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Abstract

The advent of quantum computers renders most cryptographic protocols obsolete and

urges for a quick transition to post-quantum solutions. Many valid techniques for quantum-

secure encryption and digital signatures have been proposed, but more advanced primi-

tives do not yet have efficient post-quantum replacements. Among these are primitives

where multiple parties have long-term secrets; we refer to these protocols as static-key

cryptography. Few post-quantum static-key protocols have been reported in the litera-

ture, and nearly all are based on isogenies. In this work, we focus on two fundamental

static-key primitives: non-interactive key exchanges (NIKE) and oblivious pseudorandom

functions (OPRF). We first study the security of existing constructions with long-term

static keys, and then we develop new protocols that outperform the existing ones.

In particular, we first assess the security of the isogeny-based NIKE based on k-SIDH

proposed by Jao and Urbanik. Compared to the original k-SIDH, the protocol relies on

non-trivial automorphisms to improve its efficiency. However, we show the protocol is

vulnerable to an attack that exploits the additional automorphism structure. While the

attack does not fully break the proposed parameters, it shows that the k-SIDH variant by

Jao and Urbanik reduces the security level more so than it increases efficiency, making it

less preferable over the standard k-SIDH.

We also analyze a validation method proposed by Fouotsa and Petit that checks the

correctness of SIDH public keys. If the method were secure, it could be translated into an

efficient NIKE. However, we demonstrate an efficient attack that allows a malicious party

to provide dishonest public keys and satisfy the validation check. As part of this work,
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we also discuss possible improvements to the countermeasures but show that they are

similarly vulnerable to an extension of our attack. We then conclude with a discussion on

the possibilities and the requirements of future validation techniques.

Beyond NIKEs, we analyze the security of the isogeny-based OPRF proposed by Boneh,

Kogan, and Woo at Asiacrypt 2021. We introduce a polynomial-time attack on the one-

more unpredictability property of the OPRF, which allows a malicious user to evaluate

the PRF independently after some interactions. We show that a simple countermeasure

can prevent the attack; we also propose a second attack that achieves the same goals

but cannot be easily defended against. The second attack, however, has subexponential

complexity. To demonstrate its feasibility, we develop a proof-of-concept implementation

that can efficiently carry out the attack.

In follow-up work, we develop an efficient countermeasure against the previously

introduced attack. We also integrate the countermeasures against the SIDH attacks into

the OPRF protocol, and we propose a new proof of isogeny knowledge that can work with

the countermeasures. Moreover, we introduce a novel zero-knowledge proof of parallel

isogeny that provides non-interactive verifiability. By combining everything together, we

obtain an OPRF protocol that is post-quantum secure, verifiable, round-optimal, and

moderately compact.

Lastly, we study the problem of generating supersingular elliptic curves with unknown

endomorphism ring. Such curves are often needed as starting parameters in many isogeny-

based protocols, including the OPRF protocol we have developed. To generate curves of

unknown endomorphism ring, we propose a distributed trusted-setup protocol that relies

on a new statistical zero-knowledge proof; we prove its security in the general universally

composable framework.

These works, both constructive and cryptanalytic, provide a better understanding of

the limitations and the possibilities of isogeny-based cryptography in developing static-key

protocols, and they are an important stepping stone towards fully practical post-quantum

NIKEs and OPRFs.
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Chapter 1

Introduction

Let the great plot commence.
— Mary Stuart, last letter to her

coconsiprators

The history of cryptography is the history of a battle lasting centuries: on one side,

cryptographers, trying to devise better methods to communicate securely; on the other,

cryptanalysts, trying to extract secret information.

This long-raging war dates back to the birth of cryptography. For centuries, codemakers

were in the lead: substitution ciphers, where one letter is replaced by another, were

thought to be secure against anybody who did not know the mapping between letters.

This changed around AD 800 when Al-Kindi, an Arab philosopher and mathematician,

proposed a simple yet brilliant method to break substitution ciphers: he noted letters

do not appear with the same frequency, and thus even if a letter is replaced by another,

its frequency is unchanged and can reveal the original value. This breakthrough had

significant consequences: a famous example is the sentencing of Mary Stuart, who plotted

to overthrow Queen Elizabeth I of England in 1586. After the plot was discovered, she

believed she was safe because she had encrypted her letters to the other conspirators with

a substitution cipher. But a crown cryptanalyst had intercepted, decrypted, and modified

Mary Stuart’s communications. When she sent the letter that would commence the plot,

1



she signed her execution orders.

Over the centuries that followed, the competition continued with alternating fortunes

for codemakers and codebreakers. In modern times, World War II has been a major

battlefield between cryptographers on both sides of the war. The German military

apparatus relied on Enigma, a machine to encrypt and decrypt information that was

believed exceptionally secure. But the work of Polish mathematicians at the Polish Cipher

Bureau and British researchers, including Alan Turing, at Bletchley Park eventually led

to a breakthrough that allowed Allied operators to decrypt German secret information.

Besides contributing to the Allied victory, the decryption of Enigma is estimated to have

shortened the war and saved lives.

After the world war, the battle between cryptographers and cryptanalysts that had

lasted millennia came to a sudden end, with the resounding and definitive win of cryp-

tographers. This started with the advent of public-key cryptography in 1976. Before

then, all encryption methods required two people to have already established a shared

secret key, but such an approach could not work in an increasingly more connected world

where people who have never interacted before needed to communicate securely. A new,

radically different approach was developed by Whitfield Diffie, Martin Hellman, and

Ralph Merkle. In 1974, Merkle developed the concept of public-key cryptography: a

method that enabled any two people to establish a shared secret without the need for

any previous interaction. While it was originally thought to be impossible, only two years

later, Diffie and Hellman develop the first efficient public-key protocol [DH76], which is

based on exponentiation in finite groups. Shortly afterwards, Ron Rivest, Adi Shamir, and

Leonard Adleman developed a different protocol [RSA78], named RSA after its creators,

that achieved the same goals.

Over the decades that followed, several other protocols were developed, but to this day

the most used public-key algorithms are based on the Diffie-Hellman and RSA protocols.

Their security has been thoroughly analyzed, and they are widely believed to be secure.

Their security relies on two hard problems: the discrete logarithm problem for the
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Diffie-Hellman protocol, and the integer factorization problem for RSA. The amount of

computations needed to solve these problems is believed to be astronomical. Even the

most powerful supercomputers, running for the entire lifespan of the universe, could not

break these protocols. Nonetheless, a Damocles sword hangs onto them: in 1994, Peter

Shor proposed a quantum algorithm [Sho94] that can efficiently solve both problems.

The reason why these protocols are still widely used and believed secure is that a quantum

algorithm requires a quantum computer to run. These are machines that exploit the

principles of quantum mechanics to compute in a radically different way, which enables

certain classes of computations to be carried out much faster. Prototypes of quantum

computers exist, but they cannot run Shor’s algorithm yet because they are still very

limited in their computational power. They can be compared to the state of computers in

the 1950s. Like those machines, however, quantum computers are expected to become

more and more powerful. Many companies, universities, and governments are heavily

investing in their development, and they might become powerful enough to break RSA

and Diffie-Hellman soon. A recent survey of 46 experts [MP21] reports that the majority

of them agree that quantum computers are more likely than not to break RSA-2048 in a

day within the next 15 years.

Some alternatives that are resistant against attacks on quantum computers have

been proposed, and they are known as post-quantum or quantum-secure. The transition

to post-quantum solutions cannot wait until quantum computers become sufficiently

powerful. Analyzing and developing quantum-resistant protocols requires several years,

and several more are necessary to widely deploy such protocols. Moreover, encrypted

communication can be stored for years; private information that is encrypted now can

be decrypted later when quantum computers will be sufficiently powerful. This can be

devastating for important data, such as military and diplomatic communications, even

if they are revealed decades after their initial communication. Hence, it is critical to

urgently transition to post-quantum solutions as soon as possible.

To spearhead such a transition, the American National Institute of Standards and
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Technology (NIST) initiated a standardization process in 2016 aimed at identifying new

solutions for post-quantum key-encapsulation methods (KEMs) and digital signatures.

Initially, 69 submissions were received. These relied on different approaches, including

constructions based on lattices, isogenies between supersingular curves, error-correcting

codes, multivariate systems of equations, and hash functions. While some were broken

within hours of publication, the other submissions underwent several years of scrutiny

by the wider cryptographic community. The majority of the submissions were based on

lattice-related problems, which are believed to be quantum resistant. Other protocols

were based on codes, multivariate systems of equations, isogenies, and hash functions.

NIST selected 26 candidates for round two of the competition, out of which only four

KEMs and three digital signature protocols were chosen as finalists in round three. Among

the KEM finalists, there was Saber, a key-encapsulation mechanism that we developed

based on the learning with rounding problem.

In March 2022, NIST announced Kyber [SABDK+22] as the KEM protocol to be stan-

dardized, as well as Dilithium [LDKLS+22], Falcon [PFHKL+22], and SPHINCS+ [HB-

DEF+22] as the upcoming standards for digital signatures. Three of the four protocols (all

except SPHINCS+) base their security on the hardness of lattice-related problems. The

three protocols are very efficient and have a moderate bandwidth requirement, making

them well-suited to be deployed in most scenarios.

1.1 — Static-Key Cryptography

With the standardization of Kyber, we can consider post-quantum encryption as a solved

problem; several better protocols may be proposed in the future, but Kyber, as well as

many other protocols, currently offers a valid alternative to classical encryption protocols.

The same is also mostly true for digital signatures: while SPHINCS+ is designed for

high-assurance scenarios, Dilithium and Falcon can replace their classical correspondents

in most instances, although the larger signatures and the longer execution times pose an

4



issue in specific use cases, such as in the TLS protocol [SSW20]. However, the transition to

post-quantum solutions becomes significantly harder when more advanced primitives are

considered. In particular, primitives that rely on multiple parties having long-term static

keys are often hard to implement in a quantum-secure manner. We refer to the set of such

primitives as static-key cryptography. In this thesis, we mainly focus on two static-key

primitives: non-interactive key exchanges and oblivious pseudorandom functions.

1.1.1 – Non-interactive key exchange

A non-interactive key exchange (NIKE) is a primitive where any two parties, having

previously published their public key, can agree on a shared secret without any further

interaction. First formalized by Freire, Hofheinz, Kiltz and Paterson [FHKP13], it is a

useful construct that plays a role as a building block in more advanced protocols, but it

also has direct applications.

NIKEs are widely employed to guarantee implicit and deniable authentication. If

two parties communicate over a channel encrypted with a shared secret generated by a

NIKE, they are implicitly authenticating each other because no other party can derive

their shared secret. Nonetheless, this authentication is deniable: since the protocol is

non-interactive, the authentication is derived exclusively from the shared secret, which is

only known to the two people engaging in the protocol. To any external party, there is no

guarantee that the people engaging in the protocol are who they claim to be. Deniable

authentication is at the core of messaging protocols such as the X3DH layer [MP16]

used in Signal and WhatsApp. Another common application of NIKEs is encryption in

resource-constrained devices, such as microcontrollers and IoT appliances. For low-power

devices, communication is often very costly; thus, reusing preshared public keys of a

non-interactive key exchange can significantly reduce the bandwidth consumption.

In the classical setting, it is easy to build a NIKE since the original Diffie-Hellman

construction [DH76] is already non-interactive. Given two public keys ga and gb, both

parties can obtain the shared secret gab without any further interaction. This simple

5



construction is surprisingly hard to replicate in the post-quantum domain: NIKEs based

on the learning-with-error (LWE) problem face significant challenges [GKRS22], and

no other construction has been proposed based on other lattice-based or code-based

problems. Some quantum-secure solutions based on isogenies have been proposed, but

they are far from being an efficient replacement for Diffie-Hellman.

1.1.2 – Oblivious pseudorandom function

The second primitive on which we focus is oblivious pseudorandom functions (OPRF).

Such a primitive allows a user and a server to jointly evaluate a pseudorandom function

(PRF) on a user’s input and a server’s long-term key. The evaluation must be oblivious,

which means the server should not learn anything about the client’s input. If the OPRF

protocol is verifiable, the server provides a proof that its computations were honest and

used a previously-committed secret key during each execution of the protocol.

OPRFs are an important building block in many cryptographic applications, and a

wide range of internet protocols depend on them. OPRFs can be used for private set

intersection [JL09], which in turn has many applications ranging from privacy-preserving

contact discovery for messaging services [DRRT18] to checking for compromised creden-

tials [LPASC+19]. For instance, the web browser Microsoft Edge uses an OPRF-based pro-

tocol to detect compromised passwords [LKLM21]. A second practical use case of OPRFs

is the privacy-preserving authorisation mechanism known as Privacy Pass [DRRT18].

Developed and currently deployed by Cloudflare, Privacy Pass reduces the number of

CAPTCHAs that users need to solve by issuing a number of tokens, which users can

later spend to avoid solving a second CAPTCHA. To prevent the server (i.e., Cloudflare,

in this case) from tracking users across websites, the users’ queries must be oblivious,

and they are protected by an OPRF protocol. An OPRF is also a key component in

OPAQUE [JKX18], a strong asymmetrical password-authenticated key exchange that en-

ables a client to authenticate to a server via a password, without the need to communicate

the password explicitly. The strong asymmetrical property guarantees the security of
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the password even if the server is compromised; this is made possible by the evaluation

of an OPRF during the authentication phase. Further applications of (verifiable) OPRFs

include password-management systems [ECSJR15], adaptive oblivious transfer [JL09],

and password-protected secret sharing [JKK14].

It is possible to build an OPRF from generic two-party computation techniques, but

the resulting protocols are inefficient and highly interactive since actively secure two-

party computations require at least five rounds of interaction [KO04]. A simple and

highly-efficient OPRF can be obtained by obliviously evaluating a PRF based on the Diffie-

Hellman assumption. The PRF consists of mapping an input x to a group element via

a hash function H : X → G and exponentiating by the secret key, i.e. F (k, x) = H(x)k.

This evaluation can be made oblivious by introducing a blinding exponent b: the client

sends H(x)b to the server, which returns g = H(x)bk, and the client can compute the

output g−b = H(x)k. Several other Diffie-Hellman-based OPRFs are reported in the

literature; for a comprehensive analysis, we refer to a survey by Casacuberta, Hesse, and

Lehmann [CHL22].

In the post-quantum setting, very few solutions have been proposed. Albrecht, David-

son, Deo, and Smart [ADDS21] introduced a verifiable and round-optimal OPRF based

on lattices, but the result is mainly a demonstration of feasibility: the protocol requires

the client and the server to exchange more than 128 GB for each execution of the OPRF.

Boneh, Kogan, and Woo [BKW20] proposed two OPRF protocols based on isogenies. The

first is verifiable but highly interactive, and we proposed two attacks on the one-more

unpredictability property of the protocol: after a number of interactions, a malicious

user can extract enough information to evaluate the PRF independently [BKMPS21, or

Chapter 4]. The second construction was unaffected by the attack, but the protocol is not

verifiable and requires three rounds of interaction.
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1.1.3 – Commonalities

Both non-interactive key exchanges and oblivious pseudorandom functions lack good post-

quantum constructions. This is not accidental since both primitives rely on long-term static

keys. This is also the case for generic encryption algorithms—such as those standardized

by NIST—which allow one party to have a static key. However, those algorithms protect

against adaptive attacks by having the other party reveal their ephemeral key. This cannot

be done either in NIKEs, where both parties are using static keys, or in OPRFs, where the

user’s input needs to remain oblivious.

But the connection between the two primitives is deeper: OPRFs require a client

to blind their input so that the server cannot distinguish it. The output of the OPRF

needs to be deterministic and independent of the blinding: this means that the server

needs to output some value that allows the client to undo the effects of the blinding. The

blinding, acting on blinded data, and unblinding strategy is reminiscent of non-interactive

key exchanges, where one party computes their public key (blinding), the second party

completes the exchange (acting on blinded data), and the first party can generally undo

their secret to obtain the other party’s public key (unblinding). Thus, to construct either

a NIKE or an OPRF, it is necessary to have a mechanism that enables such computations,

and it can do so in the presence of long-term secret keys.

The relationship between the two primitives is further evidenced by the few post-

quantum constructions that have been reported. With only one exception, all constructions

of post-quantum NIKEs and OPRFs are based on isogenies and share similar techniques.

Indeed, isogeny-based cryptography offers techniques to securely work with static keys,

and it appears to be the only solution to develop post-quantum NIKEs and OPRFs.

1.2 — Isogeny-based cryptography

Elliptic curves played a fundamental role in the history of cryptography: many common

protocols rely on elliptic curves, and they enabled the development of powerful pairing-
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based tools. Classical protocols generally consider only operations on a single elliptic

curve: the points on a curve form a commutative group, and scalar multiplication is

hard to invert on a classical computers. The problem is however easy on a quantum

computer due to Shor’s algorithm [Sho94], which makes operations on an elliptic curve

unsuitable for quantum-secure protocols. However, elliptic curves can still play a role in

post-quantum cryptography. Isogenies are maps between elliptic curves, and given two

curves, finding a connecting isogeny is believed to be hard even for quantum computers.

Relying on the hardness of this problem, it is possible to develop powerful protocols.

The first isogeny-based protocol dates back to 1996; it is due to Couveignes, who

only made it public in 2006 [Cou06]. Couveignes proposed a framework called Hard

Homogenous Space (HHS), which consists of a set with a free and transitive group action

that satisfies certain properties. These properties ensure that it is possible to work with

group elements and to efficiently compute the group action, while also guaranteeing

the hardness of the inverse operation. An HHS leads to a key exchange protocol, as

well as an identification protocol. The HHS framework captures the concept of discrete

logarithms, but Couveignes also proposed an instantiation based on isogenies between

ordinary elliptic curves. The fundamental assumption it relied on is that, given two

elliptic curves, it is hard to find an isogeny between them: this is often referred to as the

pure isogeny problem.

Independently, Rostovtsev and Stolbunov [RS06] proposed a public-key encryption

scheme based on the same group action. Stolbunov [Sto10] further developed the

concept by proposing an interactive key agreement protocol. The resulting protocols were

impractical and inefficient, but they were an early attempt at developing post-quantum

solutions. The claims of quantum resistance prompted Childs, Jao, and Soukharev to

adapt Kuperberg’s algorithm [Kup05] to obtain a quantum sub-exponential attack on

the protocol [CJS14]. More recently, De Feo, Kieffer, and Smith [DKS18] proposed an

improved version of the Couveignes-Rostovtsev-Stolbunov protocol based on an optimised

choice of parameters that reduces the computation costs. The improvements significantly
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reduced the latency of the protocol, which still remains impractical for most use cases.

The same year that Rostovtsev and Stolbunov proposed an isogeny-based encryption

protocol, Charles, Goren, and Lauter proposed a provably-secure hash function based on

expander graphs [CLG09] with an instantiation based on supersingular elliptic curves.

This is the first isogeny-based protocol to work with supersingular curves. Indeed,

the set of supersingular elliptic curves forms a connected graph, where the nodes are

supersingular curves (up to isomorphism) and the edges are the isogenies between them.

This graph is Ramanujan, which means it has good expanding properties: the distribution

of ending curves after a short randomwalk in the graph quickly converges to the stationary

distribution. This property is useful for cryptographic applications, and hash functions

in particular; the CGL hash function maps an input message to a walk in the path and

outputs the ending curve. The expanding property of the supersingular graph is used to

prove the function is hard to invert.

Subsequent work [PL17; EHLMP18] showed the hash function can be backdoored:

the function is not collision resistance if the endomorphism ring of the starting curve

is known; thus, particular care is needed when picking the starting parameters. The

implication, however, goes both ways: if the endomorphism ring of the starting curve

is unknown, the CGL hash function can be shown to be collision-resistant, under the

assumption that computing endomorphism rings of a given curve is a hard problem.

Besides the direct applications to the CGL hash function, its security analysis showed

the importance and the risks associated with curves of known endomorphism ring in

isogeny-based protocols.

1.2.1 – The SIDH key exchange

The modern era of isogeny-based cryptography started in 2011, when Jao and De Feo

proposed SIDH, or Supersingular Isogeny Diffie Hellman [JD11]. The protocol relied on

isogenies between supersingular elliptic curves: this change allowed better control of the

number of rational points on the elliptic curve. Moreover, supersingular curves avoid the
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subexponential attack on isogenies between ordinary elliptic curves [CJS14] by having a

non-commutative endomorphism ring, which allows using smaller parameters. However,

since the endomorphism ring is non-commutative, isogenies between supersingular curves

do not give rise to a group action: the key contribution of Jao and De Feo was a method

to overcome this by revealing torsion point images.

The SIDH protocol, depicted in Fig. 1.1, relies on a prime p of the form p = ABf − 1,

where A and B are smooth numbers and f a small cofactor. The main parameter is

a supersingular elliptic curve E0 defined over Fp2. One party computes the isogeny

φA : E0 → EA of degree A and reveals the curve EA together with the torsion images

φA(PB), φA(QB), where PB, QB form a basis of E0[B]. The other party proceeds similarly

by computing an isogeny φB : E0 → EB and revealing the curve EB, together with torsion

images. Then, the first party can compute the pushforward φ′
A = [φA]∗φB by expressing

any generator K of the kernel of φB as [x]PB + [y]QB and computing the isogeny with

kernel 〈[x]φA(PB)+[y]φA(QB)〉. The second party can similarly compute the pushforward

φ′
B[φB]∗φA. The codomain of both pushforwards is the same curve EAB [Leo20], which

then forms the shared secret.

E0

EA

EB

EAB

φA

φB

φ′
B

φ′
A

Figure 1.1: The SIDH key exchange.

From a security perspective, SIDH differs in two fundamental ways from the more

generic setting of the CGL hash function: all the isogenies have a fixed and short degree1,

and their action on a torsion basis of coprime order is revealed. For a long time, these

changes were thought not to affect the security of the protocol, although they did have

some limited implications.
1The degree of both φA and φB is ≈ √p; however, given two random curves, the shortest isogeny

between them is expected to have degree ≈ p.
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In 2016, Galbraith, Petit, Shani, and Ti [GPST16] showed that the shortness of the

isogenies made it easy to recover them if the endomorphism ring of E0 and EA are known.

This did not lead to an attack since the endomorphism ring of a curve is generally hard to

compute. In the same work, the authors also proposed an adaptive attack against long-

term static keys: by revealing maliciously-generated torsion points and observing whether

the key exchange still succeeds, it is possible to recover one bit of the other party’s secret

key. Repeating the procedure multiple times leads to an efficient key-recovery attack. A

second, albeit less efficient, adaptive attack that also exploits maliciously generated public

keys was later proposed by Fouotsa and Petit [FP22]. A different passive attack that

exploits the presence of torsion point images was proposed by Petit [Pet17], but it only

applied to variants of SIDH with unbalanced parameters, i.e. the degree of φA is much

larger than that of φB (or vice versa). This line of attacks was later improved [QKLMP+21]

to reduce the imbalance between parameters and to obtain better asymptotic quantum

attacks, but they did not affect the security of SIDH with balanced parameters. These

attacks showed that the torsion point images made isogeny recovery easier, at least in

some circumstances.

Since the GPST adaptive attack showed that SIDH could only be used with ephemeral

keys, SIKE (supersingular isogeny key-encapsulation) was proposed [JACCD+17]. SIKE

is a version of SIDH with the Fujisaki-Okamoto transform [FO99; FO13], which allows

one party to have a long-term secret key at the cost of repeating the SIDH computations

twice. This is similar to most other post-quantum key exchanges, where static-static

key exchanges are hard to achieve. However, unlike other protocols, the issue is not

inherent to the protocol itself, but it is the result of the possibility of revealing maliciously

computed torsion points. Thus, if it were possible to validate public keys, SIDH could

have been used to build an efficient post-quantum authenticated key exchange (AKE)

and a non-interactive key exchange (NIKE), as discussed by Galbraith [Gal18].

Validating public keys without any additional information, i.e. distinguishing whether

two points are the correct images under a secret isogeny, was considered a hard problem,
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and it had been conjectured to be as hard as breaking the SIDH protocol itself [UJ18].

To avoid adaptive attacks, the two parties can provide a zero-knowledge proof that

the public keys are honest, but such proofs are large and inefficient. An alternative

approach was proposed in k-SIDH [AJL17], which consisted of running k2 instances of

SIDH in parallel. However, the protocol was also very inefficient, as it required a large k

since Dobson et al. [DGLTZ20] proposed a polynomial-time attack on k-SIDH for small

values of k. Urbanik and Jao [UJ20] attempted to improve the efficiency of k-SIDH

by exploiting the non-trivial automorphisms of special curves to reduce the number of

computations while maintaining the same security level. However, we later showed that

the introduction of automorphisms does reduce security [BKMPW20, or Chapter 2] more

so than it improves efficiency: thus, in most situations, k-SIDH was preferable over the

Jao-Urbanik variant.

A different approach was introduced by Fouotsa and Petit [FP21], who proposed a

validation technique to be used in interactive key exchange with long-term secrets based

on SIDH. In the protocol, each party reveals additional torsion images on the shared

curve, which helps the other party validate the correctness of the torsion point. The same

validation process could be used to build a non-interactive key exchange. Subsequent

work [GL22] showed the protocol is still vulnerable to more sophisticated adaptive attacks.

In parallel and independent work, we also obtained similar results by proposing a different

attack (see Chapter 3).

Overall, the relative efficiency of SIDH, its small public keys, and its partial support

for non-interactive modes, when paired with an appropriate zero-knowledge proof, made

SIDH the most practical and well-known isogeny-based protocol. Several protocols have

been built on top of it. These included proofs of knowledge [JD11; DDGZ22; BCCDF+23]

and digital signatures [YAJJS17; CMP22], some of which with more advanced function-

alities [SC18; SGP19]. These signature protocols lacked in efficiency and compactness,

however: the underlying sigma protocol they relied on had a soundness of 1/2, and thus

it needed to be repeated a high number of times to achieve sufficient security. On the
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encryption side, Eaton et al. [EJKM22] proposed a key-updatable public-key encryption

protocol based on SIDH, while Dobson and Galbraith [DG22] introduced SI-X3DH, an

SIDH-based version of the Signal authentication protocol [MP16]. Since SIDH supported

non-interactive key exchanges, when public keys are authenticated, the resulting protocol

was far more efficient than the alternatives based on other post-quantum primitives.

1.2.2 – The SIDH attacks

The landscape of isogeny-based protocols radically changed when Castryck and De-

cru [CD23], Maino and Martindale [MMPPW23] (later joined by Panny, Pope, and

Wesolowski), and Robert [Rob23] proposed a series of attacks on SIDH that completely

broke the security of the protocol. Not all isogeny-based protocols are affected: the

most common among these is CSIDH [CLMPR18], a key exchange protocol based on

a commutative group action. It can be interpreted as the translation of the protocols

by Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06] to the supersingular

curve setting, and as such is vulnerable to the subexponential attack by Childs, Jao, and

Soukharev. While identifying the correct parameters that provide sufficient security

may be hard [BS20; Pei20; CCJR22], the protocol is compact and very flexible: since

it relies on a group action, it enables a simple translation of most protocols based dis-

crete logarithms (that do not require group multiplication, only exponentiation) to the

post-quantum setting. Another prominent isogeny-based protocol is SQISign, a signature

scheme that proves knowledge of endomorphism rings. The protocol is very compact,

resulting in the smallest known post-quantum signature while offering nearly practical

signing and verification speeds. These protocols, together with newer ones [Ler22],

remain unaffected by the SIDH attacks and bring useful features for the post-quantum

transition.

The three attacks on SIDH follow a similar approach and are all based on isogenies

between varieties in genus two. A generalization of elliptic curves to higher dimensions is

a principally polarized abelian variety, which is a variety equipped with an isomorphism
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from the variety to its dual called a polarization. Principally polarized abelian surfaces

(PPAS) can be divided into two categories: those that are the product of two elliptic

curves, and those that are the Jacobian of a superspecial genus-2 curve. These latter

ones are exponentially more common: over Fp2 , there are p3/2880 such curves, compared

to the p2/288 that arise as the product of two elliptic curves. Thus, a random walk in

a PPAS isogeny-graph is expected to end on a Jacobian with overwhelming probability.

However, this is not the case for a specific isogeny whose kernel is related to the image

points revealed in SIDH, as shown by Kani’s theorem [Kan97]; this property lies at the

core of the SIDH attacks.

Let us consider the case where an attacker aims at recovering a secret A-isogeny

φ : E0 → E1, given the curves E0, E1, the basis P0, Q0 of E0[B] for some B coprime with

A, and its image P1 = φ(P0), Q1 = φ(Q0). Assume that an attacker can also evaluate an

isogeny γ : E0 → E2 of degree c = B − A, which means they can build the following

SIDH square:

E0 E1

E2 E3

φ

γ γ′

φ′

Kani’s theorem implies that there exists a dimension-two isogeny ρ : E2 × E1 → E0 × E3

given by

ρ(X,Y ) = (γ̂(X) + φ̂(Y ), φ′(X)− γ′(Y )),

whose kernel is 〈(γ(P0), φ(P0)), (γ(P0), φ(Q1))〉. This means that an attacker can compute

the isogeny ρ from the torsion images and the evaluations of γ. However, the isogeny ρ

contains the dual of the secret isogeny φ̂ in its first component: thus, computing ρ(OE2 , ·),

where OE2 is the neutral point on E2, allows the attacker to evaluate φ̂ on any point on

E1. This includes points of order A, from whose image it is possible to recover the kernel

of φ and φ̂. Alternatively, Kani’s theorem can also be exploited to obtain a decisional
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oracle by checking whether the codomain of the isogeny ρ is a product of elliptic curves

or a Jacobian. Such a method similarly leads to a full key-recovery due to the search-

to-decision reduction between the Decisional and the Computational SIDH problem by

Galbraith and Vercauteren [GV18]. The attacker can guess one step of the isogeny φ, use

Kani’s theorem to check if the guess was correct, and repeat the procedure until all the

steps in φ are recovered.

Castryck and Decru, and Maino and Martindale independently discovered this attack.

The two works differ in their key-recovery technique and their approaches in computing

the isogeny γ of degree B −A. The former work relies on the decisional oracle to recover

the secret key bit by bit, while the latter attack uses the dual isogeny computations to

directly recover a kernel generator. Moreover, Castryck and Decru showed that if the

endomorphism ring of the starting curve is known, the isogeny γ can be an endomor-

phism of the correct degree, and it can be efficiently evaluated on the 2a-torsion since it

is represented as a combination of basis endomorphisms. Maino and Martindale, instead,

analyzed the complexity of evaluating an isogeny of degree c, based on the distribution

of its smooth factors, and derived a subexponential attack that works with curves of

unknown endomorphism ring. This suggested that it may be possible to avoid these

attacks by increasing the parameters and by using a starting curve of unknown endomor-

phism. This may be generated by one party, in the case of SIKE, where the other party

already reveals their secret isogenies, or through a trusted setup protocol [BCCDF+23, or

Chapter 6]. However, Robert [Rob22] showed that evaluating any isogeny, even of prime

degree, can be computed in polynomial time by embedding it into a smooth isogeny

of higher dimensions. When this method is applied to the SIDH attacks [Rob23], it

gives a polynomial-time algorithm to compute the isogeny γ in all cases; this leads to a

polynomial-time attack on SIDH with any starting curve.
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1.2.3 – Bringing SIDH back

The SIDH attacks fully break SIDH, the most efficient and well-known isogeny-based

protocol, and one of the few NIST round four candidates. The attack easily extends to the

wide range of protocols based on SIDH and, more generally, to any protocol that reveals

torsion images of sufficiently large order. A natural question is whether it is possible to

modify the SIDH protocol to incorporate some countermeasures that prevent the SIDH

attacks.

A first approach may reduce the amount of torsion information that is revealed. The

initial attacks required the degree of the secret isogeny to be comparable to the order

of the torsion images revealed, but Robert [Rob23] extended the attack to recover an

isogeny of degree dwhen the torsion points have order
√
d. This is, in some sense, optimal:

more than one isogeny of degree d may map a torsion basis to the same basis of order

�
√
d [MP19]. This suggests that revealing torsion images of small order preserves the

secrecy of the isogeny. However, an attacker can brute-force part of the secret isogeny: if

the degree of the isogeny is d, the torsion points need to have order smaller than
√
d/2λ

to achieve a security of λ bits. While this approach appears to be secure2, it can only be

used in some asymmetrical constructions, but not in SIDH. Since the order of the torsion

points corresponds to the degree of the other party’s isogeny, this method may be used to

protect one party’s isogeny but not both. A more sophisticated approach is thus needed.

Recently, Fouotsa, Moriya, and Petit [FMP23b] proposed two countermeasures. The

first relies on hiding the degree of the secret isogenies: since the attacks rely on the

degree of the secret isogeny to be known, the change to a variable-degree SIDH prevents

the attacks. However, the space of possible degrees needs to be exponentially large, which

means the isogeny degrees need to be the product of several prime powers, rather than a

single prime power as in the original SIDH protocol. Moreover, the torsion point images

reveal some information about the isogeny degree. To avoid this, the torsion images need

2Previous attacks similarly do not apply. Even if the endomorphism ring of the starting curve is known,
the secret isogeny is sufficiently long that the torsion point attacks proposed in [QKLMP+21] do not apply.
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to be scaled by a value coprime with their order; this does not affect the correctness of the

protocol since scaling kernel generators produces another generator of the same kernel,

but it hides the degree of the isogeny. Nonetheless, since both points need to be scaled

by the same value, the pairing between the torsion images still reveals the quadratic

residuosity of the degree. Hence, the protocol requires a 13810-bit prime to provide 128

bits of security. This is significantly less efficient and less compact than the original SIDH,

making it impractical for most applications. Moreover, since the degree of the isogeny is

secret, it appears to be hard to translate the existing proofs of public key correctness to

work with a hidden-degree SIDH, because these proofs all rely on revealing a parallel

isogeny of the same degree as the secret one.

Fouotsa, Moriya, and Petit also propose a second countermeasure based on a similar

technique: masking the torsion points by the same scalar appears to be sufficient to

protect against the attacks. As in the previous case, however, the attacker can extract

the square of the scaling value through the pairing of the torsion images. Hence, for the

protocol to be secure, it requires that the scaling values have exponentially-many square

roots, which implies that p + 1 is the product of at least 2λ distinct primes, where λ is

the security parameter. To protect against a guessing attack, this countermeasure uses a

5911-bit prime for 128 bits of security. While this is also impractical for most applications,

the fixed-degree nature of the protocol makes it better suited to work with proofs of

public key correctness. The first such proof that works with these countermeasures is

presented in Chapter 5.

1.3 — Objectives

In this thesis, we study how isogeny-based techniques can lead to post-quantum alterna-

tives to non-interactive key exchanges and oblivious pseudorandom functions.

For both primitives, CSIDH offers some solutions: the CSIDH key exchange is inher-

ently non-interactive, and Boneh, Kogan, and Woo [BKW20] introduced a CSIDH-based
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OPRF. However, in both cases, there are significant limitations. The quantum attacks

on CSIDH make it harder to estimate the requirements of CSIDH-based protocols, and

they suggest the running times of a single CSIDH exchange might be beyond practical.

Furthermore, the CSIDH group action is generally well-understood, which means there

is little room for improvement for a CSIDH-based NIKE. On the OPRF front, the CSIDH

protocol partially relies on generic two-party computations, which make it inherently

interactive and not verifiable.

For these reasons, SIDH-based protocols appeared to be more promising, especially

before the SIDH attacks. Several constructions have been considered for an SIDH-based

NIKE [Gal18; AJL17; UJ20; FP21], while the OPRF protocol based on SIDH [BKW20] is

verifiable or—alternatively—non-interactive in its non-verifiable form.

In this thesis, we thus focus on SIDH-based solutions. In the first part, we analyze

the existing SIDH-based constructions to assess their security. In particular, we show the

non-interactive key exchange protocol proposed by Urbanik and Jao [UJ20] is less secure

than originally thought; we also propose an efficient attack against the validation method

for SIDH public key proposed by Fouotsa and Petit [FP21], which—if secure—could have

been used to build an efficient NIKE; lastly, we develop two attacks against the one-more

unpredictability property of the OPRF proposed by Boneh, Kogan, and Woo [BKW20].

Overall, the analysis develops our understanding of the possibilities and the limitations

of SIDH-based solutions to develop static-key protocols.

In the second part, we build upon the previous results to propose new protocols.

In particular, we introduce an OPRF protocol that is post-quantum secure, verifiable,

round-optimal, and moderately compact. The construction is based on the protocol

by Boneh, Kogan, and Woo [BKW20], but it incorporates an efficient countermeasure

against the one-more unpredictability attack, a proof of knowledge that works with

the SIDH countermeasures, and a novel proof of parallelness to obtain round-optimal

verifiability. We also propose a trusted setup protocol that enables participants to obtain

a supersingular elliptic curve whose endomorphism ring is unknown. Such a curve is
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necessary as a starting parameter for many other protocols, including the OPRF protocol

we are proposing. The new OPRF construction, together with the trusted setup protocol

to pick its starting curve, is an important stepping stone towards practical post-quantum

static-key protocols.

1.4 — Analysis of existing protocols

1.4.1 – The Jao-Urbanik k-SIDH variant

The first protocol we analyze is the k-SIDH variant proposed by Urbanik and Jao [UJ20].

The original k-SIDH protocol [AJL17] is a modified version of SIDH that avoids adaptive

attacks by relying on multiple curves. Each party relies on k distinct secret isogenies

(hence the name), which lead to k2 SIDH exchanges. The shared secret is then a hash of

all the k2 shared secrets. This protocol protects against adaptive attacks because they

rely on modifying the torsion points based on the partially recovered secret key: since

multiple secret keys are present, it seems hard to modify torsion points to work with all

the k partial keys. One may be tempted to think that k = 2 is sufficient to guarantee

security, but Dobson, Galbraith, LeGrow, Ti, and Zobernig [DGLTZ20] showed an attack

on k-SIDH that is exponential in k. For sufficiently large values of k (≈ 90), the protocol

is secure against adaptive attacks, but its efficiency is heavily impacted by running k2

SIDH instances. Urbanik and Jao [UJ20] proposed a more efficient variant of k-SIDH by

considering starting curves with special automorphism. Due to such automorphism, the

same public key can be interpreted as three distinct ones: this means that both parties

need to compute and exchange only a third of the public keys.

In Chapter 2, we propose a new attack on the Jao-Urbanik variant that exploits the

presence of the automorphisms. In particular, the attack by Dobson, Galbraith, LeGrow, Ti,

and Zobernig [DGLTZ20] requires the attacker to interact with the target with modified

torsion points and guess the possible shared secret recomputed by the target. We show

that the shared secrets that correspond to the same public key are correlated, which
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allows the attacker to reduce the guesses to about a third. In other words, the structure

that enables a more efficient protocol also enables a more efficient attack. This attack

does not break the protocol for the proposed parameters, but it significantly reduces

its security. When comparing the original k-SIDH protocol with its Jao-Urbanik variant

re-parametrized to guarantee the same security level, we see that the Jao-Urbanik scheme

offers moderately smaller (≈ 30%) public keys at the cost of twice as many computations.

Hence, in most instances, the original k-SIDH construction offers better trade-offs.

1.4.2 – The HealSIDH validation method

The second protocol we analyze is a novel validation technique proposed by Fouotsa and

Petit [FP21]. The technique ensures the correctness of an SIDH public key by revealing

additional torsion images on the shared secret curve. The authors propose an interactive

static-static key exchange called HealSIDH: in other words, the two parties have long-term

public keys, but the validation requires them to interact. This was a first step toward an

efficient SIDH-based non-interactive key exchange. Indeed, we demonstrated that it is

possible to obtain a NIKE based on HealSIDH by considering the data used for validation

as part of the secret key. While proving the security of the resulting protocol, we identified

an efficient attack that equally applied to the original construction. Chapter 3 presents the

attack, together with a more general discussion of countermeasures and corresponding

attacks. Note that Galbraith and Lai [GL22] developed a different attack on the same

protocol in parallel and independent work.

In Chapter 3, we first propose a matrix-based notation that makes it easier to describe

and analyze the HealSIDH validation method. To showcase the utility of the new notation,

we apply it to the GPST attack [GPST16], and we show that it is possible to generalize

it to a wide range of query points. Then, relying on the proposed notation, we study

the specific requirements imposed by the validation technique. We demonstrate that the

protocol considers many pairs of public keys and validation data to be correct, even if

they are not honestly generated. By crafting specific interactions, we propose an adaptive
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attack on the validation method, HealSIDH, and the related NIKE. Since the validation

check relies on the private key, our attack leads to a full key recovery. Interestingly,

our attack relies on honestly-generated public keys and malicious validation data; this

showcases the risks associated with additional validation checks and their potential for

further attacks.

Then, we propose an alternative validation method based on a similar strategy as

HealSIDH: unlike HealSIDH, however, the proposed method introduced an additional

dual isogeny computation and reveals torsion points on the public key curve of the other

party. This strategy avoids both the proposed attack as well as the attack by Galbraith

and Lai; nonetheless, it is still vulnerable to the more sophisticated attack that we present.

This attack is more involved and requires several more interactions with the target to

recover the secret key. Several experiments show that the number of interactions remains

polynomial in the security parameter, making the new validation method also insecure.

Lastly, we introduce dimension-two variants of the proposed protocols. We formalize

dimension-two HealSIDH, and we discuss the difficulties in adapting the proposed attack

to the dimension-two setting. We then conclude with a perspective on validation methods

for SIDH and the issues that would need to be solved for an efficient solution to be

developed.

1.4.3 – Cryptanalysis of the OPRF protocol by Boneh, Kogan, and

Woo

We then focus on the SIDH-based verifiable OPRF protocol proposed by Boneh, Kogan,

and Woo [BKW20] at Asiacrypt’20. To evaluate the PRF, the user maps the input m to

an isogeny φm : E0 → Em. Then, the user blinds the curve Em by computing a second

isogeny φb : Em → Emb. The user sends the curve Emb with the relevant torsion images

to the server, which computes the isogeny φk : Emb → Embk based on its secret key and

replies with the curve Embk, together with some torsion information. The user finally

uses the provided torsion information to undo the blinding isogeny, i.e. to compute the
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translation of the dual of the blinding isogeny, to obtain the curve Emk, which is hashed

together with the input and the public information to form the PRF output. To prevent

adaptive attacks, the user provides a non-interactive zero-knowledge proof that torsion

information was honestly computed; similarly, the server provides an analogous proof

to guarantee the correctness of its computations. Furthermore, the server also engages

in an interactive protocol with the client to demonstrate the computations have used a

previously committed key.

In Chapter 4, we propose two attacks against the one-more unpredictability of the by

OPRF Boneh, Kogan, and Woo [BKW20]. In the first attack, a malicious user engages in

the OPRF with a message isogeny φm with kernel generator a pointM , of order `e. The

attacker repeats the process with the isogenies along the same path, but with shorter and

shorter degrees. Thus, the output curves form an isogeny path parallel to the message

isogeny. The attacker is then able to compute a generator of the kernel of such isogeny. By

repeating this process three times with linearly independent points, the attacker obtains

enough information to generate a torsion basis that allows them to evaluate the PRF

on any input of their choice, without further interacting with the server. The attack is

polynomial time, but it crucially relies on using message isogenies φm of varying degrees.

The attack can be thwarted by the server checking the order of the isogeny φm, which

is possible because of the proof of knowledge provided by the user. We also propose a

second attack that cannot be easily prevented. The attack proceeds in a similar way to

the previous one, but the malicious user uses only isogenies of full degree. To obtain

the curves on the path of φm, the attacker needs to find the middle curve between two

PRF outputs. This introduces a trade-off between the complexity of the attack and the

number of queries. Minimizing both yields a subexponential attack on the one-more

unpredictability of the protocol. To demonstrate the practicality of the attack, we also

propose a proof-of-concept implementation of the attack that can break 64 bits of security

in a weekend. We also estimate the running times of the attack for higher security levels,

which demonstrates its feasibility.
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1.5 — New protocols

1.5.1 – A new OPRF protocol

In Chapter 5, we build upon the results of Chapter 4 to derive a novel OPRF protocol. The

high-level structure of the protocol is similar to that of the SIDH-based OPRF proposed by

Boneh, Kogan, and Woo [BKW20], but we propose three significant changes that make

the protocol secure and more efficient.

First, we propose an efficient countermeasure against the attacks proposed in Chap-

ter 4. The main difficulty in avoiding the attacks is due to the ability of a malicious user

to always recompute some secret information. Our proposed countermeasure avoids

the attacks by changing how the user’s input is mapped to an isogeny, which does not

prevent the attacker from recovering the secret information, but it makes that information

insufficient to independently evaluate the PRF. Moreover, the proposed changes result in

a smaller prime and a more efficient protocol.

Secondly, the original SIDH-based construction is vulnerable to the SIDH attacks.

We discuss several possible countermeasures in the context of the OPRF protocol, and

we choose masked SIDH as the most suitable. The change requires longer isogenies

and a larger prime, which makes the protocol less efficient, but a series of widespread

optimizations allow us to maintain a moderate communication cost. Furthermore, to

integrate masked SIDH within the OPRF, we also propose the first zero-knowledge proof

of knowledge that can guarantee the correctness of a masked SIDH public key. The

protocol proves the correctness of masked torsion images by building an SIDH square, as

in previous proofs, and revealing masked torsion points on each side of the SIDH square

so that the composition of the masking values along the SIDH square gives the secret

masking value.

Lastly, we develop the first proof of knowledge that guarantees parallelness of two

isogenies. In construction by Boneh, Kogan, and Woo, the server engages with the user
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in a costly and highly interactive protocol to prove verifiability. With the proposed proof

of knowledge, the proof of verifiability is non-interactive, which reduces the rounds of

communications to the theoretically-optimal two. The proof is obtained by evaluating two

proofs of isogeny knowledge in parallel and with correlated randomness; this means that

verifiability can be proved almost for free, without a dedicated proof. Hence, we obtain

a verifiability proof that is more compact than the original one and, most importantly,

non-interactive.

Putting everything together, we obtain an OPRF protocol that is post-quantum secure,

verifiable, round-optimal, and moderately compact, with a security proof in the UC

framework [Can01] in the random-oracle model.

1.5.2 – Generating curves with unknown endomorphism

The OPRF protocol we developed requires to start from a Supersingular Elliptic Curve of

Unknown Endomorphism Ring (Secuer), because the knowledge of its endomorphism

ring can make certain computations easy. This is not uncommon, and several other

protocols require such a curve, such as the CGL hash function [CLG09], dual-mode

PKE [ADMP20], oblivious transfer [LGD21], and commitment schemes [Ste22]. However,

it is currently unknown how to generate a curve such that nobody knows its endomorphism

ring. Several techniques have been studied to sample a Secuer, or in other words to

hash onto the supersingular graph, but no method has been found so far [BBDFG+22;

MMP22].

The problem can be avoided using a trusted setup: a trusted party can generate

a random curve by taking a random walk over the isogeny graph and discarding the

information about the path. This, however, requires trusting that the party is indeed

honest. Alternatively, this trust can be split among several participants: each one computes

a segment of the random walk so that nobody entirely knows the path.

In Chapter 6, we formalize this process to obtain a trusted setup protocol that produces

a Secuer. First, we propose the first statistically zero-knowledge proof of isogeny
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knowledge. To do so, we study the supersingular isogeny graph with level structure,

i.e. where each node is a curve with an associated subgroup. We prove the graph is

Ramanujan: that means that if you fix a curve E with a subgroup G and you consider

a sufficiently long isogeny φ : E → E ′, the output curve E ′ and the subgroup image

φ(G) are statistically close to uniformly random3. Building on this result, we prove the

statistical zero-knowledge property of the proposed proof.

Second, we analyze the trusted setup protocol with n parties: each individual computes

a random walk starting from the previous end curve, and they output the new end curve

together with a proof of knowledge of a path between the previous and the current

end curve. Under standard isogeny assumptions, we show that the protocol is secure

in the Generalized Universally Composable framework. The reliance on fundamental

assumptions and a statistical zero-knowledge proof make the protocol particularly reliable:

if the protocol is insecure, then so are the protocols that require a Secuer.

Lastly, we develop an optimized implementation of the proposed zero-knowledge

proof. The results show that the proof is sufficiently efficient to practically deploy a

trusted-setup ceremony. We conclude with a discussion on how to concretely do so.

3This is strictly true only when p ≡ 1 mod 12. Otherwise, the distribution of the output curves with
subgroups is statistically close to the stationary distribution, which differs from the uniform one due to the
presence of special curves j = 0 and j = 1728.
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Chapter 2

On Adaptive Attacks against
Jao-Urbanik’s Isogeny-Based Protocol

How beautiful the world would be if there were a
procedure for moving through labyrinths.

— U. Eco, Il nome della rosa

This chapter is a verbatim reproduction of the following paper:

Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Charlotte Weitkäm-

per. “On Adaptive Attacks Against Jao-Urbanik’s Isogeny-Based Protocol”. In: AFRICACRYPT

20. Ed. by Abderrahmane Nitaj and Amr M. Youssef. Vol. 12174. LNCS. Springer, Heidel-

berg, July 2020, pp. 195–213. doi: 10.1007/978-3-030-51938-4_10

I contributed to the development of the proposed attack.

Abstract: The k-SIDH protocol is a static-static isogeny-based key agreement protocol.

At Mathcrypt 2018, Jao and Urbanik introduced a variant of this protocol which uses

non-scalar automorphisms of special elliptic curves to improve its efficiency.

In this paper, we provide a new adaptive attack on Jao-Urbanik’s protocol. The attack

is a non-trivial adaptation of Galbraith-Petit-Shani-Ti’s attack on SIDH (Asiacrypt 2016)

and its extension to k-SIDH by Dobson-Galbraith-LeGrow-Ti-Zobernig (IACR eprint 2019).
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Our attack provides a speedup compared to a naïve application of Dobson et al.’s

attack to Jao-Urbanik’s scheme, exploiting its inherent structure. Estimating the security

of k-SIDH and Jao-Urbanik’s variant with respect to these attacks, k-SIDH provides better

efficiency.

2.1 — Introduction

With the expected advent of quantum computers, current public key cryptography al-

gorithms based on discrete logarithm and factorization problems will have to be re-

placed by stronger, so-called post-quantum cryptography algorithms. Isogeny-based

cryptography is among the leading approaches currently considered for post-quantum

cryptography. A major protocol in isogeny-based cryptography is the SIDH key exchange

protocol [JD11], whose principles underlie the SIKE algorithm recently submitted to the

NIST post-quantum standardization process [JACCD+20].

In internet communication contexts, key exchange protocols are often used in a semi-

static mode, where the server uses the same static secret key to establish any new session

key with a client. Galbraith et al. have shown that the basic SIDH protocol is vulnerable

to adaptive attacks in these contexts [GPST16]. In SIKE the attacks are defeated by using

a variant of the Fujisaki-Okamoto transform.

The k-SIDH protocol is an alternative countermeasure to Galbraith et al.’s attack

suggested by Azarderakhsh et al. [AJL17]. The protocol has the additional advantage

to allow for static-static key exchange (where both parties use static keys), but it comes

at the cost of a significant efficiency loss as it essentially involves running k2 instances

of the SIDH protocol in parallel for an integer k > 1, with k = 92 suggested by the

authors. Very recently, Dobson et al. described an adaptive attack against the 2-SIDH

protocol [DGLTZ20]. Their attack also generalizes to the k-SIDH protocol with k > 2,
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though the required number of instances of the protocol with the server is exponential in

k.

Our contributions. In this paper, we provide a new adaptive attack on a variant of

the k-SIDH protocol suggested by Jao and Urbanik [UJ20]. The Jao-Urbanik protocol

introduces some redundancy in k-SIDH’s secret keys using the non-trivial automorphisms

of curves with j-invariants 0 or 1728 to increase efficiency. While the authors of the

protocol conjectured that the inherent structure could be exploited in attacks and chose

larger security parameters to account for this, we provide a concrete attack.

Our attack borrows from Galbraith et al. and Dobson et al.’s attacks, but it crucially

differs from them in the following ways:

• We use the underlying relationship between the kernel generators of corresponding

curves to match up triples of candidate curves instead of exhaustively searching

over all possibilities when querying for the first key bits.

• Instead of separately computing the key bits and pullbacks at any step of the attack,

we combine these stages by guessing the key bits and computing candidate pullbacks

first to then validate any possible combination using the oracle.

• Contrasting to the attack in [DGLTZ20], we manage to compute precise pullbacks

at each step instead of having to keep track of multiple candidates which are

indistinguishable to the attacker.

• Overall, we significantly reduce the number of oracle queries by exploiting the

structure underlying the Jao-Urbanik protocol.

We show that our attack requires to run O(32k/3) instances of the protocol with the server,

if the Jao-Urbanik protocol is instantiated with secret isogenies of degree a power of

two. This is almost a cube root speedup compared to Dobson et al.’s attack on the same

instantiation.
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While our attack does not break the security level for the parameter sets recommended

by Jao and Urbanik, we give estimated attack costs for their parameters. Under consider-

ation of currently known attacks against k-SIDH and Jao-Urbanik’s protocol, we conclude

that the former provides a better efficiency-security trade-off.

Outline. The remaining of this paper is organized as follows. To begin with, we give

some background on isogenies and supersingular isogeny protocols in Section 2.2. We

then recall the Dobson et al. attack on k-SIDH in Section 2.3 and the Jao-Urbanik

protocol in Section 2.4. We continue by describing our attack on Jao-Urbanik’s scheme in

Section 2.5, and conclude the paper in Section 2.6. The Appendix includes an extension

of our attack.

2.2 — Preliminaries

For a full treatment of background information on elliptic curves we refer to Silver-

man [Sil86].

2.2.1 – Isogenies

Let Fq be a finite field of characteristic p. In the following we assume p > 3 and therefore

an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 + Ax+B} ∪ {OE},

where A,B ∈ Fq and OE is the point (X : Y : Z) = (0 : 1 : 0) on the projective curve

Y 2Z = X3 + AXZ2 +BZ3. The set of points on an elliptic curve forms an abelian group

with OE being the identity element. The j-invariant of an elliptic curve is

j(E) = 1728
4A3

4A3 + 27B2
,
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and there is an isomorphism f : E → E ′ between the curves E and E ′ if and only if

j(E) = j(E ′).

Given two elliptic curves E1 and E2 over a finite field Fq, an isogeny is a morphism

φ : E1 → E2 such that φ(OE1) = OE2 . The condition implies that isogenies are also group

homomorphisms. If there exists an isogeny φ : E1 → E2, then there exists a unique

isogeny φ̂ : E2 → E1, called the dual isogeny, such that φ ◦ φ̂ = [n] (where [n] denotes

the multiplication-by-n map on E2). If there exists a non-constant isogeny between two

curves, then they are called isogenous. The degree of an isogeny φ is its degree when

treated as an algebraic map. If the isogeny is separable (which is always the case in this

work), the degree is equal to the size of the kernel of φ. An isogeny from E to itself is

called an endomorphism. Endomorphisms of an elliptic curve form a ring under addition

and composition. If E is defined over a finite field then the endomorphism ring is either

an order in an imaginary quadratic number field (such curves are called ordinary) or an

order in the quaternion algebra ramified at p (the characteristic of the finite field) and at

infinity. The latter curves are called supersingular. In this paper we will only consider

supersingular elliptic curves.

Since an isogeny defines a group homomorphism E1 → E2, its kernel is a subgroup of

E1. Conversely, any subgroup S ⊂ E1 determines a (separable) isogeny φ : E1 → E2 with

ker(φ) = S and E2 = E1/S. Furthermore, if the degree of the isogeny is smooth, Vélu’s

formulae [Vél71] provide a polynomial time algorithm for computing the isogeny (as a

rational map) from its kernel.

The following lemma [Sil86, Chapter III, Corollary 4.11] describes how the isogenies

corresponding to two subgroups can be related if one subgroup contains the other:

Lemma 1. Let Ei, i = 1, 2, 3 be elliptic curves and let φ : E1 → E2 and ψ : E1 → E3 be two

isogenies such that ker(φ) ⊆ ker(ψ). Then there exists an isogeny λ : E2 → E3 such that

ψ = λ ◦ φ which is unique up to isomorphism.
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2.2.2 – SIDH

In this subsection, we recall Jao and De Feo’s original scheme [JD11].

Let E be a supersingular elliptic curve. In the setup, one chooses two small primes `A

and `B and a prime p which is of the form p = `eAA `
eB
B f − 1, where f is a small cofactor

and eA and eB are large integers. Let PA, QA be generators of the `eAA -torsion and let

PB, QB be generators of the `eBB -torsion of E. Then the protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[`eAA ] of order `eAA . As PA, QA form a

basis of the `eAA -torsion, there exist integers xA, yA such that A = [xA]PA + [yA]QA

generates this subgroup. Similarly, Bob chooses a random cyclic subgroup of E[`eBB ]

of order `eBB generated by B = [xB]PB + [yB]QB for some xB, yB.

2. Alice computes the isogeny φA : E → E/〈A〉 and Bob computes the isogeny

φB : E → E/〈B〉.

3. Alice sends the curve E/〈A〉 and the points φA(PB) and φA(QB) to Bob and Bob

similarly sends (E/〈B〉, φB(PA), φB(QA)) to Alice.

4. Alice and Bob both use the images of the torsion points to compute the shared

secret which is the curve E/〈A,B〉 (e.g. Alice can compute φB(A) = [xA]φB(PA) +

[yA]φB(QA) and E/〈A,B〉 = EB/〈φB(A)〉).

Due to efficiency reasons in [JD11], the authors suggested the use of `A = 2 and

`B = 3. They also suggested to use the starting curve E with j-invariant 1728. In [AJL17],

the authors use a variant of the Fujisaki-Okamoto transform [HHK17] to obtain an IND-

CCA secure key encapsulation mechanism. For concrete parameters of the scheme the

reader is referred to [AJL17].

Note that by [GPST16, Lemma 2.1], it is possible for Alice (and analogously for Bob)

to always choose the secret integers xA, yA such that one of them equals 1 given that the

generators PA, QA of the 2eA-torsion are independent. Hence it suffices to choose a single
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secret instead of two integers. In practice, this is usually done for efficiency reasons, and

we will also use the convention in the following.

In [GPST16] Galbraith et al. propose an adaptive attack against SIDH, showing that

SIDH is not suitable for static-static key exchange; see Section 2.2.4 for a description of

the GPST attack.

2.2.3 – k-SIDH

Now we recall the k-SIDH scheme of Azarderakhsh et al. [AJL17]. This protocol is a

modification of the original SIDH which is potentially secure against active attacks. The

protocol is as follows. Both parties agree on a curve E as well as a basis of the 2eA-torsion

and a basis of the 3eB -torsion. Alice chooses k different secret integers α(1), . . . , α(k)

modulo 2eA and Bob chooses k different secret integers β(1), . . . , β(k) modulo 3eB . Let h

be a preimage resistant hash function. The steps of the protocol are the following:

1. Alice computes the curvesE(r)
A = E/〈PA+[α(r)]QA〉 and the corresponding isogenies

φA,r.

2. Bob computes the curves E(r)
B = E/〈PB+[β(r)]QB〉 and the corresponding isogenies

φB,r.

3. Alice sends E(r)
A , φA,r(PB), φA,r(QB) to Bob and Bob sends E(r)

B , φB,r(PA), φB,r(QA)

to Alice.

4. Alice and Bob perform the SIDH key exchange for every pair E(r)
A , E

(s)
B and compute

the corresponding j-invariant jr,s.

5. The shared secret is the hash h(j1,1||j1,2|| . . . ||jk,k) of all the j-invariants.

2.2.4 – The GPST attack on static SIDH

The adaptive GPST attack actively recovers the static SIDH key α of a party, say Alice,

where 〈PA + [α]QA〉 is the subgroup corresponding to her secret isogeny. An attacker
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uses the key exchange protocol as an oracle to recover Alice’s static key bit-wise. For

simplicity, we set n := eA in the following.

Definition 1 (Oracle in static SIDH). Upon receipt of an elliptic curve E, two linearly

independent points R,S ∈ E[2n] of order 2n and another elliptic curve E ′, the oracle

responds 1 if j(E/〈R + [α]S〉) = j(E ′) and 0 otherwise.

To recover Alice’s secret key, an attacker first generates the ephemeral key (EB, R :=

φB(PA), S := φB(QA)) honestly as specified by the SIDH key exchange. Then, they query

the oracle on (EB, R, S+[2n−1]R,EAB), which reveals whether EB/〈R+[α](S+[2n−1]R)〉

is isomorphic to EB/〈R+ [α]S〉. By the following lemma, this reveals the least significant

bit of the static secret α.

Lemma 2. [GPST16, Lemma 2] For linearly independent R,S ∈ E[2n] of order 2n, α is

even if and only if 〈R + [α](S + [2n−1]R)〉 = 〈R + [α]S〉.

Afterwards, the attacker can proceed iteratively for all but the last two bits. Assume the

attacker has recovered the i least significant bits of α, i.e. the partial keyKi :=
∑i−1

k=0 αk2
k

such that α = Ki + αi2
i + α′2i+1. To learn the next bit αi ∈ {0, 1}, the attacker queries

the oracle on (
EB, [θ](R− [2n−i−1][Ki]S), [θ]([1 + 2n−i−1]S), EAB

)
. (2.1)

Here, θ is a suitable scaling parameter to avoid detection of the attack by Weil pairing

validation. We omit further details as this has no relevance to the methods presented in

this paper, and we refer to the original paper [GPST16] for the computational details. In

this exposition we omit such factors for simplicity.

The bit αi is deduced from the oracle’s answer using the following lemma.

Lemma 3 ([GPST16]). The oracle call (2.1) returns 1 if and only if αi = 0.

Proof. The curve computed by Alice isEB/G′ whereG′ = 〈R′+[α]S ′〉 = 〈(R−[2n−i−1][Ki]S)+

[α]([1 + 2n−i−1]S)〉 = 〈R + [α]S + [α − Ki][2
n−i−1]S)〉. This is equal to G if and only if

αi = 0.
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The last two bits αn−2, αn−1 should be brute-forced, as there is no suitable scaling

parameter θ to avoid detection by Weil pairing validation. Note that this does not require

any oracle query.

2.3 — The DGLTZ attack

The DGLTZ attack [DGLTZ20] follows roughly the same methodology as the GPST one.

In this section, let α(r) denote Alice’s k secret keys associated to the kernel generators

A(r) = R+[α(r)]S for some points R,S spanning E[2n]. For simplicity we will largely only

use two secret keys α, β with corresponding kernel generators A,B. Then we denote

by αi the i-th bit of α = K
(a)
i + αi2

i + α′2i+1, where K(a)
i is the i-th partial key, and

analogously for β. Dobson et al. first justify the existence of the following oracle.

Definition 2 (Oracle in k-SIDH). Let H be some public hash function. Upon receipt of

an elliptic curve E, two points R,S spanning E[2n] and a hash value h, the oracle reveals

whether h = H
(
j(E/〈R + [α(1)]S〉), . . . , j(E/〈R + [α(k)]S〉)

)
.

Note that this oracle provides information related to the k-tuple of static secret keys

(α(1), . . . , α(k)), but it does not immediately reveal information on each individual secret

key separately.

To compensate for this limited information, multiple oracle queries will be made

using the same malicious points but different hash values. After obtaining the curves

EA(i) := E/〈A(i)〉 from Alice’s public keys, the attacker successively recovers the next bit

of all the different secrets simultaneously. This is done by using malicious points in oracle

queries as in the GPST attack, guessing all the j-invariants computed by Alice as a result

of these malicious points, and verifying each guess with an oracle query.

The attacker recovers the first bit of all secrets with queries of the form
(
E,R, [1 +

2n−1]S,H(j1|| . . . ||jk)
)
, where the ji are guesses on the k shared secret curves computed

by Alice. Candidate tuples for the guess can be restricted by the following lemma.
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Lemma 4. Let α be any of Alice’s secret keys. Consider the isogeny path from E to EA, and

replace the last step in this path by the only other possible step that leaves the path non-

backtracking. Let E ′
A be the final curve of this path. Let s ∈ {0, 1}. Let R′ := R− [s][2n−1]S

and S ′ := [1 + 2n−1]S. Then the SIDH key computed by Alice is either EA or E ′
A. Moreover,

it is EA if and only if α0 = s.

The number of candidate tuples is 7k as for each secret there are 7 possible curves

they have to query (the respective EA(i) and six curves which are 4-isogenous to it).

In the iterative step the attacker uses queries of the form (E,R − [K
(a)
i ][2n−i−1]S, [1 +

2n−i−1]S,H(j1|| . . . ||jk)), which correspond to the following elliptic curves: E/〈A+[αi][2
n−1]S〉,

E/〈B + [K
(b)
i − K

(a)
i ][2n−i−1]S + [βi][2

n−1]S〉. If to recover the next bits one wanted to

perform a similar exhaustive search as for the first bit computation, then one would need

an exponential amount of queries even for k = 2 as the distance (in the isogeny graph)

from the second curves to EA increases as i grows. To remedy this, the authors observe

that E/〈B + [K
(b)
i −K

(a)
i ][2n−i−1]S + [βi][2

n−1]S〉 is 2-isogenous to Ei/〈ψB,i(B + [K
(b)
i −

K
(a)
i ][2n−i−1]S + [βi][2

n−1]S)〉 where Ei is the (n− i)-th curve in the isogeny path from E

to EB and ψB,i is the corresponding partial isogeny. In order to be able to compute these

curves, one has to compute certain intermediate points on Ei (which the authors refer

to as “pullbacks”), namely ψi(B) and [2n−i]ψi(S). This pullback-computation is required

after each key bit has been recovered, and at the i-th step makes use of the known partial

keys with the following query:

(
E,R− [K

(a)
i+1][2

n−i−1]S, [1 + 2n−i−1]S,H(j1, . . . , jk)
)
.

It can be computed that the corresponding curve isEi+1/〈ψB,i+1(B+[K
(b)
i+1−K

(a)
i+1][2

n−i−1]S)〉

(and not 2-isogenous to it as in the previous stage). Naïvely, the attacker would query the

oracle with all the possibilities for ψB,i+1(B) and [2n−i−1]ψB,i+1(S). Note however that

when the oracle returns 1, there will be two possibilities for the correct pullbacks which,

due to the oracle model, cannot be distinguished. One could either have found ψB,i+1(B)
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and [2n−i−1]ψB,i+1(S) or ψB,i+1(B) +C and [2n−i−1]ψB,i+1(S) +C, where C generates the

kernel of the isogeny from Ei+1 to Ei. Thus the authors choose one pullback ψB,i(B)

for B and then have to keep a 2-element set of candidates for [2n−i−1]ψB,i+1(S). The

computation of bits uses 24k queries1 and the pullback computation uses 16k queries

under certain technical conditions which are addressed in the appendix of [DGLTZ20].

At each step, the intermediate isogenies are computed using the following lemma:

Lemma 5. Let A(i) = P + [α(i)]Q be the generator of the subgroup corresponding to the i-th

secret isogeny and let ψ(i)
j := φ

(i)
n ◦ φ(i)

n−1 ◦ · · · ◦ φ
(i)
j+1. Then, we have

kerφ
(i)
j = 〈[2j−1]ψ

(i)
j (A(i))〉, ker φ̂

(i)
j = 〈[2n−1]ψ

(i)
j−1(Q)〉.

2.4 — The Jao-Urbanik protocol

In this section, we present the Jao-Urbanik protocol [UJ20], the main target of our attack.

To reduce the cost associated to k-SIDH [AJL17], Jao and Urbanik propose to exploit

the existence of non-trivial automorphisms on certain elliptic curves for a non-interactive

key exchange by using distinct isogenies between isomorphic curves. As in the original

SIDH proposal [JD11], the authors suggest choosing parameters as follows: Let `A and `B

be two small primes, eA and eB integers such that `eAA ≈ `eBB ; then choose a small cofactor

f such that p = `eAA `
eB
B f ± 1 is prime. To simplify our description, we will again set `A = 2

and `B = 3 (as widely used in discussions of SIDH) when describing the protocol here.

The only elliptic curves with non-trivial automorphisms are curves with j-invariants

j ∈ {0, 1728}; note these are all supersingular over Fp for p = 2eA3eBf − 1 since p ≡ 2

(mod 3) and p ≡ 3 (mod 4). As Jao and Urbanik primarily suggest to use the former,

we focus on curves with j(E) = 0 in this exposition. For such curves, there exists an

automorphism η6 of order six defined by η6(x, y) = (ζ3x,−y) for ζ3 a primitive third root

of unity. Thus, η6 further satisfies η26 = η6 − 1.

1Note that this estimation is not given in [DGLTZ20].
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The existence of these automorphisms can be exploited in the following way. If G ⊆ E

is a subgroup, η6(G) and η26(G) are also subgroups of E and we may assume that all

three are distinct2. Hence, the isogenies from E associated to the kernels G, η6(G) and

η26(G), respectively, are all distinct while the corresponding quotients are isomorphic.

For example, consider φ : E → E/G; the map φ ◦ η−1
6 : E → E/G has kernel η6(G)

and hence we have E/G ∼= E/η6(G). In an SIDH-setting when Alice sends a public key

(EA, φA(PB), φA(QB)), we can thus view this as Alice actually having sent three distinct but

related public keys. These keys all have isomorphic target curves E/〈A〉 ∼= E/〈η6(A)〉 ∼=

E/〈η26(A)〉, and hence share the same j-invariant, but the corresponding isogenies are

not isomorphic. The same applies to any of Bob’s public keys.

Lemma 6. Suppose a base curve E with j(E) = 0 together with the parameters as suggested

by Jao and Urbanik [UJ20] is used for SIDH. Then a single exchange of Alice’s and Bob’s

SIDH public keys pkA = (EA, φA(PB), φA(QB)) and pkB = (EB, φB(PA), φB(QA)), where

{PA, QA = η6(PA)} and {PB, QB = η6(PB)} are bases of E[2eA ] and E[3eB ] respectively,

yields three shared secret (isomorphism classes of) curves.

It follows that per public key pair, Alice and Bob obtain three shared secret curves,

each identified by its j-invariant, as a secret in the Jao-Urbanik version of SIDH; see

Figure 2.1. Hence, in the k′-SIDH setting where each party sends k′ public keys, using

the Jao-Urbanik technique results in a shared secret

h = Hash(j1,1||j′1,1||j′′1,1|| . . . ||jk′,k′ ||j′k′,k′||j′′k′,k′),

obtained by hashing the concatenation of the j-invariants corresponding to the k = 3(k′)2

shared secret curves instead of the (k′)2 curves as in standard k′-SIDH.

2We have η6(G) = G exactly when G ⊂ ker(η6 + k) for some odd k. Note that this is impossible
since η26 − η6 + 1 = 0 implies that deg(η6) = tr(η6) = 1 so that deg(η6 + k) = (η6 + k)(η̄6 + k) =
deg(η6) + k tr(η6) + k2 = 1 + k + k2 is odd and hence not divisible by 2eA .
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∼= EAB ∼=
∼= EAη6(B)

∼=
∼= EAη26(B)

∼=
Shared secret:

h = Hash
(
j(EAB), j(EAη26(B)), j(EAη6(B))

)

Alice
A ⊆ E[2eA ]

with A = 〈PA + [α]η6(PA)〉
φA : E → E/A = EA,

RA := φA(PB), SA := φA(η6(PB))

pkA =
(
EA, RA, SA

)

EB/〈[α]RA + SA)〉
EB/〈−RA + [α + 1]SA〉
EB/〈−[α + 1]RA + [α]SA〉

Bob
B ⊆ E[3eB ]

with B = 〈PB + [β]η6(PB)〉
φB : E → E/B = EB,

RB := φB(PA), SB := φB(η6(PA))

pkB =
(
EB, RB, SB

)

EA/〈[β]RB + SB〉
EA/〈−[β + 1]RB + [β]SB〉
EA/〈−RB + [β + 1]SB〉

pkA

pkB

Figure 2.1: Jao-Urbanik’s protocol using one key and automorphism η6; public parameters:
E : y2 = x3 + 1 with j(E) = 0 defined over field of characteristic p = f2eA3eB − 1, bases
{PA, η6(PA)} of E[2eA ] and {PB, η6(PB)} of E[3eB ].

2.4.1 – Parameter selection

In [UJ20, Section 4] Jao and Urbanik discuss the security of their scheme for general

` := `A. They correctly identify that the relationship between the curves can be exploited

for an attack but do not consider this extra structure fully when providing an estimate on

the security of the scheme. Based on their brief analysis, they suggest the use of k′ = 18

keys for ` = 11 when 256-bit security is required. We believe the proposed parameters

are safe but that their security analysis could be elaborated on.

In their discussion, the authors do not disclose a precise attack model and consider

an oracle which receives a list of curves and returns true if all of them are on the secret

isogeny path E → E/〈A〉.3 However, using such an oracle, the attack proposed by Jao-

Urbanik is not optimal. We will show that the extra structure can be exploited further

by realizing that all intermediate curves on the three paths associated to one secret are

isomorphic. Furthermore, in [DGLTZ20] it is demonstrated that using the straightforward

generalization of the GPST oracle to k-SIDH would lead to an exponential-time attack

3Note that the GPST attack [GPST16] shows how to implement a similar oracle for SIDH.
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even for k = 2. In order to go around this issue, Dobson et al. compute extra points which

increases the complexity of the attack substantially. In other words, in the k-SIDH setting,

the cost of the call to an oracle which returns true if and only if all the guessed curves are

on the correct path is not constant but exponential in k. This observation clearly applies

to the Jao-Urbanik scheme as well.

2.4.2 – Current impact of DGLTZ on Jao-Urbanik protocol

Applying the DGLTZ attack to the Jao-Urbanik protocol is not straightforward. The DGLTZ

attack assumes that all the secret kernels are of the form 〈[α]P + Q〉 which is not the

case in the Jao-Urbanik scheme due to the following. To one secret the following three

kernels are associated: 〈[α]P +Q〉, 〈−P + [α + 1]Q〉, 〈−[α + 1]P + [α]Q〉. The parity of

the coefficient of Q in the second and the third kernel is different, thus in particular, it

is impossible that both of them are odd (hence for every λ-multiple of the kernel the

coefficient of Q will be even). This difficulty could potentially be overcome, however a

number of O(24k) queries, where k = 3k′ and k′ is the number of secrets, will still be

required.

Our aim is that instead of treating the three curves independently we use that the

three kernels are related and propose an attack in the next section which uses O(32 k
3 )

queries, thus providing a nearly cube root speedup.

2.5 — Adaptive attack against the Jao-Urbanik scheme

In this section, we describe our adaptive attack on the η6 case of the Jao-Urbanik protocol

[UJ20]. Thus, the starting curve E has j-invariant 0 and admits an automorphism of

order 6, η6. We want to attack Alice’s `eAA -torsion, so for simplicity, we again write ` := `A

and n := eA, and set ` = 2 in our exposition. See Subsection 2.5.4 for a discussion on

how this attack generalizes to larger `. Let P and Q = η6(P ) be such that {P,Q} form a

basis of E[2n] and let α be one of Alice’s secret keys, to which we associate the following
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E . . . EA,i EA,i−1 . . . EA := E/〈A〉

E . . . E ′
A,i E ′

A,i−1 . . . E ′
A := E/〈η6(A)〉

E . . . E ′′
A,i E ′′

A,i−1 . . . E ′′
A := E/〈η26(A)〉

ψA,i

ηA,n:=η6

φA,i

ηA,i

φA,1

ηA,0ψ′
A,i

η′A,n:=η6

φ′A,i

η′A,i

φ′A,1

η′A,0ψ′′
A,i

φ′′A,i φ′′A,1

Figure 2.2: Isogeny paths between the relevant curves.

three kernel generators

A = [α]P +Q, A′ = η6(A) = −P + [α + 1]Q,

A′′ = η26(A) = −[α + 1]P + [α]Q,

and the three isogenies

ψA,0 : E → EA = E/〈A〉, ψ′
A,0 : E → E ′

A = E/〈A′〉,

ψ′′
A,0 : E → E ′′

A = E/〈A′〉.

Similarly, we denote with γ any other secret key different from α. The associated

kernels are generated by C, C ′, C ′′, the curves are EC , E ′
C , E ′′

C and in general the

notation corresponding to γ will have a subscript C. When there is no doubt about the

corresponding secret key or when a property holds for all keys, we may drop the subscript.

The isogeny ψA,0 can be decomposed into n individual 2-isogenies. We index inter-

mediate curves by EA,i, with EA,0 = EA and EA,n = E. The intermediate isogenies are

denoted by φA,i : EA,i → EA,i−1. We also call ψA,i the composition φA,n ◦ . . . ◦ φA,i+1. We

introduce similar notations for E ′
A and E ′′

A, and denote by ηi the isomorphism between

EA and E ′
A (see Lemma 8). We summarize all notations in Figure 2.2.
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We define

Ai = ψA,i(A), Pi = ψA,i(P ).

Our attack is a non-trivial adaption of the GPST and DGLTZ attacks [GPST16; DGLTZ20].

It similarly has two stages. Firstly, we compute the first bit of each key (see Subsection

2.5.2) and we recover the “pullbacks” A1, A′
1, A′′

1 and [2n−1]P1, [2n−1]P ′
1, [2n−1]P ′′

1 (for

every secret A). In the second stage, we show inductively that given the first i bits of

every key and Ai, [2n−i]PA,i (for every secret A), we can deduce the (i+ 1)-th bit and the

new pullbacks (see Subsection 2.5.3). In other words, if we write

α = 2i+1α′ + 2iαi +KA,i,

where KA,i indicates the known part of the key, we can recover αi from knowledge of the

i-th pullbacks.

This is not dissimilar to what is done in the DGLTZ attack, but our attack exploits the

additional structure between the shared secrets in the Jao-Urbanik protocol to recover the

exact pullbacks at each step (instead of keeping two candidates) and reduce the number

of queries needed for bit recovery. We thus show that the security of the Jao-Urbanik

protocol with k′ secret keys is only slightly better than the security of k′-SIDH, thus

greatly decreasing the benefits of the Jao-Urbanik protocol. A more detailed study of the

complexity of our attack can be found at the end of Subsection 2.5.3.

We present our attack only by querying with points on the starting curve E, as in

the DGLTZ attack. Appendix 2.A presents a method to extend our attack to an arbitrary

curve, which can also be applied to the DGLTZ attack.

We start by showing essential properties of the partial isogenies ψA,i, ψ′
A,i, ψ′′

A,i and of

the corresponding curves EA,i, E ′
A,i, E ′′

A,i in the following two lemmas.
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Lemma 7. For simplicity, denote subscripts of the form A, i by i. Then,

ker(ψi) = 〈[2i]A〉, ker(ψ′
i) = 〈[2i]A′〉, ker(ψ′′

i ) = 〈[2i]A′′〉,

ker(φi) = 〈[2i−1]Ai〉, ker(φ′
i) = 〈[2i−1]A′

i〉, ker(φ′′
i ) = 〈[2i−1]A′′

i 〉,

ker(φ̂i) = 〈[2n−1]Pi−1〉, ker(φ̂′
i) = 〈[2n−1]P ′

i−1〉, ker(φ̂′′
i ) = 〈[2n−1]P ′′

i−1〉.

Lemma 8. Let notation be as above. Then EA,i, E ′
A,i and E ′′

A,i are isomorphic.

Proof. We have that ker(ψA,i) ⊆ ker(ψ′
A,i◦ηA,n). Thus, there exists an isogeny ηA,i : EA,i →

E ′
A,i such that ψ′

A,i ◦ ηA,n = ηA,i ◦ψA,i. By examining the degrees, we find that deg ηA,i = 1

and thus ηA,i is an isomorphism. The same reasoning holds for E ′′
A,i.

The isomorphisms ηA,i and η′A,i are assumed to be known when EA,i, E ′
A,i and E ′′

A,i

are known, since they can be easily computed (a 1-isogeny between two curves can be

recovered in O(1)).

2.5.1 – Attack model: a new oracle

In this section, we describe our assumptions and our attack model.

Firstly, let k′ denote the number of Alice’s secret keys. We assume that Alice has a

static set of keys α(1), . . . , α(k′) and that the attacker impersonates Bob to recover Alice’s

secret keys. The attacker engages with Alice on sessions of Jao-Urbanik’s protocol and

sends particularly chosen data, not necessarily conforming to the protocol. By checking

whether the two parties have obtained the same shared secret, the attacker may recover

information on Alice’s keys. We model this information leakage in terms of an oracle and

represent each interaction with Alice as an oracle query.

An adaption of the second oracle presented in [DGLTZ20] to the η6 variant of the

Jao-Urbanik protocol gives an oracle O′(E(1), . . . , E(k′), R(1), S(1), . . . , R(k′), S(k′), h) that

returns true if

h = Hash(j1,1||j1,2|| . . . ||jk′,k′−1||jk′,k′),
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where jr,s denotes the concatenation of

j
(
E(r)/〈[α(r)]R(s) + S(s)〉

)
, j
(
E(r)/〈−R(s) + [α(r) + 1]S(s)〉

)
,

j
(
E(r)/〈−[α(r) + 1]R(s) + [α(r)]S(s)〉

)
.

Similarly to what is done for the third oracle in [DGLTZ20], we can simplify the oracle

by assuming that the attacker generates one secret key and sends repeated copies of the

same curve and points. Note that any information that can be recovered with querying

with distinct curves can also be recovered by querying with repeated copies of the same

curve.

Hence, we obtain the following oracle

O(E,R, S, h) = O′(E, . . . , E,R, S, . . . , R, S, h), (2.2)

which is the one we use in our attack. As noted in [DGLTZ20], the attacker could change

one curve at each iteration, but all but one curves (k′ − 1, in this case) have to remain

constant across iterations for the attack to succeed.

2.5.2 – Exploiting the additional structure: first step

Let us focus on one of Alice’s secrets α. The attack extends straightforwardly to all

the keys. In order to recover the first bits of α, the attacker sends the modified points

P ′ = [1 + 2n−1]P , Q′ = Q, so that Alice uses the following kernels in her computation of

the shared secret:

1. Â = 〈[α]P ′ +Q′〉 = 〈[α]P +Q+ [α0][2
n−1]P 〉,

2. Â′ = 〈−P ′ + [α + 1]Q′〉 = 〈−P + [α + 1]Q+ [2n−1]P 〉,

3. Â′′ = 〈−[α + 1]P ′ + [α]Q′〉 = 〈−[α + 1]P + [α]Q− [α0 + 1][2n−1]P 〉.
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E ′′
A
∼= EA,2

E/〈2A〉 ∼= EA,1

EA

E ′
A

EA,3
. . .

2

2

2

Figure 2.3: The isogeny paths between EA, E ′
A and E ′′

A.

Note that, depending on the value of the least significant bit α0, either the first or third

curve computed has not been altered by using the modified points. Thus the attacker

already knows one of j(ÊA) or j(ÊA′′), where ÊA = E/〈Â〉, although they do not know

at this stage which one of the two.

The attacker now computes E∗A, the sets containing all six proper 4-neighbors of the

curves EA in Alice’s public key, and their respective j-invariants. If α0 = 0, 〈[α]P ′ +Q′〉 =

〈A〉, and hence the first curve Alice obtains is isomorphic to her original EA. The second

curve is independent of α0 and is a 4-neighbor of E ′
A, since they share the 2-neighbor

E/〈2A′〉. Similarly, the third curve is a 4-neighbor of E ′′
A since they share 2-neighbor

E/〈2A′′〉. Note that the intermediate 2-neighbors in this construction are isomorphic

since their kernel generators differ only by an application of η6. Hence, the three curves

EA, E/〈−P ′ + [α + 1]Q′〉 and E/〈−[α + 1]P ′ + [α]Q′〉 are the three distinct 2-neighbors

of E/〈2A〉 (distinctness follows from simple computations on the kernel generators), as

depicted in Figure 2.3.

Analogously if α0 = 1, we find that the three computed curves all share a common

2-neighbor. The attacker proceeds analogously for the choices of any other curve. This

allows the attacker tomatch up candidate curves forEA, E ′
A andE ′′

A among the 4-neighbors

of EA, depending on which combination of first key bits they are querying for at the time:

the attacker may choose any curve in E∗A as a candidate curve for E ′
A, depending on the

guessed bit they may select EA or E ′′
A to be equal to EA and then select the unique curve

in E∗A which is also a 4-neighbor of E ′
A as a candidate for the remaining curve. Querying

the oracle for all possible combinations (12k/3 combinations, six for each neighbor and

one for the curve itself) gives the attacker the first bit of each secret.
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Now, given the position of EA, E ′
A and E ′′

A in the isogeny graph, we know that E/〈2A〉

must be the first intermediate curve EA,1 and similarly E ′′
A must be EA,2. This means the

attacker can easily recover the first two intermediate curves without additional oracle

queries, unlike what happens in the DGLTZ attack. Since the isogenies between EA

and EA,1 (i.e. φA,1) and between EA,1 and EA,2 (i.e. φA,2) are known, the attacker can

compute the first pullbacks of A and [2n−1]P (up to odd scalar multiplication) by setting

A1 to be a generator of ker(φA,1) and [2n−1]PA,1 a generator of ker(φ̂A,2) (see Lemma

7). Finally, the attacker obtains the pullbacks A′
1 = ηA,1(A1) and A′′

1 = η′A,1(A1). This

approach can be easily repeated for every following curve.

2.5.3 – Intermediate bit and pullback computation

Suppose we have recovered the first i bits of each key and have the relevant pullbacks.

Let α be one of Alice’s secrets keys and let γ denote any other secret key. Now, we want

to recover the (i+ 1)-th bit and compute the new pullbacks. In the DGLTZ attack, the bit

recovery and pulling back are two separate stages, but in order to exploit the additional

structure of Jao-Urbanik’s scheme, we combine them together.

The attacker does not actively recover the (i+ 1)-th key bits, but instead tries all the

2k
′ possibilities and uses the pullback queries to validate both the bit guesses and the

pullback candidates. Using Lemma 7, it is possible to compute φ̂i+1 and thus recover φi+1.

With this information, the attacker can obtain candidates for the pullbacks of A and P .

The same applies to φ′
i+1 and φ′′

i+1.

The attacker then queries the oracle with the following points

P ′ = [1 + 2n−i−1]P, Q′ = Q− [KA,i][2
n−i−1]P.
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These are the oracle’s internal kernel computations

〈[α]P ′ +Q′〉 = 〈A+ [αi][2
n−1]P 〉,

〈−P ′ + [α + 1]Q′〉 = 〈A′ − [K2
A,i +KA,i + 1][2n−i−1]P

+ [KA,i][αi][2
n−1]Q〉,

〈−[α + 1]P ′ + αQ′〉 = 〈A′′ − [K2
A,i +KA,i + 1][2n−i−1]P

− [KA,i + 1][αi][2
n−1]P 〉,

〈[γ]P ′ +Q′〉 = 〈C + [KC,i −KA,i][2
n−i−1]P

+ [γi][2
n−1]P 〉,

〈−P ′ + [γ + 1]Q′〉 = 〈C ′ − [KC,iKA,i +KA,i + 1][2n−i−1]P

− [KA,i][γi][2
n−1]P 〉,

〈−[γ + 1]P ′ + [γ]Q′〉 = 〈C ′′ − [KC,iKA,i +KA,i + 1][2n−i−1]P

− [KA,i + 1][γi][2
n−1]P 〉.

All kernels can be shifted with ψi+1 (e.g. E/〈C+[KC,i−KA,i][2
n−i−1]P+[γi][2

n−1]P 〉 =

EC,i+1/〈Ci+1 + [KC,i − KA,i][2
n−i−1]PC,i+1 + [γi][2

n−1]P 〉) similarly to the DGLTZ attack

by applying [Sil86, Chapter III, Corollary 4.11.]. Now, since the candidate pullbacks for

Ai+1 (preimages of Ai via φA,i), Ci+1 (preimages of Ci via φC,i), [2n−i−1]PC,i+1 (preim-

ages of
[
1
2

]
[2n−i]PC,i), [2n−i−1]PA,i+1 (preimages of

[
1
2

]
[2n−i]PA,i) and their isomorphic

correspondents are known, the attacker can query the oracle with the hash values of all

2k
′
2k

′
8k

′ possibilities (2 for each bit, 2 for the kernel generator pullback candidates and

4 · 2 for the P pullback candidates). Note that the attacker may try a candidate for the

first curve and then shift it to the second curve using the isomorphisms ηi or η′i (therefore

reducing an a priori complexity of 32k to 32k
′). We show that if we find a match, then we

have found the correct pullbacks for Ci+1 and PC,i+1 as well as the correct key bits for C.

First we prove a simple lemma about parities.

Lemma 9. Let KA,i, KC,i be natural numbers. Then,
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1. K2
A,i +KA,i + 1 is odd.

2. It is not possible that all of (KA,i−KC,i), (KA,iKC,i+KA,i+1) and (KA,iKC,i+KC,i+1)

have the same parity.

Proof. The first claim is trivial. For the second claim, observe that the sum of these

quantities is even, thus it is not possible that all three of them are odd. IfKA,i−KC,i is even,

thenKA,i andKC,i have the same parity and thenKA,iKC,i+KA,i+1 = KA,i(KC,i+1)+1

is odd.

Now, we prove our main lemma.

Lemma 10. If the oracle query returns true, then we have found γi, Ci+1 and PC,i+1.

Proof. Suppose the attacker guesses that αi is 0. It is clear from the above computation

that we always get at least one match when we substitute Ci+1, γi and PC,i+1. If γi = 0,

then it follows from the computation of [DGLTZ20, Claim 1], that the number of matches

for the first curve is exactly two. The other match corresponds to choosing Ci+1 + [2i]Ci+1

as the preimage of Ci and [2n−i−1]PC,i+1+[2i]Ci+1 as the preimage of
[
1
2

]
[2n−i]PC,i. Due to

Lemma 9, it is not possible that (KA,i−KC,i), (KA,iKC,i+KA,i+1) and (KA,iKC,i+KC,i+1)

are all odd. Assume for instance that (KA,i −KC,i) is odd and (KA,iKC,i +KA,i + 1) is

even. Then we show that the second curve will not match as its kernel will be generated

by C ′
i+1 + [KC,iKA,i +KA,i + 1][2n−i−1]PC,i+1 + [2i]Ci+1. Hence it will be 4-isogenous to

the queried curve. The other cases follow similarly.

When γi = 1, then there will be another match for the first curve. Namely when we

pull back
[
1
2

]
[2n−i]Pi as [2n−i−1]Pi+1 + [2n−1]Pi+1. However, again a similar calculation to

[DGLTZ20, Claim 1] (one has to distinguish cases depending on the parity of KA,i and

KC,i) shows that either the second or the third curve will not match. The calculations

when the attacker guesses αi to be 1 are analogous.

Lemma 10 implies that for all secrets except α we know the correct bits and pullbacks

(as otherwise we cannot receive 1 from the oracle). However, we have seen that the
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coefficient K2
A,i+KA,i+1 is odd, thus there will be multiple matches. In order to retrieve

αi and the corresponding pullbacks we do another query with different points, switching

KA,i with KC,i. For this, we can use the previously computed pullbacks and thus only

query the oracle 32 times (corresponding to the 32 possibilities for the pullbacks and the

bit). Since the correct pullbacks are computed, we are able to recover the isogenies φA,i+1

and φC,i+1 using Lemma 7. Finally, since the next intermediate curves are computed we

compute the isomorphisms between them. Thus, we have proven the following theorem.

Theorem 1. 1. There exists an algorithm that recovers the first bit of each secret using

O(12k′) = O(12 k
3 ) queries to the oracle defined in (2.2).

2. There exists an algorithm that recovers the intermediate bits and pullbacks using

O(32k′) = O(32 k
3 ) queries to the oracle defined in (2.2).

2.5.4 – Attack costs for general `

So far, we have demonstrated our attack on the Jao-Urbanik protocol with parameter

choice ` = 2 for simplicity. However, in their proposal, the authors suggest the use of

` = 11 or ` = 13 and further compute that k′ = 18 keys are necessary to obtain security

against Grover’s algorithm for ` = 11; see [UJ20, Section 4]. Thus we briefly assess the

cost of our attack and the DGLTZ attack for arbitrary `. We divide the discussion into two

parts. First, we estimate the number of queries needed for computing the first key bits

and later the number of queries needed in the iterative step.

The complexity estimate of our attack is a straightforward generalization of Theorem 1.

During the recovery of the first bit of every key, we query - as before - for any of the `k′

possible first `-adic digit combinations by first fixing the curve (either EA or E ′′
A using

notation as in Subsection 2.5.2) corresponding to the guessed key digit to be the curve

given in Alice’s public key. Then we select any of the `(`+ 1) `2-neighbors of the correct

curve to be E ′
A and choose one of the remaining ` − 1 curves which are `2-isogenous

to both previously selected curves as the third curve associated to a given key. Hence,

51



for each possible combination of first key digits we have
(
`(` + 1)(` − 1)

)k′ choices of
curves. Thus, there exists an algorithm which recovers the first digit of each secret using

O(`k′`3k′) = O(`4k′) = O(` 4k
3 ) oracle queries.

For the iterative step, we again first guess the i-th `-adic digits and then compute

candidate preimages for the first curve and shift them to the other two curves using the

respective isomorphisms. There are `k′ possibilities for the digits and `2k′ possibilities for

each preimage. This implies that we need O(`5k′) queries in total.

Hence, for general `, we can summarize our findings in the following theorem.

Theorem 2. 1. There exists an algorithm that recovers the first digit of each secret using

O(`4k′) = O(` 4k
3 ) queries to the oracle defined in (2.2).

2. There exists an algorithm that recovers the intermediate digits and pullbacks using

O(`5k′) = O(` 5k
3 ) queries to the oracle defined in (2.2).

2.5.5 – Comparison of k′-SIDH and Jao-Urbanik’s protocol

Theorem 2 does not break the security parameters suggested by Jao and Urbanik. However,

in order to assess the security gain of Jao-Urbanik’s protocol, we compare it with the

security of k′-SIDH for arbitrary `. Since the DGLTZ method requires an extra step which

computes the i-th digits and then uses that information to compute candidate pullbacks,

the overall complexity of the attack is `4k′ for k′-SIDH. The following table gives an

overview of the number of SIDH-instances and public keys occurring when executing the

different protocols, as well as the respective cost of attacking the `-torsion.

Therefore, we can observe that the Jao-Urbanik protocol with k′ secrets is as secure as
5k′

4
-SIDH when comparing necessary oracle queries. Consequently, it is more efficient to

use 5k′

4
-SIDH than the Jao-Urbanik scheme with k′ keys and the same ` when measuring

security with respect to the currently known attacks, as the former has a computational

cost equivalent to 3(k′)2 SIDH exchanges, whereas the latter has a computational cost

equivalent to 1.56(k′)2 SIDH exchanges. Note that the Jao-Urbanik scheme maintains a
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Table 2.1: Comparisons between Jao-Urbanik’s scheme and k-SIDH

# SIDH
instances

# public key
exchanges Attack cost

Jao-Urbanik
with k′ keys 3(k′)2 (k′)2 O(`5k′)

k-SIDH
with k = k′

(k′)2 (k′)2 O(`4k′)

k-SIDH
with k = 5

4
k′

(5
4
k′)2 ≈ 1.56(k′)2 ≈ 1.56(k′)2 O(`4 5

4
k′) = O(`5k′)

moderate advantage in public key size, since it requires sharing k′ keys, compared to the
5
4
k′ keys shared in k-SIDH.

2.6 — Conclusion

We have introduced an adaptive attack against Jao-Urbanik’s protocol with parameter

` = 2. While Jao and Urbanik suggest using ` = 11 or ` = 13, our attack can be extended

to that case as briefly described in the previous section. The complexity of such an

attack increases significantly, possibly reaching levels where the protocol is secure for

the specified parameter sets. However, even in that case, our attack provides a nearly

cubic speedup compared to a generic application of Dobson et al.’s attack against the

Jao-Urbanik scheme. Assessing security of k-SIDH and Jao-Urbanik’s variant of it with

respect to currently known attacks, we conclude that Jao-Urbanik’s protocol does not

seem to offer a sufficient security improvement over k-SIDH with the same number of

secret keys to justify the roughly two times more computations needed.

We leave a more thorough examination of whether a combination of stages in an attack

on k-SIDH can evoke further optimizations to future work. Any potential improvements

in the attack cost would then make it necessary to reevaluate the efficiency-security

trade-off when comparing k-SIDH and the Jao-Urbanik protocol.
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2.A — Querying with EB

The following lemma shows how to lift from the path EB → EAB to the path E → EA.

Lemma 11. Let ψA,i be the partial isogeny from E to Ei and let ψBA,i be the corresponding

partial isogeny from EB to EAB. Let A be the kernel of the isogeny from E to EA and let

AB = φB(A). Let Ei be the i-th curve in the isogeny path from E to EA and EB
i be the i-th

curve in the isogeny path from EB to EAB. Let δi : EB
i → Ei be the isogeny which is the

SIDH lift of φB. Assume we know ψ′
i(AB) and ψ′

i(φB(Q)). Then we can compute [3n]ψi(A)

and [3n]ψi(Q).

Proof. The proof follows from the observation that δi ◦ ψ′
i = ψi ◦ φ̂B.

The Lemma can be applied to compute the relevant pullbacks on the isogeny paths

from E to EA, E ′ to E ′
A and E ′′ to E ′′

A in the following manner. First one computes a

pullback candidate on the path starting from EB. Then it is lifted with the above lemma

to the path starting from E (using the fact that 3n is odd). Then it can further be shifted

to the other two isomorphic curves. Finally these points can be shifted back with φB.
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Chapter 3

Another Look at Adaptive Attacks on
SIDH: Breaking HealSIDH

All poets write bad poetry. Bad poets
publish them, good poets burn them.

— U. Eco

This chapter is based on the following paper:

Andrea Basso, Tako Boris Fouotsa, Christophe Petit, and Charlotte Weitkämper. Another

Look at Adaptive Attacks on SIDH: Breaking HealSIDH. Unpublished. 2022

I was the main author of the two attacks on HealSIDH and its improved variant, as well as

the generalized GPST attack.

Abstract: The SIDH protocol is an efficient and practical isogeny-based key exchange.

Its active security is threatened by the GPST attack, which allows a malicious attacker

to extract the long-term secret key of an SIDH participant. Recently, Fouotsa and Petit

suggested an efficient validation method that prevents adaptive attacks, leading to the

key-exchange protocol HealSIDH.

In this work, we analyze the adaptive security of SIDH and related protocols. Firstly,

we revisit the GPST attacks on SIDH and introduce a matrix notation that enables a better
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understanding of the attack. In particular, it allows us to determine all possible malicious

torsion points that could be used in a generalized GPST attack.

Furthermore, we use this formalism to rewrite the HealSIDH protocol and SIDH key

validation method, which allows us to develop a GPST-like attack on HealSIDH. We show

that an attacker can craft torsion points which do not affect the correctness of the SIDH

exchange, while the validation method fails or succeeds depending on a single bit of the

targeted secret key. We further discuss possible countermeasures, and we show they are

similarly vulnerable to an extended version of our adaptive attack.

Lastly, we propose a translation of the HealSIDH countermeasure to the genus two

setting, and we discuss possible approaches to translate the attack.

3.1 — Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) key exchange [JD11] is an efficient post-

quantum protocol based on the hardness of finding an isogeny of fixed degree between a

given pair of supersingular isogenous elliptic curves with the additional knowledge of

some torsion point information. SIDH has been shown to be vulnerable against a series of

active attacks: the simplest such attacks are discussed in [CLN16] and countered using

a simple pairing check. Further adaptive attacks on SIDH were presented by Galbraith,

Petit, Shani and Ti [GPST16] in 2016, namely the GPST attack, and more recently (2022)

by Fouotsa and Petit [FP22]. While the Fujisaki-Okamoto transform [FO13] can detect

and prevent active attacks, it requires that one party reveals their secret key; as such, it

can only be used in the ephemeral-static setting. There is currently no efficient way to

prevent such attacks in the static-static settings, where both parties need to maintain

their secret information private.

The GPST attack consists in recovering an honest participant’s static secret key over
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multiple key exchange sessions by using public keys with malformed torsion point infor-

mation. There have been several attempts to introduce effective countermeasures that

would thwart the adaptive attacks and enable the usage of a static key over multiple SIDH

instances. Most prominently, combining the basic SIDH protocol with a version of the

Fujisaki-Okamoto transform due to Dent and Hofheinz, Hövelmanns, and Kiltz [FO13;

Den03; HHK17] results in the NIST third round alternate candidate SIKE (Supersingular

Isogeny Key Encapsulation) [JACCD+20]. This transform forces a party to reveal their

secret key to the other and hence cannot be used with static encryption keys. There

have been other attempts to prevent the GPST attacks. The k-SIDH protocol [AJL17]

and an SIDH-variant by Urbanik and Jao [UJ20] propose methods to obtain multiple

SIDH instances yielding several shared secret curves whose j-invariants are then hashed

together. Unfortunately, both of these countermeasures have not succeeded at avoiding

the vulnerabilities exhibited by static-static SIDH and have been shown to be ineffective

at preventing GPST-style adaptive attacks [DGLTZ20; BKMPW20].

Recently, Fouotsa and Petit [FP21] presented a new key validation technique for SIDH

at Asiacrypt 2021 which, instead of requiring multiple SIDH instances or the disclosure

of a secret key, proves the honest generation of the torsion point information to the other

party by providing larger torsion points and revealing additional information on ths

shared curve. In this work, we show the claim is inaccurate by presenting an efficient

strategy to recover HealSIDH secret keys. A similar goal was achieved in independent

work by Galbraith and Lai [GL22].

Contributions. In this work, we revisit the GPST attack on SIDH and describe a gener-

alised framework for these types of active torsion point attacks. This enables a better

understanding and an improved abstraction of the original torsion point attack. We

then present GPST-like adaptive attacks on HealSIDH. Furthermore, we discuss some

other versions of the validation method that could have been used in HealSIDH and show

that they are also vulnerable to adaptive attacks. In particular, we make the following

contributions:
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1. We introduce a new formalism that treats isogenies as linear maps on torsion groups.

This new formalism leads to a better understanding of the GPST adaptive attacks.

We use this formalism to give a general description of the GPST adaptive attack on

SIDH [GPST16].

2. We present GPST-like adaptive attacks on HealSIDH. A first one extracts the largest

power of two dividing the secret key, but this could be countered by simply fixing

secret keys to be odd (this does not reduce the security of the scheme since the

length of the secret is longer than λ bits). A second attack extracts the entire secret

key. The attack relies on an honest execution of the underlying SIDH protocol but

uses maliciously-generated validation points.

3. We exhibit a modified countermeasure technique that is resistant against our attack

and the one in [GL22]. We also show, however, that the new countermeasure can

be defeated by a more elaborate attack.

4. We also discuss the extension of the HealSIDH countermeasure to the genus two

setting and the obstacles that prevent an application of the active attack shown

before.

Outline. This paper is structured as follows: we present the technical background and

existing active attacks in Section 3.2. We then introduce a generalisation of the GPST

attack and present the Fouotsa–Petit (FP) countermeasure using a more formalised

notation for the SIDH protocol in Section 3.3. In Section 3.4, we first describe the

HealSIDH key exchange oracle and present a straightforward adaptive attack on HealSIDH

that recovers the largest power of two dividing Alice’s static secret key α. We proceed by

describing a GPST-style attack on HealSIDH which fully recovers the secret key in O(logα)

queries to the key exchange oracle. We conclude in Section 3.5 by briefly summarising

and discussing some avenues for further inquiry: we explore the applicability of the

attacks on a variant of the FP countermeasure (which appears to be equally vulnerable)

and investigate the extension of the FP countermeasure to Genus-Two SIDH [FT19].

58



3.2 — Preliminaries

In this section, we recall relevant information on elliptic curves and isogenies. We refer

to Silverman [Sil86], De Feo’s notes [Feo17] or the following theses [Fou22; Pan21] for

a more thorough treatment. Furthermore, we briefly describe SIDH, the adaptive attacks

on SIDH, and the existing countermeasures.

3.2.1 – Elliptic curves and isogenies

An elliptic curve is a smooth rational curve of genus one with a distinguished point O,

which in this work we model to be at infinity. Isomorphism classes can be represented

by the j-invariant associated with the curves in the class. The set of rational points on

an elliptic curve can be seen as commutative groups with respect to a group addition

having the point at infinity as the neutral element. When an elliptic curve E is defined

over a finite field Fq, the set of Fq-rational points E(Fq) of E is a subgroup of E(F̄q). For

every integer N coprime with q, the N -torsion subgroup E[N ] of E(Fq) is isomorphic to

Z/NZ⊕ Z/NZ. An elliptic curve E defined over Fpk is supersingular if E[p] = {O}, i.e.

there is no point of order not coprime with the characteristic except for the neutral point.

The j-invariant of supersingular elliptic curve is always defined over Fp2 , and thus for any

supersingular curve there exists an isomorphic curve which is defined over Fp2.

An isogeny from E1 to E2 is a non-constant rational map from E1 to E2 which is also

a group morphism. The kernel of an isogeny is always finite and entirely defines the

isogeny up to isomorphism and powers of the Frobenius map. Given a finite subgroup G

of a supersingular curve E1(Fq), there exists a Frobenius-free isogeny of domain E1 with

kernel equal to G. We call such an isogeny separable. Its degree is equal to the size of

its kernel, that is #G. The codomain of this isogeny is denoted by E1/G. The isogeny

and the codomain E1/G can be computed from the knowledge of the kernel using Vélu’s

formulae [Vél71] whose efficiency depends on the smoothness of the isogeny degree. If
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φ : E1 → E2 is an isogeny of degree d and P,Q ∈ E1[N ] where N is an integer, then

eN(φ(P ), φ(Q)) = eN(P,Q)
d

where eN is the N -Weil pairing.

Let φ : E1 → E2 be a separable isogeny of degree d. Then there exists a unique isogeny

φ̂ with the property that φ ◦ φ̂ = [d] and φ̂ ◦ φ = [d], where [d] denotes multiplication by d

on E2 and E1. This isogeny φ̂ is called the dual isogeny of φ and it is also of degree d. The

kernel of φ̂ is φ(E1[d]). In the rest of the paper, we will restrict ourselves to supersingular

elliptic curves and separable isogenies.

3.2.2 – An overview of SIDH

We give a very brief description of the SIDH [JD11] key exchange. The protocol proceeds

as follows.

Setup. The public parameters of SIDH are a prime p of the form p = ABf−1, whereA = 2a,

B = 3b for some choice of a and b and f is a small cofactor, and a supersingular elliptic

curve E0 defined over Fp2 together with points PA, QA, PB, QB such that E0[A] = 〈PA, QA〉

and E0[B] = 〈PB, QB〉.

KeyGeneration. Alice chooses a random integer α ∈ Z/AZ and computes the A-isogeny

φA : E0 → EA = E0/GA where GA = 〈PA + [α]QA〉. Bob chooses a random integer β ∈

Z/BZ and computes the B-isogeny φB : E0 → EB = E0/GB where GB = 〈PB + [β]QB〉.

KeyExchange. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Sim-

ilarly, Bob sends
(
EB, φB(PA), φB(QA)

)
to Alice. Alice and Bob use the given torsion

points to obtain the shared secret j(E0/〈GA, GB〉). To do so, Alice computes φB(GA) =

〈φB(PA) + [α]φB(QA)〉 and uses the fact that E0/〈GA, GB〉 ∼= EB/φB(GA). Bob proceeds

analogously.

Note that revealing the torsion point images in SIDH is a crucial feature of the protocol:

without them, it is not known how to make the diagram in Fig. 3.1 commute without
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E0 EA

EB EB/φB(GA) ∼= EA/φA(GB)

φA

φB

φ′
A

φ′
B

Figure 3.1: Overview of the SIDH protocol.

knowledge of the other party’s secret. Despite being essential for the success of the

exchange in SIDH, providing these torsion points also makes the protocol vulnerable.

For example, torsion point information has been used to design both adaptive [CLN16;

GPST16; FP22] and passive attacks [Pet17; QKLMP+21] on SIDH.

3.2.3 – Adaptive attacks and countermeasures

We recall the most prominent adaptive attacks on SIDH and some existing attempts to

counter them.

Several validation methods have been proposed to protect a party’s static secret key.

The simplest checks ensure that the additional information provided by Bob to make the

diagram in Fig. 3.1 satisfies two criteria: the torsion points belong to the provided elliptic

curve, and they generate a basis of the correct torsion subgroup. These checks make it

possible for Alice to detect the most unrefined attacks and can easily be performed using

Weil pairing computations.

The more sophisticated Galbraith–Petit–Shani–Ti (GPST) attack [GPST16] exploits

the fact that Alice does not have any means other than the ones previously mentioned to

check whether Bob generates his public key honestly, i.e. according the SIDH protocol

specifications. Even with the restrictions on Bob’s points guaranteed by the checks

presented above, The GPST attack shows that the points can be manipulated so that Bob

can learn one bit of Alice’s static secret key with each malicious interaction. In particular,

the points are modified to force the shared secret of the interaction to be the same as the

one resulting from an honest interaction if and only if the targeted bit of Alice’s key is
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zero. By checking whether the key exchange was successful, a malicious Bob can learn

the value of the targeted bit. We give a more detailed description of the strategy of GPST

in Section 3.3.3.

Further variations of the SIDH protocol have been suggested to avoid its vulnerabilities

to the GPST attack: Azarderakhsh, Jao and Leonardi [AJL17] proposed k-SIDH, a protocol

where each party chooses k secret keys (instead of a single one). This allows each party

to compute k different kernel subgroups and corresponding isogenies. The two parties

can then compute an SIDH exchange for each of the possible key pairs, which results in k2

shared elliptic curves. Taking a hash of the concatenation of all j-invariants finally provides

the shared secret. The presence of the hash in the shared secret makes it hard to apply

the GPST attack, since modified torsion points that target one secret key cannot target all

the others at once. However, Dobson, Galbraith, LeGrow, Ti, and Zobernig [DGLTZ20]

showed that the protocol is insecure for small values of k, as the protocol is vulnerable

to a GPST-like adaptive attack, whose complexity grows exponentially in k. To ensure

sufficient security, the protocol need to choose high value of k (≈ 90), which incurs in a

significant efficiency loss.

A further variant aiming to reduce the communication cost of k-SIDH was proposed

by Urbanik and Jao [UJ20]. The authors note that for specific primes, the elliptic curves

with j-invariants j = 0 and j = 1728 have non-trivial automorphisms of order six and

four, respectively. Thus, it is possible to attach multiple SIDH instances to a single

pair of secret SIDH keys. For example, suppose µ is the non-trivial order-four automor-

phism on E1728 and Alice uses a secret key corresponding to a kernel subgroup A while

Bob uses the subgroup B. Then, a regular execution of the SIDH protocol yields the

shared curve E1728/〈A,B〉. However, if each party also additionally uses the subgroup

obtained by applying µ, from this single key pair, Alice and Bob can find the curves

E1728/〈A,B〉, E1728/〈µ(A), B〉, E1728/〈A, µ(B)〉 and E1728/〈µ(A), µ(B)〉. It turns out that

the first and last of these curves as well as the second and third are isomorphic (since

their kernels only differ by the application of an automorphism), so this variant yields two
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distinct curves (up to isomorphism) per secret key pair. In the order-six automorphism

case, three distinct shared curves (up to isomorphism) can be obtained from each key pair.

Again, this variant can be attacked via a GPST-like attack: Basso, Kutas, Merz, Petit, and

Weitkämper [BKMPW20] showed that the interrelation of the kernels can be exploited

during a key recovery attack; hence, the Jao–Urbanik variant does not provide the desired

efficiency improvements over k-SIDH.

3.3 — A new notational approach

In this section, while providing some additional technical background, we present elliptic

curve isogenies, the SIDH protocol and relevant related techniques using amore formalised

notation in the hope that this will make the adaptive attack on HealSIDH presented in

the following more intuitive. We introduce this alternative notation first before reframing

SIDH, the GPST attack and the Fouotsa–Petit countermeasure using this formalism. We

especially highlight currently available countermeasures to avoid attacks on a static-static

SIDH setting and present the GPST attack in such a way that exposes a general technique

to launching similar attacks on SIDH and any of its variants.

3.3.1 – Notation

Let A = 2a and B = 3b such that the integer p = ABf − 1 is a prime for some small

cofactor f . For some prime powerN (we will mainly considerN ∈ {A,A2, B,B2}), let µN

be a canonically chosen primitive N -th root of unity. For every supersingular elliptic curve

E defined over Fp2, let the row vector BE,N =

[
P Q

]
denote a canonically generated

basis of E[N ] such that the Weil pairing on the basis points satisfies

eN(BE,N) := eN(P,Q) = µN .
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Such a basis can be efficiently computed when the order N is smooth: one generates a

basis
[
U V

]
, computes γ = eN(U, V ), solves for t such that µN = γt, and sets P = U,

Q = [t]V .

Given BE,N , a point R ∈ E[N ] can alternatively be represented by the column vector

of its coordinates
[
γ η

]tr
N

where γ and η are the coordinates of R in the basis BE,N ,

i.e. R = [γ]P + [η]Q, and tr denotes the transpose. The cyclic group generated by the

point R = BE,N ·
[
γ η

]tr
N

is denoted (projectively) by [γ : η]trN . In the following, we

might drop the subscript and use
[
γ η

]tr
or [γ : η]tr if it is clear from the context which

basis the coordinates of the point or the group generator refer to. For instance, given

a non-canonical basis B, we may write R = B ·
[
γ η

]tr
or G = B · [γ : η]tr to refer to a

point or a cyclic group with respect to the basis B.

For every supersingular isogeny φ : E1 → E2 of degree A, letMφ,B ∈M2(Z/B/Z) be

the matrix that satisfies

φ(BE1,B) =

[
φ(P ) φ(Q)

]
= BE2,B · Mφ,B,

where A,B are not necessarily coprime prime powers, and BE1,B =

[
P Q

]
. Computing

the image of some point R = BE1,B ·
[
x y

]tr
∈ E1[B] through φ is as follows:

φ(R) = BE2,B · Mφ,B ·

x
y

 .
Note that by definition, the bases BE1,B and BE2,B have the same pairing value

eB(BE1,B) = µB = eB(BE1,B). Hence, the determinant of the matrix Mφ,B is equal

to the degree of φ modulo B, i.e. A (mod B), as shown in the following lemma. This

property will be helpful in our analyses later, and it motivates our choice of canonical

basis as above.

Lemma 12. Let A = 2a and B = 3b and consider an isogeny φ : E → EB of degree B.
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Further let BE,A and BEB ,A be the canonical A-torsion bases of E and EB respectively, and

denote byM the matrix corresponding to the action of φ on E[A]. Then

eA(φ(BE,A)) = eA(BEB ,A)
deg φ = eA(BEB ,A)

detM.

Proof. The first equality follows from the fact that A, the order of the pairing and the

torsion considered, and B, the degree of φ, are coprime. Further, if we let BE,A =

[
P Q

]
,

BEB ,A =

[
P ′ Q′

]
and we writeM =

a c

b d

, then
eA(φ(BE,A)) = eA(φ(P ), φ(Q)) = eA(aP

′ + bQ′, cP ′ + dQ′) = eA(BEB ,A)
ad−bc

by the bilinearity and alternating properties of the Weil pairing.

It is further possible to express the composition of isogenies by multiplication of the

corresponding matrices. Recall that φ : E1 → E2 is an isogeny of degree A with matrix

Mφ,B :=

a c

b d

 expressing its action on E[B]. Let further ψ : E2 → E3 be an isogeny of

degree C andMψ,B :=

e g

f h

 such that ψ(BE2,B) = BE3,B · Mψ,B. Then, we have

M(ψ◦φ),B =Mψ,B · Mφ,B

since, for fixed bases BEi,B =

[
P (i) Q(i)

]
for i ∈ {1, 2, 3}, we have

ψ ◦ φ(BE1,B) = ψ ◦ φ
([
P (1) Q(1)

])
= ψ

[P (2) Q(2)

]a c

b d




= ψ

([
aP (2) + bQ(2) cP (2) + dQ(2)

])
=

[
aψ(P (2)) + bψ(Q(2)) cψ(P (2)) + dψ(Q(2))

]
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= ψ

([
P (2) Q(2)

])
·

a c

b d

 =

[
P (3) Q(3)

]
·

e g

f h

 ·
a c

b d


= BE3,B · Mψ,B · Mφ,B.

The following table summarizes the new notation and its translation to the more

common notation.

New formalism Standard notation

BE,N =
[
P Q

]
〈P,Q〉 = E[N ], eN(P,Q) = µN

R = BE,N ·
[
γ η

]tr
N

R = [γ]P + [η]Q

〈R〉 = [γ : η]trN 〈R = [γ]P + [η]Q〉

φB(BE,A) = BEB ,A · MφB ,A φB(PA) = [a]P ′
A + [b]Q′

A,
φB(QA) = [c]P ′

A + [d]Q′
A,

for some a, b, c, d ∈ Z/AZ where
E[A] = 〈PA, QA〉, EB[A] = 〈P ′

A, Q
′
A〉

kerφB = [1 : β]tr = 〈BE,A ·
[
1 β

]
〉 kerφB = 〈PA + [β]QA〉

kerφ′
A = 〈BEB ,A · MφB ,A ·

[
1 α

]tr〉 kerφ′
A = 〈φB(PA) + [α]φB(QA)〉

(= [a+ αc : b+ αd]tr)

Mφ′A◦φB ,A =Mφ′A,A
· MφB ,A φA′B = φ′

A ◦ φB

Table 3.1: Translation table between the new formalism and older standard notation.

3.3.2 – SIDH

With respect to the above notation, revealing the images of N -torsion points through an

isogeny φ : E1 → E2 is equivalent to revealingMφ,N . In fact, this is exactly what is done

in the compressed version of SIKE [JACCD+20].

Setup. Let A = 2a, B = 3b such that p = ABf − 1 is a prime. Let E0 be a supersingular

elliptic curve defined over Fp2 . The public parameters are p, E0, BE0,A, and BE0,B.

KeyGeneration. As proposed in [KTW22], Alice picks a random integer α ∈ Z/AZ and

computes the A-isogeny φA : E0 → EA of kernel [1 : α]trA together withMφA,B. Her

secret key is α and her public key is (EA,MφA,B). Bob proceeds analogously by picking a
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random integer β ∈ Z/BZ and computing the B-isogeny φB : E0 → EB of kernel [1 : β]trB

together withMφB ,A. His secret key is β and his public key is (EB,MφB ,A).

KeyExchange. Given (EB,MφB ,A), Alice computes the A-isogeny φ′
A : EB → EBA of

kernelMφB ,A · [1 : α]tr. Given (EA,MφA,B), Bob computes the B-isogeny φ′
B : EA → EAB

of kernelMφA,B · [1 : β]tr. The j-invariants jBA and jAB of the curves EBA and EAB

respectively are equal and are then used as the shared secret.

In order to counter some trivial adaptive attacks, Costello, Longa, and Naehrig [CLN16]

suggest the use of the Weil pairing equality

eN(φ(P ), φ(Q)) = eN(P,Q)
deg φ,

where {N, deg φ} = {A,B}, to validate the public keys in SIDH. Since the canonical

N -bases of deg φ-isogenous curves have the same pairing value, the pairing check reduces

to verifying that the determinant of the matrix in a given public key is equal to the degree

of the related secret isogeny. That is, Alice and Bob respectively check that

detMφB ,A = B (mod A) and detMφA,B = A (mod B).

Note that such countermeasure that rely on pairing checks certify the correctness of

one entry, but it potentially leaves two degrees of freedom to play with for the attacker;

this is exploited in the GPST attack.

3.3.3 – GPST adaptive attack on SIDH

In the GPST attack [GPST16], the authors design the following adaptive attack which is

not countered by the above pairing validation method.

Recall that we have fixedA = 2a andB = 3b. We suppose here that Bob is the malicious

attacking party and aims to recover Alice’s static secret key α. The key exchange oracle
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is modeled by a map

O : SSp ×GL2(Z/BZ)× SSp → {0, 1},

where SSp denotes the set of all supersingular elliptic curves defined over Fp2 , defined by

O(E,M, E ′) =


1 if j(E ′) = j(E/M · [1 : α]tr)

0 otherwise
.

The GPST attack is an iterative technique where at each step, modified torsion points

are provided to Alice, or equivalently the oracle O, whose construction utilises the

previously recovered key bits. The oracle’s response then lets Bob deduce the next bit of

Alice’s secret key α.

After having recovered the i least significant bits of α, say Ki = α (mod 2i) where α

is written as α = Ki + 2iαi + 2i+1α′ with αi ∈ {0, 1}, Bob generates a malicious public

key (Ei,Mi) such that

detMi = B (mod A)

and

j(E ′
i) = j(Ei/Mi · [1 : α]tr) if and only if αi = 0

so that

O(Ei,Mi, E
′
i) =


1 if αi = 0

0 otherwise

for some curve E ′
i.

To generate a valid and expedient tuple (Ei,Mi, E
′
i) which can be used as input to the

key exchange oracle, Bob first computes a well-formed public key (EB,MφB ,A) together

with the corresponding shared curve EAB and uses this honest shared secret as a reference

for the oracle queries. For each iterative step of the attack, he then right-multipliesMφB ,A
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by the matrix

Xi = θi

 1 0

−2a−i−1Ki 1 + 2a−i−1

 where θi =
√

(1 + 2a−i−1)−1.

Note here that θi is well-defined for all but the last two key bits; these have to be recovered

by brute force.

The input to the key exchange oracle at the i-th iteration is thus

Ei = EB, Mi =MφB ,A · Xi, E ′
i = EAB.

In particular, since the determinant of Xi is 1 (mod A), ‘scaling’MφB ,A with Xi does not

affect the determinant check performed by Alice for key validation.

Generalizing the GPST attack. The new notational approach simplifies many compu-

tations and reasonings. As an example of this, we present a generalization of the GPST

attack that gives the attacker more flexibility in computing the maliciously-generated

torsion points. This is of independent interest because a thorough analysis of the possible

attacks is an important step in understanding the capabilities of an attacker, and possibly

in developing some countermeasures. While this could be explicitly computed in terms of

the kernel generators, the new notation greatly simplifies the result and gives a concise

argument.

In the original attack [GPST16], the attacker recovers the i-th key bit by applying the

matrix X to the honestly-generated torsion points where X is given by

Xi =

 1 0

−2a−i−1Ki 1 + 2a−i−1

 = I + 2a−i−1

 0 0

−Ki 1


︸ ︷︷ ︸

∆i

,

up to multiplication by some odd scalar to satisfy the pairing condition. This attack
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strategy works because the vector [1 α]tr is in the kernel space of the matrix

 1 0

−2a−i−1Ki+1 1 + 2a−i−1

 ,
which relies on i+1 bits of the secret key. Thus, the vector [1 α]tr is in the kernel space of

∆i if and only if the i-th bit of α is zero, which can be used to bitwise recover the secret

key. Moreover, the attack uses the identity matrix to obtain the same kernel generator as

in the honest case when the vector [1 α]tr is in the kernel space of ∆i.

We can now extend the attack to other matrices with a more generalized form. Firstly,

we want the matrix ∆′ to have the vector [1 α]tr in its kernel spaces. Hence, this property

is satisfied by any matrix of the form

∆′
i =

−xKi x

−yKi y

 ,
where the values x and y can range over any value in Z/2aZ. However, we also want that

the vector [1 α]tr is not in the kernel space of ∆′
i+1 because this allows the attacker to

distinguish zero bits from one bits. If the key α is even, then the value y needs to be odd

to prevent both queries from passing. This means that for the first query, the attacker

needs to pick an odd y to retrieve the parity of α, whereas for the subsequent queries y

can be even if the key is odd. It may also be possible for an attacker to select the values

of x and y in terms of Ki, i.e. x or y are polynomials evaluated at Ki. Secondly, in the

case where the vector [1 α]tr lies in the kernel space of ∆′, the attack does not need to

recompute the same kernel generator as in the honest case. Any odd scalar multiple of it

suffices since the generated kernel is the same. Thus, the identity matrix can be replaced

by λI for any odd value λ.

In summary, a generalized GPST attack can be constructed with any matrix X ′ of the
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form

X ′ = λI + 2a−i−1

−xKi x

−yKi y

 =

λ− xKi2
a−i−1 x2a−i−1

−yKi2
a−i−1 λ+ y2a−i−1

 ,
where λ is an odd integer while x and y can be any integer. Such a matrix has determinant

λ(1 + (y − xKi)2
a−i−1), which is generally different from one. It would thus not pass

the pairing check. However, the matrix X ′ can be scaled by a value θi =
√
1/ detX ′ so

that det(θX ′) = 1. Such a value θi always exists (except for the three highest values of

i1) because the value λ is odd, which ensures an odd determinant of ∆′. Note that the

original GPST attack corresponds to the case where λ = 1, x = 0, and y = 1.

3.3.4 – The FP countermeasure and HealSIDH

We now re-introduce the Fouotsa–Petit (FP) countermeasure from [FP21] using the

formalised notation specified in Section 3.3.1.

Let E0, A,B and p be the public parameters of an SIDH instance, and let BE0,A and

BE0,B be the canonically generated torsion bases needed for the protocol execution. EA

and MφA,B represent Alice’s public key. Suppose that Alice uses isogenies of degree

A = 2a and Bob uses isogenies of degree B = 3b for some integers a and b. In SIDH,

Bob computes a cyclic isogeny φB : E0 → EB of degree B as well as the matrixMφB ,A

describing its action on the A-torsion of E0. The torsion point informationM provided

by Bob is said to be correct if there exists λ ∈ (Z/A2Z)× such that AM = λ · A · MφB ,A2.

Note that in this definition, the correctness mostly concerns the A-torsion points.

As a countermeasure to the GPST adaptive attack on SIDH, Fouotsa and Petit [FP21,

§3] suggest that Bob reveals the action of his secret isogenies φB and φ′
B on the A2-torsion

groups of the respective starting curve. Thus, Alice can verify that

[A] ◦ φB = φ̂′
A ◦ φ

′
B ◦ φA (3.1)

1In this case, the remaining bits of the secret key have to be brute-forced. The same issue arises in the
original GPST attack.
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on E0[A
2]. The authors rely on the equation

φ′
A ◦ φB = φ′

B ◦ φA on E0[A
2] (3.2)

to design their countermeasure.

Concretely, the FP countermeasure is based on the following theorem which can

be obtained from rewriting [FP21, Theorem 2] with the notation we introduced in

Section 3.3.1.

Theorem 3 ([FP21, Theorem 2]). Let p = A2B2f − 1 and let E0 be a supersingular elliptic

curve defined over Fp2 . Let (EB,MφB ,A2) be Bob’s public key. Then Bob’s torsion points are

correct if eA2(BEB ,A2 · MφB ,A2) = eA2(BE0,A2)B andMφ′B ,A
2 · MφA,A2 =Mφ′A,A

2 · MφB ,A2.

The authors further design HealSIDH, a variant of SIDH which integrates their counter-

measure. We will show in Section 3.4 that Theorem 3 does not hold, and that HealSIDH

is vulnerable to adaptive attacks. The HealSIDH key exchange is as follows.

Setup. Let p = A2B2f − 1 be a prime. Let E0 be a random supersingular elliptic curve

with unknown endomorphism ring defined over Fp2 . The public parameters are p, E0, A2

and B2 with BE0,A2 and BE0,B2 implicitly defined.

KeyGeneration. Alice picks a random integer α ∈ Z/AZ and computes the A-isogeny

φA : E0 → EA of kernel [A : α · A]trA2 together withMφA,B2 andMφA,A2. Her secret key

is α (the matrixMφA,A2 may be precomputed in KeyGeneration for efficiency reasons)

and her public key is (EA,MφA,B2). Bob proceeds similarly, he picks a random integer

β ∈ Z/BZ and computes theB-isogeny φB : E0 → EB of kernel [B : β ·B]trB2 together with

MφB ,A2 andMφB ,B2. His secret key is (β,MφB ,B2) and his public key is (EB,MφB ,A2).

Interaction. Given (EB,MφB ,A2), Alice computes the A-isogeny φ′
A : EB → EBA of kernel

MφB ,A2 · [A : α ·A]tr together withMφ′A,B
2 andMφ′A,A

2 . She sendsMφ′A,B
2 to Bob. Given

(EA,MφA,B2), Bob computes the B-isogeny φ′
B : EA → EAB of kernelMφA,B2 · [B : β ·B]tr

together withMφ′B ,A
2 andMφ′B ,B

2. He sendsMφ′B ,A
2 to Alice.
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KeyExchangecompletion. GivenMφB ,A2 andMφ′B ,A
2 , Alice checks that the determinant of

the received values is correct, i.e. detMφB ,A2 ≡ B (mod A2), and she checks that

Mφ′B ,A
2 · MφA,A2 =Mφ′A,A

2 · MφB ,A2

to verify Eq. (3.2). If the check is successful, the j-invariant jBA of the curve EBA

is her shared secret. If not, she aborts. GivenMφA,B2 andMφ′A,B
2, Bob checks that

detMφA,B2 ≡ A (mod B2) and

Mφ′A,B
2 · MφB ,B2 =Mφ′B ,B

2 · MφA,B2 .

If the check is successful, the j-invariant jAB of the curve EBA is his shared secret. If not,

he aborts.

3.4 — Breaking HealSIDH

In this section, we first present a simple attack that allows a malicious adversary to

recover the largest power-of-two 2e dividing Alice’s secret α. The attack uses a GPST-style

approach, and it can easily be prevented by some new countermeasures. Then, we extend

the GPST approach to provide a polynomial-time adaptive attack against the Fouotsa–Petit

validation method. This translates to an active key-recovery attack on HealSIDH, SHealS

and HealS.

3.4.1 – Defining the HealSIDH key exchange oracle

Let p = A2B2f − 1 where A = 2a and B = 3b, and let E0 be a random supersingular

elliptic curve with unknown endomorphism ring defined over Fp2 . Let (EB,M) be Bob’s

public key and letM′ be the action of φ′
B on EA[A2], thusM′ is a matrix in GL2(Z/A2Z).
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The validation in HealSIDH consists of verifying that

detM = B = detM′ (mod A2) (3.3)

and

M′ · MφA,A2 =Mφ′A,A
2 · M. (3.4)

Hence, the HealSIDH key exchange oracle is defined as follows.

O(EB,M,M′, E ′) =

 1 if E ′ = EBA,Eq. (3.3) and Eq. (3.4) hold

0 otherwise

In SIDH, the oracle is constructed by examining whether the two parties obtain the same

shared secret. This requires further interactions between Alice and Bob, but in HealSIDH

Alice explicitly aborts if the validation procedure fails. The proposed oracle can then be

immediately realized.

An honest Bob would produce M = MφB ,A and M′ = Mφ′B ,A
while a malicious

attacker could return M = MφB ,A · X and M′ = Mφ′B ,A
· X ′, i.e. return modified

torsion points information obtained by applying the matrices X and X ′ in GL2(Z) to the

honestly-generated ones. In this case, Eq. (3.3) is equivalent to

detX = 1 = detX ′ (mod A). (3.5)

Eq. (3.4) can then be developed as follows.

M′ · MφA,A = Mφ′A,A
· M

⇔ Mφ′B ,A
· X ′ · MφA,A = Mφ′A,A

· MφB ,A · X

⇔ Mφ′B ,A
· X ′ · MφA,A = Mφ′B ,A

· MφA,A · X

⇔ X ′ · MφA,A = MφA,A · X , (3.6)
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where we can replaceMφ′B ,A
·MφA,A withMφ′A,A

·MφB ,A because of the commutativity of

the SIDH diagram. The matrixMφ′B ,A
also represents the action of an isogeny on torsion

points whose order is coprime with the isogeny degree, hence the matrix is invertible.

In the remainder of this paper, our attack will be using matrices X and X ′ such that

A · X = A · X ′ = I (mod A2). As a consequence, the kernel of the isogeny φ′
A is always

the correct one because the torsion points used to compute the kernel are scaled by A.

Thus, the curve E ′ used in the oracle query also satisfies E ′ = EBA. We can therefore

simplify the oracle as follows.

Os(X ,X ′) =

 1 if Eq. (3.5) and Eq. (3.6) hold

0 otherwise

3.4.2 – Recovering the power of two diving α

A kernel generator of Alice’s isogeny is of the form [A]P+[α·A]Q, where BE0,A2 =

[
P Q

]
.

Hence [A]φA(P ) = [−α · A]φA(Q). That is, the matrixMφA,A2 of φA on E0[A
2] is of the

form

MφA,A2 =

e1 e2

f1 f2

 =

−αe2 + Ax e2

−αf2 + Ay f2

 . (3.7)

Let 1 ≤ i ≤ a be an integer. To determine whether α is divisible by 2i or not, Bob sets

his public key to be (EB,Mi) where

Mi =MφB ,A2 · Xi with Xi =

1 22a−i

0 1


and he honestly reveals the action of φ′

B on EA[A2], that isM′
i =Mφ′B ,A

2 (or equivalently,

X ′
i = I).
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Clearly, detXi = 1 = detX ′
i , hence Eq. (3.5) holds. Moreover,

MφA,A2 · Xi =

−αe2 + Ax e2

−αf2 + Ay f2

 ·
1 22a−i

0 1

 =

−αe2 + Ax e2 − 22a−iαe2

−αf2 + Ay f2 − 22a−iαf2


Since either e2 or f2 is invertible, then we have that

−αe2 + Ax e2

−αf2 + Ay f2

 =

−αe2 + Ax e2 − 22a−iαe2

−αf2 + Ay f2 − 22a−iαf2

 iff α (mod 2i) ≡ 0.

That is,MφA,A2 =MφA,A2 ·Xi if and only if α is divisible by 2i. We hence getOs(Xi,X ′
i ) = 1

if and only if α is divisible by 2i.

An easy repair. A simple countermeasure to the above attack would consist of setting

Alice’s secret α to be an odd integer. Since the attack recovers the largest power of 2

dividing α, it is then impossible to apply it. Note that a similar attack applies when using

isogenies with degrees equal to a power of three. Hence, this countermeasure would

extend to setting the corresponding secret β to be an integer coprime to 3.

We now show that HealSIDH and the FP countermeasures are vulnerable to a full

adaptive attack which cannot be prevented by these countermeasures.

3.4.3 – A complete key-recovery attack

Attack strategy. First, we note that recovering the matrixMφA,A is sufficient to recover

the secret key α, becauseMφA,A · BEA,4a (where BEA,4a is a canonical basis on EA) gives

the image of PA and QA, which form the canonical basis BE0,4a under the isogeny φA. The

point QA is always linearly independent (modulo 2a) of the generator of kerφA because

it is computed as [A](PA + [α]QA), and thus its scaled image [A]φA(QA) generates the

kernel of the dual isogeny φ̂A. More precisely, if we use the same notation as [FP21] and
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write the matrixMφA,A as

MφA,A =

 e1 e2

f1 f2

 ,
the kernel of the dual isogeny φ̂A is generated by [A]BEA,4a [e2 f2]

tr. Either e2 or f2 is

invertible, otherwise they would both be even resulting in the dual isogeny having an

incorrect degree. Hence, we have that the kernel of φ̂A is generated by either

[A]BEA,A2

 e2/f2

1

 or [A]BEA,4a

 1

f2/e2

 .
Write α̂ for f2/e2 (or e2/f2 in the other case). The goal of the attack is to devise oracle

queries such that the output of the oracle reveals one bit of α̂. After recovering the entire

value α̂, the attacker can compute the isogeny φ̂A and derive its dual φA. Knowing the

isogeny φA, it is straightforward to extract the secret key α.

Building the attack. We present an attack where Bob’s public key is honestly generated

but the action of φ′
B on the torsion group EA[A2] is malicious, thus the matrix X is the

identity while X ′ is not. We show it is possible to cheat only on the validation data and

still obtain meaningful information about the secret key α. This also simplifies the attack

because we are guaranteed that Alice’s isogeny φ′
A is always the ‘correct’ one, i.e. the

same isogeny she would have computed if Bob had been honest.

Let us start with Eq. (3.6), and assume X = I. We have that

X ′

 e1 e2

f1 f2

 =

 e1 e2

f1 f2

 ,
and thus the vector [e2 f2]tr is an eigenvector of X ′ with eigenvalue 1. Moreover, the

matrix X ′ must have unitary determinant, thus both eigenvalues of X ′ are λ1 = λ2 = 1.

We also do not want the matrix X ′ to be the identity because otherwise X = X ′ = I
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which corresponds to the case where Bob is honest. Hence, any suitable candidate for X ′

is of the form

X ′ =

 a b

c d


−1  1 β

0 1


 a b

c d

 ,
where the matrix [ a bc d ] is an invertible matrix. Moreover, since we want to select specific

bits of the secret α̂, let us fix β to be a power of two 2`. The previous equation implies

that the matrix X ′ is of the form

X ′ =

 1 + 2`cd 2`d2

−2`c2 1− 2`cd

 .
Since the vector [e2 f2]tr is an eigenvector of X ′, we have that

e2 + 2`cde2 + 2`d2f2 = e2 and − 2`c2e2 + f2 − 2`cdf2 = f2.

Remark 1. Note that since X ′ is of the form X ′ = I+2`X0 and
[
e1 f1

]tr
= −α

[
e2 f2

]tr
+

2`
[
x y

]tr
(see Eq. (3.7)), then every time X ′ ·

[
e2 f2

]tr
=

[
e2 f2

]tr
, we also have X ′ ·[

e1 f1

]tr
=

[
e1 f1

]tr
.

Thus, if we assume that f2 is invertible, the previous equations are always satisfied if

the following equation holds:

(
2`
e2
f2

)
c = −2`d mod A2. (3.8)

Hence, an attacker can craft values i, c, d to recover the value e2/f2 bit by bit. In

particular, write Ki for the recovered lower i bits of e2/f2 (with possibly i = 0). Then, an

attacker can recover the i+ 1-th bit by setting

` = a− 1− i, c = 1, d = −Ki,
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i.e. the matrix X ′ is

X ′ =

 1 + 2a−1−iKi 2a−1−iK2
i

−2a−1−i 1 + 2a−1−iKi

 .
If the points created with such values i, c, d pass the validation, then we have that

2n−1−`e2/f2 = 2n−1−`K`. Hence, we derive that K`+1 = K` and the ` + 1-th bit of

e2/f2 is zero. If the validation does not pass, the `+ 1-th bit is one and K`+1 = K` + 2`.

If f2 is not invertible, then e2 must be, and the attacker can progressively recover the

value e2/f2. Eq. (3.8) thus becomes

(
2i
e2
f2

)
d = −2ic,

which means the attack can proceed as before with simply swapping the values for c and

d, i.e. the matrix X ′ is transposed. Lastly, the attacker can recognize whether e2 or f2 is

invertible by assuming that f2 is invertible and trying to extract the first bit. This means

that the attacker can make two oracle queries with X = I and matrices X ′ given by

X ′ =

 1 0

−2n−1 1

 , and X ′ =

 1 + 2n−1 2n−1

−2n−1 1 + 2n−1

 .
These correspond to setting i = n − 1, c = 1 and K1 = 0 (for the left matrix) and

K1 = 1 (for the right matrix). If either query returns true, then f2 is invertible, otherwise

e2 is invertible. The complete attack is summarized in Algorithm 1.

3.5 — Failed countermeasures and further discussion

In this section, we relate our attack to that of Galbraith and Lai which independently

developed an attack on HealSIDH. We also describe some countermeasure ideas to prevent

both attacks. We show that these countermeasures are also vulnerable to a more generic

adaptive attack. This suggests that the approach of HealSIDH-like countermeasures to
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Algorithm 1 Our attack on HealSIDH.
1: Compute EB and EBA as in honest HealSIDH

2: X ′
0 ←

(
1 0

−2a−1 1

)
. Extract whether e2 or f2 is invertible

3: X ′
1 ←

(
1 + 2a−1 2a−1

−2a−1 1− 2a−1

)
4: sel← O(EB, I,X ′

0, EBA) or O(EB, I,X ′
1, EBA) . And store it in sel

5: K ← 0
6: for i in [0, . . . , n− 1] do . The iterative step of the attack
7: if sel then
8: c← 1; d← K;
9: else

10: c← K; d← 1;

11: X ′ ←
(
1 + 2a−i−1cd 2a−i−1d2

−2a−i−1c2 1− 2a−i−1cd

)
12: if O(EB, I,X ′, EBA) then . The oracle queries
13: K ← K + 2i

14: if sel then . Extract α from the kernel of the dual isogeny
15: S ← 2aBEA,4a [K 1]tr

16: else
17: S ← 2aBEA,4a [1 K]tr

18: Compute φ̂A with kernel S
19: Compute the dual ˆ̂φA = φA
20: Express a generator of kerφA as 2aBE0,4a [1 α]

tr

21: return α

GPST attacks is likely to be vulnerable in general. We end this section with a discussion

on the translation of theses countermeasures and attacks to the genus-two setting.

3.5.1 – Comparison with the Galbraith–Lai attack

Wediscuss the similarities and differences between our attack and the Galbraith-Lai [GL22]

attack. Using the HealSIDH key exchange oracle introduced in section 3.4.1, the Galbraith–

Lai attack can be summarized as follows:

1. Recover the largest power 2j of two dividing the secret integer α. You may use the

the attack described in Section 3.4.2 or that described in [GL22].

2. Recursively recover the remaining bits of α by querying the key exchange oracle
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with

X =

 1 + 22a−i+j−1 − α̂l22a−i−1

−αl22a−i+j−1 1 + 22a−i+j−1

 and X ′ = I

where αl = α mod 2i−j is the previously recovered part of α.

Both attacks are adaptive and recover the secret isogeny after O(log p) queries to

the key exchange oracle. They are, in some sense, orthogonal to each other, as the

Galbraith-Lai attack directly recovers the secret α used in the generation of the kernel of

the secret isogeny φA, while ours recovers the corresponding secret integer for a kernel

generator of the dual isogeny φ̂A instead, that is e2/f2 or f2/e2 depending on whether f2

or e2 is invertible. Moreover, our attack only modifies X ′, while the Galbraith–Lai attack

only modifies X . Despite these similarities, they turn out to be quite distinct. In fact, we

have noticed that one could counter one without automatically countering the other. This

suggests the countermeasures discussed in the next section.

3.5.2 – An attempt at better countermeasures

One could try to counter the attack presented in Section 3.4 by basing the validation

method in HealSIDH on Eq. (3.1) instead of Eq. (3.2). Suppose that the validation consists

in verifying that the following equation holds:

[A]φB = φ̂′
A ◦ φ

′
B ◦ φA.

In terms of matrices, this translates to

AM =M∗
ψ′
A,A
· M′ · MφA,A, (3.9)

whereM∗
ψ′
A,A

=M
ψ̂′
A,A

is the matrix associated with ψ′
A, which is also the pseudo-inverse

ofMψ′
A,A

, i.e. their product is the identity matrix scaled by A.2 Alternatively, it is possible
2We deal with pseudo-inverses because the matrixMψ′

A,A
is not invertible, since it represents the action

of an isogeny whose degree is not coprime with the order of the torsion basis.
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to consider the following equation:

φ′
A ◦ φB ◦ φ̂A = [A]φ′

B

which leads to the following matrix check:

AM′ =MψA,A · M ·M∗
φA,A

. (3.10)

Translating the analysis made in Section 3.4.1 in the context of Eq. (3.9), the validation

checks that both the determinants of X and X ′ are 1 and that

M∗
φA,A
· X ′ · MφA,A = AX . (3.11)

In the context of Eq. (3.10), the validation checks that both the determinants of X and

X ′ are 1 and that

MφA,A · X ·M∗
φA,A

= AX ′, (3.12)

Clearly, using Eq. (3.11) in the key validation would counter the Galbraith-Lai [GL22]

attack (since it implies AI = AX because X ′ = I), while using Eq. (3.12) would counter

the attack presented in Section 3.4.2 (since it implies AX ′ = AI because X = I).

What is less clear is whether using Eq. (3.11) in the key validation counters the

attack presented in Section 3.4, and whether using Eq. (3.12) counters that of Galbraith-

Lai [GL22]. Experimental evidence suggests so. Nevertheless, in the following section,

we sketch a general adaptive attack on this countermeasure idea where Eq. (3.11) is used

in the validation. A similar attack applies when Eq. (3.12) is used instead.

3.5.3 – Extending the attack

We now demonstrate that the potential repairs suggested in the previous section, even

though they defeat the attack in Section 3.4 and in [GL22], are still vulnerable to adaptive
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attacks.

Firstly, since φ̂A ◦ φA = [A], then

Mφ̂A,A2 · MφA,A2 = A · I.

That is,Mφ̂A,A2 is a pseudo-inverseM∗
φA,A2 ofMφA,A2. Moreover, we can writeMφA,A2

as

MφA,A2 = P ·

 1 0

0 A

 · P−1,

where P is an invertible matrix. In this case, we have that

Mφ̂A,A2 =M∗
φA,A2 = P ·

 A 0

0 1

 · P−1.

Suppose that the validation method uses Eq. (3.11). We set X = I, as in the previous

attack, and write

X ′ = I + 22a−i∆.

Then Eq. (3.11) translates to

P ·

 A 0

0 1

 · P−1 · X ′ · P ·

 1 0

0 A

 · P−1 ≡ AI (mod A2),

that is  A 0

0 1

 · P−1 · X ′ · P ·

 1 0

0 A

 ≡ AI (mod A2).

Plugging in X ′ = I + 2i∆, we get

2i

 A 0

0 1

 · P−1 ·∆ · P ·

 1 0

0 A

 ≡ 0 (mod A2).
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At this stage, it is not clear yet whether an attack that recovers a bit of the secret

per interaction is possible. Instead, we consider a generalized attack where the attacker

mantains a set K` of possible partial keys. Each K ∈ K` passes validation for the first `

bits, i.e. when the matrix ∆ is scaled by 2n−`−1. At each step, the attacker queries the

oracle with K and K + 2` with i = n− `− 2, i.e. testing the `+ 1 bits. Any new key that

passes validation is then added to the set K`+1. Eventually, when the attacker recovers

Kn, i.e. the set of possible full keys, they can simply test each key to find the correct one.

The attacker can then build an attack using matrices ∆ of the form

∆ =

 −1 K∗2 − 2K∗

1 1

 ,
where K∗ = K or K∗ = K + 2`. While the number of possible solutions, i.e. the size of

K doubles at some stages, experimentally the number of doubling remains limited, and

the attack appears to be linear in the security parameter. In particular, we ran the attack

against setups with 13 bits, 20 bits and 40 bits of security for 1000 repetitions each.

We obtained that the number of average oracle queries scales linearly in the security

parameter.

Note that the attack is redundant and makes more oracle queries than required, since

2n−`−1(K2 − 2K) = 2n−`−1((K + 2`)2 − 2(K + 2`)) (mod 2)n

Thus, one may hope that it is possible to reduce the number of oracle queries required to

recover the secret key, and possibly reduce (or avoid altogether) the number of partial

key candidates. Further work is required to assess and develop these possibilities, but the

attack outlined in this paragraph shows that the countermeasures of Section 3.5.2 are

unlikely to offer a solution.
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3.5.4 – Perspectives

Finding key validation methods for SIDH keys seems to remain a difficult problem. In

[UJ18], it is shown that the problem of validating an SIDH public key can be reduced

to more standard problems in isogeny-based cryptography that are considered to be

hard. This suggests that it is probably impossible to devise new countermeasures without

revealing any additional information. Hence, new countermeasures will necessarily

require the two parties to exchange additional information.

The main difficulty in developing new countermeasures of this type seems to be the

fact that the validation procedure relies on some secret (and static) value, possibly the

secret key α. If not, the attacker can most likely cheat by knowing how the validation is

computed. However, the attacker is free to manipulate the torsion information. There is

a close connection between torsion points that have been manipulated by adding points

of order 2i and the lower i bits of the secret. It seems that most possible countermeasures

would still be vulnerable to attacks where the attacker recovers the secret information

used to validate the public key bit by bit. Once that secret is recovered, even if different

from the secret key, the attacker can probably cheat since they know the validation secret.

Thus, any successful countermeasure would necessarily need to break this connection

in such a way that manipulating the torsion points with points of order 2i would affect

more bits of the secret value than just the lower i bits.

3.6 — Generalizing to genus two

There have recently been efforts to translate the SIDH protocol which uses isogenies of

elliptic curves, i.e. principally polarised supersingular abelian varieties of dimension one,

into a higher-dimensional setting. In this section, we propose a translation of HealSIDH to

the genus-two setting, and we discuss the difficulties in adapting the attack on HealSIDH

to the newly proposed protocol. This may give hope that a genus-two version of HealSIDH

is more resistant against adaptive attacks.
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The Genus-Two SIDH (G2SIDH) key exchange was introduced by Flynn and Ti [FT19]

and is a natural generalisation using (2, 2)- and (3, 3)-isogenies between principally

polarised supersingular abelian surfaces. The most current version of G2SIDH, however,

uses only a subset of these varieties; in particular, Castryck, Decru, and Smith [CDS20]

restrict the varieties considered to the principally polarised superspecial abelian surfaces

(PPSSASs), and Kunzweiler, Ti, and Weitkämper [KTW22] suggest the use of symplectic

torsion bases as well as a restriction of the keyspace to improve efficiency.

3.6.1 – G2SIDH

We give a brief description of the key exchange scheme here using the formalised notation

introduced above. The protocol is very similar to the one-dimensional, ‘standard’ SIDH

scheme.

Consider a prime of the form p = 2a ·3b ·f−1where 2eA ≈ 3eB and f is a small cofactor

not divisible by 2 or 3. A starting PPSSAS J0 is then chosen by taking a random walk in the

(2, 2)-isogeny graph originating from the Jacobian of the hyperelliptic curve defined by

y2 = x6+1 over Fp2 , and torsion bases BJ0,2a of J0[2a] and BJ0,3b of J0[3b] are fixed with all

individual points defined over Fp2 . Note here that J0[N ] ∼= (Z/NZ)4 for some prime power

N . These torsion bases are required to be symplectic with respect to the Weil pairing for

the relevant torsion subgroup. This means for theN -torsion if BJ0,N =

[
P1 P2 Q1 Q2

]
,

we require eN(P1, P2) = eN(Q1, Q2) = µ0
N = 1 and eN(Pi, Qj) = µ

δij
N for µN a primitive

N -th root of unity, δij = 1 if i = j, and δij = 0 if i 6= j.

To generate a secret key, each of the parties chooses a secret maximal isotropic

subgroup G of their respective J0-torsion which then corresponds to an isogeny φN with

kernel G and codomain JN . Focusing on the restricted keyspace suggested in [KTW22],

this kernel can be determined by two generators of full order in the torsion subgroup,

given as linear combinations of the symplectic basis points.

Setup. Let A = 2a, B = 3a such that p = ABf − 1 is a prime. Let J0 be a superspecial

abelian surface defined over Fp2 . The public parameters are p, J0, A and B, so that each
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party can compute canonically generated symplectic torsion bases BJ0,A, and BJ0,B. While

efficiently generating a symplectic base remains an open problem, [KTW22, Algorithm

1] provides a possibly inefficient method to do so. Since such bases are generated once

as part of the protocol parameters, the inefficiency of the method does not affect the

runtime of the protocol.

KeyGeneration. Alice picks three random integers 0 ≤ α1, α2, α3 ≤ 2a − 1 and computes

the (A,A)-isogeny φA : J0 → JA of kernel given by

A :=



1 0

0 1

α1 α2

α2 α3


together withMφA,B, defined analogously to the matrices defined in Section 3.3. Her

secret key is A and her public key is (JA,MφA,B). Bob proceeds analogously by picking

random integers β1, β2 and β3 from {0, . . . , 3b − 1} and computing the B-isogeny φB :

J0 → JB of kernel generated by

B :=



1 0

0 1

β1 β2

β2 β3


together withMφB ,A. His secret key is B and his public key is (JB,MφB ,A).

KeyExchange. Given (JB,MφB ,A), Alice computes the (A,A)-isogeny φ′
A : JB → JBA of

kernel generated byMφB ,A · A. Given (JA,MφA,B), Bob computes the (B,B)-isogeny

φ′
B : JA → JAB of kernel generated byMφA,B · B. The abelian surfaces JAB and JBA are

isomorphic as principally polarised abelian surfaces and hence their Igusa isomorphism

invariants can be used as the shared secret.

Like its genus-one counterpart, G2SIDH is also vulnerable to GPST-style adaptive

attacks, as shown by Kunzweiler, Ti, and Weitkämper [KTW22].
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3.6.2 – HealSIDH with PPSSAS

As in the elliptic curve SIDH setting, it is possible to introduce a second round to the

key exchange protocol which allows both parties to verify the correctness of the other’s

previously provided public key, i.e. torsion point information, via checking Eq. (3.2).

The genus-two variant of HealSIDH thus works as follows:

Setup. Let A = 2a, B = 3a such that p = A2B2f − 1 is a prime. Let J0 be a principally

polarised superspecial abelian surface defined over Fp2 . The public parameters are p, J0,

as well as A and B such that canonically generated symplectic torsion bases BJ0,A2, and

BJ0,B2 can be computed. As in the G2SIDH cases, such bases can be computed, as part of

the parameter generation for the protocol, via [KTW22, Algorithm 1].

KeyGeneration. Alice chooses her secret scalars as in Section 3.6.1 but uses an altered

matrix A =

2a 0 2aα1 2aα2

0 2a 2aα2 2aα3


T

to give her kernel generators. She also computes the

matricesMφA,B2 andMφA,A2 . Bob proceeds analogously to find his secret matrix B and

compute φB : J0 → JB,MφB ,A2 andMφB ,B2 .

Interaction. After receiving Bob’s public key (JB,MφB ,A2), Alice can compute the 2a-

isogeny φ′
A : JB → JBA with kernel given byMφB ,A2 ·A together with the related matrices

Mφ′A,B
2 andMφ′A,A

2, of which she sendsMφ′A,B
2 to Bob. Bob proceeds analogously to

obtain JAB,Mφ′B ,A
2 andMφ′B ,B

2. He sendsMφ′B ,A
2 to Alice.

KeyExchangecompletion. Upon receiving both matricesMφB ,A2 andMφ′B ,A
2 from Bob,

Alice first checks whether both produce symplectic bases on JB[A2] and JAB[A2] with

respect to the correct primitive A2-th root, say µdegφBA2 = µ
degφ′B
A2 = µBA2 , respectively. Alice

further confirms that the equalityMφ′B ,A
2 · MφA,A2 = Mφ′A,A

2 · MφB ,A2 holds. If both

checks are successful, Alice uses the isomorphism invariants of JBA as the shared secret.

Bob proceeds analogously.

Note here that the new kernel generators given by A and B do generate valid maximal

A- and B-isotropic subgroups of the A- and B-torsion of J0, respectively, if we consider

88



the bases obtained via A · BJ0,A2 and B · BJ0,B2 to be the canonical symplectic bases of

J0[A] and J0[B], respectively.

It is possible to generalise some of the attack strategy from Section 3.4. For example,

it is possible to define a key exchange oracle in much the same way as for the elliptic

curve HealSIDH case. To comply with the technical detail the additional dimension adds,

this could be formulated as

O(JB,M,M′, J ′) = 1⇐⇒


J ′ ∼= JBA,

M,M′ define symplectic bases of JB[A2], J ′[A2],

M′ · MφA,A2 =Mφ′A,A
2 · M

and O(JB,M,M′, J ′) = 0 otherwise.

Note here that both the second and third condition for the oracle to output 1 complicate

finding matrices X ,X ′ ∈ GL4(Z/A2Z) to manipulate Bob’s torsion point information with.

Passing the second condition, i.e. that M and M′ define symplectic bases of JB[A2]

and J ′[A2] respectively, when the honestly generated matrices are transformed using X

and X ′, requires the matrices X and X ′ to correspond to symplectic transformations.

Unfortunately, making this explicit requires the matrices X and X ′ to satisfy further

conditions modulo A2 since having determinant equal to 1 is not a sufficient condition for

4× 4 matrices to be symplectic. In particular, we can fix a non-singular, skew-symmetric

matrix Ω, and we then require X and X ′ to fulfill

X TΩX = Ω and (X ′)TΩX ′ = Ω for Ω =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


.

Satisfying the third oracle condition requires analogous reasoning to the genus-one

case where we equivalently require the equality X ′ · MφA,A2 = MφA,A2 · X to hold.
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However, it is not possible to define and recover a ratio α̂ due to the larger matrix size and

since the choice of admissible symplectic matrices makes it harder to target individual

entries inMφA,A2 for recovery. Furthermore, learning the image of a single (possibly

specific) A2-torsion point under the isogeny φA does not provide enough information for

an attacker to reconstruct the original isogenies since the involved kernels are of rank at

least two when PPSSAS are used.

We leave overcoming these technical issues and finding explicit matrices X and X ′

launching an attack on genus-two HealSIDH for future work.
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Chapter 4

Cryptanalysis of an oblivious PRF from
supersingular isogenies

If you try and take a cat apart to see how it works, the first
thing you have on your hands is a non-working cat.

— D. Adams, impromptu speech at Digital Biota
Conference

This chapter is a verbatim reproduction of the following paper:

Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio Sanso.

“Cryptanalysis of an Oblivious PRF from Supersingular Isogenies”. In: ASIACRYPT 2021,

Part I. ed. by Mehdi Tibouchi and Huaxiong Wang. Vol. 13090. LNCS. Springer, Heidel-

berg, Dec. 2021, pp. 160–184. doi: 10.1007/978-3-030-92062-3_6

I contributed to the development of the proposed attacks and their implementation.

Abstract: We cryptanalyse the SIDH-based oblivious pseudorandom function from

supersingular isogenies proposed at Asiacrypt’20 by Boneh, Kogan and Woo. To this

end, we give an attack on an assumption, the auxiliary one-more assumption, that was

introduced by Boneh et al. and we show that this leads to an attack on the oblivious PRF

itself. The attack breaks the pseudorandomness as it allows adversaries to evaluate the

OPRF without further interactions with the server after some initial OPRF evaluations
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and some offline computations. More specifically, we first propose a polynomial-time

attack. Then, we argue it is easy to change the OPRF protocol to include some counter-

measures, and present a second subexponential attack that succeeds in the presence of

said countermeasures. Both attacks break the security parameters suggested by Boneh et

al. Furthermore, we provide a proof of concept implementation as well as some timings

of our attack. Finally, we examine the generation of one of the OPRF parameters and

argue that a trusted third party is needed to guarantee provable security.

4.1 — Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a client

and a server that computes a pseudorandom function (PRF) on a client’s input with the

server’s key. At the end, the server does not learn anything about the client’s input or the

output of the function and the client learns the evaluation of the OPRF but nothing about

the server’s key. In particular, a client should not be able to compute the OPRF on any

input without the server’s participation.

Moreover, a verifiable oblivious pseudo random function (VOPRF) is an OPRF, where

a server commits to some key and the client is ensured that the server used this key to

evaluate the OPRF. In particular, the client is guaranteed that a server does not change

their secret key across different executions of the protocol.

Oblivious pseudorandom functions are an important building block in many cryp-

tographic applications. They can be used for private set intersection [JL09], which

in turn has many applications such as private contact discovery for messaging ser-

vices [DRRT18] or checking for compromised credentials [LPASC+19]. Further ap-

plications of (V)OPRFs include password-authenticated key exchange [JKX18], password-

management systems [ECSJR15], adaptive oblivious transfer [JL09], password-protected
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secret sharing [JKK14] and privacy-preserving CAPTCHA systems [DGSTV18].

Apart from their theoretical relevance in cryptography, OPRFs have had significant

real-world impact recently. The password-authenticated key exchange OPAQUE [JKX18]

which is built on an OPRF is intended for use in TLS 1.3 [SKFB21].

The privacy-preserving authorisation mechanism known as Privacy Pass by Davidson et

al. [DGSTV18] is also based entirely on the security of a VOPRF. Privacy Pass is currently

used at scale by Cloudflare. There is an ongoing effort to standardise OPRFs at the Crypto

Forum Research Group (CFRG) [DSW19].

Generic techniques from two-party computation and zero-knowledge proofs can be

used to construct verifiable OPRFs. However, the resulting protocols might be inefficient.

Therefore, all of the real-world use-cases of (V)OPRFs are currently instantiated with

performant (V)OPRFs which are based on classical security assumptions. Practical con-

structions are currently based either on the hardness of the decisional Diffie-Hellman

problem, called DH-OPRF [JKK14], or they are derived from RSA blind signatures [Cha82;

DSW19].

For quantum-secure OPRFs, there are only few proposals. Indeed, only three such

solutions appear in the literature to date. In 2019, Albrecht et al. proposed a lattice-based

VOPRF [ADDS21] based on the ring learning with errors problem and the short integer

solution problem in one dimension. Seres et al. constructed an OPRF based on the

shifted Legendre symbol problem [SHB21] and Boneh et al. presented two isogeny-based

(V)OPRFs at ASIACRYPT 2020 [BKW20].

Isogeny-based cryptography is one of the branches of post-quantum cryptography that

are currently being explored. The particularly small key sizes required by isogeny-based

cryptosystems make them very attractive in some areas of information security. Isogeny-

based cryptography was first proposed by Couveignes in 1997 [Cou06]. However, his ideas

were not published at the time and they were independently rediscovered by Rostovtsev

and Stolbunov [RS06]. The idea of Couveignes and Rostovtsev-Stolbunov (CRS) was to

build a Diffie-Hellman type key exchange using the class group of the endomorphism
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ring of ordinary elliptic curves. However, neither of the suggested schemes was efficient

enough to be considered practical. Meanwhile, supersingular elliptic curves were first

used in cryptography by Charles, Lauter and Goren [CLG09] to build a hash function.

Jao and De Feo took a different approach to isogeny-based cryptography when they

introduced the supersingular isogeny Diffie-Hellman (SIDH) key exchange [JD11]. Instead

of computing class group actions as in the case of CRS, Jao and De Feo use the following

observation. Two subgroups of an elliptic curve of coprime cardinality are only intersecting

at the point at infinity. Independent of the order in which two such subgroups are divided

out of an elliptic curve, the resulting curve will be equal up to isomorphism. The only

isogeny-based cryptosystem submitted to NIST’s ongoing post-quantum standardization

process is the SIDH-based candidate SIKE [JACCD+20] which has been selected as one

of the alternate finalists.

Later, the idea of CRS-type schemes was resurrected, when Castryck et al. adapted

it to supersingular elliptic curves and managed to eliminate most of its performance

issues [CLMPR18]. The resulting scheme is called CSIDH.

In their ASIACRYPT 2020 paper [BKW20], Boneh et al. propose an augmentable

commitment framework that can be used to build an OPRF and is instantiated with

both an SIDH-based scheme that can be made verifiable, and with a CSIDH-based one.

The SIDH-based variant relies on the hardness of the decisional supersingular isogeny

problem, a standard assumption in the area, and a novel ‘one-more’ isogeny assumption.

Our contributions In this paper, we cryptanalyse the SIDH-based ‘one-more’ assumption

introduced by Boneh, Kogan and Woo. We first give multiple variants of an attack on the

assumption itself. A first variant leads to a polynomial-time attack against the proposed

SIDH-based OPRF protocol. We then argue that a simple modification of the (V)OPRF

protocol prevents such an attack. Then, we show that a second variant of the attack leads

to an attack on the protocol even in the presence of those countermeasures. This attack

has a subexponential complexity, but there appear to be no simple countermeasures.
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Developing countermeasures is left as an open problem. As a result of our attack, the

parameters suggested by Boneh et al. fall short of their estimated security level.

The attacks on the OPRF allow malicious clients to evaluate the OPRF on arbitrary

inputs after some initial queries to the server, without even interacting with the server

any further. This breaks the pseudorandomness property of the OPRF and could lead

to significant attacks on OPRF-based protocols. In the context of private set intersection

based on oblivious PRFs, the proposed attack allows the attacker to brute-force the other

party’s set elements and break the privacy requirement. In the Privacy Pass protocol used

to guarantee privacy-preserving CAPTCHAs, our attack allows the attacker to generate

unlimited tokens, thus avoiding solving CAPTCHAs and fully breaking the security of the

system.

Furthermore, we discuss how one of the parameters of the SIDH-based OPRF by

Boneh et al. is generated and which party should compute it. We argue there are

security implications if the server, the client or any third party maliciously generates this

parameter. The client or a third party can introduce a backdoor through this parameter

to recover the secret key of the server, whereas if the server is malicious, they can break

the supersingular-isogeny collision assumption on which Boneh et al.’s security proofs

are built. We suggest that a trusted setup may be needed to guarantee provable security.

Finally, we want to emphasise that the CSIDH-based OPRF proposal by Boneh et al. is

not affected by our attacks.

Outline. In Section 4.2, we introduce some background on isogeny-based cryptography,

the security properties of (verifiable) oblivious PRFs and Boneh et al.’s construction.

The attacks against the ‘one-more’ assumption are presented in Section 4.3, while their

application to the OPRF protocol by Boneh et al. is discussed in Section 4.4. We present

our implementation of the attack and discuss its results in Section 4.5. In Section 4.6, we

argue that a trusted setup should be used for the OPRF and briefly sketch two attacks

that follow a lack of trusted setup before concluding the paper in Section 4.7.
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4.2 — Preliminaries

In this section we introduce the necessary mathematical background on isogenies and

the SIDH key exchange, we summarize the security properties of OPRFs and we briefly

recall Boneh et al.’s OPRF construction [BKW20].

4.2.1 – Mathematical background on isogenies

Let Fq be a finite field of characteristic p. In the following, we assume p ≥ 3 and therefore

an elliptic curve E over Fq can be defined by its short Weierstrass form

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 + Ax+B} ∪ {OE}

with A,B ∈ Fq such that the discriminant is non-zero and OE denotes the point (X :

Y : Z) = (0 : 1 : 0) on the associated projective curve Y 2Z = X3 + AXZ2 + BZ3. The

j-invariant of an elliptic curve is j(E) = 1728 4A3

4A3+27B2 .

A non-constant rational map φ : E1 → E2 between two elliptic curves is an isogeny if

it sends the point at infinity of E1 to the point at infinity of E2. Equivalently, an isogeny

is a rational map which is also a group homomorphism. Thus an isogeny is the natural

morphism of the category of elliptic curves. An isogeny φ induces a field extension

between the function fields of E1 and E2. The degree of this extension is the degree of

the isogeny. We call an isogeny separable if this field extension is separable. The kernel of

a separable isogeny as a group homomorphism is finite and is equal to the degree of the

isogeny. If φ : E1 → E2 is an isogeny of degree d, then there exists a unique isogeny φ̂ of

degree d such that φ ◦ φ̂ = [d], where [d] denotes multiplication by d. The isogeny φ̂ is

called the dual isogeny of φ. An isomorphism of elliptic curves is an isogeny of degree 1

and there is an isomorphism of curves f : E0 → E1 if and only if j(E0) = j(E1).

An endomorphism of E is an isogeny from E to itself. Endomorphisms of E form a

ring under composition and addition denoted by End(E). The endomorphism ring of
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an elliptic curve over a finite field is either an order in an imaginary quadratic field (in

which case the curve is called ordinary) or a maximal order in the quaternion algebra

ramified at infinity and p (in which case the curve is called supersingular).

The j-invariant of any supersingular elliptic curve defined over Fq lies in Fp2.

For a thorough introduction to elliptic curves and isogeny-based cryptography, we

refer to Silverman [Sil86] and De Feo [Feo17], respectively.

4.2.2 – SIDH

We briefly recall the supersingular isogeny Diffie-Hellman key exchange introduced by Jao

and De Feo [JD11].

Let E0 be a supersingular elliptic curve defined over Fp2, where p is a prime of the

form f ·N1N2 ± 1. Here f ∈ Z is a small cofactor and N1, N2 are two coprime smooth

integers (e.g. a power of 2 and 3 respectively). Furthermore, fix two bases PA, QA and

PB, QB such that 〈PA, QA〉 = E0[N1] and 〈PB, QB〉 = E0[N2]. To agree on a secret key

over an insecure channel, Alice and Bob proceed as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] generated by a point of the

form A = PA + [xA]QA as her secret. Similarly, Bob chooses his secret as 〈B〉 :=

〈PB + [xB]QB〉 ⊂ E0[N2].

2. Then, Alice and Bob compute their secret isogeny ϕA : E0 → E0/〈A〉 and ϕB : E0 →

E0/〈B〉, respectively.

3. Alice sends the curve EA := E0/〈A〉 and the points ϕA(PB), ϕA(QB) to Bob. Mutatis

mutandis, Bob sends EB := E0/〈B〉, ϕB(PA) and ϕB(QA) to Alice.

4. Both Alice and Bob can compute the shared secret curve EAB := E0/〈A,B〉 up to

isomorphism as

EAB ∼= EB/〈ϕB(PA) + [xA]ϕB(QA)〉 ∼= EA/〈ϕA(PB) + [xB]ϕA(QB)〉.
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Since isomorphic curves have the same j-invariant, Alice and Bob use j(EAB) as their

shared secret.

4.2.3 – Security properties of (V)OPRFs

In the following, we will call a function µ : N → R negligible if for every positive

polynomial poly(·) there exists an integer Npoly > 0 such that for all x > Npoly, we have

|µ(x)| < 1/poly(x).

The security properties of an oblivious pseudorandom function (OPRF) include those

of a standard pseudorandom function (PRF).

Definition 3. Let F : K ×X → Y be an efficiently computable function. F is a pseudo-

random function (PRF) if for all probabilistic polynomial-time distinguishers D, there is a

negligible function negl such that

P[DF (k,·)(1n) = 1]− P[Df(·)(1n) = 1] ≤ negl(n),

where the first probability is taken over uniform choices of k ∈ {0, 1}n and the randomness

of D, and the second probability is taken over uniform choices of functions f : X → Y and

the randomness of D.

A consequence of pseudorandomness is that one cannot compute a new evaluation of

F (k, ·) from existing evaluations. However, our attack on Boneh et al.’s OPRF will allow

adversaries to evaluate F (k, ·) on arbitrary inputs after some initial evaluations.

Furthermore, an OPRF is oblivious in the following sense.

Definition 4 ([FIPR05]). Let F : K ×X → Y be a PRF. A protocol between a client with

input x ∈ X and a server with key k ∈ K is called oblivious PRF, if the client learns F (k, x)

and nothing else and the server learns nothing about x or F (k, x) at the end of the protocol.

In particular, the server will learn nothing about the input x of the client and the client

will learn nothing about the server’s key k.
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Additionally, an OPRF can be verifiable.

Definition 5. An OPRF is said to be verifiable if the evaluation y that the client obtains at

the end of the protocol is correct, i.e. if it satisfies y = F (k, x), where x ∈ X is the client’s

input and k ∈ K is the server’s private key.

In practice, verifiability is ensured by the server committing to a key k prior to the

execution of the verifiable OPRF (VOPRF) and providing a zero-knowledge proof that the

VOPRF execution uses the same key as the committed value.

4.2.4 – An isogeny-based OPRF by Boneh, Kogan and Woo

We provide a simplified description of Boneh et al.’s OPRF based on the SIDH key exchange

protocol.

Let λ be the security parameter and let p = fNKNMNVNRNS−1 be a prime where f ∈

Z is a small cofactor and Ni are powers of distinct small primes such that NK, NM, NV, NR

are roughly of size 25λ/2 and NS ≈ 22λ. To prevent an attack by Merz et al. [MMP20],

the factors NK, NM, NV, NR are of size 25λ/2 instead of the more common size 22λ in the

SIDH setting. Moreover, let H1 : {0, 1}∗ → ZNM be a cryptographic hash function. In

their proofs, Boneh et al. treat H1 as a random oracle. Finally, let E0 be a randomly

chosen supersingular elliptic curve over Fp2 and let {Pi, Qi} denote a basis of E0[Ni] for

i = K,M, V,R, S. While Boneh et al. only require E0 to be a randomly chosen elliptic

curve, we will discuss how it is generated in Section 4.6 and argue that this choice should

be done by a trusted third party.

First, the server chooses their private key k which is the PRF key and publishes a

commitment to this key. To evaluate the OPRF at an input x in the input space, a client

computes the hash H1(x) = m ∈ ZNM. Furthermore, the client randomly chooses an

element r ∈ ZNR.

The client computes the isogenies φm : E0 → Em := E0/〈PM + [m]QM〉 and φr :

Em → Emr := Em/〈φm(PR) + [r]φm(QR)〉. Then, the client sends Emr together with the
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torsion point images of Pi, Qi for i = V,K, S to the server as well as a basis of Emr[NR].

To avoid active attacks like the GPST attack [GPST16], where a malicious client tries

to recover information about the server’s private key by sending manipulated torsion

point information, the client proves to the server in a non-interactive zero-knowledge

proof that they know the kernel of the isogeny from E0 to Emr and that the provided

torsion point images are indeed the images under this isogeny. For full details about the

zero-knowledge proof we refer to Section 5 of [BKW20].

Subsequently, the server computes their secret isogeny φk : Emr → Emrk, where

Emrk := Emr/〈φr ◦ φm(PK) + [k]φr ◦ φm(QK)〉. Moreover, the server computes the images

of the order NV torsion points and the basis of Emr[NR] provided by the client. The server

sends Emrk together with the torsion point information to the client. Using an interactive

zero-knowledge proof with a cut-and-choose approach between server and client, the

server can prove to the client that it computed the isogeny and the torsion point images

correctly. This proof uses the torsion point images of order NV and the server’s initial

commitment to the key k. Details about this zero-knowledge proof can be found in

Section 6 of [BKW20].

After executing the zero-knowledge proof with the server to convince itself of the

correctness of the server’s reply, the client uses the images of the Emr[NR] torsion to

“unblind” Emrk. The unblinding isogeny φ̂′
r is a translation of the dual of φr starting from

Emrk. This allows the client to compute a curve isomorphic to Emk := Em/〈φm(PK) +

kφm(QK)〉 without knowing k at any point in time. Hashing the input together with the

j-invariant of Emk and the server’s initial commitment to his key k yields the output of

the VOPRF. The entire evaluation is sketched in Figure 4.1.
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Figure 4.1: Sketch of Boneh et al.’s isogeny-based VOPRF. The isogenies computed by
the client are marked in red (φm, φr, and φ̂′

r) while the server’s isogeny is noted in blue
(φk). The green isogenies represent the PRF which is jointly evaluated by the client and
the server. The output of the OPRF is computed as F (k, x) = H(x, j(Emk), pk), where H
is a cryptographic hash function and pk is the server’s (public) commitment to his key k.

4.3 — Attacks on the auxiliary one-more SIDH

assumption

In [BKW20], Boneh et al. introduce the auxiliary one-more SIDH assumption. This is a

new security assumption to prove the unpredictability of their isogeny-based VOPRF. In

this section we challenge the validity of this assumption and we present multiple attacks

on the corresponding computational problem.

All of the attacks follow a similar strategy. First, an attacker recovers certain torsion

point images up to a scalar under the secret isogeny using queries in the security game.

Having recovered these torsion point images, an attacker is capable of answering any

challenge set by the challenger correctly. This breaks the security assumption and also

leads to an attack on Boneh et al.’s (V)OPRF.

We start by recalling the security assumption introduced by Boneh et al. [BKW20].

Then, we show that recovering said torsion point images up to a scalar is sufficient to

compute the correct answer to arbitrary challenges in the corresponding security game.

Subsequently, we give multiple approaches to recover these torsion point images. In
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Section 4.4, we will show how the attack on the security assumption translates to an

attack on the (V)OPRF itself.

4.3.1 – The auxiliary one-more SIDH assumption

First, we recall the game underlying the auxiliary one-more SIDH assumption as defined

by Boneh et al. [BKW20]. While Boneh et al. use the “decision queries” defined in the

following game in their security proofs, our attacks will not make use of decision queries

and a reader may ignore this additional ability of an adversary.

Game 1 (Auxiliary One-More SIDH). Let p = f ·N1 · · ·Nn − 1 be a prime depending

on the security level λ and n, where Ni are smooth coprime integers and f is a small

cofactor, and let M,K ∈ {1, . . . , n} be two distinct indices. Consider the following game

between a challenger and an adversary:

• The challenger chooses a random supersingular curve E0/Fp2 and a basis {P,Q}

of E0[(p + 1)/(NM · NK)]. Moreover, it chooses K ∈ E0 of order NK, computes

φK : E0 → EK := E0/〈K〉, and sends E0, P,Q, and EK to the adversary.

• The adversary can make a sequence of queries of the following types to the chal-

lenger:

– Challenge query: The challenger choosesM ∈ E0[NM] randomly and sends it

to the adversary

– Solve query: The adversary submits V ∈ E0[(p+ 1)/NK] to the challenger1,

who computes φKV : E0 → E0/〈K,V 〉 and sends j(E0/〈K,V 〉), φKV (P ),

and φKV (Q) to the adversary.

– Decision query: The adversary submits a pair (i, j) to the challenger, where i

is a positive integer bounded by the number of challenge queries made so far,
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and j ∈ Fp2. The challenger responds true if j = j(E0/〈K,M〉), whereM is

the challenger’s response to the ith challenge query, and false otherwise.

• The adversary outputs a list of distinct pairs of the form (i, j), where i is a positive

integer bounded by the number of challenge queries made and j ∈ Fp2.

We call an output-pair (i, j) correct, if j is the j-invariant of E0/〈K,M〉, where M is

the challenger’s response to the ith challenge query. An adversary wins the game, if the

number of correct pairs exceeds the number of Solve queries.

Assumption 1 (Auxiliary One-More SIDH [BKW20]). For every constant n and every

distinct M,K ∈ {1, . . . , n}, every efficient adversary wins the above game with probability

negligible in λ.

In the following, we will show that the auxiliary one-more SIDH assumption does not

hold. We will give different attacks on the security problem underlying Assumption 1

that follow a similar strategy. Let K be the server’s secret, determining the isogeny

φK : E0 → E0/〈K〉. The idea is to use a number of solve queries to subsequently predict

E0/〈K,M〉 for any M ∈ E0[NM]. To this end, we will derive a method to extract the

subgroup generated by φK(P ) for any P ∈ E0[NM] with a number of solve queries. Using

this procedure, an adversary can extract the subgroups generated by φK(PM), φK(QM)

and φK(PM +QM), where {PM , QM} is a basis of E0[NM].

Knowing these subgroups allows the adversary to compute the subgroups generated

by φK(M) for arbitraryM ∈ E0[NM] without any further solve queries. Given a generator

of 〈φK(M)〉, the adversary can compute the j-invariant of E0/〈K,M〉 as E0/〈K,M〉 ∼=

EK/〈φK(M)〉. In particular, the adversary can produce arbitrarily many correct output-

pairs and win the security game underlying the auxiliary one-more SIDH assumption

(Assumption 1).
1In Algorithm 2, we will describe how an adversary can win the game in polynomial time, if the point

V is not required to be of full order.
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4.3.2 – Winning the security game given torsion point images

In this section, we show how mapping three different NM-order subgroups to EK :=

E0/〈K〉 is enough to recover sufficient information to compute a generator of 〈φK(M)〉 ∈

EK for any pointM ∈ E0[NM].

Lemma 13. Let PV , QV , RV := PV +QV ∈ E0 be pairwise linearly independent points of

smooth order NM and let φK : E0 → EK be an unknown isogeny of degree coprime to NM.

Given the points PV , QV , RV and the subgroups 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉, an

adversary can compute 〈φK(M)〉 for arbitraryM ∈ E0[NM].

Proof. Fix P ′, Q′, and R′ to be generators of 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉 respec-

tively. Note that the given information 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉 is the same

as knowing φK(PV ), φK(QV ), φK(RV ) up to a scalar multiple. There are many different

generators for the groups 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(RV )〉 but for any fixed choice we

have

P ′ = αφK(PV ),

Q′ = βφK(QV ),

R′ = γφK(RV )

for some (unknown) integers α, β, γ coprime to NM. As isogenies are homomorphisms,

we have φK(RV ) = φK(PV ) + φK(QV ). One finds a, b such that R′ = aP ′ + bQ′, which

can be done efficiently as computing discrete logarithms is easy in a group of smooth

order NM. We have γ = aα = bβ. Thus, it is possible for the attacker to recover the ratio

α/β = b/a.

Given any M ∈ E0[NM], an adversary can compute integers k1, k2 such that M =

k1PV + k2QV (which again is possible because NM is smooth) and obtain 〈φK(M)〉 by

computing 〈k1φK(P ) + k2φK(Q)〉 = 〈k1P ′ + k2
α
β
Q′〉.

In particular, an adversary who knows φK(PV ), φK(QV ) and φK(RV ) up to a scalar
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and EK := E0/〈K〉 can compute E0/〈K,M〉 ∼= EK/〈φK(M)〉 for anyM ∈ E0[NM].

4.3.3 – Recovering points in φK(E0[NM]) up to a scalar

The previous subsection shows that E0/〈K,M〉 can be computed by an adversary for

arbitraryM ∈ E0[NM] as long as they can recover images of points in E0[NM] under the

secret isogeny φK up to scalar. In this section, we will present multiple ways an adversary

can recover this information. For didactic purposes, we include not only a polynomial

and a subexponential attack (in case countermeasures to prevent the former one are put

in place) but also an exponential attack in our exposition.

Query points of arbitrary order Let M ∈ E0[NM]. We are interested in recovering

φK(M) up to a scalar, given access to the oracle provided by the “solve queries” in Game 1.

Note that our attack will not use “decision queries” as defined in the same game.

There is a simple procedure to compute an isogeny betweenEK andEM := EK/〈φK(M)〉

and therefore φK(M) up to scalar, if “solve queries” are allowed for points of arbitrary

order. Recall that during a solve query in Game 1, an adversary gets to submit points

V ∈ E0[(p + 1)/NK] to the challenger, who replies with the j-invariant of E0/〈K,V 〉

and some additional torsion point images. Algorithm 2 describes how an adversary can

recover φK(M) up to a scalar for arbitrary M ∈ E0[NM]. The Algorithm recovers the

isogeny from EK to EK/〈φK(M)〉 by using solve queries to obtain all intermediate curves.

This allows to recover the isogeny EK → EK/〈φK(M)〉 one step at a time and therefore

its kernel 〈φK(M)〉.
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Algorithm 2 Computation of 〈φK(M)〉 using solve queries on points of arbitrary order
Let {li}ni=0 be an integer sequence of all divisors ofNM such that li+1/li is a prime, li < li+1,
with l0 := 1, ln := NM.
Input: EK , M ∈ E0[NM] and access to an oracle answering solve queries as defined in
Game 1.
Output: A generator of 〈φK(M)〉.
1: E(n) ← E0/〈K〉;
2: for i = n− 1, . . . , 0 do
3: Query the oracle with the point Vi := [li]M and obtain the

curve E(i) := E0/〈K,Vi〉 = E0/〈K, [li]M〉 = EK/〈[li]φK(M)〉;
4: Find li+1/li-isogeny φi from E(i+1) to E(i);
5: return A generator of ker(φ0 ◦ · · · ◦ φn−1);

Lemma 14. Algorithm 2 returns λφK(M), where λ ∈ Z is coprime to NM.

Proof. Let ψM be the isogeny from EK to EK/φK(M). Then the claim follows from the

observation that E0/〈K, [li]M〉 ∼= E0/〈[li]K, [li]M〉, since li is coprime to the order of

K.

Remark 2. Note that an attacker can easily change the attack to require fewer queries. In-

stead of using one query for each intermediate curve, an attacker can choose any factorisation

f1 · · · ft of NM such that fi are roughly of equal size and query the oracle with
[∏b

j=1 fi

]
M

for b = 1, . . . , t. Then, the attacker is left to recover the isogeny between any two consecutive

queries, i.e. the isogenies of degree fi for i = 1, . . . , t, using a meet-in-the-middle attack.

In Game 1, Boneh et al. did not specify any restrictions on the points of E0[(p+1)/NK]

that can be submitted to the solve queries. However, in the context of the game, this

attack can be easily thwarted by answering to a solve query only if the submitted point is

of order (p+1)/NK. This property can be checked efficiently by the challenger. In Section

4.4, we discuss how this polynomial-time attack and its countermeasures translate to the

VOPRF protocol.

Query points of order (p+ 1)/NK Next, we present how an attacker can retrieve the

necessary information even if they are only allowed to send solve queries on points of
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E0/〈K,V 〉

•

EK

E0

φM

φV ′

φV

φK

Figure 4.2: Depiction of the isogenies of a solve query

order (p + 1)/NK, i.e. if the challenger checks the order of a submitted point and only

replies to a query if the point is of order (p+ 1)/NK.

Let φV denote the isogenyEK → E0/〈V,K〉 of degree (p+1)/NK and let φV = φV ′ ◦φM

be its decomposition into a degree (p+ 1)/(NKNM) and a degree NM isogeny. Our attack

aims to recover the image of multiple subgroups of E0[NM] under the isogeny φK , i.e. we

are interested in the kernel of the isogeny φM for different points V . The isogenies are

depicted in Figure 4.2.

Recovering φV ′ from torsion point information Let P,Q ∈ E0[(p+ 1)/NMNK] be the

torsion point basis provided by the challenger and let V ∈ E0[(p + 1)/NK] be linearly

independent of P or Q. Then, we can use the torsion point images provided during a

solve queries to compute φ̂′
V as follows.

Let P ′ := φV ◦ φK(P ), Q′ := φV ◦ φK(Q) be the images of the torsion points provided

by the challenger. The adversary can compute φ̂V ′ as the isogeny from E0/〈K,V 〉 with

kernel 〈P ′, Q′〉. Note that 〈P ′, Q′〉 ⊂ ker(φ̂V ′), because φ̂V ′ ◦ φV ′ = [(p+ 1)/NMNK] is the

order of the points P,Q. As V is linearly independent to at least one of P and Q, the

other inclusion follows from 〈P ′, Q′〉 spanning a subgroup of size (p+ 1)/NMNK.

Choosing PV , QV as a basis of E0[(p+1)/NK] such that [NM]PV = P+[(p+1)/NMNK]Q

and [NM]QV = [(p+ 1)/NMNK]P +Q, every point of the form PV + [i]QV or [i]PV +QV
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will be linearly independent of P or Q.

As a consequence of φV ′ being easy to recover, we may assume that during a solve query

an attacker can send a pointM of order NM to the challenger who returns E0/〈K,M〉.

We are left to recover the kernel of φM .

Naïve attack to recover φM Next we describe an exponential attack that recovers φ̂M

using meet-in-the-middle (MITM) computations of increasing size. In the subsequent

part, we will introduce a trade-off between queries and computation costs that reduces

the complexity of the attack to subexponential.

Let PM , QM denote a basis of E0[NM]. For simplicity of exposition we treat NM as

a prime power and we write NM = `eMM . The attack recovers φM : EK → EK/〈PM〉 by

recovering each of the eM intermediate curves one at a time.

The attacker starts by querying the solve oracle with two points V0 := PM and

V1 := PM + [`eM−1
M ]QM . Note that the curves EK/〈φK(V0)〉 and EK/〈φK(V1)〉 are `2M -

isogenous, since they are both `M -isogenous to EK/〈[`M ]φK(V0)〉 = EK/〈[`M ]φK(V1)〉.

The attacker recovers the curve EK/〈[`M ]φK(V0)〉, which is the first intermediate curve

on the φM isogeny path by computing the common neighbour of EK/〈φK(V0)〉 and

EK/〈φK(V1)〉.

The rest of the attacks proceeds similarly. The attacker queries with the points Vi :=

PM + [`eM−i
M ]QM , i = 1, . . . , eM/2 and runs a MITM attack to recover EK/〈[`iM ]φK(V0)〉

given EK/〈φK(Vi)〉 and EK/〈[`i−1
M ]φK(V0)]〉. This could be repeated eM times to recover

the entire isogeny φM . However, the attacker does not need to recover the last part of the

isogeny through this strategy, since it is faster to directly compute the MITM between

EK/〈[`eM/2
M ]V0〉 and the starting curve EK . The attack with the required meet-in-the-

middle computations is shown in Figure 4.3.

Note that the isogenies that need to be recovered using MITM grow at each step. To

recover the i-th intermediate curve, the attacker needs to compute an isogeny between

two curves that are `(i+1)
M -isogenous, which takes roughly O(`(i+1)/2

M ).
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EK

•

•

•

EK/〈φK(VeM/2)〉 EK/〈φK(Vi)〉 EK/〈φK(V1)〉 EK/〈φK(PM)〉

Figure 4.3: Naïve attack where isogenies of increasing length need to be recovered. The
blue lines represent the meet-in-the-middle computations.

Clearly, this attack can be optimised by recovering multiple steps of φM at a time, and

by making sure that the different MITM attacks that need to be executed have similar

complexity. We will discuss these improvements in the following.

Full attack with query-time trade-off We can reduce the complexity of the naïve attack

by introducing a trade-off between queries and the cost of MITM computations. This

is because the attacker recovers the whole path between two isogenies during a MITM

computation. Thus, it is possible to recover more than one intermediate curve with a

single (longer) MITM computation. Moreover, the queries can be spaced out more in order

to reduce the length of the isogenies that have to be recovered using MITM strategies.

More formally, let 2q denote the number of queries that an attacker can (or wants

to) send to the challenger. For simplicity of this exposition, assume that 2em is divisible

by q + 2. The attacker chooses the Vi such that E0/〈K,Vi〉 correspond to curves that

are the leaves of a binary isogeny tree. The Vi should be chosen such that there is

an `2eM/(q+2)
M isogeny between any two siblings in the binary tree and the curve that is

`
eM/(q+2)
M -isogenous to both leaves is their parent in the tree. Again, the parent and its

sibling should be `2eM/(q+2)
M -isogenous, etc.

Remark 3. Note that it is easy to choose such a set of points Vi. Let PM , QM be a basis of
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E0

•

• •

• • • •

E0/〈V0〉 E0/〈V1〉 E0/〈V2〉 E0/〈V3〉 E0/〈V2q−4〉 E0/〈V2q−3〉 E0/〈V2q−2〉 E0/〈V2q−1〉

Figure 4.4: The attacker queries the challenger on points corresponding to isogeny kernels
leading to the leaves of this binary tree

E0[`
eM
M ]. The attacker can choose

V0 := PM

Vi := Vi−2blog ic + [`
eM−(blog ic+1)2eM/(q+2)
M ]QM

Lemma 15. Let E0/〈Vi〉 and E0/〈Vj〉 be `kM isogenous curves. Then EK/〈φK(Vi)〉 and

EK/〈φK(Vj)〉 are `kM -isogenous curves too.

Proof. This follows from NK = deg(φK) being coprime to `kM .

In particular, {φK(PM), φK(QM)} is a basis of EK [NM] and EK/〈φK(Vi)〉 are the leaves

in a binary tree where all siblings are `2eM/(q+2)
M isogenous.

After querying the oracle to obtain EK/〈φK(Vi)〉 = E0/〈K,Vi〉, an attacker recovers

iteratively parent nodes in the binary tree using a meet-in-the-middle approach. Any

siblings in the tree correspond to curves that are `2eM/(q+2)
M -isogenous, thus this can be

done in O(`eM/(q+2)
M ). Note that the root of the binary tree is recovered after 2q − 1 such

meet-in-the-middle instances, i.e. the number of internal nodes in the binary tree. This

root of the binary tree is then by construction `2eM/(q+2)
M -isogenous toE0. This final isogeny

can be recovered using meet-in-the-middle again. An attacker recovers and saves the

intermediate nodes and isogenies from EK to the leaf EK/φK(V0). Clearly, the kernel of

this isogeny is φK(V0).

In summary, we can recover the isogeny from EK → EK/〈φK(PM)〉 for any PM with

2q queries to the challenger and 2q instances of meet-in-the-middle isogeny computations

with cost of O(`eM/(q+2)
M ) each.
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Remark 4. If `M = 2, we get q bits for free, i.e. one additional bit per layer of the binary

tree. This is because every parent node in the binary tree has three outgoing edges: two edges

leading to its children and one edge leading towards the root. Thus, having recovered both

paths to the children an attacker gets one step towards the root for free.

4.3.4 – Attack analysis

The proposed attack is composed of two stages: firstly the generators of 〈φK(PV )〉,

〈φK(QV )〉, and 〈φK(RV )〉 are recovered, and then these points are used to recover φK(M)

for any possibly challengeM ∈ E0[NM].

The second part consists mostly of pairing evaluations and discrete log computations

in groups of smooth order. Thus, it runs in polynomial time. The complexity of the attack

is dominated by the complexity of recovering the subgroups in the first step.

The algorithm proposed in Section 4.3.3 offers different trade-offs between compu-

tation costs and solve queries. As little as two solve queries can be enough to recover

φM with two meet-in-the-middle computations. If we write NM ≈ 2m, each meet-in-the-

middle requires O(2m/3) operations. This is already an improvement over the standard

meet-in-the-middle attack that requires O(2m/2) time. The OPRF protocol targets 128 bits

of security, which corresponds to m ≈ 5λ/2 = 320. Thus six queries (two per generator)

are enough to reduce the security to m/3 = 106 bits. The number of solve queries can be

significantly increased to obtain a faster attack. Note that OPRF protocols are usually used

for applications such as private set intersection, that support a large number of queries.

Thus, common scenarios where the OPRF may be used would easily lend themselves to

an attack with many queries.

Since OPRFs are used in protocols where the clients interact several times with the

server, we can expect the attacker to be able to run several OPRF instances. Thus, we

model a solve query as an oracle query, where it has a unitary complexity. Then, the overall

complexity of recovering a generator of 〈φK(PV )〉 with 2q solve queries is O(2m/(q+2)+q)

operations, since the attacker needs to compute 2q meet-in-the-middle instances between
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curves which are 22m/(q+2)-isogenous. In terms of the security parameter, that complexity

is equivalent to O(25λ/2(q+2) + q), since the OPRF protocol suggests using m ≈ 5λ/2. If

the number of solve queries is unrestricted, the complexity of the attack is minimized for

q =
√

5λ/2− 2, which gives an overall complexity of O(2
√
10λ−2), or using the L-notation

L[1/2, c], for some constant c. This shows the attack is subexponential, assuming that the

solve query complexity is O(1).

At 128-bit of security, our attack becomes feasible with around 64 solve queries, when

it requires 64 meet-in-the-middle computations between curves which are 280-isogenous,

i.e. each MITM has a complexity of 240 operations. If the number of solve queries is

unrestricted, an attacker can use 218 solve queries to reduce the overall complexity of the

attack to 218 MITM computations, where each MITM operations has a complexity of 216

operations.

The high-level attack does not generally require much memory. Storing the isogeny

tree in memory is not particularly demanding, especially if the tree is traversed depth-first.

In particular, memory is used only to store the part of the recovered isogeny, together with

the two curves between which the meet-in-the-middle needs to be computed. However, a

more significant amount of memory is used by the meet-in-the-middle computations, and

indeed we see that the memory used by a single meet-in-the-middle generally outweighs

the memory used by the rest of the attack. Meet-in-the-middle computations between

curves which are 2n-isogenous require to store 2n/2 curves. Thus, their memory require-

ments are given by 2 · 2n/2 log p, since each curve can be represented by its j-invariant

in Fp2. For common security levels, such as those proposed by Boneh et al. [BKW20],

the memory requirements remain moderate. In Section 4.5, we show that indeed our

attack requires about 3 GB of memory to break 128 bits of security. However, for a more

complete asymptotical analysis, we note that the memory requirements may become a

bottleneck for the attack against higher security levels. In those instances, it may be

preferable to substitute the meet-in-the-middle approach with the van Oorschot-Wiener

algorithm [vW99]. This reduces the memory consumption at the cost of higher asymptotic
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complexity. In particular, the vOW algorithm requires O(23n/4) computations (compared

to O(2n/2) of MITM) to recover the halfway curve between curves which are 2n-isogenous.

Thus, while the concrete performance of the attack may differ, its asymptotic complexity

remains subexponential.

Future improvements A natural question to ask is whether the proposed attack that

queries points of the correct order may be improved to achieve a polynomial running

time. Consider that an attacker chooses an isogeny φV : E0 → E0/〈V 〉 and he is given

the curve E0/〈K,V 〉. Since the attacker knows the entire isogeny φV , backtracking from

E0/〈K,V 〉 to EK to recover φK(V ) in polynomial time does not seem too far fetched,

since the attacker knows the entire isogeny φV . A possible strategy may start by retrieving

E0/〈K,V 〉 and E0/〈K,V + `eMM V ′〉, for a point V ′ linearly independent of V . Their

common `M -neighbour is the first curve on the isogeny path. Then, the attacker may use

the knowledge of φV starting from E0 to distinguish between the `M possible candidates

for the next curve on the isogeny path. Unfortunately, our efforts to develop such an

attack did not succeed. It remains an open problem whether such an attack is possible.

4.4 — Attack on the OPRF

Having presented an attack on one of the security assumptions underlying the isogeny-

based OPRF by Boneh et al., we investigate how an adversary can use the same method

to attack the OPRF itself.

We will show that a malicious client can send carefully crafted queries to the server

for which it can produce all necessary NIZK proofs required by the protocol that was

summarized in Section 4.2.4. However, after some offline computation analogously to

the attack on the auxiliary one-more SIDH assumption outlined in the previous section,

the malicious client can evaluate the OPRF on any input without the help of the server.

Even though the malicious client does not recover the server’s secret key k, this breaks

113



the “pseudorandomness”, Definition 3, of the OPRF. We will use the same notation as in

Section 4.2.4 to refer to different isogenies of the OPRF.

A malicious client will not use a hashed input to obtain the kernel for the first isogeny

φm : E0 → Em but rather choose the kernel of this first isogeny maliciously. The choice is

analogous to the points from E0[NM] that the attacker submitted to the solve queries in the

attack of the previous section. In other words, instead of computingEm asE0/〈P+H(x)Q〉

for some input x, the malicious client chooses a point Vi and computes Em as E0/〈Vi〉 in

the i-th evaluation of the OPRF.

The rest of the protocol is executed honestly. The malicious client can pick some

r ∈ NR to blind his maliciously chosen Em. And it can compute the torsion point

information for the server honestly since it knows the kernel of the isogeny E0 → Emr =

Em/〈φm(PR) + [r]φm(QR)〉. In particular, the malicious client will always be able to

produce the valid non-interactive zero-knowledge proof of knowledge for the kernel of

E0 → Emr and the correct computation of the torsion point information.

Following through with the rest of the OPRF protocol, the malicious client obtains the

j-invariant of the curve E0/〈Vi, K〉 after unblinding. Here K denotes the server’s secret

PK +[k]QK . This is exactly what corresponds to a “solve query” in the auxiliary one-more

SIDH game, Game 1.

Now the malicious client can proceed as in the attacks on the auxiliary one-more SIDH

assumption.

In the attack using points of arbitrary order dividing NM, the malicious client recovers

the isogeny EK → EK/〈φK(P )〉 = E0/〈K,P 〉 and therefore 〈φK(P )〉 for any P ∈ E0[NM]

in polynomial time. This is done by submitting points of lower order, i.e. choosing the

isogeny E0 → Em shorter, to recover the isogeny stepwise. After recovering three such

isogenies corresponding to pairwise linearly independent points P,Q, P+Q, the malicious

client can compute E0/〈M,K〉 for anyM ∈ E0[NM] as was shown in Section 4.3.2.

Then, the malicious client can evaluate the OPRF on arbitrary inputs x as follows:

They compute the pointM := PM +H1(x)QM as in the honest evaluation and then they
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compute j(E0/〈M,K〉) directly. Hashing this j-invariant together with the input x and

public information of the server yields the output of the OPRF. Note that the malicious

client does not even need to interact with the server to evaluate the OPRF on arbitrary

inputs.

Clearly, this breaks the pseudorandomness property of an OPRF, see Definition 3, as

a malicious client will be able to predict the output of the OPRF for any input after the

initial queries.

Remark 5. The SIDH-based OPRF protocol by Boneh et al. does not prohibit malicious

clients from using points of smaller order dividing NM, i.e. from using a shorter isogeny

E0 → Em. However, this attack could be thwarted if the server checked that the submitted

curve is of correct distance from the starting curve. A simple test using pairing computations

on the provided torsion point information may be tricked, but the NIZK of the client could be

extended to include a proof that the client’s witness, i.e. the kernel of the isogeny E0 → Emr,

is of full order NMNR.

Even if countermeasures for this polynomial-time attack are put in place, we are left

with the following subexponential attack when points of full order are used.

The client evaluates the OPRF on a certain number of inputs that correspond to solve

queries in the auxiliary one-more game. More precisely, the client chooses the kernel of

his first isogeny as in the subexponential attack of the previous section. After blinding,

evaluation of the server and unblinding, the client obtains what would have been the

result of a “solve query” in the previous section. After the offline computation which,

using meet-in-the-middle routines, recovers the binary tree described in Section 4.3.3, the

client obtains torsion point images of E0[NM] up to scalar under the isogeny E0 → EK :=

E0/〈PK + [k]QK〉. Again this is enough to compute E0/〈M,K〉 for any M ∈ E0[NM] by

Section 4.3.2, allowing the client to compute the OPRF on arbitrary inputs and therefore

breaking the pseudorandomness property.
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Possible countermeasures In the case where the degree of the client’s isogeny is forced

to be NMNR, the proposed attack has subexponential complexity, and thus possible

countermeasures may include increasing the parameter sizes. However, the solve queries

to time trade-off may reduce the feasibility of such an approach. If the number of possible

solve queries is unrestricted, to get 128-bit security one would need the isogeny degree

NM to be ≈ 2(128
2). This can be partially mitigated by guaranteeing security only up

to a certain number of queries. Given a limit of 2Q queries, the exponent m needs to

guarantee that min{2
√
m−2, 2m/(Q+2)+Q} is at least 2λ. Thus, for 128-bit security, with

Q = 64 the isogeny degree NM would have to be increased to ≈ 24224, whereas Q = 32

would require a degree NM ≈ 23264. Note that handling 232 queries may well be within the

scope of several OPRF applications, and isogenies of such a size may become impractically

large. Their feasibility, however, depends on the specifics of the OPRF application and its

time and bandwidth requirements. Thus, while the attack is subexponential (assuming

O(1) complexity for solve queries), increasing the parameter size comes at a significant

performance and communication cost.

Therefore, it is important to consider possible algorithmic countermeasures. Firstly,

note that the attacker submits seemingly valid requests, so the server cannot stop such

interactions. Even if the server did want to prevent these requests, it may not be able to

detect them. This is because the attacker only submits the image curve and some torsion

point images under an isogeny with chosen kernel.

However, the attack strongly depends on the attacker choosing the point V . If the

input points V were randomized, the attack as such could not work. The OPRF protocol

requires that such points are obtained via hashing the client’s PRF input x, but it does not

enforce it. Hence, a possible countermeasure to the proposed attack would be requiring

the client to provide a zero-knowledge proof that the curve Emr is not only the result

of honest isogeny computations, but also that the kernel of φm is the result of some

hash function. However, developing an ad-hoc and efficient proof that can prove such

statements remains an open problem.
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4.5 — Attack implementation

We implemented the subexponential attack of Section 4.3.3 in SageMath to demonstrate

the correctness of the algorithm and prove its feasibility. The source code is freely available

at https://github.com/isogenists/isogeny-OPRF. We remark that this implementation

is to be regarded only as a proof-of-concept and that several subroutines can be further

optimized. Improving their performance and using lower-level languages, such as C, as

well as platform-specific instructions, such as AVX, could significantly reduce the running

time of the attack.

The proposed attack has two distinguishing features that help its implementation:

it can be easily parallelized, and it has very low memory requirements. Indeed, the

computations to recover the generators of 〈φK(PV )〉, 〈φK(QV )〉 and 〈φK(PV +QV )〉 are

independent of each other. It is also possible to achieve a higher degree of parallelization.

Within each computation to recover a single generator, the meet-in-the-middle operations

within each layer of the tree are also independent of each other, and they can thus be

parallelized. In this case, the tree is generated layer-by-layer in a breadth-first manner.

Note that while this may require a sizeable amount of memory to fully store an entire

layer, the memory requirements are hardly the bottleneck. An attack with 220 queries

requires to store, at most, 219 curves. Since an elliptic curve can be represented by its

j-invariant, the memory limit is 219 · 2 log p. With a prime of size ≈ 21500, as proposed

in the OPRF protocol, the memory limit is about 196 MB. Alternatively, it is possible to

traverse the tree in a depth-first manner to further lower the memory requirement, but

this may limit the degree of parallelization. We remark that while parallelization only

provides a linear speed-up, its effects can be significant. Our implementation provides

parallelized meet-in-the-middle computations with a configurable number of cores in

parallel.
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Results The majority of the attack’s subroutines have polynomial complexity and they

are optimized enough that their performance does not affect the overall running time.

The building block that most affects the performance of the attack is the meet-in-the-

middle computation. Indeed, the timings of the attack are directly correlated to the

timing of a single meet-in-the-middle and the total number of queries. The memory

requirements of the attack are given by the amount of memory needed for a single

meet-in-the-middle, which in turn depends on the distance between the two curves. For

parallelized implementations of the attack, the memory requirements correspond to as

many meet-in-the-middle computations as there are parallel instances.

Table 4.1 shows the running times at different security levels on an Apple M1 CPU

clocked at 3.20 GHz with 4 CPUs running in parallel. Up to 32 bits of security, the

results come from running the entire attack, whereas for higher security levels the results

are estimated based on those of a single MITM computation. The estimated time t is

computed as

t =
3(M +Q)2q

C
, (4.1)

whereM is the average running time of a MITM computation, Q is the average running

time of a solve query computation, 2q is the number of queries and C is the number of

CPUs running in parallel. This formula follows from the fact that there are 2q MITM com-

putations and 2q solve queries for each generator recovery, and three of those are needed.

Moreover, parallelization gives a linear speed-up, and the remaining computations (such

as those of Section 4.3.2) are extremely fast when compared to the rest of the attack, and

thus negligible. Running computations at lower security levels and computing Eq. 4.1

does indeed estimate the running time accurately. It should be noted that this remains

an estimate and the real results may vary to some degree.

We estimate that our non-optimized implementation running on a laptop with 4 CPUs

can break 64 bits2 of security in less than two days and 128 bits of security in about 5

2We report the results for eM = 169, which corresponds to λ = 67. That is because our implementation
requires (q + 2) | eM , and 169 allows choosing q = 11. Using eM = 160 would have required using
significantly more queries or a longer MITM, thus resulting in worse performance. Note that the requirement
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years. If the same attack was performed with more powerful hardware and an optimized

implementation, the running time could easily be reduced to a matter of months, if not

weeks. We remark that if a server rotates its keys often, an attack that breaks the server

one-more unpredictability after the key has changed still leads to significant attacks.

For instance, in the case of OPRF-based private set intersection protocols, breaking the

one-more unpredictability property allows the attacker to break the privacy property of

the server’s set at the time when that specific key was used.

Lastly, note that in the implementation solve queries are simulated locally. A real

attack would interact with the server, and thus the “correct” attack time should not

include the query computation times. For completeness, Table 4.1 reports the running

time of the entire implementation, including the solve queries.

Parameters MITM Running Time
log p λ eM q Distance Memory (kB) (s)

112 8 20 3 8 3.5 15
216 16 40 6 10 13.8 212 (3.53 m)
413 32 80 8 16 211.4 1,371 (22.85 m)
859 67 169 11 26 14,073 163,869 (1.89 d)
1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Table 4.1: Results of our proof-of-concept implementation of the attack, running on an
Apple M1 CPU clocked at 3.20 GHz with 4 CPUs in parallel and SageMath version 9.2.
Results for λ = 128 are estimated based on the average running time of a meet-in-the-
middle computation. Parameters include the size of the prime p, the security level λ, the
degree of the isogeny written as NM = 2eM , and the number of queries 2q. The MITM
section reports the distance between the curves and memory needed to compute a single
meet-in-the-middle.

4.6 — Trusted setup

In the OPRF protocol of Boneh et al., the authors suggest using a random supersingular

elliptic curve as starting curve. However, there is currently no known algorithm to generate

a random supersingular elliptic curve such that its endomorphism ring is unknown to

that (q + 2) | eM is a limitation of the implementation and not of the attack itself.
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the person who generated it. Some attempts to solve this problem have been proposed

in [LB20] and further studied in [CPV20]. This motivates the following question:

Is a trusted third party needed to generate the starting curve E0?

Phrased differently, would choosing the starting curve E0 and therefore knowledge of

its endomorphism ring allow a malicious server, client or third party to break security

properties of the (V)OPRF?

We first discuss whether a server may know the endomorphism ring of the starting

curve E0. The security proof by Boneh et al.’s OPRF relies on the hardness of finding

two distinct isogenies (up to isomorphism) of the same degree from E0 to a second

curve [BKW20, Lemma 29]. If the server chooses the starting curve and therefore knows

its endomorphism ring, they are able to produce such collisions by breaking the collision

resistance of the CGL hash function as in [PL17; EHLMP18]. To guarantee provable

security, a server should therefore not choose the starting curve.

However, breaking the verifiability insured by the zero-knowledge proof [BKW20,

Protocol 17] or the weak binding property [BKW20, Game 3] of the protocol seems

harder than finding collisions. Indeed, the server would need to produce two isogenies of

degree dividing NK such that both isogenies have the same action on the NV-torsion for a

chosen starting curve. We leave adapting the security proofs or finding an attack on the

zero-knowledge proof for future work.

We now argue that any other party, either the client or a third party, cannot choose

the curve E0 either without compromising the security of the protocol. In [QKLMP+21],

the authors describe algorithms for finding a secret isogeny when torsion information is

provided. Their algorithms can be split into two categories: one where the starting curve

has j-invariant 1728 and one where the starting curve is a trapdoor curve from which

one can solve the isogeny problem faster than generic meet-in-the-middle algorithms.

Trapdoor curves are parameterized by a pair (A,B) where A corresponds to the degree

of the secret isogeny and B to the order of torsion points whose image under the secret
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isogeny is known. When B ≈ A2 or larger, then one can construct (A,B) trapdoor curves

from which one can retrieve secret isogenies of degree A in polynomial time, if the action

on the B-torsion is known [QKLMP+21, Theorem 15].

Attacks from the special starting curve with j-invariant 1728 do not apply here, since

the starting curve cannot have j-invariant 1728 because the endomorphism ring needs

to be unknown to the server. However, trapdoor curves have the property that without

extra information they are difficult to distinguish from a random supersingular curve.

Suppose that a malicious party generates the starting curve E0 in the following way.

They generate a curve E ′ which is a trapdoor (NK, NVNR)-curve and then perform a

random walk of length NMNR to obtain E0 which is sent to the server. Now the malicious

party poses as a client and instead of honestly complying with the protocol, they use

E ′ as Emr. They can prove knowledge of a suitable isogeny and torsion point images as

they know an isogeny of the correct degree from E0. Then the server computes Emrk and

reveals the action of the NVNR-torsion. Since Emr was chosen to be a trapdoor curve and

NVNR ≈ N2
K, the malicious party can retrieve this isogeny in polynomial time.

Such an attack can be thwarted by applying a trusted setup in which E0 is a truly

random curve. In [BD21, §4], an efficient way to perform a distributed trusted setup is

described, ensuring that, if at least one participant is honest, the setup can be trusted. In

that case, torsion point attacks are not applicable. The attack can also be weakened by

substantially increasing NK. However, this might be susceptible to future improvements

of trapdoor curve constructions.

4.7 — Conclusion

In this paper, we perform a thorough cryptanalysis of Boneh et al.’s SIDH-based oblivious

pseudorandom function. The security of this OPRF is based on a new hardness assumption,

the auxiliary one-more assumption. We investigate this assumption and we show how

an attacker can win the corresponding security game in polynomial time, or with the
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appropriate countermeasures in subexponential time.

The attack on the underlying hardness assumption leads to an attack on the pseu-

dorandomness of the OPRF itself. We show how a malicious client can extract enough

information from a number of initial executions of the OPRF protocol to subsequently

evaluate the OPRF on arbitrary inputs without further interaction with the server. In

particular, this attack breaks the security parameters provided by Boneh et al. As a proof

of concept, we implement the attack in SageMath, verified its correctness and give timings

for various security levels.

Furthermore, we discuss the security implications following from a lack of a trusted

setup when generating the starting curve parameter in the SIDH-based OPRF. Note that

Boneh et al. do not explicitly require a trusted setup. We show how a client or a third

party generating the starting curve can backdoor it to retrieve the server’s secret key, while

a malicious server could generate the starting curve to break the supersingular-isogeny

collision assumption.

This work leads to some open problems. On one hand, one could improve and

extend the proposed attack, with a particular focus on reducing the complexity of the

subexponential attack to polynomial time, as well as extending it to the CSIDH-based

OPRF. On the other hand, further work is needed to develop efficient countermeasures

against the subexponential attack or to design a novel SIDH-based VOPRF. Future research

will also focus on understanding the implications of breaking the supersingular-isogeny

collision assumption on the OPRF protocol itself, and whether it is possible to avoid a

trusted setup.
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Chapter 5

A Post-Quantum Oblivious PRF from
Isogenies

Life is a series of trade-offs.
— Killing Eve, Season 3

This chapter is a verbatim reproduction of the following paper:

Andrea Basso. A Post-Quantum Round-Optimal Oblivious PRF from Isogenies. Cryptology

ePrint Archive, Paper 2023/225. 2023. url: https://eprint.iacr.org/2023/225

Abstract: An oblivious pseudorandom function, or OPRF, is an important primitive that

is used to build many advanced cryptographic protocols. However, very few post-quantum

solutions exist.

In this work, we propose a novel OPRF protocol that is post-quantum, verifiable,

round-optimal, and moderately compact. Our protocol is based on a previous SIDH-

based construction by Boneh et al., which was later shown to be insecure due to an

attack on its one-more unpredictability. We propose an efficient countermeasure against

this attack, and we demonstrate how to efficiently adapt the protocol to work with the

countermeasures against the SIDH attacks. To achieve this, we also propose the first

proof of isogeny knowledge that is compatible with masked torsion points, which may be

of independent interest. We also design a novel non-interactive proof of knowledge of
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parallel isogenies, which reduces the number of communication rounds of the OPRF to

the theoretically-optimal two. Putting everything together, we obtain the most compact

post-quantum verifiable OPRF protocol.

5.1 — Introduction

An oblivious pseudorandom function (OPRF) is a two-party protocol between a user and

a server. The two parties obliviously evaluate a PRF on a user-controlled input with a

secret key held by the server. After engaging in the protocol, the user learns only the

output of the PRF on their chosen input, while the server does not learn anything, neither

the user’s input nor the output of the function. Oblivious PRFs can also satisfy a stronger

property called verifiability: in a verifiable OPRF (vOPRF), the server initially commits

to its secret key, and during the execution of the protocol it provides a proof that it has

behaved honestly and it has used the previously committed secret key.

Oblivious PRFs have widespread applications: they can be used to build password-

management systems [ECSJR15], adaptive oblivious transfers [JL09], password-protected

secret sharing [JKK14], and private set intersection [JL09], which can in turn be used

for privacy-preserving contact discovery in messaging services [DRRT18] or for checking

compromised credentials [LPASC+19]. For instance, the web browser Microsoft Edge

uses an OPRF-based protocol to detect compromised passwords. Another practical use

case of OPRFs is the privacy-preserving authorisation mechanism known as Privacy

Pass [DGSTV18]. Developed and currently deployed by Cloudflare, Privacy Pass reduces

the number of CAPTCHAs that users need to complete by issuing a number of tokens,

which users can spend to avoid solving a second CAPTCHA. To prevent the server (i.e.

Cloudflare, in this case) from tracking users across websites, the user queries must be

oblivious. OPRFs are also used within OPAQUE [JKX18], a strong asymmetric password-
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authenticated key exchange that allows a user and a server to authenticate each other

without transmitting a password and with strong security guarantees. For these reasons,

there are ongoing efforts to integrate OPAQUE into TLS 1.31. Overall, OPRFs are a

fundamental tool for developing privacy-preserving solutions, and they are set to be

standardized by the Crypto Forum Research Group (CFRG) [DFSW23].

It is possible to build an OPRF using generic multi-party computation techniques, but

such solutions can be inefficient, and they require more rounds of communication than

what an ad-hoc construction can achieve. Indeed, highly-efficient and round-optimal

(i.e., with two rounds) constructions exist based on Diffie-Hellman [JKK14] or RSA

blind signatures [Cha82]. All such constructions are classical, and in the post-quantum

setting, very few OPRFs are reported in the literature. The first quantum-secure verifiable

OPRF was proposed by Albrecht et al. [ADDS21]. The protocol is based on the module

learning with errors problem and the short integer solution problem in one dimension,

and it only requires two rounds of communication. However, the construction can be

characterized as a feasibility result, as a single OPRF execution requires communicating

hundreds of gigabytes of data. The only other post-quantum solutions were proposed

by Boneh, Kogan, and Woo [BKW20]. The authors proposed two moderately-compact

OPRFs based on isogenies, one relying on SIDH and one on CSIDH. The protocol based

on CSIDH is a non-verifiable, three-round OPRF, which is obtained by combining a Naor-

Reingold PRF [NR97] with a CSIDH-based oblivious transfer protocol [LGD21] to make

the PRF evaluation oblivious. The OPRF based on SIDH is verifiable, but requires an even

higher number of communication rounds, since the verifiability proof is highly interactive.

A follow-up work by Basso et al. [BKMPS21] cryptanalyzed the SIDH-based OPRF by

demonstrating two attacks against the one-more unpredictability of the protocol, i.e. it

showed that a malicious user can recover sufficient information to independently evaluate

the PRF on any input. The first attack is polynomial-time, but it can be easily prevented

with a simple countermeasure; the second attack is subexponential but still practical, and

1https://blog.cloudflare.com/opaque-oblivious-passwords/
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the authors argue that there is no simple countermeasure against it. More recently, a

series of works [CD23; MMPPW23; Rob23] proposed an efficient attack on SIDH that

also extends to the OPRF.

Contributions. In this work, we propose an OPRF protocol that is post-quantum secure,

verifiable, round-optimal, and moderately compact (≈2MB per execution), with a security

proof in the UC framework [Can01] in the random-oracle model. To do so, we show that

the same high-level design as the SIDH-based OPRF by Boneh et al. [BKW20] is a viable

solution, with the following changes:

• We propose an efficient countermeasure against the one-more unpredictability

attack by Basso et al. [BKMPS21]. We modify the PRF definition, and in particular

we change how the user’s input is mapped to an elliptic curve, to prevent an attacker

from independently evaluating the PRF. A malicious user can still recover some

information, as in the Basso et al. attack, but this is no longer sufficient to determine

the PRF output. Besides preventing the attack, this change results in a smaller

prime and a more compact protocol.

• We discuss how to integrate MSIDH, a recently-proposed countermeasure [FMP23a]

against the SIDH attacks that relies on masked torsion, into the OPRF protocol. This

requires using longer isogenies and a larger prime, but a series of optimizations

allow us to maintain a reasonable communication cost. To integrate MSIDH, we

also propose the first zero-knowledge proof of knowledge that can guarantee the

correctness of a MSIDH public key, which may be of independent interest. The

protocol proves correctness of masked torsion images by building an SIDH square,

as in previous proofs, and revealing masked torsion points on each side of the SIDH

square, so that the composition of the masking values along the SIDH square gives

the secret masking value.

• We propose a novel proof of knowledge that can guarantee that two isogenies are

parallel, i.e. they are computed by applying the same secret key to two starting
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curves and torsion points. The protocol is obtained by evaluating two proofs of

isogeny knowledge with correlated randomness. Such a protocol can be used by

the server to show that it is using a previously-committed secret key, which is the

key ingredient to make the OPRF verifiable. Since the proof is a proof of knowledge,

it can be made non-interactive through standard transformations; this makes the

proposed OPRF the first isogeny-based OPRF to be round-optimal.

Paper organization. In Section 5.2, we introduce the main components needed for the

rest of the paper, including the SIDH and the Boneh et al. construction. In Section 5.3, we

present the OPRF ideal functionality, together with the security notions and assumptions

needed to implement it. Section 5.4 presents the novel countermeasures against the

one-more unpredictability attack by Basso et al., while Section 5.5 discusses how to

prevent the SIDH attacks, and Section 5.6 presents the new proof of parallel isogeny

used to achieve verifiability. In Section 5.7, we put everything together to obtain the new

OPRF protocol, estimate its communication complexity, and compare it with the existing

solutions.

5.2 — Preliminaries

In this section, we present the notation used in the rest of the paper, and we briefly

introduce the SIDH protocol, the recent attacks on SIDH, the OPRF construction by Boneh

et al. [BKW20], and the attack on the protocol by Basso et al. [BKMPS21].

5.2.1 – SIDH

The Supersingular Isogeny Diffie-Hellman (SIDH) [JD11] is a key-exchange protocol

based on isogenies between supersingular elliptic curves. For information on elliptic

curves and isogenies, we refer the reader to [Sil86]. The protocol parameters include

a prime p of the form p = ABf − 1, where A and B are smooth coprime integers and
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f a small cofactor, a supersingular curve E0 defined over Fp2, and the basis PA, QA

and PB, QB that span, respectively, E0[A] and E0[B]. One party samples a secret key

a
$←− ZA, computes the isogeny φA : E0 → EA := E0/〈PA + [a]QA〉, and publishes

pkA = (EA, RA = φA(PB), SA = φA(QB)). The second party, proceeds similarly by

sampling a secret key b $←− ZB, computing φB : E0 → EB := E0/〈PB + [b]QB〉, and

revealing pkB = (EB, RB = φB(PA), SB = φB(QA)). Then, both parties can agree on

a shared secret by translating their secret isogeny to the starting curve in the other

party’s public key using the revealed torsion information. In other words, the first

party computes φ′
A : EB → EAB := EB/〈RB + [a]SB〉, and the second party computes

φ′
B : EA → EBA := EA/〈RA + [b]SA〉. The codomain curves EAB and EBA are isomorphic,

and thus their j-invariant is the same and provides the shared secret of the key exchange.

Note that it is possible to represent the points in the public keys more compactly than two x-

coordinates, which requires 4 log p bits. If the points are expressed in terms of a canonical

basis , i.e. a basis deterministically computed from the curve, their coefficients only

require 4 logA or 4 logB bits [CLN16]. In the rest of the paper, we write P,Q = BN(E)

for a canonical basis of order N on E. We also refer to the setup described above as the

SIDH square (E0, EA, EB, EAB) with edges (φA, φB, φ′
A, φ

′
B).

Generally, isogenies do not commute, which means that two parties computing an

SIDH-like exchange would not agree on a shared secret if they only revealed the isogeny

codomain. To avoid the problem, SIDH reveals the image of a torsion basis that allows

each party to translate their isogeny such that they commute. Torsion points are thus

a key element of the SIDH protocol, but they also allow attackers to perform adaptive

attacks against static-key SIDH [GPST16]. To prevent such attacks, both parties can

provide a proof of torsion point correctness, such as the proof proposed in [BKW20;

DDGZ22]. Unfortunately, revealing the torsion point images also enabled the recent

passive attacks on SIDH.
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The SIDH attacks. The security of the SIDH protocol hinges on the hardness of re-

computing the secret isogenies given the public key. While the problem of finding an

isogeny between two curves is believed to be hard, the presence of torsion point images

in SIDH makes it easier since more information is revealed about the secret isogeny. In

a series of works by Castryck and Decru [CD23], Maino, Martindale, Panny, Pope, and

Wesolowski [MMPPW23], and Robert [Rob23], the authors propose a polynomial-time al-

gorithm that can compute an isogeny of smooth degree d given the domain and codomain

curves, the degree d, and the image of a torsion basis of order at least
√
d. This fully

breaks the SIDH key exchange and all protocols based on it. Some counteremasures have

been proposed [FMP23a], based on either secret-degree isogenies or on masked torsion

images. We discuss these approaches in the context of the OPRF protocol in Section 5.5.

5.2.2 – The Boneh et al. OPRF construction

Boneh, Kogan, and Woo [BKW20] introduced a verifiable OPRF protocol based on SIDH,

which uses a prime p of the form p = NMNBNKN1N2f − 1, where the values Ni are

coprime smooth integers and f is a small cofactor. Initially, the server commits to its

key k by publishing the curve EC obtained as the codomain of the NK-isogeny starting

from Ẽ with kernel 〈P̃ + [k]Q̃〉, where the values Ẽ, P̃ , Q̃ are protocol parameters. The

commitment also include a zero-knowledge proof πC of the correctness of the computation.

Then, to evaluate the PRF on input m ∈M, whereM defines the input space, the user

computes an isogeny φm of degree NM by hashing the input with a function H and

computing φm : E0 → Em := E0/〈P + [H(m)]Q〉, where the curve E0 and the points P,Q

are also protocol parameters. Then, the user blinds the curve Em by computing a second

isogeny φb : Em → Emb of degree NB. The user sends the curve Emb and the torsion

images RK = φb ◦ φm(PK), SK = φb ◦ φm(QK) to the server, where the points PK , QK

are also protocol parameters of order NK. The user also provides a non-interactive zero-

knowledge proof that torsion information was honestly computed. The server validates

the proof, computes the isogeny φk : Emb → Embk := Emb/〈RK + [k]SK〉 based on its
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secret key k, and sends the curve Emrk, the image φk(Emb[NB]), and a non-interactive

zero-knowledge proof of correctness to the user. Then, the server and the user engage in

an interactive protocol where the server proves that the isogeny φk has used the same

key k as the committed value. If the user is convinced, they use the provided torsion

information to undo the blinding isogeny, i.e. to compute the translation of the dual of

the blinding isogeny, to obtain the curve Emk. The output of the OPRF is then the hash

H
(
m, j(Emk), (EC , πC)

)
. The main exchange, without the commitments and the proofs,

is represented in Fig. 5.1.

E0 Em

Emb

Ek Emk

Embk

φm

φb

φk

φ̂′b

φ′m

φ′k Computed by the user

PRF evaluation
Computed by the server

Computed by the attacker in [BKMPS21]

Figure 5.1: The Boneh et al. OPRF, based on [BKMPS21, Fig. 1].

5.2.3 – The Basso et al. attack

Basso et al. [BKMPS21] proposed two attacks against the one-more unpredictability of

the Boneh et al. [BKW20] OPRF. In the first attack, an attacker who acts as a malicious

user engages in the OPRF with a message isogeny φm with kernel generator a pointM , of

order `e. The attacker repeats the process with message isogenies with kernel generators

[`]M, [`2]M, . . . , [`e]M . The outputs of the PRF are the curves that lie on the isogeny path

of φ′
m : Ek → Emk (see Fig. 5.1), which allows the attacker to compute a generator of the

kernel of such isogeny. The recomputed generator is a scalar multiple φ′
k(M), where φ′

k is

the isogeny parallel to the server’s secret isogeny, i.e. its kernel is generated by Pk+[k]Qk.

By repeating this process three times with pointsM1,M2 andM3 :=M1 +M2 (whereM1
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andM2 are linearly independent), the attacker obtains

R := [α]φ′
k(M0), S := [β]φ′

k(M1),

T := [γ]φ′
k(M3) = [γ/α]R + [γ/β]S,

for some unknown values α, β, γ. By expressing T in terms ofR and S, the attacker obtains

the values γ/α and γ/β and the points R′ := [γ/α]R = [γ]φ′
k(M0) and S ′ := [γ/β]S =

[γ]φ′
k(M1). Finally, the attacker can evaluate the PRF on any input m by computing

EK/〈R′+[H(m)]S ′〉. The attack is polynomial time, but it crucially rely on using message

isogenies φm of varying degree. The attack can be thwarted by server checking the order

of the isogeny φm, which is possible because of the proof of knowledge provided by user.

The authors of [BKMPS21] also propose a second attack that cannot be easily pre-

vented. The attack proceeeds in a similar way to the previous one, but the malicious user

uses only isogenies of full degree. To obtain the curves on the path of φm, the attacker

needs to find the middle curve between two PRF outputs. This introduces a trade-off

between the complexity of the attack and the number of queries. Minimizing both yields

a subexponential yet practical attack on the one-more unpredictability of the protocol.

5.3 — Oblivious pseudorandom functions

The security properties of an OPRF can be hard to define. Oblivious pseudorandom

functions were originally proposed by Naor and Reingold [NR97], who defined an OPRF

via an ideal functionality. Subsequent work [FIPR05; JL09] defined OPRFs in terms of the

two-party computation (k, x) 7→ (⊥, f(k, x)), but such a definition has several drawbacks.

On one side, it is hard to build protocols that satisfy such a definition, because the security

proof would require extracting the user’s input, while at the same the definition is not

secure enough, because it does not guarantee any security under composability. Since

OPRFs are mainly used as builiding blocks in larger protocols, such a security guarantee
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is highly needed. For these reasons, Jarecki et al. [JKK14; JKKX16; JKX18] proposed

new definitions in the UC framework [Can01]. To avoid extracting the user’s input, the

ideal functionality introduces a ticketing system that increases a counter when the PRF is

evaluated and decreases the counter when the user receives the PRF output. This captures

the idea that a malicious user should learn only the PRF output for one input for each

interaction. This results in the definition of Fig. 5.2, which is based on the definitions by

Jarecki et al. [JKK14; JKKX17; JKX18].

Parameters: The PRF output `, polynomial in the security parameter λ.

Convention: For every identifier S, the counter tx[S] is initially set to zero. For
every value π ∈ {0, 1}∗ and x ∈ {0, 1}∗, the value F (π, x) is initially undefined, and
whenever such a value is referenced, the functionality assigns a random `-bit string
F (π, x)

$←− {0, 1}`.

Initialization

• On message init from party S, forward (init, S) to the adversary A.

• On message (Param, S, π) from adversary A, and if param[S] is undefined, then set
param[S] = π.

Evaluation

• On message (Eval, S, x) from P ∈ {U,A}, record 〈P, x〉 and forward the message
(Eval, P, S) to A.

• On message ServerComplete from server S, send (ServerComplete, S) to A
and increment tx[S].

• On message (UserComplete, P, π) from A, retrieve the record 〈P, x〉, delete it
from the list of records, and decrement tx[S] if there exists an honest server S
such that param[S] = π; abort if no such record exists or if tx[S] = 0. Then, send
(Eval, π, F (π, x)) to P .

Figure 5.2: Functionality FvOPRF.

5.3.1 – Security assumptions

To prove that the OPRF protocol we propose implements the functionality of Fig. 5.2,

we will make use of the properties listed in this section. Since our protocol and security
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proof follows the same high-level structure as that of the OPRF protocol by Boneh et

al. [BKW20], these properties are also based on those of the augmentable commitment

framework proposed in [BKW20]. Unlike [BKW20], we avoid the abstraction of aug-

mentable commitments due to its restrictiveness (the counteremasures of Section 5.4

would not be possible within that framework), and we prefer an explicit description

throughout this work.

Correctness. Firstly, we require the OPRF to be correct, i.e. the output of the protocol is

the output of function that deterministically depends only on the user’s input and the

server’s secret key. In other words, we want that the blinding process that guarantees the

obliviousness of the user’s input does not affect the final output. In the context of our

protocol, we want that the unblinding isogeny undoes the effect of the blinding isogeny.

This is contained in the following lemma, whose proof follows from the correctness of

the SIDH protocol [JD11].

Lemma 16 (Correctness). Let p be a prime of the form p = NBNKf − 1, where NB, NK, f

are smooth coprime integers. Let E0 be a supersingular elliptic curve defined over Fp2 and let

PB, QB and PK , QK be respectively a basis of E0[NB] and E0[NK]. Let also b and k be two

values in ZNB and ZNK. Then, consider the isogenies

φB : E0 → EB := E0/〈PB + [b]QB〉,

φK : E0 → EK := E0/〈PK + [k]QK〉,

φ′
k : EB → EBK := EB/〈φB(PK) + [k]φB(QK)〉.

If RB, SB is a basis of EB[NB] and the values b0, b1 satisfy ker φ̂B = 〈[b0]RB + [b1]SB〉, then

we have

j (EBK/〈[b0]φ′
k(RB) + [b1]φ

′
k(SB)〉) = j(EK).

Input hiding. To ensure that the OPRF is oblivious, we want that the server does not

learn the user’s input. That holds in the strongest sense, i.e. the server should not learn
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the user’s input even when the input is randomly chosen between two inputs chosen by

the server. In other words, the user must apply a blinding step that fully hides the chosen

input. In the context of isogenies, we want the following problem to be hard.

Problem 1. Let p be a prime of the form p = NBNKf−1, whereNBNK, f are smooth coprime

integers. Let E0 and E1 be two supersingular elliptic curves defined over Fp2 and chosen by

the adversary, and let P0, Q0 and P1, Q1 be a basis of E0[NK] and E1[NK], respectively, such

that eNK(P0, Q0) = eNK(P1, Q1). Let i be a random bit, i.e. i $←− {0, 1}, and B a random

point in Ei[NB], and write φ : Ei → E ′ := Ei/〈B〉. Output i given E ′ and f(φ(Pi), φ(Qi)),

where the latter is some auxiliary torsion information.

The hardness of the problem clearly depends on the function f ; if the torsion images

were directly revealed, Problem 1 would be easy due to the SIDH attacks. We thus delay

specifying the function f until Section 5.5, where we discuss the SIDH counteremasures

to use within the OPRF protocol. In the section, we also state the variant of the Decisional

Isogeny problem that Problem 1 reduces to.

One-more unpredictability. A key property of an OPRF is that the user learns the output

of the PRF only on its input of choice. That means that a malicious user should not learn

the output on more inputs than the number of OPRF executions. The attack by Basso et

al. [BKMPS21] on the Boneh et al. [BKW20] OPRF targets the one-more unpredictability,

since it shows that a malicious user can extract enough information to independently

evaluate the OPRF on any input of their choice. We propose an efficient counteremasure

against the one-more unpredictability attack in the next section; we thus delay until then

a formalization of the isogeny-related assumption (see Problem 4) we need to guarantee

the one-more unpredictability of the OPRF protocol.

Commitment binding. At the beginning of the OPRF protocol, the server committs to

a secret key k, so that during each OPRF execution it can prove that the same key was

used. To guarantee verifiability, we want a commitment scheme with an associated proof
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of input reuse. We propose to commit to a key k by fixing a special curve Ẽ with a basis

P̃ , Q̃ of Ẽ[NK] and revealing j(Ẽ/〈P̃ + [k]Q̃〉). The proof of input reuse, which in the

context of isogenies becomes a proof of parallel isogenies, is presented in Section 5.5.2.

To guarantee that the Commitment is binding, we want that the following problem to be

hard.

Problem 2 (Collision finding problem). Let E0 be a supersingular elliptic curve of unknown

endomorphism ring. Find two distinct isogenies φ0 : E0 → E and φ1 : E0 → E ′ such that

j(E0) = j(E1).

Problem 2 has been studied in the context of the CGL hash function [CLG09], and it

has been shown to be heuristically equivalent to the following problem, which underpins

every isogeny-based protocol [PL17; EHLMP18].

Problem 3 (Endomorphism Ring problem). Let E be a supersingular elliptic curve. Find

the endomorphism ring End(E) of E.

5.4 — Countermeasures against the one-more

unpredictability attack

The original protocol by Boneh et al. starts by mapping an input m to an isogeny φm. If

we denote with NM the torsion space dedicated to the message, the protocol fixes a basis

P,Q of E0[NM] and computes the isogeny φm given by

φm : E0 → E0/〈P + [H(m)]Q〉 =: Em, (5.1)

where H(·) maps the message m onto an element of ZNM.

The subexponential attack [BKMPS21] recovers the image Pk, Qk of the torsion basis

P,Q, up to scalar multiplication, under the secret isogeny φ′
k : E0 → Ek. With such

information, the attacker can evaluate the PRF on any input of their choice. The output
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curve of the PRF is the curve computed as Ek/〈Pk + [H(m)]k〉. Any countermeasures

against such an attack need to prevent the attacker from evaluating the OPRF without

interacting with the server. A first approach might try to prevent the attacker from

recovering the points Pk, Qk altogether, but it appears to be hard since the curve Ek

is fixed, because the server needs to hold a long-term static key to satisfy the OPRF

definition, which in turn also fixes the curve Ek. Moreover, the attack by Basso et al.

could be prevented by requiring the user to send only honestly-generated queries. The

attacker needs to send carefully-chosen queries, where the kernel of the message isogeny

does not necessarily satisfy Eq. (5.1). However, there is no simple way to prove in zero-

knowledge that the kernel was honestly computed, besides using very expensive generic

techniques. Another approach might require to simply increase the parameters. The

attack is subexponential, and it is possible to obtain λ bits of security if the isogeny φm

has degree 2λ
2 (this can be reduced if we limit the number of queries the attacker can

make). This would require using very long isogenies (the degree would be 216,384 for

λ = 128) and very large primes.

Instead, in this section we propose a novel and efficient countermeasure that sidesteps

these issues. Our main idea is to accept that an attacker may recover the curve Ek and

points Pk, Qk on it, but to prevent those points from being sufficient to evaluate the

desired isogeny. To do so, we require that the isogeny φm has an irrational kernel, i.e.

its kernel is defined over a sufficiently-large extension field. Such an isogeny can be

efficiently computed as a composition of rational isogenies. More formally, assume that

NM = `e, and e is the highest power of ` that divides p+ 1. Then, given an input m ∈M,

we compute the isogeny φm in the following way:

1. We first map the message m to two elements in Z`e through two hash functions

H0, H1 that are collision resistant. We thus have m0 = H0(m) and m1 = H1(m).

2. Given the starting curve E0 and two points P0, Q0 spanning E0[`
e], we compute the

isogeny

φ0 : E0 → E1 := E0/〈P0 + [m0]Q0〉.
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3. We determine a canonical basis P1, Q1 of E1[`
e] and compute the isogeny

φ1 : E1 → Em := E1/〈P1 + [m1]Q1〉,

4. The isogeny φm : E0 → Em is the composition φ1 ◦ φ0.

An attacker may still try to apply the one-more unpredictability attack. In the original

case, the attacker recovers three isogenies from Ek to Emk and they combine their kernel

generators to obtain the image points Pk, Qk. In the proposed construction, the attacker

can still recover three (or more) isogenies from Ek to Emk. However, the kernel generators

of these isogenies are points of order `2e, and thus they are defined only over the extension

field Fp2`e . This is an exponentially large field, and even just representing such a point—

let alone doing any computation—would be exponential in the security parameter. To

guarantee security, it is important that the degree of φm is a prime power. If the degree

were a product of prime powers, it is possible to represent a large extension by working

over several smaller extensions because of the Chinese Remainder Theorem. This can

reduce the complexity of working over a large extension and thus reduce the security of

the proposed countermeasures.

E0 E1 Em

Ek Em0k Emk

φ0 φ1

φm0 φm1

Figure 5.3: Summary of the proposed countermeasure (this does not depict the blind-
ing/unblinding phase). Isogenies in red are known or can be computed by the attacker,
isogenies in black are unknown to the attacker, and the dotted isogeny represents the
missing isogeny that the attacker needs to compute to succeed in the attack.

The attacker can work with the kernel generators of only the first half of the isogenies

and obtain a basis Pk, Qk of order `e (see Fig. 5.3). This allows them to evaluate the first

isogeny φm0 to obtain the curve Em0k for any message m. However, the attacker has no

way of computing the remaining isogeny φm1 . To do so, the attacker would need to map
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the canonical basis on E1 to Em0k, which does not seem to be possible without knowing

the server secret key. Alternatively, the attacker could map the points P,Q and Pk, Qk

under the isogenies φ0 and φ′
k. At least one of the image points on each curve has full

order, and the point of full order on Em0k is the image of the point of full order on E1.

This suggest such an approach could be used to find a basis, but the second point on

each curve is always a scalar multiple of the first point2. Hence, guessing the remaining

point has exponential complexity `e. Lastly, the attacker cannot use a similar strategy

as the one-more unpredictability attack to recover a basis on Em0k because the curve

Em0k depends on the message m. It thus changes at every interaction, and it is hard

for an attacker to find two messages that have the same first curve E1 and Em0k since

we assume that the hash function H0 is collision-resistant. Note that we require H0 and

H1 to be collision-resistant, but we conjecture that only H0 needs to be. Overall, the

knowledge of Em0k does not help the attacker learn any information on the curve Emk,

which successfully prevents the the one-more unpredictability attack.

Optimizations. We can extend this approach to obtain a more compact protocol. Rather

than limiting ourselves to two isogenies, we can extend this to an arbitrary number. Let

I be an integer greater than one, and let Hi be distinct functions for every i ∈ {1, . . . , I},

which are modelled as random oracles. Then, given an input m and a starting curve E0,

the isogeny φm and the curve Em can be computed as in Algorithm 3. This modification

can result in a more compact OPRF protocol because only the smaller isogenies φi need

to be defined over Fp2; thus, using more isogenies can result in a smaller prime p while

maintaining the same degree of the isogeny φm. In this case, note that the functions Hi

cannot be collision-resistant if their output space becomes smaller than 22λ; however,

the case where I > 2 is clearly more secure than I = 2 because an attacker can recover

even less information. Since we require H0 to be collision-resistant when I = 2, in the

case I > 2 it is thus sufficient to ask that the concatenation H0(x)||H1(x)|| . . . ||Hn(x) is

2If kerφ = 〈P + αQ〉, it follows that φ(P ) = −αφ(Q).
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collision-resistant where n is the smallest value such that the concatenation output is

larger than 22λ. In other words, the functions Hi can be obtained by splicing the output a

collision-resistant hash function.

In the rest of the paper, we write (φm, Em) = HI(x) to refer to the function in Algo-

rithm 3; we also write [P0, P1, . . . , PI−1]E,N to denote a list points of order N where the

point P0 belongs to E, and the point Pi belongs to Ei := Ei1/〈Pi−1〉. We refer to this as a

sequence, whose associated isogeny is the composition of the isogenies Ei → Ei/〈Pi〉.

Algorithm 3 Function HI mapping the input m to the curve Em
1: for i← 0 to I − 1 do
2: Set mi = Hi(m);
3: Set Pi, Qi = BM(E);
4: Compute φi : Ei → Ei+1 := Ei/〈Pi + [mi]Qi〉;
5: Set φm = φI−1 ◦ . . . ◦ φ0;
6: Set Em = EI−1;
7: return φm, Em;

A new assumption. We proposed amodified protocol that prevents the existing one-more

unpredictability attacks. As in the original construction, the one-more unpredictability of

the resulting protocol relies on the hardness of a novel problem, which is the following.

Problem 4 (One-more unpredictability). Let p be a prime of the form p = NMNKf − 1,

where NM and NK are smooth coprime integers, and f a cofactor. Let HI be a function as in

Algorithm 3. Let E0 be a supersingular curve defined over Fp2, and let K be a point on E0

of order NK. Write φK for the isogeny φK : E0 → EK := E0/〈K〉. Given the curves E0, EK

and an oracle that responds to the following queries:

• challenge: returns a random sequence [M0, . . . ,MI−1]E0,NM,

• solve([V0, . . . , VI−1]E0,NM): returns j(EV /〈φV (K)〉), where φV is the isogeny associated

to the input sequence,

• decide(i, j): returns true if j is equal to the output of a solve query with input the

response of the i-th challenge query, and false otherwise,
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For any value n, produce n pairs (i, j) such that decide(i, j) = true with less than n solve

queries.

The problem is based on Game 12 of [BKW20], but compared to it, this game involves

multiple points during the challenge and solve query to abstract the behavior described

in the previous section. Moreover, the problem includes the countermeasures against

the polynomial time attack of [BKMPS21], i.e. the attacker can only query points of

the correct order. This can be replicated in the OPRF setting by checking the order of

the isogenies in the proof of isogeny knowledge. We included these countermeasures

to prevent possible attacks since they are inexpensive. However, we conjecture that the

problem remains hard even if the adversary is allowed to submit solve queries with points

of arbitrary order. Furthermore, the problem remains hard after the SIDH attacks since it

does not involve exchanging any torsion points.

Countermeasure costs. We briefly discuss the impact of the proposed countermeasures

on the performance of the OPRF protocol. Firstly, we need to determine the parameters

`, e, and I. In the previous section, we presented two possible attacks on the Auxiliary

One-More SIDH assumption: the first requires to work over the extension field Fp2`e , while

the second obtains a point of full order on E1 and its image on Em0k, fixes a linearly-

independent point on E1, and then guesses its image Em0k. The first attack involves

using points with coordinates with `e values in Fp, while the second requires guessing

the correct image out of the `e possibilities. It may be tempting to set `e ≈ 2λ, but when

I = 2 we require that the hash functions H0, H1 are collision-resistant, so their output

space must be larger than 22λ. Hence, we set `e ≈ 22λ and the degree of φm to be 24λ. If

we want to minimize the bandwidth consumption of the protocol, we can set e = 1 and

`I ≈ 24λ. Moreover, we can choose ` such that isogenies of degree ` are defined over a

small extension, such Fp4, rather Fp2 .

The choice of e thus determines the size of the message component NM and the prime

p: if I = 2, the message component NM is already smaller than the value NM in the
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original construction, which used NM ≈ 25/2λ. If e = 1, the message component NM is

one, since the prime p does not need to change to allow computations of the message

isogeny. This means that not only do the proposed countermeasures protect against

existing attacks, but also they reduce the prime size leading to a more compact and

efficient protocol.

5.5 — Countermeasures against the SIDH attacks

The recent series of attacks by Castryck and Decru [CD23], Maino, Martindale, Panny,

Pope, and Wesolowski [MMPPW23], and Robert [Rob23] exploits torsion-point informa-

tion to break SIDH. These attacks trivially translate to the OPRF, where any third party

can recover both the user’s hashed input (which breaks obliviousness) and the server’s

secret key. In this section, we discuss how to adapt the existing SIDH countermeasures to

work in the OPRF setting. After modifying the main exchange, we propose a novel proof

of isogeny knowledge that works together with the countermeasures, which may be of

independent interest since it is the first proof to prove the correctness of torsion point

images in the SIDH-with-countermeasure setting. This proof can be used together with

the patched SIDH to obtain a post-quantum non-interactive key-exchange.

Combining the countermeasures together with the novel proof of torsion point cor-

rectness, we obtain an SIDH-based OPRF that is resistant against the SIDH attacks. While

the countermeasures impose larger parameters, the resulting protocol remains the most

compact post-quantum vOPRF.

5.5.1 – Protecting the exchange

The OPRF exchange is based on SIDH, but it has some differences from a simple SIDH

key exchange. In particular, in the OPRF protocol the two parties compute isogenies of

different lengths and need to prove the correctness of their outputs. Moreover, the server

starts its computation from a curve provided by the user and also needs to prove that it
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used the same key it has previously committed.

The attacks on SIDH recover an isogeny φ : E → E ′ of degree d when provided with

the curves E,E ′, the degree d and the image of the n-torsion φ(E[n]), where the size of

n satisfies at least n ≈ d1/2. This suggests three possible countermeasures, as discussed

in [FMP23a]:

1. Hide the degree d of the isogeny φ by choosing a random d′ | d.

2. Increase the degree d of the isogeny φ, such that d� n2,

3. Mask the exact torsion images by providing a scalar multiple.

In the OPRF setting, the hidden-degree countermeasure does not appear to work. Both

parties need to prove the correctness of their revealed torsion points, and all the proofs of

isogeny knowledge in the literature rely on constructing an SIDH square and revealing

some sides. This inevitably leaks the degree of the secret isogeny, which makes the

hidden-degree countermeasure ill-suited to work with zero-knowledge proofs.

Relying only on longer isogeny may seem like a valuable approach, as it does not

require on any new assumption. In the SIDH setting, it is not possible to protect both

parties with such a strategy because it would require both isogenies to be longer than

the other. In the OPRF, however, the user computes the message and blinding isogenies

in the first round, provides enough torsion information for the server to compute its

isogeny, and the server reveals the torsion information needed for the user to invert the

blinding isogeny. This suggests that the protocol could be secure if the server’s isogeny is

sufficiently longer than the blinding isogeny, and if the composition of the message and

blinding isogeny is sufficiently longer the server’s isogeny. This approach could lead to a

compact and fairly efficient protocol, but unfortunately it does not guarantee the input

hiding property. The server should not distinguish the user’s input even when the user

chooses between two server-controlled messages. This approach is thus inadequate for

an OPRF, but it might still be useful for specific applications where the message space

has sufficiently-large entropy and such a strong security assumption is not needed.
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Thus, to guarantee the security of the SIDH-based OPRF we need to rely on the masked-

torsion countermeasure, as in masked SIDH (M-SIDH) [FMP23a]. Let φ : E → E ′ be

the isogeny we want to protect, and let P,Q be a basis of E[n], for some n coprime with

d. Given a basis P ′ = φ(P ), Q′ = φ(Q), the other party computes their isogeny with

kernel 〈P ′ + [x]Q′〉, where x is the secret key. Thus, it is possible to reveal [α]P ′, [α]Q′,

for some random α coprime with the torsion order n, without affecting the correctness of

the protocol. However, an attacker can recover the value α2 from the Weil pairing, since

e([α]P ′, [α]Q′) = e(P,Q)α
2 deg φ. To ensure that the attacker cannot recover the value α,

we want that any value has at least 2λ square roots modulo n, hence n needs to be the

product of at least λ prime powers. This, however, is not enough to guarantee security,

as an attacker can guess the correct square root modulo some n′ | n with n′ > d1/2 in

less than O(2λ) guesses. We thus also require that d > n′, where n′ is the product of the

powers of the λ largest primes dividing n. From now on, we write n = fMSIDH(λ, d) to

denote the smallest value n that can guarantee λ bits of security when used in M-SIDH

with an isogeny of degree d. Lastly, the countermeasure analysis in [FMP23a] shows

that an attack is possible for certain parameters when the starting curve has a small

endomorphism. In our case, such an attack does not apply even if the OPRF starting curve

E0 has a known endomorphism ring with a small endomorphism ι. The composition of

the message and blinding isogeny φx◦φm is sufficiently long that the attack does not apply,

while considering the blinding isogeny φx alone (remember that in the security game the

attacker can control the messages) does not help either. Even if the attacker can guess

the input message, the smallest endomorphism known on the domain of the blinding

isogeny is φ̂m ◦ ι ◦ φm, which is too large. The server computes its isogeny starting from a

curve Emx that is sent by the user, which generally could be an avenue for attack since

MSIDH is insecure for special starting curves. However, the user also submits a proof that

the user knows an isogeny of long degree between E0 and Emx. This guarantees that the

smallest known endomorphism is again sufficiently large, and thus the attack does not

apply to the server’s isogeny as well.
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We can now formulate the following problem, on whose hardness the input hiding

property of the OPRF is based.

Problem 5 (Decisional M-SIDH isogeny problem). Let E0 be a supersingular elliptic curve,

with a basis P,Q be of E0[n]. Distinguish between the following distributions:

• (E1, R, S), where E1 is the codomain of a d-isogeny φ : E0 → E1, where d is coprime

with n, and the points R,S are the masked images of P,Q, i.e. R = [α]φ(P ) and

S = [α]φ(Q) for some α $←− Z∗
n;

• (E1, R, S), where E1 is a random supersingular elliptic curve and the points R,S are

a random basis of E1[n] such that e(R,S) = e(P,Q)α
2d, for some value α.

The hardness of the problem clearly depends on the choices of n and d; the problem

(conjecturally) requires O(2λ) operations to solve when n > fMSIDH(λ, d), i.e. the product

of the λ largest prime powers dividing n is smaller than
√
d.

Concrete cost. We have shown it is possible to protect the OPRF protocol from the SIDH

attacks. Unfortunately, the proposed countermeasure do come at a significant cost. The

degrees of the blinding isogeny and the server’s isogeny are the same as in SIDH with the

same countermeasures. At security level λ = 128, that corresponds to isogenies of degree

≈ 22956. More generally, we see experimentally that the degree of the isogenies scales

log-linearly in the security parameter with a constant of ≈ 6.7. We thus have that the

degree of the blinding isogeny and the server’s isogeny must be ≈ 26.7λ log λ to guarantee

the security of the protocol.

5.5.2 – Adapting the proof of isogeny knowledge

In the previous section, we showed how it is possible to protect the OPRF against the

SIDH attacks using masked torsion points. However, in the OPRF protocol both parties

need to prove the correctness of their torsion images to prevent adaptive attacks and

guarantee the verifiability of the execution. This leads to an issue, because both the user
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and the server want to prove that their torsion points were honestly generated, but these

points are also scaled by a secret value. Thus, two parties want to prove that both points

were honestly generated and scaled by the same value.

In this section, we propose a zero-knowledge proof of isogeny knowledge that can

guarantee the correctness of torsion points up to a scalar, i.e. a proof for the following

relation:

Riso =

((E0, P0, Q0, E1, P1, Q1), (φ, α))

∣∣∣∣∣∣∣∣∣∣
φ : E0 → E1 is a cyclic d-isogeny,

P1 = [α]φ(P0),

Q1 = [α]φ(Q0).

 .

In the literature, we can find two proofs of isogeny knowledge that also guarantee

the correctness of torsion point images. The first proof constructs an SIDH square and

explicitly maps the torsion images through all the sides of the square. This proof was

proposed by Boneh et al. [BKW20] for the OPRF protocol, based on a previous idea by

Galbraith [Gal18]. The second proof [DDGZ22], instead, is an extension of the simpler

proof of isogeny knowledge by De Feo and Jao [JD11], but it does not seem to be malleable

enough to support masked torsion, because the correctness of the torsion is implicitly

proven through the existence of two parallel SIDH squares. In the first proof, however, the

torsion images are more explicit, which makes it more suitable to support masked torsion.

We thus propose a new proof based on the same approach as [BKW20] and [Gal18],

although with some notable differences.

The main idea is that the masking constant α can be split into three shares α = α1α2α3.

The prover can mask the torsion points with αi when computing the i-th side of the SIDH

square, so that the composition of the three side isogenies, together with their masking

values, forms a commutative diagram with the isogeny φ with masking value α. The

proof remains zero-knowledge because each single value αi is independent of α. More

formally, let E0 and E1 be supersingular elliptic curves with points P0, Q0 ∈ E0[n] and

P1, Q1 ∈ E1[n]. The prover wants to prove knowledge of a d-isogeny φ : E0 → E1 and
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a value α ∈ Zn such that P1 = [α]φ(P0) and Q1 = [α]φ(Q0). This only makes sense if φ

is secret, thus let us assume n = fMSIDH(λ, d). The prover generates a random isogeny

ψ : E0 → E2 of degree s, where s ≈ n is a smooth number coprime with both n and d,

and generates the SIDH square (E0, E1, E2, E3) with edges (φ, ψ, φ′, ψ′). To guarantee

soundness, the prover needs to show that ψ and ψ′ are parallel: the prover thus generates

a s-basis R2, S2 on E2, maps it to E3 to obtain R3, S3, and expresses the kernels of ψ̂ and

ψ̂′ in terms of R2, S2 and R3, S3 with the same linear coefficients. The prover also splits α

in three shares α = α1α2α3 and maps the points P0, Q0 through ψ and φ′ with masking

values α1 and α2 to obtain the points

P2 = [α1]ψ(P0), Q2 = [α1]ψ(Q0),

P3 = [α2]φ
′(P2), Q3 = [α2]φ

′(Q2),

which implies that P3 and Q3 also satisfy the relation

[α3]P3 = ψ′(P1), [α3]Q3 = ψ′(Q1).

Hence, the SIDH square commutes with respect to the points Pi, Qi, i.e. if we restrict

ourselves to the n-torsion, we have

[α][s]φ = [α3]ψ̂′ ◦ [α2]φ
′ ◦ [α1]ψ.

Thus, the witness can be split into three components, and hence we obtain a proof

with ternary challenges. The prover initially commits to the curves E2, E3 and the relevant

points on them with a commitment scheme C(·). Then, depending on the challenge, the

prover responds with one edge of the SIDH square, the relevant curves and points, and

the corresponding commitment openings. The proof is described in Fig. 5.4. Since each

iteration has soundness error 2/3, the proof must be repeated −λ log2/3(2) ≈ 1.71 times

to achieve a soundness error of 2−λ.
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Remark 6. If the kernel of the isogeny φ is not defined over a small extension field, as in the

case of the message isogeny, the proof can be computed by gluing together multiple SIDH

squares, as shown in [BCCDF+23].

We now sketch the proofs of correctness, three-special soundness and zero-knowledge.

Given the similarity of the zero-knowledge proof with those in [BKW20], the proofs also

follow a similar approach.

• Correctness. A honest prover always generates proofs that are accepted by the

verifier. The verifier recomputes the same operations as the prover and checks that

the outputs match. The only difference is in the chall = ±1 cases, where the verifier

computes the dual of ψ and ψ′, which then introduces the s factor in the point

equality check.

• Three-special soundness. The protocol is three-special sound because there exists

an extractor that extracts the witness given three accepting transcripts with the same

commitments and different challenges. The isogeny φ can be computed by mapping

the kernel of φ′ (from chall = 0) under the isogeny ψ̂ (from chall = −1). Since the

isogenies ψ and ψ′ are parallel (from all the challenges combined), this guarantees

that φ is a d-isogeny from E0 to E1. The masking value α can be recomputed as the

product of α1, α2, and α3.

• Zero-knowledge. We sketch a simulator that given a statement (E0, P0, Q0, E1, P1, Q1)

and a challenge chall can simulate a valid transcript without knowledge of the wit-

ness. For the case chall = −1, the simulator behaves like an honest prover. For

chall = +1, the situation is similar: the simulator can compute a d-isogeny ψ′,

pick a random basis R3, S3 of E3[d] and a random value α3 ∈ Z∗
n, and compute

the values a, b and points P3, Q3 that pass verification. Note that the points R3, S3

are uniformly random among the bases of E3[d], and the value α3 is uniformly

random and independent of α; the simulated values are thus distributed as the

honestly-generated ones. The case of chall = 0 is more complicated: the simulator
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P1((E0, P0, Q0), (E1, P1, Q1), φ, α):
1: Sample a random cyclic isogeny ψ : E0 → E2 of degree s;
2: Construct the SIDH square (E0, E1, E2, E3, φ

′, ψ′) on (φ, ψ);
3: Sample random units α1, α2 mod n and set a3 := α/α1α2;
4: Set P2, Q2 := [α1]ψ(P1), [α1]ψ(Q1), and P3, Q3 := [α2]φ

′(P2), [α2]φ
′(Q2);

5: Let R2, S2 be a basis of E2[d] and set R3, S3 := φ′(R2), φ
′(R3);

6: Write K = [a]R2 + [b]S2 for K a random generator of ker ψ̂
7: Sample random strings r1, . . . , r7;
8: return

(
st,C(E2, R2, S2, P2, Q2; r1), C(E3, R3, S3, P3, Q3; r2),

C(a, b; r3), C(φ′; r4), C(α1; r5), C(α2; r6), C(α3; r7)
)
.

P2(st, chall):
1: if chall == −1 then
2: return ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5));
3: else if chall == 0 then
4: return ((E2, R2, S2, P2, Q2, r1), (E3, R3, S3, P3, Q3, r2), (φ

′, r4), (α2, r6));
5: else if chall == 1 then
6: return ((E3, R3, S3, P3, Q3, r2), (a, b, r3), (α3, r7));

V((E0, P0, Q0), (E1, P1, Q1), (com1, . . . , com9), chall, resp):
1: if chall == −1 then
2: ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5)) = resp;
3: Check com1 = C(E2, R2, S2, P2, Q2; r1),

com3 = C(a, b; r3), com5 = C(α1; r5);
4: Let ψ̂ be the isogeny with kernel 〈[a]R2 + [b]S2〉;
5: Check ψ̂ is an s-isogeny from E2 to E0;
6: Check [α1s]P0 = ψ̂(P2) and [α1s]Q0 = ψ̂(Q2);
7: else if chall == 0 then
8: ((E2, R2, S2, P2, Q2, r1), (E3, R3, S3, P3, Q3, r2), (φ

′, r4), (α2, r6)) = resp;
9: Check com1 = C(E2, R2, S2, P2, Q2; r1),

com2 = C(E3, R3, S3, P3, Q3; r2),
com4 = C(φ′; r4), com6 = C(α2; r6);

10: Check φ′ is a d-isogeny from E1 to E2;
11: Check R3, S3 = φ′(R2), φ

′(R3);
12: Check P3, Q3 = [α2]φ

′(P2), [α2]φ
′(Q2);

13: else if chall == 1 then
14: ((E3, R3, S3, P3, Q3, r2), (a, b, r3), (α3, r7)) = resp;
15: Check com2 = C(E3, R3, S3, P3, Q3; r2),

com3 = C(a, b; r3), com7 = C(α3; r7);
16: Check 〈R3, S3〉 = E3[s];
17: Let ψ̂′ be the isogeny with kernel 〈[a]R3 + [b]S3〉;
18: Check ψ̂ is an s-isogeny from E3 to E1;
19: Check [α3s]P1 = ψ̂′(P3) and [α3s]Q1 = ψ̂′(Q3);

Figure 5.4: Interactive proof of knowledge for the relation Riso.
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can sample a random curve E2, generate a random basis P2, Q2 of E2[n] that satisfies

e(P2, Q2) = e(P0, Q0)
x2s for some random x, pick a random d-isogeny φ′ : E2 → E3,

and compute the image points on E3. In this case, the indistinguishability of the sim-

ulator’s output is only computational. It is thus based on the conjectured hardness of

the following problem, which is a modified version of the Decisional Supersingular

Product (DSSP) problem introduced in [JD11].

Problem 6 (DSSP with Torsion (DSSPwT) problem). Given an isogeny φ : E0 → E1

and points P0, Q0 ∈ E0[n], where n = fMSIDH(λ, d), distinguish between the following

distributions:

– D0 = {(E2, P2, Q2, E3, φ
′)}, where E2 is the codomain of an s-isogeny ψ : E0 →

E2, the points P2, Q2 satisfy P2 = [α]ψ(P0), Q2 = [α]ψ(Q0) for some α ∈ Z∗
n,

and φ′ : E2 → E3 is a d-isogeny with kernel kerφ′ = ψ(kerφ).

– D1 = {(E2, P2, Q2, E3, φ
′)}, where E2 is a random supersingular curve with the

same cardinality as E0, P2 and Q2 are two random points of order n such that

e(P2, Q2) = e(P0, Q0)
s, and the isogeny φ′ is a d-isogeny between E2 and E3.

Note that [BKW20] argues that a similar proof can only reveal one torsion point

(either Pi or Qi) at a time to prevent a distinguishing attack on the simulator. The

attack they present relies on computing the Weil pairing between two points of

coprime order, and thus their pairing is always one. The attack thus does not apply,

and the simulated transcript remains undistinguishable under Weil pairing checks

because the sampled points P2, Q2 are guaranteed to have the same pairing as

the honestly-generated points. By revealing both points Pi and Qi we obtain a

significantly more efficient proof, since it has 1/3 soundness rather than 1/6.

Optimizations. For simplicity, the proof in Fig. 5.4 contains a schematic description of

the protocol, but the proof can be made more efficient through a series of optimizations.
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In the commitment phase, the value α2 is only revealed together with the isogeny φ′,

and thus they can be committed together. Note that we have the prover commit to φ′

to make the proof online-extractable without recursion, which is necessary to achieve a

proof in the UC model. For applications of this proof outside of the OPRF context, the

prover can avoid committing to φ′. The masking values α1 and α3 are independent of

α, even when considered together, because α2 is uniformly random. They can then be

committed together and revealed both in the response to challenges chall = ±1. Since

the commitment for a, b is also revealed when chall = ±1, the values a, b, α1, α3 can all

be committed together. When chall = −1, the curve E3 and the points P3, Q3 are not

revealed, and thus learning α3 does not provide any information. The same applies to α1

when chall = +1. This allow us to reduce the number of commitments to four.

To further reduce the communication between prover and verifier, the basis R2, S2

on E2 can be chosen canonically, so that it can be recomputed from E2. Moreover, for

the challenge chall = −1, the prover can avoid revealing the curve E2, the points P2, Q2

and the coefficients a, b by revealing instead a kernel generator of ψ. The prover can

recompute E2, P2, Q2 and obtain a, b by writing a kernel generator of ψ̂ in terms of the

canonical basis R2, S2. Normally, the recomputed a, b would not be the same as those

computed by the verifier since they are not unique. The problem can be avoided by fixing

a canonical way to compute the coefficients, such as prescribing that one of the two

coefficients must be one, and that a must be one if both coefficients are invertible mod s.

The same approach holds for chall = +1, except that the points R3, S3 have to be revealed

by the prover. In the case of the horizontal isogeny, the prover can avoid revealing E3

and the points R3, S3 and P3, Q3. They can all be recomputed from the remaining values.

Concrete cost. Each repetition of the proof requires two commitments, which are 2λ-bit

long and use a λ-bit long opener. When chall = −1, the prover reveals one s-isogeny, a

masking value, and two commitment openers, which requires log n+log s+2λ bits. When

chall = +1, the prover also reveals two torsion points of order s: if they are compressed
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as in [AJKKL16], the response requires 5 log s+ log n+ 2λ bits. Lastly, for chall = 0, the

prover reveals a curve, a d-isogeny, two points of order n, a masking value, and three

openers; thus, the answer requires 2 log p+ log d+ 5 log n+ 3λ bits.

Hence, if we assume d ≈ n ≈ s ≈ 3
√
n, an average proof where the three challenges

appear equally requires ≈ 1.71λ(20/9 log p+ 7/3λ) bits, while a worst-case proof, with

only chall = 0 challenges, requires ≈ 1.71λ(4 log p+ 3λ) bits.

5.6 — Verifiability

Oblivious PRFs can satisfy a stronger security property called verifiability. Informally, this

guarantees that the server behaves honestly and always uses the same long-term static

key. This is needed to guarantee the privacy of the user in those instances where the user

may later reveal the output of the OPRF. A malicious server may behave “honestly” while

also using different secret keys on different interactions. After learning the OPRF output

of the user, the server can then test which secret key was used to produce that specific

output and thus link the user to a specific user-server interaction.

The Boneh et al. construction. The OPRF protocol by Boneh et al. achieves verifiability

by introducing three components. First, the server initially commits to a secret key k. The

commitment is in the form of an elliptic curve EC := E/〈P + [k]Q〉, where the curve E

and the points P,Q are fixed parameters. Second, during the OPRF execution, the server

provides a zero-knowledge proof that its computations used the same key as the one in the

commitment. We refer to this proof as a proof of parallel isogeny (PoPI). Lastly, the server

also provides two proofs of isogeny knowledge (PoIKs) that guarantee the correctness of

the computations during both the commitment stage and the OPRF execution.

The proof of parallel isogeny proposed by Boneh et al. relies on the user and the server

engaging in an SIDH exchange, where one of the sides is either the commitment isogeny or

the the secret server isogeny in the OPRF protocol. The user only reveals the codomain of

an isogeny starting from either starting curve, which means the server cannot distinguish
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the two cases. Thus, if the keys used in the protocol and the commitment were different,

the server could not do better than randomly guessing which starting curve the user used.

By repeating the protocol λ times, the server can prove the parallelness of the isogenies

with soundness 2−λ. However, this proof is inherently interactive. Since the server also

needs to defend against adaptive attacks [GPST16], the proof uses an approach similar

to the Fujisaki-Okamato transform, which requires five rounds of interaction. Moreover,

the proof relies on multiple SIDH exchanges, and it is thus broken by the attacks on

SIDH [CD23; MMPPW23; Rob23]. It may be possible to avoid some of the issues, for

instance by starting from a curve of unknown endomorphism ring using a trusted setup

and by switching to an SIDH version that is resistant to the recent attacks. However, it

seems impossible to obtain a non-interactive proof using a similar approach.

Our proposal. We introduce a novel public-coin proof protocol of parallel isogeny

that sidesteps the problems discussed above. Since the proof does not rely on private

randomness, we obtain a proof of knowledge that can be made non-interactive via the

Fiat-Shamir transform [FS87] or the Unruh transform [Unr15]. In the OPRF setting, we

will rely on the latter to achieve the online-extractability without rewinding needed to get

a proof in the UC model. Our main approach relies on executing two proofs of isogeny

knowledge in parallel with correlated randomness. Since part of the randomness used is

shared, we can obtain a proof of parallelness without needing additional computations.

Firstly, we formalize the notion of parallelness. We say that two d-isogenies φ : E0 → E1

and φ̃ : Ẽ0 → Ẽ1 are parallel with respect to the bases R,S ∈ E0[d] and R̃, S̃ ∈ E ′
0[d] if

there exists coefficients a, b ∈ Zd such that kerφ = 〈[a]R+ [b]S〉 and ker φ̃ = 〈[a]R̃+ [b]S̃〉.

This suggests that the parallelness relation that we are proving is the following:

Rpar =

((E0, R, S, E1, Ẽ0, R̃, S̃, Ẽ1), k0, k1)

∣∣∣∣∣∣∣
E0/〈[k0]R + [k1]S〉 ∼= E1,

Ẽ0/〈[k0]R̃ + [k1]S̃〉 ∼= Ẽ1

 .

However, as discussed before, we are combining several proofs together to obtain a
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larger proof that simultaneously proves knowledge of two isogenies and guarantees the

two isogenies are parallel. We thus obtain a proof for the following relation, where we

consider the case of a secret key with two coefficients for completeness. For practical

reasons, the OPRF will fix k0 = 1 without any loss of security.

R∗
par =


((E0, R, S, P0, Q0, E1, P1, Q1,

Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1),

(k0, k1, α, α
′))

∣∣∣∣∣∣∣∣∣∣∣∣∣

kerφ = 〈[k0]R + [k1]S〉,

kerφ′ = 〈[k0]R̃ + [k1]S̃〉,

(E0, P0, Q0, E1, P1, Q1), (φ, α) ∈ Riso,

(Ẽ0, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), (φ
′, α′) ∈ Riso


.

Now, let the curve Ẽ0 with a d-basis R̃, S̃ be fixed protocol parameters. Using the same

notation as before, assume that server has committed to its key (k0, k1) by publishing the

codomain of the d-isogeny φ̃ that has kernel 〈[k0]R̃ + [k1]S̃〉. The server may also reveal

some torsion information in its commitment, but as we will discuss later, this is not strictly

needed. During the OPRF execution, the server receives a curve E0 with a d-basis R,S

on it, and it computes φ : E0 → E1 := E0/〈[k0]R+ [k1]S〉. The server then wants to prove

that it knows the isogenies φ and φ̃ and that they are parallel.

If the server simply ran two instances of the PoIK from Fig. 5.4 in parallel, there would

be no way to convince the prover that the isogenies are indeed parallel. If the proofs share

the same challenges, i.e. the verifier sends the same challenges to both proofs, the server

would respond with both φ and φ̃′ when chall = 0. However, the isogenies φ and φ̃′ are

not parallel with respect to the bases R2, S2 and R̃2, S̃2 since they are randomly generated.

We thus to want to modify the proof such that the bases R2, S2 and R̃2, S̃2 are related

to R0, S0 and R̃0, S̃0, so that when φ and φ̃ are parallel, so are φ′ and φ̃′. One way to do

this is by computing the basis R2, S2 as R2, S2 = ψ(R0), ψ(S0) (and similarly for R̃2, S̃2)

in both proofs, where ψ is the vertical isogeny used in the proof of knowledge. This is

however not zero-knowledge, because when chall = 0, the verifier could recompute the

secret isogeny φ. Instead, we propose that the prover generates four random coefficients
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w, x, y, z ∈ Zd such that wz − xy 6= 0 mod d, and computes R2 and S2 as the solution of

R0 = [w]ψ(R2) + [x]ψ(S2), S0 = [y]ψ(R2) + [z]ψ(S2).

This is then secure, because the basis R2, S2 is uniformly random. Thus, for a single

proof, this change only affects how the random points R2, S2 are generated, but does not

affect the security of the proof. The rest of the proof needs to be modified to ensure that

the process is followed correctly, i.e. we want the prover to reveal the values w, x, y, z

together with ψ so that the verifier can verify the correctness of R2 and S2. The modified

proof is denoted by P∗
iso, and it is represented explicitly in Fig. 5.6 in Section 5.A.

Now, if the prover executes the modified proof of isogeny knowledge for φ and φ̃ in

parallel, with the same challenges, and with the same values x,w, y, z, the isogenies φ′, φ̃′

revealed when chall = 0 are parallel when the isogenies φ, φ̃ are also parallel, as shown in

the following lemma.

Lemma 17. Let notation be as above. The isogenies φ, φ̃ are parallel if and only if the

isogenies φ′, φ̃′ are also parallel.

Proof. Assume the isogeny φ has kernel 〈[k0]R0 + [k1]S0〉 and the isogeny φ̃ has kernel

〈[k̃0]R̃0 + [k̃1]S̃0〉. The kernel of φ′ is the image of the kernel of φ under ψ, i.e. kerφ′ =

ψ(kerφ). Since kerφ = 〈[k0]R0 + [k1]S0〉, it follows that

kerφ′ = 〈[k0]ψ(R0) + [k1]ψ(S0)〉 = 〈[wk0 + yk1]R2 + [xk0 + zk1]S2〉.

Similarly, we obtain

ker φ̃′ = 〈[wk̃0 + yk̃1]R̃2 + [xk̃0 + zk̃1]S̃2〉.

Since the coefficients w, x, y, z were chosen such that the matrix ( w x
y z ) is invertible, we
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obtain that

(k0 = k̃0) ∧ (k1 = k̃1)⇐⇒ (wk0 + yk1 = wk̃0 + yk̃1) ∧ (xk0 + zk1 = xk̃0 + zk̃1).

We can now use the proof P∗
iso from Fig. 5.6 to construct our proof of parallel isogeny

knowledge. The prover runs two such proofs in parallel, with the same randomness

(w, x, y, z), and responds to the verifier’s challenges with the responses of the individual

proofs. The resulting proof is represented explicitly in Fig. 5.6 in Section 5.A. The security

proofs follow closely those of the PoIK Piso in Section 5.5.2: correctness of Piso implies

correctness of Ppar, while the soundness of Ppar follows from the soundness of Piso and

Lemma 17. The argument for zero-knowledge is also similar, but it is based on the

hardness of the following problem, which takes into consideration that the two parallel

instance partially share the same randomness.

Problem 7 (Double DSSP with Torsion (DDSSPwT) problem). Let D0 and D1 be as in

Problem 6. Given:

1. two d-isogenies φ : E0 → E1, φ̃ : Ẽ0 → Ẽ1,

2. the points R0, S0 ∈ E0[d] and R̃0, S̃0 ∈ Ẽ0[d],

3. the points P0, Q0 ∈ E0[n] and P̃0, Q̃0 ∈ Ẽ0[n], where n = fMSIDH(λ, d),

distinguish between the following distributions:

• D∗
0 =

 (E2, R2, S2, P2, Q2, E3, φ
′),

(Ẽ2, R̃2, S̃2, P̃2, Q̃2, Ẽ3, φ̃
′)

, where the curves and the n-torsion points fol-

low theD0-distribution, i.e. we have (E2, P2, Q2, E3, φ
′)← D0, and (Ẽ2, P̃2, Q̃2, Ẽ3, φ̃

′)←

D0, and moreover

R2

S2

 = B

ψ(R0)

ψ(S0)

 , and

R̃2

S̃2

 = B

ψ̃(R̃0)

ψ̃(S̃0)

 ,
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for some B ∈ GL2(Zn), and ψ and ψ̃ being respectively the s-isogenies between E0 and

E2 and Ẽ0 and Ẽ2 that are guaranteed to exist because of the D0 distribution;

• D∗
1 =

 (E2, R2, S2, P2, Q2, E3, φ
′),

(Ẽ2, R̃2, S̃2, P̃2, Q̃2, Ẽ3, φ̃
′)

, where the curves and the n-torsion points fol-

low theD1-distribution, i.e. we have (E2, P2, Q2, E3, φ
′)← D1, and (Ẽ2, P̃2, Q̃2, Ẽ3, φ̃

′)←

D1, and moreover the points R2, S2 and R̃2, S̃2 form a random basis of E2[d] and Ẽ2[d],

respectively.

The proof Ppar is a proof of knowledge, and it can be made non-interactive with stan-

dards transformations, such as the Fiat-Shamir [FS87] or the Unruh [Unr15] transform.

This is the first non-interactive proof of parallelness.

Optimizations. For simplicity, the presentation of the proof R∗
par preferred a schematic

description, but it is possible to improve the protocol to make it more compact. Besides

the optimizations applicable to the proof Piso described in Section 5.5.2, we remark that

parallelness is independent of torsion images. Thus, the proofs of isogeny knowledge do

not need to guarantee the correctness of torsion images to prove parallelness. However, in

the OPRF context, the correctness of the torsion images revealed by the server is needed to

guarantee verifiability: a malicious server might otherwise reveal incorrect torsion points

to different users and use that information to match OPRF outputs to specific interactions.

Hence, the proof can be made more efficient by avoiding proving the correctness of torsion

images for the commitment isogeny.

Concrete cost. The proof described in Fig. 5.6 adds the communication of the values

w, x, y, z when chall = −1. In that case, the prover’s response requires log n + log s +

4 log d+2λ bits; when chall = 0, the response is also larger because the points R2, S2 need

to be communicated explicitly. The answers to the other challenge remains unchanged.

The same proof, when used for the commitment isogeny, can avoid proving correctness

of the torsion images, resulting in a smaller proof. In particular, no masking values
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are ever revealed, and when chall = 0 the response does not contain the points P2, Q2

on E2. Setting d ≈ n ≈ s ≈ 3
√
n, we obtain that an average proof Ppar requires ≈

1.71λ(49/9 log p+14/3λ) bits, while a worst-case proof would require≈ 1.71λ(9 log p+6λ)

bits.

5.7 — A new OPRF protocol

In this section, we combine the countermeasures presented in Section 5.4, the SIDH

countermeasures and the novel proof of isogeny knowledge discussed in Section 5.5,

and the non-interactive proof of parallel isogeny introduced in Section 5.6 to obtain a

verifiable OPRF protocol that is post-quantum secure, round-optimal, and moderately

compact.

The OPRF protocol is a two-party protocol between a user U and a server S. Let

NM, NB, NK be coprime numbers representing the degrees of the message isogeny, the

blinding isogeny, and the server’s isogeny, respectively. Let p be a prime of the form

p = NMNBNKf −1, for some cofactor f , and let E0, Ẽ be two supersingular elliptic curves

defined over Fp2. Moreover, let P,Q be a fixed basis of E0[NM] and let P̃ , Q̃ be a fixed

basis of Ẽ[NK]. The first curve is used to compute the PRF, while the second is used

within the server’s commitment.

At a high-level, to evaluate the OPRF on an input x, the user maps the input to a

curve Em according to Algorithm 3 and computes a blinding isogeny φb : Em → Emb.

The user then sends the codomain curve, together with torsion images and a proof of

their correctness, to the server, which computes a second isogeny φk : Emb → Embk. The

torsion information is appropriately masked to avoid the SIDH attacks. The server then

responds with the curve Embk, some torsion information, a proof of their correctness, and

a proof that it has used the previously-committed secret key. The user then concludes by

using the torsion information provided by the server to undo the blinding isogeny and

compute the curve Emk. Its j-invariant is then hashed together with the input and the
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server’s public key to form the PRF output. The protocol is described in Fig. 5.5 and it

realized the OPRF ideal functionality of Fig. 5.2, which allows us to state the following

theorem.

Theorem 4. The protocol described in Fig. 5.5 realizes the ideal functionality FvOPRF of

Fig. 5.2 in the random oracle model.

The proof follows the same line as the security proof of the OPRF protocol by Boneh

et al. [BKW20, Theorem 20], since the hardness assumption of Problem 4 and the proof

Piso are a drop-in replacement for the Auxiliary One-More SIDH assumption and the

NIZKPK proof used in [BKW20], respectively. At a high level, the case of an honest user

and malicious server in the proof is simple because the server only interacts with the

user through their first query, and in that case the user’s security corresponds to the

input hiding property, guaranteed by the hardness of Problem 1. The case of a malicious

user is more complicated, because the user has output. The server can be simulated as a

honest server, but to ensure that the malicious user output is indistinguishable from the

ideal-world, the random oracle H̄ can be programmed to output the ideal-world output.

This would create a problem with the ticketing system of the ideal functionality if the

adversary could produce more OPRF outputs than the number of interactions, but the

one-more unpredictability property prevents that. The main difference between this proof

and that of [BKW20] is the use of a non-interactive proof of parallel isogeny that can be

simulated in the proof, which results in a simpler proof since the proof of knowledge can

be simulated. Note that the proof in [BKW20] is written in terms of the augmentable

commitment abstraction, which we preferred avoiding; since the same security properties

can be directly expressed in terms of the OPRF protocol, as shown in Section 5.3, the

difference is purely syntactical.

Parameter selection. Firstly, we discuss how to select the starting curves E0 and Ẽ.

As mentioned in Section 5.5, the cryptanalysis on masked-torsion SIDH with a starting
3The proof algorithm does not receive torsion points because, as discussed in Section 5.6, they are not

necessary to prove parallelness.
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Parameters. A prime p of the form p = NMNBNKf − 1, where NM, NB, NK are smooth coprime integers
and f a smooth cofactor. E0 and Ẽ are supersingular elliptic curves defined over Fp2 , where EndẼ is
unknown, and P,Q ∈ E0[NM] and P̃ , Q̃ ∈ E[NK] are fixed bases.
The protocol also relies on several functions:

• Hi : {0, 1}∗ → ZM for i ∈ {1, . . . , I}, where I is such that N I
M > 24λ, to use within HI ,

• H̄ : {0, 1}∗ → {0, 1}λ, to hash the final PRF output,

and two non-interactive proofs of knowledge:

• Piso, for the user to prove correctness of torsion images,

• Ppar, for the server to prove it computed honestly with the committed key.

Initialization. On input init from the environment, the server S:

• sample k ← ZK and stores it,

• computes the curve ẼC = Ẽ/〈P̃ + [k]Q̃〉,

• stores pk = (j(EC)) and outputs (init, pk).

Evaluation. On input init from the environment, the server S:

• On input (Eval, S, x), the user U proceeds as follows:

1. Sample α← Z∗
N and b← ZB ,

2. Compute (φm, Em) = HI(x);
3. Compute φb : Em → Emb := Em/〈Pm + [b]Qm〉, where Pm, Qm = BB(Em),
4. Set φmb = φb ◦ φ1 ◦ φ0, R = [α]φmb(P ), S = [α]φmb(Q),
5. Compute πc ← Piso(E0, P,Q,Emb, R, S, φmb, α),
6. Send message (Emb, R, S, πc) to the server and store φb

• On input ServerComplete from the environment and message (Emb, R, S, πc) from the user U ,
the server S proceeds as follows:

1. Verify the proof πc,
2. Sample αk ← Z∗

n,
3. Compute φk : Emb → Embk := Emb/〈R+ [k]S〉,
4. Compute Rk = [αk]φk(Pb), Sk = [αk]φk(Qb), where Pb, Qb = BB(Emb),
5. Compute πk ← Ppar((Emb, Pb, Qb, Embk, Rk, Sk), (Ẽ, P̃ , Q̃, ẼC), k, αk)

3,
6. Send (pk, Embk, Rk, Sk, πk) to the user U

• On input (pk = j(Ec), Embk, Rk, Sk, πk) from the server S, the user U proceeds as follows:

1. Verify the proof πk,
2. Compute b0, b1 such that 〈[b0]Pb + [b1]Qb〉 = ker φ̂b, where Pb, Qb = Bd(Emb),
3. Compute φu : Embk → Emk := Embk/〈[b0]Rk + [b1]Sk〉,
4. Compute y = H̄(x, pk, j(Emk)) and output (Eval, pk, y).

Figure 5.5: The verifiable OPRF protocol.

curve with small endomorphism [FMP23a, Section 4.2] does not apply here, since the

message isogeny removes this property from the starting curve of the blinding isogeny.
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Hence, the curve E0 does not need to have unknown endomorphism ring. However, the

situation is different for Ẽ: as observed in [BKMPS21], knowledge of EndẼ allows to

find collisions in the server’s commitment. Thus, knowing EndẼ would allow the server

to break verifiability, since it could prove parallelness to two distinct isogenies. It is thus

necessary that the curve Ẽ is generated by a trusted party or through a multiparty trusted

setup ceremony, such as the one presented in [BCCDF+23].

The main parameter of the OPRF protocol is the prime p. Firstly, if the message isogeny

is the composition of many isogenies whose kernel is defined over Fp4 , the value p+1 does

not need have a dedicated factor. Then, for the main exchange, i.e. the blinding, server’s

isogeny, unblinding part, we need to smooth coprime integers NB and NK that are highly

composite to prevent the SIDH attacks. Following the analysis of Section 5.5, we have

NB ≈ NK ≈ 22956. Lastly, the proofs of knowledge Piso and Ppar require a third cofactor NS

that is coprime with both NB and NK. To guarantee the hardness of Problems 6 and 7, the

integer NS needs to be of the same length as NB and NK. However, since torsion points

of order NS do not need to be masked, the value NS can be a prime power. Putting this

together, we obtain that the prime p needs to be of the form p = NBNSNKf − 1 and be at

least 8868-bit long to guarantee λ = 128 bits of security. Note that the new computation

of the message isogeny and the new proofs of knowledge has significantly reduced the

size of the prime; compared to the OPRF protocol by Boneh et al., we use a prime that is

5.8× larger, while relying on an SIDH protocol with isogenies that are 9.2× longer.

Efficiency. We can now estimate the communication cost of the OPRF protocol. The

two main contributors are the non-interactive proofs of knowledge. If we set NB ≈ NS ≈

NK ≈ 22956, and we consider that the user proves knowledge of the isogeny φb ◦φm, which

has degree ≈ NS2
4λ, we obtain that the user’s proof takes 550 kB on average, while a

worst-case proof requires 908 kB. For the proof of parallelness, we obtain that an average

proof requires 1.3 MB on average, while a worst-case proof requires 2.2 MB. Putting

altogether, a single execution of the verifiable OPRF requires 1.9 MB, but it can take up
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Table 5.1: Comparison of existing post-quantum OPRF protocols.

Protocol Rounds Bandwidth (avg.) Verifiable Secure

[ADDS21] (LWE) 2 >128 GB 3 3

[BKW20] (SIDH) 5 1.4 MB 3 7

[BKW20] (CSIDH) 3 424 kB 7 3

[This work] 2 1.9 MB 3 3

3.2 MB, depending on the distribution of challenges within the proofs of knowledge.

If we compare our results with the protocol by Boneh et al., we see that our protocol

is only moderately larger despite including countermeasures against two types of attacks

and reducing the round complexity. Boneh et al. reports only the communication cost

of worst-case proofs, but we recompute that an average user-side proof requires 441 kB,

while the server-side proofs require 979 kB. Altogether, our protocol requires 30% more

communication. This is due to the use of significantly longer isogenies (≈ 22956 vs ≈ 2320)

to protect against the SIDH attacks; any future improvement in the SIDH countermeasures

might significantly reduce the communication cost of the OPRF protocol.

We summarize the state of post-quantumOPRF protocols in Table 5.1. When compared

to the CSIDH-based OPRF by Boneh et al., our OPRF offers verifiability and a lower number

of communication rounds. While the communication cost is higher, if we remove the large

server-side proof needed for verifiability, our protocol requires less than a 30% increase

in communication.

5.8 — Conclusion

In this work, we presented a post-quantum verifiable oblivious PRF protocol that is

moderately compact and round-optimal. The protocol is the first round-optimal OPRF

based on isogenies, and it is several orders of magnitude more compact than the existing

round-optimal protocol. To obtain this protocol, we started from an insecure protocol

by Boneh et al., and we proposed an efficient countermeasure against the one-more

unpredictability attack, integrated the existing SIDH countermeasures, developed a
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new zero-knowledge proof of isogeny that works with the SIDH countermeasures, and

proposed a novel non-interactive proof of parallel isogeny that reduced the number of

rounds to two.

The protocol is an important stepping stone towards fully practical post-quantum

OPRFs, but its performance is hindered by the inefficiency of the SIDH countermeasures.

In future work, we aim at developing more efficient solutions: a moderate reduction in

the degree of the isogenies would significantly improve the efficiency of the protocol.

It is also interesting to improve the proof of parallel isogeny by avoiding validating the

commitment isogeny at every interaction.
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5.A — Additional material from Section 5.6

P∗
1

((
(E0, R0, S0, P0, Q0), (E1, P1, Q1), φ, α

)
, (w, x, y, z)

)
:

1-4: Same as P1 in Fig. 5.4.
5: Set R2 := [w]ψ(R0) + [x]ψ(S0), S2 := [y]ψ(R0) + [z]ψ(S0);
6-8: Same as P1 in Fig. 5.4.

P∗
2(st, chall):
1: if chall == −1 then
2: return ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5), (w, x, y, z));
3: else
4: Same as P2 in Fig. 5.4.

V∗
(
(
(
(E0, R0, S0, P0, Q0), (E1, P1, Q1), φ, α

)
, com, chall, resp

)
:

1: if chall == −1 then
2: ((E2, R2, S2, P2, Q2, r1), (a, b, r3), (α1, r5), (w, x, y, z)) = resp;
3-6: Same as V in Fig. 5.4.
7: Check R2 := [w]ψ(R0) + [x]ψ(S0), S2 := [y]ψ(R0) + [z]ψ(S0);
8: else
9: Same as V in Fig. 5.4.

P1((E0, R, S, P0, Q0, E1, P1, Q1), (Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), k0, k1, α, α
′):

1: Sample random coefficients w, x, y, z such that wz − xy 6= 0 mod d;
2: Compute φ : E0 → E0/〈[k0]R + [k1]S〉 ∼= E1

3: Compute φ′ : Ẽ0 → Ẽ0/〈[k0]R̃ + [k1]S̃〉 ∼= Ẽ1

4: Run P∗
1((E0, P0, Q0, E1, P1, Q1), φ, α, (w, x, y, z)) to get st, com;

5: Run P∗
1((Ẽ0, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), φ̃

′, α̃′, (w, x, y, z)) to get s̃t, ˜com;
6: return

(
(st, s̃t), (com, ˜com)

)
;

P2((st, s̃t), chall):
1: return (P∗

2(st, chall),P∗
2(s̃t, chall));

V((E0, R, S, P0, Q0, E1, P1, Q1), (Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1),
(com, ˜com), chall, (resp, ˜resp)):

1: Set v := V∗((E0, R, S, P0, Q0, E1, P1, Q1), com, chall, resp);
2: Set ṽ := V∗((Ẽ0, R̃, S̃, P̃0, Q̃0, Ẽ1, P̃1, Q̃1), ˜com, chall, ˜resp);
3: return v ∧ ṽ;

Figure 5.6: Top: Modified proof of knowledge for the relation Riso where the basis
randomness is explicit. The expressions in magenta denote the changes from Fig. 5.4.
Bottom: Interactive proof of knowledge for the relation R∗

par.
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Chapter 6

Supersingular Curves You Can Trust

Trust, but verify.
— Russian proverb,

popularized by Ronald Raegan.

This chapter is a verbatim reproduction of the following paper:

Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido

Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis, and Benjamin Wesolowski.

“Supersingular Curves You Can Trust”. In: EUROCRYPT 2023, Part II. LNCS. Springer,

Heidelberg, June 2023, pp. 405–437. doi: 10.1007/978-3-031-30617-4_14

I contributed to the high-level design of the protocol and the zero-knowledge proof implemen-

tation, and I experimentally validated the results of Sec. 3.

Abstract: Generating a supersingular elliptic curve such that nobody knows its endo-

morphism ring is a notoriously hard task, despite several isogeny-based protocols relying

on such an object. A trusted setup is often proposed as a workaround, but several aspects

remain unclear. In this work, we develop the tools necessary to practically run such a

distributed trusted-setup ceremony.

Our key contribution is the first statistically zero-knowledge proof of isogeny knowl-
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edge that is compatible with any base field. To prove statistical ZK, we introduce isogeny

graphs with Borel level structure and prove they have the Ramanujan property. Then,

we analyze the security of a distributed trusted-setup protocol based on our ZK proof

in the simplified universal composability framework. Lastly, we develop an optimized

implementation of the ZK proof, and we propose a strategy to concretely deploy the

trusted-setup protocol.

6.1 — Introduction

Be it foundationally or for efficiency, most of isogeny based cryptography is built upon

supersingular elliptic curves [CLG09; JD11; CLMPR18; DMPS19; GPS20; DKLPW20;

DDFKL+21]. At the heart of it, lies the supersingular isogeny graph: a graph whose

vertices represent supersingular elliptic curves (up to isomorphism) and whose edges

represent isogenies (up to isomorphism) of some fixed small prime degree between

them. A foundational hard problem for isogeny based cryptography is then: given two

supersingular elliptic curves, find a path in the supersingular isogeny graph connecting

them.

An endomorphism is an isogeny from a curve E to itself, and their collection forms the

endomorphism ring End(E). In recent years, the connection between finding isogeny paths

and computing endomorphism rings of supersingular curves has become increasingly

important [GPST16; EHLMP18; Wes22b; Wes22a]. It is now established that, assuming

the generalised Riemann hypothesis, there exists probabilistic polynomial time algorithms

for these two problems:

1. Given supersingular elliptic curves E0, E1 along with descriptions of their endomor-

phism rings, compute an isogeny path E0 → E1;
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2. Given a supersingular elliptic curve E0 along with a description of its endomor-

phism ring, and given an isogeny path E0 → E1, compute a description of the

endomorphism ring of E1.

These algorithms—and variants—have successfully been used both constructively [GPS20;

DKLPW20; DDFKL+21] and for cryptanalysis [GPST16; Pet17; QKLMP+21; EHLMP18;

DMPS19; FKMT22].

Without the additional information above, computing the endomorphism ring of an

arbitrary supersingular curve remains a hard problem, both for classical and quantum

computers. Given the importance of this problem, it is natural to ask whether it is possible

to sample supersingular curves such that computing their endomorphism ring is a hard

problem, crucially, even for the party who does the sampling. We shall call these objects

Supersingular Elliptic Curves of Unknown Endomorphism Ring, or Secuer1 in short.

Applications. Generating a Secuer has turned out to be a delicate task, and no such

curve has ever been generated. Yet, several isogeny based schemes can only be instan-

tiated with a Secuer. This is the case, for example, of isogeny based verifiable delay

functions [DMPS19] and delay encryption [BD21]. The so-called CGL hash function

based on supersingular curves [CLG09] has been shown to be broken by the knowledge

of the endomorphism ring [EHLMP18], and one possible fix is to instantiate it with a

Secuer. Other protocols which require a Secuer include hash proof systems, dual mode

PKE [ADMP20], oblivious transfer [LGD21], and commitment schemes [Ste22].

Contributions. We analyze and put into practice a protocol for distributed generation of

Secuers. Our main technical contribution is a key ingredient of the protocol: a new proof

of isogeny knowledge (two curves E0 and E1 being public, a party wishes to prove that

they know an isogeny E0 → E1 without revealing it). Our proof is similar to the SIDH

proof of knowledge [DJP14; DDGZ22], but extends it in a way that makes it compatible

1The British spelling is Secure.
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with any base field, any walk length, and has provable statistical zero-knowledge (unlike

any previous proof of isogeny knowledge). In particular, its statistical security makes it

fully immune to the recent attacks [CD23; MMPPW23; Rob23].

To prove statistical security, we analyze supersingular `-isogeny graphs with level

structure, a generalization of isogeny graphs that was recently considered in [DKLPW20;

Arp22]. We prove that these graphs, like classic isogeny graphs, possesses the Ramanujan

property, a fact that is of independent interest. Using the property, we analyze the mixing

behavior of random walks, which lets us give very precise parameters to instantiate the

proof of knowledge at any given security level.

To show that the resulting protocol is practical, we implement it on top of Microsoft’s

SIDH library2 and benchmark it for each of the standard SIKE primes [JACCD+20]. We

must stress that SIDH-style primes are possibly the most favorable to our protocol, in terms

of practical efficiency. Finally, we sketch a roadmap to run the distributed generation

protocol for the SIKE primes in a real world setting with hundreds of participants.

Limitations. Wemust point out that our new proof of knowledge is not well adapted to a

secure distributed generation protocol in the case where one wants to generate a Secuer

defined over a prime field Fp, instead of Fp2, such as in [ADMP20; LGD21]. Different

proofs of knowledge [DG19; BKV19] could be plugged in the distributed protocol for the

Fp case, however their practical usability is dubious.

6.1.1 – Generating a Secuer

The cornerstone of isogeny based cryptography is the endomorphism ring problem:

if it could be solved efficiently, then all of supersingular isogeny based cryptography

would be broken [GPST16; EHLMP18; Wes22a], leaving only ordinary isogeny based

cryptography [Cou06; Sto10; DKS18] standing.

2https://github.com/microsoft/PQCrypto-SIDH
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Definition 6 (Endomorphism ring problem). Given a supersingular curve E/Fp2 , compute

its endomorphism ring End(E). That is, compute an integral basis for a maximal order O of

the quaternion algebra ramified at p and∞, as well as an explicit isomorphismO ' End(E).

For any p, there exists a polynomially sized subset of all supersingular curves for

which the endomorphism ring can be computed in polynomial time [CPV20; LB20], but

the problem is believed to be exponentially hard in general, even for quantum computers.

A related problem, commonly encountered in isogeny protocols, is finding paths in

supersingular isogeny graphs.

Definition 7 (Isogeny `-walk problem). Given two supersingular curves E,E ′/Fp2 of the

same order, and a small prime `, find a walk from E to E ′ in the `-isogeny graph.

Such walks are always guaranteed to exist, as soon as they are allowed to have length in

O(log(p)) [Mes86; Piz90; Koh96; CLG09]. The two problems are known to be polynomial

time equivalent, assuming GRH [Wes22b]. Indeed, given End(E) and End(E ′), it is easy

to compute a path E → E ′. Reciprocally, given End(E) and a path E → E ′, it is easy to

compute End(E ′); and, by random self-reducibility, we can always assume that one of

End(E) or End(E ′) is known.

Our goal is to generate a Secuer: a curve for which the endomorphism ring problem

is hard, and consequently one for which it is hard to find a path to any other given curve.

What does not work. The supersingular elliptic curves over a finite field k of character-

istic p are those such that #E(k) = 1 mod p. Any supersingular curve is isomorphic to

one defined over a field with p2 elements, thus, without loss of generality, we are only

interested in supersingular curves defined over Fp2. Among the p2 isomorphism classes

of elliptic curves over Fp2 , only ≈ p/12 of them correspond to supersingular curves. The

standard way to construct supersingular curves is to start from a curve with complex

multiplication over a number field, and then reduce modulo p. Complex multiplication

elliptic curves have supersingular reduction modulo 50% of the primes, thus this tech-

nique quickly produces supersingular curves for almost all primes. For example, the curve
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y2 = x3 + x, which has complex multiplication by the ring Z[i] of Gaussian integers, is

supersingular modulo p if and only if p = 3 mod 4. Most isogeny based protocols are

instantiated using precisely this curve as starting point. These curves are not Secuers,

though, because from the information on complex multiplication one can compute the

endomorphism ring in polynomial time [CPV20; LB20].

As p grows, the curves with computable3 complex multiplication form only a negligible

fraction of all supersingular curves in characteristic p, so we may still hope to get a Secuer

if we can sample a supersingular curve at random from the whole set. The natural way

to do so is to start from a well known supersingular curve, e.g. E0 : y
2 = x3 + x, take a

random walk E0 → E1 in the isogeny graph, and then select the arrival curve E1. But, by

virtue of the reductions mentioned above, any E1 constructed this way cannot be called a

Secuer either.

Several other techniques have been considered for generating Secuers, however all

attempts have failed so far [BBDFG+22; MMP22].

Distributed generation of Secuers. An obvious solution that has been proposed for

schemes that need a Secuer is to rely on a trusted party to start from a special curve

E0 and to perform an isogeny walk to a random curve E1. Although E1 is not a Secuer,

if the trusted party keeps the walk E0 → E1 secret, no one else will be able to compute

End(E1).

Of course, relying on a trusted third party is undesirable. The natural next step is to

turn this idea into a distributed protocol with t parties generating a sequence of walks

E0 → E1 → E2 → · · · → Et. First, suppose that the sequence was generated honestly:

the i-th party indeed generated a random isogeny from the previous curve Ei−1 to a new

curve Ei+1. Then it is sufficient for a single party to honestly discard their isogeny, for

no path to be known by anyone from E0 to Et. Then, Et is a Secuer for all practical

purposes.

3Deuring showed that any supersingular curve can be lifted in several ways to a curve with complex
multiplication, but for almost all curves computing such lifts has complexity exponential in log(p).
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To make this protocol secure against active adversaries, an additional ingredient is

needed. As it is, the last party could cheat as follows: instead of generating an isogeny

Et−1 → Et, they could reboot the chain and generate an isogeny E0 → Et. They could

then compute the endomorphism ring of Et. If only the curves Ei along the path are

revealed, it is impossible to detect such misbehavior. To prevent this, each party needs

to prove that they know their component of the walk: an isogeny Ei−1 → Ei (as first

discussed in [BD21]). To this end, we develop a statistically zero-knowledge proof of

isogeny knowledge.

6.1.2 – Proof of isogeny knowledge

State-of-the-art. Protocols to prove knowledge of an isogeny have been mostly studied

for signatures. The first such protocol is the SIDH-based proof of knowledge of [DJP14].

Its security proof was found to be flawed and then fixed, either by changing the assump-

tions [GPV21] or by changing the protocol [DDGZ22]. However, these protocols are

now fully broken by the recent polynomial time attacks on SIDH-like protocols [CD23;

MMPPW23; Rob23].

CSIDH-based proofs of knowledge were first introduced in [DG19], and then improved

in [BKV19] for the parameter set CSIDH-512. These are limited to isogeny walks between

curves defined over a prime field Fp, and tend to be prohibitively slow outside of the

specially prepared parameter set CSIDH-512.

Finally, De Feo and Burdges propose an efficient proof of knowledge tailored to finite

fields used in delay protocols [BD21]. However the soundness of this protocol is only

conjectural, and, being based on pairing assumptions, is broken by quantum computers.

In summary, no general purpose, quantum-safe, zero-knowledge proof of knowledge of an

isogeny walk between supersingular curves defined over Fp2 exists in previous literature.

Overview of our method. Our main technical contribution is a new proof of knowledge

that ticks all the boxes above: it is compatible with any base field, any walk length, it has
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provable statistical zero-knowledge, and is practical—as illustrated by our implementation.

The idea is the following. Two elliptic curves E0 and E1 being public, some party, the

prover, wishes to convince the verifier that they know an isogeny φ : E0 → E1 (of degree,

say, 2m, large enough so it is guaranteed that such an isogeny exists). First, the prover

secretly generates a random isogeny walk ψ : E0 → E2 of degree, say, 3n. Defining φ′ with

kernel ψ(ker(φ)), and ψ′ with kernel φ(ker(ψ)), one obtains the following commutative

diagram:

E0 E1

E2 E3

φ

ψ ψ′

φ′

(6.1)

Now, the prover publishes a hiding and binding commitment toE2 andE3. The verifiermay

now ask the prover to reveal one of the three isogenies ψ, φ′, or ψ′, by drawing a random

chall ∈ {−1, 0, 1} (and open the commitment(s) corresponding to the relevant endpoints).

For the prover to succeed with overwhelming probability, theymust know all three answers,

so they must know an isogeny from E0 to E1: the composition ψ′ ◦ϕ′ ◦ψ : E0 → E1. This

is the idea behind the soundness of the protocol.

So far, this protocol is more or less folklore and superficially similar to [DDGZ22, §5.3].

But does it leak any information? Whereas previous protocols only achieved computational

zero-knowledge, we provide a tweak that achieves statistical zero-knowledge: there is a

simulator producing transcripts that are statistically indistinguishable from a valid run of

the protocol. The simulator starts by choosing the challenge chall first, then it generates

an isogeny that is statistically indistinguishable from either ψ, ϕ′, or ψ′, according to the

value of chall. Simulating ψ (or ψ′) is straightforward: generate a random isogeny walk

ψ̃ (or ψ̃′) of degree 3n from E0 (or from E1). The isogeny ψ̃ is a perfect simulation of ψ.

Simulating φ′ seems trickier. An obvious approach is to first generate a random E2 (for

instance, by simulating ψ : E0 → E2), then generate a random walk isogeny ϕ̃′ : E2 → E3

of degree 2m. While this may seem too naive, we in fact prove that when deg(ψ) is large

enough, the distribution of ϕ̃′ is statistically close to a honestly generated ϕ′. The key is
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a proof that the isogeny graph enriched with so-called level structure has rapid mixing

properties.

Isogeny graphs with level structure The isogeny φ′ is essentially characterised by

its source, E2, and its kernel ker(φ′), a (cyclic) subgroup of order deg(φ′). We are thus

interested in random variables of the form (E,C), where E is an elliptic curve, and C

a cyclic subgroup of E, of order some integer d (not divisible by p). We call such a pair

(E,C) a level d Borel structure.

The simulator proposed above essentially generates φ̃′ as a uniformly random level

2m Borel structure (E,C) = (E2, ker(φ̃
′)). On the other hand, a honestly generated φ′

corresponds to a pair (ψ(E0), ψ(kerφ)), and ψ is a uniformly random isogeny walk of

degree 3n. This process corresponds to a random walk of length n in the 3-isogeny graph

with level 2m structure, with starting point (E0, kerφ). We prove the following result.

Theorem 5. LetG = G(p, d, `) the supersingular `-isogeny graph with level d Borel structure.

The adjacency matrix A ofG is diagonalizable, with real eigenvalues, and has the Ramanujan

property, i.e the integer `+ 1 is an eigenvalue of A of multiplicity one, while all the other

eigenvalues are contained in the Hasse interval [−2
√
`, 2
√
`].

As a consequence, we prove that random walks quickly converge to the stationary

distribution, so φ̃′ and φ′ are statistically indistinguishable.

Paper outline. We start in Section 6.2 with a few technical preliminaries on elliptic

curves, isogenies, and proofs of knowledge. Section 6.3 is dedicated to the proof of

Theorem 5. This section can be read independently from the rest. The reader only

interested in applications, and willing to accept Theorem 5 (and its consequence on

non-backtracking random walks, Theorem 8, page 188), can safely skip to the following

section. This theoretical tool at hand, we then describe and analyse the new proof of

isogeny knowledge in Section 6.4. We describe the protocol to generate a Secuer in

Section 6.5, and prove its security. Finally, we report on our implementation in Section 6.6.
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6.2 — Preliminaries

6.2.1 – General Notations

We write x← χ to represent that an element x is sampled at random from a set/distribu-

tion X . The output x of a deterministic algorithm A is denoted by x = A and the output

x′ of a randomized algorithm A′ is denoted by x′ ← A′. For a, b ∈ N such that a, b ≥ 1,

we denote by [a, b] (resp. [a]) the set of integers lying between a and b, both inclusive (the

set of integers lying between 1 and a, both inclusive). We refer to λ ∈ N as the secu-

rity parameter, and denote by poly(λ), polylog(λ) and negl(λ) any generic (unspecified)

polynomial, poly-logarithmic or negligible function in λ, respectively.4 For probability

distributions X and Y, we write X ≈ Y if the statistical distance between X and Y is

negligible.

6.2.2 – Elliptic curves, isogenies and “SIDH squares”

We assume the reader has some familiarity with elliptic curves and isogenies. Throughout

the text, p shall be a prime number, Fp and Fp2 the finite fields with p and p2 elements

respectively. Unless specified otherwise, all elliptic curves will be supersingular and

defined over Fp2. We write E[d] for the subgroup of d-torsion points of E over the

algebraic closure.

Unless specified otherwise, all isogenies shall be separable. If G is a finite subgroup of

E, we write φ : E → E/G for the unique (up to post-composition with an isomorphism

of E/G) separable isogeny with kernel G. If G is cyclic, we say the isogeny is cyclic. We

denote by φ̂ the dual isogeny to φ. Separable isogenies and their duals can be computed

and/or evaluated in time poly(#G) using any of the algorithms in [Vél71; BDLS20],

however in some cases, e.g. when #G only contains small factors, this cost may be

lowered to as little as polylog(#G).
4A function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ)

when λ is sufficiently large.
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Given separable isogenies φ : E0 → E1 and ψ : E0 → E2 of coprime degrees, we

obtain the commutative diagram in (6.1) by defining φ′ : E2 → E2/ψ(ker(φ)) and

ψ′ : E1 → E1/φ(ker(ψ)). Again, E3 is only defined up to isomorphism. In categorical

parlance, this is the pushout of φ and ψ, but cryptographers may know it better through its

use in the SIDH key exchange. We refer to these commutative diagrams as SIDH squares

or SIDH ladders (see Section 6.4.2 for more details).

6.2.3 – Proofs of Knowledge

Our main technical contribution is a Σ-protocol to prove knowledge of an isogeny of given

degree between two supersingular elliptic curves. Recall a Σ-protocol for an NP-language

L is a public-coin three-move interactive proof system consisting of two parties: a verifier

and a prover. The prover is given a witness w for an element x ∈ L, his goal is to convince

the verifier that he knows w.

Definition 8 (Σ-protocol). A Σ-protocol ΠΣ for a family of relations {R}λ parameterized

by security parameter λ consists of PPT algorithms (P1,P2,V) where V is deterministic and

we assume P1,P2 share states. The protocol proceeds as follows:

1. The prover, on input (x,w) ∈ R, returns a commitment com← P1(x,w) which is sent

to the verifier.

2. The verifier flips λ coins and sends the result to the prover.

3. Call chall the message received from the verifier, the prover runs resp← P2(chall) and

returns resp to the verifier.

4. The verifier runs V (x, com, chall, resp) and outputs a bit.

A transcript (com, chall, resp) is said to be valid, or accepting, if V (x, com, chall, resp)

outputs 1. The main requirements of a Σ-protocol are:

Correctness: If the prover knows (x,w) ∈ R and behaves honestly, then the verifier

outputs 1.
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nnn-special soundness: There exists a polynomial-time extraction algorithm that, given

a statement x and n valid transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi 6= challj for all 1 ≤ i < j ≤ n, outputs a witness w such that (x,w) ∈ R with

probability at least 1− ε for soundness error ε.

A special sound Σ-protocol for R is also called a Proof of Knowledge (PoK) for R. Our

Σ-protocol will have the peculiar property that the relation used to prove correctness

turns out to be a subset of the one used to prove soundness. This will require extra care

when proving security in Section 6.5.

Special Honest Verifier Zero-knowledge (SHVZK): There exists a polynomial-time

simulator that, given a statement x and a challenge chall, outputs a valid transcript

(com, chall, resp) that is indistinguishable from a real transcript.

Definition 9. AΣ-protocol (P1,P2,V) is computationally special honest verifier zero-knowledge

if there exists a probabilistic polynomial time simulator Sim such that for all probabilistic

polynomial time stateful adversaries A

Pr

A(com, chall, resp) = 1

∣∣∣∣∣∣∣∣∣∣
(x,w, chall)← A(1λ);

com← P1(x,w);

resp = P2(chall)


≈ Pr

A(com, chall, resp) = 1

∣∣∣∣∣∣∣
(x,w, chall)← A(1λ);

(com, resp)← Sim(x, chall)

 .
If the adversary is unbounded, the protocol is said to be statistically SHVZK.
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6.2.4 – Non-Interactive Zero-Knowledge Proofs

In this paper, we consider non-interactive zero-knowledge (NIZK) proofs in the random

oracle model that satisfy correctness, computational extractability and statistical zero-

knowledge.

Definition 10. (NIZK proofs.) Let R be a relation and let the language L be a set of

statements {st ∈ {0, 1}n} such that for each statement st ∈ L, there exists a corresponding

witness wit such that (st,wit) ∈ R. A non-interactive zero-knowledge (NIZK) proof system

for R is a tuple of probabilistic polynomial-time (PPT) algorithms NIZK = (PNIZK,VNIZK)

defined as follows (we assume that all algorithms in the description below have access to a

common random oracle; we omit specifying it explicitly for ease of exposition):

• PNIZK(st,wit): A PPT algorithm that, given a statement st ∈ {0, 1}n and a witness wit

such that (st,wit) ∈ R, outputs a proof Π.

• VNIZK(st,Π): A deterministic algorithm that, given a statement st ∈ {0, 1}n and a

proof Π, either outputs 1 (accept) or 0 (reject).

The following correctness and security properties should be satisfied:

Correctness. For any (st,wit) ∈ R, lettingΠ = PNIZK(st,wit), wemust haveVNIZK(st,Π) =

1.

Computational Extractability. There exists an efficient PPT extractor ExtNIZK such that

for any security parameter λ ∈ N and for any polynomially bounded cheating prover P ∗

where: (i) ExtNIZK has rewinding access to P ∗, and (ii) PNIZK, ExtNIZK and P ∗ all have

access to a common random oracle, letting (st,Π)← P ∗(1λ) and wit = ExtNIZK(st,Π), if

VNIZK(st,Π) = 1, then we must have Pr[(st,wit) ∈ R] > 1− negl(λ).
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Statistical Zero Knowledge. There exists an efficient PPT simulator SimNIZK such that

for any security parameter λ ∈ N and for any non-uniform unbounded “cheating” verifier

V ∗ = (V ∗
1 , V

∗
2 ) where PNIZK, V ∗

1 and V ∗
2 all have access to a common random oracle, and

such that SimNIZK is allowed programming access to the same random oracle, we have

∣∣∣Pr [V ∗
2 (st,Π, ξ) = 1 ∧ (st ∈ L)]− Pr

[
V ∗
2 (st, Π̂, ξ) = 1 ∧ (st ∈ L)

]∣∣∣ ≤ negl(λ),

where (st,wit, ξ)← V ∗
1 (1

λ), Π← PNIZK(st,wit), and Π̂← SimNIZK(st).

6.3 — Isogeny graphs and expansion

Let p be a prime and d an integer not divisible by p. An elliptic curve with level d Borel

structure is a pair (E,C), where E is an elliptic curve defined over a field of characteristic

p and C is an order d cyclic subgroup of E[d]. We say that two such pairs (E1, C1) and

(E2, C2) are isomorphic if there exists an isomorphism φ : E1 → E2 such that φ(C1) = C2.

An automorphism of (E,C) is an isomorphism (E,C) → (E,C). They form the group

Aut(E,C).

Let ` be a prime not dividing pd. The supersingular `-isogeny graph with level d

structure G = G(p, d, `) is defined as follows. The set of vertices of G is a complete

set V = V (p, d) = {(Ei, Ci)} of representatives of the set of isomorphism classes of

supersingular elliptic curves with a level d Borel structure defined over Fp2 . We note that

each such class over Fp2 admits a model defined over Fp2: Each isomorphism class of

supersingular elliptic curves has a representative E such that #E(Fp2) = (p + 1)2 and

thus the p2-Frobenius acts as a scalar multiplication [−p], so the kernel of any `-isogeny is

Gal(Fp2)-invariant.

Now, the set of edges from (E,C) to (E ′, C ′) in G is the set of degree ` isogenies from

E to E ′ which map C to C ′, modulo the action of Aut(E ′, C ′) (by postcomposition). The

number of edges is independent of the representative of the isomorphism classes. When

d = 1, we recover the usual definition of the supersingular `-isogeny graph.
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This graph is directed. The out-degree of each vertex is `+ 1, however the in-degree

is not always `+ 1, hence the adjacency matrix of the graph is not always symmetric.

6.3.1 – Generalities on the graph and its adjacency matrix

Let V = {(Ei, Ci)} for i = 1, . . . , n be the vertex set of G = G(p, d, `). On the complex

vector the space CV , we introduce the Hermitian formQ((Ei, Ci), (Ej, Cj)) = wiδij, where

δij is the Kronecker symbol and wi := 1
2
|Aut(Ei, Ci)|. Denote by | · |Q the associated norm.

We compare will compare | · |Q with the L1 and L2 norms on CV . The set Ω of probability

distributions on V is the set of vectors with real positive entries and L1 norm equal

to 1. Consider also the vector E =
∑n

i=1
1
wi
(Ei, Ci), and s the probability distribution

obtained normalizing E . The following result contains a number of general facts about

the adjacency matrix of G, which will be used later on.

Theorem 6. 1. The adjacency matrixA ofG is self-adjoint with respect toQ; in particular

it is diagonalizable with real eigenvalues and eigenvectors;

2. The vector E is a left-eigenvector of eigenvalue `+ 1 of A;

3. The vector u with all entries equal to 1 is a right-eigenvector of A; in particular its

orthogonal complement S with respect to the L2 scalar product is preserved by right

multiplication by A;

4. K := inf{ |v|Q : v ∈ CV and |v|L1 = 1} =
(

(p−1)d
12

∏
q(1+

1
q
)
)−1/2

, where, in the

product, q runs over the prime divisors of d;

5. M := sup{ |π − s|Q : π ∈ Ω} ≤
√
3.

Proof. See Appendix 6.A.

6.3.2 – Proof of Theorem 5

We now prove that G = G(p, d, `) has the Ramanujan property. This follows from the first

three items of Theorem 6 combined with the following result, whose proof heavily relies
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on the theory of modular forms.

Theorem 7. Let S ⊂ CV be the subspace of vectors
∑

i vi(Ei, Ci) such that
∑

i vi = 0, as in

Theorem 6. The eigenvalues of the action of A on S are all contained in the Hasse interval

[−2
√
`, 2
√
`].

To prove Theorem 7, we assume standard notations and results about quadratic forms

and modular forms, such as the ones from [DS05; Sch74; HPS89]. Given two elliptic

curves with level structure (Ei, Ci) and (Ej, Cj), we denote by Λij the lattice of isogenies

φ : Ei → Ej such that φ(Ci) ⊂ Cj. The degree defines a quadratic form deg on Λij. This

quadratic module has rank four, level dp and determinant d2p2. We can thus define the

theta series

Θij(τ) =
1

|Aut(Ej, Cj)|
∑
φ∈Λij

qdeg(φ) , with q = e2πiτ .

This function is inM2(Γ0(dp)), the space of modular forms of weight two for the modular

group Γ0(dp), by [HPS89, Theorem 4.2] (observe that in loc. cit. the exponential is one

because Q(h) is an integer; moreover, we choose P = 1) or [Sch74, Chapter IX, Theorem

5, page 218]. The above construction extends to an Hermitian pairing

Θ: CV ⊗ CV →M2(Γ0(dp)) : ((αi)i ⊗ (βj)j) 7−→
∑
i,j

αiβjΘij.

We call this pairing the Brandt pairing, even though there is a little ambiguity5 in this

set-up. The Brandt pairing is non-degenerate: let v =
∑
ci(Ei, Ci), then the coefficient of

q of Θ(v, v) is the Hermitian norm of the vector of coefficients (. . . , ci, . . . ). We will prove

the following two key propositions.

Proposition 1. The Brandt pairing intertwines the adjacency matrix A of G and the Hecke

operator T`; in symbols T`Θ(w, v) = Θ(wA, v) for all w, v ∈ CV .
5Rather than using the condition φ(Ci) ⊂ Cj , we could have defined Λij using φ(Ci) = Cj . The second

definition does not give a lattice but still permits to define a pairing. This second pairing generalizes to all
level structures, so it might deserve better the name of Brandt pairing. However, the second pairing gives a
more complicated proof in the Borel case, so we have opted for the first one.
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Proposition 2. For every three elliptic curves with level structure (E1, C1), (E2, C2) and

(E3, C3), the modular form Θ((E1, C1), (E3, C3))−Θ((E2, C2), (E3, C3)) is a cusp form.

The combination of these two results tells that the spectrum of the action ofA restricted

to S is contained into the spectrum of the action of the Hecke operator T` on the space

of cusp modular forms of weight two for Γ0(dp). The Ramanujan Conjecture, proved by

Eichler, predicts that this second spectrum is contained in the Hasse interval, and hence

proves Theorem 7.

We refer to [Del80, Theorem 8.2] for a proof of the Ramanujan Conjecture. In loc.

cit. this result is proven only for eigenvectors of T` which are new-forms. An eigenvector

which is an old form will come from an embedding ι : S2(Γ0(m))→ S2(Γ0(dp)) with m

that divides dp. Since ` is coprime with dp, the map ι is T`-equivariant (cf. [DS05, proof

of Proposition 5.6.2]), so we can still deduce our result from [Del80, Theorem 8.2]. It is

worth recalling that [Del80, Theorem 8.2] is way more general that what we need, as it

applies to modular forms of every weight.

Proof of Proposition 1 We prove that both sides have the same q-expansions. For a

power series F ∈ C[[q]], denote an(F ) the coefficient of qn. By definition

an(Θ((Ei, Ci), (Ej, Ci))) = |Aut(Ej, Cj)|−1 · |Homn((Ei, Ci), (Ej, Cj))| ,

where Homn((Ei, Ci), (Ej, Cj)) is the set of degree n isogenies in Λij. For f ∈M2(Γ0(dp)),

we have an(T`f) = an`(f) + `an/`(f) (see e.g. [DS05, Proposition 5.2.2]), where an/`(f)

is set to zero in the case n/` 6∈ Z. In particular,

an(T`Θ((Ei, Ci), (Ej, Cj))) =

= |Aut(Ej, Cj)|−1
(
|Homn`((Ei, Ci), (Ej, Cj))|+ `|Homn/`((Ei, Ci), (Ej, Cj)|

) (6.2)
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On the other side,

an(Θ((Ei, Ci)A, (Ej, Cj))) =
∑
C

an(Θ((Ei/C, πC(Ci)), (Ej, Cj))) =

= |Aut(Ej, Cj)|−1
∑
C

|Homn((Ei/C, πC(Ci)), (Ej, Cj))|
(6.3)

where C varies among the cyclic non-trivial subgroups of Ei[`] of cardinality `, and πC is

the projection Ei → Ei/C. For each C let

FC : Homn((Ei/C, πC(Ci)), (Ej, Cj)) −→ Homn`((Ei, Ci), (Ej, Cj))

f 7−→ f ◦ πC ,

and let F be the disjoint union of the above maps. The map F is surjective: if α : (Ei, Ci)→

(Ej, Cj) has degree n`, then ker(α) ∩ Ei[`] 6= {0}, hence there exists a cyclic non-trivial

C ⊂ ker(α) ∩ Ei[`], and we can write α = f ◦ πC . In particular, let us compute the

cardinality of the fiber F−1(α) for α in the codomain. Each FC is injective, hence |F−1(α)|

is equal to the number of subgroups C such that F−1
C (α) is not empty, that is the number

of subgroups C contained in ker(α) ∩ Ei[`]. Hence

|F−1(α)| =


`+ 1 if α = `β for some β ∈ Homn/`((Ei, Ci), (Ej, Cj)),

1 otherwise

By (6.3), the domain of F has cardinality exactly |Aut(Ej, Cj)|·an(Θ(A(Ei, Ci), (Ej, Cj))),

hence the proposition follows from (6.2) together with the above formula summed over

α in the codomain.

Proof of Proposition 2 We have to show that, for any two pairs (E,C) and (E ′, C ′) and

any cusp of X0(dp), the residue r of Θ((E,C), (E ′, C ′))dτ does not depend on (E,C) and

(E ′, C ′) at the cusp but only on p, d and the cusp.

By the discussion in [DS05, Section 3.8, page 103] each cusp can be represented as
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( ac ) with c dividing dp, and r is equal to a0(Θ((E,C), (E ′, C ′))|M) for M any matrix in

SL2(Z) of the form ( a bc δ ).

By [Sch74, Chapter IX, Equation (21), page 213], we have

r =
1

c2pd

∑
ν,λ∈Λ/cΛ

e

(
(a− 1) deg(λ) + deg(λ+ ν) + (δ − 1) deg(ν)

c

)

where e(z) = e2πiz, and Λ is the lattice of isogenies from (E,C) to (E ′, C ′) which map

C into C ′. The above formula tells us that r only depends on M and on the quadratic

form deg : Λ/cΛ→ Z/cZ. Writing c = c0p
ε with c0 dividing N and ε = 0, 1 and using the

Chinese remainder theorem we can split the quadratic form in two parts

Λ/cΛ = Λ/c0Λ× Λ/pεΛ
deg× deg

−−−−−−→ Z/c0Z× Z/pεZ ∼= Z/cZ .

The quadratic module (Λ/c0Λ, deg) is (non-canonically) isomorphic to a Borel subalge-

bra of (End((Z/c0Z)⊕2), det). An isomorphism can be obtainedmapping it toHom(E[c0], E
′[c0]),

and then choosing a symplectic basis.

If ε = 0 we are done, otherwise ε = 1. Since [Hom(E,E ′) : Λ] = d is prime to

p, we have Λ/p = Hom(E,E ′)/p = (Hom(E,E ′) ⊗ Zp)/p, and the quadratic Zp-module

Hom(E,E ′)⊗Zp does not depend on the pair because, by the Deuring correspondence (see

e.g. [Voi21, Theorem 42.3.2.]), together with [Voi21, Lemma 19.6.6], it is isomorphic

to λOp with the reduced norm, where Op is the maximal order in the non-ramified

quaternions over Qp, and λ is an element of norm prime to p.

6.3.3 – Mixing time of non-backtracking walks

We finally analyze the behavior of random walks in G = G(p, d, `), which we will ulti-

mately use to prove statistical indistinguishability of distribution arising from our proof of

knowledge. First, observe that Theorem 6 item 2 shows that the probability distribution

s introduced in Subsection 6.3.1 is the stationary distribution on G. This is nearly the
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uniform distribution: all curves are equally likely, with the possible exception of the two

curves with extra automorphisms, j = 1728 and j = 0, which are respectively twice and

thrice less likely.

We are going to determine the speed at which random walks converge to the sta-

tionary distribution. We focus on non-backtracking walks, which are the most useful for

cryptographic protocols, but, because the graph is directed, we need some care to define

them. Edges of G are equivalence classes of isogenies, so we choose a representative for

each class. For an edge α we define its dual edge as the chosen representative β for the

class Aut(E,C)α̂, so that βα = u` for u ∈ Aut(E,C). Notice that the dual of β (as an

edge) might be different from α, but this is not relevant for us. We say that a random

walk on G is non-backtracking walk if an edge is never followed by its dual.

With this “duality”, we have that isogenies of degree a power of ` and with cyclic

kernel (up to the equivalence α ∼ β iff kerα = ker β) correspond to non-backtracking

walks.

Theorem 8 (Mixing time). Let π be a probability distribution onG, and π(k) the distribution

obtained after a non-backtracking random walk of length k. Then we have

dTV (π
(k), s) ≤ 1

2
K−1M

(`+ 1)(k + 1)− 2

(`+ 1)
√
`k

,

where K andM are as in Theorem 6.

Proof. This follows from [ABLS07] for the case of undirected graphs. In Appendix 6.A

we adapt the proof to the graph G(p, d, `).

6.4 — Proof of Knowledge

Our goal is to provide a PoK of an isogeny walk φ : E0 → E1 between two supersingular

curves defined over Fp2 that can be seamlessly plugged in a distributed Secuer generation

protocol. For this, we need the following properties:
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1. Compatible with any pair of curves (E0, E1); this rules out [GPS17; GPS20], which

is restricted to a special starting curve E0, and [DG19] and derivatives, which are

restricted to curves defined over Fp.

2. Statistically ZK, so that the security of the final Secuer does not hinge on compu-

tational assumptions brought in by the PoK; this rules out all other isogeny based

PoKs in the literature.

3. Post-quantum secure, possibly relying on as few additional assumptions as possible;

this rules out many generic ZK proof systems.

4. Possibly compatible with any walk length and any base field Fp2.

5. Usable in practice for cryptographically sized finite fields.

The only attempt at using generic proof systems to prove knowledge of isogeny walks

has been made in [CRT22], and is based on a SNARG derived from a Sumcheck protocol

carefully optimized for isogenies. However this work does not consider ZK, and does not

evaluate the concrete efficiency of the SNARG. Even if it could be made efficient, adding

post-quantum ZK would likely come at a considerable cost, thus we do not investigate

this path further.

Our new PoK inherits from the SIDH-based Σ-protocol of De Feo, Jao and Plût [DJP14],

and from the recent developments of De Feo, Dobson, Galbraith and Zobernig [DDGZ22].

The common theme to all of them is to construct random SIDH squares on top of the

secret isogeny φ : E0 → E1

E0 E1

E2 E3

φ

ψ ψ′

φ′

and to reveal some, but not all of the edges ψ, ψ′, φ′ in response to a challenge. The

reason these protocols are not statistically ZK is that the side φ′ is strongly correlated to

the parallel side φ (often unique given E2) and can thus easily be distinguished by an
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unbounded adversary. Our first idea is tomake the walk ψ long enough that the distribution

of (E2, φ
′) becomes statistically close to the uniform distribution on supersingular curves

with isogenies of degree deg(φ). To prove it, we will use the properties of isogeny graphs

with level structure analyzed in Section 6.3.

But making ψ longer is easier said than done. SIDH-based protocols are constrained

in the lengths of φ and ψ by the form of the prime p: typically, p + 1 = 2a3b and then

deg(φ) = 2a and deg(ψ) = 3b. Our second idea is to glue several SIDH squares together to

make longer walks (see Fig. 6.2). We call these larger diagrams SIDH ladders.

A valuable side-effect of gluing SIDH squares together is that we can free ourselves

from the constraints on p. All we need is that isogenies of a small prime degree ` coprime

to deg(φ) can be computed efficiently, then we stack vertically sufficiently many SIDH

squares to make deg(ψ) = `n as large as we need. In practice, we will take deg(φ) = 2m,

deg(ψ) = 3n, and the protocol will be most efficient for SIDH primes, but in full generality

our protocol works for any base field and any isogeny degree.

6.4.1 – Protocol description and analysis

Let E0, E1 be supersingular curves defined over a finite field Fp2 , and let φ : E0 → E1 be

a cyclic separable isogeny of smooth degree d. Let ` be a small prime not dividing pd.

Let C(m; r) be a statistically hiding and computationally binding commitment scheme.

Our Σ-protocol is described in Fig. 6.1; it depends on a parameter n, controlling the

length of the `-isogeny walks, that we will determine in Definition 12. The prover

consists of two stateful algorithms (P1,P2): the former is randomized and produces a

commitment (com2, com3), the latter receives a ternary challenge chall ∈ {−1, 0, 1} and

produces a deterministic response resp. The verifier is a deterministic algorithm that

receives
(
(com2, com3), chall, resp

)
and outputs a bit indicating whether or not the proof

is accepted.
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P1(E0, E1, φ, n):
1: Sample a random cyclic isogeny
ψ : E0 → E2 of degree `n;

2: Construct the SIDH ladder
(E0, E1, E2, E3, φ

′, ψ′) on (φ, ψ);
3: Sample random strings r2, r3;
4: return

(
C(E2; r2),C(E3; r3)

)
.

P2(chall):
1: if chall == −1 then
2: return (ψ,E2, r2);
3: else if chall == 1 then
4: return (ψ′, E3, r3);
5: else if chall == 0 then
6: return (φ′, E2, r2, E3, r3).

V(E0, E1, d, n, (com2, com3), chall, resp):
1: if chall == −1 then
2: (ψ,E2, r2) = resp;
3: Check com2 = C(E2; r2);
4: Check ψ is an `n-isogeny E0 → E2;
5: else if chall == 1 then
6: (ψ′, E3, r3) = resp;
7: Check com3 = C(E3; r3);
8: Check ψ′ is a cyclic d-isogeny E1 → E3;
9: else if chall == 0 then
10: (φ′, E2, r2, E3, r3) = resp;
11: Check com2 = C(E2; r2);
12: Check com3 = C(E3; r3);
13: Check φ′ is an `n-isogeny E2 → E3.

Figure 6.1: Interactive proof of knowledge of a cyclic isogeny φ : E0 → E1 of degree d.

Proposition 3. The Σ-protocol in Fig. 6.1 is correct for the relation

Rd = {((E0, E1), φ) | φ : E0 → E1 is a cyclic d-isogeny}.

Assuming the commitment C is computationally binding, it is 3-special sound for the

relation

R? = {((E0, E1), χ) | χ : E0 → E1 is a cyclic `2id-isogeny for some 0 ≤ i ≤ n}.

More precisely, there is a probabilistic polynomial time algorithm that, given three successful

transcripts of the protocol with same commitments and distinct challenges, either recovers

a witness χ : E0 → E1, or opens one of the commitments C(Ei; ri) to two distinct values

(breaking the binding property).

Proof. Correctness. Suppose that the prover P = (P1,P2) and the verifier V follow the

protocol. First note that, since the degree d of φ is smooth, the SIDH ladder in P1 can be

constructed as described in Section 6.4.2. Then it is clear that the commitments open

successfully, and the verifier accepts the transcript for any challenge.

3-special soundness. Given three accepting transcripts (com,−1, resp−1), (com, 0, resp0)
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and (com, 1, resp1), recover (φ′, E2, r2, E3, r3) = resp0 where φ′ : E2 → E3 is an isogeny.

If the curves in resp−1 and resp1 are not equal to E2 and E3 respectively, then we can open

one of the commitments C(E2; r2) or C(E3; r3) to two distinct outputs. Otherwise, we

have resp−1 = (ψ,E2, r2) and resp1 = (ψ′, E3, r3) where ψ : E0 → E2 and ψ′ : E1 → E3 are

isogenies. Therefore χ′ = ψ̂′ ◦ φ′ ◦ψ is an isogeny from E0 to E1 of degree `2nd. Factoring

out the non-cyclic part of χ′, we extract a cyclic isogeny χ : E0 → E1 of degree `2id such

that χ′ = [`2(n−i)]◦χ for some 0 ≤ i ≤ n; however, like in the original SIDH PoK [DDGZ22;

GPV21], we cannot guarantee that i = 0.

We are now going to define the simulator for proving ZK. Simulating chall = ±1 is

easy, however how well we can simulate the case chall = 0 depends on the parameter

n given to P1. The opening (E2, φ
′ : E2 → E3) can be equivalently viewed as the curve

with level d Borel structure (E2, ker(φ
′)). Our goal is to have this opening distributed like

a “random” vertex in the graph G = G(p, d, `). To this effect, we define two sequences

D1(k) and D2(k) of probability distributions on G, and we show that they converge as k

grows.

Definition 11. Let φ : E0 → E1 be a cyclic separable isogeny of degree d. Define

D1(k) =
{
(E0/K, τ(ker(φ))

∣∣ K ← CE(`k), τ : E0 → E0/K
}
,

D2(k) =
{
(E0/K,C)

∣∣ K ← CE(`k), C ← CE0/K(d)
}
,

(6.4)

where CE(f) is the uniform distribution on the cyclic subgroups of order f of E, up to Aut(E).

Lemma 18. Keep notations as above, fix a positive real number ε, and let k be a positive

integer such that

τ(p, d, `, k) = 1
4
(p− 1)1/2

(
1 +
√
d
∏
q|d

q prime

(1+1
q
)1/2
)
·
(
k + `−1

`+1

)
· `−k/2 ≤ ε ,

then dTV (D1(k),D2(k)) ≤ ε, where dTV is the total variation distance between the two

distributions, also known as statistical distance.
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Proof. We bound the statistical distance of each of D1(k) and D2(k) from the stationary

distribution of G(p, d, `), as determined in Theorem 6, then we conclude with the triangle

inequality. ForD1(k), we can directly apply Theorem 8. The argument forD2(k) is slightly

more involved and is presented in Appendix 6.A.

Definition 12. Given p, d, ` and m, define

n(p, d, `,m) = min
{
k ∈ Z | τ(p, d, `, k) ≤ 2−m

}
.

Proposition 4. Let λ be a security parameter and let n = n(p, d, `, λ). The Σ-protocol of

Fig. 6.1 is statistically SHVZK for the relation Rd defined in Proposition 3, assuming the

commitment C is statistically hiding.

Proof. We simulate the honest prover for each of the three challenges as follows.

chall = −1. Sample a random isogeny ψ : E0 → E2 of degree `n, and random strings

r2, r3. Set com2 = C(E2; r2) and set com3 = C(⊥; r3). Return (com2, com3), chall, (ψ,E2, r2).

The isogeny ψ is distributed exactly like in the real protocol, thus this transcript is

valid. Because C is statistically hiding, an adversary cannot distinguish com3 from a real

commitment.

chall = 1. This is nearly identical to the above. The simulator samples ψ′ : E1 → E3 of

degree `n and random strings r2, r3. It sets com2 = C(⊥; r2) and com3 = C(E3; r3), and

returns (com2, com3), chall, (ψ′, E3, r3).

Because ` is coprime to d, if ψ is uniformly distributed so is ψ′. Then, the transcript is

indistinguishable from a real one as before.

chall = 0. Sample a random isogeny ψ : E0 → E2 of degree `n, and then a random

isogeny ρ : E2 → E3 of degree d. Sample random strings r2, r3 and set com2 = C(E2; r2)

and com3 = C(E3; r3). Return (com2, com3), chall, (ρ,E2, r2, E3, r3).
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Thanks to Lemma 18, the statistical distance between the simulated (E2, ker(ρ)) and

(E2, ψ(ker(φ))) is negligible. Because ρ is uniquely determined from ker(ρ), and the real

response φ′ by ψ(ker(φ)), an adversary has negligible probability of distinguishing the

transcript output by the simulator.

6.4.2 – Executing the protocol

The protocol we just described crucially depends on the ability to construct a commutative

square with sides of degrees d and `n. The SIDH setting has p + 1 = d · `n so that the

square can be constructed by simply pushing a single kernel point for ψ through φ and

vice versa. We refer to such a square as an SIDH square. For more general choices of `n

and d, the kernels are typically generated by points defined over very large extension

fields, requiring superpolynomial space. We efficiently construct such “larger” squares

by gluing together several SIDH squares in what we call SIDH ladders, as depicted in

Fig. 6.2.

For simplicity, we shall present the case d = (2a)w and `n = (3b)h, where 2a and 3b are

the side lengths of an SIDH square, and w and h are positive integers defining the width

and height of the ladders in units of SIDH squares. However, the technique generalizes

easily to any coprime d and `n, as long as isogenies of degrees d and ` can be efficiently

computed.

First, notice that there always exist some choice of a and b such that points (and hence

kernel subgroups) of orders 2a and 3b can be represented efficiently. This is clear if the

prime p is a SIDH prime where 2a3b | (p + 1), but for a generic prime p, one can set

a = b = 1: Points of order 2 and 3 are defined over a small extension field and can thus

be efficiently represented. Moreover, any isogeny of degree (3b)h is the composition of h

isogenies of degree 3b each, which can be stored as a sequence of h kernel generators

which are efficiently representable.

This means that the prover can generate the isogeny ψ : E0 → E2 in step 2 of

P1 by generating a random kernel K1,0 on E0, computing the isogeny ψ1,0 : E0 →

194



E0 E0,1

E2 Eh,1

φ0,1

ψ2,0

ψ1,0

ψh,0

E2,0

E1,0

Eh−1,0

ψ2,1

ψ1,1

ψh,1

E2,1

E1,1

Eh−1,1

φ2,1

φ1,1

φh−1,1

φh,1

E0,w−1 E1

Eh,w−1 E3

φ0,w

ψ2,w−1

ψ1,w−1

ψh,w−1

E2,w−1

E1,w−1

Eh−1,w−1

ψ2,w

ψ1,w

ψh,w

E2,w

E1,w

Eh−1,w

φ2,w

φ1,w

φh−1,w

φh,w

Figure 6.2: An SIDH ladder.

E0/K1,0 =: E1,0, generating a random kernel K2,0 on E1,0 such that K2,0 ∩ ker ψ̂1,0 = {0}

to prevent backtracking, and repeating the process h times to obtain a chain of h isogenies

ψi,0 : Ei−1,0 → Ei,0. The curve E2 is the codomain of the last isogeny ψh,0, i.e., E2 = Eh,0.

If the width w of the ladder is one, the prover can now recursively push the kernel G

of the isogeny φ = φ0,1 through the isogenies ψi,0 to obtain its image Gi on each curve

Ei,0. Each horizontal isogeny φ0,i has kernel Gi, and the prover can compute the kernel

of the right-side vertical isogeny ψ′
i,0 as the image of the kernel of ψi,0 under the isogeny

φi−1,1. Since each square composed of (Ei,0, Ei+1,0, E
′
i,0, E

′
i+1,0) is a commutative diagram,

so is the larger square (E0, E1, E2, E3). In the general case where w > 1, the prover can

use a similar approach for the horizontal isogeny φ as used for the vertical isogeny ψ:

The isogeny φ can be written as the composition of w isogenies φ0,w ◦ . . . ◦ φ0,1 of degree

2a and their kernels can be mapped through the vertical isogenies. In other words, the

prover can glue horizontally w compatible ladders, one for each factor φ0,i of φ. The right

descending isogenies of each ladder are used as the left descending isogenies of the next

one. This allows the prover to compute w× h SIDH squares in such a way that the curves

(E0, E1, E2, E3) and the isogenies between them form a commutative diagram. This is

illustrated in Fig. 6.2. For the challenges chall = ±1, the prover reveals the isogenies ψi,0

of the leftmost squares, or the isogenies ψi,w of the rightmost squares. For the challenge

chall = 0, the prover responds with the isogenies φh,i of the bottom squares.

Verification consists of evaluating (depending on the challenge) either w or h isogenies
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of degree 2a or 3b, which can be done efficiently. Generating the proof is slower, as the

prover needs to fill in all the w × h SIDH squares that make up the ladder. The proving

complexity is thus quadratic in w and h, while the verification complexity is linear in

w and h. However, the complexity of computing an SIDH square with degrees 2a or

3b is only quasilinear in a and b using sparse strategies [DJP14]; thus, maximizing the

size of SIDH squares improves performance, which explains why SIDH primes are the

most efficient scenario for this proof. If the degree of the isogenies and the size of the

underlying field are kept constant, in the SIDH setting we have that 2a3b | (p + 1) for

large values of a and b (in the order of several hundreds), and thus w and h can be small.

For a generic prime, the prover might need to set a = b = 1 and work with large values

of w and h, incurring a quadratic cost, besides possibly having to compute points over an

extension field of degree bounded by a small constant.

Remark 7. Above, we assumed that the degree of the witness φ was d = (2a)w. As mentioned

before, this can be generalized to any witness φ of smooth degree d = d1 . . . dw as far as the

di-torsion groups are accessible (ideally, one should have E0[di] ⊆ E0(Fp2)). In this case,

one factors φ as φ = φ0,w ◦ . . . ◦ φ0,1 where each isogeny φ0,i has degree di, and constructs

compatible ladders for each φ0,i.

6.5 — Distributed Secuer Setup and its Security

In this section, we formally describe the distributed Secuer setup protocol and prove its

security under a security definition using the simplified universal composability (SUC)

framework due to Canetti, Cohen, and Lindell [CCL15] in the real/ideal world paradigm.

Our security definitions consider a dishonest majority corruption model, wherein the

adversary can corrupt up to t− 1 of the t participating parties in the distributed Secuer

setup protocol. The protocol uses a non-interactive version of the Σ-protocol described in

Section 6.4. We begin by formally describing this non-interactive zero-knowledge (NIZK)

PoK protocol.
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PNIZK(E0, E1, φ, n,N):
1: For each i ∈ [N ], sample (com2,i, com3,i)← P1(E0, E1, φ, n).
2: Set (chall1, . . . , challN ) = H

(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
.

3: For each i ∈ [N ], set respi = P2(challi).
4: return Π =

(
{(com2,i, com3,i, respi)}i∈[N ]

)
.

VNIZK(E0, E1,Π, N):
1: Parse Π as

(
{(com2,i, com3,i, respi)}i∈[N ]

)
.

2: Compute (chall1, . . . , challN ) = H
(
(com2,1, com3,1), . . . , (com2,N , com3,N )

)
.

3: For each i ∈ [N ], compute bi = V(E0, E1, (com2,i, com3,i), challi, respi).
4: Output b = ∧i∈[N ]bi.

Figure 6.3: The NIZK.

6.5.1 – The NIZK protocol

We transform the Σ-protocol of Section 6.4 into a NIZK using the standard Fiat-Shamir

heuristic [FS87] for transforming interactive PoK protocols into NIZK proofs, albeit with

the difference that soundness and zero-knowledge hold for slightly different languages.

The NIZK construction. Let E0, E1 be supersingular curves defined over a finite field

Fp2, let φ : E0 → E1 be a separable isogeny of smooth degree d and let C(m; r) be a

statistically hiding and computationally binding commitment scheme. Additionally, let

Σ = (P1,P2,V) be the interactive PoK protocol described in Section 6.4, let λ ∈ N be the

security parameter, let ` be a small prime not dividing dp, let n = n(p, d, `, λ), and let

N = poly(λ) be a fixed polynomial. Finally, let H : {0, 1}∗ → {−1, 0, 1}N be a random

oracle. The NIZK proof system consists of a pair of algorithms NIZK = (PNIZK,VNIZK) as

described in Fig. 6.3. The prover algorithm PNIZK is randomized and produces a proof

Π. The verifier algorithm VNIZK is deterministic; it receives the proof Π and outputs a bit

b ∈ {0, 1} indicating whether or not the proof is accepted.

Correctness, Extractability and ZK. Correctness follows immediately from the cor-

rectness of the underlying Σ-protocol. We state and prove the following propositions for

extractability and ZK.
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Proposition 5. Assuming that Σ = (P1,P2,V) satisfies 3-special soundness with respect

to the relation R? (described in Proposition 3) and that H is a random oracle, the NIZK

NIZK = (PNIZK,VNIZK) satisfies extractability (and hence soundness) with respect to the

relation R?.

Proof. We provide an informal proof overview. We begin by noting that Σ is a public-coin

protocol, and that there exists a probabilistic polynomial-time algorithm that extracts a

witness from 3 accepting transcripts corresponding to N parallel executions of Σ w.r.t.

the same statement. Consequently, we can invoke the generalized forking lemma of [BC-

CGP16] to argue the existence of a probabilistic polynomial-time witness-extraction

algorithm for NIZK. This completes the proof of extractability (and hence, soundness)

for NIZK.

Proposition 6. Assuming that Σ = (P1,P2,V) is statistically SHVZK for the relation Rd (de-

scribed in Proposition 4) and that H is a random oracle, the NIZK NIZK = (PNIZK,VNIZK) is

statistically ZK for the relation Rd.

Proof. We again provide an informal proof overview. Let SimΣ be a ZK simulator that

simulates an accepting transcript for the underlying Σ-protocol (as described in the proof

of ZK for Σ). We construct a ZK simulator SimNIZK that simulates an accepting proof as

follows:

1. SimNIZK simulates the random oracle H as follows: it maintains a local table con-

sisting of tuples of the form (x, y) ∈ {0, 1}∗ × {−1, 0, 1}N . On receiving a query

x ∈ {0, 1}∗ from the adversary A, it looks up this table to check if an entry of the

from (x, y) exists. If yes, it responds with y. Otherwise, it responds with a uniformly

sampled y ← {−1, 0, 1}N , and programs the random oracle as H(x) := y by adding

the entry (x, y) to the table.

2. For each i ∈ [N ], SimNIZK internally invokes the simulator SimΣ for the underlying

198



Σ-protocol to obtain the i-th accepting transcript of the form

((com2,i, com3,i), challi, respi) .

3. At this point, SimNIZK aborts if the adversary A has already issued a random oracle

query on the input x =
(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
.

4. Otherwise, SimNIZK programs the random oracle as

H
(
(com2,1, com3,1), . . . , (com2,N , com3,N)

)
:= (chall1, . . . , challN),

and outputs the simulated proof as Π =
(
{(com2,i, com3,i, respi)}i∈[N ]

)
.

We note that SimNIZK runs in polynomial time as long as SimΣ runs in polynomial time.

Additionally, if SimNIZK does not abort, it outputs a simulated proof that is distributed in a

statistically indistinguishable manner from the distribution of a real proof, assuming that

SimΣ outputs a simulated accepting transcript with distribution statistically indistinguish-

able from a real accepting transcript for Σ. Finally, SimNIZK aborts with only negligible

probability, since the adversary A guesses ((com2,i, com3,i), challi, respi) for each i ∈ [n]

with at most negligible probability. This completes the proof of statistical ZK for NIZK.

6.5.2 – Our distributed Secuer setup protocol

We now move to the distributed Secuer setup protocol. Let P1, . . . , Pt be a set of t

participating parties and let E0 be some fixed starting curve. In a nutshell, the idea is to

have the parties act sequentially: each Pi at its own turn performs a secret random walk

Ei−1 → Ei and broadcasts Ei and a NIZK PoK of the secret walk. We claim that, as long

as one party is honest, the final curve Et is a Secuer.

To get any security guarantee, we need to carefully set the parameters of the random

walk Ei−1 → Ei. The natural choice is to fix some small prime q, not dividing `p, and

to take a random walk long enough that the distribution of Ei is negligibly far from the
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stationary distribution on the q-isogeny graph G(p, 1, q). For example we may set q = 2

and ` = 3, then Theorem 8 provides a precise bound to set the length δ = n(p, 1, q, λ)

of the q-walk as a function of the security parameter, and ultimately the parameter

n(p, qδ, `, λ) of the PoK.

Remark 8. For increased efficiency, we may choose to perform shorter q-walks Ei−1 → Ei of

length logq(p). This length approximates the diameter of the supersingular q-isogeny graph;

hence, it ensures that the secret isogeny can reach almost any curve in the graph.

Under mild assumptions, this choice would still yield a secure protocol, but it would also

make the security proof somewhat more involved. For this reason, we shall stick here to the

more conservative choice of walking long enough to ensure nearly stationary distribution of

Ei.

We formally describe the protocol (referred to as ΓSecuer henceforth). Assume that E0

is known to all the parties at the start. Let NIZK = (PNIZK,VNIZK) be the non-interactive

proof as described above. The protocol ΓSecuer proceeds in t rounds while only using

broadcast channels of communication, where round-i for each i ∈ [t] is as follows:

• Party Pi performs a q-isogeny walk starting at curve Ei−1 and ending at curve

Ei (where Ei−1 and Ei are both supersingular curves defined over Fp2), such that

party Pi knows a separable isogeny φi : Ei−1 → Ei of degree qδ, where δ =

n(p, 1, q, λ).

• Party Pi generates Πi ← PNIZK(Ei−1, Ei, φi, n,N), where n = n(p, qδ, `, λ), and

broadcasts (Ei,Πi) to all other parties.

• Each party Pj for j ∈ [t] \ {i} verifies the NIZK proof Πi by computing bi =

VNIZK(Ei−1, Ei,Πi, N). If bi = 0 (i.e., the proof is invalid), Pj aborts.

At the end of round-t, all parties output Et to be the final output curve.

Correctness. Correctness of ΓSecuer follows immediately from the correctness guaran-

tees of the NIZK.
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6.5.3 – Proof of security for ΓSecuer

We now present the proof of security for ΓSecuer using the simplified universal composabil-

ity (SUC) framework [CCL15] in the real/ideal world paradigm. We consider a dishonest

majority corruption model, wherein the adversary can corrupt up to (t − 1) of the t

participating parties.

The ideal functionality. Intuitively, the ideal functionality for distributed Secuer setup

should simply take as input the initial curve E0 and output a Secuer Et. It is however

not obvious how to model the property of being a Secuer in the plain SUC model: a

game based definition, stating that an adversary who can compute End(Et) can be used

to break some other assumption, appears to be more appropriate.

Thus, we prove security in two steps. First, we prove that ΓSecuer securely emulates a

less-than-ideal functionality F∗
Secuer (described in Fig. 6.4) that enforces that: (a) for each

i ∈ [t], if a corrupt party Pi outputs a curveEi, it must know a valid isogeny φi : Ei−1 → Ei,

and (b) for each i ∈ [t], if an honest party Pi outputs a curve Ei, then the corresponding

isogeny φi : Ei−1 → Ei is hidden from the adversary. This step relies on the extractability

and ZK properties of the NIZK protocol described above. Next, we prove that, assuming

the hardness of the endomorphism ring problem in the F∗
Secuer-hybrid model, the output

curve Et is a Secuer, i.e. that the (malicious) adversary cannot compute End(Et).

Theorem 9. Assuming thatNIZK = (PNIZK,VNIZK) satisfies extractability and zero-knowledge,

and assuming the hardness of the endomorphism ring problem (Definition 6) and GRH, the

output Et of the protocol ΓSecuer is a Secuer if at least one party Pi∗ for some i∗ ∈ [t] is honest.

Secure emulation of F∗
Secuer. We now prove that ΓSecuer securely emulates the less-

than-ideal functionality F∗
Secuer. Our proof is in the real/ideal world paradigm defined

formally as follows.
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F∗
Secuer(E0, i ∈ [t])

• LetHi ⊆ [i− 1] be the set of honest parties, and let Ci ⊆ [i− 1] be the set of corrupt parties among
the first (i− 1) parties P1, . . . , P(i−1).

• For each j ∈ Hi, F∗
Secuer receives as input from Pj a tuple of the form (Ej , φj).

• For each j′ ∈ Ci, F∗
Secuer receives as input from the simulator Sim a tuple of the form (Ej′ , φj′).

• If for any j ∈ [i− 1], φj is not an isogeny from the curve Ej−1 to the curve Ej , F∗
Secuer outputs ⊥

and aborts.

• Otherwise, F∗
Secuer takes a random walk starting from the (i− 1)-th curve Ei−1 and ending in a

curve Ei such that F∗
Secuer knows φi : Ei−1 → Ei, where φi is a separable isogeny of degree d.

• Finally, F∗
Secuer outputs (Ei, φi) to the party Pi, and outputs Ei to the simulator Sim and to all

parties Pj for j 6= i.

Figure 6.4: The Ideal functionality F∗
Secuer

The real world. The following entities engage in the real protocol ΓSecuer: (i) a set

H ⊆ [t] of honest parties, (ii) a real-world adversary A controlling a set C ⊂ [t] of corrupt

parties, and (iii) the environment E that provides E0 to each party, interacts with the

real-world adversary A, receives the final output curve Et from the honest parties, and

eventually outputs a bit b ∈ {0, 1}.

The ideal world. The following entities interact with the functionality F∗
Secuer: (i) A

set H ⊆ [t] of honest parties, where for each i ∈ H, party Pi directly forwards its secret

isogeny to F∗
Secuer, (ii) an ideal-world simulator Sim that sends inputs to F∗

Secuer on behalf

of a set C ⊂ [t] of corrupt parties, and (iii) the environment E that provides each party

with the starting curve E0, interacts with the simulator Sim, receives the final output

curve Et from the functionality, and eventually outputs a bit b ∈ {0, 1}.

For any t-party Secuer setup protocol ΓSecuer, any adversary A, any simulator Sim,

and any environment E , we define the following random variables:

• realΓSecuer,A,E : denotes the output of the environment E after interacting with the

adversary A during a real-world execution of ΓSecuer.

• idealF∗
Secuer,Sim,E : denotes the output of the environment E after interacting with the
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simulator Sim in the ideal world.

Theorem 10. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability and zero-

knowledge, for any security parameter λ ∈ N and any probabilistic polynomial time (PPT)

adversary A, there exists a PPT simulator Sim such that, for any PPT environment E , we

have ∣∣Pr [realΓSecuer,A,E = 1]− Pr
[
idealF∗

Secuer,Sim,E = 1
]∣∣ ≤ negl(λ).

Proof. We prove this theorem by constructing a PPT simulator Sim that simulates the view

of the environment E in the ideal world. Details are given in Appendix 6.A.

Analyzing Et in F∗
Secuer-hybrid model. Based on the above secure emulation guarantee,

we now analyze the output Et of ΓSecuer in the F∗
Secuer-hybrid model. Concretely, we state

and prove the following theorem.

Theorem 11. Assuming the hardness of the endomorphism ring problem and GRH, the

output Et of F∗
Secuer(E0, t) is a Secuer if at least one party is honest.

To prove this theorem, we first prove the following lemma.

Lemma 19. Assuming the hardness of the endomorphism ring problem, the output Ei of

F∗
Secuer(E0, i) for i ∈ [t] is a Secuer whenever Pi is honest.

Proof. Suppose that there exists an adversary A corrupting a dishonest majority of

the parties that efficiently computes the endomorphism ring of Ei with non-negligible

probability. Also assume that A corrupts all of P1, . . . , Pi−1. We can use A to construct an

algorithm B that solves the endomorphism ring problem. The algorithm B receives as

input a uniformly random curve E∗/Fp2 , internally runs the adversary A to emulate the

outputs of the corrupt parties P1, . . . , Pi−1, and finally feeds A with Ei := E∗. The view of

the adversaryA is properly simulated by B, since Ei output by F∗
Secuer and E∗ provisioned

by B are statistically indistinguishable (here we use Theorem 8, which crucially follows

from the honest party taking a q-walk of length n(p, 1, q, λ)). Finally, B uses A to recover
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the endomorphism ring of E∗ with non-negligible probability. This concludes the proof of

Lemma 19.

We now prove Theorem 11. We break the proof into two cases: (i) when Pt is honest,

and (ii) when Pt is corrupt. The proof for case (i) is immediate from Lemma 19. Hence, we

focus on case (ii). Let H ⊆ [t] be the set of honest parties, and let i∗ = max ({i : Pi ∈ H}).

By Lemma 19, Ei∗ must be a Secuer. Now, suppose that Et is not a Secuer, i.e., there

exists an adversaryA corrupting dishonest majority of the parties that efficiently computes

the endomorphism ring of Et with non-negligible probability. Since all of Pi∗+1, . . . , Pt

are corrupt, A knows a walk from Ei∗ to Et in the `-isogeny graph. However, since Et is

not a Secuer, A can use the reduction [Wes22b] (assuming GRH) to recover End(Ei∗),

thereby violating Lemma 19. This completes the proof of Theorem 11. Finally, the proof

of Theorem 9 follows immediately from the proofs of Theorem 10 and Theorem 11, which

completes the proof of security for our distributed Secuer setup protocol ΓSecuer.

6.6 — Implementation and Results

In this section, we report on our proof-of-concept implementation of our proof of knowl-

edge (Section 6.4), including a discussion of proof sizes and running times. Moreover,

we lay out concretely how one may deploy the trusted setup protocol from Section 6.5 in

the real world.

Parameter selection. The base-field primes p in our proof-of-knowledge implementation

are taken from the four SIKE parameter sets p434, p503, p610, and p751. As discussed

in Section 6.4.2, our proof of knowledge achieves its optimal efficiency for SIDH-style

primes. Moreover, those primes have been featured extensively in the literature, and

thus appear to be the obvious choice to demonstrate our proof of knowledge. That said,

we stress once more that our techniques are generic and can be applied in any choice of

characteristic.
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Table 6.1: Parameters and corresponding secret/proof size for each of the four SIKE finite
fields.

Degree SIDH Squares Size (kB)

log(p) Reps 2-isog. 3-isog. Columns Rows Secret Proof

434 219 705 890 4 7 0.99 191.19
503 219 774 977 4 7 1.13 215.75
610 329 1010 1275 4 7 1.39 404.32
751 438 1280 1616 4 7 1.69 662.63

We use the degree q = 2 for the random walks Ei → Ei−1, and ` = 3 for the random

walks of the Σ-protocol of Fig. 6.1. Like Section 6.5, we set δ = n(p, 1, 2, λ) for the length

of the 2-walks, and n = n(p, 2δ, 3, λ) for the 3-walks. Lastly, the Σ-protocol needs to be

repeated several times to achieve a negligible soundness error. Since one repetition has

soundness error 2/3, the protocol needs to be repeated −λ/log(2/3) times to achieve 2−λ

soundness error. We target the same security levels as the corresponding SIKE parameter

sets, i.e., λ = 128 for p434 and p503, λ = 192 for p610, and λ = 256 for p751. The

resulting conservative parameters are summarized in Table 6.1.

Implementation. We developed an optimized implementation6 of our proof of knowl-

edge (Section 6.4.1) for the trusted-setup application (Section 6.5) based on version 3.5.1

of Microsoft’s SIDH library7. Our implementation inherits and benefits from all lower-

level optimizations contained in that library, and it supports a wide range of platforms

with optimized code for a variety of Intel and ARM processors. Compiling our software

produces two command-line tools prove and verify, which use a simple ASCII-based

interface to communicate the data contributed to the trusted setup and its associated

proof of isogeny knowledge.

The implementation closely follows the strategy outlined in Section 6.4.2. This

includes the choices d = (2a)w and `n = (3b)h; thus, both the witness and the commitment

isogenies are uniformly random cyclic isogenies of degree d and `n respectively. To
6The source code is available at https://github.com/trusted-isogenies/SECUER-pok.
7https://github.com/microsoft/PQCrypto-SIDH
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reduce latency, we additionally exploit parallelism: Recall that the proof of knowledge is

repeated many times to achieve a low soundness error; indeed most of the computations

are independent between those repetitions and can thus easily be performed at the

same time on a multi-core system. This is confirmed by experimental results, where our

implementation is observed to parallelize almost perfectly when run on an eight-core

processor.

Sampling purely random large-degree isogenies with code from SIDH comes with

two caveats: First, the sampling of “small” squares must avoid backtracking between

the individual squares being glued to ensure that the composition is cyclic in the end; in

both cases this is done by keeping track of the kernel of the dual of the last prime-degree

step of the previous square and avoiding points lying above this “forbidden” kernel when

choosing the next square. Besides that, the specific isogeny formulas used in SIDH fail for

the 2-torsion point (0, 0), which can be resolved by changing to a different Montgomery

model each time this kernel point is encountered. For curves revealed in the proof, the

choice of Montgomery model should be randomized to avoid leakage. Similarly, the

kernel generators of the horizontal isogeny φ′ also need to be randomized, as Lemma 18

only distinguishes cyclic subgroups and revealing specific generators may leak.

Our software sacrifices some performance for simplicity, which aids auditability and

hence helps increase trust in the results of a trusted-setup ceremony. Some unused

optimizations: Two-isogenies are faster to compute than three-isogenies, and since

the SIDH ladder is taller than wider, swapping the role of two- and three-isogenies in

the trusted-setup application could somewhat improve the resulting performance. For

simplicity, our implementation also only uses full SIDH squares, and thus all isogeny

degrees are rounded up to the closest multiple of an SIDH square; shortening the sides

of some of the squares can save time. We also did not apply all optimizations to reduce

the proof size. This includes applying SIDH-style compression techniques [CJLNR+17]

to the points contained in the proof, cutting their size approximately in half. Moreover,

applying a slight bias when sampling the challenges challi means smaller responses can
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Table 6.2: Benchmarks for instance generation, proving, and verification of our proof of
isogeny knowledge for each of the four SIKE finite fields.

Single-core Time (s) Eight-core Time (s)

log(p) Instance Prove Verify Instance Prove Verify

434 0.01 18.15 1.93 0.01 2.96 0.32
503 0.01 25.70 2.71 0.01 4.17 0.44
610 0.02 74.82 7.69 0.02 12.12 1.24
751 0.04 162.47 17.01 0.04 26.07 2.89

appear more often, at the expense of requiring slightly more repetitions; we investigated

this tradeoff and determined that the potential improvement is essentially void.

Results. We benchmarked the three algorithms (instance generation, proving, and

verification) that make up the zero-knowledge proof of knowledge. We run our tests

on an ARM Apple M1 Pro with eight cores, and we averaged the running times of 100

iterations for the parallel implementation and the running times of 50 iterations of the

single-core version. The resulting timings are shown in Table 6.2. They demonstrate

that the algorithm is highly practical and can realistically be used within a trusted setup

protocol: Generating proofs of knowledge for all four base fields takes less than five

core-minutes on a modern CPU. Note that these algorithms need to be run only once per

contributor.

Real-world deployment. We briefly discuss how we intend to deploy the trusted setup

protocol proposed in Section 6.5. The goals of such a deployment include include a

transparent setup that allows participants to trust the process, a low bar of entry to

participate in the protocol, and a secure system that can withstand Sybil and Denial-of-

Service (DoS) attacks.

Firstly, we will release a set of tools that participants can download and run to generate

a valid addition to the trusted setup, and for ceremony orchestrators to validate protocol

submissions on the server-side. To increase user trust, we also provide higher-level

207



versions (e.g., in SageMath) of some components. Moreover, the proof format is made

public, so that any participant can—if they choose to—re-implement the proof algorithm

and generate a compatible proof.

Then, we propose leveraging the existing infrastructure of git and GitHub to host

our distributed protocol. Thus, participants can generate a random walk from the latest

curve to a new curve, generate a proof of knowledge of their secret isogeny walk, and

submit the new curve and the proof of knowledge to the server as a pull request (PR).

The server is a separate git repository and execution environment maintaining the series

of curves and the proofs, with checks that are run automatically against submissions from

participants. The repository automation verifies that the submitted proof of knowledge

of the isogeny between the current ’tip’ curve and the new proposed curve is valid, and

that all the prior proofs are valid in the context of the proposed changes. The server also

verifies that the number of proofs / curves is strictly increasing (that the participant is

not replacing any prior hops with their own). If the checks pass, the PR is rebased on top

of the main branch, adding the new proof of knowledge of the latest hop, and updating

the current latest curve to the new one. New participants in the protocol will generate

isogeny walks starting from the new tip curve.

If any existing or ’in-flight’ isogeny walk submissions exist, they will have been

rendered moot after the tip curve has changed, and would no longer be accepted as

they no longer extend from the new tip curve. In our tests, walk generation, proving,

and verification per-submission is quite fast, but if the protocol runs long or has many

participants, many proofs will be verified and the chances of a valid in-flight submission

failing to complete full chain verification before the tip curve is updated again increase.

We can parallelize our verification of the multiple proofs to lower these chances, and do a

quick validation abort if any proof or any checks of the validity of the chaining of curves

fails.

The configuration for the continuous integration (CI) checks is maintained in a separate

repository to prevent modification from protocol participants. Hosting the protocol on
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GitHub raises the bar to Sybil attacks, as it requires all participants to have a GitHub

account with a verified email address. Using our tool requires generation of a GitHub

personal access token to authenticate when generating the submission, which further

complicates automation / collusion of adversarial participants.

The end result of the protocol is a public git repository whose final commit contains

a series of curves and valid proofs of knowledge of isogenies between them, the last of

which is the final Secuer, a curve with unknown endomorphism ring, in a parsable hex

encoding. Anyone can pull down this artifact and verify the series of curves and proofs

independently if they wish.
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6.A — Proofs of the theorems

Proof of Theorem 6

Proof. First we show 1. Let Lij be the set of degree ` isogenies from (Ei, Ci) to (Ej, Cj).

If f is in Lij, then the dual isogeny f̂ is a degree ` isogeny from (Ej, Cj) to (Ei, `Ci).

Since ` is coprime with d, `Ci is equal to Ci, and the duality gives a bijection between

Lij and Lji. The entry aij of A is the cardinality of the quotient Lij/Aut(Ej, Cj), hence

|Aut(Ei, Ci)|aji = |Aut(Ej, Cj)|aij. Dividing this equality by two we get wiaji = wjaij.

The claim now follows from the definition of Q.

We now prove 2. We have

EA =
n∑
i=1

1

wi
(Ei, Ci)A =

n∑
i,j=1

1

wi

|Lij|
wi

(Ej, Cj) =
n∑
j=1

1

wj
(Ej, Cj)

n∑
i=1

|Lji|
wi

=
n∑
j=1

1

wj
(Ej, Cj)(`+ 1) = (`+ 1)E .

To see part 3, observe that the out-degree of each vertex of G is `+ 1, hence the sum

of the elements of the rows of A is `+ 1, so the claim.

We now prove 4. Let 〈·, ·〉 be the Hermitian product onCV such that the basis (Ei, Ci) is

unitary. Letw =
∑
w

−1/2
i (Ei, Ci) and, for each v =

∑
vi(Ei, Ci), let ṽ =

∑
w

1/2
i |vi|(Ei, Ci).

Then, the Cauchy-Schwarz inequality gives

|v|L1 = 〈ṽ, w〉 ≤
√
〈ṽ, ṽ〉

√
〈w,w〉 = |v|Q

√
〈w,w〉 = |v|Q

√∑ 1

wi

and moreover we get the equality when ṽ = w/|w|L1. We now compute K−1 =
√∑

1
wi
.

Eichler’s formula [Hus04, Section 13.5, Theorem 4.1] gives

∑
E/Fp supersingular,
up to Fp-isomorphism

1

|Aut(E)|
=
p− 1

24
.
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We are going to show that, for H the group of upper triangular matrices

∑
i such that Ei'E

|Aut(E)|
|Aut(Ei, Ci)|

= [GL2(Z/dZ) : H] . (6.5)

Given this equation for granted, K can be computed by writing d =
∏

q q
eq and checking

that |GL2(Z/dZ)| =
∏

q(q
2eq − q2eq−2)(q2eq − q2eq−1) and |H| =

∏
q q

eq(qeq − qeq−1)2.

Equation (6.5) is the equation of the orbits for a group action. Fix an elliptic curve

E, let X be the set of order d cyclic subgroups of E[d]. This set has a natural transitive

action by Aut(E[d]) ∼= GL2(Z/dZ), which gives a bijection X ↔ GL2(Z/dZ)/H, so the

right hand side of Equation (6.5) is the cardinality of X. Level d Borel structures on E

are the orbits of the action of Aut(E) on X. The left hand side of Equation (6.5) is again

the cardinality of X, obtained summing the cardinalities of each orbit.

Finally we prove 5. Let π =
∑n

i=1 πi(Ei, Ci) be a probability distribution and let

λ =
∑n

i=1
1
wi
, so that s =

∑n
i=1

1
λwi

(Ei, Ci). Then, using
∑
πi = 1, we have

|π − s|2Q =
n∑
i=1

wi

(
πi −

1

λwi

)2

=
n∑
i=1

(
wiπ

2
i −

2πi
λ

+
1

λ2wi

)
=

n∑
i=1

wiπ
2
i −

2

λ
+

1

λ
≤

n∑
i=1

wiπ
2
i ≤ (maxwi)

n∑
i=1

πi = maxwi .

We conclude recalling that wi ≤ 3 for every i. Notice that for π = (Ei, Ci) we get

|π − s|2Q = wi − 1/λ, hence the above estimate is not too loose.

Proof of Theorem 8

Proof. Denote by A(k) the matrix whose (i, j) entry is the number of non-backtracking

walks from i to j. Since each edge has a unique dual, we get the same recurrence formula

as in the non-oriented case, namely

A(1) = A, A(2) = A2 − (`+ 1), A(k+1) = AA(k) − `A(k−1) .
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Observe that the sum of all the entries in a fixed row of A(k) is (`+ 1)`k−1. We denote

by P (k) its normalization

P (k) :=
1

(`+ 1)`k−1
A(k) .

Hence, P (k) is a polynomial in A, see e.g. [ABLS07, Section 2]. Let us call this polynomial

µk(x) (here, the use of the symbol µi is slightly different from the one of [ABLS07]). The

matrix P (k) is diagonalizable, it has the same eigenvectors as A, and has eigenvalues

µk(`+ 1) = 1 and µk(λi), where λi is any eigenvalue of A different from `+ 1.

Combining the proof of [ABLS07, Lemma 2.3] and Theorem 5, we get

µk(λi) =
1√

(`+ 1)`k−1

(√
`

`+ 1

sin((k + 1)θ)

sin(θ)
− 1√

(`+ 1)`

sin((k − 1)θ)

sin(θ)

)
(6.6)

where cos(θ) = λi/(2
√
`). Recall that | sin(x+ y)| ≤ | sin(x)|+ | sin(y)|, hence | sin(mθ)| ≤

m| sin(θ)| and we can achieve the bound:

|µk(λi)| ≤
1√

(`+ 1)`k−1

(√
`

`+ 1
(k + 1) +

1√
(`+ 1)`

(k − 1)

)
=

(`+ 1)(k + 1)− 2

(`+ 1)
√
`k

.

(6.7)

Now observe that π(k) = πP (k), and hence π(k) − s = (π − s)P (k) . The difference

of two probability distributions is orthogonal for the standard L2 scalar product to the

vector u from Theorem 6 item 3. Since E is not orthogonal to u, by Theorem 6 item 3

we conclude that π − s is in the linear span of the eigenvectors of A corresponding to

eigenvalues different from `+ 1. Since A is self-adjoint with respect to Q, using Equation

(6.7) we have

|(π − s)P (k)|Q ≤
(`+ 1)(k + 1)− 2

(`+ 1)
√
`k

|π − s|Q (6.8)

The definition of K and M from Theorem 6 tells that K|π(k) − s|L1 ≤ |π(k) − s|Q, and

|π − s|Q ≤ M . We obtain the result recalling that the total variation distance between

two probability distributions is half of the L1 distance, see e.g. [LP17, Proposition 4.2].
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Remark 9 (Improvement of Theorem 8 and Lemma 18). Under the assumption that the

eigenvalues of the adjacency matrix of G are strictly contained in the Hasse interval (so there

are no eigenvalues equal to ±2
√
`), Theorem 8 can be improved: the linear factor (k+1) can

be replaced by a constant which does not depend on k. Indeed, as ±2
√
` is not an eigenvalue,

sin(θ) in Equation 6.6 never vanishes. If we write | sin(θ)| ≥ ε for some ε > 0, we obtain

|µk(λi)| ≤
(
ε
√
`k
)−1

which can be used in place of Equation 6.7. Observe that, even with this improvement,

the bound will not be sharp, because in the bound of Equation 6.8 we consider only the

eigenvalues with greatest modulus, but the other eigenvalues of A have smaller modulus.

This argument in turn improves Lemma 18, where the linear factor k can be replaced by

a constant independent of k.

Proof of Lemma 18

Proof. We bound the statistical distance of each of D1(k) and D2(k) from the stationary

distribution of G(p, d, `), as determined in Theorem 6, then we conclude with the triangle

inequality. For D1(k), we can directly apply Theorem 8, but D2(k) needs more care.

Let G0 be the classical isogeny graph. This can be thought of as the graph with d = 1

Borel level structure. Let s0 be the stationary distribution on G0. Consider the projection

map P : G→ G0 which forgets the level structure. The push-forward distribution P∗D2(k)

is the distribution of the length k non-backtracking walks starting at E0, so we can bound

its total variation distance from s0 using Theorem 8. For any probability distribution π

on G0 let us denote π̃ the distribution on G obtained by first choosing E with distribution

π and then choosing C uniformly inside the set of cyclic subgroups of order d. Notice

that for each two subgroups C,C ′, the pair (E,C) defines the same vertex as (E,C ′) if

and only if there exists an automorphism of E sending C to C ′. This, together with the
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fact that the set of C ’s for a single E has cardinality [GL2(Z/NZ) : H], implies

π̃((E,C)) =
|Aut(E)/Aut(E,C)|
[GL2(Z/NZ) : H]

π(E) ,

where H is the subgroup of upper triangular matrices. The above formula, together with

(6.5), implies that for every probability distribution π on G0 and every subset A of G0,

one has π̃(P−1(A)) = π(A). In turn, this means that for π1, π2 probability measures on

G0, we have dTV (π1, π2) = dTV (π̃1, π̃2). One can then check by direct computation that

s = s̃0. We conclude that dTV (D2(k), s) = dTV (P∗D2(k), s0), and the right hand side can

be bound using Theorem 8.

Proof of Theorem 10

Proof. We prove this theorem by constructing a PPT simulator Sim that simulates the

view of the environment E in the ideal world. The simulator Sim receives E0 from the

environment E , internally runs the real-world adversaryA and the NIZK simulator SimNIZK,

and proceeds in round-i for i ∈ [t] as described next. Note that we implicitly assume that

Sim has rewinding access to the adversary A and programming access to the random

oracle in the analysis below.

Case-1: Party Pi is corrupt. In this case, Sim internally runs the real-world adversary

A to obtain the broadcast message (Ei,Πi) corresponding to the corrupt party Pi. It

then uses the extraction algorithm of NIZK to extract the corresponding witness φi. If

extraction fails, Sim outputs ⊥ and aborts. Otherwise, Sim stores (Ei,Πi, φi) internally,

and broadcasts (Ei,Πi) as the message corresponding to the corrupt party Pi.

Case-2: Party Pi is honest. In this case, Sim invokes the ideal functionality to obtain

Ei. Concretely, let Ci ⊆ [i − 1] be the set of corrupt parties among the first (i − 1)

parties P1, . . . , P(i−1). Sim invokes the ideal functionality F∗
Secuer(E0, i) with the set

{(Ej′ , φj′)}j′∈[Ci]. If F∗
Secuer outputs ⊥, Sim outputs ⊥ and aborts. Otherwise, Sim re-
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ceives from F∗
Secuer the corresponding curve Ei. At this point, it invokes the simulator

SimNIZK of the NIZK protocol to obtain a simulated proof as Πi ← SimNIZK(Ei−1, Ei, N),

and broadcasts (Ei,Πi) as the message corresponding to the honest party Pi.

Indistinguishability of views. We now prove that for the above construction of Sim,

the view of E in the ideal world is indistinguishable from that in the real world. We prove

this by a sequence of hybrids as described below (recall that H ⊆ [t] and C ⊂ [t] denote

the set of honest and corrupt parties, respectively).

• Hybrid-0: In this hybrid, the distribution of messages broadcast by each party is

identical to the real-world protocol γSecuer.

• Hybrid-1: In this hybrid, for each corrupt party Pj such that j ∈ C, instead of

verifying the NIZK proof Πj using VNIZK (as in the real protocol), extract the witness

φj using the the extraction algorithm of NIZK. If extraction fails, output ⊥.

• Hybrid-2: In this hybrid, for each honest party Pi such that i ∈ H, instead of

generating the NIZK proof Πi ← PNIZK(Ei−1, Ei, φi, n,N) (as in the real protocol),

generate a simulated proof as Πi ← SimNIZK(Ei−1, Ei, N).

• Hybrid-3: In this hybrid, the distribution of messages broadcast by each party is

identical to the ideal-world messages broadcast by Sim.

Lemma 20. Assuming that NIZK = (PNIZK,VNIZK) satisfies extractability, hybrid-0 and

hybrid-1 are indistinguishable.

Note that for E to distinguish between hybrid-0 and hybrid-1 with non-negligible proba-

bility, the adversary A must be able to produce with non-negligible probability a proof

Πj corresponding to a corrupt party Pj for j ∈ C such that VNIZK(Ej−1, Ej,Πj, N) = 1 but

extraction fails. This immediately violates extractability of NIZK, thus completing the

proof of the lemma.
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Lemma 21. Assuming that NIZK = (PNIZK,VNIZK) satisfies ZK, hybrid-1 and hybrid-2 are

indistinguishable.

Note that for E to distinguish between hybrid-1 and hybrid-2 with non-negligible prob-

ability, there must exist an honest party Pi for i ∈ H and a distinguisher D such that∣∣Pr[D(E0, E1,Πi) = 1]− Pr[D(E0, E1,Πi) = 1]
∣∣ > negl(λ), where λ is the security param-

eter, and where Πi ← PNIZK(Ei−1, Ei, φi, n,N) and Πi ← SimNIZK(Ei−1, Ei, N). This

immediately violates the ZK property of NIZK, thus completing the proof of the lemma.

Finally, hybrid-2 and hybrid-3 are identical by inspection, thus completing the proof

of Theorem 10.
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Chapter 7

Conclusion

It’s a magical world, Hobbes, ol’ buddy… let’s go
exploring!

— Bill Watterson, Last words of Calvin and
Hobbes

In this thesis, we analyzed how SIDH-based protocols can be used to develop static-key

constructions. In particular, we assessed the security of three protocols: the Jao-Urbanik

variant of k-SIDH, the HealSIDH validation method, and the OPRF by Boneh et al. This

showed the limitations and the difficulties in protecting long-term static secrets with SIDH.

By building upon these results, we also proposed a new OPRF construction, together with

a trusted-setup protocol to securely generate the parameters required within the OPRF

protocol. Altogether, this work brings us closer to a post-quantum internet with quantum-

resistant versions of commonly used protocols such as NIKEs and OPRFs; nonetheless,

much more work is still needed.

The design of efficient post-quantum protocols with long-term static keys can take

different paths. On one hand, it may be ideal to develop alternative primitives that achieve

the same functionality with different structures. For instance, Brendel et al. [BFGJS22]

proposed a post-quantum alternative to the Signal protocol that avoids NIKEs altogether

by relying on designated-verifier signatures. However, it is also hard to develop efficient

and post-quantum versions of such signatures. Indeed, the SIDH-based Signal protocol
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proposed by Dobson and Galbraith [DG22] was far more efficient than the version with

designated-verifier signatures. Thus, reinventing new protocols and primitives may not

solve the issue. Moreover, post-quantum drop-in replacements allow cryptographers to

re-use and build upon decade-long analyses of classical protocols; switching to new ones

would require significantly more work to establish their correctness and security.

On the other hand, it is likely that we will need efficient post-quantum drop-in

replacements for all the primitives we currently use, including static-key protocols such

as non-interactive key exchanges and oblivious pseudorandom functions. For this, it may

be possible that developments come from non-isogeny-based approaches. Lattice-based

techniques may eventually lead to interesting results. After all, one (inefficient) OPRF

protocol based on lattices already exists, and the recent developments on lattice-based

blind signatures [PK22; AKSY22; BLNS23], a primitive deeply linked with OPRFs, bring

hope for a future efficient OPRF based on lattices. Nonetheless, some limitations of

lattices with regards to static-key exchanges seem hard to overcome [GKRS22]. Similarly,

potential breakthroughs in code-based or multivariate cryptography may bring useful

results.

While such developments are theoretically possible, the only post-quantum construc-

tions of non-interactive key exchanges and vaguely practical oblivious pseudorandom

functions have been built on isogenies. This is not a coincidence, given the inherent ability

of isogeny-based techniques to work with static keys. The efficiency of the proposed

protocols is still far from practical, but the history of cryptography counts many examples

of protocols whose initial performance was lackluster. Several years of innovation and

improvements have made those protocols efficient and widely used. The same trend

can be seen within isogeny-based protocols, although the attacks on SIDH significantly

slowed it down. However, the new techniques that were developed to break SIDH may

have further applications, and their study may eventually lead to new and more efficient

static-key constructions.
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A path forward

The SIDH attacks deeply changed our understanding of several aspects of isogeny-based

protocols, but they are not the end of isogeny-based cryptography and, in some sense,

might not even be the end of SIDH.

While many isogeny-based protocols, such as CSIDH and SQISign, are unaffected

by the attacks on SIDH, the original SIDH protocol is fully broken by the recent attacks.

Nonetheless, some countermeasures are possible. They are very recent, and their security

needs to withstand the test of time; yet, they currently appear to offer valid and secure

SIDH-like key exchange protocols. Such schemes are much more inefficient than the

original SIDH, and as pure key-exchange protocols, they may be far from competitive.

Nonetheless, they can still productively be used for complex SIDH-based protocols. One

such example is the construction of the oblivious pseudorandom function (OPRF) described

in Chapter 5. Despite being based on SIDH and the novel countermeasures, the resulting

protocol is still the most efficient post-quantum OPRF reported in the literature. This

protocol may be the first SIDH-based protocol to be proposed after the SIDH protocols,

and it provides an example of research directions based on SIDH in a after the SIDH

attacks. Furthermore, the attacks and the corresponding countermeasures are very recent.

It remains an open problem to develop new and more efficient countermeasures, which

will widen the range of SIDH-based protocols that may be competitive.

Moreover, the SIDH attacks made many computational problems that were assumed

to be hard suddenly easy. This renewed understanding of the field has been used crypt-

analytically, but it may be possible to constructively employ the tools used in the SIDH

attacks to develop new protocols. This may be possible since the attacks on SIDH are fully

classical (no quantum computer is needed) and extremely efficient. This would also not

be the first instance of a constructive application of attacks on isogeny-based protocols:

the attacks on unbalanced SIDH [Pet17] were used to build a one-way function and the

encryption protocol SÉTA [DDFKL+21]. A similar approach might turn the SIDH attacks
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into an encryption protocol, or even more advanced protocols for which no post-quantum

solutions exist yet. Developing such protocols remains, at the moment, an open problem.

Regardless of the specific developments in isogeny-based constructions, it seems

likely—at this stage—that a post-quantum world will require the development of practical

post-quantum static-key protocols, and isogeny-based cryptography appears to be the

most promising technique to do so.
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