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SYNOPSIS 

Destructive behaviours resulting from impaired impulse control can manifest in patients with 

Parkinson’s disease (PD), more commonly in those who take dopamine agonist (DA) 

medication. 14-40% of those who take such medication develop these behaviours, known as 

impulse control behaviours (ICBs). There are risk factors associated with the presence or 

development of ICBs, including higher agonist dosage, longer duration of treatment, greater 

severity of motor symptoms, apathy and autonomic and cognitive functions. However, there is 

currently no clear, reliable procedure or test to predict who is most likely to develop these ICBs. 

This thesis investigated novel factors which may be associated with the incidence, frequency 

and change over time of ICBs, with the intention to provide the first steps towards future 

prediction and prevention of ICB development. 

 

The most important results from this project highlight the potential predictive power of 

a dopamine genetic risk score (DGRS) for PD patients on DA medication who suffer from 

ICBs. The DGRS theoretically quantifies central dopamine neurotransmission within MCL 

regions which are implicated in impulse control. Some of the results in this thesis mirrored the 

inverted-U relationship between impulse control and dopamine previously reported, where PD 

patients with lower dopamine neurotransmission displayed worse impulse control and PD 

patients with higher dopamine neurotransmission displayed worsening impulse control over 

time. Moreover, lab-based behavioural impulsivity task performance was also associated with 

ICBs in PD patients on DA medication. We first confirmed that impulsive behaviour measured 

by the anticipatory response inhibition task was a valid measure of non-selective inhibition 

network activity. We then found that greater impulsive behaviour on the Balloon Analogue 

Risk Task (BART), was associated with higher ICB frequency. We also found preliminary 
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evidence that greater impulsive behaviour determined by the BART and Gambling task, 

measuring cognitive and limbic impulsivity, was associated with the DGRS in a young healthy 

sample. Finally, a possible relationship was observed between high concentrations of the 

metabolite of dopamine, homovanillic acid (HVA), and a high DGRS, in a young healthy 

cohort. It is possible that HVA could be important in confirming the DGRS theoretical 

quantification of central dopamine neurotransmission. 

 

 The results in this thesis replicate some important outcomes already reported in the 

literature and this work also presents several exciting novel findings. Collectively, this body of 

work highlights that a cumulative genetic score (DGRS) and behavioural impulsivity task 

measures are associated with ICBs in PD. The results presented provide insight for future 

investigations to perhaps predict which PD patients who take DA medication are most likely to 

develop ICBs. 
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CHAPTER 1  

 

General Introduction 
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1.1. Overview of the Thesis 

Impulse control behaviours (ICBs), incorporating impulse control disorders and related 

behaviours, can develop in those with Parkinson’s disease (PD), especially in individuals who 

take dopamine agonist (DA) medication, which is a form of dopamine replacement therapy. 

Although there are some risk factors associated with the development of these ICBs, which can 

influence a clinician’s decision to withhold from prescribing this form of medication to 

patients, there is currently no clear, reliable procedure or test to determine those at the greatest 

risk of developing ICBs on DA medication. As a result, the work conducted in this thesis 

provides insight to some behavioural, genetic and biochemical tests and factors which could 

perhaps be utilised in the future to determine those most at risk from developing destructive 

ICBs. The introduction below presents a review of relevant topics, literature and highlights all 

factors which are included as predictive variables or factors associated with ICBs in the 

subsequent experimental chapters. Chapter 2 discusses the steps which took place to develop 

different regression models for statistical analyses within the experimental chapters. Chapter 3 

is the first experimental chapter of the thesis where the role of dopaminergic genes in the 

prediction of ICBs is investigated in a PD cohort. This chapter utilises the Parkinson’s 

Progression Markers Initiative database to investigate the use of a specific dopamine genetic 

risk score (DGRS) to predict ICBs for de novo PD patients and for those taking DA medication. 

Chapter 4 explores stop signal reaction time as a measure of motor impulse control over the 

course of two sessions in the Anticipatory Response Inhibition Task (ARIT) and how this 

compares to the more traditionally used Stop Signal Task. This chapter determines which task 

could be used in the following chapter to test for associations with ICBs in PD. Therefore, 

Chapter 5 builds on the results from the previous two chapters. It includes the use of predictive 

factors associated with ICBs in Chapter 3 along with the ARIT used in Chapter 4, to determine 

the association of behavioural, genetic, clinical and demographic factors with ICBs in PD 
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patients taking DA medication. Chapter 6 follows on from the previous chapters to explore the 

biochemical factor, homovanillic acid (HVA). This is a preliminary experiment in young 

healthy adults which investigates whether concentrations of the dopamine metabolite, HVA, 

are associated with the DGRS and behavioural measures of motor and cognitive impulse 

control. Chapter 7 concludes the results of all experimental chapters and presents limitations 

and potential future directions for this body of work. 

 



 4 

1.2. Neurocircuitry of Impulse Control 

Impulse control or impulsivity is a crucial aspect of self-restraint, where impairments can 

substantially affect day to day living for individuals. Historically, the first mention of 

impulsivity was by the Greek physician, Hippocrates (c460BC – 370BC) who included 

impulsiveness within one of four temperaments or humours, based upon relative proportions 

of bodily fluids (yellow bile (including impulsivity), black bile, blood and phlegm). This 

theory, termed humourism, was supported by Galen (AD 129-ca. AD 200) who developed 

these temperaments into categories which were largely involved in medical science at the time 

and for hundreds of years following: (choleric, melancholic, sanguine and phlegmatic). 

However, in the late 19th/ early 20th century, Wundt amongst others began to differentiate 

personality and bodily fluids and their work largely contributed to the catalyst of accepting 

psychology as an autonomous discipline (Feldman, 1932; Irwin, 1947; Moeller et al., 2001; 

Stelmack & Stalikas, 1991). Around this time, impulsivity began to be investigated as its own 

entity. Impulsivity was described as maladaptive behaviour where individuals either knowingly 

or unknowingly act upon an impulse, regardless of the consequences of their behaviour 

(Ainslie, 1975). In more modern literature, this perspective is still very relevant and there is a 

consistent view of impulsivity as a trait which can be defined as a “predisposition toward rapid, 

unplanned reactions to internal or external stimuli without regard to the negative consequences 

of these reactions to the impulsive individual or to others” (DeYoung & Rueter, 2010; Moeller 

et al., 2001). 

 

Impulsivity is a feature of several psychiatric disorders such as bipolar disorder, 

substance use disorders and personality disorders (Moeller et al., 2001). Impaired impulse 

control can also be a dominant feature of neurodevelopmental disorders including attention-

deficit/hyperactivity-disorder (ADHD), autism spectrum disorder and intellectual disability 
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(McClain et al., 2017). Quite often, impairments in impulsivity can lead to diagnosis of impulse 

control disorders (ICDs). These ICDs are most commonly diagnosed in structured or semi-

structured interviews conducted by a trained clinician, sometimes with the additional use of 

impulsivity questionnaires as a diagnostic tool alongside the interview (Hollander et al., 2006). 

These questionnaires can include the Barratt Impulsiveness Scale (BIS) and the Eysenck 

Impulsiveness Questionnaire (Leshem & Glicksohn, 2007).  

 

ICDs and other related behaviours (referred to in this thesis as Impulse Control 

Behaviours (ICBs)) can also develop in those with Parkinson’s disease (PD). These ICBs 

commonly manifest as compulsive shopping, compulsive gambling, hypersexuality, binge 

eating, hobbyism, punding and compulsive medication use/dopamine dysregulation syndrome 

(Weintraub, 2008). The questionnaire for impulsive-compulsive disorders in PD (QUIP) is a 

globally validated questionnaire, used as a screening tool specifically for ICBs in PD patients 

(Krieger et al., 2017; Marques et al., 2019; Papay et al., 2011; Probst et al., 2014; Weintraub 

et al., 2009). These ICBs highlight ‘real world’ impulsivity, which is subjective to the views 

of the individual completing the questionnaire or their physician. Later chapters in this thesis 

explore the relationship between these subjective impulsivity questionnaires and the more 

objective sensitive behavioural task measures of impulsivity. First, the following section 

discusses the neurocircuitry of impulse control. 

 

1.2.1. Introduction to Neurocircuitry and Basal Ganglia Pathways 

Impulse control can be divided into two main domains, motor and cognitive (Antonelli et al., 

2011), which will be discussed in more detail later in this section. The cortico-basal-ganglia-

thalamocortical networks link the cortex, basal ganglia (BG) and thalamus, and these regions 

are largely involved in the processes of impulse control (Dunovan et al., 2015; Jahfari et al., 
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2011). Dopamine neurons (releasing the dopamine neurotransmitter) play a key role within 

the BG where structures of dopaminergic pathways project to the striatum which is the main 

input to the BG (Haber, 2014). Dopamine pathways play a pivotal role in goal directed 

behaviours (Haber, 2014), where disorders involving dopamine dysfunction or loss such as 

PD or ADHD, can lead to loss or reduced function of the behaviours controlled by these BG 

circuitry (Gasser et al., 2015; Vaidya & Stollstorff, 2008). A detailed explanation of the BG 

circuitry in PD will be discussed in a subsequent section of this introduction. 

 

The dopaminergic pathways include the nigrostriatal, mesocortical and mesolimbic 

pathways, which are all linked with motor control, motivation, reward and cognition (Haber, 

2014). The pathways begin in regions of the midbrain and project to regions of the BG (Luo 

& Huang, 2016). The nigrostriatal pathway originates in the substantia nigra pars compacta 

(SNc) and projects to the dorsal striatum in the BG. Whereas the mesocortical and 

mesolimbic pathways start in the ventral tegmental area (VTA) and retrorubral field, and 

project to areas of the pre-frontal cortex (PFC) and nucleus accumbens (NAc) (major 

component of the ventral striatum), respectively (Luo & Huang, 2016). The nigrostriatal 

pathway is largely involved in the preparation and execution of movement and perhaps 

premotor aspects of impulse control. Whereas the mesocorticolimbic (MCL) system 

(mesocortical and mesolimbic pathways) is more largely related to the monitoring of impulse 

control, involving the cognitive impulse control domain (Beste et al., 2010). The following 

section presents the route from the cortex to the thalamus and back to the cortex for the 

direct, indirect and hyperdirect pathways within the BG (Figure 1.1), which are strongly 

implicated in impulse control. 
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Figure 1.1 Direct, indirect and hyperdirect pathways of the Basal Ganglia. 

 

 

Projections in the BG between each structure are either excitatory (glutamatergic) or 

inhibitory (GABAergic) which results in the increased/decreased excitation/inhibition of the 

connecting structure, therefore influencing its output (Haber et al., 2012; Lanciego et al., 

2012; Milardi et al., 2019). In the direct pathway, the cortex sends excitatory signals to the 

striatum (comprising of the caudate nucleus, putamen and ventral striatum), whilst the SNc 

also projects excitatory signals to the dorsal striatum via D1 receptors. There are subsequent 

inhibitory projections to the globus pallidus interna (GPi) and substantia nigra pars reticula 

(SNr), therefore reducing activity of these structures and providing disinhibition to the 

thalamus which overall results in increased excitatory projections from the thalamus to the 

cortex (Haber et al., 2012; Lanciego et al., 2012; Milardi et al., 2019). In the indirect 

pathway, again the cortex projects excitatory signals to the striatum which sends (via neurons 

expressing D2 receptors which are also activated by the SNc) inhibitory signals to the globus 

pallidus externa (GPe), reducing inhibitory signals to the subthalamic nucleus (STN) which 

overall increases excitation here. As a result, the excitatory neurons of the STN excite the 
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GPi/SNr which subsequently suppresses the thalamic output to the cortex, increasing 

inhibition (Haber et al., 2012; Lanciego et al., 2012; Milardi et al., 2019). The hyperdirect 

pathway bypasses most of the indirect pathway. Excitatory projections travel directly from 

the cortex to the STN, which then excites the Gpi/SNr, reducing thalamic activity and aiding 

inhibition (Milardi et al., 2019; Nambu et al., 2002). The following sections will discuss how 

behavioural measures of motor and cognitive impulse control recruit these various cortico-

BG-thalamocortical networks. 

 

 

1.2.2. Motor Impulse Control 

The motor domain of impulse control is termed response inhibition, which refers to the ability 

to supress or cancel unwanted actions, which in some cases can be a learned motor response. 

Objective response inhibition can be measured and quantified within a laboratory setting using 

behavioural tasks such as the Anticipatory Response Inhibition Task (ARIT), Stop Signal Task 

(SST) or the go/no-go task (Lappin & Eriksen, 1966; Slater-Hammel, 1960; Steele et al., 2013). 

The tasks utilised within this thesis are the SST and the ARIT. The stop signal paradigm was 

created in 1948 (Vince, 1948) and then developed into the SST in 1966 (Lappin & Eriksen, 

1966), whilst the anticipated response version of the SST (the ARIT) was developed in 1960 

(Slater-Hammel, 1960). Both tasks are now widely used in response inhibition literature (He 

et al., 2022; Verbruggen et al., 2019a; Verbruggen, Logan, & Stevens, 2008).  The main 

differences between these two tasks are discussed in Chapter 4. In the SST and ARIT, 

participants are required to complete a number of Go trials involving a conditioned motor 

response and Stop trials which requires inhibition of the conditioned response (withheld 

movement). The primary dependent measure for each of these tasks is Stop Signal Reaction 

Time (SSRT), which measures the latency of this response inhibition process (Logan & Cowan, 
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1984; Verbruggen et al., 2019a). Logan and Cowan (1984) produced a horse race model of 

response inhibition which explains the behavioural outcome of each trial. Both the SST and 

the ARIT follow this horse race model framework. The model poses a trial-by-trial “horse” 

race between the going process which is initiated by the Go signal, and the stopping process 

which is initiated by the Stop signal. If the going process finishes first then the response is 

executed, but if the stopping process finishes first then the response is inhibited. There are 

specific neural networks involved in the stopping and going processes, which are described 

below. 

 

Research has been conducted to determine the neural networks underlying inhibitory 

control, highlighting the vast importance of the BG pathways. In the response inhibition tasks 

mentioned above, Go trials require a conditioned motor response which often involves a single 

digit reaction to an audio or visual stimulus. The resultant reaction times contribute to the 

calculated SSRT value. The execution of a motor response, involving the nigrostriatal 

dopamine pathway, activates fronto-striato-pallidal regions as part of the direct BG pathway, 

which then leads to an increase in thalamocortical drive to the motor cortex to perform the 

motor response. Specifically, the origins of the motor network which drive this motor response 

are within the motor cortex (M1), pre-motor cortex (PMC), cingulate motor area (CMA), 

somatosensory cortex (S1), and supplementary motor area (SMA) (Alexander & Crutcher, 

1990; Gasser et al., 2015). It is believed there are separate topographical channels in the motor 

network relating to somatotopy which act in parallel for movement production (Alexander & 

Crutcher, 1990). In the direct pathway, these channels project from motor regions of the cortex 

to the bilateral putamen, motor portions of the GPi and SNr and finally the thalamus (nucleus 

ventralis lateralis pars oralis (VLo), lateral nucleus ventralis anterior pars parvocellularis 

(VApc), lateral nucleus ventralis anterior pars magnocellularis (VAmc), ventrolateral nucleus 
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of thalamus pars medialis (VLm) and centromedian nucleus (CM) (Alexander & Crutcher, 

1990; Aron & Poldrack, 2006; Gasser et al., 2015). The thalamus then facilitates the 

preparation and execution of movement by projection to the SMA (from VLo and lateral 

VAmc), PMC (from lateral VApc, VLo and VLm) and M1 (from VLo and CM) (Alexander & 

Crutcher, 1990; Aron & Poldrack, 2006; Nakano et al., 2000). 

 

When the process of inhibition takes place on stop trials, regions are activated initially 

to conduct the Go response, then a very short period later (e.g., 220.2ms reported by Aron & 

Poldrack, 2006), specific regions are activated to produce the response inhibition. When 

isolating the neural networks involved in only the stopping process, a right lateralized network 

is engaged (Allen et al., 2018; Aron et al., 2003; Aron & Poldrack, 2006; Chen et al., 2020; 

Coxon et al., 2009; Dunovan et al., 2015; Maizey et al., 2020; Ray Li et al., 2008). The right 

inferior frontal gyrus (IFG) and pre-SMA, which are part of the pre-frontal cortex, activate the 

right STN and right caudate as part of the hyperdirect (cancellation of action) and indirect 

(suppression of action) pathways, respectively (Jahfari et al., 2011). Recent literature 

confirmed that the right IFG preceded pre-SMA activation in the process of response inhibition 

which is implemented via beta-band oscillations, highlighting its large importance in the 

initiation of response inhibition (Schaum et al., 2020, 2021). As previously mentioned, the 

indirect and hyperdirect pathways supress thalamocortical output by blocking the direct 

pathway and therefore inhibit a response (Aron & Poldrack, 2006; Chen et al., 2020; Dunovan 

et al., 2015; Jahfari et al., 2011; Ray Li et al., 2008; Schaum et al., 2020; Zandbelt & Vink, 

2010). It has been suggested that the combination of both pathways may produce the most 

efficient and effective response inhibition (Jahfari et al., 2011), however there may be some 

segregation where the indirect pathway may be more involved in proactive inhibition 
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(preparation for stop cues) whilst the hyperdirect pathway may be more involved in reactive 

inhibition (responding to stop signals) (F. Zhang & Iwaki, 2019). 

 

1.2.3. Cognitive Impulse Control 

Cognitive impulse control refers to the ability to assess the consequences of a decision and 

subsequently modify the decision, which can often include decision making under risk 

depending upon the individual perception of ‘risk vs reward’ (Cazzell et al., 2012; Lauriola et 

al., 2014). In a lab-based setting, there are several tasks which measure cognitive impulse 

control (Buelow et al., 2014; Buelow & Barnhart, 2018), such as the Balloon Analogue Risk 

Task (BART) (Lejuez et al., 2002), Iowa Gambling Task (Lauriola et al., 2014; Zermatten et 

al., 2005), Columbia Card Task (Figner et al., 2009) and Game of Dice Task (Brand et al., 

2005). The BART is used throughout this thesis measuring cognitive impulsivity, more 

specifically risk taking with regards to a reward or a loss (Antonelli et al., 2011; Lauriola et al., 

2014; Lejuez et al., 2002). 

 

The BART is a widely utilised tool measuring risk taking in healthy volunteers (Lejuez 

et al., 2002) and groups with disorders such as PD (Martini et al., 2018), ADHD (Humphreys 

& Lee, 2011) and substance use disorders (Ashenhurst et al., 2014; Galván et al., 2013). Most 

importantly, the BART was utilised in the study by MacDonald and colleagues (MacDonald et 

al., 2016), a study which provides a strong rationale for the work in this thesis, which will be 

discussed in a later section of the general introduction. During the BART, participants are given 

the choice to pump up a balloon which incrementally increases potential monetary winnings 

with each pump. Within a trial, potential winnings can be collected at any time however the 

balloon can also pop at any time. The greater number of pumps, the greater risk of the balloon 

popping and the loss of the accumulated amount. The main measures utilised from the BART 
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include the average number of pumps which quantifies risk taking behaviour (Claassen et al., 

2011), and negative feedback which quantifies behaviour modification following loss (Martini 

et al., 2018) and is predominantly used in this thesis. 

 

Research has been conducted to assess the neural networks activated during decision 

making under risk which often involves neural structures involved in the cognitive and limbic 

BG thalamocortical networks. As previously mentioned, the MCL system is largely responsible 

for reward and cognition (Haber, 2014). During decision making, the dopamine rich MCL and 

frontal regions are activated, specifically within structures including the midbrain (ventral 

tegmental area), striatum (NAc as part of the ventral striatum, caudate nucleus and putamen), 

globus pallidus, anterior insula (AI), the PFC and anterior cingulate cortex/medial frontal 

cortex (ACC/MFC) (Gentili et al., 2020; H. Rao et al., 2008; L. L. Rao et al., 2018). Regions 

of the prefrontal cortex (dorsolateral (DLPFC), dorsomedial (DMPFC) and ventromedial 

VMPFC) have been found to be most greatly associated with voluntary decision making, with 

regards to win options/reward seeking (collecting money) and risky decision making (Cazzell 

et al., 2012; Fukunaga et al., 2012; Gentili et al., 2020; Li et al., 2020; Manes et al., 2002; Qu 

et al., 2019; H. Rao et al., 2008; L. L. Rao et al., 2018). It has also been reported that the ACC, 

AI and IFG specifically drive loss aversion, which is making decisions against risk (Fukunaga 

et al., 2012; Li et al., 2020). Activation of the bilateral putamen and insula are associated with 

winning and losing outcomes of this decision making, respectively (Li et al., 2020; H. Rao et 

al., 2008). 
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1.2.4. Real World Impulsivity 

The previous two sections described both motor and cognitive domains of impulse 

control and how specific dopamine pathways and neural networks work in parallel and produce 

motor and cognitive behavioural outcomes. However, there is some evidence to show this 

circuitry may be integrated for the motor, cognitive and limbic domains (Haber, 2014; Haber 

et al., 2000). During the planning of motor movement in impulse control, there are connections 

between the DLPFC (as part of the MCL system) and the rostral dorsal premotor cortex 

(Luppino et al., 2003). The rostral dorsal premotor cortex is responsible for executive motor 

behaviour such as motor planning and imagery (Picard & Strick, 2001). The connection 

between these cognitive and motor regions via rostral pre-motor regions supports the idea of 

integrated networks for cognitive/motor interaction tasks (Hanakawa, 2011). Additionally, it 

has been suggested that the mesolimbic dopamine system, which is often associated with 

reward, could contribute to response inhibition. Here, D2 receptor binding in regions of the 

mesolimbic system (specifically the amygdala and hippocampus) is associated with improved 

motor inhibitory control (Mann et al., 2021). Perhaps both the parallel and integrated networks 

are activated simultaneously within impulse control, and this simultaneity may help to capture 

the diverse nature of impulse control in the real world. 

 

Real world impulsivity is a subjective measure of impulsivity, often measured using 

trait impulsivity questionnaires such as the BIS, Eysenck Impulsiveness Questionnaire and 

Dickman Impulsivity Inventory (Claes et al., 2000; Leshem & Glicksohn, 2007). The BIS, first 

created in 1959 (Barratt, 1959) is utilised in the final experimental Chapters 5 and 6 of this 

thesis to investigate any associations between self-reported trait impulsivity and objective lab-

based measures of motor and cognitive impulsivity. The BIS is a self-report questionnaire 

which measures impulsivity as a trait or personality construct (Stanford et al., 2009), where a 
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higher score is related to higher levels of impulsivity. The BIS score is often calculated as the 

total score or split by the first and second order subscales: attentional (attention and cognitive 

instability), motor (motor and perseverance), non-planning (self-control and cognitive 

complexity) (Reise et al., 2013; Stanford et al., 2009). Whilst the self-reporting QUIP, as 

mentioned earlier, measures real world impulsivity specifically in PD patients as a screening 

tool for ICBs (Krieger et al., 2017; Marques et al., 2019; Papay et al., 2011; Probst et al., 2014; 

Weintraub et al., 2009). A positive relationship between the QUIP and BIS has previously been 

reported (Goerlich-Dobre et al., 2014). 

 

There are studies which compare results from real world impulsivity questionnaires 

with motor/cognitive impulsivity tasks, which are included in this thesis. Some found that the 

BIS was not associated with SSRT in the SST (Aichert et al., 2012; S. Zhang et al., 2015), but 

others discovered a correlation trending towards significance (Farr et al., 2012). Moreover, the 

BIS has been found to be correlated with the average number of pumps on a monetary 

collection and a measure of risk seeking tendency (un-burst balloons/total number of pumps) 

in the BART (Gong et al., 2022; Lejuez et al., 2002). Another study found only that the motor 

subscale of the BIS was associated with the number of balloon bursts and the number of pumps 

on a trial when the balloon did not burst on the BART (Holmes et al., 2009). With regards to 

results of the QUIP, findings have been varied when comparing to BART performance 

(cognitive impulse control). Some patients with ICBs failed to reduce impulsive behaviour 

following a loss (Martini et al., 2018), whilst no association was found between ICBs and 

performance when determining the difference between the number of balloon pumps preceding 

and following a loss (Claassen et al., 2011). For motor impulse control, some found SSRT 

determined from the SST was no different between those with and without ICBs, identified by 

the QUIP (Hlavatá et al., 2020; Ricciardi et al., 2017; Vriend et al., 2018). On the other hand, 
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another study reported shorter SSRTs in ICB patients compared to non-ICB patients and 

controls (Claassen et al., 2015a). No such relationship has been investigated between results of 

the QUIP/BIS and SSRT derived from the ARIT.  

Overall, there are mixed results from comparing real world impulsivity questionnaires 

with motor/cognitive impulsivity tasks. But it is possible that subjective real world impulsivity 

questionnaires, alongside objective behavioural measures of impulsivity could assist in the 

diagnosis, prediction, and ultimate prevention of impulsivity problems, specifically ICBs in 

PD. 
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1.3. Parkinson’s Disease 

1.3.1. Epidemiology and Aetiology 

PD is the second most common neurodegenerative disorder in the world. Approximately 10 

million people in the world have PD and the disease is most common in those over 60 years of 

age, however one in ten are under 50. PD does not necessarily reduce life expectancy, but it 

can reduce quality of life, which is where treatment is involved to maintain or improve quality 

of life (EPDA, 2022). Age is the most significant risk factor for developing PD, along with 

being male (ratio 3:2 male:female) and specific genetic mutations within the LRRK2 or 

PARK1 genes for example. Environmental factors such as smoking, head trauma, coffee, 

alcohol, pesticides and water pollutants have also been suggested as risk factors (E. Tolosa et 

al., 2006; S. Tolosa et al., 2021; Tysnes & Storstein, 2017). 

 

 

1.3.2. Symptoms and Diagnosis 

The clinical diagnosis of PD has been described as suboptimal (S. Tolosa et al., 2021). The 

prodromal symptoms of PD, displayed before formal diagnosis, can overlap with other 

conditions which makes it difficult to diagnose in this stage (E. Tolosa et al., 2006). Diagnosis 

of PD is generally confirmed based on the assessment of PD symptoms. The International 

Parkinson and Movement Disorder Society criteria of PD symptoms and features can be used 

alongside knowledge of medical history for the clinical diagnosis of PD (S. Tolosa et al., 2021). 

Symptoms of PD can be classified as motor or non-motor (Jankovic, 2008) and manifest in the 

prodromal (pre diagnosis) stage, early stage (post diagnosis) and late stage (S. Tolosa et al., 

2021). During the prodromal stage, which lasts approximately 10-15 years, patients have most 

commonly reported sleep disorders, constipation, hyposmia, depression, urinary dysfunction, 

tremor, mild slowness and memory problems. During this stage, the non-motor symptoms often 
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precede the onset of classic motor symptoms (S. Tolosa et al., 2021; Tysnes & Storstein, 2017). 

Once diagnosis has taken place, motor symptoms in the early stage include tremor, 

bradykinesia, rigidity and gait alterations, whilst non-motor symptoms include problems with 

autonomic dysfunction (e.g., constipation, orthostatic hypotension, erectile dysfunction, 

urinary urgency, heat intolerance), hyposmia, sleep disorders, anxiety, depression, mild 

cognitive impairment and somatosensory disturbances (e.g., pain and other sensations). Again, 

these non-motor symptoms usually precede the motor symptoms in the early stage. Motor 

symptoms of the late-stage present as posture and balance difficulties, freezing of gait, 

dysarthria and dysphagia (for a review, see Tolosa et al., 2021). Dementia is a later-stage non-

motor feature of PD and can develop in about 30% of patients (de Lau & Breteler, 2006). 

Imaging and genetic testing can also confirm the diagnosis of PD. With regards to imaging 

techniques, Positron emission tomography (PET) or single-photon emission computerized 

tomography (SPECT) imaging can assess synaptic striatal dopaminergic function and 

determine neurodegeneration. Structural magnetic resonance imaging (MRI) can distinguish 

PD from other types of Parkinsonism (Heim et al., 2017; E. Tolosa et al., 2006; S. Tolosa et 

al., 2021). 

 

 

1.3.3. Neuropathology 

PD is primarily characterised a result of dopaminergic neuron degeneration in the SNpc in the 

BG. PD is additionally characterised by the presence of intraneuronal proteinaceous 

cytoplasmic inclusions called Lewy bodies or Lewy neurites in the somata of neurons which 

contain aggregations of the misfolded protein alpha-synuclein (α-synuclein) (Dauer & 

Przedborski, 2003; Lotharius & Brundin, 2002). Neuronal damage from development of 

aggregated α-synuclein-containing inclusion bodies takes place in specific cell types. These 
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susceptible neurons have long and thin axons disproportionate to their somata and are also 

often poorly myelinated (Braak et al., 2003, 2004; Braak & Del Tredici, 2004). α-synuclein is 

predominantly expressed in neurons of the neocortex, hippocampus, substantia nigra, thalamus 

and the cerebellum (Kim et al., 2014). These neural regions are therefore largely important in 

the pathological stages of PD developed by Braak and colleagues (Braak et al., 2003, 2004). 

These 6 validated stages, split into pre- and post-symptomatic, outline how the Lewy inclusions 

develop and advance topographically through gray matter neural regions in PD (Dickson et al., 

2010). It is important to note that others have suggested the neuropathology of these stages 

may differ depending on age at disease onset (Boeve, 2013; Halliday & McCann, 2010). 

 

Pre-symptomatic (stages 1-3) 

The development of aggregated α-synuclein-containing inclusion bodies occurs sequentially 

and begins in neurons of the dorsal motor nucleus of the vagal nerve, the adjoining intermediate 

reticular zone and the olfactory bulb and regions of the anterior olfactory nucleus (Braak et al., 

2003, 2004). The dorsal motor nucleus of the vagal nerve has projections to the entire nervous 

system and is identified as the main starting point of inclusion body development and 

progression throughout the nervous system. In the first stage, only a small number of inclusion 

bodies develop within these regions. In stage 2 the pathology continues to spread within these 

structures and to regions of the reticular formation. The damaged neurons in stage 2 contribute 

to the “gain setting” system which contributes to preparation of action in the motor system via 

projections from medullary, spinal pre-motor and motor neurons. At the end of stage 2, the 

presence of inclusion bodies is mainly confined to the olfactory bulb, medulla oblongata and 

pons tegmentum (Braak et al., 2003, 2004). These regions are specifically involved in sleep 

disorders such as rapid eye movement (REM) sleep behaviour disorder, which are often 

reported as symptoms which precede PD diagnosis (Boeve, 2013; Bugalho et al., 2011). 
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Hyposmia and other autonomic symptoms involving cardiovascular, gastrointestinal, 

genitourinary and thermoregulatory systems also can precede the disease diagnosis (Palma & 

Kaufmann, 2014). It could be that if neuronal degeneration was determined in stages 1 and 2 

then perhaps this pathological deterioration could be prevented (Palma & Kaufmann, 2014). In 

stage 3, the pathology moves upwards past the pontine tegmentum region of the pons and into 

the basal portions of the midbrain and forebrain. This is where the first inclusion bodies are 

observed in the SNpc, which is the hallmark of PD. At this stage, pathology also extends to the 

amygdala, cholinergic tegmental pedunculopontine nucleus, oral raphe nuclei, regions of the 

basal forebrain and the tuberomammillary nucleus of the hypothalamus (Braak et al., 2003, 

2004). 

 

Post-symptomatic (stages 4-6) 

As the disease progresses into stage 4, the first characteristic motor symptoms of PD are 

displayed, in line with SNpc neuron degeneration (Greffard et al., 2006; Halliday & McCann, 

2010). The loss of neuromelanin-containing nigrostriatal neurons in the SNpc results in the 

well-known images of SNpc depigmentation. The main site of projection for these neurons in 

the SNpc is the putamen, specifically the dorsolateral putamen, which is also the main site of 

projection of dopamine transporter (DAT) proteins, of which expression is also reduced in PD. 

This is compared to mesolimbic dopaminergic neurons located in the VTA adjacent to the 

SNpc, which are relatively spared of neurodegeneration in early PD. Therefore, the caudate 

(region of projection from the VTA) does not experience the same levels of dopamine reduction 

as the dorsolateral putamen (Dauer & Przedborski, 2003). This sparing of dopamine can lead 

to problems with impulsivity following administration of DA medication (Meder et al., 2019), 

which is to be discussed in the following section. The other main step in stage 4 is the inclusion 

of the temporal mesocortex in the progression of PD, which is within the cerebral cortex, along 
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with sections of Ammon’s horn. The anteromedial temporal mesocortex is largely involved in 

limbic system projections from sensory areas to the prefrontal cortex (Braak et al., 2003, 2004). 

In stages 5 and 6, vulnerable regions of the SNpc are almost completely absent of pigmented 

neurons and PD takes over the entire neocortex, where the autonomic, limbic and motor 

systems are severely affected and patients can display the full range of associated PD symptoms 

(Braak et al., 2003, 2004). 

 

 

1.3.4. Impulse Control Behaviours in Parkinson’s Disease 

In a consultant appointment for those with PD, a common question asked is “have you been 

more impulsive recently?” Impulsive behaviour is not uncommon in PD patients and ICBs can 

manifest often as side effects of dopamine replacement therapy (DRT) medication, specifically 

DA medication. DA medication appears to be the major risk factor for ICBs in PD. Other risk 

factors include being male, a higher score on the Unified Parkinson’s disease rating scale 

(UPDRS), personal or family history of impulsive problems, earlier PD onset, being unmarried, 

higher DA dose, longer DA duration of treatment, amongst some others (Antonini et al., 2017; 

Cormier-Dequaire et al., 2018; Corvol et al., 2018; Gatto & Aldinio, 2019; Kraemmer et al., 

2016; Marković et al., 2020; Nombela et al., 2014; Voon, Mehta, et al., 2011). DAs imitate 

dopamine neurotransmitters by directly acting on dopamine receptors and are often selected to 

treat those with PD who predominantly display motor symptoms (Brooks, 2000). Up to 40% 

of PD patients taking DAs suffer from ICBs (Bastiaens et al., 2013; Erga et al., 2018; 

Kraemmer et al., 2016; Weintraub et al., 2010). 

 

A small number of studies have researched risk factors which can predict the 

development of ICBs over time. These longitudinal studies concluded DA use was a risk factor, 
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along with higher dosage, longer duration of treatment, greater severity of motor symptoms, 

apathy and autonomic and cognitive functions (Baig et al., 2019; Corvol et al., 2018; Ricciardi 

et al., 2018). These studies are key in relation to the overall aim of this thesis, to find factors 

which could perhaps be utilised in the future to determine those most at risk from developing 

destructive ICBs. In comparison to these studies, the risk factor of DA use along with duration 

of treatment is examined in Chapters 3 and 5, whilst dosage of DA medication is investigated 

in Chapter 5. Further to the variables examined in the studies mentioned above to determine 

risk factors of ICBs, this thesis adds another dimension by investigating results of motor and 

cognitive impulsivity behavioural tasks in Chapter 5. 

 

As previously mentioned, these ICBs in PD can manifest as compulsive gambling, 

hypersexuality, binge eating, compulsive shopping, punding, hobbyism and compulsive 

medication use (Weintraub, 2008) which can be determined by the QUIP (Krieger et al., 2017; 

Marques et al., 2019; Papay et al., 2011; Probst et al., 2014; Weintraub et al., 2009). A key 

question arises from this literature: why is DA medication one of the greatest risk factors for 

ICBs?   

 

To answer the question above, ICBs can be the result of an overdose of dopamine within 

MCL regions responsible for impulse control (Meder et al., 2019). As previously mentioned, 

in early, unmedicated (de novo) PD there is a reduction of dopamine in the nigrostriatal 

dopamine pathway (Dauer & Przedborski, 2003; Vaillancourt et al., 2013; Weintraub, 2008). 

Opposingly, structures constituting the MCL dopamine pathway, which are substantially 

involved in impulse control, remain relatively spared of dopamine reduction (Caminiti et al., 

2017; Claassen et al., 2017; Cools et al., 2001, 2006; Gatto & Aldinio, 2019; Hollander & 

Evers, 2001; Kish et al., 1988; K. M. Smith et al., 2016; Weintraub, 2008). Moreover, there is 
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increased sensitivity of D2/D3 receptors following dopamine denervation from the midbrain 

to regions of the ventral striatum, which subsequently increases dopamine activity in 

connecting MCL regions (Prieto et al., 2009, 2011; Vriend, 2018; Vriend et al., 2014). This 

increase in dopamine is not enough to cause ICBs in early PD (Antonini et al., 2011; Ryu et 

al., 2019; Weintraub et al., 2013), it is in fact the addition of DAs which causes the overdose 

of dopamine within the MCL dopamine pathway (Cools et al., 2001; Goto & Grace, 2005). 

DAs primarily act upon D2 and D3 receptors, which are abundant in MCL regions, further 

increasing their dopaminergic activity (Gasser et al., 2015; Seeman, 2015). The overall result 

is a hyperdopaminergic state within the MCL dopamine pathway, which can lead to issues with 

dopamine modulation and ICB development (Gatto & Aldinio, 2019; Sinha et al., 2013; 

Vaillancourt et al., 2013; Weintraub, 2008). As a result, imaging studies report PD patients 

with ICBs display more dopaminergic dysfunctional connectivity within the regions 

highlighted above (e.g., ventral striatum and NAc as part of the MCL system) which constitute 

limbic and cognitive networks, compared to PD patients without ICBs (Roussakis et al., 2019). 

 

As the disease progresses, both dosage and prolonged use of DAs can have a negative 

effect on impulse control. D2 autoreceptors are responsible for regulation of dopamine release 

from neurons (Ford, 2014); when dopamine is released from the axon terminal, these 

autoreceptors cause a transient inhibition in dopamine release (Ford, 2014; Ray, Miyasaki, et 

al., 2012). It is possible that long term activation of D2 autoreceptors via exogenous dopamine 

can lead to reduced inhibition of these autoreceptors (desensitisation), subsequent increased 

dopamine release and heightened risk of impulsive/risk-taking behaviours (Ford, 2014; Ray, 

Miyasaki, et al., 2012). Higher concentrations of dopamine have been found to activate D2 

receptors to a greater extent than lower concentrations (Trantham-Davidson et al., 2004), which 

could also lead to reduced D2 receptor sensitivity. Furthermore, PD patients with ICBs have 
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been found to have lower D3 receptor levels (Barbosa et al., 2019) and reduced D2/D3 receptor 

binding (J. H. Ko et al., 2013), indicating a lower inhibitory effect and increased dopamine 

release in areas critical for executive function. 

 

Other medications administered to treat the symptoms of Parkinson’s disease are not 

often considered a risk factor for ICB development (Erga et al., 2017; Kraemmer et al., 2016; 

Weintraub et al., 2010).  Levodopa (L-Dopa) is probably the most well-established form of 

DRT for PD, where administration results in the metabolism of L-Dopa into dopamine within 

dopaminergic neurons. However, there is some resistance to the prolonged use of L-dopa due 

to its potential role in inducing dyskinesia, motor complications, as well as its reduced 

effectiveness against PD symptoms in advanced PD (Nonnekes et al., 2016; Schapira et al., 

2009). Over time, the capability of conversion of L-Dopa to dopamine in the nigrostriatal 

system is reduced and this dopamine is no longer released as efficiently in response to 

physiological stimuli due to storage in non-neuronal cells (Schapira et al., 2009). Recent 

findings suggest that reduced effects of L-Dopa may be because different symptoms of PD may 

not all respond to the same dosage, but also could be due to dose-limiting side effects or 

individual differences in pharmacodynamics/pharmacokinetics (i.e., delayed absorption) 

(Brooks, 2000; Nonnekes et al., 2016; Schapira et al., 2009). As a result, clinicians often 

prescribe DAs first to treat PD symptoms or alongside smaller dosages of L-Dopa to begin 

with in order to slow down this process of reduced effectiveness, consequently there is a greater 

risk of DA induced ICB development. 
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1.3.5. The Role of Genetics in Impulse Control Behaviours 

As previously mentioned, not all PD patients on DA medication develop ICBs. The research 

in this thesis endeavours to investigate factors associated with the incidence, frequency or 

development of ICBs in PD. A key factor utilised in three experimental chapters of this thesis 

is the dopamine genetic risk score (DGRS). This section will outline the use of genetics to 

predict ICBs in PD and subsequently presents the DGRS in detail. 

 

A number of studies have identified individual genetic polymorphisms associated with 

ICBs in PD. Of note, Kraemmer and colleagues (2016) reported the TC genotype of OPRK1 

(rs702764) to be significantly associated with ICDs in PD and for those taking DA medication, 

along with HTR2A (rs6313 GA genotype), DDC (rs383709 -/AGAG genotype), DDC 

(rs3837091 -/- genotype) and DDC (rs1451375: AA genotype). Erga and others (2018) 

confirmed DRD1 (rs5326 minor allele) was associated with an increased risk of ICDs, whilst 

OPRK1 (rs702764 minor allele) was associated with a decreased risk of ICDs. Moreover, 

DRD1 (rs4532 T allele), DRD1 (rs4867798 C allele), GRIN2B (rs7301328 C allele) and 

DRD2/ANKK1 (rs1800497 T allele) have all been found to be associated with ICBs (Abidin 

et al., 2015). DRD3 (rs6280 AA genotype) and GRIN2B (rs7301328 CC genotype) can also 

be included in this list of significant associations (Lee et al., 2009). Some of these studies 

reported that the use of genetic and clinical factors improves the predictability of ICBs 

compared to clinical factors alone. Additionally, they have determined some individual genetic 

associations with the incidence of ICB, whilst this thesis provides evidence that a specific 

polygenic score from several genes is associated with the incidence but also change in ICBs in 

PD. Our DGRS may be more explicit in targeting genes within neural regions which are 

specifically implicated in impulse control. 
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A polygenic risk score (PRS) represents the risk estimate for a specific condition or 

disease for an individual, often using hundreds or thousands of genes (Torkamani et al., 2018). 

However, PRSs have been seen to lack clinical utility (Torkamani et al., 2018) and cannot be 

modified to target disease treatment or prevention unlike potential environmental factors. This 

is an emerging field where PRSs are somewhat robust and can potentially contribute to clinical 

action if correctly implemented (De Villiers et al., 2020; A. C. F. Lewis et al., 2021). To our 

knowledge, only three studies have investigated the association of polygenic risk scores and 

impulse control disorders in PD (Faouzi et al., 2021; Ihle et al., 2020; Weintraub et al., 2022). 

Ihle and colleagues (2020) used the most recent genome-wide association studies (GWAS) to 

form a PRS. This PRS included specific risk-increasing alleles within 90 weighted single 

nucleotide polymorphisms (SNPs) that were associated with PD. They found no associations 

with this PRS and impulse control disorders in PD, including within a DA PD cohort. Faouzi 

and others (2021) subsequently investigated a number of PRS from GWAS which were 

previously found to be associated with phenotypes such as psychiatric disorders and personality 

traits (e.g., impulsivity) to determine any potential associations with ICDs in PD. They utilised 

data from the PPMI database and the Drug Interaction With Genes in Parkinson’s Disease 

study to find any associations between 40 PRS and ICDs. However, they found no associations 

between any PRS and ICDs in PD. Most recently, Weintraub and others (2022) formed a 

clinico-genetic predictor of ICDs from a cohort of 5770 participants. They investigated 17 

SNPs and finalised a model involving just two SNPs (DRD2 rs1800497, OPRM1 rs179997) 

and seven clinical variables which confirmed very high risk of ICD development. 

 

An alternative use of a genetic score is a cumulative genetic score (CGS) (Disner et al., 

2014; Enge et al., 2020; Nikolova et al., 2011; Pearson et al., 2014). These scores are derived 

from specific alleles within genetic polymorphisms which are associated with a particular 
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behaviour or function and are often much smaller than a PRS. For example, Enge and 

colleagues (2020) produced a CGS where every allele of a specific dopamine 

polymorphism (DRD4 VNTR 7R, DAT1 VNTR 10R, COMT158val) which was previously 

found to be associated with impulsivity added a point to the total score. They found associations 

between a high (lower tonic dopamine activity) CGS and impulse control on the more 

demanding go/no-go task, whereas the low (higher tonic dopamine activity) CGS favoured the 

easier go/no-go task. These CGSs can increase effect size compared to investigating effects of 

individual genes (Enge et al., 2020), but they also involve the use of very specific genetic 

polymorphisms that are involved in certain behaviours or functions which may increase 

predictability of a behaviour/disease progression. The research presented in the current thesis 

utilises a small, specific cumulative genetic score. 

 

The term dopamine genetic risk score (DGRS) is used throughout this thesis, which 

theoretically quantifies the influence of five polymorphisms within dopaminergic genes which 

modify dopamine neurotransmission in MCL regions (Caminiti et al., 2017; Pearson-Fuhrhop 

et al., 2013, 2014; K. M. Smith et al., 2016; Vriend et al., 2014): DRD1 rs4532, DRD2 

rs1800497, DRD3 rs6280, catechol-O-methyltransferase (COMT) rs4680 and dopamine 

transporter (DAT) rs28363170. DRD1, DRD2 and DRD3 encode D1, D2, D3 receptors, 

respectively. Dopamine binds to G-coupled protein receptors, primarily categorised as D1-like 

(D1, D5) or D2-like (D2, D3, D4) subtypes, which can then modulate signalling cascades 

within the cell (Bhatia et al., 2022; Missale et al., 1998; Vallone et al., 2000). COMT is 

responsible for the degradation of dopamine after it enters the synaptic cleft (Witte & Flöel, 

2012), whilst DAT is responsible for the reuptake of dopamine into pre-synaptic neurons 

(Hovde et al., 2019). 
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In theory, the DGRS quantifies widespread tonic dopamine neurotransmission. This 

depends on the specific mutations within each polymorphism with contributes to higher or 

lower levels of dopamine neurotransmission (for a summary see Pearson-Fuhrhop et al., 2013). 

Each polymorphism receives a score of 0 or 1, resulting in a total score of 0-5 where a higher 

score equates to higher dopamine neurotransmission. The theory of the DGRS was first 

developed by Pearson-Fuhrhop and colleagues (2013), where it was called a ‘gene score’. In 

this study, they determined those with a lower gene score showed the greatest improvement in 

motor learning with L-Dopa compared to placebo, whilst a higher gene score had a worsening 

effect on motor learning. Subsequently, the more specific term DGRS, was first introduced by 

Pearson-Fuhrhop and others (2014), which is an extension of a genetic risk score (GRS), where 

a GRS is defined as “an estimate of the cumulative contribution of genetic factors to a specific 

outcome of interest in an individual”, by Igo Jr. et al., (2019). Here, they discovered lower 

dopamine neurotransmission (low DGRS) was associated with higher depression levels 

(Pearson-Fuhrhop et al., 2014). MacDonald and others (2016) then used the DGRS within the 

theme of impulse control. The genes included in the DGRS modify dopamine 

neurotransmission within MCL regions (Caminiti et al., 2017; K. M. Smith et al., 2016; Vriend 

et al., 2014) and influence impulse control (Abidin et al., 2015; Congdon et al., 2009; Erga et 

al., 2018; Lee et al., 2009; K. M. Smith et al., 2016; Vriend et al., 2014). In MacDonald et al 

(2016), they concluded that the administration of DA medication, ropinirole, in healthy adults 

improved impulse control for those with lower DGRS and impulse control worsened for 

participants with a high DGRS. The measures of impulse control were SSRT from the ARIT 

and negative reinforcement from the BART. It is these results from the study by (MacDonald 

et al., 2016), which are discussed in more detail throughout the experimental chapters, which 

drive specific aims and hypotheses throughout this thesis. As mentioned above, the DGRS can 

explain patterns of impulsivity in healthy older adults. The DGRS is utilised throughout this 
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thesis to assess the potential predictability of these genetic polymorphisms to predict the 

incidence, frequency or change in impulsive behaviour for those with PD, specifically ICB 

development. Following the definition by Igo Jr. et al., (2019) and important results presented 

by MacDonald et al., (2016) and Pearson-Fuhrhop et al., (2013, 2014), the term DGRS is a 

suitable term to describe a way to measure the potential ‘risk’ of impulsive behaviour for 

individuals, depending on their genotype. 
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1.4. Central and Peripheral Dopamine 

In the previous section of this introduction, the DGRS was introduced, which has the potential 

to quantify central levels of dopamine within MCL regions, particularly implicated in impulse 

control. Whilst this has some good preliminary evidence and rationale, it is currently a theory 

which needs to be further tested. A potential way to confirm differences in the quantity of 

dopamine levels between different DGRS is to compare these scores with a measure of directly 

metabolised dopamine, Homovanillic Acid (HVA), which can partially reflect central levels of 

dopamine. 

 

1.4.1. Homovanillic Acid 

The production of HVA can be derived both centrally (dopamine neurons) or peripherally 

(neuronal fibres, adrenal medulla, and neuroendocrine cells) (Amin et al., 1992; Rubí & 

Maechler, 2010). More specifically, the three main sources of HVA are endogenously from 

dopamine neurons and noradrenergic (NA) neurons (primary neurotransmitter is 

norepinephrine (NE)) and exogenously from diet contributions (Amin et al., 1992). The 

majority of endogenous centrally derived HVA comes from dopamine neurons in the brain, 

whilst there is a small contribution from central NA neurons (Amin et al., 1992). Likewise, 

there are also some peripheral dopaminergic nerves which contribute to HVA levels (Bell, 

1988). Peripherally derived HVA is produced mostly via NA neurons from the peripheral 

nervous system which synthesise dopamine as a precursor (and therefore HVA) during the 

production of NE (Amin et al., 1992, 1995). The biosynthesis of HVA is outlined below and 

in Figure 1.2 (Meiser et al., 2013).
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  The biosynthesis of HVA begins with tyrosine which is transported to 

the catecholaminergic neurons where HVA biosynthesis takes place (Elsworth & Roth, 1997) 

within two pathways (Meiser et al., 2013). The main contributing pathway begins at the amino 

acid, phenylalanine, which is hydroxylated by phenylalanine hydroxylase or tyrosine 

hydroxylase to form Tyrosine in the liver or within catecholaminergic neurons, respectively 

(Elsworth & Roth, 1997). Tyrosine is subsequently hydroxylated by Tyrosinase to form 3,4-

dihydroxyphenylalanine (DOPA), which is decarboxylated by aromatic amino acid 

decarboxylase (AADC) to produce dopamine (Best et al., 2009; Meiser et al., 2013). The 

alternative pathway involves AADC converting Tyrosine to Tyramine before oxidisation by 

Cyp2D to dopamine (Meiser et al., 2013). In dopamine neurons, dopamine can be stored or 

released as a neurotransmitter, but in NA neurons co-release of both NE and dopamine can 

take place (Ranjbar-Slamloo & Fazlali, 2020). The production of NE from dopamine in NA 

neurons is synthesised by the enzyme Dopamine-ß-hydroxylase, which in turn can form 

Epinephrine by methylation via Phenylethanolamine N-methyltransferase (Meiser et al., 2013). 

Alternatively, in the production of HVA, when dopamine is released from neurons into the 

synaptic cleft following excitation, this dopamine can bind to receptors on post-synaptic 

neurons, but some dopamine is reabsorbed back into the nerve terminal. This re-absorbed 

dopamine is metabolised into 3,4-dihydroxyphenylacetaldehyde (DOPAL) by monoamine 

oxidase (MAO) and then 3,4-dihydroxyphenylacetic acid (DOPAC) by aldehyde 

dehydrogenase (ALDH). The small amount of dopamine left in the synaptic cleft is converted 

to 3-methoxytyramine (3-MT) by COMT and then 3-Methoxy-4-hydroxyacetaldehyde by 

MAO. Both DOPAC and 3-Methoxy-4-hydroxyacetaldehyde are converted to HVA, by 

COMT and ALDH, a metabolite of dopamine, which can then be measured within the blood 

plasma (pHVA) (Amin et al., 1992; Elsworth & Roth, 1997; Meiser et al., 2013). pHVA 
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concentrations can subsequently be quantified using an Enzyme-linked immunosorbent assay 

(ELISA) kit, which is utilised in the final experimental chapter of this thesis. 

 

It is possible that HVA can be measured from blood plasma, urine and cerebral spinal 

fluid (CSF) and can partially reflect central dopaminergic neural activity (Amin, Davidson & 

Davis, 1992; Nemoda et al., 2011). Although measurements of HVA from the CSF may appear 

to reflect more central levels of dopamine due to the location within the central nervous system, 

it is also reported that neural HVA can often bypass the CSF (Amin et al., 1992). Additionally, 

the method of CSF extraction is by a lumbar puncture which is invasive and can cause 

complications such as prolonged headaches, lower limb pain and herniation (Boon et al., 2004; 

Evans, 1998). Alternatively, extracting blood plasma is less invasive but can still be painful, 

whilst taking a measure of urine is non-invasive and not painful but can be time consuming. 

These two measures may also be affected by peripheral and dietary HVA contributions (Amin 

et al., 1992). In order to estimate central levels of dopamine in HVA, COMT or MAO inhibitors 

which do not cross the blood brain barrier can be administered to supress peripherally sourced 

dopamine, theoretically resulting in only central derived levels of HVA (Amin et al., 1995; 

Siderowf & Kurlan, 1999). Estimated levels of central dopamine derived from HVA can be 

less than 10% in CSF, 25% for urine (Amin, Davidson & Davis, 1992) and 25-65% in blood 

plasma (Amin et al., 1992, 1995; Sternberg & Heninger, 1983). As previously mentioned, an 

exogenous source of HVA is from diet contributions (Amin et al., 1992). Diets consisting of 

foods high in monoamine and flavonoid content can increase levels and longevity of HVA, 

which is due to peripherally derived HVA or direct absorption (Combet et al., 2011; Kendler 

et al., 1983) Therefore a period of fasting and a low monoamine diet may remove the effect of 

diet on changes in pHVA levels (Davidson et al., 1987) and enable a more accurate measure 
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of HVA derived from central dopamine (Amin et al., 1995). All of the information above needs 

to be considered before confirming the approach to measure HVA. 

 

The final experimental Chapter (6) of this thesis investigates whether blood plasma 

levels of HVA in young healthy adults, within a diet-controlled environment, are associated 

with levels of theoretically quantified central dopamine via the DGRS. This chapter may 

provide the first steps of confirming the theory of the DGRS but also confirming that pHVA 

can somewhat reflect levels of centrally derived dopamine. 

 

 



 34 

CHAPTER 2  

 

Regression Model Development for 

Statistical Analyses & Bayesian 

Statistics 
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2.1. Introduction to Regression Modelling 

Regression models were conducted to a small or large extent throughout this thesis. These 

regression models were used at times to determine variables associated with ICBs in those with 

PD, impulsivity task performance or trait impulsivity. Additionally, these models were used to 

work towards predicting those with PD who are most likely to develop ICBs on DA medication, 

which incorporated the changes in impulsivity over time on medication to determine 

associations or predictors, often of impulse control measures. The following sections describe 

the processes involved in regression selection and implementation. All models were developed 

and implemented in MATLAB (MathWorks, versions 2016a – 2021b) with written custom 

code and utilisation of inbuilt functions. 
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2.2. Binary Logistic Regression Models 

A multivariate binary logistic regression model established significant associations or 

predictors of incident ICB in Chapter 3. Chapter 3 utilised a DGRS to predict the incidence of 

ICBs in PD, via the QUIP. The QUIP, as discussed in Chapter 1, involves subjects answering 

‘yes’ or ‘no’ in response to questions regarding a variety of impulsive behaviours and is often 

used as a tool alongside an interview from a specialised clinician to diagnose the presence of 

an ICB. The binary logistic regression model was selected to determine a binary response of 

‘yes’ or ‘no’, in response to a positive score on the QUIP (positive ICB incidence) or a score 

of zero, respectively. These responses were transformed to indicator variables where ‘yes’ = 1 

and ‘no’ = 0. This binary response was termed ‘response variable’ and the model utilised a 

binomial distribution with a logit (natural log odds) link. 𝑝 represents the probability of 𝑌 

response variable equalling 1 (𝑌 = 1). 𝛽 represents the regression coefficient of independent 

variable 𝑋, 𝛽0 is the intercept and 𝑘 is the total number of independent variables: 

 

𝑙𝑜𝑔𝑖𝑡(𝑌 = 1) = 𝑙𝑜𝑔𝑖𝑡(𝑝) =  ln [
𝑝

1 − 𝑝
] 

ln [
𝑝

1 − 𝑝
] =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 

[
𝑝

1 − 𝑝
] =  𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘 

𝑝 =  
𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘

1 − 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘
 

 

A robust and objective set of recommended steps were followed to develop this model 

(Harrell, 2015; Harrell et al., 1985; Hendriksen et al., 2013; Steyerberg et al., 2013). Firstly, 

hypothesis-driven candidate independent or ‘predictor’ variables were identified from prior 

literature (Giladi et al., 2007; Kraemmer et al., 2016; Nombela et al., 2014; Voon, Mehta, et 



 37 

al., 2011; Weintraub et al., 2006). These independent variables were either continuous or 

categorical variables. Secondly, subsequent linear regressions were run between all continuous 

variables to test for collinearity. If collinearity existed, variables were combined, or one 

removed to reduce the number of independent variables and increase the reliability of the 

model. Additionally, the relationship between each selected independent variable and the 

response variable was initially investigated using univariate binary logistic regression analyses, 

where the individual association between each independent variable and the response variable 

was determined. This process helped assess which variables could be excluded from the final 

model if the model was overparameterized. Sample size was acknowledged for the model 

where 10 events per variable (EPV) (10 participants per one independent variable) was advised 

(Harrell, 2015; Harrell et al., 1985; Hendriksen et al., 2013), which was why this model was 

only used in Chapter 3 as sample sizes were not large enough in Chapters 5 and 6. Although 

some recent literature has started to suggest an alternative method to assess sample size in 

binary logistic regression which incorporates the number of independent variables, total sample 

size and the events fraction: N = 10 x P / events fraction, P = predictor variables, N = required 

sample size, events fraction (probability 𝑌 = 1) = n participants ICB ≥ 1 / n total participants 

(van Smeden et al., 2019). 

 

The list of independent variables was then finalised to be entered into the multivariate 

binary logistic regression model. This model included the selected independent variables and 

important interactions. Continuous variables (Duration (of DA medication) and UPDRS I&II) 

were entered directly into the model as independent variables. Categorical variables selected 

were gender and DGRS. Gender (male or female) was treated as a binary predictor variable 

and ‘male’ was selected as the reference variable, therefore results would display the likelihood 

of males displaying a positive QUIP score compared to females. The DGRS, introduced in 
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Chapter 1, was a categorical variable initially consisting of 5 polymorphisms where each 

participant had a score between 0-5. However, the score was reduced to 0-4 as the variable 

number tandem repeat in the DAT gene was unavailable. Rather than having 5 categories (one 

per score 0-4), to increase the sample size for each category, three DGRS groups were formed: 

low (DGRS 0-1), medium (DGRS 2) and high (DGRS 3-4). A reference variable was required 

for categorical variables in the binary logistic regression model: medium was selected for the 

DGRS. As a result, the output of the model determined if those with a low or high DGRS, 

compared to medium, were more likely to have a positive ICB incidence. Interactions were 

included (Harrell, 2015), treated as independent variables, which kept the model within the 10 

EPV limit. 

 

Once implemented, validation of the model (i.e., goodness-of-fit) was assessed against 

a constant model using a chi-squared test (p < 0.05). Two receiver operating characteristic 

(ROC) curves were produced: one with only participant demographic and clinical data, and a 

second with genetic data from the DGRS included. These ROC curves evaluated specific 

changes to the predictability of incident ICB with and without the addition of genetic measures, 

which has been investigated in similar studies (Erga et al., 2018; Kraemmer et al., 2016). The 

resultant area under the ROC curve (AUC) values were compared using DeLong’s test 

(DeLong et al., 1988). 

 

 The output of the model produced coefficients which were the logit values (𝛽), standard 

error (SE) and significance values (p). In order to interpret the coefficients of logistic regression 

models, these values were converted into odds or odds ratios (ORs) by exponentiation (𝑒𝛽) 

(Hailpern & Visintainer, 2003; Sperandei, 2014). Interpretation of the odds or ORs are as 

follows. Continuous variables (Duration and UPDRS I&II) were treated within the model 
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where an increase or decrease of one unit of said variable increased the odds of an ICB (𝑌 =

1) by a specific percentage or by X times (e.g., OR of 1.09 = 9% or 1.09 times more likely). 

For categorical variables (gender and UPDRS I&II), the OR determined the odds of a particular 

category having an ICB (𝑌 = 1) compared to another category (reference variable) (e.g., OR 

of 18 = 18 times more likely to have an ICB if you are male compared to female). With regards 

to interpreting interactions including categorical and continuous variables, an example includes 

how one day increase in duration for males changes the odds of having an ICB (OR = 

𝑒(𝛽 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛+ 𝛽 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛∗ 𝑚𝑎𝑙𝑒 𝑔𝑒𝑛𝑑𝑒𝑟)). 
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2.3. Linear Regression Models 

Multiple Linear regression models were implemented in Chapter 5 to establish significant 

associations or predictors of ICBs. These particular models were chosen due to the continuous 

response variables, ICB frequency (determined by the QUIP rating scale, range 0 -112) and 

BIS percentage, compared to the binary response variable of ICB incidence. Independent 

variables were selected to find any linear relationship with ICB frequency and BIS percentage. 

Y is the response variable, 𝛽 represents the regression coefficient of independent variable 𝑋, 

𝛽0 is the intercept, 𝑘 is the total number of independent variables and 𝜀 is random error: 

 

𝑌 = 𝛽0 + 𝛽1𝑋1  +  𝛽2𝑋2 + 𝛽𝑘𝑋𝑘 +  𝜀 

 

 These linear regression models were developed based on assumptions and 

recommendations (Ali & Younas, 2021; Casson & Farmer, 2014; Schneider et al., 2010; 

Uyanık & Güler, 2013) which are explained below. Previous literature highlighted potential 

independent variable candidates for inclusion in the model. These variables were either 

continuous or categorical. Continuous variables could be entered straight into the model, whilst 

a reference variable was selected for all categorical variables. Univariate linear regressions 

were run between these independent variables and the response variable to confirm any initial 

relationship. These univariate linear regressions were also graphed with a scatter plot to assess 

the visual pattern of results, if any. These patterns helped assess which variables could be 

included or excluded from the final model if the model was overparameterized. Correlation 

coefficients were determined between all candidate continuous independent variables which 

highlighted any collinearity. For all collinear variables, one was removed from the final model. 
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 After the model was implemented, as advised (Casson & Farmer, 2014), a scatter plot 

of residual errors vs predicted values displaying a random scatter around the zero-line 

confirmed zero conditional mean error and constant variance of errors. This confirms the 

normality assumption, where we can complete statistical hypothesis testing with our values. 

Model validation was determined and interpreted using adjusted R2 values (0.01 = small effect, 

0.09 = medium effect, 0.25 = large effect, Foster et al., 2018). With regards to sample size, 

some literature suggests only 2 subjects per variable (SPV) (Austin & Steyerberg, 2015) are 

necessary for estimation of adequate linear regression outputs, whereas others suggest 10 

(Casson & Farmer, 2014) or 20 (Schneider et al., 2010). Whilst considering the suggestions 

above and searching more of the literature, an appropriate way to find an adequate sample size 

seems to be also including R2 and power calculations (Cohen, 1988; Cohen et al., 2003). 

Therefore, the effect size established from adjusted R2 was used in the subsequent statistical 

power calculation (using G*Power 3.1.9.6, (Erdfelder et al., 1996) to conclude the appropriate 

sample size for an adequate power value for these linear regressions (Cohen, 1988). An 

acceptable value for statistical power (probability of rejecting null hypothesis) is above 0.80 

(Jan & Shieh, 2019; Valentine et al., 2010). Each model was validated against a constant model 

(goodness-of-fit) using the F-statistic (p < .05). 

 

 Following the output of the model, the following were reported: coefficient values (𝛽), 

standard error (SE), significance values (p) and 95% confidence interval range (95% CI 𝛽). 

The 95% CI 𝛽 presents the possible range of the coefficients within the population (Cohen et 

al., 2003; Foster et al., 2018). Continuous variables were treated within the model output where 

an increase or decrease of one unit of said variable increased ICB frequency/BIS percentage 

by a specific value β. With regards to categorical variables, the variable in question (e.g., male) 

had an ICB frequency/BIS percentage of 𝛽 more than/less than the reference variable (e.g., 
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female). When interpreting interactions 𝛽3(𝛽1 ∗ 𝛽2) between continuous and categorical 

variables, for each unit increase in the continuous variable 𝛽1, ICB frequency/BIS percentage 

changes by the amount 𝛽1 + 𝛽3 for the reference categorical variable (𝛽2 = 1) (Hayes & 

Montoya, 2017). 
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2.4. Bayesian Statistics 

Bayesian statistics is a form of statistical data analysis based upon the theorem developed by 

Thomas Baye (Fornacon-Wood et al., 2022). Frequentist statistics is a more common method 

used for statistical analysis, and this method assesses the probability of data using significance 

testing of null hypotheses (Fornacon-Wood et al., 2022). Whereas Bayesian statistics assesses 

the probability of hypotheses, using previous knowledge (prior) and new (posterior) data 

(Ferreira et al., 2020; Fornacon-Wood et al., 2022; Hackenberger, 2019). The probabilities of 

two hypotheses are evaluated within a ratio, which is also called the Bayesian Factor 

(Hackenberger, 2019). The Bayesian Factor ranges from near zero to infinity and provides 

evidence to support the null or alternative hypothesis (Hackenberger, 2019). The formula for 

Bayes theorem is displayed below, where A is the prior probability of an outcome, given the 

new data, B. P is the probability (Ferreira et al., 2020; Fornacon-Wood et al., 2022).  

 

 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵)
 

 

 

Bayesian statistics were used within Chapter 4 to confirm there were no differences in 

SSRT between sessions 1 and 2 for non-selective response inhibition in the ARIT and SST. 

Here, Equivalence Bayesian Paired Samples t-tests produced Bayes Factor values which 

identified the strength of evidence for the alternative hypothesis. It is possible that using 

Bayesian statistics provides another level of analysis, further to frequentist statistics, to add 

strength to results. 
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3.1. Abstract 

Introduction: Up to 40% of Parkinson’s disease patients taking dopamine agonist medication 

develop impulse control behaviors which can have severe negative consequences. The current 

study aimed to utilize dopamine genetics to identify patients most at risk of developing these 

behaviors. Methods: Demographic, clinical, and genetic data were obtained from the 

Parkinson’s Progression Markers Initiative for de novo patients (n=327), patients taking 

dopamine agonists (n=146), and healthy controls (n=160). Impulsive behaviors were identified 

using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease.  A 

dopamine genetic risk score was calculated for each patient according to polymorphisms in 

genes coding for dopamine D1, D2 and D3 receptors, and catechol-O-methyltransferase. A 

higher score reflected higher central dopamine neurotransmission. Results: Patients on 

agonists with a low dopamine genetic risk score were over 18 times more likely to have an 

impulsive behavior compared to higher scores (p = 0.04). The 38% of patients taking agonists 

who had at least one impulsive behavior were more likely to be male and report higher Unified 

Parkinson’s Disease Rating Scale I&II scores. With increasing time on dopamine agonists 

(range 92-2283 days, mean 798±565 standard deviation), only patients with a high dopamine 

genetic risk score showed an increase in number of impulsive behaviors (p = 0.033). Predictive 

effects of the gene score were not present in de novo or healthy control. Conclusions: A 

dopamine genetic risk score can identify patients most at risk of developing impulsive 

behaviors on dopamine agonist medication and predict how these behaviors may worsen over 

time. 
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3.2. Introduction 

Impulse control is an essential aspect of self-restraint. Dopamine systems are important 

regulators of impulse control, such that abnormal levels of dopamine can lead to problems with 

impulsivity (Sinha et al., 2013; Weintraub, 2008). A significant risk factor for problems with 

impulse control in Parkinson’s disease (PD) patients is dopamine agonist (DA) medication. Up 

to 40% of patients administered DAs develop impulse control disorders (ICDs) e.g., 

pathological gambling, binge eating, compulsive shopping or hypersexuality (Bastiaens et al., 

2013; Erga et al., 2018; Kraemmer et al., 2016). Here, we use the term impulse control 

behaviors (ICBs), a term commonly used to describe all ICDs and related behaviors (Abidin et 

al., 2015). 

 

Sparing of specific dopaminergic networks in PD combined with dopamine medication 

may elevate the risk of ICBs. In early, unmedicated (de novo) PD there is a reduction of 

nigrostriatal dopamine (Vaillancourt et al., 2013; Weintraub, 2008). In contrast, dopamine is 

relatively spared in the amygdala, ventral striatum, prefrontal cortex and orbital frontostriatal 

circuits, constituting the mesocorticolimbic (MCL) system (Caminiti et al., 2017; Cools et al., 

2001; K. M. Smith et al., 2016). The MCL system is heavily involved in impulse control 

(Weintraub, 2008). Furthermore, in PD there is heightened sensitivity of D2/D3 receptors 

following dopamine denervation from the midbrain to areas of the ventral striatum, which in 

turn further increases dopamine activity in the connecting MCL regions (Prieto et al., 2009; 

Vriend et al., 2014). However, dysregulation of MCL dopamine from PD mechanisms alone is 

insufficient to increase the incidence of ICBs in de novo PD compared to controls (Antonini et 

al., 2011; Ryu et al., 2019; Weintraub et al., 2013). The addition of DA medication is thought 

to cause a dopamine overdose within the relatively spared MCL system (Cools et al., 2001; 

Goto & Grace, 2005). DA medications primarily act on D2/D3 receptors (Gasser et al., 2015) 
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further increasing their activity. The resultant tonic hyperdopaminergic state can lead to 

problems with phasic dopamine modulation and over time the development of ICBs (Sinha et 

al., 2013; Vaillancourt et al., 2013; Weintraub, 2008). 

 

Using genetics to guide precision medicine is fast gaining traction and may be 

applicable to reduce the incidence of ICB side-effects. Polymorphisms within single dopamine 

genes are individually associated with the incidence of ICBs in PD (Abidin et al., 2015; 

Cormier-Dequaire et al., 2018; Erga et al., 2018; Kraemmer et al., 2016; Lee et al., 2009), 

though no study to date has investigated the collective influence of multiple genetic 

polymorphisms as a genetic risk score on widespread central dopamine levels and ICBs. A 

polygenic dopamine genetic risk score (DGRS) (MacDonald et al., 2016; Pearson-Fuhrhop et 

al., 2013, 2014) is a strong candidate for quantifying widespread tonic dopamine 

neurotransmission. A DGRS quantifies the effect of polymorphisms within five key genes that 

modify dopamine neurotransmission within MCL regions (Caminiti et al., 2017; K. M. Smith 

et al., 2016; Vriend et al., 2014) and affect impulse control (Abidin et al., 2015; Congdon et 

al., 2009; Erga et al., 2018; Lee et al., 2009; K. M. Smith et al., 2016; Vriend et al., 2014): 

DRD1, DRD2, DRD3 (encoding D1, D2 and D3 receptors, respectively), catechol-O-

methyltransferase (COMT), and dopamine transporter (DAT). A DGRS can predict impulse 

control in healthy older adults, including how impulse control will change with administration 

of DAs (MacDonald et al., 2016). In that study (MacDonald et al., 2016), both motor and 

cognitive aspects of impulse control were worse for participants with a low versus high DGRS 

at baseline. Ropinirole caused worsening impulse control for participants with a high DGRS, 

whereas participants with a low DGRS saw improvements.  
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The present study investigated whether a DGRS can predict ICBs in a large sample of 

PD patients. Demographic, clinical and genetic data were obtained from the Parkinson’s 

Progression Markers Initiative (PPMI) database. The primary aim was to determine the 

association between DGRS and the development of ICBs, within de novo and PD patients on 

DAs. The secondary aim was to establish which demographic and clinical variables were 

associated with ICBs and whether they interacted with the DGRS. We hypothesized that 

patients on DAs with a low DGRS would be more likely to have an ICB, but that ICBs would 

reduce over time on medication. Conversely, we hypothesized that patients with a high DGRS 

would be less likely to have an ICB, but that ICBs would increase with greater time on 

medication. We further hypothesized that ICBs would be associated with male gender and a 

higher Unified Parkinson’s Disease Rating Scale (UPDRS) I&II score (Cormier et al., 2013; 

Cormier-Dequaire et al., 2018; Kraemmer et al., 2016). Genetic and demographic data from 

healthy controls were included and no associations were expected with ICBs. 
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3.3. Materials and Methods 

3.3.1. Participants 

The PPMI is an ongoing, cohort database including demographic, clinical, imaging, genetic 

and biological data for PD patients and healthy controls. PPMI is a public-private partnership, 

funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners 

(http://www.ppmi-info.org). Clinical and demographic data from 2035 individuals were 

downloaded on 22 October 2018 and genetic data on 29 April 2019. Individuals were 

categorized into three groups: de novo (DN): with PD before medication, dopamine agonist 

(DA): with PD taking DA medication, or healthy control (HC). 

 

3.3.2. Clinical Measures 

Impulse control was measured via the short form of the Questionnaire for Impulsive-

Compulsive Disorders in Parkinson’s Disease (QUIP-short), a globally validated screening tool 

to identify ICBs with any positive score (Weintraub et al., 2009). The QUIP involved 

answering ‘yes’ or ‘no’ to 13 questions, resulting in a score of 1 or 0 for each question, 

respectively. Total scores therefore ranged from 0-13. QUIP score and current age were taken 

at maximum time since starting DAs/PD diagnosis/study enrolment, as appropriate. Duration 

refers to continuous time on DA medication/time since diagnosis at the time of the QUIP. 

Severity of PD symptoms in activities of daily living was assessed using the UPDRS parts I&II 

(Goetz et al., 2003). UPDRS parts III and IV were not available from a sufficient number of 

patients to include in the study. 

 

3.3.3. Genetic Data 

Five specific genetic polymorphisms were identified for analysis a priori (MacDonald et al., 

2016). However, data was not available to analyze the variable number tandem repeat in the 
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DAT gene (rs28363170) as the untranslated regulatory region of this gene was not genotyped. 

Exome sequencing files for the remaining four single nucleotide polymorphisms (SNPs) were 

used. Exome sequencing was performed on whole-blood extracted DNA samples using an 

Illumina rapid capture expanded exome kit. Sequencing data was aligned against the University 

of California Santa Cruz reference human genome 19 to find the 4 genotype locations for each 

SNP using GATK (VariantsToTable, version 4.1.2.0). For complete methods, see Exome 

Sequencing Methods (project 116), (http://www.ppmi-info.org/data). The DGRS (Appendix 1) 

was adapted to a scale of 0-4 (higher score = higher dopamine levels) according to the SNP 

within the following genes: DRD1 (rs4532), DRD2 (rs1800497), DRD3 (rs6280) and COMT 

(rs4680) (Pearson-Fuhrhop et al., 2013, 2014). All genes apart from COMT (p = .008) were in 

Hardy-Weinberg equilibrium (.07 > p < .86). 

 

3.3.4. Statistical Analysis 

Data analysis and statistical modelling were performed in MATLAB (version R2020a, 

MathWorks) and R (R Core Team, version 3.6.3). Chi-square tests assessed Hardy–Weinberg 

equilibrium for each gene. Normality assumptions were checked using the Kolmogorov-

Smirnov test. When normality was violated, data were analyzed using the Wilcoxon Rank-Sum 

test. Statistical significance was set at p ≤ 0.05. 

 

3.3.4.1. ICB incidence 

ICB incidence was defined as any positive score on the QUIP. Candidate independent 

variables were age, DGRS, duration, gender and UPDRS I&II score (Bastiaens et al., 2013; 

Kraemmer et al., 2016; MacDonald et al., 2016; Voon, Sohr, et al., 2011; Weintraub et al., 

2006). The DGRS was categorized into three ranges: low (DGRS 0-1), medium (DGRS 2, 

reference variable in regression analyses) and high (DGRS 3-4) to increase sample size for 
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each group. Linear regressions were run between continuous variables to test for collinearity. 

If collinearity existed, variables were removed from the model to avoid overparameterization. 

The relationship between each independent variable and the response variable was initially 

investigated using univariate binary logistic regression analyses (Appendix 2), which 

confirmed variables to include in the full model. A multivariate binary logistic model was 

developed which included the selected independent variables and important interactions. 

Model validation (i.e. goodness-of-fit) was assessed against a constant model using a chi-

squared test (p < 0.05). Two receiver operating characteristic (ROC) curves were produced for 

each participant group’s multivariate model to evaluate specific changes to the predictability 

of incident ICB following the inclusion of the DGRS (Appendix 3, 4). Resultant AUC values 

were compared using DeLong’s test (DeLong et al., 1988). 

 

 

3.3.4.2. QUIP score change on medication 

Correlations between QUIP score (i.e. number of ICBs) and time on DA medication were run 

for each DGRS range (low, medium, high). Fisher z transformations identified differences 

between correlations. 
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3.4. Results 

3.4.1. Participant Characteristics 

Data from 506 individuals (36-89 years, mean 63.7 ± 9.92 standard deviation) were included 

in the analysis (DN = 327; DA = 146; HC = 160; 127 DA patients had data since de novo stage 

so contributed to both DN and DA groups). Patients had a DGRS of low, medium or high. The 

number of patients with each DGRS for every group was as follows: DN group Low: n = 44, 

Medium: n = 106, High: n = 177; DA group Low: n = 23, Medium: n = 50, High: n = 73; HC 

Low: n = 24, Medium: n = 45, High: n = 91. 

 

Demographic and clinical data are presented in Table 3.1. Kolmogorov-Smirnov tests 

identified the QUIP score in all groups and the UPDRS I&II score in the DA group violated 

normality (p < .001), therefore a Wilcoxon rank sum test was used to compare scores between 

individuals with/without ICBs. All remaining variables were normally distributed (p > 0.194) 

so comparisons were made using unpaired t-tests. Patients in the DN group who identified an 

ICB had a higher UPDRS score (p = 0.007) than those without an ICB. In the DA group, a 

greater number of males (p = 0.041) and patients with a higher UPDRS (p < 0.001) presented 

with an ICB. In the HC group, there was no difference in variables between those with and 

without an ICB (all p > 0.383). 
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Table 3.1 Participant demographics and clinical assessments for de novo, dopamine 

agonist and healthy control groups, separated by incidence of impulse control behaviours. 

De novo (DN)  

 ICB (n = 43) No ICB (n = 284)   p 

Age, years 61.3 (9.45) 62.7 (9.83) .366 

DGRS 0-4 2.39 (1.05) 2.54 (0.95) .105 

Duration, days 497 (316) 530 (357) .569 

Gender, %male (n, male:female) 58.1 (25:18) 67.6 (192:92) .222 

QUIP score 1.58 (0.76) 0 <.001 

UPDRS I&II 18.2 (9.73) 14.5 (8.13) .007 

Dopamine agonist (DA)      

 ICB (n = 56) No ICB (n = 90)   p 

Age, years 62.8 (9.35) 63.3 (7.61) .712 

DGRS 0-4 2.39 (0.93) 2.44 (1.03) .760 

Duration, days 869 (554) 843 (567) .785 

Gender, %male (n, male:female) 71.4 (40:16)  54.4 (49:41) .041 

QUIP score 1.96 (1.26) 0 <.001 

UPDRS I&II 23.8 (12.2) 16.4 (11.0) <.001 

Healthy control (HC)    

 ICB (n = 25) No ICB (n = 135)   p 

Age, years 65.5 (12.7) 66.9 (10.7) .570 

DGRS 2.48 (0.96) 2.54 (0.92) .764 

Gender, %male (n, male:female) 56.0 (14:11) 65.2 (88:47) .383 

QUIP score 1.52 (0.71) 0 <.001 

Means for variables (standard deviation). ICB: impulse control behaviour (n: number). 

DGRS: dopamine genetic risk score; QUIP: Questionnaire for impulsive-Compulsive 

Disorders in Parkinson’s Disease; UPDRS: Unified Parkinson’s Disease Rating Scale. 

Significant values in bold. : Wilcoxon rank sum test. 
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3.4.2. ICB Incidence 

3.4.2.1. Dopamine agonist group 

DGRS, duration, gender and UPDRS I&II score were included in the model with DGRS x 

duration and DGRS x UPDRS I&II interactions (Table 3.2). Age was excluded to avoid over-

parameterization following univariate analysis (Appendix 2). 

 

Binary logistic regression function: 

𝑝 =
exp (𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)+ 𝛽1𝐷𝐺𝑅𝑆 + 𝛽2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝛽3Gender+ 𝛽4UPDRS+ 𝛽5DGRSxDuration+ 𝛽6DGRSxUPDRS)

1+ exp (𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)+ 𝛽1DGRS + 𝛽2Duration + 𝛽3Gender+ 𝛽4UPDRS+ 𝛽5DGRSxDuration+ 𝛽6DGRSxUPDRS)
  

 

Table 3.2 Variables associated with impulse control behaviours in the dopamine agonist 

group. 

  SE p value Odds/OR 95 % CI 

(Odds/OR) 

Intercept -3.819 1.141      <0.001 0.02 [0.002, 0.210] 

DGRS low 2.896 1.417       0.04 18.1 [1.099, 298.4] 

DGRS high 1.851 1.274       0.146 6.40 [0.513, 79.18] 

Duration (days) 0.0007 0.0006       0.206 1.00 [1.000, 1.002] 

Gender (male) 0.817 0.405       0.044 2.26 [1.015, 5.046] 

UPDRS I&II 0.088 0.034       0.01 1.09 [1.021, 1.169] 

DGRS low * Duration -0.001 0.001      0.161 1.00 [0.997, 1.001] 

DGRS high * Duration -0.0007 0.0008      0.257 1.00 [0.998, 1.001] 

DGRS low * UPDRS I&II -0.048 0.05     0.338 0.95 [0.863, 1.053] 

DGRS high * UPDRS I&II -0.032 0.042    0.455 0.97 [0.891, 1.053] 

Response variable: positive score on Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s Disease (yes/no). DGRS: dopamine genetic risk score, UPDRS: Unified 

Parkinson’s Disease Rating Scale. : coefficient, SE: standard error, OR: odds ratio (OR = e), 

CI: Confidence Interval. Significant values in bold. 
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The multivariate binary logistic regression model was validated against a constant 

model (p = 0.006). The odds of a male having an ICB was more than twice that of a female 

(odds ratio = 2.26) and significantly contributed to the incidence of an ICB (p = 0.044). As a 

patient’s UPDRS I&II score increased by 1, they had a 9% increase in the odds of an ICB ( = 

0.088, p = 0.01). The incidence of an ICB was over 18 times more likely when a patient had a 

low compared to medium-range DGRS ( = 2.896, p= 0.04, odds ratio = 18.1). No gene 

individually showed this association with ICBs (p > 0.357). No other independent variables or 

interactions increased the likelihood of an ICB. 

 

3.4.2.2. De novo group 

Binary logistic regression model analyses determined the odds of having an ICB increased by 

9% with every score increase of 1 on the UPDRS I&II ( = 0.09, p = 0.003, odds ratio = 1.09). 

Full analyses can be found in Appendix 5. 

 

3.4.2.3. Healthy control group 

No independent variables increased the probability of having an ICB in either the univariate 

or multivariate models (p > 0.382) and the multivariate model was not validated against a 

constant model (p = 0.761). 

 

3.4.3. QUIP score change on medication 

Figure 3.1 presents the relationship between QUIP score and time on DA medication 

for DGRS low, medium and high groups. The number of ICBs increased over time 

for the high DGRS group but the number of ICBs only tended to decrease over time 

for medium-range and low DGRS groups. There was a significant positive 

correlation between QUIP score and days on medication for patients with a high 
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3.5. Discussion 

The present study was the first to investigate the relationship between an a priori, hypothesis-

driven collection of genes and ICBs for people with PD. The novel finding is that dopamine 

gene profiling via a DGRS has predictive power for ICBs in PD patients on DA medication. 

As hypothesized, a low DGRS was associated with an increased likelihood of having an ICB 

on DA medication compared to higher scores. Furthermore, as hypothesized, DGRS influenced 

the change in ICBs over time on DA medication. Patients with higher DGRS scores increased 

the number of ICBs with time on DA medication, whereas patients with lower scores tended 

to reduce ICBs. This association between DGRS and ICBs in the context of an inverted-U 

relationship between dopamine and impulse control is shown in Figure 3.2. The apex of the 

inverted-U curve signifies the optimal range of dopamine corresponding to maximal impulse 

control. A reduction in ICBs may reflect a move along the curve towards the apex, and an 

increase in ICBs a move away from the apex. For all PD patients, regardless of medication 

status, a higher UPDRS I&II score was associated with increased odds of an ICB. Being male 

also increased the chance of having an ICB, but only for patients on DA medication. The 

predictive effects of the DGRS were not present in healthy controls, which supports the 

contention that the mechanisms of effect are specific to dopamine fluctuations during PD and 

dopamine therapy. 
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by considering the influence of these genes collectively, along with DRD1 as a cumulative 

polygenic score, that the current study found a significant association (Table 3.2). This novel 

finding using a method to quantify the effect of multiple genes simultaneously highlights the 

importance of considering widespread effects on central dopamine. The resultant association 

between DGRS and impulse control mirrors that seen in healthy older adults (MacDonald et 

al., 2016). PD patients with low tonic dopamine levels (i.e. low DGRS) were around 18 times 

more likely to report an ICB (i.e. worse impulse control) compared to patients with a mid-range 

DGRS. Impaired impulse control can result from dopamine being either below or above an 

optimal range, illustrated via the left and right-hand side of the inverted-U curve, respectively 

(Figure 3.2). Low DGRS patients necessarily sit lower on the x axis of this curve, and therefore 

may present with ICBs as their levels of central dopamine neurotransmission fall below optimal 

levels. 

 

The DGRS also accounted for changes in impulse control over time on DA medication. 

Patients with a high DGRS reported worse impulse control with increased time on DA 

medication, reflected by higher scores on the QUIP. However, patients with both a low and 

medium DGRS tended to report lower QUIP scores with more time on DA medication. These 

changes in impulse control over time for all three DGRS groups can also be explained by the 

inverted-U hypothesis. Greater time on DA medication is illustrated by a rightward shift along 

the curve (Figure 3.2) from increases in neurotransmission. The increase might result from 

increased medication dosage to combat neurodegenerative disease progression, and/or from 

decreased sensitivity of D2/D3 autoreceptors (Gasser et al., 2015). As DA medication dose was 

not available via the PPMI database we cannot speculate between these potential mechanisms 

of effect. Either way, an increase in dopamine shifts patients rightwards along the curve, 

moving patients with a lower DGRS (postulated to sit on the left-hand side) towards optimal 
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levels of dopamine (i.e. the curve apex), but moving high DGRS patients beyond optimal 

levels. Our results therefore indicate a higher DGRS might be beneficial for impulse control 

initially, but can be detrimental with exposure to DA medication. 

 

Demographic and clinical factors associated with the presence of ICBs on DA 

medication replicate previous findings. As hypothesized, male gender and a higher UPDRS 

I&II score were significantly associated with the presence of an ICB, as previously reported 

(Cormier-Dequaire et al., 2018; Kraemmer et al., 2016; Voon, Sohr, et al., 2011). Sections IV 

and V of the UPDRS were unavailable, but UPDRS section IV has been found to have 

associations with ICBs in other studies (Cormier-Dequaire et al., 2018; Voon, Sohr, et al., 

2011). Future inclusion of the full UPDRS might reveal interactions with DA medication 

and/or DGRS. 

 

There are two main limitations of the present study. Firstly, genetic information on the 

polymorphism within the untranslated region of the DAT gene was unavailable in the PPMI 

database. The importance of DAT for impulse control behavior and its contribution to the 

DGRS has been acknowledged (MacDonald et al., 2016). In early PD DAT function is reduced 

in the MCL system, leading to increased dopamine concentration (Caminiti et al., 2017). With 

the addition of dopamine medication there can be a dopaminergic overdose within this region, 

resulting in ICB development (Vriend et al., 2014). Considering the reduced sensitivity, it is 

encouraging the DGRS was still able to predict ICB incidence on DA medication without the 

inclusion of DAT. Nevertheless, it will be beneficial to include DAT within the DGRS in future 

research. The second limitation is a smaller than desired sample size for the analyses of ICB 

score. Consequently, we were unable to run a multivariate binary logistic regression model to 

determine any significant associations between changes in ICB score and clinical, demographic 
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and genetic factors. To investigate these relationships using equivalent multivariate analyses, 

future studies should use larger cohorts. 

 

In summary, the key finding of the present study was the observed predictive power of 

a DGRS for ICBs in PD patients on DA medication. An inverted-U relationship between 

impulse control and dopamine neurotransmission aligns with how DA medication affected 

patients across the range of DGRS. DA patients with a low DGRS were more likely to have an 

ICB, but the number of ICBs decreased over time on DA medication. The opposite was 

observed for the group of patients with a high DGRS, who were less likely to have an ICB on 

DA medication but over time, the number of ICBs increased. In future research, more sensitive 

and objective laboratory-based measures could be used in conjunction with a DGRS to identify 

patients at risk of developing ICBs. This research will help to strengthen the relationship 

between the utilization of a DGRS and ICB prediction. 
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4.1. Abstract 

Various behavioural tasks measure response inhibition encompassing the ability to cancel 

unwanted actions, evaluated via stop signal reaction time (SSRT). It is unclear whether SSRT 

is an unchangeable inherent measure of inhibitory network integrity or whether it can improve 

with repetition. The current study explored if and how SSRT changed over two sessions for 

the Anticipatory Response Inhibition Task (ARIT), and how this compared with the Stop 

Signal Task (SST). Forty-four participants repeated the ARIT and SST over two sessions. 

SSRT and its constituent measures (Go trial reaction time, stop signal delay) were calculated. 

SSRT reflecting non-selective response inhibition was consistent between sessions in the ARIT 

and SST (both p > .293). Reaction time and stop signal delay also remained stable across 

sessions in the ARIT (all p > .063), whereas in the SST, reaction time (p = .013) and stop signal 

delay (p = .009) increased. SSRT reflecting behaviourally selective stopping on the ARIT 

improved (p < .001) over two sessions, which was underpinned by changes to reaction time (p 

< .001) and stop signal delay (p < .001). Overall, the maximal efficiency of non-selective 

inhibition remained stable across two sessions in the ARIT. Results of the SST confirmed that 

non-selective inhibition can however be affected by more than inhibitory network integrity. 

Behaviourally selective stopping on the ARIT changed across sessions, suggesting the 

sequential neural process captured by the SSRT occurred more quickly in session two. These 

findings have implications for future studies that necessitate behavioural measures over 

multiple sessions. 
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4.2. Introduction 

Response inhibition (RI) is the motor component of inhibitory control and encompasses the 

ability to supress or cancel unwanted actions. There are various behavioural tasks used to 

objectively measure RI. One of the most popular is the stop signal paradigm which was first 

created by Vince (1948), further developed into the stop signal task (SST) by Lappin & Eriksen 

(Lappin & Eriksen, 1966). Most recently the SST has been popularised by Logan and 

colleagues via the open-source STOP-IT software (Windows executable software for the stop-

signal paradigm) which was first developed in 2008 (Verbruggen, Logan, & Stevens, 2008) 

and recently updated (Verbruggen et al., 2019a). The SST involves Go trials where participants 

form a default response to a Go signal, which is often a choice between responding with their 

left or right hand. Participants respond to this Go signal as fast as possible with the press of a 

specific button. The SST also contains Stop trials making up approximately 25% of total trials. 

During Stop trials, a visual or auditory signal is presented after the Go stimulus and participants 

must inhibit their conditioned response. The task uses a staircase design to adapt this stop signal 

to the performance of the participant, narrowing in on a stop signal delay (SSD) where the 

participant successfully withholds their response on 50% of the stop trials. Logan and Cowan 

(1984) posited a horse-race model of RI to explain the behavioural outcome on each trial of 

the SST. The horse-race model suggests a race between the going process (initiated by the Go 

signal) and stopping process (initiated by the Stop signal) on a trial-by-trial basis. If the going 

process finishes first, then the response is executed, but if the stopping process finishes first, 

the response is inhibited. Stop signal reaction time (SSRT) is the most widely utilised primary 

dependent measure for the SST as it is thought to indicate the latency of this stopping 

process/RI for an individual (Aron & Poldrack, 2006; G. P. H. Band et al., 2003; Ray Li et al., 

2008; Verbruggen et al., 2013; Verbruggen & Logan, 2009). 
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 Another method for investigating RI is via the anticipated response version of the SST.  

This version was developed by Slater-Hammel (1960) and follows the same horse race 

framework (Leunissen et al., 2017). This version of the SST constrains the Go response to an 

anticipated stationary target, to ensure response preparation takes place on both Go and Stop 

trials. When a Stop signal is presented before this anticipated target, participants must inhibit 

their Go response. Early versions of this anticipated response task, commonly named the 

anticipatory response inhibition task (ARIT), presented a clock face display and participants 

depressed a key to initiate a clockwise sweep dial revolution (Coxon et al., 2006; Stinear & 

Byblow, 2004). During Go trials, participants were required to release the key when the dial 

intercepted the target, 800ms after the start of the trial (Go response). Stop trials commenced 

in the same way, but the sweep dial stopped revolving before the target (Stop signal). 

Participants therefore had to inhibit their anticipated response when the Stop signal (the sweep 

hand stopping) was presented. More recent studies typically use a version of the ARIT 

involving one or two vertical bars which rise for 1000ms e.g. (Coxon et al., 2007, 2009, 2016; 

Gilbert et al., 2019; He et al., 2019; MacDonald et al., 2012, 2016; Zandbelt & Vink, 2010). 

This version of the ARIT has been increasing in popularity and is now available open-source 

(He et al., 2022). In the bimanual version, participants are required to release two depressed 

keys to intercept two bars with the target line at 800ms on Go trials. Participants then inhibit 

this bimanual lift response when the bars do not reach the target on Non-Selective Stop Both 

trials, with the latency of the non-selective stopping process reflected in the SSRT. During the 

more challenging Selective Stop trials, participants are required to keep only one key depressed 

when the corresponding bar does not reach the target and release the alternative key at the 

target line. The response of the continuing hand is invariably delayed, which is termed the 

stopping interference effect (Aron & Verbruggen, 2008; Y. T. Ko & Miller, 2011; Wadsley et 

al., 2019). These trials are termed Selective Stop trials which refers to selective cancellation at 
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a behavioural level, rather than a neural level. SSRTs are also calculated on these trials but are 

thought to reflect a more complex series of neural processes triggered by the stop signal; a 

sequential non-selective stop, uncouple and reprogram, then selective go process (Coxon et al., 

2009; MacDonald et al., 2012, 2014, 2021; Wadsley et al., 2019). 

 

 Research conducted using both the ARIT and SST has revealed the neural mechanisms 

underlying inhibitory control, specifically the role of basal ganglia pathways. Execution of the 

motor response in Go trials activates fronto-striato-pallidal regions as part of the direct basal 

ganglia pathway, which then leads to an increase in thalamocortical drive to the motor cortex. 

Whereas inhibition on Stop trials engages a right lateralized network that includes the indirect 

(suppression of action) or hyperdirect (cancellation of action) pathway, that inhibits output 

from the motor cortex. This inhibitory network includes the subthalamic nucleus (STN), globus 

pallidus pars interna (GPi) and externa (Gpe) (indirect pathway), right inferior frontal gyrus 

(IFG) and pre- supplementary motor area (SMA) (Allen et al., 2018; Aron et al., 2003; Aron 

& Poldrack, 2006; Chen et al., 2020; Coxon et al., 2009; Dunovan et al., 2015; Maizey et al., 

2020; Ray Li et al., 2008; Ray, Brittain, et al., 2012). The STN, once activated via the indirect 

or hyperdirect pathway, plays an important role in supressing thalamocortical output by 

blocking the direct pathway (Aron & Poldrack, 2006; Dunovan et al., 2015; Ray Li et al., 2008; 

Zandbelt & Vink, 2010). The integrity of these basal ganglia pathways is thought to be reflected 

in measures derived from RI tasks. 

 

 There is substantial literature investigating single session measures of RI using the 

ARIT and SST. The assumption is that RI, indexed via a SSRT, is an inherent ability which is 

specific to each individual and purely reflects the integrity of their inhibitory networks. 

Therefore, RI is not expected to change within a young healthy individual and SSRT should be 
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consistent across multiple sessions. A handful of previous studies have tested this assumption 

by investigating the effect of multiple sessions on RI in the SST. Two of these studies reported 

no improvement in SSRT for non-selective RI following 9 and 2 sessions, respectively 

(Chowdhury et al., 2020; Enge et al., 2014). While Chowdhury et al. found no behavioural 

improvement in stopping efficacy with multiple sessions, Enge et al. counterintuitively 

reported an increase in SSRT (i.e., a decrease in performance) over the course of multiple 

sessions. Enge and colleagues attributed this to participants progressively focusing more on 

fast responses in Go trials at the expense of accurate cancellation on Stop trials. This 

interpretation suggests strategizing during the task might be able to affect the SSRT 

measurement over multiple sessions. Conversely, another study using the SST for non-

selective RI did find an improvement in SSRT throughout 10 sessions, where SSRT decreased 

with each session (Berkman et al., 2014). SSRT for selective stopping on the SST has shown 

a similar pattern of decreasing across sessions (Enz et al., 2022; Xu et al., 2015). To our 

knowledge, no study has specifically tested SSRT across multiple sessions of the ARIT. Coxon 

and colleagues (Coxon et al., 2016) reported behavioural results on the ARIT pre and post 

neuroimaging. Although SSRT was not reported as it was not a primary outcome measure, they 

did show that Go trial RT remained stable across the two behavioural sessions and only RT 

variability (1SD of response distribution) significantly decreased. To ensure we are correctly 

interpreting SSRT as an inherent measure of inhibitory network integrity, the consistency of 

SSRT across multiple sessions needs to be further explored. 

 

The aim of the current study was therefore to assess if and how the SSRT measurement 

changed over two sessions for the ARIT, and how this compared with the SST. It was 

hypothesised that SSRT would not change between sessions on Non-Selective Stop Both trials 

of the ARIT as there would be no possible change in Go trial reaction times used to calculate 
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this measure due to constraining responses to a stationary target. It was suspected that a strategy 

focusing on accurate stopping at the expense of fast reaction times on Go trials of the SST (i.e. 

the opposite strategy to participants in the Enge et al. 2014 study) would be able to cause an 

improvement in inhibitory control, as seen previously (Berkman et al., 2014). Therefore, the 

second hypothesis was that SSRT in the SST would decrease from session one to session two. 

Due to the increased challenge at both a behavioural and neural level on Selective Stop trials 

in the ARIT, becoming better at fulfilling the trial requirements in session two might affect 

performance. Therefore, the third hypothesis was that SSRT would decrease from session one 

to session two for Selective Stop trials of the ARIT. 
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4.3. Materials and Methods 

4.3.1. Participants 

Forty-four healthy participants were recruited into the current study, all over the age of 18 

years. The University of Birmingham Ethics Committee approved this research and written 

informed consent was obtained from each participant. 

 

4.3.2. Procedure 

Participants attended two identical sessions in the laboratory, 24 hours apart. Participants were 

seated ~1m away from a computer screen and keyboard, where they completed two behavioural 

tasks: the anticipatory response inhibition task (ARIT) and the stop signal task (SST). The order 

of behavioural tasks was counterbalanced. 

 

4.3.3. Anticipatory Response Inhibition Task (ARIT) 

The ARIT was displayed using custom code written in MATLAB (version R2016a, 

MathWorks). Participants completed two practise blocks, each containing 30 Go trials, 

followed by 6 experimental blocks of 30 trials. In total the experimental trials consisted of 120 

Go trials and 60 Stop trials in a pseudo-randomised order. 

 

Participants were initially presented with a grey screen containing two white vertical 

rectangles and a stationary horizontal black target line 4/5 of the way up the rectangles (Figure 

4.1). All trials required participants to use their left and right index fingers to depress the ‘z’ 

and ‘? /’ key, respectively. Once both keys were depressed, a black bar started rising within 

each of the white rectangles after a variable delay. The left black bar was controlled with the 

‘z’ key, and the right black bar with the ‘? /’ key. Both bars rose at equal rates, intercepting the 
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4.3.3.2. Stop trials 

There were three types of Stop trials (20 each) that required participants to keep the key(s) 

depressed if the rising bar(s) never reached the target. Non-Selective Stop both (SB) trials 

required participants to keep both keys depressed when both bars automatically stopped rising 

before reaching the target (non-selective RI) (Figure 4.1B). Selective Stop trials comprised of 

stop left-go right (SL) and stop right-go left (SR) trials (Figure 4.1C & D), which required 

participants to keep pressing the key corresponding to the bar that stopped, whilst still releasing 

their finger from the alternative key when the bar arrived at the target. For every stop version, 

the bar initially stopped 550ms into the trial (stop signal delay, SSD). A staircase algorithm 

with increments of 50ms was then used to generate a 50% success rate for each Stop trial 

version. Following a successful Stop trial the SSD would increase by 50ms for the subsequent 

Stop trial, whereas the SSD would decrease by 50ms following an unsuccessful Stop trial. 

Participants received feedback following each trial which was displayed above the white 

rectangles. Following successful trials, ‘success’ was displayed, and ‘unsuccessful stop’ was 

presented following an unsuccessful trial where participants did not inhibit their response. 

Moreover, on Selective Stop trials, if the participants completed a successful stop on the 

required side and released the alternative key outside 30ms of the target, then ‘successful stop, 

but missed target’ appeared (these results were classed as a successful stop in the analyses as 

this delayed response - i.e. stopping interference effect - was expected). 

 

4.3.4. Stop Signal Task (SST) 

The SST was carried out using STOP-IT software (Verbruggen, Logan, & Stevens, 2008). 

Participants completed a practise block of 48 Go trials and 16 Stop trials. They then completed 

128 experimental trials, divided into 2 blocks. In total these trials consisted of 96 Go trials and 

32 Stop trials in a pseudo-randomised order. 
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4.3.4.2. Stop trials 

Stop trials also commenced with the same ‘+’ on the computer screen indicating the start of 

the trial, followed by a blank screen and subsequently the presentation of the Go stimulus. 

Shortly after the Go stimulus, a Stop stimulus was presented, which was a short audio tone 

lasting 75ms (750hz). Participants were instructed to inhibit their response and not depress the 

designated key (Figure 4.2B) if they heard the Stop tone (non-selective/complete RI). The time 

between the Go stimulus and the Stop stimulus represented the stop signal delay (SSD). The 

SSD was initially set at 300ms after the Go stimulus and a staircase algorithm was used to 

generate a 50% success rate, where the SSD would increase by 50ms on the subsequent Stop 

trial (regardless of whether the Go response was with the left or right hand) if the participant 

successfully inhibited their response, but the SSD would decrease by 50ms if the participant 

was unsuccessful (i.e. responded following the stop stimulus). The trial would end after 

1250ms and the Go stimulus would disappear. There was an equal number of Go and Stop 

trials for each hand response. Mean reaction time and percentage of correct stops were provided 

as feedback at the end of each block and were displayed for 10 seconds. 

 

4.3.5. Dependent measures 

4.3.5.1. Anticipatory response inhibition task 

Average reaction time (RT), reported in milliseconds relative to the start of the trial, was 

calculated for successful Go, SL (stop left-go right) and SR (stop right-go left) trials after 

removing outliers (±3SD, (MacDonald et al., 2012)). SSD (staircased to 50% success) and stop 

trial accuracy (% success) was calculated for SB SL, SR trials. SSRT was the primary 

dependent measure for the ARIT and calculated for each Stop trial version using the integration 

method (SSRT = nth Go trial RT (i.e. number of Go trials x probability of responding on Stop 

trials) – SSD) (Verbruggen et al., 2013). 
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4.3.5.2. Stop signal task 

The RT, reported in milliseconds, was measured between the onset of the Go stimulus and the 

key response. Average RT across Go stimuli (outliers of ±3SD were removed for consistency 

between tasks), SSD (staircased to 50% success) and stop trial accuracy (% success) on Stop 

trials were calculated for each participant. SSRT was the primary dependent measure for the 

SST and was also calculated using the integration method. 

 

4.3.6. Statistical Analysis 

MATLAB (Version R2020a, MathWorks) and SPSS statistics (Version 27) were used to 

complete all statistical analyses. To investigate the effect of session on non-selective inhibitory 

control, a direct comparison was made between Stop Both trials in the ARIT and the Stop trials 

in the SST due to the similar requirement for complete RI in both conditions. A 2 Session 

(First, Second) x 2 Task (ARIT SB, SST) repeated measures analysis of variance (RM 

ANOVA) was run on SSRT and SSD. A similar Session x Task (ARIT, SST) RM ANOVA 

was run on average Go trial RT, which is a key measure used to calculate SSRT. To investigate 

the effect of session on Selective Stop trials of the ARIT, a 2 Session x 2 Selective Stop Type 

(SL, SR) RM ANOVA was run on SSRT, SSD and RT from these trials. Post hoc paired t-tests 

were used to investigate any significant main effects and interactions. One sample t-tests were 

used to compare the percentage of stop trial success (stop trial accuracy) in the ARIT (SB, SL, 

SR) and SST to the 50% staircasing target, and paired t-tests were used to assess the differences 

in stop trial accuracy from session 1 to session 2 for all trial types. 

 

To investigate the generalizability of SSRT across tasks, linear regressions tested for a 

correlation between SSRTs calculated in the SB trials of the ARIT and the SST Stop trials, for 
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each session. Fisher z transformations identified any significant differences between the 

correlations. Values are reported as means ± standard error (SE) unless otherwise stated. 

Statistical significance was determined by α ≤ 0.05 and partial eta squared effect sizes are 

reported. Data which violated the assumption of sphericity are reported with Greenhouse-

Geisser corrected p values. 
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4.4. Results 

4.4.1. ARIT Stop both and SST 

Eight participants were excluded from the main analysis due to SSRTs in the SST being below 

100ms in either session which is not feasible for reactive recruitment of the inhibitory network 

(advised by (Congdon et al., 2012; Verbruggen et al., 2019a)). The SSRTs for these participants 

were so low due to unnaturally high RT (session 1 RT mean 778 ± 162ms, session 2 RT mean 

733 ± 174ms) and SSD (Session 1 SSD mean 700 ± 162ms, session 2 SSD mean 650 ± 174ms) 

values, suggesting perhaps these individuals were waiting for the stop signal to improve 

stopping performance. Data from the remaining 36 participants were used to test the first two 

hypotheses (mean age: 20 ± 0.94 years, range 18-22 years, 12 males). 

 

4.4.1.1. Stop signal reaction time (SSRT) 

SSRT reflecting non-selective inhibitory control appeared to be consistent between the two 

sessions when measured using either the SST or ARIT. There was no main effect of Task (F1,35 

= 0.04, p = .840, hp2 = .001), Session (F1,35 = 1.14, p = .293, hp2 = .032) or Task x Session 

interaction (F1,35 = 1.82, p = .186, hp2 = .049) (Figure 4.3A). As hypothesised for Stop Both 

trials of the ARIT, SSRT did not change between session one (226 ± 10ms) and session two 

(226 ± 77ms). Contrary to our second hypothesis, the decrease in SSRT from session one (236 

± 18ms) to session two (212 ± 11ms) in the SST was not significant. Equivalence Bayesian 

Paired Samples t-tests confirmed that SSRT for both the ARIT (overlapping hypothesis (OH) 

Bayesian Factor (BF) = 5.500, non-overlapping hypothesis (NOH) BF = 6.978) and SST (OH 

BF = 2.253, NOH BF = 2.394) were not meaningfully different from one another between 

sessions 1 and 2, with moderate and weak evidence, respectively. While an individual’s SSRT 

for non-selective RI was correlated between tasks initially, this relationship was not sustained 

into the second session. There was a significant positive correlation between SSRT on the 
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ARIT and SST in session one (r = 0.45, p = .006) but this disappeared in session two (r = -0.07, 

p = .702) (Figure 4.3B). Fisher z transformation confirmed a significant difference between the 

two correlations (z = 2.22, p =.013). 

 

4.4.1.2. Reaction time (RT) 

Reaction times on Go trials remained consistent over two sessions in the ARIT but were 

significantly delayed in session two of the SST. There was a main effect of Task (F1,35 = 80.8, 

p < .001, hp2 = .698), Session (F1,35 = 6.00, p = .019, hp2 = .146) and Task x Session interaction 

(F1,35 = 7.77, p = .009, hp2 = .182). Post hoc analysis revealed the mean decrease of 2ms from 

session one (811 ± 2ms) to session two (809 ± 1ms) in the ARIT was not significant (p = .063). 

However, the increase of 41ms from session one (555 ± 25ms) to session two (596 ± 29ms) in 

the SST was significant (p = .013; Figure 4.3C). 

 

4.4.1.3. Stop signal delay (SSD) 

Mirroring the RT results, the SSD was longer in session two of the SST but remained consistent 

for the ARIT. There was a main effect of Task (F1,35 = 56.1, p < .001, hp2 = .616), Session (F1,35 

= 5.02, p = .032, hp2 = .125) and Task x Session interaction (F1,35 = 6.94, p = .012, hp2 = .165). 

Again, post hoc analysis revealed no significant changes in SSD for the ARIT (session one = 

582 ± 9ms, session two = 583 ± 7ms; p = .884), but a significant increase in SSD for the SST 

(session one = 329 ± 30ms, session two = 375 ± 35ms; p = .009; Figure 4.3D).





 79 

 

 

 

 

Figure 4.3 Mean SSRT (A), RT (C) and SSD (D) for the ARIT SB and SST in sessions 1 and 2, reported in milliseconds (ms). 

Shaded box plots represent the interquartile range (IQR) (75th percentile (Q3) – 25th percentile (Q1)). Red horizontal line represents 

the median. The vertical dashed lines represent the non-outlier minimum (Q1 - 1.5 x IQR) and maximum (Q3 + 1.5 x IQR). Data 

circles represent individual participant results. (B) Linear correlation between SSRT for the SST and ARIT SB in session 1 and 

session 2. Data circles represent individual participant SSRT. * p < .05, ** p < .01. 
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4.4.1.4. Stop trial accuracy 

There were no differences in stop trial accuracy between session one and session two in either 

task. In the ARIT there was a non-significant increase of 0.14 ± 0.61% between session one 

(51.5 ± 0.56%) and session two (51.7 ± 0.40%) (t1,35 = 0.23, p = .822). Additionally, in the SST 

there was a non-significant increase of 1.61 ± 1.58% between session one (49.9 ± 2.46%) and 

session two (51.6 ± 0.81%) (t1,35 = 1.02, p = .314). When comparing mean stop trial accuracy 

in both sessions to the 50% staircasing target, only the ARIT task displayed percentages 

significantly greater than 50% (both p < .01). 

 

4.4.2. ARIT Selective Stop Trials (Stop Left and Stop Right) 

Data from the full 44 participants were included in the following analyses (mean age: 20 ± 1 

years, range: 18-22 years, 15 males).  

 

4.4.2.1. Stop signal reaction time 

SSRT reflecting the more complex RI process during behaviourally selective stopping 

improved over the course of two sessions. There was a main effect of Session (F1,43 = 31.4, p 

= <.001, hp2 = .422) with a decrease of 98 ± 17ms in SSRT from session one (451 ± 21ms) to 

session two (353 ± 19ms; Figure 4.4A). There was no main effect of Stop type (F1,43 = 1.76, p 

= .192, hp2 = .039) or Stop type x Session interaction (F1,43 = .128, p = .722, hp2 = .003). 

 

4.4.2.2. Reaction time 

Regardless of which side was still responding on Selective Stop trials, there was a larger delay 

in RT relative to the target in session two compared to session one. There was a main effect of 

Session (F1,43 = 36.1, p = <.001, hp2 = .456) from a significant increase of 48 ± 8ms in RT from 

session one (822 ± 10ms) to session two (870 ± 7ms; Figure 4.4B). There was no main effect 
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of Stop type (F1,43 = .825, p = .369, hp2 = .019) or Stop type x Session interaction (F1,43 = 1.59, 

p = .214, hp2 = .036). 
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Figure 4.4 Mean SSRT (A), RT (B) and SSD (C) for behaviourally selective stopping on the ARIT (Selective Stop trials collapsed 

across side) in sessions 1 and 2, reported in milliseconds (ms). 

Shaded box plots represent the interquartile range (IQR) (75th percentile (Q3) – 25th percentile (Q1)). Red horizontal 

line represents the median. The vertical dashed lines represent the non-outlier minimum (Q1 - 1.5 x IQR) and maximum 

(Q3 + 1.5 x IQR). Data circles represent individual participant results. *** p < .001. 
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4.4.2.3. Stop signal delay 

In a similar pattern as RTs, SSD increased over the two sessions during both types of Selective 

Stop trials. There was no main effect of Stop type (F1,43 = 1.70, p = .199, hp2 = .038) or Stop 

type x Session interaction (F1,43 = .462, p = .501, hp2 = .011) but there was a main effect of 

Session (F1,43 = 37.5, p = <.001, hp2 = .466). There was a significant increase of 106 ± 17ms in 

SSD from session one (374 ± 21ms) to session two (480 ± 19ms; Figure 4.4C). 

 

4.4.2.4. Stop trial accuracy 

The stop trial accuracy improved over the two sessions during both types of Selective Stop 

trials. For SL, there was an increase of 4.39 ± 1.65% from session one (42.0 ± 1.90±) to session 

two (46.4 ± 1.56%) (t1,43 = 2.66, p = .011). For SR, there was an increase of 5.18 ± 1.74% from 

session one (40.6 ± 1.56%) to session two (45.8 ± 1.20%) (t1,43 = 2.98, p = .005). Both types of 

Selective Stop trials displayed a mean stop trial accuracy significantly lower than 50% in both 

sessions (all p < .027). 
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4.5. Discussion 

The current study constitutes the first step towards exploring the consistency of SSRT across 

multiple sessions of the ARIT. Performing two experimental sessions of the ARIT had distinct 

effects on SSRT measured during non-selective RI versus the more complex RI process during 

behaviourally selective stopping. As hypothesised, there was no change over the two sessions 

for SSRT reflecting non-selective RI. This stability supports the idea that SSRT measuring 

non-selective inhibitory control on this task reflects the inherent ability of an individual to 

inhibit a response and is therefore not expected to change. The consistency of this measure was 

underpinned by no change in SSD for Non-Selective Stop trials as well as no change in RT on 

Go trials in this task. This finding was in contrast to inhibitory control on the SST which was 

associated with a longer SSD and delayed RT on Go trials in session two. However, contrary 

to our hypothesis, the comparable increases in both SSD and Go RT resulted in no significant 

change to overall SSRT (although with weak evidence) across sessions of the SST. Conversely, 

SSRT reflecting behaviourally selective cancellation on the ARIT decreased from session one 

to session two. This decrease was as predicted and observed because participants became better 

at fulfilling the demands on Selective Stop trials in session two, reflected by a longer SSD. 

Overall, these findings have implications for i) the extent of potential within-individual 

changes to SSRT during multiple-session study designs, and ii) how SSRT might be interpreted 

for non-selective versus selective stopping. 

 

Stop signal reaction time to a non-selective stop signal during the ARIT did not change 

across sessions. Importantly, the two variables used to calculate SSRT also remained constant. 

As such, the staircase algorithm employed successfully converged on a stop signal presentation 

time in the first session which reflected maximal efficiency of the inhibitory process. The 

prepotent anticipated response was also unaffected by session, replicating previous findings 
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(Coxon et al., 2016), most likely from being constrained by the task design (Leunissen et al., 

2017). The current findings suggest that SSRT calculated from Stop Both trials of the ARIT is 

indeed a valid measure of non-selective inhibition network activity. This measure would appear 

to fit Congdon and colleagues’ (2012) definition of SSRT as a “heritable measure of 

interindividual variation in brain function”. However, this cannot be confirmed by our study 

alone, and future studies should extend the number of sessions to ensure non-selective SSRT 

remains consistent. This is especially pertinent as the study by Berkman and colleagues (2014), 

despite constraining go responses on the SST, observed an improvement in RI throughout 10 

sessions, as well as a proactive shift in the pattern of neural activation in RI networks. 

Therefore, despite the apparent robustness of movement execution and non-selective inhibition 

on the ARIT, future studies with a greater number of sessions and measures of neural activation 

are required to substantiate these findings. 

 

Non-selective inhibitory control on the SST also appeared consistent between sessions. 

However, the consistency of the SSRT was supported by weak evidence and was belied by 

changes to SSD and Go RT across session. There was evidence of proactive slowing from 

session one to session two, reflected in the delayed going response. This slowing is purported 

to be an example of proactive motor RI (Brevers et al., 2020; Greenhouse & Wessel, 2013; 

Leotti & Wager, 2010; Schachar et al., 2004; Verbruggen et al., 2013; Verbruggen, Logan, 

Liefooghe, et al., 2008) and could be attributed to participants focusing on successful stopping 

at the expense of fast responses on Go trials (i.e. the opposite strategy to participants in Enge 

et al., 2014). A strategy to prioritise stopping performance would also explain the longer SSD 

in session two, which indicates participants had improved at responding to the stop signal. 

Importantly, employing such a strategy invalidates the independence assumption of the race 

model (Verbruggen et al., 2019a) and might explain why non-selective inhibitory performance 



 87 

was no longer related between tasks in session two. Specific versions of the SST constrain 

responses to prevent such proactive slowing (Berkman et al., 2014; Chowdhury et al., 2020) 

and enable a more reliable interpretation of SSRT measures. Overall, when interpreting 

measures of inhibitory control on the SST, our results highlight the value in examining 

variables that constitute the SSRT despite no apparent change to SSRT itself, and that changes 

in these variables might suggest SSRT is able to be affected by more than purely inhibitory 

network integrity. 

 

The SSRT measure needs to be interpreted differently for non-selective versus selective 

stopping. This difference is not necessarily surprising as SSRT in Selective Stop trials is more 

than a measure of pure (or global; i.e stop everything) inhibitory network activity. The stop cue 

on these trials triggers a sequential non-selective stop, response uncouple, reprogram, then 

selective go process (Cowie et al., 2016; Coxon et al., 2007; MacDonald et al., 2012, 2014, 

2021; Wadsley et al., 2019) which leads to the delayed RT. SSRT therefore reflects a complex 

series of neural processes which are triggered by the stop cue and involve interactions between 

facilitatory and inhibitory prefrontal-basal ganglia networks (Coxon et al., 2009, 2012). Of 

note, the fact that participants still make a unimanual response on Selective Stop trials means 

both components used to calculate SSRT (SSD, RT) can be measured within the same trial 

type. This is in contrast to SSRTs for Stop Both trials or Stop trials in the SST, which use RTs 

from Go trials as there is necessarily no overt response on successful Stop trials. In this way, 

SSRTs for selective stopping are not comparable to SSRT from Non-Selective Stop trials of 

the ARIT. The direct link between RT and SSD within the same trial means the increase in RT 

on Selective Stop trials is likely to be directly caused by the later stop signal presentation (i.e. 

SSD) on these trials, rather than from a general proactive slowing strategy as discussed for the 

SST. Such a proactive strategy would have also delayed Go RTs in the ARIT, and as discussed 
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above, this was not observed. Overall, SSRT may not be the most appropriate term to describe 

what is being measured during the more complex RI process as it is capturing more than a 

simple ‘stop signal reaction time.’ 

 

The behaviourally selective response to a stop cue can improve across sessions. The 

improvement (reflected in SSRT, SSD and accuracy) indicates participants became better at 

fulfilling the overall demands on Selective Stop trials. This may be because some, or all, of the 

sequential process captured by the SSRT (stop, uncouple, reprogram, then go) occurred over a 

shorter time scale in session two. The overall time required for this process can be reduced on 

Selective Stop trials of both the ARIT (Wadsley et al., 2019) and SST (Xu et al., 2015) through 

manipulations to overall task design. Wadsley and colleagues (2019) increased the asynchrony 

between left and right-side components of the default response, thereby reducing the amount 

of time needed for response uncoupling during behaviourally selective stopping and reducing 

the stopping interference effect. Xu and colleagues (2015) also decreased the interference 

effect by targeting the Go process in selective stopping, with specific training to shorten 

reaction times, although this came at a cost of incredibly short SSDs (averaging 98ms) which 

likely fundamentally changed RI behaviour. In the current study, we saw the improvement 

without alterations to task design, suggesting multiple sessions alone might be sufficient to 

increase the efficiency of this complex RI processes in young healthy adults. Interestingly, Enz 

and colleagues (2022) also reported improvements in SSRT over 3 sessions using a conditioned 

version of the SST which is more similar to Selective Stop trials of the ARIT than traditional 

SST versions. If our working hypothesis is correct, one would expect behavioural 

improvements to be mirrored by an improvement in neural activity within the various networks 

activated during the more complex RI process. During non-selective RI, a proactive shift in the 

pattern of RI network activation is possible. Regions like the right IFG which are initially 
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recruited during the implementation of RI, can be recruited earlier by inhibition cues following 

multiple sessions, therefore improving SSRT (Berkman et al. 2014). An increase in GABA 

mediated short-interval intracortical inhibition in the primary motor cortex (M1) could also 

contribute to these improvements (Chowdhury et al., 2020). On the other hand, it is possible 

participants may have simply become more comfortable with the increased cognitive challenge 

for selective stopping in the current study, thereby improving performance. The inclusion of 

neuroimaging in future multi-session experimental designs could help distinguish between 

these possible mechanisms of effect. Nevertheless, our findings indicate that selective stopping 

measures are susceptible to within-individual changes across multiple sessions. This has 

implications for future study designs that necessitate collecting behavioural measures over 

multiple sessions. 

 

The extent of any within-individual changes to SSRT across sessions is also potentially 

relevant in a clinical context. SSRT is sensitive to cortical and basal ganglia impairments 

resulting from healthy aging (Bloemendaal et al., 2016; Coxon et al., 2012, 2016) and a wide 

range of pathologies such as PD (Gauggel et al., 2004; Obeso et al., 2011; Rahman et al., 2021), 

schizophrenia (Hughes et al., 2012), ADHD (Lipszyc & Schachar, 2010; Senderecka et al., 

2012) and OCD (Lipszyc & Schachar, 2010; McLaughlin et al., 2016). It has been suggested 

that SSRT is a biomarker for specific pathologies and may hold promise for early diagnosis of 

cortical/basal ganglia dysfunction (McLaughlin et al., 2016; Rahman et al., 2021). However, 

to identify any impairments in inhibitory control over time because of pathology, natural trends 

in the SSRT measure over time need to be quantified first in healthy populations. Likewise, 

any improvements to SSRT as a result of practice need to be identified to quantify additional 

improvements in inhibitory control as a result of treatment interventions. To this end, the 

current study examined subtle changes in SSRT over two laboratory sessions, as might 
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commonly be done pre- and post-intervention or when using active non-invasive brain 

stimulation against sham over two sessions. To further understand if the SSRT as measured on 

these behavioural tasks has potential to detect pathology or effects of treatment in the future, 

more studies of this kind must initially take place in healthy subjects whilst ensuring the 

constraining of the Go response. 

 

Although both the ARIT and SST measured response inhibition reflected by SSRT, 

there were some key differences in task designs. The ARIT involved bimanual responses on 

Go Trials, visual stop signals and individual trial feedback throughout the experiment which 

could encourage a form of motivation bias (Leotti & Wager, 2010). Whereas the SST involved 

a choice between unimanual responses, audio stop signals and no trial-by-trial feedback. It is 

unclear whether any or all of these task design features contributed to the differences in 

behavioural measures we saw between the two tasks, which could be an interesting avenue for 

future work. It is important to acknowledge the presence of some very low SSD values for 

Selective Stop trials in the ARIT for our cohort. Whilst these trials are known to be challenging, 

SSDs of 50 - 200ms point to particular difficulty meeting trial demands, which is somewhat 

surprising for young healthy adults. Perhaps these participants required a greater number of 

Selective Stop trials to arrive at their maximal RI efficiency. However, for some participants 

these low SSDs persisted until the end of session two. It is therefore possible that these values 

reflect motor or cognitive impairments on these trials. The impairment could be linked with 

overall trait impulsivity (Aichert et al., 2012) or even indicate underlying subtle but complex 

deficits in not only inhibitory control but also conflict monitoring and working memory, as can 

manifest in pathologies such as ADHD (Rapport et al., 2008; Senderecka et al., 2012). 

The current study investigated the consistency of SSRT in the ARIT across two 

sessions. During non-selective RI, the maximal efficiency of the inhibitory process remained 
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unchanged for individuals. Results of the SST highlighted that SSRT for complete RI can be 

affected by more than purely inhibitory network integrity when Go trial reaction times are not 

constrained in task design. Behaviourally selective stopping measures were susceptible to 

within-individual changes across multiple sessions and subsequent studies are needed to 

explore whether the improvements are driven by changes to neural activity within the 

underlying networks. Future research should continue to investigate any within-individual 

changes to SSRT on the ARIT over a greater number of experimental sessions. 
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Risk Task and Anticipatory Response 

Inhibition Task is Associated with 

Severity of Impulse Control Behaviours 

in People with Parkinson’s Disease 
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5.1. Pilot Study: Determining the most effective version of the Anticipatory Response 

Inhibition Task for people with Parkinson’s disease 

 

Prior to the main study of Chapter 5, pilot testing took place in order to determine the most 

effective setup of the Anticipatory Response Inhibition Task (ARIT) for those with Parkinson’s 

disease (PD). This particular task, which is an anticipated response version of the Stop Signal 

Task (SST), had yet to be conducted within a PD population. Prior research of the ARIT in 

healthy older adults presents worse stop signal reaction time (SSRT) compared to young 

healthy individuals in the ARIT (Coxon et al., 2012), and both older and young healthy adults 

show difficulties completing partial trials highlighted by zero partial trials completed or much 

lower bar stop times (Coxon et al., 2012; Hall et al., 2022; MacDonald et al., 2016). 

Additionally, PD patients show impaired performance on other versions of the SST compared 

to healthy controls (Gauggel et al., 2004; Obeso et al., 2011). Considering the information 

above, four different versions of the ARIT with varying difficulty were implemented in this 

pilot study to determine if full datasets could be collected in a PD cohort. 

 

15 patients (58 - 80 years, mean 66.3 ± 5.73 standard deviation) took part in the pilot 

study and all reported diagnosed idiopathic PD. This pilot study was approved by the 

University of Birmingham Ethics Committee and all participants provided informed written 

consent. All patients were randomly assigned to complete one of four versions of the ARIT 

and were asked to provide open-ended feedback, discussing the difficulty of the task and any 

recommendations for future versions. 

 

All versions of the ARIT followed the methodology described in Chapter 4 with some 

specific changes. The key differences of the four versions of the ARIT are presented in Table 
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5.1. The ‘Default’ version of the ARIT was utilised in previous work in healthy adults 

(MacDonald et al., 2016) and Chapter 4 of this thesis, containing the same staircase starting 

stop signal delay (SSD) value, time to fill bar and time to target line (Table 5.1). The remaining 

three versions were developed to reduce the difficulty of the task by changing one of the 

following parameters: staircase starting SSD value (Staircase version), time to reach the 

target/fill the bar (Speed version) and the exclusion of partial stop trials (Stop Both version). 

 

 

Table 5.1 Four versions of the Anticipatory Response Inhibition Task. 

 

SSD: stop signal delay; ms: milliseconds; N/A: not applicable; ✓ = yes; ✗ = no. 

 

 

 

SSRT was the primary outcome measure in this pilot study and was calculated using 

the integration method (SSRT = nth Go trial RT (i.e. number of Go trials x probability of 

responding on Stop trials) – SSD) (Verbruggen et al., 2013). Individualised Go trial reaction 

time (RT) was reported as this is a direct constituent of SSRT in the integration method 

calculation (nth Go trial RT), along with SSD (Figures 5.1-5.3). Unpaired t-tests with Welch’s 

correction examined any differences between SSRT, RT and SSD for each ARIT Version. 

 Staircase starting SSD 

value (ms) 

   

 Stop 

Both 

Stop 

Left 

Stop 

Right 

Time to fill 

bar (ms) 

Time for bar to 

reach target 

line (ms) 

Partial 

trials 

inclusion 

Default  

(n=5) 

500 500 500 1000 800 ✓ 

 

Staircase  

(n=4) 

400 300 300 1000 800 ✓ 

 

Speed  

(n=4) 

500 500 500 1200 1000 ✓ 

 

Stop both  

(n=2) 

500 N/A N/A 1000 800 ✗ 
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Stop Both was removed from consideration for utilisation in Chapter 5 due to feedback 

of the task being “too easy” for the first two patients and because partial trials were successfully 

completed in other conditions. Considering the three remaining versions, unpaired t-test results 

of SSRT showed no significant differences between ARIT versions for each stop type (all p > 

.052) (Figure 5.1), indicating that no version was more difficult than any other. However, the 

average value for Default SSRT Stop Left (557ms ± 165) was almost significantly greater than 

Staircase (388ms ± 58.6) (t (5.19) = 2.14, p = .083, 95% CI [-32.1, 371], Cohen’s d = 1.30) and 

Speed (359 ± 48.2) (t (4.83) = 2.56, p = .052, 95% CI [-3.15, 400], Cohen’s d = 1.54). Values of 

RT and SSD were not directly comparable between Speed and the other versions, due to 

different times for the bar to reach the target line. RT results revealed a significantly longer 

(worse) time in Default (950ms ± 43.5) compared to Staircase (872ms ± 14.2) for Stop Right 

(t (5.01) = 3.73, p = .013, 95% CI [24.1, 131], Cohen’s d = 2.27). No significant differences were 

determined for SSD between Default and Staircase (all p > .131). 

 

Despite no significant values, the Default version contained higher (worse) values of 

SSRT compared to the others, along with greater variation of SSRT results in partial trials. 

Default also displayed generally worse RT and SSD in partial trials compared with Staircase 

and had the largest amount of feedback from participants referring to high difficulty. This 

version was subsequently removed from consideration. Due to marginal differences between 

comparable results of Staircase and Speed, Staircase was chosen as the finalised version for 

the ARIT is it could then be more directly compared to task results in other chapters and 

previous publications if required. 
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5.2. Abstract 

Introduction: Dopamine agonist medication is one of the largest risk factors for development 

of problematic impulse control behaviours (ICBs) in people with Parkinson’s disease. The 

present study investigated the potential of dopamine gene profiling and individual performance 

on impulse control tasks to explain ICB severity. Methods: Clinical, genetic and task 

performance data were entered into a mixed-effects linear regression model for people with 

Parkinson’s disease taking (n = 50) or not taking (n = 25) dopamine agonist medication. 

Severity of ICBs was captured via the Questionnaire for Impulsive-compulsive disorders in 

Parkinson’s disease Rating Scale. A cumulative dopamine genetic risk score (DGRS) was 

calculated for each participant from variance in five dopamine-regulating genes. Objective 

measures of impulsive action and impulsive choice were measured on the Anticipatory 

Response Inhibition Task and Balloon Analogue Risk Task, respectively. Results: For 

participants on dopamine agonist medication, task performance reflecting greater impulsive 

choice (p = .014), and to a trend level greater impulsive action (p = .056), as well as a longer 

history of DA medication (p < .001) all predicted increased ICB severity. DGRS however, did 

not predict ICB severity (p = .708). No variables could explain ICB severity in the non-agonist 

group. Conclusions: Our task-derived measures of impulse control have the potential to predict 

ICB severity in people with Parkinson’s and warrant further investigation to determine whether 

they can be used to monitor ICB changes over time. The DGRS appears better suited to 

predicting the incidence, rather than severity, of ICBs on agonist medication. 



 99 

5.3. Introduction 

 Problematic impulse control behaviours (ICBs), incorporating impulse control 

disorders and other related behaviours, can develop in Parkinson’s disease (PD) patients. These 

behaviours often manifest as compulsive gambling, binge eating, hypersexuality, compulsive 

shopping, punding, hobbyism and compulsive medication use (Weintraub, 2008). Previous 

research has identified factors associated with increased likelihood of developing ICBs in PD, 

including dopamine agonist (DA) medication (use, dose and duration), being male, unmarried, 

previous personal or family impulsive behaviour, higher Unified Parkinson’s disease rating 

scale (UPDRS) score and younger age of PD onset (Antonini et al., 2017; Cormier-Dequaire 

et al., 2018; Corvol et al., 2018; Gatto & Aldinio, 2019; Kraemmer et al., 2016; Nombela et 

al., 2014; Voon, Mehta, et al., 2011). One of the most significant risk factors for ICBs in PD is 

DA medication, where 14-40% of patients taking this form of dopamine replacement therapy 

develop destructive ICBs (Bastiaens et al., 2013; Erga et al., 2018; Kraemmer et al., 2016). 

Clinically prescribed DAs predominantly act upon D2/D3 receptors (Gasser et al., 2015; 

Seeman, 2015), which are abundant in regions of the mesocorticolimbic (MCL) system (J. H. 

Ko et al., 2013; Seeman, 2015). The MCL system is largely responsible for impulse control 

and is relatively spared during the early, unmedicated stages of PD (Caminiti et al., 2017; 

Claassen et al., 2017; Cools, 2006; Gatto & Aldinio, 2019; K. M. Smith et al., 2016; Weintraub, 

2008), compared to the decrease of dopamine in the nigrostriatal system (Dauer & Przedborski, 

2003; Vaillancourt et al., 2013; Weintraub, 2008). It is therefore possible that the addition of 

DA medication causes a tonic hyperdopaminergic state in the MCL network, which hinders 

phasic dopamine modulation, and subsequent problems with impulsivity (Gatto & Aldinio, 

2019; Meder et al., 2019; Sinha et al., 2013; Vaillancourt et al., 2013; Weintraub, 2008). This 

state has been termed the overdose-hypothesis (Cools et al., 2001; Ruitenberg et al., 2021; 

Vaillancourt et al., 2013). Moreover, increases in DA dose and the use of DA medication over 
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time are often associated with ICBs in PD, due to higher concentrations of dopamine activating 

D2 receptors to a greater extent compared to lower concentrations (Trantham-Davidson et al., 

2004). (Trantham-Davidson et al. 2004). The working hypothesis being that increased and/or 

prolonged receptor activation may reduce D2 auto-receptor sensitivity (Gasser et al., 2015), 

leading to a blunted post-synaptic D2-mediated inhibitory effect, increased overall dopamine 

release and resultant impulsive behaviour (Ford, 2014; Ray, Miyasaki, et al., 2012). The two 

possible mechanisms of effect are not mutually exclusive, and may well act in concert, though 

both offer explanations as to why DA medication leads to dysfunctional levels of dopamine 

and ICB development in some patients. 

 

 Another factor which can influence ICB development is genetic. Previous literature has 

identified specific genetic polymorphisms associated with ICBs in PD patients, either 

individually (Erga et al., 2018; Kraemmer et al., 2016; Lee et al., 2009), or collectively as a 

very large polygenic risk score (Faouzi et al., 2021; Ihle et al., 2020). The first dopaminergic 

genetic score quantifying the influence of a small number of genes was developed by Nikolova 

and colleagues (2011). This method was subsequently expanded by Pearson-Fuhrhop and 

colleagues (2013, 2014) to produce a polygenic dopamine genetic risk score (DGRS) 

incorporating five specific genes selected a-priori for each being known to modify dopamine 

signalling within MCL regions (Caminiti et al., 2017; K. M. Smith et al., 2016; Vriend et al., 

2014) and influence impulse control (Abidin et al., 2015; Congdon et al., 2009; Erga et al., 

2018; Lee et al., 2009; K. M. Smith et al., 2016; Vriend et al., 2014). These genes include: 

DRD1 rs4532, DRD2 rs1800497, DRD3 rs6280 (encoding D1, D2, D3 receptors, respectively), 

catechol-O-methyltransferase (COMT) rs4680 and dopamine transporter (DAT) rs28363170. 

The quantitative aspect of the DGRS weights the influence of each polymorphism on 

widespread tonic dopamine neurotransmission, where a higher score is equal to higher 
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dopamine neurotransmission. It stands to reason that a PD patient’s genetically determined 

levels of MCL dopamine neurotransmission will affect how they respond, and whether they 

develop ICBs, when dopamine tone is further increased with DA medication. Indeed, our 

previous work utilising the DGRS for the first time in PD (Hall et al., 2021) demonstrated that 

patients with a low DGRS had more ICBs identified via the QUIP-S, which decreased with 

time on DA medication. Conversely, patients with a higher DGRS had fewer ICBs, but this 

number increased with time on DA medication. We were unable to discern whether increasing 

dosage over time or time of exposure to DA medication per se were causing these changes in 

ICBs. 

 

MacDonald and colleagues (2016) were first to use the DGRS to explain objective 

measures of behavioural impulsivity in a non-PD population. These objective measures were 

stop signal reaction time (SSRT) from the Anticipatory Response Inhibition Task (ARIT) for 

impulsive action, and decision making following negative reinforcement on the Balloon 

Analogue Risk Task (BART) for impulsive choice. They concluded that the administration of 

DA medication in healthy adults improved task measures of impulsive action and choice for 

those with a lower DGRS and worsened them for participants with a high DGRS. Previous 

literature has identified no change in impulsive behaviour for PD ICB patients after a loss on 

the BART, compared to non ICB patients who reduced their impulsive behaviour (Martini et 

al., 2018). Either shorter or no difference in SSRT has been found for ICB vs no ICB PD 

patients in the Stop Signal Task (Claassen et al., 2015b; Hlavatá et al., 2020; Ricciardi et al., 

2017; Vriend et al., 2018). The ARIT and our specific measure of negative reinforcement in 

the BART have yet to be investigated in a PD cohort in the context of ICBs. 
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ICBs are routinely identified using the questionnaire for impulsive-compulsive 

disorders in Parkinson’s disease (QUIP) and further clinically diagnosed during an interview 

(Krieger et al., 2017; Marques et al., 2019; Papay et al., 2011; Probst et al., 2014; Takahashi et 

al., 2022; Weintraub et al., 2009, 2012). The Questionnaire for Impulsive-compulsive disorders 

in Parkinson’s disease short (QUIP-S) and QUIP rating scale (QUIP-RS) are two widely used 

self-report versions of this questionnaire. The QUIP-S involves only 13 questions with ‘yes’ 

or ‘no’ answers (Krieger et al., 2017; Weintraub et al., 2009), whereas the QUIP-RS includes 

28 questions which are answered via a frequency rating scale with five different options and 

the final score is equated with ICB severity (Marques et al., 2019; Probst et al., 2014; Takahashi 

et al., 2022; Weintraub et al., 2012). The QUIP-RS offers a larger range of scores covering the 

same behaviours in more depth, which suggests the resultant ICB frequency (i.e., severity) 

score is capable of being a more sensitive measure of impulsivity, including changes over time 

(Marques et al., 2019), compared to ICB incidence from the QUIP-S (Probst et al., 2014; 

Weintraub et al., 2012). The Barratt Impulsiveness Scale (BIS) is also a self-report 

questionnaire that measures impulsivity but as a trait or personality construct (Stanford et al., 

2009), rather than a diagnostic tool for pathological ICBs directly. Nevertheless, ICBs in PD 

(Filip et al., 2018), including those determined by the QUIP-S (Marín-Lahoz et al., 2018) and 

QUIP-RS (Takahashi et al., 2022) are associated with higher impulsivity on the BIS. One 

particular study of note determined a positive correlation between total QUIP-RS score and 

BIS score (Goerlich-Dobre et al., 2014), highlighting the potential adjunct use of the BIS in 

ICB diagnosis. 

 

The primary focus of the present study was to investigate whether objective, sensitive 

lab-based measures of impulsive behaviour, genetic and disease specific measures were 

associated with the severity of every day impulsive behaviour measured by the QUIP in a 
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sample of PD patients taking DA medication. The first aim was to evaluate the validity of our 

objective lab-based task measures to be able to reflect the severity of subjective every day 

ICBs. This is a key issue to address as the ARIT and our specific measure of negative 

reinforcement in the BART have yet to be investigated in a PD cohort in the context of ICBs. 

We hypothesised that measures reflecting worse impulsivity on the tasks (higher SSRTs in the 

ARIT and more impulsive decision making in the BART) would be related to higher scores on 

the QUIP-RS. Our second aim was to identify prognostic risk factors for the severity of ICBs 

on dopamine agonists. We hypothesised that patients with a low DGRS would display worse 

task impulsivity and higher ICB frequency. Whereas those with a high DGRS would exhibit 

better impulsivity on the tasks and lower ICB frequency. We specifically wanted to investigate 

if DA medication dosage or time of exposure to DA medication could predict ICB frequency, 

following our previous results (Hall et al., 2021). We hypothesised that both DA medication 

dosage and time on DA medication would be higher for patients reporting a greater frequency 

of ICBs. When accounting for the influence of an individual’s genetic profile, we hypothesised 

that for patients with a low DGRS, longer exposure to DA medication would result in a 

reduction in ICBs over time. In contrast, patients with a high DGRS were expected to show 

increasing ICB frequency with increasing time on DA medication. We did not expect to find 

any comparable results for patients taking dopamine medication which did not include DAs. 

Finally, we wanted to examine any relationship between clinically identified ICBs and 

subjective trait impulsivity via the BIS. 
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5.4. Materials and Methods 

5.4.1. Participants 

One hundred participants with PD were recruited for the current study via an advertisement on 

Parkinson’s UK and all participants self-identified as having a PD diagnosis. 70 recruited 

participants were taking DA medication and the remaining 30 were taking dopamine 

medication not including agonists. This target of 70 DA participants was to allow for 

participant drop out whilst still achieving the target sample size of 61, calculated from a-priori 

power calculation to achieve 80% power. Participants were included in the study if they were 

between the ages of 40-80, had no history of neurological illness other than PD and had normal 

or corrected-to normal vision. All demographic, clinical, questionnaire, behavioural and 

genetic data were collected remotely or online by means of online software, post, emails, video 

calls or phone calls. 

 

5.4.2. Clinical Impulsivity 

5.4.2.1. ICB incidence 

The QUIP-short comprised of 13 ‘yes’ or ‘no’ questions regarding current impulse control 

behaviors lasting at least 4 weeks. Participants would receive a score of one for ‘yes’ and zero 

for ‘no’. Any score greater than zero confirmed the incidence of an ICB. 

 

5.4.2.2. ICB frequency 

The QUIP-RS measured the frequency of ICBs. The questionnaire included four questions in 

each of the following categories: gambling, sex, buying, eating, hobbyism, punding and PD 

medication. Participants responded to each question with a choice from a 5-point scale (0: 

never, 1: rarely, 2: sometimes, 3: often, 4: very often) which represented impulsivity in the past 
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4 weeks or any 4-week period in a designated time frame. Total scores were calculated between 

0-112. 

 

5.4.3. Trait Impulsivity 

5.4.3.1. Barratt Impulsiveness Scale 

A 4-point scale (1: rarely/never, 2: occasionally, 3: often, 4: almost always/always) 

questionnaire comprising of 30 questions about everyday behaviours assessing attentional, 

motor and non-planning trait impulsivity (Patton et al., 1995). A higher score reflects greater 

impulsivity. Two patients did not provide answers for 2 questions relating to the work 

environment as they were retired, and one patient did not answer one of the questions. 

Therefore, each participant’s result was normalised to a percentage where the score was divided 

by the total score possible from the number of questions answered and then multiplied by 100. 

 

5.4.4. Impulsivity Task Performance 

5.4.4.1. Anticipatory Response Inhibition Task (ARIT) 

The ARIT was presented on a computer screen using custom code written in Inquisit 6 Lab 

(Version 6.5.1, Millisecond Software) and responses were made using a keyboard. Participants 

completed the task on their personal computers at home. Participants initially observed an 

instruction video and practised 20 Go and 9 Stop trials. Subsequently, they were required to 

complete 10 blocks of 40 experimental trials. The experimental trials consisted of 295 Go trials 

and 105 Stop trials in a randomised order. 

 

For the experimental procedure, on each trial participants were presented with a screen 

containing two vertical white bars (Figure 5.4). The left bar was controlled with the ‘z’ key 

using the left index finger and the right bar was controlled with the ‘? /’ key using the right 
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index finger. Every trial started with the participant holding down both keys which initiated a 

black bar rising within each of the white bars. Both black bars rose at equal rates and filled the 

white bars completely after 1000ms. The black bars intercepted a horizontal target line at 

800ms. During Go trials, participants were required to intercept the horizontal target line with 

the rising bars by timing the removal of their fingers from both keys appropriately (successful 

releases were within 40ms above the target and 30ms below). Stop trials consisted of Non-

Selective Stop Both (SB) trials and Partial Stop trials. During SB trials, participants were asked 

to keep both keys depressed when both bars stopped rising before reaching the target (Figure 

5.4). Partial Stop trials comprised of Stop Left (SL) and Stop Right (SR) trials, where one bar 

stopped and the other continued rising. Here, participants were required to keep the key 

depressed corresponding to the bar that stopped rising and intercept the target line with the 

alternative bar by releasing the corresponding key (Figure 5.4). During Stop trials the bars 

initially stopped at 400ms for SB and 300ms for SL and SR. A staircase algorithm was utilised 

to generate a 50% success rate for each stop version. Following a successful Stop trial, the bar 

stop time increased by 25ms on the subsequent Stop trial but decreased by 25ms following an 

unsuccessful Stop trial. Stop signal reaction time from SB trials was calculated as the primary 

dependent measure using the integration method (Logan & Cowan, 1984; Verbruggen et al., 

2019a). 

 

 

 

 

 

 

 

 

 

 

 

 

 







 109 

5.4.5. Cognitive Function 

5.4.5.1. Central Nervous System Vital Signs (CNSVS) 

CNSVS is a computerised neurocognitive test battery comprising of neuropsychological tests 

to assess cognitive behaviour and acts as a tool, not for diagnosis, but for brief clinical 

evaluation of mild cognitive dysfunction (Gualtieri & Johnson, 2006). Participants completed 

all tests on their computer and made their responses using a keyboard. The scores produced 

from these tests contribute to neurocognitive clinical evaluation domains. Nine tests were 

included within the current research which were linked to 14 cognitive domains: composite 

memory, verbal memory, visual memory, psychomotor speed, reaction time, complex 

attention, cognitive flexibility, processing speed, executive function, reasoning, working 

memory, sustained attention, simple attention and motor speed (Appendix 6). Automated 

scoring reported raw patient test scores for each domain which were automatically normalised 

and age-matched to a large normative database to create standard scores. These scores were 

produced for the 14 domains along with the neurocognitive index (NCI) which represents a 

global score of neurocognition by taking an average of the domain scores for composite 

memory, psychomotor speed, reaction time, complex attention and cognitive flexibility. 

Standard scores for NCI and working memory were included in analyses. 

 

5.4.6. Genetic Data 

Five specific genetic polymorphisms which formed the DGRS were identified for each 

participant. Genetic analysis was conducted by LGC Genomics, and full methodology can be 

found at: http://www.lgcgenomics.com/. The single nucleotide polymorphisms within four 

genes were determined using kompetitive allele specific polymerase change reaction (KASP 

PCR) genotyping: DRD1 (rs4532), DRD2 (rs1800497), DRD3 (rs6280) and COMT (rs4680). 

This process produced a bi-allelic score for each single nucleotide polymorphism. The variable 
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number tandem repeat in the DAT gene (rs28363170) was analyzed using a separate PCR 

process. Here, the PCR was followed by PCR clean-up, sanger sequencing and genotype 

calling. The repeat length of DAT VNTR was determined by eye on the sequence trace files.  

 

Dependent upon the specific mutation/number of repeats for each of the five 

polymorphisms, every participant received a score of 0 or 1 for each polymorphism according 

to whether it acts to decrease or increase dopamine transmission, respectively (MacDonald et 

al., 2016; Pearson-Fuhrhop et al., 2013, 2014). All gene scores were then summed for an overall 

DGRS between 0-5 (higher score = higher dopamine levels) (Appendix 7). All genes were in 

Hardy-Weinberg equilibrium (all p > .291), which was determined with chi-square tests. For 

the linear regression models discussed below relating to the DA group (N = 50), the sample 

size for each DGRS was as follows: DGRS 0 n = 0; DGRS 1 n = 4, DGRS 2 n = 11, DGRS 3 

n = 17, DGRS 4 n = 4, DGRS 5 n = 14. The DGRS was split into two groups: DGRS low 

(DGRS 0-2) and DGRS high (DGRS 3-5) aiming to make as equal sample sizes as possible. 

The DGRS was utilised as a binary independent variable within the models. 

 

5.4.7. Statistical Analysis 

Statistical analysis and modelling were performed in MATLAB (version R2020a, 

MathWorks). As a preliminary analysis, comparisons were made for all available clinical, 

demographic, genetic and cognitive variables between those with and without an ICB. 

Seventeen participants with unavailable data for these variables due to errors in reporting and 

incomplete online datasets from the CNSVS were discarded from these analyses (DA n = 12, 

NDA n = 5). Kolmogorov-Smirnov tests identified any violations of normality. Wilcoxon rank 

sum tests were used to compare any variables which violated normality, while the remaining 

variables were compared using unpaired t-tests. A simple linear regression looked for a 



 111 

correlation between ICB frequency on the QUIP-RS and BIS score in both DA and NDA 

groups. The following linear regression models identified the variables associated with clinical 

and trait impulsivity. 

 

5.4.7.1. Clinical Impulsivity model 

The response variable for this model was ICBs identified via the QUIP. A participant’s score 

on the QUIP-S and QUIP-RS were strongly correlated (R = 0.72, p < .001). Therefore, we 

chose to predict results of the QUIP-RS because a larger scale range was likely to be more 

sensitive to changes in impulsivity. CNSVS NCI and WM were not included due to missing 

data, as their inclusion would have reduced the sample size of the model. DGRS, DA levodopa 

equivalent daily dose (DA LEDD), Negative Reinforcement from the BART, SSRT from Stop 

Both trials of the ARIT, and Years on DA were selected a-priori to be included in the model to 

test our hypotheses and build on previous literature (Hall et al., 2021; MacDonald et al., 2016). 

Univariate linear regression analyses identified any additional variables which could be 

included as independent predictors of ICB frequency in the full model (Appendix 8). However, 

any continuous variables identified were tested for collinearity against the pre-selected 

variables, and resultant correlated variables were not included in the final model (Appendix 9). 

Therefore, UPDRS I&II and Years Since Diagnosis were not included in the final model as 

they both correlated with Years on DA (both p < 0.001). Gender was also not included to not 

overparameterise the model. The final mixed-effects multiple linear regression model was 

formed with selected variables and hypothesised interactions: 
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𝑦(𝐼𝐶𝐵 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

= 𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) + 𝛽1𝐷𝐺𝑅𝑆 + 𝛽2𝐷𝐴 𝐿𝐸𝐷𝐷 + 𝛽3Years on DA

+ 𝛽4SSRT SB + 𝛽5Negative Reinforcement + 𝛽6𝐷𝐺𝑅𝑆 ∗ 𝑌𝑒𝑎𝑟𝑠 𝑜𝑛 𝐷𝐴

+ 𝛽7𝐷𝐺𝑅𝑆 ∗ 𝑆𝑆𝑅𝑇 𝑆𝐵 +  𝛽8𝐷𝐺𝑅𝑆 ∗ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 +  𝜀 

 

Further linear regressions were run with this model to determine the contribution of each 

individual genetic polymorphism towards the response variable. This involved substituting the 

score (0 or 1) for each genetic polymorphism into the model in place of the full DGRS. The 

same model was run for the NDA group, without DA LEDD and Years on DA. 

 

5.4.7.2. Trait Impulsivity model 

The same independent variables and interactions from the clinical impulsivity model were 

selected for inclusion in the multiple linear regression model predicting BIS percentage as the 

response variable: 

 

𝑦 (𝐵𝐼𝑆 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

= (𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) + 𝛽1𝐷𝐺𝑅𝑆 + 𝛽2𝐷𝐴 𝐿𝐸𝐷𝐷 + 𝛽3Years on DA

+ 𝛽4SSRT SB + 𝛽5Negative Reinforcement + 𝛽6𝐷𝐺𝑅𝑆 ∗ 𝑌𝑒𝑎𝑟𝑠 𝑜𝑛 𝐷𝐴

+ 𝛽7𝐷𝐺𝑅𝑆 ∗ 𝑆𝑆𝑅𝑇 𝑆𝐵 +  𝛽8𝐷𝐺𝑅𝑆 ∗ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 +  𝜀 

 

The same model was run for the NDA group, without DA LEDD and Years on DA. 

 

5.4.7.3. Model Validation 

Effect sizes for all models were determined and interpreted using adjusted R2 (0.01 = small, 

0.09 = medium, 0.25 = large, Foster et al., 2018) and the achieved statistical power is reported 
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(G*Power 3.1.9.6). Validation against a constant model (i.e., goodness-of-fit) was assessed for 

all models and an alpha value of 0.05 was used for all analyses. 
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5.5. Results 

5.5.1. Preliminary Analysis 

Data from 83 participants (DA: n = 58, 45-77 years, mean 64.1 ± 8.80 standard deviation, 

NDA: n = 25, 46-79 years, mean 64.6 ± 8.60 standard deviation) were included in the 

preliminary clinical, demographic, genetic and cognitive comparisons between those with 

(QUIP-S > 1) and without (QUIP-S = 0) an ICB (Table 5.2). Of these participants, in the DA 

group, 16 participants had a low DGRS (0-2) and 42 had a high DGRS (3-5). Moreover, in the 

NDA group, 9 participants had a low DGRS and the remaining 16 presented a high DGRS. In 

the DA group, participants with an ICB were more likely to be male (p = .008) and presented 

with a higher BIS (p = .002) and QUIP-RS (p = .010) score. Scores on the UPDRS I&II trended 

towards being higher for those with an ICB than those without. These results were not likely 

to be due to changes in general cognitive function as there were no differences between CNSVS 

NCI and WM between ICB groups. In the NDA group, those with an ICB reported a greater 

number of years since diagnosis (p = .039), a higher QUIP-RS (p = .008) score, and the 

increased overall medication dosage (Total LEDD) trended towards significance (p = .062). 
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Table 5.2 Participant clinical, demographic, genetic and cognitive variables separated by 

incidence of impulse control behaviours via the QUIP-short. 

Dopamine Agonist (DA)  

 ICB (n = 28) No ICB (n = 30)   p 

Age, years 63.3 (8.83) 64.7 (8.87) .546 

BIS percentage 52.5 (10.5) 44.8 (7.85) .002 

CNSVS NCI 87.9 (28.0) 97.7 (10.3) .092 

CNSVS WM 98.3 (20.8) 102 (17.8) .436 

DA LEDD 210 (110) 190 (119) .495 

DA type, % ropinirole  

(n, ropinirole:pramipexole:rotigotine) 

57.1 (16:8:4) 70.0 (21:5:4) .477 

DGRS 3.21 (1.17) 3.07 (1.01) .608 

Gender, % male (n, male:female) 67.9 (19:9) 33.3 (10:20) .008 

ICB frequency (QUIP-RS) 26.3 (12.6) 7.90 (9.94) .010 

ICB frequency (QUIP-short) 2.50 (1.32) 0 <.001 

Total LEDD 684 (431) 677 (596) .961 

UPDRS I&II 22.6 (11.6) 17 (10.3) .057^ 

Years on DA 5.57 (4.01) 4.58 (3.31) .309 

Years since diagnosis 8.07 (5.79) 6.97 (4.67) .426 

Non-Dopamine Agonist (NDA)    

 ICB (n = 11) No ICB (n = 14)   p 

Age, years 62.6 (9.67) 66.1 (7.68) .332 

BIS percentage 52.2 (9.44) 46.6 (8.30) .133 

CNSVS NCI 84.9 (20.4) 93.5 (16.4) .251 

CNSVS WM 100.8 (12.4) 99.9 (14.3) .861 

DGRS 3.09 (1.14) 3.43 (1.16) .473 

Gender, % male (n, male:female) 81.8 (9:2) 64.3 (9:5) .353 

ICB Score (QUIP RS) 24.8 (17.5) 9.43 (8.53) .008 

ICB Score (QUIP-short) 2.64 (1.75) 0 <.001 

Total LEDD 665 (520) 350 (271) .062^ 

UPDRS I&II 20.9 (10.6) 14.9 (9.08) .372 

Years since diagnosis 4.64 (2.73) 2.68 (1.73) .039 

Means for variables ( standard deviation). ICB: impulse control behaviour (n: number); BIS 

percentage: Barratt impulsiveness scale; CNSVS: central nervous system vital signs; NCI: 

neurocognitive index: WM: working memory; DA: dopamine agonist; LEDD: levodopa 

equivalent daily dose; DGRS: Dopamine Genetic Risk Score; QUIP: Questionnaire for 

impulsive-Compulsive Disorders in Parkinson’s Disease; RS: rating scale; UPDRS: Unified 
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Parkinson’s Disease Rating Scale; Significant values in bold (p < .05). : Wilcoxon rank sum 

test. ^: trending towards significance. 

 

5.5.2. Linear Regression Models 

The sample sizes for the following models were reduced (DA n = 50, NDA n = 22) due to 

incomplete datasets for included independent variables or the inability to genotype from the 

DNA sample. The following results are specific to DA medication, as NDA models were 

unable to explain any variability in the outcome variable (goodness-of-fit: clinical model p = 

.951, trait model p = .662). There was therefore nothing to report for these NDA models. 

 

5.5.3. Clinical Impulsivity 

Task performance and exposure time to DA medication were associated with the frequency of 

ICBs. 

The Clinical Impulsivity model (Table 5.3) was validated against a constant model (F7,41 = 

3.15, p = .007) and explained 26% of the variance in ICB frequency scores according to the 

adjusted R2 value (unadjusted R2 = 0.381, i.e., large effect size). The statistical power achieved 

by the model was 97.2%, also indicating an appropriate sample size for the model. ICB 

frequency increased by 12.3 for every 1 unit increase in negative reinforcement (b = 12.4, p = 

.014). This statistic indicates that, as expected, people who made more impulsive decisions on 

the BART after a loss also reported a higher frequency of ICBs. The increase in ICB frequency 

of 0.07 for each millisecond increase in SSRT SB trended towards significance (b = 0.07, 0 = 

.056), indicating people with worse motor impulsivity tended to report a higher frequency of 

ICBs, as predicted. Of note, the two tasks were not correlated (Appendix 8, r = -0.13, p = .354) 

and the univariate analysis (Appendix 7) showed that neither task measure in isolation could 

explain variance in ICB frequency (ARIT SSRT Stop Both  = 0.03, p = .400; r = 0.09; BART 

Negative Reinforcement  = 6.92, p = .153; r = 0.22). Therefore, it appears that when 
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partitioning out variance amongst variables within the multiple linear regression model, each 

task significantly accounted for independent variance in the model, which highlights the 

potential contribution to two different aspects of ICB severity (e.g. via motor and cognitive 

impulse control).  

 

Table 5.3 Multiple linear regression analysis of variables associated with the frequency 

of impulse control behaviours. 

ICB (n = 23) no ICB (n = 27)     

  SE p value 95 % CI () 

Intercept -15.0 13.0 .254 [-41.3, 11.2] 

DGRS low 9.09 24.1 .708 [-39.5, 57.7] 

LEDD DA -0.004 0.02 .862 [-0.04, 0.04] 

Negative Reinforcement 12.3 4.76 .014 [2.63, 21.9] 

SSRT stop both 0.07 0.03 .056^ [-0.002, 0.14] 

Years on DA 2.09 0.48 <.001 [1.11, 3.06] 

DGRS low * Negative Reinforcement 11.5 15.5 .463 [-19.8, 42.9] 

DGRS low * SSRT stop both 0.009 0.08 .911 [-0.15, 0.17] 

DGRS low * Years on DA -1.19 1.15 .305 [-3.52, 1.13] 

Response variable: score on Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s 

Disease rating scale. ICB: impulse control behaviour (n: number); DGRS: dopamine genetic 

risk score; LEDD: levodopa equivalent daily dose; DA: Dopamine Agonist; SSRT: stop signal 

reaction time; : coefficient, SE: standard error, CI: confidence interval. Significant values in 

bold (p < .05). ^: trending towards significance. 

 

 

As hypothesised, ICB frequency increased by 2.09 for every year on DA medication (b 

= 2.09, p <.001). However, contrary to our hypotheses, these associations between clinical 

impulsivity and task performance/time on medication did not depend on a participant’s DGRS 

(DGRS X Negative Reinforcement: b = 11.5, p = 0.463; DGRS X SSRT: b = 0.009, p = 0.911; 
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DGRS X Years on DA: b = -1.19, p = 0.305). DA dose (b = -0.004, p = 0.862) and DGRS 

alone (b = 9.09, p = 0.708) were also not predictive of ICB frequency score.  

 

Interestingly, two of the DGRS constituent genes interacted with time on DAs to effect 

ICB frequency. When substituting COMT into the model (F7,41 = 4.1, p = .001, R2 = 0.444 i.e., 

large effect size, 95.7% power), the increase in ICB frequency from one year on DAs was 2.49 

more for a COMT score of 1 (greater dopamine neurotransmission, b = 2.12) compared to 0 (b 

= -0.37, p = .048). Similarly for DAT (F7,41 = 4.57, p <.001, R2 = 0.471 i.e., large effect size, 

95.6% power), the increase in ICB frequency from one year on DAs was 1.14 more for a DAT 

score of 1 (b = 2.56) compared to 0 (b =1.42, p = .014). DAT score also interacted with 

Negative Reinforcement. For participants with a DAT score of 1, a single unit increase in 

Negative Reinforcement reduced ICB frequency by 28 (b = -11.0) compared to participants 

with a score of 0 (b = 17.0, p = 026). No individual genetic polymorphism was independently 

associated with a change in ICB frequency (p > .288). Results from an alternative DGRS 

classification can be found in Appendix 10. 

 

5.5.4. Trait Impulsivity 

Trait impulsivity (BIS percentage) was significantly correlated with clinical impulsivity (ICB 

frequency) in both DA (R = 0.56, p <.001, Figure 5.6) and NDA (R = 0.74, p<.001, Figure 5.7) 

groups. This indicates that participants who reported higher levels of everyday trait impulsivity, 

also reported a higher frequency of ICBs. 
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Figure 5.6 Linear correlation between impulse control behaviour 

(ICB) frequency measured via the QUIP-RS and Barratt 

Impulsiveness Scale (BIS) percentage score in the dopamine agonist 

group. 

Data circles represent individual participants. 
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Figure 5.7 Linear correlation between impulse control behaviour 

(ICB) frequency measured via the QUIP-RS and Barratt 

Impulsiveness Scale (BIS) percentage score in the non-dopamine 

agonist group. 

Data circles represent individual participants. 

 

 

Long term exposure to DA medication predicted subjective, real-world trait impulsivity. 

For trait impulsivity (F7,41 = 1.98, p = .074, R2 = 0.28 i.e., large effect size, 83.5% power, Table 

5.4), a participant’s BIS increased by 1.14% with every year on DA medication (b = 1.14, p = 

.003). No other independent variables or interactions significantly predicted BIS percentage (p 

> .358). 
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Table 5.4 Multiple linear regression analysis of variables associated with Barratt 

Impulsiveness Scale percentage. 

ICB (n = 23) no ICB (n = 27)     

  SE p value 95 % CI () 

Intercept 38.8 9.56 <.001 [19.5, 58.1] 

DGRS low -4.37 17.7 .806 [-40.1, 31.4] 

LEDD DA -0.008 0.02 .582 [-0.04, 0.02] 

Negative Reinforcement 1.79 3.50 .612 [-5.28, 8.87] 

SSRT stop both 0.02 0.03 .358 [-0.03, 0.08] 

Years on DA 1.14 0.36 .003 [0.42, 1.86] 

DGRS low * Negative Reinforcement -1.19 11.4 .917 [-24.2, 21.9] 

DGRS low * SSRT stop both 0.004 0.06 .948 [-0.12, 0.12] 

DGRS low * Years on DA 0.24 0.85 .780 [-1.47, 1.95] 

Response variable: Barratt Impulsiveness Scale percentage. ICB: impulse control behaviour 

(n: number); DGRS: dopamine genetic risk score; LEDD: levodopa equivalent daily dose; DA: 

Dopamine Agonist; SSRT: stop signal reaction time; : coefficient, SE: standard error, CI: 

confidence interval. Significant values in bold (p < .05). 
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5.6. Discussion 

The focus of this study was to investigate the sensitivity of objective task measures, along with 

variation in dopamine genetics and disease specific measures, to determine the frequency of 

clinically identified ICBs. As such, the study produced several novel findings which were 

specific to DA medication. As hypothesised, task performance was associated with ICBs. 

Participants who made a greater number of impulsive decisions after a loss on the BART, or 

who tended to exhibit worse impulsivity on the ARIT, also reported a higher frequency of 

impulsive behaviours on the clinical screening tool. Interestingly, as performance on the two 

tasks were not related, the two performance measures seem to be associated with two distinct 

aspects of ICB severity. However, DGRS, an analogy of dopamine neurotransmission, did not 

interact with task performance to determine clinical impulsivity. Interestingly, the DAT 

polymorphism interacted with impulsive decision making on the BART to effect ICB 

frequency. The secondary aim of this study was to work towards identifying measures for 

prognostic use for ICBs on dopamine agonists, thus time on DA medication and DA dosage 

were incorporated into the models. Greater length of exposure to DA medication was 

associated with higher ICB frequency as predicted, whereas DA dosage was not. The DGRS 

did not interact with time on DAs, however when examining the influence of individual genes, 

more dopamine neurotransmission indexed via polymorphisms in COMT and DAT predicted 

higher ICB frequency with increasing exposure to DA medication. More time on DA 

medication was also associated with higher levels of trait impulsivity, which in turn was 

correlated with ICB frequency. The results of the current study present promising initial results 

highlighting the potential use of our task-derived measures of impulse control to predict ICB 

severity in people with Parkinson’s disease on DA medication. 
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A linear relationship existed between task performance and clinically identified ICBs, but 

only for patients taking dopamine agonist medication. Patients who made more impulsive 

decisions on the BART after a loss also reported a higher frequency of ICBs. Our finding aligns 

with other studies that show ICB patients failing to reduce their impulsive behaviour following 

a loss on the BART, reflecting punishment (Martini et al., 2018), although this effect has not 

been previously confirmed to be agonist specific. However, when negative feedback is 

calculated slightly differently as the difference between number of balloon pumps directly 

preceding and following a loss, PD patients can show reduced impulsive behaviour irrespective 

of ICB and DA status (Claassen et al., 2011). For performance on the ARIT in our study, worse 

impulsive action (a longer SSRT) tended to be associated with increased ICB frequency. To 

our knowledge, we are the first to investigate the relationship between ICBs and ARIT 

performance, whilst other studies have produced valid data utilising the ARIT in other patient 

groups with dopamine or basal ganglia dysfunction, namely focal hand dystonia and ADHD 

(Gilbert et al., 2019; Stinear & Byblow, 2004). Findings using SSRT derived from the stop 

signal task have been mixed. Studies have reported no differences in SSRT between PD 

patients with and without ICBs (Hlavatá et al., 2020; Ricciardi et al., 2017; Vriend et al., 2018), 

as well as shorter SSRTs in ICB patients compared not only to PD patients without ICBs, but 

also to healthy control participants (Claassen et al., 2015b). The positive relationship between 

SSRT and ICB frequency in our study may be due to task design, as the ARIT explores control 

of internally generated, rather than the externally cued responses. PD patients find internally 

generated responses with an anticipatory component most difficult (Jahanshahi et al., 1995), 

which likely reflects a sensitivity of predictive timing processes to the ongoing deterioration of 

the prefrontal-basal ganglia network (Cunnington et al., 1995) and therefore potentially 

dopaminergic MCL function. Overall, our objective task measures show promise as sensitive 

markers of impulsivity problems on DAs leading to real-world impulsive behaviours. A 
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worthwhile next step will be to investigate whether impaired task performance is capable of 

preceding, and therefore forecasting, ICB development. 

 

Contrary to our hypotheses, there was no association between DGRS and ICB frequency 

and no interaction between task measures and the full DGRS. This finding contrasts with our 

previous finding that the DGRS can explain the incidence of ICBs (Hall et al., 2021). However, 

there is a key distinction between the studies. Namely, our previous study was predicting the 

binary presence/absence of any ICB, whereas the current study tried to link the DGRS with a 

measure closer to ICB severity i.e., frequency of ICBs. The rationale for this was twofold: 1) 

to use the more finely grained and wider ranging responses on the QUIP-RS (compared to the 

QUIP-S) for maximal sensitivity to subtle changes in task measures e.g., a change in SSRT of 

a few milliseconds, and 2) because the smaller sample size in a binary outcome variable in the 

current study would have limited overall model sensitivity (23 QUIP-S > 1, 27 = 0). Combined, 

perhaps our results speak to the DGRS being able to predict the development of an ICB, rather 

than determining the more subtle distinction between severity of behaviours. Interestingly, 

although the full DGRS did not interact with task measurers, the DAT polymorphism in 

isolation interacted with impulsive decision making on the BART to effect ICB frequency. A 

relationship between DAT and cognitive impulsivity task performance has previously been 

reported (MacDonald et al., 2016; Mata et al., 2012). DAT is responsible for the reuptake of 

dopamine into pre-synaptic neurons (Hovde et al., 2019) and predominantly removes dopamine 

from within the striatum, a key region for cognitive decision making (Mata et al., 2012; Vriend 

et al., 2014). A higher DAT score represents a less functional DAT protein, which leads to less 

clearance of dopamine from the synaptic cleft, and greater striatal dopamine neurotransmission 

(Cilia et al., 2010; Vriend et al., 2014). In our study, patients with higher striatal dopamine 

levels (i.e., DAT = 1) who made more impulsive decisions on the BART counterintuitively had 
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lower, rather than higher, clinical impulsivity. There is no immediately obvious reason for this 

paradoxical finding, but it should be interpreted with caution, as the study was not designed to 

primarily investigate single gene effects. 

 

Increased exposure to DA medication, but not increasing dose, predicted higher trait 

impulsivity and increased ICB frequency. The effect of purely time on DAs separate from dose 

has not been widely reported. Of those who did isolate time on DAs, some studies reported a 

positive correlation with ICBs (Corvol et al., 2018; Giladi et al., 2007), whereas others did not 

(Bastiaens et al., 2013). The findings for DA dose are also somewhat mixed, although a greater 

proportion of studies have previously determined a positive association between DA dosage 

and ICBs (Bastiaens et al., 2013; Corvol et al., 2018; Joutsa et al., 2012; Lee et al., 2010; 

Marković et al., 2020; Perez-Lloret et al., 2012; Weintraub et al., 2006), than no relationship 

(Callesen et al., 2014; Erga et al., 2017; Housden et al., 2010; Isaias et al., 2008; Vela et al., 

2016; Weintraub et al., 2010). The reduced D2 auto-receptor sensitivity hypothesis explained 

previously is one potential neural mechanisms of action underlying our effect of time on DAs. 

Epigenetics may also be playing a role. Dopamine medication may regulate DNA transcription 

over time to increase protein and therefore neurotransmitter production (Lepack et al., 2020), 

potentially leading to the increase in impulsive behaviour. In our study, COMT and DAT 

mutations resulting in greater dopamine neurotransmission were associated with higher ICB 

frequency with increasing time on DA medication. Again single-gene exploratory findings 

should be interpreted with caution but could point to future epigenetics work including these 

genes when investigating gene vs medication interactions in the context of ICB severity over 

time. 
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Participants who reported higher levels of everyday trait impulsivity, also reported a 

higher frequency of ICBs in both the DA and NDA groups. Impulsive trait behaviour is a risk 

factor for ICBs (Leeman & Potenza, 2011; Weintraub & Mamikonyan, 2019) and PD patients 

with ICBs have reported higher impulsivity on the BIS compared to those without ICBs 

(Hlavatá et al., 2020; Isaias et al., 2008; Marín-Lahoz et al., 2018; Takahashi et al., 2022). Our 

positive correlation between BIS and QUIP-RS in both DA and NDA groups has previously 

been reported in a group of PD patients, but it is uncertain how many of these patients were on 

DA medication (Goerlich-Dobre et al., 2014). The presence of a comparable relationship in 

both groups suggests that the behavioural manifestation of ICBs in an NDA group may be 

similar to those on DAs. However, our clinical model was unable to account for the variability 

in ICB severity for this group, indicating the underlying mechanisms for ICBs may be distinct 

for agonist vs non-agonist medication (Kelly et al., 2020). 

 

It is important to acknowledge some limitations of the current study. Firstly, the NDA 

control group had a smaller sample size than the DA group due to recruitment time constraints. 

The smaller sample size and reduced variability may have contributed to our clinical model 

being unable to account for ICB frequency in the NDA group. Although it is worth noting the 

ICB variability was still sufficient to reveal a correlation with BIS scores, and the NDA group 

reported a similar average and range of QUIP scores compared to the DA group. Nevertheless, 

future work should aim to replicate this lack of effect with the clinical model in a larger group 

of PD patients who are taking only non-agonist medication. Additionally, it is important to 

acknowledge that we cannot confirm that those in the NDA group did not previously take DA 

medication. There is therefore a possibility that some of them may have been experiencing 

persistent ICB effects following termination of DAs. However, the relatively short average 

disease duration for this group (ICB = 4.64 years, no-ICB = 2.68 years) makes this unlikely. 
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Secondly, although we present novel findings by including time on DA medication in our 

models, this was a cross sectional study. A longitudinal study design is required to confirm 

interactions with time on an individual basis. A longitudinal design would also reveal whether 

task performance tracks with ICB changes over time. If this design was conducted with de 

novo patients, it could additionally reveal any changes to predictive variables that precede 

increases in ICBs, which is a crucial step towards identifying measures for prognostic use. 

 

In summary, this study provides evidence that our objective measures from impulse control 

tasks and time of exposure to medication can explain ICB severity in people with PD and are 

specific to DA mechanisms of effect. On the other hand, the DGRS appears better suited to 

predicting the incidence, rather than severity, of ICBs on DAs. Future research should 

determine whether task performance can be used to monitor ICB changes over time within an 

individual on agonist medication, and crucially whether task measures can detect subtle 

impulsivity changes before larger changes in everyday behaviour progress to a clinically 

problematic level. 
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The data collection for this experimental chapter was halted in March 2020 due to the COVID-

19 pandemic. Restricted laboratory testing was allowed to continue in the Summer of 2021. 

Due to these restrictions and the time constraints of this PhD, subsequent blood samples were 

collected from participants in person, but all other aspects of the study were completed online. 

Due to these constraints, only 19 participants completed the full study which was largely 

underpowered (power = 9% (G*Power 3.1.9.6)), so we acknowledge we cannot interpret these 

results as statistically meaningful. Therefore, descriptive results are reported and include 

discussion of visual patterns. 

 

 

 

 

CHAPTER 6  

 

Is there a relationship between the DGRS, 

metabolised dopamine and impulsivity task 

performance in young adults? 

 

Preliminary Results 
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6.1. Abstract 

Introduction: The working hypothesis is that the Dopamine Genetic Risk Score (DGRS) 

presented in previous chapters is able to quantify central dopamine neurotransmission in neural 

mesocorticolimbic regions. To begin investigating this, the DGRS was compared to the 

concentration of homovanillic acid in blood plasma (pHVA), a metabolite of central dopamine 

which reflects central dopaminergic neural activity. Some genetic polymorphisms which make 

up the DGRS are associated with sensitive, objective behavioural task-based measures of 

impulsivity (Hall et al., 2023), but these task-based measures have yet to be compared to levels 

of pHVA. Methods: 19 young healthy participants completed genotyping to produce a DGRS, 

provided three blood samples for average pHVA concentration whilst controlling their diet for 

foods high in monoamine and flavonoid content. Participants completed the Anticipatory 

Response Inhibition Task as a measure of response inhibition. The Balloon Analogue Risk 

Task and Gambling Task dependent measures examined cognitive decision making and risk-

taking behaviours. Several impulsivity questionnaires were also completed: Questionnaire for 

Impulsive-Compulsive Disorders in Parkinson’s Disease Short and Rating Scale versions and 

the Barratt Impulsiveness Scale, whilst the Montreal Cognitive Assessment measured global 

cognitive function. Results: There was a positive relationship between pHVA and the DGRS, 

where participants in the higher DGRS group had higher pHVA concentrations. There was 

greater trial-by-trial impulsivity in both the BART and GT, for DGRS Low compared to High. 

There were no correlations between pHVA and impulsivity task measures. Conclusions: 

Although underpowered, these preliminary results suggest a potential relationship between 

DGRS and metabolised levels of dopamine, such that our DGRS does seem to be reflecting 

central levels of dopamine. We also provide the first preliminary evidence that the DGRS is 

associated with impulsivity task performance in young healthy adults. 
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6.2. Introduction 

Previous chapters in this thesis describe the use of the Dopamine Genetic Risk Score (DGRS), 

which involves a working theory that this DGRS quantifies overall central dopamine 

neurotransmission in meso-cortico-limbic (MCL) regions resulting from the accumulation of 

specific mutations in five dopaminergic genes. To help confirm this hypothesis, we need to 

compare the DGRS with directly measured levels of dopamine. One way to do this is via 

measuring the main dopamine degradation product, homovanillic acid (HVA). HVA 

production can take place centrally, peripherally and from diet contributions (Amin et al., 1992; 

Bell, 1988; Rubí & Maechler, 2010). The endogenous central production of dopamine in the 

brain mostly takes place in dopamine neurons, whilst peripheral dopamine is often produced 

in noradrenergic (NA) neurons in the peripheral nervous system which synthesises dopamine 

as a precursor (and therefore HVA) during the production of norepinephrine (NE) (Amin et al., 

1992, 1995). 

 

 The biosynthesis of HVA takes place within two pathways (Meiser et al., 2013) and 

begins with the transportation of tyrosine to catecholaminergic neurons (Elsworth & Roth, 

1997) (Figure 1.2, Chapter 1). Within the pathway which contributes the most to HVA 

production, initially phenylalanine is hydroxylated to form tyrosine in the liver or 

catecholaminergic neurons (Elsworth & Roth, 1997). Subsequently, tyrosine is hydroxylated 

to form 3,4-dihydroxyphenylalanine (DOPA), which is decarboxylated to produce dopamine 

(Best et al., 2009; Meiser et al., 2013). In the alternative pathway of HVA biosynthesis, tyrosine 

is converted to tyramine before oxidisation to dopamine (Meiser et al., 2013). Dopamine is 

stored and released as a neurotransmitter in dopamine neurons, whilst in NA neurons the co-

release of dopamine and NE is possible (Ranjbar-Slamloo & Fazlali, 2020). In NA neurons, 

dopamine is synthesised to produce NE and then, in turn, epinephrine by the process of 
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methylation (Meiser et al., 2013). In dopamine neurons, dopamine is released into the synaptic 

cleft which can bind to receptors on post-synaptic terminals, but dopamine can also be 

reabsorbed back into the nerve terminal. The re-absorbed dopamine is metabolised into 3,4-

dihydroxyphenylacetaldehyde (DOPAL) by monoamine oxidase (MAO) and then 3,4-

dihydroxyphenylacetic acid (DOPAC) by aldehyde dehydrogenase (ALDH). Whilst dopamine 

in the synaptic cleft is converted to 3-methoxytyramine (3-MT) by COMT and then 3-

Methoxy-4-hydroxyacetaldehyde by MAO. Subsequently, both DOPAC and 3-Methoxy-4-

hydroxyacetaldehyde form HVA through the action of catechol-methyltransferase (COMT) 

and ALDH (Amin et al., 1992; Elsworth & Roth, 1997; Meiser et al., 2013). 

 

 It is possible that HVA can partially reflect central dopaminergic activity (Amin et al., 

1992; Nemoda et al., 2011). Levels of central dopamine in HVA have been estimated following 

the suppression of dopamine obtained peripherally by COMT and MAO inhibitors which do 

not cross the blood brain barrier (Amin et al., 1995; Siderowf & Kurlan, 1999). These estimated 

levels of central dopamine equate to 25-65% in blood plasma, 25% in urine and less than 3.5% 

in cerebral spinal fluid contributions (Amin et al., 1992, 1995; David E. Sternberg, George R. 

Heninger, 1983). 

 

To our knowledge, there have been no studies investigating blood plasma HVA 

(pHVA) and a dopaminergic risk score. Previous research has explored the association between 

pHVA concentration and some dopaminergic genes included in the DGRS, most commonly in 

patient populations with neuropsychiatric conditions. Of note, COMT is one of the enzymes 

responsible for the central metabolism of dopamine into HVA (Nemoda et al., 2011). Greater 

enzyme activity resulting from the same polymorphism quantified within the DGRS, COMT 

Val158Met polymorphism, is associated with higher levels of HVA in peripheral blood plasma 
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(Zumárraga et al., 2010). The -141C Ins/Del polymorphism in the Dopamine Receptor D2 

gene, which has been found to increase D2 receptor density (Thompson et al., 1997), was also 

was associated with an increase in pHVA which trended to significance in a sample of 

schizophrenia patients (Miura et al., 2015). Whilst the Dopamine Receptor D3 Ser9Ser 

polymorphism in patients with delusional disorder was associated with higher pre-treatment 

level of pHVA, indicating higher dopamine function (Morimoto et al., 2002). Finally, high 

levels of pHVA were correlated with increased Dopamine Transporter (DAT) density in the 

caudate and putamen for people in stages of cocaine abstinence (Bowers Jr et al., 1998). 

Therefore, it is possible that the combined DGRS will be associated with concentrations of 

pHVA. 

 

 The DGRS encompasses five genes which modify dopamine signalling within MCL 

regions (Caminiti et al., 2017; K. M. Smith et al., 2016; Vriend et al., 2014), and are implicated 

in impulse control (Abidin et al., 2015; Congdon et al., 2009; Erga et al., 2018; Lee et al., 2009; 

K. M. Smith et al., 2016; Vriend et al., 2014). Additionally, the DGRS is associated with the 

change in impulsive behaviour in individuals with Parkinson’s disease (PD) (Hall et al., 2021). 

Our most recent study (Hall et al., 2023) investigated the relationship between the DGRS and 

behavioural tasks measuring impulsivity in a group of PD patients. The DGRS was not 

associated with measures of the Balloon Analogue Risk Task (BART) or the Anticipatory 

Response Inhibition Task (ARIT), however the DAT polymorphism interacted with decision 

making on the BART. The ARIT and BART have previously been described in this thesis to 

measure motor and cognitive/limbic impulsivity, respectively (Antonelli et al., 2011; Coxon et 

al., 2007). Another behavioural task of interest is the Gambling Task (GT), first implemented 

by Verbruggen and colleagues (2016) which was subsequently replicated (Eben et al., 2020). 

This task examined cognitive impulse control, specifically how trial outcome effects the 
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response speed of the next trial. Interestingly, levels of HVA were found to be much higher in 

a cohort of pathological gamblers, compared to controls (Bergh et al., 1997). Moreover, lower 

levels of pHVA were associated with repetitive behaviour disorders (M. H. Lewis et al., 1996), 

suggesting a potential relationship between pHVA and impulsivity. To our knowledge there is 

no previous research involving pHVA and behavioural impulsivity tasks. 

 

Aims and Hypotheses: 

The primary aim (1) of this experiment was to determine any relationship between pHVA 

concentration (quantifying metabolic dopamine) and the DGRS (quantifying dopamine 

neurotransmission). We hypothesised that those with a high DGRS would display higher 

concentrations of pHVA, whereas those with a low DGRS would display lower pHVA 

concentration. The secondary aim (2) was to investigate the relationship between the DGRS 

and impulsivity task performance/questionnaires in young healthy adults. Our hypotheses 

followed the inverted-U relationship between dopamine and impulse control at baseline (Figure 

3.2, Chapter 3). We therefore hypothesised that those with a low DGRS would display worse 

impulsivity and greater behaviour modification on each task/questionnaire compared to those 

with a high DGRS. Finally, the third aim (3) was to investigate the relationship between pHVA 

concentration and impulsivity task performance. We again hypothesised an inverted-U 

relationship where a lower pHVA would display worse impulsivity and greater behaviour 

modification on each task/questionnaire compared to those with high pHVA. 
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6.3. Materials and Methods 

6.3.1. Participants 

88 young healthy adults provided written informed consent to partake in the research project. 

Inclusion criteria were 18-40 years old, no known history of neurological illness, normal or 

corrected-to-normal vision and not taking any medications which affect dopamine levels. The 

study was approved by the University of Birmingham ethics committee. All 88 participants 

provided a saliva sample to determine their DGRS (details of methods included in 

Experimental Protocol) and 3 participants were subsequently removed from analyses as one or 

more of their genetic mutations could not be determined to calculate their full DGRS. The 

DGRS for the remaining 85 participants were as follows: DGRS 0, n = 0; DGRS 1, n = 4; 

DGRS 2, n = 19; DGRS 3, n = 32, DGRS 4, n = 25, DGRS 5, n = 5. Due to time and testing 

constraints from the COVID-19 pandemic, only 19 healthy young adults (mean age 22 ± 3.6 

years SD, range 18-29 years, 8 males) completed all aspects of the research project. The 

Montreal Cognitive Assessment (Appendix 11), a validated and reliable screening tool to 

measure global cognitive performance, was completed by all 19 participants and no cognitive 

impairments were detected (Gill et al., 2008; Lam et al., 2013). 

 

6.3.2. Experimental Protocol 

Genotyping was performed on all recruited participants to screen for the required DGRS so 

that clear differences could be investigated between high and low scores (final cohort of 19 

participants: Low DGRS 0 - 2: N = 6, High DGRS 4 - 5: N = 13). Selected participants provided 

blood samples during three experimental sessions, each a minimum of one week apart. 

Impulsivity task performance and impulsivity questionnaire results were obtained from each 

participant: the Anticipatory Response Inhibition Task (ARIT), Balloon Analogue Risk Task 

(BART), Gambling Task (GT), Barratt Impulsiveness Scale (BIS), Questionnaire for 
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impulsive-compulsive disorders in Parkinson’s disease short version (QUIP-S) and the QUIP 

rating scale (QUIP-RS). 13 participants completed all aspects of the study within the 

laboratory, the subsequent 6 participants attended the laboratory to provide blood samples but 

completed behavioural tasks and questionnaires online due to restrictions implemented 

following the COVID-19 pandemic. 

 

6.3.3. Genotyping 

Single saliva samples were collected from all participants using self-collection Oragene·DNA 

kits (OG-500 and OG-600) from DNA Genotek (Ottawa, Canada). These DNA samples were 

analysed by LGC Genomics (http://www.lgcgenomics.com/). Kompetitive allele specific 

polymerase change reaction (PCR KASP) genotyping was performed on four genes: 

DRD1 (rs4532), DRD2 (rs1800497), DRD3 (rs6280) and COMT (rs4680) to determine a bi-

allelic score for each single nucleotide polymorphism (SNP) for each participant. This process 

involved the KASP Assay and Master mix being added to the DNA samples, followed by a 

thermal cycling reaction and finally an end-point fluorescent read (for full methods on KASP 

genotyping see: https://biosearch-cdn.azureedge.net/assetsv6/kasp-explanation-fact-

sheet.pdf). The variable number of tandem repeat (VNTR) in the DAT rs28363170 gene was 

determined with a separate PCR process. A PCR, PCR clean up, sanger sequencing and 

genotype calling was followed by establishing the repeat length of DAT from the eye on the 

sequence trace files. Every participant received a dopamine genetic risk score (DGRS) of 

between 0-5 dependent upon the specific mutation/number of repeats for each of the five 

polymorphisms (higher score = higher dopamine levels) (Appendix 12). DRD1 (p = .568), 

DRD2 (p = .054), DRD3 (p = .456) and DAT (p = .827) genotype frequencies were in Hardy-

Weinberg equilibrium (calculated with chi-square tests), however the observed genotype 

frequencies for COMT were not consistent with HW equilibrium (p = .037). 
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6.3.4. Venepuncture 

Three blood samples were taken to quantify the levels of the dopamine metabolite, HVA in 

blood plasma as a measure of central dopaminergic activity (Amin et al., 1992; Sternberg & 

Heninger, 1983). Participants controlled their diet for 24 hours before each experimental 

session by eliminating food and drink high in monoamine and flavonoid content. This was 

monitored using a food diary (Appendix 13). These foods can largely increase peripheral 

contributions to HVA plasma concentration, therefore the blood samples would not reflect true 

levels of central dopaminergic activity if the diet was not controlled (Amin et al., 1992; 

Donnelly et al., 1996). Blood samples for each participant were drawn from the antecubital 

vein after an overnight fast while participants remained in a semi-supine position. Blood was 

drawn into 6ml EDTA vacutainers, which were centrifuged at 2000rpm, 8°C for 10 minutes 

and aliquoted into 1.5ml microcentrifuge tubes, before being frozen at -80°C for future 

analysis.  

 

For analysis, plasma samples were thawed at room temperature and levels of HVA were 

analysed by quantitative sandwich ELISA (MyBioSource, Catalogue number: MBS064661), 

as per manufacturer’s instructions. All three samples per participant were run in duplicate to 

account for variability within the samples. Samples from each participant were run within the 

same plate in all cases, to minimise the influence of inter-assay variability. AssayFit Pro 

software (https://www.assayfit.com/) was used to fit a cubic calibration curve to the absorbance 

levels of HVA. Concentration levels of HVA (ng/ml) were determined from the calibration 

curve for every sample (2 samples per participant per visit, 3 visits). Concentrations were 

averaged for each visit per participant and any outliers were removed following determination 
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by Dixon’s test (Dixon, 1950, 1951). The concentrations were then averaged to provide one 

concentration for each participant. 

 

6.3.5. Impulsivity Task Performance 

6.3.5.1. Anticipatory Response Inhibition Task (ARIT) 

The ARIT completed in the laboratory was displayed on a computer screen using custom code 

written in MATLAB (version R2016a, MathWorks) and controlled via two custom made 

switches, an A/D USB interface (National Instruments, Austin, TX) and micro- controller 

(Eleven Freetronics, Victoria, Australia) (Figure 6.1). The ARIT online version was presented 

using custom code written in Inquisit 6 Lab (Version 6.5.1, Millisecond Software) and 

responses were made on a keyboard (Figure 6.1). Participants performed the task in a seated 

position, approximately 1m away from a computer screen. Their forearms were rested on the 

table whilst they responded to stimuli on the computer screen using their index fingers. 
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be depressed to initiate a black bar rising within the two white bars after a variable delay. Both 

bars rose at equal rates, intercepting the target (horizontal black line) after 800ms and filling 

the entire white bar after 1000ms, unless the switches/keys were released which ceased the bars 

rising. Go trials were presented as 74% of total trials (296 of a total 400) and required 

participants to release their fingers from both switches/keys to intercept both bars with the 

target (successful releases were within 30ms of target). There were three versions of Stop trials: 

Stop both (SB) trials required participants to keep both switches/keys depressed when both 

bars automatically stopped rising before reaching the target, partial trials comprising of stop 

left-go right (SL) and stop right-go left (SR), which required participants to keep depressing 

the switch/key corresponding to the bar which stopped whilst releasing their finger from the 

alternative switch/key to intercept the remaining bar with the target. All versions of Stop trials 

were equally present for the remaining 26% of total trials (104 trials in total). For every stop 

version, the bar initially stopped 500ms into the trial. A staircase algorithm with increments of 

25ms was then used to generate a 50% success rate for each stop trial version. Following a 

successful stop trial the bar would then stop 25ms later for the subsequent stop trial, whereas 

the bar would stop 25ms earlier following an unsuccessful stop trial. The minimum and 

maximum stop times for the bars were 25ms and 775ms, respectively. 

 

Stop signal reaction time (SSRT) for SB was selected as the primary dependent measure 

for the ARIT as it indicates the latency of the stop process/response inhibition (Band et al., 

2003; Verbruggen et al., 2019b; Verbruggen & Logan, 2008) and is a robust measure of 

inhibitory control latency (Hall et al., 2022). SSRT for SB was calculated using the integration 

method (SSRT = nth RT (number of go trials x probability of responding) – staircased bar stop 

time) (Logan & Cowan, 1984; Verbruggen et al., 2019b). 
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6.3.5.2. Balloon Analogue Risk Task (BART) 

The BART was controlled using Inquisit 5 Lab (Millisecond Software, version 5.0.14.0, 2018) 

for both laboratory and online versions. Participants were seated approximately 1m away from 

the computer screen with their forearms rested on the table. Each trial began by presenting a 

small balloon and two options on the computer screen (Figure 6.2). The first option was to 

“Pump up the balloon” which incrementally increased the balloon size, triggered a balloon-

inflation sound and increased the “Potential earnings” for that trial by £0.02 with each pump. 

The second option was the “Collect £££” button. Once pressed, the current trial ended and the 

potential earnings were added to “Total Winnings” for the task. However, each balloon could 

randomly explode on any pump and any potential earnings for that trial would be lost. Each 

balloon started with a 1 in 85 probability of exploding. With each balloon pump, a number was 

randomly selected and removed without replacement from an 85-length array. The selection of 

number one resulted in the balloon explosion. Therefore, the risk of the balloon exploding 

increased with each pump but the potential monetary reward also increased. The trial number, 

current potential earnings and current number of pumps (along with total accumulated 

winnings) were displayed on screen throughout each trial. Participants were informed that they 

would receive the total monetary reward they accumulated after 30 trials. A 7-point motivation 

scale relating to this pay-out (1 = hardly motivating at all, 7 = extremely motivating) was 

completed by each participant following the BART. 
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try to win as many points as possible over the course of the task by picking between two pie 

charts presented on the screen at the start of each trial. These two pie charts both displayed a 

different number of winnable points below (Figure 6.3). One pie chart always had a 100% 

guarantee of winning the number of points displayed below it indicated by a full green circle 

(20, 30, 40 or 50). The second pie chart represented a probability of winning (green) or not 

winning (red) the points displayed below it (probability of winning was one of the following: 

0.25, 0.33, 0.50, 0.67). The points for the second pie chart were always greater than the first 

pie chart, however this option posed a greater risk of winning zero points as probability of 

winning was always below 1. Participants chose a pie chart by pressing the left/right arrow key 

on the keyboard with their respective left/right index finger. Participants were presented with 

256 trials overall. At the end of the experiment the task generated the results of 10 trials at 

random and the sum of these 10 results was converted into a monetary reward (100 points = 

£1, maximum pay-out = £3). A 7-point motivation scale relating to this pay-out (1 = hardly 

motivating at all, 7 = extremely motivating) was completed by each participant following the 

task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 

Visual display of the Gambling Task. 

Participants select the left or right arrow key to 

choose the corresponding pie chart and number of 

points to be won. 
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The primary dependent measure for the GT was the Start Reaction Time (StartRT) after 

a gambled “loss” or a gambled or non-gambled “win”, and after prior trial win probability. 

StartRT is defined as the time between the outcome of a trial and the start of a new trial as 

initiated by the participant (this decision itself does not lead to a reward or loss).  

 

6.3.6. Impulsivity Questionnaires 

6.3.6.1. Barratt Impulsiveness Scale (BIS) 

All participants answered 30 questions on the BIS relating to real-world behaviours. Each 

behaviour was scored on a 4-point scale corresponding to an answer of Rarely/Never, 

Occasionally, Often, Almost always/Always (Stanford et al., 2009). The higher the overall 

score (range 0-120), the higher the level of trait impulsivity for each participant. 

 

6.3.6.2. Questionnaire for Impulsive-Compulsive disorders in Parkinson’s disease: short 

version (QUIP-S) and rating scale (QUIP-RS) 

The QUIP-S and QUIP-RS are validated screening tools to identify incidence and 

frequency/severity of ICD behaviours, respectively.  Both are self-administered but vary 

slightly in their scoring and interpretation. Questions on the QUIP-S are related to impulsive 

or compulsive gambling, sexual behaviour, buying and eating, and other associated behaviours 

(punding, hobbyism and walkabout) (Weintraub et al., 2009). A positive score on any of the 

13 “yes or no” questions was recorded as an ICD behaviour. The QUIP-RS comprised of four 

questions in each of the following categories: “gambling”, “sex”, “buying”, “eating”, 

“performing tasks or hobbies” and “repeating simple activities” (Martinez-Martin et al., 2018; 

Probst et al., 2014; Weintraub et al., 2012). Participants rated each question by the frequency 

of the behaviour which resulted in a corresponding score (never (0), rarely (1), sometimes (2), 

often (3), very often (4)) in the past 4 weeks or any 4-week period in a designated time frame. 
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Total scores of between 0-96 were calculated for each participant. Questions regarding PD 

medication use were removed from both questionnaires. 

 

6.3.7. Statistical analysis 

Data analysis and statistical modelling were performed in MATLAB (version R2020a, 

MathWorks), SPSS Statistics (version 28) and Prism (Version 9.4.1). For method validation, 

any within individual outliers for pHVA concentration were reported following determination 

by Dixon’s test (Dixon, 1950, 1951). Additionally, unpaired t-tests with Welch’s correction 

investigated any differences between in person (completed in the laboratory) and online 

(completed at home) impulsivity behavioural task primary dependent measures (SSRT SB, 

Positive Reinforcement, Negative Reinforcement, StartRT). Averages, standard deviations, t 

and p values are reported. 

 

For Aim 1, an unpaired t-test with Welch’s correction examined any differences in 

concentrations of pHVA between the DGRS High and Low groups. Averages, standard 

deviations, t and p values, 95% confidence interval (CI) and effect size (Cohen’s d: 0.20 = 

small, 0.50 = moderate, 0.80 = large, (Cohen, 1988) are reported. 

 

For Aim 2, unpaired t-tests with Welch’s correction examined any differences between 

the DGRS High and Low groups for SSRT SB, Positive and Negative Reinforcement and 

BART and GT Motivation Scales and impulsivity questionnaires. Averages, standard 

deviations, t and p values, 95% confidence interval for the difference between means (CI) and 

effect sizes (Cohen’s d) were reported. For the BART, a mixed design ANOVA with 2 DGRS 

(High & Low) x 2 Reinforcement (Positive & Negative) was run to determine any relationship 

between the DGRS and Reinforcement. For the GT, two mixed design ANOVAs with 2 DGRS 
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x 3 Prior Trial Outcome (gambled loss, gambled win, non-gambled win) and 2 DGRS x 4 Prior 

Trial Win Probability (0.25, 0.33, 0.50, 0.67) were run to determine any relationship between 

the DGRS and StartRT. Averages, standard deviations, F and p values, and effect sizes (ηp2: 

0.01 = small, 0.06 = moderate, 0.14 = large, (Cohen, 1988) are reported. 

 

For aim 3, quadratic regressions were run between pHVA and SSRT SB, Positive and 

Negative Reinforcement and StartRT prior trial type and prior trial win probability. Beta 

coefficients (ß), p values and effect sizes (R2: 0.1 = small, 0.3 = medium, 0.5 = large, (Cohen, 

1988) are reported. 
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6.4. Results 

6.4.1. Method Validation 

There was no within individual variability for pHVA concentrations, highlighted by no outliers 

within individuals from Dixon’s test (Dixon, 1950, 1951) (all Q experimental < Q critical). We 

confirmed that there were no significant differences between all online and offline impulsivity 

task primary dependent measure results (Positive Reinforcement: in person = 0.31 ± 0.21, 

online = 0.37 ± 0.66, t (4.31) = -0.20, p = .850, Negative Reinforcement: in person = -0.20 ± 0.14, 

online = -0.15 ± 0.34, t (4.55) = -0.36, p = .734, StartRT: in person = 696 ± 247ms, online = 835 

± 602ms, t (5.79) = -0.55, p = .606) other than SSRT SB: in person = 189 ± 26.3ms, online = 238 

± 14.9ms, t (16.0) = -5.25, p < .001. Looking more closely at the results of SSRT SB, there are 

no differences in GoRT between in person (808 ± 8.33ms) and online (813 ± 7.79) (t (10.5) = -

1.42, p = .186), confirming no effect of the use of different software on overall reaction time. 

However, there were differences between Bar Stop Times (in person = 619 ± 27.3ms, online = 

575 ± 15.8ms, t (15.8) = 4.45, p < .001), which could simply mean that the small sample in the 

online group (n = 6) were worse at stopping, or that there were differences in motivation or 

understanding due to the environment. 

 

6.4.2. pHVA and DGRS analyses (Aim 1) 

Visually, the high DGRS group had greater mean pHVA concentration (6.18 ± 9.56 ng/ml) 

than the low DGRS group (3.81 ± 1.80 ng/ml) although the variance and lower sample sizes 

resulted in this being non-significant (t (13.7) = 0.86, p = .403, 95% CI [-3.54, 8.29], Cohen’s d 

= 0.28) (Figure 6.4). This visual pattern was in line with our first hypothesis. 
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6.4.3.2. Balloon Analogue Risk Task 

Participants pumped the balloon more after a win and less after a loss, and participants with 

a low DGRS reported higher motivation: 

For Positive and Negative Reinforcement measures in the BART, there was a main effect of 

Reinforcement Type (F1,32 = 25.2, p < .001, ηp2 = .441), where Positive Reinforcement (0.35 ± 

0.08) was significantly greater than Negative Reinforcement (-0.19 ± 0.08, p < .001) (Figure 

6.6A). There was no effect of DGRS (F1,32 = 0.29, p = .593, ηp2 = 0.009) or DGRS by Stop 

Type interaction (F1,32 = 0.52, p = .476, ηp2 = 0.02) (Figure 6.6A). Despite no significant result, 

it is interesting to note that visually DGRS low compared to high participants pumped the 

balloon more after a win. Positive Reinforcement values were 0.28 ±0.27 for DGRS High and 

0.41 ± 0.52 for DGRS Low (t (6.40) = -0.59, p = .575, 95% CI [-0.44, 0.17]). Whereas Negative 

Reinforcement values were -0.18 ± 0.20 for DGRS High and -0.20 ± 0.23 for DGRS Low (t 

(8.82) = 0.17, p = .866, 95% CI [-0.29, 0.33]). For the BART, the Motivation Score for DGRS 

High (5.69 ± 0.75) was significantly lower than DGRS Low (6.33 ± 0.52) (t (14) = -2.16, p = 

.048, 95% CI [-1.28, 0.005], Cohen’s d = 0.69) (Figure 6.6B). It is therefore possible that there 

is a link between the self-reported motivation and the visual difference from positive 

reinforcement between DGRS groups. 
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6.4.3.3. Gambling Task 

Participants with a low DGRS initiated the start of the following trial quicker after all prior 

trial types and win probabilities: 

For StartRT as a function of Prior Trial Outcome (Figure 6.7A), there was a main effect of 

DGRS (F1,67 = 10.1, p = .002, ηp2 = 0.13), where StartRT for DGRS High (822 ± 54.4 ms) was 

significantly greater than DGRS Low (516 ± 79.2 ms, p = .002). There was no effect of Prior 

Trial Type (F3,67 = 0.36, p = .783, ηp2 = 0.02) or DGRS by Prior Trial Type interaction (F3,67 = 

0.03, p = .992, hp2 = 0.001). For StartRT as a function of Prior Trial Win Probability, there was 

a main effect of DGRS (F1,68 = 9.61, p = .003, ηp2 = 0.12), where StartRT for DGRS High (827 

± 52.4 ms) was significantly greater than DGRS Low (538 ± 77.1 ms, p = .003). There was no 

effect of Prior Trial Win Probability (F3,68 = 0.13, p = .944, ηp2 = 0.01) or DGRS by Prior Trial 

Win Probability interaction (F3,68 = 0.02, p = .995, ηp2 = 0.001) (Figure 6.7B). StartRT does 

not seem to link to self-reported motivation, where the Motivation Score for DGRS High was 

5.00 ± 1.35 and 5.33 ± 1.63 for DGRS Low (t (8.54) = -0.43, p = .677, 95% CI [-2.09, 1.43], 

Cohen’s d = -0.23) (Figure 6.7C). 
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6.4.3.4. Impulsivity Questionnaires 

No differences between the DGRS groups were observed for the impulsivity questionnaires: 

For the QUIP-S, the High DGRS group had a score of 0.15 ± 0.55 and the Low DGRS group 

had a score of 1.00 ± 1.26 (t (5.91) = -1.57, p = .168, 95% CI [-2.17, 0.48], Cohen’s d = -1.02). 

For the QUIP-RS, the High DGRS group had a score of 12.7 ± 11.7 and the Low DGRS group 

had a score of 9.17 ± 11.7 (t (9.76) = 0.61, p = .555, 95% CI [3.53, 5.77], Cohen’s d = 0.30). For 

the BIS, the High DGRS group had a score of 53.2 ± 5.46 and the Low DGRS group had a 

score of 53.2 ± 9.04 (t (6.75) = 0.02, p = .988, 95% CI [-9.44, 9.57], Cohen’s d = 0.01) (Figure 

6.8). We expected to see greater differences between DGRS groups for these questionnaires, 

however a low sample size and subjectivity may have prevented these expected results. 
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6.4.4. pHVA and Impulsivity Task Performance Analyses (Aim 3) 

Any change in pHVA was not correlated with a change in impulsivity task measures: 

Quadratic regressions revealed no significant relationship between pHVA concentration and 

SSRT SB (ß = -2.45, p = .475, R2 = 0.04), Positive (ß = -0.37, p = .547, R2 = 0.03) or Negative 

Reinforcement (ß = -0.28, p = .390, R2 = 0.05). Additionally, there was no significant 

correlation between pHVA concentration and StartRT as a function of Prior Trial Outcome 

(After Gambled Loss: ß = <.001, p = .922, R2 = 0.03; After Gambled Win: ß = <.001, p = .826, 

R2 = 0.04; After Non-gambled Win: ß = <.001, p = .880, R2 = 0.03) and Prior Trial Win 

Probability (0.67 Win Probability: ß = 0.17, p = .894 , R2 = 0.05 ; 0.55 Win Probability: ß = -

0.01, p = .990, R2 = 0.03; 0.33 Win Probability: ß = -0.36 , p = .724, R2 = 0.02; 0.25 Win 

Probability: ß = 0.25, p = .795, R2 = 0.03). Perhaps a wider range of scores in a greater sample 

size is necessary to determine any relationship between these variables.  
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6.5. Discussion 

We acknowledge this experiment was underpowered, as a smaller than desired sample size was 

utilised, so the results we present are preliminary patterns with limited interpretation. However 

our results indicate that we validated the general concept of our methods. All aspects of the 

study apart from venepuncture can take place successfully online, which allows for higher 

recruitment rates. Although perhaps clearer instructional videos are required for stop trials in 

the online version of the ARIT, to enable a clear relationship between in-person and online 

SSRT results. This experiment used reliable methods for HVA collection via blood plasma 

where no outliers were detected. This also confirms that participants successfully followed the 

controlled diet procedure. Below we speculate what our preliminary results may indicate. 

 

The primary aim of this chapter was to investigate the relationship between a 

quantifiable measure of metabolised dopamine (pHVA) and a measure which theoretically 

quantifies central dopamine neurotransmission (DGRS). The most important initial descriptive 

results and visual patterns suggested a positive relationship between pHVA concentration and 

the DGRS. There were higher concentrations of pHVA in the high DGRS group and lower 

concentrations in the low DGRS group. Secondly, we investigated the relationship between the 

DGRS and impulsivity task performance. Participants modified their behaviour differently 

following a win compared to a loss in the BART. Here, individuals pumped the balloon up 

more following a win and less after a loss, regardless of DGRS group. Self-reported BART 

motivation was greater for DGRS Low than High, which may have been linked to the visual 

pattern of greater behaviour modification following a win for DGRS Low compared to High. 

StartRT in the GT was shorter for DGRS Low compared to High after all prior trial outcomes 

and prior trial win probabilities. The motivation scale for DGRS High and Low groups were 
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not different from one another, so do not seem to be accounting for the speed of starting the 

next trial. Finally, there were no correlations between pHVA and impulsivity task measures. 

 

To our knowledge, this is the first study to investigate the relationship between pHVA 

and a dopamine genetic risk score specifically implicated in impulse control. It was therefore 

interesting that the high DGRS group seemed to have higher concentrations of pHVA, although 

this was combined with higher between individual variance. Previous research has found 

associations between pHVA concentration and specific dopaminergic genes included in the 

DGRS, as outlined in the introduction of this chapter (Bowers Jr et al., 1998; Laatikainen et 

al., 2013; Miura et al., 2015; Morimoto et al., 2002; Zumárraga et al., 2010). These associations 

were most commonly in patient populations with neuropsychiatric conditions such as 

schizophrenia, although no study to our knowledge, has used the same genetic polymorphisms 

as the DGRS, other than the COMT Val158Met polymorphism. Greater activity in the COMT 

Val158Met polymorphism is associated with higher levels of HVA in peripheral blood plasma 

of bipolar and schizophrenia patients (Zumárraga et al., 2010) and in the PFC, striatum, 

hippocampus and cerebellum of rats (Laatikainen et al., 2013). It is possible that using a 

weighted DGRS, COMT may play a particularly important role in the relationship between the 

DGRS and pHVA due to its role in the breakdown of dopamine (Amin et al., 1992). 

 

A greater sample size could highlight a relationship between central and metabolised 

dopamine, via the DGRS and pHVA respectively. On the other hand, it could be that pHVA as 

an indicator of central dopamine is not sensitive enough to detect differences in neural 

dopamine levels. Only 25-65% of pHVA could be derivative of central contributions which is 

estimated by using COMT or MAO inhibitors which can supress peripherally obtained 

dopamine as they do not cross the blood brain barrier (Amin et al., 1995; Siderowf & Kurlan, 
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1999). Therefore, in order to confirm whether our DGRS does in fact quantify central levels of 

dopamine, the use of positron emission tomography (PET) or single-photon emission 

computerized tomography (SPECT) scans is suggested for future research to directly measure 

dopamine receptor function and release within specific neural regions (Brucke et al., 2000). 

Although some important preliminary results were discovered relating to a high and low 

DGRS, such as the visual relationship between the DGRS and pHVA, prospective screening 

of participant DGRS’ in a greater sample size is a necessary step within future investigations 

of this kind. This is to ensure a larger and comparable sample size is present for each DGRS 

(0-5), therefore analyses can take place to find associations with the DGRS, split by equal High 

and Low groups or by each individual DGRS. This important step was planned for this 

experiment which we were unable to implement due to COVID-19. 

 

 When exploring preliminary results of impulsivity task performance between DGRS 

High and Low groups, patterns were observed for measures in the BART and GT, but not in 

the ARIT where effect sizes were generally smaller. This could be because in young healthy 

adults the DGRS is more sensitive to changes in impulsive choice rather than impulsive action 

with a gambling element. More particularly the DAT polymorphism of the DGRS may play a 

large role as it has been found to be associated with cognitive impulsive choice (Hall et al., 

2023; MacDonald et al., 2016; Mata et al., 2012). Alternatively, there are key differences 

between the type of behaviour reflected by the primary dependent measures on these tasks; the 

SSRT of the ARIT considers impulsivity as a collective across all trials, whereas the measures 

of the BART and GT involve impulsivity and behaviour modification on a trial-by-trial basis 

where the result of the previous trial effects the behaviour or outcome on the following trial. It 

is possible that this trial-by-trial approach captures sensitive changes in cognitive impulsivity 

which are observed in DGRS differences. Future studies of this kind could assess SSRT on the 
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ARIT on a trial-by-trial basis by measuring partial EMG bursts on successful stop trials to 

detect these sensitive changes in impulsivity (Coxon, Stinear & Byblow, 2007; Jana et al., 

2020). In addition, ARIT measures could include a StartRT component where the time to start 

each trial following a successful or unsuccessful stop is calculated. 

 

The most interesting patterns observed were those in the BART and GT where the 

previous trial outcome had a large effect on the subsequent trial, more so for DGRS Low. In 

the BART, following a successful monetary collection, those with a low DGRS pumped the 

following balloon more than DGRS High. While only present visually within the data, it is 

worth highlighting as it aligns with the result reported by MacDonald and colleagues (2016) 

following both a monetary win and loss at baseline for the lower DGRS group, however this 

only reached significance for Negative Reinforcement. Whilst in the GT, after all prior trial 

types and win probabilities, those with DGRS Low started the subsequent trial quicker than 

DGRS High, and this reached significance even in the small sample size. There are only two 

previous studies which use this version of the GT and neither involve groups split by genotype 

(Eben et al., 2020; Verbruggen et al., 2016). Although both studies, along with three other 

similar studies involving gambling tasks, observed the shortest latency of the start response 

after a gambled loss (Corr & Thompson, 2014; Dixon et al., 2013; Eben et al., 2022a, 2022b). 

This behaviour interestingly contradicts post-error slowing (Dutilh et al., 2012), which also 

involves dopaminergic systems (Siegert et al., 2014), although a gambled loss is arguably 

distinct to a performance error. Of note, a review by Harris and Griffiths (2018) confirmed that 

those with a gambling problem preferred faster speed of play in gambling. This perhaps reflects 

that those in the DGRS Low group, do not specifically have a gambling problem per se, but 

are more likely to have worse impulsivity. It is commonly known that dopaminergic systems 

play a key role in gambling (Clark et al., 2009; Habib & Dixon, 2010), but the specific 
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directional influence of dopamine can be unclear (Clark, 2010; Sevy et al., 2006; Zack & 

Poulos, 2007). It is possible that gambling problems in those with high and low levels of 

dopamine neurotransmission can be explained by the inverted-U theory described in previous 

work (Hall et al., 2021; MacDonald et al., 2016). These results in the GT are not reflected by 

higher scores on the motivation scales for DGRS low compared to high, even though 

motivation is linked to impulsivity (Frijda, 2010) and these results were present on the BART. 

This may be because during the BART, participants are consciously aware of their potential 

winnings on a trial-by-trial basis, which may affect motivation. Here, those with a low DGRS, 

reflecting greater impulsivity, showed greater self-reported motivation. Participants were also 

more impulsive after a win on the BART which could be driven by motivation (Frijda, 2010). 

In contrast to this, in the GT participants received information about their reward at the end of 

the task, which was calculated from randomly selected trials, therefore they were less conscious 

of reward on a trial-by-trial basis. This design may result in lower motivation and reduce the 

possibility of determining any differences in motivation between DGRS groups. Despite no 

difference in self-reported motivation between DGRS groups, the faster StartRT in DGRS low 

compared to high, indicating greater impulsivity, suggests that motivation does not necessarily 

drive impulsivity on this task. 

 

We did not observe any correlations between pHVA concentration and impulsivity task 

performance measures. It is possible that this is because a wide range of scores in a greater 

sample size is required for a robust correlation. This is compared to the DGRS which is 

categorised into two groups, so it may be easier to observe patterns of high vs low. 

Alternatively, if our theory is correct, the DGRS will quantify “purely” central dopamine 

levels, whereas pHVA can only reflect up to 65% of central dopamine levels. Therefore, this 

measure of pHVA may not be sensitive enough to reflect performance in impulsivity 
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tasks/questionnaires which are affected by variations in central dopamine. This relationship 

has not been researched within the literature so it remains to be seen if an association will be 

determined in larger sample sizes. 

 

In summary, this experiment provides interesting and exciting preliminary results, 

outlining the potential relationship between metabolised dopamine and central levels of 

dopamine, via pHVA and the DGRS, respectively. These preliminary results contribute to the 

working theory that our DGRS can quantify central dopamine neurotransmission. Associations 

between the DGRS and impulsivity task performance were present, but not with pHVA and 

impulsivity task performance. It is possible that the measure of pHVA indicating 25-65% of 

central levels of dopamine may not be sensitive enough to reveal changes in impulsive 

behaviour. This is in comparison to the differences in impulsive behaviour observed by the two 

DGRS groups, where the DGRS is specifically constructed with the aim of quantifying high vs 

low levels of dopamine neurotransmission in MCL regions implicated in impulse control. 

These relationships can only be explored and confirmed with a greater sample size. If future 

studies confirm the alignment between pHVA and the DGRS, then pHVA concentration could 

be another predictive factor of those most likely to develop ICBs in PD. Although this will first 

need to be investigated in further healthy populations where there is no initial dopamine 

disturbance. 
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CHAPTER 7  

 

General Discussion 
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7.1. Summary of Main Findings 

The experiments within this thesis investigated genetic, behavioural and biochemical factors 

associated with the presence, frequency and change of impulsive behaviour, specifically 

impulse control behaviours (ICBs) measured by the Questionnaire for Impulsive-Compulsive 

disorders in Parkinson’s disease (QUIP). There were several novel results which further the 

understanding of how these ICBs could be predicted for those with PD taking dopamine agonist 

(DA) medication. These novel results outline the potential role of specific genetic 

polymorphisms via the DGRS and behavioural impulsivity tasks in ICB prediction and 

monitoring. 

 

 The dopamine genetic risk score (DGRS) is a pivotal part of the research in this thesis 

within three out of four experimental chapters and is a suitable term to describe a way to 

measure the potential ‘risk’ of impulsive behaviour for individuals, depending on their 

genotype. The DGRS and the polymorphisms constructing it displayed important relationships 

with ICBs and impulsive behaviour. As already mentioned, the DGRS theoretically quantifies 

central dopamine neurotransmission within MCL regions which are implicated in impulse 

control. This theory has some strong background rationale (Pearson-Fuhrhop et al., 2013, 2014) 

and has been proven to explain the relationship between DA medication and impulsivity in a 

sample of healthy older adults (MacDonald et al., 2016). Chapter 3 followed on from this 

investigation in a cohort of PD patients taking DA medication. Here, the first novel finding 

was presented, where dopamine profiling from the DGRS displayed predictive power for PD 

patients on DA medication. These results somewhat mirrored the inverted-U relationship 

between impulse control and dopamine, previously reported by Macdonald and others (2016). 

The DGRS highlighted that PD patients with low dopamine neurotransmission in MCL regions 

displayed worse impulse control which improved with DA medication, whilst those with higher 
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dopamine neurotransmission had better levels of impulse control which worsened with DA 

medication. Although not all of these results reached statistical significance, this is discussed 

in the limitations section below. In Chapter 5, the DGRS on its own or part of an interaction 

with behavioural outcomes was not associated with ICB frequency, however the dopamine 

transporter (DAT) and catechol-O-methyltransferase (COMT) polymorphisms, indicating 

higher dopamine neurotransmission, were associated with greater impulsivity with increasing 

time on DA medication. Following these first results utilising the DGRS in PD, Chapter 6 

highlighted a visual relationship in young healthy adults between the DGRS and plasma 

homovanillic acid (pHVA), the metabolite of dopamine. The results of this final experimental 

chapter, suggest the measure of HVA could be important in confirming the DGRS theory. 

 

 The other very key aspect of this thesis was the inclusion of behavioural impulsivity 

tasks, which are present within three experimental chapters, to determine any association with 

the DGRS, ICBs and HVA. Firstly, Chapter 4 investigated the behavioural aspect of motor 

impulse control to determine which lab-based impulsivity task would produce the most 

consistent stop signal reaction time (SSRT) measure. Results of this chapter suggested that 

SSRT, derived from Stop Both trials of the Anticipatory Response Inhibition Task (ARIT), is 

a valid measure of non-selective inhibition network activity, more so than the Stop Signal Task. 

Subsequently, Chapter 5 initially presented a pilot study which determined the most suitable 

version of the ARIT for those with PD to complete, where sufficient data could be extracted 

for analyses. The version which reduced the initial staircase stop signal delay value by 100ms 

for Stop Both trials was selected, reducing the difficulty of the task which was mirrored in the 

results and verbal feedback. The following main investigation of Chapter 5 examined the 

sensitivity of objective behavioural task measures, along with any interactions with the DGRS 

to determine the frequency of ICBs in PD patients taking DA medication. The use of the ARIT 
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in PD is novel, along with the relationship revealed between higher ICB frequency derived 

from the QUIP and impulsive behaviour on both the ARIT and BART. Although, this 

relationship between higher ICB frequency and impulsive behaviour on the ARIT did not quite 

reach significance. Finally, Chapter 6 investigated any association between behavioural 

impulsivity tasks and the DGRS and pHVA. Although only preliminary evidence with a limited 

sample size, the clearest initial patterns showed a relationship between greater impulsive 

behaviour modification in the GT and BART, and the DGRS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 165 

7.2. Potential Limitations & Future Directions 

There are several limitations to the research within this thesis, which should be kept in mind 

when interpreting results. 

 

As outlined above, the DGRS is a pivotal part of the research in this thesis within three 

out of four experimental chapters. The working theory is that the DGRS quantifies central 

dopamine neurotransmission within MCL regions, which are implicated in impulse control. 

The results in our investigations display key relationships between the DGRS and impulsive 

behaviour, analysed with correlations and statistical modelling, which speculates this theory 

could be correct. Further adding to the evidence for this theory, Chapter 6 showed a visual 

relationship between pHVA and the DGRS. Although these results are promising, firstly it is 

important to note that only 25-65% of pHVA could be derivative of central contributions (Amin 

et al., 1992; Sternberg & Heninger, 1983). Secondly, we cannot 100% confirm that the DGRS 

quantifies central dopamine levels as they have not been directly measured. Positron emission 

tomography (PET) or single-photon emission computerized tomography (SPECT) scans would 

be needed to confirm this theory, as they can quantify the specific molecular target or measure 

receptor function and release within specific neural regions (Brucke et al., 2000; Zhu et al., 

2014). Both PET and SPECT can produce high resolution images by using radioactive tracers 

at a cellular and molecular level (Wernick & Aarsvold, 2004). It is possible to use PET and 

SPECT imaging to assess D1 and D2 receptors (Brucke et al., 2000), D3 receptors (Stone et 

al., 2009), COMT (Graf et al., 2020) and DAT (Chalon et al., 2019), which make up the DGRS. 

The standardised uptake value of the image for the specific receptor or protein could be used 

as a quantification method (Zaidi & Karakatsanis, 2018). These values could be compared to 

the DGRS or each individual mutation. This method may have the potential to confirm the 

DGRS quantifies central dopamine neurotransmission within MCL regions. 
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It is possible that the presented inverted-U relationship between dopamine 

neurotransmission and impulse control may not be correct without further replication. 

Although some of the results presented in Chapter 3 describe this inverted-U pattern, other 

results do not quite support this relationship. The baseline odds of impulsivity for DGRS high 

compared to medium was not significant, it was only the significant increase in ICB score over 

time which showed the change for DGRS high on the inverted-U figure (figure 3.1), but not 

the baseline odds (table 3.2). This was the opposite for DGRS low, where the baseline odds 

were much higher than DGRS medium, but the change in ICB score over time was not 

significant, it was only significantly different from DGRS high. So, although the results 

presented contribute to the inverted-U theory, we cannot confirm that this is definitely the 

pattern of the data, without replication. In Chapter 5, a multiple linear regression model was 

used to determine any significant association between the DGRS low and ICB frequency, 

compared to DGRS high. Perhaps the best approach may be to run a linear and also quadratic 

regression model for this type of data in the future, as we do not know for certain whether the 

relationship between the DGRS and ICB frequency follows the inverted-U relationship. 

 

Lower than desired sample sizes for the DGRS were present throughout the research. 

In Chapters 3, 5 and 6 we were forced to adjust the groups of the DGRS due to the lower than 

desired sample sizes and the absence of DAT availability in Chapter 3 (Chapter 3 = Low: 0-1, 

Medium: 2, High: 3-4; Chapter 5 = Low: 0-2, High: 3-5, Chapter 6 = Low: 0-2, High: 4-5). 

The sample sizes for each DGRS group were also never the same. Although we endeavoured 

to keep consistency between DGRS group classification and sample sizes, we cannot directly 

compare the results of the DGRS between each chapter. We can only discuss and speculate the 

effect of a high and low DGRS as a whole, without the further replication of results with the 

same DGRS groups. Be that as it may, these lower than desired sample sizes were out of our 
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control. We utilised the Parkinson’s Progression Markers Initiative (PPMI) database in Chapter 

3 which had a finite number of participants, and Chapters 5 and 6 were completed under time 

constraints and laboratory restrictions due to COVID-19. Although, it is important to note that 

necessary steps were taken in the planning of Chapter 6 to complete prospective screening of 

a large number of participants. This was to ensure a sufficient range and number of each DGRS, 

which was not available in previous chapters, but as mentioned this was halted by COVID-19. 

To summarise, lower than preferred sample sizes for DGRS analyses were present, but 

importantly results in the published chapters involving the DGRS were still adequately 

powered. Future research involving the DGRS should include prospective screening to ensure 

an increased sample size for each DGRS. 

 

Lower than preferred sample size also prevented us from completing specific analyses 

throughout the thesis. The relationship between change in ICB score and DGRS groups in 

Chapter 3 was determined with correlations, but we were unable to run regression models to 

determine specific interactions between time on DA medication and DGRS group, when 

predicting ICB score. Again, this was due to the finite number of participants available for data 

analyses from the PPMI database. Furthermore, only the QUIP-short (QUIP-S) version was 

available from PPMI, which does not have the range that the QUIP-rating scale (QUIP-RS) 

offers. This prevented us from completing linear regression analyses with exposure to DA 

medication. In Chapter 5, we were unable to run binary logistic regression models to explore 

any association with ICB incidence rather than frequency, this would be to directly compare to 

results of Chapter 3. However, there was a significant correlation between the QUIP-S and the 

QUIP-RS in Chapter 5, which allows us to compare the results of both chapters to an extent, 

without direct replication of the methodology. Finally, a low sample size also prevented 

running linear regression models for the NDA group in Chapter 5 and did not allow for 
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meaningful statistical significance tests in Chapter 6. While we were unable to complete several 

analyses due to low sample sizes, we have produced very meaningful results throughout these 

chapters, which were publication worthy.  

 

Chapters 3 and 5 investigate the effect of increasing time on DA medication, however 

these chapters incorporate a cross sectional study design, where each individual time point is a 

different participant. Although this element of exposure to DA medication produced novel 

findings, only a longitudinal design will confirm these changes within an individual and 

therefore further contribute to the prediction of ICBs. This is because, in our cross-sectional 

design, we were unable to confirm that the results we observed were not due to previous bouts 

of administered DA medication as well as current, which could be examined in a longitudinal 

design. To provide evidence for this, it has been concluded in the literature that after coming 

off DA medication, ICB symptoms can subside (Siri et al., 2015), but it is also possible that 

any use of DA can increase the risk of developing ICBs in the future (Marković et al., 2020). 

As a result, we cannot say for certain that previous bouts on DA medication did not affect our 

results for DA or NDA groups. Although, given the relatively short disease duration in Chapter 

5, it is perhaps less likely that these patients went on agonists long enough to develop ICBs, 

which then persisted when they came off agonist medications. With this knowledge, to remain 

consistent in both chapters, we only used data from the most recent bout of DA medication for 

each participant. In Chapter 3, we captured information regarding the number of bouts of DA 

administration for each participant, however decided this was too simplistic a variable to 

include in analyses. It would be important for future investigations to include not only the 

number but perhaps also the duration of these previous bouts of DA medication, perhaps as 

confounding variables, to see how they impact the outcome variable. Alternatively, in a 

longitudinal design, ideally participants would be followed for a number of years from de novo, 
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over the course of their disease (Marković et al., 2020; Ricciardi et al., 2018). Here, participants 

can be genotyped for their DGRS and tested for ICBs and impulsive behaviour from 

impulsivity tasks at baseline, which can then be monitored over the course of several years, as 

it is reported ICBs can develop 14 months following first DA administration (Ricciardi et al., 

2018). Analyses could split participants into groups depending on if they have ever taken DA 

medication (Corvol et al., 2018), how many bouts of DA medication, how long these lasted 

and accumulated bouts. This may be able to identify the predictive power of the DGRS and 

behavioural tasks in ICB development and change for those on DA medication, and how the 

number of bouts and duration of DA administration can affect this. 

 

Finally, the ARIT is used within experimental Chapters 4, 5 and 6 in this thesis. The 

use of the ARIT in PD is in the very early stages, and while some novel results were presented 

in the current research, there are further investigations to be completed if it is to be used as a 

predictive or monitoring tool for ICBs in PD. Firstly, it needs to be confirmed that SSRT 

remains stable in a healthy population over a much longer period of time (compared to the two 

sessions investigated in Chapter 4), to establish there are no within-individual changes over 

time. This should first be completed in a young healthy population, before then investigating 

the effects of aging on response inhibition (RI) in an older healthy population (Coxon et al., 

2012; Smittenaar et al., 2015). Subsequently, the ARIT can be implemented in an unmedicated 

PD population, to determine any disease effects on RI. The results of these mentioned 

investigations will confirm that any changes in RI within a PD DA cohort will likely be from 

the influence of DA medication. Therefore, the ARIT has the potential to be used as a 

monitoring tool for ICBs. 
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Another consideration for the ARIT is that the specific version we used may not only 

measure response inhibition and impulsive action. Although it seems appropriate to interpret 

the ARIT vs BART/GT results separately, given the ARIT and BART accounted for 

independent variability in Chapter 5, it is possible that aspects of motor, cognitive and limbic 

networks are present in all three tasks. In the BART and GT, motor components are used to 

make a physical response on each trial, but it is generally accepted that these tasks are related 

to decision making, risk-taking, reward and motivation (Antonelli et al., 2011; Lauriola et al., 

2014; Lejuez et al., 2002) which aligns with activation in dopamine rich MCL regions (Gentili 

et al., 2020; Rao et al., 2008; Rao et al., 2018). Although we interpret measures of the ARIT 

(e.g., SSRT) purely as measures of motor impulse control, results may also be affected by 

reward and motivation, but to a lesser extent. The individual response on each stop trial of the 

ARIT outlines the ability of the participant to inhibit the motor response. But feedback 

indicating a successful or unsuccessful response is presented above the bars after every trial, 

which could influence trial-by-trial performance. This feedback could be seen as a form of 

reward and motivation for the following trial, which has been found in the SST (Leotti & 

Wager, 2010). It was mentioned in Chapter 1 that neural circuitry may be integrated for the 

motor, cognitive and limbic domains (Haber, 2014; Haber et al., 2000). Perhaps it could be the 

case that neural networks and structures activated in response inhibition tasks, such as the 

ARIT, could also be linked to more cognitive aspects of impulse control. For example, in 

response inhibition tasks the inferior frontal gyrus (IFG) (part of the pre-frontal cortex) is 

responsible for the initiation of inhibiting a response (Jahfari et al., 2011; Schaum et al., 2020, 

2021), but it has also been reported that the IFG drives decision making against risk (Fukunaga 

et al., 2012). Moreover, D2 receptor binding in regions of the mesolimbic system, often linked 

with reward, is associated with improved motor inhibitory control (Mann et al., 2021). 

Therefore, when analysing results, it should be considered that the ARIT may target more than 
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just motor impulse control. To investigate this, a number of different versions of the ARIT 

could be produced with varying levels of feedback and reward. Specific data could then be 

analysed, starting with examining variables on a trial-by-trial basis such as SSRT and the time 

to start the following trial after a prior trial success vs target miss. Reward processing measures 

obtained via EEG (Greenhouse & Wessel, 2013) could also be used to assess which neural 

regions are activated and to what extent, during each of these ARIT versions. 

 

To summarise, this body of work provides a narrative of some of the first steps of implementing 

a cumulative genetic score and behavioural impulsivity tasks to investigate factors which could 

be associated with impulsive behaviour, specifically ICBs in PD. Whilst replicating some 

important results already reported to add to the literature, this work also presents several novel 

findings, providing insight for future investigations to perhaps predict which PD patients taking 

DA medication are most likely to develop ICBs. 
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Appendix 1. Occurrence of polymorphisms for dopamine genetic risk score 

DRD1: dopamine receptor D1; DRD2: dopamine receptor D2; DRD3: dopamine receptor D3; 

COMT: catechol-O-methyltransferase. A: adenine; G: guanine; C: cytosine; T: thymine. 

Predict freq: expected mutation frequency in population. Actual freq: observed frequency in 

current population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DRD1 rs4532 DRD2 rs1800497 DRD3 rs6280 COMT rs4680 

 A/A A/G G/G C/C C/T T/T T/T C/T C/C G/G G/A A/A 

Score 0 1 1 1 0 0 0 1 1 0 1 1 

Predict freq 0.29 0.50 0.14 0.68 0.29 0.03 0.33 0.49 0.18 0.28 0.50 0.23 

Actual freq 0.42 0.45 0.13 0.67 0.27 0.06 0.52 0.38 0.10 0.32 0.39 0.29 
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Appendix 2. Univariate binary logistic regression analyses in the DA group. 

 

Dopamine Agonist (DA) Group 

When considering each independent variable in isolation (Table A2), neither DGRS low ( = 

0.313, p = 0.542) or high ( = 0.101, p = 0.791) increased the probability of an ICB in 

comparison to DGRS medium. This was also the case for duration, where there was no increase 

in the probability of an ICB with each day ( = -0.01, p = 0.783). However, being male ( = 

0.738, p = 0.042) and a higher score on the UPDRS I & II ( = 0.058, p < 0.001) each increased 

ICB probability. The odds of an ICB in men was 109% higher compared to women, and the 

probability of an ICB amongst men was 0.68 (p = e0.738/1+e0.738). When a person’s UPDRS 

score increased by 1, they had a 6% increase in the odds of an ICB.  

 

Table A2. Variables associated with impulse control behaviours in the dopamine agonist 

group. 

Univariate analysis     

  SE p value Odds/OR 

DGRS low 0.313     0.514    0.542 1.37 

DGRS high 0.101      0.380    0.791 1.11 

Duration (days) -0.01 0.0003 0.783 0.99 

Gender (male) 0.738 0.364 0.042 2.09 

UPDRS I&II 0.058 0.017 <0.001 1.06 

Response variable: positive score on Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s Disease (yes/no). DGRS: dopamine genetic risk score, UPDRS: Unified 

Parkinson’s Disease Rating Scale. : coefficient, SE: standard error, OR: odds ratio (OR = e). 

Significant values in bold. 
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Appendix 3. Receiver operating characteristic (ROC) curve for clinical/demographic vs 

clinical/demographic and genetic associations with incident ICD behaviour (DA group). 

AUC: area under the curve. 

The AUC for the DA group was 0.70 (95% confidence interval (CI), upper and lower bounds 

= 0.61 to 0.78) for clinical and demographic variables, which increased to 0.72 (95% CI 0.64 

to 0.81) with the addition of the DGRS. However, these values were not significantly different 

(p = 0.326, DeLong’s test). 
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Appendix 4. Receiver operating characteristic (ROC) curve for clinical/demographic vs 

clinical/demographic and genetic associations with incident ICD behaviour (DN group). 

AUC: area under the curve. 

The ROC curves illustrate that the AUC for the DN group multivariate model was 0.62 (95% 

CI 0.57 to 0.75) for clinical and demographic variables, which increased to 0.66 (95% CI 0.53 

to 0.71) with the addition of the DGRS (p = 0.414, DeLong’s test). 
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Appendix 5. Model development and results in the de novo group 

 

De Novo (DN) Group 

During model development, of the selected variables (DGRS, gender, UPDRS I&II, age and 

duration), collinearity was identified between duration and age (p = 0.002), and UPDRS and 

age (p = 0.023), so age was removed from the model. The relationship between each selected 

independent variable and the response variable was initially investigated using univariate 

binary logistic regression analyses.  

 

When considering each independent variable in isolation (Table A5), only a higher 

score on the UPDRS I&II ( = 0.047, p = 0.008) increased ICB probability. When a 

participant’s UPDRS I&II score increased by 1, they had a 5% increase in the odds of an ICB. 

Having neither a low ( = 0.525, p = 0.266) nor high DGRS ( = -0.178, p = 0.633) had an 

increased probability of an ICB in comparison to a medium DGRS. Additionally, for each day 

increase in duration, there was not an increase in the probability of an ICB ( = -0.0003, p = 

0.568). 
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Table A5. Variables associated with impulse control behaviours in the de novo group. 

Univariate analysis     

 Coefficient  SE p value Odds/OR 

DGRS low 0.525 0.471 0.266 1.69 

DGRS high -0.178 0.372 0.633 0.84 

Duration (days) -0.0003 0.0005 0.568 1.00 

Gender (male) -0.407 0.334 0.223 0.67 

UPDRS I&II 0.047 0.018 0.008 1.05 

Response variable: positive score on Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s Disease (yes/no). DGRS: dopamine genetic risk score, UPDRS: Unified 

Parkinson’s Disease Rating Scale. : coefficient, SE: standard error, OR: odds ratio (OR = e). 

Significant values in bold. 

 

Following univariate analysis (Table A5), gender was removed from the multivariate model to 

avoid overparameterization (p = 0.223). 

 

Binary logistic regression function: 

𝑝 =
exp (𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) +  𝛽1𝐷𝐺𝑅𝑆 +  𝛽2𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝛽4UPDRS + 𝛽5DGRSxDuration +  𝛽6DGRSxUPDRS)

1 +  exp (𝛽0(𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) + 𝛽1DGRS +  𝛽2Duration + 𝛽4UPDRS +  𝛽5DGRSxDuration +  𝛽6DGRSxUPDRS)
 

 

The multivariate binary logistic regression model (Table A5.1) approached significance when 

validated against a constant model (p = 0.054). The odds of having an ICB increased by 9% 

with every score increase of 1 on the UPDRS I&II ( = 0.09, p = 0.003, odds ratio = 1.09). 

An increase in UPDRS I&II score increased the odds of an ICB in the medium-range DGRS 

group (odds ratio = e0.09 = 1.09) to a greater extent than for those with a high DGRS (odds 

ratio = e0.09-0.084 = 1.01)), although this did not reach significance (p = 0.053). All remaining 

independent variables and interactions did not change the odds of having an ICB. 
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Table A5.1 Variables associated with impulse control behaviours in the de novo group. 

 Coefficient SE p value Odds/OR 

Intercept -3.247 0.854 <0.001 0.04 

DGRS low 1.955 1.244 0.116 7.07 

DGRS high 0.947 1.045 0.365 2.58 

Duration (days) -0.0005 0.001 0.616 1.00 

UPDRS I&II 0.09 0.03 0.003 1.09 

DGRS low * Duration -0.002     0.002 0.418 1.00 

DGRS high * Duration 0.0008 0.001 0.511 1.00 

DGRS low * UPDRS I&II -0.036 0.048 0.455 0.97 

DGRS high * UPDRS I&II -0.084 0.043 0.053 0.92 

Response variable: positive score on Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s Disease (yes/no). DGRS: dopamine genetic risk score, UPDRS: Unified 

Parkinson’s Disease Rating Scale. : coefficient, SE: standard error, OR: odds ratio (OR = e). 

Significant values in bold. 

 

To our knowledge this is the first study to investigate genetic associations with ICBs in 

de novo PD. Current findings show 13% of the de novo group reported an ICB compared to 

similar studies reporting 17.5% - 18.7% (Antonini et al., 2011; Ryu et al., 2019; Weintraub et 

al., 2013). As expected, this was similar to the 15% reported in the HC group. There was a non-

significant trend for increase in ICBs for de novo patients with a low DGRS compared to those 

with mid-range scores. This trend may be less robust than the relationship found for DA 

patients due to reduced dopamine disruption in the de novo stage. In the context of the inverted-

U hypothesis, less disruption can be conceptualised as a smaller rightward shift for de novo 

patients compared to DA, resulting in less distinct levels of impulse control between DGRS 

levels. 
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UPDRS I&II score was the only factor associated with the incidence of ICBs for de 

novo patients. Each single point increase in UPDRS I&II score resulted in an increase in the 

odds of having an ICB. This relationship has not been previously reported in a de novo cohort, 

only with medicated PD patients (Cormier-Dequaire et al., 2018; Voon, Sohr, et al., 2011). No 

variable in the current study overlaps with previously reported demographic and clinical factors 

associated with ICBs in de novo PD, such as being male, a lower Montreal Cognitive 

Assessment score and a higher Geriatric Depression Scale score (Antonini et al., 2011; Ryu et 

al., 2019; Weintraub et al., 2013). It is clear that a smaller number of factors contribute to ICBs 

during de novo PD compared to when patients are medicated. This is likely due to reduced 

dopamine disruption within the MCL system in the de novo stage of PD before DA 

administration. 
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Appendix 7. Occurrence of polymorphisms for dopamine genetic risk score 

 

 

 

 

 

DRD1: dopamine receptor D1; DRD2: dopamine receptor D2; DRD3: dopamine receptor D3; COMT: catechol-O-

methyltransferase; DAT: dopamine transporter. A: adenine; G: guanine; C: cytosine; T: thymine. Predict freq: expected mutation 

frequency in population. Actual freq: observed frequency in current population. 

 

 

 

 

 

 

 

 

 DRD1 rs4532 DRD2 rs1800497 DRD3 rs6280 COMT rs4680 DAT rs28363170 

 A/A A/G G/G C/C C/T T/T T/T C/T C/C G/G G/A A/A 9/9 9/10 10/10 

Score 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 

Predict freq 0.39 0.47 0.14 0.58 0.36 0.06 0.36 0.48 0.15 0.17 0.49 0.35 0.09 0.42 0.49 

Actual freq 0.36 0.52 0.18 0.56 0.39 0.04 0.36 0.50 0.14 0.18 0.47 0.35 0.10 0.39 0.49 
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Appendix 8. Univariate linear regression analysis of variables associated with the 

frequency of impulse control behaviours. 

ICB (n = 23) no ICB (n = 27)     

  SE p value 95 % CI () 

Average collection pumps -0.005 0.21 .980 [-0.43, 0.42] 

Age 0.18 0.26 .490 [-0.35, 0.71] 

DGRS low -0.04 5.11 .994 [-10.3, 10.2] 

Gender (male) 9.76 4.47 .034 [0.77, 18.8] 

LEDD DA -0.006 0.02 .765 [-0.05, 0.04] 

LEDD Total 0.004 0.006 .513 [-0.008, 0.02] 

Negative Reinforcement 6.92 4.77 .153 [-2.67, 16.5] 

Positive Reinforcement -5.24 5.71 .363 [-16.7, 6.25] 

SSRT stop both 0.03 0.03 .400 [-0.04, 0.10] 

UPDRS I&II 0.88 0.19 <.001 [0.50, 1.27] 

Years on DA 1.40 0.43 .002 [0.52, 2.27] 

Years since diagnosis 1.10 0.32 .001 [0.44, 1.75] 

Response variable: score on Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s 

Disease rating scale. ICB: impulse control behaviour (n: number); DGRS: dopamine genetic 

risk score; LEDD: levodopa equivalent daily dose; DA: Dopamine Agonist; SSRT: stop signal 

reaction time; UPDRS: Unified Parkinson’s Disease Rating Scale; : coefficient, SE: standard 

error, CI: confidence interval. Significant values in bold (p < .05). 
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Appendix 9. Continuous Independent variable collinearity for the Dopamine Agonist group. 

 

Correlation coefficient (p value). LEDD: levodopa equivalent daily dose; DA: dopamine agonist; UPDRS: Unified Parkinson’s 

Disease Rating Scale; Significant values in bold (p < .05).

Coefficient 

Years since 

diagnosis Years on DA DA LEDD UPDRS SSRT both 

Negative 

Reinforcement 

Years since diagnosis 
 

0.85 (<.001) 0.12 (.420) 0.65 (<.001) -0.18 (.224) -0.07 (.647) 

Years on DA 0.85 (<.001) 
 

0.26 (.065) 0.55 (<.001) -0.14 (.330) -0.24 (.099) 

DA LEDD 0.12 (.420) 0.26 (.065) 
 

-0.03 (.837) -0.24 (.090) -0.28 (.051) 

UPDRS 0.65 (<.001) 0.55 (<.001) -0.03 (.837) 
 

0.08 (.559) 0.12 (.408) 

SSRT both -0.18 (.224) -0.14 (.330) -0.24 (.090) 0.08 (.559) 
 

-0.13 (.354) 

Negative Reinforcement -0.07 (.647) -0.24 (.099) -0.28 (.051) 0.12 (.408) -0.13 (.354) 
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Appendix 10. Alternative DGRS Classification 

 

Following all main analyses in Chapter 5, post-hoc analyses investigated the effect on the 

clinical and trait impulsivity models by categorising the DGRS into three groups: DRGS low 

(DGRS 0-2, n = 15), DGRS medium (DGRS 3, n = 17, reference variable) and DGRS high 

(DGRS 4-5, n = 18). This was to provide a more direct comparison with our previous analyses 

in Chapter 3 (Hall et al., 2021) and to investigate the effects of smaller, more precise changes 

in basal dopamine neurotransmission. 

 

Splitting the DGRS into low, medium and high revealed an interaction with time on DA 

medication. 

In the Clinical Impulsivity model (F11,38 = 3.54, p = .002, R2 = 0.535 i.e., large effect size, 

95.3% power, Table A10), participants with a high DGRS exhibited a smaller increase in ICB 

frequency (by 2.12) for each year on DA medication (𝛽 = 0.47, p = .034) compared to 

participants with a medium range DGRS (𝛽 = 2.60). However overall, when not accounting 

for genetics, this model also found that for every year on DA medication, ICB frequency 

increased by 2.60 (𝛽 = 2.60, p < .001). The Trait Impulsivity model was not validated, so results 

are not reported. 
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Table A10 Multiple linear regression analysis of variables associated with the frequency 

of impulse control behaviours. 

ICB (n = 23) no ICB (n = 27)     

  SE p value 95 % CI () 

Intercept -9.28 18.7 .623 [-41.2, 28.6] 

DGRS low -6.58 26.3 .804 [-59.9, 46.8] 

DGRS high -15.9 23.0 .495 [-62.5, 30.8] 

LEDD DA 0.02 0.02 .350 [-0.02, 0.06] 

Negative Reinforcement -1.01 9.07 .912 [-19.4, 17.4] 

SSRT stop both 0.03 0.05 .594 [-0.08, 0.14] 

Years on DA 2.60 0.58 <.001 [1.41, 3.78] 

DGRS low * Negative Reinforcement 26.5 16.3 .112 [-6.44, 59.5] 

DGRS low * SSRT stop both 0.07 0.09 .417 [-0.10, 0.24] 

DGRS low * Years on DA -1.95 1.14 .095 [-4.25, 0.35] 

DGRS high * Negative Reinforcement 16.4 10.2 .118 [-4.38, 37.1] 

DGRS high * SSRT stop both 0.08 0.07 .249 [-0.06, 0.22] 

DGRS high * Years on DA -2.12 0.96 .034 [-4.08, -0.17] 

Response variable: score on Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s 

Disease rating scale. ICB: impulse control behaviour (n: number); DGRS: dopamine genetic 

risk score; LEDD: levodopa equivalent daily dose; DA: Dopamine Agonist; SSRT: stop signal 

reaction time; : coefficient, SE: standard error, CI: confidence interval. Significant values in 

bold (p < .05). 

 

 

This model confirmed previously reported results that time on DA medication is a risk 

factor for ICB development and increasing frequency (Corvol et al., 2018; Giladi et al., 2007). 

Although the DGRS used in Chapter 5, which was split into high vs low, did not interact with 

DA exposure, when utilising the alternative DGRS, split into three ranges, the interaction 

between exposure to DA medication and DGRS high (compared to DGRS medium) was 
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associated with ICB frequency. This interaction showed that those with a high DGRS displayed 

a smaller increase in impulsivity compared to a medium DGRS with increasing time on DA 

medication, whilst no interaction was present for DGRS low. We expected an interaction 

between these variables, but the direction was different to what was expected and previously 

reported (Chapter 3, (Hall et al., 2021)). However, there were some key differences in design 

between the experiments in the two chapters which could explain the disparity between results. 

Firstly, the sample size for the current experiment was much smaller than the cohort in our 

previous work (Hall et al., 2021), which reduces the number and spread of DGRS results and 

ICB frequency scores. Moreover, the current chapter includes DAT compared to the four-gene 

score that was necessary from the PPMI data in Chapter 3. Another key difference is that the 

measure of the incidence of ICBs in Chapter 3 was derived from the QUIP-S with a much 

shorter range of scores, compared to the current QUIP-RS which reflects ICB severity 

(Marques et al., 2019) rather than just incidence.  

 

It is also possible to speculate about theoretical reasons for the different result in this 

chapter. The relationship between impulse control, dopamine neurotransmission and the DGRS 

is presented in an inverted-U (Figure 3.2, Chapter 3). This inverted-U theory is presented in 

Chapter 3, and informs hypotheses in Chapters 5 and 6, where a lower DGRS is associated 

with worse impulsivity (left side of inverted-U), which can improve (move towards apex of 

curve) with DA medication. The opposite is indicated for a high DGRS where a better baseline 

impulsivity (right side of inverted-U) worsens (moves away from apex of curve) with DA 

medication. As there was no individual effect of the DGRS within Chapter 5, we are not 

informed of the baseline position of each DGRS group on the inverted-U, therefore we cannot 

determine the movement of each DGRS group along the curve with time on DA medication 

results. Whilst this may be true, it could be possible that our interpretation of the DGRS for our 
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participants and where they are situated on the inverted-U curve is incorrect. Only further 

investigation of the DGRS and behavioural impulsivity tasks, where there is a greater sample 

size and prospective screening of DGRS groups, will help to confirm or disprove this inverted-

U theory. 
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Figure A11. Montreal Cognitive Assessment question-and-answer sheet.



 241 

 

 Appendix 12. Occurrence of polymorphisms for dopamine genetic risk score 

 

 

 

 

 

DRD1: dopamine receptor D1; DRD2: dopamine receptor D2; DRD3: dopamine receptor D3; COMT: catechol-O-methyltransferase; DAT: 

dopamine transporter. A: adenine; G: guanine; C: cytosine; T: thymine. Predict freq: expected mutation frequency in population. Actual freq: 

observed frequency in current population. 

 

 

 

 

 

 

 DRD1 rs4532 DRD2 rs1800497 DRD3 rs6280 COMT rs4680 DAT rs28363170 

 A/A A/G G/G C/C C/T T/T T/T C/T C/C G/G G/A A/A 9/9 9/10 10/10 

Score 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 

Predict freq 0.40 0.46 0.14 0.80 0.19 0.01 0.31 0.49 0.20 0.28 0.5 0.25 0.04 0.33 0.62 

Actual freq 0.37 0.53 0.11 0.84 0.11 0.05 0.26 0.58 0.26 0.16 0.74 0.11 0.05 0.32 0.63 
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Appendix 13. Food Diary prior to blood samples 

 

Name: ______________________________ 

Participant ID (experimenter use only): ________ 

Date of visit 1: ____ /____ /________  Time of visit 1: ____ : ____  

Date of visit 2: ____ /____ /________  Time of visit 2: ____ : ____ 

Date of visit 3: ____ /____ /________  Time of visit 3: ____ : ____ 

 

Thank you again for agreeing to participate in this part of our study. Please complete the 

applicable information above about the three visits you will make to the University of 

Birmingham in order to give three blood samples. Please refer to the participant information 

sheet for information on the blood sampling and contact  for any 

further information or queries. 

 

Please complete the food diary below for the 24 hours before each blood sample. Please 

remember to: i) avoid foods high in monoamine content for 24 hours prior to blood collection 

(please see information on page 2 ii) keep your diet consistent in the 24 hours prior to each 

session, assessed by the food diary, and iii) arrive for the session after an over-night fast (only 

consume water in the morning before blood sample i.e. don’t have breakfast). You can resume 

your normal diet after the session. 

 

 

 Breakfast Lunch Dinner Snacks 

24 

hours 

before 

visit 1 

 

 

 

 

 

 

   

24 

hours 

before 

visit 2 

 

 

 

 

 

 

   

24 

hours 

before 

visit 3 
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Foods high in monoamine content to avoid: 

• strong or aged cheeses like cheddar, blue cheese, or gorgonzola 

• cured or smoked meats or fish, such as sausage or salami 

• beers on tap or home-brewed 

• some overripe fruits 

• certain beans, such as fava or broad beans 

• some sauces or gravies like soy sauce, teriyaki sauce, or bouillon-based sauces 

• pickled products like sauerkraut 

• sourdough breads 

• fermented soy products like miso soup, bean curd, or tempeh; some forms of tofu are 

also fermented and should be avoided such as “stinky tofu” 

• avocados 

• anchovies 

• raspberries 

• wines 

 

 

 

 




