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Abstract 

Introduction 

Biomarkers are often subject to measurement error, affecting their reproducibility. Statistical 

methods for examining the reproducibility of continuous biomarkers are well-developed. 

However, methods for performing systematic reviews and meta-analyses of biomarker 

reproducibility, and examining the reproducibility of count-based biomarkers are under-

researched. 

 

Aims 

To propose methods for performing meta-analyses of reproducibility of continuous 

measurements, and for examining the reproducibility of count measurements. 

 

Methods 

Current methods for performing systematic reviews and meta-analyses of reproducibility of 

continuous measurements were systematically identified and critiqued. Meta-analytic 

methods were developed and evaluated in a case study examining the reproducibility of grip 

strength measured in different populations. Methods for count outcomes were evaluated in a 

case study of a biopsy-based biomarker for Sjorgren’s syndrome. Simulation extended the case 

study to examine how reproducibility varied for larger numbers of biopsied samples. 

 

Results 

Methods for meta-analysis performed well, indicating that grip strength measurements are 

reproducible. Count-based methods outperformed continuous-based methods when 



 
 

examining the reproducibility of biopsy-based count measurements. The methods indicated 

low reproducibility, with simulation suggesting improved reproducibility for larger samples. 

 

Conclusion 

The proposed methods provide robust summary and primary evidence of the reproducibility of 

continuous and count-based biomarkers, respectively, allowing better decisions regarding their 

use in practice. 
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1. Introduction 

 

Biomarkers indicate the underlying medical state of an individual, and are often used to evaluate the 

presence/progress of a medical condition, the effects and safety of new interventions, or the 

occurrence of future clinical outcomes [1, 2]. In order to be used in medical research and practice, it 

is essential that biomarkers provide reproducible measurements.  

The broad aim of this thesis is to propose statistical methods for evaluating the reproducibility of 

biomarkers, before biomarkers are used in medical research and practice. The thesis mainly focuses 

on i) bringing together estimates of the reproducibility of biomarkers from multiple primary studies 

(meta-analysis); and ii) the statistical analysis of primary studies examining the reproducibility of 

biomarkers expressed as counts rather than continuous measurements.  

 

1.1. Definition and applications of biomarkers 

Biomarkers (short for biological markers) are defined as measurements used to evaluate potential 

chemical, physical or biological hazards, normal biological processes, and the effectiveness of new 

therapeutic interventions [3, 4]. Applications of biomarkers in medical research and practice include 

screening for disease; the diagnosis, prognosis, and monitoring of disease; the stratification of 

patients according to disease severity; and evaluation of the effects and safety of new interventions 

or environmental agents. Furthermore, the use of biomarkers as surrogate endpoints (i.e., 

substitutes of clinically meaningful outcomes) in clinical trials has become commonplace, and has 

been approved by the Food and Drug Administration (FDA) [1, 5]. The measured response may be 

produced from molecular, histologic, imaging, or physiologic tests [5]. Examples of the use of 

biomarkers in clinical practice include: 

• blood pressure readings as a diagnostic biomarker of hypertension [6]. 

• faecal occult blood test as a screening biomarker for colorectal cancer [7]. 
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• prostate-specific antigen (PSA) as a prognostic biomarker for prostate cancer [8]. 

• cancer antigen 125 (CA 125) as a monitoring biomarker for assessing disease status or 

burden during and after treatment in patients with ovarian cancer [9]. 

• left ventricular ejection fraction (LVEF) as a stratification biomarker for the type of heart 

failure [10]. 

• serum potassium as a biomarker for evaluating the safety of patients on diuretics [11]. 

• serum creatinine as a surrogate endpoint in a clinical trial of patients with atherosclerotic 

renovascular disease (ARVD), evaluating whether revascularisation (with angioplasty and/or 

stent) can prevent or delay the progression from ARVD to ESRD (i.e., end-stage renal 

disease), compared to the standard care [12]. 

 

1.2. Requirements for the use of biomarkers in medical research and practice 

When considered for use in medical research and practice, the suitability of biomarkers is often 

taken for granted [1]. However, strong scientific evidence is required, as not all biomarkers are 

intended for this purpose. Strimbu and Tavel [1], and Califf [2] discuss several criteria that need to be 

met so that biomarkers qualify for use in medical research and practice, which should be examined 

simultaneously. Strimbu and Tavel highlight the importance of relevance and validity [1]. Relevance 

refers to the ability of biomarkers to provide clinically relevant information on questions that are of 

interest to the health care providers, health policy makers, and the public. Validity refers to the 

ability of biomarkers to measure what they are intended to (i.e., a strong correlation with the clinical 

endpoint of interest should be observed). Califf additionally states that biomarkers should not only 

correlate with the clinical outcome of interest, but also be able to detect changes over time [2]. This 

means that a change in the biomarker should also correspond to a change in the clinical outcome. 

Another essential requirement for use in medical research and practice is the reproducibility of 

biomarkers, defined as the extent to which two or more measurements produced for the same 
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individual are the same, given that the health status of the individual has not changed in between 

the measurements [13]. 

 

1.3. Reproducibility and measurement error of biomarkers 

The evaluation of the reproducibility of biomarkers prior to being used in medical research and 

practice is the main theme of the thesis. When biomarkers are measured two or more consecutive 

times in individuals with stable health status, the produced measurements are expected to be very 

similar, if not identical. However, this is not often the case, as each measurement is often subject to 

measurement error and may not accurately reflect the underlying true disease state [13].  

 

1.3.1. The measurement error 

In theory, measurement error is defined as the absolute difference between an observed 

measurement produced for an individual, and the true value of the individual [14, 15]. However, as 

the true value is nearly always unknown, common practice often involves taking multiple 

measurements from an individual, and using the mean of the measurements as the best estimate of 

the true value [15]. The measurement error in turn reflects the variability of the produced 

measurements around the mean value of the individual. Measurement error may arise due to: 

• Systematic variability occurring between measurements. That is, a general trend for 

repeated measurements to be different in a particular (positive or negative) direction [16]. 

Systematic variability may for example arise due to inconsistencies in the measurement 

protocol (e.g., the posture of an individual not being consistent across different testing 

occasions), two clinicians assessing the same individual in a different way (e.g., for imaging 

tests, two clinicians may rate the same image differently), or even true differences occurring 

within the patients over time (e.g., patients performing better at the second testing occasion 
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due to their experience with the first). When examining the measurement error of 

biomarkers, every possible effort should be made so that any potential systematic variability 

between measurements is eliminated. However, in some cases, potential systematic 

variability between two different clinicians (or even within the same clinician) may be of 

interest (see section 1.3.3). 

• Random variability occurring between measurements. Even if all potential sources of 

systematic variability are eliminated, two consecutive measurements may still differ due to 

the random error occurring within each measurement, which may be subject to factors that 

are often not possible to be controlled [16]. Examples include patients feeling more relaxed 

when performing the second measurement compared to the initial, unexpected changes in 

the temperature or the environment, or the inherent variability that a measurement tool 

may have [16, 17]. 

 

1.3.2. The impact of measurement error on medical research and practice 

Using biomarkers of low reproducibility (i.e., high measurement error) may lead to false conclusions 

with respect to the diagnosis or the classification of a medical condition, the effects and safety of 

treatments, or the occurrence of future clinical outcomes. A few examples of the potential impact of 

measurement error on medical research and practice include: 

• The measurement of blood pressure, which is commonly used for the diagnosis of 

hypertension [6], is considered a key prognostic factor in the development of cardiovascular 

risk scores [18, 19], and has also been used as an outcome in clinical trials [12]. However, 

measurements of blood pressure in clinical practice are known to be subject to multiple 

sources of error (e.g., incorrect positioning of individuals during the assessment, inadequate 

equipment, improper cuff bladder size, incorrect technique being used, or even random 
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within-individual variability due to biological factors) [15, 20], which may in turn lead to the 

over/under treatment of patients [20]. 

• The ultrasound-based measurement of the cross-sectional area (CSA) of peripheral nerves, 

which is validated for the diagnosis of Carpal Tunnel Syndrome [21]. Gao et al examined the 

percentage error from a known measurement among nine ultrasound examiners, which was 

found to be approximately 10% [21]. Given that a cut-off value of 10𝑚𝑚2 is commonly used 

to define presence or absence of the condition, the authors state that measurements lying 

within 10% of the diagnostic threshold may lead to the misdiagnosis of the condition, and 

should be interpreted with caution [21]. 

• The measurement of the left ventricular ejection fraction (LVEF) based on echocardiography, 

which is used as a guide for the current management of patients with chronic heart failure 

[22, 23]. A value of ≤40% has been used to define patients with a reduced ejection fraction 

[24, 25], with guidelines recommending the use of combination treatment with 

neurohormonal antagonists for such patients [22]. However, evidence suggests a variability 

up to 15% when experts in echocardiography read the same image [22], which may lead to 

patients being misclassified, and in turn treated inappropriately [22, 23].  

 

1.3.3. Potential sources of test variability examined in primary studies 

When biomarkers are considered for use in medical research and practice, researchers and medical 

professionals need to be familiar with the potential sources of variability that is inherent to the 

produced measurements (i.e., the measurement error). As such, primary studies are often designed 

to examine any such sources, and estimate the degree of error attributed to each source (see 

Chapter 2 for a detailed description of the study design and statistical analysis). The potential 

sources of the inherent variability in the measurements may differ depending on the type of test 

being used. See Table 1.1 for a guide to the terminology used in this thesis. 
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Table 1.1. Terms used in the thesis. 

Reproducibility  The extent to which two or more measurements produced within 

individuals are the same, given that the health status of the 

individuals has not changed in between the measurements. 

Measurement error  The variability of multiple measurements produced from the same 

individual around the mean of the measurements (which serves as 

the best estimate of the true value of the individual).  

Reliability The ability of a test to distinguish patients from each other despite 

the presence of measurement error. 

Random variability 

between measurements 

The variability in measurements produced within individuals due to 

any random analytical and/or within-individual biological variability. 

- Analytical variability The inherent variability of the equipment used for producing the 

measurements. 

- Within-individual biological 

variability 

The random fluctuations around the true value of an individual. 

Systematic variability 

between measurements 

A general trend for measurements produced within individuals to be 

different in a particular (positive or negative) direction. 

- Pre-analytical variability 

 

The variability in measurements produced within individuals due to 

any incomplete preparatory actions required prior to taking a 

measurement, or due to how measurements have been obtained and 

handled. 

- Inter-observer variability The variability in measurements produced within individuals due to 

systematic differences observed between two or more observers 

assessing the same individual. 
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- Intra-observer variability The variability in measurements produced within individuals due to 

systematic differences observed within the same observer assessing 

the same individual multiple times. 

Between-individual biological 

variability 

The variability in the true value of different individuals. 

 

 

Studies of laboratory tests 

In 1989, Fraser and Harris provided a framework for the design and analysis of studies examining 

measurement error conducted in the clinical chemistry laboratory setting [26]. The Fraser-Harris 

framework was updated by Braga and Panteghini in 2016 [27]. The authors focus on four potential 

sources of variability when considering laboratory-based tests [26, 27]. These include:  

• Pre-analytical variability, which refers to systematic variability arising due to the 

preparation of the patients prior to the collection of a sample (fasting, starvation, exercise, 

altitude, incorrect posture during sample collection), as well as the sample collection and 

handling (e.g., prolonged tourniquet application, transportation time, centrifugation time, 

inappropriate storage conditions prior to analysis) [26, 27].  

• Analytical variability, which refers to the variability observed when the analysis of the same 

sample is replicated, and includes both random and systematic analytical variability. Random 

analytical variability refers to the inherent variability that every analytical technique has; 

whereas systematic analytical variability occurs when major changes to in the 

instrumentation or the methodology are made during the study. Systematic analytical 

variability may be caused by changes in calibration lots, reagent lots, or operators (as one 

may perform tasks consistently but differently compared to others) [26, 27].  



8 
 

• Within-individual biological variability, which refers to any random fluctuations around the 

homeostatic setting point of the same individual. The homeostatic setting point refers to the 

true value of the biomarker for each individual. These fluctuations may occur at different 

times of the day (e.g., changes in the sleep/wake cycle immediately affect growth hormone 

concentrations), different times during the month (e.g., the breast tumour biomarker CA-

153 has monthly cycles), or even at different seasons (e.g., blood volume increases with 

higher temperatures) [26, 27]. 

• Between-individual biological variability, which refers to the true differences across the 

homeostatic setting points of the individuals [26, 27]. Ideally, the variability between 

individuals should be high compared to any other aforementioned source of variability, as 

this indicates that the biomarker is reliable. Reliability is defined in this thesis as the ability 

of a biomarker to distinguish patients with a better test result (i.e., a better health outcome) 

from those with a worse test result (i.e., a worse health outcome), despite the presence of 

any measurement error [13, 15]. The higher the between-individual variability in relation to 

any other sources of variability (i.e., the measurement error), the higher the reliability of the 

biomarker. 

 

Studies of physiologic and imaging tests 

Studies of physiologic and imaging tests also aim to examine the true biological variability between 

individuals, as well as the inherent variability of the produced measurements [15]. Like laboratory-

based tests, both physiologic and imaging tests can incur measurement error at the pre-analytical, 

analytical, and within-patient biological level. However, an additional source of measurement error, 

which is often of interest, includes that due to inter or intra-observer variability. Inter-observer 

variability refers to the systematic differences observed between two or more observers, when 

assessing the same observation (e.g., radiologists rating the same X-ray), while intra-observer 
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variability refers to the systematic differences observed within the same observer, when assessing 

the same observation multiple times (e.g., the same radiologist giving a different rating when 

assessing the same X-ray twice) [15]. This source of error is usually a concern for imaging tests, 

where clinicians are required to read the produced images. In contrast, measurements of physiologic 

tests are produced directly from objective devices, with no clinical interpretation required.  

 

1.3.4. Issues in the field of reliability and measurement error of biomarkers 

Performing a meta-analysis of parameter estimates of reliability and measurement error  

Systematic reviews are often conducted by searching the medical literature to identify primary 

studies, so that summary evidence is provided for research purposes, guideline development, 

evidence-based patient care and policy-making [15, 28-30]. Meta-analyses may in turn be performed 

within systematic reviews, and involve using statistical methods to synthesize quantitative evidence 

from primary studies, so that an overall estimate is obtained based on a whole body of research 

[31]. Although established in other areas of medical research (e.g., prognostic or diagnostic research, 

effectiveness of new interventions), methods for performing a meta-analysis of the measurement 

error of biomarkers are not well-developed. 

 

Estimating the reliability and measurement error of count-based biomarkers  

Statistical methods for estimating potential sources of measurement error in primary studies have 

been proposed, and are described in detail in Chapter 2. These methods assume underlying 

continuum and normality of the produced measurements at each potential level of variability. 

However, the assumption of normality is often violated when biomarkers are expressed as counts 

(i.e., whole numbers) rather than values on a continuous scale. Yet, no methodology has been 

proposed for examining the reliability and measurement error of count-based biomarkers. 
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1.4. Aim and objectives of the thesis 

The broad aim of this thesis is to explore statistical issues around the evaluation of the reliability and 

measurement error of biomarkers, before biomarkers are used in medical research and practice. The 

overarching objectives of the thesis were:  

i) to propose statistical methods for the meta-analysis of parameter estimates expressing the 

reliability and measurement error of continuous biomarkers, reported across primary 

studies. 

ii) to propose statistical methods for the analysis of primary studies examining the reliability 

and measurement error of biomarkers expressed as counts rather than continuous 

measurements. 

 

1.5. Thesis outline 

This thesis broadly covers two areas, the meta-analysis of parameters of reliability and measurement 

error of continuous biomarkers, and the appropriate estimation of the reliability and measurement 

error of count-based biomarkers. In this thesis I have analysed case studies, reviewed and critiqued 

existing methods and developed new methods for the meta-analysis of parameters expressing the 

reliability and measurement error of continuous biomarkers, proposed and evaluated alternative 

methods for estimating the reliability and measurement error of count-based biomarkers in primary 

studies, and carried out simulation studies to examine how the reliability and measurement error 

changes across different simulated scenarios. 

 

Description of standard statistical methods for primary analysis and meta-analysis, with 

application to a primary study 
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Chapter 2 provides the background on the state-of-the-art in the design and statistical analysis of 

primary studies examining the reliability and measurement error of continuous biomarkers, and the 

background on general methods used for the meta-analysis of estimates reported in primary studies. 

Chapter 3 provides a detailed statistical analysis of a study examining the reliability and error of 

measurements of grip strength, produced from a digital dynamometer. For this purpose, data from 

patients with sarcopenia and chronic inflammatory disease were used as a case study. The aim of 

the chapter is to illustrate how standard methods proposed for estimating the reliability and 

measurement error of continuous biomarkers work, and to provide evidence of the reliability and 

measurement error of the Takei digital dynamometer, when used to evaluate grip strength. 

 

Methods for the meta-analysis of parameters of reliability and measurement error 

Chapter 4 is a methodological review of published systematic reviews reporting the reliability and 

measurement error of biomarkers evaluating the presence or progress of any pathological condition. 

The aim of the chapter is to appraise the review process used in the identified systematic reviews, 

and examine the current state of statistical methods used for the meta-analysis of parameters of 

reliability and measurement error. 

In Chapter 5, the limitations of the meta-analytic methods used for continuous biomarkers, 

identified in Chapter 4, are discussed, and new methods for the meta-analysis of estimates of the 

reliability and measurement error of continuous biomarkers are proposed. 

The methods proposed in Chapter 5 were in turn used in Chapter 6. A systematic review was carried 

out to identify primary studies examining the reliability and error of the grip strength 

measurements, produced for different from handheld dynamometers. A meta-analysis of the 

estimates of reliability and measurement error was then performed, using the methods presented in 

Chapter 5. The aim of the chapter is to illustrate how these meta-analytic methods are applied, and 
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to provide summary evidence of the error in the grip strength measurements based on a whole body 

of research. 

 

Methods for estimating the reliability and measurement error of count-based biomarkers 

Chapter 7 introduces alternative statistical methods for estimating reliability and measurement error 

when the measured response is expressed as a count, rather than in a continuous scale. The aim of 

the chapter is to present alternative methods that can be used for a different type of data, where 

the assumption of the underlying normality of the produced measurements is not valid. 

In Chapter 8, the performance of the methods presented in Chapter 7 were compared to the 

standard methods used for estimating the reliability and error of continuous measurements. For this 

purpose, data from patients with Sjogren’s syndrome who underwent labial salivary gland biopsy 

was used as a case study. The biomarker of interest was the focus score, calculated for each salivary 

gland observed in each biopsy.  

Chapter 9 uses simulation to investigate the impact of different numbers of biopsy glands on the 

reliability and measurement error of the focus score.  

 

Summary of findings 

Chapter 10 summarises the findings and concludes the thesis. The chapter also discusses the 

strengths and limitations of the thesis, and recommends further work.
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2. Background on primary studies examining the 
measurement error of biomarkers, and the meta-
analysis of estimates reported in primary studies 

 

2.1. Introduction 

Before biomarkers are used in clinical practice, it is essential that researchers and medical 

professionals are familiar with any sources of error that may affect the reproducibility of the 

produced measurements. Primary studies have been proposed for this purpose. Systematic reviews 

may in turn collect any primary studies published in the medical literature. Meta-analysis is in turn 

often used to combine the estimates reported within primary studies, so that summary quantitative 

evidence of the measurement error of biomarkers is produced. This chapter provides i) the 

background on the state-of-the-art in the design, statistical analysis, and reporting of primary studies 

examining the measurement error of biomarkers; and ii) the background on general methods used 

for the meta-analysis of estimates reported in primary studies. 

 

2.2. Design of primary studies examining the measurement error of biomarkers 

This section discusses the issues around the design of studies examining the measurement error of 

biomarkers. When designing such studies, the issues considered are similar for all three types of 

tests (laboratory, imaging, physiologic), with minor alterations depending on the features of the test 

being examined. 
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The Fraser-Harris framework 

Fraser and Harris provided a framework for the design of primary studies examining potential 

sources of error in the measurements of laboratory tests [26] (depicted in Figure 2.1). For laboratory 

tests, potential sources of measurement error include the within-individual biological and analytical 

variability in the measurements (introduced in Chapter 1). To assess the within-individual biological 

variability, multiple samples are taken from each individual at different time points, with the 

measurements produced from the analysis of the samples being compared to each other. The 

random analytical variability is in turn assessed by analysing the samples collected from each 

participant at the same time, in duplicate. This approach for assessing random analytical variability 

was introduced by Young et al [32], and has been advocated by researchers working extensively in 

the field of biological variability [17, 26, 27]. The main advantage of this approach is that any 

potential variability attributed to samples being analysed at different runs is eliminated. 

Furthermore, Fraser and Harris recommend that the analysis of the collected samples should be 

performed with a single instrument, a single set of calibrators, a single lot of reagents, and a single 

operator. This is to eliminate any potential systematic analytical variability arising between the 

duplicated measurements [26]. 



15 
 

Figure 2.1. Design of biological variability study with a total of nG participants and nI measurements 
produced from each participant. 
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Tests where duplicate measurements are not possible 

A similar study design has been adopted for primary studies examining the measurement error 

of physiologic or imaging tests, with the recruited individuals being assessed at multiple testing 

occasions. The measurements at two or more testing occasions may be taken either from the 

same clinician [33] or from different clinicians [34]. The measurement error is expected from 

any random variability in the measurements made within the individuals, at both the analytical 

and within-individual biological level. However, unlike laboratory-based tests, a formal 

assessment of the analytical variability is often not possible for physiologic tests (e.g., 

spirometry or blood pressure) and imaging tests (e.g., MRI or ultrasound), as the produced 

outcome cannot be assessed in duplicate. This means that, unlike laboratory tests, the amount 

of random variability attributed solely to the analytical imprecision of a physiologic or an 

imaging test cannot be quantified.  

 

Tests with additional systematic error introduced by subjective interpretation 

For some tests, an additional source of measurement error includes systematic variability 

between different observers (inter-observer) or within the same observer (intra-observer), 

when assessing the same observation multiple times. This source of error is more often of 

interest with imaging tests (e.g., two clinicians may rate the same image differently). In order 

to examine potential inter/intra-observer variability directly, the produced measurements are 

often assessed independently by multiple observers or twice by the same observer [35]. In the 

case of multiple observers assessing each measurement, observers may be deliberately chosen 

to represent both experienced and inexperienced observers [36].   
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2.2.1. Minimising pre-analytical variability prior to testing  

Pre-analytical variability (introduced in Chapter 1) occurs due to differences across two or 

more testing occasions, in how an individual has prepared prior to each testing occasion, or 

how the within-individual measurements have been obtained or handled. Measurements 

should be taken to retain pre-analytical variability at a minimum, by keeping the testing 

conditions consistent. Thus, preparatory actions are required prior to performing the 

measurements, so that each measurement is standardised as much as possible. Any such 

actions should be clearly specified in a strictly implemented testing protocol [16, 17, 26, 37]. 

These may include the preparation of the patients (adhere to instructions on diet, rest, 

clothing or medication, undertake a familiarisation session if learning effects are likely to be 

present), the testing environment (light conditions, appropriate temperature), the 

professionals assessing the patients (undertake appropriate training, provide clear instructions 

to the individuals), and the device/equipment being used (calibration, adjustment of settings) 

[17, 26, 37].  

Standardising the testing conditions is generally one of the most challenging parts of taking 

any measurement, is often underestimated, and may significantly affect the usefulness of 

medical interventions or tests [38, 39]. This source of variability may be of increased concern 

particularly with self-testing (which is becoming more and more common, particularly after the 

COVID-19 outbreak [40]), as the required pre-testing preparatory actions are likely to be 

performed in a less strict way compared to e.g., the laboratory setting. However, this source of 

variability is not a focus of the thesis, and is assumed to be minimised. 

 

2.2.2. Populations investigated 

There has been a long-standing debate on which patients should be recruited into laboratory-

based studies. Fraser and Harris originally recommended that only apparently healthy 
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individuals should be considered since the main interest is the biological sources of variability, 

rather than pathological [17, 26]. More recently however, Fraser stated that valid estimates for 

the different components of variability can also obtained from diseased individuals, given that 

the status of the disease remains consistent [41, 42]. Braga and Panteghini recommend against 

the recruitment of diseased individuals, as it is difficult to define disease stability a priori [27]. 

A different view is expressed by De Vet et al [15]. The authors state that the selected 

individuals should reflect the population that is of interest. If for example it is of interest to 

know the potential error of measurements obtained from patients with a particular disease, 

then there is no use testing healthy individuals. 

 

2.2.3. Time interval between measurements 

For laboratory-based studies, Fraser and Harris state that the sample collection should be 

performed over a reasonably short period of time, so that the underlying disease status of the 

individual remains consistent, and valid estimates for the different components of variability 

are obtained [17, 26]. Braga and Panteghini recommend that samples should be collected at 

regular and fixed time intervals, with the authors additionally stating that the ‘sample time 

interval and the study duration should be related to re-testing times used for the 

measurements of the specific analyte in clinical practice’ [27].  

De Vet et al state that there are no standard rules in choosing an appropriate time interval 

between two tests [15]. For diseases known to progress rapidly, the time interval between 

tests should be short, while diseases that are known to be stable may allow longer intervals to 

be used. The authors additionally state that there should be a good balance between the 

disease remaining stable, and the absence of any potential interferences (e.g., fatigue from the 

first measurement when physical activity is required from the individual).  
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2.2.4. Sample size 

There is limited guidance regarding the number of individuals and number of measurements 

from each individual required for designing a test variability study. Fraser and Harris [17, 26] 

state that there is no definite answer on how many individuals are required to conduct a 

laboratory-based variability study, as this decision is a compromise between a large number 

that would reduce uncertainty around the variability estimates, and a smaller number that will 

enable the samples to be handled appropriately and analysed under the right conditions. With 

respect to the number of samples, Braga and Panteghini [27] state that the higher the number 

collected from each individual, the more precise the estimate of the true value of the 

individual will be. The authors additionally provide a formula for evaluating the number of 

samples required from each individual, so that the produced mean value of multiple 

measurements lies within 𝐷% of the true value of the individual. The number of samples is 

derived from 

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =
1.962 (

𝜎𝐼
2 + 𝜎𝐴

2

μ2
)

𝐷2
, 

(2.1) 

where 𝜎𝐼 and 𝜎𝐴 are the standard deviations of measurements produced at the within-

individual biological and analytical levels, and μ is the grand mean of the measurements 

(parameters introduced in section 2.3.2.1). Figure 2.2 depicts how different pre-specified 

values of the aforementioned parameters affect the number of samples required for a 

produced mean of multiple within-individual measurement lying within 𝐷% of the true value 

of the individual, with a lower grand mean and larger variability estimates leading to a higher 

number of samples. 
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Figure 2.2. Impact of the grand mean, the analytical and within-individual biological standard 
deviations on the number of samples required for a mean of multiple within-individual 
measurements lying within 𝐷% of the true value of the individual. 

 

 

De Vet et al [15] suggest that 50 individuals are a sufficient for performing a variability study, 

and usually feasible to obtain. Giraudeau and Mary [43] provide a formula for estimating the 

number of individuals required, based on a number of measurements per individual, a pre-

specified estimate for the intra class correlation (parameter introduced in section 2.3.3.3), and 

a pre-specified width for the 95% confidence interval of the estimated intra class correlation. 

Using this formula, the sample size is calculated as  

𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 =
8 × 1.962(1 − 𝐼𝐶𝐶)2[1 + (𝑚 − 1)𝐼𝐶𝐶]2

𝑚(𝑚 − 1)𝑤2
, 

(2.2) 

where 𝑚 is the number of measurements per individual, 𝐼𝐶𝐶 is a pre-specified estimate for the 

intra class correlation, and 𝑤 is a pre-specified width for the 95% confidence interval of the ICC 

estimate. Figure 2.3 shows how different pre-specified values of 𝑚, 𝐼𝐶𝐶, and 𝑤 impact the 
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required number of individuals. As depicted in Figure 2.3, a higher value of 𝑚, 𝐼𝐶𝐶, and 𝑤 

appears to significantly reduce the required number of individuals. 

 

Figure 2.3. Impact of the number of within-individual measurements and the pre-specified ICC 
and 95% confidence interval on the number of individuals required.  

 

 

 

2.3. Statistical analysis of primary studies examining the reliability and 

measurement error of biomarkers 

This section presents the current state of statistical methods used in primary studies 

examining potential sources of variability in the measurements of biomarkers. Except for the 

Kappa statistic, which is used in situations where the produced measurements are categorical 

(binary or ordinal), all methods described in this chapter assume underlying continuum and 

normality of the measurements, at all potential levels of variability. No statistical methods 
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were identified for measurements expressed as counts (i.e., whole numbers) rather than 

continuous.  

If available, methods for constructing a 95% confidence interval for each parameter are also 

presented. Furthermore, if applicable, the chapter provides methods for estimating each 

parameter when the measurements are log-transformed prior to analysis, which is a common 

approach used when the normality assumption of the measurements is violated. 

 

2.3.1. Preparation of the data prior to analysis 

Prior to performing a statistical analysis, studies are often concerned with several data 

assumptions that are required for the use of standard statistical methods for estimating the 

potential sources of test variability. Such assumptions may include the absence of any 

significant outliers, the normality of the measurements at each potential level of variability, 

and the homoscedasticity across different individuals. 

 

Outliers 

In studies of laboratory tests, it is recommended that outliers are removed prior to the 

analysis, as even a single outlier may remarkably influence the estimation of the different 

components of variability [17, 27]. Braga and Panteghini provide clear guidance on how the 

detection of outliers should be carried out (see Figure 2.4) [27].  

The authors suggest the use of the Cochran’s test [44] to examine the presence of any outliers 

(i) in the measurements produced within individuals, and (ii) in the duplicate results of each 

measurement. Assuming that all individuals produce the same number of measurements, and 

that the measurements are normally distributed around the true value of the individual, this 

test examines whether a variance estimate from a single individual is significantly larger 



23 
 

compared to all other variance estimates produced from the remaining individuals. If 

significantly larger, it is recommended that all measurements produced from this individual 

should be excluded.  

The authors then recommend using the Dixon-Reed’s criterion [45] to assess whether the 

mean value of the measurements produced from each individual is an outlier. This test 

considers the difference between an extreme value and the next lowest (or highest) value, and 

rejects the extreme value if the difference exceeds one-third of the range of all values.  

 

An alternative view on handling outliers is expressed by De Vet et al [15]. The authors state 

that outliers should not be removed, as they do occur in real life, and may indicate difficulties 

when performing a measurement (e.g., clinicians reading out a measurement from an image) 

[15]. 
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Figure 2.4. Detection of outliers as described in Braga and Panteghini [27]. 
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Normality of the data 

For studies of laboratory tests, Fraser and Harris [17, 26] recommend the use of Shapiro-Wilk 

test [46] to examine both the distribution of the measurements produced within the 

individuals, and the distribution of the mean values obtained from each individual. More 

detailed guidance on how normality should be checked was subsequently provided by Braga 

and Panteghini (depicted in Figure 2.5) [27]. However, a formal assessment of normality at 

each different level may often not be reasonable (or even possible) due to limited numbers of 

observations (e.g., only two measurements taken from each individual). 

Normality is also desired when measurements are produced from physiologic or imaging tests 

(given that the outcome produced from reading an image is a score rather than e.g., a binary 

or ordinal response), with the log-transformation being frequently applied in case the 

measurements are skewed [16]. However, unlike studies of laboratory tests, no specific 

guidelines have been provided on how normality should be checked.
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Figure 2.5. Normality checking as described in Braga and Panteghini [27].  
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Homoscedasticity of the data 

In studies of non-laboratory tests, an additional assumption which is often of concern is that of 

homoscedasticity [16]. That is, the variability in the measurements produced within each individual 

should be the same across all individuals recruited in the study [16, 47]. When two measurements 

are taken from each individual, the presence of heteroscedasticity in the data is recommended to be 

examined through a Bland-Altman plot [16]. Bland-Altman plots are constructed by plotting the 

absolute difference between two measurements produced within each individual, against the 

corresponding mean of the measurements [47]. If heteroscedasticity appears present (see Figure 2.6 

for an example), it is recommended that data are log-transformed prior to analysis. In studies of 

laboratory tests, there is no guidance for checking this assumption [16, 47]. 

 

Figure 2.6. Two examples of Bland-Altman plots of the difference between two measurements 
produced from the same individual against the corresponding average value. 

 

i) Homoscedasticity assumption met. The within-individual variability does not change with 

higher average values of the test. 
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ii) Homoscedasticity assumption violated. The within-individual variability increases for 

higher average values of the test. 

 

 

2.3.2. General method used for estimating sources of variability in the measurements 

For all types of tests, it is recommended that the multiple sources of variability in the measurements 

are estimated through a nested analysis of variance (ANOVA) model. Given that the number of 

observations within individuals is the same for all individuals, this method is equivalent to fitting a 

linear regression random effects model. These models assume that the measurements are 

expressed in a continuous scale. The models may take a different form, depending on the type of 

test being examined. 

 

2.3.2.1. Studies of laboratory tests 

The two-way nested ANOVA is the established method used for the analysis of biological variability 

studies. The use of this method was originally proposed by Fraser and Harris [26]. Using this method, 

the variance at the analytical, within-individual, and between-individual biological level is estimated 

as shown in Table 2.1. When the number of observations (measurements and assessments per 
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measurement) are the same for each individual, this method is equivalent to fitting a linear 

regression model with random effects only. The model is expressed as  

𝑦𝑖𝑗𝑘 = μ + 𝐺𝑘 + 𝐼𝑗𝑘 + 𝐴𝑖𝑗𝑘, (2.3) 

where 𝑦𝑖𝑗𝑘  denotes the 𝑖𝑡ℎ assessment (𝑖 = 1,2) of the 𝑗𝑡ℎ measurement (𝑗 = 1,… , 𝑛𝐼) produced 

from the 𝑘𝑡ℎ individual (𝑘 = 1,… , 𝑛𝐺) , and μ is the regression intercept. 𝐺𝑘 ~ 𝑁(0, 𝜎𝐺) is the 

group-level random effects parameter for the true variability across the individuals, 𝐼𝑗𝑘 ~ 𝑁(0, 𝜎𝐼) is 

the individual-level random effects parameter for the within-individual biological variability, and 

𝐴𝑖𝑗𝑘 ~ 𝑁(0, 𝜎𝐴) is the random error term for the analytical variability, with all three parameters 

normally distributed with zero mean and standard deviation of 𝜎𝐺 , 𝜎𝐼 , and 𝜎𝐴, respectively. The four 

parameter estimates obtained from the above regression model are: 

• The grand mean of the produced measurements, which equals the regression intercept (μ). 

• The estimate of the standard deviation for the between-individual biological variability (𝜎𝐺). 

• The estimate of the standard deviation for the within-individual biological variability (𝜎𝐼). 

• The estimate of the standard deviation for the analytical variability (𝜎𝐴). 

When using a random effects linear regression model to estimate each component of variability, the 

use of restricted maximum likelihood (REML) is recommended, as this method yields less biased 

estimates compared to the standard maximum likelihood approach, particularly with small sample 

sizes [48]. 

 

Table 2.1. ANOVA-based calculations for estimating the components of variability in laboratory tests. 

Variance 
component 

Degrees of 
freedom 

Sum of squares Mean square Variance 
estimates 

Between 
individuals 

𝑛𝐺 − 1 
𝑆𝑆𝐺 = 𝑛𝐴𝑛𝐼∑(𝑦𝑘̅̅ ̅ − �̅�)

2

𝑛𝐺

𝑘=1

 
𝑀𝑆𝐺 =

𝑆𝑆𝐺
𝑛𝐺 − 1

 𝜎𝐺
2 =

𝑀𝑆𝐺 −𝑀𝑆𝐼
𝑛𝐼𝑛𝐴

 

Within 
individuals 

(𝑛𝐼 − 1)𝑛𝐺  
𝑆𝑆𝐼 = 𝑛𝐴∑∑(𝑦𝑗𝑘̅̅ ̅̅ − 𝑦𝑘̅̅ ̅)

2

𝑛𝐺

𝑘=1

𝑛𝐼

𝑗=1

 
𝑀𝑆𝐼 =

𝑆𝑆𝐼
(𝑛𝐼 − 1)𝑛𝐺

 𝜎𝐼
2 =

𝑀𝑆𝐼 −𝑀𝑆𝐴
𝑛𝐴
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Within 
assessments 

(𝑛𝐴 − 1)𝑛𝐺𝑛𝐼 

𝑆𝑆𝐴 =∑∑∑(𝑦𝑖𝑗𝑘 − 𝑦𝑗𝑘̅̅ ̅̅ )
2

𝑛𝐺

𝑘=1

𝑛𝐼

𝑗=1

𝑛𝐴

𝑖=1

 
𝑀𝑆𝐴 =

𝑆𝑆𝐴
(𝑛𝐴 − 1)𝑛𝐺𝑛𝐼

 
𝜎𝐴
2 = 𝑀𝑆𝐴 

TOTAL 𝑛𝐺𝑛𝐼𝑛𝐴 − 1 
∑∑∑(𝑦𝑖𝑗𝑘 − �̅�)

2

𝑛𝐺

𝑘=1

𝑛𝐼

𝑗=1

𝑛𝐴

𝑖=1

 
 𝜎𝐺

2 + 𝜎𝐼
2 + 𝜎𝐴

2 

1 �̅� =
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑛𝐺
𝑘=1

𝑛𝐼
𝑗=1

𝑛𝐴
𝑖=1

𝑛𝐴𝑛𝐼𝑛𝐺
,   2 𝑦𝑗𝑘̅̅ ̅̅ =

∑ 𝑦𝑖𝑗𝑘
𝑛𝐼
𝑖=1

𝑛𝐼
,   3 𝑦𝑘̅̅ ̅ =

∑ ∑ 𝑦𝑖𝑗𝑘
𝑛𝐼
𝑗=1

𝑛𝐴
𝑖=1

𝑛𝐴𝑛𝐼
 

 

 

2.3.2.2. Studies of non-laboratory tests 

Shrout and Fleiss provide guidance on the analysis of studies examining the variability of tests [49]. 

The authors present three different models for estimating the different sources of variability in the 

measurements, which should be used under different circumstances. Information on how each 

model is expressed and how each variability component is estimated, is presented in Table 2.2. 

 

One-way random effects model 

This model should be employed when potential differences between the measurements produced 

within individuals arise solely from random variability at the analytical and within-patient biological 

level. This is mostly encountered with physiologic tests, where measurements are produced from 

objective devices, and thus the effect of clinicians is expected to be negligible. The model is 

expressed as  

𝑦𝑖𝑗 = μ + 𝐺𝑗 + 𝑒𝑖𝑗 , (2.4) 

where 𝑦𝑖𝑗𝑘  denotes the 𝑖𝑡ℎ measurement (𝑖 = 1,… , 𝑛𝐼) produced from the 𝑗𝑡ℎ individual (𝑗 =

1, … , 𝑛𝐺) , and μ is the regression intercept. 𝐺𝑗  ~ 𝑁(0, 𝜎𝐺) is the group-level random effects 

parameter for the true variability across the individuals, and 𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝐼+𝐴) is a random error 

term for the remainder variability observed within the individuals. Both parameters are normally 
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distributed with zero mean and standard deviation of 𝜎𝐺  and 𝜎𝐼+𝐴, respectively. The three 

parameter estimates obtained from the above regression model are: 

• The grand mean of the produced measurements, which equals the regression intercept (μ). 

• The estimate of the standard deviation for the between-individual biological variability (𝜎𝐺). 

• The estimate of the standard deviation corresponding to the remainder variability observed 

within the individuals (𝜎𝐼+𝐴). This estimate combines within-individual biological and 

analytical variability, as in contrast to laboratory-based tests, a direct assessment of the 

analytical variability is not possible for non-laboratory tests. 

 

Two-way random effects model 

When systematic variability between different clinicians (inter-observer) or within the same clinician 

(intra-observer) performing the measurements is likely to occur and is of interest (which is nearly 

always the case), a two-way model should be the model of choice. This is mostly encountered with 

imaging tests, where a clinical interpretation of the produced images is often required for obtaining 

the measurements. This model assumes that the selected clinician(s) is a random sample of all 

possible clinicians possessing similar characteristics. Compared to the one-way model, this model is 

extended to 

𝑦𝑖𝑗 = μ + 𝐺𝑗 + 𝑂𝑖 + 𝑒𝑖𝑗 , (2.5) 

where μ, 𝐺𝑗 , and 𝑒𝑖𝑗  are the same as in equation 2.4, and the additional random effects parameter 

𝑂𝑖 ~ 𝑁(0, 𝜎𝑂) estimates the standard deviation corresponding to potential inter or intra-observer 

variability. The four parameter estimates obtained from the above regression model are: 

• The grand mean of the produced measurements, which equals the regression intercept (μ). 

• The estimate of the standard deviation for the between-individual biological variability (𝜎𝐺). 

• The estimate of the standard deviation for the between or within-observer variability (𝜎𝑂). 
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• The estimate of the standard deviation corresponding to the remainder variability observed 

within the individuals (𝜎𝐼+𝐴), which again is a composite of the within-individual biological 

and analytical variability. 

 

Two-way mixed effects model 

This model should only be used only when the consistency (i.e., agreement in ranking individuals) is 

of interest, rather than the absolute agreement between different observes (or within the same 

observer). An example includes assigning priority scores to patients on a waiting list for heart 

surgery. In this case, one would only be interested in whether two clinicians rank the patients in the 

same order, based on severity of disease. In contrast to the random effects model, the results 

produced from a mixed effects model only represent the clinician(s) selected in the study, and 

cannot be generalised across all clinicians with similar characteristics. Under a two-way mixed 

effects model, the parameter 𝑂𝑖 in equation 2.5 reduces to a fixed effect parameter. However, this 

model is rarely used for the analysis of test variability studies, as potential measurement error due 

to the absolute disagreement between or within clinicians is nearly always of interest. 
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Table 2.2. Methods for estimating the components of variability in non-laboratory tests. 

Model Notation Variance component Degrees of freedom Sum of squares Variance estimate 

One-way 
random 
effects 

𝑦𝑖𝑗 = μ + 𝐺𝑗 + 𝑒𝑖𝑗 , 

 
where 

 
𝐺𝑗 ~ 𝑁(0, 𝜎𝐺) 

𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝐼+𝐴) 

 

Between individuals 𝑛𝐺 − 1 
𝑆𝑆𝐺 = 𝑛𝐼∑(𝑦�̅� − �̅�)

2

𝑛𝐺

𝑗=1

 
𝜎𝐺
2 =

𝑀𝑆𝐺 −𝑀𝑆𝐼
𝑛𝐼

 

Within individuals (𝑛𝐼 − 1)𝑛𝐺  
𝑆𝑆𝑒 =∑∑(𝑦𝑖𝑗 − 𝑦�̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

 
𝜎𝐼+𝐴
2 = 𝑀𝑆𝐼 

Two-way 
random 
effects 

𝑦𝑖𝑗 = μ + 𝐺𝑗 + 𝑂𝑖 + 𝑒𝑖𝑗 , 

 
where 

 
𝐺𝑗 ~ 𝑁(0, 𝜎𝐺) 

𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝐼+𝐴) 

𝑂𝑖  ~ 𝑁(0, 𝜎𝑂) 
 

Between individuals 𝑛𝐺 − 1 
𝑆𝑆𝐺 = 𝑛𝐼∑(𝑦�̅� − �̅�)

2

𝑛𝐺

𝑗=1

 
𝜎𝐺
2 =

𝑀𝑆𝐺 −𝑀𝑆𝑒
𝑛𝐼

 

Within individuals (𝑛𝐼 − 1)𝑛𝐺  
𝑆𝑆𝐼 =∑∑(𝑦𝑖𝑗 − 𝑦�̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

 
𝜎𝑂
2 + 𝜎𝑒

2 = 𝑀𝑆𝐼  

- Between/within 
observers 

𝑛𝐼 − 1 
𝑆𝑆𝑂 = 𝑛𝐺∑(𝑦�̅� − �̅�)

2

𝑛𝐼

𝑖=1

 
𝜎𝑂
2 =

𝑀𝑆𝑂 −𝑀𝑆𝑒
𝑛𝐺

 

- Random error (𝑛𝐼 − 1)(𝑛𝐺 − 1) 
𝑆𝑆𝑒 =∑∑(𝑦𝑖𝑗 − 𝑦�̅� − 𝑦�̅� + �̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

 
𝜎𝑒
2 = 𝑀𝑆𝑒 

Two-way 
mixed 
effects 

𝑦𝑖𝑗 = μ + 𝐺𝑗 + 𝑂𝑖 + 𝑒𝑖𝑗 , 

 
where 

 
𝐺𝑗 ~ 𝑁(0, 𝜎𝐺) 

𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝐼+𝐴) 

  ∑𝑂𝑖

𝑛𝐼

𝑖=1

= 0 

 
 

Between individuals 𝑛𝐺 − 1 
𝑆𝑆𝐺 = 𝑛𝐼∑(𝑦�̅� − �̅�)

2

𝑛𝐺

𝑗=1

 
𝜎𝐺
2 =

𝑀𝑆𝐺 −𝑀𝑆𝑒
𝑛𝐼

 

Within individuals (𝑛𝐼 − 1)𝑛𝐺  
𝑆𝑆𝐼 =∑∑(𝑦𝑖𝑗 − 𝑦�̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

 
𝜎𝑂
2 + 𝜎𝑒

2 = 𝑀𝑆𝐼  

- Between/within 
observers 

𝑛𝐼 − 1 
𝑆𝑆𝑂 = 𝑛𝐺∑(𝑦�̅� − �̅�)

2

𝑛𝐼

𝑖=1

 𝜎𝑂
2 =

∑ 𝑂𝑖
2𝑛𝐼

𝑖=1

𝑛𝐼 − 1
 

- Random error (𝑛𝐼 − 1)(𝑛𝐺 − 1) 
𝑆𝑆𝑒 =∑∑(𝑦𝑖𝑗 − 𝑦�̅� − 𝑦�̅� + �̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

 
𝜎𝑒
2 = 𝑀𝑆𝑒 
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1 𝑀𝑆 is mean squares, estimated for each variance component as (Sum of squares) divided by (Degrees of freedom), 

2 𝑦�̅� =
∑ 𝑦𝑖𝑗
𝑛𝐺
𝑗=1

𝑛𝐺
,   3 𝑦�̅� =

∑ 𝑦𝑖𝑗
𝑛𝐼
𝑖=1

𝑛𝐼
,   4 �̅� =

∑ ∑ 𝑦𝑖𝑗
𝑛𝐺
𝑗=1

𝑛𝐼
𝑖=1

𝑛𝐼𝑛𝐺
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2.3.3. Statistical parameters reported in primary studies examining measurement error 

Several parameters of measurement error can in turn be derived from the estimates produced from 

the aforementioned models. Such parameters include the standard error of measurement, the 

smallest detectable change, the intra-class correlation, the coefficient of variation, the index of 

individuality, and the reference change values. Furthermore, additional parameters commonly 

reported in studies of non-laboratory tests include the limits of agreement, the Pearson correlation 

coefficient, and the Kappa coefficient. Details of all parameters reported in this section is provided in 

Table 2.3. If available, methods for constructing a 95% confidence interval were also presented for 

each parameter. Furthermore, this section provides alternative methods for calculating each 

parameter when the measurements require log-transformation. 

 

Table 2.3. Commonly reported parameters of reliability and measurement error. 

Parameter Formula 

Standard error of measurement 

using a two-way random effects model1  

𝑆𝐸𝑀 = √𝜎𝑖
2 + 𝜎𝑗

2, 

where 𝑖, 𝑗 denote two different levels of measurement error. 

Standard error of measurement 

using a one-way random effects 

or a two-way fixed effect model2   

𝑆𝐸𝑀 = 𝜎𝐼+𝐴, 

where 𝜎𝐼+𝐴 is the estimated standard deviation for the combined 

analytical and within-individual biological variability. 

Smallest detectable change1 𝑆𝐷𝐶 = √2 × 1.96 × 𝑆𝐸𝑀 

Intra class correlation1 
𝐼𝐶𝐶 =

𝜎𝐺
2

𝜎𝐺
2 + 𝑆𝐸𝑀2

, 

where 𝜎𝐺 is the estimated standard deviation for the between-

individual biological variability. 

Coefficient of variation1 
𝐶𝑉 =

𝑆𝐸𝑀

μ
, 

where μ is the grand mean of the measurements. 
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Index of individuality 
𝐼𝐼 =

√𝜎𝐴
2 + 𝜎𝐼

2

𝜎𝐺  
, 

where 𝜎𝐴, 𝜎𝐼 , 𝜎𝐺  is the estimated standard deviation for the 

analytical, within and between-individual biological variability. 

Reference change values 
𝑅𝐶𝑉 = √2 × 𝑍 ×

√𝜎𝐴
2 + 𝜎𝐼

2

μ
, 

where 𝑍 is a Z-score selected from the normal distribution. Z=1.96 

(=2.77) is used to assess whether a significant (highly significant) 

change in the health status of the patient has taken place. 

Limits of agreement1 𝐿𝑜𝐴 = �̅� ± 1.96 × 𝑆𝐷�̅� , 

where 𝑑̅ is the mean difference between two within-individual 

measurements, and 𝑆𝐷�̅�  is the corresponding standard deviation. 

Pearson correlation coefficient 
𝑟 =

𝐶𝑜𝑣(𝑦1, 𝑦2)

𝜎𝑦1𝜎𝑦2
, 

where 𝑦1, 𝑦2 are two measurements produced within the 

individuals at two different testing sessions, and 𝜎𝑦1 , 𝜎𝑦2  are the 

standard deviations of each session. 

Kappa coefficient1 𝐾 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

, 

where 𝑝𝑜 is the proportion of cases where inter/intra-observer 

agreement is achieved, and 𝑝𝑒 the proportion of cases where the 

agreement is expected by chance. 

1 parameter appropriate to use when inter/intra-observer variability between measurements is present. 

2 parameter equals the SEM based on two-way random effects when inter/intra-observer variability between 

measurements is absent. 
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2.3.3.1. The standard error of measurement (SEM) 

The standard error of measurement is equal to the standard deviation of multiple measurements 

produced within an individual, which reflects the spread of the produced measurements around the 

true score of the individual [14, 15]. The use of this parameter requires the following two 

assumptions to be met: (i) the measurements produced within individuals are sampled from a 

normal distribution, and (ii) there should be no evidence of heteroscedasticity in the data. Assuming 

normality of the measurements made within individuals and homoscedasticity across individuals, the 

standard error of measurement is the value up to which the absolute difference between a 

produced measurement and the true value of an individual is expected to lie with 68% probability 

[14]. This parameter is commonly reported in both laboratory and non-laboratory studies. For 

studies conducted in the laboratory setting, the standard error of measurement (termed as “the 

total error” by Fraser [17]) is calculated as 

𝑆𝐸𝑀 = √𝜎𝐼
2 + 𝜎𝐴

2 , 
(2.6) 

where 𝜎𝐼
2 and 𝜎𝐴

2 are the variance estimates for the analytical and within-individual biological 

components, respectively. This reflects the total error that is expected due to variability arising at 

both the within-individual biological and analytical levels.  

Similarly, for non-laboratory tests, the standard error of measurement is calculated as 

𝑆𝐸𝑀 = √𝜎𝑂
2 + 𝜎𝐼+𝐴

2 ,  
(2.7) 

where 𝜎𝑂
2 is the variance due to systematic differences between observers (or within the same 

observer), and 𝜎𝐼+𝐴
2  is the variance including both the analytical and within-individual biological 

variability. However, when systematic differences between or within-observers are either expected 

to be negligible, or not particularly of interest, the calculation reduces to   
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𝑆𝐸𝑀 = 𝜎𝐼+𝐴  (2.8) 

Standard error of measurement for averaged measurements 

It is known that measurements produced from specific tests (e.g., blood pressure) are substantially 

variable, either because of natural fluctuations, or because of the way the measurements are 

performed by the clinicians. When examining the reproducibility of such tests, it is common practice 

to take multiple within-individual measurements at each testing occasion and use the mean of these 

repeated measurements as a summary measure. This is based on the assumption that the average of 

multiple measurements performed within an individual is expected to be closer to the true value of 

the individual, compared to a single measurement [15]. Under this situation, the calculation of the 

standard error of measurement should adjust for the use of the mean as a summary measure. This is 

done by   

𝑆𝐸𝑀𝑘 =
𝑆𝐸𝑀

√𝑘
 , 

(2.9) 

where 𝑆𝐸𝑀 is estimated as described above, and 𝑘 is the number of measurements taken from each 

individual at each testing occasion [15]. Dividing by √𝑘 accounts for the fact that the calculation of 

the average is based on 𝑘 measurements. Each is accompanied by error, which would be 

incorporated 𝑘 times in the estimate of 𝑆𝐸𝑀 if √𝑘 was not present in equation 2.9.  

 

95% confidence intervals for the standard error of measurement 

When the standard error of measurement is estimated through equation 2.8, a 95% confidence 

interval is obtained as 

[√
𝑆𝐸𝑀2(𝑛𝐼 − 1)𝑛𝐺

𝜒(𝑛𝐼−1)𝑛𝐺,   0.975
2 , √

𝑆𝐸𝑀2(𝑛𝐼 − 1)𝑛𝐺

𝜒(𝑛𝐼−1)𝑛𝐺,   0.025
2  ], 

(2.10) 
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where 𝑛𝐺  is the number of recruited individuals, 𝑛𝐼 is the number of measurements taken from each 

individual, and  𝜒(𝑛𝐼−1)𝑛𝐺,   𝑎
2  is the (𝑎𝑡ℎ × 100) centile of the Chi-square distribution with 

(𝑛𝐼 − 1)𝑛𝐺  degrees of freedom [13]. 

When the standard error of measurement is expressed as a linear function of two independent 

variance estimates (as in equations 2.6 and 2.7), a confidence interval can be obtained using the 

methods proposed by Graybill and Wang [50]. If 𝛾 = 𝜎1
2 + 𝜎2

2, and 𝜎1
2, 𝜎2

2 are two mutually 

independent variance estimates with 

𝑞𝑖𝜎𝑖
2

𝐸[𝜎𝑖
2]
 ~ 𝜒𝑞𝑖

2 , 
(2.11) 

where 𝑖 = 1,2, 𝑞𝑖 is a known integer, and 𝜒𝑞𝑖
2  denotes the chi-square distribution with 𝑞𝑖 degrees of 

freedom, then a 95% confidence interval for √𝛾 can be obtained as 

 

 

[
 
 
 
√𝛾 −∑𝐺𝑖

2𝜎𝑖
2

2

𝑖=1

, √𝛾 +∑𝐻𝑖
2𝜎𝑖

2

2

𝑖=1

 

]
 
 
 

, 

 

(2.12) 

 

where 

𝐺𝑖
2 = 1−

1

𝐹0.025: 𝑞𝑖,∞
,   𝐻𝑖

2 =
1

𝐹0.975: 𝑞𝑖,∞
− 1 

 

(2.13) 

and 𝐹𝑎: 𝑞,𝑝 is the upper 𝑎 percentage point of the F distribution with 𝑞 and 𝑝 degrees of freedom. 

Finally, when averaged measurements are used as a summary measure, the lower and upper 

confidence bounds of 𝑆𝐸𝑀 should be divided by √𝑘 (as with the original estimate). 
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Calculation of the standard error of measurement for log-transformed data 

When the measurements are log-transformed, the calculation of the standard error of measurement 

using the methods described above becomes meaningless. As this parameter is expressed on the 

original measurement scale, there is no more a natural interpretation of the produced estimate, and 

no methods have been proposed for reverting the produced estimate to the original scale. 

 

2.3.3.2. The smallest detectable change (SDC) 

The smallest detectable change can in turn be calculated as 

𝑆𝐷𝐶 = √2 × 1.96 × 𝑆𝐸𝑀, (2.14)  

where 𝑆𝐸𝑀 is the standard error of measurement (calculated as described in section 2.3.3.1). The 

smallest detectable change reflects the quantity below which the absolute difference two 

measurements produced from the same individual is expected to lie with 95% probability due to 

measurement error, and not due to a true change in the performance of the individual [15, 51]. 

 

95% confidence intervals for the smallest detectable change 

Given that the smallest detectable change is directly related the standard error of measurement, 

confidence intervals for this parameter can be obtained as  

[√2 × 1.96 × 𝑆𝐸𝑀𝐿 , √2 × 1.96 × 𝑆𝐸𝑀𝑈], (2.15)  

where 𝑆𝐸𝑀𝐿 and 𝑆𝐸𝑀𝑈 denote the upper and lower confidence bounds of the standard error of 

measurement, respectively. 

 

Calculation of the smallest detectable change for log-normal data 
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Alike the standard error of measurement, no methods are available for calculating the smallest 

detectable change when measurements are log-transformed. 

 

2.3.3.3. The intra class correlation (ICC) 

The intra class correlation, also known as the reliability parameter, expresses how reliable the 

measurements produced from a specific test are. Reliability refers to the ability of a test to 

distinguish patients from each other despite the presence of measurement error [13, 15]. This 

parameter represents the proportion of the total variability in the measurements that is attributed 

to true differences between the patients. When potential variability between or within observers is 

expected to be negligible, or not particularly of interest, the parameter is calculated as 

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝑇𝑜𝑡𝑎𝑙
2 =

𝜎𝐺
2

𝜎𝐺
2 + 𝑆𝐸𝑀2

=
𝜎𝐺
2 

𝜎𝐺
2 + 𝜎𝐼+𝐴

2 , 
(2.16) 

where 𝜎𝐺
2 is the variance attributed to true differences between patients, and 𝜎𝐼+𝐴

2  is the variance 

including both the analytical and within-patient biological variability. If potential variability between 

or within observers is considered, the calculation is extended to 

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝑇𝑜𝑡𝑎𝑙
2 =

𝜎𝐺
2

𝜎𝐺
2 + 𝑆𝐸𝑀2

=
𝜎𝐺
2 

𝜎𝐺
2 + 𝜎𝑂

2 + 𝜎𝐼+𝐴
2 , 

(2.17) 

where 𝜎𝑂
2 is the variance attributed to true differences between observers (or within the same 

observer when rating the same individual multiple times). Guidelines for the interpretation of the 

intra class correlation have been provided by Cicchetti [52] and Koo and Li [53] (see Table 2.4), with 

values >0.90 accepted as indicative of excellent reliability.  

In addition to evaluating the test reliability, this parameter is commonly used in cluster randomised 

trials to express the proportion of the total variability that is attributable to systematic differences 

between clusters, with the term ‘clusters’ usually referring to the recruiting medical centres [54]. 
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Intra class correlation for averaged measurements 

When the mean of multiple within-individual measurements performed at each testing occasion is 

used as a summary measure, the calculation is further extended to  

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝑇𝑜𝑡𝑎𝑙
2 =

𝜎𝐺
2

𝜎𝐺
2 +

𝑆𝐸𝑀2

𝑘

, 
(2.18) 

where 𝑘 denotes the number of measurements taken from each individual at each testing occasion 

[15]. 

 

Table 2.4. Interpretation of the intra class correlation based on Cicchetti [52], and Koo and Li [53]. 

Cicchetti [52]  Koo and Li [53] 

ICC less than 0.40 poor ICC less than 0.50 poor 

ICC between 0.40 and 0.59 fair ICC between 0.50 and 0.74 moderate 

ICC between 0.60 and 0.74 good ICC between 0.75 and 0.90 good 

ICC higher than 0.75 excellent ICC higher than 0.90 excellent 

 

 

95% confidence intervals for the intra class correlation 

Shrout and Fleiss [49, 55] derived approximate confidence intervals for cases were the estimated 

intra class correlation additionally accounts for variance due to observers, while exact confidence 

intervals are available when the potential variance due to observers is not considered. The methods 

for calculating a lower and upper 95% confidence bound for each different form of the intra class 

correlation are presented in Table 2.5. The calculations are based on the F-distribution. 
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Table 2.5. Methods for calculating 95% confidence intervals for all different types of intra class correlations. 

Formula Lower 95% confidence bound Upper 95% confidence bound 

- ICC from one-way random effects (single measurement) 
 
 

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝐺
2 + 𝜎𝐼+𝐴

2  
 

 

𝐹𝐿 − 1

𝐹𝐿 + 𝑘 − 1
 

 
where 

 
 

𝐹𝐿 = 𝐹𝑜𝑏𝑠/𝐹0.975(𝑛 − 1, 𝑛 × (𝑘 − 1)),   𝐹𝑜𝑏𝑠 =
𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

𝐹𝑈 − 1

𝐹𝑈 + 𝑘 − 1
 

 
where 

 
 

𝐹𝐿 = 𝐹𝑜𝑏𝑠 × 𝐹0.975(𝑛 × (𝑘 − 1), 𝑛 − 1),   𝐹𝑜𝑏𝑠 =
𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

- ICC from one-way random effects (mean of multiple measurements) 

 

𝐼𝐶𝐶𝑘 =
𝜎𝐺
2 

𝜎𝐺
2 +

𝜎𝐼+𝐴
2

𝑘

 

 

1 −
1

𝐹𝐿
 

 
where 𝐹𝐿 is defined as above 

 

1 −
1

𝐹𝑈
 

 
where 𝐹𝐿 is defined as above 

 

- ICC from two-way mixed effects (single measurement) 
 
 

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝐺
2 + 𝜎𝐼+𝐴

2  
 

 

𝐹𝐿 − 1

𝐹𝐿 + 𝑘 − 1
 

 
where 

 
 

𝐹𝐿 = 𝐹𝑜𝑏𝑠/𝐹0.975(𝑛 − 1, (𝑛 − 1) × (𝑘 − 1)),   𝐹𝑜𝑏𝑠 =
𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

𝐹𝑈 − 1

𝐹𝑈 + 𝑘 − 1
 

 
where 

 
 

𝐹𝐿 = 𝐹𝑜𝑏𝑠 × 𝐹0.975( (𝑛 − 1) × (𝑘 − 1), 𝑛 − 1),   𝐹𝑜𝑏𝑠 =
𝑀𝑆𝐺

𝑀𝑆𝐸
 

 

- ICC from two-way mixed effects (mean of multiple measurements) 

 

𝐼𝐶𝐶𝑘 =
𝜎𝐺
2 

𝜎𝐺
2 +

𝜎𝐼+𝐴
2

𝑘

 

 

1 −
1

𝐹𝐿
 

 
where 𝐹𝐿 is defined as above 

 

1 −
1

𝐹𝑈
 

 
where 𝐹𝐿 is defined as above 

 

-  
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Formula Lower 95% confidence bound Upper 95% confidence bound 

- ICC from two-way random effects (single measurement) 

 
 
 
 
 
 

𝐼𝐶𝐶 =
𝜎𝐺
2 

𝜎𝐺
2 + 𝜎𝑂

2 + 𝜎𝐼+𝐴
2  

𝑛 × [𝑀𝑆𝐺 − 𝐹0.975(𝑛 − 1, 𝑣) × 𝑀𝑆𝐸]

𝐹0.975(𝑛 − 1, 𝑣) × [𝑘 × 𝑀𝑆𝑂 + (𝑘 × 𝑛 − 𝑘 − 𝑛) × 𝑀𝑆𝐸] + 𝑛 ×𝑀𝑆𝐺
 

 
where 

 
 

𝑣 =
(𝑎 × 𝑀𝑆𝑂 + 𝑏 ×𝑀𝑆𝐸)

2

(𝑎 × 𝑀𝑆𝑂)
2

𝑘 − 1
+

(𝑏 × 𝑀𝑆𝐸)
2

(𝑛 − 1) × (𝑘 − 1)

 

 
and 

 

𝑎 =
𝑘 × 𝐼𝐶�̂�

𝑛 × (1 − 𝐼𝐶�̂�)
, 𝑏 = 1 +

𝑘 × 𝐼𝐶�̂� × (𝑛 − 1)

𝑛 × (1 − 𝐼𝐶�̂�)
 

 
 

𝑛 × [𝐹0.975(𝑣, 𝑛 − 1) × 𝑀𝑆𝐺 −𝑀𝑆𝐸]

𝑘 × 𝑀𝑆𝑂 + (𝑘 × 𝑛 − 𝑘 − 𝑛) × 𝑀𝑆𝐸 + 𝑛 × 𝐹0.975(𝑣, 𝑛 − 1) × 𝑀𝑆𝐺
 

 
where 

 
 

𝑣 =
(𝑎 × 𝑀𝑆𝑂 + 𝑏 ×𝑀𝑆𝐸)

2

(𝑎 ×𝑀𝑆𝑂)
2

𝑘 − 1
+

(𝑏 × 𝑀𝑆𝐸)
2

(𝑛 − 1) × (𝑘 − 1)

 

 
and 

 

𝑎 =
𝑘 × 𝐼𝐶�̂�

𝑛 × (1 − 𝐼𝐶�̂�)
, 𝑏 = 1 +

𝑘 × 𝐼𝐶�̂� × (𝑛 − 1)

𝑛 × (1 − 𝐼𝐶�̂�)
 

 

- ICC from two-way random effects (mean of multiple measurements) 

 

𝐼𝐶𝐶𝑘 =
𝜎𝐺
2 

𝜎𝐺
2 +

𝜎𝑂
2 + 𝜎𝐼+𝐴

2

𝑘

 

 

𝑛 × [𝑀𝑆𝐺 − 𝐹0.975(𝑛 − 1, 𝑣) × 𝑀𝑆𝐸]

𝐹0.975(𝑛 − 1, 𝑣) × (𝑀𝑆𝑂 −𝑀𝑆𝐸) + 𝑛 × 𝑀𝑆𝐺
 

 
where 𝑣 is defined as above 

𝑛 × (𝐹0.975(𝑣, 𝑛 − 1) × 𝑀𝑆𝐺 −𝑀𝑆𝐸)

𝑀𝑆𝑂 −𝑀𝑆𝐸 + 𝑛 × 𝐹0.975(𝑣, 𝑛 − 1) × 𝑀𝑆𝐺
 

 
where 𝑣 is defined as above 
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Calculation of the intra class correlation for log-normal data 

In contrast to the standard error of measurement, the intra class correlation is a unit-free 

parameter, expressed as a ratio of variances. Thus, it can still be calculated and interpreted in a 

similar fashion when the estimation of the variance components are based on log-transformed 

measurements [56].  

 

2.3.3.4. The coefficient of variation (CV) 

The coefficient of variation (CV) is commonly reported in both laboratory and non-laboratory 

studies. This parameter allows the variability in the measurements produced within individuals (i.e., 

the measurement error) to be interpreted in relation to the grand mean of the measurements, with 

higher values indicating a higher variability in the measurements [16, 17]. In mathematical notation, 

this is expressed as 

𝐶𝑉 =  
𝑆𝐸𝑀

μ
,    (2.19) 

where 𝑆𝐸𝑀 is the standard error of measurement, and μ is the grand mean of the measurements. 

For multiple measurements produced within an individual it can then be stated that, assuming 

underlying normality, there is a 68% chance of the difference between a produced measurement 

and the true value of the individual lying within 𝐶𝑉% of the grand mean [16]. A value of ≤10% is 

commonly used as an indicator of acceptable within-individual variability [16, 57], while Aronhime et 

al [58] provided the following categorisation for the interpretation of the coefficient of variation: 

excellent reproducibility when CV≤10%; good reproducibility when CV between 10% and 20%; 

acceptable reproducibility when CV between 20% and 30%; poor reproducibility when CV>30%. 
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95% confidence intervals for the coefficient of variation 

McKay proposed a method for obtaining an exact confidence interval for the coefficient of variation 

[59]. Under this method, the lower and upper 95% confidence bounds are calculated by solving the 

following equations for 𝐶𝑉𝐿 and 𝐶𝑉𝑈 

[0.025 = 𝐹𝑁𝐶𝑇 (𝑁 − 1,
√𝑁

𝐶𝑉𝐿
)(
√𝑁

𝐶𝑉
) ,   0.975 = 𝐹𝑁𝐶𝑇 (𝑁 − 1,

𝑁

𝐶𝑉𝑈
) (
√𝑁

𝐶𝑉
)], 

(2.20) 

where 𝑁 is the total number of observations, and 𝐹𝑁𝐶𝑇(𝑝, 𝑞) represents a non-central 𝑇 distribution 

with non-centrality parameter 𝑞 and 𝑝 degrees of freedom. 

 

Calculation of the coefficient of variation for log-normal data 

Like the intra class correlation, the coefficient of variation is a unit-free parameter. However, this 

parameter has a meaningful interpretation only when the mean is derived from data-points that are 

higher than or equal to zero. Thus, when the log-transformation is applied, the calculation based on 

equation 2.19 is no more applicable, as negative values may arise in the data. Bland and Altman 

proposed a method for calculating the coefficient of variation when the data are log-normally 

distributed [60]. Under Bland and Altman, the coefficient of variation is calculated as 

𝐶𝑉 = 𝑒𝑆𝐸𝑀
𝑙𝑜𝑔
− 1,  (2.21) 

where 𝑆𝐸𝑀𝑙𝑜𝑔 is the standard error of measurement estimated on the logarithmic scale (after the 

log-transformation is applied), and 𝑒𝑆𝐸𝑀
𝑙𝑜𝑔

 is the anti-log. An alternative approach, which is more 

frequently used in the laboratory setting, is provided by Cole [61]. Using this method, the exact 

relationship between 𝐶𝑉 and 𝑆𝐸𝑀𝑙𝑜𝑔 is given by 
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𝐶𝑉 = √𝑒(𝑆𝐸𝑀
𝑙𝑜𝑔)2 − 1  (2.22) 

The two methods are expected to produce very similar estimates, particularly for small values of 

𝑆𝐸𝑀𝑙𝑜𝑔.  

 

2.3.3.5. The index of individuality (II) 

The Index of individuality is a parameter used in studies of laboratory tests. It is calculated as the 

ratio of the variability at the random analytical and within-individual biological level to the true 

variability between the individuals, with lower values indicating a higher between-individual 

variability in relation to the measurement error [17, 27, 62]. In mathematical notation, the 

parameter is expressed as  

𝐼𝐼 =
√𝜎𝐴

2 + 𝜎𝐼
2

𝜎𝐺  
, 

(2.23) 

where 𝜎𝐴, 𝜎𝐼, 𝜎𝐺  are the estimated standard deviations for the random analytical, within-individual 

biological, and between-individual biological components of variability, respectively. Although 

recommended against, the calculation is often simplified to  𝐼𝐼 =
𝜎𝐼

𝜎𝐺 
 , under the assumption that 

𝜎𝐴 ≪ 𝜎𝐼  [17, 63]. Harris proposed the use of the index of individuality for evaluating the utility of 

specifying population-based reference intervals for making decisions on whether a change in the 

health status of the individual has occurred [62]. High index values (≥1.4) indicate that the 

measurements produced within individuals can be compared usefully with a reference interval, as 

the measurements will occupy most of the interval, or even fall outside the interval if a true change 

occurs. Iron is an example of a analyte known to have a high index of individuality [17]. For low index 

values (≤0.6) however, the usefulness of a reference interval for interpreting test results is limited, 

as the range of the within-individual measurements will only cover a small part of the interval. 
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Common analytes with a low index of individuality include serum alanine aminotransferase, creatine 

kinase, magnesium, uric acid, and serum creatinine [17]. 

 

95% confidence intervals for the index of individuality 

No methods have been proposed for calculating a confidence interval for the index of individuality. 

 

Calculation of the index of individuality for log-normal data 

The index of individuality is a unit-free parameter, expressed as a ratio of variances. Thus, it can still 

be calculated and interpreted in a similar fashion when the estimation of the variance components 

are based on log-transformed measurements. 

 

2.3.3.6. The reference change value (RCV) 

For biomarkers with a low index of individuality (≤0.6), Harris and Yasaka proposed the use of the 

reference change value for evaluating changes in the health status of an individual [64]. This 

parameter may be used to calculate the minimal difference between two successive measurements 

of an individual that needs to be exceeded, in order to state that a true change in the health status 

has taken place. The reference change value is calculated as 

𝑅𝐶𝑉 = √2 × 𝑍 × 𝐶𝑉𝐼+𝐴 , (2.24) 

where 𝑍 represents a Z-score selected from the normal distribution, 𝐶𝑉𝐼+𝐴 =
√𝜎𝐴

2+𝜎𝐼
2

μ
, √𝜎𝐴

2 + 𝜎𝐼
2 is 

the total within-individual error, and μ is the grand mean of the measurements. Fraser suggests 

using 1.96 and 2.58 as the Z-scores for a significant and a highly significant change, respectively. If 

for example the first PSA (prostate-specific antigen) measurement of an individual is 7.3μg/L, and 
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the reference change value based on Z=1.96 is estimated to be 51%, then repeated measurements 

above or below 7.3 × (51/100) = 3.7μg/L are interpreted as a significant change. This parameter is 

akin to the smallest detectable change but with the measurement error expressed in relation to the 

grand mean of the measurements. 

 

95% confidence intervals for the reference change value 

When desired, confidence intervals for the reference change value can be constructed using 

[√2 × 𝑍 × 𝐶𝑉𝐼+𝐴
𝐿 , √2 × 𝑍 × 𝐶𝑉𝐼+𝐴

𝑈  ], (2.25) 

where 𝐶𝑉𝐼+𝐴
𝐿 , 𝐶𝑉𝐼+𝐴

𝑈  are the lower and upper confidence bounds of 𝐶𝑉𝐼+𝐴, which can be obtained as 

described under 2.3.3.4. 

 

Calculation of the reference change value for log-normal data 

Fokkema et al proposed methods for obtaining an asymmetrical interval for the RCV [65], with the 

lower and upper bounds calculated as 

[𝑅𝐶𝑉𝐿=(−√2 × 𝑍 × 𝜏 − 1) × 100, 𝑅𝐶𝑉𝑈 = (√2 × 𝑍 × 𝜏 − 1) × 100], (2.26) 

where 𝜏 = √(log(𝐶𝑉𝐼+𝐴
2 + 1), and 𝑅𝐶𝑉𝐿 and 𝑅𝐶𝑉𝑈 represent the lower and upper bound, 

respectively. In order to state that a true change has taken place, the ratio of two consecutive 

measurements produced from the same individual must fall outside this interval. 
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2.3.3.7. The limits of agreement (LoA) 

An alternative non-regression based approach for measuring the variability between two 

measurements produced within the individuals includes the limits of agreement, proposed by Bland 

and Altman [15, 16, 47]. This method is most commonly encountered in non-laboratory studies, and 

accounts for both potential random and systematic variability between two measurements 

produced within each individual. The limits of agreement are calculated as the interval of 1.96 times 

the standard deviation of the differences between two measurements produced from the same 

individual, either side of the mean difference [15, 47]. In mathematical notation this is expressed as 

𝐿𝑜𝐴 = �̅� ± 1.96 × 𝑆𝐷�̅� , (2.27)   

where �̅� = ∑
𝑑𝑖

𝑛
𝑛
𝑖=1  represents the systematic differences between two repeated measurements 

produced within the individuals, 𝑦𝑖1 and 𝑦𝑖2, 𝑑𝑖  indicates the difference between the two 

measurements (𝑑𝑖 = 𝑦𝑖1 − 𝑦𝑖2), and 𝑆𝐷�̅� = √∑
(𝑑𝑖−�̅�)2

𝑛−1
𝑛
𝑖=1  represents the random variability 

occurring between the measurements. It can then be stated with 95% confidence that differences 

between two within-individual measurements falling within the produced interval are only due to 

measurement error, and not due to a true change in the performance of the individual [15, 47]. This 

method requires the following two assumptions to be met: (i) the differences between the two 

measurements produced within-individuals should be normally distributed, and (ii) there should be 

no evidence of heteroscedasticity in the data. In contrast to any other method described so far, this 

method can only be used when a pair of measurements is available from each individual. 

 

95% confidence intervals for the limits of agreement 
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Bland and Altman recommend that the produced interval is presented along with the lower 95% 

confidence bound of the lower limit of agreement, and the upper 95% confidence bound of the 

upper limit of agreement [47]. These were calculated as  

95%𝐶𝐼 − 𝐿𝑜𝐴𝑈/𝐿 = (�̅� ± 1.96 × 𝑆𝐷�̅�) ± 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025)√
3 × 𝑆𝐷�̅�

2

𝑛𝑝𝑎𝑖𝑟𝑠
, 

(2.28)  

where 𝑛𝑝𝑎𝑖𝑟𝑠 is the number of available pairs of measurements, and 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025) is the 

critical value of the Student's t distribution with 𝑛𝑝𝑎𝑖𝑟𝑠 − 1 degrees of freedom and 2.5% significance 

level.  

 

Calculation of the limits of agreement for log-normal data 

Euser et al proposed methods for calculating the limits of agreement when the measurements are 

log-transformed [56]. In this case, the limits of agreement are expressed as a function of the mean of 

a randomly selected pair of measurements produced from the same patient. If 𝑌1 and 𝑌2 are two 

measurements produced from the same individual, then the difference between the two 

measurements (𝑌1 − 𝑌2) lies within  

𝐿𝑜𝐴 = ±
2�̅�(10𝑎 − 1)

10𝑎 + 1
, 

(2.29)   

where �̅� =
𝑌1+𝑌2

2
, and 𝑎 = 1.96 × 𝑆𝐷�̅�. 

 

2.3.3.8. The Pearson correlation coefficient (r) 

The Pearson correlation coefficient is often reported in studies of physiologic tests [15, 66]. It is 

calculated as 
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𝑟 =
𝐶𝑜𝑣(𝑦1, 𝑦2)

𝜎𝑦1𝜎𝑦2
=

∑ (𝑦𝑖1 − 𝑦1̅̅ ̅)(𝑦𝑖2 − 𝑦2̅̅ ̅)
𝑛
𝑖=1

√∑ (𝑦𝑖1 − 𝑦1̅̅ ̅)
2𝑛

𝑖=1 ∑ (𝑦𝑖2 − 𝑦2̅̅ ̅)
2𝑛

𝑖=1

, 
(2.30)   

where (𝑦𝑖1, 𝑦𝑖2) is a pair of measurements produced from the 𝑖𝑡ℎ patient (𝑖 = 1,… , 𝑛), 𝑦1̅̅ ̅ and 𝑦2̅̅ ̅ 

are the estimated mean values for 𝑦1 and 𝑦2, 𝜎𝑦1 and 𝜎𝑦2 are the corresponding standard 

deviations, and 𝐶𝑜𝑣(𝑦1, 𝑦2) is the covariance.  

This parameter is used for assessing the reliability of the produced measurements, and can be 

interpreted in a similar fashion to the intra class correlation coefficient given that potential 

variability arising from systematic differences between 𝑦1 and 𝑦2, is absent. If not absent, this 

parameter will provide an inadequate estimate of reliability. The use of the Pearson correlation 

coefficient additionally requires the following assumptions to be met: (i) the measurements 

produced at the initial and repeated testing sessions should both be normally distributed, (ii) there is 

a linear relationship between the measurements produced at each session (iii) no extreme outliers 

are observed. Similar to the limits of agreement, this parameter can only be used when a pair of 

measurements is available from each individual. 

 

95% confidence intervals for the Pearson correlation coefficient 

The most popular method used for constructing a confidence interval for the Pearson correlation 

coefficient is that based on the Z-transformation, which was originally proposed by Fisher in 1921 

[67]. The estimate produced from equation 2.30 is transformed to a Z-statistic using  

𝑍 = 0.5 ln (
1+ 𝑟

1 − 𝑟
)  (2.31) 

Under this transformation, the sampling distribution of the Pearson correlation coefficient 

approximates normality. Based on this assumption, a 95% confidence interval for the Z-statistic can 

be constructed as 
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𝑍𝑈/𝐿 = 𝑍 ± 1.96√
1

(𝑛 − 3)
, 

(2.32)  

where 𝑍𝑈/𝐿  is the upper/lower 95% confidence bound for the Fisher’s Z statistic, and √
1

(𝑛−3)
 is the 

corresponding standard error. The produced estimate and 95% confidence intervals are then 

reverted to the 𝑟 metric using  

𝑟 =
𝑒2𝑍𝑟 − 1

𝑒2𝑍𝑟 + 1
  (2.33) 

Calculation of the Pearson correlation coefficient for log-normal data 

When the log-transformation is applied, the calculation based on equation 2.30 is still valid, given 

that the aforementioned requirements for using the Pearson correlation coefficient as a reliability 

parameter are still met. However, when skewness in the measurements is observed, an alternative 

approach to log-transforming the measurements, which is recommended by several authors [68, 

69], is the use of the Spearman correlation coefficient. This statistic is considered as the non-

parametric version of the Pearson correlation coefficient, and the calculation is based on the ranks 

of the measurements produced at each testing session (rather than the actual measurements). If 

(𝑦𝑖1, 𝑦𝑖2) is a pair of measurements produced from the 𝑖𝑡ℎ patient (𝑖 = 1,… , 𝑛), the Spearman 

correlation is calculated as  

𝜌 = 1 −
6 × ∑ (𝑟𝑎𝑛𝑘[𝑦𝑖1] − 𝑟𝑎𝑛𝑘[𝑦𝑖2])

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
, 

(2.34)  

where 𝑟𝑎𝑛𝑘[𝑦𝑖1] and 𝑟𝑎𝑛𝑘[𝑦𝑖2] are the ranks of 𝑦𝑖1 and 𝑦𝑖2, respectively. 

 

2.3.3.9. The Kappa coefficient 

The Kappa coefficient, which was first introduced by Jacob Cohen in 1960 [70], is a statistical 

parameter used for evaluating variability between multiple observers (inter-observer variability) or 

https://en.wikipedia.org/wiki/Jacob_Cohen_(statistician)
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within the same observer (intra-observer variability), when assessing the same individual multiple 

times [15]. This parameter is mostly reported in studies of imaging tests. In contrast to all the 

previous methods described so far, where the produced response is measured on a continuous 

scale, the use of this parameter requires the data to be binary (e.g., condition absent/present) or 

ordinal (e.g., condition absent/mild/moderate/severe). The advantage of the Kappa coefficient over 

the standard way of expressing agreement as percentage is the ability to account for any agreement 

which is expected by chance. Guidelines for the interpretation of the Kappa coefficient (presented in 

Table 2.6) have been provided by Landis and Koch [71] and Fleiss [72]. 

 

Table 2.6. Interpretation of the Kappa value based on Landis and Koch [71], and Fleiss [72]. 

Landis and Koch [71]  Fleiss [72] 

Kappa between 0 and 0.20 slight  

Kappa less than 0.40 

 

poor Kappa between 0.21 and 0.40 fair 

Kappa between 0.41 and 0.60 moderate  

Kappa between 0.40 and 0.75 

 

fair to good Kappa between 0.61 and 0.80 substantial 

 

Kappa between 0.81 and 1 

 

excellent                 

 

Kappa higher than 0.75 

 

excellent                        

 

 

Kappa coefficient for binary data 

The Kappa coefficient is calculated as  
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 κ =
𝑝𝑜− 𝑝𝑒

1 − 𝑝𝑒
, (2.35) 

where 𝑝𝑜 is the proportion of cases where agreement between two observers (or within the same 

observer) is achieved, and 𝑝𝑒 the proportion of cases where the agreement is expected by chance 

[15]. These are calculated as 

𝑝𝑜 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
, 

(2.36) 

and  

𝑝𝑒 =
(𝑎 + 𝑏) × (𝑎 + 𝑐) × (𝑐 + 𝑑) × (𝑏 + 𝑑)

(𝑎 + 𝑏 + 𝑐 + 𝑑)4
, 

(2.37) 

where 𝑎, 𝑏, 𝑐, 𝑑 are the values within Table 2.7.  

 

 Table 2.7. Example of two observers assessing presence or absent of a condition. 

First 

observer 

Second observer 

Condition present Condition absent Total 

Condition present 𝑎 𝑏 𝑎 + 𝑏 

Condition absent 𝑐 𝑑 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑁 = 𝑎 + 𝑏 + 𝑐 + 𝑑 

 

 

Kappa coefficient for ordinal data 

An extension of this method, called the weighted Kappa, can be employed when the produced 

response is measured on an ordinal scale [15, 73]. The rationale of weighted Kappa is that a 

misclassification between two adjacent categories is of less concern compared to categories that are 
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more distant. Thus, the latter should be penalized more heavily. The weighted Kappa is again 

estimated using equation 2.35, but this time the calculation of 𝑝𝑜 and 𝑝𝑒 are extended to 

𝑝𝑜 =∑∑𝑤𝑖𝑗𝑝𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

, 
(2.38) 

and  

𝑝𝑒 =∑∑𝑤𝑖𝑗𝑝𝑖𝑝𝑗

𝑛

𝑗=1

𝑛

𝑖=1

, 
(2.39) 

where 𝑝𝑖𝑗 is the proportion of individuals assigned to the 𝑖𝑡ℎ category by the first observer and the 

𝑗𝑡ℎ category by the second observer, 𝑝𝑖 = ∑ 𝑝𝑖𝑗1≤ 𝑗 ≤ 𝑛  is the proportion of individuals assigned to 

the 𝑖𝑡ℎ category by the first observer, and 𝑝𝑗 = ∑ 𝑝𝑖𝑗1≤ 𝑖 ≤ 𝑛  is the proportion of individuals assigned 

to the 𝑗𝑡ℎ category by the second observer. Using the method proposed by Cicchetti [15, 73], a 

weight to the (𝑖, 𝑗) cell of the 𝑛 × 𝑛 table can be assigned as follows  

𝑤𝑖𝑗 = 1 −
|𝑖−𝑗|

𝑛
   (2.40) 

95% confidence intervals for the Kappa coefficient 

A confidence interval using the normal approximation can then be obtained as 

 

 κ ± 1.96 × 𝑆𝐸κ,   (2.41) 

where 𝑆𝐸𝐾   is the standard error of the Kappa coefficient. For binary outcomes, the standard error is 

calculated as 

𝑆𝐸κ = √
𝑝𝑜(𝑝𝑜  −  𝑝𝑒)

𝑛(1 − 𝑝𝑒)
2   

(2.42) 

For the weighted Kappa, the calculation is extended to 
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𝑆𝐸κ𝑊 =

1

(1−𝑝𝑒)√𝑁
√∑ ∑ 𝑝𝑖𝑝𝑗(𝑤𝑖𝑗 − ∑ 𝑤𝑖𝑗𝑝𝑖

𝑛
𝑖=1 −∑ 𝑤𝑖𝑗𝑝𝑗

𝑛
𝑗=1 )2 − 𝑝𝑒

2𝑛
𝑗=1

𝑛
𝑖=1    

(2.43) 

 

2.3.4. Additional methods for constructing confidence intervals  

The use of confidence intervals has been recommended by many researchers of the field, as it 

quantifies the uncertainly around a parameter estimate [26, 47, 74]. Methods available for 

constructing a confidence interval for each parameter were presented in section 2.3.3. For some 

parameters however, the construction of confidence intervals involves solving complex equations, 

while for others, methods for constructing a confidence interval may perform poorly under specific 

scenarios, or even not exist. Two alternative methods for obtaining confidence intervals include the 

multivariate delta and bootstrap methods. Both methods are simple to be implemented given the 

modern computing power, and available in most statistical software packages. 

 

2.3.4.1. The multivariate delta method 

The multivariate delta method is a statistical technique for deriving a standard error for a function of 

parameters, whose estimators follow an asymptotically normal distribution. The method was first 

described by Doob in 1935 [75]. Let 𝜃 = (𝜃0, 𝜃1) be a random vector of two statistical parameters 

with corresponding variances 𝜎𝜃0
2  and 𝜎𝜃1

2 , and 𝜃 = (𝜃0̂, 𝜃1̂) be an unbiased estimate of each 

element of 𝜃. If 

√𝑛(𝜃 − 𝜃) ~ 𝑁(0,𝜎𝜃
2) (2.44) 

as the sample size 𝑛 increases, then for any given function 𝑔(𝜃) = 𝑔(𝜃0, 𝜃1) with continuous first 

partial derivatives, it follows that 
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√𝑛[𝑔(𝜃) − 𝑔(𝜃)] ~ 𝑁(0, 𝑉𝑔) (2.45) 

where 𝑉𝑔 =
𝑔(𝜃)

𝜕𝜃0
× 𝑉𝜃 ×

𝑔(𝜃)

𝜕𝜃1
, and 𝑉𝜃 = (

𝜎𝜃0
2 𝜎𝜃0𝜃1

𝜎𝜃0𝜃1 𝜎𝜃1
2
). A 95% confidence interval is then 

constructed as 

𝑔(𝜃)± 1.96 ×√𝑉𝑔 
(2.46) 

, where √𝑉𝑔 is the delta method-produced standard error. Similarly, this method can also be applied 

for deriving the standard error for a function of three or more parameters (e.g., ICC produced from a 

two-way random effects model). With respect to the parameters presented in section 2.3.3, Curto 

and Pinto [76] used this method to derive a standard error for the coefficient of variation (𝑆𝐸𝐶�̂� =

√(
𝐶�̂�4 + 

𝐶�̂�2

2
)

𝑛
). Another application of this method includes the derivation of a standard error for the 

Pearson correlation coefficient (𝑆𝐸�̂� =
(1−�̂�2)2

𝑛−1
)  [77].  

 

2.3.4.2. The bootstrap technique 

The concept of bootstrap was introduced by Efron in 1979 [78]. Under this method, multiple random 

samples of the same size as the original sample, are repeatedly drawn with replacement from the 

data, and in turn analysed in order to obtain a sampling distribution for the statistical parameter(s) 

of interest. When the produced distribution is used for constructing confidence intervals, at least 

1000 bootstrap samples are required [79]. Several approaches can then be used for constructing a 

bootstrap-based confidence interval [78, 80]. These include the normal approximation, the 

percentile, and the bias-corrected and accelerated methods. 
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Confidence intervals using a normal approximation 

When using this approach, a 95% confidence interval is obtained as 

𝜃 ± 1.96 × 𝜎�̂�, (2.47) 

where 𝜎�̂� denotes the standard deviation of the produced bootstrap estimates. Several authors 

recommend against constructing normally approximated confidence intervals, as this approach 

assumes that there is no bias in the produced bootstrap estimates (i.e. the median of the obtained 

sampling distribution equals the original sample estimate), an assumption which is often violated, 

and only makes use of 𝜎�̂� without exploiting the sampling distribution of the bootstrap estimates 

[80]. 

 

Percentile confidence intervals 

Under this approach, the lower and upper 95% confidence bounds are equal to the 2.5% and 97.5% 

percentiles of the obtained sampling distribution, respectively. Alike the normal approximation, this 

approach assumes that the bootstrap estimates are unbiased.  

 

Bias-corrected confidence intervals 

As the name implies, the bias-corrected percentile approach is recommended when bias is present 

(i.e., the original sample estimate does not lie at the 50th percentile of the sampling distribution) [79, 

80]. Under this approach, a bias-correcting constant is calculated as  



60 
 

𝑍0 = 𝛷
−1 (

∑ N(�̂�𝑖≤𝜃)1≤ 𝑖 ≤ 𝑛𝐵 

𝑛𝐵
), 

(2.48) 

where 𝛷 denotes the cumulative distribution of the standard normal function, 𝜃𝑖  denotes the 

estimate obtained from the 𝑖𝑡ℎ bootstrap sample, 𝜃 denotes the estimate of the original sample, 𝑛𝐵 

denotes the total number of bootstrap samples, and N(𝜃𝑖 ≤ 𝜃) is a binary indicator of whether the 

𝑖𝑡ℎ bootstrap estimate was higher than the original sample estimate (N(𝜃𝑖 ≤ 𝜃) = 0) or not 

(N(𝜃𝑖 ≤ 𝜃) = 1). The lower and upper 95% confidence bounds are then equal to the [𝛷(−1.96 +

2𝑍0) × 100]  and [𝛷(1.96 + 2𝑍0) × 100] percentiles of the obtained sampling distribution, 

respectively. 

 

Bias-corrected and accelerated confidence intervals 

In addition to the correction of any potential bias, this approach accounts for any potential skewness 

in the distribution of bootstrap estimates [80]. The construction of the 95% confidence intervals is 

based on the assumption that a monotonic increasing function 𝑓 exists, such that  

[𝑓(𝜃) − 𝑓(𝜃)] ~ 𝑁(−𝑍0 × 𝜏𝑓, 𝜏𝑓
2) (2.49) 

, where 𝑍0 is the standard normal deviate (defined as above), 𝜏𝑓 =  1 + 𝛼 × 𝑓(𝜃) denotes the 

standard error of 𝑓(𝜃), and 𝛼 is the acceleration parameter. A 95% confidence interval for 𝜃 is 

constructed by applying the inverse function 𝑓−1 to the 95% confidence intervals of 𝑓(𝜃). This is 

mathematically expressed as 

95% 𝐶𝐼�̂� = 𝑓
−1[(𝑓(𝜃)+ 𝑍0 × 𝜏𝑓) ± 1.96 ×  𝜏𝑓] (2.50) 
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2.4. Reporting of primary studies examining the measurement error of biomarkers 

Transparent reporting enables the results published in manuscripts to be interpreted appropriately, 

replicated by other researchers, and in turn used for clinical decision and policy making [81-84]. As 

such, the presence of reporting guidelines play a critical role in medical research. With respect to the 

measurement error, Bartlett et al [85] developed guidelines for appraising the existing and future 

publications of studies of laboratory-based tests, while for guidelines for reporting studies of non-

laboratory tests were developed by Kottner et al [36]. These guidelines are presented in Table 2.8. 
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Table 2.8. Reporting guidelines provided by Bartlett et al [85] and Kottner et al [36]. 

Bartlett et al [85]  Kottner et al [36] 

Title This should indicate that the content relates to a study 

of biological variability, the subject of the study, the 

sample matrix, and the studied population. 

 

 

 

Title & 

abstract 

 

 

 

This should include a clear description of the type of 

variability examined (e.g., inter/intra-observer 

variability). 

Abstract This section should include (as a minimum) the headline 

biological variability data, the number and demographic 

characteristics of the study participants, a clear 

identification of the target analyte/measurand, the 

statistical methods used, and the geographical location 

of the study.   

Introduction This section should include a clear description of the 

context and aims of the study, and citation of any 

previous studies of biological variability of the analyte 

of interest. 

Introduction This should provide information on the testing 

equipment, the population investigated, the 

participating observers, and the rationale for the study. 

Methods  This section should provide information on the 

analyte/measurant of interest, the study population, 

the length of the study, and the 

collection/analysis/storage conditions of the samples. 

Methods This section should provide justification of the chosen 

sample size, and a clear description of the 

measurement process and statistical analysis. 

Data analysis This section should include detecting and excluding 

outliers, assessing the heterogeneity of variance, and 
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using appropriate statistical methods (which should be 

clearly described). 

Results This section should include a clear presentation of the 

biological variability estimates and corresponding 

confidence intervals, using unified terms and symbols. 

Results This should provide information on the number of 

individuals, observers, and measurements performed 

within individuals, a clear description on the 

characteristics of the individuals and observers, and a 

clear presentation of the variability estimates and the 

corresponding statistical uncertainty.  

Discussion This section should include a description of the 

strengths and limitations of the study, and a focus on 

factors that may potentially affect the transportability 

of the findings to other settings.  

Discussion This should provide details on how the results can be 

applied in practice. 
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2.5. General statistical methods used for the meta-analysis of data reported across 

primary studies 

Meta-analysis involves using statistical methods to synthesize quantitative evidence from primary 

studies, so that an overall estimate is obtained based on a whole body of research [31, 86]. Although 

well established for statistical parameters used in other areas of medical research (e.g., prognostic 

or diagnostic research, effectiveness of new interventions) [87-89], methods for performing a meta-

analysis are less developed for parameters of the measurement error of biomarkers. As such, the 

thesis aims to explore the state-of-the-art in the meta-analytic methods used for parameters of 

measurement error (see Chapter 4). Before investigating methods specific to parameters expressing 

the measurement error of biomarkers, this chapter introduces known methods for meta-analysis in 

general, which are applied across all areas of medical research.  

 

2.5.1. Meta-analysis using aggregate study-level data 

The traditional approach for performing a meta-analysis involves combining summary estimates of 

the statistical parameter of interest, which are provided from the studies, while accounting for how 

precisely the parameter is estimated within each study [31]. Two statistical models are available for 

this purpose. These include the fixed-effect model and the random-effects model [90]. Both models 

use similar sets of calculations to compute a pooled estimate across studies (see sections 2.5.1.1 and 

2.5.1.2) and may often produce a similar result. However, the two models cannot be used 

interchangeably, as they hold different assumptions about the reported estimates. 

 

2.5.1.1. The fixed-effect model 

The simplest model that is commonly used in meta-analysis is the fixed-effect model, which is also 

often referred to as the common-effects model [91]. Let 𝑦1, 𝑦2, … , 𝑦𝑘 be estimates of a particular 

parameter, provided by a set of 𝑘 independent studies. The fixed-effect model assumes that the 



65 
 

studies are estimating a common true effect, 𝜇, and that each 𝑦𝑖  (𝑖 = 1,2,… , 𝑘) can only differ from 

μ due to the within-study sampling error variance (i.e., variability created from the patients sampled 

in each individual study). In model notation, this can be expressed as  

𝑦𝑖 = 𝜇 + 𝜀𝑖 , (2.51) 

and 𝜀𝑖~ 𝑁(0, 𝜎𝑖
2)  represents the estimation error due to the within-study sampling variability, 

where 𝜎𝑖
2 is the variance estimate of the 𝑖𝑡ℎ study. A weighted average estimate is then calculated 

based on the method of inverse variance weights. This method ensures that a study reporting a 

more precise estimate is assigned a greater weight in the meta-analysis. The calculation proceed as 

follows  

�̅� =
∑ 𝑤𝑖𝑦𝑖1≤ 𝑖 ≤ 𝑘 

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

, 
(2.52) 

where 𝑤𝑖 represents the wight assigned to the 𝑖𝑡ℎ study, and is equal to 

𝑤𝑖 =
1

𝜎𝑖
2 

(2.53) 

The variance of �̅� is computed as 

𝑉𝑎𝑟�̅� =
1

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

, 
(2.54) 

with a 95% confidence interval being constructed as  

95% 𝐶𝐼�̅� = �̅�  ± 1.96 × √𝑉𝑎𝑟�̅�  
(2.55) 

2.5.1.2. The random-effects model 

In contrast to the fixed-effect model, this model allows the observed estimates across studies to vary 

due to within-study error variance, as well as any potential between-study heterogeneity (i.e., real 

differences across the study characteristics) [92]. Under this model, the observed estimate in the 𝑖𝑡ℎ 
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study (𝑖 = 1, … , 𝑘) is sampled from a normally distributed population with mean 𝜇𝑖  and variance 𝜎𝑖
2. 

The mean of each study population is in turn sampled from a larger population, normally distributed 

with mean 𝜇 and variance 𝜏2, where 𝜏2 is the variance attributed to differences in the means of the 

populations the studies were sampled. In model notation, this can be expressed as  

𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖 = (𝜇 + 𝛿𝑖) + 𝜀𝑖  (2.56) 

were 𝑌𝑖~ 𝑁(0, 𝜎𝑖
2 + 𝜏2) represents the observed estimate in the 𝑖𝑡ℎ study, 𝜇 represents the overall 

population mean, 𝛿𝑖 ~ 𝑁(0, 𝜏
2) represents the difference between the overall population mean (𝜇) 

and the mean of the population the 𝑖𝑡ℎ study was sampled (𝜇𝑖), and 𝜀𝑖~ 𝑁(0, 𝜎𝑖
2) represents the 

estimation error due to within-study sampling variability. If 𝜏2 = 0, the model reduces to a fixed-

effect.  

A weighted average estimate along with its corresponding variance and 95% confidence intervals are 

computed in a similar fashion to a fixed-effect analysis (see equations 2.52, 2.54, and 2.55). 

However, the calculation of the weight assigned to each study is this time extended to 

𝑤𝑖 =
1

𝜎𝑖
2 + 𝜏2

 
(2.57) 

2.5.1.3. Statistical methods used to explore between-study heterogeneity 

The Cochran’s Q is the most commonly used test for examining whether significant between-study 

heterogeneity is present [93]. Under the null hypothesis that the underlying effect 𝜇 does not differ 

across studies, a p-value is obtained by comparing the produced Q statistic to a chi-square 

distribution with 𝑘 − 1 degrees of freedom, with 𝑘 representing the number of studies. The value of 

the Q statistic is computed as 

𝑄 = ∑ 𝑤𝑖
1≤ 𝑖 ≤ 𝑘 

(𝑦𝑖 − �̅� )
2 (2.58) 

However, the test often fails to detect significant heterogeneity, particularly when the number of 

studies included in the meta-analysis is small [94]. As such, the level of statistical significance is often 
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set at 10%, with a p-value<0.1 being considered an indicative of substantial between-study 

heterogeneity [95, 96]. 

An alternative approach developed by Higgins et al includes the use of the I-squared statistic [96]. 

This quantity describes the percentage of total variation in the meta-analysis that is due to between-

study heterogeneity. It is calculated as  

𝐼2 =
𝑄 − (𝑘 − 1)

𝑄
× 100 

(2.59) 

and ranges from 0% to 100%, with larger values indicating increasing heterogeneity. See Table 2.9 

for a guide to interpretation of the produced value based on the Cochrane Handbook for Systematic 

Reviews of Interventions [97]. 

 

Table 2.9. Interpretation of I-squared value based on the Cochrane Handbook. 

Value of I-squared statistic Interpretation 

Less than 40% Heterogeneity might not be important 

Between 30% and 60% Heterogeneity may be moderate 

Between 50% and 90% Heterogeneity may be substantial 

Between 75% and 100% Heterogeneity is considerable 

 

However, Borenstein et al [98] recommend against using the produced I-squared value for assessing 

between-study heterogeneity, as this statistic does not provide any information on how the 

individual study-level means (𝜇𝑖) vary. Furthermore, Migliavaca et al [99] state that a high (or low) I-

squared value is not always synonymous with the presence (or absence) of significant between-

study heterogeneity, as the calculation may be affected by several factors, such as the number of 

studies included in the meta-analysis or the type of outcome being pooled (e.g., meta-analyses of 

proportional data often yield I-squared values>95% [99]). Instead of the I-squared statistic, many 

researchers advocate the use of the prediction interval for obtaining a range of values for 𝜇𝑖  that is 
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expected across different study populations [98-100]. The lower and upper bounds of the prediction 

interval can be calculated as 

𝑃𝐼𝑙𝑜𝑤 = �̅� − 𝑡𝑘−2 × √𝑉𝑎𝑟�̅� + 𝜏
2, 

(2.60) 

and 

𝑃𝐼𝑢𝑝𝑝 = �̅� + 𝑡𝑘−2 × √𝑉𝑎𝑟�̅� + 𝜏
2, 

(2.61) 

where �̅� and 𝑉𝑎𝑟�̅� are the weighted average estimate and its corresponding variance, 𝜏2 is the 

estimated between-study variance, and 𝑡𝑘−2 is the 97.5th percentile of the 𝑡 distribution with 𝑘 − 2 

degrees of freedom. 

It can then be stated that in 95% of all populations, the value of the meta-analytic parameter of 

interest is expected to lie within (𝑃𝐼𝑙𝑜𝑤, 𝑃𝐼𝑢𝑝𝑝). The use of the 95% prediction intervals is applicable 

only under a random-effects meta-analysis, as a fixed-effect meta-analysis assumes that the 

included study-level estimates are sampled from the same population. 

 

2.5.1.4. Estimation of the between-study variance (𝝉𝟐) 

The most popular method available for estimating the between-study variance is the method of 

moments, proposed by DerSimonian and Laird [89]. Under this method, the between-study variance 

is estimated via  

𝜏2 =
𝑄 − (𝑘 − 1)

𝐶
, 

(2.62) 

where 𝐶 is a scaling factor accounting for the fact that Q is a weighted sum of squares [90], 

computed as  

𝐶 = ∑ 𝑤𝑖
1≤ 𝑖 ≤ 𝑘 

− 
∑ 𝑤𝑖

2
1≤ 𝑖 ≤ 𝑘 

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

 
(2.63) 
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Alternative methods for estimating the between-study variance are also available and based on 

maximum likelihood estimation, with evidence suggesting that these methods are able to provide a 

more precise estimate, particularly when the number of studies is small [101]. However, likelihood-

based methods are more computationally intensive, while Borenstein et al state that no method can 

produce a very precise estimate when the number of studies is small [90]. For meta-analyses 

including a small number of studies (i.e., <5), guidelines provided in the Cochran Handbook 

recommend a different approach based on the Bayesian framework, where prior distributions are 

used for the extent of between-study variation [102]. 

 

2.5.1.5. Which model should be used? 

Borenstein et al [90] state that a fixed-effect model can be employed under the following two 

conditions: 

• the characteristics of the studies are functionally identical. For studies examining the 

reliability and measurement error of biomarkers, these may for example include the 

demographics of the individuals, the experience of the clinicians, or a different test-retest 

interval being adopted. 

• the produced summary estimate reflects the included studies only, and does not aim across 

all possible studies possessing similar (but not identical) characteristics. 

By contrast, a random-effects model should be preferred if the aim of the meta-analysis is to 

extrapolate the result to a wider population (which is most often the case), or if the characteristics 

differ across studies (which is likely to happen when different researchers operate independently). 

Furthermore, the decision on whether to use a fixed-effect or a random-effects approach should be 

purely driven by the two aforementioned conditions rather than the use of a statistical test for 

heterogeneity, as these tests often suffer from low power and may in some cases be misleading [96, 

103]. 
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2.5.2. Meta-analysis using individual participant data 

A more recent approach, which has become increasingly popular, is to perform a meta-analysis of 

individual participant data [86, 104]. Rather than obtaining a parameter estimate and its 

corresponding uncertainty (e.g., standard error or 95% confidence interval) from each identified 

study, this approach involves collecting raw data for each participant recruited within each study. 

Once all data has been collected, the two possible ways for producing a summary estimate include: 

• The one-step approach, where the raw data collected from the studies are treated as a 

single large data set, and analysed simultaneously. When using this approach, it is important 

to account for the clustering of participants within the studies. This involves treating the 

study effect as fixed (if only the included studies are or interest) or random (if the aim is to 

generalise the produced estimate beyond the included studies) [86]. 

• The two-step approach, where each data set obtained for each study is first analysed 

independently. The produced estimates are then pooled in a similar fashion to an aggregate 

study-level meta-analysis (described under section 2.5.1). 

 

Compared to the traditional method of pooling study-level estimates, the use of this approach has 

several advantages. These include the ability to explore the data in detail, the use of consistent 

eligibility criteria and statistical methods across the studies, the inclusion of more patients or 

patients with a longer follow-up than that used in the original study publication, and the use of 

information from studies where the aggregate data are not available or poorly reported [86]. 

However, performing a meta-analysis of individual participant data may not be worth in case the 

required aggregate study-level estimates can be fully obtained from the published primary studies or 

the corresponding authors, as collecting the raw data of each individuals may require considerable 

time and resources. 
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2.6. Discussion 

This chapter provides an overview of the current guidelines for the design and statistical analysis of 

primary studies examining the reliability and measurement error of biomarkers. However, these 

guidelines have several flaws, and should be further developed. When designing primary studies 

examining the reliability and measurement error of biomarkers, different views have been expressed 

regarding the population that should be recruited in the study. Current guidelines for laboratory-

based studies suggest that the population should be limited to healthy individuals only, as the focus 

of such studies is to examine the biological sources of variability, rather than any pathological [27]. 

However, for variability estimates to be of use in practice, the recruited individuals should reflect the 

population that is of interest. If for example a test is intended for individuals with a particular 

disease, then there is no use testing healthy individuals, as the variability of a test may change 

between healthy and diseased populations. When recruiting diseased individuals however, an 

obvious concern for researchers designing such studies should be the potential progression in 

between the repeated measurements. Therefore, an appropriate test-retest interval should be 

carefully chosen by the researchers, so that any potential bias in the results due to disease 

progression is kept to a minimum. The appropriate interval will be specific to the disease of interest 

and will need to be considered in view of the likely progression of the disease. 

Furthermore, there is limited guidance regarding the number of individuals required for designing 

primary studies examining the measurement error of biomarkers. Fraser and Harris [17, 26] and 

Braga and Panteghini [27] state that this decision should be a trade-off between having a high 

number of individuals (and consequently samples) that will allow the different sources of variability 

to be estimated more precisely, and a smaller number that will enable the samples to be handled 

appropriately and analysed under the right conditions. However, this trade-off is not necessarily 

inevitable, given that a study protocol is clearly specified and strictly followed by the operators. 

Giraudeau and Mary provide a formula for estimating the number of individuals required, based on a 

number of measurements per individual, a pre-specified estimate for the intra class correlation (ICC), 
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and a pre-specified width for the 95% confidence interval of the ICC estimate [43]. However, the 

formula is limited to ICC’s produced from a one-way effects model (i.e., assuming no inter/intra-

observer variability), and formulas appropriate for ICC’s based on two-way effects models are 

currently lacking. Moreover, whilst the ICC expresses how reliable a test is (i.e., how large the 

between-individual variability is in relation to the measurement error), it does not provide any direct 

information regarding the absolute deviation of repeated within-individual measurements. Thus, 

new methods for estimating the required sample size should be developed, additionally accounting 

for the case were inter/intra-observer variability may be present, and focusing on the compromise 

between a high reliability and low measurement error. 

For the preparation of the data prior to analysis, current guidelines provided for laboratory-based 

studies suggest removing outlies from the data, and using the log-transformation in case the 

measurements produced at different variability levels are not normally distributed. These guidelines 

recommend that the presence of outliers should be examined through the Cochran’s test [44] and 

Dixon-Reed’s criterion [45], while the Shapiro-Wilks [46] and Kolmogorov–Smirnov [105] tests 

should be employed to assess the distribution of the measurements. For outliers, it is known that 

they often occur in real life, and may indicate difficulties when performing a measurement. Thus, 

outliers should not be removed from the data, as the removal of outliers may lead to 

underestimating the “true” variability of a test, and in turn to false conclusions regarding whether a 

test is fit for use in practice. With respect to log-transforming the measurements prior to analysis, 

this approach should be used with caution, as published evidence suggests that applying this 

transformation does not always lead to a better approximation of normality [106]. Furthermore, 

statistical tests for assessing whether within-individual measurements are free from outliers or 

deviate from normality should also be used with caution (if used at all). This is because primary 

studies of test variability often collect a limited number of measurements from each recruited 

individual (e.g., <5). With such low numbers, these tests are likely to produce biased results and in 

turn lead to misleading conclusions. For example, a statistical test for normality may falsely accept 
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the hypothesis that measurements are normally distributed [107], allowing researchers to carry on 

evaluating a laboratory biomarker while they should have stopped (as current guidelines 

recommend). 

With regards to the statistical analysis, several parameters can then be obtained to express the 

reliability and measurement error of tests producing continuous outcomes, while one additional 

parameter is available in the literature for assessing inter/intra-observer variability in categorical 

outcomes (i.e., the Kappa statistic). A key question arises on the interpretation of these parameters. 

For unit-free parameters of reliability and measurement error, classification tools have been 

proposed, aiming to help researchers with the interpretation of the produced values. For the intra-

class correlation and the Kappa coefficient, two different classification tools are available in the 

literature (see Tables 2.4 and 2.6). However, the tools do not entirely agree with each other, and the 

classification of an ICC or Kappa value may differ depending on the tool being chosen by the 

researcher. For example, an ICC value of 0.80 is considered “good reliability” when using the 

classification guidelines provided by Koo and Li [53], but “excellent reliability” when the classification 

guidelines provided by Cicchetti [52]. For the coefficient of variation, no formal guidelines for 

interpretation have been developed. A cut-off value of ≤10% seems to have been adopted by many 

researchers as the “working rule” [16, 57]. However, this value has been arbitrarily chosen, and 

often interpreted in different ways. For example, an estimate of 10% was considered “acceptable” in 

Stokes [108], but “excellent” in Aronhime et al [58]. Whilst further work is required aiming for the 

standardisation of the interpretation of these parameters, researchers should also be encouraged to 

base their interpretations on other factors, rather than any available tools. Such factors may include 

the severity of the disease of interest (a higher test reliability and lower measurement error is 

required for life threatening compared to less severe diseases), or the reliability and measurement 

error of already existing tests (new tests should be more reliable and accompanied with lower 

measurement error, compared to already existing). 
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Furthermore, as existing methods for examining the reliability and measurement error are limited to 

test results expressed as continuous or categorical, alternative methods for count outcomes are also 

required. Such methods will provide researchers primary evidence of the reliability and 

measurement error of a count-based test, helping them decide whether the test is fit for use in 

medical research and practice. Finally, although well-established in other areas of medical research, 

guidance on how to perform a meta-analysis of parameter estimates of reliability and measurement 

error is currently lacking. Statistical methods for performing a meta-analysis of data reported in 

primary studies examining the reliability and measurement error of tests should also be developed, 

so that conclusions on the reliability and measurement error of tests can be drawn based on a whole 

body of research. 

 

2.7. Conclusion 

Current guidelines for primary studies examining the reliability and measurement error of medical 

tests have flaws and should be further developed, particularly with respect to the target population, 

the preparation of data prior to statistical analysis, and the interpretation of statistical parameters 

expressing the reliability and measurement error of tests. New statistical methods for estimating an 

adequate number of individuals needed for a primary study are required. These methods should 

additionally cover the case were inter/intra-observer variability is expected to be present, and 

account for a compromise between a pre-specified clinically acceptable value of reliability and 

measurement error. Finally, although well-developed for continuous measurements, statistical 

methods for estimating the reliability and error of count measurements, as well as performing a 

meta-analysis of parameter estimates of reliability and measurement error reported across different 

primary studies, are currently lacking, and should be developed. 
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3. Evaluation of the reproducibility of grip strength 
measurements produced by hand-held digital 
dynamometers. 

 

3.1. Introduction 

Statistical methods that have been proposed for examining the reliability and measurement error of 

biomarkers were introduced in Chapter 2. In this chapter, these methods were applied in a cohort of 

84 patients with sarcopenia and chronic inflammatory disease, including chronic liver disease (CLD), 

inflammatory Bowel Disease (IBD), inflammatory Rheumatoid Arthritis (IRA). The biomarker of 

interest is grip strength, which has been proposed for the evaluation of numerous medical 

conditions.  

 

3.2. Clinical background 

Evidence suggests that grip strength can function as a biomarker for the diagnosis, prognosis, and 

monitoring of numerous diseases that affect individuals to perform their daily activities and function 

independently [109-111]. The European Working Group on Sarcopenia in Older People (EWGSOP) 

recommends the use of grip strength measurement if sarcopenia (defined as progressive loss of 

muscle mass and function, most commonly occurring with ageing [112]) is suspected, with muscle 

quality subsequently confirmed by further investigations such as DXA, CT or MRI [111]. Furthermore, 

grip strength has been used for the evaluation of burn-affected upper limb strength [113], and for 

chronic conditions such as heart disease [114], diabetes [115, 116], arthritis [117], stroke [118], 

prostate cancer [119], and chronic obstructive pulmonary disease [120]. Yorke et al also showed a 

significantly negative association between grip strength and multi-morbidity [121], defined as the 

presence of two or more chronic conditions. Grip strength is most commonly assessed using a hand-
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held dynamometer. The assessment is easy to perform, and recommendations on the testing 

procedures and the body positioning of the participants being tested have been available since 1981 

[122]. During the assessment, the participants hold the dynamometer in the tested hand and 

squeeze with maximum isometric effort [122, 123]. The produced measurements most commonly 

express the amount of static force (kilograms, pounds or Newtons), or can also express the force per 

palmar surface area (millilitres of mercury or pounds per square inch), depending on the type of 

dynamometer being used [124], with higher measurements corresponding to a better health 

outcome. In order to be useful in clinical and research settings, the measurements of grip strength 

must be reliable and produced with low measurement error.  

 

3.3. Study design 

The data was collected as part of an observational, repeated measures study, which was conducted 

within the University Hospitals of Birmingham Foundation Trust. Each patient attended two clinic 

visits, with a different clinician assessing the patient at each visit. The two clinic visits were 

scheduled two weeks apart. This time interval was adopted by the study investigators as unlikely to 

observe any changes in the health status of the patients. Within each visit, three consecutive 

measurements of grip strength per hand (six in total) were obtained from each patient. The 

measurements were produced using a Takei digital dynamometer, with each measurement followed 

by a rest period of at least 30 seconds. Prior to the three analysis measurements recorded at each 

visit, clinicians provided verbal instructions to the patients. Vocal encouragement was also given to 

the patients during each attempt. 
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3.4. Components of variability in the measurements 

Figure 3.1 illustrates the flow of the patients within the study. As depicted in Figure 3.1, there are 

potentially three components of variability in the measurements of grip strength, which were 

identified in discussion with the clinicians: 

• Between-patient variability. That is, the differences in grip strength between the recruited 

patients. Ideally, this should be high compared to any other potential component of 

variability, as this indicates the ability of biomarkers to differentiate patients with a better 

grip strength to those with a worse. 

• Between-visit variability. This refers to true differences in the way each patient performed 

at each visit, and can be understood as the first component of error in the measurements. 

Potential sources of between-visit variability include: 

1) Random variability occurring within each visit (e.g., how the patients are feeling on 

testing day affecting their performance).  

2) Systematic variability occurring between the two visits. For example, patients may 

perform better at the second visit due to their experience in the first (i.e., learning effect 

being present), or worse, as they may have experienced a change in health status 

between the first and second visit (although hypothesised against). 

3) Interaction between the patient and the clinician assessing the patient at each visit (e.g., 

the instructions given by one clinician may motivate a patient more than the instructions 

given by the other clinician). 

However, variability due to (2) and (3) were expected to be low due to the simplicity of the 

procedure, the clear instructions provided to the patients prior to the testing sessions, and 

the change in the health status of the patients within two weeks being considered unlikely. 

Therefore, (1) was expected to be the main source of between-visit variability. 
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• Between-measurement within-visit variability. This can be thought as the second 

component of error in the measurements, and may be potentially attributed to: 

1) The random error occurring within the measurements due to inherent variation that the 

Takei dynamometer may have. 

2) Systematic differences in the performance of the patients. For example, the first 

measurement may be higher than the subsequent measurements as fatigue may set in 

after the first attempt, or lower, as patients may become more familiar with the 

procedure.  

However, (1) was considered to be the main source of between-measurement within-visit 

variability, as the clear instructions provided to the patients prior to each testing session, as 

well as the break between measurements that the patients were allowed, were expected to 

keep variability due to (2) at a low level. 

 

3.5. Aim and objectives 

The aim of the chapter is to illustrate how standard statistical methods used for examining the 

reproducibility of biomarkers are applied, as well to provide evidence of the reproducibility of the 

Takei digital dynamometer, when used to evaluate grip strength. The two objectives of this chapter 

were: 

(i) To examine the reproducibility of the grip strength measurements made at two different 

clinic visits, scheduled two weeks apart. 

(ii) To examine the reproducibility of the grip strength measurements made within the 

same visit. 
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Figure 3.1. Study design. 

 

 

3.6. Statistical methods 

The baseline characteristics of the 84 patients recruited in the study were summarised using 

appropriate summary statistics. Two random effects linear models (one for each tested hand) were 

employed to estimate the three components of variability (see 3.4) in the measurements of grip 

strength. As described in Chapter 2, the use of this method requires the measurements produced at 

each potential level of variability to follow a normal distribution. In order to assess the distribution 

of the measurements produced at the patient level, the mean value of the multiple measurements 

produced at both visits was calculated for each patient, and used as the best estimate of the true 

grip strength value. Histograms were then used to assess whether the mean values produced from 
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each hand were normally distributed. If not, the measurements produced from each hand were log-

transformed prior to the analysis. The assessment of normality for the remaining levels of variability 

(i.e., between and within-visit levels) was not possible due to the limited numbers of visits and 

measurements performed within the visits (two and three respectively).  

 

3.6.1. Description of statistical model used to estimate the components of variability 

Two linear regression models (one for each tested hand) were used to estimate the components of 

variability in the grip strength measurements. Each model was expressed as  

𝑦𝑖𝑗𝑘 = μ + 𝑢𝑘 + 𝑣𝑗𝑘 + 𝑒𝑖𝑗𝑘  (3.1) 

where 𝑦𝑖𝑗𝑘  denotes the 𝑖𝑡ℎ measurement of grip strength (𝑖 = 1,2,3) produced within the 𝑗𝑡ℎ visit 

(𝑗 = 1,2) from the 𝑘𝑡ℎ patient (𝑘 = 1,… ,84) , μ is the regression intercept, 𝑢𝑘 ~ 𝑁(0, 𝜎𝑃) is the 

patient-level random effects parameter for the variability across the patients, 𝑣𝑗𝑘  ~ 𝑁(0, 𝜎𝑉) is the 

visit-level random effects parameter for the variability between the two visits, and 𝑒𝑖𝑗𝑘  ~ 𝑁(0, 𝜎𝐼) is 

the random error term. The four parameter estimates obtained from the above regression model 

were: 

• The grand mean of the produced measurements of grip strength, which equals the 

regression intercept (μ). 

• The standard deviation of the patient-level random effects (𝜎𝑃). 

• The standard deviation of the visit-level random effects (𝜎𝑉). 

• The standard deviation of the individual measurements of grip strength produced from each 

patient within each visit (𝜎𝐼). 

The models were fitted using the `xtmixed' command in Stata version 17, with restricted estimation 

of maximum likelihood (REML) [48].  
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3.6.2. Regression-based parameters of reliability and measurement error 

Several statistical parameters were then calculated based on the above model-based estimates, in 

order to examine the reliability and error of the grip strength measurements produced from each 

hand. The intra class correlation was used to evaluate the reliability of the measurements (i.e., the 

ability of the test to distinguish patients despite any measurement error being present), while 

parameters of measurement error included (again) the intra class correlation, the standard error of 

measurement, the smallest detectable change, the coefficient of variation, and the reference change 

values. The calculation of each parameter is described in sections 3.6.2.1-3.6.2.5. All parameter 

estimates were presented along with 95% confidence intervals, which were constructed via 

multilevel bootstrapping with bias-correction (method described in Chapter 2) [79, 80, 125, 126]. For 

each parameter, a sampling distribution was obtained by fitting the model to 1000 bootstrapped 

samples [79, 126]. The 2.5% and 97.5% percentiles of the produced sampling distribution were used 

as the lower and upper confidence bound, respectively, and were adjusted in the appropriate 

direction in case the original model-based estimate did not lie at the 50th percentile. 

 

3.6.2.1. Calculation of the intra class correlation 

When used for evaluating the reliability of biomarkers, the intra class correlation (ICC) represents 

the proportion of the variability in the measurements that is attributed to true differences between 

the patients [15, 127]. In this example, this is mathematically expressed as 

𝐼𝐶𝐶𝑃 =
𝜎𝑃
2  

𝜎𝑃
2  + 𝜎𝑉

2 + 𝜎𝐼
2, 

(3.2) 

where 𝜎𝑃
2 is the between-patient variance, 𝜎𝑉

2 is the between-visit variance, and 𝜎𝐼
2 is the between-

measurement within-visit variance, with (𝜎𝑉
2  +  𝜎𝐼

2) representing the total error variance.  
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Furthermore, two additional intra class correlation coefficients were calculated in order to estimate 

the proportion attributed to between-visit (𝐼𝐶𝐶𝑉) and within-visit variability (𝐼𝐶𝐶𝐼), respectively, 

similarly by dividing the corresponding variance estimates by the total variance (𝜎𝑃
2  +  𝜎𝑉

2  +  𝜎𝐼
2). If 

skewness in the grip strength measurements was observed, the three ICC’s were calculated in a 

similar fashion using the log-transformed measurements. 

 

3.6.2.2. Calculation of the standard error of measurement 

The standard error of measurement (SEM) equals the standard deviation of the repeated 

measurements made within the same patient, which reflects the spread of the repeated 

measurements around the patient’s true score [15, 16, 127]. As described under section 3.4, there 

are two components of within-patient variability (i.e., error) in the measurements: (i) that due to 

differences between measurements made within the same visit, and (ii) that due to differences 

between measurements made at different visits.  

For measurements produced from the same patient within the same visit, the standard error of 

measurement was equal to the corresponding estimate of the standard deviation (𝑆𝐸𝑀𝐼 = 𝜎𝐼). This 

reflects the error that is expected for measurements produced from the same patient within each 

visit, due to both (i) the random error occurring within measurements, and (ii) any systematic 

differences in the performance of the patients within the visits. For measurements produced from 

the same patient at different visits, the calculation of the standard error of measurement was 

extended to 

𝑆𝐸𝑀𝑉 = √𝜎𝑉
2 + 𝜎𝐼

2  
(3.3) 

This reflects the total error that is expected for measurements produced from the same patient at 

different visits, due to both true between-visit differences in the performance of the patient, and 
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any additional variability arising from (i) and (ii). However, the calculation of 𝑆𝐸𝑀𝑉  was omitted in 

case the distribution of the produced measurements was skewed, as this parameter is expressed in 

the original scale (kgs) and there is no more a natural interpretation of the produced estimate when 

the log-transformation is applied. 

 

3.6.2.3. Calculation of the smallest detectable change 

The smallest detectable change reflects the quantity below which the absolute difference between 

two measurements produced from the same patient is expected to lie with 95% probability, due to 

measurement error rather than a true change in the health status of the patient [15, 51]. For 

measurements produced from the same patient at different visits, the smallest detectable change 

was calculated as 

𝑆𝐷𝐶𝑉 = √2 × 1.96 × 𝑆𝐸𝑀𝑉  (3.4)  

In order to identify any patients that were likely to have experienced a change in the health status in 

between the visits, the mean of the measurements produced from each patient was calculated for 

each visit. The absolute difference between the two mean values produced for each visit was in turn 

calculated and compared to the smallest detectable change, with values exceeding the smallest 

detectable change being considered as indicative of a change in the health status. For 

measurements produced from the same patient within the same visit, the smallest detectable 

change was not calculated. This was because true changes in the health status of the patients were 

not expected to occur in between measurements taken within the same visit, as the measurements 

were taken successively.  
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3.6.2.4. Calculation of the coefficient of variation 

The coefficient of variation reflects the (percentage) spread of repeated measurements made within 

the same patient, around the grand mean [15, 16]. It is calculated as the ratio of the standard 

deviation of the repeated measurements made within patients, to the grand mean of the 

measurements. For measurements produced from the same patient within the visits, the coefficient 

of variation was equal to 

𝐶𝑉𝐼 =
𝑆𝐸𝑀𝐼
μ

=
𝜎𝐼
μ

 
(3.5) 

For measurements produced from the same patient at different visits, the calculation of the 

coefficient of variation was extended to 

𝐶𝑉𝑉 =
𝑆𝐸𝑀𝑉
μ

=
√𝜎𝑉

2 + 𝜎𝐼
2

μ
 

(3.6) 

This reflects the spread of measurements produced from the same patient at different visits, around 

the grand mean, due to true between-visit differences in the performance of the patient, as well as 

any additional within-visit variability. If skewness in the grip strength measurements was observed, 

the coefficient of variation was calculated using the formula provided by Cole [61], as 

𝐶𝑉 =  √𝑒(𝑆𝐸𝑀
𝑙𝑜𝑔)2 − 1 , (3.7) 

where 𝑆𝐸𝑀𝑙𝑜𝑔 is the standard error of measurement estimated on the logarithmic scale.  

 

3.6.2.5. Calculation of the reference change value 

The reference change value has been proposed for laboratory-based biomarkers with low 

individuality (see Chapter 2), and aims to define the minimal percentage change from the first 

measurement that needs to be exceeded, in order to state that a true change in the health status of 

the individual has taken place. Although this study is not laboratory-based, the chapter aims to 
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illustrate how the parameter is applied in clinical practice. Like the smallest detectable change, the 

parameter was only used for measurements taken at different visits, as true changes in the health 

status of the patients were not expected to occur in between successive measurements taken within 

the same visit. The reference change value was calculated as  

𝑅𝐶𝑉𝑉 = √2 × 1.96 × 𝐶𝑉𝑉, (3.8) 

where 𝐶𝑉𝑉 is calculated as described in section 3.6.2.4. In order to define the absolute difference 

between two within-individual measurements that needs to be exceeded for a significant change, 

the value produced from equation 3.8 was in turn multiplied by the mean of the grip strength 

measurements produced at the first visit. 

 

3.6.3. Additional parameters used for pairwise comparisons 

Additional analyses involved the calculation of the limits of agreement as a parameter of 

measurement error, and the calculation of the Pearson correlation as a parameter of reliability. As 

described in Chapter 2, these parameters can only be used when two measurements are available 

for each patient. For examining the variability between the two visits, both the highest and average 

of the three measurements produced from each patient within each visit were used as summary 

measures in the analysis. This gives a total of 2 (summary measures) ×2 (hands) = 4 pairwise 

comparisons between the two visits. For examining within-visit variability, each pairwise comparison 

available within each visit (i.e., first v second measurement, first v third measurement, second v 

third measurement produced from each patient) was performed. This gives a total of 3 (pairs within 

visit) ×2 (visits) ×2 (hands) = 12 comparisons. Although the comparisons were likely to be correlated, 

no adjustment for multiple comparisons was made, as no hypothesis testing was performed.  
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3.6.3.1. Calculation of the limits of agreement 

The limits of agreement were calculated as the interval of twice the standard deviation of the 

differences between two repeated measurements, either side of the mean difference [15, 47]. In 

mathematical notation this is expressed as 

𝐿𝑜𝐴 = 𝑑 ± 1.96 × 𝑆𝐷𝑑 , (3.9)  

where 𝑑 represents the systematic differences between two repeated measurements, and 𝑆𝐷𝑑 

represents the random variability occurring within the two measurements. The produced interval 

was presented along with the lower 95% confidence bound of the lower limit of agreement, and the 

upper 95% confidence bound of the upper limit of agreement, as recommended by Bland and 

Altman [47]. These were calculated as  

95%𝐶𝐼 − 𝐿𝑜𝐴𝑈/𝐿 = (𝑑 ± 1.96 × 𝑆𝐷𝑑)  ± 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025)√
3×𝑆𝐷𝑑

2

𝑛𝑝𝑎𝑖𝑟𝑠
, 

(3.10) 

where 𝑛𝑝𝑎𝑖𝑟𝑠 is the number of available pairs of measurements, and 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025) is the 

critical value of the Student's t distribution with 𝑛𝑝𝑎𝑖𝑟𝑠 − 1 degrees of freedom and 2.5% significance 

level.  

As described in Chapter 2, this method requires the following two assumptions to be met: (i) the 

differences between the two measurements made within-patients should be normally distributed, 

and (ii) there should be no evidence of heteroscedasticity (i.e., the within-patient variability should 

not be increasing with higher values of grip strength). Therefore, for all different comparisons 

performed, the first assumption was assessed using histograms, while the latter was assessed with 

Bland-Altman plots, plotting the difference between each pair of measurements available for each 

patient against the corresponding mean of the measurements. If either assumption was violated, the 

measurements were log-transformed prior to the analysis, as recommended by Bland and Altman 

[47]. In this case, the limits of agreement were expressed as a function of the mean of a randomly 

selected pair of measurements produced from the same patient (�̅�), as described in Euser et al [56]. 
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For a given value of �̅� =
𝑌1+𝑌2

2
, the difference between two randomly selected measurements made 

on the same patient (𝑌1 − 𝑌2) lies within  

𝐿𝑜𝐴 = ± 2�̅�(10𝑎 − 1)/(10𝑎 + 1), (3.11)  

where 𝑎 = 1.96 × 𝑆𝐷𝑑 .  

 

3.6.3.2. Calculation of the Pearson correlation coefficient 

The Pearson correlation coefficient was calculated as 

𝑟 =
∑ (𝑦𝑖1−𝑦1̅̅̅̅ )(𝑦𝑖2−𝑦2̅̅̅̅ )
𝑛
𝑖=1

√∑ (𝑦𝑖1−𝑦1̅̅̅̅ )2
𝑛
𝑖=1 ∑ (𝑦𝑖2−𝑦2̅̅̅̅ )2

𝑛
𝑖=1

, (3.12)  

where 𝑦𝑖1 and 𝑦𝑖2 are the measurements of the 𝑖𝑡ℎ patient (𝑖 = 1, … , 𝑛) at the first and second 

testing occasion, respectively, and 𝑦1̅̅ ̅ and 𝑦2̅̅ ̅ are the corresponding mean values across all patients. 

A 95% confidence interval for 𝑟 was based on the Fisher’s Z transformation [67], and constructed via 

(𝑟𝐿, 𝑟𝑈) = (
𝑒2𝑍𝐿−1

𝑒2𝑍𝐿+1
,
𝑒2𝑍𝑈−1

𝑒2𝑍𝑈+1
), (3.13)  

where 𝑍𝑈/𝐿 = 𝑍 ± 1.96√
1

(𝑛−2)
  is the upper/lower 95% confidence bound for the Fisher’s Z statistic, 

with 𝑍 = 0.5 ln (
1 + 𝑟

1 − 𝑟
).  

As described in Chapter 2, the use of the Pearson correlation coefficient as a reliability parameter 

requires the following assumptions to be met: (i) the measurements produced at the first and 

second testing occasions should both be normally distributed, (ii) the relationship between the 

measurements produced at each testing occasion should be linear (iii) no extreme outliers are 

present, (iv) no systematic differences between the two testing occasions are observed. For all 

different comparisons performed, (i) was assessed using histograms, while (ii)-(iv) were examined 

through scatterplots, plotting the measurements produced at the first testing occasion against those 
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produced at the second testing occasion (e.g., mean of first visit v mean of second visit). If either 

assumption was violated, the correlation was calculated using the Spearman’s non-parametric test, 

as 

𝜌 = 1 −
6 × ∑ (𝑟𝑎𝑛𝑘[𝑦𝑖1] − 𝑟𝑎𝑛𝑘[𝑦𝑖2])

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
, 

(3.14)  

where 𝑟𝑎𝑛𝑘[𝑦𝑖1] and 𝑟𝑎𝑛𝑘[𝑦𝑖2] are the ranks of 𝑦𝑖1 and 𝑦𝑖2, respectively. 

 

3.7. Results 

The baseline characteristics of the 84 patients recruited in the study are presented in Table 3.1. The 

patients were on average 55.0 (SD=10.2) years old, with a mean BMI of 29.6 (SD=6.5). The number of 

right-handed and female patients was 71 (85.0%) and 29 (34.0%), respectively. The majority (n=53, 

63.1%) were patients with chronic alcohol-related liver disease. Of the remaining 31, 11 (13.1%) had 

inflammatory Bowel Disease, another 11 (13.1%) had inflammatory Rheumatoid Arthritis, and 9 

(10.7%) had non-alcoholic related liver disease. All patients (100%) attended the first visit, with 

70/84 (83%) patients additionally attending the second visit. Of the 70 patients attending both visits, 

one performed 2 out of 3 measurements per hand during the second visit, two did not perform any 

left hand-based measurements during the first visit, while an additional patient did not perform any 

left hand-based measurements at either visit (see Figure 3.2). The frequency distributions of the 

mean of the multiple measurements produced from each hand are displayed in Figure 3.3. The 

distribution of the mean values produced from the right and left hand was approximately normal, 

with a mean value (SD, n) of 29.57 (10.30, 84) and 28.60 (9.89, 83), respectively. 
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Figure 3.2. Flow chart of patients, showing the numbers who provided data at each visit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patients recruited in study 

N= 84 

Patients attending 1st visit 

N= 84 

Patients attending 2nd visit 

N= 70 

 

N measurements from right hand (252, 
100%) 

• All patients provided the 3 visit 
measurements planned. 

N measurements from left hand (243, 96%) 

• 3 patients did not provide any visit 
measurements. 
 

 

 

N measurements from right hand (209, 99%) 

• 1 patient provided 2 of 3 visit 
measurements. 

N measurements from left hand (206, 98%) 

• 1 patient provided 2 of 3 visit 
measurements. 

• 1 patient did not provide any visit 
measurements. 

 

 

14 patients did not attend the second visit 
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Table 3.1. Baseline characteristics of 84 patients recruited in the study. 

Age, mean (SD) 55.0 (10.2) 

Female patients, N (%) 29 (34.0%) 

Medical condition, N (%) 

Chronic alcohol-related liver disease 53 (63.1) 

Inflammatory Bowel Disease 11 (13.1) 

Inflammatory Rheumatoid Arthritis 11 (13.1) 

Chronic non-alcohol related liver disease 9 (10.7) 

Right-handed patients, N (%) 71 (85.0%) 

BMI, mean (SD) 29.56 (6.49) 
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Figure 3.3. Distribution of the mean of multiple measurements produced from each patient, by hand. 
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3.7.1. Regression-based parameters of reliability and measurement error 

The results obtained from each hand are presented in Table 3.2. This section only describes the 

results obtained from the right hand, as both hands yielded very similar results. 

 

3.7.1.1. Estimates obtained from the linear random effects model 

The estimate for the regression intercept, which also corresponds to the mean value of the grip 

strength measurements, was 29.58kgs. The estimate for the between-patient standard deviation 

was as large as 10.16kgs, indicating high variability in the grip strength measurements from one 

patient to another. The estimates of the between-visit and between-measurement within-visit 

standard deviation was substantially lower compared to the between-patient standard deviation 

estimate, and very similar to each other (1.85kgs and 2.13kgs respectively).  

 

3.7.1.2. Results produced for the intra class correlation coefficient 

The patient-level estimate of the intra class correlation was equal to 0.928. This denotes that 92.8% 

[95% CI: (90.1%, 95.0%)] of the total variability in the measurements of grip strength is attributed to 

true differences between patients. Of the remaining 7.2%, 3.1% [95% CI: (1.0%, 5.0%)] was 

attributed to true differences in the way a patient performed at the two different visits, and 4.1% 

[95% CI: (3.7%, 5.4%)] was attributed to differences between measurements produced from the 

same patient within the same visit. 

 

3.7.1.3. Results produced for the standard error of measurement 

For measurements produced from the same patient within the same visit, the standard error of 

measurement was equal to 2.13kgs. This reflects a 68% chance of a measurement repeated within 

the same visit lying within 2.13kgs [95% CI: (2.08, 2.28)] of the true score of the patient, due to (i) 
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the patient performing differently between measurements made within the same visit, and (ii) due 

to the random error occurring within each measurement. For the measurements produced from the 

same patient at two different visits, the standard error of measurement was equal to 2.82kgs. This 

reflects a 68% chance of a measurement repeated at a different visit lying within 2.82kgs [95% CI: 

(2.36, 3.30)] of the true score of the patient due to true between-visit differences in the 

performance of the patient, as well as any additional variability attributed to (i) and (ii). 

 

3.7.1.4. Results produced for the smallest detectable change 

The produced estimate for the smallest detectable change was equal to 7.81 [95% CI: (6.54, 9.14)]. If 

the difference between two measurements produced from the same patient at two different visits 

exceeds 7.81kg, it can be stated with 95% confidence that this difference reflects a true change in 

the health status of the patient, rather than one anticipated due to measurement error. A difference 

larger than 7.81kg was observed in two patients (absolute difference between visit means was 

8.33kgs and 9.40kgs), which indicates that these patients were likely to have experienced a change 

in their health status. 

A difference larger than 7.81kg was observed in two patients (absolute difference between means 

produced at each visit was 8.33kgs and 9.40kgs), which indicates that these patients were likely to 

have experienced a true change in grip strength. 

 

3.7.1.5. Results produced for the coefficient of variation 

For measurements produced from the same patient within the same visit, the coefficient of variation 

was equal to 0.072. This reflects a 68% chance of a measurement repeated within the same visit 

lying within 7.2% [95% CI: (7.1%, 7.8%)] of the grand mean, due to (i) the patient performing 

differently between measurements made within the same visit, and (ii) due to the random error 
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occurring within each measurement. For measurements produced from the same patient at two 

different, the coefficient of variation was equal to 0.095. This reflects a 68% chance of a repeated 

measurement lying within 9.5% [95% CI: (8.0%, 11.2%)] of the grand mean due to true between-visit 

differences in the performance of the patient, as well as any additional variability attributed to (i) 

and (ii). 

 

3.7.1.6. Results produced for the reference change value 

The low values obtained for the index of individuality (<0.6 for both hands) makes the use of the 

reference change value appropriate for defining a significant change occurring within the individuals. 

For the right hand, the reference change value was equal to 26.3%, while the mean value of the grip 

strength measurements produced at the first visit was 29.3kgs. One can then state that a difference 

larger than or equal to 29.3 × (26.3/100) = 7.71kgs reflects a significant change in the health status of 

the patients.  

 

Table 3.2. Results obtained from linear regression analyses performed for each hand. 

 Right hand Left hand 

- Model-based parameter estimates 

Grand mean of measurements, 

μ (95% CI) 

29.58 (28.43, 30.47) 28.61 (27.35, 29.42) 

Between-patient standard deviation, 

𝜎𝑃 (95% CI) 

10.16 (9.39, 10.76) 9.76 (8.92, 10.37) 

Between-visit standard deviation, 

𝜎𝑉  (95% CI) 

1.85 (1.16, 2.37) 1.75 (1.10, 2.23) 
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 Between-measurement within-visit 

standard deviation, 𝜎𝐼  (95% CI) 

2.13 (2.08, 2.28) 1.85 (1.80, 2.01) 

- Parameter used to examine the reliability of the measurements 

Intra class correlation (95% CI) 92.8% (90.1%, 95.0%) 93.6% (90.7%, 95.4%) 

- Parameters of between-visit variability in measurements produced from the same patient 

Standard error of measurement (95% CI) 2.82 (2.36, 3.30) 2.55 (2.17, 3.05) 

Smallest detectable change1 (95% CI) 7.81 (6.54, 9.14) 7.06 (6.01, 8.45) 

Coefficient of variation (95% CI) 9.5% (8.0%, 11.2%) 8.9% (7.5%, 10.5%) 

Reference change values (95% CI) 26.3% (22.2%, 31.0%) 24.7% (20.8%, 29.1%) 

Index of individuality (95% CI) 0.28 (0.23, 0.33) 0.26 (0.22, 0.32) 

- Parameters of within-visit variability in measurements produced from the same patient 

Standard error of measurement (95% CI) 2.13 (2.08, 2.28) 1.85 (1.80, 2.01) 

Coefficient of variation (95% CI) 7.2% (7.1%, 7.8%) 6.5% (6.3%, 7.1%) 

1Three patients presented a difference larger than the smallest detectable change (one for the right hand, one 

for the left hand, and one for both hands). 

 

3.7.2. Additional parameters used for pairwise comparisons 

The results obtained from each pairwise comparison performed between and within the visits were 

presented in Tables 3.3 and 3.4, respectively. The assumptions required for the use of the limits of 

agreement and the Pearson correlation coefficient were met across all comparisons performed, 

particularly when the mean of multiple measurements was used as the visit summary measure (see 

Appendices A1-A4). The Bland Altman plots produced from the pairwise comparisons performed 

between visits are presented in Figure 3.4. Similar to section 3.7.1, only the results obtained from 

the right hand are described, as the results produced from the two hands were very similar to each 

other. 
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3.7.2.1. Variability between visits 

Limits of agreement 

When the mean of the three within-patient measurements produced at each visit was used as a 

summary measure, the limits of agreement produced for the right hand ranged from -6.86kgs to 

5.53kgs. When the summary measure was altered to the highest of the three within-patient 

measurements produced at each visit, the limits of agreement ranged from -6.94kgs to 6.15kgs. For 

both summary measures, the observed variability between the paired values was mainly attributed 

to the random error occurring within the measurements, as the systematic differences between 

measurements were negligible (-0.66kgs for the mean, -0.39kgs for the highest of three 

measurements).  

 

Pearson correlation coefficient 

When the mean of the three within-patient measurements produced at each visit was used as a 

summary measure, the estimate for the Pearson correlation coefficient was as high as 0.96. A similar 

estimate (=0.95) was produced when the summary measure was altered to the highest of the three 

measurements produced from each patient at each visit.  

 

3.7.2.2. Variability in the measurements produced within visits 

Limits of agreement 

The produced limits of agreement were similar across all pairwise comparisons performed within 

each visit, with narrower intervals observed for comparisons including adjacent measurements. The 

lower limit ranged from -8.13kgs to -5.09kgs, while the upper limit ranged from 4.06kgs to 7.14kgs. 

In all different comparisons performed, the observed variability between the paired measurements 



97 
 

was mainly attributed to the random error occurring within the measurements, as the systematic 

differences between measurements were negligible (varying from -0.71kgs to 0.27kgs).  

 

Pearson correlation coefficient 

A high reliability was noted for the three pairwise comparisons made within each of the two visits, 

the estimates for the Pearson correlation coefficients ranging between 0.94 and 0.97.  
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Figure 3.4. Bland Altman plots of the mean and highest of three within-individual measurements produced at each visit. 

 

i) Values produced from the right hand 
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ii) Values produced from left hand 
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Table 3.3. Results obtained from pairwise comparisons performed between the two visits. 

 Right hand Left hand 

- Mean of three measurements produced at each visit 

Mean difference [(95% CI), N] -0.66 [(-1.40, 0.07), 70] -0.85 [(-1.53, -0.16), 67] 

95% limits of agreement (95% 
CI) 

-6.86 to 5.53 (-8.13, 6.81) -6.44 to 4.75 (-7.63, 5.94) 

Pearson correlation (95% CI) 0.96 (0.93, 0.97) 0.96 (0.94, 0.98) 

- Highest of three measurements produced at each visit 

Mean difference (95% CI) -0.39 [(-1.17, 0.39), 70] -0.72 [(-1.40, -0.05), 67] 

95% limits of agreement (95% 
CI) 

-6.94 to 6.15 (-8.29, 7.50) -6.24 to 4.80 (-7.41, 5.96) 

Pearson correlation (95% CI) 0.95 (0.93, 0.97) 0.96 (0.94, 0.98) 

 

 

Table 3.4. Results obtained from pairwise comparisons performed within each visit. 

 Right hand Left hand 

- Visit 1:   measurement 1 v measurement 2 

Mean difference [(95% CI), N] -0.21 [(-0.84, 0.42), 84] -0.86 [(-1.45, -0.28), 80] 

95% limits of agreement (95% 
CI) 

-6.00 to 5.59 (-7.09, 6.67) -6.10 to 4.38 (-7.11, 5.39) 

Pearson correlation (95% CI) 0.96 (0.94, 0.98) 0.97 (0.95, 0.98) 

- Visit 1:   measurement 1 v measurement 3 

Mean difference [(95% CI), N] -0.49 [(-1.32, 0.34), 84] -0.76 [(-1.50, -0.02), 80] 

95% limits of agreement (95% 
CI) 

-8.13 to 7.14 (-9.56, 8.57) -7.41 to 5.89 (-8.69, 7.17) 

Pearson correlation (95% CI) 0.94 (0.90, 0.96) 0.95 (0.92, 0.97) 

- Visit 1:   measurement 2 v measurement 3 

Mean difference [(95% CI), N] -0.28 [(-0.81, 0.24), 84] 0.11 [(-0.41, 0.62), 81] 
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95% limits of agreement (95% 
CI) 

-5.09 to 4.52 (-5.99, 5.43) -4.53 to 4.74 (-5.41, 5.62) 

Pearson correlation (95% CI) 0.97 (0.96, 0.98) 0.975 (0.96, 0.98) 

- Visit 2:   measurement 1 v measurement 2 

Mean difference [(95% CI), N] 0.27 [(-0.50, 1.04), 70] -0.22 [(-0.76, 0.32), 69] 

95% limits of agreement (95% 
CI) 

-6.17 to 6.71 (-7.50, 8.04) -4.72 to 4.28 (-5.65, 5.21) 

Pearson correlation (95% CI) 0.96 (0.93, 0.97) 0.974 (0.96, 0.98) 

- Visit 2:   measurement 1 v measurement 3 

Mean difference [(95% CI), N] -0.46 [(-1.18, 0.26), 69] -0.33 [(-0.92, 0.27), 68] 

95% limits of agreement (95% 
CI) 

-6.44 to 5.53 (-7.68, 6.77) -5.21 to 4.56 (-6.24, 5.59) 

Pearson correlation (95% CI) 0.96 (0.94, 0.98) 0.97 (0.95, 0.98) 

- Visit 2:   measurement 2 v measurement 3 

Mean difference [(95% CI), N] -0.71 [(-1.28, -0.14), 69] -0.12 [(-0.68, 0.43), 68] 

95% limits of agreement (95% 
CI) 

-5.48 to 4.06 (-6.47, 5.05) -4.72 to 4.47 (-5.68, 5.43) 

Pearson correlation (95% CI) 0.97 (0.96, 0.98) 0.97 (0.96, 0.98) 

 

 

3.8. Discussion 

This study aimed to examine the error of the grip strength measurements produced from 

patients from a Takei digital dynamometer, as well as the variability in the measurements 

produced from the same patient (i.e., measurement error), both between two different visits 

and within a single visit. For this purpose, 84 patients were recruited and assessed at two 

different clinic visits, set two weeks apart, with 3 measurements produced from each patient 

at each visit. However, this sample size was not based on any formal statistical calculation, 

while the limited number of visits and measurements performed within each visit did not allow 

the corresponding components to variability to be estimated with high precision. Furthermore, 
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this study was restricted to patients with sarcopenia and chronic inflammatory diseases, which 

does not allow generalisation of the results to a wider population.  

The regression-based analysis indicated that the measurements produced from both hands 

were accompanied by error, which was attributed to both variability in the way patients 

performed between the two visits, and variability in the measurements produced for the same 

patient within each visit. However, for both hands, the measurements were produced with 

high reliability and acceptable levels of error. The produced estimates for the standard error of 

measurement were approximately equal to those reported in similar studies examining the 

reproducibility of grip strength measurements and were considered acceptable by the authors 

[33, 128], while the estimated coefficient of variation for both hands was less than 10%. The 

cut-off value of 10% was used as an indicator of acceptable within-patient variability in similar 

studies assessing the reproducibility of grip strength measurements [108, 129]. Furthermore, 

the proportion of the total variability attributed to either between-visit variability or between-

measurement within-visit variability appeared negligible. In contrast, the intra class correlation 

for the patient level was >0.90 for both hands, indicating that more than 90% of the total 

variability in the grip strength measurements was attributed to true differences between 

patients. This reveals that the produced measurements were highly reliable in distinguishing 

patients with a stronger grip, from patients with a weaker grip, despite the presence of 

measurement error. Only 3 patients presented an absolute between-visit difference larger 

than the smallest detectable change, with 2 out of 3 patients showing this difference in either 

hand (right or left), and the remaining patient showing this difference in both hands. Based on 

this method, it can be stated with 95% confidence that these patients were likely to have 

experienced a change in their health status. As expected, the results obtained from the 

smallest detectable change were very similar to those obtained from the reference change 

value. 
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Additional analysis included the use of the limits of agreement as a parameter of measurement 

error, and the Pearson correlation coefficient as a parameter of reliability. An obvious 

disadvantage of the two parameters is that both can only be used when a pair of 

measurements is available from each patient. Furthermore, the Pearson correlation coefficient 

may be used as a reliability parameter only when the variability between the paired 

measurements is attributed to the random error occurring within each measurement, as it is 

unable to account for any systematic variability between the two measurements [15]. 

However, the Pearson correlation coefficient was in this case expected to be an adequate 

measure of reliability, given that: (i) the individual effect of clinicians assessing the patients 

was in this case expected to be negligible (measurements are produced from an objective 

device with no clinical interpretation required), and (ii) every possible attempt was made to 

minimise any other potential source of systematic variability (as described under section 3.4). 

The results confirmed that, for all pairwise comparisons performed between and within visits, 

the variability between paired measurements was mainly attributed to the random error 

occurring within measurements, as systematic differences between measurements were low 

(as expected with an objective test), while high reliability estimates were observed across all 

pairs (Pearson correlation values>0.90). 
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3.9. Conclusion 

The results indicated that, although not error-free, measurements produced from a Takei 

digital dynamometer are highly reliable. However, in order to state that Takei digital 

dynamometers can be used in clinical practice as part of evaluating loss of grip strength in 

patients with sarcopenia and chronic inflammatory disease, new evidence is required based on 

a formal sample size calculation (e.g., number of patients required to detect a pre-specified 

clinically acceptable estimate of reliability and/or measurement error), and a higher number of 

within-individual measurements. However, the latter may not always be possible when a frail 

population is tested. Finally, the results are only applicable to patients with sarcopenia and 

chronic conditions, and should not be generalised to a wider population. 
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4. Current state of systematic review methods and 
meta-analytic approaches used for evaluating the 
reliability and measurement error of biomarkers 

 

4.1. Introduction 

A systematic review involves searching the medical literature in order to collect, critically 

appraise, and synthesize results reported in primary studies. It uses explicit, systematic 

methods which are selected with a view to eliminating bias, thus providing more robust 

findings [130, 131]. The conclusions drawn can be used for research purposes, guideline 

development, evidence-based patient care and policy-making [15]. While systematic reviews 

examining the diagnostic accuracy or prognostic ability of biomarkers have become 

commonplace [87, 132], the extent to which systematic methods have been adopted for 

systematic reviews of the reliability and measurement error of biomarkers is less clear. A 2009 

methodological review of the measurement properties of health status measurements found 

the 148 included reviews to be generally of poor quality [133]. For example, 22% of the 

identified reviews used only one electronic data base for identifying primary studies, while the 

search strategy was often too narrow or not clearly described. The majority of the reviews (i.e., 

>70%) did not report the approach to article selection and data extraction, while in some 

reviews, these tasks were completed by a single reviewer (rather than at least two 

independent reviewers). The subsequent COnsensus-based Standards for the selection of 

health Measurement Instruments (COSMIN) initiative has since provided a guide for 

conducting systematic reviews of patient-reported outcome measures [134]. Although these 

standards may not be fully applicable to biomarkers, guidelines provided on the domains of 

reliability and measurement error of patient-reported outcome measures are expected to 
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have also improved the methodological quality of reviews examining the reliability and 

measurement error of biomarkers. 

Furthermore, systematic reviews typically use meta-analytical methods to combine the 

estimates of a particular parameter of interest reported in the identified primary studies, so 

that a summary estimate is obtained. Such meta-analytical methods are well established for 

estimates regarding the diagnostic accuracy or prognostic ability of biomarkers [87, 88], but 

less developed with respect to their reliability and measurement error. Thus, this chapter 

purposely identified published systematic reviews examining the reliability and measurement 

error of biomarkers, in order to appraise the review process used in the identified systematic 

reviews, and examine the current state of statistical methods used for the meta-analysis of any 

parameters of reliability and measurement error.  

 

4.2. Objectives 

The primary objective of this chapter was to examine the current state of statistical methods 

used for the meta-analysis of parameters of reliability and measurement error. A secondary 

objective was to evaluate the review process used in the identified systematic reviews. For the 

primary objective, the identified meta-analytic methods were summarised as frequency of use 

(and percentage), while the appropriateness of use was also discussed. For the secondary 

objective, each of the key steps of the review process were examined, including the 

comprehensiveness of the search strategy, the presence and nature of quality assessment, and 

use of independent screening, data extraction and quality assessment. 
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4.3. Methods 

Data sources 

Electronic searches of MEDLINE and EMBASE were undertaken by one reviewer (JD) on 4-4-

2019 to identify relevant English language studies published to date. The search strategies 

were informed by the COnsensus-based Standards for the selection of health Measurement 

Instruments (COSMIN) search filter for identification of studies on measurement properties 

[135], and are provided in Appendix B1. The starting date was set at 2010 to ensure the 

retrieval of a sufficient number of eligible reviews that reflect the current standard of 

systematic reviews in the field, and because the previous COSMIN review on a similar topic 

was published in 2010. 

 

Study selection  

Study selection (title and abstract and full text) was undertaken by one of the reviewers 

involved in this work (KT or JD) after an initial pilot on a sample of 60 reviews to ensure 

satisfactory agreement in study selection between the 2 reviewers. Systematic reviews were 

eligible for inclusion if: 

• the reviews were examining any potential sources of variability of at least one test in 

any population. 

• the reviews were published in English. 

• at least one electronic database was used for the identification of primary studies.  

• at least one statistical parameter of reliability and measurement error was reported. 

Reviews only available as conference abstracts or protocols were excluded. No other 

restrictions were applied. All excluded reviews were double checked, and any disagreements 
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were resolved by consensus between the two reviewers. A relatively broad definition of a 

systematic review was used to provide a comprehensive reflection of current practice. 

 

Data collection 

Data extraction was carried out by one reviewer (KT or JD) using a pre-specified data 

extraction form (provided in Appendix B2), which was piloted on a sample of 10 randomly 

selected reviews. Detailed information was extracted regarding: 

• the type of test and the condition it was tested for. 

• The sources of test variability examined. All reported sources of variability were of 

interest and recorded (e.g., inter or intra-observer variability). 

• the review methods used, including the literature search and approach to screening, 

data extraction, and quality assessment. 

• the statistical methods used to examine the reproducibility of biomarkers. 

• the statistical methods used for pooling the reported estimates of reproducibility. 

 

 

Appraisal of review process 

To appraise the quality of the review process, the following information was recorded:  

• whether the inclusion and exclusion criteria for primary studies were described. 

• whether the characteristics of the included primary studies were presented. 

• whether the full search strategy was provided. 

• whether at least one more database was searched in addition to PUBMED/ MEDLINE. 

• whether an assessment of the methodological quality of the primary studies included 

in the reviews was conducted. 



109 
 

• whether article selection, data extraction, and quality assessment were carried by at 

least two independent reviewers. 

The choice of the aforementioned criteria was based on a methodological review of the 

measurement properties of health status measurements, conducted by Mokkink et al in 2009 

[133]. 

 

Data synthesis 

The extracted information was summarised as frequencies and percentages. A narrative 

synthesis was then used to assess the quality of the review process, and the appropriateness 

of the statistical methods employed for the meta-analysis of the reported estimates. 

 

4.4. Results 

4.4.1. Summary of Reviews identified 

A total of 3284 unique records were retrieved, of which 279 were selected for full text 

assessment. Of the 279 records, 219 met the eligibility criteria (Figure 4.1). A summary of the 

identified reviews is presented in Table 4.1, while the characteristics of each individual review 

are presented in Appendix B3. A wide range of target conditions was covered, from severe 

types of diseases including rheumatic disorders (15, 7%), heart disease (14, 6%), and various 

types of cancer (8, 4%), to the physical performance of healthy populations (15, 7%).  

Approximately half (114, 52%) of reviews focused on assessment of physical performance 

(using device-based and/or non-device based tests), 62 (28%) evaluated imaging tests, and the 

remainder evaluated laboratory biomarkers (13, 6%), physiologic measures (12, 5%), clinical 

examination (8, 4%), or multiple test types (11, 5%). Of the 219 reviews, the observer effect 

was examined in 138 reviews (63%). Of these 138 reviews, the majority (123, 89%) examined 
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both inter and intra-observer variability, with an additional 10 (8%) and 5 (4%) reviews only 

examining inter-observer or intra-observer variability, respectively. 

 

Figure 4.1. PRISMA flow chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Titles and abstracts identified 

through database searching 

N= 3284 

Included 

N= 219 

Reasons for exclusion (N= 60): 

• Conference abstracts (n=15) 

• Comparison of different tests (n=11) 

• Questionnaires (n=9) 

• Not reporting measurement variability 

(n=9) 

• Non-English (n=5) 

• Protocols (n=5) 

• Not systematic reviews (n=3) 

• Not limited to humans (n=2) 

• Testing strategy including multiple 

tests (n=1) 

 

Full text assessment 

N= 279 

Quantitative synthesis performed 

N= 22 

Quality assessment performed 

N= 179 

Excluded 

N= 3005 
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Table 4.1. Summary of the identified reviews. 

Total (n=219) 
 

Frequency (%) 

Test variability as main aim (%) 163 (74) 

Type of tests assessed  

Imaging1  62 (28) 

Laboratory biomarker2 13 (6) 

Physical performance measures3  114 (52) 

- Device based  32 (15) 

- Non-device based  56 (26) 

- Device & non-device based  26 (12) 

Physiologic4 12 (5) 

Clinical examination5  8 (4) 

Combination* 11 (5) 

Type of variability examined  

Test-retest6 only 70 (32) 

Inter-observer only 10 (5) 

Intra-observer only 5 (2) 

Test-retest6 & Inter-observer 4 (2) 

Test-retest6 & Intra-observer 3 (1) 

Inter & Intra-observer 84 (38) 

All three types 39 (18) 

Not clear/ specified 4 (2) 
1tests that produce detailed images of areas inside the human body (e.g., MRI, ultrasound). 

2tests that are based on the analysis of blood/urine samples, or other substances of the human body (e.g., 

haemoglobin). 

3tests that describe the physical performance of an individual (e.g., hand-held dynamometer or 6-minute walk test). 

4tests that describe any physiologic characteristics of an individual (e.g., blood pressure). 

5tests that are based on the clinical examination of an individual (e.g., osteopathic diagnostic palpatory test). 

6variability of multiple within-individual measurements taken over time. Observer effect not considered. 

* Device based physical function test & Non-device based physical function test & Imaging test (n=6); Physiologic 

test & Imaging test (n=2); Clinical examination & Imaging test (n=1); Device based physical function test & Imaging 

test (n=2). 

 

4.4.2. Description of review methods 

Table 4.2 shows the results for the evaluation of the review process of the identified 

systematic reviews, while details on each individual review are provided in Appendix B4. The 

majority of the included reviews provided a clear definition of the inclusion criteria (216, 99%), 

a clear presentation of the individual study characteristics (200, 91%), and searched at least 
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one electronic database in addition to PUBMED or MEDLINE (195, 89%). The full search 

strategy was provided in 117 reviews (54%), while 95 reviews (43%) briefly described the 

search terms in the text. Screening titles and abstracts was reported to have been carried out 

independently by two or more reviewers in 138 reviews (63%), while this number was 

significantly lower for data extraction (82, 37%). Quality assessment of the included primary 

studies was reported to have been conducted in 177 reviews (81%). Of the 177 reviews, 

approximately half (82, 47%) used tools developed for reliability studies (i.e., COSMIN [134] 

and QUAREL [136]), while 39/177 reviews (22%) used quality criteria selected by the review 

authors themselves. The quality assessment was carried out independently and in duplicate in 

133 (75%) reviews.  

 

Table 4.2. Assessment of the quality of the review process used in the identified reviews. 

Total (n=219) 
 

N (%) 

Inclusion criteria presented (%)  

- Yes 216 (99) 

- No 3 (1) 

Study characteristics presented (%)  

- Yes 200 (91) 

- Partially (brief description in text) 14 (7) 

- Not reported 5 (2) 

Databases searched (%)  

- PUBMED/ MEDLINE plus other 195 (89) 

- PUBMED/ MEDLINE only 21 (10) 

- Other 1 (<1) 

- Not reported 2 (1) 

Search terms described (%)  

- Yes (full strategy provided) 117 (54) 

- Partially (some terms in text provided) 95 (43) 

- No 7 (3) 

Search period described (%)  

- Yes 149 (68) 

- Partially (start or end date provided) 56 (26) 

- No 14 (6) 

Screening (%)  

- Independent and duplicate 138 (63) 

- Single reviewer 31 (14) 

- Not reported 50 (23) 

PRISMA flow chart presented (%) 182 (83) 
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Data extraction (%)  

- Independent and duplicate 82 (37) 

- Single reviewer 39 (18) 

- Not reported 98 (45) 

Quality assessment (%)  

- Yes 177 (81) 

- No 42 (19) 

If yes, how was this conducted? (%)  

- Independent and duplicate 135 (76) 

- Single reviewer 10 (6) 

- Not reported 29 (16) 

- Not clear 3 (2) 

QA tools used* (%)  

- COSMIN 56 (31) 

- QUAREL  26 (15) 

- QUADAS  16 (9) 

- Other  52 (29) 

- Author’s own 39 (22) 
*Some studies used multiple QA tools 

 

 

4.4.3. Description of statistical estimates reported in the reviews 

Table 4.3 includes the statistical estimates used to examine the reliability and measurement 

error of tests and biomarkers that were reported in the reviews. The intra class correlation 

(ICC) was the most commonly reported estimate (175, 80%), followed by the standard error of 

measurement (60, 27%), the Kappa coefficient (59, 27%), the coefficient of variation (55, 25%), 

standard correlation coefficients (52, 24%), the limits of agreement (40, 18%), and the 

repeatability coefficient (35, 16%). A description of each statistic has been provided in Chapter 

2. 

 

Table 4.3. Statistical parameters reported in the identified reviews. 

Statistical parameter* (%) N (%) 

Intra class correlation 175 (80) 

Standard error of measurement 60 (27) 

Kappa coefficient 59 (27) 

Coefficient of variation 55 (25) 

Limits of agreement 40 (18) 

Repeatability coefficient 35 (16) 
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Pearson’s correlation 42 (19) 

Spearman’s correlation 10 (5) 

Other 54 (25) 

Quantitative synthesis performed (%) 22 (10) 
*Some studies used multiple parameters 

 

4.4.4. Description of pooling approaches used in the reviews 

Of the 219 reviews, 197 presented a narrative synthesis, with only 22 (10%) performing a 

quantitative synthesis of the reported statistical estimates (see Table 4.4 for a summary). The 

majority of these reviews (6/22, 27%) were conducted in 2017, with the remaining studies 

being evenly split across 2011-2019. Of the 22 reviews, 16 (73%) used aggregated study-level 

data to produce a weighted average of the reported estimates, with the majority (11/16, 69%) 

using a random-effects model for this purpose. Two reviews (13%) used a fixed-effect model to 

produce weighted average, with one review stating that the choice of a fixed-effect model was 

due to the fact that the categorical variables in the included studies covered all possible 

categories in the literature. The remainder (3/16, 19%) did not specify the type of model being 

used. The most common statistical approaches used for examining the presence of significant 

between-study heterogeneity were the Cochran’s Q and I-squared tests, reported in 6/16 

(38%) and 8/16 (50%) reviews, respectively, with one review using both tests. In the remaining 

3/15 reviews (20%) the presence of heterogeneity was not reported to have been examined in 

any way. 

Three (14%) reviews performed individual patient data meta-analysis pooling the individual 

test-retest data obtained from the patients into one large single data set [28, 137, 138], while 

the remaining three (14%) described the distribution of the study estimates using summary 

statistics [139-141]. The methods identified are described in detail in sections 4.4.4.1-4.4.4.3.  
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4.4.4.1. Synthesis of aggregate study-level data to produce a weighted average estimate 

Sixteen reviews used aggregate study-level data to produce a weighted average, with 4/16 

(25%) reviews pooling more than one statistical parameter. The most common meta-analytic 

parameter was the intra class correlation, encountered in 7 reviews (44%). Other parameters 

included the coefficient of variation (4, 25%), the limits of agreement (3, 19%), the Kappa 

agreement coefficient (2, 13%), the standard error of measurement (2, 13%), the coefficient of 

repeatability (1, 6%), and the Pearson correlation coefficient (1, 6%), while 1 review (6%) 

pooled estimates of different types of correlation coefficients (ICC, Pearson, and Spearman).   

 

Intra class correlation coefficient 

Of the 7 reviews producing a weighted average for the intra class correlation, the majority (4, 

57%) employed the method proposed by Hedges and Olkin [142]. One used the method 

proposed by Hunter and Schmidt [143], while the remainder 2 only stated that a random-

effects model was used, with no other details provided. 

 

Hedges and Olkin 

Under this method, the estimates reported across studies are transformed to the Fisher’s Z 

scale prior to meta-analysis using a fixed-effect or random-effects model. This transformation 

has been proposed by Fisher for normalising the sampling distribution of the Pearson 

correlation coefficient and the intraclass correlation coefficient. For the intra class correlation 

coefficient, the transformation is applied as follows 

𝑍𝑟𝑖 = 0.5 ln (
1 + (𝑚𝑖−1)𝑟𝑖

1 − 𝑟𝑖
),  (4.1) 

were 𝑚𝑖  denotes the measurements taken from each individual in the 𝑖𝑡ℎ study, and 𝑟𝑖  is the 

correlation coefficient reported in the 𝑖𝑡ℎ study. The corresponding variance of the Z statistic is 

given by 
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𝑉𝑎𝑟(𝑍𝑟𝑖) =
𝑚𝑖

2(𝑛𝑖 − 2)(𝑚𝑖 − 1)
,  (4.2) 

were 𝑛𝑖 is the number of individuals of the 𝑖𝑡ℎ study.  

When using a fixed-effect model, a pooled estimated of the produced Fisher’s Z values is 

obtained as 

𝑍𝑟𝑖  
̅̅ ̅̅ =

∑ 𝑤𝑖𝑍𝑟𝑖 1≤ 𝑖 ≤ 𝑘 

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

, 
(4.3) 

where 𝑘 is the total number of the studies included in the meta-analysis, and 𝑤𝑖 = (𝑛𝑖 − 3) is 

the weight assigned to the 𝑖𝑡ℎ study. When a random effects model is used, the calculation of 

the weight assigned to the study is extended to 

𝑤𝑖 = (
1

𝑛𝑖 − 3
+ 𝜏2)

−1
,  

(4.4) 

where 𝜏2 is the between-study variance, estimated using the method proposed by 

DerSimonian and Laird.  

The variance of the pooled estimate 𝑍𝑟𝑖 
̅̅ ̅̅  is given by 

𝑉𝑎𝑟𝑍𝑟𝑖̅̅ ̅̅ =
1

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

, 
(4.5) 

with the corresponding 95% confidence interval for  𝑍𝑟𝑖 
̅̅ ̅̅  constructed as n be computed as 

95% 𝐶𝐼𝑍𝑟𝑖̅̅ ̅̅ = 𝑍𝑟𝑖
̅̅̅̅  ± 1.96 × √𝑉𝑎𝑟𝑍𝑟𝑖̅̅ ̅̅  

(4.6) 

The produced estimate and 95% confidence intervals are then reverted to the 𝑟𝑖  metric using  

𝑟𝑖 =
𝑒
2𝑍𝑟𝑖  − 1

𝑒
2𝑍𝑟𝑖  +𝑚− 1

  
(4.7) 

Hunter and Schmidt 

Rabelo et al [144] evaluated the reliability of dynamometer-based muscle strength 

measurements in post-stroke individuals with chronic hemiparesis. The authors produced a 

weighted average for the intra class correlation using the method developed by Hunter and 
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Schmidt [143]. This method was originally proposed to summarize the correlation between 

two variables in the field of psychometric meta-analysis (also known as validity generalisation), 

and emphasises the need to correct the variance in population correlations from the sampling 

error, as well as other sources of error (“artifacts”). These may include imperfect construct 

validity in both variables, the presence of error in the measurement of each variable, or 

samples not containing the full range of variation on both variables. Although the 

recommended corrections are considered the greatest strength of this method, this chapter 

focuses only its simplest form, which is correcting the population variance estimate from 

sampling error. In contrast to the method proposed by Hedges and Olkin [142], Hunter and 

Schmidt [143] recommend the use of the observed correlation estimates without applying any 

transformation. An average estimate of the correlation, weighted by sample size, is computed 

as 

𝑟�̅� =
∑ 𝑛𝑖𝑟𝑖1≤ 𝑖 ≤ 𝑘 

∑ 𝑛𝑖1≤ 𝑖 ≤ 𝑘 

 
(4.8) 

where 𝑘 represents the total number of studies, and 𝑟𝑖  and 𝑛𝑖 are the correlation estimate and 

sample size reported in the 𝑖𝑡ℎ study, respectively. The variance in population correlations is in 

turn obtained by subtracting the sampling error variance from the variance in sample 

correlations, as  

𝜎𝑟𝑝
2 = 𝜎𝑟�̅�

2 − 𝜎𝜀
2 (4.9) 

where 𝜎𝑟�̅�
2  and 𝜎𝜀

2 represent the variance in sample correlations and sampling error variance 

estimates, respectively. The variance in sample correlations is estimated as 

𝜎𝑟�̅�
2 =

∑ 𝑛𝑖1≤ 𝑖 ≤ 𝑘 
(𝑟𝑖 − 𝑟�̅�)

2

∑ 𝑛𝑖1≤ 𝑖 ≤ 𝑘 

, 
(4.10) 

while the sampling error variance is estimated as 
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𝜎𝜀
2 =

(1 − 𝑟�̅�
2)2

�̅� − 1
, 

(4.11) 

where 𝑁 represents the average sample size. A 95% confidence interval around 𝑟�̅� is available 

through 

95% 𝐶𝐼𝑟�̅� = 𝑟�̅� ± 1.96 × √𝜎𝑟𝑝
2  

(4.12) 

 

Coefficient of variation 

Of the 4 reviews producing a weighted average for the coefficient of variation, 2 stated the use 

of a random-effects model without providing any other details on how the estimates were 

pooled (e.g., weight assigned to studies, estimation of the between-study variance), while the 

remainder did not specify the type of model being used. 

 

 

Limits of agreement 

Of the 3 reviews producing pooled limits of agreement, one employed the method proposed 

by Williamson et al [145], while the remainder only stated the use of the DerSimonian and 

Laird random effect model.  

 

Method proposed by Williamson et al 

Yoon et al [30] constructed pooled 95% limits of agreement to examine the inter and intra-

observer variability in tumour burden measurements, produced via computed tomography 

and according to the Response Evaluation Criteria in Solid Tumours (RECIST) guideline. This 

was done using the methods presented in Williamson et al [145]. If 𝑦1𝑖𝑗 and 𝑦1𝑖𝑗 represent 2 
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measurements from the 𝑖𝑡ℎ patient (𝑖 = 1,… , 𝑛𝑗) in the 𝑗𝑡ℎ study (𝑗 = 1, … , 𝑘), taken from 2 

different observers or from the same observer twice, the mean difference between the 

measurements (μ𝑑𝑗) and corresponding standard deviation for the 𝑗𝑡ℎ study (𝑆𝐷𝑑𝑗) are 

estimated as 

μ𝑑𝑗 =∑
𝑑𝑖𝑗

𝑛𝑗

𝑛𝑗

𝑖=1

, 

(4.13) 

and 

𝑆𝐷𝑑𝑗 =
√∑

(𝑑𝑖𝑗 − 𝑑�̅�)
2

𝑛𝑗 − 1

𝑛𝑗

𝑖=1

, 

(4.14) 

where 𝑑𝑖𝑗 = 𝑦1𝑖𝑗 − 𝑦1𝑖𝑗 , and 𝑛𝑗 is the total number of individuals recruited in the 𝑗𝑡ℎ study. 

These are the two parameters required for the construction of the limits of agreement. For the 

mean differenceμ𝑑𝑗, the the corresponding sampling error variance of the 𝑗𝑡ℎ study is given by 

𝑉𝑎𝑟 (μ𝑑𝑗) =
(𝑆𝐷𝑑𝑗)

2

𝑛𝑗
,  

(4.15) 

where 𝑆𝐷𝑑𝑗 is the standard deviation of the difference, and 𝑛𝑗 is the sample size of the 

𝑗𝑡ℎ study. When using a fixed-effect model, a weighted average estimate for μ𝑑𝑗  is obtained as 

μ𝑑𝑗̅̅ ̅̅ =
∑ 𝑤𝑗μ𝑑𝑗  1≤ 𝑗 ≤ 𝑘

 

∑ 𝑤𝑗1≤ 𝑗 ≤ 𝑘
 

 
(4.16) 

where 𝑘 is the total number of the studies included in the meta-analysis, and 𝑤𝑗 =
1

𝑉𝑎𝑟(μ𝑑𝑗)
 is 

the weight assigned to the 𝑗𝑡ℎ study. When a random effects model is used, the calculation of 

the weight assigned to the study is extended to 

𝑤𝑗 =
1

𝑉𝑎𝑟(μ𝑑𝑗) + 𝜏
2
,  (4.17) 

where 𝜏2 is the between-study variance, estimated using the method proposed by 

DerSimonian and Laird. 

For𝑆𝐷𝑑𝑗, the the corresponding sampling error variance of the 𝑗𝑡ℎ study is given by 
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𝑉𝑎𝑟 (𝑆𝐷𝑑𝑗) =
(𝑆𝐷𝑑𝑗)

2

2𝑛𝑗
,  

(4.18) 

A weighted average 𝑆𝐷𝑑𝑗
̅̅ ̅̅ ̅̅  is then calculated in a similar fashion to �̅�. The pooled 95% limits of 

agreement are then constructed as 

95% 𝐿𝑜𝐴 = μ𝑑𝑗̅̅ ̅̅  ± 1.96 × 𝑆𝐷𝑑𝑗
̅̅ ̅̅ ̅̅  (4.19) 

 

Cohen’s Kappa coefficient 
 

Of the 2 reviews producing a weighted average for the Kappa coefficient, one employed the 

method proposed by Sun [146], and one only stated that a random-effects model was used, 

with no other details provided. 

 

Method proposed by Sun 

Lange et al [147] carried out a random effects meta-analysis of Cohens Kappa’s as proposed by 

Sun [146], in order to examine the inter and intra-observer reliability of physical examination 

tests used for the diagnosis of shoulder pathologies. The Kappa value of the 𝑖𝑡ℎ study is 

estimated as  

κ𝑖 =
𝑝𝑜𝑖− 𝑝𝑒𝑖

1 − 𝑝𝑒𝑖
    (4.20) 

where 𝑝𝑜𝑖 is the proportion of cases where agreement was achieved, and 𝑝𝑒𝑖 the proportion of 

cases where the agreement was expected by chance. For the corresponding variance, the 

authors provide an approximation using the calculations provided by Everitt [148], and 

assuming a binomial distribution for 𝑝0. This is given by  

𝑉𝑎𝑟(κ𝑖) =
𝑝0𝑖(1 − 𝑝0𝑖)

𝑛𝑖(1 − 𝑝𝑒𝑖)
2 , 

(4.21) 

were 𝑛𝑖 is the sample size of the 𝑖𝑡ℎ study. When using a fixed-effect model, a weighted 

average estimate is produced as 
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κ�̅� =
∑ 𝑤𝑖κ𝑖  1≤ 𝑖 ≤ 𝑘 

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

 
(4.22) 

where 𝑘 is the total number of the studies included in the meta-analysis, and 𝑤𝑖 =
1

𝑉𝑎𝑟(κ𝑖)
 is 

the weight assigned to the 𝑖𝑡ℎ study. When a random effects model is used, the calculation of 

the weight assigned to the study is extended to 

𝑤𝑖 =
1

𝑉𝑎𝑟(κ𝑖) + 𝜏2
 ,  (4.23) 

where 𝜏2 is estimated through 

𝜏2 =
1

𝑘 − 1
∑ (𝜅𝑖 − 

1

𝑘
∑ 𝜅𝑖

1≤ 𝑖 ≤ 𝑘 

)2

1≤ 𝑖 ≤ 𝑘 

− 
1

𝑘
∑ 𝑉𝑎𝑟(𝜅𝑖)

1≤ 𝑖 ≤ 𝑘 

 

 

(4.24) 

The variance of the pooled estimate κ�̅� is given by 

𝑉𝑎𝑟κ𝑖̅̅̅ =
1

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

, 
(4.25) 

with the corresponding 95% confidence interval for κ�̅� constructed as n be computed as 

95% 𝐶𝐼κ𝑖̅̅̅ = κ�̅�  ± 1.96 × √𝑉𝑎𝑟κ𝑖̅̅̅ 
(4.26) 

 

Standard error of measurement 

Of the 2 reviews producing a weighted average for the standard error of measurement, 1 

stated the use of a random-effects model without providing any details on how the between-

study variance was estimated, while the remaining study did not specify the type of model 

used. 

 

Method used in Reavis et al 
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Reavis et al [149] carried out a random effects meta-analysis of standard errors of 

measurement (SEM) reported in studies assessing the test-retest variability of Distortion 

Product Otoacoustic Emission (DPOAE). In comparison to a standard random effects model 

(introduced in Chapter 3), the authors included an additional random effects parameter to 

account for the time difference between the baseline and retest measurements taken in each 

individual study. The authors stated that this was due to the fact that the correlation between 

a baseline and a repeated measurement tends to decrease over time. The study estimates and 

corresponding sampling variances were entered into the following model 

𝑆𝐸𝑀𝑖  = (𝛽𝑜 + 𝛿𝑖) + (𝛽1 + 𝜑𝑖) × 𝐷𝑖 + 𝜀𝑖   (4.27) 

where 𝛽𝑜 represents the population mean, 𝛽1 represents the change in 𝑆𝐸𝑀𝑖  per day of 

follow-up, 𝐷𝑖  represents the difference in days between the baseline and retest measurement, 

𝛿𝑖  ~ 𝑁(0, 𝜏
2) and 𝜑𝑖  ~ 𝑁(0, 𝛾

2) represent study-specific random effects around 𝛽𝑜 and 𝛽1, 

respectively, and 𝜀𝑖~ 𝑁(0, 𝑉𝑎𝑟(𝑆𝐸𝑀𝑖)) represents the within-study error variance. For 

𝑉𝑎𝑟(𝑆𝐸𝑀𝑖), the authors used the formula derived by Kristof [150]. This is given by 

𝑉𝑎𝑟(𝑆𝐸𝑀𝑖) =
𝑆𝐸𝑀𝑖

2

𝑛𝑖
[𝑛𝑖 − (

Γ(
𝑛𝑖 + 1
2

)

Γ(
𝑛𝑖
2
)
)

2

 ] 

(4.28) 

However, the authors did not provide any further details on how 𝜏 and 𝛾 were estimated. 

 

Method used in Rozema et al 

Rozema et al [151] examined the measurement error of various biometric devices used 

ophthalmic practice. An average estimate for the standard error of measurement was 

calculated as 
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𝑆𝐸𝑀 = √(𝑆𝐷𝑟𝑒𝑝𝑒𝑎𝑡)
2 + (𝑆𝐷𝑟𝑒𝑝𝑟𝑜𝑑)

2 
(4.29)  

where 𝑆𝐷𝑟𝑒𝑝𝑒𝑎𝑡 represents a weighted average estimate for the standard deviation of 

measurements performed by the same operator within the same testing session, and 

𝑆𝐷𝑟𝑒𝑝𝑟𝑜𝑑  represents a weighted average estimate for the standard deviation of measurements 

performed by the same operator at different testing sessions, or by different operators. The 

authors state that these two average estimates, 𝑆𝐷𝑟𝑒𝑝𝑒𝑎𝑡 and 𝑆𝐷𝑟𝑒𝑝𝑟𝑜𝑑, were weighted by the 

number of individuals recruited in each study. However, the authors do not specify whether a 

fixed-effect or a random-effects model was employed to produce the two weighted average 

estimates. 

 

Coefficient of repeatability 

Serai et al [152] assessed the repeatability for magnetic resonance (MR) electrography when 

used for measuring liver stiffness. In each included study, the repeatability of the MR 

electrography was examined using the percentage repeatability coefficient, defined as 

𝑅𝐶 = 1.96 × √2 × 𝐶𝑉𝑤  (4.30) 

where 𝐶𝑉𝑤 represents the within-subject coefficient of variation, expressed as a percentage. A 

pooled estimate was produced as 

𝑅𝐶𝑖̅̅ ̅̅̅ =
∑ 𝑛𝑖𝑅𝐶𝑖1≤ 𝑖 ≤ 𝑘 

∑ 𝑛𝑖1≤ 𝑖 ≤ 𝑘 

 
(4.31) 

where 𝑘 is the total number of the studies included in the meta-analysis, and 𝑛𝑖 is the sample 

size, functioning as a weight assigned to the 𝑖𝑡ℎ study. A 95% confidence interval was 

constructed using the bootstrap percentile method (introduced in Chapter 1). The 250th and 
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9750th largest estimates of 𝑅𝐶𝑖̅̅ ̅̅̅ produced from 10000 bootstrap samples were used as the 

lower and upper 95% confidence bounds, respectively. 

 

Pearson correlation coefficient 

Navarro et al [147] carried out a meta-analysis of Pearson correlation coefficients (in addition 

to intra class correlation coefficients) in order to examine the reproducibility of surface 

topography for the evaluation of the adolescent idiopathic scoliosis. For this purpose, the 

authors used the method proposed by Hedges and Olkin [142]. Similar to the intra class 

correlation, the estimates reported across studies are transformed to the Z-scale, and 

weighted average estimate and corresponding 95% confidence intervals are calculated using 

equations 4.3 and 4.6. However, when implementing this method to Pearson correlation 

coefficients, the transformation applied to each study estimate (see equation 4.1) reduces to 

𝑚𝑖 = 2, as this statistic can only be used for pairwise comparisons. 

 

4.4.4.2. Synthesis of individual participant data 

Three reviews carried out an individual patient data (IPD) meta-analysis, analysing the test-

retest data obtained from each participant in each study identified in the search as one single 

large data set. Kramer et al [138] and Langen et al [147] examined the repeatability of 

quantitative fluorothymidine (18F-FLT) and fluorodeoxyglucose (18F-FDG) measurements 

produced by positron emission tomography, respectively, which are used to evaluate response 

to antitumor therapy. Kramer et al [138] assessed the repeatability of the 18F–FLT 

measurements using the repeatability coefficient (RC), the R-square value, and the intra class 

correlation (ICC). The authors initially calculated the percentage differences between the test 

and retest measurements for each patient, as follows 



125 
 

%𝐷𝑖𝑓𝑓 =
(𝑟𝑒𝑡𝑒𝑠𝑡 − 𝑡𝑒𝑠𝑡)

(𝑟𝑒𝑡𝑒𝑠𝑡 + 𝑡𝑒𝑠𝑡)/2
× 100. 

(4.32) 

The repeatability coefficient was in turn calculated as ±1.96 × 𝑆𝐷%𝑑𝑖𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅, where 𝑆𝐷%𝑑𝑖𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅ 

denotes the standard deviation of the percentage differences between the test and retest 

measurements (formula for calculating 𝑆𝐷%𝑑𝑖𝑓𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅ was not provided by the authors). The R-

square value was produced by regressing the retest on the test measurements. The intra class 

correlation was produced using a mixed effects linear model. 

Langen et al [147] assessed the repeatability of the 18F–FLT measurements using the 

repeatability coefficient (RC) and the intra class correlation (ICC). The coefficient of 

repeatability was calculated as 1.96 times the standard deviation of the differences between 

the measurements, with any differences between 2 measurements being 95% likely to be 

attributed to a true change rather than measurement error. The intra class correlation was 

produced through a random effects model, with the study and subject effects both treated as 

random. 

Tagmouti et al [28] assessed the reproducibility of Interferon Gamma (IFN-g) Release Assays 

(IGRA). The variability in the repeated measurements within the same subject was then 

summarised using the coefficient of variation and the intra class correlation. The coefficient of 

variation was calculated as the standard deviation of the repeated measurements divided by 

the grand mean and multiplied by 100. The intra class correlation was obtained through a 

mixed effects model, with the subject effects incorporated into the model as random and the 

study effects as fixed, due to the small number of studies. A Bland-Altman plot and the Kappa 

agreement statistic were also used to assess the agreement between the repeated 

measurements. For the Kappa agreement, the test-retest values were classified according to 

the cut-point recommended by the manufacturer. 
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4.4.4.1. Synthesis of aggregate study-level data using summary statistics 

Three reviews used summary statistics to describe the distribution of the reliability estimates 

reported in the identified studies. Powden et al [139] examined the reliability of the weight-

bearing lunge test (WBLT), which measures dorsiflexion range of motion in the ankle joint. The 

distribution of the reported intraclass correlations and minimum detectable changes were 

described using the mean, median, standard error, minimum, and maximum value.  

Rondoni et al [140] investigated the impact that the type of device (technological v low-cost) 

and the direction of movement (flexion and extension v rotation v side bending) have on the 

reliability of the ACROM (active cervical range of motion) measurements, in patients with non-

specific neck pain. For each category, the authors calculated the mean and standard deviation 

of the reported intra class correlations to summarise the reliability of the ACROM 

measurements.  

Welton et al [141] examined the reproducibility of Graph-Theoretic Brain Network Metrics on 

healthy humans. The authors presented the median value and the range of the reported intra 

class correlations in order to summarise the reliability of each metric. 

 

Table 4.4. Summary of synthesis methods used in the identified reviews. 

Study Year Pooled parameter Type of synthesis Description of method 
Aarsand et al [153] 2018 Coefficient of variation AD1 meta-analysis Not specified 

Cavaleri et al [154] 2017 Intra class correlation AD1 meta-analysis Hedges and Olkin3 random-
effects model 

Chamorro et al 
[155] 

2017 Limits of agreement AD1 meta-analysis DerSimonian-Laird random-
effects model 

De Langen et al 
[137] 

2012 Intra class correlation, 
Repeatability coefficient 

IPD2 meta-analysis Random-effects model. 
Patient and study effects as 

random. 

Gonzalez Lao et al 
[156] 

2019 Coefficient of variation AD1 meta-analysis Not specified 

Hunter et al [157] 2011 Intra class correlation, 
Coefficient of variation, 

Kappa coefficient 

AD1 meta-analysis Random-effects model (no 
other details provided) 
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Kleijn et al [158] 2012 Intra class correlation, 
Limits of agreement 

AD1 meta-analysis Hedges-Olkin3 random 
effects model for intra class 

correlations, 
DerSimonian-Laird random-
effects model for limits of 

agreement 

Kramer et al [138] 2018 Intra class correlation, 
Repeatability 

coefficient, R-square 

IPD2 meta-analysis Mixed-effects model. 
Patient effects as random, 

study effects as fixed 

Lange et al [147] 2017 Kappa coefficient AD1 meta-analysis Sun random-effects model 

Navarro et al [159] 2019 Intra class correlation, 
Pearson correlation 

AD1 meta-analysis Hedges and Olkin3 random-
effects model 

Powden et al [139] 2015 Intra class correlation, 
Repeatability coefficient 

Descriptive statistics Mean, median, standard 
error, 

minimum, maximum. 

Rabelo et al [144] 2016 Intra class correlation AD1 meta-analysis Hunter and Schmidt 
random-effects model 

Reavis et al [149] 2015 Standard error of 
measurement 

AD1 meta-analysis Random-effects model 

Reichmann et al 
[160] 

2011 Intra class correlation, 
Coefficient of variation 

AD1 meta-analysis Random-effects model 

Rondoni et al [140] 2017 Intra class correlation Descriptive statistics Mean, standard deviation 

Rozema [151] 2014 Standard error of 
measurement 

AD1 meta-analysis Not specified 

Salamh et al [161] 2019 Intra class correlation AD1 meta-analysis Hedges and Olkin3 random-
effects model 

Serai et al [152] 2017 Repeatability coefficient AD1 meta-analysis Fixed-effect model using 
sample size as study weight 

Tagmouti et al [28] 2014 Intra class correlation IPD2 meta-analysis Mixed-effects model. 
Patient effects as random, 

study effects as fixed 

Weiner and 
McGrath [29] 

2017 Intra class correlation, 
Pearson correlation 

AD1 meta-analysis Hedges and Olkin3 fixed-
effect model 

Welton et al [141] 2015 Intra class correlation Descriptive statistics Median, IQR 

Yoon et al [30] 2016 Limits of agreement AD1 meta-analysis DerSimonian-Laird random-
effects model 

1 Aggregate study-level data, 2 Individual participant data, 

3 Fisher’s Z transformation is applied to correlation coefficients prior to meta-analysis 

 

 

4.5. Discussion 

Evaluation of the review process 

The first part of this chapter evaluated the systematic methods adopted in the identified 

reviews. It was encouraging to see that the majority of the reviews provided a clear description 

of the inclusion criteria (99%) and study characteristics (91%), and searched at least one 
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database in addition to PUBMED/ MEDLINE (89%), which is in line with guidelines for 

systematic reviews more generally [162, 163].  

On the other hand, only 117 reviews (54%) provided the full search strategy, which in some 

cases was often too narrow and likely to be incomplete, with less than half (43%) providing a 

description of the search terms in the text. Screening titles and abstracts was reported to have 

been conducted independently by two or more reviewers in only 63% of reviews. Published 

evidence suggests that significantly more studies are missed when screening is performed by a 

single reviewer [164]. The number of reviews reporting to have carried out independent and 

duplicate data extraction was even lower (82, 37%), with approximately half of the reviews 

(98, 45%) not clearly describing how data extraction was carried out. The assessment of the 

methodological quality of primary studies was reported to have been conducted in 177 

reviews (81%). In three quarters of these (135, 76%), the methodological quality was assessed 

independently by two or more authors, while 29 (16%) did not provide any information on the 

approach to quality assessment. A wide variety of risk of bias assessment tools was observed, 

with less than half (82, 46%) using tools specifically intended for examining the reliability of 

measurements, while 39 reviews (22%) used quality criteria selected by the review authors 

themselves. 

 

Evaluation of the statistical approaches used for data synthesis 

The second part of the review aimed to investigated statistical approaches used for the 

quantitative synthesis of the results reported across studies. Only 22/219 (10%) reviews 

attempted a quantitative synthesis of the reported data, with the majority (73%) performing a 

meta-analysis of aggregated study-level data to produce a weighted average estimate.  

The most popular meta-analytic method (used in five reviews) was that proposed by Hedges 

and Olkin [142], where the correlation estimates are converted to the Z-scale prior to the 

meta-analysis. Four reviews employed this method to produce a weighted average for the 
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intra class correlation or the Pearson correlation coefficient, while one converted different 

types of correlation estimates reported across studies (ICC, Pearson, and Spearman) to a 

Fisher’s Z-score, which was then used as a standardised common meta-analytic estimate. 

However, the appropriateness of the latter is questionable, and may only be performed when 

strong evidence of no systematic differences between the measurements is provided [15]. An 

alternative approach for pooling correlation coefficients included the method developed by 

Hunter and Schmidt [143], while methods were also identified for the limits of agreement, the 

standard error of measurement, and the repeatability coefficient.  

All of the identified meta-analytic methods have two limitations. Firstly, all parameters are 

expressed as a function of the within-patient variance. However, the variance is a parameter 

known to have a skewed sampling distribution, particularly for particularly for small numbers 

of observations (in this case, studies) [145]. Thus, the assumption of underlying normality of 

the study-level estimates that standard meta-analysis models hold (e.g., the DerSimonian and 

Laird random-effects model) is likely to be violated, and performing a meta-analysis without 

accounting for any distributional requirements may in turn lead to a biased weighted average 

estimate. For the intra class and Pearson correlation coefficients, the use of the Fisher’s Z 

transformation provides a solution to this limitation, as this transformation has shown to 

normalize the sampling distribution of the two parameters. However, no such approach was 

noted in any other method identified.  

Secondly, the formulas used for estimating the sampling variance of some parameters are 

functions, not only of the sample size, but also of the estimate itself. Such parameters include 

the standard error of measurement (equation 4.28), and the standard deviation of the mean 

difference between two within-individual measurements, which is required for constructing 

the limits of agreement (equation 4.18). When the estimation of the sampling variance is 

dependent on the parameter estimate, the use of the inverse-variance weights (which is the 

standard approach for weighting studies) is no more applicable, as the weight assigned to each 
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study will partly depend on the magnitude of the reported estimate (and not entirely on the 

sample size). 

Three of the six reviews that did not conduct study-level meta-analysis carried out an 

individual patient data (IPD) meta-analysis, pooling the test-retest measurements obtained 

from the participants into one single large data set. All three used the intra class correlation to 

assess the reliability of the measurements using a model which accounted for the within-study 

clustering, treating the study effect either as random or as fixed (due to the small number of 

studies). Additional analysis included producing Bland Altman plots, regressing the retest on 

the test measurements to obtain the R-square value, and using the Kappa coefficient to assess 

agreement between the test-retest measurements. However, these estimates were produced 

without accounting for the within-study clustering of the participants.  

Finally, three remaining reviews described the distribution of the study estimates using 

summary statistics. This approach does not account for the fact that some estimates are more 

precise than others, as no weight is assigned to the studies. One of the three [141] stated that 

a meta-analysis of the ICC estimates for the various graph theory metrics was not possible due 

to incomplete reporting of the variances, while it would also be severely limited by the 

heterogeneity of the methods used in the included studies. The other two reviews [139, 140] 

did not justify why a formal meta-analysis of the reported estimates was not attempted. 

 

Strengths and limitations 

This review was the first to explore the current practice for conducting and reporting 

systematic reviews of the reliability and measurement error of biomarkers, and the current 

state of statistical methods available for the meta-analysis of parameters of reliability and 

measurement error. The findings indicated important flaws in how such reviews are conducted 

and reported, and how parameter estimates of reliability and measurement error reported 

across primary studies are combined. Two different databases were searched for the 
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identification of the reviews (MEDLINE and EMBASE), which is in agreement with guidelines for 

conducting systematic reviews in general [162, 163], and will have ensured retrieval of a 

comprehensive set of reviews that adequately reflect current practice.  

However, this review has the following limitations. First, the study selection and data 

extraction was carried out by 1 reviewer only, and it is advised that these two tasks should be 

performed independently by at least two reviewers [133]. However, this was a methodologic 

review aiming to provide a comprehensive reflection of current practice, and hence did not 

need to be as comprehensive in study identification as it would be for, e.g., a systematic 

review of intervention effects or test accuracy. Furthermore, the review did not consider the 

adequacy of tools used for assessing the quality of the primary studies included in the 

identified reviews, while the overall quality of the reviews was not assessed using a formal 

checklist (e.g., similar to AMSTAR 2 [165], which is intended for systematic reviews of 

healthcare interventions). However, the latter were outside the scope of this work, which 

aimed to provide a general overview of current practice in this under-researched area, and 

primarily to identify statistical approaches for the synthesis of the data reported in primary 

studies. Finally, it is possible that findings of this review may be slightly outdated by the time 

the thesis is submitted (September 2022), given that this work was completed in 2020. 

 

4.6. Conclusion 

In this methodological review of systematic reviews examining the reliability and 

measurement error of biomarkers, a number of limitations in the review process and meta-

analytic methods used were identified. There is scope for improvement in how such reviews 

are conducted and reported. In a high number of reviews, the article selection, data extraction, 

and quality assessment was not performed by at least two independent reviewers, while the 

quality of the identified primary studies was often not assessed. Furthermore, the search 
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strategy used, as well as the approach to screening, data extraction, and quality assessment 

were often not clearly reported. For the quality assessment of primary studies, a number of 

different risk of bias tools were used, with some reviews using quality criteria selected by the 

authors themselves. These findings emphasize the need for more specific guidance, both for 

conducting and reporting such reviews, and appraising the methodological quality of the 

primary studies examining the reliability and measurement error of biomarkers. Such guidance 

will improve the quality of reviews examining the reliability and measurement error of 

biomarkers, and in turn allow decision making to be based on high quality and well reported 

evidence. 

Finally, methods for the meta-analysis of study-level data were identified for most parameters 

of reliability and measurement error. However, alternative methods are required for key 

parameters of measurement error, such as the standard error of measurement, the coefficient 

of variation, and the limits of agreement. These methods should focus on accounting for the 

non-normal distribution of the parameters, and stabilizing the sampling error variance so that 

the method of inverse-variance weights can be applied. Less biased and more precise average 

estimates will then be obtained, which will help researchers provide robust quantitative 

evidence on the reliability and measurement error of biomarkers using a whole body of 

research. 
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5. Proposed meta-analytic approaches for 
parameters of measurement error 

 

5.1. Introduction  

In the previous chapter, systematic reviews reporting the reliability and measurement error of 

tests were identified in the literature, in order to examine the current state of the statistical 

methods used for the meta-analysis of estimates of reliability and measurement error. Only 22 

of the 219 reviews identified (10%) attempted a quantitative synthesis of the data reported in 

the primary studies, with the majority performing a meta-analysis of aggregated study-level 

estimates using the random-effects model proposed by DerSimonian and Laird [89]. The 

previous chapter discussed the potential limitations that this approach has when pooling 

parameters of reliability and measurement error. These include i) the violation of the 

normality assumption that the model holds, due to the non-normal sampling distribution of 

these parameters, and ii) the estimation of the within sampling variance not being 

independent of the parameter estimate. For i), the violation of normality assumption may lead 

to biased average estimates, and in turn false conclusions regarding the reliability and 

measurement error of biomarkers. Whilst the Fisher’s Z transformation proposed by Hedges 

and Olkin [142] provides a potential solution to this problem when pooling Pearson or intra 

class correlation coefficients, no such approaches was observed for other parameters, such as 

the limits of agreement, the standard error of measurement, and the coefficient of variation. 

For ii), stabilization of the sampling error variance is required, so that its estimation is 

independent of the estimate of the meta-analytic parameter, which will allow the method of 

inverse-variance weights to be implemented. 
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5.2. Aim 

The aim of this chapter is to present alternative methods for three key parameters of 

measurement error. These include the limits of agreement, the standard error of 

measurement, and the coefficient of variation. 

 

5.3. Proposed meta-analytic approach for the limits of agreement 

In 2017, Tipton and Shuster [166] provided a framework for producing pooled estimates for 

the limits of agreement. Let 𝑦1𝑗 and 𝑦2𝑗  represent two repeated measurements for the 𝑗𝑡ℎ 

individual (𝑗 = 1,… , 𝑛𝐺), where 𝑛𝐺  is the total number of individuals. Assuming that the 

individual differences 𝑑𝑗 = 𝑦1𝑗 − 𝑦2𝑗  are sampled from a normal population with mean 𝑑 and 

standard deviation 𝑆𝐷𝑑, the 95% limits of agreement are constructed as  

𝐿𝑜𝐴 = �̂�  ± 1.96 × 𝑆𝐷�̂� (5.1) 

, where �̂� = ∑
𝑑𝑗

𝑛𝐺

𝑛𝐺
𝑗=1  is the estimated mean difference between the repeated measurements, 

and 𝑆𝐷�̂� = √∑
(𝑑𝑗−𝑑)2

𝑛𝐺−1

𝑛𝐺
𝑗=1

 is the estimated standard deviation of the difference. Thus, 

constructing a pooled interval across the identified studies requires weighted average 

estimates for the mean difference between two repeated measurements (𝑑), and the 

standard deviation of the difference (𝑆𝐷𝑑).  

 

Method for producing a weighted average estimate for 𝒅 

For the mean difference between two repeated measurements, Tipton and Shuster [166] state 

that the sampling distribution of the parameter can be assumed to be normal, with 𝐸[�̂�] = 𝑑 

and 𝑉𝑎𝑟[�̂�] =
𝑆𝐷𝑑

2

𝑛𝐺
. A weighted average across 𝑘 studies (𝑘 = 1,… , 𝑛𝑆) is produced as  
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�̅� =
∑ 𝑊𝑘 × (�̂�)𝑘1≤ 𝑘 ≤ 𝑛𝑠 

∑ 𝑊𝑘1≤ 𝑘 ≤ 𝑛𝑠 

 
(5.2) 

, where 𝑊𝑘 =
(𝑛𝐺)𝑘

(𝑆𝐷𝑑
2̂)𝑘

 is the weight assigned to each study, and (�̂�)𝑘, (𝑆𝐷�̂�)𝑘 , (𝑛𝐺)𝑘 denote the 

estimated mean difference, standard deviation of the difference, and sample size of the 𝑘𝑡ℎ 

study, respectively. The authors highlight the importance of the parameter estimate being 

independent of the sampling variance, which allows for the use of the inverse-variance weights 

[166]. 

 

Method for producing a weighted average estimate for 𝑺𝑫𝒅 

For the standard deviation of the difference, Tipton and Shuster [166] state that, assuming 

that 𝑑𝑗 are normally distributed, it follows that 

(𝑛𝐺 − 1)𝑆𝐷𝑑
2̂

𝑆𝐷𝑑
2 ~ 𝜒(𝑛𝐺−1)

2  
(5.3) 

, which implies that 𝐸[𝑆𝐷𝑑
2̂] = 𝑆𝐷𝑑

2 and 𝑉𝑎𝑟[𝑆𝐷𝑑
2̂] =

2𝑆𝐷𝑑
4

𝑛𝐺−1
.  

The authors recommend against the use of the DerSimonian and Laird model for pooling 

estimates of 𝑆𝐷𝑑
2 reported across studies, for two reasons. First, the sampling distribution of 

the parameter is not normal, particularly when the sample size is small, which violates the 

normality assumption that the model holds. Second, the sampling variance is a function, not 

only of the sample size, but also of the estimate itself. Tipton and Shuster suggest using the 

log-transformation as a potential solution to these two issues [166]. Following the use of the 

delta method (introduced in Chapter 2), the authors state that the sampling distribution of  

𝑙𝑜𝑔𝑆𝐷𝑑
2̂ is approximately normal, with 
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𝐸[𝑙𝑜𝑔𝑆𝐷𝑑
2̂] = 𝑙𝑜𝑔𝑆𝐷𝑑

2 +
1

𝑛𝐺 − 1
. 

(5.4) 

 

Based on equation 5.4, Tipton and Shuster [166] state that the quantity [𝑙𝑜𝑔𝑆𝐷𝑑
2̂ −

1

𝑛𝐺−1
] is an 

approximately unbiased estimate of 𝑙𝑜𝑔𝑆𝐷𝑑
2. The second term in equation 5.4 may in turn be 

omitted even for a low number of individuals 𝑛𝐺  (e.g., ≈10). 

A weighted average estimate can then computed using equation the equation labelled as 4.9 

in Tipton and Shuster [166], as  

𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑊𝑘 × [𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘

1≤ 𝑘 ≤ 𝑛𝑆 

∑ 𝑊𝑘1≤ 𝑘 ≤ 𝑛𝑆 

 

(5.5) 

, where [𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘

 is the produced estimate for the 𝑘𝑡ℎ study, and 𝑊𝑘 =
1

𝑉𝑎𝑟[𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘

 is the 

corresponding weight, with 𝑉𝑎𝑟[𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘

 denoting the sampling variance of the 𝑘𝑡ℎ study. 

For estimating 𝑉𝑎𝑟[𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘

, the authors provide the following formula 

𝑉𝑎𝑟[𝑙𝑜𝑔𝑆𝐷𝑑
2̂]
𝑘
=

2

(𝑛𝐺)𝑘 − 1
 

(5.6) 

, where (𝑛𝐺)𝑘 is the sample size of the 𝑘𝑡ℎ study. The derivation of this formula is based on 

the delta method, which was described in Chapter 2. 

 

Pooled limits of agreement and 95% confidence intervals 

A pooled interval can in turn be constructed as  

𝐿𝑂𝐴̅̅ ̅̅ ̅̅ = �̅�  ± 1.96 × √𝑒𝑙𝑜𝑔𝑆𝐷
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 (5.7) 
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Following the advice from Bland and Altman [47], Tipton and Shuster [166] recommend that 

the produced interval is presented along with the lower 95% confidence bound of the lower 

limit of agreement, and the upper 95% confidence bound of the upper limit of agreement 

[166]. These are calculated as  

95%𝐶𝐼 − 𝐿𝑂𝐴̅̅ ̅̅ ̅̅
𝐿 = (�̅� − 1.96 × √𝑒

𝑙𝑜𝑔𝑆𝐷2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) − 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025)√

3 × 𝑒𝑙𝑜𝑔𝑆𝐷
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑝𝑎𝑖𝑟𝑠
 

(5.8)  

, and 

95%𝐶𝐼 − 𝐿𝑂𝐴̅̅ ̅̅ ̅̅
𝑈 = (�̅� + 1.96 × √𝑒

𝑙𝑜𝑔𝑆𝐷2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) + 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025)√

3 × 𝑒𝑙𝑜𝑔𝑆𝐷
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑝𝑎𝑖𝑟𝑠
 

(5.9)  

, where 𝑛𝑝𝑎𝑖𝑟𝑠 is the number of available pairs of measurements, and 𝑡(𝑛𝑝𝑎𝑖𝑟𝑠 − 1, 0.025) is 

the critical value of the Student's t distribution with 𝑛𝑝𝑎𝑖𝑟𝑠 − 1 degrees of freedom and 2.5% 

significance level.  

 

5.4. Proposed meta-analytic approach for the standard error of measurement 

Unlike the limits of agreement, no framework is available for the standard error of 

measurement. Thus, this chapter presents a new method producing a weighted average 

estimate for the standard error of measurement. The derivation of the method is based on the 

approach used by Tipton and Shuster for producing a weighted average estimate for 𝑆𝐷𝑑 

(described in section 5.3). 

 

Method for producing a weighted average estimate for 𝑺𝑬𝑴 

The standard error of measurement is equal to the standard deviation of measurements 

performed within individuals. As mentioned in Chapter 2, this parameter requires the 
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following two assumptions: (i) the measurements produced within each individual are sampled 

from a normal population, and (ii) the variability in the within-individual measurements is the 

same across the individuals. Thus, let 𝑦𝑖𝑗  be the 𝑖𝑡ℎ measurement (𝑖 = 1, … , 𝑛𝐼) produced 

from the 𝑗𝑡ℎ individual (𝑗 = 1,… , 𝑛𝐺), sampled from a normal distribution with mean μ𝑗 and 

variance 𝑆𝐸𝑀2 (common for every individual). When using an analysis of variance (ANOVA) 

model, 𝑆𝐸𝑀2 is estimated as 

𝑆𝐸𝑀2̂ = 𝑀𝑆𝐼 =
𝑆𝑆𝐼

(𝑛𝐼 − 1)𝑛𝐺
 

(5.10) 

, where 𝑆𝑆𝐼 is the sum of squares for the within-individual variance component, 𝑛𝐺  is the 

number of individuals, and 𝑛𝐼 is the number of measurements taken from each individual. If 𝑦�̅� 

denotes the estimated mean value of the 𝑗𝑡ℎ individual, it follows that 

 

𝑆𝑆𝐼 = ∑ ∑ (𝑦𝑖𝑗 − 𝑦�̅�)
2𝑛𝐺

𝑗=1
𝑛𝐼
𝑖=1 ⇒ (from equation 5.10) 

(𝑛𝐼 − 1)𝑛𝐺𝑆𝐸𝑀
2̂ =∑∑(𝑦𝑖𝑗 − 𝑦�̅�)

2

𝑛𝐺

𝑗=1

𝑛𝐼

𝑖=1

⇒ 

 
(𝑛𝐼−1)𝑛𝐺𝑆𝐸𝑀2̂

𝑆𝐸𝑀2
= ∑ (

𝑦𝑖1−𝑦1̅̅̅̅

𝑆𝐸𝑀
)
2𝑛𝐼

𝑖=1 +⋯+ ∑ (
𝑦𝑖𝑛𝐺−𝑦𝑛𝐺̅̅ ̅̅ ̅̅

𝑆𝐸𝑀
)
2

𝑛𝐼
𝑖=1  

= 𝑌1 +⋯+ 𝑌𝑛𝐺 

Given that 
𝑦𝑖𝑗 − μ𝑗

𝑆𝐸𝑀
~𝑁(0,1) for each 𝑗 = 1, … , 𝑛𝐺, and that 𝐸[𝑦�̅�] = μ𝑗 , each 𝑌𝑗  follows a chi-

square distribution with 𝑛𝐼 − 1 degrees of freedom [167]. From the additive property of the 

chi-square distribution [167], it follows that 

(𝑛𝐼 − 1)𝑛𝐺𝑆𝐸𝑀
2̂

𝑆𝐸𝑀2 ~ 𝜒𝑛𝐺(𝑛𝐼−1)
2  

(5.11) 

, which implies that 𝐸[𝑆𝐸𝑀2̂] = 𝑆𝐸𝑀2 and 𝑉𝑎𝑟[𝑆𝐸𝑀2̂] =
2𝑆𝐸𝑀4

𝑛𝐺(𝑛𝐼−1)
.  
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As with 𝑆𝐷𝑑
2̂, the use of these estimates for pooling multiple estimates reported across 

different studies has the following limitations. First, the sampling distribution of 𝑆𝐸𝑀2̂ is 

known to be skewed to the right, and approximates normality only when the product 𝑛𝐺(𝑛𝐼 −

1) is higher than 90 [168]. Second, the sampling variance is a function, not only of 𝑛𝐺  and 𝑛𝐼, 

but also of the estimate itself.  

However, similar to Tipton and Shuster [166], the log-transformation can be used in order to 

tackle the two limitations. When applying this transformation, the distribution of the reported 

study-level estimates is expected to approximate normality, with weighted average estimate 

computed as  

𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑊𝑘 × 𝑙𝑜𝑔𝑆𝐸𝑀𝑘

2̂
1≤ 𝑘 ≤ 𝑛𝑆 

∑ 𝑊𝑘1≤ 𝑘 ≤ 𝑛𝑆 

 
(5.12) 

, where 𝑙𝑜𝑔𝑆𝐸𝑀𝑘
2̂ is the produced estimate for the 𝑘𝑡ℎ study, and 𝑊𝑘 =

1

𝑉𝑎𝑟[𝑙𝑜𝑔𝑆𝐸𝑀𝑘
2̂]

 is the 

weight assigned to the 𝑘𝑡ℎ study, with 𝑉𝑎𝑟 [𝑙𝑜𝑔𝑆𝐸𝑀𝑘
2̂] denoting the sampling variance of the 

𝑘𝑡ℎ study. This can be approximated by the delta method, as follows 

𝑉𝑎𝑟[𝑙𝑜𝑔(𝑆𝐸𝑀2)] = (
𝑙𝑜𝑔(𝑆𝐸𝑀2)

𝜕𝑆𝐸𝑀2
)

2

×
2𝑆𝐸𝑀4

𝑛𝐺(𝑛𝐼 − 1)
=

2

𝑛𝐺(𝑛𝐼 − 1)
 

(5.13) 

The corresponding variance of 𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equal to 

𝑉𝑎𝑟𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

∑ 𝑊𝑘1≤ 𝑘 ≤ 𝑛𝑆 

 
(5.14) 

A 95% confidence interval for the pooled estimate can in turn be constructed as  

95%𝐶𝐼 = 𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ± 1.96 × √𝑉𝑎𝑟𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(5.15) 
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The produced weighted average and 95% confidence intervals, obtained from equations 5.12 

and 5.15, can then be reverted to the original SEM scale by taking the square root of the 

exponential (𝑆𝐸𝑀 = √𝑒𝑙𝑜𝑔𝑆𝐸𝑀
2
). 

 

5.5. Proposed meta-analytic approach for the coefficient of variation 

The coefficient of variation is calculated as the ratio of the standard error of measurement 

(𝑆𝐸𝑀) to the grand mean of the measurements (μ). Therefore, weighted average estimates 

for 𝑆𝐸𝑀 and μ are required in order to derive a weighted average for the coefficient of 

variation.  

 

Method for producing a weighted average estimate for 𝑺𝑬𝑴 

For the standard error of measurement, a weighted average 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  can be obtained as 

described in section 5.4. 

 

Method for producing a weighted average estimate for μ 

Given that the 𝑖 (= 1, … , 𝑛𝐼) measurements produced within the 𝑗𝑡ℎ individual (𝑗 = 1,… , 𝑛𝐺) 

are assumed normally distributed with mean μ𝑗 and variance 𝑆𝐸𝑀2, the grand mean is 

estimated as 

μ̂ =
𝑦1̅̅ ̅ + ⋯+ 𝑦𝑛𝐺̅̅ ̅̅̅

𝑛𝐺
 

(5.16) 

, where 𝑦�̅� is the estimated mean of the 𝑗𝑡ℎ individual. Given that 𝑦1̅̅ ̅, … , 𝑦𝑛𝐺̅̅ ̅̅̅ are independent, 

the corresponding sampling variance can be estimated as 

𝑉𝑎𝑟[μ̂] = 𝑉𝑎𝑟 [ 
𝑦1̅̅̅̅ +⋯+𝑦𝑛𝐺̅̅ ̅̅ ̅̅

𝑛𝐺
 ] ⇒ (given that 𝑦1̅̅̅, … , 𝑦𝑛𝐺̅̅ ̅̅̅ are independent) 



141 
 

 𝑉𝑎𝑟[μ̂] = 𝑉𝑎𝑟 [ 
𝑦1̅̅̅̅

𝑛𝐺
 ]  + ⋯+ 𝑉𝑎𝑟 [ 

𝑦𝑛𝐺̅̅ ̅̅ ̅̅

𝑛𝐺
 ] ⇒ (from Crawshaw and Chambers, page 437 [169]) 

 𝑉𝑎𝑟[μ̂] =
𝑉𝑎𝑟[ 𝑦1̅̅̅̅  ]

𝑛𝐺
2 +⋯+

𝑉𝑎𝑟[ 𝑦𝑛𝐺̅̅ ̅̅ ̅̅  ]

𝑛𝐺
2 ⇒  

 𝑉𝑎𝑟[μ̂] =
𝑆𝐸𝑀2̂

𝑛𝐼𝑛𝐺
2 +⋯+

𝑆𝐸𝑀2̂

𝑛𝐼𝑛𝐺
2 ⇒ 

                         𝑉𝑎𝑟[μ̂] =
𝑆𝐸𝑀2̂

𝑛𝐼𝑛𝐺
 (5.17) 

A weighted average across studies can be computed as  

μ̅ =
∑ 𝑊𝑘 × μ�̂�1≤ 𝑘 ≤ 𝑛𝑠 

∑ 𝑊𝑘1≤ 𝑘 ≤ 𝑛𝑠 

 
(5.18) 

, where μ�̂�  is the estimated grand mean of the 𝑘𝑡ℎ study, and 𝑊𝑘 =
1

𝑉𝑎𝑟[μ�̂�]
=

𝑛𝐼𝑛𝐺

𝑆𝐸𝑀𝑘
2̂
 is the 

corresponding weight.  

 

Pooled coefficient of variation and 95% confidence intervals 

A weighted average for the coefficient of variation is in turn derived as 

𝐶𝑉̅̅ ̅̅ =
𝑆𝐸𝑀̅̅ ̅̅ ̅̅

μ̅
 

(5.19) 

As the coefficient of variation is expressed as a ratio of two other parameters, 95% confidence 

intervals can be constructed via the multivariate delta method or bootstrapping, both 

introduced in Chapter 2.  
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5.6. Discussion 

This chapter presents an alternative meta-analytic method for the limits of agreement, 

proposed by Tipton and Shuster [166], as well as two new methods developed for the standard 

error of measurement and the coefficient of variation. All methods focus on satisfying the 

assumption of underlying normality of the reported study-level estimates that models for 

meta-analysis hold, as well as stabilizing the sampling error variance of the parameters. The 

first was based on examining the sampling distribution of each parameter required for the 

derivation of the limits of agreement, the standard error of measurement, and the coefficient 

of variation. For the mean difference between two within-individual measurements and the 

grand mean, which are required for the derivation of the limits of agreement and the 

coefficient of variation, respectively, the sampling distribution is known to be normal [166, 

169]. This satisfies the assumption of the underlying normality of the reported study-level 

estimates that standard meta-analysis models hold. However, the remaining parameters of 

interest are expressed as a function of the within-individual variance, which is a parameter 

known to have a right-skewed sampling distribution [145, 166]. The proposed methods 

account for potential skewness in the study-level estimates by taking the logarithm of each 

estimate and perform the meta-analysis using the log-transformed estimates, with the 

produced weighted average estimate being reverted to the original scale. This is a common 

approach when dealing with parameters known to have a non-symmetrical sampling 

distribution [170]. Furthermore, using the delta method, the estimated sampling variance is 

independent of the parameter estimate, which allows for the use of the inverse-variance 

weights. The performance of these methods is evaluated in the next chapter, where a meta-

analysis of estimates reported in primary studies examining the reliability and error of grip 

strength measurements was carried out. Finally, as it is common that new methods are 

evaluated by simulation to ensure they work in the scenarios for which they were designed, 

the extent to which the meta-analytic methods proposed for the standard error of 
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measurement and the coefficient of variation are affected by different parameter inputs, 

different numbers of included studies, or different numbers of individuals recruited within 

studies should be further evaluated across different simulated scenarios. 

 

5.7. Conclusion 

This chapter presents new methods for the meta-analysis of common parameters of 

measurement error. The methods aim to provide a less biased and more precise average 

estimate of measurement error, which will allow decisions on whether a test is fit for use in 

medical research and practice to be based on robust summary evidence. Evaluation using case 

studies and simulation is required so that the performance of these methods across different 

scenarios is well understood. 
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6. Systematic Review and meta-analysis of the 
reliability and measurement error of hand-held 
dynamometers used to assess grip strength 

 

6.1. Introduction 

Grip strength (introduced in Chapter 2) is a biomarker proposed for the diagnosis, prognosis, 

or monitoring of numerous diseases, and is commonly measured using a handheld 

dynamometer. In order to be useful in clinical and research settings, the measurements of grip 

strength obtained by handheld dynamometers must be reliable and produced with low 

measurement error, so that robust conclusions can be drawn regarding changes in muscle 

strength. To date, a critical assessment of the evidence for the reliability and error of grip 

strength measurements across different populations is lacking, with the latest systematic 

review been published in 2011 [124]. For this purpose, a systematic review and meta-analysis 

were performed in order to identify primary studies examining the reliability and error of the 

grip strength measurements produced from handheld dynamometers. The results reported in 

the identified studies were then summarised using the meta-analytic methods proposed in the 

previous chapter.  

 

6.2. Objectives 

The primary objective was to examine the reliability and measurement error of the grip 

strength measurements produced from different types of handheld dynamometers (i.e., 

hydraulic, pneumatic mechanical, or strain [124]), across different population groups (e.g., 

healthy individuals, individuals with a particular disease, different genders, or different age 

groups). The secondary objective was to examine the effect of factors that may cause 
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variations in the reliability and error of grip strength measurements. Any such factors 

considered in this study included: 

• Summary measures used per testing session (single measurement, mean of two 

measurements, mean of three measurements, highest of two measurements, highest 

of three measurements). 

• Body posture during the assessment (sitting, standing). 

• Different hands tested in populations with hand injuries (affected, contralateral hand). 

 

6.3. Review methods 

6.3.1. Inclusion criteria 

Types of study designs 

Studies of any design reporting the reproducibility of two or more measurements of maximal 

grip strength produced within individuals were eligible for inclusion. The measurements may 

be taken either from the same observer, or from multiple different observers. Any time 

interval between the measurements was accepted (i.e., from measurements being performed 

within a single testing session up to several months apart), as long as the purpose was not to 

determine changes in the health status of the patients between the measurement sessions. 

Studies assessing grip strength endurance or sustained grip strength were excluded. 

 

Participants 

Studies were restricted to those conducted in adults with any or no pre-existing condition or 

illness. Studies including children (aged under 18) were excluded, unless subgroup data for 

adults could be extracted.  



146 
 

 

Index test(s)  

Evaluations of any type of dynamometer for assessing grip strength were eligible, including 

hydraulic, pneumatic, mechanical, or strain [124]. Studies of grip strength using an isometric 

strength testing unit were excluded.   

 

Measurement properties 

Studies reporting any estimate of reliability and/or measurement error were included. 

Estimates expected to be reported in the identified studies included the intra class correlation 

(ICC), the Pearson correlation coefficient (PCC), the standard error of measurement (SEM), the 

smallest detectable change (SDC), the coefficient of variation (CV), and the limits of agreement 

(LoA). These were the most common estimates reported in the systematic reviews identified in 

the methodological review of reliability and error in the measurement of biomarkers (Chapter 

4).  

 

6.3.2. Search strategy 

Electronic searches of MEDLINE and EMBASE were undertaken by an Information Specialist on 

11 April 2019 to identify relevant English language studies. No date restrictions were applied. 

The search strategies were informed by the COSMIN [171] search filter for identification of 

studies on measurement properties and are provided in Appendix C1.  
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6.3.3. Selection of studies 

Screening of titles and abstracts retrieved by the literature searches were undertaken by a 

single reviewer (KT or JD) following an initial pilot of 200 records, which yielded an agreement 

of 90% between the two reviewers. Full text assessment of any records considered potentially 

eligible was undertaken independently by two reviewers, and any queries were discussed and 

resolved by consensus. Both screening of titles/abstracts and full test assessment were 

undertaken using Covidence. An adapted PRISMA (Preferred Reporting Items For Systematic 

Reviews And Meta-Analyses) flow-chart of study selection were included to detail the study 

selection process [172]. 

 

6.3.4. Data extraction 

Once all relevant studies were identified, information was extracted regarding: 

• the characteristics of the participants tested in each study.  

• the measurement protocol that was used (type of device used, position of the arm/ 

hand/ wrist, number of measurements, time interval between the measurements). 

• the details of the observer for each testing session (same or different observer, and 

level of experience). 

• and the estimates of reliability and measurement error that each study reported. For 

reviews using a measurement unit other than kilograms (e.g., pounds or Newtons), 

parameter estimates expressed in the original measurement scale (e.g., SEM or LoA) 

rather than a proportion (e.g., ICC or CV) were converted to kilograms.  

One reviewer extracted the characteristics of each study, which a second reviewer checked. A 

data extraction form was developed, and piloted on a random sample of five reviews prior to 

data extraction commencing. The items that were extracted from each study are presented in 

Appendix C2. 
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6.3.5. Assessment of methodological quality 

The methodological quality of the identified studies was assessed using the following seven 

criteria: 

(1) Evidence that the patients were stable in the time between the administrations of the 

tests. 

(2) Evidence that the time interval between the testing sessions was appropriate. 

(3) Evidence that the time interval between measurements within each session was 

appropriate. 

(4) Evidence that the measurement conditions were the same across the testing sessions. 

(5) Evidence that the professional administered the test without knowledge of other 

repeated measurements in the same patient. 

(6) Evidence that statistical methods used for reliability were appropriate. 

(7) Evidence that statistical methods used for measurement error were appropriate. 

 

The choice of the above criteria was based on the COnsensus-based Standards for the 

selection of health Measurement INstruments (COSMIN) risk of bias tool, which was purposely 

designed  for studies examining the reliability and measurement error of clinical outcome 

measures [37]. An earlier version (precursor) to this tool was used in 56 (31%) of the reviews 

identified for Chapter 4. An additional criterion of this tool refers to ‘professionals assigning 

the scores or determining the values without knowledge of the scores or values of other 

repeated measurements in the same patients’. This criterion was not considered applicable 

and was not used in this case, as measurements are produced directly from the devices. Of the 

criteria used, each was rated on a four-point scale (very good/ adequate/ doubtful/ 

inadequate). A detailed description as to how each criterion was rated is presented in 
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Appendix C3. The quality assessment of the included primary studies was undertaken 

independently by two reviewers, and any queries were discussed and resolved by consensus. 

  

6.4. Decisions made when multiple estimates are reported within studies 

It is possible that some studies may report more than one estimate of the same statistical 

parameter. This is because studies may consider various elements of the study design (e.g., 

examining both the reproducibility between two different testing sessions and within the same 

session), the characteristics of the participants (e.g., examining whether reproducibility varies 

between males and females) or observers (e.g., examining whether reproducibility varies 

between experienced and inexperienced clinicians), and the measurement procedure (e.g., 

examining whether reproducibility varies across different session summary measures used for 

analysis). In such cases, the following rules were applied: 

 

Study design  

Where reproducibility was reported for: 

• multiple observers, estimates for the most experienced observer were used. 

• multiple time points, estimates from the first testing period were used. 

• measurements made within the same testing session and at different testing session, 

within and between-session estimates were pooled separately. 

• both inter-observer (i.e., two different observers assessing each participant at two 

different testing sessions) and intra-observer reproducibility (i.e., same observer 

assessing each participant at two different sessions) of the grip strength 

measurements, estimates reported for the two types of reproducibility were pooled 

separately. 
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Participant characteristics 

• If reproducibility estimates were reported for different subgroups of participants (e.g., 

males/females or diseased/healthy) rather than the overall study population, the 

estimates were treated as separate observations in the meta-analysis, as each estimate 

is produced from a different subgroup of patients and thus, provides independent 

information in the meta-analysis. 

• For any studies of patients with hand injuries, if reproducibility estimates for both the 

affected and contralateral hands were reported, the estimates obtained from each hand 

were also treated as separate observations in the meta-analysis, under the assumption 

of no correlation between the measurements produced from the two hands. The 

assumption of no correlation is based on advice by experts that measurements taken 

from a healthy hand are expected to be significantly higher and more consistent, 

compared to measurements taken from an injured hand. 

• For any other presentations of handedness, reproducibility estimates obtained from the 

right and dominant hand were chosen over those obtained from the left and non-

dominant hand, respectively. Multiple studies have reported an approximately 10% 

stronger grip for the dominant hand compared to the non-dominant [173-175], while 

others stated this was true for the right hand, but observed no effect from hand 

dominance in left-handed people [176-179]. Either way, the reproducibility of the 

measurements is not expected to differ between the dominant and the non-dominant 

hand, or the right and the left hand. 

 

Measurement procedures 

Where reproducibility was reported for: 
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• different postures, the estimates obtained from a sitting position were used, as both the 

American Society of Hand Therapists [123] and the Southampton research group [124] 

advocate a sitting position for the participants being tested. 

• different summary measures (single measurement, mean, or highest of multiple 

measurements), those obtained from the mean of multiple session measurements were 

included. Evidence suggests that this is the most consistent summary measure across 

sessions [180], while this approach is also recommended in the instructions provided by 

the American Society of Hand Therapists (mean of 3 trials) [123].  

• different positions of the shoulder/elbow/forearm/wrist, the estimates obtained from 

the following standardised protocol were included: shoulders adducted and neutrally 

rotated, elbows flexed at 90°, forearms and wrists in neutral position. This protocol is 

recommended by the American Society of Hand Therapists [123]. 

• different handle positions of the dynamometer, the estimates obtained from the second 

handle position were included, as this position has been found to be the most consistent 

and is advocated for use in practice [123].  

• two or more dynamometers, the estimates produced by the Jamar or any other 

hydraulic dynamometer were included, as both the American Society of Hand Therapists 

and the Southampton research group advocate the use of a hydraulic dynamometer 

(Jamar) [123, 124]. Estimates produced by a pneumatic dynamometer were excluded 

from the analysis of any reproducibility parameters estimated in the actual 

measurement unit (SEM, SDC, LoA), as the produced values are expressed as force per 

palmar surface area and cannot be converted to a unit of static force alone. However, 

the estimates were still included for any unit-free parameters (ICC, CV). 
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6.5. Statistical methods 

6.5.1. Statistical model used for the meta-analysis of the reported estimates 

Where possible, a weighted average for each reported parameter of reliability and 

measurement error was calculated using the meta-analytic methods informed by Chapters 4 

and 5, and presented along with 95% confidence intervals. A 95% prediction interval 

representing the expected range of the values for 95% of all study populations [98-100] was 

also constructed, as a means of expressing the between-study heterogeneity.  

The DerSimonian and Laird random effects model [90] was employed in order to account for 

the sampling error of each study, as well as any potential heterogeneity due to different 

characteristics across studies, such as different study populations or different time intervals 

used between testing sessions. The model is expressed as  

𝑦𝑖 = 𝜇𝑖 + 𝜀𝑖 = (𝜇 + 𝛿𝑖) + 𝜀𝑖, (6.1) 

where 𝑦𝑖 represents the observed estimate in the 𝑖𝑡ℎ study, 𝜇 represents the overall 

population mean, 𝛿𝑖 ~ 𝑁(0, 𝜏
2) represents the difference between the mean of the 

population the 𝑖𝑡ℎ study was sampled (𝜇𝑖) and the overall population mean (𝜇), and 𝜀𝑖 ~ 𝑁(0,

𝜎𝑖
2) represents the estimation error due to within-study sampling variability. A weighted 

average was computed as  

�̅� =
∑ 𝑤𝑖𝑦𝑖1≤ 𝑖 ≤ 𝑘 

∑ 𝑤𝑖1≤ 𝑖 ≤ 𝑘 

 
(6.2) 

with the variance of the pooled estimate equal to  

𝑉𝑎𝑟�̅� =
1

∑ 𝑊𝑖1≤ 𝑖 ≤ 𝑘 

, (6.3) 
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where 𝑘 is the total number of the studies included in the meta-analysis, and 𝑤𝑖 =
1

𝑉𝑎𝑟𝑦𝑖 +  𝜏
2  is 

the weight assigned to each study, with 𝑉𝑎𝑟𝑦𝑖  denoting the sampling variance of the 𝑖𝑡ℎ study, 

and 𝜏2 denoting the variance between studies.  

A 95% confidence interval for the pooled estimate was obtained as  

95% 𝐶𝐼 = �̅�  ± 1.96 × √𝑉𝑎𝑟�̅� 
(6.4) 

The prediction interval was constructed as 

95% 𝑃𝐼 = �̅� ± 𝑡𝑘−2 × √𝑉𝑎𝑟�̅� + 𝜏
2 

(6.5) 

where 𝑡𝑘−2 is the 97.5th percentile of the 𝑡 distribution with 𝑘 − 2 degrees of freedom. The 

standard approach of using a t-distribution, following Riley et al [98-100], was employed, as in 

contrast to the Z-distribution, this distribution accounts for the uncertainty of the between-

study variance (𝜏2). 

 

6.5.2. Approach used for the intra class correlation coefficient 

The intra class correlation (or reliability coefficient) denotes the proportion of the total 

variability that is attributable to true differences between participants. A Fisher’s Z 

transformation was applied to the intra class correlation coefficients reported in the identified 

studies prior to the meta-analysis, as proposed by Hedges and Olkin [142]. The formula for 

converting each intra class correlation to a Z value is  

𝑍𝑟 = 0.5 ln(
1+(𝑚−1)𝑟

1 − 𝑟
), (6.6) 

where 𝑟 is the intra class correlation coefficient and 𝑚 is the number of measurements 

produced from each participant. The corresponding variance of the above statistic is 
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𝑉𝑎𝑟𝑍𝑟 =
𝑚

2(𝑛−2)(𝑚−1)
, (6.7) 

where 𝑛 is the number of participants. A weighted average estimate 𝑍𝑟̅̅ ̅ along with a 95% 

confidence interval were computed using equations 6.2 and 6.4, while a 95% prediction 

interval was constructed using equation 6.5. The produced weighted average estimate, 95% 

confidence intervals, and 95% prediction intervals were then reverted to the 𝐼𝐶𝐶 metric using  

𝑟 =
𝑒2𝑍𝑟  −  1

𝑒2𝑍𝑟  +  𝑚 −  1
 

(6.8) 

 

6.5.3. Approach used for the Pearson correlation coefficient 

Similar to the intra class correlation, the Pearson correlation coefficients reported across 

studies were Z-transformed prior to the meta-analysis, as proposed by Hedges and Olkin [142]. 

In order to produce a weighted average estimate, a 95% confidence interval, and a 95% 

prediction interval, formulas 6.6-6.8 were reduced to 𝑚 = 2, as Pearson correlation 

coefficients can only be used for pairwise comparisons [55]. 

 

6.5.4. Approach used for the standard error of measurement 

Prior to the meta-analysis, the estimates of the standard error of measurement reported in the 

identified studies were initially squared and then log-transformed (𝑙𝑜𝑔𝑆𝐸𝑀2), as described in 

Chapter 5. The corresponding variance was given by 

𝑉𝑎𝑟𝑙𝑜𝑔𝑆𝐸𝑀2 =
2

𝑛 × (𝑚 −  1)
 

(6.9) 

where 𝑛 is the number of participants, and 𝑚 is the number of measurements produced from 

each participant. A weighted average estimate 𝑙𝑜𝑔𝑆𝐸𝑀2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  along with a 95% confidence interval 

and 95% prediction interval were produced using formulas 6.2, 6.4, and 6.5. The produced 
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estimates were in turn reverted to the original scale by taking the square root of the 

exponential (√𝑒𝑙𝑜𝑔𝑆𝐸𝑀
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
). 

 

6.5.5. Approach used for the smallest detectable change  

A weighted average estimate for the smallest detectable change was then produced using the 

following formula 

𝑆𝐷𝐶̅̅ ̅̅ ̅̅ = √2 × 1.96 × 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  (6.10) 

where 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  is the weighted average for the standard error of measurement, which was 

calculated as described under section 6.5.4. 

 

6.5.6. Approach used for the limits of agreement 

The limits of agreement are expressed as the interval of 1.96 times the standard deviation of 

the differences between two repeated measurements, either side of the mean difference [66]. 

In mathematical notation this is expressed as 

𝐿𝑜𝐴 = 𝑑 ± 1.96 × 𝑆𝐷𝑑 (6.11) 

Thus, the two parameters required for producing a pooled interval across the identified studies 

include the mean difference between two repeated measurements (𝑑) and the standard 

deviation of the mean difference (𝑆𝐷𝑑). For the mean difference 𝑑, a weighted average was 

produced using formula 6.2, with the sampling variance of each study-level estimate calculated 

as 

𝑉𝑎𝑟𝑑 =
𝑆𝐷𝑑

2

𝑛
 

(6.12) 
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For 𝑆𝐷𝑑, prior to the meta-analysis the individual estimates reported in the identified studies 

were initially squared and then log-transformed (𝑙𝑜𝑔𝑆𝐷𝑑
2), as described in Tipton and Shuster 

[166]. The corresponding sampling variance is given by 

𝑉𝑎𝑟𝑙𝑜𝑔𝑆𝐷𝑑
2 =

2

(𝑛 −  1)
 

(6.13) 

where 𝑛 represents the study sample size. The produced weighted average 𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  was then 

reverted to the original scale by taking the square root of the exponential (√𝑒𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
). The 

pooled limits of agreement were then constructed as 

𝐿𝑜𝐴̅̅ ̅̅ ̅ = �̅� ± 1.96 × 𝑆𝐷𝑑̅̅ ̅̅ ̅ (6.14) 

where �̅� and 𝑆𝐷𝑑̅̅ ̅̅ ̅ represent the weighted average estimates for the mean difference (𝑑) and 

the standard deviation of the mean difference (𝑆𝐷𝑑), respectively. A 95% confidence interval 

for 𝐿𝑜𝐴̅̅ ̅̅ ̅ was constructed as  

95%𝐶𝐼 − 𝐿𝑂𝐴̅̅ ̅̅ ̅̅
𝐿 = (�̅� − 1.96 ×

√𝑒𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) − 𝑡(𝑛 − 1, 0.025)√

3 × 𝑒𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛
, 

(6.15)  

and 

95%𝐶𝐼 − 𝐿𝑂𝐴̅̅ ̅̅ ̅̅
𝑈 = (�̅� + 1.96 ×

√𝑒𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) + 𝑡(𝑛 − 1, 0.025)√

3 × 𝑒𝑙𝑜𝑔𝑆𝐷𝑑
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛
, 

(6.16)  

where 𝑡(𝑛 − 1, 0.025) is the critical value of the Student's t distribution with 𝑛 − 1 degrees of 

freedom and 2.5% significance level. 
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6.5.7. Approach used for the coefficient of variation 

The coefficient of variation is expressed as the ratio of the variability within individuals to the 

grand mean of the measurements, multiplied by 100 for expressing it as a percentage. In 

mathematical notation this is expressed as 

𝐶𝑉 =
𝑆𝐸𝑀

𝜇
× 100 

(6.17) 

Thus, the two parameters required for producing a weighted average for the coefficient of 

variation include the standard error of measurement (𝑆𝐸𝑀) and the grand mean (𝜇). If 

individual studies were reporting the mean of two different testing sessions separately, the 

grand mean was calculated as  

𝜇 =
𝜇1 + 𝜇2
2

, 
(6.18) 

where 𝜇1 and 𝜇2 represent the mean values of two different testing sessions. The sampling 

variance of the grand mean was calculated as  

𝑉𝑎𝑟𝜇 =
𝑆𝐸𝑀2

𝑛 ×𝑚
 

(6.19) 

A weighted average estimate for the grand mean (�̅�) was then produced using formula 6.2, 

while a weighted average estimate for the standard error of measurement (𝑆𝐸𝑀̅̅ ̅̅ ̅̅ ) is produced 

as described under section 6.5.4. A weighted average estimate for the coefficient of variation 

was in turn calculated as 

𝐶𝑉̅̅ ̅̅ =
𝑆𝐸𝑀̅̅ ̅̅ ̅̅

�̅�
× 100 

(6.20) 

where 𝑆𝐸𝑀̅̅ ̅̅ ̅̅  and �̅� represent the weighted averages for the standard error of measurement 

and the grand mean, respectively. A 95% confidence interval for 𝐶𝑉̅̅ ̅̅  was constructed using 
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2.5th and 97.5th percentiles of 1000 bootstrapped samples, with bias-correction applied in case 

the original estimate did not lie at the 50th percentile [79]. 

 

6.5.8. Subgroup analysis 

If possible, a subgroup analysis was also performed for the following factors: 

• Summary measures per session used for calculating reproducibility (single 

measurement, mean of two measurements, mean of three measurements, highest of 

two measurements, highest of three measurements). 

• Body posture during the assessment (sitting, standing). 

• Different hands tested in populations with hand injuries (affected, contralateral hand). 

For the first two factors, the assessment of grip strength based on a sitting position and the 

mean of three session measurements are considered the most reliable and are recommended 

for use in practice [123, 124]. However, this hypothesis was further tested in a subgroup 

analysis, as there is controversy in the literature with respect to the above recommendations. 

For the summary measure used at each testing session, Hamilton et al [181] found similar 

test–retest reliability between the mean of three measurements and the mean of two, the 

maximum of three, or even a single session measurement. Furthermore, Coldham et al [182] 

reported that a single measurement was as reliable as the mean of three measurements, as 

well as less tiring for the participants. 

With respect to the posture of the participants during the assessment, Shechtman et al [179] 

found similar test–retest reliability between a sitting and a standing testing position, for both 

the right and the left hand. 

An additional subgroup analysis was also carried out for studies reporting reproducibility 

estimates for both the affected and contralateral hand. High reproducibility is required for 
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both hands, as the American Society of Hand Therapists recommends comparing the 

measurements of the two hands when estimating loss of grip strength [123].  

For each subgroup, a weighted average estimate was produced using the statistical methods 

described under 6.5.1. The produced estimates were then compared across the different 

subgroups within each of the three factors. In the case of multiple estimates reported within 

studies, all estimates were included in the subgroup analysis performed for each potential 

factor of heterogeneity.  

 

6.6. Results 

6.6.1. Summary of identified studies 

A total of 7130 unique records were retrieved, of which 172 were selected for full text 

assessment. Of the 172 records, 80 met the eligibility criteria (Figure 6.1). A summary of the 

included studies is presented in Table 6.1, while the characteristics of each individual study are 

presented in Appendices C4, C5, and C6. A wide range of populations was covered, from 

patients with chronic diseases such as stroke (4, 5%), advanced cancer (1, 1.3%), and end-stage 

renal disease (1, 1.3%), with the largest group representing healthy populations (27, 33.8%). 

The median age (in years) of the participants was 45.8 [35.0, 66.5], while the median 

proportion of male participants across studies was 48.5% [33.3%, 60.6%]. The median sample 

size of the studies was 35 participants [Q1=25, Q3=76]. Seventy-two studies (90.0%) examined 

the reproducibility of the measurements made across two or more testing sessions, with the 

median time interval between testing sessions being 7 days [Q1=2, Q3=7]. Of the 72, 56 

(77.8%) examined the intra-observer reproducibility of the measurements alone, 10 (13.9%) 

considered the inter-observer reproducibility of the measurements alone, while the remaining 

6 (8.3%) examined both types of reproducibility. Twelve studies (15.0%) examined the 

reproducibility of successive measurements made at a single testing session, either alone (n=8) 
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or in addition to the between-session reproducibility (n=4), with the median time interval 

between measurements made within the same session being 30 seconds [Q1=15, Q3=60]. 

Seventy-two studies (90.0%) enrolled the participants prospectively, while the remainder 

(8/80, 10.0%) used retrospective data from already conducted studies.  

A number of different dynamometers were used; the Jamar was the most commonly reported 

(46/80, 57.5%), followed by the Takei (6/80, 7.5%) and Baseline (6/80, 7.5%). Half (41, 51.3%) 

of studies reported calibration of the dynamometer. The handle position of the dynamometer 

was stated in 43 studies (53.8%). Most placed the handle at the second position (27/43, 

62.8%), while 11 studies (25.6%) mentioned variations across patients with respect to the 

handle position used. In 10/11 studies (90.9%), the variations were dependant on the hand of 

the participant, while in the remaining study [183] adjustments were based on the gender (2nd 

position used for women, 3rd position used for men).  

Seventy-three studies (91.3%) described the posture of the individual, with the majority of 

studies testing the participants in a sitting position (62/73, 84.9%). The position of the 

shoulder, the elbow, and the wrist was stated in 53, 62, and 54 studies, respectively. Both 

hands were tested in the majority of studies (51/80, 63.8%), with different presentations of 

handedness including right & left (n=27), dominant & non-dominant (n=13), affected & 

contralateral (n=8), more affected & less affected (n=3). Half of the studies (40/80, 50%) used 

the mean three consecutive measurements as a summary measure per session, followed by 

the highest of three consecutive measurements (22/80, 27.5%). Preparatory instructions and 

encouragement during the procedure were reported to have been provided to the participants 

in 57 (71.3%) and 34 (42.5%) studies, respectively.  
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Figure 6.1. PRISMA flow chart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1. Summary of the identified studies (N=80). 

Study characteristics 

Design  

- Repeated measures 72 (87%) 

- Cross-sectional single-session 8 (13%) 

Sample size [median, IQR] 35 [25, 76] 

Data collection  

- Prospective 72 (87%) 

- Retrospective 8 (13%) 

Type of reliability examined1  

- Intra-observer  56 (78%) 

- Inter-observer 10 (14%) 

- Both 6 (8%) 

Number of testing sessions  

- One 7 (9%) 

- Two 67 (84%) 

- Three 3 (4%) 

- Four 2 (3%) 

Titles and abstracts identified 

through database searching 

N= 7130 

Included 

N= 80 

Reasons for exclusion (N= 92): 

• Full-text not available (n=37) 

• Conference abstract (n=10) 

• Testing children (n=9) 

• Not using a grip strength test (n=8) 

• Not testing maximal grip strength (n=8) 

• Reliability estimates not presented (n=8) 

• Not a reliability study (n=4) 

• Not testing a human sample (n=3) 

• Not a primary study (n=2) 

• Non-English (n=2) 

• Comparing different between-session 

summary measures (n=1) 

•  

Selected for full text assessment 

N= 172 
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- Ten 1 (1%) 

Time interval between testing sessions (days) [median, IQR] 7 [2, 7] 

Missing 12 

Time interval between measurements made within testing 
sessions (seconds) [median, IQR] 

30 [15, 60] 

Missing 20 

Observer characteristics 

Number of participating observers  

- One 64 (80%) 

- Two 14 (17%) 

- Three 2 (3%) 

Where the observers experienced?  

- Yes 22 (28%) 

- No 6 (8%) 

- Mixture 2 (3%) 

- Not reported 50 (63%) 

Participant characteristics 

Medical condition  

- None (healthy participants) 27 (34%) 

- Stroke 4 (5%) 

- Burn injuries 3 (4%) 

- Hand/wrist injuries 3 (4%) 

- Dementia 3 (4%) 

- Mental retardation 2 (3%) 

- Charcot-Marie-Tooth 2 (3%) 

- Other 26 (33%) 

- Combination 10 (13%) 

Age of participants (years) [median, IQR] 45.8 [35.0, 66.5] 

Missing 2 

Gender of participants (%) [median, IQR] 48.5 [33.3, 60.6] 

Missing 4 

Measurement conditions 

Device calibrated  

- Yes 41 (51%) 

- Not reported 39 (49%) 

Preparatory instructions provided to participants  

- Yes 57 (71%) 

- No 2 (3%) 

- Not reported 21 (26%) 

Vocal encouragement provided  

- Yes 34 (43%) 

- No 8 (13%) 

- Not reported 38 (48%) 

Measurement protocol 

Summary measure per session2,3  

- Mean of 3 measurements 40 (50%) 

- Highest of 3 measurements 22 (28%) 

- Mean of 2 measurements 9 (11%) 

- First session measurement 8 (10%) 

- Highest of 2 measurements 5 (6%) 
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- Single measurement 4 (5%) 

- Mean of 10 measurements 2 (3%) 

- Other 4 (5%) 

- Not reported 3 (4%) 

Tested hand(s)3  

- Both4 51 (64%) 

- Dominant only 13 (16%) 

- Non-dominant only 4 (5%) 

- Affected only 3 (4%) 

- Right only 2 (3%) 

- Not reported 10 (13%) 

Dynamometer used5  

- Jamar 46 (58%) 

- Takei 6 (8%) 

- Baseline 6 (8%) 

- SAEHAN 3 (4%) 

- Biometrics 3 (4%) 

- GRIP-it 3 (4%) 

- Eval Solosystem 2 (3%) 

- Smedley 2 (3%) 

- Other 16 (20%) 

- Not reported 4 (5%) 

Body posture6  

- Sitting position 61 (76%) 

- Standing position 12 (15%) 

- Sitting or lying 1 (1%) 

- Not reported 7 (9%) 

Handle position7  

- Second  27 (34%) 

- Adjusted 11 (14%) 

- Third 4 (5%) 

- Fourth 2 (3%) 

- Fifth 1 (1%) 

- Not reported 37 (93%) 
1 Only applicable for repeated measures study designs 

2 12 studies reported estimates from multiple session summary measures 

3 3 studies reported estimates from 2 different subgroups of patients 

4 Different presentations of handedness include: right & left (n=27), dominant & non-dominant (n=13), 

affected & contralateral (n=8), more affected & less affected (n=3) 

5 10 studies reported estimates from multiple dynamometers 

6 1 study reported estimates from both a sitting and a standing position 

7 2 studies reported estimates from multiple handle positions 
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6.6.2. Assessment of methodological quality 

The overall ratings for the seven criteria are depicted in Figure 6.2, while the ratings for each 

individual study are presented in Appendix C7. For the standard on blinding of the 

measurements, the majority of studies (49/80, 61%) provided doubtful (n=1) or inadequate 

(n=48) evidence that the professionals administering the test were blinded to other repeated 

measurements made in the same patient. For the time interval between measurements made 

within the same testing session, 26 of the 80 studies (33%) provided doubtful (n=5) or 

inadequate (n=21) evidence of an appropriate time interval. For the remaining five criteria, the 

ratings were at least adequate in ≥90% of the studies. 

 

Figure 6.2. COSMIN Risk of Bias tool – Standards for study design. 
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6.6.3. Reproducibility of measurements taken at different testing sessions 
 

6.6.3.1. Measurements performed from a single observer 

The majority of the identified studies (62/80, 77.5%) examined the intra-observer 

reproducibility of the grip strength measurements across multiple testing sessions. The results 

are presented in Table 6.2 and Figures 6.3-6.10.  

 

Intra class correlation 

The intra class correlation was reported in 54 of the 62 studies (87.1%). The majority (50/54, 

92.7%) examined the reproducibility of grip strength measurements made at two different 

testing sessions, with 68 observations included in the meta-analysis. The distribution of the 68 

ICC values reported across studies was highly skewed [median (Q1, Q3) = 0.96 (0.94, 0.98); 

min= 0.42; max> 0.99], with the Z-transformation being effective in normalising the reported 

ICC values (see Figure 6.3). The heterogeneity across the produced Z-values appeared high 

(Figure 6.4), with the lower and upper quartiles of the observed distribution being equal to 

1.74 and 2.30 (min= 0.44; max= 3.11). The produced weighted average Z value was 1.95 [(95% 

CI: 1.84, 2.06); 95% PI: (1.09, 2.80)]. The corresponding weighted average for the intra class 

correlation was 0.96 (95% CI: 0.95, 0.97), with a 95% prediction interval (PI) of 0.80 to 0.99.  

Two studies [184, 185] examined the reproducibility of the grip strength measurements over 

three testing sessions, with the ICC values equal to 0.92 and 0.94 respectively. One study [186] 

examined the reproducibility of grip strength measurements taken at four testing sessions 

(ICC=0.96), while 1 additional study [187] examined the reproducibility of the grip strength 

measurements over 10 testing sessions, with the ICC values reported for males and females 

being 0.91 and 0.94 respectively.  
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Figure 6.3. Distribution of reported intra class correlations and the corresponding Fisher’s Z-values. 
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Figure 6.4. Forest plot of Fisher’s Z (for intra class correlations) including studies examining intra-

observer reproducibility across two different testing sessions. 
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Pearson class correlation 

The Pearson correlation coefficient was reported in 6/62 studies (9.7%), either alone (n=3) or in 

addition to the intra class correlation (n=3), with 7 observations included in the meta-analysis. The 

produced weighted average Z-value was 1.94 [95% CI: (1.76, 2.12); 95% PI: (1.49, 2.40)]. Using 

formula 6.7, the corresponding Pearson correlation coefficient was 0.96 [95% CI: (0.94, 0.97)], with a 

95% prediction interval of 0.90 to 0.98. 

 

Figure 6.5. Forest plot of Fisher’s Z (for Pearson correlations) including studies examining intra-
observer reproducibility across two different testing sessions. 
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Standard error of measurement and smallest detectable change 

The standard error of measurement (SEM) was reported in 33/62 studies (53.2%), with the 

calculation also possible in an additional four studies through the reported standard deviation of the 

mean difference between two testing sessions (𝑆𝐸𝑀𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
𝑆𝐷𝑑

√2
) [15], and two additional 

studies through the reported smallest detectable change (𝑆𝐷𝐶 = √2 × 1.96 × 𝑆𝐸𝑀) [51]. This gives 

a total of 39 studies, all examining the reproducibility of the measurements across two testing 

sessions, with 54 observations included in the meta-analysis.  

The distribution of the SEM values reported across studies was positively skewed [median (Q1, Q3) = 

1.81 (1.46, 2.55); min= 0.18; max= 6.73], with the transformed values fitting the normal distribution 

better compared to the original SEM values (see Figure 6.6). The heterogeneity across the 

transformed values was high (Figure 6.7), with the lower and upper quartiles of the distribution 

being equal to 0.76 and 1.87 (min= -3.39; max= 3.81). The weighted average produced for the 

transformed values was 1.16 [95% CI: (0.92, 1.39); 95% PI: (-0.53, 2.84)]. 

The corresponding weighted average estimates for the standard error of measurement (SEM) and 

smallest detectable change (SDC) were 1.78kgs [95% CI: (1.59kgs, 2.00kgs); 95% PI: (0.77kgs, 

4.14kgs)] and 4.93kgs [95% CI: (4.40kgs, 5.54kgs); 95% PI: (2.13kgs, 11.47kgs)], respectively. 
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Figure 6.6. Distribution of values reported for the standard error of measurement (SEM) and corresponding logarithm of squared values (log(SEM2)). 
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Figure 6.7. Forest plot of logSEM2 including studies examining intra-observer reproducibility across 
two different testing sessions. 
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Limits of agreement 

The limits of agreement were reported in 17/62 (27.4%) studies, with 21 observations included in 

the meta-analysis for each parameter required for the calculation of the two limits. For the standard 

deviation of the difference (𝑆𝐷𝑑), the distribution of the study values was not normal [median (Q1, 

Q3) = 2.94 (2.31, 3.73); min= 0.35; max= 9.99], with the applied transformation leading to a good 

approximation of the normal distribution (Figure 6.8). The heterogeneity across the transformed 

values appeared high (see Figure 6.9), with the lower and upper quartiles of the distribution being 

equal to 1.67 and 2.63 (min= -2.10; max= 4.61). In contrast, except for a single outlier, the study 

values reported for the mean difference between the two testing sessions (𝑑) were homogenous 

(Figure 6.9). 

The produced weighted average for the mean difference between the two testing sessions (𝑑) and 

the standard deviation of the difference (𝑆𝐷𝑑) was 0.34 [95% CI: (0.17, 0.52)] and 2.57 [95% CI: 

(2.01, 3.28)], respectively. Using formula 6.14, the corresponding limits of agreement were 0.34 ± 

1.96×2.57 = (-4.69, 5.38) [95% CI: (-6.83, 7.51)].   
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Figure 6.8. Distribution of values reported for the standard deviation of difference (SDd) and corresponding logarithm of squared values (log(SDd)2). 

 

 

 

  

 

 



174 
 

Figure 6.9. Forest plot of the two parameters required for the limits of agreement (d and log(SDd)2) including studies examining intra-observer 
reproducibility across two different testing sessions. 
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Coefficient of variation 

The two parameters required for obtaining the within-patient coefficient of variation were reported, 

or could be derived from 28 of the 62 studies (45.2%), providing 42 observations included in the 

meta-analysis each parameter. For both parameters, a high heterogeneity between studies was 

observed. For the standard error of measurement, the lower and upper quartiles for the 

transformed values were 0.78 and 1.66 [min= -0.58; max= 3.81]. For the grand mean of the 

measurements, the lower and upper quartiles for the values reported within studies were 17.7 and 

35.7 [min= 8.2; max= 66.6]. 

The pooled standard error of measurement and grand mean of the measurements across the 

identified studies were 1.85 [95% CI: (1.65, 2.07)] and 26.88 [95% CI: (23.24, 30.52)], respectively. 

Using formula 6.20, the corresponding coefficient of variation was 6.90% [95% CI: (2.10%, 9.37%)].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



176 
 

Figure 6.10. Forest plot of the two parameters required for the coefficient of variation (log(SEM2) and μ) including studies examining intra-observer 
reproducibility across two different testing sessions. 
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Other reported statistics 

Three studies [188-190] examined the reproducibility of the grip strength measurements using the 

Spearman correlation coefficient, with the reported estimates ranging from 0.77 to 0.97, while one 

study [191] reported Kendall’s W [192] (i.e., non-parametric test for correlation, alternative to 

Spearman’s) estimates of 0.95 and 0.97 for the ABI group and the healthy group of participants, 

respectively. Finally, one additional study [193] used the t-test and the linear regression based 

intercept and slope to examine the systematic differences between the measurements, in addition 

to other statistics used to examine the random variation in the measurements (such as the Pearson 

correlation coefficient). For both groups of healthy women and women with non-specific regional 

pain, the average difference between test and retest was negligible and non-statistically significant, 

while the linear regression-based intercept and slope were approximately equal to zero and unity, 

respectively. 

 

Table 6.2. Primary analysis including studies examining the intra-observer reproducibility across 2 
testing sessions. 

Parameter Pooled estimate [95% CI, N observations (participants)] 

Intra class correlation 0.96 [(0.95, 0.97), 68 (3417)] 

Pearson correlation 0.96 [(0.94, 0.97), 7 (346)] 

Standard error of measurement 1.78 [95% CI: (1.59, 2.00), 54 (2443)] 

Smallest detectable change 4.93 [95% CI: (4.40, 5.54), 54 (2443)] 

Limits of agreement 0.34 ± 1.96×2.57 [(-4.69, 5.38), 21 (1425)] 

Coefficient of variation (%) 6.90% [95% CI: (2.10%, 9.37%)] [42 (2088)] 

 

 



178 
 

6.6.3.2. Measurements performed from different observers 

Only sixteen studies (20%) examined the inter-observer reproducibility of the grip strength 

measurements across multiple testing sessions. The results are presented in Table 6.3. 

 

Intra class correlation 

The intra class correlation was reported in all 16 studies. Of the 16, 15 studies examined the 

reliability of grip strength measurements made at two different sessions, with 18 observations 

included in the meta-analysis [median (Q1, Q3) = 0.97 (0.96, 0.98); min= 0.93; max= 0.99]. The 

produced weighted average Z value was 2.08 [95% CI: (1.98, 2.18); 95% PI: (1.81, 2.35)]. Using 

formula 6.7, the corresponding weighted average for the intra class correlation was 0.97 [95% CI: 

(0.96, 0.98); 95% PI: (0.95, 0.99)].  

One additional [194] study examined the reliability of grip strength measurements over 3 different 

testing sessions, with the intra class correlation being equal to 0.98. 

 

Standard error of measurement and smallest detectable change 

The standard error of measurement was reported in 7/16 studies (43.8%), all examining the 

reproducibility across two testing sessions, with 9 observations included in the meta-analysis 

[median (Q1, Q3) = 1.70 (1.29, 1.82); min= 0.29; max= 3.37]. The weighted average produced for the 

logarithm of the squared SEM values was 0.66 [95% CI: (-0.30, 1.63); 95% PI: (-3.27, 4.60)]. The 

corresponding weighted average values for the standard error of measurement and smallest 

detectable change were 1.39 [95% CI: (0.86, 2.26); 95% PI: (0.20, 9.98)] and 3.86 [95% CI: (2.38, 

6.26); 95% PI: (0.55, 27.64)], respectively.  
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Limits of agreement 

The limits of agreement were reported in 2/16 (12.5%) studies, with 1 observation per study 

included in the meta-analysis for each of the two parameters required for the calculation of the two 

limits. The weighted average for the mean difference between the two testing sessions (�̅�) and the 

standard deviation of the difference (𝑆𝐷�̅�) was 0.67 [95% CI: (0.19, 1.15)] and 2.24 [95% CI: (1.75, 

2.87)], respectively. The corresponding limits of agreement were 0.67 ± 1.96×2.24. 

 

Coefficient of variation 

The two parameters required for obtaining the within-patient coefficient of variation were reported, 

or possible to be calculated in 3 studies, with 1 observation per study included in the meta-analysis 

for each parameter. The pooled grand mean of the measurements across the identified studies (μ) 

and the standard deviation of the measurements made within the patients (SEM) was 25.97 [95% CI: 

(14.94, 37.03)] and 0.88 [95% CI: (0.24, 3.30)], respectively. Using formula 6.19, the corresponding 

coefficient of variation was 3.41%.   

 

Table 6.3. Primary analysis including studies examining the inter-observer reproducibility across 2 
testing sessions. 

Parameter Pooled estimate [95% CI, N observations (participants)] 

Intra class correlation  0.97 [0.96, 0.98, 18 (704)] 

Pearson correlation  - 

Standard error of measurement 1.39 [(0.86, 2.26), 9 (371)] 

Smallest detectable change 3.86 [(2.38, 6.26), 9 (371)] 

Limits of agreement1 0.67 ± 1.96×2.24 [(-), 2 (80)] 

Coefficient of variation1 3.41% [(-), 3 (159)] 



180 
 

1confidence intervals not calculated due to the limited number of observations included in the analysis  

 

6.6.4. Reproducibility of measurements taken within the same testing session 

Twelve studies (15%) examined the reproducibility of grip strength measurements made within the 

same testing session. The results are presented in Table 6.4. 

 

Intra class correlation 

The intra class correlation was reported in all 12 studies. Of the 12, 10 studies examined the 

reproducibility of three consecutive grip strength measurements, with 13 observations included in 

the meta-analysis [median (Q1, Q3) = 0.96 (0.95, 0.98); min= 0.90; max= 0.99]. The produced 

weighted average Z-value was 2.03 [95% CI: (1.85, 2.22); 95% PI: (1.33, 2.73)]. The corresponding 

weighted average ICC estimate was 0.97 [95% CI: (0.95, 0.98); 95% PI: (0.90, 0.99)].  

Two additional studies examined the reproducibility of two consecutive grip strength 

measurements, with 6 observations included in the meta-analysis [median (Q1, Q3) = 0.96 (0.95, 

0.96); min= 0.94; max= 0.99]. The produced weighted average Z and ICC values were 1.92 [95% CI: 

(1.80, 2.03); 95% PI: (1.53, 2.30)] and 0.96 [95% CI: (0.95, 0.97); 95% PI: (0.91, 0.99)], respectively. 

 

Standard error of measurement 

The standard error of measurement was reported in 4/12 studies (25%). Of the 4, 3 studies 

examined the reproducibility of three consecutive grip strength measurements, with 1 observation 

per study included in the meta-analysis. The remaining study [195] examined the reproducibility of 

two grip strength measurements in five different cohorts of patients, with the SEM for each cohort 

approximated through the reported limits of agreement (𝑆𝐸𝑀 =
𝑆𝐷�̅�

√2
) [15]. The weighted average 
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SEM value for two and three consecutive within-session measurements were 1.99 [95% CI: (1.74, 

2.28)] and 2.68 [95% CI: (2.31, 3.11)], respectively.  

 

Limits of agreement 

One study reported the limits of agreement for five different cohorts of patients [195], with 5 

observations included in the meta-analysis for each of the two parameters required for the 

construction of the interval. The weighted average for the mean difference between two 

consecutive measurements (𝑑) and the standard deviation of the difference (𝑆𝐷𝑑) was 0.33 [95% 

CI: (0.16, 0.50)] and 2.82 [95% CI: (2.47, 3.23)], respectively. The corresponding limits of agreement 

were 0.33 ± 1.96×2.82 = (-5.20, 5.86).   

 

Coefficient of variation 

One study [196] examined the reproducibility of two consecutive grip strength measurements 

produced by the Jamar dynamometer, with the reported coefficient of variation equal to 2.93%. 

 

Table 6.4. Primary analysis of studies examining the reproducibility within testing sessions. 

 Within-session reproducibility 

(2 session measurements) 

Within-session reproducibility 

(3 session measurements) 

Intra class correlation (Fisher’s Z) 

[95% CI, N observations (participants)] 

0.96 

[(0.95, 0.97), 6 (1103)] 

0.97  

[(0.95, 0.98), 13 (923)] 

Standard error of measurement 

[95% CI, N studies (participants)] 

1.99 [(1.74, 2.28), 5 (939)] 2.68 [(2.31, 3.11), 3 (114)] 
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Limits of agreement 

[95% CI, N studies (participants)] 

0.33 ± 1.96×2.82  

 [(-11.38, 12.04), 5 (939)] 

- 

 

 

6.6.5. Subgroup analysis 

As described in section 6.5.1, 62/80 studies (77.5%) examined the intra-observer reproducibility of 

the grip strength measurements. Of the 62, the majority (58/62, 93.5%) examined the 

reproducibility between two testing sessions, while the remainder used a different number of 

sessions. Only 16/80 studies (20%) examined the inter-observer reproducibility of the grip strength 

measurements, while only 12/80 (15%) studies examined the reproducibility of the grip strength 

measurements made within the same session. 

Thus, the analysis was limited to studies examining the intra-observer reproducibility of grip strength 

measurements between two testing sessions, due to limited data available for inter-observer and 

within-session reproducibility. Furthermore, the analysis was limited to the intra class correlation 

and the standard error of measurement only, which were available in 50/58 (86.2%) and 39/58 

(67.2%) studies respectively, due to the limited number of estimates reported for any other 

parameter of reproducibility. The results obtained from the subgroup analysis are presented in Table 

6.5. 

 

Summary measures per session 

Using the mean of multiple measurements appeared to be the most reliable approach (ICC=0.97 for 

both two and three measurements) and produced the smallest measurement error, with the mean 

of three measurements being the most popular approach. Similar values were observed for the 
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remaining approaches, with the best of three session measurements yielding the largest 

measurement error (SEM=2.22). 

 

Posture during the assessment 

The majority of studies examined a seated position (44, 55%), while patients were tested standing 

only in 4 (5%) studies. A seated position during the assessment appeared slightly more reliable 

(ICC=0.97) and produced a lower measurement error (SEM=1.58) compared to a standing position 

(ICC=0.95, SEM=1.93). 

 

Tested hand in patients with hand injuries 

Thirteen studies (16%) examined the reproducibility of the affected (or more affected) hand, with 8 

of the 13 studies additionally reporting estimates for the contralateral hand. The produced ICC and 

SEM values were similar for both hands. 

 

Table 6.5. Subgroup analysis of studies examining the reproducibility across two testing sessions. 

Subgroups Intra class correlation 

[(95% CI), N observations 

(participants)] 

Standard error of measurement 

[(95% CI), N observations 

(participants)] 

Summary measure per session 

Single measurement 0.95 [(0.93, 0.96), 13 (591)] 1.96 [(1.67, 2.31), 11 (274)] 

Mean of 2 measurements 0.97 [(0.95, 0.98), 9 (382)] 1.52 [(1.29, 1.80), 8 (343)] 

Best of 2 measurements 0.95 [(0.90, 0.98), 7 (408)] 1.98 [(1.53, 2.55), 6 (170)] 

Mean of 3 measurements 0.97 [(0.96, 0.97), 41 (2100)] 1.58 [(1.33, 1.87), 31 (1696)] 
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Best of 3 measurements 0.95 [(0.94, 0.96), 24 (1252)] 2.22 [(1.99, 2.47), 21 (1142)] 

Posture during assessment 

Sitting 0.97 [(0.96, 0.97), 55 (2367)] 1.58 [(1.29, 1.92), 44 (3484)] 

Standing 0.95 [(0.90, 0.98), 7 (627)] 1.93 [(1.40, 2.67), 4 (112)] 

Tested hand in populations with hand injuries 

Affected 0.96 [(0.95, 0.97), 13 (413)] 1.63 [(1.23, 2.16), 13 (413)] 

Contralateral 0.96 [(0.94, 0.97), 8 (312)] 1.82 [(1.10, 3.01), 8 (312)] 

 

 

6.7. Discussion 

This systematic review summarises the evidence regarding the reproducibility of grip strength 

measurements produced by hand-held dynamometers. Eighty primary studies were identified 

through electronic searching of MEDLINE and EMBASE. The quality of the identified studies was 

assessed using a recently developed risk of bias tool for studies examining the reliability of clinical 

outcome measures [37]. In general, the studies were considered to be of good quality. The majority 

of studies (49/80, 61%) provided doubtful or inadequate evidence that the professionals performing 

the assessment were blinded to other repeated measurements in the same patient. However, 

blinding is particularly important when there is subjectivity in the assessment, and thus, less 

concerning in this case due to the objective nature of the test [197]. For the time interval between 

measurements made within the same testing session, 26/80 studies (33%) provided insufficient 

evidence of an appropriate time interval, which may have caused variations in the within-session 

measurements due to carry-over effects [198]. For the remaining five criteria the risk of bias 

appeared to be low, with the ratings being at least adequate in ≥90% of the studies. 

The majority of the identified studies (62/80, 77.5%) examined the intra-observer reproducibility of 

grip strength measurements made across two different testing sessions. The most commonly 
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reported parameter was the intra class correlation (n=54), followed by the standard error of 

measurement (n=39), the coefficient of variation (n=26), the limits of agreement (n=17), and the 

Pearson correlation coefficient (n=6). A high level of heterogeneity between studies was noted in the 

majority of meta-analyses performed (see forest plots under section 6.6.3). This between-study 

heterogeneity was to some extent expected, given that the overarching aim was to examine the 

reliability and error of grip strength measurements in general (as opposed to within specific 

populations), and did not affect the decision to conduct meta-analyses.  

The produced weighted average for the intra class correlation was 0.96 (95% CI 0.95, 0.97), 

suggesting that on average the test is highly reliable for distinguishing patients from each other, i.e., 

96.0% of the total variability in the grip strength measurements can be attributed to differences 

between individuals with only 4.0% attributed to measurement error. The prediction interval for the 

intra class correlation spanned from 0.80 to 0.99, indicating good to excellent reliability in 95% of all 

populations potentially considered in the meta-analysis. A very similar estimate was obtained from 

the meta-analysis of Pearson correlation coefficients, again indicating that the grip strength 

measurements were produced with high reliability.  

The weighted average for the standard error of measurement (SEM) was 1.78 (95% CI: 1.59, 2.00). 

Assuming normality of the measurements made within patients and homoscedasticity across 

patients, a repeated measurement is therefore expected on average to lie within 1.78kg of the true 

grip strength value of the patient. In turn, the estimate for the smallest detectable change (SDC) was 

4.93 (4.40, 5.54). If the difference between two within-individual measurements made at two 

different testing sessions exceeds 4.93kg, it can be stated with 95% confidence that this difference 

reflects a true change in performance, rather than one anticipated due to measurement error. The 

95% prediction intervals for SEM spanned from 0.77kgs to 4.14kgs and from 2.13kgs to 11.47kgs, 

respectively, suggesting that the measurement error is expected to vary across populations with 

different characteristics.   
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The pooled limits of agreement (LoA) ranged from -4.69 to 5.38. If the difference between two 

measurements produced from the same individual at two different testing sessions falls within this 

range, it can be stated with 95% confidence that this difference is due to measurement error and 

not due to a change in performance. The weighted average for the coefficient of variation (CV) was 

6.90% (95% CI: 2.10%, 9.37%), which is significantly lower compared to the values considered 

acceptable in the literature (between 10% and 20%) [108, 129], suggesting low variability in the 

measurements produced within individuals.  

Similar results were obtained when the inter-observer reproducibility across two different sessions 

and the reproducibility within the same session were examined. The presence of different testers 

across different measurements sessions did not appear to induce any additional variability, as 

expected when an objective test is used. For the within-session reproducibility, the measurements 

were again highly reliable, but the measurement error was larger compared to studies examining the 

reproducibility between two different testing sessions. However, the results should be interpreted 

with caution due to the limited number of studies examining the reproducibility of measurements 

produced within the same testing session. 

For the intra-observer reproducibility across two different sessions, the observed between-study 

heterogeneity did not appear to be attributed to different session summary measures being used, 

different testing postures of the participants (sitting/standing), or differences between the affected 

and the contralateral hand being tested in populations with hand injuries. Similar results were 

observed across the different summary measures and testing postures, with the mean of multiple 

consecutive grip strength measurements and a sitting position yielding a slightly higher reliability 

and lower measurement error, compared to any other session summary measure (single session 

measurement or best of multiple measurements) and a standing position, respectively. These 

findings are in agreement with the guidelines provided by the American Society of Hand Therapists 

[123]. Furthermore, for both the affected and contralateral hands, the estimates of reliability were 
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high and very similar to each other, with a slightly lower measurement error noted for the 

contralateral hand. It is essential that the measurements produced from each hand are highly 

reliable, so that robust conclusions can be drawn when the two hands are compared for estimating 

loss of strength, as the American Society of Hand Therapists recommends [123]. Again, the results 

obtained from the subgroup analyses should be treated with caution due to the limited number of 

studies testing populations with hand injuries, or using approaches alternative to those 

recommended by the American Society of Hand Therapists (e.g., using the maximum of two 

consecutive measurements as a session summary measure or testing the participants in a standing 

position).  

 

Strengths and limitations 

This systematic review updates the evidence provided from the previous review published in 2011 

[124], drawing similar conclusions regarding the reliability of grip strength measurements produced 

from hand-held dynamometers. The systematic review was conducted using robust review methods. 

Primary studies were identified by searching two electronic databases (MEDLINE and EMBASE) as 

current guidelines for conducting systematic reviews recommend [162, 163]. The full text and quality 

assessment was undertaken independently by two reviewers, while the data extractions were 

checked by a second reviewer, with any queries being discussed and resolved by consensus. Such 

methods ensure that potential bias in the review process is minimised, which in turn allows 

decisions on the reliability and measurement error to be made based on high quality evidence. In 

addition, compared to the previous review, this review provided quantitative summary evidence for 

the reliability and error of grip strength measurements. The meta-analytic approaches used for this 

purpose were very effective in normalizing the distribution of the included study-level estimates. 

This can be considered a strength, as less biased average estimates are obtained when the 

distribution of the reported study level estimates is properly modelled. The methods indicated a 
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high between-study heterogeneity in the majority of meta-analyses performed. Not identifying any 

factors causing this heterogeneity, and particularly not assessing the effect of the different patient 

populations included, can be considered a limitation of this study. 

 

6.8. Conclusion 

The findings of this review suggest that grip strength measurements obtained from hand-held 

dynamometers are on average highly reliable and produced with low error. The reliability and 

measurement error remained high even when methods alternative to the those recommended by 

the American Society of Hand Therapists were used. However, the between-study heterogeneity 

observed in the majority of meta-analyses performed suggest that the reliability and measurement 

error of dynamometers may be reduced in some specific subgroups. In order to provide 

recommendations for use in practice, further work is required for the identification of any such 

subgroups. 
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7. Alternative statistical methods for estimating sources 
of variability in the measurements of count-based 
biomarkers 

 

7.1. Introduction 

So far, the thesis has been concerned with statistical methods for estimating different sources of 

variability of biomarkers, measured in a continuous scale. As described in Chapter 2, these methods 

assume underlying normality of the measurements for each potential level of variability. However, 

biomarkers may often be expressed as counts (i.e., whole numbers) or rates (i.e., counts measured 

in relation to another quantity) rather than continuous measurements. Examples include the 

number of foci per labial salivary glandular area for evaluating Sjogren’s syndrome [199], or the 

number of white blood cells per litre for evaluating the severity of COPD [200]. In this case, the 

distribution of the produced measurements is likely to be highly skewed [201], which means the 

methods described in Chapter 1 are no longer applicable due to the violation of the normality 

assumption. Many researchers suggest the use of the log-transformation as a potential solution to 

this problem [27, 56]. However, evidence suggests that this transformation does not always lead to a 

better approximation of normality [106], while the transformation cannot be applied when count-

measurements take the value of zero.  

 

7.2. Aim 

To present alternative statistical methods for estimating different sources of variability in 

measurements produced between and within-individuals, which are potentially more appropriate 

for count-based biomarkers. 
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7.3. Statistical models used for analysing multi-level count data 

This section reviews the two most widely applied statistical distributions for modelling count-based 

data. These include the Poisson distribution and the negative binomial distribution [202].  

 

7.3.1. The Poisson distribution 

The most popular distribution used for the analysis of count data is the Poisson distribution. As the 

name implies, this distribution was first described by Denis Poisson, in 1837 [203]. When used for 

data with multiple hierarchical levels of variability, a key assumption that this distribution holds is 

that the lower-level variance equals the mean of the produced measurements [202].  

 

7.3.1.1. The two-level Poisson regression model  

If the equality assumption is met, the Poisson distribution can be used to model the probability of 

the 𝑦𝑖𝑗  response occurring with the function 

 
𝑃(𝑌 = 𝑦𝑖𝑗) =  

𝑒
−𝑦𝑖𝑗(𝜆𝑖𝑗)

𝑦𝑖𝑗

𝑦𝑖𝑗!
,    

(7.1) 

where 𝑦𝑖𝑗  and 𝜆𝑖𝑗  denote the observed and expected count for the 𝑖𝑡ℎ measurement 

(𝑖 = 1, … , 𝑛𝑖) within the 𝑗𝑡ℎ individual (𝑗 = 1, … , 𝑛𝑗), respectively. The corresponding model for 

estimating 𝜆𝑖𝑗  is mathematically expressed as  

𝑦𝑖𝑗|𝜆𝑖𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗) 

log(𝜆𝑖𝑗) = 𝛽0 + log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) + 𝑢𝑗 , 

(7.2) 

where 𝑢𝑗 ~ 𝑁(0, 𝜎𝑢
2) denotes the random effects parameter for the upper-level variability (i.e., the 

between-individual biological variability), while log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) indicates that the modelled 

response is a rate, meaning the produced counts are measured per unit of an “exposure” variable 

(e.g., number of nodes per sample area, number of heart beats per minute). If the exposure is the 
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same for every measurement, the term log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) may be omitted from the model. The two 

parameter estimates obtained from the above regression model are  

• the regression intercept 𝛽0 of log(𝑦𝑖𝑗).  

• the variance 𝜎𝑢
2 for the between-individual variability in log(𝑦𝑖𝑗). 

Both parameters are estimated on the natural logarithm scale, due to the canonical log-link function 

that this model uses [202, 204].  

 

Estimation of grand mean and different components of variance 

Statistical methods for estimating the mean and different components of variance of the 

measurements in the original count scale (rather than the logarithmic) are presented in Leckie et al 

[202] and Austin et al [204]. The expected mean value of 𝑦𝑖𝑗  (averaged over 𝑢𝑗) is estimated as 

μ = 𝐸[𝑌] = 𝐸[𝑒𝛽0+𝑢𝑗] ⇒ (given that 𝑒𝛽0  is constant) 

μ = 𝑒𝛽0 × 𝐸[𝑒𝑢𝑗] 
 

 

For 𝐸[𝑒𝑢𝑗], Austin et al [204] present a calculation based on the integration formula provided in 

Spiegel [205]. For any random variable 𝑢 ~ 𝑁(0, 𝜎𝑢
2), it follows that 

 
𝐸[𝑒𝑢] = 𝐸 [ ∫ 𝑒𝑢 (√

1

2𝜋
 𝑒
−𝑢2

2 )𝑑𝑢
+∞

−∞
] =  𝑒

𝜎𝑢
2

2     
(7.3) 

Based on equation 7.3, the expected mean of 𝑦𝑖𝑗 (or the marginal expectation, as termed in Leckie 

et al [202]) is equal to 

 μ =  𝑒𝛽0 + 
𝜎𝑢
2

2     
(7.4) 

For the expected total variance (or marginal variance [202]) of 𝑦𝑖𝑗 , Leckie et al [202] provide a 

calculation based on McCulloch and Searle (page 12) [206], as follows 
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𝑉𝑎𝑟[𝑌] = 𝑉𝑎𝑟{𝐸[𝑦𝑖𝑗|𝛽0, 𝑢𝑗]} + 𝐸{𝑉𝑎𝑟[𝑦𝑖𝑗|𝛽0, 𝑢𝑗]} ⇒ 

𝑉𝑎𝑟[𝑌] = 𝐸 {(𝐸[𝑦𝑖𝑗|𝛽0, 𝑢𝑗])
2
} − (𝐸{𝐸[𝑦𝑖𝑗|𝛽0, 𝑢𝑗]})

2
+  𝐸{𝐸[𝑦𝑖𝑗|𝛽0, 𝑢𝑗]} ⇒ 

𝑉𝑎𝑟[𝑌] = 𝐸[𝑒2𝛽0 + 2𝑢𝑗  ] − (𝐸 [𝑒𝛽0 + 
𝑢𝑗
2  ])

2

+ 𝐸 [𝑒𝛽0 + 
𝑢𝑗
2 ] ⇒ 

𝑉𝑎𝑟[𝑌] = 𝑒2𝛽0+2𝜎𝑢
2
− 𝑒2𝛽0+𝜎𝑢

2
 +  𝑒𝛽0 + 

𝜎𝑢
2

2 ⇒ 

                   𝑉𝑎𝑟[𝑌]  =  (μ)2(𝑒(𝜎𝑢
2) − 1)⏟          

①

 + (μ)⏟
②

 (7.5) 

With respect to decomposing the above into the different variance components, the second term is 

equal to the expected lower-level variance, which corresponds to the variability in the count-

measurements produced within individuals. This is based on the assumption of the equality between 

the mean and lower-level variance that the Poisson distribution holds. The remainder represents the 

upper-level variance which corresponds to the true variability between the individuals [202, 204]. 

 

7.3.1.3. The three-level Poisson regression model 

As described in Chapter 2, studies are often interested in examining three hierarchical levels of 

variability in the test results (or equally, two levels of measurement error). For example, when 

studies examine the variability of laboratory-based tests, the recruited individuals (upper level) 

produce multiple samples at different time points (middle level), which are in turn assessed twice 

(lower level). In such cases, the model described under section 7.3.1.2 (equation 7.2), is extended to 

𝑦𝑖𝑗𝑘|𝜆𝑖𝑗𝑘  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘) 

log(𝜆𝑖𝑗𝑘) = 𝛽0 + log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗𝑘) + 𝑢𝑘 + 𝑣𝑗 , 

(7.6) 
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where 𝑢𝑘 ~ 𝑁(0, 𝜎𝑢
2) is the random effects parameter for the upper-level variability (i.e., true 

between-individual variability), and 𝑣𝑗  ~ 𝑁(0, 𝜎𝑣
2) is the random effects parameter for the middle-

level variability, which corresponds to the upper-level measurement error (e.g., for laboratory tests, 

the true variability in measurements produced within individuals over time). The three parameter 

estimates obtained from the above regression model are  

• the regression intercept 𝛽0 of log(𝑦𝑖𝑗𝑘). 

• the variance 𝜎𝑢
2 for the upper-level variability in log(𝑦𝑖𝑗𝑘). 

• the variance 𝜎𝑣
2 for the middle-level variability in log(𝑦𝑖𝑗𝑘). 

 

Estimation of grand mean and different components of variance 

When a three-level Poisson model is used, the calculation of the expected mean and corresponding 

total variance of 𝑦𝑖𝑗𝑘 (given 𝛽0 and averaged over 𝑢𝑘 and 𝑣𝑗) is now extended to 

μ = 𝐸[𝑌] =  𝑒
(𝛽0 + 

𝜎𝑢
2

2
 + 
𝜎𝑣
2

2
)
,    

(7.7) 

and  

𝑉𝑎𝑟[𝑌]  =  (μ)2(𝑒(𝜎𝑢
2) − 1)⏟          

①

 + (μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1)⏟              
②

 + (μ)⏟
③

   (7.8) 

where ① represents the upper-level variance, ② represents the middle-level variance, and ③ 

represents the lower-level variance [202]. 

 

7.3.2. The negative binomial distribution 

As mentioned under section 7.3.1, the use of the Poisson distribution for modelling multilevel data 

requires the lower-level variance to equal the mean value of the produced measurements. However, 
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it has been empirically shown that this assumption is often violated in practice, with the observed 

lower-level variance being larger than that expected by the Poisson distribution. This phenomenon is 

called overdispersion [202]. An alternative distribution for modelling count data, able to additionally 

accommodate any potential overdispersion observed in the data, is the negative binomial 

distribution. Student was the first to propose this distribution for counting red blood cells using the 

hemocytometric camera [207]. This method consists of stretching blood drops on a special slide 

which has a camera with a grid superimposed. The specimen is then read on a microscope by a 

reader, who counts the number of red blood cells in a fixed number of quadrats. In this case, excess 

variability was caused due to the spread of the blood on the slide being more heterogeneous than 

what the Poisson distribution would expect.  

 

7.3.2.1. The two-level negative binomial regression model  

For data with two potential levels of variability (i.e., individuals and measurements produced within 

each individual), a negative binomial model can be expressed as 

𝑦𝑖𝑗|𝜆𝑖𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗) 

log(𝜆𝑖𝑗) = 𝛽0 + log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) + 𝑢𝑗 + 𝜔𝑖𝑗 

(7.9) 

Compared to the Poisson model, this model includes an additional parameter 𝜔𝑖𝑗 for capturing any 

excess lower-level variability that is beyond the Poisson process, with 𝑒𝜔𝑖𝑗  ~ 𝐺𝑎𝑚𝑚𝑎 (
1

𝑎
, 𝑎) 

distributed around a mean of 1 with variance 𝑎. The three parameter estimates obtained from the 

above regression model are  

• the regression intercept 𝛽0 of log(𝑦𝑖𝑗).  

• the variance 𝜎𝑢
2 for the upper-level variability in log(𝑦𝑖𝑗). 

• the variance 𝑎 for any excess lower-level variability in 𝑦𝑖𝑗𝑘, with higher values indicating a 

greater overdispersion. If 𝑎 = 0, this model is equivalent to a Poisson model. 
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All parameters are again estimated on the logarithm scale, as this model also uses the canonical log-

link function [202].  

 

Estimation of grand mean and different components of variance 

The calculation of the expected mean value of 𝑦𝑖𝑗  (averaged over 𝑢𝑗 and 𝜔𝑖𝑗) is identical to that for 

the two-level Poisson model (see equation 7.4). However, the corresponding lower-level variance is 

no longer equal to the mean, and is instead calculated as 

𝑉𝑎𝑟[𝑦𝑖𝑗|𝑢𝑗] = μ(1 + 𝑎 × μ), (7.10) 

where 𝑎 is the estimated overdispersion parameter, and μ is calculated as above. The variance for 

the upper level is calculated in the same way as for the two-level Poisson model (see ① in equation 

7.5) [202]. 

 

7.3.2.2. The three-level negative binomial regression model  

When modelling data with three potential levels of variability, the model extends to 

𝑦𝑖𝑗𝑘|𝜆𝑖𝑗𝑘  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘) 

log(𝜆𝑖𝑗𝑘) = 𝛽0 + log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗𝑘) + 𝑢𝑘 + 𝑣𝑗 +𝜔𝑖𝑗𝑘, 

(7.11) 

where 𝑢𝑘 ~ 𝑁(0, 𝜎𝑢
2) and 𝑣𝑗 ~ 𝑁(0, 𝜎𝑣

2) are the random effects parameters for the upper and 

middle levels of variability, respectively, and 𝜔𝑖𝑗𝑘  is the overdispersion parameter, defined as above. 

The four parameter estimates obtained from the above regression model are  

• the regression intercept 𝛽0 of log(𝑦𝑖𝑗𝑘). 

• the variance 𝜎𝑢
2 for the upper-level variability of log(𝑦𝑖𝑗𝑘). 

• the variance 𝜎𝑣
2 for the middle-level variability of log(𝑦𝑖𝑗𝑘). 
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• The variance 𝑎 for any excess lower-level variability in 𝑦𝑖𝑗𝑘. 

 

Estimation of grand mean and different components of variance 

The calculation of the expected mean value of 𝑦𝑖𝑗𝑘  (averaged over 𝑢𝑘, 𝑣𝑗 , and 𝜔𝑖𝑗𝑘) is identical to 

that for the three-level Poisson model (see equation 7.7). The lower-level variance is again 

calculated using equation 7.10, while the variance for the remaining levels is calculated in the same 

way as for the three-level Poisson model (see ①,② in equation 7.8) [202]. 

 

7.3.3. Which model should be used? 

So far it has been shown that a Poisson model is nested within a negative binomial model, as a 

negative binomial model includes an additional parameter which accounts for potential 

overdispersion. Therefore, the decision on which model should be chosen is entirely dependent on 

the presence of significant overdispersion in the data. If present, the negative binomial model should 

be preferred, while if not present, the Poisson model may be employed. 

 

The likelihood ratio test 

A formal statistical investigation of whether significant overdispersion is present, is possible using 

the likelihood ratio test [202]. This is a frequently used test for comparing the change in deviances of 

two nested models (for each model, this is given by minus twice the maximum value of the log 

likelihood function) [208]. Assuming that we have two models, one with 𝑝 parameters nested within 

an alternative with 𝑝 + 1 parameters, then the models may be compared by testing weather the 

additional parameter is significantly different from zero. Therefore, under the null hypothesis that it 

is not, the following hypothesis test may be used 
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 −2log (
𝐿(𝑝)

𝐿(𝑝+1)
)~𝜒1

2,    (7.12) 

where 𝐿(𝑝) and 𝐿(𝑝 + 1) is the maximum values of the log likelihood function produced from a model 

with 𝑝 and 𝑝 + 1 parameters, respectively, and 𝜒1
2 represents a chi-square distribution with one 

degree of freedom.  

 

7.4. Parameters of reliability and measurement error 

This section presents four parameters of reliability and measurement error of count-based 

biomarkers, which can be calculated using the estimates produced from the different models 

described under section 7.3. Known parameters, which are also used for evaluating the reliability 

and measurement error of continuous measurements, include the standard error of measurement, 

the intra class correlation, and the coefficient of variation. A new parameter, potentially useful for 

evaluating the reliability of count-based measurements, which has not been introduced so far in the 

thesis, includes the median rate ratio. All parameters are presented in Table 7.1. 
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 Table 7.1. Estimation of parameters for each statistical model presented. 

Parameter Poisson model                                        Negative binomial model                                                                          

- Two-level count response model 

Grand mean (μ) 
𝑒
(𝛽0 + 

𝜎𝑢
2

2 ) 𝑒
(𝛽0 + 

𝜎𝑢
2

2 ) 

Lower-level variance μ μ(1 + 𝑎 × μ) 

Upper-level variance (μ)2(𝑒(𝜎𝑢
2) − 1) (μ)2(𝑒(𝜎𝑢

2) − 1) 

Standard error of 
measurement (SEM) 

√μ √μ(1 + 𝑎 × μ)  

Coefficient of variation (CV) (μ)−
1
2 × 100 

μ(1 + 𝑎 × μ)

μ
× 100 

Intra class correlation (ICC) (μ)2(𝑒(𝜎𝑢
2) − 1)

(μ)2(𝑒(𝜎𝑢
2) − 1) + μ

 
(μ)2(𝑒(𝜎𝑢

2) − 1)

(μ)2(𝑒(𝜎𝑢
2) − 1) + μ(1 + 𝑎 × μ)

 

Median rate ratio (MRR) 
𝑒
 (√2𝜎𝑢

2  𝛷−1(0.75) )
 

− 

- Three-level count response model 

Grand mean (μ) 
𝑒
(𝛽0 + 

𝜎𝑢
2

2
 + 
𝜎𝑣
2

2 ) 𝑒
(𝛽0 + 

𝜎𝑢
2

2
 + 
𝜎𝑣
2

2 ) 

Lower-level variance μ μ(1 + 𝑎 × μ) 

Middle-level variance (μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1) (μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1) 

Upper-level variance (μ)2(𝑒(𝜎𝑢
2) − 1) (μ)2(𝑒(𝜎𝑢

2) − 1) 

Standard error of 
measurement (SEM) 

√(μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1) + μ √(μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1) + μ(1 + 𝑎 × μ)  

Coefficient of variation (CV) 
√(μ)2(𝑒(𝜎𝑢

2))(𝑒(𝜎𝑣
2) − 1) + μ

μ
× 100 

√(μ)2(𝑒(𝜎𝑢
2))(𝑒(𝜎𝑣

2) − 1) + μ(1 + 𝑎 × μ)

μ
× 100 

Intra class correlation (ICC) (μ)2(𝑒(𝜎𝑢
2) − 1)

(μ)2(𝑒(𝜎𝑢
2) − 1) + (μ)2(𝑒(𝜎𝑢

2))(𝑒(𝜎𝑣
2) − 1) + μ

 
(μ)2(𝑒(𝜎𝑢

2) − 1)

(μ)2(𝑒(𝜎𝑢
2) − 1) + (μ)2(𝑒(𝜎𝑢

2))(𝑒(𝜎𝑣
2) − 1) + μ(1 + 𝑎 × μ)

 

 𝛽0 is the regression intercept obtained from each model,  𝜎𝑢
2 is the upper-level variance obtained from each model,   

𝜎𝑣
2 is the middle-level variance obtained from a 3-level model,  𝑎 is the excess lower-level variance obtained from a negative binomial model.



199 
 

7.4.1. The standard error of measurement (SEM) 

As described in Chapter 1, the standard error of measurement quantifies the variability of multiple 

measurements produced within individuals. However, the calculation of the parameter may change, 

depending on the statistical model being used for estimating the variability in the count-based 

measurements. 

 

SEM based on Poisson model 

When using a two-level model (i.e., only one source of measurement error is considered), the 

standard error of measurement is equal to the standard deviation of multiple measurements 

produced within-individuals, calculated as 

𝑆𝐸𝑀 =
√
𝑒𝛽0 + 

𝜎𝑢
2

2 = √μ 
(7.13) 

When two sources of within-individual variability are formally examined using a three-level model 

the calculation extends to the square root of the sum of variances attributed to each source. In this 

case, this is equal to 

𝑆𝐸𝑀 =
√
(μ)2(𝑒(𝜎𝑢

2))(𝑒(𝜎𝑣
2) − 1)⏟              

①

+ (μ)⏟
②

 , 
(7.14) 

where ① is the upper level of variability within individuals (e.g., for laboratory tests, the within-

individual biological variability), and ② is the lower level of variability within individuals (e.g., for 

laboratory tests, the analytical variability). 

 

SEM based on negative binomial model 

When a negative binomial model is used, the standard error of measurement is calculated in a 

similar fashion to a Poisson model. However, as described in section 7.3.2, the calculation of the 
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lower-level variance alters so that it accounts for any potential overdispersion being present. Thus, 

for a two-level negative binomial model, the calculation of the SEM is extended to 

𝑆𝐸𝑀 = √μ(1 + 𝑎 × μ), (7.15) 

while for a three-level negative binomial model, the calculation is extended to 

𝑆𝐸𝑀 =
√
(μ)2(𝑒(𝜎𝑢

2))(𝑒(𝜎𝑣
2) − 1)⏟              

①

+ μ(1 + 𝑎 × μ)⏟        
②

 , 
(7.16) 

where ① is the upper level of variability within individuals (e.g., for laboratory tests, the within-

individual biological variability), and ② is the lower level of variability within individuals (e.g., for 

laboratory tests, the analytical variability). 

 

7.4.2. The coefficient of variation (CV) 

As descried in Chapter 1, the coefficient of variation allows the total variability within individuals to 

be expressed in relation to the grand mean of the measurements. For count-based measurements, 

the calculation is as follows 

𝐶𝑉 =
𝑆𝐸𝑀

μ
× 100, 

(7.17) 

where 𝑆𝐸𝑀 is calculated as describe in section 7.4.1, and μ is estimated using equation 7.4 (if a two-

level model is used) or equation 7.7 (if a three-level model is used). 

 

7.4.3. The intra class correlation (ICC) 

The intra class correlation expresses the reliability of the test measurements, and is calculated as the 

proportion of the total variance attributed to true differences between individuals [202, 204]. For 

count-based measurements, this is mathematically expressed as 
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𝐼𝐶𝐶 =
(μ)2(𝑒(𝜎𝑢

2) − 1)

(μ)2(𝑒(𝜎𝑢
2) − 1) + 𝑆𝐸𝑀2

, 
(7.18) 

where the numerator (and first term of the denominator) represents the true variance between 

individuals, and 𝑆𝐸𝑀 is again calculated as describe in section 7.4.1. 

 

7.4.4. The median rate ratio (MRR) 

This chapter introduces the median rate ratio as a potentially useful parameter for expressing the 

reliability of a test producing count-based measurements (i.e., the ability of a test to distinguish 

individuals with a better outcome to those with a worse outcome, despite the presence of 

measurement error). In contrast to the aforementioned parameters, the calculation of this 

parameter is possible only when a two-level Poisson model is used [204]. The parameter denotes the 

median relative difference in the rate between a randomly selected count-based measurement 

produced from an individual with an overall higher rate, and a randomly selected count-based 

measurement produced from an individual with an overall lower rate [204]. For given values of the 

regression intercept and the exposure, the expected rate ratio of 2 randomly selected count-based 

measurements, 𝑖 and 𝑖′, from 2 randomly selected individuals, 𝑗 and 𝑗′, can be calculated as 

𝑅𝑅 =
𝑒
𝛽0+ log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) + 𝑢𝑗

𝑒
𝛽0+log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗) + 𝑢𝑗′

= 𝑒|𝑢𝑗 − 𝑢𝑗′|     
(7.19) 

If all such pairwise comparisons available in the data are considered, the median value of the 

produced distribution of rate ratios can then be approximated as 

𝑀𝑅𝑅 = 𝑒
 (√2𝜎𝑢

2  𝛷−1(0.75) )
,    

(7.20) 

where 𝛷−1 represents the inverse of the standard normal cumulative distribution, and 𝜎𝑢
2 

represents the estimated between-individual variance of the log-rate. This estimate is produced 

directly from the two-level Poisson model (see section 7.3.1). Larger values produced for the median 
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rate ratio correspond to higher between-individual variability, while a value of 1 indicates no 

variability between individuals. 

Austin et al [204] state that this concept arises from the fact that the distribution of |𝑢𝑗  −  𝑢𝑗′| 

produced from all available pairwise comparisons is half normal with variance equal to 2𝜎𝑢
2, and the 

median value of this distribution is given by √2𝜎𝑢
2  𝛷−1(0.75). 

 

 

7.5. Discussion 

This chapter introduces statistical methods available for estimating sources of variability in the 

measurements of biomarkers, expressed as counts or rates. The two statistical models available for 

this purpose include the Poisson random-effects and negative binomial random-effects models. 

Several parameters of reliability and measurement error can in turn be calculated based on the 

estimates produced from the two models. Known parameters include the standard error of 

measurement, the coefficient of variation, and the intra class correlation, while a new, potentially 

useful parameter of reliability (i.e., the median rate ratio) was also introduced. In contrast to the 

standard methods available for estimating sources of variability, the use of these methods no longer 

requires a normal distribution for the measurements produced at different levels. Thus, compared 

to the standard normality-based methods, these methods are likely to produce less biased estimates 

of reliability and measurement error of count measurements, where the assumption of normality is 

known to often be violated. Less biased estimates will in turn allow researchers to make more robust 

decisions regarding the use of a count-based test in clinical practice. However, calculating the 

variability of different levels is more computationally intensive compared to the standard methods 

used for continuous measurements, which can be considered a limitation of these methods. The 

next chapter illustrates the application and interpretation of these methods using a cohort of 

patients with confirmed primary Sjogren’s syndrome as a case study. 
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7.6. Conclusion 

This chapter presents alternative methods for estimating test reliability and measurement error in 

primary studies. In contrast to the standard approach based on linear regression, the use of these 

methods no longer requires the measurements produced at different variability levels to follow a 

normal distribution. Thus, these methods are likely to provide less biased estimates of variability for 

count measurements, where the assumption of normality is known to often be violated. Less biased 

variability estimates will in turn help researchers draw more robust conclusions on the reliability and 

measurement error of a count-based test, and therefore whether the test is fit for use in clinical 

practice. 
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8. Application of statistical methods appropriate for 
estimating sources of variability in count-based 
biomarkers 

 

8.1. Introduction 

Alternative methods for examining the reliability and measurement error of count-based biomarkers 

were introduced in Chapter 7. In this chapter, these methods were applied into a data set of 32 

patients with confirmed primary Sjogren’s syndrome who underwent labial salivary gland biopsy. 

The data was collected as part of the Optimising Assessments in Sjogren’s Syndrome (OASIS) study, 

with all patients recruited in the study fulfilling the 2016 ACR/EULAR classification criteria [209]. The 

biomarker of interest was the focus score, which is commonly used for the diagnosis and 

classification of primary Sjogren’s syndrome (PSS) [199, 210], and has also functioned as surrogate 

endpoint in clinical trials [211]. 

 

8.2. Clinical background 

Sjogren’s syndrome (SS), named after the Swedish ophthalmologist Henrik Sjögren in 1933 [212], is 

an autoimmune disorder caused by the lymphocytic infiltration of exocrine glands, which results in 

dysfunction of the salivary and lacrimal glands. The syndrome can be classified into two types, 

primary and secondary Sjogren’s syndrome. Primary Sjogren’s syndrome (PSS) occurs in the absence 

of other autoimmune diseases and is characterised by keratoconjunctiva sicca (dry eyes) and 

xerostomia (dry mouth), collectively called the sicca syndrome. In contrast, Secondary Sjogren’s 

syndrome (SSS) is presented along with other autoimmune diseases, most commonly with 

rheumatoid arthritis, but also with polymyositis, polyarteritis nodosa, progressive systemic sclerosis 

(scleroderma), and systemic lupus erythematosus [213]. The clinical presentation of PSS may vary. 

The onset is usually at age 40-60 years, with a 9:1 female to male ratio [214]. Salivary gland 
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histopathology, most commonly performed on labial salivary gland (LSG) biopsies, contributes to the 

clinical classification and diagnosis of PSS. The most characteristic feature of PSS on LSG biopsy is the 

focus score, defined as the total number of foci per 4𝑚𝑚2 of salivary gland tissue [210]. According 

to the American College of Rheumatology (ACR)-European League Against Rheumatism (EULAR) a 

positive histopathology finding based on a focus score≥1 is a requirement for the diagnosis of PSS in 

the absence of anti-Ro/SSA antibodies [215]. Moreover, evidence suggests that the focus score may 

also have potential as a biomarker in clinical trials [210].  

 

Figure 8.1. Microphotograph illustrating LSG biopsy obtained from a patient with confirmed disease. 
The total number of foci (black outlined area) is 8. The measured glandular area (in red) is 
20.89mm2. This gives a focus score of 1.53 for the patient. Graph taken from Fisher et al [210]. 

 

 

8.3. Components of variability in the focus score 

The two potential components of variability in the focus score include: 
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• Between-patient variability. That is, any variability in the focus score attributed to true 

biological differences across the recruited individuals. 

• Between-gland within-patient variability. That is, any variability in the focus score 

attributed to differences between the glands observed within each patient’s biopsy (e.g., 

some glands may be larger, or may contain a higher number of foci, compared to others). 

 

8.4. Objectives 

To apply statistical methods appropriate for count-based biomarkers in order to estimate potential 

sources of variability in the focus score, and compare the performance of these methods to the 

standard approach used for continuous measurements. 

 

8.5. Statistical methods 

The baseline characteristics of the 32 patients recruited in the OASIS study were tabulated using 

appropriate summary statistics. The focus score was calculated for each gland observed within each 

patient’s biopsy, as 

𝐹𝑜𝑐𝑢𝑠 𝑠𝑐𝑜𝑟𝑒 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑐𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑙𝑎𝑛𝑑)

(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑙𝑎𝑛𝑑 𝑖𝑛 𝑚𝑚2)
 × 4𝑚𝑚2 

(8.1) 

A histogram was used to assess the distribution of the two parameters required for the calculation 

of the focus score (number of foci within glands and the area of the glands), while a dot plot was 

used to visually inspect the observed variability in the focus score between the glands, and between 

the patients. Several multilevel regression models were then employed to estimate the two 

potential components of variability in the focus score. Initially, the focus score produced for each 

gland was treated as a rate (i.e., number of foci per 4𝑚𝑚2 of glandular area) and analysed using 

both a Poisson model and a negative binomial model. Subsequently, the focus score of each gland 
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was analysed as a continuous measurement using a linear regression model. All models included a 

random effects parameter to estimate any potential variability attributed to true differences 

between patients. A formal assessment of how well each model fitted the data, and therefore 

estimated the two components of variability, was carried out using the AIC and BIC criteria (see 

section 8.5.4). The measurement error and reliability of the focus score were in turn expressed using 

the standard error of measurement, the coefficient of variation, the intra class correlation, and the 

median rate ratio.   

 

8.5.1. Analysis using a two-level Poisson model 

A two-level Poisson model can be expressed as  

log(𝑓𝑜𝑐𝑖𝑖𝑗) = 𝛽𝑜 + log(𝑎𝑟𝑒𝑎𝑖𝑗)  + 𝑢𝑗 (8.2) 

where 𝑓𝑜𝑐𝑖𝑖𝑗  denotes the expected number of foci within the 𝑖𝑡ℎ gland of the 𝑗𝑡ℎ patient (𝑗 =

1, … , 32), 𝛽𝑜 is the regression intercept, 𝑠𝑖𝑧𝑒𝑖𝑗  is the area of 𝑖𝑡ℎ gland within the 𝑗𝑡ℎ patient, and 

𝑢𝑗 ~ 𝑁(0, 𝜎𝑢
2) is the patient-level random effects parameter assumed normally distributed around a 

mean of 0 with variance 𝜎𝑢
2. The two parameter estimates obtained from the above regression 

model are:  

• the regression intercept 𝛽0 of the logarithm of the foci rate (i.e., number of foci per 1 𝑚𝑚2 

of glandular area).  

• the variance 𝜎𝑢
2 for the upper-level variability in the logarithm of the foci rate. 

 

Estimation of grand mean and variance components 

The mean focus score was estimated as 



208 
 

  μ = 𝑒
(𝛽𝑜 + log4 + 

𝜎𝑢
2

2
)
, 

(8.3) 

where 𝛽𝑜 and 𝜎𝑢
2 are defined as above, while (𝛽𝑜  +  log4) is now the extended regression intercept 

corresponding to the logarithm of the number of foci per 4𝑚𝑚2 of glandular area. By the 

assumption of equality between the expected mean and lower-level variance, the value produced 

from equation 8.3 is also equal to the variance expected due to differences in the focus score 

between the glands within patients (= 𝑉𝑎𝑟𝑔𝑙𝑎𝑛𝑑𝑠). The expected between-patient variance of the 

focus score was in turn estimated as 

𝑉𝑎𝑟𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 = (μ)
2(𝑒(𝜎𝑢

2) − 1) 

 

(8.4) 

 

8.5.2. Analysis using a two-level negative binomial model 

A two-level negative binomial model is expressed as 

log(𝑓𝑜𝑐𝑖𝑖𝑗) = 𝛽𝑜 + log(𝑎𝑟𝑒𝑎𝑖𝑗) + 𝑢𝑗 + 𝜔𝑖𝑗  (8.5) 

where 𝜔𝑖𝑗 is the additional parameter for capturing any excess lower-level variability that is beyond 

the Poisson process, with 𝑒𝜔𝑖𝑗  ~ 𝐺𝑎𝑚𝑚𝑎(
1

𝑎
, 𝑎) distributed around a mean of 1 with variance 𝑎. The 

three parameter estimates obtained from the above regression model are:  

• the regression intercept 𝛽0 of the log-foci rate. 

• the variance 𝜎𝑢
2 for the upper-level variability in the log-foci rate. 

• the variance 𝑎 for any excess lower-level variability in the foci rate. 

 

Estimation of grand mean and variance components 
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The calculation of the mean focus score (μ) and the patient-level variance (𝑉𝑎𝑟𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠) were 

identical to the Poisson model, using equations 8.3 and 8.4, respectively. However, the calculation of 

the gland-level variance was this time extended to account for any potential overdispersion, as 

follows 

𝑉𝑎𝑟𝑔𝑙𝑎𝑛𝑑𝑠 = μ(1 + 𝛼 × μ) (8.6) 

 

8.5.3. Analysis using a two-level linear model 

A two-level linear model can be expressed as  

𝐹𝑜𝑐𝑢𝑠 𝑠𝑐𝑜𝑟𝑒𝑖𝑗 = 𝛽𝑜 + 𝑢𝑖 + 𝑒𝑖𝑗 ,  (8.7) 

where 𝐹𝑜𝑐𝑢𝑠 𝑠𝑐𝑜𝑟𝑒𝑖𝑗  is calculated using equation 8.1, 𝛽𝑜 is the regression intercept, 𝑢𝑖 ~ 𝑁(0, 𝜎𝑢
2) 

is the random effects parameter for the between-patient variability, and 𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝑒
2) is the 

random error term for the variability between the glands within patients. The three parameter 

estimates obtained from the above regression model are:  

• the regression intercept 𝛽0 of the focus score. 

• the variance 𝜎𝑢
2 for the patient-level variability in the focus score. 

• the variance 𝜎𝑒
2 for the gland-level variability in the focus score. 

 

Estimation of grand mean and variance components 

In contrast to the Poisson and the negative binomial models, the grand mean and variance 

components are this time estimated directly from the model, and expressed in the original scale 

(rather than the logarithmic). Thus, the estimates of 𝛽0, 𝜎𝑢
2 and 𝜎𝑒

2 correspond to the expected 
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mean (μ), between-patient variance (𝑉𝑎𝑟𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠), and between-gland within-patient variance of 

the focus score (𝑉𝑎𝑟𝑔𝑙𝑎𝑛𝑑𝑠), respectively.  

  

Table 8.1. Estimation of the grand mean and variance components across the three models. 

 Linear model Poisson model Negative binomial model 

Grand mean (μ) 𝛽𝑜 
𝑒𝛽𝑜 + log4 + 

𝜎𝑢
2

2  𝑒𝛽𝑜 + log4 + 
𝜎𝑢
2

2  

Gland-level variance 𝜎𝑒
2 

𝑒𝛽𝑜 + log4 + 
𝜎𝑢
2

2  (= μ) 
μ( 1 + 𝛼 × μ) 

Patient-level variance 𝜎𝑢
2 (μ)2(𝑒(𝜎𝑢

2) − 1) (μ)2(𝑒(𝜎𝑢
2) − 1) 

 

 

8.5.4. Method for comparing the fitted models 

The most popular criteria used for comparing how well different statistical models fit the observed 

data include the Akaike’s (AIC) and the Bayesian information criteria (BIC) [216]. The AIC and BIC 

values for a model can be calculated as  

 𝐴𝐼𝐶 = −2log (𝐿) + 2 × 𝑞 (8.8) 

and 

 𝐵𝐼𝐶 = −2log (𝐿) + 𝑙𝑜𝑔𝑁 × 𝑞 (8.9) 

were 𝐿 denotes the maximum value of the log likelihood function produced from each model, 𝑞 is 

the number of parameters estimated in each model, and 𝑁 is the total number of observations 

included in the analysis.  

For both information criteria, a lower value indicates a better model performance. Both AIC and BIC 

values are highly dependent on the deviance value (i.e., first term of equations 8.8 and 8.9) each 

model yields, as a smaller deviance value indicates a better model performance. Furthermore, in 

support of parsimony, both criteria penalise for the number of parameters estimated in the model. 
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Thus, a model with a lower number of estimated parameters would most likely be chosen over a 

model with a higher number of estimated parameters.  

 

8.5.5. Parameters of reliability and measurement error 

Several statistical parameters were then calculated based on the estimates produced from each 

model, in order to examine the reliability and measurement error of the focus score. Parameters of 

reliability included the intra class correlation and the median rate ratio, while parameters of 

measurement error included the standard error of measurement and the coefficient of variation. All 

parameters were presented along with 95% confidence intervals, which were constructed via 

multilevel bootstrapping with bias-correction (method introduced in Chapter 2) [79, 80, 125, 126]. 

For each parameter, a sampling distribution was obtained by fitting the model to 1000 bootstrapped 

samples [79, 126]. The 2.5% and 97.5% percentiles of the produced sampling distribution were used 

as the lower and upper confidence bound, respectively, and were adjusted in the appropriate 

direction in case the original model-based estimate did not lie at the 50th percentile. 

 

Calculation of the standard error of measurement 

The standard error of measurement was in this case equal to the standard deviation of the 

measurements of the glands within each patient. The parameter was calculated for each model as 

𝑆𝐸𝑀 = √𝑉𝑎𝑟𝑔𝑙𝑎𝑛𝑑𝑠  
(8.10) 

Calculation of the coefficient of variation 

The coefficient of variation expresses the within-patient variability in relation to the grand mean of 

the measurements. The parameter was calculated for each model as 
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𝐶𝑉 =
𝑆𝐸𝑀

μ
× 100 

(8.11) 

Calculation of the intra class correlation 

The intra class correlation reflects the proportion of the total variability in the measurements that is 

attributable to true differences between the patients, and was calculated for each model as follows 

𝐼𝐶𝐶 =
𝑉𝑎𝑟𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠

𝑉𝑎𝑟𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 + 𝑉𝑎𝑟𝑔𝑙𝑎𝑛𝑑𝑠
 

(8.12) 

Calculation of the median rate ratio 

The median rate ratio reflects the median relative difference in the focus score between a randomly 

selected gland from a patient with an overall higher foci rate (i.e., a worse health status), and a 

randomly selected gland from a patient with an overall lower foci rate (i.e., a better health status). 

The parameter was estimated as 

𝑀𝑅𝑅 = 𝑒
 (√2𝜎𝑢

2  𝛷−1(0.75) )
,    

(8.13) 

where 𝛷−1 represents the inverse of the standard normal cumulative distribution, and 𝜎𝑢
2 

represents the estimate of the between-individual variance of the log-rate obtained from the 

Poisson model. 

 

8.6. Results 

The baseline characteristics of the 32 patients recruited in the OASIS study are presented in Table 

8.2. The patients were on average 54.40 (SD= 13.54) years old, with a mean BMI of 28.51 (SD=6.09). 

The majority of the recruited patients were females (30/32, 93.8%). The number of glands observed 

within the biopsies varied from 1 (1/32, 3%) to 16 (1/32, 3%), with the majority of biopsies 
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containing 3 to 6 glands (24/32, 75%). The distribution of both the number of foci observed within 

glands and the area of the glands (displayed in Figure 8.2) was positively skewed. The mean number 

of foci observed within the glands was 1.79 with variance 5.41 [median=1, (Q1=0, Q3=3)], while the 

glands were on average 3.99𝑚𝑚2 large with variance 12.89𝑚𝑚2 [median=3.28, (Q1=1.02, 

Q3=5.73)]. The corresponding mean focus score (i.e., mean number of foci per 4𝑚𝑚2 of glandular 

area) was (1.79/3.99) × 4 =1.79. Figure 8.3 displays the focus score of all individual glands per 

patient, illustrating meaningful differences in the observed focus score at both the patient and gland 

within-patient levels. The results obtained from the three regression models are presented in Table 

8.3. 

 



214 
 

Figure 8.2. Distribution of the number of foci observed within glands and the area of the glands. 
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Table 8.2. Characteristics of patients recruited in the OASIS study (N=32). 

- Patient-level Characteristics 

Age, years (mean, SD) 54.40 (13.54) 

Gender [N, (%)] 30 (93.8%) 

BMI (mean, SD) 28.51 (6.09) 

- Gland-level characteristics 

Glandular area in 𝑚𝑚2,  median [IQR] 3.28 [1.02, 5.73] 

Number of glands per patient, n (%) 

- 1 1 (3) 

- 2 2 (6) 

- 3 4 (13) 

- 4 10 (31) 

- 5 3 (9) 

- 6 7 (22) 

- 7-16 5 (16) 

Number of foci per gland, n (%) 

- 0 67 (41) 

- 1 36 (21) 

- 2 17 (10) 

- 3 12 (7) 

- 4 9 (5) 

- 5 10 (6) 

- 6 6 (4) 

- 7 4 (2) 

- 8-13 4 (2) 
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Figure 8.3. Dot plot of the observed focus score of each gland, split by patient. A blue dot represents 
the focus score of each gland. A red cross represents the median value within patient. The red line 
represents the mean focus score (=1.79). 

 

 

8.6.1. Results from two-level Poisson model 

The estimated regression intercept and between-patient variance for the log-foci rate were -0.92 

[95% CI: (-1.14, -0.70)] and 0.24 [95% CI: (0.10, 0.54)], respectively. From equation 8.3, the resulting 

mean focus score was equal to 1.79. By the equality assumption of the Poisson distribution, the 

between-gland within-patient variance was also expected to be 1.79, which implies a standard error 

of measurement of SEM=1.34 (equation 8.10), and in turn a coefficient of variation of (1.34/1.79) × 

100 = 75.0% (equation 8.11). 

Using equation 8.4, the remainder variance attributed to between-patient variability in the focus 

score was estimated to be 0.85. This implies an ICC estimate of 0.85/ (0.85 + 1.79) = 0.323, which 
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denotes that 32.3% of the total variability in the focus score is attributed to differences between 

patients, with the remaining 67.7% attributed to differences between the glands within-patients. 

Finally, the median rate ratio was estimated to be 1.59 [95% CI: (1.35, 2.01)]. This denotes that the 

focus score of a gland randomly selected from a patient with an overall higher foci rate (i.e., a worse 

health status) is expected to be at least 59% higher than the focus score of a gland randomly 

selected from a patient with an overall lower foci rate (i.e., a better health status), in half such 

comparisons performed.  

 

8.6.2. Results from two-level negative binomial model 

The estimate for the overdispersion parameter produced from the negative binomial model 

appeared negligible [0.02, 95% CI: (<0.01, 29.22)] and was not statistically significant based on the 

likelihood ratio test (p-value=0.2). As expected in such case, the results obtained from the negative 

binomial model were very similar to those obtained from the Poisson model (see Table 8.3). 

 

8.6.3. Results from two-level linear model 

The estimated intercept from the two-level linear regression model was 1.58 [95% CI: (1.22, 1.95)], 

which also corresponds to the estimate of the mean focus score. The gland-level and patient-level 

variance were estimated to be 2.21 [95% CI: (1.74, 2.81)] and 0.63 [95% CI: (0.27, 1.497)], 

respectively.  

These estimates imply a standard error of measurement of 1.49, a coefficient of variation of 

(1.49/1.58) × 100 = 94.0%, and an intra class correlation of 0.63/ (0.63 + 2.21) = 23.2%. 
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8.6.4. Model comparison 

The Poisson and negative binomial models produced very similar estimates, while a lower between-

patient and a higher between-gland within-patient variance estimate was obtained from the linear 

regression model, compared to the two count-based models. The AIC and BIC values were 

significantly higher for the linear regression model, indicating that the analysis of the focus score as a 

count-measurement was more appropriate, compared to a continuous score. When analysing the 

focus score as a count outcome, the Poisson random effects model appeared to be a better fit for 

the data (AIC=463.63, BIC=469.84), compared to a negative binomial model (AIC= 465.55, BIC= 

474.87).  

 

Table 8.3. Results obtained from the analysis of the OASIS cohort (N=32). 

 Two-level Poisson 

model 

Two-level negative 

binomial model 

Two-level linear 

regression model 

- Model-based parameter estimates 

Regression intercept, 

μ (95% CI) 

-0.921 [(-1.14, -0.70)] -0.921 (-1.14, -0.70) 1.58 (1.22, 1.95) 

Between-patient variance, 

𝜎𝑢 (95% CI) 

0.241 [(0.10, 0.54) 0.231 (0.10, 0.55) 0.63 (0.27, 1.49) 

Between-gland variance, 

𝜎𝑒  (95% CI) 

- - 2.21 (1.74, 2.81) 

Overdispersion, 

𝑎 (95% CI) 

- 0.02 [(<0.01, 29.22), 

0.2] 

- 

- Fit statistics 

Akaike information 

criterion (AIC)  

463.63    465.55     632.69 

Bayesian information 

criterion (BIC)  

469.84 474.87 642.01 

- Mean and variance components 
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Grand mean 1.79 (1.50, 2.06) 1.79 (1.50, 2.06) 1.58 (1.22, 1.95) 

Patient-level variance  0.85 (0.29, 1.58) 0.83 (0.25, 1.55) 0.63 (0.27, 1.49) 

Gland-level variance  1.79 (1.50, 2.06) 1.86 (1.55, 2.10) 2.21 (1.74, 2.81) 

- Parameters of reliability and measurement error 

SEM (95% CI) 1.34 (1.22, 1.44) 1.36 (1.25, 1.48) 2.21 (1.74, 2.81) 

CV (95% CI) 0.75 (0.70, 0.82) 0.76 (0.72, 0.83) 0.94 (0.78, 1.25) 

ICC (%) (95% CI) 32.3 (12.1, 46.8) 31.0 (11.5, 45.6) 23.2 (4.8, 34.0) 

MRR (95% CI) 1.59 (1.35, 2.01] - - 

1
estimated for the logarithm of the foci-rate 

 

 

8.7. Discussion 

This study aimed to examine potential sources of variability in the focus score using statistical 

methods appropriate for counts, and to evaluate the performance of these methods compared to 

the to the standard methods used for continuous measurements. However, the sample size of the 

study was not based on any formal statistical calculation, while the estimates of the within-patient 

variance produced from each model should be interpreted with caution due to the number of glands 

observed within some patients (≤3 in 22% of the patients). Furthermore, the reproducibility of the 

focus score was in this case not possible to be evaluated, as no repeated measurements were taken 

from each patient.  

The Poisson and negative binomial models produced very similar estimates for the between-patient 

and the between-gland within-patient variance. A lower between-patient and a higher between-

gland within-patient variance estimate was obtained from the linear regression model, compared to 

the two count-based models. The AIC and BIC values were significantly higher for the linear 

regression model, indicating that the analysis of the focus score as a count was in this case more 

appropriate, compared to a continuous score. The median rate ratio produced from the Poisson 

model was 1.59 [95% CI: (1.35, 2.01)], indicating significant variation in the focus score from one 

patient to another. However, the low ICC values obtained from all three models indicated that most 
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of the total variability observed in the focus score was attributed to differences between the glands 

within the patients, while the large values obtained for the standard error of measurement and the 

coefficient of variation were considered an indicative of high measurement error. 

 

Strengths, limitations, and further work 

This case study indicated strong evidence of the superiority of the count-based models over the 

standard linear regression model when estimating the reliability and measurement error of count-

based tests. However, an obvious limitation of using the count-based models includes the further 

calculations required for estimating the variability of different levels. This is because, in contrast to 

the linear model, the estimates obtained directly from the count-based models are expressed on the 

logarithm scale, and thus, are no longer clinically meaningful. Furthermore, providing 

recommendations regarding the use of count-based models over linear models requires further 

work using simulation. The models should be compared across a variety of simulated scenarios (e.g., 

different input values for the number of individuals, measurements per individual, mean and 

variability at different levels) in order to identify particular scenarios where the count-based models 

perform better on estimating different levels of variability, compared to the standard linear 

regression model. 

 

8.8. Conclusion 

Although able to distinguish patients with a better health outcome to those with a worse, the focus 

score is highly variable within patients. Compared to a linear regression model, the two count-based 

models appeared to perform better when estimating the variability in the focus score attributed to 

true differences between patients, and the variability attributed to differences between the glands 

within the patients. This shows the importance of properly modelling the distribution of biomarkers 
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to correctly estimate the potential sources of variability. Further work involves comparing the three 

models across different simulated scenarios, so that recommendations of the use of count-based 

models over linear models can be provided. 
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9. Evaluation of the impact of the number of glands 
within labial salivary gland biopsy on the 
reproducibility of the focus score 

 

9.1. Introduction 

Evidence suggests that the focus score based on labial salivary gland biopsy (introduced in Chapter 

8) has potential as a biomarker of primary Sjogren’s syndrome, and meets several criteria required 

for the use in medical research. According to Fisher et al [199], the focus score is highly valid (i.e., 

able to accurately measure what is intended to), while a high agreement was observed between 

clinicians when assessing both the number of foci and the focus score of the same sample [217]. 

Furthermore, although invasive, the procedure is well-tolerated in experienced hands [199], and 

there are no significant concerns regarding its safety [218]. However, a key question arises on the 

reproducibility of the measurements of the focus score, as each biopsy can include a different 

number of glands, and there is substantial between-gland within-patient variability in the number of 

foci per glandular area (see Chapter 8) which the calculation of the focus score does not consider.  

It is important to understand the impact of the number of glands biopsied for each individual on the 

estimate and precision of reproducibility. If the number of glands required per individual to obtain a 

reproducible estimate could be derived, this would allow minimum samples to be specified for 

future studies. This chapter used simulation to expand the original data set presented and analysed 

in Chapter 8 (where no repeated measurements were performed within patients), in order to 

examine the impact that different numbers of glands within labial salivary gland (LSG) biopsy may 

have on the reproducibility of the focus score. 
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9.2. Aim 

The aim of this chapter was to investigate the impact of different numbers of glands in LSG biopsy on 

the reproducibility of the focus score, and how does this change across different simulated 

scenarios. 

 

9.3. Statistical methods 

The evaluation of reproducibility requires two or more consecutive measurements produced from 

the same individual (see Chapter 1) [219]. As repeated measurements of the focus score were not 

performed in the OASIS study (see Chapter 8), a simulation study (i.e., computer-based experiment 

that involves generating data based on known probability distributions [220]) was carried out to 

investigate the impact of different numbers of glands observed in a labial salivary gland biopsy on 

the reproducibility of the focus score. The simulation was based on the assumption that patients 

underwent two consecutive biopsies with two focus scores obtained from each biopsy, as this was 

considered the maximum number of clinically feasible biopsies. The reproducibility of the focus 

score was expressed as the average absolute difference between the two focus scores produced 

within patients, with a larger difference indicating a lower reproducibility.  

 

9.3.1. Simulation models 

The generation of the focus score requires information on both the number of foci observed within 

the glands and the area of the individual glands observed within each patient’s biopsy. For both 

parameters, the choice of the simulation model (and simulation inputs, see section 9.3.2) was based 

on the OASIS data set (analysed in Chapter 8). The models that fitted the values observed in the 

OASIS data best were in turn used in this chapter to simulate each parameter required for the 

calculation of the focus score. 
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Number of foci within glands 

As described in Chapter 8, the number of foci observed within glands is a count-based 

measurement. A random effects Negative Binomial model appeared to be a more suitable fit for the 

OASIS data (AIC=578.30, BIC=587.62) compared to a random effects Poisson model (AIC=610.75, 

BIC=616.96) when analysing the number of foci within the glands independently (i.e., not as a rate, 

as in Chapter 8). For each of the two biopsies taken from each patient, the number of foci within 

glands was simulated from a negative binomial random effects model, which is expressed as:  

log(𝑓𝑜𝑐𝑖𝑖𝑗) = 𝑏𝑒𝑡𝑎 + 𝑢𝑗 +𝜔𝑖𝑗 (9.1) 

where 𝑓𝑜𝑐𝑖𝑖𝑗  denotes the expected number of foci within the 𝑖𝑡ℎ gland (𝑖 = 1,… , 𝑛𝑔𝑙𝑎𝑛𝑑𝑠) within 

the 𝑗𝑡ℎ patient (𝑗 = 1, … , 𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠), 𝑏𝑒𝑡𝑎 is the regression intercept, 𝑢𝑗 ~ 𝑁(0, 𝜎𝑢
2) is the patient-

level random effects parameter assumed normally distributed around a mean of 0 with variance 𝜎𝑢
2, 

and 𝑒𝜔𝑖𝑗  ~ 𝐺𝑎𝑚𝑚𝑎(
1

𝑎
, 𝑎)  is the exponentiated gland-level overdispersion parameter assumed 

gamma-distributed around a mean of 1 with variance 𝑎.  

For the patient-level random effects parameter (𝑢𝑗), each patient was assigned the same value for 

both biopsies, sampled from a normal distribution with zero mean and variance 𝜎𝑢
2. This was to 

account for the fact that the two biopsies were assumed to be performed on the same patient, with 

no patient-level systematic differences occurring in-between the two biopsies (e.g., a change of the 

patient’s health status). 

 

Area of individual glands 

In contrast to the number of foci, the area of the glands is a continuous measurement, expressed in 

squared millimeters. The area of the glands was generated in relation to the number of foci 

observed within the glands, as a strong positive correlation between the two parameters was 
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observed in the OASIS data (Spearman's ρ=0.72, p-value<0.001), indicating that larger glands are 

more likely to contain a higher number of foci. For each of the two biopsies performed within each 

patient, the area of the glands was simulated from a linear regression mixed-effects model, which is 

expressed as: 

√𝐴𝑟𝑒𝑎𝑖𝑗 = 𝛽0  +   𝛽1 × 𝐹𝑜𝑐𝑖𝑖𝑗 + 𝑣𝑗 + 𝑒𝑖𝑗  
(9.2) 

where √𝐴𝑟𝑒𝑎𝑖𝑗 is the square root of the area of the 𝑖𝑡ℎ gland (𝑖 = 1, … , 𝑛𝑔𝑙𝑎𝑛𝑑𝑠) within the 𝑗𝑡ℎ 

patient (𝑗 = 1,… , 𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠). 𝛽0 is the regression intercept (i.e., the mean value of the square-

rooted area of glands when the number of foci equals zero), 𝛽1 is the regression slope which 

accounts for the correlation between the number foci within the glands and the area of the glands, 

𝑣𝑗  ~ 𝑁(0, 𝜎𝑣
2) is the patient-level random effects parameter assumed normally distributed around a 

mean of 0 with variance 𝜎𝑣
2, and 𝑒𝑖𝑗  ~ 𝑁(0, 𝜎𝑒

2) is the gland-level random error term assumed 

normally distributed around a mean of 0 with variance 𝜎𝑒
2. The square root function was used as the 

distribution of the area of the glands within the patients recruited in the OASIS study was positively 

skewed, and this transformation appeared to be the most effective for normalising the data 

compared to any other applied, such as the log-transformation. 

Similar to the number of foci within glands, the patient-level random effects parameter (𝑣𝑗) took the 

same value for both biopsies performed on the same patient, sampled from a normal distribution 

with zero mean and variance 𝜎𝑣
2. Again, this was to account for the fact that the two biopsies were 

performed on the same patient, and that there were no systematic differences in the area of the 

two samples taken from the patient. 
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9.3.2. Simulation inputs 

The simulation required an input value for the following parameters: the number of patients 

undergoing biopsy, the number of glands within the LSG biopsy of each patient, and the regression 

parameters required for the generation of the number of foci within the glands, and the area of the 

individual glands (see equations 9.1 and 9.2). The regression parameters required for the generation 

of the number of foci within the glands and the area of the individual glands (see equations 9.1 and 

9.2) were derived from the analysis of the OASIS data. Information on each parameter, including the 

notation, the estimation method (if applicable), and the input values used, is presented in Table 9.1. 

 

Number of patients 

For the base-case scenario, data sets of 30 patients were generated. This number is in agreement 

with the number of patients in the OASIS cohort and reflects the majority of the sample sizes seen in 

already conducted research studies in primary Sjogren's syndrome [221, 222]. Alterations to the 

base-case scenario included changing the input value of the sample size to 15 and 60 patients. These 

numbers reflect the range of the sample sizes seen in already conducted research studies in primary 

Sjogren's syndrome [221, 222]. 

 

Number of glands within LSG biopsy 

The number of glands per patient assessed were 2, 3, 4, 5, 6 and 7. Each number of glands was 

assessed across 2500 simulated data sets (see section 9.3.4 for justification of the number of 

simulations), giving 15000 generated data sets in total. The range of 2 to 7 glands was based on the 

suggestions observed in a Delphi process conducted amongst 39 experts regarding issues around the 

standardisation of the glandular tissue requirements for the performance of a labial salivary gland 

biopsy [210].  
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Number of foci within glands 

For the regression parameters required for the generation of number of foci within the glands (see 

equation 9.1), the base-case scenario input values were equal to the estimates obtained from the 

analysis of the OASIS data; 𝑏𝑒𝑡𝑎=0.45, 𝜎𝑢
2=0.64, and 𝛼=0.55. The mean number of foci within glands 

was estimated through the values of the regression intercept and the between-patient variance of 

the log number of foci, as 

 
𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅= 𝑒𝑏𝑒𝑡𝑎 + 

𝜎𝑢
2

2     
(9.3) 

Thus, the corresponding input value for the mean number of foci within glands was 2.16. From this 

base-case scenario, variations to the input values of the regression intercept (𝑏𝑒𝑡𝑎), the between-

patient variance of the log number of foci (𝜎𝑢
2) , and the variance of the exponentiated 

overdispersion parameter (𝑎) were made one-at-a-time, as follows: 

 

• Changing the input value of the regression intercept to 0.10 and 0.80. 

• Changing the input value of the patient-level variance in the log number of foci to 0.30 

and 1.32. 

• Changing the input value of the variance of the exponentiated gland-level 

overdispersion parameter to 0.30 and 1. 

 

The choice of these values based on the uncertainty (lower and upper 95% confidence bounds) 

observed in the results obtained from the analysis of the OASIS data. 

 

Area of individual glands 

 For the square root of the area of the individual glands (see equation 9.2), the base-case scenario 

input values were equal to the estimates obtained from the analysis of the OASIS data; the 
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regression intercept (𝛽0) was 1.35, the regression slope (𝛽1) was 0.25, the patient-level variance 

(𝜎𝑣
2) was 0.09, and the gland-level variance (𝜎𝑒

2) was 0.42. 

The mean area of the individual glands can then be estimated using 

  √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛽0  +   𝛽1 × 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ (9.4) 

were 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ is estimated from equation 9.3. Thus, the corresponding input value for the mean of the 

square root of area of the glands was 1.89𝑚𝑚2. From this base-case scenario, variations to the input 

values of the regression intercept (𝛽0), the regression slope (𝛽1), the between-patient variance 

(𝜎𝑣
2), and the between-gland variance of the square root of the area of the individual glands (𝜎𝑒

2) 

were made one-at-a-time, as follows: 

 

• Changing the input value of the regression intercept to 1.20 and 1.50. 

• Changing the input value of the regression slope to 0.20 and 0.30. 

• Changing the input value of the patient-level variance of the square root of the area of 

the glands to 0.02 and 0.20. 

• Changing the input value of the gland-level variance or the square root of the area of the 

glands to 0.30 and 0.56. 

 

These values were chosen based on the uncertainty (lower and upper 95% confidence bounds) 

observed in the results obtained from the analysis of the OASIS data. 
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Table 9.1. Notation description and estimation method for simulation parameters. 

Description Notation                                       Formula                                                                         Input values2                                       

Sample size 

Number of patients 𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 - 15, 30, 60 

Number of glands within patients 𝑛𝑔𝑙𝑎𝑛𝑑𝑠 - (2,3,4,5,6,7)3 

Number of foci within glands 

Regression intercept1 𝑏𝑒𝑡𝑎 - 0.10, 0.45, 0.80 

Patient-level variance1 𝜎𝑢
2 - 0.30, 0.64, 1.32 

Gland-level variance of the exponentiated 
overdispersion parameter 

𝑎 - 0.30, 0.55, 1 

Mean value 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ 
𝑒(𝑏𝑒𝑡𝑎 + 

𝜎𝑢
2

2 ) 
- 

(Square root of) area of individual glands within LSG biopsy 

Regression intercept 𝛽0 - 1.20, 1.35, 1.50 

Regression slope implying correlation with 
number of foci within glands 

𝛽1 - 0.20, 0.25, 0.30 

Patient-level variance 𝜎𝑢
2 - 0.02, 0.09, 0.20 

Gland-level variance 𝜎𝑒
2 - 0.30, 0.42, 0.56 

Mean value √𝑆𝑖𝑧𝑒𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝛽0 + 𝛽1 × 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ - 

1estimated on the logarithm scale, 2value in bold indicates the input value used for the base-case scenario,3all 6 input values were used in all different  

analyses performed to examine how reproducibility changes for different simulated numbers of glands. 
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9.3.3. Analysis of generated data 

2500 data sets were simulated (see section 9.3.4 for justification of the number of simulations) for 

each of the six numbers of glands assessed, with each data set containing a value for the number of 

foci and the square root of the area of each gland, for both biopsies performed on each patient. The 

mean values of the two parameters (𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ and √𝑆𝑖𝑧𝑒𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅) were then calculated for each data set. 

These values were assessed for bias, which was calculated as the absolute difference between the 

average of the 2500 generated estimates, expressed as mean (SD) or median (IQR), and the 

expected input values for each parameter (estimated from equations 9.3 and 9.4).  

The two focus scores for each biopsy performed on each patient were then calculated as the total 

number of foci observed within each biopsy, over the total glandular area, multiplied by 4𝑚𝑚2 

[210].The reproducibility of the focus score was expressed for each patient as the absolute 

difference between the two focus scores, which was summarised within each simulated data set 

using the median and interquartile range (IQR). The 2500 estimates produced for the median 

absolute difference and IQR were in turn summarised using mean (SD) or median (IQR), as 

appropriate.  

The data generation and analysis were then repeated for a different number of glands observed in 

the biopsy, and the results were compared across the six simulated numbers of glands (2 to 7). 

Visual assessments of how the estimated average absolute difference and its corresponding 

precision (i.e., the IQR) changes for a unit increase in the number of glands were made using 

boxplots, displaying the median of the produced 2500 estimates along with the lower and upper 

quartiles for each simulated number of glands, and scatterplots, plotting the produced median 

absolute difference within each data set against the associated interquartile range. 
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9.3.4. Justification of the number of simulations 

The median absolute difference between the two focus scores produced within the patients, which 

reflects the reproducibility of the focus score, was considered the main parameter of interest. The 

number of simulations for each different number of glands was determined using the following 

formula:  

𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑆𝐸 =
𝑆𝐷

√𝑛𝑠𝑖𝑚
, 

(9.5) 

where 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑆𝐸 and 𝑆𝐷 are Monte Carlo standard error and standard deviation of the 

median absolute difference between the two focus scores, across 𝑛𝑠𝑖𝑚 generated data sets. A 

Monte Carlo standard error of ≤0.5% will allow the median absolute difference between the two 

focus scores to be estimated with a satisfactory degree of precision. The chosen value of 0.5% was 

equal to the value used in the example presented in Morris et al [220]. 

To obtain an estimate of the standard deviation of the median absolute difference between the two 

measurements, an initial small simulation of 200 replications was performed for each of the 6 

glands, assuming 30 patients within each simulated data set. The base-case scenario was used for 

the remaining data generation inputs. The standard deviation of the median absolute difference 

varied from 0.11 to 0.23 across the 6 simulated numbers of glands, with higher values observed for 

lower numbers of glands per patient. With 2 glands within biopsy, the upper 95% confidence bound 

was equal to 0.26. For the remaining 5 scenarios, the upper 95% confidence bound did not exceed 

0.25. Thus, a conservative estimate of 0.25 was used to determine the number of replications 

required, in order to obtain a Monte Carlo standard error of 0.5%. From equation 9.5, this implies 

that 2500 replications were required. 
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9.4. Results 

9.4.1 Base-case scenario 

Generation of gland-level parameters 

The 2500 estimates produced for the mean number of foci within glands and the mean of the square 

root of the area of glands were normally distributed for both simulated biopsies and all 6 simulated 

numbers of glands within biopsy (Figures 9.1 and 9.2). If present, the bias of the mean number of 

foci within glands was no more than an absolute value of 0.02, while no bias was noted for the mean 

of the square root of the area of the glands, across all simulated numbers of glands within each 

biopsy (Table 9.2). 

 

Reproducibility of the focus score 

The 2500 estimates produced for the median absolute difference between the two within-patient 

focus scores and the corresponding interquartile range were normally distributed for all 6 simulated 

numbers of glands (Figures 9.4 and 9.5). The standard deviation of the median absolute difference 

was lower than or equal to the pre-specified value of 0.25, allowing the parameter to be estimated 

with satisfactory precision across all simulated numbers of glands.  

A decrease in the median absolute difference was noted for every unit increase in the number of 

glands; the mean of the 2500 estimates produced for the median absolute difference was 1.05 

(SD=0.25) for 2 glands, which was reduced to 0.52 (SD=0.12) for 7 glands. A similar trend was 

observed for the interquartile range, with the mean of 2500 IQR estimates reducing from 1.60 

(SD=0.48) for 2 glands, down to 0.71 (SD=0.18) for 7 glands (see Table 9.3).    
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Table 9.2. Generation of gland-level parameters – base case scenario. 

Input values – 
Sample size 

Input values –  
Number of foci within glands 

Input values –  
Square root of the area of glands 

Results –  
1st LSG biopsy 

Results –  
2nd LSG biopsy 

𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑛𝑔𝑙𝑎𝑛𝑑𝑠 𝑏𝑒𝑡𝑎 𝜎𝑢
2 𝑎𝑙𝑝ℎ𝑎 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ 𝛽0 𝛽1 𝜎𝑣

2 𝜎𝑒
2 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂ √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂

 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂ √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂

 

30 2 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.18 (0.50) 1.89 (0.16) 2.17 (0.51)  1.89 (0.16) 

30 3 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.45) 1.89 (0.14) 2.15 (0.44) 1.89 (0.14) 

30 4 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.45) 1.89 (0.14) 2.16 (0.45) 1.89 (0.14) 

30 5 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.42) 1.89 (0.13) 2.16 (0.43) 1.89 (0.13) 

30 6 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.42) 1.89 (0.13) 2.16 (0.42) 1.89 (0.13) 

30 7 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.42) 1.89 (0.12) 2.17 (0.42) 1.89 (0.13) 

 

 

Table 9.3. Reproducibility of the focus score – base case scenario. 

𝒏𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔 𝒏𝒈𝒍𝒂𝒏𝒅𝒔 Median of absolute difference in focus score 

(mean, SD) 

IQR of absolute difference in focus score 

(mean, SD) 

30 2 1.05 (0.25) 1.60 (0.48) 

30 3 0.82 (0.19) 1.19 (0.33) 

30 4 0.71 (0.16) 0.98 (0.28) 

30 5 0.62 (0.14) 0.86 (0.22) 

30 6 0.56 (0.13) 0.77 (0.20) 

30 7 0.52 (0.12) 0.71 (0.18) 

 

 

 

 



234 
 

Figure 9.1. Distribution of the produced 2500 estimates for the mean of the number of foci within glands and each LSG biopsy – base case scenario. 
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Figure 9.2. Distribution of the produced 2500 estimates for the mean of the square root of the area of the glands and each LSG biopsy – base case scenario. 
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Figure 9.3. Scatterplot of the 2500 median differences in the focus score against the associated interquartile range – base case scenario. The reference 

value of median=0.5 is used to aid comparissons between different simulated numbers of glands. 
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Figure 9.4. Boxplot of median absolute difference in focus score for each simulated number of glands – base case scenario. The reference value of 

median=0.5 is used to aid comparissons between different simulated numbers of glands. 
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Figure 9.5. Boxplot of IQR of absolute difference in focus score for each simulated number of glands – base case scenario. The reference value of IQR=1 is 

used to aid comparissons between different simulated numbers of glands. 
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9.4.2. Sensitivity analysis 

Generation of gland-level parameters 

The bias for the mean number of foci and square root of the area of the glands remained similar to 

the base-case scenario, when altering the input value of the sample size, or any of the regression 

parameters required for the generation of the square root of the area of the glands (see equations 

9.1 and 9.2). For both the mean number of foci and square root of the area of the glands, the 

produced estimates were biased by no more than an absolute value of 0.02 and 0.01, respectively, 

across all simulated scenarios (Tables 9.4, 9.6 and 9.8).  

 

Reproducibility of the focus score 

The results obtained for all different input values remained similar to the base-case scenario, with 

the mean of 2500 estimates produced for the median absolute difference and interquartile range 

decreasing for a unit increase in the number of glands (Tables 9.5, 9.7 and 9.9).  

A higher input value for 𝜎𝑢
2 (i.e., a higher between-patient variability in the number of foci), 𝛽0 (i.e., a 

larger glandular area), and 𝛽1 (i.e., a stronger positive correlation between the number of foci within 

glands and the area of the glands) produced lower estimates for the median absolute difference.  

Lower IQR estimates (i.e., a higher precision within the generated data sets) were observed for a 

higher number of patients, a higher input value for 𝛽0 and 𝛽1, and a lower input value for 𝜎𝑣
2 (i.e., a 

lower between-patient variability in the glandular area) and 𝜎𝑒
2 (i.e., a lower between-gland within-

patient variability in the glandular area).
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Table 9.4. Generation of gland-level parameters – varying the sample size. 

Input values – 
Sample size 

Input values –  
Number of foci within glands 

Input values –  
Square root of the area of glands 

Results –  
1st LSG biopsy 

Results –  
2nd LSG biopsy 

𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑛𝑔𝑙𝑎𝑛𝑑𝑠 𝑏𝑒𝑡𝑎 𝜎𝑢
2 𝑎 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ 𝛽0 𝛽1 𝜎𝑣

2 𝜎𝑒
2 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂ √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂

 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂ √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂

 

15 2 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.72) 1.89 (0.23) 2.14 (0.69) 1.89 (0.23) 

15 3 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.66) 1.89 (0.21) 2.15 (0.67) 1.89 (0.21) 

15 4 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.14 (0.61) 1.89 (0.19) 2.17 (0.62) 1.89 (0.19) 

15 5 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.60) 1.89 (0.18) 2.17 (0.61) 1.89 (0.19) 

15 6 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.18 (0.59) 1.90 (0.18) 2.18 (0.60) 1.90 (0.18) 

15 7 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.58) 1.89 (0.18) 2.16 (0.59) 1.89 (0.18) 

60 2 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.36) 1.89 (0.11) 2.16 (0.36) 1.89 (0.11) 

60 3 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.34) 1.89 (0.10) 2.16 (0.33) 1.89 (0.10) 

60 4 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.32) 1.89 (0.10) 2.16 (0.32) 1.89 (0.10) 

60 5 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.30) 1.89 (0.09) 2.16 (0.30) 1.89 (0.09) 

60 6 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.31) 1.89 (0.09) 2.16 (0.31) 1.89 (0.09) 

60 7 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.29) 1.89 (0.09) 2.17 (0.29) 1.89 (0.09) 
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Table 9.5. Reproducibility of the focus score – varying the sample size. 

𝒏𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔 𝒏𝒈𝒍𝒂𝒏𝒅𝒔 Median of absolute difference in focus score 

(mean, SD) 

IQR of absolute difference in focus score 

(mean, SD) 

15 2 1.08 (0.37) 1.79 (0.80) 

15 3 0.84 (0.29) 1.31 (0.52) 

15 4 0.70 (0.23) 1.05 (0.40) 

15 5 0.63 (0.20) 0.92 (0.35) 

15 6 0.57 (0.18) 0.83 (0.29) 

15 7 0.52 (0.17) 0.76 (0.28) 

60 2 1.05 (0.18) 1.59 (0.32) 

60 3 0.82 (0.13) 1.19 (0.24) 

60 4 0.70 (0.12) 0.99 (0.19) 

60 5 0.62 (0.10) 0.86 (0.16) 

60 6 0.56 (0.09) 0.77 (0.14) 

60 7 0.51 (0.08) 0.71 (0.13) 
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Table 9.6. Generation of gland-level parameters – varying the regression parameters required for the number of foci within glands. 

Input values – 
Sample size 

Input values –  
Number of foci within glands 

Input values –  
Square root of the area of glands 

Results –  
1st LSG biopsy 

Results –  
2nd LSG biopsy 

𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑛𝑔𝑙𝑎𝑛𝑑𝑠 𝑏𝑒𝑡𝑎 𝜎𝑢
2 𝑎 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ 𝛽0 𝛽1 𝜎𝑣

2 𝜎𝑒
2 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂1 √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂ 1 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂1 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂ 1 

- Varying the regression intercept (𝒃𝒆𝒕𝒂) 

30 2 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.52 (0.37) 1.74 (0.14) 1.52 (0.37) 1.73 (0.14) 

30 3 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.52 (0.34) 1.73 (0.12) 1.53 (0.34) 1.73 (0.12) 

30 4 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.51 (0.31) 1.73 (0.11) 1.52 (0.31) 1.73 (0.11) 

30 5 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.53 (0.31) 1.73 (0.11) 1.52 (0.31) 1.73 (0.11) 

30 6 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.52 (0.29) 1.73 (0.10) 1.52 (0.30) 1.73 (0.10) 

30 7 0.10 0.64 0.55 1.52 1.35 0.25 0.09 0.42 1.73 1.53 (0.31) 1.73 (0.10) 1.53 (0.30) 1.73 (0.10) 

30 2 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.06 (0.68) 2.12 (0.19) 3.06 (0.71) 2.12 (0.20) 

30 3 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.07 (0.68) 2.12 (0.19) 3.05 (0.67) 2.11 (0.19) 

30 4 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.07 (0.63) 2.12 (0.18) 3.06 (0.65) 2.12 (0.18) 

30 5 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.07 (0.60) 2.12 (0.17) 3.07 (0.61) 2.12 (0.17) 

30 6 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.06 (0.58) 2.12 (0.16) 3.05 (0.59) 2.11 (0.17) 

30 7 0.80 0.64 0.55 3.06 1.35 0.25 0.09 0.42 2.12 3.06 (0.57) 2.12 (0.16) 3.06 (0.58) 2.12 (0.16) 

- Varying the patient-level variance of the log-number of foci (𝝈𝒖
𝟐) 

30 2 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.83 (0.33) 1.81 (0.13) 1.83 (0.35) 1.81 (0.13) 

30 3 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.82 (0.29) 1.80 (0.12) 1.83 (0.29) 1.81 (0.11) 

30 4 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.82 (0.27) 1.81 (0.11) 1.82 (0.27) 1.81 (0.11) 

30 5 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.83 (0.26) 1.81 (0.10) 1.82 (0.27) 1.81 (0.10) 

30 6 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.81 (0.25) 1.80 (0.10) 1.82 (0.25) 1.80 (0.10) 

30 7 0.45 0.30 0.55 1.82 1.35 0.25 0.09 0.42 1.81 1.83 (0.25) 1.81 (0.09) 1.83 (0.24) 1.81 (0.09) 

30 2 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.04 (1.11) 2.11 (0.29) 3.02 (1.05) 2.10 (0.28) 

30 3 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.04 (1.04) 2.11 (0.27) 3.03 (1.07) 2.11 (0.28) 

30 4 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.04 (1.03) 2.11 (0.27) 3.05 (1.05) 2.11 (0.27) 

30 5 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.04 (1.00) 2.11 (0.26) 3.02 (0.99) 2.11 (0.26) 

30 6 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.05 (0.99) 2.11 (0.26) 3.04 (1.02) 2.11 (0.27) 

30 7 0.45 1.32 0.55 3.04 1.35 0.25 0.09 0.42 2.11 3.02 (0.92) 2.11 (0.24) 3.03 (0.94) 2.11 (0.25) 

- Varying the gland-level variance of the exponentiated overdispersion parameter (𝒂) 
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30 2 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.47) 1.89 (0.15) 2.16 (0.47) 1.89 (0.15) 

30 3 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.44) 1.89 (0.14) 2.15 (0.44) 1.89 (0.14) 

30 4 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.42) 1.89 (0.13) 2.17 (0.43) 1.89 (0.14) 

30 5 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.41) 1.89 (0.13) 2.17 (0.41) 1.89 (0.13) 

30 6 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.40) 1.89 (0.12) 2.15 (0.41) 1.89 (0.13) 

30 7 0.45 0.64 0.30 2.16 1.35 0.25 0.09 0.42 1.89 2.16 (0.41) 1.89 (0.13) 2.15 (0.41) 1.89 (0.12) 

30 2 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.57) 1.89 (0.18) 2.16 (0.56) 1.89 (0.17) 

30 3 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.52) 1.89 (0.16) 2.16 (0.50) 1.89 (0.15) 

30 4 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.49) 1.89 (0.14) 2.16 (0.48) 1.89 (0.14) 

30 5 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.45) 1.89 (0.14) 2.15 (0.45) 1.89 (0.14) 

30 6 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.15 (0.44) 1.89 (0.13) 2.15 (0.45) 1.89 (0.13) 

30 7 0.45 0.64 1 2.16 1.35 0.25 0.09 0.42 1.89 2.17 (0.45) 1.89 (0.13) 2.16 (0.44) 1.89 (0.13) 
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Table 9.7. Reproducibility of the focus score – varying the regression parameters required for the number of foci within glands. 

𝒏𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔 𝒏𝒈𝒍𝒂𝒏𝒅𝒔 𝒃𝒆𝒕𝒂 𝝈𝒖
𝟐  𝒂 Median of absolute difference in focus score 

(mean, SD) 

IQR of absolute difference in focus score 

(mean, SD) 

- Varying the regression intercept (𝒃𝒆𝒕𝒂) 

30 2 0.10 0.64 0.55 1.01 (0.25) 1.59 (0.47) 

30 3 0.10 0.64 0.55 0.81 (0.19) 1.18 (0.33) 

30 4 0.10 0.64 0.55 0.68 (0.16) 0.97 (0.27) 

30 5 0.10 0.64 0.55 0.60 (0.14) 0.85 (0.23) 

30 6 0.10 0.64 0.55 0.54 (0.13) 0.75 (0.20) 

30 7 0.10 0.64 0.55 0.50 (0.11) 0.70 (0.18) 

30 2 0.80 0.64 0.55 1.06 (0.25) 1.58 (0.47) 

30 3 0.80 0.64 0.55 0.82 (0.19) 1.16 (0.33) 

30 4 0.80 0.64 0.55 0.70 (0.16) 0.97 (0.27) 

30 5 0.80 0.64 0.55 0.62 (0.14) 0.84 (0.22) 

30 6 0.80 0.64 0.55 0.55 (0.12) 0.75 (0.19) 

30 7 0.80 0.64 0.55 0.51 (0.12) 0.69 (0.18) 

- Varying the patient-level variance of the log-number of foci (𝝈𝒖
𝟐) 

30 2 0.45 0.30 0.55 1.13 (0.27) 1.67 (0.51) 

30 3 0.45 0.30 0.55 0.88 (0.20) 1.25 (0.34) 

30 4 0.45 0.30 0.55 0.74 (0.17) 1.02 (0.28) 

30 5 0.45 0.30 0.55 0.66 (0.14) 0.90 (0.24) 

30 6 0.45 0.30 0.55 0.60 (0.13) 0.81 (0.21) 

30 7 0.45 0.30 0.55 0.55 (0.12) 0.74 (0.19) 

30 2 0.45 1.32 0.55 0.94 (0.24) 1.52 (0.45) 

30 3 0.45 1.32 0.55 0.75 (0.17) 1.12 (0.32) 

30 4 0.45 1.32 0.55 0.64 (0.15) 0.92 (0.26) 

30 5 0.45 1.32 0.55 0.57 (0.13) 0.80 (0.21) 

30 6 0.45 1.32 0.55 0.51 (0.12) 0.72 (0.19) 

30 7 0.45 1.32 0.55 0.47 (0.11) 0.65 (0.17) 

- Varying the gland-level variance of the exponentiated overdispersion parameter (𝒂) 

30 2 0.45 0.64 0.30 1.03 (0.25) 1.59 (0.49) 
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30 3 0.45 0.64 0.30 0.81 (0.19) 1.16 (0.32) 

30 4 0.45 0.64 0.30 0.68 (0.16) 0.97 (0.27) 

30 5 0.45 0.64 0.30 0.61 (0.14) 0.84 (0.23) 

30 6 0.45 0.64 0.30 0.55 (0.13) 0.76 (0.20) 

30 7 0.45 0.64 0.30 0.51 (0.11) 0.69 (0.18) 

30 2 0.45 0.64 1 1.09 (0.26) 1.64 (0.48) 

30 3 0.45 0.64 1 0.86 (0.20) 1.22 (0.33) 

30 4 0.45 0.64 1 0.73 (0.16) 1.01 (0.26) 

30 5 0.45 0.64 1 0.65 (0.14) 0.89 (0.23) 

30 6 0.45 0.64 1 0.58 (0.13) 0.78 (0.20) 

30 7 0.45 0.64 1 0.53 (0.12) 0.73 (0.19) 
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Table 9.8. Generation of gland-level parameters – varying the regression parameters required for the square root of the area of the glands. 

Input values – 
Sample size 

Input values –  
Number of foci within glands 

Input values –  
Square root of the area of glands 

Results –  
1st LSG biopsy 

Results –  
2nd LSG biopsy 

𝑛𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑛𝑔𝑙𝑎𝑛𝑑𝑠 𝑏𝑒𝑡𝑎 𝜎𝑢
2 𝑎 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅ 𝛽0 𝛽1 𝜎𝑣

2 𝜎𝑒
2 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂1 √𝐴𝑟𝑒𝑎𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂ 1 𝐹𝑜𝑐𝑖𝑖̅̅ ̅̅ ̅̅ ̅̂1 √𝐴𝑟𝑒𝑎𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅̂ 1 

- Varying the regression intercept (𝜷𝟎) 

30 2 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.15 (0.52) 1.74 (0.16) 2.16 (0.49) 1.73 (0.16) 

30 3 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.16 (0.47) 1.74 (0.15) 2.15 (0.46) 1.74 (0.15) 

30 4 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.16 (0.44) 1.74 (0.14) 2.16 (0.44) 1.74 (0.14) 

30 5 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.16 (0.43) 1.74 (0.13) 2.16 (0.43) 1.74 (0.13) 

30 6 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.16 (0.41) 1.74 (0.12) 2.16 (0.41) 1.74 (0.13) 

30 7 0.45 0.64 0.55 2.16 1.20 0.25 0.09 0.42 1.74 2.15 (0.42) 1.74 (0.12) 2.15 (0.42) 1.74 (0.12) 

30 2 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.16 (0.52) 2.04 (0.16) 2.14 (0.50) 2.04 (0.16) 

30 3 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.15 (0.47) 2.04 (0.15) 2.14 (0.47) 2.04 (0.15) 

30 4 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.17 (0.45) 2.04 (0.14) 2.17 (0.46) 2.04 (0.14) 

30 5 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.17 (0.44) 2.04 (0.14) 2.17 (0.42) 2.04 (0.13) 

30 6 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.18 (0.42) 2.04 (0.13) 2.17 (0.43) 2.04 (0.13) 

30 7 0.45 0.64 0.55 2.16 1.50 0.25 0.09 0.42 2.04 2.16 (0.41) 2.04 (0.12) 2.15 (0.40) 2.04 (0.12) 

- Varying the regression slope (𝜷𝟏) 

30 2 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.15 (0.52) 1.78 (0.15) 2.16 (0.51) 1.78 (0.14) 

30 3 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.18 (0.48) 1.78 (0.13) 2.18 (0.48) 1.78 (0.13) 

30 4 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.16 (0.44) 1.78 (0.12) 2.15 (0.44) 1.78 (0.12) 

30 5 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.15 (0.43) 1.78 (0.11) 2.16 (0.43) 1.78 (0.11) 

30 6 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.17 (0.41) 1.79 (0.11) 2.17 (0.41) 1.78 (0.11) 

30 7 0.45 0.64 0.55 2.16 1.35 0.20 0.09 0.42 1.78 2.14 (0.42) 1.78 (0.11) 2.15 (0.41) 1.78 (0.11) 

30 2 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.15 (0.50) 1.99 (0.18) 2.16 (0.49) 2.00 (0.18) 

30 3 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.15 (0.46) 2.00 (0.16) 2.16 (0.47) 2.00 (0.17) 

30 4 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.16 (0.44) 1.99 (0.15) 2.15 (0.44) 1.99 (0.15) 

30 5 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.17 (0.43) 2.00 (0.15) 2.17 (0.44) 2.00 (0.15) 

30 6 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.16 (0.42) 2.00 (0.14) 2.15 (0.42) 2.00 (0.15) 

30 7 0.45 0.64 0.55 2.16 1.35 0.30 0.09 0.42 2 2.15 (0.42) 2.00 (0.15) 2.15 (0.42) 2.00 (0.15) 

- Varying the patient-level variance of the square root of the area of the glands (𝝈𝒗
𝟐) 
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30 2 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.14 (0.51) 1.88 (0.16) 2.15 (0.52) 1.89 (0.15) 

30 3 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.18 (0.47) 1.90 (0.14) 2.17 (0.46) 1.89 (0.14) 

30 4 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.16 (0.44) 1.89 (0.13) 2.17 (0.46) 1.89 (0.13) 

30 5 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.16 (0.43) 1.89 (0.12) 2.16 (0.43) 1.89 (0.12) 

30 6 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.16 (0.41) 1.89 (0.12) 2.16 (0.43) 1.89 (0.12) 

30 7 0.45 0.64 0.55 2.16 1.35 0.25 0.02 0.42 1.89 2.17 (0.43) 1.89 (0.12) 2.17 (0.42) 1.89 (0.12) 

30 2 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.15 (0.51) 1.89 (0.17) 2.16 (0.51) 1.89 (0.17) 

30 3 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.17 (0.46) 1.89 (0.16) 2.18 (0.47) 1.89 (0.16) 

30 4 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.17 (0.44) 1.89 (0.15) 2.17 (0.45) 1.89 (0.15) 

30 5 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.16 (0.41) 1.89 (0.14) 2.15 (0.42) 1.89 (0.15) 

30 6 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.16 (0.42) 1.89 (0.14) 2.16 (0.43) 1.89 (0.14) 

30 7 0.45 0.64 0.55 2.16 1.35 0.25 0.20 0.42 1.89 2.16 (0.41) 1.89 (0.14) 2.16 (0.41) 1.89 (0.14) 

- Varying the gland-level variance of the square root of the area of the glands (𝝈𝒆
𝟐) 

30 2 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.14 (0.50) 1.88 (0.15) 2.17 (0.52) 1.89 (0.16) 

30 3 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.15 (0.46) 1.89 (0.14) 2.16 (0.47) 1.89 (0.14) 

30 4 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.16 (0.46) 1.89 (0.14) 2.15 (0.45) 1.89 (0.14) 

30 5 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.15 (0.41) 1.89 (0.12) 2.16 (0.42) 1.89 (0.13) 

30 6 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.16 (0.41) 1.89 (0.13) 2.15 (0.42) 1.89 (0.12) 

30 7 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.30 1.89 2.16 (0.42) 1.89 (0.13) 2.16 (0.42) 1.89 (0.12) 

30 2 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.16 (0.51) 1.89 (0.17) 2.15 (0.49) 1.89 (0.17) 

30 3 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.16 (0.46) 1.89 (0.15) 2.15 (0.46) 1.89 (0.15) 

30 4 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.16 (0.44) 1.89 (0.14) 2.16 (0.44) 1.89 (0.14) 

30 5 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.16 (0.43) 1.89 (0.14) 2.17 (0.43) 1.89 (0.13) 

30 6 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.15 (0.42) 1.89 (0.13) 2.16 (0.42) 1.89 (0.13) 

30 7 0.45 0.64 0.55 2.16 1.35 0.25 0.09 0.56 1.89 2.17 (0.41) 1.89 (0.13) 2.17 (0.42) 1.89 (0.13) 
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Table 9.9. Reproducibility of the focus score – varying the regression parameters required for the square root of the area of the glands. 

𝒏𝒑𝒂𝒕𝒊𝒆𝒏𝒕𝒔 𝒏𝒈𝒍𝒂𝒏𝒅𝒔 𝜷𝟎 𝜷𝟏 𝝈𝒗
𝟐 𝝈𝒆

𝟐 Median of absolute difference 

in focus score (mean, SD) 

IQR of absolute difference  

in focus score (mean, SD) 

- Varying the regression intercept (𝜷𝟎) 

30 2 1.20 0.25 0.09 0.42 1.27 (0.31) 2.02 (0.65) 

30 3 1.20 0.25 0.09 0.42 0.99 (0.24) 1.47 (0.44) 

30 4 1.20 0.25 0.09 0.42 0.84 (0.19) 1.20 (0.34) 

30 5 1.20 0.25 0.09 0.42 0.74 (0.17) 1.05 (0.29) 

30 6 1.20 0.25 0.09 0.42 0.66 (0.15) 0.93 (0.25) 

30 7 1.20 0.25 0.09 0.42 0.61 (0.14) 0.84 (0.22) 

30 2 1.50 0.25 0.09 0.42 0.89 (0.21) 1.30 (0.37) 

30 3 1.50 0.25 0.09 0.42 0.70 (0.16) 0.99 (0.27) 

30 4 1.50 0.25 0.09 0.42 0.60 (0.14) 0.82 (0.22) 

30 5 1.50 0.25 0.09 0.42 0.53 (0.12) 0.72 (0.19) 

30 6 1.50 0.25 0.09 0.42 0.48 (0.11) 0.65 (0.17) 

30 7 1.50 0.25 0.09 0.42 0.45 (0.10) 0.59 (0.15) 

- Varying the regression slope (𝜷𝟏) 

30 2 1.35 0.20 0.09 0.42 1.26 (0.31) 1.97 (0.61) 

30 3 1.35 0.20 0.09 0.42 0.99 (0.23) 1.46 (0.42) 

30 4 1.35 0.20 0.09 0.42 0.84 (0.20) 1.20 (0.34) 

30 5 1.35 0.20 0.09 0.42 0.74 (0.17) 1.04 (0.28) 

30 6 1.35 0.20 0.09 0.42 0.67 (0.16) 0.94 (0.25) 

30 7 1.35 0.20 0.09 0.42 0.62 (0.14) 0.86 (0.23) 

30 2 1.35 0.30 0.09 0.42 0.92 (0.22) 1.35 (0.40) 

30 3 1.35 0.30 0.09 0.42 0.71 (0.16) 1.00 (0.29) 

30 4 1.35 0.30 0.09 0.42 0.60 (0.13) 0.83 (0.22) 

30 5 1.35 0.30 0.09 0.42 0.53 (0.12) 0.73 (0.19) 

30 6 1.35 0.30 0.09 0.42 0.48 (0.11) 0.65 (0.17) 

30 7 1.35 0.30 0.09 0.42 0.44 (0.10) 0.59 (0.15) 

- Varying the patient-level variance of the square root of the area of the glands (𝝈𝒗
𝟐) 

30 2 1.35 0.25 0.02 0.42 1.06 (0.24) 1.50 (0.43) 
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30 3 1.35 0.25 0.02 0.42 0.82 (0.18) 1.12 (0.29) 

30 4 1.35 0.25 0.02 0.42 0.70 (0.16) 0.93 (0.23) 

30 5 1.35 0.25 0.02 0.42 0.62 (0.13) 0.81 (0.20) 

30 6 1.35 0.25 0.02 0.42 0.56 (0.12) 0.73 (0.18) 

30 7 1.35 0.25 0.02 0.42 0.52 (0.11) 0.67 (0.16) 

30 2 1.35 0.25 0.20 0.42 1.06 (0.27) 1.77 (0.61) 

30 3 1.35 0.25 0.20 0.42 0.83 (0.21) 1.32 (0.41) 

30 4 1.35 0.25 0.20 0.42 0.71 (0.17) 1.08 (0.33) 

30 5 1.35 0.25 0.20 0.42 0.63 (0.15) 0.94 (0.28) 

30 6 1.35 0.25 0.20 0.42 0.57 (0.14) 0.84 (0.25) 

30 7 1.35 0.25 0.20 0.42 0.52 (0.12) 0.78 (0.23) 

- Varying the gland-level variance of the square root of the area of the glands (𝝈𝒆
𝟐) 

30 2 1.35 0.25 0.09 0.30 0.99 (0.23) 1.43 (0.40) 

30 3 1.35 0.25 0.09 0.30 0.78 (0.18) 1.09 (0.30) 

30 4 1.35 0.25 0.09 0.30 0.67 (0.15) 0.91 (0.24) 

30 5 1.35 0.25 0.09 0.30 0.59 (0.13) 0.80 (0.21) 

30 6 1.35 0.25 0.09 0.30 0.53 (0.12) 0.72 (0.19) 

30 7 1.35 0.25 0.09 0.30 0.49 (0.11) 0.66 (0.17) 

30 2 1.35 0.25 0.09 0.56 1.11 (0.28) 1.79 (0.59) 

30 3 1.35 0.25 0.09 0.56 0.87 (0.21) 1.29 (0.38) 

30 4 1.35 0.25 0.09 0.56 0.74 (0.17) 1.05 (0.29) 

30 5 1.35 0.25 0.09 0.56 0.65 (0.15) 0.91 (0.25) 

30 6 1.35 0.25 0.09 0.56 0.58 (0.13) 0.81 (0.22) 

30 7 1.35 0.25 0.09 0.56 0.54 (0.12) 0.75 (0.20) 
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9.5. Discussion 

This chapter investigated the impact of different numbers of glands in LSG biopsy on the 

reproducibility of the focus score. Knowledge of this impact will help clinicians decide on the 

minimum number of biopsy glands required, when considering using the focus score in future 

studies of Sjogren’s syndrome.  

Simulation was used to generate a value for the number of foci and the area of each gland within 

LSG biopsy, accounting for potential between and within patient variability for each parameter. For 

the area of the glands, data generation additionally accounted for potential correlation with the 

number of foci observed within glands, based on the assumption that larger glands are more likely 

to contain a higher number of foci. This approach yielded the desired estimates for the number of 

foci within glands and the area of the glands, with the observed bias being negligible (or in some 

cases absent) across the simulated scenarios.  

An alternative approach which was initially considered was to generate the foci rate (i.e., number of 

foci per squared millimeter of glandular area) and area of each gland, multiply the foci rate with the 

area of each gland to obtain the corresponding number of foci, and in turn calculate each patient’s 

focus score. However, this approach has the disadvantage of not accounting for the potential 

correlation between number of foci observed within glands and the area of the glands, and was not 

preferred in the end.  

The simulation suggested that the absolute difference between two consecutive measurements 

produced within patients was decreasing for a unit increase in the number of glands. This difference 

was very similar for a number of 6 and 7 glands, and was reduced by approximately 50% compared 

to a number of 2 glands. A similar downward trend was noted for the interquartile range, indicating 

that an increase in the number of glands allowed the absolute difference to be estimated with a 

higher precision within the generated data sets. Similar results were obtained for all different input 

values used for sensitivity analysis, with a higher reproducibility observed for a higher between-
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patient variability in the number of foci, a larger glandular area, and a stronger correlation between 

the number of foci and the area of the glands. 

 

9.6. Conclusion 

A larger number of biopsied glands provides a better and more precise estimate of the 

reproducibility of the focus score. Samples containing 6 or 7 glands reduced the absolute difference 

between two consecutive measurements down to approximately 50% of the difference observed for 

samples of 2 glands. The findings aim to help clinicians decide on what the minimum number of 

biopsied glands should be, so that they make best use of the focus score in future research studies of 

Sjogren’s syndrome.
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10. Discussion and conclusions 

 

Before biomarkers are used in medical research and practice, researchers and medical professionals 

need to be aware of the potential error that the produced measurements may be accompanied by. 

High measurement error may lead to false conclusions regarding the presence, deterioration, or 

severity of a medical condition, the effects and safety of medical treatments, and the occurrence of 

future clinical outcomes.   

This thesis explored statistical issues around the estimation of the reliability and measurement error 

of biomarkers. The overarching objectives of the thesis were: 

i) To propose statistical methods for the meta-analysis of parameter estimates of reliability 

and measurement error of continuous biomarkers, reported across primary studies.  

ii) To propose statistical methods for the analysis of primary studies examining the reliability 

and measurement error of biomarkers expressed as counts, when the normality of 

measurements produced at different levels (assumed in standard methods used for of 

continuous measurements) is likely to be violated. 

 

10.1. Thesis overview and summary of findings 

Chapter 1 explained the key concepts used in the thesis; provided an overview of the potential 

impact of measurement error on medical research and practice (with examples); defined the scope 

of this thesis and specified the main aims.  
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Current approaches for the design and statistical analysis of primary studies examining 

the reliability and measurement error of continuous biomarkers 

The current approaches used for the design and statistical analysis of primary studies examining the 

reliability and measurement error of continuous biomarkers were presented in detail in Chapter 2. 

Primary studies in the field are typically designed to recruit a group of individuals and obtain 

multiple measurements from each individual, at each potential level of variability. There has been a 

long-standing debate on which individuals should be recruited in such studies (current guidelines for 

laboratory based-tests recommend that only healthy individuals should be considered), while limited 

guidance is available regarding the number of individuals and number of within-individual 

measurements required for designing such studies. Prior to analysis, researchers are often 

concerned whether data meet the assumptions of normality and heteroscedasticity (if not, the log-

transformation is applied), and whether data are free from any significant outliers. 

The variability at each level is then estimated through a nested analysis of variance (ANOVA) or a 

linear regression random effects model. The estimates obtained from these analyses allow a number 

of parameters to be calculated, including: the standard error of measurement, the smallest 

detectable change, the intra-class correlation, the coefficient of variation, the index of individuality, 

and the reference change values. Alternative parameters for examining the reliability and error of 

continuous measurements include standard correlation coefficients (e.g., Pearson or Spearman) and 

the limits of agreement, respectively, while one additional parameter is available for examining 

potential inter/intra-observer variability in binary or ordinal responses (the Kappa coefficient).  

 

Primary study to examine the reliability and error of grip strength measurements 

The case study analysis (Chapter 3) allowed illustration of the methods for continuous 

measurements (introduced in Chapter 2) to examine the reliability and measurement error of the 
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measurements of grip strength, obtained from a digital dynamometer. The results revealed that, 

although not error free, digital dynamometers produce highly reliable measurements and may have 

potential as part of evaluating loss of strength in patients with sarcopenia and chronic inflammatory 

disease. 

 

Current systematic review and meta-analytic methods used for examining test reliability 

and measurement error 

Chapter 4 examined the current state of the review process and meta-analytic methods used in 

systematic reviews examining test reliability and measurement error. A methodological review of 

219 systematic reviews was carried out. The quality of the review methods used in the identified 

systematic reviews was variable. Encouragingly, the majority of the reviews provided a clear 

description of the inclusion criteria and study characteristics, and searched at least one database in 

addition to PUBMED/MEDLINE. However, a high number of reviews did not provide a clear 

description of the search strategy. Screening titles and abstracts, extracting the relevant data, or 

assessing the quality of primary studies was often performed by a single author, while some reviews 

(42/219, 20%) did not even assess the quality of the included primary studies. Furthermore, the 

approach used for screening, data extraction, and quality assessment was often not clearly reported. 

Of the identified reviews, only 22 (10%) carried out a quantitative synthesis of the data reported in 

primary studies, with 16 of these 22 producing a weighted average estimate of reliability and/or 

measurement error. The meta-analytic methods that were used for this purpose were found to have 

the following limitations: 

• the violation of the normality assumption that standard models for meta-analysis hold, as 

the estimates of parameters of reliability and measurement error reported across studies 

are not expected to be normally distributed.  
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• the estimation of the within sampling variance not being independent of the reported 

estimate for some parameters, such as the intra class correlation, the standard error of 

measurement, and the standard deviation of the difference between two within-individual 

measurements (required for constructing the limits of agreement). This makes the inverse-

variance weights (i.e., the standard approach for weighting studies in meta-analyses) no 

more applicable, as the weight assigned to each study will partly depend on the magnitude 

of the reported estimate (and not entirely on the sample size). 

Whilst the use of the Fisher’s Z transformation has been shown to solve these two issues when 

pooling estimates of correlation coefficients reported across studies, no approaches were noted for 

key parameters of measurement error, such as the limits of agreement, the standard error of 

measurement, and the coefficient of variation. 

 

New methods proposed for the meta-analysis of key parameters of measurement error 

Alternative methods for the meta-analysis of the limits of agreement, the standard error of 

measurement, and the coefficient of variation were introduced in Chapter 5. For the limits of 

agreement, the framework proposed by Tipton and Shuster [166] was presented, while two new 

methods were developed for the standard error of measurement and the coefficient of variation. 

The methods focused on satisfying the assumption of underlying normality of the reported study-

level parameter estimates, as well as stabilizing the sampling error variance of the parameters.  

 

Systematic review and meta-analysis examining the reliability and error of grip strength 

measurements produced from hand-held dynamometers 

The methods for meta-analysis presented in Chapter 5 were in turn applied in Chapter 6, where a 

systematic review and meta-analysis was conducted to provide summary evidence of the reliability 
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and error of grip strength measurements, produced from different types of dynamometers and 

across different populations. All methods were very effective in normalising the sampling 

distribution of the reported parameters of reliability and measurement error. The results obtained 

were very similar to those from the case study analysis (Chapter 3), indicating the grip strength 

measurements from hand-held dynamometers are produced with excellent reliability and low 

measurement error.  

 

Alternative methods for estimating the reliability and measurement error of count-based 

biomarkers 

Alternative methods, potentially more appropriate for the statistical analysis of primary studies 

examining the reliability and measurement error of count-based biomarkers, were identified in the 

literature and presented in Chapter 7. The different sources of variability are this time estimated 

from a Poisson or a negative binomial random effects model, and the methods described in Leckie et 

al [202] and Austin et al [204]. Standard parameters of reliability and measurement error may in turn 

be calculated (i.e., the standard error of measurement, the intraclass correlation, and the coefficient 

of variation), while a new, potentially useful parameter expressing the reliability of count-based 

measurements was also introduced (i.e., the median rate ratio). 

 

Case-study to evaluate the performance of count-based methods compared to the 

standard normality-based approach 

The count-based methods were applied in Chapter 8 to estimate the between and within-individual 

variability of the focus score, using data from 32 patients with Sjogren’s syndrome who underwent 

labial salivary gland biopsy as a case study. The performance of these methods was also compared to 

the standard methods used for continuous measurements. Whilst all methods indicated that the 



257 
 

focus score is likely to be subject to high within-individual variability (i.e., measurement error) and 

may not always be fit for use in clinical practice, the count-based methods provided less biased 

estimates of the between and within-individual variability compared to the standard method used 

for continuous measurements.  

 

Simulation study to evaluate how different numbers of glands impact reproducibility of 

the focus score 

A subsequent simulation study (Chapter 9) investigated the impact of different numbers of biopsy 

glands on the reproducibility of the focus score. The results illustrated that the reproducibility of the 

focus score was highly dependent on the number of glands within the biopsy. A unit increase in the 

number of glands improved the reproducibility of the focus score, with samples containing 6 or 7 

glands reducing the absolute difference between two consecutive measurements down to 

approximately 50% of the difference observed for samples of 2 glands.  

 

10.2. Strengths and limitations 

10.2.1. Strengths 

Chapter 2 provided a novel and robust evaluation of the issues around the design and statistical 

analysis of primary studies examining the reliability and measurement error of biomarkers. The 

chapter highlighted the flaws of the current guidelines for laboratory tests, particularly with respect 

to the target population, the assessment of normality at the within-individual level, and the 

detection and removal of outlies. Current gaps in the field of reliability and measurement error were 

also identified, including the limited guidance available for estimating the sample size required for a 

primary study, and the lack of statistical methods for the meta-analysis of parameters of reliability 
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and measurement error of continuous biomarkers, and statistical methods for primary analysis of 

count-measurements. 

The case study reported in Chapter 3 provided strong evidence that digital dynamometers can 

reliably measure the grip strength of patients with sarcopenia and chronic inflammatory disease. The 

study was reasonably sized and analysed using the best available methods. The analysis also allowed 

the application of standard methods used for examining test reliability and measurement error to be 

clearly illustrated. 

The methodological review in Chapter 4 was the first to explore the current practice for conducting 

and reporting systematic reviews of the reliability and measurement error of biomarkers, and the 

current state of statistical methods available for the meta-analysis of parameters of reliability and 

measurement error. The findings indicated important flaws in how such reviews are conducted and 

reported, and how parameter estimates of reliability and measurement error reported across 

primary studies are combined. In order to provide a clear overview of current practice, the review 

used two different databases (MEDLINE and EMBASE) for study identification, which demonstrates 

best practice and methodological rigour [162, 163]. 

Based on the limitations of the existing methods, novel statistical methods for the meta-analysis of 

key parameters of measurement error such as the standard error of measurement and the 

coefficient of variation were developed and presented in Chapter 5. The new methods were 

developed using well-established mathematical relationships. The performance of these methods 

was evaluated in a case study analysis of 80 primary studies evaluating the reliability and error of 

grip strength measurements (Chapter 6). The results demonstrated these methods to be very 

effective in normalising the distribution of the reported study-level estimates. 

The systematic review and meta-analysis performed in Chapter 6 also reinforced the primary study 

analysis in Chapter 3, which showed that hand-held dynamometers used to evaluate grip strength 

produce highly reliable measurements. The systematic review was conducted using robust review 
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methods. Primary studies were identified by searching two electronic databases (MEDLINE and 

EMBASE). The study selection and quality assessment was undertaken independently by two 

reviewers, while the data extractions were checked by a second reviewer, with any queries being 

discussed and resolved by consensus. In addition, compared to a previous review examining the 

reliability and measurement error of hand-held dynamometers, this review provided quantitative 

summary evidence using the meta-analytic methods introduced in the thesis. 

Chapter 7 was the first to present alternative methods for estimating the reliability and error of 

count measurements, where the assumption of the normality of measurements produced at 

different variability levels is known to often be violated. A case-study (Chapter 8) was also used to 

illustrate how these methods work, and to indicate the potential benefits of using these methods 

over the standard normality-based approach when estimating the reliability and measurement error 

of count-based tests. 

Finally, the work presented in Chapter 9 was the first to formally investigate the impact of different 

numbers of glands on the reproducibility of the focus score, as any existing suggestions regarding 

the number of biopsy glands required for a reproducible estimate were based on opinions of experts 

taking part in a Delphi technique, rather than a formal statistical analysis. To make best effort to 

reflect real life, all simulated assumptions were based on real data, as well as in-depth discussions 

with clinical collaborators.  

 

10.2.2. Limitations 

In Chapters 2 and 7, the approaches used for the design and statistical analysis of primary studies 

examining test reliability and measurement error, and statistical methods used for estimating 

sources of variability of count outcomes, were identified through a literature review which was not 

systematic. For both chapters, the aim was to understand the available approaches and their 

limitations, and a systematic review was not considered an efficient way to locate this information.  
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In the primary study examining the reliability and error of grip strength measurements (Chapter 3), 

the number of visits and measurements performed within each visit were small (2 and 3 

respectively), which did not allow the corresponding components of variability to be estimated with 

high precision. However, these numbers are reflective of how the test is often be used in practice 

(e.g., elderly/frail participants would not be expected to attend more than two visits or produce 

more than three measurements in a session). Although the number of patients recruited in the study 

(N=84) was relatively large compared to similarly designed studies identified for the systematic 

review in Chapter 6 (median sample size=35 [Q1=25, Q3=76]), this number was not based on a 

formal sample size calculation. Furthermore, while the results obtained are only applicable to 

patients with sarcopenia and chronic conditions, and cannot be generalised to a wider population, 

for an elderly and often frail population it may be particularly important to obtain population-

specific estimates. 

In Chapter 4, the selection of systematic reviews and data extraction was undertaken by a single 

reviewer, and it is advised that these two tasks should be performed independently by at least two 

reviewers. However, this was a methodologic review aiming to provide a comprehensive reflection 

of current practice as opposed to producing unbiased estimates of e.g., accuracy or effectiveness, 

and hence did not need to be as comprehensive in study identification. Furthermore, the review did 

not consider the adequacy of tools used for assessing the quality of the primary studies included in 

the identified reviews, while the overall quality of the reviews was not assessed using a formal 

checklist (e.g., similar to AMSTAR 2 [165], which is intended for systematic reviews of healthcare 

interventions). The latter were outside the scope of this work, which aimed to provide a general 

overview of current practice in this under-researched area, and primarily to identify statistical 

approaches for the synthesis of the data reported in primary studies. 

With respect to the meta-analysis of parameters of reliability and measurement error, all methods 

proposed were based on transforming the estimates reported in primary studies, in order to account 
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for the non-normal sampling distribution of the parameters. The use of these transformations makes 

the calculation of a weighted average estimate more complex. For example, obtaining a summary 

estimate for the standard error of measurement involves squaring and log-transforming the study-

level estimates prior to meta-analysis, then taking the square root of the exponential of the 

produced weighted average estimate. However, all transformations were shown to satisfy the 

assumption of normality of the study-level estimates, which is important when using standard meta-

analysis models (e.g., the DerSimonian and Laird random effects model). 

In Chapter 6, high heterogeneity in the estimates reported across primary studies was noted in most 

of the meta-analyses performed. This heterogeneity was to some extent expected given the broad 

criteria used for study inclusion. Not identifying any factors causing this heterogeneity, and 

particularly not assessing the effect of the different patient populations included, can be considered 

a limitation of this study. 

Chapter 7 presented alternative statistical models for primary analysis, potentially more appropriate 

for estimating sources of variability of count-based tests. In contrast to the standard normality-

based model, these models do not produce the variability estimates on the original measurement 

scale, but the logarithmic, which does not allow direct interpretation of the estimates. This can be 

considered a limitation, given that additional (and computationally intensive) calculations are 

required to revert the estimates to the original scale. However, the case study analysis (Chapter 8) 

showed that these methods provide less biased estimates of reliability and measurement error 

compared to the standard normality-based approach, when evaluating a count-based test. 

In Chapter 8, the number of 32 patients recruited in the study was not based on a formal sample size 

calculation, while the small numbers of patients and glands observed within some patients (≤3 in 

22% of the patients) did not allow the models to estimate the two components of variability with 

high precision. Furthermore, the reproducibility of the focus score using this data set was not 
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possible to be evaluated, as no repeated measurements were taken from each patient. The thesis 

aimed to tackle this issue by expanding this data set using simulation (Chapter 9).  

In Chapter 9, the generation of the focus score required information on the number of foci observed 

within the glands and the size of the individual glands observed within each patient’s biopsy. For 

both parameters, the choice of the simulating distribution and input values was based on a real data 

set of patients with primary Sjogren’s syndrome, who undergone labial salivary gland biopsy (i.e., the 

OASIS cohort, used as a case study in Chapter 8). However, the data set used was relatively small, 

and it is possible that different distributional patterns would have been observed if a different 

(larger) data set was used as a guide, leading to different decisions regarding the simulation of the 

two parameters. This can be considered a general issue when simulating data. To tackle this issue as 

much as possible, the simulation considered multiple different scenarios based on the 95% certainty 

around the parameters estimates observed in the analysis of the original data, and assessed how the 

obtained results differed across these scenarios.  

 

10.3. Implications for medical research and practice 

This thesis highlighted that current guidelines available for the design of primary studies examining 

the reliability and measurement error of medical tests have flaws and need updating. The target 

population should not be restricted to healthy individuals, as the variability of a test may change 

between healthy and diseased populations. Therefore, testing healthy individuals may not provide 

any information on the reliability and measurement error of tests intended for a diseased 

population. Statistical tests for assessing whether within-individual measurements deviate from 

normality should be used with caution (if used at all). This is because primary studies of test 

variability often collect a limited number of measurements from each recruited individual (e.g., <5). 

With such low numbers, statistical tests for normality are likely to falsely accept the hypothesis that 

measurements are normally distributed [107], allowing researchers to carry on the evaluation of a 
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test while they should have stopped (as current guidelines recommend). Outliers should not be 

removed from the data prior to analysis, as it is known that they often occur in real life, and may 

indicate difficulties when performing a measurement. Therefore, the removal of outliers may lead to 

underestimating the “true” measurement error of a test, and in turn to false conclusions regarding 

whether a test is fit for use in practice. 

With respect to the statistical analysis of primary studies, the thesis introduced alternative methods 

for providing less biased variability estimates compared to the standard normality-based methods, 

for measurements expressed as counts rather than continuous. These methods will allow 

researchers to draw more robust conclusions on the reliability and measurement error of a count-

based test, and in turn whether the test is fit for use in clinical practice. 

Furthermore, the thesis indicated that systematic reviews examining the reliability and 

measurement error of tests were not conducted and reported at the desired level. The findings of 

this review need to be communicated to researchers in this field. Researchers need to understand 

the importance of using appropriate methods for conducting and reporting such reviews, as such 

methods ensure that potential bias in the review process is minimised, and in turn allow decisions 

on reliability and measurement error to be made based on high quality and well reported evidence.  

The thesis also identified important flaws regarding how estimates of reliability and measurement 

error reported across primary studies are combined, and allowed better estimation of a weighted 

average estimate of reliability and measurement error, by providing meta-analytic methods for key 

parameters used in the field. These methods will not just produce less biased and more precise 

summary estimates of reliability and measurement error, enabling researchers to provide more 

robust summary evidence based on a whole body of research, but will also increase the number of 

reviews performing a meta-analysis of estimates reported in the primary studies, which was found 

to be very low.  
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Finally, the thesis was the first to provide clear evidence on how the reproducibility of the focus 

score changes for a larger number of glands within the biopsy. The findings presented in Chapter 9 

will help clinicians decide on what the minimum number of biopsied glands should be, so that they 

make best use of the focus score in future research studies of Sjogren’s syndrome, as well as in 

clinical practice. 

 

10.4. Further work 

Current guidelines for primary studies examining the variability of laboratory tests need updating, 

particularly with respect to the target population, the assessment of normality, and the approach 

taken for outliers. It is also essential that guidelines for physiologic and imaging tests are developed, 

so that researchers are clear about the steps they need to follow when considering such tests. 

Furthermore, new methods for estimating the number of individuals required for a primary study 

are needed, additionally covering the case were inter/intra-observer variability is expected to be 

present, and accounting for a trade-off between a high reliability and low measurement error.  

The findings of the methodological review (Chapter 4) emphasize the need for more specific 

guidance, both for conducting and reporting systematic reviews examining the reliability and 

measurement error of biomarkers, as well as appraising the methodological quality of the primary 

studies.  

The new statistical methods for primary analysis and meta-analysis that were developed and 

presented in the thesis performed well when evaluated in case-study analyses, but require further 

evaluation by simulation. The extent to which methods proposed for the meta-analysis of the 

standard error of measurement and the coefficient of variation are affected by different parameter 

inputs, different numbers of included studies, or different numbers of individuals recruited within 

studies should be evaluated across different simulated scenarios. For methods proposed for the 

primary analysis of count measurements, simulation work should compare the count-based models 
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to the standard linear regression model across a variety of scenarios (e.g., different input values for 

the number of individuals, measurements per individual, mean and variability at different levels), so 

that recommendations for the use of count-based models over linear models are provided. 

Finally, further development of methods for meta-analysis are also needed, specifically with respect 

to calculating a 95% prediction interval for key parameters of measurement error, such as the 

coefficient of variation and the limits of agreement; and combining estimates of the reliability and 

measurement error of count-based tests (as methods presented in the thesis are restricted to 

continuous measurements only). 

 

10.5. Conclusions 

Knowledge on the reliability and measurement error of biomarkers is required, in order to inform 

decisions about whether biomarkers are fit for use in medical research and practice. It is essential 

that primary studies and systematic reviews examining the reliability and measurement error of 

biomarkers are designed and analysed at a high methodological standard. This thesis provided an 

initiative for improving how primary studies are designed, and how systematic reviews are 

conducted and reported, by highlighting flaws and gaps in current practice. Furthermore, statistical 

methods were presented and evaluated for two under-researched areas in the field: the meta-

analysis of estimates expressing the reliability and measurement error of continuous biomarkers; 

and the primary analysis of studies examining the reliability and measurement error of biomarkers 

expressed as counts rather than continuous. The methods proposed for primary analysis aim to 

provide researchers less biased estimates of the reliability and measurement error of a count-based 

test, compared to the current methods used, helping them decide whether the test is fit for use in 

medical research and practice. The methods for meta-analysis aim to provide robust summary 

evidence of the reliability and measurement error of continuous-based tests, allowing conclusions 

regarding their use in practice to be based on a whole body of research. Although further work is still 
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required, the thesis is a major step towards highlighting the need for better research studies, as well 

as expanding the current statistical methodology used in the field. 
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Appendices 

 

Appendix A: Additional figures for Chapter 3 
 

Appendix A1. Histogram of the difference between the mean values produced at the first and second visit. 
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Appendix A2. Histogram of the difference between the highest values produced at the first and second visit. 
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Appendix A3. Scatterplot of the mean of 3 within-individual measurements produced at each visit. 
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Appendix A4. Scatterplot of the highest of 3 within-individual measurements produced at each visit. 
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Appendix B: Search strategy and additional tables for Chapter 4 
 

Appendix B1. Search strategy. 

 

The search strategy for MEDLINE was: 

1     (variabil$ or reliabil$ or reproducibil$ or repeatabil$ or replicab$).m_titl.  

2     ((measure$ or assess$ or test$ or assay$ or instrument$) and (properties or method$)).m_titl.  

3     (measure$ or assess$ or test$ or assay$ or instrument$).m_titl. and (variabil$ or reliabil$ or repeatabil$ or 

precis$ or reproducibil$).ab.  

4     (biol$ and (variat$ or variab$)).m_titl.  

5     (biol$ adj3 (variat$ or variab$)).ab.  

6     ((inter or intra) adj (rater or tester or technician or examiner or assay or individual or participant)).m_titl.  

7     ((inter or intra) adj (tester or technician or examiner or assay or individual or participant)).ab. (18075) 

8     (retest or re-test).m_titl.  

9     COSMIN.ab.  

10     1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9  

11     MEDLINE.tw.  

12     systematic review/  

13     systematic review.tw.  

14     meta-analysis.pt.  

15     (meta adj analy$).tw.  

16     metaanaly$.tw.  

17     11 or 12 or 13 or 14 or 15 or 16  

18     (biography or case reports or comment or directory or editorial or festschrift or interview or lectures or 

legislation or letter or news or newspaper article or patient education handout).pt. (3668459) 

19     exp Animals/  

20     exp Humans/  

21     19 not 20  

22     18 or 21  

23     10 and 17  

24     23 not 22  

25     limit 24 to yr="2010 –Current” 

 

 

The search strategy for Embase was: 
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1     (variabil* or reliabil* or reproducibil* or repeatabil* or replicab*).ti. (106533) 

2     ((measure* or assess* or test* or assay* or instrument*) and (properties or method*)).ti.  

3     (measure* or assess* or test* or assay* or instrument*).ti. and (variabil* or reliabil* or repeatabil* or 

precis* or reproducibil*).ab.  

4     (biol* and (variat* or variab*)).ti.  

5     (biol* adj3 (variat* or variab*)).ab.  

6     ((inter or intra) adj (rater or tester or technician or examiner or assay or individual or participant)).ti.  

7     ((inter or intra) adj (tester or technician or examiner or assay or individual or participant)).ab. 

8     (retest or re-test).ti.  

9     COSMIN.ab.  

10     1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9  

11     MEDLINE.ti,ab.  

12     exp systematic review/  

13     "systematic review".ti,ab.  

14     meta-analysis/ (159302) 

15     (meta adj analy*).ti,ab.  

16     metaanaly*.ti,ab.  

17     11 or 12 or 13 or 14 or 15 or 16  

18     (biography or "case reports" or comment or directory or editorial or festschrift or interview or lectures or 

legislation or letter or news or "newspaper article" or "patient education handout").pt.  

19     exp Animals/  

20     exp Humans/  

21     19 not 20  

22     18 or 21  

23     10 and 17  

24     23 not 22  

25     limit 24 to yr="2010 -Current"  
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Appendix B2. Data extraction form. 

A: Review information 

A1 Title 

A2 Medical area 

A3 Number of primary studies included 

A4 Number of tests examined 

A3 Type of variability examined (e.g., inter/intra-observer, test-retest) 

A4 Was test variability the main aim of the review? 

B: Test information 

B1 Name of test 

B2 Type of test (e.g., laboratory, imaging) 

C: Searching of primary studies 

C1 Databases listed 

C2 Was the search strategy presented? 

C3 Was the search period clearly described? 

D: Review methods 

D1 Were the criteria for inclusion clearly described? 

D2 Was a PRISMA flow chart presented? 

D3 Were the characteristics of the included primary studies clearly presented? 

D4 What was the approach used for article selection? 

D5 What was the approach used for data extraction? 

E: Quality assessment of primary studies 

E1 Was the quality of primary studies assessed? 

E2 If yes, what was the approach used for quality assessment? 

E3 If yes, which tool was used for quality assessment? 

F: Statistical methods 

F1 What statistical parameters were reported? 

F2 Was a synthesis of the reported estimates performed? 

F3 If performed, provide details on how this was done 
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Appendix B3. Characteristics of the identified systematic reviews. 

Author Year Medical area Type of 
variability 
examined 

Number 
of 

studies 

Test information Statistical 
parameters 

reported 

Quantitative 
synthesis 

performed 
Number 
of tests 

Group Name 

Aarsand et al 
[153] 

2018 Lipids, Enzymes, 
Diabetes, 

Kidney 

Test-retest 128 >10 Laboratory Multiple 
measurands 

Coefficient of 
variation 

Yes 

Abou El Hassan 
[223] 

2018 Not specific Test-retest 56 >10 Laboratory Multiple 
measurands 

Coefficient of 
variation 

No 

Abou [224] 2018 Spinal Cord 
Injury 

Inter/intra-
observer & 
test-retest  

8 >10 Physical 
(device and 
non-device 

based) 

Hand-held 
dynamometry, 

upper body sway, 
maximal balance 

range, coordinated 
stability, 

alternating reach 
test, seated reach 
test, t-shirt test, 
Functional Reach 

(FR), 
Reach Area (RA), 
Bilateral Reach 
(BR), modified 

Functional Reach 
Test (mFRT), Limits 
of stability (LOS), 

Sequential Weight 
Shifting (SWS). 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Adhia [225] 2013 Joint kinematics Inter/intra-
observer & 
test-retest 

7 1 Physical 
(device 
based) 

Electromagnetic 
tracking devices 

(EMTD) 

Intra class 
correlation, 

Pearson 
correlation, 

Standard error 
of 

measurement 

No 
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Ager [226] 2017 Shoulder 
proprioception 

Inter/intra-
observer 

21 10 Physical 
(device 
based) 

Dynamometer, 
Inclinometer, Laser 

pointer, 
Goniometer, CPM, 

Fabricated Lab, 
AMEDA, Motion 
analysis, Photo 
analysis, iPod 

touch. 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, 

Cronbach’s 
alpha 

No 

Aguilar [227] 2017 Osteoarthritis Inter/intra-
observer 

11 1 Imaging MRI Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation 

No 

Alcázar [228] 2011 Gynaecological 
cancer 

Inter/intra-
observer 

46 1 Imaging 3D Ultrasound Not reported No 

Aloraini [229] 2015 Spasticity Inter/intra-
observer & 
test-retest 

4 2 Physical 
(device 
based) 

Electrophysiologic 
measures, 

Force/torque 
measurements 

Intra class 
correlation, 

Kappa 
coefficient, 

Tau-b 

No 

Alreni [230] 2017 Neck pain Inter/intra-
observer & 
test-retest 

2 1 Physical 
(non-device 

based) 

Single Arm Military 
Press (SAMP) test 

Intra class 
correlation 

No 

Ammann-Reiffer 
[231] 

2014 Neuromuscular 
disorders 

Inter/intra-
observer & 
test-retest 

20 >10 Physical 
(device and 
non-device 

based) 

7.5-Meter Shuttle 
Run Test, 10×5-

Meter Sprint Test, 
10-Meter Fast Walk 

Test, 10-Meter 
Shuttle Run Test, 
Six-Minute Walk 

Test, Time Up and 
Down Stairs Test, 

Fast 1-Minute Walk 

Intra class 
correlation, 
Spearman 

correlation, 
Kappa 

coefficient, 
Standard error 

of 
measurement, 

Smallest 

No 
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Test, Full turn, 
Functional Walking 

Test, Stopwatch, 
Photoelectric cells 
linked to electronic 

timer, GAITRite, 
Maximal Speed 

During Treadmill 
Walking Test, 

Timed “Up & Go” 
Test 

detectable 
change, 
Mean 

difference 

Artero [232] 2011 Physical fitness Inter/intra-
observer & 
test-retest 

19 >10 Physical 
(device and 
non-device 

based) 

Cardiorespiratory, 
Musculoskeletal, 

Motor, Body 
composition tests 

Intra class 
correlation, 
Percentage 
agreement, 

Kappa 
coefficient, 

Limits of 
agreement, 

Pearson 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, Paired 

t-test, Root 
Mean Square 

Error, 
Coefficient of 

variation, 
Kruskal-Wallis 
test, Technical 

Error of 
Measurement, 

No 
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Pitman’s test 
of correlated 

variances, 
Wilcoxon test 

Avouac [233] 2010 Pulmonary 
arterial 

hypertension 
secondary to 

systemic 
sclerosis 

Test-retest 1 1 Physical 
(non-device 

based) 

6-minute walk test Pearson 
correlation 

No 

Balemans [234] 2013 Cerebral Palsy Inter/intra-
observer & 
test-retest 

7 5 Physical 
(device and 
non-device 

based) 

Aerobic and 
anaerobic tests 

Intra class 
correlation, 
Spearman 

correlation, 
Pearson 

correlation, 
Standard error 

of 
measurement, 

Smallest 
detectable 

change, Limits 
of agreement 

No 

Balzer [235] 2017 Upper motor 
neuron lesions 

Test-retest 2 2 Physical 
(device and 
non-device 

based) 

Selective voluntary 
motor control 

measures 

Not reported No 

Barrett [236] 2014 Thoracic 
kyphosis 

Inter/intra-
observer 

26 >10 Physiologic Methods of 
measuring thoracic 

kyphosis 

Intra class 
correlation 

No 

Bartels [237] 2013 Chronic 
paediatric 
conditions 

Test-retest 9 1 Physical 
(non-device 

based) 

6-minute walk Test Intra class 
correlation, 

Pearson 
correlation, 

Limits of 
agreement, 

No 
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Standard error 
of 

measurement, 
Smallest 

detectable 
change 

Basile [238] 2017 Osteopathy Inter/intra-
observer 

17 1 Clinical 
examination 

Osteopathic 
diagnostic 

palpatory tests 

Intra class 
correlation, 

Kappa 
coefficient, 

Fisher's exact 
test 

No 

Beales [239] 2011 Abdominal 
aortic aneurysm 

Inter/intra-
observer 

9 1 Imaging Ultrasound Limits of 
agreement, 

reproducibility 
coefficients 

using 
generalized 
estimating 
equation 

No 

Beaulieu [240] 2017 Human motor 
systems 

Inter/intra-
observer 

34 1 Physiologic Transcranial 
magnetic 

stimulation 

Intra class 
correlation, 

Pearson 
correlation, 

Concordance 
coefficient, 

Coefficient of 
variation, 

Typical 
percentage 

error, 
Standard error 

of 
measurement, 

Smallest 

No 
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detectable 
change 

Bellet [241] 2012 Cardiac 
rehabilitation 

Test-retest 14 1 Physical 
(non-device 

based) 

6-minute walk test Intra class 
correlation, 

Relative 
change 

No 

Bennett [242] 2016 Health and 
fitness 

Test-retest 2 1 Physical 
(device 
based) 

Submaximal Step 
Test 

Limits of 
agreement 

No 

Berger [243] 2014 Arthritis Inter/intra-
observer 

4 1 Imaging Radiographic 
imaging test 

Kappa 
coefficient 

No 

Bergquist [244] 2019 Physical 
performance 

Inter/intra-
observer & 
test-retest 

9 >10 Physical 
(device and 
non-device 

based) 

Muscle and balance 
tests 

Not reported No 

Bernard [245] 2015 Schizophrenia Test-retest 1 1 Physical 
(non-device 

based) 

6-minute walk test Intra class 
correlation, 

Pearson 
correlation 

No 

Bianco [246] 2015 Physical fitness Test-retest 100 >10 Physical 
(device and 
non-device 

based) 

Multiple fitness 
tests 

Pearson 
correlation, 

Mean 
difference 

No 

Bieniek [247] 2014 Physical fitness Inter/intra-
observer & 
test-retest 

11 >10 Physical 
(device and 
non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 
Percentage 
agreement 

No 

Bohannon [248] 2011 Muscle strength Test-retest 10 1 Physical 
(non-device 

based) 

Five-repetition sit-
to-stand test 

Intra class 
correlation 

No 

Bohannon [249] 2017 Muscle strength Test-retest 17 1 Physical 
(device 
based) 

Hand-held 
dynamometer 

Intra class 
correlation, 

Standard error 
of 

No 
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measurement, 
Smallest 

detectable 
change, 

Technical 
Error of 

Measurement 

Bohannon [250] 2019 Physical fitness Test-retest 10 1 Physical 
(non-device 

based) 

Two-minute step 
test 

Intra class 
correlation 

No 

Borotikar [251] 2017 Musculoskeletal Inter/intra-
observer 

20 1 Imaging MRI Intra class 
correlation 

No 

Braga [252] 2010 Diabetes Test-retest 9 1 Laboratory Hemoglobin Coefficient of 
variation 

No 

Braga [253] 2012 Cardiovascular Test-retest 11 1 Laboratory C-reactive protein Coefficient of 
variation 

No 

Brink [254] 2011 Neuro-
musculoskeletal 

Inter/intra-
observer & 
test-retest 

6 1 Imaging 3D posture-
measuring 

instruments 

Intra class 
correlation, 

Pearson 
correlation, 

Standard error 
of 

measurement, 
Technical 
error of 

measurement, 
Dunnett 

comparison 
test 

No 

Burgess [255] 2016 

Colorectal 
cancer 

Inter/intra-
observer & 
test-retest 

21 5 Physical 
(device 
based) 

Hand grip strength, 
hand-held 

dynamometry, 
isometric strength, 

manual muscle 
testing, and trunk 

flexion 

Intra class 
correlation 

No 
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strength/lower 
extremity (LE) 
dynamometry 

Carlsson [256] 2013 Lower back pain Inter/intra-
observer 

7 >10 Physical 
(non-device 

based) 

Screening test for 
assessing lower 

back pain 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Carobene [257] 2013 Liver disease Test-retest 33 3 Laboratory Alanine 
aminotransferase, 

aspartate 
aminotransferase, 

and γ-glutamyl 
transferase 

measurements 

Coefficient of 
variation, 
Reference 

change value 

No 

Cavaleri [154] 2017 Assessment of 
central nervous 

system 

Not clear 4 1 Physical 
(device 
based) 

Transcranial 
magnetic 

stimulation 

Intra class 
correlation 

Yes 

Chaabene [258] 2018 Physical fitness Inter/intra-
observer & 
test-retest 

20 >10 Physical 
(device and 
non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Limits of 

agreement, 
Pearson 

correlation 
coefficient, 

Paired t-test 

No 

Chamorro [155] 2017 Muscle strength Intra-
observer 

15 1 Physical 
(device 
based) 

Dynamometer Standard error 
of 

measurement, 
Limits of 

agreement 

Yes 

Cheung [259] 2010 
Rheumatoid 

Arthritis 

Inter/intra-
observer 

35 1 Imaging Ultrasonography Intra class 
correlation, 

Coefficient of 

No 
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variation, 
Kappa 

coefficient, 
Percentage 
agreement, 
Kendall’s W 

Childs [260] 2014 

Measurement 
of the liver 

Inter/intra-
observer 

9 

1 

Imaging 

Ultrasound Percentage 
agreement, 

Absolute 
difference 

No 

Chiwaridzo [261] 2017 

Physical 
performance 

Inter/intra-
observer & 
test-retest 

14 

>10 Physical 
(non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation, 
Pearson 

correlation, 
Limits of 

agreement, 
Typical error 

of 
measurement 

No 

Clark [262] 2017 

Neurological 
disorders in 

children 

Inter/intra-
observer 

11 

3 Physical 
(device and 
non-device 

based) 

Multiple 
neurological tests 

Intra class 
correlation, 

Pearson 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change 

No 
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Clark [263] 2018 

Standing 
balance Test-retest 12 

1 Physical 
(device 
based) 

Wii Balance Board Intra class 
correlation, 

Coefficient of 
variation, 

Concordance 
correlation, 

Smallest 
detectable 

change, 
Typical error 

of 
measurement 

No 

Crowley [264] 2016 Cardiovascular Inter/intra-
observer 

41 1 Imaging Echocardiography Intra class 
correlation, 

Limits of 
agreement, 

Coefficient of 
variation, 

Total 
deviation 

index 

No 

Cutolo [265] 2018 Systemic 
sclerosis 

Inter/intra-
observer 

1 1 Imaging Laser speckle 
contrast analysis 

Intra class 
correlation 

No 

De Albuquerque 
[266] 

2018 Cervical lordosis Inter/intra-
observer 

2 1 Imaging X-ray 
photogrammetry 

Intra class 
correlation 

No 

De Guio [267] 2016 Cerebral small 
vessel disease 

Not clear 29 1 Imaging MRI Intra class 
correlation, 

Coefficient of 
variation, 

reproducibility 
error (%), 

Standard error 
of 

measurement, 
Smallest 

detectable 

No 



310 
 

change, 
Absolute & 

relative 
difference 

De Langen [137] 2012 Cancer Test-retest 5 1 Imaging PET with glucose 
18F-FDG 

Intra class 
correlation 

Yes 

De Paula Lima 
[268] 

2011 Transversus 
abdominis 

muscle activity 

Inter/ 
intra-

observer 

4 1 Physiologic Pressure 
biofeedback unit 

Intra class 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement, 
Pearson 

correlation, 
Wilcoxon test 

No 

De Valk [269] 2016 Malrotation of 
femoral and/or 

tibial 
component 

Inter/intra-
observer 

12 1 Imaging Computed 
tomography 

Intra class 
correlation 

No 

Décary [270] 2016 Knee disorders Inter/ 
intra-

observer 

33 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient 

No 

DeJong [271] 2017 Dermatology Inter/intra-
observer & 
test-retest 

6 1 Imaging Ultrasound 
elastography 

Intra class 
correlation, 

Kappa 
coefficient, 
Percentage 
agreement 

No 

Dekkers [272] 2014 Cerebral palsy Inter/intra-
observer & 
test-retest 

7 5 Physical 
(device 
based) 

Upper extremity 
muscle strength 

tests 

Intra class 
correlation, 

Pearson 
correlation, 
Paired t-test 

No 
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Deng [273] 2018 Scar maturation Inter/intra-
observer & 
test-retest 

7 3 Physical 
(device 

based) & 
Imaging 

Vascularity 
measurement 

devices 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Denteneer [274] 2017 Low back pain Inter/intra-
observer 

16 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Denteneer [275] 2018 Low back pain Inter/intra-
observer & 
test-retest 

20 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 
Percentage 
agreement 

No 

D'hondt [276] 2017 Shoulder pain Inter/intra-
observer 

40 >10 Physical 
(device and 
non-device 

based) 

Multiple physical 
tests 

Not reported No 

Dobson [277] 2012 Hip and groin 
pathology 

Inter/intra-
observer 

12 >10 Physical 
(device and 
non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, 

Cronbach’s 
alpha 

No 

Dobson [278] 2012 Osteoarthritis Inter/intra-
observer & 
test-retest 

16 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

ICC, 
correlation 
coefficient, 
Goodman & 

Kruskal’s 
gamma, 

No 
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Standard error 
of 

measurement, 
Smallest 

detectable 
change 

Ekpo [279] 2012 Breast cancer Inter/intra-
observer 

2 1 Imaging Digital breast 
tomosynthesis 

Pearson 
correlation 

No 

English [280] 2012 Musculoskeletal Inter/intra-
observer & 
test-retest 

24 1 Imaging B-mode ultrasound Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation, 
Pearson 

correlation, 
Mean 

difference, G 
coefficient 

No 

Fan [281] 2016 Neurological 
disorders 

Test-retest 

12 2 Imaging Emission 
tomography and 
arterial spin MRI 

Coefficient of 
variation 

No 

Ferreira [282] 2017 Dental Medicine Inter/intra-
observer 

5 1 Imaging Tomographic digital 
models 

Intra class 
correlation, 

Limits of 
agreement, 
Paired t-test 

No 

Field [283] 2013 Motor 
impairments in 

children 

Inter/intra-
observer & 
test-retest 

4 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Pearson 
correlation 

No 

Fisher [284] 2015 Prostate cancer Inter/intra-
observer & 
test-retest 

36 3 Physical 
(device 
based) 

Strength and 
muscular 

endurance 
outcome measures 

Intra class 
correlation, 
Spearman 
correlation 

No 
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Flamand [285] 2013 Neuromuscular 
disorders 

Inter/intra-
observer & 
test-retest 

11 9 Physical 
(device and 
non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation 

No 

Fonseca [286] 2018 Hand nerve 
injuries 

Inter/intra-
observer & 
test-retest 

6 5 Physical 
(device and 
non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation, 
Cronbach’s 

alpha 

No 

Fotheringham 
[287] 

2015 COPD Not clear 41 8 Physical 
(non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Pearson 
correlation, 

Mean 
difference 

No 

Gebruers [288] 2010 Stroke Test-retest 7 1 Physical 
(device 
based) 

Accelerometer Intra class 
correlation, 

Pearson 
correlation 

No 

Gengo e Silva 
[289] 

2014 Peripheral 
arterial 

occlusive 
disease 

Inter-
observer 

2 2 Physiological 
& Imaging 

Oscillometric 
device & Doppler 

ultrasound 

Not reported No 

Giraud [290] 2017 Cardiac output Inter-
observer 

16 1 Physiological Transpulmonary 
thermodilution 

Coefficient of 
variation, 

Precision (%), 
Least 

significant 
change 

No 
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Golden [291] 2011 Hypothalamic–
pituitary–

adrenal axis 
(HPA) 

Inter-
observer 

6 3 Laboratory HPA axis measures Intra class 
correlation, 

Pearson 
correlation, 
Spearman 
correlation 

No 

Gonzalez Lao 
[156] 

2019 Diabetes 
mellitus 

Test-retest 47 9 Laboratory Multiple lab test 
results 

Coefficient of 
variation 

Yes 

Gonzalez-Suarez 
[292] 

2018 Carpal tunnel 
syndrome 

Inter/intra-
observer 

3 1 Imaging Ultrasonography Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 

Guillaud [293] 2016 Cranial 
osteopathy 

Inter/intra-
observer 

9 1 Physical 
(non-device 

based) 

Clinical assessment Intra class 
correlation, 

Pearson 
correlation, 

Limits of 
agreement, 

Kappa 
coefficient 

No 

Hafsteinsdóttir 
[294] 

2014 Stroke Inter/intra-
observer 

3 1 Physical 
(non-device 

based) 

Timed Up and Go 
Test 

Intra class 
correlation 

No 

Hernaez [295] 2011 Fatty Liver Inter/intra-
observer 

22 1 Imaging Ultrasonography Intra class 
correlation, 

Kappa 
coefficient, 
Percentage 
agreement 

No 

Himuro [296] 2017 Cerebral palsy Test-retest 6 3 Physical 
(non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 

Standard error 

No 



315 
 

of 
measurement, 

Smallest 
detectable 

change, Limits 
of agreement 

Hoogervorst [297] 2017 

Fractures of the 
clavicle 

Inter/intra-
observer 

3 5 Imaging Imaging techniques 
to measure 

shortening of the 
midshaft clavicle 

fracture 

Intra class 
correlation, 

Kappa 
coefficient, 

Paired t-test, 
Smallest 

detectable 
change 

No 

Hulteen [298] 2015 Movement Skill 
Competency 

Inter/intra-
observer & 
test-retest 

16 8 Physical 
(non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Kendall 
coefficient of 
concordance, 

Kappa 
coefficient, 
Percentage 
agreement, 

Coefficient of 
variation, 
Pearson 

correlation 

No 

Hunter [157] 2011 Osteoarthritis Inter/intra-
observer 

84 1 Imaging MRI Intra class 
correlation, 

Kappa 
coefficient, 

Coefficient of 
variation 

Yes 

Janaudis-Ferreira 
[299] 

2012 COPD Test-retest 4 4 Physical 
(non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

No 
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Pearson 
correlation 

Jaspers [300] 2019 Burn wounds Inter/intra-
observer 

2 2 Imaging Videomicroscopy, 
Dermoscopy 

Kappa 
coefficient 

No 

Johnston [301] 2017 COPD Test-retest 13 5 Physical 
(non-device 

based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Limits of 
agreement, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, Mean 

difference 

No 

Jonsson [302] 2018 Neck pain Inter/intra-
observer 

11 1 Clinical 
examination 

Physical tests Intra class 
correlation, 

Kappa 
coefficient 

No 

Jørgensen [303] 2016 Wound healing Inter/intra-
observer 

13 2 Imaging Area & volume 
measurement 

techniques 

Intra class 
correlation, 

Pearson 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation, 
Pillai's trace 

No 

Kasehagen [304] 2018 Peripheral 
nervous system 

Inter/intra-
observer 

18 1 Imaging Ultrasound Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 

No 
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change, Limits 
of agreement, 

Kappa 
coefficient, 

Dependability 
coefficient 

Kleijn [158] 2012 Left ventricular 
dyssynchrony 
assessment 

Inter/intra-
observer 

20 1 Imaging 3D 
echocardiography 

Intra class 
correlation, 

Limits of 
agreement 

Yes 

Klingels [305] 2010 Hemiplegic 
cerebral palsy 

Inter/intra-
observer & 
test-retest 

19 8 Physical 
(non-device 

based) 

Multiple functional 
tests 

Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 

Konieczka [306] 2017 Shoulder pain Inter/intra-
observer 

18 2 Clinical 
examination 

& Imaging 

Palpation & 
Ultrasound 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, 

Coefficient of 
variation 

No 

Kramer [138] 2018 Cancer Test-retest 3 1 Imaging F–FLT positron 
emission 

tomography 

Intra class 
correlation, 

Smallest 
detectable 
change, R 

square 

Yes 

Kristensen [307] 2017 Muscle strength 
in post-stroke 

hemiplegia 

Test-retest 9 1 Physical 
(non-device 

based) 

Isokinetic 
dynamometry 

Intra class 
correlation, 

Standard error 

No 
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of 
measurement 

Kroman [308] 2014 Knee 
osteoarthritis 

Intra-
observer & 
test-retest 

15 >10 Physical 
(device 
based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation 

No 

Kwah [309] 2013 Fascicle lengths 
and pennation 

in human 
skeletal muscles 

Inter/intra-
observer 

36 1 Imaging Ultrasound Coefficient of 
multiple 

correlation, 
Intra class 

correlation, 
Standard error 

of 
measurement, 
Coefficient of 

variation, 
Pearson 

correlation, 
Kappa 

coefficient 

No 

Lagarde [310] 2016 Dysphagia Inter/intra-
observer 

4 1 Physiological Cervical 
auscultation 

Intra class 
correlation, 

Kappa 
coefficient, 
First-order 
agreement 
coefficient 

No 

Lamers [311] 2014 Multiple 
Sclerosis 

Inter/intra-
observer & 
test-retest 

8 8 Physical 
(device and 
non-device 

based) 

Multiple tests for 
upper limb 
assessment 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

No 
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variation, 
Pearson 

correlation, 
Spearmen 
correlation 

Lange [147] 2017 Shoulder 
pathology 

Inter/intra-
observer 

18 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Intra class 
correlation, 

Kappa 
coefficient 

Yes 

Lange [312] 2017 Shoulder 
pathology 

Inter/intra-
observer 

15 >10 Physical 
(non-device 

based) 

Multiple physical 
tests 

Not reported No 

Larsen [313] 2014 Scapular 
dyskinesis 

Inter/intra-
observer 

30 >10 Clinical 
examination 

Clinical assessment Intra class 
correlation, 

Standard error 
of 

measurement, 
Limits of 

agreement, 
Kappa 

coefficient 

No 

Le Flao [314] 2018 Head & neck 
injuries 

Test-retest 2 5 Physical 
(non-device 

based) 

Head/neck 
response tests 

Intra class 
correlation, 

Standard error 
of 

measurement 

No 

Lemeunier [315] 2017 Neck pain Inter/intra-
observer 

3 7 Clinical 
examination 

Clinical assessment Kappa 
coefficient 

No 

Lemeunier [316] 2018 Neck pain Inter/intra-
observer 

20 >10 Clinical 
examination 

Clinical assessment Intra class 
correlation, 

Kappa 
coefficient 

No 

Lennon [317] 2015 Cerebral palsy Test-retest 6 3 Physical 
(device 
based) 

Multiple fitness 
tests 

Intra class 
correlation, 

Pearson 
correlation, 

No 
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Standard error 
of 

measurement, 
Smallest 

detectable 
change 

Liang [318] 2012 Smoke exposure Test-retest 13 2 Laboratory Urinary nicotine 
equivalents and 
plasma cotinine 

Intra class 
correlation, 

Coefficient of 
variation 

No 

Lima [319] 2018 Cystic fibrosis Test-retest 4 1 Physical 
(non-device 

based) 

6-minute walk test Intra class 
correlation, 

Pearson 
correlation, 

Mean 
difference, 

Coefficient of 
variation 

No 

Lisboa [320] 2015 Dental Medicine Inter/intra-
observer 

14 1 Imaging 3D Cone-Beam 
computed 

tomography 

Intra class 
correlation, 

Pearson 
correlation 
coefficient, 

Paired t-test 

No 

Maaswinkel [321] 2016 Lower back pain Test-retest 4 4 Physical 
(non-device 

based) 

Trunk stabilization 
assessments 

Intra class 
correlation 

No 

MacKay [322] 2018 Knee 
osteoarthritis 

Inter/intra-
observer & 
test-retest 

58 1 Imaging MRI Intra class 
correlation, 

Kappa 
coefficient, 

Coefficient of 
variation (CV), 
RMSCV (Root-
mean-square 

CV) 

No 
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Mahaffey [323] 2016 Obesity Test-retest 2 1 Physical 
(non-device 

based) 

6-minute walk test Intra class 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement 

No 

Maricar [324] 2016 Knee 
osteoarthritis 

Inter/intra-
observer 

8 5 Clinical 
examination 

Tests assessing 
knee joint effusion 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Marshall [325] 2018 Metatarsus 
adductus in 
newborns 

Inter/intra-
observer 

4 6 Imaging Tools to identify 
and quantify 
metatarsus 
adductus 

Intra class 
correlation 

No 

May [326] 2010 Shoulder pain Inter/intra-
observer 

37 >10 Physical 
(non-device 

based) 

Physical 
examination tests 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Mc Auliffe [327] 2017 Tendinopathy Inter/intra-
observer 

22 1 Imaging Ultrasound Intra class 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation, 
Smallest 

detectable 
change, Limits 
of agreement, 

Pearson 
correlation, 
Real mean 

square 
difference, 
Percentage 

error 

No 
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McCreesh [328] 2015 Tendinopathy Inter/intra-
observer 

20 4 Imaging Radiological 
methods for 
measuring 

acromiohumeral 
distance 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, 

Coefficient of 
variation, 
Maximum 
difference 
(range, SD) 

No 

McVerry [329] 2012 Leptomeningeal 
Collateral Flow 

Inter/intra-
observer 

7 2 Imaging Catheter 
angiography, 

Computed 
tomography 

Intra class 
correlation, 

Kappa 
coefficient, 
Percentage 
agreement 

No 

Michiels [330] 2013 Neck pain Inter/intra-
observer 

6 3 Physiologic 
& Imaging 

Laserpointer, 
Ultrasound, 

Electromagnetic 
trackers 

Intra class 
correlation 

No 

Mieritz [331] 2012 Low back pain Inter/intra-
observer 

14 6 Imaging 3D regional lumbar 
motion 

measurement 
systems 

Intra class 
correlation, 

Pearson 
correlation, 

Standard error 
of 

measurement, 
Coefficient of 

variation, 
Limits of 

agreement, 
Root mean 

square error, 

No 
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Cronbach’s 
alpha, 

Coefficient of 
multiple 

correlation 

Mijnarends [332] 2013 Sarcopenia Test-retest 34 >10 Physical 
measure 

(device and 
non-device 

based) 

Tools for measuring 
muscle strength & 

physical 
performance 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Pearson 

correlation, 
Limits of 

agreement 

No 

Milani [333] 2014 Body position 
measurement in 

rehabilitation 

Inter/intra-
observer 

15 >10 Physical 
measure 
(device 
based) 

Smartphone 
applications 

Intra class 
correlation 

No 

Milne [334] 2018 Cerebellar 
ataxia 

Inter/intra-
observer 

8 >10 Physical 
measure 

(non-device 
based) 

Gait assessment Intra class 
correlation, 
Cronbach's 

alpha, 
Pearson 

correlation, 
Spearman 

correlation, 
Standard error 

of 
measurement, 

Smallest 
detectable 

change, 
Coefficient of 

variation, 
Method error 

No 
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Mohan [335] 2019 Diaphragmatic 
mobility 

Inter/intra-
observer 

4 2 Imaging Ultrasound & 
Radiography 

Intra class 
correlation, 

Coefficient of 
variation 

No 

Mohseni Bandpei 
[336]   

2014 Paraspinal 
muscle fatigue 

Test-retest 12 1 Physiologic Electromyography Intra class 
correlation 

No 

Moloney [337] 2012 Musculoskeletal 
and neuropathic 

pain 

Inter/intra-
observer & 
test-retest 

21 1 Physiologic Thermal 
quantitative 

sensory testing 

Intra class 
correlation, 

Smallest 
detectable 

change, Limits 
of agreement, 
Coefficient of 

variation 

No 

Moore [338] 2017 Community-
dwelling older 

adults, 
Parkinson’s 

disease, 
Huntington’s 

disease, 
multiple 
sclerosis, 
vestibular 

disorders, post 
stroke, post 

unilateral 
transtibial 

amputation, 
knee pain and 

hip 
osteoarthritis 

Inter/intra-
observer & 
test-retest 

12 1 Physical 
(non-device 

based) 

Four square step 
test 

Intra class 
correlation 

No 

Mulder-Brouwer 
[339] 

2016 

Cerebral palsy 

Inter/intra-
observer 

7 1 Physical 
(device 
based) 

Hand-held 
dynamometry 

Intra class 
correlation, 

Standard error 
of 

No 
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measurement, 
Smallest 

detectable 
change, Limits 
of agreement, 
Coefficient of 

variation 

Muntaner-Mas 
[340] 

2019 Physical fitness Test-retest 2 2 Physical 
(device 
based) 

Fitness apps Intra class 
correlation, 

Coefficient of 
variation 

No 

Nae [341] 2017 Postural 
orientation 

error 

Inter/intra-
observer 

25 10 Physical 
(non-device 

based) 

Visual assessments 
and ratings 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, Kappa 

coefficient, 
First order 
agreement 
coefficient, 
Percentage 
agreement 

No 

Navarro [159] 2019 Adolescent 
Idiopathic 
Scoliosis 

Inter/intra-
observer 

3 1 Imaging Computed 
tomography 

Intra class 
correlation 

Yes 

Neto [342] 2015 

Obstetrics and 
gynaecology 

Inter/intra-
observer 

112 1 

Imaging 

Ultrasound Intra class 
correlation, 

Kappa 
coefficient 

No 

Nijholt [343] 2017 Muscle loss Inter/intra-
observer 

13 1 Imaging Ultrasound Intra class 
correlation, 

Standard error 
of 

No 
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measurement, 
Limits of 

agreement 

Oberwahrenbrock 
[344] 

2015 Multiple 
sclerosis 

Intra-
observer 

27 7 Imaging Optical coherence 
tomography 

Intra class 
correlation, 

Limits of 
agreement 

No 

O'Meara [345] 2012 Pressure ulcers Inter/intra-
observer 

8 3 Imaging Wound 
measurement 
instruments 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Pearson 

correlation, 
Coefficient of 

variation, 
Mean 

difference 

No 

Ornetti [346] 2010 Osteoarthritis Test-retest 3 1 Physical 
(non-device 

based) 

Gait analysis Intra class 
correlation 

No 

Ortega [347] 2015 Physical fitness Inter/intra-
observer & 
test-retest 

21 3 Physical 
(device and 
non-device 

based) 

Fitness tests Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change, 

Cronbach’s 
alpha, Pearson 

correlation, 
Paired t-test, 

Limits of 
agreement, 

Coefficient of 

No 
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variation, 
Kappa 

coefficient, 
Percentage 
agreement 

Özay [348] 2019 Olfaction Test-retest 1 1 Physiologic Retro-nasal test Pearson 
correlation 

No 

Paech [349] 2011 Oncology Inter-
observer 

6 1 Laboratory Histology Kappa 
coefficient 

No 

Pareira [350] 2014 Multiple (e.g., 
cardiac, COPD, 
cancer, cystic 

fibrosis, 
asthma) 

Test-retest 18 1 Physical 
(non-device 

based) 

Incremental shuttle 
walk 

Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation 

No 

Parry [351] 2015 Physiotherapy, 
Critical care 

Inter/intra-
observer & 
test-retest 

47 >10 Imaging & 
Physical 

(device and 
non-device 

based) 

Multiple tests for 
muscle mass, 

muscle strength 
and muscle 

function 

Intra class 
correlation 

No 

Paul [352] 2016 Sports science Inter-
observer 

21 3 Physical 
(non-device 

based) 

Agility tests 
(multiple: use of 

stimuli (light, video, 
or human) to 

induce whole body 
change in velocity 
and/or direction 

Intra class 
correlation, 

Coefficient of 
variation 

No 

Peeling [353] 2015 Infections 
disease (HIV) 

Test-retest 32 1 Laboratory CD4 enumeration 
(multiple assays) 

Coefficient of 
variation 

No 

Perdomo [354] 2014 Breast cancer Inter/intra-
observer 

51 6 Physiologic Multiple 
(circumferential 
measurement, 

water 
displacement, 
bioelectrical 
impedance 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Kappa 

coefficient 

No 
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spectroscopy, 
perimetry, 

tonometry, and 
self-report) 

Petitclerc [355] 2015 Genetic 
disorder 

(myotonic 
dystrophy) 

Inter/intra-
observer 

3 2 Physical 
(device and 
non-device-

based) 

Manual (MMT) or 
quantitative (QMT) 

muscle testing 

Intra class 
correlation 

No 

Phillips [356] 2018 Emergency 
medicine 

Inter-
observer 

2 1 Physiologic Automated 
pupillometry 

Not clear No 

Pin [357] 2014 Multiple 
(including 

healthy 
individuals) 

Inter/intra-
observer & 
test-retest 

25 1 Physical 
(non-device 

based) 

2-minute walk test Intra class 
correlation, 

Pearson 
correlation 
coefficient, 

Limits of 
agreement, 

Smallest 
detectable 

change 

No 

Pollock [358] 2011 CVD (stroke) Inter/intra-
observer & 
test-retest 

24 9 Physical 
(non-device 

based) 

Walking balance 
(includes 4 single 

task measures; Step 
Test, Side-step Test 

and Four-square 
Step Test, Timed 

Up and Go) 

Intra class 
correlation 

No 

Ponce-Garcia 
[359] 

2018 Orthodontics Inter-
observer & 
test-retest 

6 3 Imaging Superimposition of 
3D digital records 
obtained through 

Cone-Beam 
computed 

tomography (voxel 
based, landmark 

based, and surface 
based) 

Intra class 
correlation 

No 
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Pons [360] 2013 Cerebral palsy Inter/intra-
observer 

19 3 Imaging Imaging-based 
measures of hip 

geometry in 
children with 

cerebral palsy: X-
ray, Computed 
tomography, 
Ultrasound 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Pearson 

correlation, 
Spearman 
correlation 

No 

Pons [361] 2018 Multiple Inter/intra-
observer & 
test-retest 

30 1 Imaging MRI (for skeletal 
muscle volume and 

shape); includes 
partially or 
completely 

automatic and 
manual techniques 
(slice-by-slice cross-
sectional area (CSA) 
Segmentation; CSA 
segmentation on a 
reduced number of 

slices; CSA 
segmentation/ 

muscle thickness 
using a single slice 
and muscle length; 
CSA Segmentation 

on a single slice 
deformation of a 

parametric specific 
object (DPSO); 

deformation of a 
parametric specific 

object (DPSO), 
reduced MRI set 
method; other 

Intra class 
correlation, 

Coefficient of 
variation 

No 
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automatic 
methods) 

Powden [139] 2015 Physiotherapy Inter/intra-
observer 

12 1 Physical 
(non-device 

based) 

Weight-bearing 
lunge test 

Intra class 
correlation 

Yes 

Proud [362] 2015 Neurology 
(Parkinson’s) 

Intra-
observer & 
test-retest 

18 4 Physical 
(device and 
non-device-

based) 

Multiple measures 
of upper limb 

function (e.g., peg 
board tests and 

other timed tests) 

Intra class 
correlation, 

Kappa 
coefficient, 

Smallest 
detectable 

change 

No 

Prowse [363] 2016 Musculoskeletal
/ Physiotherapy 

Intra/inter-
observer 

14 4 Physical 
(device-
based) 

Postural asymmetry 
measures: 

scoliometer, 
iPhone, 

photography-based 
trunk aesthetic 

clinical evaluation 
tool (TRACE) and 

aesthetic index (AI), 
and assessment 

using plumb lines 

Intra class 
correlation, 

Pearson 
correlation, 

Kappa 
coefficient, 

Mean 
difference 

No 

Rabelo [144] 2016 CVD Test-retest 8 1 Physical 
(device-
based) 

Muscle strength 
assessment using 

dynamometers 
(computerized 

isokinetic 
dynamometers 

such as LIDO, Cybex 
II, Cybex 6000, Kin-
Com, and Biodex 
System 3 Pro, or 
static multi-axial 
dynamometers) 

Intra class 
correlation, 

Standard error 
of 

measurement 

Yes 
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Ratter [364] 2014 Physiotherapy Test-retest 14 10 Physical 
(non-device 

based) 

Submaximal 
exercise tests: 
Astrand test; 

modified Astrand 
test; Lean body 

mass-based 
Astrand test; 

submaximal bicycle 
ergometer test 

following another 
protocol other than 
Astrand test; 2-km 

walk test; 5-minute, 
6-minute and 10-

minute walk tests; 
shuttle walk test; 

and modified 
symptom-limited 
Bruce treadmill 

test. 

Intra class 
correlation, 
Cronbach’s 

alpha, Limits 
of agreements 

No 

Reavis [149] 2015 Ears, nose, and 
throat 

Test-retest 10 1 Physiologic Distortion product 
Otoacoustic 
emission for 

cochlear function 

Standard error 
of 

measurement 

Yes 

Reichmann [160] 2011 Rheumatology Inter/intra-
observer 

24 1 Imaging X-ray +/- 
Fluoroscopy to 

measure knee joint 
space 

Intra class 
correlation, 

Coefficient of 
variation 

Yes 

Reis Durao [365] 2017 Maxillofacial Inter/intra-
observer 

23 1 Imaging Ultrasound for 
measuring muscle 

mass 

Intra class 
correlation, 

Pearson 
correlation 

No 

Ringshausen 
[366] 

2012 Infectious 
diseases 

Test-retest 20 2 Laboratory Interferon-gamma 
release assays: 

QuantiFERON-TB 
Gold or In-Tube 

Intra class 
correlation 

No 
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version (QFT) and 
the T-SPOT.TB (T-

SPOT) 

Roberts [367] 2011 Geriatrics Inter-
observer & 
test–retest 

3 1 Physical 
(device 
based) 

Dynamometers for 
measuring grip 

strength (Jamar, 
BTE Work 

Simulator, Martin 
Vigorimeter, 
Harpenden) 

Pearson 
correlation 

No 

Robertson [368] 2014 Sport Inter-
observer & 
test-retest 

22 >10 Physical 
(non-device 

based) 

Skill outcomes in 
sport 

Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement, 
Typical error 

of 
measurement, 
G coefficient 

No 

Roeing [369] 2017 Geriatrics Inter-
observer & 
test-retest 

3 5 Physical 
(device 
based) 

Mobile phone 
assessment of 

balance and fall 
risk; static balance, 
TUG, Berg Balance 

Scale, 30s chair 
test, sit to stand 

test 

Intra class 
correlation 

No 

Rondoni [370] 2017 Physical therapy Intra/inter-
observer 

9 7 Physical 
(device 
based) 

Active cervical 
range of motion 

measures 
(ACROM): universal 

inclinometer, 
standard dual-arm 

Intra class 
correlation, 

Standard error 
of 

measurement, 

Yes 
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goniometer, gravity 
inclinometer, and 
cervical range of 

motion device, plus 
the Cybex 

Electronic Digital 
Inclinometer 320 

(EDI-320), the 
Orthopaedic 

Systems 
Incorporated (OSI) 

Computerized 
Anatometry 6000 

Spine Motion 
Analyzer (SMA), 
and the Flock-of-

Birds system 

Limits of 
agreement 

Rossini [371] 2016 Orthodontics Intra/inter-
observer 

16 1 Imaging Virtual dental study 
models 

Intra class 
correlation, 

Pearson 
correlation, 

Houston 
coefficient, 
Cronbach’s 

alpha, 
McNemar’s 

test 

No 

Rozema [151] 

 

2014 Ophthalmology Inter/intra-
observer 

124 1 Physical 
(device 
based) 

Biometric devices 
(e.g., Oculus 

Pentacam, Bausch 
& Lomb Orbscan, 

and Zeiss 
IOL Master) 

Standard error 
of 

measurement 

Yes 

Rubio-Ochoa 
[372] 

2016 Physical therapy Inter-
observer 

5 3 Physical 
(non-device 

based) 

Manual 
examination, 

cervical flexion-

Intra class 
correlation, 

No 
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rotation test 
(CFRT), 

combination 

Kappa 
coefficient 

Ruhe [373] 2010 Physical therapy Test-retest 32 1 Physical 
(device 
based) 

Centre of pressure 
(COP) as a measure 
of postural stability 

Intra class 
correlation, 

Coefficient of 
variation, G 
coefficient, 

Pearson 
correlation 

No 

Rydwik [374] 2012 Physical 
therapy, 

Geriatrics 

Test-retest 3 2 Physical 
(non-device 

based) 

Walking speed 
measurement 

(habitual or 
maximal) over 

varying distances 

Intra class 
correlation, 

Pearson 
correlation 

No 

Saccomanno 
[375] 

2015 Orthopaedics Inter/intra-
observer 

11 1 Imaging MRI Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 

Saether [376] 2013 Paediatrics 
(cerebral palsy) 

intra/inter-
observer & 
test–retest 

35 >10 Physical 
(non-device 

based) 

Physical tests to 
assess balance 

(e.g., Timed up and 
Go, and Timed Up 
and Down Stairs) 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Spearman 

correlation, G 
coefficient, 

Kappa 
coefficient 

No 

Salamh [161] 2019 Musculoskeletal Inter/intra-
observer 

18 7 Physical 
(device and 
non-device 

based) 

Low flexion, 
extension with 

internal rotation, 
HA, internal 

rotation, diagnostic 

Intra class 
correlation, 

Standard error 
of 

measurement 

Yes 
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ultrasound, 
scapular-plane 
adduction, and 
myotonometer 

Saltzherr [377] 2014 Rheumatology Inter/intra-
observer 

25 6 Imaging Computed 
tomography (CT), 
Ultrasound, MRI, 
Positron emission 
tomography (PET), 

Single-photon 
emission CT and 

Scintigraphy 

Intra class 
correlation, 

Kappa 
coefficient 

No 

Sam [378] 2019 Dentistry Inter/intra-
observer 

13 1 Imaging 3D cephalometric 
landmarks in Cone-

Beam computed 
tomography 

Intra class 
correlation, 

Pearson 
correlation 

No 

Scalco [379] 2018 Paediatrics 
(cardio-

respiratory) 

Test-retest 11 4 Physical 
(non-device 

based) 

Tests for functional 
capacity (e.g., 6-
minute walk test) 

Intra class 
correlation, 

Pearson 
correlation 

No 

Scheetz [380] 2015 Ophthalmology Inter/intra-
observer 

32 4 Physical 
(device 
based) 

Multiple glaucoma 
assessments: optic 
disc photographs, 

visual fields, 
ophthalmoscopy, 

combination. 

Kappa 
coefficient 

No 

Schrama [381] 2014 Physical therapy Intra-
observer 

54 1 Physical 
(device 
based) 

Hand-held 
dynamometer for 
upper extremity 

assessment 

Intra class 
correlation, 

Pearson 
correlation 

No 

Seagar [382] 2019 Musculoskeletal Inter/intra-
observer 

5 6 Physical 
(device and 
non-device 

based) 

Multiple 
instruments for 
assessment of 
cervical spine: 
goniometer, 

protractor, ROM 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Kappa 

No 
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limitation scale, 
Muscle Function 

Scale 

coefficient, 
Pearson 

correlation 

Sepriano [383] 2015 Rheumatology Intra-
observer 

8 1 Imaging Dual-energy X-ray 
absorptiometry 

Intra class 
correlation, 

Coefficient of 
variation 

No 

Serai [152] 2017 Liver disease Test-retest 12 1 Imaging MR elastography Smallest 
detectable 

change 
(estimated 
using the 

coefficient of 
variation 

rather than 
the standard 

error of 
measurement) 

Yes 

Shiel [384] 2018 Sport science Intra-
observer 

11 1 Physical 
(device 
based) 

Dual energy X-ray 
absorptiometry for 

measuring body 
composition 

Intra class 
correlation, 

Pearson 
correlation, 

Limits of 
agreement, 

Standard error 
of 

measurement, 
technical error 

of 
measurement, 

Percentage 
change in 

mean 

No 

Silva [385] 2014 Neurology Intra-
observer & 
test-retest 

11 2 Physical 
(non-device 

based) 

Sit to stand/stand 
to sit tests 

Intra class 
correlation, 

Standard error 

No 
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of 
measurement, 

Smallest 
detectable 

change 

Simperingham 
[386] 

2016 Physical therapy Test-retest 34 4 Physical 
(device 
based) 

Sprint acceleration 
profiling; radar and 
laser technology, 

and (2) non-
motorised treadmill 
(NMT) and torque 

treadmill (TT) 
technology 

Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement, 
Standard error 

of 
measurement 

No 

Singh [387] 2014 Chronic 
respiratory 

disease 

Test-retest 40 3 Physical 
(non-device 

based) 

Field walking tests Intra class 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement 

No 

Sman [388] 2013 Musculoskeletal Inter/intra-
observer 

7 8 Clinical 
examination 

8 different clinical 
tests 

Intra class 
correlation, 
Percentage 
agreement 

No 

Smith [389] 2013 Musculoskeletal Inter/intra-
observer 

18 4 Physical 
(device and 
non-device 

based) 

Tests for knee joint 
position sense (JPS) 

Coefficient of 
variation, 
Pearson 

correlation 

No 

Smith [390] 2011 Orthopaedics Inter/intra-
observer 

11 4 Imaging Patellar instability; 
X-Ray, Computed 
tomography, MRI, 

Ultrasound 

Intra class 
correlation, 

Mean 
difference in 

measurement 

No 
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between 
observers (SD) 

Sollis [391] 2014 Infectious 
diseases 

Test-retest 37 6 Laboratory HIV Viral Load 
(multiple assays) 

Not reported No 

Southerest [392] 2013 Musculoskeletal Inter/intra 
observer & 
Test-retest 

9 2 Physical 
(non-device 

based) 

Body pain diagrams Intra class 
correlation 

No 

Stephenson [393] 2014 Paediatrics 
(haemophilia) 

Test-retest 41 9 Physical 
(device and 
non-device 

based) 

Multiple functional 
assessments in 

children 

Intra class 
correlation 

No 

Stienen [394] 2019 Multiple spinal 
disease 

Test-retest 82 >10 Physical 
(non-device 

based) 

Multiple functional 
impairment tests 

(e.g., timed up and 
go, 6-minute walk 

test) 

Intra class 
correlation 

No 

Stovall [395] 2010 Asymmetry in 
the lumbar 

spine and pelvis 

Inter/intra-
observer 

7 1 Clinical 
examination 

Palpation Kappa 
coefficient 

No 

Symonds [396] 2017 Physical therapy Test-retest Unclear 5 Physical 
(non-device 
and device-

based) 

Multiple muscle 
and performance-

based tests 

Intra class 
correlation, 

Pearson 
correlation 

No 

Tagmouti [28] 2014 Infectious 
diseases 

Test-retest 26 2 Laboratory Interferon gamma 
(IFN-g) release 

assays 
(QuantiFERON and 

T-SPOT.TB) 

Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation 

Yes 

Talma [397] 2013 Obesity Test-retest 20 >10 Physical 
(device-
based) 

Multiple 
bioelectrical 

impedance analysis 

Intra class 
correlation, 

Pearson 

No 
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to estimate body 
fat % 

correlation, 
Standard error 

of 
measurement, 
coefficient of 

variation, 
mean 

difference 

Tarara [398] 2016 Physical therapy Test-retest 11 6 Physical 
(non-device 

based) 

Multiple physical 
performance tests: 
closed kinetic chain 

upper extremity 
stability test 

(CKCUEST), seated 
shot put (2 hands), 
unilateral seated 

shot put, medicine 
ball throw, 

modified push-up 
test and 1-arm hop 

test 

Intra class 
correlation, 

Pearson 
correlation 

No 

Terwee [399] 2011 Physical therapy Test-retest 1 1 Physical 
(device-
based) 

Pedometer Pearson 
correlation 

No 

Timmer [400] 2018 Haemophilia Test-retest 14 3 Physical 
(device and 
non-device 

based) 

Accelerometer, 
6MWT, timed up 

and go test 

Limits of 
agreement, 

standard error 
of 

measurement 

No 

Tong [401] 2018 Dry eyes Inter-
observer 

3 1 Imaging Tear scope Kappa 
coefficient, 

paired t-test 

No 

Toohey [402] 2015 Physical therapy Test-retest 5 1 Physical 
(device-
based) 

Sphygmo-
manometer for 
muscle testing 

Intra class 
correlation, 

Standard error 
of 

No 
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measurement, 
Coefficient of 

variation 

Traverso [403] 2018 Oncology Test-retest 41 4 Imaging Computed 
tomography (CT), 
Cone-Beam CT, 

Positron emission 
tomography (PET), 

MRI 

Intra class 
correlation, 

concordance 
correlation, 
Spearman 
correlation 

No 

Valet [404] 2017 Multiple 
sclerosis 

Test-retest 48 6 Physical 
(non-device 
and device-

based) 

Whole-body 
maximal exercise 
testing with gas 

exchange, whole-
body maximal 

exercise testing 
without gas 

exchange analysis 
(cycle ergometer), 

whole-body 
submaximal 

exercise testing 
with gas exchange 

analysis (cycle 
ergometer), 6-

minute walk test, 
Modified Canadian 
Aerobic Fitness Test 

(mCAFT), Ruffier-
Dickson Test 

Intra class 
correlation 

No 

van Bloemendaal 
[405] 

2012 Cardiovascular 
(stroke) 

Test-retest 32 >10 Physical 
(non-device 
and device-

based), 
Imaging 

Walking distance 
(2MWT, 6MWT, 

12MWT), walking 
speed (various 

distances of 
comfortable or fast 

walk tests, 

Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 
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footswitch system, 
accelerometer, 

pedometer), 
functional 

ambulation (6MWT 
in different 

environments, 
functional 

ambulation 
categories, dynamic 

gait index, 
functional gait 
assessment), 

walking on 
different surfaces 

(6MWT on parquet 
and carpet) 

van de Pol [406] 2010 Musculoskeletal Inter-
observer 

21 5 Physical 
(non-device 
and device-

based), 
Imaging 

Passive 
physiological or 

accessory 
movement of 

upper extremity 
joints 

(inclinonmeter, 
goniometer, 

visual/manual, tape 
measure, 

pollexograph) 

Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 

van de Water 
[407] 

2016 Musculoskeletal Inter/intra-
observer & 
test-retest 

13 8 Physical 
(non-device 
and device-

based), 
Imaging 

Diastasis of the 
rectus abdominis 

muscle 
measurement, 
'finger width’ 
method, tape 

measure, callipers, 
ultrasound, MRI, CT 

Intra class 
correlation, 

Concordance 
correlation, 
(weighted) 

Kappa 
coefficient, 

Standard error 

No 
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and intraoperative 
measurements with 

a ruler or surgical 
compass 

of 
measurement, 

Smallest 
detectable 

change, Limits 
of agreement 

van Kooij [408] 2017 Physiotherapy/ 
Physical 
medicine 

Test-retest 15 1 Physical 
(device-
based) 

Goniometry 
(protractor-based) 

Intra class 
correlation, 
Spearman 

correlation, 
Pearson 

correlation, 
Standard error 

of 
measurement, 

Smallest 
detectable 

change, 
Percentage 
agreement 

No 

van Trijffel [409] 2010 Musculoskeletal Inter-
observer 

17 4 Physical 
(non-device 
and device-

based), 
Imaging 

Passive 
physiological or 

accessory 
movement of lower 
joints (goniometer, 

inclinonmeter, 
plurimeter, 

visual/manual) 

Intra class 
correlation, 

Kappa 
coefficient, 

Pearson 
correlation 

No 

Wang [410] 2014 Rheumatology 
(Pediatric 

osteoporosis) 

Test-retest 21 1 Imaging Quantitative 
ultrasound (QUS) 

Coefficient of 
variation 

No 

Weiner [29] 2017 Pediatric - 
cardiovascular 

Test-retest 49 1 Physiologic Heart rate 
variability 

Intra class 
correlation, 

Pearson 
correlation, 
Spearman 

Yes 
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correlation 
(transformed 
using Fisher's 

Z) 

Welton [141] 2015 Neurology Test-retest 23 5 Imaging Graph-theoretic 
brain network 

metrics measured 
by functional MRI 
(fMRI), diffusion 
tensor imaging 

(DTI), 
magnetoencephalo
graphy, functional 

near-infrared 
spectroscopy 

(fNIRS) and arterial 
spin labelling 

Intra class 
correlation 

Yes 

Wen [411] 2018 Sports science Test-retest 6 1 Physical 
(non-device) 

Loughborough 
soccer passing test 

Intra class 
correlation, 

Pearson 
correlation, 

Coefficient of 
variation, 
Limits of 

agreement, 
Standard error 

of 
measurement 

No 

Wetterslev [412] 2016 Critical care Not clear 2 1 Imaging Echocardiography Precision (%) No 

Williams [413] 2010 Physiotherapy Inter/intra-
observer & 
test-retest 

46 >10 Physical 
(non-device 
and device-

based); 
Imaging 

Digital 
inclinometry, 

Electromagnetic 
motion analysis, 

Goniometry, 
Gravity-plus-

compass 

Intra class 
correlation, 

Kappa 
coefficient 

No 
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goniometry, 
Inclinometry, 

Optical motion, 
potentiometry, 
Tape measure, 

Ultrasound, Visual 
estimation, 

Miscellaneous 

Winser [414] 2015 Neurology Test-retest 21 >10 Physical 
(nature of 

tests difficult 
to 

determine) 

Multiple physical 
tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change 

No 

Wouters [415] 2017 Neurology 
(Developmental 

disability) 

Test-retest 26 >10 Physical 
(non-device 
and device-

based) 

Body composition 
(BIA, BMI, skinfold 

measurements, 
waist 

circumference), 
muscular strength 

(grip strength, 
hand-held 

dynamometry, 
softball throw, 
standing long 

jump), muscular 
endurance (arm 

hang, bench press, 
dumbbell press, 

isometric push-up, 
pull-up, sit-up) and 
cardiorespiratory 

fitness (fixed 
distance run/walk, 

Intra class 
correlation, 

Kappa 
coefficient, 

Standard error 
of 

measurement, 
Limits of 

agreement 

No 
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fixed time 
run/walk, SRT, step 

test). 

Yang [416] 2017 Neurology - 
multiple 

conditions 

Test-retest 23 >10 Physical 
(non-device 

based) 

Multiple dual task 
balance and 
walking test 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change 

No 

Yang [417] 2015 Geriatrics Test-retest 26 >10 Physical 
(non-device 

based) 

Multiple dual task 
balance and 
walking tests 

Intra class 
correlation, 

Standard error 
of 

measurement, 
Smallest 

detectable 
change 

No 

Yoon [30] 2016 Oncology Inter/intra-
observer 

9 1 Imaging Computed 
tomography 

(tumour burden 
measurement using 

RECIST) 

Relative 
measurement 

difference, 
Limits of 

agreement 

Yes 

Zanudin [418] 2017 Cerebral palsy Inter/intra-
observer & 
test-retest 

16 6 Physical 
(non-device 

based) 

Timed up and down 
stairs, timed up and 

go test, 1-minute 
walk test, 

functional walk 
test, 10-meter fast 
walk test, 6-minute 

walk test 

Intra class 
correlation, 

Limits of 
agreement, 

Coefficient of 
variation, 

Standard error 
of 

measurement 

No 

Zayat [419] 2016 Rheumatology Inter/intra-
observer 

5 1 Imaging Ultrasound Kappa 
coefficient 

No 
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Zimmerman [420] 2017 Orthodontics Inter/intra-
observer 

42 1 Imaging Cone beam 
computed 

tomography 

Intra class 
correlation, 

Pearson 
correlation, 

Dahlberg 
formula 

No 
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Appendix B4. Details on quality items for each systematic review. 

Author Inclusion 
criteria 

specified 

Study 
details 

presented 

Databases 
listed 

Search 
terms 

described 

Search 
period 

described 

Approach 
to 

screening 

PRISMA 
flow 
chart 

Approach 
to data 

extraction 

Approach 
to quality 

assessment 

Quality 
assessment 
tool(s) used 

Aarsand et al 
[153] 

Yes No PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Not 
reported 

Independent 
and 

duplicate 

BIVAC [153]  

Abou El Hassan 
[223] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

No Not 
reported 

No Not 
reported 

Not 
reported 

Author’s own 

Abou [224] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

Adhia [225] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

No Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS [422] and 
QAREL [423] 

Ager [226] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [421] and 
QualSyst [424] 

Aguilar [227] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Alcázar [228] Yes Yes 
(tabulated) 

MEDLINE 
only 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

No Not 
reported 

Not 
conducted 

N/A 

Aloraini [229] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

Law and 
MacDermid [425] 

Alreni [230] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 
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Ammann-Reiffer 
[231] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [426] 

Artero [232] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Not 
reported 

Independent 
and 

duplicate 

Tool used in 
Essendrop et al 

[427] 

Avouac [233] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Not 
reported 

Jadad criteria [428] 

Balemans [234] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

COSMIN [134] 

Balzer [235] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

No Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Barrett [236] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

with checks 
by a second 

Yes Single 
reviewer 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Bartels [237] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

Basile [238] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

Beales [239] Yes Yes 
(tabulated) 

MEDLINE 
only 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Not clear 

Beaulieu [240] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

Yes Single 
reviewer 

Independent 
and 

duplicate 

Law and 
MacDermid [425] 

and Chipchase et al 
[430] 

Bellet [241] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

Yes Single 
reviewer 

Independent 
and 

duplicate 

Brink and Louw 
[429] 
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with checks 
by a second 

with checks 
by a second 

Bennett [242] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Not 
reported 

Quality assessment 
tool for 

quantitative studies 
[available at 

INSTRUCTIONS FOR 
COMPLETION: 
Please circle 
appropriate 

response in each 
section (ephpp.ca)] 

 

Berger [243] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Not clear 

Bergquist [244] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Bernard [245] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

No Independent 
and 

duplicate 

Not 
conducted 

N/A 

Bianco [246] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

No Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Bieniek [247] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Bohannon [248] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

No Single 
reviewer 

Not 
conducted 

N/A 

Bohannon [249] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Partially 
(only start 

Single 
reviewer 

No Single 
reviewer 

Single 
reviewer 

COSMIN [421] 

https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
https://www.ephpp.ca/PDF/Quality%20Assessment%20Tool_2010_2.pdf
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or end 
date given) 

Bohannon [250] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Not 
reported 

Not 
reported 

Author’s own 

Borotikar [251] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Author’s own 

Braga [252] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Braga [253] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Brink [254] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Not 
reported 

Not 
reported 

N/A 

Burgess [255] No Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Cancer EDGE Task 
Force Rating Form 
[431] (Appendix A) 

Carlsson [256] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

QAREL [423] 

Carobene [257] No Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Cavaleri [154] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423], tool 
from 

Bialocerkowski et al 
[432], Chipchase et 

al [430] 

Chaabene [258] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool used in 
Robertson et al 

[433] 
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Chamorro [155] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

COSMIN [421] 

Cheung [259] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

Yes Not 
reported 

Not 
reported 

Author’s own 

Childs [260] 

Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate Yes 
Not 

reported 

Independent 
and 

duplicate 

Author’s own 

Chiwaridzo [261] 

Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) Yes 

Independent 
and 

duplicate Yes 

Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Clark [262] 

Yes 

Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) Yes 

Independent 
and 

duplicate Yes 
Not 

reported 

Independent 
and 

duplicate 

Brink and Louw 
[429], COSMIN 

[426] 

Clark [263] 

Yes 

Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) Yes 

Independent 
and 

duplicate Yes 

Independent 
and 

duplicate 

Independent 
and 

duplicate 

Downs and Black 
[434], COSMIN 

[421] 

Crowley [264] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

No Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Cutolo [265] Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes 

Independent 
and 

duplicate 

Independent 
and 

duplicate 

National 
Institute of Health 

(NIH) tool for 
observational 

cohort and cross-
sectional studies 

(Appendix 11) 

De Albuquerque 
[266] 

Yes 

Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) Yes 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS [422] and 
QAREL [423] 

De Guio [267] Yes 

Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Partially 
(only start 

Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 
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or end 
date given) 

De Langen [137] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

No No Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

De Paula Lima 
[268] 

Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [426] 

De Valk [269] Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes 

Independent 
and 

duplicate 

Yes 

Independent 
and 

duplicate 

Not 
reported 

National 
Institute of Health 

(NIH) tool for 
observational 

cohort and cross-
sectional studies 

(Appendix 11) 

Décary [270] Yes 

Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

DeJong [271] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

No Not 
reported 

Not 
reported 

QAREL [423] 

Dekkers [272] Yes Yes 
(tabulated) PUBMED 

plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

Deng [273] Yes Yes 
(tabulated) PUBMED 

plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Denteneer [274] Yes Yes 
(tabulated) PUBMED 

plus other 
Yes (full 
strategy) 

Yes Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Denteneer [275] Yes Yes 
(tabulated) PUBMED 

plus other 
Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

D'hondt [276] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

No Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 
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Dobson [277] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

Dobson [278] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Ekpo [279] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Independent 
and 

duplicate 

Independent 
and 

duplicate 

Viswanathan et al 
[435] 

English [280] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Single 
reviewer 

Independent 
and 

duplicate 

Tool used in 
Pretorius and 
Keating [436] 

Fan [281] No Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

No Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Ferreira [282] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Field [283] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Single 
reviewer 

COSMIN [419] and 
McMaster rating 

(details not 
provided) 

Fisher [284] Yes No PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

Cancer EDGE Task 
Force Rating Form 
[431] (Appendix A) 

Flamand [285] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Law and 
MacDermid [425] 

Fonseca [286] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

with checks 
by a second 

Yes Not 
reported 

Independent 
and 

duplicate 

Law and 
MacDermid [425] 

Fotheringham 
[287] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Single 
reviewer 

with checks 
by a second 

Not 
conducted 

N/A 
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Gebruers [288] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Gengo e Silva 
[289] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Giraud [290] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

Not clear 

Golden [291] Yes Yes 
(tabulated) 

MEDLINE 
only 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Gonzalez Lao 
[156] 

Yes Yes 
(tabulated) 

Not 
reported 

No Yes Not 
reported 

No Not 
reported 

Independent 
and 

duplicate 

BIVAC [153] 

Gonzalez-Suarez 
[292] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

No No Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Guillaud [293] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

Hafsteinsdóttir 
[294] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Author’s own 

Hernaez [295] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
reported 

QUADAS [422] and 
STARD 2015 [438] 

Himuro [296] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

with checks 
by a second 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Hoogervorst 
[297] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 
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Hulteen [298] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool used in 
Robertson et al 

[433] 

Hunter [157] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Downs and Black 
[434] 

Janaudis-Ferreira 
[299] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

with checks 
by a second 

Yes Single 
reviewer 

Independent 
and 

duplicate 

COSMIN [134] 

Jaspers [300] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

No Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Johnston [301] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 

Jonsson [302] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

Jørgensen [303] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Kasehagen [304] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

Yes Not 
reported 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Kleijn [158] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [134] 

Klingels [305] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Konieczka [306] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 
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Kramer [138] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Kristensen [307] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Kroman [308] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

Kwah [309] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool designed by 
Hebert et al [439] 

Lagarde [310] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

Yes Not 
reported 

Independent 
and 

duplicate 

The 
Dutch “Cochrane 

checklist for 
diagnostic accuracy 

studies” [440] 

Lamers [311] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 
(presented in 
Appendix 1) 

Lange [147] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

QAREL [423] 

Lange [312] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

QAREL [423] 

Larsen [313] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Single 
reviewer 

Independent 
and 

duplicate 

COSMIN [134] 
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Le Flao [314] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

STROBE [441] 

Lemeunier [315] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

QAREL [423] 

Lemeunier [316] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

QAREL [423] 

Lennon [317] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

COSMIN [134] 

Liang [318] Yes Yes 
(tabulated) 

Not 
reported 

No No Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Lima [319] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

No Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QUADAS [422] 

Lisboa [320] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Tool used in Van 
Vlijmen et al [442] 

Maaswinkel [321] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 

MacKay [322] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Single 
reviewer 

QAREL [423] 

Mahaffey [323] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

No Not 
reported 

Not 
reported 

COSMIN [134] 
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Maricar [324] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Marshall [325] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

COSMIN [134] 

May [326] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer for 

screening 
titles and 
abstracts, 

Independent 
and 

duplicate for 
full text 

assessment 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 
(details presented 

in Table 1) 

Mc Auliffe [327] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

QAREL [423] 

McCreesh [328] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

McVerry [329] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Michiels [330] Yes Yes 
(tabulated) 

PUBMED 
plus other 

No Yes Not 
reported 

Yes Not 
reported 

Independent 
and 

duplicate 

CBO guidelines 
(details not 
provided) 

Mieritz [331] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Mijnarends [332] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 
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Milani [333] Yes Yes 
(tabulated) 

PUBMED 
only 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Milne [334] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

No Not 
reported 

Not 
reported 

COSMIN [134] 

Mohan [335] Yes Yes 
(tabulated) 

PUBMED 
plus other 

No Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

Mohseni Bandpei 
[336]   

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Moloney [337] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 

Moore [338] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Mulder-Brouwer 
[339] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [134] 

Muntaner-Mas 
[340] 

Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Not 
reported 

Cochrane 
collaboration’s tool 

[443] (domains 
analysed: detection 
bias, attrition bias, 
reporting bias, and 

other bias) 

Nae [341] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

COSMIN [421] 
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Navarro [159] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Neto [342] Yes 

Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

No 
Independent 

and 
duplicate 

Not 
conducted 

N/A 

Nijholt [343] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Tool used in 
Pretorius and 
Keating [436] 

Oberwahrenbroc
k [344] 

Yes Yes 
(tabulated) 

PUBMED 
only 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

O'Meara [345] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

with checks 
by a second 

Yes Single 
reviewer 

with checks 
by a second 

Single 
reviewer 

with checks 
by a second 

QUADAS [422] 

Ornetti [346] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Not 
reported 

Yes Single 
reviewer 

Not 
conducted 

N/A 

Ortega [347] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
conducted 

N/A 

Özay [348] Yes Yes 
(tabulated) 

MEDLINE 
only 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Cochrane 
collaboration’s tool 

[441] 

Paech [349] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Single 
reviewer 

Not 
reported 

Merlin et al [444] 
and QUADAS [422] 

Pareira [350] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 
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Parry [351] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

No Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 

Paul [352] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Not 
reported 

Brughelli et al [445] 

Peeling [353] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Not 
reported 

Author’s own 

Perdomo [354] Yes No MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Cancer EDGE Task 
Force Rating Form 
[431] (Appendix A) 

Petitclerc [355] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

No Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Phillips [356] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
reported 

GRADE criteria 
(details not 
provided) 

Pin [357] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

No Single 
reviewer 

Yes Single 
reviewer 

Single 
reviewer 

COSMIN [421] 

Pollock [358] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

No Not 
reported 

Not 
conducted 

N/A 

Ponce-Garcia 
[359] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [421] 

Pons [360] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

No Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Pons [361] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Powden [139] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 
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Proud [362] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [426] 

Prowse [363] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer for 

screening 
titles and 
abstracts, 

Independent 
and 

duplicate for 
full text 

assessment 

Yes Not 
reported 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Rabelo [144] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
reported 

Brink and Louw 
[429] 

Ratter [364] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

COSMIN [421] 

Reavis [149] Yes Yes 
(tabulated) 

MEDLINE 
only 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Independent 
and 

duplicate 

Not 
conducted 

N/A 

Reichmann [160] Yes Yes 
(tabulated) 

EMBASE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer 

No Single 
reviewer 

Not 
conducted 

N/A 

Reis Durao [365] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Ringshausen 
[366] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Not 
reported 

Author’s own 
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Roberts [367] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Robertson [368] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Roeing [369] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Rondoni [370] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 

Rossini [371] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Rozema [151] 

 

Yes Yes 
(tabulated) 

MEDLINE 
only 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Rubio-Ochoa 
[372] 

Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

QAREL [423] 

Ruhe [373] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

No Yes Independent 
and 

duplicate 

No Independent 
and 

duplicate 

Single 
reviewer 

with checks 
by a second 

Author’s own 

Rydwik [374] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [426] 

Saccomanno 
[375] 

Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 



364 
 

Saether [376] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 

Salamh [161] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

COSMIN [426] 

Saltzherr [377] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

QAREL [423] 

Sam [378] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Unclear Tool based on 
Bialocerkowski et al 

[432] 

Scalco [379] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

STROBE [441] 

Scheetz [380] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Single 
reviewer for 

screening 
titles and 
abstracts, 

Independent 
and 

duplicate for 
full text 

assessment 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 

Schrama [381] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Seagar [382] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 

Sepriano [383] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

National 
Institute of Health 

(NIH) tool for 



365 
 

observational 
cohort and cross-
sectional studies 

(Appendix 11) 

Serai et al [152] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
reported 

QUADAS 2 [437] 

Shiel [384] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Silva [385] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool used in van 
Bloemendaal et al 

[446] (based on 
COSMIN [134]) 

Simperingham 
[386] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Not 
conducted 

N/A 

Singh [387] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
conducted 

N/A 

Sman [388] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS [422] 

Smith [389] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Single 
reviewer 

with checks 
by a second 

Critical Appraisal 
Skills Programme 

(CASP) tool (details 
not provided) 

Smith [390] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Single 
reviewer 

with checks 
by a second 

Critical Appraisal 
Skills Programme 

(CASP) tool (details 
not provided) 

Sollis [391] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool based on the 
STARD Initiative 

[447] (details 
presented in Annex 

S1) 
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Southerest [392] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes  
Not 

reported 

Independent 
and 

duplicate 

QUADAS [422] 

Stephenson [393] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

Author’s own 

Stienen [394] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
conducted 

N/A 

Stovall [395] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

No Not 
reported 

No Not 
reported 

Single 
reviewer 

with checks 
by a second 

Author’s own 

Symonds [396] Yes No MEDLINE 
only 

Partially 
(terms in 
text only) 

No Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Tagmouti [28] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QAREL [423] 

Talma [397] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Tarara [398] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

Single 
reviewer 

Tool based on 
COSMIN [134] and 

COSMIN [426] 

Terwee [399] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 



367 
 

Timmer [400] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Tong [401] Yes Yes 
(tabulated) 

PUBMED 
only 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

No Not 
reported 

Not 
conducted 

N/A 

Toohey [402] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Brink and Louw 
[429] 

Traverso [403] Yes Yes 
(tabulated) 

PUBMED 
only 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Valet [404] Yes No MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Not 
reported 

Unclear Author’s own 

van Bloemendaal 
[405] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [134] 

van de Pol [406] Yes Yes 
(tabulated) 

MEDLINE 
only 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

van de Water 
[407] 

Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [134] 

van Kooij [408] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [134] 

van Trijffel [409] Yes Yes 
(tabulated) 

MEDLINE 
only 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 
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Wang [410] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Not 
reported 

Yes Not 
reported 

Unclear QUADAS 2 [437] 

Weiner [29] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Single 
reviewer 

(10% 
duplicate) 

Yes Single 
reviewer 

(10% 
duplicate) 

Not 
reported 

Author’s own 

Welton [141] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Partially 
(terms in 
text only) 

Yes Not 
reported 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Author’s own 

Wen [411] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Not 
reported 

Not 
reported 

Tool used in 
Robertson et al 

[433] 

Wetterslev [412] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Not 
conducted 

N/A 

Williams [413] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer for 

screening 
titles and 
abstracts, 

Independent 
and 

duplicate for 
full text 

assessment 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

Author’s own 

Winser [414] Yes Partially 
(narrative 

description 
in text) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Wouters [415] Yes Partially 
(narrative 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Single 
reviewer 

Yes Single 
reviewer 

Not 
reported 

COSMIN [421] 
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description 
in text) 

with checks 
by a second 

with checks 
by a second 

Yang [416] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

Independent 
and 

duplicate 

COSMIN [421] 

Yang [417] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Yes Independent 
and 

duplicate 

Yes Single 
reviewer 

with checks 
by a second 

Independent 
and 

duplicate 

COSMIN [421] 

Yoon [30] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Zanudin [418] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

COSMIN [421] 

Zayat [419] Yes Yes 
(tabulated) 

PUBMED 
plus other 

Partially 
(terms in 
text only) 

Yes Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

QUADAS 2 [437] 

Zimmerman [420] Yes Yes 
(tabulated) 

MEDLINE 
plus other 

Yes (full 
strategy) 

Partially 
(only start 

or end 
date given) 

Independent 
and 

duplicate 

Yes Independent 
and 

duplicate 

Independent 
and 

duplicate 

Tool used in 
Alsufyani [448] 

“with minimal and 
appropriate 

adjustments” 
(details presented 

in Figure 1) 
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Appendix C: Search strategy and additional tables for Chapter 6 
 

Appendix C1. Search strategy. 

 

The search strategy for MEDLINE was: 

1     Hand Strength/ (13203) 

2     (hand adj2 grip$).ti,ab. (2764) 

3     handgrip.ti,ab. (5351) 

4     ((hand$ or grip$ or grasp$) and dynamom$).ti,ab. (2925) 

5     (grip adj2 (strength or trial or pressure)).ti,ab. (9901) 

6     muscle strength/ph and (hand$ or grip$ or grasp$).ti,ab. (1481) 

7     muscle strength dynamometer/ and (hand$ or grip$ or grasp$).ti,ab. (621) 

8     (((hand$ or muscle) adj2 (function or strength)) and (grip or grasp)).ti,ab. (3848) 

9     ((jamar or takei or (grip adj it) or (eval adj solosystem) or biopac or harpenden) and dynamom$).ti,ab. 

(392) 

10     or/1-9 (25231) 

11     ((relative or absolute) adj reliability).ti,ab. (534) 

12     exp Observer Variation/ (40491) 

13     observer varia$.ti,ab. (3628) 

14     ((inter or intra) adj (rater or tester or technician or examiner or assay or individual or participant)).ti,ab. 

(29571) 

15     (interrater$ or intertester$ or intertechnician$ or interexaminer$ or interassay$ or interindividual$ or 

interparticipant$).ti,ab. (27049) 

16     ((within or between) adj (subject or individual or person)).ti,ab. (28469) 

17     exp "Reproducibility of Results"/ (375090) 

18     (test and retest).ti,ab. (24015) 

19     ((test or retest) and reliab$).ti,ab. (80228) 

20     ((replicab$ or repeat$ or reproducibil$ or reliabil$ or valid$) and (measure$ or finding$ or result$ or 

test$)).ti,ab. (931492) 

21     kappa$.ti,ab. (159950) 

22     (intraclass adj correlation$).ti,ab. (20857) 

23     ((individual or interval or rate) adj variability).ti,ab. (24733) 

24     (uncertain$ adj5 measur$).ti,ab. (5759) 

25     (coefficient$ adj3 varia$).ti,ab. (37432) 

26     ((standard or technical) adj error$ adj2 measurement$).ti,ab. (2034) 
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27     (responsiv$ and (measure$ or finding$ or result$ or test$)).ti,ab. (139841) 

28     ((minimal$ or clinical$ or small$ or least) adj2 (real or detectable or important or significant) adj2 

(concentration or change$ or difference$)).ti,ab. (14869) 

29     (limit$ adj2 (agreement$ or detection$)).ti,ab. (109291) 

30     or/11-29 (1640920) 

31     exp Animals/ (22216895) 

32     exp Humans/ (17650455) 

33     31 not 32 (4566440) 

34     (10 and 30) not 33 (3607) 

 

 

The search strategy for Embase was: 

1     exp Hand grip/ (9542) 

2     (hand adj2 grip$).ti,ab. (4532) 

3     handgrip.ti,ab. (7646) 

4     ((hand$ or grip$ or grasp$) and dynamom$).ti,ab. (4980) 

5     (grip adj2 (strength or trial or pressure)).ti,ab. (14292) 

6     exp dynamometer/ and (hand$ or grip$ or grasp$).ti,ab. (2747) 

7     (((hand$ or muscle) adj2 (function or strength)) and (grip or grasp)).ti,ab. (6187) 

8     ((jamar or takei or (grip adj it) or (eval adj solosystem) or biopac or harpenden) and dynamom$).ti,ab. 

(749) 

9     ((relative or absolute) adj reliability).ti,ab. (632) 

10     exp Observer Variation/ (19384) 

11     observer varia$.ti,ab. (6112) 

12     ((inter or intra) adj (rater or tester or technician or examiner or assay or individual or participant)).ti,ab. 

(42846) 

13     (interrater$ or intertester$ or intertechnician$ or interexaminer$ or interassay$ or interindividual$ or 

interparticipant$).ti,ab. (33230) 

14     ((within or between) adj (subject or individual or person)).ti,ab. (35813) 

15     exp "reproducibility"/ (201596) 

16     (test and retest).ti,ab. (29872) 
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17     ((test or retest) and reliab$).ti,ab. (108772) 

18     ((replicab$ or repeat$ or reproducibil$ or reliabil$ or valid$) and (measure$ or finding$ or result$ or 

test$)).ti,ab. (1336782) 

19     kappa$.ti,ab. (185876) 

20     (intraclass adj correlation$).ti,ab. (25965) 

21     ((individual or interval or rate) adj variability).ti,ab. (35192) 

22     (uncertain$ adj5 measur$).ti,ab. (6609) 

23     (coefficient$ adj3 varia$).ti,ab. (47805) 

24     ((standard or technical) adj error$ adj2 measurement$).ti,ab. (2469) 

25     (responsiv$ and (measure$ or finding$ or result$ or test$)).ti,ab. (180070) 

26     ((minimal$ or clinical$ or small$ or least) adj2 (real or detectable or important or significant) adj2 

(concentration or change$ or difference$)).ti,ab. (22128) 

27     (limit$ adj2 (agreement$ or detection$)).ti,ab. (131215) 

28     exp animal/ (23895646) 

29     exp human/ (19485201) 

30     1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 (29825) 

31     9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 

(2050476) 

32     28 not 29 (4410445) 

33     30 and 31 (4630) 

34     33 not 32 (4413) 
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Appendix C2. Data extraction form. 

Items extracted from the identified studies 

A: Study characteristics 

A1 Study design 

A2 Sample size 

A3 Data collection 

A4 Type of reliability 

A5 Number of testing sessions 

A6 Time interval between testing sessions 

A7 Number of measurements made within testing sessions 

A8 Time interval between measurements made within testing sessions  

B: Observer characteristics 

B1 Number of participating observers 

B2 Experience of observers 

C: Participant characteristics 

C1 Medical condition 

C2 Age of participants  

C3 Gender of participants  

C4 Inclusion criteria 

D: Measurement conditions 

D1 Device calibrated 

D2 Preparatory instructions provided to participants 

D3 Vocal encouragement provided 

E: Measurement protocol 

E1 Summary measure per session 

E2 Tested hand(s) 

E3 Dynamometer used 

E4 Handle position 

E5 Posture 

E6 Positioning of shoulder/elbow/wrist 

F: Statistical estimates 

F1 Statistical estimates reported for reliability 

F2 Statistical estimates reported for measurement error 
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Appendix C3. Standards on design requirements and statistical methods for studies on reliability or measurement error. After Mokkink et al [37]. 

Design requirements very good adequate doubtful inadequate 

1 Were patients stable in the time between the administration of the 

repeated measurements on the construct to be measured? 

 

Evidence provided that 

patients were stable  

Assumable that 

patients were 

stable 

 

Unclear if 

patients were 

stable 

Patients were 

NOT stable 

2 Was the time interval between the measurements performed within 

testing sessions appropriate? 

 

Time interval higher 

than or equal to 30 

seconds 

Time interval 

between 15 and 30 

seconds 

Time interval 

less than 15 

seconds 

No rest given 

or not stated 

      

3 Was the time interval between testing sessions appropriate? 

 

Evidence provided that 

time interval was 

appropriate 

Assumable that 

time interval was 

appropriate 

Doubtful 

whether time 

interval was 

appropriate or 

time interval 

was not stated 

Time interval 

not 

appropriate 

4 Did the professional(s) administer the measurement without 

knowledge of scores of other repeated measurement(s) in the same 

patients? 

 

Measurements 

administered without 

knowledge of other 

scores (evidence 

provided) 

Assumable that 

measurements 

were administered 

without 

knowledge of 

other scores 

Unclear if 

measurements 

were 

administered 

without 

knowledge of 

other scores 

Measurements 

administered 

with 

knowledge of 

other scores 
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5 Did the professional(s) assign scores or determine values without 

knowledge of the scores of other repeated measurement(s) in the same 

patients? 

 

Scores assigned or 

values determined 

without knowledge of 

other scores (evidence 

provided) 

 

Assumable that 

scores were 

assigned or values 

were determined 

without 

knowledge of 

other scores 

Unclear if 

scores were 

assigned or 

values were 

determined 

without 

knowledge of 

other scores 

Scores were 

not assigned or 

values were 

not 

determined 

without 

knowledge of 

other scores 

6 Were the statistical parameters used for reliability appropriate? 

 

ICC or G Coefficient 

calculated; the model 

or formula was 

described 

 

ICC or G 

Coefficient 

calculated but 

model or formula 

was not described  

OR 

Pearson or 

Spearman 

correlation 

coefficient 

calculated  

 Statistical 

parameters 

used not 

optimally 

matching the 

research 

question 

7 Were the statistical parameters used for measurement error 

appropriate? 

 

SEM, SDC, LoA or CV 

calculated; the model 

or formula for the 

SEM/SDC is described  

 

SEM, SDC, LoA or 

CV calculated, but 

the model or 

formula is not 

described  

 Statistical 

parameters 

used not 

optimally 

matching the 

research 

question 

1Based on Mathiowetz et al [198], 2Pearson and Spearman correlation coefficients were considered adequate, as no systematic differences were expected  

due to the objective nature of the test 
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Appendix C4. Data extraction - Characteristics of the identified primary studies. 

Author Year Population Sample size Data 
collection 

Type of 
variability 
examined 

Number 
of testing 
sessions 

Time interval 
between 

testing sessions 

Number of 
within-session 
measurements 

Time interval 
between 

within-session 
measurements 

Abizanda 
[449] 

2012 
Elderly 281 Prospective Test-retest 

One 
N/A (one session) Three 15 seconds 

Aguiar [450] 2016 Patients in the 
subacute phase of 

stroke 32 Prospective 
Inter-observer & 

test-retest 

Two 

1-2 weeks Three 15-20 seconds 

Alencar 
[183] 

2012 Elderly patients 
with dementia 72 Prospective Test-retest 

Two 
1 week Three 1 minute 

Alfonso-
Rosa [129] 

2014 Older adults with 
Type 2 Diabetes 16 Prospective Test-retest 

Two 
1 week Three 1 minute 

Allen [451] 2011 
Healthy 

participants 49 

Prospective; 
convenience 

sample Test-retest 

Two 

1 week Three 15 seconds 

Anumula 
[452] 

2014 University 
students 27 Prospective Test-retest 

Two 
1 week Three 15-60 seconds 

Baldwin 
[453] 

2013 Critically ill & 
healthy 

participants 
17 critically ill, 

12 healthy 
Prospective, 
consecutive 

Inter-observer & 
test-retest 

Two 

2 days Three 1 minute 

Barden 
[191] 

2012 

Adults with upper 
motor neuron 

syndrome 

36 adults with 
acquired brain 
injury, and 27 

healthy 
individuals 

Prospective; 
consecutive Test-retest 

Two 

5 weeks Ten 
Not clear 

("consecutive") 

Bertrand 
[454] 

2015 
Subjects who had 

a stroke 34 

Prospective; 
convenience 

sample Test-retest 

Two 

Same week Three 
Not clear 

("consecutive") 

Blankevoort 
[455] 

2013 
Older people with 

dementia 57 

Prospective; 
convenience 

sample Test-retest 

Two 

1 week Three Not given 
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Bodilsen 
[456] 

2015 Acutely admitted 
older medical 

patients 52 
Prospective; 

random sample Inter-observer 

Two 

2-3 hours Three Not given 

Bohannon 
[457] 

2005 Healthy 
community-

dwelling elders 21 Prospective Test-retest 

Two 

12 weeks One N/A 

Bohannon 
[458] 

2006 Healthy 
volunteers 30 Prospective Test-retest 

Two 
1 day Two 30 seconds 

Bohannon 
[459] 

2011 Healthy 
participants 28 Prospective Test-retest 

Two 
4-10 days Two Not given 

Boissy [460] 1999 Chronic stroke 
and healthy 

subjects 

15 stroke and 
10 healthy 

patients Prospective Test-retest 

Two 

1 week Three 2 minutes 

Brogardh 
[461] 

2015 Patients with late 
effects of polio in 
their upper limbs 28 Prospective Test-retest 

Two 

14 days Two 90 seconds 

Brown [462] 2000 

Hand-injured 
patients 30 Prospective 

Inter-observer & 
test-retest 

Two "The time 
between 

therapists was 
standardized to 
the time it took 
the patient to 
switch testing 

stations" Three 5 seconds 

Buehring 
[463] 

2014 Older community 
dwelling 

individuals 97 Prospective Test-retest 

Two 

3 months Three 10-20 seconds 

Burnstein 
[464] 

2011 Healthy 
participants 238 Retrospective Test-retest 

Two 
6 months Two Not given 

Carbonell-
Baeza [465] 

2015 
Females with 
fibromyalgia 100 

Prospective; 
convenience 

sample Test-retest 

Two 

7 days Three 1 minute 

Chen [466] 2009 Patients with 
history of 

sustained stroke 62 

Prospective; 
convenience 

sample Test-retest 

Two 

3-7 days Three Not given 
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Clifford 
[113] 

2013 
Patients with UL 

burns 89 Prospective Test-retest 

Four Sessions took 
place at 1, 3, 6, 12 

months Three Not given 

Coldman 
[182] 

2006 Subjects with 
post carpal tunnel 
decompression, 

post flexor 
tendon repair, 

and 
asymptomatic 

subjects. 66 Prospective Test-retest 

Two 

15 minutes Three 15 seconds 

Dunn [186] 1978 Mentally retarded 
adult males 24 

Prospective; 
random sample Test-retest 

Four 1 day (for 4 
consecutive days) Two Not given 

Ekstrand 
[467] 

2015 Subjects with 
paresis in upper 

extremity 6 
months post-

stroke 45 Prospective Test-retest 

Two 

1 week Three 60 seconds 

Essendrop 
[468] 

2001 
Healthy subjects 19 Prospective Test-retest 

Two 
1 week Three 30 seconds 

Fox [469] 2014 Older adults with 
dementia 12 Prospective Test-retest 

Two 
7 days Not clear N/A 

Gatt [470] 2018 Subjects with 
hand & wrist 

injuries 160 Retrospective Test-retest 

One 

N/A (one session) Three None 

Gerhardsson 
[471] 

2014 Subjects with 
hand-arm 
vibration 

syndrome (HAVS) 47 Retrospective Test-retest 

Two 

2 weeks Three Not given 

Gerodimos 
[472] 

2012 
Basketball players 30 Prospective Test-retest 

Two 
1 day Three 60 seconds 

Gittings 
[473] 

2016 Patients with 
unhealed minor 

burn wounds 30 Prospective Test-retest 

One 

N/A (one session) Three Not given 

Gittings 
[474] 

2018 Burn-injured 
patients 38 Prospective Test-retest 

One 
N/A (one session) Three Not given 
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Guerra [196] 2017 Group 1: Sample 
of free-living 

subjects among 
student and staff 
from the Uni of 

Porto, and 
relatives / 

Group 2: Sample 
of inpatients 

recruited from a 
university 

hospital in Porto 164 
Prospective; 
consecutive Test-retest 

One 

N/A (one session) Two 1 minute 

Haidar [475] 2004 Hospital worker 
volunteers 100 Prospective Test-retest 

Two 
2 weeks Three 1 minute 

Hamilton 
[188] 

1992 Healthy female 
college-age 

subjects 29 Prospective Test-retest 

Two 

1 week Three >=4 minutes 

Hamilton 
[181] 

1994 

Healthy subjects 33 Prospective Test-retest 

Two 12 days on 
average [range: 1-

22 days] Three Not given 

Haward 
[476] 

2002 
Healthy subjects 18 Prospective Test-retest 

Two 
1 week Three 10 seconds 

Hilgenkamp 
[477] 

2012 Older adults with 
intellectual 

disability 36 Retrospective Test-retest 

Two 

2 weeks One N/A 

Huang [189] 2011 Patients with 
stroke 56 Retrospective Test-retest 

Two 
3-7 days Three Not given 

Irwin [478] 2010 University 
students & older 

community 
dwelling 

individuals 28 Prospective Test-retest 

Two 

1-2 weeks Three 1 minute 

Jenkins 
[479] 

2017 Sarcopenic 
subjects 257 Retrospective Test-retest 

Two 
Not clear Three Not given 
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Kennedy 
[480] 

2010 

Patients with 
rheumatoid 

arthritis 25 Prospective Test-retest 

Two Not given. There 
was a 15-min 

break between 
the four different 

testing 
conditions, but no 

mention of the 
actual test-retest 

interval Three 1 minute 

Khamwong 
[481] 

2010 
Healthy men 25 Prospective Test-retest 

Two 
1 day Three 1 minute 

MacDermid 
[482] 

1994 Patients with 
cumulative 

trauma disorders 38 Prospective Inter-observer 

Two 

1 hour Three 15 seconds 

Maher [483] 2018 
Healthy adults 103 Prospective 

Inter-observer & 
test-retest 

Two 
1 min Three None 

Mawdsley 
[484] 

2001 

Elderly females 23 Prospective Inter-observer 

Two 

15 min Three 

“The amount of 
time it took the 

tester to read and 
record the data 
after each trial 

served as the rest 
period between 

trials.” 

Medina- 
Mirapeix 

[485] 

2016 
Patients with 

COPD 30 Prospective Inter-observer 

Two 

7-14 days Three N/A 

Niebuhr 
[486] 

1994 
Healthy students 33 Prospective Test-retest 

Two 
12-30 days Three 30 seconds 

Nitschke 
[193] 

1999 

Healthy & 
disabled women 

32 healthy 
and 10 with 
non-specific 
regional pain Prospective Test-retest 

Two 

4-7 days Three 20 seconds 

Paltamaa 
[487] 

2005 

Multiple sclerosis 

28 in total (19 
for test-retest, 
9 inter-rater) Prospective 

Inter-observer & 
test-retest 

Two 

1 week Three Not given 
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Peolsson 
[488] 

2001 Healthy 
volunteers & 
patients with 

cervical 
radiculopathy 

32 healthy 
and 13 with 

cervical 
radiculopathy 

Prospective; 
convenience 

sample 
Inter-observer & 

test-retest 

Three 

at least 1 day Three Not given 

Plant [489] 2016 
Healthy adults 25 Prospective 

Inter-observer & 
test-retest 

Two 
minimum 1 week Three 15 seconds 

Puthoff 
[490] 

2013 Cardiac 
rehabilitation 49 Prospective Test-retest 

Two 
15 minutes Three Not given 

Reddon 
[187] 

1985 Self-reported 
dextral subjects 12 Prospective Test-retest 

Ten 
1 week Ten 30 seconds 

Reijnierse 
[195] 

2017 Low muscle 
strength 

(Dynapenia) 939 Retrospective Test-retest 

One 

N/A (one session) Three Not given 

Reuter [184] 2011 

Healthy adults 21 Prospective Test-retest 

Three 3 sessions 
separated by at 
least 24 hours Three 1 minute 

Savva [491] 2013 Healthy students 19 Prospective Test-retest Two 7 days Three 15 seconds 

Savva [33] 2014 Patients with 
cervical 

radiculopathy 19 Prospective Test-retest 

Two 

7 days Three 15 seconds 

Savva [128] 2018 Patients with 
shoulder 

impingement 
syndrome 19 Prospective Test-retest 

Two 

7 days Three 15 seconds 

Schaubert 
[185] 

2005 Community-
dwelling elderly 

persons 10 

Prospective; 
convenience 

sample Test-retest 

Three every 6 weeks 
(baseline, then at 

6, 12 weeks) Not clear 1 minute 

Schreuders 
[492] 

2003 
Subjects with 
hand injuries 33 

Prospective; 
consecutive 

sample 
Inter-observer & 

test-retest 

Two 

2-3 minutes Three Not given 

Segura-Orti 
[493] 

2011 Subjects 
undergoing 

hemodialysis 12 Prospective Test-retest 

Two 

1 to 2 weeks Three 15 seconds 

Shechtman 
[179] 

2003 
Healthy subjects 180 Prospective Test-retest 

Two 
15 minutes Three 30 seconds 
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Shechtman 
[494] 

2005 
Healthy adults 100 Prospective Test-retest 

Two 
10 minutes Three 30 seconds 

Silva [495] 2019 Ambulatory older 
adults 100 Prospective Inter-observer 

Two 
2-7 days Three Not given 

Smidt [496] 2002 Patients with 
Lateral 

Epicondylitis 50 Retrospective Inter-observer 

Two 

Not given Three 20 seconds 

Solari [497] 2008 Patients with 
Charcot-Marie-
Tooth disease 

Phase I: 40, 
Phase II: 26 Prospective 

Inter-observer & 
test-retest 

Two 

1 week Three 10 seconds 

Spijkerman 
[498] 

1991 Healthy subjects 
& subjects with 
impaired hand 

function 24 Prospective Test-retest 

Two 

1 week Three 1 minute 

Stephens 
[499] 

1996 Subjects without 
upper extremity 
abnormality and 

subjects following 
open-palm carpal 

tunnel release 
(CTR) 78 Prospective 

Inter-observer 
(between-

session) & test-
retest (within-

session) 

Two 

1 day Three 30 seconds 

Stockton 
[500] 

2011 Women with 
systemic lupus 
erythematosus 12 Prospective Test-retest 

Two 

7-10 days Three 30 seconds 

Svensson 
[501] 

2006 Adults with 
Charcot-Marie-

Tooth 20 Prospective Test-retest 

Two 

1 week Three 1 minute 

Tager [502] 1998 
Older population 199 

Prospective; 
consecutive Test-retest 

Two 
48 hours Not clear several minutes 

Tan [503] 2001 Healthy 
participants 39 Prospective Test-retest 

Two 
1 day Three 

25 seconds 
minimum 

Trippolini 
[504] 

2013 Patients with 
Whiplash-
associated 
disorders 32 

Prospective; 
convenience 

sample Test-retest 

Two 

1 week Three Not given 
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Trutschnigg 
[505] 

2008 

Advance cancer 
patients 74 Prospective Test-retest 

Two Not clear (says 
same day, and 1 
minute between 
the 2 different 

devices) Three consecutive 

Tsang [506] 2005 
Healthy 

volunteers 548 

Prospective; 
convenience 

sample Test-retest 

Two 

3 days Three 15-20 seconds 

Tveter [507] 2014 Subjects with 
musculoskeletal 

conditions 81 Prospective Test-retest 

Two 

1 week Two Not given 

Vermeulen 
[508] 

2015 
Older adults 88 Prospective Test-retest 

One 
N/A (one session) Three 

Not clear 
(“consecutive”) 

Villafane 
[509] 

2015 Subjects with 
thumb 

carpometacarpal 
osteoarthritis 78 

Prospective; 
convenience 

sample Test-retest 

Two 

1 week Three 1 minute 

Villafane 
[510] 

2016 Subjects with 
Parkinson disease 
(PD) and healthy 

subjects 

30 (15 with PD 
and 15 

healthy) 

Prospective; 
convenience 

sample Test-retest 

Two 

1 week Three 1 minute 
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Appendix C5. Data extraction (continued) - Characteristics of study individuals and participating observers. 

Author Year Characteristics of study individuals Characteristics of participating 
observers 

Age Gender (N 
men, %) 

Underlying medical 
conditions 

Number of 
observers 

Where the 
observers 

experienced? 
Abizanda 

[449] 
2012 

Mean=74.3 
(SD=4.9) 103 (37%) 

Arterial hypertension, 
Dyslipidaemia, 

Osteoarthritis, Depression, 
Diabetes One Not given 

Aguiar [450] 2016 
Mean=63 
(SD=12) 18 (56%) Stroke Two 

Yes (1 year plus 
training prior to 

assessments) 

Alencar 
[183] 

2012 Mean=83.9 
(SD=5.8) 12 (16%) Dementia One Not given 

Alfonso-
Rosa [129] 

2014 Mean=73.6 
(SD=8.1) 10 (56%) Diabetes One Yes 

Allen [451] 2011 Aged between 18 
and 25yrs 7 (14%) None One Yes 

Anumula 
[452] 

2014 
Not given Not given None One Not given 

Baldwin 
[453] 

2013 Critically ill 
group: 

median=78 
(Q1=46, Q3=82) / 

healthy group: 
median=55 

(Q1=26, Q3=59) 

Critically ill: 10 
(59%) / healthy: 

6 (50%) 

Intra-abdominal 
sepsis/pancreatitis/multiple 
organ failure, Pneumonia, 

Respiratory failure, Cardiac 
failure/infarction, Cardiac 
surgery, Complicated drug 

reaction, Trauma Two Not given 

Barden 
[191] 

2012 ABI group: 
mean=50 
(SD=15)/ 
Control: 

mean=40 (SD=12) 

ABI group: 20 
(56%), Control 

group: 14 (52%) 
Stroke, traumatic brain 

injury One Not given 

Bertrand 
[454] 

2015 Mean=56.9 
(SD=13.7) 18 (53%) Stroke One Not given 
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Blankevoort 
[455] 

2013 Mean=82.47 
(SD=5.31) 17 (30%) Older dementia patients One No 

Bodilsen 
[456] 

2015 

Mean=78 
(SD=8.3) 14 (27%) 

Acutely admitted older 
patients Three 

Mixture (2 
experienced and 1 

newly qualified 
physiotherapist) 

Bohannon 
[457] 

2005 Mean=75 
(SD=5.9) 4 (19%) None One Not given 

Bohannon 
[458] 

2006 Mean=38 
(SD=15.6) 14 (47%) None One Not given 

Bohannon 
[459] 

2011 Mean=45.7 
(SD=23.5) 14 (50%) Not stated One Not given 

Boissy [460] 1999 Stroke subjects: 
mean=47 (SD=14) 

/ 
Controls: 

mean=44 (SD=11) 

Stroke subjects: 
10 males (67%), 

Controls: 5 
(50%) Stroke One Yes 

Brogardh 
[461] 

2015 Mean=68 
(SD=11) 16 (57%) Polio One Not given 

Brown [462] 2000 Mean=43 
(SD=12.3) 22 (73%) Hand injuries Two Yes 

Buehring 
[463] 

2014 Mean=80.7yrs 
(range 70-95) 48 (49%) None One Not given 

Burnstein 
[464] 

2011 Mean=28.7 
(SD=6.4) 162 (68%) Not reported One Yes 

Carbonell-
Baeza [465] 

2015 Mean=50.6 
(SD=8.6) 0 (0%) Fibromyalgia One Not given 

Chen [466] 2009 Mean=61.0 
(SD=9.9) 45 (73%) Stroke One Not given 

Clifford 
[113] 

2013 Mean=35.5 
(SD=14.5) 75 (84.3%) UL burn One Yes 

Coldman 
[182] 

2006 Asymptomatic: 
mean=40.4yrs 
(range 23-72) / 
Carpal tunnel 

decompressions: 

Asymptomatic: 
11 (50%) / 

Carpal tunnel 
decompressions: 
6 (27%) / Flexor Hand impairments One Yes (5 years) 
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mean=60.5yrs 
(range 38-93) / 
Flexor tendon 

repairs: 
mean=39.9yrs 
(range 20-72) 

tendon repairs: 
16 (73%) 

Dunn [186] 1978 Mean=24.21yrs 
(range 18-59) 24 (100%) Mental retardation One Not given 

Ekstrand 
[467] 

2015 
Mean=65 (SD=7) 37 (82%) Stroke One Yes 

Essendrop 
[468] 

2001 Mean=35 
(SD=6.9) 6 (32%) None One Not given 

Fox [469] 2014 Mean=83.25 
(SD=9.94) 1 (8%) Dementia One Yes 

Gatt [470] 2018 Mean=23.7 
(SD=3.9) 129 (81%) Hand & wrist injuries One Not given 

Gerhardsson 
[471] 

2014 HAVS group: 
mean=50.4 
(SD=12.4) / 

Reference group: 
mean=37.6 
(SD=15.9) 

HAVS group: 36 
(77%) / 

Reference 
group: Not given 

Hand-arm vibration 
syndrome (HAVS) or none One Yes 

Gerodimos 
[472] 

2012 Mean=26.06 
(SD=5.57) 30 (100%) None One Not given 

Gittings 
[473] 

2016 Median [IQR]: 
28.5 [20.0] 25 (83.3%) Burn injury One Not given 

Gittings 
[474] 

2018 Median=30 
(Q1=23, Q3=39) 33 (87%) Burn injury One Not given 

Guerra [196] 2017 

Group 1: 
mean=31 (SD=12) 

/ Group 2: 
mean=76 (SD=8) 60 (37%) 

Group 1: None / 
Group 2: Recruited from 

cardiology, endocrinology, 
gastroenterology, internal 
medicine, orthopaedics, 

and otolaryngology wards. One Not given 

Haidar [475] 2004 Mean=35.5 
(range 21-63) 50 (50%) None One Not given 
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Hamilton 
[188] 

1992 Mean=23.8 
(SD=4.9) 0 (0%) None One Not given 

Hamilton 
[181] 

1994 Mean=36.5 
(range 20-55) 16 (48%) None One Not given 

Haward 
[476] 

2002 Aged between 18 
and 25yrs 18 (100%) None One Not given 

Hilgenkamp 
[477] 

2012 Mean=66.8 
(SD=9.9) 12 (33%) Intellectual disabilities One Not given 

Huang [189] 2011 Mean=61.9 
(SD=9.3) 41 (73%) Stroke One Not given 

Irwin [478] 2010 Younger group: 
mean=23.4 
(SD=3.8) / 

Older group: 
mean=75.6 

(SD=7.0) 8 (29%) None One Not given 

Jenkins 
[479] 

2017 Mean=76.4 
(SD=6.5) 98 (38%) Sarcopenia One Not given 

Kennedy 
[480] 

2010 Mean=62.5 
(SD=10.6) 5 (20%) None One Not given 

Khamwong 
[481] 

2010 Mean=20.6 
(SD=1.3) 25 (100%) None One Not given 

MacDermid 
[482] 

1994 Mean=41 
(SD=14) Not given 

Cumulative trauma 
disorders Two Yes 

Maher [483] 2018 Aged between 18 
and 65yrs 30 (29%) None Two No 

Mawdsley 
[484] 

2001 Mean=76.1 
(SD=7.2) 0 (0%) None One No 

Medina- 
Mirapeix 

[485] 

2016 
Mean=67 
(SD=6.49) 30 (100%) Stable COPD Two Not given 

Niebuhr 
[486] 

1994 Mean=24.4 
(SD=5.4) 5 (15%) None One Not given 

Nitschke 
[193] 

1999 Healthy group: 
mean=32.3 
(SD=7.3) / 0 (0%) Non-specific regional pain One Not given 
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NSRP group: 
mean=42.6 
(SD=11.8) 

Paltamaa 
[487] 

2005 Test-retest 
group: 

mean=42.7 
(SD=9.2) / 

Inter-rater group: 
mean=48.9 

(SD=8.8) 

Test-retest 
group: 10 (53%) 

/ 
Inter-rater 

group: 3 (33%) Multiple sclerosis Two Yes 

Peolsson 
[488] 

2001 Healthy group: 
mean=29 (SD=10) 

/ 
Diseased group: 

mean=50 (SD=12) 

Healthy group:  
8 (22%) / 

Diseased group: 
7 (54%) 

None or cervical 
radiculopathy Three Not given 

Plant [489] 2016 Mean= 40yrs 10 (40%) None Two No 

Puthoff 
[490] 

2013 Mean=68.7 
(SD8.8) 29 (59%) Cardiac events One Not given 

Reddon 
[187] 

1985 Men: 21 to 36yrs, 
women: 20 to 

31yrs 6 (50%) None One No 

Reijnierse 
[195] 

2017 63.3yrs (mean of 
all cohorts) 382 (41%) Dynapenia One Not given 

Reuter [184] 2011 Mean=29.8 
(SD=6.9) 12 (52%) None One Not given 

Savva [491] 2013 Males: range=21-
26, SD=2.5yrs / 

females: 
range=21-23, 

SD=1yr 10 (53%) None One Yes 

Savva [33] 2014 Mean=50.5 
(SD=12.0) 14 (74%) Cervical radiculopathy One Yes 

Savva [128] 2018 Mean=33.2 
(SD=12.9) 9 (47%) 

Shoulder impingement 
syndrome One Not given 

Schaubert 
[185] 

2005 Mean=75.5 
(SD=5.8) (20%) None One Not given 
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Schreuders 
[492] 

2003 Mean=36 
(SD=13.7) 20 (61%) Hand injuries Two Mixture (1+1) 

Segura-Orti 
[493] 

2011 
Not given Not given End-stage renal disease One Not given 

Shechtman 
[179] 

2003 Aged between 18 
and 49yrs 80 (44%) None One Not given 

Shechtman 
[494] 

2005 Mean=23.5 
(SD=3.5) 50 (50%) None One Not given 

Silva [495] 2019 Mean=82.3 
(SD=8.1) 38 (38%) Depression & disability Two 

Both had at least 1 
year of experience 

Smidt [496] 2002 Mean=47 
(SD=11) 30 (60%) Lateral Epicondylitis Two Yes 

Solari [497] 2008 Phase I: 
mean=42.4 
(SD=12.6) / 

Phase II: 
mean=43.9 
(SD=13.5) 

Phase I: 
19 (48%) / 
Phase II: 
13 (50%) 

Charcot-Marie-Tooth 
disease Two Not given 

Spijkerman 
[498] 

1991 Mean=29.5 
(SD=10.2) Not given 

None or impaired hand 
function One Not given 

Stephens 
[499] 

1996 Surgical: 
Mean=51.23 
(SD=13.93) / 
Non-surgical: 
mean=32.40 
(SD=10.51) Not given Carpal tunnel release Two No 

Stockton 
[500] 

2011 Mean=39.8 
(SD=10.0) 0 (0%) 

Systemic lupus 
erythematosus One Yes 

Svensson 
[501] 

2006 Mean=51.2 
(SD=13.9) 9 (45%) 

Charcot-Marie-Tooth 
disease One Not given 

Tager [502] 1998 Aged between 55 
and 69yrs 100 (50%) None One Not given 

Tan [503] 2001 Mean=34.3 
(SD=8.2) 26 (67%) None One Not given 

Trippolini 
[504] 

2013 Mean=39.6 
(SD=12.3) 21 (66%) 

Whiplash-associated 
disorders One Yes 
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Trutschnigg 
[505] 

2008 Mean=61.5 
(SD=13.1) 48 (65%) Cancer One Not given 

Tsang [506] 2005 Mean=37.8 
(SD=10.9) 226 (41%) None One Not given 

Tveter [507] 2014 Mean=57.6 
(SD=14.2) 23 (28%) Musculoskeletal conditions One Yes 

Vermeulen 
[508] 

2015 Mean=75.0 
(SD=6.8) 33 (38%) None One Not given 

Villafane 
[509] 

2015 

Mean=83 (SD=5) 

Not clear. 
Different 

numbers of 
females 

reported in 
abstracts and 
results, and 

there is no Table 
1. Osteoarthritis One Yes 

Villafane 
[510] 

2016 PD group: 
mean=69.5 
(SD=8.6) / 
Healthy: 

mean=67.5 
(SD=10.2) 

PD group: 
7 (47%) / 
Healthy: 
6 (40%) Parkinson’s disease & none One Yes 
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Appendix C6. Data extraction (continued) - Measurement conditions and protocol used. 

Author Year Measurement conditions Measurement protocol 

Device 
calibrated 

Preparatory 
instructions 
provided to 
individuals 

Vocal 
encouragement 

provided to 
individuals 

Tested 
hand(s) 

Session 
summary 

measure(s) 
used 

Device(s) used Handle 
position(s) 

used 

Position of 
shoulder/forearm/ 

elbow/wrist 

Posture of 
individuals 

Abizanda 
[449] 

2012 
Not stated Not stated Not stated Dominant 

N/A (single 
session) JAMAR Not stated 

Not stated 
Sitting 

Aguiar [450] 2016 

Yes Yes Yes 
Affected & 

contralateral 

First & mean 
of 2 & mean 

of 3 SAEHAN Not stated 

As per ASHT1 [123] 
recommendations 

Sitting 

Alencar 
[183] 

2012 

Not stated Yes Yes Dominant Mean of 3 JAMAR 

Adjusted 
(second for 

women, 
third for 

men) 

As per ASHT1 [123] 
recommendations 

Sitting 

Alfonso-
Rosa [129] 

2014 

Not stated Yes Yes 

Dominant & 
non-dominant 

& bimanual Mean of 3 Takei 

Adjusted to 
the 

individual’s 
hand size 

Arm in complete 
extension. No other 

details provided. 
Standing 

Allen [451] 2011 

Yes Yes Yes Right & left Mean of 3 

Biometrics E-LINK 
EP9 electronic 
dynamometer, 

JAMAR Second 

As per ASHT1 [123] 
recommendations 

Sitting 

Anumula 
[452] 

2014 

Not clear Yes Not stated Not clear Highest of 3 Takei Not stated 

The participants 
were told to raise 

their arm above the 
head sideways 

without putting any 
pressure on the 

dynamometer, then 
bring the arm down 

with elbows fully 
extended in 

sideways position Standing 
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and simultaneously 
exert maximum 

force 

Baldwin 
[453] 

2013 
Yes Yes Yes Right & left Mean of 3 JAMAR Second 

Not stated 
Sitting 

Barden [191] 2012 

Yes Yes Yes 
Dominant & 

non-dominant Mean of 10 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

As per ASHT1 [123] 
recommendations, 

with a minor 
modification: the 

elbow and forearm 
were supported on 
the armrest of the 
chair or wheelchair 

to ensure 
appropriate shoulder 

support for 
participants with 

UMN lesions. Sitting 

Bertrand 
[454] 

2015 
Yes Yes Not given 

Affected & 
contralateral Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Blankevoort 
[455] 

2013 

Not clear Yes Not clear Dominant Highest of 3 JAMAR Not stated 

The individuals had 
their arm extended 

and the palm of their 
hand was facing 

their leg. No other 
details provided. Standing 

Bodilsen 
[456] 

2015 

Not clear Yes Not clear Dominant Highest of 3 Saehan, Digi-II Not stated 

For patients able to 
leave the bed sat in a 

chair, elbows were 
flexed at 90 degree, 
the lower arm was 

placed on the 
armrest with the 
wrist in neutral 

position. Sitting 
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Bohannon 
[457] 

2005 
Yes Not stated Not stated Right & left 

Single 
measurement JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Bohannon 
[458] 

2006 

Yes Not clear Yes Right & left 

First & mean 
of 2 & highest 

of 2 Micro FET 4 Not stated 

As per ASHT1 [123] 
recommendations 

Sitting 

Bohannon 
[459] 

2011 

Yes Not clear Not clear Right & left 

First & mean 
of 2 & highest 

of 2 JAMAR Second 

As per ASHT1 [123] 
recommendations 

Sitting 

Boissy [460] 1999 

Not clear Not clear Not clear 

Right & left / 
Affected & 

contralateral Highest of 3 

Modified 
prehension 

dynamometer Not stated 

The shoulder was 
placed at 

approximately 30 
degrees of adduction 

and 0 degrees of 
flexion. The elbow 
was flexed at 90 
degrees with the 
wrist in neutral 

position. Sitting 

Brogardh 
[461] 

2015 

Yes Yes Yes 
More affected 
& less affected Highest of 2 GRIP-it Not stated 

The participants 
were seated with 
relaxed shoulders, 

and the tested 
forearm was 

supported with a 
soft pad. When the 

participants grasped 
the GRIP-it, the wrist 

was held in a 
position between 0-

15 degrees 
dorsiflexion. Sitting 

Brown [462] 2000 
Not clear Yes Yes Affected Mean of 3 JAMAR Not stated 

As per ASHT1 [123] 
recommendations Sitting 

Buehring 
[463] 

2014 
Not clear Not clear Not clear Non-dominant Highest of 3 JAMAR Not stated 

Not stated 
Standing 
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Burnstein 
[464] 

2011 

Not stated Yes Yes Right & left Highest of 2 Baseline 

Adjusted to 
the 

individual’s 
hand size 

Shoulder adducted 
and in neutral 

rotation, elbow was 
flexed to 90°, and 

lower arm and wrist 
in neutral position.  Standing 

Carbonell-
Baeza [465] 

2015 

Not stated Not clear Not clear 

Both hands 
(best of two 

measurements 
chosen for 
each hand, 

average then 
calculated) 

Mean of 2 
hands Takei Not stated 

Arm fully extended, 
forming a 30 degree 
angle in relation to 
the trunk. No other 

details provided. 

Not stated 

Chen [466] 2009 

Not stated Yes Yes 
More affected 
& less affected Mean of 3 

Eval Solosystem 
digital 

dynamometer Second 

The shoulder was 
adducted, the elbow 
flexed at 90 degrees, 
and the forearm and 

wrist in neutral 
position. Sitting 

Clifford 
[113] 

2013 
Yes Yes Not clear Right & left Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Coldman 
[182] 

2006 

Yes Yes Yes 
Dominant & 

affected 

First & mean 
of 3 & highest 

of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations 

Sitting 

Dunn [186] 1978 
Not given Yes No 

Dominant & 
non-dominant Mean of 2 Not given Not stated 

Not stated 
 Not stated 

Ekstrand 
[467] 

2015 

Yes Yes Yes 
More affected 
& less affected Highest of 3 Grippit Not stated 

Forearm in neutral 
position, shoulder in 
30 degrees, elbow in 
90 degrees, wrist in 

0 to 15 degrees 
dorsiflexion Sitting 

Essendrop 
[468] 

2001 

Yes Yes Yes Right Highest of 3 JAMAR Not stated 

The upper arm was 
kept vertical with a 
90 degree flexion in 
the elbow. The palm Sitting 
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of the hand was held 
vertical. No other 
details provided. 

Fox [469] 2014 

Not clear Yes Yes Right & left Not clear JAMAR Not stated 

Participants were 
seated with their 

elbows at their sides 
and at 90 degrees. 

No other details 
provided. Sitting 

Gatt [470] 2018 

Not clear No No Right & left 
N/A (single 

session) Takei GRIP-D Not stated 

Arm by participant’s 
side with full elbow 
extension. No other 

details provided. Standing 

Gerhardsson 
[471] 

2014 
Yes No No Right & left Mean of 3 Baseline Second 

Not stated 
Not stated 

Gerodimos 
[472] 

2012 

Not given Yes Not given 
Dominant & 

non-dominant Highest of 3 JAMAR Not stated 

The shoulder of 
tested arm was 

adducted, the elbow 
flexed at 90 degrees, 
whereas the forearm 
and wrist were set in 

neutral position. Sitting 

Gittings 
[473] 

2016 

Not given Yes Not given Not clear 
N/A (single 

session) JAMAR Not stated 

The shoulder was 
adducted and 

neutrally rotated, 
elbow at 90 degrees 
flexion, forearm in 

neutral position and 
wrist between 0 and 
30 degrees flexion 
and between 0 and 

15 degrees ulnar 
deviation. Sitting 

Gittings 
[474] 

2018 

Not given Yes Yes Right & left 
N/A (single 

session) JAMAR Not stated 

Shoulder in 
adduction, elbow 

flexion to 90 Sitting 



396 
 

degrees, forearm 
and wrist in neutral 

position. 

Guerra [196] 2017 

Yes Yes No Non-dominant 
N/A (single 

session) 

JAMAR, Bodygrip 
with curve-shaped 
handle, Bodygrip 

with straight handle Second 

The shoulder of the 
non-dominant 
extremity was 
adducted and 

neutrally rotated, 
with the arm 

naturally rested by 
the side of the body. 

The elbow was 
flexed to 90 degrees, 
and the forearm and 

wrist in neutral 
position. 

Sitting or 
lying 

Haidar [475] 2004 

Yes Yes Not given Not clear 
Mean of 3 & 
highest of 3 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

As per ASHT1 [123] 
recommendations 

Sitting 

Hamilton 
[188] 

1992 
Yes Yes Yes Non-dominant Mean of 3 

JAMAR and 
sphygmomanometer Third 

As per ASHT1 [123] 
recommendations Sitting 

Hamilton 
[181] 

1994 

Yes Yes Yes Right & left 

First & 
highest of 3 & 
mean of 2 & 
mean of 3 JAMAR 

Second, 
Third, 
Fourth 

The elbow was at 90 
degrees of flexion. 

No other details 
provided. Sitting 

Haward 
[476] 

2002 

Not clear Yes Not given 
Dominant & 

non-dominant Median of 3 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

Subjects sat with 
their elbows flexed 
to 90 degrees, wrist 
in neutral position 

and forearm 
supported on the 

bench. Sitting 

Hilgenkamp 
[477] 

2012 
Yes Not given Not given Not clear 

Single 
measurement JAMAR Not stated 

As per ASHT1 [123] 
recommendations Sitting 
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Huang [189] 2011 

Not given Not given Not given 
Affected & 

contralateral 

First & mean 
of 2 & highest 
of 2 & mean 

of 3 & highest 
of 3 

Eval Solosystem 
dynamometer 

(Greenleaf Medical, 
Palo Alto, California, 

USA) Not stated 

 
 
 
 

Not stated Not stated 

Irwin [478] 2010 

Yes Yes Not given Right Highest of 3 

MAP, baseline 
dynamometer, 

vigorimeter Second 

As per ASHT1 [123] 
recommendations 

Sitting 

Jenkins 
[479] 

2017 
Yes Yes Not given Not clear Mean of 3 JAMAR Not stated 

Not stated 
Not stated 

Kennedy 
[480] 

2010 
Yes Yes Yes Right & left 

First & mean 
of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Khamwong 
[481] 

2010 
Not clear Not clear Not clear Non-dominant Mean of 3 Electronic digital HD Not stated 

As per ASHT1 [123] 
recommendations Sitting 

MacDermid 
[482] 

1994 
Yes Yes Yes 

Affected & 
contralateral 

First & mean 
of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Maher [483] 2018 

Not clear Yes Not clear Right & left 
First & mean 

of 3 

Baseline Pneumatic 
Squeeze Bulb 
Dynamometer Not stated 

As per ASHT1 [123] 
recommendations 

Sitting 

Mawdsley 
[484] 

2001 

Not clear Yes Yes 
Dominant & 

non-dominant 

First & 
second & 

third & 
highest of 3 & 
mean of 2 & 
mean of 3 JAMAR Second 

Shoulder adducted 
and neutrally 

rotated, elbow fully 
extended, and 

forearm in neutral. 
The position of the 

wrist was allowed to 
vary between 0 and 

30 degrees extension 
and 0 and 15 
degrees ulnar 

deviation.   Sitting 

Medina- 
Mirapeix 

[485] 

2016 

Not clear Not clear Not clear Dominant Mean of 2 Not given Not stated 

Shoulder adducted 0 
degrees, elbow 

flexed 90 degrees, 
and forearm in 

neutral position. Sitting 
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Niebuhr 
[486] 

1994 
Not clear Yes Yes Right & left Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Nitschke 
[193] 

1999 

Yes Yes Yes Dominant Mean of 3 JAMAR Third 

Shoulder adducted 
and neutrally 

rotated, the elbow 
flexed to 

approximately 90 
degrees, the forearm 

in the neutral 
position, and the 

wrist between 0 and 
30 degrees extension 
and between 0 and 
15 ulnar deviation. Sitting 

Paltamaa 
[487] 

2005 

Not clear Yes Not clear Right & left Highest of 3 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

As per ASHT1 [123] 
recommendations 

Sitting 

Peolsson 
[488] 

2001 

Yes Yes No 

Right & left / 
Affected & 

contralateral Highest of 3 JAMAR Not stated 

Shoulder adducted 
and in neutral 

rotation, the elbow 
flexed at 90 degrees, 

the lower arm and 
wrist in neutral 

position. Standing 

Plant [489] 2016 

Not clear Yes No Not clear Mean of 3 manual & electronic Second 

Shoulder adducted 
and neutrally 

rotated, elbow was 
flexed at 90. The 

forearm was 
neutrally rotated 
with the wrist in 

neutral deviation. Sitting 

Puthoff 
[490] 

2013 
Not clear Not clear Not clear Right & left Highest of 3 Not specified Second 

Not stated 
Sitting 
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Reddon 
[187] 

1985 
Yes Not clear Not clear 

Dominant & 
non-dominant Mean of 10 

Stoelting/ Smedley 
hand dynamometer Not stated 

Not stated 
Not stated 

Reijnierse 
[195] 

2017 

Yes Not given Not given Not clear 
N/A (single 

session) JAMAR 

Adjusted to 
the 

individual’s 
hand size 

The arms were 
parallel to their 
trunk. No other 

details provided. Standing 

Reuter [184] 2011 

Not clear Yes Yes 
Dominant & 

non-dominant Highest of 3 
Smedley Hand 
Dynamometer Not stated 

The elbow was 
flexed at 90 degree, 
while the forearm 

was allowed to rest 
lightly on the arm of 
the chair or on the 
subject's thigh. No 

other details 
provided. Sitting 

Savva [491] 2013 
Yes Yes Yes Dominant Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Savva [33] 2014 
Not clear Yes Yes Not clear Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Savva [128] 2018 
Not clear Yes Yes Affected Mean of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Schaubert 
[185] 

2005 
Not clear Not clear Not clear Right & left Not clear JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Schreuders 
[492] 

2003 
Yes Yes Not given 

Affected & 
contralateral Mean of 3 Lode HG 

Second, 
Fourth 

As per ASHT1 [123] 
recommendations Sitting 

Segura-Orti 
[493] 

2011 

Not given Yes Yes 
Dominant & 

non-dominant Highest of 3 Takei Not stated 

Participants were 
positioned standing 

with the elbow 
extended. No other 

details provided. Standing 

Shechtman 
[179] 

2003 

Yes Yes Yes Right & left Mean of 3 
BTE-Primus Grip 

Tool, JAMAR Second 

Shoulder adducted 
and neutrally 

rotated, elbow 
flexed at 90 degrees, 
forearm in midprone 

Both sitting 
and 

standing 
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position, and wrist in 
neutral. 

Shechtman 
[494] 

2005 
Yes Yes Yes Not clear Mean of 3 DynEx & JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Silva [495] 2019 

Yes Not given Not given Right & left Mean of 3 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

The shoulder was in 
a neutral position 
and adducted; the 
elbow was at 90 

degrees flexion and 
the wrist in a neutral 

position. Sitting 

Smidt [496] 2002 

Yes Yes Yes 
Dominant & 

non-dominant Mean of 3 JAMAR 

Adjusted to 
the 

individual’s 
hand size 

The arm was in 30 
degrees of 

adduction, the elbow 
in 90 degrees of 
flexion, and the 

forearm, wrist, and 
hand were 
supported. Standing 

Solari [497] 2008 
Yes Not clear Not clear Dominant Highest of 3 

Citec CT 3001, CIT 
Technics BV Not stated 

Not stated 
Sitting 

Spijkerman 
[498] 

1991 
Not clear Yes Yes Not clear Mean of 3 

Strain-gauge 
dynamometer Not stated 

Not stated 
Sitting 

Stephens 
[499] 

1996 

Yes Yes Yes 
Dominant & 

non-dominant Mean of 3 

Tekdyne hand 
dynamometer, 

standard JAMAR, 
modified JAMAR Not stated 

As per ASHT1 [123] 
recommendations 

Sitting 

Stockton 
[500] 

2011 

Not clear Yes Not clear Dominant Highest of 3 JAMAR Not stated 

The elbow was 
flexed to 90 degrees 

and the forearm 
parallel to the floor. 

No other details 
provided. Sitting 

Svensson 
[501] 

2006 
Yes Yes No Right & left Mean of 3 Grippit Not stated 

As per ASHT1 [123] 
recommendations Sitting 
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Tager [502] 1998 

Not clear Not clear Not clear Dominant Not clear Not given Not stated 

Not stated (only 
states that "the 

measures included in 
this study represent 
direct assessments 

that have been used 
as part of the 

standard protocols 
used for community-

based 
epidemiological 
studies of older 
populations") Not stated 

Tan [503] 2001 

Not given Yes Yes Dominant Highest of 3 Takei 

Adjusted to 
the 

individual’s 
hand size 

The elbow was 
comfortably straight 
and the wrist in mid-
pronation. No other 

details provided. Standing 

Trippolini 
[504] 

2013 

Not clear Not clear Not clear Right & left Mean of 3 JAMAR Not stated 

The shoulder  was 
adducted without 

internal or external 
rotation, the elbow 

was flexed at 
approximately 90 
degrees and the 

forearm and wrist 
were in neutral 

position. Sitting 

Trutschnigg 
[505] 

2008 
Yes Yes No Dominant Mean of 3 JAMAR & Biodex Third 

As per ASHT1 [123] 
recommendations Sitting 

Tsang [506] 2005 
Yes Not given Not given 

Dominant & 
non-dominant 

Mean of 3 & 
highest of 3 JAMAR Second 

As per ASHT1 [123] 
recommendations Sitting 

Tveter [507] 2014 

Yes Not given Not given Right & left Mean of 2 
Baseline 

dynamometer Second 

The arm was 
alongside the trunk 

and elbow in 90 Sitting 
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degrees. No other 
info provided. 

Vermeulen 
[508] 

2015 

Not clear Yes Not clear Right & left 
N/A (single 

session) Grip-ball, JAMAR Second 

The participants 
were instructed to 

rest their forearm on 
the arm of the chair 
with their wrist just 
over the end of it. 
No other details 

provided. Sitting 

Villafane 
[509] 

2015 

Yes Yes Not clear 
Affected & 

contralateral Mean of 3 JAMAR Not stated 

The subjects were 
sitting with the 

shoulder of tested 
arm adducted to the 

side, the elbow 
flexed at 90 degrees, 
and the forearm and 

wrist neutrally 
positioned. Sitting 

Villafane 
[510] 

2016 

Yes Yes Not clear 
Dominant & 

non-dominant Mean of 3 Portable JAMAR Second 

The subjects were 
sitting with the 

shoulder of tested 
arm adducted to the 

side, the elbow 
flexed at 90 degrees, 
and the forearm and 

wrist neutrally 
positioned. Sitting 

1ASHT (i.e., American Society of Hand Therapists) recommendations: Participants sat on a chair, upright, with their feet flat and hips and knees flexed to approximately 90 degree, shoulders 

adducted, elbows flexed to 90 degree, forearms in a neutral position, and wrists in 0 to 30 degree of extension. 
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Appendix C7. Quality assessment of the identified primary studies. 

Author Year Evidence that 
the patients 
were stable in 
the time 
between the 
administration 
of the tests 

Evidence that 
the time 
interval 
between 
measurements 
of same 
session was 
appropriate 

Evidence 
that the 
time 
interval 
between 
the sessions 
was 
appropriate 

Evidence that 
the 
measurement 
condition was 
the same for 
the tests 

Evidence that 
the 
professional 
administered 
the test 
without 
knowledge of 
other 
repeated 
measurements 
in the same 
patient 

Evidence 
that 
statistical 
methods 
used for 
reliability 
were 
appropriate 

 

Evidence that 
statistical 
methods 
used for 
measurement 
error were 
appropriate 

 

Abizanda [449] 2012 Very good Adequate N/A  Very good N/A Adequate  N/A 

Aguiar [450] 2016 Very good Adequate Very good  Very good Very good Very good Very good 

Alencar [183] 2012 Adequate Very good Very good Very good Inadequate Adequate N/A 

Alfonso-Rosa [129] 2014 Adequate Very good Very good Very good Inadequate Adequate Very good 

Allen [451] 2011 Very good Adequate Very good Very good Inadequate Adequate N/A 

Anumula [452] 2014 Very good Adequate Very good Adequate Inadequate Adequate Very good 

Baldwin [453] 2013 Very good Very good Very good Very good Very good Very good Very good 

Barden [191] 2012 Doubtful Inadequate Doubtful Very good Inadequate Adequate N/A 

Bertrand [454] 2015 Very good Inadequate Very good Very good Very good Very good Very good 

Blankevoort [455] 2013 Adequate Inadequate Very good Very good Very good Very good Very good 

Bodilsen [456] 2015 Very good Inadequate Very good Adequate Very good Very good Very good 

Bohannon [457] 2005 Doubtful N/A Adequate Very good Very good Very good Adequate 

Bohannon [458] 2006 Very good Very good Very good Very good Very good Very good Adequate 

Bohannon [459] 2011 Adequate Inadequate Very good Very good Inadequate Adequate Very good 

Boissy [460] 1999 Adequate Very good Very good Very good Inadequate Adequate  Adequate 

Brogardh [461] 2015 Very good Very good  Very good Very good Inadequate Very good Adequate  

Brown [462] 2000 Adequate Doubtful Doubtful Very good Very good  Adequate  N/A 

Buehring [463] 2014 Doubtful Adequate Very good Doubtful Inadequate Adequate  N/A 
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Burnstein [464] 2011 Doubtful  Inadequate Doubtful Very good Inadequate Very good Adequate  

Carbonell-Baeza 
[465] 

2015 
Adequate Very good Adequate  Very good Inadequate Very good Very good 

Chen [466] 2009 Very good Very good Very good Very good Inadequate Very good Very good 

Clifford [113] 2013 Doubtful Adequate Doubtful Very good Inadequate Very good Very good 

Coldman [182] 2006 Very good Adequate Very good Very good Very good Very good Adequate  

Dunn [186] 1978 Very good Inadequate Very good Very good Inadequate Adequate  N/A 

Ekstrand [467] 2015 Adequate  Very good  Adequate Very good Inadequate Very good Very good 

Essendrop [468] 2001 Adequate Very good Adequate Very good Inadequate Adequate  Adequate  

Fox [469] 2014 Adequate N/A  Adequate Very good Inadequate Adequate  Very good 

Gatt [470] 2018 Adequate Doubtful N/A Very good N/A Adequate N/A 

Gerhardsson [471] 2014 Adequate Inadequate Adequate Very good Inadequate Adequate Adequate 

Gerodimos [472] 2012 Very good Very good Very good Very good Adequate Adequate Very good 

Gittings [473] 2016 Very good Inadequate N/A Very good N/A Very good Very good 

Gittings [474] 2018 Very good Inadequate N/A Very good N/A Adequate Very good 

Guerra [196] 2017 Very good Very good N/A Very good N/A Very good Adequate 

Haidar [475] 2004 Very good Very good Adequate Very good Inadequate N/A Very good 

Hamilton [188] 1992 Adequate Very good Adequate Very good Inadequate Adequate  N/A 

Hamilton [181] 1994 Very good Adequate Adequate Very good Inadequate Adequate  N/A 

Haward [476] 2002 Adequate Doubtful Adequate Very good Inadequate Adequate N/A 

Hilgenkamp [477] 2012 Adequate N/A Adequate Very good Inadequate Adequate N/A 

Huang [189] 2011 Adequate Inadequate Adequate Very good Inadequate Adequate Very good 

Irwin [478] 2010 Adequate Very good  Adequate Very good Adequate Very good Adequate  

Jenkins [479] 2017 Adequate Inadequate Adequate Very good Inadequate Very good Very good 

Kennedy [480] 2010 Very good Very good  Inadequate Very good Inadequate Adequate  Adequate  

Khamwong [481] 2010 Very good Very good Very good Very good Very good Very good Very good 

MacDermid [482] 1994 Very good Adequate Very good Very good Very good Adequate  N/A 

Maher [483] 2018 Adequate Doubtful Adequate Very good Inadequate Adequate N/A 

Mawdsley [484] 2001 Very good Adequate Very good Very good Very good Very good Adequate 

Medina- 2016 Very good N/A Very good Very good Very good Adequate Adequate 
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Mirapeix [485] 

Niebuhr [486] 1994 Adequate Very good Adequate Very good Inadequate Very good N/A 

Nitschke [193] 1999 Very good Adequate Very good Very good Doubtful Adequate N/A 

Paltamaa [487] 2005 Very good Very good Very good Very good Inadequate Very good Very good 

Peolsson [488] 2001 Adequate Inadequate Adequate Very good Very good Adequate N/A 

Plant [489] 2016 Adequate Adequate Adequate Very good Inadequate Very good N/A 

Puthoff [490] 2013 Very good Inadequate Very good Very good Inadequate Very good Very good 

Reddon [187] 1985 Adequate Very good Adequate Very good Inadequate Adequate N/A 

Reijnierse [195] 2017 Very good Inadequate N/A Adequate N/A Very good Very good 

Reuter [184] 2011 Very good Very good Very good Very good Inadequate Adequate N/A 

Savva [491] 2013 Very good Adequate Very good Very good Very good Very good Adequate  

Savva [33] 2014 Very good  Adequate Very good Very good Very good  Very good Adequate 

Savva [128] 2018 Very good Adequate Very good  Very good Very good Very good Adequate 

Schaubert [185] 2005 Very good Very good Very good Very good Very good Very good Very good 

Schreuders [492] 2003 Adequate Inadequate Adequate Very good Adequate Adequate Very good 

Segura-Orti [493] 2011 Adequate Adequate Adequate Very good Inadequate Very good Very good 

Shechtman [179] 2003 Very good Very good Very good Very good Inadequate Adequate N/A 

Shechtman [494] 2005 Very good Very good Very good Very good Inadequate Adequate N/A 

Silva [495] 2019 Very good Inadequate Very good Very good Very good Very good Very good 

Smidt [496] 2002 Inadequate Adequate Inadequate Very good Very good Very good Very good 

Solari [497] 2008 Adequate Doubtful Adequate Very good Adequate Adequate N/A 

Spijkerman [498] 1991 Adequate Very good Adequate Very good Inadequate Adequate Very good 

Stephens [499] 1996 Very good Very good Very good Very good Inadequate Very good Adequate 

Stockton [500] 2011 Very good Very good Very good Very good Inadequate Very good Very good 

Svensson [501] 2006 Adequate Very good Adequate Very good Inadequate Very good Very good 

Tager [502] 1998 Very good Very good Very good Very good Inadequate Very good N/A 

Tan [503] 2001 Very good Very good Very good Very good Inadequate Adequate N/A 

Trippolini [504] 2013 Very good Inadequate Very good Very good Very good Very good Very good 

Trutschnigg [505] 2008 Adequate Inadequate Adequate Very good Inadequate Adequate Adequate 

Tsang [506] 2005 Very good Adequate Very good Very good Inadequate Very good Adequate 
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Tveter [507] 2014 Very good Inadequate Very good Very good Inadequate Very good Adequate 

Vermeulen [508] 2015 Very good Inadequate N/A Very good Inadequate Adequate Adequate 

Villafane [509] 2015 Adequate Very good Adequate Very good Inadequate Very good Very good 

Villafane [510] 2016 Adequate Very good Adequate Very good Inadequate Very good Very good 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	UoB_research_archive_copyright_notice_A4size.pdf
	Tryposkiadis2023PhD_submitted.pdf

