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Abstract

In this thesis we use variations of geometric invariant theory to study the derived categories

of coherent sheaves associated to complete intersections in toric varieties. In the context of

mirror symmetry, a given Calabi-Yau variety may not have a unique mirror associated to

it. Finding relations between derived categories associated to distinct mirror constructions

leads to unification results under Homological Mirror Symmetry. In particular, in this

thesis we prove the equivalence of two constructions to a complete intersection of cubics

in P5, one due to Batyrev and Borisov, the other due to Libgober and Teitelbaum. The

proof relies on methods of partial compactifications and variations of geometric invariant

theory, and is the first of its kind to relate derived categories for complete intersections

and not hypersurfaces.

Singular complete intersections present an obstacle when applying these methods to a

wider context, and we do not obtain equivalences of derived categories in general. Partial

compactifications and variations of geometric invariant theory however remain a strong tool

in studying the derived categories of singular complete intersections. In this thesis, we give

a framework in which we can use these methods to obtain crepant categorical resolutions.

We illustrate this framework by giving a family of examples which directly generalises the

mirror construction by Libgober and Teitelbaum, then categorically resolving the derived

categories of coherent sheaves by the derived categories of coherent sheaves associated to

a family of Batyrev-Borisov mirrors.
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CHAPTER 1

INTRODUCTION

Mirror symmetry is a phenomenon originating in string theory postulating that for every

Calabi-Yau manifold X, there should be a “dual” Calabi-Yau manifold Y , such that

certain properties of the manifold X are “mirrored” by other properties of the manifold

Y . Candelas, Lynker and Schimmrigk [13] for example compiled a list of Calabi-Yau

threefolds and noted that they pair up in the sense that for most Calabi-Yau threefolds X

on the list, there was a mirror partner Y with Hp,q(X) ∼= H3−p,q(Y ). On the level of Euler

characteristic, this implies that χ(X) = −χ(Y ). Generally, mirror symmetry predicts that

for a mirror pair X, Y , the complex algebraic structure on the Calabi-Yau variety X is

mirrored by the symplectic structure on the Calabi-Yau variety Y .

While the phenomenon of mirror symmetry was, mathematically, first observed on a

topological level, there are a few major approaches of how mirror symmetry should be

articulated. Most of this thesis focuses on Homological Mirror Symmetry, as introduced by

Kontsevich [33]. An early (and since generalised) formulation of Kontsevich’s Homological

Mirror Symmetry Conjecture states that if two Calabi-Yau manifolds X and Y are mirror

to each other, there are two equivalences of categories on them,

Db(coh X) ∼= Fuk(Y ) and Db(coh Y ) ∼= Fuk(X). (1.1)

The categories involved here are the bounded derived category of coherent sheaves,

Db(coh ◦) and the Fukaya category, Fuk(◦), which we will introduce in Chapter 2. Roughly,
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Db(coh X) encodes algebro-geometric information of X, whilst Fuk(X) encodes symplectic

information.

One of the leading problems in the study of mirror symmetry is figuring out how

to construct a mirror partner Y to a given Calabi-Yau manifold X. There are several

approaches on how to solve this problem. Given a Calabi-Yau X, the different “recipes”

how to obtain a candidate mirror partner are known as mirror constructions. Different

articulations of mirror symmetry give different evidence of when a Calabi-Yau Y is

considered a mirror partner to X. For example, early formulations of mirror symmetry

focused on topological evidence (via the cohomology and Euler characteristics) whereas

Homological Mirror Symmetry considers the categorical information in (1.1). Even for

those Calabi-Yau manifolds where we know their mirror partner, we may not have a unique

one. One famous example of this phenomenon is due to Rødland [43]. This naturally

leads to the question whether there is a unifying articulation of mirror symmetry, under

which different mirror partners are equivalent. Consider two varieties Y, Y ′ obtained as

mirror to a given Calabi-Yau X via two different mirror constructions. Working towards a

unification of mirror constructions, it would be helpful to know if both Y and Y ′ fit into

the context of Homological Mirror Symmetry, that is if Db(coh Y ) ∼= Db(coh Y ′). In this

thesis, we work towards answering this question by exploring how variations of geometric

invariant theory can be used to establish such equivalences of categories. An example we

have chosen to exhibit these methods is a connection between mirror constructions by

Batyrev-Borisov and Libgober-Teitelbaum.

Libgober and Teitelbaum [35] proposed a mirror to a Calabi-Yau complete intersection

Vλ of two cubics in P5 defined as the zero locus of the two polynomials

Q1,λ = x3
0 + x3

1 + x3
2 − 3λx3x4x5, Q2,λ = x3

3 + x3
4 + x3

5 − 3λx0x1x2.

Their proposed mirror WLT,λ is a (minimal) resolution of singularities of the variety VLT,λ

with defining equations Q1,λ, Q2,λ but in the quotient space P5 /G81, where G81 is a specified
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order 81 subgroup of PGL(5,C). They showed topological evidence that Vλ and WLT,λ

are a mirror pair, proving on the level of Euler characteristics that χ(Vλ) = −χ(WLT,λ).

In [21], Filipazzi and Rota verify a state space isomorphism between the two Calabi-Yau

varieties by providing an explicit mirror map.

Batyrev and Borisov in [7] introduced a mirror construction for Calabi-Yau intersections

in Fano toric varieties using polytopes, showing mirror duality for (1, q)-Hodge numbers.

This mirror construction agrees with constructions by Greene-Plesser [24] and Berglund-

Hübsch [9] for Fermat hypersurfaces. However, the Batyrev-Borisov mirror to two cubics

in P5 differs from the one given above by Libgober and Teitelbaum. In chapter 3, we

work towards a unification of mirror constructions by proving that the bounded derived

category of coherent sheaves on the Libgober-Teitelbaum mirror is equivalent to that of

a complete intersection Z ⊆ X∇ in the Batyrev-Borisov mirror family. On the level of

stacks, we will prove the following result.

Theorem 1.0.1 (Theorem 1.1 in [36]). Let λ ∈ C such that λ6 ̸= 0, 1. Consider the two

polynomials

p1,λ = x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8 − 3λx3x4x5x6x7x8,

p2,λ = x3
3x

3
9 + x3

4x
3
10 + x3

5x
3
11 − 3λx0x1x2x9x10x11.

Let Zλ = Z(p1,λ, p2,λ) ⊆ X∇ and VLT,λ = Z(Q1,λ, Q2,λ) ⊆ [P5 /G81]. Then

Db(cohVLT,λ) ≃ Db(cohZλ).

Since [21] relates Libgober-Teitelbaums construction to BHK mirror symmetry, this

gives a direct link between the constructions of Batyrev-Borisov and Berglund-Hübsch-

Krawitz. Since previously, the constructions by Batyrev-Borisov and Berglund-Hübsch-

Krawitz were only linked for hypersurfaces, the results of this thesis provide a first example

of a link for the case of complete intersections. We hope this provides a first step towards

the unification of the two constructions for complete intersections.
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This work is also, to our knowledge, the first application of partial compactifications

in variations of geometric invariant theory (VGIT) to prove the equivalence of derived

categories for complete intersections, and not hypersurfaces, in Calabi-Yau varieties.

In the case of singular mirror candidates, the methods employed in the proof of

Theorem 1.0.1 may fail to apply. This is because the methods rely on studying the

category of singularities associated to a Landau-Ginzburg model. For the Batyrev-Borisov

mirrors, by construction, the singularities are well-behaved, originating from the quotient

singularities of the ambient toric variety. Thus, we cannot expect to obtain an equivalence

between the categories of singularities of a singular mirror candidate and a Batyrev-

Borisov mirror. VGIT remains a strong tool in this case, as demonstrated by Favero

and Kelly [19]. Using their methods, we efficiently can obtain categorical resolutions.

Generalising the construction by Libgober and Teitelbaum gives a family of singular

complete intersections Zn ⊆
[
(C2n \{0})/(C∗×Gn)

]
, where Gn is a specified order n2n−2

subgroup of PGL(2n− 1,C). We show that this family can be categorically resolved by

Batyrev-Borisov mirrors to complete intersections of two degree n polynomials in P2n−1.

Specifically, we prove the following theorem.

Theorem 1.0.2 (=Theorem 4.2.1). Let n ≥ 2, and λ2n ̸= 0, n2n. Consider the complete

intersection in P2n−1 given by the vanishing set of the two polynomials

Q1,n,λ = xn1 + xn2 + · · ·+ xnn − λxn+1xn+2 . . . x2n,

Q2,n,λ = xnn+1 + xnn+2 + · · ·+ xn2n − λx1x2 . . . xn.

Then Gn
∼= (Z /nZ)2(n−2)×(Z /n2 Z) and the hypersurfaces Q1 = 0 and Q2 = 0 are pre-

served under the action of Gn on P2n−1. Let Zn = Z(Q1,n,λ, Q2,n,λ) ⊆
[
(C2n \{0})/(C∗×Gn)

]
,

and let Yn be a Batyrev-Borisov mirror to Z(Q1,n,λ, Q2,n,λ) ⊆
[
(C2n \{0})/C∗

]
.

Then there is a categorical resolution Db(coh Yn)→ Db(coh Zn).

The proof of Theorem 1.0.2 uses methods that apply in greater generality, the extent

of which is an interesting area of study. The following Theorem 4.3.7 demonstrates how
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strong these methods can be to find categorical resolutions, which we expect to be a big

step towards a unification result in mirror symmetry.

Theorem 1.0.3 (=Theorem 4.3.7). Let XΣ be a projective toric variety with vector

bundle V = ⊕ri=1O(Di) so that there is a section si ∈ Γ(XΣ,O(Di)) for all i and Z =

Z(s1, . . . , sr) ⊆ XΣ and D1 + · · ·+ Dr = −KXΣ. Let

A = {m′ ∈MR × Rr | xm is nontrivial summand of some uisi},

and let S = A∪{ei | i = 1, . . . , r}. If σS := Cone(Conv(S)) ⊆ σ∨
V has the property (r−P)

(see Definition 4.3.1), then there is a categorical resolution of Db(coh Z) by a derived

category Db(coh Zres) associated to a complete intersection in a toric stack [XΣ′ ].

We start by giving some background on the mathematical tools used in this thesis

in chapter 2. This includes a short introduction to toric geometry, Homological Mirror

Symmetry as well as to the different mirror constructions involved.

In chapter 3, we study how methods of partial compactifications and VGIT can be used

to provide derived equivalences between complete intersections. This will be illustrated by

proving Theorem 1.0.1.

Then, in chapter 4, we explore how methods of VGIT can be used to establish cate-

gorical resolutions. We then use these methods to prove Theorem 1.0.2, which gives a

family of complete intersections generalising the Libgober-Teitelbaum construction, and

Theorem 1.0.3.

Finally, in chapter 5, we explore some further ideas relating to the work of the previous

chapters.
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CHAPTER 2

BACKGROUND

In this chapter, we will give a gentle introduction to the mathematics lying at the heart

of the results presented in this thesis. We start by treating some toric geometry, which

allows to effectively study the algebraic geometry of toric varieties by looking at some

fundamentally combinatorial objects. We then give a brief introduction to Homological

Mirror Symmetry, setting up the categorical terminology used throughout the thesis.

Finally, we exhibit the mirror constructions that appear in this thesis.

2.1 Toric Geometry

A lot of the mathematics presented in this thesis is based on Toric geometry. Thus we give

a small introduction to it here. A good exposition is the book “Toric Varieties” by Cox,

Little and Schenck [15], and this section will be mostly based on it as well.

2.1.1 Toric varieties, Cones and Fans

We begin by introducing the objects at the core of toric geometry: toric varieties.

Definition 2.1.1. A toric variety is an irreducible variety X containing a torus TN ≃ (C∗)n

as a Zariski open subset such that the action of TN on itself extends to an algebraic action

of TN on X.
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Many varieties appearing in the daily lives of algebraic geometers are toric. For example,

affine and projective spaces as well as many of their subvarieties are toric. An important

aspect of this large class of varieties is that toric varieties allow for a combinatorial

description. This correspondence between toric varieties and certain combinatorial data

allows to study the varieties in more detail by identifying combinatorial properties.

A character of a torus T is a group homomorphism χ : T → C∗. Looking at the torus

(C∗)n for example, we have the characters Hom((C∗)n,C∗) = Zn. Indeed, all characters

can be obtained via associating to m = (a1, . . . , an) ∈ Zn the character χm : (C∗)n → C∗,

defined by

χm(t1, . . . , tn) = ta1
1 · · · · · tan

n .

Thus, the characters of (C∗)n form a group isomorphic to Zn. For an arbitrary torus T ,

its characters form a free abelian group M of rank equal to the dimension of T and by

identification with Zn we associate a character χm to an element m ∈M as above.

Fix a lattice M of rank d (the character lattice of some toric variety V of dimension d)

and its dual lattice N , with the pairing

⟨−,−⟩ : M ×N → Z .

We extend the pairing R-linearly to MR := M ⊗Z R and NR := N ⊗Z R.

The combinatorial description of V is obtained by considering appropriate sets in MR

(for polytopes) and NR (for fans).

One way to think about building toric varieties is by gluing together open subsets of

affine toric varieties. We organise this using fans, which are a collection of cones. These

cones will correspond to the affine toric subvarieties and the structure of the fan describes

how to glue them.

Definition 2.1.2. A convex polyhedral cone in NR is a set of the form

σ = Cone (S) =
{∑
u∈S

λuu | λu ≥ 0
}
⊆ NR,

7



where S is a finite subset of NR. We say that σ is generated by S. Given a polyhedral

cone σ ⊆ NR, its dual cone is defined by

σ∨ = {m ∈MR | ⟨m, u⟩ ≥ 0 for all u ∈ σ}.

Furthermore, a cone σ = Cone (S) is called rational if the finite set S can be chosen to be

a subset of N .

Definition 2.1.3. Given m ̸= 0 in MR, we define the hyperplane

Hm = {u ∈ NR | ⟨m, u⟩ = 0} ⊆ NR.

A face of a cone σ is a subcone τ of the form τ = Hm ∩ σ, for some m ∈ σ∨. We denote

this by τ ⪯ σ. A proper face is a face τ ̸= σ, written τ ≺ σ. Cones of dimension 1 are

called rays, codimension 1 faces of a cone σ are called facets. A rational polyhedral cone σ

is called strongly convex if it is convex and σ ∩ (−σ) = {0}.

A strongly convex rational polyhedral cone σ is usually given by listing the generators

of its edges (since the edges are 1 dimensional cones, they have unique primitive generators

in N). Lemma 1.2.15 in [15] shows that such a cone σ is generated by the ray generators

of its edges.

Definition 2.1.4. Let σ ⊆ NR be a strongly convex rational polyhedral cone.

A. σ is smooth or regular if its minimal generators can be extended to a Z-basis of N .

B. σ is simplicial if its minimal generators are linearly indepedent over R.

As mentioned previously, we can associate affine varieties to cones. This is done via

monoids and their associated algebras1. Given a rational polyhedral cone σ, the lattice

points Sσ = σ∨ ∩M ⊆M form a monoid.
1Note that monoids are referred to as semigroups in [15]. As this is not the definition of semigroup we

otherwise know, we will use the word monoid.

8



Lemma 2.1.5 (Gordan’s Lemma, Proposition 1.2.27 in [15]). Sσ is finitely generated and

hence an affine monoid.

The following theorem associates varieties to cones.

Theorem 2.1.6 (Theorem 1.2.18 in [15]). Let σ ⊆ NR ≃ Rn be a rational polyhedral cone

with monoid Sσ = σ∨ ∩M . Then

Uσ = SpecC[Sσ] = SpecC[σ∨ ∩M ]

is an affine toric variety. Furthermore,

dim Uσ = n⇐⇒ Uσ has torus TN = N ⊗Z C∗ ⇐⇒ σ is strongly convex.

Before advancing to fans, we will need to glue affine varieties together. The following

result will help us in that aspect.

Proposition 2.1.7 (Proposition 1.3.16 in [15]). Let σ be a strongly convex rational

polyhedral cone and let τ ⪯ σ be a face. Write τ in the form τ = Hm ∩ σ for some

m ∈ σ∨ ∩M . Then we have the following equality of monoid algebras

C[Sτ ] = C[Sσ]χm .

For the affine sets Uτ , Uσ, we thus have the following isomorphism of affine varieties

Uτ = Spec (C[Sτ ]) = Spec (C[Sσ]χm) = Spec (C[Sσ])χm = (Uσ)χm ⊆ Uσ.

In particular, if two cones σ, σ′ intersect in a common face τ = σ ∩ σ′, we get

Uσ ⊇ Uτ ⊆ Uσ′ .

We now define the main object of interest in toric geometry.

Definition 2.1.8. A fan Σ in NR is a finite collection of cones σ ⊆ NR such that:

9



A. Every σ ∈ Σ is a strongly convex rational polyhedral cone.

B. For all σ ∈ Σ, each face of σ is also in Σ.

C. For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each (and hence also in Σ).

Furthermore, if Σ is a fan, then the support of Σ is defined to be |Σ| = ⋃
σ∈Σ σ ⊆ NR and

Σ(r) denotes the set of r-dimensional cones of Σ.

First, we will explain how to use fans to construct toric varieties in general, and then

give an example of this. We first require the following two facts from §1 of [15]. Recall

that, for a face τ of a cone σ, we can write τ = Hm ∩ σ for some m ∈ σ∨ ∩M . The proof

of Lemma 2.1.5 in [15] then asserts that Sτ = Sσ + Z(−m). Secondly, if τ = σ1 ∩ σ2, then

we have σ1 ∩Hm = τ = σ2 ∩Hm for some m ∈ σ∨
1 ∩ (−σ2)∨ ∩M . This implies

Uσ1 ⊇ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊆ Uσ2 . (2.1)

The construction of a variety XΣ from a fan Σ can now be described. Consider the

collection of affine toric varieties Uσ = SpecC[Sσ], where σ runs over all cones in Σ. Take

σ1, σ2 to be any of these cones and consider their intersection face τ = σ1 ∩ σ2.

The equalities in (2.1) give an isomorphism gσ2,σ1 : (Uσ1)χm ≃ (Uσ2)χ−m , acting as the

identity on Uτ . Gluing the affine varieties along the subvarieties (Uσ)χm fulfills the cocycle

conditions, hence giving a variety XΣ. The authors of [15] go on to prove the following

theorem.

Theorem 2.1.9 (Theorem 3.1.5 in [15]). Let Σ be a fan in NR. The variety XΣ is a

normal separated toric variety.

Example 2.1.10. A standard example of producing varieties from fans is P2, as found in

[26]. Consider the fan Σ ⊆ NR = R2 in Figure 2.1. It has 7 cones:

(0, 0), ρ0, ρ1, ρ2, σ0,1, σ2,0, and σ1,2.

10



Figure 2.1: A fan for P2

The toric variety XΣ associated to this fan is covered by the three affine open sets

(corresponding to the 2-dimensional cones):

U1,2 = Spec(C[Sσ1,2 ]) ≃ Spec(C[x, y])

U2,0 = Spec(C[Sσ2,0 ]) ≃ Spec(C[x−1, x−1y])

U0,1 = Spec(C[Sσ0,1 ]) ≃ Spec(C[xy−1, y−1]).

By above discussion, we see that the gluing data on the coordinate rings is given by:

g∗
10 : C[x, y]x ≃ C[x−1, x−1y]x−1 (2.2)

g∗
21 : C[x, y]y ≃ C[xy−1, y−1]y−1 (2.3)

g∗
02 : C[x−1, x−1y]x−1y ≃ C[xy−1, y−1]xy−1 (2.4)

Let (x0 : x1 : x2) be the usual homogeneous coordinates on P2 with standard affine opens

Ui, defined by xi ̸= 0 for i = 0, 1, 2. To show XΣ is P2, we define maps Uσi,i+1 → P2
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identifying Uσi,i+1 with Ui+2 (indices taken modulo 3). The maps are

C[xy−1, y−1]→ C
[
x0

x2
,
x1

x2

]
, via y−1 7→ x0

x2
, xy−1 7→ x1

x2

C[x, y]→ C
[
x1

x0
,
x2

x0

]
, via x 7→ x1

x0
, y 7→ x2

x0

C[x−1, x−1y]→ C
[
x0

x1
,
x2

x1

]
, via x−1 7→ x0

x1
, x−1y 7→ x2

x1

These maps on the coordinate rings are compatible with the gluing maps g∗
ij, giving the

inclusions of the varieties corresponding to the rays into the Ui,j. This shows that XΣ is

indeed isomorphic to P2.

Gluing affines together like this can quickly become unwieldy. There is a more efficient

method of associating the variety XΣ to a fan Σ; the Cox construction. This will be

elaborated upon in section §2.1.4.

Definition 2.1.11. Let Σ ⊆ NR be a fan.

A. Σ is called smooth or regular if every cone σ ∈ Σ is smooth.

B. Σ is called simplicial if every cone σ ∈ Σ is simplicial.

C. The fan Σ is complete if |Σ| = NR.

These properties nicely translate to XΣ, illustrating the usefulness of the interplay of

combinatorics and algebraic geometry that toric geometry offers.

Theorem 2.1.12 (Theorem 3.1.19 in [15]). Let XΣ be the toric variety defined by a fan

Σ ⊆ NR. Then:

A. XΣ is a smooth variety if and only if Σ is a smooth fan.

B. XΣ is an orbifold if and only if the fan Σ is simplicial.

C. XΣ is compact in the classical topology on Cn if and only if Σ is complete.
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It is important to note that every toric variety corresponds to a fan. This is due to the

Orbit-Cone corrrespondence. It states that there is a bijective correspondence between

cones in Σ and TN -orbits in XΣ. In other words, given a toric variety X, one can deduce

a fan for it by finding all the orbits of the action on X by its torus TN . A treatment on

this subject can be found in §3.2 of [15]; we will restrict ourselves to the statement of the

correspondence.

Theorem 2.1.13 (Theorem 3.2.6 in [15]). Let XΣ be the toric variety of a fan Σ in NR.

Then:

A. There is a bijective correspondence

{Cones σ in Σ} ↔ {TN − orbits in XΣ}

σ ↔ O(σ).

B. Let n = dim NR. For each cone σ ∈ Σ, dim O(σ) = n− dim σ.

C. The affine open subset Uσ is the union of orbits

Uσ =
⋃
τ⪯σ

O(τ).

D. τ ⪯ σ if and only if O(σ) ⊆ O(τ), and

O(τ) =
⋃
τ⪯σ

O(σ),

where O(τ) denotes the closure in both the classical and Zariski topologies.

In the later section on f -duality, §2.3.3, we use fan matrices.

Definition 2.1.14. Consider a fan Σ. Each ray ρ ∈ Σ(1) has a primitive generator vρ in

the underlying lattice. Enumerating these, we get a set (vi)|Σ(1)|
i=1 , written out as column

vectors. These are used to form the fan matrix V =
(
v1 . . . v|Σ(1)|

)
of the variety XΣ.
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Example 2.1.15. Consider the fan for P2 given above in Figure 2.1. The primitive

generators for the rays are uρ0 = (−1,−1), uρ1 = (1, 0) and uρ2 = (0, 1). This gives a fan

matrix V =

−1 1 0

−1 0 1

 .

2.1.2 Divisors on toric varieties

One advantage of describing toric varieties by their fans becomes apparent when studying

their divisors. A good introduction to this is §4 in [15], to be followed in this section.

By the Orbit-Cone correspondence, k-dimensional cones σ of a fan Σ correspond to

(n− k)-dimensional TN -orbits in XΣ. So a ray ρ ∈ Σ(1) gives a codimension 1 orbit O(ρ),

whose closure is a TN -invariant prime divisor on XΣ. To emphasize this, we denote said

divisor by Dρ. Denote by uρ ∈ ρ ∩N the minimal generator of the ray ρ. When m ∈M ,

the character χm : TN → C∗ is a rational function in C(XΣ)∗, as the torus is open in XΣ.

Since Dρ is a prime divisor, it defines a valuation νρ : C(XΣ)∗ → Z.

Proposition 2.1.16 (Proposition 4.1.1 in [15]). Let XΣ be the toric variety of a fan Σ.

If the ray ρ ∈ Σ(1) has minimal generator uρ and χm is the character corresponding to

m ∈M , then

νρ(χm) = ⟨m, uρ⟩.

Together with the Orbit-Cone Correspondence, this proposition implies the following.

Proposition 2.1.17 (Proposition 4.1.2 in [15]). For m ∈ M , the character χm is a

rational function on XΣ, and its principal divisor is given by

div(χm) =
∑

ρ∈Σ(1)
⟨m, uρ⟩Dρ.

Definition 2.1.18. Define the group DivTN
(XΣ) ⊆ Div(XΣ) to be the group of Weil

divisors on XΣ that are invariant under the torus action.

By Exercise 4.1.1 in [15], the group DivTN
(XΣ) consists exactly of the divisors

14



∑
ρ∈Σ(1) aρDρ, including, by Proposition 2.1.17, the principal divisors of the characters of

XΣ. We can write

DivTN
(XΣ) =

⊕
ρ∈Σ(1)

ZDρ ⊆ Div(XΣ).

Using this, we can construct a short exact sequence to calculate the class group of XΣ.

Theorem 2.1.19 (Theorem 4.1.3 in [15]). We have the exact sequence

M → DivTN
(XΣ)→ Cl(XΣ)→ 0, (2.5)

where the first map sends m to div(χm) and the second sends a TN -invariant divisor to its

divisor class in Cl(XΣ). Furthermore, we have a short exact sequence

0→M → DivTN
(XΣ)→ Cl(XΣ)→ 0

if and only if {uρ | ρ ∈ Σ(1)} spans NR.

Remark 2.1.20. A useful way to think about this and calculate the class groups of

varieties is via matrices. Assume |Σ(1)| = r. Pick a basis e1, . . . , en of M , so that M ≃ Zn

and thus, as dual lattice, N ≃ Zn. Then the pairing ⟨−,−⟩ is simply the dot product and

ui can be thought of as column vector (⟨e1, ui⟩, . . . , ⟨en, ui⟩)T . The map M → DivTN
(XΣ)

becomes the map A : Zn → Zr, represented by the matrix with rows the ray generators

u1, . . . , ur. Theorem 2.1.19 implies that Cl(XΣ) is the cokernel of this map. In particular,

the torsion of the group can be found by computing the Smith normal form, which will

become useful later on when we work on generalising our own results in Chapter 4.

While one can also classify Cartier divisors by means of toric geometry, this is not

relevant for us and we refer the reader to §4.2 of [15].
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2.1.3 Polytopes

Definition 2.1.21. A polytope ∆ in MR is a convex hull of a finite set S of points in MR.

If this finite set can be chosen to consist of only points of M , we call ∆ a lattice polytope.

Choosing a minimal generating set S for a polytope ∆, we call the elements of S vertices

of the polytope. A polyhedron is the intersection of finitely many closed half-spaces.

Remark 2.1.22. Polygons in R2 and bounded polyhedra in R3 are polytopes; however

not all polyhedra need to be bounded. A polytope ∆ ⊆MR can also be written as finite

intersection of closed halfspaces. As such, every polytope is also a polyhedron but not

vice versa, as for example the intersection of the closed halfspaces x ≤ 0, y ≤ 0 in R2 is a

polyhedron but not a polytope.

An important class of polytopes are simplices. A polytope ∆ of dimension d is called a

simplex if it has d + 1 vertices.

Writing polytopes as intersection of half-spaces is particularly useful when ∆ is full

dimensional, as then each facet F has a unique supporting hyperplane. In this case, write

the supporting hyperplane to the facet F as

HF = {m ∈MR | ⟨m, uF ⟩ = −aF}.

Here, uF is called an inward-pointing facet normal of the facet F . This allows us to

write ∆ as

∆ = {m ∈MR | ⟨m, uF ⟩ ≥ −aF for all facets F ⪯ ∆}.

Definition 2.1.23. Let ∆ be a lattice polytope in MR. We define its dual polytope ∆∨ to

be

∆∨ := {n ∈ NR | ⟨m, n⟩ ≥ −1 ∀m ∈ ∆}.

We call ∆ reflexive if the dual polytope ∆∨ is also a lattice polytope. If there is an interior

point m ∈ ∆ so that (∆−m)∨ is a lattice polytope, we call ∆ reflexive with respect to m.
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It is well known that the unique interior lattice point of a reflexive polytope ∆ is 0

(see, for example, Exercise 2.3.5 in [15]).

Given two polytopes P1 = Conv(S1) and P2 = Conv(S2), their Minkowski sum is

P1 + P2 = Conv(S1 + S2), where S1 + S2 := {m1 + m2 | m1 ∈ S1, m2 ∈ S2}.

We now define some properties of cones and polytopes which appear frequently in the

study of mirror symmetry. The following definitions and results can be found in [6, 38, 51].

Definition 2.1.24. Let ∆ be a full-dimensional lattice polytope in MR. Then ∆ is called

a Gorenstein polytope of index r (r ∈ Z>0) if r∆ contains a unique interior lattice point m

and if r∆−m is a reflexive polytope.

Definition 2.1.25. A Gorenstein cone σ is a cone in MR with generators v1, . . . , vk ∈M

such that ⟨vi, nσ⟩ = 1 for some element nσ ∈ N which we call the Gorenstein element of σ.

The support ∆σ of σ is the polytope Conv({v1, . . . , vk}) in the hyperplane ⟨x, nσ⟩ = 1 in

MR.

We note that nσ lies in the interior of σ∨. Define the kth slice of σ as the lattice

polytope

σ(k) := σ ∩ {m ∈MR | ⟨m, nσ⟩ = k}.

Note that the support of σ is the 1st slice, σ(1). There is a partition of the monoid σ ∩M

into the slices.

σ ∩M =
⊔

k∈Z≥0

σ(k) ∩M.

Definition 2.1.26. A reflexive Gorenstein cone σ is a Gorenstein cone σ whose dual σ∨ is

also Gorenstein. Denoting its Gorenstein element with mσ∨ , the index of σ is the integer

r = ⟨mσ∨ , nσ⟩.

The following proposition links the notions of reflexive Gorenstein cones and Gorenstein

polytopes.

Proposition 2.1.27 (Proposition 2.7 in [38], Proposition 2.11 in [6]). Let σ be a Gorenstein

cone in MR. Then the following are equivalent:
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A. σ is reflexive of index r;

B. σ(r) is a reflexive polytope with mσ∨ as unique interior point;

C. The support polytope σ(1) of σ is a Gorenstein polytope of index r.

Definition 2.1.28. Let ∆1, . . . , ∆t be t lattice polytopes of positive dimension in MR.

Define the Cayley polytope ∆1 ∗ · · · ∗∆t to be

∆1 ∗ · · · ∗∆t := Conv((∆1, e1), . . . , (∆t, et)) ⊆MR × Rt,

where ei are the standard basis vectors for Rt.

Definition 2.1.29. Let ∆1, . . . , ∆t be t lattice polytopes. We say a cone σ is a Cayley

cone associated to t lattice polytopes if it can be written as σ = Cone(∆1 ∗ · · · ∗∆t).

Definition 2.1.30. Let σ be a reflexive Gorenstein cone of index r. If σ is also a Cayley

cone associated to r lattice polytopes, then we say that σ is completely split.

Given a lattice polytope ∆, we can associate the fan of a toric variety to it in two ways:

its normal fan or its face fan.

The first fan we discuss is the normal fan. Let ∆ ⊆MR be a full dimensional lattice

polytope. Faces, facets and vertices of ∆ will be denoted by Q, F and v respectively.

A vertex v ∈ ∆ corresponds to the (maximal) cones

Cv = Cone (∆ ∩M − v) ⊆MR and σv = C∨
v ⊆ NR.

Faces Q of the polytope ∆ containing the vertex v correspond bijectively to faces Qv

of the cone Cv via the mutually inverse maps

Q 7→ Qv = Cone (Q ∩M − v)

Qv 7→ Q = (Qv + v) ∩∆.
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So all facets of Cv come from facets of ∆ that contain v, and thus

Cv = {m ∈MR | ⟨m, uF ⟩ ≥ 0 for all facets F containing v}.

It follows that the dual cone is given by σv = Cone (uF | F contains v). This can be

generalised to arbitrary faces Q ⪯ ∆ by setting

σQ = Cone (uF | F contains Q).

We then define the normal fan to the polytope ∆ as Σ∆ = {σQ | Q ⪯ ∆}. By Theorem

2.3.2 in [15], this is indeed a fan in the sense of Definition 2.1.8.

The second way to associate a fan to a polytope ∆, used in f -duality (see §2.3.3 of

this thesis), is a face fan. If 0 ∈ ∆, we define the face fan of ∆ as follows. For every facet

Φ ≺ ∆ such that 0 ̸∈ Relint Φ (where Relint Φ is the relative interior of Φ, i.e. the interior

of Φ in its span), we consider the cone

σ(Φ) := {r ·m | m ∈ Φ, r ∈ R≥0} ⊆MR.

The face fan of ∆ is defined as the collection of cones τ such that there is a face Φ of ∆ with

τ ∈ σ(Φ). In other words, the face fan is the collection of cones {τ | ∃Φ ≺ ∆ : τ ∈ σ(Φ)}.

Example 2.1.31. A way to think about this geometrically is to draw the lattice polytope

and then connect all the vertices to 0. Consider for example the triangle in Figure

2.2. We can think of the fan being obtained by connecting the origin to the 3 vertices

(−1,−1), (1, 0) and (0, 1) and considering the cones over the faces we see. In this case,

the face fan gives the fan for P2 that we saw in example 2.1.10.

We now know that every lattice polytope has a fan associated to it, but they are also

useful when working with divisors. In fact, to every torus invariant divisor D we can assign

a polyhedron. Consider a toric variety XΣ, associated to a fan Σ. For D = ∑
ρ aρDρ, we
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Figure 2.2: An example of a face fan

define the polyhedron

PD = {m ∈MR | ⟨m, uρ⟩ ≥ −aρ for all ρ ∈ Σ(1)}.

We obtain the following interesting proposition.

Proposition 2.1.32 (Proposition 4.3.3 in [15]). If D is a TN -invariant Weil divisor on

XΣ, then

Γ(XΣ,OXΣ(D)) =
⊕

m∈PD∩M
C ·χm.

For each ray ρ ∈ Σ(1), introduce a variable xρ. Then the toric variety XΣ has the total

coordinate ring C[xρ | ρ ∈ Σ(1)] of XΣ. For additional information on the grading of the

variables and more we refer the reader to §5 in [15].

As a particular special case of Proposition 2.1.32, we note the following. Take D = 0,

so as to obtain the trivial sheaf on XΣ. Then the polyhedron PD is simply |Σ|∨. Hence, a

point m in |Σ|∨ corresponds to a global section xm ∈ Γ(XΣ,OXΣ), i.e. to a global function,
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via

xm =
∏

ρ∈Σ(1)
x⟨m,uρ⟩
ρ ,

where uρ is the primitive generator of the ray ρ ∈ Σ(1) and xρ is the variable associated

to it.

2.1.4 The Cox construction

Since associating a variety to a fan by gluing explicitly becomes unwieldy with an increasing

number of cones, we would like a more efficient way to do this. One idea is to express toric

varieties as quotients of complex space by a group acting on it. A motivating example is

Pn = (Cn \{0})/C∗. Building on that, we would like to express the toric variety associated

to a fan as (almost geometric) quotient (Cr \Z)//G for some exceptional set Z and reductive

group G. This can be achieved by means of the Cox construction (see §5 of [15]). First, let

us define what we mean by almost geometric quotient.

Definition 2.1.33. Let X, Y be varieties, G a group acting on X, and π : X → Y a

morphism that is constant on G-orbits. Then π is a good categorical quotient if:

• If U ⊆ Y is open, then the natural map OY (U)→ OX(π−1(U)) induces an isomor-

phism

OY (U) ≃ OX(π−1(U))G.

• If W ⊆ X is closed and G-invariant, then π(W ) ⊆ Y is closed.

• If W1, W2 are closed, disjoint, and G-invariant in X, then π(W1) and π(W2) are

disjoint in Y .

Write a good categorical quotient as π : X → X // G. A particularly nice form of good

categorical quotient is a geometric quotient. A geometric quotient is a good categorical

quotient which satisfies the conditions of the following proposition.
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Proposition 2.1.34. Let π : X → X // G be a good categorical quotient. Then the

following are equivalent:

• All G-orbits are closed in X.

• Given points x, y ∈ X, we have

π(x) = π(y)⇔ x and y lie in the same G− orbit.

• π induces a bijection

{G− orbits in X} ≃ X // G.

• The image of the morphism G × X → X × X defined by (g, x) 7→ (g · x, x) is the

fiber product X ×X//G X.

Since the points of X // G are in bijection with G-orbits in X, we write a geometric

quotient as π : X → X/G. Not all good categorical quotients are geometric, but some are

very close to it. These are called almost geometric quotients and are characterised by the

equivalent properties of the following proposition.

Proposition 2.1.35. Let π : X → X // G be a good categorical quotient. Then the

following are equivalent:

• X has a G-invariant Zariski dense open subset U0 such that G · x is closed in X for

all x ∈ U0.

• X // G has a Zariski dense open subset U such that π|π−1(U) : π−1(U) → U is a

geometric quotient.

Before we describe how to describe toric varieties as almost geometric quotients, we

first define the kind of groups G that we will work with.

Definition 2.1.36. An affine algebraic group G is called reductive if its maximal connected

solvable subgroup is a torus.
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Example 2.1.37. Finite groups and tori are reductive groups and will be the reductive

groups that we treat in this thesis.

Reductive groups have some key properties which will become vital in the following.

Proposition 2.1.38. Let G be a reductive group acting algebraically on an affine variety

X = Spec(R). Then:

• RG is a finitely generated C-algebra.

• The morphism π : X → Spec(RG) induced by RG ⊆ R is a good categorical quotient.

We can now proceed with the construction of toric varieties as almost geometric

quotients. Recall the exact sequence (2.5) (from Theorem 2.1.19, with slightly adjusted

notation):

0→M
ι→

⊕
ρ∈Σ(1)

ZDρ → coker ι→ 0, (2.6)

where ι(m) := div(χm) = ∑
ρ∈Σ(1)⟨m, uρ⟩Dρ.

We will write ZΣ(1) := ⊕
ρ∈Σ(1) ZDρ. Since C∗ is a divisible group and hence an injective

module, the functor HomZ(−,C∗) is exact, so applying it to (2.6) yields the exact sequence:

1→ HomZ(coker ι,C∗)→ HomZ(ZΣ(1),C∗)→ HomZ(M,C∗)→ 1. (2.7)

Define

GΣ := HomZ(coker ι,C∗). (2.8)

Note that HomZ(ZΣ(1),C∗) ≃ (C∗)Σ(1) and HomZ(M,C∗) ≃ TN , where TN is the torus of

the variety. Hence we may rewrite (2.7) as

1→ GΣ → (C∗)Σ(1) → TN → 1. (2.9)

When describing GΣ explicitly, the following lemma is useful.
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Lemma 2.1.39 (Lemma 5.1.1(c) in [15]). Let GΣ ⊆ (C∗)Σ(1) be as in (2.9). Given a basis

e1, . . . , en of M , we have

GΣ = {(tρ) ∈ (C∗)Σ(1) |
∏
ρ

t⟨ei,uρ⟩
ρ = 1 for 1 ≤ i ≤ n}.

We now have both an affine space CΣ(1) and a group GΣ, which can be shown to be

reductive and thus only further require an exceptional set Z in order to construct the toric

variety XΣ as a geometric quotient. For each ray ρ ∈ Σ(1), introduce a variable xρ and

consider the total coordinate ring of XΣ,

S := C[xρ | ρ ∈ Σ(1)].

For each cone σ ∈ Σ, let xσ̂ = ∏
ρ ̸∈σ(1) xρ. We define the irrelevant ideal

B(Σ) = ⟨xσ̂ | σ ∈ Σ⟩ ⊆ C[xρ | ρ ∈ Σ(1)].

If τ ⪯ σ, then xσ̂ is a factor of xτ̂ . Hence we only need to consider maximal cones to

generate the irrelevant ideal. Define Z(Σ) = Z(B(Σ)) ⊆ CΣ(1). We then have:

Theorem 2.1.40 (Theorem 5.1.11 in [15]). Let XΣ be a toric variety without torus factors,

associated to a fan Σ. Then

XΣ ≃ (C|Σ(1)| \Z(Σ)) // G.

Here, a toric variety is said to have a torus factor if it is equivariantly isomorphic to

the product of a nontrivial torus and a toric variety of smaller dimension. By Proposition

3.3.9 in [15], a toric variety of a fan Σ has a torus factor if and only if {uρ | ρ ∈ Σ(1)}

does not span NR.

Most of the following discussion happens on the level of toric stacks instead of the

level of toric varieties. The section § 2.1.5, gives a gentle introduction to stacks in general.
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In this thesis, we will use the following working definition of a toric stack.

Definition 2.1.41. Let Σ be a fan. Define the Cox fan Cox(Σ) ⊆ R|Σ(1)| to be

Cox(Σ) :=
{
Cone(eρ | ρ ∈ σ)

∣∣∣σ ∈ Σ
}

.

Denote by n the number of rays in the fan Σ. Then the Cox fan of Σ is a subfan of the

standard fan corresponding to the toric variety An. Thus, UΣ := XCox(Σ) is an open subset

of An. Recall GΣ as in Equation (2.8). Then we define the following stack:

Definition 2.1.42. We call UΣ the Cox open set associated to Σ and define the Cox stack

associated to Σ to be the quotient stack

XΣ := [UΣ/GΣ] .

In the smooth and orbifold case, we have the following result relating XΣ to XΣ.

Theorem 2.1.43 ([17]). If Σ is simplicial, then XΣ is a smooth Deligne-Mumford stack

with coarse moduli space XΣ. When Σ is smooth (or equivalently XΣ is smooth) XΣ ∼= XΣ.

Example 2.1.44. We illustrate the Cox construction on an example. Let us reuse the

example of P2 given previously in Example 2.1.10. So consider the standard fan Σ for P2,

as depicted in figure 2.1. In this case, the exact sequence (2.7) takes the form

0→ Z2 ι→ Z3 → coker ι→ 0,

where ι can be represented by the matrix


1 0

0 1

−1 −1

.

We first note that |Σ(1)| = 3. This has Smith normal form


1 0

0 1

0 0

, and therefore the

cokernel has no torsion, and hence GΣ = HomZ(coker ι,C∗) ∼= C∗.
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Using the Lemma 2.1.39, we compute GΣ explicitly. Elements of GΣ are of the form

(t1, t2, t3), subject to

t1t
−1
3 = 1,

t2t
−1
3 = 1.

In other words, t1 = t3 = t2. Thus, GΣ = {(t, t, t) | t ∈ C∗}.

The exceptional set Z(Σ) is found by considering the maximal cones σ0,1, σ1,2 and σ2,0.

We have

xσ̂0,1 = x2,

xσ̂1,2 = x0,

xσ̂2,0 = x1.

Thus, B(Σ) = ⟨x0, x1, x2⟩ and hence Z(Σ) = Z(B(Σ)) = Z(⟨x0, x1, x2⟩) = {0}.

Theorem 2.1.40 then gives XΣ = (C3 \{0}) // C∗, with C∗ acting by (t, t, t) ∼ (1, 1, 1).

This is the quotient description of P2, showing that the Cox Construction also obtains P2

as the variety obtained for the fan Σ.

2.1.5 A note on stacks

The aim of this section is to give a general idea of what a stack is. Roughly speaking, a

stack over a scheme S is a category M equipped with a functor p :M→ Sch/S fulfilling

some lifting and gluing properties. Important to note here is that the underlying topology

we work with is a Grothendieck topology, usually étale.

Another way to introduce stacks is more differential geometric in flavour than algebraic,

in particular it uses the usual topology on manifolds.

Start by recalling Yoneda’s lemma applied to the category of manifolds, which states

that any manifold/space M is determined by the functor Map(−, M) : Manifolds→ Sets.
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The idea to take away from this is that sometimes, instead of directly describing an object,

we can equivalently describe it via a functor associated to it.

This works for stacks as well, so instead of defining a stack M algebraically as a

category with some properties, we give a definition of stacks via 2-functors.

Definition 2.1.45 ([29], Definition 1.1). A stack M is a 2-functor

M : Manifolds→ Groupoids ⊂ Cat,

fulfilling some gluing properties1

A. We can glue objects: Given an open covering Ui of X, objects Pi ∈ M(Ui) and

isomorphisms φij : Pi|Ui∩Uj
→ Pj|Ui∩Uj

satisfying the cocycle condition on threefold

intersections, there is an object P ∈M(X) together with isomorphisms φi : P |Ui
→

Pi such that φij = φj ◦ φ−1
i .

B. We can glue morphisms: Given P, P ′ ∈ Ob(M(X)), an open covering Ui of X and

isomorphisms φi : P |Ui
→ P ′|Ui

such that φi|Ui∩Uj
= φj|Ui∩Uj

, then there is a unique

φ : P → P ′ such that φi = φ|Ui
.

The toric stacks briefly defined above belong to a certain class of stacks, known as

quotient stacks.

Definition 2.1.46 ([29], Example 1.5). Let G be a Lie group acting on a manifold X on

the left. We define the quotient stack [X/G] as

[X/G](Y ) := ⟨(P p−→ Y, P
f−→ X)|P → Y a G-bundle, f is G-equivariant⟩.

2.1.6 Toric morphisms and vector bundles

Toric varieties admit morphisms between them that respect the toric structure. We call

these toric morphisms.
1Adopting the notation |U instead of j∗ :M(X)→M(U) for open embeddings j : U ↪→ X.
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Definition 2.1.47. Let XΣ1 , XΣ2 be normal toric varieties, with Σi a fan in (Ni)R. A

morphism ϕ : XΣ1 → XΣ2 is toric if ϕ maps the torus TN1 ⊆ XΣ1 into the torus TN2 ⊆ XΣ2 ,

i.e. if ϕ(TN1) ⊆ TN2 , and ϕ|TN1
is a group homomorphism.

Toric morphisms correspond to maps of the underlying cocharacter lattices N1, N2 that

are compatible with the fans of the varieties.

Definition 2.1.48. Let N1, N2 be two lattices with a fan Σ1 in (N1)R and a fan Σ2 in

(N2)R. A Z-linear mapping ϕ : N1 → N2 is compatible with the fans Σ1, Σ2 if for every

cone σ1 ∈ Σ1, there exists a cone σ2 ∈ Σ2 such that ϕR(σ1) ⊆ σ2.

Theorem 2.1.49 (Theorem 3.3.4 in [15]). Let N1, N2 be lattices and let Σi be a fan in

(Ni)R, i = 1, 2.

A. If ϕ : N1 → N2 is a Z-linear map that is compatible with Σ1 and Σ2, then there is a

toric morphism ϕ : XΣ1 → XΣ2 such that ϕ|TN1
is the map

ϕ⊗ 1 : N1 ⊗Z C∗ → N2 ⊗Z C∗ .

B. Conversely, if ϕ : XΣ1 → XΣ2 is a toric morphism, then ϕ induces a Z-linear map

ϕ : N1 → N2 that is compatible with the fans Σ1 and Σ2.

A Cartier divisor D = ∑
ρ aρDρ on a toric variety XΣ gives the line bundle L = OXΣ(D),

which is the sheaf of sections of a rank 1 vector bundle π : VL → XΣ. The variety VL is

toric and π is a toric morphism. This is shown by directly constructing the fan of VL in

terms of Σ and D, which we will do now.

Define the fan Σ×D in NR as follows. Given a cone σ ∈ Σ, set

σ̃ = Cone ((0, 1), (uρ,−aρ) | ρ ∈ σ(1)).

Then σ̃ is a strongly convex rational polyhedral cone in NR × R for all cones σ ∈ Σ. We

then let Σ × D be the collection of cones σ̃ for σ ∈ Σ and their faces. This is a fan in
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NR×R and the projection π : N ×Z→ N is compatible with Σ×D and Σ, thus inducing

a toric morphism

π : XΣ×D → XΣ.

Proposition 2.1.50 (Proposition 7.3.1 in [15]). π : XΣ×D → XΣ is a rank 1 vector bundle

whose sheaf of sections is OXΣ(D).

The variety XΣ×D will sometimes also be denoted by XΣ,D.

For decomposable vector bundles of rank higher than 1, we can repeatedly apply

Proposition 2.1.50 to construct the total space of the vector bundle, following [19]. Taking

r torus-invariant Weil divisors Di = ∑
ρ∈Σ aiρDρ, we define

σD1,...,Dr := Cone ({uρ − a1ρe1 − · · · − arρer | ρ ∈ σ(1)} ∪ {ei|i ∈ {1, . . . , r}}) ⊂ NR ⊕ Rr .

Let ΣD1,...,Dr be the fan generated by the cones σD1,...,Dr and their proper faces, and call

XΣ,D1,...,Dr the associated stack. We obtain the following result.

Proposition 2.1.51 (Proposition 4.13 in [19]). Let D1, . . . , Dr be divisors on XΣ. There

is an isomorphism of stacks

XΣ,D1,...,Dr
∼= tot

(
r⊕
i=1
OXΣ(Di)

)
.

Example 2.1.52. As an example, let us construct a fan for totOP 2(−3). We use

the same fan as before, depicted in Figure 2.1. Firstly, we note that Cl(P2) = Z and

O(Dρ0) ≃ O(Dρ1) ≃ O(Dρ2) ≃ O(1). Thus we represent the anticanonical divisor −KP2

as −(Dρ0 + Dρ1 + Dρ2). The fan Σ×−KP2 thus has the four rays r0 = (−1,−1, 1), r1 =

(1, 0, 1), r2 = (0, 1, 1) and r3 = (0, 0, 1). The higher dimensional cones are, listed via their

ray generators, Cone (r0, r1, r3), Cone (r0, r2, r3) and Cone (r1, r2, r3) as well as their faces.
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2.1.7 GIT quotients

Geometric invariant theory (GIT), developed by Mumford, is a powerful tool in modern

algebraic geometry. We will here discuss the toric version of it, following §14 of [15].

Roughly speaking, GIT deals with ways to take almost geometric quotients of spaces

by some reductive groups acting on them. As a model for this, recall the Cox construction

in §2.1.4. It gives a toric variety as almost geometric quotient XΣ ≃ (CΣ(1) \Z(Σ)) // GΣ.

Fundamentally, we start with CΣ(1) and remove a special Zariski closed subset in order

to obtain an almost geometric quotient. GIT provides the machinery to do so, but the

way to apply it is often not unique. The subsets that are removed depend on a choice of

stability condition, parameterised by a choice of line bundle. The different choices can

give different, birational quotients.

In GIT, deciding which points are removed is done via a lifting of the G-action on Cr

to the rank 1 trivial vector bundle Cr×C→ Cr. Define the character group of G to be

Ĝ = {χ : G→ C∗ |χ is a homomorphism of algebraic groups}.

A character χ ∈ Ĝ then gives the action of G on Cr×C defined by

g · (p, t) = (g · p, χ(g)t), g ∈ G, (p, t) ∈ Cr×C .

This lifts the G-action on Cr. Furthermore, all possible liftings arise this way.

Let Lχ or O(χ) denote the sheaf of sections of Cr×C with this G-action. It is called

the linearised line bundle with character χ. For d ∈ Z, the tensor product O(χ)⊗d is the

linearised line bundle with character χd. As a line bundle on Cr, O(χ) ≃ OCr , forgetting

the G-action. Thus, a global section s ∈ Γ(Cr,O(χ)) can be written as

s : Cr → Cr×C

p 7→ (p, F (p)),
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for some unique Fs ∈ C[x1, . . . , xr].

Definition 2.1.53. Fix G ⊆ (C∗)r and χ ∈ Ĝ, with linearised line bundle O(χ). Given a

global section s of O(χ), we denote

(Cr)s := {p ∈ Cr | s(p) ̸= 0}.

This is an affine open subset of Cr, as s(p) ̸= 0 means Fs(p) ̸= 0. Furthermore, G acts on

(Cr)s when s is G-invariant. We define:

A. p ∈ Cr is semistable with respect to χ if there exist d > 0 and s ∈ Γ(Cr,O(χd))G

such that p ∈ (Cr)s.

B. p ∈ Cr is stable with respect to χ if there exist d > 0 and s ∈ Γ(Cr,O(χd))G such

that p ∈ (Cr)s, the isotropy subgroup Gp is finite, and all G-orbits in (Cr)s are closed

in (Cr)s.

C. The set of all semistable (resp. stable) points with respect to χ is denoted (Cr)ssχ
(resp. (Cr)sχ).

Given a group G ⊆ (C∗)r and χ ∈ Ĝ, we next need to define the GIT quotient Cr //χG.

Consider the graded ring Rχ = ⊕∞
d=0 Γ(Cr,O(χd))G.

Definition 2.1.54. For G ⊆ (C∗)r and χ ∈ Ĝ, the GIT quotient Cr //χG is

Cr //χG = Proj(Rχ).

An important property of GIT quotients is that in principle, this is the same as taking

the quotient of (Cr)ssχ under the action of G.

Proposition 2.1.55 (Proposition 14.1.12.c) in [15]). For G ⊆ (C∗)r and χ ∈ Ĝ, the

GIT quotient Cr //χG is a good categorical quotient of (Cr)ssχ under the action of G, i.e.

Cr //χG ≃ (Cr)ssχ // G.
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Theorem 14.2.13 of [15] shows, using a polyhedron associated to the character χ, that

the GIT quotient Cr //χG is a toric variety.

2.1.8 GKZ Fans

Let G ⊆ (C∗)r. Studying the GIT quotient Cr //χG as χ varies gives rise to the GKZ fan,

or also secondary fan, of a toric variety, which has the structure of a generalised fan.

Definition 2.1.56. A generalised fan Σ in NR is a finite collection of cones σ ⊆ NR such

that:

A. Every σ ∈ Σ is a rational polyhedral cone.

B. For all σ ∈ Σ, each face of σ is also in Σ.

C. For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each.

This agrees with the Definition 2.1.8 of a fan, with the exception that cones are not

necessarily strongly convex. Consider the cone σ0 = ⋂
σ∈Σ σ. It has no proper faces and

is thus a subspace of NR. We consider the lattice N = N/(σ0 ∩N). To associate a toric

variety for the generalised fan Σ, one constructs the fan Σ where each cone comes from a

cone of Σ quotiented by σ0. This is a fan in the sense of Definition 2.1.8, and hence we

can associate a toric variety to it as usual. Then XΣ := XΣ.

We will now discuss the notion of a GKZ fan, following both [15] and [18]. Consider a

toric variety X. It can be written as a GIT quotient (Cr \Z) //χ G. Recall the character

group Ĝ of G. Each choice of character χ ∈ Ĝ determines an open subset Uχ := (Cr)ssχ ,

the semi-stable locus of X with respect to χ. Several different characters can give the same

semi-stable locus. Thinking of the vector space Hom(Ĝ, TN)⊗Z Q as parameter space for

linearisations, we investigate where the semi-stable locus Uψ is the same as Uχ for a given

character χ. It turns out that dividing the vector space into chambers where Uχ remains

the same gives the space a natural fan structure. This fan-structure ΣGKZ is called the

GKZ fan. Maximal cones are called chambers and codimension one cones are called walls.
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Consider an arbitrary fan Σ, we can construct the GKZ fan as follows. Take the group

G = GΣ ⊆ (C∗)r acting on XΣ to be the group in Equation (2.8). There is a well-known

bijection between chambers of GKZ fans and regular triangulations of a certain set of

points, constructed as follows. In the general setting, apply Hom(−,C∗) to the sequence

0→ G
iG−→ (C∗)r proj−−→ coker(iG)→ 0

to obtain the sequence

Hom(coker(iG),C∗) p̂roj−−→ Zr îG−→ Hom(G,C∗)→ 0.

Let νi(G) be the element of Hom(coker(iG),C∗)∨ given by composing p̂roj with the

projection of Zr onto its ith factor. Compare this sequence with the sequence (2.6). We

in fact reversed the process of obtaining (2.9) from (2.6). Starting with the correct group

acting on the space, we thus recover the map corresponding to ι as p̂roj. Hence, the ν(G)

correspond to the primitive generators uρ of the rays of Σ. Then the set we will triangulate

is the convex hull of the set ν(G) = {ν1(G), . . . , νr(G)}.

Recall here what regular triangulations are.

Definition 2.1.57. Let ν be a collection of points in NR. A triangulation T of ν is a

collection of simplices satisfying:

• Each simplex in T has codimension 1 in NR with vertices in ν.

• The intersection of any two simplices in T is a face of each.

• The union of the simplices in T is Conv(ν).

Definition 2.1.58. Let ν = {ν1, . . . , νr}. Given nonnegative weights ω = (w1, . . . , wr) ∈

R≥0, we define the cone

Cν,ω = Cone((ν1, w1), . . . , (νr, wr)) ⊆ NR × R .
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The lower hull of Cν,ω consists of all facets of Cν,ω whose inner normal has a positive last

coordinate. Projecting the facets in the lower hull and their faces gives a fan Σω in NR

such that |Σω| = Cone(ν) and Σω(1) ⊆ {Cone(νi)|1 ≤ i ≤ r}. A triangulation T of ν is

regular if there are weights ω such that Σω is simplicial and T = Σω ∩ Conv(ν).

We can now formulate the following result, which enables us to efficiently study GKZ

fans.

Theorem 2.1.59 (Proposition 15.2.9 in [15]). There is a bijection between chambers of

the GKZ fan for the action of G on Cr and regular triangulations of the set ν(G). In

particular, there are only finitely many chambers of the GKZ fan.

Thus we can enumerate the chambers of the GKZ fan, say by σ1, . . . , σk. For any of

those chambers, we can choose a character in its interior and consider the semi-stable locus

with respect to it. As this locus does not depend on the choice of character, but solely on

the choice of chamber, denote the open affine associated to chamber σp by Up. By the

above theorem, it will also correspond to a specific triangulation Tp of {ν1(G), . . . , νr(G)}.

Example 2.1.60. In this example, we illustrate hands-on methods from §15 of [15] on

how to construct secondary fans. We consider totOP2(−3), with the fan constructed in

Example 2.1.52. Consider the exact sequence (2.7) for this fan, being

0→ Z3 A→ Z3 B→ coker→ 0.

The rows of the matrix A =



1 0 1

0 1 1

−1 −1 1

0 0 1


give the points νi(G) we want to triangulate.

Since all these points lie in the hyperplane z = 1, we can intersect with that hyperplane

and are left to triangulate the 4 points (1, 0), (0, 1), (−1,−1), (0, 0). There are two ways to

do this, illustrated in Figure 2.3.
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Figure 2.3: Possible triangulations

Figure 2.4: Secondary fan of totOP2(−3).

The map B is represented by the matrix (1, 1, 1,−3). Each of the columns gives a ray

of the secondary fan (in this case, one of the rays is counted thrice). The secondary fan is

thus the one in Figure 2.4.

2.2 Derived categories and Homological Mirror Sym-
metry

In this section, we will state Homological Mirror Symmetry. Kontsevich [33] conjectured

that mirror symmetry between two Calabi-Yau manifolds X, X∨ is expressed as an equiv-

alence between a certain pair of categories one can define on the manifolds X, X∨. In

the following, we will be taking a closer look at these categories in the statement of

Homological Mirror Symmetry.
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2.2.1 Derived Categories

We begin with the categorical setup, introducing derived categories, largely following [12].

Derived categories stem from the idea that while complexes are good and carry a lot of

information, reducing to their homology is bad and loses some of that information. An

example of this are simplicial complexes in algebraic topology. There exist non-homotopy

equivalent simplicial complexes X, Y with isomorphic homology. An example of this are

homology spheres, which are n-manifolds of the same homology as n-spheres. The concept

of them goes back to Poincaré (1904); a treatment of the case n = 1 is given in [16]. Further

examples of this phenomenon include knot complements, since all knot complements have

the same homology but for distinct knots, the complements may differ in homotopy.

An upside to this is Whitehead’s theorem, which loosely states that two complexes X

and Y are homotopy equivalent if and only if there is a third simplicial complex Z with

quasi-isomorphisms f∗ : C•(Z)→ C•(X), g∗ : C•(Z)→ C•(Y ) (where C•(−) is the chain

complex associated to a simplicial complex).

The aim now is to construct a category which carries the data of a complex. Start

with an abelian category A and construct a new category whose objects are complexes of

objects of A, and where the morphisms are chain maps. An object of that category will

thus have the form A• = . . .
di−2

A→ Ai−1 di−1
A→ Ai

di
A→ Ai+1 di+1

A→ . . . , with Ai ∈ Ob(A) and the

djA are differential maps, so di+1
A ◦ diA = 0. Note the fact that the notation is cohomological

(so upper indices and increasing degree).

We say that two morphisms f •, g• : A• → B• are homotopic if and only if there is a

chain map h• : A• → B•[−1] such that f i − gi = di−1
B ◦ hi + hi+1 ◦ diA for all i. The [−1]

here refers to the shift functor, and means that the component maps of h• are of the form

hi : Ai → Bi−1.

Definition 2.2.1 (Definition 1.1 in [12]). Let A be an abelian category. We define the

homotopy category of A, K(A), to be the category whose objects are complexes of objects

of A and morphisms between complexes are chain maps modulo the homotopy equivalence

relation.
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Remark 2.2.2. Some authors use H0A for the homotopy category, see for instance [28].

We shall adapt that notation later on when introducing dg-categories and A∞-categories.

In the more abstract concept of derived categories in general, we decided to keep the

notation of [12]. The homotopy category of a dg-category C is also denoted by [C], which

is a very convenient notation used later in §2.2.5, 2.2.7 and 4.

Definition 2.2.3 (Definition 1.3 in [12]). A chain map of complexes f • : A• → B• is called

a quasi-isomorphism if the induced maps H i(f •) : H i(A•)→ H i(B•) are isomorphisms for

all i.

Definition 2.2.4. The derived category D(A) of the abelian category A is obtained by

considering quasi-isomorphisms to be isomorphisms in K(A).

This is called localisation, analogously to rings. Morphisms in D(A) will be roofs,

which are diagrams of the following form

C•

A• B•,
f

g

where f, g are morphisms in K(A) and where f is a quasi-isomorphism. The roof in the

diagram represents g ◦ f−1, even though f is not necessarily an actual isomorphism, hence

not necessarily invertible.1

Example 2.2.5. An important example (see [3]) of derived categories is the bounded

derived category of coherent sheaves. Recall some facts from algebraic geometry. Let

X be an algebraic variety with sheaf of functions OX . We will restrict ourselves to

quasi-projective (and for the most part actually smooth projective) varieties over a field k,

usually C.

A sheaf F on OX is called quasi-coherent if locally F is the cokernel of a morphism of

free OX-modules. If those OX-modules can be chosen to be of finite rank, then the sheaf

F is called coherent.
1The way to think about it analogously to localisations of rings is that 2/3 = 2 · 3−1 ∈ Q, even though

3−1 does not exist in Z.
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We note that the category of coherent sheaves on X, Coh(X), is abelian, and so is the

category of quasi-coherent sheaves Qcoh(X). Furthermore, Qcoh(X) possesses enough

injective objects (i.e. every object admits a monomorphism into an injective object). This

allows to resolve any quasi-coherent sheaf by some bounded below complex of injective

sheaves.

Consider the subcategory of all injectives with quasi-coherent cohomology, meaning

that all chain homology groups are quasi-coherent sheaves. Taking its homotopy category,

we have now formed the derived category of QCoh(X).

Similarly, consider the subcategory of Coh(X) of all bounded below complexes of

injectives with bounded coherent cohomology. Taking the homotopy category, we obtain

the bounded derived category of Coh(X), Db(coh X).

2.2.2 Triangulated Categories

When passing to the homotopy category, we lost the notion of exactness. To get some

similar notion in the homotopy and derived categories, Verdier introduced exact triangles.

For this, we introduce the concept of triangulated categories.

Definition 2.2.6 (Definition 1.1 in [37]). Let C be an additive category and T : C → C be

an additive auto-equivalence. A triangle in C with respect to T is a diagram of the form

A
f→ B

g→ C
h→ TA.

A morphism of triangles is a commutative diagram of the form given in Figure 2.5:

A B C TA

A′ B′ C ′ TA′

f

u

g

v

h

w Tu

f ′ g′
h′

Figure 2.5: A morphism of triangles.
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Definition 2.2.7 (Definition 1.2 in [37]). A triangulated category is a triple (C, T,D) where

C is a category, T : C → C is an additive auto-equivalence and D is a class of distinguished

triangles, satisfying the following axioms:

(TR0) The class of distinguished triangles is closed under isomorphisms. Moreover, the

triangle

A
idA→ A→ 0→ TA

is distinguished.

(TR1) For any morphism f : A→ B in C there exists a distinguished triangle of the form

A
f→ B → C → TA.

(TR2) Consider the two triangles

A
f→ B

g→ C
h→ TA (2.10)

and

B
g→ C

h→ TA
−Tf→ TB. (2.11)

Then (2.10) is a distinguished triangle if and only if (2.11) is so.

(TR3) For any commutative solid diagram:

A B C TA

A′ B′ C ′ TA′

f

u

g

v

h

w Tu

f ′ g′
h′

There exists a dotted arrow making the diagram commutative.

(TR4) Assume we are given morphisms f : A → B, g : B → C fitting into distinguished
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triangles:

A
f→ B → C ′ → TA

B
g→ C → A′ → TB

A
g◦f→ C → B′ → TA.

Then, there exists a distinguished triangle

C ′ → B′ → A′ → TC ′

making the following diagram commutative:

A C A′ TC ′

B B′ TB

C ′ TA

g◦f

f g

Figure 2.6: Octahedron axiom of triangulated categories

Example 2.2.8. The derived category is a triangulated category, with the shift functor

T : A• → A•, Ai 7→ A[1]i = Ai+1 being the additive auto-equivalence. Hence, we tend

to simply talk about shifts when meaning the auto-equivalence, which is otherwise also

known as translation. We will use the notation A[1] to mean TA.

The distinguished triangles in this category are called exact triangles. We obtain the

basic set of exact triangles via the cone construction.

Given a chain map f • : A• → B•, let Cone(f •) be the complex with Cone(f •)i =

Ai+1 ⊕ Bi and differential diC =

di+1
A 0

f i+1 diB

. From the definition of the cone, it is also

clear how to define maps g• : B• → Cone(f •), h• : Cone(f •) → A•[1] to build an exact
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triangle. The full collection of exact triangles consists of those which by the axioms above

need to be exact as well.

Given a triangulated category T with a full subcategory N , we can form the Verdier

quotient of T by N (see [39, 40]). Denote by Σ(N ) a class of morphisms in T fitting into

an exact triangle

X
s−→ Y → N → X[1],

with N ∈ N . Σ(N ) is a multiplicative system and thus we can localise. The quotient

T /N is defined as the localisation T [Σ(N )−1] and is a triangulated category. Indeed,

the translation functor is induced from the translation on T and exact triangles in the

quotient T /N are those triangles that are isomorpic to the image of exact triangles in T .

An important tool in studying derived categories is the concept of semiorthogonal

decompositions, discussed in great detail, for example, by Orlov and Bondal [41, 11].

Definition 2.2.9. Let T be a triangulated category. Let A be a full subcategory of T .

The right orthogonal to A is the full subcategory A⊥ ⊆ T consisting of objects B such

that Hom(A, B) = 0 for all A ∈ A. The left orthogonal ⊥A is defined analogously. Both
⊥A and A⊥ are also triangulated.

Definition 2.2.10. Let T be a triangulated category. A sequence of full triangulated

subcategories A1, . . . ,An is called a semiorthogonal collection if HomT (Ai,Aj) = 0 for

i > j. If a semiorthogonal collection A1, . . . ,An generates T as a triangulated category,

we call it a semiorthogonal decomposition and denote this as follows:

T = ⟨A1, . . . ,An⟩.

Let us dissect here what it means for the semiorthogonal collection to generate the

triangulated category. This is the case if for every object T ∈ T , there exists a chain of

morphisms 0 = Tn → Tn−1 → · · · → T1 → T0 = T such that the cone of the morphism

Tk → Tk−1 is contained in Ak for each k = 1, 2, . . . , n. We can think of this as a filtration
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of the object T with factors in the Ai. Semiorthogonality then implies that this filtration

is both unique and functorial.

Semiorthogonal decompositions are linked to admissible subcategories.

Definition 2.2.11. A full triangulated subcategory A of a triangulated category T is

called right admissible if for the inclusion functor i : A → T there is a right adjoint

i! : T → A, and left admissible if there is a left adjoint i∗ : T → A. The subcategory A is

called admissible if it is both right and left admissible.

An example of the relation between admissible subcategories of a triangulated category

T and semiorthogonal decompositions is the following Lemma.

Lemma 2.2.12 (Lemma 2.3 in [34]). If T = ⟨A,B⟩ is a semiorthogonal decomposition, then

A is left admissible and B is right admissible. If A1, . . . ,An is a semiorthogonal sequence

in T such that A1, . . . ,Ak are left admissible and Ak+1, . . . ,An are right admissible, then

⟨A1, . . . ,Ak,⊥ ⟨A1, . . . ,Ak⟩ ∩ ⟨Ak+1, . . . ,An⟩⊥,Ak+1, . . . ,An⟩

is a semiorthogonal decomposition.

Examples of admissible subcategories are the ones generated by a exceptional objects.

Definition 2.2.13. An object E is exceptional if Hom(E, E) = k and Hom(E, E[t]) = 0

for t ̸= 0. An exceptional collection is a collection of exceptional objects E1, E2, . . . , Em

such that Hom(Ei, Ej[t]) = 0 for all i > j and all t ∈ Z.

An exceptional collection in T gives rise to a semiorthogonal decomposition

T = ⟨A, E1, . . . , Em⟩,

where A = ⟨E1, . . . , Em⟩⊥. If A is zero, then the exceptional collection is called full.

Example 2.2.14. A result due to Beilinson states that there is a full exceptional collection

Db(cohPn) = ⟨OPn , . . . ,OPn(n)⟩, known as Beilinson’s collection. Beilinson’s collection

gives one of the simplest examples of semiorthogonal decompositions.
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Remark 2.2.15. Given a variety X with an exceptional collection E1, . . . , Em ∈ Db(coh X),

we observed that the right orthogonal complement ⟨E1, . . . , Em⟩⊥ gives rise to a semiorthog-

onal decomposition

⟨⟨E1, . . . , Em⟩⊥, E1, . . . , Em⟩.

We refer to ⟨E1, . . . , Em⟩⊥ as the Kuznetsov component of X, denoted by Ku(X). It is an

active area of research to deduce as much geometric information of X as possible from an

appropriate Kuznetsov component. This includes a study of categorical resolutions, which

we will talk about later in this thesis.

2.2.3 dg-categories

The reason why triangulated categories are not quite “enough” is that extending diagrams

in the axiom (TR3) need not happen in a unique way. As such, derived categories as

defined are not the best way to proceed. In most constructions of derived categories, a

preferred map is given that is supposed to be used when filling the diagram 2.2.7, but the

definition of a derived category itself does not specify this. That is why we need more

complicated objects, in this case dg-categories and A∞-categories, to advance in the theory.

We will follow the exposition by Harder [28] to introduce those.

Definition 2.2.16. A category C is called a differential graded (dg) category if for each

a, b ∈ Ob(C), there is a vector space HomC(a, b) over a field k satisfying the following:

• It is a Z-graded vectorspace, the graded piece of weight i being denoted by Homi
C(a, b).

• It has a chosen differential dC : HomC(a, b)→ HomC(a, b) increasing the degree by 1.

• If f, g are in Homi
C(a, b), Homj

C(b, c) respectively, then

dC(g · f) = (dCg) · f + (−1)i+jg · (dCf) ∈ Homi+j+1(a, c).

• For each a ∈ Ob(C), there is some ia ∈ Hom0
C(a, a) so that ia · f = f for any
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f ∈ Homj
C(b, a) and g · ia = g = ib · g for all g ∈ Homj

C(a, b).

In particular, the category of chain complexes over an abelian category A is a dg-

category. To any dg-category C, one can associate its homotopy category H0C (again, note

that we switch notations here).

2.2.4 A∞-categories

There is a second class of objects that comes into play when discussing Homological Mirror

Symmetry, slightly more general than dg-categories. They are called A∞-categories. These

are not categories in the classical sense, since composition of morphisms is not always

associative. The way associativity fails is, however, controlled.

Definition 2.2.17 (Definition 2.3 [28]). An A∞-category A is a collection of objects Ob(A)

along with a Z-graded vector space HomA(a, b) for any pair a, b ∈ Ob(A) such that

• For all n > 0 and every set of objects a0, . . . , an ∈ Ob(A), there are maps

mA
n (a0, . . . , an) : HomA(an−1, an)⊗ · · · ⊗ HomA(a0, a1)→ HomA(a0, an)[2− n].

• These maps satisfy quadratic A∞-associativity relations,

∑
m,n

(−1)τnmA
d−m+1(fd, . . . , fm+n+1, mA

n (fm+n, . . . , fn+1), fn, . . . , f1) = 0,

where fi ∈ HomA(ai−1, ai) and τn = −n +∑
i |ai|.

To digest this, it is worth looking at the first few of the quadratic relations. The

first one gives mA
1 (mA

1 (f)) = 0, so we have chain complexes of objects of A with differ-

ential m1. The second relation gives more information about the notion of composition:
mA

2 (f1, mA
2 (f2, f3))−mA

2 (mA
2 (f1, f2), f3) = mA

1 (mA
3 (f1, f2, f3)) + mA

3 (mA
1 (f1), f2, f3)

+mA
3 (f1, mA

1 (f2), f3) + mA
3 (f1, f2, mA

1 (f3)).
This relation shows that we can think of mA

2 as composition, up to some factor involving

mA
3 . In other words, the way associativity fails is measured by mA

3 .
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As for dg-categories, one can construct the homotopy category H0A to an A∞-category

A. The objects are those of A and homomorphisms are the 0-th cohomology of the

morphism complexes of A with respect to mA
1 .

If mi vanishes for i > 2, A∞-categories are dg-categories, possibly without units.

Therefore the category of dg-categories embeds into the category of A∞-categories.

An A∞-functor between two A∞-categories is a map on objects and homomorphisms in

the usual way which also satisfies some additional conditions with respect to the mA
i . In

particular, we call an A∞-functor f : A → B a quasi-equivalence if the induced functor on

the homotopy categories H0A → H0B is an equivalence of categories in the usual sense.

Given any dg or A∞-category C, one would like to find some triangular category

containing it. One way to do this is by introducing twisted complexes over C, denoted by

Tw C.

Definition 2.2.18 (Definition 2.6 in [28]). Let Z C be the category whose objects are

formal pairs (a, n) with a ∈ Ob(C) and n ∈ Z. We define

HomZ C((a, n), (b, m)) = HomC(a, b)[m− n].

The A∞-structure is the same as on C.

This category has a natural notion of shift, sending an object ⊕i ai[i] to ⊕i ai[i+1]. We

note that C is the full subcategory of objects in the form a[0]. To make this a triangulated

category, we need to add formal mapping cones.

Definition 2.2.19 (Definition 2.7 in [28]). Let us take the category Tw C so that Ob(Tw C)

is made up of pairs (A, δ) for A = (a1, . . . , an) ∈ Ob(Z C)n and δ is a strictly upper

triangular matrix of morphisms. Furthermore, we require the Maurer-Cartan equation to

hold, which states
∞∑
i=1

miZ C(δ, . . . , δ) = 0.

Here the extension of mZ C
i to matrices is straightforward. Since δ is triangular, the sum in
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the Maurer-Cartan equation is finite. The space of morphisms between (A, δ), (B, τ) is⊕
i,j HomZ C(ai, bj) equipped with a twisted set of composition maps. Taking (Ai, δi) for

i = 1, 2, . . . , n and fi ∈ HomTw C((Ai−1, δi−1), (Ai, δi)), then

mTw C
d (fd, . . . , f1) =

∑
j0,...,jd≥0

mZ C
i (δd, . . . , δd︸ ︷︷ ︸

jd

, ad, δd−1, . . . , δd−1︸ ︷︷ ︸
jd−1

, ad−1, . . . ).

An A∞-category is called triangulated if the natural embedding C ↪→ Tw C is a quasi-

equivalence of A∞-categories.

At this point, one might hope that the groundwork we set out is enough to formulate

Homological Mirror Symmetry, saying that Tw Fuk(X) should be equivalent to some

A∞-category with homotopy category Db(coh X). This is not quite true, as Tw Fuk(X)

is not necessarily Karoubi complete. This is a property of triangulated categories we will

not elaborate on here, but we note that every triangulated A∞-category C has a Karoubi

completion. That is, a functor into another A∞-category S such that the induced functor

on homotopy categories is full, faithful and gives a Karoubi complete structure on H0S.

Seidel in [48] (see also Proposition 2.10 in [28]) proves that any pair of Karoubi

completions of a given A∞-category C are quasi-equivalent. There is an explicit construction

due to Seidel, and we denote this Karoubi completion of C by ΠC.

The last thing we need to discuss before talking about Homological Mirror Symmetry

are dg-enhancements of the category Db(coh X).

Definition 2.2.20 (Definition 2.11 in [28]). A dg- (respectively A∞-) enhancement of a

triangulated category T is a dg- (respectively A∞-) category C whose homotopy category

is equivalent to T .

With Example 2.2.5, we have a good candidate for a category that we would like to

find a dg-enhancement for.

Example 2.2.21. Let X be a smooth projective variety over a field C. We revisit here

the construction of Db(coh X) in light of the new kinds of categories we have introduced.
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Recall the category of quasi-coherent sheaves on X, QCoh(X). One takes the category of

complexes over it, K(QCoh(X)). This is naturally a dg-category, with homomorphisms

being Homl((A•, dA), (B•, dB)) = ∏
i HomQCoh(X)(Ai, Bl+i) and differential df = dBf +

(−1)lfdA. A complex I• is said to be h-injective if for every complex J• isomorphic to

0 in D(QCoh(X)), we have that HomK(QCoh(X))(J•, I•) is quasi-isomorphic to 0. The

full subcategory I(X) of h-injective complexes of quasi-coherent sheaves has homotopy

category equivalent to the derived category of quasi-coherent sheaves, D(QCoh(X)).

Then Db(coh X), was introduced as a full subcategory of D(QCoh(X)) made up of

bounded complexes whose cohomological sheaves are coherent. Thus, we have a full

subcategory of D(QCoh(X)) equivalent to Db(coh X). I(X) has, up to equivalence in the

homotopy category, the same objects as D(QCoh(X)), so we can define Db
dg(coh(X)) to

be the full subcategory of I(X) made up of objects equivalent to objects in Db(coh X) ⊆

D(QCoh(X)).

Db
dg(coh(X)) has homotopy category equivalent to Db(coh X), and hence is a dg-

enhancement of Db(coh X).

In Homological Mirror Symmetry, the Fukaya category is the counterpart to the derived

category of coherent sheaves defined in § 2.2.1. In this thesis, we focus on the complex

algebraic side of mirror symmetry, specifically relationships between derived categories.

As such, the symplectic side (which studies the Fukaya category) lies outside the scope of

this thesis. Hence we will not properly define what the Fukaya category of a symplectic

manifold is, but we will note that it is an A∞-category whose objects are Lagrangian

submanifolds and whose morphisms are Floer chain groups. A good introduction to Fukaya

categories can be found in [1].

2.2.5 Factorisation categories

In the following, we will introduce Landau-Ginzburg models (or LG models for short) and

categories of factorisations. LG models naturally appear in mirror symmetry as proposed

mirrors to Fano varieties. They give an effective way to keep track of data and in this
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thesis give the level of abstraction necessary to compare derived categories of different

mirror constructions. To do the latter, we will pass from the derived category of coherent

sheaves to categories associated to factorisations. The introduction here is based on work

by Hirano, Ballard-Favero-Katzarkov and Favero-Kelly [2, 31, 19].

Let X be a separated scheme of finite type over an algebraically-closed field k of

characteristic zero. Let G be an affine algebraic group over k acting on X. Denote by

m : G×G→ G the group action, by σ : G×X → X the G-action and by π : G×X → X

the projection onto X.

Definition 2.2.22. A quasi-coherent (resp. coherent) G-equivariant sheaf is a pair (F , θ)

of a quasi-coherent (resp. coherent) sheaf F and an isomorphism θ : π∗F ≃−→ σ∗F such

that

((1G × σ) ◦ (τ × 1X))∗θ ◦ (1G × π)∗θ = (m× 1X)∗θ,

where τ : G × G × X → G × G × X switches the two factors of G, s : X → G × X is

induced by the identity and

s∗θ = 1F .

A G-invariant morphism φ : (F1, θ1) → (F2, θ2) of equivariant sheaves is a morphism of

sheaves φ : F1 → F2 which commutes with the θi, i.e. σ∗φ ◦ θ1 = θ2 ◦ π∗φ.

We denote by QcohG(X) (resp. cohG(X)) the category of quasi-coherent (resp. coher-

ent) G-equivariant sheaves on X whose morphisms are G-invariant morphisms.

Let k be an algebraically closed field of characteristic zero. In practice, we work over

C in this thesis. Let X be a smooth variety over k and G an affine algebraic group

acting on it. Let w be a G-invariant section of an invertible G-equivariant sheaf, L, i.e.

w ∈ Γ(X,L)G.

Definition 2.2.23. We call the data (X, G, w,L) a gauged Landau-Ginzburg model. If the

choice of L is clear, we abbreviate the notation to (X, G, w).
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Definition 2.2.24. A factorisation is the data E = (E−1, E0, ϕE
−1, ϕE

0 ) where E−1, E0 are

G-equivariant quasi-coherent sheaves and

E−1
ϕE

0−→ E0
ϕE

−1−−→ E−1 ⊗OX
L

are morphisms such that

ϕE
−1 ◦ ϕE

0 = w,

(ϕE
0 ⊗ L) ◦ ϕE

−1 = w.

A morphism between two factorisations of even degree f : E → F [2k] is a pair f = (f0, f1)

defined by

Hom2k
Fact(X,G,W )(E ,F) := HomQcohG X(E−1,F−1,⊗OX

Lk)⊕ HomQcohG X(E0,F0 ⊗OX
Lk)

and, similarly, a morphism of odd degree f : E → F [2k + 1] is a pair f = (f0, f1) defined

by

Hom2k+1
Fact(X,G,W )(E ,F) := HomQcohG X(E0,F−1,⊗OX

Lk+1)⊕HomQcohG X(E−1,F0⊗OX
Lk+1).

These Hom sets can be equipped with a differential, yielding a dg-category Fact(X, G, w).

Restricting to factorisations with only coherent components gives a full dg-subcategory

fact(X, G, w). Another subcategory of Fact(X, G, w) we consider is the category with the

same objects as Fact(X, G, w) but where the morphisms are restricted to closed degree zero

morphisms. This category, denoted by Z0Fact(X, G, w), is abelian and we can therefore

form complexes of objects in Z0Fact(X, G, w). Consider such a complex

· · · → Eb fb

−→ Eb+1 fb+1
−−→ . . .
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We consider a special factorisation T ∈ Fact(X, G, w) given by the data:

T−1 :=
⊕
i=2k
E i−1 ⊗OX

L−k ⊕
⊕

i=2k−1
E i0 ⊗OX

L−k,

T′ :=
⊕
i=2k
E i0 ⊗OX

L−k ⊕
⊕

i=2k+1
E i−1 ⊗OX

L−k,

ϕT
0 :=

⊕
i=2k

f i0 ⊗ L−k ⊕
⊕

i=2k−1
f i−1 ⊗ L−k,

ϕT
−1 :=

⊕
i=2k

f i−1 ⊗ L−k ⊕
⊕

i=2k−1
f i0 ⊗ L−k.

This factorisation T is called the totalisation of the complex. Let Acyc(X, G, w) be the

full subcategory of objects of Fact(X, G, w) consisting of totalisations of bounded exact

complexes of Z0Fact(X, G, w). Also, let acyc(X, G, w) := Acyc(X, G, w)∩ fact(X, G, w).

Definition 2.2.25. The absolute derived category Dabs[Fact(X, G, w)] of [Fact(X, G, w])]

is the Verdier quotient of [Fact(X, G, w)] by [Acyc(X, G, w)].

For our purposes, we focus on objects which are coherent sheaves. As such, we introduce

the following, abbreviated version of this notation.

Definition 2.2.26. The absolute derived category Dabs[X, G, w] of [fact(X, G, w)] is the

idempotent completion of the Verdier quotient of [fact(X, G, w)] by [acyc(X, G, w)].

Note that this is the full subcategory of Dabs[Fact(X, G, w)] split-generated by objects in

fact(X, G, w).

Remark 2.2.27. As noted by the authors in [19], the category Dabs[X, G, w] can be thought

of as the derived category of the Landau-Ginzburg model (X, G, w). It is triangulated

with shift functor

E [1] := (E0, E−1 ⊗ L, ϕE
−1, ϕE

0 ⊗ L).

In particular, the double shift corresponds to tensoring with L, [2] = −⊗ L.
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2.2.6 Homological Mirror Symmetry

Now that we know the types of categories involved, we can finally state Homological

Mirror Symmetry. Mirror symmetry in general states that to every Calabi-Yau manifold

X with complex structure and symplectic structure, there is a dual manifold X∨ so that

the properties of X associated to the complex structure (i.e. periods, bounded derived

category of coherent sheaves, etc.) reproduce properties of X∨ associated to its symplectic

structure (e.g. counts of pseudo-holomorphic curves and disks) [28]. Homological Mirror

Symmetry (HMS) takes these observations and puts them into a more categorical context,

with important early works by Kontsevich [33], de la Ossa, Katz and Candelas [14] and

Batyrev-Borisov [6, 7]. The name of HMS is due to the observation that for dual Calabi-Yau

manifolds X, X∨ of dimension n, we get a flip in the Hodge diamond, i.e.

dim Hp(X, Ωq) = dim Hn−p(X∨, Ωq).

The two sides of HMS are known as the A-side (the symplectic structure, best ap-

proached by symplectic geometry) and the B-side (the complex structure, best approached

by algebraic geometry). We will focus on the B-side in this thesis. In HMS, the A-side

is concerned with Lagrangian submanifolds whereas the B-side works with complexes of

coherent sheaves on X. The equivalence between these two sides can be interpreted as

an equivalence between the bounded derived category of coherent sheaves on X and the

Fukaya category of X∨. In other words, the HMS conjecture (Kontsevich, [33]) is that for

a mirror pair of Calabi-Yau manifolds X, X∨, we have

Fuk(X) ∼= Db(coh X∨) and Fuk(X∨) ∼= Db(coh X).

Since Kontsevich stated the HMS conjecture, more work has been done on the subject

and we would like to state what HMS means for Calabi-Yau manifolds using the categories

introduced earlier, making the notion of being a mirror more precise.
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Definition 2.2.28 (Definition 2.12 in [28]). Let X and X∨ be a pair of Calabi-Yau

varieties. If there is a quasi-equivalence of A∞-categories

Π Tw Fuk(X) ∼= Db
dg(coh(X∨))

and vice versa, then we say that X and X∨ are homologically mirror to one another.

The Homological Mirror Symmetry conjecture then states that for a given Calabi-Yau

variety X, there is a homologically mirror Calabi-Yau variety X∨.

2.2.7 Categorical resolutions

In this section we are going to explore the concept of categorical resolutions, as introduced

by Kuznetsov [34]. Our exposition will mainly follow [34, 19, 11].

A strong motivation behind introducing categorical resolutions as below lies in the

Minimal Model Program (MMP). The goal of the MMP is to classify algebraic varieties

up to birational transformations. Starting with a complex algebraic variety, the goal of

the MMP is to find the “simplest” possible birationally equivalent variety. Often, this

requires the study of varieties with terminal singularities. In [11], the authors provide

evidence that a generalised flip from X to X+ has the categorical meaning of breaking off

semiorthogonal summands from Db(coh X). As such, a more modern point of view on the

MMP interprets it as a process that minimises the derived category of coherent sheaves

in a given birational class of an algebraic variety X. Using this approach to the MMP,

searching for a minimal model keeps the triangulated categories well-behaved, using the

notion of a minimal categorical resolution of singularities.

Definition 2.2.29. Let Y be an algebraic variety. An object F ∈ D(Y ) in the derived

category of coherent sheaves on Y is said to be a perfect complex if it is locally quasi-

isomorphic to a bounded complex of locally free sheaves of finite rank. The full subcategory

of perfect objects is denoted by Dperf (Y ) or by Perf(Y ).
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Remark 2.2.30. Morally, we think of perfect complexes as being the smooth parts of our

derived category. It is the complexes which are not perfect which we can think of as being

the categorical equivalent of singularities.

Let Y be a singular variety with a resolution of singularities π : Ỹ → Y . The derived

categories of coherent sheaves on Ỹ and Y can then be related by the derived pushforward

and derived pullback functors:

π∗ : Db(coh Ỹ )→ Db(coh Y ), and π∗ : Dperf (Y )→ Db(coh Ỹ ).

The functors π∗, π∗ are mutually adjoint (π∗ being the left adjoint to π∗). Moreover, if the

singularities of Y are rational, then the composition π∗ ◦ π∗ is isomorphic to the identity

functor. If furthermore π is a crepant resolution (which means that the relative canonical

class is trivial), then π∗ is isomorphic to the right adjoint functor of π∗.

This structure is what motivates Definition 2.2.33 below. To give a good definition

of categorical resolution we cannot rely on underlying varieties and their resolution of

singularities in the more conventional sense. Instead, we need to find a category that takes

the place of Db(coh Ỹ ), and therefore a notion of “smooth” category. In [34], the definition

of a regular triangulated category is given, but that definition was always meant to be

provisional. In [19], the authors give a different notion which we define here.

Definition 2.2.31. A dg-category A is called homologically smooth if A is a compact

object of D(A⊗Aop −Mod), i.e. A ∈ Dperf (A⊗Aop).

Apart from homological smoothness, we also require the dg-category to be proper.

Recall the following terminology from [10]. Let A be a triangulated category, and E an

object of A. We denote by ⟨E⟩1 the full subcategory of A consisting of objects of A

isomorphic to direct summands of finite direct sums of shifts of E

⊕
i=1,...,r

E[ni].
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For n > 1, we denote by ⟨E⟩n the full subcategory of A isomorphic to direct summands of

objects C which fit into a distinguished triangle

A→ C → B → A[1]

where A ∈ Ob(⟨E⟩1 and B ∈ Ob(⟨E⟩n−1). We call E a strong generator of A if A = ⟨E⟩n

for some n ≥ 1.

Definition 2.2.32. A dg-category A is called proper if there exists a strong generator E

of the homotopy category of A such that

⊕
r

Hr(HomA(E, E))

is finite dimensional.

Let Z be a variety with a G-action and D be an admissible subcategory of Db(coh[Z/G]).

Analogously to Definition 2.2.29, we denote by Dperf the full subcategory of D consisting

of G-equivariant perfect complexes on Z.

Definition 2.2.33. Let D̃ be the homotopy category of a homologically smooth and

proper pretriangulated dg-category. A pair of exact functors

F : D̃ → D

G : Dperf → D̃

is a categorical resolution of singularities if G is left adjoint to F and the natural morphism

of functors IdDperf → FG is an isomorphism. We say that the categorical resolution of

singularities is crepant if G is also right adjoint to F .

Example 2.2.34. For a resolution of singularities π : Ỹ → Y of an algebraic variety

with rational singularities Y , the category D̃ = Db(coh Ỹ ) with the pushforward functor

π∗ : Db(coh Ỹ )→ Db(coh Y ) and the pullback functor π∗ : Dperf (Y )→ Db(coh Ỹ ) form a
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categorical resolution of Db(coh Y ). This fits the situation we gave above that motivates

the definition of categorical resolutions. We note that the pullback on the whole derived

category Db(coh Y ) takes values in D−(Ỹ ) (which is the unbounded from below derived

category). Because of that, we restrict the functor G in Definition 2.2.33 to be defined

only on the subcategory Dperf .

Remark 2.2.35. This definition of categorical resolution extends the notion of noncom-

mutative resolution of singularities introduced by van den Bergh [52, 8]. Indeed, if Y

is a singular projective algebraic variety and A is a sheaf of noncommutative algebras

on Y giving a noncommutative resolution of singularities of Y , then one can show that

D̃ = Db(cohA −mod) is a categorical resolution of Db(coh Y ). If the noncommutative

resolution of singularities was crepant, then so is this categorical resolution.

Remark 2.2.36. In [19], the authors provide an interpretation of crepant categorical

resolutions in terms of Landau-Ginzburg models. Such resolutions get a geometric inter-

pretation as partial compactifications of Landau-Ginzburg models. More details of this

can be found in §4.1.

2.3 Some Mirror Constructions

In §3 of this thesis, we relate a construction by Libgober and Teitelbaum to the more

well-studied mirror construction by Batyrev and Borisov. In §3 we then generalise the

construction to complete intersections of two degree n polynomials in P2n−1, inspired by a

construction of Rossi’s. In this section, we introduce the relevant constructions for the

later discussions.

2.3.1 The Batyrev-Borisov construction

Batyrev’s original construction gives a way to find a mirror to a section of the anticanonical

divisor of a toric variety, and was later generalised in [7] to complete intersections in
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toric varieties such that the divisors corresponding to the hypersurfaces sum up to the

anticanonical divisor. We start by introducing the main tool used in this generalisation,

nef partitions.

Definition 2.3.1. Let ∆ ⊆MR be a reflexive lattice polytope. A nef partition of length r

of ∆ is a Minkowski sum decomposition ∆ = ∆1 + · · ·+ ∆r where ∆1, . . . , ∆r are lattice

polytopes with 0 ∈ ∆i.

Consider a reflexive polytope ∆ ⊆ MR with nef partition ∆ = ∆1 + · · ·+ ∆r. Then,

for 1 ≤ j ≤ r, we define

∇j := {n ∈ NR | ⟨m, n⟩ ≥ −δij for all m ∈ ∆i, for 1 ≤ i ≤ r}.

We note that these polytopes are all lattice polytopes, and define the polytope ∇ as their

Minkowski sum ∇ := ∇1 + · · ·+∇r. We call ∇1, . . . ,∇r the dual nef partition to ∆1, . . . , ∆r.

Note that by Theorem 4.10 in [7], ∇∨ = Conv {∆1, . . . , ∆r}.

To understand the statement of Batyrev-Borisov duality, we note that a lattice polytope

∆ corresponds to a d-dimensional Gorenstein Fano toric variety X∆. Each of the polytopes

∆i corresponds to a divisor Di on X∆. The nef partition ∆ = ∆1 + · · ·+ ∆r decomposes

the anticanonical sheaf O(−KX∆) as tensor product ⊗r
i=1OX∆(Di). Now the lattice points

inside the ∆i correspond to global sections of these line bundles. Taking the zero-sets of

such sections, we can associate to each polytope a family of hypersurfaces. By intersecting

these, a nef partition corresponds to a family of (d− r)-dimensional Calabi-Yau complete

intersections in X∆. Similarly, the dual nef partition ∇ = ∇1 + · · ·+∇r gives a family of

(d− r)-dimensional Calabi-Yau complete intersections in X∇.

Remark 2.3.2. The generic complete intersection in the family associated to the dual nef

partition ∇1, . . . ,∇r may be singular.

In [5], Batyrev formulates the original construction in a way that fixes this prob-

lem. In this case, one uses a maximal projective crepant partial desingularization (MPCP-

desingularization), which reduces to a combinatorial manipulation of the normal fan to
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∇.

For every maximal cone of the normal fan, we choose a regular triangulation of it.

Therefore, all maximal cones should contain exactly the minimal number of rays dictated

by the dimension, since a triangulation uses simplices. Doing this for all maximal cones

gives exactly a maximal projective triangulation. When speaking of X∇ we will thus think

of a MPCP-desingularization of the variety associated to the normal fan of ∇, obtained in

this way.

Batyrev and Borisov prove the following result, showing that their construction produces

complete mirror duality for (1, q)-Hodge numbers.

Theorem 2.3.3 (Theorem 9.6 in [7]). Let V be a Calabi-Yau complete intersection of r

hypersurfaces in Pd corresponding to a nef-partition ∆1, . . . , ∆r with d− r ≥ 3. Suppose

that Ŵ is a MPCP-desingularization of the dual Calabi-Yau complete intersection W ⊆ X∇.

Then

hq(Ω1
Ŵ

) = hd−r−q(Ω1
V ) for 0 ≤ q ≤ d− r.

2.3.2 A construction by Libgober and Teitelbaum

We now recall the family WLT,λ that Libgober and Teitelbaum give as mirror to the generic

complete intersection of two cubics in P5. To start, define Vλ ⊆ P5 to be the vanishing set

of the following two polynomials:

Q1,λ = x3
0 + x3

1 + x3
2 − 3λx3x4x5, Q2,λ = x3

3 + x3
4 + x3

5 − 3λx0x1x2. (2.12)

For generic λ, this gives a smooth complete intersection in P5 which is a Calabi-Yau

threefold.

Let ζn denote a primitive n-th root of unity. Let α, β, δ, ϵ ∈ Z (mod 3) and µ ∈ Z

(mod 9) with 3µ = α + β = δ + ϵ. Define the diagonal matrix

gα,β,δ,ϵ,µ := diag
(
ζα3 ζµ9 , ζβ3 ζµ9 , ζµ9 , ζ−δ

3 ζ−µ
9 , ζ−ϵ

3 ζ−µ
9 , ζ−µ

9

)
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and let G81 ⊂ PGL(5,C) denote the order 81 group generated by the gα,β,δ,ϵ,µ. Note that

G81 acts on P5 by restricting the natural action of PGL(5,C) on P5. The polynomials

Q1,λ, Q2,λ are invariant with respect to the action of G81, hence G81 acts on Vλ.

Note that G81 is of isomorphism type (Z /3Z)2 × (Z /9Z) and can be generated by

(ζ3, ζ−1
3 , 1, 1, 1, 1), (1, 1, 1, ζ−1

3 , ζ3, 1) and (ζ9, ζ4
9 , ζ9, ζ−1

9 , ζ−4
9 , ζ−1

9 ).

Let VLT,λ be the quotient of Vλ by the action of G81 and let WLT,λ be a minimal

resolution of singularities of VLT,λ which is a Calabi-Yau manifold.

2.3.3 f-duality

In this section we discuss the notion of f -duality, as introduced by Rossi in [44] and [45]. The

motivation behind f -duality is to extend the polar duality of Fano toric varieties, creating

a more versatile method of producing mirror partners to hypersurfaces and complete

intersections in toric varieties. In particular, it is a direct generalisation of Batyrev-Borisov

duality and relates to many other mirror constructions, as briefly described in §4 of [44].

We will mainly focus on complete intersections in toric varieties, referring the reader to

Rossi’s papers for a more complete treatment of the subject. However, to get a better grasp

on the case of complete intersections, we will start with the general notion of f -duality

first.

Definition 2.3.4. A framed toric variety(ftv) is a pair (X, D) where:

• X is a complete toric variety, with dim(X) = n and rk(Pic(X)) = r.

• Let Σ be a fan for X. Denote by D1, . . . , Dr the m = n + r divisors associated to

the rays ρ ∈ Σ(1). Then D = ∑
ρ∈Σ(1) aρDρ = ∑m

i=1 aiDi ∈ DivTN
(X), is a strictly

effective, torus invariant Weil divisor, called a framing of X.

A morphism of framed toric varieties f : (X, D) → (X ′, D′) is a morphism of underlying

toric varieties f : X → X ′ inducing a well defined pull-back morphism on torus invariant

Weil divisors f ∗ : DivTN
(X ′) → DivTN

(X) such that f ∗D′ = D. If additionally f is

58



an isomorphism of toric varieties, then it gives an isomorphism of framed toric varieties

f : (X, D) ∼= (X ′, D′). The category ftv of framed toric varieties is well defined.

Since all torus invariant divisors can be written as Da = ∑
ρ∈Σ(1) aρDρ for some vector

a = aρ ∈ Z|Σ(1)|, giving a toric variety X and a vector a is sufficient to determine an

associated ftv. Thus we will write

(X, a) :=
X(Σ), Da =

∑
ρ∈Σ(1)

aρDρ

 .

Given such a ftv, we consider the polytope associated to Da, ∆a = ∆Da . Since the

divisor Da is strictly effective, we have that 0 ∈ Int(∆a), and hence 0 is also an interior

point of k∆a for any positive integer k. We define the integer part of a polytope ∆ ⊆MR

as

[∆] := Conv ({m ∈M ∩∆}) .

Definition 2.3.5. The framing polytope (f-polytope) of a ftv (X, a) is the lattice polytope

∆(X, a) ⊆MR defined by

∆(X, a) := [k0∆a], k0 := min{k ∈ N | 0 ∈ Int[k∆a]}.

An important case of this is a = 1. Then Da = −KX . If ∆1 is reflexive, we get

∆(X, a) = ∆a = ∆1 = ∆−KX
.

We associate to the lattice polytope ∆(X, a) the complete toric variety Xa := XΣa ,

where Σa is the face fan over the polytope ∆(X, a). Define Λa ∈Mn×m′(Z) to be the fan

matrix of Xa (see Definition 2.1.14). Given a fan matrix V ∈Mn×m(Z) of X, we define

Ma := V T · Λa ∈Mm×m′(Z).

Furthermore, we define b = (bj)m
′

j=1 to be the minimum strictly positive column vector
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such that

MT
a + B ≥ 0, where B := (b, . . . , b︸ ︷︷ ︸

m times

) ∈Mm′×m(Z>0).

Definition 2.3.6. Define D′
b := ∑m′

j=1 bjD
′
j , where D′

i are the torus invariant prime divisors

generating DivTM
(Xa). Then (Xa, b) := (Xa, D′

b) is a ftv, called the framed dual (f -dual)

of (X, a).

Thinking back to the case of a = 1, f -duality reduces to Batyrev’s duality between

Fano toric varieties.

Remark 2.3.7. We can apply f -duality to (Xa, b), giving rise to a ftv (Xb, c) := (Xb, D′′
c).

The double application of f -duality is called f -process. The question how a ftv is related to

the result of an f -process is an interesting one considered in [44]. A notion of calibrated f -

processes is defined. Roughly speaking, an f -process is calibrated if one can take simplicial

refinements of the two fans at either end of the process, and find Q-factorial resolutions

that are isomorphic as toric varieties. Furthermore, one requires the push-forwards of the

framing divisors to be equal under the isomorphism.

In particular, calibrated f -processes are key ingredients in introducing an involutive

duality between ftvs, extending the Batyrev duality. In the remainder of the chapter, we

will focus on how to use f -duality.

To apply f -duality to a hypersurface Y in a complete toric variety X, we make two

assumptions. So assume that:

A. There is a divisor Da ∈ DivTN
(X) such that Y is a generic element in the linear

system |Da| := ι−1([Da]), with ι the morphism in (2.6).

B. (X, Da) is a ftv for which the f -process is calibrated.

Definition 2.3.8. A generic element Y ∨ ∈ |Db| := ι−1([Db]) is called a f -mirror partner

of Y ∈ |Da|.
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In his paper, Rossi exhibits an explicit way to describe the defining polynomials of Y

and Y ∨ in the Cox rings of X,Xa respectively. While we omit this, we refer the reader to

§4 in [44].

Remark 2.3.9. We notice that the divisor Da satisfying the first condition is not necessarily

unique. If there are two distinct divisors Da1 ∼ Da2 with Y ∈ |Da1| = |Da2| and (X, Dai
)

being a ftv for both, then f -duality may assign distinct mirror partners Y ∨
i who may

not even be isomorphic. This problem does not occur in the Calabi-Yau/Fano case, as

there is a unique choice of strictly effective divisor in the anticanonical class of X, which

is D1 ∈ [−KX ]. In the general case however, Rossi introduces the notion of a Mirror

web of toric hypersurfaces, a notion generalising mirror symmetry. The mirror web will

connect hypersurfaces by calibrated f -processes and contains different sub-webs depending

on whether the f -process yielded a topological or Hodge mirror pair. For Calabi-Yau

hypersurfaces all these sub-webs will be equal to the complete web.

f-duality for complete intersections in Toric Varieties.

We will now explain how to extend f -duality to families of complete intersections in a

fixed variety X, generalising the Batyrev-Borisov duality, following §6 of [44].

Definition 2.3.10. Let (X, Da) be a ftv and V be a fan matrix of X, where m = n + r.

A partition of the framing Da is the datum of a partition

∃l ∈ Z≥0 : I1 ∪ · · · ∪ Il = {1, . . . , m}, Ii ̸= ∅ for all i such that if i ̸= j, Ii ∩ Ij = ∅

and divisors Da1 , . . . , Dal
such that

Dak
:=

∑
i∈Ik

aiDi for k = 1, . . . , l.

Since a = ∑l
k=1 ak, we have Da = ∑l

k=1 Dak
. The ftv (X, Da) with framing partition

a = ∑l
k=1 ak is called a partitioned ftv and we denote it by (X, a = ∑l

k=1 ak). Given such a
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partitioned ftv, we now describe an algorithm for the f -process on it. This will correspond

to a mirror construction for complete intersections.

1. Let ∆a and ∆a1 , . . . , ∆al
be the polytopes associated with divisors Da and Da1 , . . . , Dal

respectively. Then the intersection of all ∆ai
turns out to be the origin, and their

Minkowski sum is ∆a.

2. Define the polytope

∆̂a := Conv(∆a1 , . . . , ∆al
) ⊂MR.

We have 0 ∈ Int(∆̂a). We further have

l⋂
k=1

[k0∆ak
] = {0} and 0 ∈ Int(∆(X, a)),

noting that ∆(X, a) =
[∑l

k=1 k0∆ak

]
. Then 0 ∈ Int(∆̂(X, a)), defined as ∆̂(X, a) :=

[k0∆̂a].

3. Set X̂a to be the variety associated to the face fan Σ̂a of ∆̂(X, a), calling the fan

matrix Λ̂a ∈Mn×m̂(Z), with m̂ = |Σ̂a(1)|.

4. For k = 1, . . . , l, set mk := |Ik| and consider the matrix

M̂ak
:= (VIk

)T · Λ̂a ∈Mmk×m̂(Z).

Here, VIk
is the matrix obtained from V by only using the columns of V with index

corresponding to an element of Ik.

Further, set bk = (bjk)m̂j=1 to be the minimum non-negative column vector with

M̂ak

T + Bk ≥ 0, where Bk = (bk . . . bk︸ ︷︷ ︸
mk times

) ∈Mm̂×mk
(Z≥0).

Define b̂ := ∑l
k=1 bk. The group of torus invariant Weil divisors of X̂a is generated

by the divisors corresponding to the m̂ rays of Σ̂a, call them D̂1, . . . , D̂m̂. There
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is now a unique partition J1 ∪ · · · ∪ Jl = {1, . . . , m̂} induced by bk. This partition

gives a partitioned ftv, (X̂a, D̂b̂ = ∑l
k=1 D̂bk

), where D̂bk
:= ∑

j∈Jk
bjkD̂j.

Details regarding this algorithm are worked out in the paper [45].

Definition 2.3.11. Following the above algorithm produces the paritioned ftv (X̂a, b̂ =∑l
k=1 bk), called the partitioned f-dual of (X, a = ∑l

k=1 ak).

Applying these 4 steps again defines a partitioned f -process, analogously to the non-

partitioned version, resulting in a partitioned ftv (X̂b̂, ĉ := ∑l
k=1 ck). A partitioned

f -process is called calibrated under similar conditions as for the non-partitioned f -process.

This is basically the case if and only if the fan matrices on either end of the process are the

same, up to a permutation of columns and ck = ak for all k (see Proposition 6.3 in [44]).

Definition 2.3.12. Given the partitioned ftv (X, a = ∑l
k=1 ak), assume that the associated

partitioned f -process is calibrated. Consider the complete intersection subvariety

Y :=
l⋂

k=1
Yk ⊂ X with Yk ∈ |Dak

|.

The generic complete intersection subvariety

Y ∨ :=
l⋂

k=1
Y ∨
k ⊂ X̂a with Yk ∈ |D̂bk

|

is called a f -mirror partner of Y .

Remark 2.3.13. As in the non-partitioned case, Rossi describes a way to explicitly define

the polynomials of both Y and Y ∨ in the respective Cox rings of X and X̂a.

In the case of a = 1 on a toric Fano, partitions correspond to nef-partitions and

f -duality reduces to Batyrev-Borisov mirror symmetry between Calabi-Yau complete

intersections.

In the paper [45], Rossi computes (stringy) Hodge numbers for framed toric varieties,

working towards the topological mirror test for f -dual mirror families.
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CHAPTER 3

DERIVED EQUIVALENCES BETWEEN MIRROR
CONSTRUCTIONS VIA VGIT

In this chapter (which corresponds to the paper [36]), we will exhibit how variations of

geometric invariant theory (VGIT) can be used to establish equivalences between the

derived categories of coherent sheaves associated to complete intersections in toric varieties.

In particular, we will use VGIT to prove the following Theorem, which is the main result

of this chapter.

Recall the mirror constructions by Batyrev-Borisov and Libgober-Teitelbaum from

§2.3.1, 2.3.2.

Theorem 3.0.1 (=Theorem 1.0.1). Let λ ∈ C such that λ6 ̸= 0, 1. Consider the two

polynomials

p1,λ = x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8 − 3λx3x4x5x6x7x8,

p2,λ = x3
3x

3
9 + x3

4x
3
10 + x3

5x
3
11 − 3λx0x1x2x9x10x11.

Let Zλ = Z(p1,λ, p2,λ) ⊆ X∇ and VLT,λ = Z(Q1,λ, Q2,λ) ⊆ [P5 /G81]. Then

Db(cohVLT,λ) ≃ Db(cohZλ).
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3.1 Categories of singularities and some results on
the equivalence of derived categories.

In this section, we introduce the categories of singularities (as outlined in [41]) and their

equivalences to derived categories through VGIT, reviewing §4 of [18].

Let X be a variety and G an algebraic group acting on X (on the left).

Definition 3.1.1. Recall that an object of Db(coh[X/G]) is called perfect if it is locally

quasi-isomorphic to a bounded complex of vector bundles. We denote the full subcategory

of perfect objects by Perf([X/G]). The Verdier quotient of Db(coh[X/G]) by Perf([X/G])

is called the category of singularities and denoted by:

Dsg([X/G]) := Db(coh[X/G])/ Perf([X/G]).

By the following observation of Orlov’s, the category can be viewed as studying the

geometry of the singular locus.

Proposition 3.1.2 (Orlov, [41]). Assume that coh[X/G] has enough locally free sheaves.

Let i : U → X be a G-equivariant open immersion such that the singular locus of X is

contained in i(U). Then the restriction,

i∗ : Dsg([X/G])→ Dsg([U/G]),

is an equivalence of categories.

Next, consider a G-equivariant vector bundle E on X. Denote by Z the zero locus of a

G-invariant section s ∈ H0(X, E). Then ⟨−, s⟩ induces a global function on tot E∨. Let Y

be the zero-section of this pairing and consider the fibrewise dilation action on the torus

Gm (which for us in the following will be C∗). Then we have the following result.

Theorem 3.1.3 (Isik [32], Shipman [50], Hirano [30]). Suppose the Koszul complex on s
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is exact. Then there is an equivalence of categories

Dsg([Y/(G×Gm)]) ∼= Db(coh[Z/G]).

Combining the previous two results gives the following result.

Corollary 3.1.4 (Corollary 3.4 in [18]). Let V be an algebraic variety with a G × Gm

action. Suppose there is an open subset U ⊆ V such that U is G × Gm equivariantly

isomorphic to Y as above and that U contains the singular locus of X. Then

Dsg([V/(G×Gm)]) ∼= Db(coh[Z/G]).

We will now work on making these results applicable to the contents treated in this

thesis, adapting [18].

Consider an affine space X := An+t with coordinates xi, uj for 1 ≤ i ≤ n, 1 ≤ j ≤ t.

Let T denote the standard open torus Gn+t
m and consider a subgroup S ⊆ T , with S̃ the

connected component that contains the identity. We now study the possible GIT quotients

for the action of S̃ on X.

Recall from § 2.1.8 the notion of GKZ fans. We adjust the notation so that S above

corresponds to the group G from § 2.1.8, and the treatment here is a bit more general, so

we use A with torus Gm as opposed to C,C∗ considered before.

We will now explain how to construct varieties corresponding to the chambers of the

GKZ fan, and the goal of this setup is to apply Corollary 3.1.4 and VGIT to provide

equivalences between derived categories.

First, we will need to introduce some additional data.

Definition 3.1.5. Let G be a group acting on a space X and f a global function on X. f is

said to be semi-invariant with respect to a character χ if, for any g ∈ G, f(g ·x) = χ(g)f(x).

Remark 3.1.6. We note that a global function f is semi-invariant if and only if it is

a section of the equivariant line bundle OX(χ) on the global quotient stack [X/G], i.e.
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f ∈ Γ(X,OX(χ))G.

To apply Corollary 3.1.4, we will add a Gm-action which is S-invariant and Gm-semi-

invariant, acting with weight 0 on the xi and 1 on the uj. We refer to this action as

R-charge. Consider the action of S on the scheme SpecC[uj ]. It corresponds to a character

γj of S. Let f1, . . . , ft be a collection of S-semi-invariant functions in the xi with respect

to γ−1
j . Then define a function, called superpotential, by

w :=
t∑

j=1
ujfj.

The superpotential w is S-invariant and χ-semi-invariant with respect to the projection

character χ : S × Gm → Gm, hence w is homogeneous of degree 0 with respect to the

S-action and of degree 1 with respect to the R-charge. Let Z(w) ⊆ X be its zero-locus

and define Yp := Z(w) ∩ Up. Then we have the following result.

Theorem 3.1.7 (Herbst-Walcher, Theorem 4.5 in [18]). If S is quasi-Calabi-Yau, there is

an equivalence of categories

Dsg([Yp/S ×Gm]) ∼= Dsg([Yq/S ×Gm])

for all 1 ≤ p, q ≤ r.

We will use this result to show a useful equivalence of derived categories. We start

by explicitly describing the open sets Up corresponding to a chamber σp of the GKZ fan,

defined in § 2.1.8. For 1 ≤ p ≤ k we associate an irrelevant ideal Ip to σp by considering

the (regular) triangulation Tp that the chamber corresponds to. So, let

Ip :=
〈∏
i ̸∈I

xi
∏
j ̸∈J

uj

∣∣∣∣ ⋃
i∈I

νi(S) ∪
⋃
j∈J

νn+j(S) is the set of vertices of a simplex in Tp
〉

.

Then Up = X \ Z(Ip). Another ideal we will need is a subideal of Ip, given similarly to
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Ip by requiring J to be the full set {1, . . . , t}, i.e.,

J p :=
〈∏
i ̸∈I

xi

∣∣∣∣ ⋃
i∈I

νi(S) ∪
t⋃

j=1
νn+j(S) is the set of vertices of a simplex in Tp

〉
.

This ideal is therefore generated by those simplices whose sets of vertices contain all νn+j for

1 ≤ j ≤ t. Using this subideal, we get a new open set Vp := X \Z(J p) ⊆ Up. Since J p has

no uj in its generators, we can see it as ideal J x
p in C[x1, . . . , xn], giving an open subset of

An by V x
p := An \Z(J x

p). This set gives us a toric stack Xp := [V x
p /S]. Now suppose J p is

non-zero. Then the last two quantities defined are nonempty, and one can show [Vp/S] is a

vector bundle over Xp, with the inclusion of rings C[x1, . . . , xn]→ C[x1, . . . , xn, u1, . . . , ut]

restricting to a S-equivariant morphism

[Vp/S]→ [V x
p /S] = Xp.

This morphism gives the following proposition.

Proposition 3.1.8 (Proposition 4.6 in [18]). Suppose J p is non-zero. The morphism

[Vp/S]→ Xp realises [Vp/S] as the total space of a vector bundle

[Vp/S] ∼= tot
t⊕

j=1
O(γj).

Furthermore, the R-charge action of Gm is the dilation action along fibers. Finally, for each

j, the function fj gives a section of O(γ−1
j ) and the superpotential w = ∑

ujfj restricts to

the pairing with the section ⊕fj.

In particular, from this we can view the function ⊕fj as a section of Vp which defines,

for all p, a complete intersection Zp := Z(⊕fj) ⊆ Xp. Finally, we introduce the Jacobian

ideal ∂w, generated by the partial derivatives of w with respect to the coordinates xi, uj.

Proposition 3.1.9 (Proposition 4.7 in [18]). Suppose J p is non-zero. If Ip ⊆
√

∂w,J p,

then

Dsg([Yp/S ×Gm]) ∼= Db(coh Zp).
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This finally leads us to the following result, allowing us to establish equivalences of derived

categories of coherent sheaves.

Corollary 3.1.10. Assume S satisfies the quasi-Calabi-Yau condition and that J p and

J q are non-zero. If Ip ⊆
√

∂w,J p and Iq ⊆
√

∂w,J q for some 1 ≤ p, q ≤ r, then

Db(coh Zp) ∼= Db(coh Zq).

3.2 The Batyrev-Borisov mirror construction in P5

We now construct a Batyrev-Borisov mirror to a complete intersection of two cubics

in P5. We will do this by giving a nef partition of the anticanonical polytope of P5

which corresponds to a complete intersection. Then we will apply the Batyrev-Borisov

construction to that nef partition, obtaining a polytope ∇ corresponding to the mirror.

Fix the lattice M ∼= Z5 and its dual lattice N .

Remark 3.2.1. Due to the way we will derive certain fans in this section via methods

inspired by mirror symmetry (see § 3.3), our first fan lives in MR and not in the conventional

NR.

Define the rays ρ0, . . . , ρ11 in MR ⊕ R2 with primitive generators

uρ0 = (3, 0, 0,−1,−1, 0, 1), uρ6 = (2,−1,−1, 0, 0, 1, 0),

uρ1 = (0, 3, 0,−1,−1, 0, 1), uρ7 = (−1, 2,−1, 0, 0, 1, 0),

uρ2 = (0, 0, 3,−1,−1, 0, 1), uρ8 = (−1,−1, 2, 0, 0, 1, 0),

uρ3 = (−1,−1,−1, 3, 0, 1, 0), uρ9 = (0, 0, 0, 2,−1, 0, 1),

uρ4 = (−1,−1,−1, 0, 3, 1, 0), uρ10 = (0, 0, 0,−1, 2, 0, 1),

uρ5 = (−1,−1,−1, 0, 0, 1, 0), uρ11 = (0, 0, 0,−1,−1, 0, 1),

uτ1 = (0, 0, 0, 0, 0, 1, 0), uτ2 = (0, 0, 0, 0, 0, 0, 1).
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Notation 3.2.2. For 0 ≤ j ≤ 11, we denote by uρj
the lattice point in M obtained from

uρj
by projecting onto the first 5 coordinates. Denote by ρj the ray generated by uρj

in

MR.

Proposition 3.2.3. Consider the fan Σ∇ with rays ρ0, . . . , ρ11 defined above and maximal

cones listed in Table 3.1 (page 72). Then a general complete intersection in the toric variety

X∇ corresponding to the fan Σ∇ is a Batyrev-Borisov mirror to a complete intersection of

two cubics in P5.

Proof. The anticanonical sheaf of P5 is OP5(6), corresponding to the divisor class

−KP5 = T0 + · · ·+ T5 = (T0 + T1 + T2) + (T3 + T4 + T5).

The anticanonical polytope for P5 is given by

∆−KP5 = {m ∈MR|⟨m, uρ⟩ ≥ −1 for ρ ∈ ΣP5(1)} ⊆MR,

which is the convex hull of the six points

(5,−1,−1,−1,−1), (−1, 5,−1,−1,−1), (−1,−1, 5,−1,−1),

(−1,−1,−1, 5,−1), (−1,−1,−1,−1, 5), (−1,−1,−1,−1,−1).

A nef partition with respect to the origin of the polytope ∆−KP5 is given by the polytopes

∆1, ∆2 associated to the divisors T0 + T1 + T2 and T3 + T4 + T5, since the Minkowski sum

∆1 + ∆2 is equal to ∆−KP5 . These polytopes are

∆1 = Conv((2,−1,−1, 0, 0), (−1, 2,−1, 0, 0), (−1,−1, 2, 0, 0),

(−1,−1,−1, 3, 0), (−1,−1,−1, 0, 3), (−1,−1,−1, 0, 0)),

∆2 = Conv((0, 0, 0,−1, 2), (0, 0, 0, 2,−1), (0, 0, 3,−1,−1),

(0, 3, 0,−1,−1), (3, 0, 0,−1,−1), (0, 0, 0,−1,−1)).
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Next, we shall compute the dual nef partition, as defined in § 2.3.1. We have:

∇1 = Conv((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 0))

∇2 = Conv((0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 0, 0, 0), (−1,−1,−1,−1,−1)).

Their Minkowski sum ∇ ⊆ NR is then the convex hull of the 15 points

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 0, 1, 0),

(0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1), (−1,−1,−1,−1,−1),

(0,−1,−1,−1,−1), (−1, 0,−1,−1,−1), (−1,−1, 0,−1,−1).

A SAGE computation shows the normal fan of ∇, Σ′
∇ ⊆ MR, has rays ρ0, . . . , ρ11 from

Notation 3.2.2. The maximal-dimensional cones are the following 15 cones:

ρ0ρ1ρ2ρ9ρ10, ρ0ρ1ρ3ρ4ρ6ρ7ρ9ρ10, ρ0ρ2ρ3ρ4ρ6ρ8ρ9ρ10, ρ1ρ2ρ3ρ4ρ7ρ8ρ9ρ10,

ρ1ρ2ρ4ρ5ρ7ρ8ρ10ρ11, ρ0ρ1ρ2ρ9ρ11, ρ0ρ1ρ2ρ10ρ11, ρ3ρ4ρ5ρ6ρ7,

ρ0ρ1ρ3ρ5ρ6ρ7ρ9ρ11, ρ0ρ1ρ2ρ5ρ6ρ7ρ10ρ11, ρ3ρ4ρ5ρ6ρ8, ρ0ρ2ρ3ρ5ρ6ρ8ρ9ρ11,

ρ0ρ2ρ4ρ5ρ6ρ8ρ10ρ11, ρ3ρ4ρ5ρ7ρ8, ρ1ρ2ρ3ρ5ρ7ρ8ρ9ρ10ρ11.

We listed the cones by giving the rays generating them. For instance, ρ0ρ1ρ2ρ9ρ10 stands

for the cone Cone (ρ0, ρ1, ρ2, ρ9, ρ10). Note here that some of these maximal cones contain

more rays than the others. So, as described in Remark 2.3.2, we want a MPCP-resolution

of the variety associated to the above fan. To do this, we subdivide each of the maximal

cones which has more than 5 rays. This procedure involves choice, as each cone can be

subdivided in 24 ways (being a total of 249 possible choices!). However, all these choices

are related by GIT, so any choice gives us a mirror family, all of which are birational.

Following this procedure, the Table 3.1 (see below) gives the 42 maximal cones in the

fan corresponding to a MPCP-resolution of the variety associated to the fan Σ′
∇. Define

the fan Σ∇ to be the fan consisting of those 42 5-dimensional cones and all of their faces.

Determining the variety X∇ explicitly is not straightforward, but also not necessary for

71



our purposes, so long as we have the fan Σ∇.

ρ0ρ1ρ2ρ9ρ10 ρ0ρ1ρ6ρ9ρ10 ρ3ρ4ρ6ρ7ρ9 ρ1ρ6ρ7ρ9ρ10 ρ4ρ6ρ7ρ9ρ10 ρ0ρ2ρ6ρ9ρ10
ρ2ρ6ρ8ρ9ρ10 ρ3ρ4ρ6ρ8ρ9 ρ4ρ6ρ8ρ9ρ10 ρ1ρ2ρ7ρ9ρ10 ρ2ρ7ρ8ρ9ρ10 ρ3ρ4ρ7ρ8ρ10
ρ5ρ7ρ8ρ9ρ10 ρ1ρ2ρ7ρ10ρ11 ρ2ρ7ρ8ρ10ρ11 ρ4ρ5ρ7ρ8ρ10 ρ5ρ7ρ8ρ10ρ11 ρ0ρ1ρ2ρ9ρ11

ρ0ρ1ρ2ρ10ρ11 ρ3ρ4ρ5ρ6ρ7 ρ0ρ1ρ6ρ9ρ11 ρ1ρ6ρ7ρ9ρ11 ρ3ρ5ρ6ρ7ρ9 ρ5ρ6ρ7ρ9ρ11
ρ0ρ1ρ6ρ10ρ11 ρ1ρ6ρ7ρ10ρ11 ρ4ρ5ρ6ρ7ρ10 ρ5ρ6ρ7ρ10ρ11 ρ3ρ4ρ5ρ6ρ8 ρ0ρ2ρ6ρ9ρ11
ρ2ρ6ρ8ρ9ρ11 ρ3ρ5ρ6ρ8ρ9 ρ5ρ6ρ8ρ9ρ11 ρ0ρ2ρ6ρ10ρ11 ρ2ρ6ρ8ρ10ρ11 ρ4ρ5ρ6ρ8ρ10

ρ5ρ6ρ8ρ10ρ11 ρ3ρ4ρ5ρ7ρ8 ρ1ρ2ρ7ρ9ρ11 ρ2ρ7ρ8ρ9ρ11 ρ3ρ5ρ7ρ8ρ9 ρ5ρ7ρ8ρ9ρ11

Table 3.1: Maximal cones of X∇

For i = 0, . . . , 11, call D′
i the torus-invariant divisor on X∇ corresponding to the ray ρi

of Σ∆. Let D′
a = D′

0 + D′
1 + D′

2 + D′
9 + D′

10 + D′
11 and D′

b = D′
3 + D′

4 + D′
5 + D′

6 + D′
7 + D′

8.

Corollary 3.2.4. Let Σ∇,D′
a,D

′
b

be the fan with rays ρ0, . . . , ρ11, τ1, τ2, and cones over

those rays inherited from Σ∇. Then Σ∇,D′
a,D

′
b

is a fan corresponding to tot(OX∇(−D′
b)⊕

OX∇(−D′
a)).

Proof. Apply Proposition 2.1.50 twice to get the result (recalling that we can do this by

Proposition 2.1.51).

3.3 Torically expressing the Libgober-Teitelbaum con-
struction

Recall the Libgober-Teitelbaum mirror construction from §2.3.2. In the following, we aim

to give a toric description of VLT,λ. First we give a fan for the toric variety XLT := P5 /G81

and then employ methods of §7.3 of [15] to construct a vector bundle over XLT that has

the global section Q1,λ ⊕Q2,λ.

Proposition 3.3.1. Consider the 1-dimensional cones ρ0, . . . , ρ5 with corresponding prim-

itive generators
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uρ0 = (3, 0, 0,−1,−1), uρ1 = (0, 3, 0,−1,−1), uρ2 = (0, 0, 3,−1,−1),

uρ3 = (−1,−1,−1, 3, 0), uρ4 = (−1,−1,−1, 0, 3), uρ5 = (−1,−1,−1, 0, 0).

Consider the collection C of sets of the form

{ρi | i ∈ I, I ⊆ {0, . . . , 5}, |I| = 5}.

Let ΣLT ⊆MR be the fan consisting of maximal cones

{Cone(C)|C ∈ C}

and all their faces.

Then the toric stack associated to ΣLT is the stack corresponding to the Libgober-

Teitelbaum construction, XLT = [C6 \{0}/ (C∗×G81)], with C∗ acting by (λx0, . . . , λx5) ∼

(x0, . . . , x5) and G81 acting as described above in § 2.3.2.

Proof. We use the Cox construction described in §2.1.4. By Lemma 2.1.39, we obtain the

following system of equations characterising elements of G := GΣ

t3t4t5 = t3
0 (3.1)

t3t4t5 = t3
1 (3.2)

t3t4t5 = t3
2 (3.3)

t0t1t2 = t3
3 (3.4)

t0t1t2 = t3
4 (3.5)

First we note that we have a copy of C∗ in G, given by {t · (1, 1, 1, 1, 1, 1) | t ∈ C∗},

so to compute G we consider the group H of cosets of C∗. We will explicitly describe H

and subsequently use the direct product theorem to compute G. Consider an element
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(t0, . . . , t5) ∈ G. By an appropriate choice of coset representative of (t0, t1, t2, t3, t4, t5) ·C∗,

we may assume ∏5
i=0 ti = 1.

Using equations (3.1), (3.2) and (3.3), we have t3
0 = t3

1 = t3
2, and thus t0 = ζα3 t2, t1 = ζβ3 t2

for some α, β ∈ Z3. Using equations (3.1)− (3.5), we have that t3
3t

3
4t

3
5 = t3

0t
3
1t

3
2 = t6

3t
3
4 = t3

3t
6
4,

which implies

t3
5 = t3

3 = t3
4. (3.6)

Hence, similarly to above, we obtain t3 = ζ−δ
3 t5, t4 = ζ−ε

3 t5 for some δ, ε ∈ Z3.

By combining (3.3), (3.4) and (3.6) we obtain

t3
2t

3
5 = t0t1t2t3t4t5 = 1. (3.7)

Equation (3.7) implies t3
5 = (t−1

2 )3, thus t5 = ζν3 · t−1
2 for some ν ∈ Z3. Using t3 = ζ−δ

3 t5

and t4 = ζ−ε
3 t5 and equation (3.3), we obtain

t3
2 = t3t4t5 = t3

5ζ
−(δ+ε)
3 = t−3

2 ζ
−(δ+ε)
3 .

Hence t18
2 = 1. So we can write t2 = ζ l18 for some l ∈ Z18.

We now claim that t2 can be assumed to be a ninth root of unity and t5 to be its inverse,

i.e. t2 = ζµ9 , t5 = ζ−µ
9 for some µ ∈ Z9. Indeed, note that (ζ6, . . . , ζ6) ∈ (1, 1, 1, 1, 1, 1) ·C∗ ⊆

G, so we can scale an element (t0, . . . , t5) ∈ G by sixth roots of unity, leaving the product∏6
i=1 ti invariant. The claim follows by multiplication with an appropriate sixth root of

unity.

Expressing all the ti in terms of t2, the assumption 1 = ∏6
i=1 ti implies 1 = ζα+β−δ−ε

3 ,

or, equivalently,

α + β = δ + ε (mod 3).

Finally, using (3.3) gives ζ3µ
9 = ζ−δ+ε

3 ζ−3µ
9 and therefore ζ3µ

9 = ζδ+ε3 . Thus H, the group of

cosets of C∗, is isomorphic to G81, where G81 is the same group described in § 2.3.2. In

particular, all elements of G are of the form g · λ with g ∈ G81, λ ∈ (1, 1, 1, 1, 1, 1) · C∗
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and G81 ∩ {(1, 1, 1, 1, 1, 1) · λ|λ ∈ C∗} = {(1, 1, 1, 1, 1, 1)}. Hence, by the direct product

theorem, G ∼= C∗×G81.

The Cox fan of ΣLT can be described as follows. It has six rays eρ0 , . . . , eρ5 . It is

straightforward to see that the maximal cones are all 5-dimensional cones generated by

any 5 of the rays above. Therefore, we obtain UΣLT
= A6 \ {0}. Thus, the Cox stack

associated to ΣLT is

XLT = [UΣLT
/G] = [C6 \{0}/ (C∗×G81)],

with the prescribed action, as required.

Remark 3.3.2. We note that by Theorem 2.1.43 the coarse moduli space of the stack

XLT is XLT , since ΣLT is simplicial.

Starting with the fan ΣLT of XLT , we apply Proposition 2.1.50 twice to construct

a vector bundle. Let Di be the Weil divisor corresponding to the ray ρi in ΣLT . Let

Da = D0 + D1 + D2 and Db = D3 + D4 + D5.

Corollary 3.3.3. Denote by the rays ρ0, . . . , ρ5, τ1 and τ2 the rays1 generated by the

primitive generators:

uρ0 = (3, 0, 0,−1,−1, 0, 1), uρ1 = (0, 3, 0,−1,−1, 0, 1), uρ2 = (0, 0, 3,−1,−1, 0, 1),

uρ3 = (−1,−1,−1, 3, 0, 1, 0), uρ4 = (−1,−1,−1, 0, 3, 1, 0), uρ5 = (−1,−1,−1, 0, 0, 1, 0),

uτ1 = (0, 0, 0, 0, 0, 1, 0), uτ2 = (0, 0, 0, 0, 0, 0, 1).

Consider the collection S of sets of the form

{ρi | i ∈ I, I ⊆ {0, . . . , 5}, |I| = 5} ∪ {τ1, τ2}.
1These are the same as on page 69.
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Let ΣLT,Da,Db
be the fan in MR ⊕ R2 consisting of the maximal cones

{Cone(S)|S ∈ S}

and all their faces. Then:

(a) ΣLT,Da,Db
is a fan corresponding to tot(OXLT

(−Db)⊕OXLT
(−Da));

(b) The vector bundle OXLT
(Db)⊕OXLT

(Da) has the global section Q1,λ ⊕Q2,λ.

Proof. Applying Proposition 2.1.50 twice yields (a).

We now turn to (b) and show that Q1,λ ∈ Γ(XLT ,OXLT
(Db)) and Q2,λ ∈ Γ(XLT ,OXLT

(Da)).

We start by noting that on XLT we have div(x3
i ) = 3Di, so div(x3

i )− 3Di ≥ 0, i.e. x3
i ∈

Γ(XLT ,OXLT
(3Di)). Similarly, x0x1x2 ∈ Γ(XLT ,OXLT

(Da)) and x3x4x5 ∈ Γ(XLT ,OXLT
(Db)).

To show the linear equivalence of two divisors, it suffices to consider their difference

and show it is principal. We recall that div(χn) = ∑
ρ∈Σ(1)⟨uρ, n⟩Dρ, corresponding to the

map ι in the exact sequence (2.6). So, for instance 3D1 − 3D0 = div(x−3
0 x3

1) which is the

character associated to the lattice point (−1, 1, 0, 0, 0). Hence 3D1 − 3D0 = 0 in Cl(XLT ),

i.e. 3D0 ∼ 3D1. Similarly 3D1 ∼ 3D2 and 3D3 ∼ 3D4 ∼ 3D5. Using the lattice points

(−1, 0, 0, 0, 0) and (0, 0, 0,−1, 0) respectively, we also see that 3D0 ∼ Db and 3D3 ∼ Da.

Thus

OXLT
(3D0) ≃ OXLT

(3D1) ≃ OXLT
(3D2) ≃ OXLT

(Db)

and

OXLT
(3D3) ≃ OXLT

(3D4) ≃ OXLT
(3D5) ≃ OXLT

(Da),

implying Q2,λ ∈ Γ(XLT ,OXLT
(Da)) and Q1,λ ∈ Γ(XLT ,OXLT

(Db)), as required.

Intuition for constructing XLT torically

We now explain how we found an explicit description for the fan ΣLT . We start by

considering the standard fan ΣP5 ⊆ NR for P5 in the standard basis. It is the fan consisting
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of the cones generated by any proper subset of the six rays ν0, . . . , ν5 with primitive

generators

uν0 = (1, 0, 0, 0, 0), uν1 = (0, 1, 0, 0, 0), uν2 = (0, 0, 1, 0, 0),

uν3 = (0, 0, 0, 1, 0), uν4 = (0, 0, 0, 0, 1), uν5 = (−1,−1,−1,−1,−1).

Denote by T0, . . . , T5 the six primitive Weil divisors corresponding to the rays uν0 , . . . , uν5

respectively. Then

O(− (T0 + T1 + T2)︸ ︷︷ ︸
:=Ta

) = O(− (T3 + T4 + T5)︸ ︷︷ ︸
:=Tb

) = O(−3),

and we can use the methods of §7.3 of [15] again to construct a fan of tot(OP5(−3) ⊕

OP5(−3)). This yields the fan ΣP5,Ta,Tb
in NR ⊕ R2 with the 8 rays ν0, . . . , ν5, τ1 and τ2

having primitive ray generators

uν0 = (1, 0, 0, 0, 0, 1, 0), uν4 = (0, 0, 0, 0, 1, 0, 1),

uν1 = (0, 1, 0, 0, 0, 1, 0), uν5 = (−1,−1,−1,−1,−1, 0, 1),

uν2 = (0, 0, 1, 0, 0, 1, 0), uτ1 = (0, 0, 0, 0, 0, 1, 0),

uν3 = (0, 0, 0, 1, 0, 0, 1), uτ2 = (0, 0, 0, 0, 0, 0, 1).

(3.8)

The fan ΣP5,Ta,Tb
is the star subdivision of Cone(uν0 , . . . , uν5 , uτ1 , uτ2) along uτ1 and uτ2

(noting the abuse of notation by which uτi
represent the same vector in both lattices M, N).

The dual cone to ΣP5,Ta,Tb
in MR ⊕ R2 is spanned by the 12 rays ρ0, . . . , ρ11 defined in §

2.3.1 (page 55).

We recall that each lattice point in the interior of the dual cone corresponds to a global

function of XΣP5 ,Ta,Tb
by associating m to the monomial

xm :=
∏

ρ∈ΣP5,T1,T2
(1)

x⟨m,uρ⟩
ρ .

Now a section s1 ⊕ s2 ∈ Γ(P5,O(3) ⊕ O(3)) will correspond to a global function on
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tot (O(−3)⊕O(−3)) of the form u1s1 + u2s2, where ui is the variable corresponding to

uτi
. Recalling the polynomials Qi from (2.12) in § 2.3.2, we would like to express the

global function F := u2Q1,λ + u1Q2,λ as a linear combination of global functions of the

form xm. We do this by finding the lattice points in the dual cone corresponding to each

monomial in F .

By splitting it up into its monomials, u2Q1,λ corresponds to the 4 points (3, 0, 0,−1,−1, 0, 1),

(0, 3, 0,−1,−1, 0, 1), (0, 0, 3,−1,−1, 0, 1) and (0, 0, 0, 0, 0, 0, 1).

Similarly, u1Q2,λ corresponds to the points (−1,−1,−1, 3, 0, 1, 0), (−1,−1,−1, 0, 3, 1, 0),

(−1,−1,−1, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 1, 0).

We find that these 8 points are the primitive generators for the rays of ΣLT,Da,Db
(see

Corollary 3.3.3).

Quotienting MR ⊕ R2 by the rays associated to the bundle coordinates (i.e. the lattice

points that are the elements of the dual basis dual to uτ1 and uτ2) corresponds to a toric mor-

phism XΣLT,Da,Db
→ XΣLT

. We emphasize that the dual cone to Cone(ΣP5,Ta,Tb
(1)) is given

by Conv(uρ0 , . . . , uρ11). Here, we take a subcone generated by a subset of {uρ0 , . . . , uρ11}.

Expressing the zerolocus of Q1,λ, Q2,λ

We remark that the cone |ΣLT,Da,Db
| is not a reflexive Gorenstein cone, hence the Batyrev-

Borisov construction does not apply to it.

The variety VLT,λ ⊆ XLT is the zero-locus of the polynomials Q1,λ, Q2,λ, where Q1,λ ⊕

Q2,λ is a section of the vector bundle constructed above in Corollary 3.3.3. Proceeding in

the same way as in §3.3, we consider lattice points on the cone |ΣLT,Da,Db
|∨ ⊆ NR ⊕ R2 to

get global functions of XΣLT,Da,Db
. The cone |ΣLT,Da,Db

|∨ is the cone over the convex hull
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of the following 12 points:

(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1) (2,−1,−1, 0, 0, 0, 3),

(−1, 2,−1, 0, 0, 0, 3), (−1,−1, 2, 0, 0, 0, 3), (1, 1, 1, 3, 0, 3, 0),

(1, 1, 1, 0, 3, 3, 0), (−1,−1,−1,−1,−1, 0, 1), (−2,−2,−2,−3,−3, 3, 0).

The points corresponding to the monomials in u1Q1,λ+u2Q2,λ, and hence to the section

Q1,λ ⊕Q2,λ, are the lattice points uνi
and uτi

in (3.8). Later on, describing VLT by these 8

points will allow us to work with Db(coh VLT ), using results in [18].

Remark 3.3.4. In their recent work [44, 45], Rossi proposes a generalisation of the

Batyrev-Borisov mirror construction, called framed duality (f-duality). f -duality gives an

algorithm to obtain mirror candidates of hypersurfaces and complete intersections in toric

varieties. Applying f -duality to VLT ⊂ P5 /G81 produces Vλ ⊂ P5, which in turn gives the

same mirror as the Batyrev-Borisov construction when applying f -duality to it. Theorem

1.0.1 suggests that different mirror candidates obtained via f -duality may be derived

equivalent and prompts the question under what conditions this is the case.

3.4 A derived equivalence between Batyrev-Borisov
and Libgober-Teitelbaum

Here we will prove the main result, Theorem 1.0.1.

3.4.1 Picking a partial compactification

Looking at the dual of the fan ΣLT,Da,Db
as in Corollary 3.3.3, we recall from §3.3 that the

global function u1Q1,λ + u2Q2,λ corresponds to the points
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(1, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 0),

(0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 1, 0, 1), (−1,−1,−1,−1,−1, 0, 1),

(0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0).

Consider the GKZ fan of tot(OX∇(−D′
b)⊕OX∇(−D′

a)). We note that the chambers

of this GKZ fan correspond to regular triangulations of the polytope P = Conv(C), where

C is the collection of the following 14 points:

P0 = (3, 0, 0,−1,−1, 0, 1), P6 = (2,−1,−1, 0, 0, 1, 0),

P1 = (0, 3, 0,−1,−1, 0, 1), P7 = (−1, 2,−1, 0, 0, 1, 0),

P2 = (0, 0, 3,−1,−1, 0, 1), P8 = (−1,−1, 2, 0, 0, 1, 0),

P3 = (−1,−1,−1, 3, 0, 1, 0), P9 = (0, 0, 0, 2,−1, 0, 1),

P4 = (−1,−1,−1, 0, 3, 1, 0), P10 = (0, 0, 0,−1, 2, 0, 1),

P5 = (−1,−1,−1, 0, 0, 1, 0), P11 = (0, 0, 0,−1,−1, 0, 1),

S1 = (0, 0, 0, 0, 0, 1, 0), S2 = (0, 0, 0, 0, 0, 0, 1).

In the (regular) triangulations of P, we look for a subtriangulation corresponding to

ΣLT,Da,Db
, as then we obtain a partial compactification of tot(OXLT

(−Db)⊕OXLT
(−Da))

from Corollary 3.3.3.

Proposition 3.4.1. There exists a chamber σLT in the GKZ fan of tot(OX∇(−D′
b) ⊕

OX∇(−D′
a)) (from Corollary 3.2.4) so that the triangulation T corresponding to the

chamber σLT (in the sense of 2.1.59) has the following properties:

• T contains the following set of simplices, listed via their vertices:

T0 := {{Pi, S1, S2 | i ∈ I} | I ⊂ {0, 2, . . . , 5}, |I| = 5} .

• Any simplex T ∈ T \ T0 fulfills either of the two following conditions:

A. S1, P6, P7, P8 ̸∈ T and ∃ 3 ≤ j ≤ 6 such that Pj, P6+j ̸∈ T .
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B. S2, P9, P10, P11 ̸∈ T and ∃ 0 ≤ j ≤ 2 such that Pj, P6+j ̸∈ T .

Moreover, the toric variety XΣ corresponding to the chamber σLT is a partial compactifica-

tion of the variety tot(OXLT
(−Db)⊕OXLT

(−Da)) from Corollary 3.3.3.

The first property of T means that the associated variety XΣ is a partial compactifi-

cation of XLT , so proving the existence of the triangulation T is sufficient to prove the

Proposition. The second property of T is not a natural one to consider, but will become

necessary to apply results from § 3.1.

The proposition can be checked via a simple SAGE program [47] using the TOPCOM

package [42]; however, we include an explicit proof on how such a triangulation can be

constructed.

To prove the proposition, we break the statement up into 3 steps.

Step 1: We start by defining an explicit regular polyhedral subdivision S of P containing T0.

Step 2: We prove that the polyhedral subdivision S can be refined to a regular triangulation

T of P containing T0.

Step 3: We show that any regular triangulation obtained this way fulfills the conditions

outlined in the Proposition.

Step 1:

We note that T0 is a regular triangulation of the set of points P0, . . . , P5, S1, S2. It is in

fact a star subdivision with respect to S1, S2 of the convex hull Conv(P0, . . . , P5, S1, S2).

Indeed, an example of an explicit weight function w giving the triangulation T0 is w(S1) =

w(S2) = 1, w(Pi) = 2 for 0 ≤ i ≤ 5. To complete Step 1, we extend this weight function

to all 14 points of C.

Consider the weight function w(Pi) = 2 for 0 ≤ i ≤ 5, w(S1) = w(S2) = 1 and

w(Pj) = 5 for 6 ≤ j ≤ 11. The convex hull of the points

Zi = (Pi, w(Pi)), Rj = (Sj, w(Sj)), (0 ≤ i ≤ 11, j = 1, 2)
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then forms a polyhedron Q in R8. To obtain the regular subdivision of P corresponding

to the weight function w, we need to project the lower facets of the polyhedron Q down to

R7 along the last coordinate. A lower facet is defined to be a facet of Q where the inward

pointing normal has a positive last coordinate.

We claim there are exactly 12 lower facets of Q. We write each lower facet Fi in the

form ui · x + ai = 0 where ui is the inward pointing normal of the ith facet. Take Hi to be

the halfspace corresponding to the lower facet Fi, i.e. the halfspace given by ui · x + a ≥ 0.

The normals and additive constants are:

• H0 : (5,−1,−1, 0, 0, 0, 0, 3)x− 3 ≥ 0

• H1 : (−1, 5,−1, 0, 0, 0, 0, 3)x− 3 ≥ 0

• H2 : (−1,−1, 5, 0, 0, 0, 0, 3)x− 3 ≥ 0

• H3 : (1, 1, 1, 6, 0, 0, 0, 3)x− 3 ≥ 0

• H4 : (1, 1, 1, 0, 6, 0, 0, 3)x− 3 ≥ 0

• H5 : (−5,−5,−5,−6,−6, 0, 0, 3)x− 3 ≥ 0

• H6 : (3,−1,−1, 0, 0, 0, 2, 1)x− 1 ≥ 0

• H7 : (−1, 3,−1, 0, 0, 0, 2, 1)x− 1 ≥ 0

• H8 : (−1,−1, 3, 0, 0, 0, 2, 1)x− 1 ≥ 0

• H9 : (1, 1, 1, 4, 0, 0,−2, 1)x + 1 ≥ 0

• H10 : (1, 1, 1, 0, 4, 0,−2, 1)x + 1 ≥ 0

• H11 : (−3,−3,−3,−4,−4, 0,−2, 1)x + 1 ≥ 0.

An easy computation shows that all 14 points lie in the intersection of the relevant

half-spaces. This is a direct consequence of the fact that Q ⊆ Hi for i = 0, . . . , 11.

Table 3.2 shows which points lie on each lower facet.
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Facet contains
F0 Z1, . . . , Z5, R1, R2
... ...

F5 Z0, . . . , Z4, R1, R2
F6 Z1, . . . , Z5, R1, Z7, Z8
F7 Z0, Z2, . . . , Z5, R1, Z6, Z8
F8 Z0, Z1, Z3, Z4, Z5, R1, Z6, Z7
F9 Z0, Z1, Z2, Z4, Z5, R2, Z10, Z11
F10 Z0, Z1, Z2, Z3, Z5, R2, Z9, Z11
F11 Z0, . . . , Z4, R2, Z9, Z10.

Table 3.2: Dictionary of points contained in each lower facet of Q.

To obtain the polyhedral subdivision S of P corresponding to the weight function w,

we now project these facets down to R7 along the last coordinate. Denoting by F̂i the

polyhedron obtained by projecting the facet Fi, we obtain the set of 12 polyhedra given in

Table 3.3. We note here that when projecting, all points that lied on the facet Fi lie in

the polyhedron F̂i, by convexity of the polyhedron Q in R8.

F̂0 = Conv(P1, . . . , P5, S1, S2)
... ...
F̂5 = Conv(P0, . . . , P4, S1, S2)
F̂6 = Conv(P1, . . . , P5, S1, P7, P8)
F̂7 = Conv(P0, P2, . . . , P5, S1, P6, P8)
F̂8 = Conv(P0, P1, P3, P4, P5, S1, P6, P7)
F̂9 = Conv(P0, P1, P2, P4, P5, S2, P10, P11)
F̂10 = Conv(P0, . . . , P3, P5, S2, P9, P11)
F̂11 = Conv(P0, . . . , P4, S2, P9, P10).

Table 3.3: Polyhedra in the regular subdivision.

It remains to show that the above collection Fi contains all the lower facets of Q.

Showing that there is no other lower facet of Q apart from F0, . . . , F11 is equivalent to

showing that ⋃Fi + ⟨(0, . . . , 0, 1)⟩R≥0 contains the entire polyhedron Q. Since all vertices

of Q lie inside each half-space Hi, it suffices to show that the union of the projections F̂i

contains the convex hull of P0, . . . , P11, S1, S2, i.e. contains P. This is equivalent to saying

that they give a polyhedral subdivision (regularity is given by construction).
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So we aim to prove the following claim.

Lemma 3.4.2. For F̂i and P as above, we have ⋃11
i=0 F̂i = P.

To prove Lemma 3.4.2, we will need the following result.

Lemma 3.4.3. Suppose we are given a set of m inequalities Lj ≤ Rj with ∑m
j=1 Lj ≤

C ≤ ∑m
j=1 Rj, then there exists an m-tuple of real numbers aj such that Lj ≤ aj ≤ Rj and∑m

j=1 aj = C.

Proof. To show that the claim holds, we define aj(x) = Lj + x(Rj − Lj). This is a linear

function such that, for all x ∈ [0, 1], Lj ≤ aj(x) ≤ Rj. Define f(x) = ∑
aj(x). f is itself

linear and thus continuous in x, with f(0) = ∑m
j=1 Lj ≤ C ≤ ∑m

j=1 Rj = f(1). By the

intermediate value theorem, there is an xC ∈ [0, 1] such that f(x) = ∑m
j=1 aj(xC) = C.

Setting aj = aj(xC) gives the m-tuple, proving the claim.

Proof of Lemma 3.4.2. The first thing to note is that

P = Conv(P0, . . . , P11, S1, S2) = Conv(P0, . . . , P11).

So we will show that ⋃11
i=0 F̂i = Conv(P0, . . . , P11).

We start by showing that ⋃5
i=0 F̂i = Conv(P0, . . . , P5, S1, S2), which is equivalent to

saying that F̂0, . . . , F̂5 form a polyhedral subdivision of Conv(P0, . . . , P5, S1, S2).

The inclusion ⊆ is immediate from Table 3.3, so it remains to check the opposite

inclusion. Any point X ∈ Conv(P0, . . . , P5, S1, S2) can be written as X = ∑5
i=0 λiPi+µ1S1+

µ2S2 for some λi, µj ∈ R≥0 with ∑λi + µ1 + µ2 = 1. Note also that ∑5
i=0 Pi = 3(S1 + S2).

Now define j such that λj = min0≤i≤5{λi}. Then

X =
5∑
i=0

(λi−λj)Pi+(3λj+µ1)S1+(3λj+µ2)S2 =
∑

0≤i≤5
i ̸=j

(λi−λj)Pi+(3λj+µ1)S1+(3λj+µ2)S2.

Since λj = min0≤i≤5{λi} ≤ λi for 0 ≤ i ≤ 5, we have that (λi − λj) ≥ 0 for 0 ≤ i ≤ 5. As
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λi, µ1, µ2 ≥ 0, we also have 3λj + µ1, 3λj + µ2 ≥ 0. Also,

∑
0≤i≤5
i ̸=j

(λi − λj) + (3λj + µ1) + (3λj + µ2) =
5∑
i=0

λi + µ1 + µ2 = 1,

and thus X ∈ F̂j. This shows ⋃5
i=0 F̂i = Conv(P0, . . . , P5, S1, S2).

To show ⋃11
i=0 F̂i = P, we note again that the inclusion ⊆ is immediate. For the opposite

inclusion ⊇, take a general point X in P. Then X can be written as X = ∑11
i=0 λiPi with

λi ≥ 0 for 0 ≤ i ≤ 11 and ∑11
i=0 λi = 1.

Without loss of generality, assume that (λ6 + λ7 + λ8) ≥ (λ9 + λ10 + λ11) (the case

where the inequality is reversed is analogous). We will now show that if X ̸∈ ⋃5
i=0 F̂i =

Conv(P0, . . . , P5, S1, S2), then X ∈ ⋃8
i=6 F̂i (if the inequality had been reversed, then X

would be in ⋃11
i=9 F̂i).

Let

νi = λi + λ6+i − 1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) for 0 ≤ i ≤ 2,

νi = λi + λ6+i for 3 ≤ i ≤ 5,

µ1 = ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) ,

µ2 = 0.

Then
5∑
i=0

νiPi + µ1S1 + µ2S2 =
11∑
i=0

λiPi

and
5∑
i=0

νi + µ1 + µ2 =
11∑
i=0

λi = 1.

Note µ1 ≥ 0 by assumption and µ2 = 0. Thus, if νi ≥ 0 for 0 ≤ i ≤ 5, X is expressed

as an element of Conv(P0, . . . , P5, S1, S2) = ⋃5
i=0 F̂i using the above equations. Otherwise,

we will claim that X ∈ ⋃8
i=6 F̂i. For 3 ≤ i ≤ 5, we have νi ≥ 0 as both λi and λ6+i are

≥ 0. We turn our attention to the νi for i = 0, 1, 2.

85



For 0 ≤ i ≤ 2, νi ≥ 0 is equivalent to

1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) ≤ λi + λ6+i,

so the condition that all νi are non-negative is equivalent to

1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) ≤ min

0≤i≤2
{λi + λ6+i}.

Therefore, X ∈ ⋃5
i=0 F̂i = Conv(P0, . . . , P5, S1, S2) if 1

3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) ≤

min0≤i≤2{λi + λ6+i}. Suppose this condition does not hold, i.e.

min
0≤i≤2

{λi + λ6+i} <
1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)) . (3.9)

Without loss of generality, we may assume that λ0 + λ6 = min0≤i≤2{λi + λ6+i} (by

symmetry, the other cases are analogous). We will show that X ∈ F̂6. Any point Y in

F̂6 = Conv (P1, . . . , P5, S1, P7, P8) can be written as

Y =
5∑
i=1

νiPi +
8∑
i=7

νiPi + µ1S1.

If we find νi, µ1 such that this sum is equal to ∑11
i=0 λiPi = X, we are done as we will have

expressed X as an element of F̂6.

Given a choice of real numbers α1, α2 with α1 + α2 = 1, define

νi = λi + αi(3λ0 + 2λ6 + (λ9 + λ10 + λ11))− (λ0 + λ6) for 1 ≤ i ≤ 2,

νi = λi + λ6+i for 3 ≤ i ≤ 5,

µ1 = 3λ0 + 3λ6,

ν6+i = λ6+i + αi(−3λ0 − 2λ6 − (λ9 + λ10 + λ11)) for 1 ≤ i ≤ 2.
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Substituting these values into the expression for Y gives

Y =
5∑
i=1

νiPi +
8∑
i=7

νiPi + µ1S1 =
11∑
i=0

λiPi = X,

as well as ∑
νi + µ1 =

11∑
i=0

λi = 1.

For this choice of νi’s and µ1 to define an element Y ∈ F̂6, we require νi ≥ 0 for all i and

µ1 ≥ 0. We note that, as λ0, λ6 ≥ 0, we have µ1 ≥ 0.

Therefore, what remains to prove is that there exist α1, α2 ∈ R with α1 + α2 = 1 such

that νi ≥ 0 for i ∈ {1, . . . , 5, 7, 8}. For i = 1, 2, we can arrange the inequalities νi ≥ 0 and

ν6+i ≥ 0 to give

λ0 + λ6 − λi
3λ0 + 2λ6 + (λ9 + λ10 + λ11)

≤ αi ≤
λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
. (3.10)

This works provided 3λ0 + 2λ6 + (λ9 + λ10 + λ11) ̸= 0 but if that term was zero, then by

non-negativity of the λi we would have λ0 = λ6 = λ9 = · · · = λ11 = 0 and thus X ∈ F̂6.

So if there exists a pair (α1, α2) with (3.10) holding for i = 1, 2 and α1 + α2 = 1, then

X ∈ F̂6.

Note that for all i,

λ0 + λ6 − λi
3λ0 + 2λ6 + (λ9 + λ10 + λ11)

≤ λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
,

as λ0 + λ6 = min0≤i≤2{λi + λ6+i}.

Furthermore,

0 ≤ λ0 + λ1 + λ2 + λ9 + λ10 + λ11

⇔ 2λ0 + 2λ6 ≤ 3λ0 + λ1 + λ2 + 2λ6 + λ9 + λ10 + λ11

⇔ ∑2
i=1 λ0 + λ6 − λi ≤ 3λ0 + 2λ6 + (λ9 + λ10 + λ11)

⇔ ∑2
i=1

λ0+λ6−λi

3λ0+2λ6+(λ9+λ10+λ11) ≤ 1.
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Lastly, we are given that λ0+λ6 = min0≤i≤2{λi+λ6+i} ≤ 1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11)).

This leads to the following sequence of implications:

λ0 + λ6 ≤ 1
3 ((λ6 + λ7 + λ8)− (λ9 + λ10 + λ11))

⇔ 3λ0 + 2λ6 + λ9 + λ10 + λ11 ≤ λ7 + λ8

⇔ 1 ≤ ∑2
i=1

λ6+i

3λ0+2λ6+(λ9+λ10+λ11) .

In summary, we have shown that for i = 1, 2, we have

λ0 + λ6 − λi
3λ0 + 2λ6 + (λ9 + λ10 + λ11)

≤ λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
,

and that

2∑
i=1

λ0 + λ6 − λi
3λ0 + 2λ6 + (λ9 + λ10 + λ11)

≤ 1 ≤
2∑
i=1

λ6+i

3λ0 + 2λ6 + (λ9 + λ10 + λ11)
.

Applying Lemma 3.4.3 gives us the existence of a pair α1, α2 as required, concluding

the proof to Lemma 3.4.2.

The Lemma 3.4.2 shows that we have indeed found all lower facets of the polyhedron

Q, meaning that the collection F̂1, . . . , F̂11 gives a regular polyhedral subdivision S of P,

thus concluding Step 1.

Step 2:

This is true by general convex geometry (using the poset of refinements and the secondary

polytope). By Theorem 2.4 in Chapter 7 of [22], the poset of (non-empty) faces of the

secondary polytope Σ(P) is isomorphic to the poset of all regular subdivisions of P,

partially ordered by refinement (see also Theorem 16.4.1 in [23]). The vertices of Σ(P)

correspond to regular triangulations. Thus, our regular subdivision obtained by projection

must correspond to some face of Σ(P) and any vertex of that face will correspond to a
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regular triangulation refining it.

Step 3:

Consider a regular triangulation T obtained by refining S. By definition, it is a regular

triangulation of P. Recall Table 3.3. Denote by Ci the collection of points used to define

the polyhedron F̂i in the table. Note that F̂0, . . . , F̂5 are the simplices in T0, and therefore

any simplices in T \ T0 do not originate from refining any of F̂0, . . . , F̂5.

Thus the last step of the proof reduces to showing that none of the polyhedra F̂i, 0 ≤

i ≤ 11, contain any of the points we did not define it by, i.e. F̂i ∩ C = Ci. Indeed, in that

case we note that, by consulting Table 3.3, the polyhedra F̂i each fulfill at least one of the

conditions A or B in the proposition. If F̂i ∩ C = Ci, then all simplices in a refinement of

F̂i are defined as the convex hull of a subset of Ci (as there is no interior point to refine

upon), thus inheriting the properties A or B from F̂i.

Showing that F̂i ∩ C = Ci for 6 ≤ i ≤ 11 reduces to a simple computation. We shall do

the computation for F̂6, as the remaining cases are analogous by symmetry.

We need to show that P0, P6, P9, P10, P11, S1 ̸∈ F̂6. Any point X in F̂6 can be written

as

λ1P1 + · · ·+ λ5P5 + µ1S1 + λ7P7 + λ8P8 = (−λ3 − λ4 − λ5 − λ7 − λ8,

3λ1 − λ3 − λ4 − λ5 + 2λ7 − λ8, 3λ2 − λ3 − λ4 − λ5 − λ7 + 2λ8,−λ1 − λ2 + 3λ3,

λ1 + λ2 + 3λ4, λ3 + λ4 + λ5 + µ1 + λ7 + λ8, λ1 + λ2), (3.11)

with λi, µ1 ≥ 0 and ∑
λi + µ1 = 1. We note that the last two coordinates of X are

λ3 + λ4 + λ5 + µ1 + λ7 + λ8 and λ1 + λ2 respectively. Assume P0 ∈ F̂6 and had an

expression as in Equation (3.11). Then, as λi, µ1 ≥ 0, we can see by looking at the last

two coordinates that λ3 = λ4 = λ5 = µ1 = λ7 = λ8 = 0 and λ1 + λ2 = 1. But then the

first coordinate is λ1 · 0 + λ2 · 0 = 0 ̸= 2, hence we get a contradiction and P0 ̸∈ F̂6. By an

analogous reasoning, for S2, P9, P10, P11 we obtain that all but λ1, λ2 would need to be 0
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again and the sum of these two would need to be 1, which means that not both the second

and third coordinate (being 3λ1, 3λ2) can be 0. Hence S2, P9, P10, P11 ̸∈ F̂6.

Finally, we need to show P6 ̸∈ F̂6. Assume we had an expression for P6 as in

Equation (3.11). Since λi ≥ 0, considering the last two coordinates gives λ1 = λ2 = 0

(since λi ≥ 0) and λ3 + λ4 + λ5 + µ1 + λ7 + λ8 = 1. But then the first coordinate is

−(λ3 + λ4 + λ5 + λ7 + λ8) ≤ 0 < 2, a contradiction. Thus P6 ̸∈ F̂6, and thus F̂6 ∩ C = C6

as claimed.

The other cases are analogous by symmetry. Thus we finished Step 3, hence proving

Proposition 3.4.1.

3.4.2 The ideals associated to the partial compactification

Recalling the notation from §3.1, we denote by xi the variable in C[x0, . . . , x11, u1, u2]

corresponding to the point Pi and by uj the variable corresponding to Sj. These 14

variables correspond to the rays of the fan Σ∇,D′
a,D

′
a

from Corollary 3.2.4.

Lemma 3.4.4. There exists a global function on X∇,D′
a,D

′
b

that has the form

w = u1(c0x
3
0x

3
6 + c1x

3
1x

3
7 + c2x

3
2x

3
8 − 3λ1x3x4x5x6x7x8)

+ u2(c3x
3
3x

3
9 + c4x

3
4x

3
10 + c5x

3
5x

3
11 − 3λ2x0x1x2x9x10x11),

(3.12)

for some ci, λj ∈ C.

Proof. Consider the hyperplane

H := {(m, t1, t2) ∈MR ⊕ R2 | t1 + t2 = 1} (3.13)

in MR⊕R2. The cone |Σ∇,D′
a,D

′
b
|∨ is given by the cone over the convex hull of the following

8 points on H:
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(0, 0, 0, 0, 1, 0, 1), (−1,−1,−1,−1,−1, 0, 1), (0, 0, 0, 1, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0),

(0, 1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0).

Recall that there is a correspondence between points in the dual cone |ΣLT,Da,Db
|∨ and

global functions on XLT,Da,Db
. Note that, when one constructs a superpotential for

XLT,Da,Db
using this correspondence with the 8 points above, one obtains the superpotential

w = u1Q1,λ + u2Q2,λ. To see the global function on X∇,D′
a,D

′
b
, it suffices to compute what

monomials these 8 points correspond to on X∇,D′
a,D

′
b
. This gives the 8 monomials in

(3.12).

For our purposes of comparing the Batyrev-Borisov construction with the one by

Libgober-Teitelbaum, we choose ci = 1 and λ1 = λ2 =: λ.

We fix a triangulation T fulfilling the properties of Proposition 3.4.1. Let X = C14

and consider the group GΣ corresponding to the fan Σ∇,D′
a,D

′
b

with its action on X. From

the triangulation T we obtain the ideals:

I :=
〈∏
i ̸∈I

xi
∏
j ̸∈J

uj

∣∣∣∣ ⋃
i∈I

uρi
∪
⋃
j∈J

uτj
give the set of vertices of a simplex in T

〉
,

J :=
〈∏
i ̸∈I

xi

∣∣∣∣ ⋃
i∈I

uρi
∪

2⋃
j=1

uτj
give the set of vertices of a simplex in T

〉
.

Before we can apply Proposition 3.1.9 and Corollary 3.1.10, we need to ensure the

condition I ⊆
√

∂w,J holds.

Lemma 3.4.5. For any triangulation T as in Proposition 3.4.1, defining I,J and w as

above with λ6 ̸= 0, 1, we have I ⊆
√
J , ∂w. Therefore, this choice of superpotential fulfills

the condition of Proposition 3.1.9.

Proof. To show the containment I ⊆
√

∂w,J , we prove that all the generators of I are

in
√

∂w,J . The ideal I is, by definition, generated by the monomials which correspond
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to the simplices in the triangulation T . For a simplex T ∈ T0, both S1 and S2 are vertices.

Thus, by definition, the monomial associated to T is in J and hence in
√

∂w,J .

For any simplex T ∈ T \ T0, either condition (A) or (B) of Proposition 3.4.1 holds. We

claim that the monomial associated to a simplex T fulfilling either of those two conditions

is an element of
√

∂w and therefore an element of
√

∂w,J .

We note that if T ∈ T \ T0 fulfills condition (A), i.e. does not contain any of the

points S1.P6, P7, P8 and there is a pair of points of the form Pj, P6+j with 3 ≤ j ≤ 5 also

not contained, then by definition u1xjx6+jx6x7x8 divides the monomial associated to T .

Similarly, if T fulfilled condition (B) instead, u2xjx6+jx9x10x11 (for some 0 ≤ j ≤ 2) would

divide the monomial generator of I associated to T .

To show that any monomial associated to a simplex in T \ T0 is in
√

∂w ⊆
√

∂w,J ,

it is thus sufficient to prove that the six monomials u2x0x6x9x10x11, u2x1x7x9x10x11,

u2x2x8x9x10x11, u1x3x9x6x7x8, u1x4x10x6x7x8 and u1x5x11x6x7x8 are elements of
√

∂w.

By symmetry of the xi in w, we note that it is sufficient to show that u2x0x6x9x10x11 ∈
√

∂w. Start by explicitly writing down the ideal ⟨∂w⟩, i.e. the ideal generated by the

partial derivatives of w.

⟨∂w⟩ = ⟨3u1x
2
0x

3
6 − 3λu2x1x2x9x10x11, 3u1x

2
1x

3
7 − 3λu2x0x2x9x10x11,

3u1x
2
2x

3
8 − 3λu2x0x1x9x10x11, 3u2x

2
3x

3
9 − 3λu1x4x5x6x7x8,

3u2x
2
4x

3
10 − 3λu1x3x5x6x7x8, 3u2x

2
5x

3
11 − 3λu1x3x4x6x7x8,

3u1x
3
0x

2
6 − 3λu1x3x4x5x7x8, 3u1x

3
1x

2
7 − 3λu1x3x4x5x6x8,

3u1x
3
2x

2
8 − 3λu1x3x4x5x6x7, 3u2x

3
3x

2
9 − 3λu2x0x1x2x10x11,

3u2x
3
4x

2
10 − 3λu2x0x1x2x9x11, 3u2x

3
5x

2
11 − 3λu2x0x1x2x9x10,

x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8 − 3λx3x4x5x6x7x8, x3

3x
3
9 + x3

4x
3
10 + x3

5x
3
11 − 3λx0x1x2x9x10x11⟩

We see that 3u1x
2
ix

3
6+i − 3λu2

x0x1x2x9x10x11
xi

∈ ⟨∂w⟩ for 0 ≤ i ≤ 2. Notice that since

ac − bd = c(a − b) + b(c − d), if a − b, c − d are elements in an ideal, then so is ac − bd.
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Hence by iterating this we obtain that

27u3
1x

2
0x

2
1x

2
2x

3
6x

3
7x

3
8 − 27λ3u3

2x
2
0x

2
1x

2
2x

3
9x

3
10x

3
11 ∈ ⟨∂w⟩.

Similarly,

27u3
2x

2
3x

2
4x

2
5x

3
9x

3
10x

3
11 − 27λ3u3

1x
2
3x

2
4x

2
5x

3
6x

3
7x

3
8 ∈ ⟨∂w⟩.

Therefore,

(27)2u3
1u

3
2x

2
0 . . . x2

5x
3
6 . . . x3

11 − (27)2λ6u3
1u

3
2x

2
0 . . . x2

5x
3
6 . . . x3

11 ∈ ⟨∂w⟩

⇒ 272(1− λ6)u3
1u

3
2x

2
0 . . . x2

5x
3
6 . . . x3

11 ∈ ⟨∂w⟩

⇒ u3
1u

3
2x

2
0 . . . x2

5x
3
6 . . . x3

11 ∈ ⟨∂w⟩

⇒ (u1u2x0 . . . x11)3 ∈ ⟨∂w⟩. (3.14)

Consider ∂w
∂u1

, giving

x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8 − 3λx3x4x5x6x7x8 ∈ ⟨∂w⟩. (3.15)

Furthermore, we note that ∑2
i=0 xi

∂w
∂xi
∈ ⟨∂w⟩, and thus

2∑
i=0

(3u1x
3
ix

3
6+i − 3λu2x0x1x2x9x10x11) ∈ ⟨∂w⟩. (3.16)

By (3.15) we have that x3x4x5x6x7x8 + ⟨∂w⟩ = 1
3λ(x3

0x
3
6 + x3

1x
3
7 + x3

2x
3
8) + ⟨∂w⟩. We use

this to substitute into (3.14) to obtain that

1
27λ3 u3

2x
3
0x

3
1x

3
2x

3
9x

3
10x

3
11(u1(x3

0x
3
6 + x3

1x
3
7 + x3

2x
3
8))3 ∈ ⟨∂w⟩.

Performing the same style of substitution with (3.16), we obtain

u3
2x

3
0x

3
1x

3
2x

3
9x

3
10x

3
11u

3
2x

3
0x

3
1x

3
2x

3
9x

3
10x

3
11 = (u2x0x1x2x9x10x11)6 ∈ ⟨∂w⟩.
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Thus u2x0x1x2x9x10x11 ∈
√

∂w.

By comparing the elements x2
∂w
∂x2

, u2x0x1x2x9x10x11 ∈
√

∂w, we obtain that u1x
3
2x

3
8 ∈

√
∂w, implying u1x2x8 ∈

√
∂w. This, in turn, implies that u2x0x1x9x10x11 ∈

√
∂w, by

inspection of ∂w
∂x2
∈ ⟨∂w⟩ ⊆

√
∂w. Similarly, u2x0x2x9x10x11 ∈

√
∂w. We also have

u2x5x11 ∈
√

∂w by an analogous computation. Finally, ∂w
∂u1

= x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8 −

3λx3x4x5x6x7x8 ∈
√

∂w.

Therefore, one can intuit and then compute that

(u2x0x6x9x10x11)4 = −u3
2x

2
1x6x

3
7x

3
9x

3
10x

3
11 · (u2x0x1x9x10x11)

− u3
2x

2
2x6x

3
8x

3
9x

3
10x

3
11 · (u2x0x2x9x10x11)

+ 3λu3
2x0x3x4x

2
6x7x8x

4
9x

4
10x

4
11 · (u2x5x11)

+ u4
2x0x6x

4
9x

4
10x

4
11 · (x3

0x
3
6 + x3

1x
3
7 + x3

2x
3
8 − 3λx3x4x5x6x7x8) ∈

√
∂w.

(3.17)

Thus, we have shown that u2x0x6x9x10x11 ∈
√

∂w. By symmetry, any simplex fulfilling

properties (A) or (B) corresponds to a monomial in
√

∂w,J . Hence any monomial

associated to a simplex T ∈ T \ T0 is an element of
√

∂w,J , concluding the proof that

I ⊆
√

∂w,J .

Corollary 3.4.6. Consider the GKZ fan of tot (OX∇(−D′
b)⊕OX∇(−D′

a)) and the group

GΣ from above. There is a chamber σp with affine open Up such that:

(i) [Up/GΣ] is a partial compactification of tot (OXLT
(−Db)⊕OXLT

(−Da)).

(ii) There is a superpotential corresponding to the eight points in |Σ∇,D′
a,D

′
b
|∨ ∩H taking

the form w = u1(x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8− 3λx3x4x5x6x7x8) + u2(x3

3x
3
9 + x3

4x
3
10 + x3

5x
3
11−

3λx0x1x2x9x10x11).

(iii) With Ip,J p as defined in §3.1, we have Ip ⊆
√

∂w,J p.

Proof. Proposition 3.4.1 proves (i), Lemma 3.4.4 proves (ii) and finally Lemma 3.4.5 shows

(iii).
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3.4.3 Relating X∇ and XLT

Recall that the partial compactification of the total space tot (OXLT
(−Db)⊕OXLT

(−Da))

in Corollary 3.4.6 corresponds to a chamber σp of the GKZ fan of tot(OX∇(−D′
b) ⊕

OX∇(−D′
a)). We then know that it is birationally equivalent to tot(OX∇(−D′

b)⊕OX∇(−D′
a)).

Thus we want to now explicitly find a triangulation of P corresponding to the Batyrev-

Borisov mirror family. There, the superpotential will take the form

w = u1(x3
0x

3
6+x3

1x
3
7+x3

2x
3
8−3λx3x4x5x6x7x8)+u2(x3

3x
3
9+x3

4x
3
10+x3

5x
3
11−3λx0x1x2x9x10x11).

Note that, by Lemma 3.4.4, this is the form the superpotential should take in the Batyrev-

Borisov mirror. In other words, we need a chamber σq in the GKZ fan corresponding to

tot(OX∇(−D′
b) ⊕ OX∇(−D′

a)), where a general section of OX∇(−D′
b) ⊕ OX∇(−D′

a) will

yield a complete intersection in X∇, and thus a Batyrev-Borisov mirror.

Lemma 3.4.7. Consider the GKZ fan of tot (OX∇(−D′
b)⊕OX∇(−D′

a)) and recall the

group GΣ from above. There is a chamber σq with affine open Uq such that:

(i) [Uq/GΣ] = tot (OX∇(−D′
b)⊕OX∇(−D′

a)).

(ii) A superpotential corresponding to the eight lattice points of |Σ∇,D′
a,D

′
b
|∨ ∩ H is of

the form w = u1(x3
0x

3
6 + x3

1x
3
7 + x3

2x
3
8− 3λx3x4x5x6x7x8) + u2(x3

3x
3
9 + x3

4x
3
10 + x3

5x
3
11−

3λx0x1x2x9x10x11).

(iii) For Iq,J q as defined in §3.1, Iq ⊆
√

∂w,J q.

Proof. This proof will construct the triangulation Tq corresponding to the chamber σq.

We consider the 42 maximal cones from Table 3.1. For each of those cones σi, 1 ≤ i ≤ 42,

we associate a simplex given as convex hull of the 5 vertices corresponding to the 5 rays of

σi plus the two vertices corresponding to the bundle coordinates, i.e. (0, 0, 0, 0, 0, 1, 0) and

(0, 0, 0, 0, 0, 0, 1). So for example the first cone, with rays ρ0, ρ1, ρ2, ρ9, ρ10, will correspond

to the simplex with vertices (3, 0, 0,−1,−1, 1, 0), (0, 3, 0,−1,−1, 1, 0), (0, 0, 3,−1,−1, 1, 0),
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(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 2,−1, 1, 0), (0, 0, 0,−1, 2, 1, 0). Another way to

formulate this is that we take the star subdivision of the cones from Table 3.1 on the two

bundle points S1, S2.

Regularity of this triangulation of the 14 points is an easy consequence of its construction

as a star subdivision, hence it corresponds to some chamber σq in the GKZ fan. Indeed,

the star subdivision can be obtained by giving the points S1, S2 a weight of 1 and giving all

other points the same weight of w = 2 and then refining the resulting regular polyhedral

subdivision into a triangulation. Alternatively, one can check the regularity of this

triangulation by using SAGE.

The third item follows from the fact that we do not partially compactify, hence J q = Iq

and therefore Iq ⊆
√

∂w,J q, as required.

We now have all the necessary tools to prove the main result of this chapter, Theorem

3.0.1.

Proof of Theorem 1.0.1. Recall the chambers σp and σq in the GKZ fan of the toric variety

tot (OX∇(−D′
b)⊕OX∇(−D′

a)) given in Corollary 3.4.6 and Lemma 3.4.7. By applying

Corollary 3.1.10, we have Db(cohZλ) ∼= Db(cohVLT,λ), as required.
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CHAPTER 4

CATEGORICAL RESOLUTIONS VIA VGIT

In the previous chapter we saw how methods of partial compactifications and VGIT can

be used to provide equivalences of derived categories. The key result used to relate the

category of singularities of the partial compactification to the derived category of coherent

sheaves, Proposition 3.1.9, comes with an algebraic condition, Ip ⊆
√

∂w,J p. This

condition can be thought of, intuitively, as a way to ensure singularities are manageable.

In the case of a singular complete intersection, the Proposition may thus fail to apply. In

an attempt to generalise the Libgober-Teitelbaum construction (see § 4.2), we encountered

a family of singular complete intersections where computer-based searches failed to verify

the algebraic condition. Fortunately, the methods of partial compactifications and VGIT

apply in further generality, and [19] elaborates on how to use them to obtain categorical

resolutions in the sense of Definition 2.2.33.

4.1 Categorical resolutions via partial compactifica-
tions and VGIT

In this section, we provide an interpretation of crepant categorical resolutions in terms of

Landau-Ginzburg models. Given a Landau-Ginzburg model (X, G, w) with superpotential

w, we consider its singular locus. If the singular locus is not proper, we can make it so

by means of partial compactification. This process is what gives us a crepant categorical
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resolution.

We follow the notation and conventions of Favero and Kelly [19], who base their work

on the paper [2] by Ballard, Favero and Katzarkov.

Let X be a smooth variety over C, G an affine algebraic group acting on X and

χ a character of G. Then consider a semi-invariant function with respect to χ, w ∈

Γ(X,OX(χ))G. We will study the absolute derived category Dabs[X, G, w] of the Landau-

Ginzburg model (X, G, w), which (see Remark 2.2.27) should be thought of as the equivalent

to the derived category of coherent sheaves Db(coh ◦) for Landau-Ginzburg models.

To obtain a crepant categorical resolution, we will examine a dg-enhancement of

Dabs[X, G, W ] that is both homologically smooth and proper. Consider Injcoh(X, G, w),

which is the full subcategory of Fact(X, G, w) consisting of objects with injective compo-

nents which are isomorphic in Dabs[Fact(X, G, w)] to objects with coherent components.

The following results respectively show that Injcoh(X, G, w) is a dg-enhancement of

Dabs[X, G, w] and that it is homologically smooth and proper, as desired.

Proposition 4.1.1 (Proposition 5.11 in [2]). The dg-category Injcoh(X, G, w) is a dg-

enhancement of Dabs[X, G, w].

Lemma 4.1.2 (Lemma 2.11 and 2.14 in [19]). Let X be a smooth algebraic variety and

G a linearly reductive group acting on X. Let χ : G→ C∗ be a non-trivial character and

w ∈ Γ(X,OX(χ))G a semi-invariant function. Denote by ∂w the critical locus. Assume

that [X/ Ker χ] has finite diagonal, is proper over SpecC and that ∂w ⊆ Z(w). Then the

dg-category Injcoh(X, G, w) is homologically smooth and proper.

Remark 4.1.3. Note that any separated Deligne-Mumford stack has finite diagonal (see

Remark 2.12 in [19]). Furthermore, to show that a variety Y is proper over SpecC, it is

sufficient to show that Y is compact with respect to the usual complex analytic topology.

Indeed, Proposition 6 of Serre’s famous GAGA paper [49] asserts that an algebraic variety

Y is compact if and only if it is complete. If a variety Y is complete, then it is proper

over SpecC.

98



The two results above are important for us to establish categorical resolutions, but we

first need to frame them in the right context. Let U be a variety with the action of a

linearly reductive group G, χ a character of G, and w a section of OU(χ). Consider a

G-equivariant open immersion

i : V → U.

Then i induces an adjoint pair of functors

i∗ : Dabs[Fact(V, G, w)]→ Dabs[Fact(U, G, w)]

i∗ : Dabs[Fact(U, G, w)]→ Dabs[Fact(V, G, w)].

We will use the existence of an adjoint pair of functors in this situation, together with

the results above and a Theorem of Hirano’s, to obtain a crepant categorical resolution.

Consider a smooth quasi-projective variety Y with a G-action. Suppose s is a regular

section of a G-equivariant vector bundle E on Y with Z := Z(s). Consider the fibrewise

dilation action of C∗ on tot E∨ and view the pairing w = ⟨s,−⟩ as section of the line

bundle Otot E∨(χp) associated to the projection character χp.

The gauged Landau-Ginzburg model associated to the complete intersection Z is

defined to be the data (tot E∨, G × C∗, w). The next result is another formulation of

Theorem 3.1.3, due to Hirano [30].

Theorem 4.1.4. Assume that w is a regular section of E. There is an equivalence of

categories Ω : Db(coh[Z/G])→ Dabs[tot E∨, G× C∗, ⟨w,−⟩].

Combining Proposition 4.1.1, Lemma 4.1.2 and Theorem 4.1.4, Favero and Kelly prove

the following key result. The proof is included due to its simplicity and elegance.

Theorem 4.1.5. With the setup as above, assume that Y admits a G-ample line bundle.

Let U be a G× C∗-equivariant partial compactification of tot E∨. Assume that

• w extends to U as a section of O(χ),

• [U/G] has finite diagonal, and
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• [∂w/G] ⊆ [U/G] is proper over SpecC and that ∂w ⊆ Z(w) in U .

Then the functors

i∗ ◦ Ω : Perf([Z/G])→ Dabs[U, G, w]

Ω−1 ◦ i∗ : Dabs[U, G, w]→ Db(coh[Z/G])

form a crepant categorical resolution.

Proof. Lemma 4.1.2 and Proposition 4.1.1 together with Proposition 5.11 in [2] assure

Dabs[U, G, w] is the homotopy category of a homologically smooth and proper dg-category.

i is an open immersion, so the functors i∗, i∗ are both left and right adjoint. Thus also

i∗ ◦ Ω and Ω−1 ◦ i∗ are left and right adjoint. By definition, they hence form a crepant

categorical resolution, as required.

It is important to note that an extension of w need not exist in general. However,

using variations of geometric invariant theory, we can generate some crepant categorical

resolutions.

We set up the notation in parallel to § 3.1. Consider the affine space

X := Cn+r = SpecC[x1, . . . , xn, u1, . . . , ur].

Consider a subgroup of the open dense torus, S ⊂ (C∗)n+r. For 1 ≤ i ≤ n + r, let

χi be the character obtained by composition of the inclusion and projection onto the

ith summand. Recall that S satisfies the Calabi-Yau condition when ∑n+r
i=1 χi is torsion.

Recall that a superpotential is a semi-invariant function w with respect to the character

χR obtained by projecting the action S × C∗ on Cn+r induced by the R-charge onto the

second factor. A choice of such a subgroup S with corresponding R-charge and projection

character χR gives the data of a gauged Landau-Ginzburg model

(Cn+r, S × C∗, w, χR).
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As before, VGIT gives invariant open subsets of Cn+r that yield new gauged Landau-

Ginzburg models. These subsets are the open sets Up associated to the various chambers

of the GKZ fan. Hence, for each chamber σp of the GKZ fan, we have a Landau-Ginzburg

model (Up, S×C∗, w) and, by previous discussion, an absolute derived category associated

to it, Dabs[Up, S×C∗, w]. The following result relates these categories associated to different

chambers of the GKZ fan. The result in this form is Theorem 4.18 in [19], but is based on

work by Herbst-Walcher, Ballard-Favero-Katzarkov, Halpern-Leistner, Cox-Little-Schenck

and Segal.

Theorem 4.1.6. For any two chambers σp and σq of a GKZ fan as above, if S satisfies

the quasi-Calabi-Yau condition, then there is an equivalence of categories:

Dabs[Up, S × C∗, w] ≃ Dabs[Uq, S × C∗, w].

4.1.1 Specialising to toric varieties

From here on, we will focus on toric varieties. Fix two dual lattices M and N , both of

dimension m. Consider a collection of points ν = {v1, . . . , vn}.

Definition 4.1.7. We say that the collection ν is geometric if each vi is non-zero and

generates a distinct ray in NQ.

Given a collection ν of points, we define a group Sν in an analogous fashion to the way

we defined the group GΣ in (2.8) (this is part of the Cox construction, §2.1.4). There is a

right exact sequence

M
fν−→ Zn π−→ coker(fν)→ 0, (4.1)

where fν(m) = ∑n
i=1⟨vi, m⟩ei. In the case where the points in ν correspond to the primitive

generators of the rays Σ(1) in a simplicial fan Σ, this sequence should be compared to

(2.7). Like with the Cox construction, we apply the functor Hom(−,C∗) to obtain a left

exact sequence

0→ Hom(coker(fν),C∗)→ (C∗)n → (C∗)m.
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Define

Sν := Hom(coker(fν),C∗). (4.2)

Let σ ⊆ NR be a Q-Gorenstein cone, Gorenstein with respect to the element m ⊆M . Let

ν ⊆ σ ∩N be a finite, geometric collection of lattice points containing the ray generators

of σ. Partition ν into the two subsets

ν=1 := {v ∈ ν | ⟨m, v⟩ = 1},

ν ̸=1 := {v ∈ ν | ⟨m, v⟩ ≠ 1}.

Since σ is Q-Gorenstein, its ray generators are contained in ν=1 by definition. Choose a

subset R ⊂ ν. The set R determines an action of C∗ on C|ν| by setting

λR · xi :=


λRxi if vi ∈ R

xi vi ̸∈ R,

and hence we obtain an action of Sν × C∗ on C|ν|.

Now fix a simplicial fan Σ ⊆ NR with Σ(1) ⊆ ν=1 such that XΣ is semiprojective and

Cone(Σ(1)) = σ.

This data specifies an open subset

UΣ × (C∗)ν\Σ(1) ⊆ C|ν|,

and we can restrict the action of Sν × C∗ to it.

Remark 4.1.8. In the later parts of this thesis, we consider toric vector bundles XΣD1,...,Dr

and set ν = Σ−D1,...,−Dr(1).

Let χ be the projection character of the action Sν × C∗ → C∗ onto the second factor

and let w ∈ Γ(UΣ × (C∗)ν\Σ(1),O(χ))Sν×C∗ . We recall from Remark 3.1.6 that this defines

a global function on UΣ × (C∗)ν\Σ(1) which is semi-invariant with respect to χ. For each
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vi ∈ ν, there is a character χDi
obtained as the following composition:

Sν ↪→ (C∗)|ν| → C∗ .

Here, the second map is the projection onto the ith factor. For νj ∈ ν \Σ(1), the character

χDj
we obtain is non-trivial, hence defining a surjective map

Sν × C∗ p−→ (C∗)ν\Σ(1) (4.3)

(g, λ) 7→
∏

νj∈ν\Σ(1)
χDj

(g) · λR∩(ν\Σ(1)).

Definition 4.1.9. Define HΣ,R ⊆ Sν × C∗ to be the kernel of the map (4.3). When clear

in the context, we suppress Σ and R from the notation and simply write H.

We define w̄ on C|Σ(1)| by setting all variables associated to points in ν \ Σ(1) to one.

This corresponds to the restriction of w to C|Σ(1)|. In this setup, Favero and Kelly study

wall-crossings and use them to prove the following Theorem.

Theorem 4.1.10. Let Σ̃ be any simplicial fan such that Σ̃(1) = ν and XΣ̃ is semi-projective.

Similarly, let Σ be any simplicial fan such that Σ(1) ⊆ ν=1, XΣ is semi-projective, and

Cone(Σ(1)) = σ. We have the following:

(1) If ⟨m, a⟩ > 1 for all a ∈ ν̸=1, then there is a fully faithful functor,

Dabs[UΣ, H, w̄]→ Dabs[UΣ̃, Sν × C∗, w].

(2) If ⟨m, a⟩ < 1 for all a ∈ ν̸=1, then there is a fully faithful functor,

Dabs[UΣ̃, Sν × C∗, w]→ Dabs[UΣ, H, w̄].

(3) If ν ̸=1 = ∅, then there is an equivalence,

Dabs[UΣ, H, w̄] ≃ Dabs[UΣ̃, Sν × C∗, w].
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Theorem 4.1.10 uses VGIT to compare the absolute derived categories associated to

different chambers of a GKZ fan. The result we are after is a categorical resolution of the

derived category of coherent sheaves on a complete intersection. To obtain it, we need a

way to relate the derived category of coherent sheaves of a complete intersection to an

absolute derived category associated to an appropriate Landau-Ginzburg model. We will

set up the situation we consider and show how to use the Theorem 4.1.10.

Let Ψ ⊆ NR be a complete fan such that XΨ is projective and D1, . . . , Dt are nef-

divisors. Assume |Ψ−D1,...,−Dt| is a Q-Gorenstein cone. Denote by ei the standard basis of

the sublattice Zt in N × Zt, and set

n :=
t∑
i=1

ei.

Restrict to the case where Cone(ν) = |Ψ−D1,...,−Dt | and {uρ | ρ ∈ Ψ−D1,...,−Dt(1)} ⊆ ν. Set

R to be the subset {ei | 1 ≤ i ≤ t}. Now, suppose Σ is any fan such that

• XΣ is semi-projective,

• |Σ| = |Ψ−D1,...,−Dt |, and

• for any δ ∈ Σ(1), we have uδ ∈ ν and ⟨m, uδ⟩ = 1.

The last condition ensures that Σ(1) ⊆ ν=1. We consider the set Ξ of lattice points in

|Ψ−D1,...,−Dt|∨, defined as

Ξ := {m ∈ |Ψ−D1,...,Dt |∨ ∩ (M × Zt) | ⟨m, n⟩ = 1}.

Thus, Conv(Ξ) is the height 1 slice of the dual cone to |Ψ−D1,...,−Dt |. Elements in Ξ

are points in the dual to |Ψ−D1,...,Dt | and thus correspond to monomial functions (see

Proposition 2.1.32). The case we work with is the one where the superpotential can be

constructed using such monomials, i.e. where

w =
∑
m∈Ξ

cmxm,
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with cm ∈ C. Here, the t rays e1, . . . , et generated by the elements of R are associated to

variables u1, . . . , ut and the remaining n − t points in ν \ R are associated to variables

x1, . . . , xn−t. Denote by ρj the ray with associated variable xj.

This allows us to rewrite the superpotential w as

w =
t∑
i=1

uifi,

where fj is a global section of Dj. This reformulation allows us to establish the relation

between derived categories of complete intersections and absolute derived categories of

Landau-Ginzburg models we sought.

Proposition 4.1.11 (Proposition 5.11 in [19]). Assume that f1, . . . , ft define a complete

intersection Z = Z(f1, . . . , ft) ⊆ XΨ. Then there is an equivalence of categories,

Db(cohZ) ≃ Dabs[Uψ, Sν × C∗, w].

In the remainder of the chapter, we will use these results to construct various categorical

resolutions. The fundamental strategy in those constructions is the following. For

a complete intersection Z inside a toric variety, we construct the toric vector bundle

associated to it. We then partially compactify the toric vector bundle and construct

the associated GKZ fan to the partial compactification. In this GKZ fan, we find an

appropriate chamber that corresponds to a toric vector bundle itself. We then prove

that the absolute derived category is homologically smooth and dg-proper and apply

Proposition 4.1.11 and Theorem 4.1.10 to obtain a categorical resolution of Db(coh Z).

4.2 A generalisation of the Libgober-Teitelbaum mir-
ror construction

In this section we discuss a generalisation of the Libgober-Teitelbaum mirror [35] to the

complete intersection of two cubics in P5. In particular, we show that the proposed
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generalisation, while singular, is categorically resolved by a Batyrev-Borisov mirror.

For an integer n ≥ 2, denote by ζn a primitive n-th root of unit. Let αi, βi ∈ Z (mod n)

for 1 ≤ i ≤ n and δ ∈ Z (mod n2) subject to the conditions


ζδn2 = ζβ1+···+βn−1

n = ζ−(α1+···+αn−1)
n if n odd,

ζδn2 = ζβ1+···+βn−1
n = ζ−(α1+···+αn−1)

n if n even.
(4.4)

Let Gn ⊂ PGL(2n− 1,C) be the group given by automorphisms of the following form:

gα,β,δ =


diag

(
ζδn2 , ζδn2ζα1

n , . . . , ζδn2ζαn−1
n , ζ−δ

n2 ζβ1
n , . . . , ζ−δ

n2 ζβn−1
n , ζ−δ

n2

)
if n odd,

diag
(
ζδ2n2 , ζδ2n2ζα1

n , . . . , ζδ2n2ζαn−1
n , ζ−δ

2n2ζβ1
n , . . . , ζ−δ

2n2ζβn−1
n , ζ−δ

2n2

)
if n even.

Given n, we fix the lattice Mn
∼= Z2n−1 and its dual lattice Nn.

Theorem 4.2.1. Let n ≥ 2, and λ2n ≠ 0, n2n. Consider the complete intersection in P2n−1

given by the vanishing set of the two polynomials

Q1,n,λ = xn1 + xn2 + · · ·+ xnn − λxn+1xn+2 . . . x2n,

Q2,n,λ = xnn+1 + xnn+2 + · · ·+ xn2n − λx1x2 . . . xn.

Then Gn
∼= (Z /nZ)2(n−2)×(Z /n2 Z) and the hypersurfaces Q1 = 0 and Q2 = 0 are pre-

served under the action of Gn on P2n−1. Let Zn = Z(Q1,n,λ, Q2,n,λ) ⊆
[
(C2n \{0})/(C∗×Gn)

]
,

and let Yn be a Batyrev-Borisov mirror to Z(Q1,n,λ, Q2,n,λ) ⊆
[
(C2n \{0})/C∗

]
.

Then there is a categorical resolution Db(coh Yn)→ Db(coh Zn).

The invariance of the hypersurfaces under the action of Gn is easy to see, as is the

isomorphism Gn
∼= (Z /nZ)2(n−2) × (Z /n2 Z).

Note that the case n = 3 corresponds to the Libgober-Teitelbaum construction, and

the categorical resolution there turns out to be a derived equivalence by Theorem 3.0.1.

For n = 2, we also obtain an equivalence by a similar computation to the one in Chapter

§3.
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Theorem 4.2.2 (Theorem 4.8 in [36]). Let Q1 = x2
1 + x2

2 − x3x4, Q2 = x2
3 + x2

4 − x1x2

and let p1 = x2
1x

2
5 + x2

2x
2
6 − x3x4x5x6, p2 = x2

3x
2
7 + x2

4x
2
8 − x1x2x7x8. We define the group

G4 ⊆ PGL(3,C) given by the four automorphisms

diag(1, 1, 1, 1), diag(ζ8,−ζ8,−ζ−1
8 , ζ−1

8 ), diag(ζ4, ζ4, ζ−1
4 , ζ−1

4 ), diag(ζ3
8 ,−ζ3

8 ,−ζ−3
8 , ζ−3

8 ),

where ζk is a primitive kth root of unity.

The Batyrev-Borisov mirror to Z(Q1, Q2) ⊆ P3 can be computed to be a complete

intersection Z2 in a 3-dimensional toric stack XBB given as the zero locus Z2 = Z(p1, p2) ⊆

XBB. Take the stacky complete intersection V2 := Z(Q1, Q2) ⊆ [(C4 \{0})/(C∗×G4)].

Then

Db(cohV2) ∼= Db(cohZ2).

Remark 4.2.3. This Theorem 4.2.1 is a special, explicit application of Theorem 4.3.7

and Corollary 4.3.10 (see Remark 4.3.13). We can imitate the proof of Theorem 4.2.1 to

obtain categorical resolutions of sufficiently “well-behaved” hypersurfaces and complete

intersections in complete, projective toric varieties. The meaning of “well-behaved” is made

more precise in § 4.3, leading to Theorem 4.3.7. As for the case of Theorem 4.2.2, Theorem

4.3.7 will yield derived equivalences should the derived categories be homologically smooth

and dg-proper already. It remains a question under what conditions on the complete

intersections involved this becomes the case.

This is a general theme. If we do the process of this construction for a smooth complete

intersection, then a categorical resolution of it is simply a derived equivalence by definition

of categorical resolutions.

4.2.1 A fan for the generalisation of Libgober and Teitelbaums
construction

The proof to Theorem 4.2.1 is split into several steps. We start by giving a fan for the

variety P2n−1 /Gn.
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Consider the rays ρn,1, . . . , ρn,2n with primitive generators:

uρn,1 = (n, 0, . . . , 0︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n−1

), uρn,n+1 = (−1, . . . ,−1︸ ︷︷ ︸
n

, n, 0, . . . , 0︸ ︷︷ ︸
n−1

),

... ... ... ...

uρn,n−1 = (0, . . . , n, 0,−1, . . . ,−1), uρn,2n−1 = (−1, . . . ,−1, 0, . . . , 0, n),

uρn,n = (0, . . . , 0, n,−1, . . . ,−1), uρn,2n = (−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0, 0︸ ︷︷ ︸
n−1

).

We define the fan Σn as the fan with rays ρn,i and 2n maximal cones, which are the

ones spanned by 2n − 1 of the 2n rays respectively, together with their faces. In other

words, the collection of maximal cones of Σn is

Mn =
{
Cone(ρn,j | j ∈ I)

∣∣∣ I ⊂ {1, 2, . . . , 2n}, |I| = 2n− 1
}

.

We should at this point check that this gives a well-defined fan. Since there are 2n

rays in 2n − 1 dimensional space, we really only need to show that Σn is complete, as

this means that not all 2n rays are contained in some strictly convex cone. We note that∑2n
i

1
2nuρn,i

= 0, implying that 0 is in the interior of the support |Σn|. Furthermore, |Σn|

is full dimensional, and therefore Σn is indeed complete.

Lemma 4.2.4. The toric stack associated to Σn is Xn :=
[
C2n \{0}/(C∗×Gn)

]
.

Proof. To prove this, we will proceed analogously to the n = 3 case of Libgober-Teitelbaum

and use the Cox construction. The exact sequence (2.7) takes the form

0→ Nn
ι→

2n⊕
i=1

Dρn,i
→ coker ι→ 0.

Now consider the group G = Hom(coker ι,C∗). By Lemma 2.1.39, we have G = {(ti) ∈
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(C∗)2n}, subject to the following system of conditions:

tn1 = tn+1tn+2 . . . t2n (4.5)
... ...

tnn = tn+1tn+2 . . . t2n (4.6)

tnn+1 = t1t2 . . . tn (4.7)
... ...

tn2n−1 = t1t2 . . . tn. (4.8)

We note that the group H := {t · (1, 1, . . . , 1)|t ∈ C∗} is a subgroup of G. As we did before,

we compute G by computing the group of cosets of H. The equations (4.5)-(4.6) imply

that

tn1 = tn2 = · · · = tnn ⇒ t2 = ζα1
n t1, . . . , tn = ζαn−1

n t1. (4.9)

Similarly, the equations (4.7)-(4.8) imply

tn+1 = ζβ1
n t2n, tn+2 = ζβ2

n t2n, . . . , t2n−1 = ζβn−1
n t2n. (4.10)

Substituting (4.10) into (4.5) and (4.9) into (4.8) gives

tn1 = ζβ1+···+βn−1
n tn2n

tn2n = ζα1+···+αn−1
n tn1

 β1 + · · ·+ βn−1 ≡ −(α1 + · · ·+ αn−1) (mod n). (4.11)

Picking an appropriate representative of the coset of (t1, . . . , t2n) · H, we can assume∏2n
i=1 ti = 1. We then have

1 =
2n∏
i=1

ti ⇒ 1 = ζα1+···+αn−1+β1+···+βn−1
n tn1 tn2n = tn1 tn2n ⇒ t2n = ζγnt−1

1 , (4.12)
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for some γ ∈ (Z /nZ). Substituting what we have into equation (4.5) now gives

tn1 = ζβ1+···+βn−1
n t−n

1 ⇒ t2n2

1 = 1.

Therefore, we know that for some δ ∈ (Z /2n2 Z),

t1 = ζδ2n2 . (4.13)

For the rest of the proof, we will split into the two cases n even and n odd.

A. n is odd: In this case, we note that (ζk2n, ζk2n, . . . , ζk2n) ∈ H for all k ∈ Z, and also

that ζk·2n
2n = 1, so multiplying each ti of a given coset (t1, . . . , t2n) by ζk2n changes

neither the coset of H, nor does it change that ∏2n
i=1 ti = 1.

Since n is odd, we can therefore pick a representative of the coset with t1 = ζδ2
n2 for

some δ2 ∈ (Z /n2 Z), and such that all the above equations still hold. By abuse of

notation, we will actually denote said δ2 by δ. In particular, by (4.12), t2n = ζ−δ
n2 ζγn .

As n is odd, there exists a kn such that 2kn ≡ −1 (mod n). Multiplying each ti by

ζ2knγ
2n = ζknγ

n then gives a representation of the coset (t1, . . . , t2n)·H as (t′
1, . . . , t′

2n)·H

with
(t′

1, . . . , t′
2n) = (ζδn2ζknγ

n , ζδn2ζα1
n ζknγ

n , . . . , ζδn2ζαn−1
n ζknγ

n ,

ζ−δ
n2 ζγnζβ1

n ζknγ
n , . . . , ζ−δ

n2 ζγnζβn−1
n ζknγ

n , ζ−δ
n2 ζγnζknγ

n ).

Note that, using the definition of kn,

t′
1t

′
2n = ζδn2ζknγ

n ζ−δ
n2 ζγnζknγ

n = ζγ+2knγ
n = 1.

Hence, by picking appropriate representatives of (t1, . . . , t2n), we can assume t2n = t−1
1 ,

and so the group of cosets of H has elements of the form

(
ζδn2 , ζδn2ζα1

n , . . . , ζδn2ζαn−1
n , ζ−δ

n2 ζβ1
n , . . . , ζ−δ

n2 ζβn−1
n , ζ−δ

n2

)
·H,
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for αi, βj ∈ (Z /nZ) and δ ∈ (Z /n2 Z) with

ζδn2 = ζβ1+···+βn−1
n = ζ−(α1+···+αn−1)

n .

By the direct product theorem (as in the Libgober-Teitelbaum case of n = 3), we

thus have that G ∼= C∗×Gn.

B. n is even: Like for the case of n odd, we can multiply each of the ti by ζk2n without

affecting their product or which coset they represent. So consider (t′
1, . . . , t′

2n) with

t′
i = ζ−γ

2n . Then

t1t2n = ζδ2n2ζ−γ
2n ζ−δ

2n2ζγnζ−γ
2n = ζγnζ−2γ

2n = 1.

Thus we have t′
2n = t′−1

1 . Note that (−1, . . . ,−1) ∈ H, so we may assume that

t′
1 = ζδ2

2n2 for some δ2 ∈ (Z /n2 Z). By abuse of notation, we denote that δ2 simply by

δ. This means that the group of cosets of H is given by

(
ζδ2n2 , ζδ2n2ζα1

n , . . . , ζδ2n2ζαn−1
n , ζ−δ

2n2ζβ1
n , . . . , ζ−δ

2n2ζβn−1
n , ζ−δ

2n2

)
,

subject to the condition

ζδn2 = ζβ1+···+βn−1
n = ζ−(α1+···+αn−1)

n .

By the direct product theorem, we thus have G ∼= C∗×Gn.

The Cox fan of ΣLT is the fan over the 2n rays eρn,1 , . . . , eρn,2n with maximal cones

being those spanned by 2n − 1 of the 2n rays. Therefore, we obtain UΣn = A2n \ {0}.

Thus, the toric stack associated to Σn is, as claimed,

Xn = [UΣn/G] = [C2n \{0}/ (C∗×Gn)].
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Analogously to § 3, we will need a vector bundle over Xn = P2n−1 /Gn with section

Q2 ⊕Q1. To each ray ρj of Σn we can associate a torus-invariant Weil divisor Dρi
. Let

Da = Dρ1 +Dρ2 + · · ·+Dρn and Db = Dρn+1 + · · ·+Dρ2n . Applying Proposition 2.1.50 twice

gives a fan Σn,Da,Db
for tot (OXn(−Da)⊕OXn(−Db)). It has rays ρn,1, . . . , ρn,2n, τn,1, τn,2

with primitive generators

uρn,1 = (n, 0, . . . , 0︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n−1

, 0, 1), uρn,n+1 = (−1, . . . ,−1︸ ︷︷ ︸
n

, n, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0),

... ... ... ...

uρn,n−1 = (0, . . . , n, 0,−1, . . . ,−1, 0, 1), uρn,2n−1 = (−1, . . . ,−1, 0, . . . , 0, n, 0, 1),

uρn,n = (0, . . . , 0, n,−1, . . . ,−1, 1, 0), uρn,2n = (−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0, 0︸ ︷︷ ︸
n−1

, 1, 0),

uτn,1 = (0, . . . , 0, 1, 0), uτn,2 = (0, . . . , 0, 0, 1).

The maximal cones of Σn,Da,Db
are those cones generated by 2n+1 of the 2n+2 rays, always

including τn,1 and τn,2. So the maximal cones are of the form Cone({τn,1, τn,2, uρn,i
| i ∈ I})

where I ⊆ {1, . . . , 2n} with |I| = 2n− 1.

Lemma 4.2.5. The vector bundle O(Da)⊕O(Db) has global section Q2 ⊕Q1.

Proof. We note that xnj ∈ Γ(Xn,O(nDρn,j
)), as div(xnj ) = nDρn,j

, and this for all 1 ≤

j ≤ 2n. By similar reasoning, ∏n
i=1 xi ∈ Γ(Xn,O(Dρn,1 + · · · + Dρn,n)) and ∏2n

j=n+1 xj ∈

Γ(Xn,O(Dρn,n+1 + · · ·+ Dρn,2n)). So it remains to show

nDρn,1 ≃ nDρn,2 ≃ · · · ≃ nDρn,n ≃ Db,

nDρn,n+1 ≃ nDρn,n+2 ≃ · · · ≃ nDρn,2n ≃ Da.

Proceeding as in Corollary 3.3.3, we show that the monomials differ by div(χm) for

some m ∈ Mn, hence by a principal divisor. And indeed, m = (−1, 0, . . . , 0) gives

div(χm) = x−n
1 xn+1 . . . x2n and thus nDρn,1 ≃ Db. Similarly, m = (0, . . . , 0︸ ︷︷ ︸

n

,−1, 0, . . . , 0)

has div(χm) = x1 . . . xnx−n
n+1 and thus nDρn,n+1 ≃ Da.
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For 2 ≤ j ≤ n, we have nDρn,1 ≃ nDρn,j
by looking at div(χmj ) = x−n

1 xnj with

mj = (−1, 0, . . . , 0, −1︸︷︷︸
jth position

, 0, . . . , 0). Showing nDρn,n+1 ≃ nDρn,n+2 ≃ · · · ≃ nDρn,2n is

analogous.

Therefore, Q2 ∈ Γ(Xn,OXn(Db)) and Q1 ∈ Γ(Xn,OXn(Da)), as required.

4.2.2 Proof of Theorem 4.2.1

To start the proof, we find two chambers σp, σq in the same GKZ fan ΣGKZ which

correspond to the two complete intersections Yn, Zn in the statement of the Theorem.

We can then employ methods of VGIT in the form of the results of § 4.1 on these two

chambers. Denote by Up, Uq the affines corresponding to the chambers σp, σq. We lay out

the strategy of the proof.

Step 0: Show the existence of the chambers σp, σq.

Step 1: Show Dabs([Up, G, w]) ∼= Dabs([Uq, G, w]).

Step 2: Show Db(coh Yn) is homologically smooth and proper.

Step 3: Show Dabs([Uq, G, w]) ∼= Db(coh Yn).

Step 4: Conclude that there is a categorical resolution of Db(coh Zn) by Dabs([Up, G, w]).

This strategy can also be summarised by the following diagram, where the double

arrow on the left represents a categorical resolution and the bracketed numbers label the

steps of the proof.

Dabs([Up, G, w]) Dabs([Uq, G, w])

Db(coh Zn) Db(coh Yn) (2)
(4)

∼=
(1)

∼=
(3)

113



Step 0: There is a GKZ fan with chambers σp, σq corresponding to the mirror
construction generalising LT and the BB construction.

Consider the polytope P that is the convex hull of the following 4n + 2 points in

R2n−1×R2 = R2n+1:

P1 = (n, 0, . . . , 0︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n−1

, 0, 1), P2n+1 = (n− 1,−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0),

... ... ... ...

Pn = (0, . . . , 0, n,−1, . . . ,−1, 0, 1), P3n = (−1, . . . ,−1, n− 1, 0, . . . , 0, 1, 0),

Pn+1 = (−1, . . . ,−1︸ ︷︷ ︸
n

, n, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0), P3n+1 = (0, . . . , 0︸ ︷︷ ︸
n

, n− 1,−1, . . . ,−1︸ ︷︷ ︸
n−1

, 0, 1),

... ... ... ...

P2n−1 = (−1, . . . ,−1, 0, . . . , 0, n, 1, 0), P4n−1 = (0, . . . , 0,−1, . . . ,−1, n− 1, 0, 1),

P2n = (−1, . . . ,−1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0), P4n = (0, . . . , 0︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n−1

, 0, 1),

S1 = (0, . . . , 0, 1, 0), S2 = (0, . . . , 0, 0, 1).

We note that this is the complete dual polytope to | tot (OP2n(−n)⊕OP2n(−n)) |, with the

lattice points corresponding to global functions on tot (OP2n(−n)⊕OP2n(−n)) in the usual

way. Thus, the lattice points correspond to sections of the line bundle OP2n(n)⊕OP2n(n),

and all sections of this line bundle can be generated by the lattice points of P.

Consider the 4n + 2 points of P as primitive generators uρn,1 , . . . , uρn,4n , uτn,1 , uτn,2 of

4n + 2 rays in R4n+1. Let ρn,i be the ray generated by uρn,i
and τn,j be the ray generated

by uτn,j
. For 1 ≤ i ≤ 4n, denote by uρn,i

the primitive generator of the ray ρn,i obtained

by projecting uρn,i
down to the first R2n−1 coordinates.

Since P is the dual polytope to |tot (OP2n(−n)⊕OP2n(−n))|, the fans of the varieties

in the Batyrev-Borisov mirror family to OP2n(−n)⊕OP2n(−n) have 1-skeletons consisting

of the rays uρn,1 , . . . , uρn,4n . In other words, if XBB,n is the toric variety that the Batyrev-

Borisov mirror Yn lives in, with fan ΣBB,n for XBB,n, then ΣBB,n(1) = {uρn,1 , . . . , uρn,4n}.

Denote by D′
n,i the torus-invariant Weil divisor of XBB,n corresponding to the ray

ρn,i. Then let D′
n,a be the divisor D′

n,a = D′
n,1 + · · · + Dn,n + D′

n,3n+1 + · · · + D′
n,4n
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and let D′
n,b be the divisor D′

n,b = D′
n,n+1 + · · · + D′

n,3n. We consider the vector bundle

OXBB,n
(D′

a) ⊕ OXBB,n(D′
b
), which we construct torically. This gives us a fan ΣBB,n,D′

a,D
′
b

with ΣBB,n,D′
a,D

′
b
(1) = {uρn,1 , . . . , uρn,4n , uτn,1 , uτn,2}.

The secondary fan ΣGKZ of ΣBB,n,D′
a,D

′
b

is the fan on which we will perform VGIT. To

show the existence of two chambers σp, σq corresponding to Yn, Zn is equivalent to the

existence of two regular triangulations of the 4n + 2 points of P that can be associated

to the two constructions. We start by showing that there is a triangulation partially

compactifying the generalisation of the Libgober-Teitelbaum construction.

Definition 4.2.6. A triangulation T is called n-viable if the following properties hold.

• T is a regular triangulation of the 4n + 2 points of P.

• T contains the following set of simplices, listed via their vertices:

T0 := {{Pi, S1, S2 | i ∈ I} | I ⊂ {1, 2, . . . , 2n}, |I| = 2n− 1} .

Theorem 4.2.7. For all n ≥ 2, an n-viable triangulation exists.

Proof. The proof can be divided into two parts.

Part 1: We start by defining an explicit regular polyhedral subdivision S of P containing T0.

Part 2: We prove that the polyhedral subdivision S can be refined to a regular triangulation

T of P containing T0.

Part 1: We note that T0 is a regular subdivision of the points P1, . . . , P2n, S1, S2. It is

in fact a star subdivision upon S1, S2 of the convex hull Conv(P1, . . . , P2n, S1, S2). Indeed,

an example of an explicit weight function w giving the triangulation T0 is w(S1) = w(S2) =

1, w(Pi) = 2 for 1 ≤ i ≤ 2n. To complete Step 1, we extend this weight function to all

4n + 2 points of P.

Consider the weight function w(Pi) = 2 for 1 ≤ i ≤ 2n, w(S1) = w(S2) = 1 (j = 1, 2)

and w(Pj) = n + 2 for 2n + 1 ≤ j ≤ 4n. The points (Pi, w(Pi)), (Sj, w(Sj)) (1 ≤ i ≤
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4n, j = 1, 2) then form a polyhedron Q in R2n+2. To obtain the regular subdivision

of P corresponding to this weight function, we need to project the lower facets of this

polyhedron down onto R2n+1 along the last coordinate (a lower facet being one where the

inward pointing normal has a positive last coordinate).

By using SAGE for low dimensional cases, we found the form of 4n lower facets, written

in the form ui · x + a ≥ 0 were ui is the inward pointing normal of the ith facet. The

normals and additive constants are (in this order):

• F1 : (2n− 1,−1, . . . ,−1, 0, . . . , 0, 0, 0, n)x− n ≥ 0

• F2 : (−1, 2n− 1,−1, . . . ,−1, 0, . . . , 0, 0, 0, n)x− n ≥ 0
...

• Fn : (−1, . . . ,−1, 2n− 1, 0, . . . , 0, 0, 0, n)x− n ≥ 0

• Fn+1 : (1, . . . , 1, 2n, 0, . . . , 0, 0, 0, n)x− n ≥ 0

• Fn+2 : (1, . . . , 1, 0, 2n, 0, . . . , 0, 0, 0, n)x− n ≥ 0
...

• F2n−1 : (1, . . . , 1, 0, . . . , 0, 2n, 0, 0, n)x− n ≥ 0

• F2n : (−(2n− 1), . . . ,−(2n− 1),−2n, . . . ,−2n, 0, 0, n)x− n ≥ 0

• F2n+1 : (n,−1, . . . ,−1, 0, . . . , 0, 0, n− 1, 1)x− 1 ≥ 0

• F2n+2 : (−1, n,−1, . . . ,−1, 0, . . . , 0, 0, n− 1, 1)x− 1 ≥ 0
...

• F3n : (−1, . . . ,−1, n, 0, . . . , 0, 0, n− 1, 1)x− 1 ≥ 0

• F3n+1 : (1, . . . , 1, n + 1, 0, . . . , 0, 0,−(n− 1), 1)x + (n− 2) ≥ 0

• F3n+2 : (1, . . . , 1, 0, n + 1, 0, . . . , 0, 0,−(n− 1), 1)x + (n− 2) ≥ 0
...
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• F4n−1 : (1, . . . , 1, 0, . . . , 0, n + 1, 0,−(n− 1), 1)x + (n− 2) ≥ 0

• F4n : (−n, . . . ,−n,−(n + 1), . . . ,−(n + 1), 0,−(n− 1), 1)x + (n− 2) ≥ 0.

An easy computation shows that, indeed, we have all 4n + 2 points in the intersection

of the relevant half-spaces. Furthermore, we have the following points lying on the facets:

Facet contains

F1 P2, . . . , P2n, S1, S2

... ...

F2n P1, . . . , P2n−1, S1, S2

F2n+1 P2, . . . , P2n, S1, P2n+2, . . . , P3n

... ...

F3n P1, . . . , Pn−1, Pn+1, . . . , P2n, S1, P2n+1, . . . , P3n−1

F3n+1 P1, . . . , Pn, Pn+2, . . . , P2n, S2, P3n+2, . . . , P4n

... ...

F4n P1, . . . , P2n−1, S2, P3n+1, . . . , P4n−1.

To obtain the polyhedral subdivision S of P corresponding to the weight function

w, we now project these facets down to R2n+1 along the last coordinate. Denoting by

F̂i the polyhedron obtained by projecting the facet Fi, we obtain the following set of 4n

polyhedra:

F̂1 = Conv(P2, . . . , P2n, S1, S2)
... ...
F̂2n = Conv(P1, . . . , P2n−1, S1, S2)
F̂2n+1 = Conv(P2, . . . , P2n, S1, P2n+2, . . . , P3n)
... ...
F̂3n = Conv(P1, . . . , Pn−1, Pn+1, . . . , P2n, S1, P2n+1, . . . , P3n−1)
F̂3n+1 = Conv(P1, . . . , Pn, Pn+2, . . . , P2n, S2, P3n+2, . . . , P4n)
... ...
F̂4n = Conv(P1, . . . , P2n−1, S2, P3n+1, . . . , P4n−1).

Table 4.1: Polyhedra in the regular subdivision.
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We note here that when projecting, all points that lied on the facet Fi lie in the

polyhedron F̂i by convexity of the polyhedron Q in R2n+2.

It remains to show that we have found all the lower facets ofQ. Showing that F1, . . . , F4n

is the complete set of lower facets is the same as showing that ⋃Fi + ⟨(0, . . . , 0, 1)⟩R+

contains the entire polyhedron Q. Since we know all points lie on the inside of those

polyhedra, it suffices to show Q ⊂ ⋃
Fi + ⟨(0, . . . , 0, 1)⟩. Thus, what remains to prove

is that the union of the projections F̂i contains the convex hull of P1, . . . , P4n, S1, S2, i.e.

contains P. This is equivalent to saying that they give a polyhedral subdivision (regularity

is given by construction, we reduced the statement to showing it is one).

So we aim to prove the following claim.

Lemma 4.2.8. For F̂i and P as above, we have ⋃4n
i=1 F̂i = P.

Proof. The first thing to note is that P = Conv(P1, . . . , P4n, S1, S2) = Conv(P1, . . . , P4n).

So we will show that ⋃4n
i=1 F̂i = Conv(P1, . . . , P4n). We start by showing that ⋃2n

i=1 F̂i =

Conv(P1, . . . , P2n, S1, S2), which is equivalent to saying that F̂1, . . . , F̂2n form a polyhedral

subdivision of Conv(P1, . . . , P2n, S1, S2).

The inclusion ⊆ is immediate, so it remains to show the opposite inclusion. Any point

X ∈ Conv(P1, . . . , P2n, S1, S2) can be written as X = ∑2n
i=1 λiPi + µ1S1 + µ2S2 for some

λi, µj ∈ R≥0 with ∑λi + µ1 + µ2 = 1. Note also that ∑2n
i=1 Pi = n(S1 + S2). Now define j

such that λj = min1≤i≤2n{λi}. Then

X =
2n∑
i=1

(λi−λj)Pi+(nλj+µ1)S1+(nλj+µ2)S2 =
∑

1≤i≤2n
i ̸=j

(λi−λj)Pi+(nλj+µ1)S1+(nλj+µ2)S2.

Since λj = min1≤i≤2n{λi} ≤ λi for 1 ≤ i ≤ 2n, we have that (λi − λj) ≥ 0 for 1 ≤ i ≤ 2n,

and as λi, µ1, µ2 ≥ 0 we also have nλj + µ1, nλj + µ2 ≥ 0. Also,

∑
1≤i≤2n
i ̸=j

(λi − λj) + (nλj + µ1) + (nλj + µ2) =
2n∑
i=1

λi + µ1 + µ2 = 1,
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and thus X ∈ F̂j. This shows ⋃2n
i=1 F̂i = Conv(P1, . . . , P2n, S1, S2).

To show ⋃4n
i=1 F̂i = P, we note again that the inclusion ⊆ is immediate. To show

the opposite inclusion ⊇, take a general point X in P. Then X can be written as

X = ∑4n
i=1 λiPi with λi ≥ 0 for 1 ≤ i ≤ 4n and ∑4n

i=1 λi = 1.

Without loss of generality, assume that (λ2n+1 + · · · + λ3n) ≥ (λ3n+1 + · · · + λ4n)

(the case where the inequality is reversed is analogous). We will now show that if

X ̸∈ ⋃2n
i=1 F̂i = Conv(P1, . . . , P2n, S1, S2), then X ∈ ⋃3n

i=2n+1 F̂i (if the inequality was

reversed, then X would be in ⋃4n
i=3n+1 F̂i).

Let
νi = λi + λ2n+i − 1

n
((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) for 1 ≤ i ≤ n,

νi = λi + λ2n+i for n + 1 ≤ i ≤ 2n,

µ1 = ((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) ,

µ2 = 0.

Then
2n∑
i=1

νiPi + µ1S1 + µ2S2 =
4n∑
i=1

λiPi,

and
2n∑
i=1

νi + µ1 + µ2 =
4n∑
i=1

λi = 1.

Since µ1 ≥ 0 by assumption and µ2 = 0 ≥ 0, we now require all νi to be ≥ 0 to

have found an expression of X as element of Conv(P1, . . . , P2n, S1, S2) = ⋃2n
i=1 F̂i. For

n + 1 ≤ i ≤ 2n, νi ≥ 0 as both λi and λ2n+i are.

For 1 ≤ i ≤ n, νi ≥ 0 is equivalent to

1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) ≤ λi + λ2n+i,

so the condition that all νi are non-negative is equivalent to

1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) ≤ min
1≤i≤n

{λi + λ2n+i}.
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Therefore, X ∈ ⋃2n
i=1 F̂i = Conv(P1, . . . , P2n, S1, S2) if

1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) ≤ min
1≤i≤n

{λi + λ2n+i}.

Suppose this condition does not hold, i.e.

min
1≤i≤n

{λi + λ2n+i} <
1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) . (4.14)

Without loss of generality, we may assume that λ1 + λ2n+1 = min1≤i≤n{λi + λ2n+i} (by

symmetry, the other cases are analogous). We will show that X ∈ F̂2n+1. Any point Y in

F̂2n+1 = Conv (P2, . . . , P2n, S1, P2n+2, . . . , P3n) can be written as

Y =
2n∑
i=2

νiPi + µ1S1 +
3n∑

i=2n+2
νiPi.

If we find νi, µ1 such that this sum is equal to ∑4n
i=1 λiPi = X, we are done as we will

have expressed X as an element of F̂2n+1. Given a choice of real numbers α2, . . . , αn with

α2 + · · ·+ αn = 1, define
νi = αi(nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n))− (λ1 + λ2n+1) for 2 ≤ i ≤ n,

νi = λi + λ2n+i for n + 1 ≤ i ≤ 2n,

µ1 = nλ1 + nλ2n+1,

ν2n+i = λ2n+i + αi(−nλ1 − (n− 1)λ2n+1 − (λ3n+1 + · · ·+ λ4n)) for 2 ≤ i ≤ n.

Substituting these values into the expression for Y gives

Y =
2n∑
i=2

νiPi + µ1S1 +
3n∑

i=2n+2
νiPi =

4n∑
i=1

λiPi = X,

as well as ∑
νi + µ1 =

4n∑
i=1

λi = 1.

For this choice of νi’s and µ1 to define an element Y ∈ F̂2n+1, we require νi ≥ 0 for all

i and µ1 ≥ 0. We note that, as λ1, λ2n+1 ≥ 0, we have µ1 ≥ 0. Therefore, what remains
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to prove is that there exist α2, . . . , αn ∈ R with α2 + · · · + αn = 1 such that νi ≥ 0 for

i ∈ {2, . . . , 2n, 2n + 2, . . . , 3n}.

For each 2 ≤ i ≤ n, we can arrange the inequalities νi ≥ 0 and ν2n+i ≥ 0 to give

λ1 + λ2n+1 − λi
nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ≤ αi ≤

λ2n+i

nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) .

(4.15)

This works provided nλ1 +(n−1)λ2n+1 +(λ3n+1 + · · ·+λ4n) ̸= 0 but if that term is zero,

then by non-negativity of the λi we have that λ1 = λ2n+1 = λ3n+1 = · · · = λ4n = 0 and

thus X ∈ F̂2n+1. So if there exists a tuple (α2, . . . , αn) with (3.10) holding for 2 ≤ i ≤ n

and α2 + · · ·+ αn = 1, then X ∈ F̂2n+1. We note that for all i,

λ1 + λ2n+1 − λi
nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ≤

λ2n+i

nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ,

as λ1 + λ2n+1 = min1≤i≤n{λi + λ2n+i}.

Furthermore,

0 ≤ λ1 + · · ·+ λn + λ3n+1 + · · ·+ λ4n

⇔ (n− 1)λ1 + (n− 1)λ2n+1 ≤ λ2 + · · ·+ λn + nλ1 + (n− 1)λ2n+1 + λ3n+1 + · · ·+ λ4n

⇔
n∑
i=2

λ1 + λ2n+1 − λi ≤ nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n)

⇔
n∑
i=2

λ1 + λ2n+1 − λi
nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ≤ 1.

Lastly, we are given that

λ1 + λ2n+1 = min
1≤i≤n

{λi + λ2n + i} ≤ 1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)) .

This leads to the following sequence of implications:
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λ1 + λ2n+1 ≤
1
n

((λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n))

⇔ n(λ1 + λ2n+1) ≤ (λ2n+1 + · · ·+ λ3n)− (λ3n+1 + · · ·+ λ4n)

⇔ nλ1 + (n− 1)λ2n+1 + λ3n+1 + · · ·+ λ4n ≤ λ2n+2 + · · ·+ λ3n

⇔ 1 ≤
n∑
i=2

λ2n+i

nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) .

In summary, we have shown that for 2 ≤ i ≤ n, we have

λ1 + λ2n+1 − λi
nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ≤

λ2n+i

nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ,

and that

n∑
i=2

λ1 + λ2n+1 − λi
nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) ≤ 1 ≤

n∑
i=2

λ2n+i

nλ1 + (n− 1)λ2n+1 + (λ3n+1 + · · ·+ λ4n) .

We apply Lemma 3.4.3 by setting m = n − 1, shifting the index by 1, and setting

Lj = λ1+λ2n+1−λj

nλ1+(n−1)λ2n+1+(λ3n+1+···+λ4n) , C = 1 and Rj = λ2n+j

nλ1+(n−1)λ2n+1+(λ3n+1+···+λ4n) . This gives

us the existence of an (n− 1)-tuple α2, . . . , αn as required, concluding the proof of Lemma

3.4.2.

The Lemma 3.4.2 shows that we have indeed found all lower facets of the polyhedron

Q, meaning that the collection F̂1, . . . , F̂4n gives a regular polyhedral subdivision S of P,

finishing Step 1 of the proof of Theorem 4.2.7.

Part 2: This is true by general convex geometry (using the poset of refinements and

the secondary polytope). By Theorem 16.4.1 in [23], the poset of (non-empty) faces of

the secondary polytope Σ(P) is isomorphic to the poset of all regular subdivisions of P,

partially ordered by refinement. The vertices of Σ(P) correspond to regular triangulations.

Thus, our regular subdivision obtained by projection must correspond to some face of
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Σ(P) and any vertex of that face will correspond to a regular triangulation refining it.

By definition 4.2.6, we have, for arbitrary n ≥ 2, constructed an n-viable triangulation.

Remark 4.2.9. We can compare this to Proposition 3.4.1, where we showed the existence

of a suitable chamber σLT of the GKZ fan considered in Chapter § 3. The triangulation

we prove to exist in Proposition 3.4.1 is n-viable for n = 3. In fact, a stronger result than

Theorem 4.2.7 holds. Given n ≥ 2, the n-viable triangulation T constructed in the proof

of Theorem 4.2.7 has the additional property that any simplex T ∈ T \ T0 fulfills either of

the two following conditions:

A. T does not contain either of the points S1, P2n+1, . . . , P3n and does not contain one

pair of points of the form Pj, P2n+j with n + 1 ≤ j ≤ 2n.

B. T does not contain either of the points S2, P3n+1, . . . , P4n and does not contain one

pair of points of the form Pj, P2n+j with 1 ≤ j ≤ n.

This is the same additional property we find in Proposition 3.4.1 and is proved in a

similar manner. For n = 2, 3, this additional property ensured a containment of ideals

I ⊆
√

∂w,J . For n ≥ 4, this is no longer clear (we have not been able to verify such a

containment) and this property is likely not enough to give such a containment. If it was

true, then the categorical resolution would turn out to be a derived equivalence, but due

to the singularities in the varieties for n ≥ 4, we do not think this is likely to be the case.

For the sake of completeness, we prove the claim made above about the additional

property holding. Consider a regular triangulation T of P as constructed in the proof of

Theorem 4.2.7. Recall Table 3.3. Denote by Ci the collection of points used to define the

polyhedron F̂i in the table. We aim to show that none of the polyhedra F̂i, 1 ≤ i ≤ 4n

contains any of the points we did not define it by, i.e. F̂i ∩P = Ci. Indeed, F̂1, . . . , F̂2n are

the simplices in T0 and do not get refined any further, as none of these simplices contains

an interior point. It thus remains to show that all the simplices obtained by refining

F̂2n+1, . . . , F̂4n fulfill one of the two conditions A or B from 4.2.6.
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We note that the polyhedra F̂i, 2n + 1 ≤ i ≤ 4n, each fulfill one of the two conditions

A or B. So suppose we have a simplex T ∈ T obtained by refining one of the polyhedra,

say F̂k. We claim that T fulfills the same condition as F̂k. T being obtained by refining

F̂k implies that the vertex set of T is a subset of F̂k ∩P. If F̂k ∩P = Ck, then we are

done as T inherits the condition A or B from T . Showing that F̂i ∩P = Ci for 1 ≤ i ≤ 4n

reduces to a simple computation.

Unpacking what an n-viable triangulation is, we obtain the following Corollary.

Corollary 4.2.10. In the GKZ fan ΣGKZ, there is a chamber σp which is associated to a

partial compactification of Xn (from Lemma 4.2.4).

Indeed, by being a regular triangulation of P, T corresponds to a chamber in the GKZ

fan ΣGKZ via the usual bijection of regular triangulations and chambers. Containing T0

means that we have a partial compactification of Xn.

Showing a chamber exists in ΣGKZ that corresponds to the Batyrev-Borisov mirror is

more straightforward, since the GKZ fan is in fact the secondary fan of ΣBB,n,D′
a,D

′
b
. As

such, the chamber σq associated to the Batyrev-Borisov mirror Yn will simply correspond

to the regular triangulation obtained by performing a star subdivision of the points

P1, . . . , P4n, S1, S2 on S1, S2.

Theorem 4.2.11. In the GKZ fan ΣGKZ, there is a chamber σq which is associated to

the Batyrev-Borisov mirror.

Proof. As done previously, we will explicitly construct a regular subdivision of the polyope

P that will refine to a triangulation corresponding to the Batyrev-Borisov mirror. We

start by defining the weight function w by w(Pi) = 2 for 1 ≤ i ≤ 4n and w(Sj) = 1 for

j = 1, 2.

Let Q be the polyhedron given by the convex hull of the 4n + 2 points Ri :=

(Pi, w(Pi)), Zj := (Sj, w(Sj)), 1 ≤ i ≤ 4n and j = 1, 2. We claim that there are ex-

actly the following n2 + 2n lower facets, written in the form ui · x + a ≥ 0, where ui is the

inward pointing normal of the ith facet.
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• Fi,j : (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
ith position

, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
jth position

, 0, 0, 1)x− 1 ≥ 0 for 1 ≤ i ≤ n, n + 1 ≤

j ≤ 2n− 1,

• Fi,2n : (−1,−1, . . . ,−1, 0,−1, . . . ,−1︸ ︷︷ ︸
ith position

, 0, 0, 1)x− 1 ≥ 0 for 1 ≤ i ≤ n,

• Fk : (0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
kth position

, 0, 0, 1)x− 1 ≥ 0 for 1 ≤ k ≤ 2n− 1,

• F2n : (−1, . . . ,−1, 0, 0, 1)x− 1 ≥ 0.

We note also that the polyhedronQ is contained in the hyperplane (0, . . . , 0, 1, 1, 0)x−1 = 0.

A straightforward computation shows that we have all 4n + 2 points in the intersection

of the relevant half-spaces. Furthermore, we get the following inclusion of points on the

facets

Facet Points contained range

Fi,j {R1, . . . , R4n, Z1, Z2} \ {Ri, Rj, R2n+i, R2n+j} 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n

Fi {Rn+1, . . . , R3n, Z1, Z2} \ {R2n+i} 1 ≤ i ≤ n

Fj {R1, . . . , Rn, R3n+1, . . . , R4n, Z1, Z2} \ {R2n+j} n + 1 ≤ j ≤ 2n

Project these facets down to R2n+1 by projecting down the last coordinate which

corresponds to the weight. The facets will then give a subdivision of P ⊆ Z(x2n + x2n+1−

1) ⊆ R2n+1. Denote by F̂i,j and F̂k the polyhedron obtained by projecting the facet Fi,j, Fk

respectively. Note that when projecting, all points that lied on Fi,j, Fk now lie in the

polyhedron F̂i,j, F̂k by convexity. This gives the following n2 + 2n polyhedra:

F̂i,j = Conv ({P1, . . . , P4n, S1, S2} \ {Pi, Pj, P2n+i, P2n+j}) 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n

F̂i = Conv ({Pn+1, . . . , P3n, S1, S2} \ {P2n+i}) 1 ≤ i ≤ n

F̂j = Conv ({P1, . . . , Pn, P3n+1, . . . , P4n, S1, S2} \ {P2n+j}) n + 1 ≤ j ≤ 2n

To prove Theorem 4.2.11, we need to show that the n2 +2n polyhedra form a polyhedral

subdivision of P (regularity is given by construction) and that they refine to a triangulation

corresponding to Batyrev-Borisov. The latter is a combination of the general fact that

regular subdivisions can be refined to triangulations and the observation that the weight
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function we chose corresponds to taking a star subdivision of the 4n + 2 points along

S1 and S2. In particular, this corresponds to taking the face fan of the polytope P′

obtained by projecting the polytope P along the last two coordinates. So it remains to

prove that we have a polyhedral subdivision, which is equivalent to show that the union

of the polyhedra F̂i,j, F̂k form a convex set. Specifically, we will show ⋃
F̂i,j ∪

⋃
F̂k =

Conv {P1, . . . , P4n, S1, S2}.

First note that Conv {P1, . . . , P4n, S1, S2} = Conv {P1, . . . , P4n}. The inclusion ⋃ F̂i,j ∪⋃
F̂k ⊆ Conv {P1, . . . , P4n, S1, S2} is immediate, so we need to prove the converse.

So consider a point X ∈ Conv {P1, . . . , P4n, S1, S2}. Then we can write X as X =∑
λiPi. We will prove the following claim:

A. Suppose

min
n+1≤j≤2n

(λj + λ2n+j) ≤
1
n

((λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n))

and

min
1≤i≤n

(λi + λ2n+i) ≤
1
n

((λn+1 + · · ·+ λ2n) + (λ2n+1 + · · ·+ λ3n)).

Further, suppose λk+λ2n+k = min1≤i≤n(λi+λ2n+i) and λr+λ2n+r = minn+1≤j≤2n(λj+

λ2n+j). Then X ∈ F̂k,r.

B. Suppose

min
1≤i≤n

(λi + λ2n+i) ≥
1
n

((λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n)) .

If (λk + λ2n+k) = min1≤i≤n(λi + λ2n+i), then X ∈ F̂k.

C. Suppose

min
n+1≤j≤2n

(λj + λ2n+j) ≥
1
n

((λn+1 + · · ·+ λ2n) + (λ2n+1 + · · ·+ λ3n)) .

If (λr + λ2n+r) = minn+1≤j≤2n(λj + λ2n+j), then X ∈ F̂r.
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This classification covers all cases and therefore, we have X ∈ ⋃ F̂i,j ∪
⋃

F̂k.

In the first case, let αi, βj be a collection of real numbers such that

λk + λ2n+k − λ2n+i

λk + λ2n+k
≤ αi ≤

λi
λk + λ2n+k

for 2 ≤ i ̸= k ≤ n, (4.16)

λr + λ2n+r − λ2n+j

λr + λ2n+r
≤ βj ≤

λj
λr + λ2n+r

for n + 1 ≤ j ̸= r ≤ 2n. (4.17)

We further require ∑αi(λk + λ2n+k)−
∑

βj(λr + λ2n+r) = λr − λk. Such αi, βj exist by

Lemma 3.4.3. Checking the conditions of the Lemma, we have

λk + λ2n+k − λ2n+i

λk + λ2n+k
≤ λi

λk + λ2n+k
for 2 ≤ i ̸= k ≤ n by minimality of λk + λ2n+k;

λr + λ2n+r − λ2n+j

λr + λ2n+r
≤ λj

λr + λ2n+r
for n + 1 ≤ j ̸= r ≤ 2n by minimality of λr + λ2n+r;

∑
1≤i ̸=k≤n

λk + λ2n+k − λ2n+i

λk + λ2n+k
(λk + λ2n+k)−

∑
n+1≤j ̸=r≤2n

λj
λr + λ2n+r

(λr + λ2n+r) ≤ λr − λk

⇔ (n− 1)(λk + λ2n+k)−
∑

1≤i ̸=k≤n
λ2n+i −

∑
n+1≤j ̸=r≤2n

λj ≤ λr − λk

⇔ λk + λ2n+k ≤
1
n

((λn+1 + · · ·+ λ2n) + (λ2n+1 + · · ·+ λ3n)) which is true by assumption;

λr − λk ≤
∑

1≤i ̸=k≤n
λi −

∑
n+1≤j ̸=r≤2n

λr + λ2n+r − λ2n+j

⇔ λr + λ2n+r ≤
1
n

((λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n)) which is true by assumption.

Hence we can apply the Lemma 3.4.3, obtaining a collection (αi)1≤i ̸=k≤n, (βj)n+1≤j ̸=r≤2n

as required. Now define

• νi = λi − αi(λk + λ2n+k) and ν2n+i = λ2n+i − (1− αi)(λk + λ2n+k) for 1 ≤ i ̸= k ≤ n,

• νj = λj−βj(λr+λ2n+r) and ν2n+j = λ2n+j−(1−βj)(λr+λ2n+r) for n+1 ≤ j ̸= r ≤ 2n,

• κ1 = λr + nλ2n+k + (n− 1)λk +∑
βj(λr + λ2n+r)−

∑
αi(λk + λ2n+k),

• κ2 = λk + nλ2n+r + (n− 1)λr +∑
αi(λk + λ2n+k)−

∑
βj(λr + λ2n+r).
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Then

X =
∑

νiPi + κ1S1 + κ2S2.

It remains to show that all νi, κ1, κ2 are non-negative to obtain X ∈ F̂k,r. This is clear by

the inequalities (4.16) and (4.17). Indeed, for 1 ≤ i ̸= k ≤ 2n, we have

νi = λi − αi(λk + λ2n+k) ≥ 0

⇔ λi ≥ αi(λk + λ2n+k)

⇔ λi = λi
λk + λ2n+k

(λk + λ2n+k) ≥ αi(λk + λ2n+k) by (4.16);

ν2n+i = λ2n+i − (1− αi)(λk + λ2n+k) ≥ 0

(λk + λ2n+k)− λ2n+i ≤
(λk + λ2n+k)− λ2n+i

λk + λ2n+k
≤ αi(λk + λ2n+k) by (4.16).

An analogous computation shows that νj, ν2n+j ≥ 0 for n + 1 ≤ j ̸= r ≤ 2n. Also,

κ1 = λr + nλ2n+k + (n− 1)λk +
∑

βj(λr + λ2n+r)−
∑

αi(λk + λ2n+k)

= λr + nλ2n+k + (n− 1)λk + λk − λr

= n(λk + λ2n+k) ≥ 0,

and similarly κ2 ≥ 0. Finally, we also have

∑
νi + κ1 + κ2 =

4n∑
s=1

λs = 1, as required.

This concludes the first part of the claim.

In the second case, we have

min
1≤i≤n

(λi + λ2n+i) ≥
1
n

((λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n)) .

The claim then is, if (λk + λ2n+k) = min1≤i≤n(λi + λ2n+i), then X ∈ F̂k.
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F̂k = Conv {Pn+1, . . . , P3n \ {P2n+k}}, so we need to express X = ∑4n
s λsPs as

∑
n+1≤s̸=2n+k≤3n

νsPs + κ1S1 + κ2S2

with νs, κi ≥ 0 and ∑ νs + κ1 + κ2 = ∑4n
s=1 λs = 1.

So define

• νj = λj + λ2n+j − 1
n

((λ1 + · · ·+ λn)− (λ3n+1 + · · ·+ λ4n)) for n + 1 ≤ j ≤ 2n.

• ν2n+i = λi + λ2n+i − (λk + λ2n+k) for 1 ≤ i ≤ n.

• κ1 = n(λk + λ2n+k).

• κ2 = (λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n).

We indeed have

X =
∑

n+1≤s ̸=2n+k≤3n
νsPs + κ1S1 + κ2S2,

so we need to check that νs, κi ≥ 0 and ∑ νs + κ1 + κ2 = ∑4n
s=1 λs = 1.

νj = λj + λ2n+j −
1
n

((λ1 + · · ·+ λn)− (λ3n+1 + · · ·+ λ4n)) ≥ 0

⇔ λj + λ2n+j ≥
1
n

((λ1 + · · ·+ λn)− (λ3n+1 + · · ·+ λ4n)) which is true by assumption;

ν2n+i = λi + λ2n+i − (λk + λ2n+k) ≥ 0

⇔ λi + λ2n+i ≥ λk + λ2n+k which is true by minimality;

κ1 = n(λk + λ2n+k) ≥ 0 which is true by non-negativity of λk, λ2n+k;

κ2 = (λ1 + · · ·+ λn) + (λ3n+1 + · · ·+ λ4n) ≥ 0 which is true by non-negativity of the λs.

Finally ∑ νs + κ1 + κ2 = ∑4n
s=1 λs = 1, as required, thus showing X ∈ F̂k and proving the

second part of the claim.

The third case in the claim is analogous to the second one. Hence, we have shown

the claim, which proves that ⋃ F̂i,j ∪
⋃

F̂k is a convex set and thus that we have found
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all lower facets of the polytope Q. Therefore, the triangulation obtained by projecting Q

indeed gives a regular triangulation of the points P1, . . . , P4n, S1, S2 which hence gives a

chamber σq in the GKZ fan. It corresponds to the Batyrev-Borisov construction, proving

Theorem 4.2.11.

Before we continue with the next steps of the proof of Theorem 4.2.1, we note that

the triangulation constructed to correspond to the chamber σq is in fact the regular

triangulation corresponding to tot(OXΣBB,n
(−D′

a)⊕OXΣBB,n
(−D′

b)).

Step 1: Dabs([Up, G, w]) ∼= Dabs([Uq, G, w]).

This is true by Theorem 4.1.10. The cone Cone(ν) is Gorenstein with respect to the

element m = (0, 0, . . . , 0, 1, 1) and hence ν ̸=1 = ∅. By the third item of Theorem 4.1.10, we

thus have Dabs([Up, G, w]) ∼= Dabs([Uq, G, w]).

Step 2: Dabs([Uq, G, w]) is homologically smooth and dg-proper.

Theorem 4.2.12. Dabs([Uq, G, w]) is homologically smooth and dg-proper.

Proof. We use the same arguments as in the proof of Theorem 4.1.5, namely we need

to show that [∂w/G] is proper over SpecC and that ∂w ⊆ Z(w) in the affine open Uq

associated to the chamber σq. We first consider [∂w/G] as subset of XS , the variety

associated to the polyhedral subdivision S exhibited in Theorem 4.2.11. We note that

XS is by construction a rank 2 split vector bundle over some variety Y∇. The ideal I

associated to the subdivision S is

I = ⟨x1 . . . xnx3n+1 . . . x4n⟩⟨x2n+1, . . . , x3n⟩︸ ︷︷ ︸
I1

+ ⟨xn+1 . . . x3n⟩⟨x3n+1, . . . , x4n⟩︸ ︷︷ ︸
I2

+ ⟨x1x2n+1, . . . , xnx3n⟩⟨xn+1x3n+1, . . . , x2nx4n︸ ︷︷ ︸
I3

.

We note Z(I) = Z(I1) ∩ Z(I2) ∩ Z(I3). This means we can express Z(I) via the eight

components in the following table:
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Component name Component description

C1 x1 . . . xnx3n+1 . . . x4n = 0, xn+1 . . . x3n = 0

and xix2n+i = 0 ∀1 ≤ i ≤ n

C2 x1 . . . xnx3n+1 . . . x4n = 0, xn+1 . . . x3n = 0

and xjx2n+j = 0 ∀n + 1 ≤ j ≤ 2n

C3 x2n+1, . . . , x3n = 0

C4 x2n+1, . . . , x3n = 0 and xjx2n+j = 0 ∀n + 1 ≤ j ≤ 2n

C5 x3n+1, . . . , x4n = 0, xjx2n+j = 0 ∀n + 1 ≤ j ≤ 2n

C6 x3n+1, . . . , x4n = 0

C7 x2n+1, . . . , x4n = 0

C8 x2n+1, . . . , x4n = 0
We note that the following chains of containments exist C4 ⊆ C3 ⊇ C7 = C8 ⊆ C6 ⊇ C5,

so the components we need to consider are C1, C2, C3 and C6. The space ∂w is the zero

locus of the partial derivatives of w, and thus ∂w ⊆ Z( ∂w
∂u1

, ∂w
∂u2

) = Z(f1, f2) = Z(w) ⊆ Uq.

Let us examine the points in ∂w by distinguishing 3 cases:

• u1, u2 ̸= 0,

• One of u1, u2 is 0,

• u1, u2 = 0.

In the first case, consider the product ∏3n
i=2n+1

∂w
∂xi

u1
. We obtain

nnxn1 . . . xnnxn−1
2n+1 . . . xn−1

3n = λnxnn+1 . . . xn2nxn−1
2n+1ẋ

n−1
3n . (4.18)

If x2n+1 . . . x3n ̸= 0, then this yields

nn(x1 . . . xn)n = λn(xn+1 . . . x2n)n. (4.19)
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Similarly, if x3n+1 . . . x4n ̸= 0, we obtain

nn(xn+1 . . . x2n)n = λn(x1 . . . xn)n. (4.20)

These two equations combine to give x1 . . . xn = xn+1 . . . x2n = 0 or n2n = λ2n, which we

excluded in the statement of the Theorem 4.2.1. This gives us three cases to distinguish

• x2n+1 . . . x3n = 0. By considering ∂w
∂xn+1

, . . . , ∂w
∂x2n

and nu2 ̸= 0, we obtain xn−1
n+1x

n
3n+1 =

· · · = xn−1
2n xn4n = 0. That is equivalent to

xn+1x3n+1 = · · · = x2nx4n = 0. (4.21)

Similarly, using ∂w
∂x2n+1

, . . . , ∂w
∂x3n

, we obtain

x1x2n+1 = · · · = xnx3n = 0. (4.22)

But then by ∂w
∂u2

, we have λx1 . . . xnx3n+1 . . . x4n = 0. Since λ ̸= 0, we have

x1 . . . xnx3n+1 . . . x4n = 0. Also, as x2n+1 . . . x3n = 0 by assumption in this case,

we have xn+1 . . . x3n = 0. These two conditions with (4.22) however imply that any

such point lies in C1.

• x3n+1 . . . x4n ̸= 0. This case is similar to the case above.

• x1 . . . xn = xn+1 . . . x2n = 0, x2n+1 . . . x3n ̸= 0, x3n+1 . . . x4n ̸= 0. Considering the par-

tial derivatives ∂w
∂xi

for 2n + 1 ≤ i ≤ 4n gives x1x2n+1 = · · · = xnx3n = 0 and

xn+1x3n+1 = · · · = x2nx4n = 0. Together with the fact that x1 . . . xnx3n+1 . . . x4n = 0

and xn+1 . . . x3n = 0 (obtained by conditions of this case), we conclude that any

point fitting this case lies in C1 or C2.

This concludes the discussion of the case where u1, u2 ̸= 0, as all such points would be

contained in the exceptional locus Z(I) and hence not in the variety XS associated to the

subdivision S.
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Next we discuss the points in ∂w for which exactly one of u1, u2 is 0. Without loss of

generality, u1 = 0, u2 ̸= 0.

By ∂w
∂xi

for 1 ≤ i ≤ n, we obtain

0 = −λx2 . . . xnx3n+1 . . . x4n = · · · = −λx1 . . . xn−1x3n+1 . . . x4n, (4.23)

and by ∂w
∂xj

for n + 1 ≤ j ≤ 2n, we obtain

0 = xn+1x3n+1 = · · · = x2nx4n. (4.24)

Furthermore, considering ∂w
∂x2n+j

for n + 1 ≤ j ≤ 2n, we obtain

0 = −λx1 . . . xnx3n+2 . . . x4n = · · · = −λx1 . . . xnx3n+1 . . . x4n−1. (4.25)

This means the point lies in C2 unless x3n+1 = · · · = x4n = 0 and xn+1, . . . , x2n ̸= 0.

Indeed, otherwise x1 . . . xnx3n+1 . . . x4n = 0 by (4.23), so to not be in C2, we would require

xn+1 . . . x3n ̸= 0 (since (4.23), (4.24) and xn+1 . . . x3n = 0 is the description of C2). Then

(4.24) and xn+1 . . . x3n ≠ 0 imply x3n+1 = · · · = x4n = 0 and xn+1, . . . , x2n ≠ 0. But then

the point is contained in C6.

Hence all points in ∂w with u1 = 0, u2 ≠ 0 are in the exceptional locus Z(I), and

hence not in the variety XS associated to S. The case where u1 ̸= 0, u2 = 0 is analogous.

This leaves us with the points of ∂w which have u1 = u2 = 0. Thus, ∂w∩XS ⊆ Z(u1, u2).

In particular, [∂w] ⊆ [Z(f1, f2, u1, u2)] ⊆ [Y∇ × {0}2] ⊆ [Y∇ × C2]. Note that ∂w is

closed in the Euclidian topology as it is a Zariski closed set. After refining S to a regular

triangulation corresponding to a toric variety P∇ /Gn, we obtain [∂w] ⊆ [Z(f1, f2, u1, u2)] ⊆

[P∇ /Gn × {0}2] ⊆ [P∇ /Gn × C2]. We note that this is the total space of a vector bundle

over a toric variety with fan ΣBB,n. This is a complete fan, and thus P∇ /Gn is compact in

the Euclidian topology. Hence [∂w] is a closed subset of P∇ /Gn × {0}2, which is compact.

Thus, [∂w] is compact, which implies properness over SpecC.
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As in the proof of Theorem 4.1.5, this shows that Dabs([Uq, G, w]) is homologically

smooth and dg-proper, concluding the proof of Theorem 4.2.12.

Step 3: Dabs([Uq, G, w]) ∼= Db(coh Yn)

We will apply Proposition 4.1.11 to obtain Dabs([Uq, G, w]) ∼= Db(coh Yn). Choosing

Ψ = ΣBB,n, we note that D′
a, D′

b are nef. We also note that ΣBB,n,D′
a,D

′
b

is Gorenstein

with respect to the element m = (0, . . . , 0, 1, 1). We need to make sure the Proposition

is applicable, i.e. we need to check the conditions which are set up in § 4.1 before the

Proposition 4.1.11.

• XΣBB,n,D′
a,D′

b

is semi-projective;

• |ΣBB,n,D′
a,D

′
b
| = |Ψ−D′

a,...,−D′
b
|;

• For any δ ∈ ΣBB,n,D′
a,D

′
b
(1), we have uδ ∈ ν and ⟨m, uδ⟩ = 1;

These three conditions are all immediate by construction. Further, we need to check

that functions f1,n,λ, f2,n,λ extracted from the superpotential define a complete intersection

in the toric variety associated to the chamber σq. For that purpose, it is sufficient to check

the Jacobian has full rank, noting that in the chamber σq the functions take the form

f1,n,λ = xn1 xn2n+1 + · · ·+ xnnxn3n − λxn+1 · · · · · x3n and f2,n,λ = xnn+1x
n
3n+1 + · · ·+ xn2nxn4n −

λx1 · · · · · xn · x3n+1 · · · · · x4n.

Hence ∂f1,n,λ

∂xj
= 0 for 3n + 1 ≤ j ≤ 4n and ∂f2,n,λ

∂xk
= 0 for 2n + 1 ≤ k ≤ 3n. For the

Jacobian to not have full rank, there needs to be a linear dependence between the two

row vectors
(
∂fi,n,λ

∂xj

)4n

j=1
, i = 1, 2. Because of the above partial derivatives being zero, we
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obtain the following equations:

nxn1 xn−1
2n+1 − λxn+1 . . . x2nx2n+2 . . . x3n = 0,

...

nxnnxn−1
3n − λxn+1 . . . x3n−1 = 0,

nxnn+1x
n−1
3n+1 − λx1 . . . xnx3n+2 . . . x4n = 0,

...

nxn2nxn−1
4n − λx1 . . . xnx3n+1 . . . x4n−1 = 0. (4.26)

We thus have nxn1 xn2n+1 = · · · = nxnnxn3n = λxn+1 . . . x3n. Indeed, we get

nnxn1 . . . xnnxn2n+1 . . . xn3n = λnxnn+1 . . . xn3n.

If x2n+1 . . . x3n ̸= 0, then nn(x1 . . . xn)n = λn(xn+1 . . . x2n)n. Similarly, if x3n+1 . . . x4n ≠ 0,

we also have λn(x1 . . . xn)n = nn(xn+1 . . . x2n)n, which implies n2n = λ2n. But this is

excluded by the conditions of Theorem 4.2.1.

Thus we require x2n+1 · · · · · x3n = 0 or x3n+1 · · · · · x4n = 0 for the Jacobian to not

have full rank. By the same arguments as in Step 2, this is not possible (the zero loci of

x2n+1 . . . x3n = 0 and x3n+1 . . . x4n = 0 are both in the exceptional locus of the chamber).

Step 4: There is a categorical resolution of Db(coh Zn) by Dabs([Up, G, w])

We have, by the previous steps, that Dabs([Up, G, w]) ∼= Dabs([Uq, G, w]) ∼= Db(coh Yn). In

particular Dabs([Up, G, w]) is homologically smooth and dg-proper by Step 2. Thus, we

can use the proof of Theorem 4.1.5 to obtain a categorical resolution of Db(coh Zn) by

Dabs([Up, G, w]), concluding the proof to Theorem 4.2.1.

Remark 4.2.13. The above proof quite straightforwardly generalises to weighted projective

space (i.e. taking the appropriate 2 polynomials in W P(q1, . . . , qn, q1, . . . , qn)).
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4.3 A result on categorical resolutions of toric com-
plete intersections

In this section, we will give a more general result on the existence of crepant categorical

resolutions for complete intersections in toric varieties fulfilling a certain condition. The

condition that needs to be fulfilled will be further examined, and Theorem 4.2.1 will be

framed as a special case.

Definition 4.3.1. We say a cone σ ⊆ MR × Rr has property (r−P) if there exists a

simplicial fan Σ′ in a (dim MR)-dimensional sublattice of NR × Rr and torus-invariant,

effective, nef basepoint free divisors D1, . . . , Dr on XΣ′ so that there is a fan Ξ where

XΞ = tot(⊕ri=1OXΣ′ (−Di)) and the following properties hold:

• σ∨ = |Ξ|

• X ′
Σ is Gorenstein Fano;

• for all ρ ∈ Σ′
−D1,...,−Dr

(1) we have that uρ ∈ Hdeg∨(1);

• ∑r
i=1 Di = −KXΣ′ .

This property seems unwieldy at first, but in fact we can relate it to different properties

of cones that are more well-studied in the context of mirror symmetry and which have

been introduced in §2.

Before we relate the property (r−P) to other properties, we first state the following

two results, due to Batyrev and Nill [4].

Lemma 4.3.2 (Corollary 3.7 in [4]). A reflexive Gorenstein cone σ is associated to a

nef-partition if and only if both cones σ and σ∨ are completely split. A Gorenstein polytope

∆̃ of index r is the Cayley polytope of a nef-partition if and only if ∆̃ and ∆̃∨ are Cayley

polytopes of length r.

Lemma 4.3.3. Let ∆̃ be a Gorenstein polytope such that both ∆̃ and ∆̃∨ are integrally

closed. Then ∆̃ (and also ∆̃∨) is a Cayley polytope associated to a nef partition.
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We now formulate the following Proposition, giving us an explicit class of cones with

the property (r−P).

Proposition 4.3.4. If σ and σ∨ are both reflexive completely split Gorenstein cones of

index r, then σ has the property (r−P).

Proof. As σ is completely split, it is a Cayley cone of r lattice polytopes ∆1, . . . , ∆r. By

Lemma 4.3.2, these lattice polytopes form a nef-partition if and only if σ∨ is also completely

split. Since this was the assumption of the Proposition, we obtain that the ∆i form a

nef-partition. By the same result, σ∨ is associated to a nef-partition ∇1 + · · ·+∇r = ∇, i.e.

σ∨ = |Σ∇,−D1,...,−Dr | where Di is the divisor on X∇ defined by ∇i and Σ∇ is the normal fan

to ∇. As ∇i is a nef-partition, ∇ is reflexive and thus the associated variety is Gorenstein

Fano. By the structure of σ as Cayley polytope ∆1 ∗ · · · ∗∆r for a nef-partition ∆i, we

note that the unique interior point of the support σ(r) is e1 + · · · + er and thus for all

ρ ∈ Σ∇,−D1,...,−Dr(1), we indeed have uρ ∈ Hdeg∨(1). This proves that σ has the property

(r−P), as required.

Conjecture 4.3.5. If σ is a reflexive completely split Gorenstein cone of index r, then σ

has property (r−P).

In our treatment of categorical resolutions, we will rely on the following result.

Proposition 4.3.6. Let XΣ be a projective toric variety. Suppose there is a collection of

divisors Di on XΣ such that Ξ := Σ−D1,...,−Dr is a simplicial fan and there are functions

fi ∈ Γ(XΣ,O(Di)) so that Z(f1, . . . , fr) is a smooth complete intersection. Write XΞ =

[UΞ/GΞ]. Then consider the GΞ-function

w := uifi : UΞ → C .

Then [∂w/GΞ] ⊆ [UΞ/GΞ] is proper over SpecC and ∂w ⊆ Z(w) in UΞ.

Proof. Note that XΞ = tot(⊕r
i=1OXΣ(−Di)), which is locally isomorphic to XΣ × Cr

(since it is the total space of a vector bundle). Consider a point p ∈ ∂w. Then there is
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an open patch Uσ corresponding to some maximal cone σ of Ξ such that p ∈ Uσ. Let

C[x1, . . . , xn, u1, . . . , ur] be the corresponding coordinate ring of Uσ, where the uj are the

coordinates of the Cr component.

We will first prove that p ∈ Z(w) ∩ Uσ, and hence that ∂w ∩ Uσ ⊆ Z(w) ∩ Uσ.

∂w = Z

(
{ ∂w

∂xi
| 1 ≤ i ≤ n} ∪ { ∂w

∂uj
|1 ≤ j ≤ r}

)
⊆ Z

(
{ ∂w

∂uj
|1 ≤ j ≤ r}

)
= Z(f1, . . . , fr) ⊆ Z(w).

The last step follows as fi(p) = 0 for some point p, 1 ≤ i ≤ n, then ∑uifi(p) = 0 and so

p ∈ Z(w).

Next, we will prove that [∂w/GΞ] ⊆ [UΞ/GΞ] is proper over SpecC. By Remark 4.1.3,

it is sufficient that [∂w/GΞ] is compact with respect to the usual topology. Express p

in local coordinates as p = (p1, . . . , pn, y1, . . . , yr) ∈ ∂w ∩ Uσ. Noting that the fk are

functions of the xi only, we have

0 = ∂w

∂xi
(p) =

r∑
k=1

uk
∂fk
∂xi

(p)

⇔ 0 =
r∑

k=1
yk

∂fk
∂xi

((p1, . . . , pn)), (4.27)

0 = ∂w

∂uj
(p)

⇔ 0 = fj((p1, . . . , pn)). (4.28)

For 1 ≤ i ≤ r, denote by vk the vector

vk =


∂fk

∂x1

...
∂fk

∂xn

 .

This vector vk should be viewed as a function of x1, . . . , xn. Note that the Jacobian J of
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Z(f1, . . . , fr) ⊆ XΣ is given by the n× r matrix (v1 . . . vr). Now we have

r∑
k=1

ykvi((p1, . . . , pn))

=
r∑

k=1
yk


∂fk

∂x1
((p1, . . . , pn))

...
∂fk

∂xn
((p1, . . . , pn))



=


∑r
k=1 yk

∂fk

∂x1
((p1, . . . , pn))
...∑r

k=1 yk
∂fk

∂xn
((p1, . . . , pn))



=


0
...

0

 (4.29)

Here, the last step follows by applying (4.27). By (4.28), (p1, . . . , pn) ∈ Z(f1, . . . , fr). But

then (4.29) gives a linear dependence between the vectors vk((p1, . . . , pn)), unless yk = 0

for all k. Hence, unless yk = 0 for 1 ≤ k ≤ r, we have that the Jacobian J does not have

full rank at (p1, . . . , pn) ∈ Z(f1, . . . , fr). But Z(f1, . . . , fr) is a complete intersection, so

of codimension n− r in XΣ. Its Jacobian not having full rank at a point (p1, . . . , pn) is

thus equivalent to the point (p1, . . . , pn) being a singular point of Z(f1, . . . , fr). Since

we assumed Z(f1, . . . , fr) to be smooth, this would be a contradiction. Therefore, if

(p1, . . . , pn, y1, . . . , yr) ∈ ∂w ∩ Uσ, then yk = 0 for 1 ≤ k ≤ r.

We have therefore shown that ∂w ∩ Uσ ⊆ Z(f1, . . . , fr) × {0}r ⊆ Cn×Cr. Thus,

Uσ ∩ ∂w/GΞ ⊆ XΣ × {0}r ⊆ Uσ/GΞ. Since XΣ is projective, it is in particular compact.

Therefore, [Uσ ∩ ∂w/GΞ] is a closed subset of a compact variety [XΣ × {0}r] and hence

compact itself. Thus ∂w = ⋃
σ∈Ξ(max) ∂w ∩ Uσ is a finite union of compact varieties, hence

compact itself. By Remark 4.1.3, we have that [∂w/GΞ] ⊆ [UΞ/GΞ] is proper over SpecC.

This completes the proof of Proposition 4.3.6.
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Let XΣ be a projective toric variety with vector bundle V = ⊕ri=1O(Di) so that

D1 + · · ·+ Dr = −KXΣ such that the divisors Di partition the torus-invariant Weil divisors

associated to the rays of Σ. V corresponds to a fan ΣV in NR × Rr. Let σV = |ΣV |. Let

ei be the generators of the Rr component in MR × Rr (and by abuse of notation also for

NR × Rr). Let the elements of the total coordinate ring of XΣV be xρ for ρ ∈ ΣV(1) apart

from the variables associated to the ei, which we will call ui.

We recall that points m′ in σ∨
V correspond to global functions, and hence to sections of

the dual, via xm
′ = ∏

ρ∈ΣV x⟨m′,uρ⟩
ρ .

For each 1 ≤ i ≤ r, we consider the intersection Hi = σ∨
V ∩ {ei = 1, ej = 0|j ≠ i} ⊆

MR×Rr. Any lattice point m is Hi is of the form m′+ei where m′ ∈M . It corresponds to a

family of global functions of the form cmxm. We note that, by construction, ui | xm, u2
i ̸ |xm

and uj ̸ |xm for j ̸= i. Thus, a subset of lattice points Ai ⊆ Hi ∩M ×Zr can be associated

to a family of global functions of the form uisi = ∑
m∈Ai

cmxm, cm ̸= 0. We note that

uj ̸ |si for 1 ≤ j ≤ r and that si ∈ Γ(XΣ,OXΣ(Di)), by construction.

Denote by A the union of the sets Ai. Thus A = {m′ ∈MR×Rr | xm′ is nontrivial summand of some uisi}.

Now each si = ∑
m∈Ai

cmxm defines a family of sections of OXΣ(Di) for 1 ≤ i ≤ r.

By construction, m′ is of the form m + ei, m ∈ MR for some i. In particular, since

there is no summands of the form uiujs, we have

⟨m′, e1 + · · ·+ er⟩ = 1. (4.30)

Here, by abuse of notation, the ei also denote the generators of the Rr component of

NR×Rr. Denote by A the set

A = {m ∈MR | m + ei ∈ A for some i}.

Further, for i = 1, . . . , r, define

Ai = {m ∈MR | m + ei ∈ A}.
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We define S = A ∪ {ei | i = 1, . . . , r} and let

σS := Cone(Conv(S)) ⊆ σ∨
V .

If the cone σS has the property (r−P), then we note that we have a toric vector

bundle XΞ = tot(⊕r
i=1OXΣ′ (−Ti)) for a projective fan Σ′ with divisors Ti such that the

conditions in Definition 4.3.1 hold. In particular, σ∨
S = |Ξ| and so fi = ∑

m∈Ai
cmxm gives

a family of sections of Γ(XΣ′ ,OXΣ′ (Ti)). Consider a choice of coefficients cm ∈ C∗ such

that the section fi is generic for 1 ≤ i ≤ r. As the divisors Ti are basepoint free, we can

apply Bertini’s theorem to obtain a smooth complete intersection Zres := Z(f1, . . . , fr) in

XΣ′ . We consider the complete intersection Z in XΣ given by Z := Z(s1, . . . , sr) for the

choice of coefficients cm above and obtain the following result.

Theorem 4.3.7. Let XΣ,V , and σS be as above. If σS has the property (r−P), consider

Z and Zres as above. Then there is a categorical resolution of Db(coh Z) by the derived

category Db(coh Zres) associated to the complete intersection Zres in the toric stack [XΣ′ ].

Proof. Recall that σS ⊆ σ∨
V , and so

|Ξ| = σ∨
S ⊇ ((σV)∨)∨ = σV = |ΣV |.

Consider the primitive generators of rays in Σ′(1). Each primitive generator can be

interpreted as a point, and we denote these points by ν1, . . . , νk. Further, consider the

primitive generators of rays in ΣV(1), and denote the corresponding points by ν ′
1, . . . , ν ′

m.

Let L be the set {νi} ∪ {ν ′
j}. Then regular triangulations of Conv(L) correspond to

chambers in a GKZ fan ΣGKZ which is the secondary fan associated to the variety XΩ,

where Ω is a common refinement of Ξ and ΣV .

Then there is a chamber σres corresponding to XΞ in ΣGKZ . Indeed, there is a regular

triangulation Tres of Conv({νi}ki=1) which corresponds to XΞ in the secondary fan of

XΞ simply by performing a star subdivision on the r “central” rays (0, . . . , 0, 1, 0, . . . , 0),

. . . , (0, . . . , 0, 0, . . . , 0, 1). Now, as |Ξ| ⊇ |ΣV |, we have Conv({νi}ki=1) = Conv(L), so the
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triangulation Tres giving XΞ in its own secondary fan is also a triangulation of Conv(L).

The chamber in ΣGKZ associated to this triangulation Tres thus still corresponds to XΞ

and we denote it by σres. Its associated open affine is called Ures.

We claim that there is a chamber in ΣGKZ which corresponds to a partial compactifica-

tion of V . Firsty, note that there is a regular triangulation T0 of {ν ′
j}mj=1 which corresponds

to the vector bundle V in its own GKZ fan. Therefore, there is a weight function w0 defined

on {ν ′
j} giving that triangulation when projecting the lower facets of Conv((ν ′

j, w0(ν ′
j))mj=1).

We now extend this weight function w0 on Conv({ν ′
j}mj=1) to a weight function w1 on L by

setting w1(ν ′
j) := w0(ν ′

j) for j = 1, . . . , m and w1(v) to be big enough for v ∈ L \ {ν ′
j}mj=1.

Projecting the lower facets of the polytope Conv((v, w1(v)|v ∈ L) gives a regular sub-

division S of L which contains the triangulation T0 of {ν ′
j}mj=1. Refining to a regular

triangulation T1 can then be seen as an extension of T0. We denote by σpc the chamber of

ΣGKZ corresponding to T1, with associated open affine Upc. By construction, the variety

associated to σpc is a partial compactification of V .

Note that the superpotential w takes the form w = ∑r
i=1 uifi. As the cone |Ξ| is

Gorenstein with respect to the element (0, . . . , 0, 1, . . . , 1), we can apply Theorem 4.1.10

and obtain that Dabs([Ures, G, w]) ≃ Dabs([Upc, G, w]).

Next, we claim that Dabs([Uσres , G, w]) ≃ Db(coh Zres). To prove this claim, we want to

apply Proposition 4.1.11. For this, we check the conditions outlined in § 4.1.1 (the conditions

are listed before the statement of Proposition 4.1.11). Firstly XΞ is semiprojective by

construction, and |Ξ| = |Ξ| is tautological. ⟨m, uδ⟩ = 1 is also true for all rays δ, as the

cone is Gorenstein with respect to m. Finally, the fi defining a complete intersection

follows from the smoothness of the chosen section via Bertini. By Proposition 4.1.11, we

obtain that Dabs([Uσres , G, w]) ≃ Db(coh Zres).

Now, by Proposition 4.3.6 and the proof of Theorem 4.1.5, Dabs([Ures, G, w]) ≃

Db(coh Zres) is homologically smooth and dg-proper, as [∂w/G] is proper and ∂w ⊆ Z(w).
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We now have

Dabs([Upc, G, w]) ≃ Dabs([Ures, G, w]) ≃ Db(coh Zres),

and thus Dabs([Upc, G, w]) is homologically smooth and dg-proper. By the proof of Theorem

3.7 in [19], Dabs([Upc, G, w])←→ Db(coh Z) is thus a categorical resolution and we have a

categorical resolution

Db(coh Zres)←→ Db(coh Z),

as required.

Remark 4.3.8. If σS is the cone over the fan of an appropriate toric vector bundle itself,

the construction in the proof corresponds to a Batyrev-Borisov mirror.

Next, we examine when the cone σS has the required property (r−P). This will allow

us to make the Theorem applicable. In particular, we will see that existence of a crepant

categorical resolution in Theorem 4.2.1 is a consequence of Theorem 4.3.7. We start by

assuming that Conjecture 4.3.5 holds. Then we obtain the following result.

Conjecture 4.3.9. If Conv(S) is a Gorenstein polytope of index r, then σS has property

(r−P).

Sketch of a proof. Using Proposition 4.3.5, it is sufficient to show that σS is reflexive

completely split Gorenstein.

By (4.30), σS is Gorenstein with Gorenstein element nσS
= e1 + · · · + er. Applying

Proposition 2.1.27, we find that σS being reflexive of index k is equivalent to (σS)(1) being

a Gorenstein polytope of index k. But (σS)(1) = Conv(S), which by assumption is a

Gorenstein polytope of index r. Thus σS is a reflexive Gorenstein cone of index r.

We note that all elements of S are of the form m + ei for some m ∈ Ai ∪ {0}. Thus,

(e1, Conv(Ai ∪ {0})), . . . , (er, Conv(Ar ∪ {0})) generate σS. Letting ∆i = Conv(Ai ∪ {0}),

we have σS = Cone(∆1 ∗ · · · ∗∆r). Since the index of σS is r, the cone σS is therefore
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completely split. Therefore, σS is a reflexive completely split Gorenstein cone and thus,

by Conjecture 4.3.5, has property (r−P).

Combining Conjecture 4.3.9 and Theorem 4.3.7 gives the following Corollary.

Conjecture 4.3.10. If Conv(S) is a Gorenstein polytope of index r, then there is a

categorical resolution of Db(coh Z) given by a Batyrev-Borisov mirror.

Should Conjecture 4.3.5 not hold, we still obtain the following result.

Lemma 4.3.11. If Conv(S) is a Gorenstein polytope of index r such that Conv(S) and

Conv(S)∨ are integrally closed, then σS has property (r−P).

Proof. Using Proposition 4.3.4, it is sufficient to show that σS and σ∨
S reflexive completely

split Gorenstein.

By (4.30), σS is Gorenstein with Gorenstein element nσS
= e1 + · · · + er. Applying

Proposition 2.1.27, we find that σS being reflexive of index k is equivalent to (σS)(1) being

a Gorenstein polytope of index k. But (σS)(1) = Conv(S), which by assumption is a

Gorenstein polytope of index r. Thus σS is a reflexive Gorenstein cone of index r, and so

is σ∨
S by definition of reflexivity.

We note that all elements of S are of the form m + ei for some m ∈ Ai ∪ {0}. Thus,

(e1, Conv(Ai ∪ {0})), . . . , (er, Conv(Ar ∪ {0})) generate σS. Letting ∆i = Conv(Ai ∪ {0}),

we have σS = Cone(∆1 ∗ · · · ∗∆r). Since the index of σS is r, the cone σS is therefore

completely split.

Since Conv(S) and Conv(S)∨ are both integrally closed and Conv(S) is a Gorenstein

polytope of index r, Lemma 4.3.3 implies that Conv(S) and Conv(S)∨ are Cayley polytopes

associated to nef-partitions. Since Conv(S) is associated to a nef-partition, σ∨
S is completely

split by Proposition 2.12 in [20]. Therefore, σS and σ∨
s are reflexive completely split

Gorenstein cones and thus, by Proposition 4.3.4, σS has property (r−P).

Combining this with Theorem 4.3.7, we obtain the following Corollary.
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Corollary 4.3.12. If Conv(S) is a Gorenstein polytope of index r such that Conv(S) and

Conv(S)∨ are integrally closed, then there is a categorical resolution of Db(coh Z) given

by a Batyrev-Borisov mirror.

Remark 4.3.13. We can put Z = Z(Q1,n,λ, Q2,n,λ) ⊆ P2n−1 /Gn from Section § 4.2 into

the setup above. We note that the set S associated to Q2,n,λ ⊕Q1,n,λ is

{ei+e2n | 1 ≤ i ≤ n}∪{ei+e2n+1 | n+1 ≤ i ≤ 2n−1}∪{−e1+· · ·−e2n−1+e2n+1}∪{e2n, e2n+1},

where {ei | 1 ≤ i ≤ 2n + 1} is the standard basis for Z2n−1⊕Z2. Conv(S) is a Gorenstein

polytope of index 2, and thus Conjecture 4.3.10 would apply.

Furthermore, one can construct the cones σS and σ∨
S and check that they are indeed

both reflexive Gorenstein and completely split, so we can also apply Proposition 4.3.4

directly to obtain the property (r−P), which by Theorem 4.3.7 gives the existence of a

categorical resolution.
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CHAPTER 5

FURTHER DIRECTIONS OF RESEARCH

In this chapter, we will talk about further directions of research that the author has

considered during their PhD, extending the work exhibited in the previous chapters of

this thesis. These directions of research are based on f -duality, see § 2.3.3.

5.1 f-duality from a VGIT perspective

In this section we elaborate on the Remark 3.3.4 and show that the mirror construction

by Libgober and Teitelbaum naturally fits into the context of f -duality. By comparing

this to the computations in § 3, we will see that applying f -duality to the Libgober-

Teitelbaum corresponds to constructing a toric vector bundle and considering it under

partial compactifications and VGIT.

To fit the Libgober-Teitelbaum construction into the context of f -duality, we recall

its toric representation from § 3. In particular, recall Proposition 3.3.1, giving a fan for

P5 /G81, as well as the divisors Da, Db appearing in Corollary 3.3.3. We shall represent the

Libgober-Teitelbaum variety as framed toric variety via the pair (XLT ,−KXLT
= Da+ Db).

Here, writing the anticanonical divisor as sum Da + Db gives a partition and we can

apply the f -duality algorithm for complete intersections, see § 2.3.3 (page 61). The

computations were done using SAGE.
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The polytopes associated to the partitioned ftv (XLT ,−KXLT
= Da + Db) are

∆−KXLT
= Conv(

(5
3 ,−1

3 ,−1
3 , 0, 0

)
,
(
−1

3 ,
5
3 ,−1

3 , 0, 0
)

,
(
−1

3 ,−1
3 ,

5
3 , 0, 0

)
,(1

3 ,
1
3 ,

1
3 , 2, 0

)
,
(1

3 ,
1
3 ,

1
3 , 0, 2

)
,
(
−5

3 ,−5
3 ,−5

3 ,−2,−2
)

)

∆a = Conv(
(2

3 ,−1
3 ,−1

3 , 0, 0
)

,
(
−1

3 ,
2
3 ,−1

3 , 0, 0
)

, (−1,−1,−1,−1,−1),

(0, 0, 0, 0, 1), (0, 0, 0, 1, 0),
(
−1

3 ,−1
3 ,

2
3 , 0, 0

)
)

∆b = Conv((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(1

3 ,
1
3 ,

1
3 , 1, 0

)
,(1

3 ,
1
3 ,

1
3 , 0, 1

)
,
(
−2

3 ,−2
3 ,−2

3 ,−1,−1
)

).

We define the polytope

∆̂−KXLT
= Conv(∆a, ∆b).

In this case, we obtain the framing polytope

[∆−KXLT
] = Conv((−1,−1,−1,−1,−1), (0,−1,−1,−1,−1), (−1, 0,−1,−1,−1),

(−1,−1, 0,−1,−1), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1),

(0, 0, 1, 1, 0), (0, 0, 1, 0, 1)).

Next, note that

[∆a] = Conv((−1,−1,−1,−1,−1), (0, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)),

[∆b] = Conv((0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)).

As described in the f -duality algorithm, we indeed have [∆a] ∩ [∆b] = {0} and 0 ∈

Int(∆(XLT ,−KXLT
)), where ∆(XLT ,−KXLT

) = [∆a + ∆b] = [∆−KXLT
] is the framing

polytope.
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Hence, we obtain the polytope

∆̂(XLT ,−KXLT
) = [∆̂−KXLT

] = Conv((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1), (−1,−1,−1,−1,−1)).

The face fan of ∆(XLT ,−KXLT
) is the standard fan for P5, with fan matrix

Λ̂−KXLT
=



1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


.

We compute the two matrices

M̂a =


3 0 0 −1 −1

0 3 0 −1 −1

0 0 3 −1 −1

 · Λ̂−KXLT
=


3 0 0 −1 −1 −1

0 3 0 −1 −1 −1

0 0 3 −1 −1 −1

 ,

M̂b =


−1 −1 −1 3 0

−1 −1 −1 0 3

−1 −1 −1 0 0

 · Λ̂−KXLT
=


−1 −1 −1 3 0 0

−1 −1 −1 0 3 0

−1 −1 −1 0 0 3

 .

By inspection, the minimum non-negative column vectors in the next step of the

algorithm are

b1 =



0

0

0

1

1

1



, and b2 =



1

1

1

0

0

0



.
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So the f -dual to (XLT , Da + Db) is (P5, b1 + b2). Thus, following Definition 2.3.12,

we obtain that Z(Q1,λ, Q2,λ) ⊆ P5 is a f -mirror partner of VLT,λ = Z(Q1,λ, Q2,λ) ⊆ XLT

(recalling Q1,λ, Q2,λ from the Libgober-Teitelbaum construction § 2.3.2).

Since P5 is Fano and the two divisors that make up the framing sum to the anticanonical,

§3.1 of [44] claims that the f -dual of (P5, b1 +b2) should correspond to the Batyrev-Borisov

mirror of Z(Q1,λ, Q2,λ) ⊆ P5. Further, this should lead to a calibrated f -process and thus

to an involutive relationship between (P5, b1 + b2) and the Batyrev-Borisov mirror. In the

following, we shall verify this.

The polytopes associated to the framing divisors are

∆b1 = Conv((3, 0, 0,−1,−1), (0, 3, 0,−1,−1), (0, 0, 3,−1,−1),

(0, 0, 0, 2,−1), (0, 0, 0− 1, 2), (0, 0, 0,−1,−1)),

∆b2 = Conv((2,−1,−1, 0, 0), (−1, 2,−1, 0, 0), (−1,−1, 2, 0, 0),

(−1,−1,−1, 3, 0), (−1,−1,−1, 0, 3), (−1,−1,−1, 0, 0)),

∆̂b = Conv(∆b1 , ∆b2).

Checking the conditions, we see that

2⋂
k=1

[∆bk
] = {0} and 0 ∈ Int(∆(P5, b1 + b2)),

where ∆(P5, b1 + b2) = [∆b1 + ∆b2 ]. Hence, we obtain ∆̂(P5, b1 + b2) = [∆̂b] and we have

0 ∈ ∆̂(P5, b1 + b2).

The face fan Σb̂ of ∆̂(P5, b1 + b2) has the same rays as X∇ in Proposition 3.2.3. The
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fan matrix is

Λ̂b̂ =



3 0 0 −1 −1 −1 2 −1 −1 0 0 0

0 3 0 −1 −1 −1 −1 2 −1 0 0 0

0 0 3 −1 −1 −1 −1 −1 2 0 0 0

−1 −1 −1 3 0 0 0 0 0 2 −1 −1

−1 −1 −1 0 3 0 0 0 0 −1 2 −1


.

In fact, the face fan Σb̂ is precisely the normal fan to ∇ considered in the proof to

Proposition 3.2.3 in § 3.2. Computing the framing, we obtain the following two matrices:

M̂a,b,1 =


3 0 0 −1 −1 −1 2 −1 −1 0 0 0

0 3 0 −1 −1 −1 −1 2 −1 0 0 0

0 0 3 −1 −1 −1 −1 −1 2 0 0 0

 ,

M̂a,b,2 =


−1 −1 −1 3 0 0 0 0 0 2 −1 −1

−1 −1 −1 0 3 0 0 0 0 −1 2 −1

−1 −1 −1 0 0 3 0 0 0 −1 −1 2

 .
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This gives the non-negative column vectors

c1 =



0

0

0

1

1

1

1

1

1

0

0

0



and c2 =



1

1

1

0

0

0

0

0

0

1

1

1



.

Thus the f -dual to (P5, b1 + b2) is (X∇, c1 + c2).

Finally, we will check that the f -dual to this partitioned ftv (X∇, c1+c2) is (P5, b1+b2),

i.e. that f -duality is involutive in this case.

Note that the polytopes associated to the framing are

∆c1 = Conv((1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 0)) = [∆b],

∆c2 = Conv((0, 0, 0, 0, 0), (−1,−1,−1,−1,−1), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)) = [∆a] .

Therefore, following through with the f -duality algorithm will lead to the same result

as when we considered the partitioned ftv (XLT ,−KXLT
= Da + Db). Since this result is

(P5, b1 + b2), we have shown that we are now indeed in an involutive loop. Summarising,
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applying f -duality gives the following sequence:

VLT,λ Z(Q1,λ, Q2,λ) ⊆ P5 Zλ ⊆ X∇

(XLT ,−KXLT
= Da + Db) (P5, b1 + b2) (X∇, c1 + c2).

f−dual f−dual

f−dual f−dual

The above computations relate to the ones in § 3, when we constructed XLT torically.

Applying f -duality to (P5 b1+b2) corresponds to applying the Batyrev-Borisov construction

(as noted by Rossi in [44]). However, we note that this is equivalent to considering the

cone σ over the toric vector bundle tot(OP5(−3) ⊕ OP5(−3)) and constructing its dual

cone σ∨. Attach the vectors cT1 , cT2 as rows to the fan matrix Λ̂b̂, and consider its columns

as primitive generators for 12 rays. These rays are the generators of the cone σ∨.

An interesting question is to consider under what circumstances in general applying

f -duality corresponds to taking the dual of a cone over a toric vector bundle. This would

provide a natural setting to apply methods of VGIT to the underlying vector bundles,

allowing to obtain relations between associated derived categories as in § 3,4 of this thesis.

Obtaining relations between derived categories would be helpful in establishing under

what conditions applying f -duality can be expected to yield mirror partners.

Remark 5.1.1. In their recent paper [46], Rossi has been building on the paper [36] by the

author of this thesis, examining when f -duality can be used to obtain equivalences between

derived categories. This has been related to the Bondal-Orlov-Kawamata conjecture,

giving empirical evidence of it in a number of examples. It would be a worthwhile project

to continue this work and use the results of this thesis to strengthen the notion of f -

duality, which can potentially lead to some bigger unification results in the study of mirror

symmetry for toric varieties.
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5.2 f-duality and the Gross-Siebert program

Another formulation of mirror symmetry is due to Gross and Siebert, first introduced in

the paper [27], and is known as the Gross-Siebert program. The underlying motivation for

the Gross-Siebert program was to produce a method of constructing mirror pairs which

combines the Strominger-Yau-Zaslow (SYZ) approach with the Batyrev-Borisov approach.

The SYZ approach to mirror symmetry has a differential geometric flavour, whereas the

Batyrev-Borisov approach (as we illustrated in § 2.3.1) is algebro-geometric. We focus on

the earlier parts of the Gross-Siebert program, which treat toric degenerations. To a toric

degeneration of Calabi-Yau varieties X → S, one can associate an integral affine manifold

with singularities B, known as the dual intersection complex. If additionally, there is a

polarization of X → S by a relatively ample divisor, then we obtain a convex, piecewise

linear multi-valued function φ. Gross and Siebert defined a notion of discrete Legendre

transform, which led to a new affine manifold with singularities B̌ and a new function

φ̌. This B̌ is the dual intersection complex of a new degeneration X̌ → S. This new

degeneration is studied and its special fibre X̌0 is supposed to give us an element of the

mirror family by smoothing it.

In [25], Gross proves that the Batyrev-Borisov mirror construction is a case of a

discrete Legendre transform, giving rise to toric degenerations. Given a nef-partition

∆ = ∆1 + · · ·+∆r with a dual nef-partition ∇ = ∇1 + · · ·+∇r, Gross defines integral affine

manifold with singularities B∆, B∇ together with polyhedral decompositions P∆,P∇. He

then equips B∆, B∇ with piecewise linear functions φ̌∆, φ∇ and proves that (B∆,P∆, φ̌∆)

is the discrete Legendre transform of (B∇,P∇, φ∇) in the sense of [27], further defining a

toric degeneration associated to ∆ = ∆1 + · · ·+ ∆r with dual intersection complex B∇,P∇.

With f -duality being an extension to the polar duality which is at the core of the

Batyrev-Borisov construction, the natural question to ask is whether the methods of Gross

can be modified to apply to f -duality.
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Vol. 270. Progr. Math. Birkhäuser Boston, Boston, MA, 2009, pp. 503–531.

[41] D. Orlov. “Derived categories of coherent sheaves and triangulated categories of

singularities”. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II.
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