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ABSTRACT

Privacy protection is a rising concern that gained increasing attention over the past decade

due to the widespread of machine learning applications. Differential privacy (DP) is an

emerging notion of privacy that provides a rigorous information-theoretic privacy guaran-

tee. While DP is a very useful privacy guarantee many practitioners aim to achieve, DP

algorithms typically require more data samples to perform well. Moreover, the magnitude

of the injected noise from DP can scale with the dimensionality, hence further increas-

ing the difficulty of private learning in high dimensions. In addition, high-dimensional

learning also incurs problem it-self known as ‘the curse of dimensionality’.

The notion of compressed learning that aims to achieve a low-dimensional representation

of the high-dimensional data samples has shined some light on this problem. However,

although the notion of random projection has pre-existed for a long time, little is known

about randomly compressed models in the DP framework. In this thesis, we develop

theories that quantify the effect of random projections on the learning performance, and

the excess error that privacy incurred. The theory developed in this thesis demonstrates

the interplay between generalisation performance, random projection and differential pri-

vacy. We quantify the effect of random projection and the effect of DP implementation

on the generalisation performance of learning algorithms. We show that random projec-

tion can reduce the magnitude of the required noise injection in DP algorithms while also

exploiting structure, which results in a reduced dimensionality dependence on generalisa-

tion guarantees. Finally, we also introduce a novel machine ensemble with known in-built

structure-exploiting capability, which utilises the privacy budget efficiently and is able to

use the assistance of unlabelled data samples to boost accuracy performance without the

compression of data samples.
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“One, remember to look up at the stars and not down at your feet.

Two, never give up work. Work gives you meaning and purpose and life is empty without

it.

Three, if you are lucky enough to find love, remember it is there and don’t throw it

away.”

– Stephen Hawking
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Chapter One

Introduction

1.1 Motivation

The term ‘Machine Learning’ (ML) refers to the study of pattern recognition and making

predictions based on previously observed data, which is the analogue of human ‘learning’

from past ‘experience’. ML algorithms typically aim to output a good-performing pre-

dicting function, ĥ, from a function class H that is tailored to solve a specific task. As

pointed out by the ‘No-Free-Lunch Theorem’, there does not exist a model that works

perfectly for every problem [137]. ML can be divided into sub-branches as ‘supervised

learning’, ‘unsupervised learning’, ‘semi-supervised learning’, ‘active learning’, etc, de-

pending on what kind of information is available to the learner during the training phase

(picking a good predictor ĥ from H). Since the underlying data distribution, D is usually

unknown, the training is done by observing a finite set S of identically and independently

distributed (i.i.d.) sample points from D.

Due to the increasingly wide applications of ML algorithms nowadays, concerns about

data privacy have rise a considerable amount of attention over the past decade. The

observations used to train ML models may contain sensitive information that the data

subject does not want to disclose to the public or any third parties. For example, medical

records and financial records contain confidential information but they are very useful for

medical/financial analysis. This creates a conflict between the data subject and the data
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collector. Intuitive methods to protect data privacy such as anonymizing names or only

publishing ‘summarised statistics’ has proven unsafe from attacks, even if we only care

about the privacy of a small subset of a very large sample set [45, 125, 103]. A partic-

ularly innovative and popular approach to a solution of learning privately is differential

privacy (DP), which has been initially introduced by Dwork [50] and has gained much

attention in the field. Differential privacy provides a rigorous mathematical definition of

privacy that we can implement in ML algorithms and provide a privacy guarantee. In

simple words, DP is a promise, made by the data holder to the data subject: ‘You will

not be affected, adversely or otherwise, by allowing your data to be used in any study or

analysis, no matter what other studies, data sets, or information sources, are available’

[48]. DP algorithms allow their outputs to be published and shared across multiple parties

to carry out useful analyses or studies, due to the properties of DP guarantee. The key

to implementing DP in a learning algorithm is by injecting controlled randomisation into

key steps of the algorithm. However, while these randomisations are controlled with a

carefully designed distribution, there are some issues that it brings: 1) Repeated queries

to the private samples reduce privacy guarantee meaning that we can only query the

sample set a limited number of times. 2) Variance of randomisation depends on the sensi-

tivity of the query, hence queries that are very dependent on a particular sample are very

expensive in privacy (e.g. the range of samples). 3) The variance of the randomisation

also depends on the number of samples n, which means that the variance can be large if

n is small and overwhelm the true signal.

Although these are risks we have to cope with in all DP applications, the issues become

even worst in high-dimensional learning, which is the setting when the data samples have

a large number of attributes. Consider the following two common scenarios of high-

dimensional learning:

1) The data samples are cheap and easy to collect, hence the number of samples n and the

dimensionality d are both large. In this case, DP is less likely to significantly worsen the

accuracy performance of the learning algorithm. However, the time and space complexity

of large-scale high-dimensional problems is a common concern, and DP can add further

2
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time and space complexity to the algorithm due to the added randomisation process.

2) Another scenario is when the data sample is high-dimensional but expensive/difficult

to collect. This is especially the case for private and sensitive data, as people are less

likely to participate in data collection if it is confidential. In this case, the number of

samples n can be less than the dimensionality d, which is a difficult learning situation due

to the lack of samples. It is known that the number of samples required for training grows

exponentially with the dimension [5, 67]. DP algorithms, however, typically require more

samples than their non-private versions to achieve similar accuracy performance due to

the added randomisation [55, 34].

Unfortunately, the price of the DP guarantee is higher for high-dimensional problems as it

worsens the issue with high-dimensional data samples in both scenarios discussed above.

As an example, injecting a noise vector into the key computations of the algorithm is a

common step for DP algorithms. While this noise vector has a Euclidean norm very close

to zero at small dimensions, the Euclidean norm of the noise vector at higher dimensions

scales with order
√
d. [120]

While there exist many dimensionality reduction techniques that aim to reduce the di-

mension of the data, data-independent methods will be more suitable in the privacy

setting because we do not need to ‘privatize’ the dimensionality reduction process. Ran-

dom projection (RP), in particular, is a very useful dimensionality reduction technique if

the sample set has a simple structure (low-dimensional structure). Real high-dimensional

data sets such as medical imaging and signal processing have a low-dimensional structure

but they are embedded in a higher dimension. Random projection provides a simple,

efficient and non-adaptive approach to achieve a low dimensional representation of the

data set. The non-adaptive approach means that the dimensionality reduction does not

depend on the data samples S, hence privacy bleach is not a concern when publishing the

random projection step as part of our learning algorithm. By generating a suitable ran-

dom matrix as a random projector, we can transform the high-dimensional data samples

into a low-dimensional subspace such that, all Euclidean distances between the sample

points are preserved with high probability [94, 89].
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This fantastic property allows us to perform distance-related learning algorithms such as

Nearest Neighbours with the projected samples only, which is commonly referred to as

‘compressed learning’ in the literature. In other words, if the data samples are contained

in a low-dimensional structure, then we can learn a model in the low dimension that is as

good as we could get using the original data. For private learning, this can be especially

useful because we can also potentially reduce the dimensionality of the noise vector, which

can reduce the magnitude of the noisy vector and improve accuracy.

Although existing work has studied the condition where random projection can be applied

[43, 89, 18] without ruining utility, it is still unclear how random projection affects learn-

ing performance, especially in the privacy setting. In this thesis, we study this problem

by analysing the effect of compressed learning on the generalisation guarantee of learning

algorithms. We focus on random projection as a data-compressing technique and analyse

its effect on both private and non-private learning. It is intuitive that DP models are

likely to be sub-optimal as they can never do better than non-private models due to the

added randomisation for privacy guarantees. Despite randomisation has been seen as a

technique towards increasing the diversity of model selection in ML, e.g. random forest

[26] and extreme random trees [59], and to increase learning efficiency as for Stochastic

Gradient Methods [19], the randomness invoked in DP algorithm is typically where the

key computations lie and hence usually decreases accuracy performance. Nevertheless, it

is very important and useful to understand the excess error that privacy brings, as well

as the trade-off between privacy and accuracy.

1.2 Research questions

In this thesis, we are interested in the interplay among random projection, privacy guar-

antee and generalisation guarantee of learning models. Research questions that we would

like to investigate include:

• To what extent does differential privacy affect the generalisation performance of

private classification? What are the key factors that control the randomisation

4
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required of DP algorithms?

• To what extent does random projection affect the generalisation performance of

non-parametric classification compared to high-dimensional models? What type of

data geometry is able to preserve the accuracy performance for compressed models?

• Does random projection affect the generalisation of private models? What is the

achievable error convergence rate with respect to the number of samples n for com-

pressed private models?

1.3 Contributions of the thesis

The main contributions of this thesis are the theoretical results of compressed classi-

fication models and differentially private predictors. We start with the generalisation

guarantee of non-parametric algorithms with random projection in Chapter 4. We prove

the generalisation error guarantee of the famous k-Nearest Neighbour (kNN) algorithm

under compressed learning with random projections, which has not been studied before

except in the k = 1 case. We introduce the histogram classifier which is a non-parametric

classifier that can be seen as an efficient approximation of kNN. We show that the his-

togram classifier can achieve the optimal convergence rate but can also further improve

in the realizable case. Furthermore, we show that random projection can improve the

dimensionality dependence of its generalisation bound, where we have also investigated

the variations of data geometry that allowed the histogram classifier to learn well with

randomly projected samples. We proposed a modified histogram classifier that uses a

neighbour search in sparse regions to avoid over-fitting in higher dimensions.

In Chapter 5, we introduce approaches to modify the kNN algorithm and the histogram

classifier so that the trained model satisfies differential privacy. We analyse the generalisa-

tion performance of the private classifiers in expectation over the randomness of drawing

an i.i.d. sample set from the data distribution and the randomness injected for privacy.

We show that the privacy classifier achieves the same generalisation error convergence

with respect to the number of samples. In particular, if the level of privacy guarantee
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approaches zero, then we can recover the exact same rate of convergence as we have ob-

served from the non-private models. Furthermore, we show that random projection can

improve the dimensionality dependence of their generalisation convergence similar to the

non-private models in Chapter 4. More interestingly for the histogram classifier, random

projection reduces the dimensionality of the injected noise by training with compressed

samples in a lower-dimension space. Hence decreasing the magnitude of the norm of the

injected noise vector.

In Chapter 6 we turn our focus to gradient descent methods with randomly projected

(compressed) gradients (CompSGD) which can be used to train parametric models such

as logistic regression. By using random projection to project the gradient vector, we can

perform each gradient update in a lower dimension while keeping track in the original

dimension by ‘lifting’ the updated vector back to the original space. We show that us-

ing only the projected gradient we can achieve ‘almost optimal’ optimisation convergence

compared to classic SGD (up to log factors). Furthermore, we give the first analysis of

the generalisation performance of CompSGD by proving the uniform stability bound. We

further extend the optimisation and generalisation analysis to two variants of CompSGD

that uses batch gradient and randomly sampled mini-batch gradients respectively. The

result obtained for the variants matches the same convergence rate for non-projected

methods up to logarithmic factors.

In Chapter 7 we study the compressed gradient method in the differentially private set-

ting. We prove the first optimisation and stability bound of gradient descent with ran-

domly projected gradients. From this, we obtain the first generalisation results for DP

compressed gradient descent. We also extend the analysis to DP-compressed SGD with

mini-batches and observed that DP-CompGD has a better optimisation convergence de-

spite the generalisation convergence being the same with mini-batch. In the case where

the level of privacy guarantee approaches zero, we recover the error bound obtained in

Chapter 6 for the non-private models. Furthermore, we show that the dimensionality

dependence induced from DP is reduced by compressing the gradients at each gradient

update, as randomized noise can now be injected at a lower dimension.
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In Chapter 8 we investigate an alternative method of noise-efficient private learning besides

compressing the data samples using random projection. We proposed a new framework

that builds DP ensemble classifiers using a semi-randomized tree construction. We invoke

a median-based splitting criterion to build trees with a balanced structure, which can

balance out added noise in each region of the sample space. We show that by using a

geometric-scaling privacy budget allocation technique we can improve the accuracy of the

median computation, which further improves accuracy performance. We show that our

framework naturally extends to semi-supervised learning, and hence takes advantage of

unlabelled data samples that are potentially cheaper to collect than labelled samples. We

demonstrate the effect of having an additional unlabelled sample on the final accuracy

performance, the improvement in accuracy is particularly significant for smaller sample

sets or when a strong privacy guarantee is required. Empirically we show that our pro-

posed method significantly improved the accuracy performance of DP classifiers with a

similar structure.

The rest of the thesis is organised as follows. Chapter 2 provides a brief summary of the

main background knowledge, including key definitions and results of learning theory, ran-

dom projections and differential privacy. Chapter 3 summarizes the background literature

and the state-of-the-art related to random projections and differentially private learning.

The last main chapter, Chapter 9 will summarize the results presented in this thesis and

discuss the open problems left for future research. Finally, the rest of the chapters (4, 5,

6, 7 and 8) are described in the previous section.
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Chapter Two

Mathematical Background

In this chapter, we give a short summary of the mathematical backgrounds and tools that

provide the foundation of our research. Many of these ideas are well-known and widely

used in machine learning. The main topics are statistical learning theory, differential

privacy and random matrix theory.

2.1 Statistical learning theory

Statistical learning theory is a framework that allows us to study the properties of learning

algorithms using statistical tools, where the results are usually presented in the form of

error bounds. There are various forms of error bounds that provides useful information

about the properties of the learning algorithms such as how “good” an algorithm is or

how “complex” the learning problem is. Here, the definition of “good” and “complex” can

be interpreted differently using different notions of measurements. In this section, we will

be mainly looking at generalization bounds and the techniques we can use to derive tight

error bounds. Many works exist to date on providing error bounds on various problems

using the fundamental concepts and techniques presented in this section repeatedly.
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2.1.1 Generalization bounds

Generalization bounds provide important information on how well the learning model

generalizes to new/unseen samples, typically on the performance in the worst-case scenario

and the rate of convergence with respect to the size of the training set. Models that

perform well on the training set but badly on new test points are said to be over-fitted.

Since the testing error of a model is arguably the most important accuracy measure,

this makes the study of generalization bounds important and meaningful. To formalize

the idea of generalization errors, we consider the following general setting of supervised

learning: Let X be a feature space containing d features (or attributes) and Y denote the

label space (we usually let X ⊂ Rd and Y = {0, 1} for binary classification). For some

arbitrary unknown probability distribution D over some sample space Z ⊆ X ×Y , where

each Z ∈ Z consists of d attributes and a label, we denote by S = {Z1, . . . , Zn} a finite

sample set of size |S| = n drawn independently and identically distributed (i.i.d.) from

D. Let H denote an arbitrary hypothesis class. A learning algorithm A receives as input

a training sample set S and outputs a predictor ĥ. For a sample Z ∈ Z, we quantify the

quality of a hypothesis ĥ ∈ H with respect to Z using a loss function ℓ : H × Z → R+,

where R+ is the set of non-negative reals. Examples of common loss functions include the

0-1 loss, squared loss, logistic loss, hinge loss, etc. For a given loss function ℓ, we aim to

minimize the generalization loss with respect to D defined as:

LD(h) = EZ∼D[ℓ(h, Z)]. (2.1)

Since in most cases the distribution D is unknown, a strategy is to minimize its empirical

analogue using the finite sample set S defined as:

LS(h) =
1

n

n∑
i=1

ℓ(h, Zi). (2.2)

LS(h) is often referred to as the empirical risk or the training error of h and LD(h) is

often referred to as the true risk or the generalization error of the h. The learning process
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via minimizing the empirical risk is called the Empirical Risk Minimization (ERM). We

now demonstrate the theory of PAC (Probably Approximately Correct) learning which

shows that if the hypothesis ĥ is the output of an ERM, then its true risk is also small

with high probability (given also that H satisfies certain conditions). The definition of

PAC learning is given as follows.

Definition 1 (Agnostic PAC Learnability [115]). A hypothesis class H is agnostic PAC

learnable with respect to a set Z and a loss function ℓ : H × Z → R+, if there exists a

function nH : (0, 1)2 → N and a learning algorithm with the following property: For every

ϵ, δ ∈ (0, 1) and for every distribution D over Z, when running the learning algorithm on

n ≥ nH(ϵ, δ) i.i.d. examples generated by D, the algorithm returns h ∈ H such that, with

probability of at least 1− δ (over the choice of the n training examples),

LD(h) ≤ min
h′∈H

LD(h
′) + ϵ.

The number nH(ϵ, δ) here is often referred to as the sample complexity, which is the

smallest number of samples required to guarantee (2.2) holds. We also denote h∗ ∈ H as

the best performing hypothesis in H:

h∗ = argmin
h∈H

LD(h). (2.3)

Note: The definition provided here is agnostic PAC learnability. PAC learnability has

the additional assumption that there exists a ‘perfect’ hypothesis in the class which has

zero error (i.e. LD(h
∗) = 0). However, the two classes are equivalent from the result of

VC theory [115].

In machine learning, one of the typical tasks is to choose a hypothesis from a hypothesis

class with the best performance, and one way to accomplish this is to consider the empir-

ical risk of the hypothesis. However as mentioned before, a model that performs well on

the training set may not necessarily generalize well to testing samples due to over-fitting.

The following result from PAC theory ensures that over-fitting does not happen if we have
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a sufficiently large training set.

Theorem 2.1 ([115]). Let H be a finite hypothesis class, let Z be a domain, and let

ℓ : H × Z → [0, 1] be a loss function. Then, the hypothesis class is agnostically PAC

learnable using the ERM algorithm with sample complexity

nH(ϵ, δ) ≤
⌈
2 log(2|H|/δ)

ϵ2

⌉
.

This is a strong and useful result as it ensures that our hypothesis output from the ERM

will generalize well on unseen sample points, and it provides useful information on how

large the training set needs to be. The drawback is that the sample complexity grows

logarithmically with the size of the hypothesis class which may be problematic for large

classes and not applicable to non-finite classes, this issue can be addressed by using the

notion of uniform convergence and VC dimensions [115].

One of the cause of over-fitting is that the sample set we obtained has a distribution that

is far from its true underlying distribution. i.e. the sample set is a bad representation

of the true underlying distribution. Hence if we have a more representative sample set

then the chance of over-fitting will be relatively smaller, this is the intuition of uniform

convergence is formalised as the following:

Definition 2 (ϵ-representative sample [115]). A training set S is called ϵ-representative

(w.r.t. domain Z, hypothesis class H, loss function ℓ, and distribution D) if

∀h ∈ H, |LS(h)− LD(h)| ≤ ϵ. (2.4)

If we have a representative sample set, then the approximation of the underlying distri-

bution calculated with the given sample set wouldn’t be too far off the true distribution.

Hence any hypothesis that performs well on this approximation well enough should also

have a good performance on the true distribution. This argument is stated formally in

the following lemma.
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Lemma 2.2 ([115]). Assume that a training set S is ϵ/2-representative. Then, any output

of ERMH(S), namely, any ĥ ∈ argminh∈H LS(h), satisfies

LD(ĥ) ≤ min
h∈H

LD(h) + ϵ. (2.5)

By the law of large numbers, if we have a sufficiently large sample set, we should be fairly

confident that our sample set is a representative sample of the underlying distribution.

The question is, how large will be sufficiently large? And for a sample set of given size n,

how confident are we that the sample set is a representative sample set? This confidence

level is formalised by the uniform convergence notion:

Definition 3 (Uniform convergence [115]). We say that a hypothesis class H has the

uniform convergence property if there exists a function nUC
H : (0, 1)2 → N such that for

every ϵ, δ ∈ (0, 1) and for every probability distribution D over Z, if S is a sample of

n ≥ nUC
H examples drawn i.i.d. according to D, then, with probability of at least 1− δ, S

is ϵ-representative.

From here we can conclude that if a hypothesis class H has the uniform convergence

property then it also satisfies the PAC learnability (but with a different ϵ parameter) and

hence we can provide error bounds of the hypothesis with a high probability. The number

of samples required to guarantee ϵ-representative with high probability is given by the

function nUC
H which depends on the hypothesis class H.

2.1.2 Stability and generalization

The stability of a learning algorithm has close relations to its generalization performance.

Intuitively, a learning algorithm A is considered to be a stable algorithm if a small change

in the inputs does not affect the output of the algorithm by too much. Recall that we are

interested to output a hypothesis ĥ ∈ H that minimizes the empirical risk in the context

of ERM. As seen in the previous section we often analyse the generalization risk of ĥ by

comparing it to the risk of the best-performing hypothesis h∗. Hence we can considering
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the excess generalization error : LD(ĥ)−LD(h
∗), which is the difference between the true

(generalization) risk of the output hypothesis and the best hypothesis in H. The expected

excess generalization error can be decomposed into two separate terms:

ES,A[LD(ĥ)− LD(h
∗)] = ES,A[LD(ĥ)− LS(ĥ)] + ES,A[LS(ĥ)− LS(h

∗)], (2.6)

where the expectation is taken over the random draws of samples in S and randomness

in algorithm A. The first term of the decomposition is called the estimation error due

to sampling of S and the second term is the optimization error induced by minimizing

the empirical risk. The stability properties of the algorithms have a strong connection to

their generalization, as stability allows us to understand the scale of the estimation error.

The notion of stability that we will employ is uniform stability. Uniform stability is a

widespread stability measure that drives powerful analysis [51, 66].

Definition 4 (Uniform stability). An algorithm A is ϵ-uniformly stable if for all S, S ′ ∈

Zn that differ by at most one example, we have

sup
Z

EA [|ℓ(A(S), Z)− ℓ(A(S ′), Z)|] ≤ ϵ. (2.7)

If A is uniformly stable then we denote by ϵstab the infimum over all ϵ in which (2.7) holds.

Throughout this thesis, we will consider stability in the setting where we have two neigh-

bouring sample sets S, S ′ differing in one point. The following powerful theorem connects

uniform stability and generalization:

Theorem 2.3 ([116]). If algorithm A is ϵstab-uniformly stable, then

|ES,A [LD(A(S))− LS(A(S))]| ≤ ϵstab. (2.8)
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2.2 Properties of functions

In the theoretical analysis of this thesis, we will be required to exploit some key proper-

ties of functions that implies useful results. In this section, we present some important

properties of functions that we will use in many parts of our theory.

Definition 5 (Lipschitzness). Let X ⊆ Rd. A function f : X → Rm is L-Lipschitz with

respect to the norm ∥ · ∥ over X if ∀x, x′ ∈ X we have for L ≥ 0 that

∥f(x)− f(x′)∥ ≤ L∥x− x′∥. (2.9)

Lipschitzness is an important property that we will use in the majority of the chapters

throughout this thesis. Lipschitzness of a function f guarantees that the difference be-

tween function values is bounded by a constant multiple of the distance of their inputs.

Note that the metric norm in the domain and codomain space can be different in the

definition of Lipschitzness. For our purpose, we are mainly interested with respect to the

ℓ2 norm unless otherwise specified.

Definition 6 (Convexity). Let X ⊆ Rd. A differentiable function f : X → R is convex

over X if ∀x, x′ ∈ X we have that

f(x) ≥ f(x′) + ⟨x− x′,∇f(x′)⟩. (2.10)

Definition 7 (Smoothness). Let X ⊆ Rd. A differentiable function f : X → R is µ-

smooth on X ⊆ Rd if ∀x, x′ ∈ X we have

∥∇f(x)−∇f(x′)∥ ≤ µ∥x− x′∥. (2.11)

Note that smoothness of f is also equivalent to Lipschitzness of the first-order gradient

function of f . In the case where a function f is both convex and smooth, we can derive
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some very useful inequalities.

Theorem 2.4 ([104]). Let f : Rd → R be a convex and µ-smooth function. We have

∀x, y ∈ Rd:

1. (upper bound) f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ µ
2
∥x− y∥2;

2. (co-coercivity) 1
µ
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩;

3. (lower bound) f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ 1
2µ
∥∇f(x)−∇f(y)∥2.

2.3 Differential privacy

In this section, we give a brief introduction to the notion of differential privacy (DP) and

its key properties. We also give a short summary of the key mechanisms and composition

theorems that we will be using in later chapters. These results are considered as the

building bricks of differentially private algorithms. Many complex DP algorithms consist

of a combination of standard mechanisms to obtain powerful algorithms [48, 120, 122, 55,

140, 134].

Suppose that we want to perform a research study on a confidential database. In the

case of perfect privacy, the output of any research should not compromise the privacy

of any individual. However, this has been proved impossible if we want to collect any

useful data at all because any meaningful conclusion from the research will compromise

a certain amount of privacy. Differential privacy is a notion that weakens the perfect

privacy requirement but still provides a very strong semantic guarantee of privacy. It

has the idea that the participation of any individual in the data set should not cause

additional compromise in privacy. That is to say that, the outcome of a differentially

private algorithm should not be much different with or without any particular sample.

This is a useful guarantee as it provides individuals with reasonable deniability of their

participation in a data set and it preserves the utility of the data. Hence this allows the

output of a DP learning algorithm to be shared across multiple parties without concern

of leaking the information of a particular individual. The definition is given formally as
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follows: We first define the distance between two sample sets S,S ′ to be the Hamming

distance denoted as ∥S−S∥H , which equals the number of points to be added or removed

from S until S = S ′. In the case where ∥S − S∥H ≤ 1, we say that S, S ′ are neighbouring

sets. To distinguish between ϵ, δ from PAC learning, we use 0 < ϵp, 0 ≤ δp < 1 in this

section as privacy parameters.

Definition 8 (Differential privacy [47]). For ϵp > 0 and 0 ≤ δp < 1, a randomized

algorithm A is said to satisfy (ϵp, δp)-differential privacy if for all measurable subsets

B ⊂ Range(A) and for all S, S ′ ⊆ Z such that ∥S − S ′∥H ≤ 1, we have

P[A(S) ∈ B] ≤ exp(ϵp)P[A(S ′) ∈ B] + δp, (2.12)

where the probability space is over the coin flips of the algorithm A. In particular if δp = 0,

then we say that A is ϵp-differentially private.

We note that some other literature on differential privacy considers the case where S

and S ′ (with the same size) differ by at most one sample point. In contrast, we consider

adding/removing a sample point here, which is the setting considered in most of the re-

lated works. The two settings only differ by a constant factor in the sensitivity analysis.

The notion of (ϵp, δp)-differential privacy is a weakening of ϵp-differential privacy. Roughly,

ϵp-differential privacy says that for any similar data sets S, S ′, it is very unlikely that the

output of the differentially private algorithm A(S) and A(S ′) will be much different to

each other. In contrast, (ϵp, δp)-differential privacy ensures that for all neighbouring sets

S, S ′, the absolute value of the privacy loss will be bounded by ϵp with probability at least

1− δp.

An immediate result from the definition is that DP algorithms are immune to post-

processing. i.e. If A is ϵ-DP, then the composition f ◦ A is also ϵp-DP for an arbitrary

mapping f [48].

Theorem 2.5 (Post-processing [48]). Let M : Zn → R be a randomized algorithm that is

(ϵp, δp)-differentially private. Let f : R → R′ be an arbitrary randomized mapping. Then
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f ◦M : Zn → R′ is (ϵp, δp)-differentially private.

A typical way of achieving differential privacy is by introducing randomized noise in one

or more steps of the algorithm. To add a suitable amount of noise into our algorithm, we

need to consider the sensitivity :

Definition 9 (Global ℓ1-sensitivity [47]). The global ℓ1-sensitivity ∆(A) of a function

(non-private algorithm) A : Zn ∪ Zn−1 → Rr is defined as

∆(A) = max
S,S′⊂Z:∥S−S′∥H=1

∥A(S)− A(S ′)∥1. (2.13)

We also define its analogue ℓ2-sensitivity as

∆2(A) = max
S,S′⊂Z:∥S−S∥H=1

∥A(S)− A(S ′)∥2. (2.14)

The global sensitivity captures the maximum difference in the output when we use a neigh-

bouring data set that differs by at most one point. There are other notions of sensitivity,

such as the local sensitivity that considers the particular data set S. Local sensitivity

can be significantly smaller than global sensitivity in many cases. However, local sensi-

tivity in itself does not guarantee differential privacy. Next, we present two well-known

mechanisms for private algorithm design - the Laplace and Exponential mechanisms.

Definition 10 (Laplace mechanism of [48]). Given any function A : Zn → Rr, the

Laplace mechanism M is defined as

M(S,A, ϵp) = A(S) + β, (2.15)

where β is a r-dimensional noise vector with entries drawn i.i.d. from Lap(∆(A)/ϵp).

The Laplace mechanism provides randomisation in the algorithm by adding a randomly

generated noise vector in the output of a function f . The expected magnitude of the noise

vector mainly depends on the sensitivity of f and the privacy budget ϵp.
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Definition 11 (Exponential mechanism of [99]). Let R be an arbitrary set of output

candidates. Given a utility function u : X n × R → R that computes the quality of a

candidate r ∈ R, the exponential mechanism M(S, u,R) selects and outputs one of these

with probability proportional to the following

P[M(S, u,R) = r] ∝ exp

(
ϵpu(S, r)

2∆(u)

)
. (2.16)

In contrast to the Laplace mechanism, the Exponential mechanism works by randomly

selecting a candidate as the output with probability proportional to the “utility” of the

candidate. It is important how we decide to quantify the “utility” of a candidate based

on the problem for the exponential mechanism to work well. As a simple example, if we

are trying to publish the most deadly disease in 2022, then the “utility” of a given disease

should be proportional to the death rate of the disease.

It is very well-known that the Laplace and the Exponential mechanisms both satisfy

ϵp-DP. The reader can refer to [48] for detailed proof of the privacy guarantee.

Besides the Laplace and Exponential mechanism which both guarantees ϵp-DP, another

popular private mechanism is the Gaussian mechanism. The Gaussian mechanism works

similarly to the Laplace mechanism but adds Gaussian noise instead of Laplacian noise,

with an aim to reduce added noise in comparison to Laplace.

Definition 12 (Gaussian mechanism [50]). Let A : Zn → Rm. The algorithm with

input S ∈ Zn outputs A(S) + β where β ∼ N(0, 2∆2(f)
2 log(2/δp)/ϵ

2
pIm×m) is (ϵp, δp)-

differentially private. Here Im×m denotes the identity matrix in Rm×m.

The Gaussian mechanism only guarantees (ϵp, δp)-DP which is a weaker guarantee com-

pared to Laplace, however, it can reduce added noise in the case where we do not require

pure differential privacy.

With these private mechanisms on hand, the following composition theorems allow us to

combine multiple private mechanisms to develop more complex private algorithms.
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Theorem 2.6 (Sequential composition [99]). For a sequence of queries {fi}Ni=1 on a

data set S each satisfying ({ϵi}Ni=1, {δi}Ni=1)-differential privacy. Then the output sequence

{fi(S)}Ni=1 of all queries satisfies
(∑N

i=1 ϵi,
∑N

i=1 δi

)
-differential privacy.

Theorem 2.7 (Parallel composition [100]). For disjoint subsets {Si}Ni=1 ⊂ S, consider

a query f applied on each of the subset Si while satisfying (ϵp, δp)-DP. Then the output

sequence {f(Si)}Ni=1 satisfies (ϵp, δp)-DP.

Sequential composition states that the more queries we send to the original data set,

the less privacy guarantee we have. Parallel composition says that we do not lose the

independent privacy guarantees if we query disjoint subsets independently.

In the case where we query the private data over N adaptive interactions, adaptive inter-

action means the attacker sees the previous query output before making the next query,

the following composition theorem provides a stronger result on the accumulated privacy

loss.

Theorem 2.8 (Strong Composition [49]). Let ϵp, δp, δ′p > 0 and ϵp ≤ 1. A mechanism

that permits N adaptive interactions with mechanisms that preserves (ϵp, δp)-differential

privacy ensures (ϵp
√

2N log(1/δ′p) + 2kϵ2p, Nδp + δ′p)-differential privacy.

Note that the strong composition only provides (ϵp, δp)-DP, hence it usually works to-

gether with the Gaussian mechanism to provide strong privacy guarantees over multiple

composites of the Gaussian mechanism.

Relation between differential privacy and stability

Note that the intuition of stability in algorithms is very similar to the intuition of dif-

ferential privacy: we do not want the output of the algorithm to change by too much

when we perturb the input by a little. Note that if an algorithm satisfies differential

privacy then the outputs of two similar sample sets will likely to be the same. Hence the

term ℓ(A(S), Z)) − ℓ(A(S ′), Z) will be small with a high probability because the output

hypothesis A(S) and A(S ′) will be the same with a high probability. This shows that a
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differentially private algorithm is likely to be a stable algorithm too. On the other hand,

[34] has shown that ERM algorithms with a large regularization parameter require less

additive noise to guarantee differential privacy. This matches with our intuition - a stable

algorithm is less sensitive to input changes and hence less noise is required to guarantee

privacy.

2.4 Random matrix theory

In this section, we briefly summarise some key results in random matrix theory. In

particular, we focus on the theoretical guarantees of random projections and the necessary

conditions. We will present the classic Johnson-Lindenstrauss lemma and its variations

to discuss their properties.

2.4.1 Random projections

Random projection has the idea that projecting a high dimensional data set onto much

lower dimensions by a linear mapping in a way that preserves most of the structures of

the original data set with high probability. Many theoretical works on ML such as error

bounds have the problem that it scales with the dimension of the data set, which can be

a problem when the dimension is large. Random projection provides a useful method of

dimensionality reduction, the Johnson-Lindenstrauss lemma provides a precise statement

that the structure of the projected data set is preserved with high probability and hence

will not affect the accuracy by too much for distance-based algorithms.

Let X = Rd. Suppose we have two vectors X1, X2 ∈ X and a linear map Φ : Rd → Rm,

then we say that Φ does not distort the distance between X1 and X2 if

∥Φ(X1)− Φ(X2)∥
∥X1 −X2∥

≈ 1. (2.17)

Equivalently we want a map Φ which satisfies the property that for any X ∈ Rd, ∥Φ(X)∥
∥X∥

is close to 1. For a sample set S ⊂ X , the Johnson-Lindenstrauss lemma gives a sufficient

condition where the linear map does not distort the pairwise distance for all points in S:
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Lemma 2.9 (Johnson-Lindenstrauss [94]). Let S be a set of n points in Rd, for any

0 < ϵΦ < 1, let m be a positive integer that satisfies:

m ≥ 24

3ϵ2Φ − 2ϵ3Φ
log n. (2.18)

Then there exists a map Φ : Rd → Rm such that for all X1, X2 ∈ S

(1− ϵΦ)∥X1 −X2∥2 ≤ ∥Φ(X1)− Φ(X2)∥2 ≤ (1 + ϵΦ)∥X1 −X2∥2. (2.19)

Furthermore, this map can be found in polynomial time.

A key fact to note is that the random projection does not depend on the dimension of the

original data set d and it even works for infinite dimensions. It only depends on the size of

our data set and the level of accuracy we want to preserve. While this is a powerful result,

there are two major limitations of this standard form of JL-lemma. Firstly, the projection

dimension only depends on the distortion parameter and the number of samples, which

means that the structure of the data is lost in the condition of the projection dimension.

Secondly, since it depends on the number of samples, this is invalid if we have an infinite

number of points. If we add a test point to our analysis, and since the test point is

arbitrary, we will have a projection set of infinite size (assuming our sample space is non-

finite). Hence we can not simply apply the JL lemma to our algorithm and perform the

analysis. To address these issues, we employ the following generalized JL-lemma that uses

the Gaussian width to measure the complexity of a set.

Definition 13 (Gaussian width). The Gaussian width of a set C ⊆ Rd is defined as

w(C) = Eg

[
sup
X∈C

⟨g,X⟩
]
, where g ∼ N(0, Id) (2.20)

and Id is the d× d identity matrix.

The Gaussian width is capable of capturing the complexity of the structure of a set.

Hence we no longer require the set S to be finite, examples of the Gaussian width of some
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common sets are given in Tab. 2.1 [76].

Sets Gaussian width
Unit ℓ1 ball in Rd O(

√
log d)

ℓp ball in Rd for 1 < p ≤ ∞ O(d1−1/p)
Probability simplex in Rd O(

√
log d)

Convex hull of n vectors with bounded ℓ2-norm of c O(c
√
log n)

m-dimensional subspace of Rd O(
√
m)

d1 × d2 matrices of rank at most r and unit Frobenius norm O(
√
r(d1 + d2))

d× d matrices with unit nuclear norm O(
√
d)

Table 2.1: Examples of Gaussian width of sets

Using the notion of Gaussian width, we have the following generalised JL-lemma. We

specify the linear map Φ as a random matrix and we will denote Sd as the d-dimensional

unit sphere.

Theorem 2.10 (Deviation of random matrices [89]). Let Φ be an isotropic, sub-Gaussian

random matrix, and D be a bounded subset of Rd. For any u ≥ 0 the event

sup
X∈D∩Sd−1

∣∣∥ΦX∥2 −
√
m
∣∣ ≤ CK2

[
w(D ∩ Sd−1) + u

]
(2.21)

holds with probability at least 1− exp(−u2). Here C is an absolute constant and K is the

bounded Orlicz norm of the rows of Φ for the Orlicz function ψ2(x) = exp(x2)− 1.

This result from [89] allows an alternative version of the JL-lemma. Suppose we want

to project the points from the sample space X and preserve their pairwise distances.

We take D′ = X − X , and construct D by removing the zero vector and project all

remaining vectors onto Sd−1 by normalization. Now the set D contains all (normalized)

pairwise distances of the points in X . Since D belongs to the unit sphere we can apply

Theorem 2.10 and obtain

sup
X∈D

∣∣∣∣ 1√
m
∥ΦX∥2 − 1

∣∣∣∣ ≤ CK2 [w(D) + u]√
m

(2.22)

with probability at least 1 − exp(−u2). Since elements of D is of the form (X−X′)
∥X−X′∥2 , this
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is equivalent to: For all X,X ′ ∈ X

(1− ϵΦ)∥X −X ′∥2 ≤
1√
m
∥Φ(X −X ′)∥2 ≤ (1 + ϵΦ)∥X −X ′∥2 (2.23)

with probability at least 1− δΦ, where ϵΦ =
CK2

[
w(D)+

√
log(1/δΦ)

]
√
m

.

Hence if we have m ≫ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
then the projection preserves the

pairwise distances of the points in X with probability at least 1− δΦ.

Theorem 2.11 (Generalized Johnson-Lindenstrauss [89]). Let Φ be an isotropic, sub-

gaussian random matrix, and S be a subset of Rd. Let 0 < ϵΦ < 1 denote the distortion

parameter, 0 < δΦ < 1 and D be the set of normalized pairwise distances of S. Let

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
, (2.24)

where C is an absolute constant, K is the bounded Orlicz norm of the rows of Φ and w(D)

is the Gaussian width of D. Then for all X,X ′ ∈ S ⊆ Rd, the mapping X → ΦX/
√
m

preserves pairwise distances of D with probability at least 1− δΦ:

(1− ϵΦ)∥X −X ′∥2 ≤
1√
m
∥Φ(X −X ′)∥2 ≤ (1 + ϵΦ)∥X −X ′∥2. (2.25)

By using this generalized version, we can now perform random projections on sets of

infinite size. Moreover, since Gaussian width is a generalized way of quantifying the

complexity of the data set rather than just taking the cardinality of the set, we can have

a more informative bound on the condition required for random projection. For instance,

if the set D is an m-dimensional linear subspace embedded in the d-dimensional ambient

space then its Gaussian width is proportional to m rather than d.

Theorem 2.12 (Gordon’s Theorem [63]). Let m, d ∈ N, let Φ ∈ Rm×d be a random

matrix with independent N (0, 1/m) entries. Let D ⊂ Sd−1 be a subset of the unit sphere
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in d dimensions. If m = Θ(w(D)2/β2), then

EΦ

[
sup
x∈B

|∥Φx∥2 − 1|
]
≤ β, (2.26)

where w(D) is the Gaussian width of B and the expectation EΦ[·] is over the randomness

in Φ.

Gordon’s Theorem is a key result to bound the expected norm of projected points with

respect to the norm of original points. We note that the projection dimension must

increase as β decreases, implying we need to project onto a higher dimension if we wish

to decrease the distortion.
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Chapter Three

Literature Review

This chapter reviews a summary of the related works of this thesis. We divide the litera-

ture into sub-categories as follows

• Section 3.1 covers some background literature in differentially private learning.

• Section 3.2 mostly covers the literature review related to Chapter 4 and 5;

• Section 3.3 mostly covers a literature review related to Chapter 6 and 7;

• Section 3.4 mostly covers a literature review related to Chapter 8.

We note that since the materials of different chapters are related, this division of sub-

categories is not precise and will contain overlapping literature in different sections.

3.1 Differentially private learning

Differential privacy is originally introduced by Dwork in [50] and has been granted in-

creasing attention over the past decade. Fundamental DP mechanisms such as the Laplace

mechanism [50], the exponential mechanism [99] and the Gaussian mechanism [48] have

then been introduced. The majority of the DP learning algorithms today use one or more

of these DP mechanisms as a crucial step to guarantee privacy. Composition theorems

were introduced by McSherry in [99] and [100] to compose multiple DP algorithms which
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allowed more complex DP algorithm design. Advanced composition theorems have been

developed in [48] and extended by [74] to allow privacy loss aggregation to be reduced over

adaptive compositions of queries. More recently, the work of [8] extends the composition

theorem and considers the randomness of sub-sampling in privacy guarantee, which can

provide a better privacy guarantee if the samples are randomly selected from a uniform

distribution. An adaptive form of sensitivity measure is introduced by [106] that aimed

to reduce noise required for privacy by analysing the sensitivity of functions dependent

on training samples. Other variants of DP such as local differential privacy [142], Renyi

DP [101] and zero-concentrated DP [29] have slightly different privacy definitions from

the classic setting we consider in this thesis.

Many well-known learning algorithms such as kNN [64], decision trees [54, 71], empirical

risk minimization [34, 132, 79, 131], linear models [33, 105], online learning [87] and

unsupervised learning [123, 135] are studied in a differentially private setting. Refer to

[62] for a review of machine learning algorithms with DP.

3.2 Non-parametric learning and random projections

Non-parametric learning algorithms are broad research topics that have long lasted and

gained great popularity in theoretical study and practical applications. In particular, the

k-Nearest Neighbour algorithm is a very well-known non-parametric algorithm introduced

initially by [53] for over decades and still remains popular. The generalisation guarantees

of kNN were studied by [41] for the case of k = 1 and proved that the 1-NN converges

to twice the Bayes error as n → ∞. After that, there is a vast amount of research

on the kNN algorithm in both practical and theoretical fields. New techniques such as

weighted kNN, ranked kNN, radius-based NN, etc, have been developed, see for example

[15] for a survey on NN methods. Despite the success of the kNN algorithm, it is also

well-known that kNN struggles with high-dimensional data for both sample complexity

and run-time complexity due to the ‘curse of dimensionality’, which is a series of problems

incurred by high-dimensional data [130]. Furthermore, from the result of [5], the curse
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of dimensionality is indeed a common problem for non-parametric learning algorithms

including the histogram classifier that we will analyse in later chapters. The histogram

is also a very common technique applied to different learning tasks. More commonly

known in density estimation problems [57, 129, 83] and regression problems [65, 107]

than classification in machine learning. In particular, [65] shows that random projection

can also be used to boost the diversity of constructing histograms and achieved great

regression performance by ensemble learning.

Random projection has been a widely used data compression technique to reduce di-

mensions, for example in image compressing [17, 60, 30], classification [114, 31, 73, 42],

regression [23, 95, 128], clustering [52, 24, 143] and image registration [126]. Furthermore,

random projection has been studied theoretically to quantify the class of sample struc-

tures in which RP can provide strong and useful guarantees. The well-known Johnson-

Lindentrauss (JL) lemma [43] stated the projection dimension requirement where RP

preserves pair-wise distance is dependent on a logarithmic factor of the number of sam-

ples. Further research by [80, 96, 85, 46] has improved and extended the result of classic

JL-lemma. In particular, [89] uses the Gaussian width to measure the complexity of

the input samples rather than the size which captures the geometric complexity, [37, 9]

extends the guarantee to manifold data structures.

In relation to differentially private learning, Blocki et al [18] showed how the Johnson-

Lindenstrauss transform could be used to publish privatized graphs. Another work by

Kenthapadi et al [77] showed a method of computing pairwise distances by applying

random projection first. They showed that by using this technique, the overall noise

added to the distance matrix is smaller. Gursoy et al [64] proposed a private version of

kNN that satisfies ϵ-differential privacy. First, they have proposed a private version of the

radius-based neighbour (rN) algorithm which is an approximate alternative to the classic

kNN. They have proposed an algorithm which converts kNN to rN, which allows kNN to

be implemented in the DP setting using the private rN algorithm they have introduced.

The work of [146] proposed the idea that we should only use a random subset of all
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samples to reduce privacy loss aggregation over multiple neighbour queries, however, this

approach reduces the strength of the final privacy guarantee. Private histograms have

been studied for the density estimation problem by [136] and histogram counting queries

in [68]. Recently, Berrett et al [14] has shown the minimax rate of a similar histogram

classifier under the local differential privacy setting, which is different from the setting

we consider here. Besides modifying the learning algorithm to guarantee privacy, another

approach for non-parametric private learning is by using a privatized data set. Works by

[77, 124, 138] focus on private database release that can be used for statistical analysis.

However, when using this privatized data approach to obtain DP, we lack knowledge of

the utility guarantees of non-parametric classification.

3.3 Gradient descent methods and stability

The concept of stability has existed for over thirty years [44]. The introduction of uniform

stability in [22] provides a modern stability framework that a portion of our work relies on.

They have shown that the optimiser for regularized empirical loss minimization (ERM)

is uniformly stable under some regularity assumptions. Further work by [116] studied

the relation between stability, uniform convergence and learnability where they identify

stability as the key condition for learnability. The notion of uniform stability has then

been extended to study randomized algorithms in [51], where they derived stability bounds

when randomness occurs in the algorithm. It has been shown in [36] that a fast iterative

optimisation algorithm can not be too stable, and vice versa.

Gradient descent methods (GDM) has been one of the most popular methods of optimi-

sation and is a very common approach to optimize neural networks, so there are a vast

amount of variants of gradient descent [113, 20]. Besides the classic batch gradient descent

([75, 119]) which uses all samples in each iteration, mini-batch GDMs (e.g. [69, 78, 88,

40]) and stochastic GDMs (typically known as SGD, see [19, 66, 86, 12]) are the two most

commonly used types of GDMs which only uses only a small subset or a single sample

to estimate the gradient in each iteration. SGD has proven to have dimensionality-free
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error convergence (e.g. [66, 86]) and parallelisation (e.g. [147, 112]), which has made SGD

a favourable optimisation algorithm for complex high-dimensional problems. In our case,

we are interested in the generalisation performance and the stability bounds for com-

pressed SGD in some learning procedures when it receives slightly different inputs. The

optimisation performance has been analysed in [117] to achieve optimal convergence for

its optimisation error with the appropriate choice of the learning rate parameter. The

uniform stability of SGD is studied by [66] on convex, strongly convex and non-convex set-

tings, which together provide the generalisation performance of SGD. Recently, [86] has

derived generalisation bounds for SGD under a relaxed smoothness assumption where

they have shown optimal bounds without smoothness with an appropriate choice of pa-

rameters. Mini-batch GDMs can have convergence bound which depends on the size of

the chosen mini-batch, as demonstrated in [40].

In relation to differential privacy, this notion of privacy indeed has strong relations with

stability and is discussed in [48], where they have stated that DP algorithms are also

stable randomized algorithms. Several private SGD algorithms have been developed in

the past decade [120, 1, 134] to train ML algorithms. In particular, the work of [120]

provides DP guarantee by using noisy gradients, which adds an independent noise vector

to each gradient computed. DP-SGD has been analysed in [134] which demonstrates a

dimensionality dependence in its error bound due to the added noise. A DP-SGD approach

by [28] uses Johnson-Lindenstrauss projections to estimate the norm of gradient, making

SGD training more efficient in the private setting. The algorithm we are interested in

is the compressed SGD proposed by [76] and reviewed in Section 6.2, where randomly

compressed low-dimensional gradients are used for reducing the communication cost in

transmitting the gradients. It uses the random projection technique [94, 43, 63] which is a

popular dimensionality reduction tool that has been applied to many learning algorithms

in various non-private contexts [118, 73] and in DP-related learning [141, 77]. Other works

with the goal of reducing communication costs use some sparsified/quantized version of

the gradient (e.g. [2, 3, 133, 1, 121]). The general idea used is to apply some encoding

process on the gradient before transmission, hence reducing communication but can induce
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additional loss.

3.4 Private learning ensembles

Random forest [26] is one of the most commonly used learning ensembles today that has

dated back over two decades ago. Random forest is a combination of multiple decision

trees, which are non-parametric classifiers (or for regression) of their own. Non-private

decision trees can have a variety of splitting rule that defines their structure, such as infor-

mation gain [110], gain ratio [109] and Gini index [27]. Besides these greedy approaches

that aim to compute the optimal split at each level, there are also trees that aim to take

advantage of randomness to increase the diversity of trees [26] and save privacy budget.

Random trees typically perform quite badly on their own, however, performance can be

boosted when using a large combination of random trees [97].

Tree-based methods are certainly one of the most popular research topics in private learn-

ing, and they also divide into two main categories as conventional trees. Either approach

with random trees (e.g. [71]) or approach with greedy trees (e.g. [58]). In [54] the authors

proposed the use of local sensitivity [106] to reduce the randomness in greedy trees. The

idea has been extended in [56] to improve private random trees using smooth sensitivity,

which utilizes an upper bound on the local sensitivity. More recently, [139] proposed

a greedy approach that takes advantage of a notion of smooth sensitivity with the ex-

ponential mechanism for both the Gini index and label prediction. Another DP forest

algorithm by [111] considers (ϵ, δ)-differential privacy which is a weaker notion of the pure

ϵ-differential privacy that we are concerned with here. As discussed in [56], it is possible

to obtain high utility while guaranteeing pure differential privacy. Other differentially

private algorithms such as [102] consider private data release – a different problem setting

from what we study here.

The construction of a tree structure using a median split has long lasted in spatial trees

[13] and private spatial decomposition [39]. For classification problems it was initially

used by [25], it then gradually gained attention and was analyzed theoretically by [16].
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A similar idea is also used in spatial decomposition such as kd-trees [39]. More recently,

[81] extended the idea to a median-splitting random forest in the non-private setting.

The authors demonstrated a random forest using a median-based splitting along with its

theoretical analysis. Furthermore, recent work by [38] proposed a private random forest

using median splits. However, their method uses a greedy approach to compute each split

attribute and does not extend to semi-supervised learning. For private semi-supervised

classifiers, the random forest by [71] can be extended to take advantage of unlabelled

data [70]. Furthermore, work by [93] took advantage of unlabelled samples by providing

predicted labels using a kNN classifier and then training a linear predictor using the

predicted set. However, both methods apply only when the privacy of the features is not

a concern. Other semi-supervised methods [108] make extra assumptions on the data set

and differ from our setting here.
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Chapter Four

Compressed Non-parametric

Algorithms

In this chapter, we discuss two classic non-parametric algorithms - the k nearest neighbour

(kNN) algorithm and the histogram predictor. We present the corresponding generaliza-

tion analysis for each algorithm and find that both algorithms suffer from the “curse of

dimensionality", i.e. their generalization errors increase rapidly as the dimension of the

data increase. We show that this issue can be addressed with random projections and

we provide excess generalization error bounds for projected case. For the simplicity of

analysis, we assume that X = [0, 1]d and Y = {0, 1}. We can normalize our data points to

satisfy this condition provided that the feature range is bounded. Let D be an unknown

distribution over X ×Y , denote η(X) = P[Y = 1|X] the conditional probability function

(the regression function). Throughout this chapter, we will use the 0-1 loss function to

measure the error of a hypothesis h

ℓ0−1(h(X), Y ) = 1{h(X )̸=Y }, (4.1)

and the generalization loss with respect to the distribution D with the 0-1 loss is defined

as

LD(h) = E
X,Y

[ℓ0−1(h(X), Y )] = P
X,Y

[h(X) ̸= Y ] (4.2)
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Recall that we use ĥ to denote the output hypothesis of a learning algorithm, and we

use LD(f
∗) to denote the Bayes optimal error or the “irreducible error”. We provide a

summary of the main results in this Chapter in Table 4.1 to provide a quick overview of

the error convergence rates.

kNN Histogram Comp-kNN Comp-Histogram

Realizable O
(
(L

√
d)dn−1

)
(Thm. 4.5)

O
(
(L

√
d)dn−1

)
(Thm. 4.16)

O
(
(L

√
d)mn−1

)
(Thm. 4.9)

O
(
(L

√
d)mn−1

)
(Thm. 4.21)

General O
(
L
√
dn− 1

d+3

)
(Thm. 4.2)

O
(
L
√
dn− 1

d+2

)
(Thm. 4.12)

O
((

L
√
d(1+ϵΦ)
1−ϵΦ

)
n− 1

m+3

)
(Thm. 4.8)

O
((

L
√
d(1+ϵΦ)
1−ϵΦ

)
n− 1

m+2

)
(Thm. 4.20)

Table 4.1: A summary of the generalisation results, where d is the dimension and m is the
projection dimension. Other parameters are as defined in previous Chapters. Note here
we only consider the error convergence rate, in the general case the error will converge
to the Bayes error which is non-zero. ‘Comp’ means ‘compressed’ denoting the algorithm
with random projections.

4.1 The k-nearest neighbour algorithm

The k-nearest neighbour (k-NN) is a classic non-parametric algorithm that is widely used.

It is simple to implement and very intuitive to understand while achieving great accuracy

in classification and regression tasks. The intuition is that data points that are close

together will likely to have the same labels. Hence for a given test point we look at the

labels of k nearby points and make a prediction based on the information observed.

For example, for sample space X = [0, 1]d with the Euclidean metric, we will use the Eu-

clidean distance ∥X −X ′∥2 =
√∑d

i=1(xi − x′i)
2. Now suppose we have a training sample

of size n, then for each X, let π1(X), . . . , πn(X) be orderings of {1, . . . , n} according to

their corresponding distance to X. i.e. rearranged with the closest distance first. For an

integer k, we have the kNN rule as follows:

1. Take a training sample of size n as inputs.

2. For every point X ∈ X , output the majority label among {Yπi(X) : i ≤ k}.

Theorem 4.1 (Generalization of kNN [115, Thm.19.5]). Let X = [0, 1]d,Y = {0, 1}, and

D be a distribution over X × Y for which the conditional probability function, η(X) =
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P[Y = 1|X], is a L-Lipschitz function. Let ĥ denote the result of applying the k − NN

rule to an i.i.d. sample set S ∼ Dn, where k ≥ 10. Let f ∗ be the Bayes optimal hypothesis.

Then,

E
S
[LD(ĥ)] ≤

(
1 +

√
8

k

)
LD(f

∗) + (6L
√
d+ k)n−1/(d+1).

Remark 1. The L-Lipschitzness of the conditional probability function is key for its

generalization analysis because kNN is a distance-based learning algorithm. The Lipschitz

assumption guarantees that if the samples are close enough to each other, then their label

is likely to be the same, hence we can predict the label of an unseen sample by looking at

its “neighbours”.

From this generalization bound we can observe that the first term decreases as we increase

k. However, increasing k will cause an increase in the latter complexity term. Hence

k is the parameter that controls the bias-complexity trade-off in the k-NN algorithm.

Theorem 4.1 shows that with sufficiently large n, the expected generalization error of

k-NN is arbitrarily close to the Bayes optimal error using adaptive k increasing with n.

In particular, we can find that the optimal choice of k that balances out both terms as

shown in the following theorem:

Theorem 4.2 (Error convergence rate of kNN). Let k = O(n2/(d+3)) for the kNN al-

gorithm, then by the same condition as in Theorem 4.1 and assuming LD(f
∗) ̸= 0, we

have

E
S
[LD(ĥ)] = LD(f

∗) +O

(
L
√
d

n1/(d+3)

)
. (4.3)

Proof. The proof of this theorem is based on modifying the proof of Thm. 4.1 and opti-

mising the choice of k in the proof. By following the same steps in the proof of Thm. 4.1,

we can obtain the following bound:

E
S
[LD(ĥ)] ≤

(
1 +

√
8

k

)
LD(f

∗) + 3LD
√
d+

2k

Ddn
, (4.4)

where D is the maximum distance of a sample X and its k-th neighbour. From this
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inequality we can obtain Thm. 4.1 with D = 2n−1/(d+1). However, by considering the

partial derivatives of (4.4) with respect to k and D, we found that the optimal choice of

k and D that balance out all three terms are

D∗ = O
(
k

n

) 1
d+1

, (4.5)

k∗ = argmin
k

(
1√
k
+

(
k

n

) 1
d+1

+

(
k

n

) 1
d+1

)

= O
(

1

n
2

d+3

)
. (4.6)

Substitute the choice of parameter above will give the desired result.

However, we observe that in practical situations k is better chosen by cross-validation

and tends to be smaller than the parameter proposed by its generalization bound. One

reason for this is because Thm. 4.1 is an upper bound which may imply parameters that

under-fits the data distribution.

The steps of the proof for Thm. 4.1 can be found in [115]. The outline of the proof falls

into two key steps: 1) if the k-neighbours are “far away” then we assume the prediction is

unlikely to be accurate and we just bound the probability of this case happening; 2) for

the case where the k-neighbours are “close enough” within a bounded distance then we

evaluate the error for this case. The following lemma bounds the probability of drawing

a sample within a sparse region (i.e. regions where only a few sample is observed), hence

implying that the k-neighbours are far away. Note that the “sparsity" here is controlled

by the parameter k, and the probability increases as k increases.

Lemma 4.3 ([115]). Let C1, . . . , Cr be a collection of subsets of some domain set X . Let

S be a sequence of n points sampled i.i.d. according to some probability distribution D

over X . Then, for every k ≥ 2, we have

E
S

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

n
.
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For the second case, we evaluate the error using the following auxiliary lemma, which

bounds the empirical misclassification error by comparison with the underlying regression

function.

Lemma 4.4 ([115]). Let k ≥ 10 and let Y1, . . . , Yk be independent Bernoulli random

variables with P[Yi = 1] = pi. Denote p = 1
k

∑
i pi and p′ = 1

k

∑k
i=1 Yi. We have

E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]] ≤

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p>1/2]].

Lemma 4.3 and Lemma 4.4 will be useful in analysis for later chapters. For completeness,

the proof of these lemmas is provided in the Appendix.

In the case where the Bayes error is zero (LD(f
∗) = 0), the kNN algorithm can converge

quicker by carefully tunning the hyper-parameters in the proof. The result is as follows.

Theorem 4.5. Let ĥ denote the result of applying the kNN rule to an i.i.d. sample set

S ∼ Dn. Assume that η is a L-Lipschitz function and LD(f
∗) = 0. Then for any fixed

k ≥ 2, we have

E
S
[LD(ĥ)] ≤ O

(
(2L

√
d)d

n

)
(4.7)

Proof. The idea is to only look for neighbours which are close enough where we can

guarantee the label is correct by the Lipschitz condition. Hence we only need to bound

the probability where this close neighbourhood has no sample points at all. A detailed

proof is deferred to the appendix A.1.

4.1.1 Compressed kNN with random projections

In this section, we show that we can use the kNN algorithm in the compressed learning

setting, where the algorithm only has access to the projected points. The Johnson-

Lindentrauss (JL) lemma [43] says that if the projection dimension is greater than a

constant multiple of log n, then all pairwise distances are preserved. This suggests that if

the condition of the JL-lemma is satisfied, then the error of the compressed kNN classifier
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will only change by a minor factor. However, there are two major limitations of the clas-

sical JL-lemma. Firstly, the projection dimension only depends on a distortion parameter

and the number of samples, which means that the data structure is not exploited in the

condition of the projection dimension. Secondly, since it only applies to finite sets, this

is invalid if we have an infinite number of points. Hence we can not simply apply the

JL lemma to our algorithm and perform the analysis. We use the generalization of the

JL-lemma by Liaw et al [89] (Thm. 2.11) to address these issues.

By using this generalized version, we can now perform random projections on sets of

infinite size. Moreover, since Gaussian width is a generalized way of quantifying the com-

plexity of the data set rather than just taking the cardinality of the set, we can have a

more informative bound on the condition required for random projection. For instance,

if the set P is a m-dimensional linear subspace embedded in the d-dimensional ambient

space then w2(P ) is proportional to m rather than d. This also implies that if P is in-

trinsically d-dimensional then the error bound we derive here (Thm. 4.7) recovers, up to

a constant factor, the corresponding error bound of the previous section (Thm. 4.1). Ap-

plying this result to our compressed learning setting, we found that with a small increase

of the approximation error due to distortion, we reduce the dimension dependence of our

error bound as the following theorem states. We will adapt some proof techniques from

the generalization bound proved by [115] for the classic kNN algorithm and compare the

result between them. Recall that Φ is an isotropic, sub-Gaussian m × d random matrix

as in Thm. 2.11, and (X, Y ) is a sample in S with features X and label Y . Before the

training stage, we first randomly project the sample set S ⊂ Rd onto a lower dimensional

space Rm, we denote by SΦ the set of projected sample points in Rm:

SΦ = {(ΦX, Y ) : (X, Y ) ∈ S}. (4.8)

We will use the following supplementary lemma in our main proof, the proof of the lemma

is deferred to the appendix.
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Lemma 4.6. For any fixed p, p′ ∈ [0, 1] and Y ′ ∈ {0, 1}. We have

P
Y∼p

[Y ̸= Y ′] ≤ P
Y∼p′

[Y ̸= Y ′] + |p− p′|.

Our main result for the compressed kNN is as follows.

Theorem 4.7 (Generalization of compressed kNN). Assume the conditional probability

function, η, is a L-Lipschitz function. Let ĥΦ denote the result of applying the kNN rule

to a projected sample set SΦ, where k ≥ 10. Let w(D) be the Gaussian width of the set

of normalised pairwise distances of S. For any 0 < ϵΦ, δΦ < 1, let m be a positive integer

that satisfies:

m ≥ Ω

(
ϵ−2
Φ K4

[
w(D) +

√
log(1/δΦ)

]2)
. (4.9)

Then we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +O

(
kL(1 + ϵΦ)

√
d

n1/(m+1)(1− ϵΦ)

)
. (4.10)

Proof. Let πj(X) denote the index of the j-th nearest neighbour of the sample X in S.

Fix some b > 0 and let C1, . . . , Cr be the cover of the projected set ΦX = {ΦX : X ∈ X}

using axis-aligned boxes of side lengths of 1/b each. Let DΦ denote the diameter of the

projected set. For each ΦX,ΦX ′ ∈ ΦX in the same box we have ∥ΦX − ΦX ′∥2 ≤ DΦ/b.

Otherwise ∥ΦX − ΦX ′∥2 ≤ DΦ. Hence the expected generalization error is

E
S
[LD(ĥΦ)] = E

S

 ∑
i:|Ci∩SΦ|<k

P[Ci]

 · P
S,(X,Y )

[
ĥΦ(ΦX) ̸= Y | ∀j ∈ [k], ∥ΦX − ΦXπj(ΦX)∥ ≤ DΦ

]

+ E
S

 ∑
i:|Ci∩SΦ|≥k

P[Ci]

 · P
S,(X,Y )

[
ĥΦ(ΦX) ̸= Y | ∀j ∈ [k], ∥ΦX − ΦXπj(ΦX)∥ ≤ DΦ/b

]
.

By the law of total probability and Lemma 4.3 we obtain:

E
S
[LD(ĥΦ)] ≤

2rk

n
+ max

i:|Ci∩SΦ|≥k

{
P

S,(X,Y )

[
ĥΦ(ΦX) ̸= Y | ∀j ∈ [k], ∥ΦX − ΦXπj(ΦX)∥ ≤ DΦ/b

]}
.

(4.11)
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Note that the second term has expectation over the features and labels, we want to

decompose the expectation separately for X ′s and Y ′s. Fix X1, . . . , Xn, X, let p =

1
k

∑k
i=1 η(Xπi(ΦX)) denote the average conditional probability function value of the k near-

est neighbours in the projected space. W.l.o.g. (by symmetry) assume that p ≤ 1/2.

Hence by Lemma 4.4 we have:

E
Y1,...,Yk

[
P

Y∼p
[ĥΦ(ΦX) ̸= Y ]

]
≤

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p>1/2]]. (4.12)

Note that for p ≤ 1/2 we have P
Y∼p

[1[p>1/2] ̸= Y ] = p = min{p, 1−p}, and hence by lemma

4.6:

we have

min{p, 1− p} ≤ min{η(X), 1− η(X)}+ |p− η(X)|.

Hence we obtain:

E
Y1,...,Yj

[
P

Y∼p
[ĥΦ(X) ̸= Y ]

]
≤

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p>1/2]]

≤

(
1 +

√
8

k

)
(min{η(X), 1− η(X)}+ |p− η(X)|) .

Combining inequality 4.12 and Lemma 4.6, we have

E
Y1,...,Yj

P
Y∼η(X)

[ĥΦ(X) ̸= Y ] ≤ E
Y1,...,Yj

P
Y∼p

[ĥΦ(X) ̸= Y ] + |p− η(X)|

≤

(
1 +

√
8

k

)
(min{η(X), 1− η(X)}+ |p− η(X)|) + |p− η(X)|

=

(
1 +

√
8

k

)
min{η(X), 1− η(X)}+

(
2 +

√
8

k

)
|p− η(X)|

(because k ≥ 10) ≤

(
1 +

√
8

k

)
min{η(X), 1− η(X)}+ 3|p− η(X)|.

Since p is just an average of the function value of η for the k neighbours of X, hence by
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using the fact that η is L-Lipschitz we have

|p− η(X)| ≤ L∥X −Xπk(ΦX)∥2. (4.13)

Now applying the generalized JL-lemma (theorem 2.11) we have

∥X −Xπk(ΦX)∥2 ≤
∥ΦX − ΦXπk(ΦX)∥

(1− ϵΦ)
≤ DΦ

b(1− ϵΦ)
, (4.14)

where DΦ is the diameter of the projected sample set. Since our original sample space is

[0, 1]d hence ∥X∥22 ≤ d, by the JL-lemma we have DΦ ≤ (1 + ϵΦ)
√
d. Note that the error

of the Bayes optimal classifier is

LD(f
∗) = E

X
[min{η(X), 1− η(X)}].

Combining our results and taking expectations over the randomness of the features we

obtain:

E
S
[LD(ĥΦ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +
3L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

2rk

n
. (4.15)

In particular, since r = bd letting b = O(n− 1
m+1 ) results

E
S
[LD(ĥΦ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +O

(
kL(1 + ϵΦ)

√
d

n1/(m+1)(1− ϵΦ)

)
. (4.16)

By a similar analysis as in theorem 4.2, we obtain the following immediate result:

Theorem 4.8. Let k = O(n2/(m+3)) for the kNN algorithm, then by the same condition

as in Theorem 4.7 and assuming LD(f
∗) ̸= 0, we have

E
S
[LD(ĥΦ)] = LD(f

∗) +O

(
L
√
d

n1/(m+3)

)
. (4.17)
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Proof. Can be easily verified using similar procedure in theorem 4.2 and theorem 4.7.

Remark 2. The special case where k = 1 is done in [73] and Theorem 4.7 provides the

result for general k of the compressed kNN. The 1-NN algorithm with projected data sets

converges to two times the Bayes error as for the classical NN algorithm. In contrast,

Theorem 4.7 implies that the compressed kNN will converge to the Bayes error given that

k increases with n.

Remark 3. The dimension dependence
√
d that remains in Theorem 4.7 comes from the

maximum norm of the samples in the original space. This can be removed if given the

feature domain is bounded and we can scale the samples beforehand so that the norm of

every sample has norm ≤ 1. The resulting error bound will then be independent of the

original dimension.

From Theorem 4.7 we see that as k and n approach to infinity, the error of the compressed

kNN classifier converges to the Bayes optimal error as the regular kNN. The dimensionality

dependence has been reduced to m instead of d, where m is dependent on the Gaussian

width of the feature space. As an example, if the samples are a subset of the ℓ1-ball,

then the dimensionality dependence will be of order log d instead of d. The trade-off for a

better dimensionality dependence is the additional multiplicative factor on ϵΦ. However

ϵΦ can usually kept quite small if the intrinsic dimension of the data is small.

Theorem 4.9. Let ĥΦ be the result of applying the kNN rule on the training set SΦ.

Assume that η(X) is an L-Lipschitz function and let w(D) be the Gaussian width of the

set of normalised pairwise distances of S. Then for any 0 < δΦ < 1, 0 < ϵΦ ≤ 1/2 let m

be a positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (4.18)
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Then for any k ≥ 2, we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ O

(
Lmdm/2

n

)
. (4.19)

Proof. See appendix A.1.

We observed a similar result for the compressed kNN in the realisable case. The rate for

error convergence is significantly improved for the realisable case as in the non-compressed

setting. We also observe a dimensionality reduction in the error term. However, since in

the realisable case the dimensionality dependence is in the exponential of the Lipschitz

constant and the original dimension d only, we do not obtain an improvement in the rate

with respect to the sample set size n.

4.2 Histogram Classifier

In this section, we introduce the histogram classifier and analyse its properties. The his-

togram classifier is a non-parametric classifier with similar properties to the kNN classifier.

The main advantage of the histogram classifier over kNN is that it is much more compu-

tationally efficient because it does not need to calculate the pairwise distances in training

sets. Furthermore, histogram only takes a small amount of memory to store and kNN

needs to memorise all training data points, which is problematic when the training data

gets large. The histogram classifier is a computationally lighter alternative to the kNN

algorithm for large data sets, and it can achieve the optimal generalization convergence

rate as we will prove in later sections.

We now formally describe the histogram classifier for binary classification as follows. Let

X = [0, 1]d be the input domain1 (or feature space), and Y = {0, 1} the label set. For

some positive integer b ∈ Z+, we partition the feature space by dividing the interval [0, 1]

into b evenly spaced intervals for each dimension. This creates r := bd hyper-cube cells

each having side lengths 1/b. We denote these cells by C1, . . . , Cr. Let S be a sample
1E.g. by transforming the data into the unit hypercube.
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set drawn i.i.d. from an unknown distribution D, and assume w.l.o.g. that |S| = n ∈ N.

Each observation in S has the form Zi = (Xi, Yi) ∈ X × Y = Z for all i ∈ [n] where

[n] = {1, . . . , n} is the indexing set. For an unseen point X, let i(X) denote the index of

the cell that contains X, i.e. X ∈ Ci(X). We define the histogram classifier based on this

setting as follows

ĥ(X) = 1{η̂(X)≥ 1
2
}, η̂(X) =

∑
i∈[n] 1{Xi∈Ci(X)}Yi∑
i∈[n] 1{Xi∈Ci(X)}

, (4.20)

where 1{·} is the indicator function that outputs 1 if the condition in {·} is satisfied and

0 otherwise. We note that for any cell Cj, we have η̂(X) = η̂(X ′) for all X,X ′ ∈ Cj.

Hence we denote for simplicity η̂j = η̂(X) for any X in Cj. Note that η̂j is not dependent

on X but on the cell index j only. The detailed procedure of the histogram predictor is

described in Alg. 1.

Algorithm 1 Histogram Predictor
1: procedure TrainHistogram(S)
2: for each i in the index set [n] = {1, . . . , n} do
3: record label Yi in cell Ci(X)

4: end for
5: for each non-empty cell Cj do
6: compute η̂j and set label of Cj to 1{η̂(X)≥ 1

2
} cf. (4.20)

7: end for
8: end procedure
9: procedure HistogramPredict(X)

10: if Ci(X) is non-empty then
11: return label of Ci(X)

12: else
13: make a random prediction
14: end if
15: end procedure

Note that for a fixed b, we obtain a finite hypothesis class Hb of size 2r (each cell either

has label 1 or 0), where each hypothesis h ∈ Hb is defined by the labelling in each cell.

This allows us to use techniques from finite hypothesis classes as we will demonstrate in

later sections. From equation (4.20) we see the classification rule is based on the ratio η̂,

ideally we would prefer a large number of points in each cell so that this empirical ratio

is estimated accurately. However with a finite number of points that usually requires us
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to choose a small b, which may under-fit the data. Hence the parameter b controls the

bias-variance trade-off in the histogram classifier.

For a fixed b, i.e. in the class Hb, the optimal histogram classifier is denoted by h∗b . We

omit the index when b is clear from the context. The classification rule of h∗ = h∗b is

defined as follows

h∗(X) = 1{η∗b (X)≥ 1
2
}, η∗b (X) = E

X′∈Ci(X)

[η(X ′)] = EX′
[
P[Y = 1|X ′ ∈ Ci(X)]

]
. (4.21)

4.3 Generalization of the histogram classifier

In this section, we present the generalization bound of the histogram classifier. We show

that it is universally consistent, i.e. it converges to the Bayes error as n→ ∞ for any distri-

bution D, and we show that under the Lipschitz assumption of the conditional probability

function η, it attains the optimal convergence rate of non-parametric classification.

In the analysis of this section, recall that LD(f
∗) denotes the Bayes error (or the irreducible

error). Our goal is to show that the histogram classifier converges to the Bayes error

with optimal rates (under the same condition). Recall η(X) := P[Y = 1|X] denotes

the regression function. We assume that η : X → Y is L-Lipschitz with respect to the

Euclidean norm over X . This assumption is believed to hold in many practical cases,

as the Lipschitz constant L can be large and our convergence analysis will still hold.

However, a larger Lipschitz constant means that the samples in different classes are less

distinguishable, i.e. the samples from different classes are likely to overlap to a larger

extent. This implies that the learning problem is more difficult. If the Lipschitz condition

does not hold, then there are samples in X where the label distribution of these samples is

different despite the samples being extremely close. That would mean that any distance-

based similarity between the points can fail and makes the problem very difficult to

solve, which is a comparatively rare situation given the success of distance-based learning

algorithms like kNN.
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In this section, we prove the generalization error of the histogram classifier using two differ-

ent approaches. We will discuss the main advantages and disadvantages of each approach

and explain how they work. While we are using different approaches for generalization

analysis, the general setting and assumptions we make will be identical.

4.3.1 Generalization via finite hypothesis class

In this section, we give an approach to bound the generalization error of ĥ using the

fact that Hb is a finite hypothesis class, which implies that it has PAC learnability (see

e.g. [115] for existing theoretical results with finite hypothesis class). As pointed out

previously, the parameter b controls the bias-variance trade-off of the histogram. As b

increases, we obtain finer cells of the histogram which better fits the training set but we

run the risk of over-fitting. Furthermore, the size of the hypothesis class Hb increases as

b increases due to the increasing number of cells, which gives a more complex learning

problem. The following generalization error bound demonstrates this argument:

Theorem 4.10. Let ĥ be the histogram classifier as defined in (4.20), and assume that

η(X) is a L-Lipschitz function. Then we have, for any fixed b ∈ N:

E
S
[LD(ĥ)] ≤ LD(f

∗) +
L
√
d

b
+

√
2(bd + 1)

n
+

√
π√
2n
. (4.22)

Proof. There are r = bd cells in total, and for each cell, we can either choose the label

to be 1 or 0. Hence the class of hypothesis defined by the cells have size 2r. Let h∗ be

the hypothesis in class Hb with minimal generalization error. Then by the generalization

bound of agnostic PAC learning for finite hypothesis class (Thm. 2.1) we have for any

ϵ > 0:

P
S
[LD(ĥ) > LD(h

∗) + ϵ] ≤ 2r+1

enϵ2/2
. (4.23)
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Rearranging this we see that for 1 > δ > 0, we have with probability at least 1− δ:

LD(ĥ) ≤ LD(h
∗) +

√
2 log(2|Hb|/δ)

n

≤ LD(h
∗) +

√
2 log(2|Hb|)

n
+

√
2 log(1/δ)

n
.

(4.24)

Rearranging, for ϵ > 0,

P
S

[
LD(ĥ)− LD(h

∗)−
√

2 log(2|Hb|)
n

> ϵ

]
≤ exp (−ϵ2n/2), (4.25)

which implies that:

E
S

[
LD(ĥ)− LD(h

∗)−
√

2 log(2|Hb|)
n

]
=

∫ ∞

0

P
S

[
LD(ĥ)− LD(h

∗)−
√

2 log(2|Hb|)
n

> ϵ

]
dϵ

≤
∫ ∞

0

exp (−ϵ2n/2) dϵ

=

∫ ∞

0

exp (−u2)√
n/2

du

=

√
π√
2n
,

where the third equality is by using integration with a substitution u =
√
n/2ϵ.

From the above we obtain

E
S
[LD(ĥ)] ≤ LD(h

∗) +

√
2 log(2r+1)

n
+

√
π√
2n

≤ LD(h
∗) +

√
2r + 2

n
+

√
π√
2n
.

(4.26)

Now we evaluate the error gap between h∗ = h∗b and f ∗. Recall that

h∗(X) = 1[η∗b (X)≥1/2] where η∗(X) = EX′
[
P[Y = 1|X ′ ∈ Ci(X)]

]
.

This means that the probability of h∗ giving the wrong prediction on a sample point

X ′ ∈ Ci(X) is the probability that Y differ from the majority label in the hypercube Ci(X)
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given X ′ ∈ Ci(X). Explicitly, this is min{η∗(X), 1− η∗(X)}. Hence we have

LD(h
∗) = E

X
[min{η∗(X), 1− η∗(X)}]

≤ LD(f
∗) + E

X
[|η(X)− η∗(X)|]. (4.27)

The second term is the expectation of the difference between P[Y = 1|X] and P[Y = 1|X ′]

where X ′ ∈ Ci(X). We apply the L-Lipschitz assumption of η and use that fact that for

any X,X ′ in the same cell, ∥X −X ′∥2 ≤
√
d
b

. Hence we obtain the following:

LD(h
∗) ≤ LD(f

∗) + LE
X
[∥X −X ′∥2]

≤ LD(f
∗) +

L
√
d

b
. (4.28)

Combining results in equation (4.26) and (4.28) we conclude that:

E
S
[LD(ĥ)] ≤ LD(h

∗) +

√
2r + 2

n
+

√
π√
2n

≤ LD(f
∗) +

L
√
d

b
+

√
2(r + 1)

n
+

√
π√
2n
, (4.29)

where r = bd.

From the proof of Theorem 4.10 we also have the following high probability version as an

immediate result.

Theorem 4.11. Let ĥ be the histogram classifier defined as in (4.20), and assume that

η(X) is a L-Lipschitz function. Then, for any fixed b ∈ N and 0 < δ < 1, we have with

probability at least 1− δ:

LD(ĥ) ≤ LD(f
∗) +

L
√
d

b
+

√
2(bd + 1)

n
+

√
2 log(1/δ)

n
. (4.30)

Proof. Combine equation 4.24 and 4.28.

Remark 4. From the generalization analysis in Theorem 4.10 we immediately observe
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that the histogram classifier is universally consistent. Indeed, as we increase the parameter

b and n tends to infinity we get that LD(ĥ) converges to the irreducible error LD(f
∗).

Remark 5. The parameter b for the histogram classifier controls the trade-off between

the approximation term and the estimation term, which should be chosen carefully for best

performance in practice. This has a similar role as the parameter k for the kNN algorithm

and can be chosen by cross-validation in practice. Increasing b here has a similar effect

as decreasing k in the kNN algorithm as the histogram will have access to fewer samples

in each cell and vice versa.

So far we have derived a generalization bound on our classifier ĥ relative to the Bayes

error. Since the parameter b is important both in practice and in theory to control

the bias-variance trade-off, it is important to choose a suitable parameter b. While in

practice we can always choose b by validation or similar techniques, we can also compute

the parameter b that minimises its excess risk bound. The parameter suggested by the

theoretical result will give insights into the optimal order of b, and give us the convergence

rate for histogram classification, as captured in the following theorem.

Theorem 4.12 (Error convergence of histogram). Let ĥ be the histogram classifier defined

in (4.20); assume that η(X) is a L-Lipschitz function. Choosing b =
(

2L2n
d

) 1
d+2 , then we

have:

E
S
[LD(ĥ)] ≤ LD(f

∗) +
Ld

d+3
2d+4

n
1

d+2

+ L

√
2

d
d

d+2

1

n
1

d+2

+

√
π + 2L√
2n

(4.31)

= LD(f
∗) +O

(
L
√
d

n
1

d+2

)
. (4.32)

Proof. By the result of Theorem 4.10 we are trying to find b∗ such that:

b∗ = argmin
b

{
LD(f

∗) +
L
√
d

b
+

√
2(bd + 1)

n
+

√
π√
2n

}
. (4.33)
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After dropping the terms that have no dependence on b, this is equivalent to:

b∗ = argmin
b

{√
dL

b
+

√
2bd

n

}
. (4.34)

To find such b, we can take the derivative of (4.34) with respect to b and equate it to zero

to find the minimum. Hence we have

√
2

n

d

2
bd/2−1 − L

√
d

b2
= 0. (4.35)

Since by algorithm construction 1/b is the width of each cell and b ̸= 0, by solving the

equation for b, we obtain: b =
(

2L2n
d

) 1
d+2

. We substitute this into (4.10) and obtain:

E
S
[LD(ĥ)] ≤ LD(f

∗) + L
√
d

(
d

2L2n

) 1
d+2

+

√
2

n

√(
2L2n

d

) d
d+2

+ 1 +

√
π

2n

≤ LD(f
∗) +

Ld
d+3
2d+4

n
1

d+2

+ L

√
2

d
d

d+2

1

n
1

d+2

+

√
π + 2L√
2n

. (4.36)

Remark 6. The rate of order O(n−1/(d+2)) we obtained from Theorem 4.12 is optimal

for non-parametric classifiers under the Lipschitz η assumption, up to constant factors

[5]. Our setting only assumes the Lipschitzness of the conditional probability function η.

The optimal rate under the same setting for non-parametric classification is known to be

O(n−1/(d+2)) and can be found in [5, Thm. 4.1].

Despite Theorem 4.12 have already achieved optimal convergence rate under the same

condition, the result does not provide any information on whether faster error convergence

is possible for easier learning problems. More precisely, can the convergence rate be quicker

when the Bayes error is zero or very small? We investigate this question in the following

section.
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4.3.2 Generalization by case analysis

In this section, we consider an alternative approach to analysing the histogram classifier.

As we shall see, this will turn out to have an advantage in the special case when the Bayes

error of the learning problem is zero or very small, while being suboptimal in the general

regime.

Due to the nature of the histogram classifier, we can derive a generalization bound by

an approach of splitting the cells of the histogram into two groups. The intuition is that

we consider the first case as we have an insufficient number of points in a cell hence we

assume that a bad prediction is likely to be made in this case, and vice versa for the

second case. We use a hyper-parameter k to determine how many points in a cell will be

considered “sufficient”.

Let us fix some k ∈ N, and consider the case where the cell contains more than k sample

points and the case where a cell contains less than k sample points. We have the following

Theorem:

Theorem 4.13. Let ĥ, η̂ be as defined in (4.20), and assume that η(X) is an L-Lipschitz

function. Then for any fixed 10 ≤ k ∈ N, b ∈ N, we have:

E
S
[LD(ĥ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +
3
√
dL

b
+

2kbd

n
. (4.37)

We will use Hoeffding’s inequality in our proof.

Lemma 4.14 (Hoeffding’s Inequality). Let θ1, . . . , θn be a sequence of independent random

variables and let θ̄ = 1
n

∑n
i=1 θi. Assume that E[θ̄] = µ and P[a ≤ θi ≤ b] = 1 for every i.

Then, for any ϵ > 0

P

[∣∣∣∣∣ 1n
n∑

i=1

θi − µ

∣∣∣∣∣ > ϵ

]
≤ 2 exp (−2nϵ2/(b− a)2). (4.38)

Proof of Theorem 4.13. Let ĥ be our output hypothesis, let Zi = (Xi, Yi), i ∈ [n] be the
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set of points in S, and let (X, Y ) be the additional point we have drawn from X ×Y . We

have:

E
S
[LD(ĥ)] = E

X1,...,Xn,X

[
E

Y1,...,Yn,Y
[LD(ĥ)|X1, . . . , Xn, X]

]

= E
X1,...,Xn

 ∑
i:|Ci∩S|<k

P[Ci]

 · E
X1,...,Xn,X

 P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[ĥ(X) ̸= Y | |Ci(X) ∩ S| < k]


+ E

X1,...,Xn

 ∑
i:|Ci∩S|≥k

P[Ci]

 · E
X1,...,Xn,X

 P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[ĥ(X) ̸= Y | |Ci(X) ∩ S| ≥ k]


≤ 2rk

n
+ E

X1,...,Xn,X

 P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[ĥ(X) ̸= Y | |Ci(X) ∩ S| ≥ k]

 ,
(4.39)

where the last inequality follows from Lemma 4.3 and using the trivial bound of proba-

bilities ≤ 1.

Let Ŷ := ĥ(X), and fix S and X such that |Ci(X) ∩ S| ≥ k. Let p = p(X) =∑
i∈[n] 1[Xi∈Ci(X)]

η(Xi)∑
i∈[n] 1[Xi∈Ci(X)]

and |Ci(X)| =
∑

i∈[n] 1[Xi∈Ci(X)]. Note that from lemma 4.6 we have

P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[Ŷ ̸= Y ] ≤ P
Yi∼η(Xi),Y∼p

i∈[n]

[Ŷ ̸= Y ] + |p− η(X)|. (4.40)

Since we fixed X, so |Ci(X)| is also fixed, we apply Lemma 4.4 and have

P
Yi∼η(Xi),Y∼p

i∈[n]

[Ŷ ̸= Y ] ≤

(
1 +

√
8

|Ci(X)|

)
P

Y∼p
[Y ̸= 1[p≥1/2]]

≤

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p≥1/2]].

(4.41)

W.l.o.g. assume p ≤ 1/2, we also have

P
Y∼p

[Y ̸= 1[p≥1/2]] = p = min{p, 1− p} ≤ min{η(X), 1− η(X)}+ |p− η(X)| (4.42)
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Taking expectations of (4.40) and combining our results we have

E
S
[LD(ĥ)] ≤

2rk

n
+

(
1 +

√
8

k

)
[LD(f

∗) + E[|p− η(X)|]] + E[|p− η(X)|]

≤ 2rk

n
+

(
1 +

√
8

k

)
LD(f

∗) + 3E[|p− η(X)|]. (4.43)

Now consider E[|p− η(X)|], we can use the assumption that η(X) is L-Lipschitz here and

conclude E[|p− η(X)|] ≤ L
√
d/b. Hence we conclude that:

E
S
[LD(ĥ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +
3L

√
d

b
+

2kbd

n
. (4.44)

Unfortunately, optimising the choice of k and b over the result obtained in Thm. 4.13

leads to a suboptimal rate for nonzero Bayes error, given in the following theorem for

completeness. However, in Theorem 4.16 the advantage in zero (or small) Bayes error

case will become apparent.

Theorem 4.15. Let ĥ, η̂ be as defined in (4.20), and assume that η(X) is a L-Lipschitz

function. Then we have:

E
S
[LD(ĥ)] ≤ LD(f

∗) +
11L+ 4Ld

4L
3

d+3n
1

d+3d
d

d+3

(4.45)

Proof. To optimise our result in Theorem 4.13 we want to work out the following, given

any fixed b, we have:

k∗b = argmin
k

{
2kbd

n
+

√
π√
2k

+
L

b

}
,

b∗ = argmin
b

{
2k∗b b

d

n
+

√
π√
2k∗b

+
L

b

}
.

(4.46)

Notice that our bound holds for all k ≥ 2 and all b ≥ 1. Due to the complexity of

computing and representing the optimal k and b in this case, we will try to work out an
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approximate of k∗ and b∗ instead.

Let us approximate k∗ first, taking the derivative of (4.46) (w.r.t. k) and equating to zero

we have
2bd

n
−

√
π

(2k)3/2
= 0 (4.47)

Hence

⇒ 2bd(2k)3/2 = n
√
π

⇒ 32b2dk3 = n2π

⇒ k =

(
n2π

32b2d

)1/3

≈
( n
bd

)2/3
· 6

13
= k̃.

(4.48)

Substitute k̃ into the second equation of (4.46) we get

12
13

(
n
bd

)2/3
bd

n
+

√
π√

12
13

(
n
bd

)2/3 +
L

b
=

12n2/3bd/3

13n
+

√
π√

12
13

(
n
bd

)1/3 +
L

b

=
12bd/3

13n1/3
+

√
13πbd/3√
12n1/3

+
L

b

=
bd/3

n1/3

(
12

13
+

√
13π

12

)
+
L

b

≈ 11bd/3

4n1/3
+
L

b
.

(4.49)

Now we find an approximate value for b∗ by finding

b̃ = argmin
b

11bd/3

4n1/3
+
L

b
. (4.50)

Differentiating w.r.t. b and equating zero we have:

11db
d−3
3

12n1/3
− L

b2
= 0

⇒11db
d+3
3 = 12Ln1/3

⇒b =

(
12Ln1/3

11d

) 3
d+3

≈
(
L3n

d3

) 1
d+3

= b̃.

(4.51)
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We substitute our results back to (4.37) and obtain the following:

E
S
[LD(ĥ)] ≤ LD(f

∗) +
11bd/3

4n1/3
+
L

b

⪅ LD(f
∗) +

11
(

L3n
d3

) d
3(d+3)

4n1/3
+

L(
L3n
d3

) 1
d+3

= LD(f
∗) +

11L
d

d+3

4n
1

(d+3)d
d

d+3

+
Ld

3
d+3

L
3

d+3n
1

d+3

= LD(f
∗) +

11L+ 4Ld

4L
3

d+3n
1

d+3d
d

d+3

. (4.52)

Remark 7. The generalization bound we obtained using the case analysis approach gives

sub-optimal rates of O(n−1/(d+3)), while we know the optimal rate is O(n−1/(d+2)) from

Theorem 4.12. This is the artefact of this proof method, as we have to choose k =

O(n2/(d+3)) to balance the terms. However, we note that one of the terms is multiplied

by the irreducible error LD(f
∗) in Thm. 4.13, so in the case where LD(f

∗) is sufficiently

small then the analysis here will provide a better bound than Thm. 4.12.

In the special case where the Bayes error is zero, which is often called the “realizable”

setting in literature, we can obtain a fast (order n−1) convergence rate.

Theorem 4.16 (Error convergence of histogram, realizable case). Let ĥ, η̂ be as defined

in (4.20), assume that η(X) is an L-Lipschitz function and the Bayes error LD(f
∗) = 0.

If we choose b = 2L
√
d, we have:

E
S
[LD(ĥ)] ≤ O

(
(2L

√
d)d

n

)
. (4.53)

Proof. We recall the result from the step of the main theorem, referring to equation (4.43).

Since the Bayes error is zero we have from eq. (4.43):

E
S
[LD(ĥ)] ≤

2rk

n
+ 3E[|p− η(X)|]. (4.54)
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Now we choose the parameter b = 2L
√
d and consider E[|p− η(X)|]

E[|p− η(X)|] ≤ E
[

max
X′∈Ci(X)

|η(X ′)− η(X)|
]

≤ E[L∥X ′ −X∥2]

≤ L
√
d

b
=

1

2
. (4.55)

Since the Bayes error is zero so max
X′∈Ci(X)

|η(X ′)−η(X)| can only be either zero or one. This

implies that E[ max
X′∈Ci(X)

|η(X ′)− η(X)|] = 0 hence E[|p− η(X)|] = 0. We conclude that by

choosing k = 2, recalling the choice of b, and that r = bd, we get:

E
S
[LD(ĥ)] ≤

2rk

n
=

2d+2(L
√
d)d

n
= O

(
(2L

√
d)d

n

)
. (4.56)

Theorem 4.16 describes the generalization loss in the case where the Bayes error is zero,

which gives a fast rate of O(1/n). However, even if the Bayes error is non-zero, as long

as the Bayes error is close enough to zero, we are also likely to obtain a tighter bound

than Thm. 4.10. We formalise this statement in the following theorem by combining with

the results in Thm. 4.10, we obtain the following generalization error guarantee for the

histogram classifier:

Theorem 4.17 (Generalization of histogram). Let ĥ, η̂ be as defined in (4.20), and assume

that η(X) is an L-Lipschitz function. We have for all b,

E
S
[LD(ĥ)] ≤ min

{
LD(f

∗) +
L
√
d

b
+

√
4(bd + 1) + π

2n
, 2LD(f

∗) +
3L

√
d

b
+

20bd

n

}
.

(4.57)

Proof. From the result of Thm. 4.13, take k ≥ 10. Then take the minimum between this

and result from Thm. 4.10.

Theorem 4.15 already provides the convergence rate and the choice of b where the first
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expression is the minima in equation (4.57). For the another case, we have the following

result as an immediate corollary of Thm. 4.17.

Corollary 4.18. Let ĥ, η̂ be as defined in (4.20), and assume that η(X) is an L-Lipschitz

function. Then we have for b = O(n1/(d+1)),

E
S
[LD(ĥ)] ≤ 2LD(f

∗) +O

(
L
√
d

n
1

d+1

)
. (4.58)

Note that this corollary shows the histogram classifier converges to 2 times the Bayes

error at a faster rate of O(n−1/(d+1)) compared to O(n−1/(d+2)) in Theorem 4.12 even

when the Bayes error is zero. While the analysis of Thm. 4.12 provides the optimal rate

in the general setting, this corollary shows that we can obtain a faster convergence if

the Bayes error is sufficiently small. For example, if LD(f
∗) < 1 × 10−100, then a faster

error convergence towards 2× 10−100 is usually more useful than a slower convergence to

1× 10−100.

The following section will exploit a neat property of random projection-based dimension-

ality reduction to get better bounds whenever the data support has a low complexity

structure, even if it is not known a-priori.

4.4 Learning with compressed histograms

In this section, we study the performance of the histogram classifier in the compressed

setting, i.e. when the histogram classifier has only access to the projected sample points.

Recall that Φ is a linear map that satisfies the condition of the JL-lemma (Thm. 2.11)

and SΦ is the set of projected sample points in Rm as defined in previous sections. The

training of the histogram is then performed with SΦ only without seeing the original

sample set S. For any fixed cell width parameter b (in the projected space), the optimal

classifier in the hypothesis class in the projected space HΦ
b is denoted by h∗Φ defined in a
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similar way as h∗ in the original space.

h∗Φ(X) = 1{η∗Φ(X)≥ 1
2
}, η∗Φ(X) = E

ΦX′∈Ci(ΦX)

[η(X ′)] = EX′
[
P[Y = 1|ΦX ′ ∈ Ci(ΦX)]

]
.

(4.59)

We also denote the ERM output histogram learned with the compressed data by ĥΦ.

ĥΦ(X) = 1{η̂Φ(X)≥ 1
2
}, η̂Φ(X) =

∑
i∈[n] 1{ΦXi∈Ci(ΦX)}Yi∑
i∈[n] 1{ΦXi∈Ci(ΦX)}

. (4.60)

4.4.1 Histogram classifier with random projection

From the analysis of the generalization bound in the previous result, we see that there is

a bad dependence on the dimension. As the dimension d increases, one of the terms grows

exponentially with d. However, natural data sources often have a lower intrinsic dimension

(in some sense) even if their feature representation is d-dimensional. The bounds presented

in the previous section are unable to take advantage of this. This naturally inspires us

to use a dimensionality reduction tool such as random projection as a solution. We will

use the generalized JL-lemma (Thm. 2.11) for our analysis which allowed us to capture

the low dimensional structure of the sample set. Applying the result to our compressed

learning setting, we found that with a smaller increase of the approximation error due

to distortion, we reduce the dimension dependence on our error bound as the following

theorem states.

Theorem 4.19. Let S be a set of n samples drawn i.i.d. from distribution D, and let ĥΦ,

SΦ as defined in (4.60). Assume that η(X) is an L-Lipschitz function and let w(D) be

the Gaussian width of the set of normalised pairwise distances of S. Then for any b ∈ N,

0 < ϵΦ < 1, let m be a positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (4.61)

58



Compressed Non-parametric Algorithms

Then we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n
. (4.62)

Proof. First we note that the argument for finite hypothesis class also holds in the com-

pressed histogram setting because the number of hypotheses is still finite for any fixed

parameter b. Specifically, the number of cells in the compressed histogram is reduced

from bd to bm, hence reducing the size of the hypothesis class. By the same procedure as

the derivation of equation 4.26 in the proof of Thm. 4.10 we have

E
S
[LD(ĥΦ)] ≤ LD(h

∗
Φ) +

√
2bm + 2

n
+

√
π√
2n
. (4.63)

We have

LD(h
∗
Φ) = P

(X,Y )∼D
[h∗Φ(X) ̸= Y ] = E

X

[
E

Y∼η(X)
[1η∗Φ(X)≥1/2 ̸= Y ]

]
(4.64)

(Lemma 4.6) ≤ E
X

[
E

Y∼η∗Φ(X)
[1η∗Φ(X)≥1/2 ̸= Y ]

]
+ EX [|η∗Φ(X)− η(X)|]

= E
X
[min{η∗Φ(X), 1− η∗Φ(X)}] + EX [|η∗Φ(X)− η(X)|]

(Lemma 4.6) ≤ E
X
[min{η(X), 1− η(X)}] + 2EX [|η∗Φ(X)− η(X)|]

≤ LD(f
∗) + 2EX

[
max

ΦX′∈Ci(ΦX)

|η(X)− η(X ′)|
]

≤ LD(f
∗) + 2LE

X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
,

where the second-to-last line is because η∗Φ is the average of η(X ′) over all X ′ such that

ΦX ′ is in the same cell as ΦX, and the last line follows from the Lipschitz condition of

η. Substituting this into equation 4.63 we obtain:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +

√
2bm + 2

n
+

√
π√
2n

+ 2LE
X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
. (4.65)

Since we have that ΦX and ΦX ′ are in the same cell, by construction this implies that

∥ΦX − ΦX ′∥∞ ≤ DΦ

b
, where DΦ = max

X,X′∈X
∥ΦX − ΦX ′∥2 denotes the diameter of the

59



Compressed Non-parametric Algorithms

projected sample set. We also have from the JL-lemma that

∥X −X ′∥2 ≤
∥ΦX − ΦX ′∥2

1− ϵΦ
≤ DΦ

b(1− ϵΦ)
, (4.66)

Since X = [0, 1]d, we have ∥X∥2 ≤ d for all X ∈ X . Applying the JL-lemma we have

DΦ ≤ (1 + ϵΦ)
√
d. Hence we can conclude with high probability:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n
. (4.67)

We have shown that the dimensionality dependence of the generalization bound can be

reduced to m if the sample set has a simple structure. Since the error bound grows

exponentially with respect to the dimension, this implies a significant decrease in its

value if m is small compared with d. The cost of this dimensionality reduction is the

extra multiplication factor that came from the projection distortion (one that depends on

ϵΦ). However, this factor is usually much less significant compared to the reduction of the

dimensional-dependent term. Since we only incur a multiplicative factor due to projection

distortion in the generalization bound of the compressed histogram, by a similar choice

of the parameter b, we obtain the ‘optimal’ convergence rate of O(n− 1
m+2 ) with respect to

the projection dimension m (up to distortion factors of ϵΦ) as an immediate result.

Theorem 4.20. Let ĥΦ, Φ, ϵΦ, δΦ,m be as described in Thm. 4.19. Assume that η(X) is

L-Lipschitz. If b = O(n− 1
m+2 ) then we have with probability at least 1− 2δΦ:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +O

(
L(1 + ϵΦ)

√
d

n
1

m+2 (1− ϵΦ)

)
. (4.68)

Proof. Use theorem 4.19 and verify with the choice of b.

Just as in the non-projected histogram case, we can obtain a better convergence rate if

the Bayes error is zero LD(f
∗) = 0. We show in the following theorem that, as long as
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we choose a small enough bin-width (or large enough b) for each cell and the projection

parameters ϵΦ, δΦ are not too large (≥ 1/2), then the error of the compressed histogram

converges with rate of order O(1/n).

Theorem 4.21. Let ĥΦ be the ERM histogram classifier using the training set SΦ. Assume

that η(X) is an L-Lipschitz function and let w(D) be the Gaussian width of the set of

normalised pairwise distances of S. Then for any 0 < δΦ < 1, 0 < ϵΦ ≤ 1/2 let m be a

positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (4.69)

Then for any b > 3L
√
md, we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ O

(
Lmdm/2

n

)
. (4.70)

Proof. Note that by a similar argument from the proof of Thm 4.13, for any positive

integer k we have

E
S
[LD(ĥΦ)] ≤

2bmk

n
+ E

X1,...,Xn,X

 P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[ĥΦ(X) ̸= Y | |Ci(ΦX) ∩ S| ≥ k]

. (4.71)

Denote ĥΦ(X) = Ŷ , fix S and X with |Ci(ΦX) ∩ S| ≥ k. By Lemma 4.6 we have

P
Yi∼η(Xi),Y∼η(X)

i∈[n]

[Ŷ ̸= Y ] ≤ P
Yi∼η(Xi),Y∼η∗Φ

i∈[n]

[Ŷ ̸= Y ] + |η∗Φ − η(X)|. (4.72)

Since X is fixed, the number of points in Ci(ΦX) is also fixed, we apply Lemma 4.4 and

we have

P
Yi∼η(Xi),Y∼η∗Φ

i∈[n]

[Ŷ ̸= Y ] ≤

(
1 +

√
8

k

)
P

Y∼η∗Φ

[Y ̸= 1[η∗Φ≥1/2]]. (4.73)
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We also have

P
Y∼η∗Φ

[Y ̸= 1[η∗Φ≥1/2]] = min{η∗Φ, 1− η∗Φ} ≤ min{η(X), 1− η(X)}+ |η∗Φ(X)− η(X)|.

Taking expectations and combining our results we have

E
S
[LD(ĥΦ)] ≤

(
1 +

√
8

k

)
LD(f

∗) +
2bmk

n
+ 3E[|η∗Φ(X)− η(X)|]. (4.74)

Since the Bayes error is zero LD(f
∗) = 0, we eliminate the first term and choose k = 10

to be a constant.

E
S
[LD(ĥΦ)] ≤

20bm

n
+ 3E[|η∗Φ(X)− η(X)|] ≤ 20bm

n
+ 3LE

X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
. (4.75)

followed by the Lipschitz condition of η. Since each ΦX ′ is in the same box as ΦX, by

setting this means that ∥ΦX ′ − ΦX∥∞ ≤ DΦ

b
, by Theorem 2.11 we have

∥X −X ′∥2 ≤
∥ΦX − ΦX ′∥2

1− ϵΦ
≤ DΦ

b(1− ϵΦ)
(4.76)

Note that our original input space is [0, 1]d, and ∥X∥22 ≤ d. By the Johnson-Lindenstrauss

lemma we have ∥ΦX∥2 ≤ (1 + ϵΦ)
√
d. Hence DΦ ≤ (1 + ϵΦ)

√
d and we have

max
ΦX′∈Ci(ΦX)

|η(X)− η(X ′)| ≤ L(1 + ϵΦ)
√
d

b(1− ϵΦ)
. (4.77)

Now note by that choosing

b ≥ 3L
√
d and ϵΦ < 1/2, (4.78)

we have max
ΦX′∈Ci(ΦX)

|η(X)−η(X ′)| < 1. However since the Bayes error is zero, the difference

|η(X) − η(X ′)| can only be zero or one. Hence we can conclude that max
ΦX′∈Ci(ΦX)

|η(X) −

η(X ′)| = 0. Finally, substituting the choice of b into equation (4.75), we have with high

probability:

E
S
[LD(ĥΦ)] ≤ O

(
Lmdm/2

n

)
. (4.79)
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4.4.2 Random projection with non-linear spaces

In this section, we consider different variations of the data geometry that allow us to

obtain good results with random projection on the histogram classifier. Although the

Gaussian width captures the structure of the sample set, it is also likely in practical

situations that while the majority of samples lie on a low-dimensional subspace but a

small fraction of the points can attain a high-dimensional structure. We consider the

following general setting: Assume that there exists a low-dimensional subspace P such

that for some 0 < γ < 1, 0 < ξ ≤ 1, (1 − γ) fraction of samples is contained in P while

the rest γ fraction of the sample set S is ξ distance away from subspace. Examples of

these types of structures are demonstrated in Fig. 4.1 and 4.2 where we have generated

data sets in a 3-dimensional space but have a structure similar to a 2-dimensional plane.

In this section, we show that it is sufficient to project onto the lower dimension based on

the geometry of the (1 − γ) fraction of points that have a lower dimensional structure

provided that γ and ξ are not large simultaneously.

We first show the result for the case when γ is small, but ξ can be arbitrary:

Theorem 4.22 (Small fraction of complex points). Let ĥΦ be the ERM histogram classifier

using the training set SΦ. Let S1 be the (1 − γ) fraction of points in S that lie within a

linear subspace P and S2 be the γ fraction of points that are not on the subspace. Assume

that η(X) is a L-Lipschitz function and let w(D) be the Gaussian width of the set of

normalised pairwise distances of S1. Then for any b ∈ N, 0 < ϵΦ, δΦ < 1, let m be a

positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (4.80)

Then we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

+ 2γ(1− γ). (4.81)
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Figure 4.1: 2d data embedded in 3d where γ = 0.1, ξ = 1. In this case, the majority of
the sample points lie on a plane P and a small fraction (γ) of points can be anywhere in
the space.

In particular, if γ ≤ 1/b we have

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

+
2

b
. (4.82)

Proof. By the same argument as in the proof of Thm. 4.19, starting with equation (4.65),

we have

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +

√
2bm + 2

n
+

√
π√
2n

+ 2LE
X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
. (4.83)

Note that this already implies the impact of the complex points can be quantified by

the distance of projected points in the original space, and we know this can be bounded

effectively as long as they lie on the subspace. We will consider two cases of X and X ′.

Let DΦ denote the diameter of the projected sample set:

1. Both X,X ′ lies in the subspace: We have by the generalized JL-lemma

sup ∥X −X ′∥2 ≤
∥ΦX ′ − ΦX∥2

1− ϵΦ
≤ DΦ

b(1− ϵΦ)
. (4.84)
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Figure 4.2: 2d data embedded in 3d where γ = 1, ξ = 0.1. In this case, instead of a
plane containing the sample points, every sample point is "near" some plane P but not
necessarily on P .

2. For another case where one or both of X,X ′ are not on the subspace, we bound the

excess error by the probability that this case occurs

P[X,X ′ /∈ P ] = 2γ(1− γ) + γ2 = 2γ − γ2. (4.85)

Note that our original input space is [0, 1]d, hence ∥X∥22 ≤ d. By Thm. 2.11 we have

∥ΦX∥2 ≤ (1 + ϵΦ)
√
d. Hence DΦ ≤ (1 + ϵΦ)

√
d.

Hence we conclude that with high probability:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

+ 2γ(1− γ). (4.86)

In particular, if γ ≤ 1/b we have

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L
√
d(1 + ϵΦ)

b
√
1− ϵΦ

+

√
2bm + 2

n
+

√
π√
2n

+
2

b
. (4.87)
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Theorem 4.22 shows that if γ ≤ 1/b, then the rate of convergence of the compressed

histogram is not affected (up to a constant factor) by the γ fraction of points that have

a high-dimensional structure. The next case we will consider is when ξ is small, i.e. all

points are in bounded distance away from a subspace P . However, we do not restrict the

number of points that are not contained in P , as long as they are all close enough. We

consider the complexity of such geometry as follows.

Lemma 4.23. Let S be a finite sample set in Rd such that there exists a linear subspace

P that satisfies the following. For every point X ∈ S, the ℓ∞ distance of X to the nearest

point in P is at most ξ. Then the Gaussian width of S, w(S) is at most

w(S) = w(P ) + ξ

√
2Γ((d+ 1)/2)

Γ(d/2)
. (4.88)

Proof. Note that for every X ∈ S, we can write X as X ′ + U where X ′ ∈ P and U is an

orthogonal vector to P . Hence by the definition of Gaussian width we have

w(S) = E[sup
X∈S

⟨g,X⟩] = E[sup
X∈S

⟨g,X ′⟩] + E[sup
U

⟨g, U⟩]

≤ w(P ) + ξE[sup ∥g∥]

= w(P ) + ξ

√
2Γ((d+ 1)/2)

Γ(d/2)
,

where Γ is the Gamma function.

Using Lemma 4.23, we have the following result directly implied from Theorem 4.19.

Corollary 4.24 (linear subspaces with small shifts). Suppose there exists a linear subspace

P such that every X ∈ S has distance at most ξ from P . Assume that η(X) is a L-

Lipschitz function, then for any b ∈ N, 0 < ϵΦ, δΦ < 1. Let b be a positive integer that
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satisfies:

m ≥ ϵ−2
Φ CK4

[
w(P ) +

√
log(1/δΦ) + ξ

√
2Γ((d+ 1)/2)

Γ(d/2)

]2
. (4.89)

We have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L(1 + ϵΦ)

√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n
. (4.90)

4.4.3 Projection with manifolds

Besides linear subspaces and their variations, manifold structured data sets are also com-

monly seen in practice. In this section, we study the compressed learning of histogram

classifier when the training sample has a manifold structure or is ’almost’ a manifold

structure, in the sense that points are allowed to be shifted a small distance from the

actual manifold. We use the following form of the JL-lemma applied to manifolds, refer

to [9] for the definitions of the parameters used.

Theorem 4.25 ([9]). Let M be a compact dM -dimensional Riemannian submanifold of

Rd having condition number 1/τ , volume V , and geodesic covering regularity R. Fix

0 < ϵΦ < 1 and 0 < δΦ < 1. Let Φ be random orthoprojector from Rd to Rm with

m = O
(
ϵ−2
Φ dM log(dV Rτ−1ϵ−1

Φ ) log(1/δΦ)
)
. (4.91)

If m ≤ d, then with probability at least 1 − δΦ the following statement holds: For pair of

points X,X ′ ∈M ,

(1− ϵΦ)

√
m

d
≤ ∥ΦX − ΦX ′∥2

∥X −X ′∥2
≤ (1 + ϵΦ)

√
m

d
. (4.92)

Theorem 4.26 (Manifold data). Assume that there exists a manifold M satisfying the

conditions in Thm. 4.25 and every point in S has a distance less than ξ to M . In partic-

ular, for 0 ≤ γ ≤ 1, there are (1 − γ) fraction of points that lies exactly on M . Assume

that η(X) is a L-Lipschitz function. Then for any b ∈ N, 0 < ϵΦ, δΦ < 1, let m be a

67



Compressed Non-parametric Algorithms

positive integer that satisfies:

m = O
(
dM log(dV Rτ−1ϵ−1

Φ ) log(1/δΦ)

ϵ2Φ

)
. (4.93)

Then we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L

√
d(1 + ϵΦ)

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

++2(1 + γ)L
√
dξ. (4.94)

Proof. Following the lines of the proof as in Thm. 4.19 we can start from equation (4.65)

as follows:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +

√
2bm + 2

n
+

√
π√
2n

+ 2LE
X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
. (4.95)

We need to consider three cases of X and X ′. Let DΦ denote the diameter of the projected

sample set:

1. Both X and X ′ lie in the manifold: We have by Thm. 4.25 that

sup ∥X −X ′∥2 ≤
∥ΦX ′ − ΦX∥2

1− ϵΦ
≤ DΦ

b(1− ϵΦ)
. (4.96)

2. Only one of X,X ′ lies in the manifold, w.l.o.g. assume X ′ /∈ M . Let U denote the

normal vector from the manifold to X ′ and X ′
0 ∈M be the point closest to X ′, i.e.

X ′ = X ′
0 + U . Fix X,X ′, we have

∥X −X ′∥2 ≤ ∥X −X ′
0∥2 + ∥U∥2 ≤

∥ΦX − ΦX ′
0∥2

1− ϵΦ
+ ∥U∥2

≤ ∥ΦX − ΦX ′∥2
1− ϵΦ

+
√
dξ

≤ DΦ

b(1− ϵΦ)
+
√
dξ.

3. Both X and X ′ are not in the manifold. Let U,U ′ denote the normal vector from the

manifold to X,X ′ respectively. Furthermore, let X0, X
′
0 ∈ M be the point closest
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to X,X ′ respectively. Fix X,X ′, we have

∥X −X ′∥2 ≤ ∥X0 −X ′
0∥2 + ∥U∥2 + ∥U ′∥2 ≤

∥ΦX0 − ΦX ′
0∥2

1− ϵΦ
+ ∥U∥2 + ∥U ′∥2

≤ ∥ΦX − ΦX ′∥2
1− ϵΦ

+ 2
√
dξ

≤ DΦ

b(1− ϵΦ)
+ 2

√
dξ.

Combining the three cases and note the probability for any X ∈ S to lie on the manifold

M is 1− γ, we have

E
X

[
max

ΦX′∈Ci(ΦX)

∥X −X ′∥2
]
≤ DΦ

b(1− ϵΦ)
+ (1 + γ)

√
dξ.

Note that our original input space is [0, 1]d, hence ∥X∥22 ≤ d, by the Johnson-Lindenstrauss

lemma we have DΦ ≤ (1 + ϵΦ)
√
d.

Hence we conclude that with high probability:

E
S
[LD(ĥΦ)] ≤ LD(f

∗) +
2L

√
d(1 + ϵΦ)

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

++2(1 + γ)L
√
dξ. (4.97)

4.5 Histogram with neighbour search

A potential issue with the classical histogram classifier is that many cells of the histogram

can be empty (no training points) in higher dimensions because the number of cells r = bd

grows exponentially w.r.t. the dimensionality. Random projection discussed in the last

section solves this issue to an extent. However, the projection dimension may remain high

after projection because the data set has a high dimensional structure. e.g. projection

from a 1000000 dimension to a 1000 dimension is still too large (r ≥ 21000). The excessive

number of cells can lead to over-fitting at higher dimensions and hence performs poorly

on unseen sample points.
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In this section, we present an approach to solving this problem using neighbour search

through the trained cells. The key idea is that if we observe an unseen sample in a cell

Ci without any training samples, we seek the nearest cell in our histogram that contains

at least one training sample, and we use the label of the neighbour cell as the label

for the new cell Ci. We limit the distance radius for the neighbour search so that it

will not search for far away neighbours where their labels may not be relevant for the

unseen sample. The new prediction algorithm is outlined in Alg. 2 (training procedure

will be the same). We set a default distance bound equal to the dimensionality d of the

samples. The intuition is to allow the cell to look through its adjacent cells and corner

cells. For example, a cell with index [1, 1] in two dimensions can search neighbours in

{[0, 0], [0, 1], [1, 0], [2, 1], [1, 2], [2, 2]}.

Algorithm 2 Histogram with neighbour search
1: procedure NeighbourPredict(X)
2: if Ci(X) is labelled then
3: return label(Ci(X))
4: else
5: finds the nearest cell Cj of Ci(X) within distance d (dimension of X)
6: if neighbour exists then
7: set label(Ci(X)) := label(Cj)
8: else
9: Assign a random label to label(Ci(X))

10: end if
11: return label(Ci(X))
12: end if
13: end procedure

Note that the time complexity of Alg. 2 is never greater than the neighbour search for

the kNN algorithm because we only have to search through non-empty cells within the

bounded distance. The number of non-empty cells is never greater than the number of

samples since each cell contains at least one sample. Furthermore, empty cells require at

most one neighbour search because it memorised the label after the first time it searched

for its neighbour. Hence the maximum number of neighbour searches required is bounded

by the number of empty cells after training and independent of the number of testing

points. Moreover, since we imposed the bounded distance search, this can be done more
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efficiently by searching through a smaller subset of cell indices.

The bounded distance search condition is to avoid searching for “neighbouring cells” which

are far away. Based on our Lipschitzness assumption of η, intuitively we expect samples to

be more similar if they are close and vice versa (although this is not guaranteed). Hence

searching for cells that are far away is unlikely to give informative predictions. We now

show this method provides the same generalisation guarantee as the vanilla histogram.

Theorem 4.27. Let ĥ be the histogram classifier as defined in (4.20) but with the predic-

tion rule defined in Alg. 2. Assume that η(X) is a L-Lipschitz function. Then we have,

for any fixed b ∈ N:

E
S
[LD(ĥ)] ≤ LD(f

∗) +
L
√
d

b
+

√
2(bd + 1)

n
+

√
π√
2n

(4.98)

Proof. We note that the only change caused by comparing with the classical histogram is

that the distance between the training points and an arbitrary test point has increased,

as we are allowed to look at labels in neighbour cells. Since the size of the hypothesis

class Hb did not change and we still have the Lipschitz condition on η, we have the same

result from a finite hypothesis class argument as in Thm. 4.10:

E
S
[LD(ĥ)] ≤ LD(h

∗) +

√
2r + 2

n
+

√
π√
2n

(4.99)

Furthermore, note the best hypothesis h∗ ∈ Hb is independent of the training set S, hence

there is no change to the generalisation error of h∗ and therefore we obtain the result.

Remark 8. Note that this neighbour search technique actually reduces the size of the

hypothesis class by considering only a subset of Hb. However, this is invisible in our

bound in Thm. 4.27 because this reduction of size depends on the training set S (and the

underlying distribution D), which in the worst case, can have the same size as Hb. Hence

although in practise this approach will likely to reduce the hypothesis class, we can not

improve our upper bound here as we do not make assumptions on the structure of S and
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D.

Remark 9. The analysis of Theorem 4.27 is the same as the original analysis for the

classical histograms. It is trivial to show the same analysis on other results of the histogram

predictor, including the compressed histogram analysis. Hence we are free to use the

theoretical guarantees of the classical histogram.

4.6 Empirical Illustration

In this section, we will analyse the practical performance of the Histogram predictor and

the kNN predictor. We will use the histogram variant described in Alg. 2 that uses the

neighbour search for best performance. We will use a variety of data sets, both synthetic

and real, and have various sizes and dimensions. To demonstrate the results implied by

our theory, we will generate data sets that match the condition specified by our theoretical

result and analyse the outcome.

4.6.1 Performance of kNN and Histogram on different parame-

ters

The first step for training the kNN and the histogram classifier is to choose the appropriate

parameters for the algorithm. This parameter will be the number of nearest neighbours k

for kNN and the cell width parameter b for the histogram. As discussed in previous sec-

tions, these parameters control the bias-variance trade-off for their generalization bounds.

For the kNN algorithm, choosing a small k may lead to over-fitting in the training set, and

a large k may lead to under-fitting. For the histogram, larger b can lead to over-fitting

and smaller b may lead to under-fitting. Hence it is important to tune these parameters

in practice to obtain the best possible performance on accuracy. The choice of parameters

for the algorithms varies a lot depending on the sample set and the learning problem, and

there is no fixed parameter that will work on all problems. For demonstration purposes,

we generated a data set with 10 dimensions consisting of 10000 data points, where 70%

of the samples are used for training and the rest to compute the validation error that
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allows us to choose the best parameter. The result is plotted in Fig 4.3. In Fig. 4.3, we

Figure 4.3: Variation of parameters for Histogram and kNN, cell width parameter b for
Histogram (left) and k neighbours for kNN (right).

allow the parameters k and b to be chosen in a wide range. We note that in both plots,

the validation accuracy starts at a lower level and starts to increase as the parameter in-

crease. After reaching a peak in the accuracy for the best parameter, any further increase

in the parameter will lead to a decrease in accuracy. However, although the shape of their

curve looks similar (increase then decrease w.r.t. parameter), the reason for the shape

is different. For kNN, the model is over-fitted for a small value of k, the evidence from

Fig. 4.3 (right) is that the training error starts very high but the validation accuracy is

relatively low. As k increases for large values, both validation and training error decrease

which implies that the model is under-fitted, a plot for a larger value of k is plotted in

Fig. 4.4. On the other hand, the histogram starts with a lower accuracy for both training

and testing accuracy, implying that the model is under-fitted. As b increases to larger

values, the testing accuracy decreases quickly while the training accuracy remains high,

hence implying that the model is over-fitted. We also note that the parameter range for

the histogram (0−30) is much smaller than the parameter range for kNN (0−200), which

shows that k is less sensitive for kNN than b is for the histogram. i.e. a small change in

the parameter b for histogram can lead to a bigger change in accuracy compared to a

change in k for kNN. Hence we need to choose b more carefully and try out consecutive

choices so that we don’t miss the best-performing parameter. However, the benefit of

the histogram is that it doesn’t need a huge amount of trials to find the best-performing

b before noticing the accuracy is decreasing because the range is relatively small. The
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Figure 4.4: kNN parameter variations in a wide range.

minimum possible choice of b is 2 and usually, we can identify the best b within [2, 30].

The kNN algorithm, on the other hand, is more complicated to try out every possible k

before noticing the accuracy is clearly decreasing, but if we try out values of k in large

interval steps we can miss the best parameter as illustrated in Fig. 4.4. Furthermore, due

to the inefficient computational time of the kNN prediction rule, it is also computationally

heavy to test out a large number of k parameters.

4.6.2 Distortion of projection on low-dimensional data set

Recall that in the compressed learning setting, the learning algorithm only has access

to the compressed data set, i.e. the projected data set using a random matrix projector.

We have proved the generalization guarantee for compressed kNN in Thm. 4.7 and for

the compressed histogram in Thm. 4.19. The condition of the bound depends on the

intrinsic dimension of the sample space X as specified in Thm. 2.11. We have discussed

how we have reduced the variance term of their generalization bounds by learning in the

compressed setting with the trade-off of a small factor of distortion parameter ϵΦ. In this

section, we generate a data set in 5 dimensions but embedded in a 100 dimensional space.

i.e. the features vector has 100 attributes but its intrinsic dimension is 5. The data set

has 10K sample points and we project this data set onto a 10 dimensional subspace using

by Gaussian random matrix as in Thm 2.11. We compare the accuracy result between
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the original classifier and the compressed classifier, the result is demonstrated in Fig. 4.5.

The distortion of the projection in general depends a lot on the intrinsic dimension of

Figure 4.5: Comparison of testing accuracy for kNN and Histogram with and without
compressed learning, where a 5-d data set is embedded in 100-d and then projected onto
a 10-d subspace. Experiments are repeated 10 times and error bars are omitted here due
to small standard deviation.

the data set and the projection dimension [73, 76]. The former can be difficult to find or

estimate in practical situations. In this demonstration, we have generated the data set

with 5 intrinsic dimensions and projected it onto a 10 dimensional subspace to minimise

the distortion. From Fig. 4.5 we see that indeed the accuracy of the compressed kNN

and histogram is almost identical to the accuracy of their high-dimensional analogues.

This shows that the distortion due to random projection is minimal if the condition for

Theorem 4.19 and Thm 4.7 is fully satisfied.

However, things can be a lot less satisfactory if the conditions for projection are not

satisfied. If the data set does not have a low-dimensional structure, and we applied

random projection to project the data to a low dimension, then the distortion of the data

can be large and significantly affects the accuracy of the classification. To demonstrate

this case, we generated a data set in 30 dimensions and embedded in a 50-dimensional

space. There are 10K sample points and we perform a random projection to project

the data onto a 5-dimensional subspace. The result for the testing accuracy of kNN and

histogram is plotted in Fig. 4.6.
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Figure 4.6: Comparison of accuracy for kNN and Histogram with and without compressed
learning (bad projection case), where a 30-d data set is embedded in 50-d and then
projected onto a 5-d subspace. Experiments are repeated 10 times and error bars represent
one standard deviation away from the mean.

4.6.3 Run-time Analysis

Unlike the accuracy performance of kNN and histogram, which only differ by a small

difference, the computational cost between the histogram and kNN is very significant.

The kNN algorithm requires computing the pair-wise distances between the test sample

and the training samples, hence the classic kNN has no training cost. That said, we still

need to choose k for the best performance of kNN, which is done by validation in many

cases. However, validation requires computing the validation error for each potential

candidate of k, which adds complexity to its training phase. Furthermore, due to the

slow performance of the classic kNN that is based on a brute force search for the nearest

neighbours, spatial algorithms like KD-trees are implemented to aid the neighbour search

of kNN, which also adds computational complexity to its training. Although learning with

projected sample sets as noted in Thm. 4.7 can significantly improve its efficiency, it is still

computationally heavy as the number of samples increases. On the other hand, histograms

are much more computationally efficient than kNN for both training and testing due to

their structure.

In this section, we analyse the computational cost of kNN and the histogram and compare

them with their counterpart in the compressed learning setting. The histogram algorithm

we used here is Alg. 2, we note that this is less efficient than the classic histogram in Alg. 1

and hence time complexity can be further improved if we use Alg. 1 instead. However,
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Alg. 1 usually requires larger data sets to achieve high performance hence we will only

use Alg. 2 here for demonstration. We generate a data set with 10K sample points in

5 dimensions but embedded in a 50 dimensional space. The result for the histogram is

plotted in Fig. 4.7 and kNN in Fig. 4.8. From Fig. 4.7, note that the training time of the

Figure 4.7: Runtime comparison for Histogram with compressed learning; training time
(left plot) and testing time (right plot). Experiments are repeated 20 times and error bars
indicate one standard deviation away from the mean.

histogram will be affected by the number of training samples as we need to record the

label of each training sample. The testing time for the histogram is not affected much by

random projection as we observed from Fig. 4.7 (right). The reason is that for the testing

phase of the histogram we only need to find the index of the cell that contains the sample

and record its label, hence this takes constant time. The testing time of the histogram

is improved by random projection because we need to find the nearest cell index for the

minority points in a sparse region (Alg. 2), and this process will be quicker in a lower

dimension. From Fig 4.8 we observe that the run-time of kNN is significantly improved

Figure 4.8: Run-time comparison for kNN with compressed learning; training time (left
plot) and testing time (right plot).
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using random projection. Both training and testing time is reduced by at least 80% when

the algorithm is trained with the compressed samples, despite almost identical accuracies

(Fig. 4.5). We note that neither training nor testing time is affected by the change in

training size because they only depend on the size of the testing set and the validation

set. We plotted the difference in the computational complexity between kNN and the

Figure 4.9: Run-time ratio of kNN over Histogram; training time (left plot) and testing
time (right plot). The ratio is calculated by time elapsed by kNN over the time elapsed
by the histogram.

histogram in Fig. 4.9. We observe that the histogram can be 5 times faster in the training

phase than kNN in the non-projected case and up to 20 times faster in the projected

case. This difference becomes more significant in the testing complexity: the histogram

is nearly 10 times faster than kNN in the projected case and up to 120+ times faster in

the non-projected case. The difference between the time elapsed in the general case can

be bigger or smaller than the result demonstrated depending on the size and structure of

the training set and the testing set. However, as pointed out in the discussion of Alg. 2,

it can never be worse than the kNN in the absolute worst case, but it can be significantly

faster than kNN in most scenarios.

4.6.4 Additional experiments

To further illustrate the performance of compressed kNN and histogram, we perform

additional experiments with real high-dimensional data sets. We will use five data sets

with dimension from 2400 to 100000 with different sizes, the details are listed in Table 4.2.

We use a kd-tree structure for neighbour search inside both algorithms to reduce run-time.
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Since we do not know the true intrinsic dimension of each data set, for simplicity we will

Data set Attributes Proj_d Size Train size Validation size Testing size
Dorothea 100000 100 1150 800 350 N/A
Dexter 20000 100 600 300 300 N/A
Aligned 2400 100 24016 16811 4803 2402
Grouped 2400 100 24016 16811 4803 2402
Flocking 2400 100 24016 16811 4803 2402

Table 4.2: Information of data set used, there is no separate testing set for Dorothea and
Dexter, hence they are noted as N/A.

use a random projection to randomly project all samples to a 100-d subspace before

training each classifier. We divided all samples into three groups, a training set (70%)

for training, a validation set (20%) for choosing the parameter and a testing set (10%) to

computer the error. For experiments with Dorothea and Dexter, due to the limited number

of available samples, we will not further divide all samples to three groups. Instead we will

only carry out testing with the validation set and only the validation error is recorded.

All experiments are repeated 20 times.

Dorothea Dexter Aligned Grouped Flocking
kNN 0.902(±0.001) 0.673(±0.032) 1(±0) 0.999(±0) 0.998(±0.001)
Histogram 0.892(±0.007) 0.674(±0.025) 0.994(±0.01) 0.992(±0.01) 0.999(±0.001)
Decision Tree 0.898(±0.005) 0.593(±0.026) 0.792(±0.069) 0.769(±0.079) 0.803(±0.093)

Table 4.3: Comparison of average classification accuracy using randomly projected data
sets to m = 100 dimensions. The values in brackets represent one standard deviation.
The decision tree used here is based on the Gini index splitting.

From Table 4.3 we find that Histogram and kNN have the best overall accuracy perfor-

mance. There are slight variations between them, and kNN seems to perform a little

better on the Dorothea data set, but these differences have not been found statistically

significant. On the other hand, decision trees perform worse, most likely because ran-

dom projection change the original features used for creating label-dependent splits into

branches. The strength of random projection is that it preserves the distance structure,

and by implication it preserves the similarities which both Histograms and kNN classi-

fiers rely on. So it is perhaps unsuprising that random projection works best with these

classifiers.
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Dorothea Dexter Aligned Grouped Flocking
kNN 0.21(±0.03) 0.35(±0.13) 29.75(±3.67) 27.76(±6.53) 26.99(±5.36)
Histogram 0.15(±0.03) 0.30(±0.1) 6.80(±3.49) 7.05(±2.96) 8.19(±1.95)
Decision Tree 0.40(±0.07) 0.40(±0.07) 11.50(±4.12) 13.46(±11.036) 16.97(±6.83)

Table 4.4: Average training time (seconds) of projected kNN and projected histogram.
The values in brackets represent one standard deviation.

Table 4.4 shows the average time elapsed for training, including the time used for param-

eter tuning. We note that the histogram has better training time on average, compared

to the other two algorithms over all data sets tested. Furthermore, the difference becomes

more significant on the larger data sets (Aligned, Grouped and Flocking).

Dorothea Dexter Aligned Grouped Flocking
kNN 0.014(±0.0004) 0.025(±0.001) 1.47(±0.30) 1.67(±1.30) 1.61(±0.38)
Histogram 0.002(±0.0007) 0.02(±0.004) 0.45(±0.18) 0.59(±0.26) 0.641(±0.15)
Decision Tree 0.0004(±0.0001) 0.0004(±0.0001) 0.001(±0.0001) 0.001(±0.0001) 0.001(±0.0001)

Table 4.5: Average testing time (seconds) of projected kNN and projected histogram. The
values in brackets represent one standard deviation.

From Table 4.5 we observe that the histogram classifier has faster testing times on average

compared to the kNN classifier, and again the differences are more significant for larger

data sets. Decision tree has the best testing time over all data sets, however it lacks in

terms of accuracy and training efficiency, as shown in Table 4.3 and Table 4.4. Further-

more, recall that testing efficiency for the histogram tends to gradually improve over time

as explained in discussion of Alg. 2, and we can use the more efficient prediction rule of

Alg. 1 for large-scale data sets.

Summary

We discussed how the ‘curse of dimensionality’ has affected the generalization convergence

of kNN and presented the kNN algorithm in the compressed learning setting. We then

proved the generalization error bound of the compressed kNN and showed that as long

as the data samples has a simple structure, random projection can reduce the dimension

of the samples without affecting the performance of kNN. We have pursued two different

approaches to provide a generalization bound on the histogram classifier. We found that
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as n increases, after the optimisation with b∗, the bound we obtained with the finite

hypothesis approach achieved the optimal rate of order n− 1
d+2 when the Bayes error is

nonzero. The case splitting approach achieved the optimal rate of order n− 1
d+1 towards

twice the Bayes error. In particular, a convergence rate of n−1 can be achieved if the

Bayes error is zero.

We presented the compressed histogram algorithm and proved its generalization guarantee

in a similar way as the compressed kNN. Moreover, we extended the result of the projected

histogram to other variants of low-dimensional stuctures other than linear subspace. We

found that as long as the majority of the data samples are within close distance to a linear

hyperplane, then random projection does not affect the rate of error convergence for the

histogram.

Finally, we illustrated the findings of our theory using high-dimensional data sets em-

pirically. We showed that when the data samples has a low-dimensional structure then

learning with projected samples has almost the exact same performance as predictors in

high dimension. However, in the case that the data set indeed has a high-dimensional

structure, then random projection can throw away important information of the samples

during projection which can significantly reduces the accuracy of compressed learners.

Furthermore, we showed that the difference of the run-time complexity between histogram

and kNN is significant, in both training and testing. Histogram classifiers have a much

better time and space complexity compared to kNN while achieving good accuracy level,

the run-time difference is especially large when the data set is large or the dimensionality

is high.
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Chapter Five

Differentially Private Non-parametric

Algorithms

In this Chapter, we extend the classic kNN classifier and histogram classifier to the dif-

ferentially private setting. We will impose the Laplace mechanism to guarantee privacy

for both kNN and histogram algorithms by analysing the sensitivity of their estimators.

In the differentially private setting, it is expected that the algorithm will incur additional

error due to the randomization by the privacy mechanism. However, it is unclear how

large this magnitude of excess error will be comparing to their non-private analogues.

Furthermore, does random projection affect the interplay between privacy and general-

ization guarantee? If so, how it is that privacy affects generalization and to what extend?

In this Chapter, we will study this question for the first time in the context of kNN and

histogram classification. A summary of our generalization results in the private setting is

presented in Table. 5.1 for both projected and non-projected algorithms.

5.1 Differentially Private kNN

The kNN algorithm is known to achieve good accuracy in many classification problems

and is widely used to complete learning tasks. In this section, we introduce the DP-

kNN algorithm using the Laplace mechanism which guarantees ϵp-DP for the classical

kNN algorithm. The DP guarantee comes from the addition of randomness by injecting

82



Differentially Private Non-parametric Algorithms

Private kNN NoisyReg

Projected O
((

(1+ϵΦ)N
(1−ϵΦ)ϵp

)
n− 1

m+3

)
(Thm. 5.4)

O
((

(1+ϵΦ)
(1−ϵΦ)ϵp

)
n− 1

m+2

)
(Thm. 5.10)

Non-projected O
(
Nϵ−1

p n− 1
d+3

)
(Thm. 5.3)

O
(
ϵ−1
p n− 1

d+2

)
(Thm. 5.7)

Table 5.1: A summary of the generalisation results, where d is the dimension m is the
projection dimension. Privacy parameter is denoted by ϵp and N is the number of testing
samples. We have omitted other smaller factors here for simplicity, refer to the corre-
sponding theorem for a detailed view.

noise drawn from the Laplace distribution. Given a testing set Stest of size N , note that

the k neighbours of each testing sample can overlap. i.e. the intersection of the set of

neighbours for two different testing sample can be non-empty. Due to this restriction, we

are required to distribute the total privacy budget ϵp to N equal portions and use each

portion on one testing sample (one query). The prediction is then made using the noisy

empirical regression estimator of kNN (line 8 of Alg. 3). The algorithm is outlined in

Alg. 3.

Algorithm 3 Differentially Private kNN by Laplace Mechanism
1: Training set S, privacy parameter ϵp and testing set Stest of size N .
2: procedure DP-kNN(S, ϵp, Stest)
3: Given N testing points Stest = {X1, . . . , XN}
4: for each i of the index set [N ] = {1, . . . , N} do
5: find the k nearest neighbour of X := Stest[i]

6: choose α, β randomly from Lap
(

N
ϵp

)
7: end for
8: Record η̂(X) =

∑k
i=1 Yi+α

k+α+β
, where

∑k
i=1 Yi is the sum of the labels of the k neigh-

bours of X.
9: Predict 1 if η̂(X) ≥ 1/2, else 0.

10: end procedure

Remark 10. Note that Alg. 3 splits up the privacy budget into N equal portions, where

N is the number of testing points. This requires us to know the total number of testing

samples beforehand, which may not be possible in practical situations. One way to get

around this is to use an infinite series that sums to one (e.g. a geometric series) and

have a decreasing privacy budget when we increase the number of predictions. However

this can also lead to very small privacy budgets for each query and hence poor accuracy

performance.
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Our first result is the privacy guarantee of DP-kNN.

Theorem 5.1. The DP-kNN algorithm described in Alg.3 satisfies ϵp-DP.

Proof. Given one testing point X, the global sensitivity of the number of counts in each

label class is clearly 1, as adding or removing one training sample changes the count by

at most 1. By the Laplace mechanism adding Laplace noise with variance parameter 1/ϵp

guarantees ϵp-DP for one prediction query. For N testing queries, since the neighbours of

N testing samples may overlap, we need to use the sequential composition theorem 2.6

over N queries, which guarantees ϵp-DP with scale parameter N/ϵp.

To analyse the generalisation error of the DP-kNN, we need to analyse the effect of the

added noise on its predictions. Note that the Laplace distribution we use here has mean

value 0 and scale parameter N/ϵp as required by the Laplace mechanism (10) to guarantee

ϵp-DP, hence the noise drawn is from a fixed Laplace distribution. We can analyse the

magnitude of the noise added for each prediction query. The following lemma bounds the

error of the noisy empirical regression estimator of kNN with the true regression function.

We prove the result for a general scale of 2/ϵp and we can obtain the required result for

kNN by dividing ϵp by N .

Lemma 5.2. Let k ≥ 1 and let Y1, . . . , Yk be independent Bernoulli random variables with

P[Yi = 1] = pi. Denote p = 1
k

∑k
i=1 pi and p′ =

∑k
i=1 Yi+α

k+α+β
where α and β are independent

Laplace noises with scale 2/ϵp. Then we have:

E
Y1,...,Yk,α,β

P
Y∼p

[Y ̸= 1[p′≥1/2]] ≤ p+
2√
ek

+
5

4kϵp
. (5.1)

Proof. W.l.o.g. (by symmetry) assume that p ≤ 1/2. Then, P
Y∼p

[Y ̸= 1[p>1/2]] = p. Let
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Y ′ = 1[p′>1/2]. We have

E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]]− p = E
Y1,...,Yk

[
P

Y∼p
[Y = 0]P[p′ > 1/2] + P

Y∼p
[Y = 1]P[p′ ≤ 1/2]

]
− p

= E
Y1,...,Yk

[(1− p)P[p′ > 1/2] + p(1− P[p′ > 1/2])]− p

= E
Y1,...,Yk

[(1− 2p)P[p′ > 1/2] + p]− p

= P
Y1,...,Yk

[p′ > 1/2](1− 2p).

(5.2)

Note that

P
Y1,...,Yk

[p′ > 1/2] = P
Y1,...,Yk

[∑k
i=1 Yi + α

k + α + β
>

1

2

]
= P

Y1,...,Yk

[
2

k∑
i=1

Yi > k + β − α

]
. (5.3)

For any c < 0, we have:

P
Y1,...,Yk,α,β

[
2

k∑
i=1

Yi > k + β − α

]
≤ P

Y1,...,Yk,α,β

[
2

k∑
i=1

Yi > k + β − α

∣∣∣∣∣β − α > c

]
P[β − α > c]

+ P
Y1,...,Yk,α,β

[
2

k∑
i=1

Yi > k + β − α

∣∣∣∣∣β − α < c

]
P[β − α < c]

≤ P
Y1,...,Yk,α,β

[
2

k∑
i=1

Yi > k + β − α

∣∣∣∣∣β − α > c

]
+ P[β − α < c]

≤ P
Y1,...,Yk

[
2

k∑
i=1

Yi > k + c

]
+ P[β − α < c].

Now we can use Hoeffding’s inequality on Yi’s:

P
Y1,...,Yk

[
k∑

i=1

Yi − pk >
k + c

2
− pk

]
≤ exp

(
−2kt2

)
,

where t =
(1− 2p)k + c

2k
.

Evaluating the exponential term and choosing c = −ks/2 (s = 1− 2p), we have:

exp
(
−2kt2

)
≤ exp

(
−s

2k

8

)
. (5.4)
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We want to bound the quantity (1− 2p) exp(−2kt2), for simplicity we denote s = 1− 2p

and f as:

f = s exp

(
−s

2k

8

)
. (5.5)

By differentiating and equal to zero we find that

s∗ = argmax
s

f(s) =
2

k1/2
. (5.6)

Hence

f(s) ≤ max
s
f(s) = f(s∗) =

2√
k
exp

(
−(4/k)k

8

)
=

2√
ek
.

We can also calculate the second term P[β−α < c] by working out the probability density

function of two i.i.d. Laplacian random variables. Note that the density of the difference

of two independent random variable X, Y is given by:

fX−Y (z) =

∫ ∞

−∞
fX(x)fY (x− z)dx. (5.7)

For two i.i.d. Laplacian random variables X, Y with scale b and z > 0 we have:

fX−Y (z) =

∫ ∞

−∞

1

2b
exp(−|x|/b) 1

2b
exp(−|x− z|/b) dx

=
1

4b2

[∫ 0

−∞
exp(x/b) exp((x− z)/b) +

∫ z

0

exp(−x/b) exp((x− z)/b)

+

∫ ∞

z

exp(−x/b) exp(−(x− z)/b)

]
=

1

4b2

[
b

2
exp(−z/b) + z exp(−z/b) + b

2
exp(−z/b)

]
=

1

4b2
[b exp(−z/b) + z exp(−z/b)] .

Since from the symmetry of the Laplace distribution we also get symmetry of the difference

between two Laplacian random variables about the origin. We have that

fX−Y (z) =
1

4b2
[b exp(−|z|/b) + |z| exp(−|z|/b)] for −∞ < z <∞. (5.8)
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Using this with our two Laplacian random variables α, β from a Laplace distribution with

0 mean and scale 2/ϵp and c < 0, we have

P
α,β

[β − α < c] =
ϵ2p
16

∫ c

−∞

2

ϵp
exp(−|c|ϵp/2) + |c| exp(−|c|ϵp/2) dc

=
ϵ2p
16

[
4

ϵ2p
exp(cϵp/2) +

(
2

ϵp
− c

)
2

ϵp
exp(cϵp/2)

]
=

(
1

2
− cϵp

8

)
exp

(cϵp
2

)
(c < 0).

Substituting c = −ks/2 we have:

(1− 2p)P[β − α < c] =

(
s

2
+
s2kϵp
16

)
exp

(
−skϵp

4

)
= g(s). (5.9)

By differentiation and equate to zero we found that:

s∗∗ = argmax
s

g(s) =
4
√
2

kϵp
. (5.10)

Therefore:

g(s) ≤ max
s
g(s) = g(s∗∗) =

(
2
√
2

kϵp
+

2

kϵp

)
exp(−

√
2) ≤ 5

4kϵp
.

Combining the two terms we conclude:

P
Y1,...,Yk

[p′ > 1/2](1− 2p) ≤ 2√
ek

+
5

4kϵp
.

Hence we conclude:

E
Y1,...,Yn

P
Y∼p

[Y ̸= 1[p′≥1/2]] ≤ p+
2√
ek

+
5

4kϵp
. (5.11)

Remark 11. The result of Lemma 5.2 bounds the deviation of the empirical noisy esti-
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mator p′ with its expected value (with respect to the labels and the noise) p as stated in the

Lemma. The three terms in the upper bound of the Lemma accounts for both empirical

estimation error and additional error due to privacy. In particular, the final term quan-

tifies the error due to added noise for privacy, we can also find the analogue of the first

two terms for the non-private case in Lemma 4.4.

Using Lemma 5.2, we can now prove the generalisation of the private kNN using a similar

analysis approach as for its non-private analogue because Lemma 5.2 has quantified the

excess error due to privacy.

Theorem 5.3 (Generalisation of Private kNN). Let X = [0, 1]d,Y = {0, 1}, and D be a

distribution over X ×Y for which the conditional probability function, η, is a L-Lipschitz

function. Let ĥp denote the result of applying the DP k-NN rule to a sample S ∼ Dn,

where k ≥ 10 and the number of test instance is N . Then for any 0 < ϵp we have

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +

L
√
d

n1/(d+1)
+

2k

n1/(d+1)
+

2√
ek

+
5N

4kϵp
. (5.12)

In particular, if k = O(n2/(d+2)), we have

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +O

(
L
√
d

n1/(d+3)
+

N

ϵpn2/(d+3)

)
. (5.13)

Proof. Let πj(X) denote the index of the j-th nearest neighbour of the sample X in

S. Fix some b > 0 and let C1, . . . , Cr be the cover of the feature space X using axis-

aligned boxes of side lengths of 1/b each. For each X,X ′ ∈ X in the same box we have

∥X−X ′∥2 ≤
√
d/b. Otherwise ∥X−X ′∥2 ≤

√
d. Hence the expected generalisation error

is

E
S,A

[LD(ĥp)] = E
S

 ∑
i:|Ci∩S|<k

P[Ci]

 · P
S,A,(X,Y )

[
ĥp(X) ̸= Y | ∀j ∈ [k], ∥X −Xπj(X)∥ ≤

√
d
]

+ E
S

 ∑
i:|Ci∩S|≥k

P[Ci]

 · P
S,A,(X,Y )

[
ĥp(X) ̸= Y | ∀j ∈ [k], ∥X −Xπj(X)∥ ≤

√
d/b
]
.
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By the law of total probability and Lemma 4.3 we obtain:

E
S,A

[LD(ĥp)] ≤
2rk

n
+ max

i:|Ci∩S|≥k
P

S,A,(X,Y )

[
ĥp(X) ̸= Y | |Ci(X) ∩ S| ≥ k

]
, (5.14)

where πj(X) denotes the index of the j-th nearest neighbour of the sample X in S.

Let p = 1
k

∑k
i=1 η(Xπi(X)) and p′ =

∑k
i=1 Yi+α

k+α+β
where α, β are the Laplace noises from

Lap(0, N/ϵp). From Lemma 5.2 we have

E
Y1,...,Yj

P
Y∼η(X)

[ĥp(X) ̸= Y ]− p ≤ 2√
ek

+
5N

4kϵp
. (5.15)

Note that for p ≤ 1/2 we have P
Y∼p

[1[p>1/2] ̸= Y ] = p = min{p, 1− p}, and hence

min{p, 1− p} ≤ min{η(X), 1− η(X)}+ |p− η(X)|

by a similar argument as in the proof of the claim above. Note that the error of the Bayes

optimal classifier is

LD(f
∗) = E

X
[min{η(X), 1− η(X)}].

Hence we obtain:

E
A,Y1,...,Yj

[
P

Y∼p
[ĥp(X) ̸= Y ]

]
≤ LD(f

∗) + E[|p− η(X)|] + 2√
ek

+
5N

4kϵp
. (5.16)

Using the fact that η is L-Lipschitz we have

|p− η(X)| ≤ L sup ∥X −X ′∥2 ≤
L
√
d

b
. (5.17)

Combining equations (5.14),(5.15),(5.1) we obtain

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +

L
√
d

b
+

2rk

n
+

2√
ek

+
5N

4kϵp
. (5.18)
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Finally, letting b = n1/(d+1) we have

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +

L
√
d

n1/(d+1)
+

2k

n1/(d+1)
+

2√
ek

+
5N

4kϵp
. (5.19)

By optimizing k, b simultaneously, we found that with b = n1/(d+3) and k = n2/(d+3), we

have

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +O

(
L
√
d

n1/(d+3)
+

N

ϵpn2/(d+3)

)
. (5.20)

5.1.1 DP compressed kNN

Learning with compressed data sets is beneficial in the non-private setting of kNN as we

have discussed in Section 4.1.1. Random projection can reduce the dimension dependence

of its generalisation error bound which can improve the rate of convergence and compu-

tational efficiency of the kNN algorithm.

In this section, we introduce the kNN algorithm in compressed learning under the differ-

ential privacy constraint. We show that the benefits of random projection for classic kNN

also apply in the privacy setting. Recall that for a sample set S and a random projection

matrix Φ, we denote the projected sample set as SΦ = {(ΦX, Y )|(X, Y ) ∈ S}.

Theorem 5.4 (Private kNN with RP). Let ĥΦp denote the result of applying the k-NN

rule to the projected sample set SΦ, where k ≥ 10 and the number of test instances is

N . Assume that η is L-Lipschitz function. Let w(D) be the Gaussian width of the set of

normalised pairwise distances of S. Then for any ϵp > 0 and 0 < ϵΦ, δΦ < 1, let m be a

positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (5.21)

Then we have with probability at least 1− δΦ:

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +

L(1 + ϵΦ)
√
d

(1− ϵΦ)n1/(m+1)
+

2k

n1/(m+1)
+

2√
ek

+
5N

4kϵp
. (5.22)
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In particular, if k = O(n2/(m+3)), we have

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +O

(
L(1 + ϵΦ)

√
d

(1− ϵΦ)n1/(m+3)
+

N

ϵpn2/(m+3)

)
. (5.23)

Proof. From a similar analysis as in Theorem 4.7 we have

E
S,A

[LD(ĥΦp)] ≤
2rk

n
+ max

i:|Ci∩S|≥k

{
P

S,A,(X,Y )

[
ĥΦp(X) ̸= Y | ∀j ∈ [k], ∥ΦX − ΦXπj(ΦX)∥ ≤ DΦ/b

]}
,

where πj(ΦX) denotes the index of the j-th nearest neighbour of the sample ΦX in S.

Let p = 1
k

∑k
i=1 η(Xπi(ΦX)) and p′ =

∑k
i=1 Yi+α

k+α+β
where α, β are the Laplace noises from

Lap(0, N/ϵp). W.l.o.g. assume that p ≤ 1/2. From Lemma 5.2 we have

E
A,Y1,...,Yj

P
Y∼η(X)

[ĥΦp(X) ̸= Y ]− p ≤ 2√
ek

+
5N

4kϵp
. (5.24)

Note that for p ≤ 1/2 we have P
Y∼p

[1[p>1/2] ̸= Y ] = p = min{p, 1 − p}, and hence by

Lemma 4.6 we have

min{p, 1− p} ≤ min{η(X), 1− η(X)}+ |p− η(X)|.

Note that the error of the Bayes optimal classifier is

LD(h
∗) = E

X
[min{η(X), 1− η(X)}].

Combining our results we obtain:

E
A,Y1,...,Yj

[
P

Y∼p
[ĥΦp(X) ̸= Y ]

]
≤ LD(f

∗) + E[|p− η(X)|] + 2√
ek

+
5N

4kϵp
.

Using the fact that η is L-Lipschitz we have

|p− η(X)| ≤ L sup ∥X −X ′∥2. (5.25)

91



Differentially Private Non-parametric Algorithms

Now applying the JL-lemma we have

sup ∥X −X ′∥2 ≤ sup
∥ΦX − ΦX ′∥

1− ϵΦ
≤ DΦ

b(1− ϵΦ)
, (5.26)

where DΦ is the diameter of the projected sample set and 1/b is the width of the covering

boxes. Since our original sample space is [0, 1]d hence ∥X∥22 ≤ d. By the JL-lemma we

have DΦ ≤ (1 + ϵΦ)
√
d. Combining our results we obtain:

E
S,A

[LD(ĥΦp)] ≤ LD(h
∗) +

L(1 + ϵΦ)
√
d

b(1− ϵΦ)
+

2bmk

n
+

2√
ek

+
5N

4kϵp
. (5.27)

Finally, letting b = n1/(m+1) we have

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +

L(1 + ϵΦ)
√
d

(1− ϵΦ)n1/(m+1)
+

2k

n1/(m+1)
+

2√
ek

+
5N

4kϵp
. (5.28)

By optimizing k, b simultaneously, we found that with b = n1/(m+3) and k = n2/(m+3), we

have

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +O

(
L(1 + ϵΦ)

√
d

(1− ϵΦ)n1/(m+3)
+

N

ϵpn2/(m+3)

)
. (5.29)

We observe from theorem 5.4 that the dimensionality in the exponential is reduced to the

projection dimension instead. The cost is the additional factor due to projection distortion

as we observed similarly for the non-private setting. Reduction in dimensionality did not

seem to help with the privacy term (last term) as there is no dependence on d or m.

However, we should note that for the classifier to converge to the Bayes error, we must

choose the parameter k to increase as n increases. Furthermore, recall from theorem 4.2

that the theoretical optimal k is dependent on the dimension d. Hence a reduction in

dimension in theorem 5.4 actually improves the privacy term by allowing a larger choice

of k in its denominator, although this is not immediate from the theorem.
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5.2 Differentially Private Histogram Classifier

In this section, we present two private algorithms and two private classifiers induced by

the algorithms. Both algorithms add noise from the Laplace distribution; we write Lap(σ)

to denote the Laplace distribution with mean 0 and scale σ (the mean is always zero in

our analysis).

5.2.1 Private Classifier by NoisyReg

Ideally, if the sample set we have is large, we will expect to add less noise since the sample

set with a large size will be more stable in the sense that changing one sample will not

causes a significant change in the output.

We note that the histogram classifier can be completely described by a rule that finds the

cell index of a point X, which has been previously denoted by i(X), and the regression

estimator in each cell η̂. Hence to guarantee privacy of the histogram, we simply need

to guarantee privacy for its regression estimator because i(X) is not dependent on the

sample set S. We will impose the Laplace mechanism in our approach and guarantee DP

for the histogram. This is formally described in Algorithm 4.

Algorithm 4 NoisyReg
1: Set η̂(S) = (η̂1, . . . , η̂r) where η̂j is the fraction of points in class "1" in cell j
2: Let nj be the number of sample points in cell j in the training sample S
3: Set parameter ϵp.
4: procedure NoisyReg(S, ϵp)
5: for each j in the index set [r] = {1, . . . , r} do
6: calculate nj

7: if nj ≥ 1 then
8: Set Σ = 1

njϵp

9: else
10: Set Σ = 1

ϵp

11: end if
12: draw βj from Lap (Σ)
13: end for
14: Output η̂(S) + (β1, . . . , βr)
15: end procedure

Our first claim is that Algorithm 4 satisfies ϵp-differential privacy.
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Theorem 5.5. The mechanism NoisyReg defined in Algorithm 4 satisfies ϵp-differential

privacy.

The proof of the privacy guarantee follows directly from the definition of the Laplace

mechanism and the parallel composition theorem. Hence we just need to evaluate its

sensitivity.

Theorem 5.6. The global sensitivity of η̂(S) in Alg. 4 is bounded by 1/nj for the j-th

cell.

Proof. First we consider the case where ni > 1. Let ki be the number of points in cell

i with label 1. Let S be a sample set of size n, we consider the effect of changing one

labelled point on the value of η̂i. We distinguish 5 possible cases, as follows.

1. If we change a point in cell i with different label but the point remains in cell i, the

change to η̂i is : ∣∣∣∣kini

− ki ± 1

ni

∣∣∣∣ = ∣∣∣∣ 1ni

∣∣∣∣ . (5.30)

2. If we add a point to cell i with label 1:

∣∣∣∣kini

− ki + 1

ni + 1

∣∣∣∣ = ∣∣∣∣ ki − ni

ni(ni + 1)

∣∣∣∣ . (5.31)

3. If we add a point to cell i with label 0:

∣∣∣∣kini

− ki
ni + 1

∣∣∣∣ = ∣∣∣∣ ki
ni(ni + 1)

∣∣∣∣ . (5.32)

4. If we remove a point in cell i with label 1:

∣∣∣∣kini

− ki − 1

ni − 1

∣∣∣∣ = ∣∣∣∣ ki − ni

ni(ni − 1)

∣∣∣∣ . (5.33)
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5. If we remove a point in cell i with label 0:

∣∣∣∣kini

− ki
ni − 1

∣∣∣∣ = ∣∣∣∣ ki
ni(ni − 1)

∣∣∣∣ . (5.34)

In all cases, the sensitivity is upper bounded by 1
ni

. If ni = 0 then the sensitivity is clearly

1 since adding a sample with arbitrary label cause the regression estimator to be either 0

or 1.

From the output of NoisyReg, we can define the corresponding private classifier. For

an unknown test point X, we find the cell index Ci(X) where X belongs and we set the

private classifier as follows.

ĥp(X) =


1 if NoisyReg(S, ϵp)Ci(X)

≥ 1/2,

0 otherwise.
(5.35)

By the property of differential privacy, privacy will be preserved for post-processing [48].

Hence our output classifier is also ϵp-DP.

Theorem 5.7 (Generalisation of NoisyReg). Let ĥp be the private and non-private clas-

sifier respectively. Assume that η(X) is an L-Lipschitz function and let ϵp denote the

privacy budget. Then for any b ∈ N, we have:

E
S,A

[LD(ĥp)] ≤ LD(f
∗) +

L
√
d

b
+

√
2bd + 2

n
+

√
π√
2n

+
bd

eϵpn
. (5.36)

In particular, if b = O(n1/(d+2)), we have

ES,A[LD(ĥp)] = LD(f
∗) +O

(
L
√
d

n1/(d+2)
+

1

ϵpn2/(d+2)

)
. (5.37)

Note that in the case where we take ϵp to infinity (meaning 0 privacy) we get back to our

original bound on the non-private classifier (Thm 4.12).
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Proof. Fix X and consider the possible error for one particular cell, say cell j and recall

it has sensitivity bounded by 1
nj

. For simplicity, assume that η̂j < 0.5, as the opposite

case follows by symmetry. For any fixed η̂j, the probability that the noise bj will cause η̂j

to pass the threshold 0.5 is

PA

[
η̂j + bj ≥

1

2
|η̂j <

1

2

]
=

∫ ∞

0.5−η̂j

ϵpnj

2
exp

(
−|x|ϵpnj

2

)
dx (5.38)

=
1

2
−
∫ 0.5−η̂j

0

ϵpnj

4
exp

(
−|x|ϵpnj

2

)
dx (5.39)

=
1

2
exp

(
−|2η̂j − 1|ϵpnj

2

)
. (5.40)

For the case where η̂j > 0.5 we have a similar proof by symmetry. Hence combining the

two cases we have for all X ∈ Cj, j is fixed,

PA

[
ĥp(X) ̸= ĥ(X)|X ∈ Cj

]
= P

[
η̂j + bj ≥

1

2
|η̂j <

1

2

]
P
[
η̂j <

1

2

]
+ P

[
η̂j + bj ≥

1

2
|η̂j ≥

1

2

]
P
[
η̂j ≥

1

2

]
=

1

2
exp

(
−|2η̂j − 1|ϵpnj

2

)(
P
[
η̂j <

1

2

]
+ P

[
η̂j ≥

1

2

])
=

1

2
exp

(
−|2η̂j − 1|ϵpnj

2

)
. (5.41)

Now, suppose the worst case, i.e. that the added noise has flipped the label prediction for

the cell Cj; that is, for all X ∈ Cj, ĥp(X) ̸= ĥ(X). Denote by Sj = {X ∈ S|X ∈ Cj}

the set of samples contained in Cj. Then the maximum empirical error difference over all

X ∈ Cj is as follows:

LSj
(ĥp)− LSj

(ĥ) ≤

∣∣∣∣∣∣ 1nj

∑
Z∈Sj

1{ĥ(X )̸=Y } −
1

nj

∑
Z∈Sj

1{ĥ(X)=Y }

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1nj

∑
Z∈Sj

1{Y=1} −
1

nj

∑
Z∈Sj

1{Y=0}

∣∣∣∣∣∣
= |η̂j − (1− η̂j)| = |1− 2η̂j|, (5.42)
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Now combining eq. (5.42) with eq.(5.41), we have

EA

[
LSj

(ĥp)− LSj
(ĥ)|ĥp(X) ̸= ĥ(X)

]
PA[ĥp(X) ̸= ĥ(X)|X ∈ Cj]

≤ |1− 2η̂j|PA[ĥp(X) ̸= ĥ(X)|X ∈ Cj]

=
|1− 2η̂j|

2
exp

(
−|2η̂j − 1|ϵpnj

2

)
. (5.43)

Note that the this is a random quantity depending on the cell j, hence we need to sum

over all possibilities of j. Also note that the probability of getting a sample in Sj is nj/n.

Hence the total excess empirical error of ĥp is bounded by

|LS(ĥp)− LS(ĥ)| ≤
r∑

j=1

|1− 2η̂j|nj

2n
exp

(
−|2η̂j − 1|ϵpnj

2

)

≤
r∑

j=1

max
a

{anj

2n
exp

(
−aϵpnj

2

)}
≤

r∑
j=1

nj

2n

(
2

eϵpnj

)

=
r∑

j=1

1

eϵpn

=
r

eϵpn
, (5.44)

where the second to third line is due to the inequality max
a

{a exp(−am)} ≤ 1/em. Now

consider the following error decomposition:

LD(ĥp)− LD(h
∗) = (LD(ĥp)− LS(ĥp)) + (LS(ĥp)− LS(ĥ)) + (LS(ĥ)− LD(h

∗))

≤ (LD(ĥp)− LS(ĥp)) + (LS(ĥp)− LS(ĥ)) + (LS(h
∗)− LD(h

∗))

≤ (LD(ĥp)− LS(ĥp)) + (LS(h
∗)− LD(h

∗)) +
r

eϵpn
(5.45)

where the second line is because ĥ is an empirical risk minimiser and the last line follows

from equation (5.44). The other two terms are due to the estimation of the empirical

risk to the generalization risk. Recall that for a finite hypothesis class H, we have the
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following uniform convergence property over all h ∈ H (see e.g. [115], section 4.2):

PS [|LS(h)− LD(h)| > ϵ] ≤ 2|H| exp(−2nϵ2),∀ϵ > 0 (5.46)

Hence by substituting ϵ = ϵ/2 and applying this result to both ĥp and ĥ∗, we can use the

same argument as in proof of Thm. 4.10, start from equation (4.23) and obtain

(LD(ĥp)− LS(ĥp)) + (LS(h
∗)− LD(h

∗)) ≤
√

2r + 2

n
+

√
π√
2n

(5.47)

Finally, combining with inequality (5.45), we obtain

ES,A[LD(ĥp)] ≤ LD(h
∗) +

√
2r + 2

n
+

√
π√
2n

+
r

eϵpn
(5.48)

≤ LD(f
∗) +

L
√
d

b
+

√
2r + 2

n
+

√
π√
2n

+
r

eϵpn
(5.49)

where the last line follows from equation (4.28).

In particular, if b = O(n1/(d+2)), we have

ES,A[LD(ĥp)] = LD(f
∗) +O

(
L
√
d

n1/(d+2)
+

1

ϵpn2/(d+2)

)
. (5.50)

From result of theorem 5.7 and theorem 4.10 we immediately obtain the following corollary

on the excess risk due to privacy.

Corollary 5.8 (Expected excess risk of NoisyReg). Let ĥp be the DP histogram from

Alg. 4, and ĥ the non-private histogram classifier from Alg. 1. For any privacy parameter

ϵp > 0 and any positive integer b, the excess error of the DP-histogram due to privacy is

bounded by

E
S,A

[|LD(ĥp)− LD(ĥ)|] ≤
bd

eϵpn
, (5.51)
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In particular, if b = O(n1/(d+2)), we have

E
S,A

[|LD(ĥp)− LD(ĥ)|] ≤ O
(

1

ϵpn2/(d+2)

)
. (5.52)

Similarly to the non-private case, we can achieve a significantly better rate in the realizable

setting.

Theorem 5.9. Let ĥp be the private classifier in Alg. 4. Assume that η(X) is an L-

Lipschitz function and LD(f
∗) = 0. For any 0 < ϵp, we have:

E
S,A

[LD(ĥp)] ≤ O

(
(L

√
d)d

n
+

(L
√
d)d

nϵp

)
. (5.53)

Proof. Recall from Thm. 4.16 that for LD(f
∗) = 0, if b = 2L

√
d then we have for any

positive integer k

E
S
[LD(ĥ)] ≤

2bdk

n
. (5.54)

We substitute in this result with theorem 5.8 and obtain the following

E
S,A

[LD(ĥp)] ≤
2kbd

n
+

bd

eϵpn
. (5.55)

Substitute in our choice of b (same argument as in Thm. 4.16) and letting k = 10, we

have

E
S,A

[LD(ĥp)] ≤
20(2L

√
d)d

n
+

(2L
√
d)d

eϵpn
= O

(
(L

√
d)d

n
+

(L
√
d)d

nϵp

)
. (5.56)

Thm. 5.9 quantified the loss of the classifier from NoisyReg and its error rate convergence

with respect to the sample set size and the privacy parameter. The convergence rate of

Thm. 5.9 is almost the same to the result of Thm. 4.16 (up to constant factors and privacy

parameter).
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Remark 12. By comparing Thm. 5.9 and Thm. 4.16, we note that the second term

of Thm. 5.9 represents the excess error induced by privacy compared to the non-private

classifier. In particular, as the privacy parameter approaches infinity ϵp → ∞, the second

term will vanish and we obtain the exact same error convergence as in Thm. 4.16.

5.3 DP Compressed Histogram Classifiers

From the result of Section 4.4, we see that random projection can improve the algorithm

by reducing the dimension of the sample set whenever w(S) is smaller than the intrinsic

dimension of S. We now ask the question: Does random projection help with privacy

as well? It turns out that the answer to this is yes. By reducing the dimension of the

data set before running the private algorithm, we can improve the noise level required to

guarantee privacy as we will be working on a lower-dimensional space. Recall that SΦ

denotes the projected sample set from S and ĥΦ denotes the ERM output classifier using

the compressed data set SΦ. We prove the accuracy guarantee of the private classifier

with NoisyReg under the compressed learning setting as shown below.

Theorem 5.10. Let ĥΦp denote the private histogram obtained after applying the private

mechanism NoisyReg (Alg. 4) on the regression estimator of ĥΦ. Assume that η(X)

is an L-Lipschitz function and denote the privacy budget by ϵp. Then for any b ∈ N,

0 < ϵΦ, δΦ < 1, and privacy parameter ϵp > 0, let m be a positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (5.57)

Then we have with probability at least 1− δ:

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +

2L(1 + ϵΦ)
√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

+
bm

eϵpn
. (5.58)
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In particular, if b = O(n1/(m+2)), we have

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +O

(
L(1 + ϵΦ)

√
d

(1− ϵΦ)n1/(m+2)
+

1

ϵpn2/(m+2)

)
. (5.59)

Proof. Note that

LD(ĥΦp) = LD(ĥΦ) + (LD(ĥΦp)− LD(ĥΦ)). (5.60)

We can bound the first term by Thm. 4.19. For the second term, since ĥΦ is an ERM

classifier in lower dimension, we can use the excess error bound of Thm. 5.8 and obtain

ES,A[|LD(ĥΦp)− LD(ĥΦ)|] ≤
bm

eϵpn
. (5.61)

Hence combining with Thm. 4.19 we obtain:

E
S,A

[LD(ĥΦp)] ≤ LD(f
∗) +

2L(1 + ϵΦ)
√
d

b(1− ϵΦ)
+

√
2bm + 2

n
+

√
π√
2n

+
bm

eϵpn
. (5.62)

Theorem 5.10 implies that, if the condition for the projection dimensionm is satisfied, then

we can reduce the dimension dependence in the bound at the price of a small multiplicative

factor that depends on ϵΦ. However, what does this mean for privacy? In general, our

optimal choice of the parameter b from the error bound is of order n
1

d+2 . Hence by reducing

the dimension dependence the new optimal choice of b becomes of order n
1

m+2 – which is

smaller – this can be verified easily by using a similar analysis as in Cor. 4.12. Hence,

in the projected setting, we have a significantly smaller number of cells to classify. Since

our private algorithm adds noise to each cell, this means that in the projected setting

we add less noise into our model. In turn, reducing the amount of random noise that we

add will improve the accuracy, as the private classifier now becomes more similar to the

non-private algorithm.
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Finally, we extend the result to the realisable case for faster convergence, as follows.

Theorem 5.11 (Generalisation of DP compressive histogram in realisable case). Let ĥΦp

be the private histogram obtained on RP-ed data, let ϵp > 0, b ∈ N, 0 < ϵΦ < 1/2, 0 <

δΦ < 1, and let m be the same as in Thm. 5.10. In addition assume LD(f
∗) = 0. Then,

for b ≥ 3L
√
md, we have with probability with probability at least 1− δΦ:

E
S,A

[LD(ĥΦp)] ≤ O

(
(L

√
d)m

n
+

(L
√
d)m

ϵpn

)
. (5.63)

Proof. Note that

LD(ĥΦp) = LD(ĥΦ) + (LD(ĥΦp)− LD(ĥΦ)). (5.64)

Recall from the proof of Thm. 4.21 that for LD(f
∗) = 0, if b = 3L

√
d and ϵΦ < 1/2 then

we have for any positive integer k

E
S
[LD(ĥΦ)] ≤

2bmk

n
≤ O

(
Lm(d)m/2k

n

)
. (5.65)

We substitute in this result with theorem 5.8 and choosing k = 10, we obtain the following

E
S,A

[LD(ĥΦp)] ≤ O

(
Lm(d)m/2

n
+

(L
√
d)m

ϵpn

)
. (5.66)

Similarly to the non-private case, Thm. 5.11 shows that as long as the distortion param-

eter is not too big (≤ 1/2), then with the appropriate choice of b we can significantly

improve the rate of convergence. Note, as before, that realisability is only required of the

uncompressed high dimensional problem for this improved rate.
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5.4 Empirical analysis

In this section, we analyse the performance of the DP-algorithms presented in this chapter

experimentally. We focus on the accuracy performance of NoisyReg histograms (Alg. 4)

with DP-kNN (Alg. 3). Since both algorithm guarantees privacy by adding noise, the

time complexity comparison between them will be very similar to the non-private case

which is analysed in Chapter 4.

Note that since the DP-kNN algorithm requires to know the number of testing instances

before making predictions, validation process of choosing the the best parameter k will

requires further splitting of privacy budget and lead to inaccurate result. Hence in all of

our experiments, we will use a default value of k to avoid extensive split of the privacy

budget. By testing for a range of potential values of k, we found that k = 2N is a good

choice in general, where N is the total number of testing samples. For k values smaller

than this, the noise added for privacy seem to be overwhelming and lead to inaccurate

predictions. On the other hand, larger values of k can reduce the variance of added noise,

but also considers the label of far away samples which can lead to under-fitting, which is

especially likely if N is large.

5.4.1 Varying the privacy parameter

We first analyse the accuracy performance of NoisyReg and DP-kNN under different

privacy levels. We will use two synthetic data sets generated by Gaussian distributed

clusters, each with a size of 3000. For the NoisyReg we will use 80% of the samples for

training, 10% for validation and the rest for testing. For the DP-kNN we will use 90%

of the samples for training and the rest for testings, where a default value of k = 2N is

used. All experiments are repeated 20 times and the results are plotted in Fig. 5.1.

From Fig. 5.1 it is clear that the NoisyReg has a significant advantage in accuracy per-

formance over DP-kNN in all privacy levels, except in the 20-d case with ϵp = 0.01 where

the added noise has overwhelmed the signal in both algorithms. For the easier 10-d prob-
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Figure 5.1: Accuracy performance with varying privacy parameter. Left plot uses a 10-d
data set and the right plot uses a 20-d data set.

lem, NoisyReg achieves good performance with a low privacy budget but DP-kNN has a

very similar convergence curve in both 10-d and 20-d experiments. The intuition for this

observation is that the choice of k is fixed for both set of samples, when the problem is

easy kNN should adapt with a smaller value of k for fast convergence. However, in the

privacy setting, this may not be a good idea not only because choosing k by validation

is an expensive task, but also because choosing a smaller k will result in increased vari-

ance of added noise. This matches the observation from our theory (Thm. 5.3) which

showed that decreasing k will increase the excess error induced by privacy but can also

decrease the error of the bias term. From the slower convergence of the accuracy in the

20-d experiment, we can see that the ’curse of dimensionality’ indeed further increases

the complexity of the problem in the private setting, especially when the privacy budget

is small (≤ 1).

5.4.2 Comparison of private non-parametric algorithms

To analyse the practical performance of NoisyReg and DP-kNN, we tested both algorithms

using a variety of real data sets. The size of the data sets range from 747 to 30000 and

the experiment setting is identical to the previous section (5.4.1), a brief description of

each data set used is presented in Tab. 5.2.

We compare the accuracy performance of NoisyReg and DP-kNN using the data sets

listed in Tab. 5.2, we will also include a version of DP decision trees in our comparison,
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Size Attributes Problem description
Adults 32561 14 Predict whether income exceeds $50K/yr based on census data
Bank 4520 16 predict if a client will subscribe a term deposit

Banknotes 1372 4 classify genuine and forged banknote-like specimens
Transfusion 747 4 whether he/she donated blood in March 2007

Claves 10787 16 predict clave-direction according to the partido-alto-based paradigm
Credit Card 30000 24 predict existence of default payment
Mushroom 8124 7 classify poisonous mushrooms
Occupancy 8142 7 Occupancy detection of rooms
Synthetic 3000 10/20 normal distributed clusters

Table 5.2: Data set information

namely, random decision trees (RDT) by [71]. Decision tree is another non-parametric

classification algorithm that is widely used and RDT is one of the benchmark algorithms

in the DP setting, hence we use RDT as a representative for comparison with DP decision

trees. The accuracy results for the three algorithms are presented in Tab. 5.3. From

NoisyReg DP-kNN RDT
Adults 79.37% (±0.31) 69.10% (±0.46) 76.16% (±0.13)
Bank 86.31% (±1.1) 79.55% (±1.47) 88.21% (±1.31)
Banknotes 97.71% (±0.35) 80.00% (±3.5) 70.59% (±7.89)
Transfusion 79.86% (±0.4) 70.80% (±3.61) 78.05% (±3.98)
Claves 79.07% (±1.2) 76.78% (±0.74) 73.02% (±0.82)
Credit card 72.00% (±0.47) 69.92% (±0.6) 78.28% (±0.14)
Mushroom 97.88% (±0.63) 72.73% (±1.19) 93.89% (±1.71)
Occupancy 98.74% (±0.2) 79.27% (±1.45) 82.87% (±5.03)

Table 5.3: Accuracy comparison of DP non-parametric algorithms, value in bracket rep-
resents the standard deviation value over 20 runs. Privacy parameter ϵp is fixed to 2 over
all runs.

Tab. 5.3, we observe that NoisyReg achieved the highest accuracy over majority of the

data sets and second place for the rest. Despite DP-kNN has achieved better accuracies

on some experiments (Banknotes and Claves), it has not achieved best performance in

any of the date sets. In particular, NoisyReg has better performance over DP-kNN in

all data sets tested. However, despite NoisyReg can perform very well on many data

sets and make a significant improvement in accuracy (e.g. in Banknotes), NoisyReg can

under-perform in some cases (e.g. Credit card). The structure of the DP histogram is

quite data-dependent (boxy shape with even widths). Hence different data structure can

significantly affects the performance of the DP histogram.
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Remark 13. Since the NoisyReg algorithm works by adding adaptive noise into each of

the cells depending on the number of samples, hence cells with a small number of samples

will be added a large value of noise (in average). This makes the NoisyReg algorithm more

suitable for training samples that are more evenly distributed over the space, because that

reduces the chance of a cell receives only a few samples and balances out the noise.

Summary

We have presented a kNN algorithm in the differentially private setting and analysed

its generalisation errors in comparison to the non-private case and the Bayes optimal

classifier. We found that the DP-kNN suffers from over-splitting the privacy budget ϵp

when the number of testing samples becomes large. The generalisation results for DP-

kNN can be improved with compressed learning in a similar way as in Section 4.1.1.

However, it does not solve the problem of over-splitting the privacy budget. We have also

presented the NoisyReg algorithm which achieves differential privacy for the histogram

classifier, unlike the DP-kNN, does not split up the privacy budget as the number of

testing samples increases. We have proved that the NoisyReg approach achieves the

optimal convergence rate with respect to n and d (same rate as in the non-private case).

We have also proved that a better convergence rate can be achieved if the Bayes error is

zero for the histogram classifier, as we have observed similarly in the non-private case.

Furthermore, we have shown that by learning in the compressed setting, we reduced

the dimensionality dependence in the generalisation bound of the private histogram along

with the dimension of the added noise. Finally, we have analysed the presented algorithms

experimentally with a variety of data sets. Empirically we found that NoisyReg achieves

good classification performance over DP-kNN and private RDT.
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Chapter Six

Generalization of Projected Gradient

Descent Methods

Stochastic gradient descent (SGD) is a popular optimisation algorithm that has gained

much attention for decades [21]. For instance, it is well-known in convex optimisation that

SGD can optimise convex functions over a convex domain with guaranteed convergence

rates [144]. Furthermore, it is known that the error bound of SGD can be dimension-

independent which makes it favorable for high-dimensional optimisation [66, 32, 36, 86,

84, 91].

More recently, in the context of distributed optimisation, there is an increasing interest

in sketching methods in SGD, where a sketch of the gradient is transmitted to the server

instead of the original full gradient in order to reduce communication costs [2, 1, 133, 121].

A particularly useful and innovative recent approach proposed by [76] is compressed SGD

(CompSGD), which employs random projection for this purpose. The authors showed

that, contrary to previous approaches (where sketching comes at the expense of an increase

of the variance of the gradient), compression by random projection is able to exploit the

geometry of the parameter space imposed by regularisation to make the approach lossless.

In other words, compressed SGD can achieve the same convergence rate as classical SGD

up to logarithmic factors (in expectation). Furthermore, the authors also demonstrated

empirically that the run time of CompSGD is almost the same as that of classical SGD.
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Hence, one can use the lower dimensional (compressed) gradient for almost ‘zero cost’ in its

performance. Furthermore, compressed SGD lends itself to applications in privacy-related

optimisation, as we only need to add noise in the low dimensional space of compressed

gradients [76], which then reduces the dimensionality of the injected noise.

The existing theoretical analysis of CompSGD only provides its optimisation convergence

rate [76] in specific non-private settings and has not considered differential privacy. More-

over, an analysis of optimisation can only guarantee the performance of models on training

examples. However, the object of primary interest in machine learning is the generalisa-

tion error, or population risk, of the learnt models. It is therefore imperative to find out

to what extent the use of compressed gradients would affect the generalisation guarantees

of learning algorithms. A positive finding on this question will provide a solid theoretical

footing for applications in large-scale distributed and federated learning with low com-

munication cost, such as the systems described in [98], and applications in differentially

private learning.

In this chapter, we set out to study these questions for the first time, starting with convex

problems. These have a fundamental role in both learning and optimisation [10], and ap-

ply naturally to a variety of high dimensional sparsity-based models [72, 90, 127, 98] and

structure learning [6, 61]. Insights from the study of convex problems are indispensable

to advance our understanding further. We will consider differentially private settings in

both optimisation and learning problems. To tackle the latter, following a line of research

on SGD [66, 86], we will leverage the fundamental concept of algorithmic stability to

study the generalisation performance of CompSGD. This will shed light on the effects of

gradient update compression in algorithm-dependent bounds while the analysis itself is

independent on the particular form of predictors.

We provide a rigorous analysis of CompSGD [76] in terms of optimisation convergence

rates, as well as generalisation convergence rates. These quantify the effect of random com-

pression of gradient updates. As a key ingredient, we employ a stability-based analysis,

providing the first stability and generalisation guarantees for SGD with low-dimensional
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gradients. We consider both smooth and non-smooth problems, with and without privacy

constraints. Furthermore, we also give the first optimisation and stability convergence

analysis for two variants of CompSGD in both private and non-private settings. Results

for the private setting are presented in the next chapter but we summarize both set-

ting here for a complete overview of CompSGD. Our main contributions and findings are

summarized as follows:

1. We prove the first uniform stability bounds of CompSGD for both smooth and non-

smooth problems. Based on this, we show that CompSGD can achieve the same

population risk bounds as regular SGD up to logarithmic factors. Our bound of the

order Õ(1/
√
n) is optimal up to a logarithmic factor, where n is the sample size.

Here we use Õ to hide logarithmic factors.

2. We prove the first optimisation bounds of batch and mini-batch compressed gradient

descent and show the convergence can be quicker with a larger step size in the smooth

case.

3. We further extend our stability analysis to batch and mini-batch variants of CompSGD

and show that these variants can achieve the exact same population risk bounds as

CompSGD with fewer iterations.

4. We prove the first optimisation bound for CompSGD in the differentially private

setting and show that the dimensionality of the injected noise can be significantly

reduced from O(d) to O(log(d)), where d is the dimension.

5. Finally, by our stability analysis in the differentially private setting, we also prove

the first generalisation bound of DP-CompSGD and show the same generalisation

convergence also holds while the dimensionality is reduced.
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6.1 Preliminaries

We describe some slight changes of notation in this section as well as newly introduced

notation. Recall the following general setting of supervised learning. Let ℓ : Rd ×Z → R

be a loss function that quantifies the quality of outputs for a hypothesis represented by

the parameter vector w ∈ C, where C is the parameter set, assumed to be a convex set

(analogue to H in Chapter 4 and Chapter 5). Given some loss function ℓ, we aim to find

a w ∈ C that minimises the risk (expected loss) defined as LD(w) = Ez∼D[ℓ(w, z)]. We

also define the empirical analogue as

LS(w) =
1

n

n∑
i=1

ℓ(w, zi). (6.1)

Given a finite sample set S ⊂ Z, we run an iterative gradient-based optimisation algorithm

to minimise (6.1) over the parameter set C, such as the Stochastic Gradient Descent

(SGD), where at each step we update our weight vector w ∈ C using a sample-based

estimate of the gradient of ℓ.

As in the work of [76], we shall make use of a geometric measure of complexity of the

parameter set C, namely the Gaussian width.

Recall that we use ∥ · ∥ to denote the Euclidean norm ∥ · ∥2. We denote by A the

optimisation algorithm and note its randomised nature. Expectations E[·] are taken with

respect to the random sampling of S and the randomness in the algorithm A, unless

otherwise specified. In the context of stability analysis, we say two sets S, S ′ with size

n are neighbouring sets if they differ by at most one sample. For a set C, we define its

diameter as ∥C∥ = supw,w′∈C ∥w − w′∥. Given a linear transform Φ ∈ Rm×d, we define

the projected set ΦC := {Φw : w ∈ C}. Furthermore, we define the orthogonal projection

operator Π in the usual way as follows: for a set C and vector w, the projection of w

onto C is denoted by ΠCw; this is the vector w′ ∈ C such that w′ has a minimal distance

to w. We use the notation B ≍ B̃ if there exist universal constants c1, c2 > 0 such that

c1B̃ < B ≤ c2B̃.
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6.2 Optimization with Compressed Gradient Updates

In this section, we briefly review the stochastic gradient descent with compressed gradient

updates proposed by [76]. As outlined in Algorithm 5, we first compress both the weight

vector w and the gradient to a lower-dimensional space using a random projection matrix

Φ, where the projection dimension depends on the Gaussian width of the convex set C.

Then we take a step to the opposite direction of the gradient, followed by an orthogonal

projection onto ΦC using the projection operator Π (line 6 in Alg. 5). After each update

in the lower dimension, we will then ’lift’ the low dimensional parameter vector back into

the higher dimensional parameter space. In our analysis, we will use the average output

model throughout the paper, which is defined as w̄T = (
∑T

t=1 ηtwt)/
∑T

t=1 ηt where ηt and

wt is the parameter and output of the algorithm at each iteration as defined in Alg. 5.

Algorithm 5 CompSGD [76]
1: Inputs: Sample set S of n points in Rd, convex set C, learning rate parameters {ηt},

and projection dimension parameters {βt}.
2: initialize w as any point in C.
3: for t = 1 to T do
4: mt = O(min{d, ω(C)2/β2

t })
5: Let Φt ∈ Rmt×d be an i.i.d. random projection matrix
6: set ∇ℓ(wt, zit) as the gradient where it is a uniformly chosen index from [n]
7: set θt = ΠΦtC(Φtwt − ηtΦt∇ℓ(wt, zit))
8: pick wt+1 as any element from the set {w ∈ C : Φtw = θt}.
9: end for

A key result of [76] showed that the convergence of SGD with compressed gradients is the

same as that of regular SGD up to logarithmic factors. In further experimental analysis,

they also demonstrated the run time of using low-dimensional gradients is almost as quick

as regular SGD. Hence we can perform SGD with low-dimensional gradients at ’almost’

zero cost.

Their result only addresses the optimisation performance. From the perspective of ma-

chine learning, it is intriguing to know what can we say about generalisation. One of our

main results will establish that the stability and generalization convergence of compressed

SGD is also the same as that of regular SGD up to logarithmic factors. A major benefit
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of using compressed gradients is that we can reduce the dimension of the noise in the

differentially private setting, as we only need to add noise in the lower dimensional space.

We will also show that this dimensionality reduction effect is captured in its optimization

convergence analysis.

Throughout this chapter, we will assume that the loss function ℓ is convex and Lipschitz

in its first argument.

We note that, despite the popular use of SGD on non-convex problems, the theoretical

analysis in the non-convex case is still very limited (e.g. privacy-related applications [131]).

There are currently no generalization analysis of SGD with compressed gradients at all, to

the best of our knowledge. Therefore our aim is to provide the first insights in compressed

gradient descent methods that yield low generalization error. This will eventually lead to

new insights in privacy applications and complex non-convex problems.

Optimization error
Smooth case Non-smooth case

Convergence rate Step size Convergence rate Step size

Classic SGD O
(

log T√
T

)
([117, Thm. 2])

ηt =
η√
t

O
(

log T√
T

)
([117, Thm.2])

ηt =
η√
t

CompSGD O
(

log T√
T

)
([76])

ηt =
η√
t

O
(

log T√
T

)
([76])

ηt =
η√
t

CompGD O
(
log T
T

)
(Thm. 6.3) ηt = η O

(
log T√

T

)
(Thm. 6.5) ηt =

η√
t

CompMinibatch O
(

log T√
T

)
(Thm. 6.7) ηt =

η√
t

O
(

log T√
T

)
(Thm. 6.7) ηt =

η√
t

DP-CompGD O
(

log T
√
mT

T
+

T
√
mT log(1/δ)

n2ϵ2

)
(Thm. 7.2)

ηt =
1√
mT

O
(

log T√
T

+

√
mT log(1/δ)

nϵ

)
(Thm. 7.1)

ηt =
1√

t(1+mT σ2)

DP-CompMinibatch O
(

log T√
T

+
log T

√
mT log(T/nδ)

nϵ

)
(Thm. 7.4)

ηt =
1√

t(1+mT σ2)

O
(

log T√
T

+
log T

√
mT log(T/nδ)

nϵ

)
(Thm. 7.4)

ηt =
1√

t(1+mT σ2)

Table 6.1: A summary of optimization error bounds for algorithms with randomly com-
pressed gradients. Assumptions made for simplicity: The loss function is 1-Lipschitz, and
the diameter of the parameter set C is 1. Refer to the indicated theorems for results with
general parameters. For the differentially private algorithms (last two rows), mT denotes
the maximum projection dimension used and σ2 is the variance of the noise added for
privacy.
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Generalization error
Smooth case Non-smooth case

Convergence rate Parameters Convergence rate Parameters

Classic SGD O
(

1√
n

)
([66, Prop.5.4])

ηt =
η√
T
, T ≍ n

O
(

1√
n

)
([86, Thm.7])

ηt =
η

T 3/4 , T ≍ n2

CompSGD O
(

logn√
n

)
(Thm. 6.1) ηt =

η√
t
, T ≍ n O

(
logn√

n

)
(Thm. 6.2) ηt =

η
T 3/4 , T ≍ n2

CompGD O
(

logn√
n

)
(Thm. 6.4) ηt = η, T ≍

√
n O

(
logn√

n

)
(Thm. 6.6) ηt =

η
T 3/4 , T ≍ n2

CompMinibatch O
(

logn√
n

)
(Thm. 6.8) ηt =

η√
t
, T ≍ n O

(
logn√

n

)
(Thm. 6.9) ηt =

η
T 3/4 , T ≍ n2

DP-CompGD O
(

logn√
n
+ log(1/δ)

n3/2ϵ2

)
(Thm. 7.3)

ηt =
η

T 3/4 , T ≍ n2 O
(

logn√
n
+ log(1/δ)

n3/2ϵ2

)
(Thm. 7.3)

ηt =
η

T 3/4 , T ≍ n2

DP-CompMinibatch O
(

logn√
n
+ log(T/nδ)

n3/2ϵ2

)
(Thm. 7.5)

ηt =
η

T 3/4 , T ≍ n2 O
(

logn√
n
+ log(T/nδ)

n3/2ϵ2

)
(Thm. 7.5)

ηt =
η

T 3/4 , T ≍ n2

Table 6.2: A summary of the generalization error bounds for algorithms with randomly
compressed gradients. Assumptions made for simplicity: The loss function is 1-Lipschitz
and the diameter of the parameter set C is 1. Refer to the indicated theorems for results
with general parameters. For the differentially private (DP) algorithms (last two rows),
mT denotes the maximum projection dimension used and σ2 is the variance of the added
noise.

6.3 Generalization of Comp-SGD

6.3.1 Generalization bound under smoothness assumption

In this section, we assume that the loss function ℓ is convex, L-Lipschitz, and also µ-

smooth. These assumptions are common and critical for convex optimization problems as

they lead to bounds on the divergence or expansiveness of the gradient updates when the

algorithm is run on neighbouring sample sets [66]. Examples of common loss functions

that satisfy these assumptions include logistic loss, Huber loss and exponential loss (as-

suming bounded input samples). Later we also provide analysis without the smoothness

assumption, which applies to e.g. the hinge loss.

However, the bottleneck here is to account for the effects of random compression that

operate at each iteration in Alg 5. This is a form of sketching, which creates a pertur-

bation that was not present in classic SGD. It is not at all obvious as to whether this

sketched parameter update rule is sufficiently well behaved, since at each iteration the

updated parameter vector wt+1 depends on the random matrix of the previous iteration,

Φt, and these perturbations accumulate from iteration to iteration. Fortunately, it turns
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out that the Gaussian width defined in (2.20) allows us to estimate an appropriate pro-

jection dimension based on the structural complexity of the parameter set, such that the

parameters learned by CompSGD from two neighbouring sets still do not diverge too

much. This allows us to carry out a useful stability analysis similar to that of classic

SGD, while incurring just an extra log factor.

Theorem 6.1 (Stability and generalization of CompSGD under smoothness). Assume

that the loss function ℓ is convex, µ-smooth and L-Lipschitz on w ∈ C, for every z ∈ Z.

Suppose that we run the compressed SGD with step sizes ηt = η√
t
≤ 2/µ for T ≍ n

iterations. Let βt = 1
t+1

, ηt = η√
t

for some absolute constant η.

1. Then, the CompSGD algorithm (both wT and w̄T ) is ϵstab-uniformly stable with

ϵstab = O
(
L2 log(n)/

√
n
)
.

2. Moreover, the weighted average output w̄T of CompSGD satisfies the following gen-

eralization bound

E[LD(w̄T )] = LD(w
∗) +O(L2 log(n)/

√
n). (6.2)

Proof. See Section 6.5.1.

Remark 14. For the vanilla SGD, excess risk bounds of the order O(1/
√
n) were estab-

lished for SGD with ηt ≍ 1/
√
n and T ≍ n [66]. Theorem 6.1 shows that CompSGD

is able to achieve the same generalization bounds (up to a log factor) by updating with

compressed stochastic gradient.

6.3.2 Generalization bound without smoothness

Smoothness assumption is commonly used in the analysis for regular SGD since it sim-

plifies the analysis for both optimization and generalization. However, in practice we

often encounter learning problems with non-smooth loss functions (e.g. the hinge loss).

Recently, [86, 134] showed for SGD without the smoothness assumption (relaxed Hölder-
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continuous assumption) enjoys stability and generalization bounds (up to constant factors)

similar to that with the smooth assumption by choosing an appropriate choice of param-

eters. We will adapt parts of their technique here to prove the generalization convergence

for CompSGD in the non-smooth case. We show that we can obtain the same convergence

as in the smooth case for CompSGD up to log factors by choosing suitable projection and

learning parameters.

Theorem 6.2 (Stability and generalization of CompSGD without smoothness). Assume

that the loss function ℓ is convex and L-Lipschitz over the convex set C. Suppose that

we run the compressed SGD with step sizes ηt = η
T 3/4 for some absolute constant η for T

steps. Furthermore we let βt = 1
t+1

and T ≍ n2.

1. The compressed SGD is ϵstab-uniformly stable with ϵstab = O
(
L2
√

log(n)/
√
n
)
.

2. Moreover, the weighted average output w̄T of CompSGD satisfies the following gen-

eralization bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n

)
. (6.3)

Proof. See Section 6.5.2.

From Theorem 6.2 we have chosen a relatively smaller step size parameter ηt = η/T 3/4

comparing to ηt = η/
√
t in the smooth case. The choice of ηt here is needed for our result

to have the same convergence as in the smooth case. An intuitive explanation for the

smaller step size parameter is that the problem is harder without the smoothness. Hence,

we need to take more careful steps towards the optima.

Remark 15. The choice of the step size parameter in the non-smooth case matches with

the choice for classical SGD in the same setting [86]. Hence Theorem 6.2 shows that

CompSGD achieves the same generalization bounds in the non-smooth setting with the

same parameters (up to logarithmic factors).
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6.4 Variants of CompSGD

In this section, we present the convergence guarantee of the variants of the compressed

SGD - batch gradient descent that uses the full gradient (Section 6.4.1) and mini-batch

gradient descent that uses the gradient of the mini-batch (Section 6.4.2). These variants

of SGD are also widely used in practice, especially in cases where we can compute the full

gradient easily to make more informative updates in each iteration. In the differentially

private setting it is also desirable to use batch gradient instead of stochastic gradient due

to the random noise injected and to limit the number of iterations required. In this section,

we show that the risk bounds of these variants are the same as the rates for compressed

SGD. Hence, we can choose an appropriate method suited to our needs without affecting

its generalization.

6.4.1 Compressed gradient descent

The first variant we will analyze is the classical batch gradient descent. Batch gradient

descent utilizes the most information from the sample set S at each iteration to make

accurate updates. Hence we can usually converge close to the optima using much less

iterations compared to SGD which can be beneficial in many cases (e.g. private optimiza-

tions). The detail is outlined in Algorithm 6.

Algorithm 6 Compressed Gradient Descent (CompGD)
1: Inputs: Sample set S of n points, convex set C, learning rate parameters {ηt}, and

projection dimension parameters {βt}.
2: initialize w as any point in C.
3: for t = 1 to T do
4: Set mt = O(min{d, ω(C)2/β2

t })
5: Let Φt ∈ Rmt×d be an i.i.d. random projection matrix
6: compute ĝt = 1

n

∑
z∈S ∇ℓ(wt, z) as the gradient

7: set θt = ΠΦtC(Φtwt − ηtΦtĝt)
8: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}.
9: end for

10: Output: w1,w2, . . . ,wT

Batch gradient descent is a special case where we can use a constant step size η to obtain

a quicker convergence rate in its optimization bound. We show that this is also the case
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for compressed batch gradient descent.

Theorem 6.3 (Optimization of CompGD, smooth case). Let ℓ be convex function over

a convex set C, and satisfy L-Lipschitz condition and µ-smooth condition. Then with

ηt = η ≤ 1/(2µ) for some absolute constant η and βt = 1
t+1

, the compressed gradient

descent satisfies

E[LS(w̄T )− LS(w
∗)] = O

(
∥C∥2 log(T )

T

)
. (6.4)

Proof. See Section 6.5.3.

We now study the risk bounds of CompGD. Note that here we have O(1/T ) for its opti-

mization bound which is better than SGD. We also note that we have chosen a constant

step size η for batch gradient because each gradient update is accurate enough to take

larger steps. Hence, we only required T ≍
√
n to achieve the same generalization conver-

gence compared to SGD.

Theorem 6.4 (Stability and generalization of CompGD, smooth case). Assume the loss

function ℓ is convex, µ-smooth and L-Lipschitz over the convex set C. Suppose we run

the CompGD with ηt = η ≤ 1/(2µ) for T ≍
√
n steps where η is an absolute constant and

βt = 1/(t+ 1).

1. Then CompGD satisfies uniform stability with ϵstab = O (L2/
√
n) .

2. Moreover, the weighted average output w̄T of compGD satisfies the following excess

risk bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n

)
. (6.5)

Proof. See Section 6.5.3.

While we can obtain a faster convergence rate for batch gradient descent in optimization,

the stability guarantee of CompGD is same as CompSGD. This is also the case for classic

SGD, since the samples we use for wt+1,w
′
t+1 will differ in one point every iteration
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with probability 1. Hence we do not obtain an improvement in the expected excess

generalization risk. However, the smoothness case will allow us to choose a larger learning

rate compared with the non-smooth case.

Theorem 6.5 (Optimization of CompGD, non-smooth case). Let ℓ be a convex function

over a convex set C and satisfy L-Lipschitz condition. Then with ηt = η/
√
t for some

absolute constant η and βt = 1
t+1

, the compressed gradient descent satisfies

E[LS(w̄T )− LS(w
∗)] = O

(
(∥C∥2 + L2) log(T )√

T

)
. (6.6)

Proof. See Section 6.5.3.

Theorem 6.6 (Stability and generalization of CompGD, non-smooth case). Assume the

loss function ℓ is convex and L-Lipschitz over the convex set C. Suppose we run the

CompGD with ηt = η/T 3/4 for T ≍ n2 steps where η is an absolute constant and βt =

1/(t+ 1).

1. Then CompGD satisfies uniform stability with ϵstab = O (L2 log(n)/
√
n) .

2. Moreover, the weighted average output w̄T of compGD satisfies the following excess

risk bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n

)
. (6.7)

Proof. See Section 6.5.3.

6.4.2 Compressed SGD with Mini-batch

In this section, we study the stability and generalization of CompSGD with a mini-batch

strategy. Mini-batch SGD is considered as a semi-stochastic version of gradient descent

and is widely used in various applications [82, 145]. Different sampling techniques may be

used to sample a mini-batch depending on the application and preference. Here we will

use the following sampling method for the CompSGD with mini-batch: For each iteration
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we sample a mini-batch Bt of size b from the sample set S without replacements. Then

we will sample a fresh batch from S at the next iteration so that the sampling set S is

consistent.

Algorithm 7 Compressed SGD with Mini-batch
1: Inputs: Sample set S of n points in Rd, batch size b, convex set C, learning rate

parameters {ηt}, and projection dimension parameters {βt}.
2: initialize w as any point in C.
3: for t = 1 to T do
4: Set mt = O(min{d, ω(C)2/β2

t })
5: Let Φt ∈ Rmt×d be an i.i.d. random projection matrix
6: Sample a mini-batch Bt of size b uniformly from S
7: compute ĝt = 1

b

∑
z∈Bt

∇ℓ(wt, z) as the gradient of the mini-batch
8: set θt = ΠΦtC(Φtwt − ηtΦtĝt)
9: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}.

10: end for
11: Output: w1,w2, . . . ,wT

Theorem 6.7 (Optimization of Mini-batch SGD). Let ℓ be a convex function over a

convex set C, and satisfy L-Lipschitz condition. Then with ηt = η√
t

and βt = 1
t+1

, the

compressed SGD with minibatch satisfies

E[LS(w̄T )− LS(w
∗)] = O

(
(∥C∥2 + L2) log(T )√

T

)
. (6.8)

Proof. See Section 6.5.4.

Theorem 6.8 (Stability and generalization of Mini-batch SGD, smooth case). Assume

that the loss function ℓ is µ-smooth, convex and L-Lipschitz for every z. Suppose that we

run the compressed SGD with mini-batch of size b and step sizes ηt ≤ 2/µ for T iterations.

1. Then with ηt = η/
√
t for some absolute constant η, βt = 1

t+1
and T ≍ n, the com-

pressed SGD with mini-batch is ϵstab-uniformly stable with ϵstab = O (L2 log(n)/
√
n).

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n

)
. (6.9)
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Proof. See Section 6.5.4.

We note that the optimization and stability of the mini-batch achieves the same conver-

gence rate as SGD, which is optimal up to logarithmic factors. The main advantage of

mini-batch is to perform stochastic gradient descent while preventing over-randomized

convergence to the optima. In the best case we will obtain the same convergence as for

batch gradient descent in Section 6.4.1.

Theorem 6.9 (Stability and generalization of Mini-batch SGD, non-smooth case). As-

sume that the loss function ℓ is convex and L-Lipschitz for every z. Suppose that we run

the compressed SGD with mini-batch of size b and step sizes ηt = η/T 3/4 for some absolute

constant η, βt = 1
t+1

and T ≍ n2.

1. The compressed SGD with mini-batch is ϵstab-uniformly stable with

ϵstab = O
(
L2 log(n)/

√
n
)
.

2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n

)
. (6.10)

Proof. See Section 6.5.4.

6.5 Proofs

In this section, we present the proofs of the key theorems in Section 6.3 and Section 6.4.

Proofs for intermediate results and proofs for Section 6.4.1 and Section 6.4.2 are deferred

to the Appendix. For simplicity of the proof, we first denote our gradient update at

iteration t as follows:

A gradient update in compressed SGD (lines 4-8 in Alg. 5) is a map G : Rd × Rd → Rd

that takes a parameter vector wt and a training point z as inputs, and it outputs the
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updated parameter vector G(wt, z), defined as the following

G(wt, z) = argmin
w∈C

{∥w∥1 : Φtw = ΠΦtC(Φtwt − ηtΦt∇ℓ(wt, z))}, (6.11)

where Φt is a RP matrix, and ηt is the step size parameter. We drop the dependence of

z when it is clear from the context and just write G(w) for simplicity. We remark that

our analysis does not require w to have the minimum ℓ1-norm property; this is included

only to break ties so that the map G is well defined. Indeed, one can pick the updated

element as described in Alg 5.

6.5.1 Proof of stability & generalization under smoothness

To prove the stability and generalization of CompSGD, we first establish some important

properties of CompSGD. A key idea in stability analysis is to control the extent to which

a sequence of updates starting from neighbouring sample sets diverge, in each iteration -

in our case, one update corresponds to one run of lines 4-8 in Alg. 5. The algorithm is

more stable if the divergence is smaller. The following result shows how the divergence

between two gradient updates in CompSGD is controlled by the projection parameter βt.

Lemma 6.10 (Distortion from RP). Let wt+1,w
′
t+1 ∈ C be the parameter vectors at

iteration t + 1 of Alg. 5 when run on two neighbouring sample sets S and S ′. For any

choices of training points zit and z′it, we have

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− (ηt∇ℓ(wt, zit)− ηt∇ℓ(w′
t, z

′
it))∥

2.

Since Lemma 6.10 implies that the divergence of gradient update with projected gradient

is upper bounded by the divergence of regular gradient update (up to the 1− βt factor),

we can make use of some property about classical SGD. We will achieve this using the

concepts of expansivity and boundedness introduced in [66].

Definition 14 (Well behaved gradient update). We say the gradient update G(w) is α-
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expansive if, for all v,w ∈ C we have ∥G(v)−G(w)∥ ≤ α∥v−w∥. We say the gradient

update G(w) is γ-bounded if supw∈C ∥w −G(w)∥ ≤ γ.

We now prove that, for the type of loss functions considered, the updating rule of Alg.

5 is well behaved despite the distortion created by random compression. First we show

that, at any iteration t the CompSGD updating rule wt+1 = G(wt) has limited expansive-

ness whenever the same training point is chosen for gradient estimation (Lemma. 6.11).

Secondly, the CompSGD update is bounded whenever different training points are chosen

for gradient estimation (Lemma. 6.12).

Lemma 6.11 (Limited expansiveness). Assume that ℓ is convex and µ-smooth. Fix any

t ∈ N, and let wt,w
′
t ∈ C be the parameter vectors at the t-th iteration of Alg. 5 when

run on two neighbouring sample sets S and S ′. If zit = z′it i.e. the same training point is

chosen to estimate the gradient at the t-th iteration, then the updating rule of compressed

SGD (Alg. 5) is 1√
1−βt

-expansive for ηt ≤ 2/µ – that is, we have ∥wt+1 − w′
t+1∥ ≤

1√
1−βt

∥wt −w′
t∥.

Lemma 6.12 (Boundedness). Assume that ℓ is L-Lipschitz. Fix any t ∈ N, and let wtC be

the parameter vectors at the t-th iteration of Alg. 5 when run on S. Then the updating rule

of the compressed SGD (Alg. 5) is ηtL√
1−βt

-bounded – that is, we have ∥wt+1−wt∥ ≤ ηtL√
1−βt

.

With these core properties recorded, we now prove the stability guarantee of the CompSGD

under the smoothness setting. The basic idea in the proof is that we note with probabil-

ity 1 − 1/n the sample we select from S and S ′ will be identical, which allows us to use

the expansiveness of CompSGD. We can then bound the low probability case with the

γ-bounded property and put the two cases together to obtain our result.

Proof of Theorem 6.1. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample point. Denote Gt := G(·, zit) and G′
t := G(·, z′it), with t ∈ [T ], it ∈ [n],

the gradient updates induced by running the compressed SGD on the neighbouring sample

sets S and S ′, respectively. Let δT = ∥wT−w′
T∥, and fix a sample point z. By the Lipschitz
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condition,

E[|ℓ(wT , z)− ℓ(w′
T , z)|] ≤ LE[δT ]. (6.12)

Observe that, at iteration t, with probability 1 − 1/n, the example zit and z′it selected

from both S and S ′ is the same. In this case we have Gt = G′
t, and we use the limited ex-

pansiveness property of the update Gt from Lemma 6.11. With the remaining probability

1/n, we have zit ̸= z′it , in which case we use the boundedness property of both updates

Gt and G′
t cf. Lemma 6.12. By the linearity of expectation, and the triangle inequality,

this yields the following

E[δt+1] ≤
(
1− 1/n√
1− βt

)
E[δt] +

1

n

(
E[δt] +

2ηtL√
1− βt

)
. (6.13)

Now it remains to solve this recursive sequence. We multiply both sides by
∏t−1

j=1

√
1− βj,

[
t∏

j=1

√
1− βj

]
E[δt+1] ≤

[
t−1∏
j=1

√
1− βj

]
E[δt] +

2ηtL

n

t−1∏
j=1

√
1− βj (6.14)

and sum up the T iterates

[
T−1∏
j=1

√
1− βj

]
E[δT ] ≤

T−1∑
t=1

2ηtL

n

t−1∏
j=1

√
1− βj. (6.15)

Rearranging, we have:

E[δT ] ≤
2L

n

T−1∑
t=1

ηt

T−1∏
j=t

(1− βj)
−1/2. (6.16)

In particular, with the choice βj = 1
j+1

, we have
∏T−1

j=t (1 − βj)
−1/2 =

√
T√
t
. Furthermore,

choosing ηt = η√
t

with some absolute constant η, we have

E[δT ] =
2ηL

√
T

n

T−1∑
t=1

1

t
= O

(
L
√
T log(T )

n

)
, (6.17)

where we exploited the fact that the growth rate of the partial sum of a harmonic series

is just logarithmic. Finally, we take T ≍ n and plug it back into (6.12) to conclude our
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stability bound.

The generalization bound in Theorem 6.1 is a direct consequence of stability, combined

with the optimization bound from [76, Thm.2.3] and Theorem 2.3, using the strategy

discussed in Section 2.1.2.

6.5.2 Proof of stability & generalization without smoothness

We first prove the optimization bound of CompSGD in the non-smooth case.

Theorem 6.13 (Optimization of CompSGD with small step size). Let ℓ be a convex and

L-Lipschitz function over a convex set C. Then with ηt = η
T 3/4 and βt = 1

t+1
, CompSGD

satisfies

E[LS(w̄T )− LS(w
∗)] = O

(
∥C∥2 log(T ) + L2

T 1/4

)
. (6.18)

Proof for Theorem 6.13. We apply Thm A.6 with w = w∗ and have that for all t ≥ 1:

(1− βt)∥wt+1 −w∗∥2 = ∥wt −w∗∥2 + 2ηt⟨∇ℓ(wt; zit),w
∗ −wt⟩+ η2t ∥∇ℓ(wt)∥2

≤ ∥wt −w∗∥2 + 2ηt(ℓ(w
∗; zit)− ℓ(wt; zit)) + η2tL

2. (6.19)

Rearranging we have:

2ηt(ℓ(wt; zit)− ℓ(w∗; zit)) ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + η2tL
2.

We take expectation on both sides, and sum over the T iterates,

2
T∑
t=1

ηtE[LS(wt)− LS(w
∗)] ≤ ∥w1 −w∗∥2 +

T∑
t=1

βtE[∥wt+1 −w∗∥2] + L2

T∑
t=1

η2t .
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By choosing βt = 1/(t+ 1) and using the bound ∥wt −w∗∥2 ≤ ∥C∥2, we obtain

2
T∑
t=1

ηtE[LS(wt)− LS(w
∗)] = O

(
∥C∥2 + ∥C∥2

T∑
t=1

1

t+ 1
+ L2

T∑
t=1

η2t

)

= O

(
∥C∥2 log(T ) + L2

T∑
t=1

η2t

)
. (6.20)

Finally, choosing ηt = η
T 3/4 we obtain our result as

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[LS(wt)− LS(w
∗)] = O

(
∥C∥2 log(T )

T 1/4
+

L2

T 3/4

)
. (6.21)

One can find from the proof of the optimization bound that we can use the parameters

η = O(1/
√
t) and T ≍ n to yield convergence of order of O(1/

√
n). However, we need to

balance stability and optimization so that we obtain the best generalization convergence

overall by choosing a smaller learning rate.

Proof of Theorem 6.2. In the non-smooth setting, we no longer have all the properties of

CompSGD proved for the smooth case. However we still have the core result (Lemma 6.10)

and note that the probability that we pick a different sample at an iteration is 1/n as in

the smooth case. For the case where the selected sample is identical, we can make use of

the convexity of ℓ and obtain the same convergence rate by carefully choosing the learning

rate ηt.

Let S and S ′ be two neighbouring sample sets of size n that differ in one single sample.

Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT and G′
1, . . . , G

′
T be the

updates induced by running the compressed SGD on S and S ′ for T iterates, respectively.

Let δT = ∥wT −w′
T∥, by the Lipschitz condition,

E[|ℓ(wT , z)− ℓ(w′
T , z)|] ≤ LE[δT ]. (6.22)

If at iteration t, the sample we selected is the same Gt = G′
t, then from Lemma 6.10 we
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have the following (short notations ∇ℓ(wt, zit) = ∇ℓ(wt) for simplicity)

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− ηt(∇ℓ(wt, zit)−∇ℓ(w′
t, zit))∥2

= ∥wt −w′
t∥2 − 2ηt⟨∇ℓ(wt)−∇ℓ(w′

t),wt −w′
t⟩+ η2t ∥∇ℓ(wt)−∇ℓ(w′

t)∥2.

From the convexity of ℓ we have that ⟨∇ℓ(wt) − ∇ℓ(w′
t),wt − w′

t⟩ ≥ 0 and from Lip-

schitzness of ℓ we also have ∥∇ℓ(wt) − ∇ℓ(w′
t)∥ ≤ 2L. Hence we obtain the following

bound

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (6.23)

For the case where Gt ̸= G′
t, we use the inequality (a+b)2 ≤ (1+p)a2+(1+1/p)b2,∀p > 0

to obtain

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− ηt(∇ℓ(wt, zit)−∇ℓ(w′
t, zi′t))∥

2

≤ (1 + p)∥wt −w′
t∥2 + 4(1 + 1/p)L2η2t ,

where we have again used the Lipschitz condition of ℓ. Combining the two cases we have

(1− βt)E[δ2t+1] ≤
(
1− 1

n

)
(E[δ2t ] + 4L2η2t ) +

1

n

(
(1 + p)E[δ2t ] + 4(1 + 1/p)L2η2t

)
≤ (1 + p/n)E[δ2t ] +

(
4 +

4(1 + 1/p)

n

)
L2η2t . (6.24)

Denoting ∆t =
[∏t−1

j=1(1− βj)
]
(1 + p/n)−tE[δ2t ] and multiplying both sides by[∏t−1

j=1(1− βj)
]
(1 + p/n)−(t+1), we obtain

∆t+1 ≤ ∆t +

[
t−1∏
j=1

(1− βj)

]
(1 + p/n)−(t+1)

(
4 +

4(1 + 1/p)

n

)
L2η2t . (6.25)

Choosing p = n/T and summing over T iterates we have

∆T ≤
T−1∑
t=1

[
t−1∏
j=1

(1− βj)

]
(1 + 1/T )−(t+1)

(
4 +

4(1 + T/n)

n

)
L2η2t . (6.26)
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By rearranging and choosing βj = 1
j+1

, we get
∏t−1

j=1(1− βj) = 1/t. Hence we have

E[δ2T ] ≤
T−1∑
t=1

T

t

(
1 +

1

T

)T−(t+1)
(
4+

4(1+T/n)

n

)
L2η2t = O

(
L2T

T−1∑
t=1

(1 + T/n2)

t
η2t

)
,

(6.27)

where we noted that the factor (1 + 1/T )T−(t+1) = 1 +O((T − (t+ 1)/T ) = O(1). Using

Eq. (6.22) and (6.27), letting ηt = η
T 3/4 for some absolute constant η and T ≍ n2, we

obtain our result by taking the square-root from both sides

E[|ℓ(wT , z)− ℓ(w′
T , z)|] = O

(
L2
√
log(n)√
n

)
. (6.28)

The generalization result then follows as a direct consequence by combining it with

Thm 6.13 and applying Thm. 2.3.

Proof of Lemma 6.10. The proof of Lemma 6.10 follows similar derivation as for Theo-

rem A.6 using Gordon’s Theorem (Thm. 2.12), except that we are bounding the distortion

between two gradient updates rather than a fixed point w ∈ C.

We start by replacing w with w′
t+1 from equation (A.13), we have

(1− βt)∥wt+1−w′
t+1∥2 ≤ EΦt

[
∥Φt(wt+1 −w′

t+1)∥2
]

= EΦt

[∥∥∥∥ ΠΦtC
(Φtwt − ηtΦt∇ℓ(wt, zit)− Π

ΦtC
(Φtw

′
t − ηtΦt∇ℓ(w′

t, z
′
it))

∥∥∥∥2
]

≤ EΦt

[∥∥(Φtwt − ηtΦt∇ℓ(wt, zit)− (Φtw
′
t − ηtΦt∇ℓ(w′

t, z
′
it))
∥∥2]

= ∥(wt −w′
t)− (ηt∇ℓ(wt, zit)− ηt∇ℓ(w′

t, z
′
it))∥

2, (6.29)

where we have used the fact that the projection map ΠΦC is contractive in the second step,

i.e. distance between two points will not be larger after projection onto ΦC; and the final

step follows since Φt is independent from all the remaining variables, wt,w
′
t, ηt,zit ,z′it .

Remark 16. Similar to Thm. A.6, there are no requirements on the gradient used (∇ℓ)
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being stochastic. Hence the same result will hold for batch (∇LS) and mini-batch gradients

(∇LB).

Proof of Lemma 6.11. Since we assumed zit = z′it in the runs of compSGD, we use the

shorthand ∇ℓ(wt) and ∇ℓ(w′
t) for ∇ℓ(wt, zit) and ∇ℓ(w′

t, zit) as respectively. Denote

wt −w′
t by ∆t. From Lemma 6.10 we have

(1− βt)∥∆t+1∥2 ≤ ∥∆t∥2 − 2ηt⟨∇ℓ(wt)−∇ℓ(w′
t),∆t⟩+ η2t ∥∇ℓ(wt)−∇ℓ(w′

t)∥2.

By Part 2 of Lemma 2.4 (co-coercivity), the second term on the r.h.s. is further bounded

as

⟨∇ℓ(wt)−∇ℓ(w′
t),∆t⟩ ≥

1

µ
∥∇ℓ(wt)−∇ℓ(w′

t)∥2. (6.30)

Hence, we have

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 −
(
2ηt
µ

− η2t

)
∥∇ℓ(wt)−∇ℓ(w′

t)∥2. (6.31)

Setting ηt ≤ 2/µ eliminates the last term in (6.31), and the result follows.

Proof of Lemma 6.12. By Theorem A.6, we have that (1 − βt)∥wt+1 − wt∥2 ≤ ∥wt −

ηt∇ℓ(wt, z) − wt∥2. Hence, ∥wt+1 − wt∥2 ≤ η2t
1−βt

∥∇ℓ(wt, z)∥2 ≤ η2tL
2

1−βt
, where the last

inequality is a consequence of the L-Lipschitz assumption on ℓ.

6.5.3 Proofs for Compressed Gradient Descent

Proof of Theorem 6.3. By Thm. A.6 with w = w∗
S we have

(1− βt)∥wt+1 −w∗
S∥2 ≤ ∥wt − ηt∇LS(wt)−w∗

S∥2

= ∥wt −w∗
S∥2 + 2ηt⟨∇LS(wt),w

∗
S −wt⟩+ η2t ∥∇LS(wt)∥2

≤ ∥wt −w∗
S∥2 + 2ηt(LS(w

∗
S)− LS(wt)) + η2t ∥∇LS(wt)∥2, (6.32)
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where the last line follows from the convexity of ℓ. From the smoothness we also have

LS(wt)− LS(w
∗
S) ≥ ⟨wt −w∗

S,∇LS(w
∗
S)⟩+

1

2µ
∥∇LS(wt)−∇LS(w

∗
S)∥2

≥ 1

2µ
∥∇LS(wt)−∇LS(w

∗
S)∥2,

where we have used ⟨wt − w∗
S,∇LS(w

∗
S)⟩ ≥ 0 by convexity and w∗

S is a minimizer of

LS(w). Applying this property we have

∥∇LS(wt)∥2 = ∥∇LS(wt)−∇LS(w
∗
S)∥2 ≤ 2µ(LS(wt)− LS(w

∗
S)). (6.33)

Substituting equation (6.33) into (6.32) we have

(6.32) ≤ ∥wt −w∗
S∥2 + 2ηt(LS(w

∗
S)− LS(wt)) + η2t ∥∇LS(wt)−∇LS(w

∗
S)∥2

≤ ∥wt −w∗
S∥2 + 2ηt(LS(w

∗
S)− LS(wt)) + 2η2tµ(LS(wt)− LS(w

∗
S))

≤ ∥wt −w∗
S∥2 +

ηt
2
(LS(w

∗
S)− LS(wt)) (assuming ηt ≤ 1/(2µ)). (6.34)

Rearranging, we have:

ηt
2
(LS(wt)− LS(w

∗
S)) ≤ ∥wt −w∗

S∥2 − ∥wt+1 −w∗
S∥2 + βt∥wt+1 −w∗

S∥2.

Taking expectation and summing over T iterates and choosing βt = 1/(t+ 1) we have:

T∑
t=1

ηt
2
E[LS(wt)−LS(w

∗
S)] ≤ ∥w1−w∗

S∥2+
T∑
t=1

βtE[∥wt+1−w∗
S∥2] = O

(
∥C∥2+∥C∥2 log(T )

)
,

where we have used E[∥wt+1 − w∗
S∥]2 ≤ ∥C∥2. Finally, for ηt = η being an absolute

constant we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[LS(wt)− LS(w
∗
S)] = O

(
∥C∥2 log(T )

T

)
. (6.35)

The proof is completed.
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Proof of Theorem 6.4. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. W.l.o.g. we assume that the sample where S, S ′ differs is at index j:

we denote zj, z′j for the sample in S and S ′ respectively. Fix a sample z, by the Lipschitz

condition we get that

E[|ℓ(wT , z)− ℓ(w′
T , z)|] ≤ LE[δT ], (6.36)

where δT = ∥wT −w′
T∥. At iteration t, we have from Lemma 6.10

√
1− βt∥wt+1 −w′

t+1∥ ≤ ∥(wt −w′
t)− ηt(∇LS(wt)−∇LS(w

′
t))∥. (6.37)

Note that since S, S ′ only differ on the j-th point, we have S ∪ {z′j} = S ′ ∪ {zj}.

(6.37) =

∥∥∥∥∥∥wt −w′
t −

ηt
n

∑
z∈S∪{z′j}

(∇ℓ(wt, z)−∇ℓ(w′
t, z)) +

ηt
n
(∇ℓ(wt, z

′
j)−∇ℓ(w′

t, zj))

∥∥∥∥∥∥
≤ ∥wt −w′

t∥+
ηt
n

∥∥∇ℓ(wt, zj)−∇ℓ(w′
t, z

′
j)
∥∥ ≤ ∥wt −w′

t∥+
2Lηt
n

, (6.38)

where we have used the non-expansitivity of gradient update rule (Lemma A.5) and the

sub-additivity of the norm on the second step. The last inequality is by applying the

L-Lipschitz condition of ℓ. Therefore we have the recursion

∥wt+1 −w′
t+1∥ ≤ ∥wt −w′

t∥√
1− βt

+
2Lηt

n
√
1− βt

. (6.39)

By the same argument as in proof of Theorem 6.1 starting with equation (6.14), we have:

E[δT ] ≤
2L

n

T−1∑
t=1

ηt

T−1∏
j=t

(1− βj)
−1/2. (6.40)

By letting βt = 1/(t+ 1), ηt = η for some absolute constant η and T ≍
√
n, we have

E[δT ] ≤
2Lη

√
T

n

T−1∑
t=1

1√
t
= O

(
Lη√
n

)
. (6.41)
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Proof of Theorem 6.5. For simplicity, let ∇Lt denote the gradient ∇LS(wt) at iteration

t. By Jensen’s inequality we have

LS(w̄T )− LS(w
∗) = LS

( T∑
t=1

ηt

)−1 T∑
t=1

ηtwt

− LS(w
∗)

≤

(
T∑
t=1

ηt

)−1 T∑
t=1

ηt(LS (wt)− LS(w
∗))

≤

(
T∑
t=1

ηt

)−1 T∑
t=1

ηt⟨∇Lt,wt −w∗⟩, (6.42)

where the last inequality is by the convexity of ℓ.

To bound the terms above, note that we have for all t ≥ 1:

(1− βt)∥wt+1 −w∗∥2 ≤ ∥(wt −w∗)− ηt∇Lt∥2

= ∥wt −w∗∥2 + 2ηt⟨∇Lt,w
∗ −wt⟩+ 4η2tL

2.

Rearranging, we have:

2ηt⟨∇Lt,wt −w∗⟩ ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + 4η2tL
2. (6.43)

Taking expectation and summing over T iterates we have:

2
T∑
t=1

ηtE[⟨∇Lt,wt −w∗⟩] ≤ ∥w1 −w∗∥2 +
T∑
t=1

βtE[∥wt+1 −w∗∥2] + 4L2

T∑
t=1

η2t

= O

(
∥C∥+ ∥C∥2

T∑
t=1

βt + L2

T∑
t=1

η2t

)

= O

(
∥C∥2 log(T ) + L2

T∑
t=1

η2t

)
, (6.44)

where we have used E[∥wt+1 −w∗∥]2 ≤ ∥C∥2. Hence for ηt = η/
√
t we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[⟨∇Lt,wt −w∗⟩] = O

(
∥C∥2 log(T )√

T
+

L2

√
T

T∑
t=1

1

t

)
. (6.45)
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Finally, combining the above inequalities we have

E[LS(w̄T )− LS(w
∗)] = O

(
(∥C∥2 + L2) log(T )√

T

)
. (6.46)

Proof of Theorem 6.6. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. W.l.o.g. assume that they differ on the j-th point denoted zj, z′j for

S and S ′, respectively. Fix a sample z, by the Lipschitz condition we get

E[|ℓ(wT )− ℓ(w′
T )|] ≤ LE[δT ], (6.47)

where δT = ∥wT −w′
T∥.

Since after each update, wt ∈ C for all t, by Lemma 6.10 we have (here we will denote

∇LS(wt) by ∇Lt and ∇LS′(w′
t) by ∇L′

t)

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− ηt(∇LS(wt)−∇LS′(w′
t))∥2

≤ ∥wt −w′
t∥2 + 2ηt⟨w′

t −wt,∇Lt −∇L′
t⟩+ 4η2tL

2, (6.48)

where the last line follows from the Lipschitz assumption.

Since S, S ′ only differs on the j-th point, we have

⟨w′
t −wt,∇Lt −∇L′

t⟩ = ⟨w′
t −wt,∇LS∪{z′j}(wt)−∇LS′∪{zj}(w

′
t)⟩

+
1

n
⟨w′

t −wt,∇ℓ(w′
t, zj)−∇ℓ(wt, z

′
j)⟩

≤ 1

n
⟨w′

t −wt,∇ℓ(w′
t, zj)−∇ℓ(wt, z

′
j)⟩

≤ 2L

n
∥wt −w′

t∥, (6.49)

where the second line holds because the first term is negative by the convexity of LS, and

the last line follows from the Lipschitz condition.
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We substitute the inequality (6.49) into equation (6.48) and obtain:

(1− βt)δ
2
t+1 = δ2t + 4Lηt

(
δt
n
+ Lηt

)
. (6.50)

By multiplying both sides by
∏t−1

j=1(1− βj), we have

[
t∏

j=1

(1− βj)

]
δ2t+1 ≤

[
t−1∏
j=1

(1− βj)

]
δ2t +

4ηtLδt
n

t−1∏
j=1

(1− βj) + 4η2tL
2

[
t−1∏
j=1

(1− βj)

]
.

(6.51)

By summing over T iterates we have:

[
T−1∏
j=1

(1− βj)

]
δ2T ≤

T−1∑
t=1

4ηtLδt
n

t−1∏
j=1

(1− βj) +
T−1∑
t=1

4η2tL
2

[
t−1∏
j=1

(1− βj)

]
. (6.52)

Taking βt = 1/t+ 1 and rearranging we have:

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T
T−1∑
t=1

η2t
t
. (6.53)

The rest of the proof follows from the same procedure as in proof of Thm. 7.3, starting

with equation (7.18).

6.5.4 Proofs for Compressed Mini-batch SGD

Proof of Theorem 6.7. By Thm.A.6 with w = w∗, we have for all t ≥ 1:

(1− βt)∥wt+1 −w∗∥2 ≤ ∥(wt −w∗)− ηt
b

∑
z∈Bt

∇ℓ(wt, zit)∥2

= ∥wt −w∗∥2 + 2ηt

〈1
b

∑
z∈Bt

∇ℓ(wt, z),w
∗ −wt

〉
+ η2t ∥

1

b

∑
z∈Bt

∇ℓ(wt, z)∥2

≤ ∥wt −w∗∥2 + 2ηt
b

∑
z∈Bt

(ℓ(w∗, z)− ℓ(wt, z)) + η2tL
2.
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Rearranging the above inequality gives

2ηt
b

∑
z∈Bt

(ℓ(wt)− ℓ(w∗)) ≤ ∥wt −w∗∥2 − ∥wt+1 −w∗∥2 + βt∥wt+1 −w∗∥2 + η2tL
2.

Since each minibatch Bt is drawn uniformly from the sample, we note that EA[LBt(w)] =

EA[LS(w)]. Hence, setting βt = 1/(t+1), taking expectation and summing over T iterates

give

2
T∑
t=1

ηtES,A[LS(wt)− LS(w
∗)] ≤ ∥w0 −w∗∥2 +

T∑
t=1

βtE[∥wt+1 −w∗∥2] + L2

T∑
t=1

η2t

= O

(
∥C∥2 + ∥C∥2

T∑
t=1

1

t+ 1
+ L2

T∑
t=1

η2t

)

= O

(
∥C∥2 log(T ) + L2

T∑
t=1

η2t

)
,

where we have used E[∥wt+1 −w∗∥]2 ≤ ∥C∥2. Finally, choosing ηt = η√
t

we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[LS(wt)− LS(w
∗)] = O

(
∥C∥2 log(T )√

T
+
L2 log(T )√

T

)
. (6.54)

The proof is completed.

Proof of Theorem 6.8. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Denote the gradient updates by G1, . . . , GT and G′
1, . . . , G

′
T induced

by running the compressed SGD on S and S ′, respectively. Let δT = ∥wT −w′
T∥.

Observe that at step t, with probability 1− b/n, the minibatch Bt, B
′
t selected is the same

in both S and S ′. In this case we have Gt = G′
t and we use the expansivity of the update

Gt by a similar proof as Lemma 6.11. With probability b/n the selected minibatch Bt is

different in which case assume they differ by the j-th point and we have from Lemma 6.10

√
1− βt∥wt+1 −w′

t+1∥ ≤ ∥(wt −w′
t)− ηt(∇LBt(wt)−∇LB′

t
(w′

t))∥. (∗)
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Note that since Bt, B
′
t only differ on the j-th point, we have Bt ∪ {z′j} = B′

t ∪ {zj}.

(∗) =

∥∥∥∥∥∥(wt −w′
t)−

ηt
b

∑
z∈Bt∪{z′j}

(∇ℓ(wt, z) +∇ℓ(w′
t, z))−

ηt
b
(∇ℓ(wt, z

′
j)−∇ℓ(w′

t, zj))

∥∥∥∥∥∥
≤ ∥wt −w′

t∥+
ηt
b

∥∥∇ℓ(wt, zj)−∇ℓ(w′
t, z

′
j)
∥∥ ≤ ∥wt −w′

t∥+
2Lηt
b

, (6.55)

where we have used the non-expansitivity of gradient update (Lemma A.5) and the sub-

additivity of the norm on the second step. The last inequality is by applying the L-

Lipschitz condition of ℓ. Hence, combining the two cases and by the linearity of expecta-

tion we have the following:

E[δt+1] ≤
(
1− b/n√
1− βt

)
E[δt] +

b

n
√
1− βt

(
E[δt] +

2Lηt
b

)
. (6.56)

The rest of the proof for stability then follows by the same argument as in proof of

Theorem 6.1 starting with equation (6.14).

Proof of Theorem 6.9. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT

and G′
1, . . . , G

′
T be the updates induced by running the compressed SGD on S and S ′ for

T iterates, respectively. Let δT = ∥wT −w′
T∥, by the Lipschitz condition,

E[|ℓ(wT , z)− ℓ(w′
T , z)|] ≤ LE[δT ]. (6.57)

If at iteration t, the mini-batch Bt, B
′
t we selected is the same, i.e. Gt = G′

t, then from

Lemma 6.10 we have the following

(1−βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− ηt(∇LBt(wt)−∇LBt(w
′
t))∥2

= ∥wt −w′
t∥2 − 2ηt⟨∇LBt(wt)−∇LBt(w

′
t),wt −w′

t⟩+ η2t ∥∇LBt(wt)−∇LBt(w
′
t)∥2.

From the convexity of ℓ we have that ⟨∇LBt(wt) − ∇LBt(w
′
t),wt − w′

t⟩ ≥ 0 and from

Lipschitzness of ℓ we also have ∥∇LBt(wt) − ∇LBt(w
′
t)∥ ≤ 2L. Hence we obtain the

135



Generalization of Projected Gradient Descent Methods

following bound

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (6.58)

For the case where Gt ̸= G′
t, note that Bt and B′

t differ by a single sample, hence we have

(1−βt)∥wt+1 −w′
t+1∥2 ≤ ∥(wt −w′

t)− ηt(∇LBt(wt)−∇ℓB′
t
(w′

t))∥2

≤ ∥wt −w′
t∥2 − 2ηt⟨∇LBt(wt)−∇ℓB′

t
(w′

t),wt −w′
t⟩+ η2t ∥∇LBt(wt)−∇ℓB′

t
(w′

t)∥2

≤ ∥wt −w′
t∥2 +

4Lηt
b

∥wt −w′
t∥+ 4L2η2t , (6.59)

where the last inequality (6.59) follows by the same derivation as for equation (6.49),

replacing S, S ′ with Bt, B
′
t respectively. Combining the two cases we have

(1− βt)E[δ2t+1] ≤
(
1− b

n

)
(E[δ2t ] + 4L2η2t ) +

b

n

(
E[δ2t ] +

4LηtE[δt]
b

+ 4L2η2t

)
= E[δ2t ] + 4Lηt

(
E[δt]
n

+ Lηt

)
. (6.60)

The rest of the proof then follows by the same procedure as the proof for Theorem 7.3

starting from equation (6.50).

Summary

We presented a rigorous analysis on the stability and generalization guarantee of SGD

with compressed gradients. We have proved the first optimization error guarantee for two

variants of CompSGD and show that they achieve the same optimization convergence as

CompSGD in both smooth and non-smooth case. In particular, CompGD can achieve the

same optimization convergence with larger step size parameter and fewer iterations.

Furthermore, from our stability and generalization analysis we showed that we can obtain

the same generalization convergence with compressed gradients in both smooth and non-

smooth settings. We also show that the same approach can be extended to variants of

SGD with similar guarantees. In particular, we require fewer iterations for these variants

to obtain the same bounds.
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Chapter Seven

Reducing the Noise of Differentially

Private Gradient Descent

In this Chapter, we investigate the question of what is the effect of the projected gradients

in the private setting. It is known that SGD in the DP setting will incur an additional term

which will scale with the dimension [134]. Hence it is very interesting to find out whether

the reduction on dimension will indeed reduce the dimension dependence in the error

due to privacy. Furthermore, what is the interplay between privacy, dimensionality and

optimisation performance? In this Chapter, we study this question for the first time. We

first consider the classic gradient descent with projected gradients in the private setting

in the following section.

7.1 Differentially Private Compressed Gradient Descent

In this section, we demonstrate and analyse the DP-SGD with compressed gradients. To

guarantee differential privacy we impose the Gaussian mechanism to add Gaussian noise

to the gradient updates. For classical DP gradient updates, we need to add noises in the

original d-dimensional space which could be of very large size if d is large. We impose the

compressed gradient updates in the private setting to add noise in a much lower dimension

instead. The algorithm is introduced in the appendix of [76]. However, no convergence

analysis has been done for the private setting. The detailed algorithm is outlined as in
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Algorithm 8.

The algorithm uses a standard application of the Gaussian mechanism [47] to guarantee

(ϵp, δp)-differential privacy. The main idea of the mechanism is to perturb the gradient

update at each iteration by injecting noise. Similar approach has also been taken in [120]

in the classical case (without projections).

Algorithm 8 Differentially private CompGD (DP-CompGD)
1: Inputs: Sample set S = {z1, . . . , zn}, privacy parameters (ϵp, δp), step size parameters

{ηt} and projection parameters {βt}.
2: initialize w1 as any point in C
3: for t = 1 to T do
4: set mt = min{d, ω(C)2/β2

t }
5: choose projection matrix Φt ∈ Rmt×d with i.i.d. entries from N (0, 1/mt)

6: set σ2 = 32L2T log(1/δp)

n2ϵ2p

7: set st = ∥∇LS(wt)∥
∥Φt∇LS(wt)∥

8: set θt = ΠΦtC(Φtwt − ηt(stΦt∇LS(wt) + e)) where e ∼ N (0, σ2Imt)
9: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}

10: end for
11: Output: w1,w2, . . . ,wT

We note that the variance of the injected noise σ2 here depends not only on the privacy

parameters (ϵp, δp), but also on the number of iterations T and the number of samples

n. The dependence on T follows from the iterative property of gradient descent as we

need to query the sample set once every epoch. The dependence on n follows from the

use of the gradient ∇LS(wt) for our algorithm. We remark that it is more preferable to

use the full gradient in the privacy setting as compared to SGD because we can reduce

the variance of the noise. Since differential privacy requires that the sensitivity of the

gradient is bounded uniformly, we are required to set the normalization factor st as in the

algorithm to guarantee this property. Other methods such as gradient clipping as in [35]

also works similarly to bound the sensitivity uniformly.

One of the main challenge in the differentially private setting is to analyse the effect of

the extra normalization factor st on the gradient updates, which will depend on the ran-

dom projector Φt and the gradient ∇LS. The random projection Φt only depends on the

Gaussian width of C (and distortion parameter βt), meaning we have no guarantee on

the distortion of the projected gradients Φt∇LS, hence making the convergence of the
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projected gradient updates difficult to analyse. We overcome this difficulty by using the

properties of Gaussian random matrices and show that the convergence of DP-CompGD

is almost the same as high-dimension SGD (without projection) while reducing the di-

mensionality of the noise and the gradient. Hence we required the random projection

matrix Φ to be Gaussian distributed in the private case as stated in Alg. 8 which is an

additional restriction compared to the non-private case (e.g. Alg. 6).

Theorem 7.1 (Non-smooth case). Assume that the loss function ℓ is convex and L-

Lipschitz over the convex set C. Suppose we run the DP compressed GD with step sizes

ηt = ∥C∥/
√
t(L2 +mTσ2). For privacy parameters ϵp, δp we let σ2 = O(L2 log(1/δp)T/(ϵ

2
pn

2))

and βt = 1/(t+ 1). Then we have that the private compressed GD satisfies

E[LS(w̄T )] = LD(w
∗) +O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mT log(1/δp)

nϵp

)
, (7.1)

where mT = maxt∈[n]mt ≤ d.

Proof. (sketch) The proof of the optimization guarantee for the DP CompGD follows

a similar logic as in the non-private setting. However, we must consider carefully the

additional normalization factor st which is dependent on Φ, and the magnitude of the

added noise in each iteration. For the former we use the properties of Gaussian random

matrices to show a key relationship between inner products on the high-dimensional vector

and the projected vector (normalized by st). This allowed us to relate projected vectors

to high-dimensional vectors and use techniques from classic GD. For the magnitude of

the noise we can use the Lipschitz assumption on the high-dimensional gradients together

with properties of the added Gaussian noise with variance σ2. The detailed proof is in

Section 7.3.1.

We note that the second term in (7.1) has the privacy parameter ϵp in the denominator,

which implies that the second term will vanish as ϵp tends to infinity (zero privacy). In

that case we recover the same convergence rate as in the non-private case. We also note

that mT is dependent on the Gaussian width of the constraint set C. This captures the
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dimensionality reduction from d to ω(C), which can be much smaller if the set has a low

dimensional structure. e.g. if C is the ℓ1-ball, then we have ω(C) = O(
√
log d).

In the case of smooth ℓ, we can obtain a faster convergence in optimization just as we

have observed for the non-private case.

Theorem 7.2 (Smooth case). Assume that the loss function ℓ is convex, µ-smooth and L-

Lipschitz over the convex set C. Suppose that we run the DP compressed GD with step sizes

ηt =
∥C∥

L
√
mT

≤ 1/(4µ). For privacy parameters ϵp, δp we let σ2 = O(log(1/δp)L
2T/(ϵ2pn

2))

and βt = 1/(t+ 1). Then we have that the private compressed GD satisfies

E[LS(w̄T )] = LD(w
∗) +O

(
L∥C∥ log T√mT

T
+
LT

√
mT log(1/δp)

n2ϵ2p

)
,

where mT = maxt∈[n]mt ≤ d.

Proof. See Section 7.3.1.

Similar to the non-smooth case, we note that when the privacy parameters ϵp, δp converge

to infinity, we will recover the same convergence bound as in the non-private case for

compressed gradient descent.

Remark 17. Notice here that we have specified the learning rate ηt needed for the opti-

mization error bounds in Thm. 7.1 and Thm. 7.2. The only necessary dependence in ηt

is t, σ2, and mT for the dimensionality dependence. Other constants can be chosen freely

without affecting the result (up to constant factors) in a similar way as previous results

(as in e.g. Thm. 7.2).

Theorem 7.3 (Stability and generalization of Compressed Private GD). Assume that the

loss function ℓ is convex and L-Lipschitz for every w ∈ C, z ∈ Z.

1. Then, for βt = 1
t+1

, ηt = η
T 3/4 for some absolute constant η and T ≍ n2, the

differentially private CompGD is ϵstab-uniformly stable with ϵstab = O
(

L log(n)√
n

)
.
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2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[LD(w̄T )] = LD(w
∗) +O

(
(∥C∥2 + L2) log(n)√

n
+

log(1/δp)

n3
√
nϵ2p

n2∑
t=1

mt

)
. (7.2)

Proof. See Section 7.3.1.

Theorem 7.3 shows that the generalization convergence of DP-CompGD achieves the

same rate as CompGD up to privacy and constant factors. In particular, we recover

the same guarantee as for CompGD (theorem 6.6) when ϵp → ∞. Moreover, note that

the dimensionality dependence in the privacy error term (last term) is dependent on the

projection dimension used for each iteration. Hence if the projection dimension is small

then we can reduce the error incurred due to privacy, as compared to high-dimensional

DP-SGD [134]. We omit the generalization in the smooth case here since there is no gain

compared to the non-smooth setting.

7.2 Differentially Private Compressed SGD with Mini-

batch

While we prefer using large batch gradients in the private setting to reduce the global

sensitivity of the gradient and improve optimization with fewer iterations, private mini-

batch SGD can be useful for large sample sets. Moreover, the mini-batch act as a trade-

off parameter between computational complexity and accuracy of gradient updates. In

this section, we present the differentially private CompSGD algorithm using mini-batch

gradient updates, the algorithm is outlined in Alg. 9.

Note that the mini-batch version of DP-CompSGD induces an extra log factor in its

variance σ2, which will lead to an extra multiplicative log factor in the optimization and

generalization bounds. This is a trade-off in privacy from using a smaller batch of samples

in each gradient update (instead of the full batch as in Alg. 8). Fortunately, we are still

able to obtain the same convergence guarantees for the mini-batch as in Section 7.1 when
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Algorithm 9 Differentially private CompSGD with mini-batch
1: Inputs: Sample set S = {z1, . . . , zn}, batch size b, privacy parameters (ϵp, δp), step

size parameters {ηt} and projection parameters {βt}.
2: initialize w1 as any point in C
3: for t = 1 to T do
4: set mt = min{d, ω(C)2/β2

t }
5: choose projection matrix Φt ∈ Rmt×d with i.i.d. entries from N (0, 1/mt)
6: Sample a mini-batch Bt of size b uniformly from S

7: set σ2 = 162LT log(1/δp) log(2.5Tb/(δpn))

n2ϵ2p

8: set st =
∥∇LBt (wt)∥

∥Φt∇LBt (wt)∥
9: set θt = ΠΦtC(Φtwt − ηt(stΦt∇LBt(wt) + e)) where e ∼ N (0, σ2Imt)

10: pick wt+1 to be any element from the set {w ∈ C : Φtw = θt}
11: end for
12: Output: w1,w2, . . . ,wT

ϵp tends to infinity.

Theorem 7.4 (Optimization). Assume that the loss function ℓ is convex and L-Lipschitz

over the convex set C. Suppose we run the DP CompGD with step sizes ηt = ∥C∥√
t(L2+mT σ2)

.

For privacy parameters 0 ≤ ϵp, δp ≤ 1 and βt = 1/(t + 1), the private compressed SGD

with mini-batch satisfies

E[LS(w̄T )] = LD(w
∗) +O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mT log(1/δp) log(4Tb/(δpn))

nϵp

)
.

Similar to the non-private case for the mini-batch variance, there is no improvement with

the additional smoothness condition, we obtain the same convergence for both cases. The

rate we obtained here is same as the result obtained with non-projected gradients in [12]

with a key difference: the dimensionality dependence
√
d is replaced with the maximum

projection dimension
√
mT . Hence the reduction of dimensionality here comes for ’free’

compared with using non-projected gradients.

Theorem 7.5 (Stability and generalization of DP-CompSGD with minibatch). Assume

that the loss function ℓ is convex and L-Lipschitz for every w ∈ C, z ∈ Z.

1. Then, for βt = 1
t+1

, ηt = η
T 3/4 for some absolute constant η and T ≍ n2, the differen-

tially private minibatch CompSGD is ϵstab-uniformly stable with ϵstab = O
(

L log(n)√
n

)
.
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2. Moreover, the weighted average output w̄T satisfies the following excess risk bound

E[LD(w̄T )] = LD(w
∗)+O

(
(∥C∥2 + L2) log(n)√

n
+
L2 log(4Tb/(δpn)) log(1/δp)

n3
√
nϵ2p

n2∑
t=1

mt

)
.

Remark 18. Note that the generalization bound obtained here is tight, as we required

at least O(1/
√
n) even in the non-private case. The convergence rate will be almost the

same (up to log factors) as the non-private case if the privacy parameter is not too small

- ϵp ≍ 1/
√
n.

7.3 Proofs for Differentially Private SGD

7.3.1 Proofs for DP-CompGD

Before proving the utility guarantee of the algorithm, we require the following lemma as

part of our proof, the proof of the lemma is deferred to later on in this section to focus

on the main theorem.

Lemma 7.6. For wt in DP compressed SGD algorithm, we have for all t,

E[⟨Φt(w −wt), stΦt∇ℓ(wt)⟩] = ⟨w −wt,∇ℓ(wt)⟩Cmt ,

where Cmt =
√

2
mt

Γ((mt+1)/2)
Γ(mt/2)

∈
[√

mt

mt+1
, 1
]
, and Γ(·) is the gamma function.

Lemma 7.6 shows that the inner product between the projected weight vector and the

normalized projected gradient vector is almost identical to their inner product before

projection. This is a key observation that allows us to prove a similar convergence result

with projected gradients. Using Lemma 7.6, we now show the following optimization

bound for the differentially private compressed gradient descent.

Proof of Theorem 7.1. Since after each update, wt ∈ C for all t, by equation (A.13) in
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the proof of Thm. A.6 we have

(1− βt)∥wt+1 −w∥2 ≤ EΦt

[
∥Φt(wt+1 −w)∥2

]
. (7.3)

Hence we have (here we will denote ∇LS(wt) by ∇Lt)

(1− βt)∥wt+1 −w∥2 ≤ EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Lt + e))− ΠΦtC(Φtw)∥2

]
≤ EΦt,e

[
∥Φtwt − ηt(stΦt∇Lt + e)− Φtw∥2

]
= EΦt,e

[
∥Φtwt − Φtw∥2

]
+ 2ηtEΦt,e[⟨Φtw − Φtwt, stΦt∇Lt + e⟩]

+ η2tEΦt,e[∥stΦt∇Lt + e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Lt⟩+ η2tEΦt,e[∥stΦt∇Lt∥2]

+ 2η2tEΦt,e[⟨stΦt∇Lt, e⟩] + η2tEΦt,e[∥e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Lt⟩+ η2t (L
2 +mtσ

2)

≤ ∥wt −w∥2 + 2Cmtηt(LS(w)− LS(wt)) + η2t (L
2 +mtσ

2), (7.4)

where we have used Lemma 7.6 between the fourth and fifth line and the convexity of ℓ in

the last step. Also note that since e is i.i.d. fresh Gaussian noise, the expectation of e is

0. Hence the expected inner product with e is also zero. Rearranging the last inequality

and let w = w∗ we have:

2Cmtηt(LS(wt)−LS(w
∗)) ≤ ∥wt −w∗∥2 − (1− βt)∥wt+1 −w∗∥2 + η2t (L

2 +mtσ
2). (7.5)

Taking expectation and summing over T iterations we have

2
T∑
t=1

CmtηtE[LS(wt)−LS(w
∗)] ≤ ∥w1−w∗∥2+

T∑
t=1

βtE[∥wt+1−w∗∥2]+
T∑
t=1

η2t (L
2+mtσ

2).

Choosing βt = 1/(t+ 1) we obtain that

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O

(
∥C∥2 + log T∥C∥2 + (L2 +mTσ

2)
∑T

t=1 η
2
t∑T

t=1 ηt

)
, (7.6)
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where we have used mT = maxt∈[T ]mt.

Finally, let ηt = ∥C∥/
√
t(L2 +mTσ2) and σ2 = O(TL2 log(1/δp)/(ϵ

2
pn

2)) we have

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O
(
log T∥C∥

√
L2 +mTσ2

√
T

)
≤ O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mTT log(1/δp)

nϵp
√
T

)

= O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mT log(1/δp)

nϵp

)
. (7.7)

The proof is completed.

Proof of Theorem 7.2. Since after each update, wt ∈ C for all t, by equation (6.29) in the

proof of lemma 6.10 (replacing w′
t+1 with w) we have

(1− βt)∥wt+1 −w∥2 ≤ EΦt

[
∥Φt(wt+1 −w)∥2

]
. (7.8)

Hence we have

(1− βt)∥wt+1 −w∥2 ≤ EΦt,e

[
∥Φt(wt+1 −w)∥2

]
= EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Lt + e))− ΠΦtC(Φtw)∥2

]
≤ EΦt,e

[
∥Φtwt − ηt(stΦt∇Lt + e)− Φtw∥2

]
= EΦt,e

[
∥Φtwt − Φtw∥2

]
+ EΦt,e[⟨Φtw − Φtwt, stΦt∇Lt + e⟩] + η2EΦt,e[∥stΦt∇Lt + e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Lt⟩+ η2tEΦt,e[∥stΦt∇Lt∥2]

+ 2η2tEΦt,e[⟨stΦt∇Lt, e⟩] + η2tEΦt,e[∥e∥2]

= ∥wt −w∥2 + 2Cmtηt⟨w −wt,∇Lt⟩+ η2t (∥∇Lt∥2 +mtσ
2)

≤ ∥wt −w∥2 + 2Cmtηt(LS(w
∗
S)− LS(wt)) + η2t (∥∇Lt∥2 +mtσ

2), (7.9)

where we have used Lemma 7.6 between the fourth and fifth step and convexity of ℓ in

the second to last step. Also note that since e is i.i.d. Gaussian noise, the expectation of

e is 0. Hence the expected inner product with e is also zero. Now we substitute w = w∗
S.
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Since w∗
S is an minimiser we have ∇LS(w

∗
S) = 0. Hence by smoothness we have

∥∇LS(wt)∥2 = ∥∇LS(wt)−∇LS(w
∗
S)∥2 ≤ 2µ(LS(wt)− LS(w

∗
S)). (7.10)

Substituting equation (7.10) into (7.9) we have

(1− βt)∥wt+1 −w∗
S∥2 ≤ ∥wt −w∗

S∥2 + (ηt − 2η2tµ)(LS(w
∗
S)− LS(wt)) + η2tmtσ

2

(assuming ηt ≤ 1/(4µ)) ≤ ∥wt −w∗
S∥2 +

ηt
2
(LS(w

∗
S)− LS(wt)) + η2tmtσ

2. (7.11)

Rearranging we have:

ηt
2
(LS(wt)− LS(w

∗
S)) ≤ ∥wt −w∗

S∥2 − ∥wt+1 −w∗
S∥2 + βt∥wt+1 −w∗

S∥2 + η2tmtσ
2.

Taking expectation and summing over T iterates and choosing βt = 1/(t+ 1), we have:

T∑
t=1

ηt
2
E[LS(wt)− LS(w

∗
S)] ≤ ∥w1 −w∗

S∥2 +
T∑
t=1

βtE[∥wt+1 −w∗
S∥2] +

T∑
t=1

η2tmtσ
2

= O

(
∥C∥+ ∥C∥2

T∑
t=1

βt +
T∑
t=1

η2tmtσ
2

)

= O

(
∥C∥+ ∥C∥2 log(T ) + log(1/δp)T

n2ϵ2p

T∑
t=1

η2tmt

)
, (7.12)

where we have used E[∥wt+1 −w∗
S∥]2 ≤ ∥C∥2. Finally, for ηt = ∥C∥

L
√
mT

we have

(
T∑
t=1

ηt

)−1 T∑
t=1

ηtE[LS(wt)− LS(w
∗
S)] = O

(
L∥C∥ log T√mT

T
+
LT

√
mT log(1/δp)

n2ϵ2p

)
.

The proof is completed.

Proof of Theorem 7.3. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. W.l.o.g. assume that they differ on the j-th point denoted zj, z′j for
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S and S ′, respectively. Fix a sample z, by the Lipschitz condition we get

E[|ℓ(wT )− ℓ(w′
T )|] ≤ LE[δT ], (7.13)

where δT = ∥wT −w′
T∥.

Since after each update, wt ∈ C for all t, by equation (6.29) in the proof of Lemma 6.10

we have

(1− βt)∥wt+1 −w′
t+1∥2 ≤ EΦt

[
∥Φt(wt+1 −w′

t+1)∥2
]
. (∗∗)

Hence we have (here we will denote ∇LS(wt) by ∇Lt and ∇LS′(w′
t) by ∇L′

t)

(∗∗) = EΦt,e

[
∥ΠΦtC(Φtwt − ηt(stΦt∇Lt + e))− ΠΦtC(Φtw

′
t − ηt(s

′
tΦt∇L′

t + e))∥2
]

≤ EΦt

[
∥Φtwt − ηt(stΦt∇Lt)− (Φtw

′
t − ηt(s

′
tΦt∇L′

t))∥2
]

= EΦt

[
∥Φt(wt −w′

t)∥2
]
+ 2ηtEΦt [⟨Φt(w

′
t −wt),Φt(st∇Lt − s′t∇L′

t)⟩]

+ η2tEΦt [∥Φt(st∇Lt − s′t∇L′
t)∥2]

= EΦt

[
∥Φt(wt −w′

t)∥2
]
+ 2ηtEΦt [⟨Φt(w

′
t −wt),Φtst∇Lt⟩ − ⟨Φt(w

′
t −wt),Φts

′
t∇L′

t⟩]

+ η2tEΦt [∥Φt(st∇Lt − s′t∇L′
t)∥2]

= ∥wt −w′
t∥2 + 2Cmtηt⟨w′

t −wt,∇Lt −∇L′
t⟩+ η2tEΦt [∥Φt(st∇Lt − s′t∇L′

t)∥2]

(7.14)

= ∥wt −w′
t∥2 + 2Cmtηt⟨w′

t −wt,∇Lt −∇L′
t⟩+ 4η2tL

2, (7.15)

where the second-to-last line (7.14) follows by applying Lemma 7.6 twice, the last line

(7.15) follows from the Lipschitz assumption.

Since S, S ′ only differs on the j-th point, we have (Cmt omitted here since Cmt ≤ 1)

⟨w′
t −wt,∇Lt −∇L′

t⟩ = ⟨w′
t −wt,∇LS∪{z′j}(wt)−∇LS′∪{zj}(w

′
t)⟩

+
1

n
⟨w′

t −wt,∇ℓ(w′
t, zj)−∇ℓ(wt, z

′
j)⟩

≤ 1

n
⟨w′

t −wt,∇ℓ(w′
t, zj)−∇ℓ(wt, z

′
j)⟩

≤ 2L

n
∥wt −w′

t∥, (7.16)
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where the second line holds because the first term is negative by the convexity of LS, and

the last line follows from the Lipschitz condition.

We substitute the inequality (7.16) into equation (7.15) and multiply both sides by∏t−1
j=1(1− βj). It then follows that

[
t∏

j=1

(1− βj)

]
δ2t+1 ≤

[
t−1∏
j=1

(1− βj)

]
δ2t +

4ηtLδt
n

t−1∏
j=1

(1− βj) + 4η2tL
2

[
t−1∏
j=1

(1− βj)

]
.

By summing over T iterates we have:

[
T−1∏
j=1

(1− βj)

]
δ2T ≤

T−1∑
t=1

4ηtLδt
n

t−1∏
j=1

(1− βj) +
T−1∑
t=1

4η2tL
2

[
t−1∏
j=1

(1− βj)

]
. (7.17)

Taking βt = 1/t+ 1 and rearranging we have:

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T
T−1∑
t=1

η2t
t
. (7.18)

Claim: The following inequality holds for all T :

δT ≤ 2L
√
T

√√√√T−1∑
t=1

η2t
t
+

(
2LT

n

T−1∑
t=1

ηt
t

)
. (7.19)

We prove this claim by induction: The base case T = 0 clearly holds as the right hand

side is always positive. For the inductive step, if δT ≤ maxt∈[T ] δt, then by the inductive

hypothesis we have

δT ≤ δT−1 ≤ 2L
√
T

√√√√T−2∑
t=1

η2t
t
+

(
2LT

n

T−2∑
t=1

ηt
t

)
≤ 2L

√
T

√√√√T−1∑
t=1

η2t
t
+

(
2LT

n

T−1∑
t=1

ηt
t

)
.

(7.20)

For the other case where δT > maxt∈[T ] δt, we have from (7.18):

δ2T ≤ 4LT

n

T−1∑
t=1

ηtδt
t

+ 4L2T

T−1∑
t=1

η2t
t

≤ 4LTδT
n

T−1∑
t=1

ηt
t
+ 4L2T

T−1∑
t=1

η2t
t
. (7.21)
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Which after rearranging is equivalent to:

(
δT − 2LT

n

T−1∑
t=1

ηt
t

)2

≤

(
2LT

n

T−1∑
t=1

ηt
t

)2

+ 4L2T
T−1∑
t=1

η2t
t
. (7.22)

Taking square-root from both sides, we get the result by the sub-additivity of square-

roots. The inductive step is completed. Finally using the choice ηt = O(1/T 3/4) and

T ≍ n2 together with our proved claim, we have:

E[δT ] ≤ 2L
√
T

√√√√T−1∑
t=1

η2t
t
+

(
2LT

n

T−1∑
t=1

ηt
t

)

= O
(
L
√
log T

T 1/4
+
LT 1/4 log T

n

)
= O

(
L log n√

n

)
.

For the excess risk bound we have from Thm. 7.1

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O

(
∥C∥2 + log T∥C∥2 +

∑T
t=1 η

2
t (L

2 +mtσ
2)∑T

t=1 ηt

)
. (7.23)

Using the choice of ηt = η/T 3/4 and T ≍ n2 we have

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O

(
log n(∥C∥2 + L2)√

n
+

log(1/δp)
∑n2

t=1mt√
nn3ϵ2p

)
. (7.24)

Combining with the stability bound we obtain our final result.

Theorem 7.7. The output of DP-CompGD in Alg. 8 satisfies (ϵp, δp)-differential privacy.

Proof. The proof follows similar procedure as in [11] (Thm. 2.1) with a standard ap-

plication of the Gaussian mechanism. Note that the norm of the projected gradient

Φt∇LS(wt) is normalized by the normalization factor st (line 7 of Alg. 8). Hence the

norm ∥stΦt∇LS(wt)∥ is upper bounded by the Lipschitz constant L which implies a

global sensitivity of 2L. The privacy guarantee then follows directly by applying the

Gaussian mechanism with the strong composition theorem (Thm. 2.8) over T iterations

of SGD.
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Definition 15 (Chi-distribution). The probability density function of chi-distribution is

f(x; k) =


xk−1e−x2/2

2k/2−1Γ( k
2 )
, if x ≥ 0,

0, otherwise,

(7.25)

where Γ(z) is the gamma function. It is known that the expected value of the chi-

distribution is
√
2Γ((k+1)/2)
Γ(k/2)

.

Proof of Lemma 7.6. Note that e is independent from the rest of parameters and E[e] = 0.

Denoting ∇LS(wt) by ∇Lt, we have

EΦt,e[⟨Φt(w −wt), stΦt∇Lt + e⟩] = EΦt,e[⟨Φt(w −wt), stΦt∇Lt⟩+ ⟨Φtw − Φwt, e⟩]

= EΦt [⟨Φt(w −wt), stΦt∇Lt⟩]. (7.26)

For simplicity let us denote (w−wt) by v. To bound the above quantity, we first consider

two special cases of ∇Lt: 1. ∇Lt is a scale multiple of v; 2. ∇Lt is perpendicular to v.

For the first case, ∇Lt = cv for some constant c. We have

∥∇Lt∥EΦt

[〈
Φtv,

Φt∇Lt

∥Φt∇Lt∥

〉]
= sign(c)∥cv∥EΦt

[〈
Φtv,

Φtv

∥Φtv∥

〉]
= sign(c)∥cv∥EΦt [∥Φtv∥]

= sign(c)
|c|∥v∥2
√
mt

EΦt

[
∥Φtv∥

√
mt

∥v∥

]
. (7.27)

Since Φt’s entries are randomly drawn from distribution N (0, 1/mt), this implies that

Φt(v/∥v∥)
√
mt ∼ N (0, Imt). Hence the norm ∥Φt(v/∥v∥)

√
mt∥ is Chi-distributed with

mt degrees of freedom. The expectation of a Chi-distributed random variable is

EΦt

[
∥Φtv∥

√
mt

∥v∥

]
=

√
2Γ((mt + 1)/2)

Γ(mt/2)
.
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With Cmt =
√
2Γ((mt+1)/2)
Γ(mt/2)

√
mt

we get from equation (7.27) that

∥∇Lt∥EΦt

[〈
Φtv,

Φt∇Lt

∥Φt∇Lt∥

〉]
= Cmtc∥v∥2. (7.28)

The second special case of interest is when ∇Lt is perpendicular to v. Note that this con-

dition implies that Φt∇Lt is independent to Φtv. Indeed, if we consider their covariance:

covΦt(Φtv,Φt∇Lt) = EΦt [⟨Φtv,Φt∇Lt⟩] = ⟨v,∇Lt⟩, (7.29)

which equals to zero when v is perpendicular to ∇Lt. Hence we have

∥∇Lt∥EΦt

[〈
Φtv,

Φt∇Lt

∥Φt∇Lt∥

〉]
= ∥∇Lt∥⟨EΦt [Φtv] ,EΦt [Φt∇Lt]⟩ = 0. (7.30)

Now for any vector v, we can write v = v1 + v2 where v1 is a vector perpendicular to

∇Lt and v2 is a scalar multiple of ∇Lt. Hence we have

EΦt

[〈
Φtv,

Φt∇Lt

∥Φt∇Lt∥

〉]
= EΦt

[〈
Φtv1,

Φt∇Lt

∥Φt∇Lt∥

〉]
+ EΦt

[〈
Φtv2,

Φt∇Lt

∥Φt∇Lt∥

〉]
= EΦt

[〈
Φtv2,

Φt∇Lt

∥Φt∇Lt∥

〉]
=

〈
v2,

∇Lt

∥∇Lt∥

〉
Cmt (7.31)

=

〈
v,

∇Lt

∥∇Lt∥

〉
Cmt , (7.32)

where (7.31) used that v2 is a scalar multiple of ∇Lt with scalar multiple c = ±1 being

sufficient to consider (since otherwise we can divide and multiply with ∥v2∥), and the last

equality holds because v1 is perpendicular to ∇Lt. Multiply both sides of eq. (7.31) by

∥∇Lt∥, we conclude for all v = w −wt that

EΦt [⟨Φt(w −wt), stΦt∇Lt⟩] = ⟨(w −wt),∇Lt⟩ · Cmt . (7.33)
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7.3.2 Proofs of DP-CompSGD with Minibatch

In the case where we only use a random subset of the whole sample set in each iterate, the

sensitivity will increase due to a smaller sample set. However, we can apply the following

result to strengthen our privacy guarantee:

Theorem 7.8 (Amplification by subsampling [8]). Let X be a data domain and M :

X n → X b be a procedure such that M(S) returns a random subset of b records sampled

uniformly without replacement from S. Let A be an (ϵp, δp)-DP algorithm. Then A ◦ S

satisfies (ϵ′p, (b/n)δp)-DP with ϵ′p = log(1 + (b/n)(eϵp − 1)).

Theorem 7.9. The output of DP-CompMiniBatch in Alg. 9 satisfies (ϵp, δp)-differential

privacy.

Proof. The proof follows the same idea as for DP-CompGD. Note that since we only use

a random subset of S for each iteration (of size b), we can apply Thm. 7.8 to obtain a

stronger privacy guarantee relative to the size of the subsample at each iteration. The

privacy guarantee then follows similarly by the strong composition over T iterations.

Proof of Theorem 7.4. We start with the same procedure as in the derivation for the

optimization of DP-CompGD in equation (7.4). Note that we can replace the batch

gradient ∇LS with the minibatch gradient ∇LBt without affecting the derivation of the

inequality

(1− βt)∥wt+1 −w∥2 ≤ ∥wt −w∥2 + 2Cmtηt(LBt(w)− LBt(wt)) + η2t (L
2 +mtσ

2).

Rearranging the inequality and letting w = w∗ we have:

2Cmtηt(LBt(wt)−LBt(w
∗)) ≤ ∥wt−w∗∥2−(1−βt)∥wt+1−w∗∥2+η2t (L2+mtσ

2). (7.34)

Since Bt is a random subset drawn uniformly from S, we have EA[LBt(w)] = LS(w).
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Hence by taking expectation and summing over T iterations we have

2Cmt

T∑
t=1

ηtE[LS(wt)−LS(w
∗)] ≤ ∥w1−w∗∥2+

T∑
t=1

βtE[∥wt+1−w∗∥2]+
T∑
t=1

η2t (L
2+mtσ

2).

Choosing βt = 1/(t+ 1) we obtain that

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O

(
∥C∥2 + log T∥C∥2 +

∑T
t=1 η

2
t (L

2 +mtσ
2)∑T

t=1 ηt

)
. (7.35)

Finally, note that mT = maxt∈[T ]mt.

Letting ηt = ∥C∥/
√
t(L2 +mTσ2) and σ2 = O(TL2 log(1/δp) log(4Tb/(δpn)/(ϵ

2
pn

2)) we

have

∑T
t=1 ηtE[LS(wt)− LS(w

∗)]∑T
t=1 ηt

= O
(
log T∥C∥

√
L2 +mTσ2

√
T

)
≤ O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mTT log(1/δp) log(4Tb/(δpn)

nϵp
√
T

)

= O

(
log T∥C∥L√

T
+

log T∥C∥L
√
mT log(1/δp) log(4Tb/(δpn)

nϵp

)
.

Proof of Theorem 7.5. Let S and S ′ be two neighbouring sample sets of size n that differ

in one single sample. Let G(wt) = wt+1 denote the gradient update and let G1, . . . , GT

and G′
1, . . . , G

′
T be the updates induced by running the compressed SGD on S and S ′ for

T iterates, respectively. Let δT = ∥wT −w′
T∥, by the Lipschitz condition we have

E[|ℓ(wT , z)− ℓ(w′
T , z)|] ≤ LE[δT ]. (7.36)

If at iteration t, the mini-batch Bt, B
′
t we selected is the same, i.e. Gt = G′

t, then by the

same derivation for equation (7.15) we have the following bound

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 − 2ηt⟨∇LBt(wt)−∇LBt(w
′
t),wt −w′

t⟩+ 4η2tL
2.
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From the convexity of ℓ we have that ⟨∇LBt(wt) − ∇LBt(w
′
t),wt − w′

t⟩ ≥ 0. Hence we

obtain the following bound

(1− βt)∥wt+1 −w′
t+1∥2 ≤ ∥wt −w′

t∥2 + 4L2η2t . (7.37)

For the case where Gt ̸= G′
t, we use the fact that Bt and B′

t differ by a single sample.

Hence we have

(1− βt)∥wt+1 −w′
t+1∥2

≤ ∥wt −w′
t∥2 − 2ηt⟨∇LBt(wt)−∇LB′

t
(w′

t),wt −w′
t⟩+ 4η2tL

2

≤ ∥wt −w′
t∥2 +

4Lηt
b

∥wt −w′
t∥+ 4L2η2t , (7.38)

where the last inequality (7.38) follows by the same derivation as for equation (6.49),

replacing S, S ′ with Bt, B
′
t respectively. Combining the two cases we have

(1− βt)E[δ2t+1] ≤
(
1− b

n

)
(E[δ2t ] + 4L2η2t ) +

b

n

(
E[δ2t ] +

4LηtE[δt]
b

+ 4L2η2t

)
= E[δ2t ] + 4Lηt

(
E[δt]
n

+ Lηt

)
. (7.39)

The rest of the stability proof then follows by the same procedure as the proof for Thm. 7.3

starting from equation (6.50).

7.4 Empirical illustration

To illustrate the theory for compressed SGD, particularly in the private setting, and to

show how the dimensionality of the noise affects the error, we generated some example

data sets with a low dimensional structure. We run the private gradient descent (without

projection) and the private CompGD algorithm on these data sets with a fixed size N =

3000 and dimension ranging from d = 30 to d = 1000. The data sets are generated

randomly in the unit sphere at high dimensions, labels are then assigned to each sample

using a low dimensional weight vector w as follows: For each sample z we compute the
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sigmoid function value with z and w and assign a label ∈ {+1,−1} depending on their

sigmoid value. We then run the algorithm on this data set with the optimizing function

ℓ being the logistic loss function. After running on epochs ranging from 1 to 10 we then

compute the test error using an independent test set of size N = 100. For the private

CompGD, we will perform the projection of the gradient using a randomly generated

Gaussian matrix and project it onto a m = d/10 dimension. Each experiment is repeated

10 times and the average is calculated and plotted. The error bars in the plots indicate one

standard deviation from the mean. To maintain consistency between the two algorithms

so that they only differ by the projection step, we fixed the privacy parameters to the

standard setting ϵp = 2 and δp = 0.01 for both algorithms. With this restricted setting,

the experiment result may not be state-of-the-art. However, our goal is to illustrate the

effect of the projection step in private compressed gradient descent implied by our risk

bounds in Section 7.1.

Figure 7.1: Comparison of DP gradient descent with and without projection using d =
100, 500, 1000 (left to right) respectively. The dimension of the labelling weight vector
w is 1. We can observe from the plot that despite the simple structure of the labelling
vector, the problem is difficult at very high dimensions due to the excessive amount of
injected noise. We also observe a significant improvement of DP-CompGD over DP-GD
over all three sets of experiments.

We note from the experiments that for higher dimensions (≥ 500), the accuracy of both

algorithms starts to decay after ≈ 6 epochs. This is expected from the theory because

the variance of the injected noise is increasing as the number of iterations increases and
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Figure 7.2: Comparison of DP gradient descent with and without projection using d =
100, 300, 500 (left to right) respectively. The dimension of the labelling weight vector w
is 3. We observe that the average error for this set of experiments is higher compared to
Fig. 7.1, this is due to a more complex problem generated using a 3-dimensional labelling
vector. Similar to Fig. 7.1 we observe that DP-CompGD has a significant improvement
in accuracy compared with DP-GD without projections.

Figure 7.3: Comparison of DP gradient descent with and without projection using d =
30, 100, 300 (left to right) respectively. The dimension of the labelling weight vector w is
10. We start at dimension d = 30 here since this is a more complex problem and we do not
have sufficient sample points to learn effectively. Although the average accuracy of both
algorithms is relatively lower than Fig. 7.1 and 7.2, we can still observe the improvement
of accuracy of DP-CompGD over DP-GD similarly.

we have fixed the number of training samples. Hence as described in Alg. 8, the variance

σ2 increases as T increases. This effect is more noticeable in higher dimensions because

the amount of noise injected is greater for higher dimensions. Hence, for private SGD
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algorithms, it is preferred to run fewer epochs and have a large training sample to mini-

mize the effect of injected noise. Since we can not run an excessive number of iterations

in the private setting, it is very advantageous to reach a good accuracy level with fewer

iterations. The DP-CompGD has this advantage over DP-GD due to the reduction of

noise.

The results from our experiments meet the expectation from our theory, where the reduc-

tion of dimensionality of the noise reduces the ‘privacy term’ in its optimization bound,

hence improving the accuracy of the outputted model.

Summary

We have introduced two different algorithms of gradient descent with compressed gradients

in the DP setting. Both algorithms provides the same level of privacy guarantee but the

CompGD has a smaller variance due to the increased number of samples in each iteration.

Furthermore, since full batch gradient is used for the CompGD, less iterations are required

to converge which will also reduce the variance of the added noise.

We have developed the first optimization and generalization error bounds for both al-

gorithms. In particular, the bound showed that CompGD benefits for convergence with

fewer iteration in the case of smooth and convex loss functions, although their general-

ization convergence are the same. Furthermore, we found that by using the compressed

gradients instead of full gradient, we have reduced the dimensionality dependence of the

added noise, hence resulting a reduced dimensionality dependence in the generalization

bounds of both algorithms. In the case where privacy guarantee vanishes (ϵp → ∞), the

error rate convergence recovers to the non-private bound we obtained in Chapter 6. A

natural question is whether we can perform a similar analysis and use the compressed

gradient to reduce the noise for other variants of differentially private SGD. Extending

the analysis to other private SGD algorithms to investigate the improvement of noise level

will be an interesting open research problem. Finally, we have demonstrated empirically

the difference of accuracy performance between gradient descent with projected gradients
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and vanilla GD. We observed that CompGD has improved accuracy performance over

vanilla GD in the private setting while reducing the dimension of the gradient.
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Chapter Eight

Noise-efficient Learning of Private

Ensembles

8.1 Preliminaries

While DP is a useful privacy guarantee for learning algorithms, we often require a larger

training set to achieve good performance due to the added noise. However, large labelled

training set is expensive and sometimes impractical to obtain in reality, especially for a

privacy-concerning data set (e.g. HIV positive data). On the other hand, unlabelled data

can be less privacy-sensitive in many cases and much more cost-effective to obtain in a

large scale comparing to accurately labelled data. Due to the fore-mentioned reasons, it

is extremely valuable if we can extract information from unlabelled data and improve the

performance of the learning algorithm in the private setting.

In this Chapter, we present a framework that builds machine ensembles in both supervised

and semi-supervised setting. The framework takes advantage of unlabelled data to reduce

the noise requirement and hence it only requires a small number of labelled samples to

achieve high performance. Our framework invokes constructing a tree structure that uses

a density-informed splitting criterion to create balanced leaves and naturally extends to

semi-supervised learning with different privacy settings. Current private tree-based algo-

rithms in the literature either use a greedy-decision approach, or a random-tree approach.
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Methods with greedy approaches take the route of classical decision tree construction [27],

and compute the optimal splits at each node privately. Popular splitting techniques such

as the Gini index [139, 54] or the information gain criterion [58] are applied in conjunction

with a privatized algorithm. The drawback for this approach is that it cannot be naturally

extended to semi-supervised learning as they greedily estimate the optimal split using the

labels. On the other hand, random tree approaches construct the tree by randomized

splits at each node [71, 56, 59]. Randomization is beneficial from the privacy perspective

as it is data-independent and leaks zero information about individuals in the data set.

However, a fully randomized split creates high variance and requires a large ensemble of

trees to perform well. We cannot afford a large ensemble due to the privacy constraint.

Furthermore, random-tree approaches do not take advantage of the unlabelled data as

the splits are chosen fully randomly. Since these approaches do not naturally extend to

the semi-supervised setting, we need to assign labels to the unlabelled set using a trained

model if we want to make any use of the unlabelled data [70, 93]. While this method can

help to improve accuracy in some cases, it requires the predicted labels to be accurate for

the outputting data to be useful, which can not be guaranteed in general. Furthermore,

since the output data contains the original features of the unlabelled set, it can only be

applied where we do not need the privacy of the features at all.

Instead of the previous approaches, our approach uses a semi-greedy median splitting

criterion that uses the features to make formative splits. Median splitting has been used

to build trees mostly in spatial decomposition where we partition data sets to allow quick

access to different parts of the data [13, 39]. However it also can be used for classification

and regression problems with good utility as shown in [25, 81] - even though classical

decision tree methods are better in general without privacy. A main intuition of median

split is that it creates density-balanced nodes, the concept matches with the density-based

dissimilarities in the work of Aryal et al [4] – that states two points are more similar if

they lie in a sparse region than two other points in a dense region with equal geometric

distance. Each leaf comes with a similar amount of sample points hence we avoid empty

leaves and the noise level of each leaf is balanced. To achieve high utility, we also employ
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several techniques to optimize each step of the privatized model as follows. 1) We use

a geometric-scaling privacy budget allocation strategy to ensure accurate splits at each

level. 2) We use a random sampling technique to compute the private median effectively.

3) We use disjoint subsets to create ensembles for both labelled and unlabelled sets to

reduce noise effects. While these techniques pre-existed in isolation as parts of other al-

gorithms, the combination appears novel and it leads to a novel framework that achieves

high performance in both supervised and semi-supervised setting.

8.2 A density-informed private ensemble

In this section, we describe the procedures and the key steps of our tree construction.

Overall the algorithm is broken down into the following steps:

1. Decide the parameters. (number of trees and maximum depth)

2. At each tree node, uniformly randomly select an attribute to split on.

3. Calculate a private median for the selected attribute using the exponential mecha-

nism.

4. When reaching a leaf node, use the Laplace mechanism to store the privatized counts

for each class.

5. For a test point, summarise the counts obtained for each tree and output the class

of the label majority.

Note that at each split we randomly select an attribute over the entire range, this avoids

the greedy computation of optimal attribute using the labels as in [38, 139] and allows

us to construct the tree using only an unlabelled sample later on. Furthermore, random

selection of the features can improve the diversity of each tree while protecting privacy.

After selection of a splitting attribute, we compute privately the median of the values at

the selected attribute. This splitting method allows the feature space to be partitioned
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into even density regions. A key property of median splits is that it only depends on the

features of the data, not the labels. Hence it does not overfit the data set easily, which

may concern classic decision trees. Due to this property, we do not require any pruning

process that many trees require to avoid over-fitting. Other similar techniques involve the

centred random forest described in [81] and replacement of the median with the mean.

However in the private setting, median is usually less sensitive to outliers compared to

the mean and less noise is required to guarantee privacy.

Algorithm 10 BuildTree
1: Inputs: Sample set S, maximum depth k, privacy budget ϵp.
2: procedure BuildTree(S, k, ϵp)
3: if k ≤ 0 or |S| ≤ 10 then
4: Return a Leaf node
5: end if
6: LB, RB = PrivateSplit(S, ϵp)
7: BuildTree(LB, k − 1, ϵp), BuildTree(RB, k − 1, ϵp) # build subtrees
8: Return a decision node that holds the split criteria and left/right branch.
9: end procedure

10: procedure PrivateMedian(V, ϵp)
11: a = minV, b = maxV
12: R = { set of random i.i.d. draws from Uniform(a, b)};
13: for each r in R do
14: computes the quality score u(V, r)
15: end for
16: Return r̃ ∈ R with exponential mechanism with budget ϵp.
17: end procedure
18: procedure PrivateSplit(S, ϵp)
19: Choose a splitting dimension i uniformly from data dimension [d]
20: V = sorted{set of values in dimension i}
21: Choose private median p by PrivateMedian(V, ϵp)
22: for each sample X in S do
23: if Xi ≤ p then
24: add to left branch
25: else
26: add to right branch
27: end if
28: end for
29: Return LeftBranch, RightBranch
30: end procedure

As one of the most crucial steps in our private tree construction, being able to compute the

median accurately while preserving privacy is crucial for the final performance of the tree.

A demonstration of the effect of the median estimation on accuracy is shown in Fig. 8.2.
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There are different methods of private median computation as discussed in [39], the most

common approach may be using the exponential mechanism. However, direct application

of the exponential mechanism considers many redundant potential values that are far

away from the median. Furthermore, these values can be assigned with high probability

due to their large share of the marginal distribution. We instead randomly sample a finite

number of values from a uniform distribution over the possible range of values. In this

way we significantly reduce the complexity of the problem by only considering a fixed

number of possible outputs, hence improving the computational efficiency and resulting

in a more accurate estimate.

We employ the exponential mechanism with a utility measure function that uses the

Figure 8.1: Effect of median estimation on accuracy on synthetic data sets of dimension
5 (top) and 10 (bottom). We compare the accuracy of Alg. 10 with its variation that uses
the true median and random splitting. We observe that accuracy increases as we make
better estimates of the true median due to larger privacy budgets.
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rank of a potential output r ∈ R: Let ϵs denote the desired privacy parameter for tree

construction. Denote a subset of the data as Si ⊂ S and let V denote the set of the j-th

values for points in Si. Then the utility of a potential output r ∈ R over a randomly

selected attribute j is defined as

u(V, r) = −|rankj(r)− |V |/2|, (8.1)

where rankj(r) denotes the number of points in V that is ≤ r.

This utility function assigns negative weights (quality score) to all values except for the

true median, which will have weight zero. Values r ∈ R will have decreasing utilities the

further away they are from the median. For categorical variables we use the same utility

function, except that we let R to range over all categories for attribute j, and we define

rankj(r) to be the number of points in V that is = r. Note that the sensitivity of u is

1/2: adding a data point in V increases |V |/2 by 1/2 and rankj(r) either increases by 1

or remains the same; removing a data point has a similar effect. Now by the exponential

mechanism, for any given ϵp we can guarantee ϵp-DP by outputting r ∈ R with probability

P[M(V, u,R) = r] ∝ exp (ϵpu(V, r)) , (8.2)

where the actual probability will be obtained through dividing the sum of proportional

probabilities over all r ∈ R.

We note that we have not query the sample labels in our construction of the tree, by

partitioning the sample set into N disjoint sets and distributing the labels to the leaves

of the tree (privately), we obtain a private supervised ensemble model for classification

and regression tasks. The algorithm is outlined in Alg. 11.

8.2.1 Privacy analysis

There are two steps in Alg. 10 and Alg. 11 where we have used a privacy mechanism: (i)

PrivateSplit, and (ii) DistributeLabels. In this section, we analyze the privacy guarantee
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Algorithm 11 Supervised Private Ensemble
1: Inputs: labelled set S, size of ensemble N , maximum depth k, privacy budget ϵp
2: procedure SupervisedEnsemble(S,N, k, ϵp)
3: Split the total budget ϵp into ϵs, ϵl. # even split by default
4: Partition S into N disjoint subsets {Si}Ni=1.
5: for i in 1, . . . , N do
6: Tree i = BuildTree(Si, k, ϵs)
7: DistributeLabels(Tree i, Si, ϵl) and add Tree i to ensemble
8: end for
9: end procedure

10: procedure DistributeLabels(Tree, S, ϵp)
11: for each sample X in S do
12: find the corresponding leaf of X and record the label of X
13: end for
14: for each leaf in the Tree do
15: for each label class do
16: add noise ∼ Lap(1/ϵp) to the label count.
17: end for
18: end for
19: end procedure

of each mechanism. For the PrivateSplit procedure we note that the only computation

required to query the data set is private median estimation. The splitting process af-

terwards only partitions the data set by the split condition, which guarantees the same

privacy by the post-processing property of DP [48]. To guarantee ϵs-DP over the whole

sequence of splits along the tree construction, we need to split ϵs into a sequence of privacy

budgets

ϵ0 + ϵ1 + · · ·+ ϵk−1 =
k−1∑
i=0

ϵi = ϵs, (8.3)

where ϵi is the privacy budget for splits at depth i, and k is the maximum depth. A node

with depth k corresponds to a leaf and hence no split is required. For splits at the same

depth (say depth i), we can assign ϵi budget to each split because the data set held at the

nodes of the same depth are disjoint. Therefore we have ϵi-DP guaranteed simultaneously

by the parallel composition theorem. Furthermore, by the sequential composition theorem

we sum all splits at different depths and together and obtain (ϵ0 + · · ·+ ϵk−1) = (ϵs)-DP.

Now for DistributeLabels, we will use the Laplace mechanism to output a private count

of the classes while guaranteeing ϵl-DP, where ϵl is the desired privacy parameter for leaf

construction. We note that the sensitivity of the class count is 1 as adding or removing
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a point changes the count by at most 1. Hence by the Laplace mechanism, it suffices to

add random noise drawn from Lap(1/ϵl) to achieve ϵl-DP. Moreover, since the data set in

each leaf is disjoint from each other, by guaranteeing ϵl-DP for each leaf we can obtain

ϵl-DP for all leaves simultaneously by parallel composition. Overall, we have shown that

for any given ϵs and ϵl, the ensemble construction in Alg. 11 achieves (ϵs + ϵl)-DP.

8.2.2 Privacy budget allocation

In this section we discuss our strategy of privacy budget allocation for the construction

of ensembles in Alg. 11. For a total privacy budget ϵp, since we have partitioned the

sample set S into N disjoint subsets {Si}Ni=1, we can allocate the whole privacy budget

ϵp to every tree by the parallel composition theorem. We further split ϵp to ϵp = ϵs + ϵl

for privacy budget used in node splits and label predictions, respectively. We will use an

equal share between the two as default since both procedures are important to its final

performance. i.e. ϵs = ϵl = ϵ/2 . We now discuss the budget allocation of ϵs along the

nodes as follows. As a general intuition, the optimal budget allocation should depend

on the difficulty of performing the private median computation. Based on this idea, we

found that the privacy budget allocation follows a geometrically-scaling sequence along

the depths of the nodes. Let r, r′ ∈ R be two any potential outputs drawn uniformly from

[a, b], a, b ∈ R. The private estimation of the median is easier if we can distinguish the

utility of r, r′ and output the better option with higher probability. This means we want

the utility difference |u(r)−u(r′)| to be large which is calculated by the number of values

between r and r′. We observe that the expected difference between two randomly chosen

points from a uniform distribution is equal to |a− b|/3 (we cannot make any assumption

on the values of the input samples). This observation implies that for every point added

or removed, the probability that |u(r) − u(r′)| will change due to the added/removed

point being equal to 1/3. Since any parent node is expected to receive 2 times the

number of samples compared to its child nodes, the median estimation problem will be

2 × (1/3) times in difficulty compared to its child node. Hence for any node at depth

i that received ϵi budget, we assign ϵi+1 = (3/2)ϵi privacy budget to its child nodes at
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depth i+ 1. Furthermore, we must full-fill the condition that the sum of privacy budgets

over all depths is equal to ϵs. Hence we scale each ϵi by a constant C so that we have∑k−1
i=0 ϵi = ϵs, W.l.o.g. we assume ϵ0 = Cϵs.

ϵs =
k−1∑
i=0

ϵi = ϵ0 + (3/2)ϵ0 + · · ·+ (3/2)k−1ϵ0 (8.4)

= Cϵs(1 + (3/2) + · · ·+ (3/2)k−1) = Cϵs

(
(3/2)k − 1

(3/2)− 1

)
, (8.5)

which implies

ϵi = Cϵs

(
3

2

)i

, where C =
1

2(3/2)k − 2
. (8.6)

To illustrate the effectiveness of our privacy budget allocation strategy, we run simulations

of Alg. 10 to analyse the quality of the estimated median by comparing our allocation

strategy with uniform allocation which is the baseline method. We run our experiments on

a synthetic data set generated from a normal distribution and we kept all other parameters

identical except the allocation strategy.

Figure 8.2: Comparison between geometric allocation and uniform allocation at different
privacy levels with maximum depth 5 (left plot) and 10 (right plot). Error bars indicates
(±1) standard deviation from the mean and each experiment is repeated 50 times. We
observe that our strategy achieves smaller average distance to the true median over all set
of experiments. This shows that the proposed allocation strategy has a significant effect
on the median estimation while guaranteeing the same level of privacy.
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8.3 Differentially Private Semi-Supervised Ensembles

In this section we present our framework of private semi-supervised learning that creates

private ensembles in the following private settings: (I) both privacy of the features and

labels are required; (II) only privacy for labels is required. For the first case, existing work

can only train on a labelled set and could not take advantage of a separate unlabelled set.

In contrast, the method of our framework can build the tree using the unlabelled set only,

as a result we can assign all privacy budget to the label predictions and reduce the noise.

Moreover, we significantly reduce the number of labelled samples needed while achieving

a good accuracy level. We present the procedures of the private ensembles in Alg. 12 and

13, Alg. 12 applies to both private settings (I) and (II) where Alg. 13 is applicable only

in setting (II). For setting (II) in Alg. 12 we use ∞-privacy to build trees meaning that

we can compute the true median for each split, and no partitioning of the unlabelled set

is required.

Algorithm 12 Semi-Supervised Private Ensemble
1: Inputs: labelled set S, unlabelled set D, maximum depth k, size of ensemble N ,

privacy budget ϵp
2: procedure SS-Ensemble(S,D, k,N, ϵp)
3: if need privacy for features and labels then
4: Partition S,D into N disjoint portions: {Si}i, {Di}i
5: for i in range 1, . . . , N do
6: Tree i = BuildTree(Di, k, ϵp)
7: DistributeLabels(Tree i, Si, ϵp) and add Tree i to ensemble
8: end for
9: else #privacy for labels only

10: S ′ = S with labels removed
11: Partition S into N disjoint portions: {Si}i
12: for i in range 1, . . . , N do
13: Tree i = BuildTree(S ′ ∪D, k, ∞)
14: DistributeLabels(Tree i, Si, ϵp) and add Tree i to ensemble
15: end for
16: end if
17: Return ensemble
18: end procedure

In setting (II) we can perform computations with the features as many times as needed and

release the output without privacy concern. A transductive approach can be applied in

168



Noise-efficient Learning of Private Ensembles

this case to take further advantage of the unlabelled data [93]. The transductive approach

trains a small ensemble using a labelled set and then predicts labels for each sample in

the unlabelled set using the trained ensemble. The newly-labelled set can then be used

to train a larger ensemble. Our framework also takes advantage of this approach in the

privacy for label-only setting. A draw-back of this technique is that the newly-labelled

set can have noisy labels due to inaccurate predictions which can decrease the accuracy

of the final model.

Algorithm 13 Private Transductive Ensemble
1: Inputs: labelled set S, unlabelled set D, maximum depth k, size of first ensemble N1,

size of second ensemble N2, privacy budget ϵp
2: procedure TransductiveEnsemble(S,D, k,N1, N2, ϵp)
3: Partition S into N1 disjoint portions: {Si}i
4: for i in range 1, . . . , N1 do
5: Tree i = BuildTree(S ′ ∪D, k, ∞)
6: DistributeLabels(Tree i, Si, ϵp) and add Tree i to ensemble1
7: end for
8: Assign labels to samples in D using ensemble1 and denote by Dl

9: for i in range 1, . . . , N2 do
10: Tree i = BuildTree(S ′ ∪D, k, ∞)
11: DistributeLabels(Tree i,Dl, ϵp) and add Tree i to ensemble2
12: end for
13: Return ensemble1 ∪ ensemble2
14: end procedure

8.4 Experimental Analysis

To illustrate the performance of the proposed algorithm, we perform a series of experi-

ments using synthetic data sets as well as real data sets from the UCI [7]. The synthetic

data sets are generated by forming normally distributed clusters with random centers us-

ing the python package sklearn.datasets.make_classification. We generate three synthetic

data sets each with 3000 samples with 5, 10 and 15 attributes, each data set contains 2

classes. The UCI data sets covers a wide range of real data sets with size range from 150

to 32561 and dimensions range from 4 to 33. We use 90% of the data for training and

the 10% rest for testing across all of our experiments. Each data set is randomly shuffled

before training. Each experiment is repeated on the same data set 50 times where an
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average and standard deviation of the prediction accuracy is calculated.

8.4.1 Scaling with the privacy parameter

In this section, we demonstrate that our approach is able to take advantage of additional

unlabelled data. As discussed in section 8.3, being able to construct the tree without

labelled data is a great advantage that classical decision tree algorithms lack. We examine

the effect of using unlabelled data under different privacy budgets (from 0.1 to 2). We

generated data sets using the tool sklearn.datasets.make_classification that generates

random clusters with a standard normal distribution, we generate data sets with 5, 10

and 15 attributes and examine the performance on each. We fix the depth to equal the

dimension of the data set and size of ensemble fixed to 20 to keep consistency. For all

experiments we use labelled training sets of size from 100 − 5000 and a fixed unlabelled

set of size 10000. All experiments are repeated 20 times and we plot the average accuracy

with error bars indicating one standard deviation from the mean. We note from Fig 8.3,

Figure 8.3: Comparison of private ensemble with and without unlabelled data using
Synthetic 5 dimensional data set.

8.4, 8.5 that the aid of unlabelled data is most significant at lower privacy budgets. In

view of labelled training sizes, the accuracy with unlabelled data is significantly better

than using labelled data only when the labelled set is small. As we increase the labelled
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Figure 8.4: Comparison of private ensemble with and without unlabelled data using
Synthetic 10 dimensional data set.

training size, the two algorithms perform more similarly until there is minimal difference

between them (at ϵp = 2 with 5000 labelled samples). This observation indeed matches

with our intuition, as we can always do accurate computation with sufficient labelled

samples. However in cases where we do not have sufficiently many labelled samples or

if we have a restrictive small privacy budget, then addition of unlabelled samples can

significantly boost the accuracy of the algorithm while guaranteeing the same amount of

privacy.

8.4.2 Varying the parameters

We demonstrate the effect of parameters (N trees and max-depth) on the accuracy in

Fig. 8.6 with three UCI data sets using the supervised ensemble (Alg. 11). We see the

accuracy is high with small N and decreases as we add more trees into the forest, as

we expected, since under privacy constraints each tree works on a disjoint subset of the

data, leading to weak learning of the individual trees. From the plots we see that most

of the accuracy curves decline after 10 trees, hence we have set N = 10 as our default.

Furthermore, we see that the choice of max-depth=d is a reasonable default as it reaches

high accuracy across data sets. We also experimented with deeper (2d) trees (features to
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Figure 8.5: Comparison of private ensemble with and without unlabelled data using
Synthetic 15 dimensional data set.

split on are sampled with replacement) and see in Fig. 1 that this may win in some cases.

However, we must be cautious in general, as this increases the complexity of the function

class and we run the risk of over-fitting as the leaf nodes become too small.

8.4.3 Comparison with other supervised algorithms

We analyse the prediction accuracy in the supervised setting (no unlabelled set) by com-

paring our Supervised Private Ensemble (SPE) with three state-of-the-art differentially

private tree-based algorithms: Smooth random trees (SRT) by [56], Random Decision

Trees (RDT) by [71] and a version of greedy decision trees (MaxTree) by [92]. In the

experiments we build 10 trees with maximum depth d as a default value where d is the

dimension. For competitors we used parameters recommended by the authors. For a

non-private reference we use a random forest classifier with 100 trees as a benchmark for

the best performance achievable on the particular data set without privacy constraints.

We perform our experiments over a wide range of UCI data sets and three synthetic data

sets, the size of each data set and the number of attributes is described in Table 8.1.

To further evaluate if the reported result is statistically significant, we perform a Mann-

Whitney U test (Wilcoxon rank sum test) at a 95% confidence level. From Table 8.1
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Figure 8.6: Effect of the number of trees (x-axis) and maximum depth (legend) on the
accuracy, where d denotes the dimension of the data. Error bars indicates ±1 standard
deviation from the mean and ϵp is fixed to 2.

we see that our method achieves higher accuracy for the majority of the data sets with

a statistical significant difference. The largest improvement is more than 25% better on

accuracy for the Robot data set. Out of 22 total data sets tested, the only data set where

our method is significantly worse is the Nursery data set.

8.4.4 Comparisons in private semi-supervised learning

For analysis of our framework in the semi-supervised setting, we perform our experiments

with a reduced number of labelled samples and a separate unlabelled set. The data sets

will be the same as our analysis in Section 8.4.3 except iris and wine which has less than

200 points and are too small in the semi-supervised learning. For every other data set,

we only use 20% of the training set as the labelled training set, the other 80% will be

used as an unlabelled set with their labels removed. We also fix the privacy budget to

2 to keep consistency. We compare the methods of our framework in semi-supervised

learning with two state-of-the-art competitors - Semi-supervised RDT (SSRDT) by [70]

173



Noise-efficient Learning of Private Ensembles

Size Attributes RF SPE SRT RDT MaxTree
Adults 32561 14 85.47% 82.05% ⋆ 76.89% 76.16% 81.80%
Bank 4520 16 89.39% 88.24% 88.73% 88.21% 88.31%

Banknotes 1372 4 99.38% 93.54% ⋆ 77.39% 70.59% 86.93%
Blood Transfusion 747 4 74.99% 78.00% 75.71% 78.05% 75.68%

Car 1728 7 97.88% 72.71% ⋆ 71.16% 69.38% 71.42%
Claves 10787 16 80.82% 73.84% ⋆ 70.80% 73.02% 73.22%

Credit Card 30000 24 82.48% 80.22% ⋆ 77.80% 78.28% 78.61%
Dry Bean 13611 17 92.61% 90.74% ⋆ 84.42% 75.28% 89.99%

GammaTele 19020 10 87.99% 82.34% ⋆ 71.62% 66.84% 78.58%
Iris 150 4 95.33% 81.87% 80.53% 81.20% 31.07%

Letter 20000 17 96.13% 67.86% ⋆ 47.61% 40.25% 62.99%
Mushroom 8124 7 100.00% 99.15% ⋆ 98.36% 93.89% 97.51%
Nursery 12960 8 98.56% 79.19% 80.64% 65.57% 88.29% ⋆

Occupancy 8142 7 99.71% 98.19% ⋆ 90.26% 82.87% 97.07%
Pendigits 7494 16 99.22% 91.72% ⋆ 89.03% 81.61% 47.12%

Robot 5456 4 99.46% 87.43% ⋆ 61.50% 56.86% 47.70%
Student 648 33 78.58% 65.29% 60.77% 64.28% 65.60%
Wine 178 4 100.00% 73.00% 72.56% 74.11% 36.00%
Syn5d 3000 5 92.49% 90.41% ⋆ 86.52% 79.78% 88.34%
Syn10d 3000 10 94.52% 87.64% 80.55% 78.57% 86.71%
Syn15d 3000 15 94.08% 87.11% 80.67% 80.24% 86.83%

Table 8.1: Comparisons with other private tree ensemble methods in supervised learning.
The privacy budget is fixed to 2 over all data sets. The best result is highlighted with bold.
We use the symbol ⋆ to indicate if the best result is statistically significant compared to
others.

and Transductive Output Perturbation (TOP) by [93], where SSRDT is a tree-structured

non-parametric method and TOP is a combination of kNN and linear predictors. Both

competitors work in the case where feature privacy is not required, hence we compare

them with our second setting of Alg. 12 (DPE-2) and our Private Transductive Ensemble

(PTE) as they are in the same setting. We also include the first setting of Alg. 12 in our

comparison however the result can be worse since it guarantees stronger privacy (both

features and labels). From Table 8.2 we observe that our method SSPE-2 and PTE has

better results over SSRDT and TOP for the majority of the data sets tested, in which

most of them are statistically significant. Note that the results are in general worse than

the figures in the supervised case since we only have access to 20% of the labels. For

SSPE-1, despite it guarantees the same level of privacy for both the features and labels,

the result has shown its performance remains on a same level (no significant difference)

compared to the competitors which only guarantee privacy for the labels. Moreover, it has

significant improvements over SSRDT and TOP on some data sets despite the additional
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SSPE - 1 SSPE - 2 PTE SSRDT TOP
Adults 80.53 % ⋆ 80.88% ⋆ 80.29%⋆ 75.97% 76.18%
Bank 87.97% 88.02% 88.84% 88.58% 88.44%

Banknotes 53.86% 89.67% 90.41%⋆ 88.52% 55.30%
Blood Transfusion 76.16% 75.84% 76.11% 75.68% 77.36%

Car 70.23% 72.55% ⋆ 71.11% 70.40% 33.88%
Claves 67.88% 67.70% 57.68% 74.16%⋆ 9.49%

Credit Card 78.79 % ⋆ 78.38% ⋆ 77.89% 77.82% 77.80%
Dry Bean 86.84% ⋆ 87.76% ⋆ 88.61%⋆ 81.41% 72.30%

GammaTele 74.77 % ⋆ 77.02%⋆ 74.11% ⋆ 65.50% 64.83%
Letter 42.27% 53.80% 56.91% ⋆ 16.72% 53.42%

Mushroom 90.09% 95.96% ⋆ 95.46% ⋆ 92.69% 51.65%
Nursery 74.31 % ⋆ 77.17% ⋆ 76.37% ⋆ 66.30% 50.66%

Occupancy 96.14 % ⋆ 94.20% 92.77% 95.16% ⋆ 79.08%
Pendigits 72.04% 85.22% ⋆ 87.00% ⋆ 70.10% 84.26%

Robot 77.30% ⋆ 87.01% ⋆ 82.56% ⋆ 64.33% 61.43%
Student 64.77% 65.14% 65.05% 63.05% 64.98%
Syn5d 86.82% 91.59% ⋆ 91.54% ⋆ 90.09% 90.29%
Syn10d 86.30% 90.51% 91.11% 83.93% 91.31%
Syn15d 76.40% 85.94% 86.45% 79.59% 86.29%

Table 8.2: Comparison with other private semi-supervised methods. Bold indicates if
the result is better than its competitors and ⋆ indicates if the difference is significant. For
SSPE-1, we use underline to indicate when it is not significantly worse than SSRDT and
TOP.
added noise as shown in Table 8.2. Hence we conclude that the methods in our framework

achieve a significant improvement over the current state-of-the-art in utility performance

and privacy guarantee.

Summary

We have proposed a framework of differentially private classification for supervised and

semi-supervised learning with high utility. We devise a new combination of techniques

to build a novel private machine ensemble for supervised learning and naturally extends

to semi-supervised settings. We proposed a novel privacy budget allocation scheme that

increases the usage efficiency of the available privacy budget and improves the accuracy

of the computation. Our experiment analysis over a wide range of data sets show that

our method provides significantly better performance than the current state-of-the-art. In

the semi-supervised setting, we proposed private ensembles that can be trained efficiently

using a small number of labelled samples while achieving high utility, which allows us to
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reduce labelling efforts in data sets with sensitive information. In particular, we proposed

the first semi-supervised private ensemble that is applicable in both privacy settings where

the privacy of the features are required or excluded, empirically we found that our method

provides high performance in both settings.
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Chapter Nine

Conclusions, Discussions and Open

Problems

In this Chapter, we will summaries our findings and results presented in this thesis and

the conclusions we make from our results. We will also discuss the problems that is not

solved or only solved partially which is left as open research problems for the future.

9.1 Compressed non-parametric algorithms

In Chapter 4 we have studied two non-parametric algorithms, kNN and histogram, in

their classical form and in the compressed learning setting where algorithms have only

access to the randomly projected samples. Our main contributions in Chapter 4 includes

the generalization analysis of kNN with randomly projected samples, the generalization

analysis of histogram using two different approaches, and the effect of sample set structure

variations on the generalization performance.

Using the two different approaches to prove the generalization of the histogram classi-

fier, we were able to derive error bounds adaptive to the Bayes error. While the first

approach gives the optimal convergence rate of O(n− 1
d+2 ) in the general setting, we de-

rived a faster convergence of O(n− 1
d+1 ) towards twice the Bayes error, which is beneficial

when the Bayes error is small. In particular, in the case where the Bayes error is zero,
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we obtained an error bound with convergence rate of 1/n by choosing the appropriate

cell-width parameter b. Since the Lipschitz assumption on η creates a margin between

different classes in the realizable case, our choice of b guarantees that all samples in the

same cell will have the same class labels, which significantly simplifies the problem. We

have extended the analysis to the compressed histogram, which randomly projects sam-

ples to a lower dimensional space prior training. Using the tool from [89] we showed

that as long as the samples are contained in a low-dimensional structure, the general-

ization error of compressed histogram has a significantly reduced dimension dependence

with a small multiplicative trade-off due to projection distortion. The dimensionality re-

duction for the histogram allows a larger choice of b without over-fitting as will happen

in high-dimensions, which will reduce the bias term of its generalization error. We also

showed that the compressed histogram can be applied on a variety of data structures other

than linear sub-spaces, we have demonstrated variations of sub-spaces and manifolds and

showed that the generalization convergence of the histogram is not significantly affected.

From our experiments we have showed that the accuracy between compressed classifiers

and classical classifiers are almost identical when the sample set has a simple structure,

hence allowing learning to be more feasible for high-dimensional problems. Through ex-

perimental evaluation, we have also showed that the histogram classifier runs significantly

faster in both training and testing. Moreover, the time complexity of both algorithm has

improved with compressed learning, kNN in particular has the most significant improve-

ment due to its high-complexity in the non-compressed setting.

We have analysed a variety of low-dimensional structures that does not significantly dis-

turb the accuracy performance of the histogram while reducing the dimension. However,

these variants has not been analysed for the kNN algorithm in the compressed learn-

ing setting. Although intuitively, we should expect the similar guarantees also holds for

the kNN due to its similarities with the histogram, it is left for future work to prove

these guarantees. Furthermore, the variants of linear sub-spaces we cover in this the-

sis is not exhaustive, for example in the setting such that all sample points are within
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bounded distance to a manifold. Exploring other common low-dimensional structures in

real applications that can be used in compressed learning while preserving the accuracy

performance will be an interesting research topic in the future.

9.2 DP non-parametric algorithms

In Chapter 5 we have studied the DP-kNN and the histogram classifier in the DP setting,

which is achieved using NoisyReg (Alg. 4). Both DP-kNN and NoisyReg provides ϵp-DP

and works similarly by adding noise to the neighbour labels of a testing sample. Our

main contribution of this Chapter is the generalization error guarantee of DP-kNN and

NoisyReg in non-projected setting and randomly projected setting. We showed that as

the privacy parameter ϵp approaches infinity, the result we obtain in this Chapter recovers

to the non-private setting in Chapter 4.

By analysing the generalization error of DP-kNN, we pointed out how the privacy of kNN

depends on the number of testing samples and showed that as the number of testing

queries increase, the injected noise will overwhelm the true signal and lead to random

predictions. In contrast, since the samples in different cells are disjoint, the number

of testing samples does not affect the privacy of NoisyReg as a result of the parallel

composition theorem. Furthermore, private histograms also has a run-time complexity

advantage over DP-kNN for similar reasons as demonstrated in Chapter 4, making private

histogram more favourable in large-scale classification in the DP setting. We also noted

that the generalization error bound of the NoisyReg is tight as it achieves the same optimal

convergence rate compared to its non-private analogue up to a linear dependence of the

privacy parameter ϵp. In the realizable case we obtained ‘almost optimal’ convergence

rate of NoisyReg which is the same as the non-private case up to privacy parameter and

log factors. Unfortunately, it is unknown whether the extra log factor in the private case

can be removed and obtain a tighter bound.

Similarly as in the non-private setting, we studied both private algorithms in the com-

pressed setting. Learning in the compressed learning has the additional advantage of
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reducing the magnitude of added noise in the private case. From Thm. 5.10 we have

showed that random projection also reduces the dimensionality dependence of the excess

error due to privacy.

Furthermore, experimentally we have compared the presented algorithms with private de-

cision trees. Unfortunately, DP-kNN is forced to choose a large value of k to overcome the

added noise in the DP setting, which caused a slow convergence of accuracy performance

as demonstrated in our experiments. From our experiments with real data sets, we have

found that NoisyReg achieves best performance in majority of the data sets and adapts

better in lower privacy levels.

Since NoisyReg has similar properties to its non-private analogue, we have not carried out

extensive research of NoisyReg in the compressed learning setting. A natural extension

of this Chapter is to extend the results of DP algorithms in the compressed setting to

quantify the generalization error in the private case. It will also be interesting to see the

performance of the private algorithms on practical high-dimensional problems.

9.3 Compressed gradient descent methods

In Chapter 6 we have studied gradient descent methods (GDMs) with randomly projected

gradients. We have presented the CompSGD algorithm by [76] and two of its variants.

Our main contributions in Chapter 6 is the stability and generalization analysis of the

compressed gradient descent methods. Our analysis covers convex and Lipschitz loss

functions that are both smooth and non-smooth.

Our analysis of the generalization error for GDMs with projected gradients divided to two

main parts. The first part analyse the optimization performance of the algorithm and the

convergence is presented with respect to the number of iterations T . Our analysis in

optimization has shown that GDMs with randomly projected gradients achieves optimal

convergence error rate as the vanilla SGD. In particular, for CompGD that uses the full

batch gradient descent, we can achieve a faster optimization convergence in the smooth
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case by choosing a constant step size. Otherwise, our theory suggests that that all GDMs

with projected gradients achieves the same optimization convergence in both smooth and

non-smooth case and we should choose a step size that decays with respect to square-root

of the current iteration for best convergence. The second part of our analysis has pro-

vided a rigorous stability analysis of the GDMs, which analyses the difference in accuracy

performance if we alter one sample in the training set. We have proved the first stability

bounds for GDMs with randomly projected gradients. We have showed that despite we

have to randomly project the gradient at each iteration, which intuitively implies that

difference in training samples can be magnified due to random compression, we can prove

the stability bound by bounding the deviation due to random projection. Furthermore,

by using the uniform stability bound and the optimization error bound from the first part,

we have proved the generalization error bounds for the compressed GDMs. Our theory

shows that the generalization error convergence is ‘almost optimal’ (up to log factors)

comparing to the GDMs without compression, hence the dimensionality reduction of the

gradient comes for almost ‘free’ without losing much generalization performance. We also

showed that generalization convergence of GDMs achieves the same rate in both smooth

and non-smooth case, but the smooth case benefits from larger step sizes which leads to

fewer iterations required. In particular, the CompGD algorithm can choose a constant

step size and achieves the same convergence rate as CompSGD with only T ≍
√
n itera-

tions compared to T ≍ n. For the non-smooth case, we required to choose a smaller step

size and approach to the optima more carefully, which has lead to more iterations required

for convergence. Unfortunately, the fast convergence benefit of CompGD no longer exits

in the non-smooth case as it also requires to take smaller steps.

A very interesting and natural research direction in the future is to investigate the prop-

erties of GDMs with randomly compressed gradients with more relaxed assumptions. For

example, the relaxed Hölder-continouity condition instead of Lipschitznes and smooth-

ness, which has been studied in [86] for vanilla SGD. A more challenging relaxation is

the convexity of the loss function. Despite the widely use and success of gradient descent

on non-convex problems, the theoretical analysis for SGD in the non-convex case is fairly
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limited compared to the classic convex setting. Investigating the guarantee of GDMs with

random projection in the non-convex case will be an interesting and challenging research

topic in the future.

9.4 DP compressed gradient descent

In Chapter 7 we have extended the work in Chapter 6 in the differentially private setting.

Using the reduced dimensionality of randomly projected gradients, we can inject noise in

a lower-dimensional space during gradient descent to guarantee privacy. Our main contri-

bution of Chapter 7 is the optimization and generalization error guarantee for compressed

GDMs in the DP setting.

Although SGD is known for dimensionality-independent error guarantee and suitable for

high-dimensional learning. SGD in the DP setting however, introduces a dependence of

the dimensionality of the gradient due to injected noise. As the dimensionality increases,

the magnitude of the noise also increases which can ruin the signal of the gradient. We have

introduced two approaches for randomly compressed gradient descents in the DP setting,

we have shown that the full batch gradient approach has a smaller variance of the added

noise due to a larger batch in each iteration. We have proved the first optimization error

bound for DP compressed gradient descent and showed that dimensionality dependence

can be reduced using compressed gradients. Furthermore, our result implies that the

full-batch version benefits from fewer iterations for optimization convergence, which can

further reduce the variance of the added noise due to fewer iterations. Our dimension

dependence depends on the number of iterations and the Gaussian width of the constraint

set. In the worst case of dimensionality dependence, our result recovers the guarantee in

the non-compressed case where the dimensionality dependence is d. From the privacy

perspective, as the privacy guarantee approaches zero (ϵp → ∞), our result in the DP

setting recovers to the non-DP result in Chapter 6 up to constant factors.

Our analysis for DP compressed GDMs requires the random matrix to come from a

Gaussian distribution, it is unclear whether this condition can be lifted or relaxed to the
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sub-Gaussian case. An intuition implied by our analysis is that the random projection

matrix needs to preserve the inner product value with projected gradients so that deviation

of the projected norm is bounded in the private setting. Another interesting research

direction is to further investigate the affect of randomly projected gradients on other

variants of DP-SGD, which can vary depending on the privacy mechanism design.

9.5 DP learning ensembles

In Chapter 8 we have introduced a learning framework that builds ensembles, we build

weak learners with a tree structure based on a median-split. Our main contributions in this

Chapter is the learning algorithms we introduced in both supervised and semi-supervised

setting, we have proposed techniques to maximize the utility of available privacy budget

which result in more accurate classification results.

We have proposed to build private trees that uses a median-based splits instead of clas-

sical approaches such as information gain and Gini index. We showed that by using the

median split, we can take advantage of unlabelled data to build private trees and only

use the limited number of private labels to make the final label prediction. This approach

reduces the need of a large labelled training set for differentially private learning which

is more cost-effective. We have proposed a random selection of splitting attribute to

increase the diversity of a single tree and saving the privacy budget for more crucial com-

putations. We have used a geometrically-scaling budget allocation scheme to guarantee

median-splits along the tree will be computed accurately and privately. By splitting the

training samples into disjoint subsets, we guaranteed the same level of privacy for all weak

learners simultaneously, and hence the ensemble learner. Experimentally we have found

that a small size of ensemble (10 − 20 trees) will be sufficient to achieve good accuracy

performance, which is fairly computationally cheap to train.

We have carried out extensive experimental analysis to compare with other similar pri-

vate classifiers in both supervised and semi-supervised case. By testing with a wide range

of data sets, we have shown that our approach achieves the best accuracy performance

183



Conclusions, Discussions and Open Problems

in majority of the data sets, and in some cases, very close to the performance of Ran-

dom Forest in the non-private setting. In particular, most of the accuracy improvements

are statistically significant with 95% confidence. In the semi-supervised case, we have

introduced three approaches for building private tree ensembles. Two of the methods

guarantees privacy for the labels only and another can guarantee privacy for both labels

and features. Our results has shown that our methods achieves the best accuracy per-

formance in most cases. In particular, the SSPE-1 algorithm that guarantees stronger

privacy has performed at least as good as its competitors that guarantees weaker privacy

in many data sets.
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Appendix One

Missing Proofs

A.1 Proofs of Compressed Non-parametric algorithms

Lemma A.1 (Lemma 4.3 restated). Let C1, . . . , Cr be a collection of subsets of some

domain set X . Let S be a sequence of n points sampled i.i.d. according to some probability

distribution D over X . Then, for every k ≥ 2,

E
S

 ∑
i:|Ci∩S|<k

P[Ci]

 ≤ 2rk

n
.

Proof. By the linearilty of expectation, we have:

E
S∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]

 =
r∑

i=1

P[Ci] E
S∼Dm

[1|Ci∩S|<k] =
r∑

i=1

P[Ci] P
S∼Dm

[|Ci ∩ S| < k]. (A.1)

Fix some i and suppose that k < P[Ci]n/2, we have

P
S∼Dm

[|Ci ∩ S| < k] ≤ P
S∼Dm

[|Ci ∩ S| < P[Ci]n/2].

Note that E
S
[|Ci ∩ S|] = P[Ci]n. So setting µ = P[Ci]n and δ = 1/2, then applying the
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Chernoff’s bound, we have

P
S∼Dn

[|Ci ∩ S| < k] ≤ P
S∼Dn

[|Ci ∩ S| < µ(1− δ)] ≤ e−
1/4µ
2 = e−

P[Ci]n

8 .

Combining this result with (A.1) and using the fact that maxa ae
−an ≤ 1

ne
, we obtain

P[Ci] P
S∼Dn

[|Ci ∩ S| < k] ≤ max
i

P[Ci] P
S∼Dn

[|Ci ∩ S| < k]

≤ max
i

P[Ci]e
− P[Ci]n

8

≤ max
i

8

ne
=

8

ne
.

Hence we have for k < P[Ci]n/2,

E
S∼Dn

 ∑
i:|Ci∩S|<k

P[Ci]

 =
r∑

i=1

8

ne
=

8r

ne
≤ 2rk

n
for k ≥ 2.

Now for the case of k ≥ P[Ci]n/2, we have

E
S∼Dn

 ∑
i:|Ci∩S|<k

P[Ci]

 =
r∑

i=1

P[Ci] P
S∼Dn

[|Ci ∩ S| < k]

≤ rmax
i

P[Ci] P
S∼Dn

[|Ci ∩ S| < k]

≤ rP[Ci]

≤ 2rk

n
.

This concludes the proof.

Lemma A.2 (Lemma 4.4 restated). Let k ≥ 10 and let Y1, . . . , Yk be independent Bernoulli

random variables with P[Yi = 1] = pi. Denote p = 1
k

∑
i pi and p′ = 1

k

∑k
i=1 Yi. Show that

E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]] ≤

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p>1/2]].

Proof. W.L.O.G. assume that p ≤ 1/2. Then, P
Y∼p

[Y ̸= 1[p>1/2]] = p.
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E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]]− p = E
Y1,...,Yk

[
P

Y∼p
[Y = 0]P[p′ > 1/2] + P

Y∼p
[Y = 1]P[p′ ≤ 1/2]

]
− p

= E
Y1,...,Yk

[(1− p)P[p′ > 1/2] + p(1− P[p′ > 1/2])]− p

= E
Y1,...,Yk

[(1− 2p)P[p′ > 1/2] + p]− p

= P
Y1,...,Yk

[p′ > 1/2](1− 2p).

(A.2)

Now we put an upper bound on P
Y1,...,Yk

[p′ > 1/2]: Let δ = 1
2p

− 1, we have by Chernoff’s

bound:

P
Y1,...,Yk

[p′ > 1/2] = P
Y1,...,Yk

[p′ > (1 + δ)p] ≤ e−kph(1/2p−1), (A.3)

where h(δ) = (1 + δ) log(1 + δ)− δ. By combining (A.2) and (A.3) we get

E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]]− p ≤ (1− 2p)e−kph(1/2p−1) = (1− 2p)e−kp+ k
2
(log(2p)+1) ≤

√
8

k
p.

Hence

E
Y1,...,Yk

P
Y∼p

[Y ̸= 1[p′>1/2]] ≤
√

8

k
p+ p =

(
1 +

√
8

k

)
P

Y∼p
[Y ̸= 1[p>1/2]].

Theorem A.3 (Theorem 4.5 restated). Let ĥ denote the result of applying the kNN rule

to an i.i.d. sample set S ∼ Dn. Assume that η is a L-Lipschitz function and LD(f
∗) = 0.

Then for any fixed k ≥ 2, we have

E
S
[LD(ĥ)] ≤ O

(
(2L

√
d)d

n

)
(A.4)

Proof. The proof follows the same procedure as for the realisable case of the histogram

classifier in theorem 4.16. We first follow the proof of theorem 4.13 and noting that instead
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of number of points in each cell for the histogram (|Ci(x)|), we have a fixed k for kNN

that indicates the search neighbourhood of an unseen sample. Furthermore, the condition

|Ci(X) ∩ S| ≥ k is equivalent to the k neighbours in kNN is within bounded distance of

the cell width parameter 1/b in the histogram classifier. Explicitly, this is

P
Yi,Y

i∈[n]

[ĥ(X) ̸= Y | |Ci(X) ∩ S| ≥ k] = P
Yi,Y

i∈[n]

[ĥ(X) ̸= Y |∀j ∈ [k], ∥X −Xπj(X)∥ ≤
√
d/b] (A.5)

This allows us to derive equation (4.43) by the same procedure, and we obtain

E
S
[LD(ĥ)] ≤

2rk

n
+ 3E[|p− η(X)|], (A.6)

where we have eliminated the term with LD(f
∗) using the assumption that LD(f

∗) = 0

and r here is a hyper-parameter controlling the diameter of the neighbourhood of an

unseen sample. The rest of the proof follows by fixing any k ≥ 2 and use the same

argument as in theorem 4.16 to tune r.

Theorem A.4 (Theorem 4.9 restated). Let ĥΦ be the result of applying the kNN rule on

the training set SΦ. Assume that η(X) is an L-Lipschitz function and let w(D) be the

Gaussian width of the set of normalised pairwise distances of S. Then for any 0 < δΦ < 1,

0 < ϵΦ ≤ 1/2 let m be a positive integer that satisfies:

m ≥ ϵ−2
Φ CK4

[
w(D) +

√
log(1/δΦ)

]2
. (A.7)

Then for any k ≥ 2, we have with probability at least 1− δΦ:

E
S
[LD(ĥΦ)] ≤ O

(
Lmdm/2

n

)
. (A.8)

Proof. By the same reasoning as in theorem 4.5, we can adapt the proof of the projected

histogram classifier in the realisable case and obtain the same result.
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A.2 Proofs of CompSGD

In this section, we present the missing proofs for Section 6.3 and the proofs of our results

in Section 6.4.1 and Section 6.4.2. We first state the preliminary theorems that we will

use during some steps of our analysis.

Lemma A.5 (Non-expansitivity of convex-smooth gradient updates). Let f be a loss

function that is convex and µ-smooth. For gradient updates of the form wt+1 = wt −

ηt∇f(wt, zit), assume that two gradient updates wt+1,w
′
t+1 uses the same samples for

update, i.e. w′
t+1 = w′

t − ηt∇f(w′
t, zit) . Then we have ∥wt+1 −w′

t+1∥ ≤ ∥wt −w′
t∥ for

all ηt ≤ 1/(2µ).

Proof. We have

∥wt+1 −w′
t+1∥2 = ∥wt − ηt∇f(wt, zit)− (w′

t − ηt∇f(w′
t, zit))∥2

= ∥wt −w′
t∥2 − 2ηt⟨wt −w′

t,∇f(wt, zit)−∇f(w′
t, zit)⟩

+ η2t ∥∇f(wt, zit)−∇f(w′
t, zit)∥2

≤ ∥wt −w′
t∥2 − 2ηt

1

µ
∥∇f(wt, zit)−∇f(w′

t, zit)∥

+ η2t ∥∇f(wt, zit)−∇f(w′
t, zit)∥2

= ∥wt −w′
t∥2 + (η2t −

2ηt
µ

)∥∇f(wt, zit)−∇f(w′
t, zit)∥2, (A.9)

where the last inequality is by applying the co-coercivity of convex and smooth function.

Now, by assuming that ηt ≤ 1
2µ

we eliminated the last term, we conclude our result

∥wt+1 −w′
t+1∥ ≤ ∥wt −w′

t∥.

Remark 19. From the proof of Lemma A.5, we note we do not require the gradient to

be stochastic. Hence non-expansitivity holds for batch and mini-batch gradients using the

same argument, as long as the condition for ηt holds.

The following result bounds the norm of the gradient update in CompSGD with a fixed
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point w ∈ C which will be useful for the analysis of optimisation step. We provide the

proof here for completeness.

Theorem A.6 ([76]). In Algorithm 5 CompSGD, for any t ∈ [T ], we have for all w ∈ C

(1− βt)∥wt+1 −w∥2 ≤ ∥wt − ηt∇f(wt, z)−w∥2. (A.10)

Remark 20. Note that from the proof of Theorem A.6, there are no requirements on the

gradient used (∇f) being stochastic. Hence the same result will hold for batch (∇FS) and

mini-batch gradients (∇FB).

Proof of Theorem A.6. At iteration t, fix a RP matrix Φt. Define the normalizing map

u : Rd → Rd as u(w) = w
∥w∥ . Let w ∈ C be any vector. To simplify notation, note that

wt+1 − w ∈ C + C (the Minkowski sum) and denote C ′ = {u(w) | w ∈ C + C}. Since

u(wt+1 −w) ∈ C ′, we have

|∥Φtu(wt+1 −w)∥2 − 1| ≤ sup
w∈C′

|∥Φtw∥2 − 1|. (A.11)

Eq. (A.11) holds for all Φt. Taking expectation with respect to Φt, Gordon’s theorem

implies

EΦt

[
|∥Φtu(wt+1 −w)∥2 − 1|

]
≤ EΦt

[
sup
w∈C′

|∥Φtw∥2 − 1|
]
≤ βt. (A.12)

The above inequality can be rearranged as

(1− βt) ≤ EΦt

[
|∥Φtu(wt+1 −w)∥2|

]
≤ (1 + βt),

⇒(1− βt)∥wt+1 −w∥2 ≤ EΦt

[
∥Φt(wt+1 −w)∥2

]
. (A.13)
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Hence we obtain

(A.13) = EΦt

[∥∥∥∥ ΠΦtC
(Φtwt − ηtΦt∇f(wt, zit)− Π

ΦtC
(Φtw)

∥∥∥∥2
]

≤ EΦt

[
∥(Φtwt − ηtΦt∇f(wt, zit)− (Φtw)∥2

]
= ∥(wt − ηt∇f(wt, zit))−w∥2, (A.14)

where we have used the fact that the projection map ΠΦC is contractive in the second step,

i.e. distance between two points will not be larger after projection onto ΦC; and the final

step follows since Φt is independent from all the remaining variables, wt,w, ηt,zit .
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