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Abstract

Gravitational-wave astronomy has yielded an unprecedented treasure trove of sci-

entific discoveries in recent years, from the first detection of a black-hole merger

and strong-field tests of gravity, to the observation of colliding neutron stars

and corresponding global multi-messenger followup. The future yet holds great

promise. As the observational catalogue continues to grow in the coming years

with improvements in sensitivity and the introduction of new detectors, our avail-

able inferential power in the gravitational landscape of the universe will grow in

tandem. In this Thesis, we leverage this increasingly informative dataset to inves-

tigate the evolution of binary black holes from formation to merger, deriving new

results on the influence of astrophysics and relativity on binary inspirals and, con-

versely, revealing constraints from gravitational-wave observables on the past lives

of observed sources. We place a particular focus on Bayesian methods in analysing

gravitational-wave catalogues and use targeted models, simulation-based infer-

ence, and deep learning to measure the properties of the astrophysical population

of merging binary black holes. Our work highlights the crucial interplay between

compact-binary formation, relativistic dynamics, and statistical inference. The

tools we develop will enable deeper astrophysical insights as gravitational-wave

astronomy enters into the big-data era.
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“Man is not alone on this planet.

He is part of a community,

upon which he depends absolutely.”

Daniel Quinn, Ishmael
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Chapter 1

Introduction

Summary and contributions

In this Chapter I introduce the background of and give context for the later Chapters

that present my results. In Sec. 1.1 I summarize the status of gravitational-wave (GW)

astronomy as an observational field and highlight what may lie ahead in the future. In

Sec. 1.2 I state key theoretical results and evidence for general relativity (GR) as an

accurate theory of gravity (1.2.1), in particular the prediction of gravitational radiation

(1.2.2), and discuss the formation and observation of GW sources (1.2.3). Methods for

studying the relativistic dynamics of binary black holes (BHs) are presented in Sec. 1.3,

using approximations of GR (1.3.1) and multi-timescale techniques (1.3.2) to solve for

the evolution of their spins (1.3.3) and inspirals (1.3.4). Section 1.4 describes the use of

Bayesian methods in GW astronomy to find signals in noisy data (1.4.1), characterize

the properties of GW events (1.4.2), and infer their astrophysical populations (1.4.3).

Finally, Sec. 1.5 summarizes the work that constitutes the remaining Chapters of this

Thesis, as well as highlighting some work that is not included.

This Chapter contains no original material.



2 Chapter 1 Introduction

1.1 Gravitational-wave astronomy

GW astronomy is one of the most exciting burgeoning fields in the modern era

of physics and astronomy, allowing us to observe the previously unseen gravitational

landscape of the universe. The theoretical base was founded following early suggestive

works [1, 2] and, of course, the development of GR in the early 20th century [3, 4, 5, 6].

What followed is a century-long storied history [7, 8, 9, 10] rich in controversy and

uncertainty due to a lack of understanding in the physical nature of GW propagation

[11, 12, 13] and spurious claims of detection [14, 15, 16, 17] that were not indepen-

dently reproducible [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] (see Refs. [29, 30, 31]

for interesting historical perspectives). At the time of their conception even Einstein

himself doubted their existence [7, 9, 12]. This mindset is perhaps best summarized by

the statement of Eddingtion [7], that

“gravitational waves propagate at the speed of thought.”

It was not until the middle part of the century that the physical influence of GWs

began to become more widely accepted [32, 33, 34], then leading to the pioneering

development of GW detection methods [35, 36]. At this time there was optimism in

the field [29]:

“In this century ‘Astronomy’ has become radio astronomy, microwave as-

tronomy, infrared astronomy, ultraviolet, x-ray, and gamma-ray astronomy,

(and optical astronomy!), and cosmic-ray astronomy in its own right...

With any luck we will have a gravitational-radiation astronomy too — the

prospect is dazzling.”

Over 40 years later and a century after the founding of GR this prospect was first
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realized and it has indeed been dazzling. The observational capabilities of the Laser

Interferometer Gravitational-Wave Observatory (LIGO) [37] and the Virgo detector

[38] reached fruition, resulting in an avalanche of ground-breaking discoveries over the

past five to ten years:

• The unprecedented first observation of GWs from a binary BH merger, GW150914

[39, 40, 41, 42], and hence the first direct detection of BHs and strong-field tests

of GR [43].

• The first GW observation of a binary neutron star (NS) merger, GW170817

[44, 45, 46], made jointly with electromagnetic counterparts [47, 48, 49, 50, 51],

beckoning a new era of multi-messenger astronomy [47], nuclear astrophysics

[52, 53], and cosmology [54].

• The first observations of GWs from NS–BH binaries [55] — the last remaining

class expected of merging compact objects.

• The detection of binary mergers whose component masses challenge the current

understanding of compact-binary formation [56, 57, 58, 59].

Such observations constitute growing catalogues of GW events from the LIGO and

Virgo Collaboration (LVC) [60, 61, 62, 63, 64], as well as from independent research

groups [65, 66, 67, 68, 69, 70, 71] — crucially enabled by open data [72, 73, 74, 75].

These large sets of GW signals provide the statistical power to make constraints beyond

single-event detection and characterization, including

• tests of GR in the strong-field regime [76, 77, 78],

• measurements of cosmological parameters [79, 80],
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• searches for gravitational lensing of GWs [81, 82], and

• population studies of merging BHs and NSs [83, 84, 85] — the central topic of

this Thesis.

There still remain treasure troves to be unearthed as the field continues to mature

in the coming years and decades. The mergers so far observed of compact-binary

coalescences produce transient signals. Another (as-yet undetected) source of GW

bursts are from gravitational collapse, such as in core-collapse supernovae [86, 87, 88],

which could yield counterpart signals and a direct observation of a natal BH or NS

[89]. On the other hand, continuous GWs present a distinct signal morphology and are

persistently present in the detector data stream. They can be produced by spinning NSs

in X-ray binaries [90, 91, 92, 93, 94, 95], isolated pulsars [96, 97, 98], supernova remnants

[99, 100], or the galactic center [101] (see also [102]). The cumulative background signal

of individually unresolved sources also promises astrophysical and cosmological insights

[103, 104].

While current detectors are sensitive to GW frequencies 101–103 Hz [37, 38] and

open the window onto NS and stellar-mass BH mergers, the future spaced-based

Laser Interferometer Space Antenna (LISA) mission [105, 106, 107] will be sensi-

tive in the lower frequency range 10−5–100 Hz and may observe supermassive BH

mergers [108, 109, 110, 111, 112, 113], extreme mass-ratio inspirals [114, 115], galac-

tic compact binaries [116, 117, 118, 119, 120], and multi-band stellar-mass inspirals

[121, 122, 123, 124]. Proposed observatories would fill in the deci-Hertz band gap be-

tween LISA and the current ground-based network, providing increased coverage for

the very heaviest sources currently observable [125, 126, 127, 128].

An alternative technique to the laser [129, 130] and time-delay [131] interferometry
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methods employed by these observatories is the use of pulsar timing arrays (PTAs) [132,

133, 134, 135, 136, 137, 138]; correlated deviations in the precise timing measurements

of millisecond pulsars are used to infer the presence of GWs. PTAs are sensitive to

a low-frequency astrophysical background of GWs produced by massive BH mergers

across the universe [139]. The first positive result was recently reported by the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration

[136] and further evidence will likely mount in the near future [140].

Upgrades to the current ground-based GW detector network — including the intro-

duction of the Kamioka Gravitational Wave Detector (KAGRA) [141, 142, 143, 144] —

will increase its sensitive horizon [145]. The reach of GW observatories will be pushed

even further into the high-redshift universe by the so-called third-generation of detec-

tors [146], namely the Einstein Telescope (ET) [147, 148, 149] and Cosmic Explorer

(CE) [150, 151]. Such improvements will lead to orders of magnitudes increase in the

detection rate of GW signals [145, 152].

GW astronomy is, as it stands, hugely fruitful, and the future ahead is promising.

1.2 Gravity and compact binaries

To provide a theoretical grounding in GR and its astrophysical implications I will

summarize some of the salient points that are relevant to the study of GWs and binary

BHs.

1.2.1 General relativity

GR is among the most successful theories in modern physics. Part of Einstein’s

effectiveness, besides his intuitive ability to use thought experiments and build up
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a new geometric description of gravity to overthrow the centuries-long held Newto-

nian theory, was the production of concrete testable predictions of his theory [153].

Early tests of GR explained the anomalous precession of Mercury’s orbit [154] and

predicted the solar deflection of light [154, 155, 156, 157, 158]. Furthermore, it was

demonstrated that Einstein’s equations allowed non-stationary solutions on cosmolog-

ical scales [159, 160, 161, 162, 163, 164, 165, 166], which agreed with the universal

expansion identified by Lemâıtre and Hubble [162, 167]. Time reversal of these solu-

tions imply a past singularity in finite time [168], forming the basis of the well-known

‘Big Bang’ cosmological model [169].

Later tests of the last century include the Shapiro time delay [170, 171] and the

indirect measurement of gravitational radiation in the Hulse-Taylor binary pulsar [172,

173]. More modern tests of GR phenomena include: the measurement of relativistic

parameters by lunar laser ranging [174, 175] and of frame dragging by the Gravity Probe

B satellite [176]; the Event Horizon Telescope (EHT) radio observations of supermassive

BH ‘shadows’ in the core of the galaxy M87 [177, 178, 179, 180, 181, 182] and in the

Milky Way galactic centre [183, 184, 185, 186, 187]; and, of course, the direct detection

of GWs by the LIGO and Virgo collaborations [39, 64].

It is expected for several reasons, however, that GR is not the final theory of gravity

[188]. Most importantly, the universe is found to obey quantized physical laws at the

smallest scales but GR is a classical theory yet to be reconciled with quantum field

theory [5]. GR requires that energy and momentum content are exactly known at any

location in spacetime, whereas the uncertainty principle dictates that these quantities

cannot be simultaneously determined. If they were to be united, the result would be a

complete quantum theory of gravity [189, 190, 191, 192, 193].

Nevertheless, GR has passed all experimental tests so far and Einstein has not yet
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been proven wrong.

But before delving deeper into Einstein’s theory, I first very briefly visit Newton’s.

A massive source of gravity with mass density ρ is described in terms of a scalar field

φ that satisfies the second-order partial differential equation

∇2φ = 4πGρ , (1.1)

whereG is the gravitational constant that fundamentally couples the strength of gravity

to mass. From φ one can compute all measurable quantities of interest, such as forces

and motions via the change in the position of x of a particle over absolute time t:

d2x

d2t
= −∇φ . (1.2)

Newtonian gravity, however, is not consistent with the framework of special relativ-

ity (SR) and its many important results, including the principle of relativity in inertial

reference frames, the constancy of the speed of light, and the equivalency of energy and

matter [194, 195, 196]. The three-dimensional equation of motion above does not fit

into the four-dimensional spacetime of SR. The Newtonian field equation (1.1) implies

that the gravitational influence of massive bodies propagates instantaneously, in clear

violation of relativistic principles.

Einstein realized a generalized relativistic theory was needed to unite gravity with

the axiomatic basis of relativity [156]. The guiding principles in Einstein’s search were:

1. The matter density source should be replaced by the energy-momentum content

of a continuous matter distribution;

2. Following the equivalence principle [155] — the complete physical equivalence of
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inertial and gravitational phenomena — the new gravitational potential should

describe the geometric properties of spacetime;

3. The governing equations should be second-order in space as in the Newtonian

theory, but also in time;

4. The relativistic generalization should reduce to the Newtonian description in the

weak-gravity limit; and

5. The theory must be consistent with all other known natural laws (it is this last

assertion that is contested by modern-day quantum theory).

The result is a geometric theory of four-dimensional spacetime manifolds equipped

with a Lorentzian metric tensor. In the following, I will use Greek indices to denote

any of the four spacetime coordinates {0, 1, 2, 3} of vector and tensor quantities, while

Latin indices will restrict to the spatial sectors {1, 2, 3}. I will use the (−,+,+,+)

metric signature.

Einstein’s endeavours led to the famous field equations of GR [3, 4]:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.3)

where terms are written in component form and c is the speed of light that funda-

mentally limits the propagation of any interaction. The central object of study is a

Lorentzian metric tensor g and it is found by solving the field equations (1.3). The

metric determines lengths and all other geometric quantities on the spacetime. The

infinitesimal line element (or spacetime separation) on the manifold with respect to

the coordinates xµ is given by ds2 = gµνdx
µdxν and is often itself referred to as the

‘metric’.
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The left-hand side of the Einstein field equations (1.3) describes the geometrical

curvature of spacetime with the Ricci tensor Rµν = gαβRαµβν and the Ricci scalar

R = gαβRαβ, where Rαµβν = gαγR
γ
µβν is the Riemann curvature tensor, given by

Rγ
µβν = ∂βΓγνµ − ∂νΓγβµ + ΓγβδΓ

δ
νµ − ΓγνδΓ

δ
βµ . (1.4)

Through the Christoffel symbols

Γαµν =
1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν) , (1.5)

all these quantities may be written entirely in terms of the metric tensor gµν and its first

and second derivatives (there are many GR textbooks where these results can be found

[197, 198, 199, 200, 201, 202, 203, 204, 205, 206], while other textbooks will give a more

mathematical grounding in the required differential geometry [207, 208, 209]). The

right-hand side describes with Tµν the energy and momentum present in the spacetime

that source the gravitational field.

With the metric in hand, one can compute (again in coordinates) the path xµ of

any freely falling particle with the geodesic equation

d2xµ

ds2
= −Γµαβ

dxα

ds

dxβ

ds
, (1.6)

where Γµαβ are the Christoffel symbols and s is a scalar parametrization (often the

proper time) of the motion.

Comparing the results of Newton and Einstein, one can interpret Eqs. (1.3, 1.6) as

the relativistic analogues of the Newtonian equations of motion (1.1, 1.2). The gravita-

tional potential φ is replaced with the metric g and the mass density ρ is replaced with
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the stress–energy T . In Newtonian gravity, Eq. (1.2) implies that particles of mass m

move due to the influence of a gravitational force F = −m∇φ. In Einsteinian gravity,

Eq. (1.6) implies that motions are determined entirely by the geometric properties of

the spacetime manifold according to the metric g. This is the significant conclusion

that gravity reveals itself as curved spacetime [210]:

“The gravitational field influences and even determines the metrical laws of

the spacetime continuum. If the laws of configuration of ideal rigid bodies

are to be expressed geometrically, then in the presence of a gravitational

field the geometry is not Euclidean.”

Altogether, these expressions detail the influence of the metric and mass–energy content

on each other; according to a phrase attributed to Wheeler:

“Spacetime tells matter how to move; matter tells spacetime how to curve.”

An immediate consequence of the Einstein field equations is the non-linear nature

of gravity; gravitational energy can self gravitate [211]. This is the significant feature

of GR that makes finding solutions to the Einstein field equations so difficult. Eq. (1.3)

may be rewritten in the trace-reversed form Rµν = 8πGc−4(Tµν − Tgµν/2). With this

form of the Einstein equations one may note that vacuum solutions Tµν = 0 satisfy

Rµν = 0. Important known vacuum solutions include:

• The Minkowski metric [212],

ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2 , (1.7)

where (t, x, y, z) are the usual time coordinate plus Cartesian coordinates. This

is the flat metric on which SR is constructed and it is the spacetime extension of
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three-dimensional Euclidean space.

• The Schwarzschild metric [213, 214], which in Schwarzschild coordinates (t, r, θ, ϕ)

reads

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2
(
dθ2 + sin2θ dϕ2

)
, (1.8)

describes the static gravitational field in the region outside a spherical mass M

(though can be extended to the interior [215]) with no angular momentum or

electric charge [216, 217, 218]. This applies to the spacetime region surrounding

a non-rotating BH, which has a physical singularity at r = 0 and a coordinate

singularity at the Schwarzschild radius r = 2GM/c2 [215, 219, 220, 221, 222] —

the event horizon; below this radius no energy can escape to the exterior region

of the spacetime, which would require faster-than-light propagation.

• The Kerr metric [223] is the rotating extension of the Schwarzschild BH. Non-zero

angular momentum induces new relativistic effects, including frame-dragging —

in which the spacetime surrounding the central body is rotated along with it —

and the ergoregion — the spacetime region surrounding the singularity inside

which all energy cannot help but co-rotate with it, as to do otherwise would

require a super-luminal rotational velocity. There is a maximum possible rotation

rate above which the horizon ceases to exist, leaving a naked singularity and thus

thought to be an impossibility due to cosmic censorship [224]. The Kerr solution

describes astrophysical BHs because matter in the universe has on the whole

neutral charge but non-zero angular momentum.

• The Reissner–Nordström metric [225, 226, 227, 228] is the electrically charged
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extension of the Schwarzschild solution, while the Kerr–Newman metric [229, 230]

is the charged extension of the Kerr solution.

It was far from clear that the BH singularities found in these solutions early af-

ter the development of GR were real and could be found in nature. However, these

predictions came to be another great success of Einstein’s theory. Oppenheimer and

Snyder showed that a black hole could be born from the death of a star undergo-

ing gravitational collapse [231]. The singularity theorems of Penrose and Hawking

[222, 232, 233, 234, 235] firmly confirmed the existence of physical singularities in so-

lutions of the Einstein equations. Before recent results from GW astronomy cast the

question of BH existence beyond a doubt, necessarily indirect observations (one cannot

directly observe a BH electromagnetically due to its event horizon) had already all but

confirmed the existence of astrophysical BHs [236, 237]. The evidence for supermassive

BHs included observations of extremely energetic phenomena in active galactic nuclei

(AGN) and quasars [238, 239, 240, 241, 242, 243], and the tight orbits of stars around

the galactic centre Sagittarius A* [244, 245, 246]. The evidence for stellar-mass BHs

came primarily from compact X-ray binaries, in which a visible star is bound to an

unseen compact companion inferred to be a BH [247, 248].

1.2.2 Perturbed spacetime

One final great success of Einstein’s GR — and the one most important to this

work (in addition to the prediction of BHs) — is the prediction of GWs [5]. While the

above textbooks on GR typically contain chapters dedicated to GWs, for pedagogical

sources dedicated to the subject see, e.g., Refs. [249, 250, 251, 252, 253].

From the flat Minkowski solution, a natural curiosity is spacetimes containing mat-

ter but with small curvatures, which can be considered as perturbations of the original
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flat metric. One thus declare a form of these solutions

gµν = ηµν + hµν , (1.9)

where h is a metric perturbation satisfying |h| � 1. By linearization it may be shown

that, in the Lorenz gauge, the Ricci tensor reduces to Rµν = −1
2
�h̄µν , where � =

ηµν∂µ∂ν = − 1
c2
∂2
t + ∂2

i is the d’Alembert operator or, suggestively, the wave operator

and the trace-reversed metric perturbation is h̄µν = hµν − 1
2
ηµνη

αβhαβ. One can show

that the solution satisfies

�h̄µν = −16πG

c4
Tµν . (1.10)

That is, the metric perturbation h̄µν obeys a sourced wave equation. For compact

sources, the linearized Einstein equations permit wave-like solutions

h̄µν(x, t) =
16πG

c4

∫
R3

Tµν(x
′, t− |x− x′|/c)
4π|x− x′| d3x′ , (1.11)

where ct = x0 is the temporal coordinate and x = (x1, x2, x3) is the spatial vector.

Furthermore, considering distances far from the source one arrives at the famous mass-

quadrupole formula

h̄ij(x, t) =
2G

c4|x|∂
2
t

∫
source

x′ix′jρ

(
x′, t− |x|

c

)
d3x′ , (1.12)

where ρ is the mass density of the source over space and time.

Put simply, a flat background spacetime produces GWs that radiate to infinity if

an accelerating (non-zero second-order time derivative) asymmetric mass distribution
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(non-zero integral of density over the source) is present.

1.2.3 Gravitational-wave sources

Binary stars are astrophysical systems that naturally satisfy these requirements;

the accelerating asymmetry is provided by the orbit of the binary components. For

a binary of mass M , orbital separation r, and period T at a distance D from Earth,

the mass quadrupole is ∼ Mr2 and ∂2
t ∼ 1/T 2. Its components orbit with velocity

v =
√
GM/r, producing a GW strain that scales with (i) the ratio of the Schwarzchild

radius to the distance and (ii) the square of the orbital velocity [42]:

h = |h̄| ∼ GM/c2

D

(v
c

)2

. (1.13)

For a given mass, the strain is therefore maximized for high orbital velocities. Fortu-

nately, compact-object binaries — such as those containing BHs — can reach v ∼ 0.1c

near the end of their lives and are thus promising gravitational radiators.

As an example, the first GW detection — GW150914 — had a total mass ≈ 66M�

and was at a distance ≈ 410 Mpc, producing a GW strain h ∼ 10−21 [39, 42]. The

strain produces a fractional change δL ∼ hL in distances over a region of length L. The

≈ 4 km arm lengths of the LIGO interferometers [37] therefore required sensitivities

δL ∼ 10−18 m to make this detection; to set this astounding feat in context, a single

proton has size ∼ 10−15 m!

Since gravitational radiation carries energy away from a binary system, it loses

orbital energy and hence its components must inspiral toward each other. The ap-

proximate GW flux for a quasi-circular BH binary with total mass M and mass ratio
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0 < q ≤ 1 causes the orbital radius r to shrink over time t at a rate [254, 255]

dr

dt
= − 64G3q

5c5(1 + q)2

M3

r3
. (1.14)

At small separations, the emission of GWs becomes more and more effective at driving

the inspiral but, conversely, it is much weaker at larger separations. After integrating

and approximating that the two BHs merge at zero separation (in reality their horizons

will meet before this), one finds that in order for an equal-mass binary BH to merge

within the age of the universe — a Hubble time tH — its initial separation r0 must

satisfy

r0 ≤
(

64G3tH
5c5

M3

)1/4

∼ 109

(
M

M�

)3/4

m . (1.15)

Stellar-mass (M ∼ 10M�) and supermassive (M ∼ 108M�) binary mergers driven

entirely by gravitational radiation therefore require initial separations ∼ 10R� and

∼ 0.01 pc, respectively. However, these are both much smaller than the separations

at which such binaries naturally form. GW emission alone cannot merge astrophysical

BHs. As stellar-mass BH mergers have been observed [64] and there is some tentative

evidence for supermassive BH mergers [256, 257, 258, 259, 260, 261, 262, 263, 264, 265,

266, 267, 268], additional astrophysical mechanisms must exist that initially dissipate

orbital energy before GW emission becomes the dominant source of radiation.

Several proposed binary-formation scenarios offer solutions to this problem on the

stellar-mass scale [269, 270, 271]:

• Binary stars born through isolated stellar evolution in galactic fields may undergo

a ‘common-envelope’ phase, during which one component has already collapsed
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to a BH and orbits the companion star within a shared gaseous envelope [272,

273, 274, 275, 276]. The envelope is expelled as it transfers its binding energy to

the binary orbit, thus shrinking its separation by orders of magnitude.

• Stellar mergers in short-period binary systems can be prevented by chemically

homogeneous evolution which keeps the stars compact [277, 278, 279].

• In dense stellar environments [280, 281, 282] — such as globular clusters [283,

284, 285, 286, 287, 288, 289], nuclear star clusters [290, 291, 292, 293, 294], and

young star clusters [295, 296, 297, 298] — multi-body encounters lead to the

dynamical hardening of binaries.

• A particular dynamical effect is the Kozai-Lidov mechanism, in which a tertiary

perturber pumps the eccentricity of a companion binary system [299, 300]. Since

eccentricity enhances the GW flux [254, 255], this accelerates the merger of the

inner binary [291, 301, 302, 303].

• In galactic cores, orbiting compact objects may be captured into an AGN disk

and form binaries in dense migration traps [304, 305, 306, 307]. The viscous

drag of the gaseous disk and dynamical interactions with other disk components

reduces the orbital separation of these embedded binaries before gravitational

radiation takes over [308, 309, 310], leading to a population of merging binary

BHs [311, 312, 313].

For supermassive BH mergers, dynamical friction [314, 315] and viscous drag [316, 317]

may solve the so-called ‘final-parsec problem’ [318, 319, 320, 321].

Astrophysical BHs are either the endpoints of the lives of massive stars or the

remnants of previous compact-binary coalescences. Binary BHs, therefore, represent
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the final product of the co-evolution of two stars, or the assembly of one or two merger

remnants into a new binary system. It is unlikely that just a single one of the above

channels is responsible for producing all merging binary BHs [269, 270, 271]. The

astrophysical processes that assemble such binaries determine their properties, such as

masses, which in turn influence the GW signal emitted during coalescence. From GW

data it may therefore be possible to decode the formation histories of binary BHs.

For example, the two canonical formation pathways are isolated binary evolution

and dynamical evolution in dense stellar clusters (see above). Stellar theory predicts

the existence of a mass range in which supernovae do not result in a BH — the pair

instability mass gap [322, 323, 324, 325, 326, 327]. Therefore, in the former scenario,

BH mergers from the isolated channel should not have masses inside this gap. The two

component stars are born from the same gaseous medium and inherit its angular mo-

mentum. There is theoretical motivation to suggest that efficient angular momentum

transport through the stellar interiors to their envelopes results in slowly rotating BHs

[328, 329]. While some processes can act to tilt the direction of BH spins with respect

to the binary orbit [330], it is expected that isolated binary evolution leads to spin

alignment [331]. On the other hand, in the latter scenario of dynamical environments

the purported mass gap can be populated by BHs that merge multiple times [332, 333].

These repeated mergers also result in BHs with larger spins [334, 335], while the spin

directions are randomized by dynamical encounters. Consequently, these two formation

pathways predict two distinct populations of merging binary BHs: a mass-limited, low-

and aligned-spin population from isolated binary evolution and a larger-mass, larger-

and tilted-spin population from dense clusters. Using GW observations it may be possi-

ble to identify such subpopulations and therefore place constraints on the astrophysics

of compact-binary formation [336, 337, 338].
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This highlights the essential interplay between astrophysics — which predicts how

stars evolve and form compact binaries — and GW physics — which predicts the

ultimate fate of those systems in compact-object mergers, and hence the need for a

detailed understanding of the spin dynamics of binary BHs.

1.3 Multi-timescale binary dynamics

Astrophysical formation is only one half of the story of binary BH mergers, however.

After forming and once the orbital separation has sufficiently shrunk, the effects of GR

become prominent and influence the binary dynamics. The post-formation inspiral

that maps astrophysical properties to GW-observable properties is clean, however, in

the sense that it is only mathematical in nature, free from astrophysical uncertainties.

1.3.1 Post-Newtonian primer

A significant complication is the non-linear nature of GR — no analytic solution

to the two-body problem is known. Approximate techniques are necessary to find

solutions. The most accurate method is numerical relativity (NR), in which the full

Einstein equations are solved with advanced computational methods [339, 340, 341,

342, 343]. However, such simulations typically require at least days of supercomputer

time to complete ∼ 10 orbits before the merger.

On the other hand, post-Newtonian (PN) techniques are part of a long-standing

[154] semi-analytic framework used to derive weak-field approximants of GR. While this

approach is less accurate than NR in the strong-field regime and cannot capture the

full non-linearities inherent to GR, progress can be made in closed form and numerical

implementations are much more efficient.
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In the following I will use geometric units G = c = 1 (unless otherwise stated). In

these units, distance and time have dimensions of mass while angular momenta have

dimensions of mass squared. As such, quantities such as r/M and L/M2 that are

dimensionless will be encountered, where r, L, and M represent a distance, an angular

momentum, and a mass, respectively. I denote vectors, e.g., v ∈ R3, in boldface, their

magnitude with v = |v|, and normalized vectors v̂ = v/|v| with a hat. Considering

quasi-circular binary BHs in vacuum, the heavier primary (lighter secondary) BH has

constant mass m1 (m2). The BH spin angular momenta are Si and the dimensionless

spin magnitudes (Kerr parameters) are given by χi = Si/m
2
i (i ∈ {1, 2}). The total BH

spin is S = S1 +S2. The binary has total mass M = m1 +m2, mass ratio q = m2/m1,

reduced mass µ = m1m2/M , and symmetric mass ratio η = m1m2/M
2. The separation

vector pointing from the primary BH to the secondary is r. The Newtonian orbital

angular momentum is L = µr × dr/dt and its magnitude is L = η
√
M3r. The total

angular momentum is J = L+ S1 + S2.

In the PN approximation, the binary BH dynamics are determined by a set of

equations given to a particular PN order, corresponding to a series expansion in terms

of a small parameter such as v/c, where v =
√
M/r is the Newtonian orbital velocity.

In other words, an approximation to GR is built perturbatively upon a Newtonian

foundation. For large orbital separations r �M this is a suitable approximation since

v � c, but it breaks down at late times in the binary inspiral near merger where

v ∼ 0.1c; a typical limit for the domain of validity is taken to be r & 10M . An

expansion including terms up to order O(v2n) beyond the Newtonian order is referred

to as being of nPN order.

Without delving into the full mathematical details and derivations here (compre-

hensive reviews may be found in, e.g., Refs. [344, 345]), the 2PN equations determining
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the evolution of the binary angular momenta are [346]

dL

dt
=

1

2r3

[
(S + 3S0)×L+ 6

µ

M
(r̂ · S0)r̂ × S0

]
, (1.16)

dS1

dt
=

1

2r3

[
(4 + 3q)L− 2S2 + 6

µ

m1

(r̂ · S0)r̂

]
× S1 , (1.17)

dS2

dt
=

1

2r3

[(
4 +

3

q

)
L− 2S1 + 6

µ

m2

(r̂ · S0)r̂

]
× S2 , (1.18)

where S0 = (1 + q)S1 + (1 + 1/q)S2 [347]. These equations are the basis for the

multi-timescale approach to PN binary BH inspirals that will follow in this Section.

One should note in particular that all three angular momenta influence each other

through spin–orbit and spin–spin couplings; the 2PN order is the lowest in which all

of these effects are captured. This results in the GR effect of angular-momentum

precession [348, 349, 350] — the relative orientations of L, S1, and S2 change over

time, causing a tilting and wobbling of the orbital plane. This precession impacts the

GW signal emitted by inspiralling binary BHs and, therefore, proper characterization

of the properties of GW observations must account for its effect for when modelling

source dynamics.

1.3.2 Timescale hierarchy

Altogether there are three identifiable constituents to the binary dynamics: orbits,

precession, and inspiral. Entrenched within these motions is a timescale hierarchy that

can be leveraged to simplify the PN equations of motion. The timescales of these

constituents can be estimated as follows:
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• Kepler’s third law informs us that the orbital timescale is

torb ∼ r3/2 . (1.19)

• Taking the dominant term ∝ L in Eqs. (1.17, 1.18), the precessional timescale is

tpre ∼
Si

|dSi/dt|
∼ r5/2 . (1.20)

• From Eq. (1.14) one infers that the radiation-reaction timescale over which the

orbit shrinks is

tRR ∼
r

|dr/dt| ∼ r4 . (1.21)

In the PN approximation the early inspiral is studied, where r � M , implying that

the three timescales are disjoint:

torb � tpre � tRR . (1.22)

In words, a binary completes many orbital cycles before completing a precession cycle,

and completes many precession cycles before the orbital separation decreases appre-

ciably. Therefore, the constituent dynamics may be treated with a multi-timescale

approach, in which motion on a short timescale may be viewed in an averaged manner

and secular motion on a long timescale may be viewed as quasi-adiabatic. I now treat

each constituent of the binary dynamics in turn.
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1.3.3 Spin precession

Numerically solving the equations of motion (1.16–1.18) over long timescales — e.g.,

over a binary inspiral — becomes prohibitive as many orbital cycles must be tracked.

To study long inspirals — in particular the evolution of the BH spins over many orbits

— one can instead average over the orbital motion. For a binary with orbital period

T , the orbit-averaged value of some scalar X is given by

〈X〉orb =
1

T

∫ T

0

Xdt . (1.23)

For the sake of clarity I forgo the notation 〈·〉orb and implicitly assume all quantities

that vary on the orbital timescale are averaged.

Performing the orbit-averaging procedure for Eqs. (1.16–1.18) yields the 2PN orbit-

averaged spin-precession equations [346, 351]

dL

dt
= ΩL ×L+

dL

dt
L̂ , (1.24)

dS1

dt
= Ω1 × S1 , (1.25)

dS2

dt
= Ω2 × S2 , (1.26)

where the precession vectors are

ΩL =
1

2r3

{[
4 + 3q − 3 (qS1 + S2) · L̂

L

]
S1

+

[
4 +

3

q
− 3

(
S1 +

S2

q

)
· L̂
L

]
S2

}
, (1.27)

Ω1 =
1

2r3

{
(4 + 3q)L−

[
3 (qS1 + S2) · L̂

]
L̂+ S2

}
, (1.28)
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Ω2 =
1

2r3

{(
4 +

3

q

)
L−

[
3

(
S1 +

S2

q

)
· L̂
]
L̂+ S1

}
. (1.29)

The conservative part of the dynamics is supplemented with a radiative part dL/dt

corresponding to GW emission; see Eq. (1.14) for the leading-order term [this was

neglected in Eq. (1.16) since its PN order is higher than that of the 2PN equations,

but is included here for completeness].

Binaries in which the component BH spins are aligned with the orbital angular

momentum are equilibrium solutions of Eqs. (1.24–1.26) — sources that form in such

configurations remain in them over time. In general, however, the mutual orientations

of the three angular momenta vary over time, resulting in the aforementioned spin

precession.

The 2PN spin-precession equations present a nine-dimensional problem correspond-

ing to the components of the orbital angular momentum L and BH spins S1 and S2.

I begin simplifying the problem by noting that dSi/dt = Ŝi · (Ωi × Si) = 0, implying

the spin magnitudes Si (i ∈ {1, 2}), and thus the Kerr parameters χi, are conserved.

This reduces the dimensionality to seven.

Next, define a non-inertial frame, seen in Fig, 1.1, in which

• the orbital angular momentum lies along the z axis, so that L = (0, 0, L),

• the primary spin vector is taken to lie within the x–z plane, so that S1 =

(S1x, 0, S1z), and

• the y axis completes the right-handed orthonormal frame.

This frame, which follows the motion of L, imposes three restrictions — Lx = Ly =

S1y = 0 — and hence reduces the dimensionality of the 2PN spin precession problem
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Figure 1.1: Non-inertial frame aligned
with the orbital angular momentum L. The
angle between each spin vector Si and L is
denoted by θi (i = 1, 2), while the angle be-
tween the projections of the two spins onto
the orbital plane is denoted by ∆Φ.

L

S2
S1

ΔΦ

𝜃1 𝜃2

to four. The only time-varying quantities are the BH spin directions relative to the

non-inertial frame and the magnitude of the orbital angular momentum or, equiva-

lently, the orbital separation. The mutual orientations of the three angular momenta

can be specified by the polar angles θ1 and θ2 between the BH spins and the orbital

angular momentum (z axis) and the azimuthal angle ∆Φ between the projection of the

secondary spin onto the orbital plane and that of the primary spin (x axis):

θ1 = arccos
(
Ŝ1 · L̂

)
, (1.30)

θ2 = arccos
(
Ŝ2 · L̂

)
, (1.31)

∆Φ = arccos

(
Ŝ1 × L̂
|Ŝ1 × L̂|

· Ŝ2 × L̂
|Ŝ2 × L̂|

)
. (1.32)

Simplifying further still, one can make use of the separation tpre � tRR between the

precessional and inspiral timescales. Quantities which undergo only secular variation

over the longer inspiral may be treated quasi-adiabatically, such that they are constant

over the shorter precessional cycles. In particular, the magnitude L of the orbital
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angular momentum is conserved over tpre, meaning dL/dt = 0 in Eq. (1.24), as is that

of the total angular momentum J = |L+S1 +S2| (they do vary on the longer inspiral

timescale tRR, however). This reduces the number of parameters to two.

One final simplification is made by introducing the effective aligned spin [346]

χeff =
S0

M2
· L̂ =

(
S1

m1

+
S2

m2

)
· L̂
M

, (1.33)

which measures the mass-weighted component of the BH spins along the direction of

the orbital angular momentum. This is the best-measured spin parameter in current

GW detections [61, 62, 63, 64]. One can use Eqs. (1.24–1.29) to show that χeff is

conserved at 2PN.

The original nine-dimensional spin-precession problem has been reduced to solving

for a single parameter that varies on the precession timescale [352, 353]. A convenient

choice for this parameter is S = |S1 +S2| (though recent works suggest an alternative

parametrization [354, 355]). Conversions [352, 353] back to the more geometrically

intuitive angles are given by

cos θ1 =
1

2(1− q)S1

(
J2 − L2 − S2

L
− 2M2qχeff

1 + q

)
, (1.34)

cos θ2 =
−q

2(1− q)S2

(
J2 − L2 − S2

L
− 2M2χeff

1 + q

)
, (1.35)

cos ∆Φ =
1

sin θ1 sin θ2

(
S2 − S2

1 − S2
2

2S1S2

− cos θ1 cos θ2

)
, (1.36)

while the inverses are

S2 = S2
1 + S2

2 + 2S1S2(cos θ1 cos θ2 + sin θ1 sin θ2 cos ∆Φ) , (1.37)

J2 = L2 + 2L(S1 cos θ1 + S2 cos θ2) + S2 , (1.38)
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χeff =
1 + q

M2q
(qS1 cos θ1 + S2 cos θ2) . (1.39)

Using Eqs. (1.24–1.29), one finds that the temporal evolution of the chosen param-

eter S is determined by [352, 353]

dS

dt
= −3(1− q2)

2q

(
M3χ2

eff

L2

)3(
1− M2ηχeff

L

)
LS1S2

S
sin θ1 sin θ2 sin ∆Φ . (1.40)

Using Eqs. (1.34–1.36), Eq. (1.40) can be rewritten in terms of only S and quantities

that do not vary on the precession timescale [356, 357]:

(
dS2

dt

)2

= −A2
(
S6 +BS4 + CS2 +D

)
= A2

(
S2

+ − S2
) (
S2 − S2

−
) (
S2 − S2

3

)
,

(1.41)

where

A2 = − 6(1− q)2

q
√
η

(
M3η2

L2

)3(
1− M2ηχeff

L

)2

L2S2
1S

2
2 , (1.42)

B = − 2J2 +
1 + q2

q
L2 + 2M2χeffL−

1− q
q

(
qS2

1 − S22
)
, (1.43)

C =
2(1− q)

q

[
J2
(
qS2

1 − S2
2

)
− L2

(
S2

1 − qS2
2

)]
+
(
J2 − L2

)2

− 2M2χeffL

[(
J2 − L2

)
+

1− q
1 + q

(
S2

1 − S2
2

)]
+

4M4qχ2
effL

2

(1 + q)2
, (1.44)

D =
1− q
q(1 + q)

[
L2
(
1− q2

) (
S2

1 − S2
2

)2 − (1 + q)
(
qS2

1 − S2
2

) (
J2 − L2

)
+ 2M2qχeffL

(
S2

1 − S2
2

) (
J2 − L2

) ]
, (1.45)

and S2
+ ≥ S2

− ≥ S2
3 are the roots of the third-degree polynomial in S2 from Eq. (1.41).

Since the roots represent local extrema of the motion, for spin precession to be
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physical a bounded interval corresponding to two real roots is required, in which case

all three roots must be real. This physical interval is S2 ∈ [S2
−, S

2
+], while S2

3 is a

spurious root introduced when squaring Eq. (1.40).

In fact, Eq. (1.41) can be solved in closed form [354, 355, 356, 357] (at least or in

terms of well knowns integrals [358]). The solution is an oscillatory function for which

the two halves of the precession cycle are symmetric. Ultimately, with this solution

the entire intrinsic binary BH spin dynamics on the precessional timescale is known

semi-analytically (at 2PN order).

1.3.4 Inspirals

Just as orbits on the timescale torb were averaged over to study spin precession

over tpre, so too can precession cycles be averaged to study the secular binary inspiral

over tRR. Owing to the symmetry of a precession cycle, the double average of a scalar

function X over orbits and, in turn, precession is given by [352, 353]

〈X〉pre =
2

τ

∫ τ

0

〈X〉orb dt =
2

τ

∫ S+

S−

〈X〉orb

|dS/dt|dS , (1.46)

where the precession period is τ = 2
∫ S+

S−
|dS/dt|−1dS.

The effective aligned spin χeff is conserved also at lowest PN order in radiation

reaction [346], implying that the only quantities varying over the quasi-adiabatic in-

spiral are J , L, and S. The orbit-averaged angular momentum flux at the highest

spin-independent PN order has the form dJ/dt = f(L)L̂ [350], where f is a func-

tion of the magnitude of the orbital angular momentum L. Since L is monotonic (in

particular, decreasing as the binary inspirals) it can be used itself to parametrize the

inspiral, and one can show that dJ/dL = Ĵ ·L̂ [352, 353]. As shown above, the solution
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for S over the precession timescale tpre depends on quantities that then vary over the

longer inspiral timescale tRR — in particular on J and L. To evolve binary BHs on

the inspiral timescale as a function of L, or equivalently the orbital separation r, it

remains to solve only for J .

Since S2 = J2 +L2− 2JLĴ · L̂, the precession-averaged evolution is determined by

[352, 353]

〈
dJ

dL

〉
pre

=
J2 + L2 − 〈S2〉pre

2JL
. (1.47)

While this can be integrated analytically by neglecting higher-order PN terms [354,

356, 357], the precession average 〈S2〉pre can again be computed with standard (semi-

analytic) integrals [354, 355]. This means numerical solutions of Eq. (1.47) can be

computed very efficiently from arbitrarily large initial orbital separations, orders of

magnitude faster than orbit-averaged solutions [353, 355]. The price one pays is losing

track of the orbit-averaged precessional phase S, much in the same way one loses

knowledge of the orbital phase in the orbit-averaged precession equations.

An interesting feature of the precession-averaged evolution of J is that it can be

regularized for infinite orbital separations, meaning the binary dynamics can be solved

all the way from or to past time infinity [353]. This limit serves as a useful approxi-

mation of the large separations at which astrophysical formation of binary BHs occurs

[359].

Consider the change of variables

κ =
J2 − L2

2L
, (1.48)

u =
1

2L
, (1.49)
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such that the infinite orbital separation limit r →∞ corresponds to u = 0. Eq. (1.47)

simplifies to

dκ

du
=
〈
S2
〉

pre
. (1.50)

On the other hand, κ = S · L̂+S2/(2L) and dκ/dL = −〈S2〉pre /(2L
2)→ 0 as r →∞,

implying that κ converges to a finite value

κ∞ = lim
r→∞

S · L̂ (1.51)

at large separations and thus the solution is regular at u = 0.

Eq. (1.50) is a convenient ordinary differential equation to numerically solve for

precession-averaged inspirals. By providing initial conditions at u = 0, it can be used

to evolve binary BHs from infinite orbital separations to late times at which the PN

approximation breaks down. Conversely, by setting initial conditions at some finite

orbital separation, a binary can be evolved backwards in time, all the way to infinite

orbital separations. The former scenario is relevant when modelling astrophysical for-

mation and propagating forward to detectable GW predictions, while the latter can be

used to map GW detections backwards to binary formation.

Given the constant binary mass M , mass ratio q, and spins S1 and S2, precession-

averaged inspirals can be initialized with values of the effective aligned spin χeff and

the new angular momentum parameter κ. Conversions between these and the spin

angles are given by Eqs. (1.34, 1.35, 1.38, 1.39, 1.48). In particular, at infinite orbital

separations,

θ1∞ = lim
r→∞

θ1 = arccos
(1 + q)κ∞ −M2qχeff

(1− q2)S1

, (1.52)
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θ2∞ = lim
r→∞

θ2 = arccos
M2qχeff − q(1 + q)κ∞

(1− q2)S2

, (1.53)

κ∞ = S1 cos θ1∞ + S2 cos θ2∞ , (1.54)

χeff =
1 + q

M2q
(qS1 cos θ1∞ + S2 cos θ2∞) . (1.55)

Specifying the angles as initial conditions is often more convenient as formation models

typically make predictions for those quantities (see, e.g., Sec. 1.2.3). From there, the

entire precession-averaged binary BH inspiral is specified.

Since the precessional phase S was averaged over, the orbit-averaged spin dynamics

is no longer deterministic. Reconstructing the spins at finite orbital separations is done

probabilistically by sampling from the probability density function (PDF; see below)

∝ |dS/dt|−1, representing that a binary is more likely to have lower phase velocity

dS/dt [352, 353]. Eqs. (1.34–1.36) can then be combined with the precession-averaged

solution J = J(L) to compute the BH spin orientations.

1.4 Detection and inference

Now one knows how to propagate astrophysical predictions of binary BH formation

to the small orbital separations at which binaries merge and can be detected by GW

observatories (and vice versa). Characterization the source properties of a GW event

given the observed data is still required before astrophysical conclusions can be drawn.

This is the role of Bayesian inference [249, 360, 361, 362, 363].

The goal is to make measurements from noisy observations, where measurement un-

certainty is represented by PDFs. In words, while exact measurements are unavailable,

one can attempt to infer the probability that a range of values are correct. I will denote

the probability of an event, say X, as p(X). If X and Y are mutually exclusive, then
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the total probability must be p(X) + p(Y ) = 1; this normalization condition readily

extends to multiple events, i.e.,
∑

i p(Xi) = 1.

Often, it is of interest to measure a continuous random variable, say x. In this

limit, the probability that the value of x lies within an infinitesimal interval [x, x +

dx] of length dx is p(x)dx. Then, the normalization condition for the PDF becomes∫
p(x)dx = 1. According to the total law of probability, the joint distribution of two

random variables, x and y, may by symmetry be written as

p(x, y) = p(x|y)p(y) = p(y|x)p(x) . (1.56)

The conditional distribution, e.g., p(x|y) (read as the probability density of x given y),

represents the dependence of the random variable x on the conditioning variable y, and

is normalized over the dependent variable, i.e.,
∫
p(x|y)dx = 1 ∀y. Given a value of y,

the uncertainty in x may be altered, but if x does not depend on y, then p(x|y) = p(x).

As an example, consider a fair coin that was flipped and landed heads up, corre-

sponding to a discrete random variable Y . When flipped again, landing on heads or

tails (X) does not depend on the previous result — the flips and their probabilities

are independent, i.e., p(X, Y ) = p(X)p(Y ). On the other hand, imagine rolling a fair

six-sided die such that the probability of it landing on any given face is 1/6. If instead

one is told that it landed on an odd number, the conditional probability for any one of

the odd faces is 1/3, while that for the even faces is 0. Such conditioning can also apply

to continuous random variables. Using Eq. (1.56), one finds the result for conditional

distributions known as Bayes’ theorem [364]:

p(x|y) =
p(y|x)p(x)

p(y)
. (1.57)
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1.4.1 Searching for signals

The current ground-based observatories are L-shaped Michelson interferometers

with two perpendicular arms [365, 366]. Each arm contains a vacuum tube with a

light beam produced from a common laser source, after being passed through a beam

splitter. For the two LIGO observatories, each arm measures 4 km [37] (though the

effective path length is increased 300-fold by reflecting the light within each arm [39]).

The instruments are tuned such that the light beams returning from the two arms are

out of phase and thus interfere destructively when recombined at the beam splitter. In

the absence of distortions to this experimental configuration, no light will ultimately

arrive at a receiving photodiode. On the other hand, passing GWs distort the two light

paths and cause an interference pattern, leading to an electric readout from the detector

from which the presence of a signal can be inferred and its morphology reconstructed.

The GW interferometers collect this time-series data d(t) (the time t is the coor-

dinate time of distant observers from the source). But of course, the detectors are

not perfect instruments and as such the data contain noise; the central problem of

detecting a real GW signal is digging it out of this noise [367, 368].

Let H denote the hypothesis that the data contain a signal h(t), while the null

hypothesis N is that the data contain only noise n(t). Using Bayes’ theorem, the

posterior probability — i.e., having taken data — in favour of the signal hypothesis is

p(H|d) =
p(d|H)p(H)

p(d)
, (1.58)

where p(H) is the prior belief in the signal hypothesis and p(d|H) is the likelihood that

the data was produced in the presence of the signal h. Since the two hypotheses are
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mutually exclusive, the marginal likelihood is

p(d) = p(d|H)p(H) + p(d|N )p(N ) , (1.59)

where p(N ) is the prior belief in the null hypothesis and p(d|N ) is the likelihood that

the data is just noise. The signal hypothesis is favoured over its complement by a factor

determined with the posterior odds, p(H|d)/p(N|d) = [p(d|H)/p(d|N )][p(H)/p(N )],

where p(N|d) = 1− p(H|d) is the posterior for the null hypothesis. Using Eqs. (1.58,

1.59), this posterior can also be rewritten in terms of the likelihood ratio (also known

as the Bayes factor) ΛH/N (d) = p(d|H)/p(d|N ) between H and N :

p(H|d) =
ΛH/N (d)

ΛH/N (d) + p(N )/p(H)
. (1.60)

If p(H|d) > 1/2, then H is preferred over N a posteriori, but to confidently claim

the detection of a signal in the data requires a stronger threshold. Note from Eq. (1.60)

that p(H|d) is an increasing function of the likelihood ratio ΛH/N (d) (as is the posterior

odds). Therefore, the signal that maximizes the odds in favour of H is also that which

maximizes ΛH/N (d), meaning one can equivalently threshold the likelihood ratio.

The central limit theorem implies that the many stochastic noise processes present

in the GW detectors [369, 370, 371] result in an overall noise distribution that is

approximately Gaussian. Assuming also that the noise is stationary (i.e., that the

noise distribution does not change over time) with zero mean 〈n(t)〉 = 0, the likelihood

of producing data containing only noise is given by [367]

p(d|N ) ∝ exp

(
−‖d‖

2

2

)
, (1.61)
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where, since the detector data is a real function of time, one can define an inner product

〈x, y〉 = 2

∫
x̃(f)ỹ∗(f)

Sn(f)
df , (1.62)

x̃(f) =
∫
x(t)e−2πiftdt denotes the Fourier transform of a function x(t) and x̃∗(f) its

complex conjugate, Sn(f) is the one-sided power spectral density of the noise, and

‖ · ‖ =
√
〈·, ·〉 is the norm induced by the inner product. If this noise model is a good

description of the detector, the residuals d − h in the signal hypothesis H — which

should just be noise — will also follow this distribution:

p(d|H) ∝ exp

(
−1

2
‖d− h‖2

)
. (1.63)

By linearity of the inner product, one can now write the likelihood ratio as

log ΛH/N = −1

2
(〈d− h, d− h〉 − 〈d, d〉) = 〈d, h〉 − ‖h‖

2

2
. (1.64)

Only the term on the left of Eq. (1.64) depends on the data and it is monotonic with

the likelihood ratio. One can therefore use 〈d, h〉 — the matched-filter signal-to-noise

ratio (SNR) — together with a selected threshold value as the detection statistic —

the matched filter. The other term, 〈h, h〉, is the optimal SNR, which is the variance of

the matched filter [372]. Though not explicitly included above, it can be seen that the

matched-filter SNR is a function of time. Let t represent a reference time for the signal

h. Shifting in time with ht(t
′) = h(t′− t), the Fourier transform is h̃t(f) = e−2πifth̃(f),

and therefore the time-series matched-filter SNR is

〈d, ht〉 = 2

∫
e2πift d̃(f)h̃∗(f)

Sn(f)
df . (1.65)
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GW signal Noise transient

Trigger True positive False positive (false alarm)

No trigger False negative True negative

Table 1.1: Classification of triggers in GW data according to whether the
data truly contain a signal of astrophysical origin or not.

A trigger corresponds to a peak in this time series. By maximizing over time, one can

search for above-threshold triggers and find the trigger time.

As the morphology of the signal h depends on the source properties, a broad range of

templates covering the parameter space must be compared to the data [373]. Matched

filtering over large banks of (∼ 105–106) precomputed signal templates [374, 375, 376]

can be performed to rapidly identify triggers and their approximate source properties,

while unmodelled searches are agnostic to the particular signal model [377, 378].

The noise model chosen in Eq. (1.63) reveals that H actually represents the hy-

pothesis that the data contains non-Gaussian features. In reality, such features may

not result from astrophysical sources (i.e., false positive detections, or false alarms); see

Table 1.1 for the different trigger possibilities. Significant sources of non-Gaussianities

in the data are glitches — instrumental artefacts that can mimic the chirping waveform

of a compact-binary coalescence. These signals must be identified (by, e.g., employing

environmental and instrumental sensors at vetoes) and removed from the data to pre-

vent contamination of the GW event candidates [379]. The confidence that a candidate

is of astrophysical origin is increased if multiple detectors independently identify a trig-

ger that is coincident in time. These considerations can be folded into the detection

statistic, meaning the presentation here is representative but simplified compared to

full search pipelines [64, 363].
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1.4.2 Bayesian parameter estimation

Upon identifying a trigger and validating it as an astrophysical candidate event,

the next step is to fully characterize the source. The signal h is determined by source

properties θ. For quasi-circular binary BHs, θ has 15 parameters: intrinsic to the source

are its masses, m1 and m2, and spins, S1 and S2 (eight parameters); extrinsic to the

source (i.e., depending on the observer) are its luminosity distance, right ascension,

and declination that determine the location, its orientation according to the orbital

inclination and GW polarization, and the reference time and phase of coalescence (seven

parameters). Eccentric sources introduce two additional parameters (the magnitude

and argument of periapsis), but GW emission rapidly circularizes eccentric binaries

[255] and so they are not considered here.

The intrinsic binary properties determine the waveform morphology in the frame

of the source while the extrinsic properties determine how the signal is projected onto

the observer as measured in the detector frame. As examples, consider the effect of

distance and inclination. GWs from compact-binary inspirals are primarily beamed

perpendicular to the orbital plane, such that an observer whose line of sight is aligned

with this direction will measure a stronger signal than one who views the source edge on

to the orbital plane. Similarly, sources closer to the observer appear ‘louder’. GWs are

also subject to the influence of cosmological redshift. Detectors on Earth will measure

BH masses larger than the BHs do themselves by a factor 1 + z, where z = z(D) is

the redshift of a source with luminosity distance D. This means that GW observers

do not have direct access to the source-frame masses and redshift, and instead must

assume a cosmological model (whose parameters, e.g., the Hubble constant, are in

practice determined by independent observations [380, 381, 382]) to convert from the
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luminosity distance and redshifted masses observed in the detector frame.

Just as approximate solutions to the relativistic binary dynamics can be constructed

(as discussed in Sec. 1.3), so too can models of the GW emission (see, e.g., Refs.

[383, 384, 385]). These waveform models, which are functions of the source properties

θ, can be used to measure those properties by comparing the signal predicted by the

model to the observed data, much as in Sec. 1.4.1.

Consider the joint posterior of the hypothesis H and the source properties θ,

p(θ,H|d) = p(d|θ,H)p(θ|H)p(H)/p(d). H now represents not just the proposition

that the data d contain an astrophysical signal but also folds in all the other implicit

assumptions that go into producing the Bayesian posterior, such as the waveform and

prior model used. The likelihood

p(d|θ,H) ∝ exp

(
−1

2
‖d− h(θ)‖2

)
(1.66)

is in fact the same as Eq. (1.63), except that the dependence of the GW signal h on

the source properties θ is made explicit. One can see that the posterior in Eq. (1.58)

is the marginalization of p(θ,H|d), using

p(d|H) =

∫
p(d|θ,H)p(θ|H)dθ = 〈p(d|θ,H)〉θ∼p(θ|H) , (1.67)

where x ∼ p(x) denotes sampling a random variable x from the distribution p(x)

and 〈f(x)〉x∼p(x) is the expectation value of a function f(x) over this distribution. In

Sec. 1.4.1 a maximum-likelihood approximation via point estimates of this integral

was used to facilitate rapid searches, i.e., Eq. (1.63) is really p(d|H) = p(d|θ = θ0,H)

from Eq. (1.66), where θ0 are the parameters used in the signal template. The crucial

difference between searches and parameter estimation (PE) that the latter requires
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inference of full posterior for θ.

The joint posterior may also be written as p(θ,H|d) = p(H|d)p(θ|d,H); in words,

one first identifies an event candidate with the techniques described in Sec. 1.4.1 —

p(H|d) — before inferring its source properties assuming that the signal is of astro-

physical origin — p(θ|d,H). This posterior is

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
. (1.68)

The marginal likelihood p(d|H) is the evidence for the data containing an astrophysical

signal under the assumptions about the waveform, prior, and any other analysis meth-

ods. p(θ|H) is the chosen prior for the source properties — in GW data analysis this

is usually set to be an ‘uninformative’ prior, being taken as uniform in a suitable set of

parameters (which may not be the parameters enumerated above but transformations

of them). The notion of an uninformative prior is perhaps misleading, however, since

the posterior is always influenced by the choice of prior.

The typical result of a GW PE run is a discrete set of samples — representing the

uncertain measurement of the source properties — drawn from the Bayesian posterior

of Eq. (1.68) [72, 73, 74, 75] using stochastic samplers [386, 387, 388, 389]. These may or

may not also estimate the evidence in Eq. (1.67), a quantity which is not important for

inference — where it acts only to properly normalize the posterior distribution — but

is crucial for Bayesian model comparison — e.g., if one were to use the posterior odds

to infer which of two different waveform models or prior distributions is preferred in

describing some GW data. This sampling problem is difficult with traditional methods

[390, 391, 392] due to the high dimensionality, and each run can take weeks to reach

sufficient convergence. Therefore, recent attempts have sought efficient single-source
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GW inference using hardware acceleration and machine learning [393, 394, 395, 396,

397, 398, 399, 400].

1.4.3 Hierarchical population models

At this point, I have covered how to (i) search for signals and identify triggers in

GW data (Sec. 1.4.1) and (ii) make a Bayesian measurement for the source properties of

event candidates (Sec. 1.4.2). I have also discussed several pathways for the formation

of merging binary BHs detectable with GW observatories (Sec. 1.2.3) and that the

properties of GW progenitors are connected to GW observables (Sec. 1.3). A natural

question to ask, then, is:

“Can one constrain the formation pathways of merging binary BHs with

GW data?”

The statistical answer is provided by a hierarchical Bayesian analysis, in which one aims

to infer not just the properties of a single event based on observed data, but those of an

astrophysical population from which a catalogue of multiple events has been detected

[362, 401, 402, 403]. Since the population of merging binary BHs is determined by

astrophysical formation, measuring the properties of this population through GW data

may reveal identifiers of the underlying astrophysical processes that one does not have

direct knowledge of.

Bayesian hierarchical models

The parameters θ of GW sources — such as binary component masses — are

drawn from an unknown global distribution — such as a power law — determined

by population-level parameters λ — such as the power-law slope — of an astrophys-
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ical model A: p(θ|λ,A) ∝ θ−λ. These models can be informative about any prior

astrophysical knowledge, but often in practice are taken to be compositions of simple

functional forms (power laws, Gaussians, etc.; see, e.g., Refs. [83, 84, 85]). Much of the

work in the later Chapters is focused on introducing astrophysically-motivated priors.

The purpose of population inference is to measure both the single-source parame-

ters θ and the global population-level parameters λ. Given a catalogue of GW data

{d} = {di}ni=1, where n is the number of observations in the catalogue that have source

parameters {θi}ni=1, the posterior measurement required is p({θ}, λ|{d},A,H).

In the following, I will forgo the explicit inclusion of the astrophysical model condi-

tional A to prevent unnecessarily lengthy expressions; its presence is anyway implied

by the population parameters λ. I will do the same for the signal hypothesis H as it

is implicitly assumed that all data under consideration contain an astrophysical GW

signal.

The differential rate of GW events is

dN

dθ
= N̄p(θ|λ) , (1.69)

where N̄ is the expected number of events over the observational duration T under

consideration and N is the actual number; while p(θ|λ) determines the shape of the

population, N̄ determines the overall scale. A useful quantity often quoted in the

literature is the volumetric merger rate — i.e., the number of mergers per unit comoving

volume Vc and per unit time ts in the frame of the source. This can be computed from

the total integrated number as

R =
d2N

dVcdts
=

dt

dts

dz

dVc

d2N

dz dt
=

1 + z

T

(
dVc

dz

)−1
dN

dz
, (1.70)
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where a uniform rate in the source frame is redshifted to the observer and the comoving

volume has been converted to redshift.

Full hierarchical posterior

The arrival of all signals — not just those which are successfully detected — is

modelled as an inhomogeneous Poisson process [402, 404]. The total number of signals,

N , can be split into n data–parameter pairs {di, θi}ni=1 that are actually observed and

n pairs {dj, θj}nj=1 that contained a signal but were interpreted as just noise (false-

negative detections), i.e., N = n + n. The strikeout notation here indicates non-

detection as opposed to successful detection. The joint likelihood of all data and

parameters given the population is

p
(
{d, θ}, {d, θ}, N

∣∣λ, N̄) =
N̄Ne−N̄

N !
p
(
{d}, {d}

∣∣{θ}, {θ}) p({θ}, {θ}∣∣λ) , (1.71)

where the likelihood of the data depends only on the source parameters, as in Sec. 1.4.2.

Assuming each signal is statistically independent and does not overlap with another

data segment, this separates as

p({d, θ}, n, {d, θ}, n|λ, N̄) =
e−N̄

n!

[
n∏
i=1

N̄p(di|θi)p(θi|λ)

][
n∏
j=1

N̄p(di|θi)p(θi|λ)

]
.

(1.72)

While the detected signals can be labelled (e.g., by time of arrival), the non-detected

signals are not distinguishable and are thus penalized by the over-counting factor n!.

To condition only on the detected astrophysical signals, one must marginalize over

the n non-detections, the actual number of which is inherently unknown. The expected

number of signals can also be split as N̄ = n̄+ n̄, where n̄ (n̄) is the expected number
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of (non-) detections. Marginalizing over non-detected signals gives

p
(
{θ}, {d}, n|λ, N̄

)
= e−N̄

[
n∏
i=1

N̄p(di|θi)p(θi|λ)

] ∞∑
n=0

n̄n

n!
(1.73)

= e−N̄p(det|λ)

n∏
i=1

N̄p(di|θi)p(θi|λ) , (1.74)

where
∫
p(d|θ)p(θ|λ)dddθ = n̄/N̄ , e−n̄

∑∞
n=0 n̄

n/n! =
∑∞

n=0 p(n|n̄) = 1 (by definition),

and n̄ = N̄p(det|λ) is given by the fraction of detectable sources in the population

p(det|λ) =

∫
p(det|θ)p(θ|λ)dθ . (1.75)

This term, also referred to as the selection function σ(λ) = p(det|λ), encodes the

observational biases of the detectors. Without its inclusion, one would only be able to

infer the detectable population of sources available to the GW observatories, as opposed

to the intrinsic population resulting from the astrophysical formation of binary BHs.

The probability of detecting a single source θ is found by integrating the likelihood

p(det|θ) =

∫
p(det|d)p(d|θ)dd , (1.76)

where detectability p(det|d) is usually taken as a threshold classification (see Sec. 1.4.1).

Summing up, the goal is to make measurements — i.e., compute the Bayesian

posterior — for {θ}, λ, and N̄ from the data {d}. Using the law of total probability,

one can rewrite Eq. (1.74) as

p({θ}, λ, N̄ |{d}, n) =
p(λ, N̄)

p({d}, n)
p({θ}, {d}, n|λ, N̄) , (1.77)

where p(λ, N̄) is the prior on the shape and scale parameters of the population, which
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are usually taken to be independent of each other, i.e., p(λ, N̄) = p(λ)p(N̄). The

explicit conditional dependence on the number of observations n is often excluded as it

is already implied by the number of events in the catalogue, i.e., by the fact that there

are n lots of data {d} = {di}ni=1. With this in mind, one arrives at the hierarchical

GW population posterior often presented in the literature [362, 402, 403, 85]:

p({θ}, λ, N̄ |{d}) =
p(λ)p(N̄)

p({d}) e−N̄p(det|λ)

n∏
i=1

N̄p(di|θi)p(θi|λ) . (1.78)

In the derivation presented here I have neglected the inclusion of false alarms — the

false-positive detections in which a noise transient tricks us into believing there is an

astrophysical GW signal present in the data (see Table 1.1). The justification for this

is that the effect of noise transients can be mitigated by data cleaning and subtraction,

and by imposing a false-alarm threshold on events that are included in the population

catalogue [85]. I instead derived the Bayesian posterior inferred from the true-positive

observations while marginalizing over the false-negative ones (the fourth case of true

negatives is a trivial marginalization). Ref. [405] shows how to account for the sub-

threshold false-negative events and, on the other hand, Ref. [406] shows how to include

the false-positive events (false alarms).

Population-only posterior

Computing or sampling from the posterior of Eq. (1.78) is, in general, very difficult.

Since each set of parameters θ has 15 dimensions for quasi-circular binary BH mergers,

there are at least 15n parameters in total, plus the scale parameter N̄ and those

corresponding to the population shape λ. Current catalogues contain ∼ 100 GW

events [64, 85, 68], meaning this posterior contains > 103 parameters.
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Rather than tackling the problem of an entire catalogue all at once, if only the

population parameters are of interest then the assumed independence of events can be

used to marginalize over individual source properties:

p(λ, N̄ |{d}) =

∫
p({θ}, λ, N̄ |{d}) d{θ} (1.79)

=
p(λ)p(N̄)

p({d}) e−N̄p(det|λ)N̄n

n∏
i=1

∫
p(di|θi)p(θi|λ) dθi . (1.80)

The strategy will now be to estimate the parameters of each event individually, using

the posterior of Eq. (1.68) to write

p(λ, N̄ |{d}) =
p(λ)p(N̄)

p({d}) e−N̄p(det|λ)N̄n

n∏
i=1

∫
p(di|H)p(θi|di,H)

p(θi|λ)

p(θi|H)
dθi (1.81)

∝ p(λ)p(N̄)e−N̄p(det|λ)N̄n

n∏
i=1

〈
p(θi|λ)

p(θi|H)

〉
θi∼p(θi|di,H)

, (1.82)

where I have reintroduced the notation H to make explicit the different prior depen-

dence on the PE analysis as distinct from the population analysis.

Each integral can now be computed as the expectation value of the population-to-

PE prior ratio over the event’s posterior. This is far more efficient than computing the

expectation value 〈p(di|θi)〉θi∼p(θi|λ) — evaluating the likelihood in Eq. (1.66) requires

computationally costly Fourier transforms and further integrals. Recall that the out-

come of each single-event PE run is a discrete set of samples drawn from the posterior.

Therefore, the posterior samples can be reused to approximate p(di|λ) with tractable

Monte-Carlo averages.

One may be tempted to write
∏n

i=1 p(di|H) = p({d}|A) since the data are assumed

to be independent. However, one must again remember that the total evidence in

the denominator of Eq. (1.81) is conditional on the population whilst the event evi-
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dences in the numerator are not. This distinction is usually unimportant in practice

as these terms are constant with respect to the posterior parameters — indicated by

the proportionality in Eq. (1.82).

Shape-only posterior

As a final simplification, one might be interested in inferring only the shape of the

population and not the rate. To do this one can marginalize over the scale parameter

N̄ ,

p(λ|{d}) =

[
p(λ)

p({d})
n∏
i=1

∫
p(di|θi)p(θi|λ) dθi

]∫
p(N̄)e−N̄p(det|λ)N̄ndN̄ , (1.83)

which requires the choice of a suitable prior (note that here the marginalization is an

integral rather than a summation because N̄ is the expectation value for the number of

mergers, rather than the actual realization). The integral can be computed in closed-

form in the simple case of the reciprocal prior p(N̄) ∝ 1/N̄ [407, 402, 403]:

∫
e−N̄p(det|λ)N̄n−1dN̄ = p(det|λ)−n

∫
e−n̄n̄n−1dn̄ =

Γ(n− 1)

p(det|λ)n
, (1.84)

where Γ is the gamma function. Substituting this result into Eq. (1.83) yields

p(λ|{d}) ∝ p(λ)
n∏
i=1

∫
p(di|θi)p(θi|λ)dθi∫
p(det|θ)p(θ|λ)dθ

= p(λ)
n∏
i=1

p(di|λ)

p(det|λ)
. (1.85)

With the hierarchical posterior in hand, one can go back to the chosen population

prior and view the constraints on the population distribution of binary BH parameters.

A set of posterior samples {λ} ∼ p(λ|{d}) implies a posterior of distributions {p(θ|λ)},

one for each λ. Uncertainty in the population constraint can be visualized with, e.g.,
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credible intervals over {p(θ|λ)}. Maximum-likelihood or posterior-median values for

λ can be used to give likely representations for the underlying population. Another

common distribution used is the posterior mean, also called the posterior population

distribution (PPD), given by

p(θ|{d}) =

∫
p(θ|λ)p(λ|{d})dλ = 〈p(θ|λ)〉λ∼p(λ|{d}) . (1.86)

I will present examples of these distributions — measured using real GW data — in

Chapters 3, 4, and 5.

Parameter transformations

There may be situations in which only a subset of all the binary parameters θ are

modelled at the level of the population. For example, one may be interested in con-

straining the mass function of binary BH mergers but uninterested in their distribution

across the sky. Suppose a population model describes a subset ϕ of θ = (ϕ, ψ), with

the remaining ψ being nuisance parameters. This is tantamount to assuming ϕ and ψ

are independent in the population, where the prior on ψ matches that of the original

PE prior; i.e.,

p(θ|λ)

p(θ|H)
=

p(ϕ|λ)

p(ϕ|ψ,H)
. (1.87)

Any dependency between ϕ and ψ in the PE prior must still be accounted for; if they

are independent then p(θ|λ)/p(θ|H) = p(ϕ|λ)/p(ϕ|H), so one may replace the full set

θ with the modelled parameters ϕ.

Similarly, instead of defining a population model in terms of the source properties

inferred from the PE runs, it might be defined in terms of others parameters that
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are more astrophysically relevant. For example, while the detectors are sensitive to

the redshifted masses, from an astrophysical perspective the source-frame masses are

more relevant. Under such a parameter transformation θ′ = θ′(θ), a PDF transforms

as p(θ′) = p(θ)|dθ/dθ′|, where (abusing notation) the scaling is given by the Jacobian

determinant of the transformation.

Computing selection effects

Just as evaluating the single-event likelihoods p(di|θi) makes averaging 〈p(di|θi)〉θi∼p(θi|λ)

an expensive operation, so too does p(det|θ) for p(det|λ) = 〈p(det|θ)〉θ∼p(θ|λ). Comput-

ing the detection probability p(det|θ) for a single source with parameters θ requires

injecting it into the entire search pipeline to test whether it is detectable. One would

have to undertake this task for many sources drawn from the population p(θ|λ) and

for many populations λ drawn from p(λ); this is completely infeasible for stochastic

sampling of the posterior. Instead, one can write

p(det|λ) =

∫
p(det|θ)p(θ|λ)dθ =

〈
p(det|θ) p(θ|λ)

p(θ|λ0)

〉
θ∼p(θ|λ0)

, (1.88)

where I have multiplied and divided through by a reference population with parameters

λ0. With this approach, pipeline injections can be performed just once ahead of time

to compute p(det|θ) for sources drawn from p(θ|λ0) and then apply the appropriate

weighting factors from Eq. (1.88) to approximate p(det|λ) during inference [408, 409].

There do exist approximations to speed up computation of selection effects. Recent

approaches have utilized machine learning [410, 411, 412, 413, 414]. Another example

that already introduced is the SNR threshold; rather than injecting a source into the

full detection pipeline, one can compute its SNR, ρ = 〈h, h〉, and classify it as detectable
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if it exceeds the threshold ρdet, typically taken equal to 8 for a single detector and 12

for a network [415, 145].

However, the SNR depends on all of the source properties — both intrinsic (say, ϕ)

and extrinsic (say, ψ) — but one might only be interested in modelling the population

of the former. The detection probability can be marginalized to partially alleviate

this dependency in the specific case of non-spinning and aligned-spin binaries in an

idealized network of identical detectors [416]. In this simplified case, the GW strain

can be written h(t) = ωA(t) cos[φ(t) − φ0]. The GW amplitude A(t) and phase φ(t)

are predicted by the chosen waveform model, while 0 ≤ ω ≤ 1 and φ0 depend only

on extrinsic parameters. The maximum SNR ρmax for given intrinsic parameters and

distance is well defined and occurs for face-on sources directly overhead the detector.

The SNR can therefore be scaled down from the maximum, i.e., ρ = ωρmax, such

that the detection probability averaged over an extrinsic population independent of

the intrinsic parameters is

p(det|ϕ, λ) =

∫
p(det, ψ|ϕ, λ)dψ =

∫
p(det|θ)p(ψ|λ)dψ =

∫ 1

ρdet
ρmax

p(ω|λ)dω , (1.89)

where p(ω|λ) is the distribution of ω implied by the choice of p(ψ|λ) = p(ψ|ϕ, λ),

often taken to be isotropic over the sky. The advantage of this approach is that the

averaged detectability p(det|ϕ, λ) requires only a single SNR evaluation, while the one-

dimensional cumulative distribution on the right of Eq. (1.89) can be easily interpolated

[417, 418].

One final subtlety to consider is that detector sensitivities change over time. Though

the assumption of a constant sensitivity is reasonable within a given observing run,

detector upgrades lead to improvements between runs [145] and thus higher detection
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probabilities. Assuming that the rate of arrival of signals does not change over time,

one can write the population detection fraction — accounting explicitly for the time

dependence of detectability — as

p(det|λ) =

∫
p(det|θ, t)p(θ|λ)p(t)dtdθ =

∑
r

Tr
T

∫
p(det|θ, r)p(θ|λ)dθ , (1.90)

where r denotes the disjoint observing runs, Tr their lengths with
∑

r Tr = T , and

p(det|θ, r) signifies that the detectability of the same source θ can change depending

on which observing run it was detected in.

While these last sections covered some of the more technical details of implementing

a GW population analysis, they are important to get right to ensure accurate inference.

1.5 Main findings

With all this in hand, the complete process of modelling the formation of binary

BHs, following the relativistic dynamics of their inspirals toward merger, searching for

their signals with GW detectors, characterizing their source properties with Bayesian

inference, and finally closing the loop by constraining the astrophysical population of

GW sources is available. The remaining Chapters of this thesis are made up of my

first-author publications to date and make significant use of the theoretical results

presented in Sections 1.3 and 1.4 of this Chapter.

In Chapter 2 I present results from Mould and Gerosa (2020) [419], where the influ-

ence of relativistic binary BH dynamics on GW observables are studied. In particular,

even if a binary forms with aligned BH spins, due to a dynamical instability it can still

undergo spin precession. Furthermore, this instability directs sources to a specific end-

point in the parameter space at small orbital separations, which are derived in closed
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form. This prediction provides a smoking-gun signature of a peculiar consequence of

GR on two-body dynamics that can be tested with GW signals. A summary of a series

of works on this topic was produced by Mould (2021) [420].

In the reverse direction, the results of Mould and Gerosa (2022) [421] presented in

Chapter 3 show how GW observables can be propagated from detection to astrophysical

references. The frameworks from Sections 1.3 and 1.4 are connected to constrain the

pre-inspiral binary BH population directly from observations of GW mergers, thus

bridging the two extrema of binary evolution. Additionally, it is shown that BH spins

have a significant influence on population inference through selection effects; indeed,

LVC population studies now account for spin precession [85] where they previously

neglected it [84]. They also provide posterior measurements propagated to infinite

orbital separations [63, 64, 74, 75], as suggested in my work.

The effect of astrophysical formation on GW populations is further investigated in

Chapter 4. There, the work of Mould et al. (2022) [422] focuses on the influence of mass-

transfer processes in the isolated binary BH formation channel. Simple arguments are

used to show that sufficient mass transfer during the co-evolution of two massive stars

leaves an identifiable imprint on the resulting binary BH merger. Targeted population

models that reveal there is no strong evidence for this process — which, if efficient,

should result in a large sub-population of such sources — using current GW catalogues.

Our results also show significant support in the population for BHs born with non-zero

spins.

As laid out in Chapter 5, Mould et al. (2022) [413] develop a novel approach to GW

population analysis using simulation-based inference. Simple parametric population

models are replaced with astrophysics-informed models constructed with deep-learning

emulators of population-synthesis simulations. Rather than inferring posteriors of ar-
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bitrary shape parameters, key astrophysical parameters can now be measured directly

from GW data. Unlike simplified models, simulation-based priors account for correla-

tions between the binary properties (such as masses and spins) — a crucial ingredient

to capture for realistic populations. Our application shows that features in the intrin-

sic distribution of binary BHs, such as surprisingly large masses, can be explained by

hierarchical mergers where (at least) one of the BHs as observed in a GW signal is the

remnant of a previous merger (or multiple previous mergers).

Finally, Chapter 6 wraps up this Thesis with some concluding remarks.

Not included in this Thesis are several publications on which I appear as second au-

thor or lower, some of which I made significant contributions to. Reali et al. (2020) [423]

study the correlations between asymptotic-binary and merger-remnant source proper-

ties. The existence of the precessional instability discussed in Chapter 2 was verified

in the strong-field regime of full NR simulations by Varma et al. (2021) [424] and

the detectability of its endpoint with GW observations was assessed by De Renzis

et al. (2023) [425]. Detection of higher-order spin effects with a metric — developed

by Gerosa et al. (2021) [426] — that consistently includes all spin degrees of freedom

was investigated by De Renzis et al. (2022) [427]. An updated parametrization for

binary BH spin precession was developed by Gerosa et al. (2023) [355]. Killestein

et al. (2023) [95] placed precise observational constraints on the orbital properties of

Sco X-1, a promising candidate of continuous GW emission [94]. My publication list

also includes Refs. [428, 429].

As part of these works I developed or contributed to several public codes [430,

431, 432, 433]. I presented my research at a joint total of over 25 conferences or in-

vited seminars. I (co-) supervised three undergraduate students on summer research

projects that have now either started graduate studies or will embark on further re-
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search projects within GW astronomy before graduating. Beyond research, I took part

in the ‘Astronomy in the City’ outreach activities within the astrophysics group, acted

as a representative of the Birmingham Environment for Academic Research (BEAR),

and organized a local BEAR conference for postgraduate research students.
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Chapter 2

Endpoint of the up–down
spin-precession instability

Abstract

We investigate the stability of equilibrium solutions of the binary BH spin preces-

sion equations. We show that small perturbations evolve under simple-harmonic

motion and confirm the existence of a dynamical instability in up–down sources,

where the spin of the heavier (lighter) BH is initially (anti-) aligned to the or-

bital angular momentum. Numerical evolutions surprisingly reveal that unstable

binaries do not disperse in the available parameter space, but rather converge to a

well-defined endpoint. We derive this endpoint in closed form as a special case of

solutions locked into spin–orbit resonances; specifically, unstable up–down bina-

ries approach merger with two equally misaligned, co-linear, and co-precessing BH

spins. Applying our results to a simple astrophysically-motivated population of

spinning binary BHs, we find that a significant fraction of sources become unstable

prior to entering the sensitive band of current ground-based GW detectors. De-

tection of the up–down endpoint with GWs is therefore a smoking-gun signature

of this unique feature of relativistic two-body dynamics.
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Summary and contributions

This Chapter is a reformatted version our paper Ref. [419]. I completed it in collab-

oration with Davide Gerosa who proposed investigating the endpoint of the instability,

the existence of which he originally derived [434]. The orbit-averaged spin precession

formalism is based on some of his previous work [352, 353] and numerical implemen-

tation [430, 435]. The new derivation of the instability in terms of simple harmonic

oscillators was performed by me. The derivation of the instability endpoint was a joint

work. Davide constructed the proofs for the number of resonances and the fact the

resonances remain resonant. I derived the polynomial expressions for the resonant lo-

cations, the asymptotic limit, and the up–down endpoint, and these calculations were

also checked by Davide. I made the figures and performed the computational runs.

In Sec. 2.1 we give the background context for this Chapter. In Sec. 2.2 we prove

that binary black holes in the up–down spin configuration are unstable. In Sec. 2.3 we

perform new analytic post-Newtonian calculations to derive the locations of resonant

binary BH spin configurations. In particular, we use this formalism to find the formal

endpoint of the up–down spin precession instability, which we give in Sec. 2.4. We also

study the effect of the up–down instability on astrophysical populations of binary BHs.

We conclude in Sec. 2.5 and point to later NR and PE verifications of our predictions.

2.1 Introduction

There are four distinct configurations in which the BH spins are aligned to the

orbital angular momentum (see Fig. 2.1). We label each of these cases “up–up”, “down–

down”, “down–up” and “up–down”, where “up” (“down”) refers to co- (counter-)



2.1 Introduction 55

Up-up

L

S1

m1

S2

m2

Down-down
L

S1

m1

S2

m2

Down-up

L

S1

m1

S2

m2

Up-down
L

S1

m1

S2

m2

Up-up

L

S1

m1

S2

m2

Down-down
L

S1

m1

S2

m2

Down-up

L

S1

m1

S2

m2

Up-down
L

S1

m1

S2

m2

Figure 2.1: The four binary BH configurations with aligned spins. The
BH with higher (lower) mass is indexed by the number 1 (2). We refer to
the orientation of a BH whose spin vector Si is parallel (antiparallel) to the
orbital angular momentum vector L as “up” (“down”). The four distinct
binary configurations are then labelled with the orientation of the primary
(secondary) BH appearing before (after) the hyphen.
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alignment with the orbital angular momentum and the label before (after) the hyphen

refers to the spin alignment of the primary (secondary) BH. It is straightforward to

show that all four of these configurations are equilibrium, non-precessing solutions of

the relativistic spin-precession equations (1.24–1.26) [350] — a BH binary initialized in

exactly one of these configurations remains so over its inspiral. Here, we tackle their

stability: if an arbitrarily small misalignment is present, how do such configurations

behave?

Employing the parametrization of generic spin precession in terms of an effective

potential at 2PN order [352, 353], Gerosa et al. [434] investigated the robustness of

aligned spin binary BH configurations (see also Ref. [436] for a subsequent study). They

found that the up–up, down–down and down–up configurations are stable, remaining

approximately aligned under a small perturbation of the spin directions. This is not the

case for up–down binaries, i.e., those where the heavier BH is aligned with the orbital

angular momentum while the lighter BH is anti-aligned. They report the presence of

a critical orbital separation,

rUD+ =

(√
χ1 +

√
qχ2

)4

(1− q)2
M , (2.1)

that defines the onset of the instability. An up–down binary that is formed at large

orbital separations r > rUD+ will at first inspiral much as the other stable aligned

binaries do, with the spins remaining arbitrarily close to the aligned configuration.

However, upon reaching the instability onset at r = rUD+, the binary becomes unstable

to spin precession, leading to large misalignments of the spins.

Figure 2.2 shows the orbit-averaged PN evolution of the spins for a binary BH

in the up–down configuration. The binary is evolved from an orbital separation of
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Figure 2.2: Numerical evolution of the normalized spins Ŝi of a BH binary
with mass ratio q = 0.5 and dimensionless spins χ1 = χ2 = 1. The blue
(red) curve traces the path of the primary (secondary) BH spin over time.
The integration is performed from a binary separation r = 1000M to 10M ;
the colours of the curves darken with decreasing separation. The binary is
initialized with misalignments of 1◦ from the up–down configuration. The
vertical z axis is initially aligned to the total angular momentum, the x axis
is constructed such that the initial orbital angular momentum lies in the x–z
plane, and the y axis completes the orthogonal frame. The black dots show
the location of the spins for r > rUD+ ≈ 34M , before the onset of instability.
The arrows show the orientation of the spins at the final separation r = 10M .
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r = 1000M > rUD+ to r = 10M . At the initial separation, the spin directions are

perturbed such that there is a misalignment of 1◦ in the spins from the exact up–down

configuration. The response to this perturbation is initially tight polar oscillations

(black dots in Fig. 2.2) of the BH spins around the aligned configuration. After the

onset of instability, precession induces large spin misalignments (coloured tracks).

A key question so far unanswered is the following: after becoming unstable, to what

configuration do up–down binaries evolve? In other words, what is the endpoint of the

up–down instability?

We obtain a surprisingly simple result: unstable up–down binaries tend to the very

particular configuration where the two BH spins are co-aligned with each other and

equally misaligned with the orbital angular momentum. Given explicitly, the endpoint

of the up–down instability is a precessing configuration with

Ŝ1 = Ŝ2 and Ŝ1 · L̂ = Ŝ2 · L̂ =
χ1 − qχ2

χ1 + qχ2

. (2.2)

In this Chapter, we refer to the effective aligned spin previously introduced with

χeff in Eq. (1.33) as ξ, consistent with the notations of Refs. [353, 419, 434].

2.2 Instability threshold

2.2.1 Binary black-hole spins as harmonic oscillators

The stability of solutions is determined by their response to small perturbations.

Ref. [434] indicated that the up–down instability develops on the short precessional

timescale tpre. In this regime, all variables are constant but S, as we saw in Sec. 1.3.3.

Its evolution is determined by Eq. (1.40). Using Eqs. (1.41–1.45) we find the second
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derivative d2S2/dt2 = −A2(3S4 +2BS2 +C)/2. Rearranging in terms of a perturbation

S2 − S2
∗ to some solution S∗ of Eq. (1.40) gives

d2

dt2
(S2 − S2

∗) = −A
2

2

[
3(S2 − S2

∗)
2 + 2(3S2

∗ +B)(S2 − S2
∗) + 3S4

∗ + 2BS2
∗ + C

]
.

(2.3)

For binary configurations with the BH spins aligned with the orbital angular momen-

tum, we may write the magnitude of the total spin as S∗ = |α1S1 + α2S2| where

αi = cos θi∗ = ±1 discriminates between parallel (αi = +1) and antiparallel (αi = −1)

alignment of Si∗ with L; for instance, up–down corresponds to α1 = −α2 = 1. As J

and ξ are constant on tpre, we have

J ≈ J∗ = |L+ α1S1 + α2S2| , (2.4)

ξ ≈ ξ∗ =
1

M2

[
(1 + q)α1S1 +

(
1 +

1

q

)
α2S2

]
, (2.5)

which implies that 3S4
∗ + 2BS2

∗ +C = 0. Therefore, to leading order O(S2−S2
∗) in the

perturbation (i.e., assuming small misalignments between the BH spins and the orbital

angular momentum), the total spin magnitude S of binary BHs with nearly aligned

spins satisfies

d2

dt2
(S2 − S2

∗) + ω2(S2 − S2
∗) = 0 . (2.6)

Equation (2.6) has the form of a simple harmonic oscillator equation, where we identify

the oscillation frequency ω = A
√

3S2
∗ +B.
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2.2.2 Stable or unstable?

The stability of the aligned-spin configurations is determined by the sign of ω2:

• When ω2 > 0, Eq. (2.6) describes simple harmonic oscillations in S2 around S2
∗ .

The configuration is stable; small perturbations will cause precessional motion

about the alignment.

• When ω2 < 0, the oscillation frequency becomes complex, corresponding to an

instability in the precessional motion leading to large misalignments of S1 and

S2 with L.

The points during the evolution of the binary BH at which the precession motion transi-

tions from stable to unstable, or vice-versa, correspond to the solutions of ω2 = 0. Since

L (or equivalently r) is a monotonically decreasing function of time on the radiation-

reaction timescale tRR, such a point is a stable-to-unstable transition if dω2/dL > 0

(dω2/dt < 0) and an unstable-to-stable transition if dω2/dL < 0 (dω2/dt > 0).

The square of the oscillation frequency depends on L according to

ω2(L) =

[
3M9q5(1− q)
2(1 + q)11L7

]2(
L− qα1S1 + α2S2

1 + q

)2

×
[
L2 − 2

qα1S1 − α2S2

1− q L+

(
qα1S1 + α2S2

1− q

)2
]
. (2.7)

It is clear from Eq. (2.7) that ω2 always has four roots, two being the repeated root

L0 =
qα1S1 + α2S2

1 + q
. (2.8)

The corresponding value of the binary separation r0 = M−3η−2L2
0 always satisfies
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r0 ≤M and is thus unphysical. The other two roots are

L± =
qα1S1 − α2S2 ± 2

√−qα1α2S1S2

1− q . (2.9)

For L± to be real, we require that α1α2 = −1, leaving only the up–down and down–up

cases. If α1 = −α2 = −1 (down–up), then L± = −(
√
qS1 ±

√
S2)2/(1 − q) which is

always non-positive and can be discarded as unphysical.

The only combination of α1 and α2 which makes L± both real and non-negative,

thus indicating a physical precession instability, is α1 = −α2 = 1, which corresponds

to the up–down configuration. Therefore, the up–up, down–down and down–up binary

BH configurations are stable, whereas the up–down configuration can become unstable

at separations where ω2 < 0. Any small misalignment of the BH spins with the orbital

angular momentum leads to small oscillations of the spin vectors around the aligned

configuration in the former three cases, but might cause large misalignments in the

latter case.

In terms of only the parameters M , q, χ1 and χ2 of the BH binary, the expressions

for the binary separations corresponding to the roots L± in the case of up–down spin

alignment are

rUD± =

(√
χ1 ±√qχ2

)4

(1− q)2
M , (2.10)

which are precisely those derived in Ref. [434] by other means.

The oscillation frequency of the up–down configuration is given in terms of r by

M2ω2
UD(r) =

9

4

(
1− q
1 + q

)2(
M

r

)5(
1−

√
rUD0

r

)2(
1−

√
rUD+

r

)(
1−

√
rUD−
r

)
,

(2.11)
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where rUD0 = M(χ1 − qχ2)2/(1 + q)2 is the repeated root identified previously. One

has

lim
r/M→∞

M2ω2
UD(r) =

9

4

(
1− q
1 + q

)2(
M

r

)5

> 0 , (2.12)

such that the up–down configuration tends to stability at large orbital separations (past

time infinity). Since rUD+ > rUD−, the point r = rUD+ is a stable-to-unstable transition

and r = rUD− is an unstable-to-stable transition. In other words, dω2
UD/dt|rUD+

< 0

and dω2
UD/dt|rUD− > 0. The up–down configuration is unstable for orbital separations

rUD+ > r > rUD−. An example of the behaviour of ω2 is given in Fig. 2.3. There

and in the following we plot quantities as a function of decreasing orbital separation r,

corresponding to evolutions forward in time.

In the equal-mass limit q → 1, the precessional motion of up–down binaries tends

to stability, since the time derivative of the total spin magnitude S vanishes [437]. In

the test-particle limit q → 0, the behaviour also tends to stability because S → S1

becomes constant.

For an up–down binary to undergo the precessional instability, its parameters q,

χ1, and χ2 must be such that the resulting instability onset satisfies rUD+ > 10M ,

as this threshold represents the breakdown of the PN approximation [438, 439, 440].

Figure 2.4 shows contours in the χ1–χ2 plane for values of q where rUD+ = 10M . For

mass ratios close to unity, binaries with smaller dimensionless spins still result in a

physical (rUD+ > 10M) onset of instability. As the mass ratio becomes more extreme

(q → 0), only binaries with χi ≈ 1 are affected by the instability, though much later in

the inspiral.
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Figure 2.3: Oscillation frequencies for the four aligned configurations as a
function of the binary separation r. The squared frequency ω2 is scaled by
r5 for clarity; see Eq. (2.11). The up–down configuration (red line) shows
qualitatively different behaviour to the other aligned configurations, with its
oscillation frequency ωUD becoming complex (i.e., ω2

UD < 0) between rUD±
(dashed lines). In this example, the mass ratio is q = 0.9, the dimensionless
spins are χ1 = 1.0 and χ2 = 0.1, and the region of instability is given by
rUD+ ≈ 290M and rUD− ≈ 24M .
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Figure 2.4: Contours of constant mass ratio q for values of the dimension-
less spins χi that result in an instability threshold rUD+ = 10M . Above
each curve is the region of parameter space in which an up–down binary will
experience the precessional instability at an orbital separation r > 10M .
Below the curves, the instability takes place later in the inspiral where our
PN approach is not valid.
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2.2.3 Numerical verification of the instability

The analysis of Sec. 2.2.1 is valid up to the onset of the precessional instability at

the value of the binary separation r = rUD+, at which point spin precession invalidates

the approximation of small misalignments between the BH spins and the orbital an-

gular momentum. We therefore verify the existence of the instability with evolutions

of binary BH spins performed via direct numerical integrations of the orbit-averaged

spin precession equations (1.24–1.26). The integrations are performed using the pre-

cession Python package [430, 435].

The binaries are evolved from an initial separation r = 1000M down to a final

separation r = 10M . The integrations are initialized by setting θ1, θ2, and ∆Φ (or

equivalently ξ, J and S) at the initial separation. The initial value of ∆Φ is irrelevant

(for these evolutions it was set to π/2). We introduce an initial perturbation to each

configuration by setting the initial values of θ1 and θ2 to be 5◦ from the aligned con-

figuration. A number of binary BHs with varied mass ratios and dimensionless spins

were evolved in this way to verify the existence of the instability. As an example, the

evolution of four binaries, one in each of the aligned-spin configurations, with q = 0.8,

χ1 = 1 and χ2 = 0.5 is displayed in Fig. 2.5.

In the exactly-aligned configurations, each of θ1, θ2, and S is constant, since such

configurations are equilibrium solutions of Eqs. (1.24–1.26). In the absence of the pre-

cessional instability, a small perturbation to θ1 or θ2 causes small amplitude oscillations

around the equilibrium solutions. For a perturbation in the angles as small as 5◦, a

binary acts essentially as it would in the equilibrium configurations, as seen in the first

three panels of Fig. 2.5; the angles θ1,2 remain approximately fixed at their initial val-

ues. For the configurations in which the two BH spin vectors have the same alignment
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Figure 2.5: Numerical evolutions of the total spin magnitude S and mis-
alignment angles cos θ1,2 of four binary BHs with parameters q = 0.8,
χ1 = 1.0 and χ2 = 0.5, starting from an initial separation r = 1000M
and ending at r = 10M . Each panel shows a binary initially in a config-
uration with aligned spins up to a small perturbation of 5◦ in the angles
θ1,2. The vertical dashed line in the right-most panel (up–down) shows the
location of the instability onset rUD+ ≈ 180. The horizontal dashed lines
mark the formal endpoint of the up–down instability obtained in the r → 0
limit (Sec. 2.4.1).
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as each other with respect to L (up–up and down–down), the total spin magnitude

remains at the initial value S ≈ S1 + S2. In the down–up configuration, the total

spin magnitude remains at the initial value S ≈ |S1 − S2|. However, as is clear in the

rightmost panel of Fig. 2.5, in the up–down configuration the values of S and θ1,2 are

not constant. Though initially S ≈ |S1 − S2| and cos θ1 = − cos θ2 ≈ 1, after reaching

the onset of the instability at r = rUD+ ≈ 180M the precessional motion moves the

binary away from the initial up–down configuration.

In Fig. 2.6 we test the response of the up–down instability to the amplitude of

the initial perturbation. We evolve samples of binaries from r = 1000M to r = 10M

and show their values of S at both the initial and the final separations. Binaries

are initialized by extracting the misalignments from half-Gaussian distributions in

cos θ1,2 with widths 1 − cos δθ centred on the exact up–down configuration, where

δθ = 1◦, 5◦, 10◦, 20◦. The initial value of ∆Φ is irrelevant for the presence of the insta-

bility and is here sampled uniformly within [−π, π]. In this example we fix q = 0.8 and

χ1 = χ2 = 0.9.

Our numerical evolutions show a somewhat surprising result: binaries do not tend to

disperse in parameter space as one would expect from an instability, but present a well-

defined endpoint. This effect is sharper for binaries very close to up–down. Increasing

the initial misalignment δθ dilutes both the initial and the final spin distributions,

although the same trend remains present up to δθ . 20◦. Binaries that undergo the

up–down instability at some large separation are likely to be found in a different, but

very specific region of the parameter space at the end of the inspiral. We now aim to

find this location analytically.
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Figure 2.6: The response of the up–down instability to different initial
perturbations. Each panel shows a set of 1000 orbit-averaged evolutions.
Binaries are initialized at r = 1000M with misalignments extracted from
truncated Gaussians centred on the up–down configuration with widths δθ =
1◦, 5◦, 10◦, 20◦, increasing progressively from the left to the right panel. Blue
(orange) histograms show the corresponding values of the total spin S at
r = 1000M (r = 10M). In this example we fix q = 0.8 and χ1 = χ2 = 0.9.
Vertical dashed lines at S = |S1 ± S2| mark the asymptotic locations of
up–down binaries before and after the instability.
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2.3 Resonant configurations

Spin–orbit resonances [351] are special configurations where the three vectors L, S1,

and S2 are coplanar and jointly precess about J . There are two families of resonant

solutions, defined by ∆Φ = 0 and ∆Φ = π. The previous analysis of Ref. [434]

indicated that the up–down configuration at separations r > rUD+ (r < rUD−) is a

∆Φ = 0 (∆Φ = π) resonance. The endpoint of the up–down instability is thus deeply

connected to the evolution of these special solutions. As a building block to analyse the

up–down configuration, in this section we present new advances toward understanding

spin–orbit resonances in a semi-analytic fashion.

2.3.1 Locating resonances

For fixed values of q, χ1, χ2, J , and L, geometrical constraints restrict the allowed

values of S and ξ to [353]

Smin ≤ S ≤ Smax , (2.13)

ξ−(S) ≤ ξ ≤ ξ+(S) , (2.14)

where

Smin = max (|J − L|, |S1 − S2|) , (2.15)

Smax = min (J + L, S1 + S2) , (2.16)

ξ± =

{
J2 − L2 − S2

4qM2S2L

[
(1 + q)2S2 − (1− q2)(S2

1 − S2
2)
]

± (1− q2)
[
J2 − (L− S)2

]1/2 [
(L+ S)2 − J2

]1/2
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×
[
S2 − (S1 − S2)2

]1/2 [
(S1 + S2)2 − S2

]1/2}
. (2.17)

Together, the functions ξ±(S) form a closed convex loop in the S–ξ plane, which implies

that the inequalities in Eqs. (2.13–2.14) can be rewritten as S− ≤ S ≤ S+, where S±

are the solutions of ξ = ξ±(S). One can see using Eq. (1.40) that the conditions

ξ = ξ±(S) are equivalent to either alignment (sin θi = 0) or co-planarity (sin ∆Φ = 0).

Generic spin precession can be described as a quasi-periodic motion of S between the

two solutions S±. Spin–orbit resonances correspond to the specific case where S− = S+,

i.e., dξ±/dS = 0. In this case, S is constant; the three momenta are not just co-planar,

but stay co-planar on the precession timescale tpre. As we will see later in Sec. 2.3.3,

co-planarity is also preserved on the longer radiation-reaction timescale tRR.

The conditions ξ = ξ±(S) can be squared and cast into the convenient form

Σ(S2) = σ6S
6 + σ4S

4 + σ2S
2 + σ0 = 0 , (2.18)

where the coefficients σi are real multiples of the coefficients in Eqs. (1.42–1.45) and are

given explicitly in Appendix B of Ref. [419]. Eq. 2.18 can equivalently be found using

the condition dS2/dt = 0. The existence of physical solutions can be characterized

using the cubic-polynomial discriminant,

∆ = σ2
4σ

2
2 − 4σ6σ

3
2 − 4σ3

4σ0 − 27σ2
6σ

2
0 + 18σ6σ4σ2σ0 . (2.19)

In particular:

• If ∆ > 0, then Σ(S2) has three distinct real roots. These are the physical solutions

S− and S+ identified in Ref. [353], plus a spurious root that does not satisfy
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Eqs. (2.13–2.14).

• If ∆ = 0, the two solutions S− and S+ coincide and correspond to a spin–orbit

resonance.

• If ∆ < 0, the polynomial Σ(S2) only admits one real root, thus implying that the

geometrical constraints in Eqs. (2.13–2.14) cannot be satisfied for the assumed

set of parameters (q, χ1, χ2, J, ξ, L).

Therefore, physical spin precession takes place whenever ∆ ≥ 0 The limiting case of

the spin–orbit resonances can be located by solving ∆ = 0. The discriminant reported

in Eq. (2.19) may be recast as a fifth-degree polynomial in J2,

∆(J2) = δ10J
10 + δ8J

8 + δ6J
6 + δ4J

4 + δ2J
2 + δ0 , (2.20)

where the coefficients δi are lengthy (but real and algebraic) expressions containing q,

S1, S2, ξ, and L; see Appendix B of Ref. [419]. In particular,

δ10 = −4q3(1− q)2(1 + q)8L2 ≤ 0 . (2.21)

2.3.2 Number of resonances

Any fifth-degree polynomial has at most two bound intervals and one unbound

interval in which it is positive. The two bounded intervals are the only possible locations

in which spin precession can occur. We now prove that only one of these can be physical.

To this end, it is useful to look at the asymptotic limit r →∞. While J diverges in

this limit, recall from Sec. 1.3.4 that κ∞ is constant [353]. The constraints | cos θ1| ≤ 1



72 Chapter 2 Endpoint of the up–down spin-precession instability

and | cos θ2| ≤ 1 can be translated into

κ∞ ≥ max

{
M2qξ − (1− q2)S1

1 + q
,
M2qξ − (1− q2)S2

q(1 + q)

}
, (2.22)

κ∞ ≤ min

{
M2qξ + (1− q2)S1

1 + q
,
M2qξ + (1− q2)S2

q(1 + q)

}
. (2.23)

Therefore, the support of (J2 − L2)/2L (and thus J) is a single bounded interval at

large separations — only one range of J is allowed and it is bounded by two resonances.

Proving by contradiction, let us now assume that the support of J does not remain

a single interval. A bifurcation would be present at some finite separation where the

number of valid ranges goes from one to two. At this bifurcation point, two different

values of dJ/dr must coexist for the same values of q, χ1, χ2, ξ, J . This is only possible

if the two configurations have different values of S. However, at the bifurcation point

one necessarily has Σ(S2) = 0 and thus only one value of S is allowed (i.e., a repeated

root).

Our proof is consistent with the extensive numerical exploration presented in Refs.

[353, 352] — there are always two spin–orbit resonances for any values of q, χ1, χ2, ξ,

and r. The two resonances are characterized by ∆Φ = 0 and ∆Φ = π. In particular,

the ∆Φ = 0 (∆Φ = π) resonance corresponds to the maximum (minimum) value of J ,

i.e.,

J (∆Φ=π) ≤ J ≤ J (∆Φ=0) . (2.24)

An example is shown in Fig. 2.7. The region of J2 where physical spin precession

takes place is characterized by the polynomial discriminant from Eq. (2.20), ∆(J2) > 0.

The spin–orbit resonances correspond to two of the roots of ∆(J2) = 0.
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Figure 2.7: The discriminant ∆ of the third-degree polynomial Σ as a
function of J2 for a binary BH at a separation r = 10M with mass ratio
q = 0.8, dimensionless spins χ1 = χ2 = 1 and effective spin ξ = −0.2. The
discriminant has three real roots (vertical dashed lines). The shaded area
between the two roots in which ∆ ≥ 0 corresponds to the region in which
physical spin precession takes place. This region is bounded on the right
(left) by the ∆Φ = 0 (∆Φ = π) resonance.
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2.3.3 Resonant evolution

Next, we prove that a binary in a resonant configuration remains resonant under

radiation reaction.

Let us label two binaries A and B. The binaries share the same values of the

radiation-reaction constants of motions q, χ1, χ2, and ξ. Suppose binary A is a ∆Φ = 0

resonance at separation r and binary B is a ∆Φ = 0 resonance at r + δr. Again by

contradiction, let us now assume that A and B do not coincide. From Eq. (2.24) one

has JA(r) > JB(r) and JA(r + δr) < JB(r + δr). At some location r < r̃ < r + δr

one must have JA(r̃) = JB(r̃), but dJA/dr|r̃ 6= dJB/dr|r̃. In other terms, the inspiral

trajectory of the two binaries must cross in the J–r plane. This is possible only if

the two binaries have different values of S at r̃, i.e., SA(r̃) 6= SB(r̃). Taking the limit

δr → 0, the location of the crossing point can be made arbitrarily close to the initial

separation r. At this location, JA = JB identifies a resonance, where only one value of

S is allowed. It follows that the two binaries A and B must coincide. An analogous

proof can be carried out for ∆Φ = π.

2.3.4 Asymptotic resonances

Further progress can be made by studying the dynamics of resonant configurations

at infinitesimal separations r → 0 (or equivalently L→ 0). Although unphysical, this

limit provides the asymptotic conditions of our PN evolutions.

As r → 0, one has that J → S and ∆ is increasingly dominated by the term with

the least power of L. In particular, one gets

lim
L→0

∆

δ10

=
5∏
j=1

(S2 − λj) . (2.25)



2.3 Resonant configurations 75

The roots λi of this expression are given by

λ1 = λ2 =
(1− q)(qS2

1 − S2
2)

q
, (2.26)

λ3 =
(1− q)(qS2

1 − S2
2)

q
+

M4qξ2

(1 + q)2
, (2.27)

λ4 = (S1 − S2)2 , (2.28)

λ5 = (S1 + S2)2 . (2.29)

Let us denote the effective spin of the up–up and up–down configuration with respec-

tively

ξUU =
1

M2

[
(1 + q)S1 +

(
1 +

1

q

)
S2

]
, (2.30)

ξUD =
1

M2

[
(1 + q)S1 −

(
1 +

1

q

)
S2

]
. (2.31)

The constraint |ξ| ≤ ξUU implies the following series of inequalities:

λ1 = λ2 ≤ min(λ3, λ4) ≤ max(λ3, λ4) ≤ λ5 , (2.32)

with

max(λ3, λ4) =


λ4 if |ξ| ≤ |ξUD| ,

λ3 if |ξ| > |ξUD| .
(2.33)

Since ∆ ≤ 0 as J → ∞ [cf. Eq. (2.21)], the two bounded intervals of J2 in which

∆ ≥ 0 are [λ1,min(λ3, λ4)] and [max(λ3, λ4), λ5]. Furthermore, in this limit Eq. (2.13)

reduces to λ4 ≤ S2 ≤ λ5, which implies that the single physical interval in which spin
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precession takes place is given by S2 ∈ [max(λ3, λ4), λ5].

The boundaries S = max{
√
λ3,
√
λ4} and S =

√
λ5 of this region identify the

asymptotic locations of the ∆Φ = π and ∆Φ = 0 resonances, respectively. Thus, the

value S(∆Φ=0) of S in the ∆Φ = 0 spin–orbit resonance asymptotes to

lim
r→0

S(∆Φ=0) = S1 + S2 , (2.34)

and the value S(∆Φ=π) of S in the ∆Φ = π resonance asymptotes to

lim
r→0

S(∆Φ=π) =


|S1 − S2| if |ξ| ≤ |ξUD| ,√

(1− q)(qS2
1 − S2

2)

q
+

M4qξ2

(1 + q)2
if |ξ| > |ξUD| .

(2.35)

The corresponding values of the misalignment angles θ1,2 are found by imposing the

co-planarity condition sin(∆Φ) = 0 that characterizes the resonances. Using Eq. 1.36,

this yields

sin θ1 sin θ2 + cos θ1 cos θ2 =
S2 − S2

1 − S2

2S1S2

, (2.36)

which can be solved together with Eq. (1.39) to find cos θ1 and cos θ2. For the ∆Φ = 0

resonance one gets

lim
r→0

cos θ
(∆Φ=0)
1 = lim

r→0
cos θ

(∆Φ=0)
2 =

ξ

ξUU

. (2.37)

In words, the two spins tend to be equally misaligned with L but co-aligned with each

other. Hints of this trend had been reported in Refs. [351, 441, 442]. For ∆Φ = π, the
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angles asymptote to

lim
r→0

cos θ
(∆Φ=π)
1 =



ξ

ξUD

if |ξ| ≤ |ξUD| ,

ξ2 + ξUUξUD

2(1 + q)S1ξ
M2 if |ξ| > |ξUD| ,

(2.38)

(2.39)

lim
r→0

cos θ
(∆Φ=π)
2 =



− ξ

ξUD

if |ξ| ≤ |ξUD| ,

q(ξ2 − ξUUξUD)

2(1 + q)S2ξ
M2 if |ξ| > |ξUD| .

(2.40)

Figure 2.8 shows the evolution of four resonant configurations for ∆Φ = 0, π, and

the two cases |ξ| ≤ |ξUD| and |ξ| > |ξUD|. At each separation we locate the roots

of Σ(S2) = 0 numerically using the algorithm implemented in the precession code

[430, 435]. As resonant binaries remain resonant during the inspiral (Sec. 2.3.3), those

curves also correspond to individual evolutions. As r → 0, binaries asymptote to the

limits predicted above.

2.4 Up–down endpoint

2.4.1 Instability limit

The analysis of Sec. 2.3 allows us to find the asymptotic endpoint of the up–down

configuration. As first shown in Ref. [434], the up–down configuration is a ∆Φ =

0 resonance for r > rUD+. This can be immediately seen using the expressions in
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Figure 2.8: Evolutions of resonant configurations to small separations.
Top, middle, and bottom panels show S/M2, cos θ1, and cos θ2, respectively.
Blue (orange) curves correspond to resonances with ∆Φ = 0 (∆Φ = π),
while binaries in the left (right) panel satisfy |ξ| ≤ |ξUD| (|ξ| > |ξUD|). We
fix q = 0.9, χ1 = 0.8, χ2 = 0.4, ξ = 0.1 (left), 0.4 (right). For this set of
parameters one has ξUD ≈ 0.23 and ξUU ≈ 0.61. Dashed grey lines indicate
the r → 0 limits predicted in Sec. 2.3.4. The region r . 10M should be
considered unphysical but is included to test our analytical calculations.
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Sec. 2.3.2. As r →∞, the up–down configuration corresponds to κ∞ = S1 − S2 which

maximizes the allowed range of κ∞ given in Eqs. (2.22–2.23), and hence that of J . The

largest value of J for a given ξ corresponds to the ∆Φ = 0 resonance [cf. Eq. (2.24)].

A binary which is arbitrarily close to up–down before the instability onset, therefore,

will be arbitrarily close to a ∆Φ = 0 spin–orbit resonance. As shown in Sec. 2.3.3,

resonant binaries remain resonant during the entire inspiral. The formal r → 0 limit

of the up–down instability is that of a ∆Φ = 0 resonance with the correct value of the

effective spin. This can be obtained directly from Eqs. (2.34) and Eq. (2.37) by setting

ξ = ξUD.

The key result of this work is that the endpoint of the up–down instability consists

of a binary configuration with

cos θ1 = cos θ2 =
χ1 − qχ2

χ1 + qχ2

and ∆Φ = 0 , (2.41)

which is equivalent to Eq. (2.2). Up–down binaries start their inspiral with S = |S1−S2|

and asymptote to S = S1 + S2 as given by Eq. (2.34), thus spanning the entire range

of available values of S [cf. Eq. (2.13)].

An example is reported in Fig. 2.5. Despite being obtained for r → 0, the spin

configuration in Eq. (2.41) describes the inspiral endpoint well. Similarly, Fig. 2.6

shows that binaries initially close to the up–down configuration all evolve to this precise

location in parameter space.

Figure 2.9 illustrates the formal r → 0 distribution for two simple BH populations.

In particular, we distribute mass ratios q either uniformly or according to the astro-

physical population inferred from the first GW events, p(q) ∝ q6.7 (cf. Model B in

Ref. [83], and see also Ref. [443]). In both cases, we take q ∈ [0.1, 1] and assume
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Figure 2.9: Analytic up–down
endpoint distribution in the r →
0 limit. Top and bottom pan-
els show the endpoint distribu-
tions of S and cos θ1 = cos θ2.
Blue histograms are obtained
distributing q uniformly; orange
histograms assume p(q) ∝ q6.7

as observed by LIGO/Virgo [83].
In both cases, we distribute χ1

and χ2 uniformly and assume
q, χ1, χ2 ∈ [0.1, 1].
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spin magnitudes χi are distributed uniformly in [0.1, 1]. The LVC-motivated popula-

tion strongly favours equal mass events. For q ≈ 1 the instability endpoint is given

by S/M2 ≈ (χ1 + χ2)/4 and cos θ1,2 ≈ (χ1 − χ2)/(χ1 + χ2), which implies that the

corresponding distributions are peaked at S/M2 ≈ (0.1+1)/4 = 0.275 and cos θ1,2 ≈ 0.

If q differs from unity, the endpoint values of both S and cos θi are, on average, larger.

For the case where mass ratios are drawn uniformly, unequal-mass binaries populate

the region of Fig. 2.9 with S/M2 & 0.5 and cos θ1,2 & 0.7.

2.4.2 Stability-to-instability transition

During the inspiral, unstable up–down binaries evolve from S = |S1 − S2| to S =

S1 + S2. The transition between the two values can only start after binaries enter the

instability regime (r < rUD+) and is halted by the merger (or, to be more conservative,

by the PN breakdown). To quantify the transition properties, it is useful to define the

parameter

δS =
S − |S1 − S2|

(S1 + S2)− |S1 − S2|
, (2.42)

such that δS = 0 corresponds to stability and δS = 1 corresponds to the formal r → 0

endpoint.

Figure 2.10 shows the distribution of δS and rUD+ resulting from numerical integra-

tions of up–down binaries. We distribute q, χ1, and χ2 uniformly in [0.1, 1] and evolve

from ri = 1000M to rf = 10M . Binaries with rUD+ < ri are initialized as up–down and

might become unstable during the integration. Binaries with rUD+ > ri, on the other

hand, are already unstable at the start of our integrations. We therefore initialized

them as ∆Φ = 0 resonances at r = ri. In both cases, we introduce a misalignment
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Figure 2.10: Distri-
bution of maxr δS and
δr as function of the
instability onset rUD+

for a statistical sample
of 1000 up–down bi-
naries. We distribute
q, χ1, and χ2 uni-
formly in [0.1, 1], evolve
from ri = 1000M to
rf = 10M , and initialize
the spin misalignments
from Gaussian distri-
butions with widths
δθ = 10◦ centred on the
up–down configuration.
The blue (orange) sub-
population indicates
sources that do (not)
reach δS = 0.5 by the
end of the inspiral. By
definition, δr can only
be computed for the
sub-population with
maxr δS > 0.5, with
a minimum value of
δr ≤ rUD+ − rf (dashed
line).
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perturbation δθ = 10◦ following the same procedure of Sec 2.2.3.

We consider the largest value of δS reached between ri = 1000M and rf = 10M ; in

practice, this is very similar to its value at the end of the evolution, i.e., maxr δS(r) ≈

δS(rf). If rUD+ . 10M , up–down binaries are still stable at the end of our evolutions

and thus maxr δS ' 0. If the instability onset occurs earlier, binaries start transi-

tioning toward larger values of δS. We find that the vast majority of sources with

rUD+ & 50M are able to reach the predicted endpoint (maxr δS & 0.95) before the

PN breakdown. As long as the instability has enough time to develop, the formal

r → 0 limit appears to provide a faithful description of dynamics. In the intermediate

cases with 10M . rUD+ . 50M , the instability takes places shortly before the PN

breakdown and, consequently, δS does not have enough time to reach unity.

The transition between the two regimes appears to be rather sharp, taking place

over a short interval in r. To better quantify this observation, we define the instability

growth “time” as the difference between the instability onset rUD+ and the separation

where δS = 0.5, i.e., δr = rUD+ − rδS=0.5. The bottom panels of Fig. 2.10 illustrate

the behaviour of δr for the same population of BHs. The quantity δr can only be

computed for binaries that reach δS = 0.5 before the end of the evolution, thus setting

the constrain δr ≤ rUD+ − rf . The fraction of unstable binaries (those that reach

δS ≥ 0.5) in this population is 35%. We find that the typical transition intervals are

δr . 100M , with a peak at δr ' 25M , so the instability develops over a short period

and unstable binaries quickly reach values of S close to the endpoint.

2.4.3 A simple astrophysical population

We now study the effect of the instability on an astrophysically-motivated popula-

tion of binary BHs. We model a formation channel that leads to the alignment of the
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BH spins with the orbital angular momentum, but where co-alignment and counter-

alignment are equally probable. This might be the case, for instance, for stellar-mass

BHs brought together by viscous interactions in AGN disks [305, 306, 308, 309, 311,

444, 445, 446]. Unlike BH binaries formed from binary stars (where the initial cloud

imparts its angular momentum to both objects favouring co-alignment), or systems

formed in highly interacting environments like globular clusters (where frequent interac-

tions tend to randomize the spin directions), an accretion disk defines an axisymmetric

environment without a preference for co- or counter-alignment. Ref. [446] specifically

modelled this scenario by assuming that 1/4 of the population is found in each of the

up–up, down–down, down–up, and up–down configurations; naively, one could expect

that ∼ 25% of the stellar-mass BH binaries formed in AGN disks are subject to the

up–down instability.

As before, we distribute mass ratios using the astrophysical population inferred

from the O1+O2 GW events [83], p(q) ∝ q6.7 with q ∈ [0.1, 1], and sample the di-

mensionless spins χi uniformly in [0.1, 1]. We simulate 104 binaries in each of the

four aligned configurations, and integrate the precession equations numerically from

an initial orbital separation ri = 1000M to a final separation rf = 10M . Binaries

are initialized by sampling cos θ1,2 from truncated Gaussians with δθ = 20◦. If the

corresponding parameters q, χ1 and χ2 are such that rUD+ > ri (i.e., if the source went

unstable before the beginning of our integrations), the initial configuration is set to be

that of a ∆Φ = 0 resonance, again with a δθ = 20◦ perturbation.

The resulting distribution of ξ is shown in Fig. 2.11. The effective spin ξ is a

constant of motion; these curves are independent of the orbital separation. Up–up

(down–down) binaries tend to pile up at positive (negative) large values of the effective

spins, while both up–down and down-up sources contribute to a peak at ξ ≈ 0.
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Figure 2.11: Distribution of effective spin ξ for the four populations of
aligned-spin binaries. Mass ratios q are sampled according to the power-
law distribution p(q) ∝ q6.7 [83] and dimensionless spins χi are sampled
uniformly. We set q, χ1, χ2 ∈ [0.1, 1] and introduce an initial misalign-
ment δθ = 20◦. The dotted empty histogram indicates the full popula-
tion. Colour shaded histograms differentiate between the four aligned cases.
For the up–down population (red), we further separate the contributions of
two sub-populations: sources that remain stable during the entire PN inspi-
ral (maxr δS < 0.5, dashed grey) and sources that undergo the instability
(maxr δS > 0.5, dashed black).
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Figure 2.12 shows the joint distributions of cos θ1 and cos θ2 at the initial (left) and

final (right) separations for each of the four populations. Up–up, down–down, and

down–up binaries largely retain their initial, aligned orientation. Up–down binaries

segment into two clear sub-populations: those which remain stable (lower-right corner

in Fig. 2.12) and those which become unstable (centre of Fig. 2.12). The dispersion of

the stable up–down binaries increases compared to the initial distribution owing to a

proportion of these binaries that reach the onset of the instability but do not reach the

formal endpoint by the end of the evolution.

The sub-population that becomes unstable presents a clear trend in the misalign-

ment distribution: binaries pile up along the cos θ1 = cos θ2 diagonal as predicted by

Eq. (2.41). As before, we characterize the two populations using δS. At r = 1000M ,

only ≈ 34% binaries are in the unstable sub-population (δS > 0.5); for the vast ma-

jority, these are the cases with rUD+ > ri. By the time binaries reach r = 10M , the

unstable fraction goes up to ≈ 91% (cf. ≈ 35% for the population with mass ratios

instead distributed uniformly in [0.1, 1] presented in Fig. 2.10). Compared to the dis-

tribution of analytic endpoints of Fig. 2.9, the numerical population is skewed toward

the initial configuration cos θ1 = − cos θ2 = 1, again due to a proportion of binaries

that do not fully reach δS ≈ 1.

Figure 2.13 shows the distribution of rUD+, q, χ1, and χ2 for the two up–down sub-

populations. Only binaries with either q . 0.6 or χ1,2 . 0.2 are still stable at the end

of the evolution. These values correspond to rUD+ . 50M . All other sources belong

to the unstable subpopulation and approach merger near their predicted endpoints

(maxr δS & 0.5). An orbital separation of 50M corresponds to a GW frequency f =√
M/π2r3 ≈ 20 Hz for a typical LIGO source (M = 10M�) and ∼ 10−4 Hz for a

supermassive BH binary (M = 106M�) detectable by LISA.
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Figure 2.12: Joint distribu-
tion of cos θ1 and cos θ2 for bi-
nary BHs with initially aligned
spins. Sources are evolved nu-
merically from a separation r =
1000M (top panel) to r =
10M (bottom panel). Mass ra-
tios q are sampled according
to the power law distribution
p(q) ∝ q6.7 [83]; dimension-
less spins χi are sampled uni-
formly. We set q, χ1, χ2 ∈
[0.1, 1]. The populations, each
containing 104 binaries, of up–
up (blue), down–down (orange)
and down–up (green) binaries re-
main in their initial distributions
whereas the up–down (red) pop-
ulation does not, thus highlight-
ing the precessional instability.
By the end of the evolutions the
up–down binaries split into two
sub-populations: those which re-
main stable (bottom right cor-
ner) and those which do not
(central region). The trend
observed in the unstable sub-
population matches the predic-
tion cos θ1 = cos θ2 of Sec. 2.4.1.
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Figure 2.13: Distribution of, from left to right, mass ratio q and primary
spin magnitudes χ1 (top row), and secondary spin magnitude χ2 and insta-
bility onset rUD+ (bottom row), for a set of up–down binaries. Mass ratios
are sampled according to a power law distribution that strongly favours equal
masses [83], while spins are sampled uniformly. We set q, χ1, χ2 ∈ [0.1, 1].
Red histograms show the full up–down population, while dashed black (grey)
histograms indicate systems that do (not) become unstable. Stability is de-
fined as maxr δS < 0.5, integrating from ri = 1000M to rf = 10M . In
the bottom-right panel, the top axes show the value of the GW frequency
f =

√
M/π2r3 for systems with total mass M = 10M� and M = 106M�.
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A tantalizing possibility would be the development of the precessional instability

while a binary is being observed. For LIGO, we expect that such a situation is possible

for only a small number of sources. To estimate this fraction, we produce a distribution

of the total mass again according to Ref. [83] with the distributions of q, χ1, and χ2

as in Fig. 2.13. The sub-population for which the instability develops in band is then

determined by the conditions fUD+ > fLIGO (lower LIGO frequency cutoff), rUD+ >

10M (validity of the PN approximation, which also provides the upper frequency cut-

off), and maxr δS > 0.5 (appreciable development of the instability). Unsurprisingly,

this fraction depends strongly on the lower frequency cut-off: for fLIGO = 20 Hz (10 Hz),

only 0.7% (2.8%) of the total population develops the precessional instability while in

the LIGO band. LISA might provide better prospects, as some supermassive BH

binaries will remain visible for several precession cycles [447].

The condition q → 0 and χ1,2 → 0 identifies the single-spin limit. In practice, we

expect that the vast majority of up–down sources where two-spin effects are prominent

will become unstable before entering the sensitivity window of our detectors. Proper

modelling of two-spin effects appears to be crucial. The ξ distributions of the two sub-

populations does not present evident systematic trends (Fig. 2.11) and largely reflects

that of the full up–down sample. This suggests that it will be challenging to distinguish

stable and unstable binaries by measuring only one effective spin.

2.5 Conclusions

We reinvestigated the precessional instability in BH binaries first reported in Ref.

[434]. Perturbations to equilibrium solutions of the spin precession equations lead

to small-amplitude oscillations governed by simple harmonic motion. However, for
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up–down sources, we found a critical threshold in the inspiral at which they become

unstable and can evolve with large spin tilts — in precise agreement with Ref. [434].

We verified our analytic calculations with numerical integrations that also showed the

unstable binaries do not disperse in the available parameter space. Phrased in terms

of spin–orbit resonances [351], we derived in closed-form expressions to locate these

extremal bounds of spin precession. The endpoint of the up–down instability is found

as a particular limiting case, in which we showed the two BH spins are aligned with

each other and equally misaligned with the orbital angular momentum.

For orbital separations above the instability threshold, the up–down configuration

is a spin–orbit resonance. But this is no longer true when the separation decreases

due to GW emission. This is precisely the cause of the instability: since resonant

configurations remain resonant, binaries initially having up–down spins must evolve

toward the new resonance location after passing the threshold.

We found that the instability develops quickly, so that the majority of sources which

do become unstable reach the endpoint before merger. The observational consequence

is that up–down binaries whose instabilities trigger before the sensitivity window of

GW detectors will be observed if not right in the predicted endpoint then as precessing

sources, rather than with aligned spins, whereas those with onsets at small separations

will remain with the initial up–down spins. The presence of these two sub-populations

could be a clear indicator of the up–down instability in GW observations.

The analysis presented here is limited to the approximate PN regime. We later

verified that the instability exists in the strong-field regime of NR [424]. We also

showed that its endpoint is distinguishable with realistic detector sensitivities in the

near future [425]. A remaining question is whether or not merging up–down binary

BHs form in nature. We look forward to a possible positive discovery in the future.
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Chapter 3

Binary black holes time travelling
back to the future

Abstract

The assumptions underlying GW population studies are that the targeted source

parameters refer to the same quantities for all events in the catalogue and are

included when modelling selection effects. Both these points have so far been

neglected when estimating the orientations of binary BH spins. In particular, the

detector-frame GW frequency (e.g., 20 Hz) used to define frequency-dependent

quantities introduces an inconsistent reference between events at the population

level. We solve these issues by modelling binary BH populations and selection

effects at past time infinity, corresponding to the well-defined reference frequency

of 0 Hz. We show that, while current GW measurement uncertainties obfuscate

the influence of reference frequency in population inference, ignoring spins when

estimating selection effects leads to an over-prediction of spin alignment in the

underlying astrophysical distribution of merging BHs.
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Summary and contributions

This work is a reformatted version of our paper from Ref. [421] published in col-

laboration with Davide Gerosa and is based on the PN formalism and code that he

developed [352, 353, 355, 430, 435] (see Sec. 1.3). I generated the back-propagated GW

posterior samples and the injections used to compute selection effects. I performed the

population inference runs and made Figs. 3.2, 3.3, and 3.4. Davide created Fig. 3.1.

The paper was written jointly.

In Sec. 3.1 we explain systematic issues present in current GW population analy-

ses. We present the solution to these issues and describe the population models and

statistical methods we use in Sec. 3.2. Our results are given in Sec. 3.3. We wrap up

and point out further directions for future work along the lines presented throughout

this Chapter in Sec. 3.4.

3.1 Introduction

A key underlying assumption when performing a hierarchical Bayesian analysis of

GW sources at the population level is that one is combining measurements of the same

parameters for all events. This is trivially the case for constant quantities such as

masses and spin magnitudes. The spin orientations, however, are subject to relativistic

precession and vary as the binary inspirals toward merger [349], as we saw in Sec. 1.3.

If present, the orbital eccentricity also changes during the inspiral [254].

State-of-the art GW population inference is performed at a fixed detector-frame

frequency [84]. For the LVC, the reference frequency is typically set to fref = 20 Hz.

This choice is perfectly acceptable when analysing a single event but questionable at
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the population level, mainly for two reasons:

• As currently defined, fref is a detector-frame quantity, but the parameters tar-

geted in the inference (e.g., masses) are taken in the source frame.

• The binary configuration at a given reference frequency depends on the other pa-

rameters. Systems with larger (smaller) masses and/or anti-aligned (co-aligned)

spins are closer (further) from merger.

These issues were made evident for GW190521, where the high mass imposed a lower

value fref = 11 Hz, different from all other events in the catalogue [62].

The spin directions at fref thus describe different quantities for each event: one is

not allowed to put them together in a population fit as if they were the same. To

the best of our knowledge, this issue plagues all current GW population studies which

make use of quantities that vary during the binary evolution.

A first step in the right direction was recently taken in Ref. [448], where spins are

quoted at a fixed dimensionless time tref = −100M from the peak of the GW strain.

While this tackles the first issue highlighted above, it does not fully address the second

point. One can still construct several dimensionless quantities that vary monotonically

along the inspiral (e.g., time, orbital frequency, orbital separation, etc.) and select any

of those when quoting the spin directions.

Current spin inference suffers from another pressing issue. When reconstructing

the observable population of sources from the observed catalogue, one must account

for selection effects [402, 403]. Although it is well known that sources with spins co-

aligned (counter-aligned) with the binary orbital angular momentum are easier (harder)

to observe [347, 449], this detection bias is often deemed unimportant and neglected.

While (the aligned components of) the spins are included in the pipeline injections used
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to estimate the LIGO and Virgo detectabilities, their dependence on the population

parameters is then neglected when sampling the hierarchical likelihood [84].

We present the first complete solution to these conceptual issues: the spin directions

needed in both the population and selection-effect models are those at past time infinity

or, equivalently, fref = 0 Hz. As we saw in Sec. 1.3.4, this asymptotic configuration

uniquely determines the entire history of a binary up to an orbital and a precessional

phase [353, 423]. This reference puts the spin directions of all the events on equal

footing, thus allowing for a consistent implementation of the population fit. Two

points need to be tackled:

• Data from GW events are, by definition, taken when the binary is detectable and

thus need to be propagated backward to past time infinity.

• Modelling selection effects instead requires propagating the tested population

forward from past time infinity to detection.

We first travel back in time (20 7→ 0 Hz) when treating the event likelihoods and then

“back to the future” (0 7→ 20 Hz) when handling selection effects. Our “DeLorean” is

the precession-averaged PN formalism.

3.2 Time travel for population inference

3.2.1 Modelling and inference

The statistical problem we tackle is that presented in Sec. 1.4.3. We seek to con-

strain the shape parameters λ of our chosen population model from the observed GW

data {d} by sampling the posterior in Eq. (1.85). We use the parametrized model

referred to as power Law + peak and default spin in Ref. [84], which returns
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the highest Bayes factor among the options they tested. The model covers dim θ = 6

event parameters and dimλ = 12 population parameters.

The distribution of the primary mass m1 is a superposition of a power-law compo-

nent with index α truncated outside mmin and mmax and a Gaussian component with

mean µm, width σm, and mixing fraction λm. The secondary mass m2 conditioned

on m1 follows a power-law distribution with index βq. The distributions of m1,2 are

smoothed over a range δm near mmin.

The spin magnitudes χ1,2 follow a beta distribution p(χ|µχ, σχ) ∝ χαχ−1(1−χ)βχ−1

with mean µχ and variance σ2
χ, where αχ = [µχ(1− µχ)− σ2

χ]µχ/σ
2
χ and βχ = αχ(1−

µχ)/µχ. The cosines cos θ1,2 of the angles between the spins and the orbital angular

momentum are distributed assuming a superposition of a uniform distribution and

a truncated Gaussian with a peak at cos θ1,2 = 1, width σt, and mixing fraction ζ.

Crucially, while we adopt the same functional form of Ref. [84], the spin tilts θ1,2 are

here inserted at past time infinity and not at detection.

The distributions of all other parameters (distance, sky location, etc.) is assumed to

be independent of λ and equal to the prior used in the underlying single-event analyses

[see Eq. (1.87)].

The integrals at the numerator of Eq. (1.85) are approximated with Monte Carlo

summations using posterior samples from the data release accompanying Refs. [450]

(O1+O2) and [62] (O3a), which in total include 44 GW events with false-alarm rates

(FARs) < 1 yr−1. The single-event priors are handled analytically with suitable con-

version factors [451].

For the power Law + peak and default spin model, BH masses and spins are

not correlated and, consequently, the population model can be written as the product

of two terms, one including only masses and the other only spins. In Ref. [84], the
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spin part was included only in the likelihood integral of Eq. (1.85) but not in that of

Eq. (1.75). When computing σ(λ), they instead used a fixed spin distribution, thus

neglecting some λ dependencies and introducing a bias. This was motivated by the

large computational cost of the search injections required to compute p(det|θ).

We find that a simpler prescription for detectability (as used previously in, e.g.,

Ref. [83]) fully reproduces the results of Ref. [84] while allowing for a consistent in-

clusion of spin effects. In particular, we use the semi-analytic approximation of Ref.

[416] explained in Sec. 1.4.3, assuming two data-taking periods of approximately 166

days (O1+O2 [60, 61]) and 150 days (O3a [62]), and a single-detector SNR threshold

of 8 [145, 415]. SNRs are computed with representative noise curves1 and the imrphe-

nompv2 waveform model [452]. The integral in the denominator of Eq. (1.85) is ap-

proximated with a Monte Carlo sum using samples drawn from an injected population

with p(m1) ∝ m−2.35
1 , p(m2|m1) ∝ m2

2 [62], uniform spin magnitudes, spin directions

with equally weighted isotropic and preferentially aligned components (ζ = 0.5 and

σt = 0.02), and redshifts distributed uniformly in comoving volume and source-frame

time.

The prior p(λ) is uniform over all 12 population parameters with limits and addi-

tional cuts as in Ref. [84]. We sample from the posterior p(λ|{d}) using gwpopula-

tion [453], bynesty [387], and bilby [388].

3.2.2 Spin propagation

We propagate BH spin orientations across GW frequencies using the precession-

averaged PN formalism first developed in Refs. [352, 353] and discussed in detail in

1From dcc.ligo.org/LIGO-P1200087-v47 (“early high”, for O1+O2) and dcc.ligo.org/LIGO-
T2000012 (“Livingston”, for O3a).

https://dcc.ligo.org/LIGO-P1200087-v47/public
https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T2000012/public


3.2 Time travel for population inference 97

Sec. 1.3.4. We use the precession code [430, 435] which, leveraging new analytical

advancements and numerical recipes [355] has been made significantly more efficient,

thus facilitating the large-scale studies presented here (an alternative implementation

of the formalism can be found in Ref. [359]).

Recall that, at a finite orbital separation r, a BH binary is specified by the compo-

nent masses m1,2 and the dimensionless spin vectors χ1,2. At past time infinity, a BH

binary is fully specified by six quantities: m1,2, χ1,2, and θ1,2.

First, we propagate binaries backward in time to estimate the likelihoods L(di|θi).

For a given posterior sample at fref > 0 Hz, we obtain the corresponding orbital

separation r using Eq. (4.13) of Ref. [350] and the Newtonian angular momentum

L = m1m2

√
r/M . The fref 7→ r conversion needs to be performed using the redshifted

mass M(1+z) because fref is a detector-frame quantity. For current LIGO events with

fref = 11, 20 Hz, we find 6M . r . 25M , which is roughly in the PN regime of validity.

We then compute J = |L+m2
1χ1 +m2

2χ2|, which serves as the initial condition for the

precession-averaged evolution in Eq. (1.47) [equivalently Eq. (1.50)].

We only propagate posterior samples, and not prior samples. Current single-event

priors are isotropic in the spin directions [62, 450]. Since isotropicity is preserved very

accurately by PN evolutions [353, 454], the prior p(cos θ1,2|H) is uniform both in the

detector band and at fref = 0 Hz.

Figure 3.1 shows back-propagated posterior distributions for the events with the

largest total mass (GW190521) and the largest effective spin (GW190517 055101) in

the catalogue considered. For GW190521, the values of θ1,2 at fref = 0 Hz show a

slightly stronger preference for the corner of the parameter space near (θ1, θ2) = (0, π).

We also show χeff and the precession-averaged precessing spin χp ∈ [0, 2] defined in

Ref. [426] — while χeff measures the component BH spins along the direction of L
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Figure 3.1: Back-
propagating GW data
to past time infinity.
We show the event
with the largest mass
(GW190521, orange)
and that with the
largest effective spin
(GW190517 0555101,
purple). Top and bot-
tom panels show the
joint posterior distri-
bution of the spin tilts
(θ1, θ2) and the effective
spins (χeff , χp), respec-
tively. Dashed curves
show the distributions
in the LIGO/Virgo
band (fref = 11 Hz
for GW190521 and
fref = 20 Hz for
GW190517 0555101).
Solid curves are com-
puted at fref = 0 Hz.
The central panels
show two-dimensional
contours at the 50%
and 90% levels.
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and is conserved, χp measures the orthogonal components and is precession averaged

such that it only varies on the longer inspiral timescale tRR. While χeff is a constant

of motion and therefore does not depend on reference frequency, the back-propagated

χp distributions are slightly narrower (see also [429]).

Second, we evolve binaries from the injected population forward in time to compute

the detectability. A binary configuration described by m1,2, χ1,2, and θ1,2 at r =∞ is

first integrated down to fref = 20 Hz with corresponding redshift z. At this location,

we sample the precessional phase from its PDF using the 2PN result of Refs. [352, 353]

(see Sec. 1.3.4) and the orbital phase uniformly in [0, 2π]. The resulting binary system,

now well in the LIGO/Virgo band, is used to compute the SNR and thus p(det|θ).

3.3 Gravitational-wave observations at past time

infinity

Our results are presented in Figs. 3.2 and 3.3 where we show, for the first time,

the asymptotic population of BH spins inferred from current LVC data (fref = 0 Hz,

red). We also run a control case with an identical setup but taking the spin tilts at

detection (fref = 11, 20 Hz, blue). As in Ref. [84], in this case we use the single-event

posterior samples at face value, inconsistently mixing reference frequencies. The third

distribution (grey) is obtained from hierarchical posterior samples publicly released by

the LVC [84] — in this case, spins are neglected when evaluating selection effects.

The corner plot of Fig. 3.2 shows that including spins in the selection function has

a visible effect on the spin population parameters (compare the coloured distributions

to the grey). The posterior weights are increased at small ζ — where the isotropic

component of the spin-tilt distribution is favoured over spin alignment — and large
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Figure 3.2: The one- and two-dimensional marginal distributions of the
spin population parameters. The red curves show our results for population
inference with spins defined at 0 Hz. The blue curves represent a control case
in which spins are introduced to the selection function but the parameter
estimation samples are quoted at the original reference frequency of 20 Hz
(11 Hz for GW190521). The grey curves show results from the LVC [84]
which neglect spins when estimating selection effects. The population pa-
rameters µχ and σ2

χ (ζ and σt) describe the distributions of spin magnitudes
(spin directions). The one-dimensional distribution for the width σm of the
Gaussian component in primary mass appears at the top-right. Contours
indicate the 50% and 90% credible regions.
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Figure 3.3: The PPDs (bold
lines) of the dimensionless spin
magnitudes χ and spin tilts θ.
The shaded regions mark the
symmetric 90% confidence inter-
vals bounded by the 5% and
95% quantiles (lower and upper
dashed lines, respectively). The
red curves show our results for
population inference with spins
defined at 0 Hz. The blue curves
represent a control case in which
spins are introduced to the selec-
tion function but the parameter
estimation samples are quoted at
the original reference frequency
of 20 Hz (11 Hz for GW190521).
The grey curves show results
from the LVC [84] which neglect
spins when estimating selection
effects.
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σt — increasing the width of the aligned-spin component. In particular, we (the LVC

[84]) find medians and 90% intervals of ζ = 0.63+0.33
−0.52 (ζ = 0.76+0.22

−0.48) and σt = 1.60+1.95
−0.91

(σt = 0.87+1.29
−0.45). Therefore, we infer somewhat larger spin misalignments compared to

Ref. [84].

This is demonstrated in the PPD of Fig. 3.3, where we find p(θ < 45◦) = 0.18 (red

and blue) compared to 0.24 (grey) for Ref. [84]. Aligned-spin binaries are easier to

detect, implying that their intrinsic distribution is more heavily suppressed compared to

other regions of the parameter space. This is a form of Malmquist bias equivalent to the

more familiar case of the BH masses, where numerous observed events at m ≈ 30M�

imply a lower intrinsic merger rate compared to m ≈ 5M�, even if we have only

observed a few low-mass events.

The impact on the parameters µχ and σ2
χ governing the spin magnitude (χ) distri-

bution, and hence the PPD for χ, is less prominent. This is not surprising, as the best

measured spin parameters are the effective quantities χeff and χp. The mass parameters

(which are not all shown in Fig. 3.2 for clarity) are largely unaffected by our analysis.

We report a minor shift in the Gaussian component of the primary mass distribution

as determined by σm in Fig. 3.2, which is narrower (σm = 4.62+4.32
−3.10) compared to the

LVC result (σm = 5.69+3.78
−3.60).

Figure 3.4 shows our Bayesian measurement of σ(λ), i.e., the distribution of Eq. (1.75)

across samples of Eq. (1.85), which sets the fraction of events from the inferred popu-

lation that are observable. Including spins in the detectability returns a lower fraction

σ(λ) = 0.44+0.18
−0.13% compared to σ(λ) = 0.57+0.25

−0.19% as obtained from the samples of Ref.

[84]. In other words, by neglecting spins in the inference, one is tempted to think that

the intrinsic and observed population are more similar to each other than they really

are.
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Figure 3.4: Distributions
of the selection function σ(λ)
across the inferred population.
The grey curve displays the val-
ues provided in the data release
of Ref. [84], which neglects spins
when computing σ. Including
spins in the selection function, in
blue is the result for the control
case with spins defined at the in-
consistent reference frequency of
20 Hz (11 Hz for GW190521),
while in the red spins are defined
at 0 Hz.

Once selection effects are properly accounted for, we find that considering spins at

20 Hz or 0 Hz has a minor impact (compare blue and red distributions in Figs. 3.2,

3.3, and 3.4). The systematic error one incurs when putting together spin directions

corresponding to different evolutionary stages of the binary inspiral is, at present, sub-

dominant compared to statistical errors. While our findings validate the assumptions

made so far in the GW literature, we stress that this is an important conceptual point

which is addressed here for the first time. Furthermore, while statistical errors are

bound to decrease with increasing catalogue size and improved detector sensitivity,

systematics will be amplified.
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3.4 Conclusions

We solved two conceptual issues that affected all GW population studies so far.

An unbiased inference requires the BH spins to be (i) fully included when estimating

selection effects and (ii) measured at past time infinity. We find that, with the same

GW events and population model, the preference for spin alignment inferred in Ref. [84]

is reduced. Notably, this result is the opposite to the recent findings of Refs. [455, 456],

although for a very different reason. There it is claimed that the default spin model

is inappropriate to describe the current set of events and under-predicts spin alignment.

Future applications of non-parametric population modelling (e.g., [457]) will inevitably

require a consistent reference among all events.

In the future, systematic biases in population studies will become more influential,

for two reasons: (i) single-source measurement uncertainties will decrease as detector

sensitivities increase, and (ii) there will be more detections stacked together in the GW

catalogue. It will be important, therefore, to project when biases due to inconsistent

parameter references are expected to become significant; this is an interesting avenue

for further work.

While here we focused on BH spins, the orbital eccentricity is another key property

that evolves during the binary inspiral. As GW analyses extend from quasi-circular to

eccentric sources [458, 459, 460, 461, 462], we will need to face the issue of building a

population model for the eccentricity in a coherent fashion [463]. We anticipate this

could be tackled using suitable extensions to the averaging techniques proposed here

(cf. Ref. [464]).

The spin directions at past time infinity are equal, to an excellent approximation

[359], to those at BH formation [330, 331, 442, 465, 466]. As GW astronomy enters
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the large-statistics regime, travelling backward and forward in time when performing

population analyses will allow for a direct, systematics-free comparison between GW

data and astrophysical models of compact-object formation. Indeed, the importance

of these results is being reflected in the work of the LVC who now account for the

impact of precessing spins on selection effects in population analyses [84, 85] and have

started to propagate their released posterior samples to infinite orbital separations

[63, 64, 74, 75].
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Chapter 4

Which black hole formed first?

Abstract

Different compact-binary formation channels predict identifiable signatures in the

astrophysical distributions of source parameters, such as masses and spins. One

example within the scenario of isolated binary evolution is mass-ratio reversal:

even assuming efficient core–envelope coupling and tidal spin-up in massive stars,

a compact binary with a lighter, nonspinning first-born BH and a heavier, spin-

ning second-born BH can still form through mass transfer from the initially more

to less massive progenitor. Using GW observations, we measure the fraction of

sources in the underlying population with this mass–spin combination and thus

identify which BH in the binary was born first. We model subpopulations of non-

spinning BHs and, most importantly, nonidentical component spin distributions.

We do not find evidence for a subpopulation of BHs with negligible spins and thus

measure the fraction of massive binary stars undergoing mass-ratio reversal to be

consistent with zero and < 32% at 99% confidence. The peaks in the distribu-

tions of dimensionless spins around 0.2 appear robust, however, and are yet to be

explained by progenitor formation scenarios.
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Summary and contributions

This Chapter is a reformatted version of our paper Ref. [422] published in col-

laboration with Davide Gerosa, Floor Broekgaarden, and Nathan Steinle. The idea

for this study was motivated in part by Floor’s recent work [467], who additionally

provided valuable astrophysical interpretations. In addition to writing the paper and

creating the figures, I designed the population models used, wrote the analysis code,

and performed the production inference runs. Davide guided the methodology and pa-

per writing. Nathan also contributed to the astrophysical interpretation and discussion

of caveats in Sec. 4.4.

We introduce the astrophysical process of mass-ratio reversal (MRR) in massive

binary stars and its observational consequences with GWs in Sec. 4.1. In Sec. 4.2, we

summarize our modelling and inference procedure. In Sec. 4.3, we present the results of

our analyses, in particular the fractions of sources with negligible spins and undergoing

MRR. We discuss our findings and their caveats in Sec. 4.4.

4.1 Introduction

In some independent population studies, different approaches have led to contra-

dictory results. Refs. [84, 85] infer that BHs have non-zero spins with support for

large misalignments with respect to the binary orbital angular momentum, while Refs.

[455, 456] report a large population of nonspinning BHs or a lack of evidence for mis-

aligned spins. Such differences become important when attempting to relate the results

of GW inference with predictions of compact-binary formation, in which distinct chan-

nels leave identifiable imprints on the population of detectable mergers [269, 270, 271].
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In the classical picture of isolated stellar binary evolution, the initially more massive

star evolves more rapidly and thus collapses first to form the heavier BH. If angular

momentum is lost from the outer envelope of the massive star after efficient transport

from the stellar core [468, 469, 470] the heavier BH is expected to have negligible spin

[328, 329]. Before the second BH forms, its progenitor may be spun up due to tidal

torques from the first-born BH [328, 470, 471, 472, 473, 474]. The less (more) massive

BH in the resulting binary therefore has significant (negligible) spin.

On the other hand, if there is significant mass transfer from the initially more to less

massive star, the binary mass ratio can be reversed and the first (second) collapse of the

now less (more) massive star can form the lighter (heavier) BH. This mechanism has

frequently been suggested in the literature to explain Algol binaries and compact object

binaries with young neutron stars (e.g., [475, 476, 477, 478, 479, 480]). Crucially, this

scenario of MRR leads to GW detections of binary BHs with the more (less) massive BH

having non-negligible (negligible) spin [467, 481], as well as different spin misalignments

[442]. While the individual BH spins are typically poorly measured [64], in principle

the occurrence of MRR can be constrained using GW observations.

To this end, we present a suite of GW population analyses with models designed

to identify — via spin measurements — binary BHs that have undergone MRR. The

key ingredient is that we must no longer assume the two BH spins are identically

distributed as is done in current state-of-the-art analyses [85]. We consider minimal

extensions of widely used spin models [85, 482, 483], accounting also for the possibility

of small or nonspinning components [456]. From the underlying population we measure

the fraction of sources in which the heavier BH has larger spin and, by thresholding

the spin magnitudes or including a peak at zero spins, the fraction in which either

one or both components have negligible spin. These measurements give insight in the
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fractions of binary BHs undergoing MRR.

4.2 Modelling mass-ratio reversal

4.2.1 Catalogue and statistical tools

We take the n = 69 detected GW events with FARs < 1 yr−1 from the first (O1),

second (O2), and third (O3) LVC observing runs. As described in Sec. 1.4.3, we use

the public LVC posterior samples [74, 75, 484] and injection campaign [485] to evaluate

the population likelihood and selection effects. For events detected in O3 the threshold

for recovery is set to FAR < 1 yr−1 in at least one detection pipeline, while for events

from O1 and O2 a network SNR > 10 is required [85]. We account for uncertainty in

both integrals due to finite sampling as in Ref. [85] (see also Refs. [409, 486, 487, 488]).

The source-frame primary BH masses and mass ratios are modelled using the

power law + peak model, while the model for redshifts z corresponds to a merger

rate density per unit comoving volume and source-frame time that is a power law in

1 + z. The parameters and their prior distributions are as in [85]. Our inference on the

mass and redshift parameters is unchanged with respect to any of the following spin

models. The population-level posterior is sampled using gwpopulation [453], bilby

[388], and dynesty [387].

4.2.2 Astrophysically-motivated spin models

Identical spins

The default spin parametrization used in Ref. [85] models the dimensionless

spin magnitudes χ1,2 (corresponding to BH masses m1 ≥ m2) as independent and
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identical beta distributions that have mean µ and variance σ2, with uniform priors in

[0, 1] and [0.005, 0.25], respectively. Additional prior constraints on the standard beta

distribution shape parameters α, β > 1 enforce regularity at the prior boundaries (one

could alternatively sample these parameters directly as in, e.g., Ref. [489]).

The two polar spin misalignments are modelled independently of the magnitudes

but not of each other, being distributed in cosine as a mixture between isotropic (flat)

and preferentially aligned (unit-mean Gaussian truncated on [−1, 1]) components, in-

dicative of isolated and dynamical formation, respectively. The prior on the mixing

fraction ζ is uniform in [0, 1] while that of the aligned-component standard deviation

τ is uniform in [0.1, 4].

Nonidentical spins

To assess the difference between BH spin magnitudes, the first extension we consider

is to relax the assumption of identical distributions. In this nonidentical model

the spin magnitudes employ the same independent beta parametrization but are no

longer identical, with means µi and variances σ2
i (i = 1, 2). We additionally allow

nonidentical alignments τi; however, since spin magnitudes and tilts are independent,

this will not directly affect inferences on χ1,2. The mixing fraction ζ between aligned

and isotropic tilts is kept identical for both BHs since they must have formed in the

same environment. We impose priors as above.

Zero-spin peaks

Since predictions of isolated binary stellar evolution include BHs with small spins,

as discussed in Sec. 4.1, we also consider a model that explicitly includes such sub-

populations. In the spirit of Ref. [456], we modify the nonidentical spin model
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by adding zero-mean Gaussians truncated within 0 ≤ χ1,2 ≤ 1 to the spin magnitude

distributions. The prior of the standard deviations ωi is uniform with 0.01 ≤ ωi ≤ 0.05

and the mixing fractions fi between the beta distributions and zero-spin peaks are

uniform in [0, 1]. We keep the nonidentical distribution of spin tilts and allow for

the possibility of just one (non-) spinning BH by taking the two dimensionless spin

magnitude distributions to be independent of each other (such that the joint distribu-

tion is a product of two mixtures, rather than a mixture of two products). We refer to

this model as nonidentical + zeros.

4.3 Measuring mass-ratio reversal

Here we focus on the differences between the spin magnitude distributions of the

two BHs, as is important in the MRR scenario. In the following we quote numerical

results with either medians and 90% symmetric intervals, or the upper 99% confidence

bound in the case of one-sided posteriors.

4.3.1 Nonidentical spins

We first consider the nonidentical model, which allows us to ask the question: do

the more massive BH components spin more rapidly than the less massive components?

Figures 4.1 and 4.2 presents the results for the nonidentical model. The para-

metric forms are the same as in the default model, the only difference being the two

BH components are no longer identical. In general this results in larger measurement

errors, particular for the secondary spin as seen in Fig. 4.2, which is unsurprising since

the spin of the less massive component is more difficult to measure [64].

We infer secondary BH spin magnitudes with lower means µ2 and widths σ2, result-
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Figure 4.1: The posterior distributions for the spin hyperparameters. The
primary, i = 1, distributions (secondary, i = 2) are plotted in blue (green),
and the default spin model is shown in red for comparison. The parameters
of the nonidentical model are the means µi and standard deviations σi
of the beta distribution in spin magnitudes, the mixing fraction ζ between
aligned and isotropic spin tilt subpopulations (which is the same for primary
and secondary BHs), and the widths τi of said aligned components. For
the default model the primary and secondary components are identical
(i = 1, 2).
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Figure 4.2: The posterior distributions of the spin magnitudes for the
nonidentical model. The primary, i = 1, distributions (secondary, i = 2)
are plotted in blue (green), and the default spin model is shown in red for
comparison. The solid lines represent the mean distributions, i.e., the PPDs,
and the shaded regions correspond to the symmetric 90% credible regions.
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ing in secondary spins which are on average lower and peak more narrowly than that of

the primaries. The primary hyperparameters are consistent with the default posteri-

ors, albeit with larger errors. The component spin magnitudes remain consistent with

being identical within the displayed 90% credible regions and feature a peak around

χi ≈ 0.2. Given the beta-distribution parametrization, the probability densities are

consistent with zero at χi = 0. The mixing fraction ζ between isotropic and prefer-

entially aligned spin tilts is identical for primary and secondary BHs by assumption

— hence the overlapping of the i = 1, 2 curves in the corresponding one-dimensional

histogram — and is unchanged with respect to the original default analysis. The

Bayes factor over the default model is log10 B = −0.18, implying there is no strong

preference for either.

Since the spin-magnitude distributions are independent of each other and not iden-

tical, i.e., p(χ1, χ2|λ) = p(χ1|λ1)p(χ2|λ2), the probability that the more massive BH

spins more rapidly than the less massive BH is

P (χ1 > χ2|λ) =

∫ 1

0

p(χ1|λ1)

∫ χ1

0

p(χ2|λ2)dχ2dχ1 , (4.1)

where λi = (µi, σi) are the hyperparameters individually characterizing the spin dis-

tributions. Our measurement for the probability of more rapidly spinning primaries,

given the Bayesian uncertainty p(λ|{d}) in the hyperparameters of the nonidentical

model, is given by the blue distribution in Fig. 4.3. We find P (χ1 > χ2|λ) = 0.58+0.21
−0.25.

If the two distributions were instead identical, Eq. (4.1) reduces to P (χ1 > χ2|λ) =

P (χ1 < χ2|λ) = 1/2. We infer a median value above this mid-point and 71% posterior

support for P (χ1 > χ2|λ) > 1/2, indicating mild evidence that primary BHs spin more

rapidly.
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Figure 4.3: The probability that the heavier BH is more rapidly spinning
in our nonidentical (blue) and nonidentical + zeros (red) models.
The uncertainty is due to the uncertainty in the model hyperparameters, as
measured from GW data. The coloured vertical dashed lines correspond to
the medians and symmetric 90% confidence intervals. The vertical dashed
black line at P (χ1 > χ2) = 1/2 corresponds to the result for identical spin
distributions.
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While this measurement compares spin components across the entire unit interval,

the isolated binary evolution scenario discussed in Sec. 4.1 predicts small BH spins. To

relate spin measurements more closely to these predictions we place a threshold, χ0,

below which spin magnitudes are defined as negligible. The probabilities that a BH

spin lies below or above this threshold are given by

P (χi < χ0|λ) = 1− P (χi > χ0|λ) =

∫ χ0

0

p(χi|λ)dχi . (4.2)

We find that 4.8+7.0
−4.5% (4.0+11

−3.9%) of primary (secondary) BHs have negligible spins

when imposing a threshold χ0 = 0.05 [467]. These results are one-sided and peak

at zero, skewing the posterior measurements away from the boundary. Instead, one

can consider these as measurements of P (χi < χ0|λ) ≈ 0 with one-sided uncertainties

P (χ1 < χ0|λ) < 0.15 and P (χ2 < χ0|λ) < 0.20.

Since the spin magnitudes are modelled independently, the joint probability that,

e.g., the primary BH spin is non-negligible and the secondary is negligible is simply

given by the product P (χ1 > χ0, χ2 < χ0|λ) = P (χ1 > χ0|λ)P (χ2 < χ0|λ). If

one assumes that the entire binary BH population formed through isolated evolution

and that there is no other mechanism by which primary BHs can acquire spin, this

probability can be interpreted as the fraction of MRR sources. On the other hand,

sources with χ1 < χ0 but χ2 > χ0 correspond to the standard isolated binary scenario

in this interpretation. Again taking χ0 = 0.05, we find < 12% (< 10%), or 3.8+11
−3.7%

(4.6+6.9
−4.3%), of the underlying population falls into the MRR (standard) spin scenario.

The majority of the posterior support lies away from zero spins with P (χ1, χ2 > χ0|λ) =

0.90+0.07
−0.10, while the fraction of sources with two negligible spins is at the sub-percent

level.
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Figure 4.4: The joint probabilities that the spins of the more and less
massive BHs, χ1,2 lie above or below a given threshold, χ0, in the noniden-
tical model. The blue (orange) curve represents the case in which both
components are above (below) threshold. We interpret the red and green
curves as the MRR and standard isolated evolution scenarios, respectively.
The solid lines give the median probabilities over the hyperparameter uncer-
tainties as a function of χ0, while the shaded bands enclose the 90% credible
regions. The vertical dashed black line indicates the fiducial threshold value
of χ0 = 0.05.
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In Fig. 4.4 we plot the measurements of these probabilities as a function of the

spin threshold χ0; of course, when χ0 = 1 (χ0 = 0) all sources are classified as having

two (non-) negligible spins. There is no support in the population for binaries with

both spins above ≈ 0.6, while P (χ1, χ2 < χ0|λ) dominates for χ0 & 0.8 since the

component spin distributions taper off above this value (see Fig. 4.1). The fraction of

sources that are placed in the MRR (χ1 > χ0, χ2 < χ0) and standard (χ1 < χ0, χ2 > χ0)

scenarios peak at χ0 ≈ 0.3 and χ0 ≈ 0.25, respectively. The locations of these peaks are

determined by the locations of the peaks in the component distributions (see Fig. 4.1)

and the former is slightly higher due to the slight preference for primaries with larger

spins.

4.3.2 Zero-spin peaks

The above results are inferred using the nonidentical spin model, which does

not account for a subpopulation of sources with small spins. Instead of relying on the

ad-hoc small-spin threshold, the nonidentical + zeros model explicitly allows for

fractions fi (i = 1, 2) occupying a peak at zero spin magnitudes [456]. In Figs. 4.5

and 4.6 we presents the results for the nonidentical + zeros model. The posteriors

on the parameters of the beta spin components are unchanged with respect to the

nonidentical analysis, however, and are hence not plotted; one can simply refer to

Fig. 4.1 instead. The Bayes factor over the default model is log10 B = −0.05, again

indicating that the nonidentical + zeros model describes the population equally

well as the default model.

The fractions fi of both primary and secondary BHs with negligible spins are one

sided and peak at zero, with one-sided 99% credible bounds f1 < 0.46 and f2 <

0.36 (or medians and symmetric 90% intervals of f1 = 0.13+0.22
−0.12 and f2 = 0.08+0.18

−0.07)
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Figure 4.5: The posterior distributions for the hyperparameters of the
nonidentical + zeros model characterizing the peaks at zero spins. The
occupation fractions of these peaks are fi and the standard deviations are ωi
(i = 1, 2). The posteriors of the beta distribution parameters are identical
to the nonidentical case and thus not displayed.



4.3 Measuring mass-ratio reversal 121

0.0 0.2 0.4 0.6 0.8 1.0

χi

0

2

4

6

8

Default, i = 1, 2

Nonidentical + Zeros, i = 1

Nonidentical + Zeros, i = 2

Figure 4.6: The posterior distributions for the spin magnitudes determined
by the nonidentical + zeros model. The primary (secondary) spin is
plotted in blue (green), and the default model is displayed in red for com-
parison. The solid lines represent the mean distributions, i.e., the posterior
population distributions, and the shaded regions correspond to the symmet-
ric 90% credible regions.
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with no posterior support above 0.6. These are consistent with the nonidentical

measurements of P (χi < 0.05|λ) (recall that the prior bounds on the widths of the

zero-spin peaks ωi are are uniform in [0.01, 0.05]). For comparison, we compute P (χ1 >

χ2|λ) = 0.56+0.19
−0.21 with P (χ1 > χ2|λ) > 0.5 at 68% confidence for the nonidentical

+ zeros model, consistent with the nonidentical model and only slightly lowered

due to the additional but small contribution from the zero-spin peaks.

The posteriors of the zero-spin peak widths ωi feature more support at the upper

boundaries. We find the same result when widening the prior domain to [0.01, 0.1],

inevitably leading to larger inferred values of fi but which still peak at zero. The same

behaviour is observed in analyses which do not impose a prior cut on the population

likelihood determined by the effective sample sizes of Monte Carlo integrals [490], as

used in this work, implying the inferred posteriors are robust. In contrast to the findings

of [456], these results altogether point to a lack of evidence for a subpopulation of small

spins, or alternatively an inability to measure such a feature in the spin distribution.

On the other hand, the peaks in χi between 0.2–0.3 remain apparent in Fig. 4.6.

While allowing for the possibility of a subpopulation of BHs with small spins results

in a visible spike in density at χi = 0, the probability there is still low due to the

small volume of occupied parameter space (χi < 0.05). Unlike the default and

nonidentical models, the mixture parametrization of the nonidentical + zeros

model allows the χi distributions to be constrained away from zero at χi = 0 within

the 90% confidence interval. Within this uncertainty, both primary and secondary BH

spins are still consistent with a single continuous distribution, however.

As similarly described in Sec. 4.3.1, the independence of the dimensionless spins

means that the fraction of sources with both BHs in the beta distribution component

is fβ = (1 − f1)(1 − f2) while that for both in the small-spin peaks is f0 = f1f2.
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The fraction of binaries in which the primary BH has small spin and the secondary is

spinning — i.e., the standard isolated binary evolution channel — is fS = f1(1 − f2),

while the converse — the MRR scenario — is fR = (1−f1)f2. The spin tilt distributions

separate the isolated and dynamical evolution channels with a fraction ζ of sources

in a preferentially aligned component, as predicted for binaries formed in the field,

while the rest are isotropic. Therefore, from the total population we can identify the

fraction of sources forming in the isolated channel that are placed in each sub-channel

X ∈ {β, 0, S,R} as ζfX (where
∑

X fX = 1).

We present the measurements of these branching fractions from our nonidentical

+ zeros population analysis in Fig. 4.7, including both the total and isolated fractions,

fX and ζfX , as well as the fraction of non-isolated sources, 1− ζ. Binaries with both

BHs placed in the beta spin distributions make up the majority of the population

with fβ = 0.77+0.16
−0.20. The fractions in which either or both BH spins are negligible all

peak at zero: the standard and MRR fractions are fS < 0.43 and fR < 0.32 (fS =

0.12+0.21
−0.11 and fR = 0.06+0.17

−0.06), respectively, while f0 < 0.06. The fraction of the total

population within the isolated formation channel is not well measured at ζ = 0.62+0.33
−0.48

(the posterior for ζ is the same in both the nonidentical and nonidentical +

zeros models). Since by definition 0 ≤ ζ ≤ 1, the isolated fractions are of course

lowered, i.e., ζfX ≤ fX . In short, at 99% confidence we measure ζfR < 0.23, ζfS < 0.33,

and ζf0 < 0.04.
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Figure 4.7: Posterior fractions of binary BHs with different spin combi-
nations from the nonidentical + zeros model. In blue (orange) is the
fraction with two (non-) spinning BHs, fβ (f0). In red (green) is the frac-
tion fR (fS) of MRR (standard) sources. The dashed lines indicate the
total fractions within the astrophysical population, fX (X ∈ {β, 0, S,R},∑

X fX = 1), while the solid filled histograms represent the subset which
have preferentially small spin tilts, ζfX . The solid black line gives the pos-
terior measurement on the mixing fraction of isotropic spin tilts, 1− ζ.
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4.4 Gravitational-wave observations against astro-

physical predictions

Altogether, our results (given the current GW catalogue) point to a lack of evidence

for large subpopulations of merging stellar-mass binary BHs with negligible spins, or an

inability to measure a sharp feature such as this in our models. This is in disagreement

both with previous measurements from GW data [456] and predictions of isolated

binary evolution [273, 328, 329, 442, 467, 481].

4.4.1 To reverse or not to reverse

Ref. [456] finds that 54+21
−25% of BHs have negligible spin,1 whereas we find in

Sec. 4.3.2 that < 46% (36%) of primary (secondary) BHs have negligible spin with

fractions peaking at zero, 23+20
−16% of binaries have at least one BH with negligible spin,

and ∼ 1% have both BHs with negligible spins. We model negligible spins with a

truncated Gaussian distribution of non-zero width centred at zero, whereas their zero-

spin peak is a delta distribution at exactly χ1,2 = 0 resulting from PE runs performed

with nonspinning priors. They also analysed the binary BH mergers observed up to the

end of the first half of O3, whereas the catalogue analysed here contains all binary BHs

through the end of O3. To perform the equivalent O3 analysis allowing for nonidentical

spin distributions would require PE runs for each event with nonspinning priors placed

on either or both BHs, resulting in three additional stochastic-sampling runs per event

(and per waveform); such analyses are beyond the scope of our study. However, our

results are robust with respect to the choice of population model; we measure consistent

1This value is taken from their updated erratum.

https://arxiv.org/abs/2109.02424v3
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fractions of BHs with negligible spins in both the nonidentical and nonidentical

+ zeros models.

Ref. [490] presented a detailed study on the intrinsic distribution of binary BH

spins to address the issue of a potential subpopulation of negligible spins. They focus

on the technical details of population modelling and analysis that can lead to erroneous

conclusions on such features. They report findings consistent with our own and incon-

sistent with Ref. [456], whether modelling effective or component spin. In particular,

as in this work they also find a one-sided posterior measurement peaking at zero for the

fraction of BHs with small spin, with an upper limit < 60%. In addition to modelling

differences, Ref. [490] finds that the Bayes factor between spinning and nonspinning

prior hypotheses — a crucial ingredient in the analysis of [456] — was estimated in-

correctly for at least one event. We focus on the astrophysical inferences these results

allow us to make, in particular constraining the occurrence of MRR, which unlike in

their analysis means crucially we model BH spins as nonidentical.

Ref. [481] use rapid population synthesis to investigate the occurrence of MRR

in stellar progenitors of binary BHs. They find that, depending on the efficiency of

accretion from the initially more to less massive star, up to 72% of systems undergo

MRR (i.e., have a heavier second-born BH). Similarly, Ref. [467] assesses both the

detectable and intrinsic MRR fractions in a range of population-synthesis models. They

find typical intrinsic MRR fractions > 30%, lying between 11% and 82% across their

models. These recent results are in general agreement with older predictions which

found fractions ∼ 10–50% [273, 465]. From GW data we measure the related fraction

in the intrinsic population to be < 32% (99% confidence) based on our definitions and

astrophysical assumptions. Consistency between these population-synthesis predictions

and our measurements therefore requires lower accretion efficiencies between massive
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stars in order to result in lower MRR rates. However, even assuming a conservatively

low accretion efficiency of 0.25, Ref. [481] finds MRR fractions > 18%, though most

models have larger fractions. The low value of our fraction stems from the fact that,

even when accounting for the possibility of negligible-spin subpopulations, we infer the

presence of only a small number of negligible-spin BHs in the astrophysical population.

This particular MRR scenario requires the secondary BH — the first-born BH that

was initially the more massive star — to have small spin.

More generally, accounting for the inferred astrophysical distribution of binary BH

spins solely with the isolated binary formation channel requires some mechanism to

produce sufficiently large spins χi > 0.05. For example, various scenarios including

weak core-envelope coupling, tidal synchronization, and significant accretion can lead

to binary BHs with larger spins [330, 481, 491, 492]. The apparent lack of negligible-

spin sources in the intrinsic population may imply that, if isolated formation is the

dominant contribution, the assumptions typically made in binary population synthesis

(e.g., efficient angular momentum transport in massive stars) are incorrect, or other

formation channels dominate the GW merger rate. Large spins can be formed in envi-

ronments where binary BHs interact dynamically, such as dense stellar clusters; hier-

archical mergers — in which binary components are the remnants of previous mergers

(see Ref. [332] for a review) — lead to high spins with a peak in the distribution around

χi ≈ 0.7 (see, e.g., Refs. [334, 335, 493, 494]).

Nevertheless, this is away from the measured peaks in the distributions of dimen-

sionless spins at χi ≈ 0.2–0.3, which is emerging as a solid outcome from several

population fits (see Refs. [84, 85, 421, 495] in addition to our own results). To the best

of our knowledge this feature has so far not been identified as a preferred outcome in

current stellar-binary evolution models, and therefore requires further attention from
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the perspective of progenitor population modelling. We note that, though there is no

evidence for large subpopulations of binary BHs with negligible spins, this does not

mean that individual nonspinning sources do not exist. Indeed, in our nonidentical

+ zeros model there is posterior support for primary and secondary BHs with spins

χi = 0 at 90% confidence, a conclusion not allowed by the default and nonidentical

models (see Fig. 4.5). However, given the current catalogue and measurement uncer-

tainties, the two BH spins remain consistent with being drawn from a single continuous

distribution.

4.4.2 Modelling and astrophysical uncertainties

Inference results are subject to modelling errors; the implicit conditional in our

Bayesian measurements is that of the population model. This is a crucial point, which

we have explicitly indicated by reporting the conditional dependence on λ in all prob-

abilities of Sec. 4.3. Indeed, misspecification can lead to biased results [496] and we do

not pretend that the simple parametric models used here fully describe the astrophys-

ical distribution of merging stellar-mass binary BHs.

In particular, the masses, spins, and redshifts are assumed to be independent of

each other when in reality they may be correlated [497, 498, 499, 500]. While the

distribution of spin tilts is taken to be a mixture of two contributions, mimicking

isolated and dynamical formation, it is likely that multiple channels contribute to

the merger rate with distinct features across all source parameters [501, 502]. On

the other hand, observables such as spin tilts may not be such clear discriminators

as previously assumed. For binary BHs formed in isolation, core-collapse natal kicks

[330, 331] and mass-transfer episodes [503] may result in significant misalignments and

spin precession. Stellar-binary processes such as common-envelope episodes may also
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occur in dynamical environments [504, 505], leading to both aligned and misaligned

spins [506]. In these cases, the fraction ζ of sources with preferentially aligned spins

employed in Sec. 4.3.2 is not a robust discriminator of isolated binary formation.

We chose to model the spin magnitudes independently of the spin orientations. In

reality, the spin magnitude distributions may be different even within the two channels

that divide the spin orientations — e.g., the small-spin subpopulation being relevant

only for binaries formed in isolation and therefore having preferentially aligned spins.

We do not allow for correlations between the spin magnitudes and the mixing frac-

tion ζ, and more complex models would include correlations between these parameters

motivated by the astrophysical settings in which stellar-mass binary BH formation oc-

curs. However, given the statistical uncertainties in the current GW catalogue and

systematic uncertainties in models of binary BH formation, there is a limit to the

available constraining power with a given number of population model parameters.

Our nonidentical and nonidentical + zeros models can be considered as mini-

mal extensions to state-of-the-art analyses that may already be demonstrating limited

constraining power given the number of model parameters, as seen in the broad mea-

surement of the mixing fraction ζ.

We assume the key MRR signature in GW observations to be spinning primary BHs

that formed second from the collapse of the initially less massive stellar progenitor and

nonspinning secondary BHs forming first from the initially more massive star. As

discussed, several mechanisms can influence the resulting BH spin and therefore the

fraction of binaries in the intrinsic population with this spin configuration may not be

a clean indicator of the fraction of MRR systems. Contamination can result both from

binaries that do not experience MRR but attain our assumed spin configuration and

from systems that do undergo MRR but end up merging with different spins.
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It is important to stress that the question we are asking the GW data here is, in a

nutshell: “which BH spins the most?” The answer is then interpreted as the relative

fraction of GW sources that undergo MRR by relying on a (hopefully broad, but

admittedly specified) set of astrophysical expectations, thus translating the targeted

question into: “which BH formed first?”

4.5 Conclusions

In isolated binary evolution, mass transfer between the massive stellar progenitors

can lead to a reversal of the binary mass ratio [467, 481]. The key consequence of this is

that, if ultimately forming a merging compact binary, the initially less (more) massive

star becomes the (non-) spinning primary (secondary) BH observed with GWs. We

constrained the occurrence of this astrophysical process using GW data and population

models that allow for nonidentical distributions between the two BH spins.

In contrast to Ref. [456], we did not find evidence for large subpopulations of

negligible-spin BHs. Instead, with current GW data the BH spins are consistent with

being drawn from identical, continuous distributions with non-vanishing support at

small spins. We measure the occupation fractions of peaks at zero spins to be < 46%

and < 36% for primary and secondary BHs, respectively. Our results have now been

independently confirmed [490, 507].

There is vanishing posterior support for binaries with both dimensionless spins

> 0.6. We measure the intrinsic fraction of sources in which the heavier BH has

significant spin while the lighter does not to be < 32% and peak at zero, and reinterpret

this as the fraction of binaries whose progenitors undergo MRR. A small proportion of

MRR sources is also in tension with recent predictions from isolated binary evolution
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[467, 481], implying either that such sources do not contribute to the GW merger rate

or that the standard assumptions of isolated binary evolution we made do not hold.

On the other hand, the previously reported over-density in the dimensionless spin

distributions around 0.2–0.3 at present appears to be a robust feature even when ac-

counting for nonidentical spins and small-spin subpopulations. A clear explanation for

this feature from common formation channels remains to be found.
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Chapter 5

Simulation-based deep learning of
gravitational-wave populations

Abstract

Conventional GW population models are parametrized with simple functional

forms. We propose an emulation-based approach that can compare astrophysical

simulations directly against GW data. We combine state-of-the-art deep-learning

techniques with hierarchical Bayesian inference to: (i) construct a flexible single-

channel population model that accurately emulates multi-modal and correlated

distributions in multiple dimensions, (ii) rapidly estimate population selection ef-

fects, and (iii) recover the branching ratios of subchannels within the population.

Applying our approach to simplified simulations of hierarchical BH formation, us-

ing the latest LVC GW catalogue we find that: host-environment escape speeds

< 100 km s−1 are favoured, though around 37% of first-generation merger rem-

nants are retained in their hosts; the maximum mass of first-generation BHs is

≈ 40M�; there is multi-modal substructure in the astrophysical distributions of

both binary BH masses and spins; and mergers with a higher-generation BH make

up at least 14% of the underlying population.
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Summary and contributions

This Chapter is reformatted from our paper published in Ref. [413] in collaboration

with Davide Gerosa and Stephen Taylor. The genesis of this project was some of

their previous work [404]. Steve provided code for an initial version of the project

using Gaussian process regression (GPR) and tools for hierarchical Bayesian inference.

Davide wrote the initial version of the population simulation code and first used neural

networks for the interpolation. Davide and I performed the calculation to rewrite

the hierarchical likelihood in terms of the observed parameter space. I completed

the production code and runs, including the simulation generation, neural-network

training, and population inference. The figures were made by me, as was the paper

writing with invaluable guidance and inputs from Davide and Steve.

We introduce the concept of simulation-based inference and motivate its utility

for GW population studies in Sec. 5.1. In Sec. 5.2 we describe our simple approach

to simulating hierarchical-merger distributions. We lay out the statistical and deep-

learning tools employed in Sec. 5.3. Our deep-learning-enhanced statistical pipeline

is validated with mock GW catalogues in Sec. 5.4. In Sec. 5.5, we report the results

of our inference on the latest catalogue of GW events, discussing the astrophysical

implications and comparing to recent related works. We finish with a summary of

future extensions to our work and concluding remarks in Sec. 5.6.

5.1 Introduction

Given the catalogue of GW detections, one can take two approaches to assess the

underlying astrophysical population of binary BHs. In a simulation-based analysis,
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sources are synthesized — accounting for as many detailed astrophysical processes

as are known or are computationally feasible — to form distributions of detectable

merging binaries. By varying population-level input parameters controlling binary

evolution (e.g., common-envelope efficiency, strength of supernova kicks, etc.), one can

assess the degree of consistency with the observed events; for reviews see, e.g., Refs.

[269, 270, 271]. However, such simulations are typically computationally intensive and

large uncertainties remain on key parameters; see, e.g., Refs. [508, 509].

The second approach is to first construct a model of the astrophysical distribution

of source parameters — which is conditionally dependent on given population-level

parameters controlling its shape (the “hyperparameters”, e.g., mass cutoffs or spectral

indices) — and use the observed catalogue to perform a hierarchical Bayesian inference

(Sec. 1.4.3) that accounts for observational biases (e.g., that heavier sources are easier

to detect). This statistical analysis is hierarchical in the sense that one uses previ-

ous Bayesian measurements of the binary BH source parameters to then measure said

hyperparameters [402, 403]. The population model used could be as in the previous

approach such that the distribution is known only at discrete values of the hyperparam-

eters, but this would allow only for single posterior evaluations for relative comparisons

(e.g., via Bayes factors) and leave some of the hyperparameters unconstrained; (see,

e.g., Refs. [502, 510] for examples of this approach).

On the other hand, a population model that can be continuously evaluated across

the population-level parameter space can be used to make Bayesian measurements of

the hyperparameters (again, see Sec. 1.4.3 for details). This requirement typically

necessitates simple, quick-to-evaluate parametric forms with statistical independence

between source parameters (see, e.g., the models used in Refs. [83, 84, 85] and in

Chapters 3 and 4) to enable efficient sampling of the hierarchical posterior [Eqs. (1.80,
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1.85)]. The disadvantage of this approach is that it is inherently phenomenological

with a discretionary selection of the employed functional forms. Recent work has

sought to improve parametric population models by addressing potential correlations

between mass and spin parameters [85, 497, 511] and assessing the suitability of spin

parametrizations [421, 455, 456] since accurate inference requires appropriate models

[496]. Along other lines, the flexibility of population analyses can be improved with

semi-parametric and non-parametric models [457, 512, 513, 514, 515].

Previous studies have focused on combining the simulation-based and parametric

approaches: an emulator constructed with sufficient accuracy to rapidly synthesize pre-

dictive distributions over the hyperparameter space can be adopted in place of discrete

simulations or parametrized models in the Bayesian inference pipeline. Such models

leverage the advantages of efficient hyperposterior sampling and direct astrophysics-

to-GW data comparison provided by each approach.

A first step in this direction within the context of GW population inference was

taken in Ref. [404] (see also Ref. [516]). Compressed principal components of binned

simulation data were emulated over low- (typically one- or two-) dimensional source-

and population-level parameter spaces using GPR. However, this emulation approach

was shown to be unsuitable for extension to more complex higher-dimensional mod-

elling scenarios due to poor predictive accuracy and infeasible computational require-

ments [517, 518]. These issues were tackled in Ref. [519] by employing deep-learning

techniques to construct simulation-informed population models; in particular, the con-

ditional density estimator takes the form of a generative neural network known as a

normalizing flow [520, 521, 522]. In general, neural networks are powerful tools that

offer greater flexibility when employed as functional emulators. In their case, normal-

izing flows prompted population studies considering the scenarios of primordial BHs
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[523] and mixture models between isolated and dynamical evolution [501].

In this work, we develop complementary deep-learning techniques that build on the

advancements of Refs. [404, 519] by pushing the emulated parameter space dimen-

sionality and introducing new neural network applications. We employ fully connected

deep neural networks (DNNs; also known as multilayer perceptrons) to act as the pop-

ulation model and to capture the effect of GW detection biases on the population of

observed binary BH events (see also Refs. [410, 411, 412, 414] for machine-learning

approaches to estimating selection effects).

Motivated by evidence for large masses in the observed GW catalogue, we apply

these deep-learning techniques to binary BH populations containing hierarchical merg-

ers, in which component BHs may be the remnants of (multiple) previous mergers [332].

These so-called “higher-generation” BHs may explain the outlier properties of events

such as GW190412 [56, 524, 525, 526, 527], GW190521 [58, 59, 333, 458, 528, 529,

530, 531] (though see also Refs. [532, 533], which find that these events may in fact

be consistent with the population), and GW190814 [57, 534, 535, 536]. The presence

of hierarchical mergers in binary BH populations is crucially dependent on the escape

speeds of dynamical host environments (e.g., young star clusters, globular clusters, and

nuclear star clusters [333]; see Sec. 1.2.3) and the magnitudes of gravitational recoils

received due to the anisotropic emission of GWs [537, 538, 539].

Our DNN population model learns from simple simulations of cluster-like environ-

ments [431, 540], which account for the retention and ejection of merger remnants

due to GW kicks. We model the joint distribution of four source parameters — two

masses and two effective spins, which present identifiable features due to the influence

of higher-generation BHs [429, 541] — and six population-level (hyper-) parameters.

These hyperparameters control the population properties of first-generation BHs born
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in stellar collapse, the binary pairing process, and host escape speeds. We also train a

DNN to predict the fractional contributions of the population-dependent first-, mixed-,

second-, and higher-generation binary BHs.

We illustrate our procedure schematically in Fig. 5.1, in which each element repre-

sents a single modelling process, arrows direct the one-way flow of information between

them, and rows group distinct stages of our pipeline. The first row represents simu-

lations — controlled by population-level parameters — of binary BH mergers char-

acterized by a complete set of source-level parameters that are condensed into a set

of modelled parameters. In the second row we list the postprocessing performed on

the simulated data. The outputs for each simulation are the joint probability density

of modelled source-level parameters conditioned on the population-level parameters,

the expected fractional number of detectable sources, and the relative contributions

from each hierarchical merger generation to the total population, as listed in the third

row. These discrete sets of evaluations are transformed into continuous functions using

deep learning in the fourth row. These DNN functional emulators, listed in the fifth

row, are employed in conjunction with data from the GW events detected to date to

perform a hierarchical Bayesian inference and ultimately constrain the population of

merging stellar-mass binary BHs, as illustrated in the final row. Each ingredient and

the relevant symbols are defined throughout the paper.

5.2 Hierarchical-merger simulations

We model the retention and ejection of merger remnants in “clusters” — which

here simply refers to a collection of BHs in an environment with constant escape speed

vesc. We use the setup described in Ref. [540] (see Refs. [524, 541] for additional
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Figure 5.1: Schematic diagram of our population modelling and inference
procedure. Arrows indicate information that is passed from one element
to another, and elements that occur at the same stage of the pipeline are
grouped into rows. The first row represents simulations of binary BH merg-
ers, while the second lists postprocessing applied to the simulated data to
produce the training data in the third row. We leverage deep learning,
shown in the fourth row, by constructing DNNs to act as functional emu-
lators for key ingredients of GW population inference, indicated within the
fifth row. In the final row, the deep-learned selection function and popu-
lation model are combined with data from GW catalogues to feed into a
hierarchical Bayesian inference which, along with a third DNN to predict
branching fractions between subpopulations, is used to make conclusions
about the underlying distribution of merging stellar-mass binary BHs.
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Parameter Symbol Range
P

op
u
la

ti
on

,
λ

Primary pairing slope α [−10, 10]

Secondary pairing slope β [−10, 10]

1g mass slope γ [−10, 10]

Escape-speed slope δ [−10, 10]

Maximum 1g mass mmax [30M�, 100M�]

Maximum 1g spin χmax [0, 1]

S
ou

rc
e,
θ Source-frame chirp mass Mc [5M�, 105M�]

Mass ratio q [0, 1]

Effective aligned spin χeff [−1, 1]

Effective precessing spin χp [0, 2]

Table 5.1: Parameters in our model of hierarchical binary BH merger
populations, the symbols we use to identify them, and their bounds. The
population parameters λ = {α, β, γ, δ,mmax, χmax} determine the shape of
the distribution of first-generation BHs and the properties of the host cluster
that can lead to repeated mergers. The bounds on the power-law indices
are broad such that the range of training simulations can incorporate more
restrictive prior bounds. The source parameters θ = {Mc, q, χeff , χp} are
measured by the LVC when detecting individual GW events. The bounds
on chirp mass encompass the extrema of the GW catalogue posteriors and
are only used when evaluating the population-level likelihood, as described
in Sec. 5.3.1.

applications and Ref. [431] for the code implementation). Our model depends on six

population parameters, λ = {α, β, γ, δ,mmax, χmax}. These are reported in Table 5.1

and described below. In particular, the quantities γ, mmax, and χmax parametrize the

population of first-generation (1g) BHs, while the quantities α, β, and δ parametrize

the pairing and merger process.

This setup is an excellent test bed for our deep-learning explorations because these

simulations are not computationally intensive (thus allowing us to explore different

DNN architectures) while at the same time providing a binary BH population that
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ultimately is not parametric (thus making our emulation approach essential).

5.2.1 Simulation design

We generate Nλ = 1000 sets of population parameters λ using Latin hypercube

sampling to efficiently cover the higher-dimensional space [542] (see, e.g., Fig. 2 of Ref.

[404] for a visual representation.) With this design, the hyperparameter space (that is,

the space of population-level parameters) is split into Nλ equally probable subintervals

in each dimension. From the N6
λ possible choices, a total of Nλ unique coordinates

are drawn such that, for each of the six dimensions, only one of the Nλ subintervals is

selected. In general, there are multiple possible realizations of this random draw; we

choose to maximize the minimum distance between samples, whose values are chosen

as the centres of the intervals. Our simulation design is generated with pydoe1.

5.2.2 First-generation black holes

Each cluster is seeded with N1g = 5000 BHs (this number is chosen to ensure

convergence of the resulting merger distributions; see Ref. [540]). Their masses m1g

are drawn from a truncated power-law distribution

p(m1g|γ,mmax) ∝


mγ

1g if 5M� < m1g < mmax ,

0 otherwise ,

(5.1)

with slope γ ∈ [−10, 10], maximum cutoff mmax ∈ [30, 100]M�, and a fixed lower

boundary of 5M� (thus only describing black holes and not neutron stars). Pair-

instability [543] and pulsation pair-instability supernovae (PISN) [544] prevent the

1pythonhosted.org/pyDOE.

https://pythonhosted.org/pyDOE
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formation of stellar-mass BHs between about 50 and 120M� [322, 325, 327]. This

prediction is supported by current GW observations, which point to a decrease of the

merger rate at those masses [85]. The precise details of the pair-instability mass gap

are uncertain and depend on poorly constrained stellar-physics processes such as the

nuclear reaction rates [325, 326, 327], rotation [327, 545], accretion [546, 547, 548, 549,

550], winds [551, 552], envelope retention [553, 554, 555] and dredge-up episodes [556].

We thus allow for a broad range of values of mmax and aim to infer it from the GW

data.

The BH spin directions are drawn from an isotropic distribution, as expected in

dynamical environments. The dimensionless spin magnitudes are uniform in [0, χmax],

where the maximum natal spin is χmax ∈ (0, 1). The largest spin formed from stellar

collapse is uncertain and difficult to model; see Refs. [329, 470]. The spin model we

use for first-generation BHs is therefore not necessarily physically well-motivated but

is used for illustrative purposes.

5.2.3 Repeated mergers

At each hyperparameter coordinate, we simulate Ncl = 500 clusters with escape

speeds vesc drawn according to

p(vesc|δ) ∝


vδesc if 0 km s−1 < vesc < 500 km s−1 ,

0 otherwise ,

(5.2)

where δ ∈ [−10, 10]. Large positive (negative) values of δ give escape-speed distribu-

tions skewed towards the maximum (minimum) value of vesc. For context, the escape

speed of a typical globular cluster is 10–100 km s−1, while those of nuclear star clus-
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ters are up to an order of magnitude larger [557, 292, 558]; we take an upper limit

of 500 km s−1 to accommodate these larger escape speeds. Cases with large, negative

δ essentially describe isolated stellar evolution, where repeated mergers do not take

place (though we always assume isotropically distributed spins, not partial alignment

as expected in isolated binary evolution [331, 465, 330]). On the other hand, δ = 0

corresponds to a flat vesc distribution, favouring all environments equally.

The key ingredient in our populations is the presence of so-called “higher-generation”

BHs that have undergone multiple mergers due to remnant retention in the host clus-

ter. We form circular binary systems by selectively pairing cluster members according

to

p(m1|α) ∝ mα
1 , p(m2|β,m1) ∝


mβ

2 if m2 ≤ m1 ,

0 otherwise ,

(5.3)

where m1 ≥ m2 are the component BH masses. As for the other power-law indices, we

again take α, β ∈ [−10, 10]; this broad range is taken in each case so that the simu-

lated populations encompass the prior bounds used later in our statistical inference of

Sec. 5.3.1. One by one, BH pairs are drawn from the collection according to Eq. (5.3)

and the properties of their merger remnants are estimated (assuming a uniform sam-

pling of the orbital phase) with the implementation of Refs. [435, 430], which collects

various numerical relativity fitting formulae [537, 538, 559, 560, 561, 562, 563, 564].

Upon merging, the remnant BHs receive a gravitational recoil [565, 566]. If the mag-

nitude vkick of this kick velocity exceeds the escape speed of the host cluster, i.e.,

vkick > vesc, the remnant BH is removed and does not merge again. Otherwise, it

remains inside the cluster and can undergo subsequent mergers. The estimated rem-
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nant mass and spin magnitude are retained, while the spin directions are resampled

isotropically. This pairing, merger and ejection procedure is iterated until a single BH

remains.

For each merger we record the source parameters θ = {Mc, q, χeff , χp}. In par-

ticular: Mc = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass — the best-measured mass

parameter for compact binaries in GWs, as it governs the leading-order evolution of

the orbital frequency [see Eq. (1.14)]; q = m2/m1 ≤ 1 is the mass ratio; χeff ∈ [−1, 1]

is the effective aligned spin [346]; and χp ∈ [0, 2] is a suitable parameter encoding the

dominant effect of orbital-plane precession — we use the augmented definition of Ref.

[426] which consistently averages over the precessional motion including effects from

both component spins. While this definition of χp is still a frequency-dependent quan-

tity over the inspiral timescale, our recent work has shown that the influence of the

GW reference frequency at the population level is currently subdominant compared to

measurement errors [421] — see Chapter 3. In the simulated populations we measure

χp at the reference GW frequency of 20 Hz.

Additionally, we record whether each merger is that of two first-generation BHs

(1g+1g) that produces a second-generation (2g) remnant, a first- and second-generation

BH (1g+2g), or two second-generation BHs (2g+2g), or whether it contains a compo-

nent BH of higher generation (>2g). From these, we compute the fraction of mergers

in each generation: f1g+1g, f1g+2g, f2g+2g, and f>2g = 1− f1g+1g − f1g+2g − f2g+2g.

5.2.4 Cosmic placement

The distribution of sources is assumed to be isotropic over the sky, inclination and

polarization angle. We do not infer the redshift distribution of BH binaries but consider

it fixed, i.e., independent of the hyperparameters λ. Each merger is placed at a redshift
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z according to a distribution that is uniform in comoving volume Vc and source-frame

time, i.e.,

p(z) ∝ 1

1 + z

dVc

dz
. (5.4)

An immediate generalization of this work would include taking into account the longer

assembly times of higher-generation binaries (e.g., Ref. [334]) via their redshift dis-

tribution. This can be implemented with an additional hyperparameter and will be

tackled in future work.

Ostensibly, z ∈ (0,∞), but in practice, there is a detector-dependent horizon, zmax,

beyond which binary BH mergers are not observable. To find a conservative zmax, we

consider a series of binaries with aligned maximal spins, equal masses, and optimal

orientation with respect to a single detector (overhead and face on). These are the

loudest sources for a given total mass and redshift. We compute SNRs as described in

Sec. 5.3.3 and find that the entire mass range becomes subthreshold above an upper

bound zmax = 2.3, which we thus take as the maximum of the redshift distribution (in

agreement with Appendix E of Ref. [84]).

5.2.5 Resulting populations

The above prescription allows us to transform a simple parametrized description of

first-generation BH populations into a complex numerical distribution containing hi-

erarchical mergers. The combined set of hyperparameters λ = {α, β, γ, δ,mmax, χmax}

are very interdependent, and changes in their values cause large variations in the dis-

tributions of source parameters θ = {Mc, q, χeff , χp}. The total set of simulated events

is
{
{θij}Nh(λi)

j=1

}Nλ
i=1

, where Nh(λi) is the number of mergers occurring in the simulation
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with hyperparameter coordinate λi. The total number of mergers occurring at a given

hyperparameter coordinate depends on the distribution of escape speeds, determined

by δ. For the numerical setup adopted here, it ranges from minλNh(λ) = NclN1g/2 =

1.25 × 106 (when each remnant BH is ejected so only first-generation mergers occur)

to maxλNh(λ) = NclN1g − 1 ≈ 2.5 × 106 when BHs are repeatedly paired with the

same single retained remnant, i.e., a “cluster catastrophe” [541, 567]) and the upper

range is populated by simulations with larger numbers of repeated mergers. This is

demonstrated in Fig. 5.2, where we plot the branching fractions of different merger

generations as a function of the total number of mergers.

Four representative cases among the set of Nλ = 1000 simulations we performed are

illustrated in Fig. 5.3 and labelled based on the qualitative properties of the resulting

source distributions: broad masses, narrow mass ratio, broad mass ratio, and repeated

mergers.

If clusters are preferentially formed with larger escape speeds, many remnants are

retained and proceed to take part in hierarchical mergers, leading to multiple modes

in the mass distributions. This is the case for the red curves (repeated mergers) in

Fig. 5.3, where δ = 5.1. Since the sharp initial mass function (IMF) (γ = 5.5) forms

first-generation BHs with masses that are all very close to the maximum mmax = 70M�,

hierarchical mergers appear as distinct peaks in the mass distributions. The first

generation of mergers has m1 ≈ m2 ≈ mmax, giving Mc ≈ 50M�. Cross-generational

mergers also occur. For example, there is a 1g+2g peak; the peak does not occur at

q = 0.5 because a fraction 1− ε ≈ 5% of mass is lost via GWs [339] such that second-

generation BHs have mass of approximately 2εmmax, implying q = 1/(2ε) ≈ 0.53 and

Mc ≈ 80M�. Similarly, for a 1g+3g merger, one has q ≈ 1/[ε(2ε + 1)] ≈ 0.36, which

explains the third peak observed in the red curves of Fig. 5.3.
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Figure 5.2: Fraction of mergers in our simulations from each binary gen-
eration as a function of the total number of mergers. The simulations are
separated into bins equally spaced in the total number of mergers and the
bin-averaged branching fraction of each binary generation — 1g+1g (blue),
1g+2g (orange), 2g+2g (green), and higher generations (red) — is plotted.
At the lower (upper) end, simulations are dominated by mergers between
first- (higher-) generation BHs.
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Figure 5.3: Example marginal distributions of chirp mass Mc, mass
ratio q, effective aligned spin χeff , and our precession parameter χp for
different population parameters λ = {α, β, γ, δ,mmax, χmax}. We select
four of our simulations to illustrate different features of the resulting bi-
nary BH distributions. In blue, we show a simulation with a popu-
lation of broad masses; λ = {−1.7, 1.7,−0.5,−3.4, 96M�, 0.57} In or-
ange, we show a simulation that results in a narrow range of mass ra-
tios; λ = {−8.8, 8.3, 6.8,−4.1, 40M�, 0.43} Conversely, we show in green
a simulation that results in a broad spread to unequal masses; λ =
{9.2,−9.8,−0.5,−4.0, 74M�, 0.50}. In red is a simulation resulting in a
population of repeated mergers; λ = {4.1, 3.1, 5.5, 5.1, 70M�, 0.37}.
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When more first-generation BHs are born with large spins, set by χmax, fewer

second-generation mergers occur due to the larger imparted recoils [539]. On the

other hand, if natal spins are small and repeated mergers do occur, the distribution

of effective spins features a sharp peak at χeff = 0 from first-generation mergers as

well as extended tails from high-generation mergers, as is the case for the red curve in

the third column of Fig. 5.3. The χeff distributions are always symmetric about zero

due to the assumption of spin isotropy. For the 1g+2g populations, the 2g BH spin is

approximately 0.7 [332] and, because in this case χmax = 0.37, is typically higher than

the spin of the 1g BH. In this limit, one has χp ≈
√

0.72 − 4χ2
eff ≈ 0.7 [429], explaining

the secondary peak in the χp distribution.

Whether higher-generation BHs pair with other BHs of equal generation or form

cross-generational binaries (e.g., 1g+2g) depends on the pairing slopes α and β. If

α, β, γ ≈ 0, then the first-generation mass distribution is broad and binary components

are selected with uniform probabilities leading to an extended range of mass ratios, as

seen in the blue “broad masses” curves of Fig. 5.3. If α, β � 0 (α, β � 0), the

heaviest (lightest) BHs are preferentially selected for both binary components, leading

to a heavier (lighter) first generation of approximately equal-mass binaries. If α � 0

and β � 0 (α � 0 and β � 0), then the lightest (heaviest) primaries and heaviest

(lightest) secondaries are paired, leading to mass-ratio distributions that are sharply

peaked at unity (broad and peaked at lower values), as seen in the orange “narrow

mass ratio” (green “broad mass ratio”) curve of Fig. 5.3. In the case of narrow mass

ratios, given the maximum first-generation mass mmax ≈ 40M� and since q ≈ 1, the

chirp mass peak is located at Mc ≈ 35M�.
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5.3 Enhancing population inference with deep learn-

ing

Our simplified population model is indicative of realistic applications where GW

events are modelled using, e.g., population-synthesis codes. As we will show, deep

learning is the ideal tool for such a scenario. First, we review the key ingredients that

enter our hierarchical Bayesian inference of GW data (Sec. 5.3.1). We then present our

method to model the population prior (Sec. 5.3.2) and selection effects (Sec. 5.3.3) using

deep learning. We use similar techniques to model the branching fractions between

different merger generations (Sec. 5.3.4).

5.3.1 Hierarchical Bayesian inference

Preliminaries

We now denote with ϑ ⊃ θ the full superset of the modelled source parameters

θ = {Mc, q, χeff , χp} that additionally contains the unmodelled parameters θ̄, e.g.,

redshift, sky location, inclination, etc. (cf. the notation θ, ϕ, and ψ, respectively, from

Sec. 1.4.3).

We approximate the sensitivity as constant within each observation period: the

combined first and second run (O1+O2) and the third run (O3). The correspond-

ing two-detector observing periods that enter the selection function of Eq. (1.90) are

TO1+O2 ≈ 166 days [60, 61] and TO3 ≈ 275 days [62, 64], respectively.

The priors on the parameters mmax and χmax are uniform over the ranges listed in

Table 5.1. The priors of the power-law indices α, β, γ, and δ are uniform over [−8, 8];

these prior bounds lie within the training data range and we checked that resulting
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posteriors are robust to more stringent constraints.

Factorization of the observed volume

While the integrals in Eq. (1.85) are formally defined over the entire domain of

source parameters, in practice they can be safely performed within the observable

volume Vh = {ϑ : z < zmax = 2.3}, beyond which the detection probability is zero, as

discussed in Sec. 5.2.4. Even if p(ϑ|λ) models the binary BH population outside of Vh,

as it appears in both the numerator and through σ(λ) in the denominator of Eq. (1.85),

one can safely assume that
∫
Vh
p(ϑ|λ)dϑ = 1.

Since it will be useful in Sec. 5.3.2, we define the a posteriori observed volume

Vp = {ϑ : p(ϑ|di) > 0 ∀i} ⊂ Vh as the subset of the observable volume beyond which all

single-event posteriors p(ϑi|di) vanish. For the events considered in this work we find

that Vp corresponds to Mc ∈ [5, 105]M�. For q, χeff , and χp, we maintain their natural

bounded domains ([0, 1], [−1, 1], and [0, 2], respectively). It will also be useful to

define the population prior of our modelled parameters θ normalized over the observed

volume,

p′(θ|λ) =
p(θ|λ)∫

Vp
p(θ|λ)dθ

. (5.5)

Since p(θ|λ) is assumed to be normalized over Vh, we can write this extra normalization

factor as

∫
Vp

p(θ|λ)dθ =
Np(λ)

Nh(λ)
≤ 1 , (5.6)

where Nh(λ) is the number of mergers occurring within the horizon volume Vh and

Np(λ) is the number of mergers occurring within the subset Vp ⊂ Vh, given population



152 Chapter 5 Simulation-based deep learning of gravitational-wave populations

parameters λ. For convenience, we refactor this term into the detection efficiency by

defining the selection function

σ′(λ) =
Nh(λ)

Np(λ)
σ(λ) . (5.7)

By separating the source parameters and noting that our population prior and

the PE prior over the unmodelled parameters are equal, i.e., p(θ̄|λ) = p(θ̄|H), the

hyperposterior in Eq. (1.85) may be written as

p(λ|{d}) ∝ p(λ)
n∏
i=1

1

σ′(λ)

∫
Vp

p(θi, θ̄i|di,H)
p′(θi|λ)

p(θi|θ̄i,H)
dθidθ̄i . (5.8)

Since the PE prior is placed on detector-frame masses, we must convert the prior on

detector-frame chirp mass Mdet
c to the source frame. In particular, we have

p(θ|z,H) = p(Mdet
c , q, χeff , χp|z,H)

∣∣∣∣∂Mdet
c

∂Mc

∣∣∣∣ . (5.9)

Since the Jacobian is |∂Mdet
c /∂Mc| = 1 + z and the prior on detector-frame masses is

independent of the prior on redshift for the PE results we use below, we have p(θ|z,H) =

p(Mdet
c , q, χeff , χp|H)(1 + z).

Event samples

We select the confident binary BH detections made during the first (O1), second

(O2) and third (O3) observing runs, employing a threshold minimum FAR < 1 yr−1

across all search analyses. This results in a catalogue of n = 69 binary BH events. For

the events in O1 and O2, we use samples2 from the reanalysis of Ref. [450] because the

2dcc.ligo.org/LIGO-P2000193/public.

https://dcc.ligo.org/LIGO-P2000193/public
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precession parameter χp depends on the azimuthal spin angles whose posteriors were

not released in GWTC-1 [61]. For the events in O3, we take the posterior samples

combining analyses with waveforms including both precession and higher-order modes

as provided by the GWTC-23 [62], GWTC-2.14 [63], and GWTC-35 [64] data releases.

For each event we draw prior samples for {Mdet
c , q, χeff , χp} and compute the prior

density p(Mdet
c , q, χeff , χp|H) using Gaussian kernel density estimates (KDEs), as imple-

mented in scipy [568] but modified to enforce reflective boundary conditions [569, 570].

Each KDE is then evaluated on the single-event posterior samples. The hierarchical

posterior is sampled using dynesty [387] and bilby [388].

5.3.2 Population model

The results of our simulations are lists of binary BH mergers, characterized by

source parameters θ = {Mc, q, χeff , χp}, at each of the Nλ = 1000 population parameter

coordinates, λ = {α, β, γ, δ,mmax, χmax}. Our approach to modelling the resulting

population distribution p′(θ|λ) employs a combination of probability-density estimation

and regression algorithms.

Density estimation

At each of the hyperparameter locations {λi}Nλi=1, we evaluate the conditional pop-

ulation density with a Gaussian KDE. To efficiently evaluate p′(θ|λi) with sufficient

resolution in the four-dimensional space of source parameters, we use a version of the

convolution-based implementation in kdepy [571], which we modify to enforce the pa-

rameter limits (Table 5.1) with reflective boundary conditions [569]. With this method,

3gw-openscience.org/GWTC-2.
4PrecessingSpinIMRHM from gw-openscience.org/GWTC-2.1.
5C01:Mixed from gw-openscience.org/GWTC-3.

https://www.gw-openscience.org/GWTC-2/
https://www.gw-openscience.org/GWTC-2.1/
https://www.gw-openscience.org/GWTC-3/
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density estimations of multivariate data with millions of samples evaluated on millions

of points take seconds on a standard, off-the-shelf machine, compared to hours with

standard KDE routines (the evaluation points must, however, lie on a linearly spaced

Cartesian grid that bounds the data extrema). Each dimension is individually scaled

with bandwidths determined by the Improved Sheather–Jones (ISJ) plug-in selection

rule [572, 573]. The ISJ algorithm does not make the assumption of normality on the

underlying distribution and, as such, is more robust when determining optimal band-

widths for non-Gaussian multimodal distributions. We evaluate each of the Nλ KDEs

on a linearly spaced Cartesian grid, including the parameter bounds, with 21 points in

each axis.

Regression with a deep neural network

Elucidating the scale of the regression problem, there are 214 ≈ 2 × 105 KDE

evaluations estimating p′(θ|λ) over the combined ten-dimensional vectors of source and

population parameters (θ, λ) at each of theNλ = 1000 hyperparameter locations. While

the KDEs approximate the Nλ functions {θ 7→ p′(θ|λi)}Nλi=1, we must also interpolate

over the population parameters to find an accurate mapping (θ, λ) 7→ p′(θ|λ).

To achieve this result, we make use of a fully connected DNN implemented with

tensorflow [574, 575]. The network performs a regression of the KDE values of

p′(θ|λ) over the space of (θ, λ) coordinates. As a preprocessing step, we normalize all

coordinates (θ, λ) to a unit hypercube using the limits given in Table 5.1, while the

values of p′(θ|λ) are similarly scaled between zero and their maximum over the grid and

simulations. The input layer has dim θ + dimλ = 10 neurons, while the output layer

has one neuron with enforced non-negativity corresponding to the predicted value of

the probability density. Between the input and output layers, the network architecture
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Layer Neurons Activation Parameters

Input 10 ... 0

Dense 1 128 RReLU 1,408

Dense 2 128 RReLU 16,512

Dense 3 128 RReLU 16,512

Dense 4 128 RReLU 16,512

Dense 5 128 RReLU 16,512

Output 1 Absolute value 129

Total 67,585

Table 5.2: Architecture of the DNN that emulates the simulated popula-
tions by predicting the conditional density p′(θ|λ) of the source parameters
θ given population-level parameters λ. Each row represents a single layer
of the network and lists the number of neurons in the layer, the activation
function of those neurons (RReLU for the hidden layers and absolute value
for the final output), and the corresponding number of free parameters.

consists of five hidden layers, each with 128 neurons. We summarize the network

architecture in Table 5.2. The number of parameters in a given layer is given by the

number of weights (equal to the product of the number of neurons with that of the

preceding layer) plus the number of biases (equal to the number of neurons).

We use randomized leaky rectified linear units (RReLUs) [576] in each layer. This

modifies the standard rectified linear unit (ReLU) activation function, that is given by

ReLU(x) := max(0, x), in two ways. First, leaky ReLU activation functions are maps

x 7→ max(0, x) + min(0, ax), where a ∈ [l, u] is a parameter fixed to a small number;

i.e., the positive region is linear with unit slope while the negative region is linear with

slope a. Second, the randomized leaky variant RReLU samples a uniformly in [l, u]

during training and fixes a = (l + u)/2 when making predictions (we keep the default

values of l = 1/8 and u = 1/3 [576]). Empirically, we find that, among other ReLU

variants and nonlinear activations, RReLU gives the best predictive performance while
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reducing overfitting to the training data.

We split the Nλ = 1000 simulations into a training data set of 900 runs and a

validation set of 100 runs. The validation sample is unseen by the training process

except to assess the network performance. The training data input to the network,

which is randomly shuffled at each iteration, thus consists of approximately 1.75× 108

values of the ten-dimensional vector (θ, λ) and the corresponding KDE estimates of

p′(θ|λ). The network is trained using the Adam optimizer [577], the mean absolute

error (MAE) loss function, a learning rate of 10−4, and batch size equal to 0.01% of

the total number of training data points. Training is performed for 104 epochs on an

NVIDIA A100 Tensor Core GPU, taking about four days. With this setup, the number

of training epochs is sufficient to ensure convergence of the MAE; the average gradient

of the (smoothed) validation MAE over the penultimate 100 epochs is less than 0.1%

that of the first 100.

When making predictions with the trained DNN, the values are first rescaled from

the unit interval to the probability-density parameter space. While the predictions are

approximately normalized, the network does not enforce unit normalization. Therefore,

we estimate normalization factors
∫
p′(θ|λ)dθ by numerically integrating the predicted

distributions.

In Fig. 5.4, we summarize the training procedure and predictive performance of our

DNN population model. The convergence of the MAE loss function for the training

and validation samples is plotted in the top panel. The DNN fits slightly better to the

training data — the validation MAE being, on average, about 1.2 times larger — but

there is no significant overfitting.

In the bottom panel of Fig. 5.4, we quantify this statement by comparing the

predictive accuracy of the trained population model using the Hellinger distance [578],
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Figure 5.4: Top panel: loss functions versus epoch for the training
(blue) and validation (orange) data of the population density DNN p′(θ|λ).
Smoothed versions are overplotted in bold. Bottom panel: distribution
across all simulations of the Hellinger distances dH between the true KDE
evaluations of p′(θ|λ) and those predicted by the DNN. The medians and
90% intervals of dH are plotted as vertical dashed lines and listed explicitly.
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a metric dH over the space of probability densities that measures the “distance” between

two distributions. For two probability densities p and q, it is given by

dH(p, q)2 =
1

2

∫ [√
p(x)−

√
q(x)

]2

dx . (5.10)

Here, dH has the desirable properties of being symmetric and bounded in [0, 1], with

dH(p, q) = 0 only when p ≡ q and dH(p, q) = 1 when p and q have disjoint supports (see,

e.g., Appendix C of Ref. [579] for a physics-oriented summary of the Hellinger distance).

For each of our simulations we compute the distance between the KDE evaluation and

the DNN prediction for the probability density. While the mild overfitting presents

itself as a small number of outliers at larger values of dH in the validation distribution,

both the training and validation subsets have median values of approximately 0.06 and

are consistent with each other.

In Fig. 5.5 we illustrate example predictions from our deep-learned population

model. For a given set of population-level parameters λ, the DNN predicts the value

of the joint four-dimensional probability density over θ = {Mc, q, χeff , χp}. For three

validation simulations, we plot the predicted values of p′(θ|λ) (solid lines) along with

the true KDE evaluations for comparison (circle markers), numerically marginalizing

to one-dimensional distributions for the purpose of visualization.

The first example (red) has good predictive accuracy, with dH = 0.10. Here, we use

the same distribution labelled “repeated mergers” in Fig. 5.3, with parameters α = 4.1,

β = 3.1, γ = 5.5, δ = 5.1, mmax = 70M�, and χmax = 0.37. Here, the larger escape

velocities and sharp mass function and pairing probabilities lead to distinct peaks due

to higher-generational mergers. Even though the Hellinger distance of this simulation

is greater than the median value, the one-dimensional marginal predictions present
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Figure 5.5: True KDE evaluations (circle markers) of the population den-
sity p′(θ|λ) compared against the DNN population model predictions (solid
lines) for three validation simulations. The full four-dimensional distribu-
tions are marginalized to each one-dimensional event-level parameter (left to
right: chirp mass Mc, mass ratio q, effective aligned spin χeff , and effective
precessing spin χp) for the purpose of visualization. In blue, we show the
validation simulation that has the worst predictive accuracy, with a Hellinger
distance of dH = 0.30 and population-level parameters α = 6.3, β = −7.3,
γ = 1.8, δ = 8.7, mmax = 46M�, and χmax = 0.01. In green, we show the
validation simulation with the smallest Hellinger distance dH = 0.02 and
α = −1.9, β = 5.2, γ = 0.5, δ = −9.4, mmax = 67M�, χmax = 0.35. In red,
we show a validation simulation (as in Fig. 5.3) with dH = 0.10 and whose
distribution contains distinct features due to repeated mergers.
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excellent matches to the true validation data, accurately capturing all sharp features.

The second case (max dH, in blue) is a very conservative bound on the performance

of our DNN, taking the validation simulation with the largest value of the Hellinger

distance dH = 0.30 (i.e., that with the worst predictive accuracy). The population

parameters are α = 6.3, β = −7.3, γ = 1.8, δ = 8.7, mmax = 46M�, and χmax = 0.01.

While the distributions of the spin parameters χeff and χp are still fairly well captured,

the predictions in the mass distributions suffer from larger errors, though the main

features have been learned. The small value of the maximum natal spin χmax = 0.01

leads to sharply peak effective spins χeff , χp ≈ 0, while the pairing process generates

smaller mass ratios. We stress that this is the worst case among the entire validation

set and a rather extreme outlier (cf. Fig. 5.4). Figure 5.5 presents the marginalized

distributions, while the model predicts the full four-dimensional density, meaning errors

over the full source parameter are propagated to the one-dimensional marginals.

The third case (min dH, in green) represents the best predictive accuracy of our

population model, with dH = 0.02. In this validation simulation, the hyperparameters

are α = −1.9, β = 5.2, γ = 0.5, δ = −9.4, mmax = 67M�, and χmax = 0.35, which

produces equal masses and a unimodal distribution in the joint four-dimensional space

of source parameters. Unsurprisingly, distributions with a simple feature set like this

are easier to learn by our DNN population model.

5.3.3 Selection function

Detection probability

We assume sources are distributed uniformly in sky location, inclination, and polar-

ization angle. We estimate p(det|ϑ) with the widely used single-detector semi-analytic
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approximation of Refs. [416, 580] (see Sec. 1.4.3), as implemented in the gwdet

Python package [418], which relies on computing the SNR of optimally oriented sources

with the same intrinsic parameters. This is estimated using pycbc [581, 582], the im-

rphenompv2 waveform approximant [452, 583, 584], and noise curves representative

of the LIGO detector performance during O1O26 and O37 [145]. While the analytic

marginalization of Refs. [416, 580] is, strictly speaking, only valid if one neglects

spin precession and higher-order GW modes [recall that we assumed non-spinning or

aligned-spin sources in Eq. (1.89)], the impact of these additional effects is subdomi-

nant [410]. Their inclusion requires further modelling which, as we previously saw, has

recently been tackled using machine-learning techniques [410, 412]; we plan to include

these refinements in future versions of our population-inference pipeline. We employ a

SNR threshold of 8 [415] and thus set p(det|ϑ) = 0 for all subthreshold binaries.

We compute the detection probabilities for all mergers in each simulation using the

numerical expectation values and time averaging in Eqs. (1.88, 1.90).

Regression with a deep neural network

To evaluate the (refactored) detection efficiency at arbitrary values of the popula-

tion parameters, the function σ′(λ) must be emulated using the discrete evaluations at

{λi}Nλi=1. Here, we also use a DNN with tensorflow [574, 575]. The network architec-

ture consists of an input layer with dimλ = 6 neurons and a linear output layer with

one, corresponding to the predicted value of ln σ′(λ). We add three hidden layers with

128 neurons each and RReLU activation. This network architecture is summarized in

Table 5.3.

We split the hyperparameter coordinates into the same 90% training and 10% vali-

6Early high from dcc.ligo.org/LIGO-P1200087-v47/public.
7LIGO Livingston from dcc.ligo.org/LIGO-T2000012/public.

https://dcc.ligo.org/LIGO-P1200087-v47/public
https://dcc.ligo.org/LIGO-T2000012/public
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Layer Neurons Activation Parameters

Input 6 ... 0

Dense 1 128 RReLU 896

Dense 2 128 RReLU 16,512

Dense 3 128 RReLU 16,512

Output 1 ... 129

Total 34,049

Table 5.3: Architecture of the DNN that predicts the logarithmic selection
function lnσ′(λ) as a function of the population-level parameters λ. Each
row represents a single layer and lists its number of neurons, the activation
function used, and the corresponding number of free parameters. All hidden
layers employ RReLU nonlinearities.

dation simulations as in Sec. 5.3.2, though note that the training data here consist only

of the hyperparameters λ rather than the joint vector (θ, λ). As a preprocessing stage,

we again normalize the input values of {λi}Nλi=1 to a unit hypercube using the ranges in

Table 5.1 and train on the output values of {lnσ′(λi)}Nλi=1, which are normalized to the

unit interval according to the extrema across the simulations. Predictions are rescaled

back to the relevant parameter space. We use Adam optimization [577] with a learning

rate of 10−3 to minimize the mean squared error (MSE) loss function. At each epoch,

the training data are shuffled into batches containing 1% of the training data. We

train the network for 2000 epochs on a single Intel Core i5-8365U CPU, which took

approximately four minutes. The training of this DNN is significantly quicker than

that of p′(θ|λ) since it has input dimensionality dimλ = 6, corresponding to a much

smaller training sample size of 900 and a smaller network architecture.

The performance of our DNN to predict ln σ′ is reported in Figs. 5.6 and 5.7. In the

top panel of Fig. 5.6, we display the convergence of the loss function over the training

epochs; the average gradient of the (smoothed) validation MSE over the final 100 epochs
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Figure 5.6: Top panel: loss function over epochs for the training (blue)
and validation (orange) data of the DNN predicting the refactored detection
efficiency σ′(λ). Bottom panel: relative error between the true and predicted
values of lnσ′. The medians and 90% intervals of the errors are plotted as
vertical dashed lines. They are also listed explicitly, as are the magnitudes
of the relative errors.
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is . 0.5% that over the first 100. While there is some overfitting to the training data,

we verify the effect is mild, as follows. In the bottom panel, we display the relative

error between the true and DNN-predicted values of ln σ′. Since the median and 90%

symmetric interval for the validation and training errors are 0.1+3.2
−1.8% and 0.1+3.8

−2.7%,

respectively, both are consistent with being centred on and symmetric about zero, i.e.,

the DNN introduces no systematic biases. The magnitudes of the relative errors for

the validation and training sets are consistent with each other and typically less than

or close to 5%; the medians and 90% intervals are 0.8+2.5
−0.8% and 1.2+3.1

−1.1%, respectively.

In Fig. 5.7, we show the dependence of the DNN selection function on each of the

hyperparameters for the same three example simulations as in Fig. 5.5. The true values

of ln σ′(λ) are shown with circle markers. The predictions of the DNN are given by

the solid lines, where in each panel we vary a single hyperparameter while keeping the

others fixed to the values corresponding to each simulation. For all simulations, σ′ is

an increasing function of both γ — the power-law index of 1g BHs — and mmax —

the maximum 1g mass; larger γ implies a greater number of BHs born with masses

closer to the maximum mmax, while heavier sources emit louder signals and are thus

easier to detect (though there is also a compromise with the frequency-dependent —

and therefore, mass-dependent — detector sensitivity). The simulation containing

repeated mergers (red) consistently features higher values — implying a larger fraction

of detectable mergers in the underlying population — due to the larger average binary

mass.

The mismatch for the least accurate hyperparameter coordinate of the population

model (max dH, blue) is visible in the offset between truths and predictions. Here, the

selection function also depends on α and β, which determine the primary and secondary

pairing probabilities. For this simulation, the first-generation mass slope, γ = 1.8 is
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Figure 5.7: Example evaluations of the DNN selection function lnσ′(λ) at
the same three hyperparameter coordinates λ displayed in Fig. 5.5: a sim-
ulation containing repeated mergers (red), and those with the least (blue)
and most (green) accurate predictions for the population model DNN. The
true value for each simulation is displayed as a circle marker, while pre-
dictions made by the DNN are solid lines. In each panel, we vary a single
hyperparameter, while the others are fixed to values in the three simulations.
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quite broad. A wider range of masses implies that a wider range of mass ratios are

possible when selecting the BHs in the binary pairing procedure. Higher (lower) values

of α (β) lead to higher (lower) primary (secondary) masses and more extreme mass

ratios, thus decreasing the detectability. Though repeated mergers occur due to a high

δ = 8.7, they are preferentially of mixed generations, and therefore, larger δ also leads

to lower detectability.

For the validation simulation with the highest population model accuracy (min dH,

green), first-generation masses are broad since γ = 0.5 and larger since mmax = 67M�

(compared to mmax = 46M� for the max dH case). Masses are paired equally since α =

−1.9 selects the lightest primaries and β = 5.2 selects the heaviest secondaries. The

greater prevalence of higher-mass sources with equal mass ratios results in a selection

function that is higher (corresponding to increased detectability in the binary BH

population) and flatter (with respect to all hyperparameters except γ and mmax, as

discussed).

5.3.4 Merger-generation fractions

As a final utilization of deep-learning techniques within GW population inference,

we train a DNN to infer the branching fractions fg of the merger generations g ∈

{1g+1g, 1g+2g, 2g+2g, >2g}, as defined in Sec. 5.2.3. It is important to note that,

unlike the case of branching ratios in mixture population models (e.g., Refs. [334, 501,

585, 586, 587]), these fractions are not hyperparameters themselves but are functions

of the hyperparameters λ. In particular, fg(λ) =
∫
p(θ|λ)Ig(θ, λ)dθ, where Ig(θ, λ) is

an indicator function that labels the merger generation, such that
∑

g fg(λ) ≡ 1. Our

application to the fraction of systems in each hierarchical generation is an example of

the more generic problem of constraining formation subchannels that enter a single
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Layer Neurons Activation Parameters

Input 6 ... 0

Dense 1 128 RReLU 896

Dense 2 128 RReLU 16,512

Dense 3 128 RReLU 16,512

Output 4 Softmax 516

Total 34,436

Table 5.4: Structure of the DNN that models the branching fractions
f1g+1g, f1g+2g, f2g+2g, and f>2g between the binary merger generations, where
1g (2g) denotes a first- (second-) generation component BH. The rows illus-
trate each layer of the network and report the number of neurons in each,
their activation functions (RReLU for the hidden layers and softmax for the
output layer), and the number of free parameters.

population.

We use the same training process and network architecture as in Sec. 5.3.3, with

one modification. Since the four branching fractions form a discrete distribution with

unit sum, the output layer here has four neurons and employs the activation function

softmax(x)i := exp(xi)/
∑

j exp(xj), where xi are the components of the input vector

x. The architecture of this DNN is summarized in Table 5.4.

In Fig. 5.8, we plot the converged MSE loss curves. We assess the accuracy of the

DNN predictions against the true generation fractions on the training and validation

data using the Hellinger distance, which, for discrete probability densities p and q, is

dH(p, q)2 = 1−
∑

i

√
piqi . (5.11)

The performances on training and validation subsets are consistent with each other,

representing a lack of overfitting. Both have median Hellinger distances of dH ≈ 0.01

with dH . 0.1 for most simulations. The enforced unit summation implies the branch-
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Figure 5.8: Top panel: loss functions over training epochs for the training
(blue) and validation (orange) data of the DNN predicting the branching
fractions f1g+1g, f1g+2g, f2g+2g, and f>2g. The actual loss curves are plotted
with shading and smoothed versions are overplotted in bold. Bottom panel:
Hellinger distances between the discrete distributions of the true and DNN-
predicted merger-generation branching fractions. The medians and 90%
confidence intervals are plotted as vertical dashed lines and listed explicitly.
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ing fraction emulator in fact has only three independent outputs despite predicting

four contributions, and in many of our simulations, one or more of the generation la-

bels has zero contribution (e.g., no higher-generation mergers when all remnants are

ejected from the host cluster). Both of these considerations produce a tendency for

small values of the Hellinger distance, which explains the skew towards dH . 0.01.

In Fig. 5.9, we display the dependence of the DNN to predict the branching frac-

tions fg(λ) on the hyperparameters λ for the same validation simulations reported in

Figs. 5.5 and 5.7. As in Fig. 5.7, the true values computed from the simulated data

are given by circle markers, while predictions made by the DNN are plotted as solid

lines where a single hyperparameter is varied while keeping the others fixed. We only

display the variation with the power-law indices {α, β, γ, δ} as we found each fg(λ) to

be independent of the maximum first-generation mass mmax and spin χmax for these

simulations. Each branching fraction depends most strongly on the distribution of

escape speeds — as determined by the power-law index δ — and the primary binary

component pairing probability index α, whereas the indices of the first-generation mass

distribution γ and the secondary component pairing β are less impactful.

When δ < 0, the host clusters all have small escape speeds, and therefore, the

branching fractions of sources with a remnant BH are close to zero, i.e., f1g+1g ≈ 1, as

seen in the rightmost column of Fig. 5.9. With a fixed negative δ, as in the case of the

green simulation, the branching fractions become independent of the other hyperparam-

eters as no repeated mergers take place. On the other hand, when δ becomes positive,

escape speeds are typically larger and repeated mergers can occur, so the contribution

to the population from first-generation-only binaries decreases, i.e., f1g+1g < 1.

Which binary generation then begins to dominate the population depends on the

BH pairing process. When heavier (lighter) primary components form binaries due
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Figure 5.9: Example evaluations of the DNN predicting the binary merger-
generation branching fractions fg(λ), g ∈ {1g + 1g, 1g + 2g, 2g + 2g, > 2g}
(from top to bottom rows), as a function of the hyperparameters λ. The
results for hyperparameters taken from three illustrative simulations as in
Fig. 5.5 — repeated mergers (red), and least and most accurate popula-
tion predictions (max dH in blue and min dH in green, respectively) — are
presented. The true values of the generation fractions are plotted as circle
markers, whereas DNN predictions are given by solid lines. In each column,
a single population-level parameter is varied while keeping the others fixed
to those from the simulations.
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to a fixed α > 0 (α < 0), as is the case for the red and blue (green) simulations,

>2g higher-generation (equal second-generation 2g+2g) binaries preferentially popu-

late the merger distributions. For small positive δ, the contribution from binaries of

mixed first and second generations increases, but it is reduced at larger δ in favour of

higher-generation mergers. For fixed positive δ (red and blue simulations), larger pri-

mary pairing indices α select, with increasingly strong preference, the heaviest remnant

BHs in the population to form new binaries, thus increasing the fraction of greater-

than-second-generation binaries, i.e., f>2g ≈ 1, while reducing the prevalence of other

generations, as seen in the leftmost column of Fig. 5.9. The branching fractions are

flat for α < 0 if, as for the blue simulation, γ < 0 because all first-generation BHs

are typically lighter; therefore, reducing the preference for low-mass primary BHs (i.e.,

making α less negative) has little effect. In contrast, when γ > 0 as in the red sim-

ulation, first-generation BHs are heavier, and increasing α while keeping β fixed will

select heavier primaries relative to the secondaries, therefore favouring 1g+2g binaries.

5.4 Validation with mock catalogues

To test the inference pipeline in the absence of detection biases and single-event

measurement uncertainties (equivalent to the limit of large SNRs) and without system-

atics due to the DNN population, we generate mock GW catalogues by drawing binary

BH mergers from our DNN population model. Since for the technical reasons discussed

in Sec. 5.3.1 this distribution is bounded in chirp mass, these draws are inherently taken

from that range (listed in Table 5.1). This also means that the selection function con-

structed in Sec. 5.3.3 cannot be used in this mock inference; σ′(λ) is defined over

the entire range of source parameters, not just the observed range, and also accounts
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for the required missing factor between p′(θ|λ) and p(θ|λ). Including selection effects

would require training a different model for the detection efficiency and thus our tests

would include ingredients that do not enter the actual inference of Sec. 5.5. Another

technical difficulty is that we model two effective spins, χeff and χp, while the detection

probability in principle depends on all six spin degrees of freedom. Creating a mock

catalogue of observable GW events — i.e., taking samples from the detection-weighted

population ∝ p(det|ϑ)p(θ|λ) — would require assuming an effective lower-dimensional

dependence or resampling full spin vectors consistent with the sampled values of χeff

and χp (cf. Ref. [517] for a more in-depth exploration of these issues). However, as

we saw in Chapter 3, correctly including spin information in selection biases has a

noticeable effect at the population level [421].

For testing purposes, we consider the high SNR limit, in which all events are de-

tectable and their source parameters are measured exactly. This corresponds to a se-

lection function σ ≡ 1 and single-event likelihoods p(di|θi) ∝ δ(θ− θi). From Eq. (5.8)

the population-level likelihood is thus given by p({d}|λ) ∝ ∏n
i=1 p

′(θi|λ) (where the

statistical details are otherwise equivalent to Sec. 5.3.1). We draw n = 50, 100, 200, 500

events to create increasingly large catalogues (and in going from, e.g., 50 to 100 events,

the first 50 are added to when increasing the catalogue size) with source parameters

θi (i = 1, ..., n) using rejection sampling of our neural-network population model. We

repeat the analysis five times with new catalogues to assess the impact of Poisson

fluctuations on the inference. To enable a conservative mock catalogue test we fix the

true hyperparameters to those of the validation simulation with the lowest predictive

accuracy for the DNN population model (max dH in Figs. 5.5, 5.7, and 5.9): α = 6.3,

β = −7.3, γ = 1.8, δ = 8.7, mmax = 46M�, and χmax = 0.01.

We present the results of our mock inference runs in Figs. 5.10 and 5.11. The
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Figure 5.10: One- and two-dimensional marginalized posteriors of the
population-level parameters λ = {α, β, γ, δ,mmax, χmax}, corresponding to
the max dH simulation of Fig. 5.5, as measured from inference runs without
measurement errors and selection biases (corresponding to the high SNR
limit), and systematics from the DNN population model by drawing mock
GW catalogues directly from p′(θ|λ). For the joint two-dimensional panels,
each contour encloses the 90% credible region for a single analysis. Injected
values are marked with black lines. The number of observations in the cat-
alogue is fixed to n = Nobs = 100 and five independent realizations of the
inference with distinct events performed, each represented with a different
coloured curve (Reps. 1–5).
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population-level parameters λ = {α, β, γ, δ,mmax, χmax}, corresponding to
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n = Nobs = 50, 100, 200, 500 (light to dark shading).
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one- and two-dimensional marginal posterior distributions of the hyperparameters are

plotted, where the two-dimensional panels display the 90% contours. The solid black

lines denote the true values listed above.

In Fig. 5.10 we fix the number of observations in the catalogue to n = 100 and

perform five independent repetitions of the analysis with five different mock cata-

logues, given by the different coloured curves. Each run is consistent with both the

injected hyperparameter values and each other at the 90% level, though there are

significant fluctuations between realizations. Recall that the single-event likelihoods

neglect measurement errors; relaxing this assumption and including nonzero widths in

those posteriors would decrease the overall accuracy of the hyperparameter measure-

ments and thus blend the results from independent realizations to distributions with

greater consistency. Increasing the number of observations in the catalogue improves

the hyperparameter measurement error and reduces the statistical fluctuations between

realizations; we take n = 100 here to approximate the current size of real catalogues

[64].

The impact of the growing size of the catalogue is illustrated in the right panel

of Fig. 5.11. Here, we choose one particular realization and analyse the catalogue as

increasing numbers of events are added incrementally (light- to dark-blue curves). We

recover the expected result: The posterior constraints become tighter as n increases

from 50 to 500 while remaining consistent with the true hyperparameter values at the

90% level. Larger catalogue sizes also break degeneracies between parameter pairs,

e.g., the β–γ correlations, and remove posterior support in regions far from the truth,

e.g., in the column for α.

If the events from the mock catalogues are instead drawn from the simulated popu-

lations used as validation samples when training the population model, one may expect
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a systematic bias in the recovered hyperposteriors as the number of observations in-

creases due to mismodelling in the trained DNN. Indeed, when repeating the above

analysis but injecting from simulated validation data while recovering with the DNN,

we find hyperposteriors that can exclude the injected values at 90% confidence for the

lowest accuracy (max dH) simulation considered above when n ≥ 100. However, this

point is a considerable outlier in terms of accuracy (see Fig. 5.4). For most regions

in the hyperparameter space the mismodelling between injection and recovery remains

consistent at 90% confidence. In particular, we verify that this is true for the valida-

tion simulation whose hyperparameters are closest to the recovered medians in Sec. 5.5,

suggesting our inference on the real catalogue below is robust within the measurement

uncertainties. While the tests performed here are admittedly limited in scope, they

allowed us to assess the renormalization and sampling capabilities of the pipeline.

5.5 Hierarchical-merger inference with gravitational-

wave observations

In the following, we infer the population properties of the binary BHs detected by

the LVC given our deep-learned population model of hierarchical mergers. In Fig. 5.12,

we present the result of our population inference — the posterior distribution of the

hyperparameters λ. Along the diagonal is the one-dimensional marginalization of each

hyperparameter, while the other panels display the 50% and 90% confidence intervals

of each two-dimensional distribution.

We will also refer to the implied source-parameter PPDs given by

p(θ|{d}) =

∫
p′(θ|λ)p(λ|{d})dλ , (5.12)
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Figure 5.12: One- and two-dimensional marginal distributions of the
population-level parameters λ = {α, β, γ, δ,mmax, χmax} in our model of hi-
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such that the astrophysical distribution of each source parameter is given by the one-

dimensional marginalizations of p(θ|{d}).

5.5.1 Host escape speeds

We begin with the properties of host environments. We consider cluster-like hosts

— simple collections of individual BHs that may be paired to form binaries — which

are solely characterized by their escape speeds vesc. Recall that the simulated clusters

are distributed according to a truncated power law p(vesc|δ) ∝ vδesc, with 0 km s−1 <

vesc < 500 km s−1. The value of each cluster escape speed controls whether repeated

mergers take place since sources receiving larger gravitational kicks are ejected. Though

a power-law distribution is a simplified model, it is indicative of a preference (or lack

thereof) towards either edge of the domain.

The marginal distribution of the escape-speed index δ is displayed in the fourth

diagonal entry in Fig. 5.12. Negative (positive) values of δ indicate an escape-speed

distribution favouring lower (higher) values, while δ = 0 corresponds to a uniform

distribution in vesc. We report a median and symmetric 90% interval of δ = −0.4+0.4
−0.3,

corresponding to an escape-speed distribution biased toward smaller values though

consistent with uniformity within the 90% credible bounds.

In Fig. 5.13, we display the distribution of escape speeds reconstructed from the

marginal hyperposterior p(δ|{d}). Marginalizing the escape-speed model p(vesc|δ) over

the uncertainty in the hyperparameter δ returns the PPD

p(vesc|{d}) =

∫
p(vesc|δ)p(δ|{d})dδ , (5.13)

whereas the posterior uncertainty is displayed interior to the 5% and 95% quantiles
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of p(vesc|δ), with δ ∼ p(δ|d). For context, order-of-magnitude estimates of the es-

cape speeds of globular clusters (GCs; . 100 km s−1) and nuclear star clusters (NSCs;

. 500 km s−1) are shown as horizontal coloured bands [292, 557, 558]. Additionally,

we display the PPD of gravitational kicks vkick received by the 1g+1g sources im-

plied by our population model and hyperparameter constraints. Recall that, since the

first-generation and binary-pairing distributions have parametric forms (see Sec. 5.2),

the 1g+1g distribution does also (i.e., power-law mass distributions, uniform dimen-

sionless spin magnitudes, isotropic spin directions; we present the measurements of

the population-level parameters governing this distribution in the following sections).

Though GW kicks peak at about 200 km s−1, the distribution of escape speeds features

support across the defined range up to vesc = 500 km s−1. For these 1g+1g sources, we

find that P (vkick < 500 km s−1) = 0.85+0.06
−0.08 and P (vkick < vesc) = 0.37+0.13

−0.12, implying

that host environments can retain the kicked remnants of a portion of first-generation

mergers and support a population of hierarchical BHs.

5.5.2 Mass distribution

First-generation BHs — those born in stellar collapse — are drawn according to

p(m1g|γ,mmax) ∝ mγ
1g, with 5M� < m1g < mmax providing a mass limit corresponding

to the lower (upper) edge of the purported upper (lower) mass gap. We recover γ =

−1.4+0.4
−0.4, implying lighter BHs closer in mass to 5M� (chosen here to conservatively

rule out NS and ambiguous source classifications) preferentially populate the underlying

population. Negative 1g mass power-law exponents are expected as they reflect the

stellar IMF [588].

If first-generation BHs are drawn from this single power-law prescription, we mea-

sure a first-generation upper mass limit of mmax = 38+3.8
−2.7M�. The presence of events
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in the GW catalogue with component masses greater than 50M� already points to

the possibility of hierarchical mergers. Theoretical and simulated estimates of a mass

gap location due to PISN typically predict mmax ∼ 50M�, but they range within

40M� . mmax . 70M� (or even higher [589]) due to various assumptions on key

uncertain parameters [325, 327]. For comparison, taking the power law + peak

analysis of Ref. [85] — which features a Gaussian peak with mean µm to model mass

buildup, potentially due to PISN — we find consistency within 90% credible bounds

between the inferred µm = 34+2.6
−4.0M� and mmax. Note, however, that while mmax is a

sharp cut specifically characterizing the first-generation BH mass limit, the model of

Ref. [85] parametrizes all BHs in a single distribution and µm is only the mean of a

broadened feature, such that mmax and µm are not directly equivalent. In our case, BH

with masses larger than mmax are accommodated with hierarchical mergers.

Here, we point out a key distinction of our modelling procedure: We assume all

first-generation component BHs are drawn from a shared distribution (above) and

then binary formation is separately modelled with component pairing probabilities

p(m1|α) ∝ mα
1 and p(m2|β,m1) ∝ mβ

2 (m2 < m1). This choice differs from, e.g., power

law + peak [85], which models each component mass distribution with multiple

features superimposed on a power-law distribution. One may be tempted to think that,

e.g., the primary mass distribution is equivalent to p(m1|α)p(m1|γ,mmax) ∝ mα+γ
1 (and

similarly for secondary masses), however this applies only to 1g+1g binaries. Our DNN

population model additionally captures the interdependence between binary pairing

and remnant retention. In short, the power-law indices parametrizing the distributions

in this work are not directly comparable to such models. We infer α = −1.2+0.7
−0.7 and

β = −2.2+1.8
−1.7, such that both component pairing probabilities are bottom heavy with

positive power-law indices ruled out at the 90% confidence level.
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In Fig. 5.14, we present the inferred source distributions of the modelled mass

parameters — chirp mass Mc and mass ratio q — and the implied distributions of

primary and secondary masses, m1 = Mc(1 + q)1/5/q3/5 and m2 = qm1, respectively.

Each PPD is plotted as a bold solid line, while the symmetric 90% confidence region of

each marginal p′(θ|λ) with λ ∼ p(λ|d) is represented by shaded bands. The chirp mass

distribution peaks at the minimum value 5M� allowed by our model before an approx-

imately exponential decline, with Mc . 40M�. Equal-mass binaries are preferred in

the underlying population, the mass-ratio distribution having a peak at q = 1 but with

a broader linear decline down to q & 0.1.

Substructure is apparent in the distributions of component source masses, corrob-

orating the findings of Refs. [85, 590]. Tighter constraints at Mc ≈ 13M� and q ≈ 0.6

result in a cusp in the primary (secondary) mass distribution aroundm1 ≈ 20M� (m2 ≈

12M�) between two features: the peak of the distribution at m1 ≈ 12M� (m2 ≈ 8M�)

and a buildup-following decline at the first-generation mass limit mmax ≈ 40M�. This

suggests two contributions to the mass distribution in the range 20M� . m1 . 40M�:

(1) first-generation BHs with masses above the peak of the distribution, and (2) higher-

generation BHs with masses still smaller than mmax but whose parents originally had

masses in the peak 10–20M� region. While high-mass outliers above mmax might be

considered as clear indicators of repeated mergers, the bottom-heavy nature of the

stellar IMF implies that hierarchical mergers may be prominent also for sources with

masses below mmax.

The first-generation and combined component mass distributions are compared in

Fig. 5.15. In purple, we show the reconstructed distribution of first-generation masses,

p(m1g|{d}) =

∫
p(m1g|γ,mmax)p(γ,mmax|d)dγdmmax , (5.14)
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Figure 5.14: Astrophysical
distributions of the modelled
chirp mass Mc (middle panel)
and mass ratio q (bottom panel),
as well as the implied distribu-
tions of primary and secondary
masses, m1 and m2, respectively
(top panel), as determined by
our DNN population model and
Bayesian analysis. The solid
blue lines represent the PPDs,
while the dashed lines enclose
the 90% symmetric confidence
intervals (shaded). In the left
panel, the vertical grey band en-
closes the 90% confidence inter-
val for the maximum mass of
first-generation BHs, mmax.
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Figure 5.15: PPDs (in logarithmic scale) of the first-generation BH masses,
m1g, (purple) and the combined distribution of all components masses, m1

and m2 (blue). The solid lines denote the means, while the dashed lines
bound the shaded 90% symmetric confidence regions. The vertical grey
band encloses the 90% constraint on the maximum first-generation BH mass,
mmax.

and in blue, we show the joint distribution of all primary and secondary masses. The

grey shaded band represents the 90% constraint on the mass limit of first-generation

BHs, mmax. Note the logarithmic scale, and that the PPD is a set of expectation values

(i.e., means) and, as such, can lie outside the region bounded by given quantiles.

Though declining above the first-generation cutoff, the mass distribution features

an extended spectrum above mmax which cannot result from 1g+1g mergers in our

model. We find that 99% of all BHs have masses less than 59+7.8
−6.5M�. The spectrum

ultimately abates at m1 > 80M� — roughly 2mmax, implying a lack of greater-than-2g

mergers with parent components from the upper end of the 1g mass spectrum — and

features multiple small-scale modes in the intervening region (that may be statistical



5.5 Hierarchical-merger inference with gravitational-wave observations 185

fluctuations). These observations again point to hierarchical mergers in the underlying

population.

5.5.3 Spin distribution

Moving to binary BH spins, recall that the first generation of BHs are modelled

with isotropic spins whose dimensionless magnitudes are distributed uniformly up to

a maximum χmax ∈ (0, 1), representing the maximum natal spin a BH may be born

with in stellar collapse. We infer a value χmax = 0.39+0.08
−0.07. With limited constraining

power in the spin observables, the precise constraints reported here are likely to be very

model dependent. We opt for a uniform distribution of 1g spin magnitudes because of

the large uncertainties surrounding the spin of compact objects following core collapse

(e.g., Refs. [329, 330, 470, 473, 474]); this is an area where more accurate observations

and more constraining predictions are very much needed. The overall distribution

of spins is determined jointly by the first-generation distribution, the binary pairing

procedure (as inferred above), the GR mapping of binary to remnant properties, and

the ejection or retention of merger remnants in host environments. While we account

for the dimensionless spin magnitudes of higher-generation binaries in our population

modelling, the spin directions are resampled isotropically.

A more solid finding we report is that the dimensionless spins of 1g+1g binary

BHs are limited below those of merger remnants, typically around 0.7 [332]. Hier-

archical BHs with much lower spins are extremely rare [541], yet another indication

that some higher-generation binary BHs are required to fit the data with our model

(cf. Sec. 5.5.4). We measure spins using two effective parameters: the effective aligned

spin χeff measures the binary spin component parallel to the orbital plane [346], and

the effective precessing spin χp measures the in-plane, two-spin projection [426]. For
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sources with negligible, misaligned, or (equal-mass) oppositely aligned spins we have

χeff ≈ 0, while large positive (negative) values indicate high aligned (antialigned) spins.

Similarly, χp ≈ 0 for spins that are small, aligned with the orbital angular momentum,

or oppositely aligned in the orbital plane. Nonzero values of χp indicate the presence

of spin precession, with χp > 1 being a region exclusively occupied by binaries with

precessing spin contributions from both BH components.

Figure 5.16 displays the PPDs of these two modelled effective spin parameters.

In the top panel, we show the distribution of effective aligned spins χeff . Here, the

assumption of isotropic spins leads to an overly tight constraint. This mismodelling

enforces a distribution that is symmetric about and centred on χeff = 0, in contrast

with more generic spin models that infer asymmetric distributions skewed to positive

χeff [85] (and thus favouring alignment) or those that rule out negative χeff [455, 456].

However, we find that, typically, |χeff | . 0.4, in agreement with the results of Ref.

[85] (gaussian spin model); in particular, we report |χeff | < 0.46+0.04
−0.06 for 99% of the

population.

On the other hand, the bottom panel of Fig. 5.16 shows the distribution of pre-

cessing spins measured with χp, where, unlike Ref. [85], we observe substructure; note

that, although they use the earlier χp definition of Ref. [591], for the majority of events,

the two measurements are indistinguishable [426, 592]. We note that, like for χeff , the

uncertainty is likely also underestimated here due to our modelling assumptions. The

distribution features two prominent modes. The primary one appears at χ ≈ 0.2. A

peak at χp > 0 is determined by the model, given isotropic spin directions (as is the

case for all merger generations in our model) and uniform non-zero spin magnitudes (as

for the first-generation binaries). A single-peaked distribution essentially corresponds

to the implied χp prior used in PE analyses [426]. If this feature is astrophysical in
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Figure 5.16: PPDs of the effective aligned (χeff , top panel) and precessing
(χp, bottom panel) spins derived from our DNN population inference. The
means of the distributions are plotted with solid blue lines, and the sym-
metric 90% confidence intervals are given by the shaded bands bounded by
dashed lines. The inset for the χp panel shows the same distribution with
logarithmic scaling to highlight smaller-scale features. The dashed purple
lines bound the 90% confidence region of the distributions that are measured
when replacing the true PE results for χp with mock samples from the prior
for each event in the catalogue.
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origin rather than due to our model choices, however, it may imply that sources with

at least moderately misaligned spins — and thus undergoing spin precession — make

up a sizeable portion of the population. The shape and location of this mode are in

broad agreement with the results of Ref. [85]; see their Fig. 16.

However, in contrast to their finding that χp measurements can be explained by

either a narrow distribution with peak χp ≈ 0.2 or a broad distribution centred on χp =

0 (which results in multimodality when marginalized over the posterior uncertainty),

we find that individual distributions drawn according to the hyperposterior always

decrease at χp = 0, peak at χp ≈ 0.2, and feature a secondary mode around χp ≈ 0.6.

While our population model naturally accommodates such multimodal structure, the

gaussian spin model employed in Ref. [85] only allows for a single peak and is

thus unable to jointly capture the narrow χp ≈ 0.2 peak in addition to the extended

distribution above χp & 0.5, instead favouring one or the other. Indeed, a single

Gaussian distribution cannot fit the distribution of χp within the 90% credible bounds.

The inset in the χp panel of Fig. 5.16 shows the same distribution with logarithmic

scaling to highlight smaller-scale features. The distribution falls off above the feature

at χp ≈ 0.6 before a tertiary buildup at χp ≈ 1 and a final minor mode at χ ≈ 1.25,

with a large decline in between and eventual declivity beyond. We find minor evidence

for a population of sources occupying the exclusive two-spin region χp > 1; the 99%

quantile lies at χp = 0.95+0.07
−0.13 while P (χp > 1) = 0.8+0.6

−0.4%. There is no support in the

population for χp & 1.5.

Turning to the origins of these spin features, the precessing spin posterior we mea-

sure differs from a population prior with uniform spin magnitudes and directions due

to the inferred constraint on the maximum natal spin χmax being less than the prior

Kerr limit, leading to a shift towards lower values and, more importantly, the feature
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at χp ≈ 0.6, which is not explainable with such a model. To test whether the posterior

constraints are really due to measurements of precession or correlations with other pa-

rameters — primarily the best-measured spin χeff and the mass ratio q — we repeat

the hierarchical inference but replace the χp posterior for each event in Eq. (5.8) with

samples from the PE prior. The measured 90% confidence intervals for the effective

spin posteriors are shown by the dashed purple lines in Fig. 5.16. The constraints are

qualitatively the same, with only small differences in the 90% credible regions. The

purple χp distribution favours slightly larger values in the region χp < 0.6, suggesting

the real precession measurements from GW data offer some information beyond the

PE prior, but the differences are minor. The most informative constraints originate

from the aforementioned better-measured parameters.

In our single-channel model, a BH with mass above mmax is necessarily a merger

remnant. Since merger remnants have large spins, this model requires heavy BHs to

have large spins if there are masses above mmax in the catalogue and natal spins are

small, as inferred above. Our DNN model naturally allows for correlations between

parameters, unlike simple phenomenological priors, so we can assess which masses

contribute to the χp ≈ 0.6 feature. In the top panel of Fig. 5.17, we split the inferred

χp population posterior into contributions from primary masses m1 ≤ mmax, which

can be both first- or higher-generation BHs, and definitely higher-generation sources

with m1 > mmax. Though the latter, heavier population of sources necessarily has a

preference for larger spins, the contribution to the χp distribution from sources with

m1 ≤ mmax still contains the feature at χp ≈ 0.6, implying that this inference is

not solely driven by the requirement for heavy BHs to have large spins. This is a

consequence of the previous conclusion that hierarchical mergers in our model also

populate the region m1 ≤ mmax due to the bottom-heavy mass function.
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Figure 5.17: PPD of the effective precessing spin χp as a function of the
primary mass m1 (top panel) and mass ratio q (bottom panel). The mean
distributions are given by the solid lines and the symmetric 90% confidence
intervals are given by the shaded bands. In the top panel, we split the χp

posterior for primary masses below (blue) and above (orange) the maximum
first-generation mass mmax. In the bottom panel, we split the χp posterior
for mass ratios 0 < q ≤ 1/3 (blue), 1/3 < q ≤ 2/3 (orange), and 2/3 < q ≤ 1
(green).
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In the bottom panel of Fig. 5.17, we similarly observe the population distribution

of χp as a function of the mass ratio q. Larger precessing spins are suppressed for

more unequal masses q ≤ 1/3 with the peak lowered to χp ≈ 0.15, while for mass

ratios q > 2/3 closer to unity, it increases to the slightly larger value χp ≈ 0.25. Spins

around χp ≈ 0.6 are present for these mass ratios, but the distinct feature is most

prominent for 1/3 < q ≤ 2/3. This region of the parameter space is prominently

occupied by mixed-generation mergers, e.g., 1g+2g. We verify that this secondary

structure is consistent with repeated mergers in our model as follows. Starting with

the 1g+1g PPD and binary pairing measurements to compute the distribution of 2g

remnant masses and dimensionless spin magnitudes (computed with Refs. [430, 435]

as in Sec. 5.2.3), the distributions of χp for binaries formed either with a 1g BH and

a remnant BH (i.e., 1g+2g) or two remnant BHs (i.e., 2g+2g) both feature peaks at

χp ≈ 0.6. This is because, for 1g+2g sources, the dominant contribution to χp is from

the primary, which is more likely to be 2g, while for 2g+2g sources, the primary and

secondary are more likely to contribute equally such that their average is similar to the

1g+2g case.

5.5.4 Merger generations

Given our DNN population model, the observations of the previous sections suggest

the presence of hierarchical mergers in the underlying population of merging stellar-

mass binary BHs. Taking samples λ ∼ p(λ|{d}) from the posterior distribution of pop-

ulation parameters, the corresponding draws from the posterior of merger-generation

fractions can be derived as fg(λ) ∼ p(fg|{d}), where fg is given by the DNN described

in Sec. 5.3.4.

Figure 5.18 presents the posterior distributions of the fractional contributions to
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Figure 5.18: Distributions of the branching fractions — left to right:
f1g+1g, f1g+2g (top row), and f2g+2g, f>2g (bottom row) — for merger gener-
ations in the astrophysical distribution of merging stellar-mass binary BHs,
as measured with our deep-learning approach to population inference. The
median and symmetric 90% confidence region for each generation fraction is
reported above — and plotted as vertical dashed lines within — the corre-
sponding panel.
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the population from each merger generation; the medians and 90% symmetric intervals

are quoted and indicated as vertical dashed lines. In the underlying distribution,

75+7
−7% of sources contain only first-generation BHs (1g+1g), which implies around

25% contain a component that is the remnant of a previous merger, with 90% (99%)

one-sided support for 1 − f1g+1g & 0.19 (0.14). Mixed-generation binaries with both

a first- and second-generation component make up the second-largest portion of the

population, with f1g+2g = 0.16+0.04
−0.05, while binaries containing two second-generation

BHs or any component of even higher generation contribute equally at about the 5%

level (f2g+2g = 0.04+0.01
−0.01 and f>2g = 0.05+0.02

−0.01, respectively).

Previous studies of older GW catalogues found weak evidence for the presence of

hierarchical mergers [593, 594]. However, new detections brought the addition of events

whose properties, including higher masses and mass ratios, hinted at higher-generation

origins. Ref. [528] presented a population analysis based on a phenomenological model

of globular clusters, implying the presence of at least one second-generation BH in

the catalogue with greater than 96% probability, rising to greater than 99.99% when

considering their highest Bayes-factor model corresponding to an escape speed vesc ∼

300km s−1. In this case, they found median relative merger rates of 0.15 and 0.01

when comparing 1g+2g and 2g+2g binaries to the 1g+1g case, respectively, with 99%

upper limits of 0.29 and 0.04. Equivalently, in our analysis we find broadly consistent

relative branching fractions f1g+2g/f1g+1g = 0.21+0.08
−0.08 and f2g+2g/f1g+1g = 0.06+0.03

−0.02

(reporting medians and symmetric 90% confidence intervals). Given the disparity of

the underlying model assumptions between the two analyses and the addition of new

detections used in our study, our results jointly point to the fact that, if admitted in

the fitted population, a modest number of binary BHs with hierarchical origin appears

to be a likely way to explain the observed GW data.
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5.6 Conclusions

While we are able to highlight some key insights into the astrophysics of stellar-mass

black-hole mergers, we stress that our DNN population model is based on simulations

that are simplified by, e.g., employing various power-law parametrizations. This work

serves as a test case to demonstrate the efficacy of the modelling procedure by bridging

the gap between phenomenological and accurate simulated models.

The complexity of our simulated populations can be increased in various ways.

First, we model the spin distributions of first-generation binary BHs as uniform and

isotropic, and while we account for the spin magnitude of merger remnants, we continue

the assumption of isotropicity in higher-generation mergers. Capturing more realistic

distributions of higher-generation spins requires both retaining information on post-

merger spin directions and characterizing any changes in relative orientation during

binary formation.

Employing more sophisticated spin magnitude models and adding an additional

hyperparameter to control the degree of first-generation spin alignment, we can better

capture the behaviour of a wider class of host environments, e.g., isolated evolution

[465] or the disks of active galactic nuclei [446]. More generally, allowing for contri-

butions from a mixture of distinct formation channels would lead to a more realistic

fit. In particular, χeff has been shown to favour positive values, which may indicate a

significant contribution from isolated binary formation to the merger rate [85] but we

only consider a single-channel dynamical-environment formation model. By underesti-

mating the location of the χeff distribution, the fraction of hierarchical mergers may be

overestimated [595]. The added complexity of multichannel modelling is beyond the

scope of this first study, and we aim to address it in future work.
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Second, we model redshifts with a fixed distribution corresponding to a rate of

events that is uniform in comoving volume and source-frame time. A simple extension

would be to include a parametrized redshift model [407], though this would also in-

crease the dimensionality of the hyperparameter space. We consider the mergers in our

simulated populations as an ensemble and do not account for dynamical assembly of

hierarchical mergers, i.e., for the fact that a remnant BH can only form a new binary

at later times than its parent system [334]. In practice, one should include the effect

of time delays between formation and merger and thus more realistically model the

merger rate; we leave such explorations to future work.

Compared to previous work [404, 517], the approach presented here replaces the

histogram approximation of simulated binary BH distributions with Gaussian KDEs

and the emulation of these distributions across both the source- and population-level

parameter spaces via GPR with DNNs. While GPR has been shown to be an ineffec-

tive approach in higher dimensions [518], alternative deep-learning techniques such as

normalizing flows [521, 522] have proven successful [501, 519, 523].

Rather than training on probability-density evaluations (the required number of

which scales exponentially with the dimensionality) as in this work, normalizing flows

are trained directly on samples from the true distribution (thus scaling linearly with

dimensionality), making the latter more effective in high-dimensional spaces. Further-

more, our methodology requires truncating the population model in the unbounded

chirp-mass parameter in order to generate training data and employ numerical nor-

malization, introducing a refactoring term in the population-level likelihood. This

issue may be solved with domain compactification by, e.g., modelling the inverse of

the mass scale instead. Normalizing flows also have the advantage of being generative

models (i.e., from which new predictive samples can be drawn) that additionally pro-
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vide density estimation with correctly enforced normalization. However, often either

just the forward (density prediction) or inverse (sample generation) model is efficient

to evaluate [520, 596]. On the other hand, neither deep-learning approach provides any

estimation of modelling uncertainty, whereas GPR does; this is an area where Bayesian

deep learning may prove fruitful (see, e.g., Ref. [597]).

That said, our DNN framework has some advantages. The separation of density

estimation and emulation adds a level of flexibility not otherwise available. The KDE-

first approach allows for sufficient smoothing of the training distributions prior to the

learning stage. This distinction is important for simulations with modelling choices

that lead to unphysical numerical discretization of outputs or low sampling densities;

e.g., despite employing normalizing flows, Ref. [501] required KDE resampling to boost

the set of simulated BH mergers.

This work serves as a showcase of the developments made possible by combining

advanced techniques from the fields of deep learning and statistical analysis, applied

within the context of GW astrophysics. Our deep-learning population pipeline, which

we applied to the case study of simple simulations of hierarchical stellar-mass BH

mergers, is thus ready to be used in conjunction with more sophisticated simulated

populations. Combined with the state of the art in population synthesis, we will

be able to constrain the properties of progenitor formation environments by directly

comparing GW data with higher-dimensional models of binary evolution.
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Chapter 6

Conclusions

Phrases to the effect of “GWs have opened a new window onto the universe” have

now been heard so often that you’d be forgiven for rolling your eyes at hearing them

again — but it’s true; GWs genuinely are an extraordinary compliment to the remit of

messengers we can use for observational astronomy. Not only that, but they probe the

regions of space and time previously forbidden to us — those dictated by the rules of

strong gravity. Several years on from the first observation of GWs, we now almost take

for granted the fact that direct measurements of compact objects and their collisions

have become routine. This new probe has excited research programs in astrophysics,

cosmology, and relativity — with unprecedented returns (Chapter 1).

Of particular interest is the interplay between astrophysics and relativity. The for-

mation of GW sources, including binary BHs, is determined by astrophysical processes

that are often uncertain. Their GW-driven inspirals are governed in contrast by the

mathematical predictions of GR. If we observe GWs and measure the properties of

their sources, can we unravel their histories and demographics? That is the motiva-

tional question driving this Thesis.

In Chapter 2, we saw that astrophysical predictions do not necessarily translate

directly into GW observables. The up–down spin-precession instability is an extreme
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example in which a very singular natal prediction becomes a very different one at

detectable GW frequencies. Luckily, we derived that unstable does not imply un-

predictable — there is a smoking-gun signature for this peculiarity of the relativistic

two-body problem that we can test with continuing GW observations.

Converting these measurements made with GW detectors to a reference suitable for

astrophysical modelling is also possible, as we showed in Chapter 3. This conversion is

not just for convenience — it also corrects a fundamental conceptual issue that plagues

GW population studies. Future observational catalogues may reveal the influence of

such systematic biases and it will become crucial to correct them in order to make

accurate inferences on the formation of GW populations.

We gave an example of this kind of GW-to-astrophysics inference in Chapter 4. If

binary BH formation models specify key evolutionary processes for which astrophysical

inputs result in clear outcomes for merging compact binaries, we can conversely leverage

the observed GW catalogue — whose sources may have gone through those processes —

to constrain their occurrence. Targeted population modelling is crucial in this regard.

The best way to build astrophysics-informed population models for GW sources is

to use those very simulations into which we can project all of our prior knowledge.

We successfully demonstrated how to transform population simulations — which are

inherently discrete — into the accurate and continuous forms required for Bayesian

inference (i.e., measurement instead of comparison) in Chapter 5. We predict that,

backed by powerful emulation tools such as deep learning, simulation-based inference

will be a major influence on the future of GW population studies, enabling hitherto

inaccessible astrophysical and cosmological constraints.

It remains to perform a comprehensive astrophysically-motivated population anal-

ysis of GW sources. This will require a full and up-to-date combined model of all the
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major competitor formation pathways, their subchannels, and selection biases, in tan-

dem with reliable hierarchical Bayesian inference — no mean feat, and no surprise such

a study is so far lacking in the literature. Nonetheless, advanced probabilistic learning

methods [395, 598, 599, 600, 601] may prove fruitful (as suggested by our preliminary

investigations, not presented in this Thesis) in the not-too-distant future.

Astrophysics-agnostic inference is another avenue that we have yet to explore.

Rather than replacing overly parametrized population models with highly informative

astrophysical models, one could instead perform inference over a class of distributions

that is flexible enough to capture any realistic population, independent of astrophysi-

cal parameters. Though this removes interpretability, the key advantage is that we are

less limited by our prior assumptions, explicit or otherwise. Suggested approaches in-

clude data-driven statistical methods [457], regression over symbolically parametrized

function spaces [602], flexible semi-parametric models [603, 604], and normalizing flows

[601] — in our view this last option appears most promising as it readily extends to

high-dimensional distributions, thus allowing for complex correlations in the binary BH

parameters that naturally result from astrophysical formation; outstanding issues are

the inclusion of selection biases and robust estimation of measurement uncertainties,

however. Our future work will chase down these loose ends.

Astrophysics governs the births and natal development of BH binaries, while rela-

tivity governs their remaining lives and deaths. As astronomers, we intrude on their

working biographies via the messages carried by GWs. Despite the uncertainties at

either extrema of these inspiral timelines, one thing is for certain: we will only get more

data. It is our imperative to maximize the scientific outcome of these GW observations.

I look forward to the future in this GW astronomy.
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