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Synopsis.

A distance-biregular graph is a finite, undirected bipartite
graph where any two vertices in the same part of the bipartition
have the same intersection array. In this thesis we £ind
" necessary conditions for a pair of arrays to correspond to a
distance-biregular graph and use these to construct an algorithm
for generating all pairs of feasible arrays corresponding to
possible graphs of girth four and smallest valency b! < 20. The
feasible arrays with b! < 10 are analysed in Chapters 5 and §6;
those with 10  Db! < 20 are listed in Appendix II. Our results
raised a number of interesting questions which are listed at the

end of Appendix II.
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Chapter 1

Introduction

We describe the types of graph we are considering in this thesis

and list all known families.



1.1 Graphs

Firstly we need to define exactly what type of graph we will
be considering. A graph [ consists of a set of vertices VI and
a set of edges EfMcvVrr xVIC . We consider undirected graphs without
loops or multiple edges, so E is a symmetric, irreflexive
relation. A finite (resp. infinite) graph 1is. thus one with a
finite (resp. infinite) vertex set. For u,ve Y[ we write u~v 1if
{u,v) e EI and say that u and v are adjacent, and v 1is a
neighbour of u. 2 c¢lique in a graph 1is a subset of VI whose
members are all pairwise adjacent.

We define a _EEEE_(or walk) of length k from v, to v, to be a
sequence v, ,V, ,...,v, 0f wvertices in a graph, where v _~ v, for
each i=1,...,k. We say the path 1is closed if v, = v_ . We
denote by d.(u, v) the length of the shortest path from u to v
inl". If it is clear which [ we are considering we use d(u,v).
(If no path exists we write d(u,v)=<.,) We may also say that the
distance from u to v is d(u,v). This means that a graph [ is
connected 1f d(u,v) <« £for all u,ve V[ . The diameter of a
connected graph is defined to be the supremum of d@ on/[ and is
denoted by diam([").

We call a connected graph bipartite (resp. n-partite), if

the vertex set ofl"can be partitioned 1into two (resp. n)
non-empty subsets of [ such that if u~ v, then u and v are in

different subsets. The complement of a graph [T is a graph re




with VM= v and u~v in '® if and only if u»v in [ .
We associate with a labelled graph ' on n vertices (numbered
1,2,...,n) the nxn adjacency matrix A(I" ) defined by
7 1; if i1~3,
A(T by =

0; otherwise.

The eigenvalues of the graph [ are the eigenvalues of the

adjacency matrix of [" . Relabelling the vertices gives rise to a
different adjacency matrix P'A P for some permutation matrix P,
but does not change the eigenvalues, which are thus an invariant
of the graph [' itself.

The degree (or valency) of a vertex v 1is the number of
neighbours of v. A graph is k-regular if each vertex has

valency k. A graph is bireqular if it is bipartite and if any

two vertices in the same part of the bipartition have the same
degree.

For a graph |7, the graph '’ has vertex set v = VI with
vertices u,v being adjacent in ' if and only 1if they are at
distance i in ' . For a (connected) bipartite graph " , the
graph P(n is the disjoint union of two connected graphs; we call

each component of [ a derived graph of [ .

A cycle of length k ( » 3) in a graph ' is a path VoroeoeesVey

for which V. # V ’
[N iey

i = 1,...,k-1 and v, = v_ . The girth

x

of a graph ' is the length of the shortest cycle in [7 .

The line graph of a graph [" is the graph L([") with vertex




set EM , two edges e,f in[ being adjacent in L(I) i1f and only

if they have a common vertex in [ . The subdivision graph S(I )

of a graph [ is the graph obtained from 7 by subdividing each
edge with a new vertex; formally VS(Im ) = VCvUEr with x~y in
S(I) if and only if xe VI, ye EI" (0or vice versa) and x, y are

incident in I .

1.2 Incidence Structures

An incidence structure I consists of a pair (P,B), where the

set P is the set of points of I and B 1is & collection of
subsets of I called the blocks of I. If two points x and y of
an 1incidence structure determine a unique block 1 containing
them both then we often refer to 1 not as a block, but as the
line xy.

The 1incidence graph ' = (I) of an incidence structure

I = (P,B) has vertex set VI = PuB and adjacency defined by pairs
(p,b), pe P and be B, where p~b 1if and only if pe b. The

incidence graph of an incidence structure is clearly a bipartite

graph. We say an 1incidence structure 1is regular (resp.
biregular) if its incidence graph is regular (resp.
biregular). The block graph Q of an incidence structure I is

that derived graph with vertex set B the blocks of I; the point

graph ll is the derived graph with vertex set P.

An incidence structure I = (P,B) with v points , each block



having exactly k points, and such that each t~-subset of P occurs

in exactly AN blocks 1is called a t-(v,k,A ) block design.

Fisher's inequallity guarantees that 1f t > 2 then [B] > |P|.

A 2-(v,k,A) design is symmetric if and only if |B| = |Pl.

Equivalently a 2-(v,k,?) design is symmetric if and only if each
pair of blocks intersects in a given number of points/u., in
which case we necessarily have 7\i/4 .

A quasisymmetric block design with intersection numbeIS/M.,

S is a 2-(v,k,N) design for which any two blocks intersect in
either Soor a4, points.
Let I = (P,B) be an incidence structure with each block of

size k. Then I 1is a 2-(kl,k,A) transversal design if and only

if the point set can be partitioned into k 'parts' P, ,
i=1,...,k, each of size 1 such that each block contains exactly
one point from each P; and any two points from distinct parts P,
lie in exactly A blocks.

A generalised n-gon is an incidence structure whose

incidence graph satisfies

(i) it is biregular with valencies (s+l1) and (t+1);

(ii) the distance between any two vertices is at most n;

{i1ii) 1if the distance between two vertices 1is 1less than n,
there is a unique shortest path joining them;

kiv) for any vertex there is at least one vertex at distance n

from it.



1.3 Distance-regularity - local and global.

Let " be a connected graph. By [;(u) we mean the set of
vertices of [T at distance i from the vertex wu, and by k;(u) the
size of M (u). We often write [, (u) as [ (u).

Let u, ve V[T with d{(u ,v) = i. Then

IT_ () n T (v,

c(u,v)

a(ua,v) [T (w) n R(Vﬂ ’

and b(u,v) “1H(u) N F,(v)l-

A vertex ue V[ is distance-reqular if for each i,

such that 1 = 1,...,diam( ™), the numbers c(u,v), af{u,v), b(u,v)
are 1independent of the choice of v in Fi(u); we then write
c;(u) , a;(u) and b;(u) 1in place of c(u,v), a(u,v) and Db(u,v)
(where v is any vertex in [} (u)). If u is a distance-reqular

vertex of a graph [, then the array

* ¢, (u) “ o cy ()
¢ (u) = 0 a,{u) “e ay(u)
b, (u) b, (u) ce *
is the intersection array of u, where 4 = diam([ ). The matrix
0 c, (u) 0 .. 0 ]
b, (u) a, (u) c, (u) .. 0
0 b, (u) a,(u) e 0
I(u) =
0 . e b*ﬁu) a, (ua) cd(u)
| O D 0 b, (u) a, (u) |




is the intersection matrix for u.

A graph is 1locally distance-regular if each vertex of [ is

distance-regular. If every vertex of a locally distance-regular
graph ' has the same intersection array then ' is globally

distance-regular. A globally distance-regqular graph is usually

called a distance-reqular graph. A bipartite locally

distance-regular graph which is not globally distance-regular is

distance-biregular if any two vertices 1in the same part of the

bipartition have the same intersection array. Shawe-Taylor in
[6]1 shows that a 1locally distance-reqular graph 1is either
globally distance-regular or distance-biregular.

The intersection array (") of a distance-regular graph I™

is the intersection array of each of its vertices. The standard

notation for this is

* c, c, .« . . cJd
¢ (MY =10 a, a, . . a,
b, b, b, .« . *

where d=diam(T ).

Let " be a distance-biregqular graph. The two parts of the
bipartition of the vertex set VIT are denoted by P and B. The
diameter of [' is d. We denote a typical vertex in P by u and its

intersection array by



% C, Cz . . . CJ’
t(P) =10 0 0 . e . 0
b, b, b, . .. * |

We denote a typical wvertex in B by v and its intersection

* c,'e,'" . .. Ca
(B} =
b,' b 'b, ' . .. *

-] !

array by

The corresponding intersection matrices are denoted by I(P) and
I(B) respectively. We let k, be the numbers k;(u) £for ueP,
i= 0,...,4 and k' be the numbers k;(v) for veB, i = 0,...,d.
We note that k ' # 0 and k,, # 0 but that one of the numbers k'

and k; may be =zero. If cy = 0 then we define 4, to be 4-1,

otherwise we define d, to be d. We define 4, similarly.



Known families of distance-biregular graphs.

(i) Complete bipartite graphs.

The complete bipartite graph K, ,, has intersection arrays:

* 1 b. and *_ 1 b]

b, (b;- 1) * b) (b,- 1) *
These are the only distance-biregular graphs of diameter two.
ie: d,= 4,= 2.

(ii) Quasisymmetric 2-designs.

Let I = (P, B) be a quasisymmetric 2-(v ,b! ,c,) design with
block intersection numbers m, = c] and , = 0. Then, the
incidence graph is a distance-bireqular graph with d,= 3, d,= 4
and intersection arrays as below.

* 1 C. b! and * 1 c! cl b!

The value of b, is determined by the usual design condition
(v - 1= Db,(k - 1); thus b,= (v - 1)c,/(b!- 1). The value of c]
is determined by taking a non-incident point-block pair u',v'
and counting flags (u'',v'') where u'' 1lies in v' and v'"!'
contains u'; thus bJec, = c)c!. Hence the arrays are completely
determined by v, b!, ¢, and c! . Conversely, any

distance-biregular graph with 4d,= 3 and d,= 4 is the incidence

graph of a quasisymmetric 2-design with'/u.= c; and = 0,
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[Pl := 1 + k, + k, + ... + ko =k," +k,'" + ...+ k.,
|Bl:=k, + k, + ... +k,, =1+ k," +k." + ... +k,',
where d' 1s the largest even integer less than or equal to d,
and d'' is the largest odd integer less than orx equal'to d.

Wwe also have |P| .b, = [B]| .b..

Proof

Let u,v be arbitrary vertices in P, B respectively.

(1) The first two expressions follow by counting edges between
Fi (u) and Fu‘(u). The second two expressions follow by

counting edges between r;(v) and rl“(v).

(ii) A vertex in [ﬂi(u) (respectively fa(v)) has degree b,

{respectively b,') if i is even and b,' (rxespectively b,) if i

is odd.

(iii) Let u be adjacent to v. Choose a vertex xe [ (u)n ﬂﬂ(v).

Then the b; neighbours of x in [

L{u) lie in [, (v), so b, ' » b;.

1N

By symmetry b, > Db.'.

L

{iv) With uw and v as in (iii) we can choose a vertex

xe (unl (v). The c; neighbours of x in Cﬁ(u) then 1lie in
F(v), so ¢,' »c, . By symmetry c.,, > c;'.
(v) Clearly P = {uru [, (w)u M (u)u. . . v r@(u)
= [ (u)u My (v, o cu )
and B = [ (v)u My(viv. . vl .(v)
= {viv M, (Vv N (viv. . ul(v).

Now count the number of edges Jjoining P to B in two ways to

get



(v) Generalised n-gon.

A generalised n-gon is a distance-biregqular graph,and not a

distance-reqular graph, if the number of points on each line

s + 1 = Db} differs from the number of lines through each point
t+ 1 = b, . The intersection array for a point vertex is as
below.

* 1 1 1 1 ... 1 t+1
t +1 s t S t .. . s *

(vi) The Johnson Biregular Graphs JB(k, n).

Considexr the set {1, ... , n}.

Let P = {k-subsets} and B = {(k + 1l)-subsets} for k a positive
integer 1less than n. If we consider the graph " with vertex set
Vi = Puv B and adjacency defined in the usuval way (ie: if ue P
and ve B then ﬁ«v v 1if uc v) then we have a distance-biregular

graph. The intersection array for a vertex in P is:

* 1 1 2 . . i i .
n-k k (n-k-1) (k-1) . e (k-i+l) (n-k-1) o e e

. +« (n-k-1) (n-k) {(n-k) if k >n -k
« .. 1 (2k-n+1) * J
or . . . k k (k+1) if k < n - k.
. . 1 (n-2k) * }

(vii) The g-anologue Johnson Biregular graphs JB (k, n).

Consider an n-dimensional vector space over GF(q), where q is



the power of a prime.

Let P = {k-subspaces} and B = {(k + 1l)-subspaces}. If we
consider the graph [ with vertex set VI = PuB and adjacency
definéd in the usual way (ie: if ueP and v e B then u~ v if
uc v), then we have a distance-biregular graph. The intersection

array for a vertex in P is:

* 1 1 N | qt -1 . ..
q-1 q-1
qn-K_ 1 qKH_ q an_ q .. qxﬂ_ q‘ qn.x_ qi ..
g-1 qg-1 qg-1 g-1 q-1
g -1 g - 1 g~ - 1 if k >n - k
g-1 g-1 g-1
. n-K-1 q K+t _ q n-K *
g-1
or A A g -1 g~ - 1] if k < n - k.
q-1 g-1 g-1
e gf g~ - g x
q-1

(viii) Partial Geometries.

A finite partial geometry is an incidence structure I = (P, B)
with a symmetric incidence 1relation satisfying the following
axioms

(a) each point is incident with t + 1 1lines (t » 1) and two
distinct points are incident with at most one line;

(b) each line is incident with s + 1 points (s » 1) and two

distinct lines are incident with at most one point.



(c) if x is a point and L is a line not incident with x, then
there are exactly « (x> 1) points x,, X,, ... , X, and « 1lines
L,, L,, ... , L, such that xIL,Ix;IL , 1 =1, 2, ... , &% .

The intersection arrays, for << s + 1 and « < t + 1, are:

* 1 1 o t+l and * 1 1 X s+l
[;+l s t S-X * ] [s+1 t s t-x % }
(ix). The following infinite family of distance-biregular graphs
with d,= d,= 4 1s given in [1].

Consider AG(3, gq). We will define the vertices of one part of
our bipartition (B) as the gq*® points of AG(3, gq) and the
vertices of the other part of our bipartition (P) as the affine
planes described below.

Take a "spread" in the projective plane at infinity, ie: a set
of projective lines in the projective plane with the property
that each projective point lies in exactly 0 or d of these
projective lines. Let the number of lines in the spread be s. In
the affine space each of these projective lines corresponds to g
affine planes. Let these s affine planes be the vertices of P.

The intersection arrays are:

[ * 1 q s -1 ¢g
¢ s -1 qg'-gq 1 *

and [ x 1l d glis - 1)/4 s
Ls g--1 s - 4 g*- q(s - 1)/4d *



If our projective plane is PG(2, 2") we can find a spread by
considering an oval and 1looking at the lines that miss it. In
PG(2, 2") we have (2"+ 2) points in an oval so we have

(27 + 27+ 1 - (2'+ 2) = 2"'(2"- 1) 1lines missing our oval.
2

Also, each point in our plane, but not in our chosen oval, has

r-t

2"+ 1 1lines through it and of these (2"+ 2)/2 = 2" + 1 cut the

oval. Therefore we can conclude that each point in PG(2, 2")

r-u

lies in exactly 0 or 4 = 2 lines of our spread.



Chapter 2.

In this chapter we will describe known necessary conditions
which have to hold for a pair of arrays to correspond to a
possible distance-biregular graph. Where possible we have given

alternative proofs to those given in [5].
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Definition

Let " be a distance-biregqular graph such that VM = Pu B. Let
u denote a vertex in P and v denote a vertex in B. Suppose that
w, € V[' such that d(u, w, ) = q, where q is any non-negative
integer less than, or equal to, the diameter d.
We define X,* (u, w,) as follows, 0 < p, t € d.
Kph(u, W, )i= IPP(u) n My (w) |
Suppose that w, € V[ such that d(v, w, ) = q, where q is any
non-negative integer less than, or equal to, d. Then we define
/Bﬁl(v, w,) as follows, 0 ¢ p, t ¢ 4.
Bev, wri= [ Tvya Tytw, ]

Preliminary observations

Firstly we will considercxpn(u, w, ).
1a. o<°$t(ul w,) = O<€10(ul w, ) = 857,'

28. X Y (u, w, ) = 0 if t # g-1 or g+l.

]

X * (u, w, ) =Xy Y (w, ,u) = c, if g is even
/5q'..q'.(w, L)

XY (u, w, ) =X, w, ,u)

cy' if q is odd

b1 if q is even

B (W, u ) b,' if g is odd.

3A0 O(Poi(u, wl) = 6?1 ki .

Secondly we will consider /ﬁﬁe(v PWL ).
/’)e&o(v W) = Sei’-
0 if t # g-1 or g+l.

lBa ﬁ)oq'b (V, Wz )

213,./3,"‘E (v ,w, )



ﬂ, ::,,(V W) =ﬁ," (w,,v ) =c_ ' if g is even
1£f q Is odd
/3,1,,(" W) = ﬂ,.?’,(wz,v ) =b_,' 1f q is even

if q is odd.

3B.ﬁp g lv W, ) = Snk%' .

Notice that in 1A - 3B above oﬁ?gu, w,) does not depend on
our choice of u and w, , and ﬁ%i(v, w,) does not depend on our
choice of v and w, . In these cases we writecx;ﬁ for o<;h(u, w,)
and /3;,,1'5 for /5,,11 (v, w,).

We will now show that we can always write CXPE for Oﬁfl(u, w,)
and /3),& for /_7>P1't(v, w,).
ie: 0<:;(u, w,) depends on q but is independent of our choice
of u and w, and
/B:Q(v, w,) depends on q but is independent of our choice
of v and w, .

Theorem 2.1.

Let I" be a distance-biregqular graph such that VI = Py B.
Choose a vertex ueP and a vertex we V" such that d(u,w) = q.
Then Oﬂ}t(u,w) is independent of u and w, 0 £ p,q,t ( 4.

Proof

Let S, represent the statement:

"o(;ﬂ(u,w) is 1independent of the choice of u and w, for all g

and t".



(1) s, and S, are clearly true since we have mentioned earlier
that &, % (u,w) and «,%* (u,w) may be written as o.* and o, *,
respectively, 0 ¢ gq,t « 4.

(1i)Suppose S, 1is true for all n £ p-1. We will form a
recurrence relation to show that this implies S, is true. We have
two cases to consider and in both cases we count
'quadrilaterals' in a certain way.

(I) g even. In this case we P.

- a
e, .Y + b o v = c, X3 (u,w) + Db, %

Pet tes Pty

. te - t-l P2 t
t &

w 9 w “w % w “w q w

9 .
Therefore &K, ,(u,w) may be written as
pt
1 3
(cbﬂdr-' tn+ bt-.cxp-a%t-. - bP-1 o(p-:l t )/CP

ie: O(P“k (u,w) is independent of our choice of u and w and we
may write oY (u,w) = &}, .
(II) q odd. In this case we B.

' 9 ' 1 = 94 k4
c/, %ot be_,o<9,, - C, X5 (u,w) + bP_,o(

Therefore «,% (u,w) may be written as
(cf, Kbt DL ¥, - bp-2.°<P-1$g /e, .
ie: 0<Fq’t (u,w) is independent of our choice of u and w and we may
write
X (u,w) = X, .

ie: In both cases 5, is true. Hence, by induction, we may

always write o', in place of o ,% (u,w).



Theorem 2.2

Let " be a distance-bireqular graph such that v = P v B.
Choose a vertex veB and a vertex we VI such that d(v,w) = q.
Then /3f;(v,w) is independent of v and w, 0 ¢ p,q,t ¢ d.

Proof

Similar to the previous method.

Next we give several simple necessary conditions on the

intersection arrays of a distance-biregular graph.

Proposition 2.3[5]

We have the following relationships for a distance-biregular
graph:
(i) k., =1, and for each i > 0, k = k. b; /c; ;
k.,'! =1, and for each i > 0, k. ' = k{'b'/c'.
The k; and k' are whole numbers.
(ii) ¢, + Db, =b,, if i is even,
{bo', if i is odd.

c,'+ b,' =(b, , if 1 is o044,
b,', if i is even.

(iii) b.' > b, and b._>» b,', i =1, ..., d - 1.

Lt [ L

(iv) «¢,! > ¢; and c;

i

>IC.L" 1=1’ o'c'd_lc

(v) The following inequalities hold:
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+kz +k + LI +kl=k

L} . |} '
. R, b L4k,

ootk =1 4R HRE oL+ Ky,

where d' 1is the largest even integer less than or equal to 4,
and . d'' is the largest odd integer less than or equallto d.
We also have |P| .b, = |B| .b!.
Proof
Let u,v be arbitrary vertices in P, B respectively.
(i) The first two expressions follow by counting edges between

Fi (u) and [, (u). The second two expressions follow by

Le]

counting edges between F.(v) an@ [, (v).

s

(ii) A vertex in ri(u) (respectively fﬂ(v)) has degree b,
(respectively b,') if i is even and b_,' (respectively b,) if i
is odd.

(iii) Let u be adjacent to v. Choose a vertex xe [ (u)n ﬂﬂ(v).

Then the b, neighbours of x in [

[2Y

(u) lie in [ (v), so b ' » b;.

1

By symmetry b, > b.'.

15

(iv) With u and v as in (i1ii) we can choose a vertex

xel(unl;

ie1

(v). The ¢; neighbours of x in [,_(u) then 1lie in
. (v), so ¢,' »c, . By symmetry c,,,>» c;'.

[N [ 2} [

(v) Clearly P

{futv I (w)v MN(a)v. . . v T (u)

F(u)u M(wu. . culye(u)

and B

MCo(viv Motviv.e o oul (V)

ftviv (Vv Mo (viv. o su vy,
Now count the number of edges joining P to B in two ways to

get



21

le] b, =|B| B,* .

We now turn our attention to the derived ( or halved) graphs
of a distance-biregular graph.

Proposition 2.4. [51

Let " be a distance-biregular graph. Then the derived graphs
of I" are distance regular.
Proof
Let the derived graph on the vertex set of P be denoted by P.
Let ue P and consider P; (u) = Pﬁ(u). Take we Pj(u) and let
al := |P; (w)n P, (w)]
c* 1= |p.(u)n P, (w)]
and b* := |P, (u)n P, (W) .
3

2
Then aj‘ =0 Cj‘ =O(zj-1Jil and b;:o(

2j
2jer 2°

ie: The derived graph on the vertex set of P is

distance-regular.

Similarly for the derived graph on the vertex set of B.

Lemma 2.5(5]

(a) Ca Gy < czi' Czi-:. » 1 > 1.
(b) b, b, =b,' b, i1,
Proof

(a) Let us consider a distance-biregular graph [ . We will
st
count /3, ,., in two ways

2iH UM
(i) ﬂl it = O<2i—| 2 = C 2{41 c:.i./Cz"
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= Cul G ... 0, = C) ol
c,! ... c.! c,!

2i=y 2

Therefore c,; c,,, = ¢c,! c,! .

(b) Let the number of vertices in P and B be n and m
respectively. The number of edges in " is given by:
n.b, = m.b,'.
We now proceed by induction.

(i) The number of pairs of vertices at distance 3 is

n.b,.b, .b, (for paths starting in P)
C, .C,
= m.b,'.b,'.b," {for paths starting in B)
c,'.c,'

Therefore b,b, = b,'b,".
(ii) Assume the result for pairs of vertices at distance up to
2i+1. Counting paths joining pairs of vertices at distance 2i+3
we have:

n.b..b, ... biu,.b. (for paths starting in P)
C,.C; +.. C,,,-C

2042 143

= m.b.'.b,'" ... b,.).b.% (for paths starting in B)
c,'.c;' ... c,l.c.!

2i+)

Hence by (a) and the inductive hypothesis

bziu bl = b b

'
i+2 2ie 2i+2 *

Lemma 2.6.[5]

A distance-biregular graph cannot be regular.

Proof.

We suppose b,= b! and show that ‘the two arrays t(P), ¢ (B)
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would have to be identical.
Let " be a regular distance-biregular graph. Then b,= b! and

the first two columns in each array are the same. Suppose that

the arrays are equal up to the (2j - 1)-th. column for some
j 21. Now b, b, = b; b}, for every i. Thus b = b} implies
b, = bé and hence (as Cyy + bzj = b, =b! = c% + b ) Cq = chy .
We also know that c¢,,c, = cl,cl. for every i, so C,y = c;j
implies c,, = cé”and (since b,= b! ) we also have b, = béﬂ. Hence

the two arrays are identical and the graph is distance-regular.

We will assume from now on that we have a (non-regular)

distance-biregular graph with b, > b! .




2w

Chapter 3

This chapter is divided into two parts. The first part deals
with the general case of when a pair of arrays are feasible for
a distance-biregular graph ['. The second part then deals mainly
with the case when [ is a distance-biregular graph of girth 4.
In [5] it 1is shown, by considering eligenvalues, that the
diameter of a non-regular distance-biregqular graph is even so we

will use this fact in the later parts of this chapter.
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In this chapter we will suppose that " is a distance-biregular
graph with the same notation as used in the previous chapters.
We will continue to find necessary conditions for a pair of
arrays to correspond to a distance-biregular graph.

Lemma 3.1.

We have the following necessary integrality conditions:
(a) (i) ¢, divides c,_c,. and c, C,.,

(ii) c,' divides ¢, c,!' and c,! c,/!

3% 2 2¢+y  *

(b) (i) ¢, divides b, _b,; and b,; b

2i- 2l °

(ii) c,' divides b ' b.' and b,! b,/ .

Proof

(a) Both (i) and (ii) follow from Proposition 2.4 and Lemma 2.5.

For example for (i) we consider cf = ¢,_c../c, and
kX241
o<1 2{-) = cliuczi_ s s . c3 = CriniCae .
Cli—l c1, C 2

(b) (1) This follows from b* = b, b,,/c, and
/31;«-9.: byt by /cy = by b /ey

+

(ii) is similar.

The first part of the following 1lemma will be proved in two
ways. The first method uses Lemma 2.5 and Proposition 2.3 and

the second shows the use of an intersection diagram.

Lemma 3.2

The following conditions must be satisfied.

(a) (i) bu-.(c‘zl_ c,! ) = bz’ (C,_.\' - cu-:);

2iy i1
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(11) b,; (€' = ) = b (e, - €. )i

(b) (i) cziﬂ(b:.i— blif’i ) cz(:n (bzi' - bztu);

(i-i-) cll (b,_i’ - bq_{“) c g (bti_ bti:l )'

Proof

(a) b'u'-r (Cu:— cu.'. ) = bﬂ-i-a(b° - bzl_ czi:; )
= b° bﬁ-! - b 2e sz-' - bti—t C'L'L"'
= b“ bn-- - b zi‘ bu_: - bzi-u czi.-'!

(b° - c ! )b-z..',-t_ bzi'bu-'l

2=

b ' (b, - b,")

-1 2¢

b.' (b,'- ¢

1i-t

- b°| + CL;_')

2t

b ' (c,.t "C,_i__,)-

20y ¢

Hence (i) holds.

If ¢,,- ¢c,' = 0 we must have c,'- c,..,= 0 so (ii) clearly

holds.
We may therefore suppose that c, # c,.' .

We know that b, b, = Db,' b ' so we have
bzi-n = C 'L'n' - C 2i-1 = bzl '
! c.-c ' b

Lie 2 2i-t 2L

Whence (ii) follows.
(b) Similarly
CZL (bli'_ bliol) = czc‘.(bzi'- b°'+ cziu)

= - 1 ] ]
czi cu + czi. C‘L(+I

= ¢’ (o), - ey)

et

=c.' (b,- b.' - c,.)

2 1t

c..'! (b,- b, ).

1. 2844
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Hence (ii) holds.

If b, - b, = 0 we must have b, , - b,,! = 0 so (i) clearly

244y it

holds. We may therefore suppose that b,! # b . We know that

2+

- ! '
c,; ¢, = ¢, ¢,! so we have
Cai = ba:i - bu:. = Czl!. .
Cli.' bz'.,'— b;;+, cl'\.ﬂ

Whence (i) follows.

We now give an alternative proof of the first part of the
previous lemma to show the use of an intersection diagram.
Let Xe P, ye¢ B and write
FP1:= Mo (%) N f;(y), where [ (z):= {w : d(z,w) = p}.
In the following intersection diagrams the setsl}iare denoted
by the black dots. Two dots are joined by a labelled edge in the

intersection diagram if there are E edges (respectively F edges)

from each vertex in r¥1 to f}@, ( Pwy to r}$ respectively).
E F
r‘Pﬂ— i FPI$I
The following intersection diagram summarises the graph

structure relative to the edge x,y.

DISTANCE
FROM

g

DISTANCE FRoM ¢
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ie: For a general 'square'.

Alternative proof of Lemma 3.2 (a).

(a) 1f ¢,; = ¢, then b,~- ¢,; = b,- c,;! , ie: b,, = b, ', and since

s ° 2 24 2i-1 7

b,.,b,, = b,\b,,' we must have b, = b,;' and this gives us ¢, = ¢,/

L T2

so the results are trivially true. Let us suppose c, # c,'.

2i~1

We count paths of length 4i -1 from x to y via r and [;

i 21 i i

in two ways, first starting at x and then starting at y.

’
Carp=Crimr
’
C2i=Chin
‘
Caia

&

b, . 2i-1

From the diagram we obtain

b,'b," ... b '(c,'- ., )c, ) ¢, .0 c,'c,!

(-2

= b: bz ¢ bz‘m(czi - C‘Li-'l )cii-i Ciiae s €3G

ie: b '(c,'- ¢,,) = b, (Cc.i- c;.t).

2

We also have b, 'b,'! = b, b, so b, (c,;'- c...) = b,'(c,, - ¢c..})

i1 2i~y
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Shawe-Taylor in (51 p.34 proves the following feasibility
condition.

' Suppose the intersection matrix I(A) corresponds to a
distance-biregqular graph N.Let X be the 1right eigenvector of
I(A) corresponding to the non-zero eigenvalue 2 and satisfying
%X,= 1. Then the coordinates of x must satisfy

Oo x5 /ke = 2 xS /k. "
i even i odd

We show 1in the following that this condition automatically
holds whenever a matrix has the form:

0
m,,
0
m,,
The k, are defined in the following Theorem.

This means that when we consider distance-biregqular graphs
where 4d ¢ 4 we need not check that this result holds as the

condition is automatically satified.

Theorem 3.3.

Let

We define
k, =1; k, =m, ; k, = m,, m,,/m,

and k3 = (mz, msz m“s)/(mzs m;lp ) .

If we let x = (1 x, x, X, ) be the right eigenvector of M
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associated with the eigenvalue A ( # 0) then we have:

X + X = x,* + X,

K. K. X, K,
te: 2.  x.“/k., = 2,  x./k.

i even -1 odd

Proof.
Consider the entries 1in x. Since X is the right eigenvector of

M with associated eigenvalue A we have:

0 1 0 O 1 1
m,, 0 m,, 0 X, = A X,
0 m;; 0 m,|[x, %,
0 0 m,0 X, X,
This gives us: x, = A ; X, = (Ax,- my ) = (A" - m, )
m,, m,,
and X, = M, X, =m, (A - m,)
A m,; A
or x, = Ax, - m, X, = ALA - m, ) - mam,A .
m3" m13 mB‘P

Equating the two expressions for x, means that the eigenvalues
of A are precisely the roots of the following quartic.
43 21 23 32

¥ T
A - (m, m,, + m, + m, m_ YA + m, m m, = 0. (*)

Consider the values of A needed for

xo /k. + x,'/k, = xM/k, + %, /k; (**)
We need 1 + (A -m,) = AN+ My (N - m. ) my,
m, m,, My, m,, Am, m,, m,
ie: (N =my, ) = (A -mu) - mu( 2 -m,) m,
mg-z m13 }‘ mzs m!l
Now, if N- m, = 0 then x,= x,= 0. The second expression for x,

then gives us m,, m,,A = 0 which is not possible since m,,,m,, and

A# 0.
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Therefore, since A # m,, , we have:
'Xm,; m,, = AN = m,,) - m, m, (A -m,)
ie: A'- (m,m,, +m, +m,m,)A + m,m,m,= 0.
Therefore the eigenvalues of M are precisely the values of A for

which (**) holds.

Theorem 3.4.

Let 0 1 0 0 O
m, 0 m, ;0 O where m,, ,m,, ,m,, ,m,, ,
M= |0 m0 m,O
0 0 m,0 m, » M,,,m.,mg,# 0.
6 0 0 m,»=O
We define k, =1; k, = m, ; k, = m,m,;,/m,, ;
k, = (m, my,m,,)/m,,m,, and k, = (m, my,m,,m;. )/ (m,,m,;, m,s).

%x. ) be the right eigenvalue of M

If we let x = (1 x, x, Xx .

associated with the eigenvalue A( # 0) then we have:

X: o+ X: +  x. = x* + x;
k, k:. kn» kl ks
ite: D x'/k, = > x/k,.
i even i odd

Proof.
Consider the entries in x. Since x is the right eigenvector of

M associated with the eigenvalue A we have:

0o 1 0 0 O 1 1
m, 0 m,0 O X, X,
0 m, 0 m,O X, = Alx,
0 0 m,; 0 m,]|x, X,
0 0 0 m,O X, X,
This gives us: x, =2A; X, = (Ax,-m, ) = (A -m, ) ;
m,;, m,,
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X = 7\x1 - m,, X, = N7\1 - m, ) - mzzmzs’]\
msl’, m13mS'P

?\(7\1 - (mzu + m,,m;, ))

ml3m3‘r
X, =M, X, =m,(¥- (m, + m,m,,))
A m,, My,
2 2 2
or X, =AX,= MuX, = A(A - (m,, + m;;my,)) -m,m (A - m,, )
m,, m,;m, m,,

Equating the two expressions for x, means that the eigenvalues
of M are precisely the roots of the following quartic.

m_ A

™
AT - (my,+m,my, + M M+ m, M

+ (m,m m. +m m.m +m m.m.m, )=20 (%)

Consider the values of A needed for

X + %' + % = x; + x; (%%)
K. k, K, K, K,
fe: 14 (N = m, ) + Mmymg, (A - (s + ma,my,))
mzu m13 m31 mzl mzs mzz mstr m»3

k3

2
= 7\1 + 7\(7\1- - (m,, + m,, my, ))
m m'u m23 m32 m}» m‘rs

24
T by 2
=>m, m,m,m, m_+m,m (A-m, ) +m,m, (A~ (m,, + m_,m,))
- T X 7\1_ + 2
= A m,, m,, My, m, + A (m,, m,, My, ))
2 k3
=D(A = (m, + m,,m, )N - m, . m;, )

2 2 z
=m, m_ ((A -m, ) - Am,,m_+ m, m,m,)

L k3 £
mzl"mws(?\ - (2mz, + m13m31)7\ + (mzp + m1|m13m31 ))
K3 kS
=m,m (A - (m, + m,;m;, I(A - m,, ).
Now, 1f A= m, + m,,m,, then x, = x, = 0 and, since we also have

2
m, X, +m _X, = AxX,, X, = 0 . Therefore A=m

432 ws T n and m,, m,,= 0

21
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which is a contradiction since m,, m, # 0.

: 2
Therefore, since A # m,, + m,, m we have

32 7
T T 2
(A = (m+ mym, NIA = m mg,, ) =m, m, (A -m,)
™
SA - (my, + m,,my, + m,, m 4 m,,mg, JA°
+ (mu ms»mus + mz: mlrs ms» + mzs mzz m»,s msu—) = 0.

Therefore the eigenvalues of M are precisely the valﬁes of A

for which (**) holds.

We will now £find some inequalities involving the size of the

blocks [';(u), where ue P.

Lemma 3.5.

Let ' be a distance-biregular graph of diameter d. Then

C 4 (bu-,- 1) + bzi (czi.ﬁ— l) \< kli -1
Ca

for 2 £ 21 < 4

Cyiy {byi,- 1) + b, (Cu - 1) £ k-1
c,'
for 3 ¢ 2i - 1< 4.
Proof.
Take two vertices u, u'e P such that d(u, u') = 2i. Since

u'erh(u) there are ¢, vertices in rLﬂ(u) each of which is

connected to u' and (b,,6 - 1) other vertices in f;i(u). There are

2i~1

also b, vertices in Euﬁu), each of which is connected to u' and

(c,..,- 1) other vertices in r;(u). The vertices other than u' are

2+

each counted ¢, times so by considering the number of vertices
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in r;(u) we have our first result. The second 1inequality

follows similarly.

Note that if 21 = d we have

cw (b - 1) ¢ k-1
C

2

and if d = 21 - 1 we have

C:i-l(bu-z_ 1) \< k. -1.

Y 2i-t
c.

By the same method as the above we also have a

result if we consider vertices (v, v') in B.

similar

The following was proved independently in the preprint [1]

which was never published.

Lemma 3.6.

Let " be a distance-biregular graph with the usual notation for

its intersection arrays. Then the following inequalities
clt > bl ca and C,,> bd e},
b, b,
bzv'.> L b;u. bz'i-:> b. bzi—l
b/ b
i = 1'o.o,d/2-1 i = l,oou,d/z

Proof.

We will actually show by induction that we have

b;- < b,' < C,!; and , bxi-: < b: < C-u-.
b;i bo Czi b:.i-l bo c:i-l

(i) Since c¢,= ¢! =1 and b,b,= b'! b! , from Lemma 2.5, we

' 2

hold.

have
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b, = (bl- 1) < bi< 1 =¢, and b. = b! < b! .
b/! (b,- 1) b, 1 c,' b! b, b,
".b! =b! -c} <b! (b-¢,) =Db! -c, bl — b < ¢}
bo bo b © cz
fe: b! < b! < ¢! .
b. b, c,
(1i) suppose the results are true for all terms 1less than or
egqual to 2i.
Then, by Lemma 2.5, c) c = C,.C,.,r S0 by our induction
hypothesis €. = Cu, > b!
Ca cz'aq b°
This means that bJ- b, = ¢,,.,> b ¢}, = bl (b, - b))
b, b,
and this gives us bua < be <  cCai.
bﬂ.iﬂ bu c;'uq
Now, since b, . b,., = b! b' we have b,..= b, < b!
b... b.u. b,
Therefore b, - c! < b! (b,- c,,,) so b'.. < b} < cl.,
b b b, c

o

This gives us the required result.

As a

big as 4, , and since 4 is even, d

Corollary 3.7.

4, = 2i=>d, = 2i.

Proof.

Since

consequence of this we see that 4, is always

8

Lie2 2ie2

at least as

iIs even.

the diameter of the graph is even we know that d, = 2i
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or 2i-1. Suppose d,= 2i-1.
b

L=} — 1i-1

Then c. > b! ¢!
b,

b.

Therefore dP 21 ::;dB = 21.

Note that this means that dg= 4.

The fact that k,= b,> b} = k! is part of our basic hypothesis.
The following shows that this is the simplest case of a more
general result.

Lemma 3.8.

Let " be a distance-biregular graph. Then

ko +k, + .00 vk, 0> kU +H kT L4 kﬁ;
0 igdrz - 1.

Proof.

Consider the following diagram.

v | L.——’""——
/.< ——]
. ? uef
W .
Plw) r:(u.) f'e(u.) r‘t"(u)

We will consider the sum k,+ k,+ ... + k,. By Proposition 2.3

we know that for i > 2

kl = b.b,.o. b.‘,-', So
C,_..- CL
k, +k, + ... +k, = b, + b,b, + ... + b,b, ... b, .

c, c,... C,
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Now consider a vertex ve Bnl'(u) and the sum k!+ ... + k!. This

sum represents the number of vertices at distance at most t from

v. Since d(u, v) =1 all the vertices at distance (t - 1) or

less from u have to be at distance at most t from v. Also, for a

vertex

to be at most distance t from v it must be at most

distance (t + 1) from u. This leads us to

k|

Therefore

3

+ ... + ki =Kk

+ ... + k +bbi... beo+ b.b,... b,
c; ...Cl C, ...CL

3

Sk, - k;:kt-(b,bl... b.. + b.bz...bt>
Xz

et c; ..., Ci ...C}
=b,b ... by - bibs... by /1 + b
C,... C, c! ...cl, c!
Let t = 21 + 1. This gives us
t [
>k, - 2k} = b. b, ... b.,-Dbbi... bolc! + b,)
==t =t C,... C, c! ...cl ct

= by;... b, (b,- ¢! - b,)
C,-... C,

(by Lemma 2.5)

= b,... b (bl - b} >0
C’_..C Ck

(since Db!

2i4;

> b.buu> byu).
b,

The same proof shows that k] + ... + k], > k,+ ... + k,; provided

L]
c;; < c

X0

We will show in Lemma 3.15 that this holds for all i if

M is of girth 4.
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We know from Lemma 3.6 that ¢! > blc, /b, and we will now find

another inequality which

Lemma 3.9.

1f " is a distance-biregular graph then

will restrict ¢! and c, further.

c,» c! with

distance-regular graphs.

if and only if c,=c! =1 (ie: [ 1is not of girth 4).
Proof.
b,b, = b! b} from Lemma 2.5 so (b] - 1)b, = (b,- 1)b!
Therefore ¢, = b,- b, = b,- (b.- 1)b}
(b)- 1)
This gives us ¢, = (b,- b!) + b! - (b.- 1)b!
(b)- 1)
Since b! ¢ b! - 1 we have
c, » (b.- bi)b! + bl - (b.- 1)b]
(b!- 1) (b)- 1)
= b! + bl{b.- b!- b, + 1)
(b)~- 1)
= b! + b!{ -bJ+ 1)
(b)- 1)
= b! - b! = c!.
Therefore ¢, > ¢] with ¢, = ¢! if and only if b! = b!- 1
ie:tc,= ¢y = 1.
Combining our restrictions on c, and c! gives us
c, »c! >bl c,
bo
The following Lemma is a generalization of a

It will be used later to enable

us

result for

to
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find a bound on the diameter of a distance-biregqular graph of
girth four which is easily seen to be an improvement on the
bound d € b! - ¢} + 2 given in [51.

Lemma 3.10.

Let ' be a distance-biregular graph with the usual

intersection arrays. Then the following results hold.

(a) 4, > 1 + 3 == c; € b if 1 + J is even
{;; £ by if 1 + 3 is odd.

(b)y 4, > 1 + 3= [c! < Db] if 1 + J is even '
(ci < b; if i + J is odd.

Proof.

(a) Suppose i + J 1is even and wue P. Take u'efﬂ(u) and

u"eflﬁu)nri(u').

N /"‘;—_ —_——O'Ji\
ie: « /
ri(“) Fiaj ()
Then ¢; = |[(u')n ] < l F(u')/\fh'(u)l = b, .

Now suppose that i + j is odd and ue P.

Then ¢! = [[M(u)nl_ (u')]| <« | Ctutin L] =b; .
Therefore c; € bj if i + j is even
and c! < bj if i + 3 is odd.

(b) This follows similarly, just take v e B.

As a simple consequence of this we have the following.
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Corollary 3.11.

Let [~ be a distance-biregular graph and suppose that
c) > b} . Then ;= 2 and ' is K, ,..
Proof.
Suppose that ¢! > b! . By Lemma 3.10 we have d, < 2 + 2 = 4,

Now d, is even, by Corollary 3.7, so therefore d, = 2 and hence

the intersection arrays are

[* 1 b/ and * 1 b,
b! (b,- 1) * b, (b!- 1) *

This means that for any distance-biregular graph, other than

Kb.,b,’ r C1 £ b]

: so cl & b'/ 2

Since the only distance-biregular graphs of diameter two are K, .

we will restrict ourselves to dgraphs of diameter greater than

two.

Corollary 3.12.

Let [ be a distance-biregular graph (other than Ky, 1) - Then
c! b/ 2 and c;< b./ 2

Proof.

From above ¢! € b!/ 2 and since, by_ Lemma 3.6, ¢! > bJlc,/b,

we have

\4
0

>b! c, . Therefore ¢, < b. .

b!
2 B 2
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From now on we will restrict ourselves to the case where the

girth, g, is four.

The first result we consider 1is a stronger version of
Proposition 2.3 (iv).

Proposition 3.13. [1]

Let [ be a distance-biregqular graph of girth 4. Then
c! > cy and c., > ¢! for 1 ¢ 1 < 4,.
Proof.

We have girth 4 so we know from Lemma 3.9 that ¢,> c; > 2.

Let xe P and {x,, ..., x,} be its neighbours. Then any pair
(x;, x;) have to have c); common neighbours and be included in
(c] - 1) 4-gons (with x). Let yeB and {y,,..., Yy} be its
neighbours. Then any pair (y;, yj) will have to have c, common
neighbours and be included in (c,- 1) 4-gons (with y).

Let i be even and ue P. Take p e B such that pefhﬁu) and let the
c;,, neighbours of p in '.(u) be {g,,..., d..,}. Also, let the c;
neighbours of g, in rLju) be {r, ,..., rci}. Then the c (c; - 1)
cycles of length 4 containing pgq, and one of the edges q.r; are
amongst the (¢, - 1l)(c, - 1) cycles of length 4 containing pq,

and one of the edges pg, . Hence

(c.

(€]

- 1)(c, - 1) 2 c;(c! - 1).
In the same way for a vertex v e B we have
(c¢! - 1)(c) - 1) > c! (c, - 1).

Now, since c¢,> ¢! > 2 we have
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c,, -1 3> c! -1 » c!
1l

C; c, - cLh -1

ie: (ci, - 1)(c!

4

- 1) 2 c,ec! .
The case for i odd follows similarly.
We know from Proposition 2.3 (iv) that c' »cand ¢c,.,.,>» c!
but we will now show that we cannot have both of these
inequalities as equalities.

Suppose ¢! = ¢, and ¢, = c' . Then

(E 4] 3 (241 3

c,c! = ¢l o> (¢!, - (e, - 1) »ce!
Suppose ¢, > ¢! .

Consider two adjacent vertices u and v with u e P and take.a
point p such that pe [, (u)n [(v). Then, since c_, > c! , there
is a neighbour q of p such that gel;(u)nl] (v). This means the
neighbours of q in Fi(v) cannot all be in fﬁﬂ(u).

Hence c&'> C;.
Similarly if ¢! > c¢; we have ¢, > c! . Therefore we have our

Lt

result.

As a simple consequence we have b' > b, and b, > b!
We will now generalise the result c¢,> c] which we obtained

from Lemma 3.9.

Lemma 3.14.

Let ' be a distance-biregular graph of girth 4. Then

c,. > ¢, 2 21 €4, ; cLh.> o, 2 21 €4,-1.
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Proof.

We know from Lemma 3.2 that b, (c,, - ¢l ) = b} (c! - c,.) and

iy

,/b, . Proposition 3.13 gives us the

20

from Lemma 3.6 b/, > b, b

results ¢, > ¢} and c! > c so we have

EX 2i-1 2i-1

bu'.—| = C !( - C,;-, < be’ < 1 .
b, C, — CJ., b,
Therefore c, > c) + (cf.,- c,.,). (*)

We now proceed by induction.

(i) Let i = 1. We know from Lemma 3.9 that c, > ¢! so since
c,c; = Cc;c; Wwe also have cj > c, .

(ii) Suppose the result is true for all pairs up to C,,> Cl,
and c},> C,.,. Then c,; > ci; by (*) and since c, ¢, = chcl,. .,

cl > c

2iv1 1iet ®

Hence we have our result.

We are now in a position to prove the result stated after

Lemma 3.8.

Lemma 3.15.

Let " be a distance-biregular graph of girth four. Then

k! + ki + ... + k], >k, + k,+ ... +k

2{

1 <1ig4,/2.
Proof.

We know from Lemma 3.8 that

t [
2ok, - 3>k} =Db.b,... bey- b, ... b, /1 + b,
= <=1 C,.. C, cl... ¢}, c!

2
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I1I£ft =21, ¢g... ¢, =¢c}... ¢!, from repeated application of

Lemma 2.5 (a).

t t
Therefore  J>.k. - >,k' = b, ... by (& -1 - _b,_)
==t = C, «ee Cey \C, c!

=b,... b, (b,c! - c.c! - brc,)
c.... c, c.c,

= Db, ... b {((b, - Ce )ct' - btct)
C o e @ cb-' c&ct.

= b. o o & bg-. (bbcg - becb)
C

P - c.c!

=b.... bt-lbt (ct! -ct)
C,... C,, C¢ c.

< 0 from Lemma 3.14.

Hence we have our result.

The following result gives us another bound for ¢, , but this
time we consider a design within a distance-biregular graph to
obtain our inequality.

Lemma 3.16.

Let P.be a distance-biregular graph of girth 4, and diameter
greater than two. Then ¢, b'- 1.
Proof.

Let ue P. Consider [ (u) and rl(u) as the points and blocks
of a 2-(b,, c,, c! - 1) design. Then by Fisher's inequality the
number of blocks is at least as large as the number of points.

ie: Db_(bi- 1) > b,.

c.

Therefore c, £ bS -1 .
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We will now investigate what happens when ¢, takes certain
values.
Case 1.

Ssuppose c,= b! - 1 and let ue P.

This gives us lﬁ(u)l =k, =k, = ﬂju)l and therefore [ (u) and
F,(u) form a symmetric 2-(b,, ¢. , ¢% - 1) design. We will show
that this means that our distance-biregular graph |' is the
incidence graph of 3-(b,+ 1, b! , ¢! - 1) design.

We will refer to the vertices of P as points  and the vertices
of B as blocks. Firstly we note that since [M(u) and ([ {u) form a
symmetric 2-(b,, ¢c,, ¢! - 1) design any two points in fl(u) have
(cy - 1) blocks in ['(u) in common, so any two distinct points
in [, (u) are at distance two in ['. This means that u and any
two points in [ (u) have (c', - 1) blocks in common. If d,= 3
this clearly means that [ could be represented as a 3-design as
stated above as any three points would have (¢! - 1) blocks in
common. Therefore let us suppose that 4,3 4 and use this to get

a contradiction.

Consider the diagram below.

(it “

(W) My ()

ie: u'e MN(u) and u''e M (WA I (u").
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Let us turn our attention to u'.

1 o«
zz /70
u’ L] L] .
o

——1

Mw) 244 w)

Since [ (u') and [ (u') also form a symmetric 2-design any two
points in [,(u') have (c} - 1) blocks in common. However, u and
u'' are at distance four in[ and not distance two. 2«
Therefore if c,= (b! - 1) [" is the incidence graph of a 3-design.
The intersection arrays for [ are below.

* 1 bl- 1 b! ® 1 c; c, b!

and

b, b'-1 b, - (bl!- 1) = b! b.,-1 b! b; *
b!, ¢!, b} and c} are found by using the conditions ,b,= b'b!
b! + ¢! =Db! , c,c;=cic}y and b} + c] = b,.

Theorem 3.17 below will show us that in the special case where

we also have k,= k,,

Theorem 3.17. [5]

The existence
to the existence

arrays as below.

[ * l
4n-1 2n-1

the design is a Hadamard design.

of a Hadamard matrix of order 4n is equivalent

of a distance-biregular graph with intersection
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Proof.

Firstly let us suppose that we have a Hadamard matrix of order
4n. By multiplying certain columns and rows of our original
matrix by -1 we can form a new Hadamard matrix, H, where the
first row and first column only contain +1's.

je: H has the form 1 1 ... 1

Since HH® = 4nl each row (and column) must have 2n +1's and 2n
-1's, where any two rows (or columns) 'overlap' , or intersect,
in n +1's and n -1's.

Let H' be the (4n-1)x4n matrix obtained from H by deleting the
top row. We will now show how to form a distance-biregular graph
from H'. Let our points be the 4n columns of H'. Our blocks are
formed from the (4n-1) rows of H'. Each row gives us two blocks.
The first is defined as the set of points formed by considering
where the 4n columns intersect the row in +1's and the second by
considering where the columns intersect in -1's. This gives us
our 2(4n-1) = 8n-2 blocks each of which contalin 2n points. If we
take any two distinct points they intersect in (2n-1) blocks
(since any two columns of H overlap in 2n <rows and we have
removed one row where they overlap). If we take any two distinct
blocks they overlap in n points or 0 points since the rows of H

overlap in n +1's and n -1's. From these conditions we can form
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a distance-bireqular graph with arrays as shown (%*).
Now let us suppose that we have a distance-biregular graph with

arrays (*). Let us consider the following.

() = "

r(v) [ My vy IRC))

Take any vertex v e B and pair it with the unique vertex
v'e [ (v). By doing this for all vertices in B we obtain (4n-1)
distinct non-ordered pairs and we will use these to give us the
rows of a (4n-1l)x4n matxix H'. Label the 4n vertices in P by
1, 2, ... ,4n. Take a pair {v, v'}l as described above, v, v'e B,
If v is connected to vertex ie P 1let the ith. entry in the row
be +1 and if v' is connected to 1 1let the entry be -1. (Note
that the choice of which of our pair of vertices is v and which
is v' is arbitrary.) If we do this for each of the (4n-1) pairs
of vertices we form (4n-1) rows each of which has 2n +1's and 2n
-1's. By considering another such pair {w, w'? we have the

situation below.
v Z:z 4 \\@> v

This means that any two rows intersect in n +1's and n -1's. If

we now form a 4nx4n matrix H from H' by adding a first row of

+1's we see that we have a Hadamard matrix of order 4n with
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Case 2.

Suppose ¢, = b)- 2. (So b! » 4 since g = 4.) We will show that
this means that c¢] = 2 and that we only have two possibilities
for ¢, , namely (b~ 1) and b! .

We know that b, b, 1is divisible by ¢, so since (b!- 1) and
(b)- 2) are co-prime we can deduce that (b!- 2) divides b, .

ie: b, = x(b!~- 2) for some integer x.

Consider b,b,= (b!- 1)(b,- c,) = (bl- 1)(x(b!-2) - (bl~- 2))
= (b)- 1)(x - 1)(b!- 2)
and b'b! = (b,- 1)b! = (x(b!-2) - 1)b!

x(b!- 2)b} - b! .
Since b, b,= b'b! these two expressions are equal.

ie: (bJ- 1)(x - 1)(b}- 2) = x(b!- 2)b}! -~ b}
By dividing both sides by (b!- 2) we see that (b/- 2) divides b!.
Since we have girth four we know that «c¢! > 2 and b! + c! = b}
s0 we also have b; { b/- 2. Therefore b] = bl- 2 and ¢} = 2,

ie: (b}- 1)(x - 1) = x(b)- 2) - 1

Xx(b)- 1) - (b!- 1) = x(b!-2) -1

Therefore x = (b)- 2) and b,= (b!- 2)" .
Our arrays start as

* 1 (b2~ 2) o o e

(b)- 2V (b'- 1) (b'- 2)(b}- 3)



50

and * 1 2 o o . .
b! (be- 1)(b!- 3) y(b:- 2)

Let us consider a vertex ueP and the two sets [(u) and [,(u).
If v,,v, €[(u) then, since ¢! =2, |M(v,)n M(v,)n [ (0)]| = 1.
We will therefore refer to the vertices of ["(u) as points and
the vertices of r;(u) as lines. (So we have any two points are
on exactly one line.)
| M w)] = (b2- 20 and  M(u) =(b!- 1)(bl- 2) = (b~ 2)" + (bl- 2).

This suggests we should be 1looking at ["(u)ul,(u) as the
incidence graph of an affine plane of order (b!- 2) so we will
investigate further.

Suppose u,el(u) is a line and ve ["(u) is a point not on u, .

2

. 0 |
@i’i}-%m

r(w) r“(u)

We will show that there is exactly one line through v which has
no point in common with u, (ie: there is exactly one vertex, u'
say, in F,(u) such that uv but u' is not adjacent to any of
the (b!- 2) neighbours of u, in [ (u) ).

Suppose v, ,v,e "(u)n ["(u,). Then v,~u, and v, v, have one common
neighbour 1in [,(u), u, say. So, each of the (b!- 2) vertices in

" (u)nT" (u) has one common neighbour, with v, in [, (u). Suppose
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that v,,v, have the same common neighbour, u_, say, with v in

k3

r, ().
//oul
« <—-< 74?
~ A | '
r(w) My ()

Then, from considering v, and v, , ¢} » 3. =

Therefore there is just one line through v missing u,(ie: there
is Just one vertex, u'' say, in Fz(u) such that u, and u'' have
no common neighbours in [’ (u) ). Hence ["(u)u M, (u) 1is the

incidence graph of an affine plane of order (b)- 2).

This means that a necessary condition for a pair of arrays with
c! =2 and c¢,= bl- 2 to vcorrespond to a distance-biregular
graph is that there exists an affine plane of order (b!- 2).

Let us consider affine planes o0f small order. It is well known
that there is a unique affine plane of ordexr n for n = 2, 3, 4,
5, 7, and 8, there is no affine plane of order 6 and there are
several affine planes of order 9. It is also shown in [3] that

there is no affine plane of order 10.

When c; = 2 we have ¢;>» ¢,+ 1 as the following Lemma shows. In
this Lemma we will consider P as a set of points and B as a set

of blocks.
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Lemma 3.18.

If [ is a distance-biregular graph with c} = 2 then ¢, c,+ 1.

Proof.

Let veB and ueP such that d(u, v) = 3.

| o]
’ — o u
v 4‘—*‘-’/— /

w’

) Fa(v) ()

u 1is incident with cj blocks in rl(v) and each of these blocks

have ¢} (= 2) points 1in common with v. Take any one of these
points and label it u'. Now, d{(u, u') = 2 so u and u' must have
c, blocks in common and these blocks must all lie in [, (v). Let

2

0, be this set of blocks in [, (v) and 1let n, be the set of
points in [ (v) at distance two from u. The size of n, is given

by |J1PI = ¢/cj/c, and since c,c, = cjc; ,|419l= c; .

w f o — . Tt
‘Tf:><:::Zj:////
—

wH

e 9) [y (v) Ny v)

Let v'e (13 . Then, since c] = 2, v' is adjacent to u' and one
other point, u,, in ['(v). Any other block v''ef2, must also be
adjacent to u' and one other point, wu,, in [(v). Since c] = 2
and v' and v'' are both adjacent to u and u' we see that u, # u,.
Since| ,)l= c, we must have |,|> c,+ 1. Therefore, combining this
with the result above, we have ¢, > c,+ 1.

(Note that since c¢; > ¢, and c,> ¢} we also have cy »c;, + 2.)

§
2
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Let us now return to the case where b,= (b!- 2) ¢+ €,= b!- 2 and
¢} = 2. We know from Lemma 3.18 that c;2 c,+ 1 =b!- 1 so we

have two possible values of ¢, , ie: c;= bl- 1 or b}.

(i) Let c, = bl. Our arrays are -of the form :

] 1 (b)- 2) b,

(b!- 2)° (b!- 1) (b'- 2)(bl- 3) %

* 1l 2 bl!(b)- 2)/2 b}
and
b! (b!- 1)(b)- 3) (b!- 2) {bl- 2)(b)- 4)/2 *

(bd= 2)(b!~- 1)(bl- 2)(b!- 3)
b (bl!- 2)

Consider k3

(b)- 2)(bd- 1)(bl- 3)
bt

Since this is an integer, and b! and (b!~- 1) are co-prime, we
know that (b/'- Zf(bJ- 3) is divisible by b/!.

ie: b! divides (b,')3 - 7(br) + 16b! - 12. This leads us to
conclude that b! divides 12 and since b,> b! we only have two
possible vélues for b!, namely 6 and 12. This gives us the two
pairs of arrays below.

(Note that b! » 4 and b! = 4 gives us b, = (b!- 2) = 4. % )

1. * 1 4 6 and *x 1 2 12 6
16 5 12 * 6 15 4 4

This pair of arrays 1is discussed in [5) and it is shown, by
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considering an extension of PG(2, 4), that there exists a
corresponding distance-biregular graph. We show in Chapter 6

that the arrays are realised unigquely.

2. * 1l 10 12 and * 1 2 60 12
100 11 50 12 99 10 40 *
Since ¢} = 2 and c,= bl!- 2 =10 iﬁ(u)Lﬂz(u) would form the

incidence graph of an affine plane of order 10. However, by [3]

this is not possible so these arrays are not feasible,

(ii) I£f ¢; = b;- 1 then b,= 1 and, since c,c,= c;c;, we have
(bl=- 2)(bl- 1) = 2c} ie: c! = (bJ- 2)(bJ- 1)/2.
b; + c; = (b/- 2)" so b} = (b!- 2)" = (b)- 2)(b!- 1)/2

= (b)- 2)(b;- 3)/2

From Proposition 3.13 ¢/ > ¢, = bJ- 1 but c/¢ b] so d,=4,= 4
and we have the general case below.
% 1 (bi- 2) (bl- 1) (b!- 2)
(bl~ 2) (bl- 1) (bl- 2)(b!- 3) 1 *
and * 1 2 (bJ- 1)(b!- 2)/2 b,'

b (b!- 1)(b!- 3) (b'- 2) (b)- 2)(bJ- 3)/2 *
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We will now find some more necessary conditions for a pair of
arrays to correspond to a distance- biregular graph.

We know from Proposition 3.13 that ¢,> ¢! and that c¢] > ¢, but
we will now improve on this further. Lemma 3.18 tells us that if
cl= 2 thenc;>» ¢, + 1 so, since c,> c] , Cc;> c} + 1. We will
now show that we always have ¢,> c! + 1.

Lemma 3.19.Eﬂ

If " is a distance-biregular graph of girth 4 we have the

following inequalities.

Proof.

Let xe P and choose any yel (x), ze [(x)n [L(y).

In Proposition 3.13 we proved that ¢, > c¢]. Let us now assume
that c¢,=c; + 1. Since Zell(y) and ye B 2z and y must have c}
common neighbours in fl(x). Let these be labelled u,,u,, ... ug

Now, z has ¢;= ¢; + 1 neighbours in ,(x) so let the remaining

neighbour be u'. ie: u'e [, (x)n " (2) with u+ry.

Y N\? z
\0"/
x Yes /
v uk’/
£{x) [WED] Ty (x)
Now, d(y, u') = 3 so there are c, vertices at distance 2 from

u' and 1 from y. One of these is x and the other c,- 1 = c,' of

them have to be precisely the common neighbours of y and z.
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Now consider a vertex vel(x)al (u'). v must be adjacent to
exactly c!- 1 of the vertices u,, ... U in order to have c!
common nelghbours with z. Each such vertex, v, must be adjacent
to a different set of ¢}~ 1 vertices, otherwise two vertices, v
and v' say, adjacent to the same set would have c! + 1 common

neighbours. Therefore,

Ir(x)n " (u")| < ( c;l> = c! . ie: ¢, c).
c)-

However, we know that ¢, > ¢! so we have a contradiction.
Therefore c,> c; + 1.

We also know c,c,= c;c} so this gives us

c}] = c,¢;, » (ci+ 2)c, =¢c, + 2c. » c,+ 3.
c

We are now in a position to prove the Proposition below giving
us a bound on the diameter of a distance-bireqular graph [ ( of
girth 4).

Proposition 3.20.

Let [T be a distance-biregular graph of girth 4. Then we can
bound the diameter, 4, of " as follows. Either d = 4 or we have
d > 4 and one of two cases

(1) dp=4d, and @ ¢ min{b! - 2c] + 3, b,- 2c,+ 2}

or (2) d4,=4d,- 1 and 4 ¢ min{b! - 2¢c] + 3, b,- 2c,+ 3}

P
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Proof.
Suppose 4 > 4. ie: d » 6 since d is even by Corollary 3.7. Then

d = d,= 2J + 2 for some integer j and this means that b > c

from Lemma 3.10.

We also have c! > . > ¢t from Proposition 3.13 so

13 15-: 1j-2

' t
Cy > Cgp 2.

. bd-c! >t et + 2 > ... 2 C

2 2 2y~2

L=

+ 23 - 4> c,+ 25 - 3.

We know £from Lemma 3.19 that c¢,>» ¢] + 2 and this leads us to

conclude

(1) Suppose d,= d,= 2j + 2. From Lemma 3.10 we have b

so c,.» ¢, + 2, and c! > c,+ 3.

Also c,, > ct > Caj-z 25 2j2

3
~b,=b, ~-c,>c.>c. +2 22 ... >c,+ 2] -42%2cC

ie: 4, b, - 2c,+ 2.

Therefore d,= 4, d < min{b] - 2¢; + 3, b.- 2c,+ 2}

(2) Suppose d,= d,- 1 = 2j + 1. Then we have b, > c! so

2 2j-

b,=b-c¢c,>cl >cl +22% ... 2c) + 27 -42%c,+2)] -1

2j-1 1J'-3
ie: @

Therefore d,= d,- 1= d  min{b} - 2c]

2

+ 3, bo- 2c,+ 3%
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In the remainder of this chapter we will consider other bounds
on the diameter, 4, of a distance-biregular graph [' . Firstly we
will use Lemma 3.1 to find another restriction on ¢, and c;.

Lemma 3.21.

(a) If (b,,c,) = 1 then d,= 2J + 1 for some integer j, and c,
divides b, ,and c, for 0 ¢ i ¢ j - 1.
(b) If 4,= 23 + 2 for some integer j, then (b,, c,) # 1.

(c) (b! , ) ) # 1.

Proof

(a) Suppose that (b,,c,) = 1.

(1) The result is certainly true for i = 0 since c, divides c,
and by considering the valency of the 1left-hand derived graph,

ie: b, b, = b.(b! - 1) , we see that ¢, divides b, .
cl C’.

(2) Suppose the result is true for all terms up to 2i (so in
particular ¢, divides b, , and c,; ). By again turning our
attention to the left-hand derived graph we see that b, b,,, 1is

divisible by ¢, .

ie: (b, - €4 )b, = b. by, - €. by, is an integer.
c, c, c,
Therefore, since (b,, ¢, ) = 1 and ¢, divides ¢,; we have c,

divides b

204

We also have c,,, C,,, 1is divisible by c. .

ie: (b - b.,, Jdet, = bl Ciuw - bun C,, is an integer.
c, c, c.
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We know cC, divides b,,, and we also know that c, divides
b,= (b! - 1). Therefore (b)), ¢,) = 1 and we must have c, divides
2ie2 °*

(b) We now consider what happens if d,= 23 + 2. This would imply

that ¢, divides c = b, and hence (b,, ¢, ) # 1.

2j+2

2

(c) since d, 1is even we must always have (b, , ¢; ) # 1 by

considering B in place of P in the above.

The following Lemma uses Lemma 3.21 to give us another bound on

d in the special case when (b,,c,) = 1.

Lemma 3.22.

Let " be a distance-biregular graph of girth four. Suppose that

(b, ,c, ) = 1. Then we have the following bound on the diameter,
d, of I".
d < 2b, + 2 .
C.,
Proof.

Let 4 = 23 + 2 for some integer j .Then, from Lemma 3.21 (a)
d, = 2 + 1. We know from Lemma 3.21 that ¢, divides ¢, for

0 i <3Jj and Proposition 3.13 gives us ¢, > c!

2{+2 2i4

> Cl‘\ -
Therefore the largest diameter we could possibly have would come

from an array with entries as below.

2c, . 3¢, « ... (@ = 2)c, /2 Ca.s

. b'-1 b, . b, .b, . ... b,, %
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Therefore (d - 2)c, < b,
2

ie: d < 2b, + 2 .
cl

We will now find another bound on the diameter of a
distance-biregular graph and compare this bound with the bound

obtained in Proposition 3.20.

Lemma 3.23.

Let |7 be a distance-biregular graph of girth 4. Then the

following inequalities hold.

c,,>c, + (i -1)|b. | + 2i 214 .
b! 2
cl.>¢c, + (1 - 1)|be| + (21 + 1) 1 1i<d .
b 2
Proof.

From Lemma 3.2 we know that

bilc) - ¢) = by (e - L))
This gives bl (ck - c,,) = ¢, - ¢, .
bz'y-l
We also know from Lemma 3.6 that b), > b. so we have
bz.é-l bo‘
c,, - ¢\, >Db.(c] - cu,y)
b;
Rearranging gives
c,- ¢t >c!l . +[bs - 1) c!. - Db c,.,
b! b,
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= c,- ) > (6l - 6. + (g_ - 1)(c;; - )
b!

—=c,- ¢! > (¢} - c,.) + be -1 (%)
b!

Since ¢! > c,. from Proposition 3.13.

Iy 281

Now, c,; ¢, = ¢}, ¢!, so multiplying (*) by c,, gives
cz'.'\ cz'iu- C;.‘ cziu: cxl cz‘ul- cz'l Czi4|> C1L+|<(Ct'i-l_ cu-u) + £°_ - 1
b,

:> cz'iﬂ - Cliﬁ > .S‘.“;‘(( c:.'i-. - cz;_.) + i - 1)
Ci: bl

Proposition 3.13 tells us that ¢, > ¢}, so we have

2iet

c! - ¢
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> (e}l - ¢c,) + b -1 (*%)
b;

Let us return to (*). We will use the fact that {b,/bl] is the
least integer greater than b,/b! - 1.

c,. »ct + (ch,- c,,) + [ba/bl]

2t 2i-t

» ol + (e} - c,.,) + 2[b./b'] (from (**))

Y oo .

>cl + (e} —c; )+ (i - 1)[b./b]

el + (e, - c;) + (1 -1)b./bt] + 3 (c! » c,+ 3)
> cl,t (c,- ¢c;) + (1 - 1)[b./bl] + 5 (ci; > ¢, > ¢liy)
>cl+ (c,-c3) + (1 - 1)Ibo/blY + 3 + (21 - 4)

> c;+ (c,- cy) + (i - 1)Ibe/b/] + 3 + (21 - 4) + 1

ie: ¢, > c, + (i - 1)[b./bl] + 2i.

¢

We will now prove the second inequality. From (**) we have
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cl.>» (¢l + ¢, ) +c,+ [b./b)]
> 0 . .
> ¢, + ey - ¢, ) + (1 -1)[b./bl]
>
>c, + (¢ —c; )+ (i - 1)[b./bl]1 + (21 - 2)
>cy; + (1 - 1)lbo/bJ1 + (21 - 2)
»c, + (i - 1)[b,/bJ]1 + (2i + 1) (¢} > c + 3)

ie: ¢! » c,+ (i - )Ib./bs1 + (2i + 1).

20+t

Thus we have our two inequalities.

We will now use the results of the last lemma to give us
a bound on the diameter of [

Proposition 3.24.

Let @ be the diameter of a distance-biregular graph of girth 4.

Then we have the following bound on 4.

(2 (b, + [b./bs1) d, = 2i
(2 + (b,/bJ1)
d <« or: -

-
2 (b, + Z[bn/bJ])J da, 21 - 1.

(2 + [(b./bs 1)

Proof.

AWe have two cases to consider.

(a) Firstly we consider the case where d,= d,= d = 2j £for some
positive integer j. This means that cy= b, so by Lemma 3.23

b= c; » .+ (d/2 - 1)[bo/bl] + 4
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|

(b, /bJ 1

2<b, + [b./b.’])
2 + (b, /b’]

— b.- ¢, » d(1 + [b,/bl1/2)

.d < _bi: + [b./bl]
(1 + [b./bl1/2)

.d < 2 (b.+ [b./bl1])
2 + [b./bJ]

(b) Now we consider the case where dp= 2j - 1 =4,-1=4 - 1.

Using the fact that c!

> c,+ (d/2 - 2)[b./bJ]1 + (d - 1)

£ b,- 1 and Lemma 3.23 we have

b.-1 > c;q= c('L_I

=b,- ¢,= b, > d({b,/bl1/2 + 1) - 2[b./b/]

d ( b,+ 2[b./bl]
([be/bl1/2 + 1)

ie: 4 \<[2(b1 + 2[b°/b,-1)]
(2 + [b./bl 1)

It is not immediately clear that this bound is ever any better
than the one found earlier in Proposition 3.20 so we will now
give an example of when it is.

Suppose d, 1is odd (and hence that 4, = 4, - 1). Then we have :

(1) 4 « min{b! - 2¢] + 3, b,- 2¢c, + 3}

and (ii) ¢ <« 2 (b. + 2[b./b)1)
(2 + [b./b’1)

To investigate when (il) « (i) we will in fact consider

two cases.

(I) When is (ii) ¢ b! - 2¢c!

7 + 3 ? Certainly whenever we have:

2(b.- c, + 2[b./bl]) < Db! -2¢c! + 3
2 + [b,/b)]

= 2b,- 2c,+ 4[b. /b1 € (2 + [b./bl1)(b! - 2c! + 3)
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=—> b!(2 + [(b./bl]1) > 2b,- 2c,+2c?(2 + [b./bl]1) + [b,/bJ] - 6

eg: If [b,/bgl =1 and c! = 2 then (i1) is better than (i) when

b! >'2(bo- c.+ 7/2)/ 3.

(II) When is (ii) € b.- 2c,+ 3 ? Certainly whenever we have:

2(b,- c.+ 2(b./b!]l) £ bs=- 2c.t+ 3
2 + [b,/bl1]

—> 2b, - 2c,+ 4[b./bl1 £ (be- 2c,+ 3)(2 + [b./bl1)

== b, [b,/bl) » 2¢c, (1 + [b,/bJ}) + [b./bJ] -~ 6.

eg: If I[b,/bl!)l =1 then (ii) 1is better than (i) when

b, » 4c, - 5.

ie: If b, and b! are 'close' ([b./b!]1 = 1) then it would appear
that the bound in Proposition 3.24 1is better than the bound in

Proposition 3.20.

Before the last lemma in this chapter we need to introduce some
new notation. For any real number x let {x} denote the least
integer greater than or equal to x.

Lemma 3.25.

I1f " is a distance-biregular graph of girth 4 then we have the

following ineguality.

b'b! > c.c) bs- 1
2 3)
c'-1
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Note that if (b.‘- 1 |(b, - 1) we have b;(b:- 1) > cle! .
c!-1 c!- 1

Proof.
We will think of P as a set of points and B as a set of blocks.

Let us consider any vertex, v, in B. Then the intersection

* 1 c,. c, ‘e
b b,-1 Db b, .. .J

Let ue P and ["(v). The graph described by this array starts as

<0 ¥

rev) M)

array for v is

Let us consider the set n consisting of the (b,- 1) neighbours
of u in [, (v). Each block in n is connected to u and (c!- 1)
other points in [ (v). The number of choices for these (c!- 1)

point sets is b!- 1Y).
cl-1

This means that at least b:- 1 blocks in.a share the
(i23)

same (c!- 1) point sets in ["(v). Now, each pair of blocks in

are at distance two in [ so they must have c! common neighbours.

b'- 1

This means that if we consider any pair of the bo— 1 }
c.-1

blocks in.n described earlier the common neighbours all lie in
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[M(v). This means that we must have the situation shown below

“ O |Yer o2t
] “E /D | ((LS seks
— -] )

ci-1
) ) N

ie: k, = bl/(b.- 1)b) > b, - 1 b!

kA

clc! (b:- 1

cl-1
ie: b!(b,- 1) >» clc)({b-1
(b,’ -1
c)-1

ie: b!b! > clc (be-1
(b:- l) .
cl- 1

We will now present a useful bound on b, in terms of b! and c!

Theorem 3.26.

In a distance-biregular graph " of girth £four the larger

valency, b,, is bounded by

b.g (bl- 1)(bJ-2) + 1
(ci- 1)

Proof.
We have c,> ¢! » 2. From Lemma 3.16 ¢, b!- 1 and from Lemma

3.2 (a) (i) we know that b, (c,- 1) = b)(c]- 1).

b)/- 1 >c¢ =Dbl(c/-1) + 1= (bo—- 1)(ci- 1) + 1
b, (bs- 1)

—> b, € (bl- 1)(b!- 2) + 1
(c!=- 1)
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Chapter 4.

In this chapter a general method for finding all possible
pairs of arrays for distance-biregular graphs of girth four |is

constructed.
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When trying. to find combinatorially feasible pairs of arrays,
for distance-biregular graphs, a depth-first search 1is often
useful.In this we start with the two 1initial segments of a pair
of arrays and then build up the full arrays wusing 1local
feasibility conditions. We will suppose that we know b! and c;
and that we are looking for possible values of b,and c,.

The bound on b, in Theorem 3.26 is very useful. But, rather

than try all possible values of b, { (bd- 1)(bd- 2) + 1 we
(ct- 1)

shall now restrict the possible values of b, and c, even
further. We will then be in a position to systematically examine
the cases for small b! and find all possible feasible pairs of

arrays in these cases.

We are concerned with arrays where c,> c] > 2 so suppose that

our arrays start as below.

* 1 c. ces and * 1 c! s
b, bl- 1 b, - c, b! b,-1 b!-c!

We are trying to restrict the possible values of b, within the
range

bl+ 1 & b, & (bd- 1)(bl-2) + 1 .
(c!- 1)
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We will start by finding an integrality condition.

We know b, b, b!'b!. It follows that

b,- ¢, = (b - 1)(bi- c} )
(bl- 1)
c,= b, - (b.— 1)(b!- c! )
(b= 1)
= b,b! - b,- b,b! +Db! + b_,c}! - c!
(bi- 1)
= b,{(ci- 1) + (bl- c! )
(b= 1)
‘= b,(e!- 1) + (bd- 1) - (c}{ - 1)
(bl- 1)
= (b.~- 1)(et-1) + 1 (%)

(b~ 1)
Let ((bl- 1),(c!- 1)) = p. This p only depends on b! and c! and
when we use this test we know b! and c! and hence we know p.

This means that (be= 1)(cl- 1)/ p ¢ Z so (bl-1) |(b.- 1)
(b!- 1)/ p p

since ((c!- 1)/p, (bl- 1)/p) = 1.

ie: b, = k(b!l-1) + 1 (*%) for some positive integer k.
p -

We also know that b,b,/c, is an integer (it is in fact the
valency of the left-hand derived graph). Therefore b,(b!- 1) is

divisible by ¢, . This means that the following must be an

integer.
b, (bd- 1) = b.(bf{- 1) from (*)
c, (b,- 1)(c!- 1)/(b)- 1) + 1
= b, (b!- 1)

(b, - L)(c!- 1) + (bi- 1)
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b, (bd- 1) (x%x)
b, (c¢j- 1) + b}

We will now describe b, more fully. Let (b,, b} ) = J. This

means that we can express b, as qJ for some positive integer q

where (q, b! ) = 1.

Therefore from (**%), (bd- 1) J is an integer.
b,(c!- 1) + (b!- ¢! )

Now, since b, = k(b!-1) + 1 , we have:
P
(bd- 1y J

(k(bl)- 1)/p + 1)(c)- 1) + (b!- c!)

= p(bl- 1)°J
(k(b/- 1) + p)(c/- 1) + (b:- c} )p

= p(bi- 1) J
k(b!- 1)(c!- 1) + p(cl- 1) + p(b!-c}! )

= p(bl- 1Y J
k(b!- 1)(c!- 1) + p(b!- 1)

= p(bl—- 1) J
k(cl- 1) + p

This last expression is a positive integer so let this integer
be M.

ie: M = p(be.'- 1) J
k(c,'- 1) + p

Re~arranging for k gives:

k = p(bl- 1) J - p 1
M (c}- 1)

Substituting this expression for k in (**) leads to

b, = [(bi-1)J -1 (bl-1) + 1
M (c!- 1)



11

. b, = 1 ((b:- 1Y3 - (b!-1) + c¢f-1
=y

(c! M

= 1 (b= 1% 3 - (b'-c!) .
(c)- 1) M

= 1 (b)- 13 - b)) ~
(ci- 1) M

Although this appears to be a complicated expression it 1is in
fact very useful as will be demonstrated in the next chapter.

So to recap we have:

Let p=(c/)-1,b)-1), k = p(b.-1) ,
{b)- 1)
J = (b,, b! ) and M = p(bd- 1) J

k(c!- 1) + p

Then b, = 1 J (b- 1) - b!}).
(c!- 1) M
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Chapter 5.

In this chapter we will show that the method developed in
Chapter 4 can actually be used by hand to give us all possible
pairs of arrays for a distance-biregular graph of girth four
when b,> b! = 3, 4, 5, 6, 7, 8 or 9. We will not be discussing
the case where b! = 2 since this is done in detail in [5] where
it is shown that the only possibilities are K,, and the
subdivision graph of a (k, g)-graph. From the discussion
following Lemma 3.16 we know the possibilities when c¢,= b!- 1 or
b!- 2. We will start the chapter by considering these cases and

then consider the cases where ¢, b!- 3.
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Lemma 3.21 (c) tells us that (b! ,c!) # 1 so if b! is any prime
number the only possibility for ¢! is b! with the only possible
distance-biregular graph being Kb”u . 8Since we are not
considering these  possibilities here there are no possible
cases foxr b! = 3, 5 or 7.

(1) Suppose that c¢,= b!- 1.

We know from Chapter 3 that this means that k,=k%k,, d,= 3, 4,= 4
and we have the incidence graph of a 3-(b,+ 1, b}, c!- 1) design

with intersection arrays as below.

* 1 (bl- 1) b/ and * 1 c, c, b!
b, (b!- 1) b_- (b}- 1) * b! (b,- 1) b/ bl *
(i) b! = 4, Using Lemma 3.21 (c) gives us one possible value for

c!, namely c! = 2. Since c, = b!- 1, ¢,= 3 and our arrays start

as * 1 3 . v and * 1l 2 ...
b. 3 (b,- 3) 4 {b.- 1) 2

Therefore, since b,b, = b!b!, we have 3b,- 9 = 2b,- 2.

ie: b,= 7. Now, since c,c,= cic} we have c} = 6.
Qur arrays are ¥ 1 3 4 and * 1 2 6 4
[} 3 4 x [; 6 2 1 *J
(ii) b! = 6. We know that c,= 5 and by Lemma 3.21 (c) we have
c! = 2 oxr 3.

(a) ¢} = 2. bb= b!'b! =— 5(b,- 5) = (b.,~- 1)4 — b.= 21.

7

Our arrays are: * 1 5 6 and * 1 2 15 &6
21 5 16 * 6 20 4 6 *
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(b) ¢! = 3. b,b,= b'b!=> 5(b,~- 5) = (b,- 1)3== b, = 11.

Our arrays are: ['* 1 5 6] and [* 1 3 10 6
- 11 S5 6 * 6 10 3 1 *

(iii) bl!= 8. c,= 7 and by Corollary 3.12 c}! € b})/2 ie: c! £ 4.
So, by Lemma 3.21 (c), ¢! = 2 or 4.
(a) ¢} = 2. bb,=b'b! = T7(b. - 7) = (b,- 1)6—> b,= 43.

If this were a possiblility our arrays would be:

% 7 8 and [*12288]
43 7 36 * 8 42 6 15 *

o}

However, k! = 67.5 which contradicts the fact that k! is an
integer. Therefore c! = 2 is not a possibility.
(b) ¢! = 4. By using the same method as above we have one

possibility with arrays as below.
* 1 7 8 and * 1 4 14 8
[15 7 8 * [; 14 4 1 ;}

(iv) b! = 9. By Corollary 3.12 ¢} € bl)/2 so c} ¢ 4.5. By Lemma
3.21 (c) we therefore have ¢ = 3 as our only possibility.
Proceeding as above gives us b,= 29. This would give us the
following array for any vertex in P. * 1 8 9

{29 8 21 ;]

However, k, is not an integer so we have a contradiction.

3
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(2) Suppose that c,= bs- 2.

(1) bl = 4. No cases.

(ii) b} = 6. We have the special case below where c¢,= b] .
* 1 4 6 and * 1 2 12 6
16 5 12 «* 6 15 4 4 *

We also have the general case discussed in Chapter 3.

(iii) b! = 8. Since there is no affine plane of order 6 we have
no possible cases for b! = 8 and c,= 6.
(iv) b! = 9. 1If ¢,= b'/- 2 =7 then b,= 42. Therefore, since

b, b,=b'b! , b} =7 so c; = 2. Therefore (bs , ¢]) =1 which
is not possible. Hence there are no possible cases for b! = 9

and c,= 7.

We will now suppose that c,< bl- 3. Lemma 3.2 (a) (i) gives us
b,(c,- 1) = b'(c!- 1) so

c,= b!{(c]- 1) + 1 ¢ b!- 3

2

b,
——— b, (bi- 1)(bs- 4) + 1 (*)
(c!- 1)
(3) b! = 4. In this case b!- 3 = 1 so there are no further pairs
of arrays.
(4) b} = 6. As described earlier we have two possible values of

c, , namely c! = 2 or 3.



76

(i) c! =2 — b, ¢ 10 + 1 =11 f£from (¥*).

Since c,{ b!- 3 = 3 and c,> ¢} = 2 we must have c,= 3.
Therefore b,b,= b'b! — 5(b,- 3) = 4(b,- 1)— b,= 11,
However, this implies that k, is not an integer. x

(ii) ¢! = 3 again leads to no further cases.

]

(5) by 8. We know that ¢} = 2 or 4.
(i) ¢! =2 = b, 28 + 1 = 29 from (*).
We will now use the information we obtained in Chapter 4.

p = (c;- 1, b;- 1) = (1, 7) = 1.

Therefore b, 7k + 1 for some positive integer k from Chapter

4 (*%), jie: b,

15, 22 or 29.

We also know J = (b, , b}) (7k + 1, 6) =1, 2, 3 or 6.
However, with the possible values of b, we have, the only

possible values for J are 1 (for b,= 22 and 29) or 3 (for b, =

15).
(a) J =1 = M = 7 _—> k = 6. ie: b, = 43.;¢f
k + 1
(b) J =3 —M= 21 _—> k = 2, 6 or 20
k + 1
k = 6 or 20 would mean that b, is too large so the only value
of b, we need to consider is when k = 3 ie: b, = 15.

We will consider the entries in our pair of possible arrays.

b,= 15, b!=8, b,=7, ¢,= 1, b! = 14, ¢} = 1, b} = 6 and ¢} = 2.
Since b, b,= b'b] we know that b,= 12 and hence ¢,= 3.
We will now try to construct a pair of feasible arrays.
c,Cc,= ¢;Cc} — 3¢, = 2c,
Lemma 3.19 tells us that ¢;> c] + 1 = 3, so by the above c;= 4,

6 or 8.
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Lemma 3.19 also tells us that c} > c,+ 2 =5, soc] =6, 9 or
12. (c) = 15 is not a possibility since it would mean that d,
was odd.)

Let us suppose that c,= 4. Then c} = 6, b,= 4 and b} = 8.

Now, by Proposition 3.13, c! > c,= 4. ¢}l =5 or 6 would mean
that k! is not an integer so the only possibilities are c, =7
or 8. If ¢! =7 then b! =1 and, since b,b,= b/b) , b,= 2 and
c,= 13. This would imply that k, 1is not an integer so is not

possible. Therefore c! = 8 = b! and, since d = d,, c.= 15 = b,

Our arrays are:

[op}
o

¥ 1 3 4 15 and * i 2
1

Vo)
*

5 7 12 4 * 8 14 6

We note that if c;= 6 or 8 our integrality conditions on the k;

and k! 1lead us to contradictions.
(ii) ¢} = 4 = b, 10 from (%)
We know that p = (c¢!- 1, b!- 1) = (3, 7) = 1.

Therefore b,= 7k + 1, for some positive integer k, from Chaptex

4 (*¥%*), However, since b, 10 and b,# b! , this means that for

b, = 8, c] 4 we have no possible pairs of arrays.

ie: For b! 8 and c, £ b!~- 3 we have one pair of possible arrays
(6) b} = 9. We know that <c! = 3 1is the only possible value
of ¢!, so b, 16 + 1 = 17 from (*),.

We also know that p = (c¢f- 1, b!- 1) = (2, 8) = 2.

Hence, b,= 4k + 1 for some positive integer k.

Combining these results gives us just two possible values of b,

namely, b.,= 13 or 17.
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Substituting these values of b, in J = (b,,b!) tells us that
the only possible value of J is 1.

Therefore M = 16 so k = 3 or 17.

k = 7 gives too large a value of b, so the only value of b, we
need consider is when k = 3 ie: b,= 13.
We will consider the entries in our pair of arrays.

b,= 13, b! =9, b,= 8, ¢,= 1, b' =12, ¢! =1, b! = 6 and ¢! = 3.

Since b,b, b!'b! we know b,= 9 andvhence c,= 4.
Recall that Lemma 3.21 (a) tells us that if (b,,c,) =1 then d,
is odd. We will use this, together with results on c¢,,c! ,c,and
c) , to construct our full arrays.

C,C3;= C;C}] — 4c, = 3c;
Lemma 3.18 tells us c¢,> c; + 1 = 4, so by the above c,= 6 or 9.
Lemma 3.19 also tells us that ¢} > c,+ 2 so ¢ = 8 or 12.
Let us suppose that c,= 6. Then, ¢} = 8, b,= 3 and b] = 5.
We know that 4, is odd so d4,» 5 (since we are assuming that
c,# b!) but Lemma 3.21 (a) then tells us that c, (= 4) divides b,
(= 3) which is not true. Therefore c, = 9, c} = 12 and d4,= 3 is

our only possibility and we have one pair of feasible arrays

for a distance-biregular graph, namely

[*149 and*13129:l
13 8 9 9 12 6 1 *
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So, to summarize the previous results in a table, for b! < 10 we

have the following possibilities.

b! Possible values Number of feasible
of b,. arrays.
3 None ’ None
4 7 1
5 None None
6 11 1
16 2
21 1
7 None None
8 15 2
9 13 | 1

Once we have b! » 10 the methods described here yield a greater
number of possible values of b, .

Remark 5.1.

Note that for b! < 10 we have made no use of the global

feasibility condition that the multiplicities of the eigenvalues

should be integers.
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Chapter 6.

We will start this chapter with a summary of results from
previous chapters. We will then analyse all of the pairs of
arrays obtained in Chapter 5 and attempt to £ind the

distance-biregular graphs to which they correspond.
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summarizing the previous chapters gives us our definition for a
pair of feasible arrays for a distance-bireqular graph.

We say two intersection arrays are a pair of combinatorially
feasible arrays for a distance-biregular graph if the following

conditions are satisfied.

1. c, + b, = (b, if 1 is even
(b: if 1 is odd.
c! + b! = (b, if i is odd
(b; if 1 is even.
2. b! » b, > b/, for 1 1 €& - 2.
¢!, »c; >l for 2 ¢ 1 ¢4 - 1.

3. The numbers defined by the relationships below are positive

integers.
k, = 1, k., = kb, / cg., 0 igdg, -1
k! =1, kl, = k!b! /¢!, 01igd, - 1.

(Since |d, - d,| ¢ 1 we have the convention that if 4,6 =d, + 1

and m:=k +k, + ... + k.=
where d4' is the 1largest even integer less than or equal to 4
and 4'' is the largest such odd integer.

We also have nb, = mb! .

5. The CXﬁ@ and /SP‘Lt defined in Chapter 2 are positive

integers.
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6. The diameter, 4, is even.

7'

€. Cin™ S Sl 1€1gds2 -1
b,.b,, = b}l b 1 ¢1igadasz -1.

Now suppose that b,> b! .

8. c, divides «c,,_, €.+ €,.C,4.sr b, b, @and b,;b_ .,

10.

11.

12.

13.

14.

15.

c! divides ¢}, c!. ., c!

3 2i c‘:.l'.Q'l ’ b"l—i-( b}; and bl b]

( For 1 € i € d4/72 - 1)

i~ (CLL - C{;-,) = br.'-‘.—:(c:_i = Caia )

b 21 (C;i’ - C,_;_-l) = b!u. (cti— c:.i—l )

Cist (b 28 b:iu) c7!£+|(b:i - b?—i+l )

c 2% (bl'l - btiﬂ) = C',_-‘(b,'; - b;.i_ﬂ )
€, (bu’.-r_ 1) + by (ctiﬂ_ 1) <€ kti - 1.
c,
cu—|(bu-1- l) + bu-'(czi = l) S kzi_'- 1.
c.
c.> bl c¢,; ; by> b, bl 1<igds2 - 1.
b, b!
c,..> b c¢l, i Dbl > b, b, 1 ¢igd/2.
b b! _

(- [

If 4 is even then d, is equal to 4, .

If 4, is odd then 4, is equal to 4,+ 1.

K, K+ o o o+ Ky > k! 4 kD4 ...+ kY,

c,>» ¢ with c,=c¢c) if and only if ¢,=¢c] = 1.

d, >1 + J= [c; ¢ by if 1 + j is even
(c{ < by if i + j is odd4.
d, >1i + j== /c! ¢ b if 1 + J is even
(Ca S -H if 1 + j is odd.

ze ze 2{+!
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16. I£ d > 2 then ¢! < b!/2 and ¢, < b, /2.
From now on we will be considering arrays where c! > 1. (So the
girth, g, is four.)
17. cl!, > c¢; and c.>ct .

b!, > b, and b, > b!
18. c,, > ¢},- and Cl.2 Cuiine

19. k!

+ k! + . . . + ki,

b 13 21

> ki + k,+ . . . +k
20. ¢, (bs- 1).

2. I1f ¢} = 2 then ¢;3 c,+ 1.

22. ¢ >ci +1 and cl > c+ 2.

23. Either d = 4 or d > 4 and we have one of two cases.

(i) 4 d

0 and 4 ¢ min{b!- 2c! + 3, b.- 2¢, + 2}

(ii) 4, = d;, - 1 and 4 € min{b}- 2c} + 3, b,- 2c, + 3}

B

24, I1f (b,,c,) =1 then d, is odd and ¢, divides b,, and c,,,.
If d, is even then (b.,c,) # 1.

25. (bl,ci ) # 1.

26. d < 2b./c, + 2.

27. C,y » €, + (1 - 1)[b./bl] + 2i

ClL.2c, + (i - 1)[b./bl] + (21 + 1)

28. If 4, is even d < 2.(b, + [bo/bd] )
(2 + [(b,/bl1 )

+|+

(2

29. Dby(b,- 1) » cjcijf b -1
EEH)
cl-1

If 4, is odd d < 2.(b.
ib. /b 1)

2[b./b!] ):]
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For girth four we have the following pairs of combinatorially
feasible arrays for distance-bireqgular graphs when 3 £ b! € 9

and the diameter, d, is greater than two.

1. ¥ 1 3 4] and *x 1 2 6 4
7 3 4 x 4 6 2 1 *

2. "% 1 5 6] and [« 1 3 10 6
11 5 6 x| 6 10 3 1 %

3. T x 1 4 6 and Cx 1 2 12 6]
16 5 12 * 6 15 4 4 x

4. x 1 4 5 16] and [ x 1 2 10 6]
16 5 12 1 * 6 15 4 6 %

5. BE 5 f} and * 1 2 15 6

(6 20 4 6 *

6. % 1 7 %} and ™« 1 4 14 8

8 14 4 1
7. ¥ 1 3 4 15 and % 1 2 6 8
: 15 7 12 4 = 8 14 6 9 *

8. L R and [* 1 3 12 9
13 8 9 % 9 12 6 1 %
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It turns out that all of these pairs of combinatorially feasible
arrays are realisable and in the rest of this chapter we examine
each of them. This suggests that combinatorial feasibility
conditions are remarkably strong.

We note that we have excluded the pair of arrays

1 6 7 36 and * 1 2 21 8
[36 7 30 1 *} l:s 35 6 15 *:l

from our 1list since there is no affine plane of order 6. This
pair of arrays passes all of our other feasibility conditions.
In Appendix I we have a 1listing of a computer progranm,
written byb the author, which constructs and tests pairs of

arrays by using combinatorial and algebralc feasibility

conditions.
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We will now consider our feasible arrays. In each case we will
try to fully describe any corresponding distance-biregular
graphs. We will refer to any possible distance-biregular graph

as [ and take u as any vertex in P.

k,= 1, k,= 7, k,= 7, k,= 7. |P| = 8 and |B| = 14.

Firstly we notice that ["(u) and [ (u) forma 2-(7, 3, 1)
design and [ is the incidence graph of a quasisymmetric
2-{8, 4, 3) design with S = 2 and 4, = 0. From the section
following Lemma 3.16 we know that since k, = k,= k, " is the
incidence graph of a 3-(8, 4, 1) design associated with a
Hadamard matrix of order 8. This is in fact the 1incidence
structure formed by considering the 8 points and 14 planes of
the 3-dimensional affine space over GF(2). (This can be thought

of in terms of a cube and the planes associated with it.)

2. [ x 1 5 f] and x 1 3 10 6
11 5 6 * 6 10 3 1 *
k,= 1, k,= 11, k,= 11, k,= 11. |p| = 12 and |B| = 22.

z

Our pair of arrays certainly give us a 2-(12, 6, 5) design and,

since k, = k, = k our pair of arrays also give us a 3-(12, 6, 2)

37

design associated with a Hadamard matrix of order 12.

Now suppose that we have a 3-(12, 6, 2) design. We will show
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that the incidence graph has arrays as above.

Firstly we ask the guestion ' given any pair of blocks what can
they intersect in '? (We would like to show that they can only
intersect in 0 or 3.)

Take any block. Any three points 1lie in precisely two blocks.
ie: Any three points determine another block.

How many ways are there of choosing three points?

(6) = 6! = 20. je: We have 1 + 20 = 21 blocks.
3 313!

What can we say about the remaining block and its intersection
with our original one?
If it intersected our original block in a point, u say, how

many blocks would u be contained in?

[~N-N-N.¥-} O A

From our construction above, u would lie in (5) + 1 = 11 blocks
2

that intersected with our original block in three points and
also this extra block. ie: u would lie in 12 blocks.

We know from Design theory that 1f we have a t—(v,-k,7\) design
and we let A, denote the number of blocks containing a given

set of i points, 0 ¢ i < ¢t, then:?\i(k—i)= v - i\
t - i t - i

Therefore, for our 3-(12, 6, 2) design each point of our
original block is in A,= 11 blocks and u cannot lie in 12
blocks.

ie: each block intersects in 0 or 3 points and, since %z= 5, we

have a pair of arrays as shown.
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5}

3. * 1 4 6 and * 1 2 12 6
L 16 12 * 6 15 4 4 %
k,= 1, k, = 16, k,= 20, k,= 40. |P| = 21 and [B| = 56.

This pair of arrays was discussed 1in the section following
Lemma 3.16 as a special case of when c,= b}~ 2.

We know that we have a 2-(21, 6, 4) design and we will now try
to £ind a projective plane ( PG(2, 4) ) within this design.

We certainly have 21 points but what about the lines?

Each line has 4 + 1 = 5 points on it so we need to try and
find our sets of five points first.

Consider the following:

These need to be separate

since c] = 2.

BIAAIS

o ¢
o 0
o €
rem) r'.(A)

So, given any two points {A, B} there are exactly three other
points {C, D, E}! which have no common neighbour with the pair
{A, B}. (Note that {A, B} = {B, A} and both give us {C, D, E}.)

Therefore we have the set {A, B, C, D, E}. Can we say " choose
any pair {x, y} from {A, B, C, D, E} and consider all points
which have no common neighbour with {x, y}. The set of points we

obtain is {A, B, ¢, D, E} " ?
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Suppose that {C, D} have a common neighbour with A.

"

ie:

(Note that {C, D} cannot have two common neighbours with A
since this would contradict c] = 2.)

M is connected to three more points {x,, X,, X,} in T, (2a)
(since b, = 5), Also, x; , 1 < i ¢ 3, 1is connected to four
vertices in ["(A). Since X; 1is not connected to any more of C
and D's neighbours in ["(A) (as c! = 2) and is only connected to
at most one neighbour of B in [ (A) (again, since c! = 2) each
X, , 1 {1 ¢ 3, must determine two new vertices in [ (A). (These
new vertices cannot be connected to more than one x; otherwise
c # 2.)

ie: The number of vertices in ['(A) > 4 + 7 + 6 = 17.

However, ““(A)] = 16,
Therefore {C, D} have no point in common with A.
Now {C, D} were chosen arbitrarily from {C, D, E} and we could

have used B instead of A (since {A, B} = {B, A} and both give us

{C, D, E}), so we have:
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The only case left to consider is whether or not {C, D} have a
point in common with E. If so we have a new point F which has no

common neighbour with {C, D}. Consider the arrangenent:

o

Now, ¢! = 2 and ]F(C)I = 16 so E is connected to a neighbour
of A in '(c) and a neighbour of B in [ (C). This means that C
and E have a neighbour with A,

Therefore whichever pair we choose from {A, B, €, D, E}, when
we consider the points with no common neighbours with our pair
we obtain {A, B, C, D, E} again.

This means that our lines intersect in at most one point but
can they intersect in none?

Each point, A, lies 1in five 1lines ( IQ(A)I = 20 = 4.5) so we

have:

Any other line has to be made up from £five of these points.
Suppose we have two lines 1,, 1, which do not 1intersect. Take

1 and the lines through any of its points, A say.
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Now, 1, has to be made up of five of these points. If it
intersected any of these lines in two points it would have to be
one of lines and would thus intersect 1, in A. Z£

Therefore 1, has to intersect 1, in a point other than A.

ie: Given any two lines they must intersect in a point. Also
the number of lines is given by:

(Number of possible points)x(Number of lines a point lies in)
Number of points in a line

This equals 21 so we have found a copy of PG(2, 4) 1in our

2-(21, 6, 4) design.

* 4 5 16 and * 1 2 10 6
16 12 1 % 6 15 4 6 *
1I k|= 16I k2= 20’ k3= 48’ k‘*= 3. |P| = 24' lBl = 64‘

[

(84}

4,

kK,=
[ is the incidence graph of a 2-(4.6, 6, 4) transversal design
which 1is in fact a 3-(4.6, 6, 1) transversal design. We show
that this design arises from the unique Steiner system
S(5, 8, 24). The points are the 24 points of P. The vertices of
B correspond to 6-sets in P. We use these 6-sets to define three
kinds of 8-sets (octads).
(i) P is partitioned into 6 antipodal parts P, ,P,,P, ,P ,P, ,P
each of size 4. Any two such parts form a natural octad. (There
are 15 such octads.)
(i1) Each block of the transversal design meets each antipodal

part in exactly one point. If b 1is a block then the symmetric
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difference of b and P forms a natural octad. (There

64.6 such octads.)

are 24.16 =

(iii) Two 6-sets which meet have just 2 points in common. Their

symmetric difference forms a natural octad. Suppose the common

points of the two 6-sets 1lie 1in P, and P, . It is
show that for each partition of {1, 2, 3, 4} into
size 2 we get the same octad in another way. Thus

octad arises in at least 4 ways. (There are ¢ 24.20
2

such octads.)

not hard to
two sets of

each such

(3)/} = 360

If we now consider the possible configurations for 5-sets

P lxxxx X X x X x X x x jaliad X

Pz x x X x X x x X

P, x X x x

P" X X

P, x

P

one can show that each 1lies in at least one octad. It follows

that each line lies in exactly one octad (since there are ¢ 759

octads).
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5. * 1 5 6 amd * 1 2 15 6
21, 5 16 * 6 20 4 6 *
k.= 1, k,= 21, k,= 21, k,= 6. |P| = 22 and |B| = 77.
since k, = k, we know that ["(u) and [, (u) form a symmetric

2-(21, 5, 1) design (PG(2, 4)) and that [ is the incidence graph
of a 3-(22, 6, 1) design (a one point extension of

PG(2,4)). The graph is unique [2] Theorem 8.18.

6. x 1 7 8 and ¥ 1 4 14 8
[;5 7 8 %] 8 14 4 1 f}
k.= 1, k,= 15, k,= 15, k,= 15. |P] = 16 and |[B| = 30.
We know that [ is the incidence graph of a quasisymmetric
2~(16, 8, 7) design with 4, = 4 and u&,= 0 and, since k,= k,= k,

" is the incidence graph of a Hadamard 3-(16, 8, 3) design -

for example, the graph formed by the points and hyperplanes of

AG(4, 2).
7. * 1 3 4 15| and [* 1 2 6 8

15 7 12 4 * 8 14 6 9 *
k,= 1, k,= 15, k,= 35, k,= 105, k,= 28.|P| = 64 and |B| = 120.

We believe these arrays are realised (uniquely) by the natural
intersection graph on cosets of +two subgroups H 2 A, and

K 2 (Z.)((%,.8L(3, 2)) in a group G = ( Z,)%A,.
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8. x 1 4 9 and x 1 3 12 9]
[;3 8 9 ;] [9 12 6 1 %
k,= 1, k,= 13, k,= 26, k,= 26. |p|] = 27 and |B| = 39.
The above pair of arrays corresponds to the incidence graph of
a quasisymmetric 2-(27, 9, 4) design with M,= 3 and M,= 0 - for

example, the incidence graph of the points and hyperplanes in

AG(3, 3).
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Appendix I.

In this appendix we give a 1listing of a computer program
written by the author to help 1in the classification of
distance-biregular graphs.

The program is written in PASCAL for the Honeywell Multics
system at the University of Birmingham. To f£ind the eigenvalues
of a given matrix the program calls a FORTRAN program f£from the
NAG library. The program uses the tests described in this thesis

together with tests described in [#] for the distance-regular

derived graphs.



%

PROGRAM magic (input, output) ;
{**********************‘**************************************].
{* GUIDE TO THE PROGRAM : x}
{* : %}
{*intmat:=the intersection matrix for the left hand derived *}
{* graph *}

{*inma :=the intersection matrix for the right hand derived*}

{* graph *}
{*entry :=an intersection array used in a subroutine x}
{* (gammatest) and which represents both left and *}
{* right hand derived graphs, whichever is *3
{* appropriate *x}
{*sm :=a matrix whose entries come from alphas (or betas)*}
{* and whose eigenvalues are found to help us in an *}
{* integrality test *}
{*sum :=this helps us to identify the entries in sm *}
{*g :=either an alpha or a beta, whichever is *}
{* appropriate *}

{*intger:=this helps us to use the external program f£02aff #*}

{* from the NAG library *}
{*rr :=this helps us with eigenvalue checks *}
{*ri :=this also helps us with eigenvalue checks *}

{*nof{i}l :=the number of vertices at distance i from a vertex*}

{* of valency r *}
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{*¥1lo[i] :=the number of vertices at distance i from a vertex¥}

{* of valency s *}
{*c{i] :=the usual entry c; x}
{*b[i] :=the usual entry b; *}
{*£[i] :=the usual entry ¢/ %}
{*e[i] :=the usual entry b/ *}

{*nod{il:=the number of vertices at distance i from a given *}
{* vertex %}

{*addlil:=this helps us to calculate our alphas and betas *}

{*********************************************t**************}

{************************************************************}

{* f02aff is an external subroutine used to find eigenvalues¥*}

{hhkkkkkkkhkkkkkkkhhkkkhkkhkhhhhhhhhxhhhhkhkhkkhkhkkkkkkkkkkkkkkrkkk}

SIMPORT

tf02aff(fortran)': f£02aff

$
TYPE
smat = ARRAY {1..21, 1..21] OF real;
oner = ARRAY [1..21] OF real;
onei = ARRAY [1..21] OF integer;
matr = ARRAY [0..20, 0..20, 0..20) OF integer;
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mat = ARRAY [1..3, 0..20] OF integer;

sing = ARRAY [0..20] OF integer;

VAR
intmat, inma : mat;
sm : smat;
g : matr;
intger : onei;
sum, rr, ri : oner;
no, lo, ¢, b, £, nod, add, e : sing;
i, r, s, 4, wrong, sumnoe, sumnoo, sumloe, sumloo,
pass, stop, 3, p, ks, k, sa, ta, ra, n, ifail, lod,
diameter, ne, £fail, js, counter, loc, sip, din, bin,
jb, ri, r2, r3 : integer;

error, nr : real;

{*************************************************************}
{* The next part is used to test the eigenvalues of the two *}
{* derived graphs. It is a FORTRAN subroutine which is called*}

{* from the NAG library x}

{*************************************************************}

PROCEDURE fo2aff (VAR a: smat ; VAR ia, n : integer ;
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VAR rr, rl : oner ; VAR intger : onei ; VAR ifail :

integer) ; EXTERNAL ;

(I IR I KKK KA K KA I KKK KRR KRR AR R AR IRAXK KK I KRR AKX AR}
{* The next part simply helps us to set up the initial status*}

{****************************************t********************}

PROCEDURE setup;

i::=14+1;

IF ((noli-11*b[i-11) MOD cl[i]l = 0) THEN nolil
(noli-11*b{i-11) DIV cli]

ELSE pass := 0

~e

UNTIL i = 3 ;

END;
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(AR KK KRR R AR AR KA R AR AR AR KA KRR KR AR AR AR KRR AR ARK AR R AN}

{* This gives the entries in the right hand array knowing the*}

{* entries in the left hand array *}

{*************************************************************}

PROCEDURE construct ;

BEGIN
IF pass = 1 THEN
BEGIN
lo[0] := 1;
lof[l] := s;
{s = valency of right hand array}
IF el[j-1]1 <> 0O THEN
BEGIN
IF j MOD 2 = 0 THEN
BEGIN
IF (bl[3jl*blj-11) MOD e[j-11 = 0
THEN
BEGIN

e{j1 := (bljl*blj-11) DIV

£13) := el[0] - el3l;

IF £{j3] < 0 THEN pass :=

0
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END

ELSE pass := 0;

END
ELSE
BEGIN
IF (cljl*clj-11) MoD £[3-11 = 0
THEN
BEGIN
£{31 := (ci3jl*clj-11) DIV
£03-11;
el3j] := bl0l - £131;
IF e[3j)<0 THEN pass := 0
END
ELSE pass := 0;
END
END
ELSE
BEGIN
elj] = 0;
£1351 := 0;
END;

IF (e[j]l = 0) AND (b3l <> 0) THEN pass

..
]
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IF (pass = 1) AND (£f{3j] <> 0) THEN
BEGIN
IF ((lolj-1l*e{j-11) MOD £[3j] = 0}
THEN lo{jl := (lolj-1l*elj-11) DIV £[J]

ELSE pass := 0

A1)

END;
IF £[3J] = 0 THEN 1lol3j] := 0;

e{01) AND (3 MOD 2

IF (pass = 1) AND (c(Jj]

= 1) THEN
BEGIN
d := J;
f{d + 11 := s;

eld + 11 := 0O;
lold + 1) := (loldl*eld]) DIV f(d + 11;
IF e[d] = 0 THEN pass := 0
END
END

END;

{*************************************************************}

{* Here we calculate our k's and 1l's *}

{*************************************************************}
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PROCEDURE circles;

BEGIN
IF (pass = 1) THEN
BEGIN

sumnoe 3

n
o
~e

sumnoo := 0;
sumloe := 0;
sumloo := 0;

izs:=-1

~e

REPEAT
izx=1i4+1;
sumnoe := sumnoe + nol[2%*il}];
sumloo := sumloo + lol2*i + 11;
sSumnooc := sumnoo + nol(2*i + 11;
sumloe := sumloe + lol[2*i];

UNTIL i

]
[o 7

DIV 2) - 1;
sumnoe := sumnoe + no(2*(d DIV 2)];
sumloe := sumloe + lol(2*(d DIV 2)1];
IF (4 MOD 2 <> 0) THEN
BEGIN
sumnoo := sumnoo + noldl];
sumloe := sumloe + lold + 1];

sumloo := sumloo + lol[d]
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END;
IF (sumnoo <> sumloe) OR {(sumnoe <> sumloo)
THEN pass := 0

END

END;

{*************************************************************}

{* This just tests obvious inequalities *}

{*************************************************************}

PROCEDURE inequalities;

BEGIN
IF (pass = 1) AND (d > 3) THEN
BEGIN

IF el[j - 2] < elj] THEN pass := 0

~e

IF £{J - 21 > £[3) THEN pass := 0
END

END;

{*************************************************************}

{* This constructs our two distance-regular derived graphs *}

{*************************************************************}
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PROCEDURE derive;

BEGIN
IF (pass = 1) AND (Jj > 3) THEN
BEGIN

intmatl[l, 0] := O0;

intmatl(2, 0]} 0;
intmat{3, 0] := (b[0l*b[1]) DIV c(2];

inmal(l, 0]

]
[e=]
“Seo

inmal2, 0] := 0;

inmal3, 0] (ef0)*e[l]) DIV £[2]);
i = 0;
REPEAT
i=1i+1;
IF (b[2*i]*b[2%i + 1]) MOD c([2] = 0 THEN
intmat[3, i) := (bl2*i)*b[2*i + 1]1) DIV cl2]
ELSE pass := 0;
IF (pass = 1) AND ((cl[2*i - 1]*c{2*i]) MOD ci2]
= 0) THEN
BEGIN

intmatl[l, i] := (cl[2%*i - 11*c[2*i]) DIV cl2];

intmat{2, i] := intmat(3, 0] - intmatll, 1i]

- intmat(3, il
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END
ELSE pass := 0;
IF (pass = 1) AND ((el[2*i)l*e{2i + 1]) MOD £{2] = 0
THEN inmal(3, i] := (el2%il*e[2%i + 1)) DIV £(2])
ELSE pass := 0;

IF (pass = 1) AND ((f[2%i - 11*£(2%*i]) MOD £[2]1 = O

THEN
BEGIN
inmall, il := (£(2*i - 1]1*£[2*i]) DIV £[2];
inma(2, i] := inma(3, 0] - inmall, i]
- inmal3, il
END

ELSE pass := 0;
UNTIL i = j DIV 2 - 1;
IF (pass = 1) AND (j MOD 2 = 0) AND (b[j] = 0) THEN

BEGIN

IF (clj - 11*cl31) MOD cl2] 0 THEN

BEGIN

intmat{l, J DIV 2] (cld - 11*cl3})
DIV é[2];
intmat{2, J DIV 2] := intmat(3, 0]
- intmat(l, j DIV 21;

intmati3, j DIV 2] := 0

END
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ELSE pass := 0;

IF ((£[3J - 11*£[Jj]) MOD £[2] = 0) AND (pass = 1)

THEN

BEGIN

inmall, j DIV 2] := (f[j - 11*£[(3j]) DIV
£L2]);
inmal2, j DIV 2] := inmal3, 0]
- inmall, j DIV 21];

inmal3, j DiVv 2] := 0

END

ELSE pass := 0
END;
IF (pass = 1) AND (j MOD 2 = 1) AND (b[j]l = 0) THEN
BEGIN
IF (clj - 2] * c[j - 11) MOD ci2] = 0 THEN
BEGIN

intmat{l, j DIV 2] (cli - 21*cl[3F - 11)

DIV c(2];

intmat(2, Jj DIV 2]

intmat(3, 0]

intmat{l, j DIV 21;

intmat(3, j DIV 2] := 0
END

ELSE pass := 0;
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IF (pass = 1) AND ((£[J - 2]*£[3 - 1]) MOD £[2]
= 0) THEN
BEGIN
inmall, Jj DIV 21 := (£f[J - 21*£f[j - 11)
| DIV £[2];
inmal3, J DIV 21 := (eljl*el]j - 11)
DIV £[(21;
inmaf{2, j DIV 2] := inmal3, 01 -
inmaf{l, j DIV 21 - inmal3, j DIV 2];
IF inmal3, j DIV 2] = 0 THEN pass := 0
END

END;

IF (pass = 1) AND (j MOD 2 1) AND (b[J] = 0) THEN
BEGIN
inmafl, j DIV 2 + 1] := (£[j + 11*£({3j]) DIV

£12);

inmaf2, j DIV 2 + 1] inmal3,0]1 -
inmal{l, J DIV 2 + 11;
inmal3, j DIV 2 + 1] := 0
END
END

END;
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{*************************************************************}

{* This sets up the matrix whose eigenvalues we wish to *}

{* conslder. *}

{*************************************************************}

PROCEDURE gammatest (VAR entry : mat);

VAR

p, ra, sa, ta, x, y, 49, i, ia, u : integer;

BEGIN

IF (entryl3, jsl = 0) AND (pass = 1) AND (js > 1) THEN

BEGIN
FOR sa := 0 TO 20 DO
BEGIN
FOR ra := 0 TO 20 DO
BEGIN
FOR ta := 0 TO 20 DO
BEGIN
glsa, ta, ral := 0
END
END
END;
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BEGIN
gl0, p, pl :=1
glp, 0, pl :=1;
gll, p, pl := entryl2, pl;
glp, 1, pl := qll, p, pl
END;
FOR p := 0 TO js - 1 DO

BEGIN

gll, p + 1, pl entry{3, pl;

gflp + 1, 1, pl gll, p + 1, pl
END;
FOR p := 1 TO Js DO

BEGIN

gll, p - 1, pl entxyll, pl;

glp - 1, 1, pl glli, p - 1, pl
END;
IF (pass = 1) THEN

BEGIN

lod := lod + 1;

IF lod = 1 THEN ks := entryl3,

0]



IF lod <> 1 THEN ks := ks*entryl[3, lod - 1]
DIV entrf[l, lodl;
nodilod]

e
"

~
w0
“~e

UNTIL lod = 4

“e

FOR sa := 0 TO 4@ DO
BEGIN
FOR ra := 0 TO 4 DO

BEGIN

IF sa = ra THEN gisa, ra, 0]
nod(sal;

END

ra := 0;

REPEAT
ra :=ra + 1;
ta :=s8sa - 1;
REPEAT

IF ta <> 4@ THEN

BEGIN



"

glsa, ta, ral :=
(entryl3, ta - 1l*glsa - 1, ta - 1, ral + (entryl2, tal -
entryl2, sa - 1])*glsa - 1, ta, ral + entryll, ta + 11%
glsa - 1, ta + 1, ral - entryl(3, sa - 21 *
glsa - 2, ta, ral);
IF glsa, ta, ral MOD
entryll, sal] <> 0 THEN pass := 0
ELSE gisa, ta, ral :=
glsa, ta, ral DIV entryll,sal;
glta, sa, ral := glsa, ta, ral
END;
IF ta = d@ THEN
BEGIN
addl(0]1 := glsa, 0, ral;

FOR p := 1 TO (d - 1) DO

BEGIN
addlpl] := addlp - 11
+ glsa, p, ral
END;

glsa, ta, ral nodisal -

add{d - 11;

glta, sa, ral

gl{sa, ta, ral
END;

IF glsa, ta, ral < 0 THEN pass := 0;
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IF pass = 0 THEN

BEGIN
ta := 4d;
ra := d4;
sa :=4d
END;

UNTIL ta = 4;

UNTIL
UNTIL sa
error :=
k := ent
IF pass

BEGIN

ra = d;

1= 4;

0.000001;
ryf{3, 0);

= 1 THEN

FOR p :t=1TO4d + 1 DO

BEGIN

FOR p := 1 TO 21 DO

BEGIN
FOR g := 1 TO 21 DO
BEGIN

smip, ql := 0.0

END



Ty

o
(1]

= ne + nodlpl

FOR p ¢t= 1 TO 4d + 1 DO

FOR q := 1 TO d + 1 DO

FOR x (=1 Tod + 1 DO

BEGIN
sum[x] := 0
END;
FOR i := 1 TO4d + 1 DO
BEGIN

FOR y :=1 TO4d + 1 DO
BEGIN
éum[i] = sumli]
+gli -1, y-1, y - 11
END;
suml[i] := suml[il/

nodl[i - 11;



s

1}
=
3
~
[
—

= sumlil*

-~ smlp, ql

END
END
END;
FOR p := 1 TO4d + 1 DO
BEGIN

intger [p] := 0

f02aff(sm, ia, n, rr, ri, intger,
IF ifail = 0 THEN
BEGIN

ifail);

IF abs{round(ri[pl)) > error

THEN pass := 0;

IF rripl <> 0.0 THEN
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BEGIN

IF abs(round(nr/rripl) -
nr/rr(pl) > error THEN pass := 0
END;

IF pass = 0 THEN p

= d + 1;
UNTIL p =4 + 1;
END |
END
END
END

END;

{hkkkkkkkkkkkkhkkkhhkhkkhkkkkkkhkkkhkkkkkkkkxkxkkhkkkkkkkkkkkkXxxxx%x}

{* Here we simply print out the results *}

{hkhkkhkhkhkkkhhkhkkkkhhkkkkkkhkhkkkhkhkhkkhhkkkkkhkkkhkkkkkkhkkkkkkkkkkikx}

PROCEDURE conclusion;

BEGIN

IF (pass = 1) AND (b[j]l = 0) AND (£fail = 0) AND (cl[2] <>

1) AND (J > 2) THEN
BEGIN

write('*' : 3);

p :=0;

REPEAT
p:=p+1;

write(clpl : 3);

14
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UNTIL p = 3;
writeln;
p = -1;
REPEAT;
p :=p + 1;
write(b[p] : 3);
UNTIL p = § - 1;
write('*' : 3);
writeln;
writeln;
p := -1;
REPEAT
p :t=p + 1;
writeln(' k', p : 2, '=', nolpl
UNTIL p = 3;
writeln;
writeln;
IF j > 3 THEN
BEGIN
writeln(' Derived graph :');
writeln;
write('*' : 4);
p := 0;

REPEAT

5)

14



e

P :=p+1;
write(intmat(l, pl : 4);
UNTIL intmat{3, pl = 0;
— writeln;
p := -1;
REPEAT
P :=p+1;
writel(intmati2, pl : 4);
UNTIL intmat{3, pl = 0;
writeln;
p = -1;
REPEAT
p:=p+1;
write(intmat[3, pl} : 4);
UNTIL intmat(3, p + 11 = 0;
write('*' : 4);
writeln;

writeln

p:=p + 1;
write(£(p] : 3);
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UNTIL p = 3;
IF (b{j] = 0) AND (j MOD 2 = 1) THEN write
(£03 + 11 : 3);
writeln;
p = -1;
REPEAT
p :=p+ 1;
write(elpl]l : 3);
UNTIL p = J - 1;
IF (b{j]l = 0) AND (j MOD 2 = 1) THEN write
(el3} : 3);
write('*' : 3);
writeln;
writeln;
p := -1;
REPEAT
p :=p + 1;
write(* 1', p : 2, '=', lolpl : 5);
UNTIL p = 3;
IF (J MOD 2 = 1) AND (b[3j]l = 0) THEN write
(* 1', 3 +1 : 2, '=*, lolj + 11 : 5);
writeln;
writeln;

IF j > 3 THEN
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BEGIN
writeln(' Derived graph :')
writeln;
write('*' : 4);

p := 0;
REPEAT
P :=p+1;
write(inmall, pl : 4);
UNTIL inmal3, pl] = 0;
writeln;
p = -1;
REPEAT
Pp :=p + 1;
write (inmal2, pl : 4);
UNTIL inmal3, pl = 0;
writeln;
pi= -1
REPEAT
p :=p + 1;
write(inmal3, pl : 4);
UNTIL inmai3, p + 1] = 0;
write('*' : 4);
writeln;

writeln
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END;
writeln
END

END;

{kkkkhhkkhhkkkkkhkkhkhhkhhkkkkkhkkkhkkhkkkkkdhkkkhkhkkkkkhkhhhhkkkkk}

{* Now we have the main program 'magic' x}

{*************************************************************}

BEGIN {magic}

Writeln( ' * s xdkx Xk kR AR KA KKK AKX KA KKK KA KX XRKKAARKKX AR R KA KXk XK},

writeln('*This program aims to help in the classification of *};
writeln('*distance-biregular graphs. *3;
writeln('*It does this by making use of several feasibility *};
writeln('*conditions to form an algorithm. *};
writeln('*The program takes two values of s, a value of r and*}; _
writeln('*a diameter bound. It considers all possible values *};
writeln('*of s in between the two given values, and all *};
writeln('*possible values of r up to, and including, the *};
writeln('*chosen bound. It then gives all possible, feasible *};
writeln('*pairs of arrays with these valencies which have a *};

writeln('*diameter not greater than the one given. . *};

writeln('*****************************************************};
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writeln('You are asked to input four things:');

writeln('l.The valency of the lower right-hand array (sl).');

writeln('2.The valency of the higher right-hand array (s2).');

writeln('3.The bound you wish to have on the left-hand valehcy

(x)');

writeln('4.The bound on the diameter of graphs you wish to
consider.');

writeln('The program then outputs various pairs of arrays
together');

writeln('with the ki, 1li and derived graphs.');

writeln;

writeln('Please input the right-hand valencies and a bound on

r.');

writeln('Firstly sl:');

read(rl);

writeln('Secondly s2 (remember that s2 > sl):');

read(xr2); _

writeln('Thirdly x:');

read(xr3);

writeln('Now please input your diameter bound');

read(diameter);

writeln;

writeln('The possible pairs of arrays are as follows:');

writeln;
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FOR s := rl TO r2 DO

FOR r := (s + 1) TO r3 DO

cl0] := 0;
b{0] := r;
cll] := 1;
b{1l] := s - 1;
£{0]l := 0;
e[0] := s;
£[(11 := 1;
ell] := ¢ - 1;
FOR sa := 0 TO 20 DO
BEGIN
FOR ra := 0 TO 20 DO
BEGIN
FOR ta := 0 TO 20 DO
BEGIN
glsa, ta, ral :=
END
END

END;
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j o= 1;
REPEAT
stop := 0;
J =3 +7l;

IF j MOD 2

0 THEN cl[Jj]l := b{0]l + 1
ELSE cljl := el0] + 1;
REPEAT

FOR sa := 1 TO 3 DO

BEGIN

BEGIN
intmat(sa, ral := 1;
inmalsa, ral :=1
END
END;

1

pass :

~e

fail :

0

~s

d := 3;
cl3l := cl3d) - 1;

IF (ci2] > e[0] - 1) THEN pass

e

]
o

e

IF pass = 1 THEN
BEGIN
IF 7 MOD 2 = 0 THEN b[3j] := blO]

ELSE b{j] := el0} - cl3i];

- cl3jl
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loc := loc + 1;
setup;
construct;
IF (3 > 2) AND (cl2] > 1) AND
(£{31 < cl[2] + 3) THEN pass := 0;
IF (b{3j] <> 0) AND (J > 2) AND
pass = 1 THEN
BEGIN
IF (cl3j) <= £{3 - 11) OR
(£131 <= clj - 11) THEN pass := 0
END;
IF b{j] = 0 THEN
BEGIN
circles;
END;
inegualities;
{**************************************************************}

{* Here we want to test the array so far *}

{**************************************************************}

IF (7 > 2) AND (pass 1) THEN
BEGIN

IF cl3] < £[2] + 2 THEN pass := 0

~e

IF £0(3) < cl2]1 + 3 THEN pass := 0

~e
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IF (£12]

(cl3] < cl2] + 1)

IF (cl3J

IF (£I[3

IF (bl3J

IF (el3

IF (bl3]
BEGIN

IF
IF

END;
END;
IF (3 > 2) AND
BEGIN

IF (bl3J]

BEGIN

(

2) AND

THEN

pass

:= 0;

11*c[j]) MOD c(2] <> O
THEN pass := 0;
11*£[3]1) MOD £[2] <> O
THEN pass := 0;
11*b[3j]) MOD cl[2] <> O
THEN pass := 0;
1l*el[Jj]) MOD £[2] <> O
THEN pass := 0;
0) AND (j MOD 2 = 1)
THEN
(£031*£[3 + 1]1) MOD £(2]
<> 0 THEN pass := 0;
(e{jl*elj + 11) MOD £[2]
<> 0 THEN pass := 0;
pass = 1) THEN
0) AND (j MOD 2 = 1)

THEN
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IF ((cl3l*(blj - 1] - 1))
DIV £{2] > nol3j]l - 1) THEN pass := 0;
IF (if[j+1]*(e[j] - 1))
DIV £[2] > lol3j + 1] - 1) THEN pass = 0;
END;
IF (b{3)1 = 0) AND (j MOD 2 = 0)
THEN
BgGIN
IF ((cl3l*(blj - 11 - 1))
DIV c¢{2]) > nolj] - 1) THEN pass := 0;
IF ((£[j1*(elj - 11 - 1))
DIV £[2] > lol3jl - 1) THEN pass := 0;
END
END;
IF (J > 1) AND (c{2] > r DIV 2) THEN
pass := 0;

IF (3 > 1) AND (£[2] > s DIV 2) THEN

pass := 0;
IF (j > 2) AND (pass = 1) THEN
BEGIN
din := 1;
bin := 1;

FOR jb := 1 TO (£[2] - 1) DO

BEGIN



128

bin := bin*(s - jb);
din := din*jb;
END;
bin := bin DIV din;
IF (r - 1) MOD (bin) = 0 THEN
bin := (r - 1) DIV bin
ELSE bin := (r - 1) DIV bin + 1;
bin := £[2)*£([3]1*bin;
IF (s*(r - 1)) < bin THEN
pass := 0;
END;
IF (b{J]l = 0) AND (pass = 1) THEN
BEGIN
counter := counter + 1;
derive;
js := 3j DIV 2;
gammatest(intmat);

IF j MOD 2 = 0 THEN js := j DIV 2

~e

gammétest(inma);
IF jJ MOD 2 = 1 THEN js :=

j DIV 2 + 1

~e

gammatest(inma);
END;
END;

conclusion;
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IF (cl3j] = clj - 21) AND (pass = 0) THEN
BEGIN
IF (3 = 3) AND (c(2] = 1) THEN
stop := 1;
ELSE
BEGIN
i :=0;
REPEAT
i:=1+1;
UNTIL clj - 1] <>
cli - i - 21;
IF (jJ = 2 + 1) AND

(c{2] = 1) THEN stop :

it
[ o
e

ELSE j := 3 - i;
END
END;
IF (7 = diameter) AND (stop = 0) AND

((ci{j - 11 <> 1) OR (c[j - 2] <> 1) THEN

BEGIN
i := 0;
REPEAT

pass := 0

“e

i =1+ 1;

UNTIL c{j - i] <> clj -1 - 2];
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IF (j = 2 + i) AND (cl2] = 1)
THEN stop := 1

ELSE J := J - 1

END;
IF blj] = 0 THEN pass := 0;
IF ci{j) < c¢{j - 2] THEN stop := 1;

IF b[j] < 0 THEN stop := 1;
1

IF c{2) < 1 THEN stop :=

IF stop = 1 THEN pass := 1;
UNTIL pass = 1;
IF c[2] = 1 THEN stop := 1;

IF stop 1 THEN j := diameter;
UNTIL 3j = diameter;
END;
END;

END. {magic}
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Appendix II.

In this appendix we give a list of pairs of feasible arrays for
9 < b! < 20 and ¢c,> 1. This 1list was obfained by wusing the
program in Appendix I. We do not analyse any of the pairs of
arrays (some can be excluded by other combinatorial reasons) but
include the 1list to demonstrate the efficiency of the tests
described in this thesis and to provide work for further

research.

b! Possible values Number of feasible
of b, . arrays.
10 19 1
28 2
46 1
64 1
11 None None
12 23 1
45 5
56 1
100 2
111 1
13 None None
14 27 3
40 2
66 2

144 1
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16

17

18

19
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Possible values
of b,.
22
36
21
31
91
196
None
35
52
120
256

None

Number of feasible
arrays.
1
6

None



b! 10
- . 1
119 9
- e 1
L28 9
- . 1
_}8 9
46 9
— . 1
§4 9
b} 11.
None.
b} 12.
= 1
33 11
- . 1
55 11

10

24

24

40

56

11

12

36

10

*

9 28
l *
6 28]
4 *
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and

and

and

and

and

and

and

18

27

27

45

63

22

44

18

18

10

12

16

30

16

36

28

22

36

10|




L45 11

145 11

56 11

00 11

1

11

11

None.

36

36

40

40

11

45

10

90

11

100

100
*
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and

and

and

and

and

and

and

and

44

44

44

44

55

99

99

110

10

10

10

10

10

33

12

18

27

30

15

20

25

44

12

60

40

55

45

45
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*11314] and [* 1 7 26

27 26 14 % 14 26 7 1

—*13827:‘ and [* 1 2 12

14 26 12 15

27 13 24 6 *

[~ % 1 3 4 27 and * 1 2

27 13 24 10 * 14 26 12 21

* 1 4 13 40 and * 1 2 26

(40 13 36 1 *_| 14 39 12 14
Tx 1 4 9 4? and [* 1 2 18
40 13 36 5 % 14 39 12 22

* 1 6 13 66] and x 1 2 39

Es 13 60 1 % 14 65 12 27

[ 1 6 10 66 and [ * 1 2 30

66 13 60 4 *_| 14 65 12 36
* 1 12 13 144] anda [ * 12
144 13 132 1 * 14 143 12

[:* 17 15J and x 1 5 21
22 14 15 % 15 21 10




14

14

14

14

15

15

15

30

30

30

30

16

15

16

84

136

and

and

and

and

and

and

and

and

and

35

20

30

90

12

12

12

12

12

12

12

14

30

28

20
16

12
24

12
24

10

26

20

30

42

49

]
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*17109IJ and_*123516:\
91 15 84 6 * 16 90 14 56 *

% 1 14 15 196] and [ * 1 2 105 11
196 15 182 1 % 16 195 14 91 %

None.
b! = 18
Cx 1 17 18:1 and [ * 1 9 34 11
35 17 18 * 18 34 9 1 %

x 1 5 6 35] and *x 1 3 10 18]

35 17 30 12 * | |18 34 15 25 * |
[ % 1 4 17 52] and [ * 1 2 34 1ﬂ
52 17 48 1 % |18 51 16 18 * |

x 1 4 12 57] and [ * 1 2 24 18]

152 17 48 6 * | |18 51 16 28 *

* 1 15 17 120| and * 1 3 85 18]

120 17 105 1 x| 18 119 15 35 %

— % 1 15 7 120] and [ * 1 3 35 18]

120 17 105 11 * | |18 119 15 85 * |



138

1 8 17 120| and

17 112 1 x

1 8 14 120| and
17 112 4

1 16 17 256] and
17 240 1 %

None.

119

119

255

16

16

16
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Questions.

Ql. (cf. Theorem 3.3 and Theorem 3.4.)

Let M be a matrix of the form 0 1 0 <:f
mZn 0 m‘n
o™
e "‘ O
with all m;; # 0 and let x = (1 x, x, ... x; )’ be a right

J
eigenvector of M with eigenvalue A (#0). Let k,= 1, k,= m,,,

ki, = ki my, o (1 >»1).
m

1 (42

(Under what additional <conditions) 1is it automatically true

that 2, xi/k; = >UxMk.?

ieven i edal
Q2. (cf. Lemma 3.8 and Lemma 3.15.)
when exactly is c); < ¢,; , or equivalently
k! + k! + . . .+ k! >k + K+ ..o+ Ky,

Q3. (cf. Proposition 3.20 and Proposition 3.24.)

Is there a common improvement on the bounds

d,= d = d € min{b)~- 2c} + 3, b,~- 2c,+ 2} d ¢ |2(b.+ [b./b.]
(2 + [b./bl]

b P

!

p ol
(2 + [b./bll)

L=y =y

d, = d1=sd ¢ min{b!- 2c! + 3, b ,-2c,+ 3} a g [2(!:.+ 2(b./

Q4. (cf. Remark 5.1.)
What is the connection between the local feasibility conditions
on partial arrays (such as c¢;c,,= ccl,, ) and global feasibility

conditions (such as the integrality of multiplicities of



eigenvalues) ?
feasibility, and
Q5. (a) Only one
diameter > 4. Is
(b) Is there

Is there a bound

Ivo

when does 1local feasibility

why ?

feasible pair of arrays

this pair (b! = 15) realisable 7?7

in

imply global

this thesis has

some much stronger bound for 4 in terms of b! 2

for 4 independent of b!

?
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