
ON sl2-TRIPLES IN LIE ALGEBRAS OF
REDUCTIVE ALGEBRAIC GROUPS IN
POSITIVE CHARACTERISTIC

by

RACHEL PENGELLY

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Mathematics
College of Engineering and Physical Sciences
The University of Birmingham



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 

UNIVERSITYDF 
BIRMINGHAM 



Abstract

In this thesis we consider sl2-triples in g = Lie(G), the Lie algebra of a connected

reductive algebraic group over a field of positive characteristic p > 2.

We focus on good primes for G which are smaller than the coxeter number of G,

and determine to what extent the theorems of Jacobson–Morozov and Kostant hold

in this setting. To do so, we determine the maximal G-stable closed subvariety V

of the nilpotent cone N of g such that the G-orbits in V are in bijection with the

G-orbits of sl2-triples (e, h, f) with e, f ∈ V .

We also determine the maximal G-stable closed subvariety V of the nilpotent

cone N of g such that any subalgebra h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ V is

G-completely reducible.
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CHAPTER 1

INTRODUCTION

The main focus of this thesis is to extend what is known about sl2-triples in the

Lie algebras of both the classical and exceptional groups.

The theory of Lie algebras, and understanding their subalgebra structure, has

been a key area of research over the last 100 years. As an important component

of this, since the 1950s substantial attention has been devoted to understanding

sl2-triples. For G a simple reductive algebraic group over an algebraically closed

field k, an sl2-triple in g = Lie G is defined to be a triple of elements (e, h, f) that

generate a subalgebra of g that is isomorphic to sl2(k), see Definition 2.1.5. This

simple definition underpins much of the modern theory of Lie algebras and their

representations.

The theory of sl2-triples has been a key tool in the study of nilpotent orbits in

the Lie algebra g of a reductive algebraic group G over C. The seminal result

in sl2(k)-theory is the Jacobson–Morozov Theorem, which states that given any

g = Lie(G), a semisimple Lie algebra over k = C, for each nilpotent element e ∈ g

there exists some sl2(k)-triple (e, h, f). This theorem was claimed by Morozov in
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[Mor42] and a complete proof was provided by Jacobson in [Jac51]. This was later

extended by Kostant, who proved in [Kos59] that there exists a bijective map

{G-orbits of sl2-triples} ←→ {nilpotent orbits in g}. (1.0.1)

The significance of this result led researchers worldwide to investigate to what

extent this result could be extended to fields of characteristic p > 2.

We now let k be an algebraically closed field of characteristic p > 2. Take G to be

a connected, reductive algebraic group over k, and set g = Lie(G).

Under the restriction that p is a good prime for G, a result of Pommerening tells

us that for any nilpotent e ∈ g, there exists some sl2-triple in g containing e,

see [Pom80]. Note that the restriction to p > 2 is enough to ensure that the

characteristic is good for the classical algebraic groups, however for G of type

G2, F4, E6 or E7 we require p > 3 and for G of type E8 we require p > 5.

The result of Pommerening was extended by Stewart–Thomas to p ≥ 3 for all

reductive algebraic groups of exceptional type except for one nilpotent orbit for

G = G2, when p = 3, see [ST18, Theorem 1.7]. In general the sl2-triples found

by Pommerening and Stewart–Thomas are not unique up to conjugacy, and so

subsequently there was a great deal of interest in extending the theorems of

Jacobson–Morozov and Kostant to the setting of a reductive algebraic group G

over an algebraically closed field k of characteristic p > 2. The restriction on p

required for there to be a unique sl2-triple up to conjugacy by G for each e ∈ N was

determined in the work of Stewart–Thomas. To state this result we let g = Lie G

and N denote the nilpotent cone of g. In [ST18, Theorem 1.1] it is shown that
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there is a bijection

{G-orbits of sl2-triples in g} −→ {G-orbits in N} (1.0.2)

sending the G-orbit of an sl2-triple (e, h, f) to the G-orbit of e if and only if

p > h(G), where h(G) is the Coxeter number of G.

This is the culmination of a series of earlier bounds on p for there to be a bijection

as in (1.0.2). These previous bounds were: p > 4h−3 given by Springer–Steinberg

in [SS70, p. III.4.11]; and p > 3h − 3, given by Carter, using an argument of

Spaltenstein, in [Car93, Section 5.5].

In this thesis we consider restricted Lie algebras, that is Lie algebras such that

there exists a map x 7→ x[p], called the p-th power map, which is equivariant under

the adjoint action of G, see Definition 2.1.40 for more detail. In [PS19, Section

2.4] Premet–Stewart define for each nilpotent element e ∈ g the standard sl2-triple

containing e in a canonical way when the characteristic is good; and we discuss

the construction of standard sl2-triples in detail in §4.1. In particular we note

that standard sl2-triples (e, h, f) satisfy f [p] = 0, and if e[p] = 0, then e and f are

conjugate by an element of Ad(G).

It is thus natural to consider sl2-triples (e, h, f) ∈ g in which e is conjugate to f .

If G = GLn(k), then we say that (e, h, f) in gln(k) is a strong sl2-triple if e and f

are conjugate by GLn(k). For G = GLn(k) the [p]-power map is the map taking

the p-th power of the matrix, hence it follows from the results in [PS19], that if

e ∈ gln(k) is such that ep = 0, then the standard sl2-triple containing e is strong.

In Chapter 3 we consider if there exist strong sl2-triples when ep ̸= 0, and prove

the following theorem.
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Theorem 1. There exists a surjective map

 GLn(k)-orbits of strong

sl2-triples in gln(k)

 −→ {GLn(k)-orbits in N}. (1.0.3)

That is, given any nilpotent e ∈ gln(k), there exists some strong sl2-triple (e, h, f)

in gln(k).

We explain in Proposition 3.3.4 that there is no bijective map between these sets,

and note that the existence of such a surjective map remains an open question for

the remaining classical Lie algebras.

Returning to the setting of G being any reductive algebraic group, following the

results of Stewart– Thomas, it is a natural question to consider to what extent

the map (1.0.1) fails to be a bijection in the case where p ≤ h(G). A key problem

is to determine the maximal G-stable closed subvarieties V of N such that the

restriction of this map to

{G-orbits of sl2-triples (e, h, f) with e, f ∈ V} −→ {G-orbits in V} (1.0.4)

is a bijection. In this thesis we solve this problem for all reductive G. We determine

a maximal subvariety V of N such that the map in (1.0.4) is a bijection, and prove

that V is the unique maximal such subvariety.

For any x ∈ N with associated cocharacter λx we consider ht(x) = max{j |

g(j; λx) ̸= 0} as discussed in §4.1. This definition allows us to state our first main

result, given below.

Theorem 2. Let k be an algebraically closed field of prime characteristic p > 0.
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Let G be a connected, reductive algebraic group over k, with p a good prime for G.

Define V ⊆ N to be

V = {x ∈ N | ht(x) ≤ 2p− 3}.

Then the map

{G-orbits of sl2-triples (e, h, f) with e, f ∈ V} −→ {G-orbits in V} (1.0.5)

given by sending the G-orbit of an sl2-triple (e, h, f) to the G-orbit of e is a

bijection. Moreover, V is the unique maximal G-stable closed subvariety of N

that satisfies this property.

As we frequently consider G-stable closed subvarieties V of N such that the map

in (1.0.5) is a bijection, we use a shorthand for such varieties, and say that such a

variety satisfies the sl2-property. With this terminology, we have that Theorem 2

determines the unique maximal G-stable closed subvariety V of N that satisfies

the sl2-property.

Theorem 2, restricted to G an algebraic group of classical type, is the key result of

a joint paper published by the author and Simon Goodwin, for which both authors

contributed equally, [GP22, Theorem 1.1].

Within this thesis we also consider G-completely reducible sl2-subalgebras. A

concept initially defined for reductive algebraic groups by Serre, G-complete

reducibility extends the notion of a representation being completely reducible.

We say that a subalgebra h ⊆ g is G-completely reducible if for every parabolic

p of g containing h, there exists some Levi subalgebra of p containing h, this is

discussed in more detail in §2.1.5.
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In the 2018 paper by Stewart–Thomas, they investigate G-completely reducible

subalgebras and assert that for G a connected reductive algebraic group over k,

any semisimple subalgebra of g = Lie(G), and hence any sl2(k)-subalgebra of g, is

G-completely reducible if the characteristic of the field is larger than h(G), [ST18,

Theorem 1.3].

In Chapters 5 and 6 we investigate this further, and consider sl2-subalgebras h =

⟨e, h, f⟩ ∼= sl2(k) generated by some sl2-triple in g with e and f contained in the

same nilpotent subvariety. This leads to our second main result, stated below.

Theorem 3. Let k be an algebraically closed field of prime characteristic p > 0.

Let G be a connected, reductive algebraic group over k, with p a good prime for G.

Define V ⊆ N to be

V = {x ∈ N | ht(x) ≤ 2p− 3}.

Then any h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ V is G-completely reducible. Moreover,

V is the unique maximal G-stable closed subvariety of N that satisfies this property.

Observe that this variety is equal to the variety given in Theorem 2. These results

therefore indicate a deeper connection between the nilpotent varieties that satisfy

the sl2-property, and those such that any sl2-algebra generated by an sl2-triple

with e, f contained in the variety are G-complete reducible.

Structure of this thesis

Throughout this thesis we take k to be an algebraically closed field of characteristic

p > 2, with G a reductive algebraic group over k and g = Lie(G). We now give

an overview of the structure of this thesis.
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In Chapter 2 we begin by giving a summary of Lie algebras, algebraic groups, their

structure, and defining the notation that we will use throughout. In particular, in

§2.3 we recall some required representation theory of sl2(k). We conclude in §2.4

with a discussion on the nilpotent orbits of Lie algebras. In particular we define

the Jordan type of nilpotent elements in the classical cases, and recall the closure

order on their orbits in §2.4.2.

Chapter 3 is concerned with strong sl2-triples. In order to prove Theorem 1, in §3.2

we introduce a method of constructing diagrams to represent the action of nilpotent

matrices in gln(k). We then give a series of lemmas on how these diagrams can

be used to determine the Jordan type of nilpotent elements in certain cases, see

Lemmas 3.2.6 and 3.2.7. In §3.3 we prove Theorem 1 by constructing an infinite

family of strong sl2-triples for each nilpotent e ∈ gln(k). We then prove that these

triples are not conjugate under GLn(k), thus showing that the map (1.0.3) cannot

be injective.

In Chapter 4 we give preliminary results on sl2-triples that we will need in Chapters

5 and 6. In §4.1 we define the standard sl2-triples as introduced by Premet–Stewart

in [PS19], and note that such an sl2-triple can be defined for each nilpotent

e ∈ g. Using results on standard sl2-triples and the properties of sl2-triples in

slp(k) given in §4.2, we determine conditions V must satisfy in order to satisfy

the sl2-property. We conclude in §4.3 with a discussion on the G-completely

reducible sl2(k)-subalgebras of g, where we determine a set of conditions on a

nilpotent subvariety V ⊆ N needed to ensure that all sl2(k)-subalgebras ⟨e, h, f⟩

with e, f ∈ V are G-completely reducible. We give these results in preparation to

apply them in the proof of Theorems 2 and 3 in Chapters 5 and 6.

Chapter 5 sees us turn our attention to proving Theorems 2 and 3 for G one
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of GLn(k), SLn(k), Spn(k), On(k), SOn(k). The work in this chapter forms the

basis of a paper published by the author and Simon Goodwin [GP22]. We

begin by stating Theorems 5.0.1 and 5.0.2, which are equivalent to Theorems 2

and 3 with the variety V stated in terms of the Jordan types of the nilpotent

orbits. In §5.1 we take G to be either GLn(k) or SLn(k). We prove the

algebra A := U(sl2(k))/⟨ep−1, fp−1⟩ is semisimple, and use this to prove that

V satisfies the sl2-property in Corollary 5.1.9. The semisimplicity of A is given

by a theorem of Jacobson, [Jac58, Theorem 1], see also [Car93, Theorem 5.4.8],

though we provide an alternative proof of this. We then complete the proof of

Theorem 5.0.1(a) by noting that Proposition 4.2.2 implies the maximality of V

satisfying the sl2-property. In §5.1.4 we explain that the case G = SLn(k) in

Theorem 5.0.1(b) follows quickly.

In Section 5.2 we consider the cases where G is one of Spn(k), On(k) or SOn(k).

Using Lemma 5.2.1 and Theorem 5.0.1(a) we are able to quickly show that for G =

Spn(k) or On(k), we have that V satisfies the sl2-property. Then for G = Spn(k)

we complete the proof of Theorem 5.0.1(c) by using Propositions 4.1.6 and 4.2.2

to deduce maximality. We move on to deal with the case G = On(k) in §5.2.2,

where we complete a detailed analysis of certain sl2(k)-modules in the proof of

Proposition 5.2.5. This proposition shows that V satisfies the sl2-property. We

then deduce maximality of V similarly to the previous cases to complete the proof

of Theorem 5.0.1(d). We are left to deduce Theorem 5.0.1(e) for G = SOn(k)

which is done in Proposition 5.2.6.

To finish Chapter 5, in §5.3 we deduce Theorem 5.0.2. To do so, we use

Lemma 2.1.31 to explain how this follows from Theorem 5.0.1.

In Chapter 6 we take G to be of exceptional type, and prove Theorem 6.0.1. We
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first explain that this is enough to prove Theorems 2 and 3 for G of exceptional

type. In §6.1 we show that V , as defined in Theorem 6.0.1, is maximal with respect

to both the sl2-property and the G-complete reducibility property. This follows

from a combination of results given in Chapter 4.

In §6.2 we give an overview of the approach we take to prove Theorem 6.0.1. In

§6.2.1 we use induction on the semisimple rank of G to reduce our sl2-triples

to those of the form (e, h, f) = (e + e′, h + h′, f + f ′) where (e, h, f) is the

standard sl2-triple for e contained in the Levi factor l of the maximal parabolic

p containing (e, h, f). In §6.2.2 we then use this reduction and [ST18, Statement

(4), pg. 13] to deduce the form of any non-G-completely reducible sl2-triples. In

§6.2.3 we then summarise four techniques that are used to prove that there are no

non-G-completely reducible sl2(k)-subalgebras h = ⟨e, h, f⟩ ⊆ g with e, f ∈ V . In

§6.3 we take G to be of type G2 and demonstrate how this method can be applied

by hand. In §6.4 we complete a case-by-case analysis of the remaining exceptional

type algebraic groups, using computational techniques in MAGMA.

Finally, in Section 6.5 we prove that this is enough to show that V also satisfies

the sl2-property.
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CHAPTER 2

PRELIMINARIES

Unless stated otherwise, throughout this thesis we take k to be an algebraically

closed field of characteristic p > 2. All algebraic groups and Lie algebras we work

with are over k. The prime subfield of k is denoted by Fp.

2.1 Lie algebras, algebraic groups and their

representations

2.1.1 Lie algebras

We begin introducing Lie algebras by defining the fundamental concepts that we

use throughout. For a more detailed introduction, refer to [EW06].

Definition 2.1.1. Let g be a vector space over k with a bilinear map [·, ·] : g×g→

g that satisfies:

(a) [x, x] = 0 for all x ∈ g; and
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(b) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Then g is a Lie algebra and the bilinear map [·, ·] is called the Lie bracket.

Condition (b) is referred to as the Jacobi identity.

We define homomorphisms of Lie algebras, Lie subalgebras, and ideals in the

natural way.

Definition 2.1.2. Let g1, g2 be Lie algebras over k, we say that φ : g1 → g2 is a

homomorphism of Lie algebras if φ is a linear map, and φ satisfies

φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ g1.

A homomorphism φ : g1 → g2 is an isomorphism of Lie algebras if it is bijective

map.

Definition 2.1.3. Let g be a Lie algebra.

A subspace h ⊆ g is a Lie subalgebra of g if

[x, y] ∈ h for all x, y ∈ h.

A subspace I ⊆ g is an ideal of g if

[x, y] ∈ I for all x ∈ g, y ∈ I.

We now define the classical Lie algebras, sln(k), son(k) and sp2n(k), which we

consider as subsets of matrices. Over C, the classical Lie algebras have the property

that every finite-dimensional simple Lie algebra is isomorphic to one of these Lie
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algebras or one of 5 exceptional Lie algebras [EW06, Theorem 4.12]. Throughout

the rest of this chapter, the classical Lie algebras form the basis for most examples.

Example 2.1.4. (i) Let V be an n-dimensional vector space over k. We define

the general linear algebra, gl(V ), to be the set of all linear maps V → V ,

where the Lie bracket is defined to be

[x, y] = xy − yx, for all x, y ∈ gl(V )

where here xy represents composition of maps.

We similarly define gln(k) to be the space of all n×n matrices over k where

our Lie bracket is defined as above, where in this case xy represents matrix

multiplication.

Note that if we have some basis {v1, v2, . . . , vn} of V , then we can define a

bijective map gl(V ) → gln(k) that maps a linear map α : V → V to the

matrix (aij) such that

α(vk) =
n∑

l=1
alkvl.

This map is an example of an isomorphism of Lie algebras.

(ii) We define the special linear Lie algebra, sln(k), to be the Lie subalgebra of

gln(k) containing matrices with trace 0.

(iii) We define the orthogonal Lie algebra, son(k), to be the subalgebra of gln(k)

with

son(k) = {x ∈ gln : xtJn = −Jnx} where Jn =

à
1

. ..

1

í
.
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Elements of son(k) are reflected negatively in the antidiagonal, that is x =

(xij) ∈ gln(k) is in son(k) if xij = −xn−j+1,n−i+1 for all i, j.

For example

so3(k) =



à
a b 0

c 0 −b

0 −c −a

í
: a, b, c ∈ k

 .

(iv) Similarly we define the symplectic Lie algebra, sp2n(k), to be the subalgebra

of gl2n(k) with

sp2n(k) =
{

x ∈ gl2n : xtJ = −Jx
}

where J =

Ö
Jn

−Jn

è
.

We have that x = (xij) ∈ gln(k) is in sp2n(k) if

xij =


−x2n−j+1,2n−i+1 if either i, j < n or i, j > n,

x2n−j+1,2n−i+1 otherwise.

For example

sp4(k) =





x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x1,3

x3,1 x3,2 −x2,2 −x1,2

x4,1 x3,1 −x2,1 −x1,1

 : xij ∈ k


.

In particular, we are interested in Lie subalgebras isomorphic to sl2(k). The

13



standard basis for sl2(k) is given by

e =

Ö
0 1

0 0

è
, h =

Ö
1 0

0 −1

è
, f =

Ö
0 0

1 0

è
,

where the corresponding Lie brackets are

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Definition 2.1.5. Let g be a Lie algebra over k. Then we say that e, h, f ∈ g

is an sl2-triple if (e, h, f) generate a subalgebra that is a homomorphic image of

sl2(k). That is, they satisfy the following equations:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (2.1.1)

Note that if char(k) ̸= 2, we have that (e, h, f) generate a Lie subalgebra which is

either 0 or isomorphic to sl2(k).

We see the standard basis of sl2(k) given above satisfies these equations, and thus

is an sl2-triple.

Example 2.1.6. Suppose we have some sl2-triple (e, h, f) in a Lie algebra g. Then

(f,−h, e) is also an sl2-triple in g.

2.1.2 Structure of algebraic groups

Let G be a linear algebraic group. We write Ga = (k, +), and Gm = (k×,×) to

represent the additive and multiplicative groups of the field k respectively.
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We now define certain subgroups of the algebraic groups, which we require to

define root systems in §2.1.3. For further discussion, refer to [MT11, Chapter 6].

Definition 2.1.7. A subgroup T ≤ G is a torus if T is isomorphic to a direct

product of copies of Gm, that is T ∼= Gm × · · · ×Gm.

We say T is a maximal torus if it is maximal satisfying this property with respect

to inclusion.

We have that all maximal tori are conjugate in G.

Definition 2.1.8. The rank of a linear algebraic group G is the dimension of a

maximal torus of G.

To illustrate this, we consider the following example.

Example 2.1.9. (i) Let G = GLn(k), then it is clear that Dn is a maximal

torus for G where we define Dn to be the invertible diagonal matrices. Thus

we have that the rank of GLn(k) is n.

(ii) Similarly, we have that Dn ∩ SLn(k) is a maximal torus of SLn(k). Then

SLn(k) has rank n− 1.

Definition 2.1.10. Let G be a linear algebraic group. We define a character of G

to be a morphism of algebraic groups χ : G→ Gm. We denote the set of characters

by

X(G) := {χ : G→ Gm}.

Similarly, we define a cocharacter of G to be a morphism of algebraic groups

γ : Gm → G, with the set of cocharacters denoted by

Y (G) := {γ : Gm → G}.
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Let T be a maximal torus of G. Observe that for χ ∈ X(T ), γ ∈ Y (T ) we have

χ ◦ γ ∈ Hom(Gm,Gm). Hence for any λ ∈ Gm we have χ ◦ γ(λ) = λn for some

n ∈ Z. We define the map ⟨·, ·⟩ : X × Y → Z by ⟨χ, γ⟩ = n.

We can equivalently define characters and cocharacters of Lie algebras.

We give an example of a character which we will refer back to later.

Example 2.1.11. Let T = Dn ∩ SLn(k) ⊆ SLn(k) be as in Example 2.1.9, then

for each i ̸= j we define the character χij : T → Gm to be given by

χij :

à
a1

. . .

an

í
7→ aia

−1
j .

Definition 2.1.12. Let G be a linear algebraic group, then we say that a subgroup

B ⊆ G is a Borel subgroup of G if it is a closed, connected, solvable subgroup of

G, and it is maximal with respect to these properties.

We remark that all Borel subgroups are conjugate, and thus up to conjugacy, we

can take any choice of Borel subgroup.

Example 2.1.13. Let G = GLn(k), then the subgroup of invertible upper

triangular matrices is a Borel subgroup.

Definition 2.1.14. The maximal closed connected solvable normal subgroup of

G is referred to as the radical of G, and is denoted by R(G).

The maximal closed connected normal unipotent subgroup of G is referred to as

the unipotent radical of G, and is denoted by Ru(G).
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We say that a linear algebraic group is reductive if Ru(G) = 1, and semisimple if

G is connected and reductive.

2.1.3 Root systems

Throughout this thesis, we will want to discuss both the classical and exceptional

Lie algebras. In order to define the exceptional Lie algebras we first need to

understand their construction using root systems. We give a brief overview of

this, for more detail refer to [Car93, Chapter 1] and [MT11, Chapter 8].

Within this section take G to be a reductive algebraic group with g = Lie(G). We

continue notation from §2.1.2, and we take T ≤ G to be a maximal torus of G.

Define W (T ), the Weyl group, to be the quotient of the normaliser of T in G by the

centraliser of T in G. Note that this is uniquely determined up to isomorphism,

as all maximal tori are conjugate.

Take B to be a Borel subgroup of G containing T , then B has a semidirect product

decomposition

B = Ru(B) ⋊ T

where Ru(B) is the unipotent radical of B.

There exists a unique Borel subgroup B− of G containing T such that B∩B− = T .

As above we can find a semidirect product decomposition

B− = Ru(B−) ⋊ T.

We consider the minimal proper subgroups of Ru(B) and Ru(B−) that are

17



normalised by T . These are all connected unipotent subgroups of dimension 1,

and each determines an element of X.

Definition 2.1.15. The non-zero elements of X arising in this way are called

roots. The roots in X form a finite subset which we denote Φ.

For each root α ∈ Φ, the 1-dimensional unipotent subgroup that determines α is

denoted Xα. These are known as the root subgroups of G.

We write Φ+ for the set of positive roots arising from the root subgroups of Ru(B),

and Φ− for the set of negative roots arising from the root subgroups of Ru(B−)

We write ∆ for the set of positive roots that cannot be expressed as a sum of two

positive roots. We refer to the elements of ∆ as simple roots.

A key consequence of these results is that G = ⟨T, Xα : α ∈ Φ⟩.

The roots arising from the root subgroups in Ru(B−) are the negatives of the roots

arising from Ru(B), so we may refer to α,−α as opposite roots. Then we have

that ⟨Xα, X−α⟩ is isomorphic to either SL2(k) or PGL2(k).

Definition 2.1.16. Let α∨ ∈ Y be such that α∨ : Gm → ⟨Xα, X−α⟩ and ⟨α, α∨⟩ =

2. Then α∨ is uniquely determined, and we define α∨ to be a coroot of Y . The set

of coroots of Y is denoted Φ∨.

Note that each element of W permutes both the roots Φ in X and the coroots

Φ∨ in Y . Let α ∈ Φ and define sα ∈ W to be the element of W such that for all

χ ∈ X, γ ∈ Y we have

sα(χ) = χ− ⟨χ, α∨⟩α

sα(γ) = γ − ⟨α, γ⟩α∨.
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We have that sα = s−α and s2
α = 1, and that W is generated by the set of sα for

all α ∈ ∆.

Definition 2.1.17. For each connected reducive group G we refer to (X, Φ, Y, Φ∨)

as the root datum of G.

Given any root datum (X, Φ, Y, Φ∨) there is a connected reductive group G over k

that has the given root datum, and this group is unique up to isomorphism. For

further detail on this classification refer to [MT11, Chapter 9].

In order to better understand these defintions, we continue Examples 2.1.9 and

2.1.11.

Example 2.1.18. Take G = GLn(k), and recall that T = Dn is a maximal torus

for G. Take B to be the subgroup of upper triangular matrices. Then Ru(B) is

the subgroup of upper-unitriangular matrices.

Symmetrically we have B− is the subgroup of lower triangular matrices.

Define the character χij : T → Gm as in Example 2.1.11.

We have that χi,j = χi,i+1 + χi+1,i+2 + · · ·+ χj−1,j for i < j, so we see that

Φ(G) = {χij : i ̸= j}, ∆ = {χi,i+1 : 1 ≤ i ≤ n− 1}.

and

Φ+ = {χij : i < j}.

We can draw the Dynkin diagrams using these root systems and their bases.

Definition 2.1.19. Let G be a connected, reductive group with root datum

(X, Φ, Y, Φ∨). Label a vertex for each of the simple roots of ∆, and between
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α, β ∈ ∆ draw dαβ lines where

dαβ := ⟨α, β∨⟩ ⟨β, α∨⟩ ∈ {0, 1, 2, 3}.

If dαβ > 1, then one of ⟨α, β∨⟩ or ⟨β, α∨⟩ is equal to −1. Draw an arrow pointing

from α to β if dαβ > 1 and ⟨β, α∨⟩ = −1.

This diagram is known as the Dynkin diagram of G.

The Dynkin diagram is uniquely determined by G, and is independent of the choice

of maximal torus T and Borel subgroup B containing T .

Theorem 2.1.20. Let G be a simple algebraic group with root datum (X, Φ, Y, Φ∨).

Then the Dynkin diagram for G is one of the following types

An(n ≥ 1), Bn(n ≥ 1), Cn(n ≥ 3), Dn(n ≥ 4), E6, E7, E8, F4, G2.

The Dynkin diagrams for these types are shown below.

Definition 2.1.21. We refer to Lie algebras with Dynkin diagrams of type A −

D as classical Lie algebras and those with Dynkin diagrams of type E, F, G as

exceptional Lie algebras.
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An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Example 2.1.22. Recall the examples of Lie algebras given in Example 2.1.4,

then we have that sln+1(k) has type An, so2n+1(k) has type Bn, sp2n(k) has type

Cn and so2n(k) has type Dn for n ∈ Z>0. To see a construction of the root systems

in characteristic 0, see [EW06, Chapter 12].

2.1.4 Parabolic and Levi subgroups and subalgebras

For any connected, reductive algebraic group G we can define the parabolic and

Levi subgroups of G, for statements and proofs of the results given here refer to

[MT11, Chapter 12].

We maintain notation from §2.1.2 and §2.1.3. We take G to be a connected

reductive algebraic group, T ≤ G a maximal torus contained in a Borel subgroup

B of G. Let Φ be the root system of G, and ∆ the set of simple roots with respect

to T ≤ B, and S = {sα : α ∈ ∆}. Let g = Lie(G) For a subset I ⊆ S we write

∆I := {α ∈ ∆ : sα ∈ I} and ΦI := Φ ∩
∑
α∆I

Zα.
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Before we can define the parabolic and Levi subgroups we must first give some

further notation. We state this notation in combination with the results of [MT11,

Theorem 8.17].

Let S = {sα : α ∈ ∆} be the set of generating relations. Then for each I ⊆ S we

define

UI :=
〈
Uα : α ∈ Φ+ \ ΦI

〉
.

Definition 2.1.23. For a subset I ⊆ S, define PI := ⟨α ∈ Φ+ ∪ ΦI⟩. Then we say

that PI is a standard parabolic of G.

We then define a parabolic subgroup to be any subgroup of G conjugate to a

standard parabolic of G. We could equivalently define a parabolic subgroup to be

any subgroup containing a Borel subgroup. Note that RU(PI) = UI .

Define

LI := ⟨T, Uα : α ∈ ΦI⟩ ≤ PI

then this is a complement to UI in the parabolic subgroup PI , so PI = UI ⋊ LI .

This decomposition is called the Levi decomposition of the parabolic subgroup PI ,

and LI is the Levi complement of PI .

The conjugates of the standard Levi complements are called Levi subgroups of G.

We now discuss the parabolic subgroups of G ⊆ GLn(k) in more detail.

Example 2.1.24. The parabolic subgroups of GLn(k) are the stabilisers of flags

of subspaces of V = k
n. That is for each parabolic subgroup P there exists some

flag F : {0} = V0 ⊆ V1 ⊆ · · · ⊆ Vr = k
n such that

P = StabGLn(k)(F) = {g ∈ GL(V ) : g(Vj) = Vj for all j = 1, . . . , r}.
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For G = Sp2n(k) or On(k) take the bilinear form given by the matrices J and

Jn respectively from Example 2.1.4, then the parabolic subgroups of G are P =

StabG(F) for some flag F : {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ V where each Vi is a

totally isotropic subspace of V for 1 ≤ i ≤ r, where by totally isotropic we mean

a subspace on which the bilinear form vanishes.

Example 2.1.25. Suppose G = GLn(k) and let {e1, . . . , en} be the standard

basis of kn. Consider the flag F : {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = k
n where

Vi = span{e1, . . . , en1+···+ni
} and hence dim(Vi/Vi−1) = ni. Then the corresponding

parabolic subgroup is

P =





A1 ∗ ∗ ∗

A2 ∗ ∗
. . . ∗

Ar

 : A1 ∈ GLn1(k), A2 ∈ GLn2(k), . . . , Ar ∈ GLnr(k)


.

Lemma 2.1.26. Suppose P is a parabolic subgroup of G given as the stabiliser

of some flag F : {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = kn with dim(Vi/Vi−1) = ni

which can be written as a direct sum decomposition as in Example 2.1.25. A Levi

subgroup associated to P is the stabiliser of this direct sum decomposition. All of

the conjugates of this stabiliser are also Levi subgroups.

Example 2.1.27. A Levi subgroup associated to P in Example 2.1.25 is

L =





A1

A2

. . .

Ar

 : A1 ∈ GLn1(k), A2 ∈ GLn2(k), . . . , Ar ∈ GLnr(k)


.

Definition 2.1.28. Let G be a linear algebraic group and consider g = Lie(G). We
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define a parabolic subalgebra of g to be some p = Lie(P ) for a parabolic subgroup

P of G. We define a Levi subalgebra of g associated to p to be l = Lie(L) where L

is a Levi subgroup associated to P .

Given a Lie algebra g with a parabolic subalgebra p, then we say that a Levi

subalgebra l of p is a Levi factor.

We now give some further examples for the classical groups.

Example 2.1.29. (i) The Levi subgroups of On(k) are of the form

L ∼= GLn1(k)× · · · ×GLnr−1(k)×On−2(n1+···+nr−1)(k)

for some n1, . . . , nr−1.

The Levi subalgebras of son(k) are of the form

l ∼= gln1(k)× · · · × glnr−1(k)× son−2(n1+···+nr−1)(k)

for some n1, . . . , nr−1, that is

l ∼=





A1

. . .

Ar−1

B

Ãr−1

. . .

Ã1



: Ai ∈ glni
(k), B ∈ som(k)


where m = n− 2(n1 + · · ·+ nr−1) and (Ãk)i,j = −(Ak)nk−j+1,nk−i+1 for each
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k.

(ii) Similarly, the Levi subgroups of Sp2n(k) are of the form

L ∼= GLn1(k)× · · · ×GLnr−1(k)× Sp2n−2(n1+···+nr−1)(k)

for some n1, . . . , nr−1.

The Levi subalgebras of sp2n(k) are of the form

l ∼= gln1(k)× · · · × glnr−1(k)× sp2n−2(n1+···+nr−1)(k)

for some n1, . . . , nr−1, that is

l ∼=





A1

. . .

Ar−1

B

Ar−1

. . .

A1



: Ai ∈ glni
(k), B ∈ spm(k)


where m = 2n− 2(n1 + · · ·+ nr−1) and (Ak)i,j = −(Ak)nk−j+1,nk−i+1.

2.1.5 G-complete reducibility

We now define what it means for a subalgebra of g to be G-completely reducibile.

The concept of G-complete reducibility for groups is due to Serre [Ser05], and the

natural corresponding notion for subalgebras was introduced by McNinch [McN07].
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Definition 2.1.30. We say a subgroup H of G is G-completely reducible if

whenever H is contained in a parabolic subgroup of G it is contained in a Levi

subgroup of G.

Given a subalgebra h ⊆ g, we say that h is G-completely reducible if for every

parabolic subalgebra p such that h ⊆ p we have that there exists some Levi

subalgebra l of p with h ⊆ l.

We state the following preliminary results which are due to Stewart–Thomas and

McNinch.

Lemma 2.1.31. [ST18, Lemma 3.2] Let G be a simple, simply connected algebraic

group of classical type, and g = Lie(G). A subalgebra h of g is G-completely

reducible if and only if it acts completely reducibly on the natural module for g.

Lemma 2.1.32. [McN07, Lemma 4] Let G be reductive and let L be a Levi factor

of a parabolic subgroup of G. Suppose that we have a Lie subalgebra h ⊂ l = Lie(L).

Then h is G-completely reducible if and only if h is L-completely reducible.

2.1.6 Representations and modules

Next we discuss modules and representations of Lie algebras.

Definition 2.1.33. Suppose g is a Lie algebra over k.

• Let V be an n-dimensional vector space over k. A representation of g on V

is a Lie algebra homomorphism

φ : g→ gl(V ).
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• A g-module is a vector space V over k together with a map

g× V → V, (x, v) 7→ x · v

that satisfies the following conditions for all λ, µ ∈ k, x, y ∈ g, and u, v ∈ V :

(a) (λx + µy) · v = λ(x · v) + µ(y · v);

(b) x · (λu + µv) = λ(x · u) + µ(x · v); and

(c) [x, y] · v = x · (y · v)− y · (x · v).

For g-modules V1, V2 we define the direct sum V1 ⊕ V2 to be a g-module in the

natural way. That is, for (v1, v2) ∈ V1 ⊕ V2, we set x · (v1, v1) = (x · v1, x · v2) for

all x ∈ g.

Remark 2.1.34. Given some representation φ : g → gl(V ) we can make V into a

g-module by setting

x · v = φ(x)(v) for all x ∈ g, v ∈ V.

Similarly, if V is an g-module, then we can view V as a representation of g by

setting φ : g→ gl(V ), to be the homomorphism with

φ(x)(v) = x · v for all x ∈ g, v ∈ V.

Thus after this point we will not differentiate between modules and representations.

Definition 2.1.35. Suppose V is a module for some Lie algebra g. Then a

subspace W ⊆ V is a submodule if for all x ∈ g, and for all w ∈ W we have

x · w ∈ W .
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Definition 2.1.36. We say that a module V for some Lie algebra g is simple if

the only submodules of V are 0 and V .

We say that a g-module is completely reducible if it can be written as a direct sum

of simple g-modules.

2.1.7 Universal enveloping algebras

In Section 2.3.2 we will find the irreducible modules of sl2(k), in order to do this

we consider universal enveloping algebras and their representations. The following

definitions can be found in Chapter 15 in [EW06]. For convenience, we introduce

the notation s = sl2(k).

Definition 2.1.37. Suppose that g is some finite-dimensional Lie algebra over k

with basis {x1, x2, . . . , xn}, then we define the structure constants to be the ak
ij ∈ k

such that

[xi, xj] =
∑

k

ak
ijxk for 1 ≤ i, j ≤ n.

Definition 2.1.38. Given some finite-dimensional Lie algebra g over k, that has

basis {x1, x2, . . . , xn} and corresponding structure constants ak
ij ∈ k. We define the

universal enveloping algebra U(g) to be the algebra generated by {X1, X2, . . . , Xn}

subject to the relations

XiXj −XjXi =
n∑

k=1
ak

ijXk for all 1 ≤ i, j ≤ n

with no other relations.

The universal enveloping algebra U(g) has a basis formed by all monomials in the

elements {X1, X2, . . . , Xn}, as proved in [Bir37, Lemma 1], that is it has PBW
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basis

{Xa1
1 Xa2

2 . . . Xan
n : ai ∈ Z≥0}.

The elements {X1, X2, . . . , Xn} are linearly independent, and hence U(g) is infinite

dimensional if g ̸= 0. We mention that in fact U(g) is independent of the choice

of basis, and that g is a subspace of U(g) in degree 1. As a copy of g is contained

in U(g), from this point, we will just refer to elements of U(g) as polynomials in

elements of g.

Example 2.1.39. We saw in Example 2.1.4 that s = sl2(k) has standard basis

{e, h, f} where

e =

Ö
0 1

0 0

è
, h =

Ö
1 0

0 −1

è
, f =

Ö
0 0

1 0

è
satisfy [h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

The universal enveloping algebra U(s) of s has PBW basis {fahbec : a, b, c ∈ Z≥0}.

The only relations in U(s) are

he− eh = 2e, hf − fh = −2f, ef − fe = h.

Note that, for example, this means that in U(s), e2 ̸= 0 even though this relation

is satisfied by the elements of sl2(k). We can write every element in U(s) as a sum

of elements of the form fahbec for some a, b, c ∈ k, see for example

ehf = (he− 2e)f = (h− 2)(ef) = (h− 2)(h + fe)

= h2 − 2h + f(he− 2e)− 2fe = h2 − 2h + fhe− 4fe.
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The following notation and definitions are taken from [Jan98, Chapter 2].

Throughout this thesis we will want to consider restricted Lie algebras, we define

this notion now.

Definition 2.1.40. Let g be a Lie algebra over k. Then g is restricted if there

exists a map g→ g sending x 7→ x[p] such that

(a) ad(x[p]) = ad(x)p for all x ∈ g;

(b) (tx)[p] = tpx[p] for all x ∈ g, t ∈ k; and

(c) (x + y)[p] = x[p] + y[p] + ∑p−1
i=1

si(x,y)
i

for all x, y ∈ g, where si(x, y) is the

coefficient of ti−1 in the formal expression of ad(tx + y)p−1(x).

Let h ⊆ g be Lie subalgebra of g. Then we say that h is a p-subalgebra if x[p] ∈ h

for all x ∈ h.

Example 2.1.41. In the familiar example of the classical Lie algebras, where

g ⊆ gln(k), for x ∈ g we write x[p] to be the p-th power of x as a matrix in gln(k),

and we write xp to be the p-th power of x in U(g).

Any Lie algebra of an algebraic group is restricted, and hence any Lie algebra we

consider in this thesis is restricted.

Definition 2.1.42. Let V be a g-module. Then V has p-character χ ∈ g∗ =

Hom(g,k) if for all x ∈ g

(xp − x[p] − χ(x)p) · V = 0.

Note that any simple g-module has a p-character.
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Definition 2.1.43. Let χ ∈ g∗, then we define the reduced enveloping algebra of

g associated to χ to be

Uχ(g) = U(g)/
¨
xp − x[p] − χ(x)p : x ∈ g

∂
.

There is no distinction in notation between elements in g, U(g) and Uχ(g), however

it should be clear from context where we are taking our elements from.

Reduced enveloping algebras are finite dimensional. In particular, if the basis of

g is {x1, x2, . . . , xn} then Uχ(g) has basis {xa1
1 xa2

2 . . . xan
n : 0 ≤ ai < p}, see this for

example by Proposition 2.8 in [Jan98].

Lemma 2.1.44. [Jan98, Section 2.7] There is a bijection between {g-modules}

and {U(g)-modules}, that induces for each χ a bijection between {g-modules with

p-character χ} and {Uχ(g)-modules}.

2.2 Wedderburn’s Theorem

Let k be an algebraically closed field. We now recall some of the representation

theory of semisimple Lie algebras. We take these results from the Introduction

chapter of [CR90].

Let A be a finite dimensional algebra, with simple modules {Li}i∈I that are defined

up to isomorphism for some indexing set I.

Definition 2.2.1. We say an A-module M is completely reducible if it can be

written as a direct sum of simple A-modules.

We say that A is semisimple if every A-module is completely reducible.
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Let M be a completely reducible A-module. We define the homogeneous

components of M to be {Mi}i∈I such that

Mi =
∑

V ⊆M,V ∼=Li

V.

Note that M = ⊕i∈IMi, and Mi = L⊕t
i for some t.

The following theorem is a corollary of Wedderburn’s Theorem, stated for example

in [CR90, Theorem 3.22, Wedderburn’s Theorem], and Proposition 3.33 and

Theorem 3.34 of [CR90].

Theorem 2.2.2. Let A be a finite dimensional semisimple algebra over k. Label

the simple modules of A as {L1, . . . , Lk}. Consider A as a module over itself,

then there are a finite number of homogeneous components of A, that we label

{A1, . . . , Ak}, and

A = A1 ⊕ · · · ⊕ Ak.

Moreover each Ai is a matrix algebra with deg(Ai) = dim(Li).

This result only holds when A is a semisimple algebra, so we now give the definition

of the Jacobson radical to enable us to apply these ideas for algebras that are not

semisimple.

Definition 2.2.3. We define the Jacobson radical of A, denoted rad A, to be the

intersection of the maximal left ideals of A.

Results in [CR90, §5] tell us that for any algebra A, rad A is a two sided ideal and

if we take the quotient of A by its Jacobson radical, then A/ rad A is semisimple.

Thus we can apply Wedderburn’s theorem to A/ rad A when A is not semisimple.
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2.3 Representations of sl2(k)

Recall that k is an algebraically closed field of characteristic p, and we write

s = sl2(k).

We give some notation for s-modules and their related sl2-triples that is used

throughout. Given an s-module M and x ∈ s, we write xM ∈ gl(M) to denote the

matrix representation of the action of x on M . Then we have that (eM , hM , fM)

is an sl2-triple in gl(M), and in fact lies in sl(M) as s is equal to its derived

subalgebra and sl(M) is the derived subalgebra of gl(M).

We now consider some important modules of s.

Example 2.3.1. We first define the (n + 1)-dimensional module V (n) of sl2(C).

These modules are first defined over C, however we will also explain how to define

V (n) over a field of characteristic p > 0. We consider V (n) in two ways:

(i) Let us first consider the vector space C[X, Y ] of polynomials in commuting

indeterminates X, Y . Let n ∈ Z≥0, and set V (n) to be the subspace of

C[X, Y ] containing homogeneous polynomials of degree n.

Then V (0) is the vector space of constant polynomials. For n ≥ 1, we can

take the following set to be a basis of V (n)

{Xn, Xn−1Y, . . . , XY n−1, Y n}.

We make V (n) into an s-module by setting

e · v = X
δv

δY
, h · v = X

δv

δX
− Y

δv

δY
, f · v = Y

δv

δX
.
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Then using the above basis eV (n), hV (n), fV (n) are represented by the following

matrices respectively



0 1

0 2
. . . . . .

0 n

0


,



n

n− 2
. . .

2− n

−n


,



0

n 0
. . . . . .

2 0

1 0


where all other entries in these matrices are zero.

Note that V (n) can be defined for any n ∈ Z≥0, and has dimension n + 1.

(ii) Typically when working with sl2-triples we will want to work with e both

nilpotent, and in Jordan normal form. Hence we conjugate the above

matrices (i.e. find another basis) to find a form that is more convenient.

Conjugating the above matrices by the diagonal matrix

diag(0!, 1!, 2!, . . . , n!) ∈ GLn(C)

gives us the following module of sl2(C), where eV (n), hV (n), fV (n) are

represented by the following matrices respectively



0 1

0 1
. . . . . .

0 1

0


,



n

n− 2

n− 4
. . .

−n


,



0

a1 0

a2 0
. . . . . .

an 0


where in the matrix for fV (n) we have that aj = aj−1 + n − 2(j − 1) =
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j((n + 1)− j), and all other entries in these matrices are zero.

We will frequently refer to the sl2-triple (eV (n), hV (n), fV (n)) resulting from

this module reduced modulo p. We therefore introduce the shorthand h(e) :=

hV (n), f(e) := fV (n).

Now let k be a field of characteristic p > 0, then reducing the above matrices

modulo p makes V (n) a module for s. To conjugate to the basis in part

(b) we needed that n! ̸= 0, which holds over C but not necessarily in an

arbitrary field of prime characteristic. Thus the two forms on V (n) can

reduce differently modulo p, we define the s-module V (n) in k to be formed

by reducing the matrices in part (b).

2.3.1 Representations of sl2 over C

It is shown in Chapter 8 of [EW06] that the sl2(C)-modules V (n) are simple and

moreover they are the only simple modules of sl2(C).

Weyl’s Theorem, which can be found for example in [EW06, Theorem 8.7], states

that any finite-dimensional module for sl2(C) is completely reducible, hence every

sl2(C)-module can be written as a direct sum of these V (n). Over fields of

characteristic p > 0, this is no longer true.

2.3.2 Representations of sl2 over a field of characteristic p

Let k be an algebraically closed field of characteristic p > 2.

We next recall some aspects of the representation theory of s = sl2(k) that we

require later. We will explain the classification of simple s-modules on which

e and f act nilpotently, and some information about extensions between these
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simple modules.

Recall the reduced enveloping algebras as defined in Definition 2.1.43. We consider

Section 5 of [Jan98] which finds all the simple modules for the reduced enveloping

algebras Uχ(s) for any p-character χ. It can be deduced from this that s-modules

with dimension n < p are a direct sum of the simple modules V (n), however

there exist modules of dimension greater than or equal to p that are not a sum of

simple modules. Most notably, the baby Verma modules of dimension p that are

introduced below.

Proposition 2.3.2. [Jan98, Section 5.2] The only simple U0(s)-modules are V (d)

for 0 ≤ d < p.

Proposition 2.3.3. [Jan98, Proposition 5.3] If χ ̸= 0 then every simple

Uχ(s)-module has dimension p.

Definition 2.3.4. For χ a p-character and λ ∈ k, let b = kh + ke and define

m+ to be an element so that h ·m+ = λm+. We define the baby Verma module

associated to χ and λ to be

Zχ(λ) = Uχ(s)⊗Uχ(b) km+.

A basis for Zχ(λ) is {vi = f i ⊗m+ : i ∈ {0, . . . , p − 1}}. The standard basis of

sl2(k) act on this module as

h · vi = (λ− 2i)vi

e · vi =


0 if i = 0,

i(λ− i + 1)vi−1 if i > 0.
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f · vi =


vi+1 if i < p− 1,

χ(f)pv0 if i = p− 1.

We consider the submodules of Z0(λ) for λ ∈ k. We suppose that χ = 0, and

hence 0 = χ(h)p = λp− λ, from which we deduce that λ ∈ Fp and there is no such

module for λ /∈ Fp. We know that ep acts as zero, so we note that any submodule

M of Z0(λ) must contain some v ̸= 0 so that e · v = 0. The only basis vectors

that are mapped to 0 by e are v0 and vλ+1, hence either v0 ∈ M or vλ+1 ∈ M . If

v0 ∈ M , we use the action of f to see that all of the basis vectors are contained

in the submodule, so M = Zχ(λ). Therefore to find a non-trivial submodule we

assume that v0 ̸∈ M . Set M = span{vλ+1, . . . , vp−1} and note that this is closed

under the action of e, h and f and hence M is a submodule with p − λ − 1 basis

elements. The module M is irreducible as the only basis vector that is mapped

to 0 by e is vλ+1. Note that for each n ∈ Fp we have V (n) is isomorphic to the

irreducible submodule, M , of Z0(p− n− 2). Equivalently, V (n) is the irreducible

quotient of Z0(n).

We can use the same method of considering possible submodules to see that the

baby Verma modules Zχ(λ) are simple when χ ̸= 0.

Remark 2.3.5. When k is a field of positive characteristic p, the sl2(k)-module

V (n) is simple if and only if n < p.

For c, d ∈ {0, 1, . . . , p− 2}, it is known that

Ext1
s(V (c), V (d)) = 0 except in the case d = p− c− 2, (2.3.1)

see for example [ST18, Lemma 2.7]. In order to see this, consider the action of the
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Casimir element, c := ef + fe + 1
2h2, which lies in the centre of U(s). We have

that c acts on V (d) as the scalar 1
2d(d + 2). Given an sl2(k)-module M , we can

express M as a direct sum of the generalised eigenspaces for c, and so we have

that Ext1
s(V (d), V (d′)) = 0 for d′ ̸= d, p− d− 2. By [Jan03, Proposition 12.9] we

have that Ext1
s(V (d), V (d)) = 0 for d ∈ {0, 1, . . . , p− 2}.

Remark 2.3.6. Over C, consider the sl2(C)-module V (n) with basis as given in

Example 2.1.4(b). Under this basis, fV (n) is represented by the matrix with

elements aj = j(n − j) on the −1-th diagonal, where aj ̸= 0 for any j. Hence

we can see that eV (n) ∼ (n + 1) and fV (n) ∼ (n + 1) and hence they have the same

Jordan normal form and thus are conjugate by an element of GLn+1(C).

Similarly, if we are considering a field k of prime characteristic p > 0, we consider

the sl2-triple formed by the matrices (eV (n), hV (n), fV (n)) defined by their action on

the s-module V (n). If n < p, we have that aj = j(n− j) ̸= 0 for any j and hence

eV (n) and fV (n) are conjugate by an element of GLn+1(k). However, this does not

hold for n ≥ p, as ap = p((n + 1)− p) = 0 mod p.

In Chapter 3 we show that for any nilpotent e ∈ gln(k) there exists some h, f ∈

gln(k) such that (e, h, f) is an sl2-triple, and e is conjugate to f . This leads us to

the following definition.

Definition 2.3.7. We say that an sl2-triple (e, h, f) ∈ gln(k) is a strong sl2-triple

if e is conjugate to f by an element of GLn(k).

2.4 Nilpotent orbits for classical Lie algebras

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k) (where we assume n

is even in the Spn(k) case), and g = Lie(G). Let N represent the nilpotent cone
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of g.

2.4.1 Parametrisation of orbits

We give an overview of the well-known parametrisation of G-orbits in N in terms

of Jordan types. We begin with a discussion on the nilpotent orbits in N , for more

details we refer the reader to [Jan04, Section 1].

Throughout, by a partition we mean a sequence λ = (λ1, λ2, . . . , λm) of positive

integers λi such that λi ≥ λi+1 for i = 1, . . . , m − 1; we have the convention that

λi = 0 for i > m. We say that λ is partition of λ1 + λ2 + · · ·+ λm. We sometimes

use superscripts to denote multiplicities in partitions, so for example may write

(32, 2, 13) as a shorthand for (3, 3, 2, 1, 1, 1). For a partition λ and i ∈ Z>0, we

define mi(λ) to be the multiplicity of i in λ. Given partitions λ and µ we define

λ|µ to be the partition with mi(λ|µ) = mi(λ) + mi(µ) for all i ∈ Z>0

We briefly recap the definition of Jordan Normal Form, as later we will want to

take matrices in this form for ease.

Definition 2.4.1. Suppose a ∈ k, then the Jordan block Jh(a) of size h×h is the

matrix

Jh(a) =



a 1

a 1
. . . . . .

a 1

a


.
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A Jordan matrix is a matrix of the following block form



Jh1(a1)

Jh2(a2)
. . .

Jhk
(am)


for some hi ≥ 1, ai ∈ k.

We say that a matrix is in Jordan normal form if it is a Jordan matrix.

We have taken k to be an algebraically closed field, so if we suppose V is a finite

dimensional vector space and f : V → V is a linear operator, then there exists a

basis of V so that the matrix of f is in Jordan normal form. Up to the reordering

of the Jordan blocks, this Jordan normal form is unique, see for example Theorem

11.23 in [HH83]. Hence we have that every matrix in gln(k) is conjugate to some

matrix in Jordan normal form.

Suppose that g is a Lie subalgebra of gln(k). Let us consider a nilpotent element

x in g, that is xn = 0. Up to conjugacy by GLn(k) we can assume that x is in

Jordan normal form, and since x is nilpotent it only has eigenvalues equal to 0.

Definition 2.4.2. We say that the partition λ = (λ1 ≥ λ2 ≥ . . . ) is the Jordan

type of x if the Jordan normal form of x has Jordan blocks Jλi
(0) = Jλi

.

We write x ∼ λ to express x having Jordan type λ, and use the notation λ(x) to

denote the Jordan type of x.

We see that in the cases G = GLn(k) or G = SLn(k), the G-orbits in N are

parameterised by their Jordan type. Also in the cases G = Spn(k) or G = On(k)
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the G-orbits in N are parameterised by their Jordan types, and the Jordan types

that can occur are known explicitly, as is stated in [Jan04, Theorem 1.6], and

restated below.

Proposition 2.4.3. For a partition λ of n, there is a nilpotent element x ∈ spn(k)

(respectively son(k)) with Jordan type λ if and only if mi(λ) is even for all odd i

(respectively mi(λ) is even for all even i).

Remark 2.4.4. To describe the parametrisation in the case G = SOn(k), we note

that the On(k)-orbit of x ∈ N is either a single SOn(k)-orbit, or splits into two

SOn(k)-orbits. The former case occurs if the centraliser of e in On(k) contains an

element of On(k)\SOn(k) whilst the latter occurs if the centraliser of e in On(k) is

contained in SOn(k). The centraliser of e in On(k) is contained in SOn(k) precisely

when all parts of λ are even; such partitions are referred to as very even as all parts

are even and have even multiplicity.

2.4.2 Closure order on nilpotent orbits

Definition 2.4.5. We introduce a partial ordering, which we refer to as the

dominance order, on the partitions of n. Given two partitions λ = (λ1 ≥ λ2 ≥ . . . ),

µ = (µ1 ≥ µ2 ≥ . . . ), we say that µ ⪯ λ if we have that

r∑
i=1

µi ≤
r∑

i=1
λi for all r ∈ Z>0.

The dominance order on partitions induces an order on the nilpotent orbits in g.

Suppose we have some X, a closed G-invariant subvariety of the variety N of

nilpotent elements of g. Then we have that X is a union of G-orbits in N . We

write this as X = ⋃
λ∈ΛOλ where Oλ = G · eλ for some subset of partitions Λ, and
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eλ is some nilpotent element with Jordan type λ.

We next state a theorem essentially due to Spaltenstein, which shows that

the closure order on nilpotent orbits is determined by the dominance order on

partitions. In the statement we use the notation Oλ for the G-orbit in N of

elements with Jordan type λ.

Theorem 2.4.6. Let G be one of GLn(k), SLn(k), Spn(k) or On(k). Let λ and

µ be partitions of n that parameterise a G-orbit in N . Then Oµ ⊆ Oλ if and only

if µ ⪯ λ.

To explain why this theorem holds, we first note that there is a Springer

isomorphism from the variety U of unipotent elements in G to N ; that is a

G-invariant isomorphism of varieties U ∼−→ N that maps each element of U to an

element of N with the same Jordan type. The existence of such a homeomorphism

was proved by Springer in [Spr69, Theorem 3.1], Bardsley and Richardson extended

this to prove existence of an isomorphism in [BR85]. We refer for example

to [Hum95, §6.20] for explicit examples of Springer isomorphisms for GLn(k),

SLn(k), Spn(k) and On(k). A result of Spaltenstein, [Spa82, Théorème II.8.2],

establishes that the dominance order on partitions determines the closure order

for the unipotent classes; we refer also to [Car93, Section 13.4], where this result

of Spaltenstein is covered. Thus Theorem 2.4.6 can be deduced using a Springer

isomorphism.

We note that the closure order on the nilpotent orbits for the case G = SOn(k) is

also covered in the result of Spaltenstein. Here we have that if λ and µ are distinct

partitions of n that parameterise G-orbits Oµ and Oλ in N , then Oµ ⊆ Oλ if

and only if µ ⪯ λ. Note that in the case where λ is a very even partition, the
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two nilpotent orbits corresponding to λ are incomparable. However, if λ and µ

are distinct then the relation on their orbits can quickly be deduced from the

G = On(k) case. If either λ or µ are not very even, then we can use the On(k)

case directly. In the case λ and µ are both very even, then there exists some not

very even partition κ parameterising a nilpotent On(k)-orbit such that µ ⪯ κ ⪯ λ.

To see this explicitly, let λ = (λ1, λ1, . . . , λk, λk), µ = (µ1, µ1, . . . , µr, µr) be very

even partitions. Suppose µ ⪯ λ so there must exist some minimal i so that λi > µi,

and as these are both even we have λi − 1 > µi. We take

κ = (λ1, λ1, . . . , λi − 1, λi − 1, . . . , λk, λk)

and hence we find µ ⪯ κ ⪯ λ. Hence we can use the On(k) case, via Oκ, to see

that Oµ ⊆ Oλ.

2.4.3 Regular and distinguished orbits

We now discuss regular and distinguished nilpotent orbits. We give an overview

of some known results.

Definition 2.4.7. We say that a nilpotent element x ∈ g is regular if the

centraliser of x in G has dimensional equal to the rank of G.

We say that a nilpotent element x ∈ g is distinguished if the only Levi subalgebra

of g that contains x is g itself.

Example 2.4.8. Let g be one of sln(k), sp2n(k), son(k), and u a regular nilpotent

element of G. The Jordan type of u is given by

• u ∼ (n) if g = sln(k);
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• u ∼ (2n) if g = sp2n(k);

• u ∼ (2m + 1) if g = so2m+1(k);

• u ∼ (2m− 1, 1) if g = so2m(k).

The following well-known result is covered in [Spr66, Theorem 5.9].

Theorem 2.4.9. The regular nilpotent elements of g are conjugate under the

action of Ad(G).
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CHAPTER 3

STRONG sl2-TRIPLES

Within this chapter, we fix an algebraically closed field k of characteristic p > 2.

Let G be GLn(k) and g = gln(k). As before we write s := sl2(k).

Recall that a strong sl2-triple (e, h, f) in gln(k) is defined to be an sl2-triple such

that e ∼ f . The main result in this chapter is Theorem 1 which is restated below.

Theorem 1. There exists a surjective map

 GLn(k)-orbits of strong

sl2-triples in gln(k)

 −→ {GLn(k)-orbits in N}. (1.0.3)

That is, given any nilpotent e ∈ gln(k), there exists some strong sl2-triple (e, h, f)

in gln(k).

In order to prove this we define a family of strong sl2-triples for each nilpotent

e ∈ gln(k). In this chapter we also show that there is no bijective map between

these sets when p ≤ n, we do this in Proposition 3.3.4 by constructing an infinite

family of non-conjugate sl2-triples for each nilpotent orbit.
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3.1 Properties of sl2-triples in gln(k)

Recall the s-modules V (n − 1) as defined in Example 2.3.1, and that given e ∈

gln(k) a single Jordan block, we use the notation h(e) := hV (n−1), f(e) := fV (n−1)

to represent the action of the standard basis of sl2(k) on V (n− 1).

We will often require the matrix representation of sl2-triples (e, h, f) in gln(k) so

in the following we write e = (eij), h = (hij) and f = (fij).

Definition 3.1.1. Let g be any Lie algebra, the centraliser of x ∈ g is defined to

be the set

gx = {y ∈ g : [x, y] = 0} .

Lemma 3.1.2. Let e ∈ gln(k) be a single nilpotent Jordan block. That is, it is of

the form Jn(0) as in Definition 2.4.1. Then the centraliser of e is

ge =





x1 x2 . . . xn−1 xn

0 x1 x2 . . . xn−1

0 0 x1 . . . xn−2

... ... . . . ...

0 0 0 0 x1


: x1, x2, . . . , xn ∈ k


.

Proof. Suppose x = (xij) ∈ gln(k). We have that

(xe)ij =


xi,j−1 if j > 1,

0 otherwise,
and (ex)ij =


xi+1,j if i < n,

0 otherwise.
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Thus x ∈ ge if and only if both

xi,1 = xn,j = 0

for 1 < i and j < n, and

xi,j−1 = xi+1,j

for 1 < j and i < n. This leads us to the general form above.

Lemma 3.1.3. Let h(e) ∈ gln(k) be of the form given in Example 2.3.1. Then

gh(e) = {(xij) : xij = 0 if j ̸= i + kp for some k ∈ Z}.

Proof. Suppose x = (xij) ∈ gln(k). We have

h(e)ij =


(n− 1)− 2(i− 1) if i = j,

0 otherwise,

and so

(xh(e))ij = (n− 1− 2(j − 1))xij and (h(e)x)ij = (n− 1− 2(i− 1))xij.

Hence x ∈ gh(e) if and only if (n− 1 − 2(j − 1))xij = (n− 1 − 2(i − 1))xij for all

i, j. Thus for all i, j either xij = 0 or i = j mod p.

Lemma 3.1.4. Let e ∈ gln(k) be a single Jordan block and xk ∈ k
×. Take

f ′ ∈ gln(k) to be of the form

f ′
ij =


xk if j = i + kp− 1,

0 otherwise.
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Then [h(e), f ′] = −2f ′, and (e, h(e), f(e) + f ′) is an sl2-triple.

Proof. Recall that h(e) = (h(e)ij) and f ′ = (f ′
ij) where

h(e)ij =


(n− 1)− 2(i− 1) if i = j,

0 otherwise,
, f ′

ij =


xk if j = i + kp− 1,

0 otherwise.

Then we have that

(h(e)f ′)ij =


((n− 1)− 2(i− 1))xk if j = i + kp− 1,

0 otherwise,

(f ′h(e))ij =


((n− 1)− 2(j − 1))xk if j = i + kp− 1,

0 otherwise,

=


((n− 1)− 2(i + kp− 2))xk if j = i + kp− 1,

0 otherwise,

=


((n− 1)− 2(i− 2))xk if j = i + kp− 1,

0 otherwise.

Hence (h(e)f ′ − f ′h(e))ij = −2f ′
ij and so [h(e), f ′] = −2f ′.

By Example 2.3.1 we have that (e, h(e), f(e)) is an sl2-triple and hence [h(e), e] =

2e. It follows from Lemma 3.1.2 that

[e, f(e) + f ′] = [e, f(e)] + [e, f ′] = h(e).
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Thus we see that (e, h(e), f(e) + f ′) is an sl2-triple.

3.2 Matrix diagrams

In order to further examine the sl2-triples created by the action of s-modules we

first give a method of creating diagrams to represent endomorphisms of vector

spaces. These will be used to represent the action of e, h, f on s-modules. These

diagrams can be used both to determine when an endomorphism is nilpotent, and

further to find the Jordan normal form of nilpotent endomorphisms in certain

cases.

Definition 3.2.1. Let V be a vector space with basis {v1, . . . , vn}, and x : V →

V an endomorphism of V such that x : vi 7→
∑

j aijvj. The diagram D(x) is

constructed from x by adding a node, labelled i, for each basis element vi and

adding an arrow from i to j if aij ̸= 0.

Note that if D(x) has no arrows coming from i, then x maps vi to 0.

We emphasise that D(x) cannot be used to uniquely define a linear transformation.

However, in some cases D(x) can be used to determine the Jordan type of x.

For an s-module V we consider eV , hV , fV ∈ gl(V ) to be the matrices that represent

the action of e, h, f on V .

Example 3.2.2. We draw these diagrams for the s-module V (n) as defined in

Example 2.3.1. In this example, we take k = C and consider V (n) as a module

for sl2(C). The following are the diagrams for D(e), D(f) and D(h) respectively.

1 2 3 4 n n + 1
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1 2 3 4 n n + 1

1 2 3 4 n n + 1

The construction of D(f) for k of characteristic p > 2 can be seen in the proof of

Proposition 3.3.2.

Definition 3.2.3. Let V be a vector space with basis {v1, . . . , vn} and x : V → V

an endomorphism of V . Consider the diagram D(x), then a basis element which

has arrows coming out, but no arrows coming in, is a source. Conversely, a basis

element with arrows coming in, but no arrows coming out, is a sink.

We define a chain of length j starting at vi1 to be some sequence vi1 , vi2 , . . . , vij

where vim ̸= vil
for l ̸= m, x maps vij

to 0, and for each m < j there is an arrow

from vim to vim+1 .

We say x contains a cycle if there exists some sequence vi1 , vi2 , . . . , vij
where there

is an arrow from vim to vim+1 for each m < j and we have vi1 = vij
.

Similarly x creates a non-oriented cycle if there exists some sequence vi1 , vi2 , . . . , vij

where for each m < j there is either an arrow from vim to vim+1 or an arrow from

vim+1 to vim and vi1 = vij
.

Example 3.2.4. Continuing Example 3.2.2, we see that D(e) has a source at vn+1,

a sink at v1, there are no cycles, and for each i the longest chain starting from vi

is of length i.

Now consider D(h), then each basis vector is an eigenvector, and hence has an

arrow to itself in D(h). Thus there is a cycle at each vector, however there are no

other arrows, so there are no sources or sinks.
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In certain cases, these diagrams can be used to find the Jordan normal form of

nilpotent elements. To see this we consider what information can be determined

from the chains and cycles in D(x). First suppose that x acts on basis vector vi

in such a way that xj(vi) = 0, xj−1(vi) ̸= 0 for some j. Then there must exist

some chain of length j in D(x) beginning at vi. Additionally if the diagram has no

non-oriented cycles then there do not exist any chains of greater length starting

from i. If there are non-oriented cycles we might be able to find a chain of greater

length.

Example 3.2.5. Suppose V has basis {v1, v2, v3, v4} and x acts on V as



0 0 0 0

1 0 0 0

1 0 0 0

0 1 −1 0


then D(x) is the following diagram.

1 2 3 4

Observe that x2(v1) = x(v2 + v3) = x(v2) + x(v3) = v4 − v4 = 0, however there is

a non-oriented cycle v1, v2, v4, v3, v1, and there is a chain v1, v2, v4 of length 3.

Lemma 3.2.6. Let V be an n-dimensional vector space with basis {v1, . . . , vn}.

Suppose that x is a matrix representing an endomorphism of V . If D(x) has no

cycles, then x is nilpotent.

Proof. First suppose that there is a chain of length m > n starting at vi. There
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are only n basis vectors, so this chain must visit some basis vector vk more than

once, and therefore this chain contains a cycle. This is a contradiction, hence all

chains in D(x) must have length ≤ n.

Next suppose for a contradiction that there exists some m ≥ n such that xm ̸= 0.

Let vi be such that xm(vi) ̸= 0, then there exists some basis vector vk such that

xm(vi) = akvk + other terms where ak ̸= 0. Thus we can find a chain of length

m + 1 starting at vi and ending at vk. This contradicts the above, and thus we

conclude that xn = 0 and hence that x is nilpotent.

Note that a nilpotent matrix e ∈ gln(k) is conjugate to a single Jordan block if

and only if en−1 ̸= 0 and en = 0. This inspires the following lemma.

Lemma 3.2.7. Let x ∈ gln(k). Suppose that D(x) has no cycles, and there is

some v such that xn−1(v) ̸= 0, so that D(x) has a chain of length n starting at v.

Then x has Jordan type (n).

Proof. By Lemma 3.2.6 it follows that x is nilpotent and so we find the Jordan

type of x. We have xn−1 = 0, and so if BV = {v1, . . . vn} is a basis of V there must

be some vi so that xk(vi) ̸= 0 for all k < n.

We define another basis of V on which x acts as the single Jordan block. Set

BW = {w1, . . . , wn} where

wj = xn−j(vi).

Suppose for contradiction that the elements of BW are not linearly independent.

Thus there exist some scalars ak not all zero so that ∑
akwk = 0. Take this relation

to have the minimal number of non-zero ak. Let j be the smallest such that aj ̸= 0,

then up to multiplication by a non-zero scalar we can rearrange this sum into the
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following form

wj =
∑
k>j

akwk. (3.2.1)

That is

xn−j(vi) =
∑
k>j

akxn−k(vi).

Then xj acts on this relation, and we find

0 = xn(vi) =
∑
k>j

akxn−k+j(vi) =
∑
k>j

akwk−j.

This contradicts that (3.2.1) had a minimal number of non-zero coefficients, thus

we have that BW contains n linearly independent elements, and hence is a basis.

Then we have that

x(wj) = x(xn−j(vi)) = xn−j+1(vi) =


wj−1 if j < n− 1,

0 if j = n− 1.

So under this basis x acts as the single Jordan block Jn(0).

We use the above lemma to consider sl2-triples (e, h, f) in gln(k) with e the single

Jordan block. If D(f) has no cycles, and a chain of length n beginning at some

v such that fn−1(v) ̸= 0 then f is conjugate to e. Also note that if there is such

a chain, it must start from a source, and end in a sink, or there exists a chain of

length greater than n.
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3.3 A family of strong sl2-triples

In this section we construct a strong sl2-triple containing e for any regular nilpotent

element e ∈ gln(k).

Example 3.3.1. Recall the n-dimensional sl2-module V (n−1) defined in Example

2.3.1. We have that e acts on V (n−1) as a single Jordan block of size n. If n ≤ p,

then f acts as the matrix with aj = j(n − j) ̸= 0 for any j. Thus D(f) has no

cycles and fn−1(vn) = v1 ̸= 0, and hence f is conjugate to the single Jordan block

by Lemma 3.2.7. Thus if n ≤ p, we see that f is conjugate to e in V (n− 1).

We now consider what happens when n > p, we split this into two cases,

considering when n is a multiple of p separately.

Let e ∈ gln(k) be regular nilpotent and take (e, h(e), f(e)) to be the sl2-triple

defined in Example 2.3.1(ii).

Proposition 3.3.2. Suppose ap < n < (a + 1)p for some a ∈ Z>0. There exists

some F ∈ gln(k) such that (e, h(e), F ) is a strong sl2-triple. Moreover F = f(e)+f ′

for some f ′ ∈ ge.

Proof. To simplify the diagrams, we first consider the case when p < n < 2p.

We will define an element F ∈ gln(k) such that e ∼ F . We first note that by

Lemma 3.2.7, if D(F ) has no cycles and there exists some basis vector v such that

F n−1(v) ̸= 0 then e ∽ F .

First recall the matrix f(e) with elements aj as given in Example 2.3.1(ii). Then

aj = 0 if and only if j = p or j = n− p so f(e) has the following diagram D(f(e)).
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1 2 n-p-1 n-p n-p+1 n-p+2 p-1 p p+1 p+2 n-1 n

It is clear that e is not conjugate to f(e), as D(f(e)) has no chain of length n, and

hence there is no vi such that f(e)n−1(vi) ̸= 0.

Let x1 ∈ k be a non-zero scalar, and define f ′ ∈ gln(k) by

f ′
ij =


x1 if j = i + p− 1,

0 otherwise.

Note that f ′ ∈ ge by Lemma 3.1.2, and [h, f ′] = −2f ′ by Lemma 3.1.4.

Set F = f(e) + f ′, so

[e, F ] = [e, f + f ′] = [e, f ] + [e, f ′] = h + 0 = h, and

[h, F ] = [h, f + f ′] = [h, f ] + [h, f ′] = −2f − 2f ′ = −2F.

Given that [h, e] = 2e, we deduce that (e, h, F ) is an sl2-triple. All that is left to

show is that e ∽ F .

We can draw the diagram D(F ) as

1 2 n-p-1 n-p n-p+1 n-p+2 p-1 p p+1 p+2 n-1 n

which is the diagram D(f(e)) along with additional arrows from vi to vi−p+1 for

all i ≥ p. There are no cycles in D(F ), and hence F n = 0.
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We show that F n−1(vp+1) ̸= 0. Observe first that

F n−1(vp+1) = F n−2(ap−1vp+2 + xpv2) = F n−2(ap−1vp+2) + F n−2(xpv2).

Then note that F n−p−i+1(vi) = 0 for all 1 ≤ i ≤ n− p, so we have

F n−1(vp+1) = F n−2(ap−1vp+2).

Similarly, we can continue these steps to find

F n−1(vp+1) = F p(ap+1 . . . an−1vn + xpap+1 . . . an−2vn−p)

= F p−1(xpap+1 . . . an−1vn−p+1) = · · · = F n−p+1(xpan−p+1 . . . ap−1ap+1 . . . an−1vp)

= F n−p(x2
pan−p+1 . . . ap−1ap+1 . . . an−1v1) = . . .

= x2
pa1 . . . an−p−1an−p+1 . . . ap−1ap+1 . . . an−1vn−p.

Then as xp ̸= 0, and aj = 0 if and only if j = p or j = n−p, we have F n−1(vp+1) ̸=

0.

Therefore by Lemma 3.2.7 it follows that F ∼ (n) and hence is conjugate to e.

Thus we are done when a = 1, however we claim we can find such an sl2-triple for

any ap < n < (a + 1)p with a ≥ 1. The proof for these cases is almost identical,

we set F = f(e) + f ′ where

f ′
ij =


x1 if j = i + p− 1,

0 otherwise.
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Then D(F ) is shown below.

1 2 n-ap. n-ap+1 p-1 p p+1 n-p n-p+1 ap-1 ap ap+1 n-1 n

The only source in this diagram is vap+1, from which we can find a chain of length

n. Once again, D(F ) has no cycles and F n−1(vap+1) ̸= 0 by a similar agument to

above, and so by Lemma 3.2.7 F is conjugate to e.

Thus, if e ∈ gln(k) is a single Jordan block, then we can find a strong sl2-triple

containing e when n is not a multiple of p. When n is a multiple of p we must

amend our method slightly, as explained in the following proposition.

Proposition 3.3.3. Suppose n = ap for some a ∈ Z, a > 1. There exists some

F ∈ gln(k) such that (e, h(e), F ) is a strong sl2-triple. Moreover F = f(e) + f ′ for

some f ′ ∈ ge.

Proof. This proof follows the same structure as the proof of Proposition 3.3.2.

We have that n = ap for some a > 1, thus in the matrix of f(e) we have that

aj = j(n − j) is equal to 0 if and only if j is a multiple of p. Hence the diagram

D(f(e)) in this case is

1 2 p-1 p p+1 2p-1 2p 2p+1 kp kp+1 n-1 n
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Let x2 ∈ k be a non-zero scalar and define f ′ ∈ gln(k) by

f ′
ij =


x2 if j = i + 2p− 1,

0 otherwise.

Define F := f(e) + f ′, then (e, h(e), F ) is an sl2-triple by Lemmas 3.1.2 and 3.1.4.

The proof that e ∼ F uses the same method as in the proof of Proposition 3.3.2.

Note that D(F ) is the diagram D(f(e)) with additional arrows from vi to vi−2p+1

if i ≥ 2p, as depicted below.

1 2 p-1 p p+1 2p-1 2p 2p+1 kp kp+1 n-1 n

We see that there are no cycles in D(F ), and there is a source vn−p+1 = v(a−1)p+1

with F n−1(vn−p+1) = xa−1
2p (∏

j ̸=kp aj)vp ̸= 0. Hence, again, using Lemma 3.2.7 we

have that F ∼ (n) and thus F ∽ e.

Combining Propositions 3.3.2 and 3.3.2 shows that for any single Jordan block

e ∈ gln(k) there exists some strong sl2-triple (e, h, F ). Before we prove that a

strong sl2-triple exists for any nilpotent e ∈ gln(k) we first give results on the

properties of the strong sl2-triples that we have found.

Proposition 3.3.4. Let p ≤ n. There is no bijection between the sets given in

Theorem 1.

Proof. We proceed by constructing an infinite family of non-conjugate sl2-triples
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containing e ∈ gln(k) a single nilpotent Jordan block.

Recall the sl2-triple (e, h(e), F ) defined in Proposition 3.3.2 (Proposition 3.3.3

respectively if n a multiple of p). We have that F = f(e) + f ′ where f ′
ij = x1

for j = i + p − 1 ( f ′
ij = x2 for j = i + 2p − 1 respectively) for non-zero scalars

x1, x2 ∈ k. Thus we have not just defined one strong sl2-triple for e, we have

defined a family of strong sl2-triples that is parametrised by k
×. We now prove

that the sl2-triples in these families are pairwise non-conjugate.

Let ap < n < (a + 1)p. Consider for λ ∈ k the n-dimensional s-module Vλ. The

actions of e, h, f are given by (eVλ
, hVλ

, fVλ
) := (e, h(e), Fλ) where Fλ is equal to

f(e) + f ′ with x1 = λ. That is

(Fλ)ij =


λ if j = i + p− 1,

aj if j = i− 1,

0 otherwise.

By Proposition 3.3.2, (e, h, Fλ) and (e, h, Fµ) are strong sl2-triples for λ, µ ∈ k×.

We claim that they are not conjugate as sl2-triples when λ ̸= µ.

Suppose, looking for a contradiction, that (e, h, Fλ) is conjugate to (e, h, Fµ) and

hence there exists g ∈ GLn(k) such that

geg−1 = e, ghg−1 = h, and gFλg−1 = Fµ.

Hence we require that g centralises h and e, that is g ∈ Gh ∩ Ge, and so there
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exists some xk ∈ k so that g is of the form

gij =


xk if j = i + kp for some k ≥ 0,

0 otherwise.

We have that gFλ = Fµg and so we calculate

(gFλ)ij =


ajx0 if j = i− 1,

λxk−1 + ajxk if j = i + kp− 1 for some k > 0,

0 otherwise,

(Fµg)ij =


ai−1x0 if j = i− 1,

µxk−1 + ai−1xk if j = i + kp− 1 for some k > 0,

0 otherwise.

Hence if j = i + kp − 1 for some k > 0, we have λxk−1 + ajxk = µxk−1 + ai−1xk.

Note that

ai−1 = aj−kp = (j − kp)(n− (j − kp)) = j(n− j) = aj.

Therefore λxk−1 = µxk−1 for each k > 0, hence as µ ̸= λ it follows that xk−1 = 0.

In particular, for k = 1 we have x0 = 0, and hence g is not invertible as it has

first column zero. We conclude that there does not exist any g ∈ GLn(k) that

conjugates (e, h, Fλ) to (e, h, Fµ).

Now let n be a multiple of p, and take λ ̸= µ. The proof that there does not exist

any g ∈ GLn(k) that conjugates (e, h, Fλ) to (e, h, Fµ) follows in the same way.
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We remark that following from Lemmas 3.1.2 and 3.1.4 there is no reason that we

cannot also add a scalar on the (tp− 1)-th diagonal for any t > 1 (or t > 2 if n is

a multiple of p). That is if (a− 1)p < n < ap, then (e, h, Fλ1,λ2,...,λ(a−1)) is a strong

sl2-triple when λ1 ̸= 0 and

Fλ1,λ2,...,λ(a−1) =


λt if j = i + tp− 1 for t ≥ 1,

aj if j = i− 1,

0 otherwise.

We have that e ∼ Fλ1,λ2,...,λ(a−1) .

Adapting the above argument gives us that (e, h, Fλ1,λ2,...,λ(a−1)) and

(e, h, Fµ1,µ2,...,µ(a−1)) are not conjugate as sl2-triples if λt ̸= µt for any

1 ≤ t ≤ (a− 1).

A natural question to ask is whether up to conjugacy these families contain all

strong sl2-triples. Let e be the regular nilpotent element in gln(k) and h(e) the

diagonal matrix as in Example 2.3.1. Suppose F ∈ gln(k) is such that (e, h(e), F )

is an sl2-triple and e ∼ F . Then F is of the form f(e) + f ′ where f ′ ∈ ge, and

[h(e), f ′] = −2f ′. Hence F equals Fλ1,λ2,...,λ(a−1) for some λ1 ̸= 0 and so (e, h(e), F )

is of the form found in Proposition 3.3.4. If h is not diagonal then this remains

unknown.

Open Question. Let e be the regular nilpotent element in gln(k). Up to

conjugacy, can we find all strong sl2-triples containing e defined by a finite set

of coefficients?

Let n ∈ Z>0, and take (e, h, F ) with e ∼ F to be as defined in Proposition 3.3.2.
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Let V be an n-dimensional s-module such that (eV , hV , fV ) = (e, h, F ).

Suppose that ap < n < (a + 1)p for some a ≥ 1. We use D(F ) as in Proposition

3.3.2 to determine structural information about V . We divide the basis of V into

2a + 1 segments A1, . . . , A2a+1 where we define

A2j = {vn−(a−j+1)p+1, . . . , vjp}

A2j+1 = {vjp+1, . . . , vn−(a−j)p}

for j ∈ {0, . . . , a}. Observe that in D(F ) there are no arrows from Ai to Aj if

i < j.

Set M2a+1 = M , and let Mj be the subspace generated by A1 ∪ A2 ∪ · · · ∪ Aj for

j ∈ {0, . . . , a}. Each Mj is an s-submodule as it closed under the action of e, h

and f . Set M0 = 0, then

0 = M0 ⊆M1 ⊆ · · · ⊆Mj ⊆Mj+1 ⊆ · · · ⊆M2a+1 = M.

We have that M2j+1/M2j is generated by the image of A2j+1 under the natural

quotient which has n−ap elements, and similarly, M2j/M2j−1 is generated by A2j,

which has (a + 1)p− n elements.

Lemma 3.3.5. The series

0 = M0 ⊆M1 ⊆ · · · ⊆Mj ⊆Mj+1 ⊆ · · · ⊆M2a+1 = M
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is a composition series for V , and

M2j+1/M2j
∼= V (n− ap− 1), M2j/M2j−1 ∼= V ((a + 1)p− n− 1).

Proof. Recall that the modules V (n) are simple for n < p as observed in Remark

2.3.5.

It is clear that e acts on these subquotients as a single Jordan block, so we must

check the action of h and F . Consider N2j+1 = M2j+1/M2j, and note that the

M2j/M2j−1 case follows in the same way. The s-module V (n− ap− 1) has a basis

{w1, . . . , wn−ap} where e, h and f have matrix forms as given in Example 2.3.1.

That is, h acts on V (n− ap− 1) as



n− 1

n− 3
. . .

1− n

 ,

whereas N2j+1 has basis A2j+1 = {vjp+1, . . . , vn−(a−j)p} where

h(vjp+i) = (n− 1− 2(jp + i− 1))vjp+i = (n− 1− 2(i− 1))vjp+i.

Hence the action of h on V and h on V (n− ap− 1) are represented by the same

matrix in the given bases.

Next, we consider consider how F acts on V ′, recalling that f acts on V (n−ap−1)

63



as 

0

a1 0

a2 0
. . . . . .

an−ap−1 0


where ak = k((n − ap) − k) = k(n − k). We have that F (vjp+i) = ajp+ivjp+i+1 +

xpv(j−1)p+i+1. However, v(j−1)p+i+1 is contained in M2j and ajp+i = (jp + i)(n −

jp− i) = i(n− i) and therefore F (vjp+i) = i(n− i)vjp+i+1.

Hence under the given bases e, h and f act on V ′ and V (n − ap − 1) identically,

and thus these modules are isomorphic. Thus we have proved that the modules

Mj form a composition series for V .

A composition series for the case where n is a multiple of p can be found using the

same method.

We now prove Theorem 1 by showing that for any nilpotent e ∈ gln(k), there exists

some strong sl2-triple (e, h, f) in gln(k). We use Propositions 3.3.2 and 3.3.3 to

prove the general case.

Proof of Theorem 1. Take any nilpotent e ∈ gln(k), then up to conjugacy by

GLn(k) we can assume that e is in Jordan normal form, suppose that e ∼

(n1, n2, . . . , nm). We can embed e into

gln1(k)⊕ gln2(k)⊕ · · · ⊕ glnm
(k) ⊆ gln(k).

We consider each of these components separately. Recalling notation from
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Definition 2.4.1 we have that e restricted to glnk
(k) is Jnk

(0) = Jnk
, that is,

in block form

e =

à
Jn1

. . .

Jnm

í
.

For each nk we find a strong sl2-triple (Jnk
, hnk

, fnk
) in glnk

(k), if nk ≤ p then take

the strong sl2-triple given by V (n − 1) in Example 2.3.1 and if nk > p take the

strong sl2-triple given in either Proposition 3.3.2 or 3.3.3. For each k we have Jnk

is conjugate to fnk
, so fnk

∼ (nk).

We set

h =

à
hn1

. . .

hnm

í
and f =

à
fn1

. . .

fnm

í
so that (e, h, f) is an sl2-triple in gln(k). We have f ∼ (n1, . . . , nm) ∼ e. Hence

we have found a strong sl2-triple containing e in gln(k).

The strong sl2-triples that we found in the proof of Theorem 1 also satisfy an

additional property, which we discuss in the remark below.

Remark 3.3.6. Let (e, h, f) be a strong sl2-triple in gln(k) of the form found in the

proof of Theorem 1, and suppose that there is some Levi subalgebra l of gln(k)

such that e, h, f ∈ l. Suppose that L is a Levi subgroup of GLn(k) such that

l = Lie(L). Then (e, h, f) is a strong sl2-triple in l, i.e. e is conjugate to f by an

element of L.

In general the property of being conjugate by an element of a Levi subgroup is

not equivalent to being conjugate by an element of G. For instance, consider any
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sl2-triple (e, h, f) in gln(k) where e ̸∼ f , then we take the following sl2-triple in

gl2n(k)

e′ =

Ö
e

f

è
, h′ =

Ö
h

−h

è
, f ′ =

Ö
f

e

è
.

It is clear that e′ ∼ f ′, so (e′, h′, f ′) is a strong sl2-triple. Note that e′, h′, f ′

are in the Levi subalgebra of gl2n(k) that is isomorphic to gln(k) ⊕ gln(k) =

Lie(GLn(k)×GLn(k)), however it is not a strong sl2-triple under conjugation by

GLn(k)×GLn(k).

In Theorem 1 we showed that for any nilpotent e ∈ gln(k) there exists a strong

sl2-triple (e, h, f) in gln(k). However, we cannot use this method to extend this

result in full generality to other classical Lie algebras. We give a counterexample

to show that Theorem 1 can not be extended to g = sp4(k).

Example 3.3.7. Suppose that k has characteristic 3.

Consider the regular nilpotent element e ∈ sp4(k). Then calculations show that

any sl2-triple (e, h, f) in sp4(k) is of the following form, up to conjugacy, for some

x ∈ k

e =



0 1 0 0

0 0 1 0

0 0 0 −1

0 0 0 0

 , h =



0 0 0 x

0 1 0 0

0 0 −1 0

0 0 0 0

 , f =



0 0 −x 0

0 0 0 x

0 1 0 0

0 0 0 0

 .

If we restrict to the case where h is diagonal, we must have that x = 0, and hence

f is not conjugate to e. We see that if x ̸= 0, then f is conjugate to e using Lemma

3.2.7, however we currently do not have any way to generalise this.
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In general, this problem remains open for the classical Lie algebras g ⊆ gln(k).
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CHAPTER 4

PROPERTIES OF sl2-TRIPLES

Let k be an algebraically closed field of prime characteristic p > 2. In this

short chapter we give results on sl2-triples for SLp(k) and G-completely reducible

sl2-subalgebras for connected, reductive algebraic groups G. We use these results

to prove that the varieties given in Theorems 2 and 3 are maximal with respect to

the given properties.

4.1 Standard sl2-triples

Let G be either of exceptional type or one of GLn(k), SLn(k), Spn(k), On(k) or

SOn(k) (where we assume n is even in the Spn(k) case). Let g = Lie(G) and

let N be the nilpotent cone of g. We recall the [p]-power map on g is given in

Definition 2.1.40.

We discuss standard sl2-triples as introduced by Premet–Stewart in [PS19, §2.4].

This theory of standard sl2-triples is based on the theory of optimal cocharacters

associated to nilpotent elements developed by Premet in [Pre03, Section 2]. We

note that the material in [PS19, §2.4] is stated only for the case G is a simple
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group of exceptional type, and that some of [Pre03, Section 2] works under the

assumption that the derived subgroup of G is simply connected and there is a

non-degenerate G-invariant symmetric bilinear from on G. However, the results

that we cover go through for all the groups in our setting, see for instance the

arguments given in [Pre03, §2.3].

We recap the construction of standard sl2-triples given in [PS19, §2.4]. For x ∈ N ,

and cocharacter τ : k× → G, we define the weight spaces g(j; τ) of τ to be

g(j; τ) := {x ∈ g : τ(t) · x = tjx ∀t ∈ k×}.

We then define associated cocharacters as in [Jan04, §5.3].

Definition 4.1.1. For x ∈ N we say a cocharacter τ : k× → G is an associated

cocharacter for x if both x ∈ g(2; τ), and there exists a Levi subgroup L in G such

that x is distinguished nilpotent in Lie(L) and τ(k×) ⊆ L′.

An associated cocharacter gives us a Z-grading of g by

g =
⊕
j∈Z

g(j; τ).

Definition 4.1.2. For any x ∈ N with associated cocharacter λx we define the

height of x to be

ht(x) = max{j : g(j; λx) ̸= 0}.

For any x ∈ N there exists some optimal cocharacter for x, denoted τ : k× → G,

as in the Kempf-Rousseau theory as explained in [Pre03, §2.2]. Let e ∈ N , then

we can choose an optimal cocharacter τ : k× → G such that e ∈ g(2; τ) by [Pre03,

Theorem A]. Moreover, such optimal cocharacters form a single conjugacy class
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under the adjoint action of Ge. It follows from [Pre03, Proposition 2.5] that such

optimal cocharacters for x coincide with the associated cocharacters for x. Thus

from this point we may take τ to be an associated cocharacter for x.

Then τ(t) · e = t2e and the centraliser, ge, of e, in g is contained in the sum of

positive weight spaces of τ . Let hτ := dτ(1) ∈ g, then we have [hτ , e] = 2e. Let

CG(τ) be the centraliser of τ in G, and let Ce := Ge∩CG(τ). Let T e be a maximal

torus of Ce and let L := CG(T e). Then L is a Levi subgroup of G such that e is a

distinguished nilpotent element in the Lie algebra l′ of the derived subgroup L′ of

L. That is to say that the only Levi subalgebra of l′ containing e is l′ itself.

As explained in [PS19, §2.4] the map l′(−2; τ) → l′(0; τ) is bijective, and hence

there is a unique f ∈ l′(−2; τ) such that (e, hτ , f) is an sl2-triple.

Definition 4.1.3. An sl2-triple of the form (e, hτ , f) is called a standard sl2-triple.

Example 4.1.4. Let p > 3 and g = sl4(k). Take e ∼ (4) to be the single Jordan

block. We can take τ : k× → G to be the associated cocharacter for e defined by

τ(t) =



t3

t1

t−1

t−3

 , and hτ = dτ(1) =



3

1

−1

−3

 .
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The unique f ∈ g0(−2; τ) such that (e, hτ , f) is an sl2-triple is given by

f =



0

3 0

4 0

3 0

 .

Observe that the sl2-triple (e, hτ , f) is equal to (eV (3), hV (3), fV (3)).

We now consider some properties of standard sl2-triples. We state a result of

Premet–Stewart and use this to prove that any G-stable closed subvariety V ⊆ N

that satisfies the sl2-property must satisfy V ⊆ N [p].

Lemma 4.1.5. [PS19, §2.4] Let (e, hτ , f) be a standard sl2-triple in g. Then:

(a) f [p] = 0; and

(b) if e[p] = 0, then e is conjugate to f by G.

Since f [p] = 0 we can consider exp(sf) ∈ G for s ∈ k, see for example the start

of the proof of [PS19, Proposition 2.7]. Let N (e, h, f) := {ae + bh + cf : a, b, c ∈

k, b2 = −ac} denote the image of the nilpotent cone of s = sl2(k) in g. Standard

calculations show that by conjugating e by τ(t) for t ∈ k× and then by exp(sf) ∈ G

for s ∈ k, we obtain that

N (e, h, f) \ kf = {t2(e− sh− s2f) : t ∈ k×, s ∈ k} ⊆ (Ad G)e. (4.1.1)

It thus follows that f ∈ (Ad G)e and so (Ad G)f ⊆ (Ad G)e.
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Now suppose that e[p] ̸= 0. Given that f ∈ N we can take τ ′ to be an associated

cocharacter for f , and construct a standard sl2-triple (f, hτ ′ , e′) for f . Since f [p] =

0, by Lemma 4.1.5(b) we have that e′ is conjugate to f . Then (e′)[p] = 0, and thus

e′ is not conjugate to e by G. Hence, the sl2-triples (f, hτ ′ , e′) and (f,−h, e) are

not conjugate by G.

Suppose now that V ⊆ N is a G-stable closed subvariety that contains e, and

thus also contains f and e′, because (Ad G)e′ = (Ad G)f ⊆ (Ad G)e. Then the

map (1.0.5) given by sending the G-orbit of an sl2-triple (e, h, f) to the G-orbit

of e is not injective. We see this by considering the G-orbits of (f,−h′, e′) and

(f,−h, e), which are distinct, and both map to the G-orbit of f . This argument

implies the following proposition, where in the statement we use the notation

N [p] := {x ∈ g : x[p] = 0}.

Proposition 4.1.6. Let V ⊆ N be a G-stable closed subvariety that satisfies the

sl2-property. Then V ⊆ N [p].

Corollary 4.1.7. There is a unique maximal G-stable closed variety V of N that

satisfies the sl2-property.

Proof. Suppose that V and V ′ are two such maximal G-stable closed subvarieties

of N . We consider V ∪ V ′, which is a G-stable closed subvariety of N , and it

suffices to show that it satisfies the sl2-property. Let (e, h, f) and (e, h′, f ′) be

sl2-triples in g with e, f, f ′ ∈ V ∪ V ′. Without loss of generality we assume that

e ∈ V . By Proposition 4.1.6, we have that V ∪ V ′ ⊆ N [p], and thus f ∈ N [p] so

that f [p] = 0. Thus we can apply the exponentiation argument above to obtain

(4.1.1), and deduce that f ∈ V . Similarly we can deduce that f ′ ∈ V . Hence, as

V satisfies the sl2-property, we have that (e, h, f) and (e, h′, f ′) are G-conjugate.

Therefore, we have that V ∪ V ′ satisfies the sl2-property, as required.
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4.2 sl2-triples for SLp(k)

We consider sl2-triples for SLp(k) and recap the known result that for the case

e ∼ (p) there are multiple sl2-triples (e, h, f) in slp(k) up to conjugacy by SLp(k).

We present just two non-conjugate such sl2-triples, but note that by using the

baby Verma modules as defined in Definition 2.3.4, it can be shown that there is

an infinite family of non-conjugate such sl2-triples. In Proposition 4.2.1 we explain

how this restricts the possible subvarieties V of N that satisfy the sl2-property,

where we recall that we say a subvariety V of N satisfies the sl2-property if the

map (1.0.5) is a bijection. In Corollary 4.2.2 we apply this to the classical Lie

algebras. We use the notation from §2.3.2 throughout this section.

Proposition 4.2.1. Let G be a connected reductive algebraic group. Let L be a

Levi subgroup of G whose derived subgroup L′ is of type Ap−1. Let X ⊆ N be a

G-invariant closed subvariety containing a regular nilpotent element of l = Lie(L).

Then X does not satisfy the sl2-property.

Proof. We first consider (e0, h0, f) := (eZ0(0), hZ0(0), fZ0(0)), the sl2-triple in

gl(Z0(0)) determined by the baby Verma module Z0(0). We view (e0, h0, f) as

an sl2-triple in slp(k) using the basis of Z0(0) given in Definition 2.3.4. Similarly

there is an sl2-triple (ep−1, hp−1, f) in slp(k) determined by the baby Verma module

Z0(p− 1) and the basis of Z0(p− 1). We note that the f in these sl2-triples is the

same, and that e0 ∼ (p− 1, 1) and ep−1 ∼ (p). Therefore, the sl2-triples (e0, h0, f)

and (ep−1, hp−1, f) are not conjugate by SLp(k), and thus the sl2-triples (f,−h0, e0)

and (f,−hp−1, ep−1) are not conjugate by SLp(k). We note here that this implies

that V = N does not satisfy the sl2-property for the case G = SLp(k), as the

SLp(k)-orbits of the sl2-triples (f,−h0, e0) and (f,−hp−1, ep−1) are distinct, and
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map to the same SLp(k)-orbit under the map given in (1.0.5).

Note that we can also consider the embedding of the sl2-triples (f,−h0, e0)

and (f,−hp−1, ep−1) into pglp(k), and see that these cannot be conjugate under

PGLp(k) as they are not conjugate under the action of SLp(k).

Suppose that G has a Levi subgroup L whose derived subgroup L′ is isomorphic

to SLp(k) or PGLp(k). By identifying the Lie algebra l′ of L′ with slp(k) or

pglp(k) respectively, we may consider the non-conjugate sl2-triples (f,−h0, e0) and

(f,−hp−1, ep−1) inside g.

An immediate consequence of this proposition is the following corollary which gives

us a restriction on the Jordan types of nilpotent orbits in subvarieties that satisfy

the sl2-property.

Corollary 4.2.2. Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k), and

let V be a G-stable closed subvariety of N . Suppose that V contains an element

of Jordan type (p, 1n−p) (respectively (p2, 1n−2p)) if G is one of GLn(k) or SLn(k)

(respectively Spn(k), On(k) or SOn(k)). Then V does not satisfy the sl2-property.

4.3 G-completely reducible sl2-triples

We now give an analogue of Proposition 4.2.1, considering G-completely reducible

sl2-subalgebras, rather than the sl2-property. We use the preliminary results given

in §2.1.5 to prove the following proposition.

Proposition 4.3.1. Let L be a Levi subgroup of G whose derived subgroup L′ is

of type Ap−1. Let X ⊆ N be a G-invariant closed subvariety containing a regular
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nilpotent element in l = Lie(L). Then there exists some non-G-completely reducible

h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ X.

Proof. We have that L′ must be isomorphic to either SLp(k) or PGLp(k).

We first note that there are non-SLp(k)-completely reducible sl2-triples in slp(k)

containing a regular nilpotent element. We see this by considering the baby Verma

modules Z0(0) with highest weight 0 ∈ k which are embedded in slp(k) as discussed

in §4.2. As in the proof of Proposition 4.2.1, we write (e0, h0, f) to represent the

action of sl2(k) on Z0(0), then we have that f has Jordan type (p). The baby Verma

module Z0(0) has irreducible submodule isomorphic to V (p− 2), however Z0(0) is

not completely reducible as the submodule does not have a complement. Hence

by Lemma 2.1.31, as sl2(k) is not completely reducible on the natural module of

slp(k), the subalgebra ⟨e0, h0, f⟩ is non-SLp(k)-completely reducible.

We also find a non-PGLp(k)-completely reducible sl2-triple in pglp(k) =

glp(k)/z(glp(k)) containing a regular nilpotent element. We consider the

embedding of h = ⟨e0, h0, f⟩ into pglp(k), which we denote h =
〈
e0, h0, f

〉
. We

see h =
〈
e0, h0, f

〉
is contained in pslp(k). Then we see that h is contained in the

parabolic

p =


Ö

A

∗ b

è
: A ∈ glp−1(k), b ∈ k×

 ,

and hence h is contained in the parabolic p which is found by taking the quotient

of elements in p by the centre. Suppose for contradiction that there exists some

Levi l of p such that the embedding l has h ⊆ l. Then we note that z(glp(k)) ⊆ l

and hence h ⊆ l. This is a contradiction, and hence there is no such Levi l. Thus

h is PGLp(k)-completely reducible.
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Thus we use Lemma 2.1.32 to deduce that we have some non-G-completely

reducible h = ⟨e, h, f⟩ isomorphic to its copy in l, and hence with e, f ∈ X.

The next proposition gives an analogue to Proposition 4.1.6 in the context of

G-complete reducibility. Let V ⊆ N and take H(V) to be the set of h ⊆ g with

h = ⟨e, h, f⟩ ∼= sl2(k) for e, f ∈ V .

Proposition 4.3.2. Let V ⊆ N be a nilpotent subvariety such that all h ∈ H(V)

are G-completely reducible. Then any h ∈ H(V) is a p-subalgebra. That is

e[p] = f [p] = 0, h[p] = h.

Hence we deduce that for all x ∈ V we have x[p] = 0.

Proof. We first note that from [ST18, Lemma 4.3] we have that either h is a

p-subalgebra or h is L-irreducible in a Levi subalgebra l = Lie(L) of g with a

factor of type Ap−1.

Suppose for contradiction that h is a G-completely reducible sl2-subalgebra that

is not a p-subalgebra and hence is L-irreducible in a Levi subalgebra with a factor

of type Ap−1. We consider the irreducible sl2(k)-modules of dimension p. Any

such module must correspond to some irreducible baby Verma module, Zχ(λ) as

described in §2.3.2.

Suppose that L ∼= SLp(k). Then we describe the action of sl2(k) on Zχ(λ) as

elements of slp(k) in §2.3.2. In this case we see that e[p] = f [p] = 0. Note that

h[p] − h does not have to act as zero on this module, however in any baby Verma

module we find that either e or f acts as a single Jordan block of size p, hence is

regular nilpotent in slp(k).
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Now we suppose that L ∼= PGLp(k). Then we consider the embedding of Zχ(λ) as

elements of pglp(k), by taking the quotient of the matrices described in §2.3.2 by

elements in the centre of glp(k). We see that, once again, either e or f is regular

nilpotent in pglp(k).

Hence there exists a regular nilpotent element in l of type Ap−1 and thus using

Proposition 4.3.1 we deduce that we can find a non-G-completely reducible

sl2-triple (e, h′, f ′) with e, f ′ ∈ V . We have assumed that no such sl2-triple exists,

and so we must have that every h is a p-subalgebra.
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CHAPTER 5

sl2-TRIPLES FOR THE CLASSICAL
ALGEBRAIC GROUPS

The work presented in this chapter is based on: “On sl2-triples for classical

algebraic groups in positive characteristic”, published joint by the author and

Simon Goodwin, [GP22]. All work was contributed equally by both authors.

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k), where we assume n is

even in the Spn(k) case. Let g = Lie G and recall that N is the nilpotent cone of

g. As before we write s := sl2(k).

We refer the reader to §2.4.1 for more detail on the parametrisation of G-orbits

in N , but we recollect here that the Jordan normal form of any element in N

corresponds to a partition λ of n, and this uniquely determines a G-orbit in N ,

except in the case where G = SOn(k) and λ is a very even partition, for which

there are two G-orbits.

Recall that we write x ∼ λ to denote that the partition of n given by the Jordan

normal form of x is λ. In this chapter we prove Theorems 2 and 3 for G as above.
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In order to do this we give the variety V in terms of the Jordan type of nilpotent

elements. The subvarieties of N required for the statement of these theorems are

N p−1 := {x ∈ N : xp−1 = 0}, (5.0.1)

and
1N p := {x ∈ N : x ∼ (λ1, λ2, . . . , λm), λ1 ≤ p, λ2 < p}. (5.0.2)

By this we mean that the nilpotent elements in N p−1 have Jordan blocks of at

most size p − 1, and elements in 1N p have at most one block of size p, and all

remaining blocks are smaller than size p.

Given these definitions, we are now able to state the first main result of this

chapter.

Theorem 5.0.1. Let k be an algebraically closed field of characteristic p > 2. Let

(G, g,V) be one of the following:

(a) G = GLn(k), g = gln(k), V = N p−1;

(b) G = SLn(k), g = sln(k), V = N p−1;

(c) G = Spn(k), g = spn(k), V = N p−1;

(d) G = On(k), g = son(k), V = 1N p; or

(e) G = SOn(k), g = son(k), V = 1N p.

Then the map

{G-orbits of sl2-triples (e, h, f) with e, f ∈ V} −→ {G-orbits in V} (1.0.5)
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given by sending the G-orbit of an sl2-triple (e, h, f) to the G-orbit of e is a

bijection. Moreover, V is the unique maximal G-stable closed subvariety of N

that satisfies this property.

Recall that as we often consider G-stable closed subvarieties V of N such that

the map in (1.0.5) is a bijection, we use a shorthand for such varieties, and say

that such a variety satisfies the sl2-property. Then Theorem 5.0.1 determines the

unique maximal G-stable closed subvariety V of N that satisfies the sl2-property.

Or in other words it states that for e ∈ V , there exists a unique sl2-triple (e, h, f)

in g with f ∈ V up to conjugacy by the centralizer of e in G, and moreover, V is

maximal with respect to this property.

Of note here is that when p > h(G) we have that V = N , as given by [ST18,

Theorem 1.1].

In order to prove Theorem 5.0.1 we first consider g = gln(k) in §5.1, we can then

immediately apply this result to g = sln(k). In §5.2 we then consider g = spn(k)

and g = son(k) cases. We determine that sl2-triples in spn(k) are conjugate by

Spn(k) if and only if they are conjugate by GLn(k), and hence this case follows

from the gln(k) result. In order to prove the son(k) case we do a detailed analysis

of the Jordan block structure of sl2-modules in son(k).

Our second main result concerns the G-completely reducible sl2-subalgebras of the

classical Lie algebras.

Theorem 5.0.2. Let k be an algebraically closed field with prime characteristic p

for some p > 2. Let (G, g,V) be as in Theorem 5.0.1. Then any h = ⟨e, h, f⟩ ∼=

sl2(k) with e, f ∈ V is G-completely reducible. Moreover, V is the unique maximal

G-stable closed subvariety of N that satisfies this property.

80



Observe that the variety of nilpotent elements given in Theorems 5.0.1 and 5.0.2

is equal to the variety given in Theorems 2 and 3 when restricted to the classical

algebraic groups. Hence to prove Theorems 2 and 3 when G is one of GLn(k),

SLn(k), Spn(k), On(k) or SOn(k) it is enough to prove Theorems 5.0.1 and 5.0.2.

5.1 General and special linear groups

For the main part of this section we consider the case G = GLn(k) and work

towards proving Theorem 5.0.1(a). Then in §5.1.4 we consider the case G = SLn(k)

and deduce Theorem 5.0.1(b).

To prove Theorem 5.0.1(a) we work with the algebra

A := U(s)/⟨ep−1, fp−1⟩.

In Corollary 5.1.7 we see that A is semisimple. This follows from [Jac58, Theorem

1], although we give an alternative proof.

We write elements of A as linear combinations of monomials in e, h and f , so

there is a possibility of a conflict of notation with elements of U(s). However,

when considering elements, of U(s) or A, we ensure it is clear from the context

which algebra they are contained in.

5.1.1 Simple A-modules and a lower bound for the

dimension of A

In the following lemma we give a set of pairwise non-isomorphic simple A-modules.

The simple s-modules V (d) in the statement of the lemma are as given in
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Example 2.3.1.

Lemma 5.1.1. The s-modules V (0), V (1), . . . , V (p−2) are simple A-modules, and

moreover they are pairwise non-isomorphic.

Proof. For 0 ≤ d ≤ p− 2, we have that ed+1 and fd+1 act as zero on V (d). Hence

ep−1 and fp−1 act as zero on V (d), thus V (d) is an A-module, and it is simple as

an A-module as it is simple as an s-module. For c ̸= d we have that V (c) and

V (d) have different dimensions, so are not isomorphic.

In the following corollary we establish a lower bound for dim(A/ rad A), where

rad A denotes the Jacobson radical of A. We achieve this by applying

Wedderburn’s theorem to the semisimple algebra A/ rad A. For justification of

this, and background on the representation theory used here refer to §2.2.

Corollary 5.1.2. The dimension of A/ rad A is greater than or equal to ∑p−1
i=1 i2.

Proof. We have that A/ rad A is semisimple and using Lemma 5.1.1 we have that

V (0), V (1), . . . , V (p− 2) are distinct simple non-isomorphic modules for A/ rad A.

From Wedderburn’s theorem, Theorem 2.2.2, we deduce that

dim(A/ rad A) ≥ dim(V (0))2 + dim(V (1))2 + · · ·+ dim(V (p− 2))2 =
p−1∑
i=1

i2.

82



5.1.2 A spanning set for A and an upper bound for the

dimension of A

We define the subsets

Sk := {fahkec : 0 ≤ a, c < p− 1− k}

of A for each k < p − 1. The following proposition is proved at the end of this

subsection.

Proposition 5.1.3. The union S := ⋃p−2
k=0 Sk is a spanning set for A.

We note that |Sk| = (p − 1 − k)2, thus |S| = ∑p−1
i=1 i2, which is equal to the

lower bound of A/ rad A given in Corollary 5.1.2. Therefore, by combining

Corollary 5.1.2 and Proposition 5.1.3, we are able to deduce that S is a basis of A

so dim(A) = ∑p−1
i=1 i2. Further, we have that rad A = 0, so that A is semisimple.

Hence we have that {V (0), V (1), . . . , V (p − 2)} is a complete set of inequivalent

simple A-modules. This is all stated in Corollary 5.1.7, and is then used to prove

that N p−1 satisfies the sl2-property in Corollary 5.1.9.

In order to show that S is a spanning set for A, we start with a lemma which gives

some relations in U(s).

Lemma 5.1.4. Within U(s), for any k ∈ Z>0, we have

(a) [ek, h] = −2kek;

(b) [ek, f ] = khek−1 − k(k − 1)ek−1; and

(c) [hk, f ] ∈ span{fhi : i = 0, . . . , k − 1}.
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Proof. (a) We note that e is an eigenvector of ad h with eigenvalue 2, so ek is an

eigenvector of ad h with eigenvalue 2k. Thus [ek, h] = −2kek.

(b) We use a simple induction on k. For k = 1, we have [e, f ] = h. Suppose that

[ek, f ] = khek−1 − k(k − 1)ek−1. Then

[ek+1, f ] = [ek, f ]e + ek[e, f ] = khek − k(k − 1)ek + ekh.

From (a) we have that ekh = hek − 2kek, hence [ek+1, f ] is equal to

khek−k(k−1)ek+hek−2kek = (k+1)hek−(k2+k)ek = (k+1)hek−k(k+1)ek.

(c) We show this using induction on k. When k = 1, by the definition of U(s),

we have [h, f ] = −2f . Suppose that [hk, f ] = ∑k−1
i=0 aifhi for some constants

ai ∈ k, then

[hk+1, f ] = [h, f ]hk + h[hk, f ] = −2fhk +
k−1∑
i=0

aihfhi.

Recall that hf = fh− 2f , and so this is equal to

−2fhk +
k−1∑
i=0

ai(fh− 2f)hi = −2fhk +
k−1∑
i=0

aifhi+1 +
k−1∑
i=0

(−2ai)fhi =
k∑

i=0
bifhi

where

bi =


−2a0 if i = 0,

−2 + ak−1 if i = k,

−2ai + ai−1 otherwise.

Thus the result holds for all k ∈ Z>0.
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We now prove a lemma giving spanning properties of the sets Sk. Before stating

and proving this lemma we explain, in the following remark, how we use an

antiautomorphism of U(s) to reduce the amount of work required.

For g some Lie algebra, an antiautomorphism of U(g) is a map of vector spaces

τ : U(g) → U(g) such that τ(xy) = τ(y)τ(x) for all x, y ∈ U(g). We note that

given such an antiautomorphism, for any x, y ∈ U(g),

τ([x, y]) = τ(xy − yx) = τ(y)τ(x)− τ(x)τ(y) = [τ(y), τ(x)].

Remark 5.1.5. Consider the antiautomorphism τ : U(s)→ U(s) determined by

τ(e) = f, τ(h) = h, τ(f) = e.

So for any a, b, c ∈ Z≥0 we have

τ(fahbec) = τ(e)cτ(h)bτ(f)a = f chbea.

As τ stabilises ⟨ep−1, fp−1⟩ it gives an antiautomorphism of A, which we also denote

by τ . Using τ , given any relation in A we can find an equivalent relation where

the powers of e and f are swapped. More precisely, if we have some ra,b,c ∈ k such

that ∑
a,b,c ra,b,cf

ahbec = 0, then

0 = τ

Ç∑
a,b,c

ra,b,cf
ahbec

å
=

∑
a,b,c

ra,b,cf
chbea.

Using this, we note that for any relation on elements of A written in the form of

a linear combination of monomials fahbec, there is a another relation determined

by swapping the powers of e and f . We also observe here that Sk is stable under
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τ for all k.

Lemma 5.1.6. Let k ∈ Z≥0. Within A = U(s)/⟨ep−1, fp−1⟩, we have

(a) if k < p and either a ≥ p− 1− k or c ≥ p− 1− k, then fahkec ∈ span(S0 ∪

· · · ∪ Sk−1); and

(b) if k ≥ p, then fahkec ∈ span(S0 ∪ · · · ∪ Sp−2) for any a, c ≥ 0.

Proof. We work by induction to show that for k ∈ Z≥0 with k < p, if a ≥ p−1−k

or c ≥ p− 1− k, then fahkec ∈ span(S0 ∪ · · · ∪ Sk−1).

Note that this is clear for k = 0, as ep−1 = 0 = fp−1 in A.

To demonstrate the argument we also cover the case k = 1. We need to show that

fahep−2 ∈ span(S0) for any a < p − 1 as then we have the analogue for fp−2hec

using Remark 5.1.5. We have ep−1 = 0, therefore using Lemma 5.1.4(b) we see

0 = [faep−1, f ] = fa[ep−1, f ] = (p− 1)fahep−2 − (p− 1)(p− 2)faep−2

hence we have

fahep−2 = −2faep−2 ∈ span(S0),

and we are done.

Now let k ∈ Z≥0 with k < p. For our inductive hypothesis, we suppose that for

all i < k, if a ≥ p− 1− i or c ≥ p− 1− i, then fahiec ∈ span(S0 ∪ · · · ∪ Si−1). We

first show that

fahkep−1−k ∈ span(S0 ∪ · · · ∪ Sk−1) for any a < p− 1. (5.1.1)
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In order to show this, we first consider some arbitrary x ∈ A and show that, if there

is some j < k−1 such that x ∈ span(S0∪· · ·∪Sj), then [x, f ] ∈ span(S0∪· · ·∪Sj+1).

It is enough to show that [fahjec, f ] ∈ span(S0 ∪ · · · ∪ Sj+1) for any j < k − 1,

a, c < p− 1− j.

Using Lemma 5.1.4(b) and (c), there exists some ai ∈ k such that

[fahjec, f ] = fa([hj, f ]ec + hj[ec, f ])

= fa

ÇÇ
j−1∑
i=0

aifhi

å
ec + chj+1ec−1 − c(c− 1)hjec−1

å
=

j−1∑
i=0

aif
a+1hiec + cfahj+1ec−1 − c(c− 1)fahjec−1. (5.1.2)

For i < j < k−1 we have that fa+1hiec ∈ span(S0∪· · ·∪Sj−1) using our inductive

hypothesis if needed. As a and c − 1 < p − 1 − j we have fahjec−1 ∈ Sj, and as

j + 1 < k, then using the inductive hypothesis if necessary we have fahjec−1 ∈

span(S0 ∪ · · · ∪ Sj+1). Hence we can conclude that each of the terms in (5.1.2) is

in span(S0 ∪ · · · ∪ Sj+1) and hence

[fahjec, f ] ∈ span(S0 ∪ · · · ∪ Sj+1). (5.1.3)

We now move on to prove (5.1.1). By our inductive hypothesis, we have that

fahk−1ep−k ∈ span(S0 ∪ · · · ∪ Sk−2), hence we can use (5.1.3) as k − 2 < k − 1, so

we have that [fahk−1ep−k, f ] ∈ span(S0 ∪ · · · ∪ Sk−1). Thus

[fahk−1ep−k, f ] = fa[hk−1, f ]ep−k +fahk−1[ep−k, f ] ∈ span(S0∪· · ·∪Sk−1). (5.1.4)

We show that the first term on the right hand side of (5.1.4) is in span(S0 ∪ · · · ∪
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Sk−2). This is done by noting that if i < k−1 then using the inductive hypothesis

if needed we see fa+1hiep−k ∈ span(S0∪· · ·∪Si) and hence in span(S0∪· · ·∪Sk−2),

and thus, using Lemma 5.1.4(c) we see that

fa[hk−1, f ]ep−k ∈ span(S0 ∪ · · · ∪ Sk−2).

By rearranging (5.1.4) we obtain that fahk−1[ep−k, f ] ∈ span(S0 ∪ · · · ∪ Sk−1), we

then use Lemma 5.1.4(b) to see

fahk−1[ep−k, f ] = −kfahkep−k−1 − k(k + 1)fahk−1ep−k−1. (5.1.5)

Note that fahk−1ep−k−1 ∈ span(S0∪· · ·∪Sk−1) by the induction hypothesis. Thus,

we can rearrange (5.1.5) to see

kfahkep−k−1 ∈ span(S0 ∪ · · · ∪ Sk−1).

As we have assumed that 0 < k < p, we have that k ̸= 0 in k, and so we deduce

(5.1.1)

We next show that (5.1.1) can be used to prove that if c ≥ p − k − 1 we have

fahkec ∈ span(S0 ∪ · · · ∪ Sk−1). We know by (5.1.1) that we can find some scalars

ri,b,j ∈ k so that

fahkep−1−k =
∑

0≤b≤k−1
i,j<p−1−b

ri,b,jf
ihbej.

We consider fahkel for l > p− 1− k, and have that

fahkel =
∑

0≤b≤k−1
i,j<p−1−b

ri,b,jf
ihbej+(l−p−1−k).
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Using the induction hypothesis f ihbej+(l−p−1−k) ∈ span(S0 ∪ · · · ∪ Sb), and hence

fahkel ∈ span(S0 ∪ · · · ∪ Sk−1).

We can use the antiautomorphism τ from Remark 5.1.5 to show that fahkec ∈

span(S0 ∪ · · · ∪ Sk−1) when a ≥ p− 1− k, and so we have completed the proof of

(a).

In fact we have proved that for any k ∈ Z≥0 with k < p and any a, b ∈ Z≥0

that we have fahkeb ∈ span(S0 ∪ · · · ∪ Sp−2). As a particular case, we have that

hp−1 ∈ span(S0 ∪ · · · ∪ Sp−2). Now given fahkeb with k ≥ p, we can repeatedly

substitute hp−1 as an expression in span(S0 ∪ · · · ∪ Sp−2) and obtain fahkeb as a

linear combination of terms f ihbej with b ≤ p− 1. From this we can deduce that

fahkeb ∈ span(S0 ∪ · · · ∪ Sp−2) using part (a) of the lemma. Thus we have proved

part (b) of the lemma.

Using Lemma 5.1.6 we are now able to show that S is a spanning set for A, and

hence prove Proposition 5.1.3.

Proof of Proposition 5.1.3. We have that {fahbec : a, b, c ∈ Z≥0} is a basis for

U(s), hence as A is obtained from U(s) by taking the quotient by ⟨ep−1, fp−1⟩ we

see that

{fahbec : a, c < p− 1, b ∈ Z≥0}

spans A. By Lemma 5.1.6, every element in this set is contained in the span of S.

Hence, S is a spanning set for A.
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5.1.3 Proof of Theorem 5.0.1(a)

Let G = GLn(k) and g = gln(k). We recall that N p−1 is defined in (5.0.1). In

Corollary 5.1.9 it is stated that N p−1 has the sl2-property. To prove this corollary

we use the fact that A is semisimple. The semisimplicity of A is stated as part

of the following corollary, which is proved as explained after the statement of

Proposition 5.1.3.

Corollary 5.1.7. We have that S is a basis of A, so the dimension of A is equal

to ∑p−1
i=1 i2. Further, we have that A is semisimple, and the simple modules of A

are V (0), V (1), . . . , V (p− 2).

Remark 5.1.8. We note that further results can be proved using the arguments

for the proof of Corollary 5.1.7 (or deduced from its statement). For any m < p,

it can be shown that U(s)/⟨em, fm⟩ is a semisimple algebra with simple modules

V (0), V (1), . . . , V (m − 1); also this statement can be proved for the case of s =

sl2(C) for any m ∈ Z>0. These results are also covered in [Jac58, Theorem 2].

We now explain how A-modules relate to sl2-triples in g. Any A-module M can be

considered as an s-module, and thus we obtain an sl2-triple (eM , hM , fM) in gl(M),

as explained in §2.3. Moreover, we have ep−1
M = 0 = fp−1

M , as M is an A-module

and ep−1 = 0 = fp−1 in A. Suppose that dim M = n and choose an identification

M ∼= k
n as a vector space. We view (eM , hM , fM) as an sl2-triple in g. Further,

given two A-modules M and N , both of dimension n, we have that M ∼= N if and

only if the sl2-triples (eM , hM , fM) and (eN , hN , fN) are conjugate by an element

of G.

Hence, there is a one-to-one correspondence between the set of n-dimensional

A-modules up to isomorphism and the sl2-triples (e, h, f) in g with e, f ∈ N p−1 up
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to conjugacy by elements of G. Thus proving that N p−1 satisfies the sl2-property

is equivalent to proving that for each partition λ of n such that mi(λ) = 0 for all

i ≥ p, there is an n-dimensional A-module Mλ on which e acts with Jordan type

λ, and this module is unique up to isomorphism.

By Corollary 5.1.7, each A-module is semisimple and hence a direct sum of the

simple modules V (0), . . . , V (p−2). So any n-dimensional A-module satisfies M ∼=⊕p−2
d=0 V (d)⊕sd for some sd ∈ Z≥0 with ∑p−2

d=0(d + 1)sd = n. We have that e acts on

M with Jordan type λM , where md(λM) = sd−1 for each d.

Thus we see the desired module is Mλ := ⊕p−2
d=0 V (d)⊕md+1(λ). Hence, we have

proved the following corollary.

Corollary 5.1.9. Let G = GLn(k). Then N p−1 satisfies the sl2-property.

We now explain that N p−1 is maximal satisfying the sl2-property to complete

the proof of Theorem 5.0.1(a). Suppose that V is a G-stable closed subvariety of

N such that V ̸⊆ N p−1. Then there must exist some e′ ∈ V with Jordan type

λ = (λ1, λ2, . . . , λm) such that λ1 ≥ p. Hence, by Theorem 2.4.6, there exists e ∈ V

with Jordan type (p, 1n−p). Thus, using Corollary 4.2.2, we deduce that V does

not satisfy the sl2-property.

5.1.4 Deduction of Theorem 5.0.1(b)

In this short subsection we deal with the case G = SLn(k) and g = sln(k) and

explain that Theorem 5.0.1(b) follows quickly from Theorem 5.0.1(a).

We note that the nilpotent cone N in g is the same as the nilpotent cone of

gln(k), and that two elements in N are conjugate by GLn(k) if and only they are
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conjugate by G, because GLn(k) is generated by SLn(k) and Z(GLn(k)). Thus

for any G-stable closed subvariety V of N , we have that the set of G-orbits in V

is equal to the set of GLn(k)-orbits in V .

We also note that any sl2-triple in gln(k) must lie in g, as any sl2-triple must

be contained in the derived subalgebra of gln(k), which is equal to sln(k).

Hence the set of G-orbits of sl2-triples (e, h, f) with e, f ∈ V is equal to the

set of GLn(k)-orbits of sl2-triples (e, h, f) with e, f ∈ V . It is now clear that

Theorem 5.0.1(b) follows from Theorem 5.0.1(a).

5.2 Symplectic and orthogonal groups

In this section we deal with the cases where G is one of Spn(k), On(k) or SOn(k)

and prove parts (c), (d) and (e) of Theorem 5.0.1.

5.2.1 Proof that N p−1 satisfies the sl2-property for Spn(k)

and On(k), and deduction of Theorem 5.0.1(c)

Let G be one of Spn(k) or On(k) and g = spn(k) or son(k) respectively. In

Proposition 5.2.2 we show that N p−1 satisfies the sl2-property; we recall that N p−1

is defined in (5.0.1). To prove this we want to relate G-conjugacy of sl2-triples in g

with GLn(k)-conjugacy of sl2-triples in g, so that we can apply Theorem 5.0.1(a).

This link is given in Lemma 5.2.1 and is based on [Jan04, Theorem 1.4], which

states that two elements of g are conjugate by G if and only if they are conjugate

by GLn(k). With minor modifications the proof of [Jan04, Theorem 1.4] goes

through to prove the lemma below.

Lemma 5.2.1. Let G be one of Spn(k) or On(k), and let (e, h, f) and (e′, h′, f ′)
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be sl2-triples in g. Then (e, h, f) and (e′, h′, f ′) are in the same G-orbit if and only

if they are in the same GLn(k)-orbit.

We move on to prove the main result in this subsection.

Proposition 5.2.2. Let G be one of Spn(k) or On(k). Then N p−1 satisfies the

sl2-property.

Proof. By the result of Pommerening in [Pom80, §2.1], or the theory of standard

sl2-triples recapped in §4.1, we have that the map in (1.0.5) for V = N p−1 is

surjective.

Let (e, h, f), (e, h′, f ′) be sl2-triples in g with e, f, f ′ ∈ N p−1. By Corollary 5.1.9,

these sl2-triples are conjugate by GLn(k), and thus by Lemma 5.2.1 are conjugate

by G. This implies that the map in (1.0.5) for V = N p−1 is injective.

Proof of Theorem 5.0.1(c). In this case we take G = Spn(k). By Proposition 5.2.2,

we have that N p−1 satisfies the sl2-property. We complete the proof

Theorem 5.0.1(c) by explaining that N p−1 is the maximal G-stable closed

subvariety of N satisfying the sl2-property. Let V be a G-stable closed subvariety

of N such that V ⊈ N p−1. Then there is an element in V which has Jordan type

λ = (λ1, λ2, . . . , λm), where either λ1 > p, or λ1 = λ2 = p. Using Theorem 2.4.6,

we deduce that there is an element in V with Jordan type (p + 1, 1, . . . , 1) or

(p, p, 1, . . . , 1). For the first possibility we can apply Proposition 4.1.6 to deduce

that V does not satisfy the sl2-property, whilst in the second case we can apply

Corollary 4.2.2 to deduce that V does not satisfy the sl2-property.
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5.2.2 Proof of Theorem 5.0.1(d)

Let G = On(k) and g = son(k) and recall that 1N p is defined in (5.0.2). In

Proposition 5.2.5, we prove that 1N p satisfies the sl2-property. This proof requires

some analysis of underlying s-modules, where we recall that s = sl2(k), and we

note that the ideas in the proof have some similarities with those in the proof of

[ST18, Lemma 6.2].

In Lemma 5.2.3 we state some well-known general results on module extensions,

which we use in the proof of Proposition 5.2.5. We only state this lemma for

s-modules, though it is of course applicable more generally.

Before the statement of Lemma 5.2.3 we introduce some notation. We use the

notation M ∼= A|B for s-modules M , A and B, to mean there is short exact

sequence 0 → B → M → A → 0. When using this notation, we identify B

with a fixed submodule of M and A as the corresponding quotient. We also use

the notation to cover three (or more) modules, so consider s-modules of the form

A|B|C, where A, B and C are s-modules, and note there is no need to include

brackets in the notation A|B|C.

In part (a) of the statement of Lemma 5.2.3 we should really define the module A|C

occurring there. This can be defined as the quotient of A|B|C by the submodule

B given by the splitting B|C ∼= B⊕C; or equivalently as the submodule of A|B|C

corresponding to the submodule A of A|B given by the splitting A|B ∼= A ⊕ B.

The modules A|B, A|C and B|C in parts (b) and (c) are defined similarly.

Lemma 5.2.3. Let M , A, B, and C be s-modules.

(a) Suppose that M ∼= A|B|C, and that A|B ∼= A⊕B and B|C ∼= B ⊕C. Then
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M ∼= (A|C)⊕B.

(b) Suppose that M ∼= (A⊕B)|C and that B|C ∼= B⊕C. Then M ∼= (A|C)⊕B.

(c) Suppose that M ∼= A|(B⊕C) and that A|B ∼= A⊕B. Then M ∼= (A|C)⊕B.

We note that (a) can be proved by using splitting maps B → B|C and B|C → C

for the short exact sequence C → B|C → B to construct a short exact sequence

B → A|B|C → A|C. Then a splitting map A|B → B for the short exact sequence

B → A|B → A can be used to construct a splitting map A|B|C → B for the short

exact sequence B → A|B|C → A|C. We have that (b) and (c) are immediate

consequences of (a).

We also require an elementary lemma about the action of nilpotent elements

in s-modules, which is stated in Lemma 5.2.4. We only state this lemma for

s-modules, though it is of course applicable more generally. In the statement we

use the notation given in §2.3 and §2.4.1.

Lemma 5.2.4. Let M , A and B be s-modules and let x ∈ s. Suppose that M ∼=

A|B and that xA and xB are nilpotent. Then xM is nilpotent and λ(xA)|λ(xB) ⪯

λ(xM).

We give an outline of how this lemma can be proved. First we identify M and

A ⊕ B as vector spaces. We then note that xA + xB is in the closure of the

GL(M)-orbit of xM ; we see this by observing that xA + xB lies in the closure of

{(Ad τ(t))xM : t ∈ k
×}, where τ : k× → GL(M) is the cocharacter such that

τ(t)a = a for all a ∈ A and τ(t)b = tb for all b ∈ B. The proof concludes by noting

that λ(xA + xB) = λ(xA)|λ(xB) and then applying Theorem 2.4.6.

We are now ready to state and prove our main result in this subsection.
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Proposition 5.2.5. Let G = On(k). Then 1N p satisfies the sl2-property.

Proof. By the result of Pommerening in [Pom80, §2.1], or the theory of standard

sl2-triples recapped in §4.1, the map in (1.0.5) for V = 1N p is surjective. The rest

of the proof is devoted to proving that this map is in fact injective.

Let (e, h, f) be an sl2-triple in g = son(k) with e, f ∈ 1N p. Let V ∼= k
n be the

natural module for G = On(k), and consider V as a an s-module by restriction

to the subalgebra of g spanned by {e, h, f}. Write (· , ·) for the G-invariant

non-degenerate symmetric bilinear form on V .

The idea of the rest of the proof is to determine the structure of the s-module V ,

and observe that it is determined uniquely up to isomorphism by the Jordan type

of e. Then at the end of the proof we use this and Lemma 5.2.1 to deduce that

the map in (1.0.5) is injective.

Let M ≤ V be a maximal isotropic s-submodule of V , and consider M⊥ := {v ∈

V : (v, m) = 0 for all m ∈ M} ≤ V , which is an s-submodule of V . As M is

isotropic we have the sequence of submodules

0 ≤M ≤M⊥ ≤ V. (5.2.1)

We have an s-module homomorphism ϕ : V → M∗ defined by ϕ(v)(m) = (m, v),

where M∗ denotes the dual module of M . This induces an isomorphism V/M⊥ ∼=

M∗, and so by an abuse of notation we write M∗ for V/M⊥. Also we write N for

the s-module M⊥/M , and note that (· , ·) induces an s-invariant non-degenerate

symmetric bilinear form on N , which we also denote by (· , ·). Thus the quotients

in the sequence in (5.2.1) are M , N and M∗, or in other words V ∼= M∗|N |M .
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We first consider the s-module M . Suppose that ep−1
M ̸= 0. Then λ(eM) contains

a part of size p or greater. We note that λ(eM) = λ(eM∗), so that λ(eM∗) also

contains a part of size p or greater. Using Lemma 5.2.4, we deduce that λ(eV )

must have first and second parts greater than or equal to p, but this is contradicts

that e = eV ∈ 1N p. Thus we have that ep−1
M = 0. Similarly, we have fp−1

M = 0.

It now follows from Corollary 5.1.7 that we have a direct sum decomposition of

the s-module

M = M1 ⊕ · · · ⊕Mr

where each Mi is simple, and Mi
∼= V (di) for some di ∈ {0, 1, . . . , p− 2}. We have

a corresponding direct sum decomposition

M∗ = M∗
1 ⊕ · · · ⊕M∗

r

of M∗, where M∗
i
∼= V (di) and is dual to Mi via (· , ·) for each i.

Next we consider the s-module N , which we recall has a non-degenerate symmetric

invariant bilinear form. Let A be a simple submodule of N , and consider A⊥ ≤ N ,

which is also a submodule of N . Thus A ∩ A⊥ is a submodule of N , and as A is

simple we have A ∩ A⊥ is equal to 0 or to A. Suppose that A ∩ A⊥ = A, so that

A is an isotropic subspace of N . Let A be the submodule of M⊥ corresponding to

A ≤ M⊥/M = N . Then A is isotropic and this contradicts that M is a maximal

isotropic subspace of V . Therefore, A ∩A⊥ = 0, so that A is non-degenerate, and

thus N = A⊕ A⊥.

Hence, N is a semisimple s-module and in fact we have an orthogonal direct sum

decomposition

N = N1 ⊕ · · · ⊕Ns, (5.2.2)
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where each Ni is a simple s-module and is a non-degenerate subspace for (· , ·).

Since e, f ∈ 1N p, using Lemma 5.2.4, we have that ep
N = 0 = fp

N , and that λ(eN)

and λ(fN) have at most one part of size p. It follows that for each i we have

Ni
∼= V (ci) for some ci ∈ {0, 1, . . . , p− 2} with the possible exception of one j for

which Nj = V (cj) where cj ∈ k \ {0, 1, . . . , p− 2}.

We note that for every i such that Ni
∼= V (ci) for some ci ∈ {0, 1, . . . , p − 2}, we

must have that ci is even, because eNi
∈ so(Ni) and λ(eNi

) = (ci + 1), so ci + 1

must be odd as explained in §2.4.1.

If there exists a j for which Nj = V (cj) where cj ∈ k \ {0, 1, . . . , p − 2}, then we

show that cj = p− 1. To see this we consider hNj
∈ so(Nj), which is a semisimple

element of so(Nj) with eigenvalues cj, cj − 2, . . . , cj − 2p + 2. The eigenvalues of

a semisimple element of so(Nj) must include 0 (and also the multiplicity of an

eigenvalue a must be equal to the multiplicity of the eigenvalue −a). It follows

that we must have cj = p− 1.

Next we show that ci ̸= cj for i ̸= j. Suppose that we did have Ni
∼= Nj for some

i ̸= j. We denote Ni,j = Ni ⊕ Nj and consider the s-module N ′
i,j = N ′

i ⊕ N ′
j,

where N ′
i = Ni and N ′

j = Nj as s-modules, but we give N ′
i ⊕N ′

j a non-degenerate

s-invariant symmetric bilinear form so that Ni and Nj are isotropic spaces that

are dual to each other. We fix an isomorphism N ′
i,j
∼= Ni,j as vector spaces with

non-degenerate s-invariant symmetric bilinear forms. This can be used to view

xN ′
i,j

as an element of so(Ni,j) for any x ∈ s. By definition we have that Ni⊕Nj
∼=

N ′
i ⊕ N ′

j as s-modules, which implies that the sl2-triples (eNi,j
, hNi,j

, fNi,j
) and

(eN ′
i,j

, hN ′
i,j

, fN ′
i,j

) both viewed inside so(Ni,j) are conjugate by GL(Ni,j). Now we

can apply Lemma 5.2.1 to deduce that (eNi,j
, hNi,j

, fNi,j
) and (eN ′

i,j
, hN ′

i,j
, fN ′

i,j
) are
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conjugate by O(Ni,j). Under the identification N ′
i,j
∼= Ni,j ≤ N , we have that N ′

i

is an isotropic s-submodule of N . However, then the corresponding submodule

N ′
i of M⊥ is isotropic, and this contradicts the maximality of M as an isotropic

submodule of V .

To summarise our findings about N , we have that the orthogonal direct sum

decomposition in (5.2.2), satisfies that Ni
∼= V (ci) for some ci ∈ {0, 2, . . . , p − 1}

for each i and that ci ̸= cj for i ̸= j.

Our next goal is to prove that

M⊥ ∼= M ⊕N ∼= M1 ⊕ · · · ⊕Mr ⊕N1 ⊕ · · · ⊕Ns. (5.2.3)

For j ∈ {1, . . . , r} we define Aj = ⊕
i ̸=j Mi ≤M . We consider M⊥/Aj and aim to

show that

M⊥/Aj
∼= Mj ⊕N. (5.2.4)

Noting that M⊥/Aj
∼= N |Mj, we see that by repeated application of

Lemma 5.2.3(c) we can deduce (5.2.3) from (5.2.4). Thus we only need to establish

(5.2.4).

Using (2.3.1) and the fact that the summands in (5.2.2) are pairwise

non-isomorphic, there is at most one i for which Exts(Mj, Ni) is non-zero.

If Exts(Mj, Ni) = 0 for all i, then we have Ni|Mj
∼= Ni⊕Mj for all i, and thus we

obtain (5.2.4) by repeated applications of Lemma 5.2.3(b).

If Exts(Mj, Ni) ̸= 0 for some i, i.e. ci = p− dj − 2, then without loss of generality,
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we may assume that i = 1. Using Lemma 5.2.3(b) we can deduce that

M⊥/Aj
∼= (N1|Mj)⊕N2 ⊕ · · · ⊕Ns. (5.2.5)

We may assume that N1|Mj is a non-split extension of N1 by Mj otherwise we

obtain (5.2.4). We have that dim(N1|Mj) = p and eN1|Mj
or fN1|Mj

has Jordan type

(p). Without loss of generality we assume that eN1|Mj
has Jordan type (p). We

next consider the s-module A⊥
j /Aj on which (· , ·) induces a non-degenerate form.

There is an isomorphism A⊥
j /M ∼= (M⊥/Aj)∗ via (· , ·), and also an isomorphism

N ∼= N∗ as (· , ·) is non-degenerate on N . Thus we have that

A⊥
j /M ∼= (M∗

j |N1)⊕N2 ⊕ · · · ⊕Ns. (5.2.6)

Using (5.2.5) and (5.2.6) along with repeated applications of Lemma 5.2.3(b) and

(c) we deduce that

A⊥
j /Aj

∼= (M∗
j |N1|Mj)⊕N2 ⊕ · · · ⊕Ns.

From the isomorphism A⊥
j /M ∼= (M⊥/Aj)∗ we obtain an isomorphism M∗

j |N1 ∼=

(N1|Mj)∗. Thus we deduce that eMj∗|N1 has Jordan type (p).

Next we consider eM∗
j |N1|Mj

. We can choose a basis for N1|Mj containing a basis of

Mj and such that the matrix of eN1|Mj
with respect to this basis is a single Jordan

block Jp of size p; we denote this matrix by [eN1|Mj
], and use similar notation for

other matrices considered here. We can pick a basis of M∗
j such that the matrix

[eM∗
j
] of eM∗

j
is a single Jordan block Jdj+1 of size dj + 1. By choosing a lift of

the basis of M∗
j to M∗

j |N1|Mj and combining with the basis of N1|Mj we obtain a
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basis of M∗
j |N1|Mj for which the matrix of eM∗

j |N1|Mj
has block form

[eM∗
j |N1|Mj

] =

Ö
Jp X

Jdj+1

è
,

where X is some p × (dj + 1) matrix. We can consider the matrix eMj∗|N1 with

respect to the basis obtained by projecting our basis of M∗
j |N1|Mj to M∗

j |N1, and

we have

[eMj∗|N1 ] =

Ö
Jc1+1 X ′

Jdj+1

è
,

where X ′ consists of the bottom c1 + 1 rows of X. The Jordan type of eMj∗|N1

is (p), so by considering [eM∗
j |N1 ] we see that the bottom left entry of X ′ must

be non-zero. This follows easily using the concepts from Chapter 3, in particular

considering Lemma 3.2.7, we see that D(eMj∗|N1) must have a chain of length p.

Given the block structure of eMj∗|N1 we can only find such a chain if there is a

non-zero entry in the bottom left of X ′.

Thus the bottom left entry of X is non-zero. By considering [eM∗
j |N1|Mj

], we deduce

that the Jordan type of eM∗
j |N1|Mj

is (p+dj +1). Now using Lemma 5.2.4, we deduce

that the first part of λ(eV ) has size greater than p, which is a contradiction because

eV = e ∈ 1N p. From this contradiction we deduce that N1|Mj is in fact a split

extension, and so we obtain (5.2.4) as desired.

We have now proved (5.2.3) holds. Also note we have an isomorphism V/M ∼=

(M⊥)∗ via (· , ·), and an isomorphism N ∼= N∗ since (· , ·) is non-degenerate on N .

Thus from (5.2.3) we obtain

V/M ∼= M∗ ⊕N.
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Hence, by applying Lemma 5.2.3(a) we obtain that

V ∼= M∗|M ⊕N.

Our next step is to prove that M∗|M ∼= M∗ ⊕ M . Let us suppose that this

is not the case, then, using Lemma 5.2.3(b) and (c) we can find i and j such

that the subquotient M∗
i |Mj of M∗|M is a non-split extension. Using (2.3.1) and

the fact that Mi
∼= M∗

i we have that i ̸= j. Without loss of generality we can

assume that i = 1 and j = 2, and then we have that d1 = p − d2 − 2. We

consider the subquotient M1,2 = (M∗
1 ⊕M∗

2 )|(M1 ⊕M2) of M∗|M . By using that

Ext1
s(M1, M∗

1 ) = 0 = Ext1
s(M2, M∗

2 ) along with Lemma 5.2.3(b) and (c), we obtain

that M1,2 ∼= (M∗
1 |M2) ⊕ (M∗

2 |M1). We have that (· , ·) induces a non-degenerate

bilinear form on M1,2 and that (M∗
1 |M2) and (M∗

2 |M1) are isotropic subspaces of

M1,2, which are dual via (· , ·). By assumption we have that M∗
1 |M2 is a non-split

extension, and it has dimension p. Then by Corollary 5.1.7 we have that either

eM∗
1 |M2 or fM∗

1 |M2 has Jordan type (p). Without loss of generality we assume

that eM∗
1 |M2 has Jordan type (p). Since (M∗

2 |M1) ∼= (M∗
1 |M2)∗, we also have that

eM∗
2 |M1 has Jordan type (p). By using Lemma 5.2.4, we deduce that λ(eV ) must

have first and second parts greater than or equal to p, but this is not possible as

e = eV ∈ 1N p. This contradiction implies that M∗|M ∼= M∗ ⊕M as desired.

We have thus far proved that the s-module V is semisimple and has the direct

sum decomposition

V = (M∗
1 ⊕ · · · ⊕M∗

r )⊕ (N1 ⊕ · · · ⊕Ns)⊕ (M1 ⊕ · · · ⊕Mr) (5.2.7)

where Mi
∼= V (di) ∼= M∗

i for each i and Nj
∼= V (cj) for each j. Hence, we see
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that the isomorphism type of V is uniquely determined by the Jordan type of e.

Let (e, h′, f ′) be an sl2-triple in so(N) with f ′ ∈ 1N p. Then writing V ′ for the

s-module given by span{e, h′, f ′}, we have that V ′ is isomorphic to V . From this

we deduce that (e, h′, f ′) is conjugate to (e, h, f) via GL(V ) = GLn(k), and thus

by Lemma 5.2.1 is conjugate via O(V ) = On(k). This gives the desired injectivity

of the map in (1.0.5), and completes this proof.

All that is left to do to prove Theorem 5.0.1(d) is to prove that 1N p is the unique

maximal G-stable subvariety of N satisfying the sl2-property. To show this let

V be a G-stable closed subvariety of N such that V ⊈ N p−1. Then there is an

element in V which has Jordan type λ = (λ1, λ2, . . . , λm), where either λ1 > p,

or λ1 = λ2 = p. Using Theorem 2.4.6, we deduce that there is an element in V

with Jordan type (p + 2, 1, . . . , 1) or (p, p, 1, . . . , 1). For the first possibility we can

apply Proposition 4.1.6 to deduce that V does not satisfy the sl2-property, whilst

in the second case we can apply Corollary 4.2.2 to deduce that V does not satisfy

the sl2-property.

5.2.3 Deduction of Theorem 5.0.1(e)

We are left to deal with the case G = SOn(k), and we prove that 1N p satisfies the

sl2-property in Proposition 5.2.6. This is deduced from Proposition 5.2.5 along

with considerations of how On(k)-orbits of sl2-triples (e, h, f) in g = son(k) with

e, f ∈ N split into SOn(k)-orbits.

Proposition 5.2.6. Let G = SOn(k). Then 1N p satisfies the sl2-property.

Proof. We know that the map in (1.0.5) for V = 1N p is surjective, for the same

reasons as the corresponding statement in Proposition 5.2.5.
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As explained in Remark 2.4.4 the On(k)-orbit of x ∈ son(k) is either a single

SOn(k)-orbit, or splits into two SOn(k)-orbits, with the former case occurring

precisely when there exists g ∈ On(k) with det g = −1 such that gx = xg. The

underlying argument can also be applied to sl2-triples in son(k). Thus we have

that for an sl2-triple (e, h, f) in son(k) the On(k)-orbit of (e, h, f) is either a

single SOn(k)-orbit or splits into two SOn(k)-orbits. Moreover, we have that the

SOn(k)-orbit of (e, h, f) is equal to the On(k)-orbit if and only if there exists some

g ∈ On(k) with det g = −1, ge = eg, gh = hg and gf = fg.

Let λ be the Jordan type of a nilpotent element in 1N p. Using λ we construct a

specific realization of some e ∈ 1N p with e ∼ λ and an sl2-triple (e, h, f).

Let V = k
n be the natural module for On(k). Let m′

i(λ) = mi(λ)
2 for even i. We

can form an orthogonal direct sum decomposition of V of the form

V =
⊕

i odd

mi(λ)⊕
j=1

Vi,j ⊕
⊕

i even

m′
i(λ)⊕

j=1
(Ui,j ⊕ U ′

i,j), (5.2.8)

where for odd i each Vi,j is a non-degenerate subspace of dimension i, and for even

i the pair Ui,j and U ′
i,j are isotropic subspaces of dimension i, which are in duality

under the symmetric bilinear form on V . Corresponding to this decomposition of

V we have a subgroup

H ∼=
∏

i odd
Oi(k)mi(λ) ×

∏
i even

GLi(k)m′
i(λ)

of On(k). The Lie algebra of H is

h ∼=
⊕

i odd
soi(k)⊕mi(λ) ⊕

⊕
i even

gli(k)⊕m′
i(λ), (5.2.9)
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and is a subalgebra of son(k).

We choose e ∈ h to be regular nilpotent in each of the summands in (5.2.9). Then

by construction we see that e ∼ λ. We can find an sl2-triple (e, h, f) in h, for

example this now follows from Theorem 5.0.1(a) and (d). By Proposition 5.2.5

we know that (e, h, f) lies in the unique On(k)-orbit of sl2-triples in son(k) with

e ∼ λ.

Suppose that λ has an odd part, and let i ∈ Z>0 be odd and such that mi(λ) > 0.

Then we can define g ∈ On(k) by declaring that g acts on Vi,1 by −1 and on all

other summands in (5.2.8) by 1. We see that det g = −1, and g lies in the centre

of H so that ge = eg, gh = hg and gf = fg. Hence, the SOn(k)-orbit of (e, h, f) is

equal to the On(k)-orbit, and hence is the unique SOn(k)-orbit of sl2-triples with

e ∼ λ.

Now suppose that λ is very even. Then we know that the On(k)-orbit of e splits

into two SOn(k)-orbits, and we let e′ ∈ son(k) be a representative of the other

SOn(k)-orbit in (Ad On(k))e. There is an sl2-triple (e′, h′, f ′), which lies in the

On(k)-orbit of (e, h, f). Also (e′, h′, f ′) is not in the SOn(k)-orbit of (e, h, f), as e

is not conjugate to e′ via SOn(k). It follows that the On(k)-orbit of (e, h, f) splits

into two SOn(k)-orbits, and these are the SOn(k)-orbits of (e, h, f) and (e′, h′, f ′).

Now using Proposition 5.2.5 we deduce that the SOn(k)-orbit of (e, h, f) is the

only orbit mapping to the SOn(k)-orbit of e by the map in (1.0.5); and that the

SOn(k)-orbit of (e′, h′, f ′) is the only orbit mapping to the SOn(k)-orbit of e′ by

the map in (1.0.5).

We have shown that for each e ∈ 1N p, there is a unique SOn(k)-orbit of sl2-triples

(e, h, f) with e, f ∈ 1N p which maps to the SOn(k)-orbit of e under the map in
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(1.0.5). This shows that the map in (1.0.5) is injective for V = 1N p, and hence

that 1N p satisfies the sl2-property.

To complete the proof of Theorem 5.0.1(e), we are just left to show the maximality

of V = 1N p subject to satisfying the sl2-property, but this can be done using the

arguments at the end of §5.2.2.

Hence, we have completed the proof of all parts of Theorem 5.0.1, and therefore

have completed the proof of Theorem 2 for G any of GLn(k), SLn(k), Spn(k),

On(k) or SOn(k).

5.3 G-completely reducible sl2-subalgebras

We now consider Theorem 5.0.2 and find that the proof follows quickly from the

proof of Theorem 5.0.1 and the results in §4.3. Recall Lemma 2.1.31 which states

that for g a classical Lie algebra, a subalgebra h of g is G-completely reducible if

and only if it acts completely reducibly on the natural module for g.

5.3.1 General linear, special linear and symplectic groups

First consider g to be one of gln(k), sln(k) or spn(k). Then in each of these cases

we have V = N p−1.

Let h = ⟨e, h, f⟩ ∼= sl2(k) be a subalgebra of g with e, f ∈ V , we show that h must

be G-completely reducible. Consider the action of h on the natural module, V , for

g. We identify h with s, and write A := U(h)/⟨ep−1, fp−1⟩. We have that ep−1 =

0 = fp−1, and hence we can consider V as a module for A. By Corollary 5.1.7 we

have that A is semisimple, and hence h acts completely reducibly. We can then
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use Lemma 2.1.31 to deduce that h is G-completely reducible.

Hence all that is left to do in this case is to show that V is maximal with

respect to this property. We mirror the techniques used to prove maximality

for Theorem 5.0.1.

First, let g = gln(k) or sln(k). Suppose that X is a G-stable closed subvariety

of N such that X ̸⊆ N p−1. We saw in §5.1.3 that there must exist some

e ∈ X with Jordan type (p, 1n−p). Thus by Proposition 4.3.1 there exists some

non-G-completely reducible sl2-subalgebra h = ⟨e, h, f⟩ with e, f ∈ V .

Now let g = spn(k). Again, suppose that X is a G-stable closed subvariety of

N such that X ̸⊆ N p−1. In §5.2 we saw that there must exist some e ∈ X

with Jordan type either (p + 1, 1, . . . , 1) or (p, p, 1, . . . , 1). In the first case we

use Proposition 4.3.2 to show that there exists some non-G-completely reducible

sl2-subalgebra h = ⟨e, h, f⟩ with e, f ∈ X. We can similarly use Proposition 4.3.1

in the second case.

5.3.2 Orthogonal groups

Let g = son(k), so that V = 1N p. We first note that it is shown in the proof

of Proposition 5.2.5, see (5.2.7), that any sl2-subalgebra h = ⟨e, h, f⟩ of g with

e, f ∈ 1N p acts completely reducibly on the natural module for g. Hence, by

Lemma 2.1.31, h is G-completely reducible.

All that is left is to prove that 1N p is maximal with respect to this property.

Suppose that X is a G-stable closed subvariety of N such that X ̸⊆ 1N p. Then we

demonstrate at the end of §5.2.2 that there must exist some e ∈ X with Jordan type

either (p + 2, 1, . . . , 1) or (p, p, 1, . . . , 1). We can then use either Proposition 4.3.2
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or Proposition 4.3.1 respectively to show that there exists some non-G-completely

reducible sl2-subalgebra h = ⟨e, h, f⟩ with e, f ∈ X.

This concludes the proof of Theorem 5.0.2, and therefore the proof of Theorem 3

for G any of GLn(k), SLn(k), Spn(k), On(k) or SOn(k).
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CHAPTER 6

sl2-TRIPLES FOR THE EXCEPTIONAL
ALGEBRAIC GROUPS

Let k be an algebraically closed field of prime characteristic p > 0, and G a simple

algebraic group of type G2, F4, E6, E7, or E8, such that p is good for G. Recall that

under this restriction we have p > 3 for G of type G2, F4, E6 and E7, and p > 5

for G of type E8. Let g = Lie G and recall that N denotes the nilpotent cone of

g. As before we write s := sl2(k). We adopt notation from [Ste16] to express the

nilpotent orbits of g.

In this chapter we prove Theorem 6.0.1, which is enough to prove Theorems 2

and 3 for G a group of exceptional type. In order to define the variety V ⊆ N

in Theorem 6.0.1 we introduce some shorthand. We say that an element x ∈ N

satisfies the Ap−1-property if x is not regular nilpotent in any l = Lie(L) where

L ⊆ G is a Levi subgroup and L′ ∼= SLp(k) or PGLp(k).

Theorem 6.0.1. Let k be an algebraically closed field of prime characteristic

p > 0. Let G be a simple algebraic group of exceptional type and suppose that p is
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good for G. Define V ⊆ N to be

V :=

x ∈ N

∣∣∣∣∣∣∣
x[p] = 0, and

x satisfies the Ap−1-property.

 .

Then V satisfies that

(a) any h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ V is G-completely reducible; and

(b) the map

{G-orbits of sl2-triples (e, h, f) with e, f ∈ V} −→ {G-orbits in V}

given by sending the G-orbit of an sl2-triple (e, h, f) to the G-orbit of e is a

bijection.

Moreover, V is the unique maximal G-stable closed subvariety of N that satisfies

each of these properties.

For G a simple algebraic group of exceptional type, we have checked that the set

of nilpotent orbits that satisfy the conditions of V given in Theorem 6.0.1 is equal

to set of nilpotent orbits contained in the variety given in Theorems 2 and 3. This

can be seen by comparing the lists of nilpotent orbits that satisfy the conditions

for each variety, and noting that the lists are the same. Hence Theorem 6.0.1 is

enough to prove Theorems 2 and 3 for the exceptional groups. We refer the reader

to §6.6 for a list of nilpotent orbits not contained in V for each simple algebraic

group of exceptional type and prime p which is good for G.

It is not immediately clear that V is closed. In order to show this we consider

the Hasse diagrams for the nilpotent orbits of g. We define a partial ordering on
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the nilpotent orbits of g. For X, Y nilpotent orbits of g we write X ⪯ Y if X is

contained in the closure of Y . We then construct the Hasse diagram of this partial

ordering. The Hasse diagrams for the unipotent classes of each of the exceptional

groups are given in [Car93, §13.4]. We note that these are identical to the Hasse

diagrams of the nilpotent classes by the use of Springer isomorphisms, as discussed

in §2.4.2.

The Hasse diagram for F4 is given as an example below. In addition, we take p = 5

and show the orbits contained in V in black, and those not contained in V in red.

F4

F4(a1)

F4(a2)

B3 C3

F4(a3)

�� @@

C3(a1)

@@ ��

Ã2 + A1 B2
�� @@

A2 + Ã1

PPPPPP

Ã2 A2

@@ ��
A1 + Ã1

Ã1

A1

0

Hasse diagram of nilpotent orbits in F4

111



It is clear from the Hasse diagram that V is a closed subvariety of N for p = 5

and G of type F4. By considering the Hasse diagram for each group of exceptional

type, we can similarly determine that V is closed for each good prime for G.

We now explain the structure of the proof of Theorem 6.0.1. In §6.1 we show that

if V satisfies the properties given in Theorem 6.0.1 then it is maximal with respect

to these properties. We then show that V satisfies the sl2-property and that any

h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ V is G-completely reducible. To show this we

proceed by induction on the semisimple rank of the group. In contrast to the

approach taken for the classical cases in Chapter 5, we start by proving that V as

defined in Theorem 6.0.1 satisfies that any h = ⟨e, h, f⟩ ∼= sl2(k) such that e, f ∈ V

is G-completely reducible for each of the groups of exceptional type. This is then

used to show that V satisfies the sl2-property in §6.5. Note that if h(G) is the

Coxeter number of G then if p > h(G) all sl2-triples are necessarily G-completely

reducible by [ST18, Theorem 1.3]. Hence we can assume that p < h(G).

6.1 Showing that V is maximal

Let V ⊆ N be the nilpotent variety as defined in Theorem 6.0.1 and suppose that

V satisfies properties (a) and (b). We now show that V is maximal with respect

to these properties.

We first suppose that V satisfies property (a) of Theorem 6.0.1.

Lemma 6.1.1. Suppose that any h = ⟨e, h, f⟩ ∼= sl2(k) with e, f ∈ V is

G-completely reducible. Then V is maximal with respect to this property.

Proof. Let X be a G-stable closed subvariety of N such that X ̸⊆ V . Then

112



there must exist some x ∈ X such that either x[p] ̸= 0 or x does not satisfy

the Ap−1-property. We show that in either of these cases there exists some

non-G-completely reducible sl2(k)-subalgebra h = ⟨e, h, f⟩ with e, f ∈ X.

First suppose that x[p] ̸= 0, then it follows immediately from Proposition 4.3.2

that any h ∼= ⟨e, h, f⟩ is not G-completely reducible.

Now suppose that x does not satisfy the Ap−1-property, that is x is regular nilpotent

in some l = Lie(L) where L ⊆ G is a Levi subgroup and L′ ∼= SLp(k) or PGLp(k).

Then by Proposition 4.3.1, there must exist some non-G-completely reducible

sl2-subalgebra h = ⟨e, h, f⟩ with e, f ∈ X.

Hence V is maximal with respect the condition that any h = ⟨e, h, f⟩ ∼= sl2(k)

with e, f ∈ V is G-completely reducible.

We now suppose that V satisfies property (b) of Theorem 6.0.1.

Lemma 6.1.2. Suppose that V satisfies the sl2-property, then it is maximal with

respect to satisfying the sl2-property.

Proof. Suppose that X is a G-stable closed subvariety of N such that X ̸⊆ V .

Then there must exist some x ∈ X such that either x[p] ̸= 0 or x does not satisfy

the Ap−1-property.

First suppose that x[p] ̸= 0, then by Proposition 4.1.6 we have that X does not

satisfy the sl2-property.

Now suppose that x does not satisfy the Ap−1-property, that is x is regular nilpotent

in some l = Lie(L) where L ⊆ G is a Levi subgroup and L′ ∼= SLp(k) or PGLp(k).

Then by Proposition 4.2.1 we have that X does not satisfy the sl2-property.
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6.2 General strategy to prove Theorem 6.0.1

We prove Theorem 6.0.1 for each of the simple algebraic groups of exceptional

type using an induction on the semisimple rank of the Levi subgroups, we follow

the same approach for each group of exceptional type, so we first give a summary

and justification of the techniques used.

6.2.1 Reducing to a Levi factor

Suppose that we have some sl2(k)-subalgebra, h = ⟨e, h, f⟩ ⊆ g = Lie(G) with

e, f ∈ V . Take P to be a parabolic subgroup of G such that p = Lie(P ) is a minimal

parabolic subalgebra of g subject to containing h. Note that we can assume that

P ̸= G, else h is G-irreducible, and hence G-completely reducible.

Consider the Jordan decomposition of h = hs + hn ∈ p, where hs is semisimple, hn

is nilpotent and hs, hn commute. We choose T to be a maximal torus of P such

that hs ∈ t = Lie(T ), and choose l to be a Levi factor of p that contains t. We take

h =
〈
e, h, f

〉
⊆ l to be the image of h under the projection p = l ⊕ u → l where

we write u = Lie(U) for the unipotent radical U of P . We have that h cannot be

contained in a parabolic p′ of l, as p′ ⊕ u ⊂ p is a parabolic of g which contradicts

the minimality of p. Hence h is irreducible in l.

Note that e is in the closure of G · e, and hence as V is closed we have that

e ∈ V . Consider V(l) ⊆ N (l), defined to be the nilpotent subvariety containing

all x ∈ N (l) such that x[p] = 0, and x is not regular nilpotent in any l1 = Lie(L1)

where L1 ⊆ L is a Levi subgroup of L and L′
1
∼= SLp(k) or PGLp(k). We claim

that e ∈ V(l). It follows immediately from e ∈ V that e[p] = 0. Suppose that e
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is regular nilpotent in some l1 with L1 ⊆ L is a Levi subgroup and L′
1
∼= SLp(k)

or PGLp(k). Then L1 ⊆ G a Levi subgroup of G, and hence this contradicts that

e ∈ V . The same argument holds for f , and hence we conclude that e, f ∈ V(l).

Recall the standard sl2-triples as discussed in §4.1. Then we claim that (e, h, f) ∈ l

is the standard sl2-triple in l with e ∈ l distinguished; we have that h is

L-completely reducible, and hence it follows that h is G-completely reducible by

Lemma 2.1.32.

We prove this inductively on the semisimple rank of L, that is, the rank of L′.

Consider L′ = [L, L], and suppose that the rank of L′ is equal to n. If l′ = Lie(L′)

is simple, then we use either Theorem 5.0.1 for the groups of classical type, or

Theorem 6.0.1 for the lower rank groups of exceptional type to see that (e, h, f) is

uniquely determined, and hence is the standard sl2-triple for e.

Otherwise, if l is not simple, then we consider the simple components of l,

each of rank strictly less than n. We embed (e, h, f) into each of the simple

components and note that by the inductive hypothesis the sl2-triple contained in

each component is uniquely defined up to conjugacy. Hence (e, h, f) is uniquely

determined, and is the standard sl2-triple for e in l.

We claim that e ∈ l is distinguished, so suppose for contradiction that e is not

distinguished in l. Then e is contained in a proper Levi subalgebra l1 of l in which

e is distinguished. Construct a standard sl2-triple in l1, which we denote (e, h1, f1).

Recall that the standard sl2-triples are uniquely determined up to the choice of

maximal torus, and so (e, h1, f1) is conjugate to (e, h, f) and we can assume that

(e, h, f) ∈ l1. Therefore h ⊆ p1 = l1 ⊕ u ⊂ p, where p1 is a parabolic of g. This

contradicts the minimality of p, and hence e ∈ l is distinguished.
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Up to conjugacy we can determine (e, h, f). Take the Jordan decomposition of h,

written h = hs + hn. We have that h is semisimple, and hence hn = 0. We also

have hs = hs because hs ∈ t ⊆ l, and so we deduce that h = hs.

Recall that as (e, h, f) is a standard sl2-triple, h is defined to be dλ(1) for some

associated cocharacter λ : k∗ → T . We can lift h to this associated cocharacter

λ, and so the h-module structure on u lifts to a compatible (λ(k∗), h)-module. By

this we mean that for x ∈ u we have that if λ(t) · x = tmx then [h, x] = mx. Note

that this is a powerful condition, as we have u = ⊕
j∈Z u(j; λ).

6.2.2 Cohomology condition

We continue notation as in §6.2.1. That is, we take h = ⟨e, h, f⟩ to be an

sl2-subalgebra of g with e, f ∈ V . We choose P to be a parabolic subgroup of

G such that p = Lie(P ) is a minimal subalgebra of g subject to containing h. We

choose T to be a maximal torus of P such that hs ∈ t = Lie(T ), and take l to be a

Levi factor of p that contains t. Take h to be the image of h under the projection

p = l⊕ u→ p, where u is the nilradical of p. We state the following lemmas which

give necessary conditions for h to be G-completely reducible.

Lemma 6.2.1. [ST18, Statement (4), pg. 13] Suppose h is non-G-completely

reducible. There exists an h composition factor of u isomorphic to L(p− 2).

Lemma 6.2.2. Suppose h is non-G-completely reducible. Let T be the maximal

torus of P chosen so that h ∈ Lie(T ). Then there exists some set of positive roots

α1, . . . , αt of G with respect to T such that the submodule generated by eαi
has

head isomorphic to L(p− 2), the λ-eigenvalues of αi are equal to 2− kip for some

ki ∈ Z, and e′ = s1eα1 + · · ·+ steαt for some s1, . . . , st ∈ Fp.
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Proof. Suppose that we have some non-G-completely reducible sl2-subalgebra, h =

⟨e, h, f⟩ ⊆ g = Lie(G). By Lemma 6.2.1 there exists an h composition factor of u

isomorphic to L(p− 2), the irreducible sl2-module of highest weight p− 2.

For each positive root α of G the value of ⟨α, λ⟩ ∈ Z, the λ-eigenvalue of α, can

be deduced from the cocharacters given in [LT11]. The reduction of this modulo

p corresponds to the ad h-eigenvalue of eα. Note that there exists a weight of a

composition factor isomorphic to L(p− 2) that is equal to 2− p.

It follows from the proof of Statement (4) of Stewart–Thomas in [ST18] that e′ is

formed from sums of eαi
such that αi is in the (2− kp) λ-eigenspace in L(p− 2) as

(e + e′, h + h′, f + f ′) is non-G-completely reducible. Thus e′ = s1eα1 + · · ·+ steαt

as stated.

It follows from Lemma 6.2.2 and the analogous result for f ′ that any

non-G-completely reducible sl2-triple is of the form (e + e′, h, f + f ′) where:

• e′ = ∑
sjeαj

for some αj in the (2 − kp) λ-eigenspace in some L(p − 2)

composition factor of u for some k ∈ Z>0, and sj ∈ Fp;

• f ′ = ∑
qjfβj

for some βj in the (kp − 2) λ-eigenspace in some L(p − 2)

composition factor of u for some k ∈ Z>0, and qj ∈ Fp.

We note that the 0 λ-eigenspace in any L(p − 2) composition factor of u is 0, so

h′ = 0.

We proceed by showing that there does not exist any such e′, f ′ ̸= 0 so that

e + e′, f + f ′ ∈ V and h is non-G-completely reducible.
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6.2.3 Summary of techniques used

To now complete the proof of part (a) of Theorem 6.0.1 we show that there do not

exist any non-G-completely reducible sl2-subalgebras h = ⟨e, h, f⟩ with e, f ∈ V ,

where V is the nilpotent variety as defined in Theorem 6.0.1. We describe the

method taken for each group of exceptional type below, but we recommend the

reader simultaneously consult §6.3 for an example done by hand for G of type G2.

As described in §6.2 we can find some minimal parabolic p containing h. We

consider each parabolic p of g up to conjugacy, and show that in each case if

h = ⟨e, h, f⟩ with e, f ∈ V is such that p is the minimal parabolic subject to

containing h then h much be G-completely reducible. As above, we take T to be

the torus chosen so that h ∈ Lie(T ).

We consider each e which is distinguished in l in turn. We then let e be some sum

e = e + s1eα1 + · · · + steαt , for roots α1, . . . , αt and s1, . . . , st ∈ Fp, where eαi
has

λ-eigenvalue equal to 2 − kip for some ki ∈ Z. Finally, using one of the following

four tools, we show that h =
〈
e, h, f

〉
is G-completely reducible or e /∈ V .

Tool number 1: Take the cocharacter λ for e as in [LT11]. For each positive

root α of G with respect to T in the nilradical of p, use MAGMA to calculate the

λ-eigenvalue of eα. If there are no α with λ-eigenvalue (2 − kp) for some k ≥ 1

then we may immediately deduce that e = e, and h is G-completely reducible by

Lemma 6.2.2.

Tool number 2: Suppose there exist some positive roots α1, . . . , αt with

λ-eigenvalue equal to (2 − kip) for some si ∈ ki ≥ 1. Consider the nilpotent

elements e := e + e′ where e′ = s1eα1 + · · · + steαt for some Fp. In these cases
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we calculate the nilpotent orbit of e. If e is not contained in V , then we have a

contradiction and can rule out this case.

In order to calculate the nilpotent orbit of e we compute basic properties of e using

MAGMA and then apply the following lemma.

Lemma 6.2.3. The nilpotent orbit of e can be uniquely determined by the following

three properties: the dimension of the centraliser of e; the dimension of the centre

of the centraliser of e; and the dimensions of terms in the derived series of the

nilradical of the centraliser.

There are a finite number of nilpotent orbits in each of the Lie algebras of the

simple algebraic groups of type G2, F4, E6, E7 and E8, and hence we can calculate

this list of properties for each orbit and determine that this list of invariants is

enough to classify each orbit.

We remark that [KST22, Theorem 1.2] yields a similar classification of nilpotent

classes of the exceptional algebraic groups. Under our restrictions on p, this result

tells us that we can determine the nilpotent orbit of e using information on Jordan

block sizes.

If e is contained in V then there is more to consider. At this point we analyse

the module structure of the nilradical to determine for each αi if there is a factor

isomorphic to L(p − 2) containing αi. This analysis is done on a case-by-case

basis for each relevant parabolic. If there is no such factor then we deduce by

Lemma 6.2.1 that h is G-completely reducible. We approach this in one of the

following two ways.

Tool number 3: For each αi, determine the u-composition factor containing eαi
.
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If this is not L(p − 2) for each i, then we conclude by Lemma 6.2.1 that h is

G-completely reducible.

Tool number 4: In the case where e and e are in the same nilpotent orbit we

show that there exists an element of G that conjugates e to e, but commutes

with h and f . Recall from §6.2.1 that h is G-completely reducible, and hence h is

G-completely reducible.

In order to give such an element of G, we give a certain root α of G, and take

xα(t) := exp(t ad eα). It follows from [Car89, §4.4] that xα(t) is an element of G,

and we then use the formulas given in [Car89, §4.4] to show that xα(1) conjugates

(e, h, f) to (e + e′, h, f).

We give the following lemma to reduce the amount of work needed in each case.

Lemma 6.2.4. Let e ∈ N be a distinguished nilpotent element in l, where l =

Lie(L) for some Levi subgroup of G. Take (e, h, f) to be a standard sl2-triple,

where h is defined to be dλ(1) for some associated cocharacter λ : k∗ → T . Let α

be a positive simple root of g, and consider xα(1). Then

(a) if ⟨α, λ⟩ = 0, then xα(1) · h = h; and

(b) if f is the sum of negative root vectors in l, and eα /∈ l, then xα(1) · f = f .

Proof. First suppose that ⟨α, λ⟩ = 0, then by the formulas given in [Car89, §4.4]

we have

xα(1) · h = h− [eα, h] = h.

Next suppose that f is the sum of negative root vectors in l ⊆ g. It is clear that

no roots can be obtained by adding α /∈ l to a negative root in l, and hence xα(1)
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commutes with f .

We now explain why these four tools are enough to prove that for all (e, h, f)

with e, f ∈ V we have that h = ⟨e, h, f⟩ is G-completely reducible. Suppose for a

contradiction that there exist (e, h, f) with e, f ∈ V so that h = ⟨e, h, f⟩ ∼= sl2(k)

is non-G-completely reducible. Recall that e is distinguished in some proper Levi

of g. In §6.2.2 we explain that (e, h, f) can be written as (e + e′, h, f + f ′) where

(e, h, f) is a standard sl2-triple for e, and

• e′ = ∑
sjeαj

for some αj in the (2− kp) λ-eigenspace, eαj
in some L(p− 2)

composition factor of u, and sj ∈ Fp; and

• f ′ = ∑
qjfβj

for some βj in the (kp− 2) λ-eigenspace, fβj
in some L(p− 2)

composition factor of u, and qj ∈ Fp.

Hence we consider all such elements e + e′ and show using tools number 1-4 that

one of the following holds:

(a) no α exist so that α is in the (2 − kp) λ-eigenspace in some L(p − 2)

composition factor of u;

(b) e + e′ /∈ V ; or

(c) there exists some g ∈ G such that g · e = e + e′, and g commutes with both

h and f .

To conclude we note that in case (a) we have e + e′ = e; case (b) cannot occur as

we have assumed that e+e′ ∈ V ; and in case (c) we have that (e, h, f) is conjugate

to (e, h, f + f ′′) where f ′′ is equal to g−1 · f ′.
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Recall that (f +f ′′,−h, e) is also an sl2-triple, for which we can use the same tools

to conclude that f + f ′′ is either f or conjugate to f without changing h or e.

Hence we conclude that h = ⟨e, h, f⟩ ∼= sl2(k) is G-completely reducible when

e, f ∈ V .

6.3 Worked example for G of type G2

Let G be of type G2. Recall that h(G2) = 6 and so we are left to consider p = 5.

Observe from Table 6.3 that V contains the classes G2(a1), Ã1, A1.

There are 4 distinct non-conjugate parabolic subalgebras of g, however we may

immediately rule out G itself, and the Borel. Thus we are left with two cases to

consider: p1 the parabolic subalgebra with distinguished element e10, and p2 the

parabolic subalgebra with distinguished element e01.

First suppose that h = ⟨e, h, f⟩ with e, f ∈ V is such that p1 is the minimal

parabolic containing h. Here we take e = e10.

We calculate the λ-eigenvalue of eα for each positive root α of G with respect to

T in the nilradical of p1. It follows from [LT11, pg 73] that the λ-eigenvalue of

ea1a2 ∈ u is given by 2a1 − 3a2. We output these eigenvalues in Table 6.1.

(a1, a2) (0, 1) (1, 1) (2, 1) (3, 1) (3, 2)
λ-eigenvalue −3 −1 1 3 0

Table 6.1: λ-eigenvalues of ea1a2 ∈ u for p1

We see that e01 is the only eα ∈ u with λ-eigenvalue of the form 2 − kp for some

k ∈ Z.

Tool number 2: We calculate the nilpotent orbit of e = e01 + e10. It is clear that
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e is regular in G2, and hence e /∈ V . Thus we deduce that all h = ⟨e, h, f⟩ with

e, f ∈ V and e = e10 are G-completely reducible.

Now suppose that h = ⟨e, h, f⟩ with e, f ∈ V is such that p2 is the minimal

parabolic subject to containing h. Here we take e = e01.

It follows from [LT11, pg 72] that the λ-eigenvalue of ea1a2 ∈ u is given by a1−2a2.

We output these eigenvalues in Table 6.2.

(a1, a2) (1, 0) (1, 1) (2, 1) (3, 1) (3, 2)
λ-eigenvalue 1 −1 0 1 −1

Table 6.2: λ-eigenvalues of ea1a2 ∈ u for p2

Tool number 1: There are no positive roots α with λ-eigenvalue equal to 2− kp

for any k ∈ Z. Hence we deduce that h = ⟨e, h, f⟩ is G-completely reducible.

Thus we deduce that Theorem 6.0.1(a) holds for G of type G2.

6.4 Case-by-case analysis

For the remaining algebraic groups of exceptional type computations are

completed using MAGMA. Throughout this section we continue using the notation

established in §6.2. In each case, we follow the steps detailed in §6.2.3, applying

tools number 1 and 2 immediately, and providing a more detailed analysis when

we use tool numbers 3 and 4.

6.4.1 G of type F4

Let G be of type F4, and note that h(F4) = 12 and so we consider p ∈ {5, 7, 11}.

We refer the reader to Table 6.5 for a list of classes not contained in V for each p.
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For p = 11 tools number 1 and 2 given in §6.2.3 are sufficient to deduce that all

h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible.

Let p = 7, following the use of tools number 1 and 2 from §6.2.3 we are left to

consider only the parabolic containing distinguished element e = e0100+e0010+e0001.

The nilpotent element e = e0100 + e0010 + e0001 represents the C3 orbit in F4. For

any root α we have ⟨α, λ⟩ is given by −9a1 + 2a2 + 2a3 + 2a4 by [LT11, pg. 78].

Hence β = 1110 satisfies ⟨β, λ⟩ = −5.

We now use tool number 3. By further examination of the roots we see that 1000

has eigenvalue −9 with respect to λ, and this is the lowest possible λ-eigenvalue.

In characteristic 7 we see that there is no simple module of highest weight 9. We

see that β is the only simple root with λ-eigenvalue equal to −5, so we have that

eβ is in a u composition factor that is isomorphic to L(2). Hence there is no

composition factor isomorphic to L(5) and hence there is no non-G-completely

reducible sl2-triple with nilpotent element e = e + se1110 for any s ∈ Fp.

We conclude that all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible.

Finally, let p = 5, then tools number 1 and 2 given in §6.2.3 are sufficient to deduce

that all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible in all but two cases.

(a) Let e = e1000 + e0010 + e0001 be the representative of the Ã2 + A1 orbit in

F4. Then for any root α we have ⟨α, λ⟩ is given by 2a1 − 5a2 + 2a3 + 2a4 by

[LT11, pg. 76]. We see that β1 = 1100 and β2 = 0110 are the only roots in

u that satisfy ⟨βi, λ⟩ = −3, and so we consider the sums

e = e +
2∑

i=1
siβi where si ∈ Fp.
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Using calculations in MAGMA and Lemma 6.2.3 we see that the only such

sums that are contained in V are of the form e+se1100−se0110, each of which

is contained in the Ã2 + A1 orbit.

We proceed with tool number 4. Let e2 = e0100 and set x2(t) = exp(t ad e2).

It follows from the formulas in [Car89, §4.4] that

x2(s) · e = e + se1100 − se0110.

By Lemma 6.2.4 we have that x2(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e + se1100 − se0110, h, f) are conjugate sl2-triples, and hence

h =
〈
e + se1100 − se0110, h, f

〉
is G-completely reducible.

(b) Take the nilpotent element e = e0100 + e0001 + e0120 to be the representative

of the C3(a1) orbit. Then for any root α we have ⟨α, λ⟩ is given by −5a1 +

2a2 + 2a4 by [LT11, pg. 77]. We note that

β1 = 1100, β2 = 1110, β3 = 1120

satisfy ⟨βi, λ⟩ = −3. Hence we consider the sums

e = e +
3∑

i=1
siβi where si ∈ Fp.

Using calculations in MAGMA and Lemma 6.2.3 we observe that the only

such sums that are contained in V are of the form e + se1100 + se1120, each of

these is contained in the C3(a1) orbit.

We proceed with tool number 4. Let e1 = e1000 and set x1(t) = exp(t ad e1).
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It follows from the formulas in [Car89, §4.4] that

x1(s) · e = e + se1100 + se1120.

By Lemma 6.2.4 we have that x1(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e + se1100 + se1120, h, f) are conjugate sl2-triples, and hence

h =
〈
e + se1100 + se1120, h, f

〉
is G-completely reducible.

6.4.2 G of type E6

Let G be of type E6. Recall that h(E6) = 12 and so we are left to consider

p ∈ {5, 7, 11}. We refer the reader to Table 6.5 for a list of classes not contained

in V for each p.

For p ∈ {5, 11}, tools number 1 and 2 given in §6.2.3 are sufficient to deduce that

all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible.

Hence we consider p = 7, for which there are 4 remaining cases to consider in more

detail following the application of tools number 1 and 2.

(a) First take e = e100
0
00 +e010

0
00 +e001

0
00 +e000

0
10 +e000

0
01 to represent the A5 orbit.

Then ⟨α, λ⟩ is given by 2a1 − 9a2 + 2a3 + 2a4 + 2a5 + 2a6.

Observe that β1 = 011
1
00 and β2 = 001

1
10 have λ-eigenvalue −5. Consider

the sums e = e + s1eβ1 + s2eβ2 , for s1, s2 ∈ Fp. Then using calculations in

MAGMA and Lemma 6.2.3 we observe that e ∈ V if and only if s2 = −s1,

and each element of this form is contained in the A5 orbit.
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We proceed with tool number 4 and consider e8 = e001
1
00 and set x8(t) =

exp(t ad e8). It follows from the formulas in [Car89, §4.4] that

x8(s) · e = e + seβ1 − seβ2 .

By Lemma 6.2.4 we have that x8(s) centralises h and f .

Hence we deduce that x8(s) conjugates (e, h, f) to (e + seβ1 − seβ2 , h, f) and

h =
〈
e + seβ1 − seβ2 , h, f

〉
is G-completely reducible.

(b) Now let e = e100
0
00 +e000

1
00 +e001

0
00 +e000

0
10 +e000

0
01 represent an A4 +A1 orbit.

Then we have ⟨α, λ⟩ is given by 2a1 + 2a2 − 7a3 + 2a4 + 2a5 + 2a6.

Observe that β1 = 110
0
00 and β2 = 011

0
00 have λ-eigenvalue −5. Consider

e = e + s1eβ1 + s2eβ2 , for s1, s2 ∈ Fp. Then using calculations in MAGMA

and Lemma 6.2.3 we observe that e ∈ V if and only if s2 = −s1, in which

case e is contained in the A4 + A1 orbit.

We proceed with tool number 4 and consider e3 = e010
0
00 and set x3(t) =

exp(t ad e3). It follows from the formulas in [Car89, §4.4] that

x3(s) · e = e + seβ1 − seβ2 .

By Lemma 6.2.4 we have that x3(s) centralises h and f .

We deduce that x3(s) conjugates (e, h, f) to (e + seβ1 − seβ2 , h, f) and hence

h =
〈
e + seβ1 − seβ2 , h, f

〉
is G-completely reducible.

(c) Now let e100
0
00 + e000

1
00 + e010

0
00 + e001

0
00 + e000

0
01 represent an A4 + A1 orbit.

Then we have ⟨α, λ⟩ is given by 2a1 + 2a2 + 2a3 + 2a4 − 7a5 + 2a6.

Observe that β1 = 001
0
10 and β2 = 000

0
11 have λ-eigenvalue −5. Consider
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e = e + s1eβ1 + s2eβ2 , for s1, s2 ∈ Fp. Then e ∈ V if and only if s2 = −s1,

and these are each contained in the A4 + A1 orbit.

We proceed with tool number 4 and consider e5 = e000
0
10 and set x5(t) =

exp(t ad e5). It follows from the formulas in [Car89, §4.4] that

x5(s) · e = e + seβ1 − seβ2 .

By Lemma 6.2.4 we have that x5(s) centralises h and f .

We deduce that x5(s) conjugates (e, h, f) to (e + seβ1 − seβ2 , h, f) and hence

h =
〈
e + seβ1 − seβ2 , h, f

〉
is G-completely reducible.

(d) Finally let e100
0
00 +e000

1
00 +e010

0
00 +e000

0
10 +e001

1
00 +e001

0
10 be a representative of

the D5(a1) orbit. Then we have ⟨α, λ⟩ is given by 2a1 +2a2 +2a3 +2a5−7a6.

Observe that β1 = 000
0
11 and β2 = 001

0
11 have λ-eigenvalue −5. Consider

e = e + s1eβ1 + s2eβ2 , for s1, s2 ∈ Fp. Then using calculations in MAGMA

and Lemma 6.2.3 we observe that e ∈ V if and only if s2 = s1, in which case

e is contained in the D5(a1) orbit.

We proceed with tool number 4 and consider e6 = e000
0
01 and set x6(t) =

exp(t ad e6). It follows from the formulas in [Car89, §4.4] that

x6(s) · e = e + seβ1 + seβ2 .

By Lemma 6.2.4 we have that x6(s) centralises h and f .

We deduce that x6(s) conjugates (e, h, f) to (e + seβ1 + seβ2 , h, f) and hence

h =
〈
e + seβ1 + seβ2 , h, f

〉
is G-completely reducible.
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6.4.3 G of type E7

Let G be of type E7. Recall that h(E7) = 18 and so we are left to consider

p ∈ {5, 7, 11, 13, 17}. We refer the reader to Table 6.6 for a list of classes not in V

for each p.

Let p ∈ {11, 17}, then tools number 1 and 2 given in §6.2.3 are sufficient to deduce

that all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible.

Let p = 13, then tools number 1 and 2 given in §6.2.3 leave one remaining case for

further analysis.

Take e = e000
1
000 +e010

0
000 +e001

0
000 +e000

0
100 +e000

0
010 +e000

0
001 to be the representative

of the D6 orbit. We have ⟨α, λ⟩ is given by −15a1 +2a2 +2a3 +2a4 +2a5 +2a6 +2a7.

Observe that β = 111
0
000 has λ-eigenvalue −11. We use tool number 3, and consider

the module structure of the nilradical to see that 100
0
000 has λ-eigenvalue equal

to −15, and β is the only root with λ-eigenvalue equal to −11. Therefore eβ is

contained in a u composition factor that is isomorphic to L(2). Hence there is no

composition factor of u that is isomorphic to L(13), and so by Lemma 6.2.1 we

have h is G-completely reducible.

Let p = 7. Following the application tools number 1 and 2 given in §6.2.3 we are

left to consider the following nine cases.

(a) Take e = e100
0
000+e000

1
000+e001

0
000+e000

0
100+e000

0
010+e000

0
001 which represents the

A5+A1 orbit. We have ⟨α, λ⟩ is given by 2a1+2a2−9a3+2a4+2a5+2a6+2a7,

and hence β = 111
0
000 yields an eigenvalue of −5.

We use tool number 2 and are left to consider e = e + seβ for s ∈ Fp. Using
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calculations in MAGMA and Lemma 6.2.3 we observe that e is in the A5+A1

orbit for each s ∈ Fp.

We proceed using tool number 4 and consider e8 = e110
0
000 and set x8(t) =

exp(t ad e8). It follows from the formulas in [Car89, §4.4] that

x8(s) · e = e + seβ.

By Lemma 6.2.4, x8(s) centralises both h and f .

Thus we have completed the steps required for tool number 4, and see

that (e, h, f) and (e + seβ, h, f) are conjugate sl2-triples, and hence h =〈
e + seβ, h, f

〉
is G-completely reducible.

(b) Let e = e000
1
000 + e010

0
000 + e001

0
000 + e000

0
100 + e000

0
010 + e000

0
001, represent the D6

orbit, then ⟨α, λ⟩ is given by −15a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7. We

see that

β1 = 112
1
100, β2 = 111

1
110, β3 = 111

0
111

have λ-eigenvalue equal to −5.

We use tool number 2 and are left to consider e = e + reβ1 + seβ2− (r + s)eβ3

which is in the D6 orbit for any r, s ∈ Fp. We use tool number 4 to show that

h =
〈
e, h, f

〉
is G-completely reducible. Let e26 = e111

1
100 and e27 = e111

0
110

and set xi(t) = exp(t ad ei). Then by the formulas in [Car89, §4.4] we have

that

x26(r) · (x27(r + s) · e) = e + reβ1 + seβ2 − (r + s)eβ3 .

By Lemma 6.2.4 we have that x26(s) and x27(r + s) commute with h and f

and hence we have that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is G-completely reducible.
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(c) Let e = e100
0
000 +e000

1
000 +e010

0
000 +e001

0
000 +e000

0
100 +e000

0
001 be a representative

of the D5 + A1 orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a2 + 2a3 + 2a4 + 2a5 −

11a6 + 2a7. We see that

β1 = 001
1
110, β2 = 011

0
110, β3 = 001

0
111

have λ-eigenvalue equal to −5.

We use tool number 2 and are left to consider e = e+seβ1 +seβ2 +reβ3 which

is in the D5 + A1 orbit for r, s ∈ F. Then we use tool number 4 to show that

h =
〈
e, h, f

〉
is G-completely reducible. Let e18 = e001

0
110 and e19 = e000

0
111

and set xi(t) = exp(t ad ei). Then by the formulas in [Car89, §4.4] we have

that

x18(s) · (x19(r − s) · e) = e + seβ1 + seβ2 + reβ3 .

By Lemma 6.2.4 we have that x18(s) and x19(r − s) commute with h and f

and hence we have that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is G-completely reducible.

(d) Let e = e100
0
000 +e001

0
000 +e000

0
100 +e000

0
010 +e000

0
001 represent the A4 +A1 orbit.

Then ⟨α, λ⟩ is given by 2a1− 4a2− 5a3 + 2a4 + 2a5 + 2a6 + 2a7. We see that

β1 = 010
0
000, β2 = 111

1
000, β3 = 011

1
100

all have λ-eigenvalue equal to −5.

We use tool number 2, and are left to consider e = e + seβ2 − seβ3 which is

in the A4 + A1 orbit for s ∈ Fp. Then we use tool number 4 to show that

h =
〈
e, h, f

〉
is G-completely reducible. Let e15 = e011

1
000 and set x15(t) =
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exp(t ad e15). Then by the formulas in [Car89, §4.4] we have that

x15(s) · e = e + seβ2 − seβ3 .

By Lemma 6.2.4 we have that x15(s) centralises h and f and hence we have

that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is G-completely

reducible.

(e) Let e = e100
0
000 +e010

0
000 +e001

0
000 +e000

0
100 +e000

0
001 represent an A4 +A1 orbit.

Then ⟨α, λ⟩ is given by 2a1− 6a2 + 2a3 + 2a4 + 2a5− 5a6 + 2a7. We see that

β1 = 000
0
010, β2 = 011

1
110, β3 = 001

1
111

have λ-eigenvalue equal to −5.

Following the application of tool number 2, we are left to consider e =

e + seβ2 − seβ3 which is in the A4 + A1 orbit for s ∈ Fp. Then we use

tool number 4 to show that h =
〈
e, h, f

〉
is G-completely reducible. Let

e21 = e001
1
110 and set x21(t) = exp(t ad e21). Then by the formulas in [Car89,

§4.4] we have that

x21(s) · e = e + seβ2 − seβ3 .

By Lemma 6.2.4 we have that x21(s) centralises h and f and hence we have

that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is G-completely

reducible.

(f) Let e = e010
0
000 + e001

0
000 + e000

0
100 + e000

0
010 + e000

0
001 represent the (A5)′ orbit.

Then ⟨α, λ⟩ is given by −5a1− 8a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7. There are

four positive simple roots with λ-eigenvalue equal to −5. Following the use
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of tool number 2, we consider

β1 = 112
1
100, β2 = 111

1
110.

We have that e = e + seβ1 − seβ2 is in the (A5)′ orbit for s ∈ Fp. Then

we use tool number 4 to show that (e, h, f) is G-completely reducible. Let

e26 = e111
1
100 and set x26(t) = exp(t ad e26). Then by the formulas in [Car89,

§4.4] we have that

x26(s) · e = e + seβ1 − seβ2 .

By Lemma 6.2.4 we have that x26(s) centralises h and f and hence we have

that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is G-completely

reducible.

(g) Let e = e000
1
000 +e010

0
000 +e001

0
000 +e000

0
100 +e000

0
001 represent the D4 +A1 orbit.

Then ⟨α, λ⟩ is given by −6a1 + 2a2 + 2a3 + 2a4 + 2a5− 7a6 + 2a7. There are

four positive simple roots with λ-eigenvalue equal to −5, these are given by

β1 = 000
0
110, β2 = 000

0
011, β3 = 111

1
110, β4 = 111

0
111.

Following the application of tool number 2, we are left to consider e =

e + seβ1 − seβ2 + reβ3 − reβ4 which is in the D4 + A1 orbit for r, s ∈ Fp. Then

we use tool number 4 to show that h =
〈
e, h, f

〉
is G-completely reducible.

Let e6 = e000
0
010 and e27 = e111

0
110 set xi(t) = exp(t ad ei). Then by the

formulas in [Car89, §4.4] we have that

x6(s) · (x27(r) · e) = e + seβ1 − seβ2 + reβ3 − reβ4 .
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By Lemma 6.2.4 we have that x6(s) and x27(r) commute with h and f and

hence we have that (e, h, f) is conjugate to (e, h, f) and thus h =
〈
e, h, f

〉
is

G-completely reducible.

(h) Take e = e100
0
000 + e000

1
000 + e010

0
000 + e000

0
100 + e001

1
000 + e001

0
100 to be the

representative of the D5(a1) orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a2 + 2a3 +

2a5− 7a6, and there are four simple roots with a λ-eigenvalue of −5, namely

β1 = 000
0
110, β2 = 001

0
110, β3 = 000

0
111, β4 = 001

0
111.

Following the application of tool number 2, we consider e = e + seβ1 + seβ2 +

reβ3 + reβ4 which is in the D5(a1) orbit for any r, s ∈ Fp. We show that

(e, h, f) is conjugate to (e, h, f).

Consider e6 = e000
0
010 and e13 = e000

0
011 and set xi(t) = exp(t ad ei).

By the formulas in [Car89, §4.4] we have

x6(s) · (x13(r) · e) = e + seβ1 + seβ2 + reβ3 + reβ4 .

By Lemma 6.2.4 we have that x6(s) and x13(r) commute with h and f .

Hence we have shown that in each case (e, h, f) is conjugate to the standard

sl2-triple and hence h is G-completely reducible.

(i) Take e = e000
1
000 + e010

0
000 + e000

0
001 + e001

1
000 − e011

0
000 + e001

0
100 + e000

0
110 to be

a representative of the orbit D6(a2). Then ⟨α, λ⟩ is given by −9a1 + 2a2 +

2a3 + 25 + 2a7, and there are three simple roots α with −5 eigenvalue, these

are

β1 = 111
1
000, β2 = 111

0
100, β3 = 111

0
110
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Following the application of tool number 2, we consider elements of the form

e = e + (s − r)eβ1 + seβ2 + reβ3 which are in the D6(a2) orbit for r, s ∈ Fp,

and we use tool number 4 to see that (e, h, f) is conjugate to (e, h, f).

Consider e8 = e110
0
000 and e14 = e111

0
000 and set xi(t) = exp(t ad ei).

Then by the formulas in [Car89, §4.4] we have that

x8(s) · (x16(r) · e) = e + (s− r)eβ1 + seβ2 + reβ3 .

It follows from Lemma 6.2.4 that both x8(s) and x16(r) commute with h and

f . Thus we have completed the required steps for tool number 4 and see

that (e, h, f) is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is G-completely

reducible.

Finally let p = 5, then tools number 1 and 2 given in §6.2.3 are sufficient to deduce

that all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible in all but two cases.

(a) Take e = e100
0
000 + e010

0
000 + e000

0
100 + e000

0
010 + e000

0
001 to represent the A3 + A2

orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a3 − 5a4 + 2a5 + 2a6 + 2a7. There are

four simple roots α with −3 eigenvalue, these are

β1 = 011
0
000, β2 = 001

0
100, β3 = 011

1
100, β4 = 001

1
100.

Following the application of tool number 2, we consider the elements of the

form e = e + reβ1 − reβ2 + seβ3 − seβ4 which are in the A3 + A2 orbit for

r, s ∈ Fp. We use tool number 4 to see that (e, h, f) is conjugate to (e, h, f).

Consider e4 = e001
0
000 and e9 = e001

1
000 and set xi(t) = exp(t ad ei).
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Then by the formulas in [Car89, §4.4] we have that

x4(r) · (x9(s) · e) = e + reβ1 − reβ2 + seβ3 − seβ4 .

It follows from Lemma 6.2.4 that both x4(r) and x9(s) commute with h and

f . Thus we have completed the required steps for tool number 4 and see

that (e, h, f) is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is G-completely

reducible.

(b) Take e = e000
1
000 + e010

0
000 + e000

0
100 + e000

0
001 + e001

1
000 + e001

0
100 to represent the

D4(a1)+A1 orbit. Then ⟨α, λ⟩ is given by −4a1 +2a2 +2a3 +2a5−5a6 +2a7.

There are six simple roots α with −3 eigenvalue, these are

β1 = 000
0
110, β2 = 000

0
011, β3 = 001

0
110,

β4 = 111
1
110, β5 = 111

0
111, β6 = 112

1
110.

Following the application of tool number 2 we consider the elements of the

form e = e+reβ1−reβ2 +reβ3 +seβ4−seβ5−seβ6 which are in the D4(a1)+A1

orbit for r, s ∈ Fp, and we use tool number 4 to see that (e, h, f) is conjugate

to (e, h, f).

Consider e6 = e000
0
010 and e27 = e111

0
110 and set xi(t) = exp(t ad ei).

Then by the formulas in [Car89, §4.4] we have that

x6(r) · (x27(s) · e) = e + reβ1 − reβ2 + reβ3 + seβ4 − seβ5 − seβ6 .

It follows from Lemma 6.2.4 that both x6(r) and x27(s) commute with h and

f . Thus we have completed the required steps for tool number 4 and see
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that (e, h, f) is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is G-completely

reducible.

6.4.4 G of type E8

Let G be of type E8. Recall that h(E8) = 30 and so we are left to consider

p ∈ {7, 11, 13, 17, 19, 23, 29}. Note we no longer have to consider p = 5, as 5 is

not a good prime for E8. We refer the reader to Table 6.7 for a list of classes not

contained in V for each p.

Let p = 29, then tools number 1 and 2 given in §6.2.3 are sufficient to deduce that

all h = ⟨e, h, f⟩ with e, f ∈ V are G-completely reducible.

Next let p = 23. The application of tools number 1 and 2 given in §6.2.3 leave one

remaining case for further analysis, which we approach with tool number 3.

Take e = e100
0
0000+e000

1
0000+e010

0
0000+e001

0
0000+e000

0
1000+e000

0
0100+e000

0
0010 to represent

the E7 orbit. Then ⟨α, λ⟩ is given by 2a1 +2a2 +2a3 +2a4 +2a5 +2a6 +2a7−27a8.

Hence β = 000
0
1111 has an λ-eigenvalue of −21. Observe that 000

0
0001 has λ-eigenvalue

equal to −27. We have that β is the only root with λ-eigenvalue equal to −21 and

hence we determine that eβ is contained in an L(4) composition factor of u and

e + seβ cannot be part of a non-G-completely reducible sl2-triple for any s ∈ Fp.

We next consider p = 19, then following the application of tools number 1 and 2

there are three remaining cases to look at.

(a) First take e = e000
1
0000+e010

0
0000+e001

0
0000+e000

0
1000+e000

0
0100+e000

0
0010+e000

0
0001

to represent the D7 orbit, then ⟨α, λ⟩ is given by −21a1 + 2a2 + 2a3 + 2a4 +

2a5 + 2a6 + 2a7 + 2a8. Hence β = 111
0
0000 has λ-eigenvalue equal to −17.
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We use tool number 3 here, and observe that 100
0
0000 has λ-eigenvalue −21.

Given that β is the only root with λ-eigenvalue equal to −17, the composition

factor of u containing eβ is isomorphic to L(2).

Hence there is no composition factor isomorphic to L(17), and so by

Lemma 6.2.1 we have h is G-completely reducible.

(b) Now let e = e100
0
0000 + e010

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e001

1
0000 + e011

0
0000

represent the E7(a1) orbit, then we have ⟨α, λ⟩ is given by 2a1 + 2a2 + 2a3 +

2a5 + 2a6 + 2a7 − 21a8. Then β = 000
0
0111 is the only root with λ-eigenvalue

−17.

We use tool number 3 and see that 000
0
0001 has eigenvalue −21, and so the

composition factor of u containing eβ is isomorphic to L(2).

Hence there is no composition factor isomorphic to L(17), and so by

Lemma 6.2.1 we have h is G-completely reducible.

(c) Now take e = e100
0
0000 +e000

1
0000 +e010

0
0000 +e001

0
0000 +e000

0
1000 +e000

0
0100 +e000

0
0010

to be the representative of the D7 orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a2 +

2a3 + 2a4 + 2a5 + 2a6 + 2a7 − 27a8.

We see that β1 = 001
1
1111 and β2 = 011

0
1111 have λ-eigenvalue −17.

Following the application of tool number 2, we are left to consider e =

e + seβ1 + seβ2 for s ∈ Fp, then e is in the D7 nilpotent orbit. Consider

e36 = e001
0
1111 and set x36(t) = exp(t ad e36). Using [Car89, §4.4] we have

that

x36(s) · e = e + seβ1 + seβ2 .

Using Lemma 6.2.4 we note that x22(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that
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(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

Let p = 17, then following the application of tools number 1 and 2, there are four

remaining cases to consider.

(a) Take e = e100
0
0000 + e010

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e001

1
0000 + e011

0
0000

to be a representative of the E7(a1) orbit, then ⟨α, λ⟩ is given by 2a1 + 2a2 +

2a3 + 2a5 + 2a6 + 2a7 − 21a8.

We see that β = 000
0
1111 has λ-eigenvalue −15.

Following the application of tool number 2, we are left to consider e = e+seβ

which is in the E7(a1) orbit for all s ∈ Fp. Consider e22 = e000
0
0111 and set

x22(t) = exp(t ad e22). By the formulas in [Car89, §4.4] we have that

x22(s) · e = e + seβ.

By Lemma 6.2.4 we have that x22(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(b) Next suppose e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e001

1
0000 + e001

0
1000 + e000

0
1100 +

e000
0
0110, a representative of the E7(a2) orbit. In this case we find that ⟨α, λ⟩

is given by 2a1 + 2a2 + 2a3 + 2a5 + 2a7 − 17a8. There are two roots with

λ-eigenvalue equal to −15. Following the application of tool number 2 we

are left to consider β = 000
0
0111 for which e = e+seβ is in the E7(a2) nilpotent

orbit for all s ∈ Fp. We consider e8 = e000
0
0001 and set x8(t) = exp(t ad e8).
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Using the formulas in [Car89, §4.4] we have that

x8(s) · e = e + seβ.

Using Lemma 6.2.4 we observe that x8(s) centralises h and f .

Thus we have completed tool number 4, and see that (e, h, f) and (e, h, f)

are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

(c) Let e = e000
1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001,

a representative of the D7 orbit. In this case we find that ⟨α, λ⟩ is given by

−21a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8. Thus we see β1 = 111
1
0000

and β2 = 111
0
1000 have λ-eigenvalue equal to −15.

Then following the application of tool number 2 we are left to consider e =

e+seβ1−seβ2 which are in the D7 nilpotent orbit for all s ∈ Fp. We consider

e16 = e111
0
0000 and set x16(t) = exp(t ad e16).

Using the formulas in [Car89, §4.4] we have that

x16(s) · e = e + seβ1 − seβ2 .

Using Lemma 6.2.4 we observe that x16(s) centralises h and f .

Thus we have completed tool number 4, and see that (e, h, f) and (e, h, f)

are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

(d) Let e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0001, be

a representative of the E6 +A1 orbit. In this case we find that ⟨α, λ⟩ is given

by 2a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 − 17a7 + 2a8. Thus we see β1 = 000
0
0110

and β2 = 000
0
0011 have λ-eigenvalue equal to −15.
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Then following the application of tool number 2 we are left to consider e =

e + seβ1 − seβ2 which is in the E6 + A1 nilpotent orbit for all s ∈ Fp. We

consider e7 = e000
0
0010 and set x7(t) = exp(t ad e7).

Using the formulas in [Car89, §4.4] we have that

x7(s) · e = e + seβ1 − seβ2 .

Using Lemma 6.2.4 we observe that x7(s) centralises h and f .

Thus we have completed tool number 4, and see that (e, h, f) and (e, h, f)

are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

Let p = 13, we apply tools number 1 and 2, and are left with the following seven

cases to consider.

(a) First take e = e100
0
0000+e000

1
0000+e010

0
0000+e001

0
0000+e000

0
1000+e000

0
0100+e000

0
0001

to represent the E6 +A1 orbit, then ⟨α, λ⟩ is given by 2a1 +2a2 +2a3 +2a4 +

2a5 + 2a6 − 17a7 + 2a8. Thus we see β1 = 001
0
1110 and β2 = 000

0
1111 have

λ-eigenvalue −11. We use tool number 3 and consider the module structure

of the nilradical and see that since this contains a root with λ-eigenvalue −17,

and two with λ-eigenvalue −15, hence there must be factors isomorphic to

L(2) and L(4) in the composition series of u in characteristic 13. These two

factors account for both eβ1 and eβ2 . Hence there is no composition factor

isomorphic to L(11), and so by Lemma 6.2.1 we have h is G-completely

reducible.

(b) Next, take e = e000
1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 to

represent the D6 orbit, in this case we have that ⟨α, λ⟩ is given by −15a1 +
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2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7 − 10a8. Thus we see β1 = 111
0
0000 and

β2 = 112
1
1111 have eigenvalue −11.

We use tool number 3 and observe that 100
0
0000 and 111

0
1111 have λ-eigenvalue

−15, and this is the lowest possible eigenvalue. Hence, given that β1 and β2

are the only roots with λ-eigenvalue equal to −11, the composition factor of

u containing each eβi
is isomorphic to L(2).

Hence there is no composition factor isomorphic to L(17), and so by

Lemma 6.2.1 we have h is G-completely reducible.

(c) Consider e = e100
0
0000 +e000

1
0000 +e010

0
0000 +e001

1
0000 +e001

0
1000 +e000

0
1100 +e000

0
0110,

then ⟨α, λ⟩ is given by 2a1 + 2a2 + 2a3 + 2a5 + 2a7 − 17a8. Thus we see

β1 = 001
1
1111 and β2 = 011

0
1111 have λ-eigenvalue −11.

We use tool number 3 and consider the module structure of the nilradical, we

see that 000
0
0001 has λ-eigenvalue equal to −17, and this is the minimal value,

000
0
0011 and 000

0
0111 have λ-eigenvalue equal to −15 and β1, β2 are the only roots

with λ-eigenvalue equal to −11. Hence each of eβ1 , eβ2 must be part of either

an L(2) or an L(4) composition factor, hence neither is contained in a factor

isomorphic to L(11). Therefore there is no u composition factor isomorphic

to L(11), and so by Lemma 6.2.1 we have h is G-completely reducible.

(d) Take e = e100
0
0000+e001

0
0000+e000

0
0100+e000

0
0010+e011

1
0000+e001

1
1000+e011

0
1000 to be

a representative of the E7(a2) orbit. Then ⟨α, λ⟩ is given by 2a1 +2a4 +2a6 +

2a7−15a8. There are two roots with λ-eigenvalue equal to −11, following the

application of tool number 2, we consider β = 000
0
0111 for which e = e + seβ is

in the E7(a2) nilpotent orbit for each s ∈ Fp. Consider e13 = e000
0
0011 and set
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x13(t) = exp(t ad e13). By the formulas given in [Car89, §4.4] we have that

x13(s) · e = e + seβ.

It follows from Lemma 6.2.4 that x13(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(e) Take e = e100
0
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001

to be a representative of the A7 orbit. Then ⟨α, λ⟩ is given by 2a1 − 15a2 +

2a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8. Then β1 = 011
1
0000 and β2 = 001

1
1000 have

eigenvalue equal to −11.

Following the application of tool number 2, we are left to consider e =

e + seβ1 − seβ2 which are in the A7 nilpotent orbit for each s ∈ Fp. Consider

e9 = e001
1
0000 and set x9(t) = exp(t ad e9). By the formulas given in [Car89,

§4.4] we have that

x9(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x9(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(f) Take e = e000
1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001 to

be a representative of the D7 orbit. Then ⟨α, λ⟩ is given by −21a1 + 2a2 +
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2a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8. Then

β1 = 112
1
1000, β2 = 111

1
1100, β3 = 111

0
1110

have eigenvalue equal to −11.

Following the application of tool number 2, we are left to consider e =

e+reβ1−(r+s)eβ2 +seβ3 which are in the D7 nilpotent orbit for each r, s ∈ Fp.

Consider e30 = e111
1
1000 and e31 = e111

0
1100 and set xi(t) = exp(t ad ei) for

i ∈ {30, 31}. By the formulas given in [Car89, §4.4] we have that

x30(r) · (x31(s) · e) = e + reβ1 − (r + s)eβ2 + seβ3 .

It follows from Lemma 6.2.4 that x30(r) and x31(s) commute with h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(g) Let e = e000
1
0000 + e010

0
0000 + e000

0
0010 + e000

0
0001 + e001

1
0000 + e011

0
0000 − e001

0
1000 +

e000
0
1100 represent the D7(a2) orbit, then ⟨α, λ⟩ is given by −13a1 + 2a2 +

2a3 + 2a5 + 2a7 + 2a8.

The positive simple roots with λ-eigenvalue equal to −11 are β1 =
110

0
0000, β2 = 111

0
0000. Following the application of tool number 2 we are left to

consider e = e + seβ1 − seβ2 which is contained in the D7(a2) orbit for each

s ∈ Fp.

Consider e1 = e100
0
0000. Then set x1(t) = exp(t ad e1).
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Then using the formulas in [Car89, §4.4] we have that

x1(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x1(s) centralises h and f for all s ∈ Fp.

Thus we have completed the steps required for tool number 4 and we have

shown that (e, h, f) is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is

G-completely reducible.

Next consider p = 11, following the application of tools number 1 and 2 we consider

the following eleven cases.

(a) We first take e = e000
1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010,

the representative for the D6 orbit. Then ⟨α, λ⟩ is given by −15a1 + 2a2 +

2a3 + 2a4 + 2a5 + 2a6 + 2a7 − 10a8 and β1 = 122
1
1111 and β2 = 112

1
2111 have

λ-eigenvalue −9.

Following the application of tool number 2, we are left to consider e = e +

seβ1 +seβ2 is in the D6 nilpotent orbit for each s ∈ Fp. Consider e60 = e112
1
1111

and set x60(t) = exp(t ad e60). Using [Car89, §4.4] we have that

x60(s) · e = e + seβ1 + seβ2 .

By Lemma 6.2.4 we see that x60(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.
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(b) Take e = e100
0
0000 + e000

1
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001 to

be a representative of the A6 + A1 orbit. Then ⟨α, λ⟩ is given by 2a+2a2 −

11a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8. Then β1 = 110
0
0000 and β2 = 011

0
0000 have

λ-eigenvalue equal to −9.

Following the application of tool number 2, we are left to consider e =

e + seβ1 − seβ2 which is in the A6 + A1 nilpotent orbit for each s ∈ Fp.

Consider e3 = e010
0
0000 and set x3(t) = exp(t ad e3). By the formulas given in

[Car89, §4.4] we have that

x3(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x3(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(c) Take e = e000
1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0001 to be a

representative of the D5 + A1 orbit. Then ⟨α, λ⟩ is given by −10a1 + 2a2 +

2a3 + 2a4 + 2a5 + 2a6− 9a7 + 2a8. There are three positive simple roots with

λ-eigenvalue equal to −9, however following the application of tool number

2 we are left to consider

β1 = 111
1
1110, β2 = 111

0
1111

for which e = e+seβ1−seβ2 is in the D5 +A1 nilpotent orbit for each s ∈ Fp.

Consider e39 = e111
0
1110 and set x39(t) = exp(t ad e39). By the formulas given
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in [Car89, §4.4] we have that

x39(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x39(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(d) Take e = e100
0
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001

to be a representative of the A7 orbit. Then ⟨α, λ⟩ is given by 2a1 − 15a2 +

2a3 + 2a4 + 2a5 + 2a6 + 2a7 + 2a8. There are three positive simple roots with

λ-eigenvalue equal to −9, these are given by

β1 = 111
1
0000, β2 = 011

1
1000, β3 = 001

1
1100.

Following the application of tool number 2, we are left to consider e =

e + reβ1 − (r + s)eβ2 + seβ3 which is in the A7 nilpotent orbit for each r, s ∈

Fp. Consider e17 = e011
1
0000 and e18 = e001

1
1000 set xi(t) = exp(t ad ei) for

i ∈ {17, 18}. By the formulas given in [Car89, §4.4] we have that

x17(r) · (x18(s) · e) = e + reβ1 − (r + s)eβ2 + seβ3 .

It follows from Lemma 6.2.4 that x17(r) and x18(s) commute with h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.
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(e) Take e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0001 to be a

representative of the D5 + A1 orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a2 +

2a3 + 2a4 + 2a5− 10a6− a7 + 2a8. There are three positive simple roots with

λ-eigenvalue equal to −9, however following the application of tool number

2 we are left to consider

β1 = 000
0
1110, β2 = 000

0
0111

for which e = e+seβ1−seβ2 is in the D5 +A1 nilpotent orbit for each s ∈ Fp.

Consider e14 = e000
0
0110 and set x14(t) = exp(t ad e14). By the formulas given

in [Car89, §4.4] we have that

x14(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x14(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(f) Take e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0001 to be a

representative of the D5 + A1 orbit. Then ⟨α, λ⟩ is given by 2a1 + 2a2 +

2a3 + 2a4 + 2a5− 11a6 + 2a7− a8. There are three positive simple roots with

λ-eigenvalue equal to −9, however following the application of tool number

2 we are left to consider

β1 = 000
0
1100, β2 = 000

0
0110

for which e = e+seβ1−seβ2 is in the D5 +A1 nilpotent orbit for each s ∈ Fp.
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Consider e6 = e000
0
0100 and set x6(t) = exp(t ad e6). By the formulas given in

[Car89, §4.4] we have that

x6(s) · e = e + seβ1 − seβ2 .

It follows from Lemma 6.2.4 that x6(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(g) Now take e = e100
0
0000 + e001

0
0000 + e000

0
0010 + e000

0
1100 + e011

1
0000 + e001

1
1000 +

e011
0
1000 + e001

1
1100 to be the representative for the E7(a4) orbit. Then ⟨α, λ⟩

is given by 2a1 + 2a4 + 2a7 − 11a8.

There are three simple roots with λ-eigenvalue equal to −9 however following

the application of tool number 2 we are left to consider β1 = 000
0
0011 and

β2 = 000
0
0111 for which e = e + seβ1 + seβ2 is in the E7(a4) nilpotent orbit for

each s ∈ Fp. We consider e8 = e000
0
0001 and set x8(t) = exp(t ad e8).

Using [Car89, §4.4] we have that

x8(s) · e = e + seβ1 + seβ2 .

It follows from Lemma 6.2.4 that x8(s) centralises h and f .

Thus we have completed the steps required for tool number 4, and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(h) Let e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0001 + e011

0
0000 +
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e001
0
1000 be a representative of the E6(a1) + A1 orbit, then ⟨α, λ⟩ is given by

2a1 +2a2 +2a3 +2a5 +2a6−13a7 +2a8. Observe that β1 = 000
0
1110, β2 = 000

0
0111

and β3 = 001
0
1110 have λ-eigenvalue equal to −9.

Following the application of tool number 2, we are left to consider e =

e + seβ1 + reβ2 + seβ3 which is in the E6(a1) + A1 orbit for all r, s ∈ Fp.

Let e14 = e000
0
0110 and e15 = e000

0
0011. Then for i ∈ {14, 15} set xi(t) =

exp(t ad ei).

Using the formulas in [Car89, §4.4] we see that

x15(r) · (xs
14(s) · e) = e + seβ1 + reβ2 + seβ3 .

By Lemma 6.2.4 we have that x15(r) and x14(s) centralises h and f for all

r, s ∈ Fp.

We have completed the steps for tool number 4 and can conclude that (e, h, f)

is conjugate to (e, h, f), and hence h =
〈
e, h, f

〉
is G-completely reducible.

(i) Let e = e100
0
0000 + e001

0
0000 + e000

0
0100 + e000

0
0010 + e011

1
0000 + e001

1
1000 + e011

0
1000

represent the E7(a3) orbit, then ⟨α, λ⟩ is given by 2a1 +2a4 +2a6 +2a7−15a8.

Observe that

β1 = 001
0
1111, β2 = 001

1
1111, β3 = 011

0
1111, β4 = 011

1
1111

have λ-eigenvalue equal to −9.

Following the application of tool number 2, we are left to consider e =

e + seβ1 + reβ2 + reβ3 + seβ4 which is in the E7(a3) orbit for each r, s ∈ Fp.

Let e22 = e000
0
0111 and e29 = e000

0
1111. Then for i ∈ {22, 29} set xi(t) =
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exp(t ad ei).

Using the formulas in [Car89, §4.4] we see that

x29(s) · (x22(r) · e) = e + seβ1 + reβ2 + reβ3 + seβ4 .

By Lemma 6.2.4 we have that x29(s) and x22(r) commute with h and f for

each r, s ∈ Fp.

We have completed the steps for tool number 4 and can conclude that (e, h, f)

is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is G-completely reducible.

(j) Let e = e000
1
0000 + e010

0
0000 + e000

0
1000 + e000

0
0100 + e001

1
0000 + e011

0
0000 represent the

D6(a1) orbit, then ⟨α, λ⟩ is given by −11a1 +2a2 +2a3 +2a5 +2a6 +2a7−8a8.

Observe that

β1 = 110
0
0000, β2 = 111

0
0000, β3 = 111

1
1111, β4 = 112

1
1111

have λ-eigenvalue equal to −9.

Following the application of tool number 2, we are left to consider e =

e + reβ1 − reβ2 + seβ3 − seβ4 which is in the D6(a1) orbit for each r, s ∈ Fp.

Let e1 = e100
0
0000 and e47 = e111

0
1111. Then for i ∈ {1, 47} set xi(t) =

exp(t ad ei).

Using the formulas in [Car89, §4.4] we see that

x1(r) · (x47(s) · e) = e + reβ1 − reβ2 + seβ3 − seβ4 .

By Lemma 6.2.4 we have that x1(r) and x47(s) commute with h and f for

each r, s ∈ Fp.
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We have completed the steps for tool number 4 and can conclude that (e, h, f)

is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is G-completely reducible.

(k) Let e = e000
1
0000 + e010

0
0000 + e000

0
0010 + e000

0
0001 + e001

1
0000 + e011

0
0000 − e001

0
1000 +

e000
0
1100 represent the D7(a2) orbit, then ⟨α, λ⟩ is given by −13a1 + 2a2 +

2a3 + 2a5 + 2a7 + 2a8.

There are three simple roots α with λ-eigenvalue −9, these are

β1 = 111
1
0000, β2 = 111

0
1000, β3 = 111

0
1100.

Following the application of tool number 2 we are left to consider e = e +

reβ1 +(r+s)eβ2 +seβ3 which is contained in the D7(a2) orbit for each r, s ∈ Fp.

Consider e9 = e110
0
0100 and e16 = e111

0
0000. Then for i ∈ {9, 16} set xi(t) =

exp(t ad ei).

Then using the formulas in [Car89, §4.4] we have that

x16(s) · (x9(r + s) · e) = e + reβ1 + (r + s)eβ2 + seβ3 .

It follows from Lemma 6.2.4 that x16(s) and x9(r + s) commute with h and

f for all r, s ∈ Fp.

Thus we have completed the steps required for tool number 4 and we have

shown that (e, h, f) is conjugate to (e, h, f) and hence h =
〈
e, h, f

〉
is

G-completely reducible.

Finally, let p = 7, for which following the application of tools number 1 and 2 we

are left with the remaining seven cases.
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(a) First we take e = e100
0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0010 + e000

0
0001 to

represent the A5 + A1 orbit, then ⟨α, λ⟩ is given by 2a1 − 5a2 − 6a3 + 2a4 +

2a5 + 2a6 + 2a7 + 2a8. There are seven positive roots α with λ-eigenvalue

equal to −5, however following the application of tool number 2, we only

consider

β1 = 111
1
1000, β2 = 012

1
1000, β3 = 011

1
1100,

β4 = 122
1
1110, β5 = 122

1
2100

for which we have that

e = e + qeβ1 + reβ2 − reβ2 + seβ4 − eβ5

is in the A5 + A1 nilpotent orbit for any q, r, s ∈ Fp. We consider

e23 = e111
1
0000, e25 = e011

1
1000, e51 = e122

1
1100

and set xi(t) = exp(t ad ei) for each i ∈ {23, 25, 51}.

Using [Car89, §4.4] we see that that

x23(q − r) · (x25(r) · (x51(s) · e)) = e + qeβ1 + reβ2 − reβ2 + seβ4 − eβ5 .

We have from Lemma 6.2.4 that x23(q− r), x25(r) and x51(s) commute with

h and f .

Thus we have completed tool number 4, and see that (e, h, f) and (e, h, f)

are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

(b) Take e = e100
0
0000 +e000

1
0000 +e001

0
0000 +e000

0
1000 +e000

0
0100 +e000

0
0010 to represent

an A5 + A1 orbit, then we find that ⟨α, λ⟩ is given by 2a1 + 2a2− 9a3 + 2a4 +
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2a5+2a6+2a7−5a8. There are seven positive roots α with λ-eigenvalue equal

to −5, following the application of tool number 2, we reduce to considering

β1 = 111
0
0000, β2 = 123

1
2111, β3 = 122

1
2211,

β4 = 123
1
2111, β5 = 122

1
2211

We have that

e = e + qeβ1 + reβ2 − reβ3 + seβ4 + seβ5

is in the A5 + A1 orbit for any r, s ∈ Fp.

Take

e9 = e110
0
0000, e11 = e011

0
0000, e72 = e122

1
2111

. Then for i ∈ {9, 11, 72} set xi(t) = exp(t ad ei).

Using the formulas in [Car89, §4.4] we see that

x72(s) · (x11(r) · (x9(q − r) · e)) = e + qeβ1 + reβ2 − reβ3 + seβ4 + seβ5 .

We show by Lemma 6.2.4 that x72(s), x9(q − r) and x11(r) commute with h

and f .

We have completed the steps for tool number 4 and can conclude that

h =
〈
e, h, f

〉
are all conjugate sl2-triples, and hence are all G-completely

reducible.

(c) Next take e = e100
0
0000 + e010

0
0000 + e001

0
0000 + e000

0
1000 + e000

0
0100 + e000

0
0001 which

represents an A5 + A1 orbit. Then ⟨α, λ⟩ is given by 2a1− 9a2 + 2a3 + 2a4 +

2a5 + 2a6 − 6a7 + 2a8. There are seven positive roots α with λ-eigenvalue

equal to −5, however following the application of tool number 2 we restrict
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to considering the roots

β1 = 011
1
0000, β2 = 001

1
1000,

β3 = 111
1
1110, β4 = 012

1
1110, β5 = 011

1
1111

which are such that

e = e + qeβ1 − qeβ2 + reβ3 + reβ4 + seβ5

are in the A5 + A1 orbit for each q, r, s ∈ Fp.

Consider

e10 = e001
1
0000, e41 = e011

1
1110, e42 = e001

1
1111

and set xi(t) = exp(t ad ei) for i ∈ {10, 41, 42}. By [Car89, §4.4]

x10(q) · (x42(s) · (x41(r) · e)) = e + qeβ1 − qeβ2 + reβ3 + reβ4 + seβ5 .

By Lemma 6.2.4 we have that x10(q), x42(s) and x41(r) commute with h and

f .

Thus we have completed the steps required for tool number 4, and conclude

that (e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

(d) Next take e = e100
0
0000+e000

1
0000+e010

0
0000+e001

0
0000+e000

0
0100+e000

0
0010+e000

0
0001

which represents the A4 +A3 orbit. Then ⟨α, λ⟩ is given by 2a1 +2a2 +2a3 +

2a4− 9a5 + 2a6 + 2a7 + 2a8. There are six positive roots α with λ-eigenvalue
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equal to −5, these are given by

β1 = 001
1
1000, β2 = 011

0
1000, β3 = 001

0
1100, β4 = 000

0
0111

β5 = 123
2
3210, β6 = 123

1
3211

Following the application of tool number 2 we restrict to the cases

e = e + reβ1 + reβ2 − (r + s)eβ3 + seβ4 + qeβ5 − qeβ6

are in the A4 + A3 orbit for each q, r, s ∈ Fp.

Consider

e12 = e001
0
1000, e13 = e000

0
1100, e82 = e123

1
3210

and set xi(t) = exp(t ad ei) for i ∈ {12, 13, 82}. By [Car89, §4.4]

x12(r) · (x13(s) · (x82(q) · e)) = e + reβ1 + reβ2 − (r + s)eβ3 + seβ4 + qeβ5 − qeβ6 .

By Lemma 6.2.4 we have that x12(r), x13(s) and x82(q) commute with h and

f .

Thus we have completed the steps required for tool number 4, and conclude

that (e, h, f) and (e, h, f) are conjugate sl2-triples, and hence h =
〈
e, h, f

〉
is G-completely reducible.

(e) Let e = e001
0
0000 + e000

0
0010 + e111

1
0000 + e111

0
1000 + e011

1
1000 + e001

1
1100 + e011

0
1100 be

a representative of the E7(a5) orbit. Then ⟨α, λ⟩ is given by 2a4 + 2a7 − 9a8

and the following roots have λ-eigenvalue equal to −5,

β1 = 001
0
1111, β2 = 001

1
1111, β3 = 011

0
1111,
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β4 = 111
0
1111 β5 = 011

1
1111 β6 = 111

1
1111.

Following the application of tool number 2, we are left to consider the

following nilpotent elements, which are in the E7(a5) orbit for any q, r, s ∈ Fp

e + qeβ1 + reβ2 + reβ3 + seβ4 + seβ5 + qeβ6 .

Consider e22 = e000
0
0111, e15 = e000

0
0011 and e29 = e000

0
1111 and set for each

i ∈ {15, 22, 29}, xi(t) = exp(t ad ei).

We use the formulas in [Car89, §4.4] to see that

x15(r) · (x29(q) · (x22(s) · e)) = e + qeβ1 + reβ2 + reβ3 + seβ4 + seβ5 + qeβ6 .

Hence we are left to show that x15(r), x29(q) and x22(s) commute with h and

f . This follows by Lemma 6.2.4.

We have completed the steps required for tool number 4 and can conclude

that (e, h, f), is conjugate to (e, h, f) in each of the above cases, and hence

h =
〈
e, h, f

〉
is G-completely reducible.

(f) Let e = e100
0
0000 + e001

0
0000 + e000

0
0100 + e000

0
0001 + e011

1
0000 + e001

1
1000 + e011

0
1000

be a representative of the E6(a3) + A1, orbit. Then ⟨α, λ⟩ is given by 2a1 +

2a4 + 2a6− 9a7 + 2a8. There are six positive roots α with λ-eigenvalue equal

to −5, these are given by

β1 = 000
0
0111, β2 = 001

0
1110, β3 = 000

0
1111,

β4 = 001
1
1110, β5 = 011

0
1110, β6 = 011

1
1110.
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Following the application of tool number 2, we are left to consider

e = e + seβ1 + qeβ2 − qeβ3 + reβ4 + reβ5 + qeβ6

with q, r, s ∈ Fp we have that e is in the E6(a3) + A1 orbit.

Consider

e14 = e000
0
0110, e15 = e000

0
0011, e21 = e000

0
1110

and set xi(t) = exp(t ad ei) for i ∈ {14, 15, 21}.

By the formulas in [Car89, §4.4]

x21(q) · (x14(s) · (x15(s− r) · e)) = e + seβ1 + qeβ2 − qeβ3 + reβ4 + reβ5 + qeβ6 .

It follows from Lemma 6.2.4 that x21(q), x14(s) and x15(s−r) commute with

h and f .

Thus we have completed the requirements for tool number 4 and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(g) Let e = e000
1
0000 + e010

0
0000 + e000

0
0010 + e001

1
0000− e011

0
0000 + e001

0
1000 + e000

0
1100 be

the representative of the D6(a2) orbit. Then ⟨α, λ⟩ = −9a1 + 2a2 + 2a3 +

2a5 + 2a7 − 6a8.

There are six simple roots α with λ-eigenvalue −5, these are

β1 = 111
1
0000, β2 = 111

0
1000, β3 = 111

0
1100

β4 = 122
1
2111, β5 = 112

1
2111, β6 = 112

1
2211.
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Then for any a, b, r, s ∈ Fp we have that e = e + aeβ1 + (a + b)eβ2 + beβ3 +

reβ4 + (r + s)eβ5 + seβ6 is in the D6(a2) orbit. Following the application of

tool number 2, these are the only cases that we need to consider further.

Take

e9 = e110
0
0000, e16 = e111

0
0000, e54 = e111

1
1111, e60 = e112

1
1111

and set xi(t) = exp(t ad ei) for i ∈ {9, 16, 54, 60}.

We find that x16(b) · (x9(a + b) · (x60(s) · (x54(r + s) · e))) is equal to

e + aeβ1 + (a + b)eβ2 + beβ3 + reβ4 + (r + s)eβ5 + seβ6 .

It follows from Lemma 6.2.4 that x16(b), x9(a + b), x60(s) and x54(r + s)

commute with h and f .

Thus we have completed the requirements for tool number 4 and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples and hence h =
〈
e, h, f

〉
is

G-completely reducible.

(h) Let e = e100
0
0000 + e000

1
0000 + e010

0
0000 + e000

0
1000 + e000

0
0010 + e000

0
0001 + e001

1
0000 +

e001
0
1000 be the representative of the D5(a1) + A2 orbit. Then ⟨α, λ⟩ = 2a1 +

2a2 + 2a3 + 2a5 − 9a6 + 2a7 + 2a8.

There are seven simple roots α with λ-eigenvalue −5, these are

β1 = 000
0
1110, β2 = 000

0
0111, β3 = 001

1
1100, β4 = 011

0
1100,

β5 = 001
0
1110, β6 = 123

2
3321, β7 = 124

2
3321.
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Then for any a, q, r, s ∈ Fp we have that

e = e + (r + s)eβ1 − seβ2 + (q − r)eβ3 + qeβ4 + (s− q)eβ5 + aeβ6 − aeβ7

is in the D5(a1)+A2 orbit. Following the application of tool number 2, these

are the only cases that we need to consider further.

Take

e13 = e000
0
1100, e14 = e000

0
0110, e20 = e001

0
1100, e96 = e123

1
3321

and set xi(t) = exp(t ad ei) for i ∈ {13, 14, 20, 96}.

We find that

x96(a) · (x20(q) · (x13(r) · (x14(s) · e))) is equal to

e + (r + s)eβ1 − seβ2 + (q − r)eβ3 + qeβ4 + (s− q)eβ5 + aeβ6 − aeβ7 .

It follows from Lemma 6.2.4 that x96(a), x20(q), x13(r) and x14(s) commute

with h and f .

Thus we have completed the requirements for tool number 4 and see that

(e, h, f) and (e, h, f) are conjugate sl2-triples and hence h =
〈
e, h, f

〉
is

G-completely reducible.

Hence we have completed the proof of Theorem 6.0.1(a) for each group of

exceptional type.
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6.5 Unique sl2-triples

In this section we complete the proof of Theorem 6.0.1(b) by showing that for each

e ∈ V there is a unique sl2-triple (e, h, f) ∈ g such that f ∈ V up to conjugation

by G.

Proof of Theorem 6.0.1. Let V be as in the statement of the theorem. Let e ∈ V

and let (e, h0, f0) be a standard sl2-triple taken as in §4.1. Note that e[p] = 0 so f0

is conjugate to e as shown in [PS19, §2.4], and hence f0 is in V .

Take (e, h, f) to be an sl2-triple with e, f ∈ V . We have shown in §6.4 that

h = ⟨e, h, f⟩ is G-completely reducible and we use this to show that (e, h, f) is

G-conjugate to (e, h0, f0).

We first recall that h is a p-subalgebra by Proposition 4.3.2. Therefore h[p] = h,

so h is toral, and hence semisimple.

We give a similar argument to the one given in [PS19, §2.4] to deduce that h is

fixed up to conjugacy by the centraliser of e.

Let τ be the associated cocharacter for e and h0 = dτ(1). Note that all eigenvalues

of h0 belong to Fp, and so we can write g(h0; i) for the eigenspace of ad(h0)

corresponding to the eigenvalue i ∈ Fp. Then we have the grading

g(i; h0) =
⊕
j∈Z

g(i + jp; τ).

Since e commutes with h−h0, we see that h is a semisimple element of the restricted

Lie algebra kh0 ⊕ ge. Since ge = Lie(Ge), the second component coincides with
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the Lie algebra of the normaliser NG(ke) = τ(k×) ·Ge.

Note that the Lie algebra Lie(τ(k×)) is a 1-dimensional torus of g spanned by the

element h0.

The centraliser CG(τ) of τ(k×) is a Levi subalgebra of G and Lie(CG(τ)) = g(0; τ).

Set ge(i) = ge ∩ g(i; τ). The group Ce := Ge ∩ ZG(τ) is reductive and ce :=

Lie(Ce) = ge(0).

As τ(k×) · T e is a maximal torus of NG(ke) contained in τ(k×) · le, it follows that

since h is semisimple it is conjugate under the adjoint action of NG(ke) to an

element of kh0 ⊕ ge(0). Hence we can assume that h ∈ kh0 + ge(0). Then

h− h0 ∈ ge(0) ∩ [e, g].

If h ̸= h0 then the linear map

(ad e)2 : g(−2; τ)→ g(2; τ)

is not injective. The computations in [Pre03] then imply that e is regular nilpotent

in Lie(L) for some L, a Levi subgroup of type Ap−1Ar in G for some r. This

contradicts the definition of V . Hence we have that h = h0.

All that is left to show is that f = f0.

Let T e be a maximal torus of Ce and let L = CG(T e) be a Levi subgroup of G.

The Lie algebra l′ = Lie(Le) is stable under the action of τ(k×) and contains h0.

Moreover, e is distinguished in l′, that is, e ∈ l′(τ, 2) and dim l′(0; τ) = dim l′(2; τ).

Since ge ⊆ Lie(P e), dim l′(−2; τ) = dim l′(2; τ) and the map ad e : l′(−2; τ) →
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l′(0; τ) is injective, we must have that ad e is bijective. As h0 ∈ l′(0; τ) there is a

unique element f ∈ l′(−2; τ) such that [e, f ] = h0.

Thus we have that (e, h, f) is conjugate to (e, h0, f0) and we are done.

6.6 Classes in V

Let V be the variety given in Theorems 3 and 6.0.1. In this section we explicitly

list the classes not contained in V for each prime which is good for G. In order to

determine the elements x ∈ N for which x[p] ̸= 0 we refer to Tables 1,3,5,7 and

9 in [Law95]. We remark that there is an error in the tables for G = E8, p = 3,

however this does not coincide with the cases we consider.

p Classes not in V for p

p > 5
5 G2

Table 6.3: Nilpotent classes not in V for G of type G2

p Classes not in V for p

p > 11
11 F4
7 as for p = 11 and F4(a1)
5 as for p = 7 and F4(a2), C3, B3

Table 6.4: Nilpotent classes not in V for G of type F4

p Classes not in V for p

p > 11
11 E6
7 as for p = 11 and E6(a1), D5
5 as for p = 7 and E6(a3), D5(a1), A5, A4 + A1, D4, A4

Table 6.5: Nilpotent classes not in V for G of type E6
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p Classes not in V for p

p > 17
17 E7
13 as for p = 17 and E7(a1)
11 as for p = 13 and E7(a2), E6
7 as for p = 11 and E7(a3), E6(a1), D6, E7(a4), D6(a1), D5+A1, A6, D5

5 as for p = 7 and E7(a5), E6(a3), D6(a2), D5(a1) + A1,A5 + A1,
(A5)′, A4 + A2, D5(a1), A4 + A1, D4 + A1, (A5)′′, A4, D4

Table 6.6: Nilpotent classes not in V for G of type E7

p Classes not in V for p

p > 29
29 E8
23 as for p = 29 and E8(a1)
19 as for p = 23 and E8(a2)
17 as for p = 19 and E8(a3), E7
13 as for p = 17 and E8(a4), E8(b4), E7(a1)
11 as for p = 13 and E8(a5), E8(b5), D7, E7(a2), E6 + A1, E6

7 as for p = 11 and E8(a6), D7(a1), E8(b6), E7(a3), E6(a1) + A1,A7,
D7(a2), D6, D5+A2, E6(a1), E7(a4), A6+A1, D6(a1), A6, D5+A1, D5

Table 6.7: Nilpotent classes not in V for G of type E8
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