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Abstract

Blockchain technology is an emerging technology revolutionising information technol-

ogy and represents a change in how information is shared. It has captured the interest of

several disciplines because it promises to provide security, anonymity and data integrity with-

out any third-party control. Although blockchain technology has great potential for the con-

struction of the future of the digital world, it is facing a number of technical challenges.

A most critical concern is related to its environmental sustainability. It has been acknowl-

edged that blockchain-based systems’ energy consumption and carbon emissions are massive

and can affect their sustainability. Therefore, optimising the environmental sustainability of

these systems is necessary. Several studies have been proposed to mitigate this issue. How-

ever, the literature needs to include models for optimising the environmental sustainability

of blockchain-based systems without compromising the fundamental properties inherent in

blockchain technology. In this context, this thesis aims to optimise the environmental sus-

tainability of blockchain-based systems by balancing different conflicting objectives without

compromising the decentralisation and trustworthiness of the systems. First of all, we re-

formulate the problem of the environmental sustainability of the systems as a search-based

software engineering problem. We represent the problem as a subset selection problem that

selects an optimal set of miners for mining blocks in terms of four conflicting objectives:

energy consumption, carbon emissions, decentralisation and trustworthiness. Secondly, we

propose a reputation model to determine reputable miners based on their behaviour in a

blockchain-based system. The reputation model can support the enhancement of the environ-

mental sustainability of the system. Moreover, it can improve the system’s trustworthiness

when the number of miners is reduced to minimise energy consumption and carbon emissions.

Thirdly, we propose a self-adaptive model that optimises the environmental sustainability

of blockchain-based systems taking into account environmental changes and decision-makers’

requirements. We have conducted a series of experiments to evaluate the applicability and

effectiveness of the proposed models. Finally, the results demonstrate that our models can

enhance the environmental sustainability of blockchain-based systems without compromising

the core properties of blockchain technology.
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Chapter One

Introduction

1.1 Introduction

Blockchain technology has emerged to change the mechanism of transactions between parties,

which is usually performed in a centralised manner and requires the engagement of a trusted

third party. It is arguably one of the most significant technological breakthroughs since the

invention of the internet [1]. Blockchain technology is for storing data, performing functions,

executing transactions and establishing trust within an open environment, without relying on

a central party.

Blockchain refers to a data structure that facilitates transactional and decentralised

data sharing among a group of participants that are not necessarily trusted. Software archi-

tectures induced by blockchain technology can promote new design modalities where users can

agree on a shared state in the absence of a central trusted integration point. A blockchain,

as a data structure, is composed of a list of ordered blocks, each of which contains a list

of transactions. In a way, it is considered to be the same as a traditional public ledger [2].

Each new block in a blockchain-based system is linked to the previous block by a hash that

represents the previous block. As a result, the existing transactions within a blockchain-based

system cannot be changed or removed without invalidating the hash chain. In practice, when

merged with computational restrictions and the incentive arrangements pertaining to the cre-

ation of blocks, this can prevent people from interfering with the data that are stored in the

blockchain.

Nodes are an integral component of blockchain systems as they link with their peers

(i.e., other nodes) to form the Peer-to-Peer (P2P) network on which a blockchain-based sys-
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tem operates. The function of a node lies in creating new transactions and facilitating the

transmission of the transactions across a blockchain network. They uphold the state of a

blockchain-based system by confirming transactions that have not yet been confirmed. Nodes

also collect transactions for verification in the form of blocks and then add new blocks to the

blockchain ledger. This type of confirmation is called mining, and nodes are called miners.

Miners are generally offered incentives that motivate their honest behaviour. Miners can be

operated by an individual or a company.

Although Bitcoin, which was proposed by Satoshi Nakamoto in 2008 [3], is the best-

known cryptocurrency and application using blockchain technology, this technology is not

restricted to cryptocurrencies. It has promise as a technique in a very large number of appli-

cation domains. Recently, both researchers and practitioners have shown a growing interest

in blockchain technology. Indeed, it has attracted extensive interest from energy supply com-

panies, financial firms, emerging businesses, national governments, technology developers and

the academic community [4]. This technology is expected to underlie many current and future

technologies. In many fields, blockchain technology can help to enhance security, transparency,

trust, reliability and decentralised control over data.

Presently, although blockchain technology can benefit many areas, there are debates

in regard to its environmental sustainability. Therefore, researchers attempt to develop sus-

tainable blockchain-based systems. Designing sustainable systems is considered one of the

most significant challenges of the 21st century as we seek digital transformation, where using

blockchain technology can be one target. It is difficult to scientifically evaluate the sustain-

ability of a technique or its advantages for enhancing the sustainability of systems.

In 1987, the United Nations Brundtland Commission defined sustainability as “meeting

the needs of the present without compromising the ability of future generations to meet their

own needs”. Sustainability covers five dimensions: environmental, social, economic, techno-

logical and individual [5]. Although these dimensions have been seen as one because they

are connected, each dimension has its own objectives and merits. Historically, sustainability

was thought to involve environmental sustainability primarily. Environmental sustainability
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has gradually been understood and becomes commonly established [6]. Recently, the term

“environmental sustainability” has attracted a lot of attention from academics and practi-

tioners aiming to solve environmental issues related to new technologies, such as blockchain

technology and cloud computing.

1.2 Problem Statement

Despite the huge potential of blockchain technology, including its contribution to creating

a more sustainable world, there has been considerable criticism about the environmental

sustainability of this technology. Blockchain-based systems have been designed in a way that

involves a resource-intensive design for trust provision. In particular, the Proof of Work (PoW)

consensus protocol has been designed to be a computationally expensive design for the process

of verifying transactions. PoW has been criticised because of the large amount of energy

consumed and carbon emissions produced by miners for mining blocks within blockchain-

based systems [7]–[9]. According to [10], one Bitcoin transaction uses approximately the same

amount of energy as that consumed by the average British household in eight weeks. Moreover,

as of 31 March 2023, Cambridge Bitcoin Electricity Consumption Index (CBECI) estimated

that the Bitcoin network consumed 142.25 TWh (Terawatt-hours) of electricity per year [11],

producing Greenhouse Gas (GHG) emissions of 72.08 MtCO2e (Million-tonnes carbon dioxide

equivalents).

The current debate concerning environmental sustainability and global warming could

constrain or limit the global adoption of blockchain technology at scale [9]. Therefore, the

question of optimising and finding solutions for this issue is currently receiving much atten-

tion, particularly in proposing lighter mechanisms for trust provision within blockchain-based

systems that use PoW without compromising the fundamental nature of this technology.

Lighter mechanisms that optimise energy and carbon emissions may improve the vi-

ability and long-term sustainability of the technology; such optimisation may render a cost-

effective, dependable and climate-friendly solution. Since blockchain technology has become

an integral part of many systems, improving the environmental sustainability of this technol-
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ogy is a serious and essential part of achieving the United Nations’ Sustainable Development

Goals. Therefore, a more critical perspective is necessary on developing the efficiency of

energy and carbon use of blockchain-based systems while ensuring the decentralisation and

trustworthiness of these systems. Researchers have proposed more sustainable and energy-

efficient mechanisms for blockchain technology. Solutions include new consensus algorithms,

regulatory mechanisms, and fiscal policies, as well as limiting the use of these systems. How-

ever, more studies are needed to enhance the environmental sustainability of blockchain-based

systems without compromising the inherent features of blockchain technology, such as its de-

centralisation and trustworthiness.

Whereas environmental sustainability issues are now an element of the discussion re-

garding blockchain processes, there is a need for an approach that improves the sustainability

of blockchain-based systems by providing trade-offs between conflicting objectives taking into

account environmental changes and decision-makers requirements. In particular, there is lim-

ited literature on formulating the environmental sustainability of blockchain-based systems as

an optimisation problem and solving it using evolutionary algorithms (EAs). If this formula-

tion is introduced, the fundamental premise is that it may enhance blockchain technology’s

environmental sustainability without compromising its features. In other words, the formula-

tion may help balance conflicting objectives, such as energy consumption, carbon emissions,

decentralisation and trustworthiness of blockchain-based systems. Further, this optimisation

model can be integrated with trust and reputation models for blockchain-based systems, which

may prevent compromising the core properties of blockchain technology in delivering trust.

In addition, the optimisation model can react to environmental changes and benefit from

self-adaptive techniques to optimise these systems’ sustainability and dynamically balance

conflicting objectives.

This thesis aims to address these gaps by suggesting lighter mechanisms for mining

blocks of a blockchain-based system that enhance its environmental sustainability without

compromising the inherent features of blockchain technology. The lighter mechanisms can

balance the inherent decentralisation and trustworthiness of the technology and its environ-
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mental sustainability in terms of energy consumption and carbon emissions. We envision that

this balancing can contribute to the Sustainable Development Agenda. Specifically, we can

accomplish this by addressing the following open problems:

• Problem 1. Investigation for systematic synthesis and compilation of meth-

ods, techniques, and design decisions on the environmental sustainability of

blockchain-based systems, as a pre-requisite for informing the design of more

environmentally sustainable solutions for this category of systems: To inte-

grate a synthesis of current scientific studies for research questions on a specific topic,

a Systematic Literature Review (SLR) is among the commonly used approaches. Since

the environmental sustainability of blockchain technology is considered critical, several

studies have proposed solutions for this issue. However, there is a lack of knowledge that

brings together advances in state-of-the-art practices, techniques, methods and metrics

that consider the environmental sustainability of blockchain-based systems. To address

this gap, an SLR on the topic can provide a better understanding of the existing stud-

ies, covering their fundamentals, strengths and limitations, and advance a road-map for

designing and proposing environmentally sustainable blockchain-based systems.

• Problem 2. Enhancing the environmental sustainability of blockchain-based

systems without compromising the underlying properties and benefits of

blockchain technology, including the provision of trust and decentralisation:

Blockchain technology design provides an expensive trust mechanism that affects its en-

vironmental sustainability. Blockchain-based systems that use the PoW consensus algo-

rithm require miners to invest their resources to mine new blocks. Consequently, the sys-

tems consume massive energy and produce considerable carbon emissions. Blockchain-

based systems are like many computing systems, where improving one objective can

affect other conflicting objectives and may compromise the core features of blockchain

technology. Thus, trade-offs between enhancing the environmental sustainability of these

systems and other conflicting objectives, such as decentralisation and trustworthiness,

are required to improve the efficiency of blockchain-based systems. From another point
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of view, the systems provide a high level of decentralisation and trust, but they fail to

save wasted energy and carbon emissions when these systems do not need that level

of decentralisation and trust. Therefore, when requested, the systems should be de-

signed to balance energy consumption and carbon emissions with decentralisation and

trustworthiness. Some studies attempt to improve the environmental sustainability of

blockchain-based systems by reducing the number of miners within these systems to

minimise energy consumption. However, they need to focus on the effects of reducing

miners on other conflicting objectives, taking into account decision-makers’ preferences.

To this end, there is a need to formulate the problem of selecting miners for mining blocks

in a blockchain-based system as a Search-Based Software Engineering (SBSE) problem.

It can be represented as a subset selection problem that balances conflicting objectives,

such as energy consumption, carbon emissions, decentralisation and trustworthiness.

In addition, the formulation can consider decision-makers’ preferences in balancing the

conflicting objectives. Such a formulation can optimise the environmental sustainability

of blockchain technology without compromising its fundamental properties.

• Problem 3. Evaluating the miners’ reputation within a blockchain-based sys-

tem, considering the dynamic of their behaviours to support the design of

more environmentally sustainable blockchain-based systems: The high number

of miners within blockchain-based systems has crucial effects on environmental sus-

tainability. Accordingly, reducing the number of miners within blockchain networks is

essential to obtain better efficiency for mining blocks. However, lowering miners within

a blockchain-based system can affect the system’s trustworthiness. In other words, it

can successfully minimise energy consumption and carbon emissions but also compro-

mise the system’s trustworthiness. However, restricting mining new blocks to reputable

miners can shorten this compromise. Nevertheless, selecting reputable miners, among

others, is still challenging because the architecture of blockchain technology provides an

open and unrestricted environment for miners to participate in mining new blocks. Min-

ers are neither fixed nor authorised, and there is no prior knowledge of their behaviour in
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mining blocks. Since blockchain networks are P2P networks, there are several trust and

reputation models for P2P networks in the literature that can be used to select reputable

miners. However, these models have limitations for their application to blockchain net-

works. Hence, there is a need for trust or reputation models that can dynamically define

reputable miners within a blockchain-based system based on their behaviour and then

enhance trust provision. Such a model can support fewer miners within a blockchain

network and improve its trustworthiness. Also, it can boost the trustworthiness of these

systems while balancing conflicting objectives.

• Problem 4. Optimising blockchain-based systems’ environmental sustain-

ability dynamically, taking into account conflicting objectives, environmen-

tal changes and decision-makers’ requirements: As we have mentioned, selecting

a set of reputable miners can balance the environmental sustainability and the trust-

worthiness of blockchain-based systems. However, this may only sometimes be the case

because of dynamic changes in the environment associated with the systems. Blockchain-

based systems operate in dynamic and non-stationary environments, including environ-

mental changes for miners’ locations. Therefore, the environmental sustainability of a

blockchain-based system can change over time because of changes in the environmental

conditions of miners within the system’s network. In addition, blockchain-based systems

need to respond to decision-makers’ requirements during run-time, which may include

optimising the systems’ efficiency, performance or security. For example, decision-makers

may seek to increase the efficiency of a blockchain-based system in terms of energy con-

sumption and carbon emissions, which requires the system to adapt in response to these

requirements. Therefore, blockchain-based systems need to adapt themselves to oper-

ate in dynamic environments, taking into consideration decision-makers’ requirements.

There are existing works that employ self-adaptive concepts for blockchain-based sys-

tems. However, there is a lack of a self-adaptive model for blockchain-based systems that

integrates self-adaptive techniques with optimisation models to optimise these systems.

Such a model could be utilised to enhance blockchain-based systems’ environmental
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sustainability without compromising the inherent objectives of blockchain technology,

considering environmental changes and decision-makers’ preferences.

1.3 Research Questions

In this thesis, we address the following research questions:

RQ1: What is the state of the art in optimising the environmental sustainability of

blockchain technology and its design?

RQ2: How can the environmental sustainability of a blockchain-based system be op-

timised without compromising its inherent properties, such as decentralisation and trustwor-

thiness?

RQ3: How can we evaluate the reputation of miners within blockchain-based systems,

considering the dynamic of miners’ behaviours, to support the environmental sustainability of

these systems?

RQ4: How can we dynamically enhance the environmental sustainability of blockchain-

based systems while maintaining their decentralisation and trustworthiness, taking into ac-

count environmental changes and decision-makers’ requirements?

1.4 Research Methodology

In this thesis, we address the above research questions by adopting the classical research

methodology presented in [12] to develop the study. The methodology is carried out to lead

our research through six steps as follows:

• Identifying the thesis problem. The initial step is to gain insights into blockchain

technology and its environmental sustainability. Therefore, we have conducted an SLR

that helps our understanding of the field and allows us to investigate progress of research

and identify open problems and gaps in the current state of the art. The review covers

the state-of-the-art methods and techniques for developing the environmental sustain-

ability of blockchain design. Also, it identifies the factors that affect its environmental
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sustainability. Based on the key findings, we identify the problem of this thesis and

formulate it in the form of research questions.

• Identifying the thesis objective. Motivated by the identified problems from the

previous step, the next step is to define the objectives of their solutions. In this thesis,

we focus our efforts on optimising the environmental sustainability of blockchain-based

systems. The main objective of this thesis is to formulate the problem of blockchain-

based systems’ sustainability as an optimisation problem and design environmentally

sustainable blockchain-based systems without compromising the fundamental properties

of blockchain technology. We have formulated this objective as our contributions in

Section 1.5.

• Designing and developing the thesis contributions. We conduct an SLR for

blockchain technology and the environmental sustainability of its design with a par-

ticular focus on methods and techniques that attempt to enhance the environmental

sustainability of this emerging technology. The results obtained from our review present

some inadequacies of research in optimising the sustainability of blockchain-based sys-

tems as an optimising problem. In this regard, we reformulate the problem of minimising

the energy consumption and carbon emissions of blockchain-based systems as an SBSE

problem and solve the problem using EAs. Moreover, this thesis designs a reputation

model for miners within blockchain-based systems that can also support the environmen-

tal sustainability of the systems. This reputation model can offset the trustworthiness

problem that may occur as a result of reducing the number of miners to minimise the

energy consumption and carbon emissions of these systems. Finally, this thesis lever-

ages self-adaptive techniques to dynamically optimise the environmental sustainability

of blockchain-based systems.

• Demonstrating the thesis contributions. In this thesis, we have carefully designed

our experiments to simulate a real-world scenario of blockchain-based systems. We

have used a blockchain simulator, Bitcoin-Simulator [13], a well-known simulator for
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the blockchain environment. Our use of simulation is consistent with scientific work

on blockchain as it is widely acknowledged that it is not feasible and is expensive to

undertake experimentation within large-scale blockchain networks. Simulation can serve

to evaluate scale and non-typical what-if scenarios that are difficult to cater for and

reconfigure in blockchain-based systems. We use information retrieved from well-known

resources to simulate a real-world scenario of a blockchain-based system.

• Evaluating the thesis contributions. We conduct a set of experiments to evalu-

ate each of the proposed contributions. In particular, we evaluate the proposed ap-

proaches using a quantitative experimental evaluation. We compare the performance

of the approaches with other state-of-the-art approaches, using appropriate comparison

measurements for each contribution in this thesis. These comparisons include the en-

ergy consumption, carbon emissions and trustworthiness of blockchain-based systems

over time. In addition, we evaluate our reputation model using an analytical framework

to evaluate and compare our model with existing trust and reputation models for miners

in blockchain networks.

• Communicating the thesis contributions. We communicate the problem, its impor-

tance, novelty and utility to researchers and relevant audiences. We have communicated

the proposed approaches in this thesis through papers that have either already been pub-

lished in high-quality and reputable scholarly conferences and journals or are currently

on their way toward scholarly publications.

1.5 Thesis Contributions

The thesis presents several novel contributions to complement the working of trustworthy

blockchain technology and its design. It significantly contributes to the area of computa-

tional sustainability, an emerging field that aims to apply methods from applied mathematics,

statistics, operations research, information science and computer science for sustainable de-

velopment [14].
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The study contributes to improving the environmental sustainability of blockchain-

based systems that are involved in green computing. Also, it contributes to enhancing the

trustworthiness of these systems when the number of miners within their networks is reduced

to minimise energy consumption and carbon emissions. In this section, we outline the study’s

contributions and publications.

1.5.1 Summary of Contributions

In this thesis, we make the following contributions:

1. An SLR on the environmental sustainability of blockchain technology and its

design. We conduct an SLR that covers the state of the art of methods and techniques

attempting to improve the environmental sustainability of blockchain-based systems.

We also provide a classification of factors that affect the environmental sustainability of

these systems. We present the assessment and measurement tools for the environmental

sustainability of blockchain-based systems. Based on the SLR findings, several prospec-

tive directions and studies for designing environmentally sustainable blockchain-based

systems are identified. These research gaps allow us to design our novel contributions

that are presented in research question form.

2. A multi-objective optimisation model for blockchain-based systems. We

reformulate the environmental sustainability problem of blockchain-based systems as

an SBSE problem. In particular, we reformulate the problem of selecting a subset of min-

ers in blockchain-based systems as an optimisation problem and design a Multi-objective

Optimisation Model (MOOM). The model optimises the environmental sustainability of

these systems in terms of energy consumption and carbon emissions, using EAs, while

maximising conflicting objectives, such as the decentralisation and trustworthiness of

the systems.

3. A reputation model for miners in blockchain-based systems. We propose a

novel model for calculating the reputation of miners within a blockchain-based system.
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The model dynamically calculates and evaluates the reputation of miners within the

system by computing the situational reputation of each miner based on the satisfaction

that is gained through the contributions to mining blocks. This reputation model can

enhance the trustworthiness of blockchain-based systems by selecting reputable miners

to mine new blocks. Moreover, it can enhance the environmental sustainability of these

systems. The model can also be integrated with other models, such as multi-objective

optimisation models.

4. A self-adaptive model for blockchain-based systems. We develop a novel

self-adaptive model to optimise the environmental sustainability of blockchain-based

systems. The self-optimising model integrates self-adaptive architectures and multi-

objective optimisation models. The model dynamically uses an EA to maintain the

decentralisation and trustworthiness of blockchain-based systems, while reducing energy

consumption and carbon emissions and considering the environmental conditions and

users’ requirements. The self-adaptive model uses our reputation model to counteract

the reduction of trustworthiness that may occur due to minimising the number of miners.

1.5.2 Publications

The work described in this thesis has supported publication in key conferences and journals

related to the subject of its investigation. This thesis is considered as an updated reference

for the following published and under-review works:

• Akram Alofi, Rami Bahsoon and Robert Hendley. 2023. A Systematic Review on

Blockchain-based Systems Design and its Environmental Sustainability. ACM Comput-

ing Surveys. (Review Cycle).

• Akram Alofi, Mahmoud A. Bokhari, Robert Hendley, and Rami Bahsoon. 2021. Select-

ing Miners within Blockchain-based Systems Using Evolutionary Algorithms for Energy

Optimisation. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion (GECCO ’21).
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• Akram Alofi, Mahmoud A. Bokhari, Rami Bahsoon and Robert Hendley. 2022. Opti-

mising the Energy Consumption of Blockchain-based Systems Using Evolutionary Algo-

rithms: A New Problem Formulation. IEEE Transactions on Sustainable Computing.

• Akram Alofi, Rami Bahsoon and Robert Hendley. 2021. MinerRepu: A Reputation

Model for Miners in Blockchain Networks. In the Proceeding of IEEE International

Conference on Web Services (ICWS).

• Akram Alofi, Mahmoud A. Bokhari, Rami Bahsoon and Robert Hendley. 2023. Self-

Optimising the Sustainability of Blockchain-based Systems. IEEE Transactions on Sus-

tainable Computing. (Second Review Cycle).

1.6 Thesis Roadmap

In this section, we illustrate the structure of the remaining chapters of the thesis. The structure

is presented as follows:

• Chapter 2: In this chapter, background information is presented that is related to the

basis of this work and facilitates the reading of this thesis. It introduces an overview

of blockchain technology and the concept of sustainability. It also discusses trust and

reputation definitions and their integration with blockchain-based systems. Finally, an

overview of blockchain technology decentralisation is provided.

• Chapter 3: In this chapter, an SLR on the environmental sustainability of blockchain

technology is conducted. It surveys the state-of-the-art techniques and methods at-

tempted to enhance the environmental sustainability of its blockchain design. Also,

it classifies factors that play a role in affecting the environmental sustainability of

blockchain-based systems. Finally, this chapter indicates research gaps in the litera-

ture that motivated the need for the proposed approaches of this thesis.

• Chapter 4: In this chapter, we propose a multi-objective optimisation model that im-

proves the environmental sustainability of blockchain-based systems by minimising en-
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ergy consumption and carbon emissions without compromising the fundamental proper-

ties of blockchain technology, such as decentralisation and trustworthiness. The chapter

discusses results from a set of experiments to show the effectiveness and applicability

of the model in reducing energy consumption and carbon emissions of blockchain-based

systems. We have derived this chapter from our published works presented in [15]

and [16].

• Chapter 5: In this chapter, we introduce a dynamic reputation model for miners within

a blockchain-based system. The chapter presents an analytical approach to evaluate

and compare the model against similar existing works. It also conducts a series of

experiments to demonstrate the effectiveness of the reputation model. We have derived

this chapter from our published work presented in [17].

• Chapter 6: In this chapter, we develop a self-adaptive model to optimise the environ-

mental sustainability of blockchain-based systems at run-time. The chapter conducts

a set of experiments to evaluate the proposed model. It also shows how the model

balances energy consumption and carbon emissions with conflicting objectives under

different operating conditions.

• Chapter 7: In this chapter, we perform a reflective evaluation of our research contri-

butions. Furthermore, the chapter suggests future research directions and summarises

the main contributions of this thesis.
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Chapter Two

Background

2.1 Introduction

In this thesis, we research ways to enhance the sustainability of blockchain-based systems

without compromising the fundamental properties of blockchain technology. Therefore, this

chapter gives an overview of blockchain technology and sustainability that provides the basis

for this work in Sections 2.2 and 2.3. In addition, we present a brief overview of trust and

reputation since the trustworthiness of blockchain-based systems is one core property that

should not be compromised. Therefore, we discuss these terms in Section 2.4. Moreover, this

chapter explains the concept of decentralisation for blockchain-based systems in Section 2.5

because the thesis also aims not to affect this essential property of the technology. Finally,

we conclude the chapter in Section 2.6.

2.2 Blockchain Overview

Blockchain technology can be considered one of the most important technological break-

throughs in recent years. Blockchain technology is an emerging technology that has attracted

close attention from academic communities, technology developers, energy supply compa-

nies, emerging businesses, national governments and financial firms. According to many

studies from these fields, such as [18], [19], blockchain technology has significant potential

to benefit the world. The blockchain concept was initially outlined in a paper by Satoshi

Nakamoto (2008), entitled: “Bitcoin: A peer-to-peer electronic cash system” [3]. Bitcoin, the

first known cryptocurrency using blockchain technology, was implemented in 2009 following
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the public release of Nakamoto’s paper [20]. Bitcoin has initiated a range of new potential

options for blockchain-based applications for maintaining financial transactions. Blockchain

can also be applied in many other fields, including security services [4], public services [21],

smart contracts [22], reputation systems [23] and the Internet of Things (IoT) [24]. The

innovation of blockchains has entirely changed the structure of technologies, industries and

businesses [25]–[27] through its combination of key features, including decentralisation, distri-

bution, consensus mechanism, persistency and auditability [28].

2.2.1 Blockchain Architecture

The Blockchain is a series of blocks that contain lists of transaction records. It is regarded

as similar to a traditional public ledger [2]. Every block is connected to a parent block (i.e.,

a previous block) by a hash value reference. The initial chunk of a blockchain is called a

“genesis block” and does not connect to a previous block because it is the first block in the

blockchain. A block contains two entities: the header and the block’s body. The header

contains the block version, the parent block hash, the timestamp, the Merkle tree root hash,

the nBits and the nonce. The block’s body comprises lists of transactions and transaction

counters (see Figure 2.1). All nodes in a blockchain network have their public keys and private

keys. The private key is utilised for signing transactions. These digitally-signed transactions

are extended through the entire system and will be recognisable to every node of the network

through the public key [8].

Blockchain is developed for particular networks of untrusted and, possibly, compro-

mised participants. Such participants can establish agreements on shared information safely

and securely. In addition, these agreements do not need any central points of control, authority

or regulatory administration. Blockchain ensures that the element of trust among unidentified,

corresponding items in decentralised systems do not require central administrator authorities

to verify the accuracy of ledger records [8].
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Figure 2.1: An example of a blockchain-based system

2.2.2 Blockchain System Types

Blockchain-based systems can follow diverse architectures and rules, according to the partic-

ular use case and desired operation. The systems are characteristically composed of network

validators and users. A transaction can be initiated or received by user nodes in a blockchain

network, and a copy of the network’s ledgers can also be held by users. Validators have

read access privileges and are responsible for approving alterations to ledgers. Also, they are

highly accountable for reaching a consensus throughout the entire network. Depending on the

system’s configuration, private, partial or public access and validation privileges may apply.

There are diverse blockchain-based systems that can be classified as private or public and

permissioned or permissionless. It is essential to point out that some researchers have used

the terms “private/permissioned” and “public/permissionless” as synonyms. These synonyms

can be coherent with cryptocurrencies; however, this is not the case for all blockchain appli-

cations. Therefore, it is important to differentiate between authentication and authorisation.

Authentication can identify who has permission to access blockchain ledgers, whether private

or public. By contrast, authorisation is related to who can do tasks, either permissioned or

17



Table 2.1: Comparisons among Private, Consortium and Public Blockchain-based Systems

Property Private Consortium Public

Read permission Restricted or Public Restricted or Public Public
Tampering immutability Possible Possible Almost impossible
Efficiency High High Low
Centralisation Yes Partial No
Consensus process Permissioned Permissioned Permissionless
Consensus determination One organisation Pre-defined set of nodes All miners

permissionless [29].

Different researchers have given various definitions of blockchain-based systems, de-

pending on their research works and the resulting consequences. This means that these defi-

nitions are still debated; therefore, the following descriptions may differ from those presented

by other researchers. Current blockchain-based systems can be classified into three categories:

public, consortium and private [30]. In a public blockchain, public users can reach all records,

and any individual entity can participate in the agreement procedure, which makes this a

highly decentralised type. In contrast, only certain selected nodes would contribute to the

consensus procedures within a consortium blockchain; thus, it is partially decentralised. In a

private blockchain, only particular nodes that originate from a single and particular organi-

sation are allowed to connect to the mutual consensus process. Consequently, these private

blockchains are highly centralised [31]. It does not matter what types of blockchain-based

systems are used, because they all have advantages and disadvantages. Sometimes, a public

system is required, while private systems are mandatory at other times. We can determine

which system is necessary depending on the situation and the requirements. The evaluation

and comparison of these three categories of blockchains are discussed in [8] and are listed in

Table 2.1.

2.2.3 Blockchain Characteristics

Blockchain technologies are composed of four key characterises:

1. Decentralisation. Blockchain-based systems are decentralised, so they do not have
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to rely on a single entity as a centralised node. Instead, data is recorded, stored, and

updated on multiple distributed systems.

2. Transparency. Nodes within blockchain-based systems may see the history of the data

because the systems are transparent. Also, they can update data, making it trustworthy

and transparent.

3. Autonomy. Nodes have the autonomy to update or transfer data safely without inter-

vention due to the use of consensus algorithms.

4. Anonymity. Blockchain-based systems establish trust between nodes with secrecy

technologies to solve the necessity for privacy and anonymity.

2.3 Sustainability Overview

The concept of sustainability has been given substantial attention in academic, social, legal and

political contexts in recent years. A marked change in attitudes towards sustainability has been

observed over the last ten years. At one point, the environmental impacts of human activity

were perceived to be a distant problem that did not impact people’s current lives. However,

these impacts are now acknowledged as a humanitarian crisis that requires urgent attention.

As a result, more attention has been invested in developing sustainable technologies that can

halt humanity’s journey to destruction [32]. Many scholars have dedicated their research to

examining people’s perceptions of sustainability and identifying associated actions. In 2015,

the 2030 Agenda for Sustainable Development was adopted by each United Nations Member

State. This agenda provides a shared vision for the planet and people to live in peace and

prosperity between 2015 and 2030. It comprises 17 Sustainable Development Goals (SDGs)

and 169 targets that address sustainability dimensions [33].
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2.3.1 Definition of Sustainability

Although the term “sustainability” is in everyday use, people attach different meanings to it

and have different perceptions. The German word for sustainability, “Nachhaltigkeit”, was

first used in 1713 within the forestry context, to describe a situation in which people were

harvesting more than the forest could replenish [34]. In [35], the authors adopt a different

perspective of sustainability, describing it as representing the “capacity of a system to endure”.

Most definitions of sustainability rely on the Brundtland report’s definition of sustainable de-

velopment [36], which defines it as “meeting the needs and aspirations of the present generation

without compromising the ability of future generations to meet their need” [37]. According

to [38], sustainability is underpinned by two key pillars: “the ability of some things to last a

long period” and “the resources used”. Therefore, in our context, sustainable blockchain-based

systems can be defined as the systems’ ability to persist for a long time while using only the

resources that are strictly required.

2.3.2 Dimensions of Sustainability

According to [35] and [39], there are five dimensions of sustainability:

1. Environmental. The environmental aspect of sustainability is concerned with the

long-term implications that the actions of humans have on the environment. It spans

multiple dimensions, including raw resources, waste, water, pollution, climate change,

food production and ecosystems.

2. Social. The social aspect of sustainability is concerned with the role that social com-

munities, such as organisations and groups of people, have in the degradation of trust

within a given society. This aspect spans multiple dimensions, including employment,

justice, democracy and social equity.

3. Economic. The economic aspect of sustainability is concerned with added value, capital

and assets. It spans multiple dimensions, including prosperity, wealth creation, income

and profitability.
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4. Technical. The technical aspect of sustainability is concerned with the lifespan of

systems, information technologies, infrastructure, and the evolution of technologies in

line with changes in external conditions. It includes the dimensions of data integrity,

innovation, maintenance and obsolescence.

5. Individual. The individual aspect of sustainability is concerned with the well-being of

people. Its dimensions include education, training, health, mobility and self-respect.

The five dimensions are interdependent, and the cumulative effects of one dimension can

impact another. For example, technological changes can enhance people’s well-being but can

negatively affect the world climate. Despite their interrelated nature, the dimensions represent

a meaningful tool for disaggregating and assessing issues of relevance to sustainability.

2.3.3 Sustainability in Computer Science

Sustainability in computer science is a vast field that aims to optimise economic, social and

environmental resources through computer technology. There are many initiatives and pro-

grammes, such as the International Science Council (ISC), the World Climate Research Pro-

gramme (WCRP) and the United Nations Environment Programme (UNEP), that support

research for environmental sustainability. These initiatives enable educators and researchers

to follow and observe research programmes, bringing society benefits. In addition, there are

widespread uses and applications of sustainability in computer science. For instance, energy

production has been dramatically revamped through smart grids; these grids incorporate re-

newable energy resources and capacities for storage that can effectively control the expenditure

and production of energy [40].

In the software engineering (SE) context, sustainability considerations can be found as

far back as 1968, when software evolution and maintenance concepts were considered during

the NATO SE conference [35]. Currently, some SE structures are not designed to maintain

sustainable development, although computers and their associated software systems impact

people’s lives in numerous areas and disciplines [41]. Therefore, SE architectures and develop-
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ers utilising SE to make natural resources sustainable and the planet greener have enormous

scope and potential.

2.3.4 Sustainability in Blockchain Technology

Blockchain technology is already acknowledged as significantly impacting innovations. Con-

sequently, the link between blockchain and sustainability is worth further analysis. Recently,

a range of debates has been initiated related to the sustainability of blockchain-based systems

and their environmental, social and economic impacts on the world.

2.3.4.1 Environmental Sustainability of Blockchain Technology

Some scholars have argued that blockchain-based systems reduce humanity’s environmental

impact and motivate people to behave more sustainably [42]. These authors discuss the various

methods for achieving global sustainable development targets, such as using blockchain-based

systems in supply chains to make supply chain networks more sustainable [43]. However, other

scholars argue the opposite.

From another perspective, some researchers claim that the way blockchain technology

has been purposefully computationally designed (i.e., energy-intensive) can represent a serious

threat to the global commitment to reduce Greenhouse Gas (GHG) emissions following the

Paris Agreement [9]. In addition, these scholars point out that the electricity expended in

mining is extremely heavy [44]. Different surveys, such as [45]–[47], have studied the electricity

consumption of blockchain-based systems. They have shown different results because they

have used other estimation methods with different methods to identify the geographic location

of miners. However, they have reached the same conclusions that indicate the high levels of

energy consumed by miners. Moreover, they have shown that this consumption has been on

a rising trend.

The vast energy consumption of miners for adding blocks can result in massive carbon

emissions. As of 31 March 2023, CBECI [11] estimated that the Bitcoin network, which

is the most common cryptocurrency using PoW, consumed 142.25 TWh of electricity per
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year, which is more than the energy consumption of Finland. This amount of energy can

produce GHG emissions of 572.08 MtCO2e. In [45], the authors show that Bitcoin can

consume energy up to 45.8 TWh per year, which can lead to carbon emissions between 22.0

to 22.9 MtCO2e. According to [47], the carbon emissions resulting from Bitcoin will push

global warming over 2°C.

To solve this issue, researchers have focused on enhancing the environmental sustain-

ability of blockchain-based systems. Therefore, they have proposed potential solutions in the

literature that include new consensus algorithms, regulatory mechanisms and fiscal policies,

as well as restrictions on the usage of these systems. More details are discussed in Chapter 3.

2.3.4.2 Social Sustainability of Blockchain Technology

Blockchain technology has become a part of the United Nations discussions related to this

technology’s sustainability and how it can contribute to implementing sustainable develop-

ment. It views this technology as a crucial tool for achieving social sustainability by developing

export applications for poor farmers that can improve the lives of those farmers and their fam-

ilies. In [48], an analysis of the possible social sustainability of using blockchain technology in

the supply chain is given.

In contrast, there are concerns about the social sustainability of blockchain technology.

For example, Bitcoin, an application of blockchain technology, can affect society because

criminal organisations can use it for illegal trade, such as weapons, drugs, or other fraudulent

activities [49].

2.3.4.3 Economic Sustainability of Blockchain Technology

Blockchain technology has created a digital economy that is democratic, open, and scalable,

which makes every transaction between two or more economic units traceable. These develop-

ments open new and challenging opportunities for economic sustainability. Therefore, banking

and financial systems have become interested in applying this technology and studying its im-

pacts on their economic systems [49].
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2.4 Trust and Reputation Overview

Trust and reputation have existed since human beings have lived and have significant roles

in our lives. The goal of scientific research in the field of computational mechanisms that

focuses on trust and reputation for virtual communities is to improve the performance and

dependability of online communities. In computer science, the idea of isolated machines has

been replaced by networks and distributed systems. Therefore, interest in trust and reputation

mechanisms applied to this paradigm has increased. Reputation and trust management can

establish a greater prior knowledge among participants and users within a network that, in

turn, might assist in collaborating efficiently and healthily. The research field of trust and

reputation management is multidisciplinary and includes researchers from several areas, such

as communication, service computing, data management and networking [50].

2.4.1 Definition of Trust and Reputation

Daily, we use and make decisions based on the trust and reputation of others. Nevertheless,

it is challenging to define trust and reputation precisely and clearly. Trust and reputation are

strongly related but differ in how they are developed [51], [52].

According to [53], trust is derived from an entity’s reputation. The authors state that

an entity receives a certain level of trust based on its reputation that has been gained over

time. Therefore, building a reputation depends on the history of the entity’s behaviour that

reflects its negative and positive aspects.

In [54], trust is defined following a definition stated by Gambetta [55]. This definition is

a well-agreed definition, used by many works on trust. The study defines trust as “a particular

level of the subjective probability with which an agent will perform a particular action, both

before [we] can monitor such action (or independently of his capacity of ever to be able to

monitor it) and in a context in which it affects [our] own action”. In contrast, the study defines

reputation as “an expectation about an agent’s behaviour based on information about its past

behaviour”.

Regarding trust and reputation models, the study [51] states that trust models often use
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subjective measurements as inputs for measuring the trust of entities. In contrast, reputation

models accept ratings or information regarding certain occurrences, such as transactions.

These definitions present a relation between the concept of trust and reputation, which

is one consideration of this thesis. In this thesis, we use these definitions to adapt the definition

of trust and reputation in the context of blockchain-based systems. Thus, we can define trust as

strong confidence in an entity’s ability (i.e., a blockchain-based system) to act as expected in a

given situation with a sense of relative security, despite the possibility of negative consequences.

In addition, reputation is defined as the expectation of an entity’s behaviour (e.g., a miner’s

behaviour) relying on information related to its previous behaviour within a specific context

(e.g., within a blockchain-based system) at a given time.

In blockchain-based systems, we expect miners to build their reputations based on

previous behaviours that reflect their honesty by submitting trusted blocks. This means each

miner has a reputation value gained based on its previous behaviour. Also, the high reputation

values of participating miners within a blockchain network make the blockchain-based system

more trustworthy.

2.4.2 Trust Provision within Blockchain-based Systems

The methods of reaching consensus amongst untrustworthy nodes in decentralised systems is a

way of solving the Byzantine Generals (BG) Problem [56]. Blockchain-based systems are one of

these systems, where there is no middle or hub node to ensure the correctness of the ledgers on

distributed nodes. Also, nodes do not need to trust other nodes. In a blockchain-based system,

when nodes start to share and exchange data, there is no central party for the regulation

and resolution of disputes or to protect against breaches of security. Instead, one ledger

copy is available in synchronisation with all involved parties. Blockchain-based systems allow

information to be shared and exchanged between nodes via a P2P network. To avoid any fraud

and conflict and establish trust in such a network, a mechanism is needed [8]. Blockchain-based

systems rely on three built-in mechanisms: transaction verification, consensus algorithms and

block validation.
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In transaction verification, every transaction should be broadcast across a complete

network to be verified. Every node in a blockchain-based system should verify the transaction

before re-broadcasting it to others. First, verifier nodes must verify the sender node’s identity,

ensuring that the sender node and no other entity has asked for the interaction between it

and the receiver node. They could do this by checking the public and private keys used to

sign the transaction. This sign is known as a digital signature. Second, the verifier nodes

must ascertain whether the sender has provided a valid transaction. In Bitcoin, for example,

a transaction is only valid if the sender has sufficient funds to furnish the recipient. The

validation can be achieved by scrutinising past ledgers containing data regarding all previous

successful transactions [31].

When a trusted party is not present, there should not be simply an acceptance of

blocks as an element of the blockchain unless a majority of other nodes give their agreement.

A consensus system will be in place as to how nodes can provide confirmation of or dismiss

blocks to ensure that conflict does not arise later in the process. This is referred to as a

consensus algorithm that allows for the creation of blocks and their addition to the extant

ledger to be employed in future. In Bitcoin, the consensus is reached via PoW, which offers

proof of the quantity of work that has been used to solve a cryptographic puzzle and validate

a block. The subsequent secure update for the shared status is solely based on these consensus

algorithms. This makes blockchain-based systems more immutable and irreversible [31].

The independent validation by all nodes within a blockchain network for each new

block means that miners cannot cheat. Every time a node is sent a new block, validation

will occur by making checks through a set of criteria; if the block fails any of these checks, it

is rejected. First, every transaction that the current block contains must be verified. Next,

the previous block’s hash that is contained within the new block must be shown to exist and

have validity. Usually, this is checked from the first block, the genesis block. Finally, the

timestamp’s accuracy also undergoes verification. When all of these have been completed,

validation of the new block’s proof of work is possible [57].
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2.4.3 Blockchain-based Systems as Trust Machines

Blockchain technology is widely regarded as a powerful technology, a trust machine. In the last

decade, the use of blockchain-based systems as trust machines has become more interesting

for researchers because of its promises. Data integrity and non-repudiation are the major

advantages of adopting these systems. Moreover, they provide secure access and identity

management possibilities. Also, blockchain-based systems are recognised to be very beneficial

for trust and reputation systems.

There are two main ideas behind utilising blockchain-based systems. First, some stud-

ies, such as [58], [59], propose solutions to solve some issues in their existing systems, including

privacy, trust and security issues. Second, some other studies, such as [60], [61], present ideas

for using blockchain-based systems to design trust and reputation models. They use these

systems to store transactions and calculate trust or reputation values, since managing trust

and reputation values in a decentralised community is challenging. These proposed ideas are

applied in various fields, such as crowdsourcing, IoT and edge computing [62].

2.4.4 Trust and Reputation for Environmentally Sustainable

Blockchain-based Systems

As we have discussed earlier, blockchain technology does not rely on trusted parties. Therefore,

it uses consensus algorithms to reach agreements among untrusted entities for confirming or

dismissing blocks. However, the most common consensus algorithm, PoW, is considered a

threat to our world’s environmental sustainability due to its energy consumption and carbon

emissions.

Many researchers have attempted to enhance the environmental sustainability of this

technology by proposing new consensus algorithms. One kind of these consensus algorithms

relies on trust or reputation models. Trust and reputation models have been used to identify

trustworthy miners that are going to participate in blockchain-based systems. This means

that mining new blocks will be restricted to trustworthy miners. Consequently, the number
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of miners of a blockchain-based system will be reduced, lowering its energy consumption and

carbon emissions.

The trust and reputation models used with these consensus algorithms are limited.

More details about these consensus algorithms are discussed in Chapters 3 and 5.

2.5 Decentralisation Overview

The idea of decentralisation has been used for years in various fields, such as strategy, manage-

ment, and governance. Decentralisation involves distributing control and authority to several

entities instead of having one central authority completely controlling an organisation. This

can lead to benefits, such as improved efficiency, faster decision-making, higher motivation,

and less strain on top management. Additionally, stronger decentralisation can increase resis-

tance to censorship and tampering [63].

Decentralisation has taken on renewed importance in the world of blockchain technol-

ogy. It is a fundamental concept and benefit of the technology, allowing for the democratisation

of trust. This is particularly relevant when it comes to the decentralisation of system nodes.

For example, a more decentralised network of miners can create more robust resistance to

censorship of individual transactions and elevate trust in the system [64].

Blockchain-based systems, by design, are an ideal platform for eliminating intermedi-

aries and allowing consensus, with many different leaders chosen via consensus mechanisms.

In this context, “consensus” refers to the process by which multiple nodes in a blockchain net-

work use to agree on the network’s conditions and the transactions’ validity. The most widely

used consensus mechanism is PoW, which involves solving complex computational problems

in order to validate blocks and add them to the blockchain [63].

Decentralisation can take on various levels of intensity depending on requirements and

circumstances. For example, a blockchain network can be semi-decentralised, with some cen-

tral authority overseeing certain network aspects. On the other hand, it can be fully decen-

tralised, with no control at all. From a blockchain perspective, decentralisation is a mechanism

that allows the redesigning of existing applications and paradigms or the building of new ap-
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plications that give complete control to users [63].

2.5.1 Benefits of Decentralisation

Centralised systems are based on the absence of mutual trust among nodes or users, so a

trusted intermediary is needed to facilitate cooperation. However, this lack of transparency

can lead to single points of failure, censorship and abuses of power. Decentralised systems

address these issues while providing added benefits [64]:

• Trust. Users do not need to trust a central authority to cooperate with each other.

Instead, they can trust each other directly. Hence, any modification to data in the

context of blockchain technology can be seen by all participants. This creates a high

level of accountability, where users believe that no “trusted” group can exert control,

seize assets or impose changes without consent.

• Immutability. Blockchain systems allow for the permanent storage of data. Once data

has been added to the blockchain, it cannot be modified (i.e., changed or deleted).

• Robustness. The decentralised nature of blockchain technology provides a high level

of resilience. Since data is distributed across multiple nodes in the network, the failure

of a single node does not affect the availability of data on other nodes. For example,

the data remains accessible on other nodes, even if many nodes fail or are hacked by

attackers.

• Attack resistance. Decentralised systems are more resistant to attack, destruction, or

manipulation because they do not have weak central points that can be easily compro-

mised.

• Collusion resistance. Nodes in a decentralised system have more difficulty conspiring

in ways that help a group of nodes and harm others.

• Central censorship free. Decentralisation makes censorship difficult because it re-

quires the cooperation of multiple nodes in a network, and it is difficult to identify
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where traffic is coming from and where it is going. A single party would find it highly

challenging to censor such network traffic.

2.5.2 Requirements of Blockchain Decentralisation

A blockchain-based system should meet several requirements to be considered decentralised:

• It does not rely on a trusted third party.

• It allows any node to submit transactions to the system.

• It allows any node to validate transactions.

• It distributes mining power evenly among miners. In other words, no single miner or

group of miners (i.e., pool mining) should have more control over mining and adding

new blocks.

• It implements a fair incentive system. Otherwise, a coalition of miners may occur,

leading to a concentration of mining power and a reduction in the number of independent

miners.

2.5.3 Taxonomy of Blockchain Decentralisation

The existing research on decentralisation in blockchain technology focuses on how decen-

tralisation affects blockchain layers. Classifications of decentralisation can incorporate four

categories: consensus, network, wealth and governance. Consensus and network decentralisa-

tion relate to the infrastructure layer, while wealth is connected to the incentive layer. Finally,

governance decentralisation is associated with the application layer.

2.5.3.1 Consensus Decentralisation

Consensus decentralisation can be linked to the consensus algorithms of blockchain-based

systems. As we have discussed previously in this chapter, consensus determination can be

limited to one organisation or a selected set of nodes or open to any nodes. Also, consensus
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decentralisation is associated with consensus processes that can be described as permissioned

or permissionless. One way to measure consensus decentralisation is by looking at consensus

determination that is related to the number of miners participating in the mining process and

adding new blocks [64].

It is noteworthy that the high number of miners within a blockchain-based system

only sometimes indicates that the system is highly decentralised. For example, a blockchain-

based system can be centralised if only a few miners add new blocks even though it has a

large number of miners in its network. Therefore, consensus decentralisation can be described

as the decentralisation of miners’ participation in consensus processes. It ensures mining

power is distributed evenly so that no single miner can have too much control over mining

new blocks [65]. In particular, decentralisation can be measured using miners’ relative power

measured by their hashrate. A miner’s hashrate is its ability to compute the hash of new blocks

and add them over time. Consensus decentralisation is essential to a blockchain system’s

security [66].

In this thesis, we focus on this type of decentralisation, and we have considered this as

an objective of blockchain-based systems that should not be compromised. In particular, we

measure the decentralisation of blockchain-based systems using the decentralisation of miners’

participation in consensus processes. As we have shown earlier in this section, this type of

decentralisation is connected to consensus algorithms, including their mining processes and

their participating miners, one of the main factors related to the environmental sustainabil-

ity of blockchain-based systems [18]. Moreover, the absence of this decentralisation can be

responsible for well-known attacks, such as the 51 % attack and the Selfish Mining attack [8],

[67].

2.5.3.2 Network Decentralisation

The concept of network decentralisation refers to blockchain technology’s underlying peer-to-

peer network infrastructure. Network decentralisation is related to how nodes interact on a

blockchain network and how they are connected. It measures a node’s influence, importance,
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or power in the network and is often used to perform analytics on social networks [64].

2.5.3.3 Wealth Decentralisation

Wealth decentralisation can be described as the evenness of distribution of wealth among

miners [65]. In other words, it refers to the distribution of monetary assets (i.e., tokens and

native cryptocurrencies) across miners of a blockchain-based system. The blockchain-based

system can be considered to be wealth-centralised when only a few miners gain many tokens.

2.5.3.4 Governance Decentralisation

Governance is used to define the systems and processes by which decisions are made, and

actions may be taken. This may include formal groups or organisations, such as governments,

markets or networks. It may also be applied to informal territories, families, or tribes. Gover-

nance may be exercised through language, norms, laws, or power. Governance decentralisation

is the degree to which owners and users share authority over a blockchain-based system. In

other words, it determines blockchain technology’s operations and how users engage with it.

Blockchain governance applies to direction, control, coordination, or decision-making [68]. In

decentralised governance, the goal is to prevent the concentration of power while ensuring the

system operates in the best interest of all stakeholders and participants.

2.5.4 Blockchain Decentralisation and Environmental Sustainability

In the previous section, we described four types of decentralisation of blockchain technology.

Each type of decentralisation can have implications for energy consumption and carbon emis-

sions and, henceforth, the sustainability of blockchain-based systems. Below, we discuss the

potential relationships.

In consensus decentralisation, the consensus process can be permissioned or permis-

sionless: the choice can have implications for the environmental sustainability of the system.

A permissioned consensus process limits the number of participating miners, while a permis-

sionless consensus process lets any node join mining processes. Consequently, the latter can
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include many miners, which may result in high energy consumption and carbon emissions,

depending on different factors, such as the type of energy source and location.

From another perspective, it can be argued that blockchain-based systems with high

decentralisation can negatively affect their environmental sustainability. This effect can be

linked to the number of miners participating in mining blocks (i.e., consensus determina-

tion), relying on the argument that a greater number of participating miners leads to high

decentralisation. However, we have mentioned that a higher number of miners only some-

times leads to high decentralisation in blockchain-based systems. Thus, high decentralisation

that results from measuring the consensus decentralisation only sometimes means high energy

consumption and carbon emissions.

Let us assume there are two blockchain-based systems. The first system has 1000

miners, of which a few have high hashrates while others have low hashrates. The second

system has 50 miners, with a slight difference between each miner’s hashrate. The first system

is more centralised than the second. In the first system, mining blocks are practically limited

to a few miners because of their high hashrate among other miners.

Network decentralisation can be connected to the environmental sustainability of

blockchain-based systems. Blockchain networks are P2P, and nodes that hold blockchain are

distributed. The nodes within a blockchain-based network must stay online and connected

to the network for a long time to receive and validate new blocks. Also, data transmission

(i.e., the transmission of new blocks in this thesis) to all nodes can be affected by several

network properties, such as bandwidth, throughput and the number of nodes. In addition,

it can be affected by the centrality of the network, including betweenness centrality, degree

centrality, and closeness centrality. Thus, all of these can affect the sustainability of these

systems through the energy consumed by nodes and their carbon emissions [69], [70].

Wealth decentralisation can be one factor related to blockchain-based systems’ environ-

mental sustainability. A blockchain-based system that is wealth-decentralised can be seen as

distributing the wealth between many miners. As a result, it can be argued that this system is

likely to consume more energy and produce more carbon emissions than blockchain-based sys-
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tems that are wealth-centralised. However, this is only sometimes the situation. Since wealth

decentralisation is related to miners’ hashrates, the impact on environmental sustainability

may be similar to the case of consensus decentralisation. For example, a blockchain-based

system with 1000 miners can be wealth-centralised when only a few miners mine blocks and

gain rewards and fees. However, the system can consume more energy and produce more

carbon emissions than other systems with fewer miners and more decentralisation in rewards

and fees among all miners.

Governance decentralisation may implicitly affect the environmental sustainability of

blockchain-based systems. Several factors can play roles in the environmental sustainability of

the systems, such as the governance models, the number of governance entities, the resources

needed for authorising and decision-making, and energy sources.

2.6 Conclusion

In this chapter, we have introduced substantial background information related to this thesis.

First, the background covers essentials related to blockchain technology and sustainability.

In addition, the chapter provides a general background to a deeper understanding of the

contributions of this study by giving overviews of the trustworthiness and decentralisation of

blockchain-based systems.
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Chapter Three

Blockchain-Based Systems Design
and its Environmental

Sustainability: A Systematic
Literature Review

Context. Blockchain design has become a threat to our environment because of its very high

energy usage. Due to the growing attention paid to applying blockchain technology in many

fields, numerous studies have focused on proposing methods to improve the environmental

sustainability of this technology.

Objective. This chapter provides a comprehensive and systematic review of the state-of-the-

art efforts related to blockchain-based systems’ environmental sustainability.

Method. It systematically reviews 104 related research papers published from 2008 to De-

cember 2022. The chapter discusses the notion of environmental sustainability in computing

and how it can be contextualised in blockchain technology. The specific aims of the review are

to 1) discuss the factors affecting the environmental sustainability of blockchain technology, 2)

to review the current state of the art of methods and techniques for developing more environ-

mentally sustainable systems enabled by blockchain, and 3) to review tools for the assessment

and measurement of the environmental sustainability of blockchain-based systems.

Results. The results of the SLR show that most methods for enhancing the environmental

sustainability of blockchain-based systems focus on reducing the systems’ energy consump-

tion. In particular, several methods propose alternative consensus algorithms to PoW. How-

ever, there is a need for optimisation models that enhance the environmental sustainability of

blockchain-based systems without compromising the core properties of blockchain technology.
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Conclusion. The review suggests future research directions for environmentally-aware and

energy-efficient blockchain-based systems.

Contribution to Literature. This chapter will contribute to the research literature through

our full paper "A Systematic Review on Blockchain-Based Systems Design and its Environ-

mental Sustainability”, which is under review.
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3.1 Introduction

Blockchains have been recognised as a notable step forward for securing data in large-scale

software systems. However, the significant amount of energy consumed by the miners within

blockchain-based systems has received much criticism. Solving the challenge of energy-

inefficient blockchain-based systems is an important prerequisite for the sustainability and

longevity of the systems. Therefore, many researchers have proposed alternative solutions to

decrease the energy consumed by this technology and develop its environmental sustainabil-

ity. Research regarding these new technologies has generally discussed the energy consumption

problem related to blockchain design. Researchers have proposed new methods to save energy

by presenting other consensus algorithms or using renewable energy for the mining processes.

Given that environmental issues are now an element in the discussion of blockchain

processes, we argue that a comprehensive review to identify the current research related to

the environmental sustainability of blockchains and systematically map out and analyse all

the relevant studies is necessary. We need to build a better understanding of factors, cur-

rent practices, methods and mechanisms, and their fit and inadequacies in optimising for

environmental concerns and targets. This can subsequently accelerate the adoption and sus-

tainability of the use of this technology. A systematic understanding of the environmental

sustainability of blockchain-based systems through comprehensively reviewing state of art is

essential. Additionally, a better understanding of these factors can inform the engineering of

environmentally-aware and more sustainable blockchain-based frameworks, methods, mecha-

nisms, as well as metrics for blockchain-based systems.

Though significant studies have been devoted to understanding and optimising the en-

ergy consumption of these systems, there is still a general lack of a unified consensus about

the factors and dimensions that need to be considered. A systematic review exploring the

environmental sustainability of blockchain-based systems has the promise to provide a unified

consensus of the factors and dimensions critical for these systems’ sustainability. Most reviews

of recent blockchain research have focused on blockchain applications and existing consensus

algorithms [4], [71]–[74]. Also, other reviews focus on integrating blockchain in other fields,
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such as cloud computing [75] and healthcare [76]. However, a comprehensive review for un-

derstanding the current state of the art and its progress, covering approaches and methods for

environmental awareness and sustainability in relation to energy consumption and efficiency,

has generally been missing. This chapter provides a Systematic Literature Review (SLR) that

comprehensively reviews and discusses the developments in the literature regarding environ-

mental sustainability within blockchain design. It advances our understanding of the topic

and provides the following contributions for those concerned with improving the environmental

sustainability of blockchain design. In particular:

• An overview and analysis of blockchain technology and sustainability are presented.

• The factors affecting the environmental sustainability of blockchain technology are iden-

tified.

• We classify the state-of-the-art methods for developing the environmental sustainability

of blockchain design.

• Existing methods are analysed, and their weaknesses are discussed.

• Frameworks for measuring blockchain environmental sustainability are explored.

• We provide a roadmap for potential research directions.

The rest of this chapter is organised as follows: Section 3.2 describes the methodology

of the SLR. Section 3.3 briefly analyses the existing related reviews. Section 3.4 identifies the

factors affecting blockchain-based systems’ environmental sustainability. Section 3.5 presents a

comprehensive taxonomy of the current research regarding the improvement of these systems’

environmental sustainability, and it analyses the challenges and drawbacks of these methods.

Measurement techniques for the environmental sustainability of blockchain are explored in

Section 3.6. Discussions and guidelines to support further work in this area are provided in

Section 3.7. Finally, Section 3.9 concludes the chapter.
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3.2 Systematic Literature Review Methods

The purpose of this chapter is to conduct a review of the environmental sustainability of

blockchain-based systems. Our systematic literature review focuses on analysing the existing

methods proposed as a way to promote the environmental sustainability of blockchain-based

systems. In this chapter, we answer the first question of the thesis introduced in Chapter 1:

RQ1: What is the state of the art in optimising the environmental sustainability

of blockchain technology and its design?

The review is focused on answering the following sub-questions:

• RQ1.1: What are the factors that need to be considered when systematically evaluating

the environmental sustainability of blockchain-based systems?

• RQ1.2: What are the state-of-the-art methods and techniques for developing a more

environmentally sustainable blockchain technology?

• RQ1.3: How can the current methods for improving the environmental sustainability

of blockchain-based systems be categorised?

• RQ1.4: What are the challenges and weaknesses of these methods?

• RQ1.5: How is the environmental sustainability of blockchain technology measured?

• RQ1.6: What are the gaps in the current research regarding the development of envi-

ronmentally sustainable blockchain designs?

The procedures of SLR in this research follow the guidelines for undertaking SLRs

proposed by Brereton, Kitchenham, Budgen, et al. [77] and Kitchenham and Charters [78]. In

more detail, we perform six main stages in the current SLR: 1) defining the purpose of the SLR,

2) identifying the SLR questions, 3) search strategy, 4) selection of primary studies, 5) search

execution, 6) report the results. Each of the six main steps is described in further detail

in Appendix A. In addition, we identify and analyse related studies (i.e., other systematic

reviews, surveys, or mapping studies) that cover the topic of the environmental sustainability

of blockchain-based systems. Finally, we report and discuss the outcome of the study.
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3.3 Related Work

Several surveys related to blockchain exist in the literature, but most of them survey blockchain

applications that are proposed across multiple domains [4] or for a specific field, such as

IoT [79], cloud storage [80], supply chain [81], healthcare [82], e-government [83], business [84],

cities [85] and agriculture [86]. Although blockchain faces environmental sustainability chal-

lenges, few related reviews discuss the environmental consequences of blockchains. Also, the

literature has not presented a systematic literature review of blockchain-based system design

and its environmental sustainability.

The review of [87], which consists of a systematic mapping study, aims to bring together

the research addressing the relationship between blockchain technology and sustainability, as

defined by the UN’s goals. The authors also discuss the possible use of blockchain in developing

sustainable technology, specifically for cases involving smart grids and supply chains.

The study [88] provides a systematic overview of extant consensus algorithms em-

ployed with public blockchains described in scientific papers and also practical blockchain

applications. Additionally, this paper provides a contemporary assessment of the most com-

mon consensus algorithm used in public blockchains. It also assesses the consensus algorithms

described in terms of their sustainability.

In [46], the author provides an overview and synthesis of the literature published on

the environmental and economic sustainability of Bitcoin. The author summarises the devel-

opments in hardware used by miners for Bitcoin mining, addressing the environmental impact

of this process. He debates Bitcoin’s sustainability, given the energy consumption used in

mining, which has also been addressed by multiple scholars in recent years. The study ar-

gues that the energy consumption of blockchain-based systems is not a major concern. This

viewpoint is the opposite to the view of many studies, such as [44], [89].

In [90], the authors present a literature review that aims to explore the current research

trends on the sustainability concepts of Bitcoin regarding its environmental, economic and

societal impacts.

The authors of [91] first describe recent trends in blockchain applications on the cryp-
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tocurrencies market and, second, new projects designed to address the various elements of

sustainability; these elements include environmental questions, including energy consumption

and materials depletion, as well as social impacts. Moreover, they discuss how blockchain has

the potential to reduce bureaucracy, enable faster administrative processes and to incentivise

environmentally responsible behaviour.

In [92], the author offers another overview of the current trends concerning the devel-

opment of the PoW consensus algorithm, which is the main component of the well-known

blockchain application, Bitcoin. The author divides his review into three parts to reflect the

ugly, the bad and the good regarding the potential of using blockchain. ‘Good blockchain’

gives a positive view by summarising the ways in which it can be harnessed to improve soci-

ety. ‘Bad blockchain’ tempers this with a summary of how some mining activities have the

potential to generate substantial levels of pollution. Finally, Ugly blockchain’ examines the

risk that the use of blockchain could become overconcentrated in the mining industry, posing

an existential threat to the technology.

The study [93] scrutinises the concept of cryptocurrencies and how sustainable they are

within a digital economy. The mining details are investigated from a number of perspectives:

theoretical economics, contemporary costing, and technical demands. The paper details the

environmental and economic impacts of cryptocurrency mining and suggests a number of

solutions to the problems caused by cryptocurrency mining and the currencies’ instability: this

includes smart electricity monitors incorporated into the Internet of Things (IoT) alongside

smart energy grids, integrating the mining of cryptocurrencies into smart city infrastructure,

and heat monitoring powered by GIS.

3.4 Factors Affecting the Environmental Sustainability of

Blockchain

The environmental sustainability of blockchain-based systems can be affected by several fac-

tors. According to many studies on blockchain energy consumption, there are different main
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parameters, from the developer’s behaviours to the technologies used in blockchain. After

reviewing the existing consensus algorithms that aim to improve the environmental sustain-

ability of blockchain and reduce energy consumption and reviewing papers discussing the

environmental sustainability of blockchain and energy consumption factors for blockchain,

we distinguish twenty-eight main factors affecting environmental sustainability and classify

them into six groups, as shown in Figure 3.1. The results of answering RQ1 are presented

in Table 3.1. Specifically, for each blockchain component, we report the reference to the pa-

per in the bibliography that considers the component as a factor affecting the environmental

sustainability of blockchain technology.

3.4.1 Architectural Factors

Blockchain architectural design has a significant influence on energy expenditure. Blockchain

architectural design factors include the consensus algorithm, blockchain type, difficulty (pa-

rameters) of the algorithm and the hashing mechanism. There are various types of consensus

algorithms that are determined by computational effort (energy consumption), such as Proof

of Work. Also, there are consensus algorithms that do not rely on mining to reach a consensus,

so they save a great amount of energy, such as Proof of Stake (PoS) and Practical Byzantine

Fault Tolerance (PBFT) [9]. The number of nodes (miners—validators) is associated with

the type of blockchain (public—consortium—private). The amount of energy consumed in a

blockchain is affected by the number of nodes [9]. The difficulty of mining is also related to the

number of miners. The study [94] shows that the reason behind the increase in difficulty is the

growing amount of resources devoted to calculating hashes within blockchain-based systems.

Consequently, the increase in difficulty and the number of miners impacts energy consumption.

In addition, the paper [95] shows that mining efficiency is mainly determined by the hashing

algorithm. According to [96], privacy, throughput, scalability and block verification can af-

fect the total energy consumption by reducing the degree of redundancy. Peer-to-Peer (P2P)

communication can also be considered a factor affecting energy consumption [29]. In [97], the

block size is identified as the primary effector for E-waste and energy consumption.
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3.4.2 Technological Factors

Mining hardware is one of the most important components of blockchain-based systems, and

its technology has a significant effect on the level of system sustainability. The technological

factors associated with this include two components. First, the hardware’s energy efficiency,

which is measured by computing the number of hashes per Joule (hash/J). The second com-

ponent is the hashrate, which is generally measured as the number of hashes per second or

mega-hashes per second (Mhash/s) [46], [94]. These factors further determine the amount

and cost of energy consumption. Other auxiliary components include cooling systems [98],

using renewable energy [20], [90] and the data storage devices, all of which relate to mining

hardware, also influence energy consumption [99].

3.4.3 Deployment Factors

The deployment factors involve location and the climate zone. Both the mining hardware

and its components’ efficiency are affected by the weather and the climate of the locations

where the mining devices are [9], [92], [99]. Cold climates obviously offer an advantage in

decreasing cooling requirements [100]. The use of cooling systems is connected to the ambient

temperature and humidity. Other influencing factors can be season characteristics, the length

of day hours and air density which are affected by the location of miners.

3.4.4 Humanity Factors

Miners (as people) and developers play a crucial role in any blockchain-based system, so

their behaviour affects environmental sustainability. Miners can be categorised by their con-

sciousness of the environmental effect of their activities. According to [101], large miners

are concerned about the environmental impact of PoW mining. However, small miners be-

lieve that the negative environmental effects of mining are not an important issue. Moreover,

motivating developers to be concerned about the environmental effects could change their be-

haviour to modify the existing models and build future systems that are less polluting. Also,
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this could help them find transaction verification models that are more sustainable. It could

encourage manufacturers of mining devices to produce devices that consume a low amount of

energy. End-users and organisations using blockchain-based systems can play a positive role

by demanding more efficient technology for blockchain-based systems [9].

3.4.5 Economy Factors

The consumption of energy could be affected by rewards, fees, cryptocurrency price, cryp-

tocurrency demand and the cost of electricity. To maintain profitable mining revenue (block

rewards and transaction fees), miners switch to less energy-demanding hardware. They also

consider the costs of electricity, which vary depending on the country of operation [90], [102].

Most mining activity is reported to take place in countries offering cheaper energy costs, such as

China [9]. In addition, the demand for cryptocurrencies due to their price changes in financial

markets can affect the environment. Therefore, people may invest more in cryptocurrencies

when their prices increase, which may lead to more mining devices, energy consumption, and

carbon emissions [103].

3.4.6 Policy Factors

In [9], the author claims that law and policy choices and government regulation could reduce

the energy consumption of blockchain technology, such as a surcharge on profits declared

by miners and charging a customs duty or excise tax based on the energy consumption for

imported devices.
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Table 3.1: Factors Affecting the Environmental Sustainability of Blockchain-based Systems

Blockchain Components References

Architectural Consensus Algorithm [104] [4] [29] [105] [9] [15] [106] [107]
Blockchain Type [4] [108] [109] [15]
Number of Nodes [17] [94] [96] [9] [15]
Hashing Algorithm [29] [95] [110]
Hashrate [97]
Mining Difficulty [99] [94]
Block Size [97]
New Block’s Verification [96] [107]
Privacy [96]
Throughput [96]
Scalability [96]
P2P communication [29] [110] [107]

Technological Mining Device [99] [94] [9] [15] [111] [97] [107]
Cooling System [98] [99] [112] [95] [9] [107]
Renewable Energy [20] [4] [90] [113] [9] [114]
Data Storage [99] [107]

Deployment Location [99] [92] [45] [9] [111] [106] [115]
Climate Zone [100] [9] [115]

Humanity Miner [4] [101] [45] [9]
Developer [92] [9] [116]
End-user [9]
Organisation [117] [9]

Economy Fee [118] [113] [102] [97] [119]
Reward [118] [113] [102] [120] [119]
Cryptocurrency Price [111] [114]
Cryptocurrency Demand [103]
Electricity Cost [112] [90] [113] [102] [9] [111]

Policy Government Regulations [112] [45] [9] [111] [116] [106] [97]
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Figure 3.1: Ishikawa Diagram of the Impact Factors on Blockchain Sustainability

3.5 Existing Methods for Improving the Environmental

Sustainability of Blockchain

3.5.1 Blockchain Consensus Algorithms

A significant variety of alternative consensus techniques have been proposed to address the

problems of Proof of Work energy consumption. In the current paper, we focus on algorithms

that consider energy consumption as a problem to be solved so as to develop an environmen-

tally sustainable blockchain-based systems design. We categorise these consensus algorithms

into two main categories: proof-based consensus algorithms and vote-based consensus algo-

rithms.
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3.5.1.1 Proof-based Consensus Algorithms

In these algorithms, miners need to prove that they are more eligible than others miners to

participate in the verification processes and append new blocks to the chain.

Stake. One frequently proposed alternative to PoW is Proof of Stake [121]. PoS represents

a consensus mechanism requiring fewer computer resources than PoW, so it has lower levels of

energy consumption. The assumption with a PoS-based blockchain is that miners with higher

levels of network participation are those who have low levels of motivation for launching

an attack. Thus, miners have to show proof at set intervals that a particular proportion

of network participation is attributable to them (e.g., by showing currency). There is an

inherent unfairness in this plan because those with the greatest wealth will have the greatest

control, so variations have been suggested. One example is Ppcoin’s consensus algorithm

that incorporates the coin’s age; miners holding the largest and earliest coin sets would be

those most likely to mine a new block. Because of PoS’s benefits, certain blockchains, such as

Ethereum [122], have plans to shift from PoW to PoS. However, PoS is facing some serious

problems, such as the rich getting richer and nothing-at-stake attacks [123].

In [124], the author suggests a new extended PoS consensus protocol (e-PoS), which

deals with the constraints of PoW and PoS and allows blockchain systems to become less

energy-hungry and to implement fair mining practices. The abstract implementation of e-

PoS incorporates a collection of miners that execute invisible smart contracts implementing

PoS auction rules. This mechanism has some drawbacks regarding its security. Blockchain

application software clients have a vulnerability to being attacked. While software client

security is extremely important in e-PoS, the study does not cover this element. It should be

noted that e-PoS has a lower fault tolerance than other cryptocurrencies based on PoW and

PoS.

Variations of PoS exist, such as delegated Proof of Stake (DPoS) [125] and Proof of

Stake Velocity (PoSV) [126], but these are only intended to address particular issues without

holistic solutions. Other issues remain open and may cause new constraints or security prob-
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lems [127]. Proof of Activity (PoA) [128] combines PoW and PoS, in which useless nonces are

regarded as wasting computer power.

Proof of Importance (PoI) was designed by NEM [129]. PoI represents a consensus

algorithm created for determining those participants in the network who have eligibility for

adding blocks. An evaluation of every account will be undertaken and rated for importance.

Importance is dependent upon a vested stake, transaction amounts and a number of transac-

tion partners. A high importance score would mean that the participant is rewarded and has

no need to commit any computer resources, earning rewards even if offline. In this algorithm,

the richest participants benefit in that, the greater the value of coins held, the more blocks

can be mined.

Recently, interest has grown in the employment of blockchain consensus protocols for

P2P energy transactions. The primary target is to create self-sufficient Local Energy Mar-

kets (LEM) by offering incentives for consumers to have Renewable Energy Sources (RES)

installed and used.

In [130], the authors further suggest a new Proof of Energy (PoE) function for the

initiation of the P2P exchange of energy on the basis of blockchain within LEM contexts. The

PoE concept is suggested to modify the PoS protocol for increasing prosumer self-consumption

ratios leading to further cuts in power loss. The prosumer who produces energy from a

renewable energy source equal to the energy consumed has a high chance of being chosen to

add new blocks. This is a means of promoting social behaviours centred on sustainability and

a circular economy.

Similarly, the work in [131] proposes two blockchain-based LEM systems assisting pro-

sumers (users with a RES that produces or absorbs energy) and consumers in securely trading

energy, balancing demand and supply using a decentralised system, with any surplus energy

being sold to the main grid. The researchers suggest Proof of Energy Generation (PoEG)

for increasing the energy output of RESs by providing rewards for prosumers as miners for

adding blocks to the blockchain-based system. Prosumers that generate more RES than they

consume will most likely be invited to be miners. This paper also suggests an alternative con-
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sensus algorithm, Proof of Energy Consumption (PoEC), for incentivising users to consume

less energy at peak times. Prosumers using higher levels of energy will have fewer chances of

adding blocks to the chain.

A new consensus algorithm is proposed in [132]. This consensus algorithm calls for

prosumers to use some form of an energy management system to track Percentage Power

Change (PPC) on an hour-by-hour basis. The PPC is employed as a criterion for choosing

blockchain validators, and the weighted average consensus is used to certify the validator. The

prosumers share the computed PPC values among each other. The blockchain’s validator,

which will create the subsequent block within the blockchain, is chosen as the prosumer with

the lowest PPC value. This paper refers to this consensus algorithm as (PoPPC).

Proof of Supply Chain Share (PoSCS) [133], similarly to PoS, is suggested as a means

of adding blocks employing validators as an alternative to miners. This algorithm uses the

stakeholders within the supply chain as validators. The creators of new blocks are decided by

aggregating the responsibilities and shares of the supply chain into a normalised supply-chain

share.

In [134], the paper suggests a consensus algorithm centred on PoW, called Proof of

Participation and Fees (PoPF), offering savings of computational power that have improved

the efficiency of transaction handling for JCLedger. This system only allows mining from

selected candidates, with selection based on the fees paid by a participant and the number of

times they have acted as an accountant. Each miner is presented with a range of difficulty

levels for solving the PoW, making mining easier for those with a higher rank.

As blockchain technology has continually developed and matured over the last few

years, cloud manufacturers have become increasingly interested in its potential. However,

because of its energy consumption, blockchain technology is not suited to the specialised re-

quirements of cloud manufacturing, with considerable quantities of large deals. In [135], a

novel blockchain consensus protocol is proposed to be applied in cloud manufacturing envi-

ronments, Proof of Service Power (PoSP). PoSP employs historical transaction volumes and

total transaction amounts gained by member nodes within the cloud manufacturing system’s
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service chain. Service power is represented by the sum of the product of the time factor and

historical transaction volumes for every member node. one drawback of using this consensus

algorithm is that the degree of decentralisation will be negatively affected.

A new blockchain ledger approach, "Meshwork ledger", and an associated consensus

algorithm are explored in [136]. Client and validator nodes of the blockchain-based system

actively participate in the consensus algorithm. The aggregate multi-signatures provide the

foundation of the consensus algorithm. A joint aggregate signature is created for a series

of transactions in a block based on the signatures gathered from the mesh client nodes in

a multi-signature system. If a client node’s signature is present on the block, the block is

treated as approved. The main goal of the consensus is to attach a block to the blockchain by

gathering the most signatures (approvals) from mesh clients possible. The competition for the

most approvals from the mesh clients is between specific nodes called validator nodes in the

consensus process. Clients that take part in the winner validator node-organized aggregate

signature are rewarded with a tiny portion of the transaction fee.

Physical Resource: Unlike PoS, which has the intention to reduce the computational de-

mands of PoW systems, Proof of Elapsed Time (PoET) [137] has been proposed. PoET

employs a model based on a random leader election or a lottery-based election using a specific

Intel device (Intel Software Guard Extensions (SGX)), in which the protocol randomly selects

a new leader for the finalisation of a block. Every validating or mining node must use Intel

SGX for the execution of the Trusted Execution Environment (TEE). All validators request

a waiting time from the code that runs within the TEE. The validator awarded the briefest

waiting time is the winner of the lottery and, thus, may assume leadership. PoET needs spe-

cific hardware, which places limitations on decentralisation and the number of participants.

It is also vulnerable to security threats via the employment of a partially decentralised (Intel

as authority) PoET model that can command an idle elapsed time before block signing.

In [138], the authors discuss an approach similar to PoET. They propose a type of

consensus called Proof of Luck (PoL). PoL is TEE with SGX. For execution, after all blocks

are synchronised in the blockchain, all miners will create a new block to add to their chain.
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Then, each new block will be assigned a value from zero to one at random; this may be

seen as a lucky value. Every node would have to agree that the chain holding the highest

combined lucky value would be the main chain. The authors claim that PoL is equitable for

every miner. Additionally, carrying out attacks, such as double spending attacks, would be

extremely difficult because the attacker would have to rely on extremely high levels of luck to

be successful. However, the participants within this consensus algorithm must have central

processing units (CPUs) that implement a suitable TEE, such as Intel SGX. This means that

PoL relies on the ownership of particular physical resources.

Proof of Space (PoSpace) [139] has also been proposed as an alternative. A miner must

use a particular quantity of memory for computational proofs. The probability of successfully

mining a block increases by dedicating more disk space. A related concept to PoSpace is

proof of Space Time (PoST), which requires miners to prove that they have kept data for a

specific period [140]. Permacoin [141] asks miners to make an investment in system memory

and storage via Proof of Retrievability (PoRs) [142]. Although these algorithms demand less

energy over time, as claimed by authors, they rely on expensive physical resources.

Useful Work: Again focusing on reducing wasted energy, proof of eXercise (PoX) [105] has

been presented, which is a solution that channels computer power into real-world scientific

challenges. Under this system, miners are presented with matrix-based problems offered by

‘employers’ inside the system. There are two reasons for employing matrices: a) they can be

composed, which allows network difficulty to be tuned more easily, and b) they are a major

source of abstraction for numerous computational scientific challenges. Although the work

done by the miners will be useful, the energy consumption of solving real-world matrix-based

scientific problems in this algorithm remains questionable.

Other alternative consensus algorithms have attempted to simply replace the puzzle

with real-world problems of greater use, as with PoX. Nevertheless, the proposed replacements

do not offer a broad array of genuinely interesting challenges. One example is PrimeCoin [143],

which proposed the discovery of prime numbers rather than a random and pointless nonce,

while PieceWork [144] attempted the outsourcing of tasks, such as Denial of Service (DoS)
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defence and spam deterrence. Proofs of Useful Work (uPoW) [104] extend PoW, requiring

miners to solve meaningful problems, such as all-pairs shortest path, 3SUM and orthogonal

vectors.

WekaCoin is a design in [145] that employs Proof of Learning (PoLearning), a new form

of a distributed consensus protocol that reduces the amount of computing power required to

solve a hash-based puzzle. PoLearning accomplishes validation by using energy in solving

tasks in machine learning models. In other words, machine learning puzzles are employed

for the validation of blockchain transactions. Nevertheless, it remains a challenge to ensure

that the three central actors (suppliers, trainers and validators) in the network who use this

consensus algorithm do not collude with each other. WekaCoin has no real built-in defence

against attackers who take an honest miner’s submitted pre-trained model, steal it, improve

it and then submit the enhanced model prior to confirmation of the block.

The Proof of Deep Learning (PoDL) protocol has been suggested in [146] for the main-

tenance of blockchains using Deep Learning (DL) training rather than artificial hash calcu-

lations. The PoDL protocol is an improvement on the PoW consensus mechanism and uses

the DL power of legitimate miners to improve security. The generated valid proof for a new

block comes only upon producing a genuine DL model. This optimises the employment of

nodes’ energy and computing resources to facilitate and maintain blockchains. Nevertheless,

it is possible for multiple malicious actors to generalise the model requester in collusion with

miners. We can also not overlook the block generation’s latency as it will take a substan-

tial time to train the DL model. Additionally, more research is required using realistic block

submission patterns and a wider range of DL models and data sets [147].

In [148], the authors present a comprehensive proof of federated learning (PoFL) con-

sensus framework that repurposes the computational power previously devoted to solving un-

productive PoW puzzles for the training of high-quality federated learning (FL) models. An

online third-party platform (e.g., Kaggle or Codalab) is used to delegate FL tasks to users,

after which mining pool members collaborate to create the requested FL model before the

specified deadline. Subsequently, different pools vie for rewards using the trained models as
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proofs. While this study has effectively utilised waste energy, several significant challenges still

need to be addressed. Developing a robust, fully decentralised PoFL scheme that eliminates

the need for a central platform remains a concern. Moreover, there is a challenge in dynam-

ically creating optimised pool structures with stable miner-pool associations for various FL

tasks. It poses a formidable challenge to design accurate incentives for heterogeneous miners

to optimise the consensus process because of their innate self-interest and diverse behaviour.

In addressing the challenges associated with PoFL, the authors of [149] put forth an

innovative platform-free proof of federated learning (PF-PoFL) scheme aimed at establishing

a resilient and sustainable blockchain ecosystem. This is achieved by eliminating the central

platform and creating a dynamically optimised pool structure for AI model training. Taking

their inspiration from PoFL, the researchers propose an energy-recycling consensus mechanism

that allows computing power to be repurposed for practical FL tasks instead of being wasted

on solving difficult yet inefficient PoW puzzles. Under the PF-PoFL framework, the authors

develop a unique block structure, introduce new transaction types, and establish credit-based

incentives to facilitate FL model ranking and enable efficient consensus within the blockchain.

In [150], the authors propose a new consensus algorithm called Proof of Training Qual-

ity (PoQ) which merges data model training and consensus processes to fully recycle the

necessary energy to achieve consensus among all of a blockchain’s nodes. They propose that

a consensus committee should be established for improvements in operational efficiency, with

a selection of members occurring through the retrieval of related nodes for each request for

shared data within the blockchain. The chosen members would be responsible for training the

data model and initiating a consensus process on the basis of collaborative training processes.

This would significantly reduce communication overheads because only those nodes selected

for the committee would receive consensus messages instead of every node receiving them.

Nevertheless, such a system could have insecurities because there is no guaranteed way of

generating a global randomness beacon in order to create consensus committees.

The paper [151] suggests employing optimisation problems for PoW rather than the

cryptographic puzzles more frequently employed nowadays. The alternative solution pro-
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poses ensuring that the energy required for PoW is employed for useful purposes, i.e., solving

real-world optimisation challenges. Using the Travelling Salesperson Problem (TSP) as their

model, they suggest the iterative use of optimisation algorithms, providing the PoW required

for expanding a blockchain through the addition of a new block. We refer to this scheme as

TSP-PoW. The central concept is that the cost of the best tour revealed for block N may be

improved by adding an extra city required for the new block to be included in the chain.

Unlike PoW, which demands the consumption of energy and investment in mining ma-

chines, Proof of Generation (PoG) [152] demands investment in distributed renewable energy

generation. PoG was created for the I-Green blockchain. This employs electricity data sup-

plied through I-Green. PoG demands that users invest in the generation of distributed energy.

Candidates are selected voluntarily through Prosumer nodes. On the basis of electricity data

submitted through I-Green in the previous period, verification candidates are selected from

the nodes that provided the highest energy. Of the N candidates fulfilling the criteria, a

proposal will be chosen through random selection; this proposer will offer verification for all

transactions and create a new block which will then be broadcast to every candidate. Should

the chosen proposer not respond within a waiting time T, the selection of a fresh proposer

will occur.

In [153], the author proposes a Proof of Search (PoSearch) protocol to deal with the

difficulties of substantial quantities of energy being wasted in blockchain mining processes.

PoSearch uses computational power to assess multiple candidate solutions of an optimisation

problem submitted by a client (node) and to search for the best solution. Rewards by the

corresponding clients are given to the nodes that offer optimal candidate solutions. Also,

the protocol rewards those miners that added the block to the blockchain in the same way

as PoW.

It is demonstrated that crowdsourcing can be used for networking-intensive tasks of

high complexity by employing the incentive model used by Bitcoin. WebCoin [154], a new

form of distributed digital currency using networking resources instead of computational ones,

is proposed, with mining only being possible by using Web indexing. Those who undertake
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Web indexing, scraping, and crawling will be rewarded financially through WebCoin.

It has been suggested that employing deep-learning processes as PoW could theoreti-

cally allow the power to be employed for useful processes [155]. The authors suggest a protocol

called (Coin.AI) based on Proof of Useful Work. Coins are awarded when miners surpass the

lowest performance threshold. It is also suggested that proof of storage mechanisms could

be employed for storing deep learning models within “keepers”, distributed nodes that receive

rewards in this model for retaining models in secure storage. Although the concept of energy

savings achieved in this manner is attractive, the suggested model does not consider several

significant elements. One of these is that training/validation data must be securely protected.

The model proposes sharing data with a number of entrusted miners for its solution, which

clearly presents challenges regarding how the data can be protected.

Game: In [156], the authors propose a novel Proof of Play (PoP) motivated by Huntercoin 1

and Motocoin 2. PoP is an integrated P2P gaming system with blockchain technology where

players act to add new blocks to the chain. Relying on the game results, the player with the

most competitive result broadcasts the new block. The authors claim the consensus algorithm

can be power-efficient because it uses a lower hashrate.

Trust and Reputation: Although most proposed alternatives rely on either having mining

devices (e.g., PoW, PoL) or making a substantial financial investment (i.e., stake) in the

blockchain (e.g., PoS), other algorithms depend on a trust model.

In [157], the authors propose a new consensus algorithm called Proof of Trust (PoT).

It is a blockchain-based system relayed on peer trust that is evaluated by the network through

trust graphs created in a decentralised manner; these become part of the coding and man-

agement of the blockchain. The trust embedded is employed as a waiver for the problems of

PoW. In other words, the difficulty level of solving the cryptographic puzzle and finding an

appropriate hash is determined by the trust value held by the node that mined the new block.
1Huntercoin offers players a multiplayer environment where they compete to collect coins from a map.

https://xaya.io/huntercoin-legacy
2Motocoin has a virtual motorbike driving game in which participants collect coins. https://motocoin-

dev.github.io/motocoin-site
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The higher the trust rating you can attain, the less work is required. Although these alter-

natives certainly use less energy than PoW, there are a number of difficulties related to their

algorithms in public blockchains, including problems with scalability, fairness and security.

An alternative PoT mechanism (Alt-PoT) is proposed in [158]. This alternative sug-

gests a consensus algorithm used for crowdsourcing services. The validators for transactions

are selected based on node trust values. The design employs two algorithms: RAFT leader

election and Shamirs secret sharing algorithm. Alt-PoT does not require PoW and introduces

additional trust into the mechanism. Nevertheless, choosing a leader to manage a blockchain

raises problems of centrality and single failure points. Furthermore, the researchers do not

detail what would motivate nodes to participate in this process, and the differences in local

trust databases are not detailed, including whether there are variations between nodes. The

researchers also regard every transaction as an element of the blockchain without undertaking

checks on transaction trustworthiness.

Proof of Reputation (PoR) is a consensus algorithm suggested in [159] in which the rep-

utation of nodes is evaluated on transaction activities, assets and consensus participation for a

node. In the algorithm, the node that has gained the highest reputation value will be respon-

sible for creating a new block. Then, the new block will be validated and confirmed through

reputation-based voting processes. The researchers look at a trio of essential measurements

affecting the PoR mechanism: the social interaction, the currency age and the regularity of

participation in consensus building for each node. The extent of the node’s social interaction

is found through assessment of the number of its friends, how regularly it has interactions

with its friends, the size of its transactions and its friends’ reputation.

In [160], the authors suggest modifications to PoW to make the mining process more

efficient and achieve significant power usage reductions. They propose a Proof of Contribu-

tion (PoC) protocol. Unlike the coinage in PoS, the stake in this protocol is related to the

honesty of the miner, which is calculated from the number of valid blocks added by the miner

to the blockchain, and based on that, it determines the miner’s mining difficulty. It makes

calculations of what each miner contributes and incentivises block mining by providing diffi-
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culty rewards for any miners that pass extended periods without being rewarded with blocks.

Although the authors claim that this algorithm is energy-efficient, they do not present any

analysis of its energy consumed.

Proof of Authentication (PoAh) [161] represents a relatively energy-efficient consensus

algorithm in which miners are referred to as trusted devices, receiving the block and checking

on the source’s identifier. Should the token be on the list retained locally with trusted nodes,

the node adds it to the local chain and passes it forward through the network. The other

devices in the network then add the validated block. This protocol is useful in networks with

resource constraints (e.g., IoT), but analysis has not been undertaken into how applicable it

would be for a heterogeneous mobile network, e.g. a vehicle network. Also, the authors claim

that the proposed consensus algorithm minimises energy consumption, but they do not show

to what extent it can minimise energy consumption.

The study [162] proposes a blockchain-based system intended to support the charging

of electric vehicles that are entities within Private Charging Pile Sharing Networks (PCPSNs).

The blockchain-based system leverages a reputation-based PoW by including the rating, be-

haviour, and fading effects. Such a reputation model represents a decentralised reputation

method that facilitates an evaluation of the reliability of the respective consensus nodes (i.e.,

local aggregators (LAG)) in PCPSNs. A consensus node with the highest reputation value is

selected to run PoW and add a new block. This chapter refers to this consensus algorithm as

(PoR-LAG)

In [163], the authors suggest a new consensus mechanism called Proof of Negotia-

tion (PoN), a fair multi-miner participation mechanism. This mechanism designs an evalu-

ation methodology to decide on proposal trust values (PT) and validator trust values (VT).

The trust values rely on the number of false and real block proposals, and they also rely on

the number of wrong and correct votes. Using a trustworthy algorithm that randomly selects

miners, honest miners that hold high trust values can be chosen at random from the available

miners to act as proposers or validators when blocks are being created. The creation of mul-

tiple blocks may be effected either synchronously or asynchronously, making PoN even more
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efficient in production. Nevertheless, the problem of finding an effective and efficient resolu-

tion for selfishness problems in blockchain networks in order to improve consensus mechanism

performance remains highly challenging.

3.5.1.2 Vote-based Consensus Algorithms

In these consensus algorithms, the consensus is reached among nodes by votes. Nodes joining

the network are predefined, and they can not join freely. Also, the number of nodes is limited.

For distributed systems, the property known as Byzantine Fault Tolerance (BFT)

means that there is toleration within the system for a particular type of failure—specifically

for the Byzantine Generals Problem (BGP) [56]—when there is no solution for it. Byzantine

failures are considered the greatest threat and most problematic to address of all failure classes

because they do not make assumptions or offer restrictions to the behaviour of nodes at any

specific point. Practical Byzantine Fault Tolerance (PBFT) [164] is one algorithm based on

the BGP utilised as a consensus algorithm for blockchain-based systems. With this method-

ology, every node should engage in the voting process to provide the next block; consensus is

achieved when over two-thirds of the total nodes are in agreement for the block. Hyperledger

fabric 3 is one example of a type of blockchain that relies on PBFT. Hyperledger fabric is the

most common blockchain platform of the Linux Foundation’s Hyperledger project [165]. This

algorithm has a critical reliance on network timing assumptions, does not handle increases

in participant numbers well, and its liveness can only be guaranteed when every participant

behaves predictably.

Delegated Byzantine Fault Tolerance (DBFT) operates in the same way as PBFT, but it

is not necessary for every node to participate in adding a block, which enhances its scalability.

In DBFT, certain nodes are selected as delegates for other nodes, and following a set of rules,

they implement a consensus protocol similar to PBFT. The cryptocurrency NEO [166] employs

this consensus methodology. Federated Byzantine Fault Tolerance (FBFT) can be regarded

as the most innovative solution for the BGP. All the participants keep lists of the significant

3https://www.hyperledger.org/projects/fabric
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nodes that they trust. Once a majority of trusted nodes are in agreement on a transaction, it

is regarded as settled. Nodes make their own decisions as to whom they trust. Ripple [167]

and Stellar [168] employ proprietary versions of FBFT. These methodologies mean that it

is necessary to maintain lists of those involved or the relationships of trust between those

involved.

The first public blockchain project incorporating a BFT consensus layer is Tender-

mint [169], inspired by the DLS protocol [170] and PBFT [164]. This project operates using

consensus cycles, with each cycle involving multi-round PBFT consensus processes for the

finalisation of a single block. Each round has a trio of phases: Propose, Prevote and Pre-

commit. During the Propose phase, a deterministic algorithm designates one validator to be

the block proposer using a round-robin method so that the frequency with which a validator

is selected is in proportion to the level of stake they have on deposit. The validator will

continue to iterate the triple-phase rounds until a single block has received over two-thirds of

Precommits. The Commit votes are then broadcast for the block, and the validator counts

the Commit votes of other validators. After more than two-thirds of the Commit votes have

been received, the block will become a confirmed part of the blockchain. Tendermint safety

can be achieved in this way as long as over two-thirds of validators in each round are honest

parties.

Proof of Vote (PoV) [171] is a type of PoW with greater efficiency. A voting method

is used to verify the network’s blocks. The PoV is used for the creation of unique security

identities for each participating node. The algorithm assigns each node a role: commissioner,

butler, butler candidate or ordinary user. This method guarantees security, lessens power

requirements and ends any bifurcation of a blockchain. Nevertheless, it has not been proved

through any mature implementation, practical applications, or empirical evidence of its the-

oretical claims.

In [172], the author introduces a methodology based on a distributed voting process

named ‘RDV: register, deposit, vote’. He claims that because the RDV algorithm does not

require mining, it will work well with devices that consume low levels of energy and the IoT.
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In the consensus mechanism, every registered node has the right to vote for transactions, with

almost every node being permitted registration. Each node is acknowledged through a pairing

of a ‘MAC address’ and a ‘public key’. As a consequence of using a MAC address, the privacy

of nodes in this network is lost, even when using random MAC addresses [173].

A consensus algorithm called proof of participation (PoP) is proposed in [174]. This

consensus algorithm serves as the consensus mechanism for “BlockTour”, a blockchain-based

smart tourism platform. The main goal of PoP is to persuade nodes to confirm transactions

that exhibit higher levels of participation. At the end of each round, the blockchain network

confirms that a block has exhibited PoP. All nodes taking part in the system elect a leader

that is subsequently in charge of adding new books. This chapter refers to this consensus

algorithm as (PoP-BlockTour).

3.5.2 Blockchain Structure

Many researchers have proposed ways of making blockchain-based systems more efficient re-

garding blockchain structure; they have suggested using different structures, such as a Di-

rected Acyclic Graph (DAG) [175], sharding protocol [176] and Greedy Heaviest Observed

Subtree (GHOST) [177]. Since the present chapter focuses on environmental sustainabil-

ity, we discuss only the structures that aim to improve the environmental sustainability of

blockchain-based systems by saving energy.

3.5.2.1 Directed Acyclic Graph

DAG is an architecture used in distributed ledger approaches. In a DAG, nodes are acyclic,

meaning no directed path begins at one node and then loops back to itself.

IOTA is intended to offer ways of incorporating blockchains into IoT networks. IOTA

was created based on Tangle technology [178], having no chains, blocks or fees. Tangle differs

from blockchain in its data structure, allowing the implementation layers of DAG systems

to incorporate elements of blockchain. These flexible structures reduce energy consumption

and the necessary work for block mining [179]. Tangle is a DAG with nodes representing the
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transactions and edges indicating the path of confirmation travelling between them. Asyn-

chronous transaction confirmation occurs, allowing for parallel validation and no mandatory

time gaps between confirmations. This means that the time a transaction is confirmed and

finalised depends on the scope of the Tangle. A central feature of Tangle is that a coordinator

must be integrated, and this may be problematic. Also, the large confirmation delay in the

low trading traffic load can be a weakness.

Hashgraph [180] represents a consensus algorithm on a DAG that provides distributed

applications with a low consensus latency, high throughput of transactions, resilience to DDoS

attack, fair absolute transaction ordering and no PoW. It is also asynchronous and achieves a

consensus using probability in a nondeterministic manner. It employs a gossip protocol that

creates gossip about gossip procedures. New information is distributed across the network

through a random selection of members, supplying them with full information. In this concept,

the distributed gossip incorporates the actual hashgraph. Every gossip event for a participant

is incorporated, guaranteeing BFT. Although this algorithm does not involve mining, extensive

confirmation delays due to low communication frequencies are a drawback.

3.5.3 Decision Making

Decision-making (sometimes without hyphenation) is seen as a cognitive process that results

in the choice of beliefs or actions out of many alternative options. Decision-making involves

the identification and choice of an alternative based on the beliefs, values and preferences of

the decision-makers. All decision-making processes create final choices, which might lead to

action.

3.5.3.1 Decision Models

Decision Models (DM) can be used as guidelines for the assessment of blockchain-based so-

lutions. These DMs already exist to support researchers and practitioners in checking if a

blockchain-based approach is reasonable. In [181], 30 blockchain decision schemes are anal-

ysed. Five schemes are assessed through a questionnaire. The other 25 are illustrated as flow
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diagrams where a sequence of binary selections results in a final state that offers the best

outcome for a specific scenario. The extant DMs mainly concentrate on deciding if blockchain

technology or alternative technologies, such as centralised databases, are more suited to par-

ticular environments. The majority of DMs omits any consideration of sustainability and

generally do not provide sufficient coverage of potential design decisions.

A systematic decision model for evaluating and planning blockchain adoption is pro-

vided in [7]. It provides a DM that can assist stakeholders in selecting the best consensus

method for their blockchain project in line with energy usage. By extending the decision tree

suggested in [182], the authors create a decision-supporting framework for the initial energy

assessment of anticipated projects.

3.5.4 Adaptive Techniques

Adaptive blockchain networks can be regarded as one of the best techniques for improving

the environmental footprint of blockchain technology. In [183], the authors present a case

for understanding and designing blockchain networks in the form of adaptive systems. Using

the example of the consensus mechanism for Bitcoin, the work identifies the variables that

influence the sustainability of the consensus mechanism, encompassing the environmental

variables and other variables that are susceptible to direct configuration from the governance

of a network. The research offers a simplified model of the relationships between these variables

and how they influence one another. In the study, the problem is formulated as a standard

control engineering problem, where the controller (blockchain governance) selects the optimal

parameters that allow the controlled system’s output (blockchain network) to satisfy certain

objectives.

Although the reconfiguration behaviour of blockchain networks can increase their re-

silience, security and energy efficiency, there are many challenges in designing pragmatic con-

trollers unique to blockchain networks. The first challenge is related to how observable node

characteristics are. A controller should be completely knowledgeable about every possible

participant’s power and the cost implications; this information is not directly available within

62



a public open-access network. Also, node-level decisions are a complex matter. For example,

we cannot assume rational behaviour for nodes. In other words, they will be perfectly set up

to exit the competition when it ceases to be profitable [183].

To alleviate the heavy burden of Mobile Edge Computing hosts and prevent systems

from being dominated by a minority, the study [184] has considered the adaptivity technique

for PoW. The paper proposes an alternative consensus algorithm called Adaptive Proof of

Work (APoW). It derives an appropriate difficulty from fulfilling PoW condition according to

device capability. For modifying the difficulty of finding blocks’ hashes, a Target Adapter is ap-

plied. Although the consensus algorithm can mitigate the energy consumption of blockchain-

based systems, concerns regarding their security are not properly discussed (such as a 51%

attack).

The study [185] proposes a consensus algorithm called nonlinear Proof of

Work (nlPoW). During every block mining, miners get a random dynamic target. This target

is a random number generated by the consensus algorithm uniformly between 0 and 2256,

which represents the possible outcomes of the SHA256 hash algorithm. This algorithm has

two-fold rationales. First, miners assigned to lower difficulties for mining blocks can mine

blocks quickly with a few computations compared to other miners. Thus, the amount of en-

ergy for the network can be reduced. Second, miners assigned to higher difficulties for mining

blocks may be discouraged from participating in mining new blocks. Although this algo-

rithm shows promising results, more studies are required to determine the ideal distribution

of dynamic targets among miners within a blockchain network.

In [186], the authors introduced a novel consensus algorithm for blockchain systems

termed Green Proof of Work (Green-PoW) to enhance the energy efficiency of the traditional

PoW method. In Green-PoW, time is segmented into epochs, each comprising two distinct

mining rounds. The initial round mirrors traditional PoW mining but with a slight increase in

energy expenditure to identify a select group of miners eligible to participate in the subsequent

round. The second round, characterized by significant power conservation, allows only the

pre-selected miners from the earlier round to compete for the creation of a new block. A
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unique difficulty level is established with a marked reduction in total hash power during each

second-round mining in Green-PoW.

3.5.5 Extra Block Structure

In [187], the authors propose a protocol called “empty blocks”. This protocol is a block

generation scheme that does not require a nonce for Proof of Work. This protocol is novel

because it employs a “call” field for regulating the creation rate for regular blocks as well

as empty blocks. The regular blocks contain transactions, with the empty blocks holding

none. The format of the regular blocks resembles that of the Bitcoin block format with the

aforementioned replacement of the nonce field with the call field. The necessary criteria for

the following hash value field are dictated by the call field.

In [188], the study describes a new way of addressing the PoW challenges using an

alternative consensus mechanism still based on PoW. In this Alt-PoW mechanism, all parties

can view how each miner performs to solve the blocks’ puzzles through monitoring “round

blocks” mining. Round blocks are solely proposed to represent the miners’ progress in the

transaction blocks’ mining phase. Every participant in the network can see all round blocks

at any time. When every party on the network can see the progress of all others, they can

save resources by making decisions to withdraw from specific block races that they have little

chance of winning, which promotes reductions in energy consumption. However, there is no

discussion of the protocol’s security in resisting possible attacks.

3.5.6 Blockchain Hash Algorithm

The degree of difficulty determines the amount of work required to calculate PoW. As the dif-

ficulty level increases, greater amounts of time are needed for calculating PoW, which requires

greater energy levels. The research [110] suggests an energy-efficient means of computing

PoW that has greater applicability to IoT systems through simplification of the PoW puzzle.

Standard blockchain systems specify difficulty levels through simplification of the initial hex-

adecimal digits, e.g. D, to be 0(s). The research proposes that the first D hexadecimal digits
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should represent a value of the hexadecimal set (0-F). Thus, this modified solution permits a

sixteen-fold increase in eligible hashes, implying that less computational time will be needed

to discover eligible hashes. It means that less energy is used than in standard blockchain

processes.

The paper [189] proposes a pair of novel blockchain consensus protocols, CHB-consensus

and CHBD-consensus, both of which are based on a consistent hash algorithm. This provides

fair opportunities for block creation to honest miners. No additional computing power is

required to create a new block, and these nodes can be fairly confirmed with a consensus of

the entirety of the blockchain. Malicious miners would have to invest enormous computing

power to attack this new way of creating blocks. Blockchain networks using CHB-consensus

and CHBD-consensus employ identical security assumptions to those used by Bitcoin systems,

saving enormous quantities of power with no compromise of security or decentralisation.

3.5.7 Assist Methods

Several other methods can assist in the improvement of the sustainability of blockchain-based

systems. In this section, we discuss four methods that are proposed for more sustainable

blockchain-based systems.

3.5.7.1 Renewable Energy

Because there are dangerous effects in using blockchain-based systems regarding these systems’

effects on global warming, alternative energy sources have become important. Digital currency

advocates claim that the ultimate environmental effect of Bitcoin, as an example, is limited.

Their primary defence is that Bitcoin mining can be largely powered by the wasted excess of

green sources. Thus, using renewable energy can be considered a method for developing the

environmental sustainability of blockchain-based systems.

According to [190], Bitcoin mining mainly takes place in parts of the world where there

is an excess of renewable energy, such as Quebec, Norway, Oregon and Washington. Conse-

quently, this allows miners to exploit the existence of cheap renewable energy. Although there
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has been significant progress in renewable energy sources over the last few years, renewable

energy supplies are unpredictable, fluctuating and dependent on weather conditions. This

creates new challenges for electrical system operation and management, with additional mea-

sures needed to ensure that mining operations can be undertaken safely and stably. It does

not appear at present that renewable energy will solve all the issues related to Bitcoin and its

sustainability, especially considering the area is not well examined.

3.5.7.2 Regulations and Fiscal Policies

The study [9] discusses current fiscal policy and regulatory approaches that allow digital cur-

rencies to provide a framework for additional legal and policy methods to mitigate blockchain

energy consumption. This could result in extensive advantages by developing blockchain-

based systems that are environmentally sustainable and that enhance the profits of financial

technologies. The author identifies several suitable financial policy proposals that could im-

prove blockchain’s environmental sustainability. However, there is a challenge with such an

approach. Finding the correct fiscal tool depends on where it is intended to operate, whether

it is legally available and where its boundaries should be. Decisions must also be taken as

to which parts of the process are under the jurisdiction of which national entity. Numerous

political, practical, economical and jurisdictional difficulties must be overcome in this area.

3.5.7.3 Mining Devices

Mining hardware is one of the core components of blockchain-based systems, and its tech-

nology has a major impact on energy consumption. The significant financial incentive gained

from Bitcoin mining has attracted many miners. These have led to fierce competition between

miners. Consequently, blockchain mining hardware has developed remarkably, and large com-

panies have quickly engaged in creating ever more sophisticated technological ways of mining

Bitcoin.

At the start of Bitcoin’s development, mining was undertaken by employing Central

Processing units (CPUs). After Bitcoin had been in existence for a year (2009), it became
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apparent that mining could be accomplished by employing Graphic Processing Units (GPUs).

Video processing involves large amounts of repetitive tasks like mining involves large amounts

of repetitively generated hashes. GPUs have greater Arithmetic Logic Units (ALUs) than

CPUs. Identical ALUs are employed for Bitcoin mining for the generation of SHA-256 hashes.

This means that a GPU can mine Bitcoin more rapidly than a CPU. Shortly afterwards (2011),

miners began using Field-Programmable Gate Arrays (FPGAs). In 2013, they moved on to

Application-Specific Integrated Circuits (ASICs). As the name implies, ASICs are specifi-

cally designed for one dedicated form of calculation (while FPGAs are reprogrammable for

mining any indicated entity). This guarantees optimisation of resources in the generation of

hashes [190].

These new generations of mining devices provide high levels of performance and are

more energy efficient, which has led to improvements in the environmental sustainability

of blockchain-based systems. However, it is predicted that future performance and energy

efficiency improvements for these mining devices will not see a rapid improvement [46].

3.5.8 Characterisation of Methods for an Environmentally Sustain-

able Blockchain

We have presented a thematic map regarding the methods proposed to improve blockchain

design’s environmental sustainability, summarised in Figure 3.2. This map covers the current

state-of-the-art research extracted from the primary studies. The thematic map constructs a

taxonomy for the methods of enhancing blockchain environmental sustainability.
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Figure 3.2: Thematic Analysis of Methods for Developing Blockchain Environmental Sustain-
ability
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3.6 Existing Measurement Tools for the Environmental

Sustainability of Blockchain

3.6.1 Measuring Energy Consumption

Measuring the amount of electricity that Bitcoin mining machines produce is still challenging.

Although it is possible to estimate the computer power employed by the Bitcoin network as

a whole, it is not so simple to assess the underlying machines and their energy consump-

tion. On the whole, the existing estimations of energy consumption are based on the Bitcoin

cryptocurrency. The analysis for electricity consumption that is commonly seen is based on

assumptions. Also, the estimates published in the scientific literature vary considerably.

In [44], the author proposes Bitcoin’s energy consumption calculation from an economic

view. The calculation makes an estimation based on the percentage of revenue gained from

mining spent on energy costs. It assumes that 60% of revenue is spent on energy costs for

the network, producing a state where even mining by devices provided by BITMAIN, the

biggest manufacturer that offers new Bitcoin mining machines, cannot earn profits [44]. This

estimation assumes that electricity will cost five cents per kilowatt-hour.

Although the validity of the results may decrease as the number of assumptions rises,

the author has numerous assumptions that can be potential shortcomings of his estimation.

One assumption that may be a weakness is the assumed electricity price (five cents per

kilowatt-hour). However, numerous miners pay a lower rate than this for energy, particu-

larly in China, while small-scale miners may pay higher rates. An additional shortcoming

with these assumptions is that the price of mining hardware can vary in terms of retail and

resale costs, depending on the value of coins and demand.

Bitcoin’s energy footprint in terms of mining has been analysed in [94]. The authors

root their analysis in the premise that the power consumed by networks (P), which is measured

in Watts, can be calculated from the Bitcoin network’s hashrate (R), which is measured in

hash/second; the last factor is the energy efficiency of the Bitcoin mining device (D), which

is measured in hash/Joule, P = R/E. The Bitcoin network’s hashrate is R ≈ 232D/600. By
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combining the energy efficiency (E) with the hashrate (R), the amount of power consumed by

the Bitcoin network can be estimated as P = R/E ≈ 232D/(600E).

Clearly, on any specific day, we can only make an accurate estimate of power consump-

tion by thinking of what hardware is available for that period because any standard computer

with the right software can participate in Bitcoin mining. Another challenge that could affect

the accuracy of the estimation is the situation of the miners, such as the location of mining

devices. Also, cryptocurrencies have been designed not to be traceable, which leads to varying

difficulties in tracing mining activities.

In [95], the authors experiment with how efficient mining is performed for nine forms of

cryptocurrency and ten hash functions. The data are compared statistically with benchmark

experimentation using Monero mining. The research provides estimations of the amount of

electricity consumed globally by Monero mining and discusses the amount of energy consumed

by cryptocurrency mining as a whole. The experimental and theoretical results are used to

estimate the amount of electricity other cryptocurrencies consume quantitatively.

Although the research quantitatively estimates energy consumption and environmental

impacts, it has several limitations. First, the currency is encrypted to anonymise the correct

number of miners and their locations. To undertake general estimations, the assumption was

made that miners are only connected with local pools and that the pools do not have servers

anywhere except in their birthplace. It is known that miners do not necessarily undertake

mining activities in their local pools, and pools can own servers in different countries, allowing

miners to connect with overseas facilities. This means that it is very difficult to produce an

accurate estimate.

Levels of blockchain energy consumption are determined in [96]. Employing estima-

tions, the authors show that modern PoW cryptocurrencies’ energy consumption may be seen

as outstripping the usefulness of the currency. Nevertheless, they contend that even if PoW

cryptocurrencies become widely adopted, they will not threaten the climate significantly. The

authors calculate that Bitcoin is likely to consume between 60 and 125 TWh per year, this

being the equivalent of yearly electricity consumption for medium-sized countries like Austria
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and Norway.

In [191], the authors propose a “green efficiency” characteristic that is incorporated

within a quality model for the Bitcoin industry in [191]. This characteristic aims to create the

highest-quality cryptocurrency model from the energy consumption perspective. Furthermore,

the model seeks to delineate methods of ensuring green efficiency in the early phases of building

and developing a worldwide cryptocurrency. This research paper is a work in progress and

broadly examines the suggested green quality model for the cryptocurrency industry.

3.6.2 Measuring Carbon Emission

In [45], the authors use empirical evidence for the analysis of the carbon footprint of Bitcoin.

They rely on data taken from recent filings with the IPO for major hardware manufacturers,

the compositions of mining pools and the operations of mining facilities. As well as making

an estimate of overall power consumption, the researchers have determined a geographical

footprint for mining activities on the basis of IP addresses. The researchers demonstrated that

during November 2018, Bitcoin’s yearly electricity consumption came to 45.8 TWh. Based on

this, they extrapolate a calculation that Bitcoin’s annual carbon emissions are between 22.0

and 22.9 MtCO2eq, more than Jordan and less than Sri Lanka, somewhere around the levels

of Kansas City.

Climate model projections have been used to estimate the quantity of CO2 needed to

exceed a global warming figure of 2°C [47]. This figure is compared with the total emissions

that Bitcoin would use if it became a mainstream currency, in line with the rates of adoption

of other widely-accepted technology and on the assumption that Bitcoin mining conditions

would be the same in the future as they are now. The researchers state that Bitcoin mining

could increase this figure within several decades should Bitcoin replace cashless transactions

and still be mined as it is today. Whilst much research, such as [192]–[194] agree that Bitcoin’s

electricity consumption is rising, questions have been asked by a number of studies [92] about

the methodology employed in [47], indicating that there is a need for greater accuracy in

measurement.
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In [195], researchers present a pair of methodologies for assessing the carbon footprint

associated with Bitcoin transactions. The initial approach is relatively straightforward, at-

tributing weight to the origins of coinbase contributions in a transaction according to their

proximity to the originating block. In the subsequent method, the weighting of coinbase con-

tributions is adjusted to reflect input and output values for each intermediate transaction.

By employing these techniques, the authors can link individual transactions and unspent

transaction outputs to precise amounts of atmospheric carbon emissions.

3.6.3 Measuring Electronic Waste

Electronic waste (E-waste) poses a severe threat to the environment. It can pollute water and

air because of its toxic chemicals and metals contaminating the soil resulting from improper

recycling. Most studies on the environmental sustainability of blockchain technology focus

on the energy consumption or carbon emissions of this technology and ignore the growth in

global E-waste. In [196], the authors demonstrate a methodology for estimating blockchain

technology e-waste by focusing solely on Bitcoin. They develop a framework to assess the cur-

rent state of the network’s e-waste generation. They use the lifetime of Bitcoin mining devices

to keep track of available device types. They combine this with publicly available product

specifications that reveal computational power, power efficiencies and equipment weight of a

given device. They use this data to evaluate the duration of profitable operation per mining

device, assuming that devices become e-waste once they turn unprofitable. The study shows

that each Bitcoin transaction produces about 0.272 kg of e-waste. It also shows that Bitcoin

could produce up to 6.44× 107 kg of e-waste in early 2021, one of the peak Bitcoin price levels.

3.6.4 Environmental Sustainability Assessment Systems

A sustainability assessment is essential and should be an integral part of the planning and

organising of any blockchain-based system. Sustainability can be evaluated through the use

of indices or sets of indicators. Whatever metric is used to assess sustainability, all have the

same purpose: to assist decision-makers in evaluating environmental sustainability, provid-
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ing information for planning subsequent action, revealing trends that are not immediately

apparent to offer future forecasts and to compare places and situations.

In [99], a measurement framework is proposed that provides a broad overview of the en-

vironmental problems linked with blockchain technology used for producing cryptocurrencies,

specifically Bitcoin. This is a new type of framework that gives consideration to environmental

sustainability elements that go beyond the energy consumption levels, for example, the type

of energy source producing the electricity, how much hardware is reused and/or recycled, and

how scalable the technology is. For the development of this framework, the authors found

pertinent indicators of green performance in scientific literature and linked them with the

essential elements of blockchain technology that are responsible for its environmental impact.

Whilst this paper is the first time that an attempt has been made to develop a broad frame-

work for the evaluation of the sustainability of blockchain, it does have limits in that it is

solely focused on blockchain technology that uses PoW and, even more specifically, just on

Bitcoin.

In [100], the authors employ the widely-recognised Life Cycle Assessment methods to

undertake a rigorous analysis of the causes of the environmental impact of Bitcoin mining,

both in the past and in the future. The research demonstrated that in 2018 the Bitcoin

network’s consumption was 31.29 TWh and its carbon footprint was 17.29 MtCO2eq ; this

estimate falls towards the bottom end of the findings of past research. The primary factors

affecting this environmental impact were demonstrated to be miners’ geographical locations

and how efficient the mining equipment was. Unlike past research, this research demonstrated

that the useful lifetime, production and disposal of this equipment did not make a significant

difference to the overall impact, and that although the total hashrate is predicted to rise, it is

also predicted that the amount of energy consumed and the environmental impact per hash

will fall.
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3.6.5 Predicting Effects on Environmental Sustainability

Although predicting the core factors responsible for the environmental sustainability of

blockchain-based systems is critical, our SLR has yet to find one study that discusses this

gap. In [97], a model for predicting future values of E-waste and energy consumption asso-

ciated with traditional PoW is described. With the underlying intention of identifying and

explaining patterns in E-waste creation and energy use, the authors create two predictive

models that leverage Facebook’s Prophet algorithm and Deep Neural Networks. The models

rely on a number of explanatory elements related to the Bitcoin market and the microstructure

of the blockchain. By leveraging insights into daily E-waste generation and energy usage and

eleven essential input variables, they evaluate the predictive performance of the two frame-

works. They subsequently describe how these inputs can anticipate and manage E-waste gen-

eration and energy consumption using local interpretable model-agnostic explanation (LIME)

and Shapley additive explanation (SHAP). The results can inform forecasts on future energy

consumption and E-waste accumulation in the current Bitcoin mining setup.

3.7 Discussion

In this section, we summarise the main findings, discuss the consequences of the SLR for

academic researchers and report on the challenges and limitations to the review’s validity.

3.7.1 Principal Findings

We conducted this review to answer the five research questions described in Section 3.2. Below,

the main findings of this review are summarised.

3.7.1.1 RQ1.1

It is important to emphasise that the purpose of the current SLR is to focus only on one

dimension of sustainability, the environment, not the other dimensions, such as economic

or technical ones. Therefore, the results of the current study summarise only the factors
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affecting the environmental sustainability of blockchain technology (see Figure 3.1). Some of

these factors are argued by some as the reasons for the rise of energy consumption of this

technology but without proving this experimentally. They do not explain how these factors

increase energy waste, to what extent they do so and how that can affect the environmental

sustainability of blockchain-based systems. Also, existing research does not investigate other

factors that may be impacted, such as land use (the size of mining devices) or the atmosphere

(the heat dissipated by mining devices).

3.7.1.2 RQ1.2, RQ1.3 and RQ1.4

The results have shown that most current research enhances the environmental sustainability

of blockchain-based systems by focusing on finding improvements to the PoW consensus al-

gorithm. A large number of these alternative consensus algorithms have only been subject to

online discussions (i.e. not well documented and not publicly available implementation), with

just a small number reaching the level of formal research publications. Also, some of these

algorithms that try to save energy disregard some key characteristics of blockchains, such as

anonymity, security and decentralisation. We discuss the limitations and weaknesses of these

consensus algorithms in Section 3.5.

After analysing all of the related papers retrieved from scientific databases, we have

categorised the current state-of-the-art methods and techniques for developing environmen-

tally sustainable blockchain technology. Seven main categories are presented that include

more than fifty subcategories (see Figure 3.2). A few papers have improved the sustainability

of blockchains by considering new methods not related to consensus algorithms, such as using

DAG structures and renewable energy. However, these ideas need further improvement and

investigation. Also, many methods that could increase the environmental sustainability of

blockchains are missed. We discuss some of these in Section 3.8.
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3.7.1.3 RQ1.5

The ever-increasing number of blockchain-based systems that are spreading across multiple

domains leads to rising energy consumption and carbon footprints. Although it is important

to measure and monitor sustainability, especially the energy consumption of such systems, we

have identified just a few articles that measure energy consumption or propose a framework

to measure environmental sustainability. Most of the reviewed papers measuring energy con-

sumption rely on an estimation of energy wasted by Bitcoin and its mining process without

examining other factors, for example, the energy consumed by storage.

Regarding the sustainability metrics, the field still needs more effort. In this review,

we identified just two papers that present frameworks for measuring the environmental sus-

tainability of blockchain-based systems. However, the studies miss a lot of factors that should

be considered, such as cooling systems, CO2 emissions and land usage of miners, especially

mining pools. Also, they focus only on Bitcoin cryptocurrency and its consensus algorithm,

PoW.

3.7.1.4 RQ1.6

Our SLR helps in understanding the current research gaps. While reviewing the related papers

for this SLR, we identified some gaps in the area of blockchain environmental sustainability.

These research gaps can enable practitioners and other researchers to concentrate on areas that

need more investigation. These gaps are identified as a result of RQ1.1–RQ1.5 and discussed

in Section 3.8.

3.7.2 Implications of the Review on Research

The aim of the current SLR on the environmental sustainability of blockchains is to investigate

how current research has enhanced the environmental sustainability of blockchain design. This

chapter provides a comprehensive review that summarises the relevant studies and reports

some gaps in the literature. The findings can provide future potential directions for researchers

who are interested in developing green blockchains. The discovered challenges and limitations
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of the existing research can guide researchers to direct their future research accordingly to

find solutions to address the identified gaps.

3.8 Future Research Directions for more Environmentally

Blockchains

Initial keyword searches indicate that there are a limited number of articles related to

blockchain environmental sustainability. Therefore, this section provides suggestions for aca-

demic scholars and practitioners who are working in the field of sustainable blockchains and

are searching for new ideas.

3.8.1 Factors Related to Blockchain Sustainability

Although the identification of the elements affecting the environmental sustainability of

blockchains has been discussed in several papers, these factors need more research to show

the consequences for the sustainability of blockchains. Also, it is important to integrate some

factors with others to better understand their impacts. There are some factors that are not

covered in the literature, such as the ambient temperature of warehouses full of mining ma-

chines, the availability and age of such machines, storage usage and transaction throughput.

3.8.2 Methods for Developing Blockchain Sustainability

Although blockchain technology emerged a decade ago, many major directions for developing

the environmental sustainability of blockchains have not yet been covered. In this section, we

discuss some methods that could improve blockchain sustainability.

3.8.2.1 Consensus Algorithms

The consensus algorithm plays a crucial role in reducing the energy consumption of blockchain-

based systems. Hence, many researchers concentrate on proposing energy-efficient consensus

algorithms. Consensus algorithms that rely on miners’ trust or reputation have already been
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proposed. However, these algorithms utilise reputation or trust models that may not be ap-

propriate for evaluating the behaviour of miners within blockchain networks, or they compute

reputation and trust values based on metrics that have not been validated for blockchain-based

systems. Therefore, building reputation and trust models for calculating miners’ reputation

or trust values within blockchain-based systems is very important as a future research topic.

We have addressed this limitation in Chapter 5.

Today, Artificial Intelligence (AI) and blockchain are considered key factors behind

technology development. The integration of these techniques is promising. AI can help opti-

mise the energy efficiency of blockchain-based systems by building machine learning systems

that assign the process of mining to miners based on context-aware or situation-aware systems.

One potential research avenue could be using a machine learning system to determine miners

based on their energy consumption or their effect on the environment. Also, we can build

reinforcement machine learning algorithms to determine the ideal behaviour within a specific

context to minimise its energy consumption. Another research idea is to use machine learning

to minimise miner numbers based on, for example, their reputation level, which could lead to

reducing wasted energy.

3.8.2.2 Sharding

Although sharding is commonly used in distributed databases, as first proposed in [197],

sharding is a principle that can be applied to blockchain networks. It refers to the way in

which processing transaction overheads can be split amongst large or small groups of nodes,

called “shards” Such a methodology was first put forward to tackle the problems of scaling

blockchains. Shards work alongside each other to optimise blockchain performance (increasing

the number of transactions processed for every consensus round) by splitting up the various

overheads of running a blockchain network. These overheads include the costs of storage,

computing and communication. Much research has been done into sharding in traditional

distribution systems to increase transaction throughputs when scaled up [198]. However, there

is a lack of studies on the benefits of using this protocol to reduce the energy consumption of
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blockchain technology.

3.8.2.3 Many/Multi-Objective Optimisation

Based on our literature review, there is a lack of optimising and modelling blockchain-based

systems using many-objective and multi-objective optimisation algorithms. In particular,

there is a need for minimising energy consumption and its consequences without compromising

the inherent properties of blockchain technology.

Depending on the particular scenarios, blockchain-based systems may have several ob-

jectives and trade-offs need to be made to build an overall optimisation. For instance, the

energy efficiency and security for blockchain-based systems can be conflicting because a high

number of miners will increase both the systems’ security and energy consumption. Therefore,

a many-objective or multi-objective optimisation model can help decision-makers choose the

optimal solutions based on their needs. There can be many objectives to trade off, such as

energy, carbon emissions, security and performance. Numerous evolutionary algorithms, such

as genetic algorithms and goal programming, can be considered to optimise the environmen-

tal sustainability of blockchain-based systems. In addition, optimisation models can benefit

from machine learning in several ways, such as predicting optimal miners for an optimisation

model. Solving the problem of blockchain-based systems’ environmental sustainability as an

optimisation problem can be a good future direction for research in promoting blockchain

sustainability. Therefore, we have considered and addressed this gap in Chapter 4.

3.8.2.4 Adaptive Blockchain

An adaptive blockchain architecture may improve the environmental sustainability of

blockchain technology. Most of the work related to adaptation in blockchains has focused

on improving difficulty adaptation [199] or reward adaptation [200] without regarding energy

consumption and environmental sustainability as possible variables.

Adaptive consensus algorithms can be interesting future research areas. They can

be built based on energy-aware algorithms that can provide information for adaptivity in
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many different ways. For example, the number of miners or hash algorithms can be changed

dynamically based on the information that is statistically analysed. In addition, we can take

advantage of the adaptivity approach to construct self-adaptive blockchain-based systems

that can switch between existing consensus algorithms, for example, between PoW and PoS,

or between blockchain types, for example, between public, hybrid and private, relying here

on context-aware systems. Many factors can be taken into account to propose self-adaptive

consensus algorithms and self-adaptive blockchain-based systems, such as the factors identified

in section 3.4. We have contributed to addressing the lack of designing self-adaptive models

for blockchain-based systems in Chapter 6.

3.8.2.5 Renewable Energy

The adoption of renewable energy in blockchain technology is a research challenge that is

worth studying. There is a lack of methods that utilise renewable energy to reduce energy

consumption and carbon footprints. Maximising the adoption of renewable energy for mining

can be a good way of reducing environmental problems. Hence, there are many different

ideas that researchers can work on regarding the use of renewable energy. To operate mining

devices with green energy produced from various resources, such as sun, wind and water, we

should investigate how the challenges of generating green energy can be addressed because

such energy is unpredictable, and the ideal locations and good climatic conditions must be

identified.

Renewable energy can be bought from off-site companies or can be produced by har-

nessing on-site equipment. The consequence of using these techniques may raise some oppor-

tunities that should be investigated. Because a large amount of power may be lost while being

transmitted from renewable energy sources to blockchain-based systems, a study on this issue

is necessary. Cooling equipment and other computing devices related to blockchain-based

systems also have an impact on environmental sustainability. Thus, it is crucial to conduct

research about the benefits of using green energy instead of brown energy for such equipment

and devices.
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3.8.2.6 Regulations

Because of the decentralisation of blockchain architecture, it does not rely on any central third

authority. This leads to a need for enforcing government regulations and industry standards.

Indeed, it is necessary to formulate regulations for determining which kind of applications

can be built using blockchain technology. Also, we need to create industry standards to

specify some parameters related to the environment, such as an acceptable amount of energy

consumption or carbon emissions.

3.8.2.7 Mining Techniques

Quantum computing, which is a modern technology within Computer Science and Physics,

can potentially solve a computational task more quickly and efficiently compared with classical

computing by leveraging quantum-mechanical concepts, such as entanglement and superpo-

sition. Because quantum computers are designed to work faster than traditional computers

when it comes to solving specific difficult problems, we can use them to perform mining for

blockchain-based systems. Because it is not clear if quantum computers are capable of re-

ducing energy consumption, we need to explore the impact of using such computers on the

environment. In other words, quantum computers may be able to find nonces for blocks faster,

but we do not know how much energy the quantum computers consume to find the nonces.

Future research can examine this issue, which could provide a new direction regarding the

mining process.

Integrating cloud computing with blockchain technology can be one direction for en-

hancing the environmental sustainability of blockchain-based systems. For example, cloud-

based mining may reduce these systems’ energy consumption, carbon emissions and E-waste.

Also, cloud computing can be used to store blocks while mining devices store essential infor-

mation. In addition, consensus algorithms can be modified to dynamically shift mining blocks

to cloud computing considering specific requirements, such as energy usage. Such ideas should

be investigated to show their impact on the environmental sustainability of blockchain-based

systems.
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3.8.3 Measuring Blockchain Sustainability

Because of the absence of research regarding measuring environmental sustainability, we

present several future potential recommendations. Many factors affect the energy consumption

of blockchains, so we need to cover several factors or integrate different factors to accurately

determine energy consumption. These factors can impact consumption directly or indirectly.

A list of factors affecting energy consumption and affecting sustainability is discussed in Sec-

tion 3.4. These factors can be taken into account while monitoring energy consumption. In

addition, they can help build a comprehensive framework to measure blockchains’ energy

consumption and environmental sustainability.

In general, the existing papers estimate energy consumption based on Bitcoin. There-

fore, the field requires research to measure the energy consumption of blockchain-based systems

directly and precisely based on real-world data instead of estimations of energy consumption

based on Bitcoin. Also, the acceptable levels of energy consumption for particular blockchain

components and for every context should be investigated.

Recently, different communities have started to rapidly shift towards adopting

blockchain-based systems. However, the environmental sustainability of most of these sys-

tems has not been analysed as part of their evaluation. Since there are no benchmarks for

measuring and comparing the environmental sustainability of blockchain-based systems, de-

veloping a benchmarking framework will help in understanding the effects of these systems on

our environment.

3.9 Conclusion

In this chapter, we conducted an SLR to investigate the state-of-the-art concepts around the

environmental sustainability of blockchain design. We have focused solely on the environ-

mental dimension of sustainability, as it is regarded as one of the determinant factors for

the successful adoption of blockchain-based systems and a key contributor to its long-term

economic viability. We have considered five of the most relevant data sources in the field to

82



conduct the search and found 104 related papers. The review identifies and classifies various

factors that relate to and negatively affect the environmental sustainability of blockchains-

based systems. We have reported on several mechanisms and measurement tools for evaluating

blockchain energy consumption for their support in understanding the likely environmental

sustainability of these systems. In addition, our survey shows many open concerns and re-

search gaps. We discuss ideas for future research that can be conducted to enhance blockchain

sustainability.

There are a variety of ways in which our SLR can be pushed further: the surveys can

pave the way for a better understanding of the relationship between blockchain components

and sustainability dimensions, including environmental sustainability. It can also steer further

research on “Blockchain for Green systems”, as excessive energy consumption is often cited as

a major obstacle to the adoption of this technology. The review can also help in understand-

ing how to develop systematic engineering methods, techniques, approaches and metrics for

environmentally-aware, dependable and sustainable blockchain-based systems grounded on a

solid understanding of the current state of the art.
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Chapter Four

A New Problem Formulation for
Optimising the Environmental

Sustainability of Blockchain-Based
Systems

Context. Proof of Work (PoW) requires an enormous amount of energy and produces consid-

erable carbon emissions that can affect the environmental sustainability of blockchain-based

systems. Enhancing the environmental sustainability of these systems without compromising

the fundamental properties of blockchain technology, for instance, decentralisation, trustwor-

thiness, scalability and security, is a challenging problem. The solution has to consider how

energy consumption and carbon emission can be minimised whilst ensuring decentralisation

and trustworthiness.

Objective. This chapter formulates the problem of balancing the environmental sustainabil-

ity of blockchain-based systems (i.e., energy consumption and carbon emissions minimisation)

and their decentralisation and trustworthiness as a Search-Based Software Engineering (SBSE)

problem. It represents the problem of selecting miners for mining blocks in a blockchain-based

system as a subset selection problem.

Method. We propose a model composed of multiple fitness functions. The model can be used

to explore the complex search space by selecting a subset of miners within a blockchain-based

system to minimise its energy consumption and carbon emission without drastically impacting

its decentralisation and trustworthiness. We integrate our proposed fitness functions into five

evolutionary algorithms (EAs) to solve the problem of blockchain miners’ selection. Several

experiments are conducted to demonstrate the effectiveness and applicability of the model in
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enhancing the environmental sustainability of blockchain-based systems.

Results. Our results show that the environmental sustainability of blockchain-based systems

can be enhanced with little degradation in other competing objectives. Also, the results show

that the selected EAs outperform the baseline algorithm. However, the comparisons among

these EAs expose that no one algorithm is consistently outstanding for all fitness functions.

Conclusion. The proposed model is used to optimise the sustainability of blockchain-based

systems but can potentially be used for optimising other objectives of these systems, such as

security and scalability.

Contribution to Literature. This chapter is contributed to the research literature through

our published poster paper "Selecting Miners within Blockchain-based Systems Using Evolu-

tionary Algorithms for Energy Optimisation" and our published full paper "Optimising the

Energy Consumption of Blockchain-based Systems Using Evolutionary Algorithms: A New

Problem Formulation". This chapter is written based on these papers.
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4.1 Introduction

Despite the great potential of blockchain technology, there is an essential issue regarding

its environmental sustainability. In the current debate concerning sustainability and global

warming, such a perspective could constrain or limit the global adoption of this technology [9].

Therefore, the question of optimising and finding solutions for this issue is currently receiving

much attention. Researchers have proposed more sustainable and energy-efficient mechanisms

for trustworthy verification, as discussed in Chapter 3. However, Chapter 3 demonstrates that

research has not utilised SBSE techniques to solve the environmental sustainability problem

of blockchain-based systems. In addition, different well-developed optimisation techniques are

available and show promise to address optimisation problems in many fields. However, min-

imising the energy consumption and carbon emission of these systems has not been formulated

as an optimisation problem and solved using EAs.

This chapter addresses this gap by reformulating the miners’ subset selection problem

in blockchain-based systems as an SBSE problem to optimise the environmental sustain-

ability of these systems. In this context, this chapter aims to answer the second research

question introduced in Chapter 1: RQ2: How can the environmental sustainability

of a blockchain-based system be optimised without compromising its inherent

properties, such as decentralisation and trustworthiness?

In this chapter, we reformulate the problem of the environmental sustainability of

blockchain-based systems as an SBSE problem: miners subset selection problem. We represent

the problem as a set of participating miners within a blockchain-based system where each miner

consumes energy and emits carbon to add blocks and has a level of reputation. The system

becomes more trustworthy with many miners, leading to massive energy consumption and

carbon emissions. The features of miners in a set constitute a decentralisation score, and as the

score decreases, the system becomes a centralised system. With such trade-offs, we propose a

model that uses EAs to optimise the environmental sustainability of these systems by selecting

miners that minimise energy use and carbon emissions while maximising other conflicting

objectives. In this chapter, we use four different fitness functions: energy consumption versus
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trustworthiness, energy consumption versus carbon emissions versus trustworthiness, energy

consumption versus decentralisation versus trustworthiness, and energy consumption versus

carbon emissions versus decentralisation versus trustworthiness.

The main contributions of this chapter are summarised as follows:

• We formulate the problem of selecting miners within blockchain-based systems as an

SBSE problem.

• A novel optimisation model for the problem of selecting miners within blockchain-based

systems is proposed using four different fitness functions for optimising the environmen-

tal sustainability of blockchain-based systems.

• We conduct an experimental evaluation to show the efficacy of the proposed model in

saving energy and reducing carbon emissions.

• A comparison among EAs is presented to analyse their performance in solving the prob-

lem of selecting miners within blockchain-based systems.

The rest of the chapter is organised as follows: Section 4.2 presents an overview of

the optimisation concept, and Section 4.3 introduces the related work. The details of our

optimisation problem are presented in Section 4.4. The experiment design is explained in

Section 4.5. We present our results and discussion in Section 4.6. Finally, Section 4.7 presents

our conclusions.

4.2 Optimisation Overview

Nowadays, optimisation is widely used since it is a powerful tool for developing different

fields. It is a fundamental technique in applied mathematics, engineering, computer science,

economics, and other sciences. Optimisation seeks to select an “optimal” solution from a set

of solutions. The degree of optimally for the solution is measured using single or multiple

objective functions of a problem that is to be maximised or minimised. The search process for

the optimal solution is undertaken subject to constraints. These constraints take the form of
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expressions of equality and inequality. Furthermore, solving some problems requires multiple

objective functions; thus, conflicts may occur between these functions. In this section, we

present a brief overview of the optimisation concept.

4.2.1 Optimisation Using Meta-heuristic Algorithms

The most recent advancements in the previous few decades have relied mainly on meta-

heuristic algorithms. Indeed, meta-heuristic algorithms are used in the great majority of

modern optimisation techniques in all important engineering and science disciplines, as well

as industrial applications. The majority of meta-heuristic algorithms are inspired by na-

ture, such as Particle Swarm Optimisation (PSO), Genetic Algorithm (GA) and Ant Colony

Optimisation (ACO) [201]. In addition, GA is the most popular algorithm of Evolutionary

Algorithms (EAs) that has become increasingly powerful in tackling complex optimisation

problems and searching for optimised solutions [202], [203].

EAs belong to the group of bio-inspired algorithms [204]. They are inspired by the

concepts of Charles Darwin’s evolutionary theory, which incorporate selection and variation.

EAs explore the search space through random perturbations and create a set of candidate

solutions called a population. Individuals within a population are evolved using a combination

of crossover and mutation operators to create a new generation. Crossover is a process of

mating two parent solutions to produce new offspring by mixing the parent’s genetic materials.

A mutation occurs in individual solutions by randomly altering their genetic materials and

introducing new ones. Individuals for the new generation are chosen using a survival selection

mechanism. Although it usually prefers elite individuals (i.e., fitter), selection does not prevent

the survival of unfit solutions. Such preservation diversifies the new generation.

4.2.1.1 Selected Evolutionary Algorithms

As we introduce a new optimisation problem (blockchain miner selection problem), we inte-

grate our proposed fitness functions into five EAs, each with different mechanisms to preserve

solution diversity. For example, Non-dominated Sorting Genetic Algorithm II (NSGA-II) cre-
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ates niches by computing a crowding distance for each solution and uses the crowding distance

in its selection operator to promote diversity [205].

To diversify solutions, Strength Pareto Evolutionary Algorithm 2 (SPEA2) [206] uses

an external archive to store the non-dominated solutions. Then, for each solution, it calculates

how many solutions dominate it and the number of solutions it dominates. SPEA2 also uses

a nearest neighbour density estimation technique to guide the search efficiently.

Similarly to SPEA2, Pareto Archived Evolution Strategy (PAES) [207], which is a

mutation-only algorithm, uses a d-dimensional archive (d = the number of objectives) as a

reference set when it creates new solutions. To promote diversity, PAES divides the objective

space into grids and places each solution in a certain grid according to the solution’s objective

values. Then, a crowding measure is computed using the density of solutions in each grid.

Finally, the crowding measure is used in ranking the non-dominated solutions in a way that

prefers non-dominated solutions belonging to the least crowded regions.

One of the main performance indicators is the hypervolume, which computes the dom-

inated proportion of the search space by the found solutions [208]. The greater the hyper-

volume is, the better performing the algorithm is. Indicator-based Evolutionary Algorithm

(IBEA) [209] uses the hypervolume indicator to rank solutions. It calculates how much vol-

ume each solution contributes to the overall Pareto front’s hypervolume. Solutions with higher

hypervolume values are preferred. As a result, this process maximises the final Pareto front

domination of the search space.

We also use Non-dominated Sorting Genetic Algorithm III (NSGA-III), an improved

version of NSGA-II for many-objective problems [210]. To preserve diversity, the NSGA-III

algorithm uses a set of well-spread reference points representing interesting directions in the

fitness landscape and virtually representing the Pareto front. As the search process progresses,

the algorithm updates the set and niches created around these reference points. Furthermore,

predefined points divide the search space into multiple targeted searches for the algorithm

instead of one massive search space. This alleviates the problem of computing a diversity

score for every solution by selecting solutions from different niches instead of computing the
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crowding distance. In addition, it reduces the massive number of non-dominated solutions in

many-objective problems, as each optimal solution corresponds to a targeted search segment.

In this thesis, we use NSGA-II, SPEA-2, PAES, IBEA and NSGA-III because they

have different mechanisms for preserving solution diversity, which helps navigate the search

space efficiently [211]. According to [202], [212], EAs can be loosely classified into three cate-

gories based on their fitness assignment rules or objectives: Pareto-based, indicator-based, and

decomposition-based. NSGA-II and SPEA-2 exemplify Pareto-based algorithms, IBEA and

SMS-EMOA exemplify indicator-based algorithms, and NSGA-III and MOEA/D exemplify

decomposition-based algorithms. In this thesis, we have excluded MOEA/D and SMS-EMOA

from our evaluation because they have shown difficulty converging their solutions, even when

the number of objectives is as low as four [213]. Additionally, we have included PAES in our

evaluation because it is a well-established algorithm usually used as a baseline for comparing

different algorithms [207], [214].

Moreover, selecting these algorithms as the chosen MOEAs for this research results

from their availability as we focus on the native algorithms implemented within a Multi-

Objective Evolution Algorithms framework called MOEA Framework and supported by the

framework for all functionality provided. Also, they are well-suited for solving similar problems

to ours [215]–[219]. Their compatibility with our problem representation is another reason for

selecting these algorithms, as the solution encoding in our model is Binary-coded (Boolean),

and these algorithms can be used with binary-coded solutions.

4.2.2 Search-Based Software Engineering

Developing effective and dependable software frequently involves tedious and costly work,

which software engineers try to circumvent through automation. However, automating soft-

ware is a viable and efficient approach because it considerably reduces the time and effort

required for software development.

In SBSE, optimisation algorithms are often used to address conventional software en-

gineering problems, which tend to demand a balance between the competing aims of vastly
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different objectives. The problems encountered in SBSE possess extensive solution spaces

that are difficult to examine via traditional software engineering techniques. When software

engineering problems are addressed using SBSE methods, they require reformulation as search

problems; these are then solved using search-based optimisation algorithms to find optimal or

near-optimal solutions. Potential solutions in a solution space primarily differ in their qual-

ity, that is, the degree to which they can offer a solution to a given problem. Therefore, a

fitness function that assesses each candidate solution can be used to shape the search process.

Various methods can be employed to develop solutions in line with the search methodology.

Notably, the performance of SBSE techniques can reach - and potentially even exceed -

human performance. For instance, the review [220] surveys SBSE research on the problems of

work-group formation, test case selection and next release. It compares the solutions presented

in the reviewed works with solutions developed by professionals and academics. The study

revealed an overall greater consistency among the machine-produced solutions.

4.2.2.1 Blockchain and Search-based Software Engineering

Several problems brought by blockchain technology are NP-hard problems and have a time

complexity of O(2n). These problems can be formulated and solved by utilising SBSE tech-

niques. Many blockchain-based systems involve optimisation problems, including perfor-

mance, security, decentralisation and scalability. They are like many other real-world ap-

plications where there are trade-offs between many competing objectives. Although SBSE

has grown rapidly, there needs to be more work on SBSE as a means of addressing blockchain-

based systems challenges. Like many technologies, SBSE has the potential to benefit from

blockchain technology and vice-versa.

The Literature has presented some conflicting blockchain objectives and linked them to

blockchain components. In Table 4.1, we have summarised some of these conflicting objectives

and their related blockchain components that can be utilised to optimise blockchain-based

systems.

92



Table 4.1: Examples of Blockchain Objectives for Optimisation Models

Blockchain Component Objectives
Environmental Security Performance

Mining Device [9] [221] [221]
Number of Nodes [222] [222] [222]
Consensus Algorithm [9] [223] [223]
Blockchain Type [4] [223] [224]

4.3 Related Work

Due to the excessive energy consumption of PoW, several consensus algorithms, such as

PoT [157] and PoR [159], have been proposed to reduce energy consumption and improve

environmental sustainability by reducing the number of miners in the competition to find the

nonce. These algorithms track the miners’ behaviours over some time and then calculate their

reputation or trust values. Finally, these values are used to allow miners to add blocks. Un-

like these studies, our work does not change the architecture of the blockchain-based systems

that rely on PoW. Instead, it changes the mechanism of choosing the appropriate miners that

improve the environmental sustainability of mining blocks. In addition, it does not require

investing in specific hardware, such as PoSpace [139] or PoL [138].

Several optimisation models are proposed in the literature to reduce the environmen-

tal impact related to energy consumption. For example, the problem of scheduling is one of

the problems that has been formulated as a multi-objective optimisation problem for opti-

mising energy consumption in many areas, such as heterogeneous computing systems [225],

cloud computing [226], wireless sensor networks [227], and multi-core processors systems [228].

Also, another energy-efficient optimisation problem is formulated in various works regarding

the offloading process. These studies aim to reduce the energy consumption of offloading pro-

cesses in diverse domains, including cloud computing [229] and mobile edge computing for the

IoT [230]. Furthermore, clustering techniques are employed to optimise energy consumption

in different fields, such as cloud computing [231] and wireless sensor networks [232].

Other work solves blockchain-based system problems using EAs. For example, [233]

proposes a Pareto-based technique to detect significant influencers in a blockchain-based sys-
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tem. In addition, [234] proposes a transaction selection process using a combination of large

deviation theory and Lyapunov optimisation.

SBSE techniques have been utilised successfully to improve the non-functional prop-

erties of software. For example, the study by [235] applied Genetic Improvement (GI) of

software for trading-off energy consumption with the functional properties of software run-

ning on a Raspberry PI; the study presented in [236] utilises in-vivo optimisation using GI

to achieve a trade-off between the energy consumption of Rebound (an animation library

for Android, written in Java) and its output accuracy; the study [237] implements a multi-

objective approach to optimise the energy use of Android applications by changing ’GUIs’

colour palettes; in [238] they fix object-oriented and energy anti-patterns by finding an opti-

mal set of refactoring sequences to maximise the number of fixed anti-patterns.

Additionally, software run-time and memory consumption have been optimised using

SBSE. For instance, the study [239] has applied GI on the Viola-Jones algorithm (a face

detection algorithm in the OpenCV library) to trade off its functionality with its run-time.

Also, the study [240] has utilised a multi-objective approach to speed up the run-time of

shader software by degrading its output graphics.

Our work differs from the above studies as none solves or discusses the most serious

problem of blockchain based-systems, environmental sustainability, using SBSE techniques.

In addition, we trade off two of the main objectives related to the environmental sustain-

ability dimension: energy consumption and carbon emission. We compromise these objectives

with other non-functional properties of blockchain-based systems, namely decentralisation and

trustworthiness. Table 4.2 shows a summary of each study in this section representing the

problem solved by the study, the optimisation technique used, and its area.
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Table 4.2: A Summary of Related Work

Reference Problem Considered Optimisation Technique Area

[157] Energy consumption New consensus algorithm Blockchain technology
[159] Energy consumption New consensus algorithm Blockchain technology
[139] Energy consumption New consensus algorithm Blockchain technology
[138] Energy consumption New consensus algorithm Blockchain technology
[225] Energy consumption Scheduling with multi-objective optimisation Heterogeneous computing
[226] Energy consumption Scheduling with multi-objective optimisation Cloud computing
[227] Energy consumption Scheduling with multi-objective optimisation Wireless sensor network
[228] Energy consumption Scheduling with multi-objective optimisation Multi-core processors system
[229] Energy consumption Offloading with a meta-heuristic algorithm Cloud computing
[230] Energy consumption Offloading with stochastic optimisation Mobile edge computing
[231] Energy consumption Clustering with Meta-heuristic algorithms Cloud computing
[232] Energy consumption Clustering with multi-objective optimisation Wireless sensor networks
[233] Bitcoin network’s influencers Multi-objective optimisation Blockchain technology
[234] Bitcoin utility Multi-objective optimisation Blockchain technology
[235] Energy consumption Genetic Improvement Applications
[236] Energy consumption Genetic Improvement Mobile application
[237] Energy consumption Multi-objective optimisation Mobile application
[238] Energy consumption Multi-objective optimisation Mobile application
[239] Execution time Deep parameter optimisation Face detection
[240] Performance Loop perforation Applications

4.4 Optimisation Problem Formulation for Blockchain-

based Systems

Similarly to many real-world systems, blockchain-based systems have trade-offs among differ-

ent objectives that are considered as one kind of optimisation problem. According to [15],

many conflicting blockchain objectives, such as trust and energy consumption, can be used to

optimise blockchain-based systems.

We posit that trust provisioning within blockchain-based systems is expensive com-

putationally and in terms of energy. We consider energy consumed and carbon emitted for

managing trust within these systems to be an optimisation problem. The problem is repre-

sented as a subset selection problem of miners participating in a blockchain-based system. To

solve the above problem, in which there is a trade-off between energy consumption, carbon

emission and other conflicting objectives, we present a novel optimisation model that can en-

hance the environmental sustainability of blockchain-based systems. Our model is generally

applicable to scenarios where miners are predefined and controlled. Consortium and private

Blockchain-based systems can benefit from our model as the participating miners are often
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managed and predefined. Moreover, public blockchain-based systems can still benefit from

our model if a global standard or policy for selecting miners to mine blocks is specified. Our

model employs a static optimisation style that performs optimisation first and then applies.

However, it can be employed to perform a dynamic optimisation that can select optimal miners

during run-time (i.e., select optimal miners after each mined block).

In this chapter, we reformulate the problem of minimising the energy consumption and

carbon emissions of blockchain-based systems by reducing the number of miners. Moreover,

this formulation includes maximising the trust level of these systems not only by selecting

miners with high reputation values but also by the degree of decentralisation in the blockchain

network, where decentralised trust is fundamental to the operations of these systems. We

follow the definition of trust and reputation described in Chapter 2. There is an inherent trade-

off between the number of miners, energy consumption, carbon emissions, decentralisation,

and miners’ reputations within blockchain-based systems [64]. The more miners a blockchain

network has, the more energy is consumed, the greater the levels of carbon emissions, and the

more decentralised and trusted it becomes. Furthermore, better decentralisation of miners

leads to greater resistance against censorship of individual transactions and, consequently,

greater trust in the system. In addition, a high number of reputable miners makes a blockchain-

based system more trustworthy. We use miners’ reputations to identify the trustworthiness of

blockchain-based systems.

4.4.1 Solution Representation

Solution representation determines how the problem is structured in the EAs and the genetic

operators that can be used. In the proposed model, the chromosome representation is an

array of nodes representing a set of miners in a blockchain network. The length of chromo-

somes (number of genes) is equal to the number of miners participating in the mining process.

Each gene Xi holds a Boolean value which determines whether a miner is included.
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Table 4.3: A List of Notations

Notation Description

EM The energy consumption for each miner (kilowatt− hour)
P The amount of power used by a mining device (watt)
T The hours of participating in the blockchain network per day (hours)
mD The number of mining devices
ET The total energy consumption of all participating miners in a Pareto front’s solution (kilowatt− hour)
m The number of miners that compose the network of a blockchain-based system
X The value of each gene in a Pareto front’s solution representation (X ∈ {1, 0})
CM The greenhouse gas emissions produced by a miner (gram)
EF the emission factor of electricity in the miner’s location (gCO2eq/kWh)
CT The total carbon emission generated by all participating miners in a Pareto front’s solution (gCO2eq/kWh)
D The degree of decentralisation
FH The fraction of the hashrate of a miner in a solution
h The hashrate of a miner
ht The total hashrate of all participating miners in a Pareto front’s solution.
RM The reputation value for a miner
B The total number of mined blocks in the blockchain
b The number of blocks mined by a miner
s The total of fees and rewards a miner has
RT The total reputation of all participating miners in a Pareto front’s solution
Hc The hashrate for a miner that will be compared to other miners’ hashrate in a solution
TL The percentage of tolerance level in a blockchain-based system

4.4.2 Optimisation Model for Blockchain-based Systems

In this model, we devise four objective functions that are mathematically formulated to min-

imise the total energy consumed and the total carbon emissions produced by blockchain-based

systems. These also maximise trust levels based on maximising the degree of decentralisation

and the reputation values for miners within blockchain-based systems. A list of notations used

and their description are presented in Table 4.3.

4.4.2.1 Energy Consumption Objective

This chapter focuses on enhancing the sustainability of blockchain-based systems by saving en-

ergy used in computing procedures by miners, which accounts for the bulk of blockchain-based

systems’ energy consumption. Power is a measurement of the rate at which energy is used, or

a system performs work over time [241]. From this definition and due to the relationship be-

tween power, energy, and time, the energy consumption for each miner EM (kilowatt−hour)

can be calculated by:

EM =

∑mD
i=1 (Pi × Ti)

1000
(4.1)
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where Pi is the amount of power used by a mining device i that is needed for all mining device

components, including processor and memory (watt), Ti is the hours of participating in the

blockchain network per day (hours), and mD is the number of mining devices since one miner

could have more than one device.

As the optimisation objective is to minimise the total energy consump-

tion ET (kilowatt− hour) of all participating miners in a Pareto front’s solution, the smaller

the energy value is, the fitter the solution is. Therefore, we optimise the energy consumption

as follows:

Minimise: ET =
m∑
i=1

Xi × EMi (4.2)

where m is the total number of miners that compose the blockchain network, and Xi is the

value of each gene in a solution representation. It can be either ‘1’, which denotes the miner

is selected for participation in the mining process for the next block, or ‘0’, which denotes a

non-selected miner.

4.4.2.2 Carbon Emission Objective

The carbon emission of electricity is the greenhouse gas emitted for producing or using a

certain amount of electricity, which indicates that lowering the energy use by blockchain-

based systems can reduce greenhouse gas emissions. Thus, the carbon emissions caused by

the electricity used by a mining device can be defined as:

CM = EF × EM (4.3)

where CM is greenhouse gas emissions produced by a miner in grams (g), EF is the emission

factor of electricity in the miner’s location (gCO2eq/kWh), and EM is the energy consumption

for each miner (kilowatt− hour) calculated using Equation 4.2.

We optimise the total carbon emission CT generated by all participating miners in a

Pareto front’s solution as follows:
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Minimise: CT =
m∑
i=1

Xi × CMi (4.4)

4.4.2.3 Decentralisation Objective

As discussed in Chapter 2, decentralisation means that systems do not rely on a central party

among connected and distributed nodes or peers. In blockchain-based systems, one way of

quantifying decentralisation is based on the number of miners participating in the mining

process. Specifically, it is useful to look at the number of miners, or how many organisations

control the nodes, and their power expressed in hashrate. The hashrate power held by miners

controls a network’s destiny. Thus, there is no benefit of having 1000 miners competing if

one miner has a 51% hashrate in the network. This is because this miner would then have

the chance to control the whole network. The critical point is determining which individual

has the highest hashrate or creates the most blocks. Decentralisation is essential for how the

system is controlled. When a blockchain-based system has a high degree of decentralisation,

it means the system has greater strength against attacks and tampering, which leads to a high

level of trust in the system [64].

It is critical to have scientific decentralisation measurements to assess the level of

decentralisation for blockchain-based systems. Several fields have used entropy to quantify the

randomness or uncertainty of a specific mechanism or event [64]. Taking a blockchain-based

system as a source of information, modelling can be used with the system serving as a random

variable. In this case, the quantity of information a source puts out represents uncertainty

before releasing information. For example, in blockchain-based systems, estimations can be

made of how probable it is that a miner can mine the next block based on its hashrate.

Following the models proposed in [64] and [65], we can calculate the self-information of the

event mining blocks for a miner to use with Shannon’s entropy [242].

Since decentralisation is one of the core features of blockchain technology, we use this

valuable feature as one objective of our model. We use Shannon’s entropy to quantify decen-

trality D based on the distribution of miners’ hashrate to prevent one miner from mining all
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blocks and taking control of the blockchain-based system (i.e., 51% attack). The optimisation

of this objective is defined as:

Maximise: D = −
m∑
i=1

Xi × (FHi × log2 FHi) (4.5)

where m is the number of miners in a blockchain-based system, and FHi is the fraction of the

hashrate of a miner in a Pareto front’s solution. The FHi is calculated using the following:

FHi =
hi

ht

(4.6)

where each miner’s hashrate is represented by hi, and the total hashrate of participating

miners in the solution is ht.

4.4.2.4 Trustworthiness Objective

In our model, the number of miners will be reduced, so we need to support the PoW consensus

algorithm by increasing the trustworthiness of blockchain-based systems. The trustworthiness

can be raised by calculating the reputation value for each miner. Furthermore, we can use

specific trustworthiness evaluation models to compress a miner’s historical activities into a

reputation value for each miner. Since building a trust or reputation model is not an essential

contribution of this chapter, we adopt a simple model inspired by the ideas of PoW and PoS.

In our optimisation model, we use a sigmoid function to evaluate the trustworthiness

of a blockchain-based system after each published block. We collect two features about each

miner and use them to calculate their reputation values. The first feature is the number of

blocks a miner has added to the blockchain, while the second is the miner’s stake. Similarly

to PoW, we assume that the miner will not assault the network after doing much work with

significant requirements. Furthermore, the miner’s ownership of the amount of currency should

protect against attacks on the network because miners do not want to lose their coins, as with

PoS. In this model, the reputation value for the miner is the sum of the sigmoid function for

each feature. Thus, the reputation value for each miner RM within a blockchain network can
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be calculated as:

RM =
B∑
i=1

( 1

1 + e−b
+

1

1 + e−s

)
(4.7)

where B is the total number of mined blocks in the blockchain, b is the number of blocks

mined by a miner, and s is the total of fees and rewards the miner has.

The last objective to maximise is the total reputation RT of participating miners in

a Pareto front’s solution, which maximises the trustworthiness of the blockchain network. It

is worth mentioning that the level of trust of a Pareto front’s solution does not follow the

number of miners. Therefore, some Pareto front’s solutions show a lower level of trust with a

higher number of miners than other solutions with fewer miners. However, a blockchain-based

system’s highest trust can be achieved when all miners participate in mining processes.

Maximise: RT =
m∑
i=1

Xi ×RMi (4.8)

4.4.2.5 Fitness Functions Constraints

Equations (4.2), (4.4), (4.5), and (4.8) share same constraints, as follows:

Hc < TL%
m∑
i=1

Xi × hi −Hc

m∑
i=1

Xi > 1

Xi ∈ {1, 0}

where hi is the hashrate for a miner i in the blockchain network, Hc is the hashrate for a current

miner that will be compared to other miners’ hashrate, and TL is the percentage tolerance

level that a decision-maker must identify for the system. So, for example, the decision-maker

can determine the TL to be 50% or less.

These constraints ensure that a miner’s hashrate should be less than the TL, such as
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50% or 30%, of the total hashrate for all other miners in the individual solution. When a

malicious miner has a total hashing power above 50% or 30% of the whole network’s hashing

powers, a double-spending attack or a selfish mining attack can be launched [243], [244].

Therefore, this constraint ensures avoiding such a vulnerability. Also, they ensure that more

than one miner should participate in the mining process to prevent centralisation.

We use the above objectives to form four fitness functions. We have at least one pair

of conflicting objectives in each fitness function.

4.5 Experiment Design

This section discusses the design of experiments to show how our model can improve the

environmental sustainability of blockchain-based systems using evolutionary algorithms by

selecting a set of miners. First, section 4.5.1 presents the research questions we aim to answer

in this chapter. Then, Section 4.5.2 introduces the evaluation procedure applied to answer

the research questions. Finally, Section 4.5.3 shows the implementation details.

4.5.1 Research Questions

This chapter intends to show the advantages of reformulating the miners’ subset selection

problem in blockchain-based systems as an SBSE problem in improving the environmental

sustainability of these systems. The chapter endeavours to answer the second research ques-

tion introduced in Chapter 1: RQ2: How can the environmental sustainability of a

blockchain-based system be optimised without compromising its inherent proper-

ties, such as decentralisation and trustworthiness?

To answer this question, we need to answer some sub-questions:

RQ2.1: To what extent can our static optimisation model balance the energy consumption

and carbon emission of a blockchain-based system with its core proprieties: decentralisation

and trustworthiness?

RQ2.2: Are the selected evolutionary algorithms effective in solving our blockchain miner
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selection problem compared with Random Search (RS)?

RQ2.3: Among the used algorithms, which algorithm can achieve the best performance?

4.5.2 Evaluation Procedure

Now, we present the evaluation procedure used to answer our research questions.

4.5.2.1 Evaluating the Effectiveness of the model

To answer RQ2.1, we compare each algorithm’s best solution in terms of energy use and

carbon emission and the reductions in the conflicting objectives (i.e., decentralisation and

trustworthiness) compared to the original solution. The original solution is the complete

set of miners within a blockchain-based system (i.e., the standard PoW). We focus on com-

paring the algorithms solutions for the fitness function that considers the four objectives of

blockchain-based systems (i.e., energy consumption vs carbon emissions vs decentralisation

vs trustworthiness). Considering this fitness function, we can show the effects of minimising

energy consumption and carbon emissions on decentralisation and trustworthiness.

4.5.2.2 Performance Metrics

the performance metric in this chapter means the algorithm’s ability to evolve non-dominated

solutions that cover as much as possible of the solution space. To compare algorithms’ per-

formance, we use the hypervolume metric, which computes the d-dimensional volume of the

dominated portion of the objective space by the non-dominated solutions from a reference

point [208]. We use this metric since it compares algorithms regarding diversity and conver-

gence. This metric is widely used in the literature for evaluating algorithms’ performance and

for the solution selection procedures [245]. The higher the hypervolume value of an algorithm,

the better the performance.

Since the hypervolume metric uses a reference point for comparing MOEAs, selecting

this reference point for calculating the hypervolume is crucial. It can significantly impact the

performance evaluation of algorithms and the interpretation of results [246]. Therefore, it

103



should be fairly determined.

There are various ways to obtain a reference point for optimisation problems, encom-

passing utilising the worst objective value among all identified solutions, the boundary of the

optimisation problem and the nadir point from the Pareto front of all discovered solutions [247].

However, the choice of reference point remains an open issue in hypervolume-based compar-

isons of EMO algorithms. In addition, there is still no consensus on the best method for

choosing a reference point for a given problem [246].

The hypervolume indicator generally favours knee and boundary points of the Pareto

front over well-distributed ones [248]. This is because the hypervolume indicator measures

the volume of the space dominated by the reference point, and knee and boundary points are

often located in areas of low density. Additionally, it is necessary to establish the reference

point at a fair distance from the boundaries of the solution sets; otherwise, it will not be

visible to all Pareto fronts produced by each algorithm under comparison [249].

In this thesis, we have chosen a boundary point (i.e., the worst possible value for each

objective) as the reference point for calculating the hypervolume indicator. This is a reason-

able and fair choice for our specific problem and allows for a more robust and interpretable

comparison of the MOEAs. It has several advantages regarding fairness and visibility.

Using a reference point as a boundary point, which is fairly distant from the solution

set’s boundaries, ensures that the reference point is visible to all Pareto fronts produced by

each algorithm under comparison, including the extreme points or boundary points of the

Pareto front. This makes for a fairer comparison, as all algorithms are evaluated against

the same reference point. These points are often crucial for understanding the shape and

distribution of the Pareto front [250].

To answer RQ2.2, we compare the selected algorithms’ hypervolume with the hyper-

volume of RS’s non-dominated set. The comparison includes showing statistical differences

between RS and other algorithms using the right-tailed Wilcoxon rank-sum test [251]. This

conservative non-parametric test makes no assumptions about the datasets’ distribution. The

null hypothesis states that the hypervolume values of algorithm X are greater than RS’s hy-
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Table 4.4: Implementation Details

Variable Value

Number of Miners 160
Network Total Block Number 4073
Bitcoin Network Hashrate 107,611,000.0 TH/s
Bitcoin Reward 6.25 BTC
Bitcoin Fee 0.00028188 BTC
Bitcoin Average Transaction Size 250 Byte
Mining Device Hashrate 110 TH/s
Mining Device Power 3,250 Watt
Miner Running Time 24 Hours
Percentage of Tolerance Level 50%
Fitness Evaluation 40,000

pervolume values. We use the Wilcoxon test because most of the resulting datasets have

non-normal distributions. The statistical technique used to determine whether an algorithm’s

hypervolume values come from a normal distribution is the Shapiro-Wilk test [252].

We then use the Vargha and Delaney Â12 effect size to measure the approximate dif-

ferences between the RS performance and the selected algorithms. Â12 is a non-parametric

measure and calculates the proportional difference between two datasets [253]. For interpret-

ing the effect size, this approach measures the quantity of the difference in four ranges: no

difference (0.5), a negligible difference (up to 0.56), a small effect (up to 0.64), a medium

difference (up to 0.71), a large difference (larger than 0.71). Furthermore, this approach cal-

culates the expected probability that algorithm one performs better than algorithm two. For

instance, if Â12 = 0.8, then algorithm one is expected to outperform algorithm two 80% of

the time.

To answer RQ2.3, we conduct a pairwise comparison between every pair of the selected

algorithms using the Wilcoxon rank-sum test and Â12 effect size.

4.5.3 Implementation Details

The details of the implementation used to run our experiments are presented in the sections

below. Also, a summary of the implementation details is presented in Table 4.4.
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4.5.3.1 Experiment Settings

We integrated our proposed fitness models discussed in Section 4.4.2 with five evolution-

ary algorithms. We use the Random Search (RS) as a baseline for our comparison. For

the algorithm implementations, we used a Java-based Multi-Objective Evolution Algorithm

framework (MOEA Framework) 1. For each algorithm, we leave all variation operators and

variation probabilities at their default values (see Table 4.5 and 4.6 for these values). Each

algorithm is run with 40,000 fitness evaluations. To account for the stochastic nature of the

algorithms, we run each algorithm 100 times. All experiments are performed on a Windows

10 machine with 24GB memory and an Intel i7-6700 CPU clocked at 3.4GHz.

Table 4.5: A List of Notations for Evolutionary Algorithms Parameters

Parameter Description

populationSize The size of the population
sbx.rate The crossover rate for simulated binary crossover
sbx.distributionIndex The distribution index for simulated binary crossover
pm.rate The mutation rate for polynomial mutation
pm.distributionIndex The distribution index for polynomial mutation
offspringSize The number of offspring generated every iteration
k Crowding is based on the distance to the k-th nearest neighbour
archiveSize The size of the archive
bisections The number of bisections in the adaptive grid archive
indicator The indicator function (e.g., hypervolume, epsilon, crowding)
divisions The number of divisions
epsilon The ϵ values used by the ϵ-dominance archive, which can either be

a single value or a comma-separated array (this parameter is optional)

4.5.3.2 Bitcoin Simulator Settings

Simulation methods are used in multiple fields of science. The simulations enable us to

obtain insight into a system’s behaviour and simplify the deployment and implementation

of protocols. Simulations allow the investigation of large-scale systems with a large number

of nodes using one machine and also to get findings in a reasonable time. Within large-

scale blockchain networks, there are difficulties in procuring information related to the entire

network, except where nodes offer information regarding themselves. Also, it is only sometimes
1MOEA Framework version 2.13 available at http://moeaframework.org, accessed on December 10, 2020.
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Table 4.6: The values of the Parameters for the Used Algorithms

Parameter Random NSGA-II SPEA2 PAES IBEA NSGA-III

populationSize 160 160 160 - 160 160
sbx.rate - 1.0 1.0 - 1.0 1.0
sbx.distributionIndex - 15.0 15.0 - 15.0 15.0
pm.rate - 1/N 1/N 1/N 1/N 1/N
pm.distributionIndex - 20.0 20.0 20.0 20.0 20.0
offspringSize - - 100 - - -
k - - 1 - - -
archiveSize - - - 100 - -
bisections - - - 8 - -
indicator - - - - hypervolume -
divisions - - - - - 4
epsilon Problem dependent - - - - -

possible to observe the actual behaviour within a large-scale network. For this reason, it

is neither feasible nor practical to undertake experimentation within large-scale blockchain

networks. Although the case study and evaluation are conducted in a controlled and simulated

environment, the evaluation is careful to emulate those dynamics that can stress systems at

scale.

Here, we use a blockchain simulation framework called Bitcoin-Simulator [13] that

uses real and artificial data, such as the distribution of miners’ hashrates and locations. It

is a widely used simulator for the blockchain environment. Bitcoin-Simulator simulates the

working of blockchain-based systems that use the PoW consensus algorithm and their network

layers. Thousands of nodes and events can be tracked by the simulator. It replicates the

PoW process for miners within a blockchain network by assigning each miner a particular

mining hashrate and location. We utilise the simulator to collect data used to implement our

optimisation model. The data collection involves running the simulator to mine 4073 blocks,

equivalent to one month of mining. There are 160 miners in the simulation. We have set the

percentage tolerance level in the blockchain-based system to be 50% to prevent miners from

performing a double-spending attack.

To replicate a real-world scenario of a blockchain-based system, we use the basic prop-

erties of Bitcoin’s network, such as the hashrate, rewards, and fees as shown in Table 4.4 2.

2Information was retrieved from https://blockchair.com/bitcoin on November 30, 2020.
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Table 4.7: The Distribution of Miners’ Locations and their Hashrates Percentages.

Country Hashrate Country Hashrate
Percentage Percentage

Canada 0.8% Kazakhstan 6.2%
China 65.1% Malaysia 4.3%
France 0.2% Norway 0.5%
Germany 0.6% Paraguay 0.3%
Iceland 0.4% Russia 6.9%
India 0.1% Thailand 0.3%
Iran 3.8% United States 7.4%
Italy 0.3% Venezuela 0.4%

We use Bitcoin as the most widely known blockchain-based system [254]. We determine the

distribution of miners’ locations and their hashrate percentages based on information retrieved

from CBECI 3. Table 4.7 shows the distribution of miners’ locations and their hashrates per-

centages of Bitcoin’s network hashrate, divided into 16 countries where each country has ten

miners.

4.5.3.3 MOO Model Assumptions

In blockchain networks, we cannot accurately estimate how much electricity is used for mining

operations because it is impossible to determine the number of mining devices in a network

or which devices are active at any given time [44], [190]. In order to determine the number of

mining devices in a blockchain network, we first assume that all miners use the most efficient

mining device and that as a miner’s hashrate increases, their number of devices increases. We

base our assumption on the fact that using inefficient devices leads to leaving the network due

to not receiving profits from successful mining [44], [190]. In addition, we do not assume that a

miner would have a high number of traditional devices that use CPU and Graphics Processing

Unit (GPU) due to their inefficiencies compared to the current state-of-art Application-Specific

Integrated Circuit (ASIC). Consequently, the number of devices for each miner is found by

dividing the hashrate for each miner by the hashrate for the selected mining device type. The

power of this device is also used to calculate the energy consumption of each miner. We use

3https://ccaf.io/cbeci, retrieved on August 31, 2021.
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the hashrate of Antminer S19 Pro produced by Bitmain Technology Holding Company 4. Its

hashrate can reach 110 TH/s, and its mining power is 3,250 watt.

Moreover, we assume that miners try to mine blocks for 24 hours because they want to

gain profit following the same assumption published in [45], [190]. For calculating the carbon

emission, we first use the distribution of miners’ locations retrieved from CBECI and set it

into the simulator. Then, we use miners’ locations to calculate the carbon emission produced

by each miner using emissions factors published for miners’ countries in [255].

4.6 Results and Discussion

In this section, we present the results of our experiments. First, we group our experiments

based on the proposed fitness functions presented in Section 4.4.2. Then, we present our

results and discuss RQs 2.1-2.3.

To investigate the performance of the algorithms on the real-world blockchain miners’

selection problem, we need to compute the actual Pareto front. Similarly to [256], [257],

we compute the Pareto front by combining the outcomes of 500 independent runs of the

algorithms for each proposed fitness function.

4.6.1 Objectives Space Results

4.6.1.1 Energy Consumption and Trustworthiness Objective Space

Figure 4.1 shows the approximated Pareto front found by each algorithm during the 100 runs

in blue and the Pareto front in black. The x-axis shows the energy consumption, and the

y-axis presents the reputation score of miners (i.e., the trustworthiness of a blockchain-based

system) calculated by Equation 4.7. As can be seen, NSGA-II, SPEA2, IBEA, and NSGA-

III consistently find better non-dominated solutions from the Pareto fronts. Clearly, PAES’s

non-dominated solutions are distant from the Pareto front, which shows that having only a

mutation operator promotes exploitation over exploration. This is because mutation operators

4https://www.bitmain.com
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exploit the neighbouring areas of the current solution, whereas crossover operators create

jumps in the search space to explore it better [258]. RS is the worst-performing algorithm when

minimising energy use and maximising trustworthiness. NSGA-II, SPEA2, and NSGA-III

obtain a better spread than IBEA. This is because the IBEA algorithm uses the hypervolume

indicator in its selection operator. Most of its non-dominated solutions (85+%) occupy the

regions of the search space where the hypervolume is maximised. This behaviour of IBEA has

also been observed in the rest of the experiments.

It is worth mentioning that while IBEA has been shown to perform well on many multi-

objective optimisation problems, it may not perform as effectively in diversifying produced

solutions for some problems [259], [260]. This indicates that IBEA’s mechanism can lead

to premature convergence, where the algorithm converges to suboptimal regions in the early

stages of the evolutionary process before fully exploring the solution space. In other words,

this method may have difficulty in effectively exploring the entire Pareto front, as it is prone

to becoming trapped in specific regions of the search space. These findings are consistent with

previous studies, such as [259], [261], [262].

4.6.1.2 Energy Consumption, Carbon Emissions, and Trustworthiness Objective

Space

Figure 4.2 shows the approximated Pareto front found by each algorithm in the 100 runs

and the computed Pareto front. The results are colour-coded by the carbon objective values

calculated by Equation 4.4. The x and y-axes, respectively, represent the energy use and

the reputation score. As can be seen, the non-dominated solutions created by NSGA-II and

SPEA2 cover larger portions of the computed Pareto front compared to other algorithms. In-

terestingly, NSGA-III’s non-dominated solutions are slightly distant from the Pareto front and

are more scattered than those of NSGA-II, SPEA2, and IBEA on the energy and trustwor-

thiness dimensions. In addition, since the IBEA algorithm uses the hypervolume indicator in

its selection operator, the majority of its non-dominated solutions (85+%) occupy the regions

of the search space where the hypervolume is maximised. Similarly to the results of energy
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Figure 4.1: The results of trading-off energy consumption with trustworthiness using five
algorithms. The Pareto front is shown in black.

consumption vs trustworthiness experiments, PAES and RS performed poorly compared to

other algorithms in terms of covering the Pareto front.

4.6.1.3 Energy Consumption, Decentralisation, and Trustworthiness Objective

Space

Figure 4.3 presents the results of minimising energy use while maximising the decentralisation

and the trustworthiness of a blockchain-based system. The x-axis and y-axis represent the

energy use and reputation score, while the colour scale of each point represents the decen-

tralisation score calculated by Equation 4.5. The overall results of the algorithms are similar

to those in Figure 4.2 except that the NSGA-III algorithm covers fewer regions of the Pareto

front. In addition, it can be observed that its solutions at the end of the spectrum, where the

trustworthiness is maximised, are slightly distant from the Pareto front compared to NSGA-II,

SPEA2, and IBEA.
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Figure 4.2: The results of trading-off energy consumption with carbon emissions and trust-
worthiness using five algorithms. The dot markers show the Pareto front.

4.6.1.4 Energy Consumption, Carbon Emissions, Decentralisation, and Trust-

worthiness Objective Space

Figure 4.4 shows the many-objective optimisation experiment results. The x-axis, y-axis,

and z-axis represent the energy use, reputation, and decentralisation scores, respectively.

The results are colour-coded by carbon values. As can be seen, the NSGA-II and SPEA2

non-dominated sets include more solutions of the Pareto front. However, as the problem di-

mensionality increases, their ability to consistently find the Pareto front’s solutions degrades

(i.e., they have more distant solutions from the Pareto front than IBEA and NSGA-III). On

the other hand, IBEA non-dominated solutions are less diverse in terms of objective values,

but they reside on the Pareto front. The NSGA-III non-dominated set covers slightly more

regions of the Pareto front than IBEA’s non-dominated solutions. The PAES and RS algo-

rithms found the lowest number of Pareto front’s solutions. The former is a mutation-based

algorithm which effectively explores the neighbours of the promising solutions. However, as

the problem dimensionality increases, the algorithm’s effectiveness decreases.
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Figure 4.3: The results of trading-off energy consumption with decentralisation and trustwor-
thiness using five algorithms. The Pareto front is shown using the dot marker.

4.6.2 Research Questions Answers

4.6.2.1 Improvement in Energy Consumption and Carbon Emission

To answer RQ2.1, we compare the original solution’s objective value (i.e., all miners included)

to the objective values of the solutions found using EAs. The reported results are the ratio

of a solution’s objective score to the original solution’s objective score. Overall, using the

proposed fitness functions helps the optimisers to explore the search space and find optimal

solutions balancing energy consumption and carbon emissions (i.e., efficient solutions for en-

ergy consumption and carbon emissions) without compromising the properties of blockchain

technology: decentralisation and trustworthiness. Indeed, energy savings and low carbon

emissions are achieved with some reductions in the conflicting objectives. It is worth mention-

ing that Pareto-based algorithms are used to produce non-dominated solutions considering

decision-makers’ preferences. To discuss the reduction of improving energy consumption and

carbon emissions on decentralisation and trustworthiness, we focus on the fitness function:
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Figure 4.4: The results of trading-off energy consumption with carbon emissions, decentral-
isation, and trustworthiness using five algorithms. The Pareto front is shown using the dot
marker.

energy consumption vs carbon emissions vs decentralisation vs trustworthiness.

NSGA-II and SPEA2 non-dominated sets for this fitness function include more Pareto

front solutions than other algorithms. They include solutions that can enhance the envi-

ronmental sustainability of blockchain-based systems by improving energy efficiency, carbon

efficiency and decentralisation with a slight reduction in trustworthiness. For example, there

is a solution in NSGA-II non-dominated sets that can minimise energy consumption by 78.1%

and carbon emissions by 82.4%, with 13.6% improving in decentralisation at the cost of only

25% of overall trustworthiness. Also, SPEA2 non-dominated sets include a solution that im-

proves the energy efficiency by 78% and reduces the amount of carbon emissions by 82.1%

while increasing decentralisation by 13.8%. With all these improvements, trustworthiness is

still not less than the first quantile of the trustworthiness of blockchain-based systems that

use the original PoW. It is worth noting that IBEA is managed to find solutions similar to

NSGA-II and SPEA2 although its non-dominated sets are minimal compared to those of other
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MOEAs. In addition, these algorithms include other solutions that substantially reduce en-

ergy use and carbon emissions with a slight improvement in decentralisation; however, the

trustworthiness is decreased by more than 75%. Solutions with such objective values can be

used in private or consortium blockchain-based systems. This is because miners are already

known to organisations employing such kinds of blockchains.

Although the carbon emissions rate seems to strictly follow the increase of energy

consumption at the same rate in Figure 4.4, this does not mean that miners that consume

high energy will produce high carbon emissions compared with other miners that consume

low energy. In some cases, we can have a miner that consumes a low amount of energy

but is located in a country with a high carbon intensity, leading the miner to produce high

carbon emissions and vice versa. As a result, energy consumption and carbon emission can

be considered as conflicting objectives. Nevertheless, having the carbon emissions results in

Figure 4.4 that follow the energy increase shows that the optimiser has favourably selected

miners from the same regions with the same carbon intensity.

4.6.2.2 Performance Analysis

For answering RQ2.2, we compare the hypervolume of the non-dominated set of each al-

gorithm with the RS’s non-dominated set’s hypervolume. We use the two-tailed Wilcoxon

rank-sum test with a threshold of p ≤ 0.05 to conduct the comparisons. The null hypoth-

esis is that algorithm X’s hypervolume is significantly greater than the RS algorithm’s. To

compute the difference, we use Vargha and Delaney effect size. In addition, we conducted a

comparison between every pair of algorithms (pairwise comparison) to answer RQ2.3.

Figure 4.5 presents the statistical test results and the effect size for each algorithm’s

performance using the four proposed fitness functions. The label S in each cell denotes a sig-

nificant difference, whereas label I indicates a non-significant difference. The cell colour shows

the effect size. As seen in Figure 4.5, across all fitness functions, each algorithm’s hypervolume

is significantly greater than that of RS (see the first column of every heatmap). In addition,

the difference between RS performance and other algorithms is large. This is consistent with
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the visual representation of the algorithms’ non-dominated set in Figures 4.1, 4.2 and 4.3.

Now, we answer RQ2.3. In the first fitness function (i.e., energy consumption vs

trustworthiness) and the third fitness function (i.e., energy consumption vs decentralisation

vs trustworthiness), their figures show that NSGA-II’s performance is the best among all

algorithms. It indicates that it produced the most diverse non-dominated sets that cover

the largest portion of the search space among other non-dominated sets. PEAS has the

second-worst performance due to its mechanism in exploring the search space. Among all

algorithms used, IBEA’s performance is the best in exploring the search space using the

second fitness function (i.e., energy consumption vs carbon emissions vs trustworthiness). We

have investigated its non-dominated solutions and found that they are centred in the region

where the hypervolume is maximised. This is due to the algorithm selection preference among

solutions which prefers a larger hypervolume. However, as can be seen in Figure 4.3, such a

mechanism restricted the solution diversity in the fitness landscape.

Interestingly, SPEA2 has the best performance among other algorithms in exploring the

solution space using the fourth fitness function (i.e., energy consumption vs carbon emissions

vs decentralisation vs trustworthiness). However, it is worth noting that in terms of run-

time, SPEA2 has the second-worst run-time after the PAES algorithms. Our results indicate

that the expensive mechanism in determining the strength of solutions enables SPEA2 to

outperform other algorithms in our proposed many-objective problem.

Although NSGA-III is designed for many-objective problems, it does not perform well

in our many-objective problem. We conjecture that the NSGA-III lightweight niching mecha-

nism, which is based on reference points, is not as effective as other algorithms’ (i.e., SPEA2,

NSGA-II, and IBEA) expensive diversity-preservation mechanisms. It depends on reference

points being created to virtually represent how the Pareto front would look in the objective

space. The quality of the created niches dramatically influences the performance of the algo-

rithm. It is worth mentioning that the performance of NSGA-III is worse than NSGA-II and

SPEA2 in [263], as well.
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Figure 4.5: Algorithms effect sizes and P-values. The letter S indicates significant differences,
and the letter I denotes insignificant differences.

4.7 Conclusion

In this chapter, we have reformulated the problem of optimising the environmental sustain-

ability of blockchain-based systems as a multi-objective optimisation problem. We attempt

to minimise energy consumption and carbon emission while considering the decentralisation

and trustworthiness of blockchain-based systems. To solve the problem, we have proposed

four different fitness functions. Our results show that energy usage and carbon emissions

can be reduced by 78% and 82%, respectively. These improvements come with increasing in

decentralisation by 13.8% and a reduction in trustworthiness by 25% (non-functional proper-

ties). Moreover, using private blockchain-based systems, where miners are known, can save

energy and carbon emissions by more than 90%. Finally, we have compared five evolutionary

algorithms with different diversity-preservation mechanisms to evaluate our proposed model.

The comparisons revealed that no algorithm is consistently superior using its default settings.

As with every model, our proposed model has some limitations. For calculating the
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reputation value for miners, we have adopted a simple model inspired by the ideas of PoW

and PoS. However, such a model may suggest false Pareto fronts due to the need for more

knowledge about the miners, such as their behaviour in mining blocks. For example, the used

reputation model cannot differentiate between old miners, newly joined miners or miners that

repeatedly leave and join the network. Also, it cannot predict malicious miners. These call for

a reputation model that can more effectively measure miners’ reputation within blockchain-

based systems (Addressed in Chapter 5). In addition, the current model is static, and we use it

in an offline optimisation scenario (i.e., optimise first, then deploy). Also, it does not consider

environmental changes and the use of green energy. Therefore, this calls for a self-adaptive

model that can be used in dynamic optimisation scenarios, where the environment changes

over time, including green energy usage, with consideration of decision-makers’ requirements

(Addressed in Chapter 6).
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Chapter Five

A Reputation Model for Miners in
Blockchain Networks

Context. Many researchers have proposed solutions to enhance the environmental sustain-

ability of blockchain technology, such as using alternative consensus algorithms that rely on

existing trust or reputation models to only allow reputable miners to create new blocks. How-

ever, choosing those miners remains challenging because of the architecture of blockchain

technology, which offers a free and open environment for miners to take part in mining new

blocks. Therefore, there is a great need for a dynamic reputation model to evaluate miners’

behaviour within blockchain-based systems that use mining-based consensus algorithms.

Objective. This chapter proposes the first reputation model that influences how reputation

is fundamentally managed within blockchain-based systems. Also, it introduces several im-

portant properties required to design reputation models for blockchain-based systems. The

reputation model aims to promote the environmental sustainability of blockchain-based sys-

tems when it integrates with existing consensus algorithms to select miners based on their

reputation values.

Method. We propose a novel reputation model that dynamically assesses the reputation of

individual miners by reflecting the miners’ behaviour within a blockchain-based system that

uses the traditional Proof of Work consensus algorithm. The model is evaluated analytically

and compared to other trust and reputation models for miners. In addition, we perform exper-

imental evaluations to represent the performance of our model and its accuracy in detecting

malicious miners. Finally, we have evaluated the effectiveness of using the model regarding

the energy consumption and carbon emissions of blockchain-based systems.

Results. The evaluation shows that our model fulfils several desirable properties that should
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always be satisfied by reputation models for blockchain-based systems. In contrast, other

models do not always meet these properties. Also, our experiments demonstrate the model’s

effectiveness in detecting malicious miners with more than 93%. Regarding the environmen-

tal sustainability of these systems, the model can reduce the energy consumption to 51% on

average of the total energy consumed in the standard PoW consensus algorithm. In addition,

the carbon emissions of the systems can be reduced to 77% on average compared to PoW.

Conclusion. Our model is used to assess the reputation of miners within a blockchain-based

system. It can be potentially integrated with any consensus algorithm that uses a mining

process. Also, it has the potential to enable environmentally sustainable mining processes.

Contribution to Literature. This chapter is contributed to the research literature through

our published full paper "MinerRepu: A Reputation Model for Miners in Blockchain Net-

works". This chapter is written based on this paper.
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5.1 Introduction

In blockchain-based systems, there is no middle or hub node to ensure the correctness of the

ledgers on distributed nodes. Also, nodes do not need to trust other nodes. This leads to

proposing consensus protocols that ensure the consistency of ledgers in different nodes. Thus,

consensus algorithms play an essential role as they are trust or reputation models for selecting

miners to mine blocks within blockchain-based systems. The most common algorithm to

reach a consensus in blockchain-based systems is PoW, but this consensus algorithm is not

energy-efficient. Therefore, researchers have attempted to enhance the energy consumption of

PoW by integrating it with reputation systems that build trust among a miners’ community

by utilising the past experiences of each miner. The idea of this integration is to assist in

making judgements and recommendations on selecting reputable miners, which can enhance

the energy consumption efficiency of blockchain-based systems that use PoW.

Since a blockchain network is a structured P2P network, much research has developed

centralised and decentralised trust and reputation models for P2P networks that could be

used. However, these models are not applicable to blockchain communities due to the ar-

chitecture of blockchain technology, where mining activity is the vital role of miners within

blockchain networks rather than the interactions between nodes. In addition, a few consensus

algorithms are proposed to calculate the trust or reputation of miners within blockchain net-

works based on trust or reputation metrics (see Chapter 3). However, these algorithms rely

on existing trust or reputation models that may not be suitable for evaluating miners’ be-

haviour within blockchain-based systems that use mining-based consensus algorithms. Also,

they compute trust and reputation values based on metrics not evaluated for blockchain-

based systems. Therefore, Chapter 3 demonstrates that research is needed to investigate how

trust and reputation models can help define trusted and malicious miners within blockchain

networks, considering blockchain technology characteristics and miners’ dynamic behaviour.

Also, there is a need to see how these models can improve energy efficiency and reduce carbon

emissions, leading to blockchain-based systems’ overall sustainability.

This chapter answers the thesis’s third research question introduced in Chapter 1:
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RQ3: How can we evaluate the reputation of miners within blockchain-based

systems, considering the dynamic of miners’ behaviours, to support the environ-

mental sustainability of these systems?

To answer this research question, we develop MinerRepu, a novel reputation model

for assessing the reputation of individual miners by reflecting the miners’ behaviour within a

blockchain-based system that uses the traditional PoW consensus algorithm. To the best of

our knowledge, our model is the first reputation model to influence how reputation is funda-

mentally managed within blockchain-based systems. The model can be applied to blockchain-

based systems that use mining-based consensus algorithms such as PoW. Also, it can be

integrated with other trust architectures for other domains, such as the proposed architecture

for IoT in [264]. The most important advantage of this model is that it can promote en-

ergy consumption efficiency for blockchain-based systems when it overlies existing consensus

algorithms to select trusted miners based on their reputation values.

The main contributions of this chapter are summarised as follows:

• We review the state-of-the-art trust and reputation models for blockchain-based systems

and identify the general lack of any similar model.

• Drawing on the conclusions of this review, a novel model for calculating and evaluating

the reputation of miners in blockchain-based systems is proposed.

• An analytical framework for evaluating and comparing trust and reputation models for

miners in blockchain networks is presented, and criteria against which a model might be

evaluated are identified.

• We conduct several experiments to show the changes in miners’ reputation values over

time, and we demonstrate how malicious miners can be detected.

• Experimental evaluations are performed to demonstrate how using our model for

blockchain-based systems can save energy and reduce carbon emissions compared to

PoW.
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The rest of the chapter is organised as follows: First, Section 5.2 gives an analysis of

the existing literature on consensus algorithms for blockchain. Next, Section 5.3 describes

our reputation model, and the evaluation of the model is presented in Section 5.4. Finally,

Section 5.5 concludes the chapter.

5.2 Related Work

Several alternative consensus mechanisms have been put forward to tackle energy consumption

inefficiencies in blockchain, particularly concerning PoW. These algorithms can be classified

into proof-based consensus algorithms and vote-based consensus algorithms as presented in

Chapter 3. This chapter focuses on algorithms under the first category. These algorithms

utilise trust or reputation models to select miners to mine blocks within blockchain-based

systems. These kinds of algorithms can be grouped into trust-based consensus algorithms and

reputation-based consensus algorithms. We have discussed most of these consensus algorithms

in Chapter 3. However, a brief discussion is presented in this section.

5.2.1 Trust-based Consensus Algorithms

Although the majority of proposed alternatives rely either on owning physical resources such

as PoW or having a significant monetary investment (i.e., stake) into the blockchain, such as

PoS, a few algorithms are available that rely on trust metrics with some limitations.

In Proof of Trust (PoT) [157], miners’ trust values are used to serve as a waiver for the

required energy for mining blocks. They claim that the literature contains many trust metrics

that could be used to calculate nodes’ reputations. They have used the Pagerank algorithm to

evaluate PoT. However, more discussion is needed to show how these metrics can be adjusted

or applied within blockchain-based systems.

In [158], another PoT mechanism (Alt-PoT) is proposed that uses naive Bayes to

calculate the honest probability of nodes. It relies on three elements, including the total

number of transactions the node has conducted on the crowdsourcing platform, the number of
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times a miner participates in validating blocks and the number of complaints about a miner.

However, the model needs to include some critical properties of designing trust models. For

example, it does not observe transactions’ trustworthiness used for calculating the honesty of

nodes.

The authors in [265] present a trust-dependent consensus (TCON). The trust model

of this scheme relies on the number of blocks that were validated and successfully added to

the blockchain by a miner. However, it needs to consider the changes in miner behaviour over

time and the sensitivity of the reputation value.

5.2.2 Reputation-based Consensus Algorithms

Several reputation-based consensus algorithms have been proposed. However, most of these

algorithms use reputation features that can only be applied to some blockchain-based sys-

tems. For example, some of these studies calculate reputation values for miners based on

features that are related to vehicular ad hoc networks (VANETs) [266], wireless sensor net-

works (WSNs) [267] or P2P networks [268]. We do not discuss these studies because they

do not distinguish miners’ behaviour within blockchain-based systems and are specified for a

particular domain.

Proof of Reputation (PoR) is a consensus algorithm proposed in [159], where a node’s

transaction activity, asset and consensus participation are evaluated to construct its repu-

tation. PoR is a hybrid reputation-based approach that is vulnerable to all the drawbacks

of such consensus algorithms, for example, denial of service attacks and a lack of fairness of

access.

Proof of Reputation X (PoRX) [269] is a reputation model that is combined with the

proof of something (PoX) mechanism. PoRX employs two measures when selecting a block

issuer. The first criterion is reputation, while the second is work or stake, as stipulated by

the base PoX. The reputation values for miners in this model rely on the number of blocks

successfully produced by miners during a competition cycle. This model penalises miners

when they do not submit blocks for a period of time or do not submit the expected number
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of blocks by themselves. Although the model has a technique for punishing miners, it does

not consider whether those miners are malicious or not.

RepuCoin [270] attempted to use a PoR mechanism. By assessing miners’ behaviours,

the authors determined miners’ reputations, and they developed a reputation-based weighting

scheme consensus. In RepuCoin, every miner has a reputation score, and miners with high

reputation values are chosen to participate in the consensus process. These reputation values

are determined by evaluating the extent and regularity of the valid work the miner has pro-

vided to the system. One of the downsides of this approach is that it consumes a significant

amount of energy. According to [271], this algorithm is a proof-based consensus algorithm,

not reputation-based.

In [272], an alternative to Delegated Proof of Stake (DPoS) consensus algorithm is

proposed. It replaces stake based on coins with a reputation ranking system that depends

on ranking models, such as NCDawareRank, PageRank and HodgeRank. For calculating

reputation, three elements are combined: the amount of stake, the usage of resources, and the

activity of the transactions. This consensus algorithm needs a mechanism to calculate nodes’

reputation values instead of repeating computation after each block.

5.3 Reputation Model for Miners within Blockchain-

based Systems

In this section, we describe our reputation model, a novel model that monitors the behaviour

of individual miners within a blockchain network. In this chapter, we define reputation as

described in Chapter 2. In blockchain-based systems, we expect miners to submit trusted

blocks based on their previous behaviours that reflect their honesty.

The main goal of this chapter is to design and develop MinerRepu, a dynamic reputation

model for measuring and evaluating the reputation of miners in blockchain networks after

each mined block. Our model computes situational reputation in miners based on the general

satisfaction with miners’ behaviour. General satisfaction is the satisfaction that one miner
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gains based on all previous contributions in all block mining. The model is built on a well-

known blockchain consensus algorithm called Proof of Work. Thus, it can be combined with

any consensus algorithm for blockchain-based systems with a mining process. We observe

miners’ activities and evaluate the satisfaction toward each miner based on different reputation

features. To the best of our knowledge, our model can be considered the first reputation model

for individual miners that is evaluated and compared with other trust and reputation models

for blockchain-based systems.

We assume that a reputation management system is responsible for the dissemination

mechanism. This mechanism helps anyone interested in obtaining miners’ reputations, which

can be derived from the calculation, to access them. Such a mechanism can include storing

the reputation values and distributing them to anyone who needs them. For example, the

reputation management system could use a distributed hash table to store the miners’ repu-

tation values with a gossip protocol for distributing updated information. This mechanism,

though, is out of the scope of the thesis.

In the following sections, we describe the properties of our reputation model and the

features used for calculating the reputation values. Also, we show how to aggregate these

values in a manner that leads to an elegant interpretation.

5.3.1 Reputation Model Properties

Reputation is widely used as an indicator of the trustworthiness of nodes in decentralised

systems. However, to promote their adoption, reputation models should be able to address

the reputational issues and needs of these services. Therefore, the design of reputation systems

requires identifying the properties that such models fulfil. Based on the literature, we have

determined several desirable properties that should be satisfied by all trust and reputation

models. According to [273], the properties can be categorised into three groups. The first

group of properties focuses on the formulation dimension. The second and third groups

are related to the calculation and dissemination dimensions. In this chapter, we identify

particular properties that focus on the formulation dimension since the chapter aims to build
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a formulation to calculate reputation values for miners (see Table 5.1). We classify these

properties into two groups. The first group of properties describes the input and mathematical

model for evaluating reputation values. The second group contains properties that ensure

newcomers and older miners are treated fairly.

The properties in the first group (P1 to P5) concentrate on the information and aggre-

gation methodologies employed to assess reputation values. P1 requires ratings and reputation

values to discriminate miner behaviour accurately. Properties P2 and P3 cope with the type of

information utilised for assessing reputation values. A block within a blockchain-based system

can be mined in different ways, which leads to difficulty in reaching conclusions about miners’

reputations. However, our model aggregates two types of features and comparable reputation

information that can accurately reflect the reputation of miners within blockchain-based sys-

tems that use PoW. P3 relies on temporal elements because the behaviour of miners might

vary over time. Also, reputation is based on the experience of past mining processes. For ex-

ample, a malicious miner could act adequately for some time to create a positive reputation,

which could then be used to deploy an attack. Therefore, the evaluation of miners’ behaviour

should be captured over time to reflect reputation accurately. P4 reflects the evolution speed

of the reputation relationship with the variations of miners and network behaviours. The

sensitivity factors under evaluation encompass the speed of change in the level of reputation

values for miners. Finally, P5 aims to force a miner to exhibit rational behaviour by utilising

a sufficient penalty.

The second group of properties (P6 to P8) ensures that the treatment of new and old

miners is fair. When a new miner joins the system, there is no knowledge regarding their

behaviour. Some reputation systems generally provide new miners with a default reputation

value. Nevertheless, this value should not penalise new miners simply for being new (P6). If

new miners are regarded as low-reputation users, they will never be chosen to do mining, so

it will be impossible for them to build their reputation. Equally, a reputation system must

stop miners from exploiting their new status (P7). Indeed, miners with a bad reputation may

adopt new identities to avoid the repercussions of their acts by joining again as new miners.
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P8 relates to the miners’ longevity, which makes it difficult or impossible for miners to adopt

pseudonyms or new identities to remove any connections with previous bad behaviour.

Table 5.1: Properties for Trust and Reputation Models

ID Property Reference

P1 Reputation should distinguish miner behaviour. [273]
P2 Gathering reputation features should be meaningful. [273]
P3 Reputation should show the changing of miner behaviour over time. [273]
P4 Reputation should be sensitive. [274]
P5 The penalties should be sufficiently severe. [275]

P6 The system should not penalise new miners for their status. [273]
P7 The system should not give advantages to newer miners. [273]
P8 The system should discriminate miners’ longevity. [51]

5.3.2 Reputation Derivation

In MinerRepu, a miner’s reputation is based on satisfaction with the miner’s behaviour. The

satisfaction information regarding miners can be gathered by analysing the behaviour of miners

in previous mining processes. This satisfaction reflects the degree of reputation that miners

in the community have. We use one of the main important factors for such evaluation, which

is miners’ availability.

The availability of a miner in a blockchain network is considered necessary, especially

at the beginning of a blockchain-based system, because the system needs to have many miners

to avoid the centralisation problem. Availability is composed of mining time and propagation

time. Miner’s availability means that the miner should be available to participate in mining

blocks and propagate blocks to other nodes.

The first feature related to availability is mining time, which defines the time a miner

takes to mine a block. There is an expected mining time for miners based on their hashrate

and the difficulty of finding hashes in the network. The satisfaction associated with mining

time is evaluated after each submitted block as a way to monitor miners’ behaviour. To

compute the satisfaction based on the mining time, we compare the time a miner took to

mine the block in the current round with its expected time for mining blocks. This feature
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tracks how long miners did not participate in the network. It catches miners that might leave

the network and shows how miners are available to do mining. Also, it is used to differentiate

between new and old miners.

Propagation time represents the time a miner takes to receive and verify blocks and then

broadcast them in a blockchain network. The satisfaction is calculated by comparing the lowest

propagation time that appeared in the current broadcasting time of the mined block to the

propagation time for that miner. We include the propagation time in calculating the reputation

values because a delay in information propagation can be responsible for inconsistencies in the

blockchain network, leading to slower block verification. Also, attackers can take advantage

of the inconsistencies to perform double-spending attacks, which are more difficult to discover

in a slow network. The satisfaction related to propagation time shows the probability that

the miner will be up and running and able to deliver valuable services to other nodes. Using

this feature gives miners that have not mined any blocks a chance to gain a level of reputation

over time instead of keeping their reputation values at zero. If we keep them at zero, we may

affect the network because those miners may decide to leave the network, which leads to a

reduced number of nodes in the network. As a result, centralisation can occur.

5.3.3 Reputation Quantification

Since the behaviour of miners in the blockchain network may change over time, the represen-

tation of reputation value must be shown as a continuous range to distinguish the reputation

levels for miners in a comparable way. In MinerRepu, we represent reputation from zero to

one, signifying a continuous range from unknown to completely reputable. Basically, every

miner’s reputation value is set to zero from the beginning. This value goes up and down ac-

cording to the miner’s behaviour within the blockchain-based system. When it behaves well,

this value goes up and vice versa.
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5.3.4 Reputation Computation

The reputation value for a miner R(m) is based on satisfaction regarding its availability. We

design our model to define the reputation value in an accurate and parameterisable way. Three

objectives are taken into account to calculate miners’ reputation values. First, miners should

be monitored carefully at the beginning stage, and their reputations should gradually increase

at the beginning. Second, mature miners can be potentially rewarded with a rapid reputation

increase in the middle part of their participation. Third, over-control should be avoided by

imposing slow increases at the peak. Therefore, three factors are considered for calculating

the increment ratio for a miner’s reputation value.

The first factor is the sigmoid function calculated using a parameter x that controls the

increment or decrement of miners’ reputation. It ensures that a new miner can slowly increase

its reputation, even when the satisfaction value of its availability is strong. A miner must

remain within the system and act honestly for sufficient time to gradually raise its reputation.

Once this has been reached, the turning point is where its reputation value is enough to be

motivated by increasing its reputation quickly to a level of greater interest. Ultimately, the

curve tapers off again, ensuring that reputation does not continuously grow but achieves a

plateau that allows for a fair share of power between miners. The reputation function also

has set parameters (α, λ) that determine these points precisely. These parameters can be

adjusted to allow miners’ reputations to increase more quickly or slowly as appropriate.

Second, we use satisfaction about the number of blocks a miner has mined and broad-

cast (i.e., the satisfaction of mining time and propagation time) to control the increments of

the reputation value of each miner’s behaviour. This factor can motivate miners to increase

the number of highly satisfied blocks to gain high reputation values. Also, satisfaction con-

trols the decrements of the miners’ reputation values, which ensures that miners with many

satisfied blocks will try to avoid losing a high reputation value by working regularly. Also, this

can prevent malicious miners from performing attacks as they will lose a high reputation value

while mining in their private blockchain. In other words, this ensures that miners that do not

submit or broadcast any block for some time will be punished by decreasing their reputation
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values.

Thirdly, we consider the hashrates for a blockchains network, miners and tolerance

level. First, we use the percentage of a miner’s hashrate of the total network hashrate to

control the increment of the satisfaction about mining time for the miner. It is used to

detect a possible selfish mining attack. Second, the reputation function is parameterised to

precisely determine the level of risk within the blockchain network; namely, the parameter t

can specify the hashrate percentage that can become the tolerance level within the network. In

MinerRepu, we assume that the parameter is decided by decision-makers who are responsible

for a blockchain-based system.

In this chapter, we establish a general reputation metric that dynamically uses two

features (i.e., mining time and propagation time for a block). The general metric computes

the reputation value of a miner using the total amount of increment the miner obtained for the

satisfaction of the miner’s contribution during a given period. We formulate the calculation

for mining time and propagation time features separately.

5.3.4.1 Mining Time

To compute the increment rate for a miner’s reputation value based on its behaviour of mining

a block, we first find the satisfaction about the miner’s mining time satMt, which determines

how good the miner’s mining time Mt is for the mined block compared with its expected

mining time expMt. The value Mt would not be zero because satMt is just calculated for the

miner that produced the current block. Therefore, satMt is equal to zero for the rest miners.

The satisfaction based on the mining time satMt is computed as follows:

satMt =



expMt
Mt

if Mt > 0

0 otherwise

(5.1)

where the expected time to find a block by the miner expMt can be calculated using an

equation based on [94], as follows:
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expMT =
D × 232

MHr
(5.2)

where D is a number that controls the time miners take to add a new block to a blockchain-

based system (i.e., it is called difficulty), and MHr is the hashrate for the miner.

The change rate in the miner’s reputation value has three different cases based on a

miner’s behaviour (Selfish-miner, Non-miner and Honest-miner).

Selfish-miner. The first case is the increment of reputation value for a selfish miner. Ac-

cording to [244], selfish miners can gain unfair rewards for their mined blocks. Specifically, if

a miner has computational power over 33%, the miner can make unfair gains by maintaining

a private blockchain and withholding mined blocks. This means honest miners will be forced

to waste computation on a stale public branch. One thing that may indicate selfish mining

activity, as mentioned in [244], is the time gaps between sequential blocks. Practically, a self-

ish miner suppresses an honest chain of length N by using a chain of a length N +1 and then

submitting a block that appears very soon after the previous block. Since standard mining

events should be independent of each other, there should be an exponential distribution of

block discovery times. Any deviations from this distribution could suggest that selfish min-

ing is occurring. In MinerRepu, a selfish miner is a miner that has a percentage of network

hashrate greater than or equal to the tolerance level and has submitted two blocks following

each other in a short time. The short time means the time between these blocks is less than

the miner’s expected mining time for generating a block. The selfish miners will gain ‘-1’ for

the change rate of satisfaction based on mining time which is used as a sign of misbehaviour.

We believe this will stop malicious miners from misbehaving because it catches miners that

try to perform either a 51% attack [8] or a selfish mining attack.

Non-miner. The second case is related to miners that did not mine the current block.

Those miners get zero for the ratio of changes in reputation value based on a miner’s mining

time which influences the final reputation values for the miners. This can motivate miners to
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mine blocks regularly.

Honest-miner. Regarding a miner that submits a block honestly, the miner will gain a

higher increment ratio up to one if the satisfaction about the mining time satMt is high and

vice versa.

The formula we propose to calculate the ratio of changes in reputation value based on

a miner’s mining time RMt by considering the above factors is as follows:

RMt =



−1 if MHr% ≥ t, ym = 1, satMt > 1

0 if satMt = 0

satMt if 0 < satMt < 1

1 otherwise

(5.3)

where ym is the number of mined blocks in the blockchain since the last block published by the miner.

5.3.4.2 Propagation Time

To calculate the increment rate for the reputation value a miner received from the satisfaction about

its propagation time of a block RPt, we first find satisfaction about the propagation time for a block

satP t that is broadcast by the miner that shows how much time the miner took to receive and verify

the block Pt. We then compare it to this round’s lower propagation time LPt. The value satP t

is measured for all miners in the network. However, it is equal to zero for the miner that produces

the block since there is no propagation time. Other miners that did not participate in broadcasting

the mined block get ‘-1’. This can encourage those miners to keep sending blocks and not leave the

network. When this value goes higher, the miner is more satisfactory. Consequently, we define the

equation as follows:
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satP t =



LPt
Pt if Pt > 0

0 if RMt > 0

−1 otherwise

(5.4)

Hence, the ratio of increments for the reputation value for the miner based on the block’s

propagation time RPt is formulated as follows:

RPt = satP t (5.5)

Using the above equations, the updated miner satisfaction satRound can be calculated as:

satRound =



0 if RMt = −1

RMt+RPt+ PSatRound otherwise

(5.6)

where RMt + Rpt is the satisfaction of the current round, and PSatRound is the satisfaction of

previous rounds for the miner. The value satRound for a malicious miner becomes zero each time the

malicious miner submits a suspicious block which means losing a high amount of reputation value.

5.3.4.3 Final Reputation Value

The new reputation value for a miner R(m) based on the above equations can be represented as

follows:

R(m) =
1

1 + e−α(satRound−λ)
(5.7)

The previous equation (i.e., sigmoid function) ensures that the reputation value for a miner

does not exceed one and does not go below zero. Also, it indicates a continuous range from an

unknown miner to a completely reputable miner.
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5.4 Evaluation

There are several ways of approaching the evaluation of trust and reputation models. These encompass

custom-made experiments, general experimentation in restricted situations, or common evaluation

frameworks, which include one or both theoretic criteria and simulation frameworks [276]. This

thesis applies an analytical approach to compare our reputation model to some existing trust and

reputation systems and examine how our model addresses attacks. Also, we adopt experiments to

present how the model performs and evaluate the correctness of predicting malicious miners. In

addition, we investigate how our model can save the energy consumed by PoW.

5.4.1 Analytical Approaches

In this section, we compare our model with trust-based and reputation-based consensus algorithms

because they are, to some extent, comparable to our model. In addition, we compare MinerRepu

with the reputation model proposed in Chapter 4, which is considered as one objective of selecting

miners. We have called that model, Ch4Repu.

5.4.1.1 Criteria Framework-based Analytical Evaluation

Some studies offer several measures or criteria that can be employed for analysing trust and repu-

tation models. We introduce several major characteristics and properties obtained from a number

of dimensions of reputation evaluation systems (see Table 5.1). Criteria framework-based analytical

evaluation approaches offer a basis for comparing models based on specific indicators. We examine

and compare our reputation model with other models for blockchain-based systems regarding these

properties. The analysis results are summarised in Table 5.2.

All approaches do not fulfil property P1 except MinerRepu because trust and reputation mod-

els should meet three requirements: capturing the range of user behaviour (trust/distrust), capturing

the confidence of entities on trust information (certainty/ uncertainty) and the absolute reputation

values [273]. Most of these approaches consider the regularity of participation in the consensus as one

feature of miners’ trustworthiness. However, these approaches do not take into account uncertainty.

For example, some use the number of generated blocks without considering the expected mining time

of the miner that mined the current block and other miners to distinguish the miners’ behaviour.
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Table 5.2: Evaluation of Trust and Reputation Models for Miners within Blockchain-based
Systems

Properties [157] [158] [159] [265] [269] [270] [272] Ch4Repu MinerRepu

P1 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ •
P2 ⊗ ⊗ • • • ⊗ • • •
P3 ⊗ ⊗ • ⊗ • • • • •
P4 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ •
P5 ⊗ ⊗ • ⊗ ⊗ • ⊗ ⊗ •

P6 • • • • • • • • •
P7 • • • • • ⊗ • • •
P8 • • • • • • • • •

P1: Reputation should distinguish miner behaviour.
P2: Gathering reputation features should be meaningful.
P3: Reputation should show the changing of miner behaviour over time.
P4: Reputation should be sensitive.
P5: The penalties should be sufficiently severe.
P6: The system should not penalise new miners for their status.
P7: The system should not give advantages to newer miners.
P8: The system should discriminate miners’ longevity.

Others use a subjective evaluation to measure the satisfaction towards miners in the consensus. Both

ways lead to no support or limited uncertainty. Thus, they must provide the information necessary

to distinguish miners’ behaviour. As a result, these approaches do not fulfil property P1 because they

do not meet one or more of the above requirements.

The primary features needed for fulfilling P2 reflect miners’ behaviour. In Table 5.2, the

reputation systems that use the features that can present miners’ behaviour fulfil this property.

However, the reputation system [157] utilises features using information referring to a weighted trust

graph (i.e., Pagerank Algorithm), and [158] and [270] use information about the miner within different

blockchain architectures. Thus, we consider these as not meeting P2.

Most of the analysed trust and reputation systems for miners in blockchain-based systems

use timestamps to show the changes in miners’ reputations over time. The systems that meet the

property P3 show a change in trust or reputation values after each generated block. However, [157],

[158] and [265] do not fulfil property P3. The models proposed in [157] and [158] use temporal aspects

with features not reflected in the miners’ behaviour. Also, the system in [265] uses binary values after

each block to present the reputation values that do not display an update of the miners’ behaviour.

Systems with techniques to control the speed of the change of miners’ reputation fulfil P4.
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These systems use a sigmoid function or some parameters to control the sensitivity of increments and

decrements of miners’ reputations. However, the remaining systems do not utilise such techniques

or use them in a way that affects their mechanism. For example, [270] and Ch4Repu use a sigmoid

function for calculating reputation values, but they aggregate the results of this function with other

values, affecting the reputation model’s sensitivity. Others use binary values to evaluate miners’

behaviour after each block.

The property P5 is captured using a sufficient penalty towards miners for misbehaviour.

Although most of the analysed techniques penalise miners for misbehaviour, they exploit this factor

only partially. Indeed, most reputation systems penalise miners for misbehaviour based on the number

of valid and invalid blocks generated by miners without taking into account the hashrate of miners, or

else they punish malicious miners using methods unrelated to the miners’ behaviour. Because of these

limitations, we consider these systems as not fulfilling P5. Proof of Reputation [159], RepuCoin [270]

and MinerRepu are the only reputation systems in our analysis that can penalise miners sufficiently

for misbehaviour.

New miners can gain fair treatment (P6 to P8) by employing technical solutions and some

features. All analysed systems meet these properties except [270], which does not fulfil the property

(P7). The systems use a default value for new miners that is carefully specified so that new miners

can be distinguished from older miners; these systems use reputation values that can express the

entire range of miners’ behaviour regarding good and bad behaviour. Thus, they do not use bad

initialised values or only negative evaluations that can lead to the inactivity of new miners or give

new miners a chance to receive a high reputation automatically. Also, they use costly techniques that

stop miners from re-entering the system as new miners. Regarding [270], the reputation model uses

an initial value for new miners, where this value is extracted from an external resource. Such value

can give advantages to new miners.

5.4.1.2 Threat-based Analysis

Attacking reputation systems usually has the aim of performing attacks against the reputation sys-

tems’ goals. The purpose of this evaluation is to present how our reputation system is invulnerable

to particular threats; this includes the behaviours of self-promoting, whitewashing, slandering, and

traitors attacks. We discuss these threats because they fundamentally target the reputation system’s
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formulation. Nevertheless, we ignore a denial of service attack because it is related to disseminating

reputation values, which is outside this thesis’s scope.

Self-promoting attacks represent malicious behaviours in which attackers attempt to enhance

their reputation. Self-promoting attacks are essentially an attack on the formulation. Attacks of this

nature are only possible in systems that operate formulations considering positive feedback [277]. In

MinerRepu, formalisation considers the positive and negative values for miners’ behaviours. So, the

model is invulnerable to this attack.

Whitewashing attacks occur when attackers execute a short-term strategy that allows them

to degrade their reputation; then, they can evade the outcomes of system abuse by exploiting a

vulnerability in the system to restore their reputation. To reduce the risk of whitewashing attacks,

reputation systems need to employ a formulation that prevents newcomers and good miners that

participate for a long time from having the same reputation [277]. MinerRepu is not vulnerable to

a whitewashing attack because it prevents newcomers from having the same reputation metrics as

long-term participants. The formulation is based on long-term experiences that discriminate between

new and old actions.

Slandering means that a miner manipulates the reputation of other miners by giving false

information or behaving in a manner that decreases the reputation values of the victim miners. This

kind of attack typically focuses on the formulation dimension of a given reputation system [277].

MinerRepu incorporates formulations purposely designed to limit the risk of slandering attacks by

computing user reputation according to direct information only. As another weakness, a miner could

act in a way that may affect other miners’ reputations. The miner with a high hashrate may stop

mining for some time to let other miners have a higher chance of submitting two blocks in a short

time, which results in a reduced reputation for the victim miners. However, our model uses a defence

technique towards this weakness by penalising the miner for stopping mining for that time.

A traitors attack happens when a miner behaves honestly in the system for a period to raise its

reputation value and then begins to misbehave. In our model, the formulation includes positive and

negative information for calculating the reputation. When attackers behave honestly for an initial

period to build up a positive reputation and then start misbehaving, they will not gain reputation

values for behaving dishonestly. However, they will lose a high value from their reputation values.
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Table 5.3: Experimental parameters

Variable Value

Number of miners 16
Number of blocks 1000
Network hashrate 125540000 TH/s
Difficulty 15.784217546288 TH/s
Tolerance level within the network 30% of the network hashrate
α 0.02
λ 300
Experiment running number 10

5.4.2 Experimental Approaches

To evaluate our model, we apply an experimental evaluation method that utilises a blockchain sim-

ulator, as simulations are often cheaper, faster and easier to implement than a complete product in

the real world.

5.4.2.1 Blockchain Simulator

We evaluate our model through a blockchain simulator called Bitcoin-Simulator [13] using real and

artificial data (similar to the simulator used for evaluating the proposed model in Chapter 4). Using

this simulator, we can generate data that we subsequently use to calculate the reputation level of

each miner.

We have designed ten simulation experiments to evaluate the model. We assumed a general

set of related parameters for the experiments using real data, including the current hashrate for the

bitcoin network and the difficulty of finding a hash 1. We used the same settings as used by [13], such

as the miners’ hashrate and geographical distribution. Based on the default setting of the simulator,

the number of honest miners is equal to 15, and 1 miner is considered malicious. To reflect a real

blockchain network, we randomly chose one miner in each experiment to join and leave the network

frequently. We also randomly chose 100 blocks to determine when the miner joined and left the

network. Table 5.3 shows the Experimental parameters.

1We have retrieved information from https://blockchair.com/bitcoin on the 1st of March 2021
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5.4.2.2 Miners Reputation Values Variations

In this section, we discuss the results of our simulation experiments. We assess the dynamic reputa-

tions of honest and malicious miners using simulation experiments.

As depicted in Figure 5.1, the reputation values for honest miners (blue lines) increase with

the increase in the regularity of their honest behaviour, taking into account the joining and leaving

behaviour of the honest miners (yellow lines). We can clearly see that the reputation values between

honest miners increase slowly at the beginning and faster when the miners perform honest behaviour

for a sufficient number of blocks. Then, at the peak, the reputation values increase slowly again

to provide a fair share of reputation between miners, especially when there are miners with a low

hashrate.

On the other hand, the reputation values of malicious miners (red lines) increase slowly, like

for the honest miners, since the malicious miners have yet to misbehave. However, our model penalises

malicious miners immediately after performing attacks. Malicious miners lose a high proportion of

their reputation once they behave selfishly. Therefore, their reputation values become like newcomer

miners’ reputation values. Figure 5.1 shows that some trends represent the changes in the reputation

values of the honest miners, while the reputation values of the malicious miners do not show the

sigmoid curve; they keep increasing and then suddenly exhibit a drastic drop.

This analysis shows that MinerRepu reflects the following nature: “reputation is hard to gain,

but it is easy to lose”. Our model evaluates the reputation accurately among miners. Furthermore,

it reacts when miners’ behaviour changes radically and is sensitive to the changes towards malicious

actions that can effectively signal malicious miners.

5.4.2.3 Malicious Miner Detection

In blockchain-based systems, the consensus mechanism, PoW, is vulnerable to a 51% attack (i.e.,

majority attack), which can be exploited by malicious miners with computing power over 51% to

achieve total control of the blockchain. Nevertheless, recent studies indicate that even miners with

computing power less than 51% are considered dangerous [244]. To be more precise, when a miner’s

hashing power comprises, as an example, over 25% of the total hashing power of the blockchain

network, then that miner can launch a selfish mining attack [244]. Miners might attempt to perform

such an attack to raise the number of their mined blocks in the blockchain, which raises their rewards.
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Figure 5.1: The variation of reputation values for honest and malicious miners

They perform this attack by selecting specific mined blocks and withholding them in their private

blockchains. Then, they gradually publish them. Since Bitcoin’s resistance to adversaries is predicated

on the assumption that the attacker cannot have more than 30% of the total hashrate of a blockchain

network [13], [244], [278], in this chapter, we focus on detecting selfish miners that have hashrates

equal to 30% and that perform selfish mining attacks.

To capture selfish miners, we use the ratio-to-moving-average method to show the fluctuations

in miners’ reputation during a number of mined blocks (see Figure 5.2). The figure shows that the

level of reputation fluctuation for malicious miners is abnormal (red lines) compared to honest miners.

On the other hand, the level of reputation fluctuation for honest miners (blue lines) is stable, which

indicates that honest miners’ contribution is relatively stable. Furthermore, miners that join and

leave the network (yellow lines) have a relatively stable reputation fluctuation. The integration of our

model with the ratio-to-moving-average method can be used to evaluate the reputation of miners:

only miners with a stable level of reputation fluctuation within a certain interval (for example, [0.95,

1.05]) are considered honest miners within the blockchain network.

5.4.2.4 Model Accuracy

To calculate the accuracy of detecting and differentiating between honest and malicious miners, we

have checked whether our model can correctly classify those miners after each mined block. First,

the accuracy of classifying the miners is calculated by computing how often our model can accurately

classify miners (i.e., the ratio of correct classifications to the total of classifications). Then, we have
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Figure 5.2: The fluctuation of miners’ reputation during mining of blocks

used the experiments’ average accuracy to demonstrate our model’s accuracy. Finally, we have utilised

the miners’ reputation fluctuation intervals to detect whether a miner is honest or malicious. In other

words, if the reputation fluctuation of a miner is within an interval, that means the miner is honest.

If it exceeds the boundaries, then it is not. We set four intervals for our experiments [0.95, 1.05],

[0.85, 1.15], [0.75, 1.25] and [0.65, 1.35].

Figure 5.3 shows the accuracy of our model in defining miners as honest or malicious. Using

the intervals described above, we have observed that when the endpoints of the interval are very

conservative (e.g., [0.95, 1.05]), the judgement about the miners is not accurate in the early stages

(blue dots). Nevertheless, the detection function of the reputation model becomes more effective

using these endpoints when the reputation of miners increases steeply. The remaining intervals (i.e.,

[0.85, 1.15], [0.75, 1.25], [0.65, 1.35]) show accuracy more than 93%, with average accuracies of 96%,

95%, and 95%, respectively. Thus, choosing appropriate endpoints for the interval used to classify

miners is essential. Also, one can use two different intervals; for example, we can use [0.85, 1.15] at

the early stages of mining, and once the number of blocks reaches a specific value (e.g., 400), we set

the interval to a more conservative one, such as [0.95, 1.05].

5.4.2.5 Energy Saving and Carbon Emissions

In this section, we discuss how MinerRepu can reduce the energy consumption and carbon emissions

of blockchain-based systems to understand the model’s effectiveness better. The model can minimise
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Figure 5.3: The accuracy rate of detecting honest and malicious miners with different intervals

the amount of energy spent on PoW by reducing the number of not reputable miners within the

blockchain network. Also, it can minimise the carbon emissions of these systems. As a result, our

model can save energy and reduce carbon emissions compared to the situation in which all miners

engage in PoW.

We have calculated the energy consumed and carbon emissions by each miner after the miners

have built their reputations. We chose the 1000th block as the time point for calculating the energy

consumption and carbon emissions, which is computed in two different ways. First, we have calcu-

lated it for the case where all miners participated in mining the block. In the second scenario, the

energy consumption and carbon emissions are determined for four different clusters based on miners’

reputation values: in the 99th percentile, in the 98th percentile and above, in the 97th percentile and

above, and in the 96th percentile and above.

To calculate the total energy consumption of all miners, we have used the general equation

for E (kWh):

E =
M∑

m=1

Pm × Tm (5.8)

where Pm is the power use (kW ) of a miner m, Tm is the time (hour) at which the miner’s power is

consumed, and M is the total number of miners.

We can calculate the total carbon emissions of all miners C (g) as follows:
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Table 5.4: The energy consumption of a blockchain-based system using MinerRepu

Miners’ Reputation Energy Consumption
Range Average Standard Deviation

≥ 99% 43-57% 51% 0.06
≥ 98% 53-68% 65% 0.05
≥ 97% 57-70% 67% 0.04
≥ 96% 57-70% 68% 0.04

Carbon Emissions
Range Average Standard Deviation

≥ 99% 60-82% 77% 0.07
≥ 98% 84-99% 95% 0.04
≥ 97% 89-100% 97% 0.03
≥ 96% 89-100% 97% 0.03

C =

M∑
m=1

EFm × Em (5.9)

where EFm is the emission factor of electricity in the miner’s location (gCO2eq/kWh), and Em is

the energy consumption for each miner (kilowatt− hour).

Similar to the assumptions in Chapter 4, we assume that all miners use the most efficient

mining device, and as a miner’s hashrate increases, their number of devices also increases. We base

this assumption on the fact that using inefficient devices leads to leaving the network due to not

receiving profits from successful mining [44], [190]. Consequently, the power use of each miner was

determined by dividing the hashrate of each miner by the hashrate of the selected mining device type.

In addition, we assume that miners try to mine blocks for 24 hours to gain profit [45], [190].

The results in Table 5.4 show that the total energy consumption and carbon emissions increase

as we increase the number of miners within clusters, as more miners participate in the consensus

processes. However, our model can reduce the energy consumption to 43% (51% on average with a

standard deviation of 0.06) of the total energy consumed by miners of the standard PoW consensus

algorithm. Also, it can minimise the carbon emissions to 60% (77% on average with a standard

deviation of 0.07) of the total carbon emission of PoW. These reductions are not compromising

the trustworthiness of the blockchain-based system, as we have only included miners with a high

reputation value (≥ 99%).
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5.5 Conclusion

Utilising trust and reputation models for blockchain has the potential to influence how reputation

is fundamentally managed within blockchain-based systems and enable environmentally sustainable

mining. To address these objectives, we have presented a novel reputation model for individual miners

within blockchain networks called MinerRepu. It calculates and compares the reputations among

miners, considering mining behaviours and broadcasting of blocks. We can potentially integrate the

model with any consensus algorithm that uses a mining process. Our model is the first reputation

model for blockchain-based systems that has been analytically evaluated and compared to other

trust and reputation models for miners. Experimental evaluations have been conducted to test the

performance of our model in classifying honest and malicious miners. The results show that the

proposed method can effectively classify miners with an average accuracy rate of 96%. Also, we have

discussed the model’s energy consumption and carbon emissions. The results showed that MinerRepu

could save up to 49% on average of the energy consumed and up to 23% on average of carbon emissions

produced by the standard PoW.

Although our model can save energy and reduce carbon emissions, it may affect blockchain-

based systems’ total decentralisation. The model may limit new blocks’ mining to a small number of

miners. As a result, blockchain-based systems’ overall decentralisation may become low. Therefore,

we need a solution that uses our model without compromising the inherent trustworthiness and

decentralisation of blockchain technology (We have addressed this gap in Chapter 6). In addition,

taking into account the future potential of the integration of a reputation model, it may provide more

options for improving the sustainability of blockchain-based systems. Integrating our reputation

model with self-adaptive techniques can potentially be an option to optimise the sustainability of

blockchain-based systems over time (Addressed in Chapter 6).
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Chapter Six

Self-Optimising the Environmental
Sustainability of Blockchain-based

Systems

Context. Several solutions have been proposed to improve the sustainability of blockchain-based

systems, with an explicit focus on environmental sustainability. Most of these solutions focus on min-

imising energy consumption by suggesting alternative consensus algorithms. However, no previous

study has proposed a self-adaptive model to enhance the environmental sustainability of blockchain-

based systems without compromising the core properties of blockchain technology.

Objective. In this chapter, we propose a novel self-adaptive model to optimise the environmental

sustainability of blockchain-based systems. The model balances the systems’ energy consumption

and carbon emission without compromising their decentralisation and trustworthiness. The model

continuously monitors a blockchain-based system and adaptively selects miners, considering environ-

mental changes and user needs.

Method. We propose a model that dynamically selects a subset of miners to perform sustainable

mining processes while ensuring decentralisation and trustworthiness. The aim is to trade off four

conflicting objectives by minimising energy consumption and carbon emission of blockchain-based

systems and maximising the decentralisation and trustworthiness of these systems. We have imple-

mented and evaluated the efficiency and effectiveness of the model using simulations. Also, we have

investigated and discussed the correlation between these objectives and how they are related to the

number of miners within the blockchain-based systems.

Results. The results show that our model can optimise the sustainability of blockchain-based sys-

tems by minimising energy consumption and carbon emission while maintaining decentralisation

and trustworthiness under different operating conditions compared to similar models, including the

straightforward use of Proof of Work. Compared with PoW, the results show that our model can
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reduce energy consumption by 55.49% on average and carbon emissions by 71.25% on average while

maintaining desirable levels of decentralisation and trustworthiness by more than 96.08% and 75.12%,

respectively. Also, the results show that there are strong positive correlations between each pair of

objectives except decentralisation with other objectives. It also shows strongly positive relationships

between the number of miners and each objective.

Conclusion. Our model for self-optimising the sustainability of blockchain-based systems can per-

form better in energy consumption and carbon emissions compared to the original PoW solution

and similar models with an acceptable level of decentralisation and trustworthiness under different

operating conditions. Moreover, the model can be applied as a self-adaptive model for any other

conflicting objectives.

Contribution to Literature. This chapter will contribute to the research literature through our

full paper "Self-Optimising the Environmental Sustainability of Blockchain-based Systems”, which is

under the second round of the review.
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6.1 Introduction

In Chapter 4, we have reformulated the problem of selecting miners in blockchain-based systems

as an optimisation problem. The optimisation model attempts to minimise energy consumption

and carbon emission while considering the trade-off with decentralisation and the trustworthiness of

blockchain-based systems. It calculates the trustworthiness through the reputation of miners within

the systems based on a simple model inspired by the ideas of PoW and PoS. This has motivated

our work in Chapter 5, where we have proposed a dynamic reputation model for measuring and

evaluating reputation by monitoring miners’ behaviour after each mined block within blockchain

networks. In addition, the optimisation model selects a subset of miners in an offline optimisation

scenario where it first optimises and then deploys. However, as the environment is dynamic and

changes over time, selecting potential miners to optimise blockchain-based systems’ sustainability

can change at run-time.

To improve the sustainability of blockchain-based systems, researchers have mainly focused

on minimising the energy consumed by miners within these systems assuming carbon emissions lin-

early follow the changes in energy consumption, which may not necessarily be the case [16]. There-

fore, solutions that provide environmentally sustainable blockchain-based systems in terms of energy

consumption and carbon emissions are needed, as discussed in 2. The solutions should maintain

the fundamental design of blockchain technology and its inherent built-in properties, such as its

decentralisation and trustworthiness. Furthermore, the solutions should take into consideration en-

vironmental conditions and decision-makers’ preferences. Therefore, this chapter provides a novel

adaptive model for optimising the sustainability of blockchain-based systems without compromising

their decentralisation and trustworthiness.

This chapter addresses the fourth research question in this thesis: RQ4: How can we dy-

namically enhance the environmental sustainability of blockchain-based systems while

maintaining their decentralisation and trustworthiness, taking into account environmen-

tal changes and decision-makers’ requirements?

To answer this question, this chapter develops a self-adaptive model for blockchain-based

systems leveraging MAPE-K control loop (Monitor, Analyse, Plan and Execute over shared Knowl-

edge) [279], as a reference model for self-adaptive and autonomic systems [280]. The proposed model

provides automated and self-adaptive blockchain-based systems capabilities, which can help users per-
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sonalise the selection and configuration of these systems according to their requirements. To the best

of our knowledge, this chapter has proposed the first self-adaptive model to enhance the environmen-

tal sustainability of blockchain-based systems considering energy consumption and carbon emissions

without compromising their fundamental support for decentralisation and trust. The proposed model

is a self-adaptive model for blockchain-based systems that integrates the MAPE-K architecture and

a MOOM. It dynamically searches for more environmentally sustainable solutions that maintain the

fundamental core properties of blockchain technology. In particular, the formulation is designed to

optimise the energy consumption and carbon emissions of blockchain-based systems that use the

PoW consensus algorithm while balancing the decentralisation and trustworthiness of these systems

at run-time.

The main contributions of this chapter are summarised as follows:

• We report on the state of art self-adaptive models and multi-objective optimisation models for

blockchain-based systems to identify gaps and inform how we develop our proposed model.

• A self-optimising model for blockchain-based systems is proposed, where we make novel use of

MAPE-K and MOOM to enhance the environmental sustainability of these systems. The focus

is on dynamic optimisation of the trade-offs between maintaining decentralisation and trust

in consensus provision, reducing energy consumption and carbon emissions, and considering

environmental conditions and users’ requirements.

• We conduct several experiments to evaluate the proposed model’s effectiveness in reducing

energy consumption and carbon emissions and maintaining the decentralisation and trustwor-

thiness of these systems.

• We investigate and discuss the correlations between objectives and between the number of

miners and each objective.

The rest of the chapter is organised as follows: Section 6.2 provides a brief background related

to the concept of self-adaptive systems. Also, Section 6.3 gives a brief analysis of the existing literature

on the integration of blockchain-based systems with self-adaptive models and with multi-objective

optimisation models. Section 6.4 describes our self-optimising model for blockchain-based systems.

The experimental design is explained in Section 6.5. The evaluation of the model is presented in

Section 6.6. Finally, Section 6.7 concludes the chapter.
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6.2 Self-adaptation Overview

Self-adaptive systems are the focus of many scientific and engineering efforts. These systems can

adapt in different aspects, such as security, performance and fault handling. Self-adaptive systems

are used in a number of different areas, such as software systems and applications. In this section,

we present an overview of the basic concepts of self-adaptive to boost our understanding of the field.

6.2.1 Self-adaptive Definition

The phrase “self-adaptive (software) systems” is defined in several ways in the literature, as well as

other terms that are used interchangeably, such as autonomic systems, dynamically adaptive systems,

self-adaptive software systems or self-adaptive systems [281]. Here, we provide a definition that is

used in this thesis.

In [282]–[284], self-adaptive systems perform ongoing assessments of their behaviour, modify-

ing it if the assessment outcomes indicate that the efforts are not leading to the goals or if there is a

likelihood of improved performance. In other words, self-adaptive systems perceive their environment

and situate themselves within it, and they can modify their behaviour accordingly. As implied by

the word “self”, they are able to act autonomously (i.e., with little or no intervention) when adapting

to take account of contextual or environmental changes. Although several self-adaptive systems exist

that require no human intervention in their operations, having high-level goals in place, such as using

policies, can serve as valuable guidance.

6.2.2 Adaptation Loop

An adaptation loop refers to the closed-loop mechanism embodied in self-adaptive software. Adap-

tation loops involve several processes in addition to effectors and sensors. Most currently used mech-

anisms ensure adaptivity through the use of four distinct processes, namely monitoring, analysing,

planning and executing (MAPE). However, some approaches add shared knowledge to the above

(MAPE-K). Adaptation logic development for such systems essentially uses the MAPE control feed-

back loop as the standard [284], while researchers have put forward related feedback structures,

including sense-plan-act control [285], autonomic control loop [286] and observer/controller architec-

ture [287].
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6.2.3 Self-adaptive Properties

While most adaptive or automated systems are designed to tackle the system dynamics without

human intervention, it should not be assumed that this implies the presence of uncertainty. In other

words, although the system experiences chances, the timing and extent of these changes are relatively

predictable. In contrast, self-adaptive systems are specifically designed to deal with uncertainty in

addition to dynamics. They accomplish this by modifying behaviours in line with their observations of

themselves, the environment and the prevailing uncertainty. Presently, self-adaptive software remains

a crucial and challenging field [288]. In line with the definition of adaptive behaviours, four properties

are attributed to self-adaptivity, each with specific aims, as per [284]:

1. Self-configuring: The ability to respond to changes by dynamically and automati-

cally re-configuring through software entity installation, integration, updating, or compos-

ing/decomposing.

2. Self-healing: The ability to identify, assess and respond to disturbances as well as predict

problems and take appropriate actions to prevent failures and achieve goals.

3. Self-optimising: The ability to allocate resources and manage performance to meet various

user demands in terms of, for example, response time, utilisation and throughput; also referred

to as self-adjusting and self-tuning.

4. Self-protecting: The ability to identify malicious attacks and compensate for their impacts;

this is a two-fold process: system defence against attackers and identifying potential problems

and taking appropriate actions.

6.2.4 Blockchain and Self-adaptive

Blockchain technology has integrated with the self-adaption concept. Researchers have attempted to

develop blockchain-based systems that are dynamically adapted based on using different methods,

such as based on appropriate consensus algorithms [289], [290], the number of nodes [291] or block

size [292], [293].

Even though these definitions of self-adaptation cover run-time modifications for both func-

tional and non-functional requirements, the majority of researchers in the field of software engineering
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have concentrated their research on non-functional requirements [294]. Blockchain technology offers

considerably extensive uses for different areas, including software engineering. Therefore, blockchain-

based systems have had a share of this focus. Many researchers have focused in their endeavours

on non-functional aspects of this technology. Non-functional aspects include reliability, high ef-

ficiency [289], performance, security [290], latency, throughput [291], consistency [292], [293] and

scalability [295].

Blockchain technology can revolutionise handling trust in self-adaptive systems, particularly

those that are decentralised and do not have a central controlling entity. Blockchain technology can

help to realise trust between entities in self-adaptive systems through distributed ledgers that are

tamper-proof and agreed upon among the entities [296]. Many self-adaptive systems have exploited

blockchain technology to improve trustworthiness, maintain security, improve scalability, provide

decentralisation, etc. This widespread adoption includes several fields, such as IoT [297], cloud

computing [298], data transmission [299] and wireless sensor networks [300].

Several current blockchain-based systems have included the idea of smart contracts to build

and execute agreements in a secure manner. Smart contracts are self-executing programs that can

be implemented without trusted third parties. They are stored and run over blockchain technology.

Correct contracts that meet contractual agreements are executed by consensus algorithms. They

accomplish this by controlling and executing code automatically in a decentralised and distributed

blockchain network [301].

6.3 Related Work

This chapter proposes a self-adaptive model that optimises the environmental sustainability of

blockchain-based systems using MOOMs. Accordingly, this section discusses studies on the inte-

gration of blockchain-based systems with self-adaptive models and with MOOMs. Our coverage

includes work on the consideration of environmental sustainability.

6.3.1 Blockchain and Self-Adaptive Models

Various efforts have been made recently to conceptualise blockchain networks as adaptive systems.

However, most of these attempts have focused on adapting the difficulty of a blockchain network [302],
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[303] or adapting rewards [200] without considering environmental sustainability, specifically energy

consumption and carbon emissions.

The authors of [183] propose a model to investigate the relationship between the parame-

ters that affect the network’s sustainability and impact the environment. They then optimise the

variable choices to enhance the system’s sustainability using control engineering techniques. Al-

though the authors claim that they identify variables that affect the environmental sustainability of

blockchain-based systems, they need to indicate how the adaptation could affect the main environ-

mental sustainability variables, such as energy consumption and carbon footprint.

In [290], the authors invest in the design of a self-adaptive management system that would

automatically and dynamically switch between consensus algorithms and deployment configurations

according to the requirements of the applications based on changes in the IoT data load. Although

the authors evaluate and measure the performance of each consensus algorithm in terms of Central

Processing Unit (CPU) consumption and response time, they fail to discuss the energy consumption

of these CPUs and the potential impact of the adaptation on environmental sustainability. Another

limitation of the model is the number of consensus protocols considered. The authors specifically

focus on Practical Byzantine Fault Tolerance (PBFT), Proof of Elapsed Time (PoET) and Raft while

not considering the common consensus algorithm, PoW.

A recent study [186] proposes a new consensus algorithm called Green-PoW. It divides the

time for mining blocks into epochs, and each epoch is composed of two rounds resulting in two mined

blocks. The consensus algorithm aims to reduce the energy consumption of blockchain-based systems

by utilising the energy consumed during mining the first block to choose some miners for performing

the second block mining. The authors show that the energy consumption during the first round

exceeds the original PoW. However, it is reduced in the second round due to the fewer miners elected

to mine the second block. As a result, the average energy consumption is estimated to be less than

the original PoW by up to 50%. Although reducing energy consumption only sometimes results in

reducing the carbon emissions of blockchain-based systems, the study does not discuss the potential

reduction of this consensus algorithm in terms of carbon emissions.
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6.3.2 Blockchain and MOO Models

Blockchain-based systems are like many real-world systems where compromises are made between dif-

ferent objectives, such as energy versus security. This type of optimisation problem can be solved using

MOO algorithms. Therefore, several studies have sought to solve problems associated with blockchain

technology using MOOMs. However, using MOOMs for designing energy-efficient blockchain-based

systems and making an effort toward carbon neutrality is limited.

The authors of [233] propose a metric to identify the most significant influencers in the Bitcoin

network. The metric uses Pareto front ranking for the trade-offs of multiple criteria: maximum

balance, the minimum transaction number and minimum days active.

The work of [234] leverages large deviation theory and Lyapunov optimisation to propose

a transaction selection mechanism. The proposed mechanism aims to maximise the tolerance of

packaging delay and minimise the packaging cost threshold.

Another multi-objective optimisation problem is solved in [304] using the Particle Swarm

Optimisation (PSO) algorithm to determine the optimal block size based on factors such as the total

number of transactions and CPU power of miners. The approach aims to minimise two objectives:

transaction selection time and block-building time. Similarly, the study [305] uses the PSO algorithm

and a Strength Pareto Evolutionary Algorithm (SPEA) to determine the suitable block size, which

is determined by the optimal number of transactions in each block.

6.4 Self-optimising Model for Blockchain-based systems

This section presents a novel self-adaptive approach that improves the environmental sustainability

of blockchain-based systems without compromising the inherent characteristics of these systems, such

as decentralisation and trustworthiness. Environmental sustainability is defined as the protection and

preservation of natural resources for the benefit of humankind. Our approach utilises the MAPE-K

architecture [279] to support the selection and configuration of blockchain-based systems during the

run-time phase. Our MAPE-K management system continuously monitors the deployed system. It

also analyses the decision factors (i.e., environment changes and user needs) related to the mining

process. In the planning phase, the system then determines, using a MOOM, which subset of miners is

most efficient to execute the next mining round. The above process is based on data and information
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stored in the knowledge component.

The proposed self-optimising model is consistent with the fundamental working of blockchain-

based systems. The model is most useful for private and consortium blockchain-based systems,

where miners are controlled and predefined. However, public blockchain-based systems can still take

advantage of the model if there is a management system that chooses a miner (i.e., controller) to be

in charge of MAPE-K in a decentralised manner. This means that one miner cannot be the controller

in all adaptation rounds to respect one of the inherent characteristics of blockchain-based systems

(i.e., decentralisation). Selecting controllers can be implemented in a decentralised method, such as a

Round-Robin fashion, or randomly. In each round, the controller will adapt the system by leveraging

the MAPE-K loop processes and select a set of miners that will participate in mining new blocks. Any

block mined by a not selected miner means that the miner is malicious, leading to the discarding of

that block and the loss of the miner’s reputation. However, a detailed discussion of the management

system is outside the scope of this thesis.

In this chapter, the model aims to minimise the energy consumption and carbon emissions of

blockchain-based systems and maximise the decentralisation and trustworthiness of these systems by

selecting a subset of miners to perform mining processes. Our model can also be used when miners

contribute to mining pools, where a set of miners is putting their resources together. Therefore,

miners can be individual miners or mining pools. The target model is demonstrated in Figure 6.1.

In the following sections, we discuss the five components of MAPE-K for our model in more detail.

6.4.1 Knowledge Component

During the process of self-adaptation, the monitoring, analysis, planning and execution components

of the MAPE-K architecture are dependent on the knowledge component. It offers an abstract insight

into the managed system’s relevant aspects, environment and self-adaptation goals. Furthermore, the

knowledge component is responsible for storing data and information needed to interact with the

requirements and data of the blockchain-based system. In this chapter, the knowledge component is

provided with data collected from different sources, such as Our World in Data [306], to be used as

initial knowledge for our self-adaptive model. In line with [307], the knowledge component can be

divided into four parts. The data collected falls under these parts, as follows:
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Figure 6.1: A self-adaptive model for blockchain-based systems.

6.4.1.1 General System Knowledge

General system knowledge offers an abstract view of the managed system. This kind of knowledge

includes the preliminary information for operating the managed system. Additionally, it is relevant

to the other components in the managed system, such as the number of miners and nodes within the

blockchain-based system and the network status of the system, including difficulty, hashrate, hash

algorithm, block size, transaction fee and reward.

6.4.1.2 System Environment Knowledge

System environment knowledge provides an abstract view of the environment, representing the context

related to the operation and location of self-adaptive systems. This part of the knowledge refers to

the environment related to the managed system and its resources. This information includes the

locations of miners participating in the blockchain-based system, the carbon intensity and share of

electricity from green resources in each miner’s location at different times, the hashrate for each miner

in the network and the mining device for each miner.
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6.4.1.3 System Concern Knowledge

System concern knowledge provides relevant information regarding adaptation concerns. For exam-

ple, it specifies the resources needed to accomplish the objectives of the self-adaptive system, such

as the minimum number of miners within the blockchain-based system and the amount of carbon

emissions and energy consumption of the system. Also, it provides related information for miners’

decentralisation and reputation values within the blockchain network.

6.4.1.4 Historical Adaptation Knowledge

Historical adaptation knowledge represents run-time information shared between the MAPE compo-

nents. In other words, it provides historical data, such as previous adaptation plans and historical

adaptation analysis data. The other components can use this information to execute their functions.

Historical adaptation knowledge can also be used for machine learning or statistical purposes.

6.4.2 Monitoring Component

The monitoring component retrieves information about the managed blockchain-based system and

its environment during run-time through sensors to update the knowledge component. It may pre-

process the collected data before updating the knowledge component. This pre-processing includes

the normalisation, filtering and aggregation of data. Using sensors, we can retrieve precise metrics

about miners within a blockchain network, such as energy consumption, carbon emission, the share

of electricity from green resources and reputation.

This model uses a blockchain simulator to capture the primary monitoring information about

the miners’ state. This information includes the number of miners, their hashrates, their locations, the

power of their devices, the number of blocks mined by each miner and network status (e.g., difficulty

and hashrate). We use this information to determine the miners’ energy efficiency, reputation value

and carbon intensity and share of electricity from green resources in their locations.

6.4.3 Analysis Component

The analysis component establishes a need for adaptation actions based on the knowledge component

contents and the monitored state of the managed blockchain-based system. It uses representations
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of the adaptation goals available in the knowledge component to determine the system’s ability to

achieve its goals, such as becoming more environmentally sustainable. Finally, the analysis results

are used by the planning component and used to update the knowledge component, specifically the

historical adaptation knowledge.

Our model aims to reduce carbon emissions that are produced by miners involved in mining

blocks. The model considers the changes in the environment and decision-makers’ requirements

during run-time. To this end, an analysis model is designed to assess the effectiveness of adaptation

from the perspective of carbon emission produced by miners in blockchain-based systems. In other

words, the analysis model calculates the carbon emissions that miners may produce while mining

blocks in subsequent adaptations.

6.4.3.1 Carbon Emission Analyser

Carbon emissions related to electricity emission can be explained as the amount of greenhouse gases

emitted while generating a given level of electricity; as such, reducing the amount of energy that

blockchain systems use will reduce the production of greenhouse gases. However, the carbon inten-

sity of a location, which changes over time, plays an important role in changing carbon emissions.

Therefore, we should consider the value of carbon intensity for countries where miners are located.

Most electricity comes from brown resources, such as gas, coal and oil. However, it can

be generated from other resources, such as nuclear and renewable resources, including solar, hydro-

power, water, wind or sun, that nearly emit zero carbon emissions. Therefore, using renewable energy

can mitigate the carbon emissions miners produce. Accordingly, green energy should be considered

when measuring the total carbon emissions of miners. We can calculate the total amount of carbon

emissions generated by a miner in a period as follows:

C = CI × (E −GE%) (6.1)

where C is the total greenhouse gas emissions (g) that a miner produces in a time (t), and CI is the

carbon emission intensity of electricity where the miner is located (gCO2eq/kWh) in t. E is the total

energy consumption of the miner (kWh), which can be consumed by more than one mining device.

It can be calculated as H ×P , where H is the number of hours per day the miner participates in the

blockchain network, and P is the total power use (kWh) of the mining devices. Finally, GE% is the
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share of electricity from low-carbon resources in the miner’s country in t.

6.4.4 Planning Component

In the MAPE-K, the outputs of the analysis component are sent to the plan component. Then,

depending on the results of previous components and the knowledge component, this component

adapts the managed system to optimise the system state taking into account environmental changes

and decision-makers’ requirements.

In this chapter, the plan component is triggered, and a set of plan actions is composed to

improve the sustainability of the managed system. As with many real-world systems, improving

one objective can affect other conflicting objectives in blockchain-based systems. Therefore, we have

used a MOOM to propose an optimisation plan that finds the near-optimal solutions for enhancing

the sustainability of the managed system without compromising the main properties of blockchain

technology (i.e., the conflicting objectives).

6.4.4.1 MOOM for self-adaptive blockchain-based systems

To optimise the managed system, we aim to enhance the environmental sustainability of blockchain-

based systems by reducing the amount of energy consumed and the amount of carbon emissions

produced by the miners involved in mining blocks. Also, we aim to maintain one of the main core

properties of these systems, which is decentralisation. A further goal of the model is to maintain

the trustworthiness of blockchain-based systems, another main core property of these systems, by

improving the miners’ reputation values participating in mining processes.

To do this, we utilise a MOOM. This model selects a subset of miners to perform the mining

processes in order to minimise the total energy consumption and carbon emissions while simultane-

ously maximising decentralisation and ensuring that the required trust level of the system is main-

tained. The model is designed to incorporate a mathematical fitness function formulated for four

objectives to achieving this aim. The fitness function is characterised as energy consumption versus

carbon emissions versus decentralisation versus trustworthiness. We discuss the objectives of this

fitness function as follows:
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• Energy Consumption Objective. Energy consumption is considered a dominant factor that

impacts the sustainability of blockchain-based systems. Therefore, our model aims to enhance the

sustainability of these systems by reducing the amount of energy they consume. A blockchain-based

system consists of many mining data centres (i.e., miners) located at different locations, and each

mining data centre has multiple mining devices. In our model, we consider minimising the energy-

wasting of a blockchain-based system by reducing the number of mining data centres participating

in the mining processes, which relates to the energy consumption of mining devices.

Mining devices within mining data centres consume a tremendous amount of energy during

computing procedures, accounting for most of the energy consumption in most blockchain-based

systems. Therefore, our optimisation objective is to minimise the total energy consumed by miners

within a blockchain-based system Etotal (kWh) that can be calculated as:

Minimise: Etotal =

md∑
i=1

Xi × Ei (6.2)

where md is the total number of mining data centres in a blockchain network, and Xi is either 1,

meaning a mining data centre is participating in the mining process, or 0, which means the mining

data centre is not participating in the mining process.

• Carbon Emission Objective. Due to the rapid growth of mining data centres for blockchain-

based systems, the energy consumption of the data centres can lead to massive carbon emissions

that harm the environment. To achieve a sustainable blockchain-based system, we seek to min-

imise the carbon emissions produced by mining data centres. Thus, we optimise the total carbon

emissions Ctotal (g) generated by all mining data centres participating in mining processes as follows:

Minimise: Ctotal =
md∑
i=1

Xi × Ci (6.3)

• Decentralisation Objective. Decentralisation is one core property of blockchain technology.

It means that a blockchain-based system does not rely on one party or specific parties for mining

processes and adding all new blocks. Therefore, it is essential to look at the number of miners within

the system’s network and the distribution of the mining of blocks among them. It is not helpful for

the system to have many miners while only one or two miners are mining new blocks. This can make
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the system more centralised since those miners control mining processes.

Allocating the mining of new blocks to specific miners can minimise the energy consumption

and carbon emissions of a blockchain-based system. Nevertheless, we should consider the effects of

this allocation on the system’s decentralised. One way to measure decentralisation is by looking at the

number of miners participating in the mining process and adding new blocks [64]. In particular, it can

be measured using mining power (i.e., mining hashrate) for each miner and its hashrate fraction with

the total hashrate of other miners. Similar to [16], [64], [65], [308], we measure the decentralisation of

a blockchain-based system using Shannon’s entropy that calculates the self-information of the event

of mining blocks. Thus, we optimise and calculate the decentralisation of the system D as follows:

Maximise: D = −
md∑
i=1

Xi × (MHFi × log2MHFi) (6.4)

where MHFi is a miner’s hashrate fraction among all participating miners in mining new blocks. It

can be calculated as hi/ht, where hi is the miner’s hashrate, and ht represents the total hashrate of

participating miners.

• Trustworthiness Objective. Reducing the number of miners to minimise energy consumption

and carbon emissions can affect the trustworthiness of a blockchain-based system. The trustworthiness

of this system relies on the number of miners and, more importantly, on their reputation within its

network. Therefore, we should consider the total reputation of miners when reducing the number

of miners within the system network. In other words, reducing miners without considering their

reputations can lead to allocating the mining of new blocks to miners with low reputation values.

This chapter defines trust and reputation as described in Chapter 2. These definitions mean

high reputation values of miners within a blockchain-based system lead to a more trustworthy system.

Our self-optimising system employs our reputation model introduced in Chapter 5 to maintain

and ensure trustworthiness. The reputation model evaluates miners’ credibility by calculating their

reputations based on how they behave within a given blockchain network. It utilises the Sigmoid

function to ensure that the reputation of each miner is between zero (as an unknown miner) and

one (as a completely reputable miner) in a continuous range. We have used the same default values

proposed in Chapter 5. The model can detect malicious miners with an average accuracy rate of 96%.

The reputation value of a data centre R is calculated following the equation presented in Chapter 5
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as follows:

R =
1

1 + e−α(satRound−λ)
(6.5)

where satRound is the total satisfaction a miner gained during mining processes, and α and λ are

parameters that can be adjusted to control the changes in the reputation values of miners during the

mining of blocks.

As a result, we determine and optimise the total trustworthiness value for a blockchain-based

system based on the reputation values of all participating miners within the blockchain network.

Thus, the total trustworthiness value Ttotal can be calculated as follows:

Maximise: Ttotal =
md∑
i=1

Xi ×Ri (6.6)

• Fitness Function Constraints. The following constraints for the MOOM should be satisfied:

1. The number of miners should be more than one for a set to mine new blocks in a blockchain-

based system.

2. The hashrate for a miner in the set should be less than 50% of the total of other miners’

hashrates in the set to prevent miners from performing a 51% attack.

3. Any other constraints obtained from the knowledge component, such as decision-makers’ prefer-

ences regarding the amount of carbon emissions or the trustworthiness of the blockchain-based

system.

6.4.4.2 Adaptation Plan

The adaptation plan uses the MOOM that finds sets of optimal miners for mining new blocks in a

blockchain-based system. Then, it builds actions based on an optimal set that can be applied to

meet the requirements of the decision-makers. In other words, it identifies a relevant decision to fit

conditions on the knowledge component. Subsequently, a plan is generated for the selected adaptation

option. Once the optimal set of miners has been selected and configured, the action is carried out by

the execution component.
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6.4.5 Execution Component

The execution component applies the adaptation plan proposed by the plan component using effectors

to adapt the managed system status. In other words, the plan component sends a Pareto front solution

to the execution component. This solution includes a list of selected miners that will perform the

mining process for the following blocks until the next adaptation time, which is defined by a decision-

maker for the managed system (e.g., each year). Finally, the plan is executed on the managed

system without restarting it. The execute component consists of two phases: pre-execution and plan

execution.

6.4.5.1 Pre-Execution Phase

First, the execute component verifies whether the managed system is ready to implement the planned

actions. If the system readiness is not confirmed, the component completes pre-execution activities

before executing the actions required to change miners within the managed system. The pre-execution

typically includes steps, such as verifying the network’s hashrate, mining difficulty and mining time

for the managed system. In addition, it includes steps to ensure that the managed system is in a safe

state. It is common for such preparation to include multiple steps.

6.4.5.2 Plan Execution Phase

After the pre-execution is completed, the component progresses to the second phase, in which the

adaptation plan is performed. Changing miners may include completing tasks, such as updating the

data stored in the knowledge component. Finally, the plan execution verifies that the plan has been

accomplished and executed safely.

6.5 Experiment Design

This section discusses the design of experiments to show how our self-optimising model can improve

the sustainability of blockchain-based systems by using an evolutionary algorithm that selects an

optimal set of miners. Section 6.5.1 presents the research questions we aim to answer in this chap-

ter. In Section 6.5.2, we introduce the evaluation procedure that is applied to answer the research

questions, whereas Section 6.5.3 shows the settings of the MOOM. Finally, Section 6.5.4 shows the
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implementation details.

6.5.1 Research questions

In this chapter, we aim to dynamically enhance the environmental sustainability of blockchain-based

systems without compromising the inherent properties of blockchain technology. We propose a model

that balances four conflicting objectives of these systems: energy, carbon, decentralisation and trust-

worthiness. Our model uses an adaptive technique that leverages the MAPE-K loop and the MOOM.

The chapter seeks to answer the fourth research question of this thesis introduced in Chapter 1:

RQ4: How can we dynamically enhance the environmental sustainability of blockchain-

based systems while maintaining their decentralisation and trustworthiness, taking into

account environmental changes and decision-makers’ requirements?.

To answer this question, some sub-questions need to be answered:

RQ4.1: To what extent can our self-optimising model decrease the energy consumption and carbon

emissions of a blockchain-based system?

RQ4.2: How can the model affect the fundamental properties of the blockchain-based system (i.e.,

decentralisation and trustworthiness) when enhancing its environmental sustainability?

RQ4.3: How do the generated solutions using our self-optimising model improve the sustainability

of the blockchain-based systems compared to similar existing optimisation models?

RQ4.4: What are the relationships between objectives and between each objective and the number

of miners?

6.5.2 Evaluation Procedure

In our experiments, we consider that a blockchain-based system that uses PoW has the maximum

energy consumption, carbon emission, decentralisation and trustworthiness level as all miners partic-

ipate in the mining process (i.e., the system has 100% energy consumption, 100% carbon emission,

100% decentralisation and 100% trust level).

To answer the research questions, we consider there is a decision-maker who would like to

optimise the environmental sustainability of a blockchain-based system (in comparison to the original

values of energy consumption and carbon emission) while maintaining a level of decentralisation

and trustworthiness of the system. We assume that the decision-maker desires to minimise energy
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consumption and carbon emission and maximise decentralisation. At the same time, the trust level

of the system is critical. Therefore, it must not be lower than the first quantile of the original system

trust level (i.e., the trust level of the blockchain-based system after optimisation is not lower than

75% compared to the original system).

For selecting an optimal solution from the Pareto front generated by the MOOM, we pick

the nearest solution to the decision-maker conditions. This solution can be chosen using Euclidean

distance that finds the length of a line segment between two points [309]. Therefore, our model uses

Euclidean to find the nearest solution for the decision-maker preferences regarding the four objectives.

We then conduct experiments to evaluate energy consumption and carbon emissions improve-

ments for a blockchain-based system (RQ4.1). Also, we show how these improvements affect the levels

of decentralisation and trustworthiness of these systems (RQ4.2). In addition, we conduct compar-

isons for a blockchain-based system applying our self-optimising model versus similar optimisation

models (RQ4.3). We show how our model and other models improve energy and carbon and affect

decentralisation and trustworthiness. Finally, we discuss the correlation between each pair of objec-

tives and show the relationship between each objective and the number of miners within the system

network (RQ4.4). We use the Kendall rank correlation coefficient to measure these relationships.

In this chapter, we have implemented a blockchain-based system that uses PoW as a compar-

ison baseline model. Also, we have compared the self-adaptive model with similar studies, including

a static optimisation model proposed in Chapter 4 and an energy-efficient PoW called Green-PoW

that is proposed in [186].

The static optimisation model uses the MOOM to find the optimal set of miners (i.e., optimal

solution) in a specific time and then applies the solution forever (i.e., an offline optimisation scenario

where it first optimises the environmental sustainability of the system, then deploys forever). We use

the same selection technique of the self-adaptive model for finding an optimal solution, which is the

nearest optimal solution to the decision maker’s preferences. We refer to this model as Static Model.

Green-PoW splits mining processes into iterations, each with two mining rounds. In the first

round, all miners participate in mining and adding blocks, while a selected subset of miners from the

first round participates in the second round. To compare this model with the proposed model, we

use the best scenario of Green-PoW in terms of energy consumption.
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6.5.3 MOOM Settings

The model employs an EA to obtain an optimal set of miners in a blockchain-based system that

satisfies the decision-maker needs. We use the EA, NSGA-II [205], which can solve multi-objective

optimisation problems. According to our discussion in Chapter 4, NSGA-II has outstanding perfor-

mance for optimising the energy consumption, carbon emissions, decentralisation and trustworthiness

of blockchain-based systems compared with alternative algorithms, such as Random Search, PAES,

IBEA and NSGA-III. Also, NSGA-II creates non-dominated solutions for fitness functions with four

conflicting objectives, where these solutions can span larger areas of the computed Pareto front com-

pared to the alternative algorithms. Furthermore, it is well-known algorithm and well-suited for

solving similar problems to ours [217].

To implement the algorithm, we use MOEA Framework 1. In the first optimisation round, the

initial population for the MOOM is designed to be random. For subsequent optimisation rounds, the

initialisation uses the Pareto front generated from the previous optimisation to generate a new Pareto

front. Next, the new Pareto front is used to find the optimal solution. Regarding the algorithm’s

variation operators and probabilities, we leave them at their default values. We run the algorithm

with a population size of 160 solutions and 40,000 fitness evaluations per optimisation run. Finally,

we repeat the experiment ten times to account for the stochastic nature of the used algorithm.

6.5.4 Implementation Details

The details of our experiments are presented in the sections below. We provide experimental settings

and self-optimising model assumptions. A summary of the implementation details is presented in

Table 6.1.

6.5.4.1 Experimental Settings

Similar to the implementation of the models introduced in Chapters 4 and 5, the proposed self-

optimising model is evaluated by an empirical evaluation method, and experiments are conducted

on the simulator for blockchain, Bitcoin-Simulator [13], using artificial and real data (see Table 6.1).

The experiments are designed to simulate the most common cryptocurrency, Bitcoin.

1MOEA Framework version is 2.13 and is available at http://moeaframework.org, accessed on August 31,
2021.
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Table 6.1: Experiments Parameters

Variable Value

Number of Miners 160
Number of blocks per year 1000
Number of miners’ countries 16
Network hashrate 140.8 EH/s
Difficulty 21.66 TH/s
Mining device hashrate 110 TH/s
Mining device power 3.25 kWh
Miner running time 24 hours
α 0.025
λ 200
MOO algorithm NSGA-II
Fitness evaluations 40,000
Number of experiments 10

We provide the model with data related to a blockchain-based system, such as the network’s

hashrate and the difficulty of finding a hash, from a well-known website for providing data service for

global blockchain applications called BTC.com 2. Data related to the hashrate for miners and the

distribution of their locations are retrieved from CBECI. For analysing the carbon emissions produced

by each miner at each time, we obtain the carbon intensity and the share of electricity generated

from low-carbon sources for the countries where miners are located from the Our World In Data for

ten years 3.

Each experiment evaluates these values after each year (i.e., adaptation round) for one decade.

All experiments are completed on a Windows 10 machine with an Intel i7-6700 CPU clocked at 3.4GHz

and 24GB memory.

6.5.4.2 Self-Optimising Model Assumptions

As discussed in Chapter 4, in real-world blockchain-based systems, especially public ones, it is im-

possible to accurately estimate the electricity usage for mining operations in these networks. This is

because it is difficult to determine the number of mining machines within a given network and how

many are active [16], [190] at a specific period. In addition, it is infeasible to isolate the power usage

required during mining blocks from other background tasks on the same device or the energy usage

2https://btc.com/en/btc
3https://ourworldindata.org, retrieved on August 31, 2021.
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of other devices operating in the same household or location. Thus, calculating electricity usage must

be based on assumptions.

Similar to Chapter 4, we calculate how many mining devices are in a blockchain network

based on the assumption that all miners utilise the most efficient devices where the number of devices

used by each miner is linearly related to the miner’s hashrate. Underpinning this assumption is the

reality that using inefficient devices results in less successful mining and fewer profits, thus leaving

the network [190]. In our experiments, we especially apply one of the most efficient mining devices for

Bitcoin, Antminer S19 Pro. It is generated by Bitmain Technology Holding Company 4 that boasts

a mining power of 3.250 kWh, and its hashrate can reach 110 TH/s. Consequently, to determine

how many devices each miner uses, the miner’s hashrate is divided by the hashrate for the given

device. Each miner’s energy consumption is calculated based on all devices’ power. Also, as per the

studies [16], [45], [190], we assume that mining is conducted 24 hours a day since miners are eager to

maximise their profits, as we have mentioned before.

In real-world optimisation problems, evaluating the fitness function for solutions is commonly

affected by noise. As a result, it is difficult to obtain accurate fitness function values without their

noise [310]. Also, EAs are widely used to optimise problems in noisy natural environments, where

such environments can change optimisation problems’ properties [236], [311]. Thus, we have modified

the fitness function that evaluates the carbon emissions of blockchain-based systems f(C) to replicate

real-world scenarios. In particular, we have used a multiplicative noise model that multiples the fitness

function by a random value. The noisy fitness can be represented as fNoisy(C) = f(C) × N . We

have drawn the random value N from a normal distribution that is from a range number of [0, 10].

Finally, We assume that the number of blocks mined each year (i.e., adaptation round) is

1000 blocks, and the managed system adapts after every year for 10000 blocks (i.e., one decade/ ten

adaptation rounds).

6.6 Results and Discussion

This section answers the research questions RQs 4.1-4.4. First, we discuss the experiments’ results

related to improving energy consumption and carbon emissions. Second, we show how environmental

4https://www.bitmain.com
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sustainability improvements may affect blockchain technology’s inherent properties (i.e., decentralisa-

tion and trustworthiness). Third, we compare our model with similar models. Finally, we investigate

and discuss the correlation between the four objectives and between each objective and the number

of miners.

6.6.1 Improvement in Energy Consumption and Carbon Emission

(RQ4.1)

Figure 6.2 shows the results of the selected solutions after conducting the self-optimisation exper-

iment to improve the sustainability of the blockchain-based system regarding energy consumption

and carbon emissions. The x-axes of the sub-figures present the rounds (i.e., years). In Figure 6.2A

and Figure 6.2B, the y-axis shows the energy consumption percentage or carbon emission percentage

of the solutions to the original solution (i.e., PoW) where all miners are selected for mining new

blocks (for instance,(energy consumption of the PoW solution - energy consumption of the optimised

solution) / energy consumption of the PoW solution) × 100). Each box-plot contains the result of

ten experiment runs.

Generally, Figure 6.2A and Figure 6.2B show that the selected sets of miners in the ten

experiments have obtained solutions that satisfy the decision maker’s preferences for each year in

terms of environmental sustainability. These solutions are greener than the original PoW while

providing acceptable solutions regarding trust level. The energy consumption of a blockchain-based

system that uses our model is less than 50% in most rounds. The maximum energy consumption is

less than 58% in all rounds, and the average reduction in energy per round is 55.49%. In addition,

the carbon emission of the system is less than 35% in most rounds. The carbon emissions value has

not exceeded 50% in all rounds, and the average reduction in carbon per round is 71.25%.

6.6.2 Reduction in Decentralisation and Trustworthiness (RQ4.2)

In our model, we aim to dynamically enhance the environmental sustainability of blockchain-based

systems without compromising the fundamental properties of blockchain technology. We balance the

environmental sustainability of the systems with their decentralisation and trustworthiness. There-

fore, this section discusses the possible reduction in decentralisation and trustworthiness. As discussed
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(A)

(B)

Figure 6.2: The energy consumption (A) and carbon emission (B) percentages of the ten
experiments for one decade.

in Section 6.5.2, we assume the decision-maker desires to minimise energy consumption and carbon

emissions and maximise the decentralisation of a blockchain-based system as much as possible. In

contrast, the trust level of the system is critical and should not be lower than 75% after optimisation

compared to the original system.

Figure 6.3 shows the decentralisation and trustworthiness percentages of the selected solutions

by using our model. Similar to the previous section, the x-axes of the sub-figures present the rounds

(i.e., years). In Figure 6.3A and Figure 6.3B, the y-axis respectively shows the decentralisation

percentage or trustworthiness percentage of the solutions to the original solution.
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Figure 6.3: The decentralisation (A) and trustworthiness (B) percentages of the ten experi-
ments for one decade.

Figure 6.3A shows that most solutions have decentralisation percentages more than 94%.

The percentage of decentralisation in all solutions is more than 88%, and the average reduction in

decentralisation per round is 3.92%. Regarding trustworthiness, Figure 6.3B shows that the level of

trustworthiness in all solutions has fulfilled the decision-maker preferences concerning the system’s

trustworthiness. In other words, the system still has a level of trustworthiness that is not less than 75%

of PoW. The average reduction in trustworthiness per round is 24.88%. This indicates that our

optimisation model evolves greener solutions in terms of energy consumption and carbon emission

with an acceptable level of decentralisation and trustworthiness for the decision-maker. As seen
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in Figure 6.3, optimising energy consumption and carbon emissions comes at costs that do not

exceed 12% of the decentralisation value and 25% of the trustworthiness value compared to the

original blockchain-based system using traditional PoW.

6.6.3 Self-optimising Model Versus Similar Studies (RQ4.3)

This section compares the reductions of a blockchain-based system’s energy consumption and carbon

emissions using our self-optimisation model with similar works. Also, it discusses the effects of these

improvements on the system’s decentralisation and trustworthiness.

In general, our model for self-optimising the sustainability of a blockchain-based system per-

forms better in terms of energy consumption, carbon emissions, decentralisation and trustworthi-

ness than the Static Model. Our model can reduce the system’s energy consumption by an ad-

ditional 11.47% per round on average. Also, it can benefit an additional reduction of 22.19% in

carbon emissions per round. These improvements come with increments in the decentralisation and

trustworthiness of the blockchain-based system by 0.14% and 0.05%, respectively.

Compared with the Green-PoW model, the self-optimising model can enhance the environ-

mental sustainability of the blockchain-based system more. Our model minimises energy consumption

by more than 6.51% of the reduction of the Green-PoW model. In addition, our model performs bet-

ter in terms of carbon emissions by more than 22.32% of the Green-PoW. Also, decentralisation and

trustworthiness are higher than the Green-PoW model by 46.05% and 24.53%, respectively.

Table 6.2 summarises the results of the ten experiments for the three models (i.e., Self-

optimising Model, Static Model and Green-PoW Model) compared to the systems that use the original

PoW, where all miners are participating in mining blocks. In these systems, the energy consumption

is 9.51 × 107 kWh, which is constant in all years. Also, the decentralisation and trustworthiness

levels are constants where decentralisation is 6.10, and trustworthiness is equal to 1.00, the highest

level of trust. The PoW’s average carbon emission is 1.59 × 1011 g with a 95% confidence interval

of 2.73× 1010.

6.6.4 The Relationships Between Objectives (RQ4.4)

In this section, we first discuss the correlations between every two objectives. Secondly, we show

how the number of miners within a blockchain-based system is related to each objective. Figure 6.4

173



Table 6.2: Summary of the final improvement of the environmental sustainability of
blockchain-based systems and its reductions on decentralisation and trustworthiness using
Self-optimising Model, Static Model and Green-PoW model.

Model
Energy Consumption Reduction

Range Average CI

Self-optimising Model 55.89% - 54.83% 55.49% 0.16%
Static Model 46.45% - 42.15% 44.02% 0.73%
Green-PoW Model 49.03% - 48.96% 49.00% 0.01

Model
Carbon Emissions Reduction

Range Average CI

Self-optimising Model 71.37% - 71.05% 71.25% 0.05%
Static Model 51.54% - 47.17% 49.06% 0.78%
Green-PoW Model 48.98% - 48.93% 48.95% 0.01%

Model
Decentralisation Values Reduction

Range Average CI

Self-optimising Model 4.21% - 3.66% 3.92% 0.08%
Static Model 6.24% - 1.77% 4.06% 0.7%
Green-PoW Model 49.99% - 49.99% 49.99% 0.00

Model
Trustworthiness Values Reduction

Range Average CI

Self-optimising Model 24.95% - 24.79% 24.88% 0.02%
Static Model 24.99% - 24.72% 24.93% 0.04%
Green-PoW Model 49.45% - 49.43% 49.44% 0.003%

presents these correlations, where each cell shows the Kendall rank correlation coefficient results.

Also, Figure 6.5 presents the correlation between the four objectives with the number of miners in

one randomly selected experiment. Figure 6.5A shows the energy consumption, carbon emissions and

the number of miners, while Figure 6.5B shows the decentralisation, trustworthiness and the number

of miners. In Figure 6.5, we have applied a normalisation method called Unit Vector Transformation

to transform values for the four objectives and the number of miners.

Figure 6.4 indicates that the correlations between each pair of objectives are strong positive

relationships, except for decentralisation, where the strength of its associations with other objectives

is weakly positive. In addition, the figure shows that the relationships between the number of miners

within the blockchain network and each objective are strongly positive.

Although the relationship between energy consumption and carbon emissions is strongly pos-

itive, reducing energy consumption may not necessarily lead to low carbon emissions. The carbon
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Figure 6.4: The Kendall rank correlation coefficient heatmap for every two objectives and for
each objective with the number of miners.

intensity of miners’ locations and the share of electricity generated from low-carbon resources in their

countries play essential roles in the total carbon emissions. For example, a miner that uses high

power generated from low-carbon resources and is located in a country with a low carbon intensity

can produce low carbon emissions. In contrast, another miner that uses low power generated from

brown resources and is located in a country with high carbon intensity can thus produce high carbon

emissions. As seen in Figure 6.5A, miners in round 4 consume higher energy than those in round 3

but produce lower carbon emissions.

Many miners do not necessarily mean high energy consumption and carbon emissions in a

blockchain-based system that uses the self-optimising model. For example, Figure 6.5A shows fewer

miners in round 7 compared to round 8, but those miners’ energy consumption and carbon emissions

are higher than the miners’ wastes in round 8. This is because of the differences in the number of

mining devices for each miner and its location. Our model can select miners within a blockchain-

based system that consume adequate power and are located in countries with low carbon intensities

and high shares of electricity from green resources. As a result, the carbon emissions of the system

are reduced.

It is worth mentioning that the high number of miners does not always lead to a high de-

centralisation or high trustworthiness (see Figures 6.4 and 6.5B). For example, a blockchain-based
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(A)

(B)

Figure 6.5: The energy consumption, carbon emissions and the number of miners (A) and the
decentralisation, trust and the number of miners for one experiment (B) for one experiment.

system can be centralised if only a few miners add new blocks even though many miners are in its

network. This is because of the differences between the hashrate of miners. Figure 6.5B shows that

miners in round 7 are higher than the miners in round 4, but the decentralisation and trustworthiness

values in round 4 are higher than the values in round 7.

6.7 Conclusion

Despite the wide interest in Blockchain technology and its recognised potential, a critical debate has

been raised in regard to its sustainability because of its excessive energy consumption and carbon
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emissions as the cost of a trust provision. In this chapter, we have proposed a novel self-adaptive

model for more sustainable blockchain-based systems. The model leverages MAPE-K and MOOM to

dynamically trade-off between four objectives: energy consumption, carbon emission, decentralisa-

tion and trustworthiness of these systems. The solution optimises the environmental sustainability of

blockchain-based systems at run-time by minimising miners’ energy consumption and carbon emis-

sions within these systems without compromising the core properties of blockchain technology. The

experimental results show that energy consumption and carbon emissions can be more environmen-

tally sustainable compared to the normal use of PoW and similar models. In addition, the results

show that the model has the potential to maintain an adequate level of decentralisation and trustwor-

thiness while balancing between the considered objectives. Finally, they show that there are strong

positive correlations between each pair of objectives except decentralisation with other objectives. It

also shows the relationships between the number of miners and each objective as strongly positive.

This work has paved the way for future research on enhancing the sustainability of blockchain-

based systems. In the next chapter, we have discussed the possible opportunities for future studies.
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Chapter Seven

Conclusion

7.1 Introduction

In this thesis, we present research into the field of computational sustainability that enhances the

sustainability of blockchain-based systems by balancing the core properties of blockchain technol-

ogy (i.e., decentralisation and trustworthiness) with energy consumption and carbon emissions of

blockchain-based systems. This chapter provides an overall conclusion of the thesis. Section 7.2 dis-

cusses how we have addressed the research questions. In Section 7.3, we summarise the key findings

and link the different chapters of the thesis. In addition, we discuss potential threats to the validity

of this research in Section 7.4. This is followed by possible future directions discussed in Section 7.5.

Finally, the closing remarks are presented in Section 7.6.

7.2 Addressing the Research Questions

As explained in Chapter 1, this thesis aims to optimise blockchain technology by balancing conflicting

objectives. The thesis focuses on optimising the environmental sustainability of blockchain-based

systems by balancing energy consumption, carbon emissions, decentralisation and trustworthiness

using evolutionary algorithms. In this context, we propose novel models that address our research

questions. This section shows how we have addressed the research questions of the thesis.

7.2.1 Research Question 1

RQ1: What is the state of the art in optimising the environmental sustainability of

blockchain technology and its design? We conducted a systematic literature review that pro-

vides a better understanding of the state of the art in optimising the environmental sustainability of
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blockchain-based systems. We found that the environmental sustainability of blockchain-based sys-

tems is affected by different factors connected to the design of this technology. Therefore, we classified

these factors based on their relations with blockchain components, such as the architectural compo-

nent of blockchain technology. Moreover, we consolidated the efforts in the literature to enhance the

environmental sustainability of blockchain-based systems by providing a classification framework that

categorises the methods and techniques that specifically optimise the energy consumption and carbon

emissions of these systems, leading to more sustainable systems. Also, we investigated the weakness

of these approaches. In addition, we discussed tools for measuring the environmental sustainability of

blockchain-based systems, including energy consumption, carbon emissions and e-waste. Finally, we

determined the gaps and future directions in developing environmentally sustainable blockchain-based

systems based on the SLR findings.

7.2.2 Research Question 2

RQ2: How can the environmental sustainability of a blockchain-based system be opti-

mised without compromising its inherent properties, such as decentralisation and trust-

worthiness? In Chapter 4, we formulated the problem of optimising the environmental sustainability

of blockchain (i.e., energy and carbon emission minimisation) as an SBSE problem. We represented

the problem of selecting miners for mining blocks in a blockchain-based system as a subset selection

problem. We proposed a novel model composed of multiple fitness functions. The model was used to

explore the complex search space by selecting a subset of miners that minimises energy consumption

and carbon emissions without drastically impacting the core properties of blockchain technology (i.e.,

decentralisation and trustworthiness). We integrated our proposed fitness functions into five EAs

to solve the problem of selecting blockchain miners. Several experiments were conducted to demon-

strate the effectiveness and applicability of the model in enhancing the environmental sustainability

of blockchain-based systems. The results showed that the environmental sustainability of blockchain-

based systems could be enhanced with little reduction in competing objectives. The results also

showed that the selected EAs outperformed the baseline algorithm. The proposed model was used to

optimise the environmental sustainability of blockchain-based systems. However, it can potentially

be used for optimising other objectives of these systems, such as security and scalability.
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7.2.3 Research Question 3

RQ3: How can we evaluate the reputation of miners within blockchain-based systems,

considering the dynamic of miners’ behaviours, to support the environmental sustain-

ability of these systems? We proposed a reputation model that influences how reputation is

fundamentally managed within blockchain-based systems. We introduced several major character-

istics and properties to design the reputation model for blockchain-based systems. This reputation

model aimed to evaluate the reputation of miners within blockchain-based systems and then select

trusted miners for mining new blocks. The model could boost the trustworthiness of blockchain-based

systems, which may be reduced due to reducing the number of miners or when it compromises conflict-

ing objectives. It could also minimise energy consumption and carbon emissions for blockchain-based

systems when it overlies existing consensus algorithms to select miners based on their reputation

values. The proposed reputation model assessed the reputation of individual miners by reflecting the

miners’ behaviour within a blockchain-based system that uses a traditional Proof of Work consensus

algorithm. The model was evaluated analytically and compared to other existing trust and reputation

models for evaluating the trust and reputation of miners. In addition, we performed experimental

evaluations to represent the performance of our model and its accuracy in detecting malicious miners.

We evaluated the effectiveness of the model regarding the energy consumption and carbon emissions

of blockchain-based systems. The evaluation showed that our model fulfilled several desirable proper-

ties that should always be satisfied by reputation models for blockchain-based systems, whereas other

models only sometimes met these requirements. Our experiments also demonstrated the model’s

effectiveness in detecting malicious miners. In terms of the energy consumption and carbon emissions

of these systems, integrating the model with PoW succeeded in reducing energy consumption and

carbon emissions compared to the standard PoW consensus algorithm. Our model can potentially

be integrated with any consensus algorithm that uses a mining process. Also, it has the potential

to enable environmentally sustainable blockchain-based systems mining without compromising the

inherent trustworthiness of blockchain technology.
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7.2.4 Research Question 4

RQ4: How can we dynamically enhance the environmental sustainability of blockchain-

based systems while maintaining their decentralisation and trustworthiness, taking into

account environmental changes and decision-makers’ requirements? In Chapter 6, we pro-

posed a novel self-adaptive model to optimise blockchain-based systems. The self-optimising model

continuously monitored the deployed system and adaptively selected a set of miners, considering

environmental changes and decision-makers’ needs. The model aimed to trade off conflicting objec-

tives regarding optimising the environmental sustainability of these systems. The model dynamically

selected a subset of miners to perform sustainable mining processes without compromising the funda-

mental properties of blockchain technology. The objective was to minimise the energy consumption

and carbon emissions of blockchain-based systems, while maximising the decentralisation and trust-

worthiness of the systems. We implemented simulations and evaluated the efficiency and effectiveness

of the model. The results showed that our model was able to dynamically optimise the environmental

sustainability of blockchain-based systems. It can minimise energy consumption and carbon emis-

sions while maintaining a desirable level of decentralisation and trustworthiness of the decision-makers

under different operating conditions compared to similar models, including the straightforward use

of Proof of Work. Although the model was utilised for optimising four conflicting objectives (i.e.,

the energy consumption, carbon emissions, decentralisation and trustworthiness of blockchain-based

systems), it can potentially be applied as a self-adaptive model for any other conflicting objectives of

blockchain-based systems.

7.3 Summary of Contributions and Findings

Throughout this thesis, we have tackled the critical challenge of improving the environmental sus-

tainability of blockchain-based systems. Our research contributions are summarised as follows:

1. Environmental Sustainability SLR and Research Gap Identification. In Chapter 3, we

conducted a comprehensive SLR to explore the state-of-the-art methods and techniques aimed

at enhancing the environmental sustainability of blockchain-based systems. The SLR provided

a solid foundation for our research by identifying key research gaps in this domain. By under-

standing the existing limitations and challenges, we set the stage for our novel contributions to
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address environmental sustainability issues in blockchain-based systems.

2. Multi-objective Optimisation Model (MOOM) for Environmental Sustainability.

In Chapter 4, we formulated the environmental sustainability problem of blockchain-based sys-

tems as an SBSE problem. To address this, we developed a robust MOOM that leverages EAs

to optimise energy consumption and carbon emissions while simultaneously maximising decen-

tralisation and trustworthiness. Our results demonstrated that our approach can enhance the

environmental sustainability of blockchain-based systems without compromising other crucial

objectives. However, we also identified limitations regarding the static nature of the model and

the need for an improved reputation model for miners.

3. Dynamic Reputation Model for Enhancing Trustworthiness and Environmental

Sustainability. Chapter 5 focused on addressing the need for a reputation model for miners

within blockchain-based systems. We proposed a novel dynamic reputation model that calcu-

lates miners’ reputation based on their contributions to mining blocks. This model effectively

enhances the trustworthiness and environmental sustainability of the systems by selecting rep-

utable miners to mine new blocks. The experiments demonstrated the model’s high accuracy

in detecting malicious miners and its significant impact in reducing energy consumption and

carbon emissions compared to traditional PoW consensus. However, we also acknowledged

concerns about potential impacts on decentralisation.

4. Self-Adaptive Model for Optimal Environmental Sustainability. Building upon the

concerns raised in Chapters 4 and 5, Chapter 6 addressed the static nature of the model

and potential decentralisation impacts. We introduced a self-adaptive model that integrates

self-adaptive architectures and multi-objective optimisation models. This dynamic approach

utilises an EA to maintain decentralisation and trustworthiness while optimising energy con-

sumption and carbon emissions based on environmental conditions and user requirements.

By incorporating our reputation model, we mitigated potential decreases in trustworthiness

due to minimised miner numbers. The results highlighted that this model presents a promis-

ing approach to achieving more environmentally sustainable blockchain-based systems without

compromising decentralisation and trustworthiness, surpassing similar models in performance.

Our research significantly advances the field of environmentally sustainable blockchain-based
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systems. By demonstrating the potential to reduce energy consumption and carbon emissions, we have

contributed to promoting greener blockchain technology. Additionally, our dynamic reputation model

enhances trustworthiness and security, further fostering environmental sustainability. Moreover, by

considering dynamic environmental changes and user requirements, we have successfully developed a

model that dynamically enhances the environmental sustainability of blockchain technology without

compromising its core properties.

In conclusion, our thesis underscores the importance of prioritising environmental sustainabil-

ity in blockchain technology. Our contributions will inspire further research and innovation, creating

more sustainable and resilient blockchain-based systems for a greener and more trustworthy future.

Our models’ dynamic and self-adaptive nature holds immense promise in addressing environmental

sustainability challenges in the rapidly evolving landscape of blockchain technology.

7.4 Threats to Validity

This section presents potential threats to the validity of this research. In the following sections, we

discuss these threats with regard to our contributions.

7.4.1 Threats to Validity Related to the Literature Review

We can summarise the main challenges and limitations of the validity of our review with three points:

• Missing Relevant Studies. Our SLR may have missed some studies that have considered

developing blockchain environmental sustainability as part of their works without mentioning

this specifically in the abstract, introduction or conclusion. However, we designed our search

protocol to include papers that list the research terms in all metadata, including keywords that

the writers of the papers specify. Thus, we trust the quality of the digital databases to identify

and index papers.

We have used a snowballing technique to reveal any potentially relevant material that the search

query may miss. The objective is to acquire the best possible collection of primary studies and

subsequent follow-ups on the topic. The snowballing technique, detailed in [312], was added to

the search process to check cross-references in the chosen primary studies.
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• Bias in Selection of Studies. Reviews can be affected by publication bias; however, the

search protocol used by our SLR surveyed four well-known scientific databases, allowing us to

source high-quality published research. Our protocol may not have identified some blockchain

research because blockchain technology is still a new topic within computer science research

and practice. Moreover, some industry research would not be available to us because they may

have been conducted and published internally or as white papers. Nonetheless, we believe that

using scientific databases with Google Scholar enables us to find more articles and gives us a

higher chance of finding papers presented as white papers.

• Inaccuracy in Data Extraction. There are different reasons why inaccuracy may arise in

the data collection phase, such as researchers’ backgrounds, personalities and choice of how to

present methodological approaches and findings. However, the strategy we have employed to

minimise inaccuracies during data extraction is to ensure that all the extracted data have been

checked twice. Hence, we are confident that we have kept inaccuracies to a minimum during

data extraction.

7.4.2 Threats to Validity Related to Proposed Approaches

In this section, we consider potential threats to validity related to the proposed approaches as follows:

• Approaches’ Generality. We have proposed static and dynamic models that can trade

off four conflicting objectives of blockchain-based systems. We have utilised the models to

balance these systems’ energy consumption, carbon emissions, decentralisation and trustwor-

thiness. Though the models have shown promising results, we cannot claim the applicability

and generality of the models with other conflicting objectives. However, these models can

guide researchers to apply these models to other conflicting objectives. Therefore, further re-

search is needed to evaluate our model with other conflicting objectives. This can present new

modalities, simplification, extension or customisation to the models.

7.4.3 Threats to Validity Related to Evaluation

The potential threats to the validity of our experiments and evaluation can be summarised as follows:
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• Simulation Environment. In this thesis, we have conducted our experiments in a controlled

environment via a simulator for blockchain-based systems that use Proof of Work. This can be

one potential threat to validity. However, we have utilised a well-known simulator that simulates

a common blockchain application, Bitcoin. In addition, using simulators can facilitate faster

experimentation for diverse scenarios without expenses and costs. To mitigate the threat, we

have used real-world data to conduct our experiments. Although we have carefully designed

the simulation environment to emulate real-world systems, we recognise that further studies

will be required to assess the effectiveness of our models in real-world scenarios.

• Computational Overhead. Some hidden computational overhead can be an external threat

to the validity of this work, and it needs to be analysed and evaluated before applying the

approaches in industry. This overhead may result from the Multi-Objective Optimisation

Model, including searching for Pareto fronts. Also, it can come from the phases of the feedback

loop, such as the computational overhead from monitoring miners within a blockchain-based

system and analysing collected data. However, the computational overhead that has been

observed in the simulated experiments is indicative of the expected overhead that may be

encountered in a real-world context.

• Energy Measurement. Another threat to the validity of the evaluation derives from the fact

that the work is evaluated using the energy consumption information of mining devices provided

by their manufacturers. However, this information is considered the most accurately examined

information. Although our evaluations are conducted with reasonable energy consumption

information, we appreciate the further extension of the work to use the actual observed energy

consumption of mining devices.

7.5 Future Directions

Several opportunities for future research can be derived from the work presented in this thesis. In

this section, we discuss some potential future directions.
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7.5.1 Optimising Blockchain-based Systems Using their Different

Decentralisation Types

Blockchain technology decentralisation types can play essential roles in optimising blockchain-based

systems. This thesis focused on the most critical decentralisation type, consensus decentralisation.

It is considered the main factor affecting the environmental sustainability of these systems. We have

demonstrated the efficiency of using this type to optimise sustainability without compromising the

inherent properties of the technology. However, as discussed in Chapter 2, each kind of decentralisa-

tion can have an effect on the environmental sustainability of these systems. Therefore, we appreciate

that further research needs to consider other types of decentralisation to optimise blockchain-based

systems’ environmental sustainability.

7.5.2 Optimising Blockchain-based Systems Using Renewable En-

ergy

Renewable energy resources can enhance the environmental sustainability of blockchain-based sys-

tems. In this thesis, we optimised the environmental sustainability of blockchain-based systems by

minimising energy consumption and carbon emissions. Energy consumption and carbon emissions

are utilised as objectives of the Multi-Objective Optimisation Models proposed in Chapters 4 and 6.

Although we have considered low-carbon energy for calculating the energy consumption of miners for

the optimising models, future studies are needed to explore the use of renewable energy resources as

a separate objective in optimising the environmental sustainability of the systems. In this context,

using renewable energy resources can include several dimensions, such as mining blocks, verifying

blocks, cooling strategies and the mixed use of brown and green energy.

7.5.3 Integrating Machine Learning Approaches with Blockchain-

based Systems

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on developing systems

that learn via experiences. It has powerful data processing capabilities and can feasibly solve a wide

range of problems. Integrating ML and blockchain technology can be a promising solution for many
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issues of blockchain-based systems and could be usefully combined with our optimisation approaches.

Therefore, one potential direction is to integrate ML approaches with feedback loops, such as MAPE-

K, and use previous adaptation data to predict the behaviour of miners in mining new blocks in

relation to energy consumption and carbon emissions.

7.5.4 Multi-Criteria Decision Making for Optimising Blockchain-

based Systems

Multi-Criteria Decision Making (MCDM) is a way of organising and solving problems that involve

multiple criteria for decision and planning. It is the research of finding and selecting options based on

the decision-makers’ preferences. In this thesis, we propose MOOMs to optimise the environmental

sustainability of blockchain-based systems using EAs that provide Pareto fronts of optimal solutions.

Therefore, it would be beneficial to extend our optimisation models to utilise MCDM techniques,

such as TOPSIS, to rank or sort optimal solutions from a Pareto front and pick the optimal solution

based on the decision-makers’ preferences.

7.6 Closing Remarks

In conclusion, this thesis significantly contributes to the area of computational sustainability for one

of the emerging technologies, blockchain technology. It makes novel contributions by optimising the

environmental sustainability of blockchain technology. Also, it shows a new insight into manag-

ing reputation within blockchain-based systems to support the environmental sustainability of these

systems.

The findings of this thesis can provide a better understanding of optimising the conflicting

objectives of blockchain-based systems and designing them to be more sustainable. The experiments

have indicated the effectiveness of the proposed optimisation models in enhancing the environmental

sustainability of blockchain-based systems statically and dynamically without compromising the fun-

damental properties of this technology. We also present a novel model for assessing the reputation of

miners within blockchain-based systems so as to support their environmental sustainability.

In this research journey, we have stated our vision in Chapter 1, which is “to design sustain-

able blockchain-based systems that can contribute to the Sustainable Development Agenda without
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compromising the inherent properties of the technology”. Although achieving this vision could need

several theses in this field, our work inspires future research in balancing the inherent decentralisa-

tion and trustworthiness of the technology and its environmental sustainability in terms of energy

consumption and carbon emissions.
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Appendix One

Systematic Literature Review Methods
This appendix provides an overview of the research methods and systematic processes we employ to

conduct a review of the environmental sustainability of the design of blockchain-based systems. The

procedures followed by this SLR are in line with the guidelines for undertaking SLRs [77], [78]. In

more detail, we perform six stages in the current SLR, as shown in Figure A.1.

Figure A.1: SLR Processes

A.1 Goal and Research Questions

The purpose of our SLR is to conduct a review of the environmental sustainability of blockchain-

based systems. It focuses on analysing the existing methods proposed as a way to promote the

environmental sustainability of blockchain-based systems. As presented in Chapter 3, our SLR aims

to answer the first question of the thesis introduced in Chapter 1: RQ1: What is the state of

the art in optimising the environmental sustainability of blockchain technology and its

design?

The review is focused on answering the following sub-questions:

• RQ1.1: What are the factors that need to be considered when systematically evaluating the

environmental sustainability of blockchain-based systems?

• RQ1.2: What are the state-of-the-art methods and techniques for developing a more environ-

mentally sustainable blockchain technology?

• RQ1.3: How can the current methods for improving the environmental sustainability of

blockchain-based systems be categorised?
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• RQ1.4: What are the challenges and weaknesses of these methods?

• RQ1.5: How is the environmental sustainability of blockchain technology measured?

• RQ1.6: What are the gaps in the current research regarding the development of environmen-

tally sustainable blockchain designs?

A.2 Search Strategy

A.2.1 Data Sources

Since blockchain technology is a relatively new field of research, selecting the best sources for re-

viewing previous research is relatively complex. The search process was undertaken by employing

the automatic search facility in a number of digital libraries/indexing systems: SpringerLink, Sci-

enceDirect, IEEE Xplore, ACM Digital Library and Google Scholar. These electronic databases are

recommended in [77], [313]. Additionally, they are regarded as the most substantial and complete

scientific databases for literary reviews [314] and the most relevant and trusted source for computer

science [315]. We chose to search for publications between 2008 and December 2022 because the term

blockchain originated in 2008 with Satoshi Nakamoto, and the first application of blockchain, Bitcoin,

launched in 2009.

A.2.2 Search Terms

The search terms aim to identify all studies relevant to blockchain-based systems that have associa-

tions with environmental sustainability. For each database trial, searches were undertaken to check

how many papers would be returned and how relevant they would be. The purpose of a trial search

is to test how feasible the search string is and make the appropriate adjustments. Based on the topic

of the current review and its research questions, the terms for the search queries were defined in ac-

cordance with the practices recommended in [77], [78]. Variations of searches were conducted, where

the search has been guided by the inclusion criteria described in Section A.3 and key terms, such as

‘Blockchain’, ‘Environmental Sustainability’, ‘Energy Consumption’ and ‘Consensus Algorithm’. In

reference to consensus mechanisms, for instance, ‘Proof of Work’, the consideration of this term is

intentional as it is regarded as the “genesis” of existing consensus mechanisms to date, and subse-
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quent mechanisms usually explicitly leverage ‘Proof of Work’. Additionally, consensus algorithms are

considered the focal constituent components for the computational cost of this technology and are

major contributors to energy consumption and, therefore, important when considering environmental

sustainability.

A Cross-references check, where we searched for papers with an explicit or implicit connection

to the search, complements the basic searches primarily focused on environmental sustainability.

Cross-reference checks have included papers that, for example, discuss energy consumption and/or

carbon emissions, optimisations, monitoring, measuring energy consumption and/or environmental

sustainability, proposing new efficient consensus algorithms etc. The objective is to acquire the best

possible collection of primary studies and subsequent follow-ups on the topic. We employed the

snowballing technique, as detailed in [312], to add to the search process, checking cross-references

in the chosen primary studies to reveal any potentially relevant material that may be missed by the

search query.

A.3 Selection of Primary Studies

While we were screening the results of the search, the relevance of each paper was determined by a

close examination of the titles, abstracts, introductions and conclusions. If these elements did not

offer sufficient information to decide on the article’s relevance, the entire paper was studied. The

selection was undertaken in line with the inclusion/exclusion criteria set out in Table A.1. The

references of the chosen primary studies were examined to see if any relevant studies had been missed

and, if so, where they could be found; they were then subjected to the same primary study selection

process.

A.4 Search Execution

We employed the search terms for the data sources in the search engines to search both full-text and

metadata (i.e., title, keywords and abstract). The main researchers completed the search on 31st of

January 2023, following the agreed search strategy; the process was supervised by two supervisors.

During this practice, specific settings were created for each search engine because every digital library
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Table A.1: Selection Criteria of Primary Studies

Inclusion Criteria

1. Full research and short papers published in conferences and journals
2. Published book chapters and books
3. Papers discussing aspects of the environmental sustainability of blockchain
4. Papers discussing the environmental sustainability of blockchain architecture
5. Papers discussing aspects influencing environmental sustainability of blockchain
6. Papers proposing methods for improving the sustainability of blockchain
7. Papers defining and characterising the methods to measure blockchain environmental sustainability

Exclusion Criteria

1. Abstract papers, tutorial papers, presentations or essays
2. Papers without an abstract
3. Papers published not in the English language
4. papers focusing on blockchain adoption
5. Papers proposing methods for utilising blockchain technology to improve the environmental sustainability of other systems
6. Papers on the application of blockchain without having a link to environmental sustainability

Table A.2: Number of Related Papers Collected for the Study

Database Number of Related Papers

SpringerLink 8
ScienceDirect 27
IEEE Xplore 30
ACM Digital Library 12
Google Scholar 27 of the first 200 hits

Total 104

has its own way of working. This was an attempt to reduce the amount of rejection and duplication

by customising the options for every search engine. In particular, when filters were available, they

were used to ask the search engine to only return studies it had published itself or to only bring back

English language results.

As a result of this stage, 104 out of 1575 papers were selected (see Table A.2). The papers

were collected as a bibliography in BibTeX format, which creates a collection of bibliographies for the

retrieved papers. After that, Mendeley, an open-source reference manager system that can be used

for managing such databases, was employed to create a single bibliography file after the duplicates

had been detected and removed.
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