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Synopsis .A distance-biregular graph is a finite, undirected bipartite graph where any two vertices in the same part of the bipartition have the same intersection array. In this thesis we find necessary conditions for a pair of arrays to correspond to a distance-biregular graph and use these to construct an algorithm for generating all pairs of feasible arrays corresponding to possible graphs of girth four and smallest valency b^ < 20. The feasible arrays with bβ, < 10 are analysed in Chapters 5 and 6; those with 10 ∙≤ bβ, < 20 are listed in Appendix II. Our results raised a number of interesting questions which are listed at the end of Appendix II.
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Chapter 1IntroductionWe describe the types of graph we are considering in this thesis and list all known families.



z

1.1 GraphsFirstly we need to define exactly what type of graph we will be considering. A graph Γ consists of a set of vertices VΓ and a set of edges EΓcVΓ xVΓ . We consider undirected graphs without loops or multiple edges, so EΓ is a symmetric, irreflexive relation. A finite (resp. infinite) graph is. thus one with a finite (resp. infinite) vertex set. For u,ve VΓ we write u~ v if (u,v) e EΓ and say that u and v are adjacent, and v is a neighbour of u. A clique in a graph is a subset of VΓ, whose members are all pairwise adjacent.We define a path (or walk) of length k from vβ to vκ to be a sequence vo , v( , ...,vk of vertices in a graph, where vh~ vi for each i=l,...,k. We say the path is closed if v0 = v . We denote by dp(u, v) the length of the shortest path from u to v in Γ . If it is clear which Γ we are considering we use d(u,v). (If no path exists we write d(u,v)=∞. ) We may also say that the distance from u to v is d(u,v). This means that a graph Γ is connected if d(u,v) < co for all u,ve V∏ . The diameter of a connected graph is defined to be the supremum of d on Γ and is denoted by diam(Γ ).

We call a connected graph bipartite (resp. n-partite), if the vertex set ofΓcan be partitioned into two (resp. n) non-empty subsets of Γ such that if u ~ v, then u and v are in different subsets. The complement of a graph Γ is a graph Γ* 
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with VΓe= VΓ and u~ v in Γc if and only if u*∕'V in Γ

We associate with a labelled graph Γ on n vertices (numbered l,2,..∙,n) the nxn adjacency matrix A( Γ ) defined by ( i; if a( r ) = 0; otherwise.The eigenvalues of the graph Γ are the eigenvalues of the adjacency matrix of Γ . Relabelling the vertices gives rise to a different adjacency matrix P',A P for some permutation matrix P, but does not change the eigenvalues, which are thus an invariant of the graph P itself.The degree (or valency) of a vertex v is the number of neighbours of v. A graph is k-regular if each vertex has valency k. A graph is biregular if it is bipartite and if any two vertices in the same part of the bipartition have the same degree .For a graph Γ / the graph Γω has vertex set VΓω = VΓ with vertices u,v being adjacent in Γ°i if and only if they are at distance i in Γ . For a (connected) bipartite graph Γ , the 
∩ Cι)graph I is the disjoint union of two connected graphs; we call each component of Γw a derived graph of Γ .A cycle of length k ( 3) in a graph Γ is a path vβ,...,vκ,for which vζ. ( ≠ vU| , i = 1,..., k-1 and vβ = vκ . The girthof a graph P is the length of the shortest cycle in Γ .The line graph of a graph Γ is the graph L(Γ ) with vertex 



set EΓ , two edges ezf in Γ being adjacent in L( Γ ) if and only if they have a common vertex in Γ, . The subdivision graph S(Γ ) of a graph Γ is the graph obtained from Γ by subdividing each edge with a new vertex; formally VS ( Γ ) = VΓu EΓ with x~y in S( Γ ) if and only if x e VΓz ye EΓ (or vice versa) and ×f γ are incident in Γ .
1.2 Incidence StructuresAn incidence structure I consists of a pair (PzB)z where the set P is the set of points of I and B is a collection of subsets of I called the blocks of I. If two points x and y of an incidence structure determine a unique block 1 containing them both then we often refer to 1 not as a block, but as the line xy.The incidence graph Γ = Γ(I) of an incidence structure I = (P,B) has vertex set VΓ = PvB and adjacency defined by pairs (p,b), pep and be B, where p~ b if and only if peb. The incidence graph of an incidence structure is clearly a bipartite graph. We say an incidence structure is regular (resp.biregular) if its incidence graph is regular (resp.biregular). The block graph Γβ of an incidence structure I is that derived graph with vertex set B the blocks of I; the point graph Γp is the derived graph with vertex set P.An incidence structure I = (P,B) with v points z each block 



5

having exactly k points, and such that each t~subset of P occurs in exactly ¼ blocks is called a t-(vzkzλ ) block design. Fisher’s inequality guarantees that if t ½ 2 then ∣B∣ ∣P∣ .A 2-(vzkz,λ ) design is symmetric if and only if ∣B∣ = ∣ Pl . Equivalently a 2-(vzkz^) design is symmetric if and only if each pair of blocks intersects in a given number of pointsz in which case we necessarily have ∙A quasisymmetric block design with intersection numbers^, z yuτ is a 2-(vzkz^) design for which any two blocks intersect in either yu, or ytx1 points.Let I = (PzB) be an incidence structure with each block of size k. Then I is a 2-(klzkzλ) transversal design if and only if the point set can be partitioned into k ’parts’ Pi i=lz...zkz each of size 1 such that each block contains exactly one point from each P t∙ and any two points from distinct parts Pc lie in exactly 2- blocks.A generalised n-gon is an incidence structure whose incidence graph satisfies(i) it is biregular with valencies (s+1) and (t+1);(ii) the distance between any two vertices is at most n;(iii) if the distance between two vertices is less than nz there is a unique shortest path joining them;(iv) for any vertex there is at least one vertex at distance n from it.
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1.3 Distance-regularity - local and global.Let Γ be a connected graph. By Γi (u) we mean the set of vertices of Γ at distance i from the vertex u, and by ki(u) the size of Γl (u). We often write Γι (u) as Γ (u) .Let u, v∈VΓ with d(u ,v) = i. Then c(u,v) = ∣ Γ∖,ι(u) n Γ (v)∣ ,a (u, v) = ∣ Γ ■ (u) r∖ Γ, (v )∣ fand b(u,v) = ∣Γl+ι(u) n Γ, (v)∣ .A vertex ue VΓ is distance-regular if for each i, such that i = 1,...,diam( Γ), the numbers c(u,v), a(u,v), b(u,v) are independent of the choice of v in r\(u); we then write cl(u) , a∙(u) and bi(u) in place of c(u,v), a(u,v) and b(u,v) (where v is any vertex in Γ∙ (u)). If u is a distance-regularvertex of a graph Γ , then the array* c , (u) ... col(u)c (u) = 0 a 1 (u) ... aa(u)_b o (u ) b,(u) ... *is the intersection array of u, where d = diam( Γ ). The matrix0 c1(u) 0 . . . 0b0 (u) a1(u) cx (u) . . . 00 bl (u) a 2(u) . . . 0• ∙ • .I(u) = • ∙ ...
0 • . . ⅛ι(u) aλ.l(u) c√u>_0 . • ∙ 0 ⅛.,( u) aβl(u)



is the intersection matrix for u.A graph is locally distance-regular if each vertex of Γ is distance-regular. If every vertex of a locally distance-regular graph Γ has the same intersection array then Γ is globally distance-regular. A globally distance-regular graph is usually called a distance-regular graph. A bipartite locally distance-regular graph which is not globally distance-regular is distance-biregular if any two vertices in the same part of the bipartition have the same intersection array. Shawe-Taylor in [51 shows that a locally distance-regular graph is either globally distance-regular or distance-biregular.The intersection array c ( Γ, ) of a distance-regular graph Γ is the intersection array of each of its vertices. The standardnotation for this is " * c. ci • • . Ccι6 ( Γ ) = 0 a. ≡2 • • •_bo b, b1 • • • *where d=diam( Γ ).Let Γ be a distance-biregular graph. The two parts of the bipartition of the vertex set VΓ are denoted by P and B. The diameter of Γ is d. We denote a typical vertex in P by u and its intersection array by
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■* c, cl . . . ci't (P) = 0 0 0 ... 0
σ* CT σ • • • *We usually omit the row of zeros and write —* c, c1 . . . cjl

o* or cr N • • • * 1___We denote a typical vertex in B by v and its intersection array by
HB) = c1 ’ c2 ’b,' b1 ∙The corresponding intersection matrices are denoted by I(P) andI(B) respectively. We let ki be the numbers k£(u) for u^ P, i = 0,.∙.,d and ki, be the numbers ki(v) for v∈B, i = 0,...,d.We note that kobl, ≠ 0 and kjuι ≠ 0 but that one of the numbers k jl, and kjl may be zero. If c^ = 0 then we define dp to be d-1, otherwise we define dp to be d. We define dβ similarly.
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Known families of distance-biregular graphs.(i) Complete bipartite graphs.The complete bipartite graph Kkφt, has intersection arrays :* 1 bβ and * 1 b’_b* (bo,- 1) * _be’ (bo- 1) *These are the only distance-biregular graphs of diameter two. ie: dp = d6 = 2.(ii) Quasisymmetric 2-designs.Let I = (P, B) be a quasisymmetric 2-(v ,b* ,ci) design with block intersection numbers = c∙ and zxχr = o. Thenz the incidence graph is a distance-biregular graph with dp = 3, dB = 4 and intersection arrays as below.* 1 cx b∏ and * 1 cζ c ,3 blbo bl- 1 bβ- ci *J _bl bo- 1 bo, - c^ b0- c∣ *
The value of bo is determined by the usual design condition (v - l)λ= bo(k - 1); thus bo = (v - l)c1∕(bl~ 1). The value of c3, is determined by taking a non-incident point-block pair u,,v, and counting flags (u,,,v,,) where u’, lies in v, and v’’ contains u’; thus bo,c1 = c’c3’ . Hence the arrays are completelydetermined by v, bβ,, cl and c ,2 distance-biregular graph with dp = 3 and dβgraph of a quasisymmetric 2-design with √ul =

. Conversely, any = 4 is the incidence c^ and a2 = 0.
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IPI : = 1 + k1 + klt + . . . +k,.= kl, + k √ + ... + k J, • » t ⅛ d. ’ 3 d∣B∣∙.= k, + k, ÷ ... + k.., =l + kτ, + k ' + ... + k,,'z ’ I ∙ 3 Λ, a *r c‰where d’ is the largest even integer less than or equal to dz and d’’ is the largest odd integer less than or equal to d.We also have ∣P∣ .bo = ∣B ∣ .b0,.ProofLet uzv be arbitrary vertices in Pz B respectively.(i) The first two expressions follow by counting edges between Γ ∙ (u) and Γ-+1 (u). The second two expressions follow by counting edges between Γi (v) and Γ. (v).(ii) A vertex in Γ∙ (u) (respectively Γ∖(v)) has degree bβ (respectively b0,) if i is even and bo, (respectively bo ) if i is odd.(iii) Let u be adjacent to v. Choose a vertex xe Γ l (u)n ∏., (v). Then the bL neighbours of x in ∏+ι(u) lie in Γi (v)z so b. , > b∙ . By symmetry bc.l > b ’ .(iv) With u and v as in (iii) we can choose a vertex x e Γl(u)n l^+ι(v) . The c∙ neighbours of x in f7.,(u) then lie in Γ∖(v)z so cu∕ > cl . By symmetry cc+l > c∙,.(v) Clearly P = {u}u Γ2(u)u Γh,(u)<√. . . u Γ,a,(u)= Γ. ( u) u ( u) u . . . u Γλ√ u) and B = Γ. (v)<√ Γ, (v)u. . . ∪Γ,,(v) <3 c∖= {v} u Γ2 (v) U Γ4, (v)u . . . u Γσl∕(v) .Now count the number of edges joining P to B in two ways to get



I I

(v) Generalised n-gon.A generalised n-gon is a distance-biregular graph,and not a distance-regular graph, if the number of points on each line s + 1 = b^ differs from the number of lines through each point t + 1 = bo . The intersection array for a point vertex is as below. * 1 1 1 1...1 t + Γt + 1 s t s t...s *
(vi) The Johnson Biregular Graphs JB(k, n).Consider the set {1, ... , n} .Let P = {k-subsets} and B = {(k + l)-subsets} for k a positive integer less than n. If we consider the graph Γ with vertex set VΓ = P v B and adjacency defined in the usual way (ie: if u∈ P and vgB then u~ v if u ⊂ v) then we have a distance-biregulargraph. The intersection array for a vertex in P is:

i i* 1 1 2n-k k (n-k-1) (k-1) .• * ∙ (n-k-1) (n-k)• ∙ ∙ 1 (2k-n+l)or ... k k (k + 1)• ∙ ∙ 1 (n-2k) *

(k-i+1) (n-k-i)(n-k)^* if k < n - k.
if k > n - k

(vii) The q-anologue Johnson Biregular graphs JB (k, n). q isConsider an n-dimensional vector space over GF(q), where
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the power of a prime.Let P = {k-subspaces} and B consider the graph Γ with vertex defined in the usual way (ie: if
= {(k + 1)-subspaces}. If weset VΓ = PuB and adjacencyu e P and v ∈ B then u~ v ifucv), then we have a distance-biregular graph. The intersectionarray for a vertex in P is:* 1 1 ... qt - 1 ql - 1q-l q-lq"'κ - q-! 1 σ, 1 

I σ ~,''κ — K+∙ — i — ∙x-K —q - q ∙ . ∙ q ~ q q - qq-l q-l q-l
q-1 *-κ 1 ►v-K 1q-ι q - ιq-l q-l if k > n - k

κ+l rx-K J,q - g *q-ι
or . . . qκ - 1 qk - 1 qκ∙,- 1q-ι q-ι q-ι. . . qκ Λ-K κq - q q-ι *

(viii) Partial Geome tries .
if k < n - k.

A finite partial geometry is an incidence structure I = (P, B) with a symmetric incidence relation satisfying the following axioms(a) each point is incident with t + 1 lines (t > 1) and twodistinct points are incident with at most one line;(b) each line is incident with s + 1 points (s > 1) and two distinct lines are incident with at most one point.



(c) if x is a point and L is a line not incident with ×, thenthere are exactly ex (o< > 1) points x(Z x2 z ... , xof and <x lines
ι 4 Lx z ... z Lx such that xILiIxi IL z 1 — 1 r 2 z • ∙ ∙ , o< ∙The intersection arrays, for <× < s + 1 and c< < t + lz are:* 1 1 <X t+1 and * 1 1 cK s+1_t + l s t s —<x * _s + l t s t-<x *

(ix ). The following infinite family of distance-biregular graphs with dp= dB= 4 is given in [11.Consider AG(3z q). We will define the vertices of one part of our bipartition (B) as the q3 points of AG(3z q) and the vertices of the other part of our bipartition (P) as the affine planes described below.Take a ’’spread’1 in the projective plane at infinity, ie: a set of projective lines in the projective plane with the property that each projective point lies in exactly 0 or d of these projective lines. Let the number of lines in the spread be s. In the affine space each of these projective lines corresponds to q affine planes. Let these qs affine planes be the vertices of P.The intersection arrays are:* 1 q s - 1 qx_q1 s - 1 q1 - q 1 *
and Γ* 1 d q(s-l)∕d s



If our projective plane is PG(2, 2r) we can find a spread by considering an oval and looking at the lines that miss it. In PG(2, 2r) we have ( 2r + 2) points in an oval so we have (2r )1 + 2r + 1 - ^2r+ 2^ = 2r*(2r- 1) lines missing our oval. ∖ 2 /Also, each point in our plane, but not in our chosen oval, has 2r + 1 lines through it and of these (2r + 2)/2 = 2*~'+ 1 cut the oval. Therefore we can conclude that each point in PG(2, 2^) lies in exactly 0 or d = 2r' lines of our spread.
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Chapter 2.In this chapter we will describe known necessary conditions which have to hold for a pair of arrays to correspond to a possible distance-biregular graph. Where possible we have given alternative proofs to those given in [5].



DefinitionLet Γ be a distance-biregular graph such that VΓ = Pu B. Let u denote a vertex in P and v denote a vertex in B. Suppose that w1e VΓ such that d(u, wl ) = q, where q is any non-negative integer less than, or equal to, the diameter d.We define c*p∖ (u, w,) as follows, 0 p, t d.<Xf>∖(u, w, ) := ∣ Γf(u) n Γt (w1 ) ∣ .Suppose that wx e VΓ such that d(v, wz ) = q, where q is any non-negative integer less than, or equal to, d. Then we define 
ββ∖(vf wl} as follows, 0 ≤ p, t ≤ d.∕3p∖(v, w2): = ∣ Γp(v)A Γt(wt )∣ .Preliminary observationsFirstly we will consider o(p t(u, w, ).1A. c*o∖(u, w, ) = c<t∖(u, wl ) =2A. <×l∖ (u, wl ) = 0 if t ≠ q-1 or q+1.σ< ^ (u, w, ) =∕cK^.,n,f(w, ,u ) = c<^ if q is even( ∕3<l-Λi (w, ,u ) = c ’ if q is odd<Xl∖ju, w∣ ) = ΛX,Λ(w, ,u ) = b if q is even

I ψ÷l ( r *r(AA∙(w∣zu ) = b , ifqis odd.3A. o<p°τ(u, w1 ) = . QSecondly we will consider ββb(v ,w2 ).
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/3, ^.,(v ,W t ) =∕∕3v,∖ <w>∙zv ) = <∖ if q is even(wx ,V ) = c<^ if q is odd(v ,wα ) ) = b^, if q is even) = b<v if q is odd.3B. ∕3p∖(v ,w2 ) = 6p<j,k√ ∙
Notice that in 1A - 3B above c√p∖(u, wf ) does not depend onour choice of u and wt r and ∕3p∖(v, wi) does not depend on ourchoice of v and wt . In these cases we write <×p∖ for c√p∖(u, w,) and y3p∖ for ∕3p∖ (v, w2).We will now show that we can always write o<p t for o∖p t(u, w< ) and βp∖ for ∕3p∖(v, w2) .ie: c∖p fc(u, w,) depends on q but is independent of our choice of u and w, and

q
βp fc(v, w2) depends on q but is independent of our choice of v and w2 .Theorem 2.1.Let Γ be a distance~biregular graph such that VΓ = PuB.Choose a vertex ug P and a vertex we VΓ such that d(u,w) = q.Then <*p∖(u,w) is independent of u and w, 0 ≤ p,q,t ≤ d.ProofLet Sp represent the statement:ncXp∖(uzw) is independent of the choice of u and w, for all q and t”.



(i) So and S, are clearly true since we have mentioned earlier that c×o,'fc(u,w) and <×,∖(u,w) may be written as <×β∖ and <x,∖ respectively, 0 q,t ≤ d.(ii)Suppose Sn is true for all n ≤ p-1. We will form a recurrence relation to show that this implies Sp is true. We have two cases to consider and in both cases we count ’quadrilaterals’ in a certain way.(I) q even. In this case we P.
ch. + btΛ-Λ-, = cp t*Λ (u'w) + bP-1°<p-Λ

i*<vwm.vwvlvw u. <vTherefore cKp∖ (u,w) may be written as(cb,1<×fΛ<1+ bt.,<×∣>Λ-, - bp.α<xp√t )/Cpie: cXp∖ (u,w) is independent of our choice of u and w and we may write cKp∖(∏,w) = o<p∖(II) q odd. In this case we B.
cl..°<t-∖.,+ bt-,‰'t-, = cp c*Λ <u'w> + bp->o<l,^eTherefore o<p∖ (u,w) may be written as

<ci.,°<f-∖..∙'∙ - bf>‰lt )≠cp ∙ie: <×fΛt (uzw) is independent of our choice of u and w and we may write
c×p∖(u,w) = <Xp∖ie: In both cases Sp is true. Hencez by induction, we may always write o<p∖ i∏ place of c× p∖ (u,w).



Theorem 2.2Let Γ be a distance-biregular graph such that VΓ = P u B. Choose a vertex ve B and a vertex we VΓ such that d(vzw) = q. Then ∕3p∖(vzw) is independent of v and wz 0 ≤ pzqzt ≤ d. ProofSimilar to the previous method.
Next we give several simple necessary conditions on the intersection arrays of a distance-biregular graph.

Proposition 2.3(5]We have the following relationships for a distance-biregular graph:(i) k β = 1, and for each i > 0, kt+l = klbi ∕ci, ;k 6, = 1, and for each i > 0z ki+ι, = ki,bl,∕ci'.The kL and ki, are whole numbers.(ii) ci + bt =^bo z if i is evenztkb o’ z if i is odd.cl∙+ bL , =fbβ z if i is oddz (^bβ, z if i is even.(iii) bi.* bi, and bL_, b√z i = 1/ ∙∙∙∕ d - 1.(iv) ci+l, c^ and ci+l ≥- c√z i = lz ...z d - 1.(v) The following inequalities hold:
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∣ P∣ : = 1 + ki + kk + ... +k..= k,' + k J + ... + k' ιι a∙f 0L 1 cA r|b|:= k, + k3 + ... + kz,, = 1 + k√ + k √ + ... + k4,', where d’ is the largest even integer less than or equal to dz and d’ ’ is the largest odd integer less than or equal to d.We also have ∣P∣ ∙bβ = ∣B ∣ .b0* . ProofLet uzv be arbitrary vertices in Pz B respectively.(i) The first two expressions follow by counting edges between Γt (u) and Γu,(u). The second two expressions follow by counting edges between Γi (v) and Γ (v).(ii) A vertex in Γ∙ (u) (respectively Γi(v)) has degree bβ (respectively be,) if i is even and bβ, (respectively bo ) if i is odd.(iii) Let u be adjacent to v. Choose a vertex xe Γl (u)nΓ.ι(v). Then the bi neighbours of x in ∏+,(u) lie in ∏.,(v)z so b. ι' > bi . By symmetry b∙.1 ≥ b ∙l√ .(iv) With u and v as in (iii) we can choose a vertex x e Πl(u)n ΓJ+t(v) . The ci neighbours of x in f]_((u) then lie in Γl(v)z so ci4l, ≥ c l . By symmetry ci+1 > c i∕ .(v) Clearly P = {u}u Γ2(u)u Γ∖(u)u. . . v Γa,(u) = ∏ (u) u (u)u. . .uΓλ√u) and B= Γ.(v)ι√Γ, (v)u. . .uΓl√v)= {v} U Γ2 (v) U (v)u . . . U Γjl,(v) .Now count the number of edges joining P to B in two ways to get
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∣p∣ b. =∣B∣ b.' .
We now turn our attention to the derived ( or halved) graphs of a distance-biregular graph.Proposition 2.4. [5]Let Γ be a distance-biregular graph. Then the derived graphs of Γ are distance regular.ProofLet the derived graph on the vertex set of P be denoted by P. Let ueP and consider Pi(u) = R. (u) . Take we P; (u) and letj J Jaj* := ∣ Pj (u)λ Pt (w)∣c* := ∣ Pj.t(u)π P1 (w)∣ and b.* := ∣ P.+l(u)∩ P, (w)∣ .Then a* = oς*j1 t cj* = ‰j 1 / ≡∏<3 ⅛=o<2^χ. ie: The derived graph on the vertex set of P is distance-regular .Similarly for the derived graph on the vertex set of B.

Lemma 2.5[5](a) c 1. cli41 = cj ctJl , i > 1.(b) b„_, bH = bu.', btt' , i >, 1.Proof(a) Let us consider a distance-biregular graph Γ . We will zs Xl⅜lcount ∕31 li., in two ways(1) = ≤" = c ιu, c lt ∕c 1'.



= C,J cu, ... c3 , ≈ cxJ, ca√CtJ . . . C J c1 ’Therefore cx. cxu, = c xi, cx4*l .(b) Let the number of vertices in P and B be n and m respectively. The number of edges in Γ is given by:n. bβ = m. b o ’ .We now proceed by induction.(i) The number of pairs of vertices at distance 3 isn.bo.b,.b1 (for paths starting in P) cl .c3= m.b.*.b , *.b / (for paths starting in B) c x ’ . c 3 ’Therefore b, b2 = bl,bx,.(ii) Assume the result for pairs of vertices at distance up to 2i+l. Counting paths joining pairs of vertices at distance 2i+3 we have :n.b..bl ... bιu, . bxux (for paths starting in P)cx.c3 ... c4urcxu3= m.b.l .b, 1 ... b,J . b,Jx (for paths starting in B)cx∙.c3∙ ... cxJt.cx√sHence by (a) and the inductive hypothesis biu,bxuι = bx.√1 bxJ1 .Lemma 2.6 . [5]A distance-biregular graph cannot be regular. Proof .We suppose bβ = b’ and show that the two arrays t (P)r c (B) 
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would have to be identical.Let Γ be a regular distance-biregular graph. Then bβ = b^ and the first two columns in each array are the same. Suppose that the arrays are equal up to the (2j - l)-th. column for some j > 1. Now b1L bu., = b*c b1∖-l for every i. Thus b2 .= b1^l implies b = b1,. and hence (as ci.ι+ b2. = bo = bj = c i∙ + bl, ) c zi = c ’ ∙ . We also know that cii+lcii = c1*.41c't for every i, so ci. = c,1∙
3 Jimplies ci.+l ≈ c’ and (since bo = b ’ ) we also have b2>i = b’ . Hence the two arrays are identical and the graph is distance-regular.

We will assume from now on that we have a (non-regular) distance-biregular graph with bβ > bβ, .



2*e

Chapter 3This chapter is divided into two parts. The first part deals with the general case of when a pair of arrays are feasible for a distance-biregular graph Γ. The second part then deals mainly with the case when Γ is a distance-biregular graph of girth 4. In [5] it is shown, by considering eigenvalues, that the diameter of a non-regular distance-biregular graph is even so we will use this fact in the later parts of this chapter.
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In this chapter we will suppose that Γ is a distance-biregular graph with the same notation as used in the previous chapters. We will continue to find necessary conditions for a pair of arrays to correspond to a distance-biregular graph.Lemma 3.1.We have the following necessary integrality conditions:(a) (i) ci divides cli-,cxl and czl cαc+1 .(ii) c 2, divides cxJ, cxJ and cx∙, c2J( .(b) (i) c1 divides bx..1bxl and bχl bxl+l .(ii) ci, divides b ,ι bχ., and bxl, bxJ,1 .Proof(a) Both (i) and (ii) follow from Proposition 2.4 and Lemma 2.5. For example for (i) we consider c* = cti.,cli∕c1 and
(b) (i) This follows from bl* = bxLbxL+(/cx and ∕^2L∙h 2 - b1∙J bχ^, - 11 ,(ii) is similar.
The first part of the following lemma will be proved in two ways. The first method uses Lemma 2.5 and Proposition 2.3 and the second shows the use of an intersection diagram.
Lemma 3.2The following conditions must be satisfied.(a) (i) bxl.,(cll- c 1Jι ) = biJ (c√ - cli.,);
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(11) b,i (c1√ - c11.,) = bxi, (cxi- c1√, );(b) (1) cxi,, (bxi- bxi,', ) = cxJ, (bxi' - b„.,);(11) cxi (b√ - bxiJ = cxl' (bxi- btu,. ).Proof(a) bw., (clt- cj, ) = bli.,(b.- bxl- cj, )= b.b.1,- blibli-- bti-,c√.= b.b. - b,.'b '- b.. c ' β it-ι lι li-l 1*~∙ lu-∙= (b . -' cxl!, )bx..,- b./bj,= b2J <b~.- b√>= bxJ <b.'- c«..- b∙' + c√>= bJ <cj " = χu. >∙Hence (1) holds.If c,∙ - c ' = 0 we must have c.l,- c,i = 0 so (ii)holds .We may therefore suppose that cu≠ cτl.*, .We know that bxl bu,ι = blt, bu,1 so we havebχ(-, ≡ cvJ - cu., = ba√b ’ c . - c ’ b_;lt-ι χl Xi-∣ 1<-Whence (ii) follows.(b) Similarlyc2. (bi√- ⅛.+,) = c1Jbli'- bβ∙+ cxj+, )= -cxl ctJ + cxll cχJl= ctl, (cτJι - cx∙ )= cj (bβ- bx√, - cx∙ )= c√ <bu- bxJl ).

clearly
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Hence (ii) holds.If bli, - b = 0 we must have b2l - bt.∙f = 0 so (1) clearly holds. We may therefore suppose that b2i, ≠ bι. + f . We know that 
cncιul~ c z ' c1L’( so we have cai = b⅜⅛ - btJt = ctJ, .cj b2∙,- b2t+l cll+lWhence (i) follows.

We now give an alternative proof of the first part of the previous lemma to show the use of an intersection diagram.Let xe P, ye B and writef1p√s γp (x) n ∏>W∕ where Γp(z)ι= {w : d(z,w) = p} .In the following intersection diagrams the sets Γpv are denoted by the black dots. Two dots are joined by a labelled edge in the intersection diagram if there are E edges (respectively F edges) from each vertex in Γp<v to Γp∙<jz ( Γp, . to Γpv respectively).
The following intersection diagram summarises the graph structure relative to the edge ×fγ.

DistanceFAom 
y

DISTANCE FROM X
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ie: For a general ’square

Alternative proof of Lemma 3.2 (a).(a) If cx- = c2..* then bo - ci∙ = bo - caJl , ie: bil = bx√ , and sincebll.lbx∙ς - b∙u-∣b ιv ’ we must have b2i.,= bx∕ and this gives us c2.ι = px∕ so the results are trivially true. Let us suppose c2i ≠ c2√ .We count paths of length 4i - 1 from x to y via ι. and Γu ih in two ways, first starting at x and then starting at y.

ryFrom the diagram we obtainbl,bi, ... b2J(cxi,- cii., )c2J, cx.∖ ... c3,cx, = bl b2 . . . b2..,(c2i - c1J, )c1^c1,^... c3c3, ie: b1√(c√- c2j.,) = bi..1(cli- c2iJ, ) .We also have buJbxi* = b2i.ιbli so bti(cxi,- c2i.,) = b√ (c2i - c1J,)



Shawe-Taylor in [5 ] p.34 proves the following feasibility condition.,f Suppose the intersection matrix_I(A) corresponds to a distance-biregular graph Γ.Let x be the right eigenvector of I(A) corresponding to the non-zero eigenvalue^ and satisfyingx0 = 1. Then the coordinates of x must satisfyΣZ χi1 ∕ki i even = Σ ×i ∕∖∙ i oddWe show in the following that this condition automaticallyholds whenever a matrix has the form:*0100' '0 1 0 0 0 'm2, 0 m23 0 or mll 0 m2s 0 00 m 32 0 m3M, 0 m32 0 m3^ 0

∣
 0 0 5 0 0 0 m4t3 0.0 0 0 m^ 0The k£ are defined in the following Theorem.This means that when we consider distance-biregular graphswhere d ≤ 4 we need not check that this result holds as the condition is automatically satified.Theorem 3.3.Let where m2l ,m23 ,m3i ,mjt^ ,mM ≠ 0.

We define kβ = 1; k, = m2, ; k2 = m2, ms2∕ml3and k3 = (m2l m32 m43)∕(m13 m3ψ ) .If we let x = (1 xl xt x5 )τ be the right eigenvector of M
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associated with the eigenvalue ( + 0) then we have:
×o + x? = χ,r + x?kβ kα k1 k3ie: ∑2 xt' ∕k- = ∑ xi1∕ki.i even - i oddProof the

mmx
~

right eigenvector of

(^λ - m r∏7Γand x3
or x3 m32 x, 2∖( X

m .. ( √⅛ - m mτ3Λ k. ) - msτ
Equating the two expressions for x3 means that the eigenvalues of A are precisely the roots of the following quartic.V- (m_ m.- + m,. + rn m3, )zλ1 + m,1 m.. m. = 0. (*)Consider the values of λ needed forx01 ∕ke + x∕ ∕k1 = x? ∕kf + x3i ∕k3 (**)We need 1 + ( λl - m1, ): = X + m*≡ ~ m *∙^‰~ ¼1 m il m13 m32ie: ( 7? - m1, ) = ( X - m 1, )* - m *3 ( - m il )x ms^m37 m13 y m23 m3xNow, if ?< - m1, = 0 then xr= x3 = 0. The second expression for x3 then gives us mt3 m32^ = 0 which is not possible since m23,m3x and zλ ≠ 0 .
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Therefore, since *λ ≠ mil , we have:Xm13 m31 = ?C( - m2, ) - ( Λx - m2, )ie: Λ*- (m3^mlf3 + m11 + m23m32)λx + mll = 0.Therefore the eigenvalues of M are precisely the values of ^λ for which (**) holds.
Theorem 3.4.Let Γ0 1 0 0 0mll 0 m13 0 0 where m il ,m23 ,m32 ,m3^ ,M = 0 m3x 0 m3s, 00 0 mif3 0 m4j m43,m.5,m5√ 0..0 0 0 m5^ 0 JWe define ko = 1; kl = m2, ; kα = mxιm3x∕m13 ;k3 = (mi, m 3xm%3 )∕m1,3 m3H. and k11, = (mll )∕(mτ5mu m4i ).If we let x = ( 1 xl x2 x3 x^ ) be the right eigenvalue of M associated with the eigenvalue ?<( ≠ 0) then we have:Xo + X + X^ = x,1^ + ×ikβ kx k4, k, k3ie: ∑ xΓ∕ki = xΓ∕kl. i even i oddProof .Consider the entries in x,∙ Since x is the right eigenvector ofM associated with the eigenvalue?^ we have:

o
 

o
 

o
 

o '1 ' ^1 "mll 0 mx3 0 0 X| χ.0 m3x 0 m3^ 0 χl = Λ Xx0 0 0 ∏u5 X3 X3o
 s
’ 

o
 

o
 

o

LχJThis gives us: xl = Λ ; χ2 = ( Λ x, - mx, ) ≈ ( 7C^ - mx, ) ;m∑3
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x3 = 5∖xi - m32 xl = X X - ml, ) - m32 mxs*
ι∏x3 ^3⅛xtt = m5H. x3 = m5^(X- (mxι + m23 m31 ))

-λ m23 ∏⅛H-or xlf, = Λx3- ∏u3 xx = X( X - (m1∣ + m23 m32 )) - m3φmw ( X - mxι ) mψ5 m23m^m^Equating the two expressions for x^ means that the eigenvaluesof M are precisely the roots of the following quartic.λ* - (m1, + m25m32 + m^m„+ mwmiJ'λ'+ (m21 m3,m^ + ml, mlfi m5„ + m23 m32 ms^ ) = 0 (*)Consider the values of % needed forX? ÷ X? + x/ = ×* ÷ x3^t (**)kβ kx k„. kl k3ie: 1 + ( X - mx, )α + ι‰5 m5,, (X - (ma, + mx3 m32 ))∏½1 m23m32 mx, mz3 m32 m39, m.3= X + ΛX - (mt, + m23m32 )↑ m2, m2, m23m32m3ψmlt3→> m„ mi3 m32 m3^ m^3 + m3*πς3(λl- mxιjl + m^m^CX- (mx, + m23m3z)f= X m23 m32 m31t, m1^3 + X(X - (mi, + mx> m32 ) )2∑^>(X - (mx, + m25m32 ) )∖K - mt^ ms,, )= π⅛ ‰ (< ~ m2<)'- 'λlml3⅝i+ ∏'z.∏'.3∏'3z )
1= m3^ m^3( - (2m2l + m23m3x )X + (m2l, + mt, m2sm31 ))= m m (X - (m2, + m13m3x )) (X - mi, ) .Now, if λ = m2ι + m23 m22 then xj^ = x3 = 0 and, since we also havem43x2 + m^x^, = T^×3f x2 = 0 . Therefore Λ= mil and m23m3x= 0 
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which is a contradiction since mxj msi ≠ 0.Therefore, since λ ≠ mx, + mx3 m3x , we have( Λx - (m1, + mx3m3x )) ( 7<l - mwmsψ ) = m31rmlf,3 (λx - maι ) . n÷ x=> A - (mxι + m13m3x + m3φmlf3+ )¼+ (ml, + mx, mM mi, + ml5mll mt% ) =0.Therefore the eigenvalues of M are precisely the values of A for which (**) holds.
We will now find some inequalities involving the size of the blocks Γ∖(u), where u∈P.
Lemma 3.5.Let Γ be a distance-biregular graph of diameter d. Then cxi (bxl.,- 1) + bxl (cxc+1- 1) « kxi - 1clfor 2 ≤ 2i < dc⅛-, (bxl.x- 1) ÷ bxl,,(Cχi - 1) ≤ kx..,- 1c*'for 3 ≤ 2i - 1 < d .Proof .Take two vertices u, u’∈ P such that d(u, u’) = 2i. Since u,∈Γxl(u) there are cxi vertices in ^i.,(u) each of which is connected to u’ and (b2i.r - 1) other vertices in Γ2l(u). There are also b 2. vertices in Q. (u), each of which is connected to u, and (ctU1- 1) other vertices in Γxi(u). The vertices other than u’ are each counted c1 times so by considering the number of vertices 



in Γu(u) we have our first result. The second inequality follows similarly.
Note that if 2i = d we have cu (bxi.l- 1) ≤ kli- 1cl and ifd = 2i - 1 we have<⅛.(bu.x- 1) ≤ kzi - 1 .

C 1’By the same method as the above we also have a similar result if we consider vertices (v, v’) in B.
The following was proved independently in the preprint [1] which was never published.Lemma 3.6.Let Γ be a distance-biregular graph with the usual notation for its intersection arrays. Then the following inequalities hold.c1,. > bo, cxi, ≡∏d cxt.,> b., cx,l.,bo bβb2l> b,, b;. b2,. ,> bo b,. .

bo t bo’i = l,...,d∕2-l i = l,...,d∕2Proof .We will actually show by induction that we have b1l < bol < c^ and bu-. < bj < c^i-,bκ bβ ci∙ , b*i., bβ cx,..1(i) Since cl = cl, =1 and b, b1 = b,, b^ t from Lemma 2.5, we have
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b. = (bβ,- 1) < bo, < 1 = c, and b. = b’ < b., .1√ (b.- ∏ ^b7 T —' T? ⅛ "b?. . b; = bj - c; < b., (bβ - c, ) = b^ - c, bl  s b: < Cl bβ bβ____________bo caie: b' < b° < c' ∙ bι be c 1(ii) Suppose the results are true for all terms less than or equal to 2i.Then, by Lemma 2.5, c1,. c2,.4i = cuciuι, so by our inductionhypothesis cΛ = cxu, > botctt ci∙i4, bβThis means that bβ, - b = cτ.4i> bl c,L. = bl (bo- b1,i4l) l+' t* bβ band this gives us b2uι < be < cxl.1 t>Λ.. To? c,^,Now, since b,. b . , = b! b* we have bxu, = bΛ+x < bl bx∙+1 bxl+x boTherefore b’ - cl,uχ < bo, (b0- c2l+2) so b2,tux < bl < c∖÷l bo blkl bo cll4lThis gives us the required result.
As a consequence of this we see that dβ is always at least as big as dp , and since d is even, dβ is even.

Corollary 3.7.dp = 2i => dβ = 2i .Proof .Since the diameter of the graph is even we know that dβ ≡ 2i 
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or 21-1. Suppose dβ = 21-1.Then c > bl ct*., = bo, bβ = bft, . →⅛-bβ bβTherefore do = 2i=>do = 21. r t>Note that this means that dβ= d.
The fact that kl = bβ > bj = k,∙ is part of our basic hypothesis. The following shows that this is the simplest case of a more general result.Lemma 3.8.Let Γ be a distance-biregular graph. Then kl + k, + ... + k,. > k., + kJ + ... + k ’ 1 i 2ι+∣ ' 2 li+f0 ≤ i ≤ d/2 - 1.Proof .Consider the following diagram.

We will consider the sum k, + k2 + ... + kt. By Proposition 2.3we know that for i >, 2k∙ = bo b, . . . bi-ιz soc2 . . . clk1 + k2 + ... + kt = bβ + bob, + ... + bβb, ... bfc.lc2 c2... ct
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Now consider a vertex v e BnΓ(u) and the sum k1,+ ... + k*. This sum represents the number of vertices at distance at most t from v. Since d(u, v) = 1 all the vertices at distance (t - 1) or less from u have to be at distance at most t from v. Also, for a vertex to be at most distance t from v it must be at most distance (t + 1) from u. This leads us tokJ + ... + k ,fc = k, + ... + kt,ι + b, bτ . . . bt., + b. ba . . . bt c∙ . ..ct,.l c’ ...c,tTherefore t t z .
∑ka - Σ kJ = kt - / b, b, ■.. b>., + b,b1... bt ∖ λ≈, e<≡, ∖ c’ . . .Ct,., c’ . ∙∙C^ )~ bo b, ... b⅛.∣ b ι bi ... bt-∣ /1 4* b t ∣ ≡i∙∙∙ ct c[ ...cj., lι cjjLet t = 2i + 1. This gives us t t∑ - Σ kJ = b. b, . ■ bt., - b, b1 . .. b,√cj + bt )*=, tx', ci... cfe c] . ..Cfcl,C,t= b, ... bt,l (bo- cj ~ bt) c z . . . ct (by Lemma 2.5)= b, . . . bt., (b√- bt ) > 0 ci. . . cfc(since bχ,. > b. bu., > bli+1) . b 0,The same proof shows that kJ + ... + k2,t > kl+ ... + kli provided ck < cιc. We will show in Lemma 3.15 that this holds for all i if Γ is of girth 4.
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We know from Lemma 3.6 that c’ > bβ,cx ∕bo and we will now find another inequality which will restrict cj and ci further .Lemma 3.9.If Γ is a distance-biregular graph then cx > c^ with c2 = cl if and only if cx = c’ = 1 (ie: Γ is not of girth 4).Proof .b1bl = b,* bl from Lemma 2.5 so (bβ, - l)bx = (bo- l)b^ . Therefore c, = bo - b, = bo - (bβ- l)bx, (bj- 1)This gives us c1 = (b0 - bβ, ) + bβ, - (b. - l)bl (b;- i)Since b^ C b’ - 1 we have cx > (bβ- b’)b] + b’ - (b.- l)bl (bβ,- 1) (bβ,- 1)= bβ, + bl (bβ- b0,- bβ + 1) (b√ — 1)= b’ + bl ( -bl + 1) (bj- 1)= bo∙ - bl = c*.Therefore c1 > cl with cz = c{ if and only if bl = b’- 1 ie∑c1= cl = 1.
Combining our restrictions on c1 and cl gives usc1 > c’ > _bj_ cx bβ
The following Lemma is a generalization of a result for distance-regular graphs. It will be used later to enable us to 



find a bound on the diameter of a distance-biregular graph of girth four which is easily seen to be an improvement on the bound d >≤ blJ - ci, + 2 given in (5].Lemma 3.10.Let Γ be a distance-biregular graph with the usualintersection arrays . Then the following results hold(a) dp > i + 3 =* <ci, bi if i + j is even- ^c., bj if i + j is odd.(b) dft ≥ i + j => ( Ci* b!J if i + j is evenkci b., j if i + j is odd.Proof .(a) Suppose i + j is even and u∈ P. Take u’e Γj∙(u) and u , ,e ∣7 ( u )∩ Γl(u, ) .

Then ci = ∣Γ(u')n Γi.,(u" )∣ ≤ ∣ Γ (u') n Γj4, (u) ∣ = bj .Now suppose that i + j is odd and u€ p.Then ci' = ∣ Γ(u')n Γ. , (u" ) ∣ ≤ ∣ Γ(u')λ Γj,,(u)∣ = bj .Therefore ci ≤ bj- if i + j is even and c., ≤ bj∙ if i + j is odd.(b) This follows similarly, just take v e B.
As a simple consequence of this we have the following.



⅛0

Corollary 3.11.Let Γ be a distance-biregular graph and suppose thatc’ > b’ . Then dR = 2 and Γ1 is K. ... 2 Z D Do l DβProof.Suppose that > b’ . By Lemma 3.10 we have dβ<2+2=4.Now dβ is even, by Corollary 3.7, so therefore dβ = 2 and hencethe intersection arrays are* 1 bβ,~∣ andb∕ (b6 - 1) * "* 1 b.b. (b.,- 1) *
This means that for any distance-biregular graph, other than κt>.,b.' ' c≡ ≤ bJ ∙ ie: c^ < bβ, - c} so c] < bβ,∕ 2Since the only distance-biregular graphs of diameter two are Kt , we will restrict ourselves to graphs of diameter greater than two.Corollary 3.12.Let Γ be a distance-biregular graph (other than KbβbJ. Then c2, ≤ bβ, / 2 and c1 < bo / 2Proof .From above c] ≤ bβ,/ 2 and since, by Lemma 3.6, c’ > bβ,ci∕b0 we have b., c{ > b., cx . Therefore c1 < b. .2 bβ 2



From now on we will restrict ourselves to the case where the girth, g, is four.
The first result we consider is a stronger version of Proposition 2.3 (iv).Proposition 3.13. [1]Let Γ be a distance-biregular graph of girth 4. Then c., > C: and c, > c? for 1 4 i < do .c+ι t l+∙ <■ rProof .We have girth 4 so we know from Lemma 3.9 that c2> c£ >2.Let xe P and {x,, ..., xb} be its neighbours. Then any pair (xi, xj ) have to have c^ common neighbours and be included in (c^ - 1) 4-gons (with x). Let ye B and {y,,..., ybJ be its neighbours. Then any pair (yi , yj ) will have to have cx common neighbours and be included in (cx- 1) 4-gons (with y).Let i be even and ueP. Take peB such that p∈Γ.+ι(u) and let the cl+i neighbours of p in Γ∙l(u) be {q,,..., qc.+J . Also, let the cd neighbours of ql in Γ(u) be {r, ,..., rc. }. Then the ci(c] - 1) cycles of length 4 containing pq, and one of the edges q,rj are amongst the (ci+1- l)(c2 - 1) cycles of length 4 containing pq, and one of the edges pqlc . Hence(ci+,- l)(c2 - 1) » c l (c [ - 1).In the same way for a vertex v e B we have(c∕+ι- l)(c^ - 1) > c’ (cz - 1).Now, since c2> c^ > 2 we have 
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cu, - 1 ≥ cl - 1 ≥ Cιl ci c1 - 1 ci∖l- 1ie: (ci+, - l)(cl,+l- 1) ≥ cicj .The case for i odd follows similarly.We know from Proposition 2.3 (iv) that c.,+ι ⅛ cl and cl+ι> ci, but we will now show that we cannot have both of these inequalities as equalities.Suppose ci,+t = ct and ci+l = c ,l . ThenC∙ C∙, = c’ ci > (c∕ - l)(c. - 1) ctcj -⅛≤r Suppose ci+l > c’ .Consider two adjacent vertices u and v with u ∈ P and take a point p such that pe ∏+,(u) n Γi(v). Then, since c∙+ι > cl, , there is a neighbour q of p such that qeΓi(u) aΓ (v). This means the neighbours of q in Γ∖(v) cannot all be in Γ.,ι(u).Hence c., > c∙.
C. + I ISimilarly if c., > cf∙ we have c∙ , > c., . Therefore we have our ∙* 141 I Lτ I Cresult.

As a simple consequence we have b., > bl and bc.l > b∙, .We will now generalise the result cz> c’ which we obtained from Lemma 3.9.
Lemma 3.14.Let Γ be a distance-biregular graph of girth 4. Thenc2i > clu 2 C 2i ≤ dp ; c2,i+1 > c2^1 2 ≤ 2i « dp- 1.
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Proof .We know from Lemma 3.2 that b2tι(cll - c1,. t) = b2,.ι(cx,. - cii.,) and from Lemma 3.6 b2’._( > b* b2l.1∕bβ, . Proposition 3.13 gives us theresults c2. > c’ 1 and c’. > c1. 1 so we have ZU 2u∙( *Zu IV*Ibti-l = c!i - Ctc-, < be, < 1 .bu-, c,1 - ci., b.Therefore czt > ⅛ + (c1,c., - c2i.1) . (*)We now proceed by induction.(i) Let i = 1. We know from Lemma 3.9 that c2 > c’ so since cx c3 = c]c∣ we also have c^ > c3 .(ii) Suppose the result is true for all pairs up to c2.ι.1> c2,i.2 and cl . > cu.l . Then cxi > c∙c by (*) and since cc,. = c,,∙c,. , c ’ > c . . l⅛ι 1 ∙Hence we have our result.
We are now in a position to prove the result stated afterLemma 3.8.
Lemma 3.15.Let Γ be a distance-biregular graph of girth four. Then k,' + k’ + ... + k2,- > k,+ k2 + ... + k2i1 < i ≤ dp∕2.Proof .We know from Lemma 3.8 that∑k. - ∑k, = b.b, ... bt-, - b, . . ■ b.H /1 + bt ∖ofx, ,*s∙ c2 . . . Ct Cl ... cj„ ∖ c’ j



If t = 2i, c2 ... ct.1 = c∙... c’.( from repeated application of Lemma 2.5 (a). b tTherefore X ke, - ∑ koJ = b, ... bfc,, ( b<, - 1 - bt ∖*s, c1 . . . ct-, ∖ct ct,)= b, . . . bt., (b0cfc, - ct ct' - btct)C2... ct.l ctct,= b, . . . btr-, ( (bo - ct)cfc, - bt ct ) c1 . . . Ct-l ctct,= b, . . . bt., (bect, - btct ) c1 . . . ct_, ctct*= b, . . . bt-. bt (cb, - ct ) c2 . . . ct.l ct ct,< 0 from Lemma 3.14.Hence we have our result.
The following result gives us another bound for c2 t but this time we consider a design within a distance-biregular graph to obtain our inequality.Lemma 3.16.Let Γ be a distance-biregular graph of girth 4z and diameter greater than two. Then c2 < bo, - 1.Proof .Let u∈ P. Consider Γ(u) and Γτ(u) as the points and blocks of a 2-(bβ , c1 , c^ - 1) design. Then by Fisher’s inequality the number of blocks is at least as large as the number of points, ie: be(bo*- 1) >z be .ciTherefore c2 < bo, - 1 .



We will now investigate what happens when c1 takes certain values .Case 1.Suppose c2 = bo, - 1 and let ue P.This gives us ∣Γ(u)∣ = k1 = k1 = ∣Γx(u)∣ and therefore Γ(u) and Γ∖(u) form a symmetric 2-(b0z c i r c ,i - 1) design. We will show that this means that our distance-biregular graph Γ is the incidence graph of 3-(bo+ lz b^ z c’ - 1) design.We will refer to the vertices of P as points and the vertices of B as blocks. Firstly we note that since Γ(u) and Γ1(u) form a symmetric 2-(boz cx z cl - 1) design any two points in Γ2(u) have (cl - 1) blocks in Γ(u) in commonz so any two distinct points in Γ2 (u) are at distance two in Γ . This means that u and any two points in Γx(u) have (c,i - 1) blocks in common. If df = 3this clearly means that Γ could be represented as a 3-design as stated above as any three points would have (c,x - 1) blocks in common. Therefore let us suppose that dp≥ 4 and use this to get a contradiction.

ie: u,∈ Γ2(u) and u,,∈ Γ∖ (u) n. Γ1 (u ’ ) .
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Let us turn our attention to u,.

Since Γ (u,) and Γi(u,) also form a symmetric 2-design any two points in Γ2(u,) have (c^ - 1) blocks in common. However, u and u’’ are at distance four in Γ and not distance two.Therefore if c2= (b^ - 1) Γ is the incidence graph of a 3-design. The intersection arrays for Γ are below.

b^ , ci, , b^ and cj are found by using the conditions b1b1= bl,b^
* 1 bo, - 1 bo," and * 1 c1, bjb. bo, - 1 bo - (bβ, - 1) * _bl bβ - 1 b; b3, *

b^ + c’ = b^ r c1c3= c 'zc and b ,3 + c^ = bo .
Theorem 3.17 below will show us that in the special case where we also have k1= k3z the design is a Hadamard design.Theorem 3.17. CδJThe existence of a Hadamard matrix of order 4n is equivalent to the existence of a distance-biregular graph with intersection arrays as below.* 1 2n-l 2n and * 1 n 4n-2 2n (*4n-l 2n-l 2n * 2n 4n-2 n 1 *



Proof .Firstly let us suppose that we have a Hadamard matrix of order 4n. By multiplying certain columns and rows of our original matrix by -1 we can form a new Hadamard matrix, H, where the first row and first column only contain +l,s.ie: H has the form
Since HHτ = 4nl each row (and column) must have 2n +l,s and 2n -l,s, where any two rows (or columns) ’overlap’ , or intersect, in n +l’s and n -1’s.Let H’ be the (4n-l)x4n matrix obtained from H by deleting the top row. We will now show how to form a distance-biregular graph from H’. Let our points be the 4n columns of H,. Our blocks are formed from the (4n-l) rows of H,. Each row gives us two blocks. The first is defined as the set of points formed by considering where the 4n columns intersect the row in +l,s and the second by considering where the columns intersect in -1’s. This gives us our 2(4n-l) = 8n-2 blocks each of which contain 2n points. If we take any two distinct points they intersect in (2n-l) blocks (since any two columns of H overlap in 2n rows and we have removed one row where they overlap). If we take any two distinct blocks they overlap in n points or 0 points since the rows of H overlap in n +l’s and n -1’s. From these conditions we can form 



a distance-biregular graph with arrays as shown (*).Now let us suppose that we have a distance-biregular graph with

Take any vertex v ∈ B and pair it with the unique vertex v'eΓ∖(v). By doing this for all vertices in B we obtain (4n-l) distinct non-ordered pairs and we will use these to give us the rows of a (4n-l)x4n matrix H,. Label the 4n vertices in P by 1, 2t ... z4n. Take a pair {vz v,} as described above, vz v'β B. If v is connected to vertex ieP let the ith. entry in the row be +1 and if v’ is connected to i let the entry be -1. (Note that the choice of which of our pair of vertices is v and which is v’ is arbitrary.) If we do this for each of the (4n-l) pairs of vertices we form (4n-l) rows each of which has 2n +l,s and 2n -l,s. By considering another such pair {wz w’} we have the situation below.

This means that any two rows intersect in n +l,s and n -l,s. If we now form a 4nx4n matrix H from H’ by adding a first row of +l,s we see that we have a Hadamard matrix of order 4n with HHτ= 4nl .



Case 2.Suppose c2 = b0, - 2. (So bo, > 4 since g = 4.) We will show that this means that c] = 2 and that we only have two possibilities for c3 , namely (bβ,- 1) and b’ .We know that bo bl is divisible by c2 so since (bβ,- 1) and (bβ,- 2) are co-prime we can deduce that (bβ,- 2) divides b0 . ie: bβ = x(bβ,- 2) for some integer x.Consider b,b2= (b’- l)(bβ- c2 ) = (bj- l)(x(bJ-2) - (b'- 2)) = (bo∙- l)(x - l)(bo∙- 2) and bjbj = (bβ- l)bj = (x(bβ*-2) - l)b∙2 = x(b*- 2)b; - b[ .Since b , b2 = bl,b* these two expressions are equal, ie: (be,- l)(x - 1) (bo∙ - 2) = x(b∙- 2)b^ - b2∙ By dividing both sides by (b*- 2) we see that (bo,- 2) divides b^. Since we have girth four we know that c[ > 2 and b] + c} = b^ so we also have b’ bβ,- 2. Therefore b* = b!- 2 and c’ = 2. ie: (b’- l)(x - 1) = x(bβ∙- 2)-1 x(bβ∙- 1) - (bj- 1) = x(bj- 2)-1Therefore x = (b’- 2) and bβ = (bβ,- 2 )x .
Our arrays start as

* 1 (bo∙- 2) ...Jbβ,- 2f (b6∙- 1) (bβ'- 2) (b0∙ — 3)
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and *

_b°

1 2(b∙- l)(bo,- 3) (bβ,- 2)
Let us consider a vertex u∈P and the two sets Γ(u) and Γt,(u). If v, ,vi gΓ(u) then, since c2, = 2, ∣ Γ(v∣ )n Γ (vz )n Γ2 (u) ∣ = 1. We will therefore refer to the vertices of Γ(u) as points and the vertices of Γ2(u) as lines. (So we have any two points are on exactly one line.)∣Γ(u)∣= (b.'- 2)1 and Γ1(u) = (b.'- l)(bi- 2) = (b.'- it + (b.'- 2). This suggests we should be looking at Γ(u)∪Γi(u) as the incidence graph of an affine plane of order (bo,- 2), so we will investigate further.Suppose u,e Γ2(u) is a line and ve Γ(u) is a point not on u, .

We will show that there is exactly one line through v which has no point in common with ul(ie: there is exactly one vertex, u, say, in Γz(u) such that u,~v but u’ is not adjacent to any of the (bβ,- 2) neighbours of u, in Γ (u) ).Suppose vl ,v2^Γ(u)n Γ(u, ). Then v,~ u, and v, v, have one common neighbour in Γ2(u), u2 say. So, each of the (bβ,- 2) vertices in Γ (u)λΓ1 (ui) has one common neighbour, with v, in Γ2(u). Suppose 
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that v1 ,v1 have the same common neighbour, ux say, with v inΓ1 (u)

Then, from considering vl and v2 , c½ >3.Therefore there is just one line through v missing u∣(ieι there is just one vertex, u’’ say, in Γ2 (u) such that u∣ and u’’ have no common neighbours in Γ (u) ). Hence Γ(u)u Γx(u) is the incidence graph of an affine plane of order (b<J- 2).
This means that a necessary condition for a pair of arrays with cl = 2 and c2 = bβ, - 2 to correspond to a distance-biregular graph is that there exists an affine plane of order (bj- 2).Let us consider affine planes of small order. It is well known that there is a unique affine plane of order n for n = 2, 3, 4, 5, 7, and 8, there is no affine plane of order 6 and there are several affine planes of order 9. It is also shown in [3] that there is no affine plane of order 10.
When c½ = 2 we have c3 > c2+ 1 as the following Lemma shows. In this Lemma we will consider P as a set of points and B as a set of blocks.
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Lemma 3.18.If Γ is a distance-biregular graph with c^ = 2 then c3 > c,2 + 1.Proof .Let veB and u∈P such that d(u, v) = 3.
r∖c√>u is incident with c^ blocks in Γ2 (v) and each of these blocks have c[ (= 2) points in common with v. Take any one of these points and label it u,. Now, d(u, u,) = 2 so u and u’ must have cλ blocks in common and these blocks must all lie in Γ2 (v). Let Λα be this set of blocks in Γ, (v) and let jtl be the set of points in Γ (v) at distance two from u. The size of _np is given by ∣ _£~2- p ∣ = c3, ∕ci and since c2c5= c^ c ’ f ∣ -n- p ∣ = c3.

Let v,∈-Ω-b . Then, since c’ = 2z v’ is adjacent to u’ and one other pointz u1 z in Γ (v) . Any other block v,,e-Ω-β must also be adjacent to u’ and one other point, u1, in Γ(v). Since c^ = 2 and v’ and v,’ are both adjacent to u and u, we see that u, ≠ ux . Since ∣-Ωβ∣ = c1 we must have]-Ωp∣> c2 + 1. Therefore, combining this with the result above, we have c3 ≥ c2+ 1.(Note that since cj > c2 and c2> c] we also have c^ ≥ c^ + 2.)
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Let us now return to the case where b. = (bβ'- 2 Γ ca = bj - 2 andcj = 2. We know from Lemma 3.18 that c3> c1+ 1 = b^- 1 so we have two possible values of c3 , ie: ci = bβ, - 1 or bβ, .(i) Let c3 = b’. Our arrays are of the form :
* 1Jbβt- 2f (b*- 1) (bo,- 2)(bβ∙- 2)(bo,- 3) *

and 2 bo,(bo, - 2)/2bl (bβ,- l)(bo,- 3) (bj- 2) (bo,- 2) (b√- 4)/2 bβ, *
Consider k3 = (bot- 2f(bo,- l)(b0,- 2)(bo,- 3) bβ,(bβ,- 2)= (bβ,- 2)1(bβ'- 1) (bβ,- 3)bβ∙Since this is an integer, and b’ and (bl- 1) are co-prime, we know that (bβ,- 2)i(bβ,- 3) is divisible by bβ' .ie: b0, divides (bo, )3 - 7(bβ,)x + 16be, - 12. This leads us to conclude that bβ, divides 12 and since bβ > b’ we only have two possible values for bβ,, namely 6 and 12. This gives us the two pairs of arrays below.(Note that bβ, ≥ 4 and bβ, = 4 gives us bβ = (bβ,- 2 )x = 4. ≠f )

This pair of arrays is discussed in [5] and it is shown, by
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considering an extension of PG(2, 4), that there exists a corresponding distance-biregular graph. We show in Chapter 6 that the arrays are realised uniquely.

incidence graph of an affine plane of order 10. However, by [3]

2. * 1 10 12“ and * 1 2 60 12_100 11 90 * _ _12 99 10 40 *
Since Cl = 2 and cx = b’- 2 = 10 Γ(u) ⅛) would form the

* 1 (bβ∙- 2) (bβ∙- 1)Jb,∙- 2↑ (bβ,- 1) (bj- 2)(bo,- 3) 1

this is not possible so these arrays are not feasible.
(ii) If c3 = bo, - 1 then b3 = 1 and, since crc5= c^c3,, we have(bc∙- 2)(bo,- 1) = 2cJ ie: c’ = (bβ,- 2)(bo,- 1)/2.b^ + c’ = (bβ*-  2 Γ so b^ = (b!- 2 )x - (bβ,- 2)(b∙- 1)/2= (b^- 2)(b^- 3)/2From Proposition 3.13 c^ > c3 = b’- 1 but c1^≤ b’ so dp = dR = 4and we have the general case below.

(b√- 2 Γ
and *bβ, (bβ,- 1) (bβ,- 3) (b.,- 2) (b∙- l)(b∙- 2)/2(b.,- 2)(bo∙- 3)/2 bβ '*1 2
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We will now find some more necessary conditions for a pair of arrays to correspond to a distance- biregular graph.We know from Proposition 3.13 that c3 > c1, and that cj > cλ but we will now improve on this further. Lemma 3.18 tells us that if c^= 2 then c3 ≥ c1 + 1 so, since ci > c’ r c3> c^ + 1. We will now show that we always have c3 > c!l + 1.Lemma 3.19 . ∏5~lIf Γ is a distance-biregular graph of girth 4 we have the following inequalities.c3 > c’ + 1 and c^ > ci + 2.Proof .Let x ∈ P and choose any ye Γ (x), ze Γ5(x)n Γ1(y).In Proposition 3.13 we proved that c3 > c^. Let us now assume that c3= cj + 1. Since zeΓ1(y) and ye B z and y must have cj common neighbours in Γi(x). Let these be labelled u, zutz ... uc∕ Now, z has c3= c] + 1 neighbours in Γi(x) so let the remaining neighbour be u,. ie: u’e Γ1(x)∏Γ(z) with u'-τ^y.

Now, d(yz u,) = 3 so there are c3 vertices at distance 2 from u’ and 1 from y. One of these is x and the other c3- 1 = ci* of them have to be precisely the common neighbours of y and z.
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Now consider a vertex veΓ(x)nΓ (u,). v must be adjacent to exactly c2,- 1 of the vertices u, , ... ,uc, in order to have c2, common neighbours with z. Each such vertex, v, must be adjacent to a different set of c’~ 1 vertices, otherwise two vertices, v and v’ say, adjacent to the same set would have cj + 1 common neighbours. Therefore,∣Γ(x)n Γ (u' )∣ ≤ ( cl, ∖ = c’ . ie: c2< c2, .(c2’- 1/However, we know that c2 > c[ so we have a contradiction. Therefore c3> c£ + 1.We also know c2c3 = czcl so this gives us c^ ≡ c2c3 (ca,+ 2)c2 = c4 + 2ca > c1+ 3. c * c * c,uχ v-2 1-2ie : c½ > c2 + 2 .
We are now in a position to prove the Proposition below giving us a bound on the diameter of a distance-biregular graph Γ ( of girth 4).Proposition 3.20.Let Γ be a distance-biregular graph of girth 4. Then we canbound the diameter, d, of Γ as follows. Either d = 4 or we haved > 4 and one of two cases(1) dp= dθ and d ≤ min{b^ - 2c] + 3, bβ - 2c2 + 2}or (2) dp= dβ- 1 and d ≤ min{bβ, - 2c½ + 3, bo - 2c2 + 3}
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Proof .Suppose d > 4. ie: d > 6 since d is even by Corollary 3.7. Then d = dB= 2j + 2 for some integer j and this means that b,J > c2,. from Lemma 3.10.We also have c’. > c,. > c,*. from Proposition 3.13 soc ’ ½ c ’ + 2 .
2∙j V*.∙. bo,- c’ > c,. ⅛ c,+ 2 > ... ≥ c’ + 2j - 4 ≥ c,+ 2j - 3.We know from Lemma 3.19 that c3> c[ + 2 and this leads us to conclude b0,- c2 >c]+2j-l=c½+d-3 ie: d 4 b’ - 2c’ + 3.

(1) Suppose dp= dB= 2j + 2. From Lemma 3.10 we have b2> c . .Also c,∙ > c’ > c,∙ . so c ∙ ≥ c_. + 2z and c’ > ci + 3.2.J lj-l 2.J-2 2j ' 2j-l ' 3 7".∙.b2 = bβ - c2 ≥ ci. > cr + 2 ≥> ... ≥ c4,+ 2j - 4 :> c^ + 2j - 3 c2 + 2j ie : dp ≤ bo - 2c3, + 2 .
Therefore dp= d8 d ≤ min{bo, - 2c^ + 3z bo - 2ci + 2}

(2) Suppose d = dR - 1 = 2j + 1. Then we have b_ ≥ c’ so b2 = b0 - c2 ≥ c^ c⅛-3+ 2≥-... ^c*+2j-4^cz+2j-l ie: dp≤ b0- 2ci + 2.
Therefore dp= dg- 1 => d ≤ min{b^ - 2c2 + 3z b0- 2cz+ 3}
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In the remainder of this chapter we will consider other bounds on the diameter, d, of a distance-biregular graph Γ . Firstly we will use Lemma 3.1 to find another restriction on c1 and c^ . Lemma 3.21.(a) If (bβ,c1) = 1 then dp = 2j + 1 for some integer j, and c1 divides bx,+ι and c1,+afor 0 i ≤ j - 1.(b) If dp= 2j + 2 for some integer j, then (bo, c2 ) ≠ 1.(c) (bβ∙ , c^ ) ≠ 1.
Proof(a) Suppose that (bβ,cx) = 1.(1) The result is certainly true for i = 0 since c1 divides c1 and by considering the valency of the left-hand derived graph, ie: bβ b1 = bo(bl - 1) , we see that c2 divides b, .cx c;(2) Suppose the result is true for all terms up to 2i (so in particular c1 divides bli., and c ii ) . By again turning our attention to the left-hand derived graph we see that bxi bli+l is divisible by ci .ie: (b o - c h ) btu, = bo bxu, - c 2i bxu, is an integer, ci cξ cξTherefore, since (bβ , c2 ) = 1 and ci divides cxi we have cx divides b,.We also have cxu, c2i+2 is divisible by c1 .ie: (bp — b2ζ4,, )cxtφ2 = bl cx⅛2 — bxi¼∣ cxu2 is an integer, cx cx cξ
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We know c1 divides bxαι and we also know that c2 divides bl = (b∙ - 1). therefore (bβ,, cx) = 1 and we must have c2 divides
chh ∙(b) We now consider what happens if dp= 2j + 2. This would imply that c2 divides cij.+^ = bo and hence (bβ, cx ) ≠ 1.(c) Since dβ is even we must always have (bj t cj ) ≠ 1 by considering B in place of P in the above.

The following Lemma uses Lemma 3.21 to give us another bound on d in the special case when (bo,cx) = 1.
Lemma 3.22.Let Γ be a distance-biregular graph of girth four. Suppose that (bβ ,ci ) = 1. Then we have the following bound on the diameter, d, of Γ . d < 2bo + 2 . c1Proof .Let d = 2j + 2 for some integer j .Then, from Lemma 3.21 (a) dp = 2j + 1. We know from Lemma 3.21 that cx divides cu+z for 0 4 i < j and Proposition 3.13 gives us c2.+ι> cx,i+l> cx; .Therefore the largest diameter we could possibly have would come from an array with entries as below.
’ * 1 cx . 2ci . 3cx . ... (d - 2)cx∕2 ca√. be b∙ - 1 bx . b^ . bt . . .. bjl.1 *
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Therefore (d - 2)cl < bβ 2ie: d < 2b0 + 2 . c*
We will now find another bound on the diameter of a distance-biregular graph and compare this bound with the bound obtained in Proposition 3.20.

Lemma 3.23.Let Γ be a distance-biregular graph of girth 4. Then the following inequalities hold.cxl > cx + (i - 1) , 
_ 

I

Λ Λ
 

1_____
1

+ 2i 2 ≤ i ≤ dp . 2⅛l > cι + (1 - 1)

1 
1

σ 
σ

1__
__

J + (2i + 1) 1 ≤ i < dp . 2Proof .From Lemma 3.2 we know that⅛,(⅛ ’ czc-l) = b2t.l(c2i " cA-JThis gives bΛ-, (cΛ - cli.,) = cxl - cz,. ι . bii.,We also know from Lemma 3.6 that bx,i., > bβ so we have bχi-l bβ,c2i - c^ι > bjc[v - cli.,)
Rearranging givescv ^ cι∙ > c2∙ , + / ba - 1 c - bo c xi.1 ∖ bβ, / bβ∙
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=> c2i- ⅛ > (⅛1- cu., )
=>C2i" cΛ > (cΛ-l" cai-J

+ ( b0 - l](clc - c2i.l) k b., J+ bo - 1 (*)b*Since c3[i > c2._( from Proposition 3.13.Now, c2∙ c2itt = c2u, so multiplying (*) by c2it, givesc' cλ.^ cLcιu,= cncUM- c≈'∙. c*⅛> c1⅛Aci-.- ctw) + bi, - lλ V bi J=> c,. - c,. > cxu, ((c⅛., “ ci<-J + bo - 1^ ⅛ ∖ bβ∙ JProposition 3.13 tells us that c2uι> c∣i so we havec’. “ c.. > (c’ - c2t., ) + bβ - 1 (**)2«.+» **∙∙H 2ι-t 11 ' ———bβ,Let us return to (*). We will use the fact that [b0∕bo,] is theleast integer greater than bβ∕b^ - 1.cu ⅛ + (ct∙t-1- c2f.,) + [bo∕bβ,]≥ c’. + (c∕i.3- c2..3) + 2[bβ∕bβ,] (from (**))≥ . . .
≥ c}. + (c3, - c3 )+.(1- l)[bo∕bo']≥ c^. + (c2 - C3 ) + (i - l)[bo∕bβ,] + 3 (c; ≥ cx + 3)> cL,+ (ci- c3) + (1 - l)[bβ∕b!) + 5 (c^> c2i.,> c1,i.2)≥ c^+ (c1- c3) + (1 - l)[bβ∕bβ,] + 3 + (2i - 4)> c3+ (ci- c3 ) + (i - l)[bβ∕bβ,] + 3 + (2i - 4) + 1ie: c2l > c2 + (1 - l)[bβ∕bo, ] + 21.We will now prove the second inequality. From (**) we have
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cA+1> <cJ-. + cι<-∙ + cι<÷t + Cb∙∕bβ, J
» ‰ + <c3 " c3 ) + (i - D tbo∕bβ, ]≥ . . .≥ c3 + (cj - c3 ) + (i - l)[bo∕bj] + (2i - 2)cj + (i - 1) [bo∕bo, ] + (2i - 2)≥ c2 + (i - l)[be∕bβ,] + (2i + 1) (c,3 :> c + 3)ie: c J+ι ≥ c2 + (i - l)[bo∕bo,] + (2i + 1).Thus we have our two inequalities.

We will now use the results of the last lemma to give us a bound on the diameter of Γ .Proposition 3.24.Let d be the diameter of a distance-biregular graph of girth 4.Then we have the following bound on d.2 (bi + [bo∕bol ] ) (2 + [b0 ∕bo' ] )
2 (b1 + 2[bo ∕bβ, 1 ) (2 + [bo ∕bo' ] )

d dp = 2i
d = 2i - 1.PProof .We have two cases to consider.(a) Firstly we consider the case where dp= dB = d = 2j for some positive integer j. This means that ccl = bo so by Lemma 3.23b0 = ca > ci+ (d/2 - l)[bo∕b0,] + d
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=> b. - ca > d(l + [bβ∕bβ,]∕2) - [bβ∕bβ∙].-. d bi + (bo∕bt,, ](1 + [bβ∕bβ* ]∕2) [b√b∕J [bβ ∕bβ, ]2 / b ∖ 2. d 2 (bx+ [bo∕bJ])2 + [ bβ ∕bβ, ](b) Now we consider the case where dp = 2j 1 ≡ dβ- 1 = d - 1Using the fact that βt-( 1 and Lemma 3.23 we have1 ≥ c’ = cL1 ≥ ca + <d∕2 - 2)[b. ∕bo∙] + (d - 1)bx > d( [bo∕bβ, ]∕2 + 1)- 2[bo∕b0∙].∙. d ba + 2(b.∕bo, ] ([bβ∕bβ* ]/2 + 1)ie : 2(ba + 2 [bo ∕bo∙ ] ) (2 + [bo /bo’ ])
It is not immediately clear that this bound is ever any better than the one found earlier in Proposition 3.20 so we will now give an example of when it is.Suppose dp is odd (and hence that dp = dB - 1). Then we have :(i) d ≤ min{b* - 2c2, + 3z bβ- 2c2 + 3}and (ii) d ≤ 2 (ba + 2[bβ∕b., J ) ' (2 + [ bβ ∕bj ] )To investigate when (ii) < (i) we will in fact considertwo cases.(I) When is (ii) ≤ b’ - 2c} + 3 ? Certainly whenever we have:2(bβ- c1 + 2[bβ∕bo, ]) < b’ -2ca' + 32 + [bβ∕be,∙]=> 2bo - 2ci+ 4[bo∕bβ∙] ≤ (2 + [b,∕bβ*])(b^ - 2c] + 3)

bc
d



=≠> b’(2 + (bβ∕bβ∙ ]) ≥ 2bo- 2cl+2cJ(2 + lbβ∕bo∙]) + (bβ∕bβ∙] - 6
eg: If [bβ∕bo,] = 1 and c[ = 2 then (11) is better than (1) when bβ, >,2(bo- cl+ 7/2)/ 3.
(II) When is (ii) C bo- 2cz + 3 ? Certainly whenever we have: 2(bβ- c1+ 2(bo∕bβ,]) ≤ bβ- 2ca + 3 .2 + [bβ∕bβ' ]=>2bβ- 2c1 + 4[bβ∕bo, ] ≤ (bo- 2c2 + 3)(2 + [bo∕bo,]) =>bβ[bβ∕bo,] ≥ 2c1(l + [bβ∕bβ,]) + [bβ∕bo∙] - 6.
eg: If [bβ∕bo, ] = 1 then (ii) is better than (i) when bβ > 4cx - 5.

ie: If bβ and bβ, are ’close’ ([bβ∕bβ,] = 1) then it would appear that the bound in Proposition 3.24 is better than the bound in Proposition 3.20.
Before the last lemma in this chapter we need to introduce some new notation. For any real number x let {χ} denote the least integer greater than or equal to x.Lemma 3.25.If Γ is a distance-biregular graph of girth 4 then we have the following inequality.b0∙b,l > c^ cj / b.- 1 λ 

i ∕bβ∙- 1∖ I lk,- υJ
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Note that if ∕bβ,- lA∣(bo - 1) we have bj(bj- 1∖ > cx,c* . ∖c1, - 1∕∣ kci,- 1/Proof.We will think of P as a set of points and B as a set of blocks.Let us consider any vertex, v, in B. Then the intersection array for v is ' * 1 c∕ c3, ... '_ bβ' bo - 1 b ’ b3* ... _Let u∈ P and Γ (v). The graph described by this array starts as

Let us consider the set-∏ consisting of the (bβ - 1) neighbours of u in Γx (v) . Each block in -∏- is connected to u and (c[- 1) other points in Γ (v) . The number of choices for these (c[- 1) point sets is ∕b*- 1∖ . lc]- 1/This means that at least / be - 1 ) blocks in^ share the J ∕bβ,- 1∖ ( Uc;- ι∕ )same (c-f- 1) point sets in Γ(v). Now, each pair of blocks in λ are at distance two in Γ so they must have c} common neighbours.This means that if we consider any pair of the / ba- 1 A ∣ 7bΛ→T I { lcτ' - 1) ) blocks in∩ described earlier the common neighbours all lie in



GG

Γ(v). This means that we must have the situation shown below

We will now present a useful bound on bo in terms of b^ and c’ . Theorem 3.26.In a distance-biregular graph Γ of girth four the larger valency, bβ, is bounded byboC (b ’ - 1) (bβ'- 2) + 1 .(cj*- 1)Proof .We have c2> cl > 2. From Lemma 3.16 c1≤ b’- 1 and from Lemma3.2 (a) (i) we know that bl(cτ- 1) = b}(c]- 1).b0, - 1 ≥∙ ci = b l, (Cz - 1) + 1 = (bβ- 1) (Cz- 1) + 1b, (bβ,- 1)=> bβ < (b2- 1) (b»- 2) + 1(c∙- 1)
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Chapter 4.In this chapter pairs of arrays for constructed.
a general method for finding all possible distance-biregular graphs of girth four is
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When trying to find combinatorially feasible pairs of arrays, for distance-biregular graphs, a depth-first search is often useful.In this we start with the two initial segments of a pair of arrays and then build up the full arrays using local feasibility conditions. We will suppose that we know b’ and c2, and that we are looking for possible values of bβ and ci.The bound on bo in Theorem 3.26 is very useful. But, rather than try all possible values of bβ ≤ (bβ,- l)(bo,- 2)+1 we Cc^- 1)shall now restrict the possible values of bβ and ci even further. We will then be in a position to systematically examine the cases for small bβ, and find all possible feasible pairs of arrays in these cases.
We are concerned with arrays where c1> c∣ 2 so suppose that our arrays start as below.

* 1 c1 ... and * 1 c} ...⅛ bo,- 1 bβ - ct J [b: bβ- 1 bβ∙ - c}
We are trying to restrict the possible values of bβ within the range bβ,+ 1 ≤ bo C (b*,- l)(b.,- 2)+1 .(ci*- 1)



We will start by finding an integrality condition.We know b, b2 = b,'b]. It follows thatbβ- c1 = (b, - 1) (bo*- c’ ) .(b.,- 1)√. c2= bo - (bo- l)(b*- cζ ) (bβ∙- 1)= bβbβ, - bβ- b.b∙ + bj + bβc* - (bβ,- 1)= bβ (cl- 1) + (bβ,- cζ ) (bβ∙- 1)= b.(cl- 1) + (bβ,- 1) - (cζ - 1) (bβ∙- 1)≡ (ba - 1) (cj- 1) + 1 (*)(bβ,- 1)Let ((bβ,- l),(c*- 1)) = p. This p only depends on b0, and c’ andwhen we use this test we know bβ, and c2, and hence we know p.This means that (bβ- l)(cl,- 1)/ p eZ so (bo,- 1) (bβ'- D∕ P P (bβ- 1)
since ((c±- l)∕p, (bβ,- l)∕p) = 1.ie: bo = k(bet- 1) + 1 (**) for some positive integer k.PWe also know that bβb,∕cl is an integer (it is in fact the valency of the left-hand derived graph). Therefore bσ(bβ,- 1) is divisible by cl . This means that the following must be an integer .b0 (b0, - 1) = ________________ba(bj- 1)______________ from (*)c2 (bo- l)(c2- l)∕(bβ∙- 1)+1= ____________bo (b;- 1Γ_____________(bβ - 1) (c’— 1) + (b0∙- 1)
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= b0 (bal - 1 )* (* * *)bβ (c^- 1) + b^We will now describe b. more fully. Let (bβ, bx, ) = J. This means that we can express b, as qJ for some positive integer q where (q, b’ ) = 1.Therefore from (***)z ___________(bi- if J__________ is an integer,bβ (c2,- 1) + (bj- cζ )Now, since bβ = k (ba, - 1) + 1 , we have:P___ ________________(bi- if J_____________________(k(bβ∙- l)∕p + l)(cx,- 1) + (bβ*- ci)= __________________ p(bt,,- if J______________________(k(bβ∙- 1) + p) (Cχ - 1) + (bi- cζ )p= ____________________ p(b'- if J___________________________k(bβ,- l)(ci- 1) + p(cl- 1) + p(bj- cx* ) ______________p(bj- if J_____________  k(bβ'- l)(c'- 1) + p(bβ∙- 1)= p(bot- 1) Jk(c’- 1) + pThis last expression is a positive integer so let this integer be M. ie: M = p(b<>,- 1) J .k(cx,- 1) + pRe-arranging for k gives:k = ( p(bβ,- 1) J - p A 11 M ) (cx*- 1)Substituting this expression for k in (**) leads tobo = ( <b«- 1) J -1^ (be,- 1) + 1∖ M / (c»- 1)



.∙. bβ = 1 I (b.t- if J - (b0∙- 1) + c1∙- 1∖(cl- 1) k M J= 1 ∕(b.'- If J - (bβ,- c» ∩ .(c3*- 1) k M /= 1 ∕(bβ∙- if J - b,’ ^(cl- 1) k M ' /Although this appears to be a complicated expression it is in fact very useful as will be demonstrated in the next chapter.So to recap we have:Let p = (c2,- l,bβ, - 1), k = p(bβ- 1) ,(bβ∙- 1)J = (bβ, b2, ) and M = p(bβ,- 1) J k(ci,- 1) + pThen bo = 1 (j (b.,- if - b’ ) .(c]- 1) k M J
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Chapter 5.In this chapter we will show that the method developed in Chapter 4 can actually be used by hand to give us all possible pairs of arrays for a distance-biregular graph of girth four when bβ > bβ, = 3, 4, 5, ⅛9 11 8 or 9. We will not be discussing the case where b^ = 2 since this is done in detail in [5] where it is shown that the only possibilities are K2 fe. and the subdivision graph of a (kz g)-graph. From the discussion following Lemma 3.16 we know the possibilities when c2 = bβ, - 1 or bo, - 2. We will start the chapter by considering these cases and then consider the cases where c2 < bo, - 3.
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Lemma 3.21 (c) tells us that (bj zcl) ≠ 1 so if b’ is any primenumber the only possibility for c{ is b’ with the only possible distance-biregular graph being Kbβ . Since we are not considering these possibilities here there are no possible cases for bi = 3, 5 or 7.(1) Suppose that cx = bi- 1.We know from Chapter 3 that this means that k1 = kx z dp= 3, dB= 4 and we have the incidence graph of a 3-(bβ+ lz bβ, z c[- 1) design with intersection arrays as below.* 1 (b0∙ — 1) bβ, and * 1 c^ cj bjbo (bj- 1) bβ- (bi- 1) * J [b* <b*" 15 b* bl * _
(i) bi = 4. Using Lemma 3.21 (c) gives us one possible value forcl z namely c} = 2. Since cx = bi- lz cx= 3 and our arrays startas * 1 3 • ∙ ∙ and * 1 2 • ∙ ∙_be 3 (bβ- 3) _4 (b.- 1) 2 _Therefore, since b, bx = bl,b^z we have 3bβ - 9 = 2bβ- 2.ie: bβ = 7. Nowz since cxc3 = clcj we have c,3 = 6.Our arrays are * 1 3 4 and * 1 2 6 47 3 4 * _4 6 2 1 *(ii) b,β = 6. We know that c1= 5 and by Lemma 3.21 (c) we havecl = 2 or 3. b,*bl=>5(b.- 5) = (bβ- l)4=>bβ= 21.(a) cl = 2. b, bx =Our arrays are: * 1 5 6 and * 1 2 15 621 5 16 * 6 20 4 6 *
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b,bl= bjbi'=> 5(bo- 5) = (bβ- 1)3=> bβ = 11.(b) c2 = 3Our arrays are: * 1 5 6~ and " * 1 3 10 6~- 11 5 6 *_ .6 10 3 1 *(iii) b^= 8. c2 = 7 and by Corollary 3.12 c2, ≤ bo,∕2 ie : c3 £ 4.So, by Lemma 3.21 (c), c’ = 2 or 4.(a) c] = 2. b,b1= bjb,*=>7(bo- 7) = (bβ- l)6=>bβ = 43.If this were a possibility our arrays would be:~* 1 7 8 and Γ* 1 2 28 8_43 7 36 *J [8 42 6 15 *However, = 67.5 which contradicts the fact that k^ is an integer. Therefore c] = 2 is not a possibility.(b) c[ = 4. By using the same method as above we have onepossibility with arrays as below.* 1 7 βl and Γ* 1 4 14 8^_15 7 8 *_ Lδ 14 4 1 *_(iv) bj = 9. By Corollary 3.12 c2, ≤ bβ,∕2 so c] ≤ 4.5. By Lemma3.21 (c) we therefore have c2, = 3 Proceeding as above gives us bo = following array for any vertex in
as our only possibility.29. This would give us theP. * 1 8 929 8 21 *However, k3 is not an integer so we have a contradiction.
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(2) Suppose that c2 = bl- 2.(i) bo, = 4. No cases.( ii bj = 6. We have the special case below where c3 = b* 14 6 and * 1 2 12 616 5 12 * 6 15 4 4 *—We also have the general case discussed in Chapter 3.* 1 4 5 16 and * 1 2 10_16 5 12 1 * _ Ls 15 4 6 *_
(iii) bl = 8. Since there is no affine plane of order 6 we have no possible cases for bl = 8 and cz = 6.
(iv) b’ = 9. If cz = bo, - 2 = 7 then b2 = 42. Therefore, since bl bz = b/b^ , b^ = 7 so c{ = 2. Therefore (bl , cz, ) = 1 which is not possible. Hence there are no possible cases for bl = 9 and c^ = 7 .

We will now suppose that c2≤ bl- 3. Lemma 3.2 (a) (i) gives usb, (cz - 1) = bJ(cl- 1) socz = bt, (d~ 1) + 1 ≤ bl - 3b,=≥ bo ≤ (bl- 1) (bl- 4) + 1 (*)(c;- i)(3) bl = 4. In this case b0'- 3 = 1 so there are no further pairsof arrays.(4) bl = 6. As described earlier we have two possible values ofcl r namely c{ = 2 or 3.



(1) c[ = 2 -----> b0 < 10 + 1 = 11 from (*) .Since c2 ≤ b<J- 3 = 3 and c2 > c[ = 2 we must have c2 = 3. Therefore b, b2 = b1, b 2 => 5(b0- 3) = 4(bo- 1) ξξξ~> b6 = 11. However, this implies that ki is not an integer, ≠f- (ii) c’ = 3 again leads to no further cases.(5) bcJ = 8. We know that c2 = 2 or 4.(i) c’ = 2 => bo ≤ 28 + 1 = 29 from (*).We will now use the information we obtained in Chapter 4. p = (c]- lz bj- 1) = (1, 7) = 1.Therefore b0 = 7k + 1 for some positive integer k from Chapter4 (**) . ie: bβ = 15z 22 or 29.We also know J = (bβ z bx') = (7k + lz 6) = lz 2z 3 or 6. Howeverz with the possible values of bβ we havez the only possible values for J are 1 (for bo= 22 and 29) or 3 (for bβ= 15) . (a) J = 1 => M = 7 > k = 6. ie: bo= 43. -/-/-k + 1(b) J = 3 => M = 21 —> k = 2z 6 or 20 .k + 1k = 6 or 20 would mean that bβ is too large so the only valueof b0 we need to consider is when k = 3 ie: b0 = 15.We will consider the entries in our pair of possible arrays.b0= 15z b'= 8z b, = 7z ct= lz b1, = 14z c,, = lz b’ = 6 and c2, = 2.Since b1 bx = b(’b’ we know that b2 = 12 and hence c2 = 3.We will now try to construct a pair of feasible arrays, cxcj= c’c^ => 3c3 = 2c3,Lemma 3.19 tells us that c3 > c2 + 1 = 3z so by the above c3= 4z 6 or 8.
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Lemma 3.19 also tells us that c^ > ci + 2 = 5, so c3, = 6, 9 or 12. (c^ = 15 is not a possibility since it would mean that dβ was odd . )Let us suppose that c3 = 4. Then cj = 6, b3 = 4 and b∣ = 8.Now, by Proposition 3.13, ciJ, > c3 = 4. c ; = 5 or 6 would mean that k^ is not an integer so the only possibilities are = 7 or 8. If = 7 then bj^ = 1 and, since b3 bv = b3,blJ, , b^,= 2 and cφ= 13. This would imply that is not an integer so is notpossible. Therefore c£ = 8 = b’ and, since d = d& , cκ,= 15 = bo . Our arrays are:“ * 1 3 4 15^1 and Γ* 1 2 6 8^15 7 12 4 * 8 14 6 9 *
— —JWe note that if c3= 6 or 8 our integrality conditions on the kc and klead us to contradictions. €(ii) c∣ = 4 => bβ ≤ 10 from (*)We know that p = (c2- 1, bo,- 1) = (3, 7) = 1.Therefore bo= 7k + 1, for some positive integer k, from Chapter 4 (**). However, since bβ ≤ 10 and bβ ≠ bβ, , this means that for b,o = 8, c[ = 4 we have no possible pairs of arrays.ie: For b’ = 8 and c2 ≤ b’~ 3 we have one pair of possible arrays (6) bβ, = 9. We know that c.J = 3 is the only possible value of c^, so bo≤ 16+1 = 17 from (*).We also know that p = (c2- 1, b<J- 1) = (2, 8) = 2.Hence, b0= 4k + 1 for some positive integer k.Combining these results gives us just two possible values of bo namely, bo= 13 or 17.
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Substituting these values of bo in J = (bβ,b*) tells us that the only possible value of J is 1.Therefore M = 16 so k = 3 or 7.k + 2k = 7 gives too large a value of bβ so the only value of bo we need consider is when k = 3 ie: bβ= 13.We will consider the entries in our pair of arrays.bo = 13z bi = 9z b1 = 8z c, = lz b’ = 12z c’ = lz b[ = 6 and cl = 3. Since blb2 = b,,b2* we know bi = 9 and hence c,2 = 4.Recall that Lemma 3.21 (a) tells us that if (bo zc2 ) = 1 then dp is odd. We will use thisz together with results on c2,c½ zc3and c’ z to construct our full arrays.c2 c3 = c’c’ =≠> 4c3 = 3c’Lemma 3.19 tells us c3> c^ + 1 = 4z so by the above c3 = 6 or 9. Lemma 3.19 also tells us that c^ > c2 + 2 so c^ = 8 or 12.Let us suppose that c3= 6. Thenz c∣ = 8z b3= 3 and b3, = 5.We know that dp is odd so dp > 5 (since we are assuming that c3 ≠ bβ, ) but Lemma 3.21 (a) then tells us that c2 (= 4) divides b3 (= 3) which is not true. Therefore c3 = 9z c^ = 12 and dp= 3 is our only possibility and we have one pair of feasible arrays for a distance-biregular graphz namely
* 1 4 9^1 and Γ* 1 3 12 9^13 89* 9 12 61*



So, to summarize the previous results in a table, for b’ < 10 we have the following possibilities.
bi Possible values Number of feasibleof bβ . arrays .3 None None4 7 15 None None6 11 116 221 17 None None8 15 29 13 1

Once we have b* > 10 the methods described here yield a greater number of possible values of bβ .Remark 5.1.Note that for b’ < 10 we have made no use of the global feasibility condition that the multiplicities of the eigenvalues should be integers.
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Chapter 6.We will start this chapter with a summary of results from previous chapters. We will then analyse all of the pairs of arrays obtained in Chapter 5 and attempt to find the distance-biregular graphs to which they correspond.
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Summarizing the previous chapters gives us our definition for a pair of feasible arrays for a distance-biregular graph.We say two intersection arrays are a pair of combinatorially feasible arrays for a distance-biregular graph if the following conditions are satisfied.1. ct + bi = ∕bβ if i is even ∖b* if i is odd.c* + bl, = fbβ if i is odd(kbJ if i is even.2. b∕1 ≥> bl » b∙Jt, for 1 ≤ i ≤ d - 2.c., > cc., for 2 ≤ i ≤ d - 1.3. The numbers defined by the relationships below are positive integers .kβ = 1, ku, = kibc / cu, 0 ≤ i C dp - 1k’ = 1, k’t = k’b? / c∙+, 0 < i ≤ dβ - 1.(Since ∣dp - de ∣ ≤ 1 we have the convention that if dβ = dp + 1 k4 = 0. )4. The following equations hold.n := 1 + k_ + ... +k,, = kl, + k! + ... + k’.and m := k,+ k, + ... + kjw = 1 + k, + ... + k’ r • d 2 dwhere d’ is the largest even integer less than or equal to dand d’, is the largest such odd integer.We also have nbo = mb^ .5. The c×p∖ and ft p∖ defined in Chapter 2 are positive integers .
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6. The diameter, d, is even.7. c1.cι.^ι = cx,i c⅛4l 1 < i ≤ d/2 - 1bli,bti = b^_, b⅛ 1 ≤ i ≤ d/2 - 1.Now suppose that bβ > b’ .8. c2 divides c^_, cxl , cαζcxt+l, and bxlb^+ι .c,, divides cl∙ . c'. , c’ c∙. , , b* b*∙ and b* b, . ( For 1 < i < d/2 - 1 )9. bx..l (cxl- ⅛-,) = bx,iw(c∙,l- cxi.l )b 2l (⅛ - cx£_() = b,xl (ctl- cl4,f )cn+l (b2l- b^,) = c^+l(b∙l - bxt+, )c 2l (b1,i - bxuJ = cVJbxl- bL+<)10. cxc (bxl.,- 1) + bxc (cn,,- 1) < kxl - 1.
cli-1(bxi.x- 1) + bil-l(c1t- 1) ≤ k,;„- 1.

11. ⅛ > b! cιc ; bll > bB bζ∙ 1 C i ≤ d/2 - 1.bβ bo∙c2i.l> be, cx∖., ; b2∙l,ι> be bxi., 1 ≤ i < d/2.bβ bj12. If dp is even then dβ is equal to dp . If dp is odd then dβ is equal to dp + 1.
13. k, + k2+ . . .+ kxu, > kl, + k' + . . . + k2,.+1 .14. c2 with cx = c1, if and only if c1= cj = 1.15. dp i + j ≈> ∕cl ≤ bj if i + j is evenVc,i ≤ bj if i + j is odd.dft ≥ i + j => ∕c! ≤ b∙ if i + j is even(^ci ≤ bj if i + j is odd.
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(So the16. If d > 2 then c∙ ≤ bo,∕2 and c1 < bβ∕2.From now on we will be considering arrays where c’ > 1.girth, g, is four .)17. c'.. > cl and ci+1 > c* .bi,-, > bl and bi., > bi, .18. ⅛ and ct'i,, > cs,i.,.19. kJ + k’ + . . . + k^i > kl + kα + . . . + kxi.20. c1< (b*- 1).21. If c∕ = 2 then c3 > ci + 1.22. c3 > c4 + 1 and c3 > cx + 2.23. Either d = 4 or d > 4 and we have one of two cases.(i) dp = dβ and d ≤ min{b*- 2c^ + 3, bo- 2cu + 2}(ii) dp = d8 - 1 and d ≤ min{bj- 2c½ + 3, bβ- 2cx +24. If (bo,c α) = 1 then dp is odd and ci divides biitl andIf dp is even then (bβ ,c2 ) ≠ 1.25. (bo,,ci ) ≠ 1.26. d < 2bβ ∕c1 + 2.27. Cκ > c1 + (i - 1) [b∙∕bβ, ] + 2i
<⅛, > c≈ + (i - l)[b.∕b., ] + (2i + 1)28. If dp is even d ≤ Γ2∙(b1 + [bβ∕b.'] )

3}

(2 + [b0∕bβ,] )
29

If dp is odd 2. (bl + 2(bo∕bβ, ] ) T2 + [bβ∕bβ∙])b0,(bβ- 1)
d ≤
3
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For girth four we have the following pairs of combinatorially feasible arrays for distance-biregular graphs when 3 ≤ bβ, < 9and the diameter / d, i≡ greater than two .
ι. Γ* ι 3 4^ and * 1 2 6 4“_7 3 4 * _4 6 2 1 *__2. Γ* 1 5 6 and * 1 3 10 611 5 6 *_ _6 10 3 1 *_
3. Γ * 1 4 6 and * 1 2 12 6~_16 5 12 * _6 15 4 4 *_
4. Γ * 1 4 5 16“ and * 1 2 10 6~_16 5 12 * 6 15 4 6 *__5. Γ* 1 5 6^ and * 1 2 15 6_21 5 16 *_ _6 20 4 θ 1
6. Γ* 1 7 8^ and * 1 4 14 8^_15 7 8 *_ _8 14 4 11
7. Γ * 1 3 4 15^ and * 1 2 6 8^15 7 12 4 * _ 8 14 6 9 1_ _8. Γ* 1 4 9 and * 1 3 12 913 8 9 * 9 12 6 1 *
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It turns out that all of these pairs of combinatorially feasible arrays are realisable and in the rest of this chapter we examine each of them. This suggests that combinatorial feasibility conditions are remarkably strong?We note that we have excluded the pair of arrays ” * 1 6 7 361 and Γ* 1 2 21 β"_36 7 30 1 * J Lθ 35 6 15 *__from our list since there is no affine plane of order 6. This pair of arrays passes all of our other feasibility conditions.In Appendix I we have a listing of a computer program, written by the author, which constructs and tests pairs of arrays by using combinatorial and algebraic feasibility conditions .



β(>

We will now consider our feasible arrays. In each case we will try to fully describe any corresponding distance-biregular graphs. We will refer to any possible distance-biregular graphas Γ and take u as any vertex in P.
* 1 2 6 4_4 6 2 1 *_∣ P∣ = 8 and ∣B∣ = 14.Firstly we notice that Γ(u) and Γi(u) form a 2-(7z 3z 1) design and Γ is the incidence graph of a quasisymmetric2-(8z 4z 3) design with = 2 and = 0. From the sectionfollowing Lemma 3.16 we know that since k1 = kz= k3 Γ is the incidence graph of a 3-(8z 4z 1) design associated with a Hadamard matrix of order 8. This is in fact the incidence structure formed by considering the 8 points and 14 planes of the 3-dimensional affine space over GF(2). (This can be thought of in terms of a cube and the planes associated with it.)

1 3 10 610 3 1 *_= 12 and ∣B∣ = 22.Our pair of arrays certainly give us a 2-(12z 6z 5) design andz since k1 = k1 = k3 z our pair of arrays also give us a 3-(12z 6z 2)design associated with a Hadamard matrix of order 12.Now suppose that we have a 3-(12 2) design. We will show6
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that the incidence graph has arrays as above.Firstly we ask the question ’ given any pair of blocks what can they intersect in ’? (We would like to show that they can only intersect in 0 or 3.)Take any block. Any three points lie in precisely two blocks, ie: Any three points determine another block.How many ways are there of choosing three points?∕6∖ = 61 = 20. ie: We have 1 + 20 = 21 blocks.∖3∕ 3’3!What can we say about the remaining block and its intersection with our original one?If it intersected our original block in a point, u say, how many blocks would u be contained in?
From our construction above, u would lie in ∕5∖ + 1 = 11 blocks k 2 /that intersected with our original block in three points and also this extra block, ie: u would lie in 12 blocks.We know from Design theory that if we have a t-(v, k,Λ ) designand we let denote the number of blocks containing a givenset of i points, 0 ≤ i ≤ t, then: %ι ∕k - i∖ = ∕v - i λ ?\∖t - i / ∖t - i )Therefore, for our 3-(12z 6, 2) design each point of ouroriginal block is in 2∖, = 11 blocks and u cannot lie in 12blocks .ie: each block intersects in 0 or 3 points and, since A1= 5, we have a pair of arrays as shown.
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and 12 616 12 6 15k.= 1, k, = 16, k1= 20, k3 = 40. ∣ P∣ = 21 and ∣B∣ = 56.This pair of arrays was discussed in the section followingLemma 3.16 as a special case of when c2 = bβ,- 2.We know that we have a 2-(21, 6, 4) design and we will now try to find a projective plane ( PG(2, 4) ) within this design.We certainly have 21 points but what about the lines?Each line has 4+1=5 points on it so we need to try and find our sets of five points first.Consider the following:

since c2These need to be separate

So, given any two points {A, B} there are exactly three other points {C, D, E} which have no common neighbour with the pair {A, B} . (Note that {A, B} = {B, A} and both give us {C, D, E}.)Therefore we have the set {A, B, C, D, E}. Can we say ” choose any pair {χ, y} from {A, B, C, D, E} and consider all points which have no common neighbour with {χ, y} . The set of points we obtain is {A, B, C, D, E} ,, ?



Suppose that {C, D} have a common neighbour with A.ie:

(Note that {Cz D} cannot have two common neighbours with A since this would contradict c] = 2.)M is connected to three more points {xl t xx t x3} in Γ∖ (A) (since b, = 5). Also, x1 z 1 < i ≤ 3, is connected to four vertices in Γ(A). Since xi is not connected to any more of C and D’s neighbours in Γ(A) (as c^ = 2) and is only connected to at most one neighbour of B in Γ (A) (againz since cx, = 2) each xu z 1 ≤ i < 3z must determine two new vertices in Γ(A) . (These new vertices cannot be connected to more than one xl otherwise c1, ≠ 2.)ie: The number of vertices in Γ(A) ^4 + 7 + 6 = 17. However, ∣ Γ (A)∣ = 16.Therefore {Cz D} have no point in common with A.Now {Cz D} were chosen arbitrarily from {Cz Dz E} and we could have used B instead of A (since {Az B} = {Bz A} and both give us {Cz Dz E})z so we have:
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The only case left to consider is whether or not {C, D} have a point in common with E. If so we have a new point F which has no common neighbour with {C, D} . Consider the arrangenent:

Now, c^ ≡ 2 and ∣Γ(C)∣ = 16 so E is connected to a neighbour of A in Γ(C) and a neighbour of B in Γ (C) . This means that C and E have a neighbour with A.Therefore whichever pair we choose from {A, B, C, D, E}, when we consider the points with no common neighbours with our pair we obtain {A, B, C, D, E} again.This means that our lines intersect in at most one point but can they intersect in none?Each point, A, lies in five lines ( 1Γ2 (A) ∣ = 20 = 4.5) so we have :

Any other line has to be made up from five of these points. Suppose we have two lines 1,, 12 which do not intersect. Take 1, and the lines through any of its points, A say.
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Now, li has to be made up of five of these points. If it intersected any of these lines in two points it would have to be one of lines and would thus intersect 1, in A. #Therefore 12 has to intersect 1, in a point other than A.ie: Given any two lines they must intersect in a point. Also the number of lines is given by:(Number of possible points)x(Number of lines a point lies in) Number of points in a lineThis equals 21 so we have found a copy of PG(2, 4) in our2-(21, 6, 4) design.
4. * 1 4 5 16 and16 5 12 1 *ko = 1, kl= 16, k2 = 20, k3= 48,

^* 1 2 10 6^_6 15 4 6 *_kv= 3. ∣P∣ = 24, ∣ B∣ = 64.Γ is the incidence graph of a 2-(4.6, 6, 4) transversal design which is in fact a 3-(4.6, 6, 1) transversal design. We show that this design arises from the unique Steiner system S(5, 8, 24). The points are the 24 points of P. The vertices of B correspond to 6-sets in P. We use these 6-sets to define three kinds of 8-sets (octads).(i) P is partitioned into 6 antipodal parts P, ,P2 ,P3 ,Plt, ,P5 ,P6 each of size 4. Any two such parts form a natural octad. (There are 15 such octads.)(ii) Each block of the transversal design meets each antipodal part in exactly one point. If b is a block then the symmetric
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difference of b and P forms a natural octad. (There are 24.16 = 64.6 such octads .)(iii) Two 6-sets which meet have just 2 points in common. Their symmetric difference forms a natural octad. Suppose the common points of the two 6-sets lie in Ps and Pt . It is not hard to show that for each partition of {lz 2, 3, 4} into two sets of size 2 we get the same octad in another way. Thus each such octad arises in at least 4 ways. (There are ≤ 24.20 /4^/ = 360 2 12//4such octads.)If we now consider the possible configurations for 5-sets
P X X Xχ X X X X >C X K X X X X

p. * X X X X X X X

P, χ X X X

X X

X

one can show that each lies in at least one octad. It follows that each line lies in exactly one octad (since there are ≤ 759 octads) .
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5. * 1 5 6 amd * 12

* 1 3 4 15~] and Γ* 12 6 815 7 12 4 * 8 14 6 9 *_ — '- —kβ= lz k1 = 15z kx= 35z k3= 105z kφ= 28.∣P∣ = 64 and ∣B∣ = 120.We believe these arrays are realised (uniquely) by the natural intersection graph on cosets of two subgroups H = A8 and K ≡ ( ‰)3. ( (Z1)s.SL(3, 2)) in a group G ≡ (Z1)6.A8.

_21 5 16 *_  _6 20 4k0 = lz kl = 21z kx = 21z k3 = 6. ∣P∣ = 22
15 6~6 *_and ∣B∣ = 77.Since k 1 = k x we know that Γ (u) and Γx (u) form a symmetric2-(21z 5z 1 design (PG(2z 4)) and that Γ is the incidence graphof a 3-(22z 6z 1) design (a one point extension ofPG(2z4)). The graph is unique [2] Theorem 8.18.

6. ^ * 1 7 8~∣ and * 1 4_15 7 8 *J  L8 14 4ko = lz kl= 15z kx = 15z k3= 15. ∣P∣ = 16
14 8~1 *_  and ∣B∣ = 30.We know that Γ is the incidence graph of a quasisymmetric 2-(16z 8z 7) design with ∕χ, = 4 and ∕χ2,= 0 and, since k,= kx = k3 Γ is the incidence graph of a Hadamard 3-(16z 8z 3) design - for example, the graph formed by the points and hyperplanes of AG(4z 2).

7.



8. * 1 4 9 and * 1 3 12 913 8 9 * 9 12 6 1 *kβ= 1, k,= 13, k = 26 k3= 26. ∣P∣ = 27 and 39.The above pair of arrays corresponds to the incidence graph ofa quasisymmetric 2-(27, 9 4) design with 3 and 0 - forexample, the incidence graph of the points and hyperplanes inAGO, 3).



Appendix I.In this appendix .we give a listing of a computer program written by the author to help in the classification of distance-biregular graphs.The program is written in PASCAL for the Honeywell Multics system at the University of Birmingham. To find the eigenvalues of a given matrix the program calls a FORTRAN program from the NAG library. The program uses the tests described in this thesis together with tests described in [⅛] for the distance-regular derived graphs.



PROGRAM magic (input, output) ;{ ***********************if************************************} {* GUIDE TO THE PROGRAM : *} {* *1 {*intmat∑=the intersection matrix for the left hand derived *} {* graph *} {*inma :=the intersection matrix for the right hand derived*} {* graph *} {*entry :=an intersection array used in a subroutine *} {* (gammatest) and which represents both left and *} {* right hand derived graphs, whichever is *} {* appropriate *} {*sm :=a matrix whose entries come from alphas (or betas)*} {* and whose eigenvalues are found to help us in an *} {* integrality test *} {*sum :=this helps us to identify the entries in sm *} {*g :=either an alpha or a beta, whichever is *} {* appropriate *} {*intger:=this helps us to use the external program f02aff *} {* from the NAG library *} {*rr :=this helps us with eigenvalue checks *} {*ri :=this also helps us with eigenvalue checks *} {*no[i] :=the number of vertices at distance i from a vertex*} {* of valency r *}
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{*lo[i] :=the number of vertices at distance i from a vertex*} {* of valency s *} {*c[i] :=the usual entry ci *} {*b[i] :=the usual entry bi *} {*f[i] :=the usual entry cl, *} {*e[i] :=the usual entry bl, *} {*nod[i]:=the number of vertices at distance i from a given *} {* vertex *} {*add[i]:=this helps us to calculate our alphas and betas *} {************************************************************}
{************************************************************ j{* f02aff is an external subroutine used to find eigenvalues*} {************************************************************}

$IMPORT’f02aff( fortran)’: f02aff$
TYPEsmat = ARRAY [1..21, 1..21) OF real;oner = .ARRAY [1..21] OF real;onei = ARRAY [1..21] OF integer;matr = ARRAY [0..20, 0..20, 0..20] OF integer; 



mat = ARRAY l1..3, 0..20] OF integer; sing = ARRAY [0..20] OF integer;
VAR intmat, inma : mat; sm : smat; g : matr; intger : onei; sum, rr, ri : oner; no, lo, c, b, f, nod, add, e : sing; i, r, s, d, wrong, sumnoe, sumnoo, sumloe, sumloo, pass, stop, j, p, ks, k, sa, ta, ra, n, ifail, lod, diameter, ne, fail, js, counter, loc, sip, din, bin, jb, rl, r2, r3 : integer; error, nr : real;

{*************************************************************} {* The next part is used to test the eigenvalues of the two *} {* derived graphs. It is a FORTRAN subroutine which is called*} {* from the NAG library *}{*************************************************************}
PROCEDURE fo2aff (VAR a: smat ; VAR ia, n : integer ;



VAR rr, ri : oner ; VAR intger : onei ; VAR ifail : integer) ; EXTERNAL ;
{************************************************************* }{* The next part simply helps us to set up the initial status*} {*************************************************************}

PROCEDURE setup;
BEGINwrong := 0;no[0] := 1;no[l] := r;{r = valency of left hand array}i := 1 ; REPEATi := i + 1 ;IF ((no[i-1]*b[i-11) MOD c[i] = 0) THEN no[i] : = (no[i-l]*b[i-l]) DIV c[i] ELSE pass := 0;UNTIL i = j ;END;
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{* This gives the entries in the right hand array knowing the*}
*}{* entries in the left hand array

BEGINIF pass = 1 THENBEGINlo[0] := 1;loll] := s;{s = valency of right hand array}IF e[j-l] <> 0 THENBEGINIF j MOD 2=0 THENBEGINIF (b[j]*b[j-13) MOD e[j-l] = 0THENBEGINe[j] := (b[j3*blj~13) DIVel j-1.3;f[j] := e[0] - e[j 3;IF f I j ] < 0 THEN pass := 0



ENDELSE pass := 0;END
ELSE

BEGINIF (C[j]*c[j-l]) MOD f[j-l] = 0THENBEGIN f[j] := (c[jl*c[j-l]) DIV £[^-ι];e[j] := b[0] - f(jl;IF etjl<0 THEN pass := 0ENDELSE pass := 0;ENDENDELSEBEGINe [ j ] := 0;f[j) := 0;END;IF (e[j] = 0) AND (b[j] <> 0) THEN pass :- 0
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IF (pass = 1) AND (flj] <> 0) THENBEGINIF ((lo[j-l]*e[j-l]) MOD f[j] = 0)THEN lo[j] := (lolj-1]*eIj-1]) DIV fIj]ELSE pass := 0;END;IF flj] = 0 THEN lo[j] := 0;IF (pass = 1) AND (c[j] = elθ]) AND (j MOD 2= 1) THENBEGINd := j;f[d + 1] := s;eld + 1] := 0;lold + 1] := (lold]*eld]) DIV f[d + 1];IF eld] = 0 THEN pass := 0ENDENDEND;

{* Here we calculate our k,s and l,s *}
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PROCEDURE circles;
BEGINIF (pass = 1) THENBEGINsumnoe := 0;sumnoo := 0;sumloe := 0;sumloo := 0;i := -1; REPEATi := i + 1;sumnoe := sumnoe + no[2*il;sumloo := sumloo + lo[2*i + 11;sumnoo := sumnoo + no[2*i + 1]; sumloe := sumloe + lo[2*i];UNTIL i = (d DIV 2) - 1;sumnoe := sumnoe + no[2*(d DIV 2)] sumloe := sumloe + lo[2*(d DIV 2)1 IF (d MOD 200) THENBEGINsumnoo := sumnoo + no[d];sumloe := sumloe + lo[d + 1] sumloo := sumloo + lo[d]



∣O*f∙

END;IF (sumnoo <> sumloe) OR (sumnoe <> sumloo)THEN pass := 0ENDEND;
{*************************************************************}{* This just tests obvious inequalities *J{*************************************************************}

PROCEDURE inequalities;
BEGINIF (pass = 1) AND (d > 3) THEN BEGINIF e[j - 2] < e[j] THEN pass := 0;IF f[j - 2] >f[j] THEN pass ;= 0 ENDEND;

{*************************************************************} {* This constructs our two distance-regular derived graphs *} {*************************************************************}
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PROCEDURE derive;
BEGINIF (pass = 1) AND (j > 3) THENBEGINintmat[l, 0] := 0;intmat[2z 0] := 0;intmat[3, 0] ;= (b[0]*b[l]) DIV c[2];inma[lz 0] := 0;inma[2z 0] := 0;inma[3z 0] := (e[0]*e[l]) DIV f[2];i := 0;REPEATi : = i + 1;IF (b[2*i]*b[2*i + 1]) MOD c[2] = 0 THEN intmat[3z i] := (b[2*i]*b(2*i + 1]) DIV c[2] ELSE pass := 0;IF (pass = 1) AND ((c[2*i - ll*c[2*i]) MOD c[2] = 0) THENBEGINintmat[lz i] := (c[2*i - l]*c[2*i]) DIV c[2] intmat[2z i] := intmat[3z 0] - intmatllz i]- intmat[3z i]
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ENDELSE pass := 0;IF (pass = 1) AND ((e[2*i]*e[2i + 1]) MOD f[2] = 0THEN inma[3, i] := (e[2*i]*e[2*i + 1]) DIV f[2]ELSE pass := 0;IF (pass = 1) AND ((f[2*i - l]*f(2*i]) MOD f[2] = 0 THENBEGINinma[l, i] := (f[2*i - l]*f[2*i]) DIV f[2];inma[2, i] := inma[3, 0] - inma[lz i]- Inma[3, i] ENDELSE pass := 0;UNTIL i = j DIV 2-1;IF (pass = 1) AND (j MOD 2=0) AND (b[j] = 0) THEN BEGINIF (c[j - l]*c[j]) MOD c[2] = 0 THENBEGINintmat[lz j DIV 2] := (c[j - l]*c[j])DIV c[2];intmat[2z j DIV 2] := intmat[3z 0]- intmat[l, j DIV 2);intmat[3, j DIV 2] := 0 END
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ELSE pass := 0;IF ((f[j - l]*f[j]) MOD f[2] = 0) AND (pass = 1) THENBEGINinma[l, j DIV 2] := (f[j - l]*f[j]) DIVf [2];inmat 2, j DIV 2] := inma[3, 0]- inma[1, j DIV 2];inmat 3, j DIV 2] := 0ENDELSE pass := 0END;IF (pass = 1) AND (j MOD 2=1) AND (btj] = 0) THEN BEGINIF (c[j - 2] * c[j - 1]) MOD ct2] = 0 THENBEGINintmattl, j DIV 2] ; = (c[j - 2)*c[j - 1] )DIV c[2];intmat[2z j DIV 2] := intmatt3, 0]- intmattl, j DIV 2);intmat[3, j DIV 2] := 0ENDELSE pass := 0;
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IF (pass = 1) AND ((f[j - 2]*f[j - 1]) MOD f[2] = 0) THEN BEGINinma[l, j DIV 2] := (f[j - 2]*f[j - ID DIV f[2];inma[3, j DIV 2] := (e[j]*e[j - 1])DIV £[23;inma[2, j DIV 2] := inma[3, 0] - inma[l, j DIV 2] - inma[3, j DIV 2];IF Inma[3, j DIV 2] = 0 THEN pass := 0 ENDEND;IF (pass = 1) AND (j MOD 2=1) AND (b[j] = 0) THEN BEGIN inma[l, j DIV 2+1] := (f[j + l]*f[j]) DIV£(23;inma[2, j DIV 2+1] := inma[3,0] -inma[l, j DIV 2 + 1];inma(3, j DIV 2+1] := 0 ENDENDEND;
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{*************************************************************}{* This sets up the matrix whose eigenvalues we wish to *}{* consider. *}{*************************************************************}
PROCEDURE gammatest (VAR entry : mat);

VARp, raz sa, ta, ×f γf q, i, ia, u : integer;
BEGINIF (entry[3, js] = 0) AND (pass = 1) AND (js > 1) THEN BEGINFOR sa := 0 TO 20 DOBEGINFOR ra := 0 TO 20 DOBEGINFOR ta := 0 TO 20 DOBEGINg[sa, ta, ra] := 0ENDENDEND;FOR p := 0 TO js DO



no

BEGINg[0∕ p, pl := 1;g[p, 0, p] := 1;g[lz pz p] := entry[2z p];g[pz lz p] := g[lz pz p]END;FOR p := 0 TO js - 1 DOBEGINgllz p + lz p] := entry[3z pl;g(p + lz lz p] := g[lz p + lz p]END;FOR p := 1 TO js DOBEGINg[lz p - lz p] := entry[lz p];g[p - lz lz p] := g[lz p - lz p]END;IF (pass = 1) THENBEGINd := js;nod[0] := 1;lod := 0;REPEATlod := lod + 1;IF lod = 1 THEN ks := entry[3, 0];



Ill

IF lod <> 1 THEN ks := ks*entry[3, lod - 1]DIV entry[l, lod];nod[lod] := ks;UNTIL lod = d;FOR sa := 0 TO d DOBEGINFOR ra := 0 TO d DOBEGINIF sa = ra THEN g[sa, ra, 0] := 
9nodlsa];ENDEND;sa := 1;REPEATsa := sa + 1;ra := 0;REPEATra := ra + 1;ta := sa - 1;REPEATta := ta + 1;IF ta <> d THENBEGIN
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g[sa, ta, ra] := (entry[3, ta - l]*g[sa - 1, ta - 1, ra] + (entry[2, ta] - entry[2, ≡a - l])*g[sa - 1, ta, ra] + entry[l, ta + 1]* g[sa - 1, ta + 1, ra] - entry[3, sa - 2] * g[sa - 2, ta, ra]); IF g[sa, ta, ra] MODentry[1, sa] <> 0 THEN pass := 0 ELSE g[sa, ta, ra] := g[sa, ta, ra] DIV entry[l,sa]; g[ta, sa, ra] := g[sa, ta, ra] END;IF ta = d THEN BEGINadd[0] := g[sa, 0, ra];FOR p := 1 TO (d - 1) DO BEGINadd[p] := add[p - 1] + g[sa, p, ra] END;g[sa, ta, ra] := nod[sa] - add[d - 1];g[ta, sa, ra] := g[sa, ta, ra] END;IF g[sa, ta, ra] < 0 THEN pass := 0;
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IF pass = 0 THENBEGINta := <3;ra := d;sa := dEND;UNTIL ta = d;UNTIL ra = d;UNTIL sa := d;error := 0.000001;k := entry[3, 0];IF pass = 1 THENBEGINFOR p := 1 TO d + 1 DOBEGINrr[p] := 0;ri[p] := 0END;FOR p := 1 TO 21 DOBEGINFOR q := 1 TO 21 DOBEGINsm[p, q] := 0.0END



END;ne := 0;FOR p := 0 TO d DOBEGIN ne := ne + nod[p]END;FOR p := 1 TO d + 1 DOBEGINFOR q := 1 TO d + 1 DO BEGINFOR x := 1 TO d + 1 DOBEGIN sum[x] := 0END;FOR i := 1 TO d + 1 DOBEGINFOR y := 1 TO d + 1 DOBEGIN sum[i] := sum[i] + gti - 1, y - 1, y - 1]END;sum[i] := sum[i]∕ nod[i - 1];
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sum[i] := sum[i]* g[i - 1, p - 1, q - 1] sm[p, q] := sum[ i ] + _ sm[p, q] ENDENDEND;FOR p := 1 TO d + 1 DOBEGIN intger [p] := 0 END; ifail := 0; ia := 21; n := d + 1; f02aff(sm, ia, n, rr, ri, intger, ifail) IF ifail = 0 THENBEGIN nr := ne; P := o; REPEAT P := P + i; IF abs(round(ri[p])) > error THEN pass := 0;IF rr[p] <> 0.0 THEN



life

BEGIN IF abs(round(nr/rr[p]) - nr∕rr[p]) > error THEN pass := 0END;IF pass = 0 THEN p := d + 1; UNTIL p = d + 1;END END END END END;{**************************************************************} {* Here we simply print out the results *}{**************************************************************} PROCEDURE conclusion;BEGINIF (pass = 1) AND (b[j] = 0) AND (fail = 0) AND (c[2] <> 1) AND (j > 2) THENBEGIN write(,*, : 3); p := 0; REPEAT p := p + 1; write(c[p] : 3);
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UNTIL p = j;writeIn;P := -1;REPEAT;P := P + 1;write(b[p] : 3);UNTIL P = 3 - 1;write(,*’ : 3);writein;writeIn;p := -1;REPEATp := p + 1;writeln(, k,, p : 2, ’ = ', no[p] : 5) UNTIL p = j;writein;writein;IF j > 3 THENBEGIN writeln(, Derived graph :•); writein;write(,*, : 4);P := 0; REPEAT
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p := p + 1;write(intmat[l, p] : 4);UNTIL intmat[3, p] = 0; writein;P := -1; REPEATP := P + 1;wr itel(intmat[2z p] : 4)UNTIL intmat[3z p] = 0; writein;p := -1; REPEATp := p + 1;write(intmat[3, p] : 4);UNTIL intmat[3z p + 1] = 0;write(’*’ : 4);writein; writeinEND;write(,*’ : 3);P := 0;REPEATp := p + 1;write(f[p] : 3);



in

UNTIL p = j;IF (b[j] = 0) AND (j MOD 2=1) THEN write (f[j + 1] : 3);wr iteln;P := -1;REPEATP := P + 1;write(e[p] : 3);UNTIL p = j - 1;IF (b[j] = 0) AND (j MOD 2=1) THEN write (e[j] : 3); write(’*’ : 3);writein;writein;p := -1;REPEATP := P + i;write(, 1,, p : 2, , = ,z lo[p] : 5);UNTIL p = j;IF (j MOD 2=1) AND (b[j] = 0) THEN write ( ’ 1∙, j + 1 : 2, ’ = ’, lo[j + 11:5); writein;writein;IF j > 3 THEN
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BEGIN writeln(, Derived graph :’) writein;write(’*, : 4);P ∑= o;REPEATP := P + 1;write(inma[1, p] : 4);UNTIL inma[3, p] = 0;writein;p := -i;REPEATP := P + i;write (inma[2, p] : 4);UNTIL inma[3, p] = 0;writein;P := -1;REPEATP := P + i;write(inma[3, p] : 4);UNTIL inma[3, p + 1] = 0;write ( ’ : 4);writein;writein
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END; writein ENDEND;
{it************************************************************} {* Now we have the main program ,magic’ *}
{it************************************************************}

BEGIN {magic}
wr iteln(’*****************************************************}; writeln(’*This program aims to help in the classification of *}; writeln(’*distance-biregular graphs. *};writeln(,*It does this by making use of several feasibility *}; writein (’*conditions to form an algorithm. *};writeln(’*The program takes two values of sf a value of r and*}; writeln(,*a diameter bound. It considers all possible values *}; writeln(,*of s in between the two given values, and all *};writeln(’*possible values of r up to, and including, the *};writeln(’*chosen bound. It then gives all possible, feasible *}; writeln(’*pairs of arrays with these valencies which have a *};

Jwriteln(,*diameter not greater than the one given. *};wr iteln( ,*************************************************^
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writeln(,You are asked to input four things:’);writeln(’1.The valency of the lower right-hand array (si).’);writeln(’2.The valency of the higher right-hand array (s2).’);writeln(’3.The bound you wish to have on the left-hand valency(r ) ’ );writeln(’4.The bound on the diameter of graphs you wish to consider . ’ );writeln(*The program then outputs various pairs of arrays together ’ );writeln(’with the kiz li and derived graphs.’);writein;writeln(’Please input the right-hand valencies and a bound on r . ’ );writeln(’Firstly si:’);read (r1);writeln(’Secondly s2 (remember that s2 > si):’);read (r2);writeln(’Thirdly r:’);read (r3 );writeln(’Now please input your diameter bound’);read(diameter );writein;writeln(,The possible pairs of arrays are as follows:’);writein;
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FOR s := rl TO r2 DOBEGINFOR r := (s + 1) TO r3 DOBEGINcounter := 0;loc := 0;clθ] := 0;bEO] := r;c[l] := 1;b[l] := s - 1;f£01 := 0;e[0] := s;fill := 1;e [ 1 ] := r - 1; FOR sa := 0 TO 20 DOBEGINFOR ra := 0 TO 20 DOBEGINFOR ta := 0 TO 20 DOBEGIN g[sa, ta, ra] := 0ENDENDEND;



I 2^

REPEATstop := 0; j := j + 1; IF j MOD 2=0 THEN c[j] := b[0] + 1 ELSE c[j] := e[0] + 1;REPEAT FOR sa := 1 TO 3 DO BEGIN FOR ra := 0 TO 20 DO BEGIN intmat[sa, ra] := 1; inma[sa, ra] := 1 END END; pass := 1; fail ;= 0; d := j;c[ j ] := c[j J - 1;IF (c[2] > e[0] - 1) THEN pass := 0;IF pass = 1 THEN BEGIN IF j MOD 2=0 THEN b[j] := b[0] - c[j] ELSE b[j] := e[0] - c[j];
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loc := loc + 1;setup;construct;IF (j > 2) AND (c[2] > 1) AND(f(3] < c[2] + 3) THEN pass ;= 0;IF (b[j] <> 0) AND (j > 2) AND pass = 1 THEN BEGINIF (c[j] <= f[j - 1]) OR(ft□J <= c[j - 1]) THEN pass := 0 END;IF b(j] = 0 THEN BEGIN circles;END;inequalities ;{*****************************************^{* Here we want to test the array so far *}{*****************************************^IF (j > 2) AND (pass = 1) THEN BEGINIF c[3] <f[2] +2 THEN pass := 0;IF f[3] < c[2] + 3 THEN pass ;= 0;
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IF (fl2] = 2) AND (c[3] < c[2] + 1) THEN pass := 0;IF (c[j - l]*c[j]) MOD c[2] <> 0THEN pass := 0;IF (f[j - l]*f[j]) MOD f[2] <> 0THEN pass := 0;IF (b(□ - l]*b[j]) MOD c[2] <> 0THEN pass := 0;IF (e[j - l)*e[j]) MOD f[2] <> 0THEN pass := 0;IF (b[j] = 0) AND (j MOD 2=1)THENBEGINIF (f[j]*f[j + 11) MOD f[2]<> 0 THEN pass := 0;IF (e[j]*e[j + 1]) MOD f[2]<> 0 THEN pass := 0;END;END;IF (j > 2) AND (pass = 1) THENBEGINIF (b[j] = 0) AND (j MOD 2=1) THENBEGIN
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IF ((c[j]*(b[ j - 1] - D)DIV f[21 > no[j] - 1) THEN pass := 0;IF ((f[j+l]*(e[j] - 1))DIV f[2] > lo[j + 1] - 1) THEN pass := 0;END;IF (b(j] = 0) AND (j MOD 2=0) THENBEGINIF ((c[j]*(b[j - 1] - 1))DIV c[2] > no[j] - 1) THEN pass := 0;IF ((fIj]*(e[j - 1] - 1))DIV f[2] > lo[j] - 1) THEN pass := 0;ENDEND;IF (j > 1) AND (c[2] > r DIV 2) THEN pass := 0;IF (j > 1) AND (f[2] > s DIV 2) THEN pass := 0;IF (j > 2) AND (pass = 1) THENBEGINdin := 1;bin := 1;FOR jb := 1 TO (f[2] - 1) DOBEGIN
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bin := bin*(s - jb); din := din*jb;END; bin := bin DIV din; IF (r - 1) MOD (bin) = 0 THENbin := (r - 1) DIV bin ELSE bin := (r - 1) DIV bin + 1; bin := f[2]*f[3]*bin;IF (s*(r - 1)) < bin THEN pass := 0;END;IF (btj] = 0) AND (pass = 1) THENBEGIN counter := counter + 1; der ive;js := j DIV 2; gammatest (intmat) ;IF j MOD 2=0 THEN js := j DIV 2; gammatest (inma);IF j MOD 2=1 THEN js := j DIV 2+1; gammatest (inma);END;END;conclusion;
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IF (c[j] = c[j - 2]) AND (pass = 0) THEN BEGINIF (j = 3) AND (c(2] = 1) THEN stop := 1;ELSEBEGIN 1 := 0;REPEATi := i + 1;UNTIL c[j - 1] <>c(j - i - 2];IF (j = 2 + i) AND(c[2] = 1) THEN stop := 1; ELSE j := j - i;ENDEND;IF (j = diameter) AND (stop = 0) AND ((c[j - 1] <> 1) OR (c[j - 2] <> 1) THENBEGINi := 0;REPEATpass := 0;i := i + 1;UNTIL c[j - i] <> c[j - i - 2);
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IF (j = 2 + i) AND (c[2] = 1)THEN stop := 1ELSE j := j - iEND;IF b[j] = 0 THEN pass := 0;IF c[j] < c[j - 2] THEN stop := 1;IF b[j] < 0 THEN stop := 1;IF c[2] < 1 THEN stop := 1;IF stop = 1 THEN pass := 1;UNTIL pass = 1;IF c[2] = 1 THEN stop := 1;IF stop = 1 THEN j := diameter;UNTIL j = diameter;END;END;END. {magic}
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Appendix II.In this appendix we give a list of pairs of feasible arrays for 9 < bl < 20 and c1 > 1. This list was obtained by using the program in Appendix I. We do not analyse any of the pairs of arrays (some can be excluded by other combinatorial reasons) but include the list to demonstrate the efficiency of the tests described in this thesis and to provide work for further research.
bl Possible values Number of feasibleof bo . arrays .10 19 128 246 164 111 None None12 23 145 556 1100 2111 113 None None14 27 340 266 2144 1
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19

b! Possible values Number of feasibleof bβ . arrays .15 22 136 616 21 131 191 2196 117 None None18 35 252 2120 4256 1None None



)2>3

bp = 10.
* 1 9 10 and * 1 5 18 id_19 9 10 * _10 18 5 1 *
* 1 4 9 28 and * 1 2 18 1028 9 24 1 * _10 27 8 10 *

- * 1 4 6 28 and * 1 2 12 id_28 9 24 4 * _10 27 8 16 *
* 1 6 10^ and * 1 2 30 id_46 9 40 * _10 45 8 16 *

- * 1 8 9 64 and - * 1 2 36 id_6 4 9 56 1 * _10 63 8 28 *
bo, = uL. None .
bot = 12»

^ * 1 11 12~23 11 12 * _
^* 1 9 12~45 11 36 *

and * 1 6 22 12_12 22 6 1 *
and ~ * 1 3 36 1212 44 9 9 *
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* 1 9 11 4!5 and r~ * 1 3 33 12_45 11 36 L * 12 44 9 12 *
- * 1 9 6 45 and - * 1 3 18 12_45 11 36 6 * _12 44 9 27 *

* 1 5 12~ and r~ * 1 2 30 12_45 11 40 * 12 44 10 15 *
~ * 1 5 8 45 and - * 1 2 20 12_45 11 40 4 * 12 44 10 25 *

* 1 11 12^ and “ * 1 3 44 12_56 11 45 * 12 55 9 12 *
* 1 10 12” and ~ * 1 2 60 12100 11 90 * 12 99 10 40 *

* 1 10 11 100 and - * 1 2 55 12100 11 90 1 12 99 10 45 *
* 1 11 12 and “ * 1 2 66 1211:L 11 100 * 12 110 10 4!5 *_

b* = 13. None .



∣35

b! ≈ 14.
~ * 1 13 1427 26 14 *L. —j

and ^^ A 1 7 26 14'14 26 7 1 *

* 1_27 13
“ * ι_27 13
“* ιJO 13
-* 1JO 13
“ * 1 66 13
^* 166 13

* 1144 13
bj ≈ 15.“* 122 14

3 8 27^∣ and Γ* 1 2 12 1424 6 *J 114 26 12 15 *_
3 4 27" and24 10 *
4 13 40 and36 1 *

* 1 2 6 1414 26 12 21 *
” * 1 2 26 1414 39 12 14 *

4 9 4θl and Γ * 1 2 18 1436 5 *J [14 39 12 22 *_
6 13 661 and Γ* 1 2 39 1460 1 * [14 65 12 27 *_

6 10 6660 4 *_
132 1 *

7 15"15 *

12 13 1441 and
and A 1 2 30 1414 65 12 36 A

~ A 1 2 78 1414 143 12 66 A _

and A 1 5 21 1515 21 10 1 A
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* 1 6 15^ and ” * 1 3 30 15^_36 14 30 * _ 15 35 12 6 *
- * 1 6 14 36 and “ * 1 3 28 15"36 14 30 1 * 15 35 12 8 *

* 1 5 16JI 15 16 * _
“* 1 15 1^31 15 16 *_
“* 1 7 12 91

* 1 6 10 36“ and “ * 1 3 20 15J6 14 30 5 * 15 35 12 16 *
—

15 *

*36 114
6

6 630 9
6

36 * and
and

~ *15~^ *
135
1

312
3

1224
12

15^ *
12 35* 1 28 15J6 14 30 9 8 * 15 35 12 24 3 1“ * 1 6 5 36 and “ * 1 3 10 1536 14 30 10 * 15 35 12 26 *_

bβ, = 16.

91 15 84 4 *

and * 1 4 20 1616 20 12 1 *
and “ * 1 8 30 1616 30 8 1 *
and - * 1 2 42 1616 90 14 49 *
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1 7 10 91 and * 1

bβ,

91 15 84 6 * 16 90
* 1 14 15 196 and * 1196

17
18
35
*35

52
52

*120
*120

15 182 1 * 16 195

2 35 1614 56 *_
2 105 if14 91 *

None
1 17 18 and * 117 18 * 18 34
1 5 6 35 and * 117 30 12 * 18 34
1 4 17 52 and * 117 48 1 * 18 51
1 4 12 52 and * 117 48

15
6 * 18 51
17 120 and *17

17
105

15105
1
711

* 18 119
120 and * 1
* 18 119

9 34 189 1 *_
3 10 1815 25 *_
2 34 1816 18 * _
2 24 if16 28 *_

3 85 if15 35 *_
3 35 18“15 85 * _



I3β

* 1 8 17 120 and * 1 2 68 18120 17 112 1 * 18 119 16 52 *
* 1 8 14 120 and * 1 2 56 18120 17 112 4 * _18 119 16 64 ft
* 1 16 17 256~ and * 1 2 136 18256 17 240 1 * _18 255 16 120 *

None .
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QuestionsQI. (cf. Theorem 3.3 and Theorem 3.4.)Let M be a matrix of the form 0 1 0m2, 0 m

with all mlj ≠ 0 and let x (1eigenvector

m32
o

xi xzof M with eigenvalue % (≠0) xβt ) be a rightLet ko = lz k,= mki,, = ⅝< mi m.-..(Under what additional conditions) is it automatically true thatQ2. (cf. Lemma 3.8 and Lemma 3.15.)When exactly is c]c < c2t f or equivalentlykJ + kJ . + k∙1- . + k,∙Q3.Is (cf. Proposition 3.20 and Proposition 3.24.) there a common improvement on the bounds d ≤<3p = d < min{bo,- 2c2 + 3, bβ - 2c1 + 2} 2(be÷ [b.∕b']) (2 + [b∙∕b*])
dP = d-l=>d ≤ min{b^- 2c[ + 3, bβ-2cx+ 3} 2(b. ⅜ 2[b.∕b,' ] T∣P(2 + [b. ∕b'. ])Q4. (cf. Remark 5.1.)What is the connection between the local feasibility conditionson partial arrays (such as czccιc and global feasibilityconditions (such as the integrality of multiplicities of

d
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eigenvalues) ? When does local feasibility imply global feasibility, and why ?Q5. (a) Only one feasible pair of arrays in this thesis has diameter > 4. Is this pair (b’ = 15) realisable ?(b) Is there some much stronger bound for d in terms of b^ ?Is there a bound for d independent of b’ ?
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