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Abstract 

Transport for London (TfL) own and operate the world’s oldest metro network, the London 

Underground (LU). As the climate is changing, TfL is faced with operational challenges during 

periods of extreme weather, particularly regarding heat. TfL has short- and medium-term 

extreme weather plans in place, but it is uncertain whether these will be sufficient to withstand 

future climate change on the LU network in the long-term, and the potential degree of 

preparedness required. The challenges TfL face are further complicated by the complexity of 

LU’s infrastructure and operational legacy, resulting in three different environments (surface, 

sub-surface tunnels, and deep tube tunnels) with major disparities in station platform 

temperatures across the network. 

The research presented in this thesis quantifies the impact of heat and climate change across the 

LU network. By critically reviewing current techniques, this study consolidates and develops 

several methodological approaches through the analysis. Firstly, it addresses the differing 

thermal environments across the three parts of the LU network. Then, it develops spatially led 

fault exposure rates for point-related assets, which have known vulnerabilities to temperature. 

Finally, the fault exposure rates are utilised to help estimate the change in point-related failures 

according to different climate change projection scenarios for London. A systematic, data-

driven approach synthesising weather and climate information with asset faults provides an 

unbiased view of asset risk to temperature, in a sector that is usually highly dependent on the 

tacit knowledge of those who operate the network. 

The results of this study suggest ways TfL could increase its capacity to deliver a more climate-

resilient LU network for the future and provide strategic direction on climate change adaptation, 

primarily via data and stakeholder engagement. Although the data-driven approach utilised was 

valuable in identifying potential failure thresholds in the context of future climate change, its 

limitations highlighted the importance of a collaborative approach to climate resilience and 

adaptation for the LU network. Moreover, the approach and subsequent findings of this study 

demonstrated the wider applicability of its methods, with the potential scope to extend analysis 

to further LU assets and other railway and metro operators. 
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Chapter One  |  Introduction 

1.1. Background 

Access to and the operation of transport infrastructure, such as the London Underground (LU) 

network, is a necessity of modern life. The movement of people and goods is intrinsically 

connected with economic prosperity, and transport networks are a lifeline for many individuals 

and communities. Provision of equitable access for all to quality, reliable, sustainable, and 

resilient infrastructure is within target 9.1 of the United Nations’ 17 Sustainable Development 

Goals (UN-DESA, 2021). 

Climate change threatens to disrupt the operation of transport networks, and when they fail to 

operate, it can lead to severe consequences. Change is already happening; manifested through 

gradual changes in mean climate indicators such as temperature and precipitation, as well as 

through changes in frequency and/or intensity of extreme weather events such as heatwaves, 

pluvial floods, and drought (IPCC, 2021). Extreme weather events have the capacity to grind a 

transport network to a halt in different ways, and damage to a single asset within a transport 

node can cut off services to a large proportion of a population who depend on it. 

An example of climate-driven disruption to a transport network was the coastal railway line 

damage at Dawlish, England in February 2014. The sea wall beneath the railway collapsed 

following a very strong winter storm season, with an empirical relationship to sea level rise 

(Dawson et al., 2016). Train services were suspended for 52 days (Network Rail, 2014), 

affecting the whole region that relies on that railway line. Dawson et al, (2016) highlighted that 

such events are likely to continue happening to varying extents in all future sea level scenarios 
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and any policy response may still necessitate cost increases. Therefore, transport operators must 

be aware of, and prepare accordingly for, the impact of future climate change on their network. 

Temperature hazards on the LU network are a well-known and very specific challenge that TfL 

is responsible for managing, which is introduced in Section 1.1.1 and 1.1.2. This study therefore 

explicitly focuses on temperature, with the term “climate change” throughout referring to the 

ways in which temperature variables may change, either in terms of their gradual change or the 

change in the characteristics of extreme temperatures, as introduced in Section 1.2. 

1.1.1. The London Underground: a brief history 

The LU network is the oldest underground railway (also known as a metro system) in the world 

and is currently owned and operated by Transport for London (TfL). The first underground 

railway opened between Paddington and Farringdon on 9 January 1863. Construction of other 

underground railway lines followed quickly through private developments. The earliest lines 

comprised a cut-and-cover construction method to build tunnels running directly beneath the 

roads above, which was more cost-effective than excavating tunnels as it avoided the cost and 

risk of property demolition (Green, 2019). Steam traction trains were the only locomotive 

technology available at the time, thus this method could incorporate ventilation in the form of 

blowholes so fumes and steam from the combustion process could escape the tunnels. This part 

of the network is known as the sub-surface and is approximately 8% of the total LU network 

track length. 

Deep mined “tube” tunnel construction followed in the early 20th century as track electrification 

was developed. Excavating the earth to form the tunnels used an innovative tunnelling shield, 

designed by Marc and Isambard Kingdom Brunel (Falconer, 2008). This enabled trains to run 
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beneath the city of London without disrupting or being disrupted by other traffic on the surface. 

It also allowed passengers to cross London beneath the River Thames instead of over the limited 

bridges or across the water. Apart from the Victoria line (constructed in the 1960s) and the 

Jubilee line (constructed in the 1970s; extended in the 1990s), the deep tube tunnels are over 

100 years old and in total comprise approximately 37% of the entire LU network track length. 

The remaining track across the LU network (approximately 55%) is on the surface – outside of 

the city centre, running through the suburbs. 

As of September 2021 (when the Northern line extension to Battersea Power Station opened) 

the LU network is formed of 11 operating lines and approximately 400km of track, serving 272 

stations. It is the sixth-longest metro system in the world and the longest network outside of the 

Asia-Pacific region (UITP, 2022). The capacity of TfL’s rail network in London further 

increased in 2022 when the Elizabeth line opened, though it is not explicitly considered an LU 

line. 

Table 1.1 shows the general characteristics of each LU line, including the type of tunnel the 

line operates on upon entering the centre of London. The number of stations and total track 

length total to higher amounts, as several stations are interchanges and some parts of the 

network share track. See the Appendices (Appendix A) for a reference map of the LU network, 

including the tunnel sections (though it excludes the Northern Line extension and the Elizabeth 

line). 
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Table 1.1 Key data on each LU line (Data: TfL, 2021a) 

LU line 
Line 

colour 

Opening 

year 

Total track 

length (km) 

No. of 

stations 

Tunnel 

type 

Bakerloo  1906 23.2 25 Deep tube 

Central  1900 74.0 49 Deep tube 

Circle  1884 27.2 36 Sub-surface 

District  1868 64.0 60 Sub-surface 

Hammersmith & City  1864 25.5 29 Sub-surface 

Jubilee  1979 36.2 27 Deep tube 

Metropolitan  1863 66.7 34 Sub-surface 

Northern  1890 58.0 52 Deep tube 

Piccadilly  1906 71.0 53 Deep tube 

Victoria  1968 21.0 16 Deep tube 

Waterloo & City  1898 1.5 2 Deep tube 

Figure 1.1 shows the layout of the LU network at that time relative to the administrative 

boundary of Greater London. The network is primarily north of the River Thames, which runs 

through the city centre and to the east. Most LU lines’ termini are in the outer suburban zones 

of London. The Circle line loops around central London, connecting with most of the other LU 

lines, shown in Figure 1.2. All the LU lines include a segment of either sub-surface or deep 

tube tunnels near the city centre. The deep tube lines run beneath the Circle line loop, while the 

other sub-surface lines join the Circle line loop, with sections of their respective lines running 

parallel to it or sharing the same track. 
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Figure 1.1 The LU network in the context of the Greater London administrative boundary 

 

Figure 1.2 The central part of the LU network, showing examples of parallel/shared track sections across the LU lines 
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The LU network is also one of the busiest in the world in terms of passenger ridership. In 2019, 

the annual number of LU passenger journeys was 1.4 billion (TfL, 2022g), being one of 15 

metro networks worldwide recording total annual passenger journeys greater than 1 billion 

(UITP, 2022). Since the start of their published data (April 2010), LU ridership gradually 

increased, reaching a steady annual rate from 2015 to 2019. Although passenger numbers were 

severely impacted by the coronavirus pandemic since early 2020, LU network ridership has 

progressively recovered, shown in Figure 1.3. As of June-September 2022, TfL reported 

quarterly passenger journeys at 81% of the 2018/19 pre-pandemic baseline (TfL, 2022n). 

 

Figure 1.3 Passenger ridership on the LU network per 4-weekly reporting period from April 2010 to October 2022. The steep 

drop in ridership represents the impact of the coronavirus pandemic, which has since begun to recover (Data: TfL, 2022g) 

1.1.2. Heat on the London Underground 

TfL faces operational challenges in adverse weather conditions. One of these challenges is 

extreme heat in the deep tube tunnels (discussed in more detail in Section 2.2.2). Unlike the 

surface part of the LU network, which faces the direct effects of the weather at the time of 

occurrence, the tunnel environment is very different, as temperatures have gradually built up 

over more than a century (Botelle et al., 2010). British media often report on the LU 
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temperatures in the deep tube tunnels, as certain sections of them can exceed 30℃ on the hottest 

days of the year (The Evening Standard, 2017; The Independent, 2019). 

Most of the deep tube tunnels were bored through a geological formation known as London 

Clay, shown in Figure 1.4. This formation is largely impermeable, with a mean thickness of 

32m beneath central London (Paul, 2016). The clay can be easily excavated (Ellison et al., 

2004), and tunnelling provided a means to expand the railway system, with limited interference 

to near-surface infrastructure, such as sewer, gas and water pipes (Halliday, 2013). Unlike 

surface networks that are often directly influenced by daily weather, the deep tube tunnel 

temperatures remain relatively constant throughout the day and into the evening and 

temperature changes are driven by annual atmospheric and/or ground level temperature cycles  

(e.g., Kimura et al., 2018; Liu et al., 2022b; Vasilyev et al., 2022). Historically, the tunnel walls 

acted as a heat sink, absorbing excess heat and keeping temperatures stable. However, the long-

term running of LU services and low ventilation capacity (Ampofo et al., 2004; Mortada et al., 

2015), has reduced the effectiveness of the tunnel walls as a heat sink, which is associated with 

a rise in tunnel temperatures (Botelle et al., 2010). 
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Figure 1.4 The location of London Clay bedrock across London and in the context of the LU network (Data: BGS, 2020) 

LU tunnel temperatures were considered reasonable up to the 1950s (Gilbey, 2012); 

approximately 15℃ year-round (Botelle et al., 2010), due to the London Clay’s properties, 

which could absorb rejected heat from train operations. The Underground Electric Railway 

Company, which formerly owned and operated the LU network marketed its tunnels being 

cooler than the surface in the summer and warmer than the surface in the winter (see Figure 

1.5). Continuous temperature recording across the LU network was set up in late 2005 as part 

of the LU Cooling the Tube Programme (Gilbey, 2012). These records show the extent to which 

the deep tube tunnel temperatures increased – which now experience fairly high constant 

temperatures throughout the year (Botelle et al., 2010). Nevertheless, tunnel station platform 

temperature is linearly correlated to outside surface temperatures. An approximate relationship 

between these variables was estimated as: 

𝑡𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 = 0.36 ×  𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 19.50, 
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where 𝑡𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚  is the mean station platform temperature and 𝑡𝑠𝑢𝑟𝑓𝑎𝑐𝑒  is the mean outside 

surface temperature (Gilbey et al., 2011). 

      

Figure 1.5 Advertisements for travelling on the LU network in the summer months (left) and the winter months (right), from 

almost a century ago. LU tunnel temperatures were lower than the present day and considered more comfortable for travel 

compared to surface temperatures, emphasised here as a key selling point (Source: Herrick, 1926, 1927) 

Heat build-up is considered hazardous in metro network tunnels (Liu et al., 2022a). High tunnel 

temperatures lead to passenger thermal discomfort, for heat affects almost every system in the 

human body (Wen et al., 2020), and are also associated with an increased frequency of asset-

related delays (Greenham et al., 2020). Both issues have the potential to amplify the other and 

have safety and revenue implications for TfL. For example, if a passenger falls ill due to heat 

while on the LU network, train operations could be suspended while an emergency call is made. 

Similarly, if a heat-related fault suspended the LU network, passengers could fall ill if stuck on 

a suspended service – an incident that has happened before on the LU network (Hosken, 2014). 

This risk is carefully managed by TfL and the incident was a rare occurrence. 
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Literature evaluating the impact of climate change on railway networks focuses extensively on 

assets that are directly exposed to weather (discussed in Section 2.2.1). However, climate 

change could also affect tunnel temperatures further in the future (Sun et al., 2021), and there 

are few examples of how such changes would affect tunnel assets. Assets under higher constant 

temperatures, with little daily or annual temperature fluctuation and a total absence of natural 

daylight or solar irradiance in a tunnel would assume different thermal tolerances; some may 

perform better while some may perform worse compared with the same asset on the surface. 

Understanding how climate change impacts temperature is therefore important to identify the 

extent of its effect on the different sections of the LU network. 

1.2. Signals of climate change and its impact on observed temperature 

Since industrialisation, there have been unprecedented changes in the global climate system, 

which are primarily attributed to anthropogenic greenhouse gas (GHG) emissions such as 

carbon dioxide (CO2) and methane (CH4), which directly influence global mean surface 

temperature (IPCC, 2021). The scientific consensus is that to abate severe, widespread, and 

irreversible effects of climate change upon civilization, CO2, the primary anthropogenic GHG 

must refrain from reaching 450 parts per million (ppm), the equivalent of a 2℃ increase in 

global mean surface temperature from pre-industrial levels. This is the basis upon which the 

Paris Agreement was designed, the legally binding international treaty on climate change 

(UNFCCC, 2015). As of December 2022, mean global monthly atmospheric CO2 

concentrations were approximately 419ppm, shown in Figure 1.6. 
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Figure 1.6 Trends in global atmospheric CO2 since 1958, showing the continued increase in concentration. The red line 

shows the monthly global mean concentration, and the black line shows the monthly mean concentration after correction for 

the average seasonal cycle (Source: NOAA, 2022) 

The Intergovernmental Panel on Climate Change (IPCC) shows that with every increment of 

global warming, changes in climate extremes become larger (IPCC, 2021). For extreme heat 

events, there is a high confidence in this increased level of change. Heat event attributions 

studies, compared with other extreme weather events have the longest history, particularly 

following the European summer heatwave of 2003 (NASEM, 2016). These studies demonstrate 

the importance of understanding temperature extreme changes as well as mean temperature 

change in the context of a changing climate for London and the LU network. The following 

sections describe the changes in each temperature parameter (mean temperature, temperature 

extremes, diurnal temperature range) from the global scale to the local scale (London). 

1.2.1. Mean surface temperature change 

Currently, the global mean surface temperature increase from pre-industrial times is 

approximately +1℃ (IPCC, 2021). More specifically in the United Kingdom (UK), the early 

21st century (2001-2021) was 1.6℃ warmer than the earliest centennial average (17th Century) 
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from the Central England Temperature (CET) series, shown in Table 1.2. It signals that the UK 

climate is changing, and at a slightly accelerated rate than the global mean. 

Table 1.2 Centennial averages for the CET series (℃), 1659-2021 (Data: Kendon et al., 2022) 

Season 
17th Century 

1659-1700 

18th Century 

1701-1800 

19th Century 

1801-1900 

20th Century 

1901-2000 

21st Century 

2001-2021 

Winter 3.0 3.5 3.7 4.2 4.9 

Spring 7.5 8.1 8.1 8.4 9.2 

Summer 14.9 15.5 15.2 15.3 16.1 

Autumn 9.1 9.6 9.5 10.0 11.0 

Year 8.7 9.2 9.1 9.5 10.3 

1.2.2. Temperature extremes 

Temperature extremes are either very high (hot extremes) or very low (cold extremes). Since 

the 1950s, hot extremes have increased and cold extremes have decreased globally (IPCC, 

2021). The UK also experiences the same global trend (Kendon et al., 2022), so research tends 

to focus on hot extremes. In the context of this study, this includes heatwave events. While 

heatwave definitions vary geographically, the UK defines them as a location where at least three 

consecutive days meet or exceed a specific temperature threshold, which varies across regions 

from 25℃ to 28℃ (Met Office, 2022e). 

The UK Met Office publicly report on past severe weather events. Figure 1.7 shows the timeline 

of high temperature events throughout the summer season since these reports began in 1990. 

Over time, intervals between each event with the next decreased, with varying intensities and 

durations. The first reported event in August 1990 broke maximum temperature records that 

had not been observed in several decades, with a national maximum of 37℃ (Met Office, 2012). 

Several UK weather stations upheld their 1990 records throughout other notable hot summers, 

such as in 2003, 2006 and 2019. In 2022, 40℃ was recorded for the first time at three UK 
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weather stations, including London (Met Office, 2022d), exceeding most of the unbroken 1990 

records. The scale of change in observed high temperatures in recent decades is considerable; 

only 60 years ago, a study of maximum daily temperatures recorded at Kew Gardens, London 

concluded that temperatures above 30℃ were rare, with one such day expected in either June 

or July in four out of five years (Chandler, 1965). 

 

Figure 1.7 Timeline of high temperature events reported in the UK during the summer, 1990-2022. Each bar represents one 

high temperature event. The dark points differentiate high temperature events that occurred close together, as some of the 

bars overlap in the timeline. (Data: Met Office, 2022c) 

Studies have placed various levels of climate change attribution to extreme events and as a 

result, quantified changes in extreme heat events. Stott et al. (2004) estimated that the risk of a 

heatwave of the European 2003 summer has at least doubled due to human activity, while Baker 

et al. (2021) estimated the conditions of the UK summer of 1976 (an exceptionally hot and dry 

period) are now significantly higher than before, by a factor of between 4 and 8. Using the CET 

series, Chapman et al. (2019) determined that summer heatwave activity has already increased 

by an overall twofold to threefold since the late 1800s. Early analysis of the July 2022 heat 

event showed that human activity made the event at least ten times more likely to occur 

(Zachariah et al., 2022). 
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Although mean surface temperatures have increased, cold extremes still occur. Figure 1.8 

shows past low temperature events across the UK. These are less frequent than high temperature 

events and are also more sporadic. The first low temperature event reported in this series since 

1990 was in 2008. Both low and high temperature extremes were reported in a calendar year 

for 2013, 2018, 2021 and 2022. However, the temperatures during cold events in Figure 1.8 

were not record-breaking. The lowest temperature recorded in the UK was -27.2℃, first 

reported in 1895, (Met Office, 2022a). In the Southeast of England, the lowest reported 

temperature was -19.5℃ in January 1982. This is compared with the most recent low in London 

of -7.6℃ in 2022 (Met Office, 2023a). 

 

Figure 1.8 Timeline of low temperature events (including frost and snow) reported in the UK, 1990-2022. Each bar 

represents one low temperature event. The dark points differentiate low temperature events that occurred close together, as 

some of the bars overlap in the timeline. (Data: Met Office, 2022c) 

1.2.3. Diurnal temperature range 

Diurnal temperature range (∆𝑡) is the difference between minimum and maximum temperatures 

over a 24-hour period, and is a useful climate attribution indicator (Braganza et al., 2004). 

Change in ∆𝑡 impacts natural systems (Zhang et al., 2022), agricultural yields (Hernandez-

Barrera et al., 2017), as well as human health and mortality (Lee et al., 2018; Davis et al., 2020). 

Globally, there is a knowledge gap in observed change in ∆𝑡  due to data gaps and low 
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confidence, especially pre-1950 (IPCC, 2013, 2021). Data since the 1950s signals a global 

decrease in ∆𝑡 (Sun et al., 2019). In the UK, however, ∆𝑡 increased slightly (Kendon et al., 

2022). Zhang et al. (2018) reported a 1993-2006 annual average ∆𝑡 in England of 7.3℃, with 

a London average of 7.1℃. London’s ∆𝑡 varied between 1.0℃ and 19.1℃. 

1.3. Contributing factors to thermal environments across the LU network 

In addition to changes in climate, there are other anthropogenic factors that contribute to the 

thermal environment across the LU network. The following sections discuss the effect of the 

urban heat island (UHI) on surface temperatures, and the effect of train operations and the 

constrains of tunnel infrastructure on tunnel temperatures. 

1.3.1. On the surface: the urban heat island effect 

Mass rapid transit networks like metros are usually in dense, urban environments. Urban air 

temperatures are often warmer than their rural surroundings, a phenomenon known as the UHI 

effect (Oke, 1973). Urbanisation leads to changes in surface albedo and vegetation cover that 

modifies the near-surface climate (Taha, 1997). However, UHI intensity (the temperature 

difference between an urban area and their rural surroundings) across different urban 

environments is not necessarily homogenous (Oke, 1973). Differences in UHI intensity can be 

attributed to multiple complex factors regarding background climate (Zhao et al., 2014; Manoli 

et al., 2019) as well as city and population size (Oke, 1973; Manoli et al., 2019). As 

temperatures increase, city temperatures will be elevated due to the UHI effect. However, UHI 

intensity may only increase slightly relative the overall temperature change (Lauwaet et al., 

2015), but is nevertheless a significant challenge for cities in the future. 
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London’s UHI is widespread across Greater London, and the effects are greater at night. As 

shown in Figure 1.9, most of Greater London’s UHI intensity is between +2℃ and +3℃ 

compared with its background rural temperatures (a value of 0 in Figure 1.9). London’s UHI 

intensity also varies spatially and temporally. The Greater London Authority (GLA) report UHI 

intensities between +3℃ and +4℃ in the warmest parts of the city (GLA, 2011), and 

Kolokotroni and Giridharan (2008) found mean Central London nocturnal UHI intensities of 

between +1.6℃ and +3.1℃. However, during a heatwave summer in London, there is little 

evidence of UHI intensification across the city compared to an average summer (Holderness et 

al., 2013), though this does not imply that the risks associated with heatwaves are reduced. 

A considerable proportion of the surface part of the LU network runs through parts of the city 

where London’s mean UHI intensity would be at least +2℃. Conversely, where London’s UHI 

is greatest (in the city centre), most of the network is underground. Instead, this part of the 

network is subjected to other factors in the tunnels, which are discussed in the following section. 

 

Figure 1.9 UHI intensity for the Greater London Area for an example summer, with altitude-corrected midnight temperatures 

according to the UrbClim model (Lauwaet et al., 2015) (Source: VITO, n.d.) 
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1.3.2. In the tunnels: infrastructure and operations 

As mentioned in Section 1.1.2, the gradual build-up of temperature in deep tube tunnels on the 

LU network was primarily owed to train operations. Quantifying heat sources in the tunnels, 

particularly anthropogenic sources, is important to understand the extent of their effect beyond 

the influence of external climate conditions. Mortada et al. (2015) conducted a study modelling 

heat sources on the Central line, one of the LU lines with the hottest tunnels (see Figure 1.10). 

Mortada et al. demonstrated that train braking was the primary heat source (61%), followed by 

passengers (combined train and station passengers of approximately 34%). While the model 

developed by Mortada et al. is a good representation of the Central line tunnels, the climatic 

boundary conditions (1996-2005) it uses are not representative of recent changes in the climate, 

particularly the increased frequency of extreme heat events (see Section 1.2.2). Indeed, this was 

published prior to the most recent increase in extreme heat events (post-2015) and therefore 

may not have been a consideration. Moreover, the climatic parameters set for the model were 

not accounted for as a heat source, although specified ventilation capacity was built into model 

scenarios for the study. Often the complexity of these can lead to ventilation being removed 

from tunnel studies altogether e.g. Zhang and Li, (2019).  Nevertheless, the contribution of train 

braking is considered the primary factor influencing heat conditions in the LU tunnels. 
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Figure 1.10 Modelled peak time heat source distribution in the LU tunnels for 2013 on the Central Line (Data: Mortada et al., 

2015) 

Due to the thermal discomfort risk to LU staff and passengers, TfL have already taken action 

to try and limit excessive tunnel temperatures. This includes introducing regenerative braking 

systems to trains across the LU network, which redirect heat energy produced from train 

braking into electricity. Regenerative braking of trains is thought to have the greatest effect on 

reducing tunnel temperatures than other heat sinks (Mortada et al., 2015; Zhang and Li, 2019). 

All but two of the LU lines’ rolling stock (Bakerloo and Piccadilly lines) are capable of 

regenerative braking. 

The level of impact of climate change, including extreme temperatures to the LU network is 

also dependent on asset vulnerability and exposure. The following section positions the 

discussed heat hazards on the LU network (i.e., climate change, extreme temperature, 

contributing factors) in the broader context of risk of LU’s infrastructure to heat. 
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1.4. The concept of climate risk 

Railway assets are at risk to the impacts of climate change. Risk depends on the magnitude of 

the hazard, vulnerability, and exposure, illustrated in Figure 1.11. Here, risk is the potential of 

assets failing to operate across the LU network. Hazard is the occurrence of temperature events 

likely to cause asset damage, namely extreme heat; vulnerability would be an asset’s sensitivity, 

susceptibility, or capacity to operate; and exposure being the presence of an asset being 

adversely affected. The specific heat-related risk to assets is discussed in detail in Section 2.2.1 

and Section 2.2.2, while the ways these risks are quantified across Great Britain’s (GB’s) 

railways and the LU network are discussed in Section 2.3. 

 

Figure 1.11 Risk Propeller conceptualising the interactions among the determinants of risk. It illustrates that risk comprises 

the magnitude of hazard, vulnerability, and exposure (Source: IPCC, 2022) 

Since the publication of the fifth IPCC assessment reports (AR5) between 2013 and 2014, our 

understanding and evaluation of climate change and climate risk has advanced (IPCC, 2022). 

Risks do not occur in isolation, nor necessarily by single determinants of risk. As infrastructure 

becomes more interconnected, particularly between infrastructure sectors (e.g., energy, 

telecommunications, transport), climate risk becomes more complex due to the responses of 

risk determinants as well as the risks themselves upon others (Simpson et al., 2021). Pescaroli 

and Alexander (2018) presented three pertinent examples of cross-risk connections in Table 1.3. 
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They show how different systems and drivers lead to further risks. The primary types of 

connections among these examples are interacting (combined), interconnected (closely linked), 

cascading (triggering another), or compounding (exacerbating). 

Table 1.3 Examples of cross-risk connections, emphasising the complexity of risk and how one risk or determinant of risk 

can be linked to another (Adapted from: Pescaroli and Alexander, 2018) 

Disaster Description of risk 

Volcanic eruption of 

Eyjafjallajökull, Iceland, 

April 2010 

Volcanic ash travelled an unusual prevailing north to north-westerly 

flow between Iceland and Northwest Europe (compound risk), 

affecting global networks dependent on aviation (interconnected 

risk), disrupting infrastructure thus affecting society (cascading risk). 

Earthquake, tsunami and 

nuclear meltdown of 

Daiichi power plant, 

Japan, March 2011 

An earthquake triggered a tsunami (interacting hazard) affecting 

highly coupled infrastructure (interconnected risk), leading to 

secondary emergencies such as loss of vital services (cascading risk). 

The earthquake triggered a small, localised landslide (interacting risk) 

cutting off the power plant from the electricity grid (interconnected 

risk), leading to a nuclear meltdown (cascading risk). 

Hurricane Sandy, United 

States, October 2012 

Storm winds from landfall caused direct damage and generated a storm 

surge, causing flooding (interacting risk), as cold Arctic air 

intensified cold weather and snowstorms inland (compounding risk). 

The area affected by Sandy was of strategic economic importance 

(interconnected risk). The President made a new declaration of 

emergency regarding the impacts to energy (cascading risk), and 50 

deaths were attributed to the extended power outages and cold weather 

(compounding and cascading risk). 

Complex risks with cross-connections are however not static over time; they require constant 

reviewing and updating, as new knowledge emerges to improve decision support (Pescaroli and 

Alexander, 2018; Simpson et al., 2021). Therefore, a recurrence of these examples in future 

may not be the same. The characteristics of the risk determinants and the connections between 

them may change, such as exacerbating due to climate change, or a new risk determinant could 

manifest itself in future. Conversely, responses to reduce climate risk (i.e., climate change 
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adaptation) may have intended (risk reduction) and unintended outcomes (maladaptation, lock-

in) to previous cross-connections in future. It is therefore important to conduct iterative 

processes in managing complex climate risks. 

1.5. Policy context 

Managing climate risk in the UK comprises part of The Climate Change Act (2008), which is 

mandated by the UK government. There is a five-yearly adaptation policy cycle, where a 

comprehensive risk assessment is conducted to inform actions for the devolved administrations’ 

National Adaptation Plans. The Climate Change Committee (CCC) produce independent 

reports e.g., CCC, (2021a) to advise the government on the climate risks across the UK, then 

the government formally publishes its Climate Change Risk Assessment (CCRA) based on the 

CCC’s advice and recommendations. The Climate Change Act also established the Adaptation 

Reporting Power (ARP), which invites bodies such as infrastructure owners and operators 

(including TfL) across several sectors (e.g., power, water, transport) to report on their climate 

preparedness as part of the five-yearly cycle. The CCC review the ARP submissions to the 

government (e.g., CCC, 2022), providing a snapshot in time of the national progress towards 

more climate-resilient infrastructure. Currently, the UK is in the third policy cycle (ARP3). 

The eight priority risk areas for the UK are cross-cutting issues rather than sector-specific, based 

on 61 risks and opportunities identified by the (CCC, 2021a), as summarised in Table 1.4. 

Several of these priority risks may consider railway infrastructure a component, either as a risk 

or a determinant of risk. For example, Priority 5 highlights a cascading risk of the loss of 

transport network disrupting the food chain. Similarly, the failure of a power system in Priority 

6 can disrupt train operations such as through station closures (e.g., Greenham et al., 2020); 
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another cascading risk. The CCC also frame these UK climate risks to transport in a sector-

specific briefing document (CCC, 2021b), of which there are seven risks. These include 

cascading failures, river/surface/groundwater flooding, coastal flooding/erosion, 

slope/embankment failure, subsidence, and high/low temperatures, high winds, and lightning. 

Temperature risk is ranked high by urgency, with “more action needed” to address the risk and 

respond appropriately to it.  

Table 1.4 Current priority climate risk areas for the UK according to the 2022 CCRA (Source: HM Government, 2022; CCC, 

2021a) 

Priority Risk area 

Priority 1 
Risks to viability and diversity of terrestrial and freshwater habitats and species from 

multiple hazards 

Priority 2 Risks to soil health from increased flooding and drought 

Priority 3 
Risks to natural carbon stores and sequestration from multiple hazards leading to 

increased emissions 

Priority 4 Risks to crops, livestock, and commercial trees from multiple hazards 

Priority 5 
Risks to supply of food, goods, and vital services due to climate-related collapse of 

supply chains and distribution networks 

Priority 6 Risks to people and the economy from climate-related failure of the power system 

Priority 7 
Risks to human health, well-being, and productivity from increased exposure to heat in 

homes and other buildings 

Priority 8 Multiple risks to the UK from climate change impacts overseas 

Further research into the climate risks to railway infrastructure specifically in Great Britain 

(GB) are available from the Rail Safety and Standards Board (RSSB), who commissioned a 

research report: “Tomorrow’s Railway and Climate Change Adaptation” (TRaCCA) (RSSB, 

2016a). Although progress on railway research has continued, the TRaCCA report gave a 

holistic view of the climate risks to British railway infrastructure at the time and in future. It 

found that response to extreme weather is inconsistent, due to siloed ways of working across 

the railway organisations and a lack of collaboration between the industry and other sectors. 
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Vulnerabilities are consequently varied across Britain’s railways due to different levels of 

response and preparedness, resulting in spatially varied levels of climate risk. 

In March 2023, the CCC reported to Parliament on the UK’s progress in adapting to climate 

change (CCC, 2023). As part of the transport chapter, the rail industry was evaluated as having 

credible planning for adaptation, though mixed progress in terms of delivery and 

implementation of them. Additionally, the review identified that weather impacts on the rail 

sector, particularly heat, have increased, and the enabling factors to address this include data 

and monitoring, funding and investment, and governance. This emphasises the importance of 

understanding heat risk to infrastructure in the context of climate change as the challenge 

extends beyond the LU network. 

1.6. Future climate change 

Climate risks are expected to be affected by future climate change. There is a time lag between 

increases in GHG concentrations and the maximum effect it has on increasing global mean 

surface temperature, possibly around decade on average (Ricke and Caldeira, 2014). Therefore, 

the GHG emissions from past decades are likely associated with the present-day shifts in global 

climate, and the current rate of GHG emissions locks in a rate of near-term future warming and 

preparing a response to these future changes is beneficial. 

To articulate the potential future pathways of changing climate risk, The IPCC AR5 reports  

developed four future climate scenarios, which are expanded upon in the latest Sixth assessment 

reports (AR6) to five scenarios (IPCC, 2021). The AR5 scenarios (IPCC, 2013), known as 

Representative Concentration Pathways (RCPs) specify atmospheric GHG concentrations and 

corresponding emissions based on a peak or stabilisation of radiative forcing by 2100, measured 
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as watts per square metre (Wm-2). Estimated future change in global mean temperatures can 

then be estimated via models based on the assumptions of atmospheric GHG concentrations for 

the RCPs. The AR5 RCPs are described in Table 1.5. Based on this table, achieving the Paris 

Agreement goal of limiting mean global surface temperature warming to well below +2℃ pre-

industrial levels, (although ideally below +1.5℃) would require a global effort to follow a 

pathway as close to RCP 2.6 as possible, or more likely the AR6 Shared Socioeconomic 

pathway of 1-1.9 Wm-2 (IPCC, 2021). Current global policies and action to limit increasing 

GHG emissions, however, are estimated to result in warming of approximately +2.7℃ by 2100 

(Climate Action Tracker, 2022), arguably tracking around the RCP 6.0 scenario trajectory, 

which is approximately +2.8℃, ±0.5℃ (see Table 1.5). 

Table 1.5 Summary of each AR5 future emissions scenario, with each scenarios’ likely range of estimated mean global 

surface temperature increase for 2081-2100 relative to 1850-1900 (Data: IPCC, 2013) 

RCP Scenario description 
Temperature 

increase 

2.6 
GHG emissions peak in the near-term, decreasing substantially into the 

coming decades and below present-day levels by 2100 
1.6℃ ± 0.4℃  

4.5 

GHG emissions are medium-low. Emissions gradually increase up to 

around mid-21st century, then gradually decrease, stabilising slightly 

above present-day levels by 2100 

2.4℃ ± 0.5℃ 

6.0 

GHG emissions are medium-high. Emissions continue to increase 

beyond the RCP 4.5 scenario and accelerate beyond mid-21st century, 

then decrease, stabilising higher than present-day levels by 2100 

2.8℃ ± 0.5℃ 

8.5 

GHG emissions are highest, continuing to rise throughout the 21st 

century. The increase begins to decelerate after the mid-21st century but 

are not yet stabilised 

4.3℃ ± 0.7℃ 

1.6.1. UK climate projection scenarios 

The UK Met Office produce climate projections for the UK derived from a range of data from 

climate models around the world. The latest release of climate projections was in 2018, known 
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as UKCP18. These projections consist of several spatial resolutions for the UK and scenarios, 

which align with the IPCC AR5. The climate projection parameters in UKCP18 include 

temperature, precipitation, sea level rise, humidity, wind speed, sea level pressure, cloud cover, 

and long- and short-wave radiation. 

Summarised in the UKCP18 Science Overview Report (Lowe et al., 2019), the future UK 

climate compared to recent observations estimates hotter, drier summers and milder, wetter 

winters. The extent of the change is dependent on which climate projection scenario is most 

likely to occur. Furthermore, each scenario comprises a range of percentile values, such as the 

examples shown in Figure 1.12. Percentile information is useful for projections, especially for 

periods of time further in the future, due to the increased uncertainty over time as well as to 

address the natural variation in seasons which may still occur, such as some cool summers and 

some wet summers (Lowe et al., 2019). 

 

Figure 1.12 UKCP18 mean temperature change trajectories for the lowest (RCP 2.6, blue) and highest (RCP 8.5, red) future 

emissions scenarios, up to 2100. The shaded areas outside the lines represent different percentile values of the scenario, with 

the solid line representing the median (50th percentile). Past temperature observations are shown in the solid black line 

(Source: Lowe et al., 2019) 
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Several studies have used UKCP18 data to estimate extreme temperatures in a future UK 

climate, particularly for the summer months (June, July, August). The summer heat of 1990 

prompted a review of extreme high temperatures on track buckling risk for Britain’s railway 

industry (i.e., Hunt, 1994). Having used 1952 climate data for this review, the estimated return 

period of a maximum daily temperature of 33℃ for the whole of the UK was 5.5 years, and for 

36℃ was 15.5 years. Compared with the most recent comprehensive analysis by Christidis et 

al. (2020), these return periods have already reduced. In Table 1.6, a maximum daily 

temperature of 35℃ in the present day is almost equivalent, if not more frequent than a past 

maximum daily temperature of 33℃. 

Table 1.6 Estimated present and future return periods of high maximum daily temperatures in the UK, showing how future 

return periods are expected to reduce substantially, especially the occurrence of a maximum daily temperature of 40℃ even 

in the medium-low scenario of RCP 4.5 (Data: Christidis et al., 2020) 

Maximum daily 

temperature 
Scenario 

Estimated 

return period 

30℃ 

Present day (2020) 1.1 – 1.2 years 

RCP 4.5 (2100) 1.0 – 1.1 years 

RCP 8.5 (2100) 1 year 

35℃ 

Present day (2020) 4 – 5 years 

RCP 4.5 (2100) 2 – 3 years 

RCP 8.5 (2100) 1 – 2 years 

40℃ 

Present day (2020) 100 – 300 years 

RCP 4.5 (2100) 15 years 

RCP 8.5 (2100) 3.5 years 

Climate change predicts return periods of extreme high temperatures to reduce further, 

accelerating particularly for temperatures of 40℃ by 2100. Other studies have estimated similar 

outcomes with temperature high extremes for the UK using UKCP18. For instance, Hanlon et 

al. (2021) estimate hot days to increase an average of between 5 and 39 days per year, scenario 

dependent. Additionally, UKCP18 data suggests that extreme high temperatures in the UK may 
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increase faster in future than the change in global mean surface temperature (Kennedy-Asser et 

al., 2021). Such results emphasise the urgency for action to limit the effects of these rates of 

change in climate and extreme temperatures on transport infrastructure, such as the LU network. 

1.6.2. Adapting to future climate change 

TfL, like other railway network owners and operators, need to respond to changing climate risk 

on their assets and consider the climate projection scenarios. Many of these organisations are 

already reporting their progress in how they are taking steps to address climate change in their 

business practices via the ARP process. The response to reduce climate risk relating to 

temperature for LU would be in addressing change in risk such as: 

• the hazards of increasing mean temperatures, and change in extreme temperature 

characteristics (frequency, intensity, duration). 

• any change in asset vulnerability from the current state, although asset ageing is 

presumably the most reasonable known information. 

• exposure change, such an increase or decrease in areas affecting an asset that are shaded 

or sheltered from sunlight. 

Adapting transport networks such as the LU to climate change has historically focused on 

technical engineering solutions for physical infrastructure to prevent them from failing in 

conditions that exceed the original design thresholds (Koetse and Rietveld, 2012). This is 

mainly because the approach for transport adaptation often comes from an infrastructure, and 

by proxy, a financial perspective, due to business costs associated with assets that have a long 

lifespan. Investments in infrastructure (i.e., interventions, upgrades, replacements) are quasi-

irreversible, so when appropriately timed to the correct design parameters, such as a wider range 
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of conditions than the present day, they should withstand the effects of climate change 

(Fankhauser et al., 1999). For heat, Network Rail is doing this by painting vulnerable assets 

white to reflect solar radiation, installing track on reinforced concrete at vulnerable locations, 

and re-tensioning overhead lines (Network Rail, 2021b). TfL is also focusing on near-term 

actions in their latest business plan to renew several assets, which includes replacing 35km of 

LU track and 700 LU rolling stock vehicles (TfL, 2022a). 

1.7. Research context: A climate-resilient London Underground network 

In December 2018, the Mayor of London declared a climate emergency, setting a target for 

London to become net zero-carbon emitting city by 2030 (London Assembly, 2020). This is 

more ambitious than the national policy target of net zero by 2050 (The Climate Change Act 

2008, c.27). London’s climate emergency declaration also encompasses the need to answer how 

the city can build their climate resilience. While there is not necessarily a universal definition, 

resilience in terms of climate is understood as the necessary responses to cope with a hazardous 

event to maintain a system’s essential function (IPCC, 2022) – in this case, the LU network. 

London’s resilience to heat is important because the risk is interpreted as undervalued by some 

organisations, investors, and the public (London Assembly, 2020). 

This study aims to use a systematic, data-driven approach to quantify the impact of present 

and future temperature-related hazards on railway assets across the LU network. 

By achieving this aim, TfL gain new insight into risk of their assets to climate change, so it can 

respond appropriately to increase the climate resilience of LU network’s now and in future. It 

will also contribute to knowledge on climate risk on railways on the relationship between 
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temperature and its assets, particularly as the focus is at the city scale on a metro system and its 

spatial complexities, which is often overlooked at the national scale of railway research. 

To achieve the research study aim, the following objectives are: 

1. Critically review the literature on delay and fault metrics that quantify the impact of 

weather and climate on railway infrastructure. 

2. Distinguish the changes and differences in the thermal environment across the LU 

network. 

3. Investigate and interrogate the relationships between LU asset faults recorded by TfL 

and the thermal environment. 

4. Utilise the relationships to estimate potential change in asset failure trends on the LU 

network in accordance with future climate change scenarios. 

5. Critically evaluate the method used to produce the results, suggesting areas for future 

development of the approach and research direction. 

6. Suggest ways that the findings can support decision-making processes for the adaptation 

of railway and metro networks to climate change, with recommendations for the key 

stakeholders involved. 

1.8. Thesis structure 

This thesis presents the work undertaken to meet the objectives of the study and achieve the 

aim of quantifying the impact of present and future temperature-related hazards on the LU 

network. Here, Chapter One introduced the LU network, its history leading up to the heat 

challenges it presently faces, and framing climate change as part of the challenge. Chapter 

Two reviews the literature associated with impact analysis of assets to weather and climate 
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change across the transport sector. It also highlights the knowledge gaps pertaining to 

methodological approaches and data quality. The literature review in this chapter postulates the 

research direction. Chapter Three describes the methodological approach to the study, 

including the data obtained and the processes used to conduct the analysis. There are three 

subsequent chapters that present the results from the methodological approach. Firstly, Chapter 

Four presents results that differentiate the thermal environment across the LU network, as well 

as presenting the state of the current climate. Secondly, Chapter Five applies findings from the 

previous chapter to conduct the main part of the study, presenting the relationships between the 

thermal environment and asset faults. This includes a deeper analysis of interesting results. 

Thirdly, Chapter Six presents results on the potential direction of the thermal environment 

across the LU network under future climate change, including an estimation of change in asset 

faults as a result. Next, Chapter Seven discusses the findings in the wider context of climate 

change adaptation and achieving more climate-resilient transport, recommending ways to 

support future decision-making of key stakeholders within TfL, as well as the wider railway 

and transport sectors. It also critiques the methodological approach for this study and discusses 

the future research direction. This thesis is concluded in Chapter Eight, summarising how this 

research addressed the aim and objectives, including some overarching recommendations for 

TfL and its stakeholders. References and Appendices can be found after this final chapter. 

  



 

31 

 

Chapter Two  |  Literature review 

2.1. Overview of literature review 

Chapter One introduced the challenges associated with heat and climate change on the LU 

network. While the challenges differ between the surface and tunnels, climate change is a 

significant factor exacerbating operational challenges now and in future across the entire 

network. This chapter begins by reviewing the impacts of heat and climate change on railway 

infrastructure, and how this is assessed to date in the national context and by TfL. It then 

introduces the current approaches TfL take to prepare and respond to temperature, particularly 

during extreme heat events. Then, it critically reviews research on methods and metrics that 

measure disruption on transport networks with respect to TfL’s current approaches. It follows 

by identifying resulting key operational temperature thresholds for railway assets where 

available in the literature and compared with those across the LU network. Finally, with the 

latest information on future climate change, inferred change in operational thresholds are 

discussed. Through evaluating the literature, this chapter ends by outlining the necessary actions 

of TfL to deepen their understanding of operational performance under changing climate 

conditions for maintenance and asset protection purposes. 

2.2. Impact of heat and climate change on railway infrastructure 

The complexities around heat risk on the LU network discussed throughout Chapter One 

highlights the importance of understanding the differences in climate exposure and 

vulnerabilities among network types. Heat hazards are well understood, but there is less known 

about other heat risk determinants (i.e., exposure and vulnerability). Therefore, the following 
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sections discuss similarities and differences of these heat-related determinants of risk, divided 

between the surface and the tunnels (both sub-surface and deep tube). 

2.2.1. Surface assets 

Surface assets, in the context of this study, are those located above the ground. They may be 

fixed directly on or into to the ground, fitted on to an asset fixed on or in the ground, or 

contained within infrastructure built on the ground. Most research to date on railway asset risk 

to weather and climate both in and outside of the UK are focused on surface assets, as they 

comprise most of a railway’s network. As a result, there is a relatively mature level of 

knowledge pertaining to the impacts of temperature-related weather and climate change on 

railway networks. Most of the LU’s assets reside on the surface, given that it is the biggest 

proportion of the network. 

Temperature-related hazards have the capability of adversely disrupting the usual performance 

of an asset, which is described as an impact. Impacts result in direct and indirect consequences 

to usual network operation. An asset’s vulnerability in this context would be the characteristics 

that make it sensitive to a potential impact, and its exposure being the factors determining that 

sensitivity (Palin et al., 2021). Figure 2.1 shows how temperature hazards lead to the indirect 

consequences that rail network operators are accountable for. While the two temperature 

hazards lead to different impacts, there are several overlapping direct consequences, which 

ultimately all feed into the same indirect consequences. This section continues by discussing 

the literature to date on temperature-related impacts and consequences for network operators 

for surface assets, focusing on high temperatures UK where applicable. 
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Figure 2.1 Examples of the relationships between temperature hazards, the impacts on railway assets, and direct/indirect 

consequences for the railway network. It shows how the environmental condition can impact an asset, that can lead to 

operational consequences for the railway network owner or operator (Adapted from: Palin et al., 2021) 

Heat-related failures on track assets are possibly the most well-covered topic in the research 

area of impact analysis of weather events on railway infrastructure. The primary reason for this 

is likely because the consequences of a track failure e.g., train derailment, cascading delays to 

service, and scale of remedial work is extremely high. These consequences are intrinsically 

linked with financial costs to network owners and operators, which are also very high. Track 

buckling, shown in Figure 2.2, occurs when rail temperatures increase beyond a threshold they 

can withstand, and the metal is subjected to thermal expansion, creating deformities in the track 

that trains can no longer safely pass over. There are several parameters linked to rail 

vulnerability to temperature, including the type of rail, sleepers and ballast, track alignment 

quality, and stress-free rail temperature (SFT) – known as the temperature when rail is in a 

neutral state and there are no stressors acting upon it (Hunt, 1994). Additionally, exposure to 

high temperatures can vary spatially, as the combined effect of heat and sunlight influences rail 
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temperatures, and localised shading decreases exposure levels, reducing track buckling risk 

(Chapman et al., 2006). 

 

Figure 2.2 A buckled rail due to thermal expansion (Source: Skarova et al., 2022) 

Point assets on the railway network are also affected by heat, as they can lead to a switch or 

crossing failure. Points comprise part of a junction on a railway where tracks diverge or 

converge. Britain’s railway industry does not have a specific definition for a “point”, as it 

comprises several different assets that form a switch, being defined as “an assembly of two 

moveable switch rails, two fixed stock rails and other components to divert vehicles from one 

track to another” (Ellis, 2019). Switches are vulnerable to heat and are an interconnected risk 

to track assets. The moveable sections of track i.e., the orange set of point/switch rails in Figure 

2.3 have a limited lifespan due to wear and deformation from train travel over them (Network 

Rail, 2023a). Furthermore, past track buckle incidents were often associated with their 

proximity to a switch or crossing, as SFT reduces because of operational difficulties 

maintaining them (Hunt, 1994; Ryan and Hunt, 2005). Point assets are also vulnerable being 

formed of several smaller interacting components. Their exposure risk would also be 

comparable to track from a spatial perspective in terms of the effects of localised shading. 
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Figure 2.3 Schematic of a switch, where track in one direction converges with another. A set of points is shown in orange, 

showing how the asset is connected to track (Source: RailSystem, n.d.) 

Switches and point asset failures can lead to signal failures, which are when trains are held at a 

red signal due to an issue ahead. Though less studied, signalling assets are often the greatest 

share of heat-related incidents by asset type across Britain’s railway infrastructure (Ferranti et 

al., 2016, 2018). Signal failures and signalling incidents however can encompass a wide range 

of assets linked to track, switches, and telecommunications so the higher proportion of heat-

related issues may be relative to the higher proportion of overall assets. Furthermore, signal 

failures are set up as a “fail-safe” system, so they are initiated before a train reaches a hazard. 

Signalling incident frequency is consequently not considered a high risk to railway operations 

(Ferranti et al., 2016). 

Finally, assets that supply power to electrified railways such as overhead lines and third rails 

can be affected by heat. While the LU network does not use overhead lines (it uses a four-rail 

system), heat can lead to sag due to thermal expansion, which affects the contact of the 

pantograph on the top of a train with the power supply from the overhead line (Palin et al., 

2013). On the other hand, third rail is thought to be more vulnerable to lower temperatures due 

to factors such as icing (RSSB, 2016a). This is exacerbated by increased exposure as third rail 

powered track is primarily in London and the Southeast of England. Additionally, these assets 
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depend on the supply of power, so should the source of power i.e., a National Grid substation, 

be impacted by extreme weather, there is a cascading risk to train operations. 

2.2.2. Tunnel assets 

The impact of temperatures on tunnel assets is far less studied as the impacts are assumedly far 

fewer – particularly on the basis that spatial variation in impact on surface assets is linked to 

shading or lack thereof. Given that tunnel assets are not directly exposed to outside conditions, 

even when tunnel temperatures are high, the risks and impacts are not comparable to the surface. 

An exception to this assumption would be the study of fire hazards in tunnels, as like track 

buckles on the surface, fire is perhaps the biggest safety risk in tunnels. Such studies review the 

impacts of ceiling temperatures of several hundred degrees Celsius on infrastructure that lead 

to structural damage (e.g. Mozer et al., 2013). Current contributing factors affecting tunnel heat 

as discussed in Section 1.3.2 are unlikely to lead to fire risk. 

Assets in tunnels on the LU network are otherwise the same as those on the surface. Assuming 

maintenance levels are the same, it is possible that asset vulnerabilities of assets such as track, 

switches and third and fourth rails are also similar. Greenham et al. (2020) identified a quadratic 

relationship between the frequency of tunnel asset-related delays, with increases at the lowest 

and highest daily maximum temperatures, but the relationship was not as profound as that of 

surface assets. This is indicative of some level of asset risk in tunnels to temperature. As the 

hazard characteristics differ to the surface, exposure may be reduced, but the extent of asset 

vulnerability is largely unknown. 
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2.3. Quantifying the extent of climate risk on railway assets 

As part of the national policy framework (see Section 1.5), Network Rail and TfL submitted 

ARP3 reports and were the only two operational railway networks to do so. These reports 

included risk assessments of their infrastructure to the impacts of weather and climate change. 

This section reviews and compares their findings in terms of climate risk quantification, with a 

focus on heat and temperature-related risk. 

The risk assessment in Network Rail’s ARP3 took a cross-cutting approach, influenced by the 

CCC’s advice to government for the CCRA. It covers extreme temperatures, both hot and cold. 

The recent hot summers highlighted the vulnerabilities of GB’s railway assets to high 

temperatures in particular (Network Rail, 2021b). Temperature risks to Network Rail assets are 

categorised into four types of hazards: heatwaves and extreme heat, extreme cold temperatures, 

higher average temperature, and sun glare. More asset types are at risk to heatwaves and 

extreme heat than the other three hazards, including geotechnical assets, rolling stock, 

vegetation, rail operations, track, signalling and overhead line equipment. Network Rail’s risk 

scores for all temperature-related risks are moderate to major, with some expected to be severe 

under future climate conditions. 

Network Rail quantify delays and their attribution to weather events via Schedule 8 delay 

compensation costs to train operating companies (TOCs) where the disruption is not the TOC’s 

fault (Network Rail, 2023b). As such, the Schedule 8 mechanism enables the financial 

quantification of weather-related delays on Network Rail infrastructure. Figure 2.4 shows 

annual weather-related Schedule 8 costs. Damage from wind and flooding were the costliest 

weather events overall, and snow had a big impact in four years (coinciding with cold extremes 
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shown in Figure 1.8). 2013-2014 was the costliest year for weather-related delays overall, which 

was a year of particularly bad winter storms (see Dawson et al., 2016). Total annual Schedule 

8 costs also increased from around 2015, remaining higher than earlier years in Figure 2.4. As 

for heat, delay costs increased in recent years, but also showed some increase in relative 

contribution of overall costs. 2018-2019 and 2019-2020 had the greatest share of heat-related 

costs. Most heat-related delays also occurred in England as opposed to Scotland and Wales 

(Network Rail, 2021b). Network Rail’s Schedule 8 costs show how asset risk to climate is 

changing, owed to a potential combination of change in hazards (the climate and extreme 

weather), vulnerabilities (asset condition and levels of maintenance), exposure but also 

response. 

 

Figure 2.4 Total annual Schedule 8 compensation payments attributed to weather across Network Rail’s infrastructure. Note 

that these costs are not inflation adjusted but include an increase in the cost of a delay minute from around 2015 (Network 

Rail, 2021b) 

As TfL owns and operates several transport systems across London, the risks of climate change 

to the LU network is only one, albeit a major component of its ARP3 (TfL, 2021b). Figure 2.5 
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shows the total number of risks per weather and climate hazard by each transport system. 

Although these data are not directly comparable with Figure 2.4, there are some comparisons 

and contrasts regarding climate risk characteristics between Network Rail and TfL. 

 

Figure 2.5 Total number of risks per climate hazard across TfL’s infrastructure, as identified by TfL based on best available 

professional judgement (Source: TfL, 2021b) 

Firstly, the risk of storm and wind events in London are far lower than they are across GB. This 

could be explained by a lower hazard frequency, a lower vulnerability due to different assets 

used (i.e., a fourth rail instead of overhead lines for power transmission), and a lower exposure 

in part due to the built-up environment protecting the city when high winds and storms do occur, 

as well as the proportion of the LU network running underground. However, the built 

environment has the potential to increase exposure at specific locations by creating wind tunnels 

between buildings. 

Secondly, flooding is a high risk for both organisations. For the LU network, flood risk may 

vary because of the differing nature of the hazard (i.e., more surface water flooding as opposed 

to fluvial flooding in some areas due to the urban environment) but could be either offset or 

worsened by asset vulnerabilities (e.g., quality and condition of drainage assets and their 

capacities). 
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Finally, heat risk is a major risk to the LU network. The contributing factor of the UHI in 

Section 1.3.1 exacerbates the hazard, particularly on the surface. Similarly, the high constant 

tunnel temperature due to the contributing factors described in Section 1.3.2 characterises the 

heat hazard differently. This arguably makes this part of the LU network more vulnerable, 

despite a lack of sunlight exposure. However, tunnel asset vulnerabilities may be sufficiently 

offset if they have the capacity to withstand higher temperatures than the surface. 

2.4. Weather and climate risk management on the LU network 

TfL are committed to ensuring the safety of its customers and staff as well as maintaining 

acceptable service levels in all weather conditions. The LU network utilises preventative 

seasonal maintenance to limit the likelihood of weather-related incidents on the LU network, 

and operational planning to mitigate the impact of weather-related incidents to customers. 

Additionally, TfL have plans to mitigate the impacts of extreme weather events (e.g., heavy 

rainfall, heatwaves) across the LU network. All these plans are considered by TfL as short- and 

medium-term in the context of weather and climate change management (TfL, 2021b). This 

section outlines the key actions currently in place on the LU network related to temperature, 

and reviews TfL’s understanding of changes in temperature-related risk due to climate change. 

2.4.1. Seasonal planning 

There is no pan-LU asset management regime for seasonal maintenance; it is driven at asset 

level. The overarching maintenance responsibilities primarily lie with asset managers, who set 

out the seasonal asset maintenance regimes, as documented in their Asset operations handbook 

(TfL, 2022b). Due to the variability of asset types and lifespans, the defined timescales to 

inspect and undertake maintenance on assets varies. For example, the schedule of inspections 
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for track assets ranges from maximum intervals of one to six months, or “as required”, 

depending on the equipment or asset (TfL, 2022i). On the other hand, the maintenance schedule 

for signalling assets is more stringent, with the majority of assets assigned explicit maintenance 

intervals between 12 and 16 weeks (TfL, 2022h). By 2050, climate change is thought to 

moderately affect maintenance activities across the LU, such as through increases in high 

temperatures and surface water flooding (TfL, 2021b). 

Table 2.1 shows the key responsibilities per key asset team for the summer season across the 

LU network. Maintenance checks across the LU network in preparation for the summer are 

undertaken during the spring (TfL, 2022b). These maintenance activities are supported by the 

Hot Weather Plan (TfL, 2022f), which outlines maintenance plans conducted during the 

summer months. This plan also defines sections of the LU network with enhanced maintenance 

frequencies, suggesting that they may be sites more vulnerable to summer heat. Within these 

locations includes key interchange stations; sections of the Victoria and Jubilee lines following 

their respective upgrade and extension; and designated deep tube tunnel sections that are 

allocated heavy duty fans to improve air circulation in the summer. 

Table 2.1 Key summer season maintenance responsibilities for each asset team across the LU network (Source: TfL, 2022b) 

Asset team Key summer season maintenance responsibilities  

Stations  
Provision and maintenance of air conditioning and ventilation systems before 

and through the season in all areas. 

Signals 
Removal of anti-icing compounds from air systems; adjustment of locks on 

pointwork. 

Fleet 
Maintenance of train cooling and ventilation systems prior to and through the 

season. 

Track 

Review rail stress levels, ensuring they are stress free to avoid excessive 

compression in heat; review point switch blades and protect vulnerable sites 

(for example, paint white) 
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Several winter maintenance activities are also specified in Table 2.2, most of which are related 

to the de-icing of assets. Winter checks begin during the summer (TfL, 2022b), and there is a 

Winter Contingency Plan  which outlines further maintenance actions during the winter months 

(TfL, 2022e). However, there are no sections with enhanced winter maintenance frequencies; 

instead, there is a Core Route Strategy, that defines sections of the LU network (primarily on 

the surface) to be suspended should trains unable to run in extreme winter weather conditions, 

namely snow. TfL estimate minor levels of risk to power supply and green assets owed to low 

temperatures in future. However, when combined with frozen precipitation, there are additional 

minor and moderate risks across several other LU assets such as signalling, stations, 

embankments/cuttings and track (TfL, 2021b). As for the transitional seasons (spring and 

autumn), there are no temperature-related maintenance plans. Nevertheless, high diurnal 

temperature change often occurs in transitional seasons, so there are some future asset risks in 

these seasons. TfL identified that signalling assets were the LU asset most at risk to diurnal 

temperature change, classifying it as moderate (TfL, 2021b). 

Table 2.2 Key winter season maintenance responsibilities for each asset team across the LU network (Source: TfL, 2022b) 

Asset team Key winter season maintenance responsibilities  

Stations  
Provision of de-icing materials; emergency provision of staff to assist with 

snow clearing; maintenance of station heating. 

Signals 
Provision of air system anti-icing (e.g., glycol) and maintenance of point 

heaters; keep track up to date on locations of failed point heaters 

Fleet 

Provision of de-icing equipment including de-icing fluid and sleet brushes; 

management of fleet (e.g., de-icing fluid levels); winterisation works 

including air system heating; direct current (DC) motor covers; maintenance 

of cab and saloon heating; de-icing depot sites including conductor rails and 

clearance of walkways. 

Track 

Provide manual de-icing techniques, tools and materials for walkways and 

roadways; provision of labour to clear snow and ice; manual de-icing of 

unheated points. 
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2.4.2. Response to extreme temperature events 

Second to surface water flooding, extreme heat events impact the most assets and receptors 

across the organisation (TfL, 2021b). While the overarching strategy to handle extreme hot and 

cold weather events are similar, this section focuses on the Hot Weather Plan due to these 

greater estimated risks. Furthermore, the Winter Weather Contingency plan identified 9 key 

risks to operations whereas the Hot Weather plan identified 13 key risks (TfL, 2022e, 2022f). 

As per the Hot Weather Plan (TfL, 2022f), when hot weather is forecasted, TfL triggers a 

countdown process from three days before the anticipated heat is due to begin based on 

forecasts. There are four temperature thresholds (no risk, small risk, risk, and strong risk), and 

actions depend on which threshold is exceeded, discussed further in Section 2.6.1. Routine 

summer maintenance activities remain in place until three days prior to forecasted hot weather. 

From day three prior to the forecasted hot weather, there is a process of rapid preventative 

maintenance and monitoring. The extent of the actions depends on the anticipated temperature 

threshold for that day, so the higher the threshold, the more actions required. The plan integrates 

specific activities for stations, network-wide water supply, signalling assets, mechanical 

(ventilation) assets, track, and fleet. Should extreme hot weather exceed the strong risk 

threshold, senior operational staff are responsible for strategic decision-making about LU 

operations, including engagement with external stakeholders such as the Department for 

Transport, Network Rail, and the London Resilience Partnership. For example, TfL issued an 

advisory notification to discourage customer travel during the 40℃ heat event due to the risks 

to the network and for customers (TfL, 2022k). 

Understanding the statistical relationship between asset performance and weather events across 

the LU network can provide more data-driven insights into asset tolerances. This is particularly 
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important as the rail industry in GB had previously assumed assets were equally vulnerable to 

extreme weather events, which was not necessarily true (RSSB, 2016b). Therefore, the 

following section critically evaluates key metrics in the literature used and/or developed by 

railway networks and academia that correlate data between asset faults and weather 

observations. The intention is to assess the strengths and weaknesses of metrics’ methodologies, 

and their relevance for the LU network in examining asset thresholds. 

2.5. Measuring operational performance 

There are a wide range of methods to quantify and evaluate disruption to railway operations. 

Such disruption impacts the railway services, leading to delays for the users of the network. 

Delays can include instances where a train does not run to its planned schedule (is not punctual) 

or cancelled. Finding out the reason for a delay is known as attribution, and includes identifying 

the cause of the delay and the party responsible (Rail Delivery Group, 2020). 

The origin, or root cause of a delay can vary. Preston et al. (2009) categorised delays into three 

sources: Operator causes (e.g., train faults and shortage of crew), network infrastructure causes 

(e.g., track and signalling faults), and external causes (e.g., suicides, vandalism, or extreme 

weather). Across GB, inefficient and complicated delay attribution processes result in many 

commercial disputes and the reported “blame culture” throughout the GB railway industry, 

which can be time-consuming and costly (DfT, 2021). As critical infrastructure systems become 

increasingly connected and interdependent, attribution becomes more important to effectively 

monitor hazards and changing exposures and vulnerabilities, but also to help improve services. 

The LU network is a high-frequency service, so it is not measured by punctuality to a scheduled 

timetable to the same extent as the national network. Table 2.3 provides an example of the way 
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trains are scheduled in terms of frequency. These frequencies change throughout the day in 

accordance with expected peak and off-peak travel periods. Because of the complexity across 

parts of the network, not all LU lines calculate a single train per hour metric. Nevertheless, a 

rate per km calculation is possible that normalises a metric across the LU lines. This shows that 

the train frequency varies across the network, highlighting the difference in demand for services 

in various parts of the city. 

Table 2.3 Train frequency statistics in peak morning time across the LU network (Data: TfL, 2021c) 

LU line 
Trains per hour 

at a.m. peak* 

Trains in service 

at a.m. peak* 

Total track 

length (km) 

Train service 

per km** 

Bakerloo 22 31 23.2 1.34 

Central 30 77 74.0 1.04 

H&C 31 31 27.2 1.14 

District - 75 64.0 1.17 

Jubilee - 57 36.2 1.57 

Metropolitan 16 48 66.7 0.72 

Northern - 97 58.0 1.67 

Piccadilly - 78 71.0 1.10 

Victoria 36 41 21.0 1.95 

* a.m. peak time is approximately defined as 08:00 to 09:30, Mondays to Fridays, but timings may vary slightly within this 

timeframe by LU line. Only trains running through the Central London are shown, where data is provided. N.B. No information 

is available for the Waterloo & City line. 

** Not an official TfL metric. Derived from TfL data; calculated by dividing trains in service at a.m. peak by the total track 

length (km). 

LU train punctuality to a schedule is arguably unimportant (Preston et al., 2009), so the key 

terminology used by TfL to communicate when there is disruption are plausibly ambiguous. 

Table 2.4 shows the definitions as provided by TfL regarding service disruption. The ambiguity 

in definitions accounts for the difference in train frequency across the network. However, from 

an analytical perspective, this makes it difficult to measure operational performance 

quantitatively for the purposes of this study. Metrics are therefore a crucial component in 
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analysing operational performance and scrutinising infrastructure networks in efforts to 

improve their resilience to disruption. There are several different types of metrics that can be 

applied to quantify disruption to otherwise normal operation of a network. The following 

section outlines those used in the literature, including some directly involving the LU network. 

Table 2.4 Definition of key terminology used to describe operational status across the LU network (Source: TfL, 2022j) 

Status Definition 

Good service Services running as expected 

Minor delays May take longer to reach destination, but do not recommend changing route 

Severe delays 

Service is significantly disrupted, may take a lot longer as usual to reach 

destination. Journey is likely to be busy and service may not travel all the way 

to advertised destination. Recommend changing route if possible 

Suspended/ 

Part suspended 

Line not running, either for whole or part of route, and will require using 

another service to finish journey 

Planned closure/ 

Part closure 

Closure as part of maintenance work or upgrades. Where possible, replacement 

bus services will run. Often quicker and easier to use an alternative route 

2.5.1. Lost customer hours 

Lost customer hours (LCH) is a measure used by TfL exclusively for the LU network, 

calculating the reliability of the network. Any service disruption of two minutes or more in 

terms of time lost to customers is the threshold for logging delays. The value of LCH in each 

incident is weighted by factors such as day of the week, time of day, location, direction of travel, 

and duration of incident (TfL, 2020b). Therefore, a delay at an interchange station in central 

London during peak time on a weekday would generate a far higher LCH than a delay of the 

same length at a quieter, suburban station, late at night on the weekend. It is also important to 

note that public LCH reporting by TfL is not available beyond early 2020 due to the impacts of 

the coronavirus pandemic affecting the passenger demand data model (TfL, 2020b). 
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Greenham et al. (2020) tested the LCH metric among others to evaluate the correlation between 

customer delays on the LU network driven by LU assets and daily maximum temperatures. For 

LCH, the two variables analysed were the mean daily observed LCH and the mean delay LCH. 

Mean daily LCH had a strong, positive quadratic relationship with temperature, whereas mean 

delay LCH did not, nor was statistically significant. These contrasting LCH results challenge 

the metric’s efficacy in quantifying heat-related delays. Furthermore, the LU delay data that 

LCH values derived from contained spatiotemporal inconsistencies due to subjectivity and 

errors in data entry by LU staff. 

2.5.2. Delay minutes 

Delay minutes is a measure of passenger disruption based on the difference between scheduled 

and recorded times. Several studies, particularly on GB’s national rail network analyse 

disruption via this metric as it can quantify the magnitude of a weather-related delay. Using 

delay minutes has produced extremely useful insights, some studies of which are summarised 

in Table 2.5. However, this metric has limitations in terms of applicability the LU network, due 

to the lack of timetabling (see Section 2.5). It would therefore not be possible to conduct a delay 

minute analysis to a similar level of precision as those undertaken in Table 2.5. This could 

explain, to the Author’s knowledge, the fewer studies to date on weather-related delay analysis 

for the LU network relative to those using national railway data for GB via Network Rail. 
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Table 2.5 Key findings from studies that analyse weather and delay minutes across GB’s railway network 

Study Weather  Key finding 

(Dobney et 

al., 2009) 
Heat 

Simulated heat-related track buckling delays in the southeast increases 

from a £3.3m 30-year baseline, up to £24.7m in the 30-year time series 

for the 2080s under a medium-high emissions future climate scenario. 

Delay minutes are assumed to cost the network £50 per minute (the 

network mean at the time). 

(Dobney et 

al., 2010) 
Heat 

Using summer 2003 as weather analogue of a high emissions future 

summer in the 2080s, the cost of heat-related track buckling is 

estimated to double. Delay minutes were assumed to cost the network 

£73.47 per minute (the network mean at the time). Adjusted for 

inflation, a delay minute cost from 2010 in January 2023 would be 

approximately £103 per minute (BoE, 2023). 

(Jaroszweski 

et al., 2015) 
Storms 

Extensive delay propagation across the country identified because of 

flooding and landslips, causing 10,000 delay minutes from the single 

storm event with impacts lasting over two weeks. 

(Fu and 

Easton, 

2016) 

Wind 

Combining tree and wind data in a logistic regression to add value to 

wind-related delay data for prediction and decision-making purposes. 

Delay minutes helped in the exploratory analysis to identify “wind-

sensitive” sections of the network (where delay minutes were highest). 

(Ferranti et 

al., 2016) 
Heat 

Comprehensive overview of heat-related failures in the southeast 

including spatial variance in delay minutes across regions (potentially 

due to differences in heat risk management practices); delay minutes 

and resulting costs are greater in signalling incidents and failures as 

opposed to track. 

(Ferranti et 

al., 2018) 
Heat 

Analysed heat-related failures on 30th June - 1st July 2015. All regions 

in GB experienced more than twice the average number of delay 

minutes on one or both days. Demonstrated a propagation of delay 

minutes across the country from critical node failures; identified delay 

minutes owed to preventative action such as emergency speed 

restrictions (>60% of delay minutes). 

2.5.3. Average delay length 

An average delay length is somewhat similar to delay minutes; calculated as the duration that a 

train is prevented from completing its scheduled journey, relative to the planned time it would 

otherwise take. TfL do not use this metric explicitly in their reporting of LU operations; 
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however, it is possible to calculate from delay data collected on the LU. Greenham et al. (2020) 

tested mean delay length in relation to temperature-related delays in the same way as LCH, 

finding a statistically significant, albeit weak, positive parabolic relationship. A similar study 

was conducted by Brazil et al. (2017) on the metro in Dublin, investigating differences between 

temporal trends (month of the year) and weather types (wind and/or rain) leading to delays. It 

found that journey times were on average 42 seconds faster under “good” weather conditions. 

However, this study did not investigate the underlying reasons behind the delays, so no further 

weather-related discussion can be interrogated. Furthermore, Börjesson and Eliasson (2011) 

highlight that “average delay” as an indicator of punctuality devalues the reduction of small 

delay risks. Applying this finding further would also imply that the gradual change in climate 

affecting risks to assets in operation a small degree could also be undermined by passengers or 

a network operator. This means that if the impact of changing weather on delays were minor, 

even if more frequent, they could be undervalued compared to a less frequent, considerably 

longer delay risk. 

2.5.4. Excess journey time 

Excess journey time is another passenger-focused metric, measured as the difference between 

actual journey time and scheduled journey time. It is akin to delay minutes but incorporates 

other factors beyond train-based elements that can delay a journey, to calculate total excess 

journey time. These include station based factors such as ticket purchase times and station 

closures, as well as planned engineering works (TfL, 2020a). TfL report on excess journey time 

for the LU network, but for the same reasons as LCH, have been unable to since early 2020. 

Though not explicitly related to weather, Tsapakis et al. (2012) used a form of excess journey 

time to quantify the impact of industrial action by LU staff on its operations. However, their 
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analysis did not quantify excess journey times of LU network operations, rather the transport 

modal shift (i.e., to car journeys) in response to the loss of LU services. As the study used 

automatic number plate recognition data to estimate excess journey time in vehicles between 

“strike days” and “non-strike days.” This method is replicable with other forms of monitorable 

data such as barrier entry and exit of passengers on the LU network, and thus can become a 

valuable metric to compare the potential causal effect of transport behaviours and modal shift. 

It is also useful in the context of weather impacts on choice of transport mode, although the 

response level in travel behaviour is usually greater with precipitation as opposed to 

temperature (Singhal et al., 2014; Wu and Liao, 2020). 

2.5.5. Delay or fault frequency 

The number of times an asset fails or results in a delay can help identify patterns and trends 

leading to failure that help with attribution. Frequency-related data is less publicly reported, 

perhaps because it removes the customer-focused component. This is demonstrated by the 

presence of time-oriented metrics in research publications and data released by network 

operators such as delay minutes. However, frequency as a metric describes delay data in its 

simplest and most universal format, so it is highly valuable from the broader perspective of 

international benchmarking. Additionally, the relationship between frequency of delays and 

observed temperature on the LU network tested by Greenham et al. (2020) showed a strong, 

quadratic, and statistically significant correlation, so it justifies further investigation. 

Nguyen et al. (2012) use fault frequency as a metric to develop a reliability assessment for heat-

related failures of track, as a science-based predictor model had not previously existed. This is 

important in the context of track buckle risk as the network operators aim to limit occurrences 

to zero – a metric of frequency – due to the scale and magnitude of potential impacts. Similarly, 
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Ferranti et al. (2016) derived fault frequency data on Network Rail’s assets from delay minute 

data, showing the proportion each asset’s heat-related failure frequency as well as weekly 

incident rates. 

Ferranti et al. (2016) also demonstrated “failure harvesting” across Network Rail assets in the 

southeast of England via fault frequency data. Failure harvesting is an occurrence whereby an 

infrastructure system’s resilience to temperature increases over the course of the summer season, 

as failed assets and equipment are replaced (Chapman et al., 2008). As a result, there are two 

additional factors to consider around heat-related failure. Firstly, it draws out early season heat 

as a key risk period to railways as opposed to exclusively peak summer temperature, which 

could impact summer maintenance scheduling. Secondly, it hypothesises that in the longer term, 

failure rates in future summers during peak maximum temperatures would begin to reduce. 

However, this study did not include future climate change data within the study parameters. In 

a future climate where maximum temperature records are broken further, it becomes less certain 

whether failure harvesting could in fact improve infrastructure resilience in future. 

Oslakovic et al. (2012, 2013) conducted broader studies that combined fault frequency data 

attributed to temperature with climate projections for two railway tracks in The Netherlands. 

Fault frequency data was useful as it complemented the climate projection data used, compiled 

as estimated frequency distributions of days at temperature intervals per future climate change 

scenario. The baseline, which used total observed incidents as a function of temperature 

underpinned the estimated future fault frequencies for each scenario. However, this method 

only presents aggregated results for the study area, which, for these studies is reasonable as the 

study area is small, compared to that of a whole network. A network like the LU, with its 
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different network types and spatial temperature variances would require a level of disaggregated 

analysis to provide meaningful results for TfL. 

Fisher (2020) addressed some of the limitations in earlier fault frequency studies through their 

methodological approach to quantify asset vulnerability to weather across Network Rail’s 

infrastructure. The primary element added to the analysis was to integrate a normalisation 

factor; creating a fault exposure rate, which consequently eliminated spatial bias. Normalisation 

was necessary for the scale of the study due to spatial variances in weather, as it covered areas 

in Network Rail’s most geographically northern and southern routes in England. The network 

was split into smaller grids, with the fault frequency of each grid divided by the respective 

frequency of weather parameters. The resulting fault exposure rates statistically improved 

results on the relationship between railway assets and weather conditions, but there are 

limitations considering extreme weather observations. Because extreme weather is so 

infrequent, a sample study period is not necessarily representative of these events, which is 

challenging for scaling fault exposure rates based on future climate change scenarios. There is 

a gap in research to date regarding how to represent extreme weather fault frequencies more 

accurately in the absence of sufficient data, especially as this tail data becomes more important 

to estimate the impact of future climate change. 

2.5.6. Fragility curves 

The term “fragility curve” is also applicable to coupled weather and asset analysis using 

frequency data.  Fragility curves originated from seismic risk assessments at nuclear power 

stations (e.g., Kennedy et al., 1980) but more recent studies tested this method with other 

infrastructure sectors and hazards. As such, they are usually plotted with similar variables to 

other fault frequency-related studies, such as an integer bin for weather variables with fault 
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frequency, which also may be normalised to some extent. The fragility curve itself could 

comprise the line of best fit for the underlying data or a more complex mathematical approach 

to build the curve. Trends could be logistic or exponential, depending on the parameters used. 

Studies conducted by Martinović et al. (2018), Martello et al. (2022), and Nieto et al. (2022) 

are examples of how fragility curve analysis worked within the transport sector. Martinović et 

al. (2018) developed fragility curves to predict the likelihood of slope embankment failures on 

a railway network caused by rainfall duration; Martello et al. (2022) estimated levels of damage 

on metro network assets based on saltwater flood depth; while Nieto et al. (2022) presented 

fragility curves for road embankments adjacent to different types of debris flow. Interestingly, 

none of these studies developed their fragility curves with industry fault data. Martinović et al., 

2018) and Nieto et al. (2022) focused on cascading and interconnected risks of a weather hazard 

causing another hazard before leading to a rail-related fault. As a result, industry fault data was 

not required. Their resulting fragility curves depended on technical knowledge of the landscape 

and existing literature to formulate a curve from a mathematical equation. On the other hand, 

Martello et al. (2022) conducted a survey that explored the tacit knowledge of key stakeholders 

such as professionals in infrastructure operations, and the results formed the fragility curves. 

There were some high levels of conformity among respondents at the asset scale of fragility 

curves, suggesting that utilising expert knowledge in conjunction with fault data to understand 

the relationship between weather events and infrastructure has significant value for a network 

like the LU. 

Adding spatial data to fragility curve analysis can also refine them further (Dunn et al., 2018). 

This is particularly important to consider for a network like the LU with different network types 

and spatial variance in temperatures. While Dunn et al. (2018) focused on the impacts of wind 
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on infrastructure in the energy sector, the methodology in principle is applicable to the transport 

sector. On the other hand, the reason for the high levels of accuracy was arguably because of 

the quality and quantity of data – covering 776 individual windstorms over a seven-year period. 

Compared to extreme heat events in a similar period for the UK, windstorms occur more 

frequently. Therefore, there were more wind frequency exposure data and hence greater inferred 

confidence in their findings and could prove more challenging to test with other, less frequent 

weather parameters. 

A broader characteristic of fragility curves is that they form one of two parts of resilience, where 

the other half is the time to repair a failed asset (Dunn et al., 2018). The fragility curve metric 

is therefore a valuable concept that improves fault frequency analysis, bridging the gap towards 

achieving a more holistic metric to measure network resilience. 

2.5.7. Quantifying resilience 

The concept of measuring resilience as a metric by means of monitoring progress in climate 

change adaptation is rapidly gaining more attention internationally. However, universally 

defining resilience is difficult as it is multi-faceted and context specific. Consequently, a 

resilience-based metric cannot comprise a “one size fits all” approach. During COP26 in 

Glasgow, UK in November 2021, the UN-backed Race to Resilience global campaign was 

launched to catalyse a step-change in global ambition for climate resilience (UNFCCC, 2022). 

Race to Resilience (2021) define five different ways of working towards and tracking resilience; 

through a human-centric outcome, engaging at the company, country/region, 

individual/community, city, and natural system levels. Climate resilience of the LU network 

fits into this campaign. London belongs to the C40 cities organisation, who are part of the 

collaborative effort in the Race to Resilience 2030 target to expand affordable resilience public 
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transport (Race to Resilience, 2022). TfL are currently in the process of scoping and developing 

climate resilience metrics and have made particular progress with flood-related risk to date (TfL, 

2021b). 

D’Lima and Medda (2015) designed a resilience metric and applied it to the LU network, based 

on how fast the network recovers to its equilibrium state following a shock or disruption. 

Though not a climate-focused approach, the theory is useful from a risk perspective as the shock 

characteristics (i.e., scale of risk) can be modelled to represent different extents of hazard, 

vulnerability, and exposure. Because the underlying data for this study is passenger-oriented, 

however, the method does not connect with the earlier stage of impact to infrastructure before 

it impacts train operations and consequently, the passengers. Applying this approach to 

infrastructure would require quantifying the resilience parameters to several assets or asset 

groups, which is more complex than the representation of resilience through passenger numbers. 

Alternatively, Pant et al. (2016) took an asset-related approach to vulnerability with the 

potential to inform levels of resilience. It combines asset and passenger data to quantify impact 

magnitudes from multiple failure conditions (i.e., interdependencies) for Network Rail’s key 

asset groups. Particularly useful findings from this study were that assets comprising signalling 

functions for the railway network were likely to cause the most passenger disruption, even 

where a small percentage of the assets were removed. Similarly, electricity as an infrastructure 

sector was most likely to cause the most passenger disruption. This was also followed by 

information communication technology (ICT), and both were the only infrastructure sectors 

likely to result in 100% passenger disruption across the railway network should their link to the 

national railway network be completely removed. 
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Both studies by D’Lima and Medda (2015) and Pant et al. (2016) demonstrate the complexity 

and idiosyncrasies in developing resilience metrics. While TfL are in the early stages of scoping 

resilience metrics for climate change, they lack a comprehensive baseline to build and develop 

them from (TfL, 2021b). It is arguably more prudent to establish baseline data with less 

complex metrics and build towards forming the appropriate resilience metric for climate change. 

2.6. Temperature thresholds 

The outcome of metrics that measure operational performance with weather data is that they 

enable network operators to identify the thresholds of a weather parameter that could lead to 

asset failure and subsequently, delays across the network. A threshold would be the highest or 

lowest value of a weather parameter considered acceptable for safe network operations. 

Exceeding a threshold value would therefore be a risk to normal operations. Thresholds vary 

from place to place, due to variance in risk characteristics. For example, the railway track in 

Melbourne, Australia is considered stress neutral between air temperatures of 33℃ and 44℃ 

(Nguyen et al., 2012), whereas for GB track owned and operated by Network Rail, it is usually 

around 27℃ (Dobney et al., 2010). The climate varies greatly between Australia and the UK, 

so the infrastructure design thresholds for heat are greater in Melbourne, and trains can 

consequently operate safely under higher temperatures. These thresholds do not, however, 

apply to all assets. Track is the primary focus of temperature thresholds, because as previously 

discussed, track failures carry an extremely high risk to railway operations. Consequently, there 

are knowledge gaps pertaining to the thresholds of non-track assets, and the impacts of climate 

change upon future risk and acceptable thresholds. 
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2.6.1. LU network thresholds 

The LU network has pan-network thresholds, defined in the Hot Weather Plan and Winter 

Weather Contingency Plan (shown in Figure 2.6). Forecasts and weather observations tailored 

to the LU network underpin the current threshold parameters, data of which are collected from 

weather stations at several LU depots and sidings. However, thresholds are based on surface air 

temperature and are not reflective of tunnel temperature. Cold temperatures are also not 

explicitly defined quantitatively by risk, though rail snow may imply temperature by proxy to 

some extent. Rail ice risk is mentioned in the Winter Weather Contingency Plan, though not 

quantified; rather whether types of ice or frost are present or not. TfL’s ARP3 does mention 

these plans briefly as part of short- and mid- term resilience planning in its Appendices. 

 No risk Small Risk Risk Strong Risk 

High temperatures < 24°C 24°C - 26°C 27°C - 30°C > 31°C 

Rail snow 
No settling 

snow 
0 - 2cm 2 - 5cm > 5cm 

Figure 2.6 Key defined weather thresholds across the LU network according to the Hot Weather Plan and Winter Weather 

Contingency Plan (Adapted from: TfL, 2022f, 2022e) 

2.6.2. Changing thresholds under future climate change 

The LU network faces, like many other railway networks around the world, uncertainty in the 

extent that climate change may disrupt the relationship between current levels of network 

performance and extreme weather events, shifting thresholds. Future climate change may limit 

the efficacy of current maintenance practices and operational response to extreme weather 

events, so they will require periodic updates. Several risk factors are likely to play a role. While 

it is well understood in literature that hazards are worsening, vulnerabilities may also increase 

across assets owed to accelerated aging (Jelle, 2012; Tang et al., 2018; Athanasopoulou et al., 
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2020), or not meeting the required level of asset maintenance. There is an increasingly urgent 

need to understand potential change in risk, so that network operators like TfL can adequately 

prepare for future climate change. 

2.7. Chapter summary and research justification 

This chapter reviewed TfL’s understanding of climate change and practices in managing 

operations during extreme temperatures across the LU network, while also critically reviewing 

methodologies of metrics used in recent research. Risk response by TfL is based on a threshold 

exceedance, like Network Rail (Fisher, 2020). Metrics applied in research also define thresholds, 

but most metrics used by TfL for the LU network described in this section are customer-focused 

for safety reporting reasons, but this has several implications for measuring weather and climate 

resilience of LU assets. Customer-focused metrics exclude a proportion of faults that may not 

affect operational services, leading to an oversight of important asset risks due to data bias. As 

customer-focused metrics require conversion processes derived from fault observations, 

resulting weather-asset relationships are limited due to the additional processing. Additionally, 

the impacts of the coronavirus pandemic showed first-hand how sudden change and/or loss in 

“normal” passenger levels severely affects the efficacy of customer-focused metrics for their 

intended purpose. Relying on such a metric to underpin weather thresholds for the LU network 

for decision-making would therefore have shortcomings now and in future. 

Taking data-driven approaches is TfL’s aim in improving the resilience of LU infrastructure to 

weather and climate change (TfL, 2021b). Doing so would benefit TfL as it supports fact-based 

decision-making; organisational transparency; enhanced collaboration opportunities; and bias 

reduction (International Transport Forum, 2021). Currently, TfL largely rely on expert 
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professional judgement and tacit knowledge to understand their weather and future climate risks 

(TfL, 2021b), which is a similar situation to Network Rail and the wider railway infrastructure 

across GB (Fisher, 2020). This study sets out to test an objective, data-driven approach for 

temperature-related risk parameters across the LU network that are of substantial interest to TfL 

and its stakeholders. In doing so, the intent is to demonstrate where and how existing data can 

support current TfL practices for climate change adaptation purposes. The approaches and 

techniques are synthesised from several studies with the view to meet the needs of TfL and the 

LU network: improving near- and long-term future climate resilience. 
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Chapter Three  |  Methodology 

3.1. Chapter overview 

Chapter Two reviewed the current approach by TfL in responding to climate change and 

extreme weather events with regards to temperature. It then critically evaluated the current 

literature on metrics that measure network performance, from the perspective of their use to 

identify performance thresholds against weather conditions and identify the most appropriate 

metric for this study. This chapter therefore presents the detailed methodological approach used 

to quantify the impact of heat and climate change to LU’s infrastructure. The structure of this 

chapter reflects the order of steps undertaken and the linkages between these steps, divisible 

into four key sub-sections (also reflective of the three results chapters), shown in Figure 3.1. 

 

Figure 3.1 Linkages between stages of methodology for this study. Key results are emphasised in bold. 
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This chapter is formed of several sections that outline each process of this study in sequential 

stages. Firstly, Section 3.2 describes the data acquired for this study, and their spatial and 

temporal parameters. Section 3.3 then describes the methodological approach to analyse the 

thermal environment across the LU network. Section 3.4 describes the fault exposure rate 

process which investigates the relationship between LU fault data and different temperature 

variables calculated from Section 3.3. Finally, Section 3.5 outlines the approach to 

incorporating climate projections into the study parameters to define future temperature 

scenarios for the LU network and the impact that this may have on the frequency of faults. 

3.2. Data acquisition and parameters 

This study used a range of secondary data derived from several sources. Table 3.1 describes 

these data, their parameters and the quality assurance processes conducted prior to analysis. 

Meteorological and climate projection data were compiled from online repositories via the UK 

Met Office, while TfL provided tunnel temperature and fault data explicitly for the purposes of 

this study. All observation data collected span a 13-year calendar period from 2006 to 2018 

inclusive. This is because 2006 is the earliest point where TfL collected all relevant data 

relevant for this study. 
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Table 3.1 Details of data used for this study 

Data Description and source Timeframe 
Data 

intervals 
Spatial extent 

Total no. of 

observations 
Quality assurance process 

Surface 

temperature 

observations 

Met Office Integrated 

Data Archive System 

(MIDAS), via the Centre 

for Environmental Data 

Analysis (CEDA) 

website (Met Office, 

2019a) 

2006-2018 Hourly 
Single site (St. 

James’s Park) 
112582 

1.2% of the total dataset had missing 

observations. Days without any 

observations for the 24-hour period 

were eliminated from analysis 

UHI index 

Simulations of the urban 

climate model UrbClim 

(De Ridder et al., 2015) 

in raster format by the 

European Environment 

Agency and Copernicus 

Climate Change Service 

(2020) 

2008-2017 N/A 

100m 

resolution over 

London 

1  

Projected to UK coordinate reference 

system to validate spatial conformity to 

the Greater London administrative 

boundary and the LU network. Any 

stations outside of the UHI raster 

boundary applied the UHI index of the 

nearest station on its respective LU line 

within the raster boundary 

Tunnel 

temperature 

observations 

Provided directly by TfL 2006-2018 Hourly 

Tunnel station 

platforms (sub-

surface; deep 

tube tunnels) 

6286808 

14.5% of full days’ data observations 

missing across all stations, to be 

combined with results from the tunnel 

temperature estimation model 

LU fault data 

(known as work 

orders) 

Provided directly by TfL 2006-2018 Variable 
Whole LU 

network 
45787 Discussed in Section 3.2.3 

LU asset 

information 
Provided directly by TfL 2006-2018 N/A 

Whole LU 

network 
12507 Discussed in Section 3.2.3 

Baseline climate 

Land observations by 

administrative region, via 

the UKCP18 Climate 

1981-2010 Monthly 

Greater London 

administrative 

boundary 

 3 x 240 

(min, mean, 

max) 

Observations pass through a range of 

quality assurance processes by the Met 

Office (Lowe et al., 2019) 
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Data Description and source Timeframe 
Data 

intervals 
Spatial extent 

Total no. of 

observations 
Quality assurance process 

Projections User 

Interface (Met Office, 

2018c) 

UKCP 

Probabilistic 

Projections 

UKCP18 Climate 

Projections User 

Interface (Met Office, 

2018c) 

2050s, 

2080s 
Monthly 

Greater London 

administrative 

boundary 

3 x 999 

sample (min, 

mean, max) 

per scenario 

The Met Office conduct checks and 

continually add to and update the 

projections data (Met Office, 2023b) 
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3.2.1. Key study parameters and boundaries 

The core geographic study boundary are the termini stations of each LU line, inclusive of depots 

and sidings that follow termini stations. Most of the LU network falls within the Greater London 

administrative boundary that encompasses all 32 London boroughs. Due to the varied 

infrastructure across the LU network, this study grouped data and analyses based on several 

parameters, with the intent to investigate or explain trends, as well as potential anomalies. Data 

groupings are spatial, with the justifications for each grouping in the following sections. 

3.2.1.1. Network type 

The network is divisible into three core physical characteristics (hereinafter defined as LU 

“network type” or “part” of the LU network) based on the location of track in the context of 

geology, which are the primary breakdown of analyses: surface, sub-surface and the deep tube 

tunnels (also described as “tunnel” in the results), as shown in Figure 3.2. Grouping by network 

type is important because they differ in terms of environmental exposures, and the additional 

contributing factors upon temperature, per Section 1.3. The surface part is primarily the outer 

part of the LU network, which are typically the suburban zones of Greater London. The sub-

surface part runs around inner London, closer to the city centre. The deep tube tunnels, while 

running through the city centre, also extend further out of the city centre than the sub-surface 

section. Most of the LU network resides north of the River Thames, with some exceptions. The 

Bakerloo, Northern and Victoria lines tunnels run beneath the River Thames to the south. The 

Jubilee line extension tunnel crosses beneath the River Thames three times, though both termini 

are north of the river. Two parts of the District line pass over the River Thames via the Fulham 

and Kew Railway Bridges in the southwest of Greater London. 
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Figure 3.2 Division of LU network by network type 

3.2.1.2. LU line 

LU line is an important factor for data grouping. LU lines have different historical features as 

they were originally built by several private organisations (Halliday, 2013). Furthermore, LU 

network operations, asset renewals and engineering works are managed at line level, varying 

asset ages across the network. Examples include different rolling stock across each LU line and 

five different signalling systems (TfL, 2016b). Grouping by LU line ensures the outcomes of 

this study can support line-level decision-making. 

At this stage, there was some further elimination of data in the study. The tunnel sections of the 

Hainault loop on the Central line and the Heathrow loop on the Piccadilly line, as these sections’ 

platform temperature are not monitored and are cooler than the tunnels through the central part 
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of the LU network (Jenkins et al., 2014). The Waterloo & City (W&C) line was also excluded, 

as it comprises a very short tunnel with two termini stations only, so is not comparable with the 

other LU lines. 

3.2.1.3. Direction of travel 

This study also grouped results by direction of travel of the trains across the LU network. This 

is because track is not shared by trains between direction of travel, and therefore there are 

separate assets for each direction. Additionally, the deep tube tunnels, and some of the sub-

surface parts of the LU network operate through separate tunnels (see Figure 3.3). Therefore, 

there are differentiations in the piston effect between tunnels and stations (Pan et al., 2013), 

particularly regarding distance from tunnel openings, resulting in an impact on tunnel 

temperatures. Table 3.2 shows the directions of travel allocated to each LU line, which are 

northbound (NB), southbound (SB), eastbound (EB), westbound (WB), clockwise via the outer 

ring (OR) track, or anticlockwise via the inner ring (IR) track. 

 
Figure 3.3 Axonometric drawing of Manor House station, Piccadilly line, showing the deep tube tunnels separated by 

direction of travel (Source: TfL, 2017a) 
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Table 3.2 Travel direction of LU lines referred to in this study 

LU line Directions of travel 

Bakerloo NB SB 

Central EB WB 

Circle IR OR 

District EB WB 

H&C EB WB 

Jubilee EB WB 

Metropolitan EB WB 

Northern NB SB 

Piccadilly EB WB 

Victoria NB SB 

W&C NB SB 

3.2.2. Temperature observation data 

There were two secondary sources of temperature and meteorological data obtained for this 

study: from the UK Met Office; and that collected by TfL, described in Table 3.1. Multiple 

sources were necessary to gain a comprehensive understanding of the temperature ranges across 

the network types, LU lines and direction of travel. 

3.2.2.1. Surface temperature observations 

There are 21 Met Office weather stations within the Greater London boundary, with data over 

different time intervals recording a range of meteorological variables, including daily or hourly 

rain, daily or hourly surface temperature, mean wind, radiation, and soil temperature. Only four 

weather stations have continuous observations for the selected study period between 2006 and 

2018. Their source identification (SRC ID) codes are St. James Park (SRC ID 697), Heathrow 

(SRC ID 708), Northolt (SRC ID) and Kew Gardens (SRC ID 723). Figure 3.4 shows the 

location of these weather stations in the context of Greater London and the LU network. The 
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St. James’s Park weather station is most central geographically in Greater London of the four 

weather stations, while the others are located further to the west, which infers data bias to the 

west of London. There may also be data bias at the Heathrow weather station in particular as 

while the site is the most open, its observations may also be influenced by aircraft and vehicle 

activity (Grimmond, 2013). 

 

Figure 3.4 Met Office weather stations within the Greater London administrative boundary 

The St. James’s Park weather station’s location is at coordinates 51.504 latitude, -0.129 

longitude and is 5m above mean sea level (Met Office, 2021b). According to the Met Office, 

(2019a) MIDAS User Guide, the weather station’s thermometer sits in a screen, out of direct 

sunlight, and 1.25m above the ground. Data collection at the weather station is automatic with 

a resolution of 0.1℃, and accuracy of ±0.2℃. Thermometer calibration takes place every 8 

years. 
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3.2.2.2. Spatial extrapolation of surface temperature using the urban heat island index 

As described in Section 1.3.1, Greater London, like all major urban areas has an UHI. Its 

intensity varies across the city, decreasing towards the outer edges of the administrative 

boundary. Therefore, the St. James’s Park observations, located in the city centre, are not 

representative of the temperature at other surface stations across the LU network, particularly 

in the suburban and less densely built-up parts of the city. To address this, a UHI index was 

applied to the St. James’s Park observations to extrapolate temperatures across stations on the 

surface part of the LU network. Temperature variables were adjusted according to the UHI 

index per surface station to the nearest 100m, better reflecting the spatial distribution of 

temperature across the city. At the station level, the accuracy of fault exposure rate analysis 

(see Section 3.4) would thereby be improved. 

Table 3.1 describes the UHI index used in this study, and Figure 3.5 shows the UHI index across 

London in the context of the Greater London administrative boundary and the LU network, at 

a 100m resolution. Extrapolating temperatures at other LU stations using the UHI index firstly 

required the value of the grid square that intersects St. James’s Park weather station, which was 

+2.1℃. LU stations are the selected georeferenced points for spatial analyses across the LU 

network; this required the UHI index grid square values that intersect each LU station. For each 

LU station, correcting for UHI index required subtracting the difference between UHI index 

values at St. James’s Park and the respective LU station from the temperature observation at St. 

James’s Park weather station as follows: 

𝑡𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑆𝑡.𝐽𝑎𝑚𝑒𝑠 − (2.1 − 𝑈𝐻𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛), 
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where 𝑡𝑠𝑡𝑎𝑡𝑖𝑜𝑛  is the extrapolated temperature at the LU station, 𝑡𝑆𝑡.𝐽𝑎𝑚𝑒𝑠  is the observed 

temperature at St. James’s Park weather station, and 𝑈𝐻𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛 is the UHI index of the grid 

square that the LU station is located. 

 

Figure 3.5 The UrbClim UHI index for London used in this study, in the context of the LU network and all stations 

There are also 18 LU stations outside of the UHI index map. Referring to the interactive map 

of London available at the Urban Climate Service Centre (which extends beyond the boundaries 

of Figure 3.5 for a single summer), these 18 stations UHI intensity values do not deviate far 

from neighbouring stations within the boundaries. The inference for these stations is therefore 

to use the same UHI intensity of the nearest station on its respective operating line within the 

boundary of Figure 3.5. 

To validate this approach, 20 sampled daily 𝑡𝑚𝑒𝑎𝑛  values from Kew Gardens and Northolt 

weather station observations within the study period were compared with derived daily 
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𝑡𝑚𝑒𝑎𝑛 calculated using the UHI extrapolation from the previous equation. In this case, 𝑡𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

is the extrapolated temperature at the respective weather station, 𝑡𝑆𝑡.𝐽𝑎𝑚𝑒𝑠 remains the observed 

temperature at St. James’s Park weather station, and 𝑈𝐻𝐼𝑠𝑡𝑎𝑡𝑖𝑜𝑛 is the UHI index of the grid 

square that the weather station is located. As the UHI index at Kew Gardens is +1.1℃ and for 

Northolt it is +0.1℃, using St. James’s Park observations would overstate temperature variables, 

as the sampled weather station 𝑡𝑚𝑒𝑎𝑛 showed that both Kew Gardens and Northolt were on 

average 0.9℃ lower than at St. James’s Park. Using the UHI index calculation for the 20 

randomly sampled days, the resulting daily 𝑡𝑚𝑒𝑎𝑛 values for Kew Gardens and Northolt were 

on average 0.6℃ lower than daily 𝑡𝑚𝑒𝑎𝑛 derived from weather station observations, with a 

standard deviation of 0.8℃. The UHI calculation was more accurate at Kew Gardens where the 

difference was -0.1℃ on average compared with -1.1℃ at Northolt. Overall, the UHI 

calculation adjusted the 𝑡𝑚𝑒𝑎𝑛  at Kew Gardens and Northolt to align more closely (albeit 

slightly lower in some cases) to its respective weather station. 

3.2.2.3. Tunnel platform temperature observations 

Since 2006, TfL have been recording temperature and relative humidity within the tunnel and 

sub-surface parts of the LU network using Tinytag TGP-4500 data loggers (Tinytag, 2019). The 

loggers are positioned across station areas such as platforms, concourses, and ticket halls. This 

study only used loggers positioned on the station platforms. These are mounted securely to the 

platform wall, one metre above platform floor, at the tail end of each platform. Data from the 

other loggers located on concourses and ticket halls, were not required for this study of tunnel 

temperatures, and were removed from the data prior to analysis, leaving one logger used per 

station platform. The loggers across the network collect the hourly mean, minimum and 

maximum temperature, and relative humidity per hour. The temperature observation resolution 
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is at 0.01℃ and accuracy is around or slightly below ±0.5℃, and most accurate between 20-

30℃, shown in Figure 3.6.  

The accuracy of temperature on the Tinytag loggers is important as LU tunnel temperature 

ranges are smaller than the surface. While the accuracy of observations at St. James’s Park 

weather station are slightly better, more loggers across the LU network are necessary to capture 

the variance in temperature across the network. Therefore, the deployment of cost-effective 

sensors by TfL ensures conformity across the station platform observations, though at the 

expense of slightly less accurate measurements. Nevertheless, station platform observations 

across the LU network typically fall within the range where the loggers’ accuracy is best, so the 

readings they capture are considered suitable for the purposes of this study. 

 

Figure 3.6 Temperature observation accuracy of the Tinytag loggers used across the LU tunnel station platforms (Source: 

Tinytag, 2019) 

3.2.3. LU asset fault data 

TfL provided internal data on assets and faults maintenance for this study. These data provided 

were a database of asset information, and a database comprising a log of any corrective or 

reactive maintenance or repair work to LU assets, known as work orders (WOs; also defined 

interchangeably as faults throughout this study). Corrective maintenance work is defined by 
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TfL as “faults that you find”, typically identified through other maintenance activity and then 

repaired outside of routine servicing, whereas reactive maintenance work is defined as “faults 

that find you”, in that they are service disruptions identified while equipment is in operation 

(TfL, 2022c). These data originate from two asset management systems, Ellipse and Metro 

Maximo, because of the public-private partnership contracts for maintenance on different LU 

lines in place prior to TfL taking responsibility of the LU network in 2003. Each system 

contains similar information, and Table 3.3 shows which system each LU line uses. 

Table 3.3 Asset management system used for each LU line at TfL within the study period 

LU line Asset management system 

Bakerloo Ellipse 

Central Ellipse 

Circle Ellipse 

District Ellipse 

Hammersmith & City Ellipse 

Jubilee Metro Maximo 

Metropolitan Ellipse 

Northern Metro Maximo 

Piccadilly Metro Maximo 

Victoria Ellipse 

Waterloo & City Ellipse 

3.2.3.1. Study asset group 

This study considers the asset subgroups of points and train stops, with the details shown in 

Table 3.1. Points are track junctions, (see Figure 2.3), and train stops, also known as trip stops 

or tripcocks are devices on tracks that automatically stop a train if necessary. These assets were 

selected because they are an intersection between signalling and track assets, which are both 

vulnerable to operational failure under high temperatures across the LU network (Greenham et 

al., 2020) and the wider, national railway network (Ferranti et al., 2016). It was also the asset 
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group suggested by TfL for this study following consultation with them. These asset subgroups 

are also suitable for spatial analysis for the asset location is fixed and identifiable. Figure 3.7 

shows the asset hierarchies of Ellipse and Maximo. While there are differences in descriptions 

at asset level, the broader groupings are similar, implying both systems capture the same assets 

and therefore can be combined for aggregated analysis. 

 

Figure 3.7 Hierarchy structure of point and train stop asset groups by asset management system analysed in this study 
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3.2.3.2. Pre-processing and quality assurance 

Pre-processing was required before conducting any analysis with the fault and asset data. 

Additional information from the asset database were joined to the WO database to group data 

for analysis. The additional information is outlined in Table 3.4. These were combined by 

matching equipment codes in the WO database with corresponding parent or child codes in the 

asset database. 

Table 3.4 Additional information added to Ellipse and Maximo equipment data to conduct the analysis of this study 

Information Inclusion method 

Nearest LU 

station 

Referencing the distance of the asset in meterage of its 

respective location coding system (LCS) identifier code in the 

equipment database to the full survey length of the LCS in 

metres in the LCS master file 

Direction 
Identifier within LCS code in the equipment database (e.g., 
D242/DEBLO = eastbound; D242/DWBLO = westbound) 

Road type 
Referencing the LCS code in the equipment database to the road 

type in the LCS master file 

Network type 
Inferred from nearest LU station and road type, sense-checked 

via map (Figure 3.2) 

There were quality assurance checks conducted on the asset data before commencing analysis, 

especially as the Ellipse and Maximo systems have different structures. There were 12507 point 

and train stop assets in the asset database provided, each with an individual equipment code. 

980 assets were not operational or in service from the database collation date. However, when 

reviewing the WO data, there were WOs raised against assets that were previously operational. 

Therefore, this study retained these assets in the database for fault exposure rate analysis (see 

Section 3.4). However, when classifying the asset’s network type in accordance with road type, 



 

76 

  

567 assets were unclassifiable, this left a final count of 11940 assets used in this analysis: 8562 

on the surface, 1188 across the sub-surface, and 2190 with in the deep tube tunnels. 

Additional sense-checking of the combined database was also conducted. These were primarily 

manual spatial checks and adjustments to entries to ensure each WO correctly linked to its 

location. Checks included: 

• Filtering by LU line to validate the LU stations and direction of travel. 

• Filtering by each network type to validate the LU line. 

• Filtering by key identifier text string sections of LCS to validate direction of travel and 

LU line. 

3.2.4. Climate projections 

The UK Met Office provides data on climate projections. The most recent UK climate 

projections launched in 2018 (UKCP18) and are available via free registration through the UK 

Climate Projections User Interface (Met Office, 2018c). A range of products is available for 

temperature projections up to the year 2100, described in Table 3.5. The following sections 

describe and justify the selected climate projection data parameters. 
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Table 3.5 Descriptions of the available UKCP18 climate projection products for temperature variables (Source: Met Office, 

2019d) 

Product 
Spatial 

resolution 
RCP scenarios 

Temporal 

resolution 

Probabilistic 

projections 
25km 

RCP 2.6, RCP 4.5, 

RCP 6.0, RCP 8.5 

Monthly, 

seasonal, annual 

Global 

projections 
60km RCP 2.6, RCP 8.5 

Daily, monthly, 

seasonal, annual 

Regional 

projections 
12km RCP 8.5 

Daily, monthly, 

seasonal, annual 

Local 

projections 
2.2km RCP 8.5 

Hourly, monthly, 

seasonal, annual 

Derived 

projections 
60km RCP 2.6 Daily, monthly 

3.2.4.1. Climate variables and time slices 

This study obtained monthly temperature anomalies (minimum, mean and maximum), at 1.5m 

for probabilistic projections at a 25km resolution for the administrative boundary of Greater 

London. The probabilistic projections were selected as they account for the range of emissions 

scenarios in accordance with the IPCC AR5 and address the scenarios relevant to TfL and their 

adaptation planning in Section 3.2.4.3. The monthly temperature anomalies are available in 30-

decadal time slices, representative of the median decade within the time slice e.g., the 2040-

2069 time slice is representative of the 2050s. This study obtained data for all decadal time 

slides, but analysis focuses on the 2050s and the 2080s to provide a medium- and long-term 

outlook. 

3.2.4.2. Baseline scenario 

UKCP18 climate anomalies derive from three baselines (1961-1990, 1981-2000, and 1981-

2010). Detailed in Table 3.1, this study used the 1981-2010 baseline in line with the State of 
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the UK Climate reports and the World Meteorological Organisation (WMO) use it as the 

standard (Met Office, 2018c), as the 1981-2010 baseline is representative of the present 

environment (WMO, 2017). Baseline data was obtained via the UKCP User Interface, which 

was added in April 2022 (Met Office, 2023b). 

3.2.4.3. RCPs and probabilistic scenarios 

This study used the RCP 6.0 and RCP 8.5 scenarios to estimate change in future thermal 

environment and trends in fault-temperature relationships. Network Rail consider these two 

scenarios as essential for future planning, and TfL use the same scenarios (TfL, 2021b). RCP 

6.0 is a compromise between likely emissions reductions as a result of the Paris Agreement 

(UNFCCC, 2015) and the current observed emissions and RCP 8.5 exemplifies extreme climate 

impacts should emissions reductions not be realised (Dale et al., 2018). Therefore, these 

scenarios are utilised for impact assessments, asset/project design and activity planning 

(Network Rail, 2021a), whereby RCP 6.0 is the baseline scenario for decision-making and RCP 

8.5 is used as a sensitivity test on assets with a lifespan beyond 2050, as reported in Network 

Rail’s Route Weather Resilience and Climate Change Adaptation (WRCCA) plans (Network 

Rail, 2020). 

UKCP18 provides outputs in data, maps, and graph format. As numerous model runs comprise 

the projections and uncertainties increase over time, derived percentile projections are 

obtainable, and these are used in the resulting products. For example, the probabilistic map 

products show a lower (10th) percentile, central estimate (50th percentile) and upper (90th) 

percentile. This study selected derived 90th percentile anomalies from both RCPs as its 

probability range aligns with Network Rail’s priority on safety (Dale et al., 2018), thus also 

relevant for TfL. 
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The pathway of future emissions will have implications on future policy and decision-making, 

particularly on that basis that adaptation and resilience strategies are oriented around ‘worst 

case’ scenarios, but it may lead to overestimating risks (Arnell et al., 2021). Therefore, applying 

the 90th percentile to both RCP 6.0 and RCP 8.5 will differentiate the impacts in the two ‘worst 

case’ scenarios, particularly when their pathways diverge in the latter half of the 21st Century, 

illustrated in Figure 3.8. This deviation over time emphasises the importance of iterative 

reviews of adaptation planning to assess the climate trajectory in case changes in plans are 

necessary. 

 

Figure 3.8 Estimated mean global surface temperature change according to each emissions scenario. RCP 8.5 is in red and 

RCP 6.0 is in orange, showing the divergence in temperature change between the scenarios during the 21st Century (Source: 

IPCC, 2013) 

3.2.4.4. Projection data sampling 

The UKCP18 probabilistic projections comprise 3000 projections using over 100 simulations 

from two computer models; the Coupled Model Inter-comparison Project Phase 5 (CMIP5) and 

the Met Office Hadley Centre’s global climate model (HadGEM3-GC3.05) (Lowe et al., 2019). 

These 3000 projections generate a distribution of projected climate variables for each RCP and 
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time slice. This study obtained a random sample of 999 of the 3000 projections. This sample 

size was taken on the basis that a 33% sample of data would be a reasonable representation of 

the projection data while also limiting the likelihood of capturing outliers generated from the 

ensemble. The UKCP18 User Interface generated the random samples, which vary for each 

combination of month, time slice and RCP. 

3.2.4.5. Selected projection data 

Figure 3.9 illustrates the selected monthly projection data for this study across every decadal 

time slice. The solid lines blue and orange lines show the mean values and shaded areas show 

two standard deviations of the sampled data. The grey dashed lines show the 90th percentile, 

which is where the 2050s and 2080s values came from for study’s analysis. 
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Figure 3.9 Distribution of climate projection data of temperature anomalies for minimum monthly temperature (top), mean 

monthly temperature (middle), and maximum monthly temperature (bottom) for RCPs 6.0 (left) and 8.5 (right) (Data: Met 

Office, 2018c) 

Both emissions scenarios have similar trends across each temperature variable. Additionally, 

they show seasonal variability over time, with peak anomalies and standard deviations during 

the winter and summer months. The difference in projection values between the two scenarios 

widens over time, particularly after the 2050s. Figure 3.9 emphasises the importance of 

accounting for both scenarios because while the longer-term trends are similar, differences in 
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values between both RCPs and their temporal variability by month could affect the outcomes 

in the later stages of analysis. 

3.3. Analysis of thermal environment 

Having collected all the data for this study, the first section of analysis was conducted, which 

was to analyse the thermal environment across the LU network. A variety of statistical methods 

was conducted in this analysis, which are summarised in this section, comprising two 

approaches. Firstly, this study considers key descriptive statistics that represent temporal and 

spatial characteristics across the LU network to ascertain general trends and anomalies. 

Secondly, this study undertakes a more detailed analysis of the thermal characteristics of tunnel 

temperatures. The relationship between surface temperature and tunnel temperature is complex 

and warrants the development of a tunnel temperature estimation model that quantitatively 

characterises on a more micro-scale (relative to the LU network) the spatial and temporal tunnel 

temperature characteristics. The model support later-stage analysis; estimating tunnel 

temperatures under future climate conditions in Section 3.5. The results of this analysis are 

presented in Chapter Four. 

3.3.1. Descriptive statistics 

To capture the thermal characteristics of the LU network, this study transformed hourly 

temperature observations compiled for this study into four daily temperature variables, mean 

temperature (𝑡𝑚𝑒𝑎𝑛), maximum temperature (𝑡𝑚𝑎𝑥), minimum temperature (𝑡𝑚𝑖𝑛), and diurnal 

temperature range (∆𝑡). These are the principal descriptive statistics applied to weather station 

data, tunnel temperature data and future climate scenarios, discussed in more detail in Section 

3.3.1.1. 
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3.3.1.1. Key temperature variables  

Daily 𝑡𝑚𝑒𝑎𝑛  were calculated for each location (i.e., St. James’s Park weather station; each 

station platform Tinytag logger) as: 

 𝑡𝑚𝑒𝑎𝑛 = 
∑ 𝑡

𝑛
, where: 

∑ 𝑡 = sum of all hourly temperature observations, from 00:00 to 23:00 inclusive 

𝑛 = number of observations. 

Then, daily 𝑡𝑚𝑖𝑛  and 𝑡𝑚𝑎𝑥  were identified for each location, as the lowest and highest 

observations per day between 00:00 and 23:00 inclusive. Finally, ∆𝑡 was calculated as daily 

𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛. Resulting daily variables were compiled for the full study period. 

3.3.1.2. Climate thresholds 

Climate thresholds are useful as there is no single definition of a weather or climate extreme 

(Met Office, 2018b). The Met Office refers to several indices related to surface temperature in 

the context of the UK climate (Met Office, 2018b, 2022e), shown in Table 3.6. These indices 

originate from the Expert Team on Climate Change Detection and Indices, who defined 27 

metrics to objectively measure and characterise climate variability and change (ETCCDI, 2009). 

The exception is the hot day threshold, which was added by the Author to differentiate between 

heatwave days and days that also reach similar temperatures but not for an extended period. 

This study uses London-wide climatic thresholds for surface temperature, calculated using 

measurements from St. James’s Park Met Office weather station to calculate the number of days 

that exceed each threshold for the study period. 
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Table 3.6 Key climate thresholds for temperature used in this study 

Climate threshold Definition 

Warm nights 
Days where daily surface 𝑡𝑚𝑖𝑛 is above the 90th percentile centred on a 

five-day window for the baseline period (Met Office, 2018b)* 

Warm days 
Days where daily surface 𝑡𝑚𝑎𝑥 is above the 90th percentile centred on a 

five-day window for the baseline period (Met Office, 2018b)* 

Warm spell duration 

index (WSDI) days 

Annual count of days with at least six consecutive days where daily 

surface 𝑡𝑚𝑎𝑥 is above the 90th percentile as above (Met Office, 2018b)* 

Summer days No. of days daily surface 𝑡𝑚𝑎𝑥 > 25℃ (Met Office, 2018b) 

Hot days No. of days daily surface 𝑡𝑚𝑎𝑥 > 28℃ 

Heatwave days 
Days where daily surface 𝑡𝑚𝑎𝑥 > 28℃ for at least three consecutive days 

(Met Office, 2022e) 

Tropical nights No. of days daily surface 𝑡𝑚𝑖𝑛 > 20℃ (Met Office, 2018b) 

* The Met Office baseline period is 1961-1990. However, for the purpose of this study, the baseline is from UKCP18 observed 

monthly data for the baseline period 1981-2010 for the administrative region of London. 

In Table 3.6, the first three indices (warm nights, warm days, WSDI days) are calculated from 

baseline data, which for this study used 1981-2010 (see Table 3.1). However, the climate 

thresholds are a daily index whereas the baseline data is monthly. 90th percentiles were therefore 

calculated for each month, with a five-day rolling average to adjust the temperature for the days 

around the start and the end of each month. 

3.3.2. Tunnel temperature estimation model 

Tunnel temperatures on the LU network are often higher than the surface, as discussed in 

Section 1.1.2 and 1.3.2. It is important to understand how the tunnel temperatures respond to 

surface temperature change in the short- and long-term. Developing a tunnel temperature 

estimation model therefore served three purposes for this study. Firstly, it spatially and 

temporally quantified the relationship between daily temperature variables by tunnel station 
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platform. Secondly, it provided estimated temperature values to address tunnel station platform 

data observation gaps (see Table 3.1), maximising the WO data joined to temperature variables 

for the fault exposure rate analysis. Finally, under a changing climate, it will be important to 

understand how the thermal environment in tunnels may change long-term and the implications 

for LU operations, as well as health and safety of staff and customers. As UKCP18 projections 

only consider surface temperature, the model enabled a conversion into projected tunnel 

temperatures across the LU network. 

3.3.2.1. The model 

This study adapts a model designed by Kimura et al. (2018) and applies it in a new context. 

The original purpose of the model was to explore historical differences between the outputs of 

subway environment simulation (SES) tools and temperature observations, which often led to 

equipment overdesign. Evaluating the methodology identified unrealised benefits of the model 

for the purpose of this study, as it also uses daily temperature variables. 

A particular element of the model designed by Kimura et al. is that it does not factor geology. 

This is because past SES models resulted in the design of equipment with excessive capacities 

due to not capturing change in environmental conditions since their development. Geology can 

also be omitted as a factor for this adaptation of the model for London.  The LU tunnel network 

is almost entirely cut through London clay (see Section 1.1.2), which is highly impermeable. 

Thus, elevated ground temperatures are localised around the tunnels, as groundwater cannot 

pass through to transfer heat (Bidarmaghz et al., 2020). Inferring that geology as a heat sink is 

not a significant factor affecting present-day LU tunnel temperatures, which remain relatively 

constant, it is reasonable to apply this model for this study. 
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The model relies on using the following equation to predict tunnel temperatures by using 

surface temperature: 

𝑇𝑟(𝑡) = (𝑇𝑜𝑎 + 𝑎) + {𝑇𝑜𝑥(𝑡 − 𝑡𝑑) − 𝑇𝑜𝑎} × 𝑏, where: 

𝑇𝑟(𝑡) = Predicted mean daily tunnel temperature (𝑡𝑚𝑒𝑎𝑛), ℃  

𝑇𝑜𝑎 = Mean surface temperature of all 𝑡𝑚𝑒𝑎𝑛 observations for the time interval, ℃ 

𝑎 = Mean temperature uplift (difference in observed surface and tunnel 𝑇𝑜𝑎), ℃ 

𝑡 = Time, days 

𝑡𝑑 = Time lag delay, days 

𝑇𝑜𝑥 = Observed mean daily surface temperature (𝑡𝑚𝑒𝑎𝑛), ℃ 

𝑏 = Scaling coefficient (ratio of range in observed surface 𝑡𝑚𝑒𝑎𝑛 and tunnel 𝑡𝑚𝑒𝑎𝑛) 

Figure 3.10 illustrates the parameters of the equation. It requires past surface and tunnel 

temperature observations to extrapolate future tunnel temperatures. It also required data from 

at least one annual cycle to capture seasonal temperature fluctuation and yearlong means. 

Therefore, it used the surface and tunnel temperature observations as well as baseline and 

climate projection data described in Table 3.1 Details of data used for this study produced two 

sets of tunnel temperature estimations. Firstly, it produced daily 𝑡𝑚𝑒𝑎𝑛,  𝑡𝑚𝑎𝑥  and 𝑡𝑚𝑖𝑛 

estimates per station tunnel platform using the surface temperature data for the study (described 

in this Section), producing the equation variables to estimate tunnel temperatures where there 

were observations gaps within the study period. Secondly, the model produced the baseline and 

estimated future tunnel temperatures across each climate projection scenario using these 

equation variables (see Section 3.5.1.2). 
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Figure 3.10 Parameters of the tunnel temperature estimation model equation (Adapted from: Kimura et al., 2018) 

3.3.2.2. Applying the model 

Using the equation, 𝑎, 𝑏 and 𝑡𝑑values were obtained for each LU station platform. Firstly, 𝑡𝑑 

were identified by cross correlating the 7-day rolling surface 𝑡𝑚𝑒𝑎𝑛  with the 7-day rolling 

tunnel 𝑡𝑚𝑒𝑎𝑛. Using a 7-day rolling average as per Kimura et al. (2018) means that outliers are 

less likely to affect the cross-correlation and thus overall correlations are clearer. The selected 

value for each location’s respective 𝑡𝑑  is that with the largest cross-correlation coefficient. 

Code was designed in RStudio to apply the model, with sample code available in the 

Appendices (Appendix B). 

In some instances, 𝑡𝑑 was anomalously high. Further investigation of these instances showed 

that when graphing the cross correlation, they were often characterised by a “wave” of cross 

correlation coefficient peaks over time. This is not typical, as most cross correlations in this 

study had one distinct peak coefficient. For the anomalous readings, the 𝑡𝑑 selected was the 

first peak closest to 𝑡𝑑 = 0, such as that shown in Figure 3.11. Nevertheless, this was not 

possible to determine at some station platforms so the original 𝑡𝑑 was retained. 
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Figure 3.11 Examples of the differences in cross correlation trends by platform. A typical cross correlation for this study is on 

the left, whereas an anomalous cross correlation is on the right. The red arrow indicates the value of 𝑡𝑑 with the highest cross 

correlation coefficient reported by the code script used for this analysis, whereas the green arrow indicates the peak closest to 

𝑡𝑑 = 0; the value selected for this platform upon further investigation 

Kimura et al. (2018) derived 𝑎 and 𝑏 variables from logarithmic approximation, using tunnel 

length as a parameter. This is because other parameters such as train frequency and type of 

tunnel (single or double track) showed little variance across their study areas. However, 

parameters such as train frequency may have a greater moderating effect on the LU network 

(see Section 1.3.2) compared with subways in Japan – who introduced cooling systems in both 

tunnels and trains, such as on the Tokyo Metro after 1971 (Golany and Ojima, 1996). Therefore, 

to ascertain the values of 𝑎 and 𝑏 for the LU network more accurately, the model equation was 

converted into a linear form, where 𝑇𝑟(𝑡) = observed platform temperature, to solve for 𝑎 and 

𝑏 as per the following equation: 

𝑇𝑟(𝑡) − 𝑇𝑜𝑎 = {𝑇𝑜𝑥(𝑡 − 𝑡𝑑) − 𝑇𝑜𝑎} × 𝑏 + 𝑎. 

Figure 3.12 shows an example of balancing the converted equation using data at one station 

platform. The linear regression of 𝑇𝑟(𝑡) − 𝑇𝑜𝑎  against 𝑇𝑜𝑥(𝑡 − 𝑡𝑑) − 𝑇𝑜𝑎  for each location 

provided the values of 𝑎 and 𝑏 simultaneously in the trend line, where 𝑎 is the 𝑦-intercept and 
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𝑏  is the gradient. All equation variables per LU station platform for the study period are 

available in the Appendices (Appendix C). 

 

Figure 3.12 Scatterplot of sample data (Covent Garden station, Piccadilly line, westbound platform, 2015-2016) showing 

how to identify 𝑎 and 𝑏 values of the tunnel model. 

The tunnel temperature estimation model process was repeated for daily 𝑡𝑚𝑖𝑛  and 𝑡𝑚𝑎𝑥 . 

Estimating 𝑡𝑚𝑎𝑥 is particularly important as peak temperatures form part of the LU standard on 

managing tunnel heat and ventilation in public areas (TfL, 2016a). This would use the same 

equation as 𝑡𝑚𝑒𝑎𝑛, but changing the variables to 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥. To determine estimated ∆𝑡, 

estimated 𝑡𝑚𝑖𝑛 was subtracted from estimated 𝑡𝑚𝑎𝑥. 

3.3.2.3. Model validation 

Estimated and observed temperatures were compared through linear regression and evaluated 

via the regression coefficients, to determine the accuracy of the model compared to tunnel 

temperature observations. The results were reported collectively per LU tunnel (e.g., Bakerloo 

NB) for each temperature variable. 
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3.4. Fault exposure rate analysis 

The study analyses the relationship between faults and temperature variables using a similar 

approach to Fisher (2020) and Greenham et al. (2020). Key temperature variables were joined 

to fault data; matched by date. RStudio was utilised to join the data, and sample code is shown 

in the Appendices (Appendix D). Estimated temperature variables derived from the tunnel 

temperature estimation model were then joined where there were any gaps in observed 

temperatures across the WO data. The combined data were then aggregated in different ways 

to identify trends in faults per temperature bin as a fault exposure rate. The results of the 

analysis described within this section are presented in Chapter Five. 

3.4.1. Calculating the fault exposure rate 

To gain an equitable understanding of the relationships between temperature and faults across 

the LU network, data required normalising to create fault exposure rates. This is primarily 

because of the temperature variance across the network at any given time and the differences 

in asset distribution. The fault exposure rate calculation used in this study can be expressed as: 

Fault exposure rate 𝑡𝑛  = (
∑ work orders 𝑡𝑛

∑ temperature exposure frequency 𝑡𝑛
) Assets𝑛⁄ , where: 

𝑡𝑛 = the temperature bin per respective part of the LU network by LU line and network type, 

∑ work orders 𝑡𝑛 = the sum of work orders at temperature 𝑡𝑛 per LU station, 

∑ temperature exposure frequency 𝑡𝑛 = the sum of days at temperature 𝑡𝑛 per LU station, 

Assets𝑛 = the number of assets recorded per respective part of the LU network by LU line and 

network type. 
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Temperature exposure frequencies and WOs were tabulated for each temperature bin per LU 

station, LU line, direction of travel, and network type. These two variables were divided, the 

resulting values summed, and then divided by the total number of assets for the respective part 

of the LU network. For example, the frequency of WOs near a station when daily 𝑡𝑚𝑎𝑥 = 22℃ 

is divided by the count of days in the study period that the station experienced a daily 𝑡𝑚𝑎𝑥 of 

22℃. The same calculation was then conducted for all LU stations across the LU line and 

network type, for all temperature bins. The rates for each station were summed per temperature 

bin, then divided by the asset count for the LU line and network type. The resulting values per 

temperature bin were then plotted as line graphs. 

3.4.2. Identifying trends in the fault exposure rates 

The fault exposure rate line graphs also included additional statistics to help identify trends. 

These line graphs also include the mean fault exposure rate of all data reported in the graph, 

and two standard deviations of that mean. Each graph also included a lower bound line, 

calculated as 1 divided by the total occurrences of the temperature observations across the 

reported data. The lower bound highlighted infrequent temperature occurrences, that may 

otherwise affect the reliability of the fault exposure rates at that temperature bin. 

3.4.3. Determining temperature thresholds 

Determining the statistical significance of the relationship between fault exposure rates and 

temperature involved a form of threshold analysis. This approach was selected as temperature 

thresholds are the key driver of TfL’s extreme weather response planning (i.e., Hot Weather 

Plan; Winter Weather Contingency Plan). Standard deviations of the mean fault exposure rate 

of all data in each line graph were used to determine thresholds, and to initiate further discussion 



 

92 

  

into the data behind the fault exposure rates exceeding these thresholds. Fault exposure rates 

exceeded the one standard deviation were determined statistically significant and those 

exceeding two standard deviations were very statistically significant (Fisher, 2020). Results 

discussion also took the lower bound into account if statistically significant peaks in the fault 

exposure rate were affected by it. 

3.5. Analysis of climate projections 

This study projected future temperatures across the LU network by using UKCP18 climate 

projections, and then used these to estimate change in faults in the future. Two stages of analysis 

were undertaken. Firstly, the UKCP18 climate projections selected for this study (RCP 6.0 and 

RCP 8.5; 2050s and 2080s; 90th percentile) required transforming from their anomaly values 

into actual values from the 1981-2010 baseline, which could then also be applied into the tunnel 

temperature estimation model to compare the rate of change of present-day thermal 

environment with the future climate scenarios. Secondly, the climate projection data required 

transforming from monthly values into a form of estimated days per year for each future climate 

scenario, forming an annual estimated temperature exposure frequency. Then, estimated future 

faults were inferred from the fault exposure rates, using the resulting temperature exposure 

frequencies. Results from this section are presented in Chapter Six. 

3.5.1. Projected change in thermal environment 

Given the emphasis on conducting analyses by network type, was also important to differentiate 

the future thermal environments as such. This was conducted in two ways: future surface 

temperatures were derived directly from UKCP18 data, while future sub-surface and deep tube 
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tunnel temperature were estimated via the tunnel temperature estimation model, with inputs 

also from the UKCP18 data. 

3.5.1.1. Future surface temperatures 

Baseline data were added to the anomaly data for each scenario obtained in Figure 3.9 to provide 

the estimated monthly temperature variables. To convert the monthly estimated values into 

estimated daily values, the monthly relative standard deviations per baseline month for the full 

baseline time interval were calculated. Relative standard deviations were applied to the 

projected 90th percentile monthly values to estimate future absolute standard deviations. By 

using a normal distribution function with the absolute standard deviations, it was possible to 

determine a temperature distribution in percentage terms per month for each scenario. These 

percentages could then be converted into estimated days per month, then summed to give an 

estimated annual temperature frequency exposure per 1℃ temperature bin in each scenario. 

UKCP18 climate projections provide only a single value for Greater London. This is analogous 

to the single daily temperature value used from St. James’s Park in Section 3.2.2.1. To gauge 

an understanding of the spatial variance in climate projections of heat, the UHI index was 

utilised. The mean UHI for the Greater London administrative boundary was inferred as the 

UHI intensity of UKCP18 climate projection values for Greater London. The mean UHI index 

was compared with the total surface LU station UHI index distribution. This indicated the 

proportion of surface LU stations likely to estimate higher or lower temperatures than the single 

Greater London projection value, which could in turn affect future estimated faults. However, 

these findings remain as a reference for discussion and are not integrated into the analysis, as 

they would add further additional unknown and uncontrolled variables to the analysis. 
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3.5.1.2. Future sub-surface and deep tube tunnel temperatures 

To project tunnel temperatures at station platforms across the LU network, the tunnel 

temperature estimation model converted projections from surface temperatures to estimated 

tunnel temperatures. The same model is used from Section 3.3.2.1, but omitted 𝑡𝑑 . For 

projection estimates, 𝑡𝑑  was omitted because the temporal scale of climate projection data 

(monthly) was larger than the typical scale of 𝑡𝑑 in the results, which was days. Therefore, in 

the context of monthly scale projections, its effect was assumed negligible. RStudio was utilised 

to conduct the estimations, and sample code is shown in the Appendices (Appendix E). 

3.5.2. Calculating change in work orders under future climate change scenarios 

This study used the future climate projections to investigate how asset failures may change 

under different climate scenarios. A simple theoretical relationship used by Andersson and 

Chapman (2011) and Oslakovic et al. (2013) derived their failure rates which could then be 

extrapolated for future estimated faults as follows: 

Total fault exposure rate for temperature variable 𝑥 ×  Annual number of days per temperature 

variable 𝑥, where: 

𝑥 = one 1℃ temperature bin. 

This required calculating an estimated number of days per year for every temperature bin for 

the baseline and the four projected scenarios used in this study. 



 

95 

  

3.6. Chapter summary 

Having reviewed TfL’s approach to managing temperature across the LU network and the 

literature on measuring asset performance with metrics in Chapter Two, this chapter outlined 

the methodological approach to acquiring, handling, and analysing an extensive array of data 

to evaluate the impacts of heat and climate change upon point and train stop assets across the 

LU network. The methodology accounts for the ways in which derived daily descriptive 

statistics (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑒𝑎𝑛, 𝑡𝑚𝑎𝑥, ∆𝑡) from 13 years of hourly temperature data help characterise the 

thermal environment across the surface, sub-surface and tunnel sections of the LU network; 

determine tunnel temperature via an estimation model to coalesce data gaps in observations; 

and identify the extent of fault exposure rates to temperature. Then, the results from the tunnel 

temperature estimation model and fault temperature relationship analyses were integrated with 

climate projection data to estimate the resulting impacts of change in temperature owed to 

climate change upon point and train stop assets. The following three chapters each present a 

suite of results: Thermal environment (Chapter Four), Fault exposure rates (Chapter Five), and 

Future climate change (Chapter Six). 
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Chapter Four  |  Thermal environment 

4.1. Chapter overview 

Chapter Three detailed the methodological approach to this study. This chapter provides results 

that spatially and temporally describe the present-day climate across the LU network. Firstly, 

Section 4.2 presents the key descriptive statistics of temperature across the LU network by 

network type, using the observational data obtained for this study. Then, the rate of climate 

change in the study period is presented. Next, Section 4.3 addresses the tunnel temperature 

estimation model, to enhance the observed temperature data with estimated values where there 

are data gaps, preparing values for the fault rate analysis and the application of equation 

variables to climate projections. To summarise, Chapter Four provides a comprehensive and 

robust analytical description of the thermal environment across the LU network that can be used 

for reference throughout the analysis. 

4.2. Descriptive statistics 

Descriptive statistics are useful to characterise the thermal environment of the LU network and 

were generated from temperature datasets from 2006 to 2018 from the Met Office weather 

station at St. James’s Park, and station platform temperature loggers across the sub-surface and 

tunnel parts of the LU network. As mentioned in Section 3.2, the results in this section 

highlights intermittent data gaps mentioned previously in Table 3.1. These are primarily in 2007 

(surface) and between late 2012 and early 2013 (sub-surface and tunnel). There are periodical 

data gaps at some station platforms across the sub-surface and tunnel parts of the network, 

affecting the weighting of the descriptive statistics calculated in the following section. 
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4.2.1. Temperature variables 

The thermal environment across the LU network is spatially and temporally variable. When 

grouped by network type, temperature variables differed greatly. Figure 4.1 shows the daily 

𝑡𝑚𝑒𝑎𝑛 over time by LU network type. The tunnels were warmest year-round whereas the sub-

surface was similar to the surface, albeit slightly warmer. The difference in daily 𝑡𝑚𝑒𝑎𝑛 between 

the tunnel and surface/sub-surface was smaller in the summer and greater in the winter. The 

warmest 𝑡𝑚𝑒𝑎𝑛 was in the tunnels during 2006 and 2018, with peak summer daily tunnel 𝑡𝑚𝑒𝑎𝑛 

exceeding 30 ℃ once in 2018. The coldest observations were on the surface, reaching 0℃ in 

early 2010 and early 2018. Tunnel observations rarely fell below 20℃ year-round. 

 

Figure 4.1 7-day rolling average of 𝑡𝑚𝑒𝑎𝑛 observations for each network type of the LU network 

Figure 4.2 shows the difference in 𝑡𝑚𝑖𝑛 by network type. Trends were comparable to 𝑡𝑚𝑒𝑎𝑛; 

however, the sub-surface observations, particularly the summer peaks were higher than the 

corresponding surface observations; oftentimes closer to the tunnel observations. The warmest 

𝑡𝑚𝑖𝑛 across the LU network were also in the tunnels during 2006 and 2018. Some outlier trends 

were apparent in the tunnels in late 2012. This is due to a break in Tinytag data collection until 

late January 2013 at all platforms except for two on the Northern line in the northbound 
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direction (Belsize Park and Tottenham Hale), skewing the results shown (upweighted from few 

observations). 

 

Figure 4.2 7-day rolling average of 𝑡𝑚𝑖𝑛 observations for each network type of the LU network 

Figure 4.3 shows the difference in 𝑡𝑚𝑎𝑥 by network type. There is a clear contrast between 

network trends overtime. Most notably, (i) all parts of the network experienced similar peak 

summer temperatures; and (ii) sub-surface observation trends are similar to surface 

observations, albeit slightly warmer during winters. As with 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑖𝑛, the highest 𝑡𝑚𝑎𝑥 

observations were on the surface in 2006 and in the tunnels in 2018. 

 

Figure 4.3 7-day rolling average of 𝑡𝑚𝑎𝑥 observations for each network type of the LU network 
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Figure 4.4 shows diurnal temperature range, (∆𝑡) by network type over time. Tunnel ∆𝑡 was 

very low throughout the year. The sub-surface also observed much lower ∆𝑡 than the surface, 

primarily due to lower range in sub-surface 𝑡𝑚𝑖𝑛. There were also outliers in the tunnel in 2012 

and 2017 as shown in the other variables’ graphs. 

 

Figure 4.4 7-day rolling average of ∆𝑡 observations for each network type of the LU network 

4.2.1.1. Distribution of surface temperature variables 

To further describe the thermal environment, the following sections describe the distribution of 

temperature variables. The surface temperature only considers one location (St. James’s Park 

Met Office weather station), so Figure 4.5 shows the distribution of the four surface temperature 

variables throughout the study period and Table 4.1 shows the key values within the 

distributions. The first three box plots from the left ( 𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑒𝑎𝑛 , 𝑡𝑚𝑎𝑥 ), show similar 

distributions, each with increasing values than the previous temperature variable. However, the 

temperature ranges extend across each of these three variables, and 𝑡𝑚𝑎𝑥  has a higher 

interquartile and upper quartile range, and one outlier temperature. The ∆𝑡 box plot highlights 

the difference in distribution between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 – because the range of 𝑡𝑚𝑎𝑥 is greater than 

𝑡𝑚𝑖𝑛 at higher temperatures, it drives some particularly high observed ∆𝑡. 
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Figure 4.5 Distribution of surface temperature by daily temperature variable based on the observations at St. James’s Park 

weather station for the study period 

 

Table 4.1 Key values of the box plot distributions in Figure 4.5 

Variable 
Temperature 

(℃) 
Date 

Average annual 𝑡𝑚𝑖𝑛 8.7 - 

Lowest daily 𝑡𝑚𝑖𝑛 -5.2 21/12/2010 

Highest daily 𝑡𝑚𝑖𝑛 21.3 26/07/2006 

Average annual 𝑡𝑚𝑒𝑎𝑛 11.9 - 

Lowest daily 𝑡𝑚𝑒𝑎𝑛 -3.2 28/02/2018 

Highest daily 𝑡𝑚𝑒𝑎𝑛 27.7 01/07/2015 

Average annual 𝑡𝑚𝑎𝑥 15.4 - 

Lowest daily 𝑡𝑚𝑎𝑥 -1.3 28/02/2018 

Highest daily 𝑡𝑚𝑎𝑥 34.4 01/07/2015 

Average annual ∆𝑡 6.7 - 

Lowest daily ∆𝑡 0.6 11/02/2015 

Highest daily ∆𝑡 17.2 08/09/2012 

Figure 4.5 also shows several ∆𝑡 outliers. There were 50 outliers of high ∆𝑡 in the study period. 

These outliers are important to consider as they may indicate a signal of change in climate, 

where warm days are extending beyond their normal distribution in the year, which may have 
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implications for asset performance. Figure 4.6 shows when in the year the ∆𝑡 outliers occurred. 

They were mainly during April, though interestingly far fewer during the months before and 

after. Overall, the season with the most anomalies is during the summer (June-August), quickly 

tailing off through the autumn. 

 
Figure 4.6 Distribution of ∆𝑡 outliers throughout the year 

4.2.1.2. Distribution of sub-surface temperature variables 

Sub-surface temperature observations comprise multiple station platforms. Therefore, the 

following results are an aggregation of all station platforms for each direction of travel. Figure 

4.7 shows the distribution of temperature across the platforms for the EB, WB, IR and OR 

directions of the sub-surface part of the network. Table 4.2 shows the key values within the 

distributions. The spread of the 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥  plots are very similar, with all outlier 

observations in colder temperatures, implying that some station platforms are likely more 

exposed to the surface temperature compared to the rest of the LU network. There are also 

greater ranges in all four temperature variables across the EB/WB box plots as opposed to the 

IR/OR ring box plots. This suggests that station platforms along the EB and WB tracks may be 

more exposed to surface temperatures than the IR/OR tracks. 
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Figure 4.7 Distribution of sub-surface temperature by temperature variable based all sub-surface station platform 

observations for the study period. Plots from left to right for each variable: EB, WB, IR, OR 

 

Table 4.2 Key values of the box plot distributions in Figure 4.7 

Variable 
Temperature 

(℃) 
Date Station platform 

Average annual 𝑡𝑚𝑖𝑛 range 15.3 - 16.2 - - 

Lowest daily 𝑡𝑚𝑖𝑛 -3.1 07/01/2009 South Kensington EB 

Highest daily 𝑡𝑚𝑖𝑛 31.0 27/07/2018 Bank WB 

Average annual 𝑡𝑚𝑒𝑎𝑛 17.1 - 18.1 - - 

Lowest daily 𝑡𝑚𝑒𝑎𝑛 -1.4 10/01/2009 South Kensington EB 

Highest daily 𝑡𝑚𝑒𝑎𝑛 31.9 27/07/2018 Bank WB 

Average annual 𝑡𝑚𝑎𝑥 18.4 - 19.6 - - 

Lowest daily 𝑡𝑚𝑎𝑥 -0.1 28/02/2018 Paddington WB 

Highest daily 𝑡𝑚𝑎𝑥 34.8 22/07/2013 Paddington EB 

Average annual ∆𝑡 2.7 - 4.2 - - 

Lowest daily ∆𝑡 0.1 06/07/2009 Bank EB 

Highest daily ∆𝑡 24.0 21/04/2010 Paddington EB 

There were also a large proportion of anomalously high observations of daily ∆𝑡. In the EB and 

WB directions, these were almost entirely owed to the observations recorded at Paddington 

station. Figure 4.8 shows the sub-surface platforms for Paddington station. The anomalies could 
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be explained by the built form, as sunlight can reach the platform from the roof windows. 

Additionally, the natural light on the tracks in the background implies some direct access to the 

surface environment. 

 

Figure 4.8 Paddington sub-surface station platform for the District and Circle lines (Source: McKenna, 2005, CC BY-SA 4.0) 

4.2.1.3. Distribution of deep tube tunnel temperature variables 

The deep tube tunnel temperature observations are also across multiple station platforms, 

therefore the results in this section are aggregations of the station platform data for each LU 

line and direction of travel. Figure 4.9 shows the distribution of each temperature variable by 

LU tunnel and direction of travel while Table 4.3 shows the key values within the distributions. 

The box plots show that temperature ranges across the tunnel parts of the network are higher 

than the rest of the network. Temperatures also vary by LU line, and direction of travel. The 

Bakerloo and Central lines also show distinct differences in lower observed temperature 

variables by direction of travel. The Jubilee line also shows cooler temperatures than the rest of 

the tunnel network, which is perhaps due to its age (see Table 1.1), and the inclusion of platform 

temperature observations on the Jubilee line extension partway through the study period. These 
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particular observations may be responsible for lowering the observed temperature distribution 

as the extension was designed with a greater ventilation capacity (Jones, 1999). There were also 

several outliers across the box plots among all four temperature variables. These are mainly at 

lower temperatures, suggesting that some station platforms are likely to be more exposed to 

surface temperatures. When reviewing the data for each LU tunnel, the anomalies were 

primarily the station platform near one or both tunnel openings. 

       
Figure 4.9 Distribution of tunnel temperature by 𝑡𝑚𝑖𝑛 (a), 𝑡𝑚𝑒𝑎𝑛 (b), 𝑡𝑚𝑎𝑥 (c) and ∆𝑡 (d) based all tunnel station platform 

observations for the study period. The left plot of each LU line is the NB/EB tunnel, and the right plot is the SB/WB tunnel 
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Table 4.3 Key values of the box plot distributions in Figure 4.9. LU line the station platform belongs to is provided as an 

initial in parentheses 

Variable 
Temperature 

(℃) 
Date Station platform 

Average annual 𝑡𝑚𝑖𝑛 range 19.4 - 24.9 - - 

Lowest daily 𝑡𝑚𝑖𝑛 -0.8 01/03/2018 Oval SB (N) 

Highest daily 𝑡𝑚𝑖𝑛 34.9 06/08/2006 Edgware Road SB (B) 

Average annual 𝑡𝑚𝑒𝑎𝑛 21.0 - 26.6 - - 

Lowest daily 𝑡𝑚𝑒𝑎𝑛 1.9 26/12/2010 Shepherd’s Bush EB (C) 

Highest daily 𝑡𝑚𝑒𝑎𝑛 35.9 08/08/2008 Covent Garden WB (P) 

Average annual 𝑡𝑚𝑎𝑥 22.0 - 27.5 - - 

Lowest daily 𝑡𝑚𝑎𝑥 4.3 28/02/2018 Oval SB (N) 

Highest daily 𝑡𝑚𝑎𝑥 38.1 28/07/2006 Bethnal Green EB (C) 

Average annual ∆𝑡 2.4 - 4.0 - - 

Lowest daily ∆𝑡 0.0 Various Various 

Highest daily ∆𝑡 20.3 06/06/2006 Liverpool Street EB (C) 

4.2.2. Climate thresholds 

This study used climate thresholds identify time intervals that were warmer than the 

climatological norm. Table 4.4 shows the number of days per year that exceeded each climate 

threshold (defined in Section 3.3.1.2). Overall, 56% of days within the study period exceeded 

at least one climate threshold. There were substantially more warm nights and warm days per 

year, but there was a large annual variability throughout the study period. However, the WDSI 

index annual range was small, suggesting that extended periods of warm days are similar 

throughout a given year. There were fewer days of the remaining four thresholds, but this was 

expected as they represent the highest observed temperatures which only occur during one part 

of the year. 

These statistics provide insights into key climatic observations during the study period. For 

instance, 2006 and 2018 were overall the warmest years of the study period, and 2018 ranked 

highest combined for all seven climate thresholds. The coolest summers of the study period 
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were in 2007, 2008, 2009 and 2015, as they experienced the least extreme heat events (lowest 

combined rank of summer days, hot days, heatwave days and tropical nights). Furthermore, 

2014 and 2011 had some of the greatest overall warm days and nights, however this did not 

necessarily correlate with a greater exposure in hot days, heatwave events or tropical nights. 

Table 4.4 Number of annual days per climate threshold for the study period. The orange cells indicate years higher than the 

average (mean) number of annual days exceeding each threshold, and the blue cells indicate years lower than the average 

(mean) number of days. Those in the darker shading are the years with the highest and lowest number of days per climate 

threshold. 

Year 
Warm 

nights 

Warm 

days 

WSDI 

days 

Summer 

days 

Hot  

days 

Heatwave 

days 

Tropical 

nights 

2006 216 135 59 38 19 18 3 

2007 182 123 59 5 1 0 0 

2008 167 98 37 14 2 0 0 

2009 191 114 57 18 5 4 0 

2010 138 71 25 22 6 0 0 

2011 189 137 63 20 6 0 0 

2012 167 98 29 22 5 0 1 

2013 148 90 27 28 9 6 0 

2014 225 152 59 24 5 0 0 

2015 181 126 60 16 3 0 1 

2016 195 105 23 24 10 9 0 

2017 200 125 61 22 8 8 0 

2018 202 160 64 51 22 16 2 

Average 
184.7  

(50.6%) 

118.0 

(32.3%) 

47.9 

(13.1%) 

23.4 

(6.4%) 

7.8 

(2.1%) 

4.7 

(1.3%) 

0.5 

(0.1%) 

4.3. Estimating tunnel temperatures 

As mentioned in Section 3.3.2, the tunnel temperature estimation model used throughout this 

study serves two purposes. In this chapter, the descriptive statistics showed data gaps across 

sub-surface and deep tube tunnel temperatures, influencing the weighting of average 
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temperatures by LU network type. As Chapter Five presents results on the relationships between 

WOs and daily temperature variables, the tunnel temperature estimation model addresses the 

gaps following the joining of WOs and temperature observations. The tunnel temperature 

estimation model consequently reduces the number of WOs eliminated from analysis. Secondly, 

as Chapter Six presents results on the effect of future climate change upon the LU network, the 

tunnel temperature estimation model addresses the missing data in estimating future tunnel 

temperatures owed to climate change, by using the equation variables. 

This section provides the results of the tunnel temperature estimation model, using past 

temperature observations from the Met Office St. James’s Park weather station and the station 

platform observations across the LU network. This section presents the three tunnel model 

variables: time lag delay (𝑡𝑑), temperature uplift (𝑎), and scaling coefficient (𝑏)  for 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑒𝑎𝑛 

and 𝑡𝑚𝑎𝑥; by LU line and direction. This includes a regression analysis between observed and 

estimated temperatures. The variables per station platform are reported in the Appendices 

(Appendix C). 

4.3.1.1. Mean daily temperature (𝒕𝒎𝒆𝒂𝒏) 

Figure 4.10 shows the mean and one standard deviation of 𝑡𝑑 across all LU tunnels for 𝑡𝑚𝑒𝑎𝑛. 

In most cases, mean 𝑡𝑑 did not exceed four days, However, there were discrepancies in the 

range of 𝑡𝑑 values across each LU tunnel. The distribution of 𝑡𝑑 was greatest on the Bakerloo 

and Northern lines, particularly in the northbound direction. However, few station platforms 

had a high  𝑡𝑑 (e.g., greater than approximately 5 days) were small (𝑛 = 24). Figure 4.11 shows 

these station platform locations. Many high 𝑡𝑑  values were at interchange stations or near 

curved track, which may be influencing factors – in that a meandering or other nearby tunnel 
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could play a role in a greater delay in subsequent rate of tunnel heat gains or losses compared 

with surface temperature. 

 
Figure 4.10 Mean value of 𝑡𝑚𝑒𝑎𝑛 𝑡𝑑 per LU station platform for the study period, grouped by LU line and direction of travel. 

Error bars indicate one standard deviation 

 
Figure 4.11 Locations of instances across the LU tunnel network where 𝑡𝑚𝑒𝑎𝑛 𝑡𝑑 ≥ 5 days in one or both directions of travel 
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The stations with the highest 𝑡𝑑 were the northernmost stations on the Northern line, in the 

northbound direction: Belsize Park (𝑡𝑑 = 20 days) and Hampstead station (𝑡𝑑 = 21 days). 

These stations are two of the deepest below ground level (36.0m and 58.9m respectively). 

Furthermore, platform access to these stations is via lift or stairs as opposed to escalators, as 

shown in Figure 4.12. There are, however, no discernible trends or similarities among these 

stations across combined characteristics (e.g., tunnel depth, distance in tunnel, track and/or 

station geometry, operational externalities to environment such as train frequency) to 

confidently explain why these locations are outliers. 

 

Figure 4.12 Axonometric drawings of Hampstead station (left) and Belsize Park station (right) (Source: TfL, 2017a) 

Figure 4.13 shows the mean and one standard deviation of the temperature uplift (𝑎) per LU 

line and direction of travel for 𝑡𝑚𝑒𝑎𝑛. 𝑎 was approximately between 9℃ and 14℃ among the 

deep tube tunnels and 5℃ across the sub-surface part of the LU network. The deep tube tunnel 

temperature uplift also did not exceed 16℃, shown across the Bakerloo and Central lines, 

implying a possible upper limit to tunnel temperature uplifts. There were no outliers, thus 

temperature uplifts are broadly constant and stable throughout each LU tunnel. 
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Figure 4.13 Mean value of 𝑡𝑚𝑒𝑎𝑛 𝑎 per LU station platform for the study period, grouped by LU line and direction of travel. 

Error bars indicate one standard deviation 

Figure 4.14 shows the mean and one standard deviation of the scaling coefficient (𝑏) per LU 

tunnel for 𝑡𝑚𝑒𝑎𝑛 . Among the deep tube tunnels, the mean value of 𝑏  was approximately 

between 0.4 and 0.5, indicating that temperature flux over time in the deep tube tunnels was 

approximately half the scale of that observed on the surface. Contrastingly, the mean value of 

𝑏 across the sub-surface part of the LU network was double that of the deep tube tunnels, at 0.8. 

𝑎 and 𝑏 were negatively correlated as expected and describes the intuitive relationship between 

the tunnel environments (e.g., depth, ventilation capacity) and surface temperature. 

 
Figure 4.14 Mean value of 𝑡𝑚𝑒𝑎𝑛 𝑏 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 
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To validate the accuracy of the tunnel temperature model, linear regression was conducted (see 

Section 3.3.2.3), comparing the observations as dependent variables and estimated temperatures 

as independent variables. Table 4.5 shows the regression results and coefficients for 𝑡𝑚𝑒𝑎𝑛 per 

LU tunnel. 

Table 4.5 Regression results from comparing 𝑡𝑚𝑒𝑎𝑛 from the tunnel temperature estimation model outputs with observed 

𝑡𝑚𝑒𝑎𝑛 for the study period 

LU tunnel 𝑹𝟐 𝒃𝟏  𝑺𝑬 (𝒃𝟏) 𝒃𝟎 𝒑 𝑹𝑺𝑬 𝒅𝒇 

Bakerloo NB 0.709 2.528 (0.061) 0.905 <0.001 1.628 65165 

Bakerloo SB 0.780 -0.215 (0.054) 1.008 <0.001 1.752 65090 

Central EB 0.837 0.000 (0.043) 1.000 <0.001 1.670 67586 

Central WB 0.825 0.000 (0.045) 1.000 <0.001 1.598 67962 

Jubilee EB 0.754 0.001 (0.059) 1.000 <0.001 1.774 41877 

Jubilee WB 0.710 -0.126 (0.068) 1.006 <0.001 1.718 41859 

Northern NB 0.746 0.048 (0.035) 0.998 <0.001 1.608 115439 

Northern SB 0.769 -0.019 (0.034) 1.001 <0.001 1.607 154434 

Piccadilly EB 0.813 0.000 (0.041) 1.000 <0.001 1.453 76994 

Piccadilly WB 0.798 0.001 (0.042) 1.000 <0.001 1.578 76628 

Victoria NB 0.587 0.000 (0.077) 1.000 <0.001 2.482 69742 

Victoria SB 0.634 0.000 (0.044) 1.000 <0.001 2.471 69729 

Sub-Surface EB 0.935 -0.092 (0.028) 1.005 <0.001 1.417 29245 

Sub-Surface WB 0.921 0.000 (0.038) 1.000 <0.001 1.501 21085 

Sub-Surface IR 0.872 0.097 (0.036) 0.986 <0.001 1.654 28892 

Sub-Surface OR 0.910 0.000 (0.031) 1.000 <0.001 1.501 33088 

Standard errors are reported in parentheses 

𝑆𝐸 = standard error, 𝑅𝑆𝐸 = residual standard error, 𝑑𝑓 = degrees of freedom 

Firstly, the regression results were statistically very significant across all LU tunnels (𝑝 < 0.001). 

The coefficients of determination (𝑅2) were quite high across the LU network, ranging from 

0.587 (Victoria line NB) and 0.935 (Sub-Surface EB), which indicates that a large proportion 

of the variance for observed 𝑡𝑚𝑒𝑎𝑛 tunnel temperatures, could be explained by the estimated 

𝑡𝑚𝑒𝑎𝑛 tunnel temperatures. 𝑅2 also varied slightly between the LU lines’ directions of travel. 
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For example, the Bakerloo SB 𝑅2 was greater than NB. 𝑅2 was lowest on the Victoria line, 

suggesting that other factors may influence the variance in the tunnel temperatures. For example, 

the Victoria line trains operate more frequently than other LU lines and may therefore generate 

relatively more operational heat, as previously discussed in Section 1.3.2. 

The intercept, or 𝑏1 coefficients of all LU tunnels did not deviate greatly from 0, indicating that 

if the model were to estimate a tunnel platform 𝑡𝑚𝑒𝑎𝑛 of 0℃, the observed temperature was 

likely to also be 0℃. There was, however, one outlier: Bakerloo line NB, which was 

approximately +2.5℃; suggesting that the model may have underestimated 𝑡𝑚𝑒𝑎𝑛 across this 

tunnel. Nevertheless, the standard error of 𝑏1 coefficients were small (< 0.1) for all LU tunnels, 

suggesting that there is confidence in the precision of estimates from this regression analysis. 

Similarly, the slope of the model variables, or 𝑏0 of all LU tunnels did not deviate greatly from 

around 1, implying that the predicted change in the tunnel platform model variables for 𝑡𝑚𝑒𝑎𝑛 

also equated to the same rate of change in the observed tunnel platform 𝑡𝑚𝑒𝑎𝑛. The greatest 

outliers in these results were also across the Bakerloo NB tunnel, where the slope indicates that 

the predicted change in observed tunnel platform 𝑡𝑚𝑒𝑎𝑛 changes at a slightly slower rate than 

the model. 

The residual standard error (𝑅𝑆𝐸) measures how well the regression model fits the dataset. In 

Table 4.2, the 𝑅𝑆𝐸  values varied between 1.42 and 2.48. 𝑅𝑆𝐸  were normally distributed, 

shown in Figure 4.15 and Figure 4.16. Most residual values did not deviate greatly from 0, in 

most cases this was 20-25% of days in the study period. The only LU tunnels with different 

trends were on the Victoria line. They were less normally distributed and less concentrated 

around 0, explaining the higher 𝑅𝑆𝐸. 
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Figure 4.15 Regression residual density plots of 𝑡𝑚𝑒𝑎𝑛 per LU sub-surface direction of travel  



 

114 

  

 

Figure 4.16 Regression residual density plots of 𝑡𝑚𝑒𝑎𝑛 per LU deep tube tunnel  
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4.3.1.2. Maximum daily temperature (𝒕𝒎𝒂𝒙) 

Figure 4.17 shows the mean and one standard deviation of 𝑡𝑑 per LU tunnel for daily 𝑡𝑚𝑎𝑥. 

Compared with 𝑡𝑚𝑒𝑎𝑛, 𝑡𝑑 values were similar. However, they were greatest on the Bakerloo, 

Northern and Victoria lines, particularly in their NB directions. Standard deviations were also 

greatest on these lines and more station platforms reported 𝑡𝑑 > 20 (seven compared with two), 

including those in Figure 4.12. A greater lag in 𝑡𝑚𝑎𝑥 suggests that there is a slower build-up 

and release of higher temperatures and illustrates the potential maximum thermal capacity of 

tunnel walls across the LU network and heat retention within the tunnels. 

 
Figure 4.17 Mean value of 𝑡𝑚𝑎𝑥 𝑡𝑑 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 

Figure 4.18 shows the mean and one standard deviation of 𝑎 per LU tunnel for daily 𝑡𝑚𝑎𝑥. 

Compared with 𝑡𝑚𝑒𝑎𝑛, the mean value of 𝑎 and their distributions across the LU lines were very 

similar, though approximately 2℃ lower. Figure 4.19 is similar, where the mean and one 

standard deviation of 𝑏 per LU tunnel was slightly lower. This may also be indicative of an 

absolute upper thermal limit in tunnel temperatures. 
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Figure 4.18 Mean value of 𝑡𝑚𝑎𝑥 𝑎 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 

 
Figure 4.19 Mean value of 𝑡𝑚𝑎𝑥 𝑏 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 

Table 4.6 shows the linear regression results for observed and estimated daily 𝑡𝑚𝑎𝑥. While all 

results were very statistically significant (𝑝 < 0.001), all LU lines reported slightly lower 𝑅2 

values than 𝑡𝑚𝑒𝑎𝑛 . Therefore, a lower proportion of the variance for observed 𝑡𝑚𝑎𝑥  tunnel 

temperatures were explained by the modelled 𝑡𝑚𝑎𝑥  tunnel temperatures. This suggests that 

other factors beyond surface temperature influenced tunnel 𝑡𝑚𝑎𝑥, though perhaps only by a 

small degree. Furthermore, as these were variations in a daily value, other influencing factors 

may have had a sub-daily effect. The 𝑏1 coefficients did not deviate greatly from 0, although 

most LU tunnels were marginally negative. This means that the model may have very slightly 
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overestimated tunnel 𝑡𝑚𝑎𝑥. For example, if the observed 𝑡𝑚𝑎𝑥 was 0℃, the estimated 𝑡𝑚𝑎𝑥 was 

slightly greater than 0℃. Standard errors of 𝑏1 were slightly greater compared with 𝑡𝑚𝑒𝑎𝑛 , 

although still low, so there is still a sufficient level of confidence in the estimates. The slope 

coefficients (𝑏0) of all LU tunnels also did not deviate greatly from 1, therefore the predicted 

change in observed tunnel platform 𝑡𝑚𝑎𝑥 changed at a proportionate rate to the model. 

Table 4.6 Regression results from comparing 𝑡𝑚𝑎𝑥 from the tunnel temperature estimation model outputs with observed 𝑡𝑚𝑎𝑥 

for the study period 

LU tunnel 𝑹𝟐 𝒃𝟏  𝑺𝑬 (𝒃𝟏) 𝒃𝟎 𝒑 𝑹𝑺𝑬 𝒅𝒇 

Bakerloo NB 0.693 -0.055 (0.072) 1.002 <0.001 1.601 65167 

Bakerloo SB 0.750 0.056 (0.061) 0.998 <0.001 1.791 65090 

Central EB 0.812 -0.013 (0.049) 1.000 <0.001 1.697 67609 

Central WB 0.807 -0.015 (0.050) 1.000 <0.001 1.599 67988 

Jubilee EB 0.731 -0.006 (0.066) 1.000 <0.001 1.812 41876 

Jubilee WB 0.693 0.026 (0.073) 1.000 <0.001 1.724 41860 

Northern NB 0.699 -0.125 (0.041) 1.000 <0.001 1.589 155447 

Northern SB 0.728 -0.010 (0.039) 1.000 <0.001 1.627 154440 

Piccadilly EB 0.778 -0.105 (0.047) 1.004 <0.001 1.466 76997 

Piccadilly WB 0.767 -0.017 (0.049) 1.001 <0.001 1.592 76634 

Victoria NB 0.543 -0.040 (0.089) 1.001 <0.001 2.360 69742 

Victoria SB 0.577 -0.018 (0.082) 1.001 <0.001 2.456 69729 

Sub-Surface EB 0.860 0.752 (0.046) 0.944 <0.001 2.199 29249 

Sub-Surface WB 0.886 -0.187 (0.050) 1.003 <0.001 1.804 21087 

Sub-Surface IR 0.862 0.000 (0.046) 1.000 <0.001 1.758 28891 

Sub-Surface OR 0.881 0.002 (0.039) 1.000 <0.001 1.755 33088 

The 𝑡𝑚𝑎𝑥  𝑅𝑆𝐸  were also similar to 𝑡𝑚𝑒𝑎𝑛 . However, all but three tunnels (Bakerloo NB; 

Victoria NB and SB) reported slight increases in residual standard errors compared with 𝑡𝑚𝑒𝑎𝑛. 

These tunnels exhibit slightly outlier trends throughout the tunnel temperature estimation model, 

so are perhaps affected more by other factors than the surface temperature. 
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4.3.1.3. Minimum daily temperature (𝒕𝒎𝒊𝒏) 

Figure 4.20 shows the mean and one standard deviation of 𝑡𝑑 per LU tunnel for 𝑡𝑚𝑖𝑛. They 

were also similar to 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥, though lower. Four station platforms reported values of 

𝑡𝑑 greater than 5, including Hampstead (𝑡𝑑 = 20) and Belsize Park (𝑡𝑑 = 19) in Figure 4.12.  

Figure 4.21 and Figure 4.22 show the means and one standard deviation of 𝑎 and 𝑏 respectively 

per LU tunnel for 𝑡𝑚𝑖𝑛. The trends are inverse to 𝑡𝑚𝑎𝑥 relative to 𝑡𝑚𝑒𝑎𝑛, where 𝑎 was higher 

and 𝑏 was lower. This quantitatively illustrates the extent that tunnels retained heat even during 

low surface temperatures. 

Table 4.7 shows the linear regression results for all 𝑡𝑚𝑖𝑛. All LU tunnels were also statistically 

very significant (𝑝 < 0.001). However, some of the 𝑅2 values were greater than 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥, 

such as Northern and Victoria lines in both directions. The values of 𝑏1 did not deviate greatly 

from 0, with the highest deviation from both Bakerloo tunnels and the sub-surface (EB and 

WB). Similarly, the values of 𝑏0  did not deviate greatly from 0. The 𝑅𝑆𝐸  increased when 

compared with those reported for 𝑡𝑚𝑒𝑎𝑛  and 𝑡𝑚𝑎𝑥 , varying between 1.80 and 3.06. This 

suggests that the model can estimate tunnel 𝑡𝑚𝑖𝑛 but there is possibly a greater moderating 

effect outside of surface 𝑡𝑚𝑖𝑛 impacting the tunnel 𝑡𝑚𝑖𝑛. 
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Figure 4.20 Mean value of 𝑡𝑚𝑖𝑛 𝑡𝑑 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 

 
Figure 4.21 Mean value of 𝑡𝑚𝑖𝑛 𝑎 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 

 
Figure 4.22 Mean value of 𝑡𝑚𝑖𝑛 𝑏 per LU station platform for the study period, grouped by LU tunnel. Error bars indicate 

one standard deviation 
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Table 4.7 Regression results from comparing 𝑡𝑚𝑖𝑛 from the tunnel temperature estimation model outputs with observed 𝑡𝑚𝑖𝑛 

for the study period 

LU tunnel 𝑹𝟐 𝒃𝟏  𝑺𝑬 (𝒃𝟏) 𝒃𝟎 𝒑 𝑹𝑺𝑬 𝒅𝒇 

Bakerloo NB 0.659 -0.693 (0.072) 1.027 <0.001 2.073 65167 

Bakerloo SB 0.753 -0.409 (0.054) 1.017 <0.001 2.250 65090 

Central EB 0.809 0.000 (0.044) 1.000 <0.001 2.092 67609 

Central WB 0.771 -0.001 (0.050) 1.000 <0.001 2.102 67988 

Jubilee EB 0.724 0.000 (0.059) 1.000 <0.001 2.118 41846 

Jubilee WB 0.646 0.000 (0.072) 1.000 <0.001 2.224 41860 

Northern NB 0.774 -0.026 (0.031) 1.001 <0.001 1.976 115447 

Northern SB 0.774 0.001 (0.031) 1.000 <0.001 1.927 154440 

Piccadilly EB 0.801 0.001 (0.039) 1.000 <0.001 1.871 76997 

Piccadilly WB 0.765 -0.024 (0.043) 1.001 <0.001 2.116 76634 

Victoria NB 0.609 -0.002 (0.066) 1.000 <0.001 3.062 69742 

Victoria SB 0.655 0.000 (0.060) 1.000 <0.001 2.840 69730 

Sub-Surface EB 0.880 0.109 (0.035) 0.972 <0.001 1.956 29249 

Sub-Surface WB 0.892 -0.050 (0.041) 1.002 <0.001 1.847 21087 

Sub-Surface IR 0.835 0.000 (0.044) 1.000 <0.001 1.923 28891 

Sub-Surface OR 0.871 0.000 (0.034) 1.000 <0.001 1.800 33088 

4.3.1.4. Diurnal temperature range (∆𝒕) 

Estimated ∆𝑡 was derived by subtracting estimated 𝑡𝑚𝑖𝑛 from estimated 𝑡𝑚𝑎𝑥. Therefore, there 

are no tunnel model variables. The model does not perfectly predict tunnel temperatures, and 

there was often a small degree of error, shown in the residual density plots, for example, in 

Figure 4.15 and Figure 4.16. The impact of this, considering the annual temperature range in 

some of the LU tunnels is small, is that the resulting estimated ∆𝑡 would produce some negative 

values. These were corrected to 0℃ prior to the regression analysis, shown in Table 4.8 

Consequently, the regression coefficients indicate that the model is less effective at estimating 

∆𝑡. 
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Table 4.8 Regression results from comparing ∆𝑡 from the tunnel temperature estimation model outputs with observed ∆𝑡 for 

the study period 

LU tunnel 𝑹𝟐 𝒃𝟏  𝑺𝑬 (𝒃𝟏) 𝒃𝟎 𝒑 𝑹𝑺𝑬 𝒅𝒇 

Bakerloo NB 0.230 1.370 (0.010) 0.469 <0.001 1.449 65123 

Bakerloo SB 0.430 1.126 (0.017) 0.664 <0.001 1.644 65066 

Central EB 0.495 0.977 (0.010) 0.681 <0.001 1.568 67595 

Central WB 0.337 1.185 (0.010) 0.560 <0.001 1.504 67976 

Jubilee EB 0.347 1.127 (0.013) 0.579 <0.001 1.510 41873 

Jubilee WB 0.230 1.152 (0.014) 0.530 <0.001 1.575 41854 

Northern NB 0.560 0.619 (0.005) 0.745 <0.001 1.427 155372 

Northern SB 0.472 0.824 (0.006) 0.678 <0.001 1.374 154395 

Piccadilly EB 0.513 0.848 (0.008) 0.674 <0.001 1.344 76987 

Piccadilly WB 0.426 1.126 (0.010) 0.633 <0.001 1.546 76612 

Victoria NB 0.459 0.938 (0.014) 0.763 <0.001 1.929 69707 

Victoria SB 0.361 1.271 (0.014) 0.663 <0.001 1.763 69696 

Sub-Surface EB 0.395 1.807 (0.021) 0.561 <0.001 2.167 29244 

Sub-Surface WB 0.521 1.370 (0.017) 0.579 <0.001 1.499 21084 

Sub-Surface IR 0.205 1.877 (0.012) 0.291 <0.001 1.244 28888 

Sub-Surface OR 0.260 2.003 (0.011) 0.333 <0.001 1.232 33084 

4.4. Chapter summary 

This chapter presented results describing the thermal environment across the LU network. It 

showed how there are very notable differences in temperature observations across network 

types, LU lines, and station platforms. It demonstrated that there were gaps in observed station 

platform data across the sub-surface and deep tube tunnel parts of the LU network, and without 

addressing these, would lead to further data elimination and a potential impact to the fault 

exposure rate analysis in the next chapter. This justified the first reason to utilise a model in this 

study to estimate tunnel temperatures using surface temperatures as a proxy, providing a more 

complete dataset for the study period, but also quantify the extent of the moderating effect 
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surface temperatures had upon tunnel temperatures. Additionally, the model provides the 

capability to estimate future tunnel temperatures under differing climate scenarios. 

The climate thresholds quantitatively showed how temperatures have changed in the study 

period, even relative to the recent baseline period. It is unambiguously warmer, with 56% of 

days in the study period exceeding at least one climate threshold. The latter years of the study 

period, mainly 2016-2018 experienced particularly notable periods of warmth, with nuanced 

increases in temperatures throughout the year and more extreme heat events occurring – which 

also amplified temperature increases in the tunnels. Since more prolonged record-breaking 

temperatures occurred since this study period, such as the first instance of 40℃ in the UK in 

July 2022, it emphasises the importance of the results from this chapter and the implications for 

LU network. 

The tunnel temperature estimation was statistically validated using linear regression and was a 

successful development on the study by Kimura et al. (2018). Additionally, the results helped 

to quantify the extent of other factors acting upon the thermal environment, based on the 

regression coefficients. However, the results showed differing degrees of error in the model at 

the scale of daily observations across the LU tunnels and among each temperature variable 

(𝑡𝑚𝑒𝑎𝑛, 𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, ∆𝑡). This stresses the importance of considering other factors that are likely 

impacting the thermal environment of the tunnel and sub-surface sections of the LU network 

beyond the surface temperature, as the model quantitatively highlights these via the small 

degrees of error in the regression results. 

The next chapter provides the results for the fault exposure rate analysis for point and train stop 

assets over the study period. Results and variables from this chapter are utilised throughout the 
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fault exposure rate analysis, such as grouping by climate thresholds and using the tunnel 

temperature estimation model results to join temperature values to WOs prior to analysis. 
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Chapter Five  |  Fault exposure rates  

5.1. Chapter overview 

Chapter Four presented results that characterised the current thermal environment of the LU 

network. Results included the distribution of daily temperature variables across the network 

(𝑡𝑚𝑒𝑎𝑛, 𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, ∆𝑡), the frequency of days in the study period that reached certain climate 

thresholds, and the utilisation and validation of a tunnel temperature estimation model. Results 

from Chapter Four contribute to this chapter, which examines fault exposure rates per 

temperature variable as defined by Fisher (2020). Data gaps in daily tunnel temperature 

variables are rectified using the tunnel temperature estimation model and merged with 

observations prior to analysis. Trends in fault exposure rates are presented for each LU line, 

distinguished by network type (surface, sub-surface, and tunnel) at incremental 1℃ bins per 

temperature variable. They are then examined further; grouping fault exposure rates by whether 

WOs are reported as corrective or reactive, and whether faults exceed the defined climate 

thresholds. 

5.2. Work orders 

To develop fault exposure rates, data collected by TfL on WOs were required. As described in 

Chapter Three, TfL provided WO data from the two data management systems used across the 

LU network (Ellipse and Metro Maximo). Additional attributes (e.g., nearest station, network 

type, daily temperature variables) were joined to each WO record to for aggregation (see 

Section 3.2.3.2). 
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5.2.1. Work order data overview 

The combined point and train stop WO database from the asset management systems for this 

study comprised 45787 WOs from 2006 to 2018. 39629 were corrective (“faults that you find”) 

and 6158 were reactive (“faults that find you”). Figure 5.1 shows the distribution of corrective 

and reactive WOs over time. Mean WOs per year was 3522 with a standard deviation of 1237. 

The fewest annual WOs was in 2006 (951) and the most was in 2018 (5782). 

 
Figure 5.1 Type of WOs raised in the study period 

Most WOs were corrective. The proportionate share between WO type varied from 99% 

corrective and 1% reactive in 2007 to 68% corrective and 32% reactive in 2014. In absolute 

terms, reactive WOs increased from 2013 and remained over 700 per year. Prior to 2013, 

reactive WOs were fewer than 300 per year. The most reactive WOs in a single year occurred 

in 2018 (997). 

WOs also varied by their closed status. Figure 5.2 shows the annual distribution of WO closure 

status over time. Most WOs were “completed” when closed, so an action was undertaken to 

address the reason the WO was opened. 52% of WOs per year on average were classified as 
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“complete” when closed, ranging between 35% and 68% in any given year. However, each year 

there were several WOs with no closure status defined. This was an average of 29% per year, 

ranging between 10% and 55%. Up to 33% of WOs per year were also classified as not 

required/no fault found. The share of these was often greater where total annual WOs were 

highest – particularly in 2008, 2009 and 2018. Cancelled WOs were a small share; no more 

than 6% of WOs in any given year. 

 
Figure 5.2 Status of WOs raised upon closure 

Of all the WO data analysed, 21631 were raised on days exceeding at least one climate threshold 

(see Section 3.3.1.2 for definitions); slightly under half of all WOs (47%). Figure 5.3 compares 

the share of days and WOs within each climate threshold. It gives an indication as to whether 

more or fewer WOs occurred under each climate threshold relative to the proportion of days 

under the same climate threshold. 
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Figure 5.3 Relative proportion of days and WOs occurring during days that exceeded each climate threshold 

Figure 5.3 shows different trends depending on WO type during days that exceeded at least one 

climate threshold. For year-round climate thresholds (warm nights, warm days, and warm spell 

duration index [WSDI] days), there was a lower share of WOs relative to the number of days. 

However, reactive WOs were proportionately greater for all days exceeding any climate 

threshold expect for warm nights, and the difference between the proportionate corrective and 

reactive WOs increases with each climate threshold. On warm days and WSDI days, 

proportionate reactive WOs were greater than corrective by a factor of 1.2. For summer days, 

it was a factor of 1.6, for hot days, a factor of 1.9, and during heatwave days, a factor of 2.1. 

Tropical nights were the exception, where the trend decreased, with proportionate reactive WOs 

greater than corrective by a factor of 1.2. 

5.2.2. Temperature variables 

Daily temperature variables were joined to the WO dataset by date, nearest station, and network 

type. Therefore, there were 12 unique groups of WO data used for analysis. A small number of 

instances did not meet the joining criteria due to missing data in the WO. These WOs were 
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therefore eliminated from any further analysis, which was approximately 3% of the dataset. 

Then, the count of faults per station platform were normalised, as described in Section 3.4.1. 

5.3. Fault exposure rates: surface 

The following sections of this chapter present the fault exposure rates from WOs starting with 

the surface part of the network, then the sub-surface part, and finally the deep tube tunnels. The 

surface part of the LU network spans the greatest length of track (see Section 1.1.1), the most 

point and train stop assets, and the most WOs. Every LU line selected for this study is therefore 

represented in some capacity across surface fault exposure rates. 

5.3.1. Daily mean temperature (𝒕𝒎𝒆𝒂𝒏) 

Figure 5.4 shows the surface 𝑡𝑚𝑒𝑎𝑛 fault exposure rates for the study period. Several LU lines’ 

surface fault exposure rates showed increases at the highest and lowest temperature 

observations.  In most cases, the fault exposure rate of each LU line was within the whole 

surface network mean. Fault exposure rates increased on some LU lines at higher and lower 

𝑡𝑚𝑒𝑎𝑛. Eight reactive WOs were raised on 28/02/2018, in four locations, when 𝑡𝑚𝑒𝑎𝑛 was below 

-4℃, shown in Table 5.1. This date was the lowest observed 𝑡𝑚𝑒𝑎𝑛 within the study period. It 

also coincided with a strong easterly airflow that followed with snow showers and freezing rain 

(Met Office, 2018a). The faults that occurred on the point assets in the coldest conditions were 

primarily related to two issues. Firstly, points failed to reverse, which is when they cannot move 

to their intended position. Secondly, point heaters failed. Point heaters are specifically used to 

prevent the formation of ice and snow that would otherwise prevent the point’s operation, and 
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while they are typically set up in the GB railway industry to withstand an ambient air 

temperature of up to -25℃, but not drifting snow (Ellis, 2019). 

Table 5.1 WOs raised on the Central line corresponding with the highest fault exposure rate on 28/02/2018 

Time 

raised 
Nearest station Equipment type Fault 

06:33 Hainault 4Ft Eh Points                                      Failing to reverse 

08:30 South Ruislip Surelock 4' Electric Points                        Point heater not working 

19:06 Loughton Surelock 6' Electric Points                        Point heater not working 

19:07 Loughton Surelock 6' Electric Points                        Point heater not working 

19:19 Loughton Surelock 6' Electric Points                        Point heater not working 

20:11 Loughton M63 Electric Points                                Failing to reverse 

20:11 Hainault 4Ft Eh Points                                      Signals unable to clear 

22:04 Northolt 4Ft Eh Points                                      Failing to reverse 

This fault exposure rate coincided with an exceptionally high lower bound and is consequently 

an anomalous occurrence. Similarly, fault exposure rates on the Bakerloo, District, and 

Metropolitan between -3℃ and -2℃. A large proportion of these WOs were corrective, 

primarily on the Metropolitan line in some of the most north-westerly stations (i.e., outside of 

the Greater London boundary). The WO database shows that these related to work that was 

undertaken to prevent the minimum gauge from being reached. However, all the reactive WOs 

within this temperature bin, of which there are ten, occurred around the same time as those 

reported in Table 5.1 (between 27/02/2018 and 02/03/2018). The fault exposure rate on the 

Victoria line was also high between -1℃ and 0℃. There were 13 corrective WOs responsible 

for this at one station, which took place on 02/02/2009. Ten were however raised in error, 

overstating the fault exposure rate.
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Figure 5.4 Fault exposure rates of 𝑡𝑚𝑒𝑎𝑛 per LU line for the surface part of the LU network
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Figure 5.5 compares the fault exposure rate trends of 𝑡𝑚𝑒𝑎𝑛 between corrective and reactive 

WOs. The cold temperature peak fault exposure rate occurs at the same point (between -3℃ 

and -2℃) but the trends leading up to those peaks differ. Reading the graph from right to left, 

the corrective fault exposure rate fluctuated as temperatures decreased, while the reactive fault 

exposure rate gradually increased. More corrective WOs may have kept reactive WOs low up 

to a point, as after -1℃, even with a greater corrective fault exposure rate, the reactive rate also 

increased. 

 
Figure 5.5 Difference in fault exposure rate trends of surface 𝑡𝑚𝑒𝑎𝑛 for all lines by WO type 

As for higher 𝑡𝑚𝑒𝑎𝑛, fault exposure rates begin to increase at approximately 20℃. The first LU 

lines that exceeded two standard deviations were the Victoria and Bakerloo lines, between 20℃ 

and 21℃. Both lines’ fault exposure rates were primarily driven by a mass raising of corrective 

WOs to replace fibre washers on 20/07/2018 across point assets. Following this, the Central, 

Hammersmith & City and Victoria lines’ fault exposure rates exceeded two standard deviations 

between 25℃ and 27℃, with the highest peak on the Hammersmith/Circle lines at 26℃. 13 

Hammersmith & City line corrective WOs were raised at Hammersmith station. They were also 

regarding minimum gauge, like those raised in the colder temperatures on the Metropolitan line. 
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On the Victoria line, there were two WOs driving the fault exposure rate at 26℃, one corrective 

and one reactive. On the Central line, the fault exposure rate is the only one that gradually 

increases per temperature bin from around 21℃, until it exceeds two standard deviations at the 

26-27℃ temperature bin. 

Table 5.2 shows the WOs raised that drove the Central line’s surface 𝑡𝑚𝑒𝑎𝑛 fault exposure rate 

between 26℃ and 27℃. They were all corrective. The 2006 WO was the same type of fault 

raised in under cold temperatures (shown in Table 5.1), implying that the issue happens at both 

temperature extremes. Fitting or converting KLM clips comprised three of the six WOs in Table 

5.2; these are a brand of safety fasteners used across many LU point motor assets. 330 WOs 

related to KLM clips were raised from mid-July 2018 until 1st October 2018. Of these WOs, 

202 were completed across several stations on the LU network. The three WOs were part of 35 

whose closed dates were an earlier than the date raised, suggesting that they were raised 

retrospectively. 

Table 5.2 WOs raised on the Central line corresponding with the 𝑡𝑚𝑒𝑎𝑛 fault exposure rate of 26-27℃  

Date raised Nearest station Equipment type Fault 

19/07/2006 Leyton M63 Electric Points                                      Failing to reverse (FTR) 

01/07/2015 Hainault 4Ft Eh Points   Drill out barring point 

01/07/2015 Hainault 4Ft Eh Points   Walk boards required 

26/07/2018 Leytonstone 4Ft Eh Points   
Point motor safety fastener 

(KLM) clip conversion 

26/07/2018 Leytonstone 4Ft Eh Points   Fit KLM clips 

26/07/2018 Ealing Broadway 4Ft Eh Points   Point motor KLM clip conversion 

Fault exposure rates by LU line in Figure 5.5 were very low at the highest recorded 𝑡𝑚𝑒𝑎𝑛, 

between 27℃ and 28℃. However, as the lower bound increased at these temperatures, this may 

be linked to a lack of data as these temperatures were rarely observed throughout the study 
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period. In Figure 5.5, comparing corrective and reactive fault exposure rates of 𝑡𝑚𝑒𝑎𝑛, there 

were clear increases in both rates from 23℃ to 27℃, demonstrating that the trends otherwise 

show that there were more WOs at higher temperatures. 

There were two days primarily responsible for both peaks in the fault exposure rates. These 

were 01/07/2015 and 26/07/2018. They were the two hottest 𝑡𝑚𝑒𝑎𝑛 observations in the study 

period. Figure 5.6 shows how the daily number of corrective and reactive WOs change in the 

days leading up to and after these days, in the context of the hot day climate threshold. Although 

the scales differ between the two graphs, they show very different trends. 30/06/2015 was the 

day after the first hot day of the year and saw reactive WOs increase very quickly. This extreme 

heat event was very short (therefore neither were a heatwave day), with high overnight 

temperatures between the two hot days and then broken by thunderstorms across the country as 

temperatures dropped (Met Office, 2015). 

 

 
Figure 5.6 Daily count of surface corrective and reactive WOs in the days before and after the hottest two days of the study 

period. Days that fall into the hot day climate threshold are highlighted in yellow. The dotted line denotes the hottest day of 

that time interval, 01/07/2015 (left) and 26/07/2018 (right) 
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On the other hand, 26/07/2018 was a heatwave day; day four of a five-day spell. Eleven hot 

days preceded this heatwave event, which was the second heatwave event of the year (the first 

was 05-09/07/2018) and included one hot day early in the year (09/04/2018). There were 19 

reactive WOs in the first heatwave of 2018, compared with six in the second heatwave. Seven 

reactive WOs were raised on the first hot day of the summer, which was 25/06/2018. 

The reactive WO trends in Figure 5.6 demonstrated the potential presence of failure harvesting. 

This is where asset failures increase early in the spring or summer, when the first instances of 

high temperatures are observed (Chapman et al., 2008; Ferranti et al., 2016; Jaroszweski et al., 

2019). Then, as the faults in these locations are addressed and the assets fixed, the resilience of 

the network is improved, and the likelihood of future heat-related faults decreases, even as 

temperatures increase through the summer season. This is the likely case in the summer of 2018. 

However, as there were few hot days in 2015, no earlier failure harvesting occurred. The 

extremely high 𝑡𝑚𝑒𝑎𝑛 on 30/06-01/07/2015 consequently exacerbated the number of reactive 

WOs. 

5.3.2. Daily maximum temperature (𝒕𝒎𝒂𝒙) 

Figure 5.7 shows the surface 𝑡𝑚𝑎𝑥 fault exposure rates for the study period. The extreme low 

and high temperature fault exposure rate peaks were greater than 𝑡𝑚𝑒𝑎𝑛 in Figure 5.4. The fault 

exposure rates at the absolute lowest and highest 𝑡𝑚𝑎𝑥 were near zero for all LU lines. However, 

temperatures close to the lower bound line had the highest fault exposure rates that also 

exceeded two standard deviations, particularly at lower temperatures (𝑡𝑚𝑎𝑥 < 1℃).
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Figure 5.7 Fault exposure rates of 𝑡𝑚𝑎𝑥 per LU line for the surface part of the LU network
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The lowest 𝑡𝑚𝑎𝑥 fault exposure rate peak was on the Central line, between -3℃ and -2℃, which 

was due to one single day in the study period (28/02/2018). The Central line WOs on this day 

were the same as those in Table 5.1 plus an additional reactive one, near Woodford station in 

the northeast, where another point failed to reverse. The largest peak of the surface 𝑡𝑚𝑎𝑥 fault 

exposure rate was on the District line between -2℃ and -1℃. These comprised seven corrective 

and six reactive WOs, all also having occurred on 28/02/2018. The Bakerloo fault exposure rate 

at this temperature also exceeded two standard deviations, due to one reactive WO. 

As one of the coldest days in the study period, Figure 5.8 shows where all the WOs were 

recorded across the surface part of the LU network on 28/02/2018. There were 39 WOs, the 

second-highest count of reactive WOs on a day of the study period (29; highest was 30). Most 

of the WOs raised were in the west. Some of the WOs were clustered in certain locations, such 

as the southwest on the District line. There were, however, no discerning geographic trends in 

these locations that could be a driving factor behind these WOs. 

 
Figure 5.8 WOs raised on 28/02/2018 across the surface part of the LU network 
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The Victoria line fault exposure rate was also highest when 𝑡𝑚𝑎𝑥 was low. The WOs raised 

when 𝑡𝑚𝑎𝑥 was between 1℃ and 2℃ were the same WOs from 02/02/2009 that artificially 

inflated the trend in the 𝑡𝑚𝑒𝑎𝑛 fault exposure rate between 0℃ and 1℃ (see Figure 5.4). There 

was also a Victoria line fault exposure rate peak exceeding two standard deviations between 

5℃ and 6℃. This was due to 28 WOs, primarily corrective, with 18 raised on 20/11/2018 to 

replace a range of assets such as air hoses and motors across points at the Victoria line depot 

and Northumberland Park. Five reactive WOs also occurred on 05/01/2017 and 12/12/2017. 

Those from 05/01/2017 were the only reactive WOs raised across the network on that day, 

however those on 12/12/2017 were three of 13 reactive WOs, mainly raised in the morning and 

potentially indicative of 𝑡𝑚𝑖𝑛 trends than 𝑡𝑚𝑎𝑥. 

The first fault exposure rate to exceed two standard deviations under higher temperatures was 

on the Victoria line, between 22℃ and 23℃. There were 10 WOs raised: seven corrective and 

three reactive. The corrective WOs were raised between early August and late September across 

several years for various reasons. The reactive WOs also happened on three different dates and 

report issues of air leaks in valves, points bobbing as a train passes over, and an observed gap 

in a switch tip. 

There were three instances following the Victoria line fault exposure rate peak where one 

standard deviation was exceeded on other LU lines. One was on the Bakerloo line (between 

23℃ and 24℃), and two on the Central line (between 24℃ and 25℃, and between 29℃ and 

30℃). The Bakerloo peak was linked to the mass raising of corrective WOs to replace fibre 

washers on 20/07/2018, as previously discussed. The first Central line peak comprised 158 

corrective and 18 reactive WOs. 53 of the corrective WOs were related to the KLM clip 

conversions, also previously discussed. Excluding these WOs, the Central fault exposure rate 
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did not exceed one standard deviation at this temperature bin. The second Central line peak 

included fewer WOs: 44 corrective and four reactive. 43 of the WOs were raised during 16 

different heatwave days across the study period, and 19 of these (both corrective and reactive) 

reported a point failure, either to reverse or normalise. Of all 48 WOs, 20 occurred in the west 

and 28 in the east, across multiple stations. This fault exposure rate was an indication that point-

related failures under high temperature may be more likely to occur on the Central line 

compared to other LU lines, implying that its assets may have a lower operational temperature 

threshold. 

At the very highest observed surface daily 𝑡𝑚𝑎𝑥 , there was one fault exposure rate that exceeded 

one standard deviation (Jubilee line, between 33℃ and 34℃) and two that exceeded two 

standard deviations (H&C lines, between 32℃ and 33℃, and the Central line, between 33℃ 

and 34℃). Firstly, the Jubilee line peak comprised 24 WOs, of which 22 raised were to 

undertake a “fault find” (an investigation of failure cause) on point heaters at Neasden Depot. 

Only one of these WOs was closed as complete; the remainder were cancelled; either “raised 

in error” or as “missed maintenance”, assuming that no faults were identified. The process of 

undertaking “fault finds” across the surface part of the LU network is relatively recent in the 

context of the study period, with a text search of the WO database returning 62 instances, with 

the first one raised on 12/12/2017. The Jubilee WOs were the first undertaken in the summer 

period, implying a newly implemented maintenance process. The H&C lines’ fault exposure 

rate peak between 32℃ and 33℃ comprised corrective WOs regarding minimum gauge at 

Hammersmith station, as previously discussed. Similarly, the Central line fault exposure rate 

peak between 33℃ and 34℃ included the same WOs reported in Table 5.2, including two 

additional WOs each on 19/07/2006 and 26/07/2018. 
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The surface 𝑡𝑚𝑎𝑥  fault exposure rates largely mirrored surface 𝑡𝑚𝑒𝑎𝑛  fault exposure rates. 

Some LU lines had standout trends, such as on the District line during extreme low temperatures 

on the District line, and both extreme low and high temperatures on the Central line. 

Interestingly, fault exposure rates at the highest observed 𝑡𝑚𝑎𝑥  temperature bins were low, 

when not accounting for corrective WOs that likely artificially inflated them. 

To investigate the fault exposure rates further, climate variables and surface fault exposure rates 

were grouped by days per year before and after the annual peak 𝑡𝑚𝑎𝑥 was reported. Figure 5.9 

shows that slightly over half of warm nights (56%), warm days (56%) and WSDI days (55%) 

occurred on average before the observed peak 𝑡𝑚𝑎𝑥 of its respective year. Slightly under half 

(49%) of all summer days on average occurred before the 𝑡𝑚𝑎𝑥 peak. Only in some years, hot 

days (10 of 13 years) and heatwave days (5 of 13 years) occurred before the 𝑡𝑚𝑎𝑥 peak. Where 

these occurred, it was usually less than half. Tropical nights only occurred before the annual 

𝑡𝑚𝑎𝑥 peak in 2006. 

 
Figure 5.9 Mean percentage of climate threshold days per year that occurred before the annual peak surface 𝑡𝑚𝑎𝑥 was 

reported for the whole study period. Error bars denote one standard deviation 
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There were striking differences in corrective and reactive fault exposure rates for the whole 

surface part of the LU network, depending on whether WOs were raised before or after the 

annual peak 𝑡𝑚𝑎𝑥, shown in Figure 5.10. Corrective fault exposure rates were similar across 

most temperature bins. However, the pre-peak fault exposure rate declined from between 25℃ 

and 26℃, whereas the post-peak fault exposure rate increased quickly from between 31℃ and 

32℃. As for the reactive fault exposure rates, the pre-peak rates were much higher than the 

post-peak rates at both the hottest and coldest temperature bins. At between 25℃ and 26℃, the 

pre-peak reactive rate increased, which was earlier than the post-peak rate. Therefore, reactive 

WOs raised around the first occurrences of somewhat higher temperatures in a year reduce the 

reactive WOs later in the year, after the peak 𝑡𝑚𝑎𝑥 temperature for the year passed. This is 

another indication of failure harvesting. On the other hand, the post-peak corrective fault 

exposure rate peaked at higher temperatures. This was because it included the annual peak 𝑡𝑚𝑎𝑥 

days and were the likely temperature bins that the WOs on these specific days fell into. 

 
Figure 5.10 Fault exposure rates for all surface 𝑡𝑚𝑎𝑥, grouped by WO type; pre- and post- annual peak surface 𝑡𝑚𝑎𝑥 
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5.3.3. Daily minimum temperature (𝒕𝒎𝒊𝒏) 

Figure 5.11 shows the surface 𝑡𝑚𝑖𝑛 fault exposure rates for the study period. The rates by LU 

line were mostly low and around the network mean. The one standard deviation threshold was 

exceeded four times, twice on the District line when 𝑡𝑚𝑖𝑛 was low and twice on the Central line, 

one each at high and low 𝑡𝑚𝑖𝑛. Two standard deviations were exceeded three times. The highest 

peak was on the District line, when 𝑡𝑚𝑖𝑛 was between -6℃ and -5℃ and the other two were 

during higher temperatures, on the Victoria line between 17℃ and 18℃ and on the Bakerloo 

line between 18℃ and 19℃. 

The biggest peak on the District line’s fault exposure rate was due to six WOs on 28/02/2018. 

The other two District line peaks exceeding one standard deviation of the mean were primarily 

associated with the mass raising of corrective WOs, including the mass replacement of fibre 

washers. The same WOs underpin the Victoria line peak between 17℃ and 18℃. However, the 

WOs driving the Bakerloo line fault exposure rate peak between 19℃ and 20℃ were two 

corrective WOs at a depot. There are no other WOs raised on the Bakerloo line at a higher 𝑡𝑚𝑖𝑛. 

Overall, there is little evidence in Figure 5.12 to suggest that daily 𝑡𝑚𝑖𝑛 is a major contributing 

factor behind surface fault exposure rates peaks compared with 𝑡𝑚𝑒𝑎𝑛 or 𝑡𝑚𝑎𝑥 . In part, this 

could be due to a smaller range in 𝑡𝑚𝑖𝑛, so each temperature bin has a higher temperature 

exposure frequency value acting upon the fault exposure rates, which the lower bound also 

indicates.
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Figure 5.11 Fault exposure rates of 𝑡𝑚𝑖𝑛 per LU line for the surface part of the LU network
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5.3.4. Diurnal temperature range (∆𝒕) 

Figure 5.12 shows the surface ∆𝑡 fault exposure rates for the study period. All fault exposure 

rates were close to the network mean rate except for two instances, on the Bakerloo line and 

District line. These exceed two standard deviations, where daily ∆𝑡 was below 2℃. 

The lowest ∆𝑡 fault exposure rate on the Bakerloo line was driven by nine WOs: eight corrective 

and one reactive. They all took place on 12/02/2013, which is one of six days in the whole study 

period where ∆𝑡 < 1℃ and were all between mid-January and mid-February of various years. 

The largest ∆𝑡 fault exposure rate on the District line was driven by 291 WOs. 269 of these 

were corrective, with 129 were marked as completed. Therefore, this rate, while still likely to 

be high, was artificially inflated. 

Nevertheless, a high fault exposure rate when ∆𝑡 was low, at least for corrective maintenance 

may not necessarily be problematic in the context of asset risk to temperature. The average 

𝑡𝑚𝑒𝑎𝑛  of all the District line corrective WOs between 1℃ and 2℃ in ∆𝑡 terms was 7.4℃. 

Therefore, few of these WOs associated with any of the fault exposure rates of the other surface 

temperature variables. 

There was one small peak on the H&C lines where ∆𝑡 was high (between 15℃ and 16℃), 

although it did not exceed any standard deviation thresholds. There were 19 corrective WOs, 

13 of which were on 01/08/2013 but nine were not required. Therefore, this rate was also likely 

artificially inflated.
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Figure 5.12 Fault exposure rates of ∆𝑡 per LU line for the surface part of the LU network
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5.4. Fault exposure rates: sub-surface 

The sub-surface WOs that comprised the fault exposure rates were far fewer than the surface 

part of the LU network, thus their fault exposure rates were smaller than the surface. The total 

length of the sub-surface part of the LU network is also small (approximately 8%; see Section 

1.1.1). Only the District, H&C and Metropolitan lines are included in this part of the LU 

network. A unique characteristic of this part of the LU network is that these lines share a large 

proportion of track and by proxy, associated assets. However, TfL group the sub-surface 

stations by LU line via the LCS structure and asset management systems. They allocate a 

specific LU line to each station – thus providing a single “owning line” for each LU station. 

These inform the subsequent groupings of sub-surface results. 

5.4.1. Daily mean temperature (𝒕𝒎𝒆𝒂𝒏) 

Figure 5.13 shows the sub-surface 𝑡𝑚𝑒𝑎𝑛 fault exposure rates for the study period. Parts of each 

LU lines’ fault exposure rate exceeded one standard deviation of the mean within the lower 

bound range. Furthermore, the total sub-surface network fault exposure rate exceeded two 

standard deviations once, when 𝑡𝑚𝑒𝑎𝑛 was between 6℃ and 7℃: primarily driven by a high 

fault exposure rate on the District line. There were 111 WOs, all but two were corrective. Of 

these, 43 were closed as work completed therefore the fault exposure rate may be artificially 

inflated. 
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Figure 5.13 Fault exposure rates of 𝑡𝑚𝑒𝑎𝑛 per LU line for the sub-surface part of the LU network 
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There was also a peak in the fault exposure rate greater than two standard deviations on the 

District line between 1℃ and 2℃. The lower bound was high, so this temperature exposure 

was an outlier. There was one corrective WO responsible for this peak that occurred on 

02/03/2018, immediately following the coldest period in the study period (discussed in earlier 

sections). This WO was near High Street Kensington station, which is partially covered and 

therefore more likely more exposed to surface temperature than other sub-surface stations. 

Under higher temperatures on the H&C line fault exposure rate exceeded two standard 

deviations between 27℃ and 28℃. They were driven by seven WOs, all near Edgware Road 

station, shown in Table 5.3. All these WOs occurred on heatwave days. The corrective WOs 

were four of nine concerning minimum gauges. Interestingly, no reactive WOs required 

intervention, but the WO database did not explain why. 

Table 5.3 WOs raised near Edgware Road station on the H&C lines corresponding with a 𝑡𝑚𝑒𝑎𝑛  fault exposure rate of 27-

28℃ 

Date raised 
Maintenance 

type 
Equipment type Fault 

Completed 

description 

18/07/2013 Corrective Trainstop valve Minimum gauge Work completed 

18/07/2013 Corrective Trainstop valve Minimum gauge Work completed 

18/07/2013 Corrective Trainstop 10 core cable Minimum gauge Work completed 

18/07/2013 Corrective Trainstop 10 core cable Minimum gauge Work completed 

09/07/2018 Reactive 
Surelock 6' Electric 

Points                        

Signal passed at 

danger 
Not required 

09/07/2018 Reactive 
Surelock 6' Electric 

Points                        

Signal failed to 

clear 
Not required 

24/07/2018 Reactive 
Surelock 6' Electric 

Points                        

Points loss of 

indication when 

in reverse 

No fault found 

Like with surface temperature variables, there were differences in the sub-surface fault 

exposure rates between corrective and reactive WOs. There were also fewer reactive WOs than 
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corrective (659 compared with 5459). Figure 5.14 shows the difference in both sub-surface fault 

exposure rate trends for all corrective and reactive WOs. There was a cold temperature peak on 

the reactive fault exposure rate, linked to a WO raised on 28/02/2018 at Gloucester Road station. 

Both fault exposure rates peaked between 6℃ and 7℃. The corrective peak correlates with the 

District line peak in Figure 5.13 and may be artificially inflated as discussed earlier in this 

section. However, the reactive peak was due to five different WOs at five different locations 

across the sub-surface network – two which also occurred on 28/02/2018. 

 
Figure 5.14 Difference in fault exposure rate trends of sub-surface 𝑡𝑚𝑒𝑎𝑛 for all lines by WO type 

The sub-surface 𝑡𝑚𝑒𝑎𝑛 fault exposure rate peak between 6℃ and 7℃ was analogous to the 

surface 𝑡𝑚𝑒𝑎𝑛 fault exposure rate peak between -3℃ and -2℃. Across the sub-surface stations, 

this is the first peak in fault exposure rates within the lower bound range at colder temperatures 

(see Figure 5.13). This demonstrates that the sub-surface infrastructure is, for the most part, 

sufficiently protected from outside weather, even on the coldest days. Nevertheless, these 

temperatures were still associated with higher corrective and reactive fault exposure rates. So, 

low sub-surface 𝑡𝑚𝑒𝑎𝑛  temperatures, while still above 0℃ remained a greater risk to sub-

surface point and train stop assets. 



 

149 

 

At higher temperatures, the corrective fault exposure rate decreased, while there were some 

fault exposure rate increases, particularly between 27℃ and 28℃. Three of the six reactive 

WOs influencing this peak included those near Edgware Road station in Table 5.3, which were 

not required. The other three WOs were closed with work completed. This reactive peak was 

lower than the surface fault exposure rate peak, implying that under similar temperatures, sub-

surface asset risk was lower than on the surface. 

5.4.2. Daily maximum temperature (𝒕𝒎𝒂𝒙) 

Figure 5.15 shows the sub-surface 𝑡𝑚𝑎𝑥 fault exposure rates for the study period. The rates were 

similar to 𝑡𝑚𝑒𝑎𝑛 in Figure 5.13. However, there were some slight differences in the 𝑡𝑚𝑎𝑥 fault 

exposure rates peaks that exceeded two standard deviations compared with 𝑡𝑚𝑒𝑎𝑛 . On the 

Metropolitan line, there was a greater peak fault exposure rate peak at lower temperatures. On 

the District line, the second peak (within the lower bound range) was lower. As for the H&C 

lines, the highest 𝑡𝑚𝑎𝑥 fault exposure rate was far greater. However, the underpinning WOs 

comprised largely of the same WOs as the sub-surface 𝑡𝑚𝑒𝑎𝑛 peaks.
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Figure 5.15 Fault exposure rates of 𝑡𝑚𝑎𝑥 per LU line for the sub-surface part of the LU network
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Figure 5.16 shows sub-surface corrective and reactive fault exposure rates before and after the 

annual peak surface 𝑡𝑚𝑎𝑥. Corrective fault exposure rates were similar, like the surface trends. 

The main difference was that there was a high pre-peak corrective fault exposure rate at low 

temperatures (between 4℃ and 5℃). This was also despite there being 2.5 times more sub-

surface 𝑡𝑚𝑎𝑥 observations below 10℃ before annual peak 𝑡𝑚𝑎𝑥 than after. Additionally, there 

was a decrease in both corrective fault exposure rates at the highest temperatures. 

 
Figure 5.16 Fault exposure rates for all sub-surface 𝑡𝑚𝑎𝑥, grouped by WO type; pre- and post- annual peak surface 𝑡𝑚𝑎𝑥 

 

Regarding reactive fault exposure rates, the pre-peak rate extended across a greater temperature 

range than the post-peak rate. Pre-peak rates were also higher at these more extreme 

temperature intervals, such as between 29℃ and 30℃, but the three WOs influencing this were 

not required as discussed in Section 5.4.1. There is consequently limited evidence of failure 

harvesting at high temperatures across the sub-surface part of the LU network compared with 

the surface part. However, there may be an indication of low temperature failure harvesting in 

the early parts of the year, as pre-peak rates are higher at low temperature compared with post-

peak rates. 
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Additionally, the sub-surface fault exposure rates showed spatial variance, indicating that parts 

of the LU network experienced a greater exposure to heat-related faults. Certain stations were 

recurring in the analysis, so Figure 5.17 shows the total fault exposure rate for sub-surface 𝑡𝑚𝑎𝑥 

per station, combining each platforms’ directions of travel. As fault exposure rates typically 

peak at the hottest and coldest temperature bins, there is confidence in deducing that a large 

total fault exposure rate is indicative of asset vulnerabilities near that station linked to high or 

low observed platform temperatures. 

 
Figure 5.17 Total fault exposure rates for sub-surface 𝑡𝑚𝑎𝑥 by station, which is the sum of all fault exposure rates per 𝑡𝑚𝑎𝑥 

temperature bin and therefore combines rates for high and low temperature observations but does not differentiate between 

them 

There were two clusters of higher fault exposure rates across the sub-surface part of the LU 

network. One was in the southwest of the loop, which recorded the highest fault exposure rate 

of 0.07 at High Street Kensington, Gloucester Road, and South Kensington. The other cluster 
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was where the tracks join towards the east, with the largest fault exposure rate of 0.06 at 

Moorgate. Both clusters are near to track geometry curvature, joining track from other 

directions, as well as near tunnel openings that intermittently expose the track to the surface. 

5.4.3. Daily minimum temperature (𝒕𝒎𝒊𝒏) 

Figure 5.18 shows the sub-surface 𝑡𝑚𝑖𝑛 fault exposure rates for the study period. Most rates 

were close to the mean and did not deviate, implying that 𝑡𝑚𝑖𝑛 had a lesser effect on sub-surface 

assets compared with other temperature variables, similar to the surface. One standard deviation 

was exceeded once on the Metropolitan line, and two standard deviations was exceeded twice 

on the H&C lines, all at high 𝑡𝑚𝑖𝑛 and within the lower bound range. 

The Metropolitan line fault exposure rate exceeded one standard deviation between 24℃ and 

25℃, comprising three corrective WOs at Euston Square and Farringdon. They were 

concerning minimum gauge (previously discussed at other stations in Section 5.4.1) and point 

motor clip conversions. These WOs were raised at the highest recorded 𝑡𝑚𝑖𝑛 for both stations, 

which were some of the highest recorded across the IR and OR track. Interestingly, the days 

these WOs were raised were not on or following particularly hot days in the context of climate 

thresholds. 

The H&C lines exceeded two standard deviations between 23℃ and 24℃, and between 25℃ 

and 26℃ and were similar peaks in sub-surface 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥 fault exposure rates. Between 

23℃ and 24℃, there were 28 WOs raised, almost all nearest to Edgware Road station, and 

included the same WOs driving the 𝑡𝑚𝑒𝑎𝑛 fault exposure rate peak in Table 5.3. Three of the 

corrective WOs from Table 5.4 were also responsible for the peak between 25℃ and 26℃.
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Figure 5.18 Fault exposure rates of 𝑡𝑚𝑖𝑛 per LU line for the sub-surface part of the LU network
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Few stations observed sub-zero platform 𝑡𝑚𝑖𝑛 and only 10 WOs were raised in these conditions. 

Those that did were primarily to the west, such as at Gloucester Road, Paddington, and South 

Kensington. The only reactive WOs raised when 𝑡𝑚𝑖𝑛  < 0℃ were on 28/02/2018 and 

01/03/2018 at Gloucester Road and South Kensington respectively, where signals failed to clear. 

Overall, while sub-surface fault exposure rates for 𝑡𝑚𝑖𝑛  were limited, there were spatial 

variances, though not necessarily among the same stations as the sub-surface 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥 

fault exposure rates. Figure 5.19 shows these three total fault exposure rates by station for the 

sub-surface part of the LU network. Most stations had a highest total 𝑡𝑚𝑎𝑥 fault exposure rate. 

While some stations had similar rates across all three temperature variables, 𝑡𝑚𝑖𝑛 fault exposure 

rates were much at some stations (e.g., Edgware Road, Farringdon, King’s Cross St. Pancras). 

These stations are also near tunnel openings and consequently closer to the surface. Therefore, 

Figure 5.19 further emphasises the station-specific effects on platform temperatures across the 

sub-surface part of the LU network, and the subsequent impact on fault exposure rates. 

 
Figure 5.19 Differences in sub-surface fault exposure rates by station for 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥 
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5.4.4. Diurnal temperature range (∆𝒕) 

Figure 5.20 shows the sub-surface ∆𝑡 fault exposure rates for the study period. The rates were 

different to the other sub-surface fault exposure rates and the surface ∆𝑡 fault exposure rate. 

Here, the mean rate of all lines gradually increased from a ∆𝑡 of 1℃, peaking at 10℃, when it 

exceeded two standard deviations of the mean. It decreased again as the lower bound increased. 

The District and Metropolitan line fault exposure rates followed similar patterns, with staggered 

peaks. However, the H&C lines’ peaked at a lower and earlier ∆𝑡. 

The peak fault exposure rate on the District line occurred between 8℃ and 9℃. There were 

124 WOs and three were reactive. Only 43 corrective WOs recorded work completed, as were 

two of the three reactive WOs. 89 of the corrective WOs raised at Gloucester Road, High Street 

Kensington, Sloane Square and South Kensington. Most of the WOs did not occur on a day 

exceeding a climate threshold, implying that a higher-than-average sub-surface ∆𝑡 may not 

necessarily be linked to high surface temperatures. Furthermore, WO raised dates were spread 

across the year. The only months that did not record a WO at this peak were February, August, 

and December. 

A similar peak on the Metropolitan line between 9℃ and 10℃ comprised 27 WOs. All were 

corrective, and 25 of them recorded work completed. 22 of the WOs were near Aldgate or 

Aldgate East, with 16 concerning minimum track gauge. Like the District line, few days the 

Metropolitan line WOs were raised on exceeded a hot day climate threshold, though 25 of the 

27 exceeded the warm day climate threshold. WOs were also raised across fewer months of the 

year – in March, April, June, July, August, and October. 
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Figure 5.20 Fault exposure rates of ∆𝑡 per LU line for the sub-surface part of the LU network



 

158 

 

The fault exposure rates across all sub-surface LU lines gradually decreased after both peaks, 

followed by a large peak exceeding two standard deviations on the H&C lines between 22℃ 

and 23℃. This instance is outside of the lower bound, so it is an outlier occurrence. The peak 

was due to two corrective WOs at Paddington station, raised on 22/04/2010. This was the only 

instance across the sub-surface network where ∆𝑡 > 20℃. Upon reviewing the temperature 

exposure data by station, Paddington station recorded both the highest ∆𝑡 the highest frequency 

of ∆𝑡 > 20℃. They also occurred before the annual peak surface 𝑡𝑚𝑎𝑥; occurring in the spring. 

5.5. Fault exposure rates: deep tube tunnels 

As demonstrated in Chapter Four, the deep tube tunnel environments (herein described as 

“tunnels”) are notably different to the surface and the sub-surface. Tunnel assets are exposed to 

higher temperatures throughout the year, though still largely protected from the influences of 

the surface environment. There are more tunnel point and train stop assets than the sub-surface, 

but fewer than the surface. Tunnel stations are also some of the busiest in terms of passenger 

counts, therefore fault exposure rates are important in terms of quantifying the potential impact 

they may have to passengers, should they trigger delays. 

For context, Figure 5.21 shows mean corrective and reactive tunnel WO trends per month. In 

the first six months of the year, corrective WOs were relatively similar month-on-month, with 

low variability. The reactive WO trends, while lower, gradually increased month-on-month. 

The most corrective and reactive WOs raised in a month occurred in July. The standard 

deviation is also high, and this is due to a very large number of WOs raised in July 2018 (301), 

compared with a monthly mean of 38 in July between 2006 and 2017. The high July 2018 

corrective WO count was due to the mass raising of point motor clip conversions and fibre 
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washer replacements across the network. Reactive WOs were also highest in July, as was the 

standard deviation. This was due to WOs in July 2016, where 30 were raised, primarily near 

Elephant & Castle and Oxford Circus stations. Both corrective and reactive WOs drop in 

August, before increasing again to similar pre-July levels for the rest of the year. The corrective 

WO drop in August is possibly indicative of the effect of summer holidays and limiting WOs 

in the high tunnel temperatures. 

 
Figure 5.21 Mean monthly corrective and reactive WOs raised in the tunnel section for the entire study period. Error bars 

indicate one standard deviation of the mean. Note differing y-axis scales 

Throughout this section, the fault exposure rates for each temperature variable show distinct, 

similar divisions by LU line. Fault exposure rates for the Bakerloo, Central and Victoria lines 

peaked substantially, while rates for the Jubilee, Northern and Piccadilly lines did not. These 

differences may be affected by the asset count normalisation procedure: the Bakerloo, Central 

and Victoria lines comprised 275, 43 and 51 assets respectively whereas the Jubilee, Northern 

and Piccadilly lines comprised 354, 773 and 694 respectively. 
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5.5.1. Daily mean temperature (𝒕𝒎𝒆𝒂𝒏) 

Figure 5.22 shows the tunnel 𝑡𝑚𝑒𝑎𝑛 fault exposure rates for the study period. The Bakerloo, 

Central and Victoria lines have staggered peak fault exposure rates that exceeded two standard 

deviations at higher temperatures. There was also a very high peak on the Central line between 

17℃ and 18℃, due to a single corrective WO raised at Holborn station on 02/02/2009, where 

points failed to reverse or normalise. It was the only day the platform observed this temperature, 

and there was only one lower 𝑡𝑚𝑒𝑎𝑛 observation at that platform. There was an increase in the 

fault exposure rates preceding the Central line peak, exceeding one standard deviation, between 

15℃ and 16℃. This comprised 10 corrective WOs: eight at Bethnal Green and two at Marble 

Arch, occurring between January and April of varying years to undertake asset replacements. 

Between approximately 20℃ and 26℃, the tunnel fault exposure rates remained relatively 

consistent. The fault exposure rate on the Bakerloo line remained around the network-wide 

mean, whereas the Central and Victoria lines remained around one standard deviation of the 

mean. The tunnel fault exposure rates then peaked at high temperatures; exceeding two standard 

deviations began with the Victoria line (between 28℃ and 29℃), then the Central line (between 

29℃ and 30℃), and finally on the Bakerloo line (between 32℃ and 33℃). The Victoria line 

peak comprised 49 WOs. 45 were corrective and four were reactive. Most of the corrective 

WOs were raised during the first two and last two years of the study period, primarily in July. 

They were also raised across several stations. As for the reactive WOs, they were related to 

points failing to normalise or reverse, or a broken signal bond; a signal bond being the generic 

term for electrical connections and cabling related to electrical track circuits that detect passing 

trains (Ellis, 2019). Three of the four reactive WOs occurred within 17 days, during August 

2018: two at Seven Sisters and one at Victoria.
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Figure 5.22 Fault exposure rates of 𝑡𝑚𝑒𝑎𝑛 per LU line for the tunnel part of the LU network
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The second high temperature peak, on the Central line, comprised 55 WOs. 53 were corrective 

and 2 were reactive. They also occurred across several days throughout the study period. Many 

of these WOs were raised later in the year, particularly in September and October. There was 

also a distribution of WOs across several station platforms, so no station disproportionately 

skewed the peak. Regarding the reactive WOs, these were both at Marble Arch station, on 

20/10/2017 and 25/09/2018. The first WO was due to a broken pin and the second was because 

the points failed to reverse. 

The peak at the highest temperature bin on the Bakerloo line comprised 85 WOs. All but one 

was corrective. 61 of the WOs were part of a mass raising of fibre washer replacements on 

20/07/2018 across the LU network (also mentioned throughout Sections 5.3.1, 5.3.2, and 5.3.3), 

so these WOs were likely artificially inflating the fault exposure rate. The one reactive WO was 

raised on 01/08/2018 at Piccadilly Circus, recording points failing to reverse. 

5.5.2. Daily maximum temperature (𝒕𝒎𝒂𝒙) 

Figure 5.23 shows the tunnel 𝑡𝑚𝑎𝑥 fault exposure rates for the study period. The trends were 

similar between 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑒𝑎𝑛, with a peak in the Central line fault exposure rate where 𝑡𝑚𝑎𝑥 

is lower; and the Bakerloo, Central and Victoria line fault exposure rates exceeding one or two 

standard deviations at the highest temperatures. However, the Central line peak at the highest 

temperatures occurred at a higher 𝑡𝑚𝑎𝑥 than the Bakerloo line, and the Victoria line peak only 

exceeded one standard deviation of the mean, not two.
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Figure 5.23 Fault exposure rates of 𝑡𝑚𝑎𝑥 per LU line for the tunnel part of the LU network
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The Central line 𝑡𝑚𝑒𝑎𝑛 fault exposure rate exceeded two standard deviations at two consecutive 

temperature bins, whereas the 𝑡𝑚𝑎𝑥 fault exposure rate exceeded it across four. Many more 

WOs comprised these rates (109 in total: 106 corrective and three reactive) than the 𝑡𝑚𝑒𝑎𝑛 peak. 

They all occurred across four stations: Bethnal Green, Holborn, Liverpool Street and 

Queensway, primarily before April in the calendar year. These peaks highlight how infrequently 

tunnel temperatures observed low 𝑡𝑚𝑎𝑥 , even within the lower bound range, and the 

proportionate impact the WOs raised at these four stations had on the fault exposure rate. 

At the highest temperatures, the fault exposure rates differed across the Bakerloo, Central and 

Victoria lines. Firstly, the Victoria line rate gradually increased as 𝑡𝑚𝑎𝑥 increased, exceeding 

one standard deviation at three temperature bins, between 29℃ and 32℃. 92 WOs were raised: 

84 corrective and eight reactive. 27 of the corrective WOs raised in July 2018 concerned point 

motor clip conversions and fibre washer replacements. The reactive WOs all occurred in 2017 

and 2018, shown in Table 5.4. These show WOs across several stations, primarily near Seven 

Sisters. Most occurred during or after the extended hot period in the summer of 2018. 

Table 5.4. Reactive WOs raised on the Victoria line corresponding with the highest fault exposure rates, exceeding one 

standard deviation 

Date raised Nearest station Equipment type Fault 

19/06/2017 Seven Sisters Chairlock EP points 
Issue with left hand middle 

stretcher 

16/11/2017 Finsbury Park Chairlock EP points Failed to reverse 

02/07/2018 Seven Sisters 4’ Ep (Bh) points Air leak 

26/07/2018 Seven Sisters Chairlock EP points Failed to normalise 

20/08/2018 Victoria Chairlock EP points Broken signal bond 

20/08/2018 Highbury & Islington Chairlock EP points Failed to reverse 

21/08/2018 Seven Sisters Chairlock EP points Failed to normalise 

27/08/2018 Highbury & Islington Chairlock EP points Failed to reverse 
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To review the spatial distribution of the 𝑡𝑚𝑎𝑥 fault exposure rates, Figure 5.24 shows the total 

tunnel fault exposure rate per station. There were seven stations across the tunnel part of the 

LU network that had total fault exposure rates higher than 0.05, which are the labelled stations. 

The temperatures driving the fault exposure rates at these stations were in fact where lower 

𝑡𝑚𝑎𝑥 was observed. Across these seven stations, 91 WOs were raised where 𝑡𝑚𝑎𝑥 < 20℃. 73 

were corrective and 18 were reactive. Most were raised on days that did not exceed any climate 

thresholds, and between January and March. Most of the reactive WOs (ten) were near Elephant 

& Castle station. Given its location nearest to the tunnel opening, this implies that there was a 

possible influence of cold surface temperatures to a certain distance within the tunnel. 

 

 
Figure 5.24 Total fault exposure rates for tunnel 𝑡𝑚𝑎𝑥 by station, which is the sum of all fault exposure rates per 𝑡𝑚𝑎𝑥 

temperature bin and therefore combines rates for high and low temperature observations but does not differentiate between 

them 



 

166 

 

Some stations did experience high fault exposure rates at higher temperatures (greater than 0.4), 

particularly between 33℃ and 34℃. These included Charing Cross, Oxford Circus, and 

Piccadilly Circus. However, the rates were offset by the normalisation process via lower fault 

exposure rates at other temperature bins, or a higher total asset count. Of the seven stations 

labelled in Figure 5.24, only Elephant & Castle station reported a high fault exposure rate at a 

very high 𝑡𝑚𝑎𝑥, but this was likely artificially inflated due to the previously discussed mass 

corrective WOs raised concerning fibre washer replacements in July 2018. Therefore, there is 

limited evidence to infer any spatial patterns in fault exposure rates across the tunnels under 

high 𝑡𝑚𝑎𝑥. 

To examine the potential presence of failure harvesting across the tunnels, Figure 5.25 shows 

the difference in tunnel corrective and reactive fault exposure rates before and after the annual 

peak surface 𝑡𝑚𝑎𝑥 was observed. It shows very different trends to the surface and sub-surface 

trends in Figure 5.10 and Figure 5.16. The corrective pre- and post-peak fault exposure rates 

were inverted, in that pre-peak was highest when 𝑡𝑚𝑎𝑥 is high and post-peak was highest when 

𝑡𝑚𝑎𝑥  was low. The reactive fault exposure rates, however, showed no signal of failure 

harvesting. While the pre-peak reactive rate did increase slightly when tunnel 𝑡𝑚𝑎𝑥 > 29℃, the 

post-peak reactive rate increased at two points: once at the same point that the pre-peak began 

to increase, and again at a higher temperature. Therefore, the tunnel point and train stop assets 

were more exposed to unexpected heat-related faults after the observed annual peak surface 

𝑡𝑚𝑎𝑥. 
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Figure 5.25 Fault exposure rates for all tunnel 𝑡𝑚𝑎𝑥, grouped by WO type; pre- and post- annual peak surface 𝑡𝑚𝑎𝑥 

5.5.3. Daily minimum temperature (𝒕𝒎𝒊𝒏) 

Figure 5.26 shows the tunnel 𝑡𝑚𝑖𝑛 fault exposure rates for the study period. Trends were also 

similar to 𝑡𝑚𝑒𝑎𝑛 and 𝑡𝑚𝑎𝑥. The Bakerloo, Central and Victoria line rates all increased at the 

highest temperatures. However, only the Bakerloo and Victoria lines’ fault exposure rates 

exceeded two standard deviations at high 𝑡𝑚𝑖𝑛. 

The Central line fault exposure rate exceeded two standard deviations when 𝑡𝑚𝑖𝑛 was between 

15℃ and 17℃. There were 35 corrective WOs, mainly at Bethnal Green, Holborn, and 

Liverpool Street stations, all primarily related to replacing or changing asset parts. With no 

reported reactive WOs, their attribution to low tunnel 𝑡𝑚𝑖𝑛, either from within the tunnels or 

due to the influence of the surface is limited.
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Figure 5.26 Fault exposure rates of 𝑡𝑚𝑖𝑛 per LU line for the tunnel part of the LU network
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At higher 𝑡𝑚𝑖𝑛, the Central line fault exposure rate exceeding one standard deviation between 

27℃ and 29℃. This comprised 97 WOs, all but one was corrective. Only 21 occurred on a 

summer day, 4 of which were also a heatwave day. The one reactive WO was raised on 

20/10/2017 nearest to Marble Arch station, reporting a broken pin on a set of points. 

On the Victoria line, the fault exposure rate exceeded two standard deviations between 28℃ 

and 29℃. There were 20 corrective WOs raised, most occurring in the second half of 2018. 

Similarly, most of the WOs were also raised on days that did not exceed many climate 

thresholds. Five WOs, however, were raised on 20/07/2006, which was a heatwave day. They 

were concerning maintenance on gauge points to standards, occurring near Walthamstow 

Central station. 

The Bakerloo line fault exposure rate exceeded two standard deviations between 29℃ and 30℃, 

then again between 31℃ and 32℃. The Bakerloo line recorded more WOs at higher 

temperatures than other LU lines, with 116 raised between 29℃ and 30℃. 100 were corrective 

and 16 were reactive. Most of the corrective WOs also did not occur days that exceeded multiple 

climate thresholds. Regarding the reactive WOs, these occurred across several stations, 

primarily between July and August, and two in October. Seven reactive WOs were raised near 

Oxford Circus station between two days in late July 2016 concerning the same signalling asset, 

but the database did not record the specific asset description. The peak between 31℃ and 32℃ 

comprised 91 WOs, 88 corrective and three reactive. 78 of the corrective WOs were related to 

previously discussed mass raising of WOs, all in July and September of 2018. The three reactive 

WOs were raised between early July 2017 and mid-September 2018 at Paddington, Lambeth 

North, and Edgware Road. Only the 20/08/2018 WO at Lambeth North fell on a hot day. One 

fault reported a point failing to normalise, and another with an oil leak from the trip cock. One 
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WO description in the database could not be deciphered but reported a three-minute delay to 

operations as a result. 

5.5.4. Diurnal temperature range (∆𝒕) 

Figure 5.27 shows the tunnel ∆𝑡 fault exposure rates for the study period. It shows almost no 

change in fault exposure rates across the tunnels, but there are three notable observations. Firstly, 

the Bakerloo line exceeds one standard deviation between 0 ℃ and 2℃. Secondly, the Central 

line exceeds two standard deviations between 5℃ and 7℃. Finally, the Victoria line exceeds 

one standard deviation at two intervals: one within the lower bound range, between 14℃ and 

15℃, and one outside of the lower bound range, between 19℃ and 20℃. 

On the Bakerloo line, there were 679 WOs raised on days when ∆𝑡 < 2℃. 627 were corrective 

and 52 were reactive, mostly during July, September, and October. A large proportion of the 

WOs were at three stations: Elephant & Castle, Oxford Circus and Paddington. The high peak 

on the Central line was driven by 119 WOs, where 111 were corrective and eight were reactive. 

This peak was likely been heavily weighted by rates near Holborn station, which were 32 of the 

WOs, mostly during April and October. Five of the eight reactive WOs were also at Holborn, 

all concerning points failing to reverse or normalise. Finally, the Victoria line peak between 

14℃ and 15℃ was due to five WOs near Seven Sisters station, on 22/11/2018. This 

temperature exposure frequency was unusual for this station, occurring there twice in the study 

period. Upon reviewing the temperature variables around that day at Seven Sisters, it was likely 

due to a drop in tunnel daily 𝑡𝑚𝑖𝑛, while 𝑡𝑚𝑎𝑥 did not change much. Surface 𝑡𝑚𝑖𝑛 also gradually 

decreased at this time, from 10.7℃ to 0.4℃ in a week, before returning to 8.0℃. The peak 

between 19℃ and 20℃ was only driven by two corrective WOs on 29/11/2017.
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Figure 5.27 Fault exposure rates of ∆𝑡 per LU line for the tunnel part of the LU network 
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5.6. Chapter summary 

This chapter presented results on the fault exposure rates of point and train stop assets across 

the LU network. It used the tunnel temperature estimation model to backfill temperature data 

where there were observation gaps in the sub-surface and deep tube tunnel sections of the LU 

network, ensuring that the maximum amount of WO data provided by TfL was captured within 

the analysis. Grouping data by network type (i.e., surface, sub-surface, deep tube tunnels) and 

maintenance type (i.e., corrective, reactive) revealed a range of trends in fault exposure rates 

across the four temperature variables. 

An overview analysis of the WO data within the study period showed that WOs increased since 

the start of the study period, and the proportion of those classified as reactive also increased. 

Furthermore, the share of reactive WOs across the whole study period was greater for days that 

exceeded the climate thresholds compared with the days where they did not exceed them. 

Across the surface part of the LU network, it was clear from results such as Figure 5.4, that 

surface fault exposure rates increased at the highest and lowest temperature observations of the 

study period, with some LU lines (such as Bakerloo, Central, District, H&C and Victoria) 

showing higher rates than others. Fault exposure rates were highest during cold temperatures, 

particularly the lowest recorded temperatures between late February and early March of 2018. 

Moreover, there was sufficient evidence showing failure harvesting at high temperatures on the 

LU network, as reactive fault exposure rates increased more before annual peak surface 𝑡𝑚𝑎𝑥 

than afterwards. Corrective fault exposure rates increased after the annual peak surface  𝑡𝑚𝑎𝑥 

but could be partly attributed to WO activity on the days of annual peak surface 𝑡𝑚𝑎𝑥 
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themselves. Surprisingly, ∆𝑡 did not show many statistically significant relationships as the 

other temperature variables, even when ∆𝑡 was high. 

Within the sub-surface part of the LU network, fault exposure rates were lower than those on 

the surface. There was limited evidence of failure harvesting, nor divergence in fault exposure 

rate trends under high temperature climate thresholds. Spatial variances were apparent, as WOs 

at some stations repeatedly comprised the peaks across fault exposure rates by LU line. Plotting 

these showed that some sub-surface station clusters underpinned a large proportion of fault 

exposure rates. Upon inspection, these station clusters are close to intermittent tunnel openings 

that likely expose assets more to the surface. 

In the tunnels, fault exposure rate trends differed across the six LU lines. Three LU lines 

(Bakerloo, Central, Victoria) showed statistically significant relationships between fault 

exposure rates and tunnel temperatures. However, there was also no evidence of failure 

harvesting. What was found instead, was that fault exposure rates often peaked after annual 

surface 𝑡𝑚𝑎𝑥 was reached. 

The next chapter takes the key findings from this chapter and Chapter Four to analyse how 

future climate change might affect fault exposure rates under two UKCP18 RCP scenarios 

recommended by the GB railway industry for strategic planning. Chapter Six approximates the 

change in proportion of days exceeding the climate thresholds, estimates the rate of temperature 

change in the sub-surface and deep tube tunnels via the tunnel temperature estimation model, 

and considers the change in temperature bin frequencies using the fault exposure rate. The 

outcome is to provide a projected range in WO rate change for the two RCP scenarios for the 

2050s and the 2080s, compared with baseline data. 
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Chapter Six  |  Future climate change  

6.1. Chapter overview 

Chapter Five presented results on the fault exposure rates per LU line and temperature variable 

across the three network types (surface, sub-surface, tunnel), and investigated how rates 

differed by maintenance type (corrective or reactive). The results in this chapter are split into 

two parts. Firstly, it presents the change in thermal environment across the different parts of the 

network, for the four selected climate projection scenario outcomes. Secondly, it estimates 

future change in corrective and reactive WOs, utilising climate thresholds, the tunnel 

temperature estimation model and fault exposure rates in the context of UKCP18 climate 

projections. 

6.2. Change in thermal environment across the LU network 

Results in Chapter Four indicated that the thermal environment varied substantially across the 

LU network, not least by network type. The expected changes in the thermal environment owed 

to future climate change are therefore likely to differ by the three network types. In line with 

current industrial practice, this study uses 90th percentile data from RCP 6.0 and RCP 8.5 for 

the 2050s and 2080s, explained in Section 3.2.4.3. As such, this chapter presents four different 

climate projection scenario outcomes. 

Upon reviewing the results in Chapters Four and Five, this chapter focuses on the projections 

for 𝑡𝑚𝑎𝑥 . There are several reasons for this. Firstly, 𝑡𝑚𝑎𝑥  is the key variable used in most 

climate thresholds utilised throughout this study. Table 4.4 clearly showed change in 𝑡𝑚𝑎𝑥 
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extremes over the study period with a sufficient proportion of observations – primarily summer 

days, hot days, and heatwave days. Secondly, the tunnel temperature estimation model showed 

the most similar degree of accuracy with surface temperatures to 𝑡𝑚𝑒𝑎𝑛. This is particularly 

useful as 𝑡𝑚𝑎𝑥 provides absolute peak tunnel temperatures, which is valuable information to 

TfL both in terms of this study and broader operational heat management on the LU network. 

Finally, the 𝑡𝑚𝑎𝑥 fault exposure rates were similar to 𝑡𝑚𝑒𝑎𝑛, with several instances exceeding 

one and two standard deviation thresholds while the 𝑡𝑚𝑖𝑛 and ∆𝑡 rates showed fewer across the 

network types. 

6.2.1. Change in surface temperature 

Surface temperature change can be directly inferred through UKCP18 data for this study. The 

temperature anomalies obtained for the selected probabilistic scenarios described in the 

methodology (see Section 3.2.4) were added to monthly baseline data, shown in Table 6.1. The 

standard deviation and relative standard deviations were calculated from all the monthly 

baseline observations. 

Table 6.1 1981-2010 baseline monthly descriptive statistics for the Greater London administrative region (Source: Met 

Office, 2018c) 

 
Variable J F M A M J J A S O N D Year 

B
a

se
li

n
e 𝒕𝒎𝒂𝒙 (℃) 7.9 8.2 11.1 13.9 17.5 20.5 23.0 22.7 19.5 15.3 10.9 8.1 14.9 

𝑺𝑫 (℃) 1.9 2.3 1.5 1.5 1.6 1.4 1.8 1.7 1.4 1.4 1.3 1.7 5.7 

𝑹𝑺𝑫 (%) 24% 28% 14% 11% 9% 7% 8% 7% 7% 9% 12% 20% 38% 

𝑆𝐷 = Standard deviation 

𝑅𝑆𝐷 = Relative standard deviation 

There were two obstacles regarding the monthly UKCP18 data that required addressing to apply 

the data appropriately for this study. Firstly, projection values obtained were single values for 
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Greater London, so there was no spatial variance. Hence, the UHI index (see Section 3.2.2.2; 

Figure 3.5 The UrbClim UHI index for London) was utilised to provide an estimated spatial 

distribution of 𝑡𝑚𝑎𝑥. The mean UHI intensity within the Greater London boundary was +1.14℃, 

and therefore is the assumed mean UHI intensity representative of the single baseline value for 

Greater London. When compared to the UHI intensity of all surface stations across the LU 

network (see Figure 6.1) +1.14℃ is the 34th percentile; below the mean and median, with a 

distribution skewed slightly towards a higher UHI intensity. 

 

Figure 6.1 Box plot showing the spatial distribution of UHI index by surface stations across the LU network 

Secondly, as the UKCP18 climate projection data are monthly, there are no extreme values to 

extrapolate from. This is important, as daily estimated values were critical for the fault exposure 

rate as they were derived from temperature exposure frequencies, which are daily observations. 

Table 6.2 shows the monthly projected values for Greater London per climate projection 

scenario, which are the sum of the monthly anomaly and the monthly baseline in Table 6.1. 

Daily estimated 𝑡𝑚𝑎𝑥 values for each scenario were extrapolated by firstly calculating projected 

monthly standard deviations from baseline relative standard deviations, then utilising a normal 

distribution function to establish the % share of the month per 1℃ temperature bin. Percentages 
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were converted to estimated days per month, then summed to provide a total estimated annual 

number of days per 1℃ temperature bin for each scenario. 

Table 6.2. Absolute and anomaly projected monthly 𝑡𝑚𝑎𝑥 for the Greater London administrative region under each RCP 

scenario, 90th percentile. Values were calculated from the monthly 1981-2010 baseline values from Table 6.1 

  
Variable J F M A M J J A S O N D Year 

R
C

P
 6

.0
 

2
0

5
0

s 𝑡𝑚𝑎𝑥 (℃) 10.0 10.6 13.1 16.2 20.1 23.8 26.5 27.3 23.1 18.4 13.1 10.0 17.8 

Anomaly (℃) 2.1 2.4 2.0 2.3 2.6 3.3 3.5 4.6 3.6 3.1 2.2 1.9 2.9 

2
0

8
0

s 𝑡𝑚𝑎𝑥 (℃) 11.5 12.6 14.4 17.7 21.8 26.8 30.1 30.5 25.9 20.8 14.7 11.3 20.2 

Anomaly (℃) 3.6 4.4 3.3 3.8 4.3 6.3 7.1 7.8 6.4 5.5 3.8 3.2 5.3 

R
C

P
 8

.5
 

2
0

5
0

s 𝑡𝑚𝑎𝑥 (℃) 10.9 11.6 13.9 16.9 20.8 25.0 27.8 28.6 24.4 19.7 13.8 10.8 18.9 

Anomaly (℃) 3.0 3.4 2.8 3.0 3.3 4.5 4.8 5.9 4.9 4.4 3.0 2.7 4.0 

2
0
8
0
s 𝑡𝑚𝑎𝑥 (℃) 12.2 13.5 16.7 18.5 22.6 26.5 31.3 32.2 30.2 23.8 18.3 13.3 22.1 

Anomaly (℃) 4.3 5.3 5.6 4.5 5.1 6.0 8.3 9.5 10.7 8.5 7.4 5.2 7.2 

Figure 6.3 shows the resulting annual 𝑡𝑚𝑎𝑥 frequency exposure for baseline (1981-2010) and 

observed (2006-2018) data, compared with the estimations from the UKCP18 climate 

projection data from Table 6.2. Future scenarios describe an increase in 𝑡𝑚𝑎𝑥 in terms of mean 

and variance; with an increased distribution of frequency exposure increases in future, and to a 

greater extent in RCP 8.5 than RCP 6.0. The variance increase is greater at higher 𝑡𝑚𝑎𝑥, which 

has implications on climate thresholds – there would be a consequential increase in the summer 

day, hot day, and by proxy, heatwave day climate thresholds. 
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Figure 6.2 Estimated annual distributions of surface 𝑡𝑚𝑎𝑥 for observed and future climate scenarios 

To demonstrate the extent of the change in 𝑡𝑚𝑎𝑥 variance at higher temperatures, Figure 6.3 

compares present mean monthly exceedance of the summer day and hot day climate thresholds 

with the four climate projection scenarios. They show very large increases in such days in future. 

For example, where baseline and observed summer days in July are around a week of the month, 

in all future scenarios this is expected to increase to nearly every day of the month. Furthermore, 

a greater proportion of summer days and hot days in future are expected to occur in August than 

July, which suggests that peak summer 𝑡𝑚𝑎𝑥 is more prolonged. In RCP 8.5, by the 2080s, 

summer days and hot days may extend into autumn months, as far as October. In the spring 

months, estimated increases are smaller, although the number of summer days in June by the 

2080s in both scenarios increases more than triples relative to the observed data. 
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Figure 6.3 Estimated mean annual distribution of days per month exceeding the summer day climate threshold (top) and hot 

day climate threshold (bottom) 

6.2.2. Change in sub-surface temperature 

The tunnel temperature estimation model provided the basis to apply UKCP18 climate 

projection scenarios to estimate future station platform temperatures on the sub-surface part of 

the LU network. Figure 6.4 shows the distribution of present and future estimated 𝑡𝑚𝑎𝑥 across 

the sub-surface station platforms by direction of travel. Baseline and observed 𝑡𝑚𝑎𝑥  were 

primarily between 18℃ and 19℃ and increasing gradually, up to between 20℃ and 21℃ by 

the 2080s under RCP 8.5. The distribution of temperature differs between the EB/WB and 

IR/OR directions. The EB/WB directions show greater temperature ranges, was well as higher 

𝑡𝑚𝑎𝑥 in all present and projected scenarios. The observed (2006-2018) 𝑡𝑚𝑎𝑥 trend suggests a 

recent increase in sub-surface 𝑡𝑚𝑎𝑥  when compared with baseline data (1981-2010). Gradual 
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tunnel temperature increases continue across every LU line tunnel with each climate projection 

scenario. 

 

Figure 6.4 Distribution of past and projected monthly sub-surface 𝑡𝑚𝑎𝑥 across each direction of travel, as calculated using 

station level data with the tunnel temperature estimation model 

Figure 6.5 converts all the sub-surface data into mean annual present and future 𝑡𝑚𝑎𝑥 frequency 

exposures. The distribution is a similar but simplified shape to surface 𝑡𝑚𝑎𝑥 (see Figure 6.2), 

with two peak frequency exposures in the middle. Variance increases at higher 𝑡𝑚𝑎𝑥  in 

projected scenarios are greater than lower 𝑡𝑚𝑎𝑥. However, recently observed (2006-2018) 𝑡𝑚𝑎𝑥 

recorded similar frequency exposures at the highest temperature intervals as RCP 8.5 in the 

2080s. For example, both scenarios comprised two days in a year on average with a sub-surface 

platform 𝑡𝑚𝑎𝑥  of 31℃, and one day at 32℃. This may be a symptom of the temperature 

estimation processes. Firstly, the tunnel temperature estimation model is not a perfect predictor 

of station platform temperatures – while the coefficients of determination in using surface 𝑡𝑚𝑎𝑥 

to predict sub-surface 𝑡𝑚𝑎𝑥 was around 0.9, the residual standard errors were between 1.8℃ 

and 2.2℃ (see Section 4.3.1.2), so there is some degree of error in predictions. Secondly, the 

tunnel temperature estimation model is dependent on daily data, which was derived from 

monthly UKCP18 data in this section for the baseline and climate projection scenarios. Daily 
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values were therefore only representative of their time interval, implying an additional degree 

of error. Nevertheless, the difference in present and future 𝑡𝑚𝑎𝑥 exposure frequencies in Figure 

6.5 are small, so the impact these estimation errors have may not be considerable. 

 

Figure 6.5 Estimated annual exposure frequency distributions of daily sub-surface 𝑡𝑚𝑎𝑥 for observed and future climate 

scenarios 

6.2.3. Change in tunnel temperature 

Like the sub-surface part of the LU network, the tunnel temperature estimation model was used 

to estimate future station platform temperatures across the deep tube tunnels. Figure 6.6 shows 

the distribution of present and future estimated 𝑡𝑚𝑎𝑥  across the tunnel station platforms by 

direction of travel. Recent observations, like the sub-surface, also showed an increase in 

temperatures compared with baseline data. It also showed gradual increases in tunnel 𝑡𝑚𝑎𝑥with 

each climate projection scenario. Increments in 𝑡𝑚𝑎𝑥 in each scenario are greater than the sub-

surface part of the LU network, suggesting that deep tube tunnel warming rates are likely to be 

greater than the sub-surface. 

Baseline and observed mean annual 𝑡𝑚𝑎𝑥 across the LU tunnels were primarily between 21℃ 

and 27℃, depending on LU line and direction of travel. Under the RCP 6.0 scenario, annual 
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𝑡𝑚𝑎𝑥 reaches between 24℃ and 30℃ by the 2050s and between 27℃ and 32℃ by the 2080s. 

In the RCP 8.5 scenario, this increases to between 25℃ and 31℃ by the 2050s and between 

28℃ and 34℃ by the 2080s. The Bakerloo and Central lines remain the warmest LU tunnels. 

The highest reported monthly 𝑡𝑚𝑎𝑥 is from June to September at Edgware Road station on the 

Bakerloo line, in the SB direction; between 31℃ and 33℃. At this station platform, monthly 

𝑡𝑚𝑎𝑥 increases to 40℃ in July and August under the RCP 8.5 scenario by the 2080s. The outlier 

values are primarily at Shepherd’s Bush (Central line), Balham (Northern line), Oval (Northern 

line), but also Bounds Green (Piccadilly line), Brixton (Victoria line) and Victoria (Victoria 

line).
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Figure 6.6 Distribution of past and projected monthly tunnel 𝑡𝑚𝑎𝑥 across each LU tunnel, as calculated using station platform data with the tunnel temperature estimation model
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Figure 6.7 converts all the deep tube tunnel data into mean annual present and future 𝑡𝑚𝑎𝑥 

frequency exposures. Present observations are similar; though observed data had a higher mean 

and variance to observations, which suggests that tunnel 𝑡𝑚𝑎𝑥  has already been increasing. 

However, there is a greater increase in mean projected tunnel 𝑡𝑚𝑎𝑥 than in variance. Projected 

increases in lower and higher 𝑡𝑚𝑎𝑥 in the tunnels are proportionately similar. Additionally, to 

illustrate the rate of change in the future scenarios, baseline 𝑡𝑚𝑎𝑥 around the upper tail end of 

its distribution, which is around 32℃, is around the future midpoint of the distribution of RCP 

8.5 in the 2080s. 

 

Figure 6.7 Estimated annual exposure frequency distributions of daily tunnel 𝑡𝑚𝑎𝑥 for observed and future climate scenarios 

6.3. Change in work orders across the LU network 

In assessing the impacts of weather and climate on their assets and systems, infrastructure 

operators aim to estimate the scale of change in future infrastructure failures relative to present-

day performance. Here, this section brings together all the components of this study, by using 

estimated future temperatures across the surface, sub-surface, and deep tube tunnels in 

combination with fault exposure rates from recent observations to estimate average annual WO 
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counts for each climate projection scenario. It is important to note that this method assumes a 

like-for-like network in each future scenario to the present day; that there are no significant 

changes to infrastructure or assets, and that its operation is similar in future. 

One challenge identified in estimating future change in WOs is that future surface and tunnel 

temperature exposure frequencies exceed the observed temperature exposure frequencies that 

form the fault exposure rates in Chapter Five. Table 6.3 shows how much of an average year in 

each future climate scenario is outside of the range of observed 𝑡𝑚𝑎𝑥 exposure frequencies per 

network type. There are no projected 𝑡𝑚𝑎𝑥  increases across the sub-surface part of the LU 

network, a small increase in surface 𝑡𝑚𝑎𝑥 in both 2080 scenarios, but large changes in tunnel 

𝑡𝑚𝑎𝑥 beyond current observations. These percentages therefore represent the proportion of total 

future WOs that the fault exposure rates cannot predict. 

Table 6.3 Average annual share of each climate scenario reporting temperatures outside of the observed 𝑡𝑚𝑎𝑥 exposure 

frequency range 

 RCP 6.0 

2050s 

RCP 8.5 

2050s 

RCP 6.0 

2080s 

RCP 8.5 

2080s 

Surface 𝑡𝑚𝑎𝑥 0% < 1% 0% 1% 

Sub-surface 𝑡𝑚𝑎𝑥 0% 0% 0% 0% 

Tunnel 𝑡𝑚𝑎𝑥 < 1% 1% 4% 13% 

A second challenge in estimating future WOs involves the fault exposure rates at the highest 

and lowest temperatures that fall outside of the lower bound ranges. As these fault exposure 

rates may be artificially inflated or deflated due to the low temperature exposure frequencies, 

there is an implied lack of certainty in estimated WOs at these temperature bins due to the 

extrapolation method. There is no solution to improve the level of uncertainty, so any 𝑡𝑚𝑎𝑥 fault 

exposure rates corresponding with a 𝑡𝑚𝑎𝑥  lower bound equal or greater than 0.001 are 

highlighted in impending figures. Therefore, any estimated rates within these highlighted areas 
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include a greater level of uncertainty when interpreted. Table 6.4 shows how much of an 

average year in each future climate scenario is outside of the lower bound range of observed 

𝑡𝑚𝑎𝑥 exposure frequencies per network type, and therefore affected by this uncertainty in future 

WO estimations. All future climate scenarios are affected, with a greater share of WO 

estimation uncertainty in the higher emissions scenario (RCP 8.5) and the later decadal interval 

(2080s). More WO estimations are affected by uncertainties due to lower bounds than by 

temperatures outside of the observed 𝑡𝑚𝑎𝑥 exposure frequencies (i.e., Table 6.3). 

Table 6.4 Average annual share of each climate scenario reporting lower bound temperature intervals ≥ 0.001 

 RCP 6.0 

2050s 

RCP 8.5 

2050s 

RCP 6.0 

2080s 

RCP 8.5 

2080s 

Surface tmax < 1% 8% 5% 15% 

Sub-surface tmax < 1% < 1% < 1%  1% 

Tunnel tmax 2% 5% 10% 17% 

6.3.1. Change in surface work orders 

Figure 6.8 shows the rates of change in future total annual surface WOs by 𝑡𝑚𝑎𝑥, compared to 

the observed WO distribution. Surface WOs comprise the greatest share of observed and future 

estimated WOs. The trends show that increases in WOs at the highest 𝑡𝑚𝑎𝑥 are greatest, as well 

as a decrease in WOs at lower 𝑡𝑚𝑎𝑥 . Future WO counts diverge at higher 𝑡𝑚𝑎𝑥  from the 

observed rate from approximately 24℃. Estimated WOs in both climate projection scenarios 

by the 2050s are high at this temperature bin, which is the current lowest temperature risk 

threshold for the LU Hot Weather Plan (TfL, 2022f). By the 2080s, both scenarios estimate an 

increase in WOs at temperatures outside of the lower bound range. Hence, while some of these 

rates are particularly high (i.e., RCP 8.5), there is some uncertainty in their accuracy. In Figure 

6.9, the data are grouped and include inferred WOs for the small percentage of WOs estimated 
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to occur outside of the observed 𝑡𝑚𝑎𝑥 frequency exposures. It shows the scale of shift in WOs 

to higher temperatures, particularly increases between 25℃ and 29℃, which are indicative of 

the effect of increased days exceeding summer day, hot day, and by proxy, heatwave day 

climate thresholds. The share of future estimated WOs outside the observed 𝑡𝑚𝑎𝑥 are small, and 

only occur in the 2080s for both climate projection scenarios. 

 

Figure 6.8 Estimated annual surface WOs for observed (2006-2018) 𝑡𝑚𝑎𝑥 compared with the four selected 90th percentile 

climate projection scenarios 

 

 

Figure 6.9 Estimated annual surface WOs, including WO estimates for upper 𝑡𝑚𝑎𝑥 values outside of observations 
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6.3.2. Change in sub-surface work orders 

Figure 6.10 shows very little overall change in estimated sub-surface WOs under all scenarios 

compared to the observed WOs. Although there are some shifts in estimations (decreased WOs 

at low 𝑡𝑚𝑎𝑥  and increases at high 𝑡𝑚𝑎𝑥 ), the actual change in overall WOs is negligible. 

Additionally, almost no observed or estimated future WOs extend outside the lower bound 

range, also shown in Figure 6.11. Therefore, the assets across the sub-surface part of the LU 

network are likely to be affected the least by climate change, in all scenarios. 

 

Figure 6.10 Estimated annual sub-surface WOs for observed (2006-2018) 𝑡𝑚𝑎𝑥 compared with the four selected 90th 

percentile climate projection scenarios 
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Figure 6.11 Estimated annual sub-surface WOs, including WO estimates for upper 𝑡𝑚𝑎𝑥 values outside of observations 

6.3.3. Change in deep tube tunnel work orders 

The tunnel part of the LU network has the greatest proportion of the year affected by future 

temperatures that are either outside of the lower bound range or outside of observed 𝑡𝑚𝑎𝑥 

exposure frequencies. Therefore, the extrapolations undertaken to estimate future tunnel WOs 

likely have the most level of uncertainty of all three network types. In Figure 6.12, there are 

more estimated WOs at higher and 𝑡𝑚𝑎𝑥. In all the climate projection scenarios, estimated WOs 

at lower 𝑡𝑚𝑎𝑥 decrease, and diverge from the observed rate at 30℃ and above. This is also 

shown in Figure 6.13. The number of WOs at a tunnel 𝑡𝑚𝑎𝑥 below 24℃ decreases in all future 

scenarios and increases greatly above 30℃. Some WOs also are estimated at tunnel 

temperatures above 35℃. The rate of increased estimated WOs above 30℃ implies the vast 

proportion of the tunnel part of the LU network will remain above 30℃ on average throughout 

the year in future. 
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Figure 6.12 Estimated annual sub-surface WOs for observed (2006-2018) 𝑡𝑚𝑎𝑥 compared with the four selected 90th 

percentile climate projection scenarios 

 

 

Figure 6.13 Estimated annual tunnel WOs, including WO estimates for upper 𝑡𝑚𝑎𝑥 values outside of observations 

6.3.4. Total change in work orders across the LU network 

Finally, the total estimated WOs were combined to provide an estimated change in WOs due to 

change in temperature for point and train stop assets across the LU network. These are shown 

in Figure 6.14. Although there are differences in the temperatures at which these WOs occurred, 

the estimated annual total WOs show slight increases. Compared with the observed total WO 
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count, estimated WOs for RCP 6.0 in the 2050s comprise a 1% increase, and by the 2080s, a 

6% increase. However, estimated WOs for RCP 8.5 in the 2050s comprise a 3% increase, and 

by the 2080s, a 10% increase. As mentioned in Section 6.3, these increases assume no 

significant changes to infrastructure or assets, and similar future operation of the LU network. 

Moreover, due to uncertainty and degrees of error in data and methodological approaches, there 

is an undefined range of confidence around these estimations; not least the chance that future 

WO estimations could be higher than those shown. 

 

Figure 6.14. Total estimated annual WOs by network type for observed and estimated climate projection scenarios 

6.4. Chapter summary 

This chapter presented results on how four future climate change scenarios (90th percentiles of 

RCP 6.0 and RCP 8.5 for the 2050s and 2080s) are likely to change the thermal environment 

and the total estimated annual WOs for point and train stop assets by network type (i.e., surface, 

sub-surface, deep tube tunnels). Focusing on 𝑡𝑚𝑎𝑥  throughout this chapter, experimental 

methods were used to convert UKCP18 climate projections into future estimated 𝑡𝑚𝑎𝑥 exposure 

frequencies. The tunnel temperature estimation model was utilised to convert the estimated 

exposure frequencies into platform 𝑡𝑚𝑎𝑥 for the sub-surface and tunnel parts of the LU network. 
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Estimated temperatures across each network type were then extrapolated to network-wide 

reactive fault exposure rates to produce estimated annual counts of faults per future climate 

scenario. 

Changes in the future thermal environment across the LU network differ by network type. On 

the surface, the first warm days of the year may occur earlier in the year by a month, as well as 

an extension of summer temperatures into autumn months. Frequency exposures of 𝑡𝑚𝑎𝑥 

increase in variance, particularly with increased frequencies at higher temperatures. Lower 

𝑡𝑚𝑎𝑥 are still likely to remain at some extent, although slightly less frequent than the present 

day. Across the sub-surface part of the LU network, there are slight increases in station platform 

temperatures, but are insignificant relative to the change on the surface. However, in the tunnels, 

projected station platform 𝑡𝑚𝑎𝑥  increases more, varying by LU line – with observed tunnel 

𝑡𝑚𝑎𝑥 already shifting towards the RCP 6.0 2050s scenario. 

Fault exposure rates were converted into estimated annual WOs using the estimated 𝑡𝑚𝑎𝑥 

exposure frequencies. However, there are limitations in the estimates for two reasons. Firstly, 

there is a lower confidence in fault exposure rates at the highest and lowest observed 

temperature intervals, where lower bound rates were high, so extrapolating from them increases 

the levels of certainty in estimates. Secondly, the projected 𝑡𝑚𝑎𝑥exposure frequencies often 

included temperatures that were not recorded in the observed data for this study, and therefore 

there were no fault exposure rates for them. This means that further assumptions were made to 

infer WO rates at temperatures beyond the observed 𝑡𝑚𝑎𝑥 exposure frequencies. Nevertheless, 

estimated future total annual WOs showed a 1% increase in the RCP 6.0 scenario in the 2050s 

and a 6% increase in the 2080s; and a 3% increase in the RCP 8.5 scenario in the 2050s and a 

10% increase in the 2080s. 
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In the next chapter, all the results from Chapters Four, Five, and Six are reviewed and discussed 

in the context of implications for TfL. This includes recommendations regarding the 

organisational procedures across the organisation to support the delivery of more climate-

resilient transport for London. The methodology designed for this study is also critiqued, for 

the purpose of improving future analysis for London and beyond. 
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Chapter Seven   |  Discussion 

7.1. Chapter overview 

Chapter Six presented the final set of results of this study, on how different climate projection 

scenarios may change the thermal environment across the three network types on the LU 

network. It also estimated the potential change in point and train stop asset WOs for each 

scenario. This chapter discusses all results from this study and their implications for TfL. It 

considers several strategic and organisational factors associated with adapting the LU 

infrastructure to climate change. Then, this chapter contextualises these factors in the wider 

scope of climate change adaptation on transport infrastructure. Recommendations are proposed 

throughout the discussion, aligned to the relevant section. The chapter is finally summarised 

with the Author’s view on the direction TfL could take to deliver a more climate-resilient LU 

network in future. 

7.2. Discussion of results chapters 

The discussion of results begins with Chapter Four, which analysed the thermal environment 

across the LU using descriptive statistics, quantified the magnitude of recent change in the 

climate via climate thresholds, and finally, introduced and evaluated a tunnel temperature 

estimation model. This follows with discussion on Chapter Five, which utilised several of the 

parameters in Chapter Four to establish fault exposure rates through a robust methodological 

approach. The discussion of the results chapters ends with Chapter Six, which used the tools 

and results developed in Chapters Four and Five to estimate future WOs across the LU network 

in accordance with climate projections. 
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7.2.1. Thermal environment 

This section discusses the implications of the results within Chapter Four, which described and 

evaluated the present state of the thermal environment across the LU network. The climate is 

unambiguously warmer in the study period relative to the 1981-2010 baseline, and because of 

the variance in built form, there is a need to understand the extent of the impact of warmer 

temperatures on the surface upon the sub-surface and tunnel parts of the LU network. 

7.2.1.1. Temperature variables 

The results of this study revealed the extent of variance in thermal environments throughout the 

year among the surface, sub-surface, and tunnel parts of the LU network. Most notable were 

the differences in all temperature variables by LU line across all the deep tube tunnels, including 

differences between the two directions of travel on the same LU line (see Section 4.2.1). 

Compared with all LU deep tube tunnels, both Jubilee line tunnels recorded considerably lower 

temperatures across all the variables (see Figure 4.9). This may be due to the increased 

ventilation capacity of the Jubilee line extension (Jones, 1999). However, it is not possible in 

this study to quantify the extent of the improved capacity on temperatures across the Jubilee 

line and compare with other LU lines. Due to security reasons, the locations of mid-tunnel 

ventilation shafts are not disclosed to the public (TfL, 2012), although TfL would benefit from 

understanding whether the ventilation capacity on the Jubilee line extension is contributing to 

these lower tunnel temperatures relative to the rest of the LU deep tube tunnels. By doing this, 

TfL could quantitatively evaluate whether ventilation capacity reduces tunnel temperatures, 

especially at tunnel sections where several stations do not have mid-tunnel ventilation shafts, 

as such analysis is not possible outside of the organisation. It is nevertheless important to note 
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that the Jubilee extension is only slightly over 20 years old, while the heat build-up across other 

LU tunnels is a result of over 100 years’ activity (Botelle et al., 2010). Comparisons will 

therefore not be like-for-like. Such results may support the business case for an evidence-based, 

targeted approach to climate change adaptation via greater technological advancements in 

cooling systems and ventilation as there are operational performance and human health co-

benefits – as the low fresh air exchange also increases levels of thermal discomfort (Jenkins et 

al., 2014) as well as reducing exposure to harmful pollutants (Kumar et al., 2023). 

Recommendation 1: TfL should calculate the correlation between deep tube LU tunnel 

temperatures and ventilation capacities across its stations to evaluate the scale of impact of 

ventilation across the current network. 

7.2.1.2. Climate thresholds 

This chapter reviewed the current climate of London and quantified recent change in mean and 

extreme temperatures using seven climate thresholds. Instances of climate threshold 

exceedances were conducted using surface temperature observations from the Met Office 

weather station at St. James’s Park. Results from Table 4.4 indicate that there were more 

warmer days, warmer nights and WSDI days across the study period relative to the baseline 

period they were calculated from (see Table 3.6), which is indicative of warmer mean 

temperatures. For example, an average of 51% of days in the study period were considered 

warm nights, which would represent days higher than the 90th percentile of observed 

temperature within the baseline period. The remaining climate thresholds (summer days, hot 

days, heatwave days, tropical nights) were higher than the study period mean in the latter years, 

also signalling an increase in extreme heat events. Consequently, these results are indicative of 

the UK climate having changed in recent years. 
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The climate thresholds were a useful supporting reference to key points and findings throughout 

this study. Choice of language used to communicate climate change is extremely important 

(Bruine de Bruin et al., 2021) and using the climate threshold terminologies would support the 

communication of climate change for emphasis in broader public-facing documents for TfL, 

such as their environmental strategies and for climate change adaptation reporting. Given that 

the climate threshold terminology is used by the Met Office, using them would enhance TfL’s 

profile in terms of their understanding of climate change. 

Recommendation 2: TfL should consider the use of climate threshold definitions in relevant 

publications to both quantify change in weather observations relative to climate baselines 

while communicating an understanding of climate change in a simple way to the reader. 

Implications for this study that could not be predicted were the incidence of several extreme 

temperatures after the data were collected for analysis. Although this study quantitatively 

demonstrated warming rates and extreme heat events between 2006 and 2018 (see Table 3.6), 

there were few record-breaking observations in the study period. However, several occurred 

shortly afterwards. These include: 

• Highest temperature on record for a winter month, reaching 21.2℃ at Kew Gardens on 

26th February 2019. These warm days occurred 21-27th February (Met Office, 2019b). 

• 37.9℃ recorded across London on 25th July 2019; within a heatwave event that occurred 

22-26th July (Met Office, 2019c). 

• Exceptionally hot day, reaching up to 37.8℃ at Heathrow and 37.3℃ at Kew Gardens 

on 31st July 2020 (Met Office, 2020b). 
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• An extended heatwave, reaching 36.4℃ on at Heathrow on 7th August 2020. 

Temperatures across the southeast of England exceeded 34℃ every day between 7-12th 

August. This included five tropical nights (Met Office, 2020a). 

• A transition in temperature extremes from unusual warmth in March, where 24.5℃ (a 

summer day) was recorded at Kew Gardens on 30th March 2021, followed by a cold 

plunge in April and a difference of up to 15℃ reported in the space of a week (Met 

Office, 2021a). 

• Exceptionally mild new year, reaching 16.3℃ at St. James’s Park on 1st January 2022 

(Met Office, 2022b). 

• An unprecedented hot day, reaching 40.2℃ at St. James’s Park on 19th July 2022 and 

included a record-breaking tropical night with a minimum temperature of 25.8℃ at 

Kenley Airfield. The heatwave occurred 16-19th July (Met Office, 2022d). 

These seven temperature-related extreme events since 2018 exceeded those within the study 

period. In terms of this study, they would add important data to the tunnel temperature 

estimation model, as well as additional temperature frequency exposures with the potential to 

affect lower bound ranges. Their inclusion could also improve future WO estimations. On the 

other hand, WO data from 2020 onwards would not necessarily improve fault exposure rates 

despite the additional temperature observations, because of reduced passenger counts and 

staffing due to the coronavirus pandemic. 

Recommendation 3: Future iterations of any parts of this study specifically related to climate 

change should include data from 2019 to 2022, capturing the increased instances of 

exceptional warm weather and extreme heat events that recently occurred. 
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7.2.1.3. Tunnel temperature estimation model 

Due to the importance of tunnel temperature data throughout the study, it was necessary to 

develop a tunnel temperature estimation model using surface temperature as a proxy value (see 

Section 4.3). This is because there were missing observations from the study period across the 

network, and to provide a means to forecast future tunnel temperatures using surface climate 

projections from the Met Office (see Sections 6.2.2 and 6.2.3). The tunnel temperature 

estimation model produced key variables that characterised the effect of surface temperature 

upon tunnel platform temperatures for each station, including: the mean temperature uplift in 

the tunnels compared to the surface; the scaling coefficient, representative of the annual 

fluctuation, and magnitude of the highest and lowest temperatures. The model showed a short 

time lag in surface temperatures affecting the deep tube tunnels, typically no more than two 

days. Across the sub-surface part of the LU network, the effect of surface temperature was far 

greater, shown by lower temperature uplift and higher scaling coefficient values. 

Comparing the model results with the observations showed that there were limitations in using 

surface temperature as a single proxy value to estimate tunnel temperatures, based on the 

coefficients of determination (e.g., see Table 4.5). These coefficients highlight that some of the 

variance in tunnel station platform temperatures can be explicitly explained by the variance in 

surface temperatures, as addressed in research (e.g., Mortada et al., 2015) and also emphasises 

the magnitude of other moderating factors across the deep tube tunnel part of the LU network. 

As the coefficients of determination also vary by LU line, it is difficult to disentangle the effect 

of other factors driving some of the variance in tunnel temperatures. As such, there is a degree 

of error in resulting tunnel temperatures from this estimation model, which likely affects the 

deep tube tunnel fault exposure rates (only where WOs were joined with estimated values if 
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there were no observed data) as well as the estimated tunnel temperatures under future climate 

change. The level of error is therefore a greater issue at the shorter temporal scale (i.e., daily), 

as opposed to the longer temporal scale (i.e., monthly, annual, decadal). 

Nevertheless, the tunnel temperature estimation model used in this study was a useful tool to 

assign temperature values in the absence of observation data and updates future estimated 

temperatures for the deep tube part of the LU network previously estimated by Jenkins et al., 

(2014). While the method itself has limitations, these were unavoidable because of the known 

varying and complex factors affecting tunnel temperature. Through this study, it was possible 

to demonstrate the value of estimating tunnel temperatures using a simple model, with 

implications for both future thermal comfort and asset performance thresholds. 

Recommendation 4: TfL should utilise a statistical method to estimate tunnel temperatures 

using surface temperature as a proxy, particularly to help estimate future tunnel 

temperatures under future climate change scenarios. 

7.2.2. Fault exposure rates 

This section discusses the implications of the results shown in Chapter Five on fault exposure 

rates of point assets by network type (surface, sub-surface, tunnel) and LU line across the LU 

network. Implications are focused primarily on outcomes for TfL in terms of strategic decision-

making and operational planning, which underpin their response to the impacts of assets to 

weather and climate hazards. 
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7.2.2.1. Fault thresholds 

The fault exposure rate analysis in Chapter Five built on the methodological foundation 

designed by Fisher (2020) and adds to the existing knowledge on frequency-related 

relationships between meteorological variables and asset failures on railway networks. This 

study showed that by synthesising several datasets, the fault exposure rate concept was 

applicable to the LU network and is the first ever systematic analysis that incorporates both 

surface and tunnel environments across a metro network. 

The purpose of this analysis in Chapter Five was to identify fault thresholds in temperature 

whereby fault exposure rates exceed a statistically defined tolerance – in this case, exceeding 

one and two standard deviations. Conducting the analysis across four temperature variables 

(𝑡𝑚𝑒𝑎𝑛, 𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛, ∆𝑡) showed varying relationships between WOs raised on the LU asset 

management systems and the observed (or estimated) temperature at the nearest station. 

Instances of threshold exceedance occurred primarily at the lowest and highest observed 

temperatures (e.g., see Figure 5.4). As such, the fault exposure rates revealed potential upper 

and lower thresholds. These are summarised for daily 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 in Table 7.1, based on 

exceedances of one standard deviation of the mean across the 12 fault exposure rate graphs by 

LU line and network type presented in Chapter Five. One standard deviation was selected as 

there were overall very few instances exceeding two standard deviations, but several trends 

between one and two. It was therefore possible to include a greater proportion of results, which 

is important as not all LU lines reported threshold exceedances. 

Table 7.1 shows emerging patterns in fault threshold exceedance. There were more fault 

threshold exceedances at upper than lower temperatures, implying that fault risk is greater at 

higher temperatures. Most fault threshold exceedances occurred at high temperatures across the 
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Bakerloo, Central, Victoria and H&C lines. The District line, however, only exceeded fault 

thresholds at low temperatures. On the surface part of the LU network, fault threshold 

exceedances fitted broadly into two groups. Firstly, were the Bakerloo, Central and Victoria 

lines, whose upper fault threshold exceedances of 𝑡𝑚𝑎𝑥 were lowest but also comprised upper 

fault threshold exceedances for 𝑡𝑚𝑖𝑛. This is indicative of early season vulnerability to heat 

(low upper fault threshold exceedance of  𝑡𝑚𝑎𝑥 ) and a vulnerability to persistent high 

temperatures with limited cooling, such as the occurrence of tropical nights (upper fault 

threshold exceedance of 𝑡𝑚𝑖𝑛). 

Secondly, there were lines with emerging fault threshold exceedances on hot days across the 

surface part of the LU network. These were on the Jubilee and H&C lines, where fault 

thresholds were approximately 10℃ higher than the other lines, so it is likely that only instances 

of extreme heat affect assets in these areas. 

On the sub-surface part of the LU network, few thresholds were identified. Identified upper 

thresholds of 𝑡𝑚𝑖𝑛  were 23℃. Referring to the tunnel temperature estimation model, these 

upper temperature thresholds corresponded with surface temperatures indicative of or close to 

tropical night temperatures, further demonstrating the potential risk of continued high night-

time temperatures on sub-surface infrastructure.
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Table 7.1 Upper and lower fault thresholds of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 per LU line and network type for point-related assets, derived from the fault rate analysis chapter. Fault thresholds are based 

on the first instance the temperature variable exceeded one standard deviation of the mean fault exposure rate at the higher and lower temperature ranges. A dash (-) indicates that no fault 

threshold was exceeded across the results, while N/A indicates that the respective LU line does not run through the network type, so there are no results to show. 

LU line 
Temp 

variable 

First instance surface fault 

thresholds 

First instance sub-surface fault 

thresholds 

First instance deep tube tunnel 

fault thresholds 

Lower Upper Lower Upper Lower Upper 

Bakerloo 
𝑡𝑚𝑖𝑛 - 18℃ 

N/A N/A 
- 29℃ 

𝑡𝑚𝑎𝑥 0℃ 23℃ - 32℃ 

Central 
𝑡𝑚𝑖𝑛 - 4℃ 19℃ 

N/A N/A 
18℃* 27℃ 

𝑡𝑚𝑎𝑥 2℃ 24℃ 23℃* 29℃ 

District 
𝑡𝑚𝑖𝑛 1℃ - - - 

N/A N/A 
𝑡𝑚𝑎𝑥 - 1℃ - 9℃ - 

Jubilee 
𝑡𝑚𝑖𝑛 - - 

N/A N /A 
- - 

𝑡𝑚𝑎𝑥 - 33℃ - - 

H&C 
𝑡𝑚𝑖𝑛 - - - 23℃ 

N/A N/A 
𝑡𝑚𝑎𝑥 - 32℃ - 25℃* 

Metropolitan 
𝑡𝑚𝑖𝑛 - -  23℃ 

N/A N/A 
𝑡𝑚𝑎𝑥 - - 7℃ - 

Northern 
𝑡𝑚𝑖𝑛 - - 

N/A N/A 
- - 

𝑡𝑚𝑎𝑥 - - - - 

Piccadilly 
𝑡𝑚𝑖𝑛 - - 

N/A N/A 
- - 

𝑡𝑚𝑎𝑥 - - - - 

Victoria 
𝑡𝑚𝑖𝑛 - 17℃ N/A N/A - 28℃ 

𝑡𝑚𝑎𝑥 5℃ 22℃   - 30℃ 

*  indicates the best estimated threshold interpretation due to the irregular fault exposure rate trend
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On the other hand, there were fewer upper 𝑡𝑚𝑎𝑥 fault thresholds identified. The lines with an 

upper fault threshold for 𝑡𝑚𝑎𝑥 on the surface and sub-surface parts were the H&C lines. This is 

telling of a greater asset exposure to temperatures on these LU lines, given that the other sub-

surface lines (i.e., District and Metropolitan lines) did not report any upper temperature fault 

thresholds. On the other hand, the District and Metropolitan lines had lower temperature fault 

thresholds, which may be indicative of their increased exposure to the cold. One explanation 

could be spatial temperature variance across both the surface and sub-surface. Parts of the 

Metropolitan and District lines extend further out from London’s centre; west and east 

respectively, where the UHI intensity decreases. On the other hand, the H&C lines are subjected 

to a greater UHI magnitude. 

The deep tube tunnel thresholds in Table 7.1 show two very distinct trends: LU lines with upper 

temperature fault thresholds (Bakerloo, Central and Victoria lines) and those with no 

discernible fault thresholds (Jubilee, Northern and Piccadilly lines) and suggest that tunnel age 

may not be an underlying factor (see Table 1.1). The Bakerloo, Central, and Victoria lines have 

similar upper temperature fault thresholds. For 𝑡𝑚𝑖𝑛 , these vary between 27℃ and 29℃, 

whereas for 𝑡𝑚𝑎𝑥 , these are between 29℃ and 32℃. Referring to the tunnel temperature 

estimation model for these lines, there are a wide range of surface temperatures that can lead to 

these tunnel station platform temperatures being reached, depending on LU line and the time 

of year. For instance, before the summer peak, early warm temperatures lead to several station 

platform tunnel temperatures exceeding upper 𝑡𝑚𝑖𝑛  fault thresholds. On the Bakerloo and 

Victoria lines, this is around a 𝑡𝑚𝑖𝑛 of 16-17℃; whereas for the Central line it is 11-12℃. 

However, after the summer peak, a drop-off in upper threshold exceedance occurs when surface 

𝑡𝑚𝑖𝑛 decreases to 1-2℃ lower than the early warm temperature range. The implications are that 

the interactions between surface temperature, tunnel temperatures and the impacts on assets are 
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extremely complex and a single level of temperature risk is not representative of the whole LU 

network. 

In the context of the LU Hot Weather Plan (TfL, 2022f), this study challenges its existing risk 

thresholds. Several upper 𝑡𝑚𝑎𝑥 fault thresholds from Table 7.1 fall within various stages of the 

Hot Weather Plan risk thresholds, with some even lower than “no risk.” Additionally, the upper 

𝑡𝑚𝑖𝑛 fault thresholds suggest that new risks may be emerging for LU infrastructure on the basis 

that assets are not sufficiently cooling down before re-exposure to daytime temperatures the 

following day. On the other hand, this study also identified low temperature thresholds. As 

snow depth is the only hazard with a risk threshold range in the LU Winter Weather 

Contingency Plan (TfL, 2022e), it would be beneficial to include a temperature risk threshold 

range to improve preparations for colder weather. 

Recommendation 5: TfL should review the current risk thresholds within the LU Hot 

Weather Plan, in accordance with this study’s fault exposure rates and upper 𝒕𝒎𝒂𝒙 

thresholds. This includes whether risk thresholds could include additional LU line- area- or 

station-specific foci to improve weather and climate resilience. 

Recommendation 6: TfL should distinguish risk thresholds between surface and deep tube 

tunnel sections of the LU network as a minimum within the LU Hot Weather Plan and outline 

actions accordingly. 

Recommendation 7: TfL should include actions within the LU hot weather plan to address 

the risk of continuous high 𝒕𝒎𝒊𝒏 across the LU network, for all three network types. 

Recommendation 8: TfL should incorporate low temperature risk thresholds within the LU 

Winter Weather Contingency Plan. 
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As this study reviewed one group of assets, it would be beneficial to extend the analysis to other 

LU asset groups, such as track and signalling and compare the findings (such as those in Table 

7.1). This is feasible as the results from this study derive from the same fault data for other asset 

groups. By doing this, fault exposure rates are comparable across asset groups due to the 

normalisation process in this methodology and as a result, can show the LU lines most at risk 

to temperature, establishing more robust risk thresholds. 

Recommendation 9: TfL should conduct similar fault exposure rate analyses for other asset 

groups at risk to temperature (e.g., track; signalling/communications) and compare the 

resulting temperature thresholds to those produced in this study. 

7.2.2.2. Failure harvesting 

One important finding from the fault exposure rate analysis was a signal of failure harvesting 

of point-related assets across the LU network (see Sections 5.3.1 and 5.3.2). This is important, 

as it reveals a particular temporal vulnerability in the spring and early summer, emphasising 

that the correlation between temperature and fault exposure rates is less straightforward than 

the highest or lowest observed temperatures driving more failures. Validation of failure 

harvesting across other parts of the GB railway industry by Ferranti et al. (2016) suggests that 

this is a wider railway concern, perhaps overlooked through the lens of climate-resilient 

infrastructure research. Failure harvesting signals were also addressed by Oslakovic et al. 

(2013) in the winter months for the Netherlands, determining that most problems on the 

assessed railway section occurred during the first snowfall in the season. Though the climate in 

the Netherlands is not analogous to London, this highlights the extent of preparedness on the 

impacts of weather on infrastructure, regardless of the environment, and a particular vulnerable 
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point in the year being the first and earliest incident of a weather event in the year, wherever 

this may fall. 

Recommendation 10: TfL should extend the technique of using fault exposure rates to 

identify failure harvesting trend to other assets, and endeavour to identify the most 

vulnerable locations where early heat-related faults are occurring most frequently. 

7.2.3. Future climate change 

This section discusses the implications of the results presented in Chapter Six, which focused 

on the estimated change in 𝑡𝑚𝑎𝑥 across the LU network in terms of future thermal environment 

by network type and future point-related WOs. Results in this chapter showed that the LU 

network will experience warmer temperatures in all climate projection scenarios (RCP 6.0 and 

RCP 8.5; 90th percentile; for the 2050s and 2080s), with consequential increase in WOs of 

varying rates dependent on network type and climate projection scenario, as shown in Figure 

6.14. 

7.2.3.1. Change in thermal environment 

Estimating the future change in thermal environment across the LU network highlighted the 

challenges associated with the conversion of UKCP18 data to generate temperature frequency 

exposures. It also highlighted how necessary assumptions may have compromised accuracy in 

estimations by introducing additional uncertainty, alongside the assumptions associated with 

the tunnel temperature estimation model. These fundamental challenges arose because 

UKCP18 data is not provided in the relevant format required of this study, highlighting the need 
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for climate projection data to be produced in formats that align with the analytical approaches 

of organisations such as TfL. This is discussed further in Section 7.3.1.5. 

Nevertheless, there were several relevant findings. Focusing on 𝑡𝑚𝑎𝑥 , the rate of warming 

across all climate projection scenarios differs by network type. On the surface, there is an 

estimated increase in mean temperature and variance, especially an increase in the frequency 

of higher 𝑡𝑚𝑎𝑥 and therefore an assumed increase in the annual percentage of exceedance in 

climate thresholds such as hot days, heatwave days, and tropical nights (see Section 6.2.1). 

Across the sub-surface part of the LU network, there is a marginal estimated change in 

distribution of 𝑡𝑚𝑎𝑥 to slightly higher temperatures (see Section 6.2.2). However, in the deep 

tube tunnels, there is a bigger shift in 𝑡𝑚𝑎𝑥; not as high as on the surface, but much higher than 

the sub-surface (see Section 6.2.3). These estimated future temperatures emphasise the scale of 

its increase as a hazard upon the overall risk to assets across the LU network, and that the scale 

of the increased hazard across the surface and tunnel parts of the LU network are 

unambiguously greater than the sub-surface. For asset managers, who are responsible for the 

maintenance of LU assets, this information would be extremely valuable in terms of 

maintenance planning, as well for longer-term strategic decisions on future asset design or 

renewals. 

Recommendation 11: LU asset managers should be informed of the expected rate of change 

in temperatures across the LU network in quantitative terms as a call to action regarding 

climate risk and asset management. 
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7.2.3.2. Change in future work orders 

Chapter Six also highlighted challenges with projecting future estimated WOs, particularly for 

infrequently observed temperatures as well as temperatures that had not yet been observed but 

likely to occur in the future (see Section 6.3). Even if such temperature exposure frequencies 

were low in future, predicting WOs with high accuracy is not possible as either the resulting 

fault exposure rates may be artificially inflated or deflated, or do not exist. Therefore, the results 

addressed where these limitations may be, and made best estimates based on the results 

available. 

The estimates indicate there may be up to a 10% increase in point-related WOs compared to 

the baseline of 2006-2018 that was used for this study (see Figure 6.14). Increases vary by 

network type. In reviewing the change in WOs in the context of the change in thermal 

environment, some of the climate risk on the LU network may not necessarily be regarding the 

management of more WOs throughout the year but pertaining to when in the year the WOs may 

occur. For instance, increased risk may likely be when high temperatures occur early in the year. 

Under future climate change, these instances are likely to occur even earlier. Surface fault 

exposure rates before the annual peak 𝑡𝑚𝑎𝑥 begin to increase from around 25℃ (see Figure 

5.10), coinciding with a large increase in the annual proportion of surface 𝑡𝑚𝑎𝑥 ≥ 25℃ in all 

climate projection scenarios (see Figure 6.2) and more estimated WOs in total (see Figure 6.8). 

Where such days in the baseline data only occurred around July and August, these occur as 

early as May in both scenarios by the 2080s. If the change in timing of such temperatures is not 

accounted for within heat risk management, it could lead to operational challenges at times 

when asset managers are potentially not prepared for the impacts of heat. 
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Recommendation 12: LU asset managers should be informed of the potential change in WOs 

due to heat owed to climate change, including the potential for high temperature occurrence 

earlier in the year to improve operational responses to heat at unexpected times of the year. 

7.3. Increasing TfL’s capacity to adapt to heat and climate change across the 

LU network 

Decision-makers face four key barriers that risk reducing their capacity to deliver more climate-

resilient transport. These are: financial and economic; social and political; technical; and 

institutional and regulatory (Greenham et al., 2022). Addressing these barriers via targeted 

actions can increase TfL’s capacities. In this study, the data-driven results provided new 

decision-support tools, addressing the technical barrier. However, as acknowledged from the 

literature in Chapter Two, tacit knowledge is also extremely valuable and held across internal 

and external stakeholders to TfL. Engaging the relevant stakeholders would not only enhance 

technical, but also institutional capacities for TfL. This section discusses data and stakeholder 

engagement opportunities in the context of this study, and how they could drive further 

improvements in terms of climate change adaptation practices. 

7.3.1. Data 

The quality and quantity of the underpinning data were a crucial component of this study’s 

analysis. Improving these data improves TfL’s data-driven interpretation of results, which in 

turn enables the better planning of and response to climate risks. 
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7.3.1.1. Weather observations 

This study applied temperature data from several sources to conduct the required analyses. 

Doing so was necessary because as demonstrated, observed temperatures on the surface were 

not reflective of those in tunnels. Starting with past observed temperature data, this study 

oriented around data at a single-site MIDAS hourly observation weather station (St. James’s 

Park). All derived surface temperatures for this study were calculated from data at this site. 

Therefore, there was a degree of error in calculated temperatures, namely the surface 

temperature variables per station adjusted for UHI that were joined to WO data for the analysis 

in Chapter Five. Furthermore, additional weather data available to TfL are via weather stations 

at LU depots and sidings managed by contractors (Vaisala), but these data are spatially biased 

as their locations are not uniformly distributed across the LU network. 

On the other hand, a single reference point for temperature was beneficial, particularly when 

determining climate thresholds to evaluate the thermal environment in Chapter Four. This is 

because as a temporal reference, including spatial parameters to these climate thresholds or the 

tunnel temperature estimation model would add an unknown and uncontrolled variable to fault 

exposure rate analyses in Chapter Five and future climate change estimations in Chapter Six. 

Recommendation 13: Future fault exposure rate analyses should consider using gridded 

weather observations for temperature variables to improve accuracy of results for TfL. 

7.3.1.2. LU platform temperature observations 

Tunnel temperature data collected by TfL on the sub-surface and deep tube tunnel parts of the 

LU network were comprehensive and suitable for this study both spatially and temporally. 

However, large data gaps across several stations throughout the study period necessitated the 
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development of a tunnel temperature estimation model, which while useful, had limitations that 

added a degree of error to results. However, the model was essential to provide future 

estimations of tunnel temperatures under the selected climate projection scenarios and would 

improve with regular revisions with up-to-date observations, especially upon future releases of 

UKCP data. 

Recommendation 14: TfL should continue to update a tunnel temperature estimation model 

like that developed in this study with platform temperature observations to improve prediction 

accuracy of tunnel temperatures under future climate change scenarios. 

7.3.1.3. Weather forecasts 

Weather data also comprises weather forecasts. While this study did not include forecasted 

weather data in its methodological approach, referencing and responding to weather forecasts 

are a core procedure in the LU Hot Weather Plan and Winter Weather Contingency Plan. 

Several global weather forecasting ensemble models recently predicted very extreme weather 

events over two weeks before they occurred; referring to the observed 40℃ across England in 

mid-July 2022, which was first forecast on 30th June (Lee, 2022). Considering the future 

increased likelihood of extreme heat of this magnitude in future (Christidis et al., 2020), and 

that this study showed temperature risk thresholds of assets below those in the Hot Weather 

Plan, it would be prudent to allow for more time to prepare the LU network to impendent 

extreme heat events, especially where earlier forecasting allows. 

Recommendation 15: TfL should consider extending the Hot Weather Plan from a 3-day 

response countdown to at least a 5-day response countdown when there is a forecast of a 

temperatures reaching the higher risk thresholds, such as a hot day threshold (at least 28℃). 



 

213 

 

Recommendation 16: TfL should validate the accuracy of their forecast services to ensure 

that they provide sufficient forecast time should the Hot Weather Plan response countdown 

be increased. 

7.3.1.4. Fault data 

A particular challenge when undertaking this study was joining data from two different asset 

management systems, and then to key asset characteristics and attributes to establish fault 

exposure rates. Capacity to conduct this analysis would be improved if asset data is held across 

one system to streamline analytical processes, as LU maintenance staff acknowledged that data 

collection for these systems required duplication of work in data entry, increasing the risk of 

data errors (Tech Monitor, 2018). This is not an issue unique to LU data; other rail networks, 

including Network Rail, comprise several systems that result in data gaps and ambiguities 

affecting fault-related analysis (e.g., Ferranti et al. 2016). 

TfL have addressed the legacy challenge of multiple systems within the organisation, by 

tendering out a project to migrate their systems into one integrated Asset Management 

Information System (AMIS) for the LU network (TfL, 2018). Data migration is underway, with 

completion expected in 2023 (TfL, 2022d). As the creation of fault exposure rates depend on 

these data and are often underutilised for weather analysis (Jaroszweski et al., 2015), it is 

imperative that the data migration retains the spatial, temporal, and other descriptive variables 

mapped to assets and WOs. 

Recommendation 17: TfL should ensure that all asset and work order data is maintained and 

updated regularly by asset managers. 
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Recommendation 18: TfL should increase the awareness of LU asset managers and relevant 

operational staff on the scale of potential to apply AMIS data to other work across the 

organisation, such as the outcomes of this study. 

One missing data variable in the WO data that limited this study was weather condition at the 

time of data entry. This study therefore incorporated all WO data from the sample dataset to 

conduct the fault exposure rate analysis as it was not possible to filter WOs impacted by 

temperature. On the other hand, weather, or in the case of this study, temperature, may not 

necessarily be the primary cause of asset failures (Ferranti et al., 2016), so the resulting dataset 

may not have been sufficient to conduct the scale of analysis achieved in this study. 

However, there are benefits to capturing weather conditions when faults occur, because it is 

possible to focus in on patterns and trends surrounding underlying conditions to derive failure 

causality. This is especially important for reactive WOs; the “faults that find you,” as they are 

the occurrences more likely attributed to weather events due to their unexpected nature. Indeed, 

TfL’s customer delay database reports on weather events linked to delays, but the reporting 

process is ambiguous and there is a bias in data entry where weather attribution is more obvious, 

such as track flooding from heavy rain (Greenham et al., 2020). It is furthermore complicated 

by the fact that delay attribution is not always owed to a single factor, including extreme weather 

events (Rail Delivery Group, 2020). Therefore, capturing real-time data by operational staff at 

the time of an incident or a WO would improve attribution of delays and faults to weather events. 

Future weather-driven analyses would then have the capability to filter explicitly by the 

required data. Network Rail capture some of these attributes in their fault management system 

and was the fundamental identification process to detect heat-related faults by Ferranti et al., 

(2016). 
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Recommendation 19: TfL should consider ways to capture observed weather at the time of 

entry for work order data, at least for reactive work orders as a minimum to improve weather 

attribution of faults for future analysis. 

A remaining challenge regarding fault data on the LU network and weather-driven analysis is 

to appropriately join weather observations to corrective WOs. As corrective WOs are “faults 

that you find,” the time they were raised would not necessarily correlate with the weather 

conditions that led to the fault occurrence, as it may have occurred prior to its discovery. A 

solution to this challenge is utilising remote condition monitoring (RCM) technology. TfL have 

tested RCM across some sections of the LU network, including point assets (Railway 

Technology, 2014) and track circuits (Etchell, 2014). Additionally, TfL recently launched a 

State of Good Repair (SoGR) Framework to classify and monitor asset conditions with a 

consistent approach (TfL, 2022l) and justifies the need for pan-LU network RCM as it would 

help inform SoGR scoring. Furthermore, RCM may enable TfL to transition from preventative 

maintenance to predictive maintenance practices on the LU network, providing effectiveness 

and efficiency savings (Ciocoiu et al., 2017). Therefore, to address the corrective maintenance 

weather-driven analysis challenges, it would benefit TfL to ensure that ambient weather data is 

incorporated with, or possible to incorporate with RCM data to capture the relationship. 

Recommendation 20: TfL should expand its RCM capabilities across the LU network to 

reduce the challenges associated with weather-driven analysis regarding corrective 

maintenance, ensuring that RCM data is accessible and can be joined to ambient weather 

data for future analysis. This could begin by prioritising areas that experience the highest 

fault exposure rates, such as parts of the Bakerloo and Central lines. 
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7.3.1.5. Climate data 

UKCP18 data via the Met Office is currently the most appropriate data that describes future 

possible climate change scenarios for the UK. However, this study demonstrated that the format 

they are provided via the User Interface are insufficient for the quantitative methodological 

approach undertaken for fault exposure rate analysis. This is a known issue across the 

infrastructure sector, as many organisations encountered challenges making use of UKCP18 

data (CCC, 2022). For instance, Network Rail commissioned research support to establish 

weather threshold frequencies with outcomes of varying confidence ratings (Network Rail, 

2021a).  

Table 7.2 shows the estimated number of days in a year likely to exceed temperature thresholds 

for 𝑡𝑚𝑎𝑥 that affect most of Network Rail’s assets in London. The climate thresholds from this 

study are not directly comparable to the thresholds in Table 7.2 as their parameters fall between 

the below thresholds, but estimated days between both datasets are similar. 

Table 7.2. Estimated frequency of days exceeding key 𝑡𝑚𝑎𝑥 asset failure thresholds for Network Rail in London, compared 

with a 1961-1990 baseline (Source: Network Rail, 2021a) 

𝒕𝒎𝒂𝒙 

threshold 

(℃) 

Baseline 

frequency 

(days) 

Climate 

change 

scenario* 

2050s 

frequency 

(days) 

2080s 

frequency 

(days) 

20 75.2 
Primary 142.2 166.3 

Higher 148.2 - 

21 57.4 
Primary 123.9 149.7 

Higher 131.9 - 

26 7.3 
Primary 55.8 73.4 

Higher 56.0 - 

30 0.6 
Primary 16.0 30.8 

Higher 18.0 - 

* Using UKCP09 climate projections. Primary = UKCP09 medium emissions scenario 90th percentile; Higher = UKCP09 high 

emissions scenario 90th percentile 
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As Network Rail continue to use UKCP09 data to establish frequency data in  

Table 7.2, it highlights the limitations in UKCP18 data to meet the needs of the railways across 

GB. The weather generator tool from UKCP09 was not provided with UKCP18 data, opting 

not to use a statistical approach for climate projections. (Met Office, 2018d). However, the 

suggested alternative UKCP18 datasets do not provide the sufficient data resolution for RCP 

6.0, leading to the resulting methodological approach used for this study, with its own 

limitations. Therefore, to reduce these limitations, future UKCP releases should consider the 

added value of re-introducing statistically derived daily data for industry purposes. 

Recommendation 21: The Met Office should consider developing or re-introducing products 

that meet the needs of climate projection analysis by infrastructure operators, using daily 

frequency data. 

Finally, as extreme heat events are inherently infrequent, TfL’s capacity to quantitatively 

estimate the impacts of a future climate scenarios would be improved with the use of analogues. 

Reviewing potential analogous regions in both rail infrastructure and future climate conditions 

would be useful. Previously assessed analogue countries suited to the wider Great British 

railway network included France, the Netherlands, Belgium, Germany and Denmark 

(Sanderson et al., 2016). However, at the city scale, a metro analogue for the LU, given its 

unique characteristics would need to consider the city size, form and UHI intensity, as well as 

the metro network size, form, and age. The metro systems in the biggest cities within the 

analogous countries include: the Paris Metro (France); the Berlin U-Bahn (Germany); the 

Rotterdam Metro (Netherlands); the Brussels Metro (Belgium); the Cologne Stadt Bahn 

(Germany); the Hamburg U-Bahn (Germany); the Munich U-Bahn (Germany); the Frankfurt 
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U-Bahn (Germany), the Amsterdam Metro (Netherlands); and the Copenhagen Metro 

(Denmark). 

London has several networks to leverage support, and from a climate change adaptation 

perspective would include the C40 Cities Climate Leadership Group, which the Mayor of 

London currently chairs. From a transport perspective, these would include the International 

Association of Public Transport (UITP) and the Urban Transport Group, which are international 

and national organisations respectively. 

Recommendation 22: TfL should leverage its existing international networks to establish 

potential weather and metro network analogues for future fault estimations of the LU 

network. 

7.3.2. Stakeholder engagement 

Engaging with a wide range of internal and external stakeholders is crucial to increase TfL’s 

capacity in delivering a more climate-resilient LU network. Different stakeholders may provide 

additional or new perspectives and experiences beyond the scope of TfL’s current 

understanding of its climate challenges. Therefore, an interdisciplinary approach to climate 

impact analyses can broaden view horizons by considering other factors such as future socio-

economic change (Jaroszweski et al., 2010). The previous subsection focused on data and 

demonstrated the opportunities stakeholders can provide regarding improved data and provision 

and quality for TfL. However, stakeholders can also increase an organisation’s knowledge and 

influence delivery mechanisms and responses to climate change in more effective and impactful 

ways (Allen et al., 2018). This is important as there is a historic siloed approach to infrastructure 

management between sectors (Otto et al., 2016) as well as within TfL itself (Rode, 2019). 
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7.3.2.1. Internal stakeholder engagement 

Stakeholder engagement within TfL would increase its ability to validate and respond to data-

driven climate risk analyses, such as the results from this study. As previously mentioned 

throughout this chapter, there are limitations in the interpretation of this study’s results due to 

data quality, methodological approach, and future climate change uncertainty. While a data-

driven approach into the impact of weather and climate change on the LU network provided a 

more objective insight into trends and relationships, the tacit knowledge across operational 

disciplines within the organisation is extremely important to validate its findings; and explain 

possible underling reasons for the trends, or any anomalies and outliers. Transparency between 

those who conduct analyses and those who work with assets would therefore reduce the risk of 

corporate memory loss and strengthen TfL’s broader understanding of its climate risks on the 

LU network in the longer-term. A novel approach designed by Martello et al. (2022) converted 

expert knowledge into relationship profiles for several asset groups for a metro network, and 

would be an appropriate step forward in validation. As TfL recently consolidated its Asset 

Strategy teams (TfL, 2022l), conducting a similar exercise across several assets should be more 

feasible going forwards. 

Recommendation 23: TfL should solicit expert judgement across the organisation to validate 

the data-driven approach to fault exposure rates of asset groups on the LU network. 

7.3.2.2. External stakeholder engagement 

Optimising external stakeholder engagement would also improve TfL’s capacity to deliver a 

more climate-resilient LU network, especially where there are time or financial constraints. The 

umbrella of external stakeholders relevant to TfL ranges from local to global (see Figure 7.1) 
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and it is critical that as many of these stakeholders as possible are involved in all stages of TfL’s 

processes and procedures that result in strategic decision-making. This is because of the effect 

some decisions have on other stakeholders and vice versa. Some recommendations from the 

TRaCCA report (RSSB, 2016a) include: 

• Collaborating on technical standards for infrastructure design, and sharing wider 

learnings on intelligent design and ICT, and building a better “system-of-systems” 

understanding of infrastructure networks with other national infrastructure operators. 

• Engaging with key providers of weather and climate data to ensure it can be 

appropriately applied in a railway context. 

• Sharing knowledge with overseas counterparts. 

• Capturing local knowledge through local stakeholders. 

• Obtaining several stakeholders’ input to identify and prioritise research. 

Several of these engagement activities are already addressed by TfL, as they participate in pan-

stakeholder groups such as the Infrastructure Operators Adaptation Forum, the London 

Transport Adaptation Steering Group (chaired by TfL), the London Resilience Partnership, and 

the Pan-London Surface Water Flooding Task and Finish Group – created following the heavy 

flooding that occurred on 12th and 25th July 2021 (Gilby, 2022). These networks connect TfL 

with knowledge exchange opportunities, particularly in the regional and national context. 

Collaboration activities should continue in future, but TfL could also benefit from conducting 

further outreach activities for consultation specific to the organisation, such as the results of 

this study. 
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Recommendation 24: TfL should continue to engage with external stakeholders at local, 

regional, national, and global scales and endeavour to consult with them regarding the 

outcomes and implications of fault exposure rate analyses. 

 

Figure 7.1. Some examples of external stakeholders relevant to TfL from a climate change adaptation perspective 

7.3.3. The adaptation direction 

Although it is outside of the scope of this study to recommend specific adaptation actions for 

the LU network, its findings can be reflected upon in terms of progressing from TfL’s 

adaptation report (TfL, 2021b) and provide guidance and direction in terms of future reporting. 

Increasing climate resilience through adaptation requires looking at all possible options to 

address the challenges – in the case of this study, that challenge would be the threshold 
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exceedances of the fault exposure rates, and the consequential change in future asset failures 

under future climate scenarios. These could include organisational processes (e.g., company 

policies), operations and procedures (e.g., maintenance planning), ICT support, decision and 

risk models, and legislation (Stamos et al., 2015). Reviewing a range of options is necessary as 

it provides a more comprehensive risk response that limits the likelihood of “maladaptation” – 

where actions may in fact increase the risk of climate-related outcomes, usually as an 

unintended consequence (IPCC, 2022). Figure 7.2 shows this risk conceptually. Each 

adaptation option has a potential level of effectiveness and a lifespan, but also external 

determinants that may not be possible to control. TfL’s capacity to deliver climate-resilient 

transport is dependent on the extent by which they limit the risk of maladaptation. 

Echoing the recent change in asset management practices across TfL, the recently published 

adaptation plan takes a pan-TfL approach (TfL, 2023). It focuses on three main areas: (1) data 

and evidence, (2) processes and tools, and (3) collaboration and engagement. By proxy, a pan-

TfL approach encourages internal and external stakeholders to work together. Through this 

approach, TfL can address some of the challenges identified from this study and therefore 

improve their capacities as there are linkages across all three categories. For example, future 

iterations of this study would benefit from more and improved data, which in turn could 

improve the efficacy and usefulness of decision-making tools as part of data utilisation. It may 

require stakeholders to share data or knowledge that otherwise has not been shared for 

adaptation purposes and will require their buy-in to the cause. Stakeholders who own or manage 

data with unrealised benefits for adaptation but may lack the knowledge or prior engagement 

on climate change challenges are a key opportunity for TfL. 
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Recommendation 25: TfL should consider all possible adaptation options for the LU network, 

before undertaking prioritisation, to help reduce fault exposure rates and identify the 

maladaptation risks to these options for decision-making purposes. 

Recommendation 26: TfL should raise the profile of adaptation across the organisation, 

especially to existing and prospective stakeholders who are non-experts in the realm of 

climate change to increase buy-in and address actions in the pan-TfL climate change 

adaptation plan. 

 

Figure 7.2. A conceptual diagram of potential adaptation outcomes over time (Source: Schipper, 2020) 

Nevertheless, transport networks like the LU are constantly changing. The scale of future 

climate change (i.e., the most likely RCP scenario) is uncertain, infrastructure and society’s 

resilience on ICT grows, with its own risks and interdependencies, organisational structures can 

change, and there will always be the chance of externalities affecting operations out of most 

anyone’s control (e.g., the coronavirus pandemic). Adaptation plans and actions must therefore 

be responsive to change. This is reflected in outcome B of Figure 7.2, where learnings and 

feedback improve adaptative capacity and necessitates flexible planning. The pathway 
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approach to adaptation is appropriate in this context (Haasnoot et al., 2013), as the concept 

enables dynamic and flexible decision-making according to pre-defined intervals such as time, 

extent of hazard or design parameters/thresholds. As an adaptation pathway should map several 

outcomes and options, it also upholds the need for stakeholder engagement to optimise the 

reduction of risk. Adaptation pathways also strengthen the integration of adaptation into 

business-as-usual practice (Quinn et al., 2018), so responding to climate change becomes part 

of core business planning and not an additional plan or strategy. 

TfL aspire to develop an adaptation pathways approach to climate change for their assets. 

However, a lack of data is a key barrier in achieving this to date (TfL, 2021b). Considering the 

iterative process implies that drafting plans with current knowledge is sufficient to begin, plans 

can be revisited and refined as data is improved. This is the core principle of ISO14090, the 

international standard on adapting to climate change (ISO, 2019), so it would be acceptable to 

begin designing adaptation pathways for the LU network in the near future. In the context of 

this study, the defined intervals for decision-making points in an adaptation pathway for point-

related assets could be based on frequency of days meeting certain climate thresholds or asset 

temperature thresholds per year. As such, there would be less dependency on a temporal 

timeline, as the response level would be dependent on the climate change trajectory, of which 

frequent review cycles would facilitate the monitoring and evaluation process. 

Recommendation 27: TfL should prioritise piloting a draft adaptation pathway with 

knowledge to date, establishing a timeline to review and adjust them as new data and 

knowledge is obtained. 
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7.4. Critique of methodology and further development 

Throughout this chapter, the discussion explicitly focuses on the results from this study and 

puts them into the context of TfL’s current processes and procedures. Here, this chapter begins 

to broaden the implications of this study on infrastructure operators and stakeholders supporting 

the delivery of climate-resilient transport. The data-driven approach enabled the indiscriminate 

scrutiny of relationships between temperature and WOs across the LU network on a spatial and 

temporal scale. By doing this, it also enabled lesser-known relationships to be drawn out with 

the potential for further investigation by TfL with consideration of future climate change. 

Testing a tunnel temperature estimation model originally designed for Japanese railway tunnels 

(Kimura et al., 2018) and fault exposure rate methodological principles formerly designed for 

a Network Rail analysis (Fisher, 2020) demonstrated their applicability to the LU network. 

Doing so increases the capabilities of data-driven analyses in a more standardised way that can 

inform decisions in adapting to climate change. Nevertheless, there are several opportunities to 

improve the methodology used for this study. 

7.4.1. Joining temperature and work order data 

Due to the spatiotemporal resolution of temperature variables necessary to conduct this study, 

there were several options to consider when selecting the appropriate temperature data to join 

to the LU network WO data. Justifying a single reference point of temperature data is discussed 

in Section 7.3.1.1, and the reason for the method used in this study was primarily to limit the 

unknowns and uncontrolled variables into the analysis. Therefore, the only spatial adjustment 

variable was the single UHI intensity at 100m resolution, but as Chapter One described, 

London’s UHI intensity can vary slightly throughout the day and is a likely reason for a 
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potential degree of error in the results. However, at the expense of resolution, the temperature 

data, least for fault exposure rate analysis could be substituted with 1km daily observation data 

by the HadUK-Grid dataset grid from the Met Office. The resolution could be increased by 

downscaling to 100m via resampling using mapping techniques such a bilinear interpolation; 

comparing results with the current study to determine which dataset is more appropriate. 

Similarly, this could also be evaluated for the tunnel temperature estimation model; to 

determine whether surface temperatures nearest to each station platform improve the estimation 

of tunnel temperatures. 

7.4.2. Prediction capabilities 

Another consideration regarding the methodological approach of this study would whether the 

prediction methods are fit for purpose, particularly for future iterations of this type of study. 

This is a particular challenge given that data in this study contained inaccuracies that could not 

be avoided. Centering on the WO data, there were likely human errors within the dataset, as 

well as the time WOs were raised likely not reflective of the actual point of failure (see Section 

7.3.1.4). Asset condition is also a factor in failure rates (Dobney et al., 2009), which may be 

intrinsically linked to maintenance activity, neither of which were within the scope of this study, 

but a realised potential direction of future work as a result of it. 

Several of the processes undertaken for this study were manually conducted, which for an 

organisation like TfL, with limited human capacity to conduct manual processes could be a 

challenge. However, as data continues to grow and improve across TfL, and as research in 

analytical tools develop, there are opportunities to increase automation while also improving 

accuracy. Big data analysis via machine learning or artificial intelligence would be an 

appropriate direction for this type of data-driven approach. Once the AMIS integration is 
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complete for the LU network’s data, it would be a timely opportunity to explore solutions to 

further improve accuracy. An empirical dynamic model approach is a potential option – which 

addresses the complexity of the relationship between asset failure and weather/climate, as well 

as the multiple variables upon them (Chang et al., 2017). Training a model with historic 

temperature observations and WO data, then overlaying climate projection data could be a 

possible way of improving future WO estimations, especially given that fault exposure rates 

outside lower bound ranges were difficult to estimate. It could also have similar potential with 

a tunnel temperature estimation model. 

Recommendation 28: Infrastructure practitioners and researchers should consider the 

possibility of investigating the viability of empirical dynamic modelling to similar data used 

in this study to drive the future direction of this research. 

7.4.3. Considerations in interpreting results 

As there are limitations to this study, it is important to take these into account when interpreting 

results. This is primarily an outcome of the approach in handling several datasets with different 

parameters and levels of quality – the interpretation of results is only as reliable as the data used 

to produce them. For example, threshold analyses among the fault exposure rates are based on 

1℃ temperature bins. As there are some variances in the accuracy of estimated or adjusted 

temperatures across the LU network, the defined thresholds may not be precise. This may have 

resulted in small degree of error in temperature variables assigned to WOs for analysis. 

Specific considerations when interpreting results include: the accuracy of temperature variables 

from the UHI calculation and tunnel temperature estimation model; the inclusion of WO data 

with incomplete information (e.g., missing reasons for closing WO, re-corrected locations, 
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WOs raised on assets that have since been removed from service); the overstating of corrective 

WOs affecting the fault exposure rate at specific intervals; the assumptions made in estimating 

projected temperature exposure frequencies; and the potential decreased accuracy in estimating 

future WOs at temperatures beyond the range of those observed in this study. Should TfL 

improve their data management practices and levels of stakeholder engagement (see Section 

7.3), future iterations of this type of study would improve and the interpretation of results more 

reliable. 

Recommendation 29: TfL and key stakeholders should be made aware of the limitations of 

this study, the impact these may have on the interpretation of results, and the potential to 

improve the accuracy in future research based on the improvements of data and increased 

stakeholder engagement. 

7.5. Looking ahead towards more climate-resilient transport networks 

Our understanding of weather and climate risks to transport infrastructure has improved in the 

last 10-15 years. As a sector that was often given little explicit attention in literature (Koetse 

and Rietveld, 2009), there has been a significant shift in research to improve knowledge and 

quantify climate risk, enabling both conceptual and practical advance within the field. This 

section considers how the methodology designed for this study can be applied in new contexts, 

and how to improve it further for future utilisation by researchers, industry practitioners, and 

their stakeholders. 



 

229 

 

7.5.1. Mapping climate risk 

One key finding of this study was that it is very important for metro networks to separate climate 

risk analysis by their different environments (i.e., tunnels and surface), underpinning the need 

for spatial analysis. While dependent on spatial data resolution, a potential next step in 

improving the understanding of broader climate risk across an infrastructure network would be 

to layer multiple spatial data. 

This study showed that spatial analysis is achievable, and while focused on the nearest station 

as the spatial identifier, future analysis could consider the specific location of assets within a 

finer resolution grid. Combining disparate hazard data (e.g., temperature variables, precipitation 

variables, wind speed, climate projections), exposure data (e.g., tree/vegetation cover, flood 

zones, tunnel temperature estimation model coefficients) and vulnerability data (e.g., fault 

exposure rates, SoGR status, delay frequency, other connected infrastructure) would provide 

risk scores for targeted intervention and prioritisation. This method of multi-variable climate 

risk assessment is usually designed for plan-making, including for London (GLA, 2022) and is 

considered the gold standard for cities, states, public authorities and organisations alike in 

disclosing environmental progress transparently (CDP, 2023). Railway practitioners are 

interested in taking a multi-hazard approach to climate risk, though have a limited 

understanding of how to approach it (Green and Chmutina, 2019). Therefore, mapping climate 

risk is a tool that brings together several variables into a single risk outcome, while applying 

the methods of this study beyond its parameters and may improve practitioners’ understanding 

of their climate risk to prioritise adaptation actions, model future climate risk, and build 

pathways. 
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Recommendation 30: Meteorology organisations should review the appetite and benefits of 

improved spatial resolution of data for researchers and infrastructure practitioners. 

Recommendation 31: TfL and other infrastructure practitioners, along with researchers 

should assess the viability of the tailored mapping of climate risk across their networks, using 

disparate data from within its organisation (which could include fault exposure rates and 

estimated tunnel temperature) and key stakeholders to gain a full, comprehensive overview 

of the infrastructure risk by compiling climate hazards, exposure, and vulnerabilities across 

the network. 

7.5.2. Linking fault exposure rates with delay data 

This study focused on fault data that did not necessarily impact the customer, and therefore did 

not translate into results using delay data. This is because as per the review of literature in 

Section 2.5, customer-driven metrics risk excluding a proportion of faults that may not affect 

operational services, which may result in an oversight of important asset risks due to data bias. 

Therefore, fault-led metrics may identify faults that arise before resulting in delays that impact 

customers. As this study focuses on correlations and relationships between temperature and 

faults, it does not infer causality. However, this could be addressed with the inclusion of delay 

data, which TfL also collects. Joining delay data with fault data may help identify patterns 

regarding what type of heat-related faults lead to delays in service, helping identify potential 

fault causality. Conducting this analysis would be particularly beneficial using reactive WOs, 

which are the faults considered to cause disruption in service, although they are a smaller 

proportion of overall WO data collected. Nevertheless, given the increased extreme heat events 

that have occurred since the study period, it would be a relevant and timely development to 

progress this analysis further. 
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Recommendation 32: TfL should consider combining LU delay data with fault exposure rate 

analysis results to identify any trends in faults leading to delays, in a step towards identifying 

heat-related causality of faults across the LU network. 

7.5.3. Progressing the analysis of extreme weather events 

The methodological approach for this study provided an overview of trends, however it was 

challenging to explore the impact of single extreme weather events. This is compounded by few 

extreme temperatures recorded throughout the study period, especially considering their 

increased frequency, intensity, and duration after the study period. Studies that look at the 

impacts of specific extreme weather events on transport infrastructure (e.g., Ferranti et al., 

2018; Jaroszweski et al., 2015) are useful in addressing the gap in this study’s approach as they 

have the capability to explore site-specific failures patterns. There is perhaps an opportunity to 

develop the fault exposure rate for extreme weather event analysis by using hourly data with 

the same methodological approach. As the temperature and WO data collected for this study 

were hourly, it would be possible to conduct some test analyses to gain a better understanding 

of these infrequent events with the same approach. Furthermore, it could evaluate the efficacy 

of the current operational response plans. For the LU network, these are the Hot Weather Plan 

and the Winter Weather Contingency Plan. It could also evaluate the effectiveness of current 

maintenance practices, based on the SoGR status of assets going forwards. 

Recommendation 33: TfL and other infrastructure practitioners, along with researchers 

should assess the viability of downscaling the fault exposure rate analysis to hourly analysis 

days before, during and days after extreme weather events to improve understanding of 

weather-driven failures. 
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7.5.4. The international perspective 

London is a global city with substantial international interest in its activities. As home to the 

oldest metro network, other networks around the world have been fortunate to take learnings 

from the way the LU network to date has been constructed, managed, and operated. Now, 

during a climate emergency, the LU network faces both ongoing and new challenges in keeping 

London moving. Global stakeholder engagement is valuable in this case, as TfL can learn from 

others who once learnt from them. Benchmarking through metrics is a useful method of 

quantitatively evaluating climate change preparedness (Greenham et al., 2020). Therefore, as 

the methodological approach used in this study demonstrated its applicability to other networks, 

there is scope for other rail and metro networks to evaluate their resilience to weather and 

climate change as a form of international benchmarking. Networks can then compare results, 

share knowledge tailored to their needs based on asset risk. 

Recommendation 34: Other metro operators should consider a quantitative, data-driven 

approach to evaluate climate risk for international benchmarking purposes, which provides 

the opportunity to tailor knowledge exchange for mutual gain in improving climate resilience. 

7.6. Next steps for TfL in delivering more climate-resilient transport 

TfL, as owners and operators of the LU network is committed to ensuring that it continues to 

run safely. Considering future climate change, the heat-related risk to the LU network is 

quantifiably increasing, as the heat hazard increases. Climate risk can only be reduced, or 

negated, if TfL’s response sufficiently limits, or reduces, the vulnerability and exposure of the 

LU network. Climate risk is highly variable across the LU network, as temperature thresholds 
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of its infrastructure – in this case, point-related assets – are affected in some parts of the LU 

network by temperatures below those currently not deemed a risk to operations. 

The main challenge, as TfL reports, is that data is a major barrier to developing adaptation 

pathways for assets. To overcome this, TfL need to leverage as many stakeholders as possible 

to overcome this barrier and enabling the development of pathways that can be updated as 

improved data is available. Cross-departmental data system integration and a review of data 

management practices would underpin this. TfL’s AMIS project is still ongoing, and the pan-

TfL adaptation plan (TfL, 2023) was published too recently to review as part of this study, but 

both are welcome and relevant progress in integrating practices and facilitating communication 

between and across the LU network and beyond. 

The methodology presented in this study provides a data-led foundation to quantify and start 

estimating the impacts of weather events such as heat, as well as future climate change, across 

a metro network. It expanded initial methods across research to demonstrate flexibility and 

applicability to another network. The outcomes of the study should support TfL, as well as any 

transport network practitioner to scrutinise the relationship between weather and climate on 

infrastructure to begin to identify its vulnerable parts, identify key failure thresholds and begin 

to take appropriate action to address climate risk. 

7.7. Chapter summary 

This chapter provided recommendations throughout aimed at TfL and other metro and railway 

operators and stakeholders to further develop climate-resilient transport systems, particularly 

to temperature hazards. These recommendations fall into three core areas: pan-organisational 

data management, increased internal and external stakeholder engagement, and prioritising an 
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iterative climate change adaptation pathways process that accommodates the growing 

organisational capacities. For TfL, key goals in improving the climate resilience of the LU 

network to heat should consider: 

1. Continue to consolidate databases and data platforms; including standardising data entry 

practices and data variables to improve organisational transparency, increase data and 

analytical capacities, and streamline pan-TfL operations. 

2. Improve and extend current internal and external stakeholder relationships at all stages 

of climate change adaptation planning. This includes at stages of scoping, collecting, 

and analysing data; developing and selecting adaptation options, and monitoring and 

evaluation activities; to improve knowledge, technical, and financial capacities. 

3. Start the adaptation pathways process as soon as feasibly possible, as even where there 

are data or knowledge gaps, these can be added later, assuming capacity growth is 

achieved from points 1 and 2. This is since adaptation pathways are dynamic and the 

process is iterative, so failure to act risks leading to maladaptation. 
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Chapter Eight  |  Conclusion 

8.1. Conclusion overview 

Following the discussion of results in the previous chapter, this section draws the study to a 

close by describing how the aim and objectives were achieved. This begins with a summary of 

how each objective was met, and concludes with final remarks, reflecting on this study and 

future implications in the context of TfL and the operation of the LU network. 

8.2. Achievement of aims and objectives 

The aim of this study was to use a systematic, data-driven approach to quantify the impact of 

present and future temperature-related hazards on railway assets across the LU network. This 

aim was achieved in stages throughout the study, with each chapter building on its previous one. 

8.2.1. Justifying a data-driven approach 

Objective 1: Critically review the literature on delay and fault metrics that quantify the impact 

of weather and climate on railway infrastructure. 

The literature reviewed in this study showed several approaches to quantifying the impact of 

weather and climate change on railway infrastructure. A strong case was made, by reviewing 

the range of metrics utilised across numerous studies, to consider quantification by means of 

failure frequency. Although customer-driven metrics are valued by infrastructure operators, 

delays to customers are secondary impacts of faults on a network, therefore it is important to 

consider assets to improve infrastructure resilience. Frequency-based metrics were considered 
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most appropriate for this study, as the literature review demonstrates they correlate well with 

weather variables and thereby enable and justify a data-driven approach. 

8.2.2. Demonstrating the spatial variability of temperature across metro networks 

Objective 2: Distinguish the changes and differences in the thermal environment across the LU 

network. 

This study successfully demonstrated spatial and temporal variance in temperature across the 

LU network by evaluating the thermal environment by network type (i.e., surface, sub-surface, 

deep tube tunnels). Moreover, the analysis determined that the climate of the study period 

(2006-2018) showed signals of change. Finally, the analysis demonstrated the use of surface 

temperature observations to estimate tunnel temperatures. All the approaches undertaken 

delivered quantitative evidence of variances by LU station, which is at least 270 locations – not 

accounting for interchange tunnel stations also, where there were additional variances among 

LU lines at the same location. 

8.2.3. Quantification of the effect of temperature on infrastructure 

Objective 3: Investigate and interrogate the relationships between LU asset faults recorded by 

TfL and the thermal environment. 

This study also successfully showed spatial variance in faults (corrective and reactive work 

orders) by LU line. By identifying one and two standard deviation thresholds, the method 

clearly highlighted statistically significant trends in fault exposure rates, indicating the 

temperatures that affect asset performance across the LU network. Fault exposure rates varied 

by network type and LU line for each temperature variable (𝑡𝑚𝑒𝑎𝑛, 𝑡𝑚𝑎𝑥, 𝑡𝑚𝑖𝑛, ∆𝑡). Results also 
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revealed failure harvesting on the surface – where early season high temperatures experienced 

higher fault exposure rates, which then decreased at higher summer temperatures following 

assets repair or replacement, thus increasing network resilience to temperature. However, the 

integrity of work order data affected some fault exposure rates, in some cases artificially 

inflating rates. TfL are in the process of improving data systems and processes. Going forward, 

reiterations of this type of analysis should see an improvement. 

8.2.4. Quantification of the effect of future climate change on infrastructure 

Objective 4: Utilise the relationships to estimate potential change in asset failures trends on 

the LU network in accordance with future climate change scenarios. 

Using UKCP18 data, the tunnel temperature estimation model, and fault exposure rates, it was 

possible to convey change in work orders owed to increased temperature, including spatial 

variance by network type. Overall, there is up to a 10% estimated increase in point-related work 

orders across the LU network for the high emissions projection scenario (RCP 8.5), by the 

2080s; assuming similar future operation of the LU network. The increase could be higher, 

however, as the spatial variance in estimated temperatures across some parts of London may 

observe some higher temperature increase due to the greater effect of the UHI. Furthermore, 

the estimated increases in work order rates are highest on the surface, followed by the deep tube 

tunnels, and then shows no discernible change across the sub-surface parts of the LU network. 

8.2.5. Future research development and direction 

Objective 5: Critically evaluate the method used to produce the results, suggesting areas for 

future development of the approach and research direction. 
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This study has demonstrated the validity of the methodology used here. The discussion of the 

results highlighted several opportunities to further utilise this systematic, data-driven approach. 

These include improved spatial methodological approaches and increasing the incorporation of 

mapping techniques as a tool for decision makers, as well as improving the prediction 

capabilities with more sophisticated statistical techniques including machine learning and 

artificial intelligence. Ultimately, these techniques could improve data quality, while at the 

same time reducing the time burden on infrastructure operators and decision-makers in 

conducting their own analyses and investigations. 

8.2.6. Practical application of the research and implications 

Objective 6: Suggest ways that the findings can support decision-making processes for the 

adaptation of railway and metro networks to climate change, with recommendations for the key 

stakeholders involved. 

Throughout the discussion, the findings of this study identified 34 recommendations, primarily 

for TfL, that would improve their capacity to adapt to heat and climate change across the LU 

network. These are oriented around improving data, or access to data, as well as maximising 

stakeholder engagement opportunities. Adapting to climate change is a cross-cutting challenge, 

so increasing impact through utilising various data sources and consultation with a wide range 

of stakeholders is imperative, as it can lead to the identification of a comprehensive range of 

adaptation options. Furthermore, adapting to climate change requires an iterative process. Co-

creating and developing adaptation pathways as new and updated data and information is 

continuously fed into the process is an appropriate method. This study demonstrated that this 

process is possible to begin now. 
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8.3. Concluding remarks 

The sections of this chapter showed how this study achieved its aim and objectives by 

increasing knowledge on the relationship between temperature as a hazard on assets across the 

LU network now and in future. It showed, for the first time, the spatial differentiation of these 

relationships, which is of crucial importance to TfL and will feed into their decision-making 

processes moving forward. 

Adapting to climate change will require significant financial investment. Because of the scale 

of future uncertainty – in any context – there is often a reluctance by decision-makers to act 

(Koetse and Rietveld, 2012), but inaction is more costly in the longer-term (Bachner, 2017). 

This is a pertinent issue. The UK, like many countries has committed to reach Net Zero GHG 

emissions in the coming decades, public transport use is expected to increase, with 

organisations such as TfL supporting modal shift away from private car use. There are 

consequently co-benefits of investing in public transport networks like the LU for both climate 

mitigation and adaptation purposes, but finance is a key challenge. TfL’s funding model relies 

greatly on passenger revenue (TfL, 2022m), which was severely affected by reduced passenger 

counts since 2020 owed to the coronavirus pandemic. Compounded by post-Brexit challenges, 

the war in Ukraine and the current cost of living crisis, climate adaptation action is threatened 

with losing focus and priority, ultimately at a greater cost in future. 

Raising the profile of climate change adaptation requires a clear understanding of climate risk. 

For a complex system like the LU network, this requires data-driven approaches, as well as the 

improved utilisation and application of tacit knowledge where appropriate. Using data to 

quantify climate risk may also serve as a call-to-action for investors to respond, enabling a more 

targeted approach to optimise and maximise future climate resilience. 
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Appendix A: Map of the London Underground network, showing tunnel parts (Source: TfL, 2017b) 
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Appendix B: R code sample to build the tunnel temperature estimation model 

#packages utilised throughout R code build 

library(tidyverse) 

library(scales) 

library(dplyr)#also plyr where required 

library(runner) 

library(lubridate) 

library(TSA) 

library(reshape2) 

library(data.table) 

 

##Sample code: tmean/Paddington/SB/Bakerloo line## 

 

#Step 1. cross-correlation# 

 

#load data - tunnel observations 

Bakerloo <- 

  list.files(path = "//**REDACTED**/Bakerloo", 

             pattern = ".*csv", 

             full.names = TRUE) 

Tube_temperature_humidity_Bakerloo <- lapply(Bakerloo, read.csv) 

names(Tube_temperature_humidity_Bakerloo) <- 

  c( 

    "2006", 

    "2007", 

    "2008", 

    "2009", 

    "2010", 

    "2011", 

    "2012", 

    "2013", 

    "2014", 

    "2015", 

    "2016", 

    "2017", 

    "2018" 

  ) 

Bakerloo <- 

  rbind( 

    Tube_temperature_humidity_Bakerloo$`2006`, 

    Tube_temperature_humidity_Bakerloo$`2007`, 

    Tube_temperature_humidity_Bakerloo$`2008`, 

    Tube_temperature_humidity_Bakerloo$`2009`, 

    Tube_temperature_humidity_Bakerloo$`2010`, 

    Tube_temperature_humidity_Bakerloo$`2011`, 

    Tube_temperature_humidity_Bakerloo$`2012`, 

    Tube_temperature_humidity_Bakerloo$`2013`, 

    Tube_temperature_humidity_Bakerloo$`2014`, 

    Tube_temperature_humidity_Bakerloo$`2015`, 

    Tube_temperature_humidity_Bakerloo$`2016`, 

    Tube_temperature_humidity_Bakerloo$`2017`, 

    Tube_temperature_humidity_Bakerloo$`2018` 

  ) 

 

#load data - Met office observations 

weather_obs_St_James <- 
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  list.files(path = "//**REDACTED**/Met Office/Weather observations/St 

Jamess Park", 

             pattern = ".*csv", 

             full.names = TRUE) 

Met_Office_weather_observations_St_Jamess_Park <- 

  lapply(weather_obs_St_James, read.csv) 

names(Met_Office_weather_observations_St_Jamess_Park) <- 

  c( 

    "2006", 

    "2007", 

    "2008", 

    "2009", 

    "2010", 

    "2011", 

    "2012", 

    "2013", 

    "2014", 

    "2015", 

    "2016", 

    "2017", 

    "2018" 

  ) 

weather_obs_St_James <- 

  rbind( 

    Met_Office_weather_observations_St_Jamess_Park$'2006', 

    Met_Office_weather_observations_St_Jamess_Park$'2007', 

    Met_Office_weather_observations_St_Jamess_Park$`2008`, 

    Met_Office_weather_observations_St_Jamess_Park$`2009`, 

    Met_Office_weather_observations_St_Jamess_Park$`2010`, 

    Met_Office_weather_observations_St_Jamess_Park$`2011`, 

    Met_Office_weather_observations_St_Jamess_Park$`2012`, 

    Met_Office_weather_observations_St_Jamess_Park$`2013`, 

    Met_Office_weather_observations_St_Jamess_Park$`2014`, 

    Met_Office_weather_observations_St_Jamess_Park$`2015`, 

    Met_Office_weather_observations_St_Jamess_Park$`2016`, 

    Met_Office_weather_observations_St_Jamess_Park$`2017`, 

    Met_Office_weather_observations_St_Jamess_Park$`2018` 

  ) 

weather_obs_St_James = weather_obs_St_James %>% drop_na("id") 

 

#conversion of data to daily mean 

POSIXct_St_Jamess_Park <- 

  as.POSIXct(weather_obs_St_James$ob_time, format = "%d/%m/%Y %H:%M") 

Time_St_Jamess_Park <- 

  as.data.frame(format(POSIXct_St_Jamess_Park, "%H:%M")) 

Date_St_Jamess_Park <- 

  as.data.frame(format(POSIXct_St_Jamess_Park, "%d/%m/%Y")) 

Time_Date_St_Jamess_Park <- 

  as.data.frame( 

    cbind( 

      Time_St_Jamess_Park$`format(POSIXct_St_Jamess_Park, "%H:%M")`, 

      Date_St_Jamess_Park$`format(POSIXct_St_Jamess_Park, "%d/%m/%Y")`, 

      weather_obs_St_James 

    ) 

  ) 

colnames(Time_Date_St_Jamess_Park)[1] <- "Hour" 

colnames(Time_Date_St_Jamess_Park)[2] <- "Date" 

Average_daily_St_Jamess_Park <- 

  as.data.frame(ddply( 
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    Time_Date_St_Jamess_Park, 

    .(Date), 

    summarize, 

    air_temperature = mean(air_temperature, na.rm = TRUE) 

  )) 

Average_daily_St_Jamess_Park$Date = 

(as.POSIXct(Average_daily_St_Jamess_Park$Date, format = 

                                                  "%d/%m/%Y")) 

Average_daily_St_Jamess_Park <- 

  

as.data.frame(Average_daily_St_Jamess_Park[order(Average_daily_St_Jamess_Pa

rk$Date), , drop = 

                                               FALSE]) 

Average_daily_St_Jamess_Park <- 

  

as.data.frame(Average_daily_St_Jamess_Park[complete.cases(Average_daily_St_

Jamess_Park),]) 

week_rolling_Average_St_Jamess_Park <- 

  as.data.frame( 

    mean_run( 

      x = Average_daily_St_Jamess_Park$air_temperature, 

      k = 7, 

      lag = 0, 

      idx = as.Date(Average_daily_St_Jamess_Park$Date) 

    ) 

  ) 

colnames(week_rolling_Average_St_Jamess_Park)[1] <- "rollingmean" 

Average_daily_St_Jamess_Park <- 

  as.data.frame( 

    cbind( 

      Average_daily_St_Jamess_Park, 

      week_rolling_Average_St_Jamess_Park$rollingmean 

    ) 

  ) 

colnames(Average_daily_St_Jamess_Park)[3] <- "Outside rolling mean" 

Average_daily_St_Jamess_Park <- 

  

as.data.frame(Average_daily_St_Jamess_Park[complete.cases(Average_daily_St_

Jamess_Park),]) 

 

#extract Paddington SB data and convert to 7-day rolling average 

Tube_temperature_humidity_Bakerloo_Paddington_SB <- 

  as.data.frame(filter(Bakerloo, Station == "Paddington", Direction == 

"SB")) 

 

POSIXct_Tube_temperature_humidity_Bakerloo_Paddington_SB <- 

  as.POSIXct(Tube_temperature_humidity_Bakerloo_Paddington_SB$InsideDate, 

             format = "%d/%m/%Y %H:%M") 

Time_Tube_temperature_humidity_Bakerloo_Paddington_SB <- 

  as.data.frame(format( 

    POSIXct_Tube_temperature_humidity_Bakerloo_Paddington_SB, 

    "%H:%M" 

  )) 

Date_Tube_temperature_humidity_Bakerloo_Paddington_SB <- 

  as.data.frame(format( 

    POSIXct_Tube_temperature_humidity_Bakerloo_Paddington_SB, 

    "%d/%m/%Y" 

  )) 

Time_Date_Tube_temperature_humidity_Bakerloo_Paddington_SB <- 
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  as.data.frame( 

    cbind( 

      

Time_Tube_temperature_humidity_Bakerloo_Paddington_SB$`format(POSIXct_Tube_

temperature_humidity_Bakerloo_Paddington_SB, "%H:%M")`, 

      

Date_Tube_temperature_humidity_Bakerloo_Paddington_SB$`format(POSIXct_Tube_

temperature_humidity_Bakerloo_Paddington_SB, "%d/%m/%Y")`, 

      Tube_temperature_humidity_Bakerloo_Paddington_SB 

    ) 

  ) 

colnames(Time_Date_Tube_temperature_humidity_Bakerloo_Paddington_SB)[1] <- 

  "Hour" 

colnames(Time_Date_Tube_temperature_humidity_Bakerloo_Paddington_SB)[2] <- 

  "Date" 

Average_daily_Bakerloo_Paddington_SB <- 

  as.data.frame( 

    ddply( 

      Time_Date_Tube_temperature_humidity_Bakerloo_Paddington_SB, 

      .(Date), 

      summarize, 

      AvgTemp = mean(AvgTemp, na.rm = TRUE) 

    ) 

  ) 

Average_daily_Bakerloo_Paddington_SB$Date = 

(as.POSIXct(Average_daily_Bakerloo_Paddington_SB$Date, format = 

                                                          "%d/%m/%Y")) 

Average_daily_Bakerloo_Paddington_SB <- 

  

as.data.frame(Average_daily_Bakerloo_Paddington_SB[order(Average_daily_Bake

rloo_Paddington_SB$Date), , drop = 

                                                       FALSE]) 

week_rolling_Average_Bakerloo_Paddington_SB <- 

  as.data.frame( 

    mean_run( 

      x = Average_daily_Bakerloo_Paddington_SB$AvgTemp, 

      k = 7, 

      lag = 0, 

      idx = as.Date(Average_daily_Bakerloo_Paddington_SB$Date) 

    ) 

  ) 

colnames(week_rolling_Average_Bakerloo_Paddington_SB)[1] <- 

  "rollingmean" 

Average_daily_Bakerloo_Paddington_SB <- 

  as.data.frame( 

    cbind( 

      Average_daily_Bakerloo_Paddington_SB, 

      week_rolling_Average_Bakerloo_Paddington_SB$rollingmean 

    ) 

  ) 

colnames(Average_daily_Bakerloo_Paddington_SB)[3] <- "SB rolling mean" 

Average_daily_Bakerloo_Paddington_SB <- 

  

as.data.frame(Average_daily_Bakerloo_Paddington_SB[complete.cases(Average_d

aily_Bakerloo_Paddington_SB),]) 

Average_daily_Bakerloo_Paddington_SB$Date = 

(as.POSIXct(Average_daily_Bakerloo_Paddington_SB$Date, format = 

                                                          "%d/%m/%Y")) 

Bakerloo_Paddington_SB <- 
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  merge(Average_daily_St_Jamess_Park, 

        Average_daily_Bakerloo_Paddington_SB, 

        by = "Date") 

 

#run cross-correlation and identify highest correlation coefficient 

ccf( 

  Bakerloo_Paddington_SB$`Outside rolling mean`, 

  Bakerloo_Paddington_SB$`SB rolling mean`, 

  plot = FALSE 

) 

Bakerloo_Paddington_SB_ccf <- 

  ccf( 

    Bakerloo_Paddington_SB$`Outside rolling mean`, 

    Bakerloo_Paddington_SB$`SB rolling mean`, 

    main = " ", 

    ylab = 'Cross correlation', 

    lag.max = 100, 

    ylim = c(-0.5, 1) 

  ) 

cor = Bakerloo_Paddington_SB_ccf$acf[, , 1] 

lag = Bakerloo_Paddington_SB_ccf$lag[, , 1] 

res = data.frame(cor, lag) 

res.max = res[which.max(res$cor), ]$lag 

res.max 

 

 

#Step 2. Identify values of a and b via regression# 

 

Surface = read.csv("//**REDACTED**/Analysis/Descriptive statistics/St. 

James's Park/St. James's Park daily mean.csv") 

 

Bakerloo_SB = read.csv("//**REDACTED**/Bakerloo/Station and 

direction/Bakerloo SB daily mean.csv") 

Bakerloo_SB=full_join(Surface,Bakerloo_SB,by="Date") 

Bakerloo_SB=Bakerloo_SB[-c(3)] 

colnames(Bakerloo_SB)[2]<-"Surface" 

 

Bakerloo_SB_td = Bakerloo_SB 

mean_air_temperature <- 

  mean(as.numeric(Bakerloo_SB$Surface), na.rm = TRUE) 

 

#use time lag delay from step 1 

Bakerloo_SB_td$Paddington = shift( 

  Bakerloo_SB_td$Surface, 

  n = 5, 

  fill = NA, 

  type = "lag" 

) - mean_air_temperature 

 

Bakerloo_SB$Paddington = Bakerloo_SB$Paddington - mean_air_temperature 

 

#run linear model regression 

Bakerloo_SB_lm <- 

  lm(Bakerloo_SB$Paddington ~ Bakerloo_SB_td$Paddington) 

Bakerloo_SB_lm 

 

#Step 3. Test model fit# 

Model_tmean_Bakerloo_SB = read.csv( 
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  "//**REDACTED**/Analysis/Descriptive statistics/St. James's Park/St. 

James's Park daily mean.csv" 

) 

colnames(Model_tmean_Bakerloo_SB)[2] <- "Surface" 

Model_tmean_Bakerloo_SB$Date = as.Date(Model_tmean_Bakerloo_SB$Date, 

"%d/%m/%Y") 

Model_tmean_Bakerloo_SB$Surface = 

as.numeric(as.character(Model_tmean_Bakerloo_SB$Surface)) 

mean_tmean <- 

  mean(as.numeric(as.character(Model_tmean_Bakerloo_SB$Surface)), na.rm = 

TRUE) 

 

#add each station's variables for that time period (a,b,td); per direction 

Model_tmean_Bakerloo_SB$"Paddington" <- 

  ((mean_tmean + 15.9727) + (( 

    shift( 

      Model_tmean_Bakerloo_SB$Surface, 

      n = 5, 

      fill = NA, 

      type = "lag" 

    ) - mean_tmean 

  ) * 0.3726)) 

 

#run linear model to compare estimations to observations (combines all 

Bakerloo SB line) 

 

#Load measured data and convert date type 

Bakerloo_measured_SB <- 

  read.csv( 

    "//**REDACTED**/Analysis/Descriptive statistics/Bakerloo/Station and 

Direction/Bakerloo SB daily mean.csv" 

  ) 

Bakerloo_measured_SB <- Bakerloo_measured_SB[-c(1)] 

 

#Rename Stations 

colnames(Bakerloo_measured_SB)[2] <- "Baker Street" 

colnames(Bakerloo_measured_SB)[3] <- "Charing Cross" 

colnames(Bakerloo_measured_SB)[4] <- "Edgware Road" 

colnames(Bakerloo_measured_SB)[5] <- "Elephant & Castle" 

colnames(Bakerloo_measured_SB)[6] <- "Embankment" 

colnames(Bakerloo_measured_SB)[7] <- "Kilburn Park" 

colnames(Bakerloo_measured_SB)[8] <- "Lambeth North" 

colnames(Bakerloo_measured_SB)[9] <- "Maida Vale" 

colnames(Bakerloo_measured_SB)[10] <- "Marylebone" 

colnames(Bakerloo_measured_SB)[11] <- "Oxford Circus" 

colnames(Bakerloo_measured_SB)[12] <- "Paddington" 

colnames(Bakerloo_measured_SB)[13] <- "Piccadilly Circus" 

colnames(Bakerloo_measured_SB)[14] <- "Regents Park" 

colnames(Bakerloo_measured_SB)[15] <- "Warwick Avenue" 

colnames(Bakerloo_measured_SB)[16] <- "Waterloo" 

 

#Gather columns - wide format to long format 

Bakerloo_measured_SB <- 

  gather(Bakerloo_measured_SB, 

         "Station", 

         "Mean daily measured temp", 

         2:16) 
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#Load model fit data and convert date type 

Bakerloo_model_SB <- 

  read.csv( 

    "//**REDACTED**/Analysis/Tunnel temp model/tmean/3. Tunnel model 

fit/Bakerloo/Bakerloo daily Mean model values SB.csv" 

  ) 

 

#Delete unnecessary columns 

Bakerloo_model_SB <- Bakerloo_model_SB[-c(1, 3)] 

 

#Rename Stations 

colnames(Bakerloo_model_SB)[2] <- "Kilburn Park" 

colnames(Bakerloo_model_SB)[3] <- "Maida Vale" 

colnames(Bakerloo_model_SB)[4] <- "Warwick Avenue" 

colnames(Bakerloo_model_SB)[5] <- "Paddington" 

colnames(Bakerloo_model_SB)[6] <- "Edgware Road" 

colnames(Bakerloo_model_SB)[7] <- "Marylebone" 

colnames(Bakerloo_model_SB)[8] <- "Baker Street" 

colnames(Bakerloo_model_SB)[9] <- "Regents Park" 

colnames(Bakerloo_model_SB)[10] <- "Oxford Circus" 

colnames(Bakerloo_model_SB)[11] <- "Piccadilly Circus" 

colnames(Bakerloo_model_SB)[12] <- "Charing Cross" 

colnames(Bakerloo_model_SB)[13] <- "Embankment" 

colnames(Bakerloo_model_SB)[14] <- "Waterloo" 

colnames(Bakerloo_model_SB)[15] <- "Lambeth North" 

colnames(Bakerloo_model_SB)[16] <- "Elephant & Castle" 

 

#Gather columns - wide format to long format 

Bakerloo_model_SB <- 

  gather(Bakerloo_model_SB, "Station", "Mean daily model temp", 2:16) 

 

 

#Merge model and measured data to one dataframe 

Bakerloo_SB <- 

  left_join(Bakerloo_measured_SB, 

            Bakerloo_model_SB, 

            by = c("Date", "Station")) 

 

#linear model regression 

Bakerloo_SB_lm <- 

  lm(Bakerloo_SB$`Mean daily measured temp` ~ Bakerloo_SB$`Mean daily model 

temp`) 

Bakerloo_SB_lm 

summary(Bakerloo_SB_lm) 

 

#residual density plot 

res <- resid(Bakerloo_SB_lm) 

plot( 

  density(res), 

  main = "Bakerloo SB", 

  xlim = c(-15, 15), 

  ylim = c(0.00, 0.30) 

) 
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Appendix C: Tunnel temperature model equation variables 

LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Bakerloo NB Baker Street 3 14.28 0.42 2 16.05 0.47 3 11.70 0.35 

Bakerloo NB Charing Cross 3 13.95 0.46 1 14.62 0.55 4 11.68 0.36 

Bakerloo NB Edgware Road 2 15.58 0.38 1 16.29 0.43 3 13.24 0.31 

Bakerloo NB Elephant & Castle 2 11.71 0.61 1 12.53 0.67 2 9.84 0.51 

Bakerloo NB Embankment 5 14.95 0.37 3 17.14 0.41 6 12.18 0.31 

Bakerloo NB Kilburn Park 3 15.11 0.43 2 15.50 0.56 4 12.95 0.34 

Bakerloo NB Lambeth North 6 14.82 0.39 4 16.40 0.45 21 12.37 0.31 

Bakerloo NB Maida Vale 6 16.11 0.34 5 18.81 0.36 22 13.18 0.28 

Bakerloo NB Marylebone 3 13.70 0.44 2 15.94 0.45 3 10.97 0.36 

Bakerloo NB Oxford Circus 3 15.18 0.32 3 17.50 0.33 4 12.45 0.26 

Bakerloo NB Paddington 9 16.68 0.33 9 19.22 0.35 19 13.70 0.28 

Bakerloo NB Piccadilly Circus 3 13.78 0.42 2 15.78 0.46 4 11.15 0.34 

Bakerloo NB Regents Park 3 13.81 0.40 1 14.58 0.50 4 11.50 0.32 

Bakerloo NB Warwick Avenue 2 15.84 0.37 1 16.63 0.45 21 13.43 0.29 

Bakerloo NB Waterloo 5 12.72 0.42 4 14.94 0.45 5 9.99 0.34 

Bakerloo SB Baker Street 2 13.55 0.51 1 11.90 0.67 3 12.14 0.39 

Bakerloo SB Charing Cross 4 15.54 0.40 1 15.94 0.51 6 13.37 0.30 

Bakerloo SB Edgware Road 3 17.60 0.38 3 20.21 0.39 5 15.09 0.31 

Bakerloo SB Elephant & Castle 1 10.18 0.67 1 9.61 0.77 1 8.99 0.55 

Bakerloo SB Embankment 3 13.44 0.46 2 15.51 0.52 3 10.75 0.38 

Bakerloo SB Kilburn Park 3 10.74 0.47 2 12.95 0.52 3 7.84 0.40 

Bakerloo SB Lambeth North 2 9.76 0.53 1 10.92 0.59 3 7.76 0.42 

Bakerloo SB Maida Vale 4 14.17 0.25 3 16.31 0.46 4 11.38 0.36 

Bakerloo SB Marylebone 3 14.69 0.46 2 14.77 0.61 4 12.64 0.34 

Bakerloo SB Oxford Circus 3 15.11 0.36 2 17.16 0.35 4 12.42 0.30 

Bakerloo SB Paddington 5 15.97 0.37 5 18.38 0.39 5 13.27 0.31 

Bakerloo SB Piccadilly Circus 3 15.16 0.46 2 16.70 0.53 3 12.76 0.37 

Bakerloo SB Regents Park 2 12.05 0.48 1 12.47 0.58 3 9.93 0.38 

Bakerloo SB Warwick Avenue 2 12.67 0.49 1 13.02 0.58 3 10.56 0.38 

Bakerloo SB Waterloo 4 13.18 0.46 3 14.49 0.52 4 10.89 0.37 

Central EB Bank 3 15.84 0.43 3 18.53 0.43 3 12.91 0.37 

Central EB Bethnal Green 2 12.54 0.54 1 12.91 0.64 2 11.20 0.44 

Central EB Bond Street 3 15.24 0.45 2 17.26 0.48 2 12.51 0.39 

Central EB Chancery Lane 2 14.16 0.48 2 16.40 0.49 2 11.54 0.42 

Central EB Holborn 2 13.72 0.45 1 13.91 0.58 3 11.72 0.35 

Central EB Holland Park 3 12.67 0.48 3 15.22 0.50 2 9.76 0.42 

Central EB Lancaster Gate 2 12.82 0.49 1 12.52 0.60 2 10.85 0.41 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Central EB Liverpool Street 2 12.12 0.53 1 13.59 0.63 2 9.95 0.43 

Central EB Marble Arch 3 15.48 0.46 1 16.82 0.56 3 12.94 0.38 

Central EB Mile End 2 11.33 0.54 2 12.53 0.61 3 9.39 0.44 

Central EB Notting Hill Gate 3 13.16 0.49 3 15.33 0.51 2 10.39 0.43 

Central EB Oxford Circus 3 15.56 0.42 3 18.09 0.42 2 12.67 0.37 

Central EB Queensway 3 12.96 0.49 2 15.55 0.50 3 10.17 0.40 

Central EB Shepherd's Bush 0 4.67 0.86 0 5.23 0.92 0 3.50 0.78 

Central EB St. Paul's 2 12.48 0.52 1 10.61 0.69 2 11.24 0.41 

Central EB Tottenham Court Road 3 15.86 0.42 3 17.50 0.46 2 13.26 0.36 

Central WB Bank 3 15.94 0.39 4 18.60 0.39 3 12.99 0.34 

Central WB Bethnal Green 1 9.83 0.60 0 10.57 0.69 1 7.94 0.50 

Central WB Bond Street 2 14.18 0.47 2 15.82 0.54 2 11.81 0.39 

Central WB Chancery Lane 2 13.89 0.48 1 15.39 0.63 3 11.25 0.40 

Central WB Holborn 3 13.04 0.44 2 15.29 0.48 3 10.24 0.38 

Central WB Holland Park 3 14.03 0.45 3 16.11 0.47 3 11.32 0.38 

Central WB Lancaster Gate 2 14.29 0.45 1 13.05 0.60 3 12.69 0.35 

Central WB Liverpool Street 2 11.00 0.61 2 12.82 0.67 2 8.84 0.50 

Central WB Marble Arch 3 15.55 0.43 2 17.37 0.50 4 12.87 0.36 

Central WB Mile End 2 10.18 0.57 2 12.24 0.60 2 7.63 0.49 

Central WB Notting Hill Gate 3 13.66 0.49 2 15.11 0.54 3 11.28 0.41 

Central WB Oxford Circus 3 15.56 0.38 2 18.10 0.39 3 12.60 0.33 

Central WB Queensway 5 15.72 0.37 5 18.62 0.38 5 12.62 0.32 

Central WB Shepherd's Bush 1 8.18 0.70 1 8.85 0.76 1 6.52 0.60 

Central WB St. Paul's 2 12.89 0.51 1 13.70 0.55 2 10.74 0.43 

Central WB Tottenham Court Road 2 13.56 0.46 2 14.59 0.55 2 11.33 0.38 

Jubilee EB Baker Street 1 8.00 0.70 1 7.83 0.81 1 6.43 0.57 

Jubilee EB Bermondsey 2 9.09 0.35 2 11.20 0.38 2 6.30 0.32 

Jubilee EB Bond Street 1 6.25 0.71 1 6.42 0.81 1 4.79 0.57 

Jubilee EB Canada Water 2 9.58 0.57 2 10.98 0.71 2 7.14 0.46 

Jubilee EB Canary Wharf 1 7.48 0.56 0 9.36 0.62 1 5.25 0.48 

Jubilee EB Green Park 2 10.09 0.54 1 12.09 0.58 2 7.56 0.46 

Jubilee EB London Bridge 2 9.31 0.36 1 11.52 0.40 2 6.53 0.31 

Jubilee EB North Greenwich 2 10.43 0.40 1 12.52 0.44 2 7.77 0.34 

Jubilee EB Southwark 1 8.97 0.39 1 10.21 0.52 1 6.66 0.33 

Jubilee EB St Johns Wood 2 10.24 0.51 2 12.84 0.52 2 7.35 0.44 

Jubilee EB Swiss Cottage 2 7.20 0.62 2 9.61 0.63 2 4.41 0.54 

Jubilee EB Waterloo 1 10.36 0.34 1 12.23 0.34 1 7.78 0.30 

Jubilee EB Westminster 2 9.70 0.39 1 11.31 0.40 2 7.32 0.33 

Jubilee WB Baker Street 3 10.83 0.43 2 12.76 0.47 3 8.12 0.37 



 

268 

 

LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Jubilee WB Bermondsey 1 7.15 0.47 1 8.89 0.54 1 4.65 0.41 

Jubilee WB Bond Street 2 10.15 0.46 1 10.52 0.60 3 8.12 0.37 

Jubilee WB Canada Water 2 8.80 0.44 1 11.14 0.52 2 5.91 0.37 

Jubilee WB Canary Wharf 1 9.30 0.46 1 11.52 0.51 2 6.66 0.39 

Jubilee WB Green Park 1 7.60 0.58 1 7.81 0.78 1 8.00 0.37 

Jubilee WB London Bridge 2 9.12 0.37 1 11.60 0.36 2 6.22 0.33 

Jubilee WB North Greenwich 2 9.82 0.46 2 12.15 0.49 2 7.06 0.39 

Jubilee WB Southwark 2 10.11 0.42 1 11.37 0.60 2 6.36 0.32 

Jubilee WB St Johns Wood 2 10.36 0.49 2 12.68 0.52 2 7.63 0.41 

Jubilee WB Swiss Cottage 3 9.45 0.50 2 11.30 0.55 3 6.96 0.43 

Jubilee WB Waterloo 1 8.90 0.35 1 10.70 0.34 1 7.25 0.29 

Jubilee WB Westminster 2 10.00 0.32 1 12.27 0.34 2 5.65 0.45 

Northern NB Angel 1 8.25 0.49 1 7.27 0.65 2 6.95 0.35 

Northern NB Archway 3 11.10 0.40 2 12.34 0.44 3 8.67 0.33 

Northern NB Balham 1 5.49 0.67 0 4.98 0.84 1 4.18 0.55 

Northern NB Bank 5 13.33 0.32 6 15.71 0.22 4 10.49 0.28 

Northern NB Belsize Park 20 14.13 0.31 19 16.78 0.32 25 11.07 0.26 

Northern NB Borough 3 12.10 0.37 2 13.15 0.47 5 9.82 0.27 

Northern NB Camden Town - Hampstead 6 14.07 0.28 5 16.86 0.28 16 10.97 0.24 

Northern NB Camden Town - Highgate 2 13.35 0.31 1 14.80 0.40 5 10.66 0.25 

Northern NB Chalk Farm 4 14.05 0.32 3 16.31 0.37 4 11.15 0.26 

Northern NB Charing Cross 4 13.67 0.37 4 16.23 0.40 5 10.73 0.30 

Northern NB Clapham Common 2 12.03 0.48 1 14.08 0.53 2 9.62 0.40 

Northern NB Clapham North 1 8.04 0.64 1 6.01 0.82 1 7.10 0.48 

Northern NB Clapham South 3 11.54 0.40 2 13.96 0.44 4 8.78 0.31 

Northern NB Colliers Wood 1 8.09 0.55 1 6.71 0.72 1 6.69 0.43 

Northern NB Elephant & Castle 5 12.29 0.32 4 15.07 0.34 5 9.23 0.28 

Northern NB Embankment 5 12.56 0.32 3 15.04 0.37 6 9.54 0.26 

Northern NB Euston (City) 5 12.13 0.34 4 14.90 0.36 5 9.10 0.29 

Northern NB Euston (CX) 2 11.46 0.44 1 12.39 0.54 2 9.18 0.36 

Northern NB Goodge Street 4 12.41 0.40 3 14.39 0.48 4 9.67 0.32 

Northern NB Hampstead 21 14.50 0.28 20 17.38 0.28 22 11.35 0.24 

Northern NB Highgate 5 9.99 0.37 3 11.98 0.42 5 7.19 0.30 

Northern NB Kennington (City) 5 12.56 0.29 5 15.30 0.30 6 9.59 0.26 

Northern NB Kennington (CX) 4 13.16 0.34 3 15.27 0.36 4 10.32 0.29 

Northern NB Kentish Town 3 11.31 0.37 1 11.38 0.52 4 9.24 0.29 

Northern NB Kings Cross 2 11.07 0.45 1 12.22 0.58 3 8.83 0.34 

Northern NB Leicester Square 3 13.09 0.39 2 15.36 0.43 3 10.40 0.32 

Northern NB London Bridge 2 10.06 0.42 1 10.19 0.57 3 8.09 0.32 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Northern NB Moorgate 3 11.24 0.37 2 13.68 0.40 3 8.52 0.30 

Northern NB Mornington Crescent 5 12.51 0.35 3 15.10 0.39 5 9.51 0.29 

Northern NB Old Street 3 12.83 0.35 1 13.47 0.53 4 10.46 0.26 

Northern NB Oval 5 11.90 0.32 4 14.39 0.34 4 8.96 0.27 

Northern NB South Wimbledon 4 9.93 0.39 2 12.27 0.43 4 7.05 0.32 

Northern NB Stockwell 3 11.35 0.39 1 11.35 0.57 4 9.39 0.29 

Northern NB Tooting Bec 3 11.50 0.37 2 12.61 0.46 4 8.95 0.30 

Northern NB Tooting Broadway 4 11.90 0.30 2 13.98 0.38 20 9.11 0.25 

Northern NB Tottenham Court Road 3 12.86 0.39 2 14.92 0.43 4 10.12 0.32 

Northern NB Tufnell Park 5 12.18 0.34 4 14.93 0.36 6 9.12 0.28 

Northern NB Warren Street 6 13.49 0.32 5 16.29 0.34 6 10.41 0.27 

Northern NB Waterloo 4 12.21 0.38 3 14.97 0.41 4 9.14 0.32 

Northern SB Angel 3 9.94 0.37 1 10.14 0.53 4 7.78 0.28 

Northern SB Archway 2 9.34 0.49 2 11.31 0.53 3 6.89 0.39 

Northern SB Balham 3 12.16 0.39 1 13.33 0.52 4 9.65 0.30 

Northern SB Bank 4 13.55 0.33 4 16.07 0.35 4 10.83 0.27 

Northern SB Belsize Park 4 12.81 0.37 3 14.51 0.44 4 10.14 0.31 

Northern SB Borough 5 12.52 0.30 4 15.33 0.31 5 9.41 0.25 

Northern SB Camden Town - Hampstead 2 11.94 0.43 1 10.85 0.61 2 10.07 0.34 

Northern SB Camden Town - Highgate 3 10.53 0.46 1 10.61 0.62 2 8.51 0.37 

Northern SB Chalk Farm 2 11.74 0.43 2 13.77 0.47 2 9.11 0.36 

Northern SB Charing Cross 4 14.63 0.38 2 15.76 0.46 4 12.18 0.30 

Northern SB Clapham Common 3 12.39 0.43 3 14.68 0.46 3 9.71 0.37 

Northern SB Clapham North 1 7.05 0.65 1 5.63 0.78 1 6.25 0.51 

Northern SB Clapham South 5 13.96 0.31 4 16.56 0.33 6 10.99 0.25 

Northern SB Colliers Wood 3 11.85 0.37 2 13.07 0.49 5 9.38 0.28 

Northern SB Elephant & Castle 3 13.86 0.40 2 15.05 0.50 4 11.72 0.32 

Northern SB Embankment 3 11.54 0.44 2 11.87 0.61 3 9.43 0.33 

Northern SB Euston (City) 2 10.85 0.42 1 12.88 0.45 2 8.15 0.36 

Northern SB Euston (CX) 2 10.82 0.46 1 12.23 0.57 2 8.46 0.36 

Northern SB Goodge Street 4 12.37 0.37 3 14.47 0.46 4 9.50 0.30 

Northern SB Hampstead 4 12.82 0.35 4 15.32 0.36 4 9.96 0.28 

Northern SB Highgate 3 8.25 0.46 3 10.67 0.49 3 5.36 0.40 

Northern SB Kennington (City) 4 12.96 0.33 3 15.23 0.36 3 10.10 0.28 

Northern SB Kennington (CX) 4 13.42 0.30 4 16.18 0.31 4 10.34 0.26 

Northern SB Kentish Town 3 11.07 0.45 1 12.10 0.59 3 8.57 0.36 

Northern SB Kings Cross 2 10.65 0.46 1 11.24 0.62 3 8.44 0.35 

Northern SB Leicester Square 3 13.50 0.34 3 15.98 0.36 3 10.57 0.29 

Northern SB London Bridge 3 12.52 0.36 1 13.59 0.47 4 10.08 0.28 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Northern SB Moorgate 4 13.56 0.30 4 16.33 0.32 5 10.53 0.24 

Northern SB Mornington Crescent 4 14.04 0.38 3 16.39 0.43 4 11.21 0.31 

Northern SB Old Street 2 10.23 0.46 1 11.47 0.60 2 7.93 0.36 

Northern SB Oval 1 5.40 0.67 0 4.80 0.86 0 4.25 0.57 

Northern SB South Wimbledon 4 12.64 0.34 2 14.53 0.40 5 9.83 0.28 

Northern SB Stockwell 1 7.45 0.58 1 8.59 0.64 1 5.62 0.48 

Northern SB Tooting Bec 5 13.10 0.34 5 15.98 0.35 5 9.99 0.29 

Northern SB Tooting Broadway 4 12.88 0.33 2 14.07 0.41 6 10.33 0.27 

Northern SB Tottenham Court Road 2 12.90 0.42 1 14.73 0.47 2 10.28 0.36 

Northern SB Tufnell Park 2 10.85 0.44 1 12.21 0.50 2 8.38 0.37 

Northern SB Warren Street 4 11.43 0.36 3 14.21 0.38 4 8.42 0.30 

Northern SB Waterloo 4 13.05 0.36 4 15.80 0.37 5 10.02 0.30 

Piccadilly EB Arsenal 3 11.41 0.45 2 13.60 0.50 3 8.59 0.37 

Piccadilly EB Bounds Green 3 11.04 0.46 3 13.06 0.48 4 8.33 0.37 

Piccadilly EB Caledonian Road 4 13.26 0.37 4 15.59 0.39 4 10.36 0.31 

Piccadilly EB Covent Garden 2 11.80 0.45 2 13.66 0.53 2 9.16 0.38 

Piccadilly EB Earls Court 2 10.56 0.53 2 12.77 0.59 2 7.84 0.46 

Piccadilly EB Finsbury Park 2 10.93 0.42 2 11.18 0.47 2 8.94 0.34 

Piccadilly EB Gloucester Road 3 11.92 0.45 2 14.69 0.47 3 8.99 0.37 

Piccadilly EB Green Park 3 11.76 0.40 3 14.46 0.41 3 8.84 0.35 

Piccadilly EB Holborn 4 13.84 0.37 4 16.70 0.38 5 10.86 0.30 

Piccadilly EB Holloway Road 3 11.63 0.44 2 12.45 0.54 3 9.25 0.36 

Piccadilly EB Hyde Park Corner 1 7.51 0.64 0 6.48 0.82 1 6.18 0.51 

Piccadilly EB Kings Cross 2 10.76 0.54 1 12.24 0.62 2 8.59 0.44 

Piccadilly EB Knightsbridge 3 11.57 0.45 3 14.25 0.47 3 8.68 0.39 

Piccadilly EB Leicester Square 2 12.24 0.45 2 14.36 0.49 2 9.57 0.38 

Piccadilly EB Manor House 2 9.60 0.54 1 9.41 0.69 2 7.87 0.42 

Piccadilly EB Piccadilly Circus 3 12.70 0.40 2 15.23 0.43 3 9.77 0.35 

Piccadilly EB Russell Square 2 11.92 0.46 2 13.64 0.53 2 9.31 0.38 

Piccadilly EB South Kensington 2 9.94 0.54 1 10.40 0.68 2 7.83 0.41 

Piccadilly EB Turnpike Lane 2 7.50 0.62 1 7.67 0.78 2 5.86 0.49 

Piccadilly EB Wood Green 3 11.26 0.47 2 12.51 0.54 3 8.72 0.39 

Piccadilly WB Arsenal 2 8.30 0.56 1 7.09 0.74 2 6.93 0.43 

Piccadilly WB Bounds Green 2 6.38 0.64 1 8.65 0.67 2 3.86 0.54 

Piccadilly WB Caledonian Road 3 11.45 0.43 3 13.77 0.46 4 8.54 0.36 

Piccadilly WB Covent Garden 3 14.11 0.46 2 15.43 0.54 3 11.73 0.38 

Piccadilly WB Earls Court 4 13.07 0.39 3 15.36 0.41 4 10.21 0.33 

Piccadilly WB Finsbury Park 1 9.85 0.53 1 9.11 0.70 2 8.20 0.41 

Piccadilly WB Gloucester Road 3 11.78 0.45 3 14.34 0.48 4 9.07 0.36 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Piccadilly WB Green Park 3 13.30 0.38 2 15.38 0.40 3 10.54 0.33 

Piccadilly WB Holborn 2 12.77 0.46 1 13.11 0.63 3 10.55 0.36 

Piccadilly WB Holloway Road 3 10.19 0.48 2 11.76 0.51 3 7.56 0.40 

Piccadilly WB Hyde Park Corner 2 9.16 0.55 1 9.38 0.72 3 7.19 0.42 

Piccadilly WB Kings Cross 2 11.89 0.45 1 13.26 0.59 3 9.37 0.35 

Piccadilly WB Knightsbridge 2 10.86 0.51 2 13.23 0.54 2 8.07 0.44 

Piccadilly WB Leicester Square 2 12.80 0.44 1 15.08 0.48 3 10.00 0.37 

Piccadilly WB Manor House 2 8.62 0.57 1 8.97 0.72 2 6.73 0.46 

Piccadilly WB Piccadilly Circus 2 11.01 0.45 2 12.27 0.52 2 8.73 0.37 

Piccadilly WB Russell Square 4 13.25 0.39 3 15.54 0.44 5 10.33 0.32 

Piccadilly WB South Kensington 2 12.30 0.46 1 12.38 0.63 3 10.13 0.35 

Piccadilly WB Turnpike Lane 2 9.41 0.55 1 9.92 0.70 2 7.19 0.44 

Piccadilly WB Wood Green 2 9.95 0.52 1 10.75 0.63 2 7.75 0.42 

Sub-surface EB Baker Street 1 5.57 0.73 1 7.41 0.77 1 3.19 0.63 

Sub-surface EB Bank 2 10.65 0.59 1 12.65 0.64 2 8.22 0.48 

Sub-surface EB Cannon Street 0 5.13 0.87 0 9.39 0.92 1 3.45 0.73 

Sub-surface EB Embankment 1 5.95 0.76 0 6.17 0.90 1 4.23 0.68 

Sub-surface EB Gloucester Road 0 5.30 0.74 1 6.89 0.79 2 2.91 0.62 

Sub-surface EB Liverpool Street 0 4.43 0.81 0 5.52 0.82 0 3.36 0.83 

Sub-surface EB Mile End 2 8.92 0.62 2 10.49 0.65 1 9.60 0.54 

Sub-surface EB Moorgate 1 4.65 0.74 0 6.89 0.77 1 2.27 0.66 

Sub-surface EB Notting Hill Gate 0 1.48 1.00 0 2.24 0.97 0 1.01 1.03 

Sub-surface EB Paddington 0 2.14 1.00 0 2.83 0.97 0 2.50 1.14 

Sub-surface EB South Kensington 0 1.40 1.04 0 1.41 0.99 1 1.74 1.00 

Sub-surface EB Victoria 1 4.97 0.77 0 6.19 0.85 1 3.08 0.71 

Sub-surface IR Aldgate 0 2.10 0.93 0 2.91 0.95 0 0.89 0.84 

Sub-surface IR Baker Street 1 5.79 0.76 1 7.53 0.81 1 3.47 0.66 

Sub-surface IR Bayswater 1 4.12 0.84 0 6.20 0.88 1 1.76 0.74 

Sub-surface IR Blackfriars 1 7.94 0.81 1 6.29 0.88 1 2.94 0.70 

Sub-surface IR Euston Square 2 7.97 0.65 2 10.65 0.67 2 5.12 0.57 

Sub-surface IR Gloucester Road 0 2.07 0.90 0 3.31 0.92 0 0.47 0.81 

Sub-surface IR Great Portland Street 2 6.15 0.68 1 8.25 0.72 2 3.66 0.59 

Sub-surface IR Kings Cross 1 5.08 0.81 1 5.56 0.88 1 3.26 0.68 

Sub-surface IR Mansion House 1 5.50 0.73 1 7.48 0.76 2 2.96 0.61 

Sub-surface IR St. James's Park 1 6.44 0.80 1 8.31 0.81 1 4.26 0.70 

Sub-surface IR Temple 1 7.25 0.79 1 9.40 0.81 1 4.75 0.69 

Sub-surface IR Tower Hill 1 5.45 0.84 1 6.76 0.87 1 3.53 0.73 

Sub-surface OR Aldgate 0 2.21 0.87 0 3.23 0.86 0 0.86 0.82 

Sub-surface OR Baker Street 1 5.79 0.76 1 7.53 0.81 1 3.47 0.66 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Sub-surface OR Bayswater 1 2.18 0.88 0 4.03 0.93 1 0.06 0.78 

Sub-surface OR Blackfriars 1 4.22 0.81 1 5.56 0.86 1 2.33 0.71 

Sub-surface OR Euston Square 2 7.67 0.69 2 10.03 0.69 2 5.06 0.61 

Sub-surface OR Gloucester Road 0 2.07 0.90 0 3.31 0.92 0 0.47 0.81 

Sub-surface OR Great Portland Street 0 4.09 0.84 0 5.23 0.86 1 2.68 0.72 

Sub-surface OR Kings Cross 2 6.45 0.68 1 7.68 0.79 2 4.12 0.59 

Sub-surface OR Mansion House 1 6.71 0.75 1 8.07 0.78 1 4.70 0.66 

Sub-surface OR St. James's Park 1 6.15 0.80 1 7.63 0.82 1 4.18 0.71 

Sub-surface OR Temple 1 6.21 0.80 1 8.34 0.82 1 3.83 0.70 

Sub-surface OR Tower Hill 2 6.05 0.80 1 8.09 0.84 2 3.61 0.69 

Sub-surface WB Baker Street 1 5.57 0.73 1 7.41 0.77 1 3.19 0.63 

Sub-surface WB Bank 2 10.66 0.68 2 13.09 0.70 2 7.96 0.59 

Sub-surface WB Cannon Street 1 8.59 0.72 1 10.94 0.76 2 5.97 0.64 

Sub-surface WB Embankment 1 5.29 0.83 0 6.17 0.90 1 4.23 0.68 

Sub-surface WB Gloucester Road 0 5.30 0.74 1 6.89 0.79 2 2.91 0.62 

Sub-surface WB Liverpool Street 0 4.43 0.81 0 5.52 0.82 0 3.36 0.83 

Sub-surface WB Mile End 2 8.92 0.62 2 10.49 0.65 1 9.60 0.54 

Sub-surface WB Moorgate 1 4.65 0.74 0 6.89 0.77 1 2.27 0.66 

Sub-surface WB Notting Hill Gate 0 4.03 0.88 0 4.71 0.90 0 2.50 0.79 

Sub-surface WB Paddington 0 1.23 1.00 0 1.79 0.97 0 1.19 1.08 

Sub-surface WB South Kensington 0 1.40 1.04 0 1.41 0.99 0 1.74 1.00 

Sub-surface WB Victoria 0 4.25 0.89 0 5.35 0.89 0 2.57 0.80 

Victoria NB Blackhorse Road 4 12.42 0.33 2 13.37 0.46 20 10.19 0.25 

Victoria NB Brixton 1 8.00 0.57 1 8.24 0.64 1 6.49 0.46 

Victoria NB Euston 2 12.78 0.41 1 14.15 0.53 3 10.57 0.32 

Victoria NB Finsbury Park 4 13.15 0.35 2 13.83 0.42 4 11.02 0.28 

Victoria NB Green Park 4 15.41 0.28 3 17.67 0.30 5 12.63 0.24 

Victoria NB Highbury 4 12.79 0.28 3 14.49 0.28 4 10.48 0.24 

Victoria NB Kings Cross 2 11.48 0.51 2 12.45 0.60 3 9.66 0.38 

Victoria NB Oxford Circus 5 16.19 0.29 4 18.87 0.30 6 13.22 0.24 

Victoria NB Pimlico 3 12.53 0.36 1 12.96 0.53 4 10.42 0.27 

Victoria NB Seven Sisters 1 10.68 0.50 1 9.38 0.69 2 9.73 0.34 

Victoria NB Stockwell 3 13.18 0.31 1 12.69 0.46 4 11.50 0.23 

Victoria NB Tottenham Hale 2 9.31 0.44 1 10.08 0.59 3 7.23 0.33 

Victoria NB Vauxhall 1 10.05 0.44 1 9.08 0.58 2 8.93 0.32 

Victoria NB Victoria 2 12.97 0.43 1 14.71 0.54 3 10.53 0.33 

Victoria NB Walthamstow 3 10.79 0.30 2 13.11 0.33 18 8.41 0.22 

Victoria NB Warren Street 1 11.79 0.47 1 9.98 0.68 2 11.03 0.33 

Victoria SB Blackhorse Road 2 9.44 0.49 1 9.58 0.65 3 7.90 0.35 
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LU tunnel Station 
𝒕𝒎𝒆𝒂𝒏 𝒕𝒎𝒊𝒏 𝒕𝒎𝒂𝒙 

𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 𝒕𝒅 𝒂 𝒃 

Victoria SB Brixton 1 7.71 0.53 0 8.29 0.63 1 6.15 0.44 

Victoria SB Euston 3 13.99 0.35 2 15.60 0.37 4 11.46 0.29 

Victoria SB Finsbury Park 3 13.11 0.40 1 12.19 0.60 4 11.74 0.28 

Victoria SB Green Park 3 14.22 0.31 2 16.35 0.34 3 11.60 0.26 

Victoria SB Highbury 2 9.36 0.42 2 9.83 0.46 2 7.74 0.34 

Victoria SB Kings Cross 2 12.22 0.39 1 11.79 0.52 3 10.85 0.29 

Victoria SB Oxford Circus 4 14.96 0.30 3 17.19 0.32 5 12.22 0.25 

Victoria SB Pimlico 2 12.12 0.39 1 12.17 0.53 4 10.41 0.28 

Victoria SB Seven Sisters 3 11.15 0.35 2 12.86 0.42 4 8.65 0.28 

Victoria SB Stockwell 3 12.60 0.30 1 13.42 0.37 5 10.51 0.23 

Victoria SB Tottenham Hale 3 12.34 0.35 1 13.44 0.50 5 9.95 0.26 

Victoria SB Vauxhall 4 13.88 0.33 2 15.83 0.42 5 11.17 0.26 

Victoria SB Victoria 1 6.85 0.70 0 6.73 0.82 1 5.90 0.57 

Victoria SB Walthamstow 4 13.94 0.33 3 16.11 0.35 5 11.70 0.27 

Victoria SB Warren Street 2 10.24 0.52 1 11.18 0.63 2 8.28 0.42 
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Appendix D: R code sample to join temperature data to work orders 

#See Appendix B for packages loaded and tested throughout R code build 

 

##Sample code: tmean/surface## 

 

 

#Step 1. Combine WO data from Ellipse and Maximo with asset data 

#Ellipse load 

points <- 

  read.csv(file = "//**REDACTED**/Ellipse/Points & Trainstops 2006-

2018/20201002_points.csv") 

trainstops <- 

  read.csv(file = "//**REDACTED**/Ellipse/Points & Trainstops 2006-

2018/20201002_trainstops.csv") 

E_WOs <- 

  read.csv(file = "//**REDACTED**/Ellipse/Points & Trainstops 2006-

2018/20201002_works.csv") 

pandt <- rbind.fill(points, trainstops) 

join1_E <- 

  inner_join(E_WOs, pandt, by = c("EQUIPMENT_NO" = "PARENT_EQUIP_NO")) 

join2_E <- 

  inner_join(E_WOs, pandt, by = c("EQUIPMENT_NO" = "CHILD_EQUIP_NO")) 

Ellipse_WOs <- rbind.fill(join1_E, join2_E) 

#remove duplicate WOs in the join 

Ellipse_WOs = Ellipse_WOs[!duplicated(Ellipse_WOs$WONUM), ] 

 

#Maximo load 

pandc <- 

  read.csv(file = "//**REDACTED**/Maximo/Points & Crossings 2006-

2018/maximo_master_pandc.csv") 

M_WOs <- 

  read.csv(file = "//**REDACTED**/Maximo/Points & Crossings 2006-

2018/maximo_signals_wos.csv") 

join1_M <- inner_join(M_WOs, pandc, by = c("location" = "assetnum")) 

join2_M <- inner_join(M_WOs, pandc, by = c("equip_no" = "location")) 

Maximo_WOs <- rbind.fill(join1_M, join2_M) 

 

#remove duplicate WOs in the join 

Maximo_WOs = Maximo_WOs[!duplicated(Maximo_WOs$wonum), ] 

 

#changing column names in maximo to match those in ellipse that can be 

joined 

colnames(Maximo_WOs)[1] <- "WONUM" 

colnames(Maximo_WOs)[3] <- "MAINT_TYPE" 

colnames(Maximo_WOs)[4] <- "EQUIPMENT_NO" 

colnames(Maximo_WOs)[7] <- "CLOSED_DATETIME" 

colnames(Maximo_WOs)[8] <- "CLOSED_DATE" 

colnames(Maximo_WOs)[9] <- "CLOSED_TIME" 

colnames(Maximo_WOs)[12] <- "RAISED_DATE" 

colnames(Maximo_WOs)[13] <- "RAISED_TIME" 

colnames(Maximo_WOs)[14] <- "RAISED_DATETIME" 

colnames(Maximo_WOs)[15] <- "TRUNCATED_DESCRIPTION" 

colnames(Maximo_WOs)[23] <- "LCS" 

colnames(Maximo_WOs)[27] <- "OWNING_LINE" 

colnames(Maximo_WOs)[39] <- "M_START" 

colnames(Maximo_WOs)[40] <- "M_STOP" 

colnames(Maximo_WOs)[41] <- "PARENT_STATUS_DESCRIPTION" 
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colnames(Maximo_WOs)[42] <- "PARENT_TYPE" 

 

#a few columns needed correcting in format as they did not match before 

joining 

Ellipse_WOs$EQUIPMENT_NO = as.character(Ellipse_WOs$EQUIPMENT_NO) 

Ellipse_WOs$M_START = as.integer(Ellipse_WOs$M_START) 

Maximo_WOs$M_START = as.integer(Maximo_WOs$M_START) 

 

#Join filtered Ellipse and Maximo files 

Ellipse_Maximo_WOs <- full_join(Ellipse_WOs, Maximo_WOs) 

 

 

#Step 2. load combined Ellipse and Maximo WOs 

WOs <- 

  read.csv(file = "//**REDACTED**/Ellipse & Maximo combined/WOs_all.csv") 

 

#join surface daily means per station with UHI adjustment 

dailymean_temp <- 

  read.csv(file = "//**REDACTED**/Analysis/Descriptive statistics/St. 

James's Park/UHI adjusted/Observations/St James Park daily mean UHI 

adjusted per station.csv", check.names = 

             FALSE) 

dailymean_temp <- 

  gather(dailymean_temp, "Station", "Mean daily surface temp", 2:271) 

colnames(WOs)[10] <- "Date" 

colnames(WOs)[90] <- "Station" 

WOs$Date = as.POSIXct(as.character(WOs$Date), format = "%d/%m/%Y") 

dailymean_temp$Date = as.POSIXct(as.character(dailymean_temp$Date), format 

= 

                                   "%d/%m/%Y") 

WOs$Station = (as.character(WOs$Station)) 

dailymean_temp$Station = as.character(dailymean_temp$Station) 

WOs <- left_join(WOs, dailymean_temp, by = c("Date", "Station")) 

 

write.csv(WOs, file = "//**REDACTED**/Analysis/Faults/Fault rate 

analysis/Surface tmean/WOs surface tmean.csv") 

#need to do a separate vlookup for Paddington (H&C) 
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Appendix E: R code sample to estimate future tunnel temperatures 

#See Appendix B for packages loaded and tested throughout R code build 

 

##Sample code: tmean/Paddington/SB/Bakerloo line/RCP8.5/2080s## 

#Load monthly met data 

St_James_monthlymean <- 

  read.csv( 

    "//**REDACTED**/Analysis/Climate projections/UKCP18 1981-2010 baseline 

monthly mean.csv" 

  ) 

 

#calculate annual mean - taken from the overall mean of UKCP18 monthly 

values 

St_James_annualmean <- 

  mean(as.numeric(St_James_monthlymean$Mean), na.rm = TRUE) + 6.67057382 

 

#Bakerloo SB station estimation 

St_James_monthlymean_Bakerloo_SB <- St_James_monthlymean 

St_James_monthlymean_Bakerloo_SB$"Paddington" <- 

  ((St_James_annualmean + 15.9727) + 

((St_James_monthlymean_Bakerloo_SB$X2080s.8.5.mean) - 

                                        St_James_annualmean 

  ) * 0.3726) 


