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ABSTRACT 

Agriculture is currently facing environmental challenges like climate change, air 

pollution, and land degradation, affecting agricultural productivity and threatening 

global food security. Besides, the increase in per capita food consumption among 

medium and high-income population, plus the expected increase in global population 

to around 9 billion by 2050, will lead to an unprecedented demand for food 

sustainably produced. To reach this aim, a holistic understanding of agroecosystems 

and their complexities is required. The Global Gridded Crop Models (GGCMs) have 

been developed to fullfill this requirement. Therefore, studies about the food systems 

require accurate crop models with explicit simulations of the productive processes 

and interactions with the environment.  

This thesis aims to contribute to this broad effort to improve the performance of 

GGCMs by improving the representations of crop growth, stress response and yield 

with the Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) model. 

The improvement focused on three aspects: (1) carbon assimilation and allocation 

processes, (2) the impact of past land cover change, and (3) the effect of ground-

level O3 pollution on crop yields. The thesis evaluated how these factors affect 

simulated crop production and how the model can assess crop production under 

different environmental and management conditions at different spatial and temporal 

scales. Each of the three aspects also represents different types of uncertainty that 

the model has to address and are finally reflected in the model outputs, such as 

parameter uncertainty, input uncertainty and structural uncertainty.  
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LPJ-GUESS was improved, enhancing its capability to replicate yields, crop 

productivity processes, and the harmful effects on yield and harvest index simulated 

by the ozone module. These improvements have significant implications for 

developing more comprehensive and precise crop simulations that account for the 

complex interactions between crop production, environmental and management 

factors, and ozone. These advancements contribute to potentially more accurate 

global and large-scale yield simulations to better understand the impacts of climate 

change and terrestrial biogeochemical cycles on food production. 

Overall, this thesis represents an improvement in the representation of productive 

crop processes and will increase the consistency of results in strategic research 

performed with LPJ-GUESS on the global food system. This is critical for researchers 

and policymakers to meet the current challenges of agriculture in feeding an 

increasing population in an environmentally and socially sustainable way. 
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CHAPTER ONE: INTRODUCTION 
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Agricultural production is essential for the socioeconomic development of human 

civilisation and is the main source for feeding the global population (Jackson et al. 

2019). Agriculture also has been responsible for generating a 4% of the world GDP 

during the last decade (Mbow et al. 2019; The World Bank 2023). However, 

environmental challenges like climate change, air pollution, as well as land 

degradation, mainly caused by inappropriate agricultural practices and unsustainable 

management, affect agricultural productivity and threaten global food security 

(McGrath et al. 2015; Kanianska 2016; Ray et al. 2019). Furthermore, societal 

projections are not very promising; higher food consumption per capita among the 

population with medium and high incomes (Vermeulen et al. 2012), plus the expected 

global population projected at around 9 billion by 2050, will lead to an unprecedented 

demand for food (Godfray et al. 2010; United Nations 2019). So, ensuring 

sustainable food security while facing all the constraints is the most critical challenge 

for agriculture during this century.  

During the last century, the increase in agricultural production has corresponded with 

rising demand for food and during the "green revolution" in the mid-20th century, an 

enormous jump in productivity occurred (Godfray et al. 2010). The productivity 

increase was associated with the expansion of managed land and the management 

intensification in existing agricultural systems, intensification includes fertilisation, 

irrigation, pesticide control, high-yield cultivar technology and mechanisation 

(Lindeskog et al. 2013; Lu and Tian 2017; Jackson et al. 2019). Changes in cropland 

area and input intensity have dramatically altered the environmental footprint of 

agriculture. Intensification has caused an unprecedented constrain of finite resources 

used in agriculture (Godfray et al. 2010). It has caused land degradation, with around 
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12 million hectares of arable land abandoned annually because of yield collapse 

(Godfray et al. 2010; Kanianska 2016). Furthermore, it has caused an increase in 

emissions of non-CO2 greenhouse gases, such as N2O, from inefficiencies in 

nitrogen and manure application (Bustamante et al. 2014; IPCC 2017; Lu and Tian 

2017).  

Between 9 – 14% of total greenhouse emissions are attributable to in-farm 

agricultural and livestock activities and 5-14% to land use and land use change 

(Mbow et al. 2019). Land use change emission has been estimated in several studies 

between 145.5 to 225 Pg C since 1850 (Lindeskog et al. 2013; Olin et al. 2015a; 

Pugh et al. 2015; Houghton and Nassikas 2017). Additionally, the emission of 

nitrogen oxides (NOx; NO + NO2) has also been reported from intensive nitrogen 

fertilisation in crops (Almaraz et al. 2018). NOx is a precursor of tropospheric ozone 

(O3), which has damaging effects on human health and is responsible for the 

decrease in yields of several species (Ashmore 2005). 

In order to balance the goal of feeding the population with the need for sustainable 

production, it may be necessary to implement planning and regulation policies for 

land use, production management, and other factors affecting agriculture. To achieve 

this goal, it is necessary to have a comprehensive understanding of the feedback 

mechanisms between agroecosystems and key environmental factors such as 

climate, nutrient cycling, carbon sequestration, water management, and pollution 

control. Such understanding can be obtained through relevant research (Vermeulen 

et al. 2012; Bustamante et al. 2014; Alexander et al. 2018). However, the complexity 

and large scale of the global food system, in addition to the impossibility of controlled 
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experimentation, make it essential to use models as tools for studying the dynamics 

between crops, biosphere and climate (Prentice et al. 1989).  

To fulfil this demand, global terrestrial biogeochemistry and biogeography models 

and, more recently, dynamic global vegetation models (DGVM) are used to simulate 

vegetation functions, structure, competition and mortality as the central role in the 

interaction between climate and earth systems as well as the anthropogenic changes 

in the biosphere (Prentice et al. 1989; Cramer et al. 1999, 2001). A similar group of 

these models specifically applied to agriculture, known as the Global Gridded Crop 

Models (GGCMs), has been developed. Despite only emerging as a model class in 

the late 2000s, GGCMs have become one of the core tools underlying global food 

security assessments (Rosenzweig et al. 2013; Elliott et al. 2015b; Folberth et al. 

2016) due to their increasing maturity as technology demonstrated in community 

evaluation and benchmarking efforts (Müller et al. 2017).  

The GGCMs have accelerated the increase of studies about agricultural productivity 

on a regional and global scale worldwide. However, large differences have been 

found between different GGCMs (Elliott et al. 2015b; Müller et al. 2017). This 

uncertainty is caused by several reasons, including the differences in model 

structures and assumptions, inputs and processes (Müller et al. 2019). Broadly, 

GGCMs fit into two structures, those that have been developed for field-scale and 

upscaled to global (Jones et al. 2003; Balkovič et al. 2013; Elliott et al. 2014) and 

those that have been derived from process-based dynamic global vegetation models 

(Bondeau et al. 2007; Boote et al. 2013). Field-scale models tend to empirically link 

driving environmental variables directly to plant growth and production, generally 

calibrated with field experiments. In contrast, ecosystem models incorporate explicit 
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parameterisations of processes such as crop photosynthesis and respiration, 

modelling the plant growth process (Rosenzweig et al. 2014). 

Different GGCMs are subject to many limitations, extrapolating parameters and 

assumptions from field-scale models to regional or global models is a challenge. 

While in ecosystem models capturing the diversity of many different crop species and 

cultivars used globally, or the high variability in management practices at a global 

scale is a limitation (Boote et al. 2013; Müller et al. 2017), as well as the losses 

caused by pests, inefficient irrigation, and soil degradation (Rosenzweig et al. 2014).  

However, the most important limitations of crop models are the lack of high-quality 

standard input data, including growing season dates, soil properties, irrigation areas, 

fertilisation rates and timing. Similarly, the availability of reference high-quality data of 

other model outputs different than yield, such as harvest index, leaf area or NPP, is 

very limited (Portmann et al. 2010; Rosenzweig et al. 2013; Müller et al. 2017). 

Recently, the Agricultural Model Intercomparison and Improvement Project (AgMIP) 

was developed to improve the characterisation of world food security under climate 

change by comparing several types of GGCMs and assessing the biophysical and 

economic effects on crop yield. AgMIP aims to create a framework of a coordinated 

set of historical data for model calibration and improvement, the characterisation of 

uncertainties to get better projections of future agricultural production and economic 

impacts, as well as vulnerability analyses and adaptation strategies.  

The AgMIP framework offers a reference for development and evaluation and a 

protocol to continue the improvement of GGCMs to represent the global agricultural 

system. AgMIP considered 21 models in phase 1 (Elliott et al. 2015b), and 14 were 



 

6 
 

included in the intercomparison evaluating the relationship between productivity and 

environmental impacts (Müller et al. 2017). Eigth of the models used in the 

intercomparison were fiel-scale models with processes extrapolated to larger scales 

like DSSAT, the 5 models composing the EPIC group and WOFOST, while the other 

six models were ecosystem-based models with the development of cropland 

modules, like PEGASUS, ORCHIDEE, LPJmL and LPJ-GUESS (Müller et al. 2017). 

From the latter group, LPJ-GUESS is one of the models with a mechanistic cropland 

module widely used for global crop evaluation (Olin et al. 2015a; Bodin et al. 2016; 

Müller et al. 2019). Additionally, LPJ-GUESS counts with a nitrogen dynamics 

module that allows the inclusion of fertilisation as a factor of study (Olin, Schurgers, 

et al. 2015; Lindeskog et al. 2013) and it allows the mechanistic implementation and 

simulation of the tropospheric ozone effect on plants based on ozone flux into the 

plant due to its prognostic nature which diminishes the need for empirical 

relationships. 

Therefore, this thesis aims to contribute to this broad effort to improve the 

performance of GGCMs by improving the representations of crop growth, stress 

response and yield with the Lund-Postdam-Jena General Ecosystem Simulator (LPJ-

GUESS) model.  

1.1. The Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) 

The Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) is a process-

based dynamic vegetation model that simulates vegetation response to climate, 

atmospheric carbon dioxide levels ([CO2]) and nitrogen dynamics. LPJ-GUESS, like 

many global ecosystems models, was originally developed to simulate natural 

vegetation but subsequently implemented a land use functionality to simulate 
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cropland and pastures, in addition to a nitrogen dynamics module to account for 

nitrogen limitation and nitrogen fertilisation in yields (Olin, Schurgers, et al. 2015; 

Lindeskog et al. 2013). However, it does not include yet dynamics for other nutrients 

like phosphorus and potassium which represents a limitation to simulate realistic 

yields. The crop module of version 4.1 of LPJ-GUESS simulates yield based on daily 

or monthly climate data, atmospheric CO2 mixing ratio, management practices, soil 

physical properties and atmospheric nitrogen deposition. Model processes include 

photosynthesis and carbon assimilation, respiration, water uptake, evapotranspiration 

and carbon allocation. In addition, it includes management options such as irrigation, 

tillage effects on soil respiration rate and inter-growing season grass cover (Olin et al. 

2015b). 

LPJ-GUESS has performed well in simulating recent-historical yield and crop 

productivity under varying conditions for wheat and maize at global and regional 

scales (Olin et al. 2015a; Bodin et al. 2016; Müller et al. 2019). However, several 

parameters relevant to carbon assimilation and the allocation scheme are weakly 

constrained and poorly characterised. Furthermore, the lack of global-scale 

compilations of reference data of HI have made challenging the evaluation of 

productivity processes (Boote et al. 2013; Iizumi et al. 2014; Ringeval et al. 2021). 

Calibration of the most suitable parameters describing these processes and 

evaluating both simulated yield and HI with LPJ-GUESS can increase the accuracy 

of the simulates variables and, in turn, the analyses based on them.  

Likewise, it is important to consider the land use history for a more accurate 

representation of food systems. Legacies from past land cover can have long-lasting 

impacts on soil health, nutrient availability (Guo and Gifford 2002), and overall crop 
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productivity. The global cropland area has increased dramatically from 300 million 

hectares to around 1600 million hectares since 1700 (Goldewijk and Ramankutty 

2004; Jackson et al. 2019). Therefore, by incorporating historical land use data into 

crop yield simulations, models can account for these long-term effects and more 

accurately represent current crop productivity levels. This is particularly important 

when simulating yields globally due to the high temporal and spatial variability of the 

past land use cover and its impact. 

1.2. Ozone damage 

Tropospheric O3 is a harmful air pollutant that affects and threatens food production 

and ecosystem health. O3 is responsible for 5 to 16% of the global temperature 

change and is the second major air pollutant after the particulate matter. Human 

health is threatened by O3 too; around 700 000 deaths were estimated to be directly 

attributed to O3 pollution per year (Ainsworth et al. 2012a). Ozone indirectly affects 

food security by reducing the yields of many crops (Ainsworth et al. 2012a). The 

damaging effects of O3 in plants were discovered in the 1950s and now is recognised 

as the most damaging rural air pollutant (Ashmore 2005; Ainsworth et al. 2012b; 

Pleijel and Uddling 2012).  

An increase in tropospheric O3 has been observed over the past century, produced 

by the photolysis of NO2 into NO and a low-energy oxygen atom, which subsequently 

combines with O2 to form O3. NO2 is emitted directly into the atmosphere by 

combustion, or produced by NO oxidation, which is also a product of combustion. 

This reaction is part of the oxidation of organic compounds initiated by reactive 

species like OH and is faster at high temperatures. This link between O3 pollution, 

light and temperature means maximum concentrations of O3 typically occur after 
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noontime, with a decrease after late afternoon and especially during summer (Beig et 

al. 2007; Lin et al. 2020). 

Background O3 mixing ratio has more than tripled to 35-40 ppb in some regions from 

pre-industrial levels of around 10 ppb (Ainsworth 2017). However, in some regions 

like North America and Europe, during the last decades, the peaks of O3 have 

decreased due to reductions in precursor emissions. Conversely, in Asia, emissions 

of O3 precursors have increased, causing even O3 mixing ratios of 50 ppb in rural 

and suburban locations during the growing season, threatening the food supply both 

for local communities and globally, considering the importance of this region in cereal 

production (Emberson et al. 2009; Garthwaite et al. 2009).  

Ozone can affect crop productivity in different ways, damaging the appearance of the 

product and decreasing its value, which occurs when there is transient exposure to 

high levels of O3 but can also reduce the yield in the absence of visible injury under 

chronic exposure to relatively low O3 levels. The effect of O3 on NPP is controlled by 

the stomatal conductance that modulates the rate of penetration of O3 into the leaf. 

Once inside the leaf, O3 reacts to produce reactive oxygen species (ROS) like 

hydrogen peroxide, superoxide radicals, hydroxyl radicals and NO, activating the 

apoplast ROS quenching capacity. ROS can decrease the activity of the enzyme 

Rubisco but also causes a similar response to pathogenic stress, enabling ethylene, 

salicylic acid and jasmonic acid to express defence and programmed cell death, 

leading to early senescence (Ashmore 2005; Sitch et al. 2007; Ainsworth et al. 

2012b).  
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Ozone can cause a reduction of CO2 intake to the leaf by regulating stomatal 

conductance, thereby affecting the photosynthesis rate. Additionally, it can increase 

the allocation of resources to repair and detoxify affected tissues, also affecting 

yields (Ashmore 2005; Sitch et al. 2007; Ainsworth et al. 2012b). Interaction between 

CO2 and O3 can have opposite effects since future elevated CO2 concentration may 

lead to a decrease of stomatal conductance, diminishing the O3 intake as well as the 

damaging effects on plants, but some reports have demonstrated that despite this 

effect, O3 can still offset the potential effects of elevated CO2 by 18-34% (Sitch et al. 

2007; Ainsworth et al. 2012b).  

The increasing importance of O3 in crop production has accelerated research about 

the effect of O3 on agricultural production and yield. However, including O3-induced 

stress in GGCMs and other crop models remains limited, with only a few models, 

such as WOFOST, DSSAT and LPJmL (Cappelli et al. 2016; Guarin et al. 2019b, 

Schauberger et al, 2019). The incorporation of O3 impact in crop modelling stands to 

substantially improve both the geographical and temporal representation of crop 

productivity and yield, as well as increase the ability of crop modellers to explore the 

impact of different future scenarios for air pollution. This, in turn, can increase the 

reliability and flexibility of the food system analyses and assessments conducted 

using GGCMs like LPJ-GUESS. 

1.3. Hypotheses, aims and objectives 

In this thesis, the central hypothesis is that a substantial enhancement in the 

accuracy of crop growth and production simulated with the LPJ-GUESS ecosystem 

model at global and regional scales can be achieved through the improvement of the 

model parameterisation of carbon processes and of the structure by implementing 
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the representation of the ozone damage module in crops, but also by the 

understanding of the response to land use history and environmental input data. 

This thesis aims to enhance the capacity of the LPJ-GUESS ecosystem model to 

represent global crop growth and productivity for future applications by the calibration 

of critical parameters for carbon assimilation and allocation processes, the evaluation 

of the effect of historical land use changes and other environmental variables on crop 

productivity, and the implementation of a mechanistic module simulating the impact 

of ground-level ozone pollution on crop yield.  

1.3.1. Objectives  

• Evaluate and describe the effect of selected parameters and input datasets on 

simulated crop production  

• Identifying the benefits and limitations and uncertainties of different model 

setups for future research and model applications 

• Implementing the ground-level ozone module in LPJ-GUESS 

• Finding caveats, opportunities and needs to direct future research and 

continue the model improvement  

The thesis consists of three research chapters, each addressing one of the above 

aspects, as described below: 

1.3.2. Chapter 2: In this chapter the hypothesis is that by the constrain of critical 

parameters can improve the representation of yield but also senescense, 

carbon allocation and harvest index. 

Objective: To enhance the representation of carbon assimilation and 

allocation processes in global wheat and maize modelling. 
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Specific Objectives 

1. Identify the key carbon assimilation and allocation processes in LPJ-GUESS 

that significantly impact crop productivity. 

2. Calibrate the representation of these processes within the LPJ-GUESS model 

and evaluate their impact on simulated crop production. 

3. Assess the performance of the improved model. 

This chapter focuses on modelling crop yield and harvest index, including how 

photosynthesis fixes carbon and how carbon is allocated to different plant organs, 

such as leaves, stems, and grains. Carbon assimilation and allocation efficiency vary 

depending on environmental conditions, such as temperature, light intensity, and 

water availability. The chapter reviews the importance of carbon assimilation and 

allocation parameters in simulating crop production and discusses how the findings 

contribute to developing more accurate and reliable representations of yield and crop 

productivity. 

1.3.3. Chapter 3: In this chapter, the hypothesis is that land use history affects the 

trend of global crop production simulated with LPJ-GUESS and is an important 

factor to consider in future simulations. 

Objective: To understand the impact of land use change legacies on crop 

productivity and its interaction with other model drivers using LPJ-GUESS. 

Specific Objectives 

1. Analyze the impact of land use change on global crop productivity  

2. Assess the importance of land use change relative to other environmental 

drivers  
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While dynamic vegetation global models, such as LPJ-GUESS, have improved 

the simulation of vegetation cover and carbon cycling by accounting for land use 

change, its implications for crop yield simulations have not been well explored at 

large scales. This study evaluates the global effect of historical land cover 

changes on crop yield estimations for wheat, maize, and rice and examines the 

interaction of land cover change with climatic and management drivers. The 

findings highlight the importance of capturing accurate historical land cover 

changes and comprehensive fertiliser database inputs to increase the accuracy of 

simulated global food production, climate change impacts, and terrestrial 

biogeochemical cycles, particularly in simulating yield trends. 

1.3.4. Chapter 4: In this chapter, the hypothesis is that the deleterious ground-level 

ozone effect on wheat productivity can be captured by the implemented 

module in LPJ-GUESS. 

Objective: To implement, describe and evaluate the effect of ground-level 

ozone pollution on wheat yields using LPJ-GUESS. 

Specific Objectives 

1. Incorporate the effect of ground-level ozone pollution into the LPJ-GUESS 

model and evaluate its impact on simulated crop production. 

2. Evaluate the performance of the ozone pollution implementation on yield and 

harvest index of wheat.  

3. Assess the interaction between ozone, CO2 and drought on crop yields.  

This study evaluates the performance of the O3 module implemented in LPJ-GUESS 

and provides insights into the impact of ground-level O3 on crop productivity. The 
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chapter involves calibrating the rate of damage caused by O3 and the lower and 

upper limits of the period of O3 sensitivity and evaluating the calibrated module 

against experimentally-observed data. The model is applied to assess the interaction 

between O3, CO2, and drought. The results show that the model reproduces the 

damaging effect of tropospheric O3 on crop yield and harvest index and can be used 

to explore strategies to mitigate the negative impact of air pollution on crop 

productivity. 

Overall, this thesis represents an improvement in the representation of productive 

crop processes and will increase the consistency of results in strategic research 

performed with LPJ-GUESS on the global food system. This is critical for 

researchers, farmers, and policymakers to meet the current challenges of agriculture 

in feeding an increasing population in an environmentally and socially sustainable 

way. 
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CHAPTER TWO: MODELLING CROP YIELD AND HARVEST 

INDEX: THE ROLE OF CARBON ASSIMILATION AND 

ALLOCATION PARAMETERS 
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2.1. Abstract  

Crop yield improvement has relied on increasing the ratio of the economic organ to 

the total above-ground biomass, known as the harvest index (HI). In most crop 

models, HI is set as a cultivar parameter; however, this empirical approach does not 

consider that HI depends on the environment, besides plant genotype. In LPJ-

GUESS, HI is simulated mechanistically depending on daily growing conditions and 

the assimilated partitioning. Simulated HI can validate the proper representation of 

crop processes and productivity, but it also is a critical output for agricultural research 

due to its economic importance in the food production systems. However, some 

relevant parameters are not well constrained at the global scale in LPJ-GUESS. 

Therefore, this paper aims to evaluate the sensitivity of yield and HI of wheat and 

maize simulated with LPJ-GUESS to eight production-allocation related parameters 

and identify the most suitable parameter values for global simulations. The nitrogen 

demand reduction after anthesis, the minimum leaf C:N and the range of leaf C:N 

strongly affected carbon assimilation and yield, while the retranslocation of labile 

stem carbon to grains and the retranslocation rate of nitrogen (N) and C from 

vegetative organs to grains after anthesis mainly influenced HI. To identify the best 

parameter values, a global database of observed HI for wheat and maize was 

compiled and used as a reference to constrain simulations, and the calibration was 

performed for yield against reference data. Two maize cultivars, corresponding to 

high and low yielding, emerged from the calibration, whilst a simple split between 

spring and winter cultivars was kept for wheat. The calibrated version of LPJ-GUESS 

improved the simulation of yield and HI at the global scale for both crops, providing a 
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basis for future studies exploring crop production under different climate and 

management scenarios. 

Keywords: Retranslocation, N concentration, parameter sensitivity, calibration, LPJ-

GUESS. 

2.2. INTRODUCTION 

The world population is projected to reach about 9.7 billion by the middle of the 

century, according to the medium variant of the World Population Prospect (United 

Nations, 2019). The increased population plus a higher calorie demand per capita will 

develop a significant challenge to ensure increasing food demand (Godfray et al. 

2010; Vermeulen et al. 2012). This challenge is further complicated by expected 

reductions in crop production caused by climate change and other environmental 

issues (Ray et al. 2019; Ortiz-Bobea et al. 2021; Soleymani 2022). Therefore, a 

sustainable solution requires understanding the complexity of agricultural systems 

and their interaction with other biogeochemical dynamics (Cramer et al. 1999; Sitch 

et al. 2003; Lindeskog et al. 2013). The global gridded crop models (GGCMs) have 

answered this requirement and in the last decades, become essential tools for the 

analysis, interpretation and decision-making in agro-ecosystems at regional and 

global extents, as well as for the simulation of crop productivity, climate impact on 

yields, and the effect of management practices such as irrigation and fertilisation 

(Prentice et al. 1989; Bondeau et al. 2007; Monfreda et al. 2008; Müller et al. 2017). 

To properly fulfil the role of GGCMs, grain yield prediction needs the accurate 

representation of production processes such as phenology, carbon assimilation and 

assimilate allocation (Fletcher and Jamieson 2009; Ringeval et al. 2021). Allocation 



 

22 
 

patterns vary due to genetic and environmental factors (Qin et al. 2013; Porker et al. 

2020), and allocation in harvestable organs is represented by the harvest index (HI), 

defined as the ratio of grain dry matter to above-ground biomass. HI describes the 

crop success in partitioning photosynthates to produce economic biomass, and due 

to its direct contribution to grain yield and its economic importance, it is an essential 

output to be addressed in crop modelling, besides yield.  

In most crops, HI has increased through domestication and breeding (Lorenz et al. 

2010), and during the last decades, rising crop productivity has mainly relied on 

increased HI. For example, wheat cultivars released between 1860 and 1982 showed 

that 80% of the improvement in yield was associated with an increase in harvest 

index (Sinclair 1998). For maize, differences between old and modern hybrids yields 

are also directly related to HI increase (Lorenz et al. 2010; Liu et al. 2020). 

Correspondingly, grain yield is highly sensitive to factors that affect HI, such as water 

stress or nutrient management, which have been shown to affect the proportion of 

biomass converted to grains in wheat (Dai et al. 2016; Porker et al. 2020; Soleymani 

2022). 

Different approaches are used for HI in the GGCMs; the LPJmL model uses a 

defined optimum and minimum HI as cultivar-prescribed parameters only affected by 

water stress (Bondeau et al. 2007; Ringeval et al. 2021). Other models like the EPIC 

family models (group of GGCMs composed of several site-based similar models) 

include potential HI as a cultivar parameter that can be modified by empirical 

response functions to N dynamics and drought stress during the productive phase 

(Balkovič et al. 2013; Olin et al. 2015a; Ringeval et al. 2021). This approach is 

parsimonious but does not allow the analysis of the effect of multiple factors affecting 
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HI and limits the potential use of crop models in simulating economic carbon 

allocation; one of the most critical agricultural traits (Qin et al. 2013). Besides, a 

correct prediction of HI supports the accurate representation of production processes 

and yield simulation (Fletcher and Jamieson 2009)  

To solve this, LPJ-GUESS has introduced a fully prognostic HI calculation. It is 

calculated mechanistically as a function of the assimilated carbon, the developmental 

stage and based on the daily fraction of net primary production (NPP) allocated to 

different plant tissues and the retranslocation of carbon from other organs to grains 

(Olin et al. 2015b). The simulation of HI in LPJ-GUESS was introduced as part of a 

package of updates, including a Nitrogen (N) dynamic module that accounted for the 

effect of N limitation and N (Olin et al. 2015b). These implementations improved the 

LPJ-GUESS performance in simulating the productivity of grasslands, wheat yield in 

Europe, and global maize and wheat yield at the country scale (Olin et al. 2015b, a; 

Blanke et al. 2018). 

2.2.1. LPJ-GUESS 

LPJ-GUESS (Smith et al. 2014) is a process-based dynamic vegetation model that 

simulates vegetation response to climate, atmospheric carbon dioxide levels ([CO2]) 

and N dynamics. Different plant functional types (PFT) represent several vegetation 

categories according to growth form, phenology, photosynthetic pathway, 

distributional temperature limits and N requirements (Olin et al. 2015a). The land use 

change and crop modules (Lindeskog et al. 2013) represent crops as PFTs differing 

in climatic thresholds and management-related parameters like baseline sowing and 

harvest dates. The model also includes management options such as irrigation, 
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tillage and inter-growing season grass cover (Olin et al. 2015b). The main processes 

simulated daily to represent crops are soil hydrology, photosynthesis, canopy 

conductance, respiration, phenology, plant N demand, and carbon allocation (Smith 

et al. 2001; Olin et al. 2015b).  

Carbon allocation of daily NPP and retranslocation of nutrients after anthesis and 

during senescence are critical factors to simulate yield in LPJ-GUESS and, 

subsequently, HI. These processes depend on the crop development stage, defined 

daily as a number between 0 and 2 in LPJ-GUESS, depending on air temperature, 

vernalisation and day length. Anthesis is represented by a developmental stage of 1; 

values below 1 represent the vegetative phase, while above 1 represent the 

reproductive phase. During the vegetative phase, allocation is mainly represented by 

a logistic growth of roots, leaves and stems. During the reproductive phase, 

assimilates are allocated to grains (Olin et al. 2015b). LPJ-GUESS also considers a 

temporary carbon pool to supply demand on days when assimilation is below 

respiration cost. When the stem stops growing after anthesis, redistribution of the 

temporary carbon pool to storage organs starts (Penning de Vries et al. 1989; Olin et 

al. 2015b). 

Senescence is integral to annual crop development but can also be prematurely 

induced in leaves by adverse conditions and stress. In LPJ-GUESS, the onset of 

senescence occurs when the available N in leaves declines below necessary to 

maintain the current leaf Area Index (LAI) (Yin et al. 2000; Smith et al. 2001; 

Gregersen et al. 2013; Olin et al. 2015b). The necessary N to maintain LAI depends 

on the N uptake and the N demand from leaves according to their C:N, which is not a 

fixed parameter in LPJ-GUESS. Instead, it is constrained between a minimum and a 
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maximum leaf C:N and the optimum leaf C:N is estimated as 3/4 of this range 

(Wample et al. 1991; Smith et al. 2014; Olin et al. 2015b). 

LPJ-GUESS has shown acceptable performance in the simulation of recent-historical 

yield for wheat and maize globally (Olin et al. 2015a; Bodin et al. 2016; Müller et al. 

2019). However, several parameters relevant to the allocation scheme are weakly 

constrained and the sensitivity of simulated yield to these parameter choices is not 

well characterised. Furthermore, the lack of global-scale compilations of reference 

data of HI (Boote et al. 2013; Iizumi et al. 2014; Ringeval et al. 2021) means that 

LPJ-GUESS has not been tested against simultaneous constraints for both yield and 

HI at the global scale. In this paper, we report on the sensitivity of yield and HI 

outputs from LPJ-GUESS to the variation of eight parameters related to production 

and allocation. We further identify the most suitable choice of parameter values to 

simulate yield and HI across a globally distributed range of reference sites for two 

cultivars of wheat (Triticum aestivum L.) and two cultivars of maize (Zea Mays L.) by 

comparing simulated and reference yield, as well as simulated and observed HI 

values. Finally, a global evaluation demonstrates the fit improvement in HI and yield 

with the new parameter setup. 

2.3. MATERIALS AND METHODS 

2.3.1. Model Setup 

LPJ-GUESS v4.1, revision 10304, was used in this study. This version is based on 

the developments presented by Olin et al. (2015b) including the daily carbon 

allocation scheme and N dynamics in crops. The land cover was set for only cropland 

and the simulations were carried out starting in 1980 for maize, spring and winter 

wheat. All the crops were simulated for rainfed and irrigated conditions with tillage, N 
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application and inter-growing season grass turned on. The model dynamically 

estimated sowing and harvest dates based on climate suitability and heat unit 

accumulation (Lindeskog et al. 2013). All simulations were performed using a 500-

year spin-up with detrended [CO2] and climate to build up C and N pools and the 

AgMERRA climate forcing dataset (Ruane et al. 2015). In addition, N input was 

provided based on the atmospheric N deposition dataset from Lamarque et al., 

(2010) and the cropland N fertilisation database from AgGRID (AgMIP Gridded Crop 

Modelling Initiative) (Elliott et al. 2015a). 

2.3.2. Parameters  

The effect of eight crop LPJ-GUESS parameters was evaluated on yield, harvest 

index (HI), NPP, Carbon mass, LAI and N pool. A total of 17280 simulations were 

performed, combining all the levels from each parameter (2×3×3×3×4×4×4×5). A 

specific combination of parameters is referred to as a setup in the following. To 

evaluate sensitivity to all parameters in the crop model, including their interactions, 

would be computationally unfeasible. Therefore, the evaluated parameters and the 

range of variation were chosen based on literature revision, preeliminar simulation 

testing and an expert assessment of parameters likely to affect the simulated harvest 

index and are poorly constrained by observations. These parameters were primarily 

related to N status in the plant, retranslocation of C and N towards the grain, leaf 

thickness and light extinction (Figure 2.1). 

• Stem retranslocation (Sret) 

Sret represents the retranslocation of carbohydrates of easy mobilisation, mainly 

glucose and starch, from the stem to grains. This labile C pool represents 0.4 of the 
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stem carbon at flowering, and it is retranslocated to the grains close to the end of the 

grain-filling period with a rate of 0.1 day-1. Retranslocation is induced when the total 

demand for sugar exceeds the supply or when the growth rate of the developing 

storage organ drops below a certain level (Penning de Vries et al. 1989; Olin et al. 

2015b). This process is briefly considered in some models since it is not reported to 

be crucial to simulating yield, and stem starch residuals have not shown a significant 

relationship with yield in maize (Penning de Vries et al. 1989; Liang et al. 2019). 

Therefore, two possibilities were tested: inclusion and exclusion of Sret. 

• Specific leaf area (SLA) 

SLA is calculated in LPJ-GUESS for natural vegetation according to leaf longevity 

described by Reich, Walters, and Ellsworth (1992) but for crops, it is a cultivar 

parameter for crops, this represents a limitation since SLA vary according to 

fertilisation and water status, cultivar, plant density, and others (Amanullah and 

Inamullah 2016). Values of 45 and 50 m2kgC-1 have been reported for maize and 35 

and 40 m2kgC-1 for wheat (Penning de Vries et al. 1989; Mohammadi 2007; Olin et 

al. 2015a). Therefore, for this study, SLA was set to vary between 40, 45 and 50 

m2kgC-1 for maize and between 30, 35 and 40 m2kgC-1 for wheat.  

• Minimum C:N ratio in leaves (C:Nmin) and C:N Range (C:Nrange) 

Since tissue C:N varies in LPJ-GUESS according to dynamics between plant 

demand and supply of N (Smith et al. 2014). C:Nmin represents the maximum N 

concentration in leaves; below this value, the leftover N is translocated to the labile N 

pool. Thus, higher values of this parameter cause higher amounts of N translocated 

from leaves. C:Nrange is a factor that multiplied by C:Nmin equals maximum C:N. The 
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inappropriate constraint of N limits will overestimate the N use efficiency (Smith et al. 

2014; Olin et al. 2015b). For this study, C:Nmin was set to vary between 12.5, 15 and 

17.5, since the original crop implementation of LPJ-GUESS, based on grass reports 

showing a C:Nmin of 16 (Olin et al. 2015a) and C:Nrange between 2, 2.78, 3.5 and 5 

based on the ratio maximum/minimum C:N values reported between 2 and 5 (Olin et 

al.2015a; Olin et al. 2015b).  

• Retranslocation rate by of N and C (Nret, Cret) 

During the senescence process, retranslocation of N and C stored before anthesis to 

grains occur, but not instantaneously. In Olin, Schurgers, et al. (2015), this process is 

set to occur at a rate of 0.1 day-1. For this study, Nret and Cret were set to vary 

between different rates of 0.1, 0.2, 0.3 and 0.4 day-1 to complete N and C 

retranslocation. Quicker retranslocation implies a shorter senescence period and 

greater depletion of previously stored pools, increasing the ratio of dry matter 

between grains and other organs, a.k.a HI. 

• Nitrogen extinction coefficient (kN)  

The N extinction coefficient is directly related to the light extinction coefficient. It 

represents the decline in leaf N concentration from top to bottom of the canopy, 

typically following an exponential decrease. A higher extinction coefficient means a 

more drastic decrease in N concentration. N distribution is one of the most important 

determinants of photosynthesis rate, carbon gain, and senescence regulation in the 

canopy in LPJ-GUESS, affecting yield and HI (Yin et al. 2000; Olin et al. 2015b; 

Hikosaka et al. 2016). kN was set to vary between 0.175, 0.233 and 0.291 m2 m-2 for 

maize, and 0.15, 0.2 and 0.25 for wheat. Central values of these ranges were 

obtained from the original model setup. The range was selected from references for 
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wheat calculated under different conditions during the vegetative period (Yin et al. 

2003; Olin et al. 2015b). 

• Nitrogen demand reduction (Ndred) 

Ndred represents the reduction in N demand by leaves after anthesis, affecting 

photosynthesis, carbon gain, leaf senescence, yield, and HI. This process is not fully 

understood but is known to occur gradually due to root senescence resulting in a 

change in the N source-sink relationship (Zhao et al. 2020). Some reports show that 

N content at anthesis in wheat is as high as 90% of N at maturity (Mi et al. 2000). 

Since this parameter is not well explored and the timespan at which it occurs is 

unclear, a wide range of Ndred was set, varying between 0, 2.72, 7.39, 20.09 and 

100, lower values were prefered since the actual setup is around 7.39 and the value 

of 100 was mainly exploratory. A value of 0 means a slow reduction equal to the 

original LPJ-GUESS scheme, while 100 means a drastic decrease of N demand after 

the anthesis. 

2.3.3. Harvest Index 

A systematic literature review of published peer-reviewed research was conducted in 

August and September 2019, employing the widely used databases Google 

Scholar and Web of Science. A secondary search was also performed through 

publications cited by those in the primary search. The search was intended to identify 

studies published worldwide reporting the harvest index for wheat and maize. Studies 

published since 1990 were targeted to avoid the inclusion of old cultivars. Although 

studies published before 1990 were included in a few cases, in areas where no 
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publications were found searching by the initial time target. The following search 

protocol was employed: 

1) Search in English, Spanish and Portuguese for each of the four crop names, 

“wheat”, “maize or corn” (Spanish: Trigo and maiz; Portuguese: Trigo and 

milho), combined with “harvest index” (Spanish: índice de cosecha; 

Portuguese: índice de colheita).  

2) A manual review of the results to identify papers containing relevant data and 

potential research to include in the database depending on the availability of 

the document and the inclusion of harvest index values for any of the crops 

included in the study at a specific location.  

3) A further round of searches and manual review targeted regions where few or 

no studies were found in the first search: Africa and South America for all the 

crops and North America and Europe for rice.  

4) Finally, the word “meta-analysis” was also combined with all the described 

search terms to get studies with previously compiled datasets. 

Google Scholar is prone to excessive results, from around 150 000 records in the 

first type of search to about 15 000 in the latter. While the Web of 

Science produced around 1000 records in the first type of search to less than 10 

in the latter, for this reason, only the first 100 results in each were considered. 

Therefore, an examination of the results was required to identify relevant studies. 

A total of 46 records were identified for maize and 50 for wheat. Additionally, 64 

publications (34 for maize and 34 for wheat) reported in a harvest index meta-

analysis countrywide in China were collected to complement the database. These 

studies were published in Chinese between 2006 and 2010. Selected records 



 

31 
 

were scrutinised to filter duplicate studies or identify different studies using the 

same HI data. Studies were retained if they included the compulsory target 

variables: location (country, city and coordinates), year of the harvest, harvest 

index value and type of wheat (spring or winter). Information on whether crops 

were irrigated, rainfed, and fertilised traditionally (by synthetic fertilisers) or 

alternatively (organic, ecological) was also recorded if mentioned in the study. 

 

Figure 2.1. Diagram of the relationship between evaluated parameters and plant 

organs during different Developmental stages (DS) 

When the dataset in meta-analysis studies or any compulsory variable was not 

included in the published document or supplementary data, the authors were 

contacted and requested to share the information; no response caused the rejection 

of the record. Detailed information about the number of records is contained in Table 

2.1 and supplementary data S1. The commercial control harvest index data was 

chosen in studies about nutrition, plant density, or any other management practice. If 
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a control treatment was not explicitly included in the study, the middle levels of the 

treatments were selected, as well as the well-watered treatments in irrigation 

experiments or cultivars used as a reference (checks) in the breeding studies and 

ambient treatments in air concentration enrichment experiments.  

Twenty locations for wheat and twenty-two for maize were selected from the 

compiled HI database at a 0.5° x 0.5° gridcell scale, including productive locations 

with high and medium-low yields and covering as many regions worldwide as 

possible (Table S2-1, S3). Yields from these locations were extracted from the global 

gridcell scaled (0.5° x 0.5° resolution) yield data reported by Ray et al. (2019), 

covering the period between 1970-2013. In addition, the average yield of the 

countries to which the selected gridcells belonged was extracted from FAO reports 

(Food and Agriculture Organization of the United Nations (2020). These datasets will 

be referred to as the “Ray” and “FAO”, respectively in this manuscript. 

Table 2.1. Summary of entries by crop 

Crop 
Identified 

records 

Used 

records 
Locations Year range 

Total 

entries 

Maize 46 44 92 1989-2017 132 

Wheat 50 39 93 1974-2016 205 

2.3.4. Locations and evaluation data for calibration 

We preferentially calibrated against large-scale (gridcell or country) yields rather than 

reported site level because LPJ-GUESS is intended for application at large scale, 

and therefore we wished to avoid overparameterising to idiosyncrasies of particular 

sites or studies. Likewise, we used aggregated, rather than site-level, HI 

observations in the calibration (see section 2.6). Yield reference datasets at two 

different spatial scales were tested for parameter calibration since computational 
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capacity limited sampling location and, in turn, representativity to the global model 

performance when gridcell scale reference yield from the Ray dataset was used. In 

addition, the Ray dataset was estimated based on the crop statistics from about 

20000 political units, so it carries some uncertainty that can affect the calibration 

(Ray et al. 2019). Comparison against the average reference yield of a larger political 

unit provides a cross-check for robustness against uncertainties caused by the Ray 

dataset downscaled yield. 

2.3.5. Analysis of model sensitivity 

Results were analysed for the years 2001-2010, taking the mean for each location 

over this period. According to its average simulated yields from all the setups, 

locations were separated into two groups. Locations with average yields above the 

third quartile from all the simulated yields were categorised as “High” and “Medium” 

when average yields were below. A “Low” category was not included since the few 

low-yield locations (Below the first quartile) made grouping challenging and these 

locations showed similar behaviour to medium-yield locations.  

The mean, standard deviation from setups and location variability and the standard 

deviation from setups only (mean value of locations per setup) of all the output 

variables were calculated for all the parameter levels to inspect the variability caused 

by the parameter variation. Then a one factorial ANCOVA for the “High” and 

“Medium” groups was carried out for yield and HI, correcting the location effect by 

considering locations as a categorical covariate. Finally, the percentages of the sum 

of squares from ANCOVA (%SS) were calculated for all the main effects 

(parameters) and for interaction effects as the joined percentage of all the 

interactions where each parameter was included (Equations 2 - 1 and 2 - 2).  
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%SSmaini =
SSmaini

SSTotal
∗ 100  Equation 2-1 

%SSinteri =
∑ SSinteri∗j

n
j=1

SSTotal
∗ 100  Equation 2-2 

where i represents the parameter, j is the interaction including the ith parameter, 

SSmain is the sum of squares of main effects, SSinter is the sum of squares of 

interaction, and SSTotal is the total sum of squares.  

2.3.6. Parameter calibration 

Only setups that simulated senescence properly were retained for the rest of the 

analysis, it means setups with a percentage of dead leaves at harvest for irrigated 

maize above 70% and above 50% for irrigated spring and winter wheat in more than 

half of the locations (12 for maize and 11 for wheat). These values were 

approximated, for maize, based on the decrease of the amount of chlorophyll in 

leaves during senescence reported for fertilised maize (He et al. 2004) and were set 

lower for wheat since the breeding programs during the last years have selected 

many stay-green cultivars due to its improvement in grain yield (Kipp et al. 2014). 

The simulated yields were masked according to the irrigated and rainfed areas 

reported in each location by the Spatial Production Allocation Model “SPAM” 2005 

(You et al. 2014) and adjusted to fresh weight assuming a 12% net water content for 

wheat and 13% for maize (Müller et al. 2017). The difference between simulated 

yields against both reference datasets (Ray and FAO) was calculated as a fraction of 

the reference yield for each location in every setup. For Maize, the best setup for 

each location was selected by minimising the yield difference separately for FAO and 

Ray datasets and constraining HI to setups that produced values between the 
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percentiles 5th and 95th of the compiled HI database (0.30 and 0.59) to avoid atypical 

HI values. 

In order to assess whether a single generic setup was identified for maize or whether 

there was variation in the best setup suggesting a variation in cultivar, a k-means 

algorithm was performed on the best setups set to group the locations iteratively in 

clusters based on simulated yield and HI (Shamim Reza 2015). The number of 

clusters was selected based on the within-group sum of squares method, choosing 

the number of clusters at which the rate of change of the sum of squares with cluster 

number approaches zero. Spring and winter wheat were already included in the 

model, and selected locations were already classified by cultivar, so no clustering 

was performed. 

Subsequently, the 80th percentile of the yield difference (q80) was calculated for 

each setup separating locations by different cultivars; q80 was used to ensure that 

most of the locations had low yield differences instead of a central tendency statistic 

like mean; affected by extremely low values or median which is not sensitive to 

extremely high values. The average of simulated HI was also calculated per setup for 

each cultivar and if this value was out of the range between 0.30 and 0.59 for maize 

and 0.30 and 0.45 for wheat, the setup was not further included in the analysis. 

Wheat was higher constrained on the upper limit because the frequency distribution 

of the observed HI was skewed to the right compared to maize. Therefore, the setups 

were ranked by the low to high q80, and the best setups were those with lower q80 

for each cultivar. 
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2.3.7. Global evaluation 

The best setup and the parameter mean from the best ten setups were both selected 

to simulate globally, as well as the LPJ-GUESS original parameter setup (Table 2.2) 

defined by Olin et al. (2015b). Global simulations were performed on a 0.5° x 0.5° 

grid based on the same driving datasets as the sensitivity simulations (Section 2.2), 

and simulated yields were also masked according to “SPAM” 2005 (You et al. 2014) 

and adjusted to fresh weight assuming a 12% net water content for wheat and 13% 

for maize (Müller et al. 2017). For maize, global outputs were aggregated at a 

country level, and cultivars were distributed by country, minimising the difference 

between aggregated and FAO-reported yields. While for wheat, the cultivar 

distribution was taken from the recent AgMIP climate change evaluation using a crop 

model ensemble (Jägermeyr et al. 2021). This process was performed separately for 

the selection method (best or ten best mean) and reference data (Ray and FAO), 

producing four global simulations per crop plus the original setup simulation. A 

production-weighted mean absolute error (WMAE) for yield was calculated at the 

country and gridcell scale as in Equations 3 and 4 to compare the five global 

simulations and select the best setup. 

WMAE = ∑ Frac_Prodi ∗ |Observedi − Simulatedi|
n
i=1   Equation 2-3 

Frac_Prodi =
Productioni 

Wprod
  Equation 2-4 

where n, depending on the comparison scale, is either the global number of gridcells 

or countries where yield was simulated and reported in the Ray or FAO datasets, 

respectively. Production is the gridcell or country scale crop production. Observed is 

the reference yield at gridcell or country scale (Ray or FAO), and Wprod is the 
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aggregated world production, all reported from Ray or FAO, respectively, and 

averaged for 2001-2010. Simulated is the LPJ-GUESS simulated yield aggregated by 

country or for gridcell according to the scale comparison. Ray production was 

calculated by multiplying yield by harvested areas reported in “SPAM” 2005 (You et 

al. 2014). WMAE was also calculated for HI using the Equation 2 - 3 and comparing 

simulated HI against the compiled database at gridcell scale.  

Finally, the best 50 setups per cultivar from the selected reference dataset were used 

to perform a descriptive analysis to show the relationship between cultivars and 

parameters, the distribution of parameter values and the yield difference range 

caused by parameters in these 50 setups.  

2.4. RESULTS AND DISCUSSION 

2.4.1. Sensitivity analysis 

Variation of maize yield simulated in locations from “Medium” (Figure 2.2A, 2.4A) was 

mainly influenced by Sret, C:Nrange and Cret, and to a lower extent by Nret, Ndred 

and C:Nmin. Except for C:Nmin, the same parameters also affected HI in this group 

(Figure 2.3A, 2.4B). In locations from “High”, yield was more sensitive to Nret and 

less to C:Nmin compared to “Medium” (Figure S2-1A, 4A). HI was more sensitive in 

“High” to Nret and similarly sensitive to the rest of the parameters as “Medium” 

(Figure 2.3A, S2-2A, 2.4B). 

Simulated wheat yields showed high sensitivity to variation in Sret, C:Nrange, Nret, 

C:Nmin, and Ndred. Ndred caused more significant variation in “High” while C:Nrange in 

“Medium”(Figure 2B, S2.1B, 2.4A). Sret, C:Nrange, Nret and Ndred caused higher 

variability of HI. As for yield, Ndred had a stronger effect than other parameters in 
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“High”, whilst C:Nrange did in “Medium” (Figure 2.3B, S2-2B, 2.4B). N-related 

parameters affected yield variation in both crops, but the effect was higher in “High” 

locations. This occurred because of soil N limitation in “Medium” locations (Table S2-

3) which constrained yield in setups with parameter values allowing higher production 

compared to “High”, like 0.1 for Nret and 0 for Ndred, implying slower retranslocation 

and smooth N demand reduction after anthesis, therefore a more extended period of 

carbon assimilation (Figure S2-3).  

Lower Ndred increases both HI and yield because N uptake after anthesis is one 

significant source for N in grains and allows plants to keep more foliar area and 

produce more assimilates. This correlation between dry weight and yield with slower 

post-anthesis N uptake has been previously reported for maize and wheat. Higher 

post-anthesis uptake occurred when available soil N increased during grain filling, 

increasing yield and green area index (Mi et al. 2000; Zhao et al. 2020). This 

indicates that N demand reduction is not a quick process, as represented by high 

Ndred values. 

In wheat, yield and HI are more influenced by Nret than Cret. This occurred because 

the N translocation rate is directly related to leaf senescence and the photosynthetic 

rate depending on the ratio of nitrogen-limited LAI and the actual LAI (Yin et al. 2000; 

Smith et al. 2001; Gregersen et al. 2013; Olin et al. 2015b). Conversely, a higher 

carbon translocation indirectly causes senescence when a rapid decrease of C:N 

reaches a maximum N concentration. This effect was stronger in wheat, in which Nret 

effect on LAI was higher than Cret while LAI in maize showed a similar response 

between Cret and Nret (Figure S2-5), probably related to the limiting available soil N 

content in productive areas decreasing Nret sensitivity (Table S2-3). One way to 
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observe this is the small effect of low Nret (0.1) in actual leaf C:N in maize compared 

to wheat (Figure S2-4).  

Higher wheat sensitivity to C:Nmin, compared to maize, was notable in outputs like 

GPP, LAI and leaf carbon mass, which directly influence yield and HI. This is also 

likely due to the higher soil N content in wheat soils, which suggests that carbon 

assimilation in wheat is constrained by the maximum N concentration allowed in the 

leaves by LPJ-GUESS in more locations. Instead, this parameter was not equally 

critical for maize since the limited soil N content is the main factor affecting carbon 

assimilation in the range of conditions simulated here.  

Maize was more sensitive to C:Nrange, which regulates the minimum N concentration. 

Higher ranges of C:N allow lower N concentrations in leaves, decreasing 

photosynthetic capacity and, in turn, GPP and yield (Figure 2.2, S2-3). In addition, 

lower N limits favour increased LAI and vegetative growth with less N requirement, 

reducing HI (White et al. 2000; Hassan et al. 2007). Opposite to C:Nmin, the limited 

soil N in maize soils implies that the minimum N allowed in the leaves by LPJ-

GUESS constrained maize carbon assimilation in more locations than wheat. N 

content in soil was not standardised since that would have critically affected yield, 

precluding the use of sensitivity simulations for parameter calibration. 

Yield and HI of both crops were highly sensitive to Sret, which affects grain carbon 

accumulation but also accumulation in vegetative organs. Consequently, it had a 

more significant effect and was the most critical parameter of HI. Stem dry weight 

loss has been widely observed after anthesis in both crops (Kiniry et al. 1992; Xue et 

al. 2014; Nazir et al. 2021) and is generally assumed to go to the grains, although it 
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lacks experimental confirmation (Penning de Vries et al. 1989; Olin et al. 2015b). 

Alternative hypotheses propose that remobilisation is not constant and only occurs 

when the growth rate of the developing storage organs drops below a certain level 

(Penning de Vries et al. 1989), also that labile carbon from the stem can be used to 

synthesise structural material and maintain the plant and roots, besides, some 

evidence has shown that stem retranslocation to grains is very dependent on the 

genotype and stress conditions (Kiniry et al. 1992; Xue et al. 2014; Nazir et al. 2021). 

If Sret was assumed to go to the grains in LPJ-GUESS, it directly affected the ratio 

between vegetative and harvested organs, increasing both simulated yield and HI 

and the likelihood of HI overestimation. In this study, Sret was only included or 

discarded, but the fraction of easily mobilised carbohydrates retranslocated to grains 

could be constrained depending on stress conditions, substantially reducing the 

uncertainty in yield and HI simulations. 

Overall, simulated GPP and growth in LPJ-GUESS were mainly affected by the 

allowed leaf N concentration. This correlation was found previously in shrubs and 

grasses but is stronger in herbaceous species due to the higher allocation of 

nutrients in herbaceous stems compared to woody stems (Tang et al. 2018). N and 

carbon retranslocation and N uptake reduction after anthesis also affected GPP to a 

low extent due to the effect on the carbon assimilation period but had a stronger 

effect on yield and HI since the grains are the dominant carbon sink after anthesis. 

This result matches the findings in wheat and rice, where the amount of N taken up, 

including the post-anthesis period, has a proportional relationship with yield (Fageria 

2014; Belete et al. 2018). Similarly, the stem labile retranslocation directly affects the 
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carbon ratio between grain and vegetative organs. For that reason, it is the most 

influential parameter affecting HI. 
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Figure 2.2. Mean values of simulated yield c for 2001-2010 for each evaluated 

parameter level. A. Maize medium yield locations, B. Wheat medium yield locations. 

Vertical bars represent the standard deviation considering all the variation from 

parameters and locations. Horizontal bars only consider variation from parameters. 

The same plot for high-yield locations can be found in Figure S2-1 
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Figure 2.3. Same as Figure 2.2. But instead of simulated yield for simulated HI 
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Figure 2.4. Percentage of the sum of squares for main effects (red) and added 

interaction effects per parameter (green): A. Simulated yield and B. Simulated HI of 

maize and wheat 

 

2.4.2. Parameter calibration 

The selection of the best setup for each location for maize resulted in two distinct 

clusters of parameters, similar for both Ray and FAO datasets. Mainly temperate 

regions were included in cluster 1, and sub- and tropical regions in cluster 2 (Table 

S2-1). The only deviations were the inclusion of China in Cluster 1 in Ray-based 

analysis and the inclusion of Germany and UK in cluster 2 in FAO-based analysis. 

Based on this result, locations with latitudes above 35 degrees (N or S), except in 

China, were considered to belong to cluster 1 and grow high-yielding maize. The 

remaining locations were in cluster 2 and grew low-yielding maize. Both clusters 

consisted of eleven locations. The parameterisation from cluster 1 will be referred to 

as high-yielding maize and cluster 2 as low-yielding maize in the following.  
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From the original 17280 setups, 15617 were retained after filtering by the 

senescence criteria for maize (not performed by cultivar since this filter was applied 

before clustering), 11525 for winter wheat and 8901 for spring wheat. After 

constraining by HI, the considered number of setups for the minimisation of yield 

difference decreased to 7904 for high-yielding maize, 13439 for low-yielding maize, 

5435 for winter wheat and 3506 for spring wheat. The minimisation of yield difference 

then allowed to identify the best and the mean of the ten best setups per cultivar and 

crop separately by reference dataset (Table 2.2).  

High-yielding maize had lower Nret and Cret values due to the slower retranslocation 

favouring a more extended photo assimilation period, and C:N parameters that 

produce higher N concentration; lower C:Nmin and C:Nrange. On the other hand, wheat 

only showed cultivar difference in C:Nrange and kN with higher values and Nret with 

lower values for winter wheat. None of the selected setups included stem 

retranslocation (Sret); SLA and kN did not show a clear pattern between cultivars in 

both crops. Still, both parameters showed middle to high values related to lower yield 

and HI values. Similarly, no pattern was found in Ndred, but considering the wide 

range of this parameter, only low values were part of the best setups indicating that 

slow N demand reduction after anthesis, similar to the original LPJ-GUESS setup, fits 

better with reference yield. Evidence supports this result since both crops have 

shown to continue uptaking N after anthesis, depending on the soil N availability. 

Besides, maize has been reported to absorb more N than wheat to satisfy ear N 

demand (Mi et al. 2000; Fageria 2014; Zhao et al. 2020).  

Global simulations using the best Ray-calibrated setups produced higher values of 

WMAE for both crops compared to the FAO-calibrated setups indicating a better fit at 
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both scales. In wheat, the mean of the best ten Ray-calibrated setups at country and 

gridcell scales showed higher WMAE than the original setup. At the gridcell scale, the 

best FAO setup behaved better, while at the country scale, the mean of the best ten 

FAO-calibrated setups had better behaviour. However, the latter setup better fitted HI 

in both crops and scales (data not shown). Therefore, the mean of the best ten FAO-

calibrated setups was selected as the best LPJ-GUESS parameterisation for global 

simulations in both crops (Table 2.3). 

The distribution of the best fifty setups per cultivar and crop using FAO as reference 

data (Figures 2.5, 2.6, S2-7, S2-8) only showed Sret = 0 for both crops and cultivars, 

except winter wheat which had 12 setups with Sret=1. This means that yield and HI 

estimations were better adjusted without labile carbon retranslocation from the stem 

to grain. The most contrasting parameters between wheat cultivars, similar to the ten 

best setups mean, were C:Nrange, Nret and kN. The best-fitted setups for spring wheat 

only had C:Nrange of 2, while winter wheat had different values in 32 setups, showing 

higher sensitivity to this parameter.  

Table 2.2. Selected setups according to reference dataset by crop and cultivar and 

original setups in LPJ-GUESS. (-Av) represents the setups based on the parameters 

mean of the ten best setups. Shaded rows represent the selected setup after global 

evaluation 

Crop Cultivar Dataset SLA C:Nmin C:Nrange Nret Cret kN Ndred 

Maize Clust 1 Ray 45 12.5 2.0 0.3 0.1 0.29 2.7 

Maize Clust 2 Ray 50 17.5 5.0 0.4 0.4 0.23 2.7 

Maize Clust 1 FAO 50 12.5 2.0 0.1 0.1 0.29 0.0 

Maize Clust 2 FAO 50 17.5 5.0 0.4 0.4 0.23 2.7 

Maize Clust 1 Ray-Av 45 12.5 2.1 0.2 0.2 0.24 2.6 

Maize Clust 2 Ray-Av 46 17.5 5.0 0.4 0.4 0.24 4.6 

Maize Clust 1 FAO-Av 50 12.5 2.0 0.2 0.1 0.24 5.8 

Maize Clust 2 FAO-Av 48 17.5 5.0 0.4 0.4 0.26 2.4 

Maize Original Original 45 15 5 0.1 0.1 0.27 0 

Wheat Spring Ray 40 12.5 2.0 0.4 0.3 0.15 7.4 
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Wheat Winter Ray 40 12.5 2.8 0.1 0.4 0.25 2.7 

Wheat Spring FAO 40 12.5 2.0 0.4 0.2 0.15 0.0 

Wheat Winter FAO 40 12.5 2.8 0.1 0.4 0.25 0.0 

Wheat Spring Ray-Av 37 12.5 2.0 0.4 0.3 0.18 2.5 

Wheat Winter Ray-Av 34 12.5 3.9 0.2 0.3 0.25 1.4 

Wheat Spring FAO-Av 40 12.5 2.0 0.4 0.2 0.18 2.6 

Wheat Winter FAO-Av 40 12.5 2.5 0.1 0.2 0.25 1.1 

Wheat Original Original 35 15 5 0.1 0.1 0.27 0 

Spring wheat had a more frequent value for kN of 0.15, while in winter wheat, it was 

0.25, indicating that winter wheat has a more pronounced decrease of N 

concentration moving from the top to the bottom of the canopy. However, sensitivity 

to this parameter was low, so it does not affect yield or HI significantly. Nret had 

higher values in spring wheat, causing winter wheat to keep the green tissue for a 

more extended time, while Cret had a similar trend in both cultivars, showing 

independence between the effect of carbon and N retranslocation rate in LPJ-

GUESS. Winter wheat also had low values of Ndred, representing slower N demand 

reduction after anthesis and, again, a more extended green period. This response 

between cultivars agrees with the reported longer growing period of winter wheat 

compared to spring wheat (He et al. 2019). 
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Figure 2.5. Wheat boxplots of the yield difference (FAO - simulated) as a proportion 

of FAO yield, distribution of the best fifty setups by parameter levels. Orange for 

spring wheat and green for winter wheat 
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Figure 2.6. Maize boxplots of the yield difference (FAO - simulated) as a proportion 

of FAO yield, distribution of the best fifty setups by parameter levels. Orange for high-

yielding and green for low-yielding maize 

The best fifty setups for maize also showed similar responses to the mean of the ten 

best setups; low-yielding maize only included setups with C:Nrange values of 5 and 

high values of C:Nmin between 15 and 17.5 while high-yielding maize included 

C:Nrange values of 3.5, 2.8 and mostly of 2, whilst C:Nmin was always 12.5, indicating 

that high yielding maize requires lower C:N leaf and consequently higher 

concentrations of N. Nret and Cret had lower values for high yielding maize indicating 
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slower retranslocation of N and carbon to the grains. In high-yielding maize, Ndred 

distribution included the whole parameter range, but the lowest two levels, 0 and 2.7, 

represented 80% of the best fifty setups. SLA was not a parameter of high sensitivity, 

but high values of SLA are more frequent in all the best setups of all cultivars in both 

crops. Accordingly, the final selected setups included SLA values close to 50 for 

maize and 40 for wheat (Table 2.2; Figures 2.5 and 2.6). 

Lower values of SLA (thicker leaves) have been reported to decrease LAI and water 

stress favouring NPP and harvest index in wheat and other cereals (White et al. 

2000; Chen et al. 2020). LPJ-GUESS captures this effect on LAI but not in leaf 

carbon mass assimilation (Figure S2-5, S2-6), meaning that this parameter does not 

alter the photosynthetic capacity; this can also be observed in the minor GPP 

variation caused by SLA (Figure S2-3).  

2.4.3. Global evaluation 

The mean of the best ten FAO-calibrated setups was selected for global evaluation 

due to its low WMAE at both scales (Table 2.3). This setup produced aggregated 

yields by country with satisfactory goodness of fit compared to FAO reported yields 

averaged between 2001 and 2010 (Figure 2.7). Although there was an 

underestimation of wheat yield in some countries, the ordinary least squares linear 

regression line between simulated and observed yields by country was not 

significantly different to 1:1 line considering intercept and slope (R2=0.53). In maize, 

the regression line had a significantly different slope and intercept to the 1:1 line 

(R2=0.52), but the 95% confidence intervals of the regressions included most of the 
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1:1 line for both crops. The first five producers by crop were also well captured, 

except for Pakistan in wheat (Figure 2.7).  

 
Figure 2.7. By country comparison between simulated yields with LPJ-GUESS and 

reported by FAO averaged values (2001-2010). Circle size is proportional to 

production reported by FAO during the same period. Coloured dots show the five top 

producers in the world. In order (for wheat and maize): Red (China, USA), Blue 

(India, China), Green (USA, Brazil), Yellow (Russia, Mexico) and Purple (Pakistan, 

Argentina). Red lines represent the adjusted linear regression between simulated 

and observed yields. Shaded areas show the 95% confidence interval, and black 

lines represent the 1:1 line 

Global simulations at the gridcell level showed similar patterns to those reported in 

the Ray dataset, with most productive areas showing differences below 3 t ha-1. The 

model overestimated maize yield in regions like the southeast of the USA and 

Argentina. However, there is a clear improvement worldwide in yield estimation 

compared to the original model setup, which presented a substantial overestimation 

for almost all the simulated countries (Olin et al. 2015a). The improvement in Africa, 

Asia, and South America at the gridcell scale is significant (Figure 2.8). Differences 

between simulated and reference yields are more evident at the gridcell than at the 
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country scale, suggesting an improvement in the estimation in some areas of those 

previously poorly simulated countries. 

Table 2.3. WMAE of the selected and original setups evaluated globally at gridcell 

and country scale. (-Av) represents the setups based on the parameters mean of the 

best ten setups 

 Gridcell scale Country scale 

 Maize Wheat Maize Wheat 

Ray 1.47 1.19 0.76 0.89 

Ray-Av 1.44 1.74 0.79 1.35 

FAO 1.42 1.14 0.66 0.83 

FAO-Av 1.43 1.15 0.63 0.8 

Original 2.73 1.19 2.55 1.03 

In wheat, differences between yield from new and original setups against Ray global 

gridded yield were similar, and no significant improvement is noticeable. Both setups 

show underestimation in western and eastern Europe and East and South Asia 

overestimation. However, the calibration process significantly improved the 

estimation of HI for both crops. HI was strongly overestimated in the original setup, 

even showing values above 0.75 in both crops in several locations (Figure 2.9). In 

contrast, the global distributions of HI had a similar median compared to reference 

data in the calibrated setup. A more subtle evaluation of HI response will require 

datasets which show how HI varies systematically as a function of growing 

conditions. Such responses were not apparent in the compiled HI database. 

Additionally, the included low-yielding maize cultivar also showed lower HI than high-

yielding maize in the global simulation, with a global mean HI for irrigated maize of 

0.33 and 0.53, respectively. Low-yielding maize was distributed in subtropical and 

tropical countries (Figure S2-9). In wheat, the new cultivar distribution had more 

winter wheat areas in Argentina, South Africa, Australia and the USA (Jägermeyr et 
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al. 2021). Winter wheat showed lower HI values than spring wheat, with a global 

mean HI for irrigated wheat of 0.39 and 0.49, respectively. 

 
Figure 2.8. Gridded yield simulated with LPJ-GUESS using the selected setup, mean 

of the parameters from the best ten setups (Top). The yield difference between the 

selected setup and Ray reported yield (simulated-Ray) (middle), and yield difference 

between the original setup and Ray reported yield (original-Ray) (bottom) for maize 

(left) and wheat (right). Average from the decade 2001-2010 

Even though the cultivar global distribution improved the representation of crops 

production in LPJ-GUESS, given the significant influence of some studied 

parameters here on HI and yield, further observations to constrain them in a variety 
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of cultivars would be particularly valuable to ensure that calibrated ranges generated 

in studies such as this one correspond closely to reality and represent genotypic 

differences such as tolerance to abiotic stresses, growth properties and productivity 

(Balkovič et al. 2013; Soleymani 2022). In the absence of such observations, 

especially for carbon assimilation and retranslocation rates, the values attained in the 

calibration performed in this study may be used as a basis for other large-scale 

modelling exercises. 

 
Figure 2.9. Boxplot for HI from the compiled database and simulated HI using the 

original model and the newly selected setup for wheat and maize 
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The sensitivity and parameterisation performed here improved the estimation of 

global yield and harvest index of maize and wheat compared to the original setup 

used in LPJ-GUESS (Olin et al. 2015b), implying an improvement of the 

representation of crop production processes (Fletcher and Jamieson 2009). The 

improved version of LPJ-GUESS to simulate major crops growth and yield involves 

progress in the investigation of growing and management conditions at the regional 

and global scale (Rosenzweig et al. 2013). This is going to be particularly useful in 

estimating more accurately the effects of future climate change scenarios on global 

productivity of food systems, food security, and global economics since agriculture 

represents between 1 and 60% of national GDP in some countries (Rosenzweig et 

al. 2013; Mbow et al. 2019). 

2.5. CONCLUSIONS 

The sensitivity analysis showed that the main parameters affecting simulated carbon 

assimilation, GPP and yield were those related to N concentration, such as the leaf 

minimum C:N ratio and C:N ratio range. The carbon reallocation parameters, such as 

the retranslocation of labile carbon from stem to grain after anthesis and the 

retranslocation rate of N and carbon during senescence from leaf to grain, were more 

critical for HI. Although these parameters also affected GPP and yield to a lower 

extent, they directly influenced the allocation of carbon in grains and vegetative 

organs, causing high variation in HI. The extent to which labile carbon is 

retranslocated to grains was the most crucial parameter for HI simulation. It was the 

only parameter that had the effect of decreasing HI without significantly affecting 

yield.  
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The carbon assimilation rate and the period with active photosynthesis were highly 

affected by the N and carbon retranslocation rate and N demand reduction after 

anthesis. Lower carbon and N retranslocation rates and lower N uptake demand 

reduction after anthesis represent a more extended period of productive green tissue 

and higher assimilation with consequent implications for GPP, yield and HI. Exclusion 

of the labile carbon retranslocation from stem to grains produced a better fit for yield 

keeping HI within acceptable limits. 

For maize, two cultivars were created according to yield distribution in the selected 

locations. Maize cultivars were contrasting in C:N ratio parameters as well as N and 

Carbon retranslocation rates. The high-yielding cultivar of maize had lower values of 

minimum and range leaf C:N ratio, Carbon and N retranslocation rates compared to 

low-yielding maize, indicating the need for higher leaf N concentration, a higher 

capacity for carbon assimilation and a more extended production period. On the 

other hand, wheat cultivars were only contrasting in the range of leaf C:N and N 

retranslocation rate, which was lower for winter wheat, indicating a longer productive 

and green period. 

The cultivar parameterisation and global distribution developed in this study improved 

the global yield and HI estimation compared to the original setup used in LPJ-

GUESS. The calibrated version of the LPJ-GUESS crop model forms a basis for 

studies investigating how changes in management and growing conditions, as well 

as the future climate change scenarios, affect the global crop growth and yield of 

maize and wheat.  
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2.7.2. Additional results 

Table S2-1. Maize location coordinates and reported yields and clustering according 

to Ray (Ray et al. 2019) and FAO (Food and Agriculture Organization of the United 

Nations 2020) in kg ha-1. The percentage of variation takes Yield-FAO as the 

reference. Ray, FAO based and final clustering 

Long. Lat. Country 

Yield-

Ray 

 Yield-

FAO 

Var 

(%) 

Clus-

Ray 

Clus-

FAO 

Clus-

final 

-58.30 -37.75 Argentina 5.42 6.52 -16.8 1 1 1 

-44.25 -19.13 Brazil 3.32 3.59 -7.6 2 2 2 

108.07 34.28 China 5.56 5.16 7.8 1 2 2 

126.79 43.15 China 7.97 5.16 54.5 1 2 2 

126.63 47.43 China 6.68 5.16 29.5 1 2 2 

1.17 43.45 France 8.24 8.69 -5.1 1 1 1 

8.68 50.58 Germany 7.11 9.00 -21.0 1 2 1 

12.63 9.23 Guinea 1.10 1.72 -35.9 2 2 2 

3.12 10.05 Guinea 1.17 1.20 -2.0 2 2 2 

77.20 28.62 India 1.20 2.08 -42.4 2 2 2 

-99.12 18.67 Mexico 2.69 2.98 -9.7 2 2 2 

-97.63 20.45 Mexico 1.53 2.98 -48.6 2 2 2 

71.58 34.02 Pakistan  2.27 2.86 -20.5 2 2 2 

30.27 -29.62 South Africa 4.36 3.50 24.7 2 2 2 

-0.82 41.72 Spain 10.80 9.82 9.9 1 1 1 

-0.91 51.47 UK 8.62 7.00 23.2 1 2 1 

-86.99 40.47 USA 10.57 9.34 13.1 1 1 1 

-85.53 42.25 USA 8.41 9.34 -9.9 1 1 1 

-85.32 42.60 USA 8.65 9.34 -7.4 1 1 1 

-86.02 42.94 USA 8.45 9.34 -9.6 1 1 1 

-84.86 43.65 USA 8.02 9.34 -14.2 1 1 1 

-85.11 45.00 USA 5.95 9.34 -36.3 1 1 1 
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Table S2-2. Same as S2 but for wheat 

Longitud Latitud Country 

Yield-

Ray 

 Yield-

FAO 

Variation 

(%) 

142.10 -36.75 Australia 0.19 0.16 24.7 

142.00 -35.12 Australia 0.14 0.16 -10.1 

-51.63 -30.83 Brazil 0.12 0.21 -41.8 

-52.41 -28.23 Brazil 0.25 0.21 16.2 

-72.10 -36.57 Chile 0.43 0.46 -5.2 

108.07 34.28 China 0.42 0.44 -2.5 

113.58 34.85 China 0.48 0.44 10.3 

115.48 38.85 China 0.58 0.44 32.5 

125.84 48.02 China 0.36 0.44 -17.8 

23.50 60.82 Finland 0.36 0.36 -0.2 

8.67 50.57 Germany 0.76 0.74 2.3 

82.99 25.27 India 0.21 0.27 -23.6 

-98.90 19.48 Mexico 0.27 0.49 -44.4 

5.66 52.00 Netherlands  0.85 0.85 0.2 

16.90 52.45 Poland 0.42 0.39 8.0 

32.88 39.95 Turkey 0.23 0.23 1.0 

-111.97 33.07 USA 0.63 0.28 125.1 

-98.09 36.39 USA 0.20 0.28 -27.7 

-120.71 45.49 USA 0.29 0.28 3.6 

-97.66 46.33 USA 0.30 0.28 6.7 

 

Table S2-3. Soil Nitrogen pool (g N/kg soil) 

  Maize Wheat 

  Mean std Mean std 

High 0.215 0.11 0.332 0.06 

Medium 0.167 0.06 0.27 0.18 
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Figure S2-1. Mean values of simulated yield for the decade 2001-2010 for each 

evaluated parameter level. A. Maize high yield locations, B. Wheat high yield 

locations. Vertical bars represent the standard deviation considering all the variation 

from parameters and locations. Horizontal bars only consider variation from 

parameters 
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Figure S2-2. Same as Figure S2-1. But instead of simulated yield for simulated HI 
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Figure S2-3. Mean values of simulated GPP for the decade 2001-2010 for each level of the evaluated parameters in “Medium” and 

“High” locations for maize (A and B) and wheat (C and D) 
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Figure S2-4. Mean values of simulated C:N ratio in leaves for the decade 2001-2010 for each level of the evaluated parameters in 

“Medium” and “High” locations for maize (A and B) and wheat (C and D) 
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Figure S2-5. Mean values of simulated LAI for the decade 2001-2010 for each level of the evaluated parameters in “Medium” and 

“High” locations for maize (A and B) and wheat (C and D) 
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Figure S2-6. Mean values of simulated carbon mass in leaves for the decade 2001-2010 for each level of the evaluated parameters 

in “Medium” and “High” locations for maize (A and B) and wheat (C and D)
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Figure S2-7. Wheat boxplots of the yield difference and distribution of the best fifty 

setups by parameter level considering FAO country yield as reference. Orange 

spring wheat and green for winter wheat 
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Figure S2-8. Maize boxplots of the yield difference and distribution of the best fifty 

setups by parameter levels considering FAO country yield as reference. Orange for 

high yielding and green for low yielding maize 
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Figure S2-9. High and low yielding maize global distribution. Countries with grey 

colour reported less than 1000 harvested hectares in average for 2001-2010 
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CHAPTER THREE: INFLUENCE OF LAND COVER CHANGE ON 

HISTORICAL YIELD OF WHEAT, MAIZE AND RICE SIMULATED 

WITH LPJ-GUESS 
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3.1. Abstract 

During the last century, global cropland area has increased by about 67% to 

compensate for a growing population and the subsequent increase in demand for 

food, fibre and energy. This pattern of continuous land cover (LC) change may has 

had a considerable impact on global food production. Taking LC change into account 

in dynamic vegetation global models, like LPJ-GUESS, has improved the simulation 

of vegetation cover and carbon cycling. The legacy of past LC changes substantially 

affects soil organic carbon and nutrient content, where nutrient availability is a key 

determinant of crop yield. However, the implications of past LC changes for crop 

yield have not been well explored in large-scale modelling. The contribution of this 

study is to evaluate the global effect of the history of LC changes on global crop yield 

estimations for wheat, maize and rice and the interaction of the history of LC changes 

with climatic and management drivers. A total of 56 global simulations were 

performed by combining three different factors. (1) Four different setups for global LC 

before the historical simulation: cropland, natural vegetation, conversion of natural 

vegetation to pasture before conversion to cropland, and a historical LC change 

reconstruction. (2) The individual contributions of five drivers: atmospheric CO2, 

precipitation, radiation, temperature and fertilisation, plus two simulations including all 

driver variable and holding all drivers constant. (3) Two different climate forcings: 

CRU-NCEP (historical simulations from 1960 to 2010) and AgMERRA (historical 

simulations from 1980 to 2010). Both climate-forcing datasets showed a similar 

relative response in trends and interannual variability. Simulations with previous LC 

of natural vegetation and pastures caused higher soil nitrogen and carbon pools, 

increasing yields at the beginning of the historical simulations. In contrast, 



 

84 
 

simulations with continuous cropland had similar trends to the simulations using a LC 

change reconstruction. All the LC setups tended to simulate similar yields by the end 

of the historical simulation. Fertilisation was the main driver contributing to the yield 

trend, followed by atmospheric CO2 in wheat and rice. Interannual variability was 

mainly caused by variations in fertilisation, precipitation, and to a lesser extent, 

temperature. The main results highlight the importance of capturing accurate 

historical LC changes and having comprehensive fertiliser database inputs to 

increase the accuracy of simulated global food production, climate change impacts 

and terrestrial biogeochemical cycles, particularly when simulating yield trends. 

Keywords: Cropland, soil fertility, natural vegetation, pastures, CO2 concentration, 

climate.  

3.2. INTRODUCTION 

Land cover changes combine natural and anthropogenic systems that directly 

influence local soil, water and air interactions, bringing regional and even global 

consequences (Noszczyk 2019). Since 1700, it is estimated that global cropland area 

has increased dramatically from 300 million ha to around 1600 million ha (Goldewijk 

and Ramankutty 2004; Goldewijk et al. 2017; Jackson et al. 2019). During the last 

century, cropland area increased by about 67%, meaning that in 2015 a large part of 

the ice-free earth area was covered by managed land, with 12% used for growing 

crops and 25% used for pasture (Goldewijk et al. 2017; IPCC 2017).  

The expansion of managed land is a result of a growing human population and 

higher per capita consumption of food, fibre, and energy (Lindeskog et al. 2013) 

alongside the inability of yield improvements from agricultural technology to supply 
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and compensate the increased demand (Vermeulen et al. 2012; Kanianska 2016). 

Additionally, expansion is enhanced by other human activities such as conservation, 

biofuel crops and the loss of productive land (Godfray et al. 2010). Inappropriate 

agricultural practices and unsustainable management can contribute to soil 

degradation, carbon (C) and nutrient depletion, soil loss from water and wind erosion, 

soil compaction from intensive mechanisation, salinisation and desertification 

(Kanianska 2016; Krause et al. 2016). These limitations can result in yield depletion, 

low profitability and even the abandonment of cropland (Godfray et al. 2010). 

The pattern of continuous land cover change and increasing cropland cover may 

dramatically alter the environmental footprint of agriculture (Goldewijk et al. 2017). 

Carbon emissions resulting from land cover change have been estimated in several 

studies as 156 Pg C between 1850-2000 (Lindeskog et al. 2013) 145.5 Pg C 

between 1850-2015 (Houghton and Nassikas 2017), 180 Pg C over the last 150-200 

years with a current rate of around 1 Pg C yr-1 (Olin et al. 2015a) and 185 Pg C 

between 1750-2010, representing about one-third of the total anthropogenic carbon 

emissions (Le Quéré et al. 2014). In addition, the conversion of natural to anaerobic 

environments in flooded rice paddies cause around 34% of the total methane 

emissions, not considering biomass burning (Mosier et al. 1998; Schaefer 2019). 

Crop nitrogen (N) fertilisation also increases emissions of non-CO2 greenhouse 

gases such as N2O and methane (Mosier et al. 1998; Olin et al. 2015a; Lu and Tian 

2017) due to over-application of fertiliser or the lack of simultaneity with the timing of 

crop demand, crop soils emitted around 3 Mt N2O yr-1 (~0.8 Pg C-eq yr-1) between 

2007-2016 (IPCC 2017). 
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The transition from pastures, native forests, and tree plantations to cropland typically 

results in a decrease in soil carbon stocks. First, land clearing for agriculture releases 

carbon from vegetation through burning and decomposition, and later from harvested 

biomass removed each year. In addition, tillage and uncovered soil during cultivation 

enhance heterotrophic soil respiration (Guo and Gifford 2002; Krause et al. 2016). 

Conversely, natural vegetation favours soil organic carbon, even though it depends 

on several factors. For example, some species accumulate more litter or roots than 

other. N-fixing species may sequester more soil C stocks due to the extra N input in 

addition to the higher biomass production. Natural grasslands tend to have higher 

organic matter in soils than natural forests (Guo and Gifford 2002). Managed 

pastures often also have relatively high soil C stocks depending on climate and 

management due to their high biomass turnover rate and cooling effect on the soil 

(Guo and Gifford 2002; Krause et al. 2016).  

Land cover change to expand cropland area is not the only factor that supports 

global population growth; the enormous increases in cropland productivity since the 

mid-1900s caused by the so-called “green revolution” allowed for higher food 

production growth (Godfray et al. 2010). This increase in productivity is associated 

with the intensification of inputs into agricultural systems, including fertilisation, 

irrigation, pesticides, high-yielding cultivar technologies and mechanisation (Lu and 

Tian 2017; Jackson et al. 2019). However, global demand for food is predicted to 

increase by between 70-100% in 2050 (Godfray et al. 2010; United Nations, 2019; 

Ray et al. 2022; Vermeulen et al. 2012) while production is increasingly limited by the 

availability of certain resources such as water and quality soil as well as different 

environmental conditions like higher atmospheric CO2 and different climatic regimes. 
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Furthermore, these factors will be intensified by efforts to mitigate negative 

environmental effects and the push to more sustainable agriculture (Godfray et al. 

2010; Ray et al. 2019). 

To support the assessment of the impact of changes in land use and intensity 

associated with meeting increased demand, alongside adapting to climate change 

and mitigating negative environmental impacts, the ability to make assessments of 

how these changes impact regional-global scale crop production and carbon cycling 

is necessary (Vermeulen et al. 2012; Bustamante et al. 2014; Alexander et al. 2018). 

This requires the ability to model and accurately represent food production  in both 

high- and low-intensity systems across the full range of relevant climates (Prentice et 

al. 1989; Monfreda et al. 2008). Global Gridded Crop Models (GGCMs) like the Lund-

Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) have been developed to 

fulfil this demand. 

3.2.1. LPJ-GUESS 

The dynamic vegetation model LPJ-GUESS (Smith et al. 2014) simulates the 

response of different plant functional types (PFT) to climate, atmospheric carbon 

dioxide concentration ([CO2]) and N dynamics (Lindeskog et al. 2013; Olin et al. 

2015b). LPJ-GUESS simulates yield based on daily or monthly climate data, [CO2], 

prescribed management practices, soil physical properties, and atmospheric N 

deposition. PFTs represent several growth forms, phenology, photosynthetic 

pathway, distributional temperature limits and N requirements (Olin et al. 2015a). 

Crops in LPJ-GUESS are simulated as PFTs that differ in parameters and response 

to climate and management. Management options include rainfed and irrigation 

(inundation in the case of rice), fertilisation, tillage, and inter-growing season grass 
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cover (Olin et al. 2015b). The main processes simulated daily to represent crops are 

soil hydrology, photosynthesis, canopy conductance, respiration, phenology, plant N 

demand, and carbon allocation (Smith et al. 2001; Olin et al. 2015b) 

Land cover dynamics and crop management were implemented in LPG-GUESS to 

improve the simulation of vegetation cover and carbon cycling (Lindeskog et al. 2013; 

Olin et al. 2015a). LPJ-GUESS simulates three distinct land cover types, natural 

vegetation, pastures and cropland and is able to explicitly simulate yearly shifts 

between them based on the grid cell net difference of land cover fractions (net LC 

changes) or based on the fraction of the addition of all the changes at sub-grid cell 

scales (gross LC changes). While gross LC changes can improve the accuracy of LC 

dynamics modelling, they also present technical limitations for efficiently processing 

the extensive information involved (Lindeskog et al. 2013; Bayer et al. 2017). Several 

studies have shown how relevant land cover history and dynamics at a large scale 

are to simulation of natural vegetation, carbon balance, and ecosystem processes 

(Lindeskog et al. 2013; Krause et al. 2016; Alexander et al. 2018). However, LPJ-

GUESS and other GGCM studies have rarely accounted for the impact of land cover 

change legacies on crop yield simulation and the size of this impact has not been 

quantified, despite the well-known effects of agriculture on soil carbon and nutrient 

stocks. 

This study aims to: 

a. Quantify how land cover change legacy of nutrient stocks, and their 

interactions with other important inputs, affect simulated crop production at 

global and regional scales, 
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b. Provide recommendations for accounting for the effects of land use history in 

GGCM simulations to improve the models ability to represent the food 

production system and food security analyses.  

To achieve the study aims, this study applies the LPJ-GUESS dynamic global 

vegetation model, which includes a detailed representation of agriculture and land 

use change, to evaluate the global effect of land cover change on global crop yield 

trends for wheat, maize and rice and its interaction with yield drivers such as climate, 

atmospheric CO2, and soil fertilisation over the period 1960-2010. 

3.3. METHODS 

3.3.1. Model Setup 

Global simulations of yield were performed using LPJ-GUESS v 4.1, revision 10304. 

The simulations were carried out at the global scale on a 0.5° x 0.5° grid for high- and 

low-yielding maize, spring and winter wheat, and rice. As previously performed for 

maize and wheat (Camargo-Alvarez et al. 2022), rice was calibrated for production 

and harvest index-related parameters (Supplementary S1). Winter and spring wheat 

were simulated and distributed globally according to the recent AgMIP climate 

change evaluation (Jägermeyr et al. 2021). For maize, high and low-yielding cultivars 

were simulated according to the global distribution reported for 2000-2010 by 

Camargo-Alvarez et al. (2022) using a similar approach to the distribution used in 

GEPIC and PEPIC models (Folberth et al. 2016).  

Sowing and harvest dates were calculated automatically for each grid cell based on 

the prevailing climate, as described in Lindeskog et al. (2013), following Waha et al. 

(2012) and one growing season per year was simulated for each crop in each 
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location. Both rainfed and fully-irrigated conditions were simulated for each grid cell, 

except for rice, for which inundated conditions where simulated instead of irrigated. 

The model dynamically estimated sowing and harvest dates based on climate 

suitability and heat unit accumulation (Lindeskog et al. 2013). Tillage was 

implemented following Pugh et al. (2015) and Olin et al. (2015b) and intercrop grass 

was turned off. All simulations were performed using 500 years to approach 

equilibrium accumulating vegetation, soil and litter carbon from bare soil, known as 

the spinup (Smith 2001; Wramneby et al. 2008). This period uses mean [CO2] and 

detrended climate from the first 30 years of the actual simulation to build up C and N 

pools. N input was provided based on the atmospheric N deposition dataset from 

Lamarque et al., (2010) and the global gridded at 0.5° x 0.5° cropland N fertilisation 

database from AgGRID (AgMIP GRIDded Crop Modelling Initiative) estimated for 

circa the year 2000 (Mueller et al. 2012; Elliott et al. 2015a). Values from this 

fertilisation database were rescaled between 1961 and 2010 based on the relative 

variations reported in the fertilisation dataset from Lu and Tian, (2017) to create a 

global fertilisation time series. The gridded data of texture, pH and organic matter in 

soils was from (Batjes 2016). 

3.3.2. Experimental settings 

Fifty-six global simulations were performed by combining two different factors. The 

first factor consisted of four different setups of land cover change (LC) at the global 

level during spinup and historical simulations. The second factor (DRI) consisted of 

seven combinations where some drivers were allowed to vary and other were kept 

fixed. In the case of CO2 and fertilisation rate constant values were used. For climate, 

the first year of the historical simulation was repeated during the whole period. 
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3.3.2.1. Land cover change setups  

1. Five hundred years of spinup with cropland cover and historical simulation 

from 1901 to 2010 for CRU-NCEP. For AgMERRA the spinup is until 1980, 

and then the historical simulation is undertaken (LCcrop). This is the spinup 

previously used for crop-focused papers (Olin et al. 2015b; Camargo-Alvarez 

et al. 2022). 

2. Five hundred years of natural vegetation spinup and land cover change to 

cropland in 1960. Land cover change to cropland in 1980 for AgMERRA 

(LCnat). 

3. Five hundred years of natural vegetation spinup and land cover change to 

grassland in 1920, then to cropland in 1960. Land cover change to cropland in 

1980 for AgMERRA (LCnatpas). 

4. Land cover history from Land Use Harmonization 2 (Hurtt et al. 2020), 

specifying land transitions between natural vegetation, pasture, and cropland 

annually starting from 1901, I.e. the best estimate of actual LC history. Land 

cover fractions of 1901 are used for previous years (LCLUH). 

3.3.2.2. Driver combinations (DRI) 

1. All drivers time varying (Allvar). 

2. CO2 is time varying, other drivers fixed (CO2var). 

3. Precipitation is time varying, other drivers fixed (Precvar). 

4. Radiation is time varying, other drivers fixed (Radvar). 

5. Temperature is time varying, other drivers fixed (Tempvar). 

6. Fertilisation is time varying, other drivers fixed (Fervar). 

7. All drivers fixed (Allcons). 
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3.3.2.3. Forcing Climates 

All the simulations were performed using CRU-NCEP and AgMERRA forcing 

climates. However, a direct comparison between climate datasets was not performed 

since the historical simulations have different spans and spinup periods. Rather the 

datasets are compared qualitatively. A different spinup protocol was used for CRU-

NCEP, reflecting the longer climate time series available. During spinup, simulations 

use detrended climate data and atmospheric [CO2] from the first historical year 

(Smith 2001; Olin et al. 2015a). In the case of CRU-NCEP, the first historical year is 

1901 and then observed climate and [CO2] data were used during the LC setups 

before 1960. In AgMERRA, the first historical year is 1981, meaning that LC setups 

occurred during the spinup with constant 1981 climate and [CO2]. 

3.3.3. Data analysis 

Harvested areas and yield estimation 

Global gridded harvested areas were estimated from the Spatial Production 

Allocation Model “SPAM” (You et al. 2014) and the History Database of the Global 

Environment (HYDE version 3.2) (Goldewijk et al. 2017). Although SPAM provides 

separately irrigated and rainfed harvested areas by crop, it is only available for 2000, 

2005 and 2010. Therefore, harvested areas for 1961, 1970, 1980 and 1990 were 

estimated by scaling irrigated and rainfed SPAM-2000 areas according to the relative 

changes in the total harvested area between the above years and 2000 reported in 

HYDE. Then a linear interpolation was performed between the resultant years to 

complete a yearly database from 1961 to 2010 at 0.5° x 0.5° resolution. Finally, 

harvested areas per grid cell were scaled to force the nationally aggregated 

estimated areas to match FAO (Food and Agriculture Organization of the United 
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Nations 2020) national reported areas by crop. This scaling was applied 

homogeneously at the country scale. Final estimations were aggregated to provide a 

global time series of irrigated and rainfed harvested areas of maize, wheat and rice. 

The simulated yield (t DM ha-1) was adjusted to fresh weight to compare with 

FAOstat yields. A 12% net water content was assumed for maize and wheat and 

13% for rice (Müller et al. 2017). The simulated yield was multiplied by the harvested 

areas by grid cell to calculate the total production separated by irrigated, rainfed and 

inundated areas according to the case being examined. Subsequently, this grid cell-

scale production was aggregated to the global scale, and yield was calculated by 

dividing production by the global aggregated harvested areas. This process was 

carried out by crop and year to obtain a time series of simulated yield following 

Equation 3 – 1. 

GYieldt =
∑ Yieldirr,i,t∗Areairr,i,t+∑ Yieldrf,i,t∗Arearf,i,t

n
i=1

n
i=1

∑ Areairr,i,t+∑ Arearf,i,t
n
i=1

n
i=1

  Equation 3 - 1 

where i is the index of the grid cell to be aggregated, t is the year, n is the number of 

grid cells in that spatial unit, irr represents full irrigated conditions, and rf represents 

rainfed conditions. GYield is the global aggregated yield, Yield and Area (harvested 

area) are at the grid cell-scale. 

3.3.3.1. Time series comparison 

Simulated yield typically showed a sharp change in the few years following the land 

cover transition. Therefore, the number of years required after the land cover 

transition for the yield to stabilise, after which the trend of the global yield starts to 

increase (the inflection point), was recorded for each simulation and compared. 

Then, the first five years of the time series were removed to avoid long-term trends 
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being affected by the anomalies occurring during the first years after the conversion 

to cropland. Then, an analysis of covariance (ANCOVA) was performed by climate to 

find the effect of LC and DRI on simulated global yield through time, which was 

expressed as years after 1960 for CRU-NCEP simulations and 1980 for AgMERRA. 

This method evaluates the interaction of the different levels and time to compare 

slopes. Also, a regression analysis with explanatory coded indicator variables (or 

‘dummy’) for LC levels was performed to compare linear adjusted models of LCcrop 

and other LCs. Similarly, regression analysis with dummy variables was used to 

compare the slopes of Allvar against the rest of the DRI levels. 

Slopes of global time series of simulated yield from the LCcrop with Allvar and CRU-

NCEP climate (regular setup for crop simulation) were compared to the FAO global 

yield time series trend. The detrended time series correlation between both datasets 

was also calculated. To calculate the trends at grid cell level, the equivalent process 

was performed: Linear regressions were adjusted to yield time series between 1961 

and 2010 at 0.5° x 0.5° resolution at grid cell-scale. Slope and intercept were 

calculated per grid cell to evaluate the spatial trends of yield. Grid cell-level trends 

were only calculated for the simulation from LCcrop, Allvar and CRU-NCEP. 

To analyse interannual variability, detrended time series were obtained as the 

residuals of adjusted linear models from each global time series simulation. Then, the 

variance and the coefficient of variation (Equation 3 - 2) were calculated from 

detrended data. A Levene test was carried out by climate to evaluate significant 

differences in interannual variability between LC levels. The Levene tests (Levene 

1960) were also run to compare variances from DRI levels. 
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CVi =
σi

Mean Yieldi
   Equation 3 - 2 

where i represents the time series to calculate the CV, σ is the standard deviation 

from the detrended time series and the mean yield is from the original time series. 

3.3.4. Soil Fertility 

Global simulated yield time series for all the crops were calculated and separated by 

high and low fertilisation areas. High fertilisation areas were selected as the grid cells 

in the top 20th percentile of higher fertilisation rate by crop (60 kg N ha-1 for wheat, 65 

kg N ha-1 for maize and 51 kg N ha-1 for rice). The remaining grid cells were classified 

as low fertilisation areas according to the N fertilisation database from AgGRID for 

the year 2000 (Elliott et al. 2015a). This was performed for simulations with CRU-

NCEP forcing climate and all drivers constant for the four levels of LC and the three 

crops. Only these levels were considered since the objective was to evaluate the 

effect of LC in different nutrient conditions during the first period of the simulations. 

Intercepts (linear adjusted yield in the year 1960) of high and low fertilisation time 

series were compared by LC separately using an ANCOVA and a paired t-test 

performed comparing both time series between 1961 and 1970. 

All analyses were performed using the packages dplyr, plyr, rworldmap, raster, 

forecast and ncdf4 of the software R version 3.6.2 (R Core Team 2019). 

3.4. RESULTS 

3.4.1. Time series comparison 

The inflection point, after which there is an increasing trend in the global yield, varies 

substantially due to LC and DRI factors and the crop. CRU-NCEP wheat showed 

inflection points after 2000 in the global time series for LCnat and LCnatpas and all the 
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drivers except for Allvar and Fervar. This means that yield decreased during most of 

the time series. LCcrop and LCLUH, on the other side, had early inflection points during 

the first ten years of simulation, indicating the early start of the increasing yield 

trends. In maize, all the LC levels showed a decreasing trend for Allcons, CO2var, 

Radvar and Tempvar during the whole period, never reaching an inflection point, for 

that reason this value was estimated as 2010, the last year of the study. While Allvar, 

Fervar and Precvar showed later inflection points in LCnat and LCnatpas compared to 

LCcrop and LCLUH. Rice had a similar pattern to wheat, but the inflection points 

occurred, in general, earlier in all LCs and drivers (Figure 3.1). 

AgMERRA wheat showed inflection points early during the first five years of 

simulation for all drivers in LCcrop and LCLUH except for Allcons and Radvar in LCLUH, 

which occurred late around 2005. LCnat and LCnatpas had inflection points later than 

2000 in all drivers. In maize, a similar response to CRU-NCEP showed a decreasing 

trend for Allcons, CO2var, Radvar and Tempvar in all the LC levels, except for 

Tempvar in LCcrop, while Allvar, Fervar and Precvar showed later inflection points in 

LCnat and LCnatpas compared to LCcrop and LCLUH. Rice had early inflection points for 

all the simulations except for Radvar in all the LC levels, Allcons in LCnatpas, and 

Allcons and Tempvar in LCnat and LCnatpas (Figure 3.1). 

According to the ANCOVA, significant effects of LC and DRI on global yield were 

found through time for the three crops using both climate datasets, but no significant 

interaction between LC and DRI was found through time, except for rice when CRU-

NCEP was used as forcing climate (Table S3-1). Linear regressions showed that 

global simulated yield slopes of LCnat and LCnatpas were significantly lower than the 

slopes caused by LCcrop, while no difference was found against trends of LCLUH for all 
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the crops and both climates. Intercepts of LCcrop were significantly lower than LCnat 

and LCnatpas for both climates except for rice with CRU-NCEP, which did not show 

differences between the intercepts of LCcrop, LCLUH and LCnatpas. Intercepts of LCcrop 

and LCLUH were not significantly different with AgMERRA climate in the three crops. 

With CRU-NCEP, wheat and maize LCLUH showed significantly higher intercepts 

(Figures 3.2 and S3-1, Table S3-2). 

 

Figure 3.1. Inflection point (year), after which yield trend increases for all levels of LC 

and DRI. Left: CRU-NCEP simulations. Right: AgMERRA simulations Top: wheat, 

middle: maize, bottom: Rice 

When all drivers were variable (Allvar), the slopes were significantly higher compared 

to individual drivers alone for the three crops and two climates. The only exemptions 
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are CO2var in wheat with AgMERRA climate and Fervar in maize with both climates. 

Besides slopes, Fervar intercepts were not significantly different to the intercepts of 

Allvar with both climates, confirming similar trends for both driver levels. Intercepts 

were typically significantly higher for Allvar and Fervar than for the other DRI 

combinations, mainly with CRU-NCEP, but the response was more variable 

depending on climate, cultivar, and driver (Table S3-3). 

 

Figure 3.2. Left: time series and trends of land cover change levels (using yearly 

average of all drivers), right: time series and trends for driver levels (yearly average 

of all LCs) with CRU-NCEP. Different letters represent significant differences (95%) 

in slope between lines. Top: wheat, middle: maize, bottom: Rice 

Slopes of all the combinations between the LCs and drivers showed clear patterns 

for all the crops, even for rice with CRU-NCEP, whose interaction between the two 
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factors was significant. It was consistentt with the response of the slopes from the 

main effects described above (Figures 3.2 and 3.3). CRU-NCEP produced higher 

slopes compared to AgMERRA. Fervar is the main contributor to the slopes of the 

three crops, with CRU-NCEP followed by CO2var in all the LCs for rice, and LCcrop 

and LCLUH for wheat (Figure 3.3). Intercepts with CRU-NCEP were higher for Allvar 

and Fervar compared to the other drivers for the three crops. Rice also showed an 

important effect of CO2var in intercepts. 

 

Figure 3.3. Slopes and coefficient of variance of time series simulated with CRU-

NCEP as forcing climate. Combination of all levels for drivers (DRI) and land cover 

change (LC). Top: wheat, Middle: maize, Bottom: Rice 
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With AgMERRA, Fervar is also the main contributor to the slope for maize and rice, 

but in this case, CO2var was the main contributor for wheat and highly important in 

rice (Figure S3-2), likely because most of the [CO2] increase occurred over the 

period 1980-2010, whilst most of the N fertilisation increase occurred over the period 

1960-1980. Intercepts of LCnat and LCnatpas were higher in wheat and maize with both 

climates and rice only with AgMERRA. CRU-NCEP showed high variation caused by 

drivers on intercepts; unlike LC levels, LCnat and LCnatpas had higher intercepts in all 

drivers and crops compared to LCcrop and LCLUH in all LCs, while in AgMERRA 

variation was mainly caused by LCs (Figure S3-3). 

Fertilisation was the main factor contributing to the variation of the simulated global 

yield of wheat in LCcrop and LCLUH. Unlike LCnat and LCnatpas where climate variables 

were the main factors causing yield variability (Figures 3.3 and 3.4). 

 

Figure 3.4. Detrended time series of wheat yield from simulations only accounting for 

fertilisation variation with all the evaluated land covers for CRU-NCEP (left) and 

AgMERRA (right)  

The Levene test to compare the variances of the detrended time series by groups 

showed that levels of both factors, LC and Drivers, did not have equal variances of 

the simulated global yield of the three crops, except for LC with AgMERRA in wheat 
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and rice (Table 3.1). In simulations with CRU-NCEP, LCcrop and LCLUH had higher 

coefficients of variation (CV) for maize and wheat for Allvar and Fervar, while LCnat 

and LCnatpas had higher CV for the remaining levels of DRI. In rice, LCnat and LCLUH 

showed the highest variation for all the DRI levels (Figure 3.2). With AgMERRA, the 

highest variation in maize occurred for LCnat and LCnatpas for all the DRI levels, while 

in maize, it happened only for Allvar and Tempvar. A similar response was found in 

all the LC levels in rice, and DRI caused the main variation. While with CRU-NCEP, 

fertilisation was the main factor causing variation, with AgMERRA, precipitation and 

temperature (and radiation in rice) are the main drivers causing variability, followed 

by fertilisation. Atmospheric CO2 causes similar variation to Allcons for all crops and 

both climates. 

Table 3.1. Levene test p-values for land cover change (LC) and drivers global 

detrended time series for wheat, maize and rice with CRU-NCEP and AgMERRA, 

shaded values mean no significant difference in variances between levels 

 
Wheat Maize Rice 

 
CRU-NCEP AgMERRA CRU-NCEP AgMERRA CRU-NCEP AgMERRA 

Land cover 

change 0.002 0.416 <0.001 <0.001 <0.001 0.304 

Drivers <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

3.4.2. Global gridded trend 

Increasing trends in simulated yield occurred in most of the harvested areas for the 

three crops globally. However, some regions with yield stagnation and decreases 

were identified. For wheat, this occurred in regions of South America, Russia, and 

Eastern Europe. For maize, stagnation occurred in the same regions as wheat, plus 

some regions in Central and North America, Africa, and Southern Asia. In rice, 
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stagnation only occurred in regions of South America, Africa, and Eastern and 

Central Asia (Figure 3.5). 

Improvement in yield occurred mainly in top producer countries such as China, India, 

USA, and Pakistan for wheat; USA, China, Argentina, and Mexico for maize; and 

China, India, Indonesia, Bangladesh, and Vietnam for rice (Figure 3.5). 

The simulated yield was higher in 1960 (intercepts) in regions in the Americas, 

Russia and Europe for wheat, North America, Argentina, Russia and Europe for 

maize, and the Americas, Africa, Central Europe, Kazakhstan, India, and China for 

rice (Figure 5). 

3.4.3. Trend (LPJ-GUESS vs FAO) 

Global simulated yield with LPJ-GUESS showed higher values than FAO global 

reported yield. This overestimation tended to decrease with time causing significant 

differences in regression parameters of LPJ-GUESS estimated yield with higher 

intercepts and lower slopes compared to FAO. Maize showed the highest difference 

in slope where FAO data had 0.029 t ha-1 year-1 higher than LPJ-GUESS simulations. 

while wheat and rice had a difference of 0.008 t ha-1 year-1 (Figure 3.3). The 

correlation between detrended simulated and FAO reported global yields time series 

was significant with Pearson correlation coefficient ρ=0.55 (p-value<0.001) for wheat, 

ρ=0.50 (p-value <0.001) for maize, and ρ=0.55 (p-value <0.001) for rice, 

demonstrating a good representation by the model of the interannual variation. 

3.4.4. Soil Fertility 

Comparisons between intercepts of time series from regions with high and low 

fertilisation, as well as the paired t-test for wheat, showed that after the transition to 
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cropland in 1960 from natural vegetation and pastures (LCnat, LCnatpas), there was not 

significant difference between the two series. On the other side, LCcrop and LCLUH 

showed significant differences in intercepts and significant paired t-test between both 

time series (Figure 3.5). After circa 1990, yield differences between high and low 

nitrogen time series tended to be similar in all the LCs, although the yield magnitudes 

of both time series were lower for LCcrop during the whole evaluated period (Figure 

S3-6). 

 

Figure 3.5. Global gridded slopes in t ha-1 year-1 (left) and intercepts t ha-1 for 1960 

(right) with LCcrop and Allvar and CRU-NCEP. Top: Wheat, middle: maize, and 

bottom: rice 

For maize, all the LC levels showed a significant difference between both time series 

during the first simulated years based on the intercept difference and the paired t-



 

104 
 

test, but differences between high and low nitrogen time series were higher in LCcrop. 

Also, differences became higher with time since trends are divergent in all LCs and 

similar to wheat LCcrop had lower yield magnitudes in both time series. In the case of 

rice, intercept differences were significant for LCcrop and LCLUH, unlike for LCnat and 

LCnatpas, but the paired t-test showed that all the LC had significant differences during 

the first simulation years (Figure 3.6) and LCcrop had the highest difference in 

intercepts. 

  

Figure 3.6. Left: Global yield time series simulated with LPJ-GUESS (Allvar and 

LCcrop) and reported by FAO. Right: Intercept of the absolute differences of adjusted 

lines by LC. (*) means significant difference of intercept at 95% confidence. (*) 

means significant difference based on the paired T-test between high and low 

fertilisation time series between 1961 and 1970 with all driver constant (Allcons). 

Top: wheat, middle: maize, bottom: Rice 
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3.5. DISCUSSION 

Global simulated yield trends were strongly affected by the land cover history. 

Simulations using a previous cover of natural vegetation and pastures such as LCnat 

and LCnatpas caused high yields after the transition period to cropland around 1960 

and 1980, depending on the forcing climate and, consequently, later inflection points 

compared LCcrop and LCLUH. This effect was clearer in Allcons, Radvar, Precvar and 

Tempvar because driver combinations causing strongly increasing trends like Allvar, 

Fervar and CO2var for wheat and rice compensate for the depletion of legacy soil N 

pools quicker and hence reaching an earlier inflection point (Figure 3.1). Allcons was 

expected to have late inflection points for all crops and climates, but it did not occur 

in wheat and rice in LCcrop and LCLUH since these crops showed a slightly increasing 

slope (Figures 3.3 and S3-2), probably caused by cumulative fertiliser effect or 

another factor not considered in this study. 

High yields after the transition to cropland in LCnat and LCnatpas caused low to 

negative slopes since, after the inflection point, yields tended to converge to LCcrop 

values. High yields are caused by the conversion from natural vegetation to cropland, 

which requires killing living vegetation; most of the biomass is oxidised or removed, 

and about 12% goes to the litter. However, litter, soil C and soil N pools accumulated 

during the previous years and centuries by natural vegetation and pastures remain in 

the new managed land (Krause et al. 2016), increasing productivity in LCnat and 

LCnatpas compared to LCcrop in the period following the transition. In LCcrop and LCLUH, 

soil N and C stocks are reduced due to extraction of biomass during harvest and soil 

degradation from tillage (Guo and Gifford 2002) (Figures S3-4 and S3-5). 



 

106 
 

Fertilisation was also the main factor contributing to the variation of the simulated 

global yield of wheat and rice in LCcrop and LCLUH. It is compatible with actual global 

yield since fertiliser usage has been one of the critical drivers of global yield since the 

green revolution (García-Lara and Serna-Saldivar 2019). However, the effect of 

higher legacy soil organic matter and soil N and C after land cover conversion to 

crops in LCnat and LCnatpas suppressed yield limitation by fertiliser, decreasing 

variation compared to LCcrop and LCLUH (Figures 3.3 and 3.4). In LCnat and LCnatpas, 

climate variables are the main factors causing yield variability similar to the values of 

the variability expected by the climate in crop yields, primarily by precipitation and air 

temperature, in crops which are around 35% for wheat, 41% for maize and 32% for 

rice (Ray et al. 2015). 

Differences between time series from high and low fertilisation locations during the 

first years of the evaluated period correspond with the mentioned effect. In LCnat and 

LCnatpas yields of both time series, low and high fertiliser, are enhanced by higher 

legacy soil C and N pools (Olin et al. 2015a) and yield depletion in low fertiliser 

regions starts rapidly, causing negative trends in maize and wheat. While in high 

fertiliser regions, yield continues increasing during the whole evaluated period. In 

LCcrop and LCLUH, on the other side, yields of both regions are low at the start of the 

historical simulation and during the first years, wheat yield is sensitive to the effect of 

the low fertilisation producing an increasing trend that spans for around 15 years 

when a marked yield depletion occurs abruptly. In maize a slight increase of yield 

occurs during the period of evaluation (Figure S3-6).  

In croplands, 90% of the harvested biomass was assumed to be removed from the 

ecosystem mainly by crop harvest. In pastures, only 50% is assumed to be removed, 
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representing the fraction of biomass oxidised during grazing, whereas, in natural 

vegetation, removal is zero. This causes the depletion of soil C and N, in croplands 

after conversion until they reach a new equilibrium level, which can take centuries, 

depending on the climate (Pugh et al. 2015). In addition, this effect is enhanced by 

management activities favouring soil heterotrophic respiration, like tillage and 

irrigation (Godfray et al. 2010; Olin et al. 2015a; Krause et al. 2016). 

Residue outtake is also an important practice in croplands. It was set to 75% in this 

study, while it is assumed to be zero in natural vegetation and pastures. Like 

harvested biomass, residue outtake causes depletion of soil C and N stocks, which 

retains water (effect not simulated in LPJ-GUESS) and nutrients, causing a reduction 

in soil fertility and plant productivity. The simulated decrease in carbon stocks, 

nitrogen limitation and lower plant productivity after LC conversation, as found in 

LCnat and LCnatpas, is common in conversions from natural vegetation to crops, both in 

observations and modelling (Guo and Gifford 2002; Olin et al. 2015a; Pugh et al. 

2015; Nyawira et al. 2016). 

LCLUH showed similar slopes to LCcrop, and although intercepts were higher in maize 

and wheat when CRU-NCEP climate was used (and not significantly different with 

AgMERRA), they were lower than intercepts of LCnat and LCnatpas. Similarities 

between LCcrop and LCLUH are caused by the highly productive areas of the three 

crops. These areas are responsible for a large fraction of global food production and 

have been covered by crops during several decades (Goldewijk et al. 2017; Potapov 

et al. 2022). Therefore, similar to LCcrop, by the start of the simulation these areas 

have depleted soil C and N stocks. Some authors report that the period between 

1900 and 1930 had the most substantial extension of croplands in USA, Europe and 
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China while in the subsequent years, the tendency was to intensify agriculture 

(Ramankutty et al. 2002). 

Although N content (Soil and litter) patterns of LCLUH are similar to LCnat and LCnatpas, 

this occurs because due to the net transitions between land covers LCLUH simulations 

also had fractions of pasture and natural coverage in most grid cells and hence the 

values output are an average across all the land covers in the grid cell, rather than 

being representative just for cropland (Figures S3-4 and S3-5). In general, LCLUH had 

lower N globally, but mostly in regions with a high fraction of cropland in LUH2, 

meaning that those areas in 1960 had already undergone substantial nutrient 

depletion and soil degradation processes such as in the Corn belt in USA, Eastern 

China, Western Europe and India (Figure 3.7). Average global values of soil N (kg 

ha-1) only considering locations with more than 50% cropland in 1960 were 0.23 for 

LCcrop, 1.24 for LCnat, 1.23 for LCnatpas and 1.04 for LCLUH. Similarly, average values 

of N Litter (kg ha-1) were 2.65 for LCcrop, 12.1 for LCnat, 9.8 for LCnatpas and 5.94 for 

LCLUH.  

At the grid cell-scale, wheat slope differences between LCLUH and LCcrop were close 

to 0 in Western and Eastern Europe, USA, Argentina and China. While the intercept 

differences were close to 0 in most of the harvested areas. Maize showed slope and 

intercept differences close to 0 in USA, Europe, and some regions of Asia, Africa and 

South America. Rice slope differences were close to 0 in China and USA but in 

China intercepts of LCLUH were lower causing convergence between time series of 

both landcover setups. Simulations of crop yield in the regions above could use 

continuous cropland as land cover before the historical simulation to save time and 

computer resources obtaining similar yields than LCLUH (Figure S3-7).  
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Figure 3.7. Top- Left: Difference between LCnat and LCLUH in soil N (left) and soil N in 

litter (right) for the year 1960 (kg ha-1). Bottom- Left: LUH2 proportion of cropland in 

1960 used in LCLUH. Right: Wheat, Maize, and Rice harvested areas used for 

simulations in 1960 (Thousand of ha). 

In all the evaluated LCs with CRU-NCEP, fertiliser was the most critical contributor to 

the yield increase for all the crops, followed by [CO2] for wheat and rice. Likewise, 

higher atmospheric [CO2] is expected to increase agricultural productivity in C3 

photosynthetic pathway plants like wheat and rice. It has been estimated that the 

current rate of increase of [CO2] of 2 ppm yr–1 results in about about a 0.3% yr-1 

increase in yield (Fischer and Edmeades 2010; Smith et al. 2014; Alexander et al. 

2018). Maize does not show an increasing effect on yield caused by [CO2] since it is 

a C4 photosynthetic pathway plant whose characteristic is to carry out the Calvin 

Cycle in nearly saturated conditions. Thus no direct effect of increased [CO2] is 

expected (HAMIM 2005; Wang et al. 2020). An increase in maize yield due to [CO2] 

is mainly related to the reported decrease in evapotranspiration and the improvement 
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of water use efficiency, especially in water limited locations. However, this effect has 

been reported in FACE experiments and simulations by doubling the [CO2] (Deryng 

et al. 2016). In the present study, the effect was found to be minor, consistent with a 

difference of 73 ppm between 1960 and 2010. 

The simulated increases in yield are compatible with the fact that between 1960 and 

2010, food production per capita doubled in Asia, by a factor of 3.5 in China and 1.6 

in Latin America. A general world productivity increase has occurred based on 

technical knowledge, access to technology and resources like irrigation, machinery, 

crop protection and sustainable soil practices, but mainly, fertiliser usage has 

increased critically after the green revolution (Godfray et al. 2010; García-Lara and 

Serna-Saldivar 2019). That LPJ-GUESS was able to capture most of the observed 

increase in yield since 1960 based on only increases in [CO2] and N fertilisation rates 

suggests that these two factors are responsible for most of the observed increase, 

with the remaining annual increase per year being driven by other technological 

developments. 

However, about 37% of wheat, 26% of maize and 35% of rice in global harvested 

areas have shown yield stagnation in the last three decades; mainly caused by 

climate  changes and temperature increase in developed countries and socio-

economic limitations in other locations like Africa (Ray et al. 2012). A high portion of 

these areas are located in top producer countries, while most of the yield-increasing 

areas during this period are located in lower producer countries. This situation affects 

the global yield trend and challenging food security in the growing population world 

(Ray et al. 2012). Stagnation of yield caused lower slopes in the simulations with 

AgMERRA since they only included the period of slower yield increase reported in 
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FAOstat (Food and Agriculture Organization of the United Nations, 2020, Figure 3.6) 

and explained by the impact of climate change after 1974 (Ray et al. 2012, 2019).  

Intercept and slope differences between LCs were lower in rice and only significant 

between LCnat and LCcrop. This has been reported in inundated environment most of 

the rice areas since anoxic conditions inhibit the N mineralisation, so the availability 

of nutrients for plants and also increase the N gaseous losses (Kader et al. 2013). In 

LPJ-GUESS the inundated setup decreases the N leaching and N mineralization and 

increases N fixation.  

Whilst LPJ-GUESS tends to overestimate yield in the early period of the simulations, 

the overestimation decreases over time, with good correspondence between model 

and observations for wheat and maize in the period 2000-2010. This effect was 

particularly pronounced in countries with high slopes of yield increase. It is to be 

expected because LPJ-GUESS is parameterised to simulate yields under recent 

growing conditions (Camargo-Alvarez et al., 2022). Also, the high- and low-yielding 

spatial distribution for maize was based on yield data between 2000 and 2010, and 

historical distribution before that period is expected to have larger areas of low-

yielding maize (Camargo-Alvarez et al. 2022).  

Additionally, the model is incapable to capture several mechanisms which could 

decline yield like pest outbreaks, partial irrigation (the model assumes full irrigation in 

irrigated areas), air and water pollution, and soil degradation in addition to 

phosphorus, potassium and other nutrients dynamics which are not yet implemented 

in LPJ-GUESS and have been reported to be responsible for a yield gap of between 

22% for wheat and 50% for maize in the case of phosphorus and 2% for wheat and 
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26% for maize in the case of potassium (Dai et al. 2013; Kvakić et al. 2021). The 

yield gap caused by the mentioned yield declining factors has been reduced lately 

due to the use of several management technologies such as mechanisation, 

improved nutrient and water management, integrated pest management and the use 

of cultivars with high potential yield and tolerance to high plant density, biotic and 

abiotic stresses (Duvick 2005; Darrah et al. 2019).  

This increase in yield mainly occurred at the top producer countries with higher 

increases in yield and pulling up the simulated global yield trends (Figure 3.5). 

Besides the technological adaptation and intensive systems with high-income most of 

these countries, such as China, India, USA, and Pakistan for wheat; USA, China, 

Brazil and Mexico for maize; and China, India, Indonesia, Bangladesh, and Vietnam 

for rice, are in regions of high N fertilisation (Figure S3-8) (Duvick 2005; Darrah et al. 

2019). Production in small countries has also been accelerated and enhanced by 

international research centres that help smallholder farmers adopt new technologies 

and practices (Ray et al. 2012; Yamano et al. 2016).  

In rice, a systems classification is more complex than the irrigated and rainfed 

schemes used in the SPAM database. Rice can grow in inundated semiaquatic 

environments (lowlands) and dry rainfed (upland) or irrigated fields, known as aerobic 

(Vijayaraghavareddy et al. 2020). In this study, for simplification and due to the lack 

of upland-lowland distribution databases, irrigated and rainfed rice from SPAM were 

used as lowland and upland systems, respectively. However, this method could 

cause an overestimation of rice yield since some of the irrigated SPAM areas could 

be planted with upland rice (aerobic rice), and the highest reported yield in rice is 

obtained from irrigated lowland (Vijayaraghavareddy et al. 2020; Dianga et al. 2022). 



 

113 
 

Similarly, rainfed SPAM areas could be covered with lowland but non-irrigated rice, 

which also presents a lower yield. 

Finally, another source potentially increasing global simulated yield was the 

estimation of the historical N application rate database using AgMIP fertiliser data as 

reference for the year 2000 and the relative interannual variation from Lu and Tian, 

(2017) to interpolate fertilisation rate and estimate the historical database from 1961 

to 2010. AgMIP fertiliser database reports, in general, higher fertilisation rates than 

Lu and Tian database, mostly in big crop producer countries such as USA, and 

central and western Europe, possibly causing an overestimation of historical 

fertilisation rates, primarily for years before the 90s. 

3.6. CONCLUSIONS 

The analysis performed in this study highlights the importance of land cover history in 

simulations of crop production and its effect on yield historical trends for wheat, 

maize and rice. It also exposed the critical role of input databases, such as 

fertilisation, [CO2], climate variables and their interaction with land cover history in 

slopes, and interannual variability of historical time series of simulated yield. This will 

be particularly useful for interpreting the results and dynamics of historical and future 

simulations and increasing the accuracy of large-scale yield simulations and the 

impacts of climate change and terrestrial biogeochemical cycles on food production. 

Trend and interannual variability of the global yield of wheat, maize and rice were 

sensitive to the land cover history. Simulations assuming unmanaged land cover 

before transitions to cropland showed an overestimation of yields during the first 

period of the historical simulation. Using historical land cover databases such as 



 

114 
 

LUH2 produced a higher global yield for maize and wheat than the global yield 

obtained only assuming cropland before the simulations but showed similar slopes in 

all the drivers and for each of the three crops. This occurred because most of the 

production in the world is coming from highly stable cropland regions. It is therefore 

recommended that, the study of global or large scale crop yields, using cropland as 

land cover before the simulations is acceptable and will save computer and time 

resources and avoid extra overestimating yield. However, if the simulation is being 

used to assess carbon stock changes or other biogeochemical cycles, taking account 

of land cover history is crucial. 

Simulated global yield trends were sensitive to fertilisation input database and soil 

fertility. Furthermore, soil N and C pools accumulated before the crop simulation 

increased yield significantly during several years after the land cover change from 

natural vegetation or pastures to cropland, this effect was particularly marked in 

regions with low fertilisation input. In rice, the effect of initial soil fertility conditions on 

the yield is less marked compared to the other crops, potentially due to the inundated 

management of rice in most of the harvested area. Another important contributor to 

increasing the global yield trend for the C3 crops wheat and rice was [CO2], however 

a negligible effect of [CO2] was found for the C4 pathway crop maize. An effect of 

fertilisation on the interannual yield variability was also found, which interacted with 

the consideration of land cover legacies. Climate, more specifically precipitation and 

air temperature, were also critical contributors to interannual variability, mainly in 

simulations where fertilisation was a less limiting factor, such as simulations of LCnat 

and LCnatpas. 
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This study showed an overestimated global simulated yield compared to the FAO 

time series before and during the 90s, more significant in maize but existing in the 

three crops. Overestimation occurred since the model does not estimate yield 

limitations such as pests, partial irrigation, pollution, and soil degradation, but also 

due to the lack of a historical cultivar distribution database, management practices 

and the uncertainty in historical fertiliser databases. Development of historical 

databases covering these factors would likely substantially improve ability of crop 

models like LPJ-GUESS to simulate yield trends over time. 
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3.8. SUPPLEMENTARY MATERIAL 

3.8.1. S3-1. Rice calibration  

Rice was calibrated following the methodology presented in Camargo-Alvarez et al., 

(2022). Eigth parameters were constrained based on four reference datasets. One 

candidate setup (combination of parameters) was selected from each reference 

dataset as presented in Table S3-1.1 and the best setup was selected based on a 

production-weighted mean absolute error for yield calculated at the country and 

gridcell scale. Yield and harvest index obtained with the selected setup produced the 

yield and harvest indes described in Figures S3-1.1 and S3-1.2. 

Table S3-1.1. Selected setups according to reference dataset for rice and original 

setups in LPJ-GUESS. (-Av) represents the setups based on the parameters mean of 

the ten best setups. The shaded row represents the selected setup after global 

evaluation  

Crop Dataset Sret SLA C:Nmin C:Nrange Nret Cret kN Ndred 

Rice Ray 1 45 5 2.78 0.40 0.40 0.30 2.72 

Rice FAO 1 50 5 2.78 0.40 0.40 0.30 0 

Rice Ray-Av 0.9 47.5 5 3.07 0.37 0.37 0.29 23.03 

Rice FAO-Av 1 46.5 5 3.21 0.37 0.39 0.28 0.82 

Rice Original 1 45 7 5 0.1 0.1 0.27 0 

 

https://doi.org/10.1016/j.gfs.2016.01.002
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Figure S3-1.1. By country comparison between simulated yields with LPJ-GUESS 

and reported by FAO averaged values (2001-2010) for rice. Circle size is proportional 

to production reported by FAO during the same period. Coloured dots show the five 

top producers in the world. In order: Red (China), Blue (India), Green (Indonesia), 

Yellow (Bangladesh) and Purple (Vietnam). Red lines represent the adjusted linear 

regression between simulated and observed yields. Shaded areas show the 95% 

confidence interval, and black lines represent the 1:1 line 

 

Figure S3-1.2. Boxplot for HI from the compiled database and simulated HI using the 

original model and the newly selected setup for rice 
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3.8.2. Additional results 

Table S3-1. Ancova p-values for the evaluated effects on global simulated yield of 

the mentioned crops. LC (land cover change). Shaded values are non-significant at 

the 95% confidence 

 Wheat Maize Rice 

Effect 

CRU-

NCEP 

AgMERR

A 

CRU-

NCEP 

AgMERR

A 

CRU-

NCEP 

AgMERR

A 

LC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Drivers <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Time*LC <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Time*Drivers <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

LC*Drivers 0.201 0.994 0.99 0.99 <0.001 0.985 

Time*LC*Drivers 0.844 1.000 0.941 0.99 <0.001 0.99 

 

Table S3-2. Linear regression p-values for the Land use evaluated effects on global 

simulated yield of the mentioned crops. LC (land cover change). Shaded values are 

non-significant at the 95% confidence 

 Wheat Maize Rice 

Effect CRU-NCEP AgMERRA CRU-NCEP AgMERRA CRU-NCEP AgMERRA 

Int LCcrop <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Int LCnat-LCcrop <0.001 <0.001 <0.001 <0.001 0.003 0.001 

Int LCnatpas-LCcrop <0.001 <0.001 <0.001 <0.001 0.115 0.004 

Int LCLUH-LCcrop 0.001 0.460 <0.001 0.651 0.240 0.172 

Slope LCcrop <0.001 0.005 0.060 0.180 <0.001 <0.001 

Slope LCnat-LCcrop <0.001 <0.001 <0.001 <0.001 0.001 0.009 

Slope LCnatpas-LCcrop <0.001 <0.001 0.014 <0.001 0.009 0.028 

Slope LCLUH-LCcrop 0.811 0.606 0.586 0.705 0.293 0.853 

 

Table S3-3. Linear regression p-values for the evaluated effects on global simulated 

yield of the mentioned crops. LC (land cover change). Shaded values are non-

significant at the 95% confidence 

 Wheat Maize Rice 

Effect 

CRU-

NCEP AgMERRA 

CRU-

NCEP AgMERRA 

CRU-

NCEP AgMERRA 

Int Allvar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Int Allcons-Allvar 0.022 0.007 0.002 0.506 0.312 0.017 

Int CO2var-Allvar 0.005 0.013 0.002 0.468 0.024 0.007 

Int Fervar-Allvar <0.001 0.053 0.739 0.096 0.493 0.421 

Int Precvar-Allvar 0.004 0.394 0.016 0.001 0.014 <0.001 

Int Radvar-Allvar 0.026 0.422 0.003 0.096 0.114 0.093 
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Int Tempvar-Allvar 0.031 0.006 0.001 0.079 <0.001 <0.001 

Slope Allvar <0.001 0.005 <0.001 <0.001 <0.001 <0.001 

Slope Allcons-Allvar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Slope CO2var-Allvar <0.001 0.656 <0.001 <0.001 <0.001 <0.001 

Slope Fervar-Allvar <0.001 0.002 0.115 0.057 <0.001 <0.001 

Slope Precvar-Allvar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Slope Radvar-Allvar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Slope Tempvar-

Allvar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

 

Figure S3-1. Adjusted trends for time series of global simulated yield with 

AgMERRA. Left: land cover change levels (yearly average of all driver levels) and 

right: driver levels (yearly average of all LC levels). Top: wheat, middle: maize, 

bottom: Rice 
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Figure S3-2. Slopes and coefficient of variation of time series simulated with 

AgMERRA as forcing climate. Combination of all levels for drivers (DRI) and land 

cover change (LC). Top: wheat, Middle: maize, Bottom: Rice 
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Figure S3-3. Intercepts of time series caused by the combination of all levels for 

drivers (DRI) and land cover change (LC). Top: wheat, Middle: maize, Bottom: Rice. 

Left: CRU-NCEP, right: AgMERRA 
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Figure S3-4. Soil Nitrogen (kg ha-1) in 1960 for each LC level. Top-left: LCcrop, top-

right: LCnat, bottom-right: LCnatpas, bottom-left: LCLUH 

 

Figure S3-5. Litter Nitrogen (kg ha-1) in 1960 for each LC level. Top-left: LCcrop, top-

right: LCnat, bottom-right: LCnatpas, bottom-left: LCLUH 
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Figure S3-6. Time series and adjusted lines of yield in high and low fertilisation 

regions for the four land cover changes and the three crops with all drivers time 

variable and CRU-NCEP 
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Figure S3-7. Differences (LCLUH – LCcrop) in slope (left) in t ha-1 yr-1 and intercept 

(right) in t ha-1 at grid cell scale with Allvar and CRU-NCEPfor Top: wheat, Middle: 

maize, Bottom: Rice 



 

129 
 

 

Figure S3-8. Nitrogen fertilisation for year 2000 for top: wheat, middle: maize, 

bottom: rice. Right: regions with high and low N fertilisation, Left: N fertilisation rate 

(kg ha-1) 
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CHAPTER FOUR: GROUND-LEVEL OZONE POLLUTION 

EFFECT IN GLOBAL CROP MODELLING: THE CASE OF WHEAT 
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4.1. Abstract 

Ground-level ozone (O3) is a highly damaging air pollutant that significantly impacts 

plant productivity. This study evaluates the implementation and performance of the 

O3 damage module in LPJ-GUESS, a dynamic global vegetation model, in simulating 

the impact of O3 stress on wheat and assesses its interaction with CO2 and drought. 

The research aims to provide insights into the impact of ground-level O3 on crop 

productivity under the influence of multiple environmental factors. An O3 stress 

module was integrated into LPJ-GUESS, following a two stage process. The first 

step calculates the dry deposition of O3 from the free atmosphere, while the second 

step calculates the accumulated Phytotoxic Ozone Dose above a threshold flux of 6 

nmol m-2 s-1 (POD6) during the plant sensitivity period. The POD6 causes leaf 

senescence which affects plant productivity. The project involved calibrating the rate 

of damage caused by POD6 and the lower and upper limits of the period of O3 

sensitivity by minimizing the difference between simulated yield, harvest index (HI), 

and POD6 of wheat with observed data. Additional analyses included evaluating the 

calibrated module against experimentally observed data, examining model sensitivity 

to time resolution in input O3 data, and conducting a factorial experiment to assess 

the effect of O3 concentrations interacting with different CO2 concentrations and 

drought. Results demonstrated that the model can reproduce the damaging effect of 

tropospheric O3 on yield and HI, although there was an overestimation of yield and 

HI when O3 concentrations were low, and the opposite occurred when 

concentrations were high. The factorial experiment also indicated that high 

concentrations of CO2 can compensate for the damaging effect of O3, especially in 

rainfed wheat, where the yield loss is less significant with increasing O3 levels. The 

results can help policymakers to make informed decisions regarding crop 
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management strategies to mitigate the negative impact of air pollution on crop 

productivity.  

Keywords: Senescence, winter wheat, spring wheat, stomatal conductance, 

phenology  

4.2. INTRODUCTION 

Ground-level or tropospheric ozone (O3) is recognised as one of the most 

deleterious air pollutant that affects plant productivity. Ozone is highly oxidising and 

its damaging effect on plant productivity can occur via several interlinked pathways 

(Ainsworth et al. 2012b; Schauberger et al. 2019). Direct damage occurs when O3 is 

taken up into plant tissues through stomata, causing oxidative damage and early 

senescence in cells, as well as decreasing the activity of the enzyme Rubisco. This 

effect can substantially affect carbon assimilation when scaled up from cells to 

leaves and canopy. Indirectly, O3 induces the plant to reduce stomatal conductance 

to prevent damage, which in turn decreases transpiration, Carbon dioxide (CO2) 

intake and, consequently, the photosynthesis rate. Mechanisms related to 

transpiration, such as nutrient uptake, are also affected. Additionally, investing 

assimilated carbon in mechanisms for repairing and limiting oxidative damage 

reduces net carbon assimilation (Broberg and Pleijel 2015; Emberson et al. 2018; 

Schauberger et al. 2019).  

Ground-level [O3] shows high spatio-temporal variation because it is produced by a 

solar radiation dependant chemical reaction of methane (CH4), volatile organic 

compounds (VOCs), NOx and carbon monoxide (CO), pollutants that can move far 

from the emission point; in addition, O3 is highly reactive with short lifetimes (Ehhalt 

and Prather 2001; Ainsworth et al. 2012a). Therefore, ground [O3] peaks occur 
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during summer which are also related to high-pressure systems, heatwaves, and 

droughts (Lin et al. 2020). This variation makes it challenging to formulate plant 

exposure indices to O3 since damage is directly influenced by the stomatal O3 flux 

which is influenced by several environmental factors such as solar radiation, air 

temperature, vapor pressure deficit, CO2 concentration and soil water content in the 

root area (Aunan et al. 2000; Schauberger et al. 2019; Pleijel et al. 2022).  

Early research included exposure indices like the mean concentration 7 hr (0900-

1600) calculated over the growing period (M7), the sum over hourly [O3] for hours 

when [O3] is above 60 ppb (SUM06) or the AOT40, which is the difference between 

[O3] and 40 ppb for hours when [O3] is above 40 ppb. SUM06 and AOT40 are 

typically calculated over a 3-month period (Aunan et al. 2000; Huixiang et al. 2005). 

However, those indices only account for air concentrations and do not account for 

the effect of the environment on plant sensitivity (Pleijel et al. 2022). As a solution, 

the Phytotoxic Ozone Dose (POD), was developed, accounting for the stomatal 

uptake and ignoring the non-stomatal O3 deposition (Franz et al. 2017). PODy is the 

accumulated stomatal O3 flux (mmol O3 m-2 PLA) above a threshold of y (nmol m-2 s-

1) (Büker et al. 2015). PODy has shown better performance than other indices based 

on concentrations (Mills et al. 2018; Pleijel et al. 2022). 

Several studies have estimated (using process-based modelling) and quantified the 

effect of O3 in crops, mainly wheat. A global yield loss of 9% was estimated for 

wheat for the period 2010-2012 (Mills et al. 2018), as well as 5.4% for rainfed and 

15.1% for irrigated wheat between 2008-2010 (Schauberger et al. 2019). Similarly, a 

9% increase was found by Pleijel (2011) when wheat growth occurred under filtered 

air and a yield loss of 8.4% was reported from a meta-analysis for wheat (Pleijel et 

al. 2018). A meta-analysis from 81 publications world-wide published between 1980 
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and 2007 reported a mean yield loss of 11% for six major crops (potato, barley, 

wheat, rice, bean and soybean) under ambient [O3], 7 or 12h calculated, which was 

on average 31-49 ppb (Feng and Kobayashi 2009). Also, a linear decrease of yield 

at a rate of 0.4% per increase of [O3] by one ppb was reported for wheat (Broberg 

and Pleijel 2015). Additionally, plant sensitivity to O3 varies between species and 

cultivars, a yield decrease of 0.26% per ppb of O3 (M7-based) was found for tolerant 

cultivars and 0.54% for intermediate cultivars of wheat in Mexico (Guarin et al. 

2019a). 

Projected rise of atmospheric [CO2] during the next century is expected to 

compensate the damaging effect of high [O3] due to the increase in net carbon 

assimilation since higher [CO2] enhance photosynthesis in C3 plants decreasing the 

limitation of the carboxylation by Rubisco. Besides, photorespiration is also reduced 

at high [CO2] due to the reduction of the oxygenase activity, since oxygen and CO2 

compete for reaction sites. Elevated CO2 also causes stomatal closure, reducing 

conductance, lower transpiration and higher water use efficiency (Fangmeier et al. 

1999; Broberg and Pleijel 2015). However, in fava beans, it has been found that the 

O3 negative effect is higher than the positive CO2 effect (Otieno et al. 2022). In 

wheat, an antagonistic, additive effect between O3 and CO2 has been found with 

different magnitudes of yield losses depending on the cultivar sensitivity to O3 

(Mishra et al. 2013; Guarin et al. 2019b; Hansen et al. 2019). 

In North America and Western Europe, the control of emissions of NOx and VOCs 

has led to reductions of [O3]. However, the global background O3 precursors is 

increasing, particularly nitrogen oxides, due to human activities like crop fertilisation 

(Ashmore 2005). Although photochemistry of O3 makes difficult to measure large 

scale changes in troposphere, it is clear that pre-industrial levels were lower in the 
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19th century than today and a global average increase of 13 ppb was estimated 

(Ehhalt and Prather 2001). By the end of this century, [O3] is estimated to increase 

as much as 18% in the Northern Hemisphere under the highest Radiative 

Concentration Pathway RCP8.5 (Young et al. 2013; Otu-Larbi et al. 2020). Similarly, 

under the fossil-intensive scenario (A1F1) of SRES a global increase of [O3] of about 

30 ppb is projected during this century (Ehhalt and Prather 2001). 

This study was focused on wheat since it represents around 20% of the globally 

consumed calories and most of the used cultivars in the world are sensitive to O3 

(Guarin et al. 2019a). Besides, several studies have demonstrated the reduction of 

quantity and quality of wheat production caused by ground-level ozone, risking the 

global food security (Pleijel et al. 1998; Fischer 2019; Guarin et al. 2019a). The 

increasing importance of tropospheric O3 pollution and depletion that it causes on 

crop production makes it critical to implement its effect in the crop system models 

such as LPJ-GUESS to improve the representation of actual yields, increasing the 

reliability of the food system studies and to complement further research about O3 

pollution in crops. This study introduces the representation in global gridded crop 

models of stomatal flux indexes such as POD6 to evaluate the ozone exposure in 

plants. 

4.2.1. LPJ-GUESS. 

The Lund-Postdam-Jena General Ecosystem Simulator (LPJ-GUESS) is a model 

that simulates dynamic vegetation response to climate, atmospheric CO2 and 

nitrogen (N) dynamics (Lindeskog et al. 2013; Smith et al. 2014; Olin et al. 2015b) 

and includes an implementation of managed land cover for crops and managed 

pastures (Lindeskog et al. 2013; Olin et al. 2015a). Crops in LPJ-GUESS are 

simulated as Crop Functional Types (CFT) that differ in parameters and response to 
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climate and management. Management options include irrigation (inundation in the 

case of rice), fertilisation, tillage, and inter-growing season grass cover (Olin et al. 

2015b).  

The main processes simulated daily to represent crops are soil hydrology, 

photosynthesis, canopy conductance, respiration, phenology, plant N demand, and 

carbon allocation (Smith et al. 2001; Olin et al. 2015b). Stomatal conductance in 

LPJ-GUESS is regulated by water status, under water deficit, stomatal closure 

reduces water loss but also decreases intercellular [CO2] in the leaves and, in turn, 

photosynthesis (Ahlström et al. 2012). Similarly, down-regulation of stomatal 

conductance occurs under high [CO2] and low boundary layer humidity (Smith et al. 

2014). The explicit simulation of stomatal conductance regulation in LPJ-GUESS 

allows the implementation of O3 module based on POD index. Therefore, this project 

aims to describe and evaluate the implementation and performance of the O3 

module in LPJ-GUESS in the simulation of wheat at the global level and to assess its 

interaction with CO2 and drought.  

4.3. METHODS 

4.3.1. Model setup 

LPJ-GUESS v4.1, Subversion revision 11524, was used for this study. Simulations 

were conducted for spring and winter wheat at selected location cells (0.5° x 0.5°). 

Sowing and harvest dates were calculated automatically for each gridcell based on 

the prevailing climate, as described in Lindeskog et al. (2013), following Waha et al. 

(2012). One growing season per year was simulated for each cultivar in each 

location. Both rainfed and fully-irrigated conditions were simulated for each gridcell. 

Management options included tillage and N application, inter-growing-season grass 

was turned off. All simulations were performed with the AgMERRA climate forcing 
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dataset (Ruane et al. 2015) and a 500 years period, known as the spinup, to 

approach equilibrium in the accumulation of vegetation, soil and litter carbon and 

nitrogen, starting from bare soil (Smith 2001; Wramneby et al. 2008). This period 

uses fixed [CO2] and N inputs and detrended climate. N input was provided based on 

the atmospheric N deposition dataset from Lamarque et al., (2010). The N 

fertilisation database was estimated for the period between 1961 and 2010 by 

interpolating the global gridded dataset of circa 2000 fertilisation data at a resolution 

of 0.5° x 0.5° from the AgMIP Gridded Crop Modelling Initiative (Mueller et al. 2012; 

Elliott et al. 2015a) based on the relative variations reported in the fertilisation 

dataset from Lu and Tian, (2017). The gridded data of texture, pH and organic matter 

in soils was used from Batjes (2016). 

4.3.2. Ozone stress effect on leaf senescence 

The O3 stress module includes two different steps. In the first, a scheme for dry 

deposition of O3 from the free atmosphere is introduced. This scheme transforms 

[O3] from some height above the canopy to the canopy [O3] and allows obtaining 

canopy [O3] from [O3] input obtained from the lowest level of chemical transport 

models (CTM), generally 45 m above the surface (Franz et al. 2017; Emberson et al. 

2018). In the second step, the accumulated Phytotoxic Ozone Dose above a 

threshold flux of Y nmol m-2 s-1 (PODy) during the plant sensitivity period is calculated 

and the leaf senescence induced by the estimated PODy (Figure 4.1).  

The implemented deposition scheme developed by Franz et al. (2018) transforms 

atmospheric [O3] ([O3_atm]) to canopy [O3] ([O3_ca], nmol m-3) based on the 

aerodynamical resistance (Ra), the canopy boundary layer resistance (Rb) and the 

compound surface resistance (Rc) which is the sum of the stomatal and non-stomatal 
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resistances (canopy air space, leaf surface and ground resistances) following the 

Equation 4 - 1. 

[O3_ca] = [O3_atm] (1 −
Ra

Ra+Rb+Rc
)  Equation 4 - 1 

The leaf stomatal conductance of water vapour (gs) was calculated by dividing the 

stomatal canopy conductance for water (Gs), which is calculated daily within LPJ-

GUESS, by the effective LAI (LAIe) using the big-leaf model of canopy stomatal 

conductance. LAIe is defined as actual LAI for LAI ≤ 2, LAI/2 for LAI ≥ 4, and 2 for 

others (Ding et al. 2014). Then, gs is scaled to O3 (gO3, m s-1), multiplying gs by 

0.662, the conversion factor for molecular diffusivity from water vapour to O3. The 

stomatal flux of O3 (FO3, nmol m-2 s-1) is obtained by the product of the gO3 and 

[O3_ca] (Pleijel et al. 2007; Franz et al. 2018; Peng et al. 2019). Daily PODy (mmol m-

2) is the accumulated FO3 above a Y threshold during the day. The threshold Y 

represents the maximum plant capacity to detoxify itself with antioxidants such as 

ascorbate. For wheat, this value has been reported to be 6 nmol m-2 s-1
 (Pleijel et al. 

2007; Peng et al. 2019). 

LPJ-GUESS simulates daily stomatal conductance; however, the hourly stomatal 

conductance is estimated in the O3 stress module using a cosine function (Equation 

4 - 2) to simulate the diurnal variation and peaks of stomatal conductance which 

usually occur around midday depending on the temperature as reported for maize 

(Berkelhammer et al. 2020). This approach allows to capture positive FO3 and POD6 

values during peak stomatal conductance hours. Otherwise, using the daily average 

of gO3 and FO3 could lead to substantial underestimation of POD6 (Equations 4 - 2 to 

4 - 5).  
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Figure 4.1. Diagram of the relationship between ozone deposition, parameters fmin, 

fmax and RO3 and Developmental stage (DS) 

 

go3(i) = go3(1 +  cos (
i∗2∗π

DL
+ π)    Equation 4 - 2 

FO3(i) = go3(i) ∗ [O3ca]     Equation 4 - 3 

dPODy = ∑ max(𝐹𝑂3(𝑖) − 𝑦, 0)𝐷𝐿
𝑖=1 ∗

3600

106      Equation 4 - 4 

PODy =  ∑ dPODy Equation 4 - 5 

Where i is the hour of the day starting from daybreak, DL is the daylength in hours, 

dPODy is the daily accumulation of PODy above a threshold of y = 6 nmol m-2 s-1. 

Crop senescence in LPJ-GUESS is primarily induced based on crop maturity or with 

nitrogen stress when the available N in leaves declines below necessary levels to 

maintain the current Leaf Area Index (LAI) (Yin et al. 2000; Smith et al. 2001; 

Gregersen et al. 2013; Olin et al. 2015b). The new implementation of the O3 module 
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adds a new factor accelerating senescence, since it is the main mechanism causing 

O3 damage effect in plants, which directly affects the LAI. The effect of dPOD6 in 

senescence varies depending on the accumulated POD6; when the accumulated 

POD6 is low, around 1.5 mmol m-2, the senescent fraction of leaves is negligible, but 

it increases as long as the POD6 accumulates following a quadratic function 

(Equation 4 - 6). This relationship was found in a data compilation performed by 

Pleijel, H. in 2018 (unpublished, Figure S4-1). In the LPJ-GUESS model, 

senescence caused by O3 is calculated at the daily time step by multiplying dPOD6 

by the instantaneous rate of change of the effect of dPOD6, the derivative of the 

quadratic effect (Equation 4 - 7), which is a linear function of the accumulated POD6 

(Equation 4 - 8). 

Leafgreen = a ∗ POD6
2 + b ∗ POD6 + c    Equation 4 - 6 

dLeafgreen

dPOD6
= 2a ∗ POD6 + b Equation 4 - 7 

2a =  RO3    

Leafdead(j)
= (b + RO3 ∗ POD6(j)

) ∗ dPOD6(j) Equation 4 - 8 

where j is the day, Leafgreen and Leafdead are the fraction of green and dead leaves, 

respectively. RO3 is the linear rate of change of the effect of dPOD6 on senescence.  

Ozone-related leaf senescence and the period of accumulation of POD6, when 

wheat is sensitive to O3 is directly related to the phenological stage, which in turn is 

mainly related to temperature (Del Pozo et al. 2008). For wheat, the period between 

200 degree days (°C days) before anthesis and 700 °C days after anthesis using a 

base temperature of 0 °C has been reported for O3 accumulation (Pleijel et al. 2007). 

However, different base temperatures have been used to model phenology in spring 



 

141 
 

wheat, like 2.6 °C (Seefeldt et al. 2002) and 5.4 °C (Del Pozo et al. 2008). In LPJ-

GUESS, the crop development stage is simulated as a function of temperature, 

vernalisation and photoperiod based on Wang and Engel (1998). The development 

stage (DS) is represented by a number between 0 and 2, anthesis is characterized 

by a value of 1, values below 1 represent the vegetative phase and values above 1 

represent the reproductive phase (Olin et al. 2015b). The period for which POD6 is 

accumulated (fmin to fmax in Figure 4.1) was calibrated in this study. 

4.3.3. Calibration 

For calibration, three locations were selected where the effect of O3 on POD6, 

relative yield and relative HI was evaluated on wheat: Tervuren, Belgium, with 

experiments in 1994, 1995 and 1996 (Bender et al. 1999; Fangmeier et al. 1999) 

where concentrations of charcoal filtered and non-filtered chamber concentrations 

were evaluated; Gothenburg, Sweden, with experiments in 1987, 1988, 1994, 1997, 

and 1999 (Pleijel et al. 1991, 1997, 2006; Gelang et al. 2001), and Jokioinen, 

Finland, with experiments in 1992 and 1993 (Ojanperä et al. 1998). Charcoal-filtered, 

non-filtered, and ozone-enriched chamber concentrations were evaluated in the last 

two locations.  

Simulations of three variables, yield, harvest index (HI) and POD6 of wheat, were 

performed with LPJ-GUESS combining different levels of three parameters from the 

O3 implementation (Table 4.1). The rate RO3, defined in Equation 4 - 6 with ten 

levels. The lower (fmin) and upper (fmax) limits of the period of O3 sensitivity were 

also calibrated using seven levels for each and three approaches to calculate them: 

1) Expressed as the minimum and maximum DS (between 0 and 2), 2) accumulation 

of °C days using a base temperature of 0 °C, and 3) accumulation of °C days using a 

base temperature of 5 °C. The combination of the parameter levels produced 490 
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simulations (10x7x7) for each of the three sensitivity-period methods, for a total of 

1470 simulations. 

A linear interpolation was performed for each experiment (location and year) to 

estimate the yield and HI when POD6 = 0 as the linear regression intercept between 

POD6 and yield. This value was used as a reference for no O3 effect. The relative 

values for yield were subsequently estimated for all the concentrations as the 

fraction of simulated yields to the reference. The relative HI was calculated following 

the same process.  

Table 4.1. Simulated levels for all the calibrated parameters and phenology methods 

used 

Parameter Method Units Simulated Levels 

RO3 All mmol m-2 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0,1 

fmin 

DS unitless 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

dd0 °C days 200, 300, 400, 500, 600, 700, 800 

dd5 °C days 100, 150, 200, 250, 300, 350, 400 

fmax 

DS unitless 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 

dd0 °C days 1000, 1100, 1200, 1300, 1400, 1500, 1600 

dd5 °C days 800, 850, 900, 950, 1000, 1050, 1100 

Simulated and observed relative yield, HI values, and POD6 were min-max 

normalised over all the observed and simulated data (Equation 4 - 9), this method 

transforms linearly the original variable to values between 0 and 1 keeping the 

relationships among the original values (Han et al. 2012). A total of 28 data points 

were used for comparison from each simulation combining location, years and 

different [O3]. Then, the root mean square error (RMSE) between observed and 

simulated normalised variables was calculated per simulation (Equation 4 - 10). The 

simulations were constrained to those with maximum simulated POD6 between 5 

and 7.5 mmol m-2, this range is the 80th quantile of observed POD6 of 4.9 mmol m-2 

and the maximum observed POD6 of 6.74 mmol m-2, allowing some elasticity. The 

constriction avoided simulations with over- or underestimation of POD6, even if yield 
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and HI are well represented. Finally, the Euclidean distance of the tridimensional 

vector created by the RMSE values from the three variables was minimised to 

identify the simulations that best reproduce the observed data (Equation 4 - 11). 

N =
var−min (var)

max(var)−min (var)
   Equation 4 - 9 

RMSE = √
∑(Nobs−Nsim)2

n
 Equation 4 - 10 

Distance = √RMSEYield
2 + RMSEHI

2 + RMSEPOD
2     Equation 4 - 11 

Where var is the variable (yield, HI or POD6). N represent the normalised variable, 

Nobs and Nsim, the normalised observed or simulated and n is the number of values 

compared per simulation. Distance is the Euclidean distance from the RMSE of the 

three variables and used for minimisation, referred to as distance in the following. 

The best ten combinations of parameters with the lowest distance from the 1470 

simulations were selected and the simulation with the highest Pearson linear 

correlation between observed and simulated yield was used as the secondary 

criteria to differentiate between these best ten. 

4.3.4. Evaluation  

Comparison between simulations from LPJ-GUESS and observed data from O3 

enrichment experiments were used to evaluate the new O3 module. These 

experiments evaluate different ambient, charcoal filtered and open-top chamber O3 

effects on HI and wheat yield. The POD6 was not evaluated since simulations with 

AgMERRA climate span until 2010 and before that year, reports of POD6 were very 

limited in the literature and the index was not well developed. 
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A total of 13 experiments from 8 publications in 7 different locations were used to 

evaluate the module (Table S4-1). From there, 40 and 20 treatments of O3 were 

simulated for yield and HI, respectively. The simulations were performed assuming 

the reported average [O3] in the publications as constant during the daylight time in 

the growing season. For each experiment, the relative yield and HI were calculated 

as described in the calibration section for observed and simulated values, but 

regressions were between [O3] and yield since POD6 was not reported in the 

publications. 

Linear comparisons between observed and simulated values were carried out by an 

analysis of covariance (ANCOVA). This method evaluates the interaction of 

observed and simulated values and [O3] to compare slopes. 

4.3.5. Time Scale differences 

To evaluate the sensitivity of POD6 estimation by LPJ-GUESS to the temporal 

resolution of [O3] data, hourly [O3] data was collected from three different O3 

experiments with a total of ten treatments conducted on wheat in Belgium during 

1994, including two treatments, charcoal-filtered and non-filtered (Fangmeier et al. 

1999); Sweden in 1994 with four treatments non-filtered and three levels of O3 

enrichment (Pleijel et al. 2014) and Sweden in 1997 with four treatments charcoal 

filtered, non-filtered, and two levels of O3 enrichment (Gelang et al. 2001).  

The collected data were used to simulate POD6 directly using data at hourly 

resolution, as well as the mean daily, weekly, monthly and growing season [O3] data. 

The root mean square error was calculated for all the time scales, as shown in 

Equation 4 - 10. Besides, a comparison between the fitted lines for daily and 

seasonal mean data was performed using an analysis of covariance (ANCOVA). 
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4.3.6. Ozone, CO2 and drought effect on yield 

A factorial experiment with LPJ-GUESS simulations was performed where spring 

and winter wheat was simulated in 2003 under irrigated and rainfed management. 

Eleven levels of atmospheric CO2 in ppm (350, 375.8, 400, 450, 500, 550, 600, 650, 

700, 750, 800) and tropospheric O3 in ppb (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) 

were combined for a total of 121 simulations in the three locations used for 

calibration Belgium (4°15' E, 50°45' N), Sweden (12°15' E, 57°45' N) and Finland 

(23°15' E, 60°45' N). The year was selected because it had a high portion of days 

during the growing season when plants endured water stress under rainfed 

management and showed a clear difference in yield with irrigated management.  

The simulation with 0 ppb of O3, 375.8 ppm of CO2 (actual concentration for 2003), 

and irrigation was used as a reference. All the simulated yields were divided by the 

reference separately for spring and winter wheat to standardise to a relative yield. 

Isopleths of relative yield by CO2 and [O3] were performed by location and 

management. Harvest index, POD6, actual evapotranspiration and stomatal 

conductance were also simulated.  

4.4. RESULTS 

4.4.1. Calibration 

The implementation of the O3 module in the model allowed the simulation of the 

deleterious effect on leaves and the early senescence caused by tropospheric O3. 

The calibration of the parameters showed that, for all three phenology approaches, 

the parameter RO3 caused most of the variation in yield and HI, followed by fmin. In 

general, the combinations of parameters causing a lower damaging effect of O3, 

such as low values of RO3, late fmin and early fmax, showed higher distance 

meaning poor model performance. Medium and low values of RO3 in some cases 
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compensate for the lack of damaging effect with a wider POD6 accumulation period, 

early start and late end of the O3 sensitivity. These parameter combinations caused 

low distance because of the good fit of yield and HI but caused significant 

overestimation of POD6. To control this effect, simulations were constricted those 

with maximum POD6 between 5 and 7.5 mmol m-2 which showed that the lowest 

values of distance occurred with high RO3 values and a moderate O3 sensitivity 

period (Figure 4.2. S4-2, S4-3). 

The method to calculate the period of sensitivity to O3 based on DS consistently had 

the lowest distance compared to dd0 and dd5. All the quartiles of the distance and 

the mean distance were lower with DS (Figure 4.2. S4-2, S4-3). This implies that DS 

is more appropriate and accurately estimates yield, HI and POD6. Five of the best 

ten simulations selected were from the DS approach, three from the dd5 and two 

from the dd0.  

From the best ten simulations, the highest Pearson correlation coefficient (ρ = 0.66) 

between observed and simulated yield was found in the combination of parameters: 

RO3 = 0.09, fmin= 0.5 and fmax= 1.5 using the DS scale. This parameter setup 

simulated a similar decrease in relative yield and harvest index as POD6 increases. 

However, simulated POD6 is underestimated when observed POD6 is between 0 and 

4 mmol m-2, causing an underestimation of relative yield and harvest index loss 

mainly with [O3] below 40 ppb (Figure 4.3). 

4.4.2. Evaluation 

The evaluation comparison between observed and simulated relative yield showed a 

higher intercept (1.14) and a lower slope (higher yield loss) for simulated values (-

0.0080) compared to observed values with an intercept of 0.92 and a slope of -
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0.0044 differences are significant with a confidence of 95% (p=0.0022 and p=0.006, 

respectively). 

 

Figure 4.2. Euclidean distance of simulations using DS phenology approach, Left: 

All the evaluated parameter values and Right: Simulations with maximum POD6 

between 5 and 7.5 mmol m-2 
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Figure 4.3. Left:Relative Yield and HI vs POD6 (mmol m-2) and O3 concentration 

(ppb). Right: Simulated vs Observed POD, and relative yield and HI with the selected 

parameters for LPJ-GUESS 

In HI, the opposite response was found; an intercept of 1.01 was found for both 

observed and simulated data, but the slope was higher for simulated (-0.0015), 

indicating slower HI loss compared to observed (0.0027). Equally, this difference 

was not significant, with a confidence of 95% (p=0.305).  

This difference in relative yield is mainly caused by the model underestimating the 

loss effect in some simulations below an [O3] of 60 ppb and an overestimation when 

[O3] is higher than 90 ppb. In HI, the same underestimation of the HI loss below 60 

ppb causes this response (Figure 4.4). 

 
Figure 4.4. Observed and simulated relative yield and harvest index vs O3 

concentrations from locations used for evaluation 
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4.4.3. Time Scale differences 

The model was highly sensitive to the time scale of the [O3] data input. The main 

difference occurred between hourly data and the rest of the scales, but in general, at 

a higher time resolution, the estimated POD6 is higher, as shown in Figure 4.5.  

In that sense, the hourly [O3] data caused a significant overestimation of POD6, while 

the other scales caused a general underestimation. Therefore, the hourly [O3] data 

had the highest RMSE of 1.91, while the daily input [O3] data had the lowest RMSE 

of 1.52, indicating that the daily resolution better represents the observed POD6. 

Seasonal mean [O3] data has the worst underrepresentation of POD6 with an RMSE 

of 1.82, while weekly and monthly scales had medium values, 1.69 and 1.80, 

respectively.  

Although there was no significant difference between intercepts and slopes fitted 

from estimated POD6 based on daily and seasonal [O3] data, a higher slope was 

found from daily data (intercept = -0.112, slope = 0.793) compared to seasonal data 

(intercept = -0.24, slope = 0.72). In summary, the findings suggest that the time 

resolution affects the estimation of POD6 and daily [O3] input data may be the most 

appropriate for accurately estimating the POD6 in wheat crops in LPJ-GUESS. 
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Figure 4.5. Simulated vs Observed POD6 (mmol m-2) based on hourly, daily and 

mean season [O3] data 

4.4.4. Ozone, CO2 and drought effects on yield 

The relative yield showed differences in the response surface between the three 

locations. However, a general trend was observed, in which the relative yield was not 

significantly affected by the increase in [O3] below 30-40 ppb. Conversely, a marked 

reduction in relative yield was observed under higher [O3], decreasing relative yield 

below 0.2 when [O3] is above 80 ppb in all the locations. Both cultivars exhibited a 

similar response pattern, although the magnitudes differed, as shown in Figures 4.6 

and S4-4. This response included a higher yield loss under irrigated management 

due to the increase of O3 conductance, compared to rainfed management. 

On the other hand, the relative yield was sensitive to [CO2], with an increase of up to 

0.5 of the reference yield observed in Belgium for irrigated winter wheat. The high 

CO2 concentrations were able to compensate for the yield loss caused by the rise in 

O3 levels. In rainfed wheat, CO2 concentrations of around 500-600 ppm were enough 

to maintain the actual relative yield ([CO2] =375.8 ppm and [O3] = 0 ppb) when [O3] 

rose even above 80 ppb. A similar compensation was found in the irrigated 
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management wheat, but higher CO2 concentrations were required to maintain the 

reference yield when [O3] was above 80 ppb, as illustrated in Figures 4.6 and S4.4.  

 

Figure 4.6. Isopleths of relative winter wheat yield to reference (O3 of 0 ppb and 

actual CO2) for year 2003 for three locations. Top: Rainfed, Bottom: Irrigated 

4.5. DISCUSSION 

4.5.1. Effect of O3 in simulated crops 

The main mechanism driving yield loss from O3 is not entirely understood. 

Distinguishing experimentally between the decrease of photosynthesis and the 

induction of early senescence presents a challenge. Recent research has found that 

the O3 effect on the photosynthetic rate is only observed after accelerated 

senescence is induced (Osborne et al. 2019). Similarly, Emberson et al. (2018) 

found that most of the effects of O3 on crops can be explained by the early induction 

of senescence. The latter study also found that the four main effects of O3 needed to 

be considered in modelling were: 1) higher O3 sensitivity in the reproductive phase, 

2) acceleration of leaf senescence associated with the loss in photosynthetic 

capacity, 3) reduction in harvest index, and 4) an increase in seed protein 

concentration. The O3 module implemented in LPJ-GUESS simulates damage 
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through accelerated senescence and assesses the first three effects in this study. 

The last effect was not evaluated in this study. However, due to the mechanistic 

nature of LPJ-GUESS, the increase in simulated seed protein could be occur even if 

it was not directly modeled. Further research, with more model development, will 

allow for the examination of this effect. 

Although ground-level O3 has been shown to have harmful effects on plants, it has 

not been broadly incorporated into crop models. Previous implementations include a 

modulating factor for stomatal conductance based on water stress which affects the 

O3 flux through the stoma in WOFOST (Cappelli et al. 2016), the O3 concentration-

based index M7 in DSSAT (Guarin et al. 2019b) and a more complex module 

considering environmental effect in stomatal conductance and O3 intake was 

developed for LPJmL (Schauberger et al. 2019). One of the advantages of the 

developed O3 module in LPJ-GUESS is the use of the POD6, which allows the 

simulation of the O3 effect on plant productivity based on environmental factors that 

determine stomatal uptake rather than just [O3] (Peng et al. 2019; Pleijel et al. 2022). 

This approach causes variability in the simulated O3 effect between evaluated 

locations and years, even with the same [O3]. Some studies have found that this 

variability is overlooked in simulations with indexes like the M7 and AOT40, while 

POD6 indexes are better at predicting O3 damage in wheat (Osborne et al. 2019). 

Experimental evidence has shown a period of high O3 sensitivity in wheat which 

begins before anthesis and continues until the end of grain filling (Pleijel et al. 2007). 

This period ranges from development stage 0.5 to 1.5 in this study, while other 

reports use thermal time (base temperature =0 °C) between 200-270 °C days before 

anthesis and 600-700 °C days after anthesis (Pleijel et al. 2007; Feng et al. 2012; 

LRTARP 2017).  
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The calibrated period presented in this study seems to be centred around anthesis 

more than the reproductive period, as described in the other studies. However, DS 

allows the representation of different plant responses to environmental factors such 

as temperature in different phases and does not have a linear relationship with time 

(Olin et al. 2015b). For example, the cardinal temperatures for wheat growth differ 

between the pre-anthesis and post-anthesis periods, with the latter shifted 5 °C 

higher (Wang and Engel 1998). This means that the phenological development of 

0.5 on the DS scale before anthesis requires fewer days than after anthesis with 

equal mean air temperature in both periods. A similar response is caused by 

daylength and nitrogen stress.  

The average number of days to reach from DS = 0.5 to DS = 1.0 between 2001-2003 

for the three locations used in the factorial experiment (section 3.4) was 30 days, 

and from DS = 1 to DS = 1.5, is 37 days. The experiments from Wang and Engel 

(1998) in North Germany for wheat reported that the period between anthesis and 

the end of the grain-filling requires 15 days under optimum environmental conditions 

and observed, on average, 20 days between the beginning of anthesis and medium 

milk stage, when the grain weight and size has already been reached. In Sweden, 

the grain-filling period in six experiments was reported to be 44 days (Pleijel et al. 

2000). 

The only direct link between the POD6 accumulation and the senescence damage 

caused by O3 in the implemented LPJ-GUESS module is the parameter describing 

the rate of senescence caused by POD6 (RO3) on a daily basis. The consequent 

effect on carbon assimilation, allocation and yield are part of the proper dynamics 

and processes represented in the model. This mechanistic approach differs from the 

empirical relationships between POD6, or any other O3 exposure index, and relative 
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yield, grain mass and protein yield used in several crop models (Grünhage et al. 

2012; LRTARP 2017).  

4.5.2. Model Evaluation 

While the implemented module in LPJ-GUESS was capable of simulating yield and 

HI loss due to O3 effects, the evaluation revealed discrepancies between simulated 

and observed data. The primary reason for underestimating the O3 effect when [O3] 

are low is the scale of the input [O3] data. During the model evaluation, the mean 

[O3] of the whole growing season, reported in the experiments, was used as constant 

in the simulations, causing an underestimation of POD6, as shown in figure 4.5. 

Increasing the time resolution of [O3] data from the growing season to a daily basis 

reduces the POD6 underestimation increasing the yield loss. However, that 

improvement is not sufficient to completely fix the problem. One advantage of the 

POD6 index compared to concentration indexes is the ability to capture the peaks of 

[O3] during the daytime (Guarin et al. 2019b). Ozone concentrations typically reach 

maximum values around noontime and decrease after the late afternoon with clear 

differences at different seasons (Beig et al. 2007; Feng et al. 2007; M. Pugh et al. 

2010). This daily pattern of [O3] and variation also occurs in experimental chambers. 

Data from Belgium in 1994 from a charcoal-filtered chamber (Fangmeier et al. 1999) 

showed an 11-hour (8:00 – 18:00) mean [O3] of 6.02 ppb. However, peaks reached 

as high as 25 ppb in some hours (Figure 4.7). Therefore, the use of hourly [O3] data 

could increase the POD6 avoiding underestimation; however, the availability of 

hourly data is a challenge.  
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Figure 4.7. Hourly ozone concentration in Belgium 1994 (8:00 – 18:00). Horizontal 

line represents the season mean value 

The model overestimated the POD6 and damage under extremely high seasonal 

mean [O3] reported in the literature for model evaluation (Table S4-1), such as 105 

ppb (Feng et al. 2007) or 98 and 143 ppm (Zheng et al. 2013). This response could 

occur because these concentrations at prolonged exposure are unrealistic. In most 

agricultural landscapes, moderate background [O3] is found with occasional peaks 

(Osborne et al. 2019). Considering that these average values are for only 8 hours, it 

is probable that the reported [O3] is caused by several hours of moderate values with 

extremely high peaks increasing the mean value. If the peak coincides with a time of 

relatively low stomatal conductance, then the POD6 would be relatively low. Thus, 

similarly to the POD6 underestimation due to the low mean [O3], the use or 

estimation of hourly or sub-daily more realistic [O3] data may decrease POD6 and 

yield loss. 

Furthermore, extended exposure to O3 will lead to stomatal closure, controlling the 

O3 influx to leaves but also affecting the uptake of CO2 and carbon assimilation 

(Sitch et al. 2007; Vainonen and Kangasjärvi 2015). Also, [O3] peaks occur mainly in 

the afternoon and are related to high temperatures and vapour pressure deficit, 
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conditions that normally cause stomatal closure (Beig et al. 2007; Feng et al. 2007). 

Those two mechanisms relating [O3] and stomatal conductance cause the relative 

increase in POD6 to be lower than the [O3] relative increase at high [O3] (Pleijel et al. 

2022) while the new implemented module represents a linear relationship between 

[O3] and POD6.  

4.5.3. Combined effects of O3, CO2 and drought 

The combination of irrigated management, low [CO2] and high [O3] led to the most 

significant simulated yield loss in this study. This result was expected as water stress 

is accompanied by decreased stomatal conductance, limiting the O3 influx to the 

leaves (Feng et al. 2008; Guarin et al. 2019b). In wheat, plants with water between 

60 and 75% of the soil water capacity showed the highest stomatal conductance and 

consequently the highest yield loss by O3, while plants at 35% of soil water capacity 

experienced a yield loss by O3 close to zero (Khan and Soja 2003). In the current 

study, the irrigated management showed higher stomatal conductance in all the 

locations (Figure 4.8).  

 

Figure 4.8. Isopleths of stomatal conductance (mm) of winter wheat for 2003 at 

three locations. Top: Rainfed, Bottom: Irrigated 
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Similarly to stomatal conductance, higher evapotranspiration was found from the 

irrigated management compared to rainfed. However, evapotranspiration decreased 

as [O3] or [CO2] rose in both managements (Figure S4-5). This response supports 

experimental data where high CO2 levels reduce stomatal conductance and 

evapotranspiration (Feng et al. 2008; Mishra et al. 2013; Broberg and Pleijel 2015). 

This antagonistic effect between O3 and CO2 plus the CO2 fertilisation (Broberg et al. 

2019; Schauberger et al. 2019) compensates for the damaging effect of O3 in 

simulated yields. 

At high [O3] above ~ 70 ppb and low [CO2], simulated stomatal conductance 

increased; the underlying mechanism in the model representation causing that 

response is not well understood but it has been observed in previous research where 

high [O3] can damage the stomatal functioning and slow the closure response 

(Broberg and Pleijel 2015; Masutomi et al. 2019). Even though LPJ-GUESS does not 

represent this effect explicitly, it could be a plant response to compensate for the 

loss of leaf area caused by O3, by increasing the photosynthesis of living leaves. 

Additionally, compensation is enhanced considering that the senescent leaf tissue in 

LPJ-GUESS is assumed to continue attached to the plant affecting light transmission 

and keeping the same extinction coefficient. 

4.5.4. Future research 

Future research could improve the implementation of the effect of tropospheric 

ozone in plants, for instance, the representation of a maximum daily POD6 

thresholds or the increase of stomatal closure as a function of [O3], avoiding 

overestimation at extremely high extended [O3]. The threshold of ozone flux into the 

leaves at extremely high extended [O3] based on stomata closure for protection has 

been reported previously in wheat plants (Pleijel et al. 2022). Likewise, estimating 
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hourly ozone concentrations to capture the ozone peaks could enhance the model 

simulation of POD values and, consequently, plant damage mainly under low O3 

concentrations. Further research should also evaluate the effect of the ozone 

concentration at larger or global scales and the evaluation of simulated global yield 

data affected by ozone compared with historical data. Finally, it is critical the 

extension and parameterisation to other sensitive crops such as potato, barley, rice, 

bean and soybean (Feng et al. 2008) and maize, which has been reportedly 

identified as a crop with low sensitivity to ozone. However, recent research has 

shown maize significant global losses due to ozone pollution (McGrath et al. 2015; 

Peng et al. 2020). 

4.6. CONCLUSION 

A new module representing the effects of tropospheric ozone on wheat production 

were implemented in LPJ-GUESS by adding the stomatal flux index Phytotoxic 

Ozone Dose above a threshold flux of 6 nmol m-2 s-1 (POD6) and a calibrated 

function linking (POD6) to the accelerated senescence, which, in turn, leads to 

productivity loss. The period of sensitivity to ozone was also calibrated to allow the 

module implementation to recreate the observed yield and harvest index loss rates 

caused by ozone in wheat. Future efforts could improve the model by estimating 

hourly [O3] independently of the input time resolution and limiting the damage at 

extremely high [O3].  

The module can also reproduce the expected interaction between ozone, CO2 and 

drought in yield and stomatal conductance, making it an important tool for 

researching air pollution in agriculture and food security. Further development can 

extend the module to other crops but it was calibrated for wheat since it is a major 

crop worldwide and ground-level ozone has been demonstrated to reduce wheat 
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production affecting global food security. Strategic research on mitigation and 

adaptation to the effects of ozone in an environmentally sustainable manner is 

critical for farmers and policymakers to reduce pollution impacts and the thread of 

production losses. Therefore, the ozone module implemented in LPJ-GUESS and its 

ability to recreate the damaging ozone effect on yield and harvest index can be a 

powerful tool for research and decision support to meet the future global demand for 

food. Besides, the research has implications for developing more robust and 

accurate crop models considering the complex interactions between crop production, 

ozone and environmental factors. 
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4.8. SUPPLEMENTARY MATERIAL 

Table S4-1. References for the model evaluation of Yield and HI. OA: Open ambient, 

NF: Non filtered, NF+O3: non filtered ozone enriched, CF: Charcoal filtered 

Reference Lon Lat Year Treatment O3  

O3 
Exposure 
(hours) Yield 

Units 
Yield HI 

Fangmeier et al 1996 8.75 50.75 1994 OA 40 Daylight 2.75 g plant-1 0.47 

Fangmeier et al 1996 8.75 50.75 1994 NF+O3 64 Daylight 2.54 g plant-1 0.43 
Sarkar and Agrawal 
2010 83.25 25.75 2008 CF 5 12 585 g m-2 0.49 
Sarkar and Agrawal 
2010 83.25 25.75 2008 NF 45 12 408 g m-2 0.45 
Sarkar and Agrawal 
2010 83.25 25.75 2008 NF+O3 50 12 350 g m-2 0.41 
Sarkar and Agrawal 
2010 83.25 25.75 2008 NF+O3 56 12 300 g m-2 0.39 
Sarkar and Agrawal 
2010 83.25 25.75 2009 CF 5 12 578 g m-2 0.48 
Sarkar and Agrawal 
2010 83.25 25.75 2009 NF 47 12 399 g m-2 0.44 
Sarkar and Agrawal 
2010 83.25 25.75 2009 NF+O3 57 12 318 g m-2  0.35 

Feng et al 2007 121.25 31.75 2006 CF 10 8 1.75 g plant-1  
Feng et al 2007 121.25 31.75 2006 NF 52 8 1.31 g plant-1  
Feng et al 2007 121.25 31.75 2006 CF+O3 105 8 1.12 g plant-1  
Zheng et al 2013 121.25 31.75 2007 CF 12 8 1.6 g plant-1  
Zheng et al 2013 121.25 31.75 2007 NF 34 8 1.55 g plant-1  
Zheng et al 2013 121.25 31.75 2007 CF+O3 52 8 1.5 g plant-1  
Zheng et al 2013 121.25 31.75 2007 CF+O4 98 8 1 g plant-1  
Zheng et al 2013 121.25 31.75 2008 CF 20 8 1.55 g plant-1  
Zheng et al 2013 121.25 31.75 2008 NF 28 8 1.5 g plant-1  
Zheng et al 2013 121.25 31.75 2008 CF+O3 96 8 0.9 g plant-1  
Zheng et al 2013 121.25 31.75 2008 CF+O4 143 8 0.6 g plant-1  
Mortensen and 
Engvild 1995 12.25 55.75 1991 CF 16 8 3.7 g plant-1 0.43 
Mortensen and 
Engvild 1995 12.25 55.75 1991 NF 28 8 3.3 g plant-1 0.42 
Mortensen and 
Engvild 1995 12.25 55.75 1991 NF+O3 61 8 2.7 g plant-1 0.40 

Tomer et al 2015 77.25 28.75 2009 CF 5 7 527 g m-2 0.41 

Tomer et al 2015 77.25 28.75 2009 OA 32 7 421 g m-2 0.40 

Tomer et al 2015 77.25 28.75 2009 NF 31 7 439 g m-2 0.41 

Tomer et al 2015 77.25 28.75 2009 NF+O3 59 7 369 g m-2 0.40 

Tomer et al 2015 77.25 28.75 2010 CF 8 7 499 g m-2 0.42 

Tomer et al 2015 77.25 28.75 2010 OA 36 7 404 g m-2 0.40 

Tomer et al 2015 77.25 28.75 2010 NF 35 7 423 g m-2 0.40 

Tomer et al 2015 77.25 28.75 2010 NF+O3 65 7 345 g m-2 0.38 

Wahid et el 1995 74.25 31.25 1985 CF 6 6 25.8 g plant-1  
Wahid et el 1995 74.25 31.25 1985 NF 36 6 13.75 g plant-1  



 

167 
 

Wahid et al 1995 74.25 31.25 1985 NF 38 6 12.31 g plant-1  
Zhu et al 2011 119.75 32.75 2007 NF 46 12 0.86 kg m-2  
Zhu et al 2011 119.75 32.75 2007 NF+O3 61 12 0.71 kg m-2  
Zhu et al 2011 119.75 32.75 2008 NF 42 12 0.99 kg m-2  
Zhu et al 2011 119.75 32.75 2008 NF+O3 50 12 0.8 kg m-2  
Zhu et al 2011 119.75 32.75 2009 NF 39 12 0.65 kg m-2  
Zhu et al 2011 119.75 32.75 2009 NF+O3 49 12 0.57 kg m-2  
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Figure S4-1. Relationship Between POD6 and leaf senescence compiled by Pleijel, 

2018 (unpublished) 

 

 

Figure S4-2. Euclidean distance of simulations using dd0 phenology approach with 

maximum POD6 between 5 and 7.5 mmol m-2 
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Figure S4-3. Euclidean distance of simulations using dd5 phenology approach with 

maximum POD6 between 5 and 7.5 mmol m-2 

 

 

 

 

Figure S4-4. Isopleths of relative spring wheat yield to reference (O3 of 0 ppb and 

actual CO2, irrigated) for year 2003 for three locations. Top: Rainfed, Bottom: 

Irrigated 
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Figure S4-5. Isopleths of actual evapotranspiration (mm/year) of winter wheat for 

year 2003 at the three locations. Top: Rainfed, Bottom: Irrigated  
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CHAPTER FIVE: CONCLUSIONS 
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5.1. Summary and synthesis 

Previous developments of the LPJ-GUESS model enhanced its capability to 

represent the carbon cycle and vegetation state globally by incorporating 

agroecosystems and managed land. These incorporations included the explicit 

representation of crop processes and yields and also enabled the application of the 

model in food system studies. Overall, this thesis aimed to improve the ability of LPJ-

GUESS to simulate yields on a regional to global scale through three studies directed 

at aspects of large uncertainty for global simulations. Increasing the reliability of 

model simulations and outputs will benefit future model applications in food 

production systems, crop production projections, food security impact and 

sustainability. 

The first study of this thesis focused on carbon assimilation and allocation processes 

within wheat and maize. As hypothesised, there was an improvement in the 

estimation of yield and harvest index globally compared to the original setup used in 

LPJ-GUESS, which tended to strongly overestimate the harvest index compared to 

the evaluation dataset collected in this thesis. The study highlighted the importance 

of simulating crops in LPJ-GUESS, considering the performance of internal crop 

processes besides yield. Accordingly, the minimum leaf carbon to nitrogen (C:N) ratio 

and the range in which leaf C:N ratio was allowed to vary were the main parameters 

affecting the simulated carbon assimilation, gross primary production (GPP), and 

yield. These parameters regulate the nitrogen content in leaf tissue during the 

growing season. The harvest index, on the other hand, is most strongly influenced by 

the retranslocation of labile carbon from the stem to grain after anthesis. This 

parameter caused high variation in the harvest index, as they directly influenced the 
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ratio of carbon in grains and vegetative organs. The exclusion of labile carbon 

retranslocation to grains was found to be the most crucial parameter that had the 

effect of decreasing the harvest index without significantly affecting yield. 

The retranslocation rate of nitrogen and carbon from leaf to grain during senescence 

also impacted the harvest index significantly. This occurs because the carbon 

assimilation rate and the period with active photosynthesis are highly affected by the 

retranslocation rate of nitrogen and carbon and nitrogen demand reduction after 

anthesis. Lower rates of carbon and nitrogen retranslocation from leaves, coupled 

with a slower nitrogen uptake reduction after anthesis, result in a more extended 

period of productive green tissue and higher assimilation during grain filling. This 

impacts gross primary production (GPP), yield, and harvest index. 

Two cultivars were developed for maize; high-yielding and low-yielding. These 

cultivars differed in their C:N ratio parameters and the nitrogen and carbon 

retranslocation rates. The high-yielding cultivar had a lower minimum and range of 

leaf C:N ratios representing a higher leaf nitrogen concentration. It had a higher 

capacity for carbon assimilation due to the extended period of green tissue, with low 

carbon and nitrogen retranslocation rates compared to the low-yielding maize. The 

newly parameterised cultivars substantially improved the ability of LPJ-GUESS to 

capture the geographic variation in yields globally over the period 2000-2010. 

The second part of the thesis highlighted and confirmed the hypothesis about how 

land cover change legacies strongly influence historical yield trends of wheat, maize 

and rice. However, it showed that a historical land cover database, such as the Land 

Use Harmonization 2 (LUH2;Hurtt et al. 2020), had similar trends in the simulated 
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global yield to those obtained only assuming cropland before the simulations. This 

suggests that the assumption of crop cover before the historical simulation is 

satisfactory when simulating large-scale or global crop yields and not another land 

cover is studied. The constant crop assumption has the benefit of saving computer 

and time resources. Soil nitrogen and carbon pools accumulated before the crop 

simulation increased yield significantly for several years after the land cover change 

from natural vegetation or pastures to cropland. The relative increase in yield was 

particularly marked in regions with low fertiliser input. In rice, the effect of initial soil 

fertility conditions on the yield is less marked than in the other crops, potentially due 

to the inundated management of rice in most of the harvested area. 

Similarly to the legacy of soil fertility from different land covers, this study revealed 

that fertilisation and atmospheric CO2 mixing ratio (in C3 crops like wheat and rice) 

are the most important drivers contributing to simulated global yield increasing 

trends. A negligible effect of CO2 was found for the C4 pathway crop maize. All the 

global simulated yields with different assumptions showed an overestimation 

compared to the FAO time series in the three crops before and during the 1990s, but 

mainly in maize. This probably occurred because the model does not consider pests, 

partial irrigation, pollution, soil degradation and other yield limitations. Also, the 

historical fertiliser and cultivar distribution databases add uncertainty to the model 

outputs. The improvement of the spatial but also temporal resolution of these two 

databases would likely represent progress in simulating yield trends over time. This 

study is particularly informative for interpreting coming large-scale crop simulations of 

yield and other agricultural outputs in LPJ-GUESS and other crop models. 
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The final stage of the thesis focused on the implementation and analysis of the 

tropospheric ozone on wheat production. As described in the hypothesis, the 

implementation allowed to capture losses in yield and harvest index caused by 

ozone. Wheat is the world most cultivated crop of which, production can be 

significantly affected by ground-level ozone, threatening global food security. To 

study this issue, a mechanistic ozone module was integrated into LPJ-GUESS. The 

module is based on the Phytotoxic Ozone Dose (POD), a stomatal ozone index that 

affects the accelerated senescence of wheat, ultimately leading to crop productivity 

loss. Through this implementation, the model could reproduce yield and harvest 

index losses in wheat caused by increasing ozone concentrations. In addition, the 

module can replicate the expected interaction between high ozone levels causing 

yield loss and high CO2 levels enhancing yield. The damaging effect of ozone was 

more pronounced under irrigated management where stomatal conductance, and 

thus POD, tended to remain higher. The model could also replicate the stomatal 

conductance closure caused by high CO2 and drought, which is the main cause of 

the reductions in ozone damage under such conditions. As a result, this tool has the 

potential to become a powerful resource for research on air pollution in agriculture 

and food security. 

5.2. Limitations 

The first limitation is inherent to crop modelling and the challenge to represent all the 

factors that can affect crop yields, such as biotic stresses, under irrigation and soil 

degradation in the case of LPJ-GUESS. These factors can be undetected at large-

scale simulations, making the direct comparison between simulated outputs and 

observed values challenging.  
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Additionally, the inner limitations of the LPJ-GUESS due to its model structure, 

assumptions and processes affected this research and were not addressed here. For 

example, the few calibrated crops and cultivars available in LPJ-GUESS limit the 

potential to simulate crop production, mainly at a large scale which aggregates more 

diversity. Also, the model simulates one season per year, while two seasons are 

present in crop production in some locations. This is compensated by considering 

both seasons in the harvested area; however, it affects the study of other outputs due 

to the dynamic nature of the model. Similarly, the model has the ability to include 

management options like tillage, residue or interannual crops, but these options are 

applied globally and not spatial or temporal distributed.  

The availability of gridded time series input datasets represented another limitation. 

Historical datasets of harvested areas are available, but segregation between rainfed 

and irrigated is unavailable. In the absence of this information, fractions of the 

harvested area under irrigation for the period 2000 - 2010 were applied to the whole 

time series based on the relative changes reported in the HYDE (Goldewijk et al. 

2017). Since the general trend in irrigation fraction increased over time, an 

overestimation of irrigated areas for the period before 2000 is expected. Standard 

fertiliser datasets are unavailable for several crops, and the standardised data from 

the AgMIP initiative only applies to circa 2000. 

Similarly to the irrigation interpolation before 2000 could cause an overestimation. 

There is also a general lack of cultivar distribution databases, and the estimation with 

distribution assumptions is required to supply them as performed in this research, 

where observed yield at the country level from FAO allowed to distribute both maize 

cultivars globally for the period 2000 -2010. This cultivar distribution also represents 
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an uncertainty of the estimations, possibly biased to overestimate high-yielding 

cultivar areas before 2000. 

Finally, one of the most important limitations was the lack of hourly or daily ozone 

mixing ratio data to simulate the ozone effect on wheat in the calibration and 

evaluation in Chapter 4. Only the average daylight ozone mixing ratio per season 

was used to simulate the ozone effect, ignoring high ozone variability and peaks 

during the day and the season. Depending on the treatment, this caused 

overestimation of the simulated PODs and, consequently, of crop damage when 

mean ozone mixing ratios were high and underestimated POD and crop damage 

when mean ozone mixing ratios were low. So, in general, this result tended to 

increase the negative trend of the effect of ozone on yield.  

5.3. Future work 

The enhancements made to the LPJ-GUESS model in this thesis have significant 

implications for future research into the impact of various environmental factors, 

management practices and growing conditions on the global crop yield of three 

essential crops: maize, wheat, and rice. However, modelling requires continuous 

improvement and development, and the three research chapters described in this 

thesis also opened some new questions, research opportunities and necessities that 

were not addressed but can be complemented in future work. 

In Chapter 2, contrasting values between both cultivars of maize showed the need to 

improve the cultivar distribution of the current cultivars and, if possible, to diversify 

the number of cultivars since maize is one of the most diverse crops in the world. At 

the same time, the enhancement of cultivar representation implies further parameter 

constraint and calibration to ensure a reliable representation of reality, mainly at large 
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scales. This would require the characterisation of different representative cultivars 

and the estimation of distribution databases.  

Some parameters, such as the minimum and range of C:N or the N and C 

retranslocation rates, can continue being constrained to more precise ranges for 

each cultivar. Similarly, Sret, a parameter representing the inclusion (1) or absence 

(0) of labile carbon from stem to grains during senescence, could be constrained to 

fraction values between 0 and 1 for a better description of the retranslocation 

process.  

In Chapter 3, the main conclusion showed that the most productive areas in the world 

could be simulated assuming cropland cover before the historical simulations. 

Evaluation of the effect of land use datasets in different models that, like LPJ-

GUESS, simulate land use history would help to understand at what level the model 

structure caused the response found in this chapter. This will show how to effectively 

deal with land use history, mainly in models that do not simulate it but rather initialise 

their soil nutrient concentrations. In that case, the initial input dataset of soil fertility 

could be simulated with LPJ-GUESS. Additionally, this chapter showed the urgent 

need to standardise and characterise the uncertainty of fertilisation gridded time 

series for crop simulation due to the high contribution of this factor on simulated 

global yield trends 

In Chapter 4, two mechanisms were not implemented and could improve the 

simulation of the effect of ozone in plants. First, the inclusion of a maximum threshold 

of ozone above which the plant will close stomata for protection, but also because 

magnitudes of temperature and vapour pressure deficit related to ozone peaks 

normally cause stomatal closure. Likewise, estimating hourly ozone mixing ratios to 
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capture the ozone peaks could enhance the model simulation of POD values and, 

consequently, plant damage. Thie work presented in this chapter additionally 

requires further research about the effect of the ozone concentration at larger or 

global scales and the evaluation of simulated global yield data affected by ozone 

compared with historical data. Extension and parameterisation for other sensitive 

crops such as potato, barley, rice, bean and soybean (Feng et al. 2008) are also 

needed to represent global agricultural production fully. One important crop to 

analyse is maize since it has been reportedly identified as a crop with low sensitivity 

to ozone. However, recent research has shown maize significant global losses due to 

ozone pollution (McGrath et al. 2015; Peng et al. 2020). 

5.4. Synthesis  

Following the aims described in Chapter 1 for the three research chapters, LPJ-

GUESS was improved in this thesis, enhancing its capability to replicate yields, crop 

productivity processes, and the harmful effects on yield and harvest index simulated 

by the ozone module. Additionally, the response of simulated global crop production 

to land use and environmental drivers data was described allowing to understand 

their contribution and limitations as decision suport for model setup in future model 

applications and developments.  Enhancement of model simulations by the addition 

of the ozone module in the model structure was not directly tested but the capability 

to decrease yields and HI based on troporpheric ozone pollution implies a model 

improvement. Anyway, the effect of ozone module on global yields still requires a 

deeper evaluation.  

These improvements have significant implications for developing more 

comprehensive and precise crop simulations that account for the complex 
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interactions between crop production, environmental and management factors, and 

ozone and contribute to potentially more accurate global and large-scale yield 

simulations, to better understand the impacts of climate change and terrestrial 

biogeochemical cycles on food production.  

The thesis emphasized the importance of simulating crop processes considering 

internal performance rather than only yield in LPJ-GUESS. It examined three types of 

uncertainty that the model has to address and are finally reflected In model outputs, 

such as parameter uncertainty (Chapter 2), input uncertainty (Chapter 3) and 

structural uncertainty (Chapter 4). These types of uncertainty mainly highlighted the 

significant influence of input datasets of climate, land use change, soil fertility, 

fertilisation, atmospheric CO2 mixing ratio, and ozone on crop yield simulation and 

their potential threat to global food security. Further improvement in the spatial and 

temporal resolution of databases such as fertilisers and cultivar diversity and 

distribution could improve the accuracy of future model applications. The LPJ-

GUESS model, with the integrated mechanistic ozone module, has significant 

potential for studying air pollution in agriculture and food security.  

Although there are limitations to the model, this thesis has provided valuable insights 

into large-scale crop simulations and their impact on food systems, crop production 

projections, food security, and sustainability. Overall, this thesis's outcomes 

contribute to advancing the knowledge and understanding of global crop production 

and its impact on the environment and food systems. Additionally, improved LPJ-

GUESS represent a valuable tool for strategic research on mitigating and adapting to 

the effects of ozone in an environmentally sustainable manner. This kind of research 

is critical for researchers and policymakers to reduce pollution impacts and 
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production losses and can serve as a powerful tool for research and decision 

support, essential for meeting future global food demands. 
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Abstract
Crop yield improvement during the last decades has relied on increasing the ratio of the economic organ to the total above-
ground biomass, known as the harvest index (HI). In most crop models, HI is set as a parameter; this empirical approach 
does not consider that HI not only depends on plant genotype, but is also affected by the environment. An alternative is to 
simulate allocation mechanistically, as in the LPJ-GUESS crop model, which simulates HI based on daily growing condi-
tions and the crop development stage. Simulated HI is critical for agricultural research due to its economic importance, but 
it also can validate the robust representation of production processes. However, there is a challenge to constrain parameter 
values globally for the allocation processes. Therefore, this paper aims to evaluate the sensitivity of yield and HI of wheat and 
maize simulated with LPJ-GUESS to eight production allocation-related parameters and identify the most suitable parameter 
values for global simulations. The nitrogen demand reduction after anthesis, the minimum leaf carbon to nitrogen ratio (C:N) 
and the range of leaf C:N strongly affected carbon assimilation and yield, while the retranslocation of labile stem carbon to 
grains and the retranslocation rate of nitrogen and carbon from vegetative organs to grains after anthesis mainly influenced 
HI. A global database of observed HI for both crops was compiled for reference to constrain simulations before calibrating 
parameters for yield against reference data. Two high- and low-yielding maize cultivars emerged from the calibration, whilst 
spring and winter cultivars were found appropriate for wheat. The calibrated version of LPJ-GUESS improved the simula-
tion of yield and HI at the global scale for both crops, providing a basis for future studies exploring crop production under 
different climate and management scenarios.

Keywords Retranslocation · N concentration · Parameter sensitivity · Calibration · LPJ-GUESS

Introduction

The world population is projected to reach about 9.7 bil-
lion by the middle of the century, according to the medium 
variant of the World Population Prospect (United Nations 
2019). The increased population, combined with a higher 
calorie demand per capita, will pose a significant challenge 
to ensure that food production can meet the increasing 
food demand (Godfray et al. 2010; Vermeulen et al. 2012). 
This challenge is further complicated by expected reduc-
tions in crop production caused by climate change and 
other environmental issues (Ray et al. 2019; Ortiz-Bobea 
et al. 2021; Soleymani 2022). Therefore, a sustainable 
solution requires understanding the complexity of agri-
cultural systems and their interaction with other biogeo-
chemical dynamics (Cramer et al. 1999; Sitch et al. 2003; 
Lindeskog et al. 2013). A class of global gridded crop 
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