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ABSTRACT

In machine learning, an essential assumption to build a well-performing classifica-

tion model is that it should be trained and tested against data that come from the same

distribution. However, in the real-world, once a model is in the deployment stage, the

control over incoming data is limited. Accurately and efficiently detecting changes violat-

ing the fundamental assumption for classification tasks is crucial to ensure the reliability

and performance of the artificial intelligence systems.

Different types of changes can arise in offline and online classification tasks. The

goals and methods for change detection in the two scenarios are also different. As a

starting point, this thesis first focuses on the detection of out-of-distribution examples

in the testing data set in offline classification tasks. A purely unsupervised detector

Label-Assisted Memory Auto-Encoder (LAMAE), and its refined version LAMAE+,

are proposed to improve the detection of a wider range of out-of-distribution examples.

Afterwards, this thesis progresses to the online classification scenario. In a streaming

data environment, concept drift, which is a change in the underlying data distribution

may occur. Instead of detecting single examples as in the offline scenario, online sce-

nario requires sophisticated algorithms to identify if and when a change occurs in the

underlying data distribution. This thesis proposes a novel concept drift detection frame-

work named Hierarchical Reduced-space Drift Detection framework (HRDD) to meet

this goal. HRDD not only recognizes a wider range of drifts regardless of their effects

on classification performance, but also does so with an improved efficiency than existing

methods. Another challenge faced by existing concept drift detectors is the assumption

of data independence on data streams. To further approximate the reality, this thesis also

i



attempts to investigate the new challenges brought by the relaxation of the independence

assumption. A novel problem formulation is constructed taking into account temporal de-

pendency, under which a greater variety of drift forms can possibly emerge. Afterwards, a

simple and effective solution named Concept Drift detection for Temporally Dependent

data streams (CDTD) to detect drifts, especially the ones that are being neglected by

existing detectors, is presented.

In summary, this thesis tackles the detection of change in offline and online classifi-

cation tasks. The approaches taken in the thesis are both efficient and effective, and have

important significance in minimizing the disparity between the simulated environment

and the physical reality.
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Chapter One

Introduction

Machine learning is changing the world by transforming all segments of our daily lives.

By building systems that can learn from historical data, identify patterns, and make

logical decisions with little to no human intervention, machine learning tools are acting

as a key to guide better decisions and smart actions. Classification is a task of supervised

machine learning that refers to the process of anticipating a categorical class label for

a specific example of input (Hart et al., 2000). This is also one of the most common

machine learning tasks in various application scenarios.

Classification predictive modelling is the task of approximating the mapping func-

tion from input features to discrete classes. An input is a vector sampled from a feature

space. This can be of various forms, for example, univariate or multivariate, numerical

or categorical. In order to construct a classification model, an initial training data set

has to be collected. Each training example consists of a set of input features and the

respective class label. Then, a function is learnt based on the training data set, which

can be used to output the predicted class label for a given example of testing data.

Classification tasks can either be offline or online. Offline learning deals with static

training and testing data sets. Online learning refers to the case where data arrives one

by one in a sequential order (Wang et al., 2018). Traditional classification algorithms are

mainly designed for offline scenarios (Sen et al., 2020). In offline learning tasks, the data
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Introduction

get accumulated and are presented to the model at once, hence there is a requirement for

data storage. Besides, due to the lack of adaptability, offline learning methods become

more and more restricted especially when live data grow and evolve rapidly.

In contrast to offline learning, online learning is a fundamentally different way of

approaching machine learning problems (Langley, 1996; Wang et al., 2018). It refers to

the situation where models receive and process data arriving one by one in a sequential

order. Online learning is associated with very restricted storage requirement. In most

general cases, each data point can be discarded straight away once it has been processed.

Streaming data are prevalent in domains such as health monitoring, traffic management,

financial transactions and social networks. Online learning mode is ideal for machine

learning systems that receive data as a continuous flow. An example of online classifi-

cation tasks is image recognition tasks in autonomous driving applications. Real-time

prediction has to be made for each incoming image upon its arrival. Online learning

methods are more adequate for large data. However, there is an extra computational

need for in-time model adaptation.

Nowadays, various classification algorithms have been proposed for both online

and offline scenarios (Oza and Russell, 2001; Orabona and Crammer, 2010; Kotsiantis,

2013). Nonetheless, an inescapable pre-requisite for almost all conventional machine

learning models is the data independent and identically distributed (i.i.d) assumption.

That is, the input data to be predicted and the data used to train the model shall come

from the same distribution, and all the input data shall be independent to each other

(Kubat and Kubat, 2017).

Although the i.i.d assumption is the key to guarantee the reliability and stability

of classification models in both offline and online mode, it is very difficult, if not impossi-

ble, to be satisfied in reality. In the first place, once the model trained in the offline mode

is deployed in an open world scenario, the control over the collected testing data set is

limited (Drummond and Shearer, 2006). For instance, in applications such as medical

diagnostics and autonomous driving, models are trained in a laboratory environment with
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a finite training dataset. The definite label set may not cover all possible rare diseases or

objects that may exist in a separately collected testing data set. When the testing data

set consists of examples coming from a different distribution, the identically-distributed

assumption is violated. Such testing data are also known as out-of-distribution (OoD)

examples, contrasting with the in-distribution (ID) training data. In offline classifica-

tion tasks where the models are trained at one go without any further adaptations, the

OoD examples that cannot be handled by the current model should be flagged out and

discarded.

The identically-distributed assumption is more likely to fail in online scenarios

when streaming data is dealt with. As time passes, the underlying distribution of the data

and its relationship with the target variable are likely to evolve, also known as concept

drift. Different from offline scenarios where the learning goal is fixed and OoD examples

only need to be neglected, models in online scenario also face the challenge of suitable

and timely adaptations when a change takes place. Both the classifier and the detector

model have to accommodate the new pattern. Accurately detecting when and where

the identically-distributed assumption fails is a key to guarantee stable and satisfactory

performance throughout the deployment stage.

Besides, the independently-distributed assumption is also hardly achievable in clas-

sification tasks, especially in an online scenario. The sequential data often arrive following

certain orders. For instance, in stock market prediction tasks, whether the price is go-

ing up or down today not only depends on the current market demand and supply, but

also the market performance of the past few days. Most existing concept drift detection

methods assume data independence in the first place to simplify the situation. When

dependency exists, the effectiveness and trustworthiness of these methods can no longer

be guaranteed. Therefore, a comprehensive study of the effect of dependency on the func-

tionality of existing concept drift detection methods is necessary. It can guide researchers

to develop detectors that can better meet practical needs.

In summary, this thesis attempts to make some contributions on the detection
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of various types of changes that violate the identically-distributed assumption for both

offline and online classification tasks. This thesis not only designs sophisticated detection

tools that work better in identifying various changes, but also provides an in-depth study

for the more complex online scenario with a further relaxation of the independently-

distributed assumption. Following this, a possible mitigation to accommodate the issue

of concept drift detection in a temporally-dependent environment is also proposed with

the aim to further reduce the disparity between the simulated laboratory environment

and the physical reality.

In this chapter, Section 1.1 describes the two general problems addressed in this

thesis and their backgrounds. Section 1.2 provides a clear outline of the specific research

questions this thesis aims to answer. Section 1.3 summarizes the main contributions.

Section 1.4 presents the thesis organization.

1.1 Problem Areas

1.1.1 Detecting Changes in Offline Classification Tasks

With the advent of rich machine learning models and high computational power, in-

telligent classification systems are finding more operational applications. Meanwhile,

multiple challenges that are not apparent in controlled lab environments can emerge. In

an open world setting, unknown inputs may be collected to the testing data set, leading

to a discrepancy in the testing and training distributions violating the crucial identically-

distributed assumption.

Such unknown inputs are named as out-of-distribution (OoD) examples. The

threat of OoD examples was first spotted by Hendrycks and Gimpel (2017). Since then it

has received increasing attention from the research community. The authors notice that

neural network models can produce overconfident predictions even for the OoD examples
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with unseen semantic labels in image classification and text categorization tasks. The

existence of OoD examples in the testing data set can seriously harm the trustworthiness

of machine learning models (Hendrycks et al., 2018). Therefore, OoD detection to identify

and reject the unknown examples is critical to prevent irrational predictions, which helps

to ensuring the reliability and safety of machine learning systems.

The application of OoD detection usually falls into safety-critical situations in-

cluding but not limited to autonomous driving (Yuan et al., 2016), surveillance tracking

(Zhao et al., 2017) and rare disease identification (Heer et al., 2021). For instance, when

an autonomous car trained in Europe is transferred to Asia, a disparate set of traffic rules

and signs will be encountered. When a system meets scenes or objects that have never

been seen during the training phase, OoD detection tools are expected to notify the users

about the abnormalities and allow the system to trigger a safe fallback mode, so that the

unknown inputs can be handed over to human to make safe travel instructions.

Hsu et al. (2020) provide a conceptual categorization of OoD examples depending

on their semantics. OoD examples with a semantic shift from the training data are the

examples that belong to non-overlapping classes as the ID training label set, but with

no stylistic change. For instance, both ID and OoD examples are photos but of different

object classes. On the other hand, non-semantic shift refers to a change in the style

of the inputs from the same label set. e.g., a sketch and a photo of the same object.

Non-semantic and semantic shifts can also coexist, resulting in OoD examples with both

semantic and stylistic changes compared to the ID data set.

According to Hsu et al. (2020), semantic shifts are the hardest ones to detect,

followed by non-semantic shifts. The non-semantic and semantic shifts are the easiest to

detect. Most current work in OoD detection regard one benchmark image dataset as the

ID set and a completely different data set as the OoD set, which is in essence dealing

with the non-semantic and semantic shifts simultaneously. The performance on semantic

shifts is less satisfying. The authors pointed out the challenge of detecting semantic shift,

which is the hardest type to detect, for future works to address.
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Two closely related problem areas are anomaly (or outlier) detection and novelty

detection. Anomaly detection aims to detect infrequent patterns that seem to be outside

the “normal distribution” of a set of homogeneous examples. The training data usually

contains one semantic class only. Based on the above categorization, anomaly detection

mainly targets examples with non-semantic shifts (Yang et al., 2021).

Novelty detection, on the other hand, targets at identifying testing examples from

a novel class unseen to the classifier during the training stage (Yang et al., 2021). There

are two modes of novelty detection: one-class novelty detection and multi-class novelty

detection. One-class approaches consider novelty detection as a binary classification prob-

lem, hence are limited in scalability when there are multiple classes in the training data

set. On the contrary, multi-class novelty detection considers multiple semantic classes in

the training data set, hence can be regarded as a similar issue as OoD detection. Yang

et al. (2021) conclude in their survey that the key difference between multi-class novelty

detection and OoD detection is that the latter also serves the goal of ID classification, so

the detection of OoD should not harm the ID classification capability. There is no such

requirement for novelty detection tasks.

It is also worth pointing out that some of the anomaly detection and novelty

detection methods can be transformed to tools for OoD detection by treating the ID data

set as a “normal/known” class and the OoD data set as “abnormal/unknown” (Diers and

Pigorsch, 2022). However, these methods may miss some intrinsic characteristics of the

ID training data set, hence can only capture some particular types of OoD examples.

Although the number of OoD detection algorithms has been increasing significantly

in the last few years, many of the early-proposed OoD detection methods are supervised

(Zhou and Paffenroth, 2017; Liang et al., 2017; Lee et al., 2017; Hendrycks et al., 2018;

Lee et al., 2018; Shafaei et al., 2019; Yu and Aizawa, 2019; Masana et al., 2018; Ren et al.,

2019; Abdelzad et al., 2019). That is, they require the aid of some kinds of genuine or

synthetic OoD examples in the training stage. This is an unrealistic requirement since it

is often hard, if not impossible, to gain any information regarding OoD a priori. Besides,
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the choice of synthetic OoD data set can also heavily impacts the generalization ability

of the detectors (Katz-Samuels et al., 2022).

This thesis aims to resolve the issues in existing OoD detection algorithms by

developing effective solutions which do not rely on any external information other than

what is self-contained within the ID training data, and at the same time, well-detect a

wider range of OoD examples.

1.1.2 Detecting Changes in Online Classification Tasks

In conventional offline machine learning framework, it is assumed that the data distri-

bution of interest does not change. Therefore, OoD examples have to be detected and

removed from the testing data set. However, in an online scenario where data becomes

available in a sequential order, the data generation process may change over time and

both the classification model and the change detection algorithm have to adapt to the

latest data.

Concept drift refers to a change in the relationships between a change in the un-

derlying data distribution and/or its relationship with the target label over time (Gama

et al., 2014). In such cases, the classification model becomes obsolete as the data distri-

bution changes and the predictive function no longer correctly maps features to labels.

Sometimes, concept drift could also cause the model to undergo severe performance degra-

dation. Methods and tools to detect such changes as early as possible and pinpoint the

time at which the changes occurred are needed. With a comprehensive characterization

of the detected drifts, practitioners can also conduct more in-depth analysis of the overall

process generating the data. Then, various strategies may be applied to adapt or retrain

the classification model to maintain the quality of the operating learning system.

Depending on whether the classification boundary is impacted, drifts are com-

monly categorized into two different types: real and virtual (Gama et al., 2004; Hoens
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et al., 2012). Real drift refers to a change affecting the classification boundary (Gama

et al., 2004). It has been referred to as concept shift in Salganicoff (1997) and conditional

change in Gao et al. (2007). In contract, virtual concept drift is defined by a change in

data distribution not affecting classification. Virtual drift has also been referred to as

temporary drift (Lazarescu et al., 2004) and feature change (Gao et al., 2007).

A plethora of concept drift detection methods has been developed in the literature.

Classifier-based detectors, which are also the mainstream methods, focus on detecting real

concept drifts which cause direct classification performance deterioration (Lu et al., 2018;

Wang et al., 2017). On the contrary, data-based detectors focus more on the detection

of virtual drifts (Lu et al., 2020). Virtual drifts are often considered to be less harmful

than real drifts (Wang et al., 2018). Nonetheless, although they may not have immediate

impact on classification performance, they present a hidden risk that the model may treat

certain outlier examples from the new distribution incorrectly. In a multi-drift scenario,

detecting underlying drifts before they become dominant on classification performance is

also desirable. Hence, both types of drifts are equally important (Wang et al., 2017).

Both classifier-based methods and data-based methods have their inherent limi-

tations. This thesis seeks to provide a more general detection framework for supervised

data streams that detects both real and virtual drifts simultaneously, and at the same

time, avoid the drawbacks of both types of methods. Meanwhile, detection efficiency

and computational cost when handling high-dimensional data streams is also carefully

examined and controlled, which is particularly important for online learning tasks.

It is also worth pointing out that almost all existing concept drift detection meth-

ods, no matter classifier-based or data-based, rely on the assumption of data indepen-

dence. The independently-distributed assumption is too strict for real-world scenarios.

How well existing detectors can perform in an environment with data dependency exists

is still unknown. This thesis also includes a rigorous investigation of this commonly-

existing situation, systematically points out the new challenges and opportunities of the

combined issue, and provides a baseline solution with an aim to inspire future research
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in the field.

1.2 Research Problems

Based on the background of change detection in classification problems, this thesis first

aims to develop tools to understand and tackle OoD detection problem in offline scenarios,

and then escalates to online scenarios where concept drift detection problem is closely

looked at. The specific research questions are presented in this section.

1.2.1 Unsupervised Out-of-distribution Detection

Among the wide range of OoD detection methods proposed so far, reconstruction-based

methods are gaining increasing attention since they are the only subset of OoD detec-

tion methods that is naturally unsupervised and are intuitively reasonable tools with

relatively low computational costs (An and Cho, 2015; Berkhahn et al., 2019; Nalisnick

et al., 2018). The core assumption behind these methods is that reconstruction models

trained with ID examples only cannot well-recover the OoD examples. Hence, the models

would produce higher reconstruction error for unseen OoD examples than ID examples.

However, recent work has questioned their stability when dealing with various types of

OoDs (Denouden et al., 2018; Nalisnick et al., 2018). The validity of this assumption

has been shown to depend on the specific characteristics of OoD examples. Sometimes

reconstruction-based detectors can “generalize” so well that it can also reconstruct OoD

data with low reconstruction error, causing unsatisfactory detection performance (De-

nouden et al., 2018; Gong et al., 2019). This is especially the case for semantic OoDs.

Therefore, we first attempt to answer the following research question: How to detect

various types of OoD examples more accurately in a purely unsupervised manner?

To answer this questions, this thesis first examines the reason behind the occa-

sional failures of existing reconstruction-based methods, which helps the development of
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more advanced detection tools. Our preliminary investigation findings on the detection

performance of various types of OoD examples have shown that the current categorization

of OoD examples according to their semantics may not be sufficient since not all types

of semantic OoD examples are equally difficult to detect. The performance of semantic

OoD examples can also vary by a large extent. Hence, in order to improve the trustwor-

thiness of existing detection methods, we study the questions of : How to characterize

different types of OoDs more comprehensively and improve the detection performance for

the more difficult OoDs? To answer these questions, we provide a finer categorization for

OoD examples and investigates the possibility of utilizing their intrinsic characteristics

to boost detection performance.

1.2.2 Concept Drift Detection for Multivariate Data Streams

After looking at the detection of possible types of change in an offline classification

scenario, this thesis extends the time scale and moves to the online scenario where data

arrives in the form of a stream. Data streams are likely to be time-varying. Concept

drift detection has received growing attention not only because drifts may greatly harm

the reliability of real time machine learning systems, but also because it is of practical

importance to understand the nature of the data generation process which may reveal

valuable information of the application systems (Lu et al., 2018).

Most existing drift detection methods for supervised data streams are classifier-

based. They detect real drifts directly by monitoring the classification performance (Lu

et al., 2018; Wang et al., 2017). Detecting only real drifts may not be sufficient in

many application areas where the reason behind a drift is also essential. Besides, in

many applications such as fault detection, it is sometimes possible and crucial to detect

a drift before it becomes noticeable on the performance. Besides, the performance of

classifier-based methods can heavily depends on the underlying classifier adopted. Various

classifiers can lead to very different detection outcomes, harming the applicability and
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reliability of the detectors in real-world applications.

While data-based detectors are more focused on the detection of virtual drifts,

the earliest detectors are mainly designed for one-dimensional data streams. Detection

algorithms designed for multivariate data streams either try to apply statistical tests over

the estimated distribution density (Gu et al., 2016; Dong et al., 2017) or examine each

dimension individually (Alippi et al., 2010b; Faithfull et al., 2019). Both strategies are not

suitable for higher dimensional data streams. For the former, the computational burden

of sequential density estimation can be very high, especially when data dimensionality

rises (Hwang et al., 1994). For the latter, usually a drift is reported whenever one of the

dimensions raises an alarm, hence a high-dimensional data stream increases the possibility

of false alarms. To our best knowledge, detectors proposed in existing work have only

been tested on data streams with less than 10 dimensions (Schlimmer and Granger, 1986;

Losing et al., 2016; Minku and Yao, 2012). In addition, although data-based detectors

that monitor the feature input space are also capable of detecting some real drifts that

influence the data distribution. Nonetheless, changes affecting the labelling mechanism

only cannot be identified.

For the above reasons, the thesis then studies the following set of research ques-

tions: How to detect both real and virtual drifts in supervised data streams regardless

of their effect on classification performance? How to improve the efficiency of data

distribution-based detector for high-dimensional data streams? How to improve detec-

tion performance to achieve high true detections and low false alarms within a specified

delay range for all types of drifts even when the magnitude of drift is small?

To achieve these goals, a novel detection framework which is flexible and efficient

for multivariate data streams is proposed. The framework not only pinpoints the time

of drift occurrence in a more efficient manner, but also provides relevant information

regarding sub-regions of the data distribution. Thus, potentially useful knowledge that

could improve model adaptation can be preserved and better utilized to enhance overall

performance.
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1.2.3 Concept Drift Detection in Data Streams with Temporal

Dependency

While concept drift detection methods provide a remedy to raise alarms when the identically-

distributed assumption of machine learning is violated, the validity of independently-

distributed assumption and its effect on existing concept drift detection methods still

remain relatively unexplored.

This temporal property of data stream is an important characteristic that directly

distinguishes a streaming data environment from a non-streaming data environment.

Temporal dependency is about the impact of previous events on current event. For

instance, in the classic electricity price prediction task (Harries and Wales, 1999), whether

the electricity price today is going up or down not only depends on the supply and demand

today, but also that of the past few days. Given the fact that temporal dependency is a

very common issue in the real world, examining the combined issue of concept drift and

temporal dependency is crucial for removing the “simulation-to-reality” gap.

The existence of temporal dependency complicates the data generation process,

hence new challenges may arise. Nonetheless, most existing detectors, either explicitly or

implicitly, assumes data independence. Thus, the next set of research questions we wish

to investigate is: If and how temporal dependency affects existing concept drift detection

methods? What forms of drifts can possibly occur under such scenario? How to detect

the wide range of possible drifts in temporal dependent data streams?

This thesis aims to fill in the research gap by providing a systematic formulation

of the joint issue and discussing the new challenges that their interaction could bring to

the current state of research. Following this analysis, this thesis also seeks to utilize the

temporal dependency itself as a novel concept expression for more efficient and accurate

drift detection.
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1.3 Research Contributions and Deliverables

The main contributions of this research are summarised as follows:

1. We propose a new OoD detector LAMAE (Label-AssistedMemory Auto-Encoder)

that leverages the information of the class-labels of ID examples to constrain the

the reconstruction of OoD samples while preserving the reconstruction capability of

ID examples. Hence, the differentiation between ID and OoD can be promoted and

better detection can be achieved. We also propose a new criterion to characterize

OoD data sets and a refined version of LAMAE named LAMAE+. LAMAE+

mitigates the bias induced by inherent image complexity, it adopts a Complexity

Normalizer (CN) to adjust the reconstruction error. Hence, the detection of a wider

range of OoDs, including semantic OoDs, can be further improved (Chapter 3).

2. We propose a novel framework for concept drift detection named HRDD (Hierarchical

Reduced-space Drift Detection framework). HRDD detects both real and virtual

drift accurately and efficiently for multi-dimensional data streams, and is also ca-

pable of detecting subtle drifts. HRDD can be used in conjunction with any base

detection test and classifier, and its performance is independent of the choice of the

classifier (Chapter 4).

3. We formally demonstrate that temporal dependency is indeed a generic problem

that cannot be separated from concept drift detection. We provide a new problem

formulation taking into account temporal dependency, and a novel taxonomy for

various forms of concept drifts that may exist in the new environment. With this

taxonomy and a new data stream generator to simulate different drifts in temporal-

dependent data streams, we experimentally demonstrate that when taking temporal

dependency into consideration, existing detectors fail in many cases. We summarize

the types of drifts requiring urgent attention and conclude that concept drift de-

tection for temporal dependent data streams is an issue worth further investigation

(Chapter 5).
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4. Based on the new problem formulation, we propose a baseline solution CDTD

(Concept Drift detection for Temporally Dependent data streams) detecting con-

cept drifts for temporally dependent data streams (Chapter 5).

The following papers also summarize the findings reported in this thesis:

Published papers:

1. Zhang, S., Tino, P., & Yao, X. (2021). Hierarchical Reduced-space Drift Detec-

tion Framework for Multivariate Supervised Data Streams. IEEE Transactions on

Knowledge and Data Engineering (Vol 25, no.1, pp. 95-110.).

2. Zhang, S., Pan, C., Song, L., Wu, X., Hu, Z., Pei, K., Tino, P., & Yao, X. (2021).

Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detec-

tion. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases (pp. 795-810).

Working papers ready for submission (The survey paper is based on the proposed

future work following the research carried out in this program, hence is not included in

this current thesis. ):

1. Zhang, S., Tino, P., & Yao, X. (2023). How Important is Temporal Dependency in

Concept Drift Detection for Supervised Data Streams? (To be submitted).

2. Zhang, S., Wu, X., Hu, Z., Tino, P., & Yao, X. (2023). A Survey for Online Learning

with Recurrent Concept Drift. (To be submitted).

1.4 Thesis Organization

The logical structure of this thesis and the relationship between the chapters are shown

in Figure 1.1.
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Figure 1.1: Overall thesis structure and relationship between chapters.

In Chapter 2, the formal problem formulations for OoD detection and concept

drift detection are introduced in Section 2.1. In particular, Section 2.1.3 summarizes

the key similarities and differences between the two problems, showing that they are

closely related with the latter being an escalated issue of the former. Then, we provide

an inclusive review of existing methods tackling the two problems in Section 2.2.

In Chapter 3, this thesis aims to overcome the limitation of existing OoD detection

methods to answer the research questions in Section 1.2.1. A novel reconstruction-based

detector, LAMAE, and its variation LAMAE+, are put forward. LAMAE exploits as

much self-contained information as possible to aid the training of the underlying recon-

struction model. On top of this, we also examine the relationship between the intrinsic

characteristics of various OoD examples and their detection difficulties, and then utilized

this information to further improve detection performance with LAMAE+. Comprehen-

sive experiments are conducted to evaluate their performance against their competitors.
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Chapter 4 moves from the offline scenario to the online scenario. To address the

issues listed in Section 1.2.2, HRDD, a novel framework for concept drift detection for

multivariate supervised data streams is proposed. This framework has three main novel

components and is of high flexibility. HRDD has been demonstrated to remain compet-

itive in terms of both accuracy and efficiency when dealing with various types of drift,

no matter the drift is real or virtual. Its superiority also rises when the dimensionality of

data streams increases. Therefore, HRDD is shown to be a very promising procedure to

follow when designing more advanced concept drift detectors.

In Chapter 5, the i.i.d assumption of existing concept drift detectors is further

relaxed. An investigation to gain a better understanding of the role of temporal depen-

dency in concept drift detection tasks is provided. To tackle the research questions in

Section 1.2.3, this thesis first provides a new problem formulation that better describes

the background of supervised data streams, based on which a new taxonomy of possible

forms of drifts is presented. This thesis not only theoretically illustrates the close connec-

tion between temporal dependency and concept drift, but also creates a drift simulator so

that the performance of existing drift detectors can be illustrated experimentally. Then,

a novel detector CDTD that well accommodates this new situation is developed to fill in

the gap of existing research.

Finally, Chapter 6 concludes the paper by summarizing the findings of this thesis

and pointing to directions for future work.
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Chapter Two

Problem Definitions and Literature

Review

This chapter consists of two sections. Section 2.1 provides the formal problem definitions

for the detection of changes in both offline and online classification tasks: OoD detection

and concept drift detection. Then a summary of the key differences and similarities

between the two problems is also presented. Section 2.2 consists of a comprehensive

literature review for each of the two problems.

2.1 Problem Definitions

This section introduces the formal problem definitions for OoD detection and concept drift

detection. Since both problems are dealing with changes in machine learning classification

tasks, this section starts by describing the background of classification. The following set

of notations will be used throughout the thesis.

In supervised learning, each example is a pair (x, y) consisting of a d-dimensional

feature vector x ∈ X = Rd and a respective class label y ∈ Y = {0, 1, ..., Q}. For a binary

classification task, Y = {0, 1}. The goal of classification task is to train a model fclf (·) in

order to predict the label ŷ for new input data. i.e., ŷ = fclf (x). The predictions are only
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reliable when the new input data and the data used to train the model are identically

distributed. That is, they come from the same joint probability distribution P (X, Y ).

Various types of change could exist in different scenarios. In sections 2.1.1 and 2.1.2

below, we explain two specific types of changes this thesis aims to tackle in offline and

online supervised learning tasks: OoD detection and concept drift detection.

For online learning, there are actually two essential stages involved, concept drift

detection and classifier adaption. This thesis focuses on the detection of change only.

Nonetheless, for the sake of completeness, a brief review of the adaptation stage is also

included in Section 2.1.3.

2.1.1 OoD Detection

In offline supervised learning scenario, a training dataset can be used to learn an optimal

mapping to correctly determine the class labels for examples in a separately collected

testing dataset. Formally, a training data set Dtrain consisted of L examples {(xi, yi)}Li=1

is used to train a predictive classifier fclf (·). All examples in Dtrain are generated by a so-

called in-distribution (ID) probability function Pin. In order to guarantee the performance

of model fclf (·), it is crucial to ensure that the testing data set Dtest contains only

examples drawn from the ID distribution Pin. However, it is often impossible to control

the collected testing dataset, especially in an open-world scenario. Dtest may contain

completely different inputs that ruin the identically-distributed assumption and therefore

render classic learning theory inapplicable. An example (x, y) ∼ Pout where Pout 6= Pin is

defined as an out-of-distribution (OoD) example.

OoD detection aims to identify the OoD examples and discard them in order to

help the classifier avoid making wrong predictions. Ideally, the detection model food shall

be purely unsupervised, meaning that it is also to be built with the ID training data set

Dtrain only. For each example in the testing data set, a test statistic is evaluated based on

the trained detection model food. Then the test statistic is compared to certain threshold
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Figure 2.1: Illustration of datasets MNIST (left) (LeCun, 1998), SVHN (middle) (Netzer

et al., 2011) and CIFAR10 (right) (Krizhevsky and Hinton, 2009).

to determine if the example is OoD. In OoD detection tasks, it is also important not to

harm the ID classification performance (Yang et al., 2021).

The existence of OoD examples in the testing data set is essentially a change in the

joint probability Pin. Note that a joint probability P (X, Y ) can be further decomposed

into P (Y ) · P (X|Y ). This decomposition also corresponds to the categorization of OoD

examples provided by Hsu et al. (2020). The authors conceptually categorize possible

changes brought by OoD examples into three categories, semantic (S) shift, non-semantic

(NS) shift, and the combination of the two (NS+S), by whether a shift is related to the

inclusion of new semantic categories. A semantic shift refers to the occurrence of new

semantic classes. Formally, semantic shift refers to the situation where data are drawn

from a distribution Pout(X, Ȳ ) with {Ȳ } ∩ {Y } = ∅. In other words, semantic OoDs

belong to a label set Ȳ that is completely different from that of the ID data Y . If the

label set of OoD examples remains the same, but only the forms of presentation change,

the shift is said to be non-semantic. Non-semantic shift is also widely discussed in the

problem of model generalization and robustness improvements. Both types of shift can

also exist simultaneously in some OoD examples, leading to a non-semantic and semantic

(NS+S) shift.

To better understand the differences between each type of shift, we provide an

illustrative example of the testing protocol in Table 2.1. As shown in Figure 2.1, MNIST

is a dataset for handwritten digits with labels “0” to “9” (LeCun, 1998), SVHN is a
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Table 2.1: Examples of the testing protocol setting with different types of OoD following

the existing categorization based on semantics (Hsu et al., 2020).

ID data set ID label set OoD data set OoD label set Type of OoD

“1” to “4”

from MNIST
{“1”, ... ,“4”}

“5” to “9”

from MNIST
{“5”, ... ,“9”} Semantic

“1” to “4”

from SVHN
{“1”, ... ,“4”} Non-semantic

all classes

from CIFAR10
{“airplane”, “bird”, ...}

Non-semantic

and semantic

dataset for door number digits with the same set of labels “0” to “9” (Netzer et al., 2011),

and CIFAR10 is a dataset of natural images of different objects such as airplane, bird

and cat (Krizhevsky and Hinton, 2009). Assuming digits “1” to “4” from the MNIST

dataset is taken as the ID dataset. An example of S shift could be OoD examples from

“5” to “9” from the MNIST dataset, with a change in the label space only. An example

of NS shift could be OoD examples with labels “1” to “4” from the SVHN dataset. The

form of presentation switches from handwritten pattern to photographic formats, without

changing the underlying class labels. An example for the presence of NS+S shift could be

OoD examples drawn from CIFAR10 dataset, where both the semantic and presentation

of the data are changed. Detection of NS+S shifts is the current mainstream of OOD

detection algorithms. However, according to Hsu et al. (2020), NS+S shift is the easiest

type to detect, followed by NS shift. S shift turns out to be the hardest one to detect.

Depending on whether the classifier for ID data classification is involved for detec-

tion, OoD detection methods can be divided into two categories: classifier-based detectors

and data-based detectors. A detailed summary of existing methods is presented in Section

2.2.1.
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2.1.2 Concept Drift Detection

In online scenario, data arrives in a sequential, continuous fashion. Data streams are likely

to be time-varying. The dynamicity of real-world systems poses a significant challenge

to deployed predictive machine learning models. Formally, a supervised data stream to

be inspected for change is formed by observations {(xt, yt), t ∈ Z+}. xt represents the

observation at time stamp t and yt is its class label. Concept drift refers to a change in

the joint probability Pt(X, Y ) generating the data stream (Gama et al., 2014). Concept

drift detection aims to accurately detect such drifts as time goes on. Formally, a concept

drift is said to occur at time T ∗ if {(xt, yt)} ∼ Pt0(X, Y ) for t < T ∗, {(xt, yt)} ∼ Pt1(X, Y )

for t ≥ T ∗, and Pt0(X, Y ) 6= Pt1(X, Y ) in a single-drift scenario. Multi-drift scenarios can

be defined analogously.

To simplify the situation in the first place, most existing work assume that obser-

vations are generated independently (Harel et al., 2014; Bu et al., 2016; Gama et al., 2004;

Baena-García et al., 2006; Ross et al., 2012). Formally, for observations on a stationary

concept starting and ending at time stamps 1 and h respectively under the assumption of

independence, P (X, Y ) = p((x1, y1), (x2, y2), ..., (xt, yt)) = p(x1, y1)·p(x2, y2)·...·p(xh, yh).

Thus, drifts can be detected by monitoring if there is a significant change in p(xt, yt) at

each time stamp t.

Note that the joint probability P (X, Y ) can be written as

P (X, Y ) =P (Y |X) · P (X), (2.1)

where P (X) can be further decomposed through marginalization

P (X) =

Q∑
q=0

P (Y = q) · P (X|Y = q). (2.2)

Based on the probabilistic definition of a concept drift and the above decomposition, it

is not difficult to tell that the change can manifest itself in different forms corresponding

to the different components of the joint probability (Webb et al., 2016; Gao et al., 2007).

Drift can occur in: 1) the marginal distribution over covariates P (X); 2) the posterior
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Figure 2.2: Illustration of three concept drift types (Wang et al., 2017).

class probability or classification boundary P (Y |X); 3) one or more class-conditional

distributions P (X|Y ) and 4) the prior distribution P (Y ).

The most widely used categorization for concept drifts is to classify them by exam-

ining their impacts on the classification boundary (Gama et al., 2004; Ramírez-Gallego

et al., 2017). Real drifts refer to drifts affecting P (Y |X) only. Virtual drifts are changes

in P (X) not affecting P (Y |X). Figure 2.2 provides an example of three types of drift.

Among them, type (d) is considered to be a real drift, type (b-c) are virtual drifts.

Different from OoD detection where most work aim to detect the existence of

new semantic classes, it is often assumed in concept drift detection problems that the

label space is balanced and remains constant. The emergence of new classes (as well as

disappearance of existing classes) is a special sub-category of concept drift, also known

as concept evolution (Haque et al., 2016). Concept evolution relies on a slightly different

problem setting and testing protocol. It is beyond the scope of this thesis. This thesis

focuses on the more general case of concept drift.

Categorizing drift by its influence on P (Y |X) is one possible way to describe the

drift. Drifts also posses quantitative properties. There are also some research to measure

the magnitude, speed and frequency of drifts, for instance, drift severity (Minku and Yao,

2009), degree of dominance (Minku and Yao, 2009), drift magnitude (Webb et al., 2016),

drift path length (Webb et al., 2016), drift rate (Bartlett et al., 2000; Webb et al., 2016),

drift duration (Webb et al., 2016), drift interval and drift volatility (Huang et al., 2014).

Drifts can also be categorized into different classes based on these measures, for instance,
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a drift with duration 1 is an abrupt drift. However, many of the quantitative measures

can be very difficult to calculate in reality.

A concept drift detector usually consists of three stages: detector initialization,

operation and reconfiguration. Usually, it is assumed that at least an initial segment of

data stream is stationary so that a set of initial supervised observations can be used to

constitute a training sequence (Alippi et al., 2010b). The initialization of the detector is

built with this initial training sequence. Then as new data is being received, the carefully

designed concept features and test statistics are extracted and monitored. A detection is

raised whenever the pre-defined criterion is met. Once an alarm is confirmed, the detector

should be able to reconfigure itself on the new concept as soon as possible. Ideally, no

human intervention should be required.

Similar to OoD detection methods, concept drift detection methods can also be

categorized into classifier-based methods and data-based methods. A detailed review of

existing methods is presented in Section 2.2.3.

2.1.3 From Offline to Online: Static to Dynamic

From the above problem formulations, it can be seen that both OoD and concept drift

detection are two closely related topic areas under different learning scenarios. For offline

learning scenario, the learning task of interest is static. In other words, the underlying

distribution generating the data of interest (the in-distribution) remains unchanged. On

the other hand, for online learning scenario, the learning task is non-stationary. The

underlying data distribution of interest as well as the task goals can change as time

passes. Therefore, concept drift detection can be regarded as an escalated problem of

OoD detection since it deals with a more complicated dynamic environment.

An additional module of online learning tasks is the adaptation stage to accom-

modate the latest concept. Two general types of adaptation approach commonly exist:
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Table 2.2: A comprehensive comparison between OoD detection and concept drift detec-

tion.

OoD Detection (Hendrycks and Gim-

pel, 2017)

Concept Drift Detection (Baena-

García et al., 2006)

Dissimilarity Offline learning scenario Online learning scenario

Detection of OoD examples Detection of the drift times

No assumption on the label space Y
Assumes a fixed label space Y except

for work in concept evolution

Detection made for each example in-

dependently

Detection made based on a sequence

of examples

Discards detected examples and main-

tains previous information

Discards past information after detec-

tions and adapt the new information

No reconfiguration required
Requires self-reconfiguration after

each detection

Similarity

Detection of changes affecting P (X, Y )

No prior knowledge of the changes should be available

Detection methods can be classifier-based or data-based

active approaches and passive approaches. Active approaches rely on the concept drift

detection results to decide when and how to update the classification model. The most

standard adaptation strategy is to retrain a new model with the latest data representing

the new concept. Many existing drift detection methods, especially the classifier-based

ones, automatically save the suspicious data belonging to the new concept whenever a

warning signal is triggered (Baena-García et al., 2006; Frias-Blanco et al., 2014; Barros

et al., 2017). These data can then be used for classification model retraining. For other

methods, a small window of the most recent data may be stored as time passes by. After a

drift is detected, the detection methods trace back to estimate the potential starting point

of the new concept and use the appropriate data for retraining (Alippi et al., 2011b; Yu et

al., 2018). In addition to simple model retraining, model modification is another branch

of adaptation strategy. Ensemble approaches and neural network-based approaches are
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common in this category (Xu and Wang, 2017; Museba et al., 2021). For instance, when

the classifier-based drift detector raises an alarm, Dynamic Extreme Learning Machine

(DELM) (Xu and Wang, 2017) adds more nodes to the network layers to improve its

approximation capability. Without training new classification models completely from

scratch, the computational cost can be reduced. Besides, previous information can also

be stored, which may benefit classification performance if similar concept reappears.

For active approaches, the accurate detection of concept drift is crucial in guar-

anteeing the overall performance of the classification system. Passive approaches, on the

contrary, are not incorporated with an explicit drift detection mechanism. Instead, they

constantly adapt themselves on the latest data (Hulten et al., 2001; Kolter and Maloof,

2007; Brzezinski and Stefanowski, 2013). Consequently, they can also slowly adapt to

new concept when a drift takes place with a relatively low speed. Although the cost

of incremental maintenance may be low, these methods can only adapt to certain types

of drifts. Furthermore, they hardly provide any information about the underlying data

generation process, making it difficult for practitioners to understand the reason behind

the drifts.

It is worth pointing out that detecting concept drifts and adapting the classification

model to the data are two different mechanisms. From the practical point of view, an

accurate detector is crucial for maintaining good classification performance in the long

run. How to choose the most appropriate underlying classification model and how to

update the model after each detection are a set of separate question beyond the scope of

this thesis.

This thesis focuses on the detection stage only. Table 2.2 summarizes the key dif-

ferences and similarities between OoD detection and concept drift detection. Although

OoD detection and concept drift detection deal with different types of change in various

scenarios, they still have many characteristics in common. The standard procedures for

detection are also very similar and can be summarized as two stages: test statistic ex-

traction and similarity comparison. It can also be noted that detection methods for both
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problems can be summarized as classifier-based and data-based approaches. The follow-

ing section will summarize state-of-the-art methods and point out the current research

gaps in each problem.

2.2 Literature Review

This section systematically categorizes and reviews the state-of-the-art methods for OoD

detection and concept drift detection in sections 2.2.1 and 2.2.3, respectively.

2.2.1 OoD Detection Methods

In this section, OoD detection methods are first categorized into classifier-based methods

and data-based methods according to whether they rely on the ID classification model

to conduct inference. Sub-categories also exist. Figure 2.3 shows the overall taxonomy

of OoD detection methods.

Classifier-based methods rely on the classifier for ID data to detect OoD. Data-

based methods do not require the involvement of an explicit classifier. They utilize tools

to extract data-related information for OoD detection. For classifier-based methods, it

is also important that the classification performance of ID data is maintained. For data-

based methods, this requirement is automatically satisfied because an explicit mechanism

is adopted for detection. The classification model for ID examples is not altered. It has

Figure 2.3: Categorization of existing OoD detection methods.
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been stated earlier in section 1.1 that some anomaly detection and novelty detection

algorithms can also be easily adapted for OoD detection, if all ID classes are regarded as

a single normal class, and all other unseen classes as anomalous. Therefore, the review

of data-based methods will also contain some relevant anomaly detection and novelty

detection methods.

OoD detection methods can also be either supervised or unsupervised. Supervised

methods are the ones that rely on some external genuine or artificial OoD examples for

training or parameter-tuning. Although this can lead to better results in some test cases,

such information is hardly available in the real world. The characteristics of the given or

synthetically generated examples also limit the generalization ability of the detectors. The

majority of classifier-based methods are supervised methods. The detection performance

of such methods also depends on the performance of the associated ID classifier. Details

of these methods will be explained later in this section.

Unsupervised detection methods, on the other hand, do not require any OoD data

for training. In other words, they make no assumptions on the OoD data. They work

in a similar manner as one-class classifiers. This is a desired property of OoD detection

methods. While data-based methods are mostly unsupervised, they still have their own

limitations such as the difficulty in finding the appropriate feature extraction tool and

high computational cost.

Classifier-based OoD Detection Methods

Classifier-based approaches can be further divided into three categories, depending on

what test statistics are used and how they are obtained. Softmax-based methods utilize

direct information from the ID classifier for detection. Uncertainty-based methods employ

uncertainty modelling techniques for detection. Exposure-based methods aim to mine or

synthesize useful OoD examples and utilize them together with the ID data to train a

classification model for OoD detection.
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softmax-based methods

In one of the first works on OoD detection, Hendrycks and Gimpel (2017) present a base-

line method based on maximum softmax probability (MSP). The underlying assumption

is that for a neural network well-trained with ID training data only, higher softmax scores

will be assigned to ID testing examples than OoD examples, allowing for successful dif-

ferentiation. A new input is considered to be ID if the softmax score is above a certain

threshold and OoD otherwise. Whilst intuitive, it is found that deep neural networks can

easily produce abnormally high softmax scores even for inputs far away from the ID data

(Hendrycks and Gimpel, 2017).

Later on, many methods have been proposed to improve the detection performance

of using softmax scores. For instance, Out-of-DistrIbution detector for Neural networks

(ODIN) (Liang et al., 2017) proposes to increase the difference between the softmax scores

of ID and OoD samples by adopting two techniques to calibrate pre-trained models: tem-

perature scaling and input perturbation. Temperature scaling calibrates the softmax

scores by scaling the logits by a large constant parameter, which is referred to as the

temperature (Lin et al., 2021). A sufficiently large temperature has a strong smoothing

effect on the softmax scores which can help to distinguish ID and OoD effectively. In-

put perturbation is a data pre-processing step before feeding the example to the neural

network. The amount of perturbation also relies on an additional scale parameter. Re-

sults from the experiments in the original paper have shown that the perturbation can

have stronger effect on the ID examples than that on OoD examples, making them more

separable. The key challenge for ODIN is to select the appropriate hyper parameters. A

good manipulation of the parameters can significantly improve detection performance.

The loss function of neural network models can also be modified. Wei et al. (2022)

observe that the common softmax cross entropy loss is a reason for the abnormally high

softmax scores assigned to the OoD examples. They propose a simple fix by enforcing a

constant norm on the logit vector so as to limit the magnitude of softmax output vectors.
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This logit normalization can be viewed as an input-dependent, rather than a global

constant, temperature applied on the logits. For hyper-parameter tuning, a Gaussian

noises data set is used as the validation set.

The above methods are built with state-of-the-art model architectures. However,

with limited modifications, detection performance can also be restricted. The structure

of networks can also be altered to achieve better detection performance. Yu and Aizawa

(2019) propose to use a two-head CNN inspired by Saito et al. (2018). The model

consists of a common feature extractor network and two classifiers. The network is first

trained to classify ID examples correctly and then trained to maximize the discrepancy

between the classifiers outcomes on some unlabelled data set with mixed ID and OoD

data. At inference time, the L1 distance between the two classifiers softmax outputs

is calculated and used for detection. Longer distance symbolizes higher probability of

being OoD. However, the fine-tune of the classifier to detect OoD examples leads to a

drop in classification accuracy compared to the original classifier, which is an undesirable

outcome violating the premise of OoD detection.

Ensemble methods that combine softmax scores from several neural network mod-

els are also proposed. For instance, Vyas et al. (2018) propose to detect OoD examples by

examining the softmax probabilities of all base learners within an ensemble classifier. An

ID dataset and a small number of OoD examples are utilized together for training. The

ID training dataset is partitioned into subsets mutually exclusive to each other to form

leave-out training data sets. The authors also propose a novel loss term which encour-

ages the probabilities of all the classes to be equal for OoD examples, while maximizing

the probabilities of the correct classes for ID examples. Temperature scaling and input

perturbation techniques are also applied. Although effective, the proposed method of the

ensemble of neural networks requires large memory and computational resources.

As can be seen from above, softmax-based methods are mainly supervised. For

instance, ODIN (Liang et al., 2017) selects an independent data set that is neither in-

cluded in the ID data sets nor the OoD sets for hyperparameter tuning. In the work
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by Yu and Aizawa (2019), it is assumed that in addition to the ID data sets, a set of

unlabelled images containing at least partial OoD images are accessible during training.

Not until very recently have researchers started to develop OoD detection methods

that do not rely on any external information. Generalized ODIN (GODIN) (Hsu et al.,

2020) is a recently proposed OoD detector that do not require any OoD data for training.

It is an advancement based on one of the benchmark detectors, ODIN (Liang et al., 2017).

GODIN frees the algorithm from explicit parameter-tuning with respect to specific OoD

datasets for both temperature scaling and input perturbation techniques. It decomposes

the class posterior probability using the rule of conditional probability during training

and uses only the numerator, i.e., the joint class-domain probability, for detection.

A recent work conclude that OoD performance is highly correlated with its ac-

curacy on the ID classes. Taking MSP as an example, the authors Vaze et al. (2021)

demonstrate that a good closed-set classifier is sufficient for good OoD detection. This

argument also highlights the fact that the strength of softmax-based OoD detectors is

dependent on the base classifier involved. It is also hard to achieve outstanding OoD

detection performance for the more difficult classification tasks.

uncertainty-based methods

Many existing work have demonstrated that prediction probability from a softmax dis-

tribution has a poor direct correspondence to confidence (Nguyen and O’Connor, 2015;

Nguyen et al., 2015). Even with a high softmax output, a model can still be uncertain

in its predictions (Gal and Ghahramani, 2016). Uncertainty- (or confidence-) based ap-

proaches attempt to exploit and utilize model uncertainty (or confidence) for detection.

Uncertainty-based methods are based on the premise that a classifier trained with ID

examples should be less uncertain (more confident) about its prediction when the input

is ID. Therefore, examples having lower confidence scores are classified as OoD.

The focus of various uncertainty-based methods is on the accurate measure of
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model uncertainty. For instance, based on the baseline detection method MSP proposed

by Hendrycks and Gimpel (2017), DeVries and Taylor (2018) attach an auxiliary confi-

dence estimation branch onto a pre-trained classifier to output a single confidence score.

The authors amend the training loss function to a multi-task loss so that the network

can minimize its overall loss if it can successfully predict which inputs are more likely to

be classified incorrectly.

Bayesian models, which learn a distribution over weights, are popular tools for

uncertainty estimation (Rasmussen and Quinonero-Candela, 2005; Gal and Ghahramani,

2016). For instance, Malinin and Gales (2018) and Chen et al. (2018) first attempt to

parametrize a Dirichlet distribution over the output class distributions using deep neural

networks, and then use various measures of entropy of the learned posterior distribution

as the uncertainty measure for OoD detection. Examples with high entropy are more

likely to be OoDs.

ENsemble Distribution Distillation (EnD2) (Malinin et al., 2019) is an ensemble-

based approach from the Bayesian viewpoint. In EnD2, a criterion for mutual information

that decomposes the total uncertainty into knowledge uncertainty and expected data

uncertainty is calculated. For OoD inputs, the ensemble yields diverse distributions over

classes such that the predictive posterior is near uniform, while the expected entropy of

each sub-model is much lower. EnD2 also distils the distribution of the predictions from

an ensemble into a single model. Distillation is the procedure of teaching a single network

to represent the knowledge of a group of neural networks (Bucilua et al., 2006). With

distillation, the computational cost of the ensemble is reduced, while the ensemble model

diversity is maintained.

However, Bayesian-methods are difficult to train and are associated with high

computational costs (Lakshminarayanan et al., 2016). Lakshminarayanan et al. (2016)

propose an alternative to Bayesian neural networks named Deep Ensemble. It is a simple

and scalable non-Bayesian solution for uncertainty quantification. It consists of three

components: network training with a proper scoring rule that fairly judges the quality
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of predictive uncertainty, adversarial training to smooth the predictive distributions, and

an ensemble structure which helps generate well-calibrated uncertainty estimates.

Maximizing Overall Diversity (MOD) (Jain et al., 2020) notices the excessive sam-

pling variability in the uncertainty estimates of ensemble neural network models, espe-

cially for low-density regions of the ID distribution. The authors aim to improve and

stabilize model uncertainty estimation by encouraging higher ensemble diversity. It in-

troduces an auxiliary diversity-encouraging loss that is computed over some synthetic

OoD data.

Diversity inducing Information Bottleneck enSemble model (Dibs) (Sinha et al.,

2021) is another ensemble learning method that promotes diversity among pairwise latent

ensemble variables. It adopts a measure that effectively captures the combined predictive

uncertainty (epistemic uncertainty and aleatoric uncertainty) for reliable OOD detection.

MOD and Dibs form a promising direction of increasing diversity to aid detection, but

require computationally expensive adversarial setups (Mehrtens et al., 2022).

Uncertainty-based methods are in general less competitive for OoD detection for

the following reason. Even if the uncertainty can be accurately estimated, rejecting

uncertain examples is not enough since uncertain is not the same as unknown, and the

unknown OoD examples need not appear to be uncertain to a learning system (Boult

et al., 2019).

exposure-based methods

Exposure-based methods assume that an OoD data set is available for training. They

deliberately synthesize and/or select OoD examples and utilize them for training the

detector. As a results, these methods are all supervised.

A straightforward approach with outlier exposure spares an extra rejection class

to the ID classification model, and utilize the given OoD examples along with the ID data
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set to train the classifier. Following this approach, Adversarial Training with informative

Outlier Mining (ATOM) (Chen et al., 2021) mines informative OoD data in the given

OoD data set. During the training stage, OoD training examples where the classifier is

uncertain about are adaptively chosen and used for the next epoch of training. In this

way, a tight decision boundary between ID and OoD can be estimated.

More advanced approaches include various methods to synthesize useful OoD ex-

amples. For instance, after proposing the baseline detector MSP, Hendrycks and Gimpel

(2017) also attempt to improve detection ability by adding an auxiliary decoder and an

abnormality module to the normal classifier. Some artificial examples are generated by

adding various noises to the original input (e.g., white noise, brown noise, or pink noise),

or blurring and rotating the inputs. Then the abnormality module sees both original ID

examples and noised examples. Noised examples are labelled with the abnormal class,

clean examples are labelled with the normal class, and the sigmoid is trained to output

to which class an input belongs.

Lee et al. (2017) rely on the Generative Adversarial Network (GAN) (Goodfellow

et al., 2014) to generate synthetic OoD examples that are close to training distribution

and also simultaneously have high entropy in terms of classifier output. They show that

for effective OoD detection, the generated OoD examples should cover the low-density

boundary of ID examples. Then authors explicitly train a classifier with both ID and

the generated OoD examples. Nonetheless, Vernekar et al. (2019) argue that generated

OoD samples close to the ID boundary fail to cover the entire boundary effectively. They

aim to generate more effective OoD examples using a manifold learning network (e.g.,

variational autoencoder) and then create an additional class for OoD in the multi-class

classifier.

Exposure-based methods are not the best choice for OoD detection. Research

have shown that the performance can be largely affected by the correlations between

given/synthesized and real OoD examples (Shafaei et al., 2018). The training time and

computational cost are also higher for exposure-based methods.
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In summary, although the performance of exposure-based methods can be en-

hanced by the availability of OoD examples in a laboratory environment, it can also be

largely affected by the correlations between given and real OoD samples.

Data-based OoD Detection Methods

Data-based OoD detection methods do not require the involvement of an explicit classifier.

Unlike classifier-based methods where OoD detection performance and ID classification

performance of ID data are interdependent, data-based detection methods treat OoD

detection problem as a separate and independent issue. Data-based OoD detectors can

be further categorized into two branches: distribution-based methods and reconstruction-

based methods.

distribution-based methods

The assumption of distribution-based detectors is that OoD examples tend to be farther

away from ID data, or fall into the low-density region. Hence, OoD examples can be

detected by either calculating the estimated density or distance between the new input

and the ID data. The first stage is to extract a compact representation of the data

features. Various tools can be used, for instance, different layers of the latent space of

neural network models. Although methods in this category are often used in conjunction

with a neural network model, the underlying models can be either non-classification

models or classification ones. They only serve the role of a feature extractor.

Lee et al. (2018) propose a simple framework which models the penultimate layer

output of deep neural networks with class-conditional Gaussian distributions. A score

for OoD detection is obtained by calculating the Mahalanobis distance between the test-

ing example and the closest class-conditional Gaussian distribution. Input perturbation

technique is also adopted here to enlarge the difference between OoD and ID examples.
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Instead of using the penultimate layer output directly, Abdelzad et al. (2019)

propose to find the optimal output layer of a pre-trained deep neural network based on

a holdout validation OoD dataset. Then they apply one-class classification algorithm to

separate ID sample and OoD examples. However, the results are heavily dependent on

what synthetic or real OoD examples are used for layer selection.

Later, instead of training a unified OoD detector at a fixed ending layer, Wang

et al. (2022) train multiple one-class classification-based OoD detectors simultaneously

at different intermediate layers to exploit the full-spectrum characteristics encoded at

varying depths of deep neural networks. Consequently, the computational cost for this

method would be relatively high.

Erdil et al. (2020) propose an unsupervised OOD detection method using kernel

density estimation (KDE), which is a non-parametric method for estimating probability

density functions of features obtained at different layers of deep neural networks. Specif-

ically, they estimate the probability density functions of ID features from each channel of

the network by performing KDE. At testing time, the probability functions are evaluated

on the testing data to obtain a score, which is expected to be higher for ID and lower for

OOD samples.

The Density of States Estimator (DoSE) (Morningstar et al., 2021) also employs

a non-parametric density estimator to measure the so-called density of states on several

summary statistics of the ID data such as the negative log likelihood loss and classification

loss. Test examples with low support under the observed densities of the measurements

are regarded to be OoD.

Deep one-class classification algorithms can also be directly used for OoD detec-

tion. They simply treat various ID semantic classes as a whole (Ruff et al., 2018; Perera

and Patel, 2019). Deep features are first extracted from a pre-trained deep model based

on the given training examples, then various fine-tuning and model building strategies

can be carried out to improve detection performance. Some extra OoD data sets may be
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required to improved detection performance.

Autoencoders (AE) that seek to learn a compressed representation of the inputs

can also be used as feature extraction tools. Then similar tests can be applied to assess the

discrepancy between the projections of newly arrived test examples and the ID dataset

within the latent space (Sarafijanovic-Djukic and Davis, 2019; Andrews et al., 2016; Xu

et al., 2015; Zong et al., 2018; Guo et al., 2018). For instance, Sarafijanovic-Djukic

and Davis (2019) build a convolutional autoencoder (CAE) to extract a low-dimensional

representation of the images, then distances within the latent space is used as an anomaly

score. Guo et al. (2018) first extract the compressed hidden layer vectors of the data,

and then explore the usage of K nearest neighbours distance to detect abnormal data.

In summary, feature extraction with pre-trained neural network classification mod-

els can be simple and quick. However, the selection of the appropriate extraction tool

may still benefit from external information related to OoD data. In addition, when the

number of dimensions of extracted features is high, which is a typical issue of data in the

open world setting, these approaches can suffer from the curse of dimensionality.

reconstruction-based methods

Different from distribution-based methods, reconstruction-based methods rely on the

reconstruction error or probability provided by generative models for detection directly.

Reconstruction-based methods are based on the assumption that when trained with ID

examples only, the generative models are only expected to capture representative features

of the ID examples well. Hence, the restoration of testing examples is usually used as a

criterion to make a detection. Some of the methods in this category are also single-class

anomaly detection and outlier detection methods.

Autoencoder (AE) models and their variations have been used extensively in

reconstruction-based methods. Unlike distribution-based methods built with AEs that

utilize the deep feature representation ability of the models, methods in this category
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focus on the reconstruction aspect of the models. An and Cho (2015) adopt a variational

autoencoder (VAE) (Kingma and Welling, 2013) as the base model and utilize recon-

struction probability to detect OoD. OoD examples are expected to have low probability

density. Semi-supervised VAE (SSVAE) is a more advanced VAE for semi-supervised

learning scenario (Berkhahn et al., 2019). The authors supplement the classification loss

with the VAE loss so that the performance for both ID classification and OoD detection

can be improved. However, VAEs have their own limitations such as some parametric

prior assumptions on the latent space. Moreover, there are various ways of how the re-

construction likelihood can be formulated, which may also affect detection performance.

Furthermore, many recent work are challenging the use of reconstruction likelihood of

flow-based generative models such as VAE for OoD detection because extensive exper-

iments have shown that it is not a reliable metric as expected (Nalisnick et al., 2018;

Huang et al., 2019).

On the other hand, the reconstruction error of AEs is a more straight-forward

metric to use. However, there are also other challenges experienced by them. Denouden

et al. (2018) notice that AEs can sometimes reconstruct the semantic OoD examples with

less error than ID examples. To solve this issue, they adjust the reconstruction-based

detection criterion by adding the Mahalanobis distance between the test example and

the training set mean within the AE latent space. Memory AE (MemAE) (Gong et al.,

2019) is another recently proposed method aiming to improve detection performance of

reconstruction error-based methods. It incorporates within the training stage a memory

module to store prototypical elements of the ID data. Hence, the reconstruction of any

test examples will be forced to be more similar to the most representative ID examples.

Thus, the reconstruction error will be enlarged for OoD examples.

Although AE-based methods have been shown to be a promising tool for OoD

detection, they are mostly tested in very restricted scenarios only. For instance, the

VAE-based detector (An and Cho, 2015), Mahalanobis-based AE detector (Denouden

et al., 2018), and MemAE (Gong et al., 2019) have all been tested in scenarios where
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the ID data set contains images from one semantic class only. The performance with

multi-class ID data sets remains unknown.

In addition to AE and its variations, deep generative models such as PixelCNN

(Oord et al., 2016) and Glow (Kingma and Dhariwal, 2018) are also popular reconstruc-

tion tools. An empirical study has also shown that PixellCNN and Glow are better candi-

dates for OoD detection tasks among various deep generative models (Xiao et al., 2020).

More recent detectors are based on these models. While directly estimating the likelihood

of such models is an intuitively natural approach, some work have also shown that higher

likelihoods are falsely assigned to certain types of OoD examples. One possible reason

is that deep generative models overly rely on the background information to estimate

the likelihood. Ren et al. (2019) propose to concurrently train a background model with

perturbed inputs, and use the likelihood ratio from the usual model along with that from

the background model for OoD detection. In this way, the bias from the background pix-

els can be removed. Cai and Li (2023) propose a novel Frequency-Regularized Learning

(FRL) framework for OoD detection, which incorporates high-frequency information into

training and guides the model to focus on semantically relevant features. Nonetheless,

these methods have only been tested on non-semantic data sets, and the computational

cost for training deep generative models is much higher than that for AE models.

Reconstruction-based approaches are receiving increasing attention since they are

naturally unsupervised, i.e., they do not require any assumptions on the OoD data or

input preprocessing techniques, and models like AEs can be built with low computational

costs.

2.2.2 Performance Evaluation Metrics for OoD detection

OoD detection assigns a score to each testing example. Then the decision can be made

according to a specific threshold. It can also be regarded as a two-class problem. Treating

OoD examples as the negative class, the performance can be summarized by a confusion
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Figure 2.4: Confusion matrix for bi-class classification problem (Fawcett, 2006).

matrix as in Figure 2.4. Each entry in the confusion matrix can be defined as follow:

TP: the number of correctly classified examples belonging to the ID class;

TN: the number of correctly classified examples belonging to the OoD class;

FP: the number of misclassified examples belonging to the ID class;

FN: the number of misclassified examples belonging to the OoD class.

Based on these measures, true positive rate (TPR) (also known as Recall), false-

positive rate (FPR) and precision can be further calculated as in Equations 2.3, 2.4 and

2.5.

TPR (Recall) =
TP

TP + FN
(2.3)

FPR =
FP

FP + TN
(2.4)

Precision =
TP

TP + FP
(2.5)

However, choosing the specific threshold is often regarded as a separate task that

depends on the particular application and expectation of the users. In order to view

the trade-off of performance achieved by various thresholds rather than just one that

was chosen by the modelling technique, receiver operating characteristic (ROC) analysis

(Fawcett, 2006) and precision-recall curve (PRC) analysis (Boyd et al., 2013) are often

used. True positive rate (TPR) and false-positive rate (FPR) are used to build the

ROC curve. Precision and recall are used to build the PRC curve. The area under ROC

(AUROC) and area under PRC (AUPRC) are two single number summaries of the overall
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classification performance.

Consequently, a random positive example detector corresponds to an AUROC of

50% and an AUPRC equal to the fraction of positive examples in the testing data set.

For both metrics, a higher value indicates better detection performance. A “perfect” OoD

detector corresponds to 100% AUROC and AUPRC.

2.2.3 Concept Drift Detection Methods

Similar to OoD detection methods, concept drift detection methods can also be catego-

rized into classifier-based ones and data-based ones. As discussed in Section 1.1, concept

drifts are commonly categorized as being real or virtual, depending on if the decision

boundary P (Y |X) is affected. Classifier-based concept drift detection methods aims to

detect real drifts by monitoring P (Y |X) directly. A drift is reported when the classifi-

cation performance constantly deteriorates. Data-based methods mainly inspect changes

in P (X), which are more effective for capturing virtual drifts, but can also capture some

of the real drifts simultaneously.

One of the major differences from OoD detection methods is that for concept drift

detection, it is often assumed that the label space of supervised data stream remains

balanced and unchanged over time. A test-then-validate scenario is considered, meaning

that the respective label is revealed once the predictive label is produced. In this setting,

it is more important to detect changes in the underlying environment instead of the

Figure 2.5: Categorization of existing concept drift detection methods.
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emergence of new classes. Changes in P (Y ) can be considered as a particular type of

concept drift, which is often referred to as concept evolution. For relevant literature

dealing with concept drift in P (Y ), please see Antwi et al., 2012; Wang et al., 2013;

Brzezinski and Stefanowski, 2014; Wang and Abraham, 2015. This thesis focuses on the

detection of real and virtual drifts assuming P (Y ) is fixed.

Depending on the way data are processed and the application-specific memory

requirement, methods can be further categorized as being instance-based and window-

based as shown in Figure 2.5. Instance-based methods monitor a statistic extracted from

the data stream sequentially in a one-pass learning manner. The test statistic used for

detection is updated each time a single instance is received and no previous data need

to be saved. Window-based methods, on the other hand, slide one or more windows

along the data stream for inspection. Multiple instances within the window are used

together to estimate the test statistic. The performance of window-based methods can

be heavily dependent on the window size. The trade-off between detection delay and

detection accuracy also needs to be carefully examined.

Classifier-based Concept Drift Detection Methods

Most existing work tackling drift in supervised data streams are classifier-based methods.

They consider real drift to be the most detrimental to classification performance and

focus on detection of such drifts only (Wang et al., 2017; Gama et al., 2014). As the

name suggests, classifier-based methods are built upon the associated streaming data

classification model. Then they monitor over time some classification performance-related

indicators to decide if a drift has occurred (Gama et al., 2004; Baena-García et al., 2006;

Ross et al., 2012; Harel et al., 2014; Wang and Abraham, 2015).

Assuming the true class label is revealed once the model prediction is made, an

univariate stream of the error of the base classifier is generated. The label prediction can

be correct (ŷ = 1) or incorrect (ŷ = 0). The prediction error of the learning algorithm
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is considered as a random variable from a sequence of Bernoulli trials. The Binomial

distribution gives the general form of the probability of observing an error. Based on the

assumption of data independence, various statistical tests can be applied on the prediction

error rate for detection. As the number of examples increases, the Binomial distribution

can also be closely approximated by a Gaussian distribution, allowing a wider range of

tests to be applied. Classifier-based methods are built upon the Probably Approximately

Correct (PAC) learning model premise, which suggests the error rate will decrease as

the number of analysed examples increases as long as the data distribution is stationary,

until the generalization error rate is reached (Gama et al., 2004). Therefore, a significant

increase in the classification error indicates the existence of a drift.

Instance-based methods detect changes in a single-pass through the data. The

benchmark detection algorithm within this category is Drift Detection Method (DDM)

(Gama et al., 2004). DDM detects abrupt drift by inspecting if the error rate exceeds a

calculated threshold. It is also the first algorithm that defines a two-thresholds setting

with a warning level and a drift level. After the classification error exceeds certain

threshold specified by the warning level, newly arrived data will be temporarily saved.

The drift is confirmed only if the error continues to rise and reaches the threshold defined

by the drift level. Then data temporarily stored after warning will be used for detector

reconfiguration. The thresholds for the two levels are also updated as new data are

received.

This two-threshold setting is inherited by many later work. Early Drift Detection

Method (EDDM) (Baena-García et al., 2006) follows a similar strategy. It improves

the detection performance of DDM on gradual drifts where the change takes place at a

lower rate. It monitors the distance between consecutive classification errors. EDDM is

initialized and reconfigured when a minimum of 30 classification errors have taken place.

Reactive DDM (RDDM) (Barros et al., 2017) notices that the performance of

DDM worsens when the concepts are very large because the accumulated error rate tend

to become less sensitive. Hence, it improves DDM by adding an explicit mechanism to
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discard older instances of very long concepts on a regular basis to alleviate the perfor-

mance loss problem. RDDM also improves the accuracy of DDM in data streams with

gradual drifts. However, it also moderately increases the number of false positives and

memory consumption.

EWMA for concept drift detection (ECDD) (Ross et al., 2012) is also based on

the two-threshold setting. It is adapted from Exponentially Weighted Moving Average

(EWMA) control charts (Yeh et al., 2008). Instead of requiring to know the mean and

variance of the error stream in advance as in EMWA, ECDD proposes a way to estimate

the parameters from the data and the thresholds are set with polynomial approximations.

In addition to simple classification errors, combined error statistics can also be

monitored to detect drifts. Linear Four Rates (LFR) (Wang and Abraham, 2015) mon-

itors all four statistics associated with a confusion matrix to better exploit the error

information. LFR can achieve early detection of concept drifts, high detection rate and

low false alarm rate than DDM regardless of the distribution properties of the labels.

Window-based approaches also exist. For these methods, two test statistics, one

from a longer frame and one from a more recent frame, are calculated and compared

to each other. Window-based methods are generally based on the assumption that the

accuracy of classification models should stay steady, or improve, as more instances are pro-

cessed for a stationary concept. Statistical Test of Equal Proportions Detection (STEPD)

(Nishida and Yamauchi, 2007) is a popular two-time window-based drift detection algo-

rithm. STEPD detects a drift when the short term classification error is significantly

higher than that of the overall window of the current concept. Fast Hoeffding Drift

Detection Method (FHDDM) (Pesaranghader and Viktor, 2016), McDiarmid Drift De-

tection Method (MDDM) (Pesaranghader et al., 2018), and Wilcoxon Rank Sum Test

Drift detector (WSTD) (Barros et al., 2018) work in a similar fashion with various mod-

ifications.

FHDDM (Pesaranghader and Viktor, 2016) compares the accuracy of the current
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sliding window with the best historical accuracy observed so far. A drift is reported when

a significant difference between these two values is observed according to a threshold de-

rived from the Hoeffding’s inequality (Hoeffding, 1994). MDDM (Pesaranghader et al.,

2018) adopts an instance-weighting strategy. It compares the weighted mean classifica-

tion accuracy of the current sliding window with the maximum weighted mean accuracy

observed so far. Different weighting strategies can be applied to capture drifts of various

speeds. WSTD (Barros et al., 2018) aims to restrict the high false alarm rate of STEPD

by substituting the equal proportion test with Wilcoxon rank sum test (Wilcoxon, 1992)

and limiting the length of the overall window. Experiments have shown that WSTD

effectively reduces false alarms and is also more sensitive in detecting abrupt drifts.

In these methods, the window size is a predefined parameter. A small window

can better reflect the latest data distribution and allow quicker detection at the cost of a

higher computational burden. In contrast, a larger window may include examples from

previous concept and delay the detection time. However, longer window also provides

more data for better detector reconfiguration.

Differently, ADaptive WINdowing (ADWIN) (Bifet and Gavalda, 2007) is another

benchmark method that avoids the problem of choosing the appropriate window size by

incorporating an adaptive windowing strategy. ADWIN first maintains a relatively large

window and examines all possible cuts to divide the large window into two sub-windows,

representing old and new data. When the difference between the average values of these

sub-windows is higher than a given threshold, drift is detected and the older window is

dropped. The newer window is used for detector reconfiguration.

Similar to ADWIN, Hoeffding’s inequality based Drift Detection Method (HDDM)

(Frias-Blanco et al., 2014) is also based on a cut-point estimation procedure. HDDM

does not assume the errors to follow a Bernoulli distribution. Nonetheless, it requires

only independent, univariate and bounded random variables to be received, which allows

the application of Hoeffding inequalities to obtain theoretical guarantees for the detection

rate of various types of drifts. Two versions of HDDM are introduced by the authors to
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deal with abrupt and gradual drifts with different weighting schemes.

In summary, classifier-based detectors can be used in conjunction with any classi-

fier since they utilize only the error stream. This property allows them to be smoothly

combined with any existing classification algorithms. Besides, the memory consumption

of these methods is low. Even for window-based approaches where some past information

may need to be stored, the memory required is still low since only the error stream needs

to be saved.

However, in order to acquire the error stream, instant feedback regarding whether

each prediction is correct is a necessary condition. Besides, their detection performance

is heavily dependent on the chosen base classifier (Benenson et al., 2013). Various base

classifiers lead to very different detection outcomes. Moreover, they neglect drifts that

are not reflected on classification performance. This can cause two consequences. Firstly,

this may harm the interpretation of the data and the nature of the drift. Secondly,

in some situations, especially when a series of drifts is present, methods that can detect

drifts before they cause performance degradation are preferred. Classifier-based methods,

however, can only detect drifts after the classification performance deteriorates.

In addition, classifier-based methods regard the prediction error as a random vari-

able following Bernoulli distribution and assume the error stream contains independent

draws from the Binomial distribution. When temporal dependency exists, the prediction

error stream also contains dependency (Zliobaite et al., 2015). Hence, the premise of

many statistical tests is violated. Zliobaite et al. (2015) also demonstrate that when tem-

poral dependency exists, classification error is no longer a suitable metric for assessing

the performance of drift detectors because false alarms may actually decrease classifica-

tion error, resulting in misleading results. Since temporal dependency commonly exists

in real-world applications, it is crucial to relax the assumption of data independence for

existing detectors.
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Data-based Concept Drift Detection Methods

In contrast to classifier-based detection methods, data-based detection methods do not

rely on an explicit classifier to make decisions. They extract and monitor some data

distribution-related characteristics directly (Page, 1954; Dasu et al., 2006; Alippi et al.,

2010b; Ditzler and Polikar, 2011; Lu et al., 2014; Bu et al., 2017).

Instance-based detection methods that monitor data features first stemmed from

the application area of stochastic process control (SPC) and have a longer history than

classifier-based methods. Control chart is generally used in industries to monitor the sta-

tistical quality of product data. The earliest control charts are parametric schemes. They

assume the data to be i.i.d and follow certain distributions such as the Gaussian distri-

bution. One of the earliest control charts is the Shewhart X bar control chart (Shewhart,

1931) established in 1931 that directly monitors shifts in feature mean. Later in 1954,

Cumulative Sum (CUSUM) chart (Page, 1954) is proposed to monitor the accumulated

sum of deviations from the mean so that it can better detect smaller drifts. Afterwards,

EWMA (Roberts, 1959) is proposed in 1959, which is similar to CUSUM but the calcula-

tion of the accumulated mean is incorporated with a predefined forgetting factor so that

more weights can be assigned to the most recent data. For control charts, decisions are

made based on a set of pre-defined upper and lower control limits. Time-varying control

limits can also be used to improve the detection sensitivity for drifts, especially in early

stages (Steiner, 1999).

Although parametric control charts are easy to use and can be very powerful when

data is known to follow certain distributions, the development of non-parametric instance-

based detection methods has become increasingly popular since reality is mostly pdf-free.

Non-parametric methods make no distributional assumptions on the data. Computa-

tional intelligence CUSUM (CI-CUSUM) (Alippi and Roveri, 2008) is a pdf-free version

of the CUSUM chart that incorporates a parameter configuration phase that allows for

automatic configuration of the test parameters. The Intersection of Confidence Intervals
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Change Detection Test (ICI-based CDT) (Alippi et al., 2010b) is also a non-parametric

test relying on the central limit theorem for feature extraction. The ICI test carefully

designs mean and variance-related features that follow a Gaussian distribution. Instead

of the values themselves, the confidence intervals of these estimated values are calcu-

lated and examined. If there are no more intersections in the confidence intervals of

the newly arrived and previous data, a drift is detected. The ICI-based CDT is en-

dowed with a refinement procedure. Once a change is detected. An estimated drift

starting time is then provided to help detector reconfiguration, ICI-based CDT has been

shown to achieve higher detection accuracy than CI-CUSUM (Alippi et al., 2016). Al-

though non-parametric tests do not have assumptions on the distribution of the data, the

independently-distributed assumption still exists.

The above detection methods are designed for univariate data streams. They

can be adapted to multivariate data streams by conducting univariate CDTs for each

individual dimension (Alippi et al., 2010b; Alippi et al., 2016; Faithfull et al., 2019). Then

a drift is reported whenever one of the dimensions raises an alarm. In order to reduce the

high computational cost of dimension-wise detection methods, some researchers propose

to apply principal component analysis (PCA) (Abdi and Williams, 2010) for feature

extraction prior to the change detection (Alippi and Roveri, 2008; Qahtan et al., 2015).

However, such approaches still tend to be problematic for high-dimensional data streams

(Harel et al., 2014; Wang and Abraham, 2015). The inherent information contained

within multiple dimensions is also lost.

In contrast, window-based approaches can better handle multivariate data streams

by estimating and comparing the empirical density of two windows (Dasu et al., 2006;

Bu et al., 2017). Window-based methods are mostly non-parametric. Different from

classifier-based methods that maintain two overlapping windows, data-based methods

usually treat an initial fixed window as the reference window that represents past in-

formation and keep a sliding window summarizing the most recent information. Then

two-sample tests based on features extracted from these two windows are conducted.
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For instance, the method proposed by Dasu et al. (2006) utilizes Kdq-tree to par-

tition the historical and new data, estimate their empirical distributions and rely on

Kullback-Leibler distance estimation for detection of potential drifts. Kdq-tree can also

identify sub-regions with of the data that drifted the most based on the leaf nodes. Least

squares density difference (LSDD) (Bu et al., 2017) relies on KDE methods to estimate

the pre-change and the post-change pdfs and examine their difference for detection. Both

methods are based on a bootstrap procedure to generate enough data to estimate the dis-

tribution of density difference on stationary concepts, which can be very time-consuming

and computationally expensive, especially when the data dimension is high. So far, con-

cept drift detection methods for high dimensional data streams are very scarce.

In summary, data-based methods may become problematic when applied on mul-

tivariate data streams with higher dimensionalities. For methods inspecting individual

dimensions, high-dimensional data stream increases the possibility of false alarms. For

methods estimating the data distribution, the computational burden of sequential density

estimation can also be very high. Another main shortage of data-based methods is that

they do not consider any label information. Thus, they cannot detect real drifts affecting

the data labelling mechanisms only (e.g., a class swap) (Sobolewski and Wozniak, 2013).

In addition, most of the methods monitor the overall input space, hence they tend to be

insensitive to subtle drifts.

Temporal dependency can also be a potential issue for data-based detectors. For

many of them, it is explicitly stated in their problem formulations that only independent

random observations are to be received (Harel et al., 2014; Dong et al., 2017; Bu et

al., 2016). Even if this is not explicitly stated, many algorithms relying on various

statistical tests have this inherent assumption. For instance, the ICI-test (Alippi et al.,

2010b) rely on the central limit theorem to conduct statistical testing, which also assumes

data independence. For methods relying on PCA for feature extraction (Qahtan et al.,

2015), it has also been shown that autocorrelation structure has a spurious impact on the

eigenvalues of PCA (Zamprogno et al., 2020). Hence the extracted PCA components may
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Figure 2.6: General framework of HCDT (Alippi et al., 2017).

no longer well summarize the data information. It should be noted that the existence of

temporal dependency within the data streams may not necessarily hinder the performance

of existing detectors in the detection of all possible types of drifts, but undoubtedly

impedes the reliability of them since there will be no guarantees for optimality of the

results. How well they can perform under various drift scenarios is still an issue worth

investigating.

Consolidated Detection Frameworks

Based on the vast scope of individual detectors existing in the literature, more consoli-

dated frameworks have been developed recently. For instance, hierarchical drift detection

methods with multiple verification schema containing multiple layers of tests.

The first hierarchical test in the literature is the Hierarchical Change Detection

Test (HCDT) presented in Figure 2.6. It is a two-layered detect-and-verify detection

framework (Alippi et al., 2017). HCDT incorporates in Layer-I a simple non-parametric

online detector such as the CI-CUSUM or ICI-based CDT, and in Layer-II a two-sample

test such as the Hotelling T2 test (Härdle and Simar, 2007). Once a potential drift is

reported in Layer-I, Layer-II is activated to compare the training set with the most recent

set so as to confirm (or deny) the validity of the suspected drift. HCDT has been shown to

achieve more advantageous performance than its single CDT counterpart, but it has only
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been tested on non-labelled scalar data (Alippi et al., 2017). Direct application of this

framework to multivariate supervised data streams still suffers from the aforementioned

deficiencies of data-based detectors.

Inspired by this framework, another hierarchical framework named Hierarchical

Linear Four Rate (HLFR) for supervised data streams is proposed (Yu et al., 2019).

HLFR incorporates LFR (Wang and Abraham, 2015) as the base detector in Layer-I and

a permutation test (Good, 2013) in Layer-II. The validation test is carried out only after

a pre-defined number of examples are received following the detection. In other words,

there is an unavoidable delay in drift confirmation. Even though, it has been shown

to surpass the performance of many existing classifier-based detectors in terms of both

detection accuracy and efficiency. HLFR is a purely classifier-based detector, hence it

fails to detect virtual drifts that do not affect the decision boundary.

Another drift detection method based on Information Value and JACcard simi-

larity (IV-Jac) (Zhang et al., 2017) is a more comprehensive detector consisting of three

layers of detection tests. It addresses the label drift in P (Y ), feature drift in P (X), and

the decision boundary drift in P (Y |X) with three sequential layers. With this setup, it

can detect both real and virtual drifts. It extracts the Weight of Evidence (WoE) and

Information Value (IV) from the available data and then detects whether a significant

change exists between two consecutive windows. However, this algorithm tackles the

challenge of sparseness and high dimensionality of text data streams only. It is more

suitable for data streams with discrete or categorical features.

In summary, hierarchical detection frameworks have been shown to achieve high

drift detection rate with lower false alarms and stronger generalization ability than

those single-indicator-based methods. Existing work based on hierarchical structure have

demonstrated a promising direction of research, although additional tests may bring

higher computational costs.
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2.2.4 Performance Evaluation Metrics for Concept Drift Detec-

tion

The performance of concept drift detectors is often evaluated from two perspectives:

detection performance and the overall classification performance.

The former examines how well the detector can capture the drifts. With synthetic

data streams where the ground truth of drifts is known, the detection results are easily

compared with the ground truth. This can also be viewed as a bi-class problem. By

treating a drift as the positive class, a confusion matrix (Figure 2.4) can be formed.

However, different from OoD detection tasks, concept drift detection is associated with

a time lag. Hence, it may not be so obvious to calculate each component within the

confusion matrix.

Various definitions have been created for TP, FP, TN and FN in the literature

reflecting various foci of the detectors. Some authors focus on if a detection is raised on

a drifted sequence, instead of the number of detections raised (Alippi et al., 2011a; Kim

and Park, 2017). Some authors pay attention to whether there are redundant detections

after the first correct detection, but neglect the false alarms before the drifting point

(Lu et al., 2014; Gu et al., 2016). A comprehensive summary of different performance

evaluators used in the literature can be found in Appendix I.

Drift detector with the highest TP, the lowest FP and the lowest FN is preferred.

Recall and precision are also commonly used, since they offer more insight into the ability

of the model by elaborating its class-wise performance. They are defined in Equations

2.3 and 2.5 in Section 2.2.2. F-measure (also known as F-Score) is the harmonic mean of

precision and recall values (Equation 2.6).

F −measure =
2 · Precision ·Recall
Precision+Recall

(2.6)

The definition of the evaluators TP, FP, TN and FN can heavily impact the per-

formance analysis. There is a need for a standardized and complete definition paradigm
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for detector performance evaluation. This research gap will also be addressed in Chapter

4 of this thesis.

Another way to assess detection performance is to calculate and compare the

detection delay, which measures how fast the TP detection is made after its occurrence.

While the quicker the detection the better, in many real-world applications there is often

an acceptable delay length involved. According to Pesaranghader and Viktor (2016), an

acceptable delay length is a threshold set to determine how far the detected drift could be

from the true location of drift, for being considered as TP. Detection outside this range

is defined to be an FP since it is considered to be too late and inaccurate.

Classification performance assessment is also commonly used to evaluate the per-

formance of detectors in online scenarios, especially for real-world data. For real-world

data streams where the ground truth of drifts is unknown, the detection performance can-

not be measured directly. The most widely used metrics under this case are the number

of detection and the overall classification error (or accuracy) rate. Prequential classifica-

tion error is commonly used for streaming data. The prequential error at timestamp t is

defined as Et = St

Bt
= L(yt,ŷt)+λSt−1

1+λBt−1
where L(yt, ŷt) is the 0-1 classification loss function,

S1 = L(y1, ŷ1), B1 = 1 and λ is a decay factor usually set to 0.999 (Gama et al., 2009).

In essence, it presents the accumulated classification error rate at each time stamp with

a forgetting factor. The number of detections, on the other hand, is positively related to

the reconfiguration cost. Therefore, detectors leading to the highest accuracy rate at the

cost of the lowest number of detections are preferred.

2.3 Chapter Summary

This chapter starts by revisiting the problem definitions for both OoD detection and

concept drift detection. It has been shown that the two problems are closely related since

they both concentrate on the detection of changes in classification tasks. However, the
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foci are different. Concept drift detection can also be regarded as an escalated issue than

OoD detection since the standard for building the detection algorithms in online scenario

is also higher.

Next, existing literature for both problems is reviewed. Despite the great efforts

to design various OoD detectors, most existing work still concentrate on supervised ap-

proaches. The key weakness of such methods is that in reality, the information regarding

OoD data is unforeseeable. Synthesizing artificial OoD data may help to improve the

detection for some types of OoD, but they can also be misleading, hence harm the gen-

eralization ability of the detectors. Therefore, the applicability of these methods in the

real-world is limited. Reconstruction-based methods are the ones that are naturally un-

supervised. In previous work, they have also demonstrated their good potential in OoD

detection. Nonetheless, many of such methods have only been tested with single-class

ID data. Their robustness against various types of OoD data also needs to be improved.

For instance, their performance on semantic OoDs can be very unstable. Therefore, this

thesis aims to tackle these issues and propose a purely unsupervised approach that is

both reliable and robust against different types of OoDs in Chapter 3.

Different from OoD detection which endeavours to detect changes in single in-

stances, concept drift detection aims to detect changes in the streaming environment

over time. A large body of detection methods have been proposed to explicitly mark out

the drifts. Nonetheless, current methods cannot well address different types of drifts si-

multaneously regardless of their effects on classification. Besides, existing algorithms are

mainly designed for univariate or low-dimensional data streams. Since multivariate data

streams are more likely to be encountered in real-world applications, this thesis proposes

a new efficient detection framework to tackle these problem in Chapter 4.

After summarizing existing detection methods, it can also be noted that another

potential issue that has been long neglected by existing concept drift detection work is

the threat of temporal dependence. The violation of the independently-distributed as-

sumption of most existing detectors may harm their reliability as well as their detection
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performance. In Chapter 5, the effect of temporal dependency on existing detectors

is scrutinized. After gaining a better understanding of the joint issue of temporal de-

pendence and concept drift, a new detector that can accommodate the more complex

situation is proposed.
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Chapter Three

Unsupervised Out-of-distribution

Detection

In the previous chapter, we introduced various existing approaches tackling OoD detec-

tion. This chapter embodies our main research findings regarding the issues in OoD

detection, aiming to answer the first set of research questions proposed in Chapter 1 1.

The rest of this chapter is organised as follows. Section 3.1 lists the motivation

and novel contributions of this chapter. Section 3.2 introduces the backbone model of

our algorithm as well as the related notations. Sections 3.3 and 3.4 discuss when and

why existing reconstruction-based OoD detectors may fail, based on which we propose

two purely unsupervised novel OoD detectors that are capable of detecting a wider range

of OoDs accurately. The effectiveness of the proposed OoD detectorsis demonstrated

experimentally in Section 3.5.
1This chapter also forms the following published research paper: Zhang, S., Pan, C., Song, L., Wu, X.,

Hu, Z., Pei, K., Tino, P., & Yao, X. (2021). Label-Assisted Memory Autoencoder for Unsupervised Out-

of-Distribution Detection. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases (pp. 795-810).
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3.1 Introduction

As introduced in Chapter 2, many OoD detectors have been developed lately (Liang et

al., 2017; Lee et al., 2017; Hendrycks et al., 2018; Lee et al., 2018; Ren et al., 2019). But

a large body of them are supervised approaches. That is, they require the availability of

some real or synthetic OoD data to tune the hyperparameters of the detectors, which is

considered to be unrealistic as OoD data are not typically accessible in advance.

Reconstruction-based methods relying on generative models such as Autoencoder

(AE) (Rumelhart et al., 1985) and its variations are exempted from this problem when

used for OoD detection. They rely on the assumption that when trained with ID data

only, an AE network produces higher reconstruction error for unseen OoD data than ID

data.

Many AE-based OoD detectors have been proposed based on this assumption

(Gong et al., 2019; Tuluptceva et al., 2020). However, this assumption may be violated in

some scenarios. Observations have demonstrated that its validity depends on the specific

characteristics of OoD examples. Sometimes AE-based OoD detector can “generalize”

so well that it can also reconstruct OoD data with low reconstruction error, causing

unsatisfactory detection performance (Denouden et al., 2018; Gong et al., 2019).

In addition, so far most AE-based detectors have only been tested in scenarios

where the ID training data set consists of data from a single-class only. However, the dif-

ficulty in identifying semantic OoD examples does not only exist in the one-class setting.

When the training dataset contains multiple classes instead of only one, which is of more

practical use in the real-world, empirical studies of state-of-the-art (SOTA) AE-based

OoD detectors reveal an even larger deterioration of detection performance, showing an

urgent need for better solutions dealing with such learning scenario.

In addition, there has been no systematic study characterizing different types of

OoD aiming for analysing the cause of performance degradation of AE-based detectors.
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The only categorization of OoD is presented by Hsu et al. (2020), which is based on the

semantics of ID and OoD examples. The study concluded that detection difficulty would

increase when OoD examples possess the same semantic meaning as the ID examples,

which coincides with our findings. Nonetheless, based on our preliminary investigation

on the detection performance of various types of OoD examples, we noticed that inherent

image complexity may be another factor causing OoD performance degradation. As

an extreme example, a constant image (i.e., with same-valued pixels) that is of low

complexity can always be reconstructed very well, even if it has never been seen during

the training stage. We further noticed that most AE-based methods suffer in such a

scenario. Therefore, a more thorough OoD characterization is preferred, which can not

only allow us to scrutinize the reason behind the performance variation, but also help

researchers to provide more targeted solutions.

To summarize, the contributions of this chapter are two OoD detectors, namely

LAMAE (Label-Assisted Memory AutoEncoder) and LAMAE+, to address the above

issues. Besides, a new criterion to characterize OoD scenarios is also proposed.

3.2 Memory Autoencoder

Our OoD detectors are built upon MemAE (Gong et al., 2019), which was introduced

in Chapter 2. This section explains MemAE and the relevant notations in more details.

MemAE endorses a memory component into the traditional AE architecture as shown

in Figure 3.1. The encoder fe(·) maps an input image x ∈ X to a latent space Z = RC

via z = fe(x; θe), where θe represents the encoder-specific model parameter. Before the

latent vector z is forwarded to the decoder, the memory module M ∈ RN×C containing

N prototypical vectors mi, each of dimension 1 × C, is put in place, where N is a

predefined parameter for the memory size. M is designed to record the prototypical

normal patterns of ID data Din, which is updated at each epoch in the training phase.

Once a new training example is received, cosine similarity between the encoded vector z
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Figure 3.1: Framework of MemAE (Gong et al., 2019).

and each memory item mi is calculated as d(z,mi) = zmi
T

||z||·||mi||
for ∀ i = {1, · · · , N}. The

weight vector w = [wi, · · · , wN ] is calculated via a softmax operation wi = exp(d(z,mi))∑N
j=1 exp(d(z,mj))

with
∑N

i=1wi = 1. To further limit the reconstruction ability for OoD examples, MemAE

applied a hard shrinkage technique on w, promoting the sparsity of model parameters.

The latent representation fed to the decoder is then ẑ = wM =
∑N

i=1wimi.

The reconstructed image is x̂ = fd(ẑ; θd) where θd represents the decoder-specific model

parameter. The MemAE loss function considers two terms: the reconstruction loss and an

entropy for promoting the sparsity of w. The network is trained with back-propagation

and gradient descent. During training, the items mi in memory M is updated with each

pass of training and only the gradients for the items with non-zero weights wi can be

non-zero.

Once the training stage is complete, the memory M is fixed. In the testing phase,

all examples are forced to be constructed with prototypical components of the ID data,

resulting in significant reconstruction errors for OoDs.

3.3 Label-Assisted Memory AutoEncoder

This section explains the novel OoD detector, namely Label-Assisted Memory AutoEn-

coder (LAMAE). The key idea of this detector is to leverage the information of the

class-labels of ID data so that the reconstruction of OoD data is constrained while the

reconstruction capability for ID data can be retained. Hence, differentiation between ID

58



Unsupervised Out-of-distribution Detection

Figure 3.2: Framework of our proposed LAMAE and LAMAE+. CLF denotes the clas-

sifier module (section 3.3.1). LA-M denotes the label-assisted memory (section 3.3.2). CN

denotes a normalizer to refine the reconstruction (section 3.4).

and OoD examples can be promoted. Figure 3.2 shows the detector architecture. Source

codes of our proposed algorithms are available at DOI:10.5281/zenodo.7947400.

3.3.1 Classifier Module

For offline classification tasks, the ID data always contains multiple semantic classes.

However, as mentioned earlier, existing AE-based methods have mostly been tested in

scenarios where the ID data set contains only one single class and OoD data set contains

multiple classes (An and Cho, 2015; Denouden et al., 2018; Gong et al., 2019). When

the ID dataset contains multiple semantic classes, the information learnt by the AEs

becomes more diverse. Our preliminary experiment shows that in such more practical

scenarios, the performance of existing AE-based detectors can deteriorate significantly.

Figure 3.3 provides an illustrative example based on the MNIST data set of handwritten

digits (LeCun, 1998), where digit “7” is OoD and the rest nine digits are ID. We can see

that MemAE can reconstruct both ID and OOD examples very well (Figure 3.3), such

that it would be difficult to identify the OoD examples based on reconstruction error.

Figure 3.4(a) shows the histograms of the reconstruction errors of ID and OoD data,

further confirming the difficulty of achieving good OoD performance by using MemAE
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Figure 3.3: Original and reconstructed images of ID and OoD for

MemAE and LAMAE. MemAE can reconstruct OoD images as good as

the ID images, leading to a difficulty in OoD differentiation. LAMAE,

on the other hand, reconstructs ID images much better than OoD im-

ages, allowing for a better differentiation between ID and OoD images

by examining the reconstruction error.

Figure 3.4: Density of reconstruction error of ID and OoD for MemAE

and LAMAE. LAMAE leads to a better differentiation between ID and

OoD images.

under this circumstance.

A potential reason is that the latent space learned from the multi-class ID dataset

allows for a combination of features from various ID classes to reconstruct unseen OoD

examples. This combination may not have much effect on the reconstruction of ID ex-

amples, but can be detrimental for OoD detection since the reconstruction error is no
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longer distinguishable. To tackle this issue, we propose to regulate the reconstruction of

test images by exploiting their class labels, which is implemented by placing a classifier

(CLF) and a label-assisted memory (LA-M) in the AE framework as shown in Figure 3.2.

The two modules are explained in Section 3.3.1 and Section 3.3.2, respectively.

A classifier fc(·) is incorporated into the MemAE architecture by connecting the

latent space Z and memory M as shown in Figure 3.2. fc(·) can be a single-layered or

multi-layered network, depending on the complexity of the application. The predicted

label ŷ = fc(z; θc) of a training image x, where θc denotes the classifier parameter, can

then be used to guide the learning of the label-assisted memory. Given a test image,

the latent representation induced by the encoder is forwarded to the classifier for the

predicted label. We can see from the dotted box in Figure 3.3 that the classifier (trained

purely on ID data) always assigns the OoD example with one of the existing ID labels.

3.3.2 Label-assisted Memory Module

The Label-Assisted Memory module (LA-M) aims to record the most representative pro-

totypical patterns for each individual ID class. Therefore, the whole memory M of size N

is divide into S mutually exclusive class-conditional memory chunks {Ms|s = 1, · · · , S}

where S is the number of ID classes, i.e., M = ∪Ss=1M
s. We use N s and ws to denote

the size and associated weight vector of Ms, respectively. This study assigns the same

size for Ms, i.e., N1 = · · · = NS.

Similar to MemAE, cosine similarity is used to calculate the weights (see sec-

tion 3.2). However, thanks to the information from fc(·), the latent feature z is only

compared with each memory item {mŷ
i ∈Mŷ|i = 1, · · · , N ŷ}. The associated weight wŷ

is calculated based on the similarity of the memory items and z. Only Mŷ and wŷ are

used to formulate ẑ as

ẑ = 1s=ŷ

Ns∑
i=1

wsim
s
i . (3.1)

Note that weight vector w is rather sparse since ws = 0 ∀ s 6= ŷ, so we do not need to
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apply the hard shrinkage technique to further increase the sparseness of w manually as

in MemAE.

In the testing phase, M is fixed. Given a test image, one employs the classifier to

predict its label, so that only the predicted-class-conditional memory chunk is referred to

construct the latent feature according to Equation. (3.1), which is then decoded to obtain

the reconstruction error. Modules (c) and (d) in Figure 3.2 demonstrate this process.

3.3.3 Training Objective

The loss function is formulated as the sum of reconstruction error and classification error

on the training data as

L =
1

T

T∑
t=1

[R(xt, x̂t) + βL(yt, ŷt|xt)], (3.2)

where T is the training set size, β is a tuning parameter, R(xt, x̂t) = ||xt − x̂t||22 is the

mean-squared reconstruction error, and L(yt, ŷt|xt) = −
∑S

s=1 1ŷt=slog(p(yt = s)) is cross

entropy classification error. In this work, softmax activation is adopted. Although the

ranges of two loss terms are quite different and preliminary experiments have shown that

tuning the parameter β can lead to better detection performance, the value of the most

optimal β is very task-specific. During training, the loss component that can lead to

the highest amount of total loss reduction is always addressed first. Preliminary results

have shown that setting β to 1 can achieve sufficiently good results in most scenarios

considered in our experiments. Hence, β is set to 1 for all scenarios. Finding the most

optimal parameter can be one possible direction for future work. In the training process,

ID examples, along with their true labels, are used to minimize the overall loss during

which the predictive performance of the classifier module is also guaranteed.
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3.4 LAMAE with Complexity Normalizer

This section describes the detector LAMAE+, a refined adaptation of LAMAE to further

improve detection performance.

Further exploration into our experiments shows that although LAMAE generally

achieves better performance than other AE-based methods, it may still fail on some

specific types of semantic OoDs. For instance, the detection performance is 26% lower

when digit “1” is taken as OoD compared with the case when “0” or “2” is taken. In fact,

almost all existing AE-based detectors suffer in such a scenario. This section aims to

investigate the reason why the detection of some types of OoD is of greater difficulty.

After that, we propose a new way to categorize OoD examples. Finally, we design an

image complexity-based metric (module (e) in Figure 3.2) to upgrade LAMAE, inducing

LAMAE+.

3.4.1 Image Reconstruction and Complexity

According to the taxonomy with respect to data semantics (Hsu et al., 2020), our ex-

perimental setting based on handwritten digits belongs to the semantic OoD scenario.

Nevertheless, our experimental results show that the detection performances can still

vary by a large extent when different digit is treated as OoD, suggesting that it is not

adequate to explain the performance variation purely from the perspective of semantics.

Based on this, we hypothesize that the inherent complexity of the image is pos-

itively correlated to its reconstruction difficulty, which impacts detection performance.

To test this hypothesis, we train and test two vanilla AEs on two datasets with very dif-

ferent complexities: handwritten digits MNIST (LeCun, 1998) with low complexity and

natural images CIFAR10 (Krizhevsky and Hinton, 2009) with much high complexity. We

adopt Shannon entropy (Shannon, 1948; Tsai et al., 2008), which has a well-established
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information-theoretic basis, to measure the image complexity as

H(S) = −
n−1∑
Si=0

p(Si)log(p(Si)), (3.3)

where n is the number of grey levels, Si are the grey level pixel values contained in

image S and p(Si) is the probability of pixel having level Si. A Pearson correlation of

0.7952 between image entropy and reconstruction error is derived from a total of 20,000

test images (10,000 from each dataset), suggesting a strong positive correlation. Our

hypothesis has been verified.

3.4.2 A Novel Characterization for OoD Data

Experimentally, we found that image complexity played an important role in OoD de-

tection. Hence, we propose to further characterize OoD datasets by comparing the mean

image complexity of the OoD datasets with the mean complexity of the ID dataset. When

the OoD data set have a lower mean image complexity than that of the ID data set, we

categorize this type of shift to be “plain”. For an OoD data set with a higher image com-

plexity than the ID data set, we categorize this type of shift to be “fancy”. For instance,

for an ID data set consisting handwritten digits (e.g., MNIST), an extreme example of a

plain OoD data set could be a set of images with constant pixels. An example of a fancy

OoD data set could be a set of images with completely random pixels. Altogether, OoDs

can be categorized into six classes: S+P, S+F, NS+P, NS+F, NS+S+P, and NS+S+F,

where P, F, S, NS stand for plain, fancy, semantic and non-semantic respectively.

By nature, the reconstruction for plain images should be easier than that of the

fancy images, since fewer features are required for their description, leading to lower

reconstruction errors. This property would probably mislead OoD detectors towards

classifying plain images as ID even when they are actually OoD. Therefore, semantic-and-

plain (S+P) OoD is the hardest to detect among all types of OoD and image complexity

should be catered for when making OoD detection based on the criterion of reconstruction

error.
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3.4.3 Complexity-normalized Test Statistic

To tackle the challenge of detecting S+P OoDs, we propose a new metric called Complex-

ity Normalizer (CN) to adjust reconstruction error for detection. Indeed, the mechanism

of CN can be used in combination with any AEs. When CN is equipped with LAMAE,

we form LAMAE+.

To perform LAMAE+ for each test image, we calculate an entropy-based normal-

izer CN = log(H(S) + 1) and re-scale the reconstruction error derived from LAMAE

as:

Êrr =
||xt − x̂t||22
CN + γ

, (3.4)

where γ > 0 is a tiny value to avoid the numerical problem of zero division (fixed as

1e-9). Êrr is the correction of the reconstruction error, taking image complexity under

consideration for OoD detection.

3.5 Experimental Studies

This section carries out two sets of experiments. Experiment 1 validates the proposed

LAMAE+ by comparing with SOTA OoD detectors. Experiment 2 examines the effec-

tiveness of each component in LAMAE+. Comparisons between LAMAE and LAMAE+

can also be found in Experiment 2.

3.5.1 Experimental Setup

Our experiments are based on the following benchmark datasets with each image stan-

dardized to [0,1] channel-wise.

1. MNIST (LeCun, 1998) contains gray-scale images of handwritten digits 0-9.

2. Fashion MNIST (FMNIST) (Xiao et al., 2017) contains gray-scale images of Za-
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lando’s article images from 10 classes including sneakers, trousers, pullover, etc.

3. CIFAR10 (Krizhevsky and Hinton, 2009) contains natural color images from 10

classes including airplane, ship, dog, cat, etc.

4. CelebA (Liu et al., 2015) contains face images of 10,177 celebrities.

5. notMNIST (Bulatov, 2020) contains gray-scale images of English letters from A to

J.

6. Constant contains images of plain color. All pixels of an image has the same value

uniform-randomly drawn from the set {0, · · · , 255}.

7. Noise contains images of uniform noise. Pixel values are independently drawn from

the uniform distribution on the set {0, · · · , 255}.

To show the generality and applicability of the proposed detectors, we conduct

experiments on three different settings. Setting 1 is built with MNIST dataset. In each

experiment, one class is used as the OoD class, and the rest 9 digits are seen as the

ID data set. The procedure is repeated for all available classes. Within this setting of

semantic OoDs, both S+P OoDs and S+F OoDs exist. Details of the ID and OoD data

sets complexities can be found in Table 3.3. FMNIST and CIFAR10 are used as the ID

dataset in settings 2 and 3 respectively. The OoD datasets being tested when FMNIST

is taken as the ID dataset are MNIST, notMNIST, Constant and Noise. Within this

scenario, MNIST and Constant are plain OoDs since they have lower mean complexities

than FMNIST. OoD datasets notMNIST and Noise are considered to be fancy. When

CIFAR10 is taken as the ID dataset, FMNIST, CelebA, Constant and Noise are adopted

as OoD datasets. In this case, FMNIST and Constant are plain OoDs. CelebA and Noise

are fancy OoDs. In summary, within these two settings representing NS+S shift, both

NS+S+P and NS+S+F OoDs exist.

In this section we report the area under the receiver operating characteristic curve

(AUROC) which plots the true positive rate (TPR) of ID against the false positive rate
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(FPR) of OoD data by a varying threshold. The average detection performance and the

standard deviation of 10 repetitive experiments are reported. Performance measured by

area under the precision-recall curve (AUPRC) shows similar trends.

3.5.2 Experiment 1: Comparative Studies with SOTA Detectors

In this section we validate the proposed methods for the detection of various types of OoD.

We compare LAMAE+ with unsupervised detectors including traditional AE, VAE (An

and Cho, 2015), SSVAE (Berkhahn et al., 2019), MemAE (Gong et al., 2019) and the

latest non-reconstruction-based detector GODIN (Hsu et al., 2020).

On MNIST and FMNIST, we implement the encoder using three convolution layers

as in MemAE (Gong et al., 2019). For GODIN (Hsu et al., 2020) where MNIST and

FMNIST are not used for training, we experimented with the same structure as the

setting for the encoder-and-classifier component adopted for LAMAE+. On CIFAR10,

with higher data complexity, deeper encoder and decoder are constructed for MemAE

and LAMAE+. A skip connection from z to ẑ with dimension 16 is added to further assist

reconstruction. Except for the last layer, each layer is followed by a batch normalization

(BN) (Ioffe and Szegedy, 2015) and a Rectified Linear (ReLU) activation (Nair and

Hinton, 2010). Batch size is set to 128 and we use an Adam optimization procedure.

For all methods being compared, the maximum number of training epochs is set to

200, 200 and 500 for MNIST, FMNIST and CIFAR10 respectively. CIFAR10 is assigned

with a higher number of training epochs since it consists of natural images that are more

difficult to reconstruct and classify. A 10% validation set is extracted from the ID training

dataset. The best model that achieves the lowest loss on the validation dataset among

all epochs is saved and used as the final model. Note that this validation dataset is still

ID so the models are trained without access to any information about OoD examples.

The class-conditional memory size N s in LAMAE and LAMAE+ is set to 10, 10 and 50

for MNIST, FMNIST and CIFAR10 respectively. Later we demonstrate experimentally
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Table 3.1: AUROC detection performance for MNIST in Experiment 1. Each time the

model is trained on 9 of the 10 classes and the left-out class is considered to be the OoD

class. Bold indicates the best scores.

OoD Class AE VAE(e) VAE(p) SSVAE(p) MemAE GODIN LAMAE+

0 81.4±0.7 87.0±1.6 94.9±0.1 96.9±0.1 83.0±1.4 86.3±8.0 98.5±0.2

1 12.7±0.1 27.2±1.3 47.0±3.0 9.5±0.6 14.2±1.0 86.4±5.0 90.1±2.5

2 92.9±0.3 96.0±0.6 96.1±0.1 97.2±0.0 94.8±0.4 88.7±4.4 99.0±0.1

3 82.0±0.4 94.2±0.5 84.8±0.3 90.2±0.2 83.1±1.2 70.6±6.8 97.7±0.3

4 76.6±0.8 91.4±0.6 70.8±0.4 75.1±0.3 75.7±0.6 79.4±6.0 95.5±0.6

5 82.6±0.3 92.2±0.7 86.0±0.3 89.4±0.1 84.1±0.8 64.8±9.9 97.5±0.3

6 83.6±0.6 86.1±1.1 92.3±0.01 96.0±0.2 85.9±0.9 83.1±7.6 97.0±0.5

7 56.9±1.0 67.2±1.7 66.9±0.2 75.5±0.5 57.7±0.8 79.8±8.7 94.7±1.1

8 90.5±0.3 95.3±0.5 89.1±0.4 92.2±0.2 90.1±0.6 85.8±3.8 97.5±0.3

9 59.2±0.7 67.3±0.8 62.0±2.0 67.7±0.5 56.5±0.9 79.1±9.1 89.7±2.0

that performance is insensitive to the selection of memory size. An extra fully connected

layer with softmax output is taken as the classifier component.

Performance on Semantic OoD Only

Table 3.1 reports the results of MNIST. Results of VAE(p) and SSVAE(p) based on re-

construction probability are taken from the original papers (An and Cho, 2015; Berkhahn

et al., 2019). We also report the results based on reconstruction error (VAE(e)).

We can see that LAMAE+ achieves the best AUROC in all 10 cases. The im-

provement is especially substantial for digits “1”, “4” , “7” and “9”. Detailed explanations

of how exactly each component in LAMAE+ contributed to this outcome is presented

later in Section 3.5.3. It is also worth noting that the standard deviation of GODIN
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Table 3.2: AUROC detection performance for FMNIST and CIFAR10 in Experiment 1.

Bold indicates the best scores.

ID OoD AE VAE(e) SSVAE(e) MemAE GODIN LAMAE+

FMNIST MNIST 96.2±0.2 99.0±0.1 98.9±0.1 97.1±0.1 79.0±4.3 99.9±0.0

notMNIST 99.6±0.0 99.8±0.0 99.9±0.0 99.8±0.0 64.0±5.8 99.9±0.0

Constant 68.1±2.2 63.2±1.7 82.0±7.0 72.3±1.1 84.4±9.6 100.0±0.0

Noise 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 86.5±6.3 99.9±0.0

CIFAR10 FMNIST 71.7±0.7 69.4±0.9 84.8±1.9 98.5±0.0 94.2±1.7 95.0±0.6

CelebA 55.0±0.5 58.2±0.3 60.0±1.2 70.0±0.0 75.7±2.2 59.5±1.0

Constant 0.0±0.0 0.0±0.0 0.0±0.0 51.2±0.0 92.7±2.0 100.0±0.0

Noise 100.0±0.0 100.0±0.0 100.0±0.0 79.6±0.0 91.0±8.8 100.0±0.0

is much larger than that of AE reconstruction-based approaches, signifying that the

reconstruction-based approaches can be generally more stable than softmax-based ap-

proaches.

Performance on Non-semantic and Semantic OoD

Table 3.2 reports the results of FMNIST and CIFAR10 where various OoD datasets are

selected. VAE and SSVAE based on reconstruction likelihood have not been tested within

these settings and the exact formulation of reconstruction likelihood is not provided.

Hence, we report only VAE(e) and SSVAE(e) based on reconstruction error. We can

see that LAMAE+ ranked the first in 5 out of the 8 cases. In particular, it is capable

of detecting the OoD examples belonging to the Constant dataset better than the other

methods, demonstrating its effectiveness in identifying the plain OoDs.

The performance is not as good when CIFAR10 is used as the training dataset.

This may be due to the fact that the network structure is not deep enough to account

for the complicated details within the CIFAR10 dataset. In addition, a single classifier

layer may also be inadequate for this dataset. For instance, the backbone classifier used
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Table 3.3: AUROC detection performance for MNIST in Experiment 2. The second and

third columns list the average image complexity of each ID dataset and OoD dataset on

1000 images measured by Equation. (3.3). Digits “1”, “4”, “7” and “9” are plain OoDs.

Bold indicates the best scores among each subgroup.

Detector 1 2 3 4 5 6

OOD ID Comp. OoD Comp. AE AE+ MemAE MemAE+ LAMAE LAMAE+

0 1.57±0.38 1.91±0.27 81.4±0.7 78.3±0.8 83.0±1.4 79.9±1.6 98.8±0.1 98.5±0.2

1 1.69±0.32 0.94±0.19 12.7±0.1 27.0±0.3 14.2±1.0 32.6±1.8 72.8±4.2 90.1±2.5

2 1.58±0.39 1.76±0.29 92.9±0.3 92.9±0.3 94.8±0.4 94.8±0.4 98.9±0.1 99.0±0.1

3 1.59±0.39 1.74±0.30 82.0±0.4 82.0±0.4 83.1±1.2 83.1±1.3 97.5±0.4 97.7±0.3

4 1.61±0.39 1.55±0.25 76.6±0.8 79.2±0.7 75.7±0.6 78.7±0.7 93.9±0.8 95.5±0.6

5 1.60±0.39 1.67±0.29 82.6±0.3 83.1±0.3 84.1±0.8 84.6±0.9 97.2±0.3 97.5±0.3

6 1.59±0.39 1.68±0.29 83.6±0.6 84.3±0.6 85.9±0.9 86.6±0.9 96.5±0.5 97.0±0.5

7 1.62±0.39 1.42±0.24 56.9±1.0 62.1±1.0 57.5±0.8 63.4±0.8 91.7±1.5 94.7±1.1

8 1.58±0.38 1.86±0.30 90.5±0.3 89.1±0.4 90.1±0.6 88.5±0.7 98.0±0.3 97.5±0.3

9 1.60±0.38 1.58±0.26 59.2±0.7 60.9±0.7 56.5±0.9 58.2±1.0 87.4±2.1 89.8±2.0

by GODIN is Resnet-34 (Hsu et al., 2020). Increasing the complexity of network may

lead to improvements in detection performance at a cost of an increasing computational

burden.

3.5.3 Experiment 2: Analysis of LAMAE+

In this section, we analyse the functionality of each component in LAMAE+. We ex-

perimentally demonstrate that the combination of the classifier module, label-assisted

memory and CN-adjusted test statistic helps the detector to achieve better results on the

most difficult OoD type, i.e., S+P OoDs, with the MNIST dataset.
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Effect of the Classifier and the Label-Assisted Memory

To illustrate the effectiveness of the classifier and the label-assisted memory, we compare

the results for AE, MemAE and LAMAE on the MNIST dataset in Table 3.3 (Detectors

1, 3 and 5).

We can see that our results for AE and MemAE confirmed the benefit of estab-

lishing a memory component as discussed in MemAE (Gong et al., 2019), for which

MemAE achieved higher AUROC than AE in 7 out of the 10 cases. Furthermore, in all

10 cases, LAMAE achieved a significant improvement in AUROC when compared with

both MemAE and AE, demonstrating the dominant advantage of using a classifier and a

label-assisted memory for detecting semantic OoDs when the ID dataset contains mul-

tiple classes. Nonetheless, for OoD digits “1”, “4”, “7” and “9” whose image complexity

measured with Shannon entropy (Equation. 3.3) ranked the lowest four, there is still a

gap when compared with the rest cases. We will address this issue with plain OoDs with

the CN component in the following section.

Effect of CN-Adjustment

This section demonstrates that the CN-adjustment can further improve the detection

performance, especially for the most difficult OoD type S+P. As discussed earlier, CN

can be used with any AE reconstruction-based OoD detectors and an improvement in

detection performance can be anticipated. We verify this conjecture experimentally by

taking AE, MemAE and LAMAE as the base detectors and modify only the reconstruction

error-based test statistic. We rename the CN-adjusted detectors by suffixing “+”. Results

are presented in Table 3.3.

It can be noted that in 8 of the 10 cases, using a CN-adjusted test statistic indeed

leads to a significant improvement in detection performance for the digits “1” , “4” , “7”

and “9” , which are the hardest ones to detect among all digits (Berkhahn et al., 2019)
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Figure 3.5: Sensitivity of detection performance to class-conditional memory size on

MNIST when digit “0” is held as OoD. Similar trends can be observed for others.

and can be characterized as S+P by us. This is true for various types of AEs. For digits

“0” and “8” , CN caused a slight decrease in AUROC. This is due to the fact that these

two digits are already the most complex 2 with the highest entropy values. Regarding

this, we suggest that better complexity measurements may be created in the future so

that the detection performance on slightly more complicated images can be maintained.

Examining the overall average performance, we conclude that the improvement in

detection performance is attributed to the combination of the classifier component, the

label-assisted memory and the complexity normalizer.

Sensitivity to Memory Size

This section provides a sensitivity analysis of the detection performance for LAMAE. We

present the performance under different memory size settings for the MNIST experiment.

Figure 3.5 suggests that LAMAE is robust to different memory sizes and for simple

datasets such as MNIST, even a small memory size can achieve satisfactory performance.

3.6 Chapter Summary

In this chapter, we proposed LAMAE, a novel AE-based OoD detector with a label-

assisted memory, and its refined variation LAMAE+. Both methods are purely unsuper-

vised that do not require any assumptions on the OoD examples. Specifically, we injected
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a classifier and a class-conditional memory into the traditional AE network architecture

to avoid combination of features from different ID classes and thus, constrain the recon-

struction of OoD examples while retaining the generalization on ID examples. LAMAE

not only performs well on the non-semantic and semantic OoDs, it also significantly im-

proves the detection performance of semantic OoD examples. We also proposed a new

way to characterize OoD based on image complexity and a new metric, CN, to eliminate

the bias associated with the reconstruction error induced by inherent image complexity.

Thereby, the refined detector LAMAE+ is capable of detecting the most difficult type of

OoD that previous work cannot handle well.

It is also worth pointing out that in the experimental set up of this work, all

comparative methods are implemented with the same or at least similar network structure

to realize a fair comparison. It is possible that the selected parameters may not be

the most optimal ones that lead to the best results can be obtained by each method.

Nonetheless, since there is no a priori knowledge regarding test data sets in our problem

setting, it is hard to conduct parameter tuning for each method.

In the current work, we only used the basic Shannon entropy to measure image

complexity. Many other image complexity measures also exist (Gao et al., 2018). Some

measures may focus on the spatial characteristics of the images (e.g., Yu and Winkler,

2013) while some others may capture the redundancy within the images (e.g., Van Geert

and Wagemans, 2017). Will the detection performance be affected if other image com-

plexity measures are utilized? If so, how and why different complexity measures affect

OoD detection performance? Besides, different functions for constructing the normalizer

shall also be considered and investigated. Following this, a more suitable complexity-

based normalizer may be constructed to improve detection performance further.
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Chapter Four

Concept Drift Detection for

Multivariate Data Streams

The last chapter focuses on the detection of out-of-distribution examples in offline classi-

fication tasks. From this chapter, the thesis starts to investigate the challenges in concept

drift detection in online classification tasks .

This chapter1 aims to provide a solution to answer the second set of research

questions listed in Section 1.2. Section 4.1 emphasizes the motivations as well as the

main contributions of this chapter. The solution to tackle the challenges, a hierarchical

reduced-space drift detection framework for multivariate data streams, is introduced in

Section 4.2. Each component of the framework is explained in detail. In Section 4.3,

four sets of experiments are carried out on both synthetic and real-world data streams

to demonstrate the superiority of the proposed detection framework in comparison with

some state-of-the-art detectors, including both data distribution-based and classification

performance-based ones. Section 4.4 summarizes this chapter.
1This chapter forms the following published research paper: Zhang, S., Tino, P., & Yao, X. (2021).

Hierarchical Reduced-space Drift Detection Framework for Multivariate Supervised Data Streams. IEEE

Transactions on Knowledge and Data Engineering (Vol 25, no.1, pp. 95-110.).
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4.1 Introduction

Existing drift detection methods are mainly classifier-based or data-based. Most existing

work tackling drifts in supervised data streams focus on real drifts only, since this type

of drift is considered to be the most detrimental to classification accuracy (Wang et al.,

2017). However, we consider the detection of all types of drift to be equally important

for the following reasons. Firstly, even when a so-called virtual drift takes place and

classification accuracy is not negatively affected, the optimal decision boundary is often

likely to change. Retraining the classifier can still improve classification performance.

Secondly, detection of such drifts provides insight of the underlying data streams, which

can help understanding the behaviour of the data generation source. This information

may also be beneficial when there is a pattern in a series of multiple drifts.

Therefore, this chapter aims to present a framework that is capable of detecting all

types of drifts regardless of their effects on classification boundary. Then, practitioners

can decide whether it is worth modifying the current classification model based on the

specific application scenario.

Existing data-based methods either attempt to compare the estimated empirical

density of two windows (Dasu et al., 2006; Bu et al., 2017) or conduct univariate CDTs for

each individual dimension (Alippi et al., 2017; Faithfull et al., 2019) to detect drifts in mul-

tivariate data streams. These approaches tend to be problematic for higher-dimensional

data streams (Harel et al., 2014; Wang and Abraham, 2015) due to increasing computa-

tional costs and possibility of false alarms as data dimensionality grows. Although the

hierarchical detection framework HCDT (Alippi et al., 2017) has been shown to achieve

very promising detection performance on scaler data streams, direct application of this

framework to multivariate supervised data streams still suffers from the aforementioned

deficiencies.

Motivated by these issues, this chapter proposes a novel drift detection framework

that is capable of detecting both real and virtual drifts in multivariate supervised data
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streams. The key idea is to leverage the knowledge from supervised information to

discover changes that may not be detected by the existing detection methods. The

contributions of this chapter include:

1) A new hierarchical detection framework named Hierarchical Reduced-space

Drift Detection (HRDD) for supervised data streams that detects both real and virtual

drifts simultaneously.

2) Compared with the existing HCDT framework proposed by Alippi et al. (2017)

(Figure 2.6 in Section 2.2.3) , HRDD is more accurate and efficient in terms of a high num-

ber of true detections, while maintaining a low number of false alarms, when operating

on higher-dimensional data streams.

3) For both real and virtual drifts, HRDD performs no worse, and in many cases

better, than state-of-the-art detection algorithms, whether they are classifier-based or

data-based, in terms of more true detections and fewer false alarms within any specified

acceptable detection delay range.

4.2 Hierarchical Reduced-space Drift Detection Frame-

work for Multivariate Supervised Data Streams

The new framework Hierarchical Reduced-space Drift Detection (HRDD) for multivariate

data stream adopts the hierarchical structure introduced by HCDT (Alippi et al., 2017)

but with three major novel components, which will be explained in sequel later in this

section. The general outline of HRDD is presented in Figure 4.1. The algorithmic version

of HRDD is presented in Algorithm 1. The novel components uniquely owned by HRDD

compared with the existing HCDT framework are highlighted in green in both Figure 4.1

and Algorithm 1.

To tackle the challenges identified in Section 4.1, HRDD first builds a lower-
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Figure 4.1: General framework of our proposed HRDD. The green-shaded boxes are

three novel components that uniquely exist in HRDD. Detailed descriptions for each

novel component are provided in sections 4.2.1, 4.2.2 and 4.2.3.

dimensional feature space for the given classification task using the stationary training

data. Each incoming data is projected to this space upon arrival (Section 4.2.1). Next, it

monitors not only the marginal distribution of the data stream, but also each individual

class-conditional distribution (Section 4.2.2). Finally, a novel method to reconfigure more

informative retraining datasets after each detection is also presented (Section 4.2.3).

HRDD has a high degree of flexibility and may be customized effortlessly. it can be

used in conjunction with any base CDT and classifier, and the performance is independent

of the choice of the classifier. Since there are no assumptions on the multivariate data

streams, any detection and validation tests can be used as long as they are capable of

detecting the same type of change. Although this chapter provides one possible realization

for a binary classification problem as an illustrative example in the current work, it is
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Algorithm 1: General framework of HRDD. The green-shaded lines rep-

resent three novel components that uniquely exist in HRDD.
input : initial training sequence TSM for the marginal CDT and

TS0, TS1, ... for the class-conditional CDTs

output: confirmed detections

1 Find the lower-dimensional feature space S with TSM ;

2 Initialize the marginal and class-conditional CDTs with TSM and

TS0, TS1, ... respectively in S;

3 while there is incoming data do

4 Project data onto S;

5 Perform concept drift detection with the marginal CDT as well as the

relevant class-conditional CDT within S;

6 if a change is detected by any of the CDTs at T̂ then

7 Estimate the potential drift starting point Tref ;

8 Activate the validation layer on the respective stream;

9 if change is validated then

10 Record T̂ as a confirmed detection;

11 Define TSMC as {xt|t ∈ [Tref , ..., T̂ ]};

12 Update training sets TSM , TS0, TS1, ... accordingly and continue from

line 1.

13 Output the confirmed changes.

worth noting that the general framework of HRDD is also suitable for multi-class data

streams.
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Algorithm 2: Recursive SVM (RSVM) (Tao et al., 2008)
input : training set TSM of length l ; the desired dimension of the

reduced-space R (or threshold ε); r = 1.

output: projectors {wr|r = 1, ..., R} ∈ Rd×R

1 Determine the vector w̃1 =
∑l

i=1 α
1
iφ(xi) by solving the dual optimization

problem (Vapnik, 1963);

2 Let wr = w̃r/||w̃r|| and generate the following training set for SVM problem

by projecting the training samples onto a subspace that is orthogonal to wr:

φ(xr+1
i ) = φ(xri )− 〈φ(xri ),wr〉wr;

3 Terminate if the desired number of dimensions R has been reached (or

max{||φ(xr+1
i )|| : 1 ≤ i ≤ l} < ε). Otherwise, increment r by 1 and go back

to line 2.

4.2.1 Learning of a Lower-dimensional Subspace

In this module, we take the information from class labels into consideration and propose

a preprocessing step specifically designed for drift detection for supervised data streams.

The aim of this step is to identify a lower-dimensional feature space S that contains

the most relevant information for the given classification task. By identifying such a

subspace spanned by the training samples (line 1, Algorithm 1), incoming multivariate

data samples can be easily projected onto this space (line 4, Algorithm 1). Then, instead

of monitoring the original input space, the detection is carried out within this reduced

feature space for the particular classification task. Comparing with the existing HCDT

without this step, HRDD inherently reduces the possibility of false alarms as well as

the computational burden because there are fewer dimensions to examine. Meanwhile,

valuable data characteristics relevant to classification are preserved.

It is worth noting that subspace selection methods have been used for change de-

tection in signal processing applications (Blythe et al., 2012; Wu et al., 2013). However,

how a change is defined in such applications is very different than that in our setting.
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Consequently, the characteristics that the subspace shall possess also vary. HRDD com-

bines the information from both original data space and the label space to identify the

most appropriate subspace for concept drift detection. Besides, many subspace-based

change detection algorithms for time series data make particular assumptions on their

data streams (Kawahara et al., 2007; Jiao et al., 2018). For instance, in the work by Jiao

et al. (2018), the data stream is assumed to follow a Gaussian distribution. HRDD does

not make any assumptions on either the data stream or the underlying subspace.

As one possible realization of HRDD within a bi-class setting, we choose a re-

cursive support vector machine (RSVM) (Tao et al., 2008) as a tool for identification of

the relevant reduced-space S. The detailed RSVM algorithm is presented in Algorithm

2, where l is the length of an initial training dataset and φ(·) is the kernel function.

RSVM was initially proposed for both dimensionality reduction and accuracy improve-

ment for offline classification problems. It starts as a regular SVM (Vapnik, 1963) but

can recursively derive new maximum margin features. The dimension R of the reduced-

space can either be set by the practitioner a priori, or be automatically identified when

max{||φ(xr+1
i )|| : 1 ≤ i ≤ l} < ε. That is, when the number of components is sufficient

to account for most of the differences in the classification task.

Based on an initial training set, Algorithm 2 provides us with one or several or-

thogonal directions {wr|r = 1, ..., R} which can be used as projectors to an R-dimensional

subspace S. Then each newly arrived instance xj can be projected to S as 〈φ(xj),wr〉 =∑l
i=1 α

r
iκ(xj,xi) for r = 1, ..., R and i = 1, ..., l. It is worth pointing out that all compu-

tations involved in RSVM can be based on kernel evaluation instead of the explicit φ(xj).

From the second iteration, κ(xri ,x
r
j) can be recursively computed by using the equation

in step 2 of Algorithm 2 and κ(xr−1i ,xr−1j ), allowing different kernels to be adopted.

In this current work, we select R = 1 after some preliminary experiments. In

fact, the assumption of R = 1 is realized by many classification models, starting from

perceptrons, SVMs through to classification based on Gaussian Processes. All these

models can be interpreted as imposing a single projection dimension where classification
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can be performed. Since such 1-dimensional projection directions are integral part of

such classification machines, they are also good candidates for 1-dimensional subspaces

on which to perform statistical test regarding concept drifts. Other supervised dimen-

sionality reduction methods may also be used. However, techniques such as PCA are

inherently unsupervised, and hence do not, by definition, satisfy our requirement for a

low-dimensional subspace relevant to classification.

4.2.2 Class-based Detection

While most existing detectors focus on detecting drifts by monitoring P (Y |X) or P (X),

there has been a lack of attention paid to P (X|Y ). Supervised information can be better

utilized by class-conditional distributions because they focus on sub-regions of the input

space. In HRDD, we suggest not only incorporating a distribution-based CDT to inspect

data features from the perspective of marginal distribution, but also constructing one

CDT for each class-conditional distribution P (X|Y = q), where q ∈ {0, 1, ..., Q}. The

CDTs are initialized on its respective data stream (line 2, Algorithm 1). Note that only

the marginal detector and one of the class-conditional detectors are activated each time

an instance arrives.

Usually, the number of classes of a data stream is much lower than the number

of dimensions. Therefore, HRDD is still expected to be computationally cheaper to

implement than existing multivariate detectors that either try to estimate the distribution

density or examine each dimension individually. By monitoring also the class-conditional

distributions, HRDD captures both real and virtual drift, regardless of the effect on

classification performance. Besides, since it synchronizes sub-regions of the input space,

it is able to evaluate the effects on different classes and its detection sensitivity over

smaller drifts is enhanced.

Different techniques can be chosen as the base CDT for this component. ICI-based

CDT (Alippi et al., 2010b) can be used as a reference example. A dominant advantage
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of this sequential CDT is that it is endowed with a refinement procedure that directly

provides the estimated drift starting time Tref (Alippi et al., 2010a). Thus, a new dataset

representing the most recent concept is automatically identified. For other drift detectors,

the method introduced by Poor (1996) is recommended to identify Tref .

Comparing with IV-Jac (Zhang et al., 2017) which also monitors P (X) and P (X|Y ),

we emphasize the following differences: a) our framework deals with continuous data fea-

tures. IV-Jac cannot be directly applied to our problem setting; b) our framework can

be used with various statistical CDTs and does not require prior knowledge about the

drift to determine detection threshold; c) our approach works within a reduced feature

subspace, hence is more robust against noise in the original data and scales better for

high-dimensional data.

4.2.3 Knowledge Base Reconfiguration

Table 4.1: Construction of retraining sets after detection. Without loss of generality, we

assume the last instance received belongs to Class 0. Analogous definitions can be made

for Class 1. TSM , TS0, TS1 are the existing training sets for the marginal, Class 0 and

Class 1 detectors, respectively. TSMC is composed of all instances representing the current

concept in [Tref , T̂ ]. TS0
C (TS1

C) denotes the set of Class 1 (Class 0) instances in TSMC .

Layer-I and II output

from the Marginal Detector

Detected and Validated Detected but Invalidated No Detection

Layer-I and II

output from

Class 0

Detected

and

Validated

M: TSM = TSMC

C0: TS0 = TS0
C

C1: TS1 = [TS1, TS1
C ]

M: TSM = TSMC

C0: TS0 = TS0
C

C1: TS1 = [TS1, TS1
C ]

M: TSM = TSMC

C0: TS0 = TS0
C

C1: TS1 = [TS1, TS1
C ]

Conditional

Detector

Detected

but

Invalidated

M: TSM = TSMC

C0: TS0 = TS0
C

C1: TS1 = TS1
C

M: No retraining

C0: No retraining

C1: TS1 = [TS1, TS1
C ]

M: TSM = [TSM , TSMC ]

C0: No retraining

C1: TS1 = [TS1, TS1
C ]

No

Detection

M: TSM = TSMC

C0: TS0 = TS0
C

C1: TS1 = TS1
C

M: No retraining

C0: TS0 = [TS0, TS0
C ]

C1: TS1 = [TS1, TS1
C ]
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Once a suspicious change is reported in the detection layer by at least one of

the base detectors at time T̂ , a potential drift starting time Tref is estimated (lines 6-

7, Algorithm 1). Then the validation layer is activated and an offline statistical test

is used to compare the previous training set of the respective detector and instances

from Tref to T̂ to determine if the drift should be confirmed (line 8, Algorithm 1). If

a drift is validated, detection time point T̂ is recorded. Afterwards, the existing HCDT

framework discards all past data and reconfigure based on the most recent data only.

This approach may be over-conservative for a supervised data stream as a drift may have

uneven effects on different classes. Unnecessary rejection of data in a relatively stationary

class leads to information loss, which can become problematic when available information

is already scarce or expensive to obtain. Here we propose a novel and more flexible way

of reconstructing the retraining sets in order to maintain as much useful information as

possible for detector reconfiguration. The idea can be summarized as follows.

1) For data streams where we can confirm that a change has taken place (with

a detected and validated change), the respective detectors are immediately reconfigured

based on a latest dataset representing the current concept. It should be noted that when

one class-conditional detector reports a validated change, it subsequently impacts the

marginal distribution since P (X) =
∑Q

q=0 P (Y = q) ·P (X|Y = q). Therefore in this case

the marginal detector is also retrained.

2) For data streams where there is ambiguity if a change has taken place (a detected

but invalidated change), we do not make any amendments to the existing detector.

3) For data streams where we are inclined to believe that no drift has taken place,

all available and relevant instances are used as the new retraining set for the respective

detectors. For instance, when a detection is reported by Class 0 detector but no validated

detection from either the Class 1 detector or the marginal detector, we may combine the

latest Class 1 instances in [Tref , T̂ ] with the previously existed Class 1 training set TS1

to form a more informative retraining set. Hence, the performance of the detectors is

expected to improve as extra relevant instances are used for retraining.
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As a concrete realization under a bi-class scenario, the reconstruction scheme for

all detectors after each detection can be summarized in Table 4.1. Based on the results

from both the detection layer and validation layer, retraining datasets are constructed

and the detectors are retrained accordingly (lines 11-12, Algorithm 1). Finally, all the

validated changes are reported when there is no more data to arrive (line 13, Algorithm

1). Hotelling T2 test has been shown to be a suitable complementary validation test for

ICI-based CDT in the existing HCDT framework (Alippi et al., 2017). Therefore, it is

also selected in the current implementation of HRDD.

4.3 Computational Studies

This section presents four sets of experiments that evaluate the effectiveness and efficiency

of HRDD. Experiment 1 aims to demonstrate the effectiveness of each component of the

HRDD framework, especially when facing data streams with various dimensionalities.

Experiment 2 illustrates the superiority of HRDD in drift detection on both real and

virtual drifts over state-of-the-art methods. Experiment 3 validates that the superior

performance provided by HRDD also benefits classification, even when integrated with a

very simple classifier. Experiments 1-3 are based on datasets of synthetically generated

sequences where the ground truth of drift occurrences is available. In Experiment 4, we

demonstrate the role of HRDD on a real-world data stream. Finally, we provide a brief

analysis on the computational time complexity of the approaches being considered in the

experiments. All experiments were run on a CentOS 7.6 Computer with v4 2.20 GHz

processor and 128 GB memory.

4.3.1 A New Paradigm for Performance Evaluation Metrics

A variety of performance metrics for drift detection have been used in the literature.

For instance, when counting the number of True Positive (TP), False Negative (FN) and
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False Positive (FP), some authors focus on if a detection is raised on a drifted sequence,

instead of the number of detections raised (Alippi et al., 2011a; Kim and Park, 2017).

Differently, some authors pay attention to whether there are redundant detections after a

TP, and distinguish between Detected, Late, Missed and False detections based on sliding

windows (Lu et al., 2014; Gu et al., 2016). False detections before the first drifting point

are neglected. Differently, some other authors choose to take into account all detections

raised on a stream, and each single detection is categorized into TP or FP based on a

(a)

(b)

(c)

Figure 4.2: Detection performance definition paradigm.
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specified window size (Harel et al., 2014). The notion of acceptable delay ∆ was formally

defined as a threshold set to determine how far the detected drift could be from the true

location of drift (Pesaranghader and Viktor, 2016). Here, FPs are defined as detections

outside of the acceptable detection interval [T ∗, T ∗ + ∆], but extra detections within the

interval are neglected.

From a practical point of view, taking into account all detections raised on a

stream is important. Distinguishing between various types of false alarms also helps to

make targeted modifications. Therefore, when analysing the results of a reactive detector,

we propose a more realistic and comprehensive definition paradigm as in Figure 4.2a.

Based on a predefined acceptable detection delay range [T ∗, T ∗+ ∆] where T ∗ is the real

drifting time, we define a TP as the first detection within this range, a FN_missed as a

missed alarm throughout the concept. We also distinguish between three types of FPs:

FP_early, FP_duplicate and FP_late. A FP_early is the first false alarm before T ∗

related to algorithm initialization, FP_duplicate’s are redundant false alarms related to

algorithm reconfiguration, and a FP_late is the first detection in [T ∗ + ∆, T end] when

there is no alarm raised in [T ∗, T ∗ + ∆]. An illustrative example is presented in Figure

4.2b.

The total number of FPs and FNs are therefore FP = FP_early + FP_duplicate

+ FP_late and FN = FN_late + FP_late respectively. Performance of the detector is

evaluated via number of TPs, FPs, FNs or Recall, Precision and F-measure as defined

in Figure 4.2c. For each synthetic dataset in the following experiments, 30 sequences are

generated, and all reported figures are summations. Detection performance is measured

for several acceptable lengths ∆ = {500, 1000, 1500, 2000} so as to limit the maximum

detection delay allowed.
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Table 4.2: Compared detection frameworks in Experiment 1.

detection reconfiguration

Algorithm monitor

P (X)

monitor

P (X|Y )

reduced-

space

single CDT multiple

CDTs

HRDD X X X X

HCDT-M (HCDT) X X

HCDT-CC X X

HDD X X X

Table 4.3: Synthetic data generation of d-dimensional hyperplane datasets.

Concept d− dimensional hyperplane

1 a10 = −1.5; a1i = i× 0.1 ∀ i ∈ {1, ..., d}

2 a20 = a10 − 1; a2i = a1i − 0.5 ∀ i ∈ {1, ..., d}

4.3.2 Experiment 1: Understanding HRDD

In order to better understand the novelty of HRDD relative to the existing hierarchical

framework HCDT, we carry out a component-wise evaluation on data streams with vary-

ing dimensionalities. The characteristics of HRDD and several variations containing only

partial components are presented in Table 4.2. HCDT-M is the existing HCDT framework

which monitors the marginal input distribution only (Alippi et al., 2017). HCDT-CC is

the existing HCDT framework applied to the class-conditional distributions. HDD is sim-

ilar to HRDD in terms of inspection of both marginal and class-conditional distributions,

but without projection to a reduced-space. All the detectors adopt ICI-based CDT as the

layer I test and Hotelling T2 as the layer II test following the implementation of HCDT

(Alippi et al., 2017). A set of different parameters of ICI-based CDT are considered:

Γ ∈ {2.25, 2.5, 2.75, 3.0, 3.25}. A higher Γ symbolizes an decreasing level of sensitivity to

drifts.
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Synthetic data generated for this experiment is a set of d-dimensional moving

hyperplanes y = −a0 +
∑d

i aixi, xi ∈ [0, 1] and y ∈ [0, d]. This is a popular dataset in the

field of drift detection (Minku et al., 2010; Lu et al., 2016). The generation mechanism

also allows easy alteration of dataset dimensionality. To demonstrate the ability of HRDD

to handle high-dimensional data, we considered d = [5, 10, 15, 20, 30, 40]. Data generation

details can be found in Table 4.3. The data stream is balanced with 5% of class noise

added. Each stream consists of 10, 000 instances with one abrupt change at timestamp

5001.

The detection results with ∆ = 1000 and 2000 are presented in Table 4.4. The

following findings are also applicable to ∆ = 500 and 1500. Firstly, we notice that HRDD

achieves the highest TP in almost all cases. This is true even for a tight ∆, indicating

that HRDD can not only detect the drifts, but also detect them earlier than the existing

HCDT and other variations being considered. Meanwhile, HRDD always reports the

lowest FP. HDD, which is also based on this novel reconfiguration scheme but does not

project data onto the low-dimensional space as HRDD does, always ranked second in

terms of both TP and FP. In contrast, methods monitoring each dimension within the

input space lead to much higher FP.

Comparing with the results of HCDT-CC, we can conclude that HRDD is very

different from the existing HCDT applied on each class. The novelty of HRDD lies in not

only class-based inspections, but also the projection of data onto the reduced-space, and

the utilization of both marginal and class-conditional information for reconfiguration. As

dimensionality increases, the superiority of HRDD becomes more dominant, confirming

its ability to operate efficiently even for high-dimensional data streams. Also, comparing

the performance presented in Table 4.4 horizontally, it can be seen that HRDD is relatively

insensitive to the parameter of the base detector, making it a more reliable and stable

approach among the compared methods.
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Table 4.4: Detection performance on data streams with increasing dimensionality. Meth-

ods with high TP and low FP are preferred. Best results given the specified parameter

Γ and acceptable delay length ∆ are in bold.
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Table 4.5: Detection performance on data streams with increasing dimensionality. Meth-

ods with high TP and low FP are preferred. Best results given the specified parameter

Γ and acceptable delay length ∆ are in bold. (Continued)
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4.3.3 Experiment 2: Drift Detection Ability

In this section we aim to compare the drift detection ability of HRDD on a wide range

of drifts with the latest hierarchical detection methods, HCDT (Alippi et al., 2017) and

HLFR (Yu et al., 2019) introduced in section 2.1.2 of chapter 2. These consolidated

frameworks have already been shown to perform better than their individual base detec-

tor counterparts. We also compare HRDD with two classic performance-based bench-

marks, DDM (Gama et al., 2004) and EDDM (Baena-García et al., 2006), which have

not been used as base change detectors in the above-mentioned frameworks. Since the

detection result from performance-based detectors is contingent on the choice of classi-

fier, two classifiers are adopted: an SVM and a decision tree. All hyper-parameters of

the comparative algorithms were taken directly from the original papers. The setting of

HRDD follows the experimental setting for HCDT (Experiment B in the original paper

(Alippi et al., 2017)). Detection Recall, Precision, and F-measure are reported for ∆ =

{500, 1000, 1500, 2000}.

In this experiment we first test on data streams with one abrupt drift only. With

drift affecting P (Y |X) or not and its magnitude being small or large, there are 4 possible

scenarios for a single drift. These cases will be examined individually. Afterwards, data

streams with multiple drifts are used for testing. The following synthetic datasets are

generated for this experiment:

1) 4D Multivariate Gaussian (Figure 4.3): this dataset contains sequences with

one drift only. We synthetically generate drifts affecting the target concept differently

by changing one class-conditional distribution independently. Possible drift scenarios are

visualized in Figure 4.3. In order to reflect the 4 scenarios, 4 subsets of 4D Multivariate

Gaussian streams are generated. Each data stream consists of 10, 000 observations, and

a single abrupt change takes place at 5001. The magnitude of drift is controlled by the

change in within-class distance dw. The effect on the target concept is controlled by the

change in between-class distance db. The (dw, db) pair for the initial concept is always
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Table 4.6: Synthetic data generation of 4D Multivariate Gaussian. The is given in Figure

4.3.

Concept
4D_Gaussian

(a) (b) (c) (d)

1

µ1
C0

= [0, 0, 0, 0]

µ1
C1

= [0.8, 0.8, 0.8, 0.8]

Σ1
C0

= Σ1
C1

= 14

2

µ2
C0

= [−0.2, 0.1,

−0.2, 0.1]

µ2
C0

= [−0.2,−0.2,

−0.2,−0.2]

µ2
C0

= [0.4,−0.3,

0.4, 0.4]

µ2
C0

= [−0.3,−0.4,

−0.4, 0.4]

µ2
C1

= µ1
C1

Σ2
C0

= Σ2
C1

= 14 + 0.2× (J4 − 14)

Table 4.7: Synthetic data generation of 6D Multivariate Gaussian datasets. The illustra-

tion is given in Figure 4.4.

Concept 6D_Gaussian Concept 6D_Gaussian

1
µ1
C0

= [2, 2, 3, 3, 4, 4]

µ1
C1

= [1, 1, 2, 2, 3, 3]; Σ1
C0

= Σ1
C1

= 16

4
µ1
C0

= [2.8, 2.8, 3.4, 3.4, 3.8, 3.8]

µ4
C1

= µ3
C1

; Σ4
C0

= Σ4
C1

= 16

2
µ1
C0

= [2.6, 2.6, 3.8, 3.8, 4.2, 4.2]

µ2
C1

= µ1
C1

; Σ2
C0

= Σ2
C1

= 16

5
µ1
C0

= [2.6, 2.6, 3.0, 3.0, 3.4, 3.4]

µ5
C1

= µ4
C1

; Σ5
C0

= Σ5
C1

= 16

3
µ1
C0

= [2.2, 2.2, 3.4, 3.4, 4.4, 4.4]

µ3
C1

= µ2
C1

; Σ3
C0

= Σ3
C1

= 16

(0,0). For scenarios (a-d) in Figure 4.3, the (dw, db) pair are set to (0.5, -0.9), (0.5, 0.8),

(1.0, -0.8), and (1.0, 1.1), respectively. Data generation details can be found in Table 4.6.

2) 6D Multivariate Gaussian (Figure 4.4): this dataset contains multiple-drift

streams. We consider a scenario where a series of drifts is not detrimental to classification

at the beginning, but eventually impairs the accuracy after several evolutions. A simple

illustration of this situation is presented in Figure 4.4. Each sequence is of length 25, 000

and contains 5 concepts. The evolution of concept can be summarized as the (dw, db) pair

being (0, 0), (0.4, 2.4), (0.4, 1.9), (0.4, -1.4), and (0.4, -2.1) for each drift. Details of the

data generation process can be found in Table 4.7.
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Figure 4.3: Illustration of various drift types of 4D Multivariate Gaussian. (a) small drift

affecting P (Y |X); (b) small drift not affecting P (Y |X); (c) large drift affecting P (Y |X);

(d) large drift not affecting P (Y |X). Data generation details are given in Table 4.6.

Figure 4.4: Illustration of 6D Multivariate Gaussian. Data generation details are given

in Table 4.7.

Figure 4.5: Illustration of Rotating Checkerboard.

3)Rotating Checkerboard (Figure 4.5): in this multiple-drift benchmark dataset

(Elwell and Polikar, 2011), all 4 drifts lead to a strong change in classification bound-

ary. Each stream is of length 25, 000 and contains 5 concepts. Examples are sampled

uniformly from the unit square with a dimensionality of 2, and the labels are set by a

checkerboard with 0.5 tile width. At each concept drift, the checkerboard is rotated by

an angle of π/6 radians.

Detection performance for 4D Multivariate Gaussian is summarized in Figure

4.6. Overall, HRDD ranked first in 14 out of the 16 cases (4 datasets and 4 ∆’s) in
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(a) Magnitude: small; Type: affecting P (Y |X)

(b) Magnitude: small; Type: not affecting P (Y |X)

Figure 4.6: Detection performance for 4D Multivariate Gaussian against acceptable delay

lengths. Subfigures (a-b) correspond to scenarios (a-b) in Figure 4.3, respectively.
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(c) Magnitude: large; Type: affecting P (Y |X)

(d) Magnitude: large; Type: not affecting P (Y |X)

Figure 4.6: Detection performance for 4D Multivariate Gaussian against acceptable de-

lay lengths. Subfigures (c-d) correspond to scenarios (c-d) in Figure 4.3, respectively.

(Continued. )

95



Concept Drift Detection for Multivariate Data Streams

terms of F-measure, indicating its ability to achieve the best trade-off between recall and

precision. Performance-based detectors HLFR, EDDM and DDM only secure high recall

values for real drifts affecting P (Y |X), which cause an evident degradation in classification

accuracy (figures 4.6a and 4.6c). For drifts not harming classification performance, i.e.,

drifts not affecting P (Y |X) (figures 4.6b and 4.6d), performance-based detectors fail and

the distribution-based detector HCDT becomes the second best detector after HRDD

in terms of detection F-measure. In addition, HRDD also surpasses HCDT by a great

amount when drift magnitude is small (figures 4.6a and 4.6b). This is due to the fact

that the detection mechanism monitoring class-conditional distributions makes HRDD

more sensitive to even a lightest change in the overall input space. For drifts with greater

magnitude (figures 4.6c and 4.6d), the performance of HCDT improves, but it still falls

behind HRDD in all but one case.

Table 4.8 presents how many times each individual detector is activated among

all 30 TP detections. When a drift is caused by Class 0 only, the class-conditional

distribution of Class 0 and the marginal distribution are both affected. Results in Table

4.8 shows that 28 out of the 30 drifts can be captured by the respective detector or the

marginal detector, which comes in line with our expectation. For scenarios b) and d),

Class 0 moves away from Class 1, leading to a relatively greater change in the marginal

distribution comparing with scenarios a) and c), hence these two scenarios result in more

activations of the marginal detector. This also demonstrates that the combination of

both marginal and class-conditional inspections in HRDD is indeed helpful.

Moving to the multiple-drift scenarios, HRDD also outperforms its competitors in

all 8 cases in terms of F-measure as shown in figures 4.7 and 4.8. For 6D Multivariate

Gaussian (Figure 4.7), since the magnitude of each single drift is relatively small, HCDT

requires two or more consecutive drifts in order for the effect of the drift series to be

sufficiently noticeable on the marginal distribution. Performance-based detectors HLFR,

EDDM and DDM are only able to detect the last one or two drifts in Figure 4.4, since

earlier drifts do not deteriorate classification performance.
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Figure 4.7: Detection performance for 6D Multivariate Gaussian. For detectors HLFR,

EDDM and DDM: Linear SVM as the base classifier (top); decision tree as the base

classifier (bottom).

Figure 4.8: Detection performance for Rotating Checkerboard. For detectors HLFR,

EDDM and DDM: RBF SVM as the base classifier (top); decision tree as the base classifier

(bottom).
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Table 4.8: Number of activations of each CDT for the TP detections on 30 sequences of

4D Multivariate Gaussian. Drift types are shown in Figure 4.3. Class 0 is the drifted

class.

Drift type Marginal Class 0 Class 1

a) 7 21 2

b) 11 17 2

c) 7 21 2

d) 10 18 2

On the Rotating Checkerboard dataset, the effectiveness of HRDD can also be

clearly identified in Figure 4.8. As expected, HCDT does not perform well because purely

distribution-based detectors fail to detect changes affecting the labelling mechanism only

(Alippi et al., 2013). The distribution of overall input space of this dataset remains

unchanged. This phenomenon demonstrates that detecting concept drift by monitoring

the class-conditional distributions is helpful. For this dataset, P (Y |X) is significantly

affected by all drifts, allowing the performance-based detectors to capture the drifts more

acutely. Therefore HLFR, EDDM and DDM achieved very high recall values. However,

the precision plot reveals that significantly more false alarms are triggered. Therefore,

HRDD, which secures the highest F-measure, is still the most reliable choice. Another

interesting finding from figures 4.7 and 4.8 is that when a decision tree is used as the base

classifier, HLFR and EDDM achieve much better than when an SVM classifier is used.

This confirms that the choice of classifier plays an important role in performance-based

drift detection. In contrast, the performance achieved by HRDD is irrelevant to the base

classifier.

Based on the above analysis, it can be concluded that for real drifts affecting

P (Y |X), HRDD performs no worse, and in many cases better than existing performance-

based detectors. For virtual drifts not directly affecting P (Y |X), HRDD performs better

than both distribution-based and performance-based detectors. HRDD also performs
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particularly better than the comparative methods when the changes have minor effect on

the overall input distribution.

4.3.4 Experiment 3: Role in Classification

The focus of this work is to propose a new drift detector framework HRDD. Intuitively,

accurate detection and localisation of drifts would help to improve classification because

it leads to just-in-time model-retraining. What classification model and retraining tech-

niques achieve the lowest classification error in a reactive streaming environment is a

matter for future work. However, in order to evaluate the role of a more accurate and

efficient detector in streaming data classification environments, we present the prequen-

tial classification error at the end of each sub-concept for 6D Multivariate Gaussian

and Rotating Chekerboard datasets. Experiments are carried out with two classifiers,

SVM and decision tree. For the purpose of a fair comparison, all classifiers are trained and

retrained within the original input space. Although it should be noted that for HRDD,

it is also possible to train the classifiers within the reduced space derived with RSVM,

which may lead to potentially better classification performance since RSVM serves the

goal of both dimensionality reduction and classification accuracy improvement.

For performance-based detectors (HLFR, EDDM and DDM), the classifier is al-

ways retrained on a fixed-length recent window. For distribution-based detectors (HCDT

and HRDD), a simple detect-then-retrain technique is adopted. Instances from the esti-

mated drift starting point Tref to detection point T̂ are used as the retraining set.

Tables 4.9 and 4.10 demonstrate that HRDD helps to achieve a lower classifica-

tion error on both datasets no matter which base classifiers is adopted. For the 6D

Multivariate Gaussian dataset, recall that the first two drifts are virtual. The classi-

fication task actually becomes easier as the classes move further away from each other.

Performance-based detectors consider these drifts to be irrelevant and do not detect such

drifts. Even in these cases, HRDD, which accurately detects all types of drifts, leads to
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Table 4.9: Classification error for 6D Multivariate Gaussian. Average prequential clas-

sification error (standard deviation in parenthesis) at the end of each sub-concept is

presented. Best results are in bold.
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Table 4.10: Classification error for Rotating Checkerboard. Average prequential classifica-

tion error (standard deviation in parenthesis) at the end of each sub-concept is presented.

Best results are in bold.
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an even lower error than the performance-based detectors. This supports the hypothesis

that when the optimal decision boundary has shifted but performance is not deteriorated,

retraining the classifier can still be beneficial. For the Rotating Chekerboard dataset,

recall that the drifts affect the labelling mechanism only. The data distribution-based

detector HCDT fails to make accurate detections, hence the much worse classification

performance than the performance-based detectors.

It is also worth noting that the standard deviations of the reported errors presented

in tables 4.9 and 4.10 lead to large overlaps between HRDD and its comparative methods,

which may signify that the improvement achieved by HRDD may not be statistically

significant. Nonetheless, with a similar standard deviation and a lower mean classification

error in most cases, it can still be concluded that HRDD can help in reducing classification

error regardless of the drift type. For both real and virtual drifts, incorporating HRDD

in a classification model can achieve a lower or at least comparable classification error

than both performance-based and distribution-based detectors.

4.3.5 Experiment 4: Real-world Scenarios

In the above experiments, synthetic data streams are used to better understand the

functionality, efficiency, and effectiveness of HRDD. For real-world data streams, there is

no ground truth regarding the existence or location of drifts. Therefore, the performance

metrics used for synthetic datasets cannot be employed. Here we report the number of

detections and prequential classification error to compare the methods. A classification

system that achieves the lowest number of detections as well as the lowest classification

error is preferred.

Electricity (Harries and Wales, 1999) is a dataset collected from the Australian

New South Wales Electricity Market. It contains 45,312 instances and each example is

described by 8 features. The class label identifies the change of the price relative to a

moving average of the last 24 hours. (i.e., up and down). We note that there has been
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a dispute regarding the usage of this dataset for concept drift detection analysis due to

the temporal correlation within the data (Zliobaite, 2013). Nonetheless, it is still one of

the most commonly used real-world data streams in this area of research (Bifet et al.,

2013a). In order to mitigate this issue, we also compare with situations where regular

retraining takes place and where no detector is adopted.

(a) SVM-rbf as the base classifier (b) Decision tree as the base classifier

Figure 4.9: Detection and classification performance for the Electricity data stream. The

bar plot represents the number of detections raised by each method, and the line plot

records the prequential classification error at the end of the data stream.

The number of detections and the classification error obtained by the methods

concerned are presented in Figure 4.9. RegS and RegL stand for regular retraining

with small and large intervals (500 and 1500), respectively. The selection of interval

length directly affects classification performance as well as the computational cost. None

indicates the no-detector situation. From the line plot representing the classification

error, it can be seen that adding a drift detector always help reducing the classification

error since all methods lead to lower error when comparing with the no-detector situation.

From the bar plot representing the number of detections, it can be seen that HRDD

always ranked first, with only 5 detections regardless of the choice of base classifier.

In contrast, its competitors all raise many more detections, causing higher overhead

cost. HRDD not only bears a very low computational burden from retraining, but also

helps to maintain a satisfactory classification performance. The line plots in Figure 4.9

demonstrate that when an SVM is used as the base classifier, the error obtained by
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HRDD ranked first, and is much lower than what has been achieved by its competitors.

When a decision tree is adopted, HRDD ranked fourth with a classification error of 0.23,

being only 0.02 higher than the best result achieved by EDDM. Examining the number

of detections and classification error together, we may conclude that in summary, HRDD

achieves the best trade-off between classification performance and computational cost on

this real-world data stream.

Table 4.11: Average runtime for each reported detection (s.).

Dataset HRDD HCDT HLFR EDDM DDM

4D Gaussian 0.2496 0.1044 49.0637 0.2645 2.1117

6D Gaussian 0.6129 0.2989 63.3693 0.5735 3.0722

Rotating Checkerboard 0.2004 0.4088 36.2308 1.1619 6.9635

4.3.6 Computational Time Complexity Analysis

DDM (Gama et al., 2004) and EDDM (Baena-García et al., 2006) have a constant time

complexity (O(1)) at each time point, since they monitor a single error-rate based statis-

tic. Although the base detector LFR (Wang and Abraham, 2015) in HLFR (Yu et al.,

2019) also has complexity (O(1)), the validation layer requires extra training of P clas-

sifiers (P=1000 in the original paper). Assuming O(K) is the computational complexity

of training a new classifier, the time complexity for HLFR is O(KP ), which is usually

much higher than (O(1)). HCDT (Alippi et al., 2017) adopts an univariate test on each

dimension in the detection layer and one offline test in the validation layer. If the com-

plexity of the base detector is (O(1)), the complexity of the overall framework is (O(d))

where d is the dimensionality of input space. HRDD has a similar structure but adopts

a univariate test on each dimension of the reduced-space for each class in the detection

layer. The time complexity is (O(RQ)) (R = 1 and Q = 2 in this work so (O(RQ)) is

close to (O(1))).

For multivariate data streams of higher dimensionality, the advantage of HRDD
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will become more significant since the number of classes is usually much lower than the

number of dimensions. The average runtime for a reported detection is summarized in

Table 4.11. It is worth noting that performance-based detectors generally have longer

runtime since they also include a classifier training procedure which data distribution-

based detectors do not. Practitioners should take this into consideration when choosing

the appropriate detector depending on the application scenario.

4.4 Chapter Summary

This chapter starts to investigate the detection of changes in online classification tasks.

The main contribution of this chapter is the hierarchical drift detection framework HRDD

for multivariate supervised data streams. The proposed framework first maps the data to

a lower dimensional subspace, and then detects drifts in that space relevant to the given

classification task. It utilizes information from both marginal distribution and class-

conditional distributions of the supervised data stream. Based on the effect of drift on

each class, a novel reconfiguration scheme aiming to maintain as many relevant instances

for retraining as possible is incorporated within the algorithm.

HRDD is computationally light and efficient when operating on higher-dimensional

data streams. For both real and virtual drifts, HRDD performs no worse, and in many

cases better, than state-of-the-art detection algorithms, whether they are performance-

based or distribution-based. Compared with the existing data-based detectors, it is a

more accurate and efficient approach in terms of a high number of true detections, while

maintaining a low number of false alarms, when operating on higher-dimensional data

streams. It is also capable of detecting subtle drifts which can hardly be captured by

existing data-based detectors.

In this chapter, the parameters of the existing drift detectors were the same as

the ones used in their original papers. Although these are recommended parameters
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to be used by the original authors, it is still worth noting that they may not be the

optimal parameters for our testing data streams, which can be regarded as a threat to

validity. Implementing the comparative methods with different parameter settings may

lead to potentially better results. However, in the scenario of online classification, the

only information available during the training stage is the sequence of data representing

the current concept, making it difficult to carry out more careful parameter tuning for

better detection.

We have only showed one possible implementation of HRDD. In our current real-

ization, data projection is carried out with RSVM (Tao et al., 2008) due to its advanta-

geous ability to conduct dimensionality reduction and improve classification performance

simultaneously. Other tools with the same properties can also be considered. Besides,

in the current work, we only projected data onto a single-dimensional linear subspace.

How various characteristics of the subspace affect the detection performance should be

investigated in future work. In fact, HRDD can also be used with many different settings.

Which combination of detection and validation tests will achieve the best detection per-

formance for various data streams is another topic worth further exploration. The choice

can also be application-specific. For instance, with a suitable choice of base detection

tests, extension can also be made to accommodate multi-class data streams and even

imbalanced-class data streams.
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Chapter Five

Concept Drift Detection in Data

Streams with Temporal Dependency

As can be seen in the last chapter, with accurate detections of concept drifts, the vi-

olation of the identically-distributed assumption in online classification can be handled,

in-time modifications can be made to the operating systems to restore the overall perfor-

mance. However, existing drift detection methods still function under the independently-

distributed assumption, which can hardly be satisfied in real-world applications. This

assumption also has to be further relaxed since temporal dependency is often involved.

This chapter aims to understand and tackle the joint issue of concept drift and tempo-

ral dependency, attempting to provide answers to the set of research questions listed in

Section 1.2.3.

Section 5.1 briefly introduces the motivations of this chapter and the contribu-

tions. Section 5.2 provides a supplementary analysis of existing concept drift detection

methods and summarizes the related work dealing with temporal data streams in online

classification. Section 5.3 presents a systematic formulation of the joint issue, a novel

taxonomy to categorize different forms of drifts, a synthetic data generator as well as a

simple benchmark detector algorithm to manage the joint issue. In Section 5.4, two sets

of experiments are carried out to demonstrate the deficiency of existing state-of-the-art

detectors, and the improved detection ability with our newly proposed detector. Sec-
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tion 5.5 summarizes the chapter and highlights the urgency for further research in this

direction.

5.1 Introduction

Temporal dependency itself is not a new issue (Beck et al., 1998). However, its effects

on data stream classification and concept drift are relatively unexplored. As shown in

Section 2.2.3, most existing drift detection methods choose to assume data independence.

The threat of temporal dependency poses to these concept drift detectors is yet to be

investigated. Nonetheless, the combined issue of concept drift and temporal dependency

commonly exists in reality. For instance, the most popular real-world data streams used

for the evaluation of concept drift detectors such as KDD’99 (Archive, 2022) and Elec-

tricity (Harries and Wales, 1999) are all known to subject to somewhat extreme temporal

dependency (Zliobaite et al., 2015).

In fact, not till very recently, have researchers started to notice the challenge of

the independence assumption in online classification. Zliobaite (2013) are the first group

of authors pointing out this issue (Zliobaite, 2013; Bifet et al., 2013b). However, their

work only target at correcting and improving the predictive modelling performance, and

are not related to concept drifts or their detections.

So far, there is still a lack of comprehensive discussion on the new challenges

in concept drift brought by temporal dependency. In two of the most recent review

papers on supervised data stream learning and concept drift (Lu et al., 2020; Wares

et al., 2019), the lack of attention paid to temporal dependency is also highlighted.

It is also stated that there is a lack of established base datasets and the impact of

temporal dependence on concept drift detection Wares et al., 2019. With the work

presented in this chapter, we aim to fill in the gap by providing a systematic study of the

joint issue, discussing how their interactions bring new challenges to the current state of
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research and demonstrating our findings with simulated data sets. Besides, we also verify

experimentally that the existence of temporal dependency itself, under the premise of

precise and accurate extraction, may be used as a tool for more efficient drift detection.

In this chapter, we aim to make the following 4 contributions:

1) We formally show that temporal dependency is indeed a generic problem which

also affects the concept drift detection problem. We provide a novel taxonomy for various

types of concept drifts that may exist in temporal-dependent data streams.

2) We propose a new and flexible data stream generator to simulate different types

of temporal-dependent data streams.

3) We show experimentally that when taking temporal dependency into consider-

ation, existing detectors may still work in some cases, but fail in some others. We list out

what forms of drifts require urgent attention and conclude that concept drift detection

for temporal dependent data streams is an issue worth further investigation.

4) We provide a benchmark solution named Concept Drift detection for Temporally

Dependent data streams (CDTD) to detect the wide range of drifts that can possibly occur

in temporal dependent data streams.

5.2 Why Temporal Dependency May Be an Issue

In this section we restate why and how existing concept drift detection methods may

be negatively affected by temporal dependency. Afterwards, existing work related to

the issue of temporal dependency in general online classification scenarios are also be

summarized.

As stated in Section 2.2.3, concept drift detection methods can be divided into

classifier-based ones and data-based ones. Existing classifier-based detection methods

are based on the rationale that an increase in classification error is likely to represent the
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occurrence of a concept drift. Under the 0–1 loss function, the error is a Bernoulli trial,

described by a binomial distribution. When the number of observations is large enough,

the error rate can be approximated using a Gaussian distribution (Gama et al., 2004;

Baena-García et al., 2006; Ross et al., 2012; Harel et al., 2014). Then various statistical

tests can be applied to the specified test statistics to detect drifts. However, these tests

are based on the assumption that each repeated trial is an independent event. When

temporal dependency exists, the prediction error stream itself also contains dependency

(Zliobaite et al., 2015). Hence, the premise of many statistical tests is violated. Previ-

ous work also demonstrate that when temporal dependency exists in the label stream,

classification error is no longer a suitable metric for assessing drift because false alarms

may actually decrease classification error, resulting in misleading results (Zliobaite et al.,

2015). Therefore, the detection performance of classifier-based methods may be hindered.

For data-based detectors, temporal dependency can also be a potential issue. In

many such detectors, it is explicitly stated in their problem formulations that only inde-

pendent random observations drawn from an unknown probability density function are

received (Harel et al., 2014; Lu et al., 2014; Bu et al., 2016). Even if this is not explicitly

stated, the various statistical tests and theorems forming the basis of the detectors rely

on this inherent assumption (Alippi et al., 2010b; Alippi and Roveri, 2008; Qahtan et al.,

2015).

It should be noted that the existence of temporal dependency within the data

streams may not necessarily hinder the performance of existing detectors in the detection

of all possible forms of drifts, but undoubtedly impedes the reliability of them since

there will be no guarantees for optimality of the results. How well existing methods

can perform in such situation is worth investigating. However, all existing methods have

been tested on synthetic data streams assuming independence only (Minku et al., 2010;

Elwell and Polikar, 2011; Lu et al., 2016). In this work, we wish to experimentally

demonstrate the ability of existing drift detectors to cope with the environment where

temporal dependency exists.
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In fact, non-stationary data stream mining with temporal dependency has long

been neglected. As a pioneering work discussing temporal dependency in concept drifting

data streams, Zliobaite (2013) first spots the existence of temporal dependency in the label

stream of the Electricity data stream (Harries and Wales, 1999). The author proposes a

new evaluation measure named Kappa-Temporal to correct the bias brought by temporal

dependency in classification performance evaluation. However, it is only a statistical

metric and does not offer any mechanism to handle temporal dependency during the

online classification process (Wares et al., 2019). In their following work, two generic

meta-learning approaches that can be used to wrap state-of-the-art classifiers to account

for temporal dependency during model training are proposed (Zliobaite et al., 2015; Mayo

and Bifet, 2016). However, these methods are solely for the purpose of correcting and

improving the predictive modelling performance, and are not related to concept drifts or

their detections. It has also been briefly mentioned in their work that although temporal

dependency is likely to violate the assumptions of current drift detection methods, in

practice the impact of this issue is small (Zliobaite et al., 2015). However, we reckon

that this conclusion is tenable only for a subset of existing detectors and limited forms

of drifts.

Candidate Change Point Detector (CCPD) (Duong et al., 2018) is a recent as

well as the only detector making effort to exploit and utilize the temporal dependency

between data within the stream for change detection. However, it is assumed that the

observations consisting the data stream are drawn from a Gaussian distribution, and the

only form of drift considered is a change in the feature mean, which cannot fully reflect the

consequential implications of the combined issue. Other forms of change such as drifts

affecting decision boundary only are not detected. Although having some limitations,

this work conveys the idea that temporal dependency may also bring possibilities to the

development of more advanced concept drift detectors.

As mentioned earlier, temporal dependency itself is not a new problem and has

been investigated in the field of time series analysis. However, the problem setting of
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such problems are different from what is being considered in this work. Firstly, time

series analysis mainly deals with regression modelling tasks. Time series classification

tasks typically refers to sequence classification, where the task is to predict a single label

that applies to an entire input sequence. Secondly, change detection for time series data

generally requires strong assumptions. It is often assumed that at least partial informa-

tion, if not the entire sequence, of the time series is known a-priori (Aminikhanghahi and

Cook, 2017). For instance, some work employ the AR model to represent a time series

for detection (Yamanishi and Takeuchi, 2002), some others assume that time series can

be represented satisfactorily by a single autoregressive ARIMA model (Hilas et al., 2013;

Srivastava et al., 2016 ). OAR-DLSTM (Sun et al., 2021) is a very relevant work that

utilizes temporal dependency to detect change in time series prediction tasks. However,

it requires the information of all possibly-occurring concept in the offline pre-training

stage, which makes it unsuitable for our problem scenario.

5.3 How Important is Temporal Dependency in Con-

cept Drift Detection

This section first provides a novel problem formulation for describing the online classifi-

cation learning scenario as well as concept drift detection in temporally dependent data

streams. Based on this formulation, a novel taxonomy emphasizing the interaction of

the joint issue is presented. Then a novel synthetic data generator is proposed to simu-

late various forms of drifts that can possibly occur in temporal dependent data streams,

including the ones that are neglected by existing work. Lastly, a simple baseline drift

detector targeting the new scenario is introduced.
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5.3.1 A More Detailed Problem Formulation

In a streaming environment, a supervised data stream is formed by observations {(xt, yt), t ∈

Z+}. xt ∈ Rd represents the d-dimensional feature vector at time stamp t and yt is its

class label. yt ∈ {0, 1, ..., Q} where Q + 1 is the number of available classes. In the

current problem formulation, each data point (xt, yt) is considered to be an independent

realization of the random variable Z = (X, Y ) generated by P (Z) = P (X, Y ) at time

stamp t. A concept drift is said to occur when there is a change in the joint distribution

P (X, Y ). As described in Section 2.1.2, this distribution can be further decomposed as

P (X, Y ) = P (Y |X) ·P (X) = P (Y ) ·P (X|Y ), symbolizing four possible sources of a drift.

A change in any of these probabilities leads to a concept drift.

In order to better describe the problem by taking temporal dependency into con-

sideration, we provide a new formulation for concept drift in online classification as fol-

lows. Rather than fixed random variable Z, the data stream can be considered as a joint

stochastic process Z = {X ,Y}, where X and Y denote the data feature process and

label process, respectively. A stochastic process is a mathematical model that describes

a sequence of random variables. We define P{Z} as the law of the joint process for Z,

and P (Z) as a joint probability of the random variables constituting Z. P{X}, P (X )

and P{Y}, P (Y) can be defined analogously for processes X and Y , respectively.

We now introduce some further definitions taking the process X as an example.

X denotes the stochastic process for the data feature stream, and is consisted of random

variables Xt,s where t is the time index and s is the number of realization. t can approach

∞ as size of the data stream grows. For simplicity, we assume that t represents the time

stamp index taken at a regular rate and only one single data stream is examined at each

t, i.e., s = 1. Therefore, Xt,s can be simplified to Xt. Note that in an online classification

scenario, at some time stamp t, only the information up to t is available. Therefore,

in our scenario, we have X = {Xt : t ∈ Z+} where Xt is the random variable at time

stamp t of the process. Following this, X{1:t} = (X1,X2, . . . ,Xt) hence represents a
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Table 5.1: A summary and comparison of the new formulation, which takes into account

temporal dependency, and the existing formulation, which assumes data independence,

for describing the supervised data streams.

Notation Definition

X = {Xt : t ∈ Z+} The stochastic process for data feature stream

Xt The random variable for data features at time t

New X{1:t} = (X1, . . . ,Xt) A random vector representing a sub-process of X from time stamp 1 to t

formulation x{1:t} = (x1,x2, . . . ,xt) One possible realization of X{1:t}

P{X} The law of stochastic process X

P (X{1:t}) The joint probability of X{1:t} for some t

Y = {Yt : t ∈ Z+} The stochastic process for the data label stream

Yt The random variable for data label at time t

Y{1:t} = (Y1, . . . , Yt) A random vector representing a segment of Y from time stamp 1 to t

y{1:t} = (y1, y2, . . . , yt) One possible realization of the data label stream vector Y{1:t}

P{Y} The law of stochastic process Y

P (Y{1:t}) The joint probability of Y{1:t} for some t

Z = {X ,Y} The joint stochastic process representing the supervised data stream

P{Z} = P{X ,Y} The underlying generation mechanism of Z

P (X{1:t},Y{1:t}) The joint probability distribution of P (X{1:t},Y{1:t})

X The random variable for data features

P (X) The underlying probability distribution of X

{xt : t ∈ Z+} t i.i.d realizations of the random variable X

Existing Y The random variable for data labels

P (Y ) The underlying probability distribution of Y

formulation {yt : t ∈ Z+} t i.i.d realizations of the random variable Y

Z = (X, Y ) The joint random variables representing the i.i.d supervised data stream

P (Z) = P (X, Y ) The joint probability distribution of Z
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random vector of X from time stamp 1 to t. x{1:t} = (x1,x2 . . . ,xt) is used to denote one

possible realization of X{1:t}. xt ∈ Rd represents the d-dimensional feature vector of the

tth observation as before. In other words, we consider X to be discrete-time continuous

process. The stochastic process of the labels Y = {Yt : t ∈ Z+} can be defined in a similar

way. yt ∈ {0, 1, ..., Q} where Q + 1 is the number of available classes. Therefore, Y can

be regarded as a discrete-time discrete process. Please see Table 5.1 for full details of the

definitions.

Figure 5.1: A newly proposed taxonomy for drift categories taking into account temporal

dependency. The underlying data stream is described by the stochastic process Z =

{X ,Y}, instead of a random variable Z = (X, Y ).

Figure 5.2: An extended sub-taxonomy of the overall categorization taking into account

temporal dependency (TD) in Figure 5.1 from both discriminative perspective (left) and

generative perspective (right).

Under this new problem formulation, a concept drift in this case is essentially

equivalent to a change that occurs in the law of the joint stochastic process P{X ,Y},

or from a probabilistic point of view, the joint probability of P (X ,Y). This probability
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Figure 5.3: An illustration of temporal dependency within the supervised data stream

for sub-category 1 with an order of 1. Arrows from A to B represents the dependency

of B on A. Cat. 1.1 is the case considered by existing problem setting. Cat 1.4 is the

most general case that our new formulation considers. Examples for sub-category 2 can

be presented analogously.

can also be decomposed further from either a discriminative or generative perspective as

shown in Equation 5.1. Figure 5.1 presents the new categorization of the possible sources

of concept drift under the new problem formulation.

P (X ,Y) = P (Y|X ) · P (X ) = P (X|Y) · P (Y). (5.1)

The benefit of this new taxonomy is not limited to the more practical definitions

from random variables to stochastic processes. More essentially, it demonstrates the

possible existence of a wider range of concept drift forms than what have been considered

by the existing work.

It should be noted that temporal dependency can also manifest itself in various

forms. A stochastic process can also consists of independent random variables only.

Following the broad taxonomy presented in Figure 5.1, a further sub-categorization can

be constructed as in Figure 5.2 to show where the temporal dependency can exist. To

explain the sub-categorization, Figure 5.3 provides some examples for Cat.1.1-1.4 in sub-

category 1. Cat 1.1 is a special case under the new formulation where X and Y are both

independent stochastic processes, which is also the case considered by existing work.

Cat 1.4 is the most general form of temporal dependency existence considered by our
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formulation and categorization.

The more complicated sources of drift also bring new challenges to the detection

of drifts. We aim to theoretically demonstrate that existing methods are likely to fail in

detecting some forms of drifts in temporal dependent data streams. Taking the discrim-

inative approach as an example, the drift detection task is to find out if and when there

is a change in P (X ) and P (Y|X ). Equations 5.2 and 5.3 show the expanded form of the

two probabilities under the chain rule. At each time stamp t, the change may take place

in p(yt|y{1:t−1},x{1:t}) and/or p(xt|x{1:t−1}). Nonetheless, existing methods detect drifts

by monitoring p(xt) and p(yt|xt) at each time stamp t, which is only sufficient in the

special case of the new categorization where the independently− distributed assumption

is satisfied. That is, the stochastic processes are temporally independent. Hence, with

current concept drift detection methods, changes related to temporal dependence cannot

be well captured.

Stochastic processes are usually associated with some order τ ∈ Z+
0 . τ can be

regarded as the number of previously seen instances that are considered when calculating

the probabilities for the current instance. For simplicity, we assume the processes X and

Y|X have the same order. Taking τ into consideration, expressions in equations 5.2 and

5.3 can be further simplified as p(xt|x{1:t−1}) = p(xt|x{t−τ :t−1}) and p(yt|y{1:t−1},x{1:t}) =

p(yt|y{t−τ :t−1},x{t−τ+1:t}), respectively. τ can also evolve over time.

P (X{1:t} = x{1:t})

= p(x1, . . . ,xt)

= p(x1) · p(x2|x1) · p(x3|x{1:2}) . . .

· p(xt|x{1:t−1})

i.i.d
=

t∏
i=1

p(xi)

(5.2)
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P (Y{1:t} = y{1:t}|X{1:t} = x{1:t})

= p(y1, ..., yt|x1,x2, ...,xt)

= p(y1|x1) · p(y2|y1,x{1:2}) . . .

· p(yt|y{1:t−1},x{1:t})

i.i.d
=

t∏
i=1

p(yi|xi)

(5.3)

5.3.2 A Novel Synthetic Data Generator

Although real-world data streams often contain temporal dependency, without ground

truth information, it is not possible to know if there really is a drift, when exactly the

drift occurs, or which form of drift is present when working with such data streams.

Therefore, it is not possible to perform a detailed analysis of the behaviour of various

detection algorithms using only real-world data sets.

Various synthetic drift generators have been proposed in the literature, for in-

stance, hyperplane (Lu et al., 2016), SINE (Minku et al., 2010), rotating checkerboard

(Elwell and Polikar, 2011), and interchanging RBF (Losing et al., 2016). However, the

generation mechanisms are all based on the assumption of data independence. As far as

we know, there is no established benchmark generator for simulating temporally depen-

dent data streams containing concept drifts. Hence, we propose a novel data generator

with the purpose of not only filling in this research gap, but also promoting further studies

following this research direction.

The data generator presented in Table 5.2 is built based on cosine and sine func-

tions. We assume a bi-class supervised data stream with two-dimensional input is to

be generated. x1t and x2t are the feature values of the two dimensions at time t, respec-

tively. A,B,C are random non-negative numbers summing to 1. δ is an added constant

to differentiate the feature mean. ε is a Gaussian noise with small standard deviation

(e.g., 1e − 6). Based on x1t , x2t , and some previously obtained values of features and
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Table 5.2: Details of the data generator for two-dimensional temporal dependent data

streams. x1t and x2t are the feature values of the first and second dimension of the data

stream at time t, respectively. A,B,C, a, b, δ, θ and τ are the generator parameters.

A,B,C are parameters controlling the temporal dependency of X ; δ is the parameter

that determines the mean of the features of X ; a, b are parameters controlling the the

temporal dependency of process Y|X ; τ and θ represent the order of dependency and the

decision threshold of process Y|X , respectively; ε is a small Gaussian noise added to the

data streams.

Drift generator for temporal dependent data streams

x1t = A · sin(A · π · t)−B · cos(B · π · t) + C · sin(C · π · t) + δ + ε

x2t = A · cos(A · π · t)−B · sin(B · π · t) + C · cos(C · π · t) + δ + ε

ỹt = a · (x1t + x2t ) + 0.8a ·
∑t−1

i=t−τ+1(x
1
i + x2i )− b · ỹt−1 − 0.8b ·

∑t−2
i=t−τ ỹi

if sigmoid(ỹt) > θ, yt = 1; otherwise , yt = 0.

label streams from time stamp t− τ to t with order τ , a latent variable ỹt is calculated.

After applying the sigmoid transformation on ỹt, the actual label y can be determined

by comparing sigmoid(ỹt) to a fixed decision criterion θ.

We choose to use sine and cosine functions to construct the generator for the

following reasons: 1) The addition (subtraction) of sine and cosine waves is a more com-

plex times series than standard time series such as ARIMA, which can better imitate

real-world data streams. 2) Sine and cosine functions are bounded and so are their addi-

tions (subtractions). Other time series generation functions such as ARMA and ARIMA,

on the other hand, are more likely to experience explosive growth when eigenvalues lie

outside the unit circle.

By inserting various parameter values, the generator can be used to simulate var-

ious drifts, corresponding to possible forms of change that fall into different categories

listed in Figure 5.2. It should be noted that some forms of drift may occur only when

certain dependencies exist. For instance, a change in the temporal dependency of X can
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Table 5.3: Some examples of possible drift forms that may occur in temporal dependent

data streams with our data simulator. Details of the parameters involved and their

meaning are presented in 5.2. Details of different categories (Cat.) are presented in

Figure 5.2.

Drift in Form Name
Change in

parameter

Drift cannot

occur in

Our CDTD

detector

P (X ) 1 TD-XX A,B,C Cat. 1.1, 1.2 3

P (X ) and P (Y|X ) 2 NUM-X δ (, θ) [ ] 3

P (Y|X )

3 TD-XY a Cat. 1.1, 1.3 3

4 TD-YY b Cat. 2.1, 2.3 3

5 TD-OY τ Cat. 1.1, 1.3 3

6 CLF θ [ ] 3

not be realized for Cat. 1.1 and 1.2 where X is an independent process only.

Table 5.3 provides some possible examples of simulated drifts. Some plots demon-

strating the simulated drifts are presented for the synthesized drift examples. Due to

space limitation, only the plots for TD-XX (Figure 5.4), NUM-X (Figure 5.5) and

CLF (Figure 5.6) are presented. The drift occurs at timestamp 300. The upper plot is a

demonstration of the change in the first feature of the generated data stream. The mid-

dle plot is an autocorrelation (ACF) plot that calculates the correlation of a stochastic

process, say Y , with itself k lag away (Equation 5.4). It is used here for the visualization

of temporal dependency and the change in it. The bottom plot is a scatter plot showing

the data points from different classes within the input space.

rk =

∑T
t=k+1 (yt − ȳ) (yt−k − ȳ)∑T

t=1 (yt − ȳ)2
(5.4)

With these synthetic data streams, researchers can test the functionality and per-

formance of existing detectors. After identifying the forms of drift in which the existing

algorithms are weak, more sophisticated strategies can be further designed to solve the

particular challenging cases. These methods can also be combined with existing ones to

improve detector generalization power and better resolve real-world issues.
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Figure 5.4: An example for TD-XX drift (Drift form 1 in Table 5.3). No obvious change

can be spotted from either the feature plot (upper plot) or the input space plot revealing

the class-conditional distributions (bottom plot). The change is only noticeable from the

ACF plot representing the temporal dependency only (middle plot).
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Figure 5.5: An example forNUM-X drift (Drift form 2 in Table 5.3). An obvious change

can be spotted from the feature plot (upper plot) and the input space plot revealing the

class-conditional distributions (bottom plot). The change is not noticeable from the ACF

plot representing the temporal dependency only (middle plot).
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Figure 5.6: An example for CLF drift (Drift form 6 in Table 5.3). No obvious change

can be spotted from either the feature plot (upper plot) or the ACF plot representing the

temporal dependency only (middle plot). The change is only noticeable from the input

space plot revealing the class-conditional distributions (bottom plot).
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5.3.3 A Temporal Dependency-based Detector CDTD

After discussing the possible sources of drifts under our new problem formulation in

Section 5.3.1 and giving some examples of these drifts in Section 5.3.2. In this section, we

aim to develop a novel detector named Concept Drift detection for Temporally Dependent

data streams (CDTD) that exploits the temporal dependency to detect the wider range

of drifts.

Our derivations in equations 5.2 and 5.3 have shown that in order to capture all

possible drifts, dependency-related information should be monitored for change detection

in this situation. From the discriminative viewpoint, p(xt|x{t−τ :t−1}) and p(yt|y{t−τ :t−1},x{t−τ+1:t})

should be monitored. It can be noted that the latter probability captures the full depen-

dency, which also contains relevant information of the former probability. Various feature

extraction methods can be used in order to keep track of such information. Recurrent

neural network (RNN) is a state-of-the-art method used for modelling spatio-temporal

information (Wang et al., 2020). A simplified RNN structure, reservoir computing (RC),

has been very popular since it is able to represent a wide variety of dynamical charac-

teristics of the data streams (Chen et al., 2014). It can also approach any non-linear

mapping with only linear training (Tanaka et al., 2019). They can be trained fast and

run in real-time, which makes them suitable tools for online learning scenario.

Given the input signals s(t) and output signals o(t), the RC model with a reservoir

of N units can be formulated as follows: r(t) = tanh(WR(t − 1) + Us(t)); f(r(t)) =

V r(t) + b, where r(t) is the state vectors of the reservoir activations, tanh(·) is the state-

transition function of the reservoir and W is an N ×N reservoir weight matrix. U and

V are the input and output weight matrices, respectively. f(r(t)) is the output of the

RC model and b is the bias vector for output nodes.

However, the traditional random RC model is largely driven by a series of ran-

domized model building stages, which could lead to very unstable results (Quevedo et

al., 2014). Inspired by the fault detection algorithm proposed by Chen et al. (2014), we
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Algorithm 3: General framework of CDTD. The green-shaded lines repre-

sent three novel modifications made to the existing fault detection algorithm

by Chen et al. (2014).
input : initial sequence of k sliding windows, sliding window size m, order of

the input τ ′, counter window size l, decision threshold c∗.

output: confirmed detections

1 for the ith sliding window in the initial training sequence do

2 Prepare the input-output data stream to train the reservoir model: at

time stamp t, the input is a re-arranged one-dimensional vector

s(t) = (y{t−τ ′:t−1},x{t−τ ′+1:t}) and the output is o(t) = yt;

3 Fit the reservoir model and record the linear readout fi.

4 Fit a one-class classifier OCC with TS = (f1, ..., fk);

5 while there is incoming data do

6 for each new sliding window arrived at time t do

7 Prepare the input-output stream as in step 2 to derive ft;

8 Check if ft belongs to the current concept within OCC;

9 if an ft does not belong to the current concept then

10 Put ft in the candidate pool that only retains abnormal fi for

i ∈ [t− l, t];

11 if size of candidate pool > l × c∗ then

12 Record T̂ = t as a confirmed detection;

13 Use members in the candidate pool or wait until enough data

(e.g., k linear readouts) are collected for retraining and update

TS;

14 Continue from line 4.

15 Output the confirmed detections.
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adopt a deterministic reservoir as a tool for temporal dependency extraction and con-

duct detection within the model space with a one-class classifier. Since we are dealing

with supervised data streams, three major modifications are made to adapt our scenario.

Firstly, the input-output pair is modified to contain information from both data features

stream and the label stream, whereas the existing fault detection algorithm by Chen et al.

(2014) does not contain supervised information. Secondly, The RC structure is switched

to simple cycle reservoir instead of cycle reservoir with jumps to further reduce instability.

Lastly, the candidate pool size is also limited to reduce the possibility of alarms. More

detailed description of the exact modifications is presented in sequel.

CDTD also adopts a sliding window-based strategy. One RC model is learnt from

each window. Each RCmodel in CDTD is trained with input s(t) = (y{t−τ ′:t−1},x{t−τ ′+1:t})
T

and output o(t) = yt, where τ ′ can be seen as a pre-defined short-term order the user

wishes to consider. The long-term memory is automatically learnt with the reservoir

model. Information of both features and labels are used to form a model representation,

aiming to capture the full dependency within the data stream. In addition, in order to

reduce the number of parameters involved in the model and improve model stability, a

simple cycle reservoir (SCR) topology (as shown in Figure 5.7) rather than cycle reservoir

with jumps is used. In the SCR reservoir, all cyclic connections have the same weight

rc. The input weights have the same absolute value u. Finally, the existing method by

Chen et al. (2014) saves every unknown point in a candidate pool and acknowledge the

emergence of a new concept after the size of pool reaches certain threshold. This strategy

may lead to an increasing number of false detections, especially when the stable concept is

long. In fact, when there is a concept drift, abnormal RC models are expected to appear

at a much higher rate. Therefore, to reduce false alarms, we specify a counter window of

size l (e.g., 100) which represents the scale of smoothness, and a percentage threshold c∗

(e.g., 70%) that represents the internal level of consistency tolerance. At each time stamp

t, the candidate pool maintains only the identified unknown points within the latest time

frame [t− l, t]. A drift is confirmed when the size of the candidate pool exceeds l × c∗.
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Figure 5.7: Reservoir computing model with simple cycle reservoir (SCR) topology

adopted in our proposed CDTD detector.

The pseudo-algorithm is presented in Algorithm 3. CDTD adopts a rolling-

window-based approach. One linear readout (model space projection) is learnt with

each window. In the beginning, a series of model space projections representing the sta-

tionary concept are derived based on an initial stationary segment. Then, a one-class

classifier OCC will be constructed based on there projections. With the rolling window

moving forward, we continually apply the OCC model to judge whether a new concept is

taking place. If the new projection is deemed to come from a possibly different concept

by the OCC model, the projection will be sent to the candidate pool. Then, a drift is

reported when the size of the candidate pool exceeds the pre-defined threshold l × c∗.

After the confirmation of a new concept, a new OCC model is learnt with members in

the candidate pool. Note that if the candidate pool size is not large enough to learn a

new concept, the reconstruction OCC model may wait for a while until the minimum size

for retraining is met. This is also a reasonable approach in the literature based on the

assumption that concept drifts will not happen too frequently (e.g., Baena-García et al.,

2006).
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5.4 Computational Studies

In this section we conduct two sets of experiments. First, based on the synthetically

generated data streams, we demonstrate experimentally how well different existing de-

tectors work when they encounter the possible forms of drifts described in the earlier

sections. Second, we test the ability of our newly proposed CDTD detector to detect

the synthesized drifts, and conduct an ablation study to discuss the effect of various RC

model input-output settings on the detection performance.

5.4.1 Experimental Protocols

The synthetic data streams are generated according to the examples of various concept

drift forms introduced in Table 5.3. For each form of drift, 30 sequences, each containing

5 concepts with a length of 5000 time stamps, are tested. The details for data generation

is as follows. For TD-XX, the parameters A,B and C are simply re-sampled from the

uniform distribution for each drift and normalized so that the sum of A,B,C is always

1. For NUM-X, δ is increased by 1 for each drift. For TD-XY, a is randomly sampled

from the standard uniform distribution for the first concept, and then incremented by 0.2

for each drift. A similar strategy is applied on b to generate TD-YY drift. For TD-OY,

the order τ is first set to 10 and re-sampled again within [τ, 5τ ] for each drift. For CLF,

the change in θ is simply achieved by a class swap after each drift.

The evaluation measures we adopt follow the evaluation definition paradigm in

Section 4.3. Detection performance is measured for two acceptable lengths ∆ = {1000,

2000} so as to limit the maximum detection delay allowed. All reported recall, preci-

sion and F-measure values are calculated with the average TP, FP and FN over the 30

sequences.

It is assumed that the first 1000 data points in the stream come from a stationary

concept. For our newly proposed detector CDTD, the SCR topology is used as shown in
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Figure 5.7. The connection weight rc, input weight v and reservoir size N are selected

based on a 5-fold cross validation on the first 1000 normal data points. The grid search

ranges for the first two weight parameters are both [0.05: 0.05 :1] 1. Reservoir size is

selected from [150, 200, 250]. The window size should be larger than the largest temporal

scale as well as the number of recurrent units in the reservoir. If the window size is too

small, the RC model cannot be learnt well, which may lead to unsatisfactory detection

performance. On the other hand, although larger windows can train more accurate

RC models, they lead to longer delays in detection times. The selection of the most

appropriate window size can be task specific. Preliminary experiments have shown that

a window size between 300 and 800 leads to acceptable results in terms of both precision

and recall for most drift forms we consider. In the current work, the size of rolling

window m is set to 500 with a rolling size of 1. A small rolling size can help detect drifts

more quickly at the cost of higher computational cost. Since we do not have any prior

knowledge of the actual order τ of the data stream, for simplicity τ ′ is set to 1, meaning

that we mostly account on the reservoir to keep track of the memory information. Then

the input and output of the RC model are simply s(t) = (x1t , x
2
t , yt−1)

T and o(t) = yt.

One-class SVM (Khan and Madden, 2010) is used as the one-class classifier in CDTD.

Different comparative methods are utilized for each experiment and will be introduced

later. Configuration of the comparative methods follow the setting in their original papers

unless otherwise stated.

5.4.2 Experiment 1: How Well Existing Methods Perform

In this section, we first apply some existing detection methods on our newly synthesized

data streams with temporal dependency (Table 5.3). For data-based detectors, HCDT

(Alippi et al., 2016) and Kdq-tree (Dasu et al., 2006) are selected. HCDT with the ICI-

based CDT as the base detector has been shown to achieve very accurate and efficient in
1specified in MATLAB notation: [s: d: e] denotes a series of numbers starting from s, increased by

increments of d, until the ceiling e is reached.
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Table 5.4: Detection performance for CDTD and other existing detection methods with

an acceptable delay length of 1000.

Detector CDTD Kdq-Tree HCDT

Drift Type Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

1. TD-XX 0.8657 0.9167 0.9016 0.0000 0.0000 NaN 0.3684 0.0583 0.1007

2. NUM-X 0.9254 1 0.9191 0.5178 0.8507 0.6438 0.9524 1.0000 0.9756

3. TD-XY 0.8657 0.9667 0.9134 NaN 0.0000 NaN 0.0000 0.0000 NaN

4. TD-YY 0.8197 0.9083 0.8617 NaN 0.0000 NaN 0.2500 0.0084 0.0163

5. TD-OY 0.8516 0.9730 0.8906 NaN 0.0000 NaN 0.2500 0.0084 0.0163

6. CLF 0.8138 0.9833 0.9375 NaN 0.0000 NaN 1.0000 0.0250 0.0488

Detector DDM HLFR HRDD

Drift Type Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

1. TD-XX 0.1000 0.0583 0.0737 NaN 0 NaN 0.5789 0.4583 0.5116

2. NUM-X 0.7101 1 0.8305 1.0000 0.9000 0.9744 0.9600 1.0000 0.9796

3. TD-XY 0.1000 0.1417 0.1173 NaN 0.0000 NaN 0.6154 0.1333 0.2191

4. TD-YY 0.1711 0.1083 0.1326 NaN 0.0000 NaN 0.3704 0.0833 0.1360

5. TD-OY 0.3696 0.5083 0.4280 1.0000 0.1000 0.1818 0.4576 0.2250 0.3017

6. CLF 0.7843 1.0000 0.8791 0.9744 0.9500 0.9620 0.7480 0.7667 0.7572

previous works. Kdq-tree based method (Dasu et al., 2006) is a distance-based approach

that does not explicitly require the data to be independent. For classifier-based methods,

among the two benchmark detectors DDM and EDDM, DDM is picked since it is more

suitable for the detection of abrupt drifts (Baena-García et al., 2006). The latest HFLR

(Sun et al., 2021) introduced in Section 2.1.2 is also used. Note that the detection

performance can also be affected by the choice of base classifier, hence two classifiers,

SVM and decision tree, are tested. The classifier-detector combination achieving the

best result for F-measure is presented. In addition to existing methods in the literature,

HRDD from Chapter 4 is also selected as a comparative method.

Table 5.4 shows the precision, recall and F-measure of the comparative methods
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with an acceptable delay length of 1000 time stamps. For comparison purposes, the

outcome of CDTD is also presented here, but more detailed analysis of CDTD will be

presented in Experiment 2. Similar results are obtained with an acceptable delay length of

2000. The only form of change that can be accurately identified by data-based methods

is NUM-X. For this form of drift, although the HCDT is operating under conditions

where the independence assumption is violated, this does not necessarily implies that it

will always fail. The change in the feature mean is so strong that it can still be easily

captured by existing data-based methods.

Although TD-XX is also a change affecting the data feature stream, this form of

drift affects the temporal dependency only and leave the mean and variance of the features

unchanged. Existing data-based detectors such as HCDT and Kdq-tree are not designed

to capture this form of change, hence they are more likely to fail. This observation

illustrates that data-based detectors monitoring p(xt) are not appropriate for temporally

dependent data streams. For the rest forms of change, the feature streams are not altered

in any ways so detection always fails.

Classifier-based methods fail for 4 of the 6 forms of drifts. This result coincides

with our expectation that monitoring p(yt|xt) is also insufficient for drift detection in

temporally-dependent data streams. We also notice that the issue of temporal dependency

is not limited to the violation of the independence assumption of the error stream. More

importantly, the errors themselves are no longer trustworthy. Due to the existence of

temporal dependency, data points with exactly the same features xt at time stamp t may

have different true labels yt since the influence of previous data points are also taken

into account. Such results confuse the classifier during training. Thus, the pattern of

classification outcomes is no longer reliable even for a stationary data stream. However,

they may still be able to detect partial drifts when the there is a noticeable change in

the learnt decision boundary. In other words, as long as drifts can be reflected by a

significant change in classification performance, no matter how poor or good the original

performance is, they can still be captured. This is especially the case when the change
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severely affect the decision boundary, e.g., for NUM-X and CLF drifts. These two

forms of drifts are the most typical drifts considered in existing work. For particular

forms of drifts, our finding coincide with the conclusion drawn by Zliobaite et al. (2015)

that temporal dependency does not do much harm to the detection performance. In a

temporally dependent environment, they can still be detected with reasonable precision

and recall, even if the theoretical guarantees of the tests (if any) are not valid any more.

Nonetheless, this conclusion is not true for other forms of drifts that can possibly occur.

Although HRDD has been shown to surpass the comparative methods in scenarios

with independent data streams by a great amount in Chapter 4, the advantages no longer

hold for drift detection in temporally dependent data streams. Viewing the performance

on all 6 forms of drifts, it can be seen that HRDD may still detect some drifts that cannot

be detected by purely classifier-based or data-based detectors. However, the detection

sensitivity is still far behind CDTD.

In summary, existing methods, no matter data-based methods or classifier-based

methods, are not suitable for concept drift detection in temporally-dependent data streams.

They cannot cope with this more complicated situation very well. It should also be noted

that among the drift examples provided in Table 5.3, the forms of drifts that existing

methods always fail are all TD-related drifts. This finding signals the necessity of in-

vestigating new concept drift detection tools that can accommodate this more realistic

situation. Our newly proposed baseline detection method CDTD is capable of detecting

all 6 forms of drifts presented and performs the best in terms of F-measure among all

the methods being compared. The next set of experiment will have a closer look at the

functionality of CDTD and the key requirement to guarantee its success.

5.4.3 Experiment 2: Functionality of CDTD

This experiment examines the performance of CDTD to handle various forms of drifts in

temporally-dependent data streams. As introduced in Section 5.3.3, the current input-
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Table 5.5: Various input-output setting for the reservoir model in CDTD under compar-

ison in Experiment 2.

Method Reservoir input Reservoir output

CDTD s(t) = (yt−1, ...yt−τ ′ , x
1
t , ..., x

d
t , ..., x

1
t−τ ′+1, ..., x

d
t−τ ′+1)

T o(t) = yt

CDTD-XX s(t) = (x1t−1, ..., x
d
t−1, ..., x

1
t−τ ′ , ..., x

d
t−τ ′)

T o(t) = (x1t , ..., x
d
t )
T

CDTD-XY s(t) = (x1t , ..., x
d
t )
T o(t) = yt

output setting for the reservoir model in CDTD is designed to capture the full temporal

dependency p(yt|y{t−τ :t−1},x{t−τ+1:t}) within each window. The reservoir takes some pre-

vious features, current features as well as some previous labels as inputs. In this experi-

ment, we also demonstrate that capturing the full dependency within the data stream is

necessary for the detection of the wide range of possible drifts. We compare the current

setting with two different input-output settings of CDTD (Table 5.5). CDTD-XX consid-

ers input and output based on the features only. CDTD-XY takes the usual input-output

setting of existing classification models and can be regarded to be a similar realization

of the work by Chen et al. (2014). To be fair, τ ′ is set to 1 for all the settings compared

here.

Table 5.6: Detection performance for various input-output settings of the reservoir in

CDTD with an acceptable delay length of 1000.

Detector CDTD CDTD-XX CDTD-XY

Data Name Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

1. TD-XX 0.8657 0.9167 0.9016 0.8096 0.7083 0.7556 0.6087 0.7000 0.6512

2. NUM-X 0.9254 1.0000 0.9191 0.8440 0.9917 0.9119 0.7581 0.7833 0.7705

3. TD-XY 0.8657 0.9667 0.9134 NaN 0.0000 NaN 0.5053 0.8083 0.6219

4. TD-YY 0.8197 0.9083 0.8617 NaN 0.0000 NaN 0.6087 0.5833 0.5957

5. TD-OY 0.8516 0.9730 0.8906 NaN 0.0000 NaN 0.6667 0.6333 0.6496

6. CLF 0.8138 0.9833 0.9375 NaN 0.0000 NaN 0.7143 0.1000 0.8333
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Table 5.6 presents the detection results for the methods compared. The first

conclusion from this table is that the current input-output setting of CDTD exploiting

the full dependency within the data stream performs the best among the three settings

being compared in terms of F-measure.

CDTD-XX and CDTD-XY can be regarded as data-based and classifier-based de-

tectors, respectively. Nonetheless, it should be noted that they are different from existing

methods since the reservoir model structure processes and records temporal patterns.

Comparing Table 5.6 and Table 5.4, it can be seen that by relying on the temporal

dependency-related information for detection, CDTD-XX surpasses existing data-based

detectors in the detection of TD-XX drifts and achieves comparative results as existing

data-based detectors in the detection of NUM-X drifts. This result evidently shows the

importance of utilizing dependency for drift detection.

Similarly, CDTD-XY can also perform better than existing classifier-based de-

tectors for all TD-related drifts. Nonetheless, there is still a large gap between the

performance of CDTD-XY and CDTD for all 6 forms of drifts. The results confirmed the

importance of incorporating previous information from both the features stream and the

label stream for precise drift detection. Hence, we conclude that recording and utilizing

the full dependency for drift detection is the key to guarantee the superiority of CDTD.

Moreover, the improved precision achieved by CDTD also demonstrates that our mod-

ified drift detection rule can help lead to more precise drift detection by reducing false

alarms.

5.5 Chapter Summary

Initially, we demonstrate that temporal dependency is a crucial problem that signifi-

cantly impacts the current understanding of concept drift. Our study then introduces a

new problem formulation that considers the interaction between these two issues. This
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formulation also leads to a novel taxonomy of various forms of concept drift that can pos-

sibly occur. Subsequently, we conduct experiments to reveal some of the situations where

existing detectors fail in the presence of temporal dependency. In order to simulate differ-

ent forms of drifts on temporal-dependent data streams, we devise a new and adaptable

data stream generator. The results of this chapter highlighted the need for immediate

attention to certain forms of drift, and led us to conclude that detecting concept drift

in temporal-dependent data streams is a subject that needs further exploration. Finally,

we propose a benchmark solution for drift detection in temporal-dependent data streams

and evaluated its effectiveness on multiple sets of data streams.

As in Chapter 4, the parameters of the existing drift detectors were the same as

the ones used in their original papers. The nature of online classification scenarios does

not allow parameter tuning since no post-drift information is available. Future work may

consider testing and comparing the methods with various parameter settings. Another

piece of crucial future work is to conduct experimentations with real-world data streams.

In existing literature, the number of detections and the prequential classification error

are usually examined for assessing concept drift detectors applied on real-world data

streams. However, it should be noted that a low number of detections may no longer be

appreciated since this may be caused by the neglection of TD-related drifts. Experiments

with real-world data streams have to be carefully designed and evaluated. In addition, in

the current work, a RC model and a simple one-class SVM are selected to form CDTD,

which we regard as a simple baseline detector only. Other effective combinations may

also be considered for various application systems. As long as the full dependency within

the data stream is captured, TD-related drifts should also be detected.
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Chapter Six

Conclusions and Future Work

The focus of this thesis is the detection of changes in both offline and online classifi-

cation tasks. Conventional classification is based on the identically and independently

distributed (i.i.d) assumption. However, the requirement of a static environment may

not be satisfied once the model is deployed in real-world applications. This thesis mainly

investigates How to accurately detect a change that violates the identically-distributed as-

sumption of classification models?. The detection of such changes is crucial to ensure

the safety deployment of machine learning systems, since it allows in-time actions to be

taken to maintain the expected performance.

Since classification can be conducted in both offline and online forms, this thesis

divides the main target into two research areas, namely OoD detection and concept drift

detection for offline and online scenarios respectively. The key research question in the

offline scenario is How to accurately detect testing examples that do not come from a

same distribution as the training data set?. For online scenario, this thesis investigates

How to accurately detect if and when a change has occurred in the underlying streaming

environment?. In order to find the solutions for these two questions, several specific

research questions have been listed in the Introduction Chapter.

This chapter summarizes the contributions of the thesis, with an emphasis on how

each proposed research question is addressed. Some directions for future work are also
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identified at the end of this chapter.

6.1 Conclusions

The thesis starts with the offline scenario. In offline scenarios, OoD testing examples that

do not belong to the distribution of the training data set need to be identified.

Although a plethora of detection OoD methods have been developed, many of

the methods have assumptions on the OoD data and rely on some synthetic or real

OoD examples for training the detector. Purely unsupervised methods are very limited.

Besides, the stability and reliability of existing unsupervised methods have been shown

to be poor for some particular types of OoD examples. For instance, semantic OoDs have

been shown by existing work to be the hardest type of OoDs to detect. Therefore, the

thesis aims to provide solutions to the following research questions listed in Section 1.2.1:

How to detect various types of OoD examples more accurately in a purely unsupervised

manner? How to characterize different types of OoDs more comprehensively and improve

the detection performance for the more difficult OoDs?.

In Chapter 3, we present our new OoD detection method LAMAE based on a

memory AE to answer the first question. The key idea is to regularize the AE network

architecture with a classifier and a label-assisted memory. The information of the class-

labels of ID data is leveraged to confine the reconstruction of OoD data while retaining the

reconstruction ability for ID data. Thus, the OoD detection performance can be improved.

In order to answer the second question, we first refine the existing categorization with

respect to OoD semantics only by adding a new dimension accounting inherent image

complexity. Testing examples that are less complex than the ID training examples are

more likely to be missed by the reconstructed-based detector. By noticing the strong

impact of image complexity on the reconstruction errors, we propose to adjust the test

statistic by applying a complexity-based normalizer before using it for detection, forming
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the detector LAMAE+. Experimental studies show that the proposed OoD detectors can

perform well on a wider range of OoD scenarios, including the difficult semantic OoDs.

After viewing the possible change in offline case, the online scenario is closely ex-

amined. Data streams often arrive from an evolving and dynamic environment. Changes

in this case are generally more difficult to detect than in the offline case. Existing concept

drift detection tools focus on either real drifts deteriorating the classification performance

or virtual drifts altering the input space only. While both types of drifts are worth de-

tection since they signal different information about the data stream, there is a lack of

method to detect both types simultaneously. Besides, existing detection methods target-

ing virtual drifts cannot well accommodate high-dimensional data streams due to high

computational costs and low efficiency. Hence, the following research questions are raised

in Section 1.2.2: How to detect both real and virtual drifts in supervised data streams

regardless of their effect on classification performance? How to improve the efficiency of

data distribution-based detector for high-dimensional data streams? How to improve de-

tection performance to achieve high true detections and low false alarms within a specified

delay range for all types of drifts even when the magnitude of drift is small?

In Chapter 4, we present the HRDD detection framework to detect both real and

virtual drift accurately and efficiently for multi-dimensional data streams to answer the

listed research questions. The key idea is to leverage the knowledge from supervised infor-

mation to discover changes that may not be detected by the existing detection methods.

To achieve this goal, firstly, a lower-dimensional feature space for the given classification

task is explicitly constructed. Each incoming data is projected to this space upon arrival,

where more efficient detection can be carried out. Next, we monitor not only the marginal

distribution of the data stream, but also each individual class-conditional distribution so

that even the subtle drifts affecting partial input space can be detected. Finally, a novel

method to reconfigure more informative retraining datasets after each detection is pre-

sented. HRDD can be used in conjunction with any base CDT and classifier, and the

performance is independent of the choice of the classifier.
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After proposing HRDD and testing it on real-world data streams, we notice that

the validity of many existing concept drift detectors is based on the assumption of data

independence. Nonetheless, most real-world data streams contain temporal structures

spanning over different period range. In fact, the problem of temporal dependency and

concept drift in data streams cannot be separately investigated. In order to better un-

derstand the joint issue, the following research questions are proposed in Section 1.2.3

and answered in Chapter 5: If and how temporal dependency affects existing concept drift

detection methods? What types of drifts can possibly occur under such scenario? How to

detect the wide range of possible drifts for temporal dependent data streams?

With this current work, we not only formally show the reasons behind possible fail-

ures of existing methods with theoretical explanations, but also demonstrate the results

experimentally with the simulated data streams, answering the first research question.

Then, to answer the second research question, we provide a novel problem formulation

for drift detection within the temporal-dependent environment taking into account the

interplay between the two issues. Following this, we discuss how their interactions bring

new challenges to the current state of research and also construct a novel taxonomy to

illustrate that a wider range of various forms of concept drifts are likely to take place.

Finally, to answer the last research question, we develop a baseline detector that relies

on reservoir computing to extract temporal dependency, and utilize this dependency to

achieve better drift detection performance in temporally dependent data streams.

6.2 Future Work

This section lists out several directions for future research in both offline (Section 6.2.1)

and online (sections 6.2.2, 6.2.3, 6.2.4) scenarios that may improve and extend work

presented in this thesis.
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6.2.1 The Role of Image Complexity in AE Reconstruction

Chapter 3 has demonstrated that for image datasets, the impact of image complexity

on reconstruction-based OoD detection methods is unneglectable. One possible avenue

is to explore why image complexity plays such an important role in AE reconstructions.

Recall that we have demonstrated with the extreme example of constant OoD images (i.e.,

with same-valued pixels) that images with such a low complexity can almost always be

reconstructed well, even if they have never been seen by the AE model before. Although

we noticed and summarized this phenomenon based on the observations from an empirical

study, and also provided a trick to remove the bias before carrying out OoD detection,

an in-depth explanation of the reason behind the phenomenon is still absent.

One possible reason is that AEs are designed for accurate pixel-level image re-

construction, which may conflict with the goal of distinguishing between ID and OoD

examples. When and why will the basic assumption of AE-based detectors fail? What

is the key reason behind the failure? Is there any theoretical implication behind the

phenomenon?

Future work may start with carefully analysing the manifolds learnt with AEs

and evaluating their relationship with OoD examples of various degrees of complexity. A

suitable latent space that is sensitive to change, rather than the latent space for the best

reconstruction, may be constructed for better OoD detection. Once this investigation

is complete, more task-specific amendments can be made to the AE structure and loss

function to make them more suitable for OoD detection. Then, new solutions as to the

design of more explainable and robust OoD detectors that can detect OoD examples with

various complexities equally well can be proposed.
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6.2.2 Further Analysis of Concept Drift in Temporal-dependent

Data Streams

We have verified in Chapter 5 of this thesis that the interplay between temporal depen-

dence and concept drift detection is a research area worth further exploration. As the

first work discussing the joint issue, there is still a lot of room to further discuss and

improve the current analysis.

Firstly, we have only provided a novel taxonomy to categorize the different sources

of drifts in this scenario in Section 5.3.1. It can be clearly identified that the source of

drifts being considered here can be very different from the previous work neglecting the

dependency. We would like to investigate whether there are other systematic ways to

categorize drifts in temporal dependent data streams. Is it possible to propose quantita-

tive measures for such drifts? Is it possible to extend existing categorizations evaluating

various characteristics of the drifts to this situation? For examples, can drifts in this

particular scenario also be divided into real and virtual drifts?

Secondly, we only proposed one data generator based on sine and cosine functions

in Section 5.3.2. Although a noise is added to the data streams, it may be argued that

these data streams are too simple due to their periodic nature. Besides, we only provided

one set of examples of possible drifts that may occur. In order to promote the research in

this direction, we will design various data generator aiming to simulate real-world data

streams even better.

Thirdly, the current detection method proposed in Section 5.3.3 is only a baseline

method, revealing the importance and effectiveness of considering temporal dependency

in concept drift detection. There should be other ways of constructing the detector for

various application systems as well, which is also part of our future work. For instance, we

aim to propose methods that can detect drifts regardless of whether temporal dependency

exists or not. Such a detector would be more useful in the real world where not enough

data is available to analyse the dependency within the data stream. This goal can be
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achieved, for example, with an ensemble detector consisting of both our newly proposed

CDTD and HRDD.

6.2.3 Drift Detection on Spatio-temporally Dependent Data Streams

In Chapter 5, the focus of attention is only drawn to temporal dependency that sum-

marizes within-feature dependency. Many real-world data streams, by their very nature,

also contain correlated features (i.e., between-feature dependency). Within-feature and

between-feature dependency can coexist, which is named as the spatio-temporal depen-

dency. In this case, the problem formulation in Section 5.3.1 describing data streams

with stochastic processes may need to be further adjusted.

In addition, we would also like to examine if any new forms of drifts can possibly

occur in spatio-temporally dependent supervised data streams. If so, what forms of

existing detectors are likely to fail when dealing with this scenario? How to accurately

detect such drifts? Future research can also be carried out based on this set of research

questions.

6.2.4 Recurrent Concept Drift Detection and Drift Prediction

It is common in real-world data streams that previously seen concepts reappear, which is

known as recurring concept drift. Existing strategies dealing with general concept drifts

mainly discard previous information and rebuild new models when drift occurs, which

may lead to unnecessarily high computational costs and longer time for performance

restoration when recurring concepts exist. Concept recurrence poses new challenges for

online learning as well as new opportunities to develop more efficient learning algorithms.

The advantage of detecting recurrent concept drift is not limited to a better under-

standing of the system generating the data, but also a smoother and quicker adaptation

to restore the system performance. A probabilistic model can be used to learn drift trends
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so that drift prediction can be carried out. Although there have been some studies on

recurrent drift detection (Geilke et al., 2015; Sakthithasan et al., 2015; Chen et al., 2016;

Reis et al., 2018), none of them are designed for temporally dependent data streams.

Hence, they cannot capture drifts related to temporal dependency change. In the future,

we will investigate if existing recurrent drift detection methods can be extended to han-

dle temporally-dependent data streams, and design suitable drift prediction methods to

further improve overall performance.
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Appendix One

A Summary of Performance Metrics for

Assessing Concept Drift Detectors

Table A.1 summarizes some of the performance metrics and their definitions of existing

methods. It can be shown that various definitions have been used even for the same

performance metrics, symbolizing various focus of the proposed detectors.

Table A.1: Summary of different definitions of concept drift detection performance eval-

uation

Reference Performance

metrics

Definition

Kim and Park,

2017

TP the first detection after the actual drift

FP detections before the actual drift

FN no detection after the actual drift

Alippi et al.,

2011a

TP at least one detection is after the actual drift and

before end of concept

FP at least one detection is before the actual drift

FN no detection at all
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Table A.1 Summary of different definitions of concept drift detection performance evalu-

ation (Continued.)

Kifer et al., 2004 Correct at least one detection is raised within a fixed

number of window length (1 or 2) after the actual

drift

Dasu et al., 2006 Late a detection raised after the above range

Lu et al., 2014 False detections raised before the actual change

Gu et al., 2016 Missed no detection at all

Harel et al., 2014 TP a detection within a fixed number of window’s

range after the change time

FP a detection outside the range or an extra detec-

tion in the range

FN no detection within the delay range defined as

above

Bifet and

Gavalda, 2007

TP a detection is after the real drifting time

Huang et al.,

2015

FP a detection on a stationary data stream

time to FP time till the occurrence of the first FP on a sta-

tionary data stream

Pesaranghader

and Viktor, 2016

TP a detection is within the acceptable detection in-

terval [T ∗ −4, T ∗ +4]

FP detections raised outside the acceptable detection

interval before real drifting time i.e. outside [T ∗−

4, T ∗ +4]

FN the first detection for the concept is beyond the

acceptable detection interval [T ∗ −4, T ∗ +4]
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Table A.1 Summary of different definitions of concept drift detection performance evalu-

ation (Continued.)

Dehghan et al.,

2016

TP the first detection after the actual drift

FP detections where no drift occurred (detections be-

fore the drift or after TP)
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