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ABSTRACT 

Unforeseen events from external influences such as major weather events, and internal 

causes such as infrastructure failures disrupt daily dense train operations. Such 

disruptions can quickly spread over the network and cause planned crew schedules to 

become infeasible to follow. Being one of the important steps in recovery of the railway 

service following a disruption, if crew rescheduling is not properly considered, it can 

jeopardise the return to stable service. This thesis mainly focuses on railway crew 

rescheduling for disruption management.  

 

This thesis studies real-time railway crew rescheduling in theory and practice. By 

carefully examining the current literature on railway crew rescheduling, this thesis 

presents a detailed analysis and comparison of the current methods. This thesis provides 

models and methods for the crew rescheduling problems caused by two distinct types 

of disruptions: minor disruptions and significant disruptions.  Sensitivity tests are 

conducted on several parameters to explore the impact on solutions. Meanwhile, this 

thesis considers that optimisation tools for solving the railway crew rescheduling 

problem cannot be a standalone optimisation tool for controllers to use. If no solution 

and no further information is given by an optimisation tool, time will be wasted. If no 

feedback is given by an optimisation tool, there will be no resolution. When such 

situations occur, controllers usually do not know what has happened inside an 

optimisation tool and how to get potential solutions. A feedback mechanism is proposed 

to output the reasons for not producing solutions and to adjust parameter values used 
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in the crew rescheduling problems to give a good chance of generating results with 

revised values.  

 

A timetable rescheduling model is proposed to model the impact on train services of a 

disruption and predict the recovery period. The recovery period measures how quickly 

a timetable can return to its normal level. A disruption neighbourhood is introduced as 

an idea, which is used to identify the drivers that should be considered in the crew 

rescheduling model for significant disruptions. It is characterised by the drivers who are 

included in the model and the recovery period. Algorithms are proposed to find the 

drivers that should be considered in a disruption neighbourhood to obtain good 

solutions. Several mathematical techniques and methods are proposed to speed up the 

solution time for the crew rescheduling problem for significant disruptions.  

 

Further, the integrated rolling stock and crew rescheduling problem is still an immature 

research area. This thesis presents detailed formulations to model the problem and 

explores this problem with retiming possibilities. It can provide mutually feasible 

rescheduling solutions between rolling stock rescheduling and crew rescheduling. 

Several goals that relate to rolling stock and crew during disruption management are 

considered, analysed and further grouped into different objectives. Two kinds of 

multicriteria decision making (MCDM) methods are used to produce a set of optimal 

solutions for the integrated problem.  
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CHAPTER ONE: INTRODUCTION  
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Trains in today’s railways are running at high capacity on the network to meet demand. 

Punctual and stable train services are sought by both train operators and passengers. 

However, unforeseen events from external influences such as major weather events, 

and internal causes such as infrastructure failures and rolling stock breakdown challenge 

dense train operations. Such disruptions can quickly spread over the network due to the 

strong interdependencies in a railway network. Depending on the scale of a disruption, 

timetable, rolling stock and crew may need to be recovered from a disrupted status as 

quickly as possible. Rescheduling timetable, rolling stock and crew usually are carried 

out sequentially and iteratively. A mutually compatible solution among all three steps 

needs to be found. Theoretically, the adjustments among the three steps can go back 

and forth for several rounds until a mutually compatible solution appears. Being one of 

the important steps in recovery of the railway service following a disruption, crew 

rescheduling is often neglected. However, if it is not properly considered when the 

timetable is revised, it can jeopardise the return to stable service.   

 

This thesis mainly focuses on railway crew rescheduling for disruption management. 

Furthermore, integrated crew rescheduling with rolling stock rescheduling is also 

explored.  Various kinds of crew work on trains, including drivers, train conductors, train 

managers and catering staff. In the context of this thesis, the terms drivers and crew are 

interchangeable since the model and approach to reschedule drivers can be easily 

modified and used for other kinds of train crew. This thesis limits the discussion to train 

drivers.  Timetable, rolling stock and crew recovery are three closely linked steps in a 

disruption management process. A recovery solution from any step should comply with 
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the other two. The terminologies used in this thesis are used in Great Britain and case 

studies are from Great Britain. Two types of trains are running on the same railways in 

Great Britain: freight trains and passenger trains. This thesis mainly focuses on the 

operations of passenger trains.   

 

In the remainder of this chapter, Section 1.1 is the background. The motivation for this 

research is given in Section 1.2 and the research questions addressed are proposed in 

Section 1.3 and Section 1.4 is an overview of this thesis.  

1.1. Background 

The basis of passenger railway operations is the timetable which describes a set of train 

services. Each service is scheduled to run from one terminal station to another terminal 

station and call at a number of intermediate stops at specific times or pass other 

significant locations at specific times. To provide the train services, resources such as 

crew and rolling stock are needed. Detailed schedules are set for crew and rolling stock 

to perform daily train services. However, due to the inevitable occurrence of unplanned 

events, train services often cannot be provided on time as set out in a timetable. This 

further leads to the schedules set for crew and rolling stock become infeasible to follow.  

 

Following the definition of disruption in the airline industry (Clausen, Larsen, Larsen, & 

Rezanova, 2010), in this thesis, disruption is defined as an event or a series of events 

that renders timetables and the planned schedules for rolling stock and crew infeasible. 
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Initiating event(s) cause a disrupted situation, which may be referred to as a disruption. 

When a disruption happens, a corresponding rescheduling process may need to be 

initiated depending on the scale of an incident.  

 

A crew member’s schedule is called a crew diagram, which is a list of activities starting 

with signing on and ending with signing off at a crew depot. The typical activities of a 

driver’s diagram include driving tasks, breaks, taxi trips or boarding another train as a 

passenger to move from one place to another. After a disruption, the planned diagram 

for a driver may become impossible to follow due to cancelled or delayed trains. In this 

case, the diagram becomes infeasible. This infeasible diagram needs to be revised to a 

feasible diagram, called a recovery diagram, to be assigned to the driver. A special class 

of driver is spare drivers who are reserved at major stations. Spare drivers have an 

empty diagram which only contains signing on and signing off at a depot. They are 

reserved for covering tasks for other drivers when there is a disruption. Thus, the 

availability of spare drivers is important in disruption management. The number of spare 

drivers who are on duty at a major station on a day is limited due to cost. 

 

For a relatively large incident, railway disruption management mainly contains three 

sub-problems: timetable, rolling stock and crew recovery. Usually, these three 

subproblems are solved in a sequential manner. The recovery period is the time length 

for recovery of the railway services after a disruption. The length of the recovery period 

is predicted and is important in solving the three subproblems after a disruption. After 
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the recovery period, rolling stock and crew should be recovered back to their planned 

diagrams and perform tasks in the normal timetable. Using optimisation tools to solve 

railway rescheduling problems has been a rising topic in the operations research 

community. A large body of literature of applying operations research methods to solve 

timetable rescheduling problems exists. However, the latter two problems, rolling stock 

rescheduling and crew rescheduling lack the same level of attention.  

 

For countries like Great Britain, the railway infrastructure provider is separated from 

railway services operators. They both have control rooms where a group of controllers 

are located. Controllers are responsible for managing disruption and recover train 

services as soon as possible after a disruption. Different railway service operators are 

assumed to have similar control arrangements and roles in a control room. Usually, a 

control manager is in charge of the control room. Train running managers cover the 

operation of the operator’s train services and are responsible for communicating with 

the infrastructure provider about the incident. Rolling stock controllers are responsible 

for rescheduling rolling stock. Crew rescheduling controllers are responsible for 

rescheduling crew and communicating with the crew about their changed diagrams. 

Sometimes the railway network of a train service operator is further split into parts and 

each crew controller is in charge of the crew in a part of the network. The detailed 

disruption management process is explained in Section 2.3.  

1.2. Motivation for the Research 
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Although being a crucial step in railway disruption management, railway crew 

rescheduling in Great Britain is currently conducted manually. Crew controllers are 

under huge time pressure to reschedule crew after a disruption happens. The crew 

rescheduling problem is hard to solve for the following reasons: 

 

(1) The size of the crew rescheduling problem. The size of the overall problem is 

directly decided by the number of drivers and driving tasks that need to be 

considered in the problem. It is straightforward that the directly affected drivers 

whose diagrams become infeasible should be included in the problem. However, 

other drivers should also be included so their feasible diagrams can be divided 

up and used in the new set of recovery diagrams. These driving tasks will be 

mixed with driving tasks from infeasible diagrams to be used to generate new 

feasible diagrams for all drivers considered in a problem. The number of driving 

tasks considered in a problem is also affected by the rescheduling period, during 

which the crew are rescheduled and after which the crew are recovered back to 

work on their planned diagrams. Since driving tasks are collected by the rule that 

they should commence within the rescheduling period, a longer recovery will 

lead to more driving tasks to be considered in a crew rescheduling problem. A 

crew rescheduling problem involving a large number of drivers and driving tasks 

may take a long time to solve. 

(2) Fatigue rules need to be considered. Due to working safety requirements ( (Rail 

Safety and Standard Board, 2012), (Office of Rail and Road, 2013)), drivers’ 
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planned diagrams are carefully designed following labour rules, which within one 

shift are mainly shown by two aspects: (a) after a certain period of continuous 

driving, a driver needs to have a meal break; (b) the number of hours worked 

during a day is limited. There are also rules for crew rosters which may span 

consecutive days. For example, there is a minimum rest period of 12 hours 

between signing off from one shift to signing onto the next shift. During the 

rescheduling process, drivers may be rescheduled to work on different trains and 

fatigue rules need to be observed at all times. Guaranteeing that each driver can 

still have enough rest according to the regulations during the rescheduling 

process is difficult to achieve manually in pressured conditions. 

(3) Retiming. As previously explained, crew rescheduling is usually the last 

important step in railway disruption management. It takes the rescheduling 

results of timetable recovery and rolling stock recovery as input. However, it may 

be necessary to cycle back and alter a former decision. For example, crew 

rescheduling may have a solution or better solution if some tasks are retimed for 

drivers to cover them in the rescheduled timetable. Retiming a task may lead to 

more tasks needing to be retimed if they are carried out subsequently by the 

same rolling stock. It is also necessary to consider if the rolling stock still has 

enough turnaround time at a terminal station if the last task is retimed. It is very 

challenging to consider retiming tasks and their potential impact on 

rescheduling. 

(4) Robust solutions. A solution can fail in implementation due to not considering 

the real rescheduling environment or if a driver cannot be contacted in time. If a 
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solution fails in implementation, the solution is not robust enough. To have a 

robust solution, some constraints need to be considered. For example, the 

connection time needs to be considered so that drivers have enough time to 

change between two different activities, for example, two driving tasks on 

different trains. A driver not having enough time to change from one train to 

another could lead to their next train being delayed and further disruptions. This 

shows the solution is not robust enough and has implementation risk. 

Communication time needs to be considered for drivers to be contacted to 

receive their changed diagrams. Also, the solution needs to be robust since there 

is uncertainty about the accuracy of the available information when the 

rescheduling is made. When a disruption happens, the length of disruption is 

uncertain. Controllers only have information about the current disruption status 

(which may be fully up to date) and must estimate the time at which the 

disruption cause will be resolved. However, it may actually take a longer time 

than predicted for a disruption to be resolved and new information about the 

disruption may become known to controllers at any time. Thus, a strict solution 

may not be able to be implemented when new information about the disruption 

is known.  

(5) Evaluating solutions. There may be several different solutions to reschedule crew 

after their diagrams become infeasible due to disruption. Each solution has 

implications for later operations. It is non-trivial, or even impossible, for a crew 

controller to evaluate each solution and find the most suitable one quickly. In 

the crew rescheduling process, consideration needs to be given to finding a 
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relatively low-cost solution in terms of cancellation and train delay penalties, 

overtime compensation, taxi fares, maintaining a low impact on passenger 

satisfaction, reducing further rescheduling, etc. One of the main challenges in 

rescheduling is to quickly propose a solution that achieves a good balance among 

these considerations.  

 

To carefully consider each item discussed above and calculate the quality of a solution 

in a limited time, controllers are facing more and more challenges in today’s railways 

with networks running at almost full capacity. A more reliable and quick decision-making 

system which can assist controllers to reliably find feasible and good enough solutions 

considering the balance between many factors and satisfying various constraints is 

needed. This is the first main motivation for this PhD research. 

 

Second, a variety of parameters are used in solving the crew rescheduling problem. The 

initial values of the parameters are set by controllers. When parameters are set in a way 

that there is no feasible solution for rescheduling crew, controllers may be left uncertain 

about why, reducing trust in using a crew rescheduling decision support tool. Thus, it is 

necessary to understand how essential parameters affect crew rescheduling solutions 

and a feedback mechanism should be added to provide reasons for not being able to 

provide a solution. Controllers can adjust parameters according to feedback information 

and obtain potential solutions. 
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Third, generating more than one solution to a disruption may be desirable. The reasons 

for multiple solutions are threefold. (1) Many criteria can be used to evaluate a solution. 

It rarely happens that one solution is the best among all criteria; (2) A model for the 

crew rescheduling problem may not be able to include all the constraints that exist at 

the instant when a rescheduling process is initiated. There are various reasons that a 

model may not include all the constraints. First, a model could have very complex 

constraint structures after considering all constraints and make it impossible to solve in 

real-time. Second, some constraints cannot be foreseen. For example, a driver refuses 

to be rescheduled because they want to sign off on time at their depot for personal 

reasons. Thus, in reality controllers who have the most accurate information about the 

disruption should be able to use their knowledge and experience to choose the most 

appropriate solution. (3) One solution may fail in implementation due to lack of 

robustness or be rejected by drivers, thus other feasible solutions should be preserved 

as backup plans. Therefore, a model which can provide multiple optimal solutions 

should be studied. 

 

Fourth, the common rescheduling strategies used by controllers in reality do not just 

involve crew. Sometimes, these rescheduling strategies involve both rolling stock and 

crew together. It needs an integrated rolling stock and crew model to give such 

solutions. When rescheduling rolling stock and crew in sequence, if the crew 

rescheduling solution cannot cover all the tasks that rolling stock covers, then a different 

rolling stock scheduling solution is needed. The adjustments between rolling stock and 

crew can go back and forth until a mutually feasible solution appears.  Also, solving an 
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integrated problem rather than two sub-problems can give no worse solutions and the 

solution is naturally feasible between the two sub problems.  There is very limited 

literature in this area and the current research does not address the integrated rolling 

stock and crew problem fully. Thus, exploring a suitable model for the integrated rolling 

stock and crew rescheduling problem is one of the purposes of the thesis.  

1.3. Research Questions 

To fulfil the purposes of the thesis, the following questions about real-time railway crew 

rescheduling are posed: 

 

1. How can crew rescheduling problems be categorised and how does crew 

rescheduling fit into the railway disruption management process? 

2. How can the crew rescheduling problem be modelled in each case using the 

categories determined in answer to question 1? How can various real-world 

constraints be set in the models, for example, fatigue rules, connection time and 

communication time? Which factors should be considered in evaluating the 

quality of crew rescheduling solutions and how can each factor be quantified? 

3. How do parameters in the crew rescheduling problem affect the solutions and 

how can a feedback mechanism to adjust parameter values when there is no 

solution be set up? 

4. How can the impact on train services of a disruption be modelled and the 

recovery period be predicted? The impact on different drivers from a particular 
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disruption varies.  Some drivers are directly affected by the disruption and others 

are not. It is not necessarily enough to find a good solution by just rescheduling 

directly affected drivers. Which drivers’ schedules should be considered for 

rescheduling following a disruption? 

5. The crew rescheduling problem can take a long time to solve due to its problem 

size. Which techniques can be used to speed up the process of solving the crew 

rescheduling problem?  

6. How can the integrated rolling stock and crew rescheduling problem with 

retiming possibilities be modelled and solved? How can multiple solutions be 

obtained in solving the integrated rolling stock and crew problem?  

1.4. Overview 

The remainder of the thesis is organised as follows. Chapter 2 describes the planning 

and rescheduling process of passenger railway operations and the organisations 

involved in the two processes. Disruptions are categorised into three levels in this 

section. Two levels of disruptions are addressed in the thesis: minor disruptions and 

significant disruptions. Literature on railway crew planning and rescheduling is also 

reviewed in this chapter. Chapter 3 addresses the model and method, depth-first search 

crew recovery (DFSCR), for solving crew rescheduling during minor disruptions. Chapter 

4 is about crew rescheduling during significant disruptions. The problem is formulated 

using integer linear programming and an efficient heuristic algorithm is proposed. 

Chapter 5 studies the integrated rolling stock and crew rescheduling problem with 
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retiming possibilities. The model formulated for the problem has been successfully 

applied to several single delay and multiple delay scenarios. Chapter 6 is the conclusion.  
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CHAPTER TWO: PASSENGER RAILWAY 

OPERATIONS  
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The operations of the passenger railway are through a complicated system involving 

several parties with different responsibilities. This chapter lays out the background to 

passenger railway operations. The two most important railway parties: Infrastructure 

Manager (IM) and Train Operating Companies (TOCs) are first discussed in Section 2.1. 

The discussion is based on the situation in Great Britain. The main railway planning 

processes: timetable, rolling stock and crew planning are described against the four 

planning levels: strategic level, tactical level, operational level, and short-term level in 

Section 2.2. Section 2.3 is about railway disruption management. Commonly used 

rescheduling strategies in timetable, rolling stock and crew rescheduling are discussed. 

Section 2.4 and 2.5 review the existing publications in railway crew scheduling and 

rescheduling problems, respectively. This chapter answers research question 1 posed in 

Section 1.3. The main railway terminology used in this thesis is given first ( (American 

Public Transportation Association, 2019) and (Nielsen L. K., 2011)). 

Railway Terminology 

Rolling stock: Rolling stock refers to railway vehicles, including both powered and 

unpowered vehicles. The typical rolling stock includes locomotives, powered and 

unpowered cars, wagons, multiple units, etc. A locomotive is a rail transport vehicle that 

provides the motive power.  

Rolling stock unit: A unit is a self-propelled railway vehicle consisting of a fixed number 

of carriages. A multiple unit (MU) is a self-propelled entity composed of one or more 

carriages joined together, which can be coupled to another MU to form a composition 

to allow one driver to control. 
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Rolling stock composition: Rolling stock units can be combined with each other to form 

compositions. A rolling stock composition describes the number of each rolling stock 

unit, and in which order they appear in a train. Rolling stock compositions are frequently 

adapted during daily operations by uncoupling units from or coupling units to trains.  

Train: A train is a  railway vehicle or series of connected railway vehicles that is used or 

intended to be used in a train service.  

Train service: A train service is a regularly scheduled transit service from a specified 

origin to a specified destination usually with several intermediate scheduled stops. A 

train service is usually associated with an identifying code. In GB, this code is a four-

character code called the train reporting number or headcode. 

Timetable: A timetable specifies the timings and stopping patterns of trains and other 

empty railway vehicles.  

Train path: A train path is the infrastructure reserved to run a train between two places 

over a given period. 

Relief station: Due to the facilities in a railway station some stations are relief stations 

where drivers can be scheduled to change trains. 

Trips: For the planning process, the train services of a timetable are divided into smaller 

components called trips. The division into trips is performed in such a way that the 

assignment of a driver to a train cannot be changed during a trip. A service may contain 

one or more trips. 

Diagram: A crew member’s schedule is called a crew diagram, which is a list of activities 

starting with sign on and ending with sign off at a crew depot. The typical activities of a 
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driver’s diagram include sign on and off, driving tasks, breaks, taxi trips or boarding 

another train as a passenger to move from one place to another. There are also some 

activities arising from rolling stock diagramming including disposal, attachment, 

mobilisation, etc. A diagram of a rolling stock unit is a series of tasks performed by the 

unit on a day. 

Driving task: A driving task is a special class of activity, which is specified between two 

major stations and has attributes: headcode (the GB term to identify a train service), 

and route and rolling stock knowledge requirements, indicating the required 

competencies of drivers for the specific route and rolling stock. A driving task usually 

consists of one trip, but sometimes it consists of more trips from one train service.  

Recovery period: In this work, a recovery period is the length of time from rescheduling 

begins following disruption to the time when a normal timetable can be restored and 

rescheduling ends. 

Disruption period: A disruption period is the time length when full infrastructure access 

is limited. The length of disruption period has uncertainty. If the disruption is caused by 

a technical fault, it can be evaluated as the expected time required to fix it. If the 

disruption is caused by unpredictable reason, say bad weather or missing crew, the 

disruption duration may need to be estimated by controllers. 

2.1. Great Britain Railway Companies and Their Responsibilities 

The smooth running of Britain’s railway relies on several parties’ cooperation. Typical 

industry organisations including Network Rail, Train operating companies (TOCs), 

Freight Operating company (FOCs) and rolling stock leasing companies (ROSCOs). TOCs 
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run passenger rail services, leasing and managing stations (over 2,500) from Network 

Rail. Freight operating companies (FOCs) use the railway network to run trains that 

transport goods. ROSCOs own most of the coaches, locomotives and freight wagons 

which they lease to TOCs and FOCs, which together are called Railway Undertakings 

(RUs). In this Section 2.1, the railway infrastructure manager and railway operators in 

Great Britain are introduced.     

2.1.1. Infrastructure Management by Network Rail 

Like other European countries, Great Britain separates the infrastructure manager and 

train/freight operating companies. The government funds Network Rail (NR) to provide 

railway infrastructure which must satisfy a set of requirements like capacity and 

reliability, etc. 

 

Network Rail (NR) is the owner, operator and infrastructure manager of Britain’s main 

railway network. Great British Railways (GBR) shall replace NR in this respect from 2024. 

GBR also has other responsibilities, for example, contracting of passenger train services, 

the setting of fares and the collection of fare revenue, etc., see (Department for 

Transport, 2021). NR has the following four duties:   

 

NR owns, repairs and develops the railway infrastructure in England, Scotland and Wales, 

including 20,000 miles of track, 30,000 bridges, tunnels and viaducts and the thousands 

of signals, level crossings and stations (biggest and busiest stations: 11 in London and 20 

outside London).  NR has designated the geographical area covered by railway network 
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into five regions. Each region is further divided into routes. NR establishes and maintains 

a route business for each route area which takes primary responsibility for the part of 

the network and stations within the route area.  

 

NR is responsible for understanding and shaping the future of Britain’s railway through 

delivery of long-terms plans. A strategic network planning team is established and 

maintained to investigate the long-term railway contributions to national and regional 

economic growth and social well-being. The team is also responsible for understanding 

the railway capabilities and how it delivers railway passenger and freight services. It 

investigates the likely changes to passenger demands, patterns of train services and to 

the railway in future. Strategic advice is provided to railway funders to understand the 

complexities of the railway and to make informed investment decisions that could 

require potential changes in timetable, rolling stock and crew.  

 

NR is responsible for setting the timetable. Various types of trains run on the railway 

network: metro, regional, intercity and high-speed trains. They differ from each other in 

journey time, maximum speed, etc. The timetable planning needs to balance the 

demands of stopping, non-stopping passenger and freight train services as well as taking 

lots of factors into account to keep the railway safe. In countries that separate railway 

infrastructure management from railway operations, the timetable is a collaborative 

effort between infrastructure provider and train/freight operating companies. 
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NR is responsible for directing service recovery. Control centres are set based on the 

principal routes to operate trains within the routes. In each control centre, there are a 

number of distinct roles which are responsible for collecting incident information, 

dealing with the incident itself, recovery timetable as quickly as possible and providing 

customer with consistent delay information. The detailed description can be seen in 

(BCRRE, NetworkRail, RFI, & TV, 2014). According to (RSSB, 2020), a NR manager 

oversees the disruption management for a specific NR route. NR controllers mainly 

interfaces with signallers to manage network capacity utilisation and service alterations.    

2.1.2. Railway Operators in Great Britain 

For train services, the government invites TOCs to tender. The TOCs bid for franchises 

based on minimum service requirements set out by the government. TOCs also liaise 

with NR to confirm that sufficient capacity is available to support the planned service. 

The passenger rail franchising system was created as part of the privatisation of British 

Rail in 1994. Railway franchises are awarded by the UK government’s Department for 

Transport (DfT) to train operating companies through a process of competitive 

tendering. Franchises usually last from 7 to 10 years and cover a defined geographic area 

or service type. Over the years, the number of franchises in Great Britain reduced 

through a series of mergers. The current passenger rail franchising system will be 

replaced by a concession-based system in the government’s latest plan to transform the 

railways by introducing GBR to replace NR in Great Britain (Department for Transport, 

2021).  
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TOCs have existed since the privatisation of the network under the Railways Act 1993. 

Most TOCs hold franchises let by the DfT while a small number of open-access operators 

hold licenses to provide supplementary services on some routes. Some operators have 

been taken over by a government-owned operator of last resort, which operates a 

railway franchise on behalf of the government when a TOC is no longer able to do so. 

TOCs in Great Britain have been changing through years. Some TOCs have ceased to 

exist for reasons like withdrawal of the franchise, expired franchise, bankruptcy and 

merger. Many of the TOCs are in fact part of larger companies which operate multiple 

franchises.  

 

TOCs pay NR to access tracks to run services and lease trains from ROSCOs. The 

proportion by which each cost element makes up an operator’s total cost is shown in 

Figure 1. There are 19 TOCs included in Figure 1: c2c, Chiltern Railways, CrossCountry, 

East Coast, East Midlands Trains, Abellio Greater Anglia, First Great Western, Northern, 

Southeastern, Southern, South West Trains, First Capital Connect, First TransPennine 

Express, Arriva Trains Wales, Virgin Trains West Coast, London Midland, London 

Overground, Merseyrail and First ScotRail. Staff costs accounts most in the total cost, 

followed by network rail charges or rolling stock charges, and energy fees occupy the 

least total cost.  
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Figure 1 Total running cost per TOC (Office of Rail and Road, 2015)  

2.2. Railway Planning 

Railway planning is the scheduling of train movements and the allocation of resources 

to the timetable. Following (Huisman, Kroon, Lentink, & Vromans, 2005), different 

planning problems of a passenger railway operator can be classified under four 

hierarchies based on time horizon: strategic level, tactical level, operational level and 

short-term level. In this section, the three main planning problems are discussed. They 

relate to the planning of the timetable, the rolling stock and the crew. Strategic planning 

can start decades before the train operation. There are three main planning problems 

at the strategic level: line planning, rolling stock management and crew planning.  

2.2.1. Timetable Planning 

Timetable is the foundation of railway operations. The four levels of timetable planning 

are described below.  

Line Planning at Strategic Level 



 

23 

 

A line is a direct railway connection between two terminal stations that is operated with 

a certain frequency and with a certain train type (Huisman, Kroon, Lentink, & Vromans, 

2005). At the strategic level, lines are decided based on the estimated passenger and 

freight demand. The type and frequency of trains on each line are decided. Three train 

types may be categorised depending on stopping patterns. Intercity trains stop only at 

large stations. Interregional trains stop at a number of medium-sized stations and 

regional trains stop at nearly all stations they pass.  

Timetable Planning at Tactical Level 

At the tactical level, the timetable is designed using the train lines designed at the 

strategic level. Many European countries operate a cyclic timetable, a timetable in which 

the trains can be grouped into series such that trains in each series have the same routes 

and stop stations and the difference between the departure time of two successive 

trains is one cycle time (usually one hour), see (Cacchiani, 2008). Most cyclic timetable 

models are based on the Periodic Event Scheduling Problem, initially put forward by 

(Serafini & Ukovich, 1989). A general form is used to formulate running time, dwell time, 

passenger connection time and headway time constraints etc., between two events 

(arrival events and departure events for trains).  

 

In GB, Long Term Planning (LTP) is at tactical level; this phase starts 16 months before 

the timetable’s first operational day. Each train and freight operating company develops 

the timetable that they would like to run in their area 14 months before the timetable 
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operational day and Network Rail is responsible for coordinating and validating their 

timetables and developing a national timetable (NetworkRail, 2022). 6 months in 

advance of the timetable operational day, a national base timetable is provided to 

operators to enable them to start planning rolling stock and crew.  

Timetable Planning at Operational Level 

In GB, the term used to describe timetable planning at operational level is Short Term 

Planning (STP). 4 months in advance of operational day, operators can apply for 

readjustments to their timetable taking into account things like special events or 

weekend engineering work and NR need to work through these modifications to ensure 

there is no conflict and that trains can run smoothly. At the operational level, the tactical 

timetable is updated by adding new trains, modifying departure or arrival time. 

Eventually, 3 months in advance of timetable operations, a timetable for each week is 

finalised and the railway industry publishes the timetable for passengers. Also, a 

detailed timetable platform assignment plan is finalised (Narayanaswami & Rangaraj, 

2012).  

Timetable Planning at Short-term Level 

In Great Britain, part of Very Short-Term Planning (VSTP) corresponds to timetable 

planning at the short-term level. VSTP covers the need to change timetables within 48 

hours of operation and on the day of operation. In the before operation case, VSTP 

includes applying previously unplanned train paths in particular for freight trains and 

empty coaching stock. On the operational day, VSTP requires developing a basic plan for 

rapid implementation in response to a disruption ahead, for example, speed limitations 
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in extreme weather. In the latter case, on operational day, the need to change timetable 

is explained in Section 2.3, Railway Disruption Management.  

2.2.2. Rolling Stock Planning 

Rolling stock is one of the resources that needs to be allocated to operate a timetable 

smoothly. Rolling stock planning at the four-time levels is discussed below.  

Rolling Stock Planning at Strategic Level 

Rolling stock management focuses on procuring and allocating the required rolling stock 

capacity.  Relative aspects need to be considered when making a main decision on rolling 

stock capacity include the total demand for passenger railway services, the frequency of 

trains at peak and off-peak times, first-class and second-class train services. Decisions 

that need to be made include selection of rolling stock unit types, ordering new rolling 

stock units and rolling stock maintenance strategies.  

Rolling Stock Management at Tactical Level 

For rolling stock management, rolling stock allocations to the trains at peak time for a 

standard day of a week are decided at the tactical level. The reason behind this is that if 

it is possible to allocate rolling stock to trains during peak time, then the allocation will 

be appropriate during the other times of the day (see (Huisman, Kroon, Lentink, & 

Vromans, 2005)). To determine rolling stock allocations to the trains at peak time, one 

first needs to decide which types of rolling stock and how many units of each type need 

to be allocated to each line.  
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The goal of the rolling stock management at the tactical level is to match and provide 

the required rolling stock capacity for trains at peak time for each line. A rolling stock 

circulation for a standard day in a week is determined first using the rolling stock 

allocations to the trains at peak time. Then, modifications are made so that the rolling 

stock units ending at a station the previous evening can provide enough rolling stock 

units for train operations next morning. That is, a general week of rolling stock 

circulation has been determined. Conflicts may arise among rolling stock belonging to 

different lines at a station due to limited infrastructure capacity. These conflicts are 

resolved by local planners in shunting plans at each station.  

Rolling Stock Management at Operational Level and Short-term Level 

At operational level, modified timetables due to national events could destroy the 

feasibility of the planned rolling stock circulation. Thus, alterations to rolling stock plans 

are made afterward timetable modification. This is done in such a way that the 

perturbations to shunting plans are as small as possible. 

 

Similar to the operational level, alternations to rolling stock schedules are made 

following the changes in timetable at the short-term level. Also, maintenance routing of 

rolling stock is planned at the short-term planning level. 

2.2.3. Crew Planning 

Similar to rolling stock, crew is another essential resource for running of a railway 

timetable.  
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Crew Planning at Strategic Level 

Crew planning at strategic planning level deals with the location and capacity of depots 

and available number of drivers and conductors at each depot. Depots may need to 

open or close depending on the major changes introduced in the line planning. The 

required and available capacities of each crew depot are evaluated, and certain amounts 

of work can be shifted among depots to achieve a match between required and available 

capacities in the long term. To modify the capacity of a depot, major decisions like 

employing new crew, training new crew until they are fully operational and moving crew 

among depots are made.   

Crew Planning at Tactical Level 

The goal of crew planning at tactical level is to construct crew schedules. It is usually 

solved in two steps: crew scheduling and crew rostering. The crew scheduling problem 

is also called the diagram generation and selection problem. A diagram is a sequence of 

activities (e.g., driving task) which should start and end at the same depot. A driving task 

is defined as a trip between two relief stations assigned to a driver during which the 

driver cannot have a break or change trains. Crew scheduling generates anonymous 

daily working schedules (i.e., diagrams) which cover all required activities for the train 

services scheduled in the timetable for a defined period, e.g., a single workday. Station 

or depot-based activities (e.g., required rest breaks, signing off) are also included in crew 

diagrams. The problem is to select an optimal set of diagrams which can cover all the 

tasks from the unit diagrams, and which has the minimal cost. In the diagram generation 

step, feasible diagrams should be generated. In the diagram selection phase, diagrams 
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should be chosen to minimise the operational cost, and to cover all the tasks from the 

timetable. 

 

The crew rostering problem Is to use the diagrams generated from the crew scheduling 

step and then form them into a roster. A roster is sequences of diagrams with rest 

periods in between, usually overnight.  (Sodhi & Norris, 2004) see creating a roster as 

two steps: creating a rest-day pattern and assigning specific diagrams to this pattern. A 

rest-day pattern consists of a sequence of weeks in which every day is assigned to a 

specific diagram type or rest day. The second step is to assign specific diagrams to this 

rest-day pattern. Usually, the roster is cyclically assigned to drivers. The length of the 

roster is the same as the number of train drivers in a depot. Crew rostering combines 

these diagrams into weekly or monthly sequences, which are subsequently assigned to 

individual crew members. 

Crew Planning at Operational Level and Short-term Level 

Crew schedules are adjusted for specific demands for particular weeks due to the 

changes of the timetable. Reasons for such demands can be national events, planned 

infrastructure maintenance work, and so on.  

2.2.4. Summary 

Management and co-ordination of railway operations is complicated since every single 

operational activity requires the compliance of several types of resources, 

infrastructure, vehicle and personnel, etc. The interdependencies among these 

resources are very complex. (Schiewe, 2020) presents a number of integrated railway 
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planning models including integrating timetable and vehicle scheduling. The 

experimental results show that using the integrated timetable and vehicle scheduling 

model, the trade-offs between passenger travel time and operational costs can be 

found.  

2.3. Railway Disruption Management 

Railway disruption management faces some performance challenges in GB. In the 2020 

Spring National Rail Passenger Survey (TransportFocus, 2020), 49% passengers state 

that their greatest cause of dissatisfaction is how train operators deal with delays.  

Levels and Phases in Disruption Management 

(RSSB, 2020) sets out the levels of disruption classification. Minor disruption sees delay 

and congestion, often without a specific incident occurring. Significant disruption sees a 

loss of or restricted access to parts of the railway network due to an incident, affecting 

the delivery of a normal timetable. Severe disruption occurs when incidents significantly 

restrict the use of the railway network and or last longer than one day (severe weather). 

The railway disruption management process is split into five phases: Phase 1 is 

identification, where the disruption is first identified and quantified, leading to the 

assessment of the level of the disruption and response. Phase 2a is selection, where the 

appropriate plans are selected and agreed. Phase 2b is deployment, where the plans are 

communicated and implemented. Phase 3 is operation, where the temporary service 

alterations are in place. Phase 4 is recovery, where the plans are removed, and service 

is gradually restored.  

Types of Disruption Plans and Rescheduling Process 
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Different types of plans are prepared to handle different levels of disruptions. Train-by-

train plans are created to standardise the rescheduling process concerning changes to 

individual trains or groups of trains for minor disruptions. Contingency plan templates 

for limited scenarios are made for significant disruptions. Very short-term planning, like 

short-term alterations are considered and prepared for typical severe disruption, like 

extreme weather.  

 

Depending on the level of disruption, two processes are used. A Train by Train 

Management Process is used for minor disruptions with an associated set of train by 

train plans to be used as guidance. Train by train plans standardise the decision-making 

process regarding changes to individual trains or groups of trains. A Service Recovery 

Framework Process is used for significant disruptions and the immediate effect of severe 

disruptions with an associated set of contingency plans.  

 

An optimised process for Train by Train Management is discussed and agreed by all key 

stakeholders in the IM and RUs. Train by train management is mainly conducted by the 

controllers from the RU who actually runs the train affected by the disruption. The 

controllers initially identify the disruption and assess its level. Then, the controllers 

select a train by train plan and agree it with the IM controllers. Then the plan is deployed. 

The disruption is monitored and if the disruption is determined no longer as minor in 

the future, a Service Recovery Framework Process is initiated.  If delays are no longer 

occurring, the full service is on time. 
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Similarly, an optimised process for Service Recovery Framework for all RUs and IM 

operating in the designated area is discussed and agreed by all key stakeholders in the 

IM and RUs. An integrated part of the Service Recovery Framework process is the huddle, 

which describes a meeting of key stakeholders from all RUs and the IM for the area 

affected by the disruption. The result of a huddle is to trigger selection and deployment, 

operation and recovery in the Service Recovery Framework Process.  

2.3.1. Service Recovery Framework Process  

Service recovery is the process by which a normal timetable is restored, or a timetable 

for a degraded model is operated following disruption. The objective of train service 

recovery usually is to minimise overall disruption to passengers while returning to a 

normal timetable or an agreed degraded timetable (full timetable restored) as quickly 

as it is possible in practice, see (Mann & Panter, 2013) . This process is frequently 

substantially manual and implemented by controllers. In Europe and Japan, train service 

recovery is typically conducted by negotiations between two distinct entities: 

infrastructure manager and railway undertakings (see (Cacchiani, et al., 2014)  and 

(Williams Rail Review, 2019)).  
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Figure 2 Train service recovery (Mann & Panter, 2013) 

 

Figure 2 shows the number of operating trains and infrastructure status in a service 

recovery. Following a disruption, railway operation is at a restricted access state in which 

full infrastructure capacity cannot be provided to enable running of the normal 

timetable. A contingency plan, which is a pre-planned timetable that can still be used 

given the nature of the disruption and the restricted network, may be implemented. 

After the contingent operation, there will be a time during which the infrastructure for 

the normal timetable is available and the running of a timetable can be gradually 

restored. 

Optimised Service Recovery Framework Process  
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In phase 1 (identification), a disruption is identified. The NR manager collects initial 

information from the disruption site and decides the level of disruption.  

 

In phase 2 (selection and deployment), the NR manager holds a dialogue with affected 

parties. In this dialogue, they will consider the impact of the incident, discuss preliminary 

estimates about when normal infrastructure may be available, agree on contingency 

operation, arrange further conferences if necessary and declare a Service Recovery 

Commencement Time (SRCT). Component plans will be issued within parties and parties 

will commence timetable service recovery arrangements.  

 

In phase 3 (operation), route controllers from RUs are responsible for rescheduling 

rolling stock and crew controllers are responsible for rescheduling crew. Then route 

controllers and crew controllers discuss with each other and propose a feasible solution 

which works both for rolling stock and crew. This solution will be provided to controllers 

in NR for agreement. If agreement is reached, controllers in NR and RUs will commence 

implementation of this solution.  

 

In phase 4 (recovery), the full infrastructure access is available. The IM controller 

summarises current train performance and recommends any further changes to 

contingency plan operations. Further huddles are held if necessary. In the final step, a 

full timetable is restored, and dispensation provision applied by each RU and post-

restoration review is instigated as appropriate by NR.  
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2.3.2. Timetable Rescheduling 

The timetable is built with running time supplement and buffer time to increase the 

robustness. For minor disturbances, one can use this timetable slack by delaying trains, 

reducing running times, reducing headways, or reducing dwell time at the terminal 

station. For extensive re-scheduling, there are several methods to adjust the timetable 

during disruption management: a) Train overtaking: for example, breaking the 

predetermined order of lines and letting the fast train leave first, b) Inserting an on-time 

train in an intermediate station, c) Reroute: cancelling a train from departure, or 

skipping stations along the route or shortening the routes of the trains or cancelling the 

whole line.  

 

How to revise the timetable to recover the services in a way that it minimises the 

disruption impact in both time and space horizons? A good solution should prevent 

disruption from propagating through the system and also recover train services quickly. 

There are some trade-off decisions to make, cancelling some services to make way for 

others, delaying some trains to let others through, etc. In practice, a revised timetable 

is designed to return to the planned timetable. The reason behind this is that the 

planned timetable is highly optimised and feasible.  

2.3.3. Rolling Stock Rescheduling 

This aim of rolling stock rescheduling is to provide capacity to the trains in a revised 

timetable. Due to disruption, some rolling stock units may end at the wrong positions. 

(Nielsen L. K., 2011) categorised the available options to reschedule rolling stock into 
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three groups: changing shunting operations, adapting turning patterns and 

repositioning train units, which are described below.  

 

Changing shunting operations. A planned shunting operation is made at each station at 

the connection between the rolling stock composition of an arrival trip and that of a 

departure trip. However, a different composition may be assigned to the arrival train 

that does not contain the right type of train unit that can be assigned to the departure 

trip, which may render the planned shunting operation of the composition invalid. A 

rescheduling strategy is to introduce a composition change at a connection where no 

composition change was planned. A newly introduced shunting operation may require 

different available tracks and yard capacity for the movements of the train units. The 

changes need to be communicated and agreed with local dispatchers.  

Adapting turning patterns at terminal station. A planned turning pattern means that 

each incoming train is matched with an outgoing train. Applying a planned turning 

pattern can ease the task of local planning by repeating turning schemes. Locally 

changing the turning pattern by matching an incoming to a different outgoing train can 

require fewer shunting operations than strictly keeping the planned turning pattern in 

the rescheduling process. Changing a turning pattern may cause a train to depart from 

a different platform, which needs to be communicated with the controllers responsible 

for platform assignment.   

Repositioning of rolling stock. Moving rolling stock units to another station can be an 

option if another station urgently needs them. During the day, trains run on the network 
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at close to full capacity. It could be difficult to add an extra train. However, at night, the 

number of each rolling stock unit types may not match the required number for the next 

day’s operations due to disruptions during the day. Repositioning rolling stock is a 

frequent rescheduling strategy to tackle rolling stock off-balance at night.   

 

There are other factors that controllers need to consider when they reschedule rolling 

stock. For example, the rolling stock which needs to undergo a maintenance check in a 

forthcoming couple of days should be monitored and controllers should make sure that 

these rolling stock units can get to the maintenance centre on time. 

2.3.4. Crew Rescheduling 

A disruption can render the planned crew diagrams infeasible by causing drivers on the 

affected trains to miss the start of one of their scheduled driving tasks. In this case, the 

planned diagram for the affected driver may become infeasible to follow. Thus, a 

recovery diagram needs to be assigned to the driver. When rescheduling crew during 

disruptions, it is preferable to reschedule as little crew as possible because 

implementation risks rise with the number of crew that need to be rescheduled. Also, 

after disruption, the crew should be recovered back to their planned diagrams since the 

planned diagram is already fully optimised and agreed by drivers.  For small disruptions, 

it is preferable to solve it by swapping tasks between drivers rather than using the spare 

drivers who are reserved for big disruptions. If no driver can be found to cover a task, 

then this task needs to be cancelled, which is an undesirable solution since then the 

rolling stock circulation is disrupted and the timetable should also change.   
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Recovery Diagram 

A recovery diagram is a revised diagram adjusted from a resource’s planned diagram. 

All recovery diagrams assigned to all affected drivers together should ideally achieve an 

optimum depending on the objective set by a user, for example, to cover as many driving 

tasks as possible in an adjusted timetable with as few as possible changes to planned 

resource diagrams. 

 

There are some rules about constructing a recovery diagram. A recovery diagram may 

not last more than a certain amount of time longer than the planned diagram. A 

recovery diagram should end at the same depot as in the planned diagram. A recovery 

diagram should consider breaks in compliance with the labour rules. A recovery diagram 

needs to have a certain amount of transfer time when a crew member transfers from 

one train to another.  A recovery diagram should only contain driving tasks for which the 

crew member has corresponding route and traction knowledge. 

 

In this work, focus is on minor disruptions and significant disruptions. Therefore, two 

methods of building recovery diagrams are proposed for the two kinds of disruptions, 

respectively.  

2.3.5. Analysis of Crew Diagrams 

To help readers understand crew diagrams better, in Section 2.3.5, some analysis of 

crew diagrams is presented. The three important characteristics of crew diagrams: the 
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length of a diagram, continuous driving time and time required to change trains at a 

station are studied.  

 

Figure 3 shows a day’s work length of drivers of a TOC in the UK. There are 208 drivers 

on duty on a day, where depot A has the largest number of drivers, 60. The minimum, 

average and maximum work lengths are 5 hours, 7 hours 40 minutes and 10 hours, 

respectively. 

 

Figure 3 Number of diagrammed drivers and their work lengths in each depot 

 

Among 208 drivers, 201 drivers have one meal break and 7 have two meal breaks in 

their diagrams. For drivers with one meal chance, Figure 4 shows the driving time before 

a meal break starts and after a meal break ends at different stations. The longest driving 

time for a meal break to appear is around 4 hours and 40 minutes and 4 hours and 10 

minutes is the longest driving time after a meal to sign off. 
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Figure 4 Total driving time before and after a meal break 

 

It takes some time for drivers to change from one train to another at a relief station. 

Drivers need to completely stop the previous train and prepare the next train to depart. 

Change time depends on the scale of stations, platforms and trains, etc. We can get a 

general idea from studying the time difference for two successive driving tasks which 

belong to two trains on drivers’ diagrams. Figure 5 shows various change times at 

different relief stations. The minimum change time, 7 minutes, happens at Station 2. 

The longest could be as long as 98 minutes, which is unlikely to reflect the real required 

change time. Since the statistics include idle time, the required times would be much 

smaller. 

 

Figure 5 Change time at different stations 
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2.4. Literature Review on Crew Planning 

The origin of the crew scheduling problem (CSP) in transportation can be found in airline 

industry works from the 1950s and 1960s. (Arabeyre, Fearnley, Steiger, & Teather, 1969) 

surveyed different approaches studied by some airlines in the 1960s to try to optimise 

the allocation of crew to flights. Using operations research methods, solving the CSP 

gained more attention in the 1980s and 1990s with the quickly advancing computer 

power. In the 1990s, the privatisation of railway operations in Europe required train 

operators to look for more productive and efficient crew scheduling solutions, which led 

to the rising interest of using computer power and mathematical algorithms in the 

railway industry for its potential of cost saving. In general, the CSP in the transportation 

industry: airline, bus, mass transit and railway etc., shares a wide range of similarities. 

In this work, we focus on research about the CSP in the railway industry. 

Crew Scheduling Problem at Strategic and Tactical Level 

Few works study crew scheduling at a strategic level. (Derigs, Malcherek, & Schäfer, 

2010) present a system used in Germany that can analyse how working regulations will 

affect crew planning. (Sahin & Yuceoglu, 2011) consider a model to decide how many 

crew members are required to perform tasks in a given planning horizon under the 

working regulations.  

 

Most of the existing research focuses on the tactical level, generating diagrams and 

forming diagrams into rosters optimally. (Caprara, Fischetti, Toth, Vigo, & Guida, 1997) 

define the crew management at tactical level as building the work schedules of crew 
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needed to cover a planned timetable and its unit diagrams. The overall crew 

management problem is considered in two phases: crew scheduling and crew rostering. 

The main objective of crew management is to minimise the number of crew needed to 

perform all the daily occurrences of the trips in the timetable in the given period. Other 

objectives of the crew scheduling problem usually consider schedule efficiency (working 

time, idle time, break time, etc.), robustness (reducing train changes, adding buffer time, 

etc.) and employee satisfaction (safety, fairness and the popularity of the schedule). 

Models for the Crew Scheduling Problem 

Both crew scheduling and crew rostering problems require finding minimal cost 

sequences through given items. For crew scheduling, items like trips are sequenced to 

diagrams and for crew rostering, items like diagrams are sequenced to rosters. There 

are two basic integer linear program models to model both problems: generic set 

covering/partitioning problem (SCP/SPP) (e.g. (Caprara, Fischetti, Toth, Vigo, & Guida, 

1997)) and generic minimal network flow problem (NFP) (e.g. (Vaidyanathan, Jha, & 

Ahuja, 2007)). Both formulation approaches in the literature use a space-time network 

to represent the problem. (Suyabatmaz & Şahin, 2015) used both formulations to solve 

a regional planning problem to minimise the number of crew members. They concluded 

that both formulations are capable of generating feasible solutions. Yet, the former 

formulation performs better not only in solution quality but also in computational time. 

SCP/SPP is a path-based approach which relies on identifying feasible paths (following 

labour and other scheduling rules) on a graph. NFP is an arc-based approach. Being a 

heavily restricted optimisation problem, the SCP/SPP formulation for the CSP usually has 

many fewer constraints compared to the NFP for the same CSP (Banihashemi & Haghani, 
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2001). The most commonly used formulation of the CSP is the set covering problem or 

its variations and the variables in the models represent feasible paths on a time-space 

network. The secondly widely used formulation is the network flow problem where 

variables represent arcs on a time-space network. Other customised formulations are 

also used by some researchers to satisfy a great variety of train operators’ conditions. 

Here the set covering formulation is given.  

 

Let 𝑇  be the set of trips and  𝐽  the set of diagrams. Moreover, let 𝑐𝑗  be the cost 

associated with diagram 𝑗 . Binary variable 𝑥𝑗  takes 1  if diagram 𝑗  is taken and 0 

otherwise. The coefficient matrix 𝐴 means if trip 𝑖 covered by diagram 𝑗, that is, 𝑎𝑖𝑗 is 1 

if diagram 𝑗 covers trip 𝑖, 0 otherwise. The model for the CSP can be formulated as:  

 

Minimise ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽  

𝑠. 𝑡. ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 1   ∀ 𝑖 ∈ 𝑇

𝑗∈𝐽

 

𝑥𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽 

 

The objective is to minimise the costs of selected diagrams. The model is subject to the 

constraint: each trip 𝑖 should be covered at least once. This problem is usually solved in 

two steps. The first step is generating a large enough number of diagrams. The second 

step is selecting a subset of diagrams which cover each trip at least once while achieving 

a minimum total diagram cost.  
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Methods for Solving the Crew Scheduling Problem 

The crew scheduling problem is large with respect to the number of trips but also the 

explosive number of feasible diagrams constructed by trips. Additionally, many integer 

programming problems are known to be NP-hard and they require high computational 

effort. (Heil, Hoffmann, & Buschera, 2020) categorised the methods used in the 

literature since 2000 into four categories: integer programming methods, heuristics, 

column generation and meta-heuristics. (1) Integer programming methods: a 

straightforward method to solve the CSP is to enumerate all feasible diagrams and find 

the optimal combination of feasible diagrams using a commercial solver. However, such 

a method can only solve instances for small size and the performance is limited by the 

commercial solver. (2) Heuristics: based on the experience of integer programming, 

some heuristic rules are used to speed up the methods used to solve the CSP. Lagrangian 

relaxation of constraints in the CSP is especially widely used. A Lagrangian multiplier 

produced by optimising a Lagrangian relaxation problem can be used in directing how 

to choose a better feasible solution with respect to the objective of the CSP. Moreover, 

a fixing scheme is also frequently used in heuristics to reduce variable numbers in a 

model of the CSP. (3) Column generation: this is a powerful mathematical technique to 

solve large-scale optimisation problems. Feasible diagrams are not enumerated once 

but generated iteratively, which largely reduces the problem size. A master problem is 

usually solved to update the optimum and a pricing problem is solved to generate 

promising diagrams to be added into the master problem in the next iteration. (4) Meta-

heuristics: meta-heuristics are problem-independent techniques, which do not take 

advantage of any specific form of the problem and hope to get a global optimum. 
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Genetic algorithms, ant colony optimisation and tabu search are commonly seen in 

literature.   

Crew Scheduling Software 

Railway crew scheduling applications are of interest to national governments or train 

operators. (Rezanova, 2009) listed some of the important railway applications for 

different companies. TRACS II in Great Britain (see (Kwan A. , Kwan, Parker, & Wren, 

1996), (Kwan A. S., Kwan, Parker, & Wren, 1999), (Wren & Kwan, 1999), (Wren, et al., 

2003), et al.), the Italian Railway Company (see (Caprara, Fischetti, Toth, Vigo, & Guida, 

1997), (Caprara, Fischetti, Guida, Toth, & Vigo, 1999), (Caprara, Fischetti, & Toth, 1999) 

et al.), TURNI in Netherlands Railways (see (Kroon & Fischetti, 2000), (Kroon & Fischetti, 

2001), et al.), Harmony Crew Duty Rostering in the Netherlands, Resource Management 

Solution - Rail Crew for Germany, etc. among others. We refer readers to (Rezanova, 

2009) for each application and relevant literature.  

2.5. Literature Review on Crew Rescheduling 

These days, the focus of research is moving from scheduling to rescheduling crew in real-

time. Similar to the CSP, crew rescheduling can be mathematically modelled as an 

optimisation problem of high complexity requiring a combination of heuristics and 

combinatorial search methods. The crew rescheduling problem has two kinds of 

constraints. (1) Covering task constraints: all driving tasks should be covered by at least 

one driver with the required route and rolling stock knowledge. A task can be covered 

by more than one driver. Then other drivers will be regarded as passengers. (2) Assigning 

feasible recovery diagram constraints: all drivers need to be assigned a feasible recovery 
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diagram. It is natural to use binary variables to write these two types of constraints. If a 

task is covered (or a feasible recovery diagram is assigned to a driver), a binary variable 

should take one, or zero otherwise. For some drivers directly affected by a disruption, 

their planned recovery diagrams become infeasible due to the disruption. These 

infeasible planned diagrams need to be repaired to feasible diagrams. For drivers that 

are not directly affected by a disruption, their diagram is changed to another feasible 

recovery diagram because the necessary swapping of driving tasks is used to find 

solutions. For other drivers, their recovery diagram can be the same as their planned 

diagrams. 

 

To the best of our knowledge, (Walker, Snowdon, & Ryan, 2005) were the first to study 

the railway driver rescheduling problem. They first built a model to generate timetable 

and crew diagrams from scratch. Then the model is modified to be used to solve an 

integrated timetable and crew rescheduling problem. The model is solved by branch and 

bound and tested on a small-scale network with 3 crew depots. 

 

(Huisman, 2007) considered the driver rescheduling problem after changes are made in 

the underlying timetable due to infrastructure construction work. The duration of the 

infrastructure construction work is known, and the problem is solved prior to operation. 

He used an integer programming model solved by a heuristic method based on 

Lagrangian relaxation with column generation. To reduce the number of feasible 

diagrams, Huisman proposed the term “look like” diagrams, which start and end in the 
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same crew depot and the start (end) times of the diagrams should not be much different 

from those of the original diagrams. 

 

The current state-of-the-art for crew rescheduling for significant disruptions are from 

(Rezanova, 2009) and (Potthoff, 2010). The approach of (Rezanova, 2009) is based on 

branch and price and depth-first search (BnPCR). It first solves the linearised integer 

programming model and then the result from the linearised model is used to find an 

integer solution with a branch and bound technique. Overall, the branch and price 

method can be seen as using column generation at each node of the branch and bound 

tree. The branching strategy is the constraint branching proposed by (Ryan & Foster, 

1981), which can guarantee an integer solution by forcing or forbidding a driver to 

perform a task. Rezanova introduced the terms recovery period and disruption 

neighbourhood to limit the size of the problem, which is similar to the idea of a “core 

problem” of (Potthoff, 2010). (Sato & Fukumura, 2010) used an algorithm framework 

similar to that of (Rezanova, 2009) to solve freight train driver rescheduling in disruption 

situations. However, they used Dijkstra’s algorithm to find a candidate duty as a shortest 

path problem without considering resource constraints such as meal breaks. 

 

(Potthoff, 2010) considered a real-time crew rescheduling problem as an integer pro- 

gramming problem when a disruption happens during operations. It uses a combined 

subgradient method to solve the Lagrangian dual problem and a greedy algorithm 

(GSLR) to choose the minimal cost recovery diagram for each driver. To generate a new 
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recovery diagram by the pricing problem, dual values from the subgradient method are 

required. He proposed the term “core problem” to include the drivers whose diagrams 

need to be recovered. For tasks that are not covered in the core problem, a new core 

problem is built and explored to solve the problem again. (Veelenturf, Potthoff, 

Huisman, & Kroon, 2012)  suggested railway crew rescheduling with retiming. The 

methodology is based on (Potthoff, 2010)’s core problem and heuristic method. An 

uncovered tasks list is maintained. In each iteration, an uncovered task is taken from 

this list and the core problem is expanded by adding retiming options. Another idea from 

(Potthoff, 2010) is the crew rescheduling under uncertainty. He considered quasi robust 

solution in the case of track blockage. The computation time for this model can be 4.5 

times more than the basic model. 

 

Besides using integer programming, constraint programming (CP) has been successfully 

used to solve complex combinatorial problems. Compared to integer programming 

having linear equations and inequalities, constraint programming has arithmetic 

constraints. CP is mainly solved by constraint satisfaction methods, such as backtracking, 

constraint propagation and local search. Backtracking is a general algorithm that finds 

solutions to constraint satisfaction problems. It examines partial candidate solutions, 

abandons candidates that cannot be developed to a global solution that is consistent 

and incrementally builds candidates for globally consistent solutions. The idea behind 

constraint propagation is to make the feasible region tighter so that backtracking search 

can commit to fewer candidate solutions that will be able to develop to a solution, see 

(Bessiere, 2006). Usually a conflict detection (CD) and conflict resolution (CR) approach 
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is proposed to find solutions satisfying constraints in constraint programming problems. 

CD and CR have been applied to a lot of research in real-time timetable adjustments. 

(Chiang, Hau, Ming Chiang, Yun Kob, & Ho Hsieh, 1998) considered a knowledge-based 

system to solve railway scheduling using heuristic rules to solve conflicts in time order. 

(Oetting, Rittner, & Fey, 2013) developed a synchronal algorithm (KEKL) for real-time 

conflict detection and conflict resolution. As a decision-support approach, KEKL can 

provide multiple solutions for controllers to choose from and it is non-discriminatory 

and traceable in order to take the binding EU regulations into account. (Wegele & 

Schnieder, 2004) proposed a genetic algorithm for automated dispatching of train 

operations. Its optimisation based dispatching can be seen as a cyclic improvements 

process which cycles between independent conflict chains with trains involved in the 

conflict and solving conflicts. (Jacobs, 2004) proposed a new train-regulating procedure 

ASDIS that couples methods from computer-aided train-path management with an 

asynchronous approach. It allows an end-to-end line from planning to operation to be 

established. (D'Ariano, 2008) designed and implemented a decision support system 

called ROMA of which a conflict detection procedure checks whether the timetable is 

deadlock- free and detects potential conflicts in a given prediction period. A conflict 

resolution procedure computes a conflict-free timetable in real-time, compatible with 

the status of the network. A similar principle to CD and CR has also been used in solving 

crew rescheduling problems. It uses a repair-based approach that can be regarded as a 

kind of local search technique to repair infeasible crew diagrams. 
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(Abbink, 2014) designed a prototype system for real-time railway driver rescheduling by 

actor-agent techniques. The rescheduling principle is task-exchange. A driver-agent who 

is directly affected by the disruption acts as a team leader. A team leader starts a task 

exchange process to solve the conflicts in their diagram. Compared to the work of 

(Rezanova, 2009) and (Potthoff, 2010), which have an overall mechanism of including 

affected and possibly affected drivers in one problem, the solution of this prototype 

system is generated sequentially for each team. 

 

(Verhaegh, Huisman, Fioole, & Vera, 2017), using an idea similar to (Abbink, 2014), 

created a heuristic algorithm DFID for crew rescheduling during minor disruptions. The 

idea is to insert an unplanned task into the previously feasible crew diagrams. The 

solution process can be seen as a depth-first iterative deepening search in a tree, with 

every node representing a crew schedule with unplanned tasks. The size of this tree is 

restricted by setting the maximum number of changed diagrams and the maximum 

number of unplanned tasks and fathoming branches that are not promising. The 

algorithm proposed by (Verhaegh, Huisman, Fioole, & Vera, 2017) inserts an uncovered 

task into the diagram without considering the feasibility of the connection with the 

commencing activity and terminating activity first. The infeasibility of the connection is 

further dealt with by adding passenger trips to the diagram. DFID from (Verhaegh, 

Huisman, Fioole, & Vera, 2017), BnPCR from (Rezanova, 2009) and GSLR from (Potthoff, 

2010) are the three cutting-edge methods for crew rescheduling. A further comparison 

among them is made in Section 3.2.4. In general, BnPCR and GSLR are designed to 
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provide a solution for significant disruptions in an overall mechanism. DFID addresses 

crew rescheduling for minor disruptions and solves the problem in a sequence manner.   

 

None of the literature mentioned above addresses in detail the effects of parameters 

on the crew rescheduling problem. However, some parameters are crucial in finding a 

robust solution that can be applied in practice. For example, if communication time is 

not considered in a method, the solution may fail in implementation because a 

controller does not have enough time to communicate with drivers about their changed 

diagrams. Second, some rescheduling actions like work overtime and rescheduling a 

meal break are commonly used in reality.  However, these actions and their effects on 

solutions are not fully explored in the current literature. Third, a feedback mechanism 

has not yet been considered: when there is no solution provided by an optimisation tool, 

no method exists to provide other useful information that may lead to a practical 

solution. As explained in Section 1.2, a feedback mechanism can be essential in 

obtaining potential solutions, which is further proved by the experiments in this thesis. 

Fourth, solving shortest path problems with resource constraints (SPPRC) is widely used 

to construct recovery diagrams in solving the crew rescheduling problem. However, 

SPPRC is an NP-hard problem, and it may take a long time to solve it to optimality. In the 

current literature, indications on how to solve SPPRC or how to speed up its solution 

process are not clearly explained. Fifth, studying an integrated crew and rolling stock 

rescheduling problem and obtaining multiple solutions are not comprehensively 

covered by the current literature. This research explores the integrated rolling stock and 

crew rescheduling problem and uses multicriteria methods to obtain multiple solutions.  
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CHAPTER THREE: CREW RESCHEDULING 

FOR MINOR DISRUPTIONS  
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In this chapter, the crew rescheduling problem for minor disruptions is addressed. This 

chapter answers the research questions 2 and 3 posed in Section 1.3. The modelling 

process of the problem and method to solve the problem is presented. The conditions 

to choose drivers to be rescheduled and detailed constraints like meal break 

requirements, working hours in the model are also explained. An objective considers 

four factors is proposed. Moreover, the impact of parameter values on solutions is 

explored and answered. A feedback mechanism is introduced to improve the solvability 

of the method.  

 

As described in Section 2.3, minor disruption involves delay and congestion, often 

without a specific incident occurring. When minor disruption happens, the Train by Train 

Management process is initiated, which is mainly conducted by the controllers from the 

TOC who actually runs the train(s) affected by the disruption. First, the controllers 

identify the disruption and assess the level of it. Second, the controllers select a Train 

by Train Plan and agree it with the IM controllers. Then the plan is deployed. The 

disruption is monitored and if the disruption is expected to increase in severity a Service 

Recovery Framework Process is initiated.    

 

A minor disruption can render the planned crew diagrams infeasible by causing drivers 

on affected trains to miss the start of one of their scheduled tasks, called an uncovered 

task in this situation. When a disruption happens, it can cause two types of crew 

diagram-related conflicts. One is a spatial conflict, where a driver cannot be at the origin 
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of the next train-based activity of their diagram due to cancelled trains. Another conflict 

type is temporal, where a driver cannot begin their next train-based activity on time due 

to delayed trains, that is the train is not there for them to operate. In both cases, a crew 

controller can remove one or more successive train-based activities from a diagram that 

is infeasible due to disruption to make it feasible. The removed train-based activities, 

(i.e., uncovered tasks) will be tackled by the approach outlined in this chapter. 

 

To request a driver to work overtime, delay a scheduled meal break and even delay a 

task by a few minutes is common to obtain an overall good solution in real practice 

which complies with regulations (Office of Rail and Road, 2013). Hence, as a decision 

support tool, an ideal method should be able to relax or remove some of the constraints, 

such as fixed departure and arrival times of train services in the timetable or the 

impossibility of overtime work. Also, an ideal method should be able to produce multiple 

solutions and allow crew controllers to choose the best practical solution. Therefore, a 

flexible method is proposed to solve the crew rescheduling problem for minor 

disruptions based on depth-first search and heuristic rules (DFSCR). DFSCR considers 

drivers working overtime, rescheduling breaks if the initial break opportunity is affected 

and delaying driving tasks within a given bound to obtain multiple solutions for crew 

controllers to choose from. It considers parameters such as connection time between 

activities (the time needed to change physical position to start a new activity), extra time 

for taxi journeys being required during heavy road traffic and maximum daily work 

duration to mimic the real rescheduling environment. 
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The third research question posed in Section 1.3, is to evaluate how the parameters in 

the crew rescheduling problem affect solutions and how to set a feedback mechanism 

to adjust parameter values when there is no solution. This question is addressed in this 

chapter. (Christian & Hanno, 2019) described some reasons why project collaborations 

between academics and industry may fail to implement a mathematical optimisation-

based solution or product. For example, considering important parameters such as 

working hours and overtime, setting a high value for these parameters may not be 

acceptable and setting them at a low level may not reflect the flexibility of the real 

situation. In addition, a practically feasible solution that is often used in reality may not 

be obtainable from the optimisation model because some constraints are strictly set in 

the optimisation model. Therefore, it is better to leave some parameters to the user to 

adjust. However, due to lack of experience or detailed understanding of an optimisation 

decision support tool, some combinations of parameters set by the user may cause the 

model to give no solutions or unreasonable solutions. A sensitivity test for this study is 

conducted on five parameters to explore the effects and bounds that give reasonable 

solutions. DFSCR has a feedback mechanism to generate feedback from one model run, 

analyse the reasons for not having a solution and initiate the corresponding relaxation 

to adjust the parameters to rerun the model automatically.  

 

The structure of the remainder of the chapter is as follows. Section 3.1 outlines a 

method (DFSCR) to solve the crew rescheduling problem for minor disruptions. In 

Section 3.2 DFSCR is applied to a realistic scenario and the outcomes are compared 

against existing state-of-the-art methods. Section 3.2 also describes the results of 
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sensitivity tests on parameters used in DFSCR. Section 3.3 reports the results of testing 

382 scenarios using DFSCR and its feedback mechanism. Section 3.4 is the conclusion. 

3.1. Method: Depth-First Search Crew Recovery Method (DFSCR) 

The DFSCR approach is inspired by the method of (Verhaegh, Huisman, Fioole, & Vera, 

2017) using the idea of swapping tasks among a list of drivers to solve an uncovered 

task. In their work, the feasibility of inserting an uncovered task into a diagram is 

considered later in the algorithm. The present work addresses the feasibility of inserting 

an uncovered task into a diagram at the beginning of the algorithm to reduce the 

computational requirements. This is achieved by introducing the ideas of a commencing 

activity (the activity immediately before an uncovered task) and a terminating activity 

(the activity directly after an uncovered task). Finding a driver to cover the uncovered 

task means being able to find suitable commencing and terminating activities in a 

driver’s diagram. By finding the commencing activity and terminating activity on a 

driver’s diagram for the uncovered task, the DFSCR approach can filter drivers and find 

feasible drivers that have a higher possibility to cover the uncovered task. Finding a 

solution is a process of adjustment where inserting a task into a diagram might result in 

further uncovered tasks. In the algorithm ApplyDFID shown in (Verhaegh, Huisman, 

Fioole, & Vera, 2017), it is unclear if there are still tasks left uncovered when a solution 

is saved. Thus, a solution with conflicts may be saved but such a solution may not solve 

the rescheduling problem in practice. To address this problem, an uncovered task list is 

maintained in DFSCR, and solutions are saved when the list is empty to guarantee there 

are no tasks left uncovered. Moreover, some other important constraints are 
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considered in DFSCR. The communication time to contact drivers is considered, as the 

possibility of delaying a driving task and to specify some rules that allow a planned break 

to be rescheduled if it is affected by inserting an uncovered task. Enough communication 

time ensures that drivers can receive the changes in their diagrams and retiming is useful 

when there are no other solutions. Sensitivity tests are conducted to explore the effects 

of parameter values on solutions. Such sensitivity tests can be used to develop guidance 

to help controllers to set suitable parameter values that give the best chance of 

obtaining solutions and to give a better understanding of the changes in solutions for 

the same problem when some changes are made in parameter values. Also, a feedback 

mechanism is added to improve the probability of finding a solution. Overall, DFSCR is 

designed to provide conflict-free solutions to assist controllers in rescheduling crew. 

Various parameters are considered, and controllers can set initial values for them to 

mimic a real rescheduling environment. The results obtained from sensitivity tests and 

the feedback mechanism can further help controllers to understand and use the 

optimisation tool. Developing and testing a set of guidelines derived from the sensitivity 

tests collaboratively between controllers and academics is recommended. 

3.1.1. Overview of DFSCR 

As explained in Section 2.5, crew rescheduling problems have two types of constraints 

specifying that: (1) every task should be covered, (2) every driver should be assigned a 

feasible diagram. Corresponding to the two types of constraints are two types of 

conflicts that may arise. 
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The first type of conflict with these constraints is if there is a driving task that is not 

covered by any driver. This conflict can in reality be detected by crew controllers in three 

ways. 

 

• First, uncovered tasks are simply generated during the very short-term planning 

adjustment phase before operations. Usually, it is a list of uncovered tasks for 

the next day’s operations. 

• Second, uncovered tasks can be generated by converting an infeasible diagram 

to a feasible one. If a driver is late for their next driving task, a crew controller 

can remove the remaining driving tasks from their diagram. These removed 

driving tasks should be considered as uncovered tasks. 

• Third is that if the railway is on a limited operation due to restrictions following 

disruption, such as a speed restriction or an unavailable track section. Once the 

restriction is lifted, railway operation will gradually return to normal by adding 

more trains into operation. Each newly added train service needs to be split and 

assigned to drivers as driving tasks. These driving tasks need to be inserted into 

the current crew schedule. 

 

The second type of conflict is when a driver’s diagram becomes infeasible to implement 

due to disruption. Crew controllers can capture this conflict by assessing disruption 

impact on crew planned diagrams which may become infeasible in real-time operations 

by communicating with drivers that are in disrupted trains or mapping real train running 
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against the planned timetable. Note that the second type of conflict can be converted 

to the first type by a crew controller who converts an infeasible diagram to a feasible 

one by creating more uncovered tasks. 

 

A series of disruptions can happen on an operational day. For each disruption, a number 

of uncovered tasks that happen at different stations and times can be generated. There 

are three basic priority orders in which to solve them (see (Chiang, Hau, Ming Chiang, 

Yun Kob, & Ho Hsieh, 1998)). (1) station ordering, where uncovered tasks are solved 

station by station. At each station, uncovered tasks are solved by the departure time. 

(2) train order, where uncovered tasks are solved train after train and (3) time order, 

where uncovered tasks are solved by their departure time. 

 

The DFSCR approach addresses resolving the first type of conflict by accepting one 

uncovered task as input. This work does not design a specific conflict detection system 

to find conflicts or study the best priority order to solve uncovered tasks for one 

disruption. It is assumed that crew controllers can find initial conflicts, find uncovered 

tasks from conflicts with or without the use of operations support software and input 

uncovered tasks to DFSCR in their chosen order. DFSCR focuses on giving conflict-free 

solutions to each problem of inserting an uncovered task in turn. 

 

For each uncovered task, DFSCR uses a combined local search and backtracking 

techniques to insert the uncovered task into the current crew schedule. DFSCR starts 
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with a complete crew schedule with one uncovered task. First DFSCR uses heuristic rules 

to search for suitable drivers diagrams that have a high probability of being able to 

accept the uncovered task. Inserting the uncovered task into one driver’s diagram may 

lead to more uncovered tasks, which can be seen as follow-up conflicts. Then each newly 

generated uncovered task will be inserted into an appropriate diagram based on their 

departure time order until no uncovered task is left. Thus, a solution to the problem of 

inserting an uncovered task into a current crew schedule is a series of drivers ’diagrams 

that have been revised to feasible by swapping tasks and one of the drivers ’revised 

diagrams contains the initial uncovered task and no uncovered task is left. To produce 

multiple solutions, a depth-first search is utilised by DFSCR. Depth-first search is a 

specific form of backtracking related to searching the tree structure. It starts at the root 

and explores as far as possible along a branch before backtracking. A branch represents 

a solution to inserting the uncovered task into the current crew schedule. 

 

The cost function 𝑓 for a solution in the DFSCR model considers four factors: total taxi 

time (TT), total work overtime (WO), number of used drivers (UD) and total planned task 

delay time (PTDT). Taxi time, working overtime and planned task delay time are 

measured as the overall time length of taxi trips, overtime and planned task delay time 

required in a solution, respectively. Number of used drivers is the overall number of 

drivers used in a solution. All four factors are summed together with weights as shown 

in Equation (3.1). 
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𝑓 = 𝛼1𝑇𝑇 + 𝛼2𝑊𝑂 + 𝛼3𝑈𝐷 + 𝛼4𝑃𝑇𝐷𝑇 (3.1) 

Weights 𝛼1, 𝛼2, 𝛼3, 𝛼4 can be easily set by users. This study sets 𝛼1, 𝛼2, and 𝛼4  to 1 and  

𝛼3 to 300 to demonstrate the method. These four factors are chosen in the work for 

their importance based on discussions with controllers for a GB TOC. Taxi time and work 

overtime are chosen because they bring financial costs. Number of used drivers is 

penalised because rescheduling more drivers brings higher implementation risks. Delay 

is penalised because delaying one train may cause further trains to be delayed. Other 

factors can also be used to assess a solution. For example, the change of the starting 

time of a meal break can also be considered. It can be easily added to the cost function 

but is not deemed essential by controllers. 

 

To summarise, DFSCR can fit into the following decision system flow. Once a conflict is 

identified by a crew controller, uncovered tasks are found by controllers as explained in 

the beginning of Section 3.1.1. These uncovered tasks will be input into DFSCR with 

order of priority. For an uncovered task and the current crew diagrams, DFSCR will give 

multiple conflict-free solutions. One solution can be chosen by a crew controller and 

then the solution will be written into the current crew diagrams. Then the next 

uncovered task is solved with the updated crew diagrams. 

3.1.2. Inserting One Uncovered Task into a Diagram 

To insert an uncovered task into a diagram, this uncovered task needs to be consistent 

with the activity before and after. The driver should have enough time to arrive at the 

uncovered task after their previous activity and enough time to arrive at the next activity 
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after the uncovered task. The connection between activities depends on the 

geographical and time difference relationship. There are nine different connection types 

used in the method. They are shown in Table 1. These nine connection types are 

extracted from planned crew diagrams. They cover all significant activity combinations. 

To decide about a connection possibility, the geography and time of two activities are 

considered. A suitable connection type is used depending on whether the previous 

activity ends and the next activity starts at the same station and whether the time 

between the end of the previous activity and the start of the next activity is big enough 

to have a break opportunity. Some connection types contain a break opportunity if the 

time difference is suitable for a break. However, having a break opportunity is not 

considered as a separate problem. For an infeasible diagram involving an affected break 

opportunity, DFSCR repairs this infeasible diagram and then moves onto another 

infeasible diagram. 

 

Table 1 Connection Types 

Type Description 

break connect two activities with time interval enough for a break 

change connect two activities with time interval not enough for a break 

but bigger than connection time 
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imm connect two driving tasks within one train with time interval 

bigger than 0 

pass take a driving task as a passenger ride 

breakPass take a driving task as a passenger ride with time interval 

(excluding the passenger ride) enough for a break 

breakDoublePass take two driving tasks as a passenger ride with time interval 

(excluding the passenger ride) enough for a break 

changeDoublePass take two driving tasks from different trains as a passenger ride 

doublePass take two driving tasks from the same train as a passenger ride 

taxi take a taxi to relocate 

 

 

In the remaining part of Section 3.1.2, two important concepts: commencing activity and 

terminating activity are defined. Using these two concepts, a method for finding a set of 

possible drivers that can take up an uncovered task is described. There can be three 

results of inserting an uncovered task into a driver’s diagram, depending on how the 

meal breaks are affected and on the newly generated uncovered tasks. These results 

are: infeasible, conditionally feasible and unconditionally feasible. If a meal break is 
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affected by the insertion, certain rules of resetting an adjusted break are used to resolve 

this. 

Commencing Activity 

Suppose that there is an uncovered task that must be inserted into a driver’s diagram. 

Then for each of the currently working drivers ’existing diagram, a suitable commencing 

activity is searched, defined as the last activity on the diagram to which the uncovered 

task could be appended. The commencing activity for a given driver is determined in 

three steps, as follows. 

 

First, the activity of the driver when the rescheduling process starts (labelled the current 

activity) is identified. There are two types of current activity. One is that the rescheduling 

start time lies between two activities on the driver’s diagram, then the current activity 

is defined as the last activity which took place before the rescheduling start time. The 

other is that the rescheduling start time lies inside the duration of an activity, which in 

this case is defined as the current activity. 

 

Second, the communication time required to contact the driver to inform them about 

their changed diagram is considered. From the rescheduling start time, a driver must 

remain at a station longer than the communication time to get the changed diagram 

message and communicate whether they either accept or refuse it. 
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So from the end of the current activity to the start of the last activity on the driver’s 

diagram, two consecutive activities A and B are looked for, such that between the end 

of activity A and the start of activity B, the driver stays at the station longer than the 

communication time. If such a pair of activities can be found, then activity A is called the 

initial commencing activity. It is permitted to delay the uncovered task by less than a 

given maximum planned task delay time to find an initial commencing activity for a 

driver. The above two steps are shown in Algorithm 1. 

 

The initial commencing activity is the earliest possible choice of commencing activity 

and will be updated later (after the termination activity is identified, see section 

“Terminating Activity”) to find the optimal commencing activity. In general, the optimal 

time for the commencing activity is as late as possible so as to minimise the total 

disruption to the driver’s diagram. The commencing activity can be found by looping 

between the initial commencing activity and the terminating activity. 

 

 

Algorithm 1 Finding the initial commencing activity 
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Terminating Activity 

Following the insertion of a new uncovered task into a diagram, an algorithm searches 

from the end of the diagram for the terminating activity, defined as the earliest activity 

that has a connection from the uncovered task to it. It is found in two steps. First, the 

terminating activity is set as the sign off of this driver if there is a feasible connection 

from the uncovered task to sign off. 

 

Second, the terminating activity is updated by looping between the initial commencing 

activity and sign off to find an activity that happens as early as possible. The commencing 

activity is then identified by looping backwards from the terminating activity towards 

the initial commencing activity until the algorithm finds an activity which has a suitable 

connection to the uncovered task. The time between the commencing activity and 

terminating activity will be as small as possible. 

 

The activities between the commencing activity and terminating activity on this driver’s 

diagram are called the affected activities. Different actions are taken depending on the 

type of affected activity. The first type is a driving task, which will be added to the 

uncovered task list. The second type is a break, which should be considered for 

replacement by an adjusted break activity. The third type is a passenger trip, for which 

no action is needed. DFSCR looks for a commencing activity and a terminating activity 

that are as close as possible to an uncovered task to minimise the number of affected 

activities, targeting the rescheduling of fewer drivers. It is worth noting that a preceding 
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activity or succeeding activity rather than the nearest activities may lead to a better 

solution and DFSCR may need to consider this in future.  

Finding a Set of Possible Drivers for an Uncovered Task 

Two conditions should be present for a driver to be able to cover an uncovered task. 

First, the driver should have the route and rolling stock knowledge required by the 

uncovered task. Second, both a valid commencing activity and terminating activity in 

the driver’s diagram should be found. After finding the possible drivers, they are sorted 

by a score computed using the method of (Verhaegh, Huisman, Fioole, & Vera, 2017). 

Based on this method, it is intuitively clear that if a driver has a lower score, it means 

that this driver has a higher chance of taking the uncovered task. 

Three Possible Results of Inserting an Uncovered Task into a Driver’s Diagram 

There are three possible results of inserting an uncovered task into a driver’s diagram: 

an infeasible, a conditionally feasible, or an unconditionally feasible diagram. There are 

three reasons for an infeasible solution: a) a break is affected, and it cannot be replaced 

with an adjusted break, b) the uncovered task to be inserted was removed from this 

driver’s diagram previously, c) inserting this uncovered task will cause a previously 

inserted task to be removed. The last two conditions are to prevent a cycle being formed 

in the solution process. If there is at least one driving task that is affected, the insertion 

result is said to be conditionally feasible. It means that by inserting one uncovered task 

into a crew diagram, some other driving tasks need to be removed from this diagram. If 

there is no driving task affected, the result is unconditionally feasible. 
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Resetting an Adjusted Break 

If a driver’s break is affected by the insertion of an uncovered task, there are two ways 

to adjust the break opportunity. One is that there may be enough time for a driver to 

have a break between the commencing activity and the uncovered task or between the 

uncovered task and the terminating activity. That is, the connection between 

commencing activity and uncovered task or uncovered task and terminating activity 

contains a break opportunity. The other way is that after the terminating activity there 

is enough time to insert a break. However, a break must be arranged before a driver 

works more than the maximum working time without a break. 

3.1.3. Algorithm for DFSCR 

The algorithm for the DFSCR approach is shown in Algorithm 2. The input consists of the 

planned crew diagrams, adjusted timetable, rolling stock diagrams and an initial 

uncovered task. The output of DFSCR is a set of solutions, each of which inserts the 

uncovered task into current crew diagrams in some way. 

 

An uncovered task list is created and initialised with the initial uncovered task. All the 

possible drivers for this task are found and ordered with a score in step 1. The driver 

with the lowest score from the possible driver list in step 3 is chosen. The uncovered 

task is inserted into this driver’s diagram in step 4. Three results are possible: infeasible, 

unconditionally feasible and conditionally feasible. 
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If the result is unconditionally feasible in step 5, the uncovered task is removed from the 

list in step 6. In step 7 if there is no task left uncovered, then a solution is saved in step 

8. If there is a task left uncovered and the tree size is not exceeded in step 9, then in 

step 10 the uncovered task is updated as the first task in the uncovered task list and 

solveDFSCR is called again. The parameter maxDisruptDrivers is used in steps 9 and 15 

to check if the tree size is exceeded. The depth of the tree represents the number of 

drivers whose diagrams are revised to solve the disruption. This depth should be no 

more than the parameter, maxDisruptDrivers.   

 

If the result is conditionally feasible, in step 14 the newly generated uncovered tasks are 

added into the uncovered task list and this list is sorted by increasing order of departure 

time of all elements. If the tree size limit is not exceeded in step 15, the uncovered task 

is updated as the first task in the uncovered task list and the problem is solved for this 

uncovered task and the solveDFSCR is called again in step 17. 

 

After each insertion, an undo step is performed in step 20, the changes made to 

diagrams in the insertion in step 4 are undone. The newly inserted task into the diagram 

will be removed and the removed tasks will be added back. Since as many solutions as 

possible are preferred to be found, an undo step will reverse the changes in the drivers’ 

diagrams even if a solution is found and the algorithm will check the next possible driver 

(step 2 in Algorithm 2) until there is no possible driver left for this uncovered task. 
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Algorithm 2 Solving DFSCR 

 

It is addressed that first a solution is obtained after checking whether the list containing 

uncovered tasks is empty, which guarantees that the solution is conflict free. Second, 

the rules for resetting an affected meal break are given. Third, the term commencing 

activity and terminating activity is proposed to find the drivers with a higher possibility 

to cover a task. Here it is emphasised that DFSCR (Algorithm 2) is designed to find 
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multiple solutions, so when the algorithm reaches a leaf node, it takes one or more steps 

backwards to develop a new branch to find another solution. It searches for solutions 

until all possible solutions are found. Two critical aspects of Algorithm 2 are discussed: 

defining and limiting the tree size and ranking the solutions. 

Limiting the Tree Size and Fathoming 

The depth of the search tree is limited by the number of drivers allowed to be 

rescheduled. This condition is checked in steps 9 and 15 in Algorithm 2. Rescheduling 

many drivers to solve one uncovered task is not practical. So a maximum number of 

affected drivers is set to control it. A partial solution that affects more than the 

maximum number of drivers should be abandoned. Also, tree size is limited by 

fathoming which means pruning some solutions. An upper bound of the method is 

updated as a new lower solution cost appears. When a partial solution has a bigger cost 

than the current upper bound, it is pruned to limit the tree size. 

Ranking the Solutions 

Multiple solutions can be ranked based on total cost, total taxi fee, total work overtime, 

number of used drivers and total delay time. Note that a solution involving significant 

retiming of a task is not preferable by DFSCR and will most probably be ranked last based 

on the total delay time. Practically then, where there is no better solution, crew 

controllers have a chance to evaluate this solution and see if its induced conflicts can be 

easily solved manually. Then such a solution can be helpful. 
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3.1.4. Generating Feedback from the Model Run 

When there is no solution returned, it may be the case that minor adjustments to some 

parameters yield solutions. Feedback can provide hints as to which parameters should 

be adjusted to obtain solutions potentially. Thus, the feedback generation ability from 

the DFSCR approach is described in Section 3.1.4. There are three kinds of feedback 

generated by the model: 

(1) The requirement to delay the uncovered task by more than the maximum task 

delay time. 

(2) A driver needs to work overtime to the extent that exceeds the maximum work 

overtime or maximum work length. 

(3) More drivers’ diagrams need to be rescheduled to find a solution. 

Feedback types (1) and (2) can be generated from finding possible drivers for an 

uncovered task (step 1 in Algorithm 2). Feedback type (3) can be obtained by checking 

if the partial solution exceeds the tree size (steps 9 and 15 in Algorithm 2). 

Adjusting Parameters According to Feedback 

The following relaxation types correspond to feedback types (1) – (3). 

Relaxation A Suppose that an uncovered task must be delayed by more than the   

maximum task delay time. Then feedback information of type (1) is generated. This 

means that this driver is still late for the delayed uncovered task when the rescheduling 

starts, considering the communication time and connection time. Since delaying a task 

could lead to further delays, adjusting the communication and connection times is 
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preferable. Therefore, in Relaxation A, communication time and connection time are 

reduced. In the experiments, the communication time is reduced from 20 to 10 minutes, 

and the connection time is reduced from 10 to 3 minutes. Crew controllers suggested 

the minimum values of these parameters. These minimum values may vary from one 

operator to another. 

Relaxation B Suppose a driver could work more than the overtime or work length limit 

that has been set. Then feedback information of type (2) is generated. The appropriate 

relaxation is to increase maximum work overtime and maximum work length. In the 

experiments, the maximum work overtime is increased from 2 hours to 2 hours and 20 

minutes and the maximum work length is increased from 10 hours to 10 hours and 20 

minutes. Crew controllers suggested the default values (2 hours and 10 hours, 

respectively). Relaxing both of them by 20 minutes may give the controllers new 

solutions that can be discussed with drivers. It is not likely to violate the fatigue rules 

(but these rules vary from one operator to another). 

Relaxation C This is imposed when more drivers need to be used (feedback information 

of type 3). Then the appropriate relaxation is to increase the maximum number of 

affected drivers. In the experiments, the maximum number of affected drivers is 

increased from 2 to 3. 

 

Two combined ways to relax parameter values are also utilised to test the feedback 

mechanism of DFSCR. 
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Relaxation AC After Relaxation A, if the number of solutions is less than 3, a further 

Relaxation C is added. 

Relaxation BC After Relaxation B, if the number of solutions is less than 3, a further 

Relaxation C is added. 

 

Note that there is no particular reason why these combinations of relaxation types are 

chosen and why a further relaxation is added if the number of solutions is less than 3. 

They are just reasonable examples of combinations of relaxations that may be tried. 

Other parameter values and combinations of relaxation types can be used. Further 

testing is needed to determine the optimal parameter values and combinations of 

relaxations. 

3.2. Single Case Study and Sensitivity Tests 

Section 3.2 uses the DFSCR approach to resolve a late inbound train scenario that 

disrupts the crew diagrams. Later, the results with two modified versions of the methods 

of (Rezanova, 2009) and (Potthoff, 2010) applied to the same scenario are compared. 

3.2.1. Late Inbound Train Scenario 
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Figure 6 Late inbound train scenario 

 

The scenario is illustrated in Figure 6. In this scenario, a train (1K14) departs from 

Nottingham and travels towards Cardiff Central via Birmingham New Street. It is 

scheduled to be driven by two different drivers (D30 and another driver) who swap at 

Birmingham New Street. When the train arrives late at Birmingham New Street, both 

the first leg driver (D30) and rolling stock (RS1) are late. Spare rolling stock is typically 

available in Birmingham New Street and can be used by the second leg driver to start 

the train leg from Birmingham New Street on time. The arrived rolling stock RS1 can be 

treated as the new spare rolling stock. The problem is that the late first leg driver (D30) 

is late for the next driving task on their diagram. A common solution is to find another 

driver to cover all the remaining driving tasks on this late driver’s diagram. 
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Assume at 20:09 it is observed that the train 1K14 is late and is estimated to arrive at 

20:54 at Birmingham New Street. Table 2 shows the driver of the affected section’s 

diagram. Task ID 23 represents the driving task of the late train service leg on the driver’s 

diagram. Since their next driving task departs at 20:49, driver D30 is unable to perform 

this driving task from Birmingham New Street to Nottingham, which are Task ID 24 and 

the following task ID 25. Here tasks 24 and 25 are combined and treated as one 

uncovered task, 24-25, which must now be covered. 

 

Table 2 Driver diagram: D30 

ID origin departure destination arrival activity 

type 

headcode driver ID 

19 LESTER 15:24 LESTER 15:24 signOn  D30 

20 LESTER 15:50 BHAMNWS 16:46 Driving 1L43 D30 

21 BHAMNWS 17:49 DRBY 18:36 TAXI  D30 

22 DRBY 18:39 DRBY 19:19 Break  D30 

23 DRBY 19:39 BHAMNWS 20:24 Driving 1K14 D30 

24 BHAMNWS 20:49 NTNG 22:14 Driving 1H22 D30 

25 NTNG 22:26 LESTER 23:00 Driving 5M75 D30 
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26 LESTER 23:43 LESTER 23:43 signOff  D30 

 

In the solution process, there are nine parameters whose default values are in brackets. 

 

1. connection time to non-sign off activity (10 minutes): a driver needs time to 

cross the platform to start the next driving task or go to the crew depot to have 

a break. This time is necessary and should be considered to connect two 

activities. 

2. maximum work length (10 hours): the maximum permitted time of a driver’s 

diagram for the day. 

3. maximum continuous work length without break (3.5 hours): the maximum 

time a driver can work without having a break. 

4. maximum work overtime (2 hours): the maximum time by which a driver can 

exceed the scheduled working time. 

5. maximum planned task delay (10 minutes): the maximum amount of time by 

which a task may be delayed. 

6. rescheduling start time (20:09): the time when the rescheduling process starts. 

7. communication time (20 minutes): a necessary time allocated to contact the 

driver to inform them about their changed diagram. 
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8. taxi variation (0 minutes): variations in the taxi travel time required between 

any two stations. 

9. maximum number of affected drivers (2): the maximum number of drivers 

whose diagrams are permitted to be rescheduled to solve the problem. 

 

The default values of all these parameters were discussed and confirmed with the 

experts from train operating companies. Also note that five of these parameters 

(connection time to non-sign off activity, maximum work length, maximum work 

overtime, rescheduling start time and taxi variation) are varied in the sensitivity tests 

within the ranges shown in the figures in Section 3.2.5. 

3.2.2. Solution Analysis 

The solutions obtained using the same parameter settings as in Section 3.2.1 to this 

problem are shown in Table 3. Taxi duration estimates are obtained from Google Maps. 

Work overtime is calculated as the difference between the new sign off and old sign off 

times. DFSCR finds all 9 solutions in 5.6s. The cost of a solution is the sum of work 

overtime, taxi duration, the penalty for drivers that have an adjusted diagram and 

planned task delay minutes.  

 

None of the solutions require a delayed task. The first solution uses the available driver 

D219 to take task 24-25. Other solutions request driver D25 to take task 24-25 and, in 

exchange, another driver needs to take task 569 for D25. 
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Table 3 Results obtained from default values 

solution 

index 

driver1 insert 

task1 

driver2 insert  

task 2 

total work 

overtime 

taxi 

duration 

adjusted diagram 

penalty 

solution 

cost 

1 D219 24-25   75 58 300 433 

2 D25 24-25 D219 569 75 71 600 746 

3 D25 24-25 D209 569 97 71 600 768 

4 D25 24-25 D30 569 75 118 600 793 

5 D25 24-25 D153 569 122 71 600 793 

6 D25 24-25 D127 569 75 118 600 793 

7 D25 24-25 D115 569 89 118 600 807 

8 D25 24-25 D69 569 149 71 600 820 

9 D25 24-25 D125 569 149 118 600 867 

 

 

Some details of solution 6 from Table 3 are shown in Table 4. Driver D25 takes the initial 

uncovered task 24-25 and then takes a taxi trip to sign off. This driver needs to work 

overtime. In exchange, D127 takes driving task 569 from D25 and takes a taxi to sign off. 

This driver does not need to work overtime. 
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Table 4 A typical solution (6): recovery diagrams and cost breakdown 

driver ID ID origin departure destination arrival activity type headcode overtime taxi total 

cost 

D25 564 BHAMNWS 15:35 BHAMNWS 15:35 signOn  0 0 0 

D25 565 BHAMNWS 16:09 LESTER 17:08 Driving 1O11 0 0 0 

D25 566 LESTER 17:18 TYSLSDG 18:53 Driving 1M24 0 0 0 

D25 567 TYSLSDG 19:08 BHAMNWS 19:33 TAXI  0 0 0 

D25 568 BHAMNWS 19:36 BHAMNWS 20:16 Break  0 0 0 

D25 24-

25 

BHAMNWS 20:49 LESTER 23:00 Driving 1H22/5M75 0 0 0 

D25  LESTER 23:10 BHAMNWS 24:08 taxiAdded  0 58 58 

D25 571 BHAMNWS 24:11 BHAMNWS 24:11 signOff  75 0 75 

penalty for 

using the 

driver 

         300 

D25 cost          433 

D127 1271 LESTER 14:57 LESTER 14:57 signOn  0 0 0 

D127 133 LESTER 20:50 BHAMNWS 21:45 passengerAdded 1M55 0 0 0 

D127 569 BHAMNWS 21:55 TYSLSDG 22:16 Driving 5P87 0 0 0 

D127  TYSLSDG 22:26 LESTER 23:26 taxiAdded  0 60 60 
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D127 1272 LESTER 24:38 LESTER 24:38 signOff  0 0 0 

penalty for 

using the 

driver 

         300 

D127 cost          360 

total cost          793 

 

taxiAdded/PassengerAdded means that it is added by us to this driver’s diagram to 

relocate the driver. 

3.2.3. Mathematical Optimisation for the Crew Rescheduling Problem 

As mentioned in Section 2.5, BnPCR and GSLR are the current state-of-the-art methods 

for solving the crew rescheduling problem during significant disruption. Both methods 

are applied to solve the late inbound train scenario presented in Section 3.2.1. The 

models, to which the methods are applied, slightly differ from each other since 

(Potthoff, 2010) considers a penalty for task cancellation. A work overtime function is 

added to both methods and the maximum work overtime and maximum work length 

are set to have the same default values as in Section 3.2.1. Further, BnPCR and GSLR 

solve the problem in a disruption neighbourhood (core problem), which is a 

neighbourhood that includes critical drivers and their tasks during the recovery period. 

However, the first disruption neighbourhood (core problem) built by both methods 

cannot solve the problem even when permitting working overtime. Expanding 

disruption neighbourhood (core problem) rules are added by extending the recovery 
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period by two hours and adding more drivers who appear in the same station as the 

uncovered task around the same time automatically when there is no solution. With 

these modifications, both methods give solution 1 in Table 3 after expanding once and 

allowing drivers to work overtime. BnPCR finds the solution in 3.8s and it finds an integer 

to the linearised model directly. GSLR finds the solution in 1.7s. 

3.2.4. Comparing Methods: DFSCR, DFID, BnPCR and GSLR 

In this section, DFSCR is compared to the three cutting-edge methods: DFID from 

(Verhaegh, Huisman, Fioole, & Vera, 2017), BnPCR from (Rezanova, 2009) and GSLR 

from (Potthoff, 2010) according to the following aspects. 

1. Number of disruptions. DFSCR can process multiple uncovered tasks produced 

by multiple disruptions. In this study, it only takes one initial uncovered task as 

input. However, it can be easily modified to process multiple uncovered tasks, 

by initialising the uncovered task list in Algorithm 2 with multiple uncovered 

tasks. Note that multiple uncovered tasks are not considered at the same time, 

but each uncovered task is considered singly in sequence. DFID can process 

multiple uncovered tasks in a similar manner. BnPCR and GSLR can process 

multiple disruptions since they build a set partitioning problem / set covering 

problem with all affected drivers as constraints. BnPCR and GSLR aim to find a 

recovery diagram for any driver that has an infeasible diagram due to disruption. 

2. Number of solutions. DFSCR and DFID can generate multiple solutions because 

it builds a tree structure to search for solutions and each leaf of the tree 

represents a solution. BnPCR first solves a linearised crew rescheduling model. 
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When the optimal solution to the linearised model is fractional, BnPCR uses a 

branch and bound tree to develop multiple integer solutions by forcing or 

forbidding a driver to take a task. However, the appearance of fractional results 

depends on the scenario and costs of connection types set by the user. It is not 

easy to control by the user. Also, fractional results appear rarely in the 

experiments of (Rezanova, 2009). GSLR solves the problem with an advanced 

Lagrangian heuristic algorithm iteratively, it generates one solution at every 

iteration. Each objective is the same during the solution process, so the solution 

with the minimal objective value is the final solution. 

3. Delay a single task. Delaying any task is not preferable because it will change the 

real-time timetable. If a delay happens at a busy station or peak time, it can 

affect a number of trains and quickly propagate through the network. If a delay 

happens at a rural station or off-peak time, it most probably will not lead to 

further disruption. DFSCR can consider delaying a task by less than the maximum 

planned delay time. DFID does not consider delaying a task. However, some 

modifications can be added to change this in DFID. BnPCR and GSLR do not 

consider the possibility of this. They both treat tasks as fixed nodes in a graph 

and a diagram for any driver is a path in this graph. So, if a node is moved, this 

change is the same for any driver, which is not realistic. If a driver requests this 

task to be delayed to cover it, this does not mean that another driver would 

request the same. (Veelenturf, Potthoff, Huisman, & Kroon, 2012) deals with a 

retiming extension of the GSLR method. The model and method proposed by 
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them considers the possible retiming copies of a task and such copies can be 

used to produce solutions. 

4. Consideration of overtime. DFSCR considers the possibility of drivers working 

over- time and limits it by introducing two parameters: maximum work overtime 

and maximum work length.  DFID, BnPCR and GSLR can also consider the driver 

working overtime to cover a task. BnPCR and GSLR both use a resource-

constrained path finding algorithm to find feasible recovery diagrams. An extra 

condition can be added to disallow recovery diagrams that violate maximum 

work overtime and maximum work length constraints. 

5. Reset a break for the driver. Drivers need to have a break after a certain period 

of continuous working time. A break is scheduled for the minimum required time 

according to working rules in a driver’s diagram. However, drivers may have their 

breaks at times that differ from what is exactly scheduled. DFSCR can restore an 

appropriate break with predefined rules as in Section 3.1.2 if the planned break 

is affected. DFID can allow a break to be changed when inserting a task into a 

diagram. BnPCR and GSLR can also allow a break to be changed. Similar to 

overtime, extra constraints about break time can be considered when generating 

recovery diagrams using a resource-constrained path finding algorithm based on 

dynamic programming. 

6. Having a feasible solution before the algorithm finds an optimal solution. 

DFSCR, DFID and GSLR can have a feasible solution in this case, but BnPCR cannot 
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guarantee this because there may be a fractional feasible solution, from which 

an integer solution cannot be easily recovered. 

7. Considering the feedback mechanism. DFSCR can generate feedback as 

explained in Section 3.1.4. DFID, BnPCR and GSLR do not have this feature. 

8. Method running time. All three methods solve the problem described in Section 

3.2.1 in a few seconds. GSLR (1.7s) is quicker than BnPCR (3.8s) in solving this 

scenario. DFSCR finds 9 solutions in 5.6s. 

3.2.5. Sensitivity Tests 

One of the reasons that mathematical optimisation techniques may fail to be 

transferred into practical use in decision support tools is that, due to the lack of 

transparency of the optimisation tool, the user does not fully understand the 

optimisation tool or the impact of adjusting its parameters. A user may unknowingly 

adjust parameters in such a way as to not fully utilise the capabilities of the optimisation 

model. 

 

Thus, in Section 3.2.5, some parameter values are varied to evaluate how they will affect 

the solutions for the scenario in Section 3.2.1. Five parameters are adjusted: 

rescheduling start time, extra taxi time, maximum work overtime, connection time to 

non-sign off activity and maximum work length. Every time, one parameter is varied in 

a realistic range and the rest of the parameters are fixed as their default values shown 

in Section 3.2.1. 
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Rescheduling Start Time 

The rescheduling start time varies from 19:00 to 21:00 with a one-minute step size. How 

the number of solutions and solution costs change with the rescheduling start time is 

tested. 

 

Figure 7 (a) number of solutions, and (b) cost, with respect to rescheduling start time 

 

In Figure 7(a), the number of solutions drops from 13 as rescheduling starts at 19:00 to 

9 at 19:12 and to 6 at 20:21. When the rescheduling starts after 20:29, there are no 

solutions. The number of solutions drops from 13 to 9 because 4 available drivers in 

Leicester depot can no longer arrive at Birmingham New Street by taxi in time to take 

the uncovered task 24-25. Similarly, the drop from 9 to 6 occurs as 3 drivers from 

Leicester depot cannot arrive at Birmingham New Street to take task 569 from driver 

D25 in time. When the rescheduling starts at 20:29, task 24-25 is forcibly delayed by the 

maximum planned task delay time of 10 minutes for all solutions. After 20:29, task 24-
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25 needs to be delayed by longer than the maximum planned task delay time to obtain 

a solution. 

 

Later rescheduling start times affect the solution cost in two ways. One is that it may 

make some solutions infeasible and the other is that it may require a task to be delayed 

further. From Figure 7(b), before 19:12, the smallest minimal cost is 358, which uses a 

driver from Leicester depot. This driver does not need to work overtime, which reduces 

the cost. 

Extra Taxi Time 

 

Figure 8 (a) number of solutions, and (b) cost, with respect to extra taxi time 

 

Estimated taxi travel times were obtained from Google Maps. These stored times do not 

necessarily reflect dynamically changing real road conditions. The number of solutions 
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and solution costs are tested for variable additional time added to the base taxi travel 

times. The test range is from -10 to 60 with step size 1. The increased taxi times will 

prevent some drivers from arriving at their scheduled or rescheduled tasks on time. The 

increased taxi times will also increase work duration. So with the increase in extra taxi 

time, the number of solutions is decreasing (Figure 8 (a)). When the extra taxi time is 

greater than or equal to 46, there is no solution. The number of solutions drops from 10 

to 9, 8 and 6 because work length or work overtime exceeds the maximum work length 

or maximum work overtime, respectively. 

 

In Figure 8(b), when the extra taxi time is less than or equal to 29, the minimal cost 

solution is using the same available driver. The minimal costs are increasing because the 

taxi fee is calculated based on the taxi duration. The sudden increase of minimal cost at 

+30 minutes duration is because this available driver cannot take this uncovered task 

24-25 anymore. The maximal costs are not necessarily increasing with increasing taxi 

duration because some drivers are not available due to the long taxi duration. The 

maximal cost solutions at every point do not necessarily use the same drivers. 

Maximum Work Overtime 

The default value for maximum work overtime is 2 hours. Nine solutions appear when 

the maximum work overtime is greater than 1 hour and 20 minutes. There are no other 

solutions even when overtime increases up to 5 hours. Correspondingly, the costs also 

do not change. 

Connection Time to Activity (excluding Sign Off) 
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Connection time will affect the total cost in two ways. One is that longer connection 

time will cause more overtime work that is part of the total cost. The other way is that 

longer connection time will cause some drivers to miss their respective passenger trips, 

thus generating extra taxi fees. Also, longer connection time will make some solutions 

infeasible due to maximum work overtime and maximum work length constraints. 

 

 

Figure 9 (a) number of solutions, and (b) cost, with respect to connection time 

 

In Figure 9(a), the number of solutions drops from 11 to 9 because one driver working 

overtime exceeds the maximum work overtime of 2 hours and another driver cannot 

take task 569 in time due to increased connection time. The number of solutions drops 

further from 9 to 6 because 3 available drivers from Leicester depot cannot take task 

569 in time. It further drops from 6 to 1 because driver D25 cannot take task 24-25 in 

time even if this task is delayed by the maximum planned delay time. 
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The minimal, average and maximal costs in Figure 9(b) have a stable change at all test 

points since connection time will affect the work overtime cost. However, a long 

connection time causes some solutions to become infeasible, so the cost is not always 

increasing. 

Maximum Work Length 

In Figure 10, the work length increases from 8 hours to 12 hours, with a 10-minute step 

size. There is no solution in Figure 10(a) when the maximum work length is lower than 

8 hours 40 minutes. When the maximum work length increases, more solutions appear 

and the smallest minimal cost solution in Figure 10(b) appears when the maximum work 

time is set at 9 hours and 40 minutes. At most 13 solutions are obtained after the 

maximum work length is extended. When the maximum work length increases, more 

solutions appear until the maximum work length is set as 10 hours and 40 minutes. Since 

the maximum work length is bounded by the maximum permitted overtime work, the 

availability of solutions is also bounded by this condition. 
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Figure 10 (a) number of solutions, and (b) cost, with respect to maximum work length 

3.3. Multiple Experiments 

To further test DFSCR’s performance over the period of an entire day, DFSCR is applied 

to all driving tasks of a train operator’s one day operation. The dataset used for testing 

has 124 diagrammed drivers and 24 spare drivers. These spare drivers are located in 3 

depots during the day. There are 382 driving tasks in the dataset. For each test, one 

driving task is duplicated and this duplicated task is assumed as the uncovered task, so 

DFSCR is applied to 382 tests. Figure 11 shows the effect of inserting these duplicated 

driving tasks into the current crew diagrams during a day. In general, DFSCR can find 

solutions for 150 of the tests and the average number of solutions is 4.48. For tests 

where DFSCR cannot find solutions, the main reason is that the initial uncovered task of 

a test starts very early or late at a station away from major stations. The chance of 

finding a chain of suitable drivers swapping tasks among them is low. For each test, the 

average solution time is 0.75s. The number of tasks that occur every hour increases from 
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early morning to reach its peak during 6:00-7:00. Then it fluctuates along the day until 

reaching another peak during 16:00-20:00. Average solution time has a similar shape to 

the number of driving tasks. When there is a big number of tasks, a corresponding 

number of drivers are on duty. When an uncovered task happens at a peak time, more 

suitable drivers are also considered in DFSCR to find solutions. Thus, the computational 

time for this test is also large. In general, DFSCR can generate around 2 solutions for 

each test from 09:00 to 21:00 with a smaller number of solutions at early or late times. 

 

Figure 11 Average number of solutions and solution time against task departure time 

 

To test how the maximum number of affected drivers (MNAD) affects solutions, MNAD 

is increased from 1 to 5. Later the results from increasing MNAD are compared to the 

results from using the feedback mechanism. Table 5 shows how solutions can change 

with respect to the increasing of MNAD. If MNAD increases from 1 to 5, the solution 

number increases from 4.21 to 4.95 for tests that can find solutions and the success rate 

increases by 2.1% for all tests. The average costs of the minimal, average and maximal 
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costs of all tests that have solutions are shown in Table 5. So, the costs, especially the 

minimal costs, shown in Table 5 may change with respect to MNAD. The minimal, 

average and maximal costs increase with the increase of parameter values. One reason 

is that with a bigger MNAD, some tests that do not have a solution with a lower MNAD 

now tend to have solutions. The other reason is that with a bigger MNAD, solutions that 

involve more drivers appear and these solutions have a higher cost according to our cost 

function. The solution time increases gradually until it jumps from 0.88 to 1.35 when the 

MNAD rises from 4 to 5. Based on the nature of DFSCR, the solution time will increase 

exponentially with the increasing MNAD. However, the solution time is still very small 

due to fathoming. Fathoming is to prune solutions that have bigger costs than the 

current lowest cost as in (Verhaegh, Huisman, Fioole, & Vera, 2017), which is explained 

in Section 3.1.3. 

Table 5 Solution changes with increasing maximum number of affected drivers 

MNAD solNum min cost ave cost max cost solTime(s) success rate 

1 4.21 308.70 325.92 352.01 0.65 38.0% 

2 4.48 318.68 346.84 382.67 0.75 39.3% 

3 4.81 323.09 359.50 399.02 0.82 39.5% 

4 4.93 327.68 365.87 408.20 0.88 39.8% 

5 4.95 331.82 372.35 418.52 1.35 40.1% 
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Multiple Testing on Feedback Mechanism 

To test the feedback mechanism, the DFSCR approach is built first with the default 

parameter values in Section 3.2.1 except the rescheduling start time, which is updated 

to the relevant time for each testing task. The rescheduling start time is set at 30 minutes 

before the testing task departs. 

 

The results of the DFSCR approach solving all tests with default parameter values and 

relaxed parameter values are shown in Table 6. After the relaxation, the number of tests 

successfully solved increases by 6%. The average number of solutions increases by 1.13. 

In Table 5, success rates increase by 0.2% when the maximum number of affected 

drivers is increased from 2 to 3. In Table 6, success rate is increased by 6% using a 

feedback and relaxation scheme. It is worth noting that increasing MNAD may not be as 

good as an approach of adjusting parameter values based on the feedback mechanism 

since the solution time rises sharply in the former case. 

Table 6 Comparison between testing results before and after relaxation 

 number of 

tasks(tests) 

success 

rate 

average number of 

solutions 

average 

solution time 

before 

relaxation 

382 39.3% 4.48 0.75s 
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after 

relaxation 

382 45.3% 5.61 1.58s 

 

The detailed relaxation types of all the relaxed tests are shown in Table 7(a). 144 tests 

are suitable to be relaxed. Among them, 108 tests are relaxed by Relaxation A. 238 tests 

(Table 7(b)) with no relaxation are tests where the relaxation does not help. However, 

in 233 tests, drivers require the task to be delayed by more than 30 minutes. In the other 

5 tests, the uncovered task happens in the early morning or late at night when no other 

driver is on duty. The detailed explanation of relaxations can be seen in Section 3.1.4: 

Relaxation A: reduce communication time and connection time; Relaxation B: increase 

maximum work overtime and length; Relaxation C: increase the maximum number of 

affected drivers. Relaxation AC and BC are combinations of the corresponding relaxation 

types. 

Table 7 (a) tests with relaxation, and (b) tests without relaxation 

(a) Tests with relaxation 

number of tests with relaxation A B C AC BC 

144 108 14 6 16 0 

(b) Tests without relaxation 

number of tests with no relaxation delay >30 minutes no driver is on duty 
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238 233 5 

 

3.4. Conclusion 

In this section, a new approach was described for solving the crew rescheduling problem 

for minor disruptions (DFSCR). This new approach aims to produce multiple solutions 

for inserting an uncovered task into the current crew schedule. To illustrate the 

applicability of this method, a case study based on a real-world network and crew 

diagrams has been used. DFSCR has been able to solve the problem and give multiple 

solutions as expected. To study the influence of parameters used in the model and to 

find their effective bounds, a sensitivity test has helped explain the reasons for various 

trends in the results for the same case study. DFSCR was also tested on 382 scenarios to 

give various statistical information about performance, including the number of tests 

that can be solved and the running time. The feedback mechanism of DFSCR was also 

tested and results show that more solutions can be obtained after using the feedback 

information to relax constraints. DFSCR has a number of limitations, which should be 

addressed in future work.  

 

First, the biggest limitation is to recognise the scale of disruption impact that can be 

efficiently fixed by DFSCR. DFSCR relies on crew controllers to recognise uncovered tasks 

caused by disruption and input these uncovered tasks into DFSCR one after another. 

This process is not straightforward to crew controllers when many trains are disrupted.  



 

96 

Second, further work is needed to address the follow up conflicts induced by a solution 

if the solution retimes a driving task. Note that this can have a direct impact on the 

schedule of a train journey. The knock-on effect of one train’s delay can spread over a 

railway network. A solution containing a shifted driving task should be further examined 

by a controller to better understand its impact on the remaining operation. The severity 

of the impact brought by solving an uncovered task is not sure in this way because it 

depends on the railway rescheduling environment at that moment. If a task is required 

to be retimed at a major station during peak time, this solution may not be chosen. 

However, if the same situation happens at a rural station late at night, it may be useful 

if there is no better solution available. Further, a retimed task may affect rolling stock 

circulation. However, if this delay time can be absorbed due to robust rolling stock 

circulation, this solution can be considered. Future work should address the whole delay 

impact on the model. 

 

Third, the order of various uncovered tasks fed into DFSCR may influence the overall 

crew rescheduling cost. Optimising the order of feeding disruptions into DFSCR will 

require further testing.  

 

Fourth, in this work, a feedback mechanism was proposed and proved that it can help 

to find more solutions. This work did not try to find the optimal parameter values used 

in relaxations A, B and C, the order of using different relaxation types or the complete 

combination of relaxation types. This can be a further study point. 
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In the wider picture of schedule adjustment during disruptions, how to put DFSCR into 

practice in the current railway operation system is another challenge. Crew rescheduling 

is manually processed in Great Britain now. DFSCR requires planned crew diagrams and 

an uncovered task as input. Planned crew diagrams are stored in crew management 

software and usually crew controllers need to use crew management software to 

recognise uncovered tasks. Further study is needed to integrate crew management 

software, traffic management software, DFSCR and crew controllers’ actions. Note that 

this could result in development of a system that would automatically detect conflicts 

of all kinds and provide dispatchers and crew controllers with automated advice on their 

resolution, in the spirit of (Stelzer, 2016). 
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CHAPTER FOUR: CREW RESCHEDULING 

FOR SIGNIFICANT DISRUPTIONS  
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This chapter addresses the crew rescheduling problem during significant disruptions. 

Section 2.3 explains that significant disruptions lead to a loss of or restricted access to 

parts of the railway network due to an incident, affecting the delivery of a normal 

timetable. After a significant disruption is detected, a service recovery process is 

initiated. The IM discusses with affected TOCs. In this dialogue, they will consider the 

impact of the incident, estimate when normal infrastructure may be available and agree 

on contingency operation. For significant disruption management, the timetable should 

be recovered first. The main aim of crew rescheduling is to cover as many train trips as 

possible in a revised timetable. Since the timetable is recovered to its normal level, the 

crew should also return to their planned diagrams. The planned crew diagrams are 

designed to cover the regular timetable. This chapter answers the research questions 2, 

4 and 5 posed in Section 1.3. 

 

Since solving the crew rescheduling problem requires a revised timetable as input, using 

a model to reschedule the timetable after a disruption is first considered. A typical 

significant disruption is a line blockage, which limits the normal access to a part of the 

railway network and affects trains that are planned to run over the blockage site. 

Another typical significant disruptions include signalling failures on busy routes, 

maintenance overrun, overhead line equipment failures, etc. This section builds a 

timetable rescheduling model for the specific disruption - line blockage since a variety 

of unexpected events can lead to line blockage, e.g., damaged bridges, failed rolling 

stock on track, landslips.  Then, the crew rescheduling problem is modelled as a set 

covering problem to reschedule the crew after the disruption.  
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The structure of the remainder of the section is as follows. Section 4.1 describes the 

model for solving the timetable rescheduling problem and presents the results of several 

experimental tests. Sections 4.2 and 4.3 introduce the mathematical programming and 

techniques used in the following sections. Section 4.4 describes the model and method 

for solving the crew rescheduling problem for significant disruptions. Experimental 

results of using the model and method are presented. Moreover, three different 

dynamic programming search techniques are used in the method and compared for 

solving the crew rescheduling problem. Section 4.5 is the conclusion.  

4.1. Timetable Rescheduling Problem 

As explained in Section 2, the basis of passenger railway operations is the timetable 

which describes a set of train services scheduled to run from one terminal station to 

another and call or pass at several intermediate stops at specific times. Due to 

unplanned events, trains often cannot run on time as set out in the timetable. This 

section aims to provide a model to recover the timetable for complete line blockage, for 

which a train service recovery process needs to be initiated.  
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Figure 12 Three stages of the train service recovery process 

 

In Section 2.3.1, the train service recovery framework process has been described from 

the perspective of the involved organisations and actors. Here, the network status 

(infrastructure availability and the number of trains running) of the train service 

recovery process is expressed. Figure 12 shows the three stages of the train service 

recovery process: the transition phase, degraded operation phase and recovery phase. 

Following a disruption, railway operation is at a restricted access state in which total 

infrastructure capacity cannot be provided to enable the running of a regular timetable. 

A reduced timetable is used during the degraded operation phase. After a certain 

amount of time, the infrastructure for the regular timetable will again become available 

and normal running can be gradually restored. In the transition phase, some trains are 

directly cancelled or delayed due to the initial disruption. Trains start to queue up, and 

a quick decision is needed to prevent delay propagation through the network. In the 
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degraded operation phase, a revised timetable based on a contingency plan adapted for 

the specific circumstances may be used.  In this phase, the number of trains running on 

the network is the lowest. During the recovery phase, the regular running of train service 

is gradually restored, and the number of trains running on the network rises.  

 

This section aims to provide a revised timetable which covers the three phases of train 

service recovery. Two time periods are defined for use in the work. One is the recovery 

period during which the disrupted timetable is recovered. The recovery period is 

regulated by rescheduling start and end times. After the recovery period, the method 

guarantees that operations can return to a normal timetable as long as the 

infrastructure and rolling stock required to run a full timetable are available. After the 

recovery period, train operations on the network should be at the point “full timetable 

restored”, shown in Figure 12, with all initially scheduled services running. How to set 

the rescheduling start and end time is explained in Section 4.1.2. The other is the 

blockage period during which no train can pass the blockage area, and the infrastructure 

is at a restricted access state, as shown in Figure 12, infrastructure restricted access. The 

blockage period is regulated by blockage start and end times, which are usually taken as 

an assumption. Usually, the recovery period starts as the blockage period starts and 

ends later than the blockage period ends.  

 

An integer programming model is introduced to revise a timetable in case of a complete 

blockage taking into account infrastructure and rolling stock availability. Solving the 
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model requires a revised timetable covering the three phases of train service recovery. 

Operations are guaranteed to return to normal after rescheduling. Keeping the planned 

rolling stock circulation patterns is preferred, by penalising solutions that do not use the 

designed patterns. Finally, the model is successfully applied to the busiest line of a TOC 

in Great Britain. Later the results of the revised timetable will be used as input to solve 

the crew rescheduling problem in Section 4.4.6. 

 

The structure of the remainder of the section is as follows. Section 4.1.1 reviews the 

research on timetable rescheduling. Section 4.1.2 is the problem description. Section 

4.1.3 introduces how trains running on a network can be modelled. Section 4.1.4 

proposes a timetable rescheduling model in case of a complete blockage. Section 4.1.5 

is a simple example, and Section 4.1.6 applies the model to 14 scenarios using actual 

data from a TOC in Great Britain.  Section 4.1.7 concludes the timetable rescheduling 

topic.   

4.1.1. Related Works 

A large body of literature has investigated timetable rescheduling for railway disruption 

management. The literature closely linked to the timetable rescheduling model 

proposed is first reviewed in this section. Note that in the literature reviewed here, the 

trains running on a railway network are modelled by event-activity graphs.   

 

(Louwerse & Huisman, 2014) investigated the rescheduling of a railway timetable in 

cases of partial or complete blockage. They used an event-activity graph to describe 
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trains running on a double-track line at a macroscopic level. Rolling stock inventory and 

circulation were considered so trains could take rolling stock compositions from excess 

inventory or an early arriving train at the same station. An integer programming model 

was built to minimise train delays and cancellations and balance trains in both directions 

and over the operation period. Two real-world cases on the Dutch railway were tested 

to prove that all instances can be solved optimally within one minute. (Veelenturf, Kidd, 

Cacchiani, Kroon, & Toth, 2016) also used an event-activity graph to solve the railway 

timetable rescheduling problem during blockages based on (Louwerse & Huisman, 

2014). In their paper, the disruption management process takes place from the start of 

the disruption until the operation is fully restored. They considered a more complex 

railway network with open track sections, which can be single-tracked, double-tracked 

or contain more parallel tracks. The tracks can be used in both directions. (Veelenturf, 

Kidd, Cacchiani, Kroon, & Toth, 2016) took into account track, rolling stock composition 

capacity and train routings. The objective is to minimise train cancellations and delays. 

The model was tested successfully on many complete and partial blockage scenarios.  

 

The model in this section is based on the model used in (Louwerse & Huisman, 2014). In 

the present work, an event-activity graph is also used to model trains running on a 

double-track line. (Louwerse & Huisman, 2014) focused on the second phase (degraded 

operation phase) of the train service recovery process and aimed to provide a degraded 

timetable for this phase. They assumed the network was empty when the disruption 

started and aimed to provide a new cyclic timetable for the degraded operation phase. 

They do not consider modifying the timetable in the transition phase. To use their 
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solution for the degraded operation phase, some manual checks and further 

modifications may be required to implement the solution. Only after the necessary 

manual modifications to the revised timetable, can it be used as input to reschedule 

rolling stock and crew. In the present work, rescheduling the timetable for the three 

stages of the train service recovery process is considered. The railway network is not 

assumed to be empty when the rescheduling starts. When the rescheduling ends, the 

number of rolling stock compositions at each station must be the same as what is 

required for running a regular timetable afterwards. Thus, the running of a regular 

timetable can be recovered, as shown in Figure 12. The output, a revised timetable, can 

be directly used to reschedule rolling stock and crew. Moreover, the model proposed in 

this chapter minimises train cancellations, delays, and changes to the rolling stock 

circulation patterns. Thus, a solution with the fewest changes to the rolling stock 

circulation patterns while minimising cancellations and delays is preferred. Such 

solutions are easier to communicate, and more likely to be accepted and implemented 

by local dispatchers. 

 

Passenger-oriented timetable revision is also becoming increasingly popular.  Its 

objective is usually to minimise passengers' travel time and the operation cost of train 

operators. (Zhu & Goverde, 2020) proposed a mixed integer linear programming model 

which applies to dispatch measures of retiming, reordering, cancelling, flexible stopping, 

short turning trains, handles stock circulation at short-turn and terminal stations and 

takes into account the station capacity. An adapted fix-and-optimisation algorithm is 

developed to minimise the travel time and the number of transfers. (Zhan, Wong, Shang, 
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& Lo, 2021) simultaneously rescheduled trains and passenger routes from both 

operators’ and passengers' perspectives. The integrated train rescheduling and 

passenger routing problem is formulated as a mixed integer linear programming 

problem. Then the integrated problem is decomposed into two subproblems using the 

alternating direction method of multipliers (ADMM). Each subproblem can be solved 

effectively with a dynamic programming algorithm.   

4.1.2. Problem Description 

A railway network consisting of stations and double-track sections is considered in the 

problem. A blockage occurs on both tracks between two stations, and the tracks are 

entirely blocked. It is assumed that the duration of the blockage period is known, that 

is, the exact times for blockage start and end, 𝑡𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑏𝑙𝑜𝑐𝑘_𝑒𝑛𝑑 are known. A 

train uses a rolling stock composition for its full service, after which the rolling stock 

composition is moved to a shunting yard or used by another train. A rolling stock 

composition describes the number of individual rolling stock units and in which order 

they appear in a train. It is worth noting that rolling stock composition is considered as 

a whole in the problem. The compositions are not split during the day. Trains that have 

already passed their last scheduled stop before the blocked segment at the moment 

when the disruption occurs are assumed to continue to run as planned. The rescheduling 

start time 𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡 is set the same as 𝑡𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡 , and the rescheduling end time 

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑒𝑛𝑑  is set for a fixed period, such as two hours after 𝑡𝑏𝑙𝑜𝑐𝑘_𝑒𝑛𝑑.  
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The rescheduling end time should be set later than the expected blockage end time so 

that the infrastructure can restore a normal timetable. It is tricky to guarantee that 

rolling stock is available at the recovery period's end. During the train service recovery 

process, the rolling stock may be assigned to run different trains compared to the 

original plan due to the disruption. The number of rolling stock composition at each 

station may differ from the planned number. Rolling stock balance is introduced to 

describe the difference between the actual number of rolling stock compositions and 

the scheduled number of rolling stock compositions at the end of the recovery period at 

each station. The rolling stock balance at each station should be zero to guarantee the 

availability of rolling stock for the operations after the recovery period. Also, services 

run by rolling stock at the rescheduling end time must be completed on time.   

 

A rolling stock turning pattern is planned at each terminal station. It means that each 

incoming train is matched with an outgoing train. Applying a designed turning pattern 

can ease the task of local planning. Locally changing the turning pattern by matching an 

incoming train to a different outgoing train can require shunting operations and needs 

to be communicated and agreed upon with the local controllers. Thus, a penalty is added 

to the objective if such changes to the planned rolling stock pattern happen. The 

rescheduling timetable model proposed aims to minimise train cancellation and delays, 

and violations of planned rolling stock circulation.   
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Overall, this section solves the timetable rescheduling problem at the macroscopic level. 

It uses rescheduling strategies, including train cancellations and retiming, while 

considering infrastructure capacity and rolling stock availability constraints to recover 

train services for the whole process.  

4.1.3. Event-activity Graph 

The network model of trains running on the network is first introduced to formulate the 

timetable rescheduling problem. An event-activity graph is used to model trains running 

on a network. Each train runs from one terminal station to another, passing or stopping 

at intermediate stations. Trains that are planned to run through the blockage site during 

the blockage period should stop at a turnaround station before approaching the 

blockage site. Rolling stock used by the trains can be used for other trains that depart 

from the turnaround station. A turnaround station is defined as the last stop station 

before approaching the blockage site, where there are the necessary tracks for trains to 

change direction. The events and activities used in the event-activity graph are 

described in what follows.  

Event 

There are three types of events: train departure events, train arrival events and 

inventory events. A train departure/arrival event, denoted as 𝑒 , is one movement 

record from a journey. It has attributes including station, time and the associated 

service. The set of all such train departure/arrival events is denoted by 𝐸.  
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An inventory event at the station 𝑠, denoted 𝑖𝑠, represents the number of stationary 

rolling stock compositions that can be used for services that depart from this station at 

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡. It contains attributes like the station and the number of rolling stock 

compositions. The set of all such inventory events is denoted by 𝐼. 

Activity 

There are five kinds of activities: train activities, headway activities, inventory activities, 

circulation activities, and dummy activities.  

 

Two consecutive train events from one train form a train activity. A train activity starting 

with a train departure event and ending with a train arrival event represents a 

movement from one station to another. A train activity starting with a train arrival event 

and ending with a train departure event represents the train dwelling at a station.  The 

set of all train activities is denoted by 𝐴𝑡𝑟𝑎𝑖𝑛.  

 

A headway activity is a period reserved between two train events to guarantee safe 

running. The set of all headway activities is denoted by 𝐴ℎ𝑒𝑎𝑑. It models the minimum 

safety time between two trains running on the same track or dwelling on the same 

platform.  

 

An inventory activity is connected by (1) an inventory event to a train departure event; 

(2) a train arrival event to an inventory event. (1) means that services departing from a 
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terminal station can take stationary rolling stock in the station of the inventory event. 

(2) means that rolling stock used for trains arriving at a terminal station can become 

stationary in the station of the inventory event.  

 

A circulation activity is formed by connecting a train arrival event to a train departure 

event at turnaround or terminal stations. Note that circulation activities should be 

created for two trains that are from different train groups. Each train group contains 

trains that depart and end at the same station. Trains from the same group depart with 

a specific frequency (for example, one train per hour) with exceptions during peak time. 

The set of all turnaround activities is denoted by 𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡.  

 

Dummy activities are created for trains that run over the disrupted area. For train v that 

is scheduled to run over the disrupted area, let 𝑘 be the train 𝑣’s last stop before the 

blockage site and let 𝑙  be the train’s first stop after the blockage site. Let 𝑒𝑘
𝑎𝑟𝑟 and 

𝑒𝑙
𝑎𝑟𝑟denote the train arrival events at the station 𝑘, 𝑙 respectively. Let 𝑒𝑘

𝑑𝑒𝑝
 and 𝑒𝑙

𝑑𝑒𝑝
 , 

denote the train departure events at the station 𝑘, 𝑙 respectively. 𝑒𝑑𝑒𝑝 and 𝑒𝑎𝑟𝑟 are the 

train departure and arrival events for the train 𝑣 from its first and last station. Thus, the 

train 𝑣 can be partitioned into three trains, 𝑣𝛼, 𝑣𝛽 and 𝑣𝛾, where 𝑣𝛼 has events from 

𝑒𝑑𝑒𝑝  to 𝑒𝑘
𝑎𝑟𝑟, 𝑣𝛽 has events from 𝑒𝑘

𝑑𝑒𝑝
 to 𝑒𝑙

𝑎𝑟𝑟 and 𝑣𝛾 has events from 𝑒𝑙
𝑑𝑒𝑝

 to 𝑒𝑎𝑟𝑟.  A 

dummy activity is created from 𝑒𝑘
𝑎𝑟𝑟  to  𝑒𝑘

𝑑𝑒𝑝
 and 𝑒𝑙

𝑎𝑟𝑟  to 𝑒𝑙
𝑑𝑒𝑝

. Note that a dummy 

activity is not only created between trains 𝑣𝛼 and  𝑣𝛽, 𝑣𝛽and 𝑣𝛾 from the same train, 
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but also if  𝑣𝛼 and  𝑣𝛽, 𝑣𝛽and 𝑣𝛾are defined as parts of different trains but from the 

same train group. The set of all dummy activities is denoted by 𝐴𝑑𝑢𝑚𝑚𝑦.  

 

A train event 𝑒 ∈ 𝐸 has incoming activities and outgoing activities. Using 𝐴𝑖𝑛
𝑒 ={𝑎: 𝑎 is 

an incoming activity for train event 𝑒} to denote incoming activities. Similarly, 𝐴𝑜𝑢𝑡
𝑒 ={𝑎: 

𝑎 is an outgoing activity for a train event 𝑒}. Notations 𝐴𝑖𝑛
𝑖𝑠  and 𝐴𝑜𝑢𝑡

𝑖𝑠  are defined similarly 

for inventory events 𝑖𝑠 at the station 𝑠. The essential elements used in an event-activity 

graph to simulate trains running on a network are summarised in Table 8. 

 

Table 8 Basic elements used in an event-activity graph 

Parameters Explanation 

𝑣 train 𝑣 

𝑒 train event 𝑒 

𝑖𝑠 inventory event 𝑖𝑠 at station 𝑠 

𝑎 train / headway / inventory / circulation / 

dummy activity 𝑎 
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The illustration of a simple event-activity graph on a double track line with two terminal 

stations is given in Figure 13. It is worth noting that inventory events can be created for 

any station if there is stationary rolling stock at the station between the rescheduling 

start and end time.  

 

Figure 13 Event-activity graph built for a complete blockage 

In Figure 13, rectangles correspond to events. Train activities are shown with solid lines. 

Dashed lines with single dots represent headway activities. Inventory activities are 

dashed lines with double dots. Dashed lines show rolling stock circulation activities. 

Dummy activities are shown with dotted lines. The shaded rectangle indicates the 

blockage site. 

4.1.4. Model 

For train event e, an integer variable 𝑥𝑒  is introduced. 𝑥𝑒  represents the replanned 

occurrence time of the train event 𝑒 and takes an integer value that regulates the train 

event time to minutes. For train v, let 𝑦𝑣 be 1 if a train 𝑣 is cancelled and 0 otherwise. 

For each activity a, let 𝑧𝑎 be 1 if the activity 𝑎 is cancelled; 0 otherwise. Here 𝑎 can be 
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any of the activity types mentioned above. The variables used to formulate a timetable 

rescheduling model are listed in Table 9. 

 

Table 9 Variables used in a timetable rescheduling model 

variable Explanation 

𝑥𝑒 the occurrence time of train event e 

𝑦𝑣 It takes 1 if train v is cancelled, 0 otherwise 

𝑧𝑎 It takes 1 if train / headway / inventory / 

circulation / dummy activity a is cancelled, 0 

otherwise 

 

Constraints 

(a) Event time constraints 

Trains should depart and arrive at a given time. The event 𝑒, 𝑡𝑒 is the planned event 

occurrence time. A train should not be replanned more than 𝑡𝑑𝑒𝑙𝑎𝑦 minutes later than 

initially scheduled, a fixed number set by controllers, or depart earlier than planned.  

 𝑡𝑑𝑒𝑙𝑎𝑦 ≥ 𝑥𝑒 − 𝑡𝑒 ≥ 0   ∀𝑒 ∈ 𝐸 (4.1.1) 

(b) Duration constraints  
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Notation |𝑎| is used to show the length of an activity 𝑎. Generally, it can take different 

values depending on 𝑎. For train activity 𝑎, the planned duration |𝑎| can be obtained 

from the timetable; the value |𝑎| should be at least the same as the scheduled train 

activity duration, see constraint (4.1.2) below. However, for headway, inventory, 

circulation and dummy activities 𝑎, |𝑎| depends only on the type of the activity and has 

a fixed value. For headway, inventory, circulation and dummy activities, 𝑎 = (𝑒, 𝑓). If 

the activity is cancelled (𝑧𝑎 = 1), there is no constraint on the occurrence time of events 

𝑒  and 𝑓 . However, if the activity is taken (𝑧𝑎 = 0), the two events take place. The 

occurrence time of the event 𝑓 should be later than the occurrence time of the event 𝑒 

plus |𝑎|: see constraint (4.1.3). 𝑀  stands for a big enough constant number, which 

guarantees that constraint (4.1.3) holds if 𝑧𝑎 = 1.  

 𝑥𝑓 − 𝑥𝑒 ≥ |𝑎|   ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴𝑡𝑟𝑎𝑖𝑛 (4.1.2) 

 𝑥𝑓 − 𝑥𝑒 + 𝑀𝑧𝑎 ≥ |𝑎|   ∀𝑎 = (𝑒, 𝑓)

∈ 𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡 ∪ 𝐴𝑖𝑛𝑣 ∪ 𝐴𝑑𝑢𝑚 

(4.1.3) 

(c) Headway constraints 

To formulate headway constraints, for each headway activity 𝑎 = (𝑒, 𝑓), variables 𝜆𝑒𝑓 

and 𝜆𝑓𝑒 are introduced. Variable 𝜆𝑒𝑓 is defined as taking 1 if the event 𝑒 happens before 

𝑓  and 0  otherwise. Similarly, 𝜆𝑓𝑒  takes 1 if the event 𝑓  happens before 𝑒  and 0 

otherwise.  Let 𝑣𝑒 denote the train which contains the train event 𝑒 and 𝑣𝑓 denote the 

train which includes the train event 𝑓. If an event 𝑒 happens before 𝑓, 𝑓 can only occur 

after 𝑒 plus the minimum headway time |𝑎|: see constraint (4.1.4). Suppose an event 𝑓 
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happens before the event e, the event 𝑒 can only occur after the event 𝑓 plus minimum 

headway time |𝑎|; see constraint (4.1.5). If neither train 𝑣𝑒 and 𝑣𝑓 is cancelled,  𝜆𝑒𝑓 or 

𝜆𝑓𝑒 should take 1: see constraint (4.1.6).  

 𝑥𝑓 − 𝑥𝑒 + 𝑀൫1 − 𝜆𝑒𝑓൯ ≥ |𝑎|   ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.4) 

 𝑥𝑒 − 𝑥𝑓 + 𝑀൫1 − 𝜆𝑓𝑒൯ ≥ |𝑎|   ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.5) 

 𝜆𝑒𝑓 + 𝜆𝑓𝑒 + 𝑦𝑣𝑒
+ 𝑦𝑣𝑓

≥ 1   ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.6) 

(d) Inventory constraints 

The number of stationary rolling stock compositions at the station limits the number of 

inventory activities taken at a station.  

 ∑ (1 − 𝑧𝑎)

𝑎∈𝐴𝑜𝑢𝑡
𝑖𝑠

≤ 𝑛𝑠   ∀𝑖𝑠 ∈ 𝐼 (4.1.7) 

(e) Rolling stock circulation constraints 

When the train 𝑣𝑒 arrives at a terminal or a turnaround station 𝑠, its rolling stock may 

be used for another train 𝑣𝑓 or become stationary at this station. For the train 𝑣𝑒  to 

depart from 𝑠 , it should have one rolling stock composition to support its service. 

Otherwise, it should be cancelled. This rolling stock can come from another train 𝑣𝑓 or 

rolling stock stationary at station s. Denoting by 𝐸𝑠
𝑎𝑟𝑟 the set of all train arrival events at 

a station 𝑠  and by 𝐸𝑠
𝑑𝑒𝑝

 the set of all train departure events from a station 𝑠  , the 

following constraints are obtained: 
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 ∑ (1 − 𝑧𝑎)

𝑎=(𝑒,𝑓)∈𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡∪𝐴𝑖𝑛𝑣∪𝐴𝑑𝑢𝑚

= 1 − 𝑦𝑣𝑒
   ∀𝑒 ∈ 𝐸𝑠

𝑎𝑟𝑟 (4.1.8) 

 ∑ (1 − 𝑧𝑎)

𝑎=(𝑓,𝑒)∈𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡∪𝐴𝑖𝑛𝑣∪𝐴𝑑𝑢𝑚

= 1 − 𝑦𝑣𝑒
   ∀𝑒 ∈ 𝐸𝑠

𝑑𝑒𝑝
 (4.1.9) 

Equation (4.1.8) means that for the train associated with the train event 𝑒 arriving at the 

station 𝑠, its rolling stock can be used for another train when a rolling stock circulation 

or dummy activity is taken, or its rolling stock can become stationary when an inventory 

activity is taken. Equation (4.1.9) means that the train associated with the train event 𝑒 

departing from the station 𝑠 can obtain its rolling stock from another train when a rolling 

stock circulation or dummy activity is taken, or rolling stock is stationary when an 

inventory activity is taken.  

(f) Cancelling trains during blockage constraints 

The set of trains planned to pass the blockage site during the blockage period is denoted 

by  𝑉𝑏𝑙𝑜𝑐𝑘. Each train 𝑣 in 𝑉𝑏𝑙𝑜𝑐𝑘 should be cancelled, that is: 

 𝑦𝑣 = 1  ∀   𝑣 ∈ 𝑉𝑏𝑙𝑜𝑐𝑘 (4.1.10) 

(g) Departed trains cannot be cancelled. 

A train that has already departed when rescheduling starts, that is 𝑒𝑑𝑒𝑝 ≤

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡 , cannot be cancelled. 𝑉𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑝 stands for the set of such trains. 

 𝑦𝑣 = 0   ∀𝑣 ∈ 𝑉𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑝 (4.1.11) 

(h) Rolling stock balance and timetable recovery  



 

117 

Rolling stock balance means that at the end of the rescheduling period, the number of 

rolling stock compositions at stations should be the same as the required number from 

the initial timetable. Rolling stock balance guarantees enough rolling stock compositions 

at each station to run a timetable for the remainder of the day after rescheduling ends. 

It implies that operations can return to the normal level, and a regular timetable can be 

recovered. Let 𝑚𝑠 be the required number of rolling stock compositions at station s.   

 ∑ (1 − 𝑧𝑎)

𝑎∈𝐴𝑖𝑛
𝑖𝑠

= 𝑚𝑠   ∀𝑖𝑠 ∈ 𝐼 (4.1.12) 

The left part of the equation (4.1.12) means that the trains arriving at station s and their 

rolling stock remain stationary. The accumulated number of such rolling stock should 

equal the number required at this station to perform a regular timetable after the 

rescheduling end time. Note that if trains are cancelled in “pairs”, the rolling stock 

composition is balanced. The term “cancelled in pairs”, means that the number of trains 

cancelled in both directions is equal between any two stations.  

Objective 

As discussed before, keeping the planned rolling stock circulation patterns is preferred, 

which can reduce unnecessary shunting operations.  In the objective, a penalty is 

imposed for circulation, inventory and dummy activities if they violate the planned 

circulation patterns. 𝐴𝑤𝑝 is the set of circulation, inventory and dummy activities that 

contravene the planned circulation patterns. The objective function for the timetable 

rescheduling problem is the sum of weighted costs of train cancellations, delays and 

unplanned rolling stock circulations. Variables 𝛼, 𝛽 are the weights for cancellation and 
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delay, respectively. Variable 𝛾𝑎 is the weight for choosing an activity that violates the 

rolling stock circulation pattern and depends on the activity type. Thus, the model for 

the timetable rescheduling problem during a complete blockage is: 

𝑚𝑖𝑛 ∑ 𝛼𝑦𝑣

𝑣∈𝑉

+ ∑ 𝛽(𝑥𝑒 − 𝑡𝑒)

𝑒∈𝐸

+ ∑ 𝛾𝑎(1 − 𝑧𝑎)

𝑎∈𝐴𝑤𝑝

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 (4.1.1) − (4.1.12)  

4.1.5. an Illustrative Example 

Figure 14 shows an example of timetable rescheduling in case of a one-hour blockage. 

Trains are running between stations S1 and S4. A one-hour stoppage (11:00-12:00) 

appears between S2 and S2B. Trains from both directions short turn at S2 and S2B, 

respectively. The grey shaded area between S2 and S2B is the blockage site. Four trains 

are disrupted due to the blockage, and they can be rescheduled as the arrow shows. 

Since the rescheduling does not affect other trains at a macro level, operations can 

return to normal at 12:30.     

 



 

119 

 

Figure 14 Timetable rescheduling in case of one-hour complete blockage 

4.1.6. Experimental Tests 

Experiments are carried out using one TOC network in Great Britain. Compared to many 

European countries, a non-cyclic timetable is used in Great Britain. Extra trains are 

added on some lines during a day’s operations. Thus, a blockage with the same duration 

may affect trains differently if it occurs at different times on a day. Also, the same 

rescheduling solution may not be feasible to implement for the same blockage occurring 

at different times. Thus, a blockage with the same duration occurring at different times 

of a day is tested. The disruption site is set on its busiest line, which runs between 

Stations S1 and S2 with 15 trains running from S1 to S4 stopping at S2 hourly and 16 

trains running from S4 to S1 stopping at S2 hourly. 18 trains running from S1 to S2 hourly 
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and 16 trains running from S2 to S1 hourly. Most of them depart from the terminal 

station at the same minutes past each hour with a few exceptions. There are 2 extra 

trains running from S1 to S3 during afternoon peak time and 1 extra train running from 

S3 to S1 in the early morning. 1 extra train runs from S2 to S1 during morning peak time 

and in the evening. 4 trains run from S3 to S4 in the early morning and 3 trains run from 

S4 to S3 at late night. The trains running on the line are shown in Figure 15. 

 

 

Figure 15 Trains running on the busiest line of a TOC in Great Britain 

Trains Considered in the Model 

Directly and potentially affected trains by the disruption during the recovery period are 

selected to build the timetable rescheduling model. Directly affected trains are trains 

that run over the blockage area and need to turn around at a station due to the blockage 

during the blockage period. Trains scheduled to run during the recovery period and use 

the same rolling stock used by the directly affected trains are potentially affected trains.  
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Experimental Set up 

After studying the planned timetable and discussing with controllers, in the tests, the 

period for circulation activities is set as 5 minutes. The headway, dummy, and inventory 

activities period is set as 2 minutes. The cancellation weight 𝛼 is set as 1000, and the 

delay weight 𝛽 is 1. For penalising an inventory or dummy activity which violates the 

rolling stock pattern, 𝛾𝑎  is set as 10. For penalising a rolling stock circulation activity 

which infringes the rolling stock pattern, 𝛾𝑎 is set as 50. A rolling stock circulation activity 

violation has a higher cost due to our experience during experimental tests. It is noticed 

that in a station where the inventory event exists, keeping the rolling stock turning 

pattern is prioritised over using spare stationary rolling stock. The model is solved with 

CPLEX V12.10.0 on a computer with 16 GB RAM and 1.99GHz. The main aim of the 

experiments is to test if the model and solver can solve line blockage problems. Also, 

two extra questions need to be answered: how a longer turnaround time affects 

solutions and how the maximum allowed delay time affects solutions. As shown in 

Figure 15, most trains run on the line with a fixed one-hour period between them. 

However, extra trains run on the line during morning and afternoon peak times. Thus, 

the same delay time and turnaround setting may affect trains differently at different 

times in a day. During busy times, more trains may need to be delayed or cancelled for 

the same delay time or turnaround time.   

 

14 blockage (from 6 am to 7 pm) scenarios on the line between S1 and S4 are tested. 

The blockage site is at a station between S1 and S2. Trains approaching from both sides 
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short turn before approaching the blockage site. For each test, the blockage period is 

set as 3 hours, and the recovery period is set as 5 hours.  For each scenario, a model is 

built as in Section 4.1.4. The results of 14 scenarios are shown in Tables 10 and 11 with 

the different turnaround time settings. A blockage id identifies each scenario. NT stands 

for the number of trains considered in the model. TC stands for the number of cancelled 

trains, and TD stands for the number of delayed trains. The experimental tests are 

conducted in two categories: In one category, the maximum delay 𝑡𝑑𝑒𝑙𝑎𝑦 is set as 10, 

and 20 in another.  

Experimental Tests 1  

Table 10 Timetable rescheduling with the turnaround time (5 minutes) at blockage 

sites 

Scenarios 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 𝑡𝑑𝑒𝑙𝑎𝑦 = 20 

Id Blockage time NT TC TD Objective TC TD Objective 

AA_06 06:00-09:00 76 10 0 10400 10 0 10400 

AA_07 07:00-10:00 73 14 0 14400 12 2 12490 

AA_08 08:00-11:00 78 18 0 18450 16 4 16584 

AA_09 09:00-12:00 78 18 0 18450 16 4 16578 

AA_10 10:00-13:00 78 18 0 18450 16 4 16592 
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AA_11 11:00-14:00 78 18 0 18450 16 4 16578 

AA_12 12:00-15:00 78 18 0 18450 16 4 16594 

AA_13 13:00-16:00 82 18 0 18450 16 4 16578 

AA_14 14:00-17:00 81 22 1 22606 20 5 20784 

AA_15 15:00-20:00 88 20 2 20710 18 6 18872 

AA_16 16:00-19:00 88 15 5 15638 15 5 15638 

AA_17 17:00-22:00 80 17 1 17726 17 1 17726 

AA_18 18:00-21:00 76 18 1 18454 16 5 16570 

AA_19 19:00-22:00 64 12 1 12514 12 1 12514 

 

 

The results for timetable rescheduling with a smaller turnaround time (5 minutes) at a 

turnaround station are shown in Table 10. Each scenario is solved within 2 seconds. 

Table 10 shows that 64 to 88 trains are considered in the problem scenarios. Overall, 

the 14 scenarios can be further grouped into (AA_06 - AA_07), (AA_08 - AA_12), (AA_13 

- AA_17) and (AA_18 - AA_19) based on the number of trains involved in each group.  

Fewer trains are considered in the early morning (76 trains for scenario AA_06 and 73 

trains for scenario AA_07). The number of trains considered in models for AA_08 - 
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AA_12 is constant at 78. The number of trains considered in models for AA_13 - AA_17 

is higher (80-88). For the last two scenarios (AA_18 - AA_19), fewer trains are considered 

in the models (76,64). 

 

When 𝑡𝑑𝑒𝑙𝑎𝑦 is set as both 10 or 20, the maximum and minimum values of the objective 

are obtained for the scenarios starting at 14:00 and 06:00, respectively. When 𝑡𝑑𝑒𝑙𝑎𝑦 =

10, the maximum and minimum objectives are 22606 and 10400, respectively. When 

𝑡𝑑𝑒𝑙𝑎𝑦 = 20, the maximum and minimum values of the objective are 20784 and 10400, 

respectively. When 𝑡𝑑𝑒𝑙𝑎𝑦 = 10, the scenario starting at 16:00 has the most significant 

number of delayed trains, 5. When 𝑡𝑑𝑒𝑙𝑎𝑦 = 20, the scenario starting at 15:00 has the 

most significant number of delayed trains, 6. Compared to the maximum delay set as 

10, more trains are delayed in some scenarios (AA_07 - AA_15 and AA_18) when the 

maximum delay is set as 20. In exchange, fewer trains are cancelled. Solutions have 

lower or equal cost when the maximum delay is 20. 

 

For the blockage starting at 06:00, no trains are required to be delayed, and 10 trains 

are cancelled when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 or 20. For the blockage scenario starting at 07:00, 14 

trains are cancelled when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 while 12 trains are cancelled, and two trains are 

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 20.   
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For the blockage from 08:00 to 13:00, 18 trains must be cancelled, and no train is 

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10. Fewer trains (16) are cancelled, and more trains (4) are 

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10. 

 

For the blockages starting in the afternoon (14:00 - 17:00), between 15 and 22 trains are 

cancelled, and between 1 and 5 trains are delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10. With 𝑡𝑑𝑒𝑎𝑙𝑦 = 20, 

there are between 15 and 20 cancelled trains and between 1 and 6 delayed trains.  

 

For the last two scenarios, when the blockage starts at 18:00, 18 trains are cancelled, 

and one train is delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10, compared to 16 trains that are cancelled and 

five trains delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 20. When the blockage starts at 19:00, there are 12 

train cancellations and one train delay for both 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 or 20.   

Experimental Tests 2  

Table 11 Timetable rescheduling with the significant turnaround time (15 minutes) at 

blockage sites 

Scenario 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 𝑡𝑑𝑒𝑙𝑎𝑦 = 20 

Id Blockage time NT TC TD Objective TC TD Objective 

AA_06 06:00-09:00 76 10 2 10420 10 2 10420 

AA_07 07:00-10:00 73 14 2 14420 14 2 14420 
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AA_08 08:00-11:00 78 18 0 18450 18 0 18450 

AA_09 09:00-12:00 78 18 0 18450 18 0 18450 

AA_10 10:00-13:00 78 18 0 18450 18 0 18450 

AA_11 11:00-14:00 78 18 0 18450 18 0 18450 

AA_12 12:00-15:00 78 18 0 18450 18 0 18450 

AA_13 13:00-16:00 82 18 0 18450 18 0 18450 

AA_14 14:00-17:00 81 22 2 22678 22 3 22638 

AA_15 15:00-20:00 88 20 4 20794 20 4 20794 

AA_16 16:00-19:00 88 19 4 19532 17 6 17616 

AA_17 17:00-22:00 80 20 1 20618 18 5 18780 

AA_18 18:00-21:00 76 18 1 18454 18 1 18454 

AA_19 19:00-22:00 64 12 1 12514 12 1 12514 

 

When a longer turnaround time is required at a turnaround station (15 minutes), the 

rescheduling results are shown in Table 11. Compared to the results obtained in Table 

10 with a lower turnaround time (5 minutes), more trains are required to be cancelled, 

no matter if the maximum delay is set as 10 or 20 minutes. Also, the solution costs are 
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higher than in the scenarios solved with a shorter turnaround time. A more considerable 

delay time can decrease the number of cancelled trains and improve the solution cost. 

However, train cancellation may be opted for if the delay causes the next train to catch 

up.  

 

In conclusion, a longer maximum delay can decrease the number of cancelled trains and 

lead to better solutions. There is a trade-off between delays and cancellations. Some 

trains can be delayed rather than cancelled when the maximum delay time is extended. 

Also, a longer turnaround time at the turnaround stations can cause more trains to be 

cancelled and delayed, leading to worse results. Since the model is guaranteed to return 

to normal operations after rescheduling time, delays and cancellations will not affect 

trains outside the recovery period.    

4.1.7. Conclusion 

In this section, a model is proposed for the timetable rescheduling problem in case of a 

complete blockage. It gives a revised timetable which covers the three phases of a train 

service recovery process: the transition phase, degraded operation phase and recovery 

phase. The railway network is not assumed empty when rescheduling starts. The railway 

services are planned to return to their normal level when rescheduling ends. The model 

uses rescheduling strategies of cancellation and retiming and considers constraints, 

including infrastructure, rolling stock availability, and rolling stock balance. It minimises 

train cancellations, delays and changes to rolling stock circulation patterns. A solution 

that requires changes to the current rolling stock circulation patterns without 
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decreasing cancellations and delays is not preferred. It has been successfully tested on 

14 scenarios of a complete blockage on a double-tracked line using actual data from a 

TOC in Great Britain. Timetable rescheduling is the first step in railway disruption 

management. In Section 4.4,  the crew rescheduling, is explained.  

4.2. Optimisation Problems  

In this section, some basic mathematical programming concepts are presented, which 

will be used in the remainder of the thesis.   

4.2.1. Linear Programming, Duality and Reduced Cost 

Linear programming is to optimise objective function linear in terms of decision 

variables while a set of linear constraints and sign restrictions are imposed on these 

decision variables, see (Kantorovich, 1939), (Fang & Puthenpura., 1993) and (Dantzig & 

Thapa., 2003). Consider a linear programming problem in standard form: 

 𝑚𝑖𝑛 𝑐𝑇𝑥 𝐿𝑃 

 𝐴𝑥 = 𝑏  

 𝑥 ≥ 0  

Here 𝐴 ∈ 𝑅𝑚×𝑛, 𝑐, 𝑥 ∈ 𝑅𝑛and  𝑏 ∈ 𝑅𝑚 

The dual of the above 𝐿𝑃 is: 

 𝑚𝑎𝑥 𝑏𝑇𝜋 𝐷𝑃 
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 𝐴𝑇𝜋 ≤ 𝑐,   𝑤ℎ𝑒𝑟𝑒 𝜋 ∈ 𝑅𝑚  

Theorem 1 Strong Duality: If the LP problem has an optimal solution, then so does 

its dual and their optimal values are equal. 

The reduced cost vector is defined as 𝑐 − 𝐴𝑇𝜋, with each element corresponding to a 

variable 𝑥. For a minimisation problem, a negative reduced cost associated with the 

corresponding variable component 𝑥𝑖 can be used to construct a better solution for the 

LP problem.  

4.2.2. Integer Programming and Lagrangian Relaxation 

A standard integer linear problem (𝐼𝐿𝑃) is stated as follows.  

 𝑚𝑖𝑛
𝑥

𝑐𝑥 (𝐼𝐿𝑃) 

 𝐴𝑥 ≥ 𝑏  

 𝐵𝑥 = 𝑑  

 𝑥 ≥ 0  

 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  𝑓𝑜𝑟  𝑖 ∈ 𝐼  

Where 𝑏, 𝑐 and 𝑑 are vectors, 𝐴 and 𝐵 are matrices of conformable dimensions and the 

index set 𝐼 denotes the variables required to be an integer. The theory of Lagrangian 

relaxation for integer programming is explored in (Geoffrion, 1974).  
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Lagrangian relaxation is a technique to relax some constraints in an optimisation 

problem. The idea is to remove the constraint and add a penalty in the objective function 

to penalise any solution that violates the constraint. Thus, a Lagrangian Relaxation 

Problem (𝐿𝑅𝑃) can be obtained by bringing the explicit constraints into the objective 

function multiplied by the associated Lagrangian multiplier vector 𝜆. For example, a 𝐿𝑅𝑃 

for a given 𝜆  can be formulated as follows: 

 𝐿(𝜆) = 𝑚𝑖𝑛
𝑥

𝑐(𝑥) + 𝜆(𝑏 − 𝐴𝑥) (𝐿𝑅𝑃) 

 𝑠. 𝑡. 𝐵𝑥 = 𝑑  

 𝑥 ≥ 0  

 𝑥𝑗  𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝐼  

For any given 𝜆 ≥ 0, 𝐿(𝜆) is the lower bound of the optimal value of the 𝐼𝐿𝑃. 

Theorem 2 Let 𝑣(𝐿𝑅𝑃)  be the optimal value of 𝐿𝑅𝑃  and 𝑣(𝐼𝐿𝑃)  is the optimal 

value of 𝐼𝐿𝑃, 𝑣(𝐿𝑅𝑃) ≤ 𝑣(𝐼𝐿𝑃) . 

Proof:  

Assuming 𝑥∗ is an optimal solution to the Problem (𝐼𝐿𝑃) and 𝜆 ≥ 0, then 𝜆(𝑏 − 𝐴𝑥∗) ≤

0 

𝑣(𝐿𝑅𝑃) ≤ 𝑐𝑥∗ + 𝜆(𝑏 − 𝐴𝑥∗) ≤ 𝑣(𝐼𝐿𝑃) 

Also, since the constraints in the 𝐼𝐿𝑃  are taken into the objective in Lagrangian 

relaxation, the feasible set of the 𝐼𝐿𝑃 is a subset of the feasible set of the Lagrangian 
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relaxation. Thus, for the 𝐼𝐿𝑃 , the optimal value of the corresponding Lagrangian 

relaxation (𝐿𝑅𝑃) is lower than or equal to the optimal value of 𝐼𝐿𝑃.   

Lagrangian dual problem 

Since 𝐿(𝜆) can provide a lower bound for a given 𝐼𝐿𝑃, it is more interesting to obtain 

the best lower bound. Taking the maximum of the Lagrangian relaxation gives the 

following Lagrangian dual problem (LDP): 

𝑚𝑎𝑥{𝐿(𝜆)} = 𝑚𝑎𝑥
𝜆

{𝑚𝑖𝑛
𝑥

{(𝑐𝑥 + 𝜆(𝑏 − 𝐴𝑥) : 𝐵𝑥 = 𝑑, 𝑥 ≥ 0, 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 ∈ 𝐼}} 

To solve the Lagrangian dual problem, the subgradient method is used. Lagrangian and 

linear relaxation can provide a lower bound to the ILP problem; the relation between 

these lower bounds in Theorem 3 can be found in (Geoffrion, 1974). A linear relaxation 

of the integer program is the problem with the same objective and the same constraints 

except for the integrality restrictions, which are removed. 

Theorem 3 Let ILP be an integer linear program. Then the optimal value achieved 

by the Lagrangian relaxation of ILP is greater than or equal to the 

optimal value achieved by the linear relaxation of ILP.  

4.2.3. Set Covering Problem 

The minimum set covering problem can be formulated as the following integer linear 

program. 

𝑚𝑖𝑛 ∑ 𝑥𝑗

𝑛

𝑗=1
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 𝐴𝑥 ≥ 1 

𝑥 ∈ {0,1}𝑛 

Here 𝐴  is a 𝑚 × 𝑛  matrix, 𝑎𝑖𝑗 ∈ {0,1} . The set covering problem is NP-hard of 

combinatorial optimisation.  Given a collection of elements, the set covering problem 

aims to find the minimum number of sets that incorporate (cover) all of these elements  

(Grossman & Wool, 1997). Many problems in industry can be formulated as set covering 

problems, for example, job-machine problems, scheduling problems, and picking up the 

best locations to cover the maximum number of customers. Crew rescheduling can be 

formulated using a variety of set covering problems.  

4.3. Optimisation Techniques 

The following mathematical techniques are used in the algorithm to solve the crew 

rescheduling problem for significant disruptions. Before presenting the algorithm, a 

general description of these mathematical techniques is provided.  

4.3.1. Column Generation 

In large linear programs with many more variables than the number of constraints, it is 

usually impossible to consider all the variables explicitly. Also, only a small subset of 

variables will likely be used in the optimal solution, and most of the variables will be 

assigned to 0. Based on this idea, column generation was first proposed by (Ford Jr & 

Fulkerson, 1958).  
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The linear program is formulated as two parts, restricted master problem (RMP) and 

subproblem. RMP has a subset of variables, and its objective function is the same as that 

of the linear problem, where only these variables are nonzero. The subproblem is to find 

a new variable of negative reduced cost for minimisation problems using the current 

dual values that are generated from the RMP and bring it to the variable pool of RMP. 

Usually, the subproblem is referred to as a pricing problem. A general column generation 

scheme can be seen in Algorithm 3.  

  

Algorithm 3 Column generation scheme 

Various column generation strategies can be designed to improve speed. In every 

iteration of the subproblem, more than one new variable with a negative reduced cost 

can be added to the RMP. It will increase the time required for one iteration since RMP 

needs to solve a bigger scale problem, but it may decrease the number of iterations. The 

reader is referred to (Vanderbeck, 1994) for the ways to choose a ``good'' subset of 

columns. 

4.3.2. Subgradient Method 

For solving the crew rescheduling problem (see Section 4.4), the Lagrangian dual 

problem is created for the crew rescheduling model. The subgradient method is 
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commonly used to solve a Lagrangian dual problem. The subgradient method is an 

iterative algorithm for obtaining the optimal value of non-differentiable convex 

minimisation problems. Shor first developed it in his book (Shor, 1985). Compared to 

the gradient used in the steepest descent method, the subgradient does not require a 

function to be differentiable, so it always exists for a convex or concave function. 

Definition A function 𝑓: 𝐷 → ℛ is convex if its domain D is a convex set and for all 

𝑥,  𝑦  in its domain, and all 𝜆 ∈ [0,1], it satisfies 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤

𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦). A function 𝑓 is concave if −𝑓 is convex.  

Consider a problem for convex 𝑓: 

𝑚𝑖𝑛 𝑓(𝑥) 

To minimise 𝑓, the subgradient method uses the iteration  

𝑥𝑘+1 = 𝑥𝑘 − 𝛥𝑘𝑔𝑘 , 

where 𝑥𝑘 is the value of 𝑥 at 𝑘𝑡ℎ iteration. The variable 𝑔𝑘 is a subgradient vector and 

𝛥𝑘 is the step size at the 𝑘𝑡ℎ iteration. Since the subgradient method does not have the 

descent property of the gradient method, it is necessary to track the best result 𝑓𝑏𝑒𝑠𝑡
𝑘  so 

far in every iteration 𝑘, 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑚𝑖𝑛{𝑓𝑏𝑒𝑠𝑡

𝑘−1, 𝑓(𝑥𝑘)} for all 𝑘. 

4.3.3. Shortest Path Problems with Resource Constraints 

The shortest path problem with resource constraints (SPPRC) is widely used as a 

subproblem to contribute to the success of the column generation method. It 

constitutes a flexible tool to model complex cost structures and a wide variety of rules 

that define the feasibility of a path. It was introduced by (Desrochers, 1986) in his PhD 
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thesis as a subproblem of a bus driver scheduling problem. Solving SPPRC means finding 

the shortest path among all feasible paths that start from a source node and end at a 

sink node. Several varieties of SPPRC are studied in literature and can be classified by 

resource accumulation ways, additional path structural constraints, objective and 

underlying network. Readers are referred to  (Irnich & Desaulniers, 2005) to read the 

detailed descriptions of various SPPRC problems.  

 

In this work, SPPRC is considered on an acyclic graph where paths are all elementary 

paths, in which all nodes are pairwise different. A digraph 𝐺 = (𝑉, 𝐴) is defined, where 

𝑉 and 𝐴 are the set of nodes and arcs, respectively. A path 𝑃 = (𝑣0, 𝑣1, … 𝑣𝑝) is a finite 

sequence of nodes where each node pair (𝑣𝑖 , 𝑣𝑖+1), 𝑖 = 0, … , 𝑝 − 1 is connected by an 

arc 𝑎 ∈ 𝐴. 𝑣(𝑃) = 𝑣𝑝 is the end node of the path 𝑃. A resource extension function is 

defined for every arc in a graph and every resource. Let 𝑘 be the number of resources; 

a vector 𝑇𝑖 = ൫𝑇𝑖
1, … , 𝑇𝑖

𝑘൯ ∈ 𝑅𝑘 is called the resource vector corresponding to the node 

𝑖. A non-decreasing resource extension function (REF) is of the form: 𝑓𝑖𝑖+1
𝑘 = 𝑓𝑖−1𝑖

𝑘 +

𝑡𝑖𝑖+1
𝑘 . A path 𝑃 = (𝑣0, 𝑣1, … 𝑣𝑝) is feasible if there exist 𝑇𝑖 for all positions 𝑖 = 0, … , 𝑝 −

1 such that 𝑓𝑣𝑖,𝑣𝑖+1
≤ 𝑇𝑖+1.  

 

Finding a recovery diagram is solved as SPPRC in the crew rescheduling problem. The 

application of SPPRC in solving the crew rescheduling problem is explained in Section 

4.4.3.  
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4.4. Crew Rescheduling Problem 

Crew rescheduling is the next important step in railway disruption management, 

following timetable and rolling stock rescheduling. As the introduction (Chapter 1) 

explains, a driver’s daily work is regulated as a diagram. When a disruption happens, 

some drivers’ diagrams become infeasible, which means the drivers cannot follow them. 

Thus, each driver whose diagram is affected by a disruption should be assigned a 

recovery diagram. The definitions for a commencing activity and a terminating activity 

used in DFSCR for minor disruptions are given in Section 3.1.2. Here the definitions for 

these two terms are modified for crew rescheduling in significant disruptions.  

 

A commencing activity is set as the activity that a driver is performing or just finished 

performing when rescheduling starts. A terminating activity is set as the activity that a 

driver will perform when rescheduling ends. Between the commencing and terminating 

activities, a recovery diagram has different tasks than the planned diagram. However, a 

recovery diagram has the same activities from the sign-on to the commencing activity 

as a planned diagram. The reason is that when a disruption happens, these activities 

already happened. A recovery diagram has the same activities from terminating activity 

to the sign-off as in the planned diagram because a recovery diagram is supposed to be 

recovered back to the scheduled diagram. The main goal of the crew rescheduling 

problem is to reschedule crew to cover the train services in a revised timetable as much 

as possible with changes to planned crew diagrams as little as possible.  
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The work in this section is based on (Potthoff, 2010) following the idea of applying 

Lagrangian relaxation to the same crew rescheduling problem and using a greedy 

algorithm to solve a crew rescheduling model. In (Potthoff, 2010)’s work, it is not clear 

how a recovery diagram is found by solving SPPRC to optimality since SPPRC is an NP-

hard problem and it is not explained in (Potthoff, 2010) how they solve it. In this section, 

we give a general scheme to solve SPPRC. However, in some of the scenarios we tested, 

solving SPPRC to optimality using this general scheme takes too long time (more than 

500 seconds), which makes the method not suitable to be used in real-time. Then we 

proposed three search methods to speed up the process. Later, how these three search 

methods affect solutions is compared and analysed. A disruption neighbourhood is 

proposed to limit the problem size. The method for building an initial disruption 

neighbourhood and expanding a disruption neighbourhood is described. Also, (Potthoff, 

2010) did not elaborate on various connection types and described only the basic ones. 

This section gives detailed algorithms to construct different connection types between 

two tasks. These connection types and their costs are essential in building recovery 

diagrams that are very close to the diagrams used in practice and calculating recovery 

diagram costs. Such recovery diagrams are easier to be accepted by drivers. 

 

The model for the crew rescheduling problem for significant disruption is first given in 

Section 4.4.1. Then how to construct the graph to show the tasks considered in a crew 

rescheduling model and their connections are explained in Section 4.4.2. A recovery 

diagram can be found as SPPRC using the graph constructed, which is explained in 

Section 4.4.3. Using this basic knowledge, the method LRCG for solving the crew 
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rescheduling model is given in Section 4.4.4. Then a didactic example is given to 

demonstrate the model and method in Section 4.4.5. Several examples using actual data 

are presented and analysed in Sections 4.4.6 and 4.4.7.   

4.4.1. Problem Description and Model 

The crew rescheduling problem (CRP) can be mathematically modelled as follows. An 

idea, the disruption neighbourhood is introduced to help build the model for CRP. A 

disruption neighbourhood is used to select drivers that should be considered in the 

rescheduling problem. How to construct a disruption neighbourhood is explained in 

Section 4.4.5. For now, let 𝐷 be the set of all drivers in a disruption neighbourhood. For 

each driver 𝑑 ∈ 𝐷 , a recovery diagram 𝑟  should be generated and assigned to this 

driver. The set of recovery diagrams for the driver 𝑑 is denoted by 𝑅𝑑. If the recovery 

diagram 𝑟  of the driver 𝑑  covers a driving task 𝑡 , then 𝑎𝑡𝑟
𝑑  is 1 , 0  otherwise. Binary 

variables 𝑥𝑟
𝑑 and 𝑓𝑡 are introduced. 𝑥𝑟

𝑑 equals 1 if recovery diagram 𝑟 is chosen for the 

driver 𝑑, 0 otherwise. 𝑓𝑡 equals 1 if driving task 𝑡 is not covered, 0 otherwise. The crew 

rescheduling problem can be modelled as below: 

 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑟
𝑑𝑥𝑟

𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

+ ∑ 𝑝𝑓𝑡

𝑡∈𝑇

 CRP 

 ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 + 𝑓𝑡 ≥ 1, ∀𝑡 ∈ 𝑇  

 ∑ 𝑥𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷  
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 𝑥𝑟
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑟 ∈ 𝑅𝑑  𝑎𝑛𝑑 𝑓𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇  

Let 𝑐𝑟
𝑑 be the cost of a recovery diagram and 𝑝 be the penalty for task cancellation. The 

objective of CRP is to minimise the cost of the selected recovery diagrams and task 

cancellations. The first type of constraint means that each task should be covered at 

least by a recovery diagram or cancelled. The second type of constraint means that each 

driver should be assigned a recovery diagram.  

4.4.2. The Graph used to find Recovery Diagrams   

To build a model for CRP, recovery diagrams should be generated.  Recovery diagrams 

can be generated by solving SPPRC. This section introduces the graph used to solve 

SPPRC.  

 

A directed graph 𝒢 = (𝒩, 𝒜) is built to find recovery diagrams of all drivers. 𝒩 denotes 

the nodes representing all driving tasks, commencing activity and terminating activity 

for each driver in a disruption neighbourhood. The commencing or terminating activity 

represents a driver's activity when rescheduling starts or ends, respectively. The node 

representing a commencing or terminating activity is called the source node or sink 

node.  

 

The set of arcs 𝒜 satisfies the following conditions. Two nodes are connected with one 

arc at most, and each arc has its direction. If there is an arc from 𝑎 ∈ 𝒩 to 𝑏 ∈ 𝒩, then 

there is no arc from 𝑏 to 𝑎. Each arc has its type and weight. It is present in the graph if 
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a driver can consecutively cover the corresponding two driving tasks. Table 12 shows all 

the arc types used in the work. Arc weights will be used to calculate the cost of a 

recovery diagram. Besides these costs, if a driver takes up a new task that is not in their 

planned diagrams, an extra cost of 300 is added. If this driver is spare, an additional cost 

of 80 is added.  

Table 12 Connection types used to construct a recovery diagram 

No Arc name Connection type Weight Description 

1 immArc immediate 0 
immediate connection between two 

tasks on one train 

2 changeArc change 10 change trains 

3 mealArc meal 5 meal break 

4 passArc passenger trip 20 take a passenger trip 

5 mealPassArc 
meal passenger 

trip 
15 

take a passenger trip and meal 

break 

6 douPassArc 
double 

passenger   trips 
30 take double passenger trips 

7 mealDouPassArc 
meal double 

passenger trips 
25 

take double passenger trips and a 

meal break 

8 taxiArc taxi 50 take a taxi trip 
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9 taxiOverTimeArc taxi overtime 60 take a taxi trip to a late sign off 

10 taxiMealArc taxi meal 40 take a taxi trip and a meal break 

11 overTimeArc overtime 40 late sign off 

12 oldArc 
original 

connection 
0 

same connect as in planned 

diagrams 

 

Determining Arc Type 

Twelve different arc types are used in the graph built to produce recovery diagrams. The 

geographical relationship between two tasks is considered first to connect two driving 

tasks. If the previous task arrives at the same station that the next task departs, there 

are three types of arcs to consider, mealArc, changeArc and immArc.  

 

A passenger or taxi trip is considered if a previous task arrives at a different station than 

the next task departs. Thus, these two types passArc and mealPassArc can be used. At 

most, two passenger trips are considered to connect two tasks since building this graph 

is computationally time-consuming. Then there are two types douPassArc and 

mealDouPassArc. There could be more than one possible passenger trip between two 

tasks to connect them. Taxi is also considered. There are types taxiArc and taxiMealArc. 

When drivers work overtime, there are types overtimeArc and taxiOvertimeArc. To 

reduce the deviations from the planned diagrams, if two tasks can be connected as in 
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the initial diagram, oldArc is used. Given two tasks, the arc type between them can be 

decided with the following algorithms (Algorithm 4 - Algorithm 6).  

 

It is important to distinguish if the next task to be connected is “sign off” because 

overtime may be required. Algorithm 4 explains how to decide the arc type between 

task1 and task2 if task2 is not signed off. At first, the connection type, oldArc, between 

two tasks is considered if the two tasks can be connected as in the planned data. If task1 

ends at the station where task2 starts, then mealArc is chosen in step 8 if the time 

difference between the two tasks is long enough to have a meal break. Otherwise, 

changeArc or immArc is considered in steps 11 and 13. If task1 ends at a different station 

where task2 starts, Algorithm 5 is used. In this case, a driver must be transferred from 

one station to another to perform task2 after task1.  
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Algorithm 4 Determining the arc type between task1 and task2. 

 

For transferring drivers, Algorithm 5 is used. A passenger trip is first considered if the 

driver can board a train to relocate in step 1. If such a passenger trip exists, a meal break 

opportunity is further considered in step 2. If there is enough time for a meal break, 

mealPassArc is chosen in step 3. Otherwise, passArc is selected in step 5. At most, two 

passenger trips can be used. If no passenger trip is possible, using a taxi to relocate 

drivers is considered in step 13.  
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Algorithm 5 Determining the arc type requiring transferring a driver 

 

Algorithm 6 explains how to determine an arc type between task1 and task2 if task2 is 

sign off. As in Algorithm 4, oldArc, mealArc and immArc are considered first in steps 2,7 

and 9. If a driver needs overtime to cover task1, overTimeArc is considered in step 11. A 

passenger trip required to relocate the driver to sign off is called in step 14. If a driver is 

required to work overtime and must be relocated, taxiOvertimeArc is used.   
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Algorithm 6 Determining the arc type between task1 and sign-off 

 

 

Creating a Subgraph for a Driver  
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Since different drivers can share parts of the graph, an integrated graph 𝒢 is built with 

all tasks for all drivers in a disruption neighbourhood. A subgraph is then extracted for 

each driver instead of building a graph for each driver.  

 

The integrated graph is stored as a node-list structure. To get a subgraph for a given 

driver, a depth-first search is used to find the set 𝒩′ of all nodes that this driver can 

cover with a given source node and sink node. Then, the nodes in 𝒩′ and lists of arcs 

that start at these nodes form a subgraph for this driver, denoted by 𝒢′ = (𝒩′, 𝒜′), 

which is used to find recovery diagrams just for the driver.  

4.4.3. Solving SPPRC 

SPPRC is NP-hard in the strong sense, but efficient algorithms exist for solving some 

crucial variants of SPPRC (Irnich & Desaulniers, 2005). Dynamic programming combined 

with the labelling algorithm is one of the most widely used techniques. Some SPPRC, for 

example, constrained shortest path problem (CSPP), can be solved with Lagrangian 

Relaxation. Constraint Programming solves SPPRC using a broad spectrum of 

constraints, like path structural constraints. Also, some heuristics algorithms like direct 

search verify that no negative reduced cost paths exist in the pricing step in a column 

generation approach. Dynamic programming combined with the labelling algorithm is 

used in this work to generate recovery diagrams for drivers. Here this method is 

explained in more detail.  
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Starting from source node s, the dynamic programming approach for the SPPRC extends 

the path 𝑃 = {𝑠} one by one into all possible directions. For efficiency, paths in the 

dynamic programming approach are encoded by labels. A label for a path 𝑃 =

(𝑠, 𝑣1, 𝑣2, … , 𝑣𝑝)  is directly linked to the label of the prefix path (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑝−1). 

Paths with the same prefix path would have the same chain of labels for their common 

paths. Besides the nodes visited by a path, a label for a path also stores the resource 

vector of this path, 𝑓(𝑃), which is calculated using the resource extension function on 

the nodes visited.  

 

𝑈𝑃 is the set of unprocessed paths to be extended, 𝑃𝑃 is the set of processed paths. 𝐴 

is the graph built for SPPRC. In the labelling algorithm, one unprocessed path from 𝑈𝑃 

is chosen and all feasible extensions (𝑄, 𝑣) with 𝑣 ∈ 𝑉 are constructed and added to 

𝑈𝑃, while 𝑄 is removed from 𝑈𝑃 and added to 𝑃𝑃.  

 

Algorithm 7 Solving SPPRC 
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Solving SPPRC using Forwards, Backwards and Bi-directional Search  

In Algorithm 7, the starting point to construct a path is the source node, which is 

extended using dynamic programming in the direction of the source node to the sink 

node. This search method is called forwards search. The algorithm can be slightly 

modified to construct paths with two different search methods: backwards search and 

bi-directional search.  

 

For backwards search, in step 1 in Algorithm 7, the path 𝑝0 is initiated with a sink node, 

and the path is extended in the direction of the sink node to the source in step 5. For bi-

directional search, one path 𝑝0𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠 is initiated with the source node and stored in 

𝑈𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠 , and another 𝑝0𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠  is initiated with the sink node and stored in 

𝑈𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 . A random number is used in step 4 to decide the search direction, 

forwards or backwards. Once the search direction is determined, a path will be chosen 

from a corresponding set and extended accordingly.  

 

Recall that a source node represents a commencing activity for a driver, and a sink node 

represents a terminating activity for a driver. Thus, the forwards search builds all 

recovery diagrams from a commencing activity to a terminating activity. The backwards 

search creates recovery diagrams from a terminating activity to a commencing activity. 

The bi-directional search produces some recovery diagrams from a commencing activity 

to a terminating activity and others from the opposite direction. Using different search 

methods in solving SPPRC can cause different solution behaviours. (Righini & Salani, 
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2006) illustrated how basic dynamic programming can be enhanced by using the bi-

directional technique for solving the capacitated vehicle routing problem.  Later in 

Section 4.4.7, the effect of using three search methods on obtaining crew rescheduling 

solutions are compared and analysed.   

Example 

Due to the safety working regulations, there is a limit for drivers’ continuous working 

without a break called the maximum continuous working time without a break. Here is 

an example to show how SPPRC can model the meal break rules in the crew rescheduling 

problem.   

 

Figure 16 shows an example that involves break opportunities and considers one 

resource constraint: continuous working time without breaks. The source and sink 

nodes are denoted by s and t, respectively. The source node and sink node represent 

the current activity a driver needs to perform when rescheduling starts and ends. Nodes 

1,2, and 3 represent three different driving tasks. Parameter 𝑡𝑑𝑖𝑓𝑓 is defined between 

two nodes as the time difference between the arrival time of a previous task and the 

departure time of the next task.  Each arc (𝑖, 𝑗) has one attribute and one resource of 

using the arc. The attribute is the arc type (𝑡𝑦𝑝𝑒𝑖𝑗), which shows the nature of the 

connection between two nodes. In this example, there are arc types “change” and 

“break”. “change” means that a driver needs to transfer trains between two nodes and 

𝑡𝑑𝑖𝑓𝑓 is not smaller than 10 minutes for a driver to transfer trains. “break” means that 

𝑡𝑑𝑖𝑓𝑓 is enough for a driver to have a 40-minute break.  
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Figure 16 Example of finding feasible recovery diagrams 

 

In the example of Figure 16, given driver d, at the source node, this driver has already 

worked for 110 minutes. The maximum continuous working time without a break (𝑇𝑚𝑎𝑥) 

is 4 hours (240 minutes). The path 𝑃1 = (𝑠, 1, 2, 𝑡) is not resource feasible. Indeed, at 

node 1, driver d has worked 230 minutes (110+120) without a break. From node 1, driver 

d cannot visit node 2 since the arc does not contain a break opportunity, and at node 2, 

driver d has worked more than 𝑇𝑚𝑎𝑥 without a break. The second path 𝑃2 = (𝑠, 1, 3, 𝑡) 

is feasible because the arc between node 1 and 3 has a break opportunity. Then at the 

beginning of node 3, the continuous driving time of driver d is 0. Using this graph, only 

one recovery diagram 𝑃2 can be generated. 
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4.4.4. The LRCG Method 

CRP can be solved as an integer programming problem if all model variables are precisely 

known, particularly the size of 𝐷  and 𝑅𝑑  for each driver 𝑑 . The number of recovery 

diagrams generated for drivers in a model for CRP increases exponentially with respect 

to the number of tasks considered in the model. Thus, CRP is a large-scale integer 

programming problem, requiring heuristic rules and mathematical techniques to limit 

the problem size.  

 

Two techniques are used to limit the problem size: (1) iterative expanding disruption 

neighbourhood. When a disruption happens, it needs to be clarified when and within 

which edges of the railway network this problem can be solved. Thus, it is not exactly 

known how many drivers 𝑑 are included in the model. Therefore, solving this problem 

uses an iterative expanding approach.  (2) using column generation to generate new 

variables, representing recovery diagrams gradually. The size of 𝑅𝑑 grows exponentially 

with the increasing size of driving tasks. Meanwhile, generating a recovery diagram is 

unnecessary if the diagram is no better than the already generated diagrams for a driver. 

Thus, one needs to dynamically generate recovery diagrams and add them to the CRP 

model as variables to improve the solution speed. 

 

The LRCG method to solve the CRP model consists of several parts. Figure 17 gives an 

overview of the whole procedure. As shown in Figure 17, the inputs for the LRCG method 
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include a revised timetable, revised rolling stock diagrams, planned crew diagrams and 

rescheduling start and end times.  

 

(1) Step 1: in the preprocessing step, an initial disruption neighbourhood 𝛥 is built 

with Algorithm 8. A subset of recovery diagrams 𝑅𝑑 is generated for each driver 

𝑑 in the disruption neighbourhood 𝛥. It is time-consuming and unnecessary to 

create all recovery diagrams for each driver. At this step, a certain number of 

recovery diagrams are first generated for each driver. Later in the algorithm, 

more promising recovery diagrams are generated and added to the current 𝑅𝑑  

(2) Step 2: a CRP model is built with the disruption neighbourhood 𝛥 and recovery 

diagrams 𝑅𝑑 . The CRP model is solved with a greedy algorithm. Lagrangian 

multipliers are obtained from solving the Lagrangian dual problem 

(3) Step 3: a pricing problem is built using Lagrangian multipliers as input to generate 

promising recovery diagrams. If such recovery diagrams exist, these new 

recovery diagrams are used to create new variables 𝑥𝑟
𝑑 that are added to the 

current CRP model; go to step 2. Otherwise, proceed to step 4 

(4) Step 4: If no new recovery diagram is generated and there is task left uncovered, 

the current disruption neighbourhood 𝛥 is expanded; go to step 1. Otherwise, 

proceed to step 5 

(5) Step 5: stop. The output of this algorithm is a recovery diagram for each driver 

in the final disruption neighbourhood and cancelled tasks 
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Each step of the LRCG method is explained in the following subsections.  

  

Figure 17 An overview of the LRCG method solving the CRP model 

Initial and Expanded Disruption Neighbourhood 

A disruption neighbourhood is introduced to limit the model size. A disruption 

neighbourhood is characterised by a recovery period, from the rescheduling start time 

to the end time. This recovery period is when a disruption occurs to when a regular 

timetable can be restored. A disruption neighbourhood contains drivers and the driving 

tasks of these drivers during the recovery period.  

 

In LRCG, disruption neighbourhoods are automatically expanded. In the 𝑖th disruption 

neighbourhood 𝛥𝑖, if the solution shows that some driving tasks are not covered, the 

disruption neighbourhood is expanded to 𝛥𝑖+1.  
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Figure 18 illustrates building an initial disruption neighbourhood 𝛥1  starting with 

directly affected trains. Assuming train 𝑉1 is a directly affected train, 𝐷1 is the driver 

who is assigned to this train's first trip or takes this trip as a passenger. Then 𝐷1 needs 

to be added to 𝛥1 since 𝐷1 is a directly affected driver. 𝐷1 also covers one trip from a 

train 𝑉2 which runs during the recovery period. Thus, 𝑉2 is a potentially affected train. 

Since driver 𝐷2 covers one trip or takes a passenger ride of 𝑉2, driver D2 is also added 

to the disruption neighbourhood 𝛥1. The above process repeats until no new drivers can 

be found. 

 

Figure 18 Process of building an initial disruption neighbourhood 

 

In Figure 18, V1 and V2 denote two different train services. D1 and D2 represent two 

different drivers. Each rectangle in the rows of V1 (V2) represents a trip in the train 

service. Each rectangle in the rows of D1 (D2) represents an activity in the driver 

diagram. A green rectangle on a driver’s diagram means a driving task which is a trip 

assigned to the driver. A yellow rectangle represents a meal break for the driver.  
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The above process of building an initial disruption neighbourhood is shown in Algorithm 

8. The input for this algorithm is the rescheduling start and end times, planned crew 

diagrams and a revised timetable. 

  

Algorithm 8 Building an initial disruption neighbourhood 

Expanded Disruption Neighbourhood 

To construct an expanded disruption neighbourhood, two kinds of drivers are added. 

One is diagrammed drivers (drivers are assigned a diagram in the planned data), and the 

other is spare drivers (drivers at work but with no activities originally planned on the 

day). Before a disruption neighbourhood needs to be expanded, a solution to the CRP 

model has already been obtained, as described in Figure 17. With the solution, a list of 

uncovered tasks is also obtained.  

Two kinds of diagrammed drivers can be found as follows. The first kind is the drivers 

who are near the uncovered task. For each uncovered task, around tasks are first 
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defined. A task is called an around task with respect to an uncovered task if one of the 

following two conditions is satisfied: (1) it departs from the origin of the uncovered task 

within a specific time (like two hours) of the uncovered task departure (2) it departs 

from the destination of the uncovered task within a specific time after the uncovered 

task arrival. A driver whose diagram contains this task is added to the expanded 

disruption neighbourhood for each around task.  

 

The second type of diagrammed drivers are similar to those who plan to cover the 

uncovered task. The reason to find such drivers is that they have a high chance of 

swapping tasks with each other. A similarity score is calculated for each diagrammed 

driver, and drivers with high scores will be added to the new disruption neighbourhood. 

If two drivers are from the same depot, 1 is added to the similarity score. If they are at 

the same station when the rescheduling starts, 5 is added to the similarity score. For 

each task they cover, if they depart from the same station within 30 minutes, 3 is added 

to the score. If a driver does not require a meal during recovery, 5 is added to the score. 

The ratio of the free time without a driver's workload divided by the time between the 

rescheduling time and sign-off time is also added to the score.  

 

Spare drivers can be found as follows. A score for a spare driver for an uncovered task 

is calculated as follows: if the spare driver is at the station where the task departs, 1000 

is added to the score, and the time difference between the task departure time and the 

driver’s sign off time is added to the score. This rule prefers to choose spare drivers who 
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can start the task on time and have enough time to sign off after performing the task. If 

the spare driver is not at the station where the task departs, the time difference 

between the task departure time and when the driver can arrive at the station is added 

to the score. It prefers to choose spare drivers who have enough time to get ready for 

the task and be able to perform it.  

 

With the chosen diagrammed and spare drivers, a disruption neighbourhood 𝛥𝑖  is 

expanded to 𝛥𝑖+1 by adding these drivers and their planned to be covered tasks during 

the recovery period.  

Solving CRP with an Iterative Expanding Disruption Neighbourhood Approach 

Subroutine Solve_CRP(), shown in Algorithm 9, describes how a disruption 

neighbourhood is dynamically expanded to obtain the best solutions to the crew 

rescheduling problem. It takes disruption neighbourhood 𝛥𝑖   and maximum expand 

iteration as inputs. Step 1 presents a graph 𝐺 for generating recovery diagrams using 

the tasks considered in the disruption neighbourhood 𝛥𝑖 . In step 2, initial recovery 

diagrams are generated for each driver in  𝛥𝑖 using graph 𝐺. In step 3, Solve_DisNhood() 

is called to get the best result for the current disruption neighbourhood. CRP_Obj is 

updated in step 4 if the crew rescheduling cost obtained with 𝛥𝑖 is lower. In step 5, if 

there are driving tasks left uncovered and the iteration number is less than the 

maximum expansion iteration number, the disruption neighbourhood is expanded in 

Step 6, and Solve_CRP() is called again in step 7 to solve the crew rescheduling problem 

with 𝛥𝑖+1 . The algorithm's output is the best solution found among all disruption 
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neighbourhoods. In a solution, each driver is assigned a recovery diagram in the 

disruption neighbourhood. 

 

 

Algorithm 9 Solving CRP with expanding disruption neighbourhoods 

Solving CRP for a Given Disruption Neighbourhood 

Subroutine Solve_DisNhood() is executed for a given disruption neighbourhood in 

Algorithm 10 to solve a CRP model for the neighbourhood 𝛥𝑖 using a fixing and column 

generation scheme. ℛ is the set of all generated recovery diagrams for drivers in the 

disruption neighbourhood. In Algorithm 10, two loops are used in steps 1 and 3, 

representing the fixing and column generation schemes. A dual Lagrangian problem of 

the CRP model is built and solved in step 4 to produce the best lower bound, Col_Lb, to 

the CRP model. A greedy algorithm is used in step 5 to find the upper bound, Col_Ub. 

The best crew rescheduling solution found so far is updated in step 6 if the cost produced 
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by step 5 is lower. A pricing problem is solved in step 7 to generate potential recovery 

diagrams. The terminal condition for the column generation scheme is: no new recovery 

diagrams are generated.  

 

A fixing scheme is used in steps 13 to 16. Suppose a diagram is repeatedly chosen for a 

driver in solving the dual Lagrangian problem in step 4. This diagram is fixed for this 

driver, and no pricing problem is solved in step 7 for the driver. The condition to fix a 

diagram for a driver is that the probability of choosing this diagram in solving the dual 

Lagrangian problem with Max_Iter (set as 100) is not smaller than 0.7. The terminal 

condition for the fixing scheme is that no diagram is fixed, or the upper bound of the 

fixing scheme is very close to the lower bound of the fixing scheme.  
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Algorithm 10 Solving CRP with a given disruption neighbourhood 

Solving Lagrangian Dual Problem 

Variable 𝜆 is the vector of Lagrangian multipliers. 𝜆𝑡 is the corresponding multiplier for 

task t. The Lagrangian relaxation problem (LRP) for the CRP model is:  

𝑚𝑖𝑛
𝑥,𝑓

∑ ∑ 𝑐𝑟
𝑑𝑥𝑟

𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

+ ∑ 𝑝𝑓𝑡

𝑡∈𝑇

+ ∑ 𝜆𝑡 ൭1 − ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 − 𝑓𝑡൱

𝑡∈𝑇

 

= 𝑚𝑖𝑛
𝑥,𝑓

∑ 𝜆𝑡

𝑡∈𝑇

+ ∑ ∑ (𝑐𝑟
𝑑 − ∑ 𝜆𝑡𝑎𝑡𝑟

𝑑 )𝑥𝑟
𝑑

𝑡∈𝑇𝑟∈𝑅𝑑

+ ∑(𝑝 − 𝜆𝑡)𝑓𝑡

𝑡∈𝑇𝑑∈𝐷
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𝑠. 𝑡. ∑ 𝑥𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷 

𝑥𝑟
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑟 ∈ 𝑅𝑑  𝑎𝑛𝑑 𝑓𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇 

There exists an apparent optimal solution to the LRP model. For each driver d, diagram 

𝑟 where 𝑐𝑟
𝑑 − ∑ 𝜆𝑡𝑎𝑡𝑟

𝑑
𝑡∈𝑇  achieves its minimum is chosen. For each task 𝑡, let 𝑓𝑡 be 1 if 

(𝑝 − 𝜆𝑡) < 0, otherwise, 𝑓𝑡  is 0.  

 

The solution value to the LRP model is a lower bound of the CRP model. Thus, a 

Lagrangian lower-bound problem should be solved.  The dual Lagrangian problem (LDP) 

is defined as 

𝑚𝑎𝑥
𝜆

𝐿𝑅𝑃 

A subgradient algorithm based on (Stephen, Lin, & Almir, 2004) is used to solve the LDP 

model, shown in Algorithm 11. It takes recovery diagrams 𝑅 and an upper bound as 

inputs. It iterates to get the best lower bound and λ. In the beginning, a Lagrangian 

multiplier 𝜆 is initialised with 0. In step 2, a Lagrangian relaxation problem is solved using 

the method as described above. 𝑧∗  is the optimal value. 𝑥∗  is the optimal solution 

consisting of variables 𝑥𝑟
𝑑 and 𝑓𝑡. The best lower bound is updated with 𝑧∗ in step 3. To 

update 𝜆 in Step 7 in Algorithm 11, the subgradient is calculated for each driving task 

with the following formula: 

𝛿𝑡 = 1 − ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 − 𝑓𝑡 
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In step 9, if the best lower bound 𝐵𝑒𝑠𝑡_𝐿𝑏 is not updated for more than a specific time, 

the constant 𝑐𝑜𝑛𝑠𝑡 used to update 𝜆 is halved. In step 12, if the distance (dist) is close 

to 0, the algorithm terminates. The output of this algorithm is the best lower bound, the 

list of 𝜆 generated in Max_Iter iterations (𝜆_𝐿𝑖𝑠𝑡), the list of reduced costs generated in 

Max_Iter iterations (Reduced_Cost_List), and 𝜆∗ (where the LDP attains maximum). 

 

 

Algorithm 11 Solving a dual Lagrangian problem using the subgradient method 
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Greedy Algorithm 

To obtain an upper bound for the CRP problem, a greedy algorithm based on (Potthoff, 

2010)’s work (Algorithm 12) is used. It takes recovery diagrams generated for all drivers 

ℛ, a list of Lagrangian multipliers, and a list of reduced costs for all drivers as input. It 

loops over all Lagrangian multipliers 𝜆 to find a best solution.  

 

In step 2, drivers are ordered by the amount of cost reduction in increasing order. In 

step 3, for each 𝜆, a vector 𝑧 is initialised with 1.  Recall that 𝑧𝑡 being equal to 1 or 0 

represents whether the task is cancelled. At first, each task is assumed cancelled. In step 

4, for each driver d, a recovery diagram 𝑟 with the least reduced cost calculated with 𝜆 

is chosen. Vectors 𝜆 and 𝑧 are updated based on the recovery diagram 𝑟. For all tasks 𝑡 

covered by 𝑟, we set 𝜆𝑡 and 𝑧𝑡 equal to 0. During the experimental tests, it is noticed 

that some drivers could be assigned to a recovery diagram which does not cover any 

task. Thus, an improvement scheme is used from steps 6 to 16. Step 8, if task t is not 

covered, the corresponding 𝜆𝑡 is set as the cost for task cancellation. At step 9, drivers 

whose recovery diagrams do not cover any task are selected, denoted 𝐷. At step 10, for 

each driver 𝑑 in 𝐷, the diagram 𝑟 with the least reduced cost is chosen. If no task can be 

covered anymore, the improvement scheme stops at step 16. 

 

In step 17, the recovery diagram cost is calculated as the sum of the recovery diagram 

cost for all drivers. In step 18, the task cancellation cost is calculated as the multiplication 

of the cancellation penalty and the number of cancelled tasks. In step 19, the total cost 
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is computed as the sum of the recovery diagram and task cancellation costs. In step 20, 

Greedy_Obj and Greedy_Solution are updated if the newly generated total cost is lower 

than the current Greedy_Obj. The output of the algorithm is Greedy_Obj and 

Greedy_Solution.  
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Algorithm 12 Greedy algorithm 

Solving a Pricing Problem 

A pricing problem is solved to generate new promising recovery diagrams in LRCG. A 

recovery diagram 𝑟 for driver 𝑑 is a list of driving tasks with a cost 𝑐𝑟
𝑑. Finding a recovery 
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diagram means finding the shortest path with resource constraints in a graph 𝒢′ =

(𝒩′, 𝒜′) . Resource constraints come from the necessary meal breaks included in 

recovery diagrams.  

 

The arc cost in 𝒢′ = (𝒩′, 𝒜′) is further priced by the multipliers 𝜆∗ obtained in Step 4 

of Algorithm 10 before any subgraph and recovery diagrams are produced. More 

precisely, 𝜆∗ is deducted from the arc cost if this arc connects to the node representing 

the driving task 𝑡, to obtain the reduced cost of a recovery diagram defined by 

𝑐𝑟
𝑑

(𝜆∗) = 𝑐𝑟
𝑑 − ∑ 𝜆𝑡

∗

𝑡∈𝑟

 

It is the cost of a diagram from which the sum of Lagrangian multipliers representing the 

driving tasks included in this diagram is deducted. A new promising recovery diagram 𝑝 

will be added to 𝑅𝑑 if 𝑐𝑝
𝑑

(𝜆∗) is smaller than the minimum 𝑐𝑟
𝑑

(𝜆∗), where r is an existing 

diagram for driver d. This guarantees that no repeat recovery diagrams will be added to 

the current set of recovery diagrams for the driver. This process is shown in Algorithm 

13. The output of this algorithm is the set of recovery diagrams.    
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Algorithm 13 Solving a pricing problem 

 

Since the SPPRC problem is an NP-hard problem, solving it optimally may take too much 

time for some scenarios. In this work, solving SPPRC terminates early when a certain 

number of recovery diagrams are found. Three search techniques (bi-directional, 

forwards and backwards) are used with dynamic programming to find recovery 

diagrams. Their performances are compared in Section 4.4.7 using the experimental 

tests in Section 4.4.6. 

4.4.5. a Didactic Example 

Consider the following simple scenario. The initial plan in the morning is for all three 

drivers to drive different trains from the station 𝑊  to 𝑃. However, due to a broken 

rolling stock problem at 6 am, train service from 𝑊 to 𝐵 is cancelled for train 1𝐹03 and 

train service from 𝑊 to 𝐶 is cancelled for the train 1𝐵01. Drivers Tony and William are 

stuck at the station 𝑊  and their following tasks start from stations 𝐶  and 𝐵 , 

respectively. (To simplify the problem, we assume that there are spare rolling stock that 
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can be used for their next job). Another driver, Tim, is going to drive a train 1𝐹07 

departing from the station 𝑊  at 6:15 am. We assume that the rescheduling process 

should end at 10:15 am when every driver should arrive at the station 𝑃 and prepare for 

their next task. The tasks that need to be covered in this scenario are tasks 1, …, and 5, 

shown in Table 13.  

 

Table 13 Task information for a didactic  example 

TaskId Dep Arrive Origin Destination Train 

1 08:15 9:45 C P 1B01 

2 07:30 10:00 B P 1F03 

3 06:15 06:50 W B 1F07 

4 07:00 08:00 B C 1F07 

5 08:45 10:15 C P 1F07 

 

 

To solve this problem, a crew rescheduling model is built as in Section 4.4.1. Table 14 is 

the constraint matrix in the model. Each column generation iteration generates a new 

group of recovery diagrams. They are shown in Table 14 in the corresponding groups of 
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columns. Each row represents a constraint in the model. A line in the middle separates 

the constraints for drivers and tasks. For each row, the sum of variables whose 

coefficients are 1 should be equal to 1. 

 

Table 14 Constraint matrix 

Conts Ini_0 Col_1 Col_2 Col_3 Col_4 Col_5 

 Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim 

Will 1   1   1   1   1   1   

Tony  1   1   1   1   1   1  

Tim   1   1   1   1   1    

task1    1 1        1 1  1 1  

task2       1 1  1 1        

task3 1 1 1       1 1 1 1 1 1    

task4    1 1 1      1       

task5      1   1   1   1    

 

 



 

170 

Every row is a constraint in the model, and every column is a variable 𝑥𝑟
𝑑 representing 

one recovery diagram for one driver. Figure 19 is a simple example of the graph used to 

find recovery diagrams for driver Tim. It contains the source node, sink node and nodes 

representing all tasks in the disruption neighbourhood. It uses five basic arcs which do 

not consider the meal break. In Figure 19, “Train deadheading twice” means that driver 

Tim uses two other tasks as passenger trips to arrive at the origin of the next task to 

perform it from current location. For example, Tim uses task3 and task4 as passenger 

trips to arrive at task1 to perform it after his current location at station W. The pricing 

problem is to find a path in this graph for driver Tim with the most negative reduced 

cost. Train deadheading means a passenger trip. 

 

 

 

Figure 19 Subgraph for driver Tim 
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In the solution, Tim performs tasks 3, 4, and 5. Tony performs task 1, and William 

performs task 2.  The interpretation of this result is that Tim drives the train from 𝑊 to 

𝑃 performing tasks 3, 4, and 5. Tony and William take a passenger trip on the train that 

Tim drives and get off at the stations 𝐶 and 𝐵 respectively. Then they perform tasks 1 

and 2. This solution corresponds to the red columns in Table 14. The solution path for 

Tim can also be found easily in Figure 19. 

4.4.6. Experimental Tests 

The model for CRP and LRCG method is applied to the 14 scenarios considered in Section 

4.1.6. These 14 scenarios have been described in Section 4.1.6, and revised timetables 

have been obtained. A simple algorithm to reschedule rolling stock is used since 

rescheduling rolling stock itself is a complex problem. The turnaround time is 15 minutes 

at the stations where trains short turn before blockage and 5 minutes at other stations. 

The maximum delay is set as 10. The dataset used in the experimental tests has 222 

diagrammed drivers and 61 spare drivers. These spare drivers are attached to 10 depots 

across the day. Table 15 shows the 14 scenarios, the number of affected drivers and 

drivers in the initial disruption neighbourhood as found with the method shown in 

Algorithm 8.  

 

Table 15 Blockage scenarios and their effect on drivers  

Id Recovery period Directly affect drivers 1st neighbourhood 
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AA_06 06:00-11:00 9 52 

AA_07 07:00-12:00 9 70 

AA_08 08:00-13:00 13 56 

AA_09 09:00-14:00 11 11 

AA_10 10:00-15:00 11 11 

AA_11 11:00-16:00 10 10 

AA_12 12:00-17:00 10 10 

AA_13 13:00-18:00 10 10 

AA_14 14:00-19:00 13 13 

AA_15 15:00-20:00 12 16 

AA_16 16:00-21:00 13 16 

AA_17 17:00-22:00 16 59 

AA_18 18:00-23:00 13 49 

AA_19 19:00-24:00 10 12 
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The number of directly affected drivers varies from 9 (06:00 - 07:00) in the early morning 

to 16 in the late afternoon (17:00-22:00). During the day, the number of directly affected 

drivers keeps at 10 constantly from scenario AA_11 to AA_13. For the drivers included 

in the first disruption neighbourhood, it is noticeable that scenarios in the early morning 

(AA_06, AA_07, AA_08) and evening (AA_17, AA_18) have a large number of drivers. 

One reason is that many short trips are required to move rolling stock to prepare for the 

working day or back to the rolling stock depot during these times.  

 

The maximum allowed number of disruption expansions is set as 3. Thus, no more than 

4 disruption neighbourhoods can be searched. The connection time is set as 10 minutes. 

The maximum work length is set as 10 hours. The maximum continuous work time is set 

as 4 hours and 40 minutes. Maximum work overtime is 30 minutes. Communication time 

is set as 10 minutes. Meal break is set as 30 minutes (with connection time, 50 minutes 

can be used for drivers to walk to their depot, have a meal and walk back to the platform 

for the next task). Three methods are tested for solving SPPRC problems: bi-directional 

search, forwards search, and backwards search. The results for a bi-directional, forwards 

and backwards search are explained in what follows.   

Bi-directional Search  

Table 16 Crew rescheduling with solving SPPRC using bi-directional search 

  ITER ND NT UB LB ColGen Gap % NCT 
Solution 

time (s) 
Objective Spare  

AA_06 1 52 180 705 705 8 0.00 0 31 705 0 
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AA_07 1 70 219 365 365 6 0.00 0 50 365 0 

AA_08 1 56 159 560 560 5 0.00 0 33 560 0 

AA_09 2 47 125 560 500 5 12.00 0 32 560 0 

AA_10 2 41 126 720 720 10 0.00 0 19 720 0 

AA_11 2 55 115 590 569 5 3.69 0 25 590 0 

AA_12 2 73 176 1410 1410 14 0.00 0 54 1410 1 

AA_13 2 65 173 730 730 6 0.00 0 43 730 0 

AA_14 2 69 173 1245 1245 12 0.00 0 122 1245 1 

AA_15 2 95 227 895 850 6 5.29 0 228 895 0 

AA_16 2 55 184 1205 1205 12 0.00 0 147 1205 1 

AA_17 4 80 227 5830 5413 27 7.70 1 220 5830 0 

AA_18 2 76 206 645 645 10 0.00 0 82 645 0 

AA_19 2 28 78 1150 1150 7 0.00 0 13 1150 1 

 

 

In Table 16, ITER is the disruption neighbourhood when the method terminates.  ND and 

NT represent the number of drivers and tasks in the disruption neighbourhood. UB and 

LB are the upper and corresponding lower bound for the scenario. The UB is the lowest 

cost found in the method and LB is the corresponding lower bound. Mostly the lowest 

upper bound is obtained just before the method terminates. Gap is calculated as the 

percentage of by how much an UB is bigger than a LB. The best solution value is between 

the upper bound and lower bound. When the gap is significant, the method does not 

find a solution close to the optimum, otherwise it finds the best solution.  ColGen stands 
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for the number of times when new recovery diagrams are generated (pricing problems 

are solved and new recovery diagrams are added to the current RMP, steps 7 and 8 in 

Algorithm 10).  NCT stands for the number of cancelled tasks in the solution. Spare 

stands for the number of used spare drivers in the solution. 

 

The first three scenarios (AA_06 - AA_08) are solved in the initial disruption 

neighbourhood. Most of the remaining scenarios are solved in the second disruption 

neighbourhood except scenario AA_17, which ends in the fourth disruption 

neighbourhood. Scenario AA_19 is solved with the least drivers considered (28 drivers 

and 78 driving tasks). Scenario AA_15 is solved with most drivers considered (95 drivers 

and 227 tasks). Most scenarios are solved with a gap of 0 between the upper bound and 

lower bound. Scenario AA_17 requires one task to be cancelled. Other scenarios can find 

optimal solutions that cover all driving tasks as required in revised timetables. Most 

scenarios are solved within 1 minute. Scenarios (AA_14 - AA_17) require more time 

(from 122 seconds to 228 seconds). The reason is that more drivers and tasks are 

considered, and more iterations of column generation in these scenarios.  

Forwards Search 

Table 17 Crew rescheduling with solving SPPRC using forwards search 

  ITER ND NT UB LB ColGen Gap % NCT 
Solution 

time (s) 
Objective Spare  

AA_06 2 62 192 595 595 17 0.00 0 59 595 0 

AA_07 1 70 219 780 780 3 0.00 0 54 780 0 
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AA_08 1 56 159 450 450 6 0.00 0 35 450 0 

AA_09 2 53 123 495 460 8 7.61 0 59 495 0 

AA_10 2 51 112 465 465 15 0.00 0 31 465 0 

AA_11 2 61 117 735 729 17 0.82 0 32 735 0 

AA_12 2 64 157 1995 1995 18 0.00 0 54 1995 2 

AA_13 2 71 139 1870 1258 17 48.65 0 69 1870 2 

AA_14 2 78 169 1400 1400 11 0.00 0 152 1400 1 

AA_15 2 74 206 910 910 15 0.00 0 364 910 0 

AA_16* 2 57 176 1475 1143 17 29.05 0 518 1475 1 

AA_17 4 80 227 5700 5254 52 8.49 1 385 5700 0 

AA_18 1 49 173 860 795 4 8.18 0 30 860 0 

AA_19 2 42 111 1055 993 7 6.24 0 23 1055 1 

 

 

Table 17 shows the crew rescheduling results with SPPRC solved using a forwards 

search. As in Table 17, most scenarios are solved in the first or second disruption 

neighbourhood except AA_17 in the fourth disruption neighbourhood. Forwards search 

fails to find solutions to cover all tasks for AA_17, with 1 task left uncovered. For most 

scenarios, the gaps are smaller, while the gap for scenario AA_13 is close to 50%. 

Scenario AA_16 is marked with * because the algorithm stops early, as solving this 

scenario requires more than 500 seconds. Scenarios AA_15 and AA_17 also need a long 

time to solve (364 and 385 seconds). Other scenarios can be solved in two minutes or 
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even one minute. It is noticeable that the iteration of column generation for scenario 

AA_17 is as high as 52, which consumes a lot of running time.    

Backwards Search 

Table 18 Crew rescheduling with solving SPPRC using backwards search 

  ITER ND NT UB LB ColGen Gap % NTC 
Solution 

time (s) 
Objective Spare  

AA_06 2 62 204 1515 1159 5 30.72 0 65 1515 2 

AA_07 2 82 242 2270 10 8 22600.00 0 94 2270 3 

AA_08 2 69 191 950 941 8 0.96 0 64 950 1 

AA_09 2 41 105 440 440 5 0.00 0 25 440 0 

AA_10 2 35 109 465 453 2 2.65 0 18 465 0 

AA_11 2 59 134 590 564 4 4.61 0 31 590 0 

AA_12 2 77 180 2530 2277 3 11.11 0 53 2530 3 

AA_13 2 35 107 650 650 6 0.00 0 19 650 0 

AA_14 2 77 174 1370 1370 6 0.00 0 97 1370 1 

AA_15 2 112 249 675 645 7 4.65 0 323 675 0 

AA_16 2 71 209 2590 1270 6 103.94 0 242 2590 3 

AA_17 4 86 232 5675 5578 13 1.74 1 232 5675 0 

AA_18 1 49 173 610 610 3 0.00 0 27 610 0 

AA_19 2 28 78 1500 1162 3 29.09 0 12 1500 2 

 

Table 18 shows the crew rescheduling by solving SPPRC using a backwards search. Most 

scenarios are solved in the first and second disruption neighbourhoods except scenario 

AA_17 in the fourth disruption neighbourhood. All scenarios can find solutions that 
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cover all driving tasks except AA_17 which requires one task to be cancelled. It is worth 

noting that the same task is cancelled for AA_17 in all three methods: bi-directional, 

forwards and backwards search. This task is a train trip, which is a part of the train 

service that departs at 16:54 from S1 in Figure 15. This is an extra train added during the 

peak time on the route from S1 to S4. This task is not cancelled in the timetable 

rescheduling step. However, in the crew rescheduling step, no spare drivers can arrive 

on time to take this task after rescheduling, thus, it needs to be cancelled. 

 

The gaps for most scenarios are close to 0. The gap for scenario AA_07 is as high as 

22600%. It is noticed that when the method terminates, the gap between the last upper 

bound and lower bound is 0 for this scenario. However, the last upper bound is not the 

lowest cost, which usually it is. The reason for this is that the method uses a fixing 

scheme. Some drivers’ diagrams are fixed based on the rules during the solution process 

to speed up the method (Section 4.4.4). However, such fixing can lead to a worse upper 

bound to the crew rescheduling problem.  

 

The solution time is quick, with most scenarios being solved within or just above 1 

minute except 323 seconds for AA_15, 242 seconds for AA_16 and 232 seconds for 

AA_17. All scenarios in Table 18 have less than 20 times of column generation iterations. 

4.4.7. Comparison: Bi-directional, Forwards and Backwards Search Methods 

The performance of the three search methods is compared by cost, speed, problem size 

and gap.  
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Cost Comparison 

 

 

Figure 20 Costs compared for the three methods 

 

The optimal costs obtained for 14 scenarios using bi-directional, forwards and backward 

searches are compared in Figure 20. Overall, the three methods have similar trends. The 

costs using three methods are low for scenarios AA_06 to AA_11, except that the 

backwards search finds a higher cost solution for AA_07. All three methods find 

solutions with higher costs for scenarios AA_12 and AA_17. In general, backwards search 

can find solutions with lower costs in most scenarios (7) followed by bi-directional 

search (5) and forwards search (4). One reason that backwards can find the least cost 

solutions for most scenarios is that it searches a bigger disruption neighbourhood with 

more drivers and tasks. The comparison of problem size for all three searches is shown 

later in this section. 
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Solution Time Comparison 

 

 

Figure 21 Solution time compared for the three methods 

 

The running time of the three methods on 14 scenarios is shown in Figure 21. Three 

methods find solutions within 100 seconds for scenarios AA_06 to AA_13 and AA_18 to 

AA_19. Between scenarios AA_14 and AA_17, it is obvious that forwards search uses the 

most time to find optimal solutions. In general, backwards search uses the least time for 

7 scenarios and bi-directional search uses the least time for the other 7 scenarios. 
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Figure 22 Iteration of column generation compared for the three methods 

 

Many factors can affect the running time, like the number of drivers and tasks 

considered in the model and also the iteration of column generation. Figure 22 shows 

the iteration of column generation for three methods. It is clear that forwards search 

has the highest number of iterations for most of the scenarios (10 out of 14 scenarios). 

Recall that forwards search finds recovery diagrams from a source node representing a 

commencing activity to a sink node representing a terminating activity. Backwards 

search finds recovery diagrams in the opposite direction. During the experimental tests, 

it is noticeable that, from the source node, many more arcs can be generated compared 

to the arcs that connect to the sink node for a driver. It means that the number of tasks 

the commencing activity can connect to is higher than the number of tasks that can 

connect to the terminating activity for a driver. The reason for this is that a driver may 
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have enough time to arrive at a task to perform it, but the driver may not be able to sign 

off considering overtime in time after performing this task.  

 

Since only a few possible recovery diagrams can be developed starting from the sink 

node side, backwards search has a smaller iteration of column generation. In steps 8 and 

9 of Algorithm 10, if no recovery diagrams are generated, the column generation loop 

terminates, and the fixing scheme starts to work. Thus, backwards search spends less 

time on the column generation loop. Note that if enumerating all recovery diagrams is 

required, both forwards and backwards searches can enumerate the same subset of 

recovery diagrams.   

Problem Size Comparison 

 

 

0

1

2

3

4

5

AA_06AA_07AA_08AA_09AA_10AA_11AA_12AA_13AA_14AA_15AA_16AA_17AA_18AA_19

bi-directional

0

1

2

3

4

5

AA_06AA_07AA_08AA_09AA_10AA_11AA_12AA_13AA_14AA_15AA_16AA_17AA_18AA_19

forwards



 

183 

 

Figure 23 Disruption neighbourhood iterations in the three methods 

 

Figure 23 shows the number of disruption neighbourhood that the method has explored 

when it terminates. It is clear that all three methods search two disruption 

neighbourhoods for most scenarios. Forwards search and bi-directional search only 

search one disruption neighbourhood for 3 scenarios compared to 1 scenario for 

backwards search. 
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Figure 24 Number of tasks considered in the three methods 

 

 

Figure 25 Number of drivers considered in the three methods 

 

For the number of tasks considered in a model (Figure 24), backwards search has the 

biggest number of tasks for 9 scenarios, followed by bi-directional search for 4 scenarios 

and forwards search with 1 scenario. Overall, the three methods use roughly the same 

number of drivers (Figure 25) in scenarios AA_06 to AA_12 and AA_17. Forwards and 

backwards searches explore the greatest number of drivers for 7 scenarios, followed by 

bi-directional search for 1 scenario. It is clear that, in most scenarios, backwards 

searches a bigger disruption neighbourhood with more drivers and tasks. Recall the rules 

for expanding a disruption neighbourhood in Section 4.4.4, spare/diagrammed drivers 

are added for each uncovered task in the previous disruption neighbourhood. It is 

noticeable that backwards search finds a worse solution in the initial disruption 
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neighbourhood, which leads to more spare/diagrammed drivers added to expand a 

disruption neighbourhood.    

Gap Comparison 

In all 14 scenarios, with bi-directional search, only 4 scenarios have gaps which are not 

0 and the biggest gap is 12%. With forwards search, 7 scenarios have gaps which are not 

0 and the biggest gap is almost 50%. With backwards search, 10 scenarios have gaps 

which are not 0 and the biggest gap is as high as 22600%. It is clear that bi-directional 

search has advantage in looking for solutions with smaller gaps. The reason for this is bi-

directional searches the graph to construct recovery diagrams from both directions (a 

source node to a sink node, and a sink node to a source node). It searches a more 

averagely spread solution space. However, for forwards and backwards searches, they 

tend to search one side of the solution space with less attention to the other side. Thus, 

these two methods find solutions with bigger gaps, which means these solutions can be 

far from the optimal solutions.  

To summarise, backwards search has advantages in speed even if it searches a bigger 

solution space. The reason is that in the column generation loop, backwards terminates 

quicker since less promising recovery diagrams can be generated. Thus, the backwards 

search uses less time to finish the algorithm. Also, since backwards search a bigger 

solution space, it has advantages in finding the minimal objective. Forwards search is 

the worst in speed and solution costs. Bi-directional search has advantages in finding 

solutions with small gaps since it searches a more averagely spread solution space. 



 

186 

4.5. Conclusion 

This chapter addressed the crew rescheduling problem during significant disruptions. 

Since crew rescheduling requires a revised timetable as input. A model was first posed 

to adjust the timetable in case of a complete blockage. The model can provide a revised 

timetable for the three phases of disruption management while considering rolling 

stock, infrastructure availability, and blockage period. It uses rescheduling strategies: 

cancellation, and retiming and aims to revise the timetable to minimise train 

cancellations and delays, and the changes to rolling stock circulation patterns. The 

model was tested on the busiest line on a TOC from GB. The comparison between how 

a smaller and bigger maximum allowed delay affects the solutions was conducted. It was 

discovered that there is a trade-off between train cancellations and delays. Fewer trains 

must be cancelled when a longer maximum delay time is allowed. It is worth noting that 

the maximum delay time should not be longer than the period between frequently 

scheduled trains, otherwise cancellation may be more practical. More cancellations and 

delays can happen when trains require more time to turn around at a station before 

approaching the blockage site.  

 

A model formulated as an integer linear programming problem was proposed to solve 

the crew rescheduling problem for significant disruptions. It was explained why a 

recovery diagram can be generated by solving SPPRC. Solving SPPRC to generate 

recovery diagrams has two steps: 1) build a graph using tasks and drivers considered in 

the model, 2) use dynamic programming and label setting algorithm to find recovery 
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diagrams in the graph built in step 1. Further, three search methods which can combine 

with dynamic programming and change the search directions were explained. 

 

A heuristic method, LRCG using Lagrangian relaxation and column generation, was 

proposed to solve the model for the crew rescheduling problem. The process uses an 

iterative approach to search for better solutions. A disruption neighbourhood is used to 

constrain the problem size. An algorithm was presented to show how to build the initial 

disruption neighbourhood. Rules were given on how to expand a disruption 

neighbourhood.  

 

The model for the crew rescheduling problem and LRCG were applied to 14 scenarios 

using three different search methods (forwards search, bi-directional search and 

backwards search) to solve the SPPRC problem in LRCG. Crew rescheduling results 

obtained with LRCG using forwards, bi-directional and backwards searches were shown 

and compared. It was explained why backwards search can be the quickest and obtain 

the best results, forwards search can be the slowest regarding searching speed, and bi-

directional search is the best in finding solutions with smaller gaps for most scenarios.  
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CHAPTER FIVE: SOLVING INTEGRATED 

ROLLING STOCK AND CREW 

RESCHEDULING PROBLEMS  
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Usually, the rescheduling of rolling stock and crew is carried out in two phases: rolling 

stock rescheduling followed by crew rescheduling. Theoretically, the adjustments 

between rolling stock and crew rescheduling can go back and forth for several rounds 

until a mutually compatible solution appears.  

 

Similar to crew, each rolling stock unit also has a diagram to regulate their daily work. A 

diagram for a rolling stock unit contains a series of driving tasks and possible 

deadheading tasks (empty rolling stock moves on the network without passengers). 

When a disruption occurs, each rolling stock unit and crew member should be assigned 

a recovery diagram that is feasible to operate. Thus, to solve an integrated rolling stock 

and crew problem is to assign a recovery diagram to each rolling stock unit and driver 

that is considered in the problem. 

 

One reason rolling stock and crew rescheduling is usually carried out sequentially is that 

the exact rolling stock type assigned to a task should be known. Then controllers can 

assign a driver with the required rolling stock knowledge to perform the driving task. 

This may be straightforward in some simple networks. For example, if only one rolling 

stock type can be used for a driving task, then the exact rolling stock type is known for 

the purpose of assigning a driver to cover the task. Another reason is that the integrated 

problem is usually of high complexity due to practical safety constraints both for rolling 

stock and crew. It is difficult to solve such complex problems in real time. 
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The potential benefits of rescheduling rolling stock and crew together are significant. It 

can provide a feasible solution for both rolling stock and crew rescheduling and is 

optimal for the integrated problem. It saves communication time between rolling stock 

controllers and crew controllers and can help an IM to publish reliable and timely railway 

traffic information to passengers during disruption.  

 

“What should be the objective of resource rescheduling?” is a difficult question for the 

integrated rolling stock and crew rescheduling problem due to the various factors that 

need to be considered. To decrease the impact on passengers, minimising cancelled and 

delayed trips should be considered. To improve flexibility, spare drivers should be 

reserved for further potential disruption. To decrease implementation risk, fewer 

resources should be rescheduled. To prepare for the following operations, the rolling 

stock balance at each station should be as close as possible to the original plan. Further, 

finding the relative importance of these factors is another tricky subject. Different 

operators may value some factors more than others. Delaying a trip looks like a better 

solution than cancelling a trip. However, if considerable further delay is brought by an 

initial delay, cancelling the trip may be a better solution. 

 

In this chapter, a model for the integrated rolling stock and crew rescheduling problem 

with retiming possibilities (IRSCRR) and a two-stage approach which uses multicriteria 

decision making (2SMO) to solve the IRSCRR are developed. The model is set as a 

multicriteria optimisation problem and two multicriteria optimisation techniques are 
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used in 2SMO to solve the model. A feedback mechanism is used in 2SMO. The feedback 

mechanism can indicate which driving task not covered in the first step should be 

retimed and its exact delay time, which will be used in the second stage to generate 

solutions considering retiming possibilities.  

 

The structure of the remainder of the section is as follows. In Section 5.1, research work 

related to the rolling stock rescheduling, or the integrated rolling stock and crew 

problems has been reviewed. Section 5.2 presents the model formulation for the 

integrated rolling stock and crew rescheduling problem with retiming possibilities. 

Section 5.3 describes the two-stage approach 2SMO used to solve the IRSCRR. Section 

5.4 shows the performance of applying IRSCRR and 2SMO on various single delay 

scenarios. Section 5.5 shows the performance of the model and method on various 

multiple delay scenarios. Section 5.6 is the conclusion.   

5.1. Literature Review 

In the literature, the rescheduling of rolling stock and crew are usually studied 

separately and sequentially. For rolling stock rescheduling, (Budai, Maróti, Dekker, 

Huisman, & Kroon, 2010) studied the rolling stock rebalancing problem which is relevant 

both in the short-term planning and real-time operations. Two heuristics were 

developed to solve the rolling stock rebalancing problem and compared with each other 

and the performance of an exact method. (Nielsen, Kroon, & Maróti, 2012) solved the 

rolling stock rescheduling for disruption management. A single rolling stock problem is 

solved using a two-step approach: circulation generation phase and duty generation 
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phase. To deal with the uncertainty of the impact and duration of a disruption, a 

methodology based on rescheduling with a rolling horizon was proposed. Furthermore, 

(Kroon, Maró ti, & Nielsen, 2014) studied rolling stock rescheduling with dynamic 

passenger flow. An iterative approach involving rolling stock rescheduling and passenger 

flow simulation was proposed. A simulation model is used to generate expected 

passenger flows. The interpreting of flows can give optimisation directions to rolling 

stock rescheduling in the next iteration. The current literature in crew rescheduling has 

been revised in Section 2.5.  

 

To the best of our knowledge there is only one paper which deals with the integrated 

rolling stock and crew rescheduling problem (Zeng, Meng, & Hong, 2018). An integrated 

rolling and crew rescheduling model based on a multi-commodity flow model is 

proposed, and a customised ant colony algorithm is developed to solve the integrated 

problem efficiently. However, in their model, the cross-check constraints for rolling 

stock and crew are not included. That is, if a task fails to be covered by rolling stock, then 

it cannot be covered by the crew, and vice versa. Also, the meal break needs of the crew 

during their work are not considered, which may cause the rescheduling result to violate 

fatigue rules.  

 

Multicriteria optimisation problems are a special case of vector optimisation problems. 

In a single criterion optimisation problem, the definition of an optimal solution is 

straightforward. However, for multicriteria optimisation, it is rare to have a solution 
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which attains minimum values simultaneously in all criteria. A more general definition 

of optimality is the Pareto optimum (see (Ehrgott, 2005), (T'kindt & Billaut, 2006)). 

Multicriteria optimisation methods have been used in timetable planning and 

rescheduling, (see (Sama, Meloni, D'Ariano, & Corman, 2015), (Stoilova, 2020)). 

However, multicriteria optimisation has not been used in rolling stock or crew 

rescheduling.   

5.2. Integrated Rolling Stock and Crew Rescheduling Model with Retiming 

A model is proposed in this section to provide rescheduling solutions for rolling stock 

and crew together. Compared to rescheduling rolling stock and crew sequentially, 

solving an integrated rolling stock and crew rescheduling problem requires some extra 

constraints. For example, if a task is not covered by any rolling stock unit, then it should 

not be covered by any crew member, and vice versa.  As in Section 4.4.4, the disruption 

neighbourhood idea is used as a concept to help formulate and solve the rescheduling 

problem. In this section, it is characterised by the rolling stock and drivers that need to 

be rescheduled and a recovery period that should be set by the controllers. How to 

construct a disruption neighbourhood is explained in detail in Section 5.3.1.  

 

This section uses the data from a TOC in Great Britain. In this TOC, most trains are 

operated by one self-powered rolling stock unit during the day. The situation of two or 

more rolling stock units are used by one train mostly appear in the early morning or late 

evening for moving rolling stock from or to depot. Sometimes rolling stock units are 

coupled or uncoupled to a train, called composition change. Rolling stock units that have 
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been uncoupled from a train needs to be stored at the shunting yard of the station and 

can be used later for other trains. During shunting operations, some non-timetabled 

movements of rolling stock inside railway nodes are created due to composition 

changes. In this study, shunting is taken into account in an implicit manner: by ensuring 

a minimum connection time between tasks that require shunting in between.  

 

A recovery diagram is assigned to each rolling stock unit as part of a solution. If the same 

task appears on two recovery diagrams assigned to different rolling stock units, it means 

that both rolling stock units cover this task. It implied that these two rolling stock units 

should be coupled to perform the same task. If after the same task, two rolling stock 

units are assigned to different tasks, these two are uncoupled to perform different tasks. 

As for the order of two or more units appearing in a composition and how they can be 

coupled and uncoupled are not considered in the model in this section.  

5.2.1. Model Constraints 

First, some notation is introduced before formulating the model IRSCRR. Let 𝑇 be the 

set of tasks that need to be assigned to rolling stock units and drivers inside a disruption 

neighbourhood. A task should be covered by a driver and rolling stock units 

simultaneously (or cancelled otherwise). If a task is assigned to a rolling stock unit, it 

needs a driver to perform it, and vice versa. Let 𝑆 and 𝐷 denote the rolling stock units 

and drivers, respectively, that are considered in a disruption neighbourhood. The set 

𝑅𝑠(𝑅𝑑) is the set of recovery diagrams generated for a rolling stock unit (driver), which 

corresponds to one disruption. As in the CRP model built in Chapter 4, the model for the 
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integrated rolling stock and crew rescheduling problem is a path-based model. The 

construction of recovery diagrams is not explicitly considered in the model formula. 

They are constructed by solving SPPRC described in Section 4.4.3 and used in the model 

directly. 

 

Four types of variables are considered. Let 𝑥𝑟
𝑠 be 1 if the recovery diagram 𝑟 is chosen 

for the rolling stock unit 𝑠, 0 otherwise. Similarly, let 𝑦𝑟
𝑑 be 1 if the recovery diagram 𝑟 

is assigned to the driver 𝑑, 0 otherwise. Variable 𝑔𝑡 is equal to 1 if the task 𝑡 is cancelled 

due to unavailable rolling stock units, 0 otherwise. Variable ℎ𝑡 is equal to 1  if the  task 

t is cancelled due to unavailable drivers. Two parameters are used: 𝑎𝑡𝑟
𝑠  (𝑏𝑡𝑟

𝑑 ) is 1 if the 

recovery diagram 𝑟 for rolling stock unit 𝑠 (driver 𝑑) contains task 𝑡, 0 otherwise. The 

following constraints should be considered to formulate a basic IRSCRR. 

 (∑ ∑ 𝑎𝑡𝑟
𝑠

𝑟∈𝑅𝑠𝑠∈𝑆

𝑥𝑟
𝑠) + 𝑔𝑡 ≥ 1, ∀𝑡 ∈ 𝑇 (5.1) 

 (∑ ∑ 𝑏𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑦𝑟
𝑑) + ℎ𝑡 ≥ 1, ∀𝑡 ∈ 𝑇 (5.2) 

 ∑ 𝑥𝑟
𝑠

𝑟∈𝑅𝑠

= 1, ∀𝑠 ∈ 𝑆 (5.3) 

 ∑ 𝑦𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷 (5.4) 

 𝑥𝑟
𝑠 + ℎ𝑡 ≤ 1, (∀𝑡 ∈ 𝑇), (∀𝑠 ∈ 𝑆), (∀𝑟 ∈ 𝑅𝑠: 𝑡 ∈ 𝑟) (5.5) 
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 𝑦𝑟
𝑑 + 𝑔𝑡 ≤ 1, (∀𝑡 ∈ 𝑇), (∀𝑑 ∈ 𝐷), (∀𝑟 ∈ 𝑅𝑑: 𝑡 ∈ 𝑟) (5.6) 

Equations (5.1) and (5.2) mean that each task 𝑡 should be covered by a rolling stock unit 

and driver (and cancelled otherwise). Equations (5.3) and (5.4) guarantee that precisely 

one recovery diagram should be assigned to each rolling stock unit and driver, 

respectively. Equation (5.5) means that if a task is cancelled due to unavailable drivers, 

it should not be used in any recovery diagrams that are selected for rolling stock units. 

Also, it implies that if the task 𝑡 is used in a recovery diagram for a rolling stock unit, the 

task 𝑡  should also be covered by drivers. Vice versa, in equation (5.6), if a task is 

cancelled due to unavailable rolling stock units, it cannot be used in any recovery 

diagrams selected for drivers. A task used in selected recovery diagrams for drivers 

should also be covered by rolling stock units.   

5.2.2. Extra Constraints Concerning Retiming 

Sometimes tasks cannot be covered due to the turnaround time required by rolling stock 

units at terminal stations or connection times required by a driver to change trains. In 

this situation, allowing tasks to be retimed may lead to fewer task cancellations. In 

IRSCRR, the possibility of retiming tasks is also considered. The retiming constraints from 

(Veelenturf, Potthoff, Huisman, & Kroon, 2012) are used. Retiming can give a 

rescheduling solution when there is no solution without retiming. However, retiming a 

task means that the timetable needs to be modified to reflect this. Here, these 

constraints are briefly introduced. For a task, several copies are created. One copy is the 

same as the task. The other copies are the retimed versions of the task, which means 

their departure and arrival times are shifted by a given time length. For a task 𝑡, it has a 
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set of copies 𝐶𝑡 = {𝑐(𝑡): 𝑐(𝑡) is a copy of the task 𝑡 and 𝑐(𝑡) has a non-negative delay 

time}. The set 𝐶𝑡 contains at least one copy representing the planned task itself. For each 

copy 𝑐(𝑡),  the binary variable 𝑣𝑐(𝑡) is 1 if there is a recovery diagram that contains copy 

𝑐(𝑡) which is selected in the solution, 0 otherwise. 𝑡(𝑐) is the task from which copy 

𝑐(𝑡)is generated. Let 𝐶 be the union of all 𝐶𝑡. Moreover, |𝑆| and |𝐷| are the number of 

rolling stock units and drivers, respectively.  

 |𝑆|𝑣𝑐(𝑡) − ∑ ∑ 𝑎𝑐(𝑡)𝑟
𝑠

𝑟∈𝑅𝑠𝑠∈𝑆

𝑥𝑟
𝑠 ≥ 0, ∀𝑐(𝑡) ∈ 𝐶 (5.7) 

 |𝐷|𝑣𝑐(𝑡) − ∑ ∑ 𝑏𝑐(𝑡)𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑦𝑟
𝑑 ≥ 0, ∀𝑐(𝑡) ∈ 𝐶 (5.8) 

 ∑ 𝑣𝑐(𝑡)

𝑐(𝑡)∈𝐶𝑡

+ 𝑔𝑡 = 1, ∀𝑡 ∈ 𝑇 (5.9) 

 ∑ 𝑣𝑐(𝑡)

𝑐(𝑡)∈𝐶𝑡

+ ℎ𝑡 = 1, ∀𝑡 ∈ 𝑇 (5.10) 

Constraints (5.7) and (5.8) guarantee that if a copy 𝑐(𝑡) is used in any selected recovery 

diagram, 𝑣𝑐(𝑡) will be set as 1. Constraints (5.9) and (5.10) make sure that either a task 

is cancelled or a copy of it is chosen. 

 

Before writing out the constraints for delay propagation, some notation is first 

introduced. 𝐶𝑐(𝑡),𝑡
< ⊆ 𝐶𝑡 is defined as the set of all copies of task t which have a shorter 

delay time than that of copy 𝑐(𝑡).  𝐶𝑐(𝑡),𝑡
> ⊆ 𝐶𝑡 is the set of all copies which have a longer 

delay time than that of a copy 𝑐(𝑡). 𝑎𝑓(𝑡) is used to denote the successive task of task 
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𝑡 if the next task exists. 𝑐𝑜𝑛𝑛(𝑡) is the minimum time for a rolling stock unit to connect 

𝑡  and 𝑎𝑓(𝑡)  (meaning that the rolling stock unit performs the task 𝑡  and 𝑎𝑓(𝑡) 

successively). A suitable copy 𝑐(𝑡) ∈ 𝐶𝑡 should be chosen if a copy 𝑒(𝑎𝑓(𝑡)) ∈ 𝐶𝑎𝑓(𝑡) is 

chosen, where 𝑒(𝑎𝑓(𝑡)) is a copy of the task 𝑎𝑓(𝑡). For a copy 𝑐(𝑡), 𝐿𝑐(𝑡) is defined as 

𝐿𝑐(𝑡) = {𝑒൫𝑎𝑓(𝑡)൯ ∈ 𝐶𝑎𝑓(𝑡)\∪𝑐(𝑡)∈𝐶𝑐(𝑡),𝑡
< 𝐿𝑐(𝑡) (5.11) 

|𝑒൫𝑎𝑓(𝑡)൯
𝑑𝑒𝑝

− 𝑐(𝑡)𝑎𝑟𝑟 ≥ 𝑐𝑜𝑛𝑛(𝑡) 𝑎𝑛𝑑 ∀𝑐(𝑡) ∈ 𝐶𝑐(𝑡),𝑡
>  𝑒൫𝑎𝑓(𝑡)൯

𝑑𝑒𝑝
− 𝑐(𝑡)

𝑎𝑟𝑟
< 𝑐𝑜𝑛𝑛(𝑡)}} 

 

It denotes the set of 𝑒 that copy 𝑐(t) can connect to but  𝑐(𝑡)cannot connect to, where 

𝑐(𝑡)has a larger delay time than a copy 𝑐(𝑡). Also, 𝐿𝑐(𝑡) should exclude e that are already 

included in 𝐿𝑐(𝑡)  for copy 𝑐(𝑡), where copy 𝑐(𝑡) has a shorter delay time than that of 

copy 𝑐(𝑡) (thus, the definition of 𝐿𝑐(𝑡) is recursive). 

 

For each copy 𝑐(𝑡)  of a task 𝑡  which has more than one copy and this task has a 

successive task 𝑎𝑓(𝑡),  if a copy 𝑒 is chosen for the task 𝑎𝑓(𝑡), then the task 𝑡 should be 

cancelled, or an appropriate 𝑐 should be chosen. Below, 𝑇≥2 denotes the set of tasks 

that have at least two copies including the task itself. Constraint (5.12) means that for 

task t in 𝑇≥2 and the next task 𝑎𝑓(𝑡) exists, if a copy for the next task is chosen, then 

the task needs to be cancelled (ℎ𝑡=1) in terms of rolling stock or a suitable copy for 𝑡 is 

chosen. Constraint (5.13) sets the same constraints for the crew.  

𝑔
𝑡

+ 𝑣𝑐(𝑡) + ∑ 𝑣𝑐′(𝑡)

𝑐′(𝑡)∈𝐶
𝑐(𝑡),𝑡
<

− ∑ 𝑣𝑐′(𝑡) ≥ 0, ∀𝑡 ∈ 𝑇≥2: 𝑎𝑓(𝑡)𝑒𝑥𝑖𝑠𝑡𝑠, ∀𝑐(𝑡) ∈ 𝐶𝑡

𝑐′(𝑡)∈𝐿𝑐(𝑡)

 
(5.12) 
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ℎ𝑡 + 𝑣𝑐(𝑡) + ∑ 𝑣𝑐′(𝑡)

𝑐′(𝑡)∈𝐶
𝑐(𝑡),𝑡
<

− ∑ 𝑣𝑐′(𝑡) ≥ 0, ∀𝑡 ∈ 𝑇≥2: 𝑎𝑓(𝑡)𝑒𝑥𝑖𝑠𝑡𝑠, ∀𝑐(𝑡) ∈ 𝐶𝑡

𝑐′(𝑡)∈𝐿𝑐(𝑡)

 
(5.13) 

5.2.3. Model Objective 

An objective function 𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) should consider the following aspects: 

 

(1) RDC: cost of chosen recovery diagrams for drivers and rolling stock units 

considered in a model, which represents the deviation from the planned 

diagrams assigned to each driver and rolling stock unit. The cost of a recovery 

diagram is the sum of costs of all connection types in a recovery diagram. Please 

see Section 4.4.2 for the costs of connection types for driver recovery diagrams. 

The connection types for rolling stock recovery diagrams are shown in Section 

5.3.3 

(2) NRC: cost of the number of in drivers and rolling stock units that are not spare 

resource and take at least one task that is not their planned diagrams. The more 

such resources that are rescheduled during a disruption, the heavier the penalty 

should be. It is measured by the number of resources used and its weight 

(3) RSBC: cost of the difference in number of rolling stock units at each station after 

rescheduling compared to the planned data. At the rescheduling end time, a 

certain number of rolling stock units is required at each station to guarantee that 

operations can return to the normal level as planned in the timetable. However, 

rolling stock units may end at a different station due to rescheduling, which 

further may lead to the number of rolling stock units being different at each 
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station compared to the planned data. Thus, the difference between the real 

number of rolling stock units and their planned number at each station is 

penalised. It is measured by the absolute difference of planned and real number 

of rolling stock units at a station and its weight 

(4) SOC: shunting operation cost that represents the cost of uncoupling and 

coupling rolling stock units from and to rolling stock units. It is measured by the 

shunting operation times and its weight 

(5) TCC: penalty for task cancellations due to unavailable drivers or rolling stock 

units. The cancellation cost is set to be equal to the product of task duration and 

its weight 

(6) TRC: penalty for task retiming impact due to drivers or rolling stock not being 

able to cover a task unless it is retimed. It is measured by the retiming duration 

and its weight 

(7) SRC: cost of the number of utilised spare drivers and rolling stock units. It is 

measured by the time of a spare resource work and its weight 

 

Table 19 shows how each factor is measured. In the experimental tests, the weights w1, 

w2, w3, w4, w5 and w6 can vary. However, the costs of the number of utilised resources 

and shunting operations should be high, thus w1 and w3 should be big. The reason for 

this is that unnecessary resources or shunting operations should be avoided in a solution 

whenever possible. Also, these indicators are measured by numerical values unlike the 

costs for task cancellation, retiming and using a spare driver, which are measured in 
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minutes and hence should be low (50, 30 and 10, respectively). In the further discussed 

approach to solving IRSCRR, two multicriteria techniques are used to obtain multiple 

solutions. The results show that setting different weights for the factors does not always 

affect the solutions. The numbers in the brackets are the parameter values used in the 

study.  

 

Table 19 Cost indicators and their measurements in the model 

No Indicator Measurement 

1 recovery diagram cost (RDC) the sum of connection costs  

2 number of used drivers and rolling stock that 
are not directly affected by disruption (NRC) 

number * w1 (5000) 

3 rolling stock unit balance (RSBC) balance difference * w2 (50) 

4 shunting operations (SOC) number * w3 (5000) 

5 task cancellation cost (TCC) task duration * w4 (50) 

6 task retiming cost (TRC) delay time * w5 (30) 

7 spare driver cost (SRC) working time * w6 (10) 

 

5.2.4. Model 

min 𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) IRSCRR 

                       s.t. (5.1) − (5.13)  
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Overall, the model IRSCRR aims to find an integrated rolling stock and crew rescheduling 

solution subject to constraints (5.1) to (5.13) which achieves a minimum for 

𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣). The definition of  𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) will be given in Sections 5.4 and 5.5.  

5.3. Method: 2SMO 

A 2-stage approach using multicriteria decision making (2SMO) is used to solve IRSCRR. 

The input information includes a revised timetable (beyond the scope of this work), the 

planned initial rolling stock unit and crew diagrams, and rescheduling start and end time. 

The revised timetable and rescheduling start and end times are treated as given. The 

rescheduling result is that each affected driver and rolling stock unit considered in the 

model is assigned a recovery diagram. 2SMO contains a feedback mechanism which 

allows the solution process to generate retiming possibilities of tasks to find solutions. 

Before a detailed explanation of 2SMO is given, the following terms are first explained.  

5.3.1. Disruption Neighbourhood 

With the given input, a disruption neighbourhood 𝒜 can be created for the integrated 

rolling stock and crew rescheduling problem. Disruption neighbourhood 𝒜 consists of a 

set of drivers 𝐷, a set of rolling stock units 𝑆 and the tasks 𝑇 that are in their planned 

diagrams between the rescheduling start time and end time, 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡  to 

𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑒𝑛𝑑.  

Building an Initial Disruption Neighbourhood 

When a disruption happens, it is known which trains are delayed or cancelled directly 

due to the disruption. The set of such trains is denoted as 𝛶. For each train 𝛾 ∈ 𝛶, the 



 

203 

initially affected rolling stock units can be found. The set of all such rolling stock units 

for all trains is denoted as 𝑆0. For rolling stock unit 𝑠 ∈ 𝑆0, drivers who drive rolling stock 

unit 𝑠 between the rescheduling start time and end time can be found. Such drivers are 

the initially affected drivers; their set is denoted as 𝐷0. 

 

Drivers in 𝐷0  may also drive trains using rolling stock not in 𝑆0  during a disruption 

period. The set of such rolling stock units is denoted as 𝑆1. Similarly, rolling stock units 

in 𝑆1 could also have other drivers who work on them during the disruption period but 

are not included in 𝐷0. This iterative approach is used to find all drivers and rolling stock 

units to build the initial disruption neighbourhood 𝒜. It includes drivers, rolling stock 

units and tasks that are assigned to these resources during rescheduling, 𝒜 = {𝑆, 𝐷, 𝑇}. 

Extending a Disruption Neighbourhood 

A disruption neighbourhood can be extended by adding retiming copies of tasks and 

spare resources. The reason that spare resources are not added in the initial disruption 

neighbourhood is that a list of tasks is expected to be obtained, which cannot be covered 

without using spare resources. Retiming copies can be produced just for these 

uncovered tasks in the second stage of the approach. If spare resources are used in the 

first stage, the need to use the retiming option is more minor.  

5.3.2. Task Coverage Feedback Mechanism 

One type of feedback information generated from the model is how much a task should 

be retimed so that a resource can cover it. Between two tasks, a minimum connection 

time is required for a resource to change from one task to another. For example, this 
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connection time can be used to move to another platform for a driver and perform 

turnaround activities at a station for a rolling stock unit. If a resource finishes a previous 

task too late and cannot take the following task with the minimum connection time 

requirement, it can lead to the next task being uncovered. Such failure to cover the next 

task is recorded in a log file.  

 

When a task is not covered in the first stage, in the feedback analysis step, the log file is 

analysed. A retiming possibility which requires the least delay time that is also within 

the parameter value of the maximum delay time is chosen and a retiming copy is created 

for this uncovered task and added to the disruption neighbourhood. A variable 

representing this retiming copy is added to the model. A retiming copy is only 

considered for tasks that are not commencing or terminating activities in a disruption 

neighbourhood. To maximally allow feasible solutions to appear, terminating activities 

are shifted back to the extent that will not affect operations beyond the recovery period 

in the data processing phase.  

5.3.3. Graph for Solving Rolling Stock SPPRC 
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Algorithm 14 Determining the arc type between task1 and task2 for a rolling stock unit 

 

The graph created for solving a SPPRC problem for rolling stock is shown in Algorithm 

14. It is simpler than building a graph for solving a SPPRC for a driver (see Algorithm 4 - 

Algorithm 6). Only three arcs are considered: “oldArc”, “changeArc” and “immArc”. If 

two tasks can be connected as in the planned data, “oldArc” is used in step 3. A possible 

arc can only be considered if the previous task ends at the same station as next task 

departs. If two tasks belong to the same train and the time difference is satisfied, an 

“immArc” is used. If two tasks belong to different trains and the time difference is 
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enough for rolling stock to change trains, a “changeArc” is used. The costs of these 

connection types are the same as listed in Table 12 in Section 4.4.2. 

 

Compared to the SPPRC graph built for crew, meal break, overtime and passenger trip 

are not considered. Rolling stock requires maintenance, which in planning diagrams can 

be treated similarly to including meal breaks. In practice, there is a specific plan for 

rolling stock maintenance, which is not considered in the model. Overtime is implied in 

Algorithm 14 since an “immArc” or “changeArc” connection could require rolling stock 

to work longer time than planned in their diagrams. Passenger trips are not considered 

for rolling stock because it does not make sense to relocate rolling stock by taking 

passenger trips.  

 

One difference between generating a recovery diagram for drivers and rolling stock units 

is that drivers need to sign off at their planned depots. However, rolling stock is, to a 

large extent, interchangeable. It is quite common for two rolling stock units to swap the 

remaining tasks of a day following disruption. For example, when a blockage happens, 

trains on one side of the blockage short turn before approaching the blockage to run the 

train services that are planned to run by trains on the other side of the blockage. For 

rolling stock units of these short turn trains, they swap the remaining tasks with each 

other. So, a recovery diagram for a driver should end with the task which the driver was 

initially scheduled to perform at the rescheduling end time. However, a recovery 

diagram for a rolling stock unit can end at any task that any rolling stock unit from a 
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disruption neighbourhood should perform at the rescheduling end time. A penalty is 

added to a recovery diagram for a rolling stock unit if it ends at a task which is not the 

task initially planned at the rescheduling end time. A SPPRC is solved for each rolling 

stock unit as explained in Section 4.4.3.  

5.3.4. Overview of 2SMO 

The framework of 2SMO is shown in Figure 26.  In step 1, a disruption neighbourhood 

𝒜 can be built as explained in Section 5.3.1. In step 2, recovery diagrams for each rolling 

stock unit and driver are enumerated by solving SPPRC as explained in Section 4.4.3. In 

step 3, a reduced IRSCRR model that does not consider retiming possibilities is built and 

solved with a commercial solver. The single objective of this reduced model is to 

minimise 𝑓(𝑥, 𝑦, 𝑔, ℎ) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑅𝑆𝐵𝐶 + 𝑆𝑂𝐶 + 𝑇𝐶𝐶. The constraints are (5.1) 

– (5.6). During the solution process, a log file records the retiming requirements from a 

resource for a task to be covered. In step 4, the log file is automatically analysed. For 

each cancelled task obtained in step 3, if a retiming requirement is obtained from the 

log file, the retiming copies of that task will be generated and added to the disruption 

neighbourhood 𝒜. Spare drivers and rolling stock units are also added to 𝒜 in this step. 

In step 5, a complete IRSCRR model with constraints (5.1) - (5.13) and criteria specified 

below in Section 5.4 and 5.5 is solved using multicriteria optimisation methods and a 

commercial solver. Steps 1 to 3 are grouped as stage one, and steps 4 and 5 are grouped 

as stage two. 
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Figure 26 2-stage multicriteria decision-making approach (2SMO) 

 

IRSCRR and 2SMO are applied to single delay and multiple delay scenarios in the 

following two sections. Different objectives and multicriteria optimisation methods are 

used for single and multiple delay scenarios.  

5.4. Experiments and Results: Single Delay Scenarios  

In this section, a typical single primary delay rescheduling problem is first explained. 

Then the common rescheduling strategies used in practice are presented. Next, model 

IRSCRR and 2SMO are applied using a convex combination of criteria to solve a series of 

single delay problems. The goal is to see if the types of solutions used in practice can be 

obtained with model IRSCRR and method 2SMO. The dataset used in this Chapter to test 

the model and method is the same as in Chapter 4. 
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Figure 27 Rolling stock running on a single line 

 

Figure 27 shows several rolling stock units running on a railway line between stations S1 

and S4. The different colours represent different rolling stock units. Segments between 

S1 and S4 can be seen as individual train journeys. When a rolling stock unit arrives at 

station S4, it waits for a short time and runs the following service from S4 to S1. Since a 

rolling stock unit only stays at S4 for a short period, then, if there is a delay in running 

train service from S1 to S4, such a delay is easily propagated into the train services 

running from S4 to S1.  

 

Figure 28 demonstrates a single delay scenario and three of the most frequently used 

rescheduling strategies by controllers from TOCs on the line between S1 and S4. The late 

train 𝑇𝑟𝑎𝑖𝑛_𝐴  uses rolling stock 𝑅𝑆1. 𝑇𝑟𝑎𝑖𝑛_𝐵  is the immediate train after 𝑇𝑟𝑎𝑖𝑛_𝐴 

that uses the same rolling stock 𝑅𝑆1. Assume 𝑇𝑟𝑎𝑖𝑛_𝐴 is running late towards S2, there 

are three possible rescheduling strategies.  
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Figure 28 Three frequently used solutions with different characteristics 

 

It is worth noting that Figure 28 is only for illustration. The gradients of each colored line 

in Figure 28 can vary. Solution (a) suggests running both 𝑇𝑟𝑎𝑖𝑛𝐴  and 𝑇𝑟𝑎𝑖𝑛𝐵  late. It 

does not require controllers to reschedule at all. The solution does not cancel any task 

or use spare rolling stock units. Solution (b) involves task retiming and cancellations. It 

suggests 𝑅𝑆1 running late from S2 to S3 but short turning it at S3 so it can arrive at S2 

to S1 on time. The train services between S3 and S4 are cancelled. Solution (b) does not 

use any spare rolling stock units. In solution (c), a spare rolling stock unit (marked in 

green) is used to run the service 𝑇𝑟𝑎𝑖𝑛_𝐴 from S2 to S4 and 𝑇𝑟𝑎𝑖𝑛_𝐵 from S4 to S1. 𝑅𝑆1 
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arrives late at S2 and will become the new spare rolling stock unit. Comparing the three 

solutions (a), (b), and (c), it is hard to evaluate which one is better among them purely 

because of the solution characteristics. One solution may outperform another in 

different scenarios. For example, if bringing delay into a major station S2 will cause many 

trains to be delayed in S2, then solution (a) is not a good choice. When cancellation is 

not acceptable, then solution (b) is not a good choice. If there is no spare rolling stock 

to use, then solution (c) does not exist.  

5.4.1. Using Convex Combination of Criteria 

Suppose there is a multicriteria optimisation problem where the criteria are 𝑍𝑖(𝑥) for 

𝑖 = 1, … , 𝐾 and 𝑆 is the search space, and consider the problem  (𝑃𝜆) defined by 

min ∑ 𝜆𝑖𝑍𝑖(𝑥)𝐾
𝑖=1   

                                          𝑥 ∈ 𝑆  

 

where 𝜆𝑖 ∈ (0,1) for 𝑖 = 1, … , 𝑘 such that ∑𝑖=1
𝐾 𝜆𝑖 = 1. We have the following theorem. 

Theorem 4 (Vincent T'kindt, 2006) If 𝑥0 ∈ 𝑆 is an optimal solution for (𝑃𝜆) then 𝑥0 

is a proper Pareto optimum. 

Based on the three frequently used rescheduling strategies, three costs are especially 

important: task cancellation (TCC), task retiming (TRC) and using spare resources (SRC) 

which are explained in Section 5.2.3. The remaining insignificant cost factors in a single 

delay disruption scenario are combined as one objective 𝑓1(𝑧). In total, there are four 

objectives: 
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𝑓1(𝑧) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑅𝑆𝐵𝐶 + 𝑆𝑂𝐶

𝑓2(𝑧) = 𝑇𝐶𝐶

𝑓3(𝑧) = 𝑇𝑅𝐶

𝑓4(𝑧) = 𝑆𝑅𝐶

 

 

According to Theorem 4, one proper Pareto optimum for an IRSCRR can be obtained wi

th multicriteria 𝑓𝑖(𝑧), 𝑖 = 1, … 4 by solving the problem (𝑃𝜆)  with a convex combinatio

n 𝑓𝑖(𝑧), 𝑖 = 1, … 4. A parametric analysis using 𝜆 is conducted. We denote 𝛬 = {𝜆 =

{𝜆1, 𝜆2, 𝜆3, 𝜆4} ∀𝑖, 𝜆𝑖 ∈ (0,1) and ∑ 𝜆𝑖 = 1, 𝜆𝑖 ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}}4
𝑖 . 

A simple loop is used to enumerate all combinations of weights 𝜆. The number of total 

combinations of weights is 84.   

5.4.2. Experimental Tests 

The purpose of experiments in this section is to test if the solutions of the model and 

method using a parametric analysis of 𝜆 can mimic the three frequently used solutions 

in practice shown in Figure 28 (a), (b) and (c). The basic idea consists of dividing 𝛬 into 

𝑁 disjoint parts 𝛬𝑖 such that 𝛬 = ڂ 𝛬𝑖
𝑁
𝑖=1  , where in each 𝛬𝑖 the optimal solution found 

by the algorithm is of a particular form seen in actual practice. It is expected that there 

are three regions 𝛬1, 𝛬2 and 𝛬3 where the optimal solutions found by the algorithm are 

as shown in Figure 28 (a), (b) and (c), respectively, and region 𝛬4 where the optimal 

solutions found by the algorithm are not of any of the forms described in Figure 28. 
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The parameters that are relative to crew are set with the same values as in Section 4.4.6. 

The connection time for rolling stock units to perform two tasks from two different 

trains is 5 minutes. If a rolling stock unit does not end at the same terminating task as 

planned in their diagram, 500 is added. The maximum time a task can be delayed is set 

as 30 minutes.  

Example 

Here is one scenario tested with the methodology shown in Figure 26. It is tested with 

84 combinations of weights. The results are shown in Table 20. Column “objType” shows 

the weight combination for the four objectives. Column “objective” shows solution 

costs. diagramCost, cancelCost and retimeCost stand for recovery diagram costs, task 

cancellation costs and task retiming costs. spareStockCost stands for the cost for using 

spare rolling stock. The other costs mentioned in section 5.2.3, in particular the shunting 

operation costs, are 0 in this scenario.  

 

Table 20 One scenario test with 84 combinations of weights 

objType objective diagramCost cancelCost retimeCost spareStockCost category 

0.1_0.1_0.1_0.7 375.5 35 2100 1620 0 (b) 

0.1_0.1_0.2_0.6 537.5 35 2100 1620 0 (b) 

0.1_0.1_0.3_0.5 699.5 35 2100 1620 0 (b) 
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0.1_0.1_0.4_0.4 861.5 35 2100 1620 0 (b) 

0.1_0.1_0.5_0.3 678.5 35 0 0 2250 (c) 

0.1_0.1_0.6_0.2 453.5 35 0 0 2250 (c) 

0.1_0.1_0.7_0.1 228.5 35 0 0 2250 (c) 

0.1_0.2_0.1_0.6 529.5 75 0 5220 0 (a) 

0.1_0.2_0.2_0.5 747.5 35 2100 1620 0 (b) 

0.1_0.2_0.3_0.4 903.5 35 0 0 2250 (c) 

0.1_0.2_0.4_0.3 678.5 35 0 0 2250 (c) 

0.1_0.2_0.5_0.2 453.5 35 0 0 2250 (c) 

0.1_0.2_0.6_0.1 228.5 35 0 0 2250 (c) 

0.1_0.3_0.1_0.5 529.5 75 0 5220 0 (a) 

0.1_0.3_0.2_0.4 903.5 35 0 0 2250 (c) 

0.1_0.3_0.3_0.3 678.5 35 0 0 2250 (c) 

0.1_0.3_0.4_0.2 453.5 35 0 0 2250 (c) 

0.1_0.3_0.5_0.1 228.5 35 0 0 2250 (c) 

0.1_0.4_0.1_0.4 529.5 75 0 5220 0 (a) 
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0.1_0.4_0.2_0.3 678.5 35 0 0 2250 (c) 

0.1_0.4_0.3_0.2 453.5 35 0 0 2250 (c) 

0.1_0.4_0.4_0.1 228.5 35 0 0 2250 (c) 

0.1_0.5_0.1_0.3 529.5 75 0 5220 0 (a) 

0.1_0.5_0.2_0.2 453.5 35 0 0 2250 (c) 

0.1_0.5_0.3_0.1 228.5 35 0 0 2250 (c) 

0.1_0.6_0.1_0.2 453.5 35 0 0 2250 (c) 

0.1_0.6_0.2_0.1 228.5 35 0 0 2250 (c) 

0.1_0.7_0.1_0.1 228.5 35 0 0 2250 (c) 

0.2_0.1_0.1_0.6 379 35 2100 1620 0 (b) 

0.2_0.1_0.2_0.5 541 35 2100 1620 0 (b) 

0.2_0.1_0.3_0.4 703 35 2100 1620 0 (b) 

0.2_0.1_0.4_0.3 682 35 0 0 2250 (c) 

0.2_0.1_0.5_0.2 457 35 0 0 2250 (c) 

0.2_0.1_0.6_0.1 232 35 0 0 2250 (c) 

0.2_0.2_0.1_0.5 537 75 0 5220 0 (a) 
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0.2_0.2_0.2_0.4 751 35 2100 1620 0 (b) 

0.2_0.2_0.3_0.3 682 35 0 0 2250 (c) 

0.2_0.2_0.4_0.2 457 35 0 0 2250 (c) 

0.2_0.2_0.5_0.1 232 35 0 0 2250 (c) 

0.2_0.3_0.1_0.4 537 75 0 5220 0 (a) 

0.2_0.3_0.2_0.3 682 35 0 0 2250 (c) 

0.2_0.3_0.3_0.2 457 35 0 0 2250 (c) 

0.2_0.3_0.4_0.1 232 35 0 0 2250 (c) 

0.2_0.4_0.1_0.3 537 75 0 5220 0 (a) 

0.2_0.4_0.2_0.2 457 35 0 0 2250 (c) 

0.2_0.4_0.3_0.1 232 35 0 0 2250 (c) 

0.2_0.5_0.1_0.2 457 35 0 0 2250 (c) 

0.2_0.5_0.2_0.1 232 35 0 0 2250 (c) 

0.2_0.6_0.1_0.1 232 35 0 0 2250 (c) 

0.3_0.1_0.1_0.5 382.5 35 2100 1620 0 (b) 

0.3_0.1_0.2_0.4 544.5 35 2100 1620 0 (b) 
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0.3_0.1_0.3_0.3 685.5 35 0 0 2250 (c) 

0.3_0.1_0.4_0.2 460.5 35 0 0 2250 (c) 

0.3_0.1_0.5_0.1 235.5 35 0 0 2250 (c) 

0.3_0.2_0.1_0.4 544.5 75 0 5220 0 (a) 

0.3_0.2_0.2_0.3 685.5 35 0 0 2250 (c) 

0.3_0.2_0.3_0.2 460.5 35 0 0 2250 (c) 

0.3_0.2_0.4_0.1 235.5 35 0 0 2250 (c) 

0.3_0.3_0.1_0.3 544.5 75 0 5220 0 (a) 

0.3_0.3_0.2_0.2 460.5 35 0 0 2250 (c) 

0.3_0.3_0.3_0.1 235.5 35 0 0 2250 (c) 

0.3_0.4_0.1_0.2 460.5 35 0 0 2250 (c) 

0.3_0.4_0.2_0.1 235.5 35 0 0 2250 (c) 

0.3_0.5_0.1_0.1 235.5 35 0 0 2250 (c) 

0.4_0.1_0.1_0.4 386 35 2100 1620 0 (b) 

0.4_0.1_0.2_0.3 548 35 2100 1620 0 (b) 

0.4_0.1_0.3_0.2 464 35 0 0 2250 (c) 
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0.4_0.1_0.4_0.1 239 35 0 0 2250 (c) 

0.4_0.2_0.1_0.3 552 75 0 5220 0 (a) 

0.4_0.2_0.2_0.2 464 35 0 0 2250 (c) 

0.4_0.2_0.3_0.1 239 35 0 0 2250 (c) 

0.4_0.3_0.1_0.2 464 35 0 0 2250 (c) 

0.4_0.3_0.2_0.1 239 35 0 0 2250 (c) 

0.4_0.4_0.1_0.1 239 35 0 0 2250 (c) 

0.5_0.1_0.1_0.3 389.5 35 2100 1620 0 (b) 

0.5_0.1_0.2_0.2 467.5 35 0 0 2250 (c) 

0.5_0.1_0.3_0.1 242.5 35 0 0 2250 (c) 

0.5_0.2_0.1_0.2 467.5 35 0 0 2250 (c) 

0.5_0.2_0.2_0.1 242.5 35 0 0 2250 (c) 

0.5_0.3_0.1_0.1 242.5 35 0 0 2250 (c) 

0.6_0.1_0.1_0.2 393 35 2100 1620 0 (b) 

0.6_0.1_0.2_0.1 246 35 0 0 2250 (c) 

0.6_0.2_0.1_0.1 246 35 0 0 2250 (c) 
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0.7_0.1_0.1_0.1 249.5 35 0 0 2250 (c) 

 

 

The solutions in Table 20 are divided into three groups: (a) using retiming, (b) using 

cancellations and retiming and (c) using spare rolling stock, which corresponds to the 

three types of solutions shown in Figure 28. The column “category” shows the category 

of each solution. All solutions found in each category are actually the same.  The total 

objective is different only because 𝜆𝑖s are different, as the costs of all factors remain the 

same. The number of 𝜆𝑖 s used to obtain solutions which belong to each category is 

summarised in Table 21.  

 

Table 21 Number of weights used to obtain solutions belonging to each category 

Type Number of 𝜆𝑖s  

(1) using retiming (a) 15 

(2) using cancellations and retiming (b) 59 

(3) using spare rolling stock (c) 10 

 

Multiple Tests 
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The model is further tested on one line where a single delay happens frequently. The 

task which is frequently delayed is scheduled once an hour from 6 am to 6 pm on any 

operational day.  Together there are 13 scenarios. All 13 scenarios involve one train 

being delayed by 10 minutes.  Each scenario is listed as a row in Table 22. Each scenario 

is assigned an ID as “SD_t”, where t stands for the disruption occurrence time. For each 

scenario, the numbers of drivers, rolling stock units, and tasks in the disruption 

neighbourhood are given.  Feasible recovery diagrams are enumerated for all rolling 

stock units, and drivers and their numbers are given. For each scenario, the total solution 

time for all 84 combinations of weights is given, and the average time per one 

combination of weights is also given.  

 

Table 22 Single delay scenarios for testing and results 

Scenario 
Number 

of drivers 

Number 

of RS 

Number 

of tasks 

Diagrams 

for drivers 

Diagrams 

for RS units 

Solution 

time (s) 

Average 

solution 

time (s) 

SD_6 127 74 291 63,082 1,786 1303 15.33 

SD_7 138 75 293 230,823 6,635 56865 669.00 

SD_8 154 72 288 55,009 2,262 1313 15.45 

SD_9 136 56 216 21,811 1,137 262 3.08 
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SD_10 145 61 244 32,712 1,731 309 3.64 

SD_11 127 54 226 58,613 2,622 661 7.78 

SD_12 129 55 223 90,866 2,624 1153 13.56 

SD_13 149 66 265 105,711 1,692 3855 45.35 

SD_14 150 72 301 163,208 2,277 2993 35.21 

SD_15 134 71 299 161,844 1,976 2453 28.86 

SD_16 123 68 282 166,175 1,393 22113 260.15 

SD_17 149 66 265 105,711 1,692 3855 45.35 

SD_18 91 60 232 85,594 989 1419 16.69 

 

In Table 22, the number of tasks considered in the model has its peak level for scenarios 

happening at 6-8 am and 2-5 pm. The number of driver recovery diagrams in the model 

fluctuates mainly from around 21 thousand to 230 thousand of diagrams. Compared to 

the number of driver diagrams, the number of rolling stock diagrams in the model is 

much smaller, from a few hundred to around seven thousand diagrams. The solution 

time is significant for some scenarios. The total solution time with 84 combinations of 

weights for scenario that happens at 7 am (SD_07) is almost 16 hours. For some 

scenarios, the total solution time only takes less than 5 minutes (SD_09). The solution 

time strongly depends on the total number of diagrams considered in the model.  
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Figure 29 Solution time with respect to the number of diagrams 

The relationship between the average solution time and the total number of diagrams 

is shown in Figure 29. The average solution time is low (below 100 seconds) when the 

number of diagrams is below 150 thousand. Then it sharply rises to around 260 seconds 

for 167 thousand diagrams and 669 seconds for 237 thousand diagrams. Not all points 

in Figure 29 show a rising relationship between the average solution time and the total 

number of diagrams. The reason is that the average solution time is also affected by the 

number of drivers, rolling stock and tasks. Overall, the solution time exhibits exponential 

growth.  

 

Figure 30 The performance of 84 weights on 13 tests for a single delay scenario 
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From Figure 30, for each weight, most of the optimal solutions from all 13 scenarios fall 

into the following three categories: task cancellation and retiming, task retiming or using 

spare stock resources. To be specific, 88.10% of optimal solutions belong to one of these 

three categories. Thus, 𝛬  can be divided into four parts 𝛬𝑖  such that 𝛬 = ڂ 𝛬𝑖
4
𝑖=1 . 

Among them, the first three parts produce optimal solutions as displayed in Figure 28 

a), b) and c).  

 

It is noticeable that solutions that only use retiming (grey line) have low ratio compared 

to the other two categories (orange and yellow lines). The reason for this is that retiming 

tasks cannot always be a feasible solution no matter how weights are set. It may be 

infeasible because the drivers who are on the task need to have a meal break after the 

task. So in this case the drivers can have their meal breaks on time without violating 

fatigue rules only if the task is not delayed. The yellow line (using spare rolling stock) 

and orange line (using cancellation and retiming) are clearly distinguished for different 

combinations of weights. When the ratio for solutions using spare rolling stock and 

retiming is high, the ratio for using cancellation is low.  To be specific, the combination 

of weights 0.1_0.5_0.1_0.3 has the highest ratio to produce optimal solutions only using 

retiming. A number of weight combinations (such as 0.1_0.3_0.5_0.1) can be used to 

produce optimal solutions using spare rolling stock in most of the scenarios. Some 

weights (such as 0.1_0.2_0.2_0.5) can be used to produce optimal solutions using 

cancellation and retiming in most of the scenarios.  
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5.5. Experiments and Results: Multiple Delay Scenarios 

For various reasons multiple delays could happen and many drivers and rolling stock 

could be affected. The same convex combination of criteria and parametric analysis of 

𝜆 has been used to solve a significant disruption scenario. However, the solution cannot 

be categorised clearly as in single delay scenarios. The reason for this is that, for 

significant disruption scenarios, delays happen on more than one route. The solutions 

shown in Figure 28 only consider one train delay on one route. Thus, another 

multicriteria optimisation method, ε -constraint approach, is used to solve scenarios 

with multiple delays.  

5.5.1. Using 𝜺 -constraint Approach  

The idea of the ε-constraint approach is to minimise one objective and add other 

objectives into constraints so other constraints are upper bounded with a parameter ε, 

which is known or can be decided by a user based on experience, or it can be modified 

by a user to analyse the impact of modifications on the final solutions.  

 

In multiple delay scenarios, using spare resources is a default rescheduling strategy. 

Thus, it is not seen as a separate criterion. Here two costs are considered: one is the cost 

𝑓1(𝑧)  that is the cost of train operators implementing any rescheduling strategies. 

Another is the cost 𝑓2(𝑧)  that represents the inconvenience caused to passengers, 

which is the sum of task cancellations and retiming.  

𝑓1(𝑧) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑆𝑅𝐶 + 𝑆𝑂𝐶 + 𝑅𝑆𝐵𝐶  
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𝑓2(𝑧) = 𝑇𝐶𝐶 + 𝑇𝑅𝐶  

 

In the case study, 𝑓1(𝑧) is minimised and 𝑓2(𝑧) is added as a constraint which is upper 

bounded by 𝜀. Thus, the following problem using an 𝜀 -constraint approach is defined. 

𝑧 is the variable vector, and 𝑆 is the search space. 

min 𝑓1(𝑧)  

                                   s.t. 𝑧 ∈ 𝑆  

𝑓2(𝑧) ≤ 𝜀  

5.5.2. Experimental Tests 

The purpose of experiments in this section is to test if the model and methods can give 

solutions that form a Pareto frontier, that is, cancellation and retiming cost cannot be 

decreased unless there is an increase in rescheduling cost. The parameter settings are 

the same as in Section 5.4.2. The upper bound of the objective 𝑓2(𝑧)  is the worst 

cancellation and retiming cost. The highest cancellation and retiming costs occur when 

controllers make no rescheduling decisions and allow delay or cancellation to 

propagate. Because, in this case, no active remedy is implemented. Thus, this 

cancellation and retiming cost can be used as the upper bound. To get this upper bound, 

the methodology from Section 5.3.4 is slightly modified; the new methodology is shown 

in Figure 31. 
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Figure 31 2-stage multicriteria decision-making approach (2SMO) for multiple delay 

scenarios 

In step 5, IRSCRR is solved with a single criterion, f1. It means minimising the 

rescheduling operations without considering the cost of task cancellations or retiming. 

In this case, the tasks that are cancelled and retimed with no rescheduling are obtained. 

Then the worst task cancellation and retiming cost can be calculated, which is the upper 

bound  𝜀. To obtain the Pareto front for each scenario, in step 6, 𝜀 is gradually decreased 

by 10% to obtain a set of optimal solutions. 

 

IRSCRR and 2SMO are applied to 12 instances which differ from each other by the 

disruption occurrence time. The results are shown in Table 23. In each scenario, it is 

assumed that trains that should depart from a major station between 𝑡  and 𝑡 +

20 minutes are delayed by 20 minutes due to failed infrastructure, where 𝑡  is the 

disruption occurrence time set as 7 am, 8am, …, or 6 pm. The rescheduling starts at t 

and the recovery period is set as 4 hours. The numbers of drivers and rolling stock units 

are found as described in Section 5.3.1.  
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Each row in Table 23 represents a scenario. Each scenario is assigned an ID as “MD_t”, 

where t is the disruption occurrence time. Table 23 shows the number of directly 

affected trains, drivers, rolling stock units, and solution time. 4 trains are directly 

affected for all scenarios except scenario MD_16 and MD_17. The number of drivers 

varies from 113 to 161 and the number of rolling stock units varies from 66 to 77. The 

number of tasks is at its highest for MD_15 and MD_16.  

 

In the method, 𝜀 is gradually decreased by 10% to obtain a set of optimal solutions. 

Thus, the model is solved 10 times for different upper bounds 𝜀 . The solution time 

fluctuates from 177 seconds for scenario MD_11 to 839 seconds for scenario MD_17. 

The average solution time for one 𝜀  is 1 minute. The number of optimal solutions for 

one scenario varies from 3 to 7. For scenarios MD_7 - MD_09 and MD_12, 3 

distinguished solutions are found. For scenarios MD_13 and MD_17, 7 solutions are 

found. 

Table 23 Multiple delay scenarios for testing and results 

Scenario Result 

Instance 

ID 

Directly 

affected 

trains 

Number of 

drivers 

Number 

of rolling 

stock 

units 

Number of 

tasks 

Number of 

solutions 

Solution 

time (s) 
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MD_7 4 137 74 284 3 450 

MD_8 4 148 76 286 3 250 

MD_9 4 161 74 277 3 344 

MD_10 4 156 68 271 6 246 

MD_11 4 150 66 254 4 177 

MD_12 4 157 75 265 3 189 

MD_13 4 151 68 264 7 581 

MD_14 4 158 75 293 4 330 

MD_15 4 156 77 309 5 270 

MD_16 5 137 77 308 4 502 

MD_17 5 126 77 296 7 839 

MD_18 4 113 74 281 5 418 

 

 

Figure 32 shows the objectives changes for 12 scenarios. The vertical axis shows 𝑓2 (task 

cancellation and retiming) and the upper bounds for 𝑓2. The horizontal axis shows the 

objective value 𝑓1  (the total cost of using spare resources, using resources that take new 
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tasks, shunting operations, rolling stock units differences and recovery diagrams). Figure 

32 shows a trade-off between objectives 𝑓1 and 𝑓2 in each instance, which matches the 

expectations. At first 𝑓2 (blue line) has a large value, which means that many tasks are 

either cancelled or delayed and no rescheduling moves are implemented. With a 

descending upper bound (red line) on 𝑓2, it starts to drop and 𝑓1  starts to rise, which 

means with more rescheduling moves, the cancellation and delay costs drop.  

 

The upper bounds drop by 10% at each step, so in each subgraph in Figure 32, only 10 

upper bounds and their corresponding solutions are shown. However, it is clear that 

when upper bound 𝜀  decreases, sometimes the same solution is obtained. For some 

scenarios (MD_13 - MD_18), when upper bounds drop at a certain level, there will be 

no feasible solutions under a small upper bound.  For some scenarios, MD_07 - MD_12, 

the cost of task cancellations and retiming can be reduced to a low point or to even 0 in 

some cases, However, for other scenarios, the cost of task cancellations and retiming 

remains high no matter the change of rescheduling effort. The reason for this is that 

some rolling stock units have a heavily loaded recovery diagram. The shift back time of 

retiming tasks will cause the rolling stock’s terminating task to be delayed more than 

allowed. There are steep falls appearing in 𝑓2 for scenarios MD_07, MD_13 and MD_15 

- MD_18. It means that with a small cost rising in 𝑓1 , cancellations and retiming costs 

can be largely reduced. The reason is that using resources on different tasks can lead to 

a big reduction in 𝑓2   but with a slight rise in recovery diagram costs or using spare 

resource cost.   
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Figure 32 A set of optimal solutions for 12 multiple delay scenarios 

 

5.6. Conclusion 

In this chapter, the integrated rolling stock and crew rescheduling problem with retiming 

possibilities (IRSCRR) was considered and the problem is modelled using integer linear 

programming. The detailed constraints about crew rescheduling, rolling stock 

rescheduling and their cross-reference constraints were presented. Constraints about 
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using task retiming possibilities and retiming propagation are described. 7 different 

factors are considered in the objective: cost of chosen recovery diagrams, number of 

utilised resources, difference in rolling stock balance, the using of shunting operations, 

task cancellations, task retiming and the using of spare resources. A customized 2 stage 

framework using multicriteria optimisation methods (2SMO) for solving the integrated 

problem was developed. 2SMO has a feedback mechanism which can suggest retiming 

possibilities of task that are used in the solution process automatically. The feedback 

mechanism can give direction to which tasks should be retimed and by how much, which 

can largely decrease problem size. Also, 7 cost factors were analysed and grouped to 

construct multiple objectives. The integrated rolling stock and crew rescheduling 

problem was solved as a multicriteria optimisation problem. Two typical multicriteria 

optimisation methods were used: Convex Combination of Criteria and  𝜀  -constraint 

approach.  

 

IRSCRR and 2SMO have been tested on several single delay scenarios and multiple delay 

scenarios successfully. For single delay scenarios, the method successfully tested all 

scenarios with 84 combinations of weights. The analysis on 84 combinations of weights 

was conducted. The relationship between method speed and the number of recovery 

diagrams used in a model was described using a figure. 84 combinations of weights can 

be categorised into three groups to produce the three most used rescheduling strategies 

in practice.  
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For multiple delay scenarios, two objectives were considered. One is rescheduling effort 

(cost of chosen recovery diagrams, the number of utilised resources, the difference in 

rolling stock balance, the using of shunting operations and the using of spare resources) 

and another is task cancellation and retiming. The model and method are applied to a 

number of multiple delay scenarios. For each scenario, the model and method can give 

an efficient frontier, which is a set of optimal solutions. Also, the efficient frontier shows 

the trade-off relationship between rescheduling efforts and cancellation and delay 

costs. The solution quality has been analysed. It shows that sometimes with a slight rise 

in rescheduling efforts, task cancellation and retiming can drop a lot. Thus, there is 

significant value in reducing penalties for train cancellation and delay using the 

integrated method to reschedule rolling stock and crew together which might be too 

complex for manual rescheduling.  

 

There are some limitations of the model and method. First, the model does not 

guarantee that the operations can return to its normal level. The reason is that after 

rescheduling, the number of rolling stock units at each station may not match the 

required number. Thus, the model and method can provide a rescheduling solution for 

crew and rolling stock for the recovery period, say 4 hours. It does not take care of 

railway operations after beyond the recovery period. Second, the model does not 

consider the maintenance requirements of some rolling stock. During the rescheduling 

process, rolling stock are treated as interchangeable and assigned different tasks 

compared to their planned diagrams. Some tasks may require the rolling stock to work 

overtime. However, in reality, the same rolling stock may need to head to a maintenance 
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depot after some time. Third, the rolling stock and crew are rescheduled together. Thus, 

the model assumes that the type of rolling stock that can be used for a task is known in 

advance. Then only a driver with knowledge of this type of rolling stock can be assigned 

to the task. Fourth, the method 2SMO requires enumerating all recovery diagrams for 

rolling stock and crew considered in a model, which could take a long time. In Table 22, 

the running time could be as high as 669 seconds for one test. Thus, the method may 

not be suitable for an extensive network with many resources (rolling stock and crew) 

and a long recovery time in real time disruption management. However, the integrated 

model and method can be used in preparing rolling stock and crew contingency plans 

beforehand. A set of typical scenarios and corresponding timetable should be prepared. 

For each scenario, multiple solutions for rescheduling rolling stock and crew are 

expected to be produced. A limited set of solutions can be chosen and further 

documented into contingency plans which can be used as a starting point for 

rescheduling in real time.    



 

234 

CHAPTER SIX: CONCLUSION  
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This thesis has tackled the crew rescheduling problem for railway disruption 

management. It analyses the difficulties of crew rescheduling due to a  range of factors: 

problem size, various constraints, retiming, robust solutions and evaluating solutions. 

The main purpose of this PhD project is to develop optimisation models and methods 

for crew rescheduling with the intention that these models and methods can be used to 

build a reliable decision support system to assist crew controllers in real practice.   

 

To understand the background of passenger railway operation, one needs to recall (as 

in Chapter 2 of this thesis) that the two most important railway parties are the 

Infrastructure Manager and Train Operating Companies. These two parties perform the 

three important railway planning activities: timetable planning, rolling stock planning 

and crew planning. Railway disruption management is covered in Chapter 2, where it is 

also explained how crew rescheduling fits into the overall railway disruption 

management process. Disruptions are categorised. Two categories of disruptions are of 

particular interest to this thesis: minor disruptions and significant disruptions.  

 

The new model and method called DFSCR for solving the crew rescheduling problem for 

minor disruptions has been presented in Chapter 3. DFSCR takes one uncovered task as 

input and typically outputs multiple conflict-free rescheduling solutions. It has been 

shown that DFSCR can be applied to scenarios that can happen in everyday practice. 

Multiple solutions are found for these scenarios which can be directly used in practice 

to ease the rescheduling pressure on controllers by providing significant decision 
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support. The impact of five important parameters in DFSCR: rescheduling start time, taxi 

time variation, maximum work overtime, connection time and maximum work length 

on solution qualities and quantities has been analysed and summarised. It has been 

found that DFSCR solves 150 out of 382 considered scenarios with an average of 4.48 

solutions in 0.75 seconds. Other scenarios could not be solved mainly because the input 

uncovered tasks of these tests happen very early or late at a station away from major 

stations as well as because of the parameter values set in the model. In reality, these 

problems may be solved based on different combinations of parameter values or if 

controllers could urgently find drivers who are not on duty at the time.  A feedback 

mechanism is also used to improve the solvability by 6% and the average number of 

solutions by 1.13. The experimental results show that using the feedback mechanism 

can be a better approach than relaxing the maximum number of affected drivers used 

in DFSCR. Thus, using a feedback mechanism can assist controllers to use the 

optimisation tools more efficiently.  

 

There is some possible further work relating to the model and method proposed in 

Chapter 3. First is to recognise the scale of disruption impact that can be efficiently 

solved by DFSCR and extract a list of uncovered tasks from the disruption. Controllers 

can review the common disruption scenarios, categorise them and try to extract 

uncovered tasks from typical minor disruption scenarios. Second, retiming is used in the 

method and further work is needed to address the follow-up conflicts. An automatic 

conflict detection method may need to be developed to examine a solution using 

retiming. Third, the impact of solving a list of uncovered tasks in different orders on 



 

237 

overall rescheduling cost will require further testing on different scenarios and datasets. 

Fourth, the parameters used in the feedback mechanism may need to be further tuned 

for different TOCs.   

 

A new timetable rescheduling model has been proposed (Chapter 4) to produce a 

revised timetable and predict the recovery period which are important inputs to solve 

the crew rescheduling problem for significant disruptions. The model can produce 

revised timetables which can be used to cover the three stages of the train recovery 

process and be used directly as input to reschedule rolling stock and crew. The model 

has been successfully tested on 14 scenario variations of a complete blockage on a 

double-track line, and the trade-off between train cancellation and delay is presented. 

Also, the impact of turnaround time, maximum allowed delay time and blockage 

occurring time on rescheduling solutions is presented and analysed. The same 

parameter settings may affect timetable rescheduling solutions differently since the 

timetable is non-cyclic.  

 

A new model CRP and method LRCG for the crew rescheduling problem for significant 

disruptions has been also proposed (Chapter 4). It is explained how to construct and 

expand a disruption neighbourhood to limit problem size while producing good 

solutions. CRP is a path-based model, where a path represents a recovery diagram. 

Solving SPPRC to construct recovery diagrams to optimality is an NP-hard problem. To 

tackle this problem, three search methods: bi-directional, forwards and backwards 
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methods are proposed to construct recovery diagrams in LRCG. LRCG can solve the crew 

rescheduling problem in a short time, from seconds to a few minutes, which is much 

faster than manual rescheduling by controllers. An important discovery is that there is a 

direct connection between solution time and iterations of column generation. 

Backwards search is the quickest search method and bi-directional search has 

advantages in finding solutions with smaller gaps between upper bounds and lower 

bounds, for which the reasons are given in Section 4.4.7. The backwards search is 

recommended to be used in LRCG to solve the crew rescheduling problem due to its 

speed advantage. One suggestion to the further work of Chapter 4 is that different kinds 

of significant disruptions should be tested, which requires a new timetable rescheduling 

model to produce revised timetables. The same crew rescheduling model CRP and 

method LRCG can be used to test different disruption scenarios. Further work is also 

required to reduce the possible large gaps between the lower bound and upper bound 

of solutions produced by the backwards search in LRCG.      

 

The integrated rolling stock and crew rescheduling problem is explored in Chapter 5. 

Detailed formulations are given to model the integrated problem with retiming 

possibilities.  Two kinds of delay scenarios are studied: single delay and multiple delay 

scenarios. The method for solving the integrated problem for single delay scenarios can 

replicate the three commonly used rescheduling strategies and 88.1% of the solutions 

in the test scenarios belong to these three rescheduling strategies. The method for 

solving the integrated problem for multiple delay scenarios can show the trade-off 

between operational cost on one hand and task cancellation and retiming on the other 
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hand. The experimental results show that sometimes with a slight increase in 

operational cost, task cancellation and retiming can drop a lot, which provides evidence 

that using an optimisation tool based on the present work can be of great value to 

controllers. One potential improvement is the solution time of the integrated model, 

which is much higher than solving a single crew rescheduling model. Thus, this model 

and method may be suitable for creating rolling stock and crew contingency plans. Also, 

the model does not guarantee that the operations can return to their normal level. Thus, 

solving the integrated problem in a rolling time horizon may be required. 

 

Careful consideration needs to be given to selecting the most appropriate tool once a 

disruption has been identified. The tool developed in Chapter 3 focuses on minor 

disruptions, and the tool developed in Chapter 4 focuses on significant disruptions. 

Minor disruption includes delays without specific incident occurring, often including 

disruption on certain lines of service groups that are self-contained to some extent. The 

service groups usually have limited interaction with other service groups. Significant 

disruption sees restricted access to parts of the network, affecting the ability for the 

timetable to be delivered. The optimisation tool developed in Chapter 5 is for the 

integrated rolling stock and crew rescheduling problem. The method developed in 

Chapter 3 may not be a good choice for significant disruptions if a list of a limited number 

of uncovered tasks cannot be extracted easily by controllers after a disruption. The 

methods developed in Chapters 4 and 5 can be used to solve a minor disruption 

scenario. Further tests are required to verify this. The set of affected drivers (rolling 

stock) due to a minor disruption and a recovery period should be defined before using 
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the methods and the output can be interpreted as assigning a feasible recovery diagram 

to each affected resource. 

 

For real time operations, this thesis provides optimisation tools and examples on how 

to reschedule crew for different levels of disruption. Currently, crew rescheduling is 

conducted manually in Great Britain and controllers are under huge pressure to find one 

feasible solution as soon as possible after disruption happens. Using the optimisation 

tools created in this thesis to develop a mature operational product, crew controllers 

could potentially find multiple optimised solutions in seconds. Better crew management 

during disruptions should lead to better railway performance and passenger experience.  

To successfully implement a crew rescheduling solution, immediate communication 

with train drivers is essential. In the current GB operational environment controllers 

should use various messaging tools like mobile phones or on-the-ground staff to meet 

train drivers at a station to communicate working changes. During the day, a crew 

management system should be kept up to date once changes to the current diagrams 

are decided so the system is always ready for the next disruption. 

 

At the basic level, lessons learned are the tangible result of project review, breaking 

down the project experience of what went right, what went wrong and what could be 

done better. But these lessons will not amount to much if they are not integrated into 

the organisation’s knowledge and used for continuous improvement. Continuous review 

and improvement is a key stage in enabling better crew rescheduling for disruptions. 
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TOCs should review the changes made to crew diagrams and the impact of changes on 

service recovery to evaluate the operational benefits and cost effectiveness of using the 

optimisation tools. The lessons learned should be briefed to all related parties, including 

controllers, drivers, and on-the ground support staff. The lessons learned in the 

continuous improvement should be used to adapt the crew contingency plans. A set of 

typical scenarios and good corresponding solutions should be documented. New 

rescheduling constraints found from lessons learned can be used to improve the 

optimisation tools. A trial session could be made to rerun the disruption scenarios and 

test the improved contingency plans and optimisation tools. To set up a trial session, the 

original scenario should be simulated; the corresponding database used for 

rescheduling is also required. Thus, the organisation should have a proper traffic 

management simulation system and back up the database used for rescheduling. All 

related controllers, drivers and on-the ground support staff should attend the trial 

session. With such trial sessions, the improvements in contingency plans or optimisation 

tools can be tested, discussed and validated by related parties. With knowledge and 

experience accumulating, the performance of crew rescheduling can be steadily 

improved, which should lead to better railway performance.  

 

The optimisation tools developed in this thesis can be used not only in real time 

operations but also in preparing crew contingency plans beforehand. For different levels 

and types of disruptions, an appropriate crew rescheduling plan could be created and 

used to standardise the decision-making process concerning changes to crew diagrams. 

For a set of typical disruption scenarios, with the contingency plans for rescheduling 
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timetable and rolling stock, the methods developed in this thesis can be used to create 

crew contingency plans using crew diagrams for a typical operational day. The number 

of crew contingency plans should be kept limited, so it does not become overwhelming 

for controllers to choose the most appropriate plan. Modifications to a plan are required 

if a scenario affects the network differently. It is also highly recommended that any 

contingency plans align with the organisations’ other processes to ensure that there is 

no potential conflict. Also, it is recommended that the implementation process for crew 

contingency plans is learned and rehearsed by drivers during training so they can 

understand and accept the changes more effectively during disruptions.   

 

Controller competency training and management is vital to use optimisation tools for 

crew rescheduling in disruption management. Some core competencies include: 

conducting a starting assessment of crew positions, using optimisation tools, 

communicating diagram alterations to relevant parties, requesting on-the-ground 

support to communicate with crew, updating the crew management system, recording 

disruption scenarios and rescheduling results, reviewing and continuously improving the 

rescheduling process. To use the optimisation tools developed from the methods in the 

present work in practice, there are some technical and non-technical skills required. 

Technical skills include using and understanding optimisation tools, interpretating crew 

rescheduling results and determining the changes to the crew diagrams, and using 

messaging in the control system. Non-technical skills include situational awareness that 

is, when to initiate the rescheduling process and use the optimisation tools, 

communicating with related parties about disruption and rescheduling decisions, 
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working with others, decision making, etc. These skills should be looked for in industry 

recruitment and thoroughly trained during daily work. 

 

When disruption occurs, passengers may become frustrated. How the industry deals 

with the disruption and how quickly the service can be recovered back to the normal 

timetable are the common concerns of passengers. However, how industry supports 

passengers during disruption can also be vital to their experience. It is clear that when 

passengers are given accurate and up-to-date information during disruption, they feel 

they have more power in understanding the situation and making the best decisions for 

their trips. Thus, besides minimising the disruption impact, a more active approach 

should be taken to give passengers with the right information using various channels, 

like social media or the front line interacting with passengers. 

 

The models and methods proposed in the present work are ready to move to 

implementation in an optimisation tool and practical testing phase. In practical 

implementation, we expect that a processing step is required to process the raw data 

into the required data format that can be accepted by the methods, as well as that the 

outputs from the methods need to be processed and written into the operations system. 

A user interface needs to be designed to enable controllers to use the optimisation tool. 

An important consideration is that exchanging information between the methods and 

other systems like a database may slow down the solution process if the information 

flow is not reliable. Thus, minimising the information flow with other systems may be 
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preferred. To verify and validate the optimisation tool, a detailed code inspection should 

be carried out to check for good programming style and functional quality. Frequently 

occurring scenarios and critical extreme scenarios should be tested and the results 

should be compared with the manual rescheduling results from controllers. A testing 

report should be generated by controllers using the optimisation tool in a simulated 

environment and reviewed by the development team to evaluate the optimisation tool. 

The development team needs to verify with the controllers if the aim of using the 

optimisation tool has been achieved, which is to ease rescheduling pressure on 

controllers and assist them to make better decisions. 
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