution x 7→ x− ω
2
in the first term and x 7→ −x− ω

2
in the latter two

terms, which leads to

KE(ω) =
ne2τ0
m

[∫ ∆+ω
2

∆−ω
2

dx tanh

(
x+ ω

2

2T

)
(x+ ω

2
)(x− ω

2
) + ∆2

√
(x+ ω

2
)2 −∆2

√
∆2 − (x− ω

2
)2

(4.74)

− i

∫ ∞

∆+ω
2

dx

(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))
(x+ ω

2
)(x− ω

2
) + ∆2

√
(x+ ω

2
)2 −∆2

√
(x− ω

2
)2 −∆2

]

This is as far as we can go analytically for the frequency-dependent linear response in the

dirty limit, whilst keeping the temperature and frequency dependencies. If one takes the

limit ω → 0 the first term vanishes and the second term will give an integral over sech2(x),

reproducing the result in equation 4.62. Alternatively, we can solve for the linear response

function exactly when T = 0.

In the T → 0 limit, tanh
(

x
2T

)
→ sgn(x). This means in the second term we will get a

term of the form

sgn(x+
ω

2
)− sgn(x− ω

2
) . (4.75)

In region of integration x ≥ ∆ + ω
2
both of the sgn’s will be one and so this term will

cancel to zero. In the first term the sgn is also one over the entire integration region,
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therefore, after some slight rearrangement, we have

KE(ω) =
ne2τ0
m

∫ ∆+ω
2

∆−ω
2

dx
x2 +

(
∆− ω

2

)(
∆+ ω

2

)
√
x2 − (∆− ω

2
)2
√
(∆ + ω

2
)2 − x2

. (4.76)

This integral can be written in the form

KE(ω) =
ne2τ0
m

[∫ a

b

dx
x2√

a2 − x2
√
x2 − b2

+

∫ a

b

dx
ab√

a2 − x2
√
x2 − b2

]
, (4.77)

where a = ∆+ ω
2
and b = ∆− ω

2
. This can be written using standard results for elliptical

integrals (given in results 218.00 and 218.01 in Byrd & Friedman [73]) to yield

KE(ω) =
ne2τ0
m

[(
∆+

ω

2

)
E



√√√√1−

(
∆− ω

2

)2
(
∆+ ω

2

)2


 (4.78)

+
(
∆− ω

2

)
F



√√√√1−

(
∆− ω

2

)2
(
∆+ ω

2

)2



]
,

where E(k) the complete elliptic integral of the second kind and F (k) is the complete

elliptic integral of the first kind. Note F (k) can be written exactly as a hypergeometric

series if one desires, the form of which can also be found in Byrd & Friedman.

When ω > 2∆ after symmetrising the integrals and taking the limit T → 0, we find

KE(ω) =
ne2τ0
m

[∫ ω
2
+∆

ω
2
−∆

dx
x2 −

(
ω
2
−∆

)(
ω
2
+∆

)
√
x2 − (ω

2
−∆)2

√
(ω
2
+∆)2 − x2

+ i

∫ ω
2
−∆

∆−ω
2

dx
x2 −

(
ω
2
−∆

)(
ω
2
+∆

)
√
(ω
2
−∆)2 − x2

√
(ω
2
+∆)2 − x2

]
. (4.79)

Noting the latter integral is even, the integrals can be written in the following form

KE(ω) =
ne2τ0
m

[∫ a

b

dx
x2 − ab√

a2 − x2
√
x2 − b2

+ 2i

∫ b

0

dx
x2 − ab√

a2 − x2
√
b2 − x2

]
, (4.80)

where a = ω
2
+∆ and b = ω

2
−∆. The first integral can be solved with the same standard

results as above, albeit with different definitions of a and b, and the latter can be solved
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with Byrd & Friedman results 219.00 and 219.05, yielding

KE(ω) =
ne2τ0
m

[
4i∆F

( ω
2
−∆

ω
2
+∆

)
− 2i

(ω
2
+ ∆

)
E

( ω
2
−∆

ω
2
+∆

)
(4.81)

+
(ω
2
+ ∆

)
E



√√√√1−

(
ω
2
−∆

)2
(
ω
2
+∆

)2


−

(ω
2
−∆

)
F



√√√√1−

(
ω
2
−∆

)2
(
ω
2
+∆

)2



]
.

The latter term is identical to that in equation 4.78 and so an equation valid for all ω can

be written as

KE(ω) =
ne2τ0
m

[
i

[
4∆F

( ω
2
−∆

ω
2
+∆

)
− (ω + 2∆)E

( ω
2
−∆

ω
2
+∆

)]
Θ(ω − 2∆) (4.82)

+
(ω
2
+ ∆

)
E



√√√√1−

(
ω
2
−∆

)2
(
ω
2
+∆

)2


−

(ω
2
−∆

)
F



√√√√1−

(
ω
2
−∆

)2
(
ω
2
+∆

)2



]
.

The real part of the linear response function physically corresponds to the diamagnetic

reactivity of the condensate to the alternating applied field, and so is present at all ω.

The imaginary part that appears at applied frequencies greater than 2∆ corresponds to

excitations of the condensate that are now possible as the frequency is sufficiently high

to excite cooper pairs. Because this contribution is imaginary it corresponds to a real

part of the conductivity and hence is a measurable ‘paramagnetic’ response. If we were

to calculate this with T ̸= 0 there would also be a imaginary contribution to the linear

response function from the term with the difference of tanh-functions. This term would

be another contribution to the paramagnetic response, but now from the quasi-particles

that are thermally excited out of the condensate.

4.4 Thermal Conductivity of a Superconductor

The thermal conductivity behaves in a qualitatively different manner to that of of electrical

conductivity. This is because the superconducting condensate does not carry entropy, and

so does not contribute to thermal conductivity. In other words, there is no ‘super’-thermal

102



4.4. THERMAL CONDUCTIVITY OF A SUPERCONDUCTOR

current; the only contributions to the thermal conductivity from the electrons will be from

those that are not in the condensate. Hence we will calculate the the thermal conductivity,

κ, and expect a finite result that tends to zero at T = 0.

In the thermal case, in exact analogy to the normal state, the heat current operator

will have an additional partial time derivative compared to the electrical current operator;

this was shown by Luttinger [33]. Therefore ,we can find the appropriate linear response

function for the response to a thermal gradient by constructing a bubble diagram in the

same way as for the linear response to an electromagnetic field; the only difference being

we will have an additional factor proportional to the average of the Matsubara frequen-

cies from the vertices. This diagrammatic approach was first taken by Ambegaokar and

Tewordt [30], following on from earlier papers that used Boltzmann transport equations

[58, 74].

Now that we are in a 2 × 2 matrix formulation we must also be careful about which

Pauli matrix the vertex carries. In this case there is an addition minus sign on the down-

spin term so we will have a σz, as opposed to a σ0. Hence, in the small q limit the vertex

contributions will be given by

kF

m

(
iε+

iω

2

)

α

σz . (4.83)

The bubble diagram is shown in figure 4.5, with the small q limit already taken, and leads

to the equation for the heat current - heat current Green’s function,

GT
αβ(iω) =

T

m2V
∑

k

∑

ε

kFαkFβ

(
iε+

iω

2

)2

Tr

[
σz
iε̄+ ξσz − ∆̄σx
ε̄2 + ξ2 + ∆̄2

σz
iε̄′ + ξσz − ∆̄′σx
ε̄′2 + ξ2 + ∆̄′2

]

(4.84)

This calculation proceeds, up until the sum over ε, almost identically to the electrical

calculation of the previous section. The difference is the extra σz terms in the trace,

which will simply switch the sign on the ∆ term, as the σx will anti-commute with the

σz, whereas the other terms commute. The integral over ξk can be completed again with
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kF

m (iε+ iω
2 )ασz

kF

m (iε+ iω
2 )βσz

G(k+ q, iε+ iω)

G(k, iε)

Figure 4.5: Diagrammatic representation of the linear response of of a superconductor to
a thermal gradient

the results in equation 4.53 leading to

KT
αβ(iω) =

πnτ0
m

δαβT
∑

ε

(
iε+

iω

2

)2
EE ′ −∆2 − εε′

EE ′(1 + τ0E + τ0E ′)
. (4.85)

Examining the dirty limit (τ0E ≪ 1) we have

KT
αβ(iω) =

πnτ0
m

δαβT
∑

ε

(
iε+

iω

2

)2
[
1 +

iε(iε+ iω)−∆2

√
∆2 − (iε)2

√
∆2 − (iε+ iω)2

]
. (4.86)

Next, we convert the Matsubara sum into a contour integral in the z-plane, and the first

term will evaluate to zero as there are no poles or branch cuts on the exterior of the

contour, leading to

KT
αβ(iω) =

πnτ0
m

δαβ
i

2π

∮

Γ

dz f(z)

(
z +

iω

2

)2
z(z + iω)−∆2

√
∆2 − z2

√
∆2 − (z + iω)2

, (4.87)

where the contour is the same as in the right-hand side of figure 4.3. We can make the

transformation z 7→ −z − iω in the lower two contours to map them to the upper two in

the same way as in equation 4.65, because this transformation is still consistent with the

additional (ε+ iω/2) term. This yields

KT
αβ(iω) =

πnτ0
m

δαβ
1

2πi

∫

Γa+Γb

dz tanh
( z

2T

)(
z +

iω

2

)2
z(z + iω)−∆2

√
∆2 − z2

√
∆2 − (z + iω)2

.

(4.88)
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The analytical continuation of iω 7→ ω+iδ and z 7→ x±iδ can be completed fully in analogy

with the previous section the only notable difference being after the symmetrisation x 7→

x±ω/2 in the respective terms the (x+ω/2)2 term will map to x2. Furthermore, because

this is thermal conductivity, we will eventually want to take the limiting case ω → 0, so we

only need consider the contours in the case where ω < 2∆. So in conclusion, for the most

general expression for the frequency-dependent thermal linear response with ω < 2∆, we

have

KT
αβ(ω) =

nτ0
m
δαβ

[∫ ∆+ω
2

∆−ω
2

dx x2 tanh

(
x+ ω

2

2T

)
(x+ ω

2
)(x− ω

2
) + ∆2

√
(x+ ω

2
)2 −∆2

√
∆2 − (x− ω

2
)2

− i

∫ ∞

∆+ω
2

dx x2
(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))
(x+ ω

2
)(x− ω

2
) + ∆2

√
(x+ ω

2
)2 −∆2

√
(x− ω

2
)2 −∆2

]
.

(4.89)

Next we will proceed with taking the limit ω → 0. In this case we will be seeking a

solution for T ̸= 0, as we expect the thermal conductivity to be identically zero at T = 0.

When we take ω → 0 the first term will vanish, as its integration region tends to zero and

the integrand is finite. In the second term the limit of the difference of tanh’s will yield

a sech2 as follows,

lim
ω→0

[
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

)]
= ω lim

ω→0

tanh
(

x+ω
2

2T

)
− tanh

(
x−ω

2

2T

)

ω

= ω
d

dx
tanh

( x

2T

)

=
ω

2T
sech2

( x

2T

)
. (4.90)

Furthermore, the numerator and denominator will cancel in this limit, leaving us with

KT
αβ =

nτ0δαβ
m

−iω
2T

∫ ∞

∆

dx x2 sech2
( x

2T

)
. (4.91)

The final step to obtain the thermal conductivity is to divide the linear response function
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by −iω, therefore

Tκs =
nτ0
2mT

∫ ∞

∆

dx x2 sech2
( x

2T

)
, (4.92)

which in agreement with the result presented in Ambegaokar and Griffin [75]. We may

also make the substitution 2Ty = x to obtain

Tκs =
4nτ0T

2

m

∫ ∞

∆
2T

dy y2 sech2 (y) (4.93)

Although this integral is not analytically tractable and would have to be computed nu-

merically, we can verify that we obtain the normal state thermal conductivity by taking

the limit, ∆ → 0. This limit yields

Tκn =
4nτ0T

2

m

∫ ∞

0

dy y2 sech2 (y) , (4.94)

where we can now use the standard result for this integral,

∫ ∞

0

dy y2 sech2 (y) =
π2

12
, (4.95)

yielding the normal state result as expected.

It can be informative to examine the ratio of the superconducting and normal state

results, the prefactors will cancel and we have

κs
κn

=

∫∞
∆(T )
2T

dy y2 sech2 (y)
∫∞
0

dy y2 sech2 (y)
. (4.96)

So the only difference between the two results is the lower limit of the integral. How-

ever, this is deceptively complex because all the temperature dependence is in this limit,

remembering that the gap is a function of temperature that has to be determined self

consistently (equation 4.22). When this is calculated (either numerically or one can refer

back to the work of Bardeen et. al. for an analytic expression [58]) and plotted it shows
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the quick suppression of the conductivity as the temperature in decreased below Tc, as

can be seen in figure 1.3 in the Introduction.
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CHAPTER 5

WEAK LOCALISATION IN A

DIRTY SUPERCONDUCTOR

In this chapter we will develop the theory of weak localisation in superconductors. We

will begin the first section by calculating the cooperon as a stand-alone term that can then

be used in the weak localisation bubble diagram. We make use of the outer-product of

Pauli matrices to encode the matrix structure carried on the two vertices of the cooperon.

In section 5.2, we calculate the linear response function for the weak localisation to the

electrical conductivity, which could be used to calculate the correction to superconducting

carrier density [59] or the correction to the linear absorption [61]. However, because we are

primarily interested in the thermal conductivity of superconductors, we move on in section

5.3 to calculating the weak localisation correction to the electronic thermal conductivity

in dirty superconductors, as usual examining the ω → 0 limit. We end this section by

comparing our results with those of González Rosado et. al. [63]. As well as examining

the ratio of the weak localisation correction to the leading order conductivity and draw

comparisons to the equivalent ratio in the normal state.
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5.1 Calculation of the Cooperon in the Supercon-

ducting State

When we calculated the form of the cooperon in the normal state, we did not need to be

concerned with the order of Green’s functions and interaction vertices. However, in the

superconducting state we have seen that we must take the trace over all of the elements of

the diagram, the order of which being the order in which those terms appear as we move

around the loop. The cooperon connects the upper and lower Nambu Green’s functions,

so the two vertices of the cooperon will appear at different points in order of the trace.

To be able to calculate the cooperon in the superconducting state in isolation (to then

use as a term in the weak-localisation bubbles later) we can use a outer-product of the

Pauli matrices carried by the upper and lower vertex of the impurity interaction lines

to maintain all the information about the cooperon’s vertices. In this regime the Dyson

equation is constructed in the same way as in section 3.3 with

ΓC(q, iε, iε+ iω) =Γ0 + Γ0ΣC(q, iε, iε+ iω)ΓC(q, iε, iε+ iω) . (5.1)

Only now we have

Γ0 =
1

2πN(0)τ0
σz ⊗ σz (5.2)

and ΣC(q, iε, iε+ iω) =
1

V
∑

k

G(q− k, iε+ iω)⊗ G(k, iε) . (5.3)

Inserting in the Nambu Green’s functions and taking leading order in q, we have

ΣC(q, iε, iε
′) =N(0)

∫
dΩ

4π

∫ ∞

−∞
dξk

(iε̄′ + (ξk − µθ)σz − ∆̄′σx)⊗ (iε̄+ ξkσz − ∆̄σx)

(ε̄′2 + (ξk − µθ)2 + ∆̄′2)(ε̄2 + ξ2k + ∆̄2)
,

(5.4)
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where µθ = kF · q. Keeping terms that are not odd in ξk we can write this as

ΣC(q, iε, iε
′) = N(0)

∫
dΩ

4π

[
(iε̄′ − ∆̄′σx)⊗ (iε̄− ∆̄σx)

∫ ∞

−∞

dξk
(ξ2k + Ē2)((ξk − µθ)2 + Ē ′2)

+ σz ⊗ σz

∫ ∞

−∞

dξk ξk(ξk − µθ)

(ξ2k + Ē2)((ξk − µθ)2 + Ē ′2)

]
. (5.5)

The integrals over dξk can both be solved straightforwardly using a contour integrals with

the forms:

I1 =

∫ ∞

−∞

dξ

(ξ2 + a2)((ξ + c)2 + b2)
=

π(a+ b)

ab((a+ b)2 + c2)
, (5.6a)

I2 =

∫ ∞

−∞

dξ ξ(ξ + c)

(ξ2 + a2)((ξ + c)2 + b2)
=

π(a+ b)

(a+ b)2 + c2
= abI1 . (5.6b)

Using these results we obtain

ΣC(q, iε, iε
′) = N(0)

∫
dΩ

4π

π(Ē + Ē ′)

(Ē + Ē ′)2 + µ2
θ

[
σz ⊗ σz +

(iε̄′ − ∆̄′σx)⊗ (iε̄− ∆̄σx)

ĒĒ ′

]
.

(5.7)

We can use the fact that we are in the diffusive limit to simplify the expression, because

we can expand with respect to the the small parameters ωτ0 and ql0. First we use the

fact that µθ/(Ē + Ē ′) has dimensionality of ql0 so we can expand to leading order,

Ē + Ē ′

(Ē + Ē ′)2 + µ2
θ

≃ 1

Ē + Ē ′

[
1−

(
µθ

(Ē + Ē ′)2

)
+O

(
(ql0)

4
)]
. (5.8)

Now we can substitute Ē using equation 4.55 to obtain

Ē + Ē ′

(Ē + Ē ′)2 + µ2
θ

≃ τ0

[
1

1 + τ0(E + E ′)
− (µθτ0)

2

(1 + τ0(E + E ′))3

]
. (5.9)

111



CHAPTER 5. WEAK LOCALISATION IN A DIRTY SUPERCONDUCTOR

We can expand the first term to leading order in τ(Ē + Ē ′) and take the zeroth order

term in the second, as this term is already leading order in ql0,

∴
Ē + Ē ′

(Ē + Ē ′)2 + µ2
θ

≃ τ0
[
1− τ0(E + E ′)− (µθτ0)

2
]
. (5.10)

Now we can complete the angular integral as the only non-trivial term is the one con-

taining µθ, which for an isotropic system will simply yield a factor of d−1 (where d is the

dimensionality of the system). So along with the relation D = v2F τ0/d we have

ΣC(q, iε, iε
′) =πN(0)τ0γ

[
σz ⊗ σz +

(iε̄′ − ∆̄′σx)⊗ (iε̄− ∆̄σx)

ĒĒ ′

]
(5.11)

where γ =
(
1− (Dq2 + E + E ′)τ0

)
. (5.12)

Finally, we can cancel the factors arising from the barred variables in the last term to

obtain the expression for the cooperon self-energy

ΣC(q, iε, iε
′) =πN(0)τ0γ

[
σz ⊗ σz +

(iε′ −∆σx)⊗ (iε−∆σx)

EE ′

]
. (5.13)

To obtain the form of the cooperon from the cooperon self-energy we can directly

examine the first few terms of the Dyson equation. The first term to examine is

Γ0ΣCΓ0 =
γ

4πN(0)τ0
σz ⊗ σz

[
σz ⊗ σz +

(iε′ −∆σx)⊗ (iε−∆σx)

EE ′

]
σz ⊗ σz . (5.14)

Remembering that the two sets of Pauli matrices making up the outer-product obey

standard Pauli-commutation relations independently of each other, we can commute the

σz terms through the self-energy part, the only non-trivial commutation of σx and σz

resulting in a change of sign. So we obtain

Γ0ΣCΓ0 =
γ

4πN(0)τ0

[
σz ⊗ σz +

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

]
. (5.15)
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To build up the infinite series from this term we simply need to multiply the previous

expression by a factor of Γ0ΣC,

Γ0ΣCΓ0ΣCΓ0 =
γ2

8πN(0)τ0
σz ⊗ σz

[
σz ⊗ σz +

(iε′ −∆σx)⊗ (iε−∆σx)

EE ′

]

×
[
σz ⊗ σz +

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

]
. (5.16)

After expanding this expression out and using appropriate commutation relations, the

above expression simplifies to

Γ0ΣCΓ0ΣCΓ0 =
γ2

4πN(0)τ0

[
σz ⊗ σz +

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

]
= γΓ0ΣCΓ0 . (5.17)

So we can see that for each term in the infinite series we apply another factor of Γ0ΣC

which will lead to an additional factor of γ at each order in the series. Therefore the

infinite ladder sum can be written as a infinite series in powers of γ like so

ΓC = =
1

2πN(0)τ0
σz ⊗ σz +

1

4πN(0)τ0

[
σz ⊗ σz +

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

] ∞∑

n=1

γn

=
1

4πN(0)τ0

[
σz ⊗ σz

(
1 +

∞∑

n=0

γn

)
+

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

∞∑

n=1

γn

]

=
1

4πN(0)τ0

[
σz ⊗ σz

(
1 +

1

1− γ

)
+

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

(
γ

1− γ

)]
(5.18)

Because Dq2τ0, Eτ0 and E ′τ0 are all small parameters this means that γ ≈ 1 and hence

to leading order

1 +
1

1− γ
≈ γ

1− γ
≈ 1

1− γ
=

1

(Dq2 + E + E ′)τ0
. (5.19)

Therefore the form of the cooperon in the superconducting state is given by

ΓC(q, iε, iε
′) =

1

4πN(0)τ 20

1

Dq2 + E + E ′

[
σz ⊗ σz +

(iε′ +∆σx)⊗ (iε+∆σx)

EE ′

]
(5.20)
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5.2 Weak Localisation Correction to Electrical Con-

ductivity in a Superconductor

To calculate the weak localisation correction to conductivity in the superconductor, the

calculation can be constructed in analogy with the normal state calculation, by using the

cooperon to calculate the infinite series of maximally-crossed diagrams. Except, we will

of course be using the Nambu Green’s functions and corresponding diagrammatic rules.

The diagram we will calculate is shown in figure 5.1 and can be written as

GWL,E
αβ (0, iω) =

e2T

m2V2

∑

k,q

∑

ε

kα(q− k)β
1

4πN(0)τ 20

1

Dq2 + E + E ′

×
[
Tr
[
G(k, iε′)σzG(q− k, iε′)G(q− k, iε)σzG(k, iε)

]
(5.21)

+
1

ĒĒ ′ Tr
[
G(k, iε′)(iε̄′ + ∆̄′σx)G(q− k, iε′)G(q− k, iε)(iε̄+ ∆̄σx)G(k, iε)

]]
.

Note that we have two terms due to the two terms in the cooperon with the σz and

(iε − ∆σx) terms placed appropriately in the trace. Also, we have restored the extra

factors from the impurities in the second term to make the algebra from the commutation

with the Green’s functions somewhat neater. Applying the usual formula of inverting the

order of the k and ε sums, taking small q and converting the k sum to an integral over

e
mkασ0

e
m (q− k)βσ0

G(k, iε+ iω)

G(k, iε)

G(q− k, iε+ iω)

G(q− k, iε)

ΓC

Figure 5.1: Diagrammatic representation of the weak localisation correction to electrical
conductivity in a superconductor.
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ξ, we can simplify and obtain the linear response function given by

KWL,E
αβ (0, iω) = −e

2N(0)k2F
m2d

δαβ
1

4πN(0)τ0

1

V
∑

q

T
∑

ε

1

Dq2 + E + E ′

×
∫ ∞

−∞
dξ

[
Tr
[
G(k, iε′)σzG(k, iε′)G(k, iε)σzG(k, iε)

]
(5.22)

+
1

ĒĒ ′ Tr
[
G(k, iε′)(iε̄′ + ∆̄′σx)G(k, iε′)G(k, iε)(iε̄+ ∆̄σx)G(k, iε)

]]
.

To calculate the trace we can factor out the denominators from all of the Green’s functions

and hence we are left with two traces given by

Tr1 = Tr
[
(iε̄′ + ξσz − ∆̄′σx)σz(iε̄

′ + ξσz − ∆̄′σx)

× (iε̄+ ξσz − ∆̄σx)σz(iε̄+ ξσz − ∆̄σx)
]

(5.23a)

and Tr2 = Tr
[
(iε̄′ + ξσz − ∆̄′σx)(iε̄

′ + ∆̄′σx)(iε̄
′ + ξσz − ∆̄′σx)

× (iε̄+ ξσz − ∆̄σx)(iε̄+ ∆̄σx)(iε̄+ ξσz − ∆̄σx)
]
. (5.23b)

These traces can be solved with standard commutation relations and making use of the

fact that the only non-zero trace in the Pauli matrices comes from the identity, yielding

Tr1 = 2
[
(ξ2 − Ē ′2)(ξ2 − Ē2) + 4ξ2(∆̄∆̄′ − ε̄ε̄′)

]
(5.24a)

and Tr2 = 2[(ξ2 − Ē2)(ξ2 − Ē ′2)(∆̄∆̄′ − ε̄ε̄′) + 4ξ2(ĒĒ ′)2] . (5.24b)

Substituting these results in the linear response function we have

KWL,E
αβ (iω) = − e2k2F

2πτ 20m
2d
δαβ

1

V
∑

q

T
∑

ε

1

Dq2 + E + E ′

∫ ∞

−∞

dξ

(ξ2 + Ē2)2(ξ2 + Ē ′2)2

×
[
(ξ2 − Ē2)(ξ2 − Ē ′2) + 4ξ2(∆̄∆̄′ − ε̄ε̄′) (5.25)

+
1

ĒĒ ′

[
(ξ2 − Ē2)(ξ2 − Ē ′2)(∆̄∆̄′ − ε̄ε̄′) + 4ξ2(ĒĒ ′)2

]]
.
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Collecting together terms like so

KWL,E
αβ (iω) = − e2k2F

2πτ 20m
2d
δαβ

1

V
∑

q

T
∑

ε

1

Dq2 + E + E ′

∫ ∞

−∞

dξ

(ξ2 + Ē2)2(ξ2 + Ē ′2)2

×
[
(ξ2 − Ē2)(ξ2 − Ē ′2)

(
1 +

∆̄∆̄′ − ε̄ε̄′

ĒĒ ′

)
+ 4ξ2(ĒĒ ′ + ∆̄∆̄′ − ε̄ε̄′)

]
, (5.26)

we can see that there are integrals over ξ of two forms. The first has the form

∫ ∞

−∞
dξ

(ξ2 − a2)(ξ2 − b2)

(ξ2 + a2)2(ξ2 + b2)2
=

2π

(a+ b)3
, (5.27)

and the second has the form

∫ ∞

−∞
dξ

4ξ2

(ξ2 + a2)2(ξ2 + b2)2
=

2π

ab(a+ b)3
, (5.28)

with the requirement that Re{a},Re{b} > 0. Therefore the ξ integral can be completed

to yield

KWL,E
αβ (iω) = − 2e2k2F

τ 20m
2d
δαβ

1

V
∑

q

T
∑

ε

1

Dq2 + E + E ′
1

(Ē + Ē ′)3

(
1 +

∆2 − εε′

EE ′

)
, (5.29)

where, because of the extra factor of 1/ĒĒ ′ in the second integral, the two terms become

equal and we pick up a factor of two. We also at this stage cancel the impurity factor in

the final term. In the dirty limit we can make use of the approximation 1/(Ē+ Ē ′)3 ≈ τ 30

to obtain

KWL,E
αβ (iω) = −2e2Dδαβ

1

V
∑

q

T
∑

ε

1

Dq2 + E + E ′

(
1 +

∆2 − εε′

EE ′

)
. (5.30)

We could proceed further with this calculation to, for example, examine the affect of weak

localisation on the number density of superconducting electrons, as was done in the work

of Smith and Ambegaokar [59], or the correction to the linear absorption, as in the work of

Jujo [61]. However, we know that the weak localisation correction to electrical conductiv-
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ity will be negligible in comparison to the contribution from the super-current and hence

will be extremely difficult to measure in experiment. So this calculation will simply serve

as a useful comparison for the correction to the thermal current, where because there is

no super-thermal current one can, in principle, measure the weak localisation correction.

5.3 Weak Localisation Correction to Thermal Con-

ductivity in a Superconductor

To set up the calculation for the weak localisation correction to thermal conductivity in a

superconductor we can follow the same procedure as we did for the electrical conductivity

case, only needing to change the vertex contributions those appropriate for a thermal-

thermal current correlation, for the same reasons as discussed in the previous section.

Hence, the diagram we will calculate is given in figure 5.2.

This diagram can be written in terms of its corresponding Green’s function,

GWL,T
αβ (0, iω) =

T

m2V2

∑

k,q

∑

ε

kα(q− k)β

(
iε+

iω

2

)2
1

4πN(0)τ 20

1

Dq2 + E + E ′

×
[
Tr
[
σzG(k, iε′)σzG(q− k, iε′)σzG(q− k, iε)σzG(k, iε)

]
(5.31)

+
1

ĒĒ ′ Tr
[
σzG(k, iε′)(iε̄′ + ∆̄′σx)G(q− k, iε′)σzG(q− k, iε)(iε̄+ ∆̄σx)G(k, iε)

]]
.

kα

m

(
iε+ iω

2

)
σz

(q−k)β
m

(
iε+ iω

2

)
σz

G(k, iε+ iω)

G(k, iε)

G(q− k, iε+ iω)

G(q− k, iε)

ΓC

Figure 5.2: Diagrammatic representation of the weak localisation correction to thermal
conductivity in a superconductor.
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And in the same way as the previous section we can obtain the linear response function

from this, given by

KWL,T
αβ (0, iω) = −N(0)k2F

m2d
δαβ

1

4πN(0)τ0

1

V
∑

q

T
∑

ε

(
iε+ iω

2

)2

Dq2 + E + E ′

×
∫ ∞

−∞
dξ

[
Tr
[
σzG(k, iε′)σzG(k, iε′)σzG(k, iε)σzG(k, iε)

]
(5.32)

+
1

ĒĒ ′ Tr
[
σzG(k, iε′)(iε̄′ + ∆̄′σx)G(k, iε′)σzG(k, iε)(iε̄+ ∆̄σx)G(k, iε)

]]
.

The two traces we must compute are given by

Tr3 = Tr
[
σz(iε̄

′ + ξσz − ∆̄′σx)σz(iε̄
′ + ξσz − ∆̄′σx)

× σz(iε̄+ ξσz − ∆̄σx)σz(iε̄+ ξσz − ∆̄σx)
]

(5.33a)

and Tr4 = Tr
[
σz(iε̄

′ + ξσz − ∆̄′σx)(iε̄
′ + ∆̄′σx)(iε̄

′ + ξσz − ∆̄′σx)

× σz(iε̄+ ξσz − ∆̄σx)(iε̄+ ∆̄σx)(iε̄+ ξσz − ∆̄σx)
]
. (5.33b)

The additional σz factors in the traces will simply result in some changes in sign on the

σx terms, when compared to the electrical case. Resulting in the solutions to be traces,

given by

Tr3 = 2
[
(ξ2 − Ē ′2)(ξ2 − Ē2)− 4ξ2(∆̄∆̄′ + ε̄ε̄′)

]
(5.34a)

and Tr4 = 2
[
4ξ2(ĒĒ ′)2 − (ξ2 − Ē2)(ξ2 − Ē ′2)(ε̄ε̄′ + ∆̄∆̄′)

]
. (5.34b)

Returning to linear response function, we have

KWL,T
αβ (iω) = − k2F

2πτ 20m
2d
δαβ

1

V
∑

q

T
∑

ε

(
iε+ iω

2

)2

Dq2 + E + E ′

∫ ∞

−∞

dξ

(ξ2 + Ē2)2(ξ2 + Ē ′2)2

×
[
(ξ2 − Ē ′2)(ξ2 − Ē2)

(
1− ε̄ε̄′ + ∆̄∆̄′

ĒĒ ′

)
+ 4ξ2

(
ĒĒ ′ − ε̄ε̄′ − ∆̄∆̄′)

]
. (5.35)

The integrals over ξ can then be completed using the results given in equations 5.27 and
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5.28, yielding

KWL,T
αβ (iω) = − 2k2F

τ 20m
2d
δαβ

1

V
∑

q

T
∑

ε

(
iε+ iω

2

)2

Dq2 + E + E ′
1

(Ē + Ē ′)3

(
1− ∆2 + εε′

EE ′

)
(5.36)

Making using of the dirty limit, we can approximate 1/(Ē + Ē ′)3 ≈ τ 30 and consolidating

the prefactor we arrive at

KWL,T
αβ (iω) = − 2Dδαβ

1

V
∑

q

T
∑

ε

(
iε+ iω

2

)2

Dq2 + E + E ′

(
1− ∆2 + εε′

EE ′

)
. (5.37)

The next step is to solve the sum over Matsubara frequencies. We do this by casting

the sum into the form of a contour integral and then using analytic continuation to reduce

the contour integral to an integral along the real axis. The appropriate contour is the

same as shown in the right hand side of figure 4.3, denoted by Γ2. However, unlike the

previous section, both terms in the integral will use this contour with branch cuts because

of the additional factor from the cooperon. So we cannot trivially discard the first term as

we did in the previous section. The delta function also simply tells us that the response is

purely diagonal, or in other words the response is longitudinal with respect to the applied

thermal gradient, so from here we will drop the α and β indices as they are redundant.

Hence, we can write the linear response function as

KWL,T (iω) = −2D

V
∑

q

i

2π

∮

Γ

dz f(z)

(
z + iω

2

)2

Dq2 +
√
∆2 − z2 +

√
∆2 − (z + iω)2

×
(
1− ∆2 − z(z + iω)√

∆2 − z2
√
∆2 − (z + iω)2

)
. (5.38)

We can use the transformation z 7→ −z − iω in exact analogy to equation 4.65, in

order to reduce the integral to one that only encloses the upper two contours (labelled by
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Γa and Γb) with the form

KWL,T (iω) =
2D

V
∑

q

i

2π

∫

Γa+b

dz tanh
( z

2T

) (
z + iω

2

)2

Dq2 +
√
∆2 − z2 +

√
∆2 − (z + iω)2

×
(
1− ∆2 − z(z + iω)√

∆2 − z2
√
∆2 − (z + iω)2

)
. (5.39)

In the absence of contours enclosing ±∆ − iω we can safely analytically continue iω 7→

ω + iδ. Then we can also analytically continue z 7→ x ± iδ for above and below the

real axis respectively, remembering that we must choose the signs of the square roots

such that the real part is positive, in order to be consistent with the integrals performed

in equations 5.27 and 5.28. The correct signs have already been shown in the previous

section in equations 4.69 and 4.70. Hence for the Γa contour we have

∫

Γa

· · · =
∫ ∞

∆

dx tanh
( x

2T

) (x+ ω
2
)2

Dq2 − i
√
x2 −∆2 − i

√
(x+ ω)2 −∆2

×
(
1− ∆2 − x(x+ ω)

(−i
√
x2 −∆2)(−i

√
(x+ ω)2 −∆2)

)

+

∫ ∆

∞
dx tanh

( x

2T

) (x+ ω
2
)2

Dq2 + i
√
x2 −∆2 − i

√
(x+ ω)2 −∆2

(5.40)

×
(
1− ∆2 − x(x+ ω)

(i
√
x2 −∆2)(−i

√
(x+ ω)2 −∆2)

)
.

For brevity, we will relabel X =
√
x2 −∆2 and X ′ =

√
(x+ ω)2 −∆2 and then simplify-

ing this expression we obtain

∫

Γa

· · · =
∫ ∞

∆

dx tanh
( x

2T

)(
x+

ω

2

)2
[

1

Dq2 − iX − iX ′

(
1− x(x+ ω)−∆2

XX ′

)
(5.41)

− 1

Dq2 + iX − iX ′

(
1 +

x(x+ ω)−∆2

XX ′

)]
.

Repeating this process for the Γb contour and introducing X̄ =
√

∆2 − (x+ ω)2 for the
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square root that corresponds to the region outside of the lower branch cut, we find

∫

Γb

· · · =
∫ −∆−ω

−∞
dz tanh

( x

2T

)(
x+

ω

2

)2
[

1

Dq2 + iX + iX ′

(
1− x(x+ ω)−∆2

XX ′

)

− 1

Dq2 − iX + iX ′

(
1 +

x(x+ ω)−∆2

XX ′

)]

+

∫ −∆

−∆−ω

dx tanh
( x

2T

)(
x+

ω

2

)2
[

1

Dq2 + iX + X̄

(
1− i

x(x+ ω)−∆2

XX̄

)
(5.42)

− 1

Dq2 − iX + X̄

(
1 + i

x(x+ ω)−∆2

XX̄

)]
.

Note that because our end goal in thermal quantities is to take ω → 0, we do not include

the additional integral that arises when ω > 2∆. Now we symmetrise the integrals; in the

Γa integral make the transformation x 7→ x− ω
2
, so

X 7→
√

(x− ω

2
)2 −∆2 = X−

X ′ 7→
√

(x+
ω

2
)2 −∆2 = X+ , (5.43)

and the Γb integral make the transformation x 7→ −x− ω
2
, so

X 7→
√

(x+
ω

2
)2 −∆2 = X+ (5.44)

X ′ 7→
√

(x− ω

2
)2 −∆2 = X− (5.45)

X̄ 7→
√

∆2 − (x− ω

2
)2 := X̃ . (5.46)

Therefore,

∫

Γa

· · · =
∫ ∞

∆+ω
2

dx x2 tanh

(
x− ω

2

2T

)[
1

Dq2 − iX+ − iX−

(
1− (x− ω

2
)(x+ ω

2
)−∆2

X+X−

)

− 1

Dq2 − iX+ + iX−

(
1 +

(x− ω
2
)(x+ ω

2
)−∆2

X+X−

)]
, (5.47)
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and,

∫

Γb

· · · = −
∫ ∞

∆+ω
2

dx x2 tanh

(
x+ ω

2

2T

)[
1

Dq2 + iX+ + iX−

(
1− (x− ω

2
)(x+ ω

2
)−∆2

X+X−

)

− 1

Dq2 − iX+ + iX−

(
1 +

(x− ω
2
)(x+ ω

2
)−∆2

X+X−

)]

−
∫ ∆+ω

2

∆−ω
2

dx x2 tanh

(
x+ ω

2

2T

)[
1

Dq2 + iX+ + X̃

(
1− i

(x− ω
2
)(x+ ω

2
)−∆2

X+X̃

)

− 1

Dq2 − iX+ + X̃

(
1 + i

(x− ω
2
)(x+ ω

2
)−∆2

X+X̃

)]
. (5.48)

After some rearrangement and putting the two terms into the linear response function,

we have

KWL(ω) =
2Di

πV
∑

q

×
{∫ ∞

∆+ω
2

dx x2

[
tanh

(
x+ω

2

2T

)

(Dq2 + iX−)2 +X2
+

(
x2 −

(
ω
2

)2 −∆2

X+X−
(Dq2 + iX−) + iX+

)

−
tanh

(
x−ω

2

2T

)

(Dq2 − iX+)2 +X2
−

(
x2 − (ω

2
)2 −∆2

X+X−
(Dq2 − iX+)− iX−

)]

+i

∫ ∆+ω
2

∆−ω
2

dx x2
tanh

(
x+ω

2

2T

)

(Dq2 + X̃)2 +X2
+

(
x2 − (ω

2
)2 −∆2

X+X̃
(Dq2 + X̃) +X+

)}
. (5.49)

This is the most general form of the linear response function in the diffusive/dirty limit

that one can reach, before taking any further approximations or limits. We can proceed

further by examining the ω → 0 limit, as we are mostly concerned with ‘d.c.’ thermal

currents.

Equation 5.49 is in general complex, but we will only need the real part of the thermal

conductivity. Because we divide by −iω to get the conductivity from the linear response

function this means we only need the Im{K}. The second integral in equation 5.49 is

purely real, so we can immediately discard this term. Taking the limit ω → 0 on the first
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integral, we can notice some cancellations will occur. Firstly,

lim
ω→0

x2 −
(
ω
2

)2 −∆2

X+X−
=

x2 −∆2

√
x2 −∆2

√
x2 −∆2

= 1 , (5.50)

and therefore

KWL(0) = lim
ω→0

2Di

πV
∑

q

∫ ∞

∆+ω
2

dx x2

[
tanh

(
x+ω

2

2T

)

(Dq2 + iX−)2 +X2
+

(
(Dq2 + iX−) + iX+

)

−
tanh

(
x−ω

2

2T

)

(Dq2 − iX+)2 +X2
−

(
(Dq2 − iX+)− iX−

)
]
. (5.51)

This simplification allows a cancellation in the denominators,

(Dq2 + iX−) + iX+

(Dq2 + iX−)2 +X2
+

=
1

Dq2 + iX− − iX+

(5.52a)

and
(Dq2 − iX+)− iX−

(Dq2 − iX+)2 +X2
−
=

1

Dq2 + iX− − iX+

, (5.52b)

which leads to

KWL(0) = lim
ω→0

2Di

πV
∑

q

∫ ∞

∆+ω
2

dx x2 lim
ω→0



tanh

(
x+ω

2

2T

)
− tanh

(
x−ω

2

2T

)

Dq2 + iX− − iX+


 . (5.53)

Finally, we can take the limits:

lim
ω→0

[
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

)]
= ω

d

dx
tanh

( x

2T

)
=

ω

2T
sech2

( x

2T

)
, (5.54)

and in the denominator

lim
ω→0

[X+ −X−] = lim
ω→0

[√
(x+

ω

2
)2 −∆2 −

√
(x− ω

2
)2 −∆2

]

= ω
d

dx

√
x2 −∆2 = ω

x√
x2 −∆2

, (5.55)
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to obtain

KWL(0) =
2Di

πTV
∑

q

∫ ∞

∆

dx
x2 sech2( x

2T
)

Dq2 − iω x√
x2−∆2

. (5.56)

From this we can extract the conductivity by dividing by −iω, then taking the real part,

so

TκWL = Re

{
− D

πTV
∑

q

∫ ∞

∆

dx
x2 sech2( x

2T
)

Dq2 − iω x√
x2−∆2

}
. (5.57)

We have kept leading order in ω because otherwise, when we take the sum over q, the q2

term in the denominator will lead to a divergence. Of course, if we truly take the limit

ω → 0 this divergence will be present, but by leaving in ω dependence we are able to

complete the q integral see the form of the conductivity for small ω.

As weak localisation effects are most present in 2-dimensional systems, we will perform

the q integral in 2D. We can freely interchange the orders of the sums, so we have

TκWL = Re

{
− D

πT

∫ ∞

∆

dx x2 sech2
( x

2T

) 1
V
∑

q

1

Dq2 − iω x√
x2−∆2

}
. (5.58)

In the diffusive limit sum should be cut off at |q| ∼ l−1
0 , or equivalently Dq2 ∼ τ−1

0 . So in

2D the sum can be written in integral form as

1

V
∑

q

. . . =
1

(2π)2

∫ l−1
0

0

2πq dq

Dq2 − iω x√
x2−∆2

=
1

4πD

∫ τ−1
0

0

d(Dq2)

Dq2 − iω x√
x2−∆2

. (5.59)

Solving this we obtain

TκWL = Re

{
− 1

4π2T

∫ ∞

∆

dx x2 sech2
( x

2T

)
ln

(
1 + i

√
x2 −∆2

ωτ0x

)}

= − 1

8π2T 2

∫ ∞

∆

dx x2 sech2
( x

2T

)
ln

(
1 +

x2 −∆2

(ωτ0x)2

)
. (5.60)
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Finally, using the dirty limit, ωτ0 ≪ 1, we have

TκWL = − 1

8π2T

∫ ∞

∆

dx x2 sech2
( x

2T

)
ln

(
x2 −∆2

(ωτ0x)2

)
. (5.61)

So we can see from this, if we set ω = 0 we still have a logarithmic divergence in the

integrand. However in analogy to the normal state we can introduce the phase breaking

rate, τϕ, as a phenomenological parameter to introduce a cut-off to resolve the divergence

issue.

If we compare the equation for the cooperon in the superconducting state to the

equation in the the normal state (equations 3.56 and 5.20) we can see that, in the super-

conducting expression, factors in the denominator with the form
√
∆2 + ε2 take the place

of bare Matsubara frequencies in the normal state expression; other than that the form of

the factor containing Dq2 is the same. So to introduce τϕ, we can deduce it should simply

enter the denominator in the same way as equation 3.57, meaning

1

Dq2 + E + E ′ 7→
1

Dq2 + E + E ′ + τ−1
ϕ

. (5.62)

So returning to the linear response function before the ε sum is taken, we have

KWL,T
αβ (iω) = − 2Dδαβ

1

V
∑

q

T
∑

ε

(
iε+ iω

2

)2

Dq2 + E + E ′ + τ−1
ϕ

(
1− ∆2 + εε′

EE ′

)
. (5.63)

However, we expect τϕ to only depend on temperature, so it will not take any role in the

ε sum; it will simply be a passenger in the calculation. Hence, we can arrive immediately

at

TκWL
s = Re

{
− D

πTV
∑

q

∫ ∞

∆

dx
x2 sech2( x

2T
)

Dq2 − iω x√
x2−∆2 + τ−1

ϕ

}
. (5.64)
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Now we can set ω = 0 without issue and solve the integral in 2D again, yielding

TκWL
s = − 1

4π2T

∫ ∞

∆

dx x2 sech2
( x

2T

)
ln

(
1 +

τϕ
τ0

)
, (5.65)

then use the limit τϕ ≫ τ0, to obtain

TκWL
s = − 1

4π2T

∫ ∞

∆

dx x2 sech2
( x

2T

)
ln

(
τϕ
τ0

)
. (5.66)

So we can see the form of this is very similar to that of the thermal conductivity we calcu-

lated in the previous chapter. If we substitute y = x/2T we can remove the temperature

dependence from the sech,

TκWL
s = −2T 2

π2

∫ ∞

∆(T )
2T

dy y2 sech2 (y) ln

(
τϕ
τ0

)
, (5.67)

so the temperature dependence of the correction is entirely in the lower limit and in the

temperature dependence of τϕ. Because the log term does not depend on y, we can in

fact factor it out of the integral. If we then examine the ratio of the weak localisation

correction to the leading order conductivity, we can see that the integrals will cancel,

leaving us with

κWL
s

κs
= − m

2π2nτ0
ln

(
τϕ,s
τ0

)
. (5.68)

This result is in agreement with the result in González Rosado et. al. for the case of

a dirty superconductor [63]. In our calculation we have made no assumption about the

validity of this result in different temperate ranges. However, in the work of ref, [63],

our result matches for the so called high-temperature region, defined as T > T∆ ≈ 0.9Tc,

which defines the region before which the strong exponential suppression of the thermal

conductivity sets in. In the low temperature region they argue that the condition τ0 ≫ τϕ

is no longer sufficient to define the diffusive regime, and therefore the lower cutoff of τ0 in
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the integral dq must be replaced with a more complex energy dependent cut-off. However,

in the high temperature regime this cutoff returns to simply being given by tau0 and, as

we discussed in the introduction in detail, the high temperature regime is the one of

interest when it comes to comparison with experiment results. Thus, we do not fell it is

necessary to explore the low temperature region in detail.

The ratio of the weak localisation correction to the leading order conductivity in the

normal state has functionally the same form as in the superconducting state,

κWL
n

κn
= − m

2π2nτ0
ln

(
τϕ,n
τ0

)
. (5.69)

Also, with integrals in the superconducting state ratio cancelling, all the of the tempera-

ture dependence comes from τϕ in both ratios. However, note that the phase coherence

lifetimes in the normal and superconducting states are in general different, hence why

we have labelled them with a s and n subscript. For example, we refer the reader to

the work of Reizer [64] where the electron-electron relaxation time was calculated for a

dirty superconductor, τe−e,s. One can see that this calculation is much more involved,

and yields a different result, than that of Fukuyama and Abrahams’ [44] equivalent cal-

culation of τe−e,n in normal disordered metals. One could then use the relaxation times

found in these two studies and substitute τϕ,n = τe−e,n and τϕ,s = τe−e,s and compare the

two resulting weak localisation correction ratios. However, in the following chapter we

will turn our attention to the scenario where the phase coherence lifetime is dominated

by the scattering lifetime with magnetic impurities, τs.
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CHAPTER 6

WEAK LOCALISATION IN A

SUPERCONDUCTOR

INCLUDING MAGNETIC

IMPURITIES

In the previous section we included the phase coherence lifetime as a phenomenological

parameter, now we wish to introduce a phase breaking mechanism into the formalism

directly. We can do so by introducing magnetic impurities. Firstly, in the following sec-

tion we extend the Nambu-Gorkov formalism to include the interaction with magnetic

impurities and show that, unlike with only non-magnetic impurities, the superconducting

gap is altered. In section 6.2 we then use this new formalism to examine the frequency

dependent linear response of the superconductor with magnetic impurities to an elec-

tromagnetic field and, in particular, this section describes in detail how to perform the

analytic continuation process in this regime. Though this process is by no means original

(for example it can be found in Skalski et. al. [76]), we seek to provide a clear methodol-

ogy that could then be used by any interested reader. In section 6.3 we then calculate the

thermal conductivity using the same analytic continuation techniques and take the ω → 0
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limit; this was first done by Ambegaokar and Griffin [75]. We take this calculation up to

the point where the integral would have to be approximated or calculated numerically.

Everything up to this point in the chapter is well established in the literature, a review

of which can be found in Maki’s chapter in Parks’ treatise [14].

In section 6.4 we calculate the cooperon with magnetic impurities, which follows the

work of Smith [65] up to the acquisition of the general form of the cooperon. The original

work of this chapter begins in section 6.5 where we take the leading order approximation

of the cooperon in the limit τs ≫ τ0, whilst retaining the frequency dependency of the

cooperon. This is because to properly analytically continue we must take the limit ω → 0

after performing the analytic continuation, in the same way as demonstrated in section

6.2. In section 6.6 we then take the cooperon and use it to construct the weak localisation

bubble diagram, and we proceed with this calculation as far as possible analytically. We

then end the chapter with some discussion of the result and possible future work.

6.1 Nambu-Gorkov Formalism with Magnetic Impu-

rities

In the previous section we included the phase coherence lifetime as a phenomenological

parameter, now we wish to introduce a phase breaking mechanism into the formalism

directly. We can do so by introducing magnetic impurities. But before we get ahead

of ourselves thinking about the weak localisation correction, we must examine how the

magnetic impurities affect the superconducting state.

We have seen that non-magnetic impurities do not have any affect on the transi-

tion temperature or superconducting gap (as long as they are in sufficiently low concen-

trations). However, interaction with magnetic impurities is a time reversal symmetry

breaking process for the electrons, and perturbations of this type will affect the gap and

transition temperature [14]. Another time reversal symmetry breaking perturbation of

note is the application of a magnetic field.
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In this section we will be extending the Nambu-Gorkov formalism to include the in-

teraction with magnetic impurities. We will then go on to calculate how the magnetic

impurities affect the electrical and thermal conductivity. In the last section we will calcu-

late the form of the cooperon in this regime, with the magnetic impurities providing the

phase coherence cut-off.

We begin the set up of the Nambu-Gorkov formulation in the same way as the non-

magnetic impurity calculation. We take our Hamiltonian in real space and we include an

additional term in our Hamiltonian corresponding to magnetic impurities:

Hmag =J

∫
dr
∑

j

δ(r−Rj)

[
Sx
j

(
ψ†
↑(r)ψ↓(r) + ψ†

↓(r)ψ↑(r)
)

− iSy
j

(
ψ†
↑(r)ψ↓(r)− ψ†

↓(r)ψ↑(r)
)
+ Sz

j

(
ψ†
↑(r)ψ↑(r) + ψ†

↓(r)ψ↓(r)
)]

. (6.1)

Where the coupling strength to the magnetic impurities is given by J , the interaction has

been taken to be point-like and the component of the jth impurity’s spin in each Cartesian

direction is given by Sx,y,z
j .

In a similar way to how we constructed the Nambu-Gorkov-spinors to compactify the

BCS term by leveraging the inherent symmetries in the Hamiltonian, we can do the same

here by constructing a spin-spinor that reflects the spin flip nature of the magnetic term.

In the case of the Nambu-spinor, the symmetry linked a field operator to its conjugate

with the opposite spin. In the case of the spin-spinor, it more simply links the operator

to its opposite spin partner, hence we will construct them as follows

ϕ(r) =



ψ↑(r)

ψ↓(r)


 ; ϕ†(r) =

(
ψ†
↑(r) ψ†

↓(r)

)
. (6.2)

Then re-writing the magnetic impurity term in the Hamiltonian in terms of the spinors
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yields

Hmag =

∫
dr
∑

j

δ(r−Rj)

[
Sx
j ϕ

†(r)sxϕ(r) + Sy
j ϕ

†(r)syϕ(r) + Sz
jϕ

†(r)szϕ(r)

]

=J

∫
dr
∑

β

δ(r−Rj)Sj · ϕ†(r)sϕ(r) , (6.3)

where s =




sx

sy

sz




≡




σx

σy

σz




; Sj =




Sx
j

Sy
j

Sz
j



.

Here we have written the Pauli matrices that arise from the use of the the spin-spinor as

si to distinguish from those that arise from the Nambu-spinor. This helps to keep the

notation clear as we move on to the next step, which is to combine both of the spinors

together.

To be able to encapsulate the symmetries involved in the formation of Cooper pairs

and magnetic interaction, we must combine the two different types of spinors into one

rank-4 matrix/spinor representation of the Hamiltonian. So we introduce the magnetic

Nambu-Gorkov spinors

Φ(r) =




ψ↑(r)

ψ↓(r)

ψ†
↓(r)

ψ†
↑(r)




; Φ†(r) =

(
ψ†
↑(r) ψ†

↓(r) ψ↓(r) ψ↑(r)

)
; (6.4)

so between the first and second elements, and the third and fourth, we have the spin-flip

representative of the spin-spinor and between the first and third, and second and fourth,

we have the spin flip plus conjugation representative of the Nambu-spinor. Now we can

rewrite the terms in the Hamiltonian using this new four component spinor along with
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the outer product of the σ and s sets of Pauli matrices:

H0 =
1

2

∫
drΦ†(r)

(
∇2

2m
− µ

)
[σz ⊗ s0]Φ(r) (6.5a)

Himp =
U

2

∑

i

∫
dr δ(r−Ri)Φ

†(r)[σz ⊗ s0]Φ(r) (6.5b)

HBCS =− ∆

2

∫
drΦ†(r)[σx ⊗ sz]Φ(r) (6.5c)

Hx
mag =

J

2

∑

j

∫
dr δ(r−Rj)S

x
j Φ

†(r)[σz ⊗ sx]Φ(r) (6.5d)

Hy
mag =

J

2

∑

β

∫
dr δ(r−Rj)S

y
jΦ

†(r)[σz ⊗ sy]Φ(r) (6.5e)

Hz
mag =

J

2

∑

β

∫
dr δ(r−Rj)S

z
jΦ

†(r)[σ0 ⊗ sz]Φ(r) . (6.5f)

The 4× 4 matrix structure causes double counting leading to the factor of a half in all of

the terms. Now employing the same methods as in previous sections we can obtain the

equation of motion for the the magnetic-Nambu-Gorkov Green’s function

[
d

dτ
σ0s0 +

(
∇2

2m
− µ

)
σzs0 −∆σxsx + U

∑

i

δ(r−Ri)σzs0

+J
∑

j

δ(r−Rj)Sj ·Ω
]
G(r, r′; τ) = −δ(r− r′)δ(τ)σ0s0 (6.6)

where G(r, r′; τ) =−
〈
TτΦ(r, τ)Φ

†(r′, 0)
〉

(6.7)

and Ω =




σzsx

σzsy

σ0sz



. (6.8)

We have employed the convention that the products of the different species of Pauli

matrices denotes the outer product, i.e. σisj ≡ σi ⊗ sj.
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Σimp + Σmag = + + +

Gσzs0 σzs0 Gσzsx σzsx

x

Gσzsy σzsy

y

Gσ0sz σ0sz

z

Figure 6.1: The Self-energy part from the Dyson equation for the superconducting Green’s
function perturbed by non magnetic and magnetic impurities. The left most contribution
is from the scattering with non-magnetic impurities and the right-hand are from the three
distinct ‘species’ of magnetic impurities. Each contribution has a different value on the
vertex.

The Green’s function for a clean superconductor in this new notation would be given

by

G0(k, iε) =
1

iεσ0s0 − ξkσzs0 +∆σxsz

=
iεσ0s0 + ξkσzs0 −∆σxsz

−ε2 − ξ2k −∆2
. (6.9)

Then we can ensemble average and construct a Dyson equation, as shown in figure 6.1,

which proceeds almost identically to the non-magnetic case (including the nested diagram,

hence the full G appears in the self-energy). However, because there are three ‘species’ of

magnetic impurity, when we average over impurity positions we require that the species of

magnetic impurity are the same in the average for the term to be non-zero. So if we also

assume the magnetic impurities are approximately evenly distributed between species we

will pick up a factor of 1
3
S(S + 1) when we take ⟨SiSi⟩ for each respective spin species.

Therefore the self-energy parts will be given by

Σimp = nimp|U |2
∑

k

σzs0G(k, iε)σzs0 (6.10)

and Σmag =
1

3
S(S + 1)nmag|J |2

∑

k

ΩG(k, iε) ·Ω , (6.11)

where because the total self-energy for the magnetic impurities is the sum off the contri-

butions from the 3 spin components, we have a dot product of the Ω vector with itself;

this gives the correct vertex contributions for each respective spin.

We make an ansatz of the same form as in the case with only non-magnetic impurities,
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but with a new set of renormalised variables now denoted by a tilde,

Σimp + Σmag = i(ε− ε̃)σ0s0 + (∆− ∆̃)σxsz (6.12)

∴ G(k, iε) = 1

iε̃σ0s0 − ξkσzs0 + ∆̃σxsz
=
iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

−ε̃2 − ξ2k − ∆̃2
. (6.13)

Now we need to examine how the different matrices carried by the vertices of the impurity

interactions commute with this Green’s function, noting that the outer product essentially

allows us to commute the spin and Nambu Pauli matrices independently

imp: σzs0

(
iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

)
σzs0 = iε̃σ0s0 + ξkσzs0 + ∆̃σxsz (6.14a)

magx: σzsx

(
iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

)
σzsx = iε̃σ0s0 + ξkσzs0 − ∆̃σxsz (6.14b)

magy: σzsy

(
iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

)
σzsy = iε̃σ0s0 + ξkσzs0 − ∆̃σxsz (6.14c)

magy: σ0sz

(
iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

)
σ0sz = iε̃σ0s0 + ξkσzs0 − ∆̃σxsz (6.14d)

The non-magnetic term simply flips the sign of the ∆ term as it did before. All of

the magnetic terms fully commute with the Green’s function, which means they will all

contribute identically, giving us a factor of 3 which cancels with the 1/3. All together this

leaves us with the integrals

Σimp =− nimpN(0)|U |2
∫ ∞

−∞
dξk

iε̃σ0s0 + ξkσzs0 + ∆̃σxsz

ε̃2 + ξ2k + ∆̃2
(6.15)

and Σmag =− S(S + 1)nmagN(0)|J |2
∫ ∞

−∞
dξk

iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

ε̃2 + ξ2k + ∆̃2
. (6.16)

These can be solved in the same way as equation 4.36 yielding

Σimp = −πnimpN(0)|U |2 iε̃σ0s0 + ∆̃σxsz√
ε̃2 + ∆̃2

(6.17)

and Σmag = −πS(S + 1)nmagN(0)|J |2 iε̃σ0s0 − ∆̃σxsz√
ε̃2 + ∆̃2

(6.18)
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So now we solve for the renormalised variables by solving self consistently with the original

ansatz by equating coefficients of the Pauli matrices, along with defining a scattering rate

for the magnetic impurities,

τ−1
s = 2πS(S + 1)nmagN(0)|J |2 , (6.19)

we have

ε =ε̃

(
1− 1

2

(
1

τ0
+

1

τs

)
1√

ε̃2 + ∆̃2

)
(6.20a)

and ∆ =∆̃

(
1− 1

2

(
1

τ0
− 1

τs

)
1√

ε̃2 + ∆̃2

)
. (6.20b)

Note now that ε
∆

̸= ε̃

∆̃
, so it is now no longer possible to invert the relations to find

ε̃ and ∆̃ in terms of ε and ∆, therefore the definition of these variables will remain

implicit. Also as a result of this the gap and transition temperature will be affected by

the addition of magnetic impurities, more specifically they will be suppressed and at a

critical concentration the gap will become zero before the superconductivity is completely

destroyed, leading to so called gapless superconductivity.

To deduce the form of the suppressed gap we will follow [14] and begin by defining

the useful quantity

u =
ε̃

∆̃
. (6.21)

We can then re-write the equations in 6.20 like so,

ε̃ = ε+
1

2

(
1

τ0
+

1

τs

)
u√

1 + u2
(6.22a)

and ∆̃ = ∆ +
1

2

(
1

τ0
− 1

τs

)
1√

1 + u2
. (6.22b)

By multiplying the latter equation by u and subtracting it off the former, we can arrive
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at

ε

∆
= u

(
1− ζ

1√
1 + u2

)
, where ζ =

1

τs∆
. (6.23)

Rewriting this in terms of real frequencies we analytically continue, which will discuss

in detail in the following section, but essential we can simply take iu(iε) 7→ u(ε), which

yields

ε

∆
= u

(
1− ζ

1√
1− u2

)
, where ζ =

1

τs∆
. (6.24)

If we, for now, assume that u is purely real we can plot the right-hand side as a function

of u, as shown in figure 6.2.

Figure 6.2: Plot of the ratio of the real frequency to the order parameter, ε/∆, written as
a function of u, written in equation 6.24. The maximum of this function can be identified
with the suppressed gap, ωg.

This function has one maximum, which is related to the value of the suppressed gap,

ωg. This is can be shown by looking at the density of states of superconducting electrons,
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which can be written as

Ns(ε) = Im

{∫
dk

(2π)d
1

2
Tr[G(k, ε)]

}
. (6.25)

Substituting in the form of the Green’s function, with real frequency, in 3-dimensions we

have

Ns(ε) =
1

2π
Im

{∫
d3k

(2π)3
1

2
Tr

[
ε̃σ0s0 + ξkσzs0 − ∆̃σxsz

ε̃2 − ξ2k − ∆̃2

]}

=
1

2π
Im

{
2N(0)

∫ ∞

0

dξ
ε̃

ε̃2 − ξ2 − ∆̃2

}

= Im

{
N(0)

ε̃√
∆̃2 − ε̃2

}
= N(0) Im

{
u√

1− u2

}
. (6.26)

Then we can use equation 6.23 along with the fact that ε/∆ is purely real to get

Ns(ε) = N(0)ζ−1 Im{u} . (6.27)

From this we can conclude that in order for the superconducting density of states to be

non-zero, u must have an imaginary part, and in the plot of ω/∆ = f(u) we assumed

u was purely real. So for ε < ωg, Ns(ε) will be zero and for there to be solutions with

f(u) > ωg/∆, u must have an imaginary part and hence Ns is non-zero. Therefore the

density of states is gapped for ε < ωg.

All that is left to do is to calculate the maximum of this function. We will call the

value of u for which f(u) is maximised u0, then this value simply needs to be substituted

into equation 6.23. Following this through, we have

df(u)

du
= 0 = 1− ζ

(1− u20)
3
2

⇒ u0 = (1− ζ
2
3 )

1
2

∴ ωg = ∆(1− ζ
2
3 )

3
2 . (6.28)
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6.2 Linear Response of a Superconductor Containing

Paramagnetic Impurities to an Electromagnetic

Field

The set up of solving for the linear response to an applied field should be very familiar,

the only change we must make compared to the calculation in section 4.3 is to use the

‘magnetic’-Green’s functions defined in the previous section and include a normalisation

factor of 1
2
in the trace due to the double counting of each of the spins. Therefore we

will immediately write down the linear response function, in the limit that the external

momentum q → 0:

KE,M
αβ (iω) =

e2k2FN(0)

3m2
δαβT

∑

ε

∫ ∞

−∞

dξ

2
Tr

[
iε̃′σ0s0 + ξkσzs0 − ∆̃′σxsz

ε̃′2 + ξ2k + ∆̃′2

× iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

ε̃2 + ξ2k + ∆̃2

]
, (6.29)

where the M superscript denotes we have included the magnetic impurities. This is a

purely diagonal response in this limit, hence we can drop the α and β. Only terms with a

matrix dependence of σ0s0 will contribute to the trace, with a factor of 4, which leads to

KE,M(iω) =
ne2

m
T
∑

ε

∫ ∞

−∞
dξ

ξ2 − ε̃ε̃′ + ∆̃∆̃′

(ξ2 + Ẽ2)(ξ2 + Ẽ ′2)
, (6.30)

where Ẽ =
√
ε̃2 + ∆̃2. This integral can be solved with the results in equation 4.53 to

yield

KE,M(iω) =
πne2

m
T
∑

ε

ẼẼ ′ − ε̃ε̃′ + ∆̃∆̃′

ẼẼ ′(Ẽ + Ẽ ′)

=
πne2

m
T
∑

ε

WW ′ + 1− uu′

WW ′(∆̃W + ∆̃′W ′)
, (6.31)
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where W =
√
1 + u2. Multiplying through equation 6.22b by a factor of W , we can

eliminate ∆̃ in favour of ∆ to obtain

KE,M(iω) =
πne2

m
T
∑

ε

WW ′ + 1− uu′

WW ′(∆W +∆W ′ + τ−1
− )

, (6.32)

where τ−1
− = τ−1

0 − τ−1
s . Now to return to units with dimensions of frequency, we multiply

the numerator and denominator by ∆2 and define

v = ∆u and V =
√
∆2 + v2 , (6.33)

so we have

KE,M(iω) =
πne2

m
T
∑

ε

V V ′ +∆2 − vv′

V V ′(V + V ′ + τ−1
− )

. (6.34)

To proceed we wish to take the sum over ε by writing it as a contour integral, taking

iε 7→ z. However, it is less clear how this will work now that v and v′ are related to ε and

ε+ ω implicitly. However, we can deduce that v must have the same analytic properties

as ε with respect to the branch cuts, because if we take the limit τ−1
s → 0, then V → E

continuously without any breaks in analyticity. So when we take iε 7→ z, we will have

iv(iε) 7→ v(z) and iv′ 7→ v(z + iω), which for brevity we will continue to denote with

v and v′ respectively. Following from this we will also have V (z) =
√
∆2 − v2(z) and

V ′(z) = V (z + iω) =
√
∆2 − v2(z + iω). So we have

KE,M(iω) =
πne2

m

i

2π

∮

Γ

dz f(z)
V V ′ +∆2 + vv′

V V ′(V + V ′ + τ−1
− )

, (6.35)

where the contour, Γ, is shown in figure 6.3. Note that the primary difference between

this contour and the ones that appear without magnetic impurities is that the branch

cuts now begin at the the suppressed gap, ωg.

Next, we wish to remove the contours, Γc and Γd, that enclose the lower two branches,
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Re{z}

Im{z}

ωg−ωg

ωg − iω−ωg − iω

Γa

Γd

Γb

Γc

Figure 6.3: Contours arising from Matsubara frequencies in the linear response of a super-
conductor with magnetic impurities to an electromagnetic field. The primary difference
between this case and that without magnetic impurities is that the branch cuts now start
at the supressed gap, ωg, instead of ∆.

so that we can guarantee that when we take iω 7→ ω + iδ the contours do not pass over

any singularities on the imaginary axis; avoiding any of the complications associated to

this. If we examine the relation

z = v(z)

(
1− 1

τs

1√
∆2 − v2(z)

)
, (6.36)

it is straight forward to verify that v has the property v(−z) = −v(z). Therefore, we

can make use of the transformation z 7→ −z − iω on Γc and Γd, because under this

transformation v 7→ −v′, v′ 7→ −v, V 7→ V ′ and V ′ 7→ V . Thus we have, in analogy to

equation 4.65 in section 4.3, a mapping of Γc 7→ Γa and Γd 7→ Γb, with f(z) 7→ f(−z) and

picking-up an additional minus sign in the integrals. So we are able to simplify the full

contour integral to

KE,M(iω) =
πne2

m

1

2πi

∫

Γa+b

dz tanh
( z

2T

) V V ′ +∆2 + vv′

V V ′(V + V ′ + τ−1
− )

, (6.37)

and then safely analytically continue iω 7→ ω, so that we obtain and equation for KE,M(ω)
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Re{z}

Im{z}

ωg−ωg

ωg − ω−ωg − ω

iδ

ΓaΓb

ω < 2ωg

Re{z}

Im{z}

ωg−ωg

ωg − ω−ωg − ω

iδ

ΓaΓb

ω > 2ωg

Figure 6.4: Contours arising from Matsubara frequencies in the linear response of a super-
conductor with magnetic impurities to an electromagnetic field after analytic continuation
of iω 7→ ω + iδ. The left-hand figure shows qualitatively the contours when ω < 2ωg and
the right-hand side the case where ω > 2ωg.

with contours given in figure 6.4.

To understand the behaviour of v and V as we analytically continue z 7→ x ± iδ, we

return to the relation in equation 6.36. If we split both z and v(z) into their real and

imaginary parts, we have

x+ iy = (a+ ib)

(
1− 1

τs

1√
∆2 − (a+ ib)2

)
, where a = Re{v}, b = Im{v} . (6.38)

We use the standard result for the square root of a complex number

√
α + iβ = ±



√√

α2 + β2 + α

2
+ isgn(β)

√√
α2 + β2 − α

2


 ,

= ±
[
A(α, β) + isgn(β)B(α, β)

]
, (6.39)

to find

√
∆2 − (a+ ib)2 = ±

[
A(∆2 − a2 + b2,−2ab) + isgn(−ab)B(∆2 − a2 + b2,−2ab)

]

= Ã+ isgn(−ab)B̃ , (6.40)

noting that the functions, A(α, β) and B(α, β), are real and positive for all α and β. And
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remembering that the integral over ξ taken earlier in the calculation requires the real part

of Ẽ to be positive, this means we must take the + sign in the ±. Substituting this back

into equation 6.38 and rationalising the denominator, we can write this equation as

x+ iy =

[
a− 1

τs

aÃ+ bB̃sgn(−ab)
Ã2 + B̃2

]
+ i

[
b− 1

τs

bÃ− aB̃sgn(−ab)
Ã2 + B̃2

]
. (6.41)

Now we can see that if we take y 7→ −y, for this equation be be satisfied we must

have b 7→ −b, because both Ã and B̃ are even in a and b. Therefore, we can conclude

v(z∗) = v∗(z) and hence, as the branch cut is crossed v 7→ v∗. Furthermore, if we refer

back to equation 6.40 we can see that taking the conjugate of z will mean b 7→ −b,

switching only the sign of the sgn, therefore we have

V (z∗) = V ∗(z) , (6.42)

and, similarly to v, we will have V 7→ V ∗ as the branch cut is crossed.

Next we will again use the fact that in the limit τ−1
s → 0 we must recover the analytic

properties of the non-magnetic calculation. First, lets examine what will happen when

we look at the Γa contour. We require that, for x > ∆

for z = x+ iδ :
√

∆2 − v2(z) 7→ −i
√
x2 −∆2 as τ−1

s → 0

and for z = x− iδ :
√

∆2 − v2(z) 7→ i
√
x2 −∆2 as τ−1

s → 0 . (6.43)

If we expand v(x+ iδ) for small δ we have

v(x+ iδ) ≃ v(x) + iδ
dv(x)

dx
, (6.44)

where v(x) is in general complex, even though its argument is pure real. Then similarly
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to equation 4.67 we can expand out V (x+ iδ) as follows,

√
∆2 − v2(x+ iδ) ≃ ±i

√
v2(x)−∆2

[
1 + iδ

dv(x)
dx

v2(x)−∆2

]
, (6.45)

and because v(x) → x as τ−1
s → 0, we can deduce the correct choice of sign must be

√
∆2 − v2(x+ iδ) ≃ −i

√
v2(x)−∆2. (6.46)

Then, as the cut is crossed we have

√
∆2 − v2(x− iδ) =

√
∆2 − v∗2(x+ iδ)

≃ ±i
√
v∗2(x)−∆2

[
1− iδ

dv∗(x)
dx

v∗2(x)−∆2

]
, (6.47)

and hence, to be consistent, we have

√
∆2 − v2(x− iδ) ≃ i

√
v∗2(x)−∆2 (6.48)

On the Γb contour, we can immediately deduce the the appropriate terms above and

below the cut using the property v(−z) = −v(z). Because taking z → −z is equivalent to

taking both x→ −x and the complex conjugate, this means that the result above the Γa

contour should be the same as below the Γb contour and visa versa. This is also consistent

with the limit τ−1
s → 0, seeing as in this limit when x < −∆, we expect

for z = x+ iδ :
√
∆2 − v2(z) 7→ i

√
x2 −∆2 as τ−1

s → 0

and for z = x− iδ :
√

∆2 − v2(z) 7→ −i
√
x2 −∆2 as τ−1

s → 0 . (6.49)
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So all together we have

for x > ωg :
√
∆2 − v2(x+ iδ) ≃ −i

√
v2(x)−∆2 := −iV (x)

and
√
∆2 − v2(x− iδ) ≃ i

√
v∗2(x)−∆2 := iV ∗(x) ,

and for x < −ωg :
√
∆2 − v2(x+ iδ) ≃ i

√
v∗2(x)−∆2 := iV ∗(x)

and
√
∆2 − v2(x− iδ) ≃ −i

√
v2(x)−∆2 := −iV (x) . (6.50)

Of course, it is simple to repeat this treatment for V (z + ω) and the same pattern is

found above and below the two lower branch cuts corresponding to this square root, of

course with the appropriate regions for the results being x > ωg − ω and x < −ωg − ω.

The only region that needs addressing is −ωg − ω < x < −ωg when ω < 2ωg and

−ωg−ω < x < ωg−ω when ω > 2ωg, where the integration takes place outside the region

of the branch cut. But, we have actually discussed this region at the end of the previous

section, as this corresponds to the region where v(x) is purely real and hence the density

of states of superconducting carriers is zero. So we will define

v(z + ω) = v̄(x+ ω)

and V (z + ω) = V̄ (x+ ω) =
√
∆2 − v2(x+ ω) (6.51)

for − ωg − ω < x < −ωg when x < 2ωg ,

or for − ωg − ω < x < ωg − ω when x > 2ωg ,

where the bars indicate these variables are purely real, to distinguish them from the

generally complex v(z). At this stage we must note that the ω > 2ω regime is much more

relevant when considering magnetic impurities than when without. This is because as ωg

is suppressed by increased concentrations of magnetic impurities, it can decrease to zero

leading to gap-less superconductivty. Thus, even when we are considering limits of very

small ω we may still be in the regime where ω > 2ωg and so should be careful not to leave

out relevant terms in our contour integrals.
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Now that we have all the information we need for the analytic continuation of the

contours to the real axis, we can begin with writing the integral we obtain from the Γa

contour

KE,M
a (ω) =

ne2

2im

[∫ ∞

ωg

dx tanh
(

x
2T

)

τ−1
− − iV (x)− iV (x+ ω)

(
1− v(x)v(x+ ω) + ∆2

V (x)V (x+ ω)

)

−
∫ ∞

ωg

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x)− iV (x+ ω)

(
1 +

v∗(x)v(x+ ω) + ∆2

V ∗(x)V (x+ ω)

)]
. (6.52)

And for the Γb contour, in the case where ω < 2ωg, we have

KE,M
b (ω) =

ne2

2im

[∫ −ωg−ω

−∞

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x) + iV ∗(x+ ω)

(
1− v∗(x)v∗(x+ ω) + ∆2

V ∗(x)V ∗(x+ ω)

)

−
∫ −ωg−ω

−∞

dx tanh
(

x
2T

)

τ−1
− − iV (x) + iV ∗(x+ ω)

(
1 +

v(x)v∗(x+ ω) + ∆2

V (x)V ∗(x+ ω)

)

+

∫ −ωg

−ωg−ω

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x) + V̄ (x+ ω)

(
1 +

v∗(x)v̄(x+ ω) + ∆2

iV ∗(x)V̄ (x+ ω)

)
(6.53)

−
∫ −ωg

−ωg−ω

dx tanh
(

x
2T

)

τ−1
− − iV (x) + V̄ (x+ ω)

(
1− v(x)v̄(x+ ω) + ∆2

iV (x)V̄ (x+ ω)

)]
.

Now to symmetrise the integrals, in the Ka term we can make the transformation

x 7→ x− ω/2. Which will transform

v(x) 7→ v
(
x− ω

2

)
:= v− , v(x+ ω) 7→ v

(
x+

ω

2

)
:= v+

and V (x) 7→ V
(
x− ω

2

)
:= V− , V (x+ ω) 7→ V

(
x+

ω

2

)
:= V+ , (6.54)

and in Kb take x 7→ −x− ω/2, which yields

v(x) 7→ −v
(
x+

ω

2

)
:= −v+ , v(x+ ω) 7→ −v

(
x− ω

2

)
:= −v− ,

and V (x) 7→ V
(
x+

ω

2

)
:= V+ , V (x+ ω) 7→ V

(
x− ω

2

)
:= V− , (6.55)

as well as v̄(x+ ω) 7→ −v̄
(
x− ω

2

)
:= −ṽ , V̄ (x+ ω) 7→ V̄

(
x− ω

2

)
:= Ṽ .
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Using these transformations, we have

KE,M(ω) =
ne2

2im

[∫ ∞

ωg+
ω
2

dx tanh
(

x−ω
2

2T

)

τ−1
− − iV− − iV+

(
1− v−v+ +∆2

V−V+

)

−
∫ ∞

ωg+
ω
2

dx tanh
(

x−ω
2

2T

)

τ−1
− + iV ∗

− − iV+

(
1 +

v∗−v+ +∆2

V ∗
−V+

)

−
∫ ∞

ωg+
ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + iV ∗
−

(
1− v∗+v

∗
− +∆2

V ∗
+V

∗
−

)

+

∫ ∞

ωg+
ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + iV ∗

−

(
1 +

v+v
∗
− +∆2

V+V ∗
−

)
(6.56)

−
∫ ωg+

ω
2

ωg−ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + Ṽ

(
1 +

v∗+ṽ +∆2

iV ∗
+Ṽ

)

+

∫ ωg+
ω
2

ωg−ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + Ṽ

(
1− v+ṽ +∆2

iV+Ṽ

)]
.

Next, we can begin to apply the limits that are relevant to our problem. Firstly,

we will be in the dirty limit and the diffusive limit, which are the case even without

magnetic impurities. The new limit we will be introducing will be that the concentration

of magnetic impurities must be much less than than of the non-magnetic impurities, or in

term of scattering rates we have τ−1
s ≪ τ−1

0 . This is the case because in the regime where

τ−1
s ∼ τ−1

0 the magnetic impurities would be at high enough concentrations to destroy

the superconductivity entirely. In this limit we can obtain the leading order contribution

in the terms with the form

1

τ−1
− ± iV+ ± iV−

≈ τ0 , (6.57)

because the V terms still have dimensionality of ωτ0, which is small in this limit. Using

this approximation we can see that the ‘1’ terms in each pair of integrals will now cancel
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and we are left with

KE,M(ω) =
ne2τ0
2m

[
i

∫ ∞

ωg+
ω
2

dx tanh

(
x− ω

2

2T

)(
v−v+ +∆2

V−V+
+
v∗−v+ +∆2

V ∗
−V+

)

− i

∫ ∞

ωg+
ω
2

dx tanh

(
x+ ω

2

2T

)(
v∗+v

∗
− +∆2

V ∗
+V

∗
−

+
v+v

∗
− +∆2

V+V ∗
−

)
(6.58)

+

∫ ωg+
ω
2

ωg−ω
2

dx tanh

(
x+ ω

2

2T

)(
v∗+ṽ +∆2

V ∗
+Ṽ

+
v+ṽ +∆2

V+Ṽ

)]
.

When looking for the real part of the conductivity we must take the imaginary part of

the linear response function, remembering they are related by a factor of −iω. In the

first two terms this means we require the real part of the integrand and in the third

term the imaginary part. However, if we examine the real part we can see there is some

cancellation. Beginning with the first integrand,

Re

{
v−v+ +∆2

V−V+
+
v∗−v+ +∆2

V ∗
−V+

}
= Re

{
v−
V−

}
Re

{
v+
V+

}
− Im

{
v−
V−

}
Im

{
v+
V+

}

+Re

{
v∗−
V ∗
−

}
Re

{
v+
V+

}
− Im

{
v∗−
V ∗
−

}
Im

{
v+
V+

}

+Re

{
∆

V−

}
Re

{
∆

V+

}
− Im

{
∆

V−

}
Im

{
∆

V+

}
(6.59)

+ Re

{
∆

V ∗
−

}
Re

{
∆

V+

}
− Im

{
∆

V ∗
−

}
Im

{
∆

V+

}
,

the real part will remain the same sign under the complex conjugate, and so sum-up,

however taking the conjugate will flip the sign in the imaginary part, causing the terms

arising from the imaginary parts to cancel. This will occur in the second integrand too,

hence we have

Re

{
v−v+ +∆2

V−V+
+
v∗−v+ +∆2

V ∗
−V+

}
= 2Re

{
v−
V−

}
Re

{
v+
V+

}
+ 2Re

{
∆

V−

}
Re

{
∆

V+

}
, (6.60)

Re

{
v∗−v

∗
+ +∆2

V ∗
−V

∗
+

+
v∗−v+ +∆2

V ∗
−V+

}
= 2Re

{
v−
V−

}
Re

{
v+
V+

}
+ 2Re

{
∆

V−

}
Re

{
∆

V+

}
. (6.61)
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In the third integral, remembering that ṽ and Ṽ are purely real, the imaginary part

is given by

Im

{
v∗+ṽ +∆2

V ∗
+Ṽ

+
v+ṽ +∆2

V+Ṽ

}
=

ṽ

Ṽ
Im

{
v∗+
V ∗
+

}
+
ṽ

Ṽ
Im

{
v+
V+

}

+
∆

Ṽ
Im

{
∆

V ∗
+

}
+

∆

Ṽ
Im

{
∆

V+

}
. (6.62)

But again the taking of the conjugate between terms will cause them to cancel and so

Im

{
v∗+ṽ +∆2

V ∗
+Ṽ

+
v+ṽ +∆2

V+Ṽ

}
= 0 . (6.63)

So collecting this together we find

Im
{
KE,M(ω)

}
= −ne

2τ0
m

∫ ∞

ωg+
ω
2

dx

(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]
, (6.64)

and hence in terms of conductivity

Re
{
σM(ω)

}
=
σDrude

ω

∫ ∞

ωg+
ω
2

dx

(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]
. (6.65)

We can return to consider when ω > 2ωg. In this regime the contribution from the Γb
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contour is instead given by

KE,M
b (ω) =

ne2

2im

[∫ −ωg−ω

−∞

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x) + iV ∗(x+ ω)

(
1− v∗(x)v∗(x+ ω) + ∆2

V ∗(x)V ∗(x+ ω)

)

−
∫ −ωg−ω

−∞

dx tanh
(

x
2T

)

τ−1
− − iV (x) + iV ∗(x+ ω)

(
1 +

v(x)v∗(x+ ω) + ∆2

V (x)V ∗(x+ ω)

)

+

∫ ωg−ω

−ωg−ω

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x) + V̄ (x+ ω)

(
1 +

v∗(x)v̄(x+ ω) + ∆2

iV ∗(x)V̄ (x+ ω)

)

−
∫ ωg−ω

−ωg−ω

dx tanh
(

x
2T

)

τ−1
− − iV (x) + V̄ (x+ ω)

(
1− v(x)v̄(x+ ω) + ∆2

iV (x)V̄ (x+ ω)

)
(6.66)

+

∫ −ωg

ωg−ω

dx tanh
(

x
2T

)

τ−1
− + iV ∗(x)− iV (x+ ω)

(
1 +

v∗(x)v(x+ ω) + ∆2

V ∗(x)V (x+ ω)

)

−
∫ −ωg

ωg−ω

dx tanh
(

x
2T

)

τ−1
− − iV (x)− iV (x+ ω)

(
1− v(x)v(x+ ω) + ∆2

V (x)V (x+ ω)

)]
,

which after the symmetrisation is taken, is given by

KE,M(ω) =
ne2

2im

[∫ ∞

ωg+
ω
2

dx tanh
(

x−ω
2

2T

)

τ−1
− − iV− − iV+

(
1− v−v+ +∆2

V−V+

)

−
∫ ∞

ωg+
ω
2

dx tanh
(

x−ω
2

2T

)

τ−1
− + iV ∗

− − iV+

(
1 +

v∗−v+ +∆2

V ∗
−V+

)

−
∫ ∞

ωg+
ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + iV ∗
−

(
1− v∗+v

∗
− +∆2

V ∗
+V

∗
−

)

+

∫ ∞

ωg+
ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + iV ∗

−

(
1 +

v+v
∗
− +∆2

V+V ∗
−

)

−
∫ ω

2
+ωg

ω
2
−ωg

dx tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + Ṽ

(
1 +

v∗+ṽ +∆2

iV ∗
+Ṽ

)
(6.67)

+

∫ ω
2
+ωg

ω
2
−ωg

dx tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + Ṽ

(
1− v+ṽ +∆2

iV+Ṽ

)

−
∫ ω

2
−ωg

ωg−ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ − iV−

(
1 +

v∗+v− +∆2

V ∗
+V−

)

+

∫ ω
2
−ωg

ωg−ω
2

dx tanh
(

x+ω
2

2T

)

τ−1
− − iV+ − iV−

(
1− v+v− +∆2

V+V−

)]
.
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Now making the relevant approximations outlined above, and taking the imaginary part

of the response function, the cancellation of terms is identical in the addition integral in

this case, and so we can straightforwardly find

Re
{
σM(ω)

}
=
σDrude

ω

[∫ ∞

ωg+
ω
2

dx

(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]

−
∫ ω

2
−ωg

ωg−ω
2

dx tanh

(
x+ ω

2

2T

)
(6.68)

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]]
.

The first term is identical in both regimes and corresponds to the conductivity arising

from the quasi particles thermally excited out of the condensate. On the other hand, the

latter term only occurs above 2ωg, as it corresponds to excitations of the condensate due

to the applied field which must have frequency large enough to excite cooper pairs out of

the gapped region. Hence we can write an equation encompassing both regimes as so

Re
{
σM(ω)

}
=
σDrude

ω

[∫ ∞

ωg+
ω
2

dx

(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]

−
∫ ω

2
−ωg

ωg−ω
2

dx tanh

(
x+ ω

2

2T

)
Θ(ω − 2ωg) (6.69)

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
+Re

{
∆

V−

}
Re

{
∆

V+

}]]
.
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6.3 Linear response of a Superconductor Containing

Paramagnetic Impurities to a Temperature Gra-

dient

To calculate the thermal response we will follow the standard procedure of simply changing

the contribution of the vertex compared to the electrical case in the previous section. The

only real point of contention is what the appropriate choice of Pauli matrices should be on

the vertex in the 4×4 regime. We know from the non-magnetic case that the vertex should

carry a σz in the Nambu-spinor-space. As far as the appropriate Pauli-matrix for the spin

symmetry part of the vertex, the thermal gradient will act on each spin identically, so we

should have a s0 in the spin-space. This is relatively simple to verify if one returns to

the heat current operator and writes it in terms of the Φ spinors. Hence, for the linear

response function, we have

KT,M
αβ (iω) =

k2FN(0)

3m2
δαβT

∑

ε

(
iε+

iω

2

)2

(6.70)

×
∫ ∞

−∞

dξ

2
Tr

[
σzs0

iε̃′σ0s0 + ξkσzs0 − ∆̃′σxsz

ε̃′2 + ξ2k + ∆̃′2
σzs0

iε̃σ0s0 + ξkσzs0 − ∆̃σxsz

ε̃2 + ξ2k + ∆̃2

]
.

Commuting the σzs0 through one of the Green’s functions will have the effect of flipping

the sign of the ∆ term. So, taking trace and using the fact that the response is purely

diagonal to drop the delta-function, we can arrive at

KT,M(iω) =
n

m
T
∑

ε

(
iε+

iω

2

)2 ∫ ∞

−∞
dξ

ξ2 − ε̃ε̃′ − ∆̃∆̃′

(ξ2 + Ẽ2)(ξ2 + Ẽ ′2)
. (6.71)

Computing the integral over ξ yields

KT,M(iω) =
πn

m
T
∑

ε

(
iε+

iω

2

)2
ẼẼ ′ − ε̃ε̃′ − ∆̃∆̃′

ẼẼ ′(Ẽ + Ẽ ′)
, (6.72)

152



6.3. LINEAR RESPONSE OF A SUPERCONDUCTOR CONTAINING
PARAMAGNETIC IMPURITIES TO A TEMPERATURE GRADIENT

then by multiplying numerator and denominator by factor of ∆/∆̃ we can write this

equation in terms of v and V , like so

KT,M(iω) =
πn

m
T
∑

ε

(
iε+

iω

2

)2
V V ′ −∆2 − vv′

V V ′(V + V ′ + τ−1
− )

. (6.73)

We can then convert the sum to a contour integral taking iε 7→ z in the same way

described in the previous section, leading to

KT,M(iω) =
πn

m

i

2π

∮

Γ

dz f(z)

(
z +

iω

2

)2
V V ′ −∆2 + vv′

V V ′(V + V ′ + τ−1
− )

, (6.74)

where the contour is the same as shown in figure 6.3.

The process for analytic continuation follows the previous section and hence we can

immediately write down an expression for the linear response function in terms of integrals

along the real axis, as the only difference will be the sign of the ∆2 terms and the additional

(x+ ω/2)2 term in each integral from the vertex. We will also only consider the ω < 2ωg

case, with the intention to take ω → 0 later. Therefore, we have

KT,M(ω) =
n

2im

[∫ ∞

ωg

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− − iV (x)− iV (x+ ω)

(
1− v(x)v(x+ ω)−∆2

V (x)V (x+ ω)

)

−
∫ ∞

ωg

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− + iV ∗(x)− iV (x+ ω)

(
1 +

v∗(x)v(x+ ω)−∆2

V ∗(x)V (x+ ω)

)

+

∫ −ωg−ω

−∞

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− + iV ∗(x) + iV ∗(x+ ω)

(
1− v∗(x)v∗(x+ ω)−∆2

V ∗(x)V ∗(x+ ω)

)

−
∫ −ωg−ω

−∞

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− − iV (x) + iV ∗(x+ ω)

(
1 +

v(x)v∗(x+ ω)−∆2

V (x)V ∗(x+ ω)

)

+

∫ −ωg

−ωg−ω

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− + iV ∗(x) + V̄ (x+ ω)

(
1 +

v∗(x)v̄(x+ ω)−∆2

iV ∗(x)V̄ (x+ ω)

)
(6.75)

−
∫ −ωg

−ωg−ω

dx tanh
(

x
2T

)(
x+ ω

2

)2

τ−1
− − iV (x) + V̄ (x+ ω)

(
1− v(x)v̄(x+ ω)−∆2

iV (x)V̄ (x+ ω)

)]
.

Then by making the transformations x 7→ x − ω/2 in the first two integrals and x 7→
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−x− ω/2 in the latter four, the integrals can be symmetrised to yield

KT,M(ω) =
n

2im

[∫ ∞

ωg+
ω
2

dx x2 tanh
(

x−ω
2

2T

)

τ−1
− − iV− − iV+

(
1− v−v+ −∆2

V−V+

)

−
∫ ∞

ωg+
ω
2

dx x2 tanh
(

x−ω
2

2T

)

τ−1
− + iV ∗

− − iV+

(
1 +

v∗−v+ −∆2

V ∗
−V+

)

−
∫ ∞

ωg+
ω
2

dx x2 tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + iV ∗
−

(
1− v∗+v

∗
− −∆2

V ∗
+V

∗
−

)

+

∫ ∞

ωg+
ω
2

dx x2 tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + iV ∗

−

(
1 +

v−v
∗
+ −∆2

V+V ∗
−

)
(6.76)

−
∫ ωg+

ω
2

ωg−ω
2

dx x2 tanh
(

x+ω
2

2T

)

τ−1
− + iV ∗

+ + Ṽ

(
1 +

v∗+ṽ −∆2

iV ∗
+Ṽ

)

+

∫ ωg+
ω
2

ωg−ω
2

dx x2 tanh
(

x+ω
2

2T

)

τ−1
− − iV+ + Ṽ

(
1− v+ṽ −∆2

iV+Ṽ

)]
.

Taking the limits outlined in the previous section, we can approximate using equation

6.57 to obtain

KT,M(ω) =
nτ0
2m

[
i

∫ ∞

ωg+
ω
2

dx x2 tanh

(
x− ω

2

2T

)(
v−v+ −∆2

V−V+
+
v∗−v+ −∆2

V ∗
−V+

)

− i

∫ ∞

ωg+
ω
2

dx x2 tanh

(
x+ ω

2

2T

)(
v∗+v

∗
− −∆2

V ∗
+V

∗
−

+
v+v

∗
− −∆2

V+V ∗
−

)
(6.77)

+

∫ ωg+
ω
2

ωg−ω
2

dx x2 tanh

(
x+ ω

2

2T

)(
v∗+ṽ −∆2

V ∗
+Ṽ

+
v+ṽ −∆2

V+Ṽ

)]
.

When finding the imaginary part of the thermal linear response function, we can follow

the same process as shown in equations 6.59 to 6.64, only with ∆2 7→ −∆2. Thus we have

Im
{
KT,M(ω)

}
= −nτ0

m

∫ ∞

ωg+
ω
2

dx x2
(
tanh

(
x+ ω

2

2T

)
− tanh

(
x− ω

2

2T

))

×
[
Re

{
v−
V−

}
Re

{
v+
V+

}
− Re

{
∆

V−

}
Re

{
∆

V+

}]
. (6.78)

Once again, we will hone-in on the ω = 0 limit when looking at thermal conductivity.
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In this limit the difference of tanh’s will give a sech2, as shown in equation 4.90, and v+

and v− will both collapse down to v(x), all-together yielding

Im
{
KT,M(0)

}
= −nωτ0

2mT

∫ ∞

ωg

dx x2 sech2
( x

2T

)[
Re

{
v(x)

V (x)

}2

− Re

{
∆

V (x)

}2
]
, (6.79)

⇒ Re
{
κM
}
=

nτ0
2mT 2

∫ ∞

ωg

dx x2 sech2
( x

2T

)[
Re

{
v(x)

V (x)

}2

− Re

{
∆

V (x)

}2
]
. (6.80)

6.4 Calculation of the Cooperon in a Superconductor

with Magnetic Impurities

In the following section we will be computing the cooperon in the the Superconducting

state of a superconductor doped with a small concentrations of magnetic impurities. This

follows the work of Smith [65]. However, the principal deviation is that the work of

Smith was only concerned with the calculation of the weak localisation correction the the

superconducting carrier density, where the frequency in the cooperon can be set to zero,

whereas in order to calculate the weak localisation correction to conductivity (thermal

or electrical), one must go through the analytic continuation process as outlined in the

previous sections. This means that we must must retain the frequency dependence in

the cooperon at least until after the analytic continuation has been completed, only after

which we would set the frequency to zero for the thermal conductivity calculations we

are interested in. Similarly to the work of Smith we are interested in the case of weak

doping of magnetic impurities such that τ−1
s ≪ τ−1

0 , so the magnetic impurities can be

the primary phase coherence breaking mechanism, but not so large that it completely

destroys the superconductivity.

To construct the cooperon in the superconducting state including magnetic impurities,

we use the same logic as in section 5.1, where we use an outer-product construction. Only

in this case we will, of course, be working with the 4 × 4 products of Pauli matrices on

the vertices. Furthermore, there are two types of impurity scattering that can now occur:

155



CHAPTER 6. WEAK LOCALISATION IN A SUPERCONDUCTOR INCLUDING
MAGNETIC IMPURITIES

those involving the non-magnetic impurities and those involving the magnetic impurities.

However, it is straightforward to see that with a construction like that which is shown in

figure 6.5 (where the non-magnetic impurities are denoted by crosses and the three species

of magnetic impurity are denoted by the circle), we can obtain the Dyson equation that

includes all possible sequences of scattering events. So the Dyson equation can be defined

in the usual way with the bare impurity part given by

Γ0 =
1

2πN(0)τ0
[σzs0 ⊗ σzs0]

+
1

6πN(0)τs
[σzsx ⊗ σzsx + σzsy ⊗ σzsy + σ0sz ⊗ σ0sz] , (6.81)

and the self-energy given by

ΣC(q, iε, iε
′) =

1

V
∑

k

G(q− k, iε′)⊗ G(k, iε) . (6.82)

As we will be stacking up quite a few Pauli matrices in succession in the coming calcula-

tion, we will drop the outer product symbol and take the convention that each set of four

Pauli matrices together will all be outer producted with each other. Thus, we can write

the self-energy as

ΣC(q, iε, iε
′) = N(0)

∫
dΩ

4π

∫ ∞

−∞
dξ

[
iε̃′σ0s0 + (ξ + µθ)σzs0 − ∆̃′σxsz

ε̃′2 + (ξ + µθ)2 + ∆̃′2
(6.83)

× iε̃σ0s0 + ξσzs0 − ∆̃σxsz

ε̃2 + ξ2 + ∆̃2

]
.

= + + +ΓC ΓC ΓC

Figure 6.5: The Dyson equation for the cooperon with both non-magnetic and magnetic
impurities. The cross represents the non-magnetic impurities and the circle represents
the magnetic impurities that will constitute of three terms for each magnetic species.
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Breaking these terms up such that we have integrals of the form given in equations 5.27

and 5.28, we have

ΣC(q, iε, iε
′) = N(0)

∫
dΩ

4π

[
(iε̃′σ0s0 − ∆̃′σxsz)(iε̃σ0s0 − ∆̃σxsz)

×
∫ ∞

−∞

dξ

(ε̃′2 + (ξ + µθ)2 + ∆̃′2)(ε̃2 + ξ2 + ∆̃2)
(6.84)

+σzs0σzs0

∫ ∞

−∞

dξ ξ(ξ + µθ)

(ε̃′2 + (ξ + µθ)2 + ∆̃′2)(ε̃2 + ξ2 + ∆̃2)

]
,

which can then be solved using the standard results to yield

ΣC(q, iε, iε
′) = γ̃

[
σzs0σzs0 +

(iε̃′σ0s0 − ∆̃′σxsz)(iε̃σ0s0 − ∆̃σxsz)

ẼẼ ′

]
(6.85)

where γ̃ = N(0)

∫
dΩ

4π

π(Ẽ + Ẽ ′)

(Ẽ + Ẽ ′)2 + µ2
θ

. (6.86)

The main difference between this and the calculation without magnetic impurities is

that with ε
∆

̸= ε̃

∆̃
there is no cancellation of the impurity-factors in the numerator and

denominator. Therefore, for now we will not make any approximations in γ, other than

assuming an isotropic system, and we can complete the angular integral as follows,

γ̃ = πN(0)

∫
dΩ

4π

1

(Ẽ + Ẽ ′)

(
1−

(
µθ

(Ẽ+Ẽ′

)2)

≈ πN(0)

∫
dΩ

4π

[
1

Ẽ + Ẽ ′
− µ2

θ

(Ẽ + Ẽ ′)3

]

=
πN(0)

Ẽ + Ẽ ′

[
1− q2v2F

d(Ẽ + Ẽ ′)2

]
, (6.87)

where the order one piece in the second line was discarded because it averages to zero

under the angular integral.

Next, we will find it convenient to absorb this factor of γ̃ into the definition of Γ0
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removing it from the self-energy part, so the Dyson equation is redefined as

ΓC = (1− Γ0ΣC)
−1Γ0

γ̃
, (6.88)

with ΣC = σzs0σzs0 +
(iε̃′σ0s0 − ∆̃′σxsz)(iε̃σ0s0 − ∆̃σxsz)

ẼẼ ′
, (6.89)

and Γ0 = µX + λY , (6.90)

where X = σzs0σzs0 , Y = σzsxσzsx + σzsyσzsy + σ0szσ0sz

and µ =
γ̃

2πN(0)τ0
, λ =

γ̃

6πN(0)τs
.

So now the problem is reduced to the matrix inversion of the (1 − Γ0ΣC) term, that we

will label as

M = (1− (µX + λY )ΣC)
−1 . (6.91)

But one can notice that Y commutes with both X and ΣC , and therefore is trivial in the

matrix inversion. So to simplify the problem we can set Y to the identity and to restore

the appropriate factors of Y in the final expression we can take λn 7→ λnΛnPλ, where Λ

is an eigenvalue of Y and PΛ is the projector onto the eigenvalue. Hence, we can instead

solve for the simpler matrix

M ′ = (1− (µX + λ)ΣC)
−1 . (6.92)

Before proceeding with solving for M ′ this we will find the eigenvalues and projectors

for Y . One can go through the tedium of writing out the 16×16 matrix for Y and solving

for the eigenvalues manually (luckily it is block diagonal, so it reduces to solving two 8×8

matrices), however we can skip this by making use of the Cayley-Hamilton theorem. If

we examine what happens when we square Y we immediate arrive at the characteristic
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equation, as there are only two eigenvalues,

Y 2 = (σzsxσzsx + σzsyσzsy + σ0szσ0sz)
2

= 3σ0s0σ0s0 − 2σzsxσzsx − 2σzsyσzsy − 2σ0szσ0sz

= 3− 2Y . (6.93)

Therefore we can immediately deduce

Λ = 1 , −3 . (6.94)

We can construct the projectors under the requirements:

P 2
1 = P1 , P 2

−3 = P−3 and P1P−3 = 0 .

One can easily verify that these requirements are satisfied by

P1 =
1

4
(3 + Y ) and P−3 =

1

4
(1− Y ) . (6.95)

Now that we have all we need with respect to the eigenvalues of Y , we can return to

solving M ′.

For convenience, we can expand out the expression for ΣC and label the coefficients

of each distinct matrix, like so

ΣC = −(aσ0s0σ0s0 + bσzs0σzs0 + cσxszσxsz + dσ0s0σxsz + eσxszσ0s0) , (6.96)

where a =
ε̃ε̃′

ẼẼ ′
, b = −1 , c = −∆̃∆̃′

ẼẼ ′
, d =

iε̃′∆̃

ẼẼ ′
and e =

iε̃∆̃′

ẼẼ ′
. (6.97)

Note that these coefficients have the property

(d± e)2 = (a± c)2 − b2 , (6.98)
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as we will need this later.

There are only eight unique matrices that appear in the matrix multiplication of M ′,

which we will label as follows

S1 = σ0s0σ0s0 S2 = σzs0σzs0 S3 = σxszσxsz S4 = σ0s0σxsz

S5 = σxszσ0s0 S6 = σyszσysz S7 = iσzs0σysz S8 = iσyszσzs0 . (6.99)

M ′−1 can then be written in terms of these matrices, as

M ′−1 = S1 + (λS1 + µS2)(aS1 + bS2 + cS3 + dS4 + eS5) (6.100)

= (1 + λa+ µb)S1 + (λb+ µa)S2 + λcS3 + λdS4 + λeS5 − µcS6 + µdS7 + µeS8

Because the S-matrices (along with their negative counterparts) form a closed group under

multiplication, as shown by the multiplication table 6.6, it is possible to write M ′ as a

linear combination of the S-matrices with unknown coefficients, that are to be determined,

M ′ = A1S1 + A2S2 + A3S3 + A4S4 + A5S5 + A6S6 + A7S7 + A8S8 . (6.101)

S1 S2 S3 S4 S5 S6 S7 S8

S2 S1 −S6 S7 S8 −S3 S4 S5

S3 −S6 S1 S5 S4 −S2 S8 S7

S4 −S7 S5 S1 S3 S8 −S2 S6

S5 −S8 S4 S3 S1 S7 S6 −S2

S6 −S3 −S2 −S8 −S7 S1 −S5 −S4

S7 −S4 S8 S2 −S6 S5 −S1 −S3

S8 −S5 S7 −S6 S2 S4 −S3 −S1

Figure 6.6: Multiplication table for the S-matrices defined in equation 6.99, where the
matrix displayed in the left column is multiplied on the left into the matrix displayed in
the top row on the right.

Now because M ′M ′−1 = S1 we can multiply together equations 6.100 and 6.101 to

obtain a set of eight equations for the eight unknowns Ai, which we can represent as a
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matrix, like so




χ ν λc λd λe −µc −µd −µe

ν χ µc −µd −µe −λc λd λe

λc µc χ λe λd −ν −µe −µd

λd µd λe χ λc −µe −ν −µc

λe µe λd λc χ −µd −µc −ν

−µc −λc −ν µe µd χ −λe −λd

µd λd µe −ν −µc λe χ λc

µe λe µd −µc −ν −λd λc χ







A1

A2

A3

A4

A5

A6

A7

A8




=




1

0

0

0

0

0

0

0




, (6.102)

where we have made the substitutions χ = 1 + λa + µb and ν = λb + µa for clarity.

Note that the order in which M ′ and M ′−1 are multiplied does matter, as one can see

from the multiplication table for the S-matrices, changing the order of multiplication can

lead to changes in sign. Therefore, the form of the matrix equation we obtain will differ

if the order is exchanged. The construction of this matrix equation can be understood

as follows: after M ′ is multiplied into the left-hand side of M ′−1 one can collect terms

into coefficients of each Si; the j
th row in the matrix is then related coefficient of Si with

the element in the jth row is the multiplicative factor of Aj; then the coefficient of Si is

equated with the right-hand side, which only has the identity, S1, so all elements on the

right-hand side of the matrix equation are zero, except the first which carries the factor

of 1 from the identity.

It is not simple to spot how to proceed from here, but it happens that we can solve

this matrix equation by noticing that we can add and subtract rows in specific pairs. The

pairs are rows 1 and 2, 3 and 6, 4 and 7 and finally 5 and 8. One can notice this pattern

because it is matching up, in each respective column, elements with a factor of c, d, e and

the χ and ν terms. So if we define

B1 = A1 + A2 , B2 = A3 − A6 , B3 = A4 + A7 and B4 = A5 + A8 , (6.103)
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we can obtain a new matrix equation




χ+ ν (λ+ µ)c (λ− µ)d (λ− µ)e

(λ+ µ)c χ+ ν (λ− µ)e (λ− µ)d

(λ+ µ)d (λ+ µ)e χ− ν (λ− µ)c

(λ+ µ)e (λ+ µ)d (λ− µ)c χ− ν







B1

B2

B3

B4



=




1

0

0

0



, (6.104)

where χ+ ν = 1+ (λ+ µ)(a+ b) and χ− ν = 1+ (λ− µ)(a− b). Similarly, we can define

another set

C1 = A1 − A2 , C2 = A3 + A6 , C3 = A4 − A7 and C4 = A5 − A8 , (6.105)

to obtain the matrix equation




χ− ν (λ− µ)c (λ+ µ)d (λ+ µ)e

(λ− µ)c χ− ν (λ+ µ)e (λ+ µ)d

(λ− µ)d (λ− µ)e χ+ ν (λ+ µ)c

(λ− µ)e (λ− µ)d (λ+ µ)c χ+ ν







C1

C2

C3

C4



=




1

0

0

0



. (6.106)

We repeat this process again, pairing up rows 1 and 2, and 3 and 4, to obtain a set of

four 2× 2 matrix equations:



1 + (λ+ µ)(a+ b+ c) (λ− µ)(d+ e)

(λ+ µ)(d+ e) 1 + (λ− µ)(a− b+ c)






B1 +B2

B3 +B4


 =



1

0


 , (6.107)



1 + (λ− µ)(a− b+ c) (λ+ µ)(d+ e)

(λ− µ)(d+ e) 1 + (λ+ µ)(a+ b+ c)






C1 + C2

C3 + C4


 =



1

0


 , (6.108)
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1 + (λ+ µ)(a+ b− c) (λ− µ)(d− e)

(λ+ µ)(d− e) 1 + (λ− µ)(a− b− c)






B1 −B2

B3 −B4


 =



1

0


 , (6.109)



1 + (λ− µ)(a− b− c) (λ+ µ)(d− e)

(λ− µ)(d− e) 1 + (λ+ µ)(a+ b− c)






C1 − C2

C3 − C4


 =



1

0


 . (6.110)

We can then simply invert these using the standard matrix inversion routine for a 2 × 2

matrix and take only the left-hand column because the inverse will multiply into the

right-hand side, where the 0 will kill the contribution from the right-hand column. Thus,

we have:



B1 +B2

B3 +B4


 =

1

D1



1 + (λ− µ)(a− b+ c)

−(λ+ µ)(d+ e)


 , (6.111)



C1 + C2

C3 + C4


 =

1

D1



1 + (λ+ µ)(a+ b+ c)

−(λ− µ)(d+ e)


 , (6.112)



B1 −B2

B3 −B4


 =

1

D2



1 + (λ− µ)(a− b− c)

−(λ+ µ)(d− e)


 , (6.113)



C1 − C2

C3 − C4


 =

1

D2



1 + (λ+ µ)(a+ b− c)

−(λ− µ)(d− e)


 , (6.114)
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where the determinants, D1 and D2, from the inversion are given by

D1 = (1 + (λ+ µ)(a+ b+ c))(1 + (λ− µ)(a− b+ c))− (λ+ µ)(λ− µ)(d+ e)2

and D2 = (1 + (λ+ µ)(a+ b− c))(1 + (λ− µ)(a− b− c))− (λ+ µ)(λ− µ)(d− e)2 .

These can be simplified by expanding out and making use of the identity in equation 6.98,

along with b = −1, to obtain

D1 = 1 + 2λ(a+ c)− 2µ , (6.115a)

and D2 = 1 + 2λ(a− c)− 2µ . (6.115b)

To work our way back to expressions for the set of Ai, we must once again add and

subtract equations 6.111 - 6.114 in pairs. Firstly, finding expressions for Bi:

B1 =
1 + (λ− µ)(a+ c+ 1)

2D1

+
1 + (λ− µ)(a− c+ 1)

2D2

, (6.116a)

B2 =
1 + (λ− µ)(a+ c+ 1)

2D1

− 1 + (λ− µ)(a− c+ 1)

2D2

, (6.116b)

B3 = −(λ+ µ)(d+ e)

2D1

− (λ+ µ)(d− e)

2D2

(6.116c)

and B4 = −(λ+ µ)(d+ e)

2D1

+
(λ+ µ)(d− e)

2D2

. (6.116d)

Then for Ci, we have

C1 =
1 + (λ+ µ)(a+ c− 1)

2D1

+
1 + (λ+ µ)(a− c− 1)

2D2

, (6.117a)

C2 =
1 + (λ+ µ)(a+ c− 1)

2D1

− 1 + (λ+ µ)(a− c− 1)

2D2

, (6.117b)

C3 = −(λ− µ)(d+ e)

2D1

− (λ− µ)(d− e)

2D2

, (6.117c)

and C4 = −(λ− µ)(d+ e)

2D1

+
(λ− µ)(d− e)

2D2

. (6.117d)
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Finally, repeating this process again to find the set of Ai:

A1 =
1 + λ(a+ c)− µ

2D1

+
1 + λ(a− c)− µ

2D2

, (6.118a)

A3 =
1 + λ(a+ c)− µ

2D1

− 1 + λ(a− c)− µ

2D2

, (6.118b)

A2 =
λ− µ(a+ c)

2D1

+
λ− µ(a− c)

2D2

, (6.118c)

−A6 =
λ− µ(a+ c)

2D1

− λ− µ(a− c)

2D2

, (6.118d)

A4 = −λ(d+ e)

2D1

− λ(d− e)

2D2

, (6.118e)

A5 = −λ(d+ e)

2D1

+
λ(d− e)

2D2

, (6.118f)

A7 = −µ(d+ e)

2D1

− µ(d− e)

2D2

, (6.118g)

and A8 = −µ(d+ e)

2D1

+
µ(d− e)

2D2

(6.118h)

We have ordered the expression for each Ai suggestively to highlight the patterns that

emerge:

• the expressions are related in pairs: A1 ↔ A3, A2 ↔ −A6, A4 ↔ A5 and A7 ↔ A8,

• each pair of Ai’s is related by switching the sign on the D2 term

• for each individual Ai the first and second terms are related by a + c ↔ a − c,

d+ e↔ d− e and D1 ↔ D2.

Therefore, we can write the expression for M ′ as such

M ′ =
1

2D1

[
(1 + λ(a+ c)− µ)(S1 + S3) + (λ− µ(a+ c))(S2 − S6)

− λ(d+ e)(S4 + S5)− µ(d+ e)(S7 + S8)
]

(6.119)

+
1

2D2

[
(1 + λ(a− c)− µ)(S1 − S3) + (λ− µ(a− c))(S2 + S6)

− λ(d− e)(S4 − S5)− µ(d+ e)(S7 − S8)
]
.

By using the multiplication table for Si we can notice that we can pull out a factor of
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(S1 + S3) and (S1 − S3) in the first and second term respectively, to obtain

M ′ =
1

2D1

[
(1 + λ(a+ c)− µ)S1 + (λ− µ(a+ c))S2

− λ(d+ e)S4 − µ(d+ e)S7

]
(S1 + S3) (6.120)

+
1

2D2

[
(1 + λ(a− c)− µ)S1 + (λ− µ(a− c))S2

− λ(d− e)S4 − µ(d+ e)S7

]
(S1 − S3) .

To obtain M from M ′ we must restore the terms corresponding to the Λ = −3 eigen-

value of Y and apply appropriate projectors on the eigen-spaces. Recall that M ′ corre-

sponds to the part of M with Λ = 1. So all that needs to be done to this term is to

multiply by the projector onto Λ = 1, P1 = 1
4
(3S1 + Y ). To find the other term corre-

sponding to Λ = −3 we make the substitution λ 7→ −3λ and multiply by the projector,

P−3 =
1
4
(S1 − Y ). Putting this all together leads to the equation for M ,

M =
1

8D1

[
(1 + λ(a+ c)− µ)S1 + (λ− µ(a+ c))S2

− λ(d+ e)S4 − µ(d+ e)S7

]
(S1 + S3)(3S1 + Y )

+
1

8D2

[
(1 + λ(a− c)− µ)S1 + (λ− µ(a− c))S2

− λ(d− e)S4 − µ(d+ e)S7

]
(S1 − S3)(3S1 + Y )

+
1

8D3

[
(1− 3λ(a+ c)− µ)S1 − (3λ+ µ(a+ c))S2 (6.121)

+ 3λ(d+ e)S4 − µ(d+ e)S7

]
(S1 + S3)(S1 − Y )

+
1

8D4

[
(1− 3λ(a− c)− µ)S1 − (3λ+ µ(a− c))S2

+ 3λ(d− e)S4 − µ(d+ e)S7

]
(S1 − S3)(S1 − Y ) ,
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where D3 and D4 are D1 and D2 respectively, with the substitution λ 7→ −3λ, i.e.

D3 = 1− 6λ(a+ c)− 2µ , (6.122)

and D4 = 1− 6λ(a− c)− 2µ . (6.123)

To find the form of the cooperon from M , we return to the relation

γ̃ΓC =MΓ0 =M(µS2 + λY ) . (6.124)

Note that Γ0 commutes with the (S1 ± S3) terms and with the projectors, but as well

as this, the projectors have the effect of ‘projecting’ the Y term in Γ0 to its respective

eigenvalue, i.e.

(3S1 + Y )(µS2 + λY ) = (µS2 + λ)(3S1 + Y )

and (S1 − Y )(µS2 + λY ) = (µS2 − 3λ)(S1 − Y ) .

Examining the first term first, we have

γ̃Γ
(1)
C =

1

8D1

[
(1 + λ(a+ c)− µ)S1 + (λ− µ(a+ c))S2

− λ(d+ e)S4 − µ(d+ e)S7

]
(µS2 + λ)(S1 + S3)(3S1 + Y )

=
1

8D1

[(
λ+ (λ2 − µ2)(a+ c)

)
S1 +

(
λ2 + µ(1− µ)

)
S2 (6.125)

− (λ2 − µ2)(d+ e)S4

]
(S1 + S3)(3S1 + Y ) .

Examining the third term, we notice that this term is identical to first, up to the projector

and, therefore, the transformation λ 7→ −3λ. Therefore we can immediately arrive at

γ̃Γ
(3)
C =

1

8D3

[(
− 3λ+ (9λ2 − µ2)(a+ c)

)
S1 +

(
9λ2 + µ(1− µ)

)
S2 (6.126)

− (9λ2 − µ2)(d+ e)S4

]
(S1 + S3)(S1 − Y ) .
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Then to obtain the second and fourth terms, we can simply make the substitutions,

(a+ c), (d+ e), (S1 + S3) 7→ (a− c), (d− e), (S1 − S3) in the first and third respectively,

yielding

γ̃Γ
(2)
C =

1

8D2

[(
λ+ (λ2 − µ2)(a− c)

)
S1 +

(
λ2 + µ(1− µ)

)
S2 (6.127)

− (λ2 − µ2)(d− e)S4

]
(S1 − S3)(3S1 + Y )

and

γ̃Γ
(4)
C =

1

8D4

[(
− 3λ+ (9λ2 − µ2)(a− c)

)
S1 +

(
9λ2 + µ(1− µ)

)
S2 (6.128)

− (9λ2 − µ2)(d− e)S4

]
(S1 − S3)(S1 − Y ) .

So all in all, for the most general form of the cooperon, before we begin to take relevant

limits, we have

ΓC =
1

8γ̃

[
1

D1

[(
λ+ (λ2 − µ2)(a+ c)

)
S1 +

(
λ2 + µ(1− µ)

)
S2

− (λ2 − µ2)(d+ e)S4

]
(S1 + S3)(3S1 + Y )

+
1

D2

[(
λ+ (λ2 − µ2)(a− c)

)
S1 +

(
λ2 + µ(1− µ)

)
S2

− (λ2 − µ2)(d− e)S4

]
(S1 − S3)(3S1 + Y )

+
1

D3

[(
− 3λ+ (9λ2 − µ2)(a+ c)

)
S1 +

(
9λ2 + µ(1− µ)

)
S2 (6.129)

− (9λ2 − µ2)(d+ e)S4

]
(S1 + S3)(S1 − Y )

+
1

D4

[(
− 3λ+ (9λ2 − µ2)(a− c)

)
S1 +

(
9λ2 + µ(1− µ)

)
S2

− (9λ2 − µ2)(d− e)S4

]
(S1 − S3)(S1 − Y )

]
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6.5 Leading Order Approximation of the Cooperon

for Weak Doping of Magnetic Impurities

Next, we will examine the limiting case that is relevant to the problem. It is at this stage

that we diverge from he previous work of Smith [65]. The methodology for finding the

leading order contribution follows closely, however, the major difference is that we will

not be taking the zero frequency case at this stage, as we are interested in more that just

the superconducting carrier density.

We can take both the dirty and diffusive limits, that are applicable for superconduc-

tors with sufficiently high numbers of non-magnetic impurities and for weak localisation

respectively. But on top of this can assume τ−1
s ≪ τ−1

0 , to ensure we are still firmly in

the superconducting state. Therefore, in this limit we have Ẽ = Ē in γ̃ and we can use

the same approximations as in the calculation in section 5.1,

γ̃ ≈ πN(0)

Ē + Ē ′

(
1− q2v2F

d(Ē + Ē ′)2

)

≈ πN(0)τ0
(
1− (Dq2 + Ē + Ē ′)τ0

)
. (6.130)

However, we can find the leading order behaviour by taking the further simplification that

γ̃ ≈ πN(0)τ0 (6.131)

in all terms, except for the denominators, Di. Where this approximation is taken, we

have

λ =
γ̃

6πN(0)τs
≈ τ0

3τs
→ 0because τ0 ≪ τs (6.132)

and µ =
γ̃

2πN(0)τ0
≈ 1

2
.
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Leading to a much simplified expression for ΓC , given by

ΓC ≈ 1

32πN(0)τ0

[
1

D1

[
− (a+ c)S1 + S2 + (d+ e)S4

]
(S1 + S3)(3S1 + Y )

+
1

D2

[
− (a− c)S1 + S2 + (d− e)S4

]
(S1 − S3)(3S1 + Y )

+
1

D3

[
− (a+ c)S1 + S2 + (d+ e)S4

]
(S1 + S3)(S1 − Y ) (6.133)

+
1

D4

[
− (a− c)S1 + S2 + (d− e)S4

]
(S1 + S3)(S1 − Y )

]
.

By multiplying in the factors of (S1 ± S3), we can collect together terms like so

ΓC =
1

32πN(0)τ0

[( 1

D1

+
1

D2

)[
− aS1 + S2 − cS3 + dS4 + eS5

]
(3S1 + Y )

+
( 1

D1

− 1

D2

)[
− aS1 + S2 − cS3 + dS4 + eS5

]
S3(3S1 + Y )

+
( 1

D3

+
1

D4

)[
− aS1 + S2 − cS3 + dS4 + eS5

]
(S1 − Y ) (6.134)

+
( 1

D3

− 1

D4

)[
− aS1 + S2 − cS3 + dS4 + eS5

]
S3(S1 − Y )

]
.

Substituting for (a)− (e) we obtain a term, that will label as ΣM , that is reminiscent of

previous cooperon calculations,

ΣM =
[
− aS1 + S2 − cS3 + dS4 + eS5

]

=
[
σzs0σzs0 +

(iε̃′σ0s0 + ∆̃′σxsz)(iε̃σ0s0 + ∆̃σxsz)

ẼẼ ′

]
(6.135)

=
[
σzs0σzs0 +

(iv′σ0s0 +∆σxsz)(ivσ0s0 +∆σxsz)

V V ′

]
,

which we have rewritten in terms of v in the last line. We will find it most convenient to

not multiply in the factors of S3, (3 + Y ) and (1 − Y ) when it comes to completing the

traces, when the weak-localisation bubble is constructed.
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The next step is to find the leading order term arising from the denominators. Using

a± c =
ε̃ε̃′ ∓ ∆̃∆̃′

ẼẼ ′
(6.136)

and substituting this into the denominators, we have

D1,2 = 1 +

[
1

3τs

(
ε̃ε̃′ ∓ ∆̃∆̃′

ẼẼ ′

)
− 1

τ0

]
1

Ẽ + Ẽ ′

(
1− q2v2F

d(Ẽ + Ẽ ′)2

)

and D3,4 = 1−
[
1

τs

(
ε̃ε̃′ ∓ ∆̃∆̃′

ẼẼ ′

)
+

1

τ0

]
1

Ẽ + Ẽ ′

(
1− q2v2F

d(Ẽ + Ẽ ′)2

)
. (6.137)

We can write this in terms of v and V , following the process shown in equations 6.31 to

6.34, like so

D1,2 = 1 +

[
1

3τs

(
vv′ ∓∆2

V V ′

)
− 1

τ0

]
1

V + V ′ + τ−1
−

(
1− q2v2F

d(V + V ′ + τ−1
− )2

)

and D3,4 = 1−
[
1

τs

(
vv′ ∓∆2

V V ′

)
+

1

τ0

]
1

V + V ′ + τ−1
−

(
1− q2v2F

d(V + V ′ + τ−1
− )2

)
.

(6.138)

Examining the latter part of each denominator, that we will label D, we can extract a

factor of τ−1
0 from each (V + V ′ + τ−1

− ) term,

D =
1

V + V ′ + τ−1
−

(
1− q2v2F

d(V + V ′ + τ−1
− )2

)

=
τ0

τ0V + τ0V ′ + 1− τ0
τs

(
1− Dq2τ0

(τ0V + τ0V ′ + 1− τ0
τs
)2

)
. (6.139)

We can then expand the term out in front in the small parameters, 1 ≫ τ0
τs
, τ0V, τ0V

′,

because we can treat τ0V as like order ετ0. So, in the first term we expand to first order

in these parameters, but the second term is already small in the parameter Dq2τ0, as this

term is like ql0, so we only need to the zeroth order part. Hence, we have

D ≃ τ0

(
1 +

τ0
τs

− τ0V − τ0V
′
)
(1−Dq2τ0) . (6.140)
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Seeing as we are only keeping the leading order part, we can discard the cross-term

between the order ql0 and ετ0 parts. Therefore, we are left with

D ≃ τ0

(
1 +

τ0
τs

− τ0V − τ0V
′ −Dq2τ0

)
. (6.141)

Putting this back into D1,2 and then once again, discarding cross-terms that are sub-

leading-order, we find

D1,2 = 1 +

[
1

3τs

(
vv′ ∓∆2

V V ′

)
− 1

τ0

]
τ0

(
1 +

τ0
τs

− τ0V − τ0V
′ −Dq2τ0

)

≃ τ0
3τs

(
vv′ ∓∆2

V V ′

)
− τ0
τs

+ τ0V + τ0V
′ +Dq2τ0 (6.142)

and, similarly, for D3,4 we have

D3,4 ≃ −τ0
τs

(
vv′ ∓∆2

V V ′

)
− τ0
τs

+ τ0V + τ0V
′ +Dq2τ0 . (6.143)

Now if we extract the common factor of τ0, we arrive at our final expression for the

cooperon in the weakly-doped regime,

ΓC(q, iε, iε
′) ≈ 1

32πN(0)τ 20

[(
1

D1

+
1

D2

)
ΣM(3S1 + Y ) +

(
1

D1

− 1

D2

)
ΣMS3(3S1 + Y )

+

(
1

D3

+
1

D4

)
ΣM(S1 − Y ) +

(
1

D3

− 1

D4

)
ΣMS3(S1 − Y )

]
(6.144)

now with D1,2 = Dq2 + V + V ′ − 1

τs
+

1

3τs

(
vv′ ∓∆2

V V ′

)
,

D3,4 = Dq2 + V + V ′ − 1

τs
− 1

τs

(
vv′ ∓∆2

V V ′

)
.

We can examine the limit τ−1
s → 0 to check that this form of the cooperon matches that
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of equation 5.20. In this limit we have v, v′, V, V ′ → ε, ε′, E, E ′ and hence

D1,2,3,4 → Dq2 + E + E ′

and ΣM →
[
σzs0σzs0 +

(iε′σ0s0 +∆σxsz)(iεσ0s0 +∆σxsz)

EE ′

]
. (6.145)

Thus we can see the second and fourth terms will simply cancel to zero (suggesting

these terms are indicative of an effect that is only present with the inclusion of magnetic

impurities), leaving us with

ΓC → 1

16πN(0)τ 20

1

Dq2 + E + E ′

×
[
σzs0σzs0 +

(iε′σ0s0 +∆σxsz)(iεσ0s0 +∆σxsz)

EE ′

]
(3S1 + Y + S1 − Y ) (6.146)

=
1

4πN(0)τ 20

1

Dq2 + E + E ′

[
σzs0σzs0 +

(iε′σ0s0 +∆σxsz)(iεσ0s0 +∆σxsz)

EE ′

]
,

because all that is left is the identity term, S1, that will not have any affect on the traces,

we can simply take this as a factor 4. So the only difference between this and the cooperon

in equation 5.20 is that we have the 4× 4 matrices, but when we take a normalised trace

this will yield the exact results we desire. Hence, this provides a good check that this

form of the cooperon with magnetic impurities is accurate.

6.6 Partial Calculation of Weak Localisation Correc-

tion in a Superconductor with Magnetic Impuri-

ties

In the following section, we will make partial progress through the weak localisation

correction calculation to the thermal conductivity using the cooperon from the previous

section. We will compute the traces and the integral over ξ to take us to the point at

which analytic continuation would have to be performed. By taking the calculation to
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this stage, we will be able provide some discussion of the functional form of the resulting

equation.

We can construct the weak-localisation diagram in analogy to chapter 5, where the

first pair of σisi in the cooperon are inserted into the trace around the loop at the top of

the cooperon ladder and the latter pair is inserted at the bottom. The new consideration

with regards to the output of the traces is the addition of the Y , S1 S3 terms.

S1 is just the identity thereofre this has no interesting behaviour in the traces. Y is

made up of three terms containing σzsx, σzsy and σ0sz respectively and we find that all of

these terms commute with every other term that appears in the trace. This means that

we can trivially commute together the two additional terms that appear due to Y in each

trace, reducing them to the same form as that which only contains the identity. In other

words, once we take the trace we can replace Y with a factor of 3, meaning (3S1+Y ) → 6

and (S1 − Y ) → −2.

Now we will examine the weak-localisation Green’s function term by term, labelling

each term with a numbered subscript, starting with

GWL,M
αβ,1 =

6

32πN(0)τ 20

Tδαβ
m2V2

∑

q

∑

k

∑

ε

kα(q− k)β

(
iε+

iω

2

)2(
1

D1

+
1

D2

)

×
[
Tr
{
σzs0G(k, iε′)σzs0G(q− k, iε′)σzs0G(q− k, iε)σzs0G(k, iε)

}

+
1

ẼẼ ′
Tr
{
σzs0G(k, iε′)(iε̃′σ0s0 + ∆̃′σxsz)G(q− k, iε′) (6.147)

× σzs0G(q− k, iε)(iε̃σ0s0 + ∆̃σxsz)G(k, iε)
}]
,

where it is most convenient to put the parts appearing in the trace from the ΣM part

in ε form for the time being. Next we can take all the appropriate steps to obtain the

linear-response function from the Green’s function which one should be familiar with from

the previous sections. We will drop out any Pauli-identity-matrices at this stage as well

for brevity, but we must remember that the identity is still a 4 × 4 matrix and so we
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introduce the factor of 1/2 to normalise the trace. Doing all of this leads us to

KWL,M
1 = − 3D

32πτ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

+
1

D2

)∫ ∞

−∞

dξ

(ξ2 + Ẽ2)2(ξ2 + Ẽ ′2)2

×
[
Tr
{
σz(iε̃

′ + ξσz − ∆̃′σxsz)σz(iε̃
′ + ξσz − ∆̃′σxsz)

× σz(iε̃+ ξσz − ∆̃σxsz)σz(iε̃+ ξσz − ∆̃σxsz)
}

(6.148)

+
1

ẼẼ ′
Tr
{
σz(iε̃

′ + ξσz − ∆̃′σxsz)(iε̃
′ + ∆̃′σxsz)(iε̃

′ + ξσz − ∆̃′σxsz)

× σz(iε̃+ ξσz − ∆̃σxsz)(iε̃+ ∆̃σxsz)(iε̃+ ξσz − ∆̃σxsz)
}]

The computation of these traces in fact proceeds in an identical manner to that outlined

in equations 5.33 - 5.36, despite the new 4 × 4 matrices. Therefore we can immediately

write

KWL,M
1 = −3

2

D

τ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

+
1

D2

)
1

(Ẽ + Ẽ ′)3

(
1− ε̃ε̃′ + ∆̃∆̃′

ẼẼ ′

)
(6.149)

= −3

2

D

τ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

+
1

D2

)
1

(V + V ′ + τ−1
− )3

(
1− vv′ +∆2

V V ′

)
.

To leading order we can take V + V ′ + τ−1
− ≈ τ−1

0 , cancelling in the prefactor to yield

KWL,M
1 = −3D

2

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

+
1

D2

)(
1− vv′ +∆2

V V ′

)
(6.150)

The third term has the exact same structure as the first, only with a factor −2 instead

of 6 and the substitution D1,2 7→ D3,4. Therefore we have

KWL,M
3 =

D

2

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D3

+
1

D4

)(
1− vv′ +∆2

V V ′

)
. (6.151)

For the second and fourth terms we must examine how S3 affects the traces. The two
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traces we have to calculate now have the forms

Tr1 = Tr
{
σz(iε̃

′ + ξσz − ∆̃′σxsz)σz(σxsz)(iε̃
′ + ξσz − ∆̃′σxsz)

× σz(iε̃+ ξσz − ∆̃σxsz)σz(σxsz)(iε̃+ ξσz − ∆̃σxsz)
}
, (6.152)

Tr2 = Tr
{
σz(iε̃

′ + ξσz − ∆̃′σxsz)(iε̃
′ + ∆̃′σxsz)(σxsz)(iε̃

′ + ξσz − ∆̃′σxsz)

× σz(iε̃+ ξσz − ∆̃σxsz)(iε̃+ ∆̃σxsz)(σxsz)(iε̃+ ξσz − ∆̃σxsz)
}

(6.153)

These traces can be calculated similarly to previous cases, noting that the additional σxsz

terms commute with everything but the σz terms, with which they anti-commute. This

yields

Tr1 = 4(ξ2 + Ẽ2)(ξ2 + Ẽ ′2) (6.154a)

Tr2 = 4(ξ2 + Ẽ2)(ξ2 + Ẽ ′2)(ε̃ε̃′ + ∆̃∆̃′) (6.154b)

Using these results in the linear response function, we have

KWL,M
2 = − 3D

8πτ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

− 1

D2

)

×
∫ ∞

−∞

dξ

(ξ2 + Ẽ2)(ξ2 + Ẽ ′2)

(
1 +

ε̃ε̃′ + ∆̃∆̃′

ẼẼ ′

)
. (6.155)

This integral can be solved using the result in equation 4.53 yielding

KWL,M
2 = −3D

8τ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

− 1

D2

)
1

ẼẼ ′(Ẽ + Ẽ ′)

(
1 +

ε̃ε̃′ + ∆̃∆̃′

ẼẼ ′

)

= −3D

2τ 30

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

− 1

D2

)
(6.156)

× 1

(2V + τ−1
− )(2V ′ + τ−1

− )(V + V ′ + τ−1
− )

(
1 +

vv′ +∆2

V V ′

)
,
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which when we take the leading order part reduces to

KWL,M
2 ≃ −3D

2

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D1

− 1

D2

)(
1 +

vv′ +∆2

V V ′

)
. (6.157)

Similarly for the final term, we have

KWL,M
4 ≃ D

2

T

V
∑

q

∑

ε

(
iε+

iω

2

)2(
1

D3

− 1

D4

)(
1 +

vv′ +∆2

V V ′

)
. (6.158)

Finally, collecting all of the terms together there is some cancellation and we find

KWL,M = −DTV
∑

q

∑

ε

(
iε+

iω

2

)2
[
3

(
1

D1

− 1

D2

vv′ +∆2

V V ′

)

−
(

1

D3

− 1

D4

vv′ +∆2

V V ′

)]
. (6.159)

6.7 Discussion and Future work

We first perform a sanity check to see whether this result is consistent with established

results. We can take the limit τ−1
s → 0 and once again we have v, v′, V, V ′ → ε, ε′, E, E ′

and D1,2,3,4 → Dq2 +E +E ′. Therefore we will simply be able to factor out the denomi-

nators, as they are now all the same, and thus the two terms will cancel, yielding a factor

of 2 and the familiar coherence factor, 1− (εε′+∆2)/EE ′. This reproduces equation 5.37,

therefore this result is consistent with the case that has no magnetic impurities.

It is illuminating to draw comparisons between the different weak localisation calcu-

lations we have covered in this thesis, and indeed part of the motivation for including

them is so that the structural similarities in the equations are clear. We can compare the

different calculations from two different angles: electrical vs thermal, and normal state

vs the superconducting state vs superconducting state with magnetic impurities. We will

collate the results here for easy reference and we will present them at the stage just be-

fore the sum over Matsubara frequencies is completed, as it is at this stage the functional

177



CHAPTER 6. WEAK LOCALISATION IN A SUPERCONDUCTOR INCLUDING
MAGNETIC IMPURITIES

comparisons are clearest:

KWL,E
n = −4e2DT

V
∑

q

∑

ε

1

Dq2 + |ω|+ τ−1
ϕ

Θ(−ε(ε+ ω)) ,

KWL,E
s = −2e2DT

V
∑

q

∑

ε

1

Dq2 + E + E ′ + τ−1
ϕ

(
1− εε′ −∆2

EE ′

)
,

KWL,T
n = −4DT

V
∑

q

∑

ε

(
iε+

iω

2

)2
1

Dq2 + |ω|+ τ−1
ϕ

Θ(−ε(ε+ ω)) , (6.160)

KWL,T
s = −2DT

V
∑

q

∑

ε

(
iε+

iω

2

)2
1

Dq2 + E + E ′ + τ−1
ϕ

(
1− εε′ +∆2

EE ′

)
,

KWL,T
s,mag = −DTV

∑

q

∑

ε

(
iε+

iω

2

)2
[
3

(
1

D1

− 1

D2

vv′ +∆2

V V ′

)
−
(

1

D3

− 1

D4

vv′ +∆2

V V ′

)]
,

Firstly, we can discuss the difference between the electrical and thermal equations. We

can see that there are three key differences, all of which are a result of the difference in

the contribution from the vertices in the bubble diagrams. The simplest of which is the

additional factor of e2 in the prefactor of the electrical equations. The factor of (iε+iω/2)2

is a result of the partial time derivative that is present in the heat current operator, but

not in the electrical current operator. This additional factor is mathematically the origin

of the Wiedemann-Franz law in the normal state. In the superconducting equations we

also see that the ∆2 term switches sign; this is a result of the additional σz matrices on

the vertices causing a sign flip in the traces. These three changes can be thought of as a

set of informal ‘rules’ for converting between electrical and thermal calculations.

The relation between the normal state and superconducting calculations for electrical

conductivity can be related in a much more formal sense via the method of exact eigen-

states [59]. This method functions because the weak localisation effect is caused only by

the interaction with a one body potential in the form of static impurities, therefore nor-

mal state and superconducting state can be related via the matrix elements of the current

operator. We will not work through the derivation here, but practically speaking this

manifests again in a set of ‘rules’ that relate the normal and superconducting calculations

as long as there are no two-body potentials. To obtain the superconducting equation

178



6.7. DISCUSSION AND FUTURE WORK

from the normal, the |ω| is replaced with E + E ′ and the Heaviside function is replaced

with the coherence factor, 1− (εε′ −∆2)/EE ′. In the limit ∆ → 0 by using the fact that

E → |ε| one can also regain the normal state result from the superconducting one. The

exact eigenstates method does not transfer precisely in the formal mathematical sense

to the thermal calculations, as a result of the partial time derivative in the heat current

operator. However, by using a combination of the two sets of rules outlined above, one

can clearly see the connections between the first four results. A deeper investigation into

the limitations of this set of ‘rules’ and whether or not the exact eigenstates method can

be applied in some way to thermal conductivity could be an interesting area for future

work.

Unlike the relations between the equations we have discussed so far, the relation be-

tween the superconducting thermal weak localisation corrections with and without mag-

netic impurities appears to be very non-trivial. This is because the spin-flip scattering

caused by paramagnetic impurities is a pair-breaking mechanism. This is clear when we

compare to a system where spin-orbit scattering is the only interaction, other than the

interaction with the non-magnetic impurities. Hikami et. al. [77] showed that in the

normal state with spin-orbit scattering, but no spin-flip scattering, one would obtain a

logarithmic correction of the same form as with only non-magnetic impurities, but with

an additional factor of −1/2, creating a weak anti-localisation effect. González Rosado et.

al. [63] found a similar result in the thermal conductivity superconducting state: finding

the ratio of the weak localisation effect to the leading order conductivity was only altered

by a factor of −1/2 when spin-orbit scattering was introduced. The key point here is that

the functional form of the correction was not altered, even in superconductors, when the

scattering mechanism is not pair-breaking. Whereas, the inclusion of magnetic impurities

clearly transforms the structure of the weak localisation correction, as we can see from

equation 6.159.

We can see that in KWL,T
s,mag the factor of (iε + iω/2)2 from the vertices remains the

same, whilst the rest of the terms have a structure that resembles the coherence factor,
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but with a number of differences. Firstly, v and V take the place of ε and E, which

implicitly contain τs, because the relations between ε and ε̃, and ∆ and ∆̃, can no longer

be disentangled. Secondly, there are now two distinct terms that can be traced back to

the two eigenvalues of Y in the derivation of the cooperon: the former with the factor of 3

comes from the Λ = 1 eigenvalue (spin singlet) and the latter with the factor of -1 comes

from the Λ = −3 eigenvalue (spin triplet). We have already discussed above how these

terms will reduce the the non-magnetic superconducting result in the limit τ−1
s → 0. It

is interesting that there appears to be a simultaneous enhancement of the correction by a

factor of 3/2 and introduction of an anti-localisation term that, at least to leading order,

seems to cancel with this enhancement. We are careful to say to leading order, because

all of the denominators are similar but distinct. We note that if one could factor out all

of the denominators we would be left with a term that looks like

1− vv′ +∆2

V V ′ , (6.161)

which has the same form as the coherence factor one would expect for thermal conduc-

tivity, only with v’s for the reason mentioned above.

Finally, we will examine the forms of the denominators. All of these have the same

basic structure with only one term varying between them, hence we can write them in

the form

Di = Dq2 + V + V ′ − 1

τs
+Xi , (6.162)

with X1 =
1

3τs

vv′ −∆2

V V ′ , X2 =
1

3τs

vv′ +∆2

V V ′ ,

X3 = − 1

τs

vv′ −∆2

V V ′ and X4 = − 1

τs

vv′ +∆2

V V ′ .

The first two denominators with the factor of 1/3 correspond to the Λ = 1 eigenvalue

and the latter two correspond to the Λ = −3 eigenvalue. We also note that the pairs

of denominators that appear in each coherence factor-like term only differ by the sign
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of ∆2. So when ∆ is small close to Tc (which we recall we are most interested in the

region T ⪆ 0.9Tc), these denominators may become approximately equal, allowing for

some simplification. However, approximations should really take place after the analytical

continuation has been performed, which leads us to the discussion of future work.

The next logical step to make this work more complete is to perform the full analytic

continuation on KWL,T
s,mag . We have made an effort to include a complete description of

how to perform this process in sections 6.2 and 6.3, so that this thesis contains all of the

information necessary to perform this next step in the calculation. Without having to

go through the analytic continuation we are able to make some qualitative predictions

based on what we know about the analytic continuation process and the structure the of

the equation. The major complication of the analytic continuation for KWL,T
s,mag is that the

denominators can no longer be approximated away compared to the calculations of KE,M
s

and KT,M
s , where we were able to take (τ−1

− ± iV ± iV ′) ≈ τ−1
0 , due to being in the dirty

limit for disordered superconductors. Whereas, in Di it is not clear whether any term is

appreciably small or large compared to the others. In the conductivity calculations this

lead to cancellation of the 1’s in the coherence factors from above and below the branch

cuts. In the weak localisation case there would not be an exact cancellation, however for

the 1/D1 and 1/D3 terms we would end up with a difference in two terms that only vary

by the analyticity of v and V . For proof of concept, the D1 term would end up with an

integral from the Γa contour given by

∫ ∞

ωg

dx
(
x+

ω

2

)2
tanh

( x

2T

)[ 1

Dq2 − iV (x)− iV ′(x)− 1
τs
+ 1

3τs

(
v(x)v′(x)+∆2

V (x)V ′(x)

) (6.163)

− 1

Dq2 + iV ∗(x)− iV ′(x)− 1
τs
− 1

3τs

(
v∗(x)v′(x)+∆2

V ∗(x)V ′(x)

)
]
.

This term clearly does not exactly cancel, but it may be formally small in comparison

to the D2 and D4 terms, because we know that the additional factors of i from the

(vv′ + ∆2)/V V ′ term cause the contributions from either side of the contour to sum
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instead of subtract. Again we can examine the contribution from Γa for the D2 term to

see this,

−
∫ ∞

ωg

dx
(
x+

ω

2

)2
tanh

( x

2T

)[
(

v(x)v′(x)−∆2

V (x)V ′(x)

)

Dq2 − iV (x)− iV ′(x)− 1
τs
+ 1

3τs

(
v(x)v′(x)−∆2

V (x)V ′(x)

) (6.164)

+

(
v∗(x)v′(x)−∆2

V ∗(x)V ′(x)

)

Dq2 + iV ∗(x)− iV ′(x)− 1
τs
− 1

3τs

(
v∗(x)v′(x)−∆2

V ∗(x)V ′(x)

)
]
.

We also note that eventually we would want to take the limit ω → 0 as this is a thermal

measurement and this raises some interesting considerations how the −τ−1
s and Xi terms

will combine. At a simple level it appears as though in this limit X2 → 1
3τs

and X4 → − 1
τs
,

but because v is complex, its analyticity will change over the branch cut and the situation

is likely not as simple as this. However, this may be indicative of the leading order

behaviour of these terms. This would lead to terms like 2
3τs

and/or 4
3τs

in D2 and 2
τs

and/or a cancellation to zero in D4 depending on which combinations of signs occur in the

analytic continuation. Though we cannot say anything concrete without the full analytic

continuation, this is reassuring as terms of this type often appear in weak localisation

calculations including magnetic and/or spin-orbit scattering [42, 45, 65], and certainly it

would be pertinent in future work to confirm in the limit ∆ → 0 along with ω → 0 one

would return to the normal state results.

In conclusion, there are certainly a variety of interesting avenues to explore as far as

limiting approximations after the full analytic continuation is completed. The resulting

integrals both prior to and after any approximations would almost certainly have to be

tackled numerically. This could then be compared to any future experimental curves of the

thermal conductivity as a function of the temperature. However, as we have discussed in

the introduction, experimental results in this area are virtually non-existent, so we believe

this would be an interesting area to explore in the future. The extension of the theory

to include spin-orbit as well as spin-flip scattering would open up the possibility of weak

anti-localisation effects. This may be more interesting from an experimental viewpoint, as
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the addition of impurities leading to an increase in conductivity is perhaps a more novel

effect.
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CHAPTER 7

CONCLUSION

In this thesis we began by establishing the Green’s function methodology that is at the

heart of diagrammatic quantum field theory and used this to derive the impurity Green’s

function that serves as the main building block of transport calculations. In chapter 3

we used this methodology to derive the Drude electrical conductivity from the linear re-

sponse to an electromagnetic field and the thermal conductivity from the equivalent linear

response to a thermal gradient. We showed that these results obeyed the Wiedemann-

Franz law as expected. We then demonstrated how the self-intersecting paths that lead to

the weak localisation effect can be interpreted diagrammatically, and went on to calculate

this correction in one, two and three dimensions, demonstrating that the weak localisation

correction in the normal state also obeys the Wiedemann-Franz law. We also showed that

by considering the pair propagator that appears in the superconducting-fluctuation cor-

rection to conductivity, we can derive diagrammatically the BCS result for the transition

temperature for clean and dirty superconductors.

In chapter 4 we derived the Nambu-Gorkov formalism from the BCS Hamiltonian that

allows the diagrammatic formalism to be applicable in the superconducting state and used

it to recover the BCS self-consistency equation for the gap. We showed how impurities

can be included into this formalism perturbatively, in analogy with the normal state,

allowing us to perform calculations for dirty superconductors. With this machinery in
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place, we calculated the linear response of the dirty superconductor to an electromagnetic

field, using this to derive the superconducting carrier density and the frequency-dependent

linear response at zero temperature, which describes infrared absorption and transmission.

We then calculated the response of the superconductor to a thermal gradient and by

examining the zero-frequency case, we found an expression for the electronic component

of the thermal conductivity of a superconductor.

Chapter 5 was the beginning of the original work of this thesis. We developed the

theory of the cooperon in the superconducting state making use of the outer-product

to encode the matrix structure on both vertices of the cooperon into one mathematical

object. We then used this to calculate the weak localisation correction to thermal con-

ductivity in a dirty superconductor, with the phase coherence lifetime introduced as a

phenomenological parameter. Our result was in agreement with the result in González

Rosado et. al. [63] for dirty superconductors, in the high temperature regime where

the cutoff of the momentum integral is provided by the impurity scattering rate, τ−1
0 .

We also discussed in the Introduction how the exponential suppression of the carriers

with decreasing temperature makes the high temperature regime the most interesting for

experimental observation of weak localisation in superconductors.

In chapter 6, we first extend the Nambu-Gorkov formalism to include the spin-flip

scattering caused by magnetic impurities and showed how this leads to a suppression of

the gap. We calculated the real part of the electrical and thermal conductivity, paying

close attention to how to perform the analytic continuation of the integrals, as this process

carries over to the weak localisation calculation. We provided a full derivation of the form

of the cooperon with magnetic impurities providing the phase coherence lifetime cut-

off in the dirty limit. We built upon the previous work of Smith [65], by taking the

leading order approximation of the cooperon in the limit τ−1
s ≪ τ−1

0 whilst maintaining

the frequency dependence. This is because, although we would eventually take the limit

ω → 0, we can see from the calculations earlier in chapter 6 that we must do this after the

analytic continuation. So having access to the frequency-dependent cooperon is essential
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for calculating the weak localisation correction to thermal conductivity in this regime. We

then completed the first part of the calculation of the weak localisation correction using

the magnetic impurity cooperon, up to the point at which we would have to perform the

analytic continuation.

In future work we hope to complete the full analytic continuation and take the ω → 0

limit relevant for thermal conductivity. At first inspection it appears as though the in-

creased complexity of the linear response function means that the neat cancellations which

occur in the conductivity calculations in the first half of chapter 6 will not be possible

in the weak localisation case. However, we propose that an investigation into the small

∆ limit may be fruitful from an analytical viewpoint. Considering that we are primarily

focused on temperature just below Tc, there may be an appreciable temperature range

where this approximation will be valid. Otherwise, a numerical calculation of the resulting

real integrals from the analytic continuation will be possible, even without any further

approximation. This could in principle be compared to experimental measurements, with

particular interest in the fitting in the region just below Tc. However, to the author’s

best knowledge at this time there are no experiments investigating the weak localisa-

tion correction to thermal conductivity in superconductors, much less ones specifically

interested in doping with paramagnetic impurities. Thus, we hope that this area will be

explored in the future in order to provide results with which to compare future numerical

calculations.
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APPENDIX A

DERIVATION OF THE KUBO

FORMULA FOR LINEAR

RESPONSE

We will derive the linear response of an operator to a small perturbation of the Hamil-

tonian. The method that will be employed is to express the expectation value of the

operator in the basis of energy eigenvalues of the Hamiltonian in the Schrodinger repre-

sentation. Then, switch to the interaction representation and expand to first order in the

interaction evolution operator. We have

H(t) = H0 +H ′(t)Θ(t), (A.1)
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so the Hamiltonian is perturbed at t = 0. The expectation value of an arbitrary operator,

Â, before the perturbation can be expressed as

⟨A⟩ = 1

Z0

Tr{ρ0A} (A.2)

where ρ0 = e−βH0 =
∑

m

|m⟩⟨m| e−βEm

and Z0 = Tr{ρ0}

⇒ ⟨A⟩ = 1

Z0

∑

nm

⟨n|m⟩ ⟨m|e−βEmA|n⟩

=
1

Z0

∑

nm

δnm ⟨m|e−βEmA|n⟩

=
1

Z0

∑

n

⟨n|A|n⟩ e−βEn (A.3)

Now consider the expectation value of A at some time t > 0 after the perturbation has

been applied. In the Schrodinger picture the time dependence of this expectation value

is encapsulated in the time dependence of the eigenstates, i.e.

⟨A(t)⟩ = 1

Z
Tr{ρ(t)A} (A.4)

where ρ(t) =
∑

m

|m(t)⟩⟨m(t)| e−βEm

Following the same process as before, the only difference being also obtaining a δ(t− t′),

we find

⟨A(t)⟩ = 1

Z

∑

n

⟨n(t)|A|n(t)⟩ e−βEn (A.5)

Now switch to the interaction picture to absorb the trivial time evolution due to H0 into

the eigenstates and operators and leave only the evolution due the perturbation we are

interested in. We denote the interaction picture states and operators with hats:

|n̂(t)⟩ = eiH0t |n(t)⟩ and Â(t) = eiH0tAe−iH0t (A.6)
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The time evolution due to the perturbation can be written in terms of these states as

|n̂(t)⟩ = Û(t) |n̂(0)⟩ ; Û(t) = Tte
−

∫ t
0 Ĥ′(t′)dt′ (A.7)

where Tt is the time ordering operator. Now using the fact that the interaction picture

and Schrodinger picture states must be the same up to t = 0 when the perturbation is

applied (this can also be easily seen by setting t = 0 in equation 6), we obtain

|n(t)⟩ = e−iH0t |n̂(t)⟩ = e−iH0tÛ(t) |n̂(0)⟩ = e−iH0tÛ(t) |n⟩ (A.8)

Now substituting this into equation 5

⟨A(t)⟩ = 1

Z

∑

n

⟨n|Û †(t)eiH0tAe−iH0tÛ(t)|n⟩ e−βEn

=
1

Z

∑

n

⟨n|Û †(t)Â(t)Û(t)|n⟩ e−βEn (A.9)

Expanding Û(t) to first order in Ĥ ′(t)

⟨A(t)⟩ = 1

Z

∑

n

⟨n|
(
1 + i

∫ t

0

Ĥ ′(t′)dt′
)
Â(t)

(
1− i

∫ t

0

Ĥ ′(t′)dt′
)
|n⟩ e−βEn

=
1

Z

∑

n

⟨n|Â(t)|n⟩ − i

∫ t

0

dt′ ⟨n|(Â(t)Ĥ ′(t′)− Ĥ ′(t′)Â(t))|n⟩ e−βEn

=
1

Z

∑

n

(
⟨n|Â(t)|n⟩ − i

∫ t

0

dt′ ⟨n|[Â(t), Ĥ ′(t′)]|n⟩
)
e−βEn

= ⟨Â(t)⟩0 − i

∫ t

0

dt′
〈
[Â(t), Ĥ ′(t′)]

〉
0

(A.10)

∴ δ ⟨A(t)⟩ = ⟨A(t)⟩ − ⟨Â(t)⟩0

= −i
∫ t

0

dt′
〈
[Â(t), Ĥ ′(t′)]

〉
0

(A.11)

where the zero subscript on the expectation value denotes the average with respect to the

unperturbed Hamiltonian. Explicit spatial dependence of the operators can be included

introducing an integral over space and if A is a vector operator we can treat each compo-
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nent, labelled by α, separately. We will also employ the convention to combine the two

variables (r, t) into a single index (1).

δ ⟨Aα(r, t)⟩ = −i
∫

V

dr′
∫ t

0

dt′
〈
[Âα(r, t), Ĥ

′(r′, t′)]
〉
0

δ ⟨Aα(1)⟩ = −i
∫
d1′
〈
[Âα(1), Ĥ

′(1′)]
〉
0

(A.12)

This the Kubo formula for linear response.

Now consider a perturbation of the form

H ′(1) = ϕβ(1)Bβ(r) (A.13)

where B is an operator and ϕ is a classical field. Using the Kubo formula we can write

δ ⟨Aα(1)⟩ = −i
∫
d1′ϕβ(1

′)
〈
[Âα(1), B̂β(1

′)]
〉
0

(A.14)

=

∫
d1′ϕβ(1

′)GR
AαBβ

(1,1′)

GR
AαBβ

(1,1′) = −i
〈
[Âα(1), B̂β(1

′)]
〉
0
Θ(t− t′) (A.15)

GR
AαBβ

is the retarded Green’s function (GF) relating the operators A and B and is in

general a matrix when the operators are vectors. If there is temporal translational invari-

ance, then G can only depend of differences in time, t − t′. Then if the time integration

is extended back from 0 → −∞ (which is reasonable if one is not interested in transient

behaviour) δ ⟨A⟩ has the form of a convolution and the Fourier transform (FT) in time

can be taken immediately to give

δ ⟨Aα(r, ω)⟩ =
∫

V

dr′ϕβ(r
′, ω)GR

AαBβ
(r, r′, ω) (A.16)
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Similarly for spatial translational invariance:

δ ⟨Aα(q, ω)⟩ = ϕβ(q, ω)G
R
AαBβ

(q, ω) (A.17)

Note that one may have to be more careful when taking these FTs if the GF contains

terms like ∂t or ∇ as one would pick up extra factors of frequency or momentum from the

exponent in the FT. Also, there may be remaining internal degrees of freedom contained

within the GF that still need to to summed/integrated over.
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APPENDIX B

DERIVATION OF THE

OPERATOR REPRESENTATION

OF CURRENT DENSITY

Take a simple classical Hamiltonian for a particle in a EM-field

H0(p,A) =
1

2m
(p− qA)2 (B.1)

Where A = A(r, t) is the vector potential, which is in general a function of space and

time, and is related to the E and B fields (in the Weyl/Hamiltonian/temporal gauge

where the scalar potential is zero) by

E = −∂tA and B = ∇×A (B.2)
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The current density operator can be related to the change in this Hamiltonian due to a

small perturbation of A.

H(p,A+ δA) =
1

2m
(p− q(A+ δA))2 (B.3)

=
1

2m
((p− qA)2 − 2q(p− qA) · δA+O(δA2))

⇒ δH = − q

m
(p− qA) · δA (B.4)

= −qv · δA

= −J · δA

= −
∫
dr j · δA (B.5)

Now we will follow an analogous process of applying a small perturbation on A on a

quantum mechanical Hamiltonian and manipulate it into the form given in equation 4 to

find the form of the quantum current density operator.

H(A) =
1

2m

∑

σ

∫
d3r ψ†

σ(r)(−i∇− qA)2ψσ(r) (B.6)

= H(0) +
1

2m

∑

σ

∫
d3r ψ†

σ(r)
[
iq
(
∇ ·A+A · ∇

)
+ q2A2

]
ψσ(r) (B.7)

Integrate the first term in the integral by parts:

∫
d3r ψ†

σ(r)∇ ·Aψσ(r) =
[
ψ†
σ(r)Aψσ(r)

]
∂V

−
∫
d3r A ·

(
∇ψ†

σ(r)
)
ψσ(r) (B.8)

The boundary term must tend to zero, hence we have

H(A)−H(0) =
1

2m

∑

σ

∫
d3r

[
iqA ·

(
ψ†
σ(r)∇ψσ(r)−∇ψ†

σ(r)ψσ(r)
)
+ q2A2ψ†

σ(r)ψσ(r)

]

(B.9)
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Now the change in H due to a small perturbation in A is

δH = H(A+ δA)−H(A)

=
1

2m

∑

σ

∫
d3r

[
iq δA ·

(
ψ†
σ(r)∇ψσ(r)−∇ψ†

σ(r)ψσ(r)
)
+ 2q2δA ·Aψ†

σ(r)ψσ(r)

]

(B.10)

Comparing this to equation 4 we can read off the current density operator per spin:

jσ(r) = − iq

2m

(
ψ†
σ(r)∇ψσ(r)−∇ψ†

σ(r)ψσ(r)
)
− q2

m
A(r)ψ†

σ(r)ψσ(r) (B.11)

This can be separated out into two parts: the paramagnetic part, j∇σ , and the diamagnetic

part, jAσ , given by

j∇σ (r) = − iq

2m

(
ψ†
σ(r)∇ψσ(r)−∇ψ†

σ(r)ψσ(r)
)

(B.12)

jAσ (r) = −q
2

m
A(r)ψ†

σ(r)ψσ(r) (B.13)
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APPENDIX C

CALCULATION OF THE DRUDE

CONDUCTIVITY WHERE THE

DIVERGENCE ISSUE IS

EXPLICITLY ADDRESSED

We begin with

Jα(q, ω) = −Kαβ(q, ω)Aβ(q, ω)

Kαβ(q, ω) = GR
jαβ(q, ω) +

ne2

m
δαβ (C.1)

GE
jαβ(q, iω) =

2e2T

4m2V

∑

k

∑

ϵ

(2k+ q)α(2k+ q)βG(k, iϵ)G(k+ q, iϵ+ iω)

Note that the order of summations over momenta and frequency have been explicitly

ordered and due to potential problems with divergences one cannot switch the order

trivially. Using form of the single particle impurity Green’s functions, we immediately
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write them in terms of their spectral functions,

Gjαβ(q, iω) =
2e2T

4m2V

∑

k

∑

ϵ

(2k+ q)α(2k+ q)β

∫ ∞

−∞
dx dy

A(k, x)A(k+ q, y)

(iϵ− x)(iϵ+ iω − y)
(C.2)

A(k, x) =
1

2πτ0

1

(ξk − x+ i
2τ0

)(ξk − x− i
2τ0

)
(C.3)

Now we will assume that |q| ≪ |k| and k ∼ kF . The first assumption physically means

that we want to only look at the long wavelength behaviour of the response, to which a

macroscopic conductivity value would correspond. The second is to say that the pertur-

bation caused by the field is sufficiently small such that the only electron that take part in

the conduction are those close to the Fermi surface, and further that they are not excited

far above the Fermi surface.

Gjαβ(q, iω) =
2e2N(0)T

m2

∫
dΩ

4π
kFαkFβ

∫ ∞

−∞
dξk
∑

ϵ

∫ ∞

−∞
dx dy

A(k, x)A(k+ q, y)

(iϵ− x)(iϵ+ iω − y)

(C.4)

where N(0) is the density of states at the Fermi surface, the integral over dΩ is a solid

angle integral over the Fermi surface and the integral over dξk is over the kinetic energy

of the electrons. The order of summation over Matsubara frequencies and integrals over

dx and dy can be reordered without any problems so we can perform the sum first. To do

this we can perform the usual ‘trick’ by writing the sum as a contour integral where the

residues of the Fermi function ‘count’ over the Matsubara frequencies up the imaginary

axis and then taking the sum of the residues on the rest of the complex plane instead.

T
∑

ϵ

A(k, x)A(k+ q, y)

(iϵ− x)(iϵ+ iω − y)
= − 1

2πi

∮
dz f(z)

A(k, x)A(k+ q, y)

(z − x)(z + iω − y)
(C.5)

let F (z) := f(z)
A(k, x)A(k+ q, y)

(z − x)(z + iω − y)
(C.6)
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⇒ − 1

2πi

∮
dz F (z) = Res(F (z), x) + Res(F (z), y − iω)

= f(x)
A(k, x)A(k+ q, y)

x− y + iω
+ f(y)

A(k, x)A(k+ q, y)

y − iω − x

=
(
f(x)− f(y)

)A(k, x)A(k+ q, y)

x− y + iω
(C.7)

As we have the temperature GFs in terms of their spectral functions it is safe to analyti-

cally continue from Matsubara frequencies to real frequencies to obtain retarded GFs, so

we formally replace iω with ω that is analytic in the upper half plane. Now complete the

integral over one of dx and dy in each term to eliminate one of the dummy variables

∫ ∞

−∞
dy f(x)

A(k, x)A(k+ q, y)

x− y + ω
= f(x)A(k, x)

∫ ∞

−∞
dy

A(k+ q, y)

(ω + x)− y
(C.8)

= f(x)A(k, x)GR(k+ q, ω + x)

= f(x)A(k, x)
1

ω + x− ξk+q +
i

2τ0∫ ∞

−∞
dx f(y)

A(k, x)A(k+ q, y)

x− y + ω
= −f(y)A(k+ q, y)

∫ ∞

−∞
dx

A(k, x)

(y − ω)− x
(C.9)

= −f(y)A(k+ q, y)GR(k, y − ω)

= f(y)A(k+ q, y)
1

ω − y + ξk +
i

2τ0

Using this, relabelling y to x in the second term, we have

GR
jαβ(q, ω) =

2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

∫ ∞

−∞
dξk

×
∫ ∞

−∞
dx f(x)

( A(k, x)

ω + x− ξk+q +
i

2τ0

− A(k+ q, x)

ω − x+ ξk +
i

2τ0

)
(C.10)

As |q| ≪ |k| use ξk+q ≈ ξk + kF · q := ξ + µθ.

GR
jαβ(q, ω) =

2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

∫ ∞

−∞
dξ

×
∫ ∞

−∞
dx f(x)

( A(k, x)

ω + x− ξ − µθ +
i

2τ0

− A(k+ q, x)

ω − x+ ξ + i
2τ0

)

(C.11)
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We now want to be able to change to order of integration over dx and and dξ but it

is not immediately clear that there is sufficient convergence to allow this, so we must

demonstrate explicitly if it is possible. The integrals have the form

I =

∫ ∞

−∞
dξ

∫ ∞

−∞
dx f(x)F (x− ξ) (C.12)

where F (x− ξ) is an arbitrary function of x− ξ. Integrate by parts first w.r.t ξ, then x

(all boundary terms are assumed to vanish):

I = −
∫ ∞

−∞
dξ ξ

d

dξ

∫ ∞

−∞
dx f(x)F (x− ξ)

= −
∫ ∞

−∞
dξ ξ

∫ ∞

−∞
dx f(x)

d

dξ
F (x− ξ)

=

∫ ∞

−∞
dξ ξ

∫ ∞

−∞
dx f(x)

d

dx
F (x− ξ)

= −
∫ ∞

−∞
dξ ξ

∫ ∞

−∞
dx

df(x)

dx
F (x− ξ) (C.13)

The df(x)
dx

term ensures sufficient convergence to switch the order of the integrals. Hence

we have

GR
jαβ(q, ω) = −2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

×
∫ ∞

−∞
dx

df(x)

dx

∫ ∞

−∞
dξ

( A(k, x)

ω + x− ξ − µθ +
i

2τ0

− A(k+ q, x)

ω − x+ ξ + i
2τ0

)

(C.14)

Using the form of A given in equation 5 we can now perform the integral over dξ as a

contour integral. We will consider one term at a time

I1 =

∫ ∞

−∞

dξ

2πτ0

ξ(
x− ξ − µθ + ω + i

2τ0

)(
ξ − x+ i

2τ0

)(
ξ − x− i

2τ0

) (C.15)

= −
∫ ∞

−∞

dξ

2πτ0

ξ(
ξ − (x+ ω − µθ +

i
2τ0

)
)(
ξ − (x− i

2τ0
)
)(
ξ − (x+ i

2τ0
)
)
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As x, µθ and ω are all pure real the half plane that the poles are in is entirely dictated by

the sign of the i
2τ0

term. Hence we can chose a contour that closes in the lower half plane

to only pick up one residue.

I1 = −
∮

Γ1

dz

2πτ0

z(
z − (x+ ω − µθ +

i
2τ0

)
)(
z − (x− i

2τ0
)
)(
z − (x+ i

2τ0
)
) (C.16)

=
2πi

2πτ0

[
z(

z − (x+ ω − µθ +
i

2τ0
)
)(
z − (x+ i

2τ0
)
)
]

z=x− i
2τ0

=
i

τ0

x− i
2τ0(

− ω + µθ − i
τ0

)(
− i

τ0

) =
x− i

2τ0

ω − µθ +
i
τ0

(C.17)

Now examining the I2 term we notice that we can close the contour in the upper half

plane, leading to

I2 = −
∫ ∞

−∞

dξ

2πτ0

ξ(
ξ − (x− ω − i

2τ0
)
)(
ξ − (x− µθ − i

2τ0
)
)(
ξ − (x− µθ +

i
2τ0

)
)

= −
∮

Γ2

dz

2πτ0

z(
z − (x− ω − i

2τ0
)
)(
z − (x− µθ − i

2τ0
)
)(
z − (x− µθ +

i
2τ0

)
) (C.18)

= − 2πi

2πτ0

[
z(

z − (x− ω − i
2τ0

)
)(
z − (x− µθ − i

2τ0
)
)
]

z=x−µθ+
i

2τ0

= − i

τ0

x− µθ +
i

2τ0(
ω − µθ +

i
τ0

)(
i
τ0

) = −
x− µθ +

i
2τ0

ω − µθ +
i
τ0

(C.19)

So putting the two terms together, we have

I1 + I2 =
x− i

2τ0

ω − µθ +
i
τ0

−
x− µθ +

i
2τ0

ω − µθ +
i
τ0

=
µθ − i

τ0

ω − µθ +
i
τ0

. (C.20)

Now complete the next integral over dx,

∫ ∞

−∞
dx

df(x)

dx

µθ − i
τ0

ω − µθ +
i
τ0

=
µθ − i

τ0

ω − µθ +
i
τ0

∫ ∞

−∞
df(x) (C.21)

=
µθ − i

τ0

ω − µθ +
i
τ0

[
1

1 + eβx

]∞

−∞

=
−µθ +

i
τ0

ω − µθ +
i
τ0

= 1− ω

ω − µθ +
i
τ0

(C.22)
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DIVERGENCE ISSUE IS EXPLICITLY ADDRESSED

Thus far we have

GR
jαβ =

2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

(
ω

ω − µθ +
i
τ0

− 1

)
(C.23)

Consider the term

−2e2N(0)

m2

∫
dΩ

4π
kFαkFβ = −2e2N(0)

m2

k2F
3
δαβ = −ne

2

m
δαβ (C.24)

using n = 4
3
N(0)ξF . This term exactly cancels the contribution from the diamagnetic

term, therefore the linear response function is given by

Kαβ(q, ω) =
2e2N(0)

m2

∫
dΩ

4π
kFαkFβ

ω

ω − µθ +
i
τ0

(C.25)

=
3ne2

mk2F

∫
dΩ

4π
kFαkFβ

ω

ω − µθ +
i
τ0

Relating this back to the equation for current

J(q, ω) =
3ne2

mk2F

∫
dΩ

4π

ω kF kF ·A(q, ω)

ω − vF · q+ i
τ0

(C.26)

E(q, ω) = −iωA(q, ω)

J(q, ω) =
3ne2i

mk2F

∫
dΩ

4π

kF kF · E(q, ω)
ω − vF · q+ i

τ0

(C.27)

The D.C. conductivity is obtained when the electric field is static and uniform, there we

only require the Fourier components with q = 0 and ω = 0. As the electric field is static

we can easily evaluate the angular integral as before yielding

J(0, 0) =
3ne2i

mk2F

k2F
3

E(0, 0)
i
τ0

(C.28)

=
ne2τ0
m

E(0, 0)

∴ σDC =
ne2τ0
m

as required. (C.29)
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APPENDIX D

STANDARD FORMULA FOR THE

INTEGRAL OF IMPURITY

GREEN’S FUNCTIONS IN THE

DIFFUSIVE LIMIT

In the diffusive limit, ωτ0 ≪ 1 (where τ0 is the elastic scattering lifetime), we can generalise

the result of summation over k of n Green’s functions with positive Matsubara frequencies

and m Green’s functions with negative Matsubara frequencies.

Inm =
∑

k

G+(k, iω1)
nG−(k, iω2)

m ; ω1 > 0 , ω2 < 0 (D.1)

=
∑

k

1(
iω1 − ξ + i

2τ

)n
1(

iω2 − ξ − i
2τ

)m

= N(0)

∫
dΩ

4π

∫ ∞

−∞
dξ

1(
iω1 − ξ + i

2τ

)n
1(

iω2 − ξ − i
2τ

)m

(D.2)
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APPENDIX D. STANDARD FORMULA FOR THE INTEGRAL OF IMPURITY
GREEN’S FUNCTIONS IN THE DIFFUSIVE LIMIT

As there is no angular dependence the angular integral simply evaluates to 4π cancelling

the denominator. Closing the contour in upper half plane for ξ integral we obtain

Inm = 2πiN(0)(−1)n+m 1

(n− 1)!
lim

ξ→iω+ i
2τ

dn−1

dξn−1

1(
ξ − iω2 +

i
2τ

)m (D.3)

= 2πiN(0)(−1)n+m 1

(n− 1)!
(−m)(−(m+ 1))...(−(m+ n− 2))

1
(
iω1 − iω2 +

i
τ

)m+n−1

= 2πiN(0)(−1)n+m(−1)n−1 (m+ n− 2)!

(n− 1)!(m− 1)!

1

( i
τ
)m+n−1

; using ω ≪ 1

τ

= 2πiN(0)
(m+ n− 2)!

(n− 1)!((m+ n− 2)− (n− 1))!
(−1)2n(−1)m−1(−iτ)m+n−1

= 2πN(0)



m+ n− 2

n− 1


i(−iτ)n(iτ)m−1

= 2πN(0)τ



m+ n− 2

n− 1


(−iτ)n−1(iτ)m−1 . (D.4)
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APPENDIX E

STANDARD METHOD TO

CONVERT A SUM OVER

MATSUBARA FREQUENCIES TO

A CONTOUR INTEGRAL

We make heavy use of linear response functions constructed using temperature Green’s

functions. In these calculations we will often have sums over the Matsubara frequencies.

Here we will establish the method we use to evaluate these sums, when they cannot be

simply completed directly. We follow the method outlined in appendix B of Rickayzen

[56].

A sum over Matsubara frequencies has the general form

S = T
∑

ε

F (iε) , (E.1)

we have Fermionic Matsubara frequencies,

ε = 2πT (n+
1

2
) . (E.2)
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APPENDIX E. STANDARD METHOD TO CONVERT A SUM OVER
MATSUBARA FREQUENCIES TO A CONTOUR INTEGRAL

Now consider the function defined in the complex plane, F (z), multiplied by the Fermi-

function,

g(z) = f(z)F (z) =
F (z)

eβz + 1
. (E.3)

This new function will have the same analytic properties as the original function but will

have an addition set of simple poles when

eβz + 1 = 0 . (E.4)

These points occur when z = iε. Provided F (z) does not have any poles that coincide ex-

actly with f(z) then g(z) has simple poles at the Matsubara frequencies on the imaginary

axis with residues of −TF (iε). There fore if we construct a contour, Γ, that encloses all

the poles due to f(z), but none that are due to the original function F (z), we have

S =
i

2π

∮
dz f(z)F (z) . (E.5)

This contour is shown in figure E.1. The contour can then be deformed instead to enclose

Re{z}

Im{z}

Γ

∞

−∞

Figure E.1: The contour enclosing the poles of the Fermi-function that allows the sum
over Matsubara frequencies to converted to a contour integral in the complex plane.
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the left and right hand planes, provided that

lim
|z|→0

|zg(z)| = 0 , (E.6)

so the integrals enclosing the plane tend to zero as their radius tends to infinity.

If F (z) has poles, this contour will now enclose them and the sum can be evaluated

by calculating the residues. If F (z) has any branch cuts then the contour will have to be

deformed around the cuts and the evaluation of the sum will involve integrals along the

cuts. The second case arises in the linear response function of superconductors in chapter

4 and beyond.
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