

RAILWAY CREW RESCHEDULING FOR DISRUPTION

MANAGEMENT

by

JIE YUAN

A thesis submitted to the University of Birmingham for the degree of

DOCTOR OF PHILOSOPHY

 Birmingham Centre for Railway Research and Education

 School of Engineering

College of Engineering and Physical Sciences

 University of Birmingham

 February 2023

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

i

ABSTRACT

Unforeseen events from external influences such as major weather events, and internal

causes such as infrastructure failures disrupt daily dense train operations. Such

disruptions can quickly spread over the network and cause planned crew schedules to

become infeasible to follow. Being one of the important steps in recovery of the railway

service following a disruption, if crew rescheduling is not properly considered, it can

jeopardise the return to stable service. This thesis mainly focuses on railway crew

rescheduling for disruption management.

This thesis studies real-time railway crew rescheduling in theory and practice. By

carefully examining the current literature on railway crew rescheduling, this thesis

presents a detailed analysis and comparison of the current methods. This thesis provides

models and methods for the crew rescheduling problems caused by two distinct types

of disruptions: minor disruptions and significant disruptions. Sensitivity tests are

conducted on several parameters to explore the impact on solutions. Meanwhile, this

thesis considers that optimisation tools for solving the railway crew rescheduling

problem cannot be a standalone optimisation tool for controllers to use. If no solution

and no further information is given by an optimisation tool, time will be wasted. If no

feedback is given by an optimisation tool, there will be no resolution. When such

situations occur, controllers usually do not know what has happened inside an

optimisation tool and how to get potential solutions. A feedback mechanism is proposed

to output the reasons for not producing solutions and to adjust parameter values used

ii

in the crew rescheduling problems to give a good chance of generating results with

revised values.

A timetable rescheduling model is proposed to model the impact on train services of a

disruption and predict the recovery period. The recovery period measures how quickly

a timetable can return to its normal level. A disruption neighbourhood is introduced as

an idea, which is used to identify the drivers that should be considered in the crew

rescheduling model for significant disruptions. It is characterised by the drivers who are

included in the model and the recovery period. Algorithms are proposed to find the

drivers that should be considered in a disruption neighbourhood to obtain good

solutions. Several mathematical techniques and methods are proposed to speed up the

solution time for the crew rescheduling problem for significant disruptions.

Further, the integrated rolling stock and crew rescheduling problem is still an immature

research area. This thesis presents detailed formulations to model the problem and

explores this problem with retiming possibilities. It can provide mutually feasible

rescheduling solutions between rolling stock rescheduling and crew rescheduling.

Several goals that relate to rolling stock and crew during disruption management are

considered, analysed and further grouped into different objectives. Two kinds of

multicriteria decision making (MCDM) methods are used to produce a set of optimal

solutions for the integrated problem.

iii

PAPERS AND CONFERENCES

During the study of my PhD, the following articles have been published. The co-authors

in the articles listed below have advised on conceptualization, review and supervision.

Publications

1. Yuan J, Jones D, Nicholson G. Flexible Real-time Railway Crew Rescheduling using

Depth-first Search. Journal of Rail Transport Planning & Management, Volume

24, 1-17, 2022. Doi: 10.1016/j.jrtpm.2022.100353

2. Yuan J, Jones D, Nicholson G. Real-time Crew Rescheduling with Pre-learned

Crew Scheduling Constraints and Disruption Impact, Proceedings of World

Congress on Railway Research 2022 Conference (WCRR2022), Birmingham, 6-10

June 2022

3. Yuan J, Jones D, Nicholson G. Flexible Real-time Railway Crew Rescheduling

during Disruption, Proceedings of the 9th International Conference on Railway

Operations Modelling and Analysis (RailBeijing 2021), Beijing, 3-7 November

2021

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisors: Clive Roberts, Gemma Nicholson and Daniel Jones,

for their consistent support and guidance during the PhD projects. They always

encouraged me to explore the research directions that interested me and gave detailed

and thoughtful comments on my writings including this thesis. I am especially grateful

to Gemma for the weekly meetings where we also discussed study, career and various

top trending topics in society. I would also like to express my gratitude to the School of

Engineering, the University of Birmingham which generously supported me for the PhD

project. Furthermore, I would like to thank the Rail Operations team at Worldline UK&I,

whose expertise and advice were invaluable in guiding the practical application aspects

of this work. In the end, I would like to thank my family for always supporting me and

cheering me up during difficult times.

v

CONTENTS LIST

Abstract

Papers and Conferences

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Algorithms

vi

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION .. 1

1.1. Background ... 3

1.2. Motivation for the Research ... 5

1.3. Research Questions .. 11

1.4. Overview .. 12

CHAPTER TWO: PASSENGER RAILWAY OPERATIONS .. 14

2.1. Great Britain Railway Companies and Their Responsibilities 17

2.1.1. Infrastructure Management by Network Rail .. 18

2.1.2. Railway Operators in Great Britain .. 20

2.2. Railway Planning ... 22

2.2.1. Timetable Planning .. 22

2.2.2. Rolling Stock Planning ... 25

2.2.3. Crew Planning ... 26

2.2.4. Summary ... 28

2.3. Railway Disruption Management ... 29

2.3.1. Service Recovery Framework Process ... 31

2.3.2. Timetable Rescheduling .. 34

2.3.3. Rolling Stock Rescheduling .. 34

2.3.4. Crew Rescheduling .. 36

2.3.5. Analysis of Crew Diagrams .. 37

2.4. Literature Review on Crew Planning ... 40

2.5. Literature Review on Crew Rescheduling ... 44

CHAPTER THREE: CREW RESCHEDULING FOR MINOR DISRUPTIONS 51

3.1. Method: Depth-First Search Crew Recovery Method (DFSCR) 55

3.1.1. Overview of DFSCR .. 56

3.1.2. Inserting One Uncovered Task into a Diagram .. 60

3.1.3. Algorithm for DFSCR .. 67

3.1.4. Generating Feedback from the Model Run ... 71

vii

3.2. Single Case Study and Sensitivity Tests ... 73

3.2.1. Late Inbound Train Scenario .. 73

3.2.2. Solution Analysis ... 77

3.2.3. Mathematical Optimisation for the Crew Rescheduling Problem 80

3.2.4. Comparing Methods: DFSCR, DFID, BnPCR and GSLR 81

3.2.5. Sensitivity Tests ... 84

3.3. Multiple Experiments ... 90

3.4. Conclusion .. 95

CHAPTER FOUR: CREW RESCHEDULING FOR SIGNIFICANT DISRUPTIONS 98

4.1. Timetable Rescheduling Problem ... 100

4.1.1. Related Works ... 103

4.1.2. Problem Description.. 106

4.1.3. Event-activity Graph .. 108

4.1.4. Model .. 112

4.1.5. an Illustrative Example .. 118

4.1.6. Experimental Tests .. 119

4.1.7. Conclusion ... 127

4.2. Optimisation Problems ... 128

4.2.1. Linear Programming, Duality and Reduced Cost 128

4.2.2. Integer Programming and Lagrangian Relaxation 129

4.2.3. Set Covering Problem .. 131

4.3. Optimisation Techniques .. 132

4.3.1. Column Generation ... 132

4.3.2. Subgradient Method ... 133

4.3.3. Shortest Path Problems with Resource Constraints 134

4.4. Crew Rescheduling Problem ... 136

4.4.1. Problem Description and Model ... 138

4.4.2. The Graph used to find Recovery Diagrams .. 139

4.4.3. Solving SPPRC .. 146

viii

4.4.4. The LRCG Method ... 151

4.4.5. a Didactic Example .. 167

4.4.6. Experimental Tests .. 171

4.4.7. Comparison: Bi-directional, Forwards and Backwards Search Methods 178

4.5. Conclusion .. 186

CHAPTER FIVE: SOLVING INTEGRATED ROLLING STOCK AND CREW RESCHEDULING
PROBLEMS ... 188

5.1. Literature Review ... 191

5.2. Integrated Rolling Stock and Crew Rescheduling Model with Retiming 193

5.2.1. Model Constraints ... 194

5.2.2. Extra Constraints Concerning Retiming ... 196

5.2.3. Model Objective .. 199

5.2.4. Model .. 201

5.3. Method: 2SMO ... 202

5.3.1. Disruption Neighbourhood ... 202

5.3.2. Task Coverage Feedback Mechanism .. 203

5.3.3. Graph for Solving Rolling Stock SPPRC .. 204

5.3.4. Overview of 2SMO .. 207

5.4. Experiments and Results: Single Delay Scenarios 208

5.4.1. Using Convex Combination of Criteria ... 211

5.4.2. Experimental Tests .. 212

5.5. Experiments and Results: Multiple Delay Scenarios 224

5.5.1. Using 𝜺 -constraint Approach .. 224

5.5.2. Experimental Tests .. 225

5.6. Conclusion .. 230

CHAPTER SIX: CONCLUSION .. 234

References ... 245

ix

LIST OF FIGURES

Figure 1 Total running cost per TOC (Office of Rail and Road, 2015) 22

Figure 2 Train service recovery (Mann & Panter, 2013) .. 32

Figure 3 Number of diagrammed drivers and their work lengths in each depot 38

Figure 4 Total driving time before and after a meal break .. 39

Figure 5 Change time at different stations ... 39

Figure 6 Late inbound train scenario .. 74

Figure 7 (a) number of solutions, and (b) cost, with respect to rescheduling start time

 .. 85

Figure 8 (a) number of solutions, and (b) cost, with respect to extra taxi time 86

Figure 9 (a) number of solutions, and (b) cost, with respect to connection time 88

Figure 10 (a) number of solutions, and (b) cost, with respect to maximum work length

 .. 90

Figure 11 Average number of solutions and solution time against task departure time

 .. 91

Figure 12 Three stages of the train service recovery process 101

Figure 13 Event-activity graph built for a complete blockage 112

Figure 14 Timetable rescheduling in case of one-hour complete blockage 119

Figure 15 Trains running on the busiest line of a TOC in Great Britain 120

Figure 16 Example of finding feasible recovery diagrams ... 150

Figure 17 An overview of the LRCG method solving the CRP model 153

Figure 18 Process of building an initial disruption neighbourhood 154

Figure 19 Subgraph for driver Tim .. 170

Figure 20 Costs compared for the three methods .. 179

Figure 21 Solution time compared for the three methods ... 180

Figure 22 Iteration of column generation compared for the three methods 181

Figure 23 Disruption neighbourhood iterations in the three methods 183

x

Figure 24 Number of tasks considered in the three methods 184

Figure 25 Number of drivers considered in the three methods 184

Figure 26 2-stage multicriteria decision-making approach (2SMO) 208

Figure 27 Rolling stock running on a single line .. 209

Figure 28 Three frequently used solutions with different characteristics 210

Figure 29 Solution time with respect to the number of diagrams 222

Figure 30 The performance of 84 weights on 13 tests for a single delay scenario 222

Figure 31 2-stage multicriteria decision-making approach (2SMO) for multiple delay

scenarios ... 226

Figure 32 A set of optimal solutions for 12 multiple delay scenarios 230

xi

LIST OF TABLES

Table 1 Connection Types ... 61

Table 2 Driver diagram: D30 ... 75

Table 3 Results obtained from default values ... 78

Table 4 A typical solution (6): recovery diagrams and cost breakdown 79

Table 5 Solution changes with increasing maximum number of affected drivers 92

Table 6 Comparison between testing results before and after relaxation 93

Table 7 (a) tests with relaxation, and (b) tests without relaxation 94

Table 8 Basic elements used in an event-activity graph .. 111

Table 9 Variables used in a timetable rescheduling model ... 113

Table 10 Timetable rescheduling with the turnaround time (5 minutes) at blockage

sites .. 122

Table 11 Timetable rescheduling with the significant turnaround time (15 minutes) at

blockage sites ... 125

Table 12 Connection types used to construct a recovery diagram 140

Table 13 Task information for a didactic example .. 168

Table 14 Constraint matrix ... 169

Table 15 Blockage scenarios and their effect on drivers ... 171

Table 16 Crew rescheduling with solving SPPRC using bi-directional search 173

Table 17 Crew rescheduling with solving SPPRC using forwards search 175

Table 18 Crew rescheduling with solving SPPRC using backwards search 177

Table 19 Cost indicators and their measurements in the model 201

Table 20 One scenario test with 84 combinations of weights 213

Table 21 Number of weights used to obtain solutions belonging to each category ... 219

Table 22 Single delay scenarios for testing and results ... 220

Table 23 Multiple delay scenarios for testing and results ... 227

xii

LIST OF ALGORITHMS

Algorithm 1 Finding the initial commencing activity ... 64

Algorithm 2 Solving DFSCR .. 69

Algorithm 3 Column generation scheme .. 133

Algorithm 4 Determining the arc type between task1 and task2. 143

Algorithm 5 Determining the arc type requiring transferring a driver 144

Algorithm 6 Determining the arc type between task1 and sign-off 145

Algorithm 7 Solving SPPRC .. 147

Algorithm 8 Building an initial disruption neighbourhood .. 155

Algorithm 9 Solving CRP with expanding disruption neighbourhoods 158

Algorithm 10 Solving CRP with a given disruption neighbourhood 160

Algorithm 11 Solving a dual Lagrangian problem using the subgradient method 162

Algorithm 12 Greedy algorithm .. 165

Algorithm 13 Solving a pricing problem .. 167

Algorithm 14 Determining the arc type between task1 and task2 for a rolling stock unit

 .. 205

1

CHAPTER ONE: INTRODUCTION

2

Trains in today’s railways are running at high capacity on the network to meet demand.

Punctual and stable train services are sought by both train operators and passengers.

However, unforeseen events from external influences such as major weather events,

and internal causes such as infrastructure failures and rolling stock breakdown challenge

dense train operations. Such disruptions can quickly spread over the network due to the

strong interdependencies in a railway network. Depending on the scale of a disruption,

timetable, rolling stock and crew may need to be recovered from a disrupted status as

quickly as possible. Rescheduling timetable, rolling stock and crew usually are carried

out sequentially and iteratively. A mutually compatible solution among all three steps

needs to be found. Theoretically, the adjustments among the three steps can go back

and forth for several rounds until a mutually compatible solution appears. Being one of

the important steps in recovery of the railway service following a disruption, crew

rescheduling is often neglected. However, if it is not properly considered when the

timetable is revised, it can jeopardise the return to stable service.

This thesis mainly focuses on railway crew rescheduling for disruption management.

Furthermore, integrated crew rescheduling with rolling stock rescheduling is also

explored. Various kinds of crew work on trains, including drivers, train conductors, train

managers and catering staff. In the context of this thesis, the terms drivers and crew are

interchangeable since the model and approach to reschedule drivers can be easily

modified and used for other kinds of train crew. This thesis limits the discussion to train

drivers. Timetable, rolling stock and crew recovery are three closely linked steps in a

disruption management process. A recovery solution from any step should comply with

3

the other two. The terminologies used in this thesis are used in Great Britain and case

studies are from Great Britain. Two types of trains are running on the same railways in

Great Britain: freight trains and passenger trains. This thesis mainly focuses on the

operations of passenger trains.

In the remainder of this chapter, Section 1.1 is the background. The motivation for this

research is given in Section 1.2 and the research questions addressed are proposed in

Section 1.3 and Section 1.4 is an overview of this thesis.

1.1. Background

The basis of passenger railway operations is the timetable which describes a set of train

services. Each service is scheduled to run from one terminal station to another terminal

station and call at a number of intermediate stops at specific times or pass other

significant locations at specific times. To provide the train services, resources such as

crew and rolling stock are needed. Detailed schedules are set for crew and rolling stock

to perform daily train services. However, due to the inevitable occurrence of unplanned

events, train services often cannot be provided on time as set out in a timetable. This

further leads to the schedules set for crew and rolling stock become infeasible to follow.

Following the definition of disruption in the airline industry (Clausen, Larsen, Larsen, &

Rezanova, 2010), in this thesis, disruption is defined as an event or a series of events

that renders timetables and the planned schedules for rolling stock and crew infeasible.

4

Initiating event(s) cause a disrupted situation, which may be referred to as a disruption.

When a disruption happens, a corresponding rescheduling process may need to be

initiated depending on the scale of an incident.

A crew member’s schedule is called a crew diagram, which is a list of activities starting

with signing on and ending with signing off at a crew depot. The typical activities of a

driver’s diagram include driving tasks, breaks, taxi trips or boarding another train as a

passenger to move from one place to another. After a disruption, the planned diagram

for a driver may become impossible to follow due to cancelled or delayed trains. In this

case, the diagram becomes infeasible. This infeasible diagram needs to be revised to a

feasible diagram, called a recovery diagram, to be assigned to the driver. A special class

of driver is spare drivers who are reserved at major stations. Spare drivers have an

empty diagram which only contains signing on and signing off at a depot. They are

reserved for covering tasks for other drivers when there is a disruption. Thus, the

availability of spare drivers is important in disruption management. The number of spare

drivers who are on duty at a major station on a day is limited due to cost.

For a relatively large incident, railway disruption management mainly contains three

sub-problems: timetable, rolling stock and crew recovery. Usually, these three

subproblems are solved in a sequential manner. The recovery period is the time length

for recovery of the railway services after a disruption. The length of the recovery period

is predicted and is important in solving the three subproblems after a disruption. After

5

the recovery period, rolling stock and crew should be recovered back to their planned

diagrams and perform tasks in the normal timetable. Using optimisation tools to solve

railway rescheduling problems has been a rising topic in the operations research

community. A large body of literature of applying operations research methods to solve

timetable rescheduling problems exists. However, the latter two problems, rolling stock

rescheduling and crew rescheduling lack the same level of attention.

For countries like Great Britain, the railway infrastructure provider is separated from

railway services operators. They both have control rooms where a group of controllers

are located. Controllers are responsible for managing disruption and recover train

services as soon as possible after a disruption. Different railway service operators are

assumed to have similar control arrangements and roles in a control room. Usually, a

control manager is in charge of the control room. Train running managers cover the

operation of the operator’s train services and are responsible for communicating with

the infrastructure provider about the incident. Rolling stock controllers are responsible

for rescheduling rolling stock. Crew rescheduling controllers are responsible for

rescheduling crew and communicating with the crew about their changed diagrams.

Sometimes the railway network of a train service operator is further split into parts and

each crew controller is in charge of the crew in a part of the network. The detailed

disruption management process is explained in Section 2.3.

1.2. Motivation for the Research

6

Although being a crucial step in railway disruption management, railway crew

rescheduling in Great Britain is currently conducted manually. Crew controllers are

under huge time pressure to reschedule crew after a disruption happens. The crew

rescheduling problem is hard to solve for the following reasons:

(1) The size of the crew rescheduling problem. The size of the overall problem is

directly decided by the number of drivers and driving tasks that need to be

considered in the problem. It is straightforward that the directly affected drivers

whose diagrams become infeasible should be included in the problem. However,

other drivers should also be included so their feasible diagrams can be divided

up and used in the new set of recovery diagrams. These driving tasks will be

mixed with driving tasks from infeasible diagrams to be used to generate new

feasible diagrams for all drivers considered in a problem. The number of driving

tasks considered in a problem is also affected by the rescheduling period, during

which the crew are rescheduled and after which the crew are recovered back to

work on their planned diagrams. Since driving tasks are collected by the rule that

they should commence within the rescheduling period, a longer recovery will

lead to more driving tasks to be considered in a crew rescheduling problem. A

crew rescheduling problem involving a large number of drivers and driving tasks

may take a long time to solve.

(2) Fatigue rules need to be considered. Due to working safety requirements ((Rail

Safety and Standard Board, 2012), (Office of Rail and Road, 2013)), drivers’

7

planned diagrams are carefully designed following labour rules, which within one

shift are mainly shown by two aspects: (a) after a certain period of continuous

driving, a driver needs to have a meal break; (b) the number of hours worked

during a day is limited. There are also rules for crew rosters which may span

consecutive days. For example, there is a minimum rest period of 12 hours

between signing off from one shift to signing onto the next shift. During the

rescheduling process, drivers may be rescheduled to work on different trains and

fatigue rules need to be observed at all times. Guaranteeing that each driver can

still have enough rest according to the regulations during the rescheduling

process is difficult to achieve manually in pressured conditions.

(3) Retiming. As previously explained, crew rescheduling is usually the last

important step in railway disruption management. It takes the rescheduling

results of timetable recovery and rolling stock recovery as input. However, it may

be necessary to cycle back and alter a former decision. For example, crew

rescheduling may have a solution or better solution if some tasks are retimed for

drivers to cover them in the rescheduled timetable. Retiming a task may lead to

more tasks needing to be retimed if they are carried out subsequently by the

same rolling stock. It is also necessary to consider if the rolling stock still has

enough turnaround time at a terminal station if the last task is retimed. It is very

challenging to consider retiming tasks and their potential impact on

rescheduling.

(4) Robust solutions. A solution can fail in implementation due to not considering

the real rescheduling environment or if a driver cannot be contacted in time. If a

8

solution fails in implementation, the solution is not robust enough. To have a

robust solution, some constraints need to be considered. For example, the

connection time needs to be considered so that drivers have enough time to

change between two different activities, for example, two driving tasks on

different trains. A driver not having enough time to change from one train to

another could lead to their next train being delayed and further disruptions. This

shows the solution is not robust enough and has implementation risk.

Communication time needs to be considered for drivers to be contacted to

receive their changed diagrams. Also, the solution needs to be robust since there

is uncertainty about the accuracy of the available information when the

rescheduling is made. When a disruption happens, the length of disruption is

uncertain. Controllers only have information about the current disruption status

(which may be fully up to date) and must estimate the time at which the

disruption cause will be resolved. However, it may actually take a longer time

than predicted for a disruption to be resolved and new information about the

disruption may become known to controllers at any time. Thus, a strict solution

may not be able to be implemented when new information about the disruption

is known.

(5) Evaluating solutions. There may be several different solutions to reschedule crew

after their diagrams become infeasible due to disruption. Each solution has

implications for later operations. It is non-trivial, or even impossible, for a crew

controller to evaluate each solution and find the most suitable one quickly. In

the crew rescheduling process, consideration needs to be given to finding a

9

relatively low-cost solution in terms of cancellation and train delay penalties,

overtime compensation, taxi fares, maintaining a low impact on passenger

satisfaction, reducing further rescheduling, etc. One of the main challenges in

rescheduling is to quickly propose a solution that achieves a good balance among

these considerations.

To carefully consider each item discussed above and calculate the quality of a solution

in a limited time, controllers are facing more and more challenges in today’s railways

with networks running at almost full capacity. A more reliable and quick decision-making

system which can assist controllers to reliably find feasible and good enough solutions

considering the balance between many factors and satisfying various constraints is

needed. This is the first main motivation for this PhD research.

Second, a variety of parameters are used in solving the crew rescheduling problem. The

initial values of the parameters are set by controllers. When parameters are set in a way

that there is no feasible solution for rescheduling crew, controllers may be left uncertain

about why, reducing trust in using a crew rescheduling decision support tool. Thus, it is

necessary to understand how essential parameters affect crew rescheduling solutions

and a feedback mechanism should be added to provide reasons for not being able to

provide a solution. Controllers can adjust parameters according to feedback information

and obtain potential solutions.

10

Third, generating more than one solution to a disruption may be desirable. The reasons

for multiple solutions are threefold. (1) Many criteria can be used to evaluate a solution.

It rarely happens that one solution is the best among all criteria; (2) A model for the

crew rescheduling problem may not be able to include all the constraints that exist at

the instant when a rescheduling process is initiated. There are various reasons that a

model may not include all the constraints. First, a model could have very complex

constraint structures after considering all constraints and make it impossible to solve in

real-time. Second, some constraints cannot be foreseen. For example, a driver refuses

to be rescheduled because they want to sign off on time at their depot for personal

reasons. Thus, in reality controllers who have the most accurate information about the

disruption should be able to use their knowledge and experience to choose the most

appropriate solution. (3) One solution may fail in implementation due to lack of

robustness or be rejected by drivers, thus other feasible solutions should be preserved

as backup plans. Therefore, a model which can provide multiple optimal solutions

should be studied.

Fourth, the common rescheduling strategies used by controllers in reality do not just

involve crew. Sometimes, these rescheduling strategies involve both rolling stock and

crew together. It needs an integrated rolling stock and crew model to give such

solutions. When rescheduling rolling stock and crew in sequence, if the crew

rescheduling solution cannot cover all the tasks that rolling stock covers, then a different

rolling stock scheduling solution is needed. The adjustments between rolling stock and

crew can go back and forth until a mutually feasible solution appears. Also, solving an

11

integrated problem rather than two sub-problems can give no worse solutions and the

solution is naturally feasible between the two sub problems. There is very limited

literature in this area and the current research does not address the integrated rolling

stock and crew problem fully. Thus, exploring a suitable model for the integrated rolling

stock and crew rescheduling problem is one of the purposes of the thesis.

1.3. Research Questions

To fulfil the purposes of the thesis, the following questions about real-time railway crew

rescheduling are posed:

1. How can crew rescheduling problems be categorised and how does crew

rescheduling fit into the railway disruption management process?

2. How can the crew rescheduling problem be modelled in each case using the

categories determined in answer to question 1? How can various real-world

constraints be set in the models, for example, fatigue rules, connection time and

communication time? Which factors should be considered in evaluating the

quality of crew rescheduling solutions and how can each factor be quantified?

3. How do parameters in the crew rescheduling problem affect the solutions and

how can a feedback mechanism to adjust parameter values when there is no

solution be set up?

4. How can the impact on train services of a disruption be modelled and the

recovery period be predicted? The impact on different drivers from a particular

12

disruption varies. Some drivers are directly affected by the disruption and others

are not. It is not necessarily enough to find a good solution by just rescheduling

directly affected drivers. Which drivers’ schedules should be considered for

rescheduling following a disruption?

5. The crew rescheduling problem can take a long time to solve due to its problem

size. Which techniques can be used to speed up the process of solving the crew

rescheduling problem?

6. How can the integrated rolling stock and crew rescheduling problem with

retiming possibilities be modelled and solved? How can multiple solutions be

obtained in solving the integrated rolling stock and crew problem?

1.4. Overview

The remainder of the thesis is organised as follows. Chapter 2 describes the planning

and rescheduling process of passenger railway operations and the organisations

involved in the two processes. Disruptions are categorised into three levels in this

section. Two levels of disruptions are addressed in the thesis: minor disruptions and

significant disruptions. Literature on railway crew planning and rescheduling is also

reviewed in this chapter. Chapter 3 addresses the model and method, depth-first search

crew recovery (DFSCR), for solving crew rescheduling during minor disruptions. Chapter

4 is about crew rescheduling during significant disruptions. The problem is formulated

using integer linear programming and an efficient heuristic algorithm is proposed.

Chapter 5 studies the integrated rolling stock and crew rescheduling problem with

13

retiming possibilities. The model formulated for the problem has been successfully

applied to several single delay and multiple delay scenarios. Chapter 6 is the conclusion.

14

CHAPTER TWO: PASSENGER RAILWAY

OPERATIONS

15

The operations of the passenger railway are through a complicated system involving

several parties with different responsibilities. This chapter lays out the background to

passenger railway operations. The two most important railway parties: Infrastructure

Manager (IM) and Train Operating Companies (TOCs) are first discussed in Section 2.1.

The discussion is based on the situation in Great Britain. The main railway planning

processes: timetable, rolling stock and crew planning are described against the four

planning levels: strategic level, tactical level, operational level, and short-term level in

Section 2.2. Section 2.3 is about railway disruption management. Commonly used

rescheduling strategies in timetable, rolling stock and crew rescheduling are discussed.

Section 2.4 and 2.5 review the existing publications in railway crew scheduling and

rescheduling problems, respectively. This chapter answers research question 1 posed in

Section 1.3. The main railway terminology used in this thesis is given first ((American

Public Transportation Association, 2019) and (Nielsen L. K., 2011)).

Railway Terminology

Rolling stock: Rolling stock refers to railway vehicles, including both powered and

unpowered vehicles. The typical rolling stock includes locomotives, powered and

unpowered cars, wagons, multiple units, etc. A locomotive is a rail transport vehicle that

provides the motive power.

Rolling stock unit: A unit is a self-propelled railway vehicle consisting of a fixed number

of carriages. A multiple unit (MU) is a self-propelled entity composed of one or more

carriages joined together, which can be coupled to another MU to form a composition

to allow one driver to control.

16

Rolling stock composition: Rolling stock units can be combined with each other to form

compositions. A rolling stock composition describes the number of each rolling stock

unit, and in which order they appear in a train. Rolling stock compositions are frequently

adapted during daily operations by uncoupling units from or coupling units to trains.

Train: A train is a railway vehicle or series of connected railway vehicles that is used or

intended to be used in a train service.

Train service: A train service is a regularly scheduled transit service from a specified

origin to a specified destination usually with several intermediate scheduled stops. A

train service is usually associated with an identifying code. In GB, this code is a four-

character code called the train reporting number or headcode.

Timetable: A timetable specifies the timings and stopping patterns of trains and other

empty railway vehicles.

Train path: A train path is the infrastructure reserved to run a train between two places

over a given period.

Relief station: Due to the facilities in a railway station some stations are relief stations

where drivers can be scheduled to change trains.

Trips: For the planning process, the train services of a timetable are divided into smaller

components called trips. The division into trips is performed in such a way that the

assignment of a driver to a train cannot be changed during a trip. A service may contain

one or more trips.

Diagram: A crew member’s schedule is called a crew diagram, which is a list of activities

starting with sign on and ending with sign off at a crew depot. The typical activities of a

17

driver’s diagram include sign on and off, driving tasks, breaks, taxi trips or boarding

another train as a passenger to move from one place to another. There are also some

activities arising from rolling stock diagramming including disposal, attachment,

mobilisation, etc. A diagram of a rolling stock unit is a series of tasks performed by the

unit on a day.

Driving task: A driving task is a special class of activity, which is specified between two

major stations and has attributes: headcode (the GB term to identify a train service),

and route and rolling stock knowledge requirements, indicating the required

competencies of drivers for the specific route and rolling stock. A driving task usually

consists of one trip, but sometimes it consists of more trips from one train service.

Recovery period: In this work, a recovery period is the length of time from rescheduling

begins following disruption to the time when a normal timetable can be restored and

rescheduling ends.

Disruption period: A disruption period is the time length when full infrastructure access

is limited. The length of disruption period has uncertainty. If the disruption is caused by

a technical fault, it can be evaluated as the expected time required to fix it. If the

disruption is caused by unpredictable reason, say bad weather or missing crew, the

disruption duration may need to be estimated by controllers.

2.1. Great Britain Railway Companies and Their Responsibilities

The smooth running of Britain’s railway relies on several parties’ cooperation. Typical

industry organisations including Network Rail, Train operating companies (TOCs),

Freight Operating company (FOCs) and rolling stock leasing companies (ROSCOs). TOCs

18

run passenger rail services, leasing and managing stations (over 2,500) from Network

Rail. Freight operating companies (FOCs) use the railway network to run trains that

transport goods. ROSCOs own most of the coaches, locomotives and freight wagons

which they lease to TOCs and FOCs, which together are called Railway Undertakings

(RUs). In this Section 2.1, the railway infrastructure manager and railway operators in

Great Britain are introduced.

2.1.1. Infrastructure Management by Network Rail

Like other European countries, Great Britain separates the infrastructure manager and

train/freight operating companies. The government funds Network Rail (NR) to provide

railway infrastructure which must satisfy a set of requirements like capacity and

reliability, etc.

Network Rail (NR) is the owner, operator and infrastructure manager of Britain’s main

railway network. Great British Railways (GBR) shall replace NR in this respect from 2024.

GBR also has other responsibilities, for example, contracting of passenger train services,

the setting of fares and the collection of fare revenue, etc., see (Department for

Transport, 2021). NR has the following four duties:

NR owns, repairs and develops the railway infrastructure in England, Scotland and Wales,

including 20,000 miles of track, 30,000 bridges, tunnels and viaducts and the thousands

of signals, level crossings and stations (biggest and busiest stations: 11 in London and 20

outside London). NR has designated the geographical area covered by railway network

19

into five regions. Each region is further divided into routes. NR establishes and maintains

a route business for each route area which takes primary responsibility for the part of

the network and stations within the route area.

NR is responsible for understanding and shaping the future of Britain’s railway through

delivery of long-terms plans. A strategic network planning team is established and

maintained to investigate the long-term railway contributions to national and regional

economic growth and social well-being. The team is also responsible for understanding

the railway capabilities and how it delivers railway passenger and freight services. It

investigates the likely changes to passenger demands, patterns of train services and to

the railway in future. Strategic advice is provided to railway funders to understand the

complexities of the railway and to make informed investment decisions that could

require potential changes in timetable, rolling stock and crew.

NR is responsible for setting the timetable. Various types of trains run on the railway

network: metro, regional, intercity and high-speed trains. They differ from each other in

journey time, maximum speed, etc. The timetable planning needs to balance the

demands of stopping, non-stopping passenger and freight train services as well as taking

lots of factors into account to keep the railway safe. In countries that separate railway

infrastructure management from railway operations, the timetable is a collaborative

effort between infrastructure provider and train/freight operating companies.

20

NR is responsible for directing service recovery. Control centres are set based on the

principal routes to operate trains within the routes. In each control centre, there are a

number of distinct roles which are responsible for collecting incident information,

dealing with the incident itself, recovery timetable as quickly as possible and providing

customer with consistent delay information. The detailed description can be seen in

(BCRRE, NetworkRail, RFI, & TV, 2014). According to (RSSB, 2020), a NR manager

oversees the disruption management for a specific NR route. NR controllers mainly

interfaces with signallers to manage network capacity utilisation and service alterations.

2.1.2. Railway Operators in Great Britain

For train services, the government invites TOCs to tender. The TOCs bid for franchises

based on minimum service requirements set out by the government. TOCs also liaise

with NR to confirm that sufficient capacity is available to support the planned service.

The passenger rail franchising system was created as part of the privatisation of British

Rail in 1994. Railway franchises are awarded by the UK government’s Department for

Transport (DfT) to train operating companies through a process of competitive

tendering. Franchises usually last from 7 to 10 years and cover a defined geographic area

or service type. Over the years, the number of franchises in Great Britain reduced

through a series of mergers. The current passenger rail franchising system will be

replaced by a concession-based system in the government’s latest plan to transform the

railways by introducing GBR to replace NR in Great Britain (Department for Transport,

2021).

21

TOCs have existed since the privatisation of the network under the Railways Act 1993.

Most TOCs hold franchises let by the DfT while a small number of open-access operators

hold licenses to provide supplementary services on some routes. Some operators have

been taken over by a government-owned operator of last resort, which operates a

railway franchise on behalf of the government when a TOC is no longer able to do so.

TOCs in Great Britain have been changing through years. Some TOCs have ceased to

exist for reasons like withdrawal of the franchise, expired franchise, bankruptcy and

merger. Many of the TOCs are in fact part of larger companies which operate multiple

franchises.

TOCs pay NR to access tracks to run services and lease trains from ROSCOs. The

proportion by which each cost element makes up an operator’s total cost is shown in

Figure 1. There are 19 TOCs included in Figure 1: c2c, Chiltern Railways, CrossCountry,

East Coast, East Midlands Trains, Abellio Greater Anglia, First Great Western, Northern,

Southeastern, Southern, South West Trains, First Capital Connect, First TransPennine

Express, Arriva Trains Wales, Virgin Trains West Coast, London Midland, London

Overground, Merseyrail and First ScotRail. Staff costs accounts most in the total cost,

followed by network rail charges or rolling stock charges, and energy fees occupy the

least total cost.

22

Figure 1 Total running cost per TOC (Office of Rail and Road, 2015)

2.2. Railway Planning

Railway planning is the scheduling of train movements and the allocation of resources

to the timetable. Following (Huisman, Kroon, Lentink, & Vromans, 2005), different

planning problems of a passenger railway operator can be classified under four

hierarchies based on time horizon: strategic level, tactical level, operational level and

short-term level. In this section, the three main planning problems are discussed. They

relate to the planning of the timetable, the rolling stock and the crew. Strategic planning

can start decades before the train operation. There are three main planning problems

at the strategic level: line planning, rolling stock management and crew planning.

2.2.1. Timetable Planning

Timetable is the foundation of railway operations. The four levels of timetable planning

are described below.

Line Planning at Strategic Level

23

A line is a direct railway connection between two terminal stations that is operated with

a certain frequency and with a certain train type (Huisman, Kroon, Lentink, & Vromans,

2005). At the strategic level, lines are decided based on the estimated passenger and

freight demand. The type and frequency of trains on each line are decided. Three train

types may be categorised depending on stopping patterns. Intercity trains stop only at

large stations. Interregional trains stop at a number of medium-sized stations and

regional trains stop at nearly all stations they pass.

Timetable Planning at Tactical Level

At the tactical level, the timetable is designed using the train lines designed at the

strategic level. Many European countries operate a cyclic timetable, a timetable in which

the trains can be grouped into series such that trains in each series have the same routes

and stop stations and the difference between the departure time of two successive

trains is one cycle time (usually one hour), see (Cacchiani, 2008). Most cyclic timetable

models are based on the Periodic Event Scheduling Problem, initially put forward by

(Serafini & Ukovich, 1989). A general form is used to formulate running time, dwell time,

passenger connection time and headway time constraints etc., between two events

(arrival events and departure events for trains).

In GB, Long Term Planning (LTP) is at tactical level; this phase starts 16 months before

the timetable’s first operational day. Each train and freight operating company develops

the timetable that they would like to run in their area 14 months before the timetable

24

operational day and Network Rail is responsible for coordinating and validating their

timetables and developing a national timetable (NetworkRail, 2022). 6 months in

advance of the timetable operational day, a national base timetable is provided to

operators to enable them to start planning rolling stock and crew.

Timetable Planning at Operational Level

In GB, the term used to describe timetable planning at operational level is Short Term

Planning (STP). 4 months in advance of operational day, operators can apply for

readjustments to their timetable taking into account things like special events or

weekend engineering work and NR need to work through these modifications to ensure

there is no conflict and that trains can run smoothly. At the operational level, the tactical

timetable is updated by adding new trains, modifying departure or arrival time.

Eventually, 3 months in advance of timetable operations, a timetable for each week is

finalised and the railway industry publishes the timetable for passengers. Also, a

detailed timetable platform assignment plan is finalised (Narayanaswami & Rangaraj,

2012).

Timetable Planning at Short-term Level

In Great Britain, part of Very Short-Term Planning (VSTP) corresponds to timetable

planning at the short-term level. VSTP covers the need to change timetables within 48

hours of operation and on the day of operation. In the before operation case, VSTP

includes applying previously unplanned train paths in particular for freight trains and

empty coaching stock. On the operational day, VSTP requires developing a basic plan for

rapid implementation in response to a disruption ahead, for example, speed limitations

25

in extreme weather. In the latter case, on operational day, the need to change timetable

is explained in Section 2.3, Railway Disruption Management.

2.2.2. Rolling Stock Planning

Rolling stock is one of the resources that needs to be allocated to operate a timetable

smoothly. Rolling stock planning at the four-time levels is discussed below.

Rolling Stock Planning at Strategic Level

Rolling stock management focuses on procuring and allocating the required rolling stock

capacity. Relative aspects need to be considered when making a main decision on rolling

stock capacity include the total demand for passenger railway services, the frequency of

trains at peak and off-peak times, first-class and second-class train services. Decisions

that need to be made include selection of rolling stock unit types, ordering new rolling

stock units and rolling stock maintenance strategies.

Rolling Stock Management at Tactical Level

For rolling stock management, rolling stock allocations to the trains at peak time for a

standard day of a week are decided at the tactical level. The reason behind this is that if

it is possible to allocate rolling stock to trains during peak time, then the allocation will

be appropriate during the other times of the day (see (Huisman, Kroon, Lentink, &

Vromans, 2005)). To determine rolling stock allocations to the trains at peak time, one

first needs to decide which types of rolling stock and how many units of each type need

to be allocated to each line.

26

The goal of the rolling stock management at the tactical level is to match and provide

the required rolling stock capacity for trains at peak time for each line. A rolling stock

circulation for a standard day in a week is determined first using the rolling stock

allocations to the trains at peak time. Then, modifications are made so that the rolling

stock units ending at a station the previous evening can provide enough rolling stock

units for train operations next morning. That is, a general week of rolling stock

circulation has been determined. Conflicts may arise among rolling stock belonging to

different lines at a station due to limited infrastructure capacity. These conflicts are

resolved by local planners in shunting plans at each station.

Rolling Stock Management at Operational Level and Short-term Level

At operational level, modified timetables due to national events could destroy the

feasibility of the planned rolling stock circulation. Thus, alterations to rolling stock plans

are made afterward timetable modification. This is done in such a way that the

perturbations to shunting plans are as small as possible.

Similar to the operational level, alternations to rolling stock schedules are made

following the changes in timetable at the short-term level. Also, maintenance routing of

rolling stock is planned at the short-term planning level.

2.2.3. Crew Planning

Similar to rolling stock, crew is another essential resource for running of a railway

timetable.

27

Crew Planning at Strategic Level

Crew planning at strategic planning level deals with the location and capacity of depots

and available number of drivers and conductors at each depot. Depots may need to

open or close depending on the major changes introduced in the line planning. The

required and available capacities of each crew depot are evaluated, and certain amounts

of work can be shifted among depots to achieve a match between required and available

capacities in the long term. To modify the capacity of a depot, major decisions like

employing new crew, training new crew until they are fully operational and moving crew

among depots are made.

Crew Planning at Tactical Level

The goal of crew planning at tactical level is to construct crew schedules. It is usually

solved in two steps: crew scheduling and crew rostering. The crew scheduling problem

is also called the diagram generation and selection problem. A diagram is a sequence of

activities (e.g., driving task) which should start and end at the same depot. A driving task

is defined as a trip between two relief stations assigned to a driver during which the

driver cannot have a break or change trains. Crew scheduling generates anonymous

daily working schedules (i.e., diagrams) which cover all required activities for the train

services scheduled in the timetable for a defined period, e.g., a single workday. Station

or depot-based activities (e.g., required rest breaks, signing off) are also included in crew

diagrams. The problem is to select an optimal set of diagrams which can cover all the

tasks from the unit diagrams, and which has the minimal cost. In the diagram generation

step, feasible diagrams should be generated. In the diagram selection phase, diagrams

28

should be chosen to minimise the operational cost, and to cover all the tasks from the

timetable.

The crew rostering problem Is to use the diagrams generated from the crew scheduling

step and then form them into a roster. A roster is sequences of diagrams with rest

periods in between, usually overnight. (Sodhi & Norris, 2004) see creating a roster as

two steps: creating a rest-day pattern and assigning specific diagrams to this pattern. A

rest-day pattern consists of a sequence of weeks in which every day is assigned to a

specific diagram type or rest day. The second step is to assign specific diagrams to this

rest-day pattern. Usually, the roster is cyclically assigned to drivers. The length of the

roster is the same as the number of train drivers in a depot. Crew rostering combines

these diagrams into weekly or monthly sequences, which are subsequently assigned to

individual crew members.

Crew Planning at Operational Level and Short-term Level

Crew schedules are adjusted for specific demands for particular weeks due to the

changes of the timetable. Reasons for such demands can be national events, planned

infrastructure maintenance work, and so on.

2.2.4. Summary

Management and co-ordination of railway operations is complicated since every single

operational activity requires the compliance of several types of resources,

infrastructure, vehicle and personnel, etc. The interdependencies among these

resources are very complex. (Schiewe, 2020) presents a number of integrated railway

29

planning models including integrating timetable and vehicle scheduling. The

experimental results show that using the integrated timetable and vehicle scheduling

model, the trade-offs between passenger travel time and operational costs can be

found.

2.3. Railway Disruption Management

Railway disruption management faces some performance challenges in GB. In the 2020

Spring National Rail Passenger Survey (TransportFocus, 2020), 49% passengers state

that their greatest cause of dissatisfaction is how train operators deal with delays.

Levels and Phases in Disruption Management

(RSSB, 2020) sets out the levels of disruption classification. Minor disruption sees delay

and congestion, often without a specific incident occurring. Significant disruption sees a

loss of or restricted access to parts of the railway network due to an incident, affecting

the delivery of a normal timetable. Severe disruption occurs when incidents significantly

restrict the use of the railway network and or last longer than one day (severe weather).

The railway disruption management process is split into five phases: Phase 1 is

identification, where the disruption is first identified and quantified, leading to the

assessment of the level of the disruption and response. Phase 2a is selection, where the

appropriate plans are selected and agreed. Phase 2b is deployment, where the plans are

communicated and implemented. Phase 3 is operation, where the temporary service

alterations are in place. Phase 4 is recovery, where the plans are removed, and service

is gradually restored.

Types of Disruption Plans and Rescheduling Process

30

Different types of plans are prepared to handle different levels of disruptions. Train-by-

train plans are created to standardise the rescheduling process concerning changes to

individual trains or groups of trains for minor disruptions. Contingency plan templates

for limited scenarios are made for significant disruptions. Very short-term planning, like

short-term alterations are considered and prepared for typical severe disruption, like

extreme weather.

Depending on the level of disruption, two processes are used. A Train by Train

Management Process is used for minor disruptions with an associated set of train by

train plans to be used as guidance. Train by train plans standardise the decision-making

process regarding changes to individual trains or groups of trains. A Service Recovery

Framework Process is used for significant disruptions and the immediate effect of severe

disruptions with an associated set of contingency plans.

An optimised process for Train by Train Management is discussed and agreed by all key

stakeholders in the IM and RUs. Train by train management is mainly conducted by the

controllers from the RU who actually runs the train affected by the disruption. The

controllers initially identify the disruption and assess its level. Then, the controllers

select a train by train plan and agree it with the IM controllers. Then the plan is deployed.

The disruption is monitored and if the disruption is determined no longer as minor in

the future, a Service Recovery Framework Process is initiated. If delays are no longer

occurring, the full service is on time.

31

Similarly, an optimised process for Service Recovery Framework for all RUs and IM

operating in the designated area is discussed and agreed by all key stakeholders in the

IM and RUs. An integrated part of the Service Recovery Framework process is the huddle,

which describes a meeting of key stakeholders from all RUs and the IM for the area

affected by the disruption. The result of a huddle is to trigger selection and deployment,

operation and recovery in the Service Recovery Framework Process.

2.3.1. Service Recovery Framework Process

Service recovery is the process by which a normal timetable is restored, or a timetable

for a degraded model is operated following disruption. The objective of train service

recovery usually is to minimise overall disruption to passengers while returning to a

normal timetable or an agreed degraded timetable (full timetable restored) as quickly

as it is possible in practice, see (Mann & Panter, 2013) . This process is frequently

substantially manual and implemented by controllers. In Europe and Japan, train service

recovery is typically conducted by negotiations between two distinct entities:

infrastructure manager and railway undertakings (see (Cacchiani, et al., 2014) and

(Williams Rail Review, 2019)).

32

Figure 2 Train service recovery (Mann & Panter, 2013)

Figure 2 shows the number of operating trains and infrastructure status in a service

recovery. Following a disruption, railway operation is at a restricted access state in which

full infrastructure capacity cannot be provided to enable running of the normal

timetable. A contingency plan, which is a pre-planned timetable that can still be used

given the nature of the disruption and the restricted network, may be implemented.

After the contingent operation, there will be a time during which the infrastructure for

the normal timetable is available and the running of a timetable can be gradually

restored.

Optimised Service Recovery Framework Process

33

In phase 1 (identification), a disruption is identified. The NR manager collects initial

information from the disruption site and decides the level of disruption.

In phase 2 (selection and deployment), the NR manager holds a dialogue with affected

parties. In this dialogue, they will consider the impact of the incident, discuss preliminary

estimates about when normal infrastructure may be available, agree on contingency

operation, arrange further conferences if necessary and declare a Service Recovery

Commencement Time (SRCT). Component plans will be issued within parties and parties

will commence timetable service recovery arrangements.

In phase 3 (operation), route controllers from RUs are responsible for rescheduling

rolling stock and crew controllers are responsible for rescheduling crew. Then route

controllers and crew controllers discuss with each other and propose a feasible solution

which works both for rolling stock and crew. This solution will be provided to controllers

in NR for agreement. If agreement is reached, controllers in NR and RUs will commence

implementation of this solution.

In phase 4 (recovery), the full infrastructure access is available. The IM controller

summarises current train performance and recommends any further changes to

contingency plan operations. Further huddles are held if necessary. In the final step, a

full timetable is restored, and dispensation provision applied by each RU and post-

restoration review is instigated as appropriate by NR.

34

2.3.2. Timetable Rescheduling

The timetable is built with running time supplement and buffer time to increase the

robustness. For minor disturbances, one can use this timetable slack by delaying trains,

reducing running times, reducing headways, or reducing dwell time at the terminal

station. For extensive re-scheduling, there are several methods to adjust the timetable

during disruption management: a) Train overtaking: for example, breaking the

predetermined order of lines and letting the fast train leave first, b) Inserting an on-time

train in an intermediate station, c) Reroute: cancelling a train from departure, or

skipping stations along the route or shortening the routes of the trains or cancelling the

whole line.

How to revise the timetable to recover the services in a way that it minimises the

disruption impact in both time and space horizons? A good solution should prevent

disruption from propagating through the system and also recover train services quickly.

There are some trade-off decisions to make, cancelling some services to make way for

others, delaying some trains to let others through, etc. In practice, a revised timetable

is designed to return to the planned timetable. The reason behind this is that the

planned timetable is highly optimised and feasible.

2.3.3. Rolling Stock Rescheduling

This aim of rolling stock rescheduling is to provide capacity to the trains in a revised

timetable. Due to disruption, some rolling stock units may end at the wrong positions.

(Nielsen L. K., 2011) categorised the available options to reschedule rolling stock into

35

three groups: changing shunting operations, adapting turning patterns and

repositioning train units, which are described below.

Changing shunting operations. A planned shunting operation is made at each station at

the connection between the rolling stock composition of an arrival trip and that of a

departure trip. However, a different composition may be assigned to the arrival train

that does not contain the right type of train unit that can be assigned to the departure

trip, which may render the planned shunting operation of the composition invalid. A

rescheduling strategy is to introduce a composition change at a connection where no

composition change was planned. A newly introduced shunting operation may require

different available tracks and yard capacity for the movements of the train units. The

changes need to be communicated and agreed with local dispatchers.

Adapting turning patterns at terminal station. A planned turning pattern means that

each incoming train is matched with an outgoing train. Applying a planned turning

pattern can ease the task of local planning by repeating turning schemes. Locally

changing the turning pattern by matching an incoming to a different outgoing train can

require fewer shunting operations than strictly keeping the planned turning pattern in

the rescheduling process. Changing a turning pattern may cause a train to depart from

a different platform, which needs to be communicated with the controllers responsible

for platform assignment.

Repositioning of rolling stock. Moving rolling stock units to another station can be an

option if another station urgently needs them. During the day, trains run on the network

36

at close to full capacity. It could be difficult to add an extra train. However, at night, the

number of each rolling stock unit types may not match the required number for the next

day’s operations due to disruptions during the day. Repositioning rolling stock is a

frequent rescheduling strategy to tackle rolling stock off-balance at night.

There are other factors that controllers need to consider when they reschedule rolling

stock. For example, the rolling stock which needs to undergo a maintenance check in a

forthcoming couple of days should be monitored and controllers should make sure that

these rolling stock units can get to the maintenance centre on time.

2.3.4. Crew Rescheduling

A disruption can render the planned crew diagrams infeasible by causing drivers on the

affected trains to miss the start of one of their scheduled driving tasks. In this case, the

planned diagram for the affected driver may become infeasible to follow. Thus, a

recovery diagram needs to be assigned to the driver. When rescheduling crew during

disruptions, it is preferable to reschedule as little crew as possible because

implementation risks rise with the number of crew that need to be rescheduled. Also,

after disruption, the crew should be recovered back to their planned diagrams since the

planned diagram is already fully optimised and agreed by drivers. For small disruptions,

it is preferable to solve it by swapping tasks between drivers rather than using the spare

drivers who are reserved for big disruptions. If no driver can be found to cover a task,

then this task needs to be cancelled, which is an undesirable solution since then the

rolling stock circulation is disrupted and the timetable should also change.

37

Recovery Diagram

A recovery diagram is a revised diagram adjusted from a resource’s planned diagram.

All recovery diagrams assigned to all affected drivers together should ideally achieve an

optimum depending on the objective set by a user, for example, to cover as many driving

tasks as possible in an adjusted timetable with as few as possible changes to planned

resource diagrams.

There are some rules about constructing a recovery diagram. A recovery diagram may

not last more than a certain amount of time longer than the planned diagram. A

recovery diagram should end at the same depot as in the planned diagram. A recovery

diagram should consider breaks in compliance with the labour rules. A recovery diagram

needs to have a certain amount of transfer time when a crew member transfers from

one train to another. A recovery diagram should only contain driving tasks for which the

crew member has corresponding route and traction knowledge.

In this work, focus is on minor disruptions and significant disruptions. Therefore, two

methods of building recovery diagrams are proposed for the two kinds of disruptions,

respectively.

2.3.5. Analysis of Crew Diagrams

To help readers understand crew diagrams better, in Section 2.3.5, some analysis of

crew diagrams is presented. The three important characteristics of crew diagrams: the

38

length of a diagram, continuous driving time and time required to change trains at a

station are studied.

Figure 3 shows a day’s work length of drivers of a TOC in the UK. There are 208 drivers

on duty on a day, where depot A has the largest number of drivers, 60. The minimum,

average and maximum work lengths are 5 hours, 7 hours 40 minutes and 10 hours,

respectively.

Figure 3 Number of diagrammed drivers and their work lengths in each depot

Among 208 drivers, 201 drivers have one meal break and 7 have two meal breaks in

their diagrams. For drivers with one meal chance, Figure 4 shows the driving time before

a meal break starts and after a meal break ends at different stations. The longest driving

time for a meal break to appear is around 4 hours and 40 minutes and 4 hours and 10

minutes is the longest driving time after a meal to sign off.

39

Figure 4 Total driving time before and after a meal break

It takes some time for drivers to change from one train to another at a relief station.

Drivers need to completely stop the previous train and prepare the next train to depart.

Change time depends on the scale of stations, platforms and trains, etc. We can get a

general idea from studying the time difference for two successive driving tasks which

belong to two trains on drivers’ diagrams. Figure 5 shows various change times at

different relief stations. The minimum change time, 7 minutes, happens at Station 2.

The longest could be as long as 98 minutes, which is unlikely to reflect the real required

change time. Since the statistics include idle time, the required times would be much

smaller.

Figure 5 Change time at different stations

40

2.4. Literature Review on Crew Planning

The origin of the crew scheduling problem (CSP) in transportation can be found in airline

industry works from the 1950s and 1960s. (Arabeyre, Fearnley, Steiger, & Teather, 1969)

surveyed different approaches studied by some airlines in the 1960s to try to optimise

the allocation of crew to flights. Using operations research methods, solving the CSP

gained more attention in the 1980s and 1990s with the quickly advancing computer

power. In the 1990s, the privatisation of railway operations in Europe required train

operators to look for more productive and efficient crew scheduling solutions, which led

to the rising interest of using computer power and mathematical algorithms in the

railway industry for its potential of cost saving. In general, the CSP in the transportation

industry: airline, bus, mass transit and railway etc., shares a wide range of similarities.

In this work, we focus on research about the CSP in the railway industry.

Crew Scheduling Problem at Strategic and Tactical Level

Few works study crew scheduling at a strategic level. (Derigs, Malcherek, & Schäfer,

2010) present a system used in Germany that can analyse how working regulations will

affect crew planning. (Sahin & Yuceoglu, 2011) consider a model to decide how many

crew members are required to perform tasks in a given planning horizon under the

working regulations.

Most of the existing research focuses on the tactical level, generating diagrams and

forming diagrams into rosters optimally. (Caprara, Fischetti, Toth, Vigo, & Guida, 1997)

define the crew management at tactical level as building the work schedules of crew

41

needed to cover a planned timetable and its unit diagrams. The overall crew

management problem is considered in two phases: crew scheduling and crew rostering.

The main objective of crew management is to minimise the number of crew needed to

perform all the daily occurrences of the trips in the timetable in the given period. Other

objectives of the crew scheduling problem usually consider schedule efficiency (working

time, idle time, break time, etc.), robustness (reducing train changes, adding buffer time,

etc.) and employee satisfaction (safety, fairness and the popularity of the schedule).

Models for the Crew Scheduling Problem

Both crew scheduling and crew rostering problems require finding minimal cost

sequences through given items. For crew scheduling, items like trips are sequenced to

diagrams and for crew rostering, items like diagrams are sequenced to rosters. There

are two basic integer linear program models to model both problems: generic set

covering/partitioning problem (SCP/SPP) (e.g. (Caprara, Fischetti, Toth, Vigo, & Guida,

1997)) and generic minimal network flow problem (NFP) (e.g. (Vaidyanathan, Jha, &

Ahuja, 2007)). Both formulation approaches in the literature use a space-time network

to represent the problem. (Suyabatmaz & Şahin, 2015) used both formulations to solve

a regional planning problem to minimise the number of crew members. They concluded

that both formulations are capable of generating feasible solutions. Yet, the former

formulation performs better not only in solution quality but also in computational time.

SCP/SPP is a path-based approach which relies on identifying feasible paths (following

labour and other scheduling rules) on a graph. NFP is an arc-based approach. Being a

heavily restricted optimisation problem, the SCP/SPP formulation for the CSP usually has

many fewer constraints compared to the NFP for the same CSP (Banihashemi & Haghani,

42

2001). The most commonly used formulation of the CSP is the set covering problem or

its variations and the variables in the models represent feasible paths on a time-space

network. The secondly widely used formulation is the network flow problem where

variables represent arcs on a time-space network. Other customised formulations are

also used by some researchers to satisfy a great variety of train operators’ conditions.

Here the set covering formulation is given.

Let 𝑇 be the set of trips and 𝐽 the set of diagrams. Moreover, let 𝑐𝑗 be the cost

associated with diagram 𝑗 . Binary variable 𝑥𝑗 takes 1 if diagram 𝑗 is taken and 0

otherwise. The coefficient matrix 𝐴 means if trip 𝑖 covered by diagram 𝑗, that is, 𝑎𝑖𝑗 is 1

if diagram 𝑗 covers trip 𝑖, 0 otherwise. The model for the CSP can be formulated as:

Minimise ∑ 𝑐𝑗𝑥𝑗𝑗∈𝐽

𝑠. 𝑡. ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 1 ∀ 𝑖 ∈ 𝑇

𝑗∈𝐽

𝑥𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽

The objective is to minimise the costs of selected diagrams. The model is subject to the

constraint: each trip 𝑖 should be covered at least once. This problem is usually solved in

two steps. The first step is generating a large enough number of diagrams. The second

step is selecting a subset of diagrams which cover each trip at least once while achieving

a minimum total diagram cost.

43

Methods for Solving the Crew Scheduling Problem

The crew scheduling problem is large with respect to the number of trips but also the

explosive number of feasible diagrams constructed by trips. Additionally, many integer

programming problems are known to be NP-hard and they require high computational

effort. (Heil, Hoffmann, & Buschera, 2020) categorised the methods used in the

literature since 2000 into four categories: integer programming methods, heuristics,

column generation and meta-heuristics. (1) Integer programming methods: a

straightforward method to solve the CSP is to enumerate all feasible diagrams and find

the optimal combination of feasible diagrams using a commercial solver. However, such

a method can only solve instances for small size and the performance is limited by the

commercial solver. (2) Heuristics: based on the experience of integer programming,

some heuristic rules are used to speed up the methods used to solve the CSP. Lagrangian

relaxation of constraints in the CSP is especially widely used. A Lagrangian multiplier

produced by optimising a Lagrangian relaxation problem can be used in directing how

to choose a better feasible solution with respect to the objective of the CSP. Moreover,

a fixing scheme is also frequently used in heuristics to reduce variable numbers in a

model of the CSP. (3) Column generation: this is a powerful mathematical technique to

solve large-scale optimisation problems. Feasible diagrams are not enumerated once

but generated iteratively, which largely reduces the problem size. A master problem is

usually solved to update the optimum and a pricing problem is solved to generate

promising diagrams to be added into the master problem in the next iteration. (4) Meta-

heuristics: meta-heuristics are problem-independent techniques, which do not take

advantage of any specific form of the problem and hope to get a global optimum.

44

Genetic algorithms, ant colony optimisation and tabu search are commonly seen in

literature.

Crew Scheduling Software

Railway crew scheduling applications are of interest to national governments or train

operators. (Rezanova, 2009) listed some of the important railway applications for

different companies. TRACS II in Great Britain (see (Kwan A. , Kwan, Parker, & Wren,

1996), (Kwan A. S., Kwan, Parker, & Wren, 1999), (Wren & Kwan, 1999), (Wren, et al.,

2003), et al.), the Italian Railway Company (see (Caprara, Fischetti, Toth, Vigo, & Guida,

1997), (Caprara, Fischetti, Guida, Toth, & Vigo, 1999), (Caprara, Fischetti, & Toth, 1999)

et al.), TURNI in Netherlands Railways (see (Kroon & Fischetti, 2000), (Kroon & Fischetti,

2001), et al.), Harmony Crew Duty Rostering in the Netherlands, Resource Management

Solution - Rail Crew for Germany, etc. among others. We refer readers to (Rezanova,

2009) for each application and relevant literature.

2.5. Literature Review on Crew Rescheduling

These days, the focus of research is moving from scheduling to rescheduling crew in real-

time. Similar to the CSP, crew rescheduling can be mathematically modelled as an

optimisation problem of high complexity requiring a combination of heuristics and

combinatorial search methods. The crew rescheduling problem has two kinds of

constraints. (1) Covering task constraints: all driving tasks should be covered by at least

one driver with the required route and rolling stock knowledge. A task can be covered

by more than one driver. Then other drivers will be regarded as passengers. (2) Assigning

feasible recovery diagram constraints: all drivers need to be assigned a feasible recovery

45

diagram. It is natural to use binary variables to write these two types of constraints. If a

task is covered (or a feasible recovery diagram is assigned to a driver), a binary variable

should take one, or zero otherwise. For some drivers directly affected by a disruption,

their planned recovery diagrams become infeasible due to the disruption. These

infeasible planned diagrams need to be repaired to feasible diagrams. For drivers that

are not directly affected by a disruption, their diagram is changed to another feasible

recovery diagram because the necessary swapping of driving tasks is used to find

solutions. For other drivers, their recovery diagram can be the same as their planned

diagrams.

To the best of our knowledge, (Walker, Snowdon, & Ryan, 2005) were the first to study

the railway driver rescheduling problem. They first built a model to generate timetable

and crew diagrams from scratch. Then the model is modified to be used to solve an

integrated timetable and crew rescheduling problem. The model is solved by branch and

bound and tested on a small-scale network with 3 crew depots.

(Huisman, 2007) considered the driver rescheduling problem after changes are made in

the underlying timetable due to infrastructure construction work. The duration of the

infrastructure construction work is known, and the problem is solved prior to operation.

He used an integer programming model solved by a heuristic method based on

Lagrangian relaxation with column generation. To reduce the number of feasible

diagrams, Huisman proposed the term “look like” diagrams, which start and end in the

46

same crew depot and the start (end) times of the diagrams should not be much different

from those of the original diagrams.

The current state-of-the-art for crew rescheduling for significant disruptions are from

(Rezanova, 2009) and (Potthoff, 2010). The approach of (Rezanova, 2009) is based on

branch and price and depth-first search (BnPCR). It first solves the linearised integer

programming model and then the result from the linearised model is used to find an

integer solution with a branch and bound technique. Overall, the branch and price

method can be seen as using column generation at each node of the branch and bound

tree. The branching strategy is the constraint branching proposed by (Ryan & Foster,

1981), which can guarantee an integer solution by forcing or forbidding a driver to

perform a task. Rezanova introduced the terms recovery period and disruption

neighbourhood to limit the size of the problem, which is similar to the idea of a “core

problem” of (Potthoff, 2010). (Sato & Fukumura, 2010) used an algorithm framework

similar to that of (Rezanova, 2009) to solve freight train driver rescheduling in disruption

situations. However, they used Dijkstra’s algorithm to find a candidate duty as a shortest

path problem without considering resource constraints such as meal breaks.

(Potthoff, 2010) considered a real-time crew rescheduling problem as an integer pro-

gramming problem when a disruption happens during operations. It uses a combined

subgradient method to solve the Lagrangian dual problem and a greedy algorithm

(GSLR) to choose the minimal cost recovery diagram for each driver. To generate a new

47

recovery diagram by the pricing problem, dual values from the subgradient method are

required. He proposed the term “core problem” to include the drivers whose diagrams

need to be recovered. For tasks that are not covered in the core problem, a new core

problem is built and explored to solve the problem again. (Veelenturf, Potthoff,

Huisman, & Kroon, 2012) suggested railway crew rescheduling with retiming. The

methodology is based on (Potthoff, 2010)’s core problem and heuristic method. An

uncovered tasks list is maintained. In each iteration, an uncovered task is taken from

this list and the core problem is expanded by adding retiming options. Another idea from

(Potthoff, 2010) is the crew rescheduling under uncertainty. He considered quasi robust

solution in the case of track blockage. The computation time for this model can be 4.5

times more than the basic model.

Besides using integer programming, constraint programming (CP) has been successfully

used to solve complex combinatorial problems. Compared to integer programming

having linear equations and inequalities, constraint programming has arithmetic

constraints. CP is mainly solved by constraint satisfaction methods, such as backtracking,

constraint propagation and local search. Backtracking is a general algorithm that finds

solutions to constraint satisfaction problems. It examines partial candidate solutions,

abandons candidates that cannot be developed to a global solution that is consistent

and incrementally builds candidates for globally consistent solutions. The idea behind

constraint propagation is to make the feasible region tighter so that backtracking search

can commit to fewer candidate solutions that will be able to develop to a solution, see

(Bessiere, 2006). Usually a conflict detection (CD) and conflict resolution (CR) approach

48

is proposed to find solutions satisfying constraints in constraint programming problems.

CD and CR have been applied to a lot of research in real-time timetable adjustments.

(Chiang, Hau, Ming Chiang, Yun Kob, & Ho Hsieh, 1998) considered a knowledge-based

system to solve railway scheduling using heuristic rules to solve conflicts in time order.

(Oetting, Rittner, & Fey, 2013) developed a synchronal algorithm (KEKL) for real-time

conflict detection and conflict resolution. As a decision-support approach, KEKL can

provide multiple solutions for controllers to choose from and it is non-discriminatory

and traceable in order to take the binding EU regulations into account. (Wegele &

Schnieder, 2004) proposed a genetic algorithm for automated dispatching of train

operations. Its optimisation based dispatching can be seen as a cyclic improvements

process which cycles between independent conflict chains with trains involved in the

conflict and solving conflicts. (Jacobs, 2004) proposed a new train-regulating procedure

ASDIS that couples methods from computer-aided train-path management with an

asynchronous approach. It allows an end-to-end line from planning to operation to be

established. (D'Ariano, 2008) designed and implemented a decision support system

called ROMA of which a conflict detection procedure checks whether the timetable is

deadlock- free and detects potential conflicts in a given prediction period. A conflict

resolution procedure computes a conflict-free timetable in real-time, compatible with

the status of the network. A similar principle to CD and CR has also been used in solving

crew rescheduling problems. It uses a repair-based approach that can be regarded as a

kind of local search technique to repair infeasible crew diagrams.

49

(Abbink, 2014) designed a prototype system for real-time railway driver rescheduling by

actor-agent techniques. The rescheduling principle is task-exchange. A driver-agent who

is directly affected by the disruption acts as a team leader. A team leader starts a task

exchange process to solve the conflicts in their diagram. Compared to the work of

(Rezanova, 2009) and (Potthoff, 2010), which have an overall mechanism of including

affected and possibly affected drivers in one problem, the solution of this prototype

system is generated sequentially for each team.

(Verhaegh, Huisman, Fioole, & Vera, 2017), using an idea similar to (Abbink, 2014),

created a heuristic algorithm DFID for crew rescheduling during minor disruptions. The

idea is to insert an unplanned task into the previously feasible crew diagrams. The

solution process can be seen as a depth-first iterative deepening search in a tree, with

every node representing a crew schedule with unplanned tasks. The size of this tree is

restricted by setting the maximum number of changed diagrams and the maximum

number of unplanned tasks and fathoming branches that are not promising. The

algorithm proposed by (Verhaegh, Huisman, Fioole, & Vera, 2017) inserts an uncovered

task into the diagram without considering the feasibility of the connection with the

commencing activity and terminating activity first. The infeasibility of the connection is

further dealt with by adding passenger trips to the diagram. DFID from (Verhaegh,

Huisman, Fioole, & Vera, 2017), BnPCR from (Rezanova, 2009) and GSLR from (Potthoff,

2010) are the three cutting-edge methods for crew rescheduling. A further comparison

among them is made in Section 3.2.4. In general, BnPCR and GSLR are designed to

50

provide a solution for significant disruptions in an overall mechanism. DFID addresses

crew rescheduling for minor disruptions and solves the problem in a sequence manner.

None of the literature mentioned above addresses in detail the effects of parameters

on the crew rescheduling problem. However, some parameters are crucial in finding a

robust solution that can be applied in practice. For example, if communication time is

not considered in a method, the solution may fail in implementation because a

controller does not have enough time to communicate with drivers about their changed

diagrams. Second, some rescheduling actions like work overtime and rescheduling a

meal break are commonly used in reality. However, these actions and their effects on

solutions are not fully explored in the current literature. Third, a feedback mechanism

has not yet been considered: when there is no solution provided by an optimisation tool,

no method exists to provide other useful information that may lead to a practical

solution. As explained in Section 1.2, a feedback mechanism can be essential in

obtaining potential solutions, which is further proved by the experiments in this thesis.

Fourth, solving shortest path problems with resource constraints (SPPRC) is widely used

to construct recovery diagrams in solving the crew rescheduling problem. However,

SPPRC is an NP-hard problem, and it may take a long time to solve it to optimality. In the

current literature, indications on how to solve SPPRC or how to speed up its solution

process are not clearly explained. Fifth, studying an integrated crew and rolling stock

rescheduling problem and obtaining multiple solutions are not comprehensively

covered by the current literature. This research explores the integrated rolling stock and

crew rescheduling problem and uses multicriteria methods to obtain multiple solutions.

51

CHAPTER THREE: CREW RESCHEDULING

FOR MINOR DISRUPTIONS

52

In this chapter, the crew rescheduling problem for minor disruptions is addressed. This

chapter answers the research questions 2 and 3 posed in Section 1.3. The modelling

process of the problem and method to solve the problem is presented. The conditions

to choose drivers to be rescheduled and detailed constraints like meal break

requirements, working hours in the model are also explained. An objective considers

four factors is proposed. Moreover, the impact of parameter values on solutions is

explored and answered. A feedback mechanism is introduced to improve the solvability

of the method.

As described in Section 2.3, minor disruption involves delay and congestion, often

without a specific incident occurring. When minor disruption happens, the Train by Train

Management process is initiated, which is mainly conducted by the controllers from the

TOC who actually runs the train(s) affected by the disruption. First, the controllers

identify the disruption and assess the level of it. Second, the controllers select a Train

by Train Plan and agree it with the IM controllers. Then the plan is deployed. The

disruption is monitored and if the disruption is expected to increase in severity a Service

Recovery Framework Process is initiated.

A minor disruption can render the planned crew diagrams infeasible by causing drivers

on affected trains to miss the start of one of their scheduled tasks, called an uncovered

task in this situation. When a disruption happens, it can cause two types of crew

diagram-related conflicts. One is a spatial conflict, where a driver cannot be at the origin

53

of the next train-based activity of their diagram due to cancelled trains. Another conflict

type is temporal, where a driver cannot begin their next train-based activity on time due

to delayed trains, that is the train is not there for them to operate. In both cases, a crew

controller can remove one or more successive train-based activities from a diagram that

is infeasible due to disruption to make it feasible. The removed train-based activities,

(i.e., uncovered tasks) will be tackled by the approach outlined in this chapter.

To request a driver to work overtime, delay a scheduled meal break and even delay a

task by a few minutes is common to obtain an overall good solution in real practice

which complies with regulations (Office of Rail and Road, 2013). Hence, as a decision

support tool, an ideal method should be able to relax or remove some of the constraints,

such as fixed departure and arrival times of train services in the timetable or the

impossibility of overtime work. Also, an ideal method should be able to produce multiple

solutions and allow crew controllers to choose the best practical solution. Therefore, a

flexible method is proposed to solve the crew rescheduling problem for minor

disruptions based on depth-first search and heuristic rules (DFSCR). DFSCR considers

drivers working overtime, rescheduling breaks if the initial break opportunity is affected

and delaying driving tasks within a given bound to obtain multiple solutions for crew

controllers to choose from. It considers parameters such as connection time between

activities (the time needed to change physical position to start a new activity), extra time

for taxi journeys being required during heavy road traffic and maximum daily work

duration to mimic the real rescheduling environment.

54

The third research question posed in Section 1.3, is to evaluate how the parameters in

the crew rescheduling problem affect solutions and how to set a feedback mechanism

to adjust parameter values when there is no solution. This question is addressed in this

chapter. (Christian & Hanno, 2019) described some reasons why project collaborations

between academics and industry may fail to implement a mathematical optimisation-

based solution or product. For example, considering important parameters such as

working hours and overtime, setting a high value for these parameters may not be

acceptable and setting them at a low level may not reflect the flexibility of the real

situation. In addition, a practically feasible solution that is often used in reality may not

be obtainable from the optimisation model because some constraints are strictly set in

the optimisation model. Therefore, it is better to leave some parameters to the user to

adjust. However, due to lack of experience or detailed understanding of an optimisation

decision support tool, some combinations of parameters set by the user may cause the

model to give no solutions or unreasonable solutions. A sensitivity test for this study is

conducted on five parameters to explore the effects and bounds that give reasonable

solutions. DFSCR has a feedback mechanism to generate feedback from one model run,

analyse the reasons for not having a solution and initiate the corresponding relaxation

to adjust the parameters to rerun the model automatically.

The structure of the remainder of the chapter is as follows. Section 3.1 outlines a

method (DFSCR) to solve the crew rescheduling problem for minor disruptions. In

Section 3.2 DFSCR is applied to a realistic scenario and the outcomes are compared

against existing state-of-the-art methods. Section 3.2 also describes the results of

55

sensitivity tests on parameters used in DFSCR. Section 3.3 reports the results of testing

382 scenarios using DFSCR and its feedback mechanism. Section 3.4 is the conclusion.

3.1. Method: Depth-First Search Crew Recovery Method (DFSCR)

The DFSCR approach is inspired by the method of (Verhaegh, Huisman, Fioole, & Vera,

2017) using the idea of swapping tasks among a list of drivers to solve an uncovered

task. In their work, the feasibility of inserting an uncovered task into a diagram is

considered later in the algorithm. The present work addresses the feasibility of inserting

an uncovered task into a diagram at the beginning of the algorithm to reduce the

computational requirements. This is achieved by introducing the ideas of a commencing

activity (the activity immediately before an uncovered task) and a terminating activity

(the activity directly after an uncovered task). Finding a driver to cover the uncovered

task means being able to find suitable commencing and terminating activities in a

driver’s diagram. By finding the commencing activity and terminating activity on a

driver’s diagram for the uncovered task, the DFSCR approach can filter drivers and find

feasible drivers that have a higher possibility to cover the uncovered task. Finding a

solution is a process of adjustment where inserting a task into a diagram might result in

further uncovered tasks. In the algorithm ApplyDFID shown in (Verhaegh, Huisman,

Fioole, & Vera, 2017), it is unclear if there are still tasks left uncovered when a solution

is saved. Thus, a solution with conflicts may be saved but such a solution may not solve

the rescheduling problem in practice. To address this problem, an uncovered task list is

maintained in DFSCR, and solutions are saved when the list is empty to guarantee there

are no tasks left uncovered. Moreover, some other important constraints are

56

considered in DFSCR. The communication time to contact drivers is considered, as the

possibility of delaying a driving task and to specify some rules that allow a planned break

to be rescheduled if it is affected by inserting an uncovered task. Enough communication

time ensures that drivers can receive the changes in their diagrams and retiming is useful

when there are no other solutions. Sensitivity tests are conducted to explore the effects

of parameter values on solutions. Such sensitivity tests can be used to develop guidance

to help controllers to set suitable parameter values that give the best chance of

obtaining solutions and to give a better understanding of the changes in solutions for

the same problem when some changes are made in parameter values. Also, a feedback

mechanism is added to improve the probability of finding a solution. Overall, DFSCR is

designed to provide conflict-free solutions to assist controllers in rescheduling crew.

Various parameters are considered, and controllers can set initial values for them to

mimic a real rescheduling environment. The results obtained from sensitivity tests and

the feedback mechanism can further help controllers to understand and use the

optimisation tool. Developing and testing a set of guidelines derived from the sensitivity

tests collaboratively between controllers and academics is recommended.

3.1.1. Overview of DFSCR

As explained in Section 2.5, crew rescheduling problems have two types of constraints

specifying that: (1) every task should be covered, (2) every driver should be assigned a

feasible diagram. Corresponding to the two types of constraints are two types of

conflicts that may arise.

57

The first type of conflict with these constraints is if there is a driving task that is not

covered by any driver. This conflict can in reality be detected by crew controllers in three

ways.

• First, uncovered tasks are simply generated during the very short-term planning

adjustment phase before operations. Usually, it is a list of uncovered tasks for

the next day’s operations.

• Second, uncovered tasks can be generated by converting an infeasible diagram

to a feasible one. If a driver is late for their next driving task, a crew controller

can remove the remaining driving tasks from their diagram. These removed

driving tasks should be considered as uncovered tasks.

• Third is that if the railway is on a limited operation due to restrictions following

disruption, such as a speed restriction or an unavailable track section. Once the

restriction is lifted, railway operation will gradually return to normal by adding

more trains into operation. Each newly added train service needs to be split and

assigned to drivers as driving tasks. These driving tasks need to be inserted into

the current crew schedule.

The second type of conflict is when a driver’s diagram becomes infeasible to implement

due to disruption. Crew controllers can capture this conflict by assessing disruption

impact on crew planned diagrams which may become infeasible in real-time operations

by communicating with drivers that are in disrupted trains or mapping real train running

58

against the planned timetable. Note that the second type of conflict can be converted

to the first type by a crew controller who converts an infeasible diagram to a feasible

one by creating more uncovered tasks.

A series of disruptions can happen on an operational day. For each disruption, a number

of uncovered tasks that happen at different stations and times can be generated. There

are three basic priority orders in which to solve them (see (Chiang, Hau, Ming Chiang,

Yun Kob, & Ho Hsieh, 1998)). (1) station ordering, where uncovered tasks are solved

station by station. At each station, uncovered tasks are solved by the departure time.

(2) train order, where uncovered tasks are solved train after train and (3) time order,

where uncovered tasks are solved by their departure time.

The DFSCR approach addresses resolving the first type of conflict by accepting one

uncovered task as input. This work does not design a specific conflict detection system

to find conflicts or study the best priority order to solve uncovered tasks for one

disruption. It is assumed that crew controllers can find initial conflicts, find uncovered

tasks from conflicts with or without the use of operations support software and input

uncovered tasks to DFSCR in their chosen order. DFSCR focuses on giving conflict-free

solutions to each problem of inserting an uncovered task in turn.

For each uncovered task, DFSCR uses a combined local search and backtracking

techniques to insert the uncovered task into the current crew schedule. DFSCR starts

59

with a complete crew schedule with one uncovered task. First DFSCR uses heuristic rules

to search for suitable drivers diagrams that have a high probability of being able to

accept the uncovered task. Inserting the uncovered task into one driver’s diagram may

lead to more uncovered tasks, which can be seen as follow-up conflicts. Then each newly

generated uncovered task will be inserted into an appropriate diagram based on their

departure time order until no uncovered task is left. Thus, a solution to the problem of

inserting an uncovered task into a current crew schedule is a series of drivers ’diagrams

that have been revised to feasible by swapping tasks and one of the drivers ’revised

diagrams contains the initial uncovered task and no uncovered task is left. To produce

multiple solutions, a depth-first search is utilised by DFSCR. Depth-first search is a

specific form of backtracking related to searching the tree structure. It starts at the root

and explores as far as possible along a branch before backtracking. A branch represents

a solution to inserting the uncovered task into the current crew schedule.

The cost function 𝑓 for a solution in the DFSCR model considers four factors: total taxi

time (TT), total work overtime (WO), number of used drivers (UD) and total planned task

delay time (PTDT). Taxi time, working overtime and planned task delay time are

measured as the overall time length of taxi trips, overtime and planned task delay time

required in a solution, respectively. Number of used drivers is the overall number of

drivers used in a solution. All four factors are summed together with weights as shown

in Equation (3.1).

60

𝑓 = 𝛼1𝑇𝑇 + 𝛼2𝑊𝑂 + 𝛼3𝑈𝐷 + 𝛼4𝑃𝑇𝐷𝑇 (3.1)

Weights 𝛼1, 𝛼2, 𝛼3, 𝛼4 can be easily set by users. This study sets 𝛼1, 𝛼2, and 𝛼4 to 1 and

𝛼3 to 300 to demonstrate the method. These four factors are chosen in the work for

their importance based on discussions with controllers for a GB TOC. Taxi time and work

overtime are chosen because they bring financial costs. Number of used drivers is

penalised because rescheduling more drivers brings higher implementation risks. Delay

is penalised because delaying one train may cause further trains to be delayed. Other

factors can also be used to assess a solution. For example, the change of the starting

time of a meal break can also be considered. It can be easily added to the cost function

but is not deemed essential by controllers.

To summarise, DFSCR can fit into the following decision system flow. Once a conflict is

identified by a crew controller, uncovered tasks are found by controllers as explained in

the beginning of Section 3.1.1. These uncovered tasks will be input into DFSCR with

order of priority. For an uncovered task and the current crew diagrams, DFSCR will give

multiple conflict-free solutions. One solution can be chosen by a crew controller and

then the solution will be written into the current crew diagrams. Then the next

uncovered task is solved with the updated crew diagrams.

3.1.2. Inserting One Uncovered Task into a Diagram

To insert an uncovered task into a diagram, this uncovered task needs to be consistent

with the activity before and after. The driver should have enough time to arrive at the

uncovered task after their previous activity and enough time to arrive at the next activity

61

after the uncovered task. The connection between activities depends on the

geographical and time difference relationship. There are nine different connection types

used in the method. They are shown in Table 1. These nine connection types are

extracted from planned crew diagrams. They cover all significant activity combinations.

To decide about a connection possibility, the geography and time of two activities are

considered. A suitable connection type is used depending on whether the previous

activity ends and the next activity starts at the same station and whether the time

between the end of the previous activity and the start of the next activity is big enough

to have a break opportunity. Some connection types contain a break opportunity if the

time difference is suitable for a break. However, having a break opportunity is not

considered as a separate problem. For an infeasible diagram involving an affected break

opportunity, DFSCR repairs this infeasible diagram and then moves onto another

infeasible diagram.

Table 1 Connection Types

Type Description

break connect two activities with time interval enough for a break

change connect two activities with time interval not enough for a break

but bigger than connection time

62

imm connect two driving tasks within one train with time interval

bigger than 0

pass take a driving task as a passenger ride

breakPass take a driving task as a passenger ride with time interval

(excluding the passenger ride) enough for a break

breakDoublePass take two driving tasks as a passenger ride with time interval

(excluding the passenger ride) enough for a break

changeDoublePass take two driving tasks from different trains as a passenger ride

doublePass take two driving tasks from the same train as a passenger ride

taxi take a taxi to relocate

In the remaining part of Section 3.1.2, two important concepts: commencing activity and

terminating activity are defined. Using these two concepts, a method for finding a set of

possible drivers that can take up an uncovered task is described. There can be three

results of inserting an uncovered task into a driver’s diagram, depending on how the

meal breaks are affected and on the newly generated uncovered tasks. These results

are: infeasible, conditionally feasible and unconditionally feasible. If a meal break is

63

affected by the insertion, certain rules of resetting an adjusted break are used to resolve

this.

Commencing Activity

Suppose that there is an uncovered task that must be inserted into a driver’s diagram.

Then for each of the currently working drivers ’existing diagram, a suitable commencing

activity is searched, defined as the last activity on the diagram to which the uncovered

task could be appended. The commencing activity for a given driver is determined in

three steps, as follows.

First, the activity of the driver when the rescheduling process starts (labelled the current

activity) is identified. There are two types of current activity. One is that the rescheduling

start time lies between two activities on the driver’s diagram, then the current activity

is defined as the last activity which took place before the rescheduling start time. The

other is that the rescheduling start time lies inside the duration of an activity, which in

this case is defined as the current activity.

Second, the communication time required to contact the driver to inform them about

their changed diagram is considered. From the rescheduling start time, a driver must

remain at a station longer than the communication time to get the changed diagram

message and communicate whether they either accept or refuse it.

64

So from the end of the current activity to the start of the last activity on the driver’s

diagram, two consecutive activities A and B are looked for, such that between the end

of activity A and the start of activity B, the driver stays at the station longer than the

communication time. If such a pair of activities can be found, then activity A is called the

initial commencing activity. It is permitted to delay the uncovered task by less than a

given maximum planned task delay time to find an initial commencing activity for a

driver. The above two steps are shown in Algorithm 1.

The initial commencing activity is the earliest possible choice of commencing activity

and will be updated later (after the termination activity is identified, see section

“Terminating Activity”) to find the optimal commencing activity. In general, the optimal

time for the commencing activity is as late as possible so as to minimise the total

disruption to the driver’s diagram. The commencing activity can be found by looping

between the initial commencing activity and the terminating activity.

Algorithm 1 Finding the initial commencing activity

65

Terminating Activity

Following the insertion of a new uncovered task into a diagram, an algorithm searches

from the end of the diagram for the terminating activity, defined as the earliest activity

that has a connection from the uncovered task to it. It is found in two steps. First, the

terminating activity is set as the sign off of this driver if there is a feasible connection

from the uncovered task to sign off.

Second, the terminating activity is updated by looping between the initial commencing

activity and sign off to find an activity that happens as early as possible. The commencing

activity is then identified by looping backwards from the terminating activity towards

the initial commencing activity until the algorithm finds an activity which has a suitable

connection to the uncovered task. The time between the commencing activity and

terminating activity will be as small as possible.

The activities between the commencing activity and terminating activity on this driver’s

diagram are called the affected activities. Different actions are taken depending on the

type of affected activity. The first type is a driving task, which will be added to the

uncovered task list. The second type is a break, which should be considered for

replacement by an adjusted break activity. The third type is a passenger trip, for which

no action is needed. DFSCR looks for a commencing activity and a terminating activity

that are as close as possible to an uncovered task to minimise the number of affected

activities, targeting the rescheduling of fewer drivers. It is worth noting that a preceding

66

activity or succeeding activity rather than the nearest activities may lead to a better

solution and DFSCR may need to consider this in future.

Finding a Set of Possible Drivers for an Uncovered Task

Two conditions should be present for a driver to be able to cover an uncovered task.

First, the driver should have the route and rolling stock knowledge required by the

uncovered task. Second, both a valid commencing activity and terminating activity in

the driver’s diagram should be found. After finding the possible drivers, they are sorted

by a score computed using the method of (Verhaegh, Huisman, Fioole, & Vera, 2017).

Based on this method, it is intuitively clear that if a driver has a lower score, it means

that this driver has a higher chance of taking the uncovered task.

Three Possible Results of Inserting an Uncovered Task into a Driver’s Diagram

There are three possible results of inserting an uncovered task into a driver’s diagram:

an infeasible, a conditionally feasible, or an unconditionally feasible diagram. There are

three reasons for an infeasible solution: a) a break is affected, and it cannot be replaced

with an adjusted break, b) the uncovered task to be inserted was removed from this

driver’s diagram previously, c) inserting this uncovered task will cause a previously

inserted task to be removed. The last two conditions are to prevent a cycle being formed

in the solution process. If there is at least one driving task that is affected, the insertion

result is said to be conditionally feasible. It means that by inserting one uncovered task

into a crew diagram, some other driving tasks need to be removed from this diagram. If

there is no driving task affected, the result is unconditionally feasible.

67

Resetting an Adjusted Break

If a driver’s break is affected by the insertion of an uncovered task, there are two ways

to adjust the break opportunity. One is that there may be enough time for a driver to

have a break between the commencing activity and the uncovered task or between the

uncovered task and the terminating activity. That is, the connection between

commencing activity and uncovered task or uncovered task and terminating activity

contains a break opportunity. The other way is that after the terminating activity there

is enough time to insert a break. However, a break must be arranged before a driver

works more than the maximum working time without a break.

3.1.3. Algorithm for DFSCR

The algorithm for the DFSCR approach is shown in Algorithm 2. The input consists of the

planned crew diagrams, adjusted timetable, rolling stock diagrams and an initial

uncovered task. The output of DFSCR is a set of solutions, each of which inserts the

uncovered task into current crew diagrams in some way.

An uncovered task list is created and initialised with the initial uncovered task. All the

possible drivers for this task are found and ordered with a score in step 1. The driver

with the lowest score from the possible driver list in step 3 is chosen. The uncovered

task is inserted into this driver’s diagram in step 4. Three results are possible: infeasible,

unconditionally feasible and conditionally feasible.

68

If the result is unconditionally feasible in step 5, the uncovered task is removed from the

list in step 6. In step 7 if there is no task left uncovered, then a solution is saved in step

8. If there is a task left uncovered and the tree size is not exceeded in step 9, then in

step 10 the uncovered task is updated as the first task in the uncovered task list and

solveDFSCR is called again. The parameter maxDisruptDrivers is used in steps 9 and 15

to check if the tree size is exceeded. The depth of the tree represents the number of

drivers whose diagrams are revised to solve the disruption. This depth should be no

more than the parameter, maxDisruptDrivers.

If the result is conditionally feasible, in step 14 the newly generated uncovered tasks are

added into the uncovered task list and this list is sorted by increasing order of departure

time of all elements. If the tree size limit is not exceeded in step 15, the uncovered task

is updated as the first task in the uncovered task list and the problem is solved for this

uncovered task and the solveDFSCR is called again in step 17.

After each insertion, an undo step is performed in step 20, the changes made to

diagrams in the insertion in step 4 are undone. The newly inserted task into the diagram

will be removed and the removed tasks will be added back. Since as many solutions as

possible are preferred to be found, an undo step will reverse the changes in the drivers’

diagrams even if a solution is found and the algorithm will check the next possible driver

(step 2 in Algorithm 2) until there is no possible driver left for this uncovered task.

69

Algorithm 2 Solving DFSCR

It is addressed that first a solution is obtained after checking whether the list containing

uncovered tasks is empty, which guarantees that the solution is conflict free. Second,

the rules for resetting an affected meal break are given. Third, the term commencing

activity and terminating activity is proposed to find the drivers with a higher possibility

to cover a task. Here it is emphasised that DFSCR (Algorithm 2) is designed to find

70

multiple solutions, so when the algorithm reaches a leaf node, it takes one or more steps

backwards to develop a new branch to find another solution. It searches for solutions

until all possible solutions are found. Two critical aspects of Algorithm 2 are discussed:

defining and limiting the tree size and ranking the solutions.

Limiting the Tree Size and Fathoming

The depth of the search tree is limited by the number of drivers allowed to be

rescheduled. This condition is checked in steps 9 and 15 in Algorithm 2. Rescheduling

many drivers to solve one uncovered task is not practical. So a maximum number of

affected drivers is set to control it. A partial solution that affects more than the

maximum number of drivers should be abandoned. Also, tree size is limited by

fathoming which means pruning some solutions. An upper bound of the method is

updated as a new lower solution cost appears. When a partial solution has a bigger cost

than the current upper bound, it is pruned to limit the tree size.

Ranking the Solutions

Multiple solutions can be ranked based on total cost, total taxi fee, total work overtime,

number of used drivers and total delay time. Note that a solution involving significant

retiming of a task is not preferable by DFSCR and will most probably be ranked last based

on the total delay time. Practically then, where there is no better solution, crew

controllers have a chance to evaluate this solution and see if its induced conflicts can be

easily solved manually. Then such a solution can be helpful.

71

3.1.4. Generating Feedback from the Model Run

When there is no solution returned, it may be the case that minor adjustments to some

parameters yield solutions. Feedback can provide hints as to which parameters should

be adjusted to obtain solutions potentially. Thus, the feedback generation ability from

the DFSCR approach is described in Section 3.1.4. There are three kinds of feedback

generated by the model:

(1) The requirement to delay the uncovered task by more than the maximum task

delay time.

(2) A driver needs to work overtime to the extent that exceeds the maximum work

overtime or maximum work length.

(3) More drivers’ diagrams need to be rescheduled to find a solution.

Feedback types (1) and (2) can be generated from finding possible drivers for an

uncovered task (step 1 in Algorithm 2). Feedback type (3) can be obtained by checking

if the partial solution exceeds the tree size (steps 9 and 15 in Algorithm 2).

Adjusting Parameters According to Feedback

The following relaxation types correspond to feedback types (1) – (3).

Relaxation A Suppose that an uncovered task must be delayed by more than the

maximum task delay time. Then feedback information of type (1) is generated. This

means that this driver is still late for the delayed uncovered task when the rescheduling

starts, considering the communication time and connection time. Since delaying a task

could lead to further delays, adjusting the communication and connection times is

72

preferable. Therefore, in Relaxation A, communication time and connection time are

reduced. In the experiments, the communication time is reduced from 20 to 10 minutes,

and the connection time is reduced from 10 to 3 minutes. Crew controllers suggested

the minimum values of these parameters. These minimum values may vary from one

operator to another.

Relaxation B Suppose a driver could work more than the overtime or work length limit

that has been set. Then feedback information of type (2) is generated. The appropriate

relaxation is to increase maximum work overtime and maximum work length. In the

experiments, the maximum work overtime is increased from 2 hours to 2 hours and 20

minutes and the maximum work length is increased from 10 hours to 10 hours and 20

minutes. Crew controllers suggested the default values (2 hours and 10 hours,

respectively). Relaxing both of them by 20 minutes may give the controllers new

solutions that can be discussed with drivers. It is not likely to violate the fatigue rules

(but these rules vary from one operator to another).

Relaxation C This is imposed when more drivers need to be used (feedback information

of type 3). Then the appropriate relaxation is to increase the maximum number of

affected drivers. In the experiments, the maximum number of affected drivers is

increased from 2 to 3.

Two combined ways to relax parameter values are also utilised to test the feedback

mechanism of DFSCR.

73

Relaxation AC After Relaxation A, if the number of solutions is less than 3, a further

Relaxation C is added.

Relaxation BC After Relaxation B, if the number of solutions is less than 3, a further

Relaxation C is added.

Note that there is no particular reason why these combinations of relaxation types are

chosen and why a further relaxation is added if the number of solutions is less than 3.

They are just reasonable examples of combinations of relaxations that may be tried.

Other parameter values and combinations of relaxation types can be used. Further

testing is needed to determine the optimal parameter values and combinations of

relaxations.

3.2. Single Case Study and Sensitivity Tests

Section 3.2 uses the DFSCR approach to resolve a late inbound train scenario that

disrupts the crew diagrams. Later, the results with two modified versions of the methods

of (Rezanova, 2009) and (Potthoff, 2010) applied to the same scenario are compared.

3.2.1. Late Inbound Train Scenario

74

Figure 6 Late inbound train scenario

The scenario is illustrated in Figure 6. In this scenario, a train (1K14) departs from

Nottingham and travels towards Cardiff Central via Birmingham New Street. It is

scheduled to be driven by two different drivers (D30 and another driver) who swap at

Birmingham New Street. When the train arrives late at Birmingham New Street, both

the first leg driver (D30) and rolling stock (RS1) are late. Spare rolling stock is typically

available in Birmingham New Street and can be used by the second leg driver to start

the train leg from Birmingham New Street on time. The arrived rolling stock RS1 can be

treated as the new spare rolling stock. The problem is that the late first leg driver (D30)

is late for the next driving task on their diagram. A common solution is to find another

driver to cover all the remaining driving tasks on this late driver’s diagram.

75

Assume at 20:09 it is observed that the train 1K14 is late and is estimated to arrive at

20:54 at Birmingham New Street. Table 2 shows the driver of the affected section’s

diagram. Task ID 23 represents the driving task of the late train service leg on the driver’s

diagram. Since their next driving task departs at 20:49, driver D30 is unable to perform

this driving task from Birmingham New Street to Nottingham, which are Task ID 24 and

the following task ID 25. Here tasks 24 and 25 are combined and treated as one

uncovered task, 24-25, which must now be covered.

Table 2 Driver diagram: D30

ID origin departure destination arrival activity

type

headcode driver ID

19 LESTER 15:24 LESTER 15:24 signOn D30

20 LESTER 15:50 BHAMNWS 16:46 Driving 1L43 D30

21 BHAMNWS 17:49 DRBY 18:36 TAXI D30

22 DRBY 18:39 DRBY 19:19 Break D30

23 DRBY 19:39 BHAMNWS 20:24 Driving 1K14 D30

24 BHAMNWS 20:49 NTNG 22:14 Driving 1H22 D30

25 NTNG 22:26 LESTER 23:00 Driving 5M75 D30

76

26 LESTER 23:43 LESTER 23:43 signOff D30

In the solution process, there are nine parameters whose default values are in brackets.

1. connection time to non-sign off activity (10 minutes): a driver needs time to

cross the platform to start the next driving task or go to the crew depot to have

a break. This time is necessary and should be considered to connect two

activities.

2. maximum work length (10 hours): the maximum permitted time of a driver’s

diagram for the day.

3. maximum continuous work length without break (3.5 hours): the maximum

time a driver can work without having a break.

4. maximum work overtime (2 hours): the maximum time by which a driver can

exceed the scheduled working time.

5. maximum planned task delay (10 minutes): the maximum amount of time by

which a task may be delayed.

6. rescheduling start time (20:09): the time when the rescheduling process starts.

7. communication time (20 minutes): a necessary time allocated to contact the

driver to inform them about their changed diagram.

77

8. taxi variation (0 minutes): variations in the taxi travel time required between

any two stations.

9. maximum number of affected drivers (2): the maximum number of drivers

whose diagrams are permitted to be rescheduled to solve the problem.

The default values of all these parameters were discussed and confirmed with the

experts from train operating companies. Also note that five of these parameters

(connection time to non-sign off activity, maximum work length, maximum work

overtime, rescheduling start time and taxi variation) are varied in the sensitivity tests

within the ranges shown in the figures in Section 3.2.5.

3.2.2. Solution Analysis

The solutions obtained using the same parameter settings as in Section 3.2.1 to this

problem are shown in Table 3. Taxi duration estimates are obtained from Google Maps.

Work overtime is calculated as the difference between the new sign off and old sign off

times. DFSCR finds all 9 solutions in 5.6s. The cost of a solution is the sum of work

overtime, taxi duration, the penalty for drivers that have an adjusted diagram and

planned task delay minutes.

None of the solutions require a delayed task. The first solution uses the available driver

D219 to take task 24-25. Other solutions request driver D25 to take task 24-25 and, in

exchange, another driver needs to take task 569 for D25.

78

Table 3 Results obtained from default values

solution

index

driver1 insert

task1

driver2 insert

task 2

total work

overtime

taxi

duration

adjusted diagram

penalty

solution

cost

1 D219 24-25 75 58 300 433

2 D25 24-25 D219 569 75 71 600 746

3 D25 24-25 D209 569 97 71 600 768

4 D25 24-25 D30 569 75 118 600 793

5 D25 24-25 D153 569 122 71 600 793

6 D25 24-25 D127 569 75 118 600 793

7 D25 24-25 D115 569 89 118 600 807

8 D25 24-25 D69 569 149 71 600 820

9 D25 24-25 D125 569 149 118 600 867

Some details of solution 6 from Table 3 are shown in Table 4. Driver D25 takes the initial

uncovered task 24-25 and then takes a taxi trip to sign off. This driver needs to work

overtime. In exchange, D127 takes driving task 569 from D25 and takes a taxi to sign off.

This driver does not need to work overtime.

79

Table 4 A typical solution (6): recovery diagrams and cost breakdown

driver ID ID origin departure destination arrival activity type headcode overtime taxi total

cost

D25 564 BHAMNWS 15:35 BHAMNWS 15:35 signOn 0 0 0

D25 565 BHAMNWS 16:09 LESTER 17:08 Driving 1O11 0 0 0

D25 566 LESTER 17:18 TYSLSDG 18:53 Driving 1M24 0 0 0

D25 567 TYSLSDG 19:08 BHAMNWS 19:33 TAXI 0 0 0

D25 568 BHAMNWS 19:36 BHAMNWS 20:16 Break 0 0 0

D25 24-

25

BHAMNWS 20:49 LESTER 23:00 Driving 1H22/5M75 0 0 0

D25 LESTER 23:10 BHAMNWS 24:08 taxiAdded 0 58 58

D25 571 BHAMNWS 24:11 BHAMNWS 24:11 signOff 75 0 75

penalty for

using the

driver

 300

D25 cost 433

D127 1271 LESTER 14:57 LESTER 14:57 signOn 0 0 0

D127 133 LESTER 20:50 BHAMNWS 21:45 passengerAdded 1M55 0 0 0

D127 569 BHAMNWS 21:55 TYSLSDG 22:16 Driving 5P87 0 0 0

D127 TYSLSDG 22:26 LESTER 23:26 taxiAdded 0 60 60

80

D127 1272 LESTER 24:38 LESTER 24:38 signOff 0 0 0

penalty for

using the

driver

 300

D127 cost 360

total cost 793

taxiAdded/PassengerAdded means that it is added by us to this driver’s diagram to

relocate the driver.

3.2.3. Mathematical Optimisation for the Crew Rescheduling Problem

As mentioned in Section 2.5, BnPCR and GSLR are the current state-of-the-art methods

for solving the crew rescheduling problem during significant disruption. Both methods

are applied to solve the late inbound train scenario presented in Section 3.2.1. The

models, to which the methods are applied, slightly differ from each other since

(Potthoff, 2010) considers a penalty for task cancellation. A work overtime function is

added to both methods and the maximum work overtime and maximum work length

are set to have the same default values as in Section 3.2.1. Further, BnPCR and GSLR

solve the problem in a disruption neighbourhood (core problem), which is a

neighbourhood that includes critical drivers and their tasks during the recovery period.

However, the first disruption neighbourhood (core problem) built by both methods

cannot solve the problem even when permitting working overtime. Expanding

disruption neighbourhood (core problem) rules are added by extending the recovery

81

period by two hours and adding more drivers who appear in the same station as the

uncovered task around the same time automatically when there is no solution. With

these modifications, both methods give solution 1 in Table 3 after expanding once and

allowing drivers to work overtime. BnPCR finds the solution in 3.8s and it finds an integer

to the linearised model directly. GSLR finds the solution in 1.7s.

3.2.4. Comparing Methods: DFSCR, DFID, BnPCR and GSLR

In this section, DFSCR is compared to the three cutting-edge methods: DFID from

(Verhaegh, Huisman, Fioole, & Vera, 2017), BnPCR from (Rezanova, 2009) and GSLR

from (Potthoff, 2010) according to the following aspects.

1. Number of disruptions. DFSCR can process multiple uncovered tasks produced

by multiple disruptions. In this study, it only takes one initial uncovered task as

input. However, it can be easily modified to process multiple uncovered tasks,

by initialising the uncovered task list in Algorithm 2 with multiple uncovered

tasks. Note that multiple uncovered tasks are not considered at the same time,

but each uncovered task is considered singly in sequence. DFID can process

multiple uncovered tasks in a similar manner. BnPCR and GSLR can process

multiple disruptions since they build a set partitioning problem / set covering

problem with all affected drivers as constraints. BnPCR and GSLR aim to find a

recovery diagram for any driver that has an infeasible diagram due to disruption.

2. Number of solutions. DFSCR and DFID can generate multiple solutions because

it builds a tree structure to search for solutions and each leaf of the tree

represents a solution. BnPCR first solves a linearised crew rescheduling model.

82

When the optimal solution to the linearised model is fractional, BnPCR uses a

branch and bound tree to develop multiple integer solutions by forcing or

forbidding a driver to take a task. However, the appearance of fractional results

depends on the scenario and costs of connection types set by the user. It is not

easy to control by the user. Also, fractional results appear rarely in the

experiments of (Rezanova, 2009). GSLR solves the problem with an advanced

Lagrangian heuristic algorithm iteratively, it generates one solution at every

iteration. Each objective is the same during the solution process, so the solution

with the minimal objective value is the final solution.

3. Delay a single task. Delaying any task is not preferable because it will change the

real-time timetable. If a delay happens at a busy station or peak time, it can

affect a number of trains and quickly propagate through the network. If a delay

happens at a rural station or off-peak time, it most probably will not lead to

further disruption. DFSCR can consider delaying a task by less than the maximum

planned delay time. DFID does not consider delaying a task. However, some

modifications can be added to change this in DFID. BnPCR and GSLR do not

consider the possibility of this. They both treat tasks as fixed nodes in a graph

and a diagram for any driver is a path in this graph. So, if a node is moved, this

change is the same for any driver, which is not realistic. If a driver requests this

task to be delayed to cover it, this does not mean that another driver would

request the same. (Veelenturf, Potthoff, Huisman, & Kroon, 2012) deals with a

retiming extension of the GSLR method. The model and method proposed by

83

them considers the possible retiming copies of a task and such copies can be

used to produce solutions.

4. Consideration of overtime. DFSCR considers the possibility of drivers working

over- time and limits it by introducing two parameters: maximum work overtime

and maximum work length. DFID, BnPCR and GSLR can also consider the driver

working overtime to cover a task. BnPCR and GSLR both use a resource-

constrained path finding algorithm to find feasible recovery diagrams. An extra

condition can be added to disallow recovery diagrams that violate maximum

work overtime and maximum work length constraints.

5. Reset a break for the driver. Drivers need to have a break after a certain period

of continuous working time. A break is scheduled for the minimum required time

according to working rules in a driver’s diagram. However, drivers may have their

breaks at times that differ from what is exactly scheduled. DFSCR can restore an

appropriate break with predefined rules as in Section 3.1.2 if the planned break

is affected. DFID can allow a break to be changed when inserting a task into a

diagram. BnPCR and GSLR can also allow a break to be changed. Similar to

overtime, extra constraints about break time can be considered when generating

recovery diagrams using a resource-constrained path finding algorithm based on

dynamic programming.

6. Having a feasible solution before the algorithm finds an optimal solution.

DFSCR, DFID and GSLR can have a feasible solution in this case, but BnPCR cannot

84

guarantee this because there may be a fractional feasible solution, from which

an integer solution cannot be easily recovered.

7. Considering the feedback mechanism. DFSCR can generate feedback as

explained in Section 3.1.4. DFID, BnPCR and GSLR do not have this feature.

8. Method running time. All three methods solve the problem described in Section

3.2.1 in a few seconds. GSLR (1.7s) is quicker than BnPCR (3.8s) in solving this

scenario. DFSCR finds 9 solutions in 5.6s.

3.2.5. Sensitivity Tests

One of the reasons that mathematical optimisation techniques may fail to be

transferred into practical use in decision support tools is that, due to the lack of

transparency of the optimisation tool, the user does not fully understand the

optimisation tool or the impact of adjusting its parameters. A user may unknowingly

adjust parameters in such a way as to not fully utilise the capabilities of the optimisation

model.

Thus, in Section 3.2.5, some parameter values are varied to evaluate how they will affect

the solutions for the scenario in Section 3.2.1. Five parameters are adjusted:

rescheduling start time, extra taxi time, maximum work overtime, connection time to

non-sign off activity and maximum work length. Every time, one parameter is varied in

a realistic range and the rest of the parameters are fixed as their default values shown

in Section 3.2.1.

85

Rescheduling Start Time

The rescheduling start time varies from 19:00 to 21:00 with a one-minute step size. How

the number of solutions and solution costs change with the rescheduling start time is

tested.

Figure 7 (a) number of solutions, and (b) cost, with respect to rescheduling start time

In Figure 7(a), the number of solutions drops from 13 as rescheduling starts at 19:00 to

9 at 19:12 and to 6 at 20:21. When the rescheduling starts after 20:29, there are no

solutions. The number of solutions drops from 13 to 9 because 4 available drivers in

Leicester depot can no longer arrive at Birmingham New Street by taxi in time to take

the uncovered task 24-25. Similarly, the drop from 9 to 6 occurs as 3 drivers from

Leicester depot cannot arrive at Birmingham New Street to take task 569 from driver

D25 in time. When the rescheduling starts at 20:29, task 24-25 is forcibly delayed by the

maximum planned task delay time of 10 minutes for all solutions. After 20:29, task 24-

86

25 needs to be delayed by longer than the maximum planned task delay time to obtain

a solution.

Later rescheduling start times affect the solution cost in two ways. One is that it may

make some solutions infeasible and the other is that it may require a task to be delayed

further. From Figure 7(b), before 19:12, the smallest minimal cost is 358, which uses a

driver from Leicester depot. This driver does not need to work overtime, which reduces

the cost.

Extra Taxi Time

Figure 8 (a) number of solutions, and (b) cost, with respect to extra taxi time

Estimated taxi travel times were obtained from Google Maps. These stored times do not

necessarily reflect dynamically changing real road conditions. The number of solutions

87

and solution costs are tested for variable additional time added to the base taxi travel

times. The test range is from -10 to 60 with step size 1. The increased taxi times will

prevent some drivers from arriving at their scheduled or rescheduled tasks on time. The

increased taxi times will also increase work duration. So with the increase in extra taxi

time, the number of solutions is decreasing (Figure 8 (a)). When the extra taxi time is

greater than or equal to 46, there is no solution. The number of solutions drops from 10

to 9, 8 and 6 because work length or work overtime exceeds the maximum work length

or maximum work overtime, respectively.

In Figure 8(b), when the extra taxi time is less than or equal to 29, the minimal cost

solution is using the same available driver. The minimal costs are increasing because the

taxi fee is calculated based on the taxi duration. The sudden increase of minimal cost at

+30 minutes duration is because this available driver cannot take this uncovered task

24-25 anymore. The maximal costs are not necessarily increasing with increasing taxi

duration because some drivers are not available due to the long taxi duration. The

maximal cost solutions at every point do not necessarily use the same drivers.

Maximum Work Overtime

The default value for maximum work overtime is 2 hours. Nine solutions appear when

the maximum work overtime is greater than 1 hour and 20 minutes. There are no other

solutions even when overtime increases up to 5 hours. Correspondingly, the costs also

do not change.

Connection Time to Activity (excluding Sign Off)

88

Connection time will affect the total cost in two ways. One is that longer connection

time will cause more overtime work that is part of the total cost. The other way is that

longer connection time will cause some drivers to miss their respective passenger trips,

thus generating extra taxi fees. Also, longer connection time will make some solutions

infeasible due to maximum work overtime and maximum work length constraints.

Figure 9 (a) number of solutions, and (b) cost, with respect to connection time

In Figure 9(a), the number of solutions drops from 11 to 9 because one driver working

overtime exceeds the maximum work overtime of 2 hours and another driver cannot

take task 569 in time due to increased connection time. The number of solutions drops

further from 9 to 6 because 3 available drivers from Leicester depot cannot take task

569 in time. It further drops from 6 to 1 because driver D25 cannot take task 24-25 in

time even if this task is delayed by the maximum planned delay time.

89

The minimal, average and maximal costs in Figure 9(b) have a stable change at all test

points since connection time will affect the work overtime cost. However, a long

connection time causes some solutions to become infeasible, so the cost is not always

increasing.

Maximum Work Length

In Figure 10, the work length increases from 8 hours to 12 hours, with a 10-minute step

size. There is no solution in Figure 10(a) when the maximum work length is lower than

8 hours 40 minutes. When the maximum work length increases, more solutions appear

and the smallest minimal cost solution in Figure 10(b) appears when the maximum work

time is set at 9 hours and 40 minutes. At most 13 solutions are obtained after the

maximum work length is extended. When the maximum work length increases, more

solutions appear until the maximum work length is set as 10 hours and 40 minutes. Since

the maximum work length is bounded by the maximum permitted overtime work, the

availability of solutions is also bounded by this condition.

90

Figure 10 (a) number of solutions, and (b) cost, with respect to maximum work length

3.3. Multiple Experiments

To further test DFSCR’s performance over the period of an entire day, DFSCR is applied

to all driving tasks of a train operator’s one day operation. The dataset used for testing

has 124 diagrammed drivers and 24 spare drivers. These spare drivers are located in 3

depots during the day. There are 382 driving tasks in the dataset. For each test, one

driving task is duplicated and this duplicated task is assumed as the uncovered task, so

DFSCR is applied to 382 tests. Figure 11 shows the effect of inserting these duplicated

driving tasks into the current crew diagrams during a day. In general, DFSCR can find

solutions for 150 of the tests and the average number of solutions is 4.48. For tests

where DFSCR cannot find solutions, the main reason is that the initial uncovered task of

a test starts very early or late at a station away from major stations. The chance of

finding a chain of suitable drivers swapping tasks among them is low. For each test, the

average solution time is 0.75s. The number of tasks that occur every hour increases from

91

early morning to reach its peak during 6:00-7:00. Then it fluctuates along the day until

reaching another peak during 16:00-20:00. Average solution time has a similar shape to

the number of driving tasks. When there is a big number of tasks, a corresponding

number of drivers are on duty. When an uncovered task happens at a peak time, more

suitable drivers are also considered in DFSCR to find solutions. Thus, the computational

time for this test is also large. In general, DFSCR can generate around 2 solutions for

each test from 09:00 to 21:00 with a smaller number of solutions at early or late times.

Figure 11 Average number of solutions and solution time against task departure time

To test how the maximum number of affected drivers (MNAD) affects solutions, MNAD

is increased from 1 to 5. Later the results from increasing MNAD are compared to the

results from using the feedback mechanism. Table 5 shows how solutions can change

with respect to the increasing of MNAD. If MNAD increases from 1 to 5, the solution

number increases from 4.21 to 4.95 for tests that can find solutions and the success rate

increases by 2.1% for all tests. The average costs of the minimal, average and maximal

92

costs of all tests that have solutions are shown in Table 5. So, the costs, especially the

minimal costs, shown in Table 5 may change with respect to MNAD. The minimal,

average and maximal costs increase with the increase of parameter values. One reason

is that with a bigger MNAD, some tests that do not have a solution with a lower MNAD

now tend to have solutions. The other reason is that with a bigger MNAD, solutions that

involve more drivers appear and these solutions have a higher cost according to our cost

function. The solution time increases gradually until it jumps from 0.88 to 1.35 when the

MNAD rises from 4 to 5. Based on the nature of DFSCR, the solution time will increase

exponentially with the increasing MNAD. However, the solution time is still very small

due to fathoming. Fathoming is to prune solutions that have bigger costs than the

current lowest cost as in (Verhaegh, Huisman, Fioole, & Vera, 2017), which is explained

in Section 3.1.3.

Table 5 Solution changes with increasing maximum number of affected drivers

MNAD solNum min cost ave cost max cost solTime(s) success rate

1 4.21 308.70 325.92 352.01 0.65 38.0%

2 4.48 318.68 346.84 382.67 0.75 39.3%

3 4.81 323.09 359.50 399.02 0.82 39.5%

4 4.93 327.68 365.87 408.20 0.88 39.8%

5 4.95 331.82 372.35 418.52 1.35 40.1%

93

Multiple Testing on Feedback Mechanism

To test the feedback mechanism, the DFSCR approach is built first with the default

parameter values in Section 3.2.1 except the rescheduling start time, which is updated

to the relevant time for each testing task. The rescheduling start time is set at 30 minutes

before the testing task departs.

The results of the DFSCR approach solving all tests with default parameter values and

relaxed parameter values are shown in Table 6. After the relaxation, the number of tests

successfully solved increases by 6%. The average number of solutions increases by 1.13.

In Table 5, success rates increase by 0.2% when the maximum number of affected

drivers is increased from 2 to 3. In Table 6, success rate is increased by 6% using a

feedback and relaxation scheme. It is worth noting that increasing MNAD may not be as

good as an approach of adjusting parameter values based on the feedback mechanism

since the solution time rises sharply in the former case.

Table 6 Comparison between testing results before and after relaxation

 number of

tasks(tests)

success

rate

average number of

solutions

average

solution time

before

relaxation

382 39.3% 4.48 0.75s

94

after

relaxation

382 45.3% 5.61 1.58s

The detailed relaxation types of all the relaxed tests are shown in Table 7(a). 144 tests

are suitable to be relaxed. Among them, 108 tests are relaxed by Relaxation A. 238 tests

(Table 7(b)) with no relaxation are tests where the relaxation does not help. However,

in 233 tests, drivers require the task to be delayed by more than 30 minutes. In the other

5 tests, the uncovered task happens in the early morning or late at night when no other

driver is on duty. The detailed explanation of relaxations can be seen in Section 3.1.4:

Relaxation A: reduce communication time and connection time; Relaxation B: increase

maximum work overtime and length; Relaxation C: increase the maximum number of

affected drivers. Relaxation AC and BC are combinations of the corresponding relaxation

types.

Table 7 (a) tests with relaxation, and (b) tests without relaxation

(a) Tests with relaxation

number of tests with relaxation A B C AC BC

144 108 14 6 16 0

(b) Tests without relaxation

number of tests with no relaxation delay >30 minutes no driver is on duty

95

238 233 5

3.4. Conclusion

In this section, a new approach was described for solving the crew rescheduling problem

for minor disruptions (DFSCR). This new approach aims to produce multiple solutions

for inserting an uncovered task into the current crew schedule. To illustrate the

applicability of this method, a case study based on a real-world network and crew

diagrams has been used. DFSCR has been able to solve the problem and give multiple

solutions as expected. To study the influence of parameters used in the model and to

find their effective bounds, a sensitivity test has helped explain the reasons for various

trends in the results for the same case study. DFSCR was also tested on 382 scenarios to

give various statistical information about performance, including the number of tests

that can be solved and the running time. The feedback mechanism of DFSCR was also

tested and results show that more solutions can be obtained after using the feedback

information to relax constraints. DFSCR has a number of limitations, which should be

addressed in future work.

First, the biggest limitation is to recognise the scale of disruption impact that can be

efficiently fixed by DFSCR. DFSCR relies on crew controllers to recognise uncovered tasks

caused by disruption and input these uncovered tasks into DFSCR one after another.

This process is not straightforward to crew controllers when many trains are disrupted.

96

Second, further work is needed to address the follow up conflicts induced by a solution

if the solution retimes a driving task. Note that this can have a direct impact on the

schedule of a train journey. The knock-on effect of one train’s delay can spread over a

railway network. A solution containing a shifted driving task should be further examined

by a controller to better understand its impact on the remaining operation. The severity

of the impact brought by solving an uncovered task is not sure in this way because it

depends on the railway rescheduling environment at that moment. If a task is required

to be retimed at a major station during peak time, this solution may not be chosen.

However, if the same situation happens at a rural station late at night, it may be useful

if there is no better solution available. Further, a retimed task may affect rolling stock

circulation. However, if this delay time can be absorbed due to robust rolling stock

circulation, this solution can be considered. Future work should address the whole delay

impact on the model.

Third, the order of various uncovered tasks fed into DFSCR may influence the overall

crew rescheduling cost. Optimising the order of feeding disruptions into DFSCR will

require further testing.

Fourth, in this work, a feedback mechanism was proposed and proved that it can help

to find more solutions. This work did not try to find the optimal parameter values used

in relaxations A, B and C, the order of using different relaxation types or the complete

combination of relaxation types. This can be a further study point.

97

In the wider picture of schedule adjustment during disruptions, how to put DFSCR into

practice in the current railway operation system is another challenge. Crew rescheduling

is manually processed in Great Britain now. DFSCR requires planned crew diagrams and

an uncovered task as input. Planned crew diagrams are stored in crew management

software and usually crew controllers need to use crew management software to

recognise uncovered tasks. Further study is needed to integrate crew management

software, traffic management software, DFSCR and crew controllers’ actions. Note that

this could result in development of a system that would automatically detect conflicts

of all kinds and provide dispatchers and crew controllers with automated advice on their

resolution, in the spirit of (Stelzer, 2016).

98

CHAPTER FOUR: CREW RESCHEDULING

FOR SIGNIFICANT DISRUPTIONS

99

This chapter addresses the crew rescheduling problem during significant disruptions.

Section 2.3 explains that significant disruptions lead to a loss of or restricted access to

parts of the railway network due to an incident, affecting the delivery of a normal

timetable. After a significant disruption is detected, a service recovery process is

initiated. The IM discusses with affected TOCs. In this dialogue, they will consider the

impact of the incident, estimate when normal infrastructure may be available and agree

on contingency operation. For significant disruption management, the timetable should

be recovered first. The main aim of crew rescheduling is to cover as many train trips as

possible in a revised timetable. Since the timetable is recovered to its normal level, the

crew should also return to their planned diagrams. The planned crew diagrams are

designed to cover the regular timetable. This chapter answers the research questions 2,

4 and 5 posed in Section 1.3.

Since solving the crew rescheduling problem requires a revised timetable as input, using

a model to reschedule the timetable after a disruption is first considered. A typical

significant disruption is a line blockage, which limits the normal access to a part of the

railway network and affects trains that are planned to run over the blockage site.

Another typical significant disruptions include signalling failures on busy routes,

maintenance overrun, overhead line equipment failures, etc. This section builds a

timetable rescheduling model for the specific disruption - line blockage since a variety

of unexpected events can lead to line blockage, e.g., damaged bridges, failed rolling

stock on track, landslips. Then, the crew rescheduling problem is modelled as a set

covering problem to reschedule the crew after the disruption.

100

The structure of the remainder of the section is as follows. Section 4.1 describes the

model for solving the timetable rescheduling problem and presents the results of several

experimental tests. Sections 4.2 and 4.3 introduce the mathematical programming and

techniques used in the following sections. Section 4.4 describes the model and method

for solving the crew rescheduling problem for significant disruptions. Experimental

results of using the model and method are presented. Moreover, three different

dynamic programming search techniques are used in the method and compared for

solving the crew rescheduling problem. Section 4.5 is the conclusion.

4.1. Timetable Rescheduling Problem

As explained in Section 2, the basis of passenger railway operations is the timetable

which describes a set of train services scheduled to run from one terminal station to

another and call or pass at several intermediate stops at specific times. Due to

unplanned events, trains often cannot run on time as set out in the timetable. This

section aims to provide a model to recover the timetable for complete line blockage, for

which a train service recovery process needs to be initiated.

101

Figure 12 Three stages of the train service recovery process

In Section 2.3.1, the train service recovery framework process has been described from

the perspective of the involved organisations and actors. Here, the network status

(infrastructure availability and the number of trains running) of the train service

recovery process is expressed. Figure 12 shows the three stages of the train service

recovery process: the transition phase, degraded operation phase and recovery phase.

Following a disruption, railway operation is at a restricted access state in which total

infrastructure capacity cannot be provided to enable the running of a regular timetable.

A reduced timetable is used during the degraded operation phase. After a certain

amount of time, the infrastructure for the regular timetable will again become available

and normal running can be gradually restored. In the transition phase, some trains are

directly cancelled or delayed due to the initial disruption. Trains start to queue up, and

a quick decision is needed to prevent delay propagation through the network. In the

102

degraded operation phase, a revised timetable based on a contingency plan adapted for

the specific circumstances may be used. In this phase, the number of trains running on

the network is the lowest. During the recovery phase, the regular running of train service

is gradually restored, and the number of trains running on the network rises.

This section aims to provide a revised timetable which covers the three phases of train

service recovery. Two time periods are defined for use in the work. One is the recovery

period during which the disrupted timetable is recovered. The recovery period is

regulated by rescheduling start and end times. After the recovery period, the method

guarantees that operations can return to a normal timetable as long as the

infrastructure and rolling stock required to run a full timetable are available. After the

recovery period, train operations on the network should be at the point “full timetable

restored”, shown in Figure 12, with all initially scheduled services running. How to set

the rescheduling start and end time is explained in Section 4.1.2. The other is the

blockage period during which no train can pass the blockage area, and the infrastructure

is at a restricted access state, as shown in Figure 12, infrastructure restricted access. The

blockage period is regulated by blockage start and end times, which are usually taken as

an assumption. Usually, the recovery period starts as the blockage period starts and

ends later than the blockage period ends.

An integer programming model is introduced to revise a timetable in case of a complete

blockage taking into account infrastructure and rolling stock availability. Solving the

103

model requires a revised timetable covering the three phases of train service recovery.

Operations are guaranteed to return to normal after rescheduling. Keeping the planned

rolling stock circulation patterns is preferred, by penalising solutions that do not use the

designed patterns. Finally, the model is successfully applied to the busiest line of a TOC

in Great Britain. Later the results of the revised timetable will be used as input to solve

the crew rescheduling problem in Section 4.4.6.

The structure of the remainder of the section is as follows. Section 4.1.1 reviews the

research on timetable rescheduling. Section 4.1.2 is the problem description. Section

4.1.3 introduces how trains running on a network can be modelled. Section 4.1.4

proposes a timetable rescheduling model in case of a complete blockage. Section 4.1.5

is a simple example, and Section 4.1.6 applies the model to 14 scenarios using actual

data from a TOC in Great Britain. Section 4.1.7 concludes the timetable rescheduling

topic.

4.1.1. Related Works

A large body of literature has investigated timetable rescheduling for railway disruption

management. The literature closely linked to the timetable rescheduling model

proposed is first reviewed in this section. Note that in the literature reviewed here, the

trains running on a railway network are modelled by event-activity graphs.

(Louwerse & Huisman, 2014) investigated the rescheduling of a railway timetable in

cases of partial or complete blockage. They used an event-activity graph to describe

104

trains running on a double-track line at a macroscopic level. Rolling stock inventory and

circulation were considered so trains could take rolling stock compositions from excess

inventory or an early arriving train at the same station. An integer programming model

was built to minimise train delays and cancellations and balance trains in both directions

and over the operation period. Two real-world cases on the Dutch railway were tested

to prove that all instances can be solved optimally within one minute. (Veelenturf, Kidd,

Cacchiani, Kroon, & Toth, 2016) also used an event-activity graph to solve the railway

timetable rescheduling problem during blockages based on (Louwerse & Huisman,

2014). In their paper, the disruption management process takes place from the start of

the disruption until the operation is fully restored. They considered a more complex

railway network with open track sections, which can be single-tracked, double-tracked

or contain more parallel tracks. The tracks can be used in both directions. (Veelenturf,

Kidd, Cacchiani, Kroon, & Toth, 2016) took into account track, rolling stock composition

capacity and train routings. The objective is to minimise train cancellations and delays.

The model was tested successfully on many complete and partial blockage scenarios.

The model in this section is based on the model used in (Louwerse & Huisman, 2014). In

the present work, an event-activity graph is also used to model trains running on a

double-track line. (Louwerse & Huisman, 2014) focused on the second phase (degraded

operation phase) of the train service recovery process and aimed to provide a degraded

timetable for this phase. They assumed the network was empty when the disruption

started and aimed to provide a new cyclic timetable for the degraded operation phase.

They do not consider modifying the timetable in the transition phase. To use their

105

solution for the degraded operation phase, some manual checks and further

modifications may be required to implement the solution. Only after the necessary

manual modifications to the revised timetable, can it be used as input to reschedule

rolling stock and crew. In the present work, rescheduling the timetable for the three

stages of the train service recovery process is considered. The railway network is not

assumed to be empty when the rescheduling starts. When the rescheduling ends, the

number of rolling stock compositions at each station must be the same as what is

required for running a regular timetable afterwards. Thus, the running of a regular

timetable can be recovered, as shown in Figure 12. The output, a revised timetable, can

be directly used to reschedule rolling stock and crew. Moreover, the model proposed in

this chapter minimises train cancellations, delays, and changes to the rolling stock

circulation patterns. Thus, a solution with the fewest changes to the rolling stock

circulation patterns while minimising cancellations and delays is preferred. Such

solutions are easier to communicate, and more likely to be accepted and implemented

by local dispatchers.

Passenger-oriented timetable revision is also becoming increasingly popular. Its

objective is usually to minimise passengers' travel time and the operation cost of train

operators. (Zhu & Goverde, 2020) proposed a mixed integer linear programming model

which applies to dispatch measures of retiming, reordering, cancelling, flexible stopping,

short turning trains, handles stock circulation at short-turn and terminal stations and

takes into account the station capacity. An adapted fix-and-optimisation algorithm is

developed to minimise the travel time and the number of transfers. (Zhan, Wong, Shang,

106

& Lo, 2021) simultaneously rescheduled trains and passenger routes from both

operators’ and passengers' perspectives. The integrated train rescheduling and

passenger routing problem is formulated as a mixed integer linear programming

problem. Then the integrated problem is decomposed into two subproblems using the

alternating direction method of multipliers (ADMM). Each subproblem can be solved

effectively with a dynamic programming algorithm.

4.1.2. Problem Description

A railway network consisting of stations and double-track sections is considered in the

problem. A blockage occurs on both tracks between two stations, and the tracks are

entirely blocked. It is assumed that the duration of the blockage period is known, that

is, the exact times for blockage start and end, 𝑡𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑏𝑙𝑜𝑐𝑘_𝑒𝑛𝑑 are known. A

train uses a rolling stock composition for its full service, after which the rolling stock

composition is moved to a shunting yard or used by another train. A rolling stock

composition describes the number of individual rolling stock units and in which order

they appear in a train. It is worth noting that rolling stock composition is considered as

a whole in the problem. The compositions are not split during the day. Trains that have

already passed their last scheduled stop before the blocked segment at the moment

when the disruption occurs are assumed to continue to run as planned. The rescheduling

start time 𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡 is set the same as 𝑡𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡 , and the rescheduling end time

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑒𝑛𝑑 is set for a fixed period, such as two hours after 𝑡𝑏𝑙𝑜𝑐𝑘_𝑒𝑛𝑑.

107

The rescheduling end time should be set later than the expected blockage end time so

that the infrastructure can restore a normal timetable. It is tricky to guarantee that

rolling stock is available at the recovery period's end. During the train service recovery

process, the rolling stock may be assigned to run different trains compared to the

original plan due to the disruption. The number of rolling stock composition at each

station may differ from the planned number. Rolling stock balance is introduced to

describe the difference between the actual number of rolling stock compositions and

the scheduled number of rolling stock compositions at the end of the recovery period at

each station. The rolling stock balance at each station should be zero to guarantee the

availability of rolling stock for the operations after the recovery period. Also, services

run by rolling stock at the rescheduling end time must be completed on time.

A rolling stock turning pattern is planned at each terminal station. It means that each

incoming train is matched with an outgoing train. Applying a designed turning pattern

can ease the task of local planning. Locally changing the turning pattern by matching an

incoming train to a different outgoing train can require shunting operations and needs

to be communicated and agreed upon with the local controllers. Thus, a penalty is added

to the objective if such changes to the planned rolling stock pattern happen. The

rescheduling timetable model proposed aims to minimise train cancellation and delays,

and violations of planned rolling stock circulation.

108

Overall, this section solves the timetable rescheduling problem at the macroscopic level.

It uses rescheduling strategies, including train cancellations and retiming, while

considering infrastructure capacity and rolling stock availability constraints to recover

train services for the whole process.

4.1.3. Event-activity Graph

The network model of trains running on the network is first introduced to formulate the

timetable rescheduling problem. An event-activity graph is used to model trains running

on a network. Each train runs from one terminal station to another, passing or stopping

at intermediate stations. Trains that are planned to run through the blockage site during

the blockage period should stop at a turnaround station before approaching the

blockage site. Rolling stock used by the trains can be used for other trains that depart

from the turnaround station. A turnaround station is defined as the last stop station

before approaching the blockage site, where there are the necessary tracks for trains to

change direction. The events and activities used in the event-activity graph are

described in what follows.

Event

There are three types of events: train departure events, train arrival events and

inventory events. A train departure/arrival event, denoted as 𝑒 , is one movement

record from a journey. It has attributes including station, time and the associated

service. The set of all such train departure/arrival events is denoted by 𝐸.

109

An inventory event at the station 𝑠, denoted 𝑖𝑠, represents the number of stationary

rolling stock compositions that can be used for services that depart from this station at

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡. It contains attributes like the station and the number of rolling stock

compositions. The set of all such inventory events is denoted by 𝐼.

Activity

There are five kinds of activities: train activities, headway activities, inventory activities,

circulation activities, and dummy activities.

Two consecutive train events from one train form a train activity. A train activity starting

with a train departure event and ending with a train arrival event represents a

movement from one station to another. A train activity starting with a train arrival event

and ending with a train departure event represents the train dwelling at a station. The

set of all train activities is denoted by 𝐴𝑡𝑟𝑎𝑖𝑛.

A headway activity is a period reserved between two train events to guarantee safe

running. The set of all headway activities is denoted by 𝐴ℎ𝑒𝑎𝑑. It models the minimum

safety time between two trains running on the same track or dwelling on the same

platform.

An inventory activity is connected by (1) an inventory event to a train departure event;

(2) a train arrival event to an inventory event. (1) means that services departing from a

110

terminal station can take stationary rolling stock in the station of the inventory event.

(2) means that rolling stock used for trains arriving at a terminal station can become

stationary in the station of the inventory event.

A circulation activity is formed by connecting a train arrival event to a train departure

event at turnaround or terminal stations. Note that circulation activities should be

created for two trains that are from different train groups. Each train group contains

trains that depart and end at the same station. Trains from the same group depart with

a specific frequency (for example, one train per hour) with exceptions during peak time.

The set of all turnaround activities is denoted by 𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡.

Dummy activities are created for trains that run over the disrupted area. For train v that

is scheduled to run over the disrupted area, let 𝑘 be the train 𝑣’s last stop before the

blockage site and let 𝑙 be the train’s first stop after the blockage site. Let 𝑒𝑘
𝑎𝑟𝑟 and

𝑒𝑙
𝑎𝑟𝑟denote the train arrival events at the station 𝑘, 𝑙 respectively. Let 𝑒𝑘

𝑑𝑒𝑝
 and 𝑒𝑙

𝑑𝑒𝑝
 ,

denote the train departure events at the station 𝑘, 𝑙 respectively. 𝑒𝑑𝑒𝑝 and 𝑒𝑎𝑟𝑟 are the

train departure and arrival events for the train 𝑣 from its first and last station. Thus, the

train 𝑣 can be partitioned into three trains, 𝑣𝛼, 𝑣𝛽 and 𝑣𝛾, where 𝑣𝛼 has events from

𝑒𝑑𝑒𝑝 to 𝑒𝑘
𝑎𝑟𝑟, 𝑣𝛽 has events from 𝑒𝑘

𝑑𝑒𝑝
 to 𝑒𝑙

𝑎𝑟𝑟 and 𝑣𝛾 has events from 𝑒𝑙
𝑑𝑒𝑝

 to 𝑒𝑎𝑟𝑟. A

dummy activity is created from 𝑒𝑘
𝑎𝑟𝑟 to 𝑒𝑘

𝑑𝑒𝑝
 and 𝑒𝑙

𝑎𝑟𝑟 to 𝑒𝑙
𝑑𝑒𝑝

. Note that a dummy

activity is not only created between trains 𝑣𝛼 and 𝑣𝛽, 𝑣𝛽and 𝑣𝛾 from the same train,

111

but also if 𝑣𝛼 and 𝑣𝛽, 𝑣𝛽and 𝑣𝛾are defined as parts of different trains but from the

same train group. The set of all dummy activities is denoted by 𝐴𝑑𝑢𝑚𝑚𝑦.

A train event 𝑒 ∈ 𝐸 has incoming activities and outgoing activities. Using 𝐴𝑖𝑛
𝑒 ={𝑎: 𝑎 is

an incoming activity for train event 𝑒} to denote incoming activities. Similarly, 𝐴𝑜𝑢𝑡
𝑒 ={𝑎:

𝑎 is an outgoing activity for a train event 𝑒}. Notations 𝐴𝑖𝑛
𝑖𝑠 and 𝐴𝑜𝑢𝑡

𝑖𝑠 are defined similarly

for inventory events 𝑖𝑠 at the station 𝑠. The essential elements used in an event-activity

graph to simulate trains running on a network are summarised in Table 8.

Table 8 Basic elements used in an event-activity graph

Parameters Explanation

𝑣 train 𝑣

𝑒 train event 𝑒

𝑖𝑠 inventory event 𝑖𝑠 at station 𝑠

𝑎 train / headway / inventory / circulation /

dummy activity 𝑎

112

The illustration of a simple event-activity graph on a double track line with two terminal

stations is given in Figure 13. It is worth noting that inventory events can be created for

any station if there is stationary rolling stock at the station between the rescheduling

start and end time.

Figure 13 Event-activity graph built for a complete blockage

In Figure 13, rectangles correspond to events. Train activities are shown with solid lines.

Dashed lines with single dots represent headway activities. Inventory activities are

dashed lines with double dots. Dashed lines show rolling stock circulation activities.

Dummy activities are shown with dotted lines. The shaded rectangle indicates the

blockage site.

4.1.4. Model

For train event e, an integer variable 𝑥𝑒 is introduced. 𝑥𝑒 represents the replanned

occurrence time of the train event 𝑒 and takes an integer value that regulates the train

event time to minutes. For train v, let 𝑦𝑣 be 1 if a train 𝑣 is cancelled and 0 otherwise.

For each activity a, let 𝑧𝑎 be 1 if the activity 𝑎 is cancelled; 0 otherwise. Here 𝑎 can be

113

any of the activity types mentioned above. The variables used to formulate a timetable

rescheduling model are listed in Table 9.

Table 9 Variables used in a timetable rescheduling model

variable Explanation

𝑥𝑒 the occurrence time of train event e

𝑦𝑣 It takes 1 if train v is cancelled, 0 otherwise

𝑧𝑎 It takes 1 if train / headway / inventory /

circulation / dummy activity a is cancelled, 0

otherwise

Constraints

(a) Event time constraints

Trains should depart and arrive at a given time. The event 𝑒, 𝑡𝑒 is the planned event

occurrence time. A train should not be replanned more than 𝑡𝑑𝑒𝑙𝑎𝑦 minutes later than

initially scheduled, a fixed number set by controllers, or depart earlier than planned.

 𝑡𝑑𝑒𝑙𝑎𝑦 ≥ 𝑥𝑒 − 𝑡𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 (4.1.1)

(b) Duration constraints

114

Notation |𝑎| is used to show the length of an activity 𝑎. Generally, it can take different

values depending on 𝑎. For train activity 𝑎, the planned duration |𝑎| can be obtained

from the timetable; the value |𝑎| should be at least the same as the scheduled train

activity duration, see constraint (4.1.2) below. However, for headway, inventory,

circulation and dummy activities 𝑎, |𝑎| depends only on the type of the activity and has

a fixed value. For headway, inventory, circulation and dummy activities, 𝑎 = (𝑒, 𝑓). If

the activity is cancelled (𝑧𝑎 = 1), there is no constraint on the occurrence time of events

𝑒 and 𝑓 . However, if the activity is taken (𝑧𝑎 = 0), the two events take place. The

occurrence time of the event 𝑓 should be later than the occurrence time of the event 𝑒

plus |𝑎|: see constraint (4.1.3). 𝑀 stands for a big enough constant number, which

guarantees that constraint (4.1.3) holds if 𝑧𝑎 = 1.

 𝑥𝑓 − 𝑥𝑒 ≥ |𝑎| ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴𝑡𝑟𝑎𝑖𝑛 (4.1.2)

 𝑥𝑓 − 𝑥𝑒 + 𝑀𝑧𝑎 ≥ |𝑎| ∀𝑎 = (𝑒, 𝑓)

∈ 𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡 ∪ 𝐴𝑖𝑛𝑣 ∪ 𝐴𝑑𝑢𝑚

(4.1.3)

(c) Headway constraints

To formulate headway constraints, for each headway activity 𝑎 = (𝑒, 𝑓), variables 𝜆𝑒𝑓

and 𝜆𝑓𝑒 are introduced. Variable 𝜆𝑒𝑓 is defined as taking 1 if the event 𝑒 happens before

𝑓 and 0 otherwise. Similarly, 𝜆𝑓𝑒 takes 1 if the event 𝑓 happens before 𝑒 and 0

otherwise. Let 𝑣𝑒 denote the train which contains the train event 𝑒 and 𝑣𝑓 denote the

train which includes the train event 𝑓. If an event 𝑒 happens before 𝑓, 𝑓 can only occur

after 𝑒 plus the minimum headway time |𝑎|: see constraint (4.1.4). Suppose an event 𝑓

115

happens before the event e, the event 𝑒 can only occur after the event 𝑓 plus minimum

headway time |𝑎|; see constraint (4.1.5). If neither train 𝑣𝑒 and 𝑣𝑓 is cancelled, 𝜆𝑒𝑓 or

𝜆𝑓𝑒 should take 1: see constraint (4.1.6).

 𝑥𝑓 − 𝑥𝑒 + 𝑀൫1 − 𝜆𝑒𝑓൯ ≥ |𝑎| ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.4)

 𝑥𝑒 − 𝑥𝑓 + 𝑀൫1 − 𝜆𝑓𝑒൯ ≥ |𝑎| ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.5)

 𝜆𝑒𝑓 + 𝜆𝑓𝑒 + 𝑦𝑣𝑒
+ 𝑦𝑣𝑓

≥ 1 ∀𝑎 = (𝑒, 𝑓) ∈ 𝐴ℎ𝑒𝑎𝑑 (4.1.6)

(d) Inventory constraints

The number of stationary rolling stock compositions at the station limits the number of

inventory activities taken at a station.

 ∑ (1 − 𝑧𝑎)

𝑎∈𝐴𝑜𝑢𝑡
𝑖𝑠

≤ 𝑛𝑠 ∀𝑖𝑠 ∈ 𝐼 (4.1.7)

(e) Rolling stock circulation constraints

When the train 𝑣𝑒 arrives at a terminal or a turnaround station 𝑠, its rolling stock may

be used for another train 𝑣𝑓 or become stationary at this station. For the train 𝑣𝑒 to

depart from 𝑠 , it should have one rolling stock composition to support its service.

Otherwise, it should be cancelled. This rolling stock can come from another train 𝑣𝑓 or

rolling stock stationary at station s. Denoting by 𝐸𝑠
𝑎𝑟𝑟 the set of all train arrival events at

a station 𝑠 and by 𝐸𝑠
𝑑𝑒𝑝

 the set of all train departure events from a station 𝑠 , the

following constraints are obtained:

116

 ∑ (1 − 𝑧𝑎)

𝑎=(𝑒,𝑓)∈𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡∪𝐴𝑖𝑛𝑣∪𝐴𝑑𝑢𝑚

= 1 − 𝑦𝑣𝑒
 ∀𝑒 ∈ 𝐸𝑠

𝑎𝑟𝑟 (4.1.8)

 ∑ (1 − 𝑧𝑎)

𝑎=(𝑓,𝑒)∈𝐴𝑐𝑖𝑟𝑐𝑢𝑖𝑡∪𝐴𝑖𝑛𝑣∪𝐴𝑑𝑢𝑚

= 1 − 𝑦𝑣𝑒
 ∀𝑒 ∈ 𝐸𝑠

𝑑𝑒𝑝
 (4.1.9)

Equation (4.1.8) means that for the train associated with the train event 𝑒 arriving at the

station 𝑠, its rolling stock can be used for another train when a rolling stock circulation

or dummy activity is taken, or its rolling stock can become stationary when an inventory

activity is taken. Equation (4.1.9) means that the train associated with the train event 𝑒

departing from the station 𝑠 can obtain its rolling stock from another train when a rolling

stock circulation or dummy activity is taken, or rolling stock is stationary when an

inventory activity is taken.

(f) Cancelling trains during blockage constraints

The set of trains planned to pass the blockage site during the blockage period is denoted

by 𝑉𝑏𝑙𝑜𝑐𝑘. Each train 𝑣 in 𝑉𝑏𝑙𝑜𝑐𝑘 should be cancelled, that is:

 𝑦𝑣 = 1 ∀ 𝑣 ∈ 𝑉𝑏𝑙𝑜𝑐𝑘 (4.1.10)

(g) Departed trains cannot be cancelled.

A train that has already departed when rescheduling starts, that is 𝑒𝑑𝑒𝑝 ≤

𝑡𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡 , cannot be cancelled. 𝑉𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑝 stands for the set of such trains.

 𝑦𝑣 = 0 ∀𝑣 ∈ 𝑉𝑒𝑎𝑟𝑙𝑦_𝑑𝑒𝑝 (4.1.11)

(h) Rolling stock balance and timetable recovery

117

Rolling stock balance means that at the end of the rescheduling period, the number of

rolling stock compositions at stations should be the same as the required number from

the initial timetable. Rolling stock balance guarantees enough rolling stock compositions

at each station to run a timetable for the remainder of the day after rescheduling ends.

It implies that operations can return to the normal level, and a regular timetable can be

recovered. Let 𝑚𝑠 be the required number of rolling stock compositions at station s.

 ∑ (1 − 𝑧𝑎)

𝑎∈𝐴𝑖𝑛
𝑖𝑠

= 𝑚𝑠 ∀𝑖𝑠 ∈ 𝐼 (4.1.12)

The left part of the equation (4.1.12) means that the trains arriving at station s and their

rolling stock remain stationary. The accumulated number of such rolling stock should

equal the number required at this station to perform a regular timetable after the

rescheduling end time. Note that if trains are cancelled in “pairs”, the rolling stock

composition is balanced. The term “cancelled in pairs”, means that the number of trains

cancelled in both directions is equal between any two stations.

Objective

As discussed before, keeping the planned rolling stock circulation patterns is preferred,

which can reduce unnecessary shunting operations. In the objective, a penalty is

imposed for circulation, inventory and dummy activities if they violate the planned

circulation patterns. 𝐴𝑤𝑝 is the set of circulation, inventory and dummy activities that

contravene the planned circulation patterns. The objective function for the timetable

rescheduling problem is the sum of weighted costs of train cancellations, delays and

unplanned rolling stock circulations. Variables 𝛼, 𝛽 are the weights for cancellation and

118

delay, respectively. Variable 𝛾𝑎 is the weight for choosing an activity that violates the

rolling stock circulation pattern and depends on the activity type. Thus, the model for

the timetable rescheduling problem during a complete blockage is:

𝑚𝑖𝑛 ∑ 𝛼𝑦𝑣

𝑣∈𝑉

+ ∑ 𝛽(𝑥𝑒 − 𝑡𝑒)

𝑒∈𝐸

+ ∑ 𝛾𝑎(1 − 𝑧𝑎)

𝑎∈𝐴𝑤𝑝

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (4.1.1) − (4.1.12)

4.1.5. an Illustrative Example

Figure 14 shows an example of timetable rescheduling in case of a one-hour blockage.

Trains are running between stations S1 and S4. A one-hour stoppage (11:00-12:00)

appears between S2 and S2B. Trains from both directions short turn at S2 and S2B,

respectively. The grey shaded area between S2 and S2B is the blockage site. Four trains

are disrupted due to the blockage, and they can be rescheduled as the arrow shows.

Since the rescheduling does not affect other trains at a macro level, operations can

return to normal at 12:30.

119

Figure 14 Timetable rescheduling in case of one-hour complete blockage

4.1.6. Experimental Tests

Experiments are carried out using one TOC network in Great Britain. Compared to many

European countries, a non-cyclic timetable is used in Great Britain. Extra trains are

added on some lines during a day’s operations. Thus, a blockage with the same duration

may affect trains differently if it occurs at different times on a day. Also, the same

rescheduling solution may not be feasible to implement for the same blockage occurring

at different times. Thus, a blockage with the same duration occurring at different times

of a day is tested. The disruption site is set on its busiest line, which runs between

Stations S1 and S2 with 15 trains running from S1 to S4 stopping at S2 hourly and 16

trains running from S4 to S1 stopping at S2 hourly. 18 trains running from S1 to S2 hourly

120

and 16 trains running from S2 to S1 hourly. Most of them depart from the terminal

station at the same minutes past each hour with a few exceptions. There are 2 extra

trains running from S1 to S3 during afternoon peak time and 1 extra train running from

S3 to S1 in the early morning. 1 extra train runs from S2 to S1 during morning peak time

and in the evening. 4 trains run from S3 to S4 in the early morning and 3 trains run from

S4 to S3 at late night. The trains running on the line are shown in Figure 15.

Figure 15 Trains running on the busiest line of a TOC in Great Britain

Trains Considered in the Model

Directly and potentially affected trains by the disruption during the recovery period are

selected to build the timetable rescheduling model. Directly affected trains are trains

that run over the blockage area and need to turn around at a station due to the blockage

during the blockage period. Trains scheduled to run during the recovery period and use

the same rolling stock used by the directly affected trains are potentially affected trains.

121

Experimental Set up

After studying the planned timetable and discussing with controllers, in the tests, the

period for circulation activities is set as 5 minutes. The headway, dummy, and inventory

activities period is set as 2 minutes. The cancellation weight 𝛼 is set as 1000, and the

delay weight 𝛽 is 1. For penalising an inventory or dummy activity which violates the

rolling stock pattern, 𝛾𝑎 is set as 10. For penalising a rolling stock circulation activity

which infringes the rolling stock pattern, 𝛾𝑎 is set as 50. A rolling stock circulation activity

violation has a higher cost due to our experience during experimental tests. It is noticed

that in a station where the inventory event exists, keeping the rolling stock turning

pattern is prioritised over using spare stationary rolling stock. The model is solved with

CPLEX V12.10.0 on a computer with 16 GB RAM and 1.99GHz. The main aim of the

experiments is to test if the model and solver can solve line blockage problems. Also,

two extra questions need to be answered: how a longer turnaround time affects

solutions and how the maximum allowed delay time affects solutions. As shown in

Figure 15, most trains run on the line with a fixed one-hour period between them.

However, extra trains run on the line during morning and afternoon peak times. Thus,

the same delay time and turnaround setting may affect trains differently at different

times in a day. During busy times, more trains may need to be delayed or cancelled for

the same delay time or turnaround time.

14 blockage (from 6 am to 7 pm) scenarios on the line between S1 and S4 are tested.

The blockage site is at a station between S1 and S2. Trains approaching from both sides

122

short turn before approaching the blockage site. For each test, the blockage period is

set as 3 hours, and the recovery period is set as 5 hours. For each scenario, a model is

built as in Section 4.1.4. The results of 14 scenarios are shown in Tables 10 and 11 with

the different turnaround time settings. A blockage id identifies each scenario. NT stands

for the number of trains considered in the model. TC stands for the number of cancelled

trains, and TD stands for the number of delayed trains. The experimental tests are

conducted in two categories: In one category, the maximum delay 𝑡𝑑𝑒𝑙𝑎𝑦 is set as 10,

and 20 in another.

Experimental Tests 1

Table 10 Timetable rescheduling with the turnaround time (5 minutes) at blockage

sites

Scenarios 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 𝑡𝑑𝑒𝑙𝑎𝑦 = 20

Id Blockage time NT TC TD Objective TC TD Objective

AA_06 06:00-09:00 76 10 0 10400 10 0 10400

AA_07 07:00-10:00 73 14 0 14400 12 2 12490

AA_08 08:00-11:00 78 18 0 18450 16 4 16584

AA_09 09:00-12:00 78 18 0 18450 16 4 16578

AA_10 10:00-13:00 78 18 0 18450 16 4 16592

123

AA_11 11:00-14:00 78 18 0 18450 16 4 16578

AA_12 12:00-15:00 78 18 0 18450 16 4 16594

AA_13 13:00-16:00 82 18 0 18450 16 4 16578

AA_14 14:00-17:00 81 22 1 22606 20 5 20784

AA_15 15:00-20:00 88 20 2 20710 18 6 18872

AA_16 16:00-19:00 88 15 5 15638 15 5 15638

AA_17 17:00-22:00 80 17 1 17726 17 1 17726

AA_18 18:00-21:00 76 18 1 18454 16 5 16570

AA_19 19:00-22:00 64 12 1 12514 12 1 12514

The results for timetable rescheduling with a smaller turnaround time (5 minutes) at a

turnaround station are shown in Table 10. Each scenario is solved within 2 seconds.

Table 10 shows that 64 to 88 trains are considered in the problem scenarios. Overall,

the 14 scenarios can be further grouped into (AA_06 - AA_07), (AA_08 - AA_12), (AA_13

- AA_17) and (AA_18 - AA_19) based on the number of trains involved in each group.

Fewer trains are considered in the early morning (76 trains for scenario AA_06 and 73

trains for scenario AA_07). The number of trains considered in models for AA_08 -

124

AA_12 is constant at 78. The number of trains considered in models for AA_13 - AA_17

is higher (80-88). For the last two scenarios (AA_18 - AA_19), fewer trains are considered

in the models (76,64).

When 𝑡𝑑𝑒𝑙𝑎𝑦 is set as both 10 or 20, the maximum and minimum values of the objective

are obtained for the scenarios starting at 14:00 and 06:00, respectively. When 𝑡𝑑𝑒𝑙𝑎𝑦 =

10, the maximum and minimum objectives are 22606 and 10400, respectively. When

𝑡𝑑𝑒𝑙𝑎𝑦 = 20, the maximum and minimum values of the objective are 20784 and 10400,

respectively. When 𝑡𝑑𝑒𝑙𝑎𝑦 = 10, the scenario starting at 16:00 has the most significant

number of delayed trains, 5. When 𝑡𝑑𝑒𝑙𝑎𝑦 = 20, the scenario starting at 15:00 has the

most significant number of delayed trains, 6. Compared to the maximum delay set as

10, more trains are delayed in some scenarios (AA_07 - AA_15 and AA_18) when the

maximum delay is set as 20. In exchange, fewer trains are cancelled. Solutions have

lower or equal cost when the maximum delay is 20.

For the blockage starting at 06:00, no trains are required to be delayed, and 10 trains

are cancelled when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 or 20. For the blockage scenario starting at 07:00, 14

trains are cancelled when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 while 12 trains are cancelled, and two trains are

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 20.

125

For the blockage from 08:00 to 13:00, 18 trains must be cancelled, and no train is

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10. Fewer trains (16) are cancelled, and more trains (4) are

delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10.

For the blockages starting in the afternoon (14:00 - 17:00), between 15 and 22 trains are

cancelled, and between 1 and 5 trains are delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10. With 𝑡𝑑𝑒𝑎𝑙𝑦 = 20,

there are between 15 and 20 cancelled trains and between 1 and 6 delayed trains.

For the last two scenarios, when the blockage starts at 18:00, 18 trains are cancelled,

and one train is delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 10, compared to 16 trains that are cancelled and

five trains delayed when 𝑡𝑑𝑒𝑙𝑎𝑦 = 20. When the blockage starts at 19:00, there are 12

train cancellations and one train delay for both 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 or 20.

Experimental Tests 2

Table 11 Timetable rescheduling with the significant turnaround time (15 minutes) at

blockage sites

Scenario 𝑡𝑑𝑒𝑙𝑎𝑦 = 10 𝑡𝑑𝑒𝑙𝑎𝑦 = 20

Id Blockage time NT TC TD Objective TC TD Objective

AA_06 06:00-09:00 76 10 2 10420 10 2 10420

AA_07 07:00-10:00 73 14 2 14420 14 2 14420

126

AA_08 08:00-11:00 78 18 0 18450 18 0 18450

AA_09 09:00-12:00 78 18 0 18450 18 0 18450

AA_10 10:00-13:00 78 18 0 18450 18 0 18450

AA_11 11:00-14:00 78 18 0 18450 18 0 18450

AA_12 12:00-15:00 78 18 0 18450 18 0 18450

AA_13 13:00-16:00 82 18 0 18450 18 0 18450

AA_14 14:00-17:00 81 22 2 22678 22 3 22638

AA_15 15:00-20:00 88 20 4 20794 20 4 20794

AA_16 16:00-19:00 88 19 4 19532 17 6 17616

AA_17 17:00-22:00 80 20 1 20618 18 5 18780

AA_18 18:00-21:00 76 18 1 18454 18 1 18454

AA_19 19:00-22:00 64 12 1 12514 12 1 12514

When a longer turnaround time is required at a turnaround station (15 minutes), the

rescheduling results are shown in Table 11. Compared to the results obtained in Table

10 with a lower turnaround time (5 minutes), more trains are required to be cancelled,

no matter if the maximum delay is set as 10 or 20 minutes. Also, the solution costs are

127

higher than in the scenarios solved with a shorter turnaround time. A more considerable

delay time can decrease the number of cancelled trains and improve the solution cost.

However, train cancellation may be opted for if the delay causes the next train to catch

up.

In conclusion, a longer maximum delay can decrease the number of cancelled trains and

lead to better solutions. There is a trade-off between delays and cancellations. Some

trains can be delayed rather than cancelled when the maximum delay time is extended.

Also, a longer turnaround time at the turnaround stations can cause more trains to be

cancelled and delayed, leading to worse results. Since the model is guaranteed to return

to normal operations after rescheduling time, delays and cancellations will not affect

trains outside the recovery period.

4.1.7. Conclusion

In this section, a model is proposed for the timetable rescheduling problem in case of a

complete blockage. It gives a revised timetable which covers the three phases of a train

service recovery process: the transition phase, degraded operation phase and recovery

phase. The railway network is not assumed empty when rescheduling starts. The railway

services are planned to return to their normal level when rescheduling ends. The model

uses rescheduling strategies of cancellation and retiming and considers constraints,

including infrastructure, rolling stock availability, and rolling stock balance. It minimises

train cancellations, delays and changes to rolling stock circulation patterns. A solution

that requires changes to the current rolling stock circulation patterns without

128

decreasing cancellations and delays is not preferred. It has been successfully tested on

14 scenarios of a complete blockage on a double-tracked line using actual data from a

TOC in Great Britain. Timetable rescheduling is the first step in railway disruption

management. In Section 4.4, the crew rescheduling, is explained.

4.2. Optimisation Problems

In this section, some basic mathematical programming concepts are presented, which

will be used in the remainder of the thesis.

4.2.1. Linear Programming, Duality and Reduced Cost

Linear programming is to optimise objective function linear in terms of decision

variables while a set of linear constraints and sign restrictions are imposed on these

decision variables, see (Kantorovich, 1939), (Fang & Puthenpura., 1993) and (Dantzig &

Thapa., 2003). Consider a linear programming problem in standard form:

 𝑚𝑖𝑛 𝑐𝑇𝑥 𝐿𝑃

 𝐴𝑥 = 𝑏

 𝑥 ≥ 0

Here 𝐴 ∈ 𝑅𝑚×𝑛, 𝑐, 𝑥 ∈ 𝑅𝑛and 𝑏 ∈ 𝑅𝑚

The dual of the above 𝐿𝑃 is:

 𝑚𝑎𝑥 𝑏𝑇𝜋 𝐷𝑃

129

 𝐴𝑇𝜋 ≤ 𝑐, 𝑤ℎ𝑒𝑟𝑒 𝜋 ∈ 𝑅𝑚

Theorem 1 Strong Duality: If the LP problem has an optimal solution, then so does

its dual and their optimal values are equal.

The reduced cost vector is defined as 𝑐 − 𝐴𝑇𝜋, with each element corresponding to a

variable 𝑥. For a minimisation problem, a negative reduced cost associated with the

corresponding variable component 𝑥𝑖 can be used to construct a better solution for the

LP problem.

4.2.2. Integer Programming and Lagrangian Relaxation

A standard integer linear problem (𝐼𝐿𝑃) is stated as follows.

 𝑚𝑖𝑛
𝑥

𝑐𝑥 (𝐼𝐿𝑃)

 𝐴𝑥 ≥ 𝑏

 𝐵𝑥 = 𝑑

 𝑥 ≥ 0

 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑖 ∈ 𝐼

Where 𝑏, 𝑐 and 𝑑 are vectors, 𝐴 and 𝐵 are matrices of conformable dimensions and the

index set 𝐼 denotes the variables required to be an integer. The theory of Lagrangian

relaxation for integer programming is explored in (Geoffrion, 1974).

130

Lagrangian relaxation is a technique to relax some constraints in an optimisation

problem. The idea is to remove the constraint and add a penalty in the objective function

to penalise any solution that violates the constraint. Thus, a Lagrangian Relaxation

Problem (𝐿𝑅𝑃) can be obtained by bringing the explicit constraints into the objective

function multiplied by the associated Lagrangian multiplier vector 𝜆. For example, a 𝐿𝑅𝑃

for a given 𝜆 can be formulated as follows:

 𝐿(𝜆) = 𝑚𝑖𝑛
𝑥

𝑐(𝑥) + 𝜆(𝑏 − 𝐴𝑥) (𝐿𝑅𝑃)

 𝑠. 𝑡. 𝐵𝑥 = 𝑑

 𝑥 ≥ 0

 𝑥𝑗 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 ∈ 𝐼

For any given 𝜆 ≥ 0, 𝐿(𝜆) is the lower bound of the optimal value of the 𝐼𝐿𝑃.

Theorem 2 Let 𝑣(𝐿𝑅𝑃) be the optimal value of 𝐿𝑅𝑃 and 𝑣(𝐼𝐿𝑃) is the optimal

value of 𝐼𝐿𝑃, 𝑣(𝐿𝑅𝑃) ≤ 𝑣(𝐼𝐿𝑃) .

Proof:

Assuming 𝑥∗ is an optimal solution to the Problem (𝐼𝐿𝑃) and 𝜆 ≥ 0, then 𝜆(𝑏 − 𝐴𝑥∗) ≤

0

𝑣(𝐿𝑅𝑃) ≤ 𝑐𝑥∗ + 𝜆(𝑏 − 𝐴𝑥∗) ≤ 𝑣(𝐼𝐿𝑃)

Also, since the constraints in the 𝐼𝐿𝑃 are taken into the objective in Lagrangian

relaxation, the feasible set of the 𝐼𝐿𝑃 is a subset of the feasible set of the Lagrangian

131

relaxation. Thus, for the 𝐼𝐿𝑃 , the optimal value of the corresponding Lagrangian

relaxation (𝐿𝑅𝑃) is lower than or equal to the optimal value of 𝐼𝐿𝑃.

Lagrangian dual problem

Since 𝐿(𝜆) can provide a lower bound for a given 𝐼𝐿𝑃, it is more interesting to obtain

the best lower bound. Taking the maximum of the Lagrangian relaxation gives the

following Lagrangian dual problem (LDP):

𝑚𝑎𝑥{𝐿(𝜆)} = 𝑚𝑎𝑥
𝜆

{𝑚𝑖𝑛
𝑥

{(𝑐𝑥 + 𝜆(𝑏 − 𝐴𝑥) : 𝐵𝑥 = 𝑑, 𝑥 ≥ 0, 𝑥𝑖 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 ∈ 𝐼}}

To solve the Lagrangian dual problem, the subgradient method is used. Lagrangian and

linear relaxation can provide a lower bound to the ILP problem; the relation between

these lower bounds in Theorem 3 can be found in (Geoffrion, 1974). A linear relaxation

of the integer program is the problem with the same objective and the same constraints

except for the integrality restrictions, which are removed.

Theorem 3 Let ILP be an integer linear program. Then the optimal value achieved

by the Lagrangian relaxation of ILP is greater than or equal to the

optimal value achieved by the linear relaxation of ILP.

4.2.3. Set Covering Problem

The minimum set covering problem can be formulated as the following integer linear

program.

𝑚𝑖𝑛 ∑ 𝑥𝑗

𝑛

𝑗=1

132

 𝐴𝑥 ≥ 1

𝑥 ∈ {0,1}𝑛

Here 𝐴 is a 𝑚 × 𝑛 matrix, 𝑎𝑖𝑗 ∈ {0,1} . The set covering problem is NP-hard of

combinatorial optimisation. Given a collection of elements, the set covering problem

aims to find the minimum number of sets that incorporate (cover) all of these elements

(Grossman & Wool, 1997). Many problems in industry can be formulated as set covering

problems, for example, job-machine problems, scheduling problems, and picking up the

best locations to cover the maximum number of customers. Crew rescheduling can be

formulated using a variety of set covering problems.

4.3. Optimisation Techniques

The following mathematical techniques are used in the algorithm to solve the crew

rescheduling problem for significant disruptions. Before presenting the algorithm, a

general description of these mathematical techniques is provided.

4.3.1. Column Generation

In large linear programs with many more variables than the number of constraints, it is

usually impossible to consider all the variables explicitly. Also, only a small subset of

variables will likely be used in the optimal solution, and most of the variables will be

assigned to 0. Based on this idea, column generation was first proposed by (Ford Jr &

Fulkerson, 1958).

133

The linear program is formulated as two parts, restricted master problem (RMP) and

subproblem. RMP has a subset of variables, and its objective function is the same as that

of the linear problem, where only these variables are nonzero. The subproblem is to find

a new variable of negative reduced cost for minimisation problems using the current

dual values that are generated from the RMP and bring it to the variable pool of RMP.

Usually, the subproblem is referred to as a pricing problem. A general column generation

scheme can be seen in Algorithm 3.

Algorithm 3 Column generation scheme

Various column generation strategies can be designed to improve speed. In every

iteration of the subproblem, more than one new variable with a negative reduced cost

can be added to the RMP. It will increase the time required for one iteration since RMP

needs to solve a bigger scale problem, but it may decrease the number of iterations. The

reader is referred to (Vanderbeck, 1994) for the ways to choose a ``good'' subset of

columns.

4.3.2. Subgradient Method

For solving the crew rescheduling problem (see Section 4.4), the Lagrangian dual

problem is created for the crew rescheduling model. The subgradient method is

134

commonly used to solve a Lagrangian dual problem. The subgradient method is an

iterative algorithm for obtaining the optimal value of non-differentiable convex

minimisation problems. Shor first developed it in his book (Shor, 1985). Compared to

the gradient used in the steepest descent method, the subgradient does not require a

function to be differentiable, so it always exists for a convex or concave function.

Definition A function 𝑓: 𝐷 → ℛ is convex if its domain D is a convex set and for all

𝑥, 𝑦 in its domain, and all 𝜆 ∈ [0,1], it satisfies 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤

𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦). A function 𝑓 is concave if −𝑓 is convex.

Consider a problem for convex 𝑓:

𝑚𝑖𝑛 𝑓(𝑥)

To minimise 𝑓, the subgradient method uses the iteration

𝑥𝑘+1 = 𝑥𝑘 − 𝛥𝑘𝑔𝑘 ,

where 𝑥𝑘 is the value of 𝑥 at 𝑘𝑡ℎ iteration. The variable 𝑔𝑘 is a subgradient vector and

𝛥𝑘 is the step size at the 𝑘𝑡ℎ iteration. Since the subgradient method does not have the

descent property of the gradient method, it is necessary to track the best result 𝑓𝑏𝑒𝑠𝑡
𝑘 so

far in every iteration 𝑘, 𝑓𝑏𝑒𝑠𝑡
𝑘 = 𝑚𝑖𝑛{𝑓𝑏𝑒𝑠𝑡

𝑘−1, 𝑓(𝑥𝑘)} for all 𝑘.

4.3.3. Shortest Path Problems with Resource Constraints

The shortest path problem with resource constraints (SPPRC) is widely used as a

subproblem to contribute to the success of the column generation method. It

constitutes a flexible tool to model complex cost structures and a wide variety of rules

that define the feasibility of a path. It was introduced by (Desrochers, 1986) in his PhD

135

thesis as a subproblem of a bus driver scheduling problem. Solving SPPRC means finding

the shortest path among all feasible paths that start from a source node and end at a

sink node. Several varieties of SPPRC are studied in literature and can be classified by

resource accumulation ways, additional path structural constraints, objective and

underlying network. Readers are referred to (Irnich & Desaulniers, 2005) to read the

detailed descriptions of various SPPRC problems.

In this work, SPPRC is considered on an acyclic graph where paths are all elementary

paths, in which all nodes are pairwise different. A digraph 𝐺 = (𝑉, 𝐴) is defined, where

𝑉 and 𝐴 are the set of nodes and arcs, respectively. A path 𝑃 = (𝑣0, 𝑣1, … 𝑣𝑝) is a finite

sequence of nodes where each node pair (𝑣𝑖 , 𝑣𝑖+1), 𝑖 = 0, … , 𝑝 − 1 is connected by an

arc 𝑎 ∈ 𝐴. 𝑣(𝑃) = 𝑣𝑝 is the end node of the path 𝑃. A resource extension function is

defined for every arc in a graph and every resource. Let 𝑘 be the number of resources;

a vector 𝑇𝑖 = ൫𝑇𝑖
1, … , 𝑇𝑖

𝑘൯ ∈ 𝑅𝑘 is called the resource vector corresponding to the node

𝑖. A non-decreasing resource extension function (REF) is of the form: 𝑓𝑖𝑖+1
𝑘 = 𝑓𝑖−1𝑖

𝑘 +

𝑡𝑖𝑖+1
𝑘 . A path 𝑃 = (𝑣0, 𝑣1, … 𝑣𝑝) is feasible if there exist 𝑇𝑖 for all positions 𝑖 = 0, … , 𝑝 −

1 such that 𝑓𝑣𝑖,𝑣𝑖+1
≤ 𝑇𝑖+1.

Finding a recovery diagram is solved as SPPRC in the crew rescheduling problem. The

application of SPPRC in solving the crew rescheduling problem is explained in Section

4.4.3.

136

4.4. Crew Rescheduling Problem

Crew rescheduling is the next important step in railway disruption management,

following timetable and rolling stock rescheduling. As the introduction (Chapter 1)

explains, a driver’s daily work is regulated as a diagram. When a disruption happens,

some drivers’ diagrams become infeasible, which means the drivers cannot follow them.

Thus, each driver whose diagram is affected by a disruption should be assigned a

recovery diagram. The definitions for a commencing activity and a terminating activity

used in DFSCR for minor disruptions are given in Section 3.1.2. Here the definitions for

these two terms are modified for crew rescheduling in significant disruptions.

A commencing activity is set as the activity that a driver is performing or just finished

performing when rescheduling starts. A terminating activity is set as the activity that a

driver will perform when rescheduling ends. Between the commencing and terminating

activities, a recovery diagram has different tasks than the planned diagram. However, a

recovery diagram has the same activities from the sign-on to the commencing activity

as a planned diagram. The reason is that when a disruption happens, these activities

already happened. A recovery diagram has the same activities from terminating activity

to the sign-off as in the planned diagram because a recovery diagram is supposed to be

recovered back to the scheduled diagram. The main goal of the crew rescheduling

problem is to reschedule crew to cover the train services in a revised timetable as much

as possible with changes to planned crew diagrams as little as possible.

137

The work in this section is based on (Potthoff, 2010) following the idea of applying

Lagrangian relaxation to the same crew rescheduling problem and using a greedy

algorithm to solve a crew rescheduling model. In (Potthoff, 2010)’s work, it is not clear

how a recovery diagram is found by solving SPPRC to optimality since SPPRC is an NP-

hard problem and it is not explained in (Potthoff, 2010) how they solve it. In this section,

we give a general scheme to solve SPPRC. However, in some of the scenarios we tested,

solving SPPRC to optimality using this general scheme takes too long time (more than

500 seconds), which makes the method not suitable to be used in real-time. Then we

proposed three search methods to speed up the process. Later, how these three search

methods affect solutions is compared and analysed. A disruption neighbourhood is

proposed to limit the problem size. The method for building an initial disruption

neighbourhood and expanding a disruption neighbourhood is described. Also, (Potthoff,

2010) did not elaborate on various connection types and described only the basic ones.

This section gives detailed algorithms to construct different connection types between

two tasks. These connection types and their costs are essential in building recovery

diagrams that are very close to the diagrams used in practice and calculating recovery

diagram costs. Such recovery diagrams are easier to be accepted by drivers.

The model for the crew rescheduling problem for significant disruption is first given in

Section 4.4.1. Then how to construct the graph to show the tasks considered in a crew

rescheduling model and their connections are explained in Section 4.4.2. A recovery

diagram can be found as SPPRC using the graph constructed, which is explained in

Section 4.4.3. Using this basic knowledge, the method LRCG for solving the crew

138

rescheduling model is given in Section 4.4.4. Then a didactic example is given to

demonstrate the model and method in Section 4.4.5. Several examples using actual data

are presented and analysed in Sections 4.4.6 and 4.4.7.

4.4.1. Problem Description and Model

The crew rescheduling problem (CRP) can be mathematically modelled as follows. An

idea, the disruption neighbourhood is introduced to help build the model for CRP. A

disruption neighbourhood is used to select drivers that should be considered in the

rescheduling problem. How to construct a disruption neighbourhood is explained in

Section 4.4.5. For now, let 𝐷 be the set of all drivers in a disruption neighbourhood. For

each driver 𝑑 ∈ 𝐷 , a recovery diagram 𝑟 should be generated and assigned to this

driver. The set of recovery diagrams for the driver 𝑑 is denoted by 𝑅𝑑. If the recovery

diagram 𝑟 of the driver 𝑑 covers a driving task 𝑡 , then 𝑎𝑡𝑟
𝑑 is 1 , 0 otherwise. Binary

variables 𝑥𝑟
𝑑 and 𝑓𝑡 are introduced. 𝑥𝑟

𝑑 equals 1 if recovery diagram 𝑟 is chosen for the

driver 𝑑, 0 otherwise. 𝑓𝑡 equals 1 if driving task 𝑡 is not covered, 0 otherwise. The crew

rescheduling problem can be modelled as below:

 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑟
𝑑𝑥𝑟

𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

+ ∑ 𝑝𝑓𝑡

𝑡∈𝑇

 CRP

 ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 + 𝑓𝑡 ≥ 1, ∀𝑡 ∈ 𝑇

 ∑ 𝑥𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷

139

 𝑥𝑟
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑟 ∈ 𝑅𝑑 𝑎𝑛𝑑 𝑓𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇

Let 𝑐𝑟
𝑑 be the cost of a recovery diagram and 𝑝 be the penalty for task cancellation. The

objective of CRP is to minimise the cost of the selected recovery diagrams and task

cancellations. The first type of constraint means that each task should be covered at

least by a recovery diagram or cancelled. The second type of constraint means that each

driver should be assigned a recovery diagram.

4.4.2. The Graph used to find Recovery Diagrams

To build a model for CRP, recovery diagrams should be generated. Recovery diagrams

can be generated by solving SPPRC. This section introduces the graph used to solve

SPPRC.

A directed graph 𝒢 = (𝒩, 𝒜) is built to find recovery diagrams of all drivers. 𝒩 denotes

the nodes representing all driving tasks, commencing activity and terminating activity

for each driver in a disruption neighbourhood. The commencing or terminating activity

represents a driver's activity when rescheduling starts or ends, respectively. The node

representing a commencing or terminating activity is called the source node or sink

node.

The set of arcs 𝒜 satisfies the following conditions. Two nodes are connected with one

arc at most, and each arc has its direction. If there is an arc from 𝑎 ∈ 𝒩 to 𝑏 ∈ 𝒩, then

there is no arc from 𝑏 to 𝑎. Each arc has its type and weight. It is present in the graph if

140

a driver can consecutively cover the corresponding two driving tasks. Table 12 shows all

the arc types used in the work. Arc weights will be used to calculate the cost of a

recovery diagram. Besides these costs, if a driver takes up a new task that is not in their

planned diagrams, an extra cost of 300 is added. If this driver is spare, an additional cost

of 80 is added.

Table 12 Connection types used to construct a recovery diagram

No Arc name Connection type Weight Description

1 immArc immediate 0
immediate connection between two

tasks on one train

2 changeArc change 10 change trains

3 mealArc meal 5 meal break

4 passArc passenger trip 20 take a passenger trip

5 mealPassArc
meal passenger

trip
15

take a passenger trip and meal

break

6 douPassArc
double

passenger trips
30 take double passenger trips

7 mealDouPassArc
meal double

passenger trips
25

take double passenger trips and a

meal break

8 taxiArc taxi 50 take a taxi trip

141

9 taxiOverTimeArc taxi overtime 60 take a taxi trip to a late sign off

10 taxiMealArc taxi meal 40 take a taxi trip and a meal break

11 overTimeArc overtime 40 late sign off

12 oldArc
original

connection
0

same connect as in planned

diagrams

Determining Arc Type

Twelve different arc types are used in the graph built to produce recovery diagrams. The

geographical relationship between two tasks is considered first to connect two driving

tasks. If the previous task arrives at the same station that the next task departs, there

are three types of arcs to consider, mealArc, changeArc and immArc.

A passenger or taxi trip is considered if a previous task arrives at a different station than

the next task departs. Thus, these two types passArc and mealPassArc can be used. At

most, two passenger trips are considered to connect two tasks since building this graph

is computationally time-consuming. Then there are two types douPassArc and

mealDouPassArc. There could be more than one possible passenger trip between two

tasks to connect them. Taxi is also considered. There are types taxiArc and taxiMealArc.

When drivers work overtime, there are types overtimeArc and taxiOvertimeArc. To

reduce the deviations from the planned diagrams, if two tasks can be connected as in

142

the initial diagram, oldArc is used. Given two tasks, the arc type between them can be

decided with the following algorithms (Algorithm 4 - Algorithm 6).

It is important to distinguish if the next task to be connected is “sign off” because

overtime may be required. Algorithm 4 explains how to decide the arc type between

task1 and task2 if task2 is not signed off. At first, the connection type, oldArc, between

two tasks is considered if the two tasks can be connected as in the planned data. If task1

ends at the station where task2 starts, then mealArc is chosen in step 8 if the time

difference between the two tasks is long enough to have a meal break. Otherwise,

changeArc or immArc is considered in steps 11 and 13. If task1 ends at a different station

where task2 starts, Algorithm 5 is used. In this case, a driver must be transferred from

one station to another to perform task2 after task1.

143

Algorithm 4 Determining the arc type between task1 and task2.

For transferring drivers, Algorithm 5 is used. A passenger trip is first considered if the

driver can board a train to relocate in step 1. If such a passenger trip exists, a meal break

opportunity is further considered in step 2. If there is enough time for a meal break,

mealPassArc is chosen in step 3. Otherwise, passArc is selected in step 5. At most, two

passenger trips can be used. If no passenger trip is possible, using a taxi to relocate

drivers is considered in step 13.

144

Algorithm 5 Determining the arc type requiring transferring a driver

Algorithm 6 explains how to determine an arc type between task1 and task2 if task2 is

sign off. As in Algorithm 4, oldArc, mealArc and immArc are considered first in steps 2,7

and 9. If a driver needs overtime to cover task1, overTimeArc is considered in step 11. A

passenger trip required to relocate the driver to sign off is called in step 14. If a driver is

required to work overtime and must be relocated, taxiOvertimeArc is used.

145

Algorithm 6 Determining the arc type between task1 and sign-off

Creating a Subgraph for a Driver

146

Since different drivers can share parts of the graph, an integrated graph 𝒢 is built with

all tasks for all drivers in a disruption neighbourhood. A subgraph is then extracted for

each driver instead of building a graph for each driver.

The integrated graph is stored as a node-list structure. To get a subgraph for a given

driver, a depth-first search is used to find the set 𝒩′ of all nodes that this driver can

cover with a given source node and sink node. Then, the nodes in 𝒩′ and lists of arcs

that start at these nodes form a subgraph for this driver, denoted by 𝒢′ = (𝒩′, 𝒜′),

which is used to find recovery diagrams just for the driver.

4.4.3. Solving SPPRC

SPPRC is NP-hard in the strong sense, but efficient algorithms exist for solving some

crucial variants of SPPRC (Irnich & Desaulniers, 2005). Dynamic programming combined

with the labelling algorithm is one of the most widely used techniques. Some SPPRC, for

example, constrained shortest path problem (CSPP), can be solved with Lagrangian

Relaxation. Constraint Programming solves SPPRC using a broad spectrum of

constraints, like path structural constraints. Also, some heuristics algorithms like direct

search verify that no negative reduced cost paths exist in the pricing step in a column

generation approach. Dynamic programming combined with the labelling algorithm is

used in this work to generate recovery diagrams for drivers. Here this method is

explained in more detail.

147

Starting from source node s, the dynamic programming approach for the SPPRC extends

the path 𝑃 = {𝑠} one by one into all possible directions. For efficiency, paths in the

dynamic programming approach are encoded by labels. A label for a path 𝑃 =

(𝑠, 𝑣1, 𝑣2, … , 𝑣𝑝) is directly linked to the label of the prefix path (𝑠, 𝑣1, 𝑣2, … , 𝑣𝑝−1).

Paths with the same prefix path would have the same chain of labels for their common

paths. Besides the nodes visited by a path, a label for a path also stores the resource

vector of this path, 𝑓(𝑃), which is calculated using the resource extension function on

the nodes visited.

𝑈𝑃 is the set of unprocessed paths to be extended, 𝑃𝑃 is the set of processed paths. 𝐴

is the graph built for SPPRC. In the labelling algorithm, one unprocessed path from 𝑈𝑃

is chosen and all feasible extensions (𝑄, 𝑣) with 𝑣 ∈ 𝑉 are constructed and added to

𝑈𝑃, while 𝑄 is removed from 𝑈𝑃 and added to 𝑃𝑃.

Algorithm 7 Solving SPPRC

148

Solving SPPRC using Forwards, Backwards and Bi-directional Search

In Algorithm 7, the starting point to construct a path is the source node, which is

extended using dynamic programming in the direction of the source node to the sink

node. This search method is called forwards search. The algorithm can be slightly

modified to construct paths with two different search methods: backwards search and

bi-directional search.

For backwards search, in step 1 in Algorithm 7, the path 𝑝0 is initiated with a sink node,

and the path is extended in the direction of the sink node to the source in step 5. For bi-

directional search, one path 𝑝0𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠 is initiated with the source node and stored in

𝑈𝑃𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑠 , and another 𝑝0𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 is initiated with the sink node and stored in

𝑈𝑃𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 . A random number is used in step 4 to decide the search direction,

forwards or backwards. Once the search direction is determined, a path will be chosen

from a corresponding set and extended accordingly.

Recall that a source node represents a commencing activity for a driver, and a sink node

represents a terminating activity for a driver. Thus, the forwards search builds all

recovery diagrams from a commencing activity to a terminating activity. The backwards

search creates recovery diagrams from a terminating activity to a commencing activity.

The bi-directional search produces some recovery diagrams from a commencing activity

to a terminating activity and others from the opposite direction. Using different search

methods in solving SPPRC can cause different solution behaviours. (Righini & Salani,

149

2006) illustrated how basic dynamic programming can be enhanced by using the bi-

directional technique for solving the capacitated vehicle routing problem. Later in

Section 4.4.7, the effect of using three search methods on obtaining crew rescheduling

solutions are compared and analysed.

Example

Due to the safety working regulations, there is a limit for drivers’ continuous working

without a break called the maximum continuous working time without a break. Here is

an example to show how SPPRC can model the meal break rules in the crew rescheduling

problem.

Figure 16 shows an example that involves break opportunities and considers one

resource constraint: continuous working time without breaks. The source and sink

nodes are denoted by s and t, respectively. The source node and sink node represent

the current activity a driver needs to perform when rescheduling starts and ends. Nodes

1,2, and 3 represent three different driving tasks. Parameter 𝑡𝑑𝑖𝑓𝑓 is defined between

two nodes as the time difference between the arrival time of a previous task and the

departure time of the next task. Each arc (𝑖, 𝑗) has one attribute and one resource of

using the arc. The attribute is the arc type (𝑡𝑦𝑝𝑒𝑖𝑗), which shows the nature of the

connection between two nodes. In this example, there are arc types “change” and

“break”. “change” means that a driver needs to transfer trains between two nodes and

𝑡𝑑𝑖𝑓𝑓 is not smaller than 10 minutes for a driver to transfer trains. “break” means that

𝑡𝑑𝑖𝑓𝑓 is enough for a driver to have a 40-minute break.

150

Figure 16 Example of finding feasible recovery diagrams

In the example of Figure 16, given driver d, at the source node, this driver has already

worked for 110 minutes. The maximum continuous working time without a break (𝑇𝑚𝑎𝑥)

is 4 hours (240 minutes). The path 𝑃1 = (𝑠, 1, 2, 𝑡) is not resource feasible. Indeed, at

node 1, driver d has worked 230 minutes (110+120) without a break. From node 1, driver

d cannot visit node 2 since the arc does not contain a break opportunity, and at node 2,

driver d has worked more than 𝑇𝑚𝑎𝑥 without a break. The second path 𝑃2 = (𝑠, 1, 3, 𝑡)

is feasible because the arc between node 1 and 3 has a break opportunity. Then at the

beginning of node 3, the continuous driving time of driver d is 0. Using this graph, only

one recovery diagram 𝑃2 can be generated.

151

4.4.4. The LRCG Method

CRP can be solved as an integer programming problem if all model variables are precisely

known, particularly the size of 𝐷 and 𝑅𝑑 for each driver 𝑑 . The number of recovery

diagrams generated for drivers in a model for CRP increases exponentially with respect

to the number of tasks considered in the model. Thus, CRP is a large-scale integer

programming problem, requiring heuristic rules and mathematical techniques to limit

the problem size.

Two techniques are used to limit the problem size: (1) iterative expanding disruption

neighbourhood. When a disruption happens, it needs to be clarified when and within

which edges of the railway network this problem can be solved. Thus, it is not exactly

known how many drivers 𝑑 are included in the model. Therefore, solving this problem

uses an iterative expanding approach. (2) using column generation to generate new

variables, representing recovery diagrams gradually. The size of 𝑅𝑑 grows exponentially

with the increasing size of driving tasks. Meanwhile, generating a recovery diagram is

unnecessary if the diagram is no better than the already generated diagrams for a driver.

Thus, one needs to dynamically generate recovery diagrams and add them to the CRP

model as variables to improve the solution speed.

The LRCG method to solve the CRP model consists of several parts. Figure 17 gives an

overview of the whole procedure. As shown in Figure 17, the inputs for the LRCG method

152

include a revised timetable, revised rolling stock diagrams, planned crew diagrams and

rescheduling start and end times.

(1) Step 1: in the preprocessing step, an initial disruption neighbourhood 𝛥 is built

with Algorithm 8. A subset of recovery diagrams 𝑅𝑑 is generated for each driver

𝑑 in the disruption neighbourhood 𝛥. It is time-consuming and unnecessary to

create all recovery diagrams for each driver. At this step, a certain number of

recovery diagrams are first generated for each driver. Later in the algorithm,

more promising recovery diagrams are generated and added to the current 𝑅𝑑

(2) Step 2: a CRP model is built with the disruption neighbourhood 𝛥 and recovery

diagrams 𝑅𝑑 . The CRP model is solved with a greedy algorithm. Lagrangian

multipliers are obtained from solving the Lagrangian dual problem

(3) Step 3: a pricing problem is built using Lagrangian multipliers as input to generate

promising recovery diagrams. If such recovery diagrams exist, these new

recovery diagrams are used to create new variables 𝑥𝑟
𝑑 that are added to the

current CRP model; go to step 2. Otherwise, proceed to step 4

(4) Step 4: If no new recovery diagram is generated and there is task left uncovered,

the current disruption neighbourhood 𝛥 is expanded; go to step 1. Otherwise,

proceed to step 5

(5) Step 5: stop. The output of this algorithm is a recovery diagram for each driver

in the final disruption neighbourhood and cancelled tasks

153

Each step of the LRCG method is explained in the following subsections.

Figure 17 An overview of the LRCG method solving the CRP model

Initial and Expanded Disruption Neighbourhood

A disruption neighbourhood is introduced to limit the model size. A disruption

neighbourhood is characterised by a recovery period, from the rescheduling start time

to the end time. This recovery period is when a disruption occurs to when a regular

timetable can be restored. A disruption neighbourhood contains drivers and the driving

tasks of these drivers during the recovery period.

In LRCG, disruption neighbourhoods are automatically expanded. In the 𝑖th disruption

neighbourhood 𝛥𝑖, if the solution shows that some driving tasks are not covered, the

disruption neighbourhood is expanded to 𝛥𝑖+1.

154

Figure 18 illustrates building an initial disruption neighbourhood 𝛥1 starting with

directly affected trains. Assuming train 𝑉1 is a directly affected train, 𝐷1 is the driver

who is assigned to this train's first trip or takes this trip as a passenger. Then 𝐷1 needs

to be added to 𝛥1 since 𝐷1 is a directly affected driver. 𝐷1 also covers one trip from a

train 𝑉2 which runs during the recovery period. Thus, 𝑉2 is a potentially affected train.

Since driver 𝐷2 covers one trip or takes a passenger ride of 𝑉2, driver D2 is also added

to the disruption neighbourhood 𝛥1. The above process repeats until no new drivers can

be found.

Figure 18 Process of building an initial disruption neighbourhood

In Figure 18, V1 and V2 denote two different train services. D1 and D2 represent two

different drivers. Each rectangle in the rows of V1 (V2) represents a trip in the train

service. Each rectangle in the rows of D1 (D2) represents an activity in the driver

diagram. A green rectangle on a driver’s diagram means a driving task which is a trip

assigned to the driver. A yellow rectangle represents a meal break for the driver.

155

The above process of building an initial disruption neighbourhood is shown in Algorithm

8. The input for this algorithm is the rescheduling start and end times, planned crew

diagrams and a revised timetable.

Algorithm 8 Building an initial disruption neighbourhood

Expanded Disruption Neighbourhood

To construct an expanded disruption neighbourhood, two kinds of drivers are added.

One is diagrammed drivers (drivers are assigned a diagram in the planned data), and the

other is spare drivers (drivers at work but with no activities originally planned on the

day). Before a disruption neighbourhood needs to be expanded, a solution to the CRP

model has already been obtained, as described in Figure 17. With the solution, a list of

uncovered tasks is also obtained.

Two kinds of diagrammed drivers can be found as follows. The first kind is the drivers

who are near the uncovered task. For each uncovered task, around tasks are first

156

defined. A task is called an around task with respect to an uncovered task if one of the

following two conditions is satisfied: (1) it departs from the origin of the uncovered task

within a specific time (like two hours) of the uncovered task departure (2) it departs

from the destination of the uncovered task within a specific time after the uncovered

task arrival. A driver whose diagram contains this task is added to the expanded

disruption neighbourhood for each around task.

The second type of diagrammed drivers are similar to those who plan to cover the

uncovered task. The reason to find such drivers is that they have a high chance of

swapping tasks with each other. A similarity score is calculated for each diagrammed

driver, and drivers with high scores will be added to the new disruption neighbourhood.

If two drivers are from the same depot, 1 is added to the similarity score. If they are at

the same station when the rescheduling starts, 5 is added to the similarity score. For

each task they cover, if they depart from the same station within 30 minutes, 3 is added

to the score. If a driver does not require a meal during recovery, 5 is added to the score.

The ratio of the free time without a driver's workload divided by the time between the

rescheduling time and sign-off time is also added to the score.

Spare drivers can be found as follows. A score for a spare driver for an uncovered task

is calculated as follows: if the spare driver is at the station where the task departs, 1000

is added to the score, and the time difference between the task departure time and the

driver’s sign off time is added to the score. This rule prefers to choose spare drivers who

157

can start the task on time and have enough time to sign off after performing the task. If

the spare driver is not at the station where the task departs, the time difference

between the task departure time and when the driver can arrive at the station is added

to the score. It prefers to choose spare drivers who have enough time to get ready for

the task and be able to perform it.

With the chosen diagrammed and spare drivers, a disruption neighbourhood 𝛥𝑖 is

expanded to 𝛥𝑖+1 by adding these drivers and their planned to be covered tasks during

the recovery period.

Solving CRP with an Iterative Expanding Disruption Neighbourhood Approach

Subroutine Solve_CRP(), shown in Algorithm 9, describes how a disruption

neighbourhood is dynamically expanded to obtain the best solutions to the crew

rescheduling problem. It takes disruption neighbourhood 𝛥𝑖 and maximum expand

iteration as inputs. Step 1 presents a graph 𝐺 for generating recovery diagrams using

the tasks considered in the disruption neighbourhood 𝛥𝑖 . In step 2, initial recovery

diagrams are generated for each driver in 𝛥𝑖 using graph 𝐺. In step 3, Solve_DisNhood()

is called to get the best result for the current disruption neighbourhood. CRP_Obj is

updated in step 4 if the crew rescheduling cost obtained with 𝛥𝑖 is lower. In step 5, if

there are driving tasks left uncovered and the iteration number is less than the

maximum expansion iteration number, the disruption neighbourhood is expanded in

Step 6, and Solve_CRP() is called again in step 7 to solve the crew rescheduling problem

with 𝛥𝑖+1 . The algorithm's output is the best solution found among all disruption

158

neighbourhoods. In a solution, each driver is assigned a recovery diagram in the

disruption neighbourhood.

Algorithm 9 Solving CRP with expanding disruption neighbourhoods

Solving CRP for a Given Disruption Neighbourhood

Subroutine Solve_DisNhood() is executed for a given disruption neighbourhood in

Algorithm 10 to solve a CRP model for the neighbourhood 𝛥𝑖 using a fixing and column

generation scheme. ℛ is the set of all generated recovery diagrams for drivers in the

disruption neighbourhood. In Algorithm 10, two loops are used in steps 1 and 3,

representing the fixing and column generation schemes. A dual Lagrangian problem of

the CRP model is built and solved in step 4 to produce the best lower bound, Col_Lb, to

the CRP model. A greedy algorithm is used in step 5 to find the upper bound, Col_Ub.

The best crew rescheduling solution found so far is updated in step 6 if the cost produced

159

by step 5 is lower. A pricing problem is solved in step 7 to generate potential recovery

diagrams. The terminal condition for the column generation scheme is: no new recovery

diagrams are generated.

A fixing scheme is used in steps 13 to 16. Suppose a diagram is repeatedly chosen for a

driver in solving the dual Lagrangian problem in step 4. This diagram is fixed for this

driver, and no pricing problem is solved in step 7 for the driver. The condition to fix a

diagram for a driver is that the probability of choosing this diagram in solving the dual

Lagrangian problem with Max_Iter (set as 100) is not smaller than 0.7. The terminal

condition for the fixing scheme is that no diagram is fixed, or the upper bound of the

fixing scheme is very close to the lower bound of the fixing scheme.

160

Algorithm 10 Solving CRP with a given disruption neighbourhood

Solving Lagrangian Dual Problem

Variable 𝜆 is the vector of Lagrangian multipliers. 𝜆𝑡 is the corresponding multiplier for

task t. The Lagrangian relaxation problem (LRP) for the CRP model is:

𝑚𝑖𝑛
𝑥,𝑓

∑ ∑ 𝑐𝑟
𝑑𝑥𝑟

𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

+ ∑ 𝑝𝑓𝑡

𝑡∈𝑇

+ ∑ 𝜆𝑡 ൭1 − ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 − 𝑓𝑡൱

𝑡∈𝑇

= 𝑚𝑖𝑛
𝑥,𝑓

∑ 𝜆𝑡

𝑡∈𝑇

+ ∑ ∑ (𝑐𝑟
𝑑 − ∑ 𝜆𝑡𝑎𝑡𝑟

𝑑)𝑥𝑟
𝑑

𝑡∈𝑇𝑟∈𝑅𝑑

+ ∑(𝑝 − 𝜆𝑡)𝑓𝑡

𝑡∈𝑇𝑑∈𝐷

161

𝑠. 𝑡. ∑ 𝑥𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷

𝑥𝑟
𝑑 ∈ {0,1} ∀𝑑 ∈ 𝐷, ∀𝑟 ∈ 𝑅𝑑 𝑎𝑛𝑑 𝑓𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇

There exists an apparent optimal solution to the LRP model. For each driver d, diagram

𝑟 where 𝑐𝑟
𝑑 − ∑ 𝜆𝑡𝑎𝑡𝑟

𝑑
𝑡∈𝑇 achieves its minimum is chosen. For each task 𝑡, let 𝑓𝑡 be 1 if

(𝑝 − 𝜆𝑡) < 0, otherwise, 𝑓𝑡 is 0.

The solution value to the LRP model is a lower bound of the CRP model. Thus, a

Lagrangian lower-bound problem should be solved. The dual Lagrangian problem (LDP)

is defined as

𝑚𝑎𝑥
𝜆

𝐿𝑅𝑃

A subgradient algorithm based on (Stephen, Lin, & Almir, 2004) is used to solve the LDP

model, shown in Algorithm 11. It takes recovery diagrams 𝑅 and an upper bound as

inputs. It iterates to get the best lower bound and λ. In the beginning, a Lagrangian

multiplier 𝜆 is initialised with 0. In step 2, a Lagrangian relaxation problem is solved using

the method as described above. 𝑧∗ is the optimal value. 𝑥∗ is the optimal solution

consisting of variables 𝑥𝑟
𝑑 and 𝑓𝑡. The best lower bound is updated with 𝑧∗ in step 3. To

update 𝜆 in Step 7 in Algorithm 11, the subgradient is calculated for each driving task

with the following formula:

𝛿𝑡 = 1 − ∑ ∑ 𝑎𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑥𝑟
𝑑 − 𝑓𝑡

162

In step 9, if the best lower bound 𝐵𝑒𝑠𝑡_𝐿𝑏 is not updated for more than a specific time,

the constant 𝑐𝑜𝑛𝑠𝑡 used to update 𝜆 is halved. In step 12, if the distance (dist) is close

to 0, the algorithm terminates. The output of this algorithm is the best lower bound, the

list of 𝜆 generated in Max_Iter iterations (𝜆_𝐿𝑖𝑠𝑡), the list of reduced costs generated in

Max_Iter iterations (Reduced_Cost_List), and 𝜆∗ (where the LDP attains maximum).

Algorithm 11 Solving a dual Lagrangian problem using the subgradient method

163

Greedy Algorithm

To obtain an upper bound for the CRP problem, a greedy algorithm based on (Potthoff,

2010)’s work (Algorithm 12) is used. It takes recovery diagrams generated for all drivers

ℛ, a list of Lagrangian multipliers, and a list of reduced costs for all drivers as input. It

loops over all Lagrangian multipliers 𝜆 to find a best solution.

In step 2, drivers are ordered by the amount of cost reduction in increasing order. In

step 3, for each 𝜆, a vector 𝑧 is initialised with 1. Recall that 𝑧𝑡 being equal to 1 or 0

represents whether the task is cancelled. At first, each task is assumed cancelled. In step

4, for each driver d, a recovery diagram 𝑟 with the least reduced cost calculated with 𝜆

is chosen. Vectors 𝜆 and 𝑧 are updated based on the recovery diagram 𝑟. For all tasks 𝑡

covered by 𝑟, we set 𝜆𝑡 and 𝑧𝑡 equal to 0. During the experimental tests, it is noticed

that some drivers could be assigned to a recovery diagram which does not cover any

task. Thus, an improvement scheme is used from steps 6 to 16. Step 8, if task t is not

covered, the corresponding 𝜆𝑡 is set as the cost for task cancellation. At step 9, drivers

whose recovery diagrams do not cover any task are selected, denoted 𝐷. At step 10, for

each driver 𝑑 in 𝐷, the diagram 𝑟 with the least reduced cost is chosen. If no task can be

covered anymore, the improvement scheme stops at step 16.

In step 17, the recovery diagram cost is calculated as the sum of the recovery diagram

cost for all drivers. In step 18, the task cancellation cost is calculated as the multiplication

of the cancellation penalty and the number of cancelled tasks. In step 19, the total cost

164

is computed as the sum of the recovery diagram and task cancellation costs. In step 20,

Greedy_Obj and Greedy_Solution are updated if the newly generated total cost is lower

than the current Greedy_Obj. The output of the algorithm is Greedy_Obj and

Greedy_Solution.

165

Algorithm 12 Greedy algorithm

Solving a Pricing Problem

A pricing problem is solved to generate new promising recovery diagrams in LRCG. A

recovery diagram 𝑟 for driver 𝑑 is a list of driving tasks with a cost 𝑐𝑟
𝑑. Finding a recovery

166

diagram means finding the shortest path with resource constraints in a graph 𝒢′ =

(𝒩′, 𝒜′) . Resource constraints come from the necessary meal breaks included in

recovery diagrams.

The arc cost in 𝒢′ = (𝒩′, 𝒜′) is further priced by the multipliers 𝜆∗ obtained in Step 4

of Algorithm 10 before any subgraph and recovery diagrams are produced. More

precisely, 𝜆∗ is deducted from the arc cost if this arc connects to the node representing

the driving task 𝑡, to obtain the reduced cost of a recovery diagram defined by

𝑐𝑟
𝑑

(𝜆∗) = 𝑐𝑟
𝑑 − ∑ 𝜆𝑡

∗

𝑡∈𝑟

It is the cost of a diagram from which the sum of Lagrangian multipliers representing the

driving tasks included in this diagram is deducted. A new promising recovery diagram 𝑝

will be added to 𝑅𝑑 if 𝑐𝑝
𝑑

(𝜆∗) is smaller than the minimum 𝑐𝑟
𝑑

(𝜆∗), where r is an existing

diagram for driver d. This guarantees that no repeat recovery diagrams will be added to

the current set of recovery diagrams for the driver. This process is shown in Algorithm

13. The output of this algorithm is the set of recovery diagrams.

167

Algorithm 13 Solving a pricing problem

Since the SPPRC problem is an NP-hard problem, solving it optimally may take too much

time for some scenarios. In this work, solving SPPRC terminates early when a certain

number of recovery diagrams are found. Three search techniques (bi-directional,

forwards and backwards) are used with dynamic programming to find recovery

diagrams. Their performances are compared in Section 4.4.7 using the experimental

tests in Section 4.4.6.

4.4.5. a Didactic Example

Consider the following simple scenario. The initial plan in the morning is for all three

drivers to drive different trains from the station 𝑊 to 𝑃. However, due to a broken

rolling stock problem at 6 am, train service from 𝑊 to 𝐵 is cancelled for train 1𝐹03 and

train service from 𝑊 to 𝐶 is cancelled for the train 1𝐵01. Drivers Tony and William are

stuck at the station 𝑊 and their following tasks start from stations 𝐶 and 𝐵 ,

respectively. (To simplify the problem, we assume that there are spare rolling stock that

168

can be used for their next job). Another driver, Tim, is going to drive a train 1𝐹07

departing from the station 𝑊 at 6:15 am. We assume that the rescheduling process

should end at 10:15 am when every driver should arrive at the station 𝑃 and prepare for

their next task. The tasks that need to be covered in this scenario are tasks 1, …, and 5,

shown in Table 13.

Table 13 Task information for a didactic example

TaskId Dep Arrive Origin Destination Train

1 08:15 9:45 C P 1B01

2 07:30 10:00 B P 1F03

3 06:15 06:50 W B 1F07

4 07:00 08:00 B C 1F07

5 08:45 10:15 C P 1F07

To solve this problem, a crew rescheduling model is built as in Section 4.4.1. Table 14 is

the constraint matrix in the model. Each column generation iteration generates a new

group of recovery diagrams. They are shown in Table 14 in the corresponding groups of

169

columns. Each row represents a constraint in the model. A line in the middle separates

the constraints for drivers and tasks. For each row, the sum of variables whose

coefficients are 1 should be equal to 1.

Table 14 Constraint matrix

Conts Ini_0 Col_1 Col_2 Col_3 Col_4 Col_5

 Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim Will Tony Tim

Will 1 1 1 1 1 1

Tony 1 1 1 1 1 1

Tim 1 1 1 1 1

task1 1 1 1 1 1 1

task2 1 1 1 1

task3 1 1 1 1 1 1 1 1 1

task4 1 1 1 1

task5 1 1 1 1

170

Every row is a constraint in the model, and every column is a variable 𝑥𝑟
𝑑 representing

one recovery diagram for one driver. Figure 19 is a simple example of the graph used to

find recovery diagrams for driver Tim. It contains the source node, sink node and nodes

representing all tasks in the disruption neighbourhood. It uses five basic arcs which do

not consider the meal break. In Figure 19, “Train deadheading twice” means that driver

Tim uses two other tasks as passenger trips to arrive at the origin of the next task to

perform it from current location. For example, Tim uses task3 and task4 as passenger

trips to arrive at task1 to perform it after his current location at station W. The pricing

problem is to find a path in this graph for driver Tim with the most negative reduced

cost. Train deadheading means a passenger trip.

Figure 19 Subgraph for driver Tim

171

In the solution, Tim performs tasks 3, 4, and 5. Tony performs task 1, and William

performs task 2. The interpretation of this result is that Tim drives the train from 𝑊 to

𝑃 performing tasks 3, 4, and 5. Tony and William take a passenger trip on the train that

Tim drives and get off at the stations 𝐶 and 𝐵 respectively. Then they perform tasks 1

and 2. This solution corresponds to the red columns in Table 14. The solution path for

Tim can also be found easily in Figure 19.

4.4.6. Experimental Tests

The model for CRP and LRCG method is applied to the 14 scenarios considered in Section

4.1.6. These 14 scenarios have been described in Section 4.1.6, and revised timetables

have been obtained. A simple algorithm to reschedule rolling stock is used since

rescheduling rolling stock itself is a complex problem. The turnaround time is 15 minutes

at the stations where trains short turn before blockage and 5 minutes at other stations.

The maximum delay is set as 10. The dataset used in the experimental tests has 222

diagrammed drivers and 61 spare drivers. These spare drivers are attached to 10 depots

across the day. Table 15 shows the 14 scenarios, the number of affected drivers and

drivers in the initial disruption neighbourhood as found with the method shown in

Algorithm 8.

Table 15 Blockage scenarios and their effect on drivers

Id Recovery period Directly affect drivers 1st neighbourhood

172

AA_06 06:00-11:00 9 52

AA_07 07:00-12:00 9 70

AA_08 08:00-13:00 13 56

AA_09 09:00-14:00 11 11

AA_10 10:00-15:00 11 11

AA_11 11:00-16:00 10 10

AA_12 12:00-17:00 10 10

AA_13 13:00-18:00 10 10

AA_14 14:00-19:00 13 13

AA_15 15:00-20:00 12 16

AA_16 16:00-21:00 13 16

AA_17 17:00-22:00 16 59

AA_18 18:00-23:00 13 49

AA_19 19:00-24:00 10 12

173

The number of directly affected drivers varies from 9 (06:00 - 07:00) in the early morning

to 16 in the late afternoon (17:00-22:00). During the day, the number of directly affected

drivers keeps at 10 constantly from scenario AA_11 to AA_13. For the drivers included

in the first disruption neighbourhood, it is noticeable that scenarios in the early morning

(AA_06, AA_07, AA_08) and evening (AA_17, AA_18) have a large number of drivers.

One reason is that many short trips are required to move rolling stock to prepare for the

working day or back to the rolling stock depot during these times.

The maximum allowed number of disruption expansions is set as 3. Thus, no more than

4 disruption neighbourhoods can be searched. The connection time is set as 10 minutes.

The maximum work length is set as 10 hours. The maximum continuous work time is set

as 4 hours and 40 minutes. Maximum work overtime is 30 minutes. Communication time

is set as 10 minutes. Meal break is set as 30 minutes (with connection time, 50 minutes

can be used for drivers to walk to their depot, have a meal and walk back to the platform

for the next task). Three methods are tested for solving SPPRC problems: bi-directional

search, forwards search, and backwards search. The results for a bi-directional, forwards

and backwards search are explained in what follows.

Bi-directional Search

Table 16 Crew rescheduling with solving SPPRC using bi-directional search

 ITER ND NT UB LB ColGen Gap % NCT
Solution

time (s)
Objective Spare

AA_06 1 52 180 705 705 8 0.00 0 31 705 0

174

AA_07 1 70 219 365 365 6 0.00 0 50 365 0

AA_08 1 56 159 560 560 5 0.00 0 33 560 0

AA_09 2 47 125 560 500 5 12.00 0 32 560 0

AA_10 2 41 126 720 720 10 0.00 0 19 720 0

AA_11 2 55 115 590 569 5 3.69 0 25 590 0

AA_12 2 73 176 1410 1410 14 0.00 0 54 1410 1

AA_13 2 65 173 730 730 6 0.00 0 43 730 0

AA_14 2 69 173 1245 1245 12 0.00 0 122 1245 1

AA_15 2 95 227 895 850 6 5.29 0 228 895 0

AA_16 2 55 184 1205 1205 12 0.00 0 147 1205 1

AA_17 4 80 227 5830 5413 27 7.70 1 220 5830 0

AA_18 2 76 206 645 645 10 0.00 0 82 645 0

AA_19 2 28 78 1150 1150 7 0.00 0 13 1150 1

In Table 16, ITER is the disruption neighbourhood when the method terminates. ND and

NT represent the number of drivers and tasks in the disruption neighbourhood. UB and

LB are the upper and corresponding lower bound for the scenario. The UB is the lowest

cost found in the method and LB is the corresponding lower bound. Mostly the lowest

upper bound is obtained just before the method terminates. Gap is calculated as the

percentage of by how much an UB is bigger than a LB. The best solution value is between

the upper bound and lower bound. When the gap is significant, the method does not

find a solution close to the optimum, otherwise it finds the best solution. ColGen stands

175

for the number of times when new recovery diagrams are generated (pricing problems

are solved and new recovery diagrams are added to the current RMP, steps 7 and 8 in

Algorithm 10). NCT stands for the number of cancelled tasks in the solution. Spare

stands for the number of used spare drivers in the solution.

The first three scenarios (AA_06 - AA_08) are solved in the initial disruption

neighbourhood. Most of the remaining scenarios are solved in the second disruption

neighbourhood except scenario AA_17, which ends in the fourth disruption

neighbourhood. Scenario AA_19 is solved with the least drivers considered (28 drivers

and 78 driving tasks). Scenario AA_15 is solved with most drivers considered (95 drivers

and 227 tasks). Most scenarios are solved with a gap of 0 between the upper bound and

lower bound. Scenario AA_17 requires one task to be cancelled. Other scenarios can find

optimal solutions that cover all driving tasks as required in revised timetables. Most

scenarios are solved within 1 minute. Scenarios (AA_14 - AA_17) require more time

(from 122 seconds to 228 seconds). The reason is that more drivers and tasks are

considered, and more iterations of column generation in these scenarios.

Forwards Search

Table 17 Crew rescheduling with solving SPPRC using forwards search

 ITER ND NT UB LB ColGen Gap % NCT
Solution

time (s)
Objective Spare

AA_06 2 62 192 595 595 17 0.00 0 59 595 0

AA_07 1 70 219 780 780 3 0.00 0 54 780 0

176

AA_08 1 56 159 450 450 6 0.00 0 35 450 0

AA_09 2 53 123 495 460 8 7.61 0 59 495 0

AA_10 2 51 112 465 465 15 0.00 0 31 465 0

AA_11 2 61 117 735 729 17 0.82 0 32 735 0

AA_12 2 64 157 1995 1995 18 0.00 0 54 1995 2

AA_13 2 71 139 1870 1258 17 48.65 0 69 1870 2

AA_14 2 78 169 1400 1400 11 0.00 0 152 1400 1

AA_15 2 74 206 910 910 15 0.00 0 364 910 0

AA_16* 2 57 176 1475 1143 17 29.05 0 518 1475 1

AA_17 4 80 227 5700 5254 52 8.49 1 385 5700 0

AA_18 1 49 173 860 795 4 8.18 0 30 860 0

AA_19 2 42 111 1055 993 7 6.24 0 23 1055 1

Table 17 shows the crew rescheduling results with SPPRC solved using a forwards

search. As in Table 17, most scenarios are solved in the first or second disruption

neighbourhood except AA_17 in the fourth disruption neighbourhood. Forwards search

fails to find solutions to cover all tasks for AA_17, with 1 task left uncovered. For most

scenarios, the gaps are smaller, while the gap for scenario AA_13 is close to 50%.

Scenario AA_16 is marked with * because the algorithm stops early, as solving this

scenario requires more than 500 seconds. Scenarios AA_15 and AA_17 also need a long

time to solve (364 and 385 seconds). Other scenarios can be solved in two minutes or

177

even one minute. It is noticeable that the iteration of column generation for scenario

AA_17 is as high as 52, which consumes a lot of running time.

Backwards Search

Table 18 Crew rescheduling with solving SPPRC using backwards search

 ITER ND NT UB LB ColGen Gap % NTC
Solution

time (s)
Objective Spare

AA_06 2 62 204 1515 1159 5 30.72 0 65 1515 2

AA_07 2 82 242 2270 10 8 22600.00 0 94 2270 3

AA_08 2 69 191 950 941 8 0.96 0 64 950 1

AA_09 2 41 105 440 440 5 0.00 0 25 440 0

AA_10 2 35 109 465 453 2 2.65 0 18 465 0

AA_11 2 59 134 590 564 4 4.61 0 31 590 0

AA_12 2 77 180 2530 2277 3 11.11 0 53 2530 3

AA_13 2 35 107 650 650 6 0.00 0 19 650 0

AA_14 2 77 174 1370 1370 6 0.00 0 97 1370 1

AA_15 2 112 249 675 645 7 4.65 0 323 675 0

AA_16 2 71 209 2590 1270 6 103.94 0 242 2590 3

AA_17 4 86 232 5675 5578 13 1.74 1 232 5675 0

AA_18 1 49 173 610 610 3 0.00 0 27 610 0

AA_19 2 28 78 1500 1162 3 29.09 0 12 1500 2

Table 18 shows the crew rescheduling by solving SPPRC using a backwards search. Most

scenarios are solved in the first and second disruption neighbourhoods except scenario

AA_17 in the fourth disruption neighbourhood. All scenarios can find solutions that

178

cover all driving tasks except AA_17 which requires one task to be cancelled. It is worth

noting that the same task is cancelled for AA_17 in all three methods: bi-directional,

forwards and backwards search. This task is a train trip, which is a part of the train

service that departs at 16:54 from S1 in Figure 15. This is an extra train added during the

peak time on the route from S1 to S4. This task is not cancelled in the timetable

rescheduling step. However, in the crew rescheduling step, no spare drivers can arrive

on time to take this task after rescheduling, thus, it needs to be cancelled.

The gaps for most scenarios are close to 0. The gap for scenario AA_07 is as high as

22600%. It is noticed that when the method terminates, the gap between the last upper

bound and lower bound is 0 for this scenario. However, the last upper bound is not the

lowest cost, which usually it is. The reason for this is that the method uses a fixing

scheme. Some drivers’ diagrams are fixed based on the rules during the solution process

to speed up the method (Section 4.4.4). However, such fixing can lead to a worse upper

bound to the crew rescheduling problem.

The solution time is quick, with most scenarios being solved within or just above 1

minute except 323 seconds for AA_15, 242 seconds for AA_16 and 232 seconds for

AA_17. All scenarios in Table 18 have less than 20 times of column generation iterations.

4.4.7. Comparison: Bi-directional, Forwards and Backwards Search Methods

The performance of the three search methods is compared by cost, speed, problem size

and gap.

179

Cost Comparison

Figure 20 Costs compared for the three methods

The optimal costs obtained for 14 scenarios using bi-directional, forwards and backward

searches are compared in Figure 20. Overall, the three methods have similar trends. The

costs using three methods are low for scenarios AA_06 to AA_11, except that the

backwards search finds a higher cost solution for AA_07. All three methods find

solutions with higher costs for scenarios AA_12 and AA_17. In general, backwards search

can find solutions with lower costs in most scenarios (7) followed by bi-directional

search (5) and forwards search (4). One reason that backwards can find the least cost

solutions for most scenarios is that it searches a bigger disruption neighbourhood with

more drivers and tasks. The comparison of problem size for all three searches is shown

later in this section.

0

1000

2000

3000

4000

5000

6000

7000

O
b

je
c
ti
v
e

Scenario

bi-directional forwards backwards

180

Solution Time Comparison

Figure 21 Solution time compared for the three methods

The running time of the three methods on 14 scenarios is shown in Figure 21. Three

methods find solutions within 100 seconds for scenarios AA_06 to AA_13 and AA_18 to

AA_19. Between scenarios AA_14 and AA_17, it is obvious that forwards search uses the

most time to find optimal solutions. In general, backwards search uses the least time for

7 scenarios and bi-directional search uses the least time for the other 7 scenarios.

0

100

200

300

400

500

600

S
p

e
e

d

Scenario

bi-directional forwards backwards

181

Figure 22 Iteration of column generation compared for the three methods

Many factors can affect the running time, like the number of drivers and tasks

considered in the model and also the iteration of column generation. Figure 22 shows

the iteration of column generation for three methods. It is clear that forwards search

has the highest number of iterations for most of the scenarios (10 out of 14 scenarios).

Recall that forwards search finds recovery diagrams from a source node representing a

commencing activity to a sink node representing a terminating activity. Backwards

search finds recovery diagrams in the opposite direction. During the experimental tests,

it is noticeable that, from the source node, many more arcs can be generated compared

to the arcs that connect to the sink node for a driver. It means that the number of tasks

the commencing activity can connect to is higher than the number of tasks that can

connect to the terminating activity for a driver. The reason for this is that a driver may

0

10

20

30

40

50

60
It
e

ra
ti
o

n
 o

f
c
o

lu
m

n
 g

e
n

e
ra

ti
o

n

Scenario

bi-directional forwards backwards

182

have enough time to arrive at a task to perform it, but the driver may not be able to sign

off considering overtime in time after performing this task.

Since only a few possible recovery diagrams can be developed starting from the sink

node side, backwards search has a smaller iteration of column generation. In steps 8 and

9 of Algorithm 10, if no recovery diagrams are generated, the column generation loop

terminates, and the fixing scheme starts to work. Thus, backwards search spends less

time on the column generation loop. Note that if enumerating all recovery diagrams is

required, both forwards and backwards searches can enumerate the same subset of

recovery diagrams.

Problem Size Comparison

0

1

2

3

4

5

AA_06AA_07AA_08AA_09AA_10AA_11AA_12AA_13AA_14AA_15AA_16AA_17AA_18AA_19

bi-directional

0

1

2

3

4

5

AA_06AA_07AA_08AA_09AA_10AA_11AA_12AA_13AA_14AA_15AA_16AA_17AA_18AA_19

forwards

183

Figure 23 Disruption neighbourhood iterations in the three methods

Figure 23 shows the number of disruption neighbourhood that the method has explored

when it terminates. It is clear that all three methods search two disruption

neighbourhoods for most scenarios. Forwards search and bi-directional search only

search one disruption neighbourhood for 3 scenarios compared to 1 scenario for

backwards search.

0

1

2

3

4

5

AA_06AA_07AA_08AA_09AA_10AA_11AA_12AA_13AA_14AA_15AA_16AA_17AA_18AA_19

backwards

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f
ta

s
k
s

Scenario

bi-directional forwards backwards

184

Figure 24 Number of tasks considered in the three methods

Figure 25 Number of drivers considered in the three methods

For the number of tasks considered in a model (Figure 24), backwards search has the

biggest number of tasks for 9 scenarios, followed by bi-directional search for 4 scenarios

and forwards search with 1 scenario. Overall, the three methods use roughly the same

number of drivers (Figure 25) in scenarios AA_06 to AA_12 and AA_17. Forwards and

backwards searches explore the greatest number of drivers for 7 scenarios, followed by

bi-directional search for 1 scenario. It is clear that, in most scenarios, backwards

searches a bigger disruption neighbourhood with more drivers and tasks. Recall the rules

for expanding a disruption neighbourhood in Section 4.4.4, spare/diagrammed drivers

are added for each uncovered task in the previous disruption neighbourhood. It is

noticeable that backwards search finds a worse solution in the initial disruption

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f
d

ri
v
e

rs

Scenario

bi-directional forwards backwards

185

neighbourhood, which leads to more spare/diagrammed drivers added to expand a

disruption neighbourhood.

Gap Comparison

In all 14 scenarios, with bi-directional search, only 4 scenarios have gaps which are not

0 and the biggest gap is 12%. With forwards search, 7 scenarios have gaps which are not

0 and the biggest gap is almost 50%. With backwards search, 10 scenarios have gaps

which are not 0 and the biggest gap is as high as 22600%. It is clear that bi-directional

search has advantage in looking for solutions with smaller gaps. The reason for this is bi-

directional searches the graph to construct recovery diagrams from both directions (a

source node to a sink node, and a sink node to a source node). It searches a more

averagely spread solution space. However, for forwards and backwards searches, they

tend to search one side of the solution space with less attention to the other side. Thus,

these two methods find solutions with bigger gaps, which means these solutions can be

far from the optimal solutions.

To summarise, backwards search has advantages in speed even if it searches a bigger

solution space. The reason is that in the column generation loop, backwards terminates

quicker since less promising recovery diagrams can be generated. Thus, the backwards

search uses less time to finish the algorithm. Also, since backwards search a bigger

solution space, it has advantages in finding the minimal objective. Forwards search is

the worst in speed and solution costs. Bi-directional search has advantages in finding

solutions with small gaps since it searches a more averagely spread solution space.

186

4.5. Conclusion

This chapter addressed the crew rescheduling problem during significant disruptions.

Since crew rescheduling requires a revised timetable as input. A model was first posed

to adjust the timetable in case of a complete blockage. The model can provide a revised

timetable for the three phases of disruption management while considering rolling

stock, infrastructure availability, and blockage period. It uses rescheduling strategies:

cancellation, and retiming and aims to revise the timetable to minimise train

cancellations and delays, and the changes to rolling stock circulation patterns. The

model was tested on the busiest line on a TOC from GB. The comparison between how

a smaller and bigger maximum allowed delay affects the solutions was conducted. It was

discovered that there is a trade-off between train cancellations and delays. Fewer trains

must be cancelled when a longer maximum delay time is allowed. It is worth noting that

the maximum delay time should not be longer than the period between frequently

scheduled trains, otherwise cancellation may be more practical. More cancellations and

delays can happen when trains require more time to turn around at a station before

approaching the blockage site.

A model formulated as an integer linear programming problem was proposed to solve

the crew rescheduling problem for significant disruptions. It was explained why a

recovery diagram can be generated by solving SPPRC. Solving SPPRC to generate

recovery diagrams has two steps: 1) build a graph using tasks and drivers considered in

the model, 2) use dynamic programming and label setting algorithm to find recovery

187

diagrams in the graph built in step 1. Further, three search methods which can combine

with dynamic programming and change the search directions were explained.

A heuristic method, LRCG using Lagrangian relaxation and column generation, was

proposed to solve the model for the crew rescheduling problem. The process uses an

iterative approach to search for better solutions. A disruption neighbourhood is used to

constrain the problem size. An algorithm was presented to show how to build the initial

disruption neighbourhood. Rules were given on how to expand a disruption

neighbourhood.

The model for the crew rescheduling problem and LRCG were applied to 14 scenarios

using three different search methods (forwards search, bi-directional search and

backwards search) to solve the SPPRC problem in LRCG. Crew rescheduling results

obtained with LRCG using forwards, bi-directional and backwards searches were shown

and compared. It was explained why backwards search can be the quickest and obtain

the best results, forwards search can be the slowest regarding searching speed, and bi-

directional search is the best in finding solutions with smaller gaps for most scenarios.

188

CHAPTER FIVE: SOLVING INTEGRATED

ROLLING STOCK AND CREW

RESCHEDULING PROBLEMS

189

Usually, the rescheduling of rolling stock and crew is carried out in two phases: rolling

stock rescheduling followed by crew rescheduling. Theoretically, the adjustments

between rolling stock and crew rescheduling can go back and forth for several rounds

until a mutually compatible solution appears.

Similar to crew, each rolling stock unit also has a diagram to regulate their daily work. A

diagram for a rolling stock unit contains a series of driving tasks and possible

deadheading tasks (empty rolling stock moves on the network without passengers).

When a disruption occurs, each rolling stock unit and crew member should be assigned

a recovery diagram that is feasible to operate. Thus, to solve an integrated rolling stock

and crew problem is to assign a recovery diagram to each rolling stock unit and driver

that is considered in the problem.

One reason rolling stock and crew rescheduling is usually carried out sequentially is that

the exact rolling stock type assigned to a task should be known. Then controllers can

assign a driver with the required rolling stock knowledge to perform the driving task.

This may be straightforward in some simple networks. For example, if only one rolling

stock type can be used for a driving task, then the exact rolling stock type is known for

the purpose of assigning a driver to cover the task. Another reason is that the integrated

problem is usually of high complexity due to practical safety constraints both for rolling

stock and crew. It is difficult to solve such complex problems in real time.

190

The potential benefits of rescheduling rolling stock and crew together are significant. It

can provide a feasible solution for both rolling stock and crew rescheduling and is

optimal for the integrated problem. It saves communication time between rolling stock

controllers and crew controllers and can help an IM to publish reliable and timely railway

traffic information to passengers during disruption.

“What should be the objective of resource rescheduling?” is a difficult question for the

integrated rolling stock and crew rescheduling problem due to the various factors that

need to be considered. To decrease the impact on passengers, minimising cancelled and

delayed trips should be considered. To improve flexibility, spare drivers should be

reserved for further potential disruption. To decrease implementation risk, fewer

resources should be rescheduled. To prepare for the following operations, the rolling

stock balance at each station should be as close as possible to the original plan. Further,

finding the relative importance of these factors is another tricky subject. Different

operators may value some factors more than others. Delaying a trip looks like a better

solution than cancelling a trip. However, if considerable further delay is brought by an

initial delay, cancelling the trip may be a better solution.

In this chapter, a model for the integrated rolling stock and crew rescheduling problem

with retiming possibilities (IRSCRR) and a two-stage approach which uses multicriteria

decision making (2SMO) to solve the IRSCRR are developed. The model is set as a

multicriteria optimisation problem and two multicriteria optimisation techniques are

191

used in 2SMO to solve the model. A feedback mechanism is used in 2SMO. The feedback

mechanism can indicate which driving task not covered in the first step should be

retimed and its exact delay time, which will be used in the second stage to generate

solutions considering retiming possibilities.

The structure of the remainder of the section is as follows. In Section 5.1, research work

related to the rolling stock rescheduling, or the integrated rolling stock and crew

problems has been reviewed. Section 5.2 presents the model formulation for the

integrated rolling stock and crew rescheduling problem with retiming possibilities.

Section 5.3 describes the two-stage approach 2SMO used to solve the IRSCRR. Section

5.4 shows the performance of applying IRSCRR and 2SMO on various single delay

scenarios. Section 5.5 shows the performance of the model and method on various

multiple delay scenarios. Section 5.6 is the conclusion.

5.1. Literature Review

In the literature, the rescheduling of rolling stock and crew are usually studied

separately and sequentially. For rolling stock rescheduling, (Budai, Maróti, Dekker,

Huisman, & Kroon, 2010) studied the rolling stock rebalancing problem which is relevant

both in the short-term planning and real-time operations. Two heuristics were

developed to solve the rolling stock rebalancing problem and compared with each other

and the performance of an exact method. (Nielsen, Kroon, & Maróti, 2012) solved the

rolling stock rescheduling for disruption management. A single rolling stock problem is

solved using a two-step approach: circulation generation phase and duty generation

192

phase. To deal with the uncertainty of the impact and duration of a disruption, a

methodology based on rescheduling with a rolling horizon was proposed. Furthermore,

(Kroon, Maró ti, & Nielsen, 2014) studied rolling stock rescheduling with dynamic

passenger flow. An iterative approach involving rolling stock rescheduling and passenger

flow simulation was proposed. A simulation model is used to generate expected

passenger flows. The interpreting of flows can give optimisation directions to rolling

stock rescheduling in the next iteration. The current literature in crew rescheduling has

been revised in Section 2.5.

To the best of our knowledge there is only one paper which deals with the integrated

rolling stock and crew rescheduling problem (Zeng, Meng, & Hong, 2018). An integrated

rolling and crew rescheduling model based on a multi-commodity flow model is

proposed, and a customised ant colony algorithm is developed to solve the integrated

problem efficiently. However, in their model, the cross-check constraints for rolling

stock and crew are not included. That is, if a task fails to be covered by rolling stock, then

it cannot be covered by the crew, and vice versa. Also, the meal break needs of the crew

during their work are not considered, which may cause the rescheduling result to violate

fatigue rules.

Multicriteria optimisation problems are a special case of vector optimisation problems.

In a single criterion optimisation problem, the definition of an optimal solution is

straightforward. However, for multicriteria optimisation, it is rare to have a solution

193

which attains minimum values simultaneously in all criteria. A more general definition

of optimality is the Pareto optimum (see (Ehrgott, 2005), (T'kindt & Billaut, 2006)).

Multicriteria optimisation methods have been used in timetable planning and

rescheduling, (see (Sama, Meloni, D'Ariano, & Corman, 2015), (Stoilova, 2020)).

However, multicriteria optimisation has not been used in rolling stock or crew

rescheduling.

5.2. Integrated Rolling Stock and Crew Rescheduling Model with Retiming

A model is proposed in this section to provide rescheduling solutions for rolling stock

and crew together. Compared to rescheduling rolling stock and crew sequentially,

solving an integrated rolling stock and crew rescheduling problem requires some extra

constraints. For example, if a task is not covered by any rolling stock unit, then it should

not be covered by any crew member, and vice versa. As in Section 4.4.4, the disruption

neighbourhood idea is used as a concept to help formulate and solve the rescheduling

problem. In this section, it is characterised by the rolling stock and drivers that need to

be rescheduled and a recovery period that should be set by the controllers. How to

construct a disruption neighbourhood is explained in detail in Section 5.3.1.

This section uses the data from a TOC in Great Britain. In this TOC, most trains are

operated by one self-powered rolling stock unit during the day. The situation of two or

more rolling stock units are used by one train mostly appear in the early morning or late

evening for moving rolling stock from or to depot. Sometimes rolling stock units are

coupled or uncoupled to a train, called composition change. Rolling stock units that have

194

been uncoupled from a train needs to be stored at the shunting yard of the station and

can be used later for other trains. During shunting operations, some non-timetabled

movements of rolling stock inside railway nodes are created due to composition

changes. In this study, shunting is taken into account in an implicit manner: by ensuring

a minimum connection time between tasks that require shunting in between.

A recovery diagram is assigned to each rolling stock unit as part of a solution. If the same

task appears on two recovery diagrams assigned to different rolling stock units, it means

that both rolling stock units cover this task. It implied that these two rolling stock units

should be coupled to perform the same task. If after the same task, two rolling stock

units are assigned to different tasks, these two are uncoupled to perform different tasks.

As for the order of two or more units appearing in a composition and how they can be

coupled and uncoupled are not considered in the model in this section.

5.2.1. Model Constraints

First, some notation is introduced before formulating the model IRSCRR. Let 𝑇 be the

set of tasks that need to be assigned to rolling stock units and drivers inside a disruption

neighbourhood. A task should be covered by a driver and rolling stock units

simultaneously (or cancelled otherwise). If a task is assigned to a rolling stock unit, it

needs a driver to perform it, and vice versa. Let 𝑆 and 𝐷 denote the rolling stock units

and drivers, respectively, that are considered in a disruption neighbourhood. The set

𝑅𝑠(𝑅𝑑) is the set of recovery diagrams generated for a rolling stock unit (driver), which

corresponds to one disruption. As in the CRP model built in Chapter 4, the model for the

195

integrated rolling stock and crew rescheduling problem is a path-based model. The

construction of recovery diagrams is not explicitly considered in the model formula.

They are constructed by solving SPPRC described in Section 4.4.3 and used in the model

directly.

Four types of variables are considered. Let 𝑥𝑟
𝑠 be 1 if the recovery diagram 𝑟 is chosen

for the rolling stock unit 𝑠, 0 otherwise. Similarly, let 𝑦𝑟
𝑑 be 1 if the recovery diagram 𝑟

is assigned to the driver 𝑑, 0 otherwise. Variable 𝑔𝑡 is equal to 1 if the task 𝑡 is cancelled

due to unavailable rolling stock units, 0 otherwise. Variable ℎ𝑡 is equal to 1 if the task

t is cancelled due to unavailable drivers. Two parameters are used: 𝑎𝑡𝑟
𝑠 (𝑏𝑡𝑟

𝑑) is 1 if the

recovery diagram 𝑟 for rolling stock unit 𝑠 (driver 𝑑) contains task 𝑡, 0 otherwise. The

following constraints should be considered to formulate a basic IRSCRR.

 (∑ ∑ 𝑎𝑡𝑟
𝑠

𝑟∈𝑅𝑠𝑠∈𝑆

𝑥𝑟
𝑠) + 𝑔𝑡 ≥ 1, ∀𝑡 ∈ 𝑇 (5.1)

 (∑ ∑ 𝑏𝑡𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑦𝑟
𝑑) + ℎ𝑡 ≥ 1, ∀𝑡 ∈ 𝑇 (5.2)

 ∑ 𝑥𝑟
𝑠

𝑟∈𝑅𝑠

= 1, ∀𝑠 ∈ 𝑆 (5.3)

 ∑ 𝑦𝑟
𝑑

𝑟∈𝑅𝑑

= 1, ∀𝑑 ∈ 𝐷 (5.4)

 𝑥𝑟
𝑠 + ℎ𝑡 ≤ 1, (∀𝑡 ∈ 𝑇), (∀𝑠 ∈ 𝑆), (∀𝑟 ∈ 𝑅𝑠: 𝑡 ∈ 𝑟) (5.5)

196

 𝑦𝑟
𝑑 + 𝑔𝑡 ≤ 1, (∀𝑡 ∈ 𝑇), (∀𝑑 ∈ 𝐷), (∀𝑟 ∈ 𝑅𝑑: 𝑡 ∈ 𝑟) (5.6)

Equations (5.1) and (5.2) mean that each task 𝑡 should be covered by a rolling stock unit

and driver (and cancelled otherwise). Equations (5.3) and (5.4) guarantee that precisely

one recovery diagram should be assigned to each rolling stock unit and driver,

respectively. Equation (5.5) means that if a task is cancelled due to unavailable drivers,

it should not be used in any recovery diagrams that are selected for rolling stock units.

Also, it implies that if the task 𝑡 is used in a recovery diagram for a rolling stock unit, the

task 𝑡 should also be covered by drivers. Vice versa, in equation (5.6), if a task is

cancelled due to unavailable rolling stock units, it cannot be used in any recovery

diagrams selected for drivers. A task used in selected recovery diagrams for drivers

should also be covered by rolling stock units.

5.2.2. Extra Constraints Concerning Retiming

Sometimes tasks cannot be covered due to the turnaround time required by rolling stock

units at terminal stations or connection times required by a driver to change trains. In

this situation, allowing tasks to be retimed may lead to fewer task cancellations. In

IRSCRR, the possibility of retiming tasks is also considered. The retiming constraints from

(Veelenturf, Potthoff, Huisman, & Kroon, 2012) are used. Retiming can give a

rescheduling solution when there is no solution without retiming. However, retiming a

task means that the timetable needs to be modified to reflect this. Here, these

constraints are briefly introduced. For a task, several copies are created. One copy is the

same as the task. The other copies are the retimed versions of the task, which means

their departure and arrival times are shifted by a given time length. For a task 𝑡, it has a

197

set of copies 𝐶𝑡 = {𝑐(𝑡): 𝑐(𝑡) is a copy of the task 𝑡 and 𝑐(𝑡) has a non-negative delay

time}. The set 𝐶𝑡 contains at least one copy representing the planned task itself. For each

copy 𝑐(𝑡), the binary variable 𝑣𝑐(𝑡) is 1 if there is a recovery diagram that contains copy

𝑐(𝑡) which is selected in the solution, 0 otherwise. 𝑡(𝑐) is the task from which copy

𝑐(𝑡)is generated. Let 𝐶 be the union of all 𝐶𝑡. Moreover, |𝑆| and |𝐷| are the number of

rolling stock units and drivers, respectively.

 |𝑆|𝑣𝑐(𝑡) − ∑ ∑ 𝑎𝑐(𝑡)𝑟
𝑠

𝑟∈𝑅𝑠𝑠∈𝑆

𝑥𝑟
𝑠 ≥ 0, ∀𝑐(𝑡) ∈ 𝐶 (5.7)

 |𝐷|𝑣𝑐(𝑡) − ∑ ∑ 𝑏𝑐(𝑡)𝑟
𝑑

𝑟∈𝑅𝑑𝑑∈𝐷

𝑦𝑟
𝑑 ≥ 0, ∀𝑐(𝑡) ∈ 𝐶 (5.8)

 ∑ 𝑣𝑐(𝑡)

𝑐(𝑡)∈𝐶𝑡

+ 𝑔𝑡 = 1, ∀𝑡 ∈ 𝑇 (5.9)

 ∑ 𝑣𝑐(𝑡)

𝑐(𝑡)∈𝐶𝑡

+ ℎ𝑡 = 1, ∀𝑡 ∈ 𝑇 (5.10)

Constraints (5.7) and (5.8) guarantee that if a copy 𝑐(𝑡) is used in any selected recovery

diagram, 𝑣𝑐(𝑡) will be set as 1. Constraints (5.9) and (5.10) make sure that either a task

is cancelled or a copy of it is chosen.

Before writing out the constraints for delay propagation, some notation is first

introduced. 𝐶𝑐(𝑡),𝑡
< ⊆ 𝐶𝑡 is defined as the set of all copies of task t which have a shorter

delay time than that of copy 𝑐(𝑡). 𝐶𝑐(𝑡),𝑡
> ⊆ 𝐶𝑡 is the set of all copies which have a longer

delay time than that of a copy 𝑐(𝑡). 𝑎𝑓(𝑡) is used to denote the successive task of task

198

𝑡 if the next task exists. 𝑐𝑜𝑛𝑛(𝑡) is the minimum time for a rolling stock unit to connect

𝑡 and 𝑎𝑓(𝑡) (meaning that the rolling stock unit performs the task 𝑡 and 𝑎𝑓(𝑡)

successively). A suitable copy 𝑐(𝑡) ∈ 𝐶𝑡 should be chosen if a copy 𝑒(𝑎𝑓(𝑡)) ∈ 𝐶𝑎𝑓(𝑡) is

chosen, where 𝑒(𝑎𝑓(𝑡)) is a copy of the task 𝑎𝑓(𝑡). For a copy 𝑐(𝑡), 𝐿𝑐(𝑡) is defined as

𝐿𝑐(𝑡) = {𝑒൫𝑎𝑓(𝑡)൯ ∈ 𝐶𝑎𝑓(𝑡)\∪𝑐(𝑡)∈𝐶𝑐(𝑡),𝑡
< 𝐿𝑐(𝑡) (5.11)

|𝑒൫𝑎𝑓(𝑡)൯
𝑑𝑒𝑝

− 𝑐(𝑡)𝑎𝑟𝑟 ≥ 𝑐𝑜𝑛𝑛(𝑡) 𝑎𝑛𝑑 ∀𝑐(𝑡) ∈ 𝐶𝑐(𝑡),𝑡
> 𝑒൫𝑎𝑓(𝑡)൯

𝑑𝑒𝑝
− 𝑐(𝑡)

𝑎𝑟𝑟
< 𝑐𝑜𝑛𝑛(𝑡)}}

It denotes the set of 𝑒 that copy 𝑐(t) can connect to but 𝑐(𝑡)cannot connect to, where

𝑐(𝑡)has a larger delay time than a copy 𝑐(𝑡). Also, 𝐿𝑐(𝑡) should exclude e that are already

included in 𝐿𝑐(𝑡) for copy 𝑐(𝑡), where copy 𝑐(𝑡) has a shorter delay time than that of

copy 𝑐(𝑡) (thus, the definition of 𝐿𝑐(𝑡) is recursive).

For each copy 𝑐(𝑡) of a task 𝑡 which has more than one copy and this task has a

successive task 𝑎𝑓(𝑡), if a copy 𝑒 is chosen for the task 𝑎𝑓(𝑡), then the task 𝑡 should be

cancelled, or an appropriate 𝑐 should be chosen. Below, 𝑇≥2 denotes the set of tasks

that have at least two copies including the task itself. Constraint (5.12) means that for

task t in 𝑇≥2 and the next task 𝑎𝑓(𝑡) exists, if a copy for the next task is chosen, then

the task needs to be cancelled (ℎ𝑡=1) in terms of rolling stock or a suitable copy for 𝑡 is

chosen. Constraint (5.13) sets the same constraints for the crew.

𝑔
𝑡

+ 𝑣𝑐(𝑡) + ∑ 𝑣𝑐′(𝑡)

𝑐′(𝑡)∈𝐶
𝑐(𝑡),𝑡
<

− ∑ 𝑣𝑐′(𝑡) ≥ 0, ∀𝑡 ∈ 𝑇≥2: 𝑎𝑓(𝑡)𝑒𝑥𝑖𝑠𝑡𝑠, ∀𝑐(𝑡) ∈ 𝐶𝑡

𝑐′(𝑡)∈𝐿𝑐(𝑡)

(5.12)

199

ℎ𝑡 + 𝑣𝑐(𝑡) + ∑ 𝑣𝑐′(𝑡)

𝑐′(𝑡)∈𝐶
𝑐(𝑡),𝑡
<

− ∑ 𝑣𝑐′(𝑡) ≥ 0, ∀𝑡 ∈ 𝑇≥2: 𝑎𝑓(𝑡)𝑒𝑥𝑖𝑠𝑡𝑠, ∀𝑐(𝑡) ∈ 𝐶𝑡

𝑐′(𝑡)∈𝐿𝑐(𝑡)

(5.13)

5.2.3. Model Objective

An objective function 𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) should consider the following aspects:

(1) RDC: cost of chosen recovery diagrams for drivers and rolling stock units

considered in a model, which represents the deviation from the planned

diagrams assigned to each driver and rolling stock unit. The cost of a recovery

diagram is the sum of costs of all connection types in a recovery diagram. Please

see Section 4.4.2 for the costs of connection types for driver recovery diagrams.

The connection types for rolling stock recovery diagrams are shown in Section

5.3.3

(2) NRC: cost of the number of in drivers and rolling stock units that are not spare

resource and take at least one task that is not their planned diagrams. The more

such resources that are rescheduled during a disruption, the heavier the penalty

should be. It is measured by the number of resources used and its weight

(3) RSBC: cost of the difference in number of rolling stock units at each station after

rescheduling compared to the planned data. At the rescheduling end time, a

certain number of rolling stock units is required at each station to guarantee that

operations can return to the normal level as planned in the timetable. However,

rolling stock units may end at a different station due to rescheduling, which

further may lead to the number of rolling stock units being different at each

200

station compared to the planned data. Thus, the difference between the real

number of rolling stock units and their planned number at each station is

penalised. It is measured by the absolute difference of planned and real number

of rolling stock units at a station and its weight

(4) SOC: shunting operation cost that represents the cost of uncoupling and

coupling rolling stock units from and to rolling stock units. It is measured by the

shunting operation times and its weight

(5) TCC: penalty for task cancellations due to unavailable drivers or rolling stock

units. The cancellation cost is set to be equal to the product of task duration and

its weight

(6) TRC: penalty for task retiming impact due to drivers or rolling stock not being

able to cover a task unless it is retimed. It is measured by the retiming duration

and its weight

(7) SRC: cost of the number of utilised spare drivers and rolling stock units. It is

measured by the time of a spare resource work and its weight

Table 19 shows how each factor is measured. In the experimental tests, the weights w1,

w2, w3, w4, w5 and w6 can vary. However, the costs of the number of utilised resources

and shunting operations should be high, thus w1 and w3 should be big. The reason for

this is that unnecessary resources or shunting operations should be avoided in a solution

whenever possible. Also, these indicators are measured by numerical values unlike the

costs for task cancellation, retiming and using a spare driver, which are measured in

201

minutes and hence should be low (50, 30 and 10, respectively). In the further discussed

approach to solving IRSCRR, two multicriteria techniques are used to obtain multiple

solutions. The results show that setting different weights for the factors does not always

affect the solutions. The numbers in the brackets are the parameter values used in the

study.

Table 19 Cost indicators and their measurements in the model

No Indicator Measurement

1 recovery diagram cost (RDC) the sum of connection costs

2 number of used drivers and rolling stock that
are not directly affected by disruption (NRC)

number * w1 (5000)

3 rolling stock unit balance (RSBC) balance difference * w2 (50)

4 shunting operations (SOC) number * w3 (5000)

5 task cancellation cost (TCC) task duration * w4 (50)

6 task retiming cost (TRC) delay time * w5 (30)

7 spare driver cost (SRC) working time * w6 (10)

5.2.4. Model

min 𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) IRSCRR

 s.t. (5.1) − (5.13)

202

Overall, the model IRSCRR aims to find an integrated rolling stock and crew rescheduling

solution subject to constraints (5.1) to (5.13) which achieves a minimum for

𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣). The definition of 𝑓(𝑥, 𝑦, 𝑔, ℎ, 𝑣) will be given in Sections 5.4 and 5.5.

5.3. Method: 2SMO

A 2-stage approach using multicriteria decision making (2SMO) is used to solve IRSCRR.

The input information includes a revised timetable (beyond the scope of this work), the

planned initial rolling stock unit and crew diagrams, and rescheduling start and end time.

The revised timetable and rescheduling start and end times are treated as given. The

rescheduling result is that each affected driver and rolling stock unit considered in the

model is assigned a recovery diagram. 2SMO contains a feedback mechanism which

allows the solution process to generate retiming possibilities of tasks to find solutions.

Before a detailed explanation of 2SMO is given, the following terms are first explained.

5.3.1. Disruption Neighbourhood

With the given input, a disruption neighbourhood 𝒜 can be created for the integrated

rolling stock and crew rescheduling problem. Disruption neighbourhood 𝒜 consists of a

set of drivers 𝐷, a set of rolling stock units 𝑆 and the tasks 𝑇 that are in their planned

diagrams between the rescheduling start time and end time, 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑠𝑡𝑎𝑟𝑡 to

𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑒𝑛𝑑.

Building an Initial Disruption Neighbourhood

When a disruption happens, it is known which trains are delayed or cancelled directly

due to the disruption. The set of such trains is denoted as 𝛶. For each train 𝛾 ∈ 𝛶, the

203

initially affected rolling stock units can be found. The set of all such rolling stock units

for all trains is denoted as 𝑆0. For rolling stock unit 𝑠 ∈ 𝑆0, drivers who drive rolling stock

unit 𝑠 between the rescheduling start time and end time can be found. Such drivers are

the initially affected drivers; their set is denoted as 𝐷0.

Drivers in 𝐷0 may also drive trains using rolling stock not in 𝑆0 during a disruption

period. The set of such rolling stock units is denoted as 𝑆1. Similarly, rolling stock units

in 𝑆1 could also have other drivers who work on them during the disruption period but

are not included in 𝐷0. This iterative approach is used to find all drivers and rolling stock

units to build the initial disruption neighbourhood 𝒜. It includes drivers, rolling stock

units and tasks that are assigned to these resources during rescheduling, 𝒜 = {𝑆, 𝐷, 𝑇}.

Extending a Disruption Neighbourhood

A disruption neighbourhood can be extended by adding retiming copies of tasks and

spare resources. The reason that spare resources are not added in the initial disruption

neighbourhood is that a list of tasks is expected to be obtained, which cannot be covered

without using spare resources. Retiming copies can be produced just for these

uncovered tasks in the second stage of the approach. If spare resources are used in the

first stage, the need to use the retiming option is more minor.

5.3.2. Task Coverage Feedback Mechanism

One type of feedback information generated from the model is how much a task should

be retimed so that a resource can cover it. Between two tasks, a minimum connection

time is required for a resource to change from one task to another. For example, this

204

connection time can be used to move to another platform for a driver and perform

turnaround activities at a station for a rolling stock unit. If a resource finishes a previous

task too late and cannot take the following task with the minimum connection time

requirement, it can lead to the next task being uncovered. Such failure to cover the next

task is recorded in a log file.

When a task is not covered in the first stage, in the feedback analysis step, the log file is

analysed. A retiming possibility which requires the least delay time that is also within

the parameter value of the maximum delay time is chosen and a retiming copy is created

for this uncovered task and added to the disruption neighbourhood. A variable

representing this retiming copy is added to the model. A retiming copy is only

considered for tasks that are not commencing or terminating activities in a disruption

neighbourhood. To maximally allow feasible solutions to appear, terminating activities

are shifted back to the extent that will not affect operations beyond the recovery period

in the data processing phase.

5.3.3. Graph for Solving Rolling Stock SPPRC

205

Algorithm 14 Determining the arc type between task1 and task2 for a rolling stock unit

The graph created for solving a SPPRC problem for rolling stock is shown in Algorithm

14. It is simpler than building a graph for solving a SPPRC for a driver (see Algorithm 4 -

Algorithm 6). Only three arcs are considered: “oldArc”, “changeArc” and “immArc”. If

two tasks can be connected as in the planned data, “oldArc” is used in step 3. A possible

arc can only be considered if the previous task ends at the same station as next task

departs. If two tasks belong to the same train and the time difference is satisfied, an

“immArc” is used. If two tasks belong to different trains and the time difference is

206

enough for rolling stock to change trains, a “changeArc” is used. The costs of these

connection types are the same as listed in Table 12 in Section 4.4.2.

Compared to the SPPRC graph built for crew, meal break, overtime and passenger trip

are not considered. Rolling stock requires maintenance, which in planning diagrams can

be treated similarly to including meal breaks. In practice, there is a specific plan for

rolling stock maintenance, which is not considered in the model. Overtime is implied in

Algorithm 14 since an “immArc” or “changeArc” connection could require rolling stock

to work longer time than planned in their diagrams. Passenger trips are not considered

for rolling stock because it does not make sense to relocate rolling stock by taking

passenger trips.

One difference between generating a recovery diagram for drivers and rolling stock units

is that drivers need to sign off at their planned depots. However, rolling stock is, to a

large extent, interchangeable. It is quite common for two rolling stock units to swap the

remaining tasks of a day following disruption. For example, when a blockage happens,

trains on one side of the blockage short turn before approaching the blockage to run the

train services that are planned to run by trains on the other side of the blockage. For

rolling stock units of these short turn trains, they swap the remaining tasks with each

other. So, a recovery diagram for a driver should end with the task which the driver was

initially scheduled to perform at the rescheduling end time. However, a recovery

diagram for a rolling stock unit can end at any task that any rolling stock unit from a

207

disruption neighbourhood should perform at the rescheduling end time. A penalty is

added to a recovery diagram for a rolling stock unit if it ends at a task which is not the

task initially planned at the rescheduling end time. A SPPRC is solved for each rolling

stock unit as explained in Section 4.4.3.

5.3.4. Overview of 2SMO

The framework of 2SMO is shown in Figure 26. In step 1, a disruption neighbourhood

𝒜 can be built as explained in Section 5.3.1. In step 2, recovery diagrams for each rolling

stock unit and driver are enumerated by solving SPPRC as explained in Section 4.4.3. In

step 3, a reduced IRSCRR model that does not consider retiming possibilities is built and

solved with a commercial solver. The single objective of this reduced model is to

minimise 𝑓(𝑥, 𝑦, 𝑔, ℎ) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑅𝑆𝐵𝐶 + 𝑆𝑂𝐶 + 𝑇𝐶𝐶. The constraints are (5.1)

– (5.6). During the solution process, a log file records the retiming requirements from a

resource for a task to be covered. In step 4, the log file is automatically analysed. For

each cancelled task obtained in step 3, if a retiming requirement is obtained from the

log file, the retiming copies of that task will be generated and added to the disruption

neighbourhood 𝒜. Spare drivers and rolling stock units are also added to 𝒜 in this step.

In step 5, a complete IRSCRR model with constraints (5.1) - (5.13) and criteria specified

below in Section 5.4 and 5.5 is solved using multicriteria optimisation methods and a

commercial solver. Steps 1 to 3 are grouped as stage one, and steps 4 and 5 are grouped

as stage two.

208

Figure 26 2-stage multicriteria decision-making approach (2SMO)

IRSCRR and 2SMO are applied to single delay and multiple delay scenarios in the

following two sections. Different objectives and multicriteria optimisation methods are

used for single and multiple delay scenarios.

5.4. Experiments and Results: Single Delay Scenarios

In this section, a typical single primary delay rescheduling problem is first explained.

Then the common rescheduling strategies used in practice are presented. Next, model

IRSCRR and 2SMO are applied using a convex combination of criteria to solve a series of

single delay problems. The goal is to see if the types of solutions used in practice can be

obtained with model IRSCRR and method 2SMO. The dataset used in this Chapter to test

the model and method is the same as in Chapter 4.

209

Figure 27 Rolling stock running on a single line

Figure 27 shows several rolling stock units running on a railway line between stations S1

and S4. The different colours represent different rolling stock units. Segments between

S1 and S4 can be seen as individual train journeys. When a rolling stock unit arrives at

station S4, it waits for a short time and runs the following service from S4 to S1. Since a

rolling stock unit only stays at S4 for a short period, then, if there is a delay in running

train service from S1 to S4, such a delay is easily propagated into the train services

running from S4 to S1.

Figure 28 demonstrates a single delay scenario and three of the most frequently used

rescheduling strategies by controllers from TOCs on the line between S1 and S4. The late

train 𝑇𝑟𝑎𝑖𝑛_𝐴 uses rolling stock 𝑅𝑆1. 𝑇𝑟𝑎𝑖𝑛_𝐵 is the immediate train after 𝑇𝑟𝑎𝑖𝑛_𝐴

that uses the same rolling stock 𝑅𝑆1. Assume 𝑇𝑟𝑎𝑖𝑛_𝐴 is running late towards S2, there

are three possible rescheduling strategies.

210

Figure 28 Three frequently used solutions with different characteristics

It is worth noting that Figure 28 is only for illustration. The gradients of each colored line

in Figure 28 can vary. Solution (a) suggests running both 𝑇𝑟𝑎𝑖𝑛𝐴 and 𝑇𝑟𝑎𝑖𝑛𝐵 late. It

does not require controllers to reschedule at all. The solution does not cancel any task

or use spare rolling stock units. Solution (b) involves task retiming and cancellations. It

suggests 𝑅𝑆1 running late from S2 to S3 but short turning it at S3 so it can arrive at S2

to S1 on time. The train services between S3 and S4 are cancelled. Solution (b) does not

use any spare rolling stock units. In solution (c), a spare rolling stock unit (marked in

green) is used to run the service 𝑇𝑟𝑎𝑖𝑛_𝐴 from S2 to S4 and 𝑇𝑟𝑎𝑖𝑛_𝐵 from S4 to S1. 𝑅𝑆1

211

arrives late at S2 and will become the new spare rolling stock unit. Comparing the three

solutions (a), (b), and (c), it is hard to evaluate which one is better among them purely

because of the solution characteristics. One solution may outperform another in

different scenarios. For example, if bringing delay into a major station S2 will cause many

trains to be delayed in S2, then solution (a) is not a good choice. When cancellation is

not acceptable, then solution (b) is not a good choice. If there is no spare rolling stock

to use, then solution (c) does not exist.

5.4.1. Using Convex Combination of Criteria

Suppose there is a multicriteria optimisation problem where the criteria are 𝑍𝑖(𝑥) for

𝑖 = 1, … , 𝐾 and 𝑆 is the search space, and consider the problem (𝑃𝜆) defined by

min ∑ 𝜆𝑖𝑍𝑖(𝑥)𝐾
𝑖=1

 𝑥 ∈ 𝑆

where 𝜆𝑖 ∈ (0,1) for 𝑖 = 1, … , 𝑘 such that ∑𝑖=1
𝐾 𝜆𝑖 = 1. We have the following theorem.

Theorem 4 (Vincent T'kindt, 2006) If 𝑥0 ∈ 𝑆 is an optimal solution for (𝑃𝜆) then 𝑥0

is a proper Pareto optimum.

Based on the three frequently used rescheduling strategies, three costs are especially

important: task cancellation (TCC), task retiming (TRC) and using spare resources (SRC)

which are explained in Section 5.2.3. The remaining insignificant cost factors in a single

delay disruption scenario are combined as one objective 𝑓1(𝑧). In total, there are four

objectives:

212

𝑓1(𝑧) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑅𝑆𝐵𝐶 + 𝑆𝑂𝐶

𝑓2(𝑧) = 𝑇𝐶𝐶

𝑓3(𝑧) = 𝑇𝑅𝐶

𝑓4(𝑧) = 𝑆𝑅𝐶

According to Theorem 4, one proper Pareto optimum for an IRSCRR can be obtained wi

th multicriteria 𝑓𝑖(𝑧), 𝑖 = 1, … 4 by solving the problem (𝑃𝜆) with a convex combinatio

n 𝑓𝑖(𝑧), 𝑖 = 1, … 4. A parametric analysis using 𝜆 is conducted. We denote 𝛬 = {𝜆 =

{𝜆1, 𝜆2, 𝜆3, 𝜆4} ∀𝑖, 𝜆𝑖 ∈ (0,1) and ∑ 𝜆𝑖 = 1, 𝜆𝑖 ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}}4
𝑖 .

A simple loop is used to enumerate all combinations of weights 𝜆. The number of total

combinations of weights is 84.

5.4.2. Experimental Tests

The purpose of experiments in this section is to test if the solutions of the model and

method using a parametric analysis of 𝜆 can mimic the three frequently used solutions

in practice shown in Figure 28 (a), (b) and (c). The basic idea consists of dividing 𝛬 into

𝑁 disjoint parts 𝛬𝑖 such that 𝛬 = ڂ 𝛬𝑖
𝑁
𝑖=1 , where in each 𝛬𝑖 the optimal solution found

by the algorithm is of a particular form seen in actual practice. It is expected that there

are three regions 𝛬1, 𝛬2 and 𝛬3 where the optimal solutions found by the algorithm are

as shown in Figure 28 (a), (b) and (c), respectively, and region 𝛬4 where the optimal

solutions found by the algorithm are not of any of the forms described in Figure 28.

213

The parameters that are relative to crew are set with the same values as in Section 4.4.6.

The connection time for rolling stock units to perform two tasks from two different

trains is 5 minutes. If a rolling stock unit does not end at the same terminating task as

planned in their diagram, 500 is added. The maximum time a task can be delayed is set

as 30 minutes.

Example

Here is one scenario tested with the methodology shown in Figure 26. It is tested with

84 combinations of weights. The results are shown in Table 20. Column “objType” shows

the weight combination for the four objectives. Column “objective” shows solution

costs. diagramCost, cancelCost and retimeCost stand for recovery diagram costs, task

cancellation costs and task retiming costs. spareStockCost stands for the cost for using

spare rolling stock. The other costs mentioned in section 5.2.3, in particular the shunting

operation costs, are 0 in this scenario.

Table 20 One scenario test with 84 combinations of weights

objType objective diagramCost cancelCost retimeCost spareStockCost category

0.1_0.1_0.1_0.7 375.5 35 2100 1620 0 (b)

0.1_0.1_0.2_0.6 537.5 35 2100 1620 0 (b)

0.1_0.1_0.3_0.5 699.5 35 2100 1620 0 (b)

214

0.1_0.1_0.4_0.4 861.5 35 2100 1620 0 (b)

0.1_0.1_0.5_0.3 678.5 35 0 0 2250 (c)

0.1_0.1_0.6_0.2 453.5 35 0 0 2250 (c)

0.1_0.1_0.7_0.1 228.5 35 0 0 2250 (c)

0.1_0.2_0.1_0.6 529.5 75 0 5220 0 (a)

0.1_0.2_0.2_0.5 747.5 35 2100 1620 0 (b)

0.1_0.2_0.3_0.4 903.5 35 0 0 2250 (c)

0.1_0.2_0.4_0.3 678.5 35 0 0 2250 (c)

0.1_0.2_0.5_0.2 453.5 35 0 0 2250 (c)

0.1_0.2_0.6_0.1 228.5 35 0 0 2250 (c)

0.1_0.3_0.1_0.5 529.5 75 0 5220 0 (a)

0.1_0.3_0.2_0.4 903.5 35 0 0 2250 (c)

0.1_0.3_0.3_0.3 678.5 35 0 0 2250 (c)

0.1_0.3_0.4_0.2 453.5 35 0 0 2250 (c)

0.1_0.3_0.5_0.1 228.5 35 0 0 2250 (c)

0.1_0.4_0.1_0.4 529.5 75 0 5220 0 (a)

215

0.1_0.4_0.2_0.3 678.5 35 0 0 2250 (c)

0.1_0.4_0.3_0.2 453.5 35 0 0 2250 (c)

0.1_0.4_0.4_0.1 228.5 35 0 0 2250 (c)

0.1_0.5_0.1_0.3 529.5 75 0 5220 0 (a)

0.1_0.5_0.2_0.2 453.5 35 0 0 2250 (c)

0.1_0.5_0.3_0.1 228.5 35 0 0 2250 (c)

0.1_0.6_0.1_0.2 453.5 35 0 0 2250 (c)

0.1_0.6_0.2_0.1 228.5 35 0 0 2250 (c)

0.1_0.7_0.1_0.1 228.5 35 0 0 2250 (c)

0.2_0.1_0.1_0.6 379 35 2100 1620 0 (b)

0.2_0.1_0.2_0.5 541 35 2100 1620 0 (b)

0.2_0.1_0.3_0.4 703 35 2100 1620 0 (b)

0.2_0.1_0.4_0.3 682 35 0 0 2250 (c)

0.2_0.1_0.5_0.2 457 35 0 0 2250 (c)

0.2_0.1_0.6_0.1 232 35 0 0 2250 (c)

0.2_0.2_0.1_0.5 537 75 0 5220 0 (a)

216

0.2_0.2_0.2_0.4 751 35 2100 1620 0 (b)

0.2_0.2_0.3_0.3 682 35 0 0 2250 (c)

0.2_0.2_0.4_0.2 457 35 0 0 2250 (c)

0.2_0.2_0.5_0.1 232 35 0 0 2250 (c)

0.2_0.3_0.1_0.4 537 75 0 5220 0 (a)

0.2_0.3_0.2_0.3 682 35 0 0 2250 (c)

0.2_0.3_0.3_0.2 457 35 0 0 2250 (c)

0.2_0.3_0.4_0.1 232 35 0 0 2250 (c)

0.2_0.4_0.1_0.3 537 75 0 5220 0 (a)

0.2_0.4_0.2_0.2 457 35 0 0 2250 (c)

0.2_0.4_0.3_0.1 232 35 0 0 2250 (c)

0.2_0.5_0.1_0.2 457 35 0 0 2250 (c)

0.2_0.5_0.2_0.1 232 35 0 0 2250 (c)

0.2_0.6_0.1_0.1 232 35 0 0 2250 (c)

0.3_0.1_0.1_0.5 382.5 35 2100 1620 0 (b)

0.3_0.1_0.2_0.4 544.5 35 2100 1620 0 (b)

217

0.3_0.1_0.3_0.3 685.5 35 0 0 2250 (c)

0.3_0.1_0.4_0.2 460.5 35 0 0 2250 (c)

0.3_0.1_0.5_0.1 235.5 35 0 0 2250 (c)

0.3_0.2_0.1_0.4 544.5 75 0 5220 0 (a)

0.3_0.2_0.2_0.3 685.5 35 0 0 2250 (c)

0.3_0.2_0.3_0.2 460.5 35 0 0 2250 (c)

0.3_0.2_0.4_0.1 235.5 35 0 0 2250 (c)

0.3_0.3_0.1_0.3 544.5 75 0 5220 0 (a)

0.3_0.3_0.2_0.2 460.5 35 0 0 2250 (c)

0.3_0.3_0.3_0.1 235.5 35 0 0 2250 (c)

0.3_0.4_0.1_0.2 460.5 35 0 0 2250 (c)

0.3_0.4_0.2_0.1 235.5 35 0 0 2250 (c)

0.3_0.5_0.1_0.1 235.5 35 0 0 2250 (c)

0.4_0.1_0.1_0.4 386 35 2100 1620 0 (b)

0.4_0.1_0.2_0.3 548 35 2100 1620 0 (b)

0.4_0.1_0.3_0.2 464 35 0 0 2250 (c)

218

0.4_0.1_0.4_0.1 239 35 0 0 2250 (c)

0.4_0.2_0.1_0.3 552 75 0 5220 0 (a)

0.4_0.2_0.2_0.2 464 35 0 0 2250 (c)

0.4_0.2_0.3_0.1 239 35 0 0 2250 (c)

0.4_0.3_0.1_0.2 464 35 0 0 2250 (c)

0.4_0.3_0.2_0.1 239 35 0 0 2250 (c)

0.4_0.4_0.1_0.1 239 35 0 0 2250 (c)

0.5_0.1_0.1_0.3 389.5 35 2100 1620 0 (b)

0.5_0.1_0.2_0.2 467.5 35 0 0 2250 (c)

0.5_0.1_0.3_0.1 242.5 35 0 0 2250 (c)

0.5_0.2_0.1_0.2 467.5 35 0 0 2250 (c)

0.5_0.2_0.2_0.1 242.5 35 0 0 2250 (c)

0.5_0.3_0.1_0.1 242.5 35 0 0 2250 (c)

0.6_0.1_0.1_0.2 393 35 2100 1620 0 (b)

0.6_0.1_0.2_0.1 246 35 0 0 2250 (c)

0.6_0.2_0.1_0.1 246 35 0 0 2250 (c)

219

0.7_0.1_0.1_0.1 249.5 35 0 0 2250 (c)

The solutions in Table 20 are divided into three groups: (a) using retiming, (b) using

cancellations and retiming and (c) using spare rolling stock, which corresponds to the

three types of solutions shown in Figure 28. The column “category” shows the category

of each solution. All solutions found in each category are actually the same. The total

objective is different only because 𝜆𝑖s are different, as the costs of all factors remain the

same. The number of 𝜆𝑖 s used to obtain solutions which belong to each category is

summarised in Table 21.

Table 21 Number of weights used to obtain solutions belonging to each category

Type Number of 𝜆𝑖s

(1) using retiming (a) 15

(2) using cancellations and retiming (b) 59

(3) using spare rolling stock (c) 10

Multiple Tests

220

The model is further tested on one line where a single delay happens frequently. The

task which is frequently delayed is scheduled once an hour from 6 am to 6 pm on any

operational day. Together there are 13 scenarios. All 13 scenarios involve one train

being delayed by 10 minutes. Each scenario is listed as a row in Table 22. Each scenario

is assigned an ID as “SD_t”, where t stands for the disruption occurrence time. For each

scenario, the numbers of drivers, rolling stock units, and tasks in the disruption

neighbourhood are given. Feasible recovery diagrams are enumerated for all rolling

stock units, and drivers and their numbers are given. For each scenario, the total solution

time for all 84 combinations of weights is given, and the average time per one

combination of weights is also given.

Table 22 Single delay scenarios for testing and results

Scenario
Number

of drivers

Number

of RS

Number

of tasks

Diagrams

for drivers

Diagrams

for RS units

Solution

time (s)

Average

solution

time (s)

SD_6 127 74 291 63,082 1,786 1303 15.33

SD_7 138 75 293 230,823 6,635 56865 669.00

SD_8 154 72 288 55,009 2,262 1313 15.45

SD_9 136 56 216 21,811 1,137 262 3.08

221

SD_10 145 61 244 32,712 1,731 309 3.64

SD_11 127 54 226 58,613 2,622 661 7.78

SD_12 129 55 223 90,866 2,624 1153 13.56

SD_13 149 66 265 105,711 1,692 3855 45.35

SD_14 150 72 301 163,208 2,277 2993 35.21

SD_15 134 71 299 161,844 1,976 2453 28.86

SD_16 123 68 282 166,175 1,393 22113 260.15

SD_17 149 66 265 105,711 1,692 3855 45.35

SD_18 91 60 232 85,594 989 1419 16.69

In Table 22, the number of tasks considered in the model has its peak level for scenarios

happening at 6-8 am and 2-5 pm. The number of driver recovery diagrams in the model

fluctuates mainly from around 21 thousand to 230 thousand of diagrams. Compared to

the number of driver diagrams, the number of rolling stock diagrams in the model is

much smaller, from a few hundred to around seven thousand diagrams. The solution

time is significant for some scenarios. The total solution time with 84 combinations of

weights for scenario that happens at 7 am (SD_07) is almost 16 hours. For some

scenarios, the total solution time only takes less than 5 minutes (SD_09). The solution

time strongly depends on the total number of diagrams considered in the model.

222

Figure 29 Solution time with respect to the number of diagrams

The relationship between the average solution time and the total number of diagrams

is shown in Figure 29. The average solution time is low (below 100 seconds) when the

number of diagrams is below 150 thousand. Then it sharply rises to around 260 seconds

for 167 thousand diagrams and 669 seconds for 237 thousand diagrams. Not all points

in Figure 29 show a rising relationship between the average solution time and the total

number of diagrams. The reason is that the average solution time is also affected by the

number of drivers, rolling stock and tasks. Overall, the solution time exhibits exponential

growth.

Figure 30 The performance of 84 weights on 13 tests for a single delay scenario

 -

 100

 200

 300

 400

 500

 600

 700

 800

 - 50,000 100,000 150,000 200,000 250,000

A
v
e

ra
g

e
 s

o
lv

in
g

 t
im

e

Number of diagrams

223

From Figure 30, for each weight, most of the optimal solutions from all 13 scenarios fall

into the following three categories: task cancellation and retiming, task retiming or using

spare stock resources. To be specific, 88.10% of optimal solutions belong to one of these

three categories. Thus, 𝛬 can be divided into four parts 𝛬𝑖 such that 𝛬 = ڂ 𝛬𝑖
4
𝑖=1 .

Among them, the first three parts produce optimal solutions as displayed in Figure 28

a), b) and c).

It is noticeable that solutions that only use retiming (grey line) have low ratio compared

to the other two categories (orange and yellow lines). The reason for this is that retiming

tasks cannot always be a feasible solution no matter how weights are set. It may be

infeasible because the drivers who are on the task need to have a meal break after the

task. So in this case the drivers can have their meal breaks on time without violating

fatigue rules only if the task is not delayed. The yellow line (using spare rolling stock)

and orange line (using cancellation and retiming) are clearly distinguished for different

combinations of weights. When the ratio for solutions using spare rolling stock and

retiming is high, the ratio for using cancellation is low. To be specific, the combination

of weights 0.1_0.5_0.1_0.3 has the highest ratio to produce optimal solutions only using

retiming. A number of weight combinations (such as 0.1_0.3_0.5_0.1) can be used to

produce optimal solutions using spare rolling stock in most of the scenarios. Some

weights (such as 0.1_0.2_0.2_0.5) can be used to produce optimal solutions using

cancellation and retiming in most of the scenarios.

224

5.5. Experiments and Results: Multiple Delay Scenarios

For various reasons multiple delays could happen and many drivers and rolling stock

could be affected. The same convex combination of criteria and parametric analysis of

𝜆 has been used to solve a significant disruption scenario. However, the solution cannot

be categorised clearly as in single delay scenarios. The reason for this is that, for

significant disruption scenarios, delays happen on more than one route. The solutions

shown in Figure 28 only consider one train delay on one route. Thus, another

multicriteria optimisation method, ε -constraint approach, is used to solve scenarios

with multiple delays.

5.5.1. Using 𝜺 -constraint Approach

The idea of the ε-constraint approach is to minimise one objective and add other

objectives into constraints so other constraints are upper bounded with a parameter ε,

which is known or can be decided by a user based on experience, or it can be modified

by a user to analyse the impact of modifications on the final solutions.

In multiple delay scenarios, using spare resources is a default rescheduling strategy.

Thus, it is not seen as a separate criterion. Here two costs are considered: one is the cost

𝑓1(𝑧) that is the cost of train operators implementing any rescheduling strategies.

Another is the cost 𝑓2(𝑧) that represents the inconvenience caused to passengers,

which is the sum of task cancellations and retiming.

𝑓1(𝑧) = 𝑅𝐷𝐶 + 𝑁𝑅𝐶 + 𝑆𝑅𝐶 + 𝑆𝑂𝐶 + 𝑅𝑆𝐵𝐶

225

𝑓2(𝑧) = 𝑇𝐶𝐶 + 𝑇𝑅𝐶

In the case study, 𝑓1(𝑧) is minimised and 𝑓2(𝑧) is added as a constraint which is upper

bounded by 𝜀. Thus, the following problem using an 𝜀 -constraint approach is defined.

𝑧 is the variable vector, and 𝑆 is the search space.

min 𝑓1(𝑧)

 s.t. 𝑧 ∈ 𝑆

𝑓2(𝑧) ≤ 𝜀

5.5.2. Experimental Tests

The purpose of experiments in this section is to test if the model and methods can give

solutions that form a Pareto frontier, that is, cancellation and retiming cost cannot be

decreased unless there is an increase in rescheduling cost. The parameter settings are

the same as in Section 5.4.2. The upper bound of the objective 𝑓2(𝑧) is the worst

cancellation and retiming cost. The highest cancellation and retiming costs occur when

controllers make no rescheduling decisions and allow delay or cancellation to

propagate. Because, in this case, no active remedy is implemented. Thus, this

cancellation and retiming cost can be used as the upper bound. To get this upper bound,

the methodology from Section 5.3.4 is slightly modified; the new methodology is shown

in Figure 31.

226

Figure 31 2-stage multicriteria decision-making approach (2SMO) for multiple delay

scenarios

In step 5, IRSCRR is solved with a single criterion, f1. It means minimising the

rescheduling operations without considering the cost of task cancellations or retiming.

In this case, the tasks that are cancelled and retimed with no rescheduling are obtained.

Then the worst task cancellation and retiming cost can be calculated, which is the upper

bound 𝜀. To obtain the Pareto front for each scenario, in step 6, 𝜀 is gradually decreased

by 10% to obtain a set of optimal solutions.

IRSCRR and 2SMO are applied to 12 instances which differ from each other by the

disruption occurrence time. The results are shown in Table 23. In each scenario, it is

assumed that trains that should depart from a major station between 𝑡 and 𝑡 +

20 minutes are delayed by 20 minutes due to failed infrastructure, where 𝑡 is the

disruption occurrence time set as 7 am, 8am, …, or 6 pm. The rescheduling starts at t

and the recovery period is set as 4 hours. The numbers of drivers and rolling stock units

are found as described in Section 5.3.1.

227

Each row in Table 23 represents a scenario. Each scenario is assigned an ID as “MD_t”,

where t is the disruption occurrence time. Table 23 shows the number of directly

affected trains, drivers, rolling stock units, and solution time. 4 trains are directly

affected for all scenarios except scenario MD_16 and MD_17. The number of drivers

varies from 113 to 161 and the number of rolling stock units varies from 66 to 77. The

number of tasks is at its highest for MD_15 and MD_16.

In the method, 𝜀 is gradually decreased by 10% to obtain a set of optimal solutions.

Thus, the model is solved 10 times for different upper bounds 𝜀 . The solution time

fluctuates from 177 seconds for scenario MD_11 to 839 seconds for scenario MD_17.

The average solution time for one 𝜀 is 1 minute. The number of optimal solutions for

one scenario varies from 3 to 7. For scenarios MD_7 - MD_09 and MD_12, 3

distinguished solutions are found. For scenarios MD_13 and MD_17, 7 solutions are

found.

Table 23 Multiple delay scenarios for testing and results

Scenario Result

Instance

ID

Directly

affected

trains

Number of

drivers

Number

of rolling

stock

units

Number of

tasks

Number of

solutions

Solution

time (s)

228

MD_7 4 137 74 284 3 450

MD_8 4 148 76 286 3 250

MD_9 4 161 74 277 3 344

MD_10 4 156 68 271 6 246

MD_11 4 150 66 254 4 177

MD_12 4 157 75 265 3 189

MD_13 4 151 68 264 7 581

MD_14 4 158 75 293 4 330

MD_15 4 156 77 309 5 270

MD_16 5 137 77 308 4 502

MD_17 5 126 77 296 7 839

MD_18 4 113 74 281 5 418

Figure 32 shows the objectives changes for 12 scenarios. The vertical axis shows 𝑓2 (task

cancellation and retiming) and the upper bounds for 𝑓2. The horizontal axis shows the

objective value 𝑓1 (the total cost of using spare resources, using resources that take new

229

tasks, shunting operations, rolling stock units differences and recovery diagrams). Figure

32 shows a trade-off between objectives 𝑓1 and 𝑓2 in each instance, which matches the

expectations. At first 𝑓2 (blue line) has a large value, which means that many tasks are

either cancelled or delayed and no rescheduling moves are implemented. With a

descending upper bound (red line) on 𝑓2, it starts to drop and 𝑓1 starts to rise, which

means with more rescheduling moves, the cancellation and delay costs drop.

The upper bounds drop by 10% at each step, so in each subgraph in Figure 32, only 10

upper bounds and their corresponding solutions are shown. However, it is clear that

when upper bound 𝜀 decreases, sometimes the same solution is obtained. For some

scenarios (MD_13 - MD_18), when upper bounds drop at a certain level, there will be

no feasible solutions under a small upper bound. For some scenarios, MD_07 - MD_12,

the cost of task cancellations and retiming can be reduced to a low point or to even 0 in

some cases, However, for other scenarios, the cost of task cancellations and retiming

remains high no matter the change of rescheduling effort. The reason for this is that

some rolling stock units have a heavily loaded recovery diagram. The shift back time of

retiming tasks will cause the rolling stock’s terminating task to be delayed more than

allowed. There are steep falls appearing in 𝑓2 for scenarios MD_07, MD_13 and MD_15

- MD_18. It means that with a small cost rising in 𝑓1 , cancellations and retiming costs

can be largely reduced. The reason is that using resources on different tasks can lead to

a big reduction in 𝑓2 but with a slight rise in recovery diagram costs or using spare

resource cost.

230

Figure 32 A set of optimal solutions for 12 multiple delay scenarios

5.6. Conclusion

In this chapter, the integrated rolling stock and crew rescheduling problem with retiming

possibilities (IRSCRR) was considered and the problem is modelled using integer linear

programming. The detailed constraints about crew rescheduling, rolling stock

rescheduling and their cross-reference constraints were presented. Constraints about

231

using task retiming possibilities and retiming propagation are described. 7 different

factors are considered in the objective: cost of chosen recovery diagrams, number of

utilised resources, difference in rolling stock balance, the using of shunting operations,

task cancellations, task retiming and the using of spare resources. A customized 2 stage

framework using multicriteria optimisation methods (2SMO) for solving the integrated

problem was developed. 2SMO has a feedback mechanism which can suggest retiming

possibilities of task that are used in the solution process automatically. The feedback

mechanism can give direction to which tasks should be retimed and by how much, which

can largely decrease problem size. Also, 7 cost factors were analysed and grouped to

construct multiple objectives. The integrated rolling stock and crew rescheduling

problem was solved as a multicriteria optimisation problem. Two typical multicriteria

optimisation methods were used: Convex Combination of Criteria and 𝜀 -constraint

approach.

IRSCRR and 2SMO have been tested on several single delay scenarios and multiple delay

scenarios successfully. For single delay scenarios, the method successfully tested all

scenarios with 84 combinations of weights. The analysis on 84 combinations of weights

was conducted. The relationship between method speed and the number of recovery

diagrams used in a model was described using a figure. 84 combinations of weights can

be categorised into three groups to produce the three most used rescheduling strategies

in practice.

232

For multiple delay scenarios, two objectives were considered. One is rescheduling effort

(cost of chosen recovery diagrams, the number of utilised resources, the difference in

rolling stock balance, the using of shunting operations and the using of spare resources)

and another is task cancellation and retiming. The model and method are applied to a

number of multiple delay scenarios. For each scenario, the model and method can give

an efficient frontier, which is a set of optimal solutions. Also, the efficient frontier shows

the trade-off relationship between rescheduling efforts and cancellation and delay

costs. The solution quality has been analysed. It shows that sometimes with a slight rise

in rescheduling efforts, task cancellation and retiming can drop a lot. Thus, there is

significant value in reducing penalties for train cancellation and delay using the

integrated method to reschedule rolling stock and crew together which might be too

complex for manual rescheduling.

There are some limitations of the model and method. First, the model does not

guarantee that the operations can return to its normal level. The reason is that after

rescheduling, the number of rolling stock units at each station may not match the

required number. Thus, the model and method can provide a rescheduling solution for

crew and rolling stock for the recovery period, say 4 hours. It does not take care of

railway operations after beyond the recovery period. Second, the model does not

consider the maintenance requirements of some rolling stock. During the rescheduling

process, rolling stock are treated as interchangeable and assigned different tasks

compared to their planned diagrams. Some tasks may require the rolling stock to work

overtime. However, in reality, the same rolling stock may need to head to a maintenance

233

depot after some time. Third, the rolling stock and crew are rescheduled together. Thus,

the model assumes that the type of rolling stock that can be used for a task is known in

advance. Then only a driver with knowledge of this type of rolling stock can be assigned

to the task. Fourth, the method 2SMO requires enumerating all recovery diagrams for

rolling stock and crew considered in a model, which could take a long time. In Table 22,

the running time could be as high as 669 seconds for one test. Thus, the method may

not be suitable for an extensive network with many resources (rolling stock and crew)

and a long recovery time in real time disruption management. However, the integrated

model and method can be used in preparing rolling stock and crew contingency plans

beforehand. A set of typical scenarios and corresponding timetable should be prepared.

For each scenario, multiple solutions for rescheduling rolling stock and crew are

expected to be produced. A limited set of solutions can be chosen and further

documented into contingency plans which can be used as a starting point for

rescheduling in real time.

234

CHAPTER SIX: CONCLUSION

235

This thesis has tackled the crew rescheduling problem for railway disruption

management. It analyses the difficulties of crew rescheduling due to a range of factors:

problem size, various constraints, retiming, robust solutions and evaluating solutions.

The main purpose of this PhD project is to develop optimisation models and methods

for crew rescheduling with the intention that these models and methods can be used to

build a reliable decision support system to assist crew controllers in real practice.

To understand the background of passenger railway operation, one needs to recall (as

in Chapter 2 of this thesis) that the two most important railway parties are the

Infrastructure Manager and Train Operating Companies. These two parties perform the

three important railway planning activities: timetable planning, rolling stock planning

and crew planning. Railway disruption management is covered in Chapter 2, where it is

also explained how crew rescheduling fits into the overall railway disruption

management process. Disruptions are categorised. Two categories of disruptions are of

particular interest to this thesis: minor disruptions and significant disruptions.

The new model and method called DFSCR for solving the crew rescheduling problem for

minor disruptions has been presented in Chapter 3. DFSCR takes one uncovered task as

input and typically outputs multiple conflict-free rescheduling solutions. It has been

shown that DFSCR can be applied to scenarios that can happen in everyday practice.

Multiple solutions are found for these scenarios which can be directly used in practice

to ease the rescheduling pressure on controllers by providing significant decision

236

support. The impact of five important parameters in DFSCR: rescheduling start time, taxi

time variation, maximum work overtime, connection time and maximum work length

on solution qualities and quantities has been analysed and summarised. It has been

found that DFSCR solves 150 out of 382 considered scenarios with an average of 4.48

solutions in 0.75 seconds. Other scenarios could not be solved mainly because the input

uncovered tasks of these tests happen very early or late at a station away from major

stations as well as because of the parameter values set in the model. In reality, these

problems may be solved based on different combinations of parameter values or if

controllers could urgently find drivers who are not on duty at the time. A feedback

mechanism is also used to improve the solvability by 6% and the average number of

solutions by 1.13. The experimental results show that using the feedback mechanism

can be a better approach than relaxing the maximum number of affected drivers used

in DFSCR. Thus, using a feedback mechanism can assist controllers to use the

optimisation tools more efficiently.

There is some possible further work relating to the model and method proposed in

Chapter 3. First is to recognise the scale of disruption impact that can be efficiently

solved by DFSCR and extract a list of uncovered tasks from the disruption. Controllers

can review the common disruption scenarios, categorise them and try to extract

uncovered tasks from typical minor disruption scenarios. Second, retiming is used in the

method and further work is needed to address the follow-up conflicts. An automatic

conflict detection method may need to be developed to examine a solution using

retiming. Third, the impact of solving a list of uncovered tasks in different orders on

237

overall rescheduling cost will require further testing on different scenarios and datasets.

Fourth, the parameters used in the feedback mechanism may need to be further tuned

for different TOCs.

A new timetable rescheduling model has been proposed (Chapter 4) to produce a

revised timetable and predict the recovery period which are important inputs to solve

the crew rescheduling problem for significant disruptions. The model can produce

revised timetables which can be used to cover the three stages of the train recovery

process and be used directly as input to reschedule rolling stock and crew. The model

has been successfully tested on 14 scenario variations of a complete blockage on a

double-track line, and the trade-off between train cancellation and delay is presented.

Also, the impact of turnaround time, maximum allowed delay time and blockage

occurring time on rescheduling solutions is presented and analysed. The same

parameter settings may affect timetable rescheduling solutions differently since the

timetable is non-cyclic.

A new model CRP and method LRCG for the crew rescheduling problem for significant

disruptions has been also proposed (Chapter 4). It is explained how to construct and

expand a disruption neighbourhood to limit problem size while producing good

solutions. CRP is a path-based model, where a path represents a recovery diagram.

Solving SPPRC to construct recovery diagrams to optimality is an NP-hard problem. To

tackle this problem, three search methods: bi-directional, forwards and backwards

238

methods are proposed to construct recovery diagrams in LRCG. LRCG can solve the crew

rescheduling problem in a short time, from seconds to a few minutes, which is much

faster than manual rescheduling by controllers. An important discovery is that there is a

direct connection between solution time and iterations of column generation.

Backwards search is the quickest search method and bi-directional search has

advantages in finding solutions with smaller gaps between upper bounds and lower

bounds, for which the reasons are given in Section 4.4.7. The backwards search is

recommended to be used in LRCG to solve the crew rescheduling problem due to its

speed advantage. One suggestion to the further work of Chapter 4 is that different kinds

of significant disruptions should be tested, which requires a new timetable rescheduling

model to produce revised timetables. The same crew rescheduling model CRP and

method LRCG can be used to test different disruption scenarios. Further work is also

required to reduce the possible large gaps between the lower bound and upper bound

of solutions produced by the backwards search in LRCG.

The integrated rolling stock and crew rescheduling problem is explored in Chapter 5.

Detailed formulations are given to model the integrated problem with retiming

possibilities. Two kinds of delay scenarios are studied: single delay and multiple delay

scenarios. The method for solving the integrated problem for single delay scenarios can

replicate the three commonly used rescheduling strategies and 88.1% of the solutions

in the test scenarios belong to these three rescheduling strategies. The method for

solving the integrated problem for multiple delay scenarios can show the trade-off

between operational cost on one hand and task cancellation and retiming on the other

239

hand. The experimental results show that sometimes with a slight increase in

operational cost, task cancellation and retiming can drop a lot, which provides evidence

that using an optimisation tool based on the present work can be of great value to

controllers. One potential improvement is the solution time of the integrated model,

which is much higher than solving a single crew rescheduling model. Thus, this model

and method may be suitable for creating rolling stock and crew contingency plans. Also,

the model does not guarantee that the operations can return to their normal level. Thus,

solving the integrated problem in a rolling time horizon may be required.

Careful consideration needs to be given to selecting the most appropriate tool once a

disruption has been identified. The tool developed in Chapter 3 focuses on minor

disruptions, and the tool developed in Chapter 4 focuses on significant disruptions.

Minor disruption includes delays without specific incident occurring, often including

disruption on certain lines of service groups that are self-contained to some extent. The

service groups usually have limited interaction with other service groups. Significant

disruption sees restricted access to parts of the network, affecting the ability for the

timetable to be delivered. The optimisation tool developed in Chapter 5 is for the

integrated rolling stock and crew rescheduling problem. The method developed in

Chapter 3 may not be a good choice for significant disruptions if a list of a limited number

of uncovered tasks cannot be extracted easily by controllers after a disruption. The

methods developed in Chapters 4 and 5 can be used to solve a minor disruption

scenario. Further tests are required to verify this. The set of affected drivers (rolling

stock) due to a minor disruption and a recovery period should be defined before using

240

the methods and the output can be interpreted as assigning a feasible recovery diagram

to each affected resource.

For real time operations, this thesis provides optimisation tools and examples on how

to reschedule crew for different levels of disruption. Currently, crew rescheduling is

conducted manually in Great Britain and controllers are under huge pressure to find one

feasible solution as soon as possible after disruption happens. Using the optimisation

tools created in this thesis to develop a mature operational product, crew controllers

could potentially find multiple optimised solutions in seconds. Better crew management

during disruptions should lead to better railway performance and passenger experience.

To successfully implement a crew rescheduling solution, immediate communication

with train drivers is essential. In the current GB operational environment controllers

should use various messaging tools like mobile phones or on-the-ground staff to meet

train drivers at a station to communicate working changes. During the day, a crew

management system should be kept up to date once changes to the current diagrams

are decided so the system is always ready for the next disruption.

At the basic level, lessons learned are the tangible result of project review, breaking

down the project experience of what went right, what went wrong and what could be

done better. But these lessons will not amount to much if they are not integrated into

the organisation’s knowledge and used for continuous improvement. Continuous review

and improvement is a key stage in enabling better crew rescheduling for disruptions.

241

TOCs should review the changes made to crew diagrams and the impact of changes on

service recovery to evaluate the operational benefits and cost effectiveness of using the

optimisation tools. The lessons learned should be briefed to all related parties, including

controllers, drivers, and on-the ground support staff. The lessons learned in the

continuous improvement should be used to adapt the crew contingency plans. A set of

typical scenarios and good corresponding solutions should be documented. New

rescheduling constraints found from lessons learned can be used to improve the

optimisation tools. A trial session could be made to rerun the disruption scenarios and

test the improved contingency plans and optimisation tools. To set up a trial session, the

original scenario should be simulated; the corresponding database used for

rescheduling is also required. Thus, the organisation should have a proper traffic

management simulation system and back up the database used for rescheduling. All

related controllers, drivers and on-the ground support staff should attend the trial

session. With such trial sessions, the improvements in contingency plans or optimisation

tools can be tested, discussed and validated by related parties. With knowledge and

experience accumulating, the performance of crew rescheduling can be steadily

improved, which should lead to better railway performance.

The optimisation tools developed in this thesis can be used not only in real time

operations but also in preparing crew contingency plans beforehand. For different levels

and types of disruptions, an appropriate crew rescheduling plan could be created and

used to standardise the decision-making process concerning changes to crew diagrams.

For a set of typical disruption scenarios, with the contingency plans for rescheduling

242

timetable and rolling stock, the methods developed in this thesis can be used to create

crew contingency plans using crew diagrams for a typical operational day. The number

of crew contingency plans should be kept limited, so it does not become overwhelming

for controllers to choose the most appropriate plan. Modifications to a plan are required

if a scenario affects the network differently. It is also highly recommended that any

contingency plans align with the organisations’ other processes to ensure that there is

no potential conflict. Also, it is recommended that the implementation process for crew

contingency plans is learned and rehearsed by drivers during training so they can

understand and accept the changes more effectively during disruptions.

Controller competency training and management is vital to use optimisation tools for

crew rescheduling in disruption management. Some core competencies include:

conducting a starting assessment of crew positions, using optimisation tools,

communicating diagram alterations to relevant parties, requesting on-the-ground

support to communicate with crew, updating the crew management system, recording

disruption scenarios and rescheduling results, reviewing and continuously improving the

rescheduling process. To use the optimisation tools developed from the methods in the

present work in practice, there are some technical and non-technical skills required.

Technical skills include using and understanding optimisation tools, interpretating crew

rescheduling results and determining the changes to the crew diagrams, and using

messaging in the control system. Non-technical skills include situational awareness that

is, when to initiate the rescheduling process and use the optimisation tools,

communicating with related parties about disruption and rescheduling decisions,

243

working with others, decision making, etc. These skills should be looked for in industry

recruitment and thoroughly trained during daily work.

When disruption occurs, passengers may become frustrated. How the industry deals

with the disruption and how quickly the service can be recovered back to the normal

timetable are the common concerns of passengers. However, how industry supports

passengers during disruption can also be vital to their experience. It is clear that when

passengers are given accurate and up-to-date information during disruption, they feel

they have more power in understanding the situation and making the best decisions for

their trips. Thus, besides minimising the disruption impact, a more active approach

should be taken to give passengers with the right information using various channels,

like social media or the front line interacting with passengers.

The models and methods proposed in the present work are ready to move to

implementation in an optimisation tool and practical testing phase. In practical

implementation, we expect that a processing step is required to process the raw data

into the required data format that can be accepted by the methods, as well as that the

outputs from the methods need to be processed and written into the operations system.

A user interface needs to be designed to enable controllers to use the optimisation tool.

An important consideration is that exchanging information between the methods and

other systems like a database may slow down the solution process if the information

flow is not reliable. Thus, minimising the information flow with other systems may be

244

preferred. To verify and validate the optimisation tool, a detailed code inspection should

be carried out to check for good programming style and functional quality. Frequently

occurring scenarios and critical extreme scenarios should be tested and the results

should be compared with the manual rescheduling results from controllers. A testing

report should be generated by controllers using the optimisation tool in a simulated

environment and reviewed by the development team to evaluate the optimisation tool.

The development team needs to verify with the controllers if the aim of using the

optimisation tool has been achieved, which is to ease rescheduling pressure on

controllers and assist them to make better decisions.

245

References

Abbink, E. (2014). Crew Management in Passenger Rail Transport. PhD thesis, Erasmus

University Rotterdam, the Netherlands.

American Public Transportation Association, A. (2019, 6 20). Compendium of Definition

s and Acronyms for Rail Systems. Retrieved 1 24, 2023, from https://www.apta.

com/wp-content/uploads/APTA-Compendium-of-Definitions-Acronyms-for-Rail

-Systems.pdf

Arabeyre, J. P., Fearnley, J., Steiger, F. C., & Teather, W. (1969). The Airline Crew

Scheduling Problem: A Survey. Transportation Science, 3(2), 140-163.

Banihashemi, M., & Haghani, A. (2001). A New Model for the Mass Transit Crew

Scheduling Problem. In S. Voss, & J. R. Daduna (Eds.), Computer-Aided

Scheduling of Public Transport (pp. 1-15). Berlin: Springer.

BCRRE, NetworkRail, RFI, & TV. (2014). Optimal Networks for Train Integration

Management across Europe. Retrieved from Final Report Summary - ON-TIME

(Optimal Networks for Train Integration Management across Europe):

https://cordis.europa.eu/project/id/285243/reporting

Bessiere, C. (2006). Chapter 3: Constraint Propagation. In F. Rossi, P. Van Beek, & T.

Walsh (Eds.), Handbook of Constraint Programming (Vol. 2, pp. 29-83).

Amsterdam: Elsevier.

Budai, G., Maróti, G., Dekker, R., Huisman, D., & Kroon, L. (2010). Rescheduling in

passenger railways: the rolling stock rebalancing problem. Journal of Scheduling,

13, 281-297.

Cacchiani, V. (2008). Models and Algorithms for Combinatorial Optimization Problems

arising in Railway Applications. PhD thesis, Universita Degli Studi Di Bologna,

Italy.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., & Wagenaar, J.

(2014). An overview of recovery models and algorithms for real-time railway

rescheduling. Transportation Research Part B: Methodological, 63, 15-37.

Caprara, A., Fischetti, M., & Toth, P. (1999). A heuristic method for the set covering

problem. Operations Research, 47(5), 730-743.

246

Caprara, A., Fischetti, M., Guida, P. L., Toth, P., & Vigo, D. (1999). Solution of large-scale

railway crew planning problems: The Italian experience. In N. Wilson (Ed.),

Computer-Aided Transit Scheduling. 471, pp. 1-18. Berlin: Springer.

Caprara, A., Fischetti, M., Toth, P., Vigo, D., & Guida, P. L. (1997). Algorithms for railway

crew management. Mathematical Programming, 79, 125-141.

Chiang, T., Hau, H., Ming Chiang, H., Yun Kob, S., & Ho Hsieh, C. (1998). Knowledge-based

system for railway scheduling. Data & Knowledge Engineering, 27, 289-312.

Christian, L., & Hanno, S. (2019). A collection of aspects why optimization projects for

railway companies could risk not to succeed – A multi-perspective approach.

Journal of Rail Transport Planning & Management, 11, 100149.

Clausen, J., Larsen, A., Larsen, J., & Rezanova, N. J. (2010). Disruption management in

the airline industry--concepts, models and methods. Computers & Operations

Research, 37(5), 809-821.

Dantzig, G. B., & Thapa., M. N. (2003). Linear programming: Theory and extensions (Vol.

2). New York: Springer.

D'Ariano, A. (2008). Improving real-time train dispatching: models, algorithms and

applications. PhD thesis, Roma Tre University, Italy.

Department for Transport. (2021). Great British Railways: Williams-Shapps plan for rail.

 Retrieved 9 20, 2022, from https://www.gov.uk/government/publications/grea

t-british-railways-williams-shapps-plan-for-rail

Derigs, U., Malcherek, D., & Schäfer, S. (2010). Supporting strategic crew management

at passenger railways—model, method and system. Public Transport, 2, 307-334.

Desrochers, M. (1986). La Fabrication d'horaires de travail pour les conducteurs

d'autobus par une methode de generation de colonnes. PhD thesis, Universite

de Montreal, Canada.

Ehrgott, M. (2005). Multicriteria Optimization. Berlin: Springer.

Fang, S.-C., & Puthenpura., S. (1993). Linear optimization and extensions: theory and

algorithms. Prentice-Hall, Inc.

Ford Jr, L. R., & Fulkerson, D. R. (1958). A suggested computation for maximal multi-

commodity network flows. Management Science, 5(1), 97-101.

247

Geoffrion, A. M. (1974). Lagrangean relaxation for integer programming. In M. Balinski

(Ed.), Approaches to integer programming (Vol. 2, pp. 82-114). Berlin,

Heidelberg: Springer.

Grossman, T., & Wool, A. (1997). Computational experience with approximation

algorithms for the set covering problem. European Journal of Operational

Research, 101(1), 81-92.

Heil, J., Hoffmann, K., & Buschera, U. (2020). Railway crew scheduling: Models, methods

and applications. European Journal of Operational Research, 283(2), 405-425.

Huisman, D. (2007). A column generation approach for the rail crew re-scheduling

problem. European Journal of Operational Research, 180(1), 163-173.

Huisman, D., Kroon, L. G., Lentink, R. M., & Vromans, M. J. (2005). Operations Research

in passenger railway transportation. Statistica Neerlandica, 59(4), 467-497.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In

J. D. Guy Desaulniers (Ed.), Column generation (pp. 33-65). Boston, MA: Springer.

Jacobs, J. (2004). Reducing delays by means of computer-aided ‘on-the-spot’

rescheduling. Computers in Railways IX, 10.

Kantorovich, L. (1939). The Mathematical Method of Production Planning and

Organization. Management Science, 6(4), 363-422.

Kroon, L., & Fischetti, M. (2000). Scheduling train drivers and guards: the Dutch ”Noord-

Oost” Case. Proceedings of the 33rd Hawaii International Conference on System

Sciences.

Kroon, L., & Fischetti, M. (2001). Crew scheduling for Netherlands Railways ”Destination:

Customer”. In S. Voss, & J. R. Daduna (Eds.), Computer-Aided Scheduling of

Public Transport (Vol. volume 505 of Lecture Notes in Economic and

Mathematical Systems, pp. 181-201). Berlin: Springer-Verlag.

Kroon, L., Maróti, G., & Nielsen, L. (2014). Rescheduling of Railway Rolling Stock with

Dynamic Passenger Flows. Transportation Science, 49(2), 165-184.

Kwan, A. S., Kwan, R. S., Parker, M. E., & Wren, A. (1999). Producing train driver

schedules under different operating strategies. In N. H. Wilson (Ed.), Computer-

Aided Transit Scheduling (pp. 129-154). volume 471 of Lecture Notes in

Economic and Mathematical Systems: Springer-Verlag.

248

Kwan, A., Kwan, R., Parker, M., & Wren, A. (1996). Producing train driver shifts by

computer. In S. K. Kwa, R. S. Kwan, M. E. Parker, A. Wren, J. Allan, C. Brebbia, R.

Hill, G. Sciutto, & S. Sone (Eds.), Computers in Railways V- Vol.1 Railway Systems

and Management (pp. 421-435). Computational Mechanics Publications.

Louwerse, I., & Huisman, D. (2014). Adjusting a railway timetable in case of partial or

complete blockades. European Journal of Operational Research, 235(3), 583-

593.

Mann, D., & Panter, G. (2013). Contingency Planning for Train Service Recovery -Servic

e Recovery. Retrieved 2 1, 2022, from https://www.raildeliverygroup.com/abou

t-us/publications/acop/208-acop-sr2013-contingencyplanningfortrainservicere

covery-issue1/file.html

Narayanaswami, S., & Rangaraj, N. (2012). Scheduling and Rescheduling of Railway

Operations: A Review and Expository Analysis. Society of Operations

Management, 2, 102-122.

NetworkRail. (2022). Retrieved 5 21, 2022, from https://www.networkrail.co.uk/wp-

content/uploads/2017/11/How-rail-timetabling-works-factsheet.pdf

Nielsen, L. K. (2011). Rolling Stock Rescheduling in Passenger Railways. PhD thesis,

Erasmus University Rotterdam, the Netherlands.

Nielsen, L. K., Kroon, L., & Maróti, G. (2012). A rolling horizon approach for disruption

management of railway rolling stock. European Journal of Operational Research,

220(2), 496-509.

Oetting, A., Rittner, M., & Fey, S. (2013). Synchronal algorithms for determination and

evaluation of conflict resolution scenarios for real-time rescheduling.

Proceedings of RailCopenhagen 2013, 5th International Conference on Railway

Operations Modelling and Analysis (ICROMA), May 13th – 15th, 2013.

Copenhagen, Denmark.

Office of Rail and Road. (2013). Managing rail staff fatigue. Retrieved 10 5, 2022, from

https://www.orr.gov.uk/media/10934

Office of Rail and Road. (2015). Understanding the rolling stock costs of TOCs in the UK.

 Retrieved 9 28, 2022, from https://www.orr.gov.uk/sites/default/files/om/und

erstanding-the-rolling-stock-costs-of-uk-tocs.pdf

249

Potthoff, D. (2010). Railway Crew Rescheduling: Novel Approaches and Extensions. PhD

thesis, Erasmus University Rotterdam, the Netherlands.

Rail Safety and Standard Board. (2012). Fatigue Management - A Good Practice Guide.

Retrieved 8 1, 2021, from https://www.rssb.co.uk/standards-catalogue/Catalog

ueItem/RS504-Iss-1

Rezanova, N. J. (2009). The Train Driver Recovery Problem - Solution Method and

Decision Support System. PhD thesis, Technical University of Denmark, Denmark.

Righini, G., & Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource

constraints. Discrete Optimization, 3(3), 255-273.

RSSB. (2020). PERFORM: Enabling better planning and resource management during di

sruption (T1154). Retrieved 10 3, 2022, from https://www.rssb.co.uk/research-

catalogue/CatalogueItem/T1154

Ryan, D. M., & Foster, B. A. (1981). An integer programming approach to scheduling. In

A.Wren (Ed.), Computer Scheduling of Public Transport (pp. 269-280). North-

Holland Publishing Company.

Sahin, G., & Yuceoglu, B. (2011). Tactical crew planning in railways. Transportation

Research Part E: Logistics and Transportation Review, 47(6), 1221-1243.

Sama, M., Meloni, C., D'Ariano, A., & Corman, F. (2015). A multi-criteria decision support

methodology for real-time train scheduling. Journal of Rail Transport Planning &

Management, 5(3), 146-162.

Sato, K., & Fukumura, N. (2010). An Algorithm for Freight Train Driver Rescheduling in

Disruption Situations. Quarterly Report of RTRI, 51(2), 72-76.

Schiewe, P. (2020). Integrated Optimization in Public Transport Planning. Springer.

Serafini, P., & Ukovich, W. (1989). A Mathematical Model for Periodic Scheduling

Problems. SIAM Journal of Discrete Mathematics, 2(4), 550-581.

Shor, N. Z. (1985). Minimization Methods for Non-differentiable Functions. Springer-

Verlag.

Sodhi, M. S., & Norris, S. (2004). A flexible, fast, and optimal modeling approach applied

to crew rostering at London Underground. Annals of Operations Research, 127,

259-281.

250

Stelzer, A. (2016). Automatisierte Konfliktbewertung und -losung fur die

Anschlussdisposition im Schienen-Personenverkehr. PhD thesis, Technische

Universitat Darmstadt, Germany.

Stephen, B., Lin, X., & Almir, M. (2004). Subgradient methods. Lecture notes of EE392o,

Stanford University, Autumn Quarter, 2003.

Stoilova, S. (2020). An Integrated Multi-Criteria and Multi-Objective Optimisation

Approach for Establishing the Transport Plan of Intercity Trains. Sustainability,

12(2), 687.

Suyabatmaz, A. Ç., & Şahin, G. (2015). Railway crew capacity planning problem with

connectivity of schedules. Transportation Research Part E: Logistics and

Transportation Review, 84, 88-100.

T'kindt, V., & Billaut, J.-C. (2006). Multicriteria Scheduling: Theory, Models and

Algorithms. Berlin: Springer.

TransportFocus. (2020). Main Report Spring 2020. Retrieved 9 28, 2022, from National

Rail Passenger Survey: https://d3cez36w5wymxj.cloudfront.net/wp-content/up

loads/2020/07/16180916/Main-Report-Spring-2020.pdf

Vaidyanathan, B., Jha, K. C., & Ahuja, R. K. (2007). Multicommodity network flow

approach to the railroad crew-scheduling problem. IBM Journal of Research and

Development, 51, 325-344.

Vanderbeck, F. (1994). Decomposition and column generation for integer programs.

PhD thesis, UCL-Université Catholique de Louvain, Belgium.

Veelenturf, L. P., Kidd, M. P., Cacchiani, V., Kroon, L. G., & Toth, P. (2016). A railway

timetable rescheduling approach for handling large-scale disruptions.

Transportation Science, 50(3), 841-862.

Veelenturf, L. P., Potthoff, D., Huisman, D., & Kroon, L. G. (2012). Railway crew

rescheduling with retiming. Transportation Research Part C: Emerging

Technologies, 20(1), 95-110.

Verhaegh, T., Huisman, D., Fioole, P.-J., & Vera, J. C. (2017). A heuristic for real-time crew

rescheduling during small disruption. Public Transport, 9, 325-342.

Walker, C. G., Snowdon, J. N., & Ryan, D. M. (2005). Simultaneous disruption recovery

of a train timetable and crew rost in real time. Computer & Operations Reseach,

32(8), 2077-2094.

251

Wegele, S., & Schnieder, E. (2004). Automated dispatching of train operations using

genetic algorithms. Computers in Railways IX, 74, 10.

Williams Rail Review. (2019). Current Railway Models: Great Britain and Overseas. Retr

ieved 3 3, 2022, from https://assets.publishing.service.gov.uk/government/upl

oads/system/uploads/attachment_data/file/786969/current-railway-models-g

b-and-overseas-evidence-paper.pdf

Wren, A., & Kwan, R. S. (1999). Installing an urban transport scheduling system. Journal

of Scheduling, 2(1), 3-17.

Wren, A., Fores, S., Kwan, A., Kwan, R., Parker, M., & Proll, L. (2003). A flexible system

for scheduling drivers. Journal of Scheduling, 6(5), 437-455.

Zeng, Z., Meng, L., & Hong, X. (2018). Integrated optimization of Rolling Stock and Crew

Rescheduling for High Speed Railway. Proceedings of 2018 International

Conference on Intelligent Rail Transportation (ICIRT), (pp. 1-5). Singapore.

Zhan, S., Wong, S. C., Shang, P., & Lo, S. M. (2021). Train rescheduling in a major

disruption on a highspeed railway network with seat reservation.

Transportmetrica A: Transport Science, 18(3), 532-567.

Zhu, Y., & Goverde, R. (2020). Integrated timetable rescheduling and passenger

reassignment during railway disruptions. Transportation Research Part B, 140,

282-314.

