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ABSTRACT

Genome-Wide Association Studies have been carried out with SNP array technology

since 2005, identifying thousands of loci for a great many traits and diseases. There are now

large data sources, such as UK biobank, that provide medical and genetic data of hundreds-of-

thousands of people. However, there is a shortfall in the heritability explained for the pheno-

types that have been assessed. One of the explanations for this deficit is interactions between

genes, called epistasis, that are not detected and so part of the causation missed. In this thesis,

I carry out a comprehensive review of the large number of available epistasis detection tools in

the literature. This is followed by a simulation benchmarking study to assess the ability of a rep-

resentative group of these tools to detect epistatic interactions. From these tools, BOOST, MDR

and MPI3SNP found the most interactions in this simulation study. Next, I set out three possible

strategies for searching in biobank scale data in order to find a best practices workflow. These

were exhaustive searching, an approach tailored to the tools’ strengths and by splitting the data

into linkage disequilibrium-based haplotype blocks and reducing the computational load. A

simulation study was devised that found a mixed approach, using both BOOST and MDR for

different types of interactions. The final pipeline initially uses the BOOST algorithm to find

pure epistatic interactions and filter out insignificant pairs of SNPs. Those remaining variants

with large single-locus effect sizes are assessed with MDR for impure interactions. Those in-

teractions that are identified are assessed for significance, effect size and heritability explained.

Finally, validation is carried out across each interacting pair, incorporating numerous sources of

apr i or i knowledge. This was applied to Atrial Fibrillation, Alzheimer’s Disease and Parkinson’s
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Disease, three diseases that have previously been assessed for interactions. Although no statis-

tically significant results were identified, this approach demonstrated an increased amount of

heritability explained, showing that some of the missing heritability could be accounted for this

way. A downstream analysis method was devised, finding genes in linkage with the interacting

loci, applying a number of functional annotations and searching STRING-db for evidence of

known interactions. Finally, the study was extended to examine rare variants in rare disease

congenital hypothyroidism. As a systemic disorder, it could potentially have pathological in-

teracting mutations. After variant calling, four denovo variants were identified, potentially ex-

plaining the condition. Six related interactions were found, with one not present in the parents,

so possibly explaining the condition. The mutations, present in TG and PD I A4 have evidence

of an interaction in STRING-db and both being involved in thyroid hormone synthesis in the

KEGG database. These contributions provide a novel, tested pipeline for identifying epistasis

from GWAS data, as well as a corpus of simulated data for future researchers. A robust method-

ology is applied for testing resulting interactions statistically, as well as an approach for vali-

dating interactions by incorporating numerous data sources to find significant commonalities

between variants.
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Chapter One

Background

1.1 Thesis Overview

This thesis concerns the discovery of genetic interactions, known as epistasis, a concept that

has evolved since its initial observation just after the turn of the 20th Century. The purpose of

this research is primarily to assist in the search for additional understanding of common inher-

itable diseases, with a view to providing targets for potential therapeutic remedies or biological

markers that can be used to forewarn of future complications. Through this introduction, I aim

to provide the general background information required to be the basis for future chapters and

the basic methodologies used.

Within the subject of genetics, epistasis was discovered early in the embryonic stages of

the founding of what is now a cornerstone of biological study. It is a concept that formed a part

of the development of statistics and population genetics, as they became key driving forces in

our understanding of evolution, the aetiology of traits and the complex networks of molecular

actors that interact within the cell and beyond. Arriving at the 21st Century, with the comple-

tion of the Human Genome Project (HGP), the future of genetics seemed set on translating the

genetic sequence directly into medical advances and the solution of genetic traits.
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Background

It is inarguable that HGP has changed genetic studies monumentally, sequencing is now

commonplace and relatively inexpensive. This has been automated, opening enormous av-

enues of research and moving researchers into roles analysing genetic data rather than labo-

riously capturing genetic sequences (Gibbs, 2020). However, numerous complicating factors

have been recognized, such as those posed by epigenetics, when a gene’s expression can be

repressed by blocking transcription factors from binding, so that the protein it codes for is

not synthesized. The dynamics of RNA in the nucleus, from competing non-coding RNA to

transcription factors. Another, is the complex web of genetic and protein-protein interactions

within the cell giving rise to a trait. It is here that the search for genetic interactions can help

elucidate the functions within the cell, metabolic pathways that are involved in a trait and com-

binations of mutations that give rise to clinical conditions.

This thesis begins with a detailed background of the area of study, including the key

discoveries that defined epistasis and how it was viewed through the 20th Century. It then in-

troduces modern studies of genetics and how they came to be developed, with an overview

of the procedures carried out in order to ensure the quality of results. Finally, the methods of

interpretation of these results are discussed.

The second chapter focuses on the classification of different types of epistasis. There

is a review of the current field of epistasis detection tools. These are then compared using a

small-scale simulation study to find which is most accurate and an assessment of the resources

required. The third chapter builds upon this by examining strategies to search for epistasis in

large datasets, of the type that are currently being studied for genetic associations. The best

strategy is applied to the conditions of atrial fibrillation, Parkinson’s Disease and Alzheimer’s

Disease. Finally, in the fourth chapter the focus is on looking at sequencing data for the rare

disease of congenital hypothyroidism, as appears in a cohort of children with intellectual dis-

abilities and uses a priori data to find interacting genes related to their condition.
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The aims of this thesis are as follows:

• Assess the field of epistasis detection methods available.

• Develop strategies of applying the most effective tools to the latest, large-scale datasets.

• Apply these methods to real examples, with a view to establishing the prevalence of ge-

netic interactions within the formation of traits.

• Quantify the heritability attributable to epistatic interactions.

• Demonstrate the utility of epistasis detection for diseases, including rare ones.

Contributions to the field are:

• Chapter 2 provides the most comprehensive review and benchmarking assessment of

epistasis detection methods to date, with a varied simulated test dataset.

• Chapter 3 is the first simulated study for an end-to-end workflow study for epistasis de-

tection, outside of simple exhaustive approaches. Also carried out are the largest genome-

wide epistasis detection studies for Atrial Fibrillation, Alzheimer’s Disease and Parkinson’s

disease.

• Chapter 4 isolates an unstudied group with a rare disease and proposes not previously

found potential, explanatory mutations for their condition.

1.2 Origins of Epistasis

Epistasis was one of a number of terms defined by William Bateson when genetics was in its

infancy, including ’genetics’ itself. Derived from the Greek, with prefixes epi meaning ’upon’ or

3
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hypo meaning ’under’ and the suffix stasis meaning stopping, his definition was the suppres-

sion of a genetic element upon or by another element. This discovery built upon his previous

work cataloguing discontinuous traits and his recognition of the importance of Mendelian in-

heritance (W. Bateson, 1894; W. Bateson et al., 1909).

His research, with Punnett and Saunders examined a variety of plants and animals, fo-

cusing on traits’ adherence to the Mendelian model. An early example of interest was the comb

of poultry. In the case of rose and pea combed fowl, the resulting progeny only exhibited wal-

nut combs. However, when these walnut combed fowl are bred, the resulting progeny have one

of the four phenotypes in a ratio of 9:3:3:1 of walnut:rose:pea:single (Figure 1.1). The Punnett

Square is used to demonstrate the Mendelian relationships of dominance and recessivity, in or-

der to understand how those ratios are produced. There are two alleles described as R/r and

P/p, with a demonstrative interaction between the two factors. Bateson explains this with the

’Presence and Absence’ hypothesis, in which the alleles represent rose/no rose and pea/no pea.

When the fowl has both rose and pea, they exhibit a walnut comb. Conversely, in the absence

of the rose and pea alleles, a single comb is produced (Punnett, 2009; W. Bateson, 1905).

It was in his 1909 book that Bateson expanded his definition of genetic interactions be-

yond this hypothesis. Examining the case of the colour of rabbits’ fur. Albinism is observed

as a recessive trait to grey fur, so a cross of coloured rabbits by albino rabbits produces first

all grey rabbits, with the following generation normally yielding a ratio of 3 grey to 1 albino, as

expected under a model of Mendelian Inheritance. However, there were some rabbits bred in

which an exception was observed. Here, the second generation also resulted in black rabbits

as well, in the ratio 9 grey to 3 black and 4 albino. Since the black phenotype only existed in

some experiments, this was taken to be a separate genetic element to grey. This means there

are three genetic elements; absence or presence of colour; greyness; and blackness. However, in

the presence of greyness, the black colour was suppressed (Figure 1.2. He described grey fur as

being epistatic to black fur, with the reverse situation being called hypostatic (W. Bateson et al.,
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Figure 1.1: Punnett’s illustrations of the experiments regarding poultry comb classification. Of the four

fowl - A, pea; B, rose; C, single; D, walnut. The tree diagram shows the experimental procedure. Fowl

with the rose and pea comb type were bred, resulting in fowl with a walnut comb. When the walnut

comb fowl were bred, the progeny displayed four different each of the four comb phenotypes, with ratios

in brackets underneath. The table shows a Punnett Square, illustrating the allelic combinations found

(Punnett, 2009).

1909).

1.3 Development of Epistasis in Population Genetics

The early decades of genetics include contributions that are still in use today and deserve some

discussion. R.A. Fisher, was responsible for many statistical innovations, such as his Exact test,

variance, and maximum likelihood estimation (Efron, 1998). He was immersed in biological

research throughout his career. In his early days at Cambridge, he addressed an issue of interest
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Figure 1.2: Punnett Square showing the different genotypes of rabbit fur colour. C/c refers to coloura-

tion, G/g greyness and B/b blackness in which the uppercase allele indicates presence and the lowercase

represents absence. The phenotype present is written in the lower, right corner of each square (W. Bate-

son et al., 1909).

to Bateson, reconciling Mendelian discontinuous traits with quantitative continuous traits in

terms of evolution. His solution was that additivity of many discrete Mendelian factors could

lead to a continuous outcome (Piegorsch, 1990). It is from this contribution that we see his

interpretation of epistasis. Here he presents ‘epistacy’ as a deviation from additivity for a quan-

titative phenotype (Fisher, 1919).

Another influential figure was Sewall Wright. His Shifting Balance Theory attempted to

explain evolution by observing generations of livestock. He had been observing many traits

through experiments and creating tree diagrams to show how genotypes were mapped (Wright,

1920). Taking the lower estimate at the time, of 1000 genes per higher organism and assuming

10 ’allelomorphs’ or alleles of each gene, he calculated 101000 possible genetic configurations.
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Thus, even at the lower boundary, enormously complex networks of genetic combinations were

possible. In this very highly dimensional space, he foresaw different combinations of genotypes

lending more or less beneficial adaptions. He imagined this in the form of a landscape with

peaks and troughs of fitness. Within this landscape, he envisioned that alleles of a gene that may

be helpful in combination with alleles of another gene, could be detrimental when combined

with certain alleles of a different gene (Wright, 1932).

Wright and Fisher were in correspondence during this time, and their disagreements

culminated in what is known as the Fisher-Wright Controversy. Leaving aside other parts of

this discussion, essentially Fisher viewed evolution as being driven by many mutations with

small effects over a large population. However, Wright saw genetic combinations as pervasive,

with evolution driven towards mutations that favoured a systemic improvement in fitness of the

organism via complex biochemical interactions (Skipper, 2009). Assessing their insights from

the present day, it is remarkable how their thoughts now complement current discoveries, with

studies often finding many mutations with small effects leading to a trait and also, the complex

webs of protein-protein interactions that exist within biological systems.

As a result of these debates and innovations over time, a shifting definition of epistasis

has occurred. There are three factors that need to be considered. Firstly, the outcome variable

makes some difference in how we conceptualize the interaction. The main categories are con-

tinuous phenotypes, such as height, and another for a binary trait, often presence or absence of

a clinical condition. Secondly, there is the model of epistasis. As we saw in Figure 1.2, Mendelian

relationships can occur between genotypes in epistatic relationships. However, we must con-

sider all possible genotypes of a pairwise interaction - AA, Aa, aa and BB, Bb, bb. Combining

these gives nine possible genotypes. Analysis of all possible conformations of these genotypes

using a combinatorial model of point configurations using the package TOPCOM reveals there

to be 387 possible models, made up of 69 symmetrical classes. This includes combinations of

Mendelian inheritance as well as less obvious relationships. Finally, effects can be dominant,
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additive, and multiplicative in their influence over the dependent variable (Hallgrímsdóttir et

al., 2008).

1.4 Complex Disease and Genetic Modelling

1.4.1 Complex Disease

Complex diseases are polygenic and involve multiple factors, including environmental drivers.

Complexity arises from the systemic biochemical networks and physiological systems coordi-

nating in such a way to bring forth a given phenotype. The human population has a relatively

long history, adapting to many environments and having undergone numerous striations. This

has led to a diverse range of genetic and environmental influences and evolutionary pressures.

The result is heterogeneity, with multiple causes for the same trait. From an additive perspec-

tive, there is a view that an individual can inherit a number of genes or have mutations which,

above a threshold, will lead to a condition. Different mutations can collectively be risk factors,

leading to pervasive heterogeneity. Then there are interaction effects, such as gene x gene or

gene x environment interactions, with some genes potentially leaving an individual vulnerable

to certain environmental triggers. Another factor is the life cycle impacting or triggering a trait,

such as developmental stages like puberty or ageing with wear and tear, predisposing a person

to a particular phenotype (Schork, 1997).

However, there are further layers of entanglement due to factors which affect genetic

expression and regulation. From an environmental perspective, epigenetics can play an impor-

tant role in gene expression as a result of cellular activities or external drivers (Lehnen et al.,

2013). DNA methylation, histone modification and chromatin structure can cause changes in

gene expression. An example is how gestational malnutrition and overnutrition can lead to di-
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Figure 1.3: Graphic to show the various factors affecting complex diseases

abetes later in life. Within the considerations of transcription, RNA can be spliced in different

ways and short non-coding RNA can affect the translational rates of other RNA and is impli-

cated in a wide variety of disorders (Cooper et al., 2009). RNA splice sites are coded within the

DNA sequence. Additional to other regions such as transcription factors, they form a network

of gene regulatory structures. Thus expanding genetic complexity beyond just gene coding re-

gions (Szathmáry et al., 2001). Altogether, this provides many lines of investigation into the

drivers and networks of factors contributing towards heritable disease.

1.4.2 Genetic Variation in Humans

The human genome is stored in standardized builds, with the latest release from the Genome

Reference Consortium (GRC) being GRCh38 (submitted 2013/12/17) (GRCh38 n.d.). Whilst this

has been surpassed in coverage by the Telomere-to-Telomere Consortium (T2T), it is still the
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reference build in most use, so we will focus on the GRC build (Nurk et al., 2022). It spans

3,099,734,149 base pairs across all chromosomes and mitochondrial DNA (Yan Guo et al., 2017).

Genetic annotations have been documented by the GENCODE consortium, with the latest ver-

sion being GENCODE 41. Genetic features are annotated manually and with aid of computa-

tional tools or experimental data. From this work, they have identified 19,804 protein-coding

genes, 25,134 non-coding genes and 15,240 pseudogenes, with the latter two coding for RNA,

that can serve a function and inactive, archaic genes respectively (Frankish et al., 2021).

Variation in the human genome comes in a range of different forms. The simplest is

the point mutation, known as a single nucleotide polymorphism or variant (SNP/SNV). The

database dbSNP contains all known SNPs across all populations. Its most recent version, build

155, has recorded 660,773,127 SNPs, known as a RefSNP and designated a number starting with

’rs’ (Sherry et al., 2001). There are additional structural variants, such as insertions and deletions

(InDels) of base pairs to the genome. It is worth mentioning that shorter examples of these

have been included in the dbSNP count of SNPs, with verified larger variations being stored in

dbVar. There are many forms of structural variation, a more common type are copy number

variations (CNVs). These are short repeating sequences that can extend for thousands of base

pairs (Lappalainen et al., 2013). A more extreme type of structural variation is the loss or gain of

an entire chromosome, known as aneuploidy. This kind of variation is the leading genetic cause

of miscarriage and congenital birth defects (Hassold et al., 2007).

For any one mutation, irrespective of the type, its presence in the population relies upon

a few factors. The mutation can be a germline or somatic mutation. Indicating that it was in-

herited from parental gametes or occurred within the individual’s life, respectively. In common

diseases, the mutation is likely to be a germline mutation that has been transmitted through

generations, as such, the mutation cannot be so severe that it inhibits the chances of that hap-

pening. This relates to the penetrance of the mutation, the amount of negative effects imbued

from the genetic defect (Donaldson et al., 2015). Mutation rates in germline cells, have been
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Rare Disease Common Disease

Genetic Architecture Monogenic Polygenic

Penetrance High Normally low

Location Coding regions Mixed coding and non-coding

Discovery Family studies Large population and association studies

Table 1.1: Comparison of common and rare diseases (Frayling, 2014)

estimated to happen at a rate of approximately 64 per generation, with more found in the male

gamete (Drake et al., 1998). Mechanically, mutations also occur at particular hotspots, given

that more point mutations and indels are clustered within repetitive DNA sequences. This is

theorized to happen as these regions can stall the enzyme DNA polymerase (McDonald et al.,

2011). So, we can see certain regions are more prone to mutation. Since those that are more

damaging are less likely to remain in the population, there exists the relationship seen in Table

1.1. Monogenic diseases have single, high penetrance risk alleles with rare mutations and the

opposite being true for common, complex diseases (Frayling, 2014).

1.4.3 Quantifying Heritability

Since complex diseases have many different drivers, it is useful to estimate how much of the

cause is genetic and how much environmental. For this, we use the metric known as Heritabil-

ity. This measure is defined as the degree of the phenotype’s variance that can be explained by

variance of genetic factors. Here, the variance of the phenotype is equal to the sum of the vari-

ance caused by genotype, environment, and interactions between these. The genetic variance

can be further broken down to the sum of the variance of additivity, dominance and genetic

interactions. There are two types of heritability. Broad-sense heritability, H 2, is the proportion

of phenotypic variance caused by genetic variance, given as:
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H 2 = VG

VP
(1.1)

with VG being genetic variance and VP as phenotypic variance. Narrow-sense heritabil-

ity, h2 is the proportion caused by additive effects:

h2 = VA

VP
(1.2)

With VA as variance attributable to genetic additive effects. It is important to note that

heritability varies from population to population, so is not absolute and cannot be transplanted.

It also does not quantify the proportion of the phenotype that is caused by genes, since it is

based on variance. There can also be some confusion regarding familial traits. Family’s share

genes but often share the same environment and that can play a role in related individuals hav-

ing certain outcomes (Russell, 1998).

1.4.4 Genetic Linkage

The theory that inheritance happened through the chromosome was developed in 1903, estab-

lishing that genetic material could be transmitted in groups (Sutton, 1903; Baltzer, 1964). It was

Bateson et al. who first observed linkage between inherited traits. In their experiments with

sweet pea between flower colour and pollen grain length, they observed that the phenotypes

were transmitted together (W. Bateson et al., 1905). Later, in experiments with thousands of D.

Melanogaster, Morgan was able to observe that eye pigmentation and vestigial wing inheritance

were for the most part inherited together. There were cases in which this linkage did not occur,

however. He theorized this was due to crossing over of chromosomes in meiosis and the loss

of linkage, potentially indicating the distance between genes (Morgan et al., 1915). Now known
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primarily as the recombination rate, this process also bears his name as its unit of measure-

ment, normally in centimorgans (cM). His student, Sturtevant, first demonstrated that genetic

elements were linked in a linear fashion, in terms of percentage of ’cross-overs’ between dif-

ferent elements (Sturtevant, 1913). He was able to create maps of these linked traits, with the

recombination rate used to demonstrate the distance between the genetic elements.

Haldane devised a mapping function, since named for him, to better estimate distances

from data on recombinations. His formula uses the natural logarithm to correct for unobserved

recombination sites based on a Poisson distribution, allowing for more accurate genetic maps.

It is also here that he introduces the measurement of distance as cM (Haldane, 1919).

It was Morton who developed a method to better understand linkage in Homo Sapiens.

He recognized the limited sample sizes available in human experimentation, when compared

to the possibilities allowed by growing sweet pea or breading D. Melanogaster. He was able to

develop the logarithm of the odds (LoD) score as a more powerful metric for estimating linkage

within families. This uses pedigree information within a family and takes the logarithm of the

probability of the sequence with linkage, divided by the probability without linkage (Morton,

1955). By these techniques, researchers have been able to identify genetic variants leading to

Huntingdon’s disease and the mutations in the BRCA genes involved in breast cancer (MacDon-

ald et al., 1992; Hall et al., 1990).

1.4.5 Linkage Disequilibrium

The principle of linkage disequilibrium (LD) was introduced by Lewontin and Kojima (1960).

This describes how linkage appears across multilocus polymorphisms. In the absence of linkage

and given random mating, the alleles of two loci should appear as probabilistic functions of

their allele frequencies. However, in the presence of linkage between the two sites, this breaks
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down into disequilibrium. They provide a metric denoted D to demonstrate LD at two loci, A

and B with genotypes of g . The minor allele frequency (MAF) of A is p and for B is r .

D̂ = g AB · gab − g Ab · gaB (1.3)

= p · r × (1−p)(1− r )−p(1− r )× r (1−p) (1.4)

It is expected that in the case of linkage equilibrium, this number will be 0. As a metric,

it is somewhat limited when it comes to making comparisons between different pairs of loci,

given that the range of values is dependent on the allele frequencies present. In order to stan-

dardize it, the resulting value is divided by the maximum possible absolute value with the given

allelic frequencies. This is known as D ′ (D prime) and has ranges between -1 and 1 (Lewontin,

1964). However, the D ′ value performs poorly in cases of low allele frequency, as the outcome

remains small. It also is not a good measure to predict from one locus to another. To overcome

both of these issues, the squared correlation coefficient is used, denoted r 2 that extends D and

its parameters:

r 2 = D2

p
(
1−p

)
r (1− r )

(1.5)

In this case, the correlation is calculated, yielding values ranging from 0 to 1. A score of 1

indicates that both loci provide the same information (W. G. Hill et al., 1968; Laird et al., 2011).

1.4.6 Genome-Wide Association Studies

Following the elucidation of the structure of DNA and efforts to sequence parts of the chromo-

some, a greater granularity in the study of genetic material was realizable. It is at this point that

14



Background

it is possible to identify a mutation as a change in nucleic acid present on the DNA strand. This

gave rise to the association study, in which a small part of the DNA was sequenced for a cohort

of unrelated individuals. This allowed researchers to break free of the limitations of pedigree

based, linkage studies and use more samples in a more generalizable, large population. This

was typically done by sequencing a part of a gene and then carrying out a simple test, such as a

χ2 test (Braude et al., 1986; Bell et al., 1984; Svejgaard et al., 1994).

These tests often had problems with reproducibility and false positive results, with larger

sample sizes and confounding factors having the potential to overcome these issues (Hirschhorn

et al., 2002). Risch et al, in 1996, demonstrated that association analysis had more statistical

power than linkage studies. They suggested that the future of genetic studies would be in much

larger scale versions, with many more samples and across the whole genome. By using LD to

infer some loci, it could be possible to carry out such tests at scale, given technological im-

provements. This was the birth of the concept of the genome-wide association study (GWAS).

It is also here that we see the now commonplace, significance threshold for GWAS set at 5e −8

as a Bonferroni corrected estimate for the number of genetic markers estimated to be needed

for thorough coverage that is still used (Risch et al., 1996).

Data Collection

SNP Microarrays

DNA probes were developed with complementary sequences in 1979 to demonstrate the pres-

ence of specific genotypes via hybridization, the process of two complementary sequences of

DNA binding (Wallace et al., 1979). The later development of the Polymerase Chain Reaction

to amplify volumes of DNA was also a major milestone (Saiki et al., 1985). From these roots,

SNP Microarrays were introduced, with the first from Affymetrix composing of 135,000 probes,
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complementary to sequences in the human Mitochondrial genome (Chee et al., 1996). This

larger scale, parallel identification of specific genetic material started the process of reaching

the technology required for GWAS (Landegren et al., 1998).

Capturing a genome in its entirety at this time was prohibitively expensive, with the Hu-

man Genome Project running for over a decade at a cost of around $3 billion (Human Genome

Project Fact Sheet n.d.). Instead, SNPs had been identified as a major source of genetic variabil-

ity and more straightforward to capture. The basic approach is to have hundreds-of-thousands

of immobilized oligonucleotide sequences about 25 base pairs in length. The captured DNA is

cut into small sequences by enzymatic action, the sequences that complement the probes hy-

bridize with them. An additional nucleotide base is added to the sequence with a fluorescent

tag, colour dependent on which base. The light emitted is recorded to indicate the genotype at

that location (Orntoft et al., 2006; McGall et al., 2002; Kallioniemi, 2001). As of 2018, the cost per

sample of conducting SNP capture for a human stood at $28-$95 (You et al., 2018).

Next-Generation Sequencing

Next-Generation Sequencing (NGS) allows for a greater resolution of genetic data capture and

the collection of rare variants. It is a more expensive option compared to SNP Microarrays, with

whole-genome sequencing (WGS) costing €1669 and whole-exome sequencing (WES) costing

€792 as of 2016 (Nimwegen et al., 2016). The process is achieved using a number of method-

ologies. Illumina is the major producer of these machines. Initially, a process called bridge

amplification is used, in which short reads of DNA are repeatedly copied whilst being held by

a ligated adapter to a glass surface with short complementary oligonucleotides. Following this,

a process called sequencing by synthesis creates complementary sequences to those captured

on the glass using fluorescently labelled modified bases. As these are added, they release a

coloured light that is detected, similar to how microarrays work (Slatko et al., 2018). At this
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stage, the data is a collection of short strings of base readings. These are aligned against the ref-

erence, with multiple overlapping reads giving depth of coverage at any one point. At this stage,

algorithms can be used to assess the genotype along the genome in a process called variant

calling, usually generating a variant call format file (VCF) (Muzzey et al., 2015).

Early GWAS

The early stages of GWAS were dependent upon the discovery of locations of SNPs as well as

details around the LD structure of the genome. These needs were provided for by the Human

Genome Project and the HapMap Project (Lander et al., 2001; Venter et al., 2001; Altshuler et al.,

2005). The HapMap Project extended the work undertaken in the Human Genome Project by

sequencing people of different ethnic backgrounds to better understand the variation present

in different genomes, but also to map the LD patterns and how they appear as haplotypes. Using

this information, SNP arrays could be better targetted to provide as much information on an

individual’s genome as possible, using inference by LD (Ikegawa, 2012).

As the technique was developed and popularized, there were mistakes made along the

way that demonstrated the need for rigorous quality control. The most high profile was the

Wellcome Trust Case Control Consortium (WTCCC) (Winzer et al., 2006). This was the largest

GWAS to date, but the procedures that were used to carry out the sample collection and analysis

led to bias. Different labs collected and processed case and control data at different geographi-

cal sites and with different array chips. This led to an enormous number of the loci generating

tiny p-values when they were, in fact, false positives (Lambert et al., 2012).

As well as these problems inherited from new experimental procedures and equipment,

there are sources of error that had been previously identified in association studies a decade

earlier. One issue is contamination during the extraction and processing steps that can be de-

tected at later stages (Jun et al., 2012). There are also the problems of population stratification
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and cryptic relatedness. The former refers to the difficulties arising from different ancestral

haplotypes. If there is an ethnically admixed cohort and an imbalance between cases and con-

trols, then this can give rise to significant signals that are not due to the trait (Hirschhorn et al.,

2002). Cryptic relatedness refers to unknown relatedness within the cohort that can also skew

significance tests (Voight et al., 2005).

GWAS Procedures

At this stage, the process of carrying out a GWAS is, essentially, standardized. QC is of critical

importance, before any testing can be applied. The steps can be broadly split into those that

assess the data on a SNP-by-SNP basis and those that look at the individual samples. For both,

tests are carried out for the proportion of missingness, since this can uncover problems with a

probe in the array chip or a poorly prepared sample (Marees et al., 2018).

Marker QC

Finding SNPs that could have been affected by some kind of artefact in the equipment used,

or some other factor, is important to avoid skewed results. The Hardy-Weinberg Equilibrium

(HWE) is a theorem that was developed by two mathematicians regarding the allele frequencies

within a population. It had previously been thought that under Mendelian inheritance, reces-

sive alleles should reduce in frequency with the population. However, this has been observed

to be untrue. In HWE, it was shown that allele frequencies, p and q remained stable across

generations, as in the equation:

1 = p2 +2pq +q2 (1.6)
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In cases where the allele frequencies present don’t conform, it is therefore possible that

something has gone wrong with the collection of this data. The test has traditionally been car-

ried out using an exact test, however other methods have also been developed (Weinberg, 1908;

Hardy, 1908; Emigh, 1980; Wigginton et al., 2005). A threshold for the significance of the de-

parture from HWE is used in order to remove those markers that have allele balances that are

too distant from the expected balance. The threshold used differs between studies from around

p < 1e − 5 to a popular GWAS tool’s manual, in which it is stated that a cut-off of p < 1e − 50

should filter out serious genotyping errors (Coleman et al., 2016; Input filtering - PLINK 1.9

n.d.).

Another commonly used marker filter is MAF. Part of the reason for this is simply having

the statistical power to reach a significant p-value with the given number of samples accurately.

Statistical power is a measure of the probability that any one significant result is a true positive.

This is dependent on the effect size, sample size and the accuracy of the apparatus, however a

value of 0.05 for MAF has commonly been used (Sham et al., 2014; Robert J Klein, 2007). Recent

research has shown a reduction in the quality of SNP array data calls for MAFs of less than 0.01

(Van Hout et al., 2020).

Sample QC

Sex Chromosome and Heterozygosity

A useful test that is usually implemented takes us back to Wright. He was interested in the quan-

tification of inbreeding in a population and introduced his inbreeding coefficient, F (Wright,

1922; Wright, 1950). Since heterozygosity is less common under inbred conditions, this is the

focus of the statistic. It can be calculated in GWAS:
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F̂ = 1− O(Het )

E(Het
(1.7)

Taking the observed number of heterozygous SNPs divided by the expected number un-

der HWE at each locus (Laird et al., 2011). This operation can also be carried out to test if the

X chromosome material is as expected in males and females. Standard thresholds expect an

estimate of F less than 0.2 for females and greater than 0.8 in males (Purcell et al., 2007).

An indicator that is used to indicate either inbreeding or contamination is the rate of

heterozygosity in the individuals. As previously stated, low heterozygosity is a sign of poten-

tial inbreeding, whereas high heterozygosity is likely due to a mix of different genomes, as in

contamination. This can be calculated using the method-of-moments and estimating the f

coefficient:

f̂ = O(Hom)−E(Hom)

nobs −E(Hom)
(1.8)

The expected counts are based on MAFs and HWE and nobs is the total count of obser-

vations (Purcell et al., 2007; Weir et al., 1984). Using this value, samples tend to be filtered out

when they fall beyond three standard deviations in either direction from the mean, excluding

potentially 0.3% of the population as extreme outliers (Reid, 2010).

Identifying Relatedness and Population Stratification

These two potential confounding factors are important to control for, since failure to do so

could lead to many false positive results. This would occur as a result of shared genotypes owing

to ascendents or ethnic genotypes that are irrelevant to the trait of interest. However, this also
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means that these properties can be derived using the genetic data. There have been a number

of different approaches suggested for dealing with these, but here we will highlight the most

prevalent (Sillanpää, 2011).

Both procedures require some preprocessing of the genetic data. They are carried out

under the assumption of linkage equilibrium and as such, those in high LD are pruned out of

the dataset. This can be achieved by using a priori knowledge of particular regions, testing for

LD across the data or both (Weale, 2010).

In order to quantify relatedness, cryptic or otherwise, there are a number of methods

available. There are two key terms, identity-by-state (IBS), which refers to a particular allele in

an individual that can be compared with another at the same locus and identical-by-descent

(IBD), which refers to the sharing of an allele as a result of inheritance from a shared ascendant

(Thompson, 1974). A well established metric for relatedness is the kinship coefficient, the prob-

ability that a randomly sampled allele on an autosomal chromosome in two individuals is IBD

(Sonesson et al., 2005). It is represented by φ as a function:

2φ= π1

2+π2
(1.9)

where π indicates the probability that the individuals share either 1 or 2 identical states.

In GWAS data, heterozygous alleles are impossible to derive since the chromosome each allele

is on is not clear and so they are not equivalent. In the software KING this is estimated for GWAS

data with the kinship coefficient:

φ= NAa,Aa −2NA A,aa

NA ai +N j
Aa

(1.10)

Where N is the total number of SNPs with a certain genotype, NAa,Aa when both samples
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are heterozygous, NA A,aa the total number when each sample is homozygous for the opposite

allele and NA a the total number of heterozygous loci for sample i and j .

The program PLINK uses IBD estimation to quantify relatedness, π. This is calculated

using P (Z = z) were Z is the IBD state for the entire genome. In turn, these are derived from the

count of N loci that have equal IBS of I :

P (Z = 0) = N (I = 0)

N (I = 0|Z = 0)
(1.11)

P (Z = 1) = N (I = 1)−P (Z = 0)×N (I = 1|Z = 0)

N (I = 1|Z = 1)
(1.12)

P (Z = 2) = N (I = 2)−P (Z = 0)×N (I = 2|Z = 0)−P (Z = 1)×N (I = 2|Z = 1)

N (I = 2|Z = 2)
(1.13)

π= P (Z = 1)

2
+P (Z = 2) (1.14)

In each of the previous cases we can assess the relationship, however slightly confus-

ingly, the outcomes are presented slightly differently. The score derived by the Kinship coeffi-

cient is equivalent to half of the PLINK IBD assessment (Table 1.2) (Purcell et al., 2007). Often,

the next step is to find any relationships from third degree relatives (first cousin, great grand-

parents, great uncle/aunt) and closer (Anderson et al., 2010). Commonly, the individual with

the least missing data or those without the trait being studied are removed. This is to maintain-

ing statistical power, those with more missing data are not included in tests for missing loci and

typically cohorts have more controls than cases, so removing controls is preferable.

Finding a population structure within the genetic data is a less precise process, due

to admixture of populations over history. Principal component analysis (PCA) is a technique

that was introduced to genetics to map human evolutionary history across a selection of loci
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Relationship Kinship Coefficient PLINK IBD

Parent-Offspring 0.25 0.5

Full Siblings 0.25 0.5

Half Siblings 0.125 0.25

First Cousins 0.0625 0.125

Second Cousins 0.0156 0.0625

Table 1.2: Relatedness measures (Lange, 1997; Anderson et al., 2010)

(Menozzi et al., 1978). It is a technique that can be used for large multivariate datasets in order

to reduce the number of dimensions by searching for the maximum possible variance. The di-

rection of most variance is the first principal component (PC) or eigenvector. The second PC

is the maximum variance at a right angle to the first PC. This can continue with each subse-

quent PC explaining less genetic variance. Tools such as SMARTPCA can programmatically find

outliers that could be indicative of a very different ancestry group. Alternatively, the principal

components can be plotted and outliers manually identified (Patterson et al., 2006; Price et al.,

2006).

Association Testing

Standard practice for GWAS has been to test each locus one by one, with a chosen statistical

test. Since Risch suggested it, the significance threshold has basically been remained at 5e −
8, a Bonferroni corrected standard α of 0.05 divided by 1e6. This is based on an estimate of

the number of genes and quantity of diallelic alleles found within them, and is the de facto

standard used in GWAS (Risch et al., 1996; Morris et al., 2007). Many of the problems addressed

in QC had long been identified by the time of the first GWAS, with discussion around statistical

tests confronting the issues of stratification, relatedness and power (Thomas et al., 2005). As a
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result, GWAS has often used ethnically homogeneous groups in order to not interfere with a test

statistic such as χ2 (Robert J. Klein et al., 2005).

However, due to the complex nature of the diseases being studied and potential sources

of bias, corrected regression is now the normal approach, with linear regression for quantita-

tive traits and logistic regression for binary outcomes. This allows correction for fixed effects,

such as PCs generated to account for population stratification and also other environmental

confounding factors, such as body mass index (BMI) or age. The covariates can be represented

as W as a vector of effect sizes α, with each locus x and effect size β for trait Y , under the as-

sumption of an additive model. Now, the model can be summarized as:

Y = a +αW +βx (1.15)

Given a continuous trait, the coefficient of determination (R2) can be calculated to mea-

sure the variance explained by the model, as well as a p-value and effect size based on an F test

for each variable. Given a binary trait, a likelihood ratio test is performed to estimate signifi-

cance and effect size (Uffelmann et al., 2021; Purcell et al., 2007; Laird et al., 2011).

An additional modification is found in the tool GEMMA and others (X. Zhou et al., 2012).

They employ a relatedness matrix. The relatedness matrix contains an eigen-decomposition

of the genetic material. This can then be incorporated into a mixed model as a random effect.

As a result, sample sizes can be maximized by retaining any related individuals and cryptic

relatedness can be combatted (Xiang Zhou et al., 2012; Mbatchou et al., 2021; Astle et al., 2009).
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Imputation

Since the loci included in the array are selected within LD windows, other variants that are

known to be in linkage with them can be predicted with differing levels of accuracy. This process

has greatly benefitted from the knowledge that has been gathered about the human genome

across numerous ethnic groups in projects such as 1000 Genomes and the phases of HapMap.

Using this information, haplotypes can be inferred, and probabilistic models built, normally

using Hidden Markov Models (HMM) (Abecasis et al., 2005; Li et al., 2009). The most recent

tools are focussed on making these processes more computationally efficient, to deal with the

ever-increasing size of datasets and genomic panels (Rubinacci et al., 2020).

Success of GWAS and Limitations

GWAS have been carried out enthusiastically since their inception. The GWAS Catalog is a cen-

tral repository for recorded GWAS and the significant hits found (Buniello et al., 2019). As of

August 2022, the team had collected results from 5,931 publications and recorded 415,784 asso-

ciated variants. This includes work from what so-called biobanks, in which individuals provide

biological samples such as blood, urine, and saliva. This can then be analysed for metabolites

or other standard measures. Some collect magnetic resonance imaging (MRI), electrocardio-

gram (ECG) and other routine medical tests. Alongside this is demographic information and

behavioural data collected from interviews and questionnaires. The largest of these is Biobank

Ganz with samples from 20 million individuals (Huppertz et al., 2016). However, Chinese efforts

have seen numerous biobanks started with the aim of including around 100 million individu-

als (Gan et al., 2015). In the UK, the UK Biobank has yielded over 3,000 publications and has

a wealth of data from half-a-million people to explore from many angles, including genetics

(Allen et al., 2012).
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A study in 2000 noted that it takes an average of 17 years for a basic biological discovery

to translate to the clinic (Balas et al., 2000). Since the first GWAS was in 2006, in 2023 we should

perhaps be seeing practical applications derived from GWAS. Certainly, the wealth of genetic

markers identified has offered many biological insights into the aetiology of diseases and traits.

There has been a rapid proliferation of studies and common reproducibility of results, often

targetting many different traits. This has ushered in the possibility of conducting meta-studies,

in which multiple cohorts can be easily combined to increase the statistical power and identify

more associations (Zeggini et al., 2009). This has also been extended to demonstrating causal

relationships using the technique of Mendelian Randomization (MR) (Sanderson et al., 2022).

One area of development for early detection of diseases is that of polygenic risk scores

(PRS). These summarize the different markers with an effect size above a threshold, in order to

allow comparisons with individuals outside of the study data used. This is achieved by using

weighted scores for individual risk loci, leading to a global score. They can then be validated in

other cohorts or in a test portion of the dataset (Wray et al., 2021). Genetic screening has been

used for some time, such as in the case of breast cancer, when testing for mutations in the BRCA

genes has been carried out successfully for decades (Solomon et al., 2000). However, these

polygenic tests broaden the scope of diseases that can be assessed and in more extreme cases,

pre-emptive action, such as surgery or prescription of medications, can be taken (Torkamani et

al., 2018). An example of how these are being used is identifying individuals who could benefit

from statin treatment in the case of coronary artery disease (CAD) (Mega et al., 2015; Natarajan

et al., 2017).

The use of the genetic information collected in GWAS has also been applied to drug

design and identifying potential therapeutic targets. One method is using an extension to GWAS

called Phenotype-Wide Association Studies (PheWAS). In this technique, single loci are tested

for association with multiple phenotypes. This is usually used to find pleiotropic loci that are

involved in multiple traits. However, it has also been used to find possible drugs that can be
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repurposed for a different condition based on shared genetics (Yin et al., 2018). The repurposing

of the drug ustekinumab for Crohn’s disease is an example of this, found by testing the IL23R

gene (Reay et al., 2021). GWAS associations are also being used to prioritize proteins to target in

drug design in CAD (Chen et al., 2021). Finally, there has been an effort to identify biomarkers

as early warning signs, for example blood homocysteine levels as a risk indicator for strokes

(Otani et al., 2019).

However, there have been limits to the success of GWAS. Many studies have been car-

ried out using SNP arrays, that are not well suited for detecting rare SNPs. When compared to

sequencing data, the UK biobank group found that the array calls were 98.7% accurate for SNPs

of MAF > 0.01, falling to 73.2% for MAFs < 1e −4. This was further pronounced for the imputed

SNPs, with an accuracy of 95.2% for MAF > 0.01 and 32.2% for MAFs < 1e −4 (Van Hout et al.,

2020). Furthermore, since the loci identified are normally not the causative loci but instead in

LD with the causative loci, there is an imprecision of identifying the driver of the disease, be it

the gene or the region of the genome. This can also result in causative loci being missed, as the

SNP in LD doesn’t provide enough statistical power for a significant association (Schaid et al.,

2018).

It was understood that complex disease was made up of many common mutations be-

fore GWAS (Hirschhorn et al., 2002). However, the mass collection of data and associations to

many traits and diseases has elucidated quite how complex the genetic architecture is. What

has been found is large numbers of mutations that contribute towards any one trait with only

very small effect sizes. One interpretation of this, is the omnigenic model of disease (Boyle et al.,

2017). In this model, it is hypothesized that there are a small number of core genes contributing

to the disease but that regulatory networks within a cell are so interconnected that a mutation

in a non-core gene can have an effect on the outcome. As a result, all genes that are expressed

in the affected cell or tissue can have some effect on the trait.
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Missing Heritability

In a 2008 study, genetic data were collected from around 30,000 individuals, mostly from Iceland

(Gudbjartsson et al., 2008). The aim was to quantify the genetic contributions to height. They

found 27 genomic regions with significant associations but small effect sizes and only 3.7% of

phenotypic variance explained. Further work extended this to 40 significant variants explain-

ing 5% of heritability, but this still fell well short of estimates for heritability for height, expected

to be 80-90%. This is part of a wider problem known as ‘missing heritability’. It seemed that

GWAS were finding numerous common variants which only accounted for a small fraction of

the overall cause of a trait (Maher, 2008). This has led to speculation as to where this heritability

can be found. One theory is that natural selection has led to small effect sizes over time by de-

selecting large effect sizes that cause disease or, in the case of beneficial mutations, adopting

them. Another factor is that rare alleles with MAF below 5% could hold more deleterious vari-

ants or association being decreased due to incomplete linkage between causal SNPs and those

sampled, thus not reaching the stringent p-value threshold (Manolio et al., 2009). This seems

to be part of the problem, since later studies with more power or greater genetic coverage have

uncovered causal variants previously missed and so explained much more phenotypic variance

(J. Yang et al., 2010; Wood et al., 2014). Other forms of variation are often also missed by using

SNP arrays, so rare variants, structural variants and epigenetic factors (Theunissen et al., 2020;

Girirajan, 2017; Young, 2019; Trerotola et al., 2015). Aside from variants which simply aren’t

captured by the methodology, some of the variation can be there just hidden in epistatic inter-

actions that have not been identified, and so excluded from heritability calculations (Zuk et al.,

2012).
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1.4.7 Validation and Downstream Analysis

After carrying out a genetic analysis like GWAS, the result will be a number of variants or regions

that have been judged to be significant. The task of validation and interpretation is of vital

importance to understand the discoveries and place them in a biological context. There has

been a considerable effort to collect and store the data that allows this process to be carried out.

There are tools that can be used to efficiently retrieve this data and provide many annotations

from multiple data sources, such as Variant Effect Predictor (VEP) and ANNOVAR (McLaren et

al., 2016; K. Wang et al., 2010).

The most immediate annotations are those at a SNP level, so if the SNP is within the

bounds of a gene, the name of that gene. The gene has long been known to consist of a structure,

for example of exons and introns, coding and non-coding respectively (Gilbert, 1981). Much

work has, of course, been carried out experimentally to define these regions (Brown, 2002).

With the availability of more genetic data, it has been possible to automate this process with

computational algorithms, such as matching sequences similar to known regions (Zhuo Wang

et al., 2004; Mathé et al., 2002). Alongside other tools, such as those that detect splice sites,

much data is available to classify the region of the gene in which a SNP is located (Desmet et al.,

2009).

The consequence of a particular mutation helps understand how likely it is to cause a

loss of function (LoF) in the protein coded for, however it should be noted that GWAS will not

necessarily find the causal locus but one in LD with it. Mutations can be silent or missense,

regarding whether the mutation changes the amino acid coded for within the peptide chain

(Zhen Wang et al., 2001). There are repositories such as ClinVar, an archive of variant-phenotype

links based on a wide variety of research that is submitted and curated (Landrum et al., 2018).

Another example is Online Mendelian Inheritance in Man (OMIM), a medical genetics resource
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that catalogues gene-phenotype links, from which ClinVar also draws much of its information

(Amberger et al., 2017; “Improving databases for human variation” 2016).

A number of approaches have been devised to predict the pathogenicity of mutations

within the genome. The method taken by PolyPhen and SIFT uses protein sequence data from

sources such as UniProt and SWISS-PROT to assess if a mutation will cause a change in amino

acid, if the change in amino acid is likely to denature the protein and if the site is ligand bind-

ing, for example. They then return a probability-based score and classifications from benign to

damaging (Adzhubei et al., 2013; Adzhubei et al., 2013). Additionally, there are predictors like

Combined Annotation-Dependent Depletion (CADD) and Deleterious Annotation of genetic

variants using Neural Networks (DANN) that use over 60 sources of data, including sequenc-

ing, epigenetic sites and evolutionary conservation based on other primate genomes (Rentzsch

et al., 2019; Quang et al., 2015). The difference being that CADD is based on a support vec-

tor machine and DANN is based on a deep neural net model to capture non-linearity . There

are numerous other approaches, but perhaps of note is rare exome variant ensemble learner

(REVEL), an ensemble approach combining a number of different prediction methods and

claims a greater accuracy as a result (Ioannidis et al., 2016).

Data representing the locality of expression of a gene is very useful when lending cre-

dence to a mutation affecting a particular trait, since it demonstrates the presence of the pro-

tein in a tissue of interest. The Genotype-Tissue Expression project (GTEx) has provided 7,051

expression profiles from 449 samples across 44 organs or cell lines. For each gene, odds ra-

tios were given for expression relative to background levels of genetic expression (Aguet et al.,

2017). Similarly, ProteomicsDB contains data for gene expression and other related information

(Samaras et al., 2020). More specifically, the Allen Brain Atlas presents RNA sequencing data for

numerous regions of the brain (Sunkin et al., 2013).

Another set of resources that help elucidate potential biochemical mechanisms for asso-
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ciations are pathway annotations. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was

released in 1995 as an integrated set of databases that has now grown to contain 15 manually

curated databases. These hold data for pathways and functional modules, as well as genomic,

chemical and medical information, that can be used to annotate genes. There are also useful

resources, such as visual pathway maps (Kanehisa et al., 2017). Reactome is a set of relational

databases storing biochemical pathways. This draws from numerous other sources, including

KEGG and data from model organisms, and provides graphical representation of sets of genes

within pathways using directional networks and statistical tests (Fabregat et al., 2017). These

resources are useful for demonstrating the possible biological mechanisms by which genetic

interactions might take place. A resource that specifically provides information on protein-

protein interactions (PPI) is STRING-db. This is a database of evidence for PPI, with the strength

of evidence scored, from the weak evidence of two proteins being found in the abstract of a jour-

nal article, through to stronger evidence such as lab assays. From these, an overall association

score is calculated to represent the strength of evidence for the PPI (Szklarczyk et al., 2021).

Although there are many different databases available, BioGRID is another that provides infor-

mation on genetic interactions, cataloguing data from model organisms as well as 670,000 for

humans with a focus on those involved in disease or biochemical pathways (Oughtred et al.,

2021).

As of yet we have focussed on databases as a method of storing data on genes. However,

much data is held in the form of ontologies. These are data structures, derived from the field of

philosophy, that have been utilized in computer science to describe concepts from their highest

level in a hierarchical structure down to the most granular, with the nature of the relationship

described at each transition from term to term. This is useful because it provides a clear struc-

ture to conceptualize how these terms fit together and a framework to make semantic compar-

isons using these properties (Schuurman et al., 2008). To give a relevant example, we have the

Gene Ontology (GO). GO has three separate categories, Biological Processes (BP), Molecular
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Function (MF) and Cellular Component (CC). Each of these is a tree, with each non-terminal

term being the parent to other terms. For example, taking CC as the root term, there are three

child terms - cellular anatomical entity; protein-containing complex; and virion component.

Each following child term becomes more specific until all cellular components can be labelled,

with relation to overarching categories. Each term contains attributes such as a description and

a list of genes for which their product can be labelled with this property (Ashburner et al., 2000).

There are numerous other ontologies within the field of bioinformatics that can be leveraged to

better understand sets of genes, for example the human phenotype ontology (HPO) that links

genes to traits and the Disease Ontology (DO) that links them with particular diseases (Köhler

et al., 2021; Schriml et al., 2012).

Gene Set Enrichment Analysis

As we’ve seen, there are many data sources for annotation of SNPs and genes, however this re-

quires an approach to test these findings for significance. A method that was introduced in 2005

for gene expression data is gene set enrichment analysis (GSEA). This takes a list of genes that

have been found to have significant associations with a trait and tests them together. Initially,

this list was rank ordered by strength of association in the original methodology. The high-level

process is to annotate each gene with a set of terms, such as biological pathways or GO terms,

so that a pathway contains a number of proteins coded by a number of genes. A running sum

statistic is calculated, increasing if a gene is in the set and decreased if not. From this, an en-

richment score was generated, and statistical significance was found using permutation testing

with a correction made for multiple testing (Subramanian et al., 2005).

This process has been refined over time with a number of different tools offering services

to test sets of genes. A prominent example is g:Profiler, a web-based tool for testing gene sets,

with SNP to gene annotation capabilities and graphical representations. It performs ranked
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and unranked tests, with a wide variety of different datasets, including GO terms, HPO and

Reactome pathways. It assesses each term using a cumulative hypergeometric test to generate

p-values. In ordered lists it is assumed that the genes higher up the list are more likely to be

relevant and so tests are performed containing increasing numbers of genes in the list and the

most significant result returned. When testing ontological terms it follows the ‘True Path Rule’

in which a child term is back propagated to include all parental terms which are also assessed

(Reimand et al., 2007).

Finally, it is possible to make comparisons between genes or individuals using seman-

tic similarity. Due to the hierarchical structure, terms are positioned relative to each other and

so terms can be related from shared ascendents. It is therefore possible to make comparisons

with a view to quantifying this relationship (Holliday et al., 2017). Early methods of concep-

tualizing semantic similarity involved counting the number of edges in common between two

terms or set of terms. However, one improvement was that proposed by Resnik. It is based on

the information content shared, with a lower-level terms also representing their ascendents in

these counts. This takes a comparison of two collections of nouns called corpora, corpus c1 and

corpus c2, and tests the number of terms shared:

si m (c1,c2) = max
c∈S(c1,c2)

[−log p(c)
]

(1.16)

In which S (c1,c2) is the set of shared concepts between c1 and c2. Then p(c) is calculated

from:

f r eq(c) = ∑
n∈wor d s

n (1.17)

Where wor d s contains all the words included in c and n is the total occurrences of that
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word. This allows the final calculation of:

p̂ (c) = f r eq(c)

N
(1.18)

Where N is the total number of terms (Resnik, 1995). However, there are other ap-

proaches, such as the GO-specific methodology by Wang (J. Z. Wang et al., 2007).
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Chapter Two

Identifying Epistatic Interactions

2.1 Introduction

This chapter looks at the range of epistasis detection methods available and is largely taken

from my paper. I was responsible for all writing, as well as design and preparation of figures,

with others assisting with the study design and reviewing the text (Russ et al., 2022).

There have been a variety of methodologies and approaches that have been formulated

to identify epistatic interactions. This chapter is an overview of these and a general categoriza-

tion of them. This is followed by a series of simulated benchmarking experiments to determine

their ability to differentiate between true interactions and general statistical noise between un-

related loci. These tests represent different types of epistasis, with scaled parameters to adjust

the difficulty of detection, so as to better distinguish the efficacy of each method. Finally, these

are applied to a small use-case from UK biobank.

As we saw in the previous chapter, the term epistasis has evolved to mean when two

genes interact to affect the expression of a particular phenotype, with the outcome of the in-

teraction different from a simple additive effect made up of the total joint individual genetic
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effects (Cordell, 2002; Elandt-johnson, 1971). These digenic epistatic interactions are typically

depicted in penetrance tables, with two loci of diploid chromosomes making up a 3x3 table.

Thereby depicting all possible allelic combinations and their phenotypic contributions. These

interactions can theoretically be manifested over many different combinations. Considering a

binary penetrance table for high-risk or low-risk genotypes, across two loci, there are 512 (29)

possible configurations. Albeit, whilst symmetrical models can be removed, that still leaves 50

unique conformations (Evans et al., 2006).The distribution of alleles within the population also

approximates to the distribution set out in the Hardy-Weinberg Equilibrium (HWE). Accord-

ingly, the count is governed by a function of the minor allele frequency for each locus (A. W. F.

Edwards, 2008). The departure from additivity can also present in different ways. So, loci in an

interaction will not necessarily have any significant effect individually - ’pure’ epistatic mod-

els are made up of loci with no main effect on their own, as represented in Fig. 2.1. In such

cases, both loci must be considered together to detect the interaction (Ryan J Urbanowicz et al.,

2012a).
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Figure 2.1: An example of the distribution of cases and controls across all possible genotypes as a result

of an epistatic interaction for two loci (note that y-axes are different scales). To the right and below are the

marginal effects, shown as a ratio of cases to controls. This is an example of a pure interaction because

these marginal effects are very minimal. The blue dotted line indicates numbers expected under the

Hardy-Weinberg Equilibrium, with capital genotypes representing the major allele and lower case the

minor allele. OR is indicating the odds ratio comparing cases and controls at that genotype. (Previously

published in Russ et al. 2022)

There are numerous approaches for detecting interactions available. A Web of Science

query for ’epistasis detection’, taking methods designed for case/control tasks, retrieved a total

of 105 methods published between 2010 and the end of 2020 (full list and references in table

A.1). Upon inspection, 59 are currently available for download and formed the basis of the
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methods included in this study (Table A.1). Many different detection strategies have been im-

plemented, with some testing all possible interactions exhaustively and others using different

filtering steps to reduce the number of loci considered, resulting in a reduction in the number

of tests required. Broadly, the methods can be categorized as statistical approaches, such as

Generalized Linear Models (GLMs) and contingency tables, data mining and machine learning

(ML) techniques. Chief amongst the data mining approaches are Multifactor Dimensionality

Reduction (MDR), while nature-inspired algorithms are the key representatives of ML-based

approaches. When selecting tools, key factors such as runtime and correcting for covariates, as

well as detection of higher-order interactions were considered.

Early epistasis detection methods utilized simple statistical techniques, such as χ2 tests

(Carrasquillo et al., 2002) and GLMs for assessing interactions (Millstein et al., 2005; Macgregor

et al., 2006). These have endured and are implemented in various tools. For example, Cassi and

PLINK employ a Z-score based test, named fast-epistasis, as well as each implementing slightly

differing logistic regression approaches. PLINK also has an implementation of the Wan Log-

Linear method, BOOST (Ueki et al., 2012; C. C. Chang et al., 2015; Wan et al., 2010a). Another,

more recent example is the wtest R package, that applies a novel statistic to compare distribu-

tional differences present in the alleles of cases and controls, using a χ2 distribution (R. Sun

et al., 2019).

MDR is a non-parametric data mining method, which accounts for all possible geno-

types, for a set of loci as in Fig. 2.1. This is achieved by summarizing the best combinations of

genotypes to divide cases and controls. It is similar to a naive Bayes approach, with the geno-

types as parameters of a probabilistic classifier (Ritchie et al., 2001; Hahn et al., 2004; McKinney

et al., 2006). As a modelling technique, it is flexible and can consider confounding factors as well

as non-linear models. The latter renders it advantageous over GLMs. Built in to the methodol-

ogy are training and testing stages by cross validation. There have been different MDR methods

that have been implemented using odds ratios (Chung et al., 2007), fuzzy set theory (C.-H. Yang
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et al., 2020; Leem et al., 2017) or a support vector machine in SVM-MDR (Fang et al., 2012).

Nature-inspired algorithms aim to mimic successful search strategies in natural phe-

nomena and have been applied to the challenge of efficiently detecting epistatic relationships.

Ant Colony Optimization (ACO) algorithms, the most prominent examples of this type of ap-

proach, simulate ants that randomly ’explore’ data. They aim to identify the most efficient path

to the ’food’, represented here by the division of cases and controls by an interaction. The ants

share information and utilize algorithms to make probabilistic decisions in a network of nodes,

reinforcing successful decisions by leaving ’pheromones’, assessed using a variety of statistical

tests (Dorigo et al., 2006). Strategies for directing ants commonly use contingency table meth-

ods, logistic regression, information theory and Bayesian networks or combinations of these in

stages (J. Shang et al., 2019). An early ACO algorithm example is AntEpiSeeker (Y. Wang et al.,

2010), that uses a two-stage approach with χ2 tests. More recent implementations include MA-

COED (Jing et al., 2015), combining the Akaike Information Criterion with a logistic regression

variant and epiACO (Y. Sun et al., 2017) that uses mutual information and Bayesian network

methods. Further nature-inspired algorithm examples include the particle swarm optimiza-

tion (PSO) methods (Junliang Shang et al., 2016) as well as genetic algorithms (Yang Guo et al.,

2019).

Other prominent examples include the approaches proposed Goudey et al, gain in sen-

sitivity and specificity (GSS) method (Goudey et al., 2013; Chatelain et al., 2018). This approach

employs Receiver Operating Characteristic (ROC) metrics to assess prediction performances

between the interaction model and that of the two loci individually. It measures the difference

in the area under a curve of all nine possible genotypes from two loci against the combined area

under the curve of the two loci considered individually, giving six alleles total to be assessed.

Another interesting approach is SNPRuler, which generates association rules from com-

binations of loci and their genotypes using a derived statistic (Wan et al., 2010b). Also, of note
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are tools developed in order to harness computational resources efficiently, reducing runtime

and memory requirements, such as MPI3SNP. This algorithm can be run in parallel on multiple

CPUs or on GPUs for three locus interactions. The genotypes of the individuals are represented

in a bitwise fashion and mutual information is calculated (Ponte-Fernández et al., 2020).

With such a variety of algorithms available, it is important to differentiate which will

effectively discover epistatic interactions. Ibrahim et al (Ibrahim et al., 2013) compared three

algorithms, SNPRuler, SNP Harvester and Ambience using large simulated datasets and multi-

plicative impure epistatic interactions. They reported that none of the algorithms consistently

identified the interactions but identified Ambience to be the most robust and SNPRuler to have

the most power, particularly across higher order interactions taking into account more than

two loci. Chatelain et al (Chatelain et al., 2018) compared fastepi, GBOOST, SHEsisEpi, DSS

and IndOR using four impure epistatic models. They found that DSS and GBOOST were the

most powerful methods, with the former being preferential in the presence of limited linkage

disequilibrium (LD), for example as a result of pruning variants in tight LD. Finally, Alchamlat

et al compared MDR, BOOST, BHIT, KNN-MDR, MegaSNPHunter and AntEpiSeeker using pure

interactions generated from real data, reporting KNN-MDR to be the most powerful approach

(Abo Alchamlat et al., 2018).

The purpose of this study is to provide a clear, objective, comparison between some of

the most prominent epistasis detection methods in a variety of different scenarios. Since there

are many different approaches available, the aim is to find the optimal method and rational-

ize its selection criteria. With so many possible combinations of loci, being able to confidently

assert interactions found will cater for the inclusion of epistasis analysis in GWAS studies and

uncover a portion of the missing heritability. To account for this, the different scenarios em-

ployed in this study have been categorized based on different underlying genetic conditions,

incorporating pure and impure epistasis.
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2.2 Materials and Methods

2.2.1 Study Design

Since the objective of this study was to differentiate the ability of various tools to correctly pre-

dict epistatic interactions between two or three loci, a number of detection methods were se-

lected, based on their merit or the type of methodology they adopted. Several tools were con-

sidered that have been reviewed in previous studies. This included SNPRuler as considered by

Ibrahim et al (Ibrahim et al., 2013), DSS and BOOST of Chatelain et al (Chatelain et al., 2018)

and KNN-MDR as used by Alchamlat et al (Abo Alchamlat et al., 2018). However, due to lack of

availability, two substitutions were made with GSS used in place of DSS and KNN-MDR with a

different MDR.

The methods chosen were assessed based on their ability to uncover specific interac-

tions. Consequently, approaches that ranked features, such as the Relief-based methods (e.g.

multiSURF and TuRF) were not considered (Ryan J. Urbanowicz et al., 2018). Tools were selected

as representatives of common statistical approaches, such as logistic regression (e.g. Cassi and

PLINK’s epistasis) as well as of novel statistics approaches, for example wtest. Data mining

approaches are represented by SNPRuler, MDR and GSS that have previously demonstrated ef-

ficacy. Nature-inspired algorithms, primarily represented by ACO-based approaches, were also

considered. Included were AntEpiSeeker (Y. Wang et al., 2010), the most cited method in this

domain, as well as epiACO (Y. Sun et al., 2017), a representative of more recent approaches.

Finally, CINOEDV (Junliang Shang et al., 2016) was considered as an alternative type of nature-

inspired algorithm, utilizing a PSO framework.

All tools were assessed based on simulated data, generated in a reproducible way, with a

given set of parameters selected to differentiate between tools performances. For pure epistatic
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models, GAMETES was used to simulate models with different heritability and detection dif-

ficulty settings. Furthermore, five impure epistatic models, conforming to specific genotypes,

were simulated using the EpiGEN tool. These models were situated in a LD structure for the

noise loci. All scenarios have been generated for both two locus and three locus interactions

and thirty replicates per scenario, with the aim of producing a robust testing strategy. Further-

more, these data can be used for future comparisons. The construction of these datasets as

a testing regimen aims to cover, therefore, both marginal and non-marginal epistatic models

across a range of detection difficulty degrees. The models used for testing impure epistasis,

shown in Table 2.3, have been chosen based on penetrance tables from Evans et al (Evans et

al., 2006). In the case of joint-dominant, joint-recessive and modular forms, these have been

included to provide biologically-likely scenarios. In order to broaden the detection challenge,

diagonal and X-OR models were also tested to provide a more complex, but plausible, genetic

landscape.

The comparison between the tools’ performance was dependent on their ability to iden-

tify the ground-truth epistatic interactions. Since they were assessed across a range of potential

interactions, a ranked list of identified interactions for each tool was created. The rank of the

True Positives, in each analysis, were retained when their ranked position was ≤ 50. This num-

ber was used to allow a range of ranks for statistical comparison of distributions, and was in-

formed by inspection of the positions of true positives generated. Also, consideration was given

to the relevance of results to researchers, since for a feature space of 2,500 there are greater

than three million possible combinations. These lower ranked results are of diminishing in-

terest and wasteful in terms of computational resources. When any True Positive was ranked

position > 50 or not detected, it was assigned a rank of 51. This ensured that any tool detecting

a small number of correct interactions, ranked highly, was not highlighted as outperforming

other tools that were consistently identifying a higher number of correct interactions that were

ranked at different levels. Given the purpose of this study is to differentiate the relative ability
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of the tools to detect epistatic interactions, the most important metric is finding the true inter-

action to be the most important pair, since a rank below first is hidden by random noise. Rank

is the only practical method to assess them, since some of the tools don’t provide a compara-

ble statistic. However, the true interaction may have been ranked below first, and as such it is

therefore useful to compare the distributions as well. As such, key indicators that have been

used for these comparisons are percent of true interactions ranked first and a p-value for the

comparative distributions. Due to the ranks presenting as a non-normal distribution, a lower

tailed Mann-Whitney U test was used to compare each tool against the distribution of all the

other tools combined, to generate these p-values.

All experiments were carried out using the University of Birmingham’s BlueBEAR HPC

service, which provides a High-Performance Computing service to the University’s research

community. See http://www.birmingham.ac.uk/bear for more details. The code and the set-

tings applied available on GitHub, see Appendix. The versions of all software used in this study

are provided in Table 2.1.
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Table 2.1: Versions of software used

Tool Version Available

R 3.6.0 https://www.r-project.org/

Java 11.0.2 https://www.oracle.com/uk/java/technologies/javase/

jdk11-archive-downloads.html

GAMETES 2.2 https://github.com/UrbsLab/GAMETES

EpiGEN 8/10/2020 https://github.com/baumbachlab/epigen

AntEpiSeeker 1.0 http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html

Cassi 2.5.1 https://www.staff.ncl.ac.uk/richard.howey/cassi/index.html

CINOEDV 2.0 https://cran.r-project.org/src/contrib/Archive/CINOEDV/

epiACO 1 https://sourceforge.net/projects/epiaco1/files/epiACO.rar/

download

GSS 02/07/2014 https://github.com/bwgoudey/gwis-stats

MDR 3.0.2 https://sourceforge.net/projects/mdr/

MPI3SNP 1.0 https://github.com/chponte/mpi3snp/

PLINK 1.9b6.17 https://www.cog-genomics.org/plink/

SNPRuler 1 https://mybiosoftware.com/snpruler-predictive-rule-inference-epistatic-interaction-detection-genome-wide-association-studies.

html

wtest 3.2 https://cran.r-project.org/web/packages/wtest/index.html

2.2.2 Data Generation

There are a number of challenges related to generating simulated epistasis datasets. From a

biological perspective, in the genetic environment alleles loosely conform to HWE, which is a

function of the Minor Allele Frequency (MAF) and are anchored locally in a LD structure. Fi-
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nally, any interaction involved in causation of a phenotype will explain a quantity of the trait’s

heritability, but likely leave much unexplained. Further practical challenges relate to runtime,

efficiency and scalability. There are at least seven different tools available for generating simu-

lated epistasis datasets (Blumenthal et al., 2020). In this study, GAMETES was used to simulate

pure epistatic models and EpiGEN to create impure, defined models within LD.

GAMETES randomly generates pure epistatic models using a ’Sudoku’ method. Similar

to the puzzle game, in which rows and columns must hold a set of numbers. Here, the rows and

columns of the 3x3 allelic table (in the case of two locus interactions) must have equal num-

bers of cases and controls. As any genotype is generated, there are constraints placed on the

numbers that can appear at each other genotype. This is additionally determined according to

the HWE distribution and heritability explained by the interaction (Ryan J. Urbanowicz et al.,

2012b). EpiGEN works differently, with functionality to generate specific epistatic models, ei-

ther using in built settings or via customizable model files. It makes no attempt to mask the

main effects of the individual loci, and so creates impure epistatic models. These are placed

within a genetic context, including a simulated LD structure, based on HapMap3 data. All

epistatic models from both tools were accompanied by a fixed number of randomly generated

noise loci. These had a range of MAFs and conformed to HWE. They are intended to provide

True Negative outcomes to differentiate the ability of the tools tested. Both pieces of software

are free to use and require no proprietary software to operate (Blumenthal et al., 2020).

These two algorithms are being applied due to their differing functionality - GAMETES

generates pure epistatic models, whereas EpiGEN is suited for impure epistatic models. This

means the test set can differentiate the ability of different tools for different situations. Both

are effective tools for simulating genetic material, with noise variants following rules such as

HWE and a range MAFs, as well as random placement of the interacting variants within these.

A downside of GAMETES is that the genotypes that contain the interaction are randomly dis-

persed and so don’t comply with any potential Mendelian conformation. EpiGEN has the func-
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tionality to select genotypes that affect the phenotype, so that specific interactions can be cre-

ated by the user. However, in order to create the desired effect size it modifies the number of

cases and controls, which could introduce some bias due to this imbalance.

GAMETES was used to configure the MAF and the heritability of the modelled interac-

tions. The MAF selected was 0.4 in order to better populate each genotype, especially inter-

actions with more minor alleles. Heritability is a measure of the variability attributable to the

phenotype, in this case, the interaction. In this study, it was set at 0.02, 0.01 and 0.005 so to

adjust the interaction effect sizes. Additionally, GAMETES provides a metric termed the Ease

of Detection Measure (EDM), which indicates an assessed level of difficulty for a tool to detect

the interaction. GAMETES randomly generates a set number of models, ranks them according

to their EDM, and returns a user-defined number of models by percentile. Here, three mod-

els were requested, the easiest disregarded and the remaining two used for testing (GAMETES

2021; Ryan J Urbanowicz et al., 2012a). Noise loci were randomly generated with MAFs between

0.05 and 0.5, with each dataset consisting of 1,000 cases and 1,000 controls. Thirty replicates

were made for each scenario with randomly generated differences. This procedure was car-

ried out for second and third-order interactions. The settings applied in these experiments are

summarized in Table 2.2.
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Table 2.2: Configurations used for GAMETES generated models. In all datasets there are 1,000 cases and

controls and 30 replicate

Loci in Interaction Heritability Ease of Detection Measure Total loci

2 0.02 2 2500

2 0.01 2 2500

2 0.005 2 2500

2 0.02 1 2500

2 0.01 1 2500

2 0.005 1 2500

3 0.02 2 500

3 0.01 2 500

3 0.005 2 500

3 0.02 1 500

3 0.01 1 500

3 0.005 1 500

EpiGEN was used to generate a corpus of synthetic genetic data based on 2000 sam-

ples modelled on Chromosome 22, this was chosen for speed of processing. Several models

were included, based on possible epistatic combinations, as detailed in Evans et al (Evans et

al., 2006). Models were built with a number of modes of epistatic interaction, namely joint-

recessive, joint-dominant, modular, diagonal, and XOR (Table 2.3). These particular models

were selected in order to give a range of epistatic models for comparison. Joint-recessive and

joint-dominant models represent simple Mendelian interactions, with the modular and XOR

interactions as conceivable variants on these. The diagonal interaction is a less biologically in-

spired conformation in order to provide an alternative, plausible challenge. This was achieved

47



Identifying Epistatic Interactions

by altering the case-control ratio at the genotypes involved in the interaction, changing the

penetrance. Exploratory data analysis was used to find a range of ratios that demonstrated a

differentiation between the tools being tested. Noise loci made the feature space up to 500 in

total and were limited to MAFs between 0.05 and 0.5. The datasets were set to aim for 1,000

cases and 1,000 controls, however these numbers did fluctuate to fit the models. Thirty repli-

cates were made for each scenario with randomly generated differences. This procedure was

repeated for third-order interactions, except with a feature space of 100 loci, including three

interacting loci and 97 noise loci. For penetrance tables, see Table 2.4.

Table 2.3: EpiGEN Penetrance models with capital genotypes as the major allele

Joint Dominant AA Aa aa Joint Recessive AA Aa aa

BB 0 0 0 BB 0 0 0

Bb 0 1 1 Bb 0 0 0

bb 0 1 1 bb 0 0 1

Modular AA Aa aa XOR AA Aa aa

BB 0 0 0 BB 0 0 1

Bb 0 0 1 Bb 0 0 1

bb 1 1 1 bb 1 1 0

Diagonal AA Aa aa

BB 1 0 0

Bb 0 1 0

bb 0 0 1
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Table 2.4: EpiGEN Penetrance models with capital genotypes as the major allele. Third dimension indi-

cated as shown in final section for C allele.

Joint Dom. AA Aa aa Joint Rec. AA Aa aa

BB 0/0/0 0/0/0 0/0/0 BB 0/0/0 0/0/0 0/0/0

Bb 0/0/0 0/1/1 0/1/1 Bb 0/0/0 0/0/0 0/0/0

bb 0/0/0 0/1/1 0/1/1 bb 0/0/0 0/0/0 0/0/1

Modular AA Aa aa XOR AA Aa aa

BB 0/0/0 0/0/0 0/0/0 BB 0/0/0 0/0/0 0/0/1

Bb 0/0/0 0/0/0 0/0/1 Bb 0/0/0 0/0/0 0/0/1

bb 0/0/1 0/0/1 0/0/1 bb 0/0/1 0/0/1 1/1/0

Diagonal AA Aa aa C allele AA Aa aa

BB 1/0/0 0/0/0 0/0/0 BB CC/Cc/cc ... ...

Bb 0/0/0 0/1/0 0/0/0 Bb CC/Cc/cc ... ...

bb 0/0/0 0/0/0 0/0/1 bb CC/Cc/cc ... ...

The data were converted to various required formats using PLINK and R. The versions

of all tools used in this study are detailed in Table 2.1. Default settings were used unless stated

otherwise or expanded upon.
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2.2.3 Tools Benchmarked

Statistical Approaches

The first category of approaches focuses on using straight-forward statistical tests and simply

test every combination exhaustively. These approaches include contingency table methods,

log-linear regression and logistic regression as well as novel statistics in order to assess each

potential interaction.

PLINK: fast epistasis

Three PLINK (C. C. Chang et al., 2015) epistasis detection methods were assessed. The first one,

fast-epistasis, takes the number of individuals for cases and controls at all genotypes for two

loci (Table 2.5) and condenses them to a 2 x 2 table (Table 2.6).

Table 2.5: Two locus 3 x 3 table for allelic combinations, here n is equal to the number of individuals with

each genotype

Minor Allele Dose Per Locus 0 1 2

0 n00 n01 n02

1 n10 n11 n12

2 n20 n21 n22
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Table 2.6: Reduced 2 x 2 table for two loci, here n is equal to the number of individuals with each geno-

type

Allele Per Locus Major Minor

Major A = 4n00 +2n01 +2n10 +n11 B = 4n20 +2n01 +2n12 +n11

Minor C = 4n20 +2n21 +2n10 +n11 D = 4n22 +2n21 +2n12 +n11

Using the matrix in the Table 2.6, log odds and variance can be calculated as shown

below, where OR is odds ratio, v is variance, and A-D refer to cells of the matrix:

OR = log
AD

BC
(2.1)

v = 1

A
+ 1

B
+ 1

C
+ 1

D
(2.2)

Lastly, the χ2 test statistic is calculated comparing cases and controls:

T = (ORcase −ORcontr ol )2

vcase + vcontr ol
(2.3)

PLINK: BOOST

The second is an implementation of BOOST, a log-linear or Poisson regression model gener-

ating a contingency table, similar to the Table 2.6 but with an additional dimension to divide

cases and controls, given as k. An observed count is denoted as ni j k with i and j the genotype

at two loci. This is the result of the random variable Ni j k that is assumed to follow a Poisson

distribution. The probability that an observation falls into any one cell is denoted as πi j k , with

the sum of all π being 1. The mean is given by:

µi j k = nπi j k (2.4)
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The likelihood is calculated with the equation:

f (µ) = ∏
i , j ,k

e−µi j k ·µni j k
i j k

ni j k !
(2.5)

This is transformed to the log-likelihood, represented as:

L(µ) = ∑
i , j ,k

[ni j k log(µi j k )−µi j k − log(ni j k !)] (2.6)

This methodology allows for fast, exhaustive testing.

PLINK: epistasis

The final PLINK method, called simply ’epistasis’ assesses each interaction using logistic re-

gression. This uses an additive model with an extra multiplicative term to test for an epistatic

interaction. The β̂ for the interaction term is estimated and tested for significance. This method

also allows for covariates to be adjusted for.

Cassi

Cassi (Ueki et al., 2012) provides an alternative logistic regression approach to the PLINK logis-

tic regression model. Initially, the phenotype is regressed for an additive and a multiplicative

model. Then a likelihood ratio test is performed for models with and without the interaction

term. Thus, the deviance from the additive model is attributed to the interaction. Cassi also

allows for covariates to be adjusted.

wtest

Another contingency table method is wtest (R. Sun et al., 2019), which can be used to test one

to many loci based on k combinations of interacting loci and a binary phenotype, making a 2 x
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k table. The method assesses distributional differences between cases and controls. Taking the

ith column of k, the numbers of n1i cases and n0i controls and the total number of N1 cases and

N0 controls, the conditional probabilities can be estimated, p̂1i = n1i/N1 and p̂0i = n0i/N0. The

full formula uses a χ2 distribution with f degrees of freedom:

W = h
k∑

i=1

[
log

p̂1i /
(
1− p̂1i

)
p̂0i /

(
1− p̂0i

)/SEi

]2

∼χ2
f (2.7)

With the scalar h and f as covariance matrices of the log odds ratios, estimated from boot-

strapped samples under the null hypothesis. The Standard Error is calculated as follows:

SEi =
√

1

n0i
+ 1

n1i
+ 1

N0 −n0i
+ 1

N1 −n1i
(2.8)

An option to filter the loci by main effect p-value is also provided. Since this option for this set

of experiments would result in all pure interactions being missed, the filter was set to include

all loci with a p-value less than 1. Beyond exhaustive statistical tests, approaches have been

devised to optimize a search strategy before assessing the interaction.

Nature-Inspired Approaches

AntEpiSeeker

AntEpiSeeker (Y. Wang et al., 2010) uses a standard ant colony optimization framework over i

iterations, in which m ants are guided through a path of n interacting genetic loci, selected de-

pendent on a probability density function (PDF) for each locus k. In these models, the ants leave

pheromones to indicate favourable paths, which evaporate over time. The PDF is calculated as

follows:

pki =
ταki ·η

β

k∑L
j=1τ

α
j i ·η

β

k

(2.9)
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ηβ represents some prior ’attractiveness’ information, which is set to 1 here. As a result,

the PDF represents the pheromones at locus k divided by the sum of the pheromones at each

of j locus from a set of L total loci. α represents the weight of the pheromone at the locus and β

is the weight of the heuristic information. The pheromone levels are updated according to the

χ2 test score for the interacting loci, as such:

τk(i+1) =
(
1−ρ)

τki +∆τ (2.10)

Where ρ is a number between 0 and 1, representing the pheromone evaporation rate and ∆τ is

the change in pheromones at locus k at iteration i and is equal to 0.1χ2. This is repeated for all

m ants over i iterations.

In the documentation for AntEpiSeeker there are suggested values for most of the pa-

rameters and these were used in this experiment. However, for two parameters, iTopModel and

iTopLoci, this guidance was not given. This is presumably because they are dependent on the

number of loci assessed since they define the number of possible models and the number of

loci with the maximum quantity of pheromones. For second order interactions they were set

to 1,000 and 200 respectively. So as to reflect the smaller number of loci assessed for the third

order interactions, these values were set to 50 and 10.

epiACO

The epiACO (Y. Sun et al., 2017) approach adopts the same framework as AntEpiSeeker, shown

in Eq 2.9. However, it employs a different method for testing interactions and parameter val-

ues. The interaction test statistic used, termed the SValue, uses Mutual Information (MI), the

entropies of S loci and Y phenotype, and a Bayesian metric, the K2 Score in a logarithmic form:

M I (S;Y ) = H(S)+H(Y )−H(S,Y ) (2.11)

SV alue = M I

K 2scor el og
(2.12)
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There are a number of search strategies adopted in order to make the search more effec-

tive. The path selection strategy involves ants taking either a probabilistic route or a stochastic

one. The probability P of ant k selecting locus i at iteration t is defined as:

P i
k (t ) =


R q <= q0

S q > q0

(2.13)

In which q is a randomly generated number from a uniform distribution of [0,1] and q0 is the

iteration divided by the total number of iterations. The probabilistic path is defined as:

R =


τi (t )α·ηβi∑

u∈Uk (t )
τu (t )α·ηβu

i ∈Uk (t )

0 other wi se

(2.14)

where τi (t ) is the pheromones at locus i and ηi is the heuristic information at the locus.

Uk (t ) is the set of not-selected loci by ant k. α represents the weight of the pheromone at the

locus and β is the weight of the heuristic information. The stochastic path strategy follows:

S =


1 i = r and(Vk (t ))

0 other wi se

(2.15)

where all loci at iteration t are sorted in descending order by pheromones, with the latter

half being represented by Vk (t ). This allows for a wider search space at lower iteration numbers.

The pheromone updating strategy at iteration i and locus k can then be defined as:

τi (t+1) = (1−ρ)τi (t ) +∆τi (t ) +∆τ∗i (t ) (2.16)

With ∆τi (t ) a pheromone increment for an ant visiting and ∆τ∗i (t ) being a bonus incre-

ment for those that belong to candidate solutions based on the S-value calculated. ∆τi (t ) is
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found for ant a of m total ants:

∆τi t =
m∑

a=1
∆τa

i t (2.17)

The default settings of the epiACO implementation return only the top three interactions and,

in order to make its output comparable with the other assessed methods, the code was modified

to return the top 50 interactions.

CINOEDV

CINOEDV (Junliang Shang et al., 2016) uses particle swarm optimization (PSO). A number of

particles are simulated and distributed across a k loci space with the aim to position themselves

at the strongest interaction. After initial random placement, they adjust their velocity and posi-

tion. This is dependent on shared information with nearby particles and an assessment of their

local space using a novel co-information method based on entropy to assess interactions. At

each iteration g , the position (S) and velocity (v) of each particle is updated:

ṽ g+1
qk =W g

qk · v g
qk + c1 · r1 ·

(
PSg

qk −Sg
qk

)
+ c2 · r2 ·

(
GSg

qk −Sg
qk

)
(2.18)

for the qth particle. W g
qk is an inertia term, which takes into account the local scores

against those elsewhere. The c terms are acceleration constants, and r terms are random values

between 0 and 1. PS and GS represent the particle’s most favourable position it has visited and

that of the whole swarm, respectively. The position is then updated as such:

S̃g+1
qk = Sg

qk + v g+1
qk (2.19)

The result is that the particles move into groups, centred around the interactions that produce

the best outcomes.
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Data Mining Approaches

MDR

The MDR (Hahn et al., 2003) algorithm splits the data into a training set and a test set at a ratio of

9:1. During the training stage, the probabilities for each genotype, at two or more loci, given the

status of case or control, are calculated. The interaction is defined by the probability that each

genotype is a case. The number of dimensions considered for a two locus problem is thereby

reduced from nine genotypes to the product of those genotypes. This evaluation is a naive Bayes

classifier, defined by distributions of cases and controls across the possible genotypes:

vN B = argmax
vi∈V

p
(
v j

) n∏
i=1

p
(
ai |v j

)
(2.20)

Where v j is one of a set of V phenotypic classes and ai is an attribute describing each multi-

locus genotype present. The output is a binary variable ascribing the presence of a genotype

associated with cases. An assessment of accuracy is carried out using the reserved test set with

the mean of sensitivity and specificity:

Accur ac y = 0.5×
(

T P

T P +F N
+ T N

T N +F P

)
(2.21)

By splitting the genotypes into high-risk and low-risk genotypes, MDR reduces the multi-locus

space into a binary variable and assesses the accuracy that interaction assigns true-positives

and true-negatives.

GSS

Gain in sensitivity and specificity (GSS) (Goudey et al., 2013) is a method which employs mea-

sures of sensitivity and specificity to compare an additive and interaction model. The additive

model is calculated by assessing each of the genotypes of the individual loci for sensitivity and
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specificity and taking the largest area under the Receiver Operator Characteristic (ROC) curve.

This is compared to the area under the ROC curve for each of the nine genotypes represented

in the interaction model. Hence, any gain in these measures can be attributed to the interac-

tion and quantified using a p-value calculated from a min-max optimization. By considering

the difference between the predictive power of the loci individually against the nine possible

genotypes from two loci, the sensitivity and specificity are optimized.

SNPRuler

SNPRuler (Wan et al., 2010b) uses predictive rule learning to find possible epistatic interac-

tions. Rules are generated in trees for different allelic configurations, based on classification of

cases or controls. Any individual SNP can be defined multiple times for different genotypes, to

account for more complex epistatic models. However, any additional rule must increase pre-

dictive power. This is assessed using a derived χ2 measure to assess potential additional rules,

which must achieve this increase to be appended to the current rule. The upper bound, U B , of

the potential addition to the rule is calculated:

U B = (Rm − (b −min(b,d ′)))2

(m + (b −min(b,d ′)))(γm − (b −min(b,d ′)−m))
(2.22)

Here, Rm is the ratio of cases to controls in the current rule, b is the number of cases

represented in that rule, whilst d ′ is the number of the b case that do not have the potential

new genotype. The term, m refers to the minimum value between the number of controls that

adhere to the current rule and those in the new genotype and γ is the total number of samples

divided by the number of controls for the current rule being built. Finally, all rules generated are

tested using a χ2 test to calculate a statistic and p-value. This two stage approach aims to find

any possible interactions quickly before applying a more rigorous statistical test to rank those

found.
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MPI3SNP

MPI3SNP (Ponte-Fernández et al., 2020) is specifically designed for fast detection of third or-

der interactions. In order to be most computationally efficient, individuals are represented in

a bitwise fashion by their genotype, with a table for cases and one for controls. Using this di-

vision, probabilities for a combination of SNPs can be quickly ascertained for use in a Mutual

Information (MI) equation:

I (X ,Y ) = H(X )+H(Y )−H(X ;Y ) (2.23)

The MI is calculated by the addition of the entropy of X , the genotype, and Y , the phe-

notype, followed by the subtraction of the joint entropy. This is repeated exhaustively for all

combinations, with the option of using CPU or GPU parallelization in order to further mini-

mize the run time.
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Table 2.7: Tool Summary

Tool Category Reference

AntEpiSeeker Nature-Inspired https://doi.org/10.1038/npre.2012.6994.1

Cassi Statistical https://doi.org/10.1371/journal.pgen.1002625

CINOEDV Nature-Inspired https://doi.org/10.1186/s12859-016-1076-8

epiACO Nature-Inspired https://doi.org/10.1186/s13040-017-0143-7

GSS Data Mining https://doi.org/10.1186/1471-2164-14-S3-S10

MDR Data Mining https://doi.org/10.1093/bioinformatics/btf869

MPI3SNP Data Mining https://doi.org/10.1177/1094342019852128

PLINK:BOOST Statistical https://doi.org/10.1086/519795

PLINK:FastEpi Statistical https://doi.org/10.1086/519795

PLINK:epistasis Statistical https://doi.org/10.1086/519795

SNPRuler Data Mining https://doi.org/10.1093/bioinformatics/btp622

wtest Statistical https://doi.org/10.1186/s12920-019-0638-9

For details of each algorithm tested, please see Tables A.1, 2.10 and 2.7. In all cases,

default or recommended values were applied.

2.2.4 Atrial Fibrillation

The detection tools were employed to identify potential interactions associated with Atrial Fib-

rillation (AF) using patients selected from the UK biobank cohort (Bycroft et al., 2018). This

presents a real-world application of these methods, with the assessment of the validity of the

results conducted using a priori knowledge. However, it also functions as a limited experiment

into possible interactions present in AF.
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There are a number of considerations when applying these tools to real data. The meth-

ods tested, as a group, have a number of limitations. These include memory use, runtime, in-

ability to deal with missing values and a lack of facilities to account for environmental factors,

as such requiring careful selection of samples. As a result, the cohort and number of loci con-

sidered was filtered to work within the scope of these tools. UK biobank contains genetic and

phenotype data for 486,445 individuals, including 33,492 reported to have AF and 93,095,623

genotyped and imputed loci. Individuals were removed if they had been flagged as outliers for

genetic missingness and heterozygosity, had a sex chromosome mismatch or evidence of sex-

ual aneuploidy. Only Caucasians were included in the study and patients were excluded if they

had a second degree relative or closer participating in the UK biobank cohort, leaving 335,400

samples. This included 23,178 individuals remaining with AF who were paired with an equal

number of controls that had no diagnosis of AF, using random sampling. This left a final cohort

size of 46,356. Loci were included if they had an imputation INFO score of 1 and a MAF of at least

0.495, leaving 2,478 loci. After removing those with missing values, 1592 loci remained. By using

a high MAF, it ensures that under HWE each genotype is represented by many samples, thereby

increasing the statistical power of the assessment. Gene annotations were derived from Variant

Effect Predictor (McLaren et al., 2016). To assess if interacting genes are over-represented for

Gene Ontology classes, they profiled using Bonferroni correction in gProfiler (Reimand et al.,

2007). STRING was used for protein-protein interactions, keeping default settings with interac-

tions >0.400 being significant (Szklarczyk et al., 2019).

2.3 Results

Figs. 2.2-2.5 present each tool’s rank of the simulated epistatic interaction. This is limited to

a rank of 50, with those interactions, which were not detected or ranked lower than 50, repre-

sented as translucent points at a provisional rank of 51. Since some methods exhaustively test
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all combinations, it is fair to introduce a limit beyond which a discovery is considered as ’not

detected’. Each plot represents a different set of parameters depending on the way the data were

generated. For pure interactions, the graphs are split by heritability, a measure of how penetrant

the interaction, whilst for the impure epistatic datasets they are split into different scenarios

based on defined models. There are also different levels of detection difficulty for each model.

Pure interactions are assessed by the simulation software, while impure interactions’ detection

is based on the fraction of cases and controls that have the affected genotypes. For each ex-

periment, thirty tests were carried out per set of parameters, with random differences between

them. Experiments were carried out for both second-order and third order interactions, includ-

ing interactions of two loci and three loci respectively, as shown below.

2.3.1 Second Order Interactions

In the case of pure epistatic interactions (Fig. 2.2), the PLINK implementation of BOOST exhib-

ited the most effective performance (p = 4.52e − 36), identifying all the interactions at a heri-

tability of 0.02, with 71.7% and 18.3% of the interactions correctly identified for 0.01 and 0.005

heritability levels respectively. GSS achieved the second-best performance (p = 1.63e −13) fol-

lowed by wtest, SNPRuler and MDR. Looking specifically at the correct interaction being top

ranked, BOOST found 53.9% of the true interactions, followed by GSS, SNPRuler and wtest.
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Figure 2.2: Summary of the pure epistasis results for second order interactions. The three bar charts

show the number of True Positive interactions discovered and the position that the algorithm ranked

it amongst combinations with noise loci. Each chart shows a different heritability for the interaction,

with higher heritability explained making it more prominent against random noise. The table shows the

results of a Mann-Whitney U Test comparing the non-normal distribution of True Positive ranks for a

single tool against the distribution of true positive ranks for all other tools. (Previously published in Russ

et al. 2022)

When assessing impure two locus models of epistasis (Fig. 2.3), for all models except

from the joint-recessive model, MDR exhibited the best performance (p = 6.31e − 90), iden-

tifying between 54.2% and 90.9% of interacting loci. However, for the joint-recessive model,

this method has the lowest performance, failing to detect any of the interactions. In this case,

GSS correctly identified most of the interacting loci, demonstrating significantly superior de-
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tection ability (p = 1.04e −26). Notably, across all models, epiACO achieved the highest mean

proportion of identified interactions at 65.5% (p = 2.62e −66) compared to MDR at 62.2% (p =
2.71e − 57), followed by wtest with a 59.8% discovery (p = 8.90e − 42). Finally, for ranking the

correct interaction first, MDR exhibited the best performance, identifying 32.0% of the correct

interactions as most likely, followed by epiACO, AntEpiSeeker and wtest.

Figure 2.3: Summary of the impure model results for second order interactions. Each bar chart shows the

number of True Positive interactions discovered and the position that the algorithm ranked it amongst

combinations with noise loci. Each chart shows a different interaction models (see Table 2.3). The ta-

ble shows the results of a Mann-Whitney U Test comparing the non-normal distribution of True Positive

ranks for a single tool against the distribution of True Positive ranks for all other tools. (Previously pub-

lished in Russ et al. 2022)
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2.3.2 Third Order Interactions

Some of the tools assessed cannot identify higher order interactions and, as such, were not

included in the following experiments. Fig. 2.4 presents the tools’ interaction detection per-

formances for pure epistatic three-locus models. MPI3SNP identified 28.3% of correct inter-

actions (p = 8.24e − 13), followed by wtest which retrieved 21.1% (4.98e − 05), and MDR with

20.0% (p = 7.72e − 4). Furthermore, MPI3SNP identified 20.5% of the correct interactions as

most important, compared to wtest and MDR with 17.2% and 12.2%, respectively.
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Figure 2.4: Summary of the pure epistasis results for third order interactions. The three bar charts

show the number of True Positive interactions discovered and the position that the algorithm ranked

it amongst combinations with noise loci. Each chart shows a different heritability for the interaction,

with higher heritability explained making it more prominent against random noise. The table shows the

results of a Mann-Whitney U Test comparing the non-normal distribution of True Positive ranks for a

single tool against the distribution of True Positive ranks for all other tools. (Previously published in Russ

et al. 2022)

For the case of impure epistatic models (Fig. 2.5), wtest detected one more interaction

than MPI3SNP, retrieving 56.7% and 56.5%, respectively. However, the Mann-Whitney U Test

demonstrates that the rank distribution of those identified by MPI3SNP was superior, achiev-

ing a p-value of 1.11e − 30 compared to 914e − 25. These were followed by MDR with 44.3%

(p = 1.3e − 4) and AntEpiSeeker with 43.0% (p = 1.15e − 09). In terms of identifying the cor-
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rect interaction at the highest rank, AntEpiSeeker found 40.5% of such interactions, followed

by MPI3SNP with 39.8%, wtest with 35.7% and MDR with 21.2%. Similar to the previous experi-

ments, the joint recessive dataset was the least well identified, with CINOEDV achieving the best

performance with four accurate hits, while the other methods failed to detect any interactions.

Figure 2.5: Summary of the impure model results for third order interactions. Each bar chart shows the

number of True Positive interactions discovered and the position that the algorithm ranked it amongst

combinations with noise loci. Each chart shows a different interaction models (see Table 2.3). The ta-

ble shows the results of a Mann-Whitney U Test comparing the non-normal distribution of True Positive

ranks for a single tool against the distribution of True Positive ranks for all other tools. (Previously pub-

lished in Russ et al. 2022)

Considering the run-time of each tool (Table 2.8), PLINK was the fastest for the two lo-

cus problems, its implementations of BOOST and Fast Epistasis necessitated roughly the same

time with different numbers of features. All other tools required more time with additional
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features, apart from CINOEDV which unexpectedly required less time for greater numbers of

features. However, this appears to be due to a small number of outliers that took up to 45

minutes to complete. GSS exhibited the slowest performance, taking over 46 hours to assess

2500 features. When assessing three locus problems, MPI3SNP and SNPRuler exhibited the

fastest performance, with SNPRuler being fractionally slower with fewer features but requiring

almost 50.0% less time for the larger feature set. The tools with the slowest performance were

CINOEDV and wtest, with the latter expending over 14 hours to assess a single dataset. Notably,

AntEpiSeeker appears to have performed the three locus problem quicker than two locus prob-

lems, but in fact different parameters were used for both datasets as a result of the differing

numbers of features. This is because it is recommended that the number of iterations carried

out over two stages is a function of the number of SNPs. The first stage, uses a tenth of the num-

ber of iterations to the number of SNPs and the second stage, half the number of the first. Since

the three locus problems datasets use 500 SNPs compared to 2500, that means there are many

fewer iterations required.

The memory requirements (Table 2.8) demonstrate a marked increase with the number

of features and how many loci are involved in the interaction. wtest is the most memory in-

tensive tool, necessitating over 14 GB of RAM for the 500 variable, three locus interaction tasks.

The PLINK implementations and AntEpiSeeker demonstrated particularly efficiency.
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Table 2.8: Average time taken in minutes/RAM used in MB per method at different numbers of loci for

a di-locus or tri-locus search. *AntEpiSeeker performed with slightly different settings in three-locus

experiments (see Methods).

Two Locus Detection Three Locus Detection

Tool 500 loci 2500 loci 100 loci 500 loci

AntEpiSeeker 1.89/6 6.35/16 1.32*/6 1.79*/9

CINOEDV 16.20/205 15.70/272 48.18/211 422.18/1346

MDR 0.26/1 6.01/291 0.37/1 22.59/2092

SNPRuler 0.34/1 0.66/306 0.56/1 0.46/2

wtest 0.41/1 7.47/2096 6.73/199 851.33/14302

MPI3SNP -/- -/- 0.22/1 1.23/69

Cassi 0.50/1 1.76/156 -/- -/-

epiACO 13.20/665 20.85/697 -/- -/-

GSS 29.45/682 2791.15/843 -/- -/-

PLINK

Fast Epistasis 0.23/1 0.21/1 -/- -/-

PLINK BOOST 0.22/1 0.22/1 -/- -/-

PLINK Epistasis 0.25/1 2.40/1 -/- -/-

2.3.3 Demonstrative Second Order Interactions in Atrial Fibrillation

Two-locus interaction analysis was performed on UK biobank participants with and without

AF (Table 2.9). AntEpiSeeker, CINOEDV and epiACO all found a partner for rs730072, with CI-

NOEDV finding a relationship with rs4668136, as opposed to AntEpiSeeker and epiACO, which

both identified rs1152591. MDR and wtest also found a potential interaction with rs1152591,
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but instead the other locus was rs3792234. GSS and BOOST also found the same pair of SNPs

most explanatory, with a relationship predicted between rs9346918 and rs4342945. Similarly,

Cassi and epistasis found the same pairs in rs1608994 and rs3809775. This SNP set was signif-

icantly over-enriched for the Gene Ontology terms, zinc ion binding (p = 4.04e − 2) and RNA

polymerase II transcription regulator complex (p = 4.03e − 2). Moreover, there is evidence in

the STRING database for protein interactions (Szklarczyk et al., 2019) showing that homologs

of DTNB and SYNE2 in Mus musculus are co-expressed and interact in various assays, an in-

teraction that was found by two independent tools. This could potentially be a fruitful line of

enquiry given that SYNE2 is known to be associated with AF (Ellinor et al., 2012). Addition-

ally, LRP2, which epistatically interacts with DTNB, has been linked to arrhythmias in multiple

conditions from genomic screens and proteomic assays (Lygirou et al., 2018; Theis et al., 2020).

Table 2.9: Epistatic interactions predicted by each tool as most important for Atrial Fibrillation. An *

denotes that the SNP was found to be intergenic and this is the nearest gene

Tool SNP1 Gene1 SNP2 Gene2

AntEpiSeeker rs730072 DTNB/ARNILA rs1152591 SYNE2/ESR2

Cassi rs1608994 MSR1 rs3809775 HOXB8/HOXB9

CINOEDV rs730072 DTNB/ARNILA rs4668136 LRP2

epiACO rs730072 DTNB/ARNILA rs1152591 SYNE2/ESR2

GSS rs9346918 PRKN rs4342945 PPP2R2D

MDR rs3792234 STON1 rs1152591 SYNE2/ESR2

PLINK:epistasis rs1608994 MSR1 rs3809775 HOXB8/HOXB9

PLINK:FastEpi 9:140746691 EHMT1 rs56018060 CA12/LINC02568

PLINK:BOOST rs9346918 PRKN rs4342945 PPP2R2D

SNPRuler rs6754266 LOC105373398* rs12627212 RUNX1

wtest rs3792234 STON1 rs1152591 SYNE2/ESR2
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2.4 Discussion

This study has systematically assessed the performance of several state-of-the-art tools, includ-

ing popular implementations, such as logistic regression, nature-inspired algorithms and mul-

tifactor dimensionality reduction. The evaluation of their performance was carried out for two

key categories of epistasis, namely pure epistatic interactions with no main effect, which were

randomly distributed and impure epistatic interactions with some main effect, that conformed

to several set epistatic models. This evaluation strategy was repeated for both second-order and

third-order interactions. The purpose of this has been to inform future research to uncover ge-

netic interactions, reduce the impact of missing heritability and ultimately to better inform use

of genetic data as we strive towards personalized medicine.

The experiments revealed that the performance of each tool varies depending on the

task that is being assessed. The pure epistatic models represent the most difficult interactions

to detect, since the lack of marginal effects necessitate all loci in an interaction to be considered

to identify any effect. Each locus individually will not have a main effect and as such its effect

would have insignificant p-values in a standard univariate GWAS, with p-values around 1 (Fig.

1). However, the tools which detected the most pure epistatic models were not the same as

those that found the most impure models, indicating that tool selection based on significance

is a valid strategy.

In the case of pure two locus models, the PLINK implementation of BOOST had the best

performance. It was also the fastest to complete the task (Table 2.8). This is perhaps expected,

since PLINK is one of the first tools in this space with continuous maintenance and improve-

ments including speed improvements, utility of bitwise operators, multithreading and other

techniques. This is similar to MPI3SNP that is also compiled in C++ and appears to have well

optimized code for the task as seen in its runtime. A disadvantage of BOOST lies with the lack
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of a function to include covariates, necessitating their correction in post-processing steps.

Since PLINK only assesses pair-wise interactions, it is not a viable option for third order

interactions. For these cases, MPI3SNP detected a higher number of pure epistatic interactions

than wtest, achieving a superior distribution of ranks when tested. Of the interactions found,

those ranked first made up 72.5% for MPI3SNP, compared to wtest with 81.6% of instances.

In terms of runtime and memory requirements, MPI3SNP performed excellently, particularly

when compared to the prohibitive requirements of wtest.

Considering impure epistatic interactions, the MDR was most successful at detecting

two locus problems in all test cases, except for the joint recessive model. This type of model

is the hardest to detect since the interaction only occurs at only one genotype. Since MDR

considers all possible genotypes, it is likely that random fluctuations in other genotypes detract

from the effect of the affected genotype, which contains the fewest total individuals under HWE.

For a minor allele frequency (MAF) of 0.4, with a total of 2,000 samples, there are approximately

50 samples with this genotype in a two locus problem and 7 for three loci. This figure is then

split into cases and controls, rendering distinguishing a three locus joint recessive scenario very

difficult, even for the instances that all or almost all of the samples with that genotype were

cases. GSS retrieved the most of the two loci cases, whilst CINOEDV found four higher order

interactions. However, it is questionable how feasible searching for these interactions is without

much larger sample sizes. Higher order impure epistatic models returned mixed results, with

MPI3SNP again performing well with higher dimensionality but ranking fewer at first place than

AntEpiSeeker. wtest and MDR were also notable for detection ability, and perhaps again a joint

searching strategy could be employed to give a greater combination of speed and accuracy.

Evidently, this assessment, given that it encompasses a survey of a wider range of tools

than previous reviews of this nature, clearly demonstrates that there is no one best tool for all in-

teraction types. GSS has previously been reported as the most powerful algorithm by Chatelain
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et al (Chatelain et al., 2018) and although the results showed a similar trend, GSS was not the

optimum solution for any of the scenarios that were assessed, exhibiting substantially long run

times and memory requirement. Alchamlat et al (Abo Alchamlat et al., 2018), reported MDR

as the best performing tool and the results indicate that, although it did not exhibit the best

performance across the datasets that were used, its performance was the most consistent. Fur-

thermore, there was little to suggest an ensemble of tools would provide better identification of

interactions. If the interaction was to be retrieved by any tool, the most proficient tool, in each

scenario, was almost always the one that retrieved it and as such, multi-tool ensemble-based

approaches were not found to be useful (for key features of each tool see Table 2.10).

Table 2.10: Key features for each tool

Tool
Statistical

Test

Exhaustive

Search

Mem.

Use

Higher

Order

Missing

Data
Covariates

AntEpiSeeker χ2 No Low Yes No No

CINOEDV Co-information Both High Yes No No

MDR Permutation Testing Yes Med Yes Yes Yes

SNPRuler χ2 No Low Yes Yes No

wtest W-test Yes High Yes No No

Cassi Logistic Regression Yes Low No Yes Yes

epiACO Mutual Information No High No No No

GSS
Min-Max

Optimization
Yes High No No No

PLINK:BOOST
Log-Linear

Regression
Yes Low No Yes No

PLINK:FastEpi Z-Score Yes Low No Yes No

PLINK:epistasis Logistic Regression Yes Low No Yes Yes

MPI3SNP Mutual Information Yes Low Yes No No

73



Identifying Epistatic Interactions

The application of the tools to the UK biobank AF data highlighted limitations found in

some of the tools, such as the inability to handle missing genotypes and the memory require-

ments needed to run wtest when applied to a larger dataset. Given SYNE2 has previously been

associated with AF (Ellinor et al., 2012), that does lend some credence to the interactions in-

volving that gene, that was found by four tools. Interestingly, there was evidence in STRING

(Szklarczyk et al., 2019) for an interaction between homologs of DTNB and SYNE2, being both

co-expressed in Mus musculus and interacting within various assays. This perhaps supports the

use of AntEpiSeeker and epiACO. However, more research would need to be carried out. The

experiment did demonstrate some patterns amongst the tools. Unsurprisingly, both PLINK’s

epistasis and Cassi identified the same interactions, since they are both variants of logistic re-

gression. Interestingly, there was also exact agreement between GSS and BOOST, as well as

wtest and MDR and a high-level of similarity amongst the nature-inspired methods. This indi-

cates that perhaps some concordance between how these methods approach the data that has

led them to rank highly the same interactions.

A key limitation to this paper is the focus on detection capabilities of tools at a smaller

scale than a regular GWAS. The next step will involve transitioning to larger feature spaces of

around 750,000 initial loci and assessing different strategies for searching efficiently, especially

since the time and memory requirements for spaces of this size will be very large. This will

therefore require testing strategies that can be applied at a larger scale, and is therefore beyond

the scope of this paper. Using a faster more efficient tool initially, followed by a quicker more ac-

curate one could be a potential solution. Alternatively, individual features could be ranked first

using a Relief-based algorithm, such as multiSURF (Ryan J. Urbanowicz et al., 2018). Further-

more, since different tools perform better for pure and impure epistatic problems, a division of

the data can be made using the p-value of individual loci generated by logistic regression. Fi-

nally, this research is limited to second and third-order interactions. Further work is planned to

be carried out for higher-order interactions, but establishing feasibility at lower levels has been
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carried out preferentially due to the power constraints which are increased at each dimension.

Since the loci exist in HWE, their genotypes containing fewer samples is unavoidable, an effect

that is compounded with additional dimensionality.

It is notable that there are a large number of epistasis detection tools in existence, and

therefore it is plausible that some of them would exhibit better performances than the selec-

tion assessed here. The aim was to provide an independent, objective performance assessment

over a representative selection of available tools. The inclusion criteria considered whether it

was feasible for a tool to be assessed under the study constraints, and hence tools designed for

quantitative phenotypes as well as tools that relied upon the wider genome context were not

included. Examples of the latter would be Eigen-epistasis (Stanislas et al., 2017) that calculates

eigenvectors for sections of the genome or GenEpi that uses gene boundaries to group loci (Y.-C.

Chang et al., 2020).

The practical application of this research is dependent upon further development of

these approaches in order to create workflows to find interactions at scale for many diseases

and phenotypes. In the clinic, the additional genetic markers have the potential to be used in

diagnostic applications and as targets for therapeutic remedies. Owing to the substantial effort

expended to carry out GWAS, there is a significant drive to ensure there are beneficial medical

advances as a result(Shu et al., 2018; Lau et al., 2020). Quantifying the heritability and effect size

of the interactions allows for their incorporation with known single loci involved in the disease.

Inclusion of interactions within models for PRS has been shown to affect overall accuracy(Dai

et al., 2020). Additionally, a priori data about interactors can guide further research into par-

ticular diseases and enhance biological interpretability. Knowledge can be revealed using pow-

erful resources, such as Reactome and KEGG datasets for pathway analysis, Gene Ontology for

protein function, processes and cellular location and STRING Database for protein-protein in-

teractions(Fabregat et al., 2017; Kanehisa et al., 2017; Ashburner et al., 2000; Szklarczyk et al.,

2019).
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The approach revealed that different tools are optimum for different challenges. For

detecting pure, two locus interactions, BOOST, as implemented by PLINK, was most effective,

with low runtime and memory requirements. For impure epistatic interactions, MDR retrieved

the highest number of correct interactions. For the more computational costly cases, MDR

offers options for covariate correction. Finally, for detecting three locus interactions, MPI3SNP

exhibited the best performance, with the minimal computation requirements notable for this

challenge. How these can be applied to genome-wide datasets is the next challenge.
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Detection on a Genome-Wide Scale

3.1 Introduction

3.1.1 Genome-Wide Epistasis Detection

An effect of the proliferation of GWAS and large biobanks, is the abundance of data produced.

This presents enormous opportunities, but also the possibility to partially squander these if

insights are missed. It is of vital importance to ensure that disease drivers are identified so

as to maximize the resulting medical benefits. However, it is not common practice to include

searches for genetic interactions in GWAS. This is due to lack of best practices, onerous re-

source requirements and technological hurdles, with Ritchie comparing the process to finding

an ’epistasis needle’ in a ’Genome-wide haystack’ (Ritchie, 2015). There are two broad strate-

gies for epistasis detection from these datasets, to deal with these challenges. The first is using

a priori knowledge to curate genetic targets to test, and reduce the problem of high dimension-

ality. This can be useful if a specific condition is being studied and resources are limited. A

downside of this is that it will introduce an historical bias, in which genes previously associated

with a phenotype are tested under a reduced significance threshold. This leads to less rigor-
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ous testing, despite a greater amount of data being available that has simply been excluded.

The second approach is untargeted, fully utilizing the large GWAS datasets. As discussed in the

previous chapter, this introduces high significance thresholds under multiple testing but can

implicate genes previously unassociated with a phenotype and find unknown genetic relation-

ships, as well as provide a greater surety in the associations discovered.

In the prior chapter, methods were compared using a smaller dataset. In this chapter,

the aim is to increase the scale to biobank size datasets and apply the most effective workflow to

biological data. The first stage is a simulation study carried out on Chromosome 22, as extracted

from UK biobank, with models of epistasis fitted in to the linkage structure. Following this,

the most successful pipeline is applied to three diseases, Atrial Fibrillation, Parkinson’s Disease

and Alzheimer’s Disease. Finally, analysis of the most significant relationships is carried out to

understand the mechanisms behind the associations.

3.1.2 Challenges and Considerations

Genetic Structure

In the previous chapter, the factor of chromosomal structure was largely avoided. However,

conserved inherited sequences of DNA provide a specific challenge when testing for epista-

sis, but also potential opportunities. The non-random patterns of LD across a chromosome

are structured broadly into haplotype blocks. These are areas in which recombination during

meiosis rarely happens, resulting in a set of associated groups of genotypes, known as haplo-

types. These haplotypes form part of the species’ evolutionary history, with mutations retained

as a result of random genetic drift or some beneficial evolutionary aspect(Clark, 2004).

The challenge posed by LD is essentially confined to loci on the same chromosome,

since outside of translocation of a section of a chromosome to another, genetic material is
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not generally shared between different chromosomes (Paththinige et al., 2019; Vasilevska et al.,

2013). However, as stated in equations 1.3 and 1.5, LD is the correlation of the genotypes of dif-

ferent loci. As such, any relationship between the loci is likely due to their intrinsic correlation

rather than a genetic interaction. This can present over a long range, with LD observed at loci

1,747,249 base pairs apart (Park, 2019). However, it is also possible that the simultaneous con-

servation of mutations is due to a critical epistatic relationship of the conformations of those

genes affected. This has been observed, for example, in mutations in the gamete recognition

genes Z P3 and Z P3R (Rohlfs et al., 2010).

As we have seen previously, it is in part due to this structure that GWAS has been so

successful. When proposed by Risch, it was in utilizing LD that genetic markers could be used

as proxies for a region (Risch et al., 1996). This has also allowed the process of imputation

of proximal variants to be implemented from panels made up from data such as the HapMap

project, 1000 Genomes and others (Altshuler et al., 2005; Auton et al., 2015). Similarly, a variant

can be used as a proxy for its local region via LD when assessing interactions. This means that

the variants assessed for interaction may not be the causative loci but ones that are correlated,

with that level of correlation defined by the level of LD between the causative loci and their

proxies. The issue with this is a problem of deteriorating power. In GWAS, the most significant

variant found is unlikely to be the causative variant, but one in LD with that variant. As such,

there is the potential that the association is weakened compared to if the variant driving the

trait had been tested. This is a limitation of SNP arrays when compared to sequenced data.

The method of determining haplotype blocks is achieved using a process called LD prun-

ing. This is carried out in a moving ’window’ of variants, with its size determined by the physical

distance or a given number of variants. As the genetic material is scanned, a metric such as r 2

is calculated to determine the structure in that window and group variants that are in LD by a

set amount. This way, blocks can be built along the chromosome. After the blocks have been

determined, a process called clumping is often applied. This is a way of selecting a variant from
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the block by taking the one that achieved the greatest monogenic association, when assessed

against the trait in question. The resulting collection of loci are then ’representatives’ of their

block (Purcell et al., 2007). Indeed, this method of dimensionality reduction has been utilized

in network-based analyses so that a node represents a correlated region of the genome, scans

of HapMap phenotypes and as part of the suggested protocol of tools such as MB-MDR (Lareau

et al., 2015; Becker et al., 2012; Joiret et al., 2019).

Models of Epistasis

As discussed in the previous chapter, we can model epistasis as pure, or impure, dependent on

the monogenic significance of the individual variants. We have observed that different tools are

better adapted to each of these situations, and as such, a strategy to tailor tools to models they

perform better on can then be employed. This can be achieved using the variant’s significance

when assessed against the trait, and those below a pre-determined significance can be assessed

by one tool and those above by another. This is an extension of the method suggested by Evans

and Kooperberg, in which variants are assessed if they have a monogenic significance below a

selected threshold (Evans et al., 2006; Kooperberg et al., 2008).

As previously discussed, there are hundreds of possible models, from more ordered con-

formations adhering to Mendelian Inheritance, such as joint dominant, whereby a minor allele

of two genes is require to cause the phenotype to less well ordered conformations that are more

stochastic. These don’t fit well under a linear model interaction as a product of two variants,

since they are non-linear patterns. In the previous chapter we saw that tools that assessed in-

teractions by looking at each combined genotype performed better, and so in these simulations

a collection of different models should be generated to assess the approaches.
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Multiple Testing

The principle of multiple testing correction is required because the standard significance thresh-

old used of 0.05 is a probability. As more hypotheses are tested, a false positive result is therefore

more likely, so that threshold must be adjusted. The number of tests that are carried out in ex-

haustive epistasis detection is a function of the number of variants tested. The genome-wide

p-value significance threshold of 5e −8 assumes 10e6 independent regions of the genome. This

means that the number of tests required in an exhaustive search is a two element subset of 10e6

elements, denoted 1,000,000C2, which is slightly fewer than 5e11 combinations. This means that

for the Bonferroni adjusted significance threshold, 0.05 is divided by the number of tests, giving

a threshold of 1e −13 (“Etymologia” 2015). The Bonferroni correction method is seen as being

prohibitively stringent, with a common method to reduce the burden being the Benjamini-

Hochberg False Discovery Rate (FDR) (Benjamini et al., 1995). Proposed to reduce the number

of erroneous rejections, false negative results, it is an extension to the Bonferroni correction.

Resulting p − values are ranked from smallest to largest, through iterations i and the adjusted

p-value is calculated:

P (i ) =α× i

m
(3.1)

with α being the type I error rate, normally 0.05 and m being the number of tests carried

out. With this method, the most significant result is assessed using the Bonferroni correction,

but the adjustment is less severe moving through the ranked list. The limit of a value’s correc-

tion is the significance of the previous item in the list. As such, if statistical significance is not

reached by the first value, it will not be reached by any.
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3.1.3 Applications for Atrial Fibrillation, Alzheimer’s Disease and Parkin-

son’s Disease

In the previous chapter, there was a small-scale example of epistasis detection in atrial fibril-

lation (AF). There are quite a number of loci known to be associated with AF, with one study

noting 138 variants (Roselli et al., 2020). In part, the discovery of so many variants is due to the

prevalence of the disorder, affecting around 2% of Europeans, and also the severity, as patients

suffering from AF are more likely to have strokes or die, so medical interventions are required

(Zoni-Berisso et al., 2014). There has been a small study looking at epistasis in atrial fibrillation,

identifying a potential interaction between T 174M and M235T (Moore et al., 2006). Addition-

ally, there have been some studies that have identified potential interactions from biological

experimentation, one finding a relationship between PDE4D I P and DES in a familial study

and another proposing epistatic effects of rare mutations in K + channels (Abou Ziki et al., 2021;

Mann et al., 2012).

To extend this study further, we will also apply the pipeline to the two neurodegenera-

tive disorders, Alzheimer’s Disease (AD) and Parkinson’s Disease (PD). These are conditions that

cause great suffering, affecting an estimated 33.9 million and 6 million people worldwide, re-

spectively (Barnes et al., 2011; Bloem et al., 2021). AD has been the focus of a project specifically

aimed at identifying interactions, called the Epistasis Project. One paper was targeted at BDN F ,

DB H and SORT 1, finding some evidence of interactions(Belbin et al., 2019). This approach, of

targeting mutations in specific genes also yielded a potential interaction between HF E and

T F , as well as I L −6 and I L −10 (Lehmann et al., 2012; Combarros et al., 2009). However, they

use a very loose significance threshold, that may make sense within their experiments, but in

terms of genome-wide significance it is perhaps not sufficient. Other groups have continued

this practice, focussing on genes associated with late-onset AD, with interactions claimed be-

tween a number of genes (Raghavan et al., 2017). Evidence for epistasis in PD is less common,
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although some studies have been carried out in a similar targeted way, such as with genes in

the mT OR pathway (Bandres-Ciga et al., 2020; Fernández-Santiago et al., 2019).

3.2 Materials and Methods

3.2.1 Study Design

The study was designed to follow two phases, firstly a simulation study examining different ap-

proaches to epistasis detection over Chromosome 22, in order to assess strategies for finding

interactions. Chromosome 22 was used since a significance threshold is being tested against,

so interactions can be assessed empirically, and as the shortest chromosome it is less compu-

tationally intensive for hundreds of simulation tests. This was to understand the most effective

strategies and assess the feasibility of the approaches in terms of computational and time re-

quirements. Secondly, the methodology that was deemed to be most effective was applied to

three real case-control datasets from UK biobank. Interactions found were then assessed for

their contribution towards the disease model.

3.2.2 Chromosome 22 Simulation

Data Generation

The basic genetic material used in the experiments was from GWAS data obtained from UK

biobank, to which simulated models of epistasis were added programmatically. A random se-

lection of 100,000 individuals was used, with all being classed as white British, unrelated, hav-

ing no sex mismatch or aneuploidy and not having been flagged for outlying heterozygosity

levels or missingness. To limit the feature space and test for epistatic models which would
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have a more even spread of allelic combinations likely, a minimum MAF of 0.01 was used.

This is because the genotype consisting of entirely minor alleles for two variants would contain

0.014 × 100,000 = 0.001 individuals, so is unlikely to be populated at this level for noise vari-

ants. A genotyping filter for missingness was used of no greater than 5% and all variants having

a p-value for departure from HWE of no less than 5e −8. After these filters, 9,644 variants re-

mained. PLINK was used to calculate r 2 values for LD across the chromosome The ld-window

and ld-window-kb flags that set the size of the moving window when calculating LD statistics,

were set large enough to capture the entire chromosome. This was carried out so that the inter-

action models could be placed within LD structures, but whilst being located in unassociated

haplotype blocks.

Epistatic models for two loci were generated via two methods. For the pure-epistatic

models GAMETES v2.2 was used, generating models with heritability scores of 0.005, 0.003 and

0.001, MAF of 0.1, 0.2, 0.3 and 0.4 as well as three levels of Ease of Detection Measure. A cus-

tom R script was written to generate impure model-based interactions at three different odds

ratios, at 1.2, 1.4 and 1.6, as well as MAF 0.1, 0.2, 0.3 and 0.4. The models used were based on

Mendelian forms of inheritance, in five different configurations. Since HWE dictates the distri-

bution of individuals across the 3-by-3 grid, each of the four rotational versions of the models

were generated.

The models were fitted into the chromosomal material using an approach coded in R.

Here, the first variant in the interaction is matched to an existing variant by genotypic similar-

ity, as in LD, then the phenotype is generated and the second interacting variant is fitted to a

remaining variant, outside of LD from the first interacting variant. This placed both variants

within the haplotype structure of the chromosome.

84



Detection on a Genome-Wide Scale

Detection Methods

Five methods were used to scan the data, utilising the differing strengths of MDR and BOOST, as

the two best performing algorithms from the previous chapter (Figure 3.1). With MDR it is not

feasible to conduct an exhaustive search, even using the parallel option, however with BOOST

this method was used. For both, default parameters were used. As mentioned in the introduc-

tion, reducing the dimensionality can be achieved by dividing the chromosome into haplotype

blocks. This was done using PLINK’s –blocks flag with the no-small-max-span option, across a

maximum range of 500 kbp. Afterwards, a random variant from the block was selected for the

experiment. Any which had not been detected as part of the haplotype blocks were included

as well. This resultant datasets were tested by both BOOST and MDR individually. In Chapter

2, BOOST had performed best at finding pure epistatic interactions, whereas MDR was better

for impure interactions. From this insight, another test was carried out by separating the loci

using a monogenic significance of 0.05. Those not reaching that threshold were tested using

BOOST, and those that did were assessed with MDR. This allows each to be targetted at the

types of interactions they are more likely to locate as a combined approach. Finally, the latter

approaches were combined, so that the monogenic significance was calculated, and haplotype

blocks formed in a chimeric setup.

85



Detection on a Genome-Wide Scale

Figure 3.1: Flowchart to show data segmentation for different testing strategies implemented

Two significance thresholds were implemented in the simulation study. Since the test

was being carried out on Chromosome 22, a Bonferroni corrected value based on the total

number of loci included. A second threshold was also used for genome-wide significance.

Calculated again with a Bonferroni correction and based on the standard GWAS significance

threshold of (5e−8):

0.05×
(

0.05

5e−8
×

(
0.05

5e−8
+1

))−1

(3.2)

The basis of this equation is the standard GWAS multiple threshold value as defined by

Risch of 1e6 (Risch et al., 1996).

3.2.3 Application to Real Datasets

To expand the application of this pipeline beyond that in chapter 2, as well as a more compre-

hensive test of AF, AD and PD have also been included for examination. These have been the fo-

cus of previous studies for epistasis, as noted in the introduction, so are appropriate candidates
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here. The UK biobank data was filtered to include only those that have no 3rd degree relatives,

are categorized as ’White British’, are not flagged outliers for heterozygosity or missingness and

do not have sex chromosome aneuploidy. The variants were filtered with a minimum MAF of

0.05, maximum missing rate of 0.05 and departure from HWE p-value 5e −20. The cases were

selected based on recorded ICD codes in the diagnosis fields, as well as the date of diagnosis

fields (WHO, 2003). The codes used were based on the mappings provided with phecodes (P.

Wu et al., 2019) but in summary, Alzheimer’s Disease is covered by F00.0, F00.1, F00.2, F00.9,

G30.0, G30.1, G30.8 and G30.9, Parkinson’s Disease by G20.0 and G21.4 and AF by I48.0, I48.1,

I48.2, I48.3, I48.4 and I48.9 and the available equivalents with the date of the diagnosis.

The data were first tested for non-epistatic, monogenic associations using regenie, with

covariates included of age, sex, array type and ten principal components (Mbatchou et al.,

2021). The SNP array data were first assessed using BOOST exhaustively, retaining any that were

assessed to have a p-value lower than 0.001. A database that was created from data extracted

from PhenoScanner, which is based on 1,000 Genomes data with LD data for all pairs of vari-

ants with a minimum r 2 of 0.8. From this any variants that were in linkage with those found by

BOOST to have an interaction were included from the imputed data (Kamat et al., 2019). From

this, the imputed genotypes of UK biobank were included, with a minimum INFO score of 0.3

and MAF of 0.01. BOOST was used to test this exhaustively. Then, with only variants that were

involved in an interaction with a p-value less than 5e-4, a new dataset was created with variants

all in linkage equilibrium, using the PLINK function –indep-pairwise through a window size of

1 Mbp, moving 80 variants at a time and with an r 2 threshold of 0.8. From this smaller dataset,

MDR could be executed (see Figure 3.2).
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Figure 3.2: Flowchart to show stages involved applying pipeline to UK biobank

When using GWAS data, it is important to understand that the variant that is detected is

most likely not the causative locus, but a proxy that is in linkage with it. As a result, loci that were

identified were scanned against the 1000 Genomes panel using LDlinkR (Myers et al., 2020). Any

positions that were not annotated using this were found using BioMart (Smedley et al., 2009).

Each pair of interacting loci were assessed using g:Profiler, stipulating that both loci must have

the tag found and a significant p-value (Reimand et al., 2007). The String database was then

queried to find any known interactions in the results (Szklarczyk et al., 2021). Finally, the inter-

action was assessed, genotype-by-genotype. Each of the possible genetic configurations were
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tested to find key statistics such as the interaction’s heritability, as variance explained found us-

ing a pseudo R2 test to find variance explained and odds ratio. The interaction was defined as

any of the genotypes in which the odds ratio at the lower 2.5% tail of the confidence interval

exceeded 1 as calculated by a Fisher’s Exact Test in R.

3.3 Results

3.3.1 Chromosome-Wide Simulation

Detection Methods

The simulation experiments confirmed what we saw in Chapter 2, BOOST performed best when

considering pure epistatic models but is surpassed by MDR when assessing impure models (Fig.

3.3). When both were applied but split by monogenic significance, performance was only min-

imally affected in the pure experiments and outperformed BOOST on its own. The approach

was also fairly robust when split into LD blocks in impure experiments. Experiments in which

the data were divided into LD blocks were unable to detect many of the interactions. The pat-

terns observed in Chapter 2 were still in evidence in these experiments, however, with BOOST

performing better than MDR for pure epistatic models and MDR detecting more impure inter-

actions.
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Figure 3.3: Bar chart showing the fraction of epistatic interactions for pure models at three different

detection difficulties and five impure models based on Mendelian models. Each bar shows the number

of interactions detected at the chromosome 22 significance threshold, with the black line representing

the number recovered at whole genome significance threshold

In Figure 3.4, the fraction of total, true interactions detected is given, against a p-value

threshold for detection, between 5e −2 to 5e −15. This showed that BOOST alone was superior

at detecting interactions at lower p-values, but at thresholds less than 5e −4 it rapidly stopped

detecting interactions, mostly those that were impure models. However, when MDR was used

90



Detection on a Genome-Wide Scale

to detect variants with a marginal effect as well as BOOST for those without a marginal effect,

this reduction in performance was less apparent.

Figure 3.4: Chart showing the fraction of interactions recovered per strategy for different significance

thresholds. The x axis 5e − x refers to the changing significance threshold to include interactions as

detected from 5e −2 to 5e −15

We can see in Table 3.1 that methods combining the two algorithms performed best.

However, the combined approach that has been split into LD blocks misses 16 interactions,

compared to the exhaustive approach. These two methods together only fail to detect 10 inter-

actions, that were uncovered by other methods. Of these, five were found by MDR as split by

LD blocks, three by an exhaustive scan with BOOST and two by both of these methods. This

indicates that some were missed by splitting the data by monogenic significance.
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Table 3.1: Table Showing Interactions Discovered per Method, Excluding Those Missed By All Methods

Method Total Detected Total Undetected Total Undetected By Others

BOOST 127 71 3

BOOST & MDR 188 10 3

LD-BOOST & LD-MDR 172 26 0

LD-BOOST 66 132 0

LD-MDR 82 116 5

The QQ-plot in Figure 3.5 shows the distributions of −log 10(p − values) for real inter-

action pairs, those including half of the pair and those of ’noise’ loci. The chart is a bit lopsided,

since a cut-off has been applied to more clearly demonstrate how the variants within the inter-

action present with greater significance than those containing one of the pair. In this particu-

lar case, even given this was limited to just chromosome 22, it is notable that the significance

achieved by the noise loci is far below the significance threshold.
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Figure 3.5: Q-Q plot showing the distribution of -log10 p-values for true interactions, those that contain

one of two interacting variants and false interactions (capped at 20)

3.3.2 Atrial Fibrillation

Since the combined method using both BOOST and MDR performed the best, it was imple-

mented in tests across all autosomes. The AF experiments with BOOST did not achieve sta-

tistical significance but did demonstrate a clear increase in heritability explained as in Figure

3.6. There were nine interactions with significant terms found by g:Profiler. This included an

interaction between AK 9 and RELN that were tagged with the terms GO:1902078 for ’posi-

tive regulation of lateral motor column neuron migration’ and GO:0006756 ’AMP phosphory-

lation’. There is also the suggestion of neural activity in the interaction between F ST L4 and

MY O5B/LI PG/SN HG22 with ’negative regulation of brain-derived neurotrophic factor re-
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ceptor signalling pathway’ (GO:0031549). Two interactions contained terms related to the im-

mune system, APC 6 and LI LRB4 involved in ’negative regulation of cytotoxic T cell differen-

tiation’ (GO:0045584), as well as N SU N 2 and I L22R A2 with ’interleukin-22 receptor activity’

(GO:0042018). Perhaps also of note is the interaction between DC HS2 and LD HD , that are

both involved in ’D-lactate dehydrogenase activity’ (GO:0008720). STRING-db found a medium

confidence interaction between ARL6 and PLEK HG4B .
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Figure 3.6: Difference between heritability explained of interaction compared to two SNPs in Atrial Fib-

rillation as detected by BOOST
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This trend was less clear when looking at results from the MDR in Figure 3.7, in some

cases a variant alone explaining more variance than the interaction. Similar observations were

true regarding p −values odds ratios. Interestingly, MDR recovered an interaction that BOOST

did also, between RIOX 2/EPH A6 and SLC 9A3, which are both implicated in ’Elevated fecal

sodium’ (HP:0032484). Another interaction between F Z D10−AS1 and CORO2B was linked by

’talin binding’ (GO:1990147).
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Figure 3.7: Difference between heritability explained of interaction compared to two SNPs in Atrial Fib-

rillation as detected by MDR
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3.3.3 Alzheimer’s Disease

As with AF, we can see that BOOST has found interactions with increased heritability across all

interactions. There was an interaction found in STRING-db between SLC 35A1 and T ME M5

with medium confidence (0.595) based on having been co-mentioned in PubMed abstracts

both in H .Sapi ens and other organisms. These shared the terms ’CMP-N-acetylneuraminate

transmembrane transporter activity’ (GO:0005456), ’Decreased platelet glycoprotein Ib’ (HP:0031156)

and ’Defective SLC35A1 causes congenital disorder of glycosylation 2F (CDG2F)’ (REAC:R-HSA-

5619037). There were nine interactions with annotations. However, these were not found to be

relevant to the condition. For the MDR, no useful interactions were found.
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Figure 3.8: Difference between heritability explained of interaction compared to two SNPs in Alzheimer’s

Disease as detected by BOOST
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3.3.4 Parkinson’s Disease

The BOOST search returned interactions that included now interactions with direct links to

PD. There were two interactions that were characterized by a link involving unrelated neural

activity, with T FG and L AT S2 sharing a link to ’Lower cranial nerve dysfunction’ (HP:0410262)

and V C AM1 and M IC AL3 both linked with ’cardiac neuron differentiation’ (GO:0060945).
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Figure 3.9: Difference between heritability explained of interaction compared to two SNPs in Parkinson’s

Disease as detected by BOOST
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The MDR results returned one more relevant possible interaction, in F ST L4 and SM AD6.

These shared the term ’negative regulation of brain-derived neurotrophic factor receptor sig-

nalling pathway’ (GO:0031549).
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Figure 3.10: Difference between heritability explained of interaction compared to two SNPs in Parkin-

son’s Disease as detected by MDR
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3.4 Discussion

The simulation study showed the usefulness of combining strategies, with BOOST clearly bet-

ter at finding pure epistasis and MDR better for impure interactions, as was seen in Chapter 2.

At this scale, it was not possible to run MDR exhaustively, but it seems reasonable to conclude

that this division would have held. It was interesting to see that the combined strategy, with

data divided by monogenic significance, was almost as successful as BOOST in the pure tests

and was consistently the best performer in the impure tests. Selecting variants within LD blocks

does reduce the number of interactions recovered, greatly in the case of the single method ap-

proaches. This was not so much the case when both methods were applied, perhaps due to a

greater number of loci being tested, since the data was divided into blocks after the division by

significance.

A valuable observation from the simulation experiments was the number of interactions

detected by BOOST when seen against significance threshold. Since BOOST is implemented

within PLINK and is an extremely efficient, fast algorithm, this allowed a search strategy to be

formulated but carrying it our in three phases. The first using the SNP array loci, then those

that interacted at a significance of less than 5e −4, local imputed loci were added to the data to

potentially include variants that were in tighter LD with the causative SNP to be included. These

were then tested by BOOST, with hose reaching the significance threshold being included in the

set tested using MDR, after the data was reduced using candidate variants from LD blocks.

The results for AF were different between Chapters 2 and 3, which is perhaps unsurpris-

ing given the limited data that was used in the previous iteration. Observations for AF were of

interest, as some of the terms found between genes are linked to AF in the literature. There is

a growing body of evidence that inflammation plays a part in the aetiology of AF, so a link with

cytotoxic T cells and IL-22 could play a role (Xiaoxu Zhou et al., 2020). Indeed, C D4+C D28null
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T cells are known to play a role in the development of AF (Hammer et al., 2021) and IL-22 is

found in elevated levels in the atria of patients with AF (Yongxin Wu et al., 2020). The role of D-

lactate hydrogenase is a potential area for further research, given people with AF tend to have

increased levels of atrial lactate that causes oxidative stress within the tissue (Xu et al., 2013).

Included in the results were references to some neural activity, however since the lateral motor

column and Brain-Derived Neurotrophic Factor are both removed from the heart tissue this is

maybe a less useful insight. The findings from MDR were less obviously linked, in particular el-

evated fecal sodium levels, since hypertension is such a strong predictor of AF you would expect

that sodium being lost from the body would be a benefit. This has been shown in a pharmaco-

logical test in rats (Linz et al., 2020). There is some research to link talin to AF, in that talin has

been shown to be key to cardiomyocyte growth, as seen in D.mel anog aster (Bogatan et al.,

2015).

The results were less interpretable for AD, although the protein-protein interaction in

STRING-db confirms that an interaction is present. Checking both genes for expression in

GTEx, SLC 35A1 is highly expressed in the cerebellum and cerebellar hemisphere, whilst T ME M5

is poorly expressed in the brain, but most present in the spinal cord. However, given T ME M5

is thought to be involved with neural tube defects, there may an unidentified link (Vuillaumier-

Barrot et al., 2012). Similarly for PD, interpretation of the results was limited, with a potential

link to brain-derived neurotrophic factor possibly an avenue for further study given its central-

ity in brain development and overall health (Miranda et al., 2019).

None of the interactions tested were able to reach a p-value that was significant. This

indicates the problem of statistical power when trying to demonstrate epistasis. Particularly in

the case of AF where the p − values were less than 1e −11, many of those found were likely to

be true negatives as a result of statistical chance. In this project, it was notable that the findings

for AF had many more possible explanations and links to the disease than those for AD and

PD, which could be because the greater number of samples provided more reliable results that
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had a better likelihood of being false negatives. It would also have been interesting to see some

pathways represented across interacting pairs, but this was not present in the results.

106



Chapter Four

Searching for Epistasis in Rare Conditions

4.1 Introduction

Rare variants are defined as those with a MAF of less than 0.01 (Goswami et al., 2021). They

are attractive targets for deleterious mutations, since their low incidence within the population

indicates either a more recent mutation or one that is not readily spread through the population

as a result of it hindering the individual’s chances of passing it on. In the study of rare disease,

it is often low prevalence, high penetrance mutations that cause these diseases (McCarthy et

al., 2008). They are incorporated into this work from two perspectives, firstly deleterious rare

variants will not always have full penetrance, that is a person can have a particular rare variant

known to be associated with a condition but not have the trait. As a result, there is the potential

for interactions between mutations giving rise to the disease in question. Secondly, rare variants

have been identified as a part of the problem of missing heritability, and so the expansion of

the study into rare variants expands the scope of this investigation into the drivers of disease

(Girirajan, 2017).

In the case of rare diseases, different approaches must be taken to identify potential

causative variants. Cohorts that are the size of GWAS are more difficult to assemble when a
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disease is less prevalent in society. In smaller cohorts, pedigree data is sometimes used by se-

quencing trios of mother, father, and proband. In this case, a Transmission Disequilibrium Test

(TDT) can be used to leverage this (Ruiz-Narváez et al., 2004). GWAS is also generally focused on

common variants, in part because they are available in large enough numbers to reach statisti-

cal significance, as well as SNP arrays performing poorly when detecting rare variants (Goswami

et al., 2021; Mn et al., 2021).

Scans for candidate mutations can be performed by learning from previous work, as held

in a variety of different databases and ontologies. However, integrating this can be difficult. A

solution is held in PhenomeNET, a large knowledge graph, integrating cross species phenotypic

data using ontologies. This is structured with multiple species’ phenotypes mapped together,

linked by their similarity. By using orthologous genes, disease prediction can be made from, for

example, similar mouse phenotypes (Hoehndorf et al., 2011).

This has then been built upon with the variant prioritization algorithm, PhenomeNET

Variant Predictor (PVP). This prioritizes variants from a single individual’s genetic material held

in Variant Call Format (VCF). It combines genotype information, with OMIM mode of inher-

itance, various pathogenicity scores and the data in PhenomeNET. A deep neural network is

then used to collate all this information and generate a predictive score by which mutations are

ranked. This allows the user to assess the mutations involved in giving rise to the phenotype

(Boudellioua et al., 2019). Included within this software is another facet, OligoPVP. This tool

uses the same background information as DeepPVP but also incorporates data from STRING-

db to create a scoring system that integrates semantic similarity, pathogenicity, and known

protein-protein interactions (Boudellioua et al., 2018).
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4.1.1 Developmental Disorders and Hypothyroidism

Following the work carried out examining neurological conditions in Chapter 3, the Decipher-

ing Developmental Disorders dataset was obtained (Firth et al., 2011). This data contains trios

and whole exome data, with the child having been diagnosed with a developmental disorder.

However, an interesting rare condition that is in this dataset in hypothyroidism, a disorder that

has known links with brain development and psychiatric conditions (Uchida et al., 2021). Con-

genital hypothyroidism occurs in around one in two to four thousand newborn infants, varying

depending on the population and screening procedures. Alongside brain development and

Down’s syndrome, hypothyroidism is also associated with many physical malformations (Ras-

togi et al., 2010). There are a number of known genetic factors that can be causative for hypothy-

roidism, and so it appears to be an interesting case study for variant prioritization (Stoupa et al.,

2021).

4.2 Materials and Methods

4.2.1 Whole Exome Sequencing and Annotation

This work used two strategies. Firstly, a variant prioritization approach to uncover rare mu-

tations that could explain the condition observed. This is required since these variants are un-

likely to be present in many individuals, and so we lack the statistical power to use tests outlined

in previous chapters. Secondly, a modified version of the pipeline used in Chapter 3 will be used

for the common variants present (Figure 4.1).
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Figure 4.1: Flowchart to show testing strategies implemented

The data for this work were acquired from the European Genome-Phenome Archive

(EGA), using their in-house python downloader package, pyEGA. There were 102 samples with

hypothyroidism, with two parents each. The format was as bam files, aligned to the genome

build b37d5. This was first converted to fastq files using samtools, then realigned to GRCh38

using bwa’s mem function. For variant calling, a few methods were trialled, but Octopus gave

the most reliable results. Octopus uses a Bayesian model to build haplotypes based on the ref-

erence genome and aligned reads. A trio-based analysis is built in, so all three genomes are used

to infer variants (Cooke et al., 2021). The default hard filters were used for de novo and regular

variants, with any that weren’t marked as ’PASS’ removed.

Real Time Genomics tools (rtg) was used to annotate any de novo variants. VEP was used

to annotate the variants including the –everything flag as well as a custom annotation from

the gnomAD genomes dataset for MAFs. Variants were filtered so that only rare alleles with a

MAF less than 0.01 in both the gnomAD exome and genomes data were included. PVP requires

variants to be mapped to the GRCh37 genome build, so a liftover was carried out using picard

tools. PVP was then used to prioritize variants for the Hypothyroidism HPO term ’HP:0000821’.

Variants were further annotated with GTEx data to demonstrate gene expression in the

thyroid. Pathogenicity was defined using a combination of a number of annotated sources

from VEP – the consequence as defined by the Sequence Ontology (SO) Impact groups of ’High’,
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’Medium’, ’Low’ and ’Modifier’ categories as well as the PolyPhen and SIFT definitions. Using

these, a new pathogenicity categorization was created using all of these. ’Very High’ is defined

as being in the most damaging category for all definitions. ’High’ is defined as any in the top two

categories, but not all. ’Low’ is a variant that is classified as tolerated, benign and low or mod-

ifier impact. ’Medium’ is those that don’t fall into the above categories. This is then combined

with a CADD score, a quantitative pathogenicity rating, to categorize variants as pathogenic.

Variants were retained in this way if they were classed as ’Very High’ and CADD score greater

than 20, ’High’ and greater than the category mean CADD Score or ’Medium’ and CADD score

of greater than 30. Each sample was then examined for de novo variants, digenic variants with a

link to hypothyroidism either within a panel by Genomics England or in the HPO database. Any

potential interactions were checked to see if the parent’s also have both mutations, to demon-

strate if this could be the source of the condition.

4.2.2 Evaluation of Common Variants

A search for interactions was also carried out for common variants, using the pipeline set out

in Chapter 3. Firstly, the VCF files for all of the trios were merged. From this, BEAGLE was

used to imputed loci that were not included in the data, using the GRCh38 mappings and 1000

Genomes panel. The data was converted into PLINK format. Variants were excluded if they

had a missing rate of greater than 0.05, a MAF of less than 0.05 or a p-value for departure from

HWE of less than 5e−8. The data was pruned to keep only variants in linkage equilibrium using

PLINK. The software KING was then used to confirm that none of the probands were related

(Manichaikul et al., 2010). PCA was then carried out to use the PCs as covariates using flashpca

(Abraham et al., 2017).
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4.3 Results

4.3.1 Variant Prioritization

To find pathogenic variants, a combination of PolyPhen, SIFT and Impact was used, with CADD

also incorporated after classification. In Figure 4.2 there is generally the expected trend with

‘Very High’ and ‘High’ risk variants having the greatest distribution of CADD scores, with this

reducing through the classifications. This also shows why CADD is used as well, since there are

potentially low risk loci even in the ‘Very High’ risk category.

Figure 4.2: Violin plot to show the distribution of CADD scores present at each of the combined

pathogenicity categories

In the cohort, four individuals had deleterious de novo mutations in relevant genes, as

shown in Table 4.1. Two of these genes were in the Genomics England panel for hypothy-
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roidism, while the other two were linked to hypothyroidism in the HPO database. In terms

of monogenic mutations, five had a mutation in the TG gene, two in DUOX2, two in SLC26A4

and one in TPO. All of these are known genes linked to hypothyroidism, however these were not

de novo mutations so cannot be fully accountable. It should also be noted that one individual,

whose mother had hypothyroidism, also shared a homozygous, deleterious genotype in TPO,

which is noted for its ’Autosomal recessive inheritance’ in HPO.

Table 4.1: de novo mutations that are linked to hypothyroidism

Gene Evidence

PAX8 Genomics England Panel

PRKAR1A Genomics England Panel

KAT6B HPO db link

CACNA1C HPO db link

When assessing the genomes for digenic interactions, there were six candidates that

were pathogenic and contained a gene that was explicitly linked to hypothyroidism, as seen

in Table 4.2. Of these, only one was not also present in one of the parents between PDIA4

and TG. These are predicted to be interacting in STRING-db at high confidence (0.808), due

to co-expression of homologs, biochemical interactions of homologs in other organisms and

co-mentions in PubMed abstracts for these genes and also homologs in other organisms.
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Table 4.2: digenic mutations that are linked to hypothyroidism

Gene Evidence Parents

PDIA4_TG Genomics England Panel (TG) No

APOB_PTCH1 HPO db link (PTCH1) Yes

DNAH1_DNAH8 HPO db link (DNAH1) Yes

GDNF_SALL1 HPO db link (SALL1) Yes

MTOR_TSC2 HPO db link (TSC2) Yes

IFIH1_CHUK HPO db link (IFIH1) Yes

4.3.2 Implementation of Epistasis Detection Approaches

Experimentation on common variants through a GWAS pipeline with logistic regression yielded

a non-significant association to rs10184375 with a p-value of 0.0003685. Comparatively, TDT

performed well, achieving a significant result at the SNP rs1519139, with a p-value of 1.28e −
08. This variant is located within the gene LOC105372041, which is a lncRNA with little known

about it. However, GTEx does report some samples expressing the gene in the thyroid, albeit

not in most.

The use of epistasis detection tools for common variants in this cohort yielded inter-

actions that did not achieve statistical significance. The most significant result from BOOST

(p-value 4.66e − 11) was between rs111501662, an intergenic variant and rs56084170, which

was in linkage (R2 = 0.629) AP4S1 and HEATR5A, neither of which appear to have any clear

link to thyroid function. The second most significant result was between rs1496554 in MORN1

and rs1609475 in DEAF1. Testing with MDR revealed a possible interaction between rs4874118,

which is in LD with ZC3H3 (R2 = 1) that is highly expressed in the thyroid in GTEx and rs1478612311,
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an intronic mutation in PLAAT3, which is demonstrably expressed in the thyroid, but below the

levels of in other organs. The second-strongest interaction was between rs11234871, an intron

variant of PRSS23 and rs11078306, which is intronic to TVP23C.

4.4 Discussion

In this chapter, a different approach to uncovering missing heritability has been taken. By fo-

cussing on rare variants, it was possible to find de novo mutations in four children, that would

not have been identified in a GWAS. Two of these genes were a part of the Genomics England

hypothyroidism panel. This represents a gold standard for identification of genetic mutations

that are involved in a given disease. This resource takes research from a diverse selection of

database resources, such as OrphaNet, OMIM and ClinVar, curated evidence from within the

NHS, crowdsourcing of expert knowledge, publications and continuous feedback for improve-

ments. This keeps the resource up to date and gives a level of confidence in the resource (A. R.

Martin et al., 2019).

When a germline mutation is not found, then a parent must have any other allele present

in the child. There was one parent, a mother, who had hypothyroidism and, as such, a shared

genotype that the father didn’t have could potentially be the cause. No single heterozygous

mutation was found that could be explanatory, so the search was expanded to heterozygous

mutations, of which a homozygous alternative allele in the gen TPO, that is included in the

Genomics England panel was found.

A similar rationale is behind the search for digenic mutations - in the absence of a de

novo mutation, it seems apparent that there must be a combination of mutations not present

in the parents. The digenic search in PVP was, thus, of great use in identifying possible inter-

actions. Of the six digenic interactions found, only one was not apparent in the parents and
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so is the only one that could potentially provide a ’solution’. The putative link between TG and

PDIA4 appears in the STRING-db with a high confidence score (0.808) based on homologs be-

ing coexpressed and interacting in other organisms, as well as being co-mentioned in PubMed

abstracts regarding H. sapiens. Although none of these papers is discussing thyroid function,

the protein thyroglobulin produced by TG is undoubtably closely related to hypothyroidism,

acting as a substrate in the production of the thyroid hormones T3 and T4 (Citterio et al., 2019).

The gene PDIA4 is also noted as being a part of the ’Thyroid hormone synthesis’ pathway in

KEGG.

This approach to finding potential causative variants does face some serious limitations

though. On the one hand, it is not possible to test these mutations statistically, since they are

only present in one individual in the cohort. As such any possible interpretation is difficult to

validate, aside from that documented in previous studies. On the other, the disorder is rare and

so finding other cohorts to validate against is also more difficult. The UK biobank does have

some individuals with congenital hypothyroidism though, so this would be a potential future

cohort to explore.

The part of the study focussed on common variants was fairly severely underpowered.

However, this does make it interesting that the TDT test found a significant variant, those this

does appear to be a fairly normal sample size when using this particular test (Ruiz-Narváez et

al., 2004). It is possible though, given PLINK’s implementation uses a χ2 test, that uncorrected

for factors were biasing the result. Of the interactions found, it was perhaps interesting that

one of the genes involved was DEAF1, given that it is highly involved in problems of intellectual

development and microcephaly, given that these are traits in high abundance in the cases but

not the parents that were used as controls (Faqeih et al., 2014).
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Conclusions and Future Work

The idea behind epistasis heralds back to the earliest days of genetics, of Bateson, Punnett and

Saunders growing a wide variety of crops and rearing animals in different breeding experiments

near Cambridge. The observation was made that different genetic factors could suppress the

expression of others, and thus the term was born. Conceptually it has passed through some of

the most eminent scientists involved in the founding of population genetics, in Fisher, Wright

and Haldane, people whose work is still a mainstay of many genetic approaches carried out

today.

In the last century, genetics has become a driving force of biology. As foreseen by Wright

and Fisher, it can now be clearly observed that organisms are made up of complex biochemical

processes and metabolic pathways with yet unknown relationships and drivers. Understand-

ing how these systems go wrong in diseases, identifying the diverse issues found in complex

diseases, and translating these findings into personalized medicinal treatments is becoming a

reality.

The completion of the Human Genome Project finalized a reference for genetic diversity,

and further projects like HapMap and 1000 Genomes were able to catalogue the diversity of mu-

tations in the genome. With the growth of technology in SNP arrays and sequencing machines,
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large cohort association studies were possible, as outlined about a decade earlier by Risch. As

the equipment has become cheaper and funding moved into projects like the Wellcome Trust

Case-Control Consortium or UK biobank, there is now a glut of data available for common dis-

eases. Problems have arisen along the way though, there have been some serious problems with

false positive results being reported from GWAS, but also the enormous number of small effect

size associations has raised concerns. Identified as the ’problem of missing heritability’, serious

questions have been asked about why such a small proportion of phenotypic variance has been

explained compared to estimates produced in twin studies before. A number of possible an-

swers have been put forth, such as the lack of inclusion of rare variants and also, the presence

of genetic interactions that are not being looked for. This thesis has been an investigation into

the possibility of overcoming this shortfall in heritability and aimed to put forward an efficient

set of methods that can be used to assess genetic interactions and their role in complex disease.

In Chapter 2, a review was carried out into the various methods that had been devised

for the task of detecting interactions in case-control GWAS datasets. These were broadly cate-

gorized into three types; statistical; swarm intelligence; and data mining, as well as some that

carried out exhaustive searches and others that attempted to optimize the search. A simulation

study was created to test their detection abilities based on either pure epistasis, that in which no

main effects are seen and impure epistasis, in which the individual variants have some statisti-

cal association with the trait. This was carried out for both two and three locus models. Three

approaches stood out from these tests, PLINK’s implementation of the BOOST algorithm, the

MDR and MPI3SNP. The problems each of these worked best with were different, so BOOST

found pure interactions most effectively, MDR the impure two locus interactions and MPI3SNP

the third-order interactions. Assessments were also made for computational performance, with

BOOST and MPI3SNP both being fast and memory efficient and MDR, coded in Java rather than

C++ being somewhat slower. These approaches were applied to a demonstrative ’toy’ dataset

based on the AF data in UK biobank, but greatly pared back. It raised some issues that were not
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seen in the simulation study, such as how the tools handled missing data.

These findings informed the thrust of Chapter 3, the aim of which was to apply the best

methods to biobank scale data for GWAS interaction detection. For this, MDR and BOOST were

selected, and the experimentation limited to pairwise interactions. Three strategies were as-

sessed. Firstly, an exhaustive approach, testing all pairs. Secondly, a division of the data by

strength of association to the trait, BOOST applied to those with little association and MDR to

those with a single-variant main effects. Thirdly, the data was divided into LD-based haplotype

blocks, with the aim being to reduce the feature space as could be required at a larger scale. Fi-

nally, a combined approach from the final two was used, splitting by LD and tailoring the data

to the method by association. A simulation study was carried out using data from chromosome

22 in the UK biobank, across 100,000 samples split evenly between cases and controls. The first

observation was that MDR could not be used exhaustively at this scale across over 9,000 vari-

ants, so its contributions were at a smaller feature space in the second and third strategies. As

was observed in Chapter 2, BOOST performed best with the pure interactions and MDR with

the impure interactions. Interestingly, the combined method performed very well and as such

a version of this was deemed to be the most applicable to all autosomal chromosomes. Another

observation was that at a greatly reduced significance threshold, BOOST was able to detect al-

most all of the interactions captured by the other approaches. Since BOOST is a very fast and

highly parallelizable program, this offered a possibility of using it to filter the dataset early in

the process.

With a pipeline established, three diseases were selected to test it on. These were Atrial

Fibrillation, Alzheimer’s Disease and Parkinson’s Disease. The detection approach was in three

phases to get the most from the data. First, the genotyped SNP array data was used to indicate

the regions of interest. Then variants from the wider imputed data in LD with those that had

been implicated in potential interactions were extracted and tested again with BOOST. Finally,

the data was split into haplotype blocks and those with a monogenic main effect were tested
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using MDR.

Once potential interactions were found, a novel workflow was implemented. Since each

variant in GWAS represents an area of the genome, all genes that the variant was in tight link-

age with were annotated to the variant. Then each combination of genes was scanned with the

R package gProfileR to find shared annotations from a selection of ontologies. Next, STRING-

db was searched for any evidence of a protein-protein interaction. Finally, the interaction was

defined by assessing each possible genotype from combinations of the two loci. With the inter-

action defined, key statistics could then be calculated, in particular the odds ratio and variance

explained, the measure of heritability.

One of the great problems when searching for interactions is surpassing the burden of

proof to reject the null hypothesis within the frequentist paradigm. It is completely reasonable

to be concerned about the problem of multiple testing. Indeed, a prevalence of false positive

results hampered the reputation of GWAS in its early days. While the Bonferroni adjustment

is seen as overly stringent, the popular Benjamini-Hochberg correction still applies the same

threshold but for the most significant result only, with a step-down in proceeding values. As

such, at least one result must surpass the stringent adjustment set out by Bonferroni. This

presents a problem when testing interactions because so many tests are carried out. Whilst

none of the experiments in AF, AD or PD achieved significant results, this was in a large part due

to this stringent threshold and so true positive results were likely mixed with negative results.

Perhaps a reduced ’suggestive’ threshold could be implemented as well, but in a field so often

beset with reproducibility issues, I feel it would be unwise to compromise on an established

mode of correction.

There were some very positive signs though, with the heritability calculations showing

that, from BOOST especially, a great deal more heritability was explained when taken as an

interacting pair. This held true for MDR in general, but less so. There were two interactions
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that were seen in STRING-db as protein-protein interactions. As well as possible avenues of

research highlighted by shared terms found in the gene set enrichment stage. There were more

interpretable results for AF, and this is perhaps due to the greatly increased number of samples

available for that condition.

Finally, in Chapter 4, we had a practical case using the tool PVP, that aims to prioritize

variants with the aim of locating causative loci. This focused on the rare disease of congen-

ital hypothyroidism. As a result, we could also find rare variants that would be missed in a

GWAS. Sequencing was carried out and four denovo variants discovered in hypothyroidism

linked genes. A number of possible interactions were also found, but only one was not also

present in one of the parents. This was a known interaction with a high confidence in STRING-

db and both proteins were involved in the KEGG pathway for synthesizing thyroid hormones.

Only 102 cases were available, so the power was very low for common variants. The epistasis

detection pipeline was applied, but with uninterpretable results.

Although this thesis has not provided any significant results for diseases, the aims of

the study that were set out have been achieved and a robust methodology for epistasis detec-

tion laid out. This is accompanied by downstream analysis that takes into account the LD sur-

rounding the locus and draws from many annotation sources to better understand how the

interaction relates to the trait of interest. This pipeline uses tools that have been shown to per-

form best amongst peers in simulation studies, and when applied to real data were able to find

interactions that explained more heritability than the variants alone.

5.1 Limitations

The pipeline developed through Chapters has some flaws that will need addressing. Most traits

are affected by various covariates and these should be taken into account when searching for
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interactions, or risk presenting results that are actually a result of some segmentation of the

data or an unrelated but correlated trait. This could perhaps be achieved by testing genetic

loci for those significantly correlated with any expected confounding factors and either remov-

ing them or taking note of them for if they are present in the resulting interactions. Another

approach would involve using a quantitative epistasis detection algorithm. Binary traits can

then be translated into quantitative traits by regressing covariates against them and using the

residuals as the new dependent variable.

The lack of incorporation of covariates into these tests also relates to an important weak-

ness of this study, the lack of diversity possible within the cohort of study. The problem is

twofold, first that as has been observed in other studies, many genetic studies are focussed

on people of European ancestry, leading to less generalizable findings and also that potential

associations can be missed (Popejoy et al., 2016). Secondly, the volunteers gave their time, in-

formation and biological samples to UK biobank. It is best to get the most from their data to

advance medical research as they intended.

Chapter 4 was inherently restricted by the reduced number of samples, as is the case for

rare diseases. As a result, the predominant method for identifying potential causative mutations

and interactions was using variant prioritization. This cannot be tested statistically in a cohort,

unless the disorder is mono- or digenic. One method would be to approach the problem as

a Linkage study, leveraging pedigree data in order to generate greater statistical power. This

would require access to data from a family group though. Another method would be to attempt

to validate the mutations using another dataset. UK biobank contains 111 individuals who are

reported to have congenital hypothyroidism, this could be a good group to explore for similar

mutations.
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5.2 Future Work

An area that was neglected in this study is quantitative traits, this could also help overcome the

limitations caused by not including covariates in the analysis. The statistical options are slightly

different from in binary outcomes, so for example, a contingency table, based approach is no

longer possible due to the lack of categorization. However, there are still MDR approaches, one

of which is model-based MDR (MB-MDR), which is a well maintained and optimized program

that implements an MDR based on a genomic model (CATTAERT et al., 2011). It also has a built-

in multiple testing correction called gammaMAXT, based on permutation testing, that would be

worth investigating as a possible way to increase the sensitivity of the pipeline created in this

thesis (Lishout et al., 2015).

UK biobank has recently released Whole Genome Sequencing data for around 200,000

individuals. This could be utilized to incorporate rare and common variants, such as using this

data to attempt to validate mutations found in the hypothyroidism cohort. Since rare variants

are more likely to be highly pathogenic than common variants, they could be used to stratify

the data and look for interactions, deleterious or otherwise, with the common variants. Also, by

using data with more coverage, it may be possible to locate the causative variant in interactions

between common variants. This would likely increase the predictive power and achieve more

significant results.

In order to assist users to apply this epistasis detection pipeline to their data, it would

be useful to create a Galaxy pipeline that allows users to carry out these tests without having

to know everything about each of the programs involved or deal with intermediate files. The

downstream processing could also be collected into an R package, allowing users to test poten-

tial interactions by identifying associated genes and finding potential explanatory factors using

ontologies and STRING-db, amongst others.
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Experimental validation of results would be another area of interest. Most methods for

doing this involve testing for protein-protein interactions. One method is co-immunoprecipitation

(Lee, 2007). This involves fixing an antibody for a protein of interest to a gel bead, this is incu-

bated with matter from cell lysis. Proteins that have bound to the protein can then be identified.

Pull down assays are similar, except instead of an antibody, the protein itself is used as ‘bait’

(Louche et al., 2017). Another alternative is far western blotting (Y. Wu et al., 2007). In this, pro-

teins from cell lysate are separated using standard western blotting. Then a tagged bait protein

is added. If it binds to the protein being assayed, then this can be detected using antibodies

that associate with the tags. An alternative is to look at the transcriptome. Within the tissue of

interest, evidence for an interaction could be co-expression (Paci et al., 2021). This data can be

collected using a SNP microarray.
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Appendix

For additional online appendix, please see https://github.com/domruss87/thesis_appendix/

tree/main

A.1 Chapter 2

Table A.1: Available epistasis detection methods up to 2020

Tool DOI Available

ABCDE https://doi.org/10.1515/

sagmb-2012-0074

-

Continued on next page
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Tool DOI Available

AFT UM-MDR https://doi.org/10.5808/GI.2016.

14.4.166

-

AntEpiSeeker https://doi.org/10.1038/npre.

2012.6994.1

http://nce.ads.uga.edu/

~romdhane/AntEpiSeeker/

index.html

AntMiner https://doi.org/10.1007/

s13258-012-0003-2

https://sourceforge.net/

projects/antminer/files/

BEAM https://doi.org/10.1038/ng2110 https://sites.fas.harvard.edu/

~junliu/BEAM/

Bhit https://doi.org/10.1186/

s12864-015-2217-6

http://digbio.missouri.edu/

BHIT/

BiForce https://doi.org/10.1093/nar/

gks550

-

BridGE https://doi.org/10.1038/

s41467-019-12131-7

http://csbio.cs.umn.edu/bridge

CAPE https://doi.org/10.1371/journal.

pcbi.1003270

https://github.com/

marta-vidalgarcia/CAPE

CASSI https://doi.org/10.1371/journal.

pgen.1002625

https://www.staff.ncl.ac.

uk/richard.howey/cassi/

installation.html

CINOEDV https://doi.org/10.1186/

s12859-016-1076-8

https://cran.r-project.org/src/

contrib/Archive/CINOEDV/

Continued on next page
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Tool DOI Available

COE https://doi.org/10.1089/cmb.

2009.0155

http://www.csbio.unc.edu/

epistasis/client-coe2.php

Cox MDR https://doi.org/10.1093/

bioinformatics/bts415

-

CSE https://doi.org/10.1038/hdy.

2014.4

-

DECMDR https://doi.org/10.1093/

bioinformatics/btx163

https://drive.google.com/file/d/

0B93CxNBXL-MyR1NBZEhMNGRYcUE/

view

Deep Mixed Model https://doi.org/10.1186/

s12859-019-3300-9

-

DPEH https://doi.org/10.1038/

s41598-018-24588-5

-

DualWMDR https://doi.org/10.1002/humu.

23951

http://mlda.swu.edu.cn/codes.

php?name=DualWMDR

eCEO https://doi.org/10.1093/

bioinformatics/btr091

-

Eigenepistasis https://doi.org/10.1186/

s12859-017-1488-0

https://github.com/vstanislas/

GGEE

Encore https://doi.org/10.1002/gepi.

21739

http://insilico.utulsa.edu/index.

php/encore/

epiACO https://doi.org/10.1186/

s13040-017-0143-7

https://sourceforge.net/

projects/epiaco1/files/epiACO.

rar/download
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Appendix

Tool DOI Available

Epiblaster https://doi.org/10.1038/ejhg.

2010.196

https://www.

mybiosoftware.com/

epiblaster-1-0-two-locus-epistasis-detection-strategy-gpu.

html

EpiForest https://doi.org/10.1186/

1471-2105-10-S1-S65

-

EpiGTBN https://doi.org/10.1186/

s12859-019-3022-z

http://122.205.95.139/

Epi-GTBN/

epiGWAS https://doi.org/10.1371/journal.

pone.0242927

https://cran.r-project.org/web/

packages/epiGWAS/index.html

epiMODE https://doi.org/10.1371/journal.

pgen.1000464

-

epiNEM https://doi.org/10.1371/journal.

pcbi.1005496

https://github.com/cbg-ethz/

epiNEM

epistasis arXiv:1710.00894v2 https://cran.r-project.org/web/

packages/epistasis/epistasis.pdf

FAACOSE https://doi.org/10.1155/2017/

5024867

-

FAM MDR https://doi.org/10.1371/journal.

pone.0010304

-

fastChi https://doi.org/10.1142/

9789812836939_0050

-
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-
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Tool DOI Available

FastLMM https://doi.org/10.1038/nmeth.

1681

https://fastlmm.github.io/

FaST-LMM/

FCME https://doi.org/10.1109/TFUZZ.

2019.2914629

https://gitlab.com/

yudalinemail/fcmemdr

FDHE-IW https://doi.org/10.3390/

genes9090435

-

FSMDR https://doi.org/10.1016/j.

artmed.2019.101768

-

GAIN https://doi.org/10.1371/journal.

pgen.1000432

https://github.com/insilico

GeneGeneInteR https://doi.org/10.18637/jss.

v095.i12

https://bioconductor.org/

packages/release/bioc/html/

GeneGeneInteR.html

GenEpi https://doi.org/10.1186/

s12859-020-3368-2

https://github.com/

Chester75321/GenEpi

GENIE https://doi.org/10.1186/

1756-0500-4-158

-

GENN https://doi.org/10.1002/gepi.

20307

-

Glide https://doi.org/10.1159/

000341885

https://github.com/

BorgwardtLab/Epistasis-GLIDE

GMDR https://doi.org/10.2174/

1389202917666160513102612

http://ibi.zju.edu.cn/software/

GMDR/download.html
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Tool DOI Available

GWIS https://doi.org/10.1186/

1471-2164-14-S3-S10

-

HS-MMGKG https://doi.org/10.2174/

1574893614666190409110843

-

IACO https://doi.org/10.1007/

978-3-319-42297-8_3

-

iLOCi https://doi.org/10.1186/

1471-2164-13-S7-S2

https://www.

mybiosoftware.com/

iloci-snp-interaction-prioritization-technique-for-detecting-epistasis-in-gwas.

html

IndOR https://doi.org/10.1002/sim.

5364

http://emily.perso.math.cnrs.fr/

IndOR/IndOR/IndOR.html

Interaction Trees https://doi.org/10.1109/ICMLA.

2012.114

-

IOBLPSO https://doi.org/10.1155/2015/

524821

-

IPSO https://doi.org/10.1371/journal.

pone.0037018

-

JS-MA https://doi.org/10.3389/fgene.

2020.507038

-

KCCU https://doi.org/10.1186/

1471-2156-13-83

-
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Tool DOI Available

KNN-MDR https://doi.org/10.1038/

nature05911

-

lampLINK https://doi.org/10.1093/

bioinformatics/btw418

http://a-terada.github.io/

lamplink/

LINDEN https://doi.org/10.1093/nar/

gkx505

http://compbio.case.edu/

omics/software/linden/

log-linear MDR https://doi.org/10.1093/

bioinformatics/btm396

-

MACOED https://doi.org/10.1093/

bioinformatics/btu702

http://www.csbio.sjtu.edu.cn/

bioinf/MACOED/

MapReduce https://doi.org/10.1080/

00207160.2014.1000882

-

MBMDR PC https://doi.org/10.1089/sysm.

2019.0003

http://bio3.giga.ulg.ac.be/index.

php/software/mb-mdr/

MBS https://pubmed.ncbi.nlm.nih.

gov/21346997/

-

MECPM https://doi.org/10.1093/

bioinformatics/btp435

https://www.cbil.ece.vt.edu/

ResearchOngoingSNP.htm

MegaSNPhunter https://doi.org/10.1186/

1471-2105-10-13

https://gaow.github.io/

genetic-analysis-software/

m/megasnphunter/
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Tool DOI Available

MERF https://doi.org/10.1038/

ncomms8432

https://github.com/PMBio/

limix

model based MDR https://doi.org/10.1111/j.

1469-1809.2010.00604.x

-

MODEMDR https://doi.org/10.1038/

s41598-017-16210-x.

-

MP-HS-DHSI https://doi.org/10.1093/

bioinformatics/btaa215

https://github.com/

shouhengtuo/MP-HS-DHSI

MPI3SNP https://doi.org/10.1177/

1094342019852128

https://github.com/UDC-GAC/

mpi3snp

MultiSuRF https://doi.org/10.1007/

978-3-642-37189-9_1

https://epistasislab.github.io/

ReBATE/

npdr https://doi.org/10.3389/fgene.

2020.00784

https://github.com/insilico/

npdr

OR based MDR https://doi.org/10.1093/

bioinformatics/btl557

-

Parallel MDR https://doi.org/10.1093/

bioinformatics/btl347

-

PGMDR https://doi.org/10.1016/j.ajhg.

2008.09.001

-

PIAM https://doi.org/10.1371/journal.

pgen.1001338

-
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Tool DOI Available

PLINK https://doi.org/10.1086/519795 https://www.cog-genomics.org/

plink2/

PRLR https://doi.org/10.1093/

biostatistics/kxz011

https://github.com/kingqwert/

R/tree/master/PRLR

Random Jungle https://doi.org/10.1093/

bioinformatics/btq257

-

Random Survival

Forests

https://doi.org/10.1214/

08-AOAS169

https://cran.r-project.org/web/

packages/randomForestSRC/

index.html

ranger https://doi.org/10.18637/jss.

v077.i01

https://www.jstatsoft.org/

article/view/v077i01

ReliefF https://doi.org/10.1007/

3-540-57868-4_57

https://epistasislab.github.io/

ReBATE/

REMMA (now

GMAT)

https://doi.org/10.1093/

bioinformatics/bty017

https://github.com/chaoning/

GMAT

Robust MDR https://doi.org/10.1111/j.

1469-1809.2010.00624.x

-

Screen and Clean https://doi.org/10.1002/gepi.

20459

-

SHEIB-AGM https://doi.org/10.1109/

ACCESS.2020.2969465

-

Shesis https://doi.org/10.1038/cr.2010.

68

-
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ShesisPLUS https://doi.org/10.1038/

srep24095

-

singleMI https://doi.org/10.1007/

s10586-017-0938-9

https://github.com/sleeepyjack/

singlemi

SIXPAC https://doi.org/10.1101/gr.

137885.112

http://www.cs.columbia.edu/

~snehitp/sixpac/

SMMB https://doi.org/10.1093/

bioinformatics/bty154

https://uncloud.univ-nantes.fr/

index.php/s/bhFskQlsPmb5rXp

SNPharvester https://doi.org/10.1093/

bioinformatics/btn652

http://bioinformatics.ust.hk/

SNPHarvester.html

SNPInterForest https://doi.org/10.1186/

1471-2105-12-469
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SNPInterForest/index.html

SNPrank https://doi.org/10.1093/

bioinformatics/btq638
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SNPRuler https://doi.org/10.1093/

bioinformatics/btp622

https://www.

mybiosoftware.com/
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SNPTEST https://doi.org/10.1038/nrg2796 https://mathgen.stats.ox.ac.

uk/genetics_software/snptest/

snptest.html#interactions
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1471-2105-15-62
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s00439-010-0905-5
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2014.0163
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14-aoas771
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wtest https://doi.org/10.1186/

s12920-019-0638-9

https://CRAN.R-project.org/

package=wtest
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